

Chapter 1
Introduction
1.1 Why Compute?

What are computers for? What is their purpose? Suppose your life depended upon coming
up with a word or phrase that most accurately summed up what computing is all about.
What would your answer be?

Would you say that computing is about �����

sex?
drugs?
rock’n’roll?

No, there’s not too much of that in computing.

Well then, perhaps it’s about �����

money?
power?
food?
gambling?

No, these topics are hardly ever discussed in computing magazines.

�

2 Chapter 1

This is surely most regrettable. Does this mean that, if we take out all the interesting things
in life, computing is about what remains? Not quite, we hope!

Computing is concerned with taking the interesting things out of life and representing
them somehow. It is all about modeling. Everything inside a computer is a representation
of something else.

1.2 Facts and Knowledge

Suppose we got together and tried to describe all the things we know about some orga-
nization and its environment. The organization need not necessarily be a commercial or
government organization. It could be the Great Barrier Reef, the town in which we live, or
even one of us.

Our description might take any form, such as drawings, plans or photographs, but let
us assume that it is a narrative written in English. That narrative might include many
statements that are merely opinions, so we will try to restrict ourselves to ones that we
collectively believe to be true. See Figure 1.1.

All that
we know

about
the

organization

Simple specific
statements

of fact

More
general

statements

The
database

Application
programs

Figure 1.1 The Great Computing Divide

Introduction 3

There will be two kinds of statements that we want to make.

1. Some will be simple facts, ones that make connections between specific objects; should
we decide to represent these kinds of facts in a computer system they will be stored in
a database of some kind.

2. Other facts will make more general statements about the nature of the organization;
these tend to end up in computer programs.

Specific Statements
The vast majority of the things that we might write down will be relatively simple statements
of fact. These will relate particular objects in some way. Some examples of such statements
might be as follows.

� Bill Smith is a senior programmer.
� In the December quarter, the Jones family used 1600 kilowatt hours of electricity.
� F. Garcia owns the “River Breezes" property.
� The Accounts Department is located at Head Office.
� On Tuesday, 31 March, Ann Hampson spent two hours on the Fingle project.

These facts relate specific things – particular people, jobs, dates, quantities and locations,
for example. There may be billions of facts of this kind. They constitute the raw data or
database upon which all information systems are founded. As a consequence of these large
numbers:

1. The facts are often partitioned in order to be more manageable, and so we have a
Customer database, a Personnel database and so on.

2. Even then, a database may contain millions of facts. Yet a typical transaction might
involve only two or three of these facts. Complex access methods are involved in
enabling rapid access to the required information.

But it is considerations of technology and volume that drive these facts into a database to be
controlled by a database management system, not anything intrinsic to the facts themselves.
It is technological considerations that force us to make the division between simple facts
and the more generalized ones.

General Statements
Of the things we might like to say, some will require more complex language, for example:

� Senior programmers and above are not paid overtime.
� A client may own several properties but a property is owned by only one client.
� The quarterly tariff for the use of electricity is 15 cents per kilowatt hour (kWh) for the

first 300 kWh, 10 cents per kWh for the next 900 kWh, and 5 cents per kWh for the
remainder.

� If two successive electricity meter readings are such that the second is less than the first,
then meter tickover is assumed to have occurred (that is, the meter has reached its limit
and reset itself).

4 Chapter 1

What makes these statements more complex? Clearly they are longer, but they are longer
because they are trying to say more. They seem to be making more general statements
about classes rather than individuals; and in being more general, they are also more stable,
that is, they tend to remain true for a longer period. If this had not been the case, then
programming would have been quite a different discipline.

Let us call these more complex statements knowledge. Taken in conjunction with the
specific facts given previously, we can say, for example, that any claim for overtime made
by Bill Smith will be rejected, and that the Jones family will be charged $155 for their
electricity. How many statements of knowledge might be made regarding the organization
– tens? thousands? tens of thousands? The answer is that there are probably millions. A
great many, but still several orders of magnitude fewer than the simpler facts that accompany
them.

Where do we store this knowledge? Do we have a knowledge base for complex facts,
one that mirrors the use of a database for simple facts? In practice, we usually bundle
together a number of them and encode them using the currently favored programming
language. So the organization’s computer programs constitute its knowledge base.

Do we have a knowledge base management system (KBMS) to manipulate and modify
this knowledge? Most certainly not! Well ����� we don’t have a computerized KBMS, but
one of the major roles of the Computing Department in any organization is to act as a
knowledge base management system. One of that department’s most important jobs is the
maintenance and enhancement of the organization’s knowledge base. This is done through
the tasks of program maintenance and new systems development.

The knowledge base represents a kind of theory of that company. It represents the way
that the company believes that it works and how it interacts with its environment. However,
it is a theory that is being constantly revised and refined, as the organization adjusts to that
environment.

1.3 Inside a Bank

For the remainder of this chapter, we will look at an example that tries to illustrate these
ideas. The situation to be described is one with which most of us are familiar. We are
inside a small suburban bank. A picture is presented in Figure 1.2.

Specific Facts about the Bank
The specific facts that are relevant to the situation are these.

� Teller T1 is open.
Teller T3 is open.
Teller T4 is open.

� Teller T3 is serving Sue.
� First in the queue is Ann.

Second in the queue is Kim.
Third in the queue is Dan.

� Liz is among the other customers.
Jim is among the other customers.
Bob is among the other customers.

Introduction 5

T1 T2 T3 T4

Ann

Kim

Dan

Sue

Bob

Jim

Liz

Figure 1.2 In the bank

The facts have been separated into four different groups. Each group corresponds to a
certain type of fact. Every fact in a group has a fixed constant part and a variable part. For
example, the first group has the form:

Teller ��� is open.

Each hole is to be filled by the name or identity of a teller. The sentences themselves are
not stored in the database. Rather, we store data that may be plugged into the holes of fact
templates such as the one above. For example, the �	��
� table contains three rows and each
of these may be used to generate a true statement. Each group may give rise to one table or
relation in a relational database. The bank database will contain four tables.

����
� ������� �	��
��
 �����
��������������� ����������������������������� ��������������������������� ������������
�����
�� �
�����
�� ��� ����!�" #���$�%	
 ��� �&� !�" ��� �&� !�"����������� ����������������������������� ��������������������������� ������������(' ��) * ��
 ' + ��� ,�-�.��) ����������������������������� / 0 -21 3�-21��4) 5 $� ��67����������� ��������������������������� �����������
Generally, there is not a one-to-one relationship between the fact types and the database
tables. Usually, a number of fact types are compressed into a single table. Database design
is, essentially, a process of deciding where to place the different types of fact that are to be
stored.

6 Chapter 1

General Statements about the Bank
There are a number of more general statements that we can make. They are rules that
describe the bank at any moment of time.

� There are a number of teller windows, not all of which are open.
� Even at an open window, the teller may not be in the process of serving a customer.
� There is a single first-come, first-served queue of customers awaiting attention.
� There are a number of other customers, some of whom have just been served and are

about to leave and some of whom have just come into the bank and have not yet joined
the queue.

Now we will restate these general observations more formally, using a state schema to
describe this situation.

8:9�;�<
=?>�@ ;BA�C @�DE=GFIHJ@�KLKM@2NO�P�QSR A HJ@2KLKT@2N � UV�XWZY @�N Q = ;
[P @ P @ A Q @?[Y @2N Q = ;
=	DL\�@2N Q A�C @�DE=GF Y @�N Q = ;
] =�^ O�P�Q?R`_ =a>�@ ;
N 9�; O�P�QSR:b N 9�; [P @ P @:cedf
N 9�; [P @ P @ b =�Dg\�@�N Q chd�f
N 9�; O�P�QSR:b =�Dg\�@�N Q ced�fikja] =�^l[P @ P @nmoc ikj N 9	; [P @ P @&m

This state schema is intended to describe a state of affairs such as the one found in the bank.
The schema and its contents are part of the Z specification language or Z notation. This is
the language we will use to specify the situations and events that we intend representing in
some subsequent information system.

The schema has two parts consisting of a declaration and a predicate separated by a
short horizontal line. The declaration in the above schema introduces the four components
of the state. The name of each component has been chosen to match the correspondingly
named table in the database. You should note that a table such as �	��
	� reflects one aspect
of the bank at a certain moment of time. Whereas a component of the bank schema such
as =?>�@ ; is meant to represent some permanent aspect of the bank.

The
8:9�;�<

Declaration

1. =?>�@ ;BA�C @2D(=GFpHJ@2KLKM@�N
This is the set of tellers whose windows are currently open.

2.
O�P�QSR A H�@�KLKM@�N � UV�XWZY @�N Q = ;
This is a relationship between tellers and people. It consists of a set of pairs with each
pair being of the form (teller, person), for example q ��)sra* ��
Jt .

Introduction 7

The domain of this relationship, written
] =�^ O�P�Q?R

, is the set of tellers actually serving
someone. The

] =�^ operator is just one of a number of useful general purpose operators
that may be employed in a specification written in Z. The operation may be applied
to any set of pairs and it returns us (or more precisely, allows us to talk about) the set
of left-hand components of each pair. If the set of pairs is regarded as a table such as
��� ��� , then the domain is the left-hand column.

The range of this relationship, written N 9�; O2P�QSR , is the set of people in the process of
being served. The N 9�; operator complements the

] =	^ operator. It can also be applied
to any set of pairs and if that set is thought of as a two-column table then the range is
the right-hand column.

So although only four components were named directly in the declaration, we can
access or describe other features of the bank that concern us.

3. [P @ P @ A Q @?[Y @2N Q = ;
This is a sequence of people intended to represent the customers who are currently
queuing. It is a set of pairs of the form (number, person), for example q / r 0 -21ut . Each
pair indicates a place in the queue and the person at that place.

Because a sequence is a set of pairs, although of a special kind, we may talk about its
domain and its range. The range of the queue, written N 9	; [P @ P @ , is the set of customers
who are in the queue.

We can specify the customer at any given place in the queue by applying [P @ P @ to the
place in question. For example the customer in second place can be denoted by the
expression [P @ P @ jwv m .

4. =	DL\�@2N Q A�C @2Dx=GF Y @�N Q = ;
This is a simple set of people intended to represent those customers in the bank but who
are not queuing and who are not being served.

We have said what the components are intended to represent but we have not yet written
the conditions that will make them such.

We should have a clear idea of the relationships between the components of the bank
and now we must specify these. This is done in the predicate part of the schema. Here we
relate the state components to one another. We provide a number of conditions that must
hold within the bank at all times. For this reason the conditions that make the predicate are
known as the state invariant. This invariant characterizes the bank for us.

The
8:9�;�<

Predicate

1.
] =�^ O2P�QSR`_ =a>�@ ;
The set of busy tellers (

] =�^ O2P�QSR
) must be contained (

_
) in the set of open tellers. In

other words, only open tellers are allowed to serve customers.

2. N 9	; O�P�QSR:b N 9�; [P @ P @yczdf
The set of customers being served (N 9	; O�P�QSR) has no elements in common with the set
of customers queuing (N 9	; [P @ P @). In other words, no customer is both being served
and in the queue.

8 Chapter 1

3. N 9	; [P @ P @ b =�Dg\�@�N Q czdf
N 9	; O�P�QSR:b =	DL\�@2N Q czdf
Similarly, no person is both queuing and among those other customers. And neither is
anybody being served.

These last three statements ensure that the three sets of customers are disjoint, that is,
they have nobody in common.

4.
ikj{] =�^|[P @ P @&moc i}j N 9�; [P @ P @&m
This is a more complex statement, yet merely states the almost self-evident fact that
no customer will be found more than once in the queue. The queue was declared to
be a sequence, but the sequence construct allows repetition. For example, the word
“irresistible" is a sequence of characters in which certain of the letters repeat. So a
sequence of objects of type Y @�N Q = ; will permit the same person to appear more than
once in the queue. This can be prevented with the help of the set cardinality or set size
operator

i
, which may be applied to any set. It allows us to talk about the number of

elements in that set. We could write
ipO�P�Q?R

to refer to the number of customers being
served, or we could write

i =?>�@ ;�~ ipO2P�QSR
to refer to the number of open tellers not

actually serving at any moment.

The set
] =�^|[P @ P @ is the set of places in the queue; and

i}ja] =	^l[P @ P @&m is the size
of that set, that is, the number of places in the queue. The set N 9	; [P @ P @ is the set of
customers in the queue; and

ikj N 9�; [P @ P @nm is the size of that set, that is, the number of
different customers in the queue.

We declared the bank as constituting four primary components. As may be seen in the
predicate, however, we are able to use powerful operators such as

] =	^ and N 9	; to “access"
other parts of the bank that interest us. We can also use other operators, such as set
intersection

b
to combine two parts or set inclusion

_
to compare two parts of the bank.

It should be remembered, at this stage, that Z is not a programming language. When
we write an expression such as

] =�^ O2P�QSR
we are not instructing a computer to return us

the left-hand column of the ��� ��� table. Rather, the term
] =�^ O2P�QSR

is a convenient means
of naming that set of tellers. It is simply two words used together. We judge a specification
language by its expressive power. We look for economy of expression and it is operators
such as

] =�^ and N 9�; that help us economize. However, you may still feel that the formal
description of the bank did not add to your understanding and that the effort involved in
learning the language is not justified. We will discuss this point shortly.

Suppose we now re-examine the database.

����
� ������� �	��
��
 �����
��������������� ����������������������������� ��������������������������� ������������
�����
�� �
�����
�� ��� ����!�" #���$�%	
 ��� �&� !�" ��� �&� !�"����������� ����������������������������� ��������������������������� ������������(' ��) * ��
 ' + ��� ,�-�.��) ����������������������������� / 0 -21 3�-21��4) 5 $� ��67����������� ��������������������������� �����������
This database is consistent with the rules stated in the

8:9�;�<
schema.

Introduction 9

� Every teller in ��� �&� is also in �	��
� .

� No person appears in both ��� ��� and �	��
��
 .

� No person appears in both ����
��
 and �����
��J� .

� No person appears in both ��� ��� and �����
���� .
� No person appears more than once in �	��
��
 .

1.4 Next Please!

However, the database merely satisifes the rules. It does not contain them. Nor are the
rules incorporated in the programs that are allowed to manipulate the database. But these
programs must be aware of the rules, or at least written with an awareness in mind. Every
one of them must be written so as to maintain the integrity of the

8:9�;�<
state. Whenever

some event occurs that will change the situation within the bank, the program written to
capture that event should guarantee that, if given a valid bank state, it also returns one.
Consider what happens when a teller looks up at the queue and says “Next please!" How
can we describe that event in general terms?

We can conveniently divide the description into two sets of conditions.

1. The pre-conditions

These are the conditions that must apply before the change can proceed.

� The teller must be open for business.

� The teller must not be busy with a customer.

� There must be someone in the queue.

These are the conditions that we recognize as necessary for the event to be valid. If any
one is not true then we know something is wrong.

2. The post-conditions

These describe how the bank changes as a result of the customer moving from the queue
to the teller. They relate the state of the bank before the event to its state after. For this
event, the conditions are:

� The teller is now serving the customer who was previously at the front of the
queue.

� The queue is now formed from the tail of the previous queue.

� Nothing else has changed.

These conditions can now be combined and formalized in an operation schema.

10 Chapter 1

� @{��D Y KM@ 9 Q @
� 8:9�;�<
Da� A HJ@2KLKT@2N
Da����=a>�@ ;
Da����] =�^ O�P�QSR
i [P @ P @����
O�P�QSR�� c O�P�Q?R�� d j D{���S\�@ 9] [P @ P @&mSf
[P @ P @ � czD 9�� K�[P @ P @
=?>�@ ; � c�=a>�@ ;
=	DL\�@2N Qn� c�=�Dg\�@�N Q

Before we look at this specification, you should note three conventions used.

1. The use of the delta symbol in
� 8:9�;�<

indicates that this schema is describing a change
to the bank.

2. The use of the question mark in the variable D{� indicates that the teller is identified as
an input to the operation. It is information that will be supplied.

3. The four components of the
8y9	;�<

state are =a>�@ ; ,
O�P�Q?R

, [P @ P @ and =	DL\�@2N Q . The
primed variables =a>�@ ; � � O�P�QSR�� �n[P @ P @ � and =�Dg\�@�N Q�� are used to indicate the value of the
corresponding component of the bank after the event.

The schema can be interpreted in the following way:

The
� @a��D Y KM@ 9 Q @ Declaration

1.
� 8:9�;�<
This line indicates that the

� @a��D Y KT@ 9 Q @ operation is one that changes the
8y9	;�<

state in
some way.

2. D{� A HJ@2KLKM@�N
The variable D{� represents the teller who is looking to serve the next customer. The use
of a question mark indicates that the teller is an input to the operation. In programming
terms, the identity of the teller is a value to be supplied at run-time.

The
� @a��D Y KM@ 9 Q @ Predicate

The predicate part of the specification re-states, in formal terms, the pre- and post-conditions
that were discussed informally.

1. D{����=?>�@ ;
The teller is a member of the =a>�@ ; set. In other words, the teller is open for business.
The � symbol may be read as “is an element of " or “is a member of ".

2. D{����] =�^ O�P�Q?R
The set

] =�^ O2P�QSR
is the set of tellers actively serving a customer at this moment. The

teller must not be a member of that set.

Introduction 11

3.
i [P @ P @����
The

i
operator applied to [P @ P @ gives the size of the queue. So this condition merely

says that there must be somebody waiting to be served.

This takes us to the end of the pre-conditions. If they are all satisfied then we can
proceed to describe how the bank changes as a result of this operation.

4.
O�P�QSR�� c O2P�QSR:� d j D{���?\�@ 9] [P @ P @&m?f
The teller Da� is paired with the head of the queue and, using set union

�
, that pair is

“added" to the other pairings of tellers with customers.

The \�@ 9] operator may be applied to any non-empty sequence and it specifies the
first object in the sequence. We know that [P @ P @ is not empty because of the third
pre-condition.

5. [P @ P @ � c|D 9�� K�[P @ P @
The new queue is formed from the tail, that is, all but the head of the original queue.
The D 9�� K operator is another special one that may be applied to any sequence.

Applying D 9�� K to [P @ P @ has the effect we desire. It removes the head and shuffles
everybody else forward one place.

6. =?>�@ ; � cl=?>�@ ;
The set of open tellers is unchanged. No teller opened or closed as a result of this
operation, which is as we would expect.

7. =	DL\�@2N Q�� c|=	DL\�@2N Q
The other customers in the bank are also unaffected by this operation.

You might again argue that this formal specification does not tell you anything that was not
already clear from the original informal one.

There is another reason for preferring the formal version. We can use the formal
specification. We can use it to prove that the operation will maintain the integrity of the
bank, that is, the rules specified in the

8:9�;�<
schema. We cannot do that with the informal

version; we can only hazard a guess.
For example, one of the conditions placed upon the bank is that all busy tellers are open.

This was expressed formally as:
] =�^ O2P�QSR`_ =a>�@ ;

After the
� @a��D Y KM@ 9 Q @ operation this condition must be held by the after versions of the

bank state components; in other words:
] =�^ O2P�QSR��E_ =?>�@ ; �

After the
� @{��D Y KM@ 9 Q @ change, the set of busy tellers,

] =�^ O2P�QSR��
, is contained in the set of

open tellers, =a>�@ ; � . Can we demonstrate that this latter condition does hold?
] =�^ O2P�QSR �
[We can start with the left-hand side of the equation, that is, the set of busy tellers, and
try to prove that it is a subset of the open tellers.]

12 Chapter 1

=
] =�^ j{O�P�QSR:� d j Da��S\�@ 9] [P @ P @nmSf&m
[In this line we have substituted for

O�P�QSR��
according to the line in

� @{��D Y KM@ 9 Q @ that
states how the set is formed:

O�P�QSR � c O�P�Q?R�� d j D{���S\�@ 9] [P @ P @&mSf .]
=
] =�^ O2P�QSR:��] =	^hd j Da��S\�@ 9] [P @ P @nmSf
[Here we have “distributed" the use of the

] =	^ operation into two separate applications.
This is similar to the way in which the multiplication in the expression ��� j�v���� m can
be distributed into two products as ��� v�� ��� � .]

=
] =�^ O2P�QSR:� d�Da�	f
[The expression

] =�^hd j D{���?\�@ 9] [P @ P @&m?f can be simplified to d�D{�f .]_ =?>�@ ; � d�Da�	f
[The previous expression must be a subset of the new one because of the line in the8:9�;�<

schema that says:
] =	^ O�P�QSR�_ =?>�@ ; . We can assume that, before the

� @a�D Y KM@ 9 Q @
operation started, the bank was in a valid state.]

= =?>�@ ;
[This can be simplified to =?>�@ ; because of the line in

� @{��D Y KM@ 9 Q @ requiring that: D{���=?>�@ ; .]

= =?>�@ ; �
[The

� @a��D Y KM@ 9 Q @ operation leaves the set of open tellers unchanged as can be seen by
the line: =?>�@ ; � c|=?>�@ ; .]

Hence
] =	^ O�P�QSR��x_ =a>�@ ; � which is what we were required to show.

We have now demonstrated that one of the bank conditions holds through the
� @{��D Y KM@ 9 Q @

operation. We have achieved this by a series of transformations based upon a valid
8:9�;�<

state and the
� @{��D Y KM@ 9 Q @ operation.

1.5 The NextPlease Program

Now we will look at a program that will update the database according to the specification
laid down in the

� @a�D Y KM@ 9 Q @ schema. The program is written in the language SQL which
we will use to implement our specifications. SQL is a straightforward language that allows
us to inspect and manipulate a set of tables as if they were in front of our eyes rather on
electronic storage.

����
� ������� �	��
��
 �����
��������������� ����������������������������� ��������������������������� ������������
�����
�� �
�����
�� ��� ����!�" #���$�%	
 ��� �&� !�" ��� �&� !�"����������� ����������������������������� ��������������������������� ������������(' ��) * ��
 ' + ��� ,�-�.��) ����������������������������� / 0 -21 3�-21��4) 5 $� ��67����������� ��������������������������� �����������
Suppose we want to find out who is at the front of the queue. We would probably do it this
way:

Introduction 13

1. We would start by determining which table contained information about queues. The
table ����
��
 is the one required. It is from that table that the answer will be extracted:

� ��6&1l�	��
��

2. But that table contains information about the entire queue; so we need to narrow our

search to the row where the place indicates that the customer is at the head.
� ��
���
 #���$�%
 ¡ '

3. Having found the row we need, we can select from it the name of the customer involved.

*
���
�%��¢������� !�"
We can link these three clauses to form the SQL statement required.

*
���
�%��£��� ����!�"� ��6&1 �	��
��
� ��
���
 #���$�%	
 ¡ '

The entire program is presented as a sequence of steps to be obeyed by the computer.
Each step consists of a simple instruction written in SQL. Each instruction will require the
computer to either read the database or to amend it in some way. Steps that involve looking
up the database will have an extra condition that determines whether the computer is to
move to the next step or to abort the program. This condition will depend upon the results
obtained from the retrieval.

The program is written in general terms, making reference to a teller ��¤ . We will then
examine what happens when t? = T1.

1. Is the teller open for business?

*
���
�%�� �
�����
��� ��6&1 ����
�� ��
���
 �
�����
��£¡¦¥G��¤§¥
If no rows are returned by the query, then the teller is not open. With t? = T1, there
will be a row found.

2. Is the teller busy?

*
���
�%��e¨� ��6&1 ��� ���� ��
���
 �
�����
��£¡¦¥G��¤§¥
If a row satisfying the condition is found, then the teller is busy and so the program
should be abandoned. With t? = T1, no row will be found and so the program can
continue.

3. Is there someone in the queue?
*
���
�%��e¨� ��6&1 ����
��

14 Chapter 1

If any rows at all are returned, then the condition is satisfied. There are currently three
rows in the ����
��
 table and so the program may continue.

This is the last of the pre-conditions. The rest of the program is involved with making
the necessary amendments to the database.

4. Move the customer at the front of the queue into the ��� ��� table.

!�� �
����
!�����6 �������*
���
�%��¦¥G��¤s¥ r ��� �&� !�"� ��6&1 �	��
��
� ��
���
 #���$�%
 ¡ '

A row containing the name of the teller and the name of the customer first in the queue
is created. This row is inserted into the ��� �&� table. With t? = T1, the row (T1,Ann) is
inserted into ������� and the table will now look like this:

��� ���������������������������������
�����
�� ��� ����!�"�������������������������������) * ��
�(' + ��������������������������������
The database is now inconsistent. Ann is now at two places in the bank, breaking the
rule that no customer may be queuing and being served at the same time.

5. Remove the customer from the front of the queue.

5
���
���
� ��6&1 �	��
��
� ��
���
 #���$�%
 ¡ '

The row with #���$�%	
£¡ '
will be deleted from the �	��
��
 table which will now look

like this:

����
��
���������������������������
#���$�%
 ��� ��� !&"���������������������������

/ 0 -21) 5 $����������������������������
Well, now Ann is in only one place, but the database is still inconsistent, this time
because the queue is a sequence of people and our �	��
��
 table is not a proper repre-
sentation of a sequence.

6. Shuffle up the remainder of the queue.

Introduction 15

© ��"�$���
¢�	��
��
*
�ª#���$�%
 ¡£#���$�%
 � '

This SQL statement will change each row in �	��
��
 subtracting one from the value
stored in the #���$�%
 column. The effect is to move everybody forward one place.

����
��
���������������������������
#���$�%
 ��� ��� !&"���������������������������' 0 -21/ 5 $����������������������������

Now the database looks like this:

����
� ������� �	��
��
 �����
��������������� ����������������������������� ��������������������������� ������������
�����
�� �
�����
�� ��� ����!�" #���$�%	
 ��� �&� !�" ��� �&� !�"����������� ����������������������������� ��������������������������� ������������(' ��) * ��
 ' 0 -21 ,�-�.��) �(' + ��� / 5 $� 3�-21��4 ����������������������������� ��������������������������� ��67����������� �����������
After these changes, the bank is still in the state defined for it:
� All busy tellers are open.
� Every customer is either:

– in the queue, or

– being served, or

– elsewhere in the bank,

but only in one of these sets.
� No customer appears at more than one place in the queue.

The sequence of SQL statements has maintained the bank in its proper state. Yet it would
be impossible to tell. SQL is not amenable to formal methods. We can only rely on our
intuition and on trial and error. We believe that the SQL is adequate and it seems to work
on the test data supplied.

1.6 Summary

This book will cover the following topics.
� Chapters 2, 3 and 4 introduce simple facts and their specification.

In the bank situation, the simple facts correspond to the bank components =?>�@ ; ,
O�P�Q?R

,[P @ P @ and =	DL\�@2N Q . These chapters look at their structure. In particular, we will look at
sets, functions and relations.

16 Chapter 1

� Chapters 5, 6 and 7 introduce SQL, in particular its use as a database retrieval language.

In the bank we used SQL retrieval statements to check that the pre-conditions were
satisfied – that the given teller was open, and so on.

� Chapters 8, 9, 10 and 11 look at how we design a database.

In the bank situation we used a rather simple-minded design. In these chapters we
will treat the subject more seriously. Two alternative approaches to data modeling are
presented. First we examine the fact-based approach which is founded on the belief
that databases contain lots of simple facts and that from these we should develop our
database structure. Then we look at the entity-relationship approach which takes a
more pragmatic line, based on the assumption that we surely know the kinds of things
that are going to form the basis for tables, and these are the basis for our database
structure.

� Chapters 12, 13 and 14 look at general statements and their specification; these state-
ments are ones that will eventually be implemented as programs.

The predicate sections of the
8:9�;�<

and
� @a��D Y KT@ 9 Q @ schemas contained examples of

these.
� Chapters 15 and 16 look at database definition and manipulation in SQL. This is the

language that we will use to implement the general statements that were specified in
the three preceding chapters. Chapter 16 looks at how we integrate the necessary SQL
into a program.

� Chapter 18 contains case studies that show the specification in Z and implementation in
SQL of two different situations. Chapter 19 contains another case study, but this time
we use the idea of data refinement, and its associated rules, to more rigorously ensure
that our SQL programs are a true implementation of the original specification.

Introduction 17

Exercises

Q1.1 Using the bank situation presented in this chapter, describe the pre-conditions
and post-conditions for each of the following events. Express these conditions in
English. What do you think the SQL program might be?

a. A person « � comes into the bank and joins the others.

b. A person « � leaves the bank.

c. A teller D{� opens up his or her window.

d. A teller D{� closes down his or her window.

e. A customer « � joins the queue.

f. A customer « � finishes his or her transaction and prepares to leave the bank.

g. A customer « � leaves the queue and goes to fill out a withdrawal slip.

h. A customer at the end of the queue leaves to fill out a form but only if he or
she is not at the front.

Q1.2 Extending the bank model

Suppose that the bank is being enlarged. Instead of just one queue, there are several.
Each queue is served by a dedicated set of tellers. How would the bank be described
now? We might start by introducing a new class of objects

C D 9	;] , where each object
of this type represents a place where a queue may form. Each teller serves just one
of these places, and so we might represent this relationship as a function:

Q @�NS¬�@ Q A HJ@2KLKT@2N �w�XW C D 9�;]

Instead of just one queue, there will be several:

[P @ P @ Q A�C D 9	;] �w�XW Q @?[Y @2N Q = ;

This function maps each stand to a (possibly empty) sequence of people.

In the original model, we could have people in one of three places: queueing, being
served, or among the others. In this model, instead of just one queue, we have
several.

8�¯®n®�9n8y9	;�<
=a>�@ ;�A�C @�D(=°FIH�@�KLKM@�NO2P�QSR A HJ@�KLKM@2N � UV�wW�Y @2N Q = ;
[P @ P @ Q A�C D 9	;] �X�XW Q @?[Y @2N Q = ;
=�Dg\�@�N Q A�C @�Dx=°F Y @2N Q = ;Q @2NS¬�@ Q A HJ@�KLKM@2N �X�XW C D 9	;]

±�±�±

How would your description of each event be changed, if at all?

Chapter 2
Specific Facts
2.1 Introduction

Computers are not magical. They are marvellous, but they are not magical. They may be
extremely fast, with computation speeds measured in millions of instructions per second.
They may have huge amounts of memory, measured in billions of characters. But there
is nothing happening inside them that we could not contemplate doing ourselves. We
may take a lot longer; we may get bored and make mistakes, but we must believe that we
could. We must think of the computer as doing things that we could do with pencil and
paper or with a blackboard and some chalk. If we cannot do this, then we are resigned to
thinking of the computer as something beyond our comprehension. As a consequence of
this necessary act of faith, it is the things that we can express (in conversation with a friend
or on a piece of paper, say) that are of importance. And, unless we are day-dreaming, these
expressions have some meaning. They are attempting to say something about reality. The
sentence is the unit of language that allows us to say things about the world in which we
live. Sentences, however, come in all shapes and sizes; there are commands, questions,
forecasts and opinions to name just a few. This book will focus on one particular category
consisting of what are called declarative sentences or, more simply, facts. A declarative
sentence is one that is capable of being true or false. Consider the following sentences:

Stop, in the name of love!
Big girls don’t cry.

Will you still love me tomorrow?

Only one of these three is some kind of statement about the world. Only one is a represen-
tation. Only one can be added to the end of:

I declare that:

���

���

Specific Facts 19

and make a grammatical sentence. Maybe big girls don’t cry; maybe they do. But it is
certain that only the second sentence may sensibly be inserted into the above framework.
Only the second sentence is declarative. This chapter examines specific facts – declarative
sentences that relate particular people, places and things.

The chapter will also examine how we can formalize our everyday speech; that is, how
we can take an English sentence and rewrite it in a highly structured way. Having expressed
our meaning formally, the formal sentence may be evaluated to decide whether it is true
or false. This evaluation is independent of whoever performs it. In this way, the formal
sentence has a precise meaning; one that is independent of any particular reader or listener.

2.2 The Plain Facts

Imagine a situation involving two people who have just met for the first time. One of them
is attempting to describe his or her circle of friends, relations and acquaintances. We will
call that person the narrator. The other person is simply listening. The narrator begins with
the following description.

�	��
������������
Alan is 21 years old; he plays tennis and golf. Sue is 18 and she
plays tennis. Kim is 23 and she too plays tennis. Bob is also 23
and his sports are golf and hockey.

There are four sentences in the narrative, one for each person mentioned. Each of these
sentences can be replaced by a number of simpler ones which, collectively, provide the
same information. For example, the first sentence can be re-expressed as:

���������� �!#"%$'&���(�)*��+-,
���������� ��/.#�*��&0,
�������213����$	 54'&������� 6,
�������213����$	 57')*��8-,

A similar kind of analysis could be performed on the other three sentences. The result
would be 14 different sentences; and within those 14, there are three kinds or types of
sentence: one type giving people’s age, one for their sex and one specifying which sports
they play.

Let us look at this last sentence type in some more detail. It has the general form:

9�9�9�9�9�9 13����$3 9�9�9�9�9�9
There are two places where a substitution may be made. The underlining indicates the
places involved. In this form, we have a kind of template for a sentence. After substitutions
have been made, the resulting sentence may be true or false. A sentence template, where,
after suitable substitutions, we are left with a declarative sentence, is called a predicate.
Predicates may be simple, as in this example, or they may be quite complex, as we shall
see in the remainder of this chapter and in Chapters 3, 4 and 12.

20 Chapter 2

For a simple predicate like this, the word
13����$	

is the predicate symbol, and we can
refer to the predicate as the

1�����$	
predicate.

Suppose our narrator divulges a little more about the circle.

�	��
����������;:
There’s also Mark, a bit past it at 48, but he still manages an
occasional round of golf and an even more occasional hit on the
squash court. Oh! and not forgetting Ann who’s 45.

We can use our
13����$	

sentence templates to analyze some of this new information.
< ��(�=>13����$	 57')*��8-,
< ��(�=>13����$	 > @?�A'�� CBD,

With the aid of the template, we insert
< ��(�=

into the first place and a sport he plays into
the second.

What else might have been substituted? Here are some possible ways.
< ��(�=>13����$	 57�A��E4'��(F, G'��(�1')H1�����$	 54�B'&JI���)�K��D,
< &���B�A��E�H13����$	 ML#�@)*�'�E�D, N*('���'��7�B>13����$	 5G'�C.���&�4F,
< &���B�A��E�H13����$	 5N�&�&�4�B�)�L'&��F, O����' @)��>13����$3 �8�A3���@P��'IQ=F,
R*&�=�=*)/13����$	 M4�B'&S C4')�IQ=@.	��(�='&�4-, T'���#IC$21�����$	 /)��SU���4�A*(*+*��$3 6,

There are a lot of possible substitutions, every one of which may produce a true statement
and all of which are irrelevant to our purpose. We are only interested in the kind of
substitutions that consist of a person and a sport. We will see, shortly, how we can declare
this interest.

2.3 Facts as Relationships

2.3.1 Relations

We can summarize all the VXW &�(�)��-YZU�1�)�(�4	[pairs that can be validly substituted in the
following table.

�����������������������������
W &�(@)�� U@1�)�(�4
������������������������������������ 4*&�������
������� 7*)*��8
U�A�& 4*&�������
\ �]. 4*&�������
N�)�P 7*)*��8
N�)�P B')�IQ='&�$
< ��(�= 7*)*��8
< ��(�= Q?�A��� CB
�����������������������������

Specific Facts 21

Suppose that we now examine this table in conjunction with the 9�9�9�9�9 13����$	 9�9�9�9�9 pred-
icate. If we substitute

�������
in the first place, we get:

�������213����$	 9�9�9�9�9�9
Looking at the table, now, it can be seen that there are two substitutions that will turn the
above into a true statement; these are

4'&�������
and

7')*��8
. Alan plays two sports; and, in

general, a person may play several sports.
Conversely, if we return to the original predicate:

9�9�9�9�9�9 13����$3 9�9�9�9�9�9
and, this time, we insert

4'&�������
into the second place, we get:

9�9�9�9�9�9 13����$3 54'&�������
There are three valid substitutions available to us,

�����@�
,
U�A�&

and
\ �].

; in general, a sport
may be played by several people.

A relationship between two types of thing, such as this one between people and sports,
is called a relation.

We should now introduce the
13����$	

relationship properly, by declaring it.

9 13����$	 9_^ W &�(�)@�a` �b�dc U�1')�(�4
The declaration says that:
e We can use

1�����$	
to construct sentences, and it will be the verb in that sentence.

e Any such sentence is required to involve a W &�(�)�� and a
U@1�)�(�4

, in that order.
e The underscore on either side, 9 13����$	 9 , says that, when a sentence is being formed,

the person is to precede the word
1�����$	

and the sport is to follow it.

A sentence formed according to these rules may be either true or false; the rules relate
to sentence construction and not to sentence meaning. This is an example of a type
declaration. This particular one states that

13����$	
is something that is made true by a

relation
` �d�bc between W &�(3 �)�� and

U�1')�(�4
. The predicate is called

13����$	
as was discussed

before; however, it is also common to use the same name to refer to the complete set of pairs
that makes the predicate true. So we can talk about the

13����$	
relation and call f 13����$	 f

the relation name or symbol.

2.3.2 Defining Fact Types

From now on, in this chapter, we will show a relation name and its associated relation in
the way shown in Figure 2.1. There we see revealed the nature of the fact, through a type
declaration, and the extent of the fact, through an equation that defines the entire fact as a
set of pairs. This way of introducing a fact type is useful in an introductory chapter such
as this one. However, it is generally unsatisfactory for two reasons:

1. In practical computing situations, the fact may involve thousands of pairs. We will
want to store these on disk, not on paper.

2. More importantly, as presented, the
13����$	

fact is fixed. Nobody can take up a new
sport; neither can anyone drop a sport. This is clearly unrealistic, and consequently
undesirable.

22 Chapter 2

13����$3 g W &�(@)��h` �b�dc U�1')�(�4
13����$	 ji

k�l �����@��m;4'&@������ �n�m
l �������#mo7')*��8�n]m
l U�A�&3mp4'&����#�� �n�m
l \ �].mp4'&����#�� �n�m
l N�)�P�mp7')*��8�n]m
l N�)�P�mqB�)�IQ=*&�$'n�m
l < ��(�=	mo7')*��8�n]m
l < ��(�=	mr @?�A��' CB�nts

The
1�����$	

fact is declared.

It is then defined in
terms of the set of
VXW &�(@)��-Y;U�1')�(�4#[pairs
that, when substituted
into the fact template,
give rise to a

4�(�A�&
statement.

Figure 2.1 Defining a fact type

2.3.3 Domains and Ranges

Frequently we will want to refer to those objects that are involved in a particular relationship
such as the 9 13����$	 9 relation. If we want to specify the people who play a sport (of any kind)
then we can refer to the domain of the relation. The domain of this relation corresponds to
the left-hand column of the relation when it is presented as a table, that is, to:
u �����@�-YoU�A�&vY \ ��.wYZN�)�P-Y < ��(�=�x

Ann doesn’t appear because she doesn’t seem to play any sport. This domain set can be
written more briefly as:
+*)C.y13����$	

In general, the domain of any relation can be referred to by prefixing the relation name by
the word

+*)E.
.

There is a corresponding way of denoting the set of sports played by these people. This
is known as the range of the relation. This is the set:
u 4'&������� Yz7*)*��8{YZB�)�IC='&�$0Y| Q?�A��� CB�x

This set corresponds to the right-hand column of the table. The range can be referred to as:
('���213����$	

In general, the range of a relation may be specified by prefixing the relation name with the
word

('���
.

2.3.4 Base Types

Before proceeding any further, we had better clarify exactly what is meant by the words
W &�(@)�� and

U�1�)�(�4
. These terms are two of the basic types of thing about which the narrator

wishes to make some statement or statements. They are basic because all subsequent

Specific Facts 23

declarations will be founded upon these types. For this reason it makes sense to preface
any narrative or specification with a brief introduction to these types.

Type Intended interpretation}�~ ��(< ��='&��
the makes of car that interest the narrator}�� ����7�A���7'&��
the set of foreign languages} T*�
the set of whole numbers or integers

kC� YE"#Y�!vY��vY]�����Xs
} W &�(3 �)��'� the people who make up the circle that the narrator intends to describe} U�1�)�(�4*�

those sports that interest the narrator

In describing these fundamental object or entity types, the narrator has the opportunity
of clarifying exactly what he or she means by a particular type name. So, for example,
W &�(@)�� is the set of people in the circle. It is not necessarily the set of all people, and it is
not some arbitrary set of people that the listener might interpret it to mean. Similarly, the
type

U�1�)�(�4
is the set of sports that interest the narrator and nothing else.

When being introduced, all of the types were enclosed within square brackets. These
brackets are not part of the type name; they are used to delimit it. We may, if we wish,
introduce several new types at the same time. We do this by enclosing, within square
brackets, a list of type names separated by commas. So the above types could also have
been introduced as follows.

}�~ ��(< ��='&vY � ���*7�A'��7'&vY�T0Y W &�(�)��0YoU�1�)�(�4��

However, in this book, the preferred style is to introduce each type individually, and to
describe it briefly.

2.3.5 Formalizing Sentences

Anything that we may wish to write down or to say in conversation may be expressed in a
variety of ways, depending upon individual style and fluency. We could write about Alan’s
age in any of the following, more or less acceptable, ways.
�������0�] /��7'&S�� H!#"�,
���������� �!#"%$'&���(�)*��+-,
���������� �!#"�,
�������2K��' MP')�(��y!#"%$'&���(/��7')0,
� B�&2��7'&2)�82�����@���� >!#"�,

For the moment, we will use the first of these styles. Gathering together all the statements
about the people’s ages gives:
�������0�] /��7'&S�� H!#" N�)�P-�� H��7'&S�� >!��
U�A�&v�� /��7'&J�� y"C� < ��(�={�] /��7'&J�� M�'�
\ �].w�� /��7'&J�� �!�� �����-�� H��7'&S�� ��*�

These sentences would seem to suggest a sentence template like:

9�9�9�9�9�9 �] M��7'&S�� 9�9�9�9�9�9
We could then declare the sentence type as follows.

24 Chapter 2

9 �] ���7'&S�� 9{^ W &�(�)@�h` �b�dc T
The name

T
is the one conventionally given to the set of integers

� YE"�YX!vY��vY',�,�,
The

declaration above would follow the pattern set for 9 13����$	 9 . However, among other things
in this chapter, we are trying to introduce the idea of a formal language to be used in
describing or specifying situations. This language will be a simplified version of the
original English, one that sacrifices flexibility for precision.

The first sacrifice that we must make is to use a single word or symbol to identify the
relation. We are not allowed to use

�] H��7'&S��
which starts with a punctuation symbol and

contains spaces. Instead we must use a word, that is, a contiguous sequence of characters,
or we can use some special symbol. We can try something like:

9�9�9�9�9�9�9 B��' ���7'& 9�9�9�9�9�9
Now we can write the formal version of:
�������0�] /��7'&S�� H!#"

as:
�������2B��' ���7'&>!#"

The sentence type may be declared as:
B��' ���7'& g W &�(�)���` �d�dc T

The declaration says that sentences constructed using 9 B��' ���7'& 9 are made true by pairs
drawn from the sets W &�(@)�� and

T
. Collectively, these pairs form a relation like that shown

in Figure 2.2.

B��� ���7*& g W &�(�)@�a` �b�dc T
B��' ���7'&�i

k�l �����@��m|!#"Cn�m
l U�A�&3m�"C��n�m
l \ �].m�!���n�m
l N�)�P�m�!���n�m
l < ��(�=#m;�'��n�m
l ������mp�'��nts

Figure 2.2 The
B��� ���7'&

relation

2.4 One-to-many Relationships

2.4.1 Functions

In many ways, the 9 B��� ���7'& 9 relation is much more interesting than the 9 1�����$	 9 one.
Suppose, first, that we rephrase each sentence in this way.

Specific Facts 25

� B�&2��7'&2)�82�����@���� >!#"�,
The general form would be:
� B�&2��7'&2)�8 9�9�9�9�9�9 �� 9�9�9�9�9�9

If we start by inserting a number in the second place, such as 23,
� B�&2��7'&2)�8 9�9�9�9�9�9 �� H!��

There are two valid insertions for the person slot, that is, insertions that will make the
sentence true; these are

\ ��.
and

N�)@P
. In general, in any group of people, there may be

several of the same age. The converse is not the case. Suppose we insert
�����@�

into the first
place.
� B�&2��7'&2)�82�����@���� 9�9�9�9�9�9

Once we have inserted someone’s name, then we are constrained to just one valid insertion
for the remaining place; that is the number

!	"
. In general, a person has one and only one

age. There is a pivotal point at the word
��

.
� B�&2��7'&2)�82�����@���� >!#"�,

���
The phrase

� B'&���7'&�)�82�'�����
is somehow balanced by the number

!#"
. The partial

sentence:
� B�&2��7'&2)�82���������� 9�9�9�9�9�9 can only be made true by the insertion of one

number,
!#"

. A person’s age is a single-valued fact about that person, whereas the sports
they play is a many-valued fact. To reflect the difference between these two sentence types,
we declare

��7*&
in the following way:

��7'& ^ W &�(�)�� �b�dc T
The declaration states that

��7'&
is a special kind of relation called a function. A function

is a single-valued fact about something. The notation tries to indicate that when the
��7*&

function is applied to some person then we will be led or pointed to one particular number.
This is written as, for example:
��7'& V ��������[� !#"

The function symbol
��7'&

is written next to its argument, in this case,
�������

. The equality
symbol � corresponds to the word

��
. It is a formal statement equivalent to the English

sentence:
� B�&2��7'&2)�82�����@���� >!#"�,

So, we have two ways of representing the age relationship, as may be seen in Figure 2.3.
The underlying data is exactly the same, so why should we choose one style of declara-

tion rather than the other? The difference between the two declarations is one of intended
usage. When this relationship between people and numbers is named as

B��� @��7'&
and

declared to be of type W &�(@)��h` �b�dc T then we expect to construct sentences such as:
�������2B��' ���7'&>!#"
�����2B��� @��7'&��'�

26 Chapter 2

B��� ���7'& g W &�(3 �)���` �d�bc T
B��� ���7*&ai

k�l �'������m|!	"Cn]m
l U�A�&�m�"C��n�m
l \ �].�m�!���n�m
l N�)�P#m�!���n�m
l < ��(�=#mo�'��n�m
l �����#m��'��nts

��7'&�g W &�(�)�� �b�dc T
��7'&hi

k�l ��������m|!#"En]m
l U�A�&3m�"C��n�m
l \ �].m�!���n�m
l N�)�P�m�!���n�m
l < ��(�=	mo�'��n�m
l ������mp�'��nts

Figure 2.3 Relation or function?

However, when we name the relationship
��7*&

and declare it to be of type W &�(�)�� �b�dc T
then we intend to use it as a function, applying it to an appropriate argument. So the two
sentences above can be written using function application as:

��7'& V ��������[� !#"��7'& V ������[� �'�

However, we may choose to use it anywhere that a number may be used:

��7'& V ��������[M`2��7'& V ������[� !	"�`H�'�
� 4�(�A�&

By applying the function separately on two different arguments, we can determine that the
age of Alan is less than the age of Ann, or more simply, Alan is younger than Ann.

2.4.2 Partial Functions

Whenever we have the possibility of an incomplete functional relationship, we have a
partial function. We might have a partial

B'&3�C7�B*4
function.

B�&3�C7�B*4 ^ W &�(�)�� � ���dc T

Everybody has just one height, so it is a functional relationship, but if we do not know
every person’s height, or cannot guarantee that we will know, then the function is partial.
The symbol for a partial function is � ���bc which is similar to the �b�dc symbol used for total
functions but with a vertical bar.

Before we can refer to someone’s height we must ensure that the person is in the domain
of the height function, in other words, we must ensure that we know that person’s height.

There are also many examples of what might be called naturally occurring partial
functions.

Specific Facts 27

�	��
����������;�
Alan has a Mercedes and Sue a Ford. Ann and Mark drive a
Toyota. Bob drives a Porsche. Kim doesn’t drive.

So everybody but Kim drives a car. We can represent this
+�(�CL'&�

relationship as a partial
function. See Figure 2.4.

+�(�CL'&� ag W &�(3 �)�� � ���dc ~ ��(< ��='&
+�(�CL'&� �i

k�l N�)�P#m W)�(3 �ICB�&�n�ml < ��(�=#m �)�$')�4*��n]m
l ������m �)�$')�4*��n]m
l U�A�&3mp�')�(*+*n�m
l ��������m < &�(I�&�+*&� �nts

Figure 2.4 The
+�(#�CL*&�

partial function

The domain of the
+�(�CL'&�

function is the set of people who drive or own a car of some
type, that is, the left-hand column of the

+�(�CL'&�
table. This domain can be written more

briefly as
+*)E.�+�(#�CL'&�

, and:

+*)C.J+�(#�EL'&� � u N�)�P0Y < ��(�=0Y;�����-Y�U�A�&vY;�����@�Jx

We can take any person from that domain, for example,
N�)@P

, and refer to the kind of car
that Bob drives as

+�(#�CL*&� V N�)@P�[. The term
+�(�CL'&� V \ �].[has no meaning, however.

The range of this particular function is the set of cars driven by one or more of the
people in whom we are interested. This can be written as

('����+�(�CL'&�
and:

('����+�(#�EL'&� � u W)�(3 �ICB�&vY �')�(*+{Y �)�$')�4'�6Y < &�(I�&�+*&� /x

In general, the range of a function is the set of values into which the domain of that function
maps.

Partial functions are a nuisance because, before we apply such a function to any
arguments, we must ensure that they fall within the domain of the function. The subtraction
and division of positive integers are both partial functions. This probably explains our slight
hesitation in using them. However, partial functions are common in information systems.

2.5 One-to-one Relationships

The narrator now decides to reveal how, last night, everybody was seated round the table
having a meal. This time, the description is given visually:

28 Chapter 2

�	��
����������z¡

Mark

Ann

Kim

Alan

Bob

Sue

Suppose we work our way clockwise, or leftwards, around the table. Everybody has
someone to their immediate left; for example, Alan has Sue on his left. Moreover, everybody
has just one person there. This indicates a total functional relationship; but it is more than
that because everybody is to the left of just one person. There is a one-to-one relationship
between each person and the person on their left. This relationship is defined in Figure 2.5.

��&�8�4 g W &�(�)�� cd�b�dc W &�(3 �)��
��&�8�4¢i k

l �'������m|U@A�&�n�m
l U@A�&3mpN')�P�n�m
l N')�P�m \ �].#n�m
l \ �].m < ��(�='n�m
l < ��(�=#mo������n�m
l ������m��'������nts

Figure 2.5 The
��&�8�4

total injection

The cd�b�dc symbol indicates that
��&�8�4

is an injection or one-to-one relationship. The
injection symbol is an annotated version of the total function symbol �b�dc , indicating that��&�8�4

is a special kind of total function. It is total because everybody is seated at the table.
There are also partial injections. Consider this insight into the circle.

Specific Facts 29

�	��
����������;£
Alan and Sue are married to one another, as are Ann and Mark.
Bob isn’t married which may help to explain how he drives a
Porsche. Kim isn’t married either.

Marriage is a well known one-to-one relationship, but it is not total. (Even if it is ’til
death us do part.) Not everyone in the circle is married. The relationship is defined in
Figure 2.6.

 C1')�A# �&¢g W &�(3 �)�� cb� �¤�bc W &�(�)��
 C1')�A# �&¥i

k�l �����#m < ��(�='n]m
l < ��(�=#m;������n�m
l ��������m�U�A�&�n�m
l U�A�&3mp��������nts

Figure 2.6 The
 C1')�A# �&

partial injection

The cd� ���dc symbol indicates that
 C1�)�A# @&

relationship is a partial injection. The domain
of this injection is the set of people who are married and the range of that function is the set
of people to whom they are married. Of course these two sets should be the same, and so:
+*)C.¦ C1�)@A# �& � ('���� C1�)�A# @&

This is an example of a general statement or rule about marriages.

2.6 The Construction of Simple Sentences

2.6.1 Function Application

Suppose that, again, we are presented with some additional information regarding the circle
of people.

�	��
����������;§
Mark is Alan’s father.

The relationship between a person and that person’s father is a functional one – we can
only have one father. This can be specified as:

8*��4�B'&�(�g W &�(@)�� � �¤�bc W &�(�)@�

30 Chapter 2

The
8*��4�B�&�(

function is partial. We do not know everybody’s father. In fact, we appear to
know only Alan’s.
8*��4�B'&�(V ��������[� < ��(�=

Function application is the name given to the symbolic expression formed by applying a
function to its argument or arguments. The following terms are all examples of function
application:
��7'& V N�)�P�[8*��4�B'&�(V ��������[C1�)�A	 �& V < ��(�=#[

These are symbolic expressions denoting objects we might more conveniently refer to as,
respectively, the number

!��
, the person

< ��(�=
and the person

�����
.

In computing terms, function application can be thought of as the process of reading
down the left-hand column of the appropriate table until a match for the argument is found
and then extracting the corresponding entry in the right-hand column.

Function application may be performed repeatedly. For example, since both the fol-
lowing statements are true:

< ��(�= � 8*��4�B'&�(V ��������[C1�)�A	 �& V < ��(�=#[� �����

we may combine them to give:
 C1�)�A	 �& V 8*��4�B�&�(V �������	[�[� �����

by using the equation for
< ��(�=

provided by the first statement and substituting it in the
second. The new sentence tells us that the spouse of the father of Alan is Ann (who is
possibly, but not necessarily, the mother of Alan; we don’t know).

Using this style of repeated function application, we can construct complex expressions
that provide us with ways of identifying objects. So, this new sentence tells us that there
are two ways, at least, of naming the person involved:
�����
 C1�)�A	 �& V 8*��4�B�&�(V �������	[�[

We now know that the representation for a person need not be a simple name such as
�����@�

.
It can be of any form that allows us to identify an individual person. The importance of
functional relationships (functions and injections) is that they provide us with an alternative
way of identifying individual objects. The relationship called

��&�8�4
provides us with another

way of identifying people. Everybody at the table has just one person to their immediate
left, for example, Alan is on Ann’s left. We can construct a simple sentence to state this
formally:
��&�8�4 V ������[� �������

This equation shows that there are (at least) two ways of representing the person in question,��&�8�4 V ������[and
�����@�

. The fact that Alan plays tennis, can also be said as:

Specific Facts 31

��&�8�4 V ������[�13����$	 54*&�������
In general, we will pair the symbol

��&�8�4
with a person, as follows:

W &�(�)����&�8�4
Representation

The symbolic expression that results is yet another W &�(�)@� representation. The declaration
of
��&�8�4

, which was:
��&�8�4�g W &�(�)�� cb�d�bc W &�(�)@�

tells us that. The symbol
��&�8�4

followed by a W &�(�)�� representation will map us (cd�d�bc) to
another W &�(@)�� representation.

The representations used for a person may be as simple or as complex as we need or
care to make them. We could refer to the person second on the left from Ann as:
��&�8�4 V ��&�8�4 V ������[�[

Because of the nature of a functional relationship, for example, because each person has
just one person to their immediate left, we use functions to identify individual objects.
We expect to use

��&�8�4
to identify somebody rather than using it to construct complete

sentences in the way that
13����$	

was. It may seem that functions are being used in a lesser
way than relations; but, in fact, they provide us with more flexibility of expression. The
following table summarises the uses we may make of function application in describing
the circle.

Function Maps from Type Maps to Comment �&�¨ W &�(�)�� �d�bc R*&@�'+*&�(
Gives an alternative way of identifying
the genders.��7'& W &�(�)�� �d�bc T
Gives an alternative way of identifying
numbers.+�(#�CL*&� W &�(�)�� � �¤�bc ~ ��(< ��='&
Gives an alternative way of identifying
makes of car. C1�)�A	 �& W &�(�)�� cd� ���dc W &�(�)�� Gives an alternative way of referring to
people.��&�8�4 W &�(�)�� cb�d�dc W &�(�)�� �����

and another.8*��4�B'&�(W &�(�)�� � �¤�bc W &�(�)�� �����
and another.

The Maps to column shows various ways in which individual objects, of the type given,
may be identified indirectly.

2.6.2 Terms

An equation such as:
< ��(�= � 8*��4�B'&�(V ��������[

tells us that
< ��(�=

and
8*��4�B�&�(V �����@��[stand for or denote the same thing. A symbolic

expression that denotes some object or collection of objects is called a term. A term may
be one of the following:

32 Chapter 2

e the proper name of something, for example,
< ��(�=

; these are sometimes referred to as
constants;

e a noun phrase constructed using function application, for example,
8*��4�B�&�(V ��������[; or

e a pronoun in the form of a variable; examples of variables will be shown later.

A term is simply the kind of symbolic expression that may be used to complete a sentence.
If we return to the

13����$3
predicate:

9�9�9�9�9 13����$	 9�9�9�9�9
When we first completed this to form sentences, we substituted the names of people and
the names of sports, as in, for example:
< ��(�=>13����$	 > @?�A'�� CB

Yet, as we know, Mark is Alan’s father, and so:
< ��(�= � 8*��4�B'&�(V ��������[

It is reasonable to expect that anywhere that
< ��(�=

is used, we could use the term8*��4�B'&�(V ��������[instead; thus we could write:
8*��4�B'&�(V ��������[|13����$	 2 @?�A��� CB

< ��(�=
and

8*��4�B'&�(V ��������[, and for that matter,
 C1�)@A# �& V ������[are all terms denoting the

same object.
The declaration of

13����$	
tells us that any simple sentence using this relation must be

of the following form:

W &�(�)@� U�1�)�(�4
Term

1�����$	
Term

And any term representing a person may be placed before the word
13����$3

and any term
representing a sport may appear after.

2.6.3 Variables

What do the following sentences have in common?

Ask not for whom the bell tolls, it tolls for thee.

Take that!

You are my sunshine, my only sunshine.

They also serve who only stand and wait.

In contrast to these sentences above, all our sentences have been of a rather prosaic
nature, such as:
�������213����$	 57')*��8-,
������+�(#�EL'&� /� �)�$')�4*�0,
���������� �!#"%$'&���(�)*��+-,

Specific Facts 33

They have the advantage of being self-contained. In the context of the circle of people
under discussion, each sentence is capable of standing on its own. There are other, quite
grammatical, sentences that are not.

G'&H13����$	 57*)*��8-,
U�B�&�13����$	 M4'&������� 6,
< ��(�=>13����$	 2�C4F,

Complete understanding of these sentences depends upon the context in which they are
spoken. They all contain pointers or references to previously mentioned people or things.
Does

B�&
refer to Alan or to Bob? They both play golf. Similarly,

 CB'&
might refer to either

Sue or to Kim, and
�C4

could be either golf or squash. These special words are, of course,
pronouns. A pronoun has a variable meaning whereas a word such as

< ��(�=
or
�*�

or
7')*��8

has a constant meaning, that is, one that does not vary from one usage to another, in the
context of the circle.

In English we have a small number of pronouns. This can cause confusion.

�������� C1')�='&�4')HN�)�P2K�B�)���7�(*&�&�+H4')��� Q=�U�A�&{,ZG*&��*�* �)� C1�)�=*&>4*)2�����D,

Does
G'&

in the second sentence refer to Alan or to Bob? It should be Alan but we can’t be
certain. To overcome such ambiguity we will allow ourselves any number of pronouns or
variables as they are called. And following the usual conventions of mathematics we will
give these variables short names constructed from lower case letters, for example,

¨
,
1

,
=

or.#&
. We will also always declare the type of the variable, for example,

1 ^ W &�(@)�� indicates
that the variable

1
will stand for a person and not a sport or a number. This “typing" is just

what we do with a word such as
 CB'&

which can only ever stand for a feminine person or
thing and a word such as

4�B'&�$
which can only ever refer to a set of things.

Finally, suppose that we have made the declaration
1 ^ W &�(�)�� . What can we say about

its use in this sentence?

1�1�����$	 57')���8-,

From the
13����$3

table we see that only
�������

and
N')�P

can be successfully substituted for
1

.
Thus the above sentence effectively defines a set of people, those who play golf. We will
return to this particular use of variables in Chapter 3.

2.6.4 Infix and Prefix Form

In all the examples so far, predicate symbols have been written between the appropriate
terms, for example,

< ��(�=>13����$	 2 @?�A��' CB
. The terms

< ��(�=
and

 @?�A��� CB
are placed on

either side of the predicate symbol
13����$	

. This predicate is said to be used in infix
form. Such usage reflects the normal English manner of declarative sentence construction
whereby a verb is placed between the subject and the object of the sentence. However,
the notation we are developing also allows us to place the predicate symbol before any
associated terms.

Finally, perhaps because the narrator is interested in overseas travel or the listener
teaches modern languages, the narrator reveals one last glimpse of the circle.

34 Chapter 2

�	��
�����������©
Both Alan and Sue speak French; Alan also speaks German and
Sue Italian. Also, Kim can speak Japanese.

We might introduce a
 C1�&���=3

predicate:
 C1�&���=	 ^ W &�(�)��a` �d�bc � ���*7�A'��7'&

This form of declaration,without any underscores, indicates that any sentence using
 E1'&���=�

will be such as the following:
 C1�&���=	 V �������-Y���('&��#IEB�[

This is to be interpreted as meaning that Alan speaks French. This form of sentence
construction uses the predicate symbol in prefix form.

We can analyze this snapshot into the following simple sentences.
 C1�&���=	 V �������-Y���('&��#IEB�[C1�&���=	 V �������-YXR*&�(@.	���	[C1�&���=	 V \ ��.wY;ª��@1�����&� @&3[C1�&���=	 V U�A'&vY ��(*&��#ICB�[C1�&���=	 V U�A'&vY|«C4*�*���@���#[

Whether we use the predicate in infix or prefix form is indicated by the presence or absence
of underscores in the corresponding declaration. This is the only indication we will get, or
give.

Similar statements may be made regarding the usage of function symbols. So far, we
have always declared functions for use in prefix form, for example:
��7'& ^ W &�(�)�� �b�dc T

The function symbol
��7'&

prefixes any argument in any term formed through function
application, for example

��7*& V < ��(�=#[. However we may also use functions in infix form.
The arithmetic operators are typical of these. When we write a term such as

� � � , the
function symbol � is placed between its arguments

�
and

�
. Addition may be declared as

follows:
¬ g�Tz;T �d�dc T

This declares that addition is a function that maps from a pair of numbers to a third one.
Further, it states that any usage of the function to construct a term will require that the
arguments appear on either side of the plus sign.

Again, terms may be constructed to whatever level of complexity is required. For
example, if we want to discuss Ann’s age in ten years’ time, we can write the term:
��7'& V ������[� " �

In this example, the addition function, � , is applied to its two arguments, one of which is
a term constructed by applying the

��7'&
function to

�����
and the second of which is the

constant term
" �

.

Specific Facts 35

2.7 The Circle Database

Let us summarize the narrative so far. There are seven relationships represented. Each of
these relationships, in its own way, may be used to form simple sentences.

1.
13����$	 g W &�(3 �)���` �d�bc U@1�)�(�4

This relationship is called
13����$

. It is a relation (
` �d�bc) between people and sports, that

is, a person may play many sports and a sport may be played by many people. It may
be used to construct such sentences as

�'�����013����$	 �4'&@������
. It is used in infix form, that

is, when used, it appears between a person and a sport. The form taken by sentences
constructed with

13����$	
is dictated by the declaration. There we are told to use it this

way by the appearance of underscores ().

2.
 C1�&���=	 �g W &�(@)��h` �b�dc � �@�*7�A���7*&
This is also a relation. Some of the people speak more than one foreign language, and
some of the languages are spoken by more than one member of the circle. It is used in
prefix form to construct sentences such as:

 C1'&���=	 V U�A�&vY�«E4'�*���@�Q��[.
3.
 �&�¨ g W &�(@)�� �d�dc R*&��'+�&�(
This is a total function, signified by the symbol �d�bc , meaning that it is a special kind of
relation, one that is special in two ways. Everyone has a gender and nobody has more
than one gender. Functions are used, not to construct complete sentences, but, through
function application, to describe objects such as

 �&�¨ V �����@��[. These objects are then
glued together to form sentences.

4.
��7'&�g W &�(@)�� �d�dc T
This is another total function used to identify numbers such as

��7'& V \ �].[. Everyone’s
age is known but nobody has more than one age.

5.
+�(#�CL*&� �g W &�(@)�� � �¤�bc ~ ��(< ��='&
This is a partial function, signified by the symbol � ���dc . A partial function is less
restrictive than a total function in that not everyone need participate in the relationship.
That is, not everyone need drive a car. It is used, like the two previous functions, to
identify objects using such expressions as

+�(#�CL*&� V ������[.
6.
 C1�)�A	 �&®g W &�(@)�� cd� ���dc W &�(�)��
This is a partial injection, signified by the symbol cd� ���dc . Thus, it is a one-to-one
relationship in which not everyone need participate. It should be treated as a particular
kind of partial function, and it will be used like a function to identify objects such as C1�)�A	 �& V ��������[.

7.
��&�8�4�g W &�(�)�� cb�d�bc W &�(�)@�
This is a total injection, signified by the symbol cb�d�bc . It is a one-to-one relationship in
which everybody participates. Everyone has one person on their left, and everybody is
immediately to the left of just one person.

A typical commercial database also consists of a number of different sentence types.
However, that number is likely to be in the hundreds and thousands rather than just seven.
But the difference is of degree, and of nothing else.

36 Chapter 2

The five types of relationships that we are likely to encounter, their names and their
synbols are shown in the following table.

Type of Name Partial Total
relationship symbol symbol

many-to-many relation
` �b�dc

one-to-many function � ���bc �b�dc
one-to-one injection cd� ���dc cd�d�bc

2.8 Compound Sentences

2.8.1 Operations on Sentences

Given the above declarations and the associated data, we can take any arbitrary sentence
and decide whether or not it is true. For example,

 C1�&���=	 V �'�����-YXR�&�(@.#�Q��[is true because
the pair V �'�����-Y;R*&�(@.#����[appears in the relation associated with

 E1�&���=	
. Similarly, the

sentence
N')�P213����$	 > Q?�A��� CB

is false because the pair V N�)�P-Y� @?�A��� CB�[does not appear
in the table associated with

13����$3
.

What if we want to know if Alan plays both tennis and golf? We know, informally, that
he does; but what if we attempt to formalize the question as:
�������213����$	 54'&������� /���'+27')*��8

The sentence is improperly formed because the second term must represent a single sport.
We can rephrase the sentence as:
�������213����$	 54'&������� /���'+2�����@��1�����$	 57')���8

The sentence is clearly one made of two simpler sentences, both of which are of the
form W &�(3 �)��>13����$	 �U�1�)�(�4 . Both constituent sentences are true and we would want the
complete sentence to be true also.

Now what about Bob? Does he play tennis and golf? Again we can rephrase this as:
N�)�P213����$	 M4'&������� /���'+HN�)�P213����$	 M7')*��8

This time only one of the constituent sentences is true and we know that the sentence, as a
whole, is untrue.

The word
���'+

has been used to connect two sentences, both of which might be either
true or false, in order to form a more complex sentence, which might itself be either true
or false. In this section and the ones that follow, we will consider three ways in which
complex sentences may be compounded from simpler ones.

The two values
4�(�A�&

and
8*�*�' �&

are often referred to as Boolean (after the mathe-
matician George Boole) values. Just as we have arithmetic operators that combine two
numbers and return a third, we have Boolean operators that take Boolean values (that is,4�(�A�&

and
8*�*�' �&

) and return a Boolean answer. Those of particular interest at this stage
are conjunction (

���'+
), disjunction (

)�(
) and negation (

��)�4
). The purpose of these three

operations is to enable us to take simple statements or sentences and to construct a more
complex sentence, one whose truth or falseness depends solely upon the truth or falseness
of the simpler sentences of which it is composed.

Specific Facts 37

2.8.2 Negation

The
��)�4

operator negates or reverses its argument.

Example 2.1 Ann is not 31 years old.
We can state that Ann is 31 as follows:
��7'& V ������[� �#"

To claim that she is not 31, we prefix the above sentence with the word
��)�4

.
��)�4���7'& V ������[� �#"� �')�42�'� � �#"
� �')�4�8*�*�' �&
� 4�(�A�&

It is
4�(�A�&

to say that Ann’s age is not 31.

Example 2.2 Alan does not speak French.
��)�4J C1�&���=	 V �'�����-Y���('&��#IEB�[� �')�424�(�A�&
� 8��*�' �&

It is
8*���' �&

to say that Alan does not speak French.
The effect of this operator can be completely specified in what is called a truth table.
��)�4
�������������������������
W ��)�4 W�������������������������4�(�A�& 8*���' �&
8*�*�' @& 4�(�A�&
�������������������������

In the table, W represents any Boolean expression or proposition, such as
��7'& V ������[� !	"

or ¯ c ! .
The

�')�4
truth table symbolizes our conviction that if some statement is

��)�424�(�A�&
then

it is
8*���' �&

and vice versa. Negation is a kind of prefix Boolean operator.
��)�4 ^ N�)�)*��&���� �d�bc N�)�)*��&����

We can apply the word
��)�4

to a sentence that may be either true or false. This newly
formed sentence has a truth value that is the reverse of the original.

2.8.3 Conjunction: When both sentences must be true

The
���'+

operator returns a value of
4�(�A�&

if both its arguments are
4�(�A�&

; otherwise it
returns a value of

8*���' �&
.

Example 2.3 Suppose we are looking for someone who speaks German and drives a
Mercedes. Will Alan do?

38 Chapter 2

 C1�&���=	 V �������-Y�R*&�(@.#�@��[M���'+ V +�(�CL'&� V ��������[� < &�(I�&�+�&� *[� 4�(�A�&2���'+ V < &�(I�&�+*&' � < &�(I�&�+�&� *[� 4�(�A�&2���'+>4�(�A'&
� 4�(�A�&

Yes, Alan will do. He does both; he speaks German
���'+

drives a Mercedes.

Example 2.4 Suppose, next, that we are looking for someone aged between 18 and 35
(inclusive). Will Ann do?
��7'& V ������[c "C°����'+���7'& V ������[/`2� ¯� �*� c "C°����'+>�'��`�� ¯� 4�(�A�&2���'+28*�*�* �&
� 8��*�' �&

No, Ann is not in that age range. She is not both older than 17
�@�'+

younger than 36.
A truth table can also be used to specify the

���'+
operator.

���'+
���
W ± W ���'+ ±���4�(�A�& 4�(�A�& 4�(�A'&
4�(�A�& 8*���' �& 8*�*�* �&
8*�*�' @& 4�(�A�& 8*�*�* �&
8*�*�' @& 8*���' �& 8*�*�* �&
���

This table summarizes and represents our experience that if, for example, police are on the
lookout for a “middle-aged male" then they are looking for a suspect who is both male

���*+
middle-aged. Someone who meets one criterion but not the other will not do; and someone
who meets neither criterion clearly will not do.

Conjunction is a kind of infix Boolean function.

���*+ g@N')�)*��&��@��ZN�)�)*��&���� �d�bc N�)�)*��&����

It takes two sentences, which may or may not be true, and joins them with the word
���'+

to
form a new sentence which is true only if both of the participating sentences are also true.

2.8.4 Disjunction: When at least one of the sentences must be true

The
)�(

operator returns a value of
8*���' �&

if neither its arguments is true, otherwise it returns
a value of

4�(�A�&
.

Example 2.5 We are looking for someone who is either over 40 or who speaks Japanese;
what about Kim?
��7'& V \ �].[c � �)�(� C1�&���=3 V \ �].DY;ª���1'����&� �&�[� !	" c � �)�(24�(�A�&
� 8��*�' �&>)�(�4�(�A'&
� 4�(�A�&

Specific Facts 39

Yes, Kim satisfies at least one of the requirements.
The

)�(
operator also involves two arguments. It returns a value of

4�(�A�&
if either or

both of its arguments are
4�(�A�&

.

Example 2.6 Now we are looking for someone who speaks French or Italian. Will Kim
do this time as well?
 C1�&���=	 V \ ��.wY ��(*&��#ICB�[%)�(� E1�&���=	 V \ �].wY�«C4'�*�'�@����[� 8��*�' �&>)�(�8*�*�* �&
� 8��*�' �&

No, Kim cannot help us; she speaks neither of these two languages.
The truth table for the

)�(
operator is as follows:

)�(
���
W ± W)�(±���4�(�A�& 4�(�A�& 4�(�A�&
4�(�A�& 8*���' �& 4�(�A�&
8*�*�' @& 4�(�A�& 4�(�A�&
8*�*�' @& 8*���' �& 8*�*�' �&
���

Again, this table has been chosen to reflect our expectations and experience. If we were to
ring a hotel and ask for a room with a view or a southerly aspect then we would expect a
room that satisfies at least one and possibly both of these criteria.

Alternatively, suppose an employer advertises for someone who is a computing graduate
or who has five years’ experience. We might apply for the job if we satisfied either of the
selection criteria. We would also expect to be considered if we satisfied both of them.

Disjunction is a kind of infix Boolean function.

)�(gQN�)�)*��&���� zN�)�)*��&���� �b�dc N�)�)���&����

It takes two sentences, which may or may not be true, and joins them with the word
)�(

to
form a new sentence which is true if either of the participating sentences is also true.

2.8.5 Sentence Construction

We can create new sentences to whatever level of complexity is required. For example, the
sentences that we might connect with an

���'+
may themselves have been constructed using���'+

’s,
)�(

’s and
��)�4

’s. We determine the truth of a complex sentence in a hierarchical
manner. Simple sentences are evaluated first and their results slotted into the more complex
ones which are themselves evaluated, and so on.

Example 2.7 Suppose we are looking for someone who does not drive a Ford and who
speaks either French or Japanese. Will Sue do?
��)�4�+�(#�EL'&� V U@A�&3[� �*)�(*+M���'+ V C1'&���=	 V U�A�&vY²��('&��#I�B�[�)�(� E1�&���=	 V U�A�&vY�ª���1����*&� @&�[�[� �')�424�(�A�&2���'+ V 4�(�A�&>)�(�8*�*�' �&�[

40 Chapter 2

� 8��*�' �&>���*+�4�(�A�&
� 8��*�' �&

While the sentence is not exactly what might be termed “user friendly", it has a major
advantage; it has only one meaning. Provided that we correctly evaluate the sentence, there
is only one possible answer. Two competent people, working independently, will get the
same result; and so should a competently programmed computer.

The sentence becomes a useful means of communication as it has one and only one
interpretation. It is a formal expression of our original requirement – a formula, in other
words.

2.8.6 Evaluating Sentences

Suppose, now, that we are looking for someone who drives a Ford and who speaks French
or German. Will Alan do? The equivalent formal sentence could be written as follows:
+�(#�CL*&� V ��������[� �*)�(�+M���'+J C1�&���=	 V �'�����-Y²��('&@�#IEB#[�)�(� C1�&���=3 V �����@�-YXR*&�(Q.#�@��[

Unfortunately, depending upon how the sentence is evaluated, we can arrive at two different
conclusions.

1.
+�(#�CL'&� V �������#[� �')�(�+M���'+J C1�&���=3 V �����@�-Y²��('&@�	ICB	[³)�(J C1'&���=	 V �������-Y²R*&�(@.#�Q��[� 8��*�' �&>���*+�4�(�A�&2)�(24�(�A�&

� 8��*�' �&>)�(�4�(�A'&
� 4�(�A�&

2.
+�(#�CL'&� V �������#[� �')�(�+M���'+J C1�&���=3 V �����@�-Y²��('&@�	ICB	[³)�(J C1'&���=	 V �������-Y²R*&�(@.#�Q��[� 8��*�' �&>���*+�4�(�A�&2)�(24�(�A�&

� 8��*�' �&>���*+�4�(�A�&
� 8��*�' �&

We have decided in the first evaluation that Alan will do and in the second that he won’t.
The conflict arises because of the order in which we evaluated the second line.
8*�*�' @&>���'+24�(�A�&2)�(24�(�A'&

In one case the
�@�'+

operation was performed first and in the other case the
)�(

was.
The two distinct results directly contradict the claim that two competent people,working

independently, will get the same answer.
So as to recover from this situation, we use round brackets V [to indicate the required

order of evaluation. Thus we would probably write the sentence as:
+�(#�CL*&� V ��������[� �*)�(�+M���'+ V C1'&���=	 V �������-Y´��(*&��	IEB�[�)�(� C1�&���=	 V �������-YXR*&�(@.	���	[�[� 8��*�' �&>���*+ V 4�(�A�&>)�(�4�(�A�&�[� 8��*�' �&>���*+ V 4�(�A�&3[� 8��*�' �&>���*+�4�(�A�&
� 8��*�' �&

We retain the brackets until the enclosed sentence has been evaluated as
4�(�A�&

or
8*�*�' @&

at
which time we can dispense with them.

In general, any compound sentence using a mixture of
���'+

’s,
)�(

’s and
��)�4

’s will require
brackets to direct the order of evaluation.

Specific Facts 41

2.8.7 Phrasing Sentences

Although it has been claimed that a validly constructed compound sentence will have just
one correct evaluation, that does not mean that there is only one way of constructing a
sentence to meet our requirements.

As a simple example, if we want to assert that Alan speaks French and German, we
would hope that either of the following sentences:
 C1�&���=	 V �������-Y���('&��#IEB�[M���'+S C1�&���=	 V �'�����-Y R*&�(@.#�@��[C1�&���=	 V �������-Y�R*&�(@.#�@��[M���'+S C1�&���=	 V �'�����-Y���('&��#IEB�[

would be an adequate expression of that claim. It does not matter which sentence precedes
the word

���*+
, or which one follows it.

This interchangeability is one of a number of general rules or laws that indicate the
equivalence of various alternative ways of phrasing sentences.

In the following discussion, two conventions are used: (1) W , ± and µ are any arbitrary
sentences; and (2) the symbol ¶ is to be read as “is equivalent to" or “can equally well be
stated as".

1. Laws of commutation

W ���'+ ±�¶¥± ���'+ W
W)�(± ¶¥±)�(W

These laws state that it does not matter in which order we insert the participating
sentences when using conjunction (

���'+
) or disjunction (

)�(
).

2. Laws of association

V²W ���*+ ± [/���*+ µS¶�W ���'+ V�± ���'+ µ [
V²W)�(± [�)�(µ ¶�W)�(V�±)�(µ [

When evaluating a sentence that only involves conjunction or only involves disjunction,
then it does not matter in which order we perform the evaluation. This allows us safely
to write the sentences as:

W ���'+ ± ���'+ µ
W)�(±)�(µ

Even without the brackets there is no danger of differing evaluations.

3. De Morgan’s laws

There are two laws under this heading.

�')�4 V²W ���*+ ± [¶qV ��)�4 W [/)�(V ��)�4 ± [

This law states that, for example, if we say that Alan does not play both tennis and
squash then we are saying, equivalently, that either he doesn’t play tennis or he doesn’t
play squash.

�')�4 V²W)�(± [¶pV ��)�4 W [����'+ V ��)�4 ± [

42 Chapter 2

This law states that, for example, if we say that Alan cannot speak either Italian or
Japanese, then this is equivalent to saying that Alan cannot speak Italian and he cannot
speak Japanese.

2.9 Summary

In this chapter we have examined the use of the sentence as a means of representing reality.

e An informal narrative may be analyzed into a number of different sentence types or
forms. Each sentence type, such as 9 13����$	 9 has, associated with it, a set of pairs.
These are the pairs that make the sentence true. This set of pairs is called a relation.
A relation is, in general, a many-to-many relationship between two sets of objects. A
person may play many sports and a sport may be played by many people.

e There are particular sentence types where the corresponding relationship is one-to-many
rather than many-to-many. For example, a person has only one mother, although that
mother may have had several children. This kind of relationship is called a function. The
idea of a function allows us to treat particular symbolic expressions as interchangeable.
If Ann is Bob’s mother, then

�����
and

.#)�4�B�&�(V N�)�P�[are equivalent terms. Any sentence
that could be written using one of these terms can be rewritten using the other.

e There are particular kinds of functions where the relationship is one-to-one rather than
one-to-many. These are injections. An injection is a special kind of function.

e More complex sentences may be constructed using negation (
��)�4

), conjunction (
���'+

)
and disjunction (

)�(
). Such a sentence may be evaluated in a mechanical or algebraic

manner to decide whether it is true or false.
e There are a number of general rules or laws governing the equivalence of sentences.

For example, the following two sentences mean the same.
�������213����$	 M4'&������� /���'+HN�)�P213����$	 2 @?�A��� EB
N�)�P213����$3 � Q?�A��� CB��@�'+>�������213����$	 M4'&�������

Using these laws, two apparently different compound sentences may be shown to mean
the same thing. Thus we have a variety of ways of expressing our meaning.

Specific Facts 43

Exercises

Q2.1 The ·¹¸�º�» Model

The following sets, functions and relations represent a (very) small computer club.
There are four basic types in the model.

< &C.�P�&�(i k N��@����m�U�A�&3m²�������	s
� ���*7�A���7'&¼i k ~'½ N ½�� m²� ½ µ � µ ��T#m ~ m�U ± � m W �' �I�����mX��+*��s~ ��(< ��=*&¥i k N < O�mX�*)�(*+	mXR < m²G')��'+���m < ��¾�+���m < &�(IQ&�+*&* *m �)�$*)�4'�'s
T i kQ� mE"�m�!3m��3m��¿�À�Ás

There are four relationships between the types. These are shown below in tabular
form.

9 ���C='&� 9{^ < &C.'P�&�(¼` �d�bc < &C.�P�&�(
�'�C='&� � u V N#�����6Y;U@A�&3[�Y

V N������6YZ�'������[�Y
V U�A�&vYq�'������[�Y
V �������-YzN#������[�x

9 K�(#�C4'&� 9{^ < &C.'P�&�(¼` �d�bc � ���*7�A'��7'&
K*(�C4'&� � u V N��@���6YZ� ½ µ � µ ��T#[�Y

V U@A�&vY ~ [�Y
V U@A�&vY�U ± � [�Y
V �'�����-Y;� ½ µ � µ ��T#[�Y
V N#�����6Y�U ± � [�x

��7'& ^ < &C.�P'&�(�d�dc T
��7'& � u V N#�����6Yr"EÂ3[�Y

V U�A�&vYÃ"EÂ3[�Y
V �������-Y³" ¯ [�x

+�(�CL'&� ^ < &C.�P�&�(cd� ���dc ~ ��(< ��='&
+�(�CL'&� � u V U�A'&vYqG')��*+*�3[�Y

V N#�����6Y;�')�(�+	[�x

a. Which of the above relationships are relations? Which are functions? Which
are injections?

b. Not every member drives. Give two ways by which you can tell this.

c. Which of the four relationships are to be used in prefix form and which in
infix form?

d. What is the range of
+�(#�EL'&�

? How do we express that formally?

e. What is the domain of
���E='&�

? How do we express that formally?

Q2.2 Which of the following sentences are true and which are false?

a.
N������2���E='&� /U�A�&

b.
U�A�&�K*(#�E4'&� 5�*+*�

c.
��7'& V U�A�&3[� "CÂ

44 Chapter 2

d.
+�(#�CL*&� V U�A'&3[� G')��'+��

e.
�������2K*(�C4'&� ~

Q2.3 If we wanted to say formally that Sue doted on Alan, the best we could do would
be
U�A�&����C='&� 5�'�����

. Rewrite each of the following English sentences formally.
State which are true and which are false and why.

a. Bill can write in SQL.

b. Bill is keen on Sue.

c. Sue drives a Ford.

d. Alan adores Sue.

e. Sue is nineteen years old.

Q2.4 Complex sentences may be formed using conjunction (
���*+

), disjunction (
)�(

) and
negation (

��)�4
). Evaluate the following complex sentences.

a.
��)�4 V N��@���>���C='&' HU@A�&3[

b. V N������>���C='&� �U�A'&3[/)�(V U�A�&����C=*&� 5N�������[
c. V N������>���C='&� �U�A'&3[/���'+ V U�A�&����E='&� %N�������[
d. V ��7'& V N������'[� ��7'& V U�A�&'[�[����'+ V ��7*& V N�������[c ��7*& V �������#[�[
e.

��)�4 V +�(�CL'&� V U�A�&3[� N < O#[
f. V U�A�&�K*(�C4'&� 5�*+��3[/���'+ V +�(#�EL'&� V U@A�&3[� N < O#[
g.

��)�4 V ��)�4y��7'& V U�A'&3[� "CÂ�[
h. V ��)�4 V �'�����>K*(#�E4'&� ~ [�[����'+ V �')�4 V U�A�&�K*(#�E4'&� ~ [�[
i.

��)�4 V �������>K*(#�C4*&� ~)�(yU�A�&�K*(�C4'&� ~ [
j.

U�A�&����C=*&� 5�������y���*+��������2K*(#�C4'&' /U ± �

Q2.5 We can state that Bill doesn’t like Sue as
��)�4 V N������>���C='&� �U�A'&3[. Formalize the

following sentences. Determine whether each sentence is true or false.

a. Alan dislikes Bill.

b. Bill can’t write in SQL.

c. Sue and Bill get on well together.

d. Bill is older than Sue.

e. Sue can write in both C and in Pascal.

f. Neither Alan nor Sue can write in FORTRAN.

g. Either Sue drives a Honda or Bill does.

h. Alan is five years older than Bill.

Specific Facts 45

i. Sue and Bill both drive the same make of car.

j. Both Bill and Sue can write in SQL.

Q2.6 We can tell that Alan doesn’t drive a car because he is not in the domain of
+�(#�CL'&�

.
Use the appropriate domain or range to say, in your own words, why each of the
following statements is true.

a. Somebody likes Bill.

b. Nobody can write in COBOL.

c. Everybody can write in some language or another.

d. Everybody is liked by somebody.

e. All club members are in their teens.

Q2.7 Given the variable declaration
. ^ < &C.'P�&�(, decide which people satisfy each of

the following sentences.

a.
.¦�'�C='&� 5�������

b.
�������S���E='&� �.

c.
��7'& V .[c " ¯

d.
+�(#�CL*&� V .[� �)�$')�4'�

e.
��7'& V .[� ��7'& V N��@����[

f.
N������2���E='&� �.����'+/.¦���E='&� %N������

g.
��)�4 V .�K*(#�C4'&' /U ± � [

h.
N������2���E='&� �.����'+/.JK*(�C4'&� /U ± �

i.
N������2���E='&� �.�)�(H.SK*(#�E4'&� /U ± �

Q2.8 Suppose that W is a sentence. The compound sentence: W �@�'+>4�(�A�& can be reduced
to W because the truth of W ���'+24�(�A'& is entirely dependent on the truth of W . Simplify
the following expressions in a similar way.

a. W)�(�4�(�A�&
b.

��)�4>��)�4 W
c. W)�(W
d. W �@�'+ W
e. W)�(V �')�4 W [
f. W �@�'+ V ��)�4 W [
g. W �@�'+28*�*�' �&

46 Chapter 2

Q2.9 The Ä¢Å �ÇÆ�È#
����#É Model.

The following sets are used to record the states and major towns of Australia.

U�4'��4'&�i k ± ��Ê m²T'U�O�m²Ë#« ~ m´O*�#m�U��#m � �*U�s�)�K��Ìi k N�(#�� CP��@��&3m�U�$*+���&�$#m ~ �3�E(��# �m²T'&@K	I@�� Q4*��&�m������ s

Three particular relationships are involved.

1.
I���1 g�U�4'��4*& cd�b�dc �)�K��
This injection returns the capital city of each state, for example,

I���1 V T'U�O�[
would give

U�$*+���&�$
.

2.
��)�Iag �)�K�� �b�dc U�4*��4'&
This returns the state in which a town is located, for example,

��)�I V ~ �3�C(��	 *[
would return ± ��Ê .

3.
1�)�1 g �)�K�� �b�dc T
This returns the population of each town, for example,

1�)@1 V N*(#�� CP�����&�[might
return

Â�� �0�����
.

As well as these specific relationships, there will be the more general arithmetic
functions and the numeric comparison operators.

Using function application, write terms to identify the following objects:

a. The capital of Queensland (± ��Ê).
b. The population of Melbourne.

c. The population of the capital of Queensland.

d. The location of Cairns.

e. The difference between the population of Sydney and that of Melbourne.

Q2.10 Using the functions of the previous question we can make assertions regarding the
cities, states and populations. For example, if we wanted to say that Cairns and Syd-
ney were in different states,we could write:

��)�4 V ��)'I V ~ �3�E(��# *[� ��)'I V U�$*+���&�$#[�[
Write formal assertions of the following English sentences.

a. The capital of New South Wales (
T*U�O

) is bigger, in terms of population, than
the capital of Queensland.

b. There are more people in Sydney than in either Melbourne or Brisbane.

c. There are more people in Sydney than in Melbourne and Brisbane combined.

d. The capitals of South Australia (
U��

) and Tasmania (
� �'U

) are, respectively,
Adelaide and Hobart.

e. Newcastle is in either in New South Wales or in Western Australia (
O*�

).

Specific Facts 47

Q2.11 The Í
�È ¸�Î
Ï Å ��� Model

The following sets are used to model a parliament.

1. W)*���
This is the set of politicians, for example:u O'��$���&vY �)C.wY µ A# � @&*���6Y N')�P-Y Ê &��'¾3���6Y <)*����$0Y�,�,�,ox

2. W ��(�4�$
This is the set of political parties, for example:u2� ��P�)�(0YZ�*��(@.#&�(3 Y N�A# ��E��&� � �YZR�('&�&@�Jx

3.
Ê &�1*4
This is the set of government departments, for example:u � ('&��� CA�(�$0Y � (*���# C1�)�(�40Y G*&��*��4�B0Y W)*����I@&vY2,�,�,�x

The following functions and relations are also involved.

1.
P�&*��)@�*7	 �g W)*�'� �d�bc W ��(�4�$
This maps each politician to his or her party, for example,

P�&*��)��*7	 V O���$���&�[
might give

� ��P�)�(
.

2.
.�E���� Q4'&�(®g Ê &�1*4 �d�bc W)*���
This maps each department to the relevant minister, for example,

.��E���� Q4*&�(VXW)�����I�&3[
might give

� &�(�(�$
.

3.
��&���+�&�(�g W ��(�4�$ cd�b�dc W)*�'�
This maps a party to its leader, for example,

��&���+*&�(V N�A# *����&� � *[might map
to
Ê &��'¾3���

.

4.
4'����=	 Q4') g W)*���w` �d�bc W)*���

This indicates whether one politician is prepared to talk to some other politi-
cian, for example,

T'&�L	������&/4*�*��=	 Q4*) µ A# � �&���� .
Using either function application or a predicate, formally express the following:

a. The leader of the Farmers party.

b. The Justice Minister.

c. The party to which the Minister for Health belongs.

d. That David is the Minister for Transport.

e. That the Minister for Health is also the Minister for Police.

f. That Wayne talks to Russell.

g. That Wayne does not talk to the Justice Minister.

h. That Tom talks to Wayne but not vice versa.

i. That Molly talks to the leader of the Farmers Party.

j. That the leader of the Business Party actually belongs to that party.

Chapter 3
Sets
3.1 Introduction

Suppose someone writes down a list of people’s names and hands that list to you. Then
you are asked what these people have in common.

It is fairly safe to claim that one way or another you would find something to connect
these people. Even if the names were as unlikely as John, Paul, George and Ringo. You
would probably feel frustrated and disappointed with yourself if you were unable to discern
some common feature.

A set is a collection of objects, with the objects usually sharing some property. The
formation of a set allows us, mentally, to gather things that seem to belong together, and
to provide them with a collective being. This process of generalization is a means of
conquering complexity. Defining a set is a way of enforcing order upon our world and
because of that order we can have reasonable expectations. We anticipate certain kinds of
behavior and not others.

By isolating an object and stating that this thing is a “man", for example, we accomplish
two things:

1. We provide a number of properties that can be ascribed to that object – beards, beer and
baldness perhaps.

2. We group this person with other men – all the people who share these properties.

Having decided that a person is a man or a woman or a singer or a computer programmer
we would expect a whole range of associated behavior patterns.

3.2 Sets and Everyday Language

There are two ways to specify a set: set extension and set comprehension. These two
methods form an essential part of our everyday language.

���

Sets 49

Mum sets them straight

Imagine that a family is sitting at the dining table. They have just finished the evening
meal; Mum has a meeting that night, and wants to get the evening chores over and
done with. What kinds of things might she say?

� “Kylie and Tim, go and do your homework."� “The boys will tidy the table and wash the dishes."� “Girls, you must tidy your room!"� “Will Matthew, and anyone who didn’t have a bath last night, have one
tonight."

She has used two basic styles of specifying the children that are involved. First, children
have been named individually, using set extension.

� “Kylie and Tim"
� “Matthew"

Secondly, particular children are also identified through properties they hold, using set
comprehension.

� “boys"
� “anyone who didn’t have a bath last night"
� “girls"

Further, having identified the girls, she has then specified another set, the set of girls’ rooms.

� “Girls, you must tidy your room!"

Finally, she has also used a set operation (union, in this case) to join two sets together to
form another set.

� “Matthew and anyone who didn’t have a bath last night"

In the following sections, we will look at how the ideas of set extension and set comprehen-
sion are formalized. This will be done by introducing a notation or language for specifying
sets in each of these two ways.

3.3 Set Extension

In set extension, curly brackets ��� are used to enclose the elements of the set. The set
“Kylie and Tim" will be written as:

�	��
��������������

50 Chapter 3

Individual elements are separated by commas. The set “Matthew" contains just one element
and will be written as:

�	���������������
There are several rules or conventions regarding the definition of sets by extension. These
we will consider next. Suppose we want a set of integers representing the number of days
in each month, ignoring leap years. We can write it out as:

�! #"��%$�&��% �'��
However, a set has no duplicates, so that writing down an element more than once does not
change the nature of the set; for example, we could have specified the days by just running
through each of the 12 months, from January to December, and writing down the number
of days in each month.

�! #"��%$�&��% #"��% �'��% #"��% �'��% �"��(#"��(�'��(#")�% �'*�% #"��
+ �, �"��($�&��(�'��

Also, when writing out a set, the order in which we present its elements is of no significance.
We could equally well have worked from December back to January, or we could have
followed the old “Thirty days hath September -.-/- " rhyme, so that:

�! #"��%$�&��% #"��% �'��% #"��% �'��% �"��(#"��(�'��(#")�% �'*�% #"��
+ �, �"��(�'��(�"��(�'��(�"��(�"��(�'��0 �")�(�'��% �"��($�&��(#")�+ �, �'��(�"��($�&��

This set of elements shown is just one particular representation. Consider another set of
three integers:

�! ��%1��($�")�

The entire set has been written in a consistent fashion. Each of the elements has been
expressed using one style – the arabic or decimal notation. An equally valid, if slightly
old-fashioned representation of the same set would be:

��2�2�2���3�2�2���4�4�2��
Other equally valid versions might be:

�! ��%1��(6571���!$
+
")�%&

-
"��($859",'

+
")��	����:*������;)��<��)=>�������)=���
@?)=�����	��:*?��;���;)�)A����0<#	=�B��8���DC�=��

A slightly less acceptable version might be:

�! ��03�2�2��0�����)=���
E?)=��*�

Sets 51

Here, three different but recognizable notations have been used in one set. Clearly, if the
intention in writing down the set was to communicate its membership to other people,
the notation should be both consistent and recognizable. It is important to understand the
need for a suitable way of representing the members of a set. Why? Because the sets of
records that make up a database are simply sets written,

	=F��G��*��=�;��?)=
, upon a computer’s

memory. When we design a database, we are faced with the situation where:

� several different ways of representing set elements may be available;� some will be more appropriate than others; and� it may be that none of them appeal; in which case, we might have to create an artificial
representation.

As an example, suppose we had to write down a list of cities, for example the state capitals
of Australia. A sensible representation would be:

�!H)
�I�=���
#�0J*�):����>�LK�:�);,M*�)=*����N�I����)��!I����0�����!M*?)C�:�=�����O�?)M���:����
The cities are represented by their everyday names. This would be the most sensible choice
for normal communication. However, if these cities were to be named millions of times, as
might be the case if we were maintaining a database of Australian city dwellers, then these
representations would use relatively large amounts of disk space. Alternative methods of
representation might be considered.

1. � $�'�'#">PRQ�'�'�"�PTS*'�'�">PVU�'�'�">PR �'�'#">PV1�'�'�" �
Here the GPO post code has been chosen. We would have to know that a set of cities
was being represented.

2. �)W H)XYPZX�NYP\[���I]PVH�NYP^3��_`P^�*��; �
This is valid but potentially misleading. We would want to be quite sure that it was
cities that were being discussed.

3. � HaPVJYPTKbPRNYPR�YPRO �
This is rather cryptic, with the cities identified by their initial letter. However, at least
there is no likelihood of a city being mistaken for a state.

4. � $aP\QcP^SYPdUcPd cPd1 �
This is also cryptic, with the initial digit of the business district post code being used to
identify each city.

In everyday conversation or in written communication, it is important that all parties are
familiar and comfortable with the notation used. When two or more parties have access to
a shared pool of sets (to a database, in other words) it is essential that all sets be encoded
consistently.

3.4 A Sample Database

Before we look at set comprehension, we will set up a little database that records the family
situation involving the children.

52 Chapter 3

The basic sets include one for the children, one for sexes, one for (bed)rooms, one for
sports and one for the ubiquitous integers.
��!I�; + �.��
��*���������`���*�����������>��e������*�H���G*�*; + �.f����#�g ?�?,��; + �);������)A�?)C��#��M��*_!h��0i�:�?)=����H)A�?�:��#; + �.�*�)=�=>�;��L��?�_!h���
���B*?���i��
W + �,'��	"��($��% �� -/-.- �

An injection and two functions give access to each child’s age, sex and bedroom.
��B*�kj���!I�;6lnmomol W;)��Gpj���!I�;6mnmolEH��)G*��;:*?�?,�^j���,I�;8momnl g ?�?,�q;

They can then be applied, for example, to determine the following:
��B*�#rs��
��*���t + ".S;)��G>rs����#t + �:*?�?,�`roe�������t + ;������)A�?)C��

All of these relationships are total; in other words, we know everyone’s age, everyone’s
sex and everyone’s room.

Finally, there is also a relation that tells us which sports each child plays, if any.
A�����
#; j���!I�;8uomnmolEH)A�?):��#;

This relation can be used in expressions such as:
��
���!�@A�����
#;6���)=�=>�;����vA����)
#;6�*�)=�=��;
The specific facts concerning these children may be seen in Figure 3.1.

3.5 Set Comprehension

There is an alternative to physically writing out the contents of a set on a piece of paper
or onto an electronic storage device. We can use set comprehension which enables us to
specify the set by stating some property that every chosen element must satisfy. There are
three forms that can be used.

3.5.1 Form 1:
�
Declaration w Predicate

�
Suppose we want to specify the set “boys". This is simply those children of the male sex.
If we were to pick out these children for ourselves then we would go through all of them
checking whether or not each child was a male.

To specify the set of boys, we can write an expression of this form.
�	hpj���!I�; w ;)��G�roh*t + ���

This expression can be thought of as giving rise to the following sequence:

Sets 53

��B��xj���,I�;8lomnmol W
��B�� + � ro��
�������y".S*tz�ro�#��`� ",$�tz�ro�������������>�^S*tz�roe!������� &�t%�

;)�)GZj���,I�;8momnl9H���G*��;
;)�)G + � ro��
*������{f*tz�ro��z�`� �*tz�ro�*�)�������)���0�*tz�roe�������� f*t%�

:*?�?,�Rj)�#!I�;8momol g ?�?,��;
:*?�?,� + � ro��
�������|;�������A�?)C��*tz�ro�#��`� M���_!h�t��ro�������������>�(i�:*?)=��*tz�roe!������� ;�������A�?)C��*tL�

A�����
#; j���,I�;8uomnmolEH)A*?�:��#;
A�����
#; + � ro��
���������)=�=��;)tz�ro��
*������L��?�_!h���
tz�ro��z�`�}B?���i�tz�ro��z�`�~��?*_!h*��
tz�roe��������R���=�=>�;)tL�

Figure 3.1 The �x���`� Database

1. Let
h

be a variable that ranges over the set
�#!I�;

.

So
h

, in turn, takes on each of the values
��
��*��

,
��z�

,
�*�������*�)�

and
e!�����

.

2. As
h

takes on each value, evaluate the
A�:*��I��_)���*�

or Boolean expression that follows
the vertical bar � .
The vertical bar can be read as

�����):*�
or
;	C�_,���������

.

3. If the predicate evaluates as
��:�C��

, then include this element in the new set that is being
specified.

In this example, if the expression
;)�)G]�0h������

is true, then the corresponding child is
a male.

4. Move to the next element in
��!I�;

, that is, move on to the next child.

The key word in the above description is range. We must picture the variable ranging over
the set with which it is associated.

To see how the set of boys is formed, the following steps should be pictured.
We start the set by writing down � and then let

h
range over the set

�#!I�;
, that is, over

each of the four children.

1. The first child might be Kylie, so
h�����
*����

. The predicate is evaluated:
;)�)G]�0h������� ;)�)G]�0��
��*��������� f����� i����*;)�

54 Chapter 3

Applying the
;)��G

function to the argument
��
���!�

returns a value
f

. This does not
���

and so the predicate is false.
��
���!�

is not a member of the set being formed.

2. The pointer
h

is moved to the next element of
��,I�;

, say
h����#��

. Again the predicate
is evaluated.

;)�)G]�0h������� ;)�)G]�0����q������ ������ ��:�C��

The predicate is true so
����

is included in the set. We can now extend the set from �
to � �#�� .

3. The pointer
h

is moved to
�*���������)�

. The predicate is evaluated as true, so the set is
again extended, this time from � ��z� to � �#���P^�*���������)� .

4. The pointer
h

is moved on to
e����#�

; the predicate is false, so
e������

is not included.

There are no further elements in
��!I�;

, so the set is finished with a closing bracket � to
become:

� �#���P^�*���������)� �
This process is summarized in Figure 3.2.

Example 3.1 Another example of this form of set comprehension would be an expression
specifying the set of children over 10 years old.

�	hpj���!I�; w ��B*��roh*tY��",'��

Again, a variable
h

is allowed to range over all of
�#!I�;

; but this time, the set is formed
according to age not sex. The resulting set is:

�	��
��������������

The variable used may be any validly named variable,
h

is used simply as a mnemonic.
The above set could equally well have been specified as:

�	�pj���!I�; w ��B*�#rs�*tc��",'��

The declaration part of any piece of set comprehension allows us to state which set or type
we will use as the basis for specifying the set that particularly interests us. In this case,��!I�;

is the base set. The declaration also allows us to name a typical or representative
element of that set.

The predicate part allows us to test that element in some way and to arrive at a
��:�C��

ori����*;��
conclusion.

The braces ��� then indicate that we want to let
h

range over all elements of
��!I�;

,
picking those aged over

",'
.

Sets 55

Value of Evaluation of Set constructedh
the predicate so far

m m �
��
����� ;)�)G]�0h������ ���;)�)G]�0��
��*����������f������i����*;)�
���� ;)�)G]�0h������ � ��z���;)�)G]�0����q����������������:�C��
�*�������*�)� ;)�)G]�0h������ � ��z��PT�*���������)���;)�)G]�0�*���������)�>����������������:�C��
e������ ;)�)G]�0h������ � ��z��PT�*���������)���;)�)G]�0e����#���������f������i����*;)�
m m � ��z��PT�*���������)� �

Figure 3.2 Set Evaluation

3.5.2 Form 2:
�
Declaration w Predicate � Term

�
There are occasions when we are interested not so much in the base set (the one named in
the declaration) as in the elements of some related set. The base set is used as a kind of
stepping-stone towards identifying the set that really interests us.

Suppose we want to specify the room(s) in which girls sleep. We can specify the girls
in the same way as the boys were specified.

�	hpj���!I�; w ;)��G>rsh*t + f��
However, now we are interested in rooms rather than children. We can extend the above
set comprehension as follows:

�	hpj���!I�; w ;)��G>rsh*t + f � :*?�?,�`roh*t0�
This statement says:

56 Chapter 3

1. Run through the
��!I�;

set, picking out the females.

2. For each element chosen (that is, for each girl) select the associated room.

3. Form a set from all the rooms thus chosen.

The spot, � , is used to precede a term of some kind. In this example, the term is
:*?�?	�7�0h��

and it maps from a child (
h

) to that child’s room (
:�?�?,�7�0h#�

).
The spot can be read as

;)�����*_!�
or
_,�*?�?�;)�

or
A>�_!h

. The term that follows can be any
valid statement that represents an object. Typically, it will involve the variable introduced
in the preceding declaration.

This form of set comprehension can be considered as an extension of Form 1; however
it is more useful to think of Form 1 as an abbreviation of Form 2.

The example given in Form 1 was:

r��	t -.-/- �	hZj���!I�; w ;���G>rsh*t + �#�

This can be written in Form 2 as:

r��)t -.-/- �	hZj���!I�; w ;���G>rsh*t + � � h��

What Form 1 allows us to say is that if the term part is omitted then it is assumed to consist
of the variable named in the declaration. Thus

�	"��
is a simpler version of

�%$��
; and they

both specify the same set.

3.5.3 Form 3:
�
Declaration � Term

�
Just as we can omit the term part, we can also omit the predicate part, as in, for example:

�	hpj���!I�; � :*?�?,��rsh*t(�
This specifies the rooms of all children as there is no predicate to filter out any children.

What can be expressed in the term part? Any thing that makes sense, however simple
or complex. For example, if we wanted to know what ages the children will be in two
years’ time, we could write:

�	hpj���!I�; � ��B*�#rsh*t>��$��

This would return the set � "/S���$cP�",$���$cPTS���$cPV&���$ � or � ",QcP�".SYPVQcP�",' � .
The term can involve some other piece of set comprehension. Suppose we want to

know which children are of each sex.

��;�j�H���G���; � rL;��/�.hpj)�#!I�; w ;)��G�roh*t + ;��!t%�
The outer set declares a variable

;
that ranges over the elements of the set

H���G*�*;
. So

;
takes

on, in turn, each of the values
f

and
�

. Each of these values is paired with the following
term:

�	hpj���!I�; w ;)��G>rsh*t + ;��

Sets 57

This gives the set of children whose sex is
;
. The set, in extension, looks like this:

��rsf����	��
��������e����#���!tz�.ro�����.�#����0�*�)�������)�#�,t��
Set comprehension is important because it is, in effect, what we do when we program

a computer to retrieve and process information from a database. The above examples are
small-scale versions of the kinds of information that can be obtained by means of a query
language such as SQL. A retrieval statement in SQL defines a set by comprehension. The
database management system searches the database and returns us the same set in extension.

3.6 Set Operations

What operations would we want to perform on sets? Suppose we have the following sets.

�*�)= + �/K�?)M>��N�����=>�.2	<*�)=>���*��:�h��X�?,����= + �,H)C����(H��,�q�0N�=�=��g �_,� + �/K�?)M>��N�����=>�0N�=�=��H,����:�� + �,H)C�����N�����=��
The operations we will want to perform upon these sets are ones that will enable us to
answer some simple everyday questions.

Set Membership: We will surely want to find out whether or not an element can be found
in a set. This can be done using the

	=
operator.

Example 3.2 Is Sam a man?
H��,��	=����)=��H��,��	= � K�?)MbP^N�����=bP�2,<*�)=YPR����:�h ���i����*;)�

No, Sam is not a man. The set membership operator is an infix relation that appears between
an object of some type and a set of objects of the same type. The resulting expression is
either true or false.

Set Union: We will want to amalgamate two sets to form a bigger set. This is called theC�=>�?�=
operator.

Example 3.3 Who is smart or rich (or both, we don’t care)?
H	����:���C�=��?)= g �_,�� � H)C��cPTN����)= � C�=>�?�= � K�?)MbP^N����)=bP^N�=�= �� � H)C��cPTN����)=bPTK�?)MbP^N�=�= �

The
C�=>�?)=

operator creates a set with elements that are in either or both of the participating
sets. It is an infix function that appears between two sets of the same type. The resulting
expression is yet another set of that same type.

Set Subtraction: We might want to remove certain elements from a set. This is called set
subtraction and is performed by the

�`	=�C�;
operator.

Example 3.4 Who are the not-so smart women?

58 Chapter 3

X*?,���)=��`.=�C�;�H,����:��� � H)C��cPRH��	��P^N�=�= � �`	=�C�; � H)C��cPTN*���)= �� � H��,��PTN�=�= �
A new set is formed.

X�?,���)=��q	=�C�;�H,���):��
is the set of people in

X�?	���)=
who are not inH,����:��

. Because
H)C��

is the only member of both sets, she not in the resulting set.

Set Intersection: We will want to see which elements are common to both sets. This is
called set intersection and is performed by the

	=��*�):#;)��_!�
operator.

Example 3.5 Who are the rich men?���)= 	=��*��:�;)��_!� g �_,�� � K�?)MbPTN����)=bP�2,<*�)=YPT�*��:�h � 	=��*��:#;)�*_!� � K�?�MbPTN����)=YPRN�=�= �� � K�?)MbPTN����)= �
A new set is formed consisting of those people who are members of both sets. Only Bob
and Alan belong to both, and so they must be the rich men.

Set Size: We will want to know how many members are in a set.

Example 3.6 How many smart people are there?_�?)C�=���H,�#��:����_�?)C�=�� � H�C��cP^N����)= ���$
We can apply the

_)?)C�=��
operator to any set and be returned the size of that set. It is a prefix

function.

Example 3.7 How many poor (non-rich) people are there?
We answer this question by forming the set of all people, subtracting the rich from that

set and counting the result._�?)C�=��¡�����*�)=�C�=>�?�=¢X�?,���)=����q	=�C�; g �_,�>���_�?)C�=��¡��� � K�?)MbPTN*���)=bP�2,<*��=bPT�*��:�h � C�=>�?)= � H�C��cPVH��,��P^N�=�= � ��q	=�C�; � K*?)MbP^N����)=YPTN�=�= � ���_�?)C�=��¡� � K�?)MbP^N�����=bP�2,<*�)=YPR����:�hYPRH)C*�cPVH��,��P^N�=�= ��q	=�C�; � K*?)MbP^N����)=YPTN�=�= � ���_�?)C�=�� � 2	<*�)=bP^�*��:�hYPRH)C��cPVH��	� ���S
Example 3.8 Are there more poor men than rich women? This question concerns many
men.

We find the set of poor men and the set of rich women; then we compare the sizes of
these two sets._�?)C�=��¡�0���)=��`	=�C�; g �_,�>��l�_�?)C�=��¡� g �_,���`	=�C#;��*�)=>���_�?)C�=��¡� � K�?)MbP^N�����=bP�2,<*�)=YPR����:�h � �`.=�C�; � K�?)MYPTN����)=bP^N�=�= � �lF_)?)C�=��¡� � K�?)MbPTN*���)=bP^N�=�= � �q	=�C�; � K*?)MbP^N����)=YP�2,<*�)=bP^�*�):�h � ���_�?)C�=��¡� � 2,<*�)=bPT����:�h � ��l�_)?)C�=��£� � N�=�= � ���$�l�"����:�C��

Sets 59

3.7 Higher Order Sets

3.7.1 Power sets

Suppose we have two sets, say:N + ��"��,"	U��%$�U��K + ��"��% ��%U��	",U��($�U��(�U��
All the elements of

N
are also elements of

K
. In such a case,

N
is said to be a subset of

K
.

We can state this using the inclusion relation:Np¤�K
According to this definition,

N
is a subset of itself; every element of

N
is obviously an element

of
N

. The empty set ��� is also a subset of
N

; every element of ��� , of which there are none, is
an element of

N
. Every time we write an expression of the form � hb¥¦��!I�; � J�:*��I��_)���*� �

we are specifying a subset of the set
��!I�;

. According to the predicate used, the set specified
might be anything from the empty set to the complete set of all children,

��,I�;
.

Predicate Set specified"q§ ��B*�#rsh*tb�F",'�' �¢�$Y§ ��B*�#rsh*t + & �.e�������� Y§ h + �*���������)� �.�*�������*�)���S¨§ h8A�����
#;]B*?���i �.����q�UY§ ��B*�#rsh*tb����B*�#rs����#t �.��
�����*�QY§ ��B*�#rsh*tb©F",' �.�*�������*�)�>��e��������1Y§ ��B*�#rsh*tb��Sª�)=*I���B*�#rsh*tb©F".S �.����`��e������*�&Y§ ;)��G>rsh*t + � �.����`���*���������)���
« § ;)��G>rsh*t + f �.��
�������0e��������",'Y§ ��B*�#rsh*t + ".Sª?�:Dh + �*���������)� �.��
�������0�*�)�������)�#�"�"q§ ��B*�#rsh*tb�F",' �.��
�������0��z�q�",$Y§ h + e����#��?):p;���G>rsh*t + � �.����`���*���������)�>��e������*�", Y§ ;�������A�;*rsh*t�	=E�);�������A�?)C��#�(i):*?�=���� �.��
�������0�*�)�������)���0e����#���".S¨§ h8A�����
#;]�*��=�=>�;c?�:¨h¨A�����
#;c��?*_!h*��
 �.��
�������0��z�`�0e!�������",UY§ ��B*�#rsh*t + ".S�?):@;)��G�roh*t + � �.��
�������0��z�`�0�������������#�",QY§ ��B*�#rsh*tb©F",'�' �.��
�������0��z�`�0����������������e������*�

Regardless of how creatively we construct our predicate, we will inevitably specify one
of the 16 sets shown. They represent the entire set of possibilities. What we achieve, by
varying the predicate, is access to this higher level set or type. This is the set of all subsets
of
��!I�;

. It is formally termed:H����7?�ib��,I�;
and is known as the power set of

�#!I�;
. The 16 entries in the Set specified column represent

that set in extension.

Example 3.9 If we declare a variable:hpj���,I�;

60 Chapter 3

then
h

is an individual child drawn from the set
�#!I�;

. If we declare a variable:

AZj�H��)��?�iY��!I�;
then

A
is a set of children, all of whom are drawn from the set

�#!I�;
.

Power set construction

� The prefix
H��)��?�i

may be placed before any set
�

. The effect is to create
a new set:

H����7?�ib�
, which is the set of all subsets of

�
, or, more simply,

the power set of
�

.� A power set may be used in a declaration wherever a set may appear.

Example 3.10 Consider the set of numbers
4

:

4 + ��"��% ��%U��
The power set of

4
is:

H����7?�ib4 + �¢��"��(��(U������"��% *������")�%U������! ��(U������")�����, ������,U�����¬�¢�
The set

4
has elements and

H��)��?�i�4
has

�)® + � elements. This relationship always
holds; if

4
has ¯ elements then

H��)��?�i�4
will have

��°
elements, hence the name power

set.

Example 3.11 A power set declaration may be used in set comprehension.

�	
pj�H����7?�ib4 w _�?)C�=��b
 + $ª��=*ID 8	=¨
��
This is the set of subsets of

4
that contain exactly 2 elements and where

is one of these

elements. This is the set ��� aP(U � P � "�P(��� .
3.7.2 Declarations

So far, all the declarations have involved just one variable, like the following:

hpj���,I�;
The variable

h
is of type

��,I�;
; this means that

h
represents or stands for an individual

child. But we may introduce two variables in the same declaration, for example:

± ��hZj���,I�;

Sets 61

We have introduced a pair,
±

and
h

, each of which represents individual children. They
might even represent the same child; their identity has not yet been established.

To emphasize that we have coupled the children in some way, we may show the coupling
in the form of a tuple.

r ± ��h*t

A tuple is a composite object formed from a number, two in this case, of component objects.
The pairing process may involve two different kinds of object.

hpj���,I�;�²6;vj�H)A�?):��#;

This time two separate declarations have been connected by a semicolon. The pairing is
now

rsh���;)t
, for example,

roN*���)=>�����)=�=>�;�t
or
rnH)C�����B*?���i�t

.
We are not restricted to forming merely pairs. A tuple may involve any number of

components of any type, for example:

hpj���,I�;�²Y:Tj g ?�?	�q;�²@;�j�H)A�?):��#;

This declaration introduces a triple
rsh���:��>;)t

consisting of a child, a room and a sport, in
that order.

The syntax of a declaration

³@´,µz¶o· ¸v¹(·/º»´�¼0´!½�¶o¾ ¯ :¿#À!ÁkÂ ¾�º j ¿ ¹/½ Ã�¹�¼ Á
or
¿#À!ÁkÂ ¾�º � -/-.- � ¿�À!ÁxÂ ¾�º j ¿ ¹/½ Ã�¹�¼ Á¸v¹(·/º»´�¼0´!½�¶o¾ ¯ :³@´,µz¶o· ¸v¹%·�ºÄ´!¼0´�½n¶o¾ ¯¾!¼�³@´,µz¶o· ¸v¹%·�ºÄ´!¼0´�½n¶o¾ ¯ ² -.-/- ² ³8´!µz¶o· ¸ª¹%·/º»´!¼(´!½�¶o¾ ¯

The basic declaration style involves the introduction of one or more variables of the same
type, for example:

hpj���,I�;�� ± �0hxj)��!I�;

The general form of a declaration allows us to introduce several variables of different types,
using a semicolon as a separator:

hpj���,I�;�²8:Tj g ?�?	�q;± ��hZj���,I�;�²E:#�/;����xj g ?�?,��;�²8ATj�H����7?�i7H)A*?�:��#;

62 Chapter 3

3.8 Product sets

We saw that varying the predicate part of a set comprehension gives rise to the power set.
Now we will vary the declaration part. What happens if we use two variables?

� ± �0hxj)��!I�;)�
The declaration pairs two children

r ± ��h*t
. When used within set comprehension, the effect

is to specify the set of all possible pairs of children. There will be 16 elements in this set,
as each of the four elements of

��!I�;
is paired with itself and the three others. So the set

looks like this:

��rs��
��*����^��
������tz� ro��
�������^�����tz� ro��
*������R��������������t�� rs��
��*�����e�������tz�rs����`�V��
������tz� rs����q�R�����tz� rs����`�V��������������t�� rs����`�Ve�������tz�rs�*���������)�>�T��
������t���rs�*���������)�>�T�����tz��rs�*���������)�>�T�*�������*�)��tz�Års�*�������*�)�>�^e!������tz�rse��������R��
���!��t�� rse����#���R����#t�� rse��������R�*���������)��tz� rse��������^e�������t%�
This could equally have been expressed as follows:

� ± �0hxj)��!I�; � r ± ��h*t(�
When more than one variable is declared, then the default term is a tuple formed from these
variables. The set of pairs may also be written:

��!I�;�ÆT��!I�;
This new set is called the product set and is formed by “multiplying"

��!I�;
by itself.

Product set construction

� The product operator
Æ

may be placed between any two sets
H

and
�

.
The effect is to create a new set

HpÆT�
which is the set of all pairs

rL;����*t
where

;
is drawn from

H
and

�
from

�
.� A product set may be used in a declaration wherever a set may appear.

Example 3.12 Suppose the set
H�A�?�:��#;

is defined as follows:

H)A�?�:��#; + �.�*�)=�=>�;��L��?�_!h���
���B*?���i��
The product set

�#!I�;�ÆVH)A*?�:��#;
is the set of all (child, sport) pairs.

��!I�;�ÆRH)A�?�:���; +��rs��
��*����R�*��=�=>�;)tz� rs��
�������^��?�_!h���
*tz� ro��
������RB�?���i�tz�rs����`�V���=�=>�;)tz� ro��z�`�R��?�_!h���
tz� rs����`��B?��)i�t��rs�*�������*�)�>�^���)=�=>�;�t���ro�*�)�������)���T��?�_,h*��
tz�Års����������)�>�TB*?���i�tz�rse��������^�*�)=�=>�;)t�� roe��������^��?*_!h*��
tz� rse��������RB?���i�t��

Sets 63

The size of this set can be calculated as follows:

)?)C�=��>ro�#!I�;¬ÆRH)A�?�:���;)t + rL�?)C�=��D��!I�;)t>5Er¦_)?)C�=���H�A�?�:��#;�t + S¬57 + ",$

Example 3.13 The set
��,I�;�ÆVH)A�?):��#;

is the set of all pairs
�0h]P�;��

where
h

is a child
and

;
a sport. This set can also be defined using set comprehension as follows.

�	hpj���!I�;�²�;�j�H�A�?�:��#;)�

Whenever more than one variable is declared, a product set is formed implicitly.

Example 3.14 We could add a condition requiring that the first child in each pair be older
than the second.

� ± �0hxj)��!I�; w �)B*�#r ± t]����B*��roh*t(�

This would give rise to this set:

��ro��
�������^�����tz� ro��
������T��������*�)��tz� ro��
������Re!������tz�rs����q�R����������)��tz� rs����`�^e�������tz�rse����#���R�*���������)��tz���

Kylie is older than the other three but not herself. Tim is older than Matthew and Emma.
Only Matthew is younger than Emma.

Finally, rather than forming pairs of children, we could take the older one.

� ± �0hxj)��!I�; w �)B*�#r ± t]����B*��roh*t � ± �

This would give us the set of children who are older than some other child.

����
���!����#��`�e!�������

This is the set containing all but the youngest child (Matthew).

3.9 Sets, Relations and Functions

In the previous section, we looked at the power set and the product set. In this section, we
combine these two ideas and see what arises.

3.9.1 Type Construction

Using the rules regarding power set and product set construction, we may define objects of
any complexity. This allows us to describe the kinds of organizational views that appear
in the shape of forms and reports. We could package all our knowledge regarding Kylie in
the form of a record.

64 Chapter 3

Ç@È ��É���ÊDË�Ì#Í`Î>�ÏªÐqÑ ËqÒ ��
��*��
Ó�Ô Ë�Ò ".S
Õ Ë*ÖYÒ f
× É Ð�Ø ��Ò �*�)=�=>�;`PZ��?*_!h*��

Ê¬Í�Í Ñ Ò ;������)A�?)C��

This record could be formally declared as follows:I����*�vj���,I�;�Æ W ÆRÙ��)=�I���:xÆÅrnH����7?�i7H�A�?�:��#;�tcÆ g ?�?,��;
and our record of Kylie is a quintuple of data that could be defined as:I����*� + ro��
�������>".S���f����.�*�)=�=��;��L��?�_!h*�)
#����;)�����)A�?�C��*t

3.9.2 Relations and Functions

Suppose we were to form the product of
��!I�;

and
H�A�?�:��#;

.��!I�;�ÆRH)A�?�:���; +��rs��
��*����R�*��=�=>�;)tz� rs��
�������^��?�_!h���
*tz� ro��
������RB�?���i�tz�rs����`�V���=�=>�;)tz� ro��z�`�R��?�_!h���
tz� rs����`��B?��)i�t��rs�*�������*�)�>�^���)=�=>�;�t���ro�*�)�������)���T��?�_,h*��
tz�Års����������)�>�TB*?���i�tz�rse��������^�*�)=�=>�;)t�� roe��������^��?*_!h*��
tz� rse��������RB?���i�t��
Another set has been constructed from the two more elementary sets. What if we were now
to consider the power set of this new set? Suppose we declare a variable as follows.:pj�H��)��?�i@ro��,I�;9ÆRH)A�?�:���;)t
This variable is constrained to be a set and the elements of that set are to be drawn from the
product

��!I�;�G�H)A�?�:��#;
shown above. Some possible values might be:r("	t -»-Ä- ��rs��
�������R�*�)=�=��;)tz�Års����`�V�*��=�=>�;)tV�r�$�t -»-Ä- ��rs�*�������*�)�>�^B�?���i�t\�r� �t -»-Ä- ��rse��������T��?�_!h*�)
t��Åroe��������RB?���i�tz�roe��������R�*��=�=>�;)tV�

roS�t -»-Ä- ��rs��
�������R�*�)=�=��;)tz�Års��
�������^��?�_!h���
tz�ro��z�`�RB?��)i�t��Åro��z�`�R��?�_!h���
tz�roe��������R���=�=>�;)tV�
In particular, one of the above sets is just the same as the

A����)
#;
relation.A�����
#; j���!I�;8uomnmolEH)A�?):��#;

In general, all of the above are examples of relations. A relation is just an element of the
power set of the product of two or more sets. Or, more simply, a relation between two sets
is a subset of the product of these two sets. The following declarations mean the same.:pj�H��)��?�i@roNkÆZK�t:pj�N�uomomnl6K

Sets 65

The latter is preferred because it helps to remind us that
:

is a relation between
N

and
K

.
Suppose now that we form the product of

��!I�;
and

H���G*��;
.

��!I�;�ÆRH���G*��; +��rs��
��*����Rf*tz� ro��
*������R��t��rs����`�Vf*tz� rs����`�V��t��rs�*�������*�)�>�^f�t���rs�*���������)�>�T�*t��rse��������^f*t�� rse��������R�*t��
This is the set of all possible pairs of child and sex. One subset of this set is the following
one.

��ro��
�������^f*t���rs����q�R�*tz��rs�*���������)�>�T�*tz��roe��������Rf*t��
This is the same as the

;)��G
function. So a function is a relation in that it is a subset of the

product of two or more sets. However, a function is a special kind of relation. The function;)��G
is declared as follows.
;)��Gpj���!I�;6mnmolEH��)G*��;

The notation
momnl

is used to indicate that through this function a child maps to one and only
one sex. A function is a relation that carries this additional single-valued constraint. For
each element of

�#!I�;
there is only one element of

H���G*��;
.

3.9.3 Deriving New Relations

All the functions and relations that we have examined so far have been defined in extension,
for example,

A�����
#;
and

;)��G
. This was done because these functions and relations were

meant to form a database, which is that part of an information system where sets are written
out on the secondary storage of some computer system.

In this section, we will look at deriving new relations based on ones previously defined.

Example 3.15 Suppose that we want to construct a new relation that allows us to test
whether or not one child is the brother of another. The relationship is many-to-many as a
child may have several brothers and, in turn, may be the brother of several children. We
could declare it as follows:

�;	M�:*?����*��:*?�i j)��!I�;6unmomnl6��!I�;
We can then use it in such sentences as

������;	M�:*?����*��:*?�i���
�����
and so on. The

corresponding relation can be pictured as:
�;,M�:�?�������:�?�i +��rs����q� ��
������t��rs����`� �*�)�������)�*t��rs����`� e�������tz�rs�*�������*�)�>����
������t��rs�*�������*�)�>�������tz�rs�*�������*�)�>��e�������t��

66 Chapter 3

The relation is simply a set of pairs as shown above. We can use set comprehension to
define this set.

�;,M�:�?�������:�?�i j)�#!I�;8uomomnl8�#!I�;
�;,M�:*?)������:*?�i + � ± ��hpj���!I�; w ;)�)G>r ± t + �v��=*I9=�?�� ± + h#�

The specified set consists of pairs of children
� ± P�h��

related in the following way.

1.
;)��G]� ± �����
The first child in the pair, child

±
, is male. Only males can be the brother of anyone.

2.
=�?�� ± ��h
The second child in the pair, child

h
, is not the same as the first. A child, even a male

one, cannot be his or her own brother.

This definition of a relation helps to emphasize that a relation is a mapping between sets;
it is also a set of pairs; the pairs are the mapping.

3.9.4 Deriving New Functions

A function is just a special kind of relation, therefore we can also define functions using
set comprehension.

Example 3.16 Suppose we want to be able to map from one child to the one immediately
older. Let us call the function

=��)G��
. We would expect it to look like the following.

=���G��pj���!I�;6m �Úmol6��,I�;
=���G�� + ��rs����`� ��
*�����tz�roe!������� �����tz�ro�������������>�0e!������tR�

The next child older than Tim is Kylie so
=*��G��]�0�#��`�Å����
���!�

. Notice that Kylie does
not appear in the domain of

=���G��
(the left-hand column) because there is no child older

than her. This means that
=���G��

is a partial function, symbolized by
m �Úmol

. The function
may be fully specified in the following way.

=���G��pj���!I�;6m �Úmol6��,I�;
=���G�� + � ± ��hpj���!I�; w ��B��#r ± t]©���B*�#rsh*ta�)=�I�Û_)?�C�=��k�!�kj���,I�; w ��B*�#r ± t]©���B��#rÜ��ta�)=*I���B*��rÜ��tY©¢��B*��roh*t%� + '��

The function
=��)G��

is a pairing of two children
� ± PVh��

where the first child
±

is younger
than the child

h
and the number of children whose age lies between these two is zero.

In detail, the predicate appearing within the outer set comprehension requires that both
of the following conditions be true:

Sets 67

1.
��B*�#r ± tb©���B*��roh*t
The first child in the pair, child

±
, must be younger than the second child, child

h
.

2.
_)?)C�=��k���vj���!I�; w �)B*�#r ± t]©���B*�#r���ta��=*I���B*�#r���tb©���B*�#rsh*t%� + '
The inner item of set comprehension determines the set of children aged between child±

and child
h

. We require that set to be empty before
h

can be
=���G��

to
±
.

Example 3.17 A simpler example of a derived function is
?���I���:

which tells which
children are older than some given child.

?���I���:xj���,I�;8momnl9H�����?�iY��!I�;
?���I���: + �	hpj���!I�; � roh���� ± j���,I�; w ��B*�#r ± tc�¢��B��#roh�tz�,tz�

This function is a pairing of each child with the set of children older than that particular
child, for example,

�0e����#�cP � ����7PR��
����� � � . Note that this is a total function because
although no child is older than Kylie, she can still be paired with the empty set. The
complete function can be thought of in the following way:

?���I��):>ro��������������t + ��e��������R��z�`�R��
��*����?���I��):>roe!������t + ����z�`�R��
��*����?���I��):>ro�#���t + ����
*������?���I��):>ro��
������t + �¢�
The complete function may be viewed in extension as follows:

?���I��): + ��rs�*���������)�>�\�	e��������R��z�`�R��
��*����,t��roe����������.����`�T��
���!���!tz�ro��z�`���.��
�����*�!tz�ro��
*������\���,t��
In this example, as in the previous one, there are two levels of set comprehension, one
within the other. The outer level one has no predicate. This is because the function is total:
all children participate. The term

�0hYP � ± ¥¦�#!I�; � ��B*�a� ± ��l���B��a�0h�� � � is used to pair
a child

h
with the set of children older than that particular child. A typical pairing would

be
�0e������cP � �#���P^��
���!� � � .

Example 3.18 Another related function,

?�C�=�B��;,�

, may be defined. This function maps
from a set of children to the youngest child in that set.

*?)C�=�B���;!�kj�H����7?�ib�#!I�;7m �Úmol6��,I�;

*?)C�=�B���;!� + ��;,hZj�H��)��?�iY��!I�;�²/hZj)�#!I�; w hx	=p;!hª�)=*I��B��#roh�t + �`.=�� ± j�;!h � ��B��#r ± tz�)�

This function pairs a set of children
;!h

with one particular child
h

. It also requires that
this child be a member of the set with which it is paired and that the age of this child be
the least of all the ages of the various children within that group. The function is partial

68 Chapter 3

because it is not defined for an empty set, naturally. Some sample applications of this
function are:

?)C�=�B��;!�#�.��
��*������#��q� + ��z�
?)C�=�B��;!�#�.e����#��� + e!�����
?)C�=�B��;!�#�.e����#���0�#z�`����
��*!��� + e����#�

This function may be applied in conjunction with the previous one in the following way:

?)C�=�B��;!�>rn?���I���:>rse�������t0t
+
�?)C�=�B*�*;!�>r¦�	��
*�����������>�!t+ �#��

What this example says is that the youngest of those children older than Emma is Tim; but
this is just the same as saying

=*��G��]�0e!��������������
. We can define

=���G��
using these two

functions rather than defining it in terms of the base function
��B*�

as we did originally.

=���G��pj���!I�;6m �Úmol6��,I�;
=���G�� + � ± ��hpj���!I�; w _)?�C�=��¬?���I���:>r ± t]�¢'D�)=*I¬h +
?)C�=�B��;!��r�?��)I���:>r ± t�tz�

With this definition,
=*��G��

is a pairing of children
� ± P^h��

. The predicate requires that
both of the following conditions be true.

1.
_)?)C�=���?���I���:c� ± ��l�'
There are some children older than child

±
.

2.
h���
?)C�=�B��;!�c�%?���I��):]� ± ���
The second child

h
is the youngest of these children.

3.10 Set Terms

In Chapter 2 a term was defined as a symbol or symbolic expression that represents an
object of some kind. We can also have a set term which is a symbolic expression that
represents a set of objects.

1. A set may be represented simply by a symbol. Such a symbol may be a base type or a
variable that has been declared to be set-valued.

2. A set may be defined in set extension.

3. A set may be defined by comprehension.

4. A set may result from a set expression that involves set operations such as
C�=>�?�=

,�`	=�C#;
and

	=�����:#;)��_,�
.

5. A higher order set may be formed using the power set and product set type constructors.

6. A set may be defined as a fact type, which can be thought of as a set of pairs.

Sets 69

¿ ¹�½ Ã�¹/¼ Á
:H�
!��M�?��

¾�¼ H��)� e�G��*�)=�;�!?)=
¾�¼ H��)� Ý�?	��A�:*�)�*�)=�;��?�=
¾�¼ H��)� Þ�A*��:*����!?)=
¾�¼ ��
�A�� Ý�?)=�;!��:�C�_!��!?)=
¾�¼ f*�*_!� ��
�A��

ßcà�´ Á6á º»¹zµ
:��,I�;

¾�¼ �.��
���!������z�q�
¾�¼ �.hpj)�#!I�; w ��B*��roh*tc©�"	'��¾�¼ g �_,�¬C�=>�?�=D�*�)=
¾�¼ H��)��?�iY��!I�;
¾�¼ ��,I�;8momnl W

3.11 Summary

This chapter has examined ways of identifying or specifying sets of objects.

� There are two ways of identifying the elements of a set. There is set extension where
the elements are named individually. Alternatively, we may use set comprehension
where elements are specified through some shared property.� When expressing a set in English, we may choose either of these two methods. The
choice may depend on the relative ease with which we can use one form rather than the
other. Sometimes it may be easier to simply list the set and sometimes it may be more
convenient to specify the set through some shared attribute. We probably do a quick
mental calculation to see whether it will take longer to express the set in extension or
by comprehension.� In a computer-based system,this choice is usually neither available nor appropriate. The
sets involved are much, much larger than any we would consider expressing ourselves.
There will be sets that are stored explicitly, that is, in extension. These sets form what
is called the database. They are data because they are given to the information system
which has no other way of determining that information. In addition to these sets there
will be others that may be deduced or derived programmatically; these are sets defined
by means of set comprehension.� There are two type constructors that allow us to define higher level types and sets.

1. There is the power set operator
H�����?�i

which when applied to a type
�

gives
us

H����7?�ib�
which is the set of all subsets of

�
. For example, an element of theH�����?�iYJ*��:#;�?)=

is itself a set whose elements are drawn from
J*��:�;)?)=

.

2. The other constructor is the product operator
Æ

which operates on two types, sayH
and

�
, to form the type

HpÆT�
which is the set of all pairs drawn from

H
and

�
.

For example,
J*�):#;)?)=pÆRH)A�?�:��

is a new type consisting of a set of pairs of the
form

��K�?)MYPT�*�)=�=>�;��
.

� Finally, the combination of these two type constructors allows us to understand more
clearly the nature of relations and functions which were introduced in the previous
chapter. A relation is a set of pairs, and a function is a particular kind of relation in
which no two pairs share the same first element.

70 Chapter 3

Exercises

Q3.1 The
Ç É�â�ã Model

Here are the four relationships used in the
Ç É�âqã model that was introduced in the

exercises at the end of Chapter 2.

ä �*,h*��; ä ¥x�*�,��M*��:¬uomomnl@�*�	��M���:
��	h*��;��

� ��K>����aPRH)C����qP��K>����aPTN�����=>�qP�%H)C*�cP{N�����=>�qP�0N����)=bPZK>)����� �

ä ��:#,�*��; ä ¥x�*�,��M*��:¬uomomnl@å��)=�B�C��)B*�
��:�	�*��;��

� ��K>)���aPTf�Þ g � g N W �qP�%H)C��aP~Ý#�qP�%H)C��aP}H�[�å#��P�0N�����=bPTf�Þ g � g N W �qP��K>)���aPRH�[�å#� �
��B��Y¥Z�*�,��M��):¬momnl W
��B����

� ��K>����aPÅ" « ��P�%H)C*�cPæ" « ��P�0N����)=bPÅ",Q�� �

I�:�	<*��;a¥p�*�	��M���:9lnm �Úmnl8Ý���:��*�)h*�
I�:�	<*��;��

� �%H)C��aP{O*?)=*I����qP��K>)���aPTf*?�:�I�� �
The set:

�%�Rj��*�,��M��): w ��B*�#r»��t + " « � is the set of members who are 19 years old.
This set could have been written in extension as:

�.K>������(H)C����
. Describe, in your

own words, each of the sets specified below:

a.
�z�Rj��*�,�*M���: w �9�*,h*��;�N�����=#�

b.
���vj)å��)=�B�C���B*� w H�C��]��:#,����;c�*�

c.
�z�Rj��*�,�*M���: w �6��:�,�*��;cH�[)å � �)B*�#r»��tz�

d.
�z�Rj��*�,�*M���: w ��B*��rÄ��t + ��B*�#r�K>)����tz�

e.
�z�Rj��*�,�*M���: w �9�*,h*��;�N�����=���=*I�N�����=8��,h���;��q�

Re-state each set in extension.

Q3.2 Express the following sets using set comprehension:

a. The people that Alan likes.

b. The ages of the people that Alan likes.

c. The people older than Alan.

d. The languages written by all the people of Sue’s age.

e. The people of Sue’s age that like her.

Sets 71

Q3.3 The çvË�Í Ô Î Ðqè È Ø Model

The following sets are used to record the states and major towns of Australia.

H)�*���*� + ��[)å�é�� W H)X>��3�2!Ý#�LX�N��(H�N�����N�H����?)��= + �.K�:��;,M���=����(H�
�I�=��)
��(Ý���	:�=�;�� W ���#_���;!������� -/-.- �
There are three relationships involved.

1.
_)�)Apj�H��*�����Elomnmol@�*?)��=
This injection returns the capital city of each state, for example,

_)�)AY� W H)X>�
would give

H)
�I�=���

.

2.
��?�_Dj)�*?)��=DmnmolEH������*�
This function returns the state in which a town is located, for example,��?�_q� g ?�_!h��*�,��A��*?�=��

would return
[�å�é

.

3.
A�?)Apj)�*?)��=Dmnmol W
This function returns the population of each town,for example,

A�?�AY��K�:��;,M��)=����
might return

« U�'cP('�'�'
.

Use set comprehension to specify the following sets.

a. The cities located in New South Wales (W H)X).

b. The populations of the cities located in New South Wales.

c. The state capitals.

d. Towns that have a population greater than Newcastle’s.

e. The towns and the population of each town.

Q3.4 Use set comprehension to specify the following sets.

a. State capitals with a population of more than one million.

b. The populations of the capital cities.

c. Towns located in the same state as Cairns.

d. Towns that are not capital cities.

e. The states and the number of towns in each state.

Q3.5 Suppose we have two sets of integers:

N + �!U��(��($�"��	",Q��K + ��",'��%U���S#�
Using set operations, we could obtain the union of A and B by requestingN�C�=>!?)=�K

and the resulting set would be
��",'��(U��(���S��%$#"��,"	Q��

.

What are the results of the following expressions?

72 Chapter 3

a.
N��q	=�C�;�K

b. � =7¥¦N � =�l�"�" �
c.

_)?)C�=��]�0N��
d.

_)?)C�=��]��K��`.=�C�;�N��
e.

_)?)C�=��]��K��`.=�C�;�K>�
f.

Nê.=��*��:#;���_!� � =¨¥)��K¢C�=>!?)=�N�� � =�u ",Q �
g.

Nê.=��*��:#;���_!�ë��K�C�=��?)= � =7¥¦N � =�u�",Q � �
h.

)?)C�=��¡���0N�	=��*�):#;)��!��K>��C�=>�?)= � =7¥ÜN � =�l ",Q � �
i. � =¨¥ÜK � =�m#" �
j. � =¨¥ÜK � =�l�U � =#ìq��=�m#")� �

Q3.6 Using the sets
N

and
K

from the previous question, evaluate the following set
expressions.

a. � �]¥¦NYíTM7¥ÜK � ����M �
b. � �]¥¦NYíTM7¥ÜK � ��l�M �
c. � �]¥¦NYíTM7¥ÜK � ��u�M �
d. � �]¥¦N � �%�cP � M¨¥ÜK � ��l�M � � �
e. � M¨¥ÜK � ��MbP � _�¥ÜK � M�l*_ � � �
f. � �aPLM7¥¦N � ��l�M �
g. � �aPLM7¥¦N � ��l�M � � �
h. � �*;a¥�H�����?�i�N � _�?)C�=�����;���$ �
i. � �*;a¥�H�����?�i�N � U�	=F��; �
j. � �*;a¥�H�����?�i�N � _�?)C�=�����;��� � _)?�C�=�����; �

Q3.7 Suppose that
N

is a set of some kind. What are the results of the following set
expressions?

a.
N�C�=>�?)= ���

b.
N�C�=>�?)=�N

c.
N��q	=�C�; ���

d. ��� �`	=�C#;�N
e.

N��q	=�C�;�N
f.

Nê.=��*��:#;���_!� ���
g.

Nê.=��*��:#;���_!��N

Sets 73

Q3.8 In the subject
N�A�A��*���I�J#;!
�_,��?���?)B�

there were both business and computing
students. The marks achieved by these two sets of students are represented as two
sets of integers

K�C�;��0Ý�?,�*Axj�H�����?�i W and the results are:
K�C�; + �,$�&��(� ���S*&��(U�U��(Q�'��(Q�$��01�1�� « U��Ý�?,��A + ��" « �($�$��(U�&��(Q�Q��(1�U�� « '��

Suppose also that we have two operations on sets:
�q	=pj�H�����?�i W m �Úmol W�#��Gxj�H�����?�i W m �Úmol W

These operations return, respectively, the minimum and the maximum element of a
set of integers, for example

�`	=DK�C�; + $�& and
����G�Ý�?,�*A + « ' .

We can write expressions to evaluate queries regarding the marks. For example, if
we wanted to know the highest mark overall, we could write:
�#��G9r�K�C�;`C�=>�?)=7Ý�?,��A�t

Write expressions that will answer the following queries.

a. What was the lowest mark attained by a computing student?

b. Is the highest business mark higher than the highest computing mark?

c. Did any business student get a mark of 55?

d. Did any computing student get a mark over 80?

e. What was the second lowest business mark?

Q3.9 If
N

and
K

are both sets of integers, then the union of these sets
N�C�=>�?)=¢K

can be
written, using set comprehension, as:

�.hpj W¬w hE	=¨ND?�:DhE	=bK��
This can be read as “the set of integers that are in the set

N
or in the set

K
".

Rewrite the following expressions using set comprehension.

a.
Nê.=��*��:#;���_!��K

b.
N��q	=�C�;�K

Q3.10 Here are two small sets:

î ; + �!ï���q�%H)C*���0N*���)=>�LK�?)M��Ý�,��
 + �.ð*�)A�A�?�?)=>�0å�?)=�I�?)=>�LJ*��:��;��
Give one member and calculate the cardinality of each of the following sets.

a.
î ;

74 Chapter 3

b.
H�����?�i î ;

c.
î ;�GFÝ#	��

d.
H�����?�i£� î ;�G�Ý#,��
��

e.
�%H�����?�i î ;���G�Ý#,��

f.
H�����?�i£�%H�����?�i î ;��

g.
�%H�����?�i î ;���Gñ�%H�����?�i�Ý#,��
��

Q3.11 Using the
î ;

and
Ý#,��

sets given in the previous question, to which set does each
of the following elements belong?

a.
K�?)M

b.
�zï���7PZK�?)M>�

c. � ï*�� �
d. � ï*���PTK�?)M �
e. � �%ï����PTð*��A�A�?�?)=��qP��%H)C*�cP^J*��:��;�� �
f.

�zï���7PZK�?)MbP^N�����=>�
g. ��� ï��� � P � K�?)MbPTN����)= � P �����
h. � �%ï����P � ð��)A�A�?�?�=bPTå�?)=�I�?)= � � �

Q3.12 Write out, in extension, the following sets. Test your answer by checking that it
obeys the law regarding power set cardinality,which is:

_)?�C�=��]�%H����¢?�i�4�����$ _)?)C�=��¢4
.

a.
H�����?�i � ;,A�?�?)= �

b.
H�����?�i � i�?�:�hYP\;,A�?�?�= �

c.
H�����?�i£�%H�����?�i � ;	A�?�?)= � �

d.
H�����?�i ���

e.
H�����?�i£�%H�����?�i ��� �

Q3.13 Based on the çkË�Í Ô Î Ðqè È Ø model, provide a type declaration and definition for
each of the following.

a. A prefix function
�*��;�_)�)A

that maps a town to its capital city.

b. A prefix function
�����)�*?)��=�;

that maps a state to all the towns in that state.

c. An infix relation
;)�	������?�_

that indicates whether or not two towns are located
in the same state.

d. A prefix function
;)�,����A�?)A

that maps a town to all the other towns that have
the same population.

e. A prefix function
�)G#_)����I

that maps an integer to all the towns with a larger
population.

Sets 75

Given these new operations, examine the set comprehension question associated
with this model. How might the sets specified there be respecified using these
operations?

Q3.14 In computing, it is common to use a double dot notation to represent a range of
numbers, for example:

" -Ä- + ��"��($��% *�1 -Ä- "	$ + �,1��(&�� « �,",'��,"�")�,",$*�«�« -Ä- «�« + � «�« �$ -Ä- " + �)�
The operator is an infix function and may be declared as:

ònò j W Æ W momnlEH�����?�i W
that is, it is a function that takes two integers as its arguments and returns a set of
integers. Use set comprehension to define this function.

Q3.15 The
×cÐ Î>É�� Ð`Ñ Ë*ó>ô Model

This model was introduced in the exercises at the end of the previous chapter. As a
reminder, the following functions and relations are used.

1.
M�����?�=�B#;a¥xJ�?����momnl6J*��:���

This maps each politician to his or her party, for example,

M�����?)=�B#;q�LX���
�=����
might give

å��)M�?):
.

2.
�`	=>�;!�*��:¨¥vé*�)A���mnmol@J*?���
This maps each department to the relevant minister, for example,

�q	=>�;!����:]�0J*?����_)���
might give

�*��:�:�

.

3.
������I���:¨¥xJ*�):���
�lom �Úmol6J*?���
This maps a party to its leader, for example,

������I���:c��K�C�;�.=���;�;��
might map

to
é*�)=*õ�)�

.

4. ä �*����h#;!�*? ä ¥kJ*?��*�unmomol8J*?���
This indicates whether one politician is prepared to talk to some other politi-
cian, for example, W ��<#)�����������)h#;!��? g C�;�;)����� .

Use set comprehension to specify the following sets.

a. The set of all ministers.

b. The set of Green politicians.

c. The party leaders.

d. Those politicians who are ministers of more than one department.

e. Those politicians who talk to the leader of their party.

76 Chapter 3

Q3.16 We can pair each politician with his or her party leader through a function
�*�)h*�,���

which may be defined as follows:

�*�)h*�,���Y¥pJ�?����momol@J*?���
�*�)h*�,����� � A¨¥^J*?��� � �VAbP\������I���:]��M*����?)=�B�;q��A������ �

Using the above style, define sets of pairs to satisfy the following requirements.
Make sure you declare the set as a function or as a relation.

a. Pair each party with the number of representatives that it has in parliament.

b. Pair each politician with the set of politicians to whom that politician talks.

c. Pair each politician with the set of politicians that talk to him or her.

d. Pair each party leader with the set of politicians that he or she leads.

e. Create pairs of party leaders such that the first one outranks the second in
terms of the number of politicians in the respective parties.

Chapter 4
Relations
4.1 Introduction

In this chapter we take a step towards the implementation of our specific facts. In previous
chapters, we attempted to represent situations in reasonably natural, if formal, way. We
would usually consider a person’s age and a person’s father to be separate facts about that
person; and so, in our specification, we would probably want to treat them separately. Don’t
forget that the specification is a description written for our benefit. An implementation,
however, is a description written with automation in mind. While a specification may be
written with a relatively free hand, an implementation is usually required to be efficient and
effective, using a minimum amount of storage space and providing an acceptable response
time.

This chapter provides a continuation of the formal notions of relations and sets that were
introduced in the two previous chapters. It allows us to gather these ideas in a theoretical
manner before discussing their implementation in a “real-live" computer language, namely
SQL.

The chapter introduces the relational model of data. Using this approach, facts are
combined to produce larger storage structures called relations. A relational database is a
cohesive collection of relations. We use the relational model (1) because it allows us to
access and to manipulate facts in a relatively easy manner, and (2) because there are many
commercially available database management systems that support the relational model.

4.2 Merging Facts

The idea of a relation was introduced in Chapter 2 where it was described as a set of pairs.
In that chapter, relations were frequently shown in the form of a two-column table. For
that reason, we might call them binary relations to distinguish them from the more general
relations that are the subject of this chapter. But, because each binary relation corresponds
to a particular type of fact, we will also refer to binary relations as fact types to make their
origin clear. Here are two examples of these fact types that were introduced in that chapter.

���

78 Chapter 4

�������
	�������
���������
������������ � �
�"!$#&%�'(!��)�* �+!,%.-�'/!��0&1(2 !3#�4�'/!�65 ��7"!3#�4�'/!��8 ����9!;:�-�'/!��� ���"!<:�=�'?>

@ � 1.A � ���
	���������B� CD����EF��� 8 ��9��
@ � 1.A � �G����65 ��7"!<	�����IH.J ��'/!��8 ����9&!$KF��L���M��I'(!��� ���"!3KF��L���M��I'(!��)�* �+!3NF��� @ '/!��� � ���"! 8 ���H�� @ � ��'?>

These two fact types, ����� and
@ � 1.A � � , are more specialized relations called functions.

Viewed simply as tables, each table corresponds to a particular type of fact, and each row
corresponds to one specific fact of that type. The relational model extends the notion of a
two-column table to a table with any number of columns. Using the idea of an extended
relation, we can merge facts into a space-efficient package. They may be merged safely,
resulting in a table that has one row for each person: see Figure 4.1.

	�����O � �
���������I���������I���������I���I�������������
��� 2 � � ��� P�� 1�A � �
���������I���������I���������I���I�������������� � ��� #&% 8 ���+H�� @ � �)�* � %.- N���� @0&1(2 #�4 Q5 ��7 #�4 	����+��H.J �8 ����9 :�- K���LF��M��� ��� :�= K���LF��M��
���������I���������I���������I���I�������������

Figure 4.1 An easy merger

As a result of the merge, a single three-column relation has replaced a pair of binary
relations. Consequently, some space has been saved. One minor (is it?) problem has arisen
because Kim does not drive. A question mark (Q) has been inserted to indicate what is
termed a null or missing value. However, the problem does seem minor compared with
the savings that result, especially when this process is repeated for all the facts that are to
be represented. We can save a lot of space by merging several smaller relations into one
bigger one.

The merging process cannot be performed carelessly, however. Suppose we were to
merge the O � ��L� fact with the ���F� one. What happens?

Relations 79

�������
	�������
���������
������������ � �
�"!$#&%�'(!��)�* �+!,%.-�'/!��0&1(2 !3#�4�'/!�65 ��7"!3#�4�'/!��8 ����9!;:�-�'/!��� ���"!<:�=�'?>

O � ��L� ��	F��������BR������) O ����M
O � ��L�S������ � ���&!;M������ 1 ��'/!��� � ���"!$�F� ��T '/!��)�* �+!3MF����� 1 �
'(!��0&1(2 !3MF����� 1 �
'(!�65 ��7"!3�F� ��T '/!�65 ��7"!UJ�� HV9���LF'(!��8 ����9&!$�F� ��T '/!��8 ����9&!W�VX * � �.J�'/>

�Y5 � @ 8 ���I����� �[Z �I� @ 8 ���������
�I���������I���������I���������I�I��������� ���������I���������I���������I�I�������I���I�I���������
�F� 2 � � ��� 	 � ��L+� ��� 2 � � ��� 	 � ��L�
�I���������I���������I���������I�I��������� ���������I���������I���������I�I�������I���I�I������������ ��� #&% M������ 1 � � � ��� #&% M��
��� 1 �]\^�F� ��T��� ��� Q ��� ��T)�* � %.- M��
��� 1 �)
* � %.- M������ 1 � 0&1(2 #�4 M��
��� 1 �01(2 #�4 M������ 1 � 5 ��7 #�4 ��� ��T \^J � HV9F��L5 ��7 #�4 ��� ��T 8 ����9 :�- ��� ��T _�
X * ���.J5 ��7 Q J � HV9F��L � ��� :�= �8 ����9 :�- ��� ��T ���������I���������I���������I�I�������I���I�I���������8 ����9 Q �
X * ���.J� ��� :�= Q
�I���������I���������I���������I�I���������

Figure 4.2 Bad and good mergers

Problems arise if we use the O � ��L� fact to control the merge:

` What do we do with the ages of people who play more than sport, for example, Alan?
Do we repeat the age for every sport he plays? Or, as has been done here, record his
age for the first sport and make it null for all others?

` What do we do with people who don’t play any sport, for example, Ann? Here we have
recorded a null sport, but we would have to be careful should she decide to take one up.

From this one example, it is clear that the merging is not arbitrary. It is part of the database
design process to determine which facts may be merged. Chapters 1 to 11 cover this.

There is an alternative way of merging these two fact types, one that avoids the need
for null values. This merge requires that we have one row per person and associate each
person with the set of sports that they play. In effect, we use the ����� fact as the basis for
the merger. Alan plays the set of sports consisting of tennis and golf. Ann is associated

80 Chapter 4

with the empty set because she plays no sports. The empty set is a legitimate set value; it
is not a null value. A null value would indicate that we do not know what sports she plays.

The relation so formed is quite valid. It is a way of representing facts that is well-
established in computing. It makes its appearance in many file systems, where it would
be termed a file with variable-length records. However, it is not allowed in the relational
model as that term is normally understood. That model of data representation permits only
table entries that have a simple or atomic value. So we have a conflict.

` There is the relational model that is theoretically possible. We will call this the general
relational model. This may be used in a specification.

` There is the relational model that is in current use and that is available in many
commercially available database management systems. We will call this the standard
relational model. This must be used in an implementation.

We will look at the general relational model and then look at what compromises we must
make to follow the standard model.

4.3 Relations

One of our less endearing features is a tendency to label things, that is, to put things
into categories. Almost automatically, we try to see into how many slots we can place
something.

Suppose, for example, that we were touring a second-hand car yard looking for a
suitable car (we could equally well be browsing in a bookshop or a dress shop or a record
shop). As soon as we see a car that we fancy, we make a mental note, such as:

acbedgf�h+ij]d"k
l bem]hen N���� @l jek]h�o+n N�� � H����apj]oIj]dqn ��� @r hFbedqn %.s�-I=t d"u�i+hen v�w�wIw

We have categorized the car in five different ways. We have noted five different aspects
of the car. It is in the category of cars made by Ford; it is in the category of makes called
Falcon; it is in the category of red cars; and so on.

If the car does not meet our requirements then we will pass on to the next one. We look
at the car and notice its attributes. For each attribute, there is a set of allowable values,
those that make the car acceptable. Then we decide which element, if any, of that set fits
the car.

Attribute Domainl bem]h N���� @ \^K���L���MF�q\^x���� @ �q\ 5F8Iy \ 8&1 M� * 7 1 �.J 1 \�zIz�zl jek]h�o N�� � H
���{\^|F�������}\^	��F� �
* @ �~\ � H�H���� @ \ v #�4 1 \ 8 ���I� �~\ Z � ��T \Fz�z�zapj]oIj]d ��� @ \�O * �IO � �~\^���������}\�7 �
* �q\^��J 1 M��q\�O 1 �F9}\�z�zIzr hFbed %.s v�w \W%.s v %"\�%.s v #q\�z�zIzt d"u�i+h = w z�z(% w�w�w�wIw

Relations 81

The set of values associated with the attribute is known as the domain of the attribute.
While it would be nice to think that each attribute has its own independent set of allowable
values, in practice the various domains may be highly interdependent. Suppose we are
creating a new car record. Once we have filled the

l bem�h
attribute with the value N���� @ ,

for example, our choice of values for the
8 � @ � � slot is immediately reduced to a certain

subset of the original domain of that attribute; we cannot have a N���� @ � HIH���� @ . There may
be many other inter-domain constraints. We may be happy with a purple BMW but not
with a purple Ford; we may be prepared to pay $2 000 for a 1970 BMW but not for a 1970
Toyota; and so on. The idea of a domain becomes so diluted that it ends up being some
general set such as the set of integers or the set of character strings.

We might look at some other cars, perhaps writing down essential details as we go. A
way of presenting this information is to write it down the page, with each car taking up a
row and the result taking the form of a table.

EF����
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�8 ��9�� 8 � @ � � EF� � ��� ������� 	�� 1 H
�
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�
N���� @ NF� � H���� ��� @ %.s�-�= v�w�wIw
5F8Iy v #�4 1 O * �IO � � Q #�= wIw
N���� @ |�� ����� 7 �V* � %.s v - % w�wIw
K���L���M�� E�������� � 7F�F����� %.s v # % w�w
N���� @ NF� � H���� ��� @ %.s�-&% %�%.sIs
K���L���M�� E������ ��� � ��J 1 M�� %.s v % %�s�s
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�

In computing, a table like the one above is often called a relation. A relation is a dynamic
data object; that is, its contents are expected to change over time. So far we have seen six
cars; when we started we had seen none; tomorrow – who knows how lucky we will be
then? The EF���� relation will vary accordingly. However, its structure will not change; it
will always have exactly those five attributes that it had at the beginning and that it has now.

4.4 Tuples

4.4.1 Form Filling

When we start our car hunt, we may not be too fixed in our ideas about the kind of car
that will suit us; but after seeing a few cars we will probably settle on those attributes that
are important to us. Once we have decided on these particular attributes, then the search
becomes rather like filling in a form, once for each potential purchase.

acbedgf�h+ij]d"k
l bem]hen z�z�zIz�z�z�z�zl jek]h�o+n z�z�zIz�z�z�z�zapj]oIj]dqn z�z�zIz�z�z�z�zr hFbedqn z�z�zIz�z�z�z�zt d"u�i+hen z�z�zIz�z�z�z�z

82 Chapter 4

The form is a kind of template for a suitable car, with a number of slots to be completed.
Each slot or attribute has a corresponding set of allowable values. For example, the

8 ��9��
slot must be a N���� @ or a K���L���M�� and so on. This composite collection of values is called
a tuple. However, it is often simply referred to as a record. Suppose there is a classified
advertisement for a car that might be suitable.

� 5F8Iy v #I4 1 \�O * ��O � �q\ � �
� 2e1�� �����F�q�;��� �[H����F� T�*+� ���I� ���}�$�I#I= w�w z �
This description presents several features or attributes of the car; some of these will be of
interest; others we will ignore. We ignore the low mileage because it is not important to us,
and discount the ownership claim as unconvincing. We then fill out our car record or tuple.

acbedgf�h+ij]d"k
l bem]hen 5F8Iy
l jek]h�o+n v #�4 1apj]oIj]dqn O * ��O � �r hFbedqn Qt d"u�i+hen #�= wIw

The advertisement also omits one feature that we did consider to be important, the year of
manufacture. What do we do about this attribute? That rather depends on how strongly
we feel about that particular feature. If we are not prepared to even consider a car without
knowing when it was made then we will be unable to complete the form and may have
to miss out on this great bargain. In practice we would probably not wish to be quite so
stringent. We should be able to discover, sooner or later, when the car was built. When
we are prepared to leave a slot unfilled, then this is referred to as assigning a null value.
The allowable values for this slot consist then of the attribute’s domain plus the null value.
There appear to be two distinct decisions to be made regarding each car attribute.

1. What exactly is the domain of the attribute, that is, what are the acceptable values?

2. Is it essential that we have a value for that attribute? Or are we prepared to consider
cars, at least temporarily, where that attribute is unknown?

The three ideas of a tuple, its definition and the associated relation are closely connected.
A tuple definition specifies a particular kind or form of tuple; it states which attributes

it has, the domain of each attribute, whether null values are to be permitted for that attribute
and other constraints on what makes a valid tuple of that kind. The relation associated with
a particular tuple definition is the set of tuples that satisfy the definition.

4.4.2 Tuple or Aggregate Objects

The process of gathering together relatively simple objects in order to create a more complex
one is called aggregation. There are two different ways of declaring aggregate objects.
We can use the Cartesian product operator, written � , to introduce these objects.

�����V���/�?� ��� �_�+� ���?� �����+�V�q�_�$��� � ����� ���
Defined in this way, �����V���(�?� is a four-part tuple. Constant tuple objects may be created by
using round brackets to surround a collection of simple constants, for example:

�����V���/�?� � ��� !�� � ���+� !/ �/¡¢�¤£?� � � !�¥�¦�¦ � '

Relations 83

The tuple is an ordered list of values, so that:
��§ ! � ¦�! �¨§�§ � '�©� �ª� ¦�! § ! ��§�§ � '

Swapping the order creates another object, in this case, another date.
Almost as soon as we create an aggregate object, we will want to extract some compo-

nent part. Look at the following tuples.

��� � � � �ª� ! � ¦ ! § ¦I'
�����V���/�?� � ��« !?¬B �®�¯�
���+� ! ° �²±�± �¨�
� !�¥�³
¦�´�'

We may talk about the “second" part of ��� � � or the “fourth" part of �����
���/�?� , but this is
counter-intuitive. We really want to refer to the “month" part of ��� � � or the “postcode" part
of �����V���(�?� . There is a second style that we can use to define aggregate objects. This is the
style we will use when we want to define an aggregate object and where the components
of that object are to be identified by name rather than by position.

µ � � �µ �V¶ �I�· �V�+�6¸ ���
° �?�
� ���

This is an example of a schema type or record type. We can now use
µ � � � as a type in

subsequent declarations.

� � µ � � �
The variable � is a tuple with three components.

�&¹ µ �V¶
�&¹ · �V�+�6¸�&¹ ° �?�V�

The word “schema" means an outline, or a skeleton. A schema type outlines the valid tuples
that may be inserted into a relation. The schema becomes, in effect, a relation schema as
well. We could choose to introduce a record type for a car object.

� �V��º��?» � ���· �¨¼�� � · �¨¼��· � ���¤½ � · � ���¤½
��� ½ � � � ��� ½ � �° �?�
� ���g¾ � ½6½
� �/¡�»?� � · �V� �(¶

The
· �¨¼�� , · � ���¤½ and ��� ½ � � attributes have been named after the parent type. This

should not cause confusion. If it does, then other attribute names should be picked. The° �?�
� component may be unknown. The type associated with that attribute is a new one
constructed from the disjoint union of the integers � and a special constant � ½6½ . A car
year may be an integer or it may be null.

84 Chapter 4

4.4.3 A Definition

We are now able to define a relation.

Relations

Any object º that is declared, either directly or indirectly, in the following
way:

º � � � �¿�ªÀ �®Á � �_Â¨Â¤Â��Ã�Ä�ÆÅ '

is a relation. The sets
Á !+ Ç! ¹¨¹¤¹ ! � ! Å may themselves involve power sets

and product sets. A relation is a set of composite objects called tuples. In
its simplest form, a relation is a set of pairs.

The cars relation is merely a set of car records.

� �V�?� � � � �"��ÀÈ� �V��º��?» � ���

If we substitute the definition of a � �
��ºc�?» � ��� , we get:

� �V�?� � � � �"��À � · ��¼�� � · � ���(½ �É��� ½ � � � � �Ê¾ � ½6½ ' � · �V� �(¶

4.4.4 Identifying Individual Tuples

If the table is to serve its purpose as a set of suitable or adequate cars, then it must be
possible to distinguish one car from another. How else can we drive away with the car of
our choice?

EF����
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�8 ��9�� 8 � @ � � EF� � ��� ������� 	�� 1 H
�
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�
N���� @ NF� � H���� ��� @ %.s�-�= v�w�wIw
5F8Iy v #�4 1 O * �IO � � Q #�= wIw
N���� @ |�� ����� 7 �V* � %.s v - % w�wIw
K���L���M�� E�������� � 7F�F����� %.s v # % w�w
N���� @ NF� � H���� ��� @ %.s�-&% %�%.sIs
K���L���M�� E������ ��� � ��J 1 M�� %.s v % %�s�s
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�

It may be that, depending upon what is available in the marketplace, we may see:

` only one Ford, but several Toyotas, so we cannot distinguish cars by means of their
make alone;

` only one Ford Falcon, but several Ford Lasers, so we cannot distinguish cars by means
of the combination of their make and their model;

Relations 85

` only one red Ford Falcon, but several blue ones, so the combination of make, model
and color will not help us either;

– and so on.
We may decide that none of the attributes, either singly or in conjunction, is enough

to uniquely identify each car. If this is so, we will have to add some other attributes such
as the location of the car yard, or its phone number, or even the car’s registration number.
This is something that people do naturally. We can almost always go back in our minds and
remember something about a car that made it different from the others. It may be a tear in
the upholstery or a dent in the driverside door or even the shiny Studebaker that stood next
to it.

When we are representing this kind of information within a computer system, we do
not have this kind of recall. We must choose, in advance, the attributes that will enable us
and the computer to uniquely identify each car. The attribute or attributes chosen for this
purpose form what is called the relation key.

If none of the available attributes are of use, we will need to introduce an artificial
attribute to help us. This is what we will do now. As we approve a car it will be assigned a
unique number.

EF����
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�I���������
��� 8 ��9�� 8 � @ � � EF� � ��� ���I��� 	�� 1 H��
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�I���������
% N���� @ N�� � H
��� ��� @ %.sI-�= vIw�w�w
5F8�y v #�4 1 O * �IO � � Q #I= w�w
4 N���� @ |F� ����� 7 �
* � %.s v - % w�w�w
: K���L���M�� EF�����
� � 7F������� %.s v # % w�w
= N���� @ N�� � H
��� ��� @ %.sI-&% %I%.s�s
Ë K���L���M�� EF����� ��� � ��J 1 M�� %.s v % %.s�s
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�I���������

4.5 Domains

There are three possible types of domain that may be defined for an attribute. These
correspond to the three types that were introduced in Chapters 2 and 3.

1. There are simple domains where the set consists of atomic or single valued elements.
The word atomic is used to indicate that no useful fragmentation of any value is likely
to occur. The Color attribute has an atomic domain. There is no separate meaning or
use in such fragments as LF� � or

�
* � .

2. There are compound domains where the set consists of composite elements. When we
fill in a form and one of the questions is broken into a number of subquestions then
the corresponding domain is compound. Typical examples of compound domains are
dates and addresses. If we decide that we need to know on which day we saw a car,
we could use a PF��M��) �I��� attribute whose domain consisted of three subdomains; one
for each of the day, month and year on which the car was seen. When the domain is
defined as the product of two or more sets, for example, PF��L � 8 ���FM�J � ������� , then the
underlying domain is compound.

86 Chapter 4

3. There are set valued domains where each element of the domain is itself a set. When
we fill in a form and one of the questions asks us to answer with a list of some kind,
then the corresponding domain is set valued. As an example, suppose we wanted
to record extra features that each car has, such as air-conditioning, power steering,
automatic transmission, and so on. We could use an Ì�Í M������ attribute whose domain
was set valued. When the domain is defined using the power set operator, for example,) ��MÎ� T Ì�Í M��F� , then the underlying domain is set valued.

Any relation containing only attributes with simple domains is said to be in first-normal
form or to be normalized. The conventional or standard relational model permits only
simple domains. If we have relations that are not in first-normal form then they will have
to be modified before being processed by any of the commonly used relational database
management systems. However, there is no reason why our specification should not use
non-first normal form (NF2) relations, as long as we map to normalized ones for our
implementation.

Suppose that the car data entry form is now extended to include three new questions
and three corresponding attributes.

1. There will now be a question that allows us to allocate an identifying number to the car.

2. There will be a question regarding the date on which the car was seen.

3. There will be a question asking which additional features or extras the car has, if any.

The record types will be:

µ � � �µ �V¶ �I�· ��¸ ���
° � ���

� �V��º��?» � ���
� � ���µ � � � � �?� � � µ � � �· �¨¼�� � · �¨¼��· � ���¤½ � · � ���¤½
��� ½ � � � ��� ½ � �° �?�
� ���g¾ � ½6½
� �/¡�»?� � · �V� �(¶ÏqÐ � ���.� � � � �e��À ÏqÐ � ���

The car record has a composite
µ � � � � �?� � attribute and a set-valued

ÏqÐ � ���.� attribute.
The form now looks like this:

Relations 87
acbedgf�h+ij]d"k

Ñ dqn %Ò bFÓ&h&Ôh�h�Õ�n %.#FÖ+% w ÖIs�#l bem]hen N���� @l jek]h�o+n N�� � H����apj]oIj]dqn ��� @r hFbedqn %.s�-I=t d"u�i+hen v�w�wIw
×�Ø Ó"d&b]Ù�n � * MF�

�FÖ�H
��� @ 1 �
z�z�zIz�z�z�z�z
z�z�zIz�z�z�z�z

EF����
�������I���������I���������I�����I�I�I���������I�I�I���������I�I���I�������������I�������������I���I�I�������I���I�I���������I�I�I�����
��� P���M��) ���
� 8 ��9�� 8 � @ � � EF� � ��� �������Ú	I� 1 H�� ÌIÍ M���� �P���L 8 MIJÚ���
�������I���������I���������I�����I�I�I���������I�I�I���������I�I���I�������������I�������������I���I�I�������I���I�I���������I�I�I�����
% %.#Û% w s�# N���� @ N�� � H��
� ��� @ %.s�-I= v�w�w�w � * M��q\;�FÖFH]\Ü��� @ 1 �
%.#Û% w s�# 5F8�y v #�4 1 O * ��O � � Q #�= w�w �F� @ 1 �
4 %.4Û% w s�# N���� @ |F� ����� 7 �
* � %.s v - % w�w�w �
: %.4Û% w s�# K���L���M�� EF��������� 7F���
��� %.s v # % w�w �
= %.4Û% w s�# N���� @ N�� � H��
� ��� @ %.s�-% %�%.s�s �F� @ 1 �q\;� * M��
Ë %.=Û% w s�# K���L���M�� EF����� �I� � ��J 1 M�� %.s v % %.s�s � * M��
�������I���������I���������I�����I�I�I���������I�I�I���������I�I���I�������������I�������������I���I�I�������I���I�I���������I�I�I�����

4.6 Problems with the Automatic

Suppose now that we are planning to convert our manual or paper and pencil recording
system into a computer-based one.

Instead of writing the information down on a sheet of paper, we will enter it through
the keyboard of our laptop computer. The information entered will now form a database
on the machine’s disk. The questionnaire or form that we used to guide us in collecting
the right information will now appear on the laptop’s screen. (The more things change,
the more they stay the same.) It would seem that all the program has to do is to capture
the data and store it exactly as it is entered. The database will consist of a single relation
that contains all the information we need. Unfortunately, there are a number of problems
that must be overcome; the solutions to these will require that the database be split into a
number of smaller relations.

1. Every time we see a Falcon that we like, we record that it is made by Ford, regardless
of how many Falcons we see and like. A similar statement might be made regarding
Ford Lasers, Toyota Corollas and so on. The practical consequence is that we are both
wasting space in our database and irritating the user (ourselves in this case).

2. Most relational database management systems will not support, that is they will not
permit, composite domains. This means that PF��M��) �I��� , which has such a domain,

88 Chapter 4

must be modified in some way.

3. Most relational database management systems in common use will not support set
valued domains such as required by the Ì�Í MI��� � attribute. The practical consequence
is that we must avoid them somehow.

We will tackle each problem in turn.

4.6.1 Solving the Problem of Repetition

The solution to the first problem, where we repeated information, is to factor out the
repetition and place it in a relation of its own. In this case, the split will result in the
following relations.

8 � @ � � �
�������I���������I���������I���8 ��9�� 8 � @ � �
�������I���������I���������I���
N���� @ NF� � H����5F8Iy v #�4 1
N���� @ |�� �����
K���L���M�� E�������� �
K���L���M�� E������ ��� �
�������I���������I���������I���
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�I���������I�I�I���������I�I�I���������I�I���
��� P���M��) ���
� 8 � @ � � EF� � ��� ���I��� 	�� 1 H
� Ì�Í M��F� �P���L 8 M�J[���
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�I���������I�I�I���������I�I�I���������I�I���
% %.#Ä% w s�# NF� � H���� ��� @ %.sI-�= v�wIw�w � * M��~\;�FÖ�H]\Ü��� @ 1 �
%.#Ä% w s�# v #�4 1 O * ��O � � Q #�= w�w ��� @ 1 �
4 %.4Ä% w s�# |�� ����� 7 �
* � %.s v - % wIw�w �
: %.4Ä% w s�# E�������� � 7F���
��� %.s v # % w�w �
= %.4Ä% w s�# NF� � H���� ��� @ %.sI-&% %�%�s�s ��� @ 1 �q\;� * M��
Ë %.=Ä% w s�# E������ ��� � ��J 1 M�� %.s v % %�s�s � * M��
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�I���������I�I�I���������I�I�I���������I�I���

The key of this new
8 � @ � � � relation is the model name attribute

8 � @ � � . No two models
have the same name and no manufacturer is ever likely to name one of their new models the
same as some other manufacturer’s. The

8 ��9F� attribute has been dropped entirely from theH����� relation but the
8 � @ � � one has been retained. This is essential. If we removed both

columns then we would have no way of knowing which make or model a particular car
was. The

8 � @ � � attribute now appears in two relations. In one of these relations,
8 � @ � � � ,

it is the relation key. Because of this, it is termed a foreign key within the other relation,EF���� .
The sensible step now is to turn the

8 � @ � � � relation into a table listing all acceptable
models and their manufacturer. Whenever a value is to be entered into the

8 � @ � � attribute
of the EF���� relation, we refer to that attribute in

8 � @ � � � to ensure that our entry is valid.

Relations 89

This cross-checking to ensure accuracy helps to maintain the referential integrity of the
database.

acbedgf�h+ij]d"k
Ñ dqn %Ò bFÓ&h&Ôh�h�Õ�n %.#FÖ+% w ÖIs�#l bem]hen N���� @l jek]h�o+n N�� � H����apj]oIj]dqn ��� @r hFbedqn %.s�-I=t d"u�i+hen v�w�wIw
×�Ø Ó"d&b]Ù�n � * MF�

�FÖ�H
��� @ 1 �
z�z�zIz�z�z�z�z
z�z�zIz�z�z�z�z

Now when entering car details from the keyboard, we will fill in the
l j]keh o+n

slot and
expect the computer system to look up the

8 � @ � � � table, find the corresponding make and
display that in the

l b]m]h¿n
slot as a form of confirmation.

4.6.2 Solving the Composite Domain Problem

The next problem occurs where we have attributes with composite domains. We must
eliminate these, without losing any information.

�������I���������I�
P���M��) ���
�
P���L 8 MIJÚ���
�������I���������I�
%.# % w s�#

There are two standard solutions to this problem.

1. The lower level attributes may be combined. The effect is to cram a collection of
separate values into a single one.

�I���������I������� ���I���������I�
P���M��) ����� P���M��) ���
�
PF��L 8 MIJÚ���
�I���������I������� ���I���������I�
%�# % w s�# %.#&% w sI#

This approach is commonly taken with dates and with addresses both of which are
essentially composite.

2. The second solution is simply to drop the top level composite attribute and to raise its
component attributes to this level.

90 Chapter 4

�I���������I������� ���I���������I�����
P���M��) ����� P���L 8 MIJÚ���
PF��L 8 MIJÚ���
�I���������I������� ���I���������I�����
%�# % w s�# %.# % w s�#

The choice of solution depends on whether or not we want the machine to be able to access
the components or whether we are prepared to do it ourselves. If we want to access all
cars seen in October then we should keep the attributes separate, that is take the second
approach. However, if all we would ever want is a date then the first approach would
suffice.

4.6.3 Solving the Set Valued Domain Problem

The third problem to be solved is that of somehow getting rid of the set-valued Ì�Í M���� �
attribute, without losing any information. This is also done by splitting the EF���� relation.
Each car is uniquely identified by a number, say % , and each car has a set of extra features,
say Ý � * MF�q\;�FÖ�H]\Ü��� @ 1 �FÞ . A new relation is formed and in this relation each feature will
appear in a separate tuple, paired off with the appropriate car number.

EF���� EF��� Ì�Í M��F� ��������I���������I���������I���I�������I�I���I����������� ���I���������I�����
��� z�z�z Ì�Í M������ ��� Ì�Í M�����������I���������I���������I���I�������I�I���I����������� ���I���������I�����
% z�z�z � * M��q\$�FÖFH]\Ü��� @ 1 � % � * M��

% �FÖ�H
% ��� @ 1 �

The result of the split leads us to the following division.

EF���� EF��� Ì�Í M���� ��������I���������I���������I���I�������I�I���I�������������I���I�I����� ���������I���������
��� 8 � @ � � EF� � ��� ������� 	�� 1 H�� ��� Ì�Í MI����������I���������I���������I���I�������I�I���I�������������I���I�I����� ���������I���������
% N�� � H���� ��� @ %.s�-�= v�w�w�w % � * MF�
v #I4 1 O * ��O � � Q #�= w�w % �FÖ�H
4 |F������� 7 �
* � %.s v - % w�w�w % ��� @ 1 �
: EF������� � 7F���
��� %.s v # % wIw # ��� @ 1 �
= N�� � H���� ��� @ %.s�-&% %�%.s�s = ��� @ 1 �
Ë EF����� ��� � ��J 1 M�� %.s v % %.sIs = � * MF�
�������I���������I���������I���I�������I�I���I�������������I���I�I����� Ë � * MF�

���������I���������

Again, although a split has occurred, we can still reconnect the relations because both
relations have a car ��� attribute. Using this common attribute we can always find out which
features a particular car has; or alternatively, we can find out which cars have a particular
feature such as air-conditioning.

Relations 91

4.7 The Cars Database

Given the above analysis, we can now define a database for information regarding cars we
have seen. There will be a record type for each of the three relations just discussed.

1. There will be a record type for models and their makers.

8 � @ � ��ß � H
��� @
8 ��9F�Ç� 8 ��9��8 � @ � � � 8 � @ � �

2. There will be a record type for atomic attributes of each car.

EF��� ß � H���� @
�����
�) ���
�^�
P���M��8 � @ � � � 8 � @ � �
EF� � ���Ç�IE�� � ���
���������
�à¾²� * ���
	�� 1 H��á� 8 ��� ��L

3. There will be a record type for recording extra features that a car may have.

Ì�Í MI��� ß � H
��� @
�����
�
Ì�Í MI���á��NF����M * �F�

We can even use this formalism to define the Cars database.

EF����.P���M���7�� ���
8 � @ � � �B�) ��M�� T{8 � @ � ��ß � H
��� @
EF������) ��M�� T EF��� ß ��H���� @
Ì�Í M��F� �B�) ��M�� T Ì�Í MI��� ß � H
��� @

Each component of the database is a relation. So we have an external user-view constructed
by means of the general relational model;and we have an internal program-view,a relational
database built by means of the standard relational model. It is the program’s purpose to
sustain a mapping between the two pictures, one that simulates the external picture by
suitable manipulation of the internal picture.

` When the user sees a likely car, one new car record is added to his or her “database";
the data capture program will:

1. Add a new record to the EF���� relation.

92 Chapter 4

2. Refer to the
8 � @ � � � relation to supply the

8 ��9�� .

3. Add a new record to the Ì�Í M������ relation for each extra that this car features.

` When the user displays a car “record" on the screen, a reverse process will take place,
with the “apparent" record being constructed by reference to the three database relations.

4.8 Anatomy of a Database

4.8.1 The
Ôâ¿ãä/h i+Ó

Database

Here is an example of a relational database. This database will be used throughout the
rest of this chapter and extensively in the chapters on SQL that follow. It is worth taking
some time to become familiar with the relation and attribute names and, to some extent,
the database contents.

The database is used to keep track of student assessment for a subject at the Quilpie
Institute of Theft. The subject is called an å �FM��F� @ * HVM 1 ���æMF�YE�� 1(2 � . There are three
relations in the database,

) M * @ ����M� ,
� ����� ��� and

ß � � * � M� .
Seven people enrolled in the subject and their personal details are recorded in the) M * @ ���FM� relation. Three items of assessment were set, two of these were to be done

during the semester and the third was an end of semester examination. As the semester
proceeded assignments were handed in and marked. The marks were then recorded in theß � � * � M� relation along with the date of submission.

The contents of the database at the end of the semester were as follows.

) M * @ ���FM� ß � � *+� M+�
�������I���������I���������I���I�������I�I��� �I���������I���������I���������I�I���������I�I���I���
å @ N 1 ��.M |F� �VM å M�� 2 å @)�* 7 2e1 M�M�� @ 8 ����9
�������I���������I���������I���I�������I�I��� �I���������I���������I���������I�I���������I�I���I���
- v % x����&� ç * O�O % - v % w s w - - w
- Ë # 5"1���� 5 ����� @ % - Ë # w s w�v Ë w
- Ë s ß&1 O è�� T�T % -�=�: w s w - v�w
-�=�: � ��� P�� A ��� % - v # w s&% w =�=
-�4&% x����&� è�� T�T % - Ë - w s w Ë s w
- v # 5 ��M�MIL 0 ��J�� % - Ë s w s w s v�w
- Ë - y"1���� Z � 2 7 � � # - v % % w #&% v�w
�������I���������I���������I���I�������I�I��� # - Ë s % w #�# - w

- v # % w #&% Ë =
- Ë # % w #�# v�w

� ��������� # - Ë - % w #&% v =
�������I���������I���������I���I�������I�I���I�������������I� 4 - Ë s Q s�=
å M�� 2 P�� ��HV� 1 OFM 1 �
� y � 1 �IJFM P * � 4 - v # Q :�=
�������I���������I���������I���I�������I�I���I�������������I� 4 - Ë # Q : w
% 	���M�M�LYKIJ�� T M % w w s w - 4 - Ë - Q = w
K�� ÍÚÌ A � � 1 ��� 4 w % w #&% 4 - v % Q Ë w
4 Ì�Í M����IM 1 ��� Ë w Q 4 -�=�: Q Ë =

�������I���������I���������I���I�������I�I���I�������������I� �I���������I���������I���������I�I���������I�I���I���

Relations 93

The attributes P * � and
)�* 7 2]1 M�M�� @ both hold dates in the form

8I8 P�P ; so, for example, % w #&%
represents 21 October. This allows two dates to be compared numerically. A question
mark is used to indicate a null value.

4.8.2 Keys

The relation keys are as follows:

Relation Key attributes) M * @ ���FM� å @� ��������� å MF� 2ß � � * � M� å MF� 2 and å @
Given the above keys, then it is guaranteed that:

` No two rows in the
) M * @ ���FM� relation have the same å @ .

` No two rows in the
� ���
� ��� relation have the same value in the å M�� 2 column.

` No two rows in the
ß � � *+� M� relation have the same å M�� 2 and å @ in combination.

If we inspect the relations, two other keys might seem possible, since:

` No two students have the same N 1 ��VM and |�� �VM name, in combination.
` No two items of assessment have the same P�� ��H.� 1 OFM 1 ��� .

The database designer, however, must choose a key that will provide uniqueness for the
lifetime of the relation concerned. In this example, the designer thought that there might
have been two or more é ��J��).2]1 MIJ ’s in the class and that there might have been, for ex-
ample, two � ���
��L assignments. In both cases an artificial key has been created specifically
to overcome problems that would arise if such duplication did occur.

The best way to handle relations is to think of them as being in two parts.

` There is a set of objects represented by the key.
` Each non-key attribute is a simple fact concerning the elements of that set.

Using this as a guide, the
) M * @ �
�FM� relation divides in two.

����� �I���������I���������I���������
å @ N 1 ��VM |F���VM
����� �I���������I���������I���������
- v % xF���&� ç * O�O
- Ë # 5&1���� 5 �I��� @
- Ë s ß1 O è�� T�T) M * @ ���FM� ê -�=�: C � ��� P�� A ���
-�4&% xF���&� è�� T�T
- v # 5 ��M�M�L 0 �
J��
- Ë - y&1���� Z � 2 7 � �
����� �I���������I���������I���������

The relation decomposes into the following:

94 Chapter 4

` a set of students represented by their Id’s:
� - v %�!?- Ë #+!�- Ë s+!�-�=�:&!�-�4+%�!?- v # !�- Ë -F> .

` two facts concerning each student, that is, his or her first and last name.

In the same way, the
� ����� �I� relation can be decomposed into a set of assessments

� %�!�#+!�4 >
represented by their item number. Each assessment item has three facts recorded about it:
a description, a weight and a due date.

The
ß � � *+� M� relation decomposes into a set of results

�I� %�!?- v %.'(! � %�!?- Ë #�'/! ¹¤¹¨¹ > repre-
sented by

� å MF� 2 ! å @ ' pairs, and for each item, there is information concerning the date of
submission and the mark awarded.

Relation Attribute Domain) M * @ ���FM+� å @ å �FM��������N 1 ��VM E�J ���) M�� 1 ���
|F� �VM E�J ���) M�� 1 ���

� �I��� ��� å M�� 2 å �FM��������P�� ��HV� 1 OFM 1 �
� E�J ���) M�� 1 ���y � 1 �IJ�M å �FM��������P * � P���M��
ß ��� *+� M� å M�� 2 å �FM��������

å @ å �FM��������)�* 7 2]1 M�M�� @ P���M��8 ����9 å �FM��������

Figure 4.3 The database anatomy

There is more to anatomy than just structure. It is also concerned with the connections
between structures. The links between relations are also important. These may be seen
in the

ß � � *+� M+� relation. Two of its attributes are the keys of other relations. When an
attribute of one relation is the key in another then we have a link between the two relations.
For example, the first row of the

ß � � *+� M+� relation points to two other rows in two separate
relations. See Figure 4.4.

The å MF� 2 and å @ attributes of the
ß � � *+� M� relation are both examples of foreign keys.

Each is a foreign key because each is the key of some other relation. Any attribute or set
of attributes within a relation may be a foreign key. It is by chance that å M�� 2 and å @ also
form the key of the

ß � � * � M� relation.
In summary, although a relational database may appear to consist of a number of

quite disjoint relations, they are always connected by means of foreign keys which act as
pointers from one relation to another. A relational database would be unusable without
these connectors.

4.9 Relational Languages

A database is kept in a box on a computer system and that box is guarded by a piece
of software known as a database management system or DBMS. The only access to the

Relations 95

Assess

Item Description Weight Due

 1 Petty Theft 10 0908

Students

Id First Last

871 Hans Zupp

Results

Item Id Submitted Mark

 1 871 0908 80

Foreign keys provide
the links that turn a
collection of tables

into a database.

Figure 4.4 Links between tables

database is via the DBMS. We can only access the database indirectly, that is, by making
a request to the software. This request must therefore be phrased in appropriate language.
There are two kinds of language for manipulating relations: ones based on relational
algebra and ones based on relational calculus. Although most of the discussion that
follows will concern the calculus, there are important terms and concepts involved in the
algebra.

4.9.1 Relational Algebra

Relational algebra attempts to treat relations as large units, capable of being manipulated
as a whole. When parts of a relation are to be accessed then they are addressed by means
of the appropriate attributes.

There are four operations that are particularly associated with relational algebra.

` The select operation allows tuples to be extracted from a relation. The extracted tuples
then form a relation in their own right.

` The project allows attributes to be extracted from a relation to form another relation.
` The product operation creates a product relation from two relations.
` The join extends each tuple in one relation with an appropriate tuple from another

relation. The effect is to make it look as if one relation is glued to the other.

96 Chapter 4

All of these operations are best pictured in a visual way. They all operate upon one
or two relations and yield another. Sometimes these operations are given the collective
title of the relational algebra. It is the combination of simple tabular data structures and
easily conceived operations upon these tables that accounts for the great popularity of the
relational model. Because we can picture these operations being performed, because we
could do them ourselves, we find it easy to imagine a computer performing them.

In much of the rest of this book, the relational language SQL is discussed. Although
these four operations are not part of that language’s vocabulary, we should think of them
as being part of its repertoire. (To be precise, the word �
� � � HVM is used by SQL but not in
the way described here.)

4.9.2 Relational Calculus

Languages based on relational calculus are, essentially, ones that treat relations as sets.
They are characterized by a tuple or row orientation. These languages are amalgams of
the predicate calculus introduced in Chapter 2 and of set comprehension introduced in
Chapter 3. SQL, to be covered extensively in the following chapters, is based on relational
calculus. The general form is:

� @ � H � ���F��M 1 ���B¾²O���� @ 1 H���M�� ` M���� 2 >

As a reminder:

` The
@ ��H � ������M 1 ��� allows us to introduce the sets, in this case relations, used as a basis

for the query.
` The optional OF�F� @ 1 H���M�� allows us to express conditions that elements of these sets

must satisfy. In relational calculus, the elements are tuples of some kind. If no predicate
is supplied then all tuples are selected.

` The optional MF��� 2 allows us to identify the exact nature of the new set that is to be
formed. If no term is supplied then tuples from the base relations are to be used.

A very simple example is:
� ���) M * @ ���FM�I>

This statement returns the entire
) M * @ ���FM� relation. There is no predicate to filter out any

students. The variable � is a tuple variable. It ranges over the entire relation taking in turn
the value of each tuple.

What if we wanted details on certain students only? Perhaps we are interested in those
whose first name is Hans. A tuple has a kind of segmented or composite value. There
is one segment for each attribute in the relation. We use tuple projection to isolate one
particular segment of a tuple. This is achieved by an expression such as:

� ¹ N 1 ��VM

A tuple variable name followed by a full stop followed by an attribute name represents the
value of that attribute within the corresponding tuple. The expression �~z²N 1 �+�VM represents
the first name attribute of any

) M * @ ���FM+� tuple represented by � .

Relations 97

4.9.3 The Select Operation

A typical request that might be made of a relational database would be to report on those
tuples that satisfy some condition. This is called the select operation. The operation takes a
relation and a condition; it returns the subset of that relation for which the condition holds.

Example 4.1 Find out about students called Orff.
To create a predicate requiring that the last name attribute be Orff, we can write:

� ¹ |�� �VMë�Úè�� T�T

This predicate can then be incorporated into a set comprehension expression:

� ���) M * @ ���FM��¾/� ¹ |F� �.MB�Úè�� T�T >

To execute this request, we must imagine the required rows or tuples being cut from the) M * @ ���FM� relation.

Students

Id First Last

871 Hans Zupp
862 Bill Board

869 Rip Orff

854 Ann Dover

831 Hans Orff

872 Betty Kahn
868 Will Gambol

Id First Last

869 Rip Orff
831 Hans Orff

Figure 4.5 The select operation

The
) M * @ ���FM� relation is not altered by this operation. We may imagine that a copy

of it is taken, and that copy is chopped about in order to select the required tuples. The
resulting relation is merely a subset formed from the original.

Example 4.2 Find out about failures in the final exam.
If we know that the final exam is assessment item 4 , and a failure is defined to be any mark
less than 50%, then this query can be specified as follows:

� �È� ß � � *+� M��¾ª� ¹ å M�� 2 �Î4{��� @ � ¹ 8 ����9áìÉ= w >

Again, the resulting relation is a subset of the original.

�������I���������I���������I���I�������I�I���I�����������
å M�� 2 å @)�* 7 2]1 M�M�� @ 8 ���I9
�������I���������I���������I���I�������I�I���I�����������
4 - v # Q :�=
4 - Ë # Q : w

�������I���������I���������I���I�������I�I���I�����������

98 Chapter 4

Example 4.3 Which items of assessment have no due date scheduled yet?
� ��� � ���
� ����¾�� ¹ P * �à�É� *+�I� >
�������I���������I���������I���I�������I�I���I�������������I���I�
å M�� 2 P�� ��H.� 1 OFM 1 ��� y � 1 ��JFM P * �
�������I���������I���������I���I�������I�I���I�������������I���I�
4 Ì�Í M�����M 1 ��� Ë w Q

�������I���������I���������I���I�������I�I���I�������������I���I�

We need a way of detecting null values. Since a null value is really the absence of a value,
it is not truly a value and cannot be equal to anything. However, in practice, it is common
to provide a special constant called � *+�I� .

4.9.4 The Project Operation

This operation is an extension of the project operation defined on tuples. That particular
operation allowed us to choose one attribute from a tuple. When used on a relation, the
effect is as if an entire column is removed from that relation.

Example 4.4 What are the Id’s of all students in the class?
To execute this request we must imagine the

) M * @ ���FM� relation being split from top to
bottom.

Students

Id

871
862
869
854
831
872
868

Id

871
862
869
854
831
872
868

First Last

Hans Zupp
Bill Board
Rip Orff
Ann Dover
Hans Orff
Betty Kahn
Will Gambol

Figure 4.6 The project operation

Again, the original relation is unchanged, and again, we may imagine that a copy is
taken. From that copy, the å @ attribute or column is retained and the others are discarded.
The resulting column is a single attribute relation. In this case a relation acts like a simple
set. This operation can be specified as:

� ���) M * @ ���FM� ` � ¹ å @ >

Example 4.5 What are the last names of all students?
� ���) M * @ ���FM� ` � ¹ |�� �VM>

Relations 99

�������I���
|F� �VM
�������I���
ç * O�O5 ����� @
è�� T�T
P�� A ���0 ��J��Z � 2 7�� �
�������I���

The resulting relation is a set of names, and because it is a set, it should contain no
duplicates. For this reason the second appearance of the name Orff has been suppressed.

Example 4.6 What are the first names of people whose last name is Orff?� ���) M * @ ���FM��¾/� ¹ |F� �.MB�Úè�� T�T ` � ¹ N 1 �+�VM>
�������
N 1 ��.M
�������I�ß&1 O
x����&�
�������I�

The project operation can be applied to relations that result from other operations. To
answer this query, we select the correct tuples and then project the required attribute.

Example 4.7 What are the full names of all students?
So far, we have projected only one attribute. However, many queries require the projection
of several attributes. In this version of project, the required attributes appear as a list
between round brackets. To answer the query using this form of project we can write the
expression:� ���) M * @ ���FM� ` � � ¹ N 1 �+�VM&!� ¹ |F� �VMF'/>

�������I���������I���������
N 1 ��.M |F���VM
�������I���������I���������
x����&� ç * O�O5"1���� 5 �I��� @ß&1 O è�� T�T� ��� P�� A ���
x����&� è�� T�T5 ��M�MIL 0 �
J��y"1���� Z � 2 7 � �
�������I���������I���������

4.9.5 The Product Operation

The Select and Project operations work on one relation. This means, for example, that we
cannot, at least immediately, find out the names of students who got more than 80% in the

100 Chapter 4

final exam. To extract information from two or more relations we need an operation that
enables us to combine them in some way. The product operation allows us to do that. The
product of two relations is formed by connecting each tuple from one relation to each tuple
from the other, in turn.

The product of two relations can be formed by introducing two variables into the
declaration:

� �È� ß � � *+� M�Fí��Ç� � ����� ���I>

The variable � ranges over the tuples of
ß � � *+� M� . For each tuple value taken on by � ,

the variable � is allowed to range over
� ��������� . The product formed in this way is shown

below.

�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�I���������I�I�I���������I�I�I���������I�I�
å M�� 2 å @)�* 7 2]1 M�MF� @ 8 ����9 å M�� 2 P�� �IHV� 1 OFM 1 ��� y � 1 ��JFM P * �
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�I���������I�I�I���������I�I�I���������I�I�
% - v % w s w - - w % 	���MIM�L�KIJ � T M % w w s w -
% - v % w s w - - w # K�� ÍYÌ A � � 1 ��� 4 w % w #%
% - v % w s w - - w 4 Ì�Í MF����M 1 �
� Ë w Q
% - Ë # w s wIv Ë w % 	���MIM�L�KIJ � T M % w w s w -
î î î î î î î î
î î î î î î î î

�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�I���������I�I�I���������I�I�I���������I�I�

The
ß � � *+� M+� relation has 17 tuples and

� ����� �I� has 3. Their product has % vðï 4Yê
=&% tuples, and each new tuple is formed by connecting two tuples, one from each of the
relations involved.

Note that this product relation has two attributes with the same name. Two of the
columns are headed å M�� 2 . The resulting table is not a true relation.

As can be seen at a glance, many of these newly formed tuples are of little use, but
some of them are. The first tuple in the product connects a tuple that contains specific
information on a result achieved in the first assignment to a tuple containing some general
information on that assignment. We could use such a tuple; for example, we can use it
to find out whether or not the assignment was handed in on time. The second and third
product tuples are not nearly so useful but we could use them (how?). The fourth one is,
again, quite useful; and so on.

4.9.6 The Join Operation

The tuples that are most likely to be of use are those where the å M�� 2 that originated fromß � � * � M� equals the å M�� 2 that originated from
� ��������� . To preserve these tuples and

discard the others we can use a Select operation.

� �È� ß � � *+� M�Fí.�È� � �I��� ����¾ª� ¹ å M�� 2 �Î� ¹ å M�� 2 >

The resulting relation looks like the following.

Relations 101

ß � � * � M� � ����� �I�
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�I���������I�I�I���������I�I�I���������I�I���
å M�� 2 å @)�* 7 2]1 M�M�� @ 8 ����9 å M�� 2 PF� ��HV� 1 OFM 1 ��� y � 1 �IJFM P * �
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�I���������I�I�I���������I�I�I���������I�I���
% - v % w s w - - w % 	F��M�M�LYKIJ � T M % w w s w -
% - Ë # w s w�v Ë w % 	F��M�M�LYKIJ � T M % w w s w -
% -�=�: w s w - v�w % 	F��M�M�LYKIJ � T M % w w s w -
% - v # w s&% w =�= % 	F��M�M�LYKIJ � T M % w w s w -
% - Ë - w s w Ë s w % 	F��M�M�LYKIJ � T M % w w s w -
% - Ë s w s w s v�w % 	F��M�M�LYKIJ � T M % w w s w -
- v % % w #&% v�w # KF� ÍÎÌ A � � 1 �
� 4 w % w #&%
- Ë s % w #�# - w # KF� ÍÎÌ A � � 1 �
� 4 w % w #&%
- v # % w #&% Ë = # KF� ÍÎÌ A � � 1 �
� 4 w % w #&%
- Ë # % w #�# v�w # KF� ÍÎÌ A � � 1 �
� 4 w % w #&%
- Ë - % w #&% v = # KF� ÍÎÌ A � � 1 �
� 4 w % w #&%
4 - Ë s Q s�= 4 ÌIÍ M�����M 1 ��� Ë w Q
4 - v # Q :�= 4 ÌIÍ M�����M 1 ��� Ë w Q
4 - Ë # Q : w 4 ÌIÍ M�����M 1 ��� Ë w Q
4 - Ë - Q = w 4 ÌIÍ M�����M 1 ��� Ë w Q
4 - v % Q Ë w 4 ÌIÍ M�����M 1 ��� Ë w Q
4 -�=�: Q Ë = 4 ÌIÍ M�����M 1 ��� Ë w Q

�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�I���������I�I�I���������I�I�I���������I�I���
The sequence of a Product followed by a particular Select is so commonly required that it
is given its own name. It is called the Join operation.

4.9.7 Relational Expressions

In each of the four relational operations select, project, product and join, the result is
yet another relation. This means that the result of one operation may be used by a second
operation. This is just the same as when, in the expression ñ v CF4+ò�ÖI= , the result of the
addition is used by the division.

We can build up very complex relational expressions to answer correspondingly com-
plex queries. Essentially, however, these relational expressions are to be thought of as no
different from arithmetic expressions.

4.9.8 Relational Calculus Summary

This is, essentially, set comprehension based on the use of tuple variables. The general
form is:

� @ � H � ���F��M 1 ���B¾²O���� @ 1 H���M�� ` M���� 2 >
The restrictions placed upon each of the components are:
` The declaration uses tuple variables.
` The predicate does not allow the use of terms formed using function application. This

rule is broken to allow simple arithmetic expressions.

102 Chapter 4

` The term is a simple tuple, that is only atomic components are permitted.

Simple Formulae
A simple formula or predicate in the relational calculus has one of the following forms:

� ¡6ó�±&½ô�àõ � �/ó ½ô� :
M�z � ��� � ��O * z 5

� � M�z � ��� � ��O 0
� � 0 ��� � ��OYM{z �

ÏqÐ �Vóc±½ô�(� :
M�z � �F�YR * z � ���

� � Oöz � �F�Y�Î#�=
� � %.-ÎRYX{z � ���

where:

` M and
*

are tuple variables;
` �

and
5

are attributes of M and
*

respectively;
` 0

is a constant;
` ��� � �
O is a relational operator consistent with the attributes

�
and

5
.

Formulae in General
Suppose N and

Z
are any arbitrary formulae, and

)
is a simple formula. Then, in general, a

well-formed formula can take any of the following forms:

÷ �¤½6½ - õ � �/óÇ�?��õ � �/ó ½ô� :)
� � � ��MÎN
� � Nð��� @ Z
� � Nð��� Z
� � ñ Nò
� �Æø M��
K ` N
� �Wù M��
K ` N

ÏqÐ �Vóc±½ô�(� :
Oöz � �F�YRÎ#�=

� � � ��M ñ Oöz � ���YRY#�=Î�
� @ O�z) � Í êYN&ò
� � Oöz � �F�YRÎ#�=Y��� @ Oöz � ���Y�Ú# w
� � Oöz) � Í ê 8 ����Oöz²��� 2 �IêIx�� � ���
� � ñ Oöz � ���YRÛ% Ë ò
� �Æø O���	��I��O � � ` O ¹ � ���áìæ#�=
� �Wù O���	��I��O � � ` O ¹ � ���áúð% Ë

The last two options, which use the quantifiers ø and ù , have been included for completeness
at this stage. Quantification will be introduced in Chapter 12.

4.10 The Circle Database

4.10.1 Circle Record Types

Chapter 2 introduced us to a circle of people and certain facts about them. All the facts
were presented as sets of pairs. In this chapter we have seen another way of representing
simple facts using aggregate data structures called records which are gathered into sets
called relations. This section compares the two representations and the purpose of each.

Relations 103

Before we can do that we will introduce record types for the circle. The choice of record
structure is determined by the results of a database design effort which will be discussed
in later chapters. For the moment we will take on trust that the circle may be adequately
represented using three record types.

1. There will be a record type based on the functions and injections involving people.
Partial functions and injections need to allow for the possibility of a null value.

	����+����� ß ��H���� @
å @ �
��� 2 �) � Í � Z ��� @ ���� �����
�
P�� 1�A � ����EF��� 8 ��9��p¾¯� *+�I�
|F� T M��
��� 2 �) O � * ���á�
��� 2 ��¾²� *+���

2. There will be a structure to record information about the playing of a specific sport by
a specific person.

	 � ��L 1 �F� ß � H���� @
	 � ��L����Ç�
��� 2 �
	 � ��L� � MÇ�) O ����M

3. There will be another structure to record the speaking of a language.

) O �I��9 1 �F� ß � H���� @
) O �I��9����Ç�
��� 2 �
N �
* ���FM å ����|����F� * �����

The database can now be defined as follows.

E 1 �H � ��P���MF��7 � ���
	�����O � �ë�) ��M�� T 	����+����� ß ��H
��� @
	 � ��L+���) ��M�� T 	 � ��L 1 �F� ß ��H
��� @) O ����9�B�) ��M�� Tö) O �I��9 1 �F� ß � H��
� @

H�� * ��M � OÇ�
	�����O � � ` O ¹ å @ >c�ðH�� * �FM{	�����O � �
� O��
	����
O � � ` O ¹) O � * ��� >�û � O^�
	��I��O � � ` O ¹ å @ >� O��
	����
O � � ` O ¹ |F� T M+>c� � O��
	�����O � � ` O ¹ å @ >

The 	�����O � � relation would look like the following table, using the data from Chapter 2.

104 Chapter 4

	�����O � �
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�I�����
å @) � Í � ��� P�� 1.A � � |�� T M) O � * ���
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�I������ � ��� 8 #&% 8 ���H�� @ ���)
* �)
* �)�* � N %.- N���� @ 5 ��7 ��� ���5 ��7 8 #�4 	������H.J � 01(2 Q0&1(2 N #�4 Q 8 ����9 Q8 ����9 8 :�- K���L���M�� � ��� � ���� ��� N :�= K���L���M�� ��� ��� 8 ����9
�������I���������I���������I���I�������I�I���I�������������I���I�I�������I���I�I�����

The database definition has not only declared the relations used, but has also added two
examples of constraints that would normally be placed upon these relations.

Relation Key Constraints
These are required to enforce the functional dependencies that existed before the aggre-
gation. For example, there is nothing in the declaration part of the database definition
requiring every 	�������
� ß � H���� @ to have a different name. To recover from this, a constraint
is added requiring that the number of names (Id’s) in the People relation be the same as the
number of tuples in the relation.

H�� * ��M � OÇ�
	�����O � � ` O ¹ å @ >c�ðH�� * �FM{	�����O � �

Foreign Key Constraints
These are required to enforce the referential integrity of the database. For example, the
person named as being somebody’s spouse should also exist in the database. This condition
may be expressed using set comprehension.

� O��
	����
O � � ` O ¹) O � * ��� >�û � O^�
	��I��O � � ` O ¹ å @ >

The set of people identified as being spouses should be a subset of the set of people in the
circle.

Other Constraints
The database definition should also specify any other constraints that might apply to the
particular database in question. The original

� � T M relationship, for example, was a total
injection. We can convey this constraint in the following way:

� O��
	����
O � � ` O ¹ |F� T M+>c� � O^�
	�����O � � ` O ¹ å @ >

4.10.2 Comparing the Two Views of the Circle

We have now seen two different ways of describing the circle of people that was introduced
in Chapter 2. In this section, we will compare the expressiveness of the two methods of
description on three queries.

Relations 105

Query 1: Who are the males?
Using set comprehension, as discussed in Chapter 3, we might specify the males as follows:

� O��
	����+������¾?��� Í � O 'e� 8 >
The variable O ranges over each person in the circle, where people are represented by their
names. If the gender of the person is

8
then he is added to the set being formed.

Using relational calculus, we might write an expression such as:
� O��
	����
O � �p¾¯O ¹) � Í � 8 ` O ¹ å @ >

This time, the variable O ranges over the tuples of the 	�����O � � relation. For each tuple, the) � Í attribute is examined, and if it is equal to
8

then the å @ attribute is projected from the
tuple and added to the set being formed.

Query 2: Who is on Sue’s left?
This is a simple case of function application.

� � T M �®)�* ��'
The one-to-one function or injection

� � T M maps from Sue to the next person. But, using
relational calculus, we have:

� O��
	����
O � �p¾¯O ¹ å @ �)�* � ` O ¹ |F� T M>
Relational calculus is a special form of set comprehension and so every query will return a
set of some kind. So we are obliged to form the set of people immediately to Sue’s left. It
is a set of one but a set nonetheless. The query seems long and awkward.

Query 3: What is the gender of the person on Sue’s left?
Since

� � T M ñ)�* �+ò is a person, we can apply the ��� Í function to that person and be mapped
to his or her gender.

��� Í �®� � T M �®)
* ��'�'
Alternatively, we may write:

� O&!�X���	�����O � �p¾¯O ¹ å @ �)�* ���
� @ O ¹ |F� T MB�YX ¹ å @ ` X ¹) � Í >
In Query 2, we were able to find out the person on Sue’s left merely by looking at the |F� T M
attribute of Sue’s tuple. To get the gender of that person, we need to look at that person’s
tuple. So we need two tuples from the 	�����O � � relation, (1) Sue’s to find the name (å @) of
that person, and (2) that person to find his or her gender.

ü ý
þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þVþ.þ.þ.þ.þ þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þVþ.þ.þ�þ.þVþ.þ.þÿ�� ���������	��
	����	�����	������� ü���� ��� ÿ�� ������������
	����	������������� ü���� ���
þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þVþ.þ.þ.þ.þ þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þVþ.þ.þ�þ.þVþ.þ.þ� � � � ��� � � ��� ! ��" �	#�$�% ! ��" & '�(�)�� ����*�+��-,.0/ 1
þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þVþ.þ.þ.þ.þ þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þVþ.þ.þ�þ.þVþ.þ.þ

Projection provides the equivalent of a single application of a function but any greater
degree of application, such as is required in this case, requires a join.

106 Chapter 4

4.11 Summary
` Relations are the data structures in which we embed the simple specific facts about

some situation that we wish to represent. A relation is a set of aggregate structures
known as records and it is from the richness of the record structure that relations inherit
their own potential variety.

` The relational data structure, in general, is very flexible, and is capable of representing
the wide variety of formats that we use to present organizational views – whether these
are management reports or data entry forms.

` Unfortunately, there is a gap between these kinds of relations and the kind that are sup-
ported by most commercially available relational database management systems. These
products can manipulate relations with only simple attributes. This is the standard
relational model, as that term is normally used.

` The gap between the two is bridged programmatically, that is, we write programs to turn
data retrieved from a relational database into the kinds of richer relations and records
that people use to view their organizations.

The relational model of data can be more accurately described as the relational view
of data. We only picture the data as being stored in relations or tables. Since most forms
of electronic bulk storage consist of concentric tracks on a disk storage device, there is no
way that the data can really be stored as a table. However, we, as the users of the data, are
allowed to refer to the data and to manipulate it as if it were.

A table is commonly used as a way of presenting a collection of similar pieces of
information. However, although we may suppose the information is in a table, the way that
the information is stored within a computer system is another matter. But as long as we
can operate under the impression that the information is in a table, then that is all that we
require.

It is the role of the Data Base Management System to take our request for information,
to decipher it, to determine the best access strategy, to execute that strategy, and to return
us the results. All that is required of us is that we have a tabular mental picture of the
relations and how they might be manipulated. We talk to the DBMS as if the relations are
tables and we use the operations of relational algebra as if they are executed in the simple-
minded manner shown in this chapter.

This relational carpentry is central to the attraction of relational databases. Such a
database is pictured as a number of tables and these tables can be processed by a number of
appealingly visual operations. The operations allow existing tables to be chopped, shaped
and stuck together to form a new (result) table. In a way, this might be compared to writing
a research report. There we take the results of laboratory experiments or of consumer
surveys and, by cutting and pasting, we massage these results until they are in a form that
enables us to communicate the essential details of our findings.

Relations 107

Exercises

Q4.1 The 2 i+bekeh43�u�i Database

The University of Wiseacres is divided into a number of schools and each school
consists of a number of academic staff and a Head of School who is also an
academic. The following relations are to be used to store information regarding the
organizational structure at Wiseacres University. The database also records details
of staff and their qualifications. There are three relations in the database and they
have the following structure.

) H.J���� � �) M�� T�T 5
* � � �
�����I������� �����I��� ���������

ñ ï ò) H.J���� �76 å @ ñ ï ò) M�� T�T46 å @ ñ ï ò) M�� T�T86 å @) H.J���� �76 �F� 2 �) M�� T�T46 ��� 2 � ñ ï ògP��������I�
	IJ �
� �) H.J���� �76 å @ 	 � � H��

ñ Q ògx���� @ 6 å @ �������

An asterisk ñ ï ò indicates that the attribute is (part of) the primary key of the relation.
A question mark ñ Q ò indicates that null values are to be permitted for that attribute
in the associated relation. The domains of some of the attributes are as follows.

` The
) H.J �I� �76 å @ is to be a two-character code uniquely identifying a particular

school; for example, the accountancy school might be coded
� E .

` The
) M�� T�T46 å @ is to be an integer uniquely identifying a member of staff.

` The x���� @ 6 å @ attribute is simply the
) MF� T�T46 å @ of the appropriate staff mem-

ber. The Head of School is to be recorded as a member of the staff within that
school.

` The P����I����� is the name of a qualification, such as
5) H or 	IJFP .

` The 	 � � H
� is the initial letters of the university or institute conferring the
degree; for example, Wiseacres is encoded as 9 y .

` The ������� is the year in which the degree was conferred.

The following data is taken from the 1996 University Handbook.

School of Computing Science
Head: Prof B.Tree BSc(UW, 1925), PhD(UQ, 1928)
Phone: 2299
Staff: I.Drone BSc(UQ, 1979), MSc(UNSW,1984)

L.R.Parser BAppSc (QIT, 1987)

School of Accountancy
Head: Ms C.R.Double-Entry BBus(QIT, 1972), MBA(UWA, 1975)
Phone: 8756
Staff: D.Fraud BComm(UQ, 1995), MBA(UCLA, 1998)

M.Bezzle BBus(UW, 1989)
P.P.Lounge-Lizard BBus(QUT,1989), MBA(UQ, 1990)

108 Chapter 4

School of Chemistry
Head: Vacant
Phone: 1869
Staff: C.A.Quick-Lime BSc(UNT, 1956), PhD(UW, 1958)

A.G.Silver BSc(UW, 1975), MSc(UW, 1977), PhD(UW, 1980)
H.H.Esso-Fore BSc(MU, 1970), PhD(UNT, 1974)

Take a sheet of paper and use the above data to create a database following the
layout suggested below. Choose a suitable two-character

) H�J ��� �76 å @ for each
school. Allocate each member of staff a number, starting at 1, so that the ten
members of staff shown in the handbook will be numbered 1 to 10 consecutively.

��*�+ ��� #��
þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þVþ.þ.þ�þ.þVþ.þ.þ.þVþ�þ.þ.þVþ.þ��*�+ ��� #�:Vÿ�� ��*�+ ��� #�:�;�$</=�) + � %	� >���$���:Vÿ��
þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þVþ.þ.þ�þ.þVþ.þ.þ.þVþ�þ.þ.þVþ.þ
����$����
þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þVþ.þ.þ�þ.þVþ.þ.þ.þVþ����$�����:.ÿ�� ���	$�����:�;�$</=� �	*�+ ��� #�:Vÿ��
þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þVþ.þ.þ�þ.þVþ.þ.þ.þVþ
? � $�#	�
þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þVþ.þ.þ����$�����:.ÿ��
������	���) #�$	*�� @��	$��
þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þ.þ.þ�þ.þ.þVþ.þ.þ

Q4.2 For each of the relations used in the previous exercise, answer the following:

a. How many attributes does the relation have?

b. How many tuples does it have?

c. What foreign key appears in this relation?

Q4.3 The
f�h Ù�jeâ¿d&ih Ù

Database

Across town from Wiseacres is the Witsend Institute of Technology, where resource
allocation is a bigger issue than staff qualifications. This is reflected in the structure
of their database.

) M�� T�T KIJ ����M����� ����� � H���M 1 ���
�����I��� �������I������� �������I���������I�

ñ ï ògK�����H.J ��� ñ ï ògKIJ ����M���� ñ ï ò)�* 7BAI� HVMß ��� 2 EF��O ��H 1 M�L Ì �F��� ��� � @
ñ Q òg	IJ �
� � KIJ ����M����

K���� H�J ���

Relations 109

The
) MF� T�T and KIJ ����MF���� relations represent the Institute’s resources and the����� � H���M 1 ��� relation shows, for each subject taught, the current enrollment as well

as the lecture theater and teacher normally allocated to that subject. There may
be more students enrolled for a subject than the allocated lecture theater can hold.
Here is the current state of the database.

) M�� TIT KIJ �I��M�����
�������I���������I���������I�I���������I�I� �����I���������I���������I���������
K���� H�J ��� ß ��� 2 	IJ ��� � KIJ �I��M���� EF��O ��H 1 M�L
�������I���������I���������I�I���������I�I� �����I���������I���������I���������
P�������� #&% #�#�: w K 1 ��L %.=)F� � H.9 % Ë Q E�J ��HV9����� # w
K�� 1 OIO #&% #�#�: w EI��� 2 O %.=
x�� HV9F��� %.- #�- Ë - EF� �.L 4 w
�������I���������I���������I�I���������I�I� �����I���������I���������I���������
� ��� ��H���M 1 �
�
�������I���������I���������I�I���������I�I���I�������I�I���I�������������I���������)�* 7BAI� HVM Ì �F��� �I� � @ KIJ ����MF��� K���� H�J ���
�������I���������I���������I�I���������I�I���I�������I�I���I�������������I���������8I* � 1 H % w K 1 �FL P��������5 � ��� ��M #I= EF� �VL K�� 1 OIO
K���OFPF���&H 1 ��� 4I= EF� �VL K�� 1 OIO
	������I��� 2�2]1 �F� % w EI��� 2 O x�� HV9F���)+1 �F� 1 �F� #I= K 1 �FL P��������)�* ���F����L %�= EI��� 2 O x�� HV9F���
	�����MI��L % w EI��� 2 O P��������
�������I���������I���������I�I���������I�I���I�������I�I���I�������������I���������

For each of the relations:

a. How many attributes does the relation have?

b. How many tuples does it have?

c. What foreign keys, if any, are there in the relation?

Q4.4 Dr Slack has no phone number recorded. Does this mean he has no phone?

Q4.5 How many tuples will there be in the product of
� �I� � H���M 1 ��� and

) MF� T�T ? Write
down a sample tuple from this product.

Q4.6 Write out the join of
����� � H���M 1 ��� and

) M�� TIT . Is this the same as the join of
) M�� T�T

and
� �I� � H���M 1 ��� ?

Q4.7 Evaluate the following expressions and show the results. Suggest a possible equiv-
alent English expression.

110 Chapter 4

a.
� ���) M�� T�T ` � ¹ K���� H.J����>

b.
� ���) M�� T�T ` � ¹ K���� H.J����> 2]1 � * � � ��� � ��� � H
��M 1 ��� ` � ¹ KF��� H.J ���>

c.
� MÈ�
KIJ �I��M������¾ªM ¹ EF��O�� H 1 MIL�ú[%.= >

d.
� ���) M�� T�T í
�Ç� � ��� � H
��M 1 ���
¾?� ¹ KF��� H.J �����Î� ¹ K���� H�J ���
` � � ¹)
* 7BA�� H.M&!¤� ¹ 	IJ �
� ��'?>

e.
� � !�7È� � ��� � H���M 1 ���
¾�� ¹)
* 7BA�� H.M�� 5 � ��� ��M��
� @ 7 ¹ Ì ����� ��� � @ ú��Î� ¹ Ì �F�F� ��� � @` � 7 ¹)
* 7BA�� H.M&!�7 ¹ Ì �F�F� ��� � @ '/>

Q4.8 For each of the following queries:

(i) Using the relational calculus, write an expression that specifies the required
answer.

(ii) State the relational operations (selects, projects, products and joins) implied
by your answer.

a. What is Ms Hacker’s phone no?

b. What number is the Music teacher’s room?

c. Which staff teach in the Cramp theater?

d. Which subjects are over-enrolled?

e. Which teachers share a room with Mr Drone?

f. Which theaters are not currently allocated?

g. Which theaters have a capacity of over 25?

h. Which theaters have a greater capacity than the Chockers theater?

i. The singing class is over-enrolled for the room allocated. Is there any other
room that would be big enough?

j. What are the names and phone numbers of teachers involved with subjects
that are over-enrolled?

Chapter 5
Introducing SQL

5.1 Introduction

In this chapter we introduce one of the most important computer languages so far developed,
SQL. It represents a major departure from the languages we usually think of in connection
with computer programming. These more conventional languages are primarily concerned
with giving instructions to a computer. SQL is different.

SQL is, first and foremost, a means of communication, a means of expressing our
requirements. These requirements are passed to a complex software product known as a
database management system (DBMS). This software is designed to control access to and
usage of the database. SQL is a means of telling the DBMS what we want done. Because
the nature of the language allows us to concentrate on specifying the information to be
retrieved from our database, there is a consequential load placed upon the DBMS. It must
be able to determine a sufficiently rapid means of accessing the data, sufficiently rapid, that
is, to satisfy our need for the data.

SQL is an acronym for Structured Query Language, and the key word is query. This
word is to be taken in a more general sense than simply “retrieval". The central idea in
SQL is that of identifying the portion of the database that interests you. Having done that,
you may apply some operation to that portion: you may display it, you may update it, or
you may delete it.

This chapter is intended to provide a brief look at some of the language’s major features.
These features are divided into four groups concerned with:

� database definition, whereby the major components of the database may be defined,
modified or discarded;

� database retrieval, whereby the portion of the database that meets certain conditions
may be identified and examined;

� database manipulation, whereby some part of the database may be extended, updated
or deleted;

�����

112 Chapter 5

� database security, whereby the right to access and modify the database is defined.

All the examples in this chapter are based upon the �����	��
	�� database introduced in
Chapter 4.

5.2 SQL Databases

SQL is a language for dealing with a set of relations known as a relational database. It takes
a very pictorial view of a relation. This means that the standard relational terminology of
the previous chapter is replaced by SQL’s own terms:

Standard term SQL term

relation table
attribute column
tuple row

The usual way of presenting a relation is in the form of a table, so in SQL a relation is
called a table; a tuple of the relation is presented horizontally, so it is called a row. Each
attribute of the relation appears vertically as a column.

�������	���
�� ��� �"! � #�� ! �
�������������������������������������
$ % ��& ! $
$ ' � ��� $
$ (�*) $+�,�- . &�& /10�21� � 3 ������������� � � 0�4
$ % ��& ! $
$ ' ������5 $
$ 6 � ��� $
�������������������������������������7

8
�:9�0��<;�=�&

An SQL database is a collection of tables but it is more than just some tables thrown together
arbitrarily. It is a unified and interlocking set of tables; it is an organized body with an
administrative component. The make-up of every SQL database reflects this organization.
� There are the base tables which contain the data for which the database was designed.

For the Subject database, these are the > ��; � ��&�� ! ,
. !�! � !�! and (� ! ;	��� ! tables.

� There is a background component known as the system catalog. This consists of a
number of system tables which contain additional knowledge regarding the contents of
the database. This knowledge consists of information regarding which columns make
up each base table, what type of data is stored in each column, and so on.

The division between the base tables and the system tables is reflected in the language
itself. There is one style of statement for handling the base tables. There is another style
for defining the database – handling the system tables, in other words.

Introducing SQL 113

So the SQL context or environment incorporates both a database consisting of the base
tables and knowledge of that database contained in the system tables.

5.3 Database Definition

The first category of SQL statements to be examined contains those concerned with defining
the database. These statements are used to create new structures within the database, to
modify these structures and to dispose of them.

Example 5.1 Define the Students table of the Subject database.
? � �����1�@�1������� > ��; � ��&�� !A � � � &��1��B1� � &�0���&�;	���DC
�"� �"! � 9*E�� � A F*G	H C
#�� ! � 9*E�� � A F*G	H &�0���&�;	��� H

The statement names the table (> ��; � ��&�� !) and the three columns (
� �

,
��� �"! � and #�� ! �)

that form the table. For each column you must also declare the type of data that can be
stored in that column. Thus the

���
column can hold only integers, and the

��� �"! � and #�� ! �
columns can hold only character data up to a maximum of 10 characters. The final part of
a column definition is optional; it allows you to specify whether or not null values (that is,
empty column entries) are to be permitted. The definition indicates that only the

��� �"! �
name column may contain nulls.

The statement creates an empty table called > ��; � ��&�� ! , which we can picture thus:

> ��; � ��&�� !�� �"� �"! � #�� ! �
���

���
As well as creating an empty > ��; � ��&�� ! table, the statement will cause entries to be
inserted into the system catalog, in particular into two system relations, > 5 ! 9<���1����0�B and
> 5 ! 9<0��<;�=�& ! .

If the Students table is the first to be defined in the database, then these two system
relations might appear as follows:

> 5 ! 9<���1����0�B > 5 ! 9�0��<;�=�& !������������������� ���I &�� ="� ? &�� =�� I &1� =�� ? 0�����5) � #���&�B���E
����������������� ���
> ��; � ��&�� ! ��� > ��; � ��&�� ! � &��1��B1� � J
����������������� ��� �"! � > ��; � ��&�� ! 9 E�� � F*G

#�� ! � > ��; � ��&�� ! 9 E�� � F*G
���

Other database definition statements allow us to alter tables by adding a new column, or by
dropping an entire table from the database. There are three kinds of database objects that
can be defined and modified.

114 Chapter 5

� The table is the most important kind of object in the database. Almost every single SQL
statement requires a table to be named as part of the user’s expression of requirements.

� The view, as the name suggests, provides one particular aspect or subset of the database.
This aspect can cover just a portion of a single table, or it can be widened to spread
across several tables. A view is always presented as a table and the 9 � �����1�K2 � ��4
statement is a way of naming that table. A view may be defined for either of two
reasons.

1. It can be used to restrict a user’s access to the database. The user only sees that
part of the database revealed through the view.

2. It can be used to simplify retrieval statements with the view name being used in
the statement as if it was just another table.

� The index may serve two distinct purposes (and causes confusion because of this dual
function).

1. It may be used to ensure that no two rows in a table are the same. If a table is to
be a true set, then it must be indexed in this way.

2. It may be used to improve database access times. In this regard, an index is used
in the same way that a book index may be used to speed access to selected topics.

The table is the only object that may be modified. Views and indexes may only be created
or deleted.

Example 5.2 Define an index on student Id’s in the Students table.
? � �����1�K;�& � L ;�� � & � ��M > ��; � ��&���N�O���50�& > ��; � ��&�� ! A ��� H

The index > ��; � �<&���N�O1��5 will be used for two purposes. It will be used to ensure that no
two rows in the > ��; � ��&�� ! table will have the same Id. This is indicated by the appearance
of the word ;�& ��L ;�� . Secondly, the index will be used to provide rapid access to individual
rows in the table. This rapid access will be based upon knowledge of the relevant Id.
Indexing and view properties are covered in more detail in later chapters.

Example 5.3 It is the end of the semester and we are finished with the (� ! ;	�<� ! and. !�! � !�! tables but we want to keep the > ��; � ��&�� ! table for next semester.

/ � 0) �1���	��� (� ! ;	��� !/ � 0) �1���	��� . !�! � !�!

These two tables are not just emptied, they are completely removed from the database; any
space they use will be released and the corresponding entries in the system catalog are also
removed.

5.4 Database Retrieval

The next category is concerned with database retrieval. The category contains only one
statement, but that statement characterizes the whole of SQL. The

! �����19�� statement is
used to retrieve or identify some portion of the database.

Introducing SQL 115

The best way to understand the
! �����19�� is to see it at work. The following examples all

put forward queries that we ourselves could answer from the Subject database. Each query
is followed by an example of how SQL could be used, instead, to generate an answer.

Example 5.4 What are the Id’s and last names of all students?

> ������9�� ��� CP#�� ! �
��� 0 = > ��; � �<&�� !
������������������������������ #�� ! �
���������������������������+�Q F R ;)�)
+�S�T ' 0�� ���+�S�U V ��W�W
+�,�- /�0�21� �
+�X F V ��W�W
+�Q�T O���E�&
+�S�+ Y � =���0��
���������������������������

The retrieval statement is very brief; indeed it is hard to imagine how we could express our
requirements more briefly. We merely say which columns we want and where they are to
be found.

Example 5.5 Give details of all students called Orff.

> ������9�� Z
��� 0 = > ��; � �<&�� !
6 E1� � � #�� ! �\[^] V ��W�W]
�� �"� �"! � #�� ! �
���+�S�U (�*) V ��W�W
+�X F % ��& ! V ��W�W
���

The asterisk (*) indicates that all columns in the table are to be shown in the query answer.
The clause 6 E1� � �@#�� ! �_[`] V ��W�W] is used to specify a condition that all displayed rows
must satisfy.

Example 5.6 What are the last names of all students?
There are two ways of answering this query:

A F�H A T H
> ������9�� #�� ! � > ������9�� �"��! � � &�9��a#�� ! �
��� 0 = > ��; � �<&�� ! ��� 0 = > ��; � ��&�� !
����������� ���������
#�� ! � #�� ! �
����������� ���������

116 Chapter 5

R ;)�) ' 0�� ���
' 0�� ��� /�0�21� �
V ��W�W Y � =���0��
/10�21� � O���E�&
V ��W�W V ��W�W
O1�<E�& R ;)�)
Y �*=���0�� ���������
�����������

The second method uses the keyword
�"��! � � &�9�� to tell SQL to remove duplicates. So

the second Orff does not appear; but not only that, SQL has chosen, in this instance, to
remove duplicates by sorting the result table prior to output. When scanning this sorted
table duplicates can easily be detected and skipped. The manner in which duplicates are
removed is left to SQL. Sorting is just one way that might be used.

Example 5.7 List, in name order, the details of all students.

> ������9�� Z
��� 0 = > ��; � �<&�� !V ��� � � ��5_#�� ! �bC �"� �"! �

�� �"� �"! � #�� ! �
���+�S�T ' � ��� ' 0�� ���+�,�- . &�& /10�21� �
+�S�+ 6 � ��� Y �*=���0��
+�Q�T ' ������5 O1�<E�&
+�X F % ��& ! V ��W�W
+�S�U (�*) V ��W�W
+�Q F % ��& ! R ;)�)
���

The result can be forced into some order by using the 0 ��� � � clause. In this example, the
resulting rows are displayed in alphabetic order of last name. If two or more students have
the same last name, the names will be displayed in order of first name, so Hans Orff appears
before Rip Orff.

Example 5.8 List Assignment One performance in order of merit.
For this query, we want to be able to direct SQL to produce the highest mark first.

> ������9�� ��� Cdc1� ��e
��� 0 = (� ! ;	�<� !
6 E1� � � � �1� =:[F
V ��� � � ��5\c1� ��e\� � ! 9

The keyword
� � ! 9 (short for descending) may be used to reverse the default sequence.

�������������������������� c�� ��e

Introducing SQL 117

�����������������������+�S�+ U G
+�Q F + G
+�,�- Q G
+�S�U Q G
+�S�T S G
+�Q�T ,�,
�����������������������

Example 5.9 How many students are enrolled?

> ������9�� 9�0�;�&�� A Z H
��� 0 = > ��; � �<&�� !

���������������
9�0<;�&�� A Z H
���������������Q
���������������

The special 9�0<;�&�� function is used to count the number of rows determined by the rest of
the query, in this case the whole of the Students table. The effect of the asterisk(*) makes
this query the equivalent of asking “how many rows are there in this table?"

? 0�;�&�� is a
summary function, and there are a number of similar summary functions in SQL.

Example 5.10 What was the average mark in the final exam?

> ������9�� ��2�B A c�� ��e H
��� 0 = (� ! ;	�<� !
6 E1� � � � �1� =:[X

�����������������
��2�B A c1� ��e H
�����������������,�U $ T
�����������������

The ��2�B function averages the c1� ��e column values for each row containing 3 in the Item
column.

5.5 Database Modification

The third group of SQL statements to be examined in this chapter involves those used
to make changes to the database. The types of change allowed by these statements are
fine-grained ones aimed at adding, changing and deleting rows in just one table. More
specifically, these statements are:

� the
� & ! � � � which allows new rows to be added to the table concerned;

� the f)1� ���1� which allows one or more rows to be amended; and

118 Chapter 5

� the /��������1� which allows one or more rows to be deleted.

These database-modifying commands, and their correct use, are covered in more detail in
later chapters. Some examples only are given in this section.

Example 5.11 The lecturer in the subject has discovered student 831’s mark for the first
assignment. Add this result.

� & ! � � �
� &��10 (� ! ;	��� !g ���<;�� ! A*F C +�X F C G U G + C ,�, H

The values that make up this new row of the (� ! ;	��� ! table are separated by commas; they
are allocated to the columns of that table in the order specified for the table in the System
Catalog. Obviously the values must match in both number and type.

Example 5.12 Student 862 has been given an extra 5% for the second assignment. Make
the appropriate change.

f)�� ���1� (� ! ;	��� !
> ��� c�� ��e [\c�� ��e\h ,
6 E1� � � � � [+�S�T
�<& � � �1� =:[T

The row containing the result is located and the mark modified.

Example 5.13 Student 872 has been granted permission to withdraw from the subject.
Remove all details of her enrollment.

/1�������1�
��� 0 = (� ! ;	��� !
6 E1� � � � � [+�Q�T

/1�������1�
��� 0 = > ��; � ��&�� !
6 E1� � � � � [+�Q�T

Two separate statements are required, one for each table involved.

Example 5.14 It is the end of the semester. Clear out the (� ! ;	��� ! and
. !�! � !�! tables.

/1�������1�
��� 0 = (� ! ;	��� !

/1�������1�
��� 0 = . !�! � !�!

After these deletes, the tables still continue to exist. They are just empty. The system
catalog still contains details of their structure. Thus the effect differs from similar / � 0)
�1���	��� statements of Example 5.3.

Introducing SQL 119

5.6 Database Security

The fourth and final part of SQL deals with database security. A database is a shared
organizational model; it is a kind of gigantic company noticeboard.

Consider a typical database. It consists of hundreds of tables containing a range of
information from the managing director’s silent phone number to the retail price of a can of
baked beans. Its users are a mixture of the corporate life form, both high and low. They will
be clerks, managers, assembly-line workers, engineers, programmers, and so on. These
people have correspondingly mixed needs and responsibilities with regard to the database.

Yet, through SQL, they are able to delete entire tables with a single statement, for
example, /1�������1� ��� 0*=:i�=) ��0�5���� ! ; or they might give everyone a payrise. Clearly it is
undesirable to allow all users to have totally unconstrained access to the entire database.
People should have exactly those rights that they need to do their job, and no more.

To prevent potential disasters, SQL recognizes database users and is prepared to grant
access rights to these users.

Example 5.15 Suppose there are two kinds of user accessing the > ;���j���9 � database,
student and lecturer. Give student users the right to read the

. !�! � !�! table and lecturers the
right to read and generally modify it.

Y � ��&�� > ������9��0�& . !�! � !�!
�10 > ��; � ��&��

Y � ��&�� > ������9��bC � & ! � � �kC f)1� �����lCm/1�������1�
0�& . !�! � !�!
�10 #���9 ��; � � �

SQL makes appropriate entries in the system catalog. Whenever a user attempts to access
the database in some way, SQL first checks the catalog to see if the user has the appropriate
rights before going ahead. There is a corresponding

� ��210 e � statement to remove access
rights from a user.

The view feature, which was discussed in an earlier section, can also be used to protect
the database. Not only does a view present the user with a restricted portion of the database,
but the B � �<&�� and

� ��2�0 e � statements may be used to further control the user’s actions
against that portion.

5.7 Using SQL

How do we issue SQL requests? So far, the exact context in which SQL statements may be
issued has been ignored. We have suggested that the statements are issued directly. This is
only one of three ways in which SQL is likely to operate.
� We can use SQL interactively by issuing requests from a keyboard and having the

response appear on a screen. The results may be further manipulated by having the
general layout altered, by formating columns, and even by dropping columns entirely.
The eventual results may be printed or stored on a file for future use.

� A second way of using SQL is to have one or more statements embedded in a program
written in some other language, typically COBOL. This second language is said to be

120 Chapter 5

the host language. When used in this way, the results of an SQL query will be stored
in the program’s own variables. The program can be written to use these results in
whatever way the designer chooses.

� Most versions of SQL are accompanied by an application development tool or applica-
tion generator. Such software tools enable new information systems to be generated
with relative speed and ease, at least when compared with COBOL. These tools provide
many features to help the software developer, features that are not part of SQL.

1. They assist with screen and dialog management.

2. They enforce data capture rules, using SQL where necessary.

3. They automatically update the database when appropriate.

4. They will translate end-user query requirements, written in some other way, into
SQL retrieval statements.

5. They will format these results automatically, according to predefined specifica-
tions.

A terminal user should not be able to distinguish between the second and third of these
methods of employing SQL. They need neither know nor care whether SQL is being used.
By contrast, an interactive terminal user needs to be familiar with the language, with its
power and with the dangers of using that power thoughtlessly.

5.8 Summary

In this chapter, we have seen how SQL provides four groups of statements to use and manage
a database made up of tables. There are statements which define relations, statements
to retrieve relation contents, statements to alter the database’s information content and
statements to control access to the database.

From this brief introduction, it can be seen that the actual vocabulary of SQL is not
large. Most of the power of SQL is in its role as a retrieval language. Examples in the
following chapter show how SQL can be used to solve complex information requests,
which would require much more complicated programs if implemented in a conventional
procedural language such as COBOL or C.

Introducing SQL 121

Exercises

Q5.1 The following table represents the results of games played by the Shinhackers
Rugby Club this season so far.

Y � =�� !
���
/1��5 c10�&���E I ��� = V ; �"! I E�� � �"!
���Q X I 0���9 � ; ! E�� �"! S T�,
F - X % ��� � ��;����1� �"! G F G
T F X n ��9 e ��4 ��! ��� �"! T F F G
T�+ X . & e �����1�)�) � �"! F + F S
- - . � =o��0�9 e � �	! G S
F�F - O�&���� e &�0�9 e � �"! G U
F + - ' �����<5 W ��0)�) � �"! U X
T�, - % ��� � ��;����1� �"! F - S
T , I 0���9 � ; ! E�� �"! S F S

���

So the table tells us, for example, that on 7 March we lost to the Toecrushers team
by 25 points to 6. The table can be accessed by means of an SQL statement such
as:

> �����19�� I ��� =
��� 0 = Y �*=�� !
6 E�� � � V ; �"! [G

This would tell us the names of any teams that we (Shinhackers) failed to score
against.

State, in everyday English, the information that you think each of the following
SQL statements is intended to provide.

a. > �����19�� Z
��� 0 = Y �*=�� !
6 E�� � � c10<&���E_[-

b. > �����19�� I ��� =
��� 0 = Y �*=�� !
6 E�� � � V ; �"!@paI E1� � �"!

c. > �����19�� Z
��� 0 = Y �*=�� !

d. > �����19�� /1��5bCdc10�&���EbC I ��� =
��� 0 = Y �*=�� !
6 E�� � � V ; �"! [I E1� � �"!
��& � c10<&���E_[,

122 Chapter 5

e. > �����19�� V ; �"! C I E�� �*�"!
��� 0 = Y �*=�� !
6 E�� � � I ��� =:[`] ' ������5 W ��0)�) � �"!]0 � I ��� =:[`]qO�&���� e &10�9 e � �	!]

f. > �����19�� 9�0<;�&�� A Z H
��� 0 = Y �*=�� !
6 E�� � � V ; �"!@paI E1� � �"!

g. > �����19��r=���M A V ; �	! � I E1� � �"! H
��� 0 = Y �*=�� !

h. > �����19�� Z
��� 0 = Y �*=�� !
V ��� � � ��5_c�0�&���EsCm/���5

Q5.2 Using the
Y �*=�� ! table, write SQL to answer the following queries.

a. How many games have we played so far, and what are the total points scored
by us and against us?

b. What teams have beaten us by 10 points or more?

c. List details of all matches, in order of points scored by us, with our highest
score first.

d. What were the results in the second half of April?

e. Name all the teams we have played so far.

Q5.3 Suggest a suitable 9 � �����1� statement for the
Y �*=�� ! table.

Q5.4 Write database modification statements to record the following events.

a. On 9 May we beat the Knuckledusters by 6 points to 3.

b. A mistake was made when entering the result of 14 March. Our opponents
scored 5 more points than was originally recorded.

c. The Toecrushers have been ejected from the competition for over-gentlemanly
play. Cancel any results that involve them.

Q5.5 Define an index that ensures that only one result is recorded for any given date.

Q5.6 Write B � ��&�� or
� ��210 e � statements in response to the following club decisions.

a. The club
! ��9 � ���1� � 5 is to be allowed to see the

Y � =�� ! table and to insert
match results into it.

b. The club =��*=���� �"! are to be allowed to see the table.

c. The club
)�� � !�� � ��&�� is to be allowed to modify and even to delete rows from

the table.

Introducing SQL 123

Q5.7 A computer dating company keeps track of its members in a table such as:
t ��0) ���
���n � =�� . B�� > ��M i1� � & ! # � e � ! / ��! � � e � !
���
' � ��� ,�, = F + G�G�G B10�� W) 0�� � � � 9 !
> ;�� T�+ W F , G�G�G =�; !�� 9 ����� �
� 21��& F U = T�,�, G�G W 0�0���������� � ��&"9 � &�B
/1��21� T F = F + G�G�G =�; !�� 9 !) 0 � �
u ; � 5 X�X W T�+ G�G�G 4���� e"� &�B =���&
O1� � �<& - F W -1+ G�G�G � ��&�9 � &�B >�v #. ����& - G = -1, G�G�G B10�� W B10�� W
c1� ��e X�T = F Q�, G�G W 0�0���������� ���19<0�E�0��
c1� ��� 0 F + = F Q�, G�G � ��&�9 � &�B 4������ �
t ��;	� T�, = S�T�, G�G =�; !�� 9 ! ��; � ��&�� !
u�� = X�T = X�+�, G�G !<L ;�� ! E ���19<0�E�0��
O1����E�5 F U W F -1, G�G � ��&�9 � &�B) 0�� � � � 9 !
���

Write SQL to satisfy the requirements below.

a. List everybody’s name and age, with the youngest first.

b. List details of everybody, males then females and, within each of these cate-
gories, by earning power.

c. List the names of all people in their teens who like dancing.

d. How many people are recorded in the table?

e. What is the biggest income?

Q5.8 Suggest a suitable 9 � �����1� statement for the
t ��0) ��� table.

Q5.9 Write a suitable database modification statement to suit each of the following
situations.

a. Paul lied about his income. He really earns $92 500.

b. The women have decided that the men are wimps. Get rid of them all.

c. Inflation has been bad. Give everybody a 10% payrise.

d. Another year has passed. Age everybody by 1 year.

e. A new member has joined (thank goodness). His name is Harry; he’s 25, likes
sport, hates politics and earns $28 000.

f. What if Harry did not want to reveal his age – how would we insert a row for
him then?

Chapter 6
SQL Retrieval
6.1 Introduction

This chapter contains a series of examples of database retrieval using SQL. The examples
attempt to show the basic retrieval capabilities of the language.

There are three basic ways in which information may be extracted or derived from a
table. These relate to the ways that we ourselves might extract information presented to us
in tabular form.

Sometimes we are interested in detailed information. We scan down particular columns
looking for values that interest us, stopping when we find such a value. Then we will
examine the rest of the row upon which we found the value. This is how people look up
telephone numbers or exam results or sports results or a timetable. The search operation
will be repeated until we have, for example, noted our own exam results and those of our
friends.

There is another kind of retrieval. This kind is performed when, essentially, we are
looking for one particular value. The value may be one that can be extracted from the
table, or it may be a derived value. The situations when we scan a table in this way are, for
example, when looking for the lowest mark in an exam or the total number of people who
passed or the time of the last train or bus.

The third kind of retrieval is the kind performed when we want to compare one group
of figures with another. Did chemistry students perform better than computing students?
Are there more trains to town than buses?

These are the basic means of retrieval offered by SQL. There is nothing performed by
SQL that we could not contemplate doing ourselves. SQL is a language, after all; it is a
means of expressing our wishes.

All examples are based on the
���������
	��

database introduced in Chapter 4. This
database contains three tables:
���������������� , which contains the names of students enrolled in the single subject offered;
������������� , which contains details of assessment involved in the subject; and

��� �

SQL Retrieval 125

��!��
�"�
#���� , which records marks achieved by the students in the various items of assess-
ment.

6.2 Simple Queries

Queries that extract some portion of a single table are the simplest form of query. The
portion may be a subset of the columns of the table, of its rows, or of both.

Example 6.1 Describe all items of assessment, showing the weight attached to each.

���#��
$%� &��
��$%'�(*)��+(-,-�/.10���("2�3��
4 '�,"5 �������
���

6�6
&�����$%'+(*)��+(-,�� 0���("2�3��
6�67 ������8:9�3
��;�� <"=
9�>�?A@�B�>
��(-,�� C�=
@�?���,�'��+(%,�� D�=
6�6

The query is answered quite simply by naming the columns required, and by naming the
table in which the data will be found.

Example 6.2 Which students failed the final exam?

���#��
$%� E
4 '�,"5 !��
�"��#-���
0�3���'�� F"���"5HGAC
>-��� I�>�'�JLK:M�=

The asterisk (*) in the ����#��
$%� clause signifies that, for rows meeting the two conditions
specified, all columns are to be displayed:

6�6
F"���"5 F"� -��N�5O("������� I�>�'�J
6�6

C P�Q�R S T�M
C P�D�R S T�=

6�6
The order in which the columns appear will be determined by the order in which they
appeared in the $%'���>���� statement used to define the table.

Example 6.3 Which students got marks in the range 70 to 90 in the first assignment?
What were their marks?

���#��
$%� F%�U.VI�>�'�J
4 '�,"5 !��
�"��#-���
0�3���'�� I�>�'�JWN
����X
�����YQ�=A>����AZ�=
>-��� F"���"5HG[<

126 Chapter 6

6�6�6�6�6�6�6�6�6�6
F%� I�>�'�J
6�6�6�6�6�6�6�6�6�6
P�Q�< P�=
P�M�T Q�=
P�D�P Z�=
P�D�Z Q�=
6�6�6�6�6�6�6�6�6�6

The N
����X
����� clause may be used to specify a range of values. The end-points of the range
are included as can be seen from the resulting table. The X�3
��'�� clause above is equivalent
to the following:

0�3���'��\I�>�'�JL]�GAQ�=
>���� I�>�'�JLK�GAZ�=

Example 6.4 Which item or items of assessment have no due date assigned to them?

���#��
$%� E
4 '�,"5 �������
���
0�3���'�� &��
�^(�������#�#

6�6
F"���"5 &��
��$%'+(*)���(-,�� 0
��(*2�3�� &��
�
6�6
C @�?���,�'��+(-,-� D�= S

6�6

This is the only way that we can check whether or not a column has a missing (i.e. null)
value. We are not allowed to say 0�3
��'��\&����:GW����#�# because ����#�# is not a value and
so cannot be compared with anything. A question mark is sometimes used to indicate the
presence of a null value, that is, the absence of a value.

6.3 Join Queries

A well-designed relational database is devoid of any redundant data. For example, a
student’s name is recorded only once. The effect of this design is to produce some rather
cryptic or code-like tables. The Results table is an example; this table refers to students by
means of their Id, and to items of assessment by means of their item number. To recover
from this state of affairs we must be able to bring the tables together in such a way as to,
for example, find the names of students who did well in the second assignment. This very
important process is called a join.

Suppose we were interested in how well students have done in the subject; we might
try the following SQL.

���#��
$%� E
4 '�,"5 !��
�"��#-���

SQL Retrieval 127

This would tell us how each student performed, but it would tell us in a rather unhelpful
style. We would have to be able to match the Id to a particular student. This is likely to be
of limited use in practical situations.

The table from which the data is drawn is specified in the ;�'�,"5 clause. If we wanted to
link a result to a student, we can try:

���#��
$%� E
4 '�,"5 ��������-�����O._!��
�"��#����

The ;�'�,"5 clause is used to list the tables from which the displayed data can be produced.
What does this query achieve? SQL responds as follows:

�������������� !��
�"�
#����
6�6
F%� 4 ("'��%� `�>
�%� F"���"5 F%� ���N�5�("������� I�>�'�J
6�6
P�Q�< a�>���� b���)�) < P�Q+< =�Z�=�P P�=
P�Q�< a�>���� b���)�) < P�D�R =�Z�=�Q D�=
P�Q�< a�>���� b���)�) < P�M�T =�Z�=�P Q�=
P�Q�< a�>���� b���)�) < P�Q�R =�Z+<"= M�M
P�Q�< a�>���� b���)�) < P�D�P =�Z�=�D Z�=
P�Q�< a�>���� b���)�) < P�D�Z =�Z�=�Z Q�=
P�Q�< a�>���� b���)�) R P�Q+< <"=�R+< Q�=
P�Q�< a�>���� b���)�) R P�D�Z <"=�R�R P�=
c <�<�<d5+,�'��\'�,-X+�eXf(�#�#gN
�W2����
��'�>������Y(*�A��3
�:,�����)����:��>�N�#��Uhdi

6�6
What has happened? SQL has taken the two tables named in the ;�'�,"5 clause and “multi-
plied" them. It does this by creating a new table in which each row in Students is paired
with each row in Results. The table names are placed at the top here simply to help identify
the parentage of each part of the row. For example, the first row:

�������������� !��
�"�
#����
6�6
F%� 4 ("'��%� `�>
�%� F"���"5 F%� ���N�5�("������� I�>�'�J
6�6
P�Q�< a�>���� b���)�) < P�Q+< =�Z�=�P P�=

is formed from the first rows of Students and Results. As there are 7 student rows and
17 result rows, the relation resulting from the ����#��
$%� statement has Q:jA<"Qlkm<�<"Z rows.
This new table is the relational product of ��������-����� and !��
�"��#-��� .

The resulting table is much bigger than the original database. Obviously, this feature of
SQL will have to be used with some caution. Despite this, the relational product achieved
in this way is the only means by which we can directly compare the rows of one table with
those of another. It is also a means by which we can compare a row in a table with other
rows in the same table.

128 Chapter 6

A relational product will almost always be followed by some condition that reduces the
size of the product. The most common form of restriction is the join condition. This occurs
when two tables each have a column that draws its values from a common set of values.
For example, both the �������������� and !��
�"��#���� tables have a column called F%� . Not only
are the names the same, but the values that might appear in each are essentially the same.
The join condition states that the values in these shared columns must be equal; thus:

���#��
$%� E
4 '�,"5 ��������-�����O._!��
�"��#����
0�3���'�� ��������-�����nh�F"�oG:!��
�"��#-���nh�F%�

There are two F%� columns in the product, and they are distinguished by prefixing them with
the name of the parent relation followed by a full stop.

The resulting table is:

6�6
F%� 4 ("'��%� `�>
�%� F"���"5 F%� ���N�5�("������� I�>�'�J
6�6
P�Q�< a�>���� b���)�) < P�Q+< =�Z�=�P P�=
P�Q�< a�>���� b���)�) R P�Q+< <"=�R+< Q�=
P�Q�< a�>���� b���)�) C P�Q+< S D�=
P�D�R pf(�#�# p
,�>�'�� < P�D�R =�Z�=�Q D�=
P�D�R pf(�#�# p
,�>�'�� R P�D�R <"=�R�R Q�=
P�D�R pf(�#�# p
,�>�'�� C P�D�R S T�=
P�D�Z !+(*) q�'�;�; < P�D�Z =�Z�=�Z Q�=
P�D�Z !+(*) q�'�;�; R P�D�Z <"=�R�R P�=
P�D�Z !+(*) q�'�;�; C P�D�Z S Z�M
P�M�T ����� &�,�B���' < P�M�T =�Z�=�P Q�=
P�M�T ����� &�,�B���' C P�M�T S D�M
P�Q�R p
������8 r�>�3�� < P�Q�R =�Z+<"= M�M
P�Q�R p
������8 r�>�3�� R P�Q�R <"=�R+< D�M
P�Q�R p
������8 r�>�3�� C P�Q�R S T�M
P�D�P 0f(�#�# s�>"5
N
,�# < P�D�P =�Z�=�D Z�=
P�D�P 0f(�#�# s�>"5
N
,�# R P�D�P <"=�R+< Q�M
P�D�P 0f(�#�# s�>"5
N
,�# C P�D�P S M�=
6�6

Further conditions may be added to the join condition. If we wanted the results for the final
exam (item number 3) then we would add the appropriate condition:

���#��
$%� E
4 '�,"5 ��������-�����O._!��
�"��#����
0�3���'�� ��������-�����nh�F"�oG:!��
�"��#-���nh�F%�
>-��� !��
�"��#-���nh�F"���"5YGLC

The new condition !��
�*��#����nhtF"���"5:G^C causes all but item 3 results to be discarded from
the join to produce the following table.

6�6

SQL Retrieval 129

F%� 4 ("'��%� `�>
�%� F"���"5 F%� ���N�5�("������� I�>�'�J
6�6
P�Q�< a�>���� b���)�) C P�Q+< S D�=
P�D�R pf(�#�# p
,�>�'�� C P�D�R S T�=
P�D�Z !+(*) q�'�;�; C P�D�Z S Z�M
P�M�T ����� &�,�B���' C P�M�T S D�M
P�Q�R p
������8 r�>�3�� C P�Q�R S T�M
P�D�P 0f(�#�# s�>"5
N
,�# C P�D�P S M�=
6�6

It is only necessary to prefix a column name when it is defined in more than one of the
tables being joined and when that column is used in the query.

Example 6.5 What are the names and the marks of those people who failed the final
exam?

���#��
$%� 4 ("'��%�U.V`�>
�%�u.vI�>�'�J h�h�h�h�h�hwMuh
4 '�,"5 ��������-�����O._!��
�"��#���� h�h�h�h�h�hx<�h
0�3���'�� ��������-�����nh�F"�oG:!��
�"��#-���nh�F%� h�h�h�h�h�hwRuh
>-��� F"���"5HGAC h�h�h�h�h�hwCuh
>-��� I�>�'�JLK:M�= h�h�h�h�h�hyTzh

The events that take place in order to answer this query can be thought of as taking the
following sequence. However, the data management software can use whatever method it
chooses.

1. The product of �������������� and !��
�*��#���� is formed.

2. The product is reduced to a join by equating the two F"� columns. The join is shown
above.

3. All but final exam marks are removed. The resulting table is also shown above.

4. All but failures are removed.

The table defined by steps 1 to 4 now looks like this:

6�6
F"� 4 ("'��%� `�>
�"� F"���"5 F%� ���N�5�("������� I�>�'�J
6�6
P�Q�R p�������8 r�>�3�� C P�Q�R S T�M
P�D�R p+(�#�# p
,�>�'�� C P�D�R S T�=
6�6

5. Finally, ���#��
$"� 4 ("'��%�U.V`�>
�%�u.VI�>�'�J causes the desired columns to be projected.

6�64 ("'��%� `�>��%� I�>�'�J
6�6
p�������8 r�>-3�� T�M
p+(�#�# p
,�>�'�� T�=
6�6

130 Chapter 6

Example 6.6 How much did the final exam contribute to each student’s overall total?
This is another query requiring a join of two tables, Results and Assess. The reason for this
is that the Results table contains a mark out of 100, but each item of assessment has its own
particular weighting. For example, student 868 got 50% in the final exam, where the latter
is worth 60% of the overall subject assessment. So the final exam contributes 50*60/100 =
30 marks to student 868’s overall total for the subject.

���#��
$%� F%�U.VI�>�'�JU.V0���("2�3��U._I�>�'�J�E"0
��("2�3��
{�<"=�=
4 '�,"5 !��
�"��#-���O._�������
���
0�3���'�� !��
�"��#-���nh�F"���"5YGY�����������nh�F"���"5
>-��� !��
�"��#-���nh�F"���"5YGLC

6�6
F%� I�>�'�J 0
��(*2�3�� I�>�'�J�E"0
��("2�3��
{�<"=�=
6�6
P�D�Z Z�M D�= M�Q
P�Q�R T�M D�= R�Q
P�D�R T�= D�= R�T
P�D�P M�= D�= C�=
P�Q�< D�= D�= C�D
P�M�T D�M D�= C�Z
6�6

Again, the result table can be thought of as being produced by the following sequence.

1. First, the relational product of !��
�"��#���� and �������
��� is formed. This is accomplished
by the clause

4 '�,*5H!��
�"��#����O.|�����-�
��� .

2. From that product, the join of Results and Assess is created. This is accomplished by
the clause 0�3
��'��o!��
�"��#����nh�F"���*5AG:�������
���nh�F"���*5 . (The resulting join is shown in
Section 4.9.6.)

3. From that join, results for item 3 are retained and the rest discarded.

4. Finally, the result table shown above is produced.

Example 6.7 What are the names of students who were late in submitting their first
assignment?

This example requires information from all three tables:

���������������� is needed to provide the names;
��!��
�"�
#���� because it contains the date of submission; and
������������� because it contains the due date.

Straight away, we can write the ;�'�,"5 clause.
4 '�,"5 ��������-�����O._!��
�"��#����O._�����-�
���

This clause will cause the creation (in our minds) of a product table that combines all the
rows from all three tables. This will contain 7 * 17 * 3 = 357 rows. The first row and two

SQL Retrieval 131

other typical rows will look like the following:
}�~*�%�"���%~�� �%�-������~-� ���"���-�*�
�"�"�"�*�"�"�"�"�*�"�"�"�"�*�"�"�"�"�*�"�"�"�"�*�"�"�"�%�"�*�"�%�"�"�"�*�%�"�"�"�%�"�*�"�"�%�"�"�*�%�"�"�"�%�"�*�"�"�%�"�"�*�%�"�"�"�"�%�*�"�"�%�"�"�� � ��� ��� ~��-�%� ~ � ~%��� � ��} �"����� ~"~%����������� � ~%�����%�-�"� �����%~��*� ���%�-� �*�%~��"�-�
�"�"�"�*�"�"�"�"�*�"�"�"�"�*�"�"�"�"�*�"�"�"�"�*�"�"�"�%�"�*�"�%�"�"�"�*�%�"�"�"�%�"�*�"�"�%�"�"�*�%�"�"�"�%�"�*�"�"�%�"�"�*�%�"�"�"�"�%�*�"�"�%�"�"� "¡�¢¤£�� ���¦¥ �"�"� ¢ *¡�¢ §*¨"§" "§ ¢ ©%�*~"~"ª�«��-�*¬"~ ¢�§ §"¨"§"

 "®%¯±°��*�"��°-�"���"� ¯ *®" ¢t§%¯�¢ ¡%² ³ ´"µ"~-���"~-�*� � ®"§ ¶
 "®"¨w����� · �"¬"¬ ¢ *®"¨ §*¨"§"¨ ¡"§ ¢ ©%�*~"~"ª�«��-�*¬"~ ¢�§ §"¨"§"

�"�"�"�*�"�"�"�"�*�"�"�"�"�*�"�"�"�"�*�"�"�"�"�*�"�"�"�%�"�*�"�%�"�"�"�*�%�"�"�"�%�"�*�"�"�%�"�"�*�%�"�"�"�%�"�*�"�"�%�"�"�*�%�"�"�"�"�%�*�"�"�%�"�"�
The second row compares student pf(�#�#gp
,�>�'�� against a mark achieved in assessment itemR by some other student against details of assessment item C . Rows like this one one must
be discarded. These rows are removed by supplying the appropriate join condition, one
that joins three tables.

0�3���'�� ��������-�����nh�F"�oG:!��
�"��#-���nh�F%�
>-��� !��
�"��#-���nh�F"���"5YGY�����������nh�F"���"5

These two conditions leave us in a position where all remaining rows relate a student to a
mark attained by that student to details of that item of assessment. Now we can apply the
other conditions that will give us specific answers to our query.

>-��� !��
�"��#-���nh�F"���"5YG¸<
>-��� ���N�5O(*�������:]\&��
�

For the first of these two conditions, we could also have said >����W�����������nh�F"���"5AG[<
since the two Item columns must have the same value, as required by the join condition.
Whichever column we choose, however, we must use a prefix. The second condition
requires that the date of submission must come after (]) the due date. No prefixes are
required, although it might be better to be consistent, so that once prefixes are required, we
use them for all columns, whether they are needed or not. This is a matter of personal style
and convenience.

We are now in a position to write the ����#��
$%� clause.

���#��
$%� F%�U. 4 ("'��"�u.V`�>
�%�U.d-��N�5O("�������U.¹&��
�

The ����#��
$%� clause must appear first in any SQL query; however, as a strategy for forming
queries, it is often better to leave selection until last. Determining the tables required and
supplying conditions to be met are decisions that are easier done first.

The complete ����#���$%� statement is as follows.

���#��
$%� F%�U. 4 ("'��"�u.V`�>
�%�U.d-��N�5O("�������U.¹&��
�
4 '�,"5 ��������-�����O._!��
�"��#����O._�����-�
���
0�3���'�� ��������-�����nh�F"�oG:!��
�"��#-���nh�F%�
>-��� !��
�"��#-���nh�F"���"5YGY�����������nh�F"���"5
>-��� !��
�"��#-���nh�F"���"5YG¸<
>-��� ���N�5O(*�������:]\&��
�

132 Chapter 6

6�6
F%� 4 ("'��"� `�>
�"� -��N�5O("������� &��
�
6�6
P�Q�R p
������8 r�>�3�� =�Z�<"= =�Z�=�P
P�D�Z !+(*) q�'�;�; =�Z�=�Z =�Z�=�P
6�6

6.4 Statistical Queries

There are five built-in functions that enable us to ask SQL to provide summary rather than
detailed information.

1. $�,������ which counts rows for us;

2. 5+>�? which gives us the maximum of a set of values;

3. 5O(*� which gives us the minimum of a set;

4. >�B�2 which averages a set of values; and

5. �"��5 which adds up a set of values to provide a total.

As may be seen, this summary information is of a rather simple statistical nature.

Example 6.8 How many items of assessment are there?

���#��
$%� $�,������ c E�i
4 '�,"5 �������
���

6�6�6�6�6�6�6�6
$�,-����� c E�i
6�6�6�6�6�6�6�6

C
6�6�6�6�6�6�6�6

The $�,������ function may be used to count the number of rows determined by the conditions
in the rest of the query.

Example 6.9 What were the highest, lowest and average marks in the final exam?

���#��
$%� 5+>�? c I�>�'�J+i�.l5O(*� c I�>�'�J+iº.V>�B�2 c I�>�'�J+i
4 '�,"5 !��
�"��#-���
0�3���'�� F"���"5HGAC

6�6
5+>�? c I�>�'�J+i 5O(*� c I�>�'�J+i >�B�2 c I�>�'�J+i
6�6

Z�M T�= M�Z
6�6

Example 6.10 As a check on our arithmetic, what is the total weighting for all items of
assessment?

SQL Retrieval 133

���#��
$%� �"��5 c 0���("2�3���i
4 '�,"5 �������
���

6�6�6�6�6�6�6�6�6�6�6
�"�-5 c 0
��(*2�3��+i
6�6�6�6�6�6�6�6�6�6�6

<"=�=
6�6�6�6�6�6�6�6�6�6�6

The �"��5 function adds up the values in the column specified as the function’s argument, in
this case the 0���("2�3�� column.

Example 6.11 What was student 871’s overall total for the subject?
���#��
$%� �"��5 c I�>�'�J�E"0���("2�3���{�<"=�=�i
4 '�,"5 !��
�"��#-���O._�������
���
0�3���'�� !��
�"��#-���nh�F"���"5YGY�����������nh�F"���"5
>-��� F%�:G^P�Q+<

6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6
�"�-5 c I�>�'�J�E"0
��(*2�3��
{�<�=�=�i
6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6

D�M
6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6

To see how this works, it is best to picture the intermediate table defined by the ;�'�,"5 andX�3
��'�� clauses above:

6�6
F"���"5 F%� ���N�5�("������� I�>�'�J F*���"5 &�����$%'+(*)��+(-,�� 0
�
("2�3�� &��
�
6�6

< P�Q�< =�Z�=�P P�= < 7 ������8:9�3
��;�� <"= =�Z�=�P
R P�Q�< <"=�R+< Q�= R 9�>�?^��B�>
��(-,�� C�= <*=�R+<
C P�Q�< S D�= C @�?���,�'��+(%,�� D�= S

6�6

The �"��5 function performs the calculation for each row in the above table, thus:

�"��5 c I�>�'�J�E*0
��("2�3��
{�<"=�=�i»GLP�=
E
<"=�{�<"=�=o¼AQ�=
E�C�=�{�<"=�=g¼LD�=�E�D�=�{�<*=�=
GLP ¼AR+< ¼LC�D
GLD�M

6.5 “Group by" Queries

So far, we have seen examples of SQL that either provide detailed answers to queries, or
a single summary figure such as a count or a total. The 2�'�,���)WN�8 clause allows a kind

134 Chapter 6

of half-way house between the two. It allows a table to be partitioned into groups. Each
group can then be summarized.

Example 6.12 What was the average performance in each item of assessment?

���#��
$%� F"���"5½.¾>�B�2 c I�>�'�J+i
4 '�,"5 !��
�"��#-���
s�'�,���):N�8mF"���"5
q�'�����'WN�8mF"���"5

We can picture the Results table being divided into groups according to the value in
the Item column. This means that there are three groups, one for each item of assessment.
This is specified in the clause s�'�,���):N�8mF"���*5 .

6�6
F"���"5 F"� -��N�5O("������� I�>�'�J
6�6

< P�Q+< =�Z�=�P P�=
< P�D�R =�Z�=�Q D�=
< P�M�T =�Z�=�P Q�=
< P�Q�R =�Z�<"= M�M
< P�D�P =�Z�=�D Z�=
< P�D�Z =�Z�=�Z Q�=

R P�Q+< <"=�R+< Q�=
R P�D�Z <"=�R�R P�=
R P�Q�R <"=�R+< D�M
R P�D�R <"=�R�R Q�=
R P�D�P <"=�R+< Q�M

C P�D�Z S Z�M
C P�Q�R S T�M
C P�D�R S T�=
C P�D�P S M�=
C P�Q+< S D�=
C P�M�T S D�M

6�6
The appearance of a 2�'�,-��):N�8 clause signals SQL to produce one line of output per group,
so the actual output shows one line for each item of assessment. Each line produced by the����#���$%� clause will contain an item number and the average mark for that item.

6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6
F"���"5 >�B�2 c I�>�'�J+i
6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6

< Q+<
R Q�R
C M�Z

6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6

SQL Retrieval 135

Because SQL will only produce one line per group, whatever items we select must be
single-valued for each group. Once we have used a 2�'�,-��):N�8 clause, the items that we
we may select for output are restricted to one of the following:

� the column 2�'�,���) ed by (F"���"5 , in this case);
� a statistical function applied to some column within the group (>�B�2 c I�>�'�J) in this case).

Finally, the ,�'�����'\N�8 clause is used to ensure that the results appear in item number order.
However, the likelihood is that, as part of the grouping process, SQL has already performed
a sort.

Example 6.13 Which students have done all three items of assessment?

6�6
F"���"5 F%� ���N�5O("������� I�>�'�J
6�6

< P�M�T =�Z�=�P Q�=
C P�M�T S D�M

���#��
$%� F%� < P�D�R =�Z�=�Q D�=
4 '�,"5 !��
�"��#-��� R P�D�R <"=�R�R Q�=
s�'�,���):N�8mF%� C P�D�R S T�=
a�>�B+(*��2 $�,������ c E�i�GAC

< P�D�P =�Z�=�D Z�=
6�6�6 R P�D�P <"=�R�< Q�M
F%� C P�D�P S M�=
6�6�6
P�D�R < P�D�Z =�Z�=�Z Q�=
P�D�P R P�D�Z <"=�R�R P�=
P�D�Z C P�D�Z S Z�M
P�Q�<
P�Q�R < P�Q�< =�Z�=�P P�=
6�6�6 R P�Q�< <"=�R�< Q�=

C P�Q�< S D�=

< P�Q�R =�Z+<*= M�M
R P�Q�R <"=�R�< D�M
C P�Q�R S T�M

6�6

The 2�'�,���)WN�8 clause used here will partition the Results table into six groups, one for each
of the six students who submitted some work for assessment (student 831 never submitted
anything at all!). The effect of the grouping is shown in the table on the right-hand side
above. Of the six groups obtained, five will contain three rows and the other will contain
two rows (student 854 failed to submit item number 2). SQL will probably sort the table
as the best way of grouping; so that the table may be in student Id order.

The 3
>�B+(*��2 clause, which follows the 2�'�,-��):N�8 , may be used to eliminate entire
groups from the output. In this example, any group that does not contain exactly three rows

136 Chapter 6

will be removed. Because the 3
>�B+(*��2 clause is used to eliminate groups, the condition it
enforces should be one applying to the whole group.

Example 6.14 Which students failed at least one item of assessment?

���#��
$%� F%�
4 '�,"5 !��
�"��#-���
s�'�,���):N�8mF%�
a�>�B+(*��2 5O(*� c I�>�'�J+i�K:M�=

6�6�6
F%�
6�6�6
P�D�R
P�Q�R
6�6�6

Again, the Results table is divided into groups, one for each Id. Only groups where the
minimum mark is less than 50 are reported in the output. For Id to appear, then the student
must have failed at least one item.

6.6 Multi-table “Group by" Queries

The 2�'�,���)YN�8 clause, used on a single table, partitions that table into a number of groups
according to the column used as the basis for the grouping. The clause can also be used on
two or more tables that have been linked together for some reason. The same restrictions
apply to the kind of expressions that may be used in the ����#���$%� clause. Once a 2�'�,���)
N�8 clause has been used, the items that may be selected are restricted to either (1) the
column(s) used in the 2�'�,���):N�8 clause or (2) a statistical function applied to the group as
a whole. SQL is only prepared to display one row per group, regardless of the number of
rows in each group. These two restrictions have the effect of guaranteeing that whatever is
chosen must be single-valued for the group.

Example 6.15 For each item of assessment, describe that item and give the average mark
attained.

���#��
$%� !zh�F"���*5½.¿5+>�? c �zhÀ&�����$%'+(*)��+(-,���i�.¹>�B�2 c !/hÀI�>�'�J�i
4 '�,"5 !��
�"��#-����!u.¾�����������e�
0�3���'�� !zh�F"���*5^GY�zhtF"���"5
s�'�,���):N�8Y!zh�F"���*5

6�6
!zhtF"���"5 5+>�? c �/hÀ&��
��$"'+(*)��+(%,-�fi >�B�2 c !/hÀI�>�'�J�i
6�6

< 7 ������8W9�3
��;�� Q+<
R 9�>�?:@�B�>
��(-,�� Q�R
C @�?���,�'��+(-,�� M�Z

6�6

SQL Retrieval 137

The use of the 5+>�? function on the &�����$%'+(*)��+(-,�� column is a most dreadful fudge. SQL
will not allow us to simply say:

���#��
$%� h�h�h\.Á�/hÀ&��
��$"'+(*)��+(%,��/.oh�h�h

The &��
��$%'+(*)���(-,�� column was not used in the 2�'�,���)YN�8 clause and so cannot appear on its
own in the ����#��
$"� clause, even though we know that within any group the &��
��$"'+(*)��+(%,��
column will only ever have one value, because an item of assessment only ever has one
description. So we are obliged to resort to trickery in order to fool SQL. The 5�>�? function,
when applied to a character string column, returns the highest alphabetic value. For
example:

���#��
$%�g5+>�? c `�>
�%��i
4 '�,"5 ��������������

6�6�6�6�6�6�6�6�6
5+>�? c `�>
�"�+i
6�6�6�6�6�6�6�6�6

b���)�)
6�6�6�6�6�6�6�6�6

Example 6.16 List, in order of merit, the final totals for each student.

���#��
$%� uh�F%�U.15�>�? c uh 4 ("'��%��i�.l5�>�? c uhÀ`�>
�%�+iº.
�"��5 c !/hÀI�>�'�J�E%�zhÂ0
�
(*2�3��
{�<"=�=
i

4 '�,"5 ��������-������Ã.¾!��
�*��#�����!U.Á�������
���e�
0�3���'�� uh�F%�:G:!zh�F%�
>���� !zh�F"���*5^GY�zhtF"���"5
s�'�,���):N�8Luh�F%�
q�'�����'WN�8YTL������$

6�6
F%� 5+>�? c Uh 4 ("'��"�+i�5�>�? c uhÀ`�>
�%�+i �*��5 c !zhÂI�>�'�J�E"�zhÂ0
��(�2�3���{�<*=�=�i
6�6
P�D�Z !+(*) q-'�;�; P�P
P�Q�< a�>��+� b-��)�) D�M
P�D�P 0f(�#�# s�>"5
N
,�# D�R
P�Q�R p
������8 r�>�3�� M�R
P�D�R pf(�#�# p�,�>�'�� M+<
P�M�T ����� &�,�B���' T�D
6�6

Once again, to get SQL to display first and last names, we use a built-in function to
overcome SQL’s rules. Note also that student 831 makes no appearance in this final table.
This is because there is no mark for that student in the !��
�"��#���� table.

The results were to be displayed in order of merit, that is, in descending order of total
mark. The total mark column is the fourth column displayed. It is a derived column, not
one existing in the database itself, but specially formed just to answer the query. Where

138 Chapter 6

such a column is to be used in the sorting process, then it must be identified by its position
in the ����#��
$%� clause. In this case, the final total is the fourth column and can only be
referred to in this numerical way.

6.7 Product Queries

In Section 6.3 we discussed what were called join queries. The first step towards joining
two tables requires that the relational product of the tables be formed. It was, perhaps,
implied that the only reason for multiplying two tables was as a step towards the join. This
is not the case. There are occasions when the product is of use in its own right. This is
especially true when we want to compare the rows of a table against other rows in the same
table. To do this we need to multiply a table by itself.

Example 6.17 Which students did better in assignment 1 than in assignment 2?

���#��
$%� !º<�h�F%�Ã.v!º<�hÀI�>�'�Ju._!�RUhÀI�>�'�J
4 '�,"5 !��
�"��#-����!º<f.¾!��
�*��#�����!�R
0�3���'�� !º<�h�F%�WG:!�RuhtF%�
>-��� !º<�h�F"���"5LGÄ<
>-��� !�Ruh�F"���"5LG^R
>-��� !º<�hÀI�>�'�JY]:!�RuhÀI�>�'�J

6�6
!º<ºh�F%� !f<�hÀI�>�'�J !�RUhÀI�>�'�J
6�6
P�Q+< P�= Q�=
P�D�P Z�= Q�M

6�6

The aliases !º< and !�R must be used in this example. The ;�'�,*5 clause, in the above SQL,
will cause the !��
�*��#���� table to be multiplied by itself, squared so to speak! The product
will contain 17 x 17 = 289 rows, pairing every row in the table against every other row.
The table below shows one typical row and one row of the kind we want.

!����"��#���� c !º<�i !��
�"��#-��� c !�R�i
6�6
F"���"5 F%� ���N�5O(*������� I�>�'�J F"���"5 F%� ���N-5O("������� I�>�'�J
6�6

Å Å
C P�D�Z S Z�M < P�D�R =�Z�=�Q D�=
Å Å
< P�Q+< =�Z�=�P P�= R P�Q�< <"=�R+< Q�=
Å Å

6�6

Each row is in two parts, but both originate from the same table. We cannot use the table
name to distinguish each part. This is why the aliases are required. However, aliases may
be used in any query. Often they are used simply to reduce the amount of typing necessary.

SQL Retrieval 139

6.8 Pattern Matching

SQL allows a limited form of pattern matching. This can be of use when we cannot
remember or do not know the exact value of some data item. It can also be useful when we
want to specify a complex range of possible values.

Example 6.18 Which students have a first name starting with the letter p ?

���#��
$%� 4 ("'��%�U.V`�>
�%�
4 '�,"5 ��������-�����
0�3���'�� 4 ("'��%�A#�("J��ÇÆÈp�ÉUÆ

6�6�6�6�6�6�6�6�6�6�6�6�64 (*'��%� `�>
�%�
6�6�6�6�6�6�6�6�6�6�6�6�6
pf(-#�# p�,�>�'��
p
������8 r�>�3��
6�6�6�6�6�6�6�6�6�6�6�6�6

The percent character É is used to indicate a place where zero or more characters may
appear.

Example 6.19 Which students have the letter , in their last name?

���#��
$%� 4 ("'��%�U.V`�>
�%�
4 '�,"5 ��������-�����
0�3���'�� `�>
�%�L#
("J��ÊÆËq�ÉUÆ
,�' `�>
�%�L#
("J��ÊÆ|É�,�ÉUÆ

6�6�6�6�6�6�6�6�6�6�6�6�6�64 (*'��%� `�>
�%�
6�6�6�6�6�6�6�6�6�6�6�6�6�6
pf(-#�# p�,�>�'��
!+(�) q-'�;�;
����� &�,�B���'
a�>-�+� q-'�;�;
0f(-#�# s�>"5
N
,�#
6�6�6�6�6�6�6�6�6�6�6�6�6�6

We have to use two separate pattern strings because the #
(*J�� operator is case sensitive,
that is, it distinguishes between upper case q and lower case , .

The second pattern string cannot be simply Æ|É�,ÃÆ because that would imply that we
were looking for people whose last name ended in the letter , .

Example 6.20 Which students have the letter (as the second letter of their first name?

���#��
$%� 4 ("'��%�U.V`�>
�%�
4 '�,"5 ��������-�����
0�3���'�� 4 ("'��%�A#�("J��ÇÆtÌ
(%ÉÃÆ

The string (%É requires exactly one character before the letter (and any number after.

140 Chapter 6

6�6�6�6�6�6�6�6�6�6�6�6�6�64 (*'��%� `�>
�%�
6�6�6�6�6�6�6�6�6�6�6�6�6�6
pf(-#�# p�,�>�'��
!+(�) q-'�;�;
0f(-#�# s�>"5
N
,�#
6�6�6�6�6�6�6�6�6�6�6�6�6�6

The underscore character Ì is used to indicate a place where any one character may be
substituted. This ensures that the second character must be an i. After the i there may be
any number of other characters as indicated by the ensuing É symbol.

Example 6.21 Which students have a four-letter surname?

���#��
$%� 4 ("'��%�U.V`�>
�%�
4 '�,"5 ��������-�����
0�3���'�� `�>
�%�L#
("J��ÊÆËÌ�Ì�Ì�ÌnÆ

6�6�6�6�6�6�6�6�6�6�6�64 (*'��%� `�>
�%�
6�6�6�6�6�6�6�6�6�6�6�6
a�>-�+� b-��)�)
!+(�) q-'�;�;
a�>-�+� q-'�;�;
p
������8 r�>�3��
6�6�6�6�6�6�6�6�6�6�6�6

The pattern string ÆtÌ�Ì�Ì�ÌnÆ indicates that the last name must contain exactly four characters.

6.9 Summary

In this chapter, you have seen examples of the basic SQL retrieval statements. These basic
capabilities reduce to three major categories.

� There are queries that involve examination of a table and the suppression of unwanted
rows and columns. The rows we want to see are retained by means of the X�3
��'�� clause.
The columns we want are specified in the ����#��
$"� clause. The table from which these
rows and columns are drawn may be one of the base tables of the database. However,
the table may equally be one formed by multiplying together all the tables mentioned
in the ;�'�,*5 clause. Regardless of how the table is formed, the same basic means of
retrieval apply.

� There are queries that work by subdividing a table into a number of groups according
to some value shared by all rows in the group and by no others. Some of these groups
may be eliminated by applying a condition that each group must satisfy. After that, we
are allowed to select just one line of output per group. As in the first category, the table
that is partitioned in this way may be one of the base tables or it may be the product of
several tables.

SQL Retrieval 141

� There are queries that allow us to summarize a table by reporting some statistics
concerning that table such as the number of rows in the table. Again, the table reported
in this way may be a base table or the product of several tables.

SQL can provide much more complicated queries than these, but only by extending
the use of the features in this chapter. For example, queries can be nested. These more
advanced features are described in the following chapter.

142 Chapter 6

Exercises

Q6.1 The Í 	�Î�Ï���ÐÒÑÓ	
Database

Here is the University of Wiseacres database that was used in the exercises at the
end of Chapter 4.

$"3�,�,�#�� ���>�;�; Ô%�
>�#��
6�6�6�6�6�6�6�6�6 6�6�6�6�6�6�6 6�6�6�6�6�6�6c E�ig
$"3�,�,�#�Ì
F"� c E�ig���>�;�;�Ì
F%� c E�io���>�;�;�Ì�F%�

$"3�,�,�#�Ì�Õ�>"5+� ���>�;�;�Ì�Õ�>*5+� c E�i�&���2�'����
7 3
,-�
�
$"3�,�,�#�Ì
F"� 7 #�>
$��c S
iea���>���Ì
F%� Ö���>�'

An asterisk
c E�i indicates that the attribute is (part of) the primary key of the relation.

A question mark
c S
i indicates that null values are to be permitted for that attribute

in the associated relation. Write SQL to satisfy the following requirements.

a. List the names and phone numbers of all the schools.

b. List the entire contents of the ���>�;�; table.

c. Name any schools where the Head of School position is vacant.

d. Name each member of staff along with the name of his or her school. Produce
the list in alphabetic order of staff name.

e. Provide the name of each school and the name of the head of that school.

f. Name members of staff along with their degrees. You will need a separate
line for each degree. Produce the list in alphabetic order of staff name and,
within that, by year of conferral.

g. How many staff are there altogether?

h. When was the earliest degree conferred on any staff member?

i. For each staff member, provide the staff Id and the number of degrees held.

j. Give each school’s Id, its name and the number of staff in the school (including
the Head of School).

k. Give the staff Id of everyone who has more than one degree.

l. For any member of staff who has more than one degree, provide their staff Id
and the time between receiving their first and their last degree.

m. Name each member of staff and give the year in which they received their
most recent qualification.

n. Give the staff Id of anyone who received degrees in both 1975 and 1985.

o. Give the staff Id of all those who received a bachelor degree before 1950.

p. Give the name of all staff who received their bachelor’s degree from an Institute
of Technology (IT).

SQL Retrieval 143

Q6.2 An auction of ex-police cars had the following results. The r+(�#�, column represents
how many thousand kilometers the car has on its odometer.

× >�'��
6�6
`�,�� × ,�#�,�' ��("'�$�,�� r+(�#�, �>�#��
6�6
< 2�'�>�8 8 T�P Z�D�M�=
R X�3+("��� � Tº< Z�R�=�=
C X�3+("��� � M�= P�M�=�=
T X�3+("��� 8 Tº< Z�R�=�=
T�> N
�
("2�� � T�D Z�M�M�=
T�N 2�'������ � M�= Z�D�=�=
M X�3+("��� 8 M�= Z�Q�=�=
D B�>-�f(�#�#�> 8 M�C <"=+<*=�=
D�> X�3+("��� � T�D Z�C�=�=
Q X�3+("��� 8 Z�M P�D�M�=
6�6

State the outcome of each of the following SQL statements.

a. ���#���$%� $-,������ c E�i
4 '�,"5 × >�'��

b. ���#���$%� >�B�2 c r+(-#�,�i
4 '�,"5 × >�'��

c. ���#���$%� >�B�2 c r+(-#�,�i
4 '�,"5 × >�'��
0�3
��'�� J�(�#�,YKYQ�=

d. ���#���$%� 5�(*� c �>�#���i
4 '�,"5 × >�'��
0�3
��'�� ��("'�$�,��YGØÆ|8uÆ
>���� × ,�#�,�'AK�]ÇÆÈX�3+("���ÃÆ

e. ���#���$%� ��("'�$�,��u.15+>�? c �>�#���i
4 '�,"5 × >�'��
s�'�,���)WN�8A��("'�$�,��
q�'�����'\N�8^R:���
��$

f. ���#���$%� r�(�#�,Ã.»$�,-����� c E�i
4 '�,"5 × >�'��
s�'�,���)WN�8Ar�(�#�,
a�>�B+(���2 $-,������ c E�i�]Ù<
q�'�����'\N�8^R:���
��$

g. ���#���$%� ��("'�$�,��u. × ,�#�,�'U.»$�,������ c E�i
4 '�,"5 × >�'��
s�'�,���)WN�8A��("'�$�,��u. × ,�#�,�'
q�'�����'\N�8A��("'�$�,��u. × ,�#�,�'U.¾CY������$

144 Chapter 6

Q6.3 Here is the
7 ��,�)�#�� table again, with the addition of one new member, a�>�'�'�8 .

7 ��,�)
#��
6�6
Õ�>"5+� ��2�� ���? @�>�'��+� `�("J���� &+(���#
("J��
�
6�6
pf(�#�# M�M 5 <"P�=�=�= 2�,�#�;)
,�#�("�+(�$��
��
� R�P ; <"M�=�=�= 5
�+��(�$ N
����'
F"B�>�� <*Z 5 R�M�M�=�= ;�,�,���N
>�#�#)
,"5º�
&�>�B�� R�< 5 <"P�=�=�= 5
�+��(�$ �")
,�'��
Ú ����8 C�C ; R�P�=�=�= X
>�#�J�(*��2 5+���
r�>�'��-� Tf< ; T�P�=�=�= ��>��+$�(*��2 �Ô�`
�
#�>�� T�= 5 T�M�=�=�= 2�,�#�; 2�,�#�;
I�>�'�J C�R 5 <"Q�M�=�= ;�,�,���N
>�#�# >�#�$-,�3
,�#
I�>�'+(%, <*P 5 <"Q�M�=�= ��>��+$�(*��2 X
>�����'
7 >���# R�M 5 D�R�M�=�= 5
�+��(�$ �%�������������
Ú (�5 C�R 5 C�P�M�=�= �-Û��
>��"3 >�#�$-,�3
,�#
r�>���3�8 <*Z ; <�T�M�=�= ��>��+$�(*��2)
,�#�("�+(�$��
a�>�'�'�8 S 5 R�P�=�=�= �")
,�'��)
,�#�("�+(�$��
6�6

Using the
7 ��,�)�#�� table, write SQL to satisfy the requirements below.

a. List each like, and the number of people who have that like.

b. List each shared like and the number of people sharing, in order of popularity.

c. Do females or males earn more, on average?

d. How many men and how many women are there?

e. List each like shared by members of the opposite sex. (Multiply the table by
itself.)

f. Do women who like music earn more, on average, than women who like
dancing?

g. Do women who like dancing earn more, on average, than men who like
football?

h. Give the names of all people in their twenties.

i. Give the names of all people with an > as the second letter of their name.

j. Give the names of all people whose name ends in a 8 .

k. Whose age is not recorded?

Q6.4 The ÜÞÝ 	�ßºàYá Ý�â 	�ãf���+� Database

The Rocky Concrete Company makes a range of concrete products from laundry tubs to
park benches to garden gnomes. Rocky’s regular customers include hardware shops, local
councils, nurseries, farmers and other small businesses. These customers are considered to

SQL Retrieval 145

be the company’s “bread and butter" and Rocky likes to satisfy their orders as quickly as
possible. To this end the company tries to keep an adequate level of stock for each product
made. Whenever the stock in hand falls below some predetermined level then another batch
is made.

There are four relations used to keep track of products, orders and customers:
$"�+�%��,"5+��'��)�'�,�����$%��� ,�'�����'�� ,�'�����'�Ì�������>
(�#��
6�6�6�6�6�6�6�6�6 6�6�6�6�6�6�6�6 6�6�6�6�6�6 6�6�6�6�6�6�6�6�6�6�6�6�6c E�i:$"�+�%��Ì-�
, c E�ie)�'�,���Ì�$�,���� c E�ig,�'�����'
Ì-�
, c E�ig,�'�����'�Ì-�
,
$"�+�%��Ì-�
>"5+� ���
��$%'�(*)��+(-,-� ,�'�����'
Ì���>���� c E�i�)�'�,���Ì�$�,����
�%��'������)�'�,���Ì-2�'�,���) $"�+�%��Ì-�
, ,�'�����'�Ì�Û���8
��,�X�� #
(��%�
Ì%)�'+(�$�� ,�'�����'�Ì-)�'+(�$-�
)
,
�%��Ì�$�,���� Û���8
Ì�,-��Ì-3
>����
$%'
Ì�#�(�5O("� '��"5+>�J���Ì�#���B���#
$"��'�'�Ì-N
>�# '��"5+>�J���Ì�Û���8

Relation key columns are marked with an asterisk (*). Some columns, such as $"�+�%�
Ì%�
>"5+� ,
are self-explanatory; however, others need some explanation:

$%' #
(�5O("� The maximum that a customer is allowed to owe Rocky Concrete; this
may be exceeded at the manager’s discretion.

$"��'�' N
>�# The amount currently owed by the customer.
#
(��%�)�'�(�$�� The advertised price for a single unit of a particular product; the price

charged to a customer might vary from this.
,�'�����' ��>���� The date on which the order was made; for these exercises you may assume

that the date is held in Ö�Ö�I�I�&�& form.
,�'�����')�'+(�$�� The unit price charged on this order for this product.
)�'�,�� 2�'�,���) A code that indicates whether a product is grouped as agricultural (A), or

council (C), or garden (G) or household (H) in nature.
'��"5+>�J�� #���B���# The level at which the quantity on hand is compared; if stocks fall below

this level then Rocky will usually make another batch to avoid stockout.
'��"5+>�J�� Û���8 The amount usually involved in any new production.

The questions that follow have been divided into a number of categories according to the
kind of SQL that you are to use in answering them. In practice, however, a query may be
phrased in a variety of ways.

Simple Queries (SQ)
These are straightforward queries requiring access to only one of the four tables.

SQ1. List the names of all customers.

SQ2. List the description and list price of all products.

SQ3. List all details of all customers.

SQ4. List all details of those products with a list price of more than $100.

SQ5. List the names and balances of all customers who owe more than $250.

146 Chapter 6

SQ6. List all products in the agricultural product group.

SQ7. List all details of products where stock on hand is worth (at list price) more than
$1000.

SQ8. List the customer number, credit limit and current balance of all customers whose
current balance exceeds their credit limit.

SQ9. List all details of all customers living in Queensland (post code in the range 4000
to 4999).

SQ10. Which product lines require replenishing and how much should be made?

Join Queries (JQ)
These are relatively simple queries requiring access (as the title suggests) to more than one
table.

JQ1. List the product code, description, order price and quantity ordered for each line on
order number 1234.

JQ2. List, in date order, the customer name and address and the order date of all orders
taken in June 1991.

JQ3. List the order number, order price, product code and list price of those orders where
the order price differed from the list price.

JQ4. List the customer name, the order date and the value of each order line worth more
than $500. Produce the output in date order and, within date, in ascending order of
value.

JQ5. List the product descriptions and customer names for all orders made by Brisbane
customers.

JQ6. List the customer name, current balance, credit limit, order date and order line value
for all customers whose current balance has been allowed to exceed their credit
limit.

JQ7. List the names of all customers who ordered garden gnomes in April 1991.
()�'�,���Ì�$�,�����GäÆås�Õ
q�I�@uÆ)

JQ8. List the product code, description, order date and order quantity of all orders for
gardening products.

JQ9. List the product code, order number and order date where the order quantity is more
than the remake quantity.

JQ10. List the customer name, order quantity, list price and order price for all orders for
agricultural products taken from Queensland customers.

Statistical Queries (ST)
These queries are to be answered using one or more of the five special functions: 5+>�? , 5O(�� ,>�B�2 , $�,-����� and �*��5 .

ST1. What is the total value of order 1234?

ST2. What are the largest and smallest credit limits held by any customers?

SQL Retrieval 147

ST3. What is the largest amount of credit available to any customer?

ST4. What is the maximum amount by which any customer is over their credit limit?

ST5. When was the first order ever taken?

ST6. When was the latest order taken?

ST7. What is the value of the best order for a large cattle trough? ()�'�,���Ì�$�,�����GæÆå`�q�qnÆ)
ST8. What is the least remake cost for any product line where the quantity on hand is less

than the remake level?

ST9. What is the most number of medium cattle troughs ever sold in a single order?
()�'�,���Ì�$�,�����GäÆ|I�q�qnÆ)

ST10. How many orders have been made by customer 2255?

Simple Group-by Queries
These (relatively) simple queries are to be answered by means of a 2�'�,-��):N�8 clause. Only
one table will be involved.

SG1. List the number of customers in each town, in town order.

SG2. List the number of orders made by each customer, in descending order of frequency.

SG3. For each product group, list the value of stock held. Value at list price.

SG4. For each town, provide a list of the number of customers whose current balance is
at least 90% of their credit limit.

SG5. For each product, list the product code and total value of orders taken, in descending
value. Ignore products that have never been ordered.

SG6. For each order, list the order number and the total value of that order in descending
value. List only those orders worth more than $1000.

SG7. List those towns where the average credit limit is more than $1000.

SG8. For each product, list the product’s lowest and highest ever order price.

SG9. Consider June 1991. For each day on which an order was made, list the day and the
number of orders taken on that day. Produce the list in date order.

SG10. For each product, list the product code and the total value of orders taken, where
the average order line value was more than $1000.

Multi-table Group-by Queries (MG)
These queries are to be answered using a 2�'�,-��)WN�8 clause. More than one table may be
involved.

MG1. For each product ordered in May 1992, list the product code and the total value of
orders for that product.

MG2. For each product group, list the total value of orders taken and the total number of
units sold.

MG3. On what days in June 1991 did the sum of the value of all orders taken on that day
exceed $1000?

148 Chapter 6

MG4. For each order taken in May 1991, list the order number, the date and the value of
the order. Produce the list in date order.

MG5. For each customer who ordered in May 1991, list the customer’s number, name and
the number of orders made. Produce the list by customer number.

MG6. For each product group, list the group code, the total value of all orders at list price
and at order price. Produce the list in product group order.

MG7. From orders taken in 1991, produce a list showing each customer number, name and
the total value of orders taken from that customer. Produce the list in descending
order of value.

MG8. For each product, list the product code, its description, the number of orders involv-
ing this product in June 1991 and the total value of these orders.

MG9. For each product ordered in June 1991, list the product code and the number of
customers who ordered the product.

MG10.For each customer receiving a discount in May 1991, list the customer number,
name and the amount of discount. Produce the list in descending order of total
discount.

Product Queries (PQ)
These queries are to be answered by multiplying one table against another or against itself.
This is in contrast to Join queries.

PQ1. Customer 2345 is in financial trouble. Are there any other customers, in the same
town, with a larger current balance?

PQ2. Name any customers who have ordered twice in the same day.

PQ3. Customer 6789 is just below the credit limit and wants to buy a large cattle trough.
How much below the list price will we have to drop the price to prevent them from
going over their limit – as an amount and as a % of the list price?

Chapter 7
SQL Modularization
7.1 Introduction

In computing, a module is the name we give to an item of work. A program module is
a discrete component of that program. It performs a particular task, such as finding the
minimum of a set of numbers. All the various modules of a large program are put together
in such a way as to achieve the program’s overall goal.

This process of conquering complexity is sometimes called modularization. Using
this technique a complex task may be reduced to a number of relatively simpler tasks.
Suitable program modules are then built to accomplish each of these tasks.

This chapter is concerned with how the fundamental query building methods of Chap-
ter 6 may be combined in different ways. In creating these more complex queries we can
answer more complex questions.

Three mechanisms are discussed. They are:

� query nesting whereby the results of one query are fed into another;
� the union operator which allows the results of two or more queries to be merged to

produce a single result table; and
� the view which allows the results of a query to be given a name and subsequently treated

as just another database table.

7.2 Query Nesting

The first kind of query modularization considered in this chapter is query nesting. This
involves passing results from one query directly into another. Thus two queries may be
executed, one after the other, with no “manual" intervention required.

Example 7.1 What is the Id of the student who got the lowest mark in the first assignment?
We could issue the following command:

�����

150 Chapter 7

����	
���� �����������������
� �� �� !"��#�$%	&'#
(�) ���"� *�"���,+.-

/�/
/�/�/�/�/
/�/���0�����"���
���
/�/
/�/�/�/�/
/�/1�1
/�/
/�/�/�/�/
/�/

But this doesn’t entirely answer the question. We could then take the query result (55) and,
by using it in a second query, get what is wanted:

����	
���� *�243
�" ��5!"��#�$%	6'#
(�) ���"� *�"���,+.-
�&�"2 �"�����7+ 1�1

/�/
/*�2
/�/
/8�9
:
/�/
/

The two queries can be merged into a single nested query.
����	
���� *�2
� �� �� !"��#�$%	&'#
(�) ���"� *�"���,+.-
�&�"2 �"�����7+;�<����	
�"��=�������>�"�������

� �" �� !"��#�$�	6'#
(�) �6�"� *�"���5+?-��

The SQL inside the brackets
������	
����=�����������������A@
@�@

) is called a subquery. This inner
subquery is executed first and the answer, 55, is fed back into the outer query to provide
the right answer.

There are two ways of looking at the kinds of query nesting that can occur.

1. The first way is according to the manner in which the inner and outer queries interact.

� There is once-only nesting where the inner query is executed once and the outer
query then uses that result. So the inner query is executed and then the outer one.
Example 7.1 is of this kind.

� There is query correlation where the outer query executes a little and then the
inner query executes a little; and this is repeated until the outer query is complete.
This is rather like a module being executed within a program loop.

2. The other way of analyzing query nesting is by the matter of the interaction between
the inner and the outer query, in other words, by the kind of information that is returned
by the subquery.

SQL Modularization 151

� There are subqueries that return conventional data, such as names, addresses and
phone numbers; that is, they return the kind of information stored in the database.

� There are subqueries that simply return a
���$��

or
3���	"#6�

answer.

7.3 Simple Nesting

There are situations where the query cannot properly be answered without first answering
some preliminary query.

Example 7.2 What is the name of the student who got the lowest mark in the first
assignment?

This question has already been partially answered in Example 7.1 where we found the
Id of the student who got the lowest mark. To get the name of that student, we can turn the
query that gave us the Id into a subquery.

����	
���� B
� �� �� ��
$"2��&��'#
(�) ���"� *�24+C�<����	
���� *�2

� �" �� !"��#�$�	6'#
(
) ���"� *�"���5+?-
�6�"2 �"�����4+D�<����	�����E���0�����"���
���

� �� �� !"�"#�$%	6'#
(�) ���"� *�����,+?-��
�

/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/*�2 � ���'#� F���#�
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/8�9
: G����
H I"�) �
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/

Here we have a three-level hierarchy of queries. At the bottom level there is one to extract
the lowest mark; at the next there is one to get the Id of the student who got that mark; at
the top there is one to get us the name of that student.

Example 7.3 Which students were late handing in assignment one? When did they
submit?

����	
���� ��@<B�JK!L@>�&$�M6����
"�
2
� �� �� ��
$"2��&��'#=�NJO!"��#�$%	6'#P!
(�) ���"� ��@Q*�24+4!L@Q*�2
�&�"2 !L@Q*�"���5+?-
�&�"2 !L@>�6$�M&�����"��2SRT�<����	
�"�� U�$��

� �" �� V%#�#6��#�#
(�) ����� *�"���,+?-6�

The inner query returns the due date for the first assignment. The outer query joins the
Students and Results tables (because we want student names) and then checks to see whether
the student handed in late that same assignment.

152 Chapter 7

/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/�/�/
/�/
/
/�/�/�/
/�/
/*�2 � ���'#� F���#� �6$�M6�����"�
2
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/�/�/
/�/
/
/�/�/�/
/�/
/8�9
: G����
H I"�) � W�X'-�W
8�Y
X !���Z [6��3
3 W�X
W�X
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/�/�/
/�/
/
/�/�/�/
/�/
/

The subquery obtains the due date of the first assignment, which is 0908 or 8 September.
The outer query joins the Students and Results tables, so as to be able to provide the names
of students who submitted the first assignment after that date.

An alternative solution to the one above is to join all three tables.
����	
���� ��@<B�JK!L@>�&$�M6����
"�
2
� �� �� ��
$"2��&��'#=�NJO!"��#�$%	6'#P!\J]V'#
#6��#�#EV
(�) ���"� ��@Q*�24+4!L@Q*�2
�&�"2 !L@Q*�"���5+7VL@<*�"���
�&�"2 !L@Q*�"���5+?-
�&�"2 !L@>�6$�M&�����"��2SR^VL@_U
$��

Neither solution is better than the other. It is a matter of personal preference. The reason
for showing this alternative is that it provides some clues as to when we can use a subquery
and when we need to perform a join. Although we need the assignment due date to answer
the question, it is not required as part of the result table and so can be accessed using a
subquery. If the due date was to be displayed then we would need to join all three tables as
was done in the alternative solution. This three-way join enables us to select and display
any column from the three tables.

7.4 “In" Queries

There are occasions when we might expect the inner query to result in a set of values, rather
than a single value. When this is the case, we can use the

�0�
clause to see if an item of data

is a member of this set.

Example 7.4 Which students failed at least one item of assessment?
����	
���� B
� �� �� ��
$"2��&��'#
(�) ���"� *�2,��� �<����	
�"��,*�2

� �" �� !"��#�$�	6'#
(�) �6�"� �"�����a` 1 W%�

/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/�/�/*�2 � ���'#� F���#�
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/�/�/8�9
: G����
H I"�) �
8�Y
: Gb�6	�	 G� ��6��2
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/�/�/

The inner query returns two
*�2

’s, 872 and 862. The outer query then works its way through
this set, matching the

*�2
’s with student details from the

��
$"2��&��'#
table.

SQL Modularization 153

Example 7.5 Which students did either of the first two items of assessment?
����	
���� *�2
� �� �� !"��#�$%	&'#
(�) ���"� *�"���c�
#7���C��-bJ�:��

As can be seen from this example, the
���

clause need not necessarily be used with a
subquery. The clause above is equivalent to

(�) ���"�5*�"���,+.-d 6�.*�����,+e:
. This form

of the
�0�

clause is convenient when we have a long list of alternative values.

7.5 “All–Any" Queries

In Section 1.4 we used the
���

clause to check for set membership. The clause returns a
true or false answer because an item is either a member of a set or it is not. Any kind of
subquery that returns a true or false answer can be incorporated directly into the condition
of a f) ���"� clause.

In Section 1.3 we saw examples of simple subqueries. These all returned a single value
such as a mark. This value can then be used in a comparison operator such as

+
or
R
. The

result of the comparison is either true or false and this answer can be incorporated into the
f) ����� clause.

In this section we will look at situations where the subquery is expected to return a set
of values and we want to perform more than just a membership test. We want to compare,
in a more general way, some item against the set returned.

Example 7.6 What is the Id of the student who got the lowest mark in assignment 1?
This is the same as Example 7.1, and there the solution was:

����	
���� *�2
� �� �� !"��#�$%	&'#
(�) ���"� *�"���,+.-
�&�"2 �"�����7+;�<����	
�"�� �g�������"�6�����

� �" �� !���#�$%	6%#
(�) �6�"� *�"���,+?-6�

This is an example of a subquery that is expected to provide a single answer, otherwise we
could not put the

+
sign in front of it.

An alternative solution is to use the
��	
	

keyword, as follows:
����	
���� *�2
� �� �� !"��#�$%	&'#
(�) ���"� *�"���,+.-
�&�"2 �"�����e`�+7��	�	T�<����	
���� �"�����

� �" �� !"��#�$�	6'#
(
) ���"� *�"���,+.-��

Two changes have been made.

� The
+

has been changed to
`�+7��	�	

.
� The subquery now selects

�"�6���
instead of

�����\���"�����'�
.

154 Chapter 7

The inner query now returns the set of values (80, 60, 70, 55, 90). The second 70 has been
removed. The f) �6�"� clause of the outer query now becomes:

(�) ���"� *�"���,+.-
�&�"2 �"�����e`�+7��	�	T�<8�WhJiY
WNJ]9�WNJ 1�1 JiX�W%�

Any item 1 mark that is less than or equal to
��	�	

of these marks will satisfy the condition.
Clearly 55 is the only mark that is less than or equal to all of these and so is the minimum
mark. If we had specified

�"�����eR�+a��	�	T��@�@
@Q�
then we would have got the maximum

mark.
SQL allows either of the two keywords

��	�	
or
�6��H

to be placed between a comparison
operator and a subquery. This is known as operator modification. The effect of each of
these keywords is as follows.
��	�	

The item must bear the specified comparison against all members of the set returned
by the subquery. For example,

�"�����e`�+a��	�	j�<8
WNJ]Y�WNJ]9�WNJ 1�1 J]X�W%�
requires that�"�����

be
`�+

all the elements of the set, which means that it must be less than or equal
to 55.�6��H

The item must bear the specified comparison against at least one member of the set.
For example,

�������eR7�&��H;�<8�WNJ]Y�WNJ]9�WhJ 1�1 JiX
W%�
requires that the mark be greater

than one of the set, which means that it must be greater than 55.

Example 7.7 Which item of assessment was best done, as measured by the average mark?
We could try this.

����	
���� *�"���kJO�6l�m\���"�6�����
� �� �� !"��#�$%	&'#
n
�� 6$�Z4M�Ho*�"���
[6��2����SM�He:72��"#��

/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/*����� ��l�mN���"�����'�
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/: 9 1
- 9�-
p 1 X

/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/
If we pick the first row in the result then we have answered the question. However,
computing people are lazy, we always want to get the computer to tell us the answer, no
matter how hard that might be.

We want to say something like
����	
����=����q\�<�6l�m\���"�6�������r@�@�@

but this offends SQL
and will be rejected. Built-in functions may only be applied to simple columns such as�"�����

or to expressions involving these columns such as
�"�����'B (�%��m) �s'-�W�W

. They may
not be used on other built-in functions, for example.

An alternative solution is as follows.
����	
���� *�"���kJO�6l�m\���"�6�����

SQL Modularization 155

� �� �� !"��#�$%	&'#
n
�� 6$�Z4M�Ho*�"���
t �6l�����m ��l�m\�����������=R6+a��	�	u������	
���� ��l
m\���"���
���

� �" �� !"�"#�$%	6'#
n
�" 6$
Z7M�H.*�������

The
) ��l'����m

clause is used to restrict groups reported to those where the average mark
is greater than or equal to all three of the averages obtained. This is equivalent to the
maximum average.

Any of the six standard comparison operators (
`hJi`�+\J]+\Jwv�+\JxR�+\JiR

) may be used
in this way. Thus to get the lowest average we could amend the

) ��l'����m
clause to:

t �6l�����m ��l�m\�����������=`6+a��	�	u������	
����4��l�m\�>�"�������.@�@�@y�

Example 7.8 Which students handed in assignment 1 after students 871 and 869?

����	
���� *�2\J]�6$�M6�g���"�
2
� �� �� !"��#�$%	&'#
(�) ���"� *�"���,+.-
�&�"2 �6$�M6�����"�
24R4��	�	j�<�
��	
���� �6$�M&�����"��2

� �" �� !"��#�$%	6'#
(
) ���"� *�"���r+.-
�6�"2 *�2r���D�<8�Y�XhJi8
9�-����

/�/
/�/�/�/�/
/�/�/�/�/
/�/�/*�2 �6$�M6�g���"�
2
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/8�9
: W�X�-�W
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/

The subquery returns the dates on which 869 and 871 handed in their assignments (
W�X�W
X

,W�X�W�8
). Only student 872 submitted after all of these dates.

7.6 Correlated Subqueries

Rather than having an inner query finish before the outer query is attempted, there are times
when the inner and the outer query work as a team, iteratively executing the inner and the
outer query in tandem.

Example 7.9 Which students did better in the first assignment than in the second?

����	
���� *�2
� �� �� !"��#�$%	&'#d[&���
(�) ���"� *�"���,+.-
�&�"2 �"�����eRT�<����	
�"��S�"�����

� �" �� !"��#�$�	6'#
(�) �6�"� *�24+5[�����@Q*�2
�6��2 *�"���5+e:%�

156 Chapter 7

/�/
/*�2
/�/
/8�9'-
8�Y
8
/�/
/

The above query is an example of a correlated subquery. In simple subqueries it is best to
think of SQL as performing the subquery first and then passing the result to the outer query
which then executes. With correlated subqueries it is better to think of the outer query as
doing a certain amount of work and then asking the subquery to do some. The outer query
then does some more work and then the inner does some more, and so on until the outer
query is finished. Thus the outer and inner queries are correlated.

The reference
[&���

is called a pseudonym or alias. Aliases are often an easy way to
refer several times to a table with a very long name – we simply give it a short alias when
it first appears, in the

3��" ��
clause. However, in this correlated subquery,

!"�"#�$%	6'#
has to

have an alias, because the query passes an Id value into the subquery for comparison every
time the inner query is executed: if the inner query referred to

!���#�$%	6%#h@Q*�2
rather than[&����@<*�2

, it would be comparing the same Id value to itself.

Example 7.10 Who was the second best student in the final exam?
����	
���� *�2\JK�"�����
� �� �� !"��#�$%	&'#P!z-
(�) ���"� !z-g@Q*�����e+5p
�&�"2 :7+;�<����	����� �6 6$���N�{B��

� �" �� !"��#�$%	&'#
(�) �6�"� *�"���,+ap
�&�"2 �"�����eR�+4!z-g@_���������

/�/
/�/�/�/�/
/�/�/*�2 �"�����
/�/
/�/�/�/�/
/�/�/8 16| Y 1
/�/
/�/�/�/�/
/�/�/

The outer query steps through the results for the final exam and for every one, asks the
inner query to count the number of marks that were better than or equal to it. If that count
is 2 then we have the second best student.

This query works only if just one student had the second best mark. How would it need
to be modified to handle situations where several students share a mark?

7.7 “Exists" Queries

There are occasions when we might want to know of the existence of certain rows in a table
and act accordingly. This can be achieved by use of an

��q���#�'#
clause within the f) ���"�

clause. An
�6q��
#�'#

clause evaluates the subquery; if the subquery returns an empty table
then the

��q��
#�%#
clause returns a value of false; otherwise it returns a value of true.

SQL Modularization 157

Example 7.11 Name any student who got more than 90% in any item of assessment.

����	
���� B
� �� �� ��
$"2��&��'#=�
(�) ���"� ��q��
#�%#.�<����	
�"��5B

� �" �� !"��#�$�	6'#
(�) �6�"� *�24+e�\@Q*�2
�6�"2 �"�����aR7X�W%�

/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/*�2 � ���'#� F���#�
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/8�Y
X !���Z [6��3�3
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/

SQL picks a row from the Students table. It then passes control to the inner query. If the
student has achieved a mark higher than 90% then the inner query is successful and the
student row is displayed. If no such mark exists then SQL passes straight on to the next
row in the Students table. This process is repeated until all rows have been examined.

Example 7.12 Which students failed to submit any work for assessment?

����	
���� B
� �� �� ��
$"2��&��'#=�
(�) ���"� �� �a��q��
#�'#.�<����	�����5B

� �" �� !"��#�$%	6'#
(�) �6�"� *�27+e�\@Q��2'�

/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/*�2 � ���'#� F���#�
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/8�p'- t �6��# [6��3�3
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/

In this example, each student row is examined and, if there are no results for that student,
the student row is displayed.

Example 7.13 Which students submitted assignment 1 but not assignment 2?

����	
���� B
� �� �� ��
$"2��&��'#=�
(�) ���"� ��q��
#�%# �<����	����� B

� �" �� !"��#�$%	&'#
(�) �6�"� *�"���,+.-
�&�"2 *�2a+a��@Q*�2'�

�&�"2 �� �a��q��
#�'#.�<����	����� B
� �" �� !"��#�$%	&'#
(�) �6�"� *�"���,+a:
�&�"2 *�2a+a��@Q*�2'�

158 Chapter 7

/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/*�2 � ���'#� F���#�
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/8 16| V
��� U" �l����
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/

In this example, the
���$"2��6��%#

table is examined and for each row two subqueries are
evaluated, one for each assignment. If the subquery returns a row then the student did
the assignment, otherwise they did not. In this way the conditions required to satisfy the
question may be evaluated.

7.8 Subquery Usage

The ability to issue subqueries is an important and powerful feature of SQL. Subqueries
are not restricted to the

#6��	
�"��
statement, but may be used within

$�Z�2���"�
and

2���	
��"�
statements.

A subquery may use any number of tables; it may involve a
m��" 6$
Z7M�H

clause and a) ��l��0��m
clause. A subquery may invoke other lower level subqueries.

When writing a subquery, the following constraints are placed upon the the phrasing of
the subquery.

� The
 ���2��6�

clause must not be used.
� The

#6��	
�"��
clause must contain only one column name or expression; for example,�{#6��	�����}Z53
�" ��~@�@�@<�

but not
�{#6��	
�"��^Z�J]�a3
�� ��~@�@�@Q�

. An exception is the��q��
#�'#
clause where any number of columns may be selected.

The outer query may use several subqueries at the same level; see Example 7.13 which
has two. However, there are limitations placed upon the way in which a subquery may be
invoked by the query in which it is embedded.

� Subqueries must always appear within round brackets.
� Subqueries can only appear after, that is, to the right of an operator. So we can have,

for example,
84+D�{#�$�M"��$��6��H��

but not
��#�$�M"��$"����H���+58

.
� Subqueries cannot be used as part of

M��6 f ���6� or
	������

clauses.
� A subquery should return only one value unless the subquery is preceded by one of the

keywords
���

,
��q���#�'#

,
��	�	

or
�6��H

.

7.9 The Union Operator

Use of the
$��b�& 6�

operator offers the second kind of query modularization discussed in this
chapter.

The results of two or more queries may be merged to form a single result table. SQL
treats the result of each query as a set. It then creates the set union of each participating
query.

The keyword
$��b�& 6�

is inserted between the
#6��	
����

statements whose results are to
be merged. The rows produced by each individual query are amalgamated with duplicate
rows being removed.

SQL Modularization 159

Example 7.14 Which student got less than 70 in either assignment 1 or 2?
����	
���� *�2
� �� �� !"��#�$%	&'#
(�) ���"� *�"���,+.-
�&�"2 �"�����e`49�W
� ���& 6�
����	
���� *�2
� �� �� !"��#�$%	&'#
(�) ���"� *�"���,+a:
�6��2 �"�����e`49�W

The two query results are merged as shown below:

/�/
/ /�/
/ /
/�/*�2 � �b�& 6� *�2 + *�2
/�/
/ /�/
/ /
/�/8�Y
: 8�9
: 8
Y�:
8�9
: /�/
/ 8
9�:
/�/
/ /
/�/

This query could have been answered more conventionally:
����	
���� *�2
� �� �� !"��#�$%	&'#
(�) ���"� �0*�"���5+.-} 6�o*�"���,+e:��
�&�"2 �"�����e`49�W

The use of the or in this answer should not surprise us. The union of two sets, A and B, is
the set whose elements are in A or B (or both).

Example 7.15 List the results for assignment 1, and give zero to any student who did not
submit any work at all.

����	
���� *�2\JK�"�����
� �� �� !"��#�$%	&'#
(�) ���"� *�"���,+.-
� ���& 6�
����	
���� *�2\J]W
� �� �� ��
$"2��&��'#=�
(�) ���"� �� �a��q��
#�'#.�<����	����� B

� �" �� !"��#�$%	&'#
(�) �6�"� *�"���,+.-
�&�"2 *�2a+a��@Q*�2'�

In the previous example, it was possible for the two sets of students involved to overlap. A
student might get less than 70 in both items of assessment. In this example, however, the
two sets should be disjoint. The two queries would give rise to the following amalgamation.

160 Chapter 7

/�/
/�/�/�/�/
/�/�/ /�/
/�/�/�/�/
/�/�/ /�/�/�/
/�/�/�/�/
/*�2 �"����� $
�b�& 6� *�2 W + *�2 �"�6�����
/�/
/�/�/�/�/
/�/�/ /�/
/�/�/�/�/
/�/�/ /�/�/�/
/�/�/�/�/
/8�9'- 8�W 8�p'- W 8�p�- W
8�Y
: Y�W /�/
/�/�/�/�/
/�/�/ 8 1�| 9�W
8 16| 9�W 8�Y�: Y�W
8�9
: 1�1 8�Y�8 X�W
8�Y
8 X�W 8�Y�X 9�W
8�Y
X 9�W 8�9�- 8�W
/�/
/�/�/�/�/
/�/�/ 8�9�: 1�1

/�/�/�/
/�/�/�/�/
/
The first query gets item 1 results and the second supplements these with a zero mark for
any student who did not do this assignment.

The result has been shown in Id order. SQL may decide that the easiest way of
performing a union is first to sort the sets involved and then to merge them.

Example 7.16 List the results for assignment 1. Give a zero to any student who did
not do this assignment. Take 5 marks off any student who submitted it after the due date.
Produce the list in order of merit.

����	
���� !L@Q*�2\J�!�@_�"�����
� �� �� !"��#�$%	&'#P!�JOV'#�#6�"#�#EV
(�) ���"� !L@Q*�"���5+7VL@<*�"���
�&�"2 !L@Q*�"���5+?-
�&�"2 !L@>�6$�M&�����"��2S`�+4VL@_U
$"�
� ���& 6�
����	
���� !L@Q*�2\J�!�@_�"����� / 1� �� �� !"��#�$%	&'#P!�JOV'#�#6�"#�#EV
(�) ���"� !L@Q*�"���5+7VL@<*�"���
�&�"2 !L@Q*�"���5+?-
�&�"2 !L@>�6$�M&�����"��2SR^VL@_U
$��
� ���& 6�
����	
���� *�2\J]W
� �� �� ��
$"2��&��'#=�
(�) ���"� �� �a��q��
#�'#.�<����	����� B

� �" �� !"��#�$%	&'#
(�) �6�"� *�"���,+.-
�&�"2 *�2a+a��@Q*�2'�

[6��2����SM�He:72��"#��
Three separate queries are used. The first identifies those who submitted on or before the
due date. The second takes 5 marks off anyone who submitted after that date. The third
“awards" a zero to anybody who failed to submit at all. They will give rise to the following
union:

SQL Modularization 161

/�/
/�/�/�/�/
/�/�/ /�/�/
/�/�/�/�/
/�/�/ /�/
/�/�/�/�/
/�/�/�/*�2 �"����� $��b�& &� *�2 �"�����"� $��b�� 6� *�2 �"���
���
/�/
/�/�/�/�/
/�/�/ /�/�/
/�/�/�/�/
/�/�/ /�/
/�/�/�/�/
/�/�/�/8�9'- 8�W 8�9�: 1 W 8�p'- W
8�Y
: Y�W 8�Y�X Y 1 /�/
/�/�/�/�/
/�/�/�/8 16| 9�W /�/�/
/�/�/�/�/
/�/�/8�Y
8 X�W
/�/
/�/�/�/�/
/�/�/

The
 ���2����

clause requires that the results of the union be displayed in descending order of
the second column. So the final table is:

/�/
/�/�/�/�/
/�/�/�/*�2 �"�����"�
/�/
/�/�/�/�/
/�/�/�/8�Y
8 X
W
8�9'- 8
W
8 16| 9
W
8�Y
X Y 1
8�Y
: Y
W
8�9
: 1 W
8�p'- W
/�/
/�/�/�/�/
/�/�/�/

In the final table, the second column is headed
�"�����"�

. The question mark is there to indicate
that while we know that the column represents marks, SQL has no such knowledge. As far
as SQL is concerned, the values in this column have three sources.

� Four values are taken directly from the database.
� Two are the results of calculations.
� One is generated by a

#6��	
�"��
clause.

The three
#6��	
����

statements in the above union correspond to three organizational
rules regarding the submission of work.

1.
* �

a submission is made on time��t����
no penalty is occurred.

2.
* �

a submission is late��t����
a 5 point penalty is applied.

3.
* �

no submission is made at all��t����
a mark of zero is awarded.

7.10 Union Usage

The union operator can be used to merge essentially similar items of information obtained
from two or more separate queries. The information may come from quite different parts
of the database. It may even be constructed by one of the participating queries.

There are, unfortunately, a number of restrictions on the use of the union.

162 Chapter 7

� The corresponding items in each
#6��	
����

clause must have matching data types. So
we cannot merge an

�0��"��m"�6�
column with anything but another

����"��m"���
column. We

cannot even merge
�) ���\� | �

with
�) ���\� 1 �

as the lengths must also match.
� The items to be merged must have matching nullity. We cannot merge a column that

might contain nulls with one that cannot.
� The order clause appears once only at the end, if at all. The columns used in the sort

must be identified by number.
� In some versions of SQL, the union cannot be used within a subquery.
� In some versions of SQL, the union cannot be used in the definition of a view. See the

following section.

The first three restrictions are ones we can live with. In versions where the latter two apply,
they limit the power of SQL considerably.

The union does give us the ability to perform
* � @�@�@ �
t���� @�@
@ � F�� � @
@�@

queries. Some
problems are best thought of in the following terms:

* �
condition��t����
extract certain information� F�� �
extract some alternative information

This kind of query can be converted to a union query using the following template:

����	����� �6����"�����r���"3� 6�&������� 6�
� �" �� @�@�@
(�) �6�"� �6 6�"2'����& 6�
� �b�� 6�
����	����� ��	6"�����������l��7���"3� ��&����'�& 6�
� �" �� @�@�@
(�) �6�"� ����l"���%#6� / �6 &�"2'����� 6�

7.11 Views

In Chapter 3, where sets were introduced, it was stated that there are two ways of specifying
a set: in extension and by comprehension. The base tables are sets in extension. A view
is a name given to a set defined by comprehension. The view mechanism is the third kind
of query modularization to be considered in this chapter. The result of an SQL query is
always shown as a table. A view is simply a name that we give to a result table.

Example 7.17 Define a view containing the results of the first assignment.

�
������"�^���&� f V'#�#��'-��#}����	
����o*�2\J]�6$�M6�����"�
2\J��"�����
� �" �� !���#�$%	6%#
(�) ���"� *�"���,+?-

SQL Modularization 163

V'#
#��'-
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/�/�/*�2 �6$�M6�g���"�
2 �"�6���
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/�/�/8�9'- W�X�W�8 8
W
8�Y
: W�X�W�9 Y
W
8 16| W�X�W�8 9
W
8�9
: W�X�-�W 1
1
8�Y
8 W�X�W�Y X
W
8�Y
X W�X�W�X 9
W
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/�/�/

We can now, with certain restrictions, use this view as if it is a database table.
����	
���� *�2\JK�"�����
� �� �� V'#�#��'-
(�) ���"� �"�����eR49�W

/�/
/�/�/�/�/
/�/�/*�2 �"�����
/�/
/�/�/�/�/
/�/�/8�Y
8 X�W
8�9'- 8�W
/�/
/�/�/�/�/
/�/�/

We can join the view to other tables, for example, to display the names of the two students
above.

����	
���� ��@Q*�2\J � ���'#��JKF���#��JK�"���
�
� �� �� ��
$"2��&��'#=�NJOV'#�#6�'-�V
(�) ���"� ��@Q*�24+4VL@Q*�2
�&�"2 �"�����eR49�W

/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/�/�/
/�/
/
/*�2 � ���'#� F���#� �������
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/�/�/
/�/
/
/8�Y
8 (�6	�	 n����"M� �	 X�W
8�9'- t �6��# �6$�Z
Z 8�W
/�/
/�/�/�/�/
/�/�/�/�/
/�/�/�/�/�/�/�/�/�/
/�/
/
/

However, a view has no real existence as a separate table; it merely exists as a definition in
the system catalog.

In this example, we have given the name
V'#�#��%-

to a particular subset of the
!"��#�$%	6'#

table. From now on, any usage of that name is a reference to that set. The set of values
defined is dynamic. It is not necessarily the set of values that apply when the view is
defined. It is the set applying whenever the view is used in a query. The membership of
this set may vary from time to time because the underlying table may be updated from time
to time.

164 Chapter 7

Example 7.18 Create a view of the overall results for each student.�
������"�^���&� f [6l"���"��	�	A�0*�2NJ � �"��	����#}����	
���� !L@Q*�2\Jx#�$6���>!L@_�"���
�'B�VL@ (�%��m) "s'-�W�W%�
� �" �� !"��#�$%	6'#P!\J]V'#
#6��#�#EV
(�) ���"� !L@Q*�"���5+4VL@Q*�"���
n
�" 6$�Z4M�H7!L@Q*�2

With this view, it is as if we now had a table called
[6l����"��	�	

in the database. The names
of the columns in this new table are given in brackets after the view name. If no names are
given in this way then SQL takes them from the

#6��	
����
clause. In this example, column

names must be provided because one of the columns involves a calculation.
Unfortunately, we cannot join this table with the Students table to name the students.

Naturally, we would like to be able to do something like the following.����	
���� ��@Q*�2\J � ���'#��JKF���#��J � ����	
� �� �� ��
$"2��&��'#=�NJx[6l"�6�"��	�	^[
(�) ���"� ��@Q*�24+e[\@Q*�2
[6��2����SM�H � �"��	}2���#��

When a view has been constructed with the aid of a
m
�" 6$�ZSM�H

clause, it cannot be joined
to another table or view.

Another restriction results from the use of a built-in function in the view definition. The� �"��	
column is based on a

#�$&�
function. For any view column derived in this way, SQL

prevents us from using the column in the condition of a f) ����� clause. For example, we
might like to list those who passed the subject,

����	
����5B � �� ��o[6l"���"��	�	 (�) ����� � �"��	
R�+ 1 W

. This is not allowed.
Nor can we use such a column in a built-in function, for example, to find the top mark,����	
�"��=����q\� � �"��	"� � �" ��o[6l����"��	�	

. This is forbidden also.

7.12 View Usage

In its view facility, SQL shows us a glimpse of a marvellous chance to be able to:
� exclude unwanted information from the view user by making the view incorporate

only the information wanted by the view user;� hide information that is not the business of the user by making the view contain only
what the user needs to know; and by granting the user access to that view alone; and� perform complex calculations for the user and present a result table that can be treated
like any other table.

Unfortunately, SQL then neuters the facility with a whole series of limitations on how
the view can be used, saying, in effect “you can treat a view as if it is just another database
table except when . . . and when . . . and when . . .".

7.13 Summary

In this chapter, we have extended the retrieval capabilities of SQL that were introduced in
Chapter 6. That chapter showed three simple forms of SQL query whereby information
may be extracted from a table.

SQL Modularization 165

� We can extract from some table the rows and columns that we want.
� We can partition a table into groups and summarize each group.
� We can summarize an entire table in a single line.

This chapter showed three ways in which simple queries may be combined to form
more complex ones.

� We can nest queries so that the results of one query are passed directly to another.
� We can use the union operator to amalgamate the results of two or more queries to

form a single result table.
� We can use the view facility to name a query and then refer to the results of that query

in subsequent retrievals.

These extensions of the basic retrieval mechanisms allow us to respond to a complex request
for information. We construct an answer from more simple queries and combine these to
form a single result table. This process is similar to the way in which complex programs
may be constructed from simpler program modules. Hence we have put query nesting, the
union operator and the view mechanism under the joint title of SQL modularization.

166 Chapter 7

Exercises

Q7.1 The �P���z�'�z���g� Database
� �� 6Z�	
�
/�/�/�/
/�/�/�/�/
/�/�/�/�/
/
/�/�/�/�/
/
/�/
/�/�/�/
/
/�/
/�/�/�/�/�/�/
/�/�/�/�/�/�/
/�/
/� ����� V�m�� ����q � ���
��# F'���"�"# U��
#6	����"��#
/�/�/�/
/�/�/�/�/
/�/�/�/�/
/
/�/�/�/�/
/
/�/
/�/�/�/
/
/�/
/�/�/�/�/�/�/
/�/�/�/�/�/�/
/�/
/Gb�6	�	 1
1 � -�8�W�W�W m" �	�3 Z� �	"����
��#
�6$�� :
8 3 - 1 W�W�W ��$�#���� M����6�
*�l"�6� -�X � : 1�1 W�W 3� � ��M���	�	 2��6�'������m
U"��l"� :'- � -�8�W�W�W ��$�#���� #�Z� 6��
� $"2
H p
p 3 :�8�W�W�W f ��	6�'����m ���6�
I"���"�&� | - 3 | 8�W�W�W 2��6��������m ����F
V�	
�6� | W � |"1 W�W�W m" �	�3 m" �	63
�"����� p
: � -�9 1 W�W 3� � ��M���	�	 ��	"�&) �	
�"������ -�8 � -�9 1 W�W 2��6��������m f ������� �6$%	 : 1 � Y�: 1 W�W ��$�#���� #�
$�2��6��'#
� ��� p
: � p�8 1 W�W #&��$��"#) ��	"�&) �	
I"��) H -�X 3 - |"1 W�W 2��6��������m Z� �	"����
��#
/�/�/�/
/�/�/�/�/
/�/�/�/�/
/
/�/�/�/�/
/
/�/
/�/�/�/
/
/�/
/�/�/�/�/�/�/
/�/�/�/�/�/�/
/�/
/

Required:

Write nested queries to satisfy the requirements below.

a. Who earns the most?

b. Which men earn less than the average male earnings?

c. Who likes the same thing as Mario?

d. Who dislikes students, politics or SQL? [Use a simple
���

]

e. Which men earn more than all women? [Use
��	�	

]

f. Which women earn more than at least one man? [Use
�6��H

]

g. Which men like things liked by females? [Use
���

]

h. Which women are older than Kathy?

Q7.2 Use the union operator to satisfy the following requirements.

a. Find out how many men and women there are in the table.
Produce a table like this:

/�/�/�/
/�/�/�/�/
/�/�"�6� 8
(����&� |
/�/�/�/
/�/�/�/�/
/�/

b. People under 30 are classified as young; those between 30 and 49 are middle-
aged and those 50 or over are elderly. Produce a table showing how many
men there are in each age range.

SQL Modularization 167

/�/�/�/
/�/�/�/�/
/�/�/�/�/
/H" 6$���m |
����2�2�	
� / ��m��
2 p
��	�2��6��	6H -
/�/�/�/
/�/�/�/�/
/�/�/�/�/
/

c. It is time to send out the annual accounts. The fees charged depend upon how
much a member earns.

Earns Fee
under 15 000 0.5%
15 000 – 29 999 0.75%
30 000 and above 1.25%

Display all members, their incomes and the fees payable.

Q7.3 Define views to satisfy the following requirements.

a. Create a view
�"�6�

that contains details of all men in the
� �� 6Z%	
�

table.

b. Create a view
!��
�) � � �����NJO���6q�J�*����6 ��'�%�

which contains information on
people who earn $40 000 or more.

c. Use the views
�"�6�

and
!��
�)

to create a view
!����) �6�"�&�j� � �����NJ�V�m��NJ (���) �

.

Q7.4 ���A�'�z�7 ¡�g���%¢b£"��£
All of the following exercises are base upon the Rocky Concrete database described in the
exercises at the end of the preceding chapter.

Simple Nested Queries (SN)
These are queries to be answered by simple nested queries. Use of more than one table
might be required; also, queries might be nested to more than one level.

SN1. What is the name of the customer with the largest credit limit?

SN2. What is the name and number of the customer most over his or her credit limit?

SN3. What is the name of the customer who made the latest order? (nested 2 deep)

SN4. Describe the product that is normally the most expensive.

SN5. What product costs the most to remake?

SN6. Which customers have a larger credit limit than customer 2255?

SN7. Name the customer(s) that paid the most for a small septic tank. (
Z��"
2"�"�&
2��}+D¤�� � V � I�¤

)

SN8. On what date did we get our most valuable order ever?

SN9. What is the name of the customer that ordered our first garden gnome? (least order
no. involving prod code

n � [6� �
).

SN10. For each customer that has not yet ordered this year, say 1991, give their number,
name and the date on which they last ordered.

168 Chapter 7

In Queries (IQ)
These queries are to be answered using

���
or
�� �r���

expressions.

IQ1. Give the names and addresses of all customers who made orders on 12 August 1991.

IQ2. List the names of all customers who ordered garden gnomes in April 1991 (same as
JQ7).

IQ3. List the product code and description of those products that were involved in order
no. 1234.

IQ4. List the names of all customers who have made orders worth more than $1000 in
total.

IQ5. List the number of orders made in April 1991 by customers from Bundaberg.

IQ6. For each product that requires remaking, list the product code and the total value of
orders taken in April 1991.

IQ7. List the product codes of those products sold to Gympie customers in July 1991
(double

���
).

IQ8. On what days in April 1991 were individual orders for more than one garden gnome
taken?

IQ9. List the names of customers who did not order in 1991.

IQ10. What are the product codes of products not ordered in July 1991?

Complex Group-by Queries (CG)
These queries are to be answered using a

m��" &$�Z4M�H
clause. They may require

�&��H
or
��	
	

clauses, subqueries and more than one table.

CG1. Which product has led to the biggest volume of sales, in terms of units sold?

CG2. Which product has been the most valuable, in terms of value of orders taken?

CG3. Which order(s) contained the greatest number of lines? Give the order no. only.

CG4. Which customers are based in the town with the largest average current balance?

CG5. Give details of customers based in the town with the lowest maximum credit limit.

CG6. In which towns are there customers with more than twice the average available
credit for that town? Give the number of such customers in each town.

CG7. What was our most successful day in terms of value of orders taken?

CG8. List the order no. and order date of all those 1991 orders that involved the most
popular product of that year (popularity measured in terms of units sold).

CG9. Which product group represents the biggest proportion of the total value of stock
on hand?

CG10. List customers based in Bundaberg that made less than 10 orders in 1991.

Correlated Subqueries (CR)
These queries are to be answered using correlated subqueries.

SQL Modularization 169

CR1. List the product code and description of those products that have, at some time,
been sold below list price.

CR2. For each town, list the customers based in that town that have less than the average
current balance for that town.

CR3. For each product group, list the product code, description and list price of the most
expensive product in that group.

CR4. For the product with the code
n � [6� �

, list the addresses of all customers that ordered
that product between 1 April and 16 May 1991.

Exists Queries (EQ)
These queries are to be answered using

��q��
#�%#
or
�� 65��q'�
#�'#

expressions.

EQ1. List any orders for which there is no corresponding customer.

EQ2. List order details for which there is no corresponding order.

EQ3. List order details for which there is no corresponding product.

EQ4. List orders for which there is no order detail.

EQ5. List any customers that have never ordered.

EQ6. List any products that have never been ordered.

Union Queries (UQ)
These queries are to be answered using the

$��b�& 6�
operator to merge the results of two or

more separate select statements.

UQ1. List the name and address of customers based in the towns of Bundaberg or
Toowoomba.

UQ2. List the product code and description of all those products that have either been
ordered in April 1991 or that were ordered at least twice in May 1991.

UQ3. For all products, list the product code, the total value of orders taken and the
description (some products may never have been ordered).

UQ4. For all customers, list the customer no., the name and the total value of orders
made. Produce the list in descending value of orders (some customers may never
have made an order).

Chapter 8
Facts and Relations

8.1 Introduction

A fact is a declarative sentence; that is, it is a statement which may be either true or false.
It describes a particular relationship between two or more things or entities; for example:

���������	��
����
�������������
�������������
�������� �

We use computers when we have lots of similar facts to remember.

�������!��
��"���#����$�
��������%��&�'�()��*+�
,�
�&��%���'�'���'������$��
��������%-���.������� �
���������0/�1�2�3�&��4��'��5�����6��
��������%*�14�"��������7�8�
9 9 9 9 9 9

When we recognize that certain facts are similar, we can generalize them into a fact type
which is a relationship between two types of entity rather than between individual entities.
In this case the relationship is between people and countries. Or is it? Perhaps it’s between
comedians and countries, or between men and countries? To be more certain we need to
investigate the universe of discourse or UoD which is simply the situation that we intend
representing in our information system. In attempting to design the most appropriate
database structure for a given situation, we need to know the kinds of things that are
involved and the kinds of facts that relate them.

Fact types are not stored individually; rather, they are embedded within relations with
each relation dedicated to representing a fixed number of fact types. This chapter looks at
some of the problems we face when deciding where to place a fact type when designing
a database. We will find that each fact type may be merged or grouped only with certain
others. Some we will be unable to merge; they must remain on their own. We will use
conceptual schema diagrams to help achieve this grouping. These diagrams are used to
depict the knowledge we need to design a database.

:<;>=

Facts and Relations 171

8.2 Facts

Consider this statement:

/�����������"?'�0����@�'���A�
���B+�

This is an example of a fact. Is it a fact more about Harry than New York? It seems to be
more about Harry. Why is this so?

If we wanted to represent many facts of this particular type, we could tabulate them.

CD��?'���E��
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�FG'��D��
�� �D�"���
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F/������� @'��	A
���B
����14��' ��������'��
,�
�&�� @'��	A
���B
��1' G'�����&
*���.�14� *���'�����'�'��
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F

This table or relation has five rows, one for each person. In contrast, one of the cities, New
York, appears in two of the rows. Perhaps this was what made us think that H /�������%���"?'��
���%@'��	A
���B � H is a fact about Harry rather than New York. In general, the H ��"?'��0��� H
fact type is a fact about people rather than cities. As a rule, a person lives in just one city,
but a city will have many residents.

The relation is called a binary relation because it has two attributes. This binary table
has two important features that might easily go unnoticed.

1. People’s first names have been used to represent or symbolize the people concerned.
A one-for-one substitution has been made. This will probably not be satisfactory if the
set of people is large. Also, city names have been used to represent the cities. This
does not seem quite so likely to lead to problems. This symbolism may be disclosed if
we rewrite one of the facts rather pedantically as:

I�&�'!G�-�J��K�@#���"��&0��&'	LD���D�7�!���"2D'NMO/�������PM
���"?'��	���
��&�'#�DE"I�A#������&	��&�'!���"24'QMR@'��%A�
���B8M�

2. The
���"?'�0���

relationship between each person and a city has been made identical
and can hence be used as a heading. This is an example of abstraction at work, the
suppression of what is considered to be irrelevant detail. Harry might be happy in New
York and Bruce bored in Sydney. We can’t tell from this table; all that we can say is
that Harry lives in New York and Bruce in Sydney. This is the price we pay for the
simplicity of a tabular representation.

This method of fact expression is called the “telephone heuristic". We imagine that we are
trying to communicate the fact down a rather bad line to a rather dim-witted friend. It also
helps to remind us that

MR/�������8M
and

MR@'��	A
���B8M
are merely symbols or labels that we

172 Chapter 8

stick on these two objects and that naming is the particular form of labeling that we used
for both.

Finally, the particular method of writing the fact:

/�����������"?'�0����@�'���A�
���B+�

is just one way of stating the information; we could equally have written it as:

@'���A
���BS���$��&�'#�'����7��'��4��'!
�L0/��������+�

The two sentences have the same meaning. This second form is rather awkward. Perhaps
that is why we prefer to think of it as a fact about Harry.

What the two forms help to show is the role that each entity plays in the relation-
ship. Harry plays a

���"?'��	���
role with regard to New York; and New York plays a�'����"��'��4��'�
�L

role with respect to Harry. We can now display the entire fact type
schematically ; that is, we can show the basic structure of the fact in terms of:

T the kinds of things that participate in the fact; and
T the roles taken by each kind of thing involved.

Person
(first name)

City
(name)

is the
residence

of
lives in

1. The fact is one between people and cities; or between a
G'��)��
��

type and a
�D�"���

type.
These are the entity types involved.

2. Each individual person is represented or symbolized by his or her name. Each city is
represented by its name. The manner of representation is shown in brackets below the
entity type.

3. The roles that each entity plays in the relationship have been shown alongside the
corresponding role box.

We need to be able to generalize from specific facts relating specific objects to the corre-
sponding fact type. When designing a database, we are very much concerned with and, of
necessity, restricted to the type of information to be stored. We have no way of knowing
the information that will actually be stored in the relations we design.

What about this fact?
Suppose we have more facts to record. Here is one of them.

@'���A
���BS���	������&�'!(���*+�

Is this a fact about New York or about the USA? More about New York, it would seem.
Again, if we had many facts of this kind, we could tabulate them.

Facts and Relations 173

C�
�����'��)E��
F�D����� ��
�1��������
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F@'���A
���B ()��*
��������'�� *�1D�7���������
G'�����& *�1D�7���������
*��'�����'�'�� ����
����������
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F

Each fact relates a city to a country. The first row of the table can be expressed as:
I�&'	�DE�I�A#���"��&	��&�'�����24'QMR@'��	A
���B8M
���#��
������'��U���
��&'	�K"(@�I�J�A����"��&	��&�'!���"2D'NMV()��*8M

The alternative phrasing, putting the country as the subject of the sentence might be:
I�&'	�K"(@�I�J�A����"��&	��&�'!���"2D'NMV()��*8M
������&�'%��
������4��
��0
�L
��&'	�DE�I�A#���"��&	��&�'�����24'QMR@'��	A
���B8M�

So the City entity type plays the role
���0��
�����'��U�>�

in the fact type and the Country
entity type plays the role

������&�'	��
������4��
��0
�L
. We can now represent this fact type

diagrammatically.

City
(name)

Country
(name)

is the
location

of

is
located

in

As before, the diagram emphasizes the two types of entity that participate in the fact
and the role that each entity plays. However, rather than representing each new fact type
as a separate diagram, we will extend the diagram to include additional fact types.

is located inlives in

Person City Country

In this way we get a composite picture of the relationship between people, cities and
countries. The two fact types involving cities are seen as stemming from the one City entity
type.

8.3 A Simple Design

Suppose these two fact types were all that we wished to record. We might, quite innocently,
decide to incorporate them in a single relation.

174 Chapter 8
CD�"?'��E�� C�
�����'��)E�� W�'���.'�I����)��'
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F F�FG'��D��
�� �D�"��� X%�D����� ��
�1�������� Y	G�'��D��
�� �D�"��� ��
�1��������
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F F�F/������� @'��	A
���B @'���A
���B ()��* /�������� @'��	A
���B (���*
����14��' ��������'�� ��������'�� *�14�"��������7� ����14��' ��������'�� *�14�7����������
,�
�&�� @'��	A
���B G'�����& *�14�"��������7� ,�
�&�� @'��	A
���B (���*
��1�' G'�����& *��'�����'�'�� ����
��������� ��1�' G'�����& *�14�7����������
*���.�1D� *���'�����'�'�� F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F *���.�14� *���'�����'�'�� ���
���������
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F F�F

Figure 8.1 Merging fact types

Is anything amiss here? We have had to incorporate a little bit of redundancy in the
table. The fact that

@'��%A�
���BS���%������&�'�()��*
has been recorded twice, once for each

person who lives there. If there were 100 people recorded as living in New York then the
location of New York would also be recorded 100 times. Worse, if New York was likely
to move from one country to another then we would have to remember to make changes to
every one of the rows involving that city. Otherwise we risk recording New York as being
located in more than one country. Fortunately, this is not the case! What is perhaps even
worse is that should Bruce decide to leave Sydney and live in New York, we would lose
our knowledge of Sydney’s location entirely.

Conclusion: There can be no doubt. Fact types cannot arbitrarily be thrown together
into the same relation without the risk of redundancy and its associated problems arising.

8.4 An Experiment

Perhaps the problem arose because we mixed facts about people with facts about cities.
Hypothesis: We should keep facts about one type of thing separate from facts about

some other kind of thing. So, in the above examples we should have one relation for facts
about people and another for facts about cities. Now we would record the location of New
York only once no matter how many people we know there; and also, should Bruce move
there from Sydney, we would retain our knowledge of Sydney.

Experiment: We need to introduce another fact about people. Suppose the following
sentence is true:

*���.�14�6��
���B)�����#�!��'�����'��+�
This seems to be a fact about Angus rather than about welding. Suppose we know the
following facts about people and their jobs:

/�������#��
���B)�����#�U�7�
�7B����
�B'��+�
����14��'���
���B)�����#���Z���"�
��+�
,�
�&��0��
���BD�����!�!���)�"�'��+�
��1'#��
���BD�����!�#�'�����'�� �
*���.�14�6��
���B)�����#�!��'�����'��+�

We can construct a corresponding [
���B)�7*D� table and compare it against the
CD�"?'���E��

table.
The result is shown in Figure 8.2. The

CD�"?�'���E��
and [
���BD�"*D� tables can be merged without

Facts and Relations 175

redundancy arising. This is possible because there is one row per person in both tables.

CD��?'���E�� [
���BD�7*)�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�FG'��D��
�� �D�"��� G�'��D��
�� ,�
��
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F/������� @'��	A
���B /�������� �7�
��"B����
�B�'��

G'�
�3)��' Y ����14��' �������'�� X ����14��' ���7�
��
,�
�&�� @'��	A
���B ,�
�&�� ���)�"��'��
��1' G'�����& ��1�' ��'�����'��
*���.�14� *���'�����'�'�� *���.�14� ��'�����'��
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F
F�FG'��D��
�� �D�"��� ,�
��
F�F/������� @'��	A
���B �7�
��"B����
�B�'��

Y ����14��' �������'�� ���7�
��
,�
�&�� @'��	A
���B ���)�"��'��
��1' G'�����& ��'�����'��
*���.�14� *���'�����'�'�� ��'�����'��
F�F

Figure 8.2 Merging single-valued facts

The merging is straightforward. The resulting table has been called
G'�
�3)��'

because it
contains facts about people. We can add this new fact directly to the previous diagram.

Person City Country

Job

lives in is located in

works as

8.5 Another Experiment

Just to be safe we had better try some more sample data. Consider this fact:

/�������#3)�����)�#��\�1�����&]�

176 Chapter 8

This looks like another fact about Harry. Let us gather all facts of this kind. Harry plays
squash; Bruce plays tennis and golf; and both Harry and Angus play football.

This data could be presented as a table in the following way.
G������D�7*��
F�FG'��D��
�� ��3�
����)�
F�F/������� ��\�1�����& ^_L�
�
����������
����14��' �'��������`^a.
���L
*���.�14� L�
�
���������
F�F

This seems a very natural way of tabulating the data, but SQL is not very adept at handling
multi-valued or set-valued columns, such as the

��3�
����)�
column above.

Example 8.1 Who plays football?
��'���'��7� G'��D��
��
b���
"2 G������D�"*��
[&'��' ��3�
����)�����"B'QMdc�L�
�
�����������cPM
F�F�F�F�F�FG'��D��
��
F�F�F�F�F�F/�������
*���.�14�
F�F�F�F�F�F

We would need to use the
���"B'

operator to search for an occurrence of the word
L�
�
����������

somewhere within the
��3�
����D�

attribute.

Example 8.2 Harry no longer plays squash. Amend his entry.
We would need to be able to unpick one sport from the list of sports and rejoin the result in
some way. The problem is overcome by having one row for each sport that a person plays.

G������D�7*��
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�FG'��D��
�� ��3�
����
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F/������� ��\�1�����&
����14��' �'��������
����14��' .
���L
/������� L�
�
���������
*���.�14� L�
�
���������
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F

Now if Harry’s doctor tells him to quit squash, we can easily amend the table.
e'���'��'
b���
"2 G������D�7*��

Facts and Relations 177

[&'��' G'��)��
��	YfMR/�������8M
���� ��3�
���� YfMg��\�1���"& M

With this way of presenting the sports data, writing SQL is easier, but we are left with other
difficulties. What if we merge

CD�"?'��E��
and

G�����D�7*��
? If we combine the tables, we get:

G'�
�3)��'
F�FG'��D��
�� �D�"��� ��3�
����
F�F/������� @'��	A
���B ��\�1���"&
/������� @'��	A
���B L�
�
����������
����14��' ��������'�� �'����4���
����14��' ��������'�� .
���L
,�
�&�� @'��	A
���B h
��1' G'�����& h
*���.�14� *���'�����'�'�� L�
�
����������
F�F

John and Sue play no sport and null values have had to be introduced for this reason.
However, this is not a problem. What is a nuisance is that, despite both being facts about
people, redundancy has arisen in the combined table. This is a direct result of the two
people who play more than one sport.

Conclusion: We can merge fact types about the same kind of thing, but only under
certain circumstances.

What are these circumstances? If we summarize the fact types involving people, we
have:

Related Number that one person
Fact type entity type may relate to
���"?'�%�>�

City one��
���B)�!��
Job one3)�����)�!���

Sport many

1. The first line in the table states that a person lives in only one city. A person’s city of
residence is a single-valued fact about that person.

2. The second line says that a person’s job is also a single-valued fact about a person. In
our universe of discourse, a person has only one job.

3. On the other hand, the third line states that a person may play many sports. The sport
a person plays is a many-valued fact about a person.

The circumstances under which we can merge two fact types occur when:

T both fact types are directly concerned about the same kind of thing, that is, one of the
sets participates in both fact types; and

T these facts are both single-valued facts about that kind of thing.

178 Chapter 8

We need some way of differentiating single-valued facts from many-valued facts. What
we need, in effect, is to decide how the things participate in the relation. Does a person
live in one city or many? Does a person play one sport or many?

We can add this new fact to our conceptual schema diagram. At the same time we can
annotate the diagram to show these uniqueness constraints: see Figure 8.3.

Person City Country

Job

Sport

lives in is located in

works as

plays

Figure 8.3 Introducing uniqueness constraints

A bar is put alongside the appropriate role box to indicate the following knowledge:

T Each person lives in one city.

T Each person works at one job.

T Each city is located in just one country.

But for the fact about sports, the bar goes alongside both role boxes which indicates that:

T A person may play many sports and a sport may be played by many people.

So the diagram tells at a glance what facts about people may be merged. A bar alongside a
role box to which an entity type is attached indicates a single-valued, and hence mergeable,
fact about that entity. Once we have the bars marked, it is relatively easy to decide what
may be merged. But first we must learn how to place these bars. We will do that in the
following section.

Facts and Relations 179

8.6 Uniqueness Constraints

Let us return to the first fact type, one example of which was that Harry lives in New York.
This fact type is represented schematically:

Person City

lives in

To find out whether this is a single-valued fact about a person, or a city, or both, we ask
ourselves two simple questions.

Q1. Does any person live in more than one city?

We can’t answer that question without being sure about the set of people we are modeling.
And we are not merely interested in the people that we know now. The relations in our
database are dynamic data objects; their contents can be expected to vary over time.

The tabulated form of the facts was as follows:

CD��?'���E��
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�FG'��D��
�� �D�"���
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F/������� @'��	A
���B
����14��' ��������'��
,�
�&�� @'��	A
���B
��1' G'�����&
*���.�14� *���'�����'�'��
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F

Let us suppose that this table contains a significant set of facts of this type; that is, it may
not be the entire set, either currently or in the future, but it is extensive enough to enable us
to generalize about the nature of the relationship.

Suppose we again ask the question.

Q1. Does any person live in more than one city?

Using our sample data, the answer is ikj . Each person appears only once. There is no
repetition in the

G'��D��
��
column. This restriction is called a uniqueness constraint. We

signify this constraint by placing a bar over, under or alongside the role box to which the
Person entity type is connected, that is, to the

���"?'�0���
role box.

180 Chapter 8

CityPerson

lives in

We can now move on to the second question that we ask of ourselves.

Q2. Is any city the residence of more than one person?

This time, assuming our data is reliable, the answer is l`m�n ; two people whom we know
live in New York. This means that the

������&�'!�'����7��'��4��'!
�L
role is unconstrained and

so we leave the corresponding role box unmarked.
In summary, to find out whether there are any uniqueness constraints in a fact type, we

take the entity types and each role and form these into an “Is any o�o�o�o�o�o o�o�o�o�o�o more
than one o�o�o�o�o�o�o�o�o�o�o ?" sentence framework. If the answer to any question posed this
way is ikj then there is a uniqueness constraint on the role.

Let us now try this technique with the fact type relating people and jobs. The sample
data was as follows, and it too is assumed to be significant.

[
���BD�7*D�FG'��D��
�� ,�
��
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F/������� �7�
��7B����
�B'��
����14��' ���7�
��
,�
�&�� ���)�"�'��
��1' ��'�����'��
*���.�14� ��'�����'��
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F

The two questions and their answers are:

Q1. Does any person work at more than one job?

The answer is ikj ; so there is a uniqueness constraint on the
��
���B%���

role.

Q2. Is any job (type) worked at by more than one person?

The answer is l`m)n ; there are two welders.

So the fact type has a uniqueness constraint placed over the
��
���BD�����

role box.

Person Job

works as

Facts and Relations 181

Next we can examine the facts we have about people and sports.

G������D�7*��
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�FG'��D��
�� ��3�
����
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F/������� ��\�1�����&
����14��' �'��������
����14��' .
���L
/������� L�
�
���������
*���.�14� L�
�
���������
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F

The two questions are as follows:

Q1. Does any person play at more than one sport?

The answer is l`m)n . Harry plays football and squash.

Q2. Is any sport played by more than one person?

l`m�n , both Harry and Angus play football.

The answer was l`m)n to both questions and so there no uniqueness constraint associated
with any individual role in this fact type. The pairing of a person with a sport is unrestricted.
But the combination will be unique; we do not expect to see the same row twice and so we
can say that there is a uniqueness constraint across the roles in conjunction. So we place a
bar alongside both role boxes.

Person Sport

plays

8.7 Single and Many-valued Fact Types

We saw, in Section 8.5, that we cannot mix single-valued facts about people, such as the
city they live in, with many-valued facts about people, such as the sports they play. If we
do mix them then redundancy can arise. How do we quickly decide whether a fact type
is single or many-valued? If we examine the conceptual schema so far, the answer should
become evident: see Figure 8.4.
We can tell at a glance that:

a person lives in one city;

a person works at one job;

but a person may play many sports.

182 Chapter 8

Person City Country

Job

Sport

lives in is located in

works as

plays

Figure 8.4 Single and many-valued fact types

The diagram allows us to easily decide which fact types may be aggregated. Instead of the
above diagram, we could have expressed the same situation using the notation introduced
in Chapter 2. This notation also tells us which of the relationships are functions.

���"?'�qp�G�'��D��
�� F X Fsr �D�������
���B)�qp�G�'��D��
�� F X Fsr ,�
��3)�����D� p�G'��)��
��ut FsFvr ��3�
������
��wp��D�"��� F X Fsr ��
�1��������

We can tell from these declarations that
���"?'�

and
��
���BD�

may be merged. They are both
functions, that is, they are both single-valued facts about the

G'��)��
��
entity type. If we

already have a notation for describing these ideas, why do we need another? The difference
is between a verbal notation and a visual one. With the verbal notation, we must scan the
relationships and decide for ourselves what facts may be merged. The conceptual schema
diagram, in contrast, helps to show that three of the facts apply to one entity type because
three arcs lead off the Person entity. What the graphical notation allows us to do is to
show the connectivity of the situation being modeled. If we try to write a single verbal
description of Harry, that is, if we write one sentence about him, we might write something
like this:

Harry plays squash and football; he works as a stockbroker and lives in New York
which is in the USA.

Facts and Relations 183

Because the sentence is a one-dimensional stream we are obliged to use pronouns to point
back to previously introduced objects. The “he" refers to Harry and the “which" to New
York. In a graphical representation, pointers are not required; we can directly connect the
objects.

Harry

plays plays

squash football

lives in New York located in USA

works as

stockbroker

A conceptual schema diagram merely tries to generalize these connections to express
something about the entire UoD rather than about a few individuals. It helps establish the
universe of discourse by allowing us to state the kinds of things that are to be found there,
whether they are connected and the nature of these connections. And it is the nature of
these connections that provides us with a design for our database. The diagram is a very
useful aid to database design. After that task has been done, we will no longer need the
diagram. It will have served its purpose.

8.8 Irreducible Facts

So far, all the facts we have discussed have been binary. They involved just two entity
types. It is quite common to have fact types that involve three, four, five or more entity
types. Suppose that some knowledge of the sporting ability of these people is revealed to
us. We are told this in sentences like the following.

/�������#3)�����)�#��\�1�����&	�'����P�

We can present all the information provided in tabular form.

F�FG'��D��
�� ��3�
���� ��B4�����
F�F/������� ��\�1�����& ��'����
/������� L�
�
��������� ��������
����14��' �'�������� ��'����
����14��' .
���L ��'����
*���.�14� L�
�
��������� ��������
F�F

184 Chapter 8

These facts are irreducible, which means that we cannot reduce them to simpler facts
without some loss of information. For example, take the two facts involving Harry:

/�������#3)�����)�#��\�1�����&	�'����P�
/�������#3)�����)�$L�
�
���������$���������+�

Suppose we split these facts as follows:

/�������#3)�����)�#��\�1�����&]�
/�������#3)�����)�#��
"24'��"3�
����#��'����P�
/�������#3)�����)�$L�
�
���������P�
/�������#3)�����)�#��
"24'��"3�
����#�������� �

Someone encountering these four facts, independently, would be unable to reconstruct the
two original sentences; and that is the situation with databases. Yet suppose the two facts:

/�������#3)�����)�������7\�1����"&+�
/�������#3)�����)�x��'����P�

come into the database at the same time. It would seem reasonable to expect the information
system to remember to make the connection. After all, we would. But the facts may end
up in separate rows of a table or even in separate tables; and there will be other similar facts
about Harry.

The only way that we can make the information system remember to make the con-
nection is for it to retain the connection. And that means simply keeping the fact as one
sentence:

/�������#3)�����)�#��\�1�����&	�'����P�

We can represent this three-part fact type diagrammatically: see Figure 8.5. Rather than
attempting to provide three different roles, it is simpler merely to show the outline of the
fact.

SkillPerson

Sport

. . . plays

Figure 8.5 An irreducible fact type

Facts and Relations 185

8.9 Nested Fact Types

The new fact type just introduced may not be merged with any of the other fact types
discussed so far. Can it ever be merged? To answer that question, we must first find out
whether there are any uniqueness constraints to be applied. There is such a constraint
because, at least judging from the sample data provided, each person plays a particular
sport with just one skill level: see Figure 8.6.

SkillPerson

Sport

Figure 8.6 A uniqueness constraint on two roles

The uniqueness constraint bar is drawn across the role boxes attached to both the Person
and the Sport entity types. This is consistent with the table where no two rows have the
same

G�'��D��
��	X%��3�
����
combination.

Another interpretation of this uniqueness constraint is to think of the fact as a single-
valued fact about a person’s sporting abilities with regard to his or her playing of some
given sport. It is not surprising that the skill levels are expressed in terms of adverbs
(“well", “badly") because the sentence is about the ability with which an individual plays
a particular sport. It is a fact about a fact. To emphasize this, we can redraw the three-part
fact type as a nested fact: see Figure 8.7. This nested form helps to emphasize that the skill
level is a fact about the playing of a sport. The relationship is said to be objectified; a fact
has been turned into an object. The fact type has been turned into a composite entity type,
with an entity circle (or ellipse) enclosing the role boxes that symbolize the relationship.

We can extend the diagram (see Figure 8.8) to incorporate any other single-valued facts
about the playing of sports. These could include the following.

T We may wish to record the club at which a person currently plays some given sport.
The word “currently" is a common way of making a fact single-valued.

T We may also wish to record the year in which they took up a sport. To discuss
when someone first (or last) did something is another common way of making a fact
single-valued.

Now we have three single-valued facts about a composite entity type. However, the
aggregation rule still applies. These three facts may be combined into the one table without
fear of redundancy. The table might look like this:

186 Chapter 8

Person

Skill

Sport

Figure 8.7 A nested fact type

G������D�
F�FG'��D��
���@��"24' ��3�
���� ��B4����� ��71�� I���B'�(�3�A'����
F�F/������� ��\�1�����& ��'���� /4���4� y"z�zDy
/������� L�
�
��������� �������� /4���4� y"z�zDy
����14��' �'�������� ��'���� ��\�1��>�4� y"z�{�|
����14��' .
���L ��'���� /4���4� y"z�zDy
*���.�14� L�
�
��������� �������� ��\�1��>�4� y"z�z�|
F�F

Note that the table incorporates the original fact concerning people and the sports they play.

8.10 Aggregation

Before discussing the process of turning a conceptual schema into a relational database
schema, we will introduce one final fact type. Suppose we want to record which languages
these people speak.

��3'���BD�

Facts and Relations 187

Person

Skill

Club

Year

Sport

plays with

plays for

took up in

Figure 8.8 Multiple nested facts

F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�FG'��D��
�� C�����.�1��.'
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F/������� ��3��������"&
/������� ,���3����'���'
/������� }�'���24���
,�
�&�� ��3��������"&
��1' }�'���24���
*���.�14� -���.������"&
*���.�14� }���'������
F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F

A person may speak many languages and a language may be spoken by many people;
thus it is a many-to-many relationship and is incorporated into the final conceptual schema
diagram which is shown in Figure 8.9.

188 Chapter 8

Person City Country

lives in is located in

Job

works as

Skill

Club

Year

Sport

plays with

plays for

took up in

Language

speaks

Figure 8.9 The final conceptual schema

Facts and Relations 189

8.10.1 Determinants

The conceptual schema indicates the following.

T We can safely merge “
���"?'�0���

" and “
�
���BD�����

" because they are both single-valued
facts about the same entity type.

T We can safely merge the “
3)�����D�x�4�"��&

", “
3)�����)��L�
��

" and “
��
�
�B#1�3����

" fact types
because they are all single-valued facts about the same complex entity type.

T We must leave the “
�"3�'���BD�

" relationship in a table of its own; it is many-to-many and
these may never be merged.

T We must also leave the “
���0��
������'��U���

" fact in a table of its own; but only because
there is no other single-valued fact about cities with which it may be merged.

Determinants

Wherever an entity type appears in a conceptual schema diagram and it is
connected to a role box against which there is a uniqueness constraint, then
the associated relationship is a single-valued fact about that entity type. The
entity type is said to be a determinant.

A single conceptual schema diagram is to be replaced by a collection of relations. Each
relation corresponds to a particular fragment of the diagram. Yet, whereas the original
diagram represents a universe of discourse, the fragments are not self-contained. They
are interrelated, and it is the determinants that are connected. We must make sure that the
database symbolically represents the connections that are shown graphically in the diagram.
The process of merging is called aggregation which means a “flocking" or coming together.
The conceptual schema diagram will be divided into a number of disjoint segments. An
aggregate data object or record type will be defined for each of these segments. The
following table shows how the conceptual schema is divided.

Nr Determinant Entity type(s) Fact type(s)y~� G'��D��
�� G'��D��
�� ���"?'��0�>�
��
���BD����

� � �D����� �D�"��� ���!��
�������'��U���
� � G������D� G'��D��
��	X���3�
���� 3)�����D�x�4�"��&

3)�����D�$L�
��
�
�
�B#1�3����

� � ��3'���BD� G'��D��
��	X%C�����.�1���.' F

Where the determinant involves only one entity type, it is named after that entity type.
Where more than one is involved then the determinant is named after the relationship.
Strictly speaking, the

��3'���BD�
determinant is not really a determinant at all; it determines

nothing. But as far as the process of deriving record types is concerned, it may be treated as
one. So there are four record types to be extracted from this particular conceptual schema.

190 Chapter 8

8.10.2 Record Types

We will use a record type table to show the development of a record type and its relationship
to other record types and other restrictions to be placed upon records of any given type.
This is shown by example for the

G'��D��
��
record type:

G'��)��
��
Record Type

Fact Key? Attribute References?����� G'��)��
���@��24'
���"?'�0��� �D�"����@�"24' �D�"���0J'���
����
��
���B)����� [
���BD�7*D�

The four columns are used in the following ways:

T The Fact column allows us to identify the associated fact in some way.
T The Key? column allows us to express two things:
�����

signifies that the corresponding attribute is (part of) the relation key of relations
built upon this record type.� h �
indicates that, in any instance of this type, the attribute may be null.

For the
G'��D��
���J'���
����

type we can see that the key is the
G�'��D��
���@�"24'

attribute, and
that the

�)�"����@��24'
and [
���BD�7*)� attributes may be null.

T The Attributes column merely lists all the attributes of the record type.
T The References? column allows to say whether there should be referential integrity

between this attribute and the key of some other record type. We can see that the�D�"����@�"24'
attribute depends on the existence of some parent record type which contains

information specifically regarding cities.

8.10.3 Attribute Naming

Here are three rules for naming attributes. The naming is done from the viewpoint of one
particular record type. The process is repeated for the others.

N1 Key attributes arise from the determinant that is the basis for this record type.

1.1 Each such attribute may be named by taking the name of the associated entity
type and appending the manner of its representation. So for the key of the

G'��D��
��
record type, we have an attribute:G�'��D��
���@�"24'

which has the form:-����4�"���#J�'�3��'���'�������D��
���W������'��
1.2 Alternatively, we may simply want to suggest that this attribute somehow identifies

a particular entity type and append the letters “
E"�

" to the entity name to form, for
example:

Facts and Relations 191

G�'��D��
��4E7�
1.3 Or, we may simply use the entity type name, for example:

G�'��D��
��

N2 Non-key attributes may be divided into two categories:

2.1 There are those that provide a link to some other determinant. It is desirable that
all determinants (or their components) are named in a consistent way, wherever
they appear in the database. It makes joining tables less error-prone. Thus the
attribute that corresponds to the “

���"?�'��0���
" fact should be named according to

rule N1, for example:
�D�"����@�"24'

.

2.2 Other non-key attributes may be named using any one of the following rules.

2.2.1 Use the role that most naturally characterises the information provided.
Thus the job that the person does may be named the [
���B)�7*D� attribute.

2.2.2 If the corresponding fact is the only one that links this record’s determinant
to the other entity involved, then we might use the entity name itself. As��
���BD�����

is the only fact that links a person to a job, we might name the
attribute

,�
��
.

2.2.3 As a variation on the previous rule,we might prefix the entity by the determi-
nant name. Thus, for

��
���BD�����
we might name the attribute

G'��)��
��),�
��
.

2.2.4 There may be some well-established name that it would be silly to ignore,
such as

b�����&�'��
or
W
���&'��

.

N3 Once you have established your own naming conventions then try to stick with them.
However, if application of any rule leads to an ungainly, ugly or misleading name,
then construct one of your own.

8.10.4 Looking for Nulls

Every instance of a
G�'��D��
���J'���
����

consists of three components or attributes. But can
every slot be filled? In using a record structure for people we are effectively forcing
everyone into the same mold. We anticipate keeping the same two facts about everybody
– everybody’s city of residence and everybody’s job. But what if somebody doesn’t have a
job, or we don’t know where he or she lives?

The problem is overcome by permitting a special null value for the [
���BD�7*)� attribute
for that person. What other attributes should be allowed to be null? To help answer
that question, we can immediately divide the record’s attributes into two disjoint (non-
overlapping) sets.

1. There are the key attributes; those that correspond to the entity type or types around
which the aggregation occurred. In the case of the

G�'��D��
���J'���
����
there is only one

key attribute –
G�'��D��
���@�"24'

. These attributes form the key of the relation that will
be founded upon this record type. The entity integrity rule states that none of these
particular attributes may ever be null because otherwise we would be unable to identify
properly the entity involved.

192 Chapter 8

2. There are the non-key attributes, each of which is a fact about the entity identified by
the key attributes. For the

G'��D��
���J�'���
����
type the non-key attributes are

�D�"����@�"24'
and [
���BD�7*)� . For each of these attributes we must perform some additional analysis.
This we will do next.

To determine whether or not a given attribute may ever be null, we must return to the
fact type that was its basis. For the

�D������@�"2D'
attribute, we return to the

���"?'��0�>�
fact

type and ask two questions: see Figure 8.10.

Will EVERY person live
in SOME city?

Nulls ARE
allowed.

yes

Will we ALWAYS KNOW in
which city a person lives?

yes

Nulls are NOT
allowed.

Nulls ARE
allowed.

no

no

Figure 8.10 Looking for nulls

The questions are intended to be asked with a “for the duration of the database" time
frame in mind, not just for the specific facts at hand.

Two questions are involved in the decision because there are two distinct reasons why
a null may be required.

1. Not applicable

It may be that the fact is simply not applicable to the entity involved. If a person is out
of work then we have no job to record. Or, if a person is unmarried we can’t record his
or her spouse.

The first question: “Will every person live in some city?" is designed to handle this
kind of null.

2. Don’t know

It may be that the information is not known. And yet we may wish to retain knowledge
of the entity and of other facts relating to that entity. A shopper does not ignore a

Facts and Relations 193

potentially interesting purchase just because he or she does not yet know how much it
will cost.

The second question: “Must we always know in which city a person lives?" is designed
to handle this kind of null.

Suppose that we wished to continue recording people even if we have lost track of their
whereabouts or if they are out of a job. Then nulls should be allowed for the corresponding
attributes. Our final record type will be as follows:

G'��)��
��
Record Type

Fact Key? Attribute References?����� G'��)��
���@��24'
���"?'�0��� � h � �D�"����@�"24' �D�"���0J'���
����
��
���B)����� � h � [
���BD�7*D�

We perform this analysis of null values for all record types that result from the aggre-
gation of one or more single-valued facts. This means that we must also look at the record
type created from the

���#��
������'������
fact type. It seems reasonable to suggest that:

l`m)n�� every city is located in some country; and

l`m)n�� we will always know that country.

In other words nulls are not to be allowed. So the record type can be introduced as follows.

�)�"���
Record Type

Fact Key? Attribute References?����� �D������@�"2D'
���!��
�������'��U��� C�
�����4��
��

The third record type is the
G�����D�

record type.

G������D�
Record Type

Fact Key? Attribute References?����� G'��D��
���@��"24' G'��D��
��0J'���
����
����� ��3
�����@��24'

3������D�x������& ��BD������C�'�?'��
3������D�$L�
�� ��71��
��
�
�B#1�3���� I��B'�(�3�A�'����

194 Chapter 8

The analysis for the allowability of null values proceeds as before.

Key
G'��D��
���@��"24'�^a��3�
�����@�"24'

Non-key
��BD������C�'�?'���^����1�� ^_I���B'�(�3�A'����

The key attributes represent the (complex) entity type about which each non-key attribute
is a single-valued fact. The key attributes should not be null. Looking at the first of the
non-key attributes, we apply the same two questions as before; see Figure 8.11.

Will EVERY person play a
sport with SOME ability

level?

Nulls ARE
allowed.

yes

Will we ALWAYS KNOW the
ability with which a person

plays a sport?

yes

Nulls are NOT
allowed.

Nulls ARE
allowed.

no

no

Figure 8.11 Looking at a nested facts for nulls

Everybody who plays a sport must play at some level or another, but we might not know
that level. So we should answer l`m�n to the first question and ikj to the second. Therefore
nulls should be allowed.

We might analyze the other two fact types in the following way:

l`m)n , we will always know for which club a person plays.

ikj , we will sometimes not know in which year a person took up a sport.

Thus, we will have a record with the following structure.

Facts and Relations 195

G������D�
Record Type

Fact Key? Attribute References?����� G'��D��
���@��"24' G'��D��
��0J'���
����
����� ��3
�����@��24'

3������D�x������& � h � ��BD������C�'�?'��
3������D�$L�
�� ��71��
��
�
�B#1�3���� � h � I��B'�(�3�A�'����

Any other record types are ones that do not result from the aggregation of fact types.
For these records, nulls are never allowed for any attribute. The fourth and final record
type in case under consideration is in this category. It is based upon the

�"3'���BD�
fact type,

which is a many-to-many relationship. It causes the construction of a record type based
upon all of the entity types involved (in this case two).

��3�'���BD�
Record Type

Fact Key? Attribute References?�g��� G'��D��
���@�"2D' G�'��D��
��0J�'���
����
�g��� C�����.�1���.'

The decision not to allow any null values may seem rather arbitrary, but it more useful to
think of

�"3�'���BD�
not as a many-to-many fact type but as a more complex entity type. And

this new entity type corresponds to the speaking of a language by a person. It is a complex
entity about which we have no single-valued facts, and so there are no non-key attributes
and consequently there are no nulls to be considered.

8.11 Establishing the Database

We have now established four different types of records and we may now introduce them
formally.

G'��D��
���J'���
����
G'��D��
���@�"2D'wp�G'��D��
��
�D�"����@�"24'�p��D�����
[
���B)�7*D�up�,�
��u����1)���

�D�"����J'���
����
�D�"����@�"24'�p��D�����
C�
������4��
���p���
�1��������

196 Chapter 8

G������)�7J'���
����
G'��D��
���@�"2D'wp�G'��D��
��
��3�
�����@�"24'qp���3�
����
��B4������C�'�?'��qp���B4�������V��1)���
���1���p���71��
I��B'7(�3�A'�����p�A'���������1)���

��3�'���BD�7J'���
����
G'��D��
���@�"2D'wp�G'��D��
��
C�����.�1���.'�p�C�����.�1���.�'

If these were all that were required, we could now define a relational database based
upon them.

e�����������'
G'�
�3���'�p���'���
�L G'��)��
���J'��
����
�D�"�4�7'��up���'���
�L+�D�"����J'���
����
G������)�qp���'���
�L8G������)�7J'���
����
��3�'���BD�up���'���
�L]��3�'���BD�7J'��
����

Each relation would be a set based upon one of the record types. However, this definition is
not enough; it does not mention some of the important constraints that must be enforced in
order to make the database more accurately reflect the situation being represented. There
are, in patricular, two very important restrictions on the kind of data that may be inserted
into the database as a whole. These are as follows:

1. Relation key constraints

There is nothing in the definition of, for example, the
G'�
�3)��'

relation to prevent there
being two people with the same name. Yet it was decided earlier that people were to be
identified by their names. We can specify this constraint by requiring that the number
of records in the

G'�
�3���'
relation be the same as the number of people (when identified

by name).

��
�1����+G'�
�3)��'��U��
�1�������3�p�G'�
�3)��' T 3�� G'��D��
���@�"2D'��

Similar constraints must be placed on the keys of the other two relations.

2. Referential Integrity

It is reasonable to expect that anybody mentioned in a
G������D�"J'���
����

should also appear
in a

G�'��D��
���J'���
����
. On accessing a

G������D�7J'���
����
, we should be able to refer to the

appropriate record in the
G'�
�3���'

relation for more information. This will be true of
everybody named in the

G�����D�
relation. We can express this constraint as follows:

��3_p�G������D� T 3�� G'��D��
���@�"24'���%��3_p�G'�
�3)��' T 34� G'��)��
���@��24'��

Facts and Relations 197

The people in
G�����D�

are a subset of those in
G�'�
�3)��'

. This is sometimes called an
inclusion dependency. There will be a similar relationship between the cities inG'�
�3���'

and those in
�D�"�D��'��

.

We may now extend our defintion of the database:

e�����������'
G'�
�3���'�p���'���
�L G'��)��
���J'��
����
�D�"�4�7'��up���'���
�L+�D�"����J'���
����
G������)�qp���'���
�L8G������)�7J'���
����
��3�'���BD�up���'���
�L]��3�'���BD�7J'��
����
��
�1����+G'�
�3)��'��Z��
�1�������3�p�G'�
�3���' T 3�� G'��D��
���@�"24'�
��
�1����]�D�"�D��'����Z��
�1��������up��D�"�4�7'�� T ��� �D�"����@��"24'��
��
�1����+G������D���Z��
�1�������3�p�G������)� T�� 34� G'��)��
���@��24')�������3
�����@��24'����
�>3ap�G������D� T 3�� G�'��D��
���@�"24'����0��3 p�G'�
�3)��' T 3�� G'��D��
���@�"2D'��
�>3ap�G'�
�3)��' T 3�� �D�"����@�"24'��¡�	���wp��D�"�4�7'�� T ��� �D�"����@��"24'��
���wp���3�'���BD� T ��� G'��D��
���@�"2D'����%��3ap�G�'�
�3)��' T 3�� G'��D��
���@��"24'��

8.12 Summary

This chapter has been an introduction to fact-based analysis which is an approach to
designing a database. The fact-based approach sees the database as a repository of simple
irreducible facts regarding some situation. However, these facts are not stored haphazardly.

T All the facts of a similar nature are stored together, forming what is termed a fact type.
T A fact type, as a rule, is not stored separately; rather, it will be grouped or merged with

other fact types into data structures called relations.

Certain problems arise.

T What is the basis for the merging? Exactly what fact types may be merged? The
early sections of the chapter demonstrated that we should not arbitrarily group facts
into relations. Certain rules exist regarding what may be merged. Conceptual schema
diagrams were introduced to help us follow these rules.

T Having decided to merge individual facts into record structures, we will inevitably be
faced with the problem of missing or null values. A record is a group of values and the
circumstances surrounding its creation may be such that we cannot supply all the data
required.

T And there is also the problem of deciding what exactly is an irreducible fact? How do
we know when a fact may be split without loss of information? Certainly, when the
fact is binary, that is, when it relates just two specific objects, then it is not splittable.
But there may be more complex facts, that is, ones involving three or more objects; and
it may be that these should not be split either. We must rely on our analytical skills.

198 Chapter 8

Exercises

Q8.1 The Pig Intelligence Experiment

Pig Day

Score

Breed

F2

F3

F4

Diet
Type

Food
Type

Weight

F5

Sty

F1

A veterinary institute is carrying out some investigations into the effect of diet on
pigs, with the work being funded by a research grunt, of course. The results are to
be recorded in a database, and a conceptual schema has been designed. Examples
of the facts recorded on this schema are:

F1: The pig “Black Beauty" is in sty number 8.

F2: Black Beauty is of the Saddleback breed.

F3: On March 21, 1995, Black Beauty scored 118.

F4: Black Beauty is on a Multi-grain diet.

F5: In a Multi-grain diet, the daily allowance of caraway seeds is 50 gms.

From inspection of the conceptual schema, decide which of the following statements
are true and which are not. Explain your answer.

a. A pig is on only one kind of diet.

b. Every pig is in a different sty.

c. A pig may have its score recorded several times a day.

d. A given type of food may be in only one type of diet.

e. A given pig may, for example, receive 50 gms of caraway seeds one day and
100gms the next.

Facts and Relations 199

Q8.2 From the conceptual schema given in the previous question:

a. Decide which facts may be aggregated, and develop a complete set of record
types.

b. Based on these record types, what questions need to be asked regarding null
values?

c. Formally define each record type, and based upon these, formally define the
database.

Q8.3 The ¢�£�¤~¥ Model

The following entity types are involved in a computer club.

Type Current Instances of the Type

[Member]
�

Bill, Sue, Alan
�

[Language]
�

COBOL, Pascal, C, Ada, SQL, Modula, FORTRAN
�

[Carmake]
�

BMW, Ford, GM, Honda, Mazda, Mercedes, Toyota
�

[N]
�

0, 1, 2, 3,
���>�g�

There are also four relationships between these types:

1.
���"B'�

which indicates whether one member likes another;

2.
���4�"��'��

which indicates which languages each member can write;

3.
��.'

which says how old each member is;

4.
���4�"?�'��

which indicates the make of car driven by those members who do.

The current states of each of these relationships are tabulated below.

��"B'�� ���4���'�� ��.' ���4�"?'�
F�F�F�F�F�F�F�F�F�F�F�F�F F�F�F�F�F�F�F�F�F�F�F�F�F�F�F F�F�F�F�F�F�F�F�F�F F�F�F�F�F�F�F�F�F�F�F�F�F�F�FW�'"2���'��#W�'"2���'�� W'"2��'��0C�����.�1���.' W'"2��'�� @ W'"2���'�� ������W��B'
F�F�F�F�F�F�F�F�F�F�F�F�F F�F�F�F�F�F�F�F�F�F�F�F�F�F�F F�F�F�F�F�F�F�F�F�F F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�4����� ��1�' ������� b�K�J�I�J�*�@ ������� y"z ��1�' /
������
�4����� *����� ��1�' � ��1�' y"z ������� b
����
��1�' *����� ��1�' ��¦�C *������ y"§ F�F�F�F�F�F�F�F�F�F�F�F�F�F�F*����� �4����� *������ b�K�J�I�J�*�@ F�F�F�F�F�F�F�F�F�F
F�F�F�F�F�F�F�F�F�F�F�F�F ������� ��¦�C

F�F�F�F�F�F�F�F�F�F�F�F�F�F�F

For each of the four relationships:

a. Write one sample fact of the type represented by the relationship. Rewrite
the fact in the reverse order. In this way, the roles played by each entity type
should be seen.

b. Draw a conceptual schema diagram representing just this fact type. Show
each role.

200 Chapter 8

c. Assuming the data in the associated table is significant, add any uniqueness
constraints that apply.

Q8.4 Use the conceptual schema diagrams that you developed in answering the previous
question to respond to the following.

a. Connect the diagrams into a single conceptual schema.

b. Which fact types may be merged?

c. Using the data supplied, show the contents of the table or tables that result
from the merging.

Q8.5 The ¨�©«ª`n Model

The following entity types are involved in modeling the children in a family.

Type Current Instances of the Type

[Kid]
�

Kylie, Tim, Matthew, Emma
�

[Gender]
�

f, m
�

[Room]
�

sleepout, back, front
�

[Sport]
�

tennis, hockey, golf
�

[N]
�

0, 1, 2, 3,
�>�����

There are also four relationships between these types:

1.
��.'

which says how old each child is;

2.
��'�¬

which indicates which gender a child is;

3.
��'�����
�
"2

which indicates the room in which a child sleeps;

4.
3)�����)�

which indicates which sports each child plays.

The current states of each of these relationships are tabulated below.

��.' ��'�¬ ��'����
�
"2 3)�����D�
F�F�F�F�F�F�F�F�F�F�F F�F�F�F�F�F�F�F�F�F�F�F�F�F F�F�F�F�F�F�F�F�F�F�F�F�F�F F�F�F�F�F�F�F�F�F�F�F�F�F�FD�7� @ D�7� }�'����'�� 4�"� J
�
"2 4�7� ��3
����
F�F�F�F�F�F�F�F�F�F�F F�F�F�F�F�F�F�F�F�F�F�F�F�F F�F�F�F�F�F�F�F�F�F�F�F�F�F F�F�F�F�F�F�F�F�F�F�F�F�F�F�������' y � �������' L I4�<2 �����7B ������' �'��������
ID�g2 y � -72�24� L W������&�'�� L��
���� ������' &�
�7B'��
W�������&�'�� � W�������&�'�� 2 F�F�F�F�F�F�F�F�F�F�F�F�F�F I4�g2 .
���L
-72�24� { F�F�F�F�F�F�F�F�F�F�F�F�F�F I4�g2 &�
�7B'��
F�F�F�F�F�F�F�F�F�F�F -�2�2D� �'��������

F�F�F�F�F�F�F�F�F�F�F�F�F�F

For each of the four relationships:

a. Write one sample fact of the type represented by the relationship. Rewrite the
fact in the reverse order to show the role played by the other entity type.

Facts and Relations 201

b. Draw a conceptual schema diagram representing the fact type. Show each
role.

c. Assuming the data in the associated table is significant, add any uniqueness
constraints that apply.

Q8.6 Use the conceptual schema diagrams that were developed in the previous question
to respond to the following.

a. Connect the diagrams into a single conceptual schema.

b. Which fact types may be merged?

c. Using the data supplied, show the contents of the table or tables that result
from the merging.

d. For each table, and assuming the data supplied is significant, say which at-
tributes of that table may be null.

Q8.7 The ®�¯k°�£�©±¯`²¡mi�³ Model

The following entity types are involved in modeling a state parliament.

Type Meaning

[Poli] All state representatives.
[Party] Political parties, e.g.

�
Labor, Business, Green,

�����g�
[Dept] Government bureaucracies, e.g.

�
Transport, Justice,

�������
There are four basic relationships between these types:

1.
��'���
���.D� 9 G�
���� FsFsr G������� which maps a politician to his or her party;

2.
2`�������7�'�� 9 e'�3�� FsFvr G
���� which maps a government department to its min-
ister;

3.
��'�����'�� 9 G������� rvFsFsr G
��� which indicates the politicans who are party lead-
ers;

4. o �����BD�7�
 o G
���� t FvFsr G
���� which indicates which politicians talk and to
whom.

Draw a conceptual schema for this model and construct record types based on your
diagram.

Q8.8 The ´�m�j¶µk°4¯k·�¸4l Model

The following entity types are involved in modeling Australia.

[State, Town, River, PeopleCount]

The basic relationships between these types are as follows:

1.
��
�� 9 I
���� FsFvr ������' maps each town to the state in which it is located;

202 Chapter 8

2.
3�
�3 9 I
���� FsFvr G'�
�3)��'���
�1���� indicates the population of each town;

3.
����3 9 �������' rvFsFvr I�
���� relates each state with its capital;

4. o L��
��4�7��&���1 o 9 J4�"?'�� t FvFsr ������' shows which rivers flow through which
states;

5.
��
�1��)��' 9 J4��?'�� FsFsr �������' says in which state each river has its source;

6.
������B 9 J4�"?'�� FvFsr �������' says in which state each river terminates.

Draw a conceptual schema for this model.

Chapter 9
Uncovering Facts

9.1 Introduction

Suppose we are required to design a database to support a new information system. In the
preceding chapter some rules were formulated regarding which facts may and which may
not be merged into relations. Once we have, in front of us, the kinds of facts that are to be
stored in the database then it is a relatively mechanical process to follow these rules and to
arrive at a design for the database.

Unfortunately, this information is rarely presented to us in a neatly packaged and
labeled way. In other words, the basic facts types do not usually show themselves clearly
and obviously. We, the designers, must identify them.

The people who are going to use this new system will want the computer to extract
information from the database, to sort it, to merge it with other information, to summarize
it, and so on. They are most unlikely to be interested in receiving long lists of quite trivial
facts. They have sophisticated ideas of how the organization works and may want these
ideas reflected in complex reports.

A report is simply a view of the organization. This chapter introduces a language
that may be used to describe the structure of such views. From these descriptions, the
underlying simple facts may be uncovered.

9.2 Defining Syntax

The syntax of a language is a set of rules that govern exactly what may be said in that
language. This definition applies as much to programming languages as it does to any other
kind.

The language to be presented in this chapter is a special language used to describe the
syntax of programming languages. It is the language in which we write the rules of syntax.
The syntax of SQL, for example, tells us that “

���������	��
�����������������������
" is legal SQL

whereas “
���������������������������������	��

" is not. Syntax is concerned with the superficial

���!

204 Chapter 9

order of words and symbols within a language rather than with what any statement in the
language means. The syntax of SQL requires that the

���������	�
clause appears before the" �����

clause within a
���������	���	��#������$�����

. It will also say that both these clauses must
appear and that the others (the %�& ����� , the ' ������(, the & #�)$*!� ' and the

���������
clauses) are

optional.
This syntax definition language is called Extended Backus-Naur Form. The original

Backus-Naur Form was developed in order to describe the language Algol 60. It is named
after two of the people involved in the original report of that language, John Backus and
Peter Naur. The extensions were proposed by Nicklaus Wirth, the inventor of the Pascal
programming language.

9.3 Analyzing a View

The view to be examined is one we all know. It is a telephone directory.
���+*�� &�,.-�/10$243 �����5��� -�-60�0�780�0�9�:���+*�� &<;=->,.-�/@?<A ������#��CB�� -�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-6?�D�E8F�?�0�D���+*�� &8GH-�/1E�I5J #��!�������	�����<��� -�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-67�?�?8I�D�E�F��(�������*��LK�����*�)����$*���� /NM ���������O��� -�-�-�-�-�-�-�-�-�-�-�-�-�-P7�7�I�2�2�0�7��(�������� & �$* " ���#�)$*!� ' � 3 #���Q /@M * '�& ��� -�-�-�-�-�-�-�-�-�-RI�?�D�2�:�:�:����#���(;=-�/17�E8S ��* "�" ��� -�-67�7�I�2�0�7�9����#���(����5B -�/10�753 �����5��� -�-60�0�7�2�2�2!I����������T�������������������� S � -�/UA *����LB�� -�-�-�-�-�-�-�-�-�-�-�-�-PD�D�D80$2�0�2��������� & ���$���CV -WJ=-�/42�2XM ���������O��� -�-�-�-�-�-�-�-�-�-�-�-�-�-P7�7�I8E�E�9�I

How can we describe the structure of this directory? Spend some time examining it.
All the entries are similar in some respects; and some are more similar than others. We

can start by recognizing that there is a recurring number of entries, and define the directory
as follows:

K$*!�����	������Y[Z�Z]_^`�������YOa

The curly brackets are used to indicate that any enclosed item or items repeat a number of
times. The

Z�Z]\
symbol is to be read as “is composed of". So the definition can be read as

saying the following:

b “A directory is composed of a number of entries."

The use of curly brackets is borrowed from set notation. Another way of reading the
definition would be to say that:

b “A directory is a set of entries."

Defined in this way, we have provided a description of the overall structure of the directory;
the problem of defining the structure of the entries has been postponed. In this way, we
solve one problem at a time in what is known as a top-down fashion. We have concentrated
on the similarities in the directory rather than on the differences. Now it is time to look at
the differences.

There seem to be, in general, two major kinds of entry. There are entries for private
subscribers and there are ones for businesses. Now we can define an entry as follows:

Uncovering Facts 205

`�������YcZ�Z]\cd J �$*�)�#����ce 3 �$��*!��������f

This definition states that an entry is composed of either a private or a business entry. The
square brackets

d@f
are used to enclose a number of alternatives. The vertical bar

e
is used

to separate these alternatives. We may specify as many alternatives as is required.
Now we continue the analysis by providing definitions of J �$*�)�#���� and 3 �$��*!������� . The

latter is slightly simpler, so in good top-down style, we will tackle it first. Each business
entry involves a business name, a street and a phone number. This may be defined in the
following way:

3 ����*!�������gZ�Z]\ 3 �$��*h�������	i�#��$�CjO������������i�#!�$�Cj J�& ������i��

The plus sign is used to concatenate two components of the structure being defined. It
should be read as “followed by". So the above definition says that a business entry is
composed of a business name followed by a street name followed by a phone number.

The next stage is to examine each of the components 3 �$��*!��������i�#��$� , ������������i�#��$�
and J�& ������i�� . If any of them has an internal structure that interests us then that component
will require its own definition as a structure. If there can be no useful subdivision then the
component is called a data element. All three of these components are of this elementary
kind.

When we reach a data element then this is as far as the analysis need proceed on this
path. Now we retrace our steps until we arrive back at a structure that has not yet been
defined. In this example, we return to the J �$*�)�#���� component and examine it.

Each private subscriber is given a name, an address and a phone number, so it can be
defined as follows.

J ��*�)�#����kZ�Z]\5i�#��$�5jOV������������lj J�& ������i��

The J�& ������i�� is a data element as we have already discussed. What about the
i�#����

? Are
we interested in parts of the name? We probably are. If we are looking for Jim Smith then
the initial letters will help us locate him. Are we interested in individual initial letters?
Again the answer is that we probably are. If we can’t find Jim under

���m*�� &�,.- then we
might try

���+*�� & V ->,n- and so on.
So the definition of name could be:

i�#!�$�[Z�Z]\O��������#!�$�Ljo^�p!�q*!�$*�#��a

A name consists of a surname followed by a set of initial letters.
Finally, what about the address? Are we interested in components of the address? We

probably do want to know the street number, so the definition could be:
V������������gZ�Z]\<������������i��jO������������i�#��$�

These two components are unlikely to need further dissection. So now we have completely
analyzed the directory. The final set of definitions is as follows:

K$*!�����	������Y[Z�Z]_^`�������YOa
`�������YcZ�Z]\cd J �$*�)�#����ce 3 �$��*!��������f
3 ����*!�������gZ�Z]\ 3 �$��*h�������	i�#��$�CjO������������i�#!�$�Cj J�& ������i��
J ��*�)�#����kZ�Z]\5i�#��$�5jOV������������lj J�& ������i��i�#!�$�[Z�Z]\O��������#!�$�Ljo^�p!�q*!�$*�#��a
V������������gZ�Z]\<������������i��jO������������i�#��$�

206 Chapter 9

Everything we have named is either a data structure or a data element and every structure
has its definition.

9.4 Another Analysis

There will be many ways of correctly describing the structure of the directory. There is not
just one valid analysis. It is a matter of individual judgement and style. We will briefly
examine the directory in another way.

It is possible to look at the directory and decide that “yes, it does consist of a number
of entries", just as we did before.

K$*!�����	������Y[Z�Z]_^`�������YOa

But this time, rather than having two main styles of entry, we may feel that there is a single
style; one that varies slightly at the beginning.

`�������YcZ�Z]\cd 3 �$��*!�������	i�#!�$�[e J �$*�)�#�����i�#!�$�Cf<jOV������������Xj J�& ������i��

We have decided that the variation in each entry is determined by whether it starts with a
business name or with an individual’s name. After that, each entry is essentially the same,
consisting of an address and a phone number.

The business name is elementary. The individual name might be analyzed as before:

J ��*�)�#�����i�#��$�gZ�Z]\O��������#!�$�j�^�p!�q*!�$*�#��5a

This time we define the address as:

V������������gZ�Z]\srt������������i��<uLjO������������i�#����

The round brackets
rhu

are used to enclose an optional component. This definition states
that an address consists of a street name optionally preceded by a street number. Perhaps
we didn’t notice that only private subscribers have a street number. Perhaps we thought
that it was unimportant. Maybe we wanted to retain flexibility.

We end up with a quite different analysis.

K$*!�����	������Y[Z�Z]_^`�������YOa
`�������YcZ�Z]\cd 3 �$��*!�������	i�#!�$�[e J �$*�)�#�����i�#!�$�Cf<jOV������������Xj J�& ������i��
J ��*�)�#�����i�#��$�gZ�Z]\O��������#!�$�j�^�p!�q*!�$*�#��5aV������������gZ�Z]\srt������������i��<uLjO������������i�#����

9.5 A Summary of the Notation

Here is a table showing the extent of the notation:

Uncovering Facts 207

Z�Z]\
Use like an assignment symbol. It allows a name to be
assigned to a structure.

-�-�- j -�-�- Use a plus sign to link one component of the structure
to the one that follows it.

^ -�-�- a Curly brackets are used to enclose a component of the
structure that may occur zero or more times.

d -�-�- f Square brackets are used to enclose alternative
components.

-�-�- e -�-�- A vertical bar is used to separate alternatives. It is used
within square brackets.

r -�-�- u Round brackets are used to enclose an optional
component.

v -�-�- v Quotation signs may be used to enclose a constant value
of some kind, for example,

vw�$#����$v
.

9.6 Some More Examples

Here are three views to be analyzed. Each is a particular picture of our friends and
acquaintances. Of course, we don’t use computers to keep track of people this way;
however, the reports are like the ones produced by information systems.

1. The Green-Eyed Monster Report

We are puzzled as to how all our friends can go on holiday to exotic locations while we
have to stay at home.

;�& �5T��������yx�`�Y���� A ���$�������5B���(������x
i�#��$� , ��z `�#����$� M ����*	��#�Y{ ��#�� J ��#����

����� �����	��������� (���#�������� 2!I�?�F 3 #���*
2!I�?�9 A ������� S #������
2!I�?�E Vy��#�(��y�����

3 *���� (y������z���� & ��#�($� 2!I�?�E S #y*����$�
2!I�?�0 B�*��

K���� ' �����	����� & ��#�($� 2!I�?�? S�& *!��#
2!I�?�D ����#��$���

x�x

208 Chapter 9

A definition of the structure of this report might be the following.
T���������`�Y���� A ���$�	�����|Z�Z]\O^8i�#����8j , ��zOj8`�#����$*!� ' �j_^ { ��#��<j J ��#����<aOa

The view contains an entry for each friend; and for each one we give their name, job,
the earning capacity of that job. Finally, for each friend, we detail their recent holidays,
in particular, when and where they went.

2. The Hot Gossip Report

We have a juicy piece of gossip and want to spread it around. We will ring people who
live locally, but are too mean to ring long distance, so we need the address of anyone
who lives at a distance.

;�& � M ���OT�������*!(8B���(������x
i�#��$� S ������#��	�

V���� 0�0 ������#���� 3)�� /@S ��(���� & # ' ���
3 *���� 7�I$2<2�F$2�E����� 0�0�7<0�E�E�EK���� ' 78} *	#8V�(�(q*�# / B��!�$�x

This view also has an entry for each friend (except those whom the gossip concerns, of
course). Each entry consists of the friend’s name followed by either their address or
their phone number.

M ����T�������*!(~Z�Z]\O^5i�#!�$�5j�dRV������������se J�& �����f_a

It can be assumed from this definition that we are not interested in any further breakdown
of the address; that is, it can be treated as if it is a data element.

3. The Match-making Report

We want to interfere in their private lives. What else are friends for?

;�& � A #���� & x!�$#�Q�*!� ' B���(������x
i�#��$� ����� V ' � p!�����������	�y�

3 *���� � 0�I ��(������ / ����#�)��������� " 7$2 ����#�)����
p�#�� � ���$��*�� / #���� / (& ����� ' ��#�(& YV���� " 7�0 p�#��
x�x

This view lists each friend’s name followed by their sex, which we know, followed by
their age if we know it; and finally any spare time interests they might have.

A #���� &�A #�Q$*!� ' Z�Z]\O^5i�#��$�5jO�����<j[r�V ' �yu�j_^op!�������������<a_a

Uncovering Facts 209

9.7 View Analysis

We have used the syntax definition language to specify the structure of each view. This is
the first stage of a three-stage process that should help us to understand the user’s world
and to uncover the elementary types of fact that are used to build pictures of this world.

The process involves the following three stages.

1. Derive view structures

Analyze all the various pictures or views of the user’s world that we can obtain. Develop
view structures for each of these views. Using our friends and acquaintances as our
world, we derived three view structures.

T���������`�Y���� A ���$�	�����gZ�Z�\�^i�#��$�5j , ��zOjO`�#����q*!� ' �j�^ { ��#��Oj J ��#����<aOa
M ����T�������*!(~Z�Z�\�^i�#��$�5j�d�V������������ke J�& �����foa
A #���� &�A #�Q$*!� ' Z�Z]_^5i�#��$�5j_�����<j~r>V ' �yulj�^�p!�����������	�Oa<a

2. Derive view relations

In the next stage, each view structure is examined in turn. Any structure that contains
repeating components is “flattened" out into a number of view relations. Any structure
that contains alternative components is split into a number of separate view relations.

3. Extract elementary fact types

In the third and final stage, each view relation that results from the previous stage is
examined. Each view relation has a corresponding sentence. Sample sentences of that
type are formed. This sentence may be reduced to two or more simpler sentences,
without loss of information. Alternatively, it may be irreducible. Either way we are
reducing our more complex sentences into a number of elementary sentences.

The outcome of this entire process is a set of elementary sentence or fact types. These are
the basic sentences that are to be stored in the database. The next step is to use participation
rates to determine which fact types may be merged and where.

9.8 Deriving View Relations

As discussed above, this second stage of the view analysis is a two-part process in which
the possibly complex view structures are decomposed into a number of relatively simple
view relations.

9.8.1 Flattening Structures

The first part of the process of simplifying view structures is to remove any repeating
components. Two of the structures contain repetition.

T���������`�Y���� A ���$�	�����gZ�Z]\O^5i�#��$�5j , ��z�j8`�#����q*!� ' �Xj�^ { ��#��<j J ��#����8a<a
A #���� &�A #�Q$*h� ' Z�Z�_^i�#����8jO�����Ojkr>V ' �yulj�^oph�����������	�<a<a

The first structure repeats the year and place at which people went on holiday. The second
one repeats any spare time interest the friend might have. The flattening can be done in
two steps. We will perform these steps on the

T���������`�Y���� A �����	����� structure first.

210 Chapter 9

1. Identify the key component of the outermost level. The outermost level incorporates
all the components not involved in the repetition. In this case, it involves the three
components

i�#��$�
, , ��z and

`�#����q*!� ' � . Which of these three items of data can we use
to distinguish one friend from another? Let us assume that the name alone is enough.

2. Split the structure into two separate ones by removing the repeating component entirely
and forming a new structure consisting of the key in conjunction with this repeating
component. The repeating component, in this case, is

^ { ��#��<j J ��#����<a . The result
of the split is as follows:

} B 2 Z�Z]\O^5i�#!�$�5j , ��z�j8`�#����$*!� ' �Ca
} B 0 Z�Z]\O^5i�#!�$�5j { ��#��<j J ��#����<a

Each flat structure is called a view relation (VR) and as we define one, we can assign it
a number for future reference.

Because a structure may contain repeating components that themselves contain repetition,
these two steps may have to be performed a number of times until the original structure has
been completely flattened.

The other view that contains repetition is the Match-making Report.

A #���� &�A #�Q$*h� ' Z�Z�_^i�#����8jO�����Ojkr>V ' �yulj�^oph�����������	�<a<a

Again the key component is the name. Splitting this structure gives these two view relations:

} B 7 Z�Z]\O^5i�#��$�5jO�����<j[r�V ' �yuLa
} B 9 Z�Z]\O^5i�#��$�5j�p!�����������	�<a

9.8.2 Separating Alternatives

The second part of the process of simplifying view structures is to split any view that
contains alternative components and to create a view relation for each alternative. There is
only one example of this kind here:

M ����T�������*!([Z�Z]\O^5i�#��$�5j�dRV������������ke J�& �����8f_a

This view is separated out to become:

} B E Z�Z]\O^5i�#��$�5j8V������������Ca
} B F Z�Z]\O^5i�#��$�5j J�& �����8a

The outer level of the view,that is
i�#����

, is paired off with each of the alternative components
of the view,

V������������
and J�& ����� .

9.8.3 Gather Them Together

Now we have a number of simple view relations derived from the original view structures.

} B 2 Z�Z]\O^5i�#��$�5j , ��zOj<`�#����q*!� ' �La
} B 0 Z�Z]\O^5i�#��$�5j { ��#��<j J ��#����8a
} B 7 Z�Z]\O^5i�#��$�5jO�����<j[r�V ' �yuLa
} B 9 Z�Z]\O^5i�#��$�5j�p!�����������	�<a
} B E Z�Z]\O^5i�#��$�5j8V������������Ca
} B F Z�Z]\O^5i�#��$�5j J�& �����8a

Uncovering Facts 211

9.9 Extracting Elementary Fact Types

Each view relation corresponds to a type of sentence. Many of these are capable of
being reduced to simpler, more fundamental, sentence types. The final process involves
examining each view relation to see if any further reduction can be performed.

There are two steps to this process.

1. Carefully construct a sample sentence based on the view relation. Use some of the data
that was employed in forming the original view structure.

2. Examine that sentence to see if it can equally well be written as two or more simpler
sentences.

Each sentence will either be decomposable, in which case we form the appropriate number
of elementary fact types; or, alternatively, it will not be decomposable, in which case the
view relation itself becomes one of the basic fact types.

We will now examine each view relation in turn.

} B 2 Z�Z�_^i�#����8j , ��zOj<`�#����q*h� ' �Ca
A sample sentence is:

������*��#_�����	������������� & �O��#����$�X(���#�������� -
We must examine this sentence and make sure that it says exactly what we mean it
to say. In this case, which of the following sentences more accurately expresses its
meaning?

r 2 uC�����o*��#_�����	��������� / #����O#��5��)�����Y�z�����YQ���� % � / ���������������y����#����5(���#������y� -r 0 uC�����o*��#_�����	��������� %�& �8#������ & #�(�(����$�l���<��#����8(���#�������� -
In other words, is Sue’s earning capacity determined by her job or is it simply a fact
about Sue? We will take the first of these alternatives as our choice. Therefore two
separate fact types are embedded in the sentence:

����� % ����Q��L#��5#O��������������� -� ���	�����������l��#����8(���#�������� -
Now we can generalize these into two fact types. We decide what types of thing
participate in the fact and we give a name to the relationship. For the first sentence,
the entity types would be something like

���$*������
and , ��z ; the relationship might be

called % ����Q��C#��# . So this first sentence, in general, says that:
� 2+- ���$*	����� % ����Qy�C#��5# , ��z -

The second sentence seems to involves jobs and the earning power of these jobs. It
might be generalized into a fact type like this:

� 0�-@, ��z���#����O`�#����q*!� '�J � % ��� -
} B 0 Z�Z�_^i�#����8j { ��#��Oj J ��#����<a

A sentence of this type might be:

212 Chapter 9

p!� 2�I�?�Fn/ ����� % �����O��� & ����*���#�Y5��� 3 #���* -
Examination of the original report in Section 9.6 suggests that people have only one
holiday a year, at most. If this is the case, then this sentence is an irreducible fact type.
So the complete view relation is one of the elementary fact types we are looking for.
It becomes our next fact type:

� 7�- p!� { ��#�� / ���$*������ % �����O��� & ����*	��#�Y��� J ��#���� -
} B 7 Z�Z�_^i�#����8jO�����<j[r>V ' �yuCa

A sample sentence of this type would be:

3 *���� / #��$#���� / *�� 0�I Y���#����C����� -
Obviously there are two basic sentences. A person’s sex has no bearing on his or her
age. Even if we did not pick this, a significant clue is given by the optionality of the
age component. This is a clear signal that sex and age are separable.

� 9=- ���$*	�����o*��L#_����� -� E�- ���$*	�����o*���i_Y���#����C����� -
We will use the standard name

i
for the entity type consisting of the set of integers,

as was done in Chapter 2.

} B 9 Z�Z�_^i�#����8j�p!�����������	�8a
This is a binary relation and consequently must be an elementary fact type. Here is
an example:

�����<��*�Q���������#�)���� -
In general, the fact type would be something like this:

� F�- ���$*	�����O��*�Q����8p!�����������	� -
} B E Z�Z�_^i�#����8j8V������������La

This is another binary relation, so no decomposition is possible. A sample fact could
be:

�����<��*�)����L#�� 0�0 ������#���� 3)�� /@S ��(���� & # ' ���

The corresponding fact type would be:
� D�- ���$*	�����O��*�)����C#��OV������������ -

} B F Z�Z�_^i�#����8j J�& �����<a
This is another binary relation. A sample fact could be:

3 *��������X(& �����������z����o*�� 7�I�2<2!F$2�E�-
The fact type would be something like the following:

� ?�- ���$*	��������#��8z��5��������(& ����������Oi -

Uncovering Facts 213

Summary: All the fact types can be written down together as follows:
� 2+- ���$*	����� % ����Q��L#��L# , ��z -� 0�-@, ��z_��#����<`�#����q*h� '�J � % ��� -� 7�- p!� { ��#�� / ���$*������ % �����O��� & ����*���#�Y5��� J ��#���� -� 9=- ���$*	������*��#O����� -� E�- ���$*	������*��CiOY���#����L����� -� F�- ���$*	�����<��*�Q����<p!�����������	� -� D�- ���$*	�����<��*�)����L#��8V������������ -� ?�- ���$*	�����_��#��<z����������(& �������5���Oi -

All the views have now been converted into a number of elementary fact types. The next
step is to find out how and where these facts can be merged. To do this, we need to look at
the participation rates involved in each fact type. However, as we have no intention of ever
keeping a database on our friends, we will stop this exercise now.

9.10 Further Abstraction

The Extended Backus-Naur Form (EBNF) language has been used to describe the appear-
ance of views or reports. It has links, however, with other notations used in this book. In
particular, it may be compared with the higher-order sets introduced in Chapter 3.

b The repetition construct
^ -�-�- a of EBNF corresponds to the power set operator. A view

of the form:

B������ �lV��

can be “translated" into a declaration:

BR��������� " V

For example, a series of people: � *�� / V���� /U3 ��z /t�h��� is nothing more than a set of
people.

b The concatenation construct -�-�- j -�-�- of EBNF corresponds to the product set operator.
A view of the form:

B������ V�� 3
can be translated into a declaration:

BR��VR� 3
For example, the sequence 3 ��z<�������q*�� is nothing more than a tuple that pairs a person
with a sport.

We may use this method of conversion to turn our description of views into declarations
in our formal specification language.

Example 9.1 The Green-Eyed Monster Report
The definition of the structure of this report was:

214 Chapter 9

T�` A Z�Z]\O^5i�#��$�5j , ��zOj<`�#����q*!� ' ��j�^ { ��#��Oj J ��#����8a_a

This may be turned into a formal declaration:

T�` A �������H� "�� J ���������P� , ��zR�U`�#����q*!� '�J � % �����1������� "���{ ��#��P� J ��#������>�

;�& �5T��������yx�`�Y���� A �����	�����B���(������x
i�#��$� , ��z `�#����$� M ����*	��#�Y{ ��#�� J ��#����

����� �����	��������� (���#�������� 2�I�?�F 3 #���*
2�I�?�9 A ������� S #������
2�I�?�E V���#�(��y�����

3 *���� (y������z���� & ��#�($� 2�I�?�E S #y*����$�
2�I�?�0 B$*��

K���� ' �����	����� & ��#�($� 2�I�?�? S�& *!��#
2�I�?�D ����#������

x�x

However, the J ���y����� (name) is the key of this (generalized) relation, and so there is a
functional relationship between the key and the rest of the tuple. We may choose to define
it as:

T�` A � J ��������� x j¡x£¢ , ��zR�U`�#����q*!� '�J � % �����1������� "���{ ��#��P� J ��#������>�

The view may be regarded as a (rather large) function that maps each person to the kind of
information on which we choose to base our prejudices about each person. The description
is still clumsy, and we may prefer to declare it in the following way. First we declare two
record types.

¤¦¥	§¡¨�©�ª	«
¬ywª�® ��¯
°6²±²³´¨¶µ�ª�³£¨�¥�µ ��· §�ª�¸w

¹ �º¼»�µh½�¥
¾1¥	®>¿	±>À�± ��Á ¥�Â
Ã�ª�®²µ�± � Ã�ª�®²µ�¨¶µ�Ä · ¥�Å��®
¤¦¥	§¡¨�©�ª	«�± ��Æ �³Ç¥�½�¤�¥�§¡¨�©�ª�«

The underlying nature of the
T�` A function may now be clearly revealed:

T�` A � J ��������� x j¡x£¢ÈT����mp!� " �

Uncovering Facts 215

Example 9.2 The Match-making Report
This view lists each friend’s name followed by their sex, which we know, followed by their
age if we know it; and finally any spare time interests they might have.

A�A Z�Z]\O^5i�#��$�5j_�����<j~r>V ' �yulj�^op!�����������	�<a<a

If we look at the sample report, we can see that it is also a function.

;�& � A #��y� & x!�$#�Q$*!� ' B���(������x
i�#��$� ����� V ' � p!���������������

3 *���� � 0�I ��(������ / ����#�)��������� " 7$2 ����#�)����
p�#�� � ������*�� / #���� / (& ����� ' ��#�(& YV���� " 7�0 p�#��
x�x

We may declare it directly as:

A�A � J ��������� x j�x£¢������É� � iÇÊ ���������Ë�@������� " p!�����������	���

Example 9.3 The Hot Gossip Report
This report provides two alternative pieces of information about each friend.

;�& � M ���<T�������*!(<B���(������x
i�#��$� S ������#��	�

V���� 0�0 ������#���� 3)�� /@S ��(���� & # ' ���
3 *���� 7�I$282�F$2!E����� 0�0�780�E�E�EK���� ' 78} *�#V�(�(q*�# / B����$�x

It has the following structure:

M ����T�������*!([Z�Z]\O^5i�#��$�5j�dRV������������ke J�& �����8f_a

This report is better seen as an amalgamation of two separate reports:

M T 2 Z�Z]\O^5i�#��$�5j8V������������Ca

M T 0 Z�Z]\O^5i�#��$�5j J�& �����8a

Both of these are functions, and we may declare them as:

M T 2 �����$*������¼x j¡x£¢ÌV������������
M T 0 �����$*������¼x j¡x£¢ J�& �����

216 Chapter 9

9.11 Summary

Designing a relational database involves the following steps.

1. First of all, we must discover the basic kinds of information that are to be stored in the
database.

2. Then we need to examine each type of fact to see what kind of relationship is involved.
Is it a functional one? We can use the idea of uniqueness constraints.

3. Having determined the participation rates we can then merge certain of these fact types
according to rules formulated in Chapter 8.

The second and third steps are relatively straightforward. The problems we encounter are
usually met in the first of these steps.

The people for whom the database is being designed will not expect to and will probably
be unable to tell us the basic kinds of facts that are to be stored in their database. They will
present us with a number of complex overlapping pictures of their world. These pictures
are the facts that they wish to store. We, the designers, need to break up these views into
a much larger number of elementary pictures or fact types. From these we can develop a
good design.

This chapter has looked at how we can perform this first step of user view analysis.

b We have looked at a language that we can use to place some order on each view. The
language allows us to define the structure of the view.

b We have looked at how we can decompose these view structure definitions into simpler
structures called view relations. From these flat relations we can extract the elementary
fact types that are built into them.

Uncovering Facts 217

Exercises

Q9.1 The following advertisement is an extract from the latest issue of the computing
magazine PC PLOD.

ÍÏÎOÐ Ñ8ÒoÓ1ÔLÕ×Ö�Ø<Ð Ñ5ÒoÓ�Ô<Ù�ÐlÚ

Here is a list of the cheapest software prices on the market!

Spreadsheet Integrated
Lotus 1–2–3 $500 PFS $675
Multiplan 795 Framework 999
Quattro 250 Symphony 795

Languages Word Processing
Microsoft C $100 Wordstar $500
Turbo Pascal 125 Word Perfect 550
Turbo Prolog 125

Games
War $70
Chess 15
Gato 45

Purchasers are entitled to free after-sales service from our acknowl-
edged experts. For spreadsheet, word processing and integrated pack-
ages, ring Û¼Ü¶Ý�Ý�ÛßÞ$àmáqâ on 228 1165; for languages and games, ringã áqä�âå�à+áqâmÝ²æÇç>èÌémä�áqÜ¶ê on 223 5162.

ëìë¡ë�í�î.ïHðñð+òËómí�íÉë¡ë¡ë

We are offering discounts for a short while only, 10% off all spreadsheet
and word processing software, 25% off all games.

There are three distinct views here; one giving prices, a second the support available
and a third discounts.

a. Derive the structure of each view.

b. Derive view relations from these structures.

c. Extract the elementary fact types.

218 Chapter 9

Q9.2 A small library wants to keep track of books that are out on loan and to whom they
are on loan. The librarian envisages needing two reports.

ô�� � ��#��<B���(������
x�x
J #�������� J #�������� p������=r���u K����K�#����
i�� i�#��$� ô�� � ��#��
x�x
?�I�I 3 *���� ;�& ����($����� 2�0�:�I�I 2�7�õ�:�?�õ�I$2

2�E�2 , � & �_���m*�� & 2�7�F�D�? 0$2	õ�:�?�õ�I$2
E�9�I$2�2 0$2	õ�:�?�õ�I$2
I�I�?�?�D 0�7�õ�:�?�õ�I$2

D�E�E V������K�#�)$*��y����� 0�0�I�?�I 2�0�õ�:�?�õ�I$2
7�7�0�9�9 0�D�õ�:�?�õ�?�I

0�7�9 , � & �_���m*�� & 9�7�E�E�I I�õ�:�?�õ�?�Ix�x

� ��#�� ; Y�(��B���(������x
; *!����� V���� & ���.r���u S ��(�Y8i�� p�������i�� � ��#�� ; Y�(��x
V���������� � ��#�)���� ���m*�� &�/1, ������� /�M #���� 2 9�E�F�?�I 0% ����Q

0 D�F$2�2!I 98% ����Q

��(��$*!� ' B�������� `��	�$����� 2 ?�D$2�2!0 98% ����Q

�������$���<��#������ G #���� &�/ � ��� 2 0�F�?�E�7 0% ����Q

G *h�������5��������ö�� �������	� /�M #���� / ����� % 2 I�?�D�?�I 98% ����Q
0 F�E�9�E�F 98% ����Q
7 2�2�0�0�7 24% ����Qx�x

a. Derive the structure of these reports.

b. Derive view relations from these structures. Assume that author names and
book titles are unique but patron names are not.

c. Extract the elementary fact types.

Q9.3 The Antarctic Computer Society publishes an occasional magazine called Cold
Comfort. Here is the contents page of their latest issue.

Uncovering Facts 219

÷Xø�ùtú ÷Xø1ûXüXøþýtÿ
���������
	 	�����

ù������ ��� ÷ ��� ��� � ���
����� � ÿ���� � � ������� ���! ��"

$%��� ���&� ��� �����'� �����'� � (*) �����,+ ��- ý � ���ñ÷ �
� ����. �&�����tÿ ��/ � �0���
1������ �32 ����4�� �)

	�5 $�6
7�8!9 1���/0(��:;� � ��< =�� ����� �>7 ��-�(*) �����?+ �
����@ ú � � �A� ÷ �

	;� � � �B� �&CD���D�����;)%��� E � ��� 7 � ÷ �
�;2���:�� � ��: � ��� ���

F�@ ��� ��� 9HG � = � ù�I ���

a. Derive the structure of the this title page and all the previous ones.

b. Derive view relations from this structure. You may assume that, for all issues
of the magazine, people are uniquely represented by their names and that the
titles of articles will never repeat.

c. Extract the elementary fact types.

Q9.4 The following information was extracted from a list of the complete results of the
1995 World Soccer League.

ú � ��� (� ��@ �;�) ÿ�� �*) (: ��� � (: ��� � �! ��"

��	;J # J��� K �)�4�� ��I ù
� . � � 2 ����� øML£ý���� ��� I N� " -O(*) ����� N� " -
+ ��� ���

ý�� ��� û ��@�� � @ # ÷�� ����� ��� -P1 �)�4�� � -Q(��;� � �����
1��*) 2 @ � �R������S ý �;��� � � � 	 (�� � � �����

û
� ����� � = ��� � � � �M- û
��:�� � � �
��T�J # J��� ù �����&������S E�� ��� 4���� � 	 ù�� / ���

ù
� . � � 2 ����� 5

û�÷�= û�� ��4�� � ��� � 5
û
� ����� U � ��� � �&�M #
" - = ��� � � � �

a. Derive the structure of the list.

b. Derive view relations from this structure.

220 Chapter 9

c. Extract the elementary fact types.

Chapter 10
Fact-based Analysis

10.1 Introduction

This chapter is presented as a worked example in a technique which we will call fact-based
analysis. This is a way of designing a relational database. In particular, it is concerned
with developing a design that guarantees that in any resulting database each fact is stored
just once. Here are the stages that we follow.

1. Uncover the relevant entity types and the fact types that join them.

In this step, we apply the techniques of Chapter 9 to find the relevant elementary fact
types.

2. Look for any uniqueness constraints involved in each fact type.

In this step, we apply the question and answer technique of Section 8.6 to decide
whether a fact type is a many-to-many, a many-to-one or a one-to-one relationship.

3. Construct record types by merging fact types, where appropriate.

In this step, we merge fact type according to the rule that permits the merging of
single-valued facts about the same kind of thing.

4. Decide which attributes may be null.

In this step we process each record type in turn, examining each non-key attribute of
that record. Those that may contain null values are flagged.

5. Define the database.

In this step, we provide an outline of the database.

6. Review the design.

Finally, we should check that the database design is satisfactory. Has any computable
or derivable information slipped through into our design? Using SQL, can the major
views be reproduced with this design?

�����

222 Chapter 10

Uncover
fact types

Look for
uniqueness
constraints

Construct
record types

Decide on
null values

Review the
design

Define
the

database

Database
Schema

User Views

Record Types

Conceptual
Schema

Figure 10.1 An outline of fact-based analysis

Figure 10.1 shows the processes and their outcomes.

� User Views

These are “pictures" of the users and their environment.
� Conceptual Schema

This consists of entity types and the fact types that join them, typically shown in
graphical form.

� Record Types

These are the various aggregate data structures that form the basis of our relational
database.

� Database Schema

This is both a formal definition and and a number of ���	��
�	���	
����� statements to
define the database.

Fact-based Analysis 223

10.2 The Problem

We need to design a database that will help a firm of garment wholesalers in their order
processing. A typical order form looks like this:

� � � � ��� �
��� �"!$#%� &(')!+*�#)�

Order No: ,.-�/0 Date: -1,32�435���2�6�7
Customer: 7�8�9�:; ��
�5<��=�>	?�?@

/�8�6�A<��B��DC	
E	FDA<
E	�
Style Description Unit Quantity Total
Code Price

8�-1,.8 G��	�	H�H ,I:KJML�L 7 6�LKJNL�LO 7�/�P Q�@1RI��� ,I7KJML�L ,.L ,.7�LKJML�L
Q�6�7�L1, G��	�	H�H ,I7KJML�L 7 9�7KJNL�L

2�2�2�2�2�2
/1,.7KJML�LS�S�S�S�S�S

The sample order is one aspect of the business activities of a garment wholesaler such
as Fashion Distributors. A valid analysis is not possible without an understanding of the
events leading to its receipt. Further, we need some general knowledge of the business
environment in which the company operates.

Fashion Distributors (FD for short) sell women’s clothes to boutiques, pharmacies,
souvenir shops and small department stores. None of their customers run more than one
shop. Sales representatives travel with samples of FD’s current styles. They have a fairly
stable customer base and a reputation for quality and reliability. Once a customer has made
an order, this is sent to FD’s head office for credit approval. If approved, the order is passed
onto the warehouse. There a warehouse attendant attempts to fill the order, but sometimes
there might not be sufficient stock on hand. Details of the shipment are sent to the accounts
department where an order is prepared and sent out to the customer.

10.3 Step 1: Uncover the fact types

This step requires that we write down all the entity types that we see on the order, that is,
the kinds of things that will appear on order forms. The step also says that we should write
down any significant facts that connect these entity types. Although these two requirements
might be done separately, they are better accomplished concurrently.

224 Chapter 10

The process involves the following three stages as was discussed in Section 9.7.

1. Derive view structures

Analyze all the various pictures or views of the user’s world that we can obtain. Develop
view structures for each of these views.

2. Derive view relations

In the next stage, each view structure is examined in turn. Any structure that contains
repeating components is “flattened" out into a number of view relations. Any structure
that contains alternative components is split into a number of separate view relations.

3. Extract elementary fact types

In the third and final stage, each view relation that results from the previous stage is
examined. Each view relation has a corresponding sentence. Sample sentences of that
type are formed. This sentence may be reduced to two or more simpler sentences,
without loss of information. Alternatively, it may be irreducible. Either way we are
reducing our more complex sentences into a number of elementary sentences.

The outcome of this entire process is a set of elementary sentence or fact types. These are
the basic sentences that are to be stored in the database.

10.3.1 Derive View Structures

We have been presented with only one picture of the user’s world, the order form. Each
completed form represents just one order but we are interested in the set of all orders, so
an appropriate view definition could be the following.

�%T �<F<��UHWV�V SYX T �<F<����Z	?���[]\
The orders view consists, quite simply, of a set of order forms.

�%T �<F<���Z	?���[^V�V S C	��
�FURIE<_�` Xba E	FUR.c1R.F�5d
<� T �<F<����\�` T c<���	
<�����	?��	
<�
Each order form, such as the one shown, contains a heading, a number of individual
orders for specific styles followed by an overall figure giving the total value of the entire
order.

� C	��
�F�RIE<_eV�V S T ��F<����>��)` T �<F�����G	
��<��`Y�51H3�	?.[U����>���`Y��5UH3��>	
.[U�)`fQ����	�����
This is what will appear in the top part of each order form.

� a E	FURIc1R3F�5d
�� T �<F<��gV�V S Q���=d�����<?�F<��`fQ���=d������=�hd�+`Di<E1R.��j��1R�k�%`ml�5d
E<�UR.��=
`YQ���=	�����	?��<
<�

This is the information shown on each detail line of the order.

Amalgamating these into a single definition gives us:

T �<F<��UHWV�V SX T �<F<���>��D` T �<F<����G	
��	��`n��51H.�	?.[1����>��)`n��51H3��>	
.[1�)`YQ����	�����
` X Q���=d�����<?�F<�%`fQ���=d������=�hd��`)i<EoR.��j��1R�k��`fl�5d
�E<�1R.��=)`fQ���=d�����	?�	
<�)\
` T c<���	
<�����	?��	
<�+\

Fact-based Analysis 225

There are two data elements that can be derived from others, the individual style total,
Q���=d�����	?��	
�� and the overall total, T c<���	
<�����	?��	
<� . For the purpose of designing a database,
these may be discarded. As a result, we now have the view that we will analyze:

T �<F<��UHWV�V SX T �<F<���>��D` T �<F<����G	
��	��`n��51H.�	?.[1����>��)`n��51H3��>	
.[1�)`YQ����	�����
` X Q���=d�����<?�F<�%`fQ���=d������=�hd��`)i<EoR.��j��1R�k��`fl�5d
�E<�1R.��=D\Y\

10.3.2 Derive View Relations

The T �<F<���UH structure contains a repeating component, and so we must flatten it into two,
simpler, view relations.

First we need to identify a key component of the structure. The view consists, essentially,
of a set of orders. The key will be whatever information we can use to distinguish one
order from another. The T ��F<����>�� was clearly designed for this purpose.

The structure is flattened by removing the repeating component entirely from T ��F<���UH
and placing it in a new relation consisting of this component and the key, T ��F<����>�� . The
resulting view relations are:

p�q ,WV�V SYX T ��F<����>��D` T �<F�����G	
��<��`Y�51H3�	?.[U����>���`n��51H.��>	
.[1�%`fQ����	�����Y\p�q -rV�V SYX T ��F<����>��D`YQ���=	�����<?�F���`fQ��=d������=�hd��`)i<EoR.��j��1R�k�%`ml�5	
E<�1R.��=Y\

10.3.3 Extract Elementary Fact Types

The final part of this first step in fact-based analysis is to take the above view relations and
extract whatever irreducible fact types they contain.
p�q ,sV�V S T �<F�����>��D` T �<F<���G	
��	�%`Y��5UH3�	?.[1���>��)`���51H3��><
.[1��`YQ����	�����
This view corresponds to the heading on an order form, so we should now construct a
sample sentence using the data on the form provided.

� Order number ,.-�/�0 , which was taken on -1,32�4�5d��2�6�7 , was made by customer number
7�8�9�: ; this customer trades as

; ��
5<��=�>	?�?�@ at /�8�6�A<��B��DC	
E	FDA<
E	� .

This is a long-winded and awkwardly phrased sentence; a sure sign that it can, and should,
be decomposed. The sentence breaks most obviously at the semi-colon, so we can rewrite
it as:

� Order number ,.-�/�0 , which was taken on -1,32�4�5d��2�6�7 , was made by customer number
7�8�9�: .

� Customer number 7�8�9�: trades as
; ��
5<��=�><?�?�@ at /�8�6DA���B��DC	
E	FDA<
�Ed� .

In the first of these sentences, it should be clear that the date on which the order was taken
is independent of the customer who made the order. Looking at the second, it should be
seen that the customer’s trade name and address are separate facts about the customer. So
the two sentences can be further reduced.

226 Chapter 10

� Order number ,.-�/0 was taken on -1,32�4�5d��2�6�7 .
� Order number ,.-�/0 was made by customer number 7�8�9�: .
� Customer number 7�8�9�: trades as

; ��
5<��=�><?�?�@ .
� Customer number 7�8�9�: is located at /�8�6DA<��B��DC	
�E	F�A<
Ed� .

These are all binary facts and so are irreducible. Generalizing them gives rise to four fact
types:

Zt,uJ T �<F�����vd
dH+�	
�@	��EY?EfG<
�=wJ
Z	-KJ T �<F�����vd
dHx[1
�F<���<=Y��51H.�	?.[1���yJ
Z	/KJz��51H.�	?.[1�������	
�F<�	H%
dH�><
.[1�KJ
Z�0wJz��51H.�	?.[1���fR�HD��?dk
��	��FD
��YP�F�F��	�dH�H J

p�q -{V�V S T ��F<����>��)`fQ���=d�����<?�F<��`YQ���=d�����=�hd��`)i<EoRI��j��1R�k���`ml35d
E<�1RI��=
This view corresponds to a line on the order, so we can use data from one of these lines to
construct a sample sentence from this relation.

� On order number ,.-�/0 there was a request for 7 units of style 8�-1,.8 which is a dress
and sells for |U,.:KJML�L .

The phrase “which is a dress and sells for $18.00" contains two asides which are aimed
solely at the style code 6216. The sentence can be restated as follows.

� Style 8�-1,.8 is a F��	�dH�H .
� Style 8�-1,.8 sells for |�,.:KJML�L .
� On order number ,I-�/�0 there was a request for 7 units of style 8�-U,.8 .

The first two of these sentences are irreducible but what about the third? If we were to
re-express it as three simple sentences we would get:

� On order number ,I-�/�0 there was a request for 7 units (of some style or another).
� On order number ,I-�/�0 there was a request for style 8�-1,I8 (but we don’t know how

many).
� There has been an order (but we don’t know which) for 7 units of style 8�-1,I8 .

These three facts are not enough to permit us to reconstruct the original sentence; this
sentence is also irreducible. This leaves us with three fact types to be extracted from this
view relation:

Z	7KJ}Q���=	���mR�H�
fQ���=	������=�h	�KJ
Z	8KJ}Q���=	���fH�<���	H+B�?��D~	?Ed��=yJ
Z	9KJ T E T �<F<��K��l�5d
E��1R.��=�5�EoR.�UH�?�BYQ���=d���%vd���	�)�	���5d�dH3�	��FyJ

The Results of Step 1
This step requires that we decide on the relevant entity types and the fact types that join
them. We have now accomplished this task. The fact types and the entity types they connect
are as follows:

Fact-based Analysis 227

Zt,uJ T �<F�����vd
dH+�	
�@	��EY?EfG<
�=wJ
Z	-KJ T �<F�����vd
dHx[1
�F<���<=Y��51H.�	?.[1���yJ
Z	/KJz��51H.�	?.[1�������	
�F<�	H%
dH�><
.[1�KJ
Z�0wJz��51H.�	?.[1���fR�HD��?dk
��	��FD
��YP�F�F��	�dH�H J
Z	7KJ}Q���=	���mR�H�
fQ���=	������=�h	�KJ
Z	8KJ}Q���=	���fH�<���	H+B�?��D~	?Ed��=yJ
Z	9KJ T E T �<F<��K��l�5d
E��1R.��=�5�EoR.�UH�?�BYQ���=d���%vd���	�)�	���5d�dH3�	��FyJ

The conceptual schema diagram for these seven facts is shown in Figure 10.2.

Address

Customer Name

Order Day

Quantity

Style StyleType

F4

F3

F1

F2

F7

F5

F6

Money

Figure 10.2 The first-draft conceptual schema diagram

228 Chapter 10

10.4 Step 2: Look for uniqueness constraints

Now we will examine each of the fact types uncovered in step 1 and try to establish the
nature of the relationship between the entity types that participate in the fact. We will be
looking for uniqueness constraints and will mark the conceptual schema diagram according
to our findings.

Zt,uJ T �<F<���)vd
	H��	
@	�EY?EYG	
�=wJ
In diagrammatic form this fact type looks like:

DayOrder

generatedwas taken on

The questions that we must answer are as follows.

Q1. Was any ?��<F<��n�<
�@	�EY?E more than one F�
�= ?

The answer is �u� so there is a uniqueness constraint.

The other question is phrased using the opposite form of the relationship, namely
_<�Ed���	
�	��F .

Q2. Did any F<
�=D_	��Ed���	
��<� more than one ?���F<��� ?

The answer, we hope, is ���d� and so there is no uniqueness constraint.

The role boxes can now be marked to show the constraint involved in this fact type.

DayOrder

generatedwas taken on

Z	-KJ T �<F<���)vd
	H$[1
�F<���<=n��51H3�	?I[1���wJ
Q1. Was any ?��<F<���[U
�F<���<= more than one k.5UH3�	?.[1�� ?

The answer is �u� so there is a constraint.

Q2. Has any k.5UH3�	?.[1��+[1
�F<� more than one ?��<F<��� ?

The answer is surely ���d� so there is no constraint on this role.

CustomerOrder

madewas made by

Z	/KJ^�51H3�	?.[U���)���	
�F<�dH%
dH%>	
.[1��J
Q1. Does any k.51H3�<?.[1���)���	
�F<�D
dH more than one E	
.[1� ?

We will make it �u� but the answer is one we might have to discuss with our client.

Q2. Is any Ed
.[U�����	
�F<��F�5�E	F<�����<= more than one kI51H3�	?.[U��� ?

Fact-based Analysis 229

The answer is �u� (a legal requirement), so there is a constraint here.

Customer

traded under bytrades as

Name

Z�0wJ^�51H3�	?.[U���mR�H���?dk
�	��FD
��DP<F�F��	�dH�H J
Q1. Is any customer located at more than one
�F�F��	�	H�H ?
The answer is �u� so there is a constraint.

Q2. Is any
�F�F��	�dH�H����	�Y��?dk
��1R3?En?�B more than one H.�	?h ?

Some customers might be located at shopping centres so we will make the answer
���d� .

AddressCustomer

is the location ofis located at

Z	7KJ�Q��=d���fR�H)
nQ���=d�����=�hd�KJ
Q1. Does any style have more than one H3��=d������=�h	� ?

The answer is �u� so this is a constraint.

Q2. Does any H3��=d������=�hd�mRIE1k��5	F<� more than one H3��=d��� ?

The answer is ����� . There is no constraint. It may be that H.�oR.��� describes several
different styles.

Style

includesis a

StyleType

Z	8KJ�Q��=d���YH�����	H%B<?��D~	?E	��=wJ
Q1. Does any style sell for more than one
I[1?5�E<����?�B+[1?Ed��=U� ?
The answer is �u� so there is a constraint.

Q2. Is any [1?E	��=Y
.[1?5�E������d��h<�1R�k��n?�B more than one H3��=d��� ?

The answer is ���d� so there is no constraint.

Style

is the price ofsells for

Money

Z	9KJ T E T ��F<���K��l�5	
E<�1R.��=�5�EoR.��H)?�BYQ��=d����vd���<���<����5d�dH.�	��FyJ
This fact type involves three entity types, T ��F<��� , Q��=d��� and l�5d
E<�UR.��= .

230 Chapter 10

The question-answer technique can be modified to deal with three-part fact types.
This done by pairing two of the entity types and relating them to the third. Because
there are three participants, there are three ways of performing this permutation.
These are (1) T �<F<��� and Q���=d��� against l�5d
E<�UR.��= ; (2) T �<F<�� and l�5	
E<�1R.��= against
Q��=d��� ; and (3) Q��=d��� and l�5d
E<�UR.��= against T �<F<��� .

Q1. Does any H3��=d����?E]
�E]?���F<���)�d
�c<� more than one ��5d
E��1R.��= ?

The answer is �u� and so there is a constraint.

Q2. Is any ��5d
�E<�1R.��=�?E]
�E]?���F<��� that of more than one H3��=d��� ?

The answer is ���d� and so there is no constraint on the ��5d
�E<�1R.��=)`m?��<F���� combi-
nation.

Q3. Does any ��5d
E��1R.��=D?�Bf
mH3��=d��� appear on more than one ?��<F<�� ?

The answer is ���d� , because more than one customer may order 10 units of some
given style. So there is no constraint on the ��5d
�E<�1R.��=)`bH3��=d��� combination. See
Figure 10.3.

Order QuantityStyle

Figure 10.3 An irreducible fact type

We should now redraw this fact type as a nested one, as shown in Figure 10.4.

The revised conceptual schema diagram, now incorporating the uniqueness constraints and
the nested fact type, is shown in Figure 10.5.

10.5 Step 3: Construct record types

In this step we merge the fact types into record types. The basis for merging is the
determinant.

Wherever an entity type appears in a conceptual schema diagram and it is
connected to a role box against which there is a uniqueness constraint, then
the associated relationship is a single-valued fact about that entity type. The
entity type is said to be a determinant.

For example, fact type Zo, is a single-valued fact about an order. Orders are taken on one
particular day. As a result of our work in step 2, we can quickly tell this from the diagram.

Fact-based Analysis 231

Order

Style

Quantity

Figure 10.4 A nested fact type

The entity type T ��F<��� is called the determinant because knowledge of an order determines
one particular order date.

All the fact types that involve a particular determinant are merged to create a record
type. The determinants, with their associated entity and fact types, are summarized below.

Determinant Entities Fact types involved
T ��F<��� T �<F���� Zt,o�}Z	-
��5UH3�	?.[1�� ��51H.�	?.[1��� Z	/��}Z�0
>	
I[1� >	
.[U� Z	/
Q���=d��� Q���=	��� Z	7��}Z	8
Q���=d��� T ��F<��� T �<F����n`fQ���=d��� Z	9

Fact type Z	/ is a one-to-one fact involving customers and their names. As a conse-
quence, it appears twice, once with Customer as the determinant and once with Name. We
choose to aggregate Z</ with other facts relating to Customers. The record types that result
from the merging process are:

T �<F<���
Record Type

Fact Key? Attribute References?
����� T �<F<����>��

Zo, T �<F<����G	
��	�
Z<- ��51H3�	?I[1����>�� ��51H.�	?.[1��� q �dk?���F

232 Chapter 10

Address

Customer Name

Order Day

Quantity

Style StyleType

marks the boundary of a merge

Money

Figure 10.5 The final schema

��51H3�<?.[1���
Record Type

Fact Key? Attribute References?
����� ��51H3�	?I[1����>��

Z</ >	
.[1�
Z�0 P<F�F��	�	H�H

Fact-based Analysis 233

Q���=d���
Record Type

Fact Key? Attribute References?
����� Q���=d�����<?�F<�

Z<7 Q���=d�����=�hd�
Z<8 i<EoR.��j��1R�k�

Q��=d��� T �<F<���
Record Type

Fact Key? Attribute References?
����� T �<F<����>�� T �<F���� q �dk?�<F
����� Q���=d�����<?�F<� Q���=	��� q �dk?�<F

Z<9 T �<F<���	l��=
Our model is going to end up inside a computer system, but we can’t put shops or

garments or customers inside our computer. Instead, we must represent them in some way.
What we do is to look for some way of symbolizing them.

The substitutions are implied by the way that entities were represented in sample
sentences. For example:

� Order number ,.-�/0 was taken on -1,32�4�5d��2�6�7 .

The corresponding fact type was:

�%T �<F<�� was taken on G	
�= .

The generalization from the sample sentence to the fact type involved a recognition that (1)
an order number represented the entity type T �<F<��� ; and (2) a date represented the entity
type G<
�= . What we are doing in this step is returning to the symbolic level. A complete list
of the substitutions used is as follows:

Entity type RepresentationT �<F<��� T �<F<���>�5[d�d��
G	
�= G	
��	�
Q���=d��� Q���=d���)�<?�F<�
��51H3�	?I[1��� ��51H3�<?.[1���)>�5[d�d���

10.6 Step 4: Decide which attributes may be null

We must now decide which attributes of each relation will permit null values. This requires
that we return to the relevant fact type and find out the least participation rates for the
determinant only.

Zt,uJ T �<F<���)vd
	H��	
@	�EY?EYG	
�=wJ
To determine whether or not null values are to be allowed in the G<
�= attribute, we
must answer the following questions.

234 Chapter 10

Q1. Will every ?��<F<��� be taken on some F<
= ?� �d� , it could hardly be done outside of space and time, so we must go on and ask
the supplementary question.

Q2. Must we always know on which F<
= an ?��<F���� was taken?

The answer cannot be answered from the sample order form we have been using so
far; we should really ask the users. If there is any doubt then the answer should be
�u� . That is the one we will use now.

The consequence of a negative answer is that nulls should be permitted for the G	
=
attribute in the T �<F<�� proto-relation.

Z	-KJ T �<F<���)vd
	H$[1
�F<���<=n��51H3�	?I[1���wJ
Q1. Is every order made by some customer?

The answer is ���d� .
Q2. Must we always know which customer made an order?

The answer must surely be ���d� . Nulls should not be allowed in the ��51H3�<?.[1���
attribute of the T �<F<�� proto-relation.

Z	/KJ^�51H3�	?.[U���)���	
�F<�dH%
dH%>	
.[1��J
Q1. Does every customer trade under some name?

The answer is ���d� .
Q2. Must we always know under which name a customer trades?

Again, the answer must surely be ����� . Nulls are not to be permitted for the >	
.[1�
attribute of the ��51H3�<?.[1��� proto-relation.

Z�0wJ^�51H3�	?.[U���mR�H���?dk
�	��FD
��DP<F�F��	�dH�H J
Q1. Is every customer located at some address?

The answer is ���d� .
Q2. Must we always know at which address a customer is located?

Again, the answer must be ����� .
Z	7KJ�Q��=d���fR�H)
nQ���=d�����=�hd�KJ

Q1. Is every style of some type?

The answer is ���d� .
Q2. Must we always know which type the style is?

We cannot be sure, so the answer must be ��� .

Z	8KJ�Q��=d���YH�����	H%B<?��D~	?E	��=wJ
Q1. Does every style sell for some amount of money?

The answer is ���d� .
Q2. Must we always know how much a style sells for?

The answer must surely be ���d� .

Fact-based Analysis 235

Z	9KJ T E T ��F<���K��l�5	
E<�1R.��=�5�EoR.��H)?�BYQ��=d����vd���<���<����5d�dH.�	��FyJ
Q1. Will there always be some quantity specified for every style appearing on an
order?

It would seem appropriate.

Q2. Must we always know how many units of a style were requested on an order?

The answer must be ���d� .
Two record types should now be revised to include the results of these questions. A question
mark ���d� is placed alongside any attribute that can contain nulls.

T �<F<���
Record Type

Fact Key? Attribute References?
����� T �<F<����>��

Zo, ���	� T �<F<����G	
��	�
Z<- ��51H3�	?I[1����>�� ��51H.�	?.[1��� q �dk?���F

Q���=d���
Record Type

Fact Key? Attribute References?
����� Q���=d�����<?�F<�

Z<7 ���	� Q���=d�����=�hd�
Z<8 i<EoR.��j��1R�k�

10.7 Step 5: Define the database

We begin the formal definition of the database by defining schema record types for each
record type.

���������M���� �¡����
���������M¢£�¥¤t���������
���������M¦¨§3©ª�«¤�¦¨§3©ª�
¬ �®�©¯¡�°±���M¢«�"¤t¬ �®�©¯¡�°±���

¬ �®�©¯¡�°±���M�²�� �¡3���
¬ �®�©¯¡�°±���M¢«�"¤t¬ �®�©¯¡�°±���
¢"§3°³�«¤�¢"§3°³�
´ �������®�®«¤ ´ �������®�®

236 Chapter 10

µU©·¶3¸¹���²�� �¡3���
µU©·¶3¸¹�¬�¡����£¤	µ�©º¶3¸¹�
µU©·¶3¸¹��»	¶�¼	�¥¤<µ�©º¶3¸¹��»<¶�¼d�
½¿¾dÀ ©ÂÁw� À ��£¤<ÃÄ¡ ¾ ��¶

µU©·¶3¸¹��»	¶�¼	���²�� �¡3���
���������M¢£�¥¤t���������
µU©·¶3¸¹�¬�¡����£¤	µ�©º¶3¸¹�
���������3Å�©º¶³¤�¢

Now we can define the database schema itself.
¦¨§3©ª§Æ�§.®��
����������®«¤<µo��©t¡NÇÈ��������M�²�� �¡3���
¬ �®�©¯¡�°±����®«¤<µ1��©t¡NÇÈ¬¿�®�©ª¡3°³���M���� �¡����
µU©·¶3¸¹��®«¤<µ1��©t¡NÇ£µ�©º¶3¸¹������ �¡����
µU©·¶3¸¹����������®«¤<µ1��©t¡NÇ£µ�©º¶3¸¹�����������M���� �¡����
 �¡3 ¾ © �w�������®²ÉÊ �¡3 ¾ ©UË<¡¨¤u���������® � ¡<Ìº�w������M¢«��Í �¡3 ¾ © ¬¿�®�©ª¡3°³����®�ÉÊ �¡� ¾ ©UË� «¤t¬ �®�©ª¡3°³����® � Ì·¬ �®�©ª¡3°³���M¢£��Í �¡3 ¾ ©Uµ�©º¶3¸¹��®�ÉÊ �¡� ¾ ©UË®Î¤	µU©·¶3¸Ï��® � ®Ì¹µ�©º¶3¸¹��¬�¡I��Í �¡3 ¾ ©Uµ�©º¶3¸¹������������®�ÉÊ �¡� ¾ ©UË®Î¤	µU©·¶3¸Ï������������® �¨Ð ®Ì¹µ�©º¶3¸¹�¬�¡����Ñ�®Ìº�w������M¢«��Ò�Í
 �¡3 ¾ ©UË� Ó¤t¬ �®�©¯¡�°±����® � �Ìº¬ �®�©¯¡�°±���M¢«��Í�ÉÊ �¡� ¾ ©�Ë� Î¤t¬ �®�©ª¡3°³����® � �ÌÔ¢¥§�°±�Í
Ë<¡¨¤t���������® � ¡<Ìº¬¿�®�©ª¡3°³���M¢£��Í£ÕDË� «¤t¬ �®�©ª¡3°³����® � Ì·¬ �®�©ª¡3°³���M¢£��ÍË�®Ó¤<µU©·¶3¸Ï������������® � ®Ìº��������M¢«��Í«ÕDË<¡±¤t���������® � ¡<Ìº�w������M¢«��ÍË�®Ó¤<µU©·¶3¸Ï������������® � ®Ì¹µ�©º¶3¸¹�¬�¡I��Í¥ÕnË®«¤<µU©·¶3¸¹��® � ®ÌÖµU©·¶3¸Ï��¬�¡I��Í

The relation key constraints are given first. Then the one-to-one relationship between
customers and their names is specified. Finally, we define the referential integrity or
inclusion constraints between foreign keys and their parent tables.

The SQL k3�	��
��<���	
����� statements may now also be defined. Each record type gives
rise to a separate k3�	��
�	� statement, with the attributes of the table being taken from those
of the record type, as is the nullity of each. The h<�UR�[1
���=�@<��= clause is based on the Key?
column of the record type table. The B�?��	��R._�ED@	��= clauses are based on the References?
column.

���	��
�	���	
����� T �<F<����H
� T �<F�����>�� E�5[d�d�����0K��Ld�xEd?���E�5���� �T ��F<����G	
�	� F<
��	���
��5UH3�	?.[1���>�� E�5[d�d�����0K��Ld�xEd?���E�5���� �
j��UR�[1
���=�@<��=×� T �<F<���>��1�u�
Z	?�	��R._�ED@<��=×����51H3�<?.[1����>��1�x�	��B<���	�EUk�dH���5UH3�	?.[1��UHu����5UH3�	?I[U����>������

Fact-based Analysis 237

���	��
�	���	
�����)��51H3�	?I[1���UH
����51H.�	?.[1����>��ØE�5[d�d�����0K��Ld�xEd?���E�5���� �
>	
I[1� k.�d
�����/�L�� Ed?���E�5���� �
P<F�F��	�dH�H k.�d
�����/�L�� Ed?���E�5���� �
j��UR�[1
���=�@<��=×����51H3�<?.[1����>��1���

���	��
�	���	
������Q���=d���	H
��Q���=	�����<?�F�� k.�d
�����:�� Ed?���E�5���� �
Q���=d������=�hd� k.�d
�����-�L��u�
i<E1R.��j��1R�k� E�5[d�d�����9���-d�xEd?���E�5���� �
j��UR�[1
���=�@<��=×��Q���=d�����<?�F<�d���

���	��
�	���	
������Q���=d��� T �<F<����H
� T �<F�����>�� E�5[d�d�����0K��Ld�xEd?���E�5���� �
Q���=d�����<?�F<� k.�d
�����:�� Ed?���E�5���� �T ��F<���dl��= E�5[d�d�����0K��Ld�xEd?���E�5���� �
j��UR�[1
���=�@<��=×� T �<F<���>��K�}Q��=d���dk�?�F<���
Z	?�	��R._�ED@<��=×� T �<F<���>��1� �	��B<��	�E1k�	H T �<F����UHu� T �<F<����>��1�u�
Z	?�	��R._�ED@<��=×��Q���=d�����<?�F<�d�(�	��B<��	�E1k�	H�Q���=	���dHu��Q��=d������?�F<�d���

10.8 Step 6: Review the design

During a typical exercise in fact-based analysis, we examine user views in order to extract
fact types. The order form shown at the beginning of this particular exercise is an example
of a view. The narrative that accompanies the order provides another. This final step in
fact-based analysis is not really part of the design process, nor does it truly validate the
design. Rather, it provides some kind of check on whether major flaws exist in the relations
we have defined. One way of validating the design is to see whether a view can be We
begin with the heading:

Q��<���	k3� T �<F<����>��K�ÈG	
��<���Ù��51H3�	?I[1����>����Ú>	
.[U���zP<F�F��<�dH�H
Z��	?.[T �<F<���UHu�}��51H3�	?I[1���UHÛ �d���<� T �<F<���UH¿JN��51H3�<?.[1����>�� S ��51H.�	?.[1����H JN��51H.�	?.[U���>��

E<F T �<F<����>�� S ,.-�/�0
2�2T �<F<���>�� G<
��	� ��51H3�	?I[1����>�� >	
.[U� P<F�F��	�	H�H
2�2
,.-�/�0 6�7�L�0	-1,Ü7�8�9�: ; ��
�5<��=�>	?�?@ /�8�6�A<��B��DC	
�E	FDA<
Ed�
2�2

The following SQL will give us the body of the order:

238 Chapter 10

Q��<���	k3� Q��=d���dH¿JMQ���=d�����<?�F<�¿�ÈQ��=d���dH¿JMQ���=d������=�h<���³Q���=d���	H Jºi<EoRI��j��1R�k����T �<F<���dl���=K� T ��F<���dl��=f��Q��=d���dH¿Jºi<EoR.��j��1R�k�
Z��	?.[Q��=d���dHu�ÙQ���=d��� T �<F<����HÛ �d���<� Q��=d���dH¿JMQ���=d�����<?�F<� S Q���=d��� T �<F<��UH JMQ���=d������?�F<�

E<F Q��=d��� T �<F<���UH¿J T �<F<����>�� S ,.-�/�0
2�2
Q���=d�����<?�F<� ��=�hd� i<EoRI��j��1R�k�� T �<F<���	l��= ��?dH3�
2�2
8�-1,.8 G��	�dH�H ,.:KJML�L 7 6�L�JML�LO 7�/�P Q�@1R.��� ,.7KJML�L ,IL ,.7�LKJNL�L
Q�:�9�LU, ; ��?51H�� ,.7KJML�L 7 9�7�JML�L
2�2

The following SQL will provide us with the overall order total:

Q��<���	k3� HI5[�� T ��F<���dl��=Y�)Q���=d���	H Jºi<EoRI��j��1R�k��d�
Z��	?.[Q��=d���dHu�ÙQ���=d��� T �<F<����HÛ �d���<� Q��=d���dH¿JMQ���=d�����<?�F<� S Q���=d��� T �<F<��UH JMQ���=d������?�F<�

E<F Q��=d��� T �<F<���UH¿J T �<F<����>�� S ,.-�/�0
2�2�2�2�2�2�2T c	���<
<���
�	?��	
��
2�2�2�2�2�2�2
/1,.7KJNL�L
2�2�2�2�2�2�2

10.9 Summary

This chapter has presented a worked example of relational database design. It has attempted
to integrate the tools and techniques introduced in Chapters 8 and 9.

Designing a database, like most other activities requiring skill, is something at which
we improve with practice. The fact-based analysis (FBA) method has been shown as a
rather large number of small steps. This has been done so as to make the steps manageable
for newcomers. The danger is that a multitude of steps will daunt. It is, therefore, worth
comparing this situation to that of learning to drive. When we start, driving seems to require
the almost simultaneous use of many new skills. Once we have driven for some time, all
these skills are applied with ease. We steer, change gear, put on indicators and scan the
road ahead without a hitch.

The same kind of comment applies to relational database design. An experienced
designer will apply all the steps of fact-based analysis almost without realizing it.

Fact-based Analysis 239

Exercises

Q10.1 Ý��dÞußnàÓ�u�u��áoâ�ã�ädát��ât�
Mega Constructors is an international company that specialises in large-scale
construction. They build such things as bridges, dams, office blocks, hotels and
factories.

The company is divided into a number of departments. Each department special-
izes in one form of construction; for example, department 654 deals exclusively
with the erection of bridges, regardless of their geographical location.

Head Office, however, is interested in the activities of the various geographical
areas in which the company operates. This is for political and financial reasons.

Each individual construction activity is termed a project. Each project is given a
code, which is used to uniquely identify the project in any reports.

Prior to the commencement of construction, the project is analyzed into a number
of tasks. This is done by the project leader and his or her assistants. Each task
is given a code, unique to that project. For each task, a time estimate is made.
A monthly budget is developed for the expected lifetime of the project. As each
project progresses, actual expenditure is monitored.

There are three reports to be analyzed.

1. The Departmental Summary

This report appears monthly. Each department’s projects are listed. For each
project run by that department, the actual and budgeted expenditure for the previous
month are compared. The month and year are therefore significant.

2�2
G	�h	
�����[1��E<�	
<��Q5[�[U
���=
G	�hd
�����[1�E<�yVÚ8�7�0

PUk3�1RIc1R.��=wV ; �1R3F�_<�)�<?E1H3����51k3�1R3?E ~	
�Ed
�_	���yVzQ�
.[bQ.[1
<���
P�5<_�5UH3� ,.6�6�: Z1R._�5��	�dH

j��<?�å��dk3� G	�dH�k3�1RIh<�UR�?E ; 5	F�_	�� PUk3��5d
��
2�2�2�2�2�2�2 2�2�2�2�2�2�2�2�2�2�2 2�2�2�2�2�2 2�2�2�2�2�2
> T�T Q�P >	?�?	H
 ; �1R3F�_	� 6�7�LDL�L�L :�-1,�L�L�8
G aIæ<ç T Q�
EnG1R3��_	? T c	����hd
dH�H ,+L1,�,�6�8�7 ,%-�L1,�6�0	/
Q�Pid� æ Qhd
_��d�����UR+4�5�E1k.�1R�?E -1,�:�7�0 /�L)0�0	8
��P O j	�������YQvd
E ; �UR3F�_	� ,.-�0Y/�L�L ,�,.L)0	9�9
2�2

240 Chapter 10

2. The Project Status Report

This report appears on demand. Each task within a project is listed along with the
original time estimates, the effort so far, revised estimates and the project leader’s
feeling about the state of the task.

2�2
j��	?�å��dk.�DQ��	
���51H q �hd?���
j��	?�å��dk3�wVè> T�T QP

A<��
�F<���wVèC	
�����=nC<
dH3�1RIE�_ G	��hd
�����[U�E<�wVè8�7�0
T �1R._URIEd
<� G	
�=UH G	
�=UH+>	?v

�	
	H3@ G	�dH�k3�1RIh<�UR�?E æ H3�1R�[1
��	� Q�?DZ	
� æ�é hd�dk.�	��F
G a.ç G1R._DZ	?�5�E	F<
��UR�?E1H 8 / 9
j T i q j	?5��D�<�.[1�E�� ,.8 ,.L ,I-æ q æ ��� æ �	�	k3�nQdk
�B�B<?<��FUR�E<_ - - -; T�ê A<
�= ç RI�<F<���UH -�7 L -�7
2�2

3. The Area Summary

This appears on demand. It simply lists current projects in each area of the world.
The original contract value of the project also appears.

2�2
P��	��
DQ5[�[U
���=

P��<��
KVz-1, P�51H3���	
��dR�
 �<?�E<���	?<�������wV ; R��� T ë q ��R����=
G	��hd
�����[U�E<� j��	?�å��dk3� G	�dH�k.�1RIh<�1R3?E �<?E<���	
dk3�g��|~1�

8�70 > T�T QP >	?�?dH�
 ; �1R3F�_<� 7�8KJN:�-
:�-�8 C æ P�j C	
�=Dj	?�R�E<�nQ�oRIhYA<?�
�F<��� ,.L1,uJML�L
,�,I- Q Û æ�æ � O ; ?E	F�?�?<��
)Q�5<_	
���~1R���� /�7KJN-�7
,.:�6 G��	Q ; ?E	F�R ; �	�vd���= ,.7KJN7�L

2�2

Required:

Perform a fact-based analysis of the situation described above. You may assume
that people are identifiable by their name.

Fact-based Analysis 241

Q10.2 Marge Butter and the Cholesterols have recently released a compilation of their
greatest hits on an album entitled Best Spread. This work consists of a num-
ber of tracks taken from previously released albums. The sleeve notes provide
information on those involved with each track. Here is a typical note.

Track 3: Case Tool Cool (4:30)
Music: Hans Zupp/ Rip Cord/ Norman D. Butter
First released on Seek Well in 1985
Producer: Norman D. Butter
Vocals: Marge Butter
Drums: Hans Zupp/Bill Board
Bass: Kerry Gould
Guitar: Marge Butter/Rip Orff/Norman D. Butter
Clarinet/Sax: Split Reed

Split Reed appears courtesy ofì�í�íîðï �tñ Records, Rip Orff courtesy
à²ßu�u�1��ò�ß�ñ Records.

Perform a fact-based analysis of the album. You can assume the following.

� Most of the people are involved on several of the tracks.
� Margie and friends have occasionally released more than one album in the

same year.
� There is only ever one producer per track.
� “Vocals" is just another kind of instrument.

Chapter 11
Entity-relationship
Modeling

11.1 Introduction

Entity-relationship modeling is a very popular method for designing databases. ER mod-
eling, as it is often called, may be described as a top-down approach in that it encourages
to look at the “big picture" first. We begin by describing the world in terms of entity types
that are related to one another in various ways. We may then refine that picture to show
the attributes of each entity type. Thus we start by looking for the major kinds of things
that populate the situation to be modeled. These entity types will give rise, eventually, to
the major relations in our database. In a hospital situation, for example, the entity types
might be:

� patients
� wards
� beds
� surgeons
� nurses

We then establish any relationships that exist between these entity types, such as:

� Patients are operated on by surgeons.
� Patients are located in beds.
� Beds are placed in wards.
� Nurses are allocated to wards.

�����

242 Chapter 11

The relationships enliven the otherwise static picture of the hospital that is provided by the
entity types on their own. In database terms, some of these relationships might also be
represented by relations. For example, if details of the time and place of operations are
required, we might need an Operations relation. Other relationships might be adequately
represented by foreign key linkages between relations. Finally, we flesh out the entity
types by attaching properties to them. For example, we might want to know each surgeon’s
specialty, qualifications and home telephone number. Similarly, we can attach attributes
to relationships, adding the operating theatre as an attribute of the operation relationship.
Thus we look for important features before examining them in detail. The technique is not
as clear-cut as this. We may need to cycle through the process a number of times until we
are satisfied with our model.

11.2 An Example

Moreton Bay University is a large institution with several campuses scattered across the
city of Moreton. Academically, the University is also divided, consisting of a number of
faculties, such as the Arts Faculty, the Science Faculty, and so on. Some of the faculties
operate on a number of campuses. Faculties, in turn, are divided into schools; for example,
the Science Faculty has a School of Physics and a School of Chemistry. It is University
policy, however, not to split schools.

11.2.1 Entities

Suppose we try to model what has been described so far. Using the narrative as a guide, the
first step would be to recognize that campuses are an important feature of the University.
In Entity-relationship modeling, we can do this by enclosing the name of that feature in a
rectangle, as is shown in Figure 11.1.

Campus

Figure 11.1 The campus entity type

Why did we not start with the University itself? It is obviously an important entity. Why
did we choose to ignore it? There are two reasons. To begin with, it is the University itself
that we are modeling; so we are not ignoring it at all. However, there is another reason. We
are not so much interested in specific entities as in types of entities. Note that the type name
is singular. Thus the box represents both a typical campus and the set of all campuses.
The second entity type is clearly the faculty. This new type is added to the diagram we are
constructing. See Figure 11.2.

The first two entity types show how diverse the concept of an entity can be. The Campus
entity type divides the University in a physical sense. The Faculty divides it intellectually,
so to speak.

Entity-relationship Modeling 243

Campus Faculty

Figure 11.2 And now we have two!

11.2.2 Relationships

The third entity type is the School, and by the time that we have drawn a box for schools,
we will be feeling like showing how these three kinds of thing are related. The connection
between faculties and schools is clear. A faculty is divided into a number of different
schools, as can be seen in Figure 11.3. We show this relationship as a diamond-shaped
symbol that connects the types of entity involved.

Faculty Schooldivided
1 N

Figure 11.3 Faculties are divided into schools

The cardinality of the relationship is also noted. This particular relationship is one-to-
many (1 to N). The N (for many) is written at the School side of the diamond to indicate
that a faculty may be divided into a number of schools. Conversely, however, a school is
part of just 1 faculty. The representation of any relationship may be interpreted at both the
individual and at the general level. At the individual level, an instance of the relationship
might be that the Biology School is one of four schools into which the Science faculty is
divided. See Figure 11.4.

Science

Biology Chemistry Geology Physics

Figure 11.4 The Science Faculty is divided

The division of the Science Faculty is represented as four separate individual relationships
between that faculty and its constituent schools. At the general level, the relationship
cardinality indicates that no school is part of more than one faculty. As presented in the
diagram, the relationship has been named from the faculty point of view. Obviously, it is
the faculty that is divided, not the school. Given that we have only one chance at naming
the relationship, it is better to name it so that we can read the diagram from left to right as
we normally do. However, it remains that we are seeing just one side of the relationship.
We can extend the diagram to include the relationship between schools and campuses.

244 Chapter 11

Campus

Faculty School

contains

divided

1

N

1 N

Figure 11.5 Introducing the campus entity type

This is another one-to-many relationship. A school is located on just one campus,
although a campus may be the location of many schools. This time, the relationship has
been named from the campus point of view, because the Campus entity box is above that
of the School, and we tend to read from top to bottom.

The narrative actually discussed how faculties are spread across campuses. It might be
argued that we should have described this location as a relationship between faculties and
campuses rather than between schools and campuses. However, because a school is part of
just one faculty as well as being located on just one campus, we can determine over what
campuses any particular faculty is spread.

It should already be apparent that ER modeling and fact-based analysis approach
database design in two quite different ways. In the fact-based approach, we are required
to bring to the surface and express the facts that are to be stored in the database. In the
ER approach, we are encouraged to suppress this verbalization in the belief that there is
some deeper understanding of the situation, and that such understanding is better expressed
diagrammatically or spatially, rather than verbally. This is a matter of opinion.

However, it is not in doubt that, in any given situation, there will be some kinds of
things that are more important than others. The ER approach encourages us to start with
these, to establish the relationships between them, and to refine from there. If we look at
ER modeling as a graphical approach to database design, it says that there will be relations
for campuses, faculties, schools and so on. It then becomes a matter of deciding what kind
of information, that is what columns, these relations will have. Before we do that, we will
introduce some more important facts.

There are students, obviously, and each student is enrolled in a single course of study
which involves a fixed core of subjects specific to that course as well as a number of
electives taken from other courses. Each course is offered by one particular school. The
schools also employ lecturing staff to teach the students taking these subjects. A student
is awarded a grade in any subject taken; the nature of the grade may mean that the student

Entity-relationship Modeling 245

has to take the subject again! Finally, each campus has its club, where the cares of the day
are eased, in one way or another. The diagram in Figure 11.6. shows how these things are
connected.

Campus Club

Faculty School Course

Lecturer Subject

contains

employs contains

has

Student

taken by

divided offers

enrolled

N

1

1 N

1

N

M

N

1

N

1 1

1

N

1 N

taught
M N

Figure 11.6 The story so far

There are now course, subject, lecturer and student entity types, in addition to those
already introduced. These entity types are related in the way shown. There are three
possible kinds of relationship:

1. Many-to-many relationships:

taught A lecturer may have taught many different subjects and even the same subject
on many different occasions. A subject may also have been taught by many
different lecturers.

taken by A subject may be taken by many students and a student may take many
subjects.

2. One-to-many relationships:

246 Chapter 11

contains A campus may contain many schools, but a school is located on just one
campus.

contains A course contains many subjects, but a subject is in just one course.

divided A faculty is divided into many schools, but a school is part of just one faculty.

enrolled A course may have many students enrolled, but a student is enrolled in just
one course.

offers A school may offer many courses, but a course is offered by one school.

employs A school employs many lecturers, but a lecturer is employed by just one
school.

3. One-to-one relationships:

has A campus has just one club and a club is located on just one campus.

11.2.3 Attributes

We have developed an outline of the University, and now we may want to refine that de-
scription by providing more detailed information. This is achieved by supplying attributes
that show different facets of the entity and relationship types. There are three kinds of
attributes – simple, composite and set-valued.

Simple Attributes
An attribute is shown as an ellipse that encircles the attribute name and which is attached
to the relevant entity type, as may be seen in Figure 11.7.

Faculty

Name

Dean

Building

Figure 11.7 Faculty attributes

Identifying attributes, that is attributes that distinguish one entity from another of the
same type, are underlined. So, according to the diagram, each faculty has a different name.

Simple attributes may be regarded as functions mapping from the entity type to the set
of values associated with the attribute.

���
	������	������������ ��� �"!#��$
%�&��
'(��)*�,+�)*�.-/���	��������0�1� ��� �"'#��)*�2+�)*��-3%

Each faculty is symbolized by its identifying attribute, that is, by its name. The domain of
each function is the entity type itself. The range of each function is the value set of the
attribute. The range of the Dean function is the set of people who are deans. The range of
the Building function is the set of University buildings in which faculties are housed.

Entity-relationship Modeling 247

Relationships may also have attributes. We might choose to represent the year that a
school moved to its current location as an attribute of the relationship rather than of the
school itself. We will avoid this and make it an attribute of the school itself.

Campus

School

contains

1

N

Name

Distance Bus Nr

Building Name Head

Year

Address

Figure 11.8 Relationships may also have attributes

There are relationships, however, for which we may need to record attributes. These
are the many-to-many relationships.

taken by

Year Semester Grade

Subject Student
M N

Figure 11.9 Attributes of a many-to-many relationship

A student may (unfortunately) need to take a subject more than once. Each occasion on
which that subject was taken by that student is identified by the year and semester involved.
The grade achieved on that attempt is also an attribute of that relationship. This is shown
in Figure 11.9.

An attribute of a relationship may be also be considered as a function. The Grade

248 Chapter 11

attribute may be represented as follows:

4 $5	�+��6�78���9+����9�;:<7=�9>@?��
���A:CB8�
	3$6:D7E��FG��%H�I��$J� �K�0�ML

Composite Attributes
Certain attributes may be shown as being composite. Typical of these are names, addresses
and dates. We can show this subdivision by making the attribute have attributes of its
own, as may be seen in Figure 11.10. However, even this subdivision much simplifies the
situation. Addresses may take a great many different forms. It might be better to omit this
detail as it is likely to obscure the situation rather than clarify it.

StudentName

D.O.B.
Year

Enrolled

House Nr

Street

Suburb

PostCode

Address

Student Id

First

Last

Day Month Year

Figure 11.10 Composite attributes

Composite attributes may be defined using the Cartesian product operator or by means
of a schema type:

�ONP'QR78���9+����9�S� ��� �J�T	3�U:DV�&3�9�@WX:YB8�
	�$

Set-valued Attributes
A typical attribute is a single-valued feature, such as a person’s age, sex or height. There
may be occasions, however, when it seems more natural to associate a set of values with
some entity. Suppose we are interested in the sporting facilities offered by each of the
campus clubs, such as whether it has a swimming pool or squash courts or a gym. We show
a set-valued attribute by enclosing it within a double ellipse, as may be seen in Figure 11.11.

A set-valued attribute may be described, formally, using the power set operator.

��	���)*��)*��) �H%1�Z[3F(\E�.%#� ��� ��7E���]&_^173\9&�$H�

11.2.4 Dependent or Weak Entity Types

So far, all the entities within a given type have been distinguishable from one another. Each
campus has its own name, as does each school and each faculty. There may be occasions
when it is not possible to provide such unique identification. Take the case of committees.

Entity-relationship Modeling 249

Club

Name Building

Phone Nr

Sport

Figure 11.11 A set-valued attribute

Every university operates by committee and Moreton Bay University is no exception.
By University policy, each faculty has to have a set number of committees, the Faculty
Executive, the Post-Graduate Studies Committee, the Health and Sanity Committee, and so
on. These committees meet at regular intervals, such as weekly or monthly. The frequency
is determined by the faculty involved. Because each faculty has committees with the
same titles, the title is not enough to identify a particular committee, University-wide. We
need to add the faculty name to fully establish its identity. Having done so, we can talk
quite specifically about the Faculty of Science Executive Committee or the Faculty of Arts
Post-Graduate Studies Committee.

The committee is said to be a weak or dependent entity type. We will use the
latter term. A dependent entity type is enclosed within a double rectangle as shown in
Figure 11.12. Each committee entity may be fully identified by adding in the faculty name.
This identifying relationship is enclosed within a double diamond shape. A dependent entity
type may be involved in other relationships besides the identifying one. A committee’s
membership is taken from the lecturers. A lecturer may be a member of several committees,
however, and so this is not an identifying relationship. The member relationship will be
represented within the single diamond shape.

The non-dependent entity types, such as Faculty and School, are said to be regular
entity types to distinguish them from the dependent ones.

11.2.5 Recursive Relationships

So far, all the relationships discussed are ones between different entity types. It is quite
common, however, to have relationships between entities of the same type. For example, at
Moreton Bay, it may be necessary for any student taking a particular subject to have taken,
and passed, one or more prerequisite subjects. In turn, this subject may be a prerequisite for
a number of other subjects. So we have a recursive relationship. This may be represented
as shown in Figure 11.13. This particular relationship is many-to-many.

A one-to-many recursive relationship may be used to represent a hierarchical situation.
Suppose that there is a pecking order amongst the lecturers. A lecturer may be in charge
of several lecturers, each of whom may be in charge of several other lecturers, and so
on. A lecturer, however, reports to just one superior. This hierarchy and its manner of
representation are shown in Figure 11.14.

The complete model for Moreton Bay University is presented in Figure 11.15.

250 Chapter 11

Lecturer

runs

Committee

N

Title Meets RoomName Title

member
M N

Staff Id

Faculty
1

Name Dean Building

Figure 11.12 Weak or dependent entity types

M N
pre-req

Subject

Figure 11.13 A recursive relationship

Bob

Sue Kim Dan

Alex Mark

Lecturer

in
charge

of

1 N

Figure 11.14 A hierarchical relationship

Entity-relationship Modeling 251
C

am
pu

s
C

lu
b

F
ac

ul
ty

S
ch

oo
l

C
ou

rs
e

Le
ct

ur
er

S
ub

je
ct

co
nt

ai
ns

em
pl

oy
s

co
nt

ai
ns

ru
ns

C
om

m
itt

ee

ha
s

S
tu

de
nt

ta
ke

n
by

ta
ug

ht

di
vi

de
d

of
fe

rs

en
ro

lle
d

pr
e-

re
q

N1

1
N

M
N

M

N

1 N

M N

1 N

1
1

1 N

1
N

1 N

N
am

e

D
ea

n

B
ui

ld
in

g

N
am

e

A
dd

re
ss

D
is

ta
nc

e
B

us
 N

r
N

am
e

B
ui

ld
in

g

P
ho

ne
 N

r

S
po

rt

N
am

e
H

ea
d

B
ui

ld
in

g

T
itl

e
M

ee
ts

S
ta

ff
Id

Y
ea

r

S
em

es
te

r

G
ra

de

S
tu

de
nt

 Id

F
irs

t

La
st

D
.O

.B
.

Y
ea

r
E

nr
ol

le
d

C
od

e

T
itl

e

C
od

e
T

itl
e

Le
ve

l Le
ng

th

R
oo

m
N

am
e

T
itl

e

m
em

be
r

M
N

Figure 11.15 Moreton Bay University

252 Chapter 11

11.3 Database Design

We will begin with a simple example that shows the more important elements.

School Courseoffers
1 N

Name Head Code Title Level

Building Length

We turn each entity type into a record type, with the entity attributes becoming record
attributes. In the above situation, we will have two record types, one based on the School
entity type and the other on the Course.

Course

CourseCode

Title

Level

Length

(*)

School

(*) SchoolName

Head

Building

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

It remains to represent the relationship. One solution is to create a record type that
contains the keys of the related entity types. This would enable us to connect any related
schools and courses. However, there is a more common solution based on the cardinality
of the relationship; a school may offer many courses but a course is offered by just one
school. So we can add the school name as an extra attribute of the Course record type
which now contains the necessary link between the entity types.

Course

CourseCode

Title

Level

Length

(*)

School

(*) SchoolName

Head

Building

SchoolName School

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Entity-relationship Modeling 253

11.4 The Conversion Process

Step 1: Entity types
Introduce a record type for each regular entity type. The key of this record type will be the
key attribute(s) of the entity type. All simple attributes are incorporated directly. Composite
attributes are replaced by their (simple) components. Set-valued attributes are ignored at
this stage.

Those attributes forming the key should be marked as such. The Moreton Bay
model contains eight of these entity types. The resulting record types are shown in
Figures 11.16 and 11.17.

Step 2: Dependent entity types
Introduce a record type for each dependent entity type in the same way as was done for
regular entity types. To each record, add the key of the owning entity type(s). The key of
this new record type is the combination of the key of the owning entity type in conjunction
with the partial key of the dependent entity type.

There is one such entity type in our model, the Committee. This record type will be
as shown in Figure 11.18. In adding the owning entity reference, we have dealt with the
relationship between these types.

Step 3: Many-to-many relationships
Introduce a new record type consisting of any attributes of that relationship. Add the keys
of the record types associated with the entity types that participate in the relationship. In
our model, there are four of these relationships:

Relationship Entity Types

took Student, Subject
taught Lecturer, Subject
member Lecturer, Committee
prereq Subject, Subject

The resulting record types are shown in Figure 11.19.

Step 4: One-to-many relationships
Next we handle one-to-many (or many-to-one) relationships. These are distinguished from
the many-to-many relationships just discussed. Consider the divided relationship. A
faculty may be divided into several schools but a school is part of just one faculty. We have
two options.

1. We can add the faculty name as an attribute of the school record type. We may do this
because a school can only ever be part of one particular faculty.

2. Alternatively, we can introduce a record type specifically to represent the relationship,
as was done with the many-to-many relationships.

The first option is the one more likely to be taken, because it will help reduce the total
number of relations in the eventual database. However, if it is possible for schools to exist
without being part of any faculty, then we must allow nulls in the faculty name attribute

254 Chapter 11

Course

CourseCode

Title

Level

Length

(*)

School

(*) SchoolName

Head

Building

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Campus Club

(*) (*) ClubNameCampusName

Address

Distance

BusNumber

Building

PhoneNr

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Faculty

(*) FacultyName

Dean

Building

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Lecturer

(*) StaffId

Name

Title

Room

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Figure 11.16 Record types based on entity types (part 1)

of the school record. If most of the schools are like this then we might choose the second
option, creating a relation for those few schools that are linked to a faculty.

To handle these relationships it is helpful to list them in the following tabular form:

Entity-relationship Modeling 255

Subject Student

(*) (*)SubjectCode

Title

StudentId

FirstName

LastName

DateOfBirth

YearEnrolled

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Figure 11.17 Record types based on entity types (part 2)

Committee

(*) Title

Meets

FacultyName Faculty(*)

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Figure 11.18 A dependent entity

Relationship N-Side 1-Side

contains School Campus
divided School Faculty
offers Course School
employs Lecturer School
contains Subject Course
enrolled Student Course

The table shows the relationship name and the entity type names. The runs relationship
is omitted. It has already been processed in dealing with the dependent committee entity
type. The column headed N-Side contains the record types that are to be extended by
another attribute. The attribute to be added will be the key of the record type in the
corresponding entry under the column marked 1-Side. So, for example, with the contains
relationship, the School record type will be extended to include the key of the Campus
record type. This new attribute should be annotated to show which record type is being

256 Chapter 11

Member

(*)

(*)

(*)

FacultyName

CommitteeTitle

StaffId Lecturer

Committee

Taught

(*)

(*)

StaffId

SubjectCode

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Took

(*)

(*)

Year

Semester

Grade

StudentId

SubjectCode

Student

Subject

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

PreReq

(*)

(*)

SubjectCode

PreReqCode

Subject

Subject

Lecturer

Subject

Figure 11.19 The many-to-many relationships

referenced. In extending these record types we are adding a foreign key. The extended
record types are shown in Figure 11.20.

Step 5: One-to-one relationships
These are a special case of the one-to-many situation, allowing us yet more options. There
is just one example in the University, the has relationship between campuses and clubs.

1. We can represent the relationship as a separate relation, as we can with the other two
kinds.

2. We can add the relationship to either of the record types associated with the participating
entity types, rather than just one of them. We could have a Club record with a
CampusName attribute or a Campus record with a ClubName attribute.

3. Finally, we can even merge the two record types together, in this case, forming a single
Campus/Club record.

Perhaps we decide that the campus and the club are separate entities and should be
represented separately. There is a final problem, however. Suppose we decide to add the
CampusName to the Club record. The likelihood is that the ClubName is the same as that

Entity-relationship Modeling 257

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

School

(*) SchoolName

Head

Building

CampusName

FacultyName

Campus

Faculty

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Course

(*) CourseCode

Title

Level

Length

SchoolName School

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Lecturer

(*) StaffId

Name

Title

Room

SchoolName School

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Subject

(*) SubjectCode

Title

CourseCode Course

FirstName

LastName

DateOfBirth

YearEnrolled

CourseCode Course

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

Student

(*) StudentId

Figure 11.20 The One-to-many Relationships

of the campus on which it is located. So, after all this discussion, we decide to leave these
two record types with the same attributes that they had after we had handled the entity types
in Step 1; see Figure 11.16.

258 Chapter 11

Step 6: Set-valued attributes
At this stage, we are left with one part of the model that has not been discussed. This
consists of entity types with set-valued attributes. These were ignored in Steps 1 and 2. We
could not incorporate them in the record types formed at that time because relations can
only have simple or atomic-valued attributes.

The usual solution is to introduce a new record type that consists of two parts: (1)
the key of the record type associated with the owning entity type, and (2) a single-valued
version of the set-valued attribute. The key of this record consists of all the attributes of
the record.

Key? Attributes References?

Record Type

Key? Attributes References?

Record Type

ClubSport

(*)

(*)

ClubName

Sport

Club

Figure 11.21 Resolving set-valued attributes

There is only one such attribute in the model, the Sport attribute of the Campus entity.
The rule requires that we form a record type, say ClubSport, that consists of two attributes,
ClubName and Sport. See Figure 11.21. The effect is to create a relation that allows us to
add new sports that a club may offer and to remove ones that are no longer offered. This
relation certainly provides us with flexibility, but it may be a flexibility that perhaps is not
required. It may be that the information stored in this relation is quite static. Or it may be
that, typically, there are only one or maybe two sports for a club, or that the set of entities
is very small.

11.5 Issues in ER Modeling

In this section, we will discuss some issues that arise when we attempt to represent a
situation using entities, attributes and relationships as our modeling tools.

11.5.1 Entity or Attribute?

There is unlikely to be just one correct ER diagram for a given situation. Sometimes what
one person might see as an entity in its own right, another person will see as an attribute of

Entity-relationship Modeling 259

some other entity. For example, the building in which a school is located is modeled as an
attribute of that school. It might be argued that, more truly, there is a location relationship
between schools and a new entity type Building. This view is supported by there being
Building attributes for the faculty and club entity types as well, suggesting that buildings
are important. But there are no facts specifically about buildings. It is the need to record
information about the buildings themselves that makes buildings into an entity type. Should
we need to know the age or height of a building, or whether or not it is air-conditioned, then
we would introduce a Building entity type. In general, it is the need to collect information
about things that makes them entities.

We can find three different kinds of attributes:

1. There are identifying attributes, which usually are labels, such as numerals or names,
that we use to symbolize the entity.

2. There are the more conventional attributes which give us some measure of an entity.
Examples are age, height, gender, and so on.

3. There are lesser relationships, involving things that failed the “entity of interest" test,
such as the location relationship between schools and buildings. A building was not
considered important enough to warrant an entity type of its own and so was made an
attribute instead.

11.5.2 Entity or Relationship?

The distinction between entities and relationships may also be unclear.
In the Moreton Bay model, the taking of a subject by a student was represented as a

relationship takenby. Each instance of this relationship corresponds to an attempt by a
specific student on a specific subject in a specific semester and year. We might see the
attempt as an entity and model it as shown in Figure 11.22.

The Attempt entity type is dependent on both the student and subject types, so it has
identifying relationships with each. These new relationships are one-to-many, whereas the
original takenby relationship was many-to-many.

In terms of its effect on any eventual database design, the choice of whether to model
the situation as an entity or as a relationship makes no difference, in this case. Instead of
generating a record type in Step 3 of the conversion process, an identical record will arise
in Step 2 instead.

11.5.3 Naming

Given that we might have trouble distinguishing between entities, attributes and relation-
ships, it is important that we name carefully each component of our ER diagram.

Entity Types: These should be given singular names that correspond to individual
instances of the type. Use Campus rather than Campuses. This follows the convention
used in Chapter 2 regarding the introduction of basic types. Naturally, every type should
have a unique name.

Relationships: Each entity that participates in a relationship will play a particular role
in that relationship. A student takes a subject; a subject is taken by a student. The student
plays the takes role, and the subject the taken one.

260 Chapter 11

Student

Attempt

Subject CodeStudentId

Year Semester Grade

made
M N

1

Figure 11.22 The Attempt entity

There are a number of options for naming the relationship, given that we have a small
diamond-shaped symbol into which we must squeeze the meaning of the relationship.

1. We may decide that one of the roles is more important than the other or others, and use
that role to identify the relationship.

2. We may choose, as has been done in this chapter, to use the role of the entity type that is
either above or to the left of the relationship symbol. This allows us to read the diagram
from top to bottom and from left to right in the usual way.

3. We may derive a noun that amalgamates the roles, such as membership between
committees and lecturers or offering between schools and courses.

Note that relationship names need not be unique. It is enough that the name be unique to
all the relationships between the particular entity types involved.

Attributes: In Section 11.5.1 it was suggested that there are three kinds of attributes.
There are three correspondings options regarding their names.

1. Identifying attributes are symbols or labels by which the owning entities are recognized.
These will be names, titles, codes, numerals and other forms of identification.

2. Measuring attributes are ones such as height, width, distance, value, counts and so on.
There is little point in attaching an attribute Number or Money to an entity type. It is
sensible to use the name of the corresponding property such as Distance or CostPrice.

3. There are attributes, such as the Building attribute of the school entity type, which
correspond to lesser or failed relationships. There are two choices. We can use the
name of the failed entity type, as in the case of the building attribute. Alternatively, we

Entity-relationship Modeling 261

can name the role played by that lesser entity type, as was done in the case of the Head
attribute of the school.

Attribute names need only be unique for a particular entity type, although when developing
records for the database, we will need to be careful.

11.5.4 Optional and Mandatory Roles

It is reasonable to suggest the following.

� Not every lecturer is a member of any committee.
� Not every student need have taken a subject yet (because he or she has just enrolled at

the University).
� Not every campus need necessarily have a club.

If a lecturer need not be a member of a committee, then we say that the role is optional
for the lecturer entity type. Not every instance of the current lecturing population need
participate in the relationship; it is inappropriate or irrelevant for some.

Conversely, it is reasonable to suggest that every lecturer is employed by some school
or another. That role is said to be mandatory for lecturers. The compulsory nature of
this role is indicated by a double line connecting the lecturer entity type to the employs
relationship, as shown in Figure 11.23.

School employs Lecturer
1 N

Figure 11.23 Every lecturer belongs to a school

This analysis suggests that, when we construct a record type for lecturers and add the
SchoolName as a foreign key, we should not allow the SchoolName attribute to be null. If
every lecturer belongs to a school then there should never be a null value there. However,
the issue is more complex. It may be that we need to record details of lecturers even if
we are unaware which school employs them. Thus the semantics of the situation become
confused with the restrictions imposed upon our recording of that situation. It may be better,
therefore, to postpone analysis of optionality until we have developed record structures,
that is, until the basic record types have evolved from the conversion process.

A similar situation arises with attributes. Every campus is a certain distance from the
city center; it cannot be otherwise. Yet, it may be that we do not know that distance, or
have not bothered to measure it, and so cannot record it. So we may have to permit a null
value in the Distance attribute of the Campus record type.

11.6 Summary

In this chapter we have looked at the entity relationship approach (ERA) as an alternative
to the fact-based approach (FBA) to database design that was introduced in Chapter 8 and
used in Chapter 10.

262 Chapter 11

� ERA says:

Look for the objects that populate the situation to be modeled.

FBA says:

Write down the facts about the situation that are of interest to us.
� ERA says:

Let’s be practical. In any situation, it will very quickly become clear which objects are
important. Inevitably, we will have relations based on these objects.

FBA says:

Let’s not be hasty. A database is a repository of facts. We should look at these first,
analyze them, and let the rules about merging facts determine which relations we will
have.

� ERA says:

But your approach makes all objects of equal importance, whereas ERA allows us to say
that some objects are important, we call them entities; others are of lesser importance,
we call them attributes. This hierarchy allows us more flexibility.

FBA says:

Yes, but to decide whether something is an entity or an attribute, for example, requires
some kind of analysis of the facts in which the thing is involved. In other words, you
are performing fact-based analysis but you won’t admit it!

� ERA says:

Lots more people use ER modeling than fact-based analysis.

FBA says:

Lots of people used to think the world was flat, but we have progressed since then.
� ERA says:

Graphical representations are an essential part of data modeling.

FBA says:

Yes, graphical representations are an essential part of data modeling.

Entity-relationship Modeling 263

Exercises

Q11.1 The `�a�b=c]dfega�h]b=ikj�lkj Model

An entity-relationship diagram has been developed for the Rocky Concrete Com-
pany.

made by

part ofProduct Order

Customer

QtyCostPriceListPriceProd Type

OnHand ReMake
Level

ReMake
Qty

Date

Name

Address Limit Balance

ProdId OrderNr
M N

N

1

CustNr

a. List the entity types in this model and for each entity type, list the identifying
attribute(s).

b. List the relationships and the cardinality of each.

c. Develop a database design from this model.

Q11.2 The eMm]ikj Model

A community action group, known as eMm]ikj , has been established. It plans to
maintain database on its members in which it will record their names, addresses
and phone numbers as well as any specific help they feel able to offer. The group
occasionally needs to quickly pass information to its members regarding meetings
and other actions. This is to be done by means of a “telephone tree" whereby the
person at the top of the tree rings a few people, each of whom in turn ring a few
people, and so on. Develop a database design from this model.

264 Chapter 11

Helper

rings
1 N

Name Address Phone Nr

WilldoId

Q11.3 The n�a�ipoqj<`�mpb=r*h]s Model

The following diagram shows the performance of horses over a number of races
at a number of tracks in a variety of track and weather conditions. It also shows
the breeding of each horse in terms of its sire and dam.

Horse

has dam
N 1

Name Age Sex

has sire

N

1

ran Race

Track

M N

RaceNr Name Time

Length

Prize

Place Jockey Trainer

Weather

Condition

DateCourse

under

Develop a database design from this model.

Entity-relationship Modeling 265

Q11.4 The t"j9o�lvu=wRikj�m]x Model

Here is an entity-relationship diagram for Marge Butter and the Cholesterols. See
the corresponding question in the exercises at the end of Chapter 10.

Album

contained

Track

written by

produced
by

played

Musician

Instrument

Length

Title Name

Company

Track Nr

Title Year

1

N M N

N 1

M N

Develop a database design from this model.

Q11.5 The yTx]x{z8a�|}ega]~Jw�m]hEd
The Odd Job Co. was started by some out-of-work computing graduates from the
Moreton Bay University. They were unfortunate enough to graduate in the middle
of a recession. The company claims to be able to accomplish any task, simple or
challenging, clean or dirty, as befits the company motto:

Tedium ad Nauseam

which roughly translates as:

Anything is better than writing COBOL!

How ironic, then, that the company is made up of four divisions.

266 Chapter 11

The company will take on any job, no matter how unqualified it might be and no
matter how many other jobs it is already tackling or is committed to tackling. It
guarantees to finish the job on time. (Actually the fine print of the company’s
contract states that it guarantees to get a job 95% complete.)

A job is usually completed over a period of two or three days, and during that time,
several different employees may work on the job, either together or singly. Each
time an employee completes a task, a “work ticket" is filled out. On a ticket an
employee records the job number, the date, the nature of the task, the number of
hours involved and the employee’s own number. The tickets themselves already
have the ticket number pre-printed.

When the job is (95%) complete, an invoice with the amount payable is sent to the
customer concerned. This invoice itemizes the various tasks that were performed
on the job, showing the nature of the task, the date on which it was performed and
the time involved. Every employee’s time is charged at the same rate. So the total
charge for the job is calculated by multiplying the hours spent by the company’s
hourly rate.

Customers pay for the jobs in different ways. Some customers will pay for a job
over a number of separate payments. Other customers may pay off several jobs in
a single payment. Anyway, each customer payment is recorded and a receipt sent
back to the customer. The receipt will show how the payment was apportioned
over a number of jobs and the amount of each apportionment.

Develop an entity-relationship model for the company.

Chapter 12
Knowledge

12.1 Introduction

This chapter is an introduction to the Z Notation which is a language that allows us to
express our understanding of any given situation in a concise and precise way. In Chapter 1,
it was suggested that if we write down all that we know about something, then our statements
may be divided into (1) simple specific statements that were termed facts and (2) more
general statements that were termed knowledge. This chapter is concerned with the more
general statements, that is, it is about knowledge representation. Z is the language we will
use to express that knowledge.

The generality of knowledge is achieved by the statements involved saying something
about whole classes or sets of objects. Such knowledge will eventually be encoded as
computer programs, so Z will be used to specifythese programs. The resulting specification
will then be implemented using a programming language. It is important, however, to
realize that the implementation is yet another description of the same situation that was
portrayed in the original specification. The implementation is a kind of re-specification of
that situation, this time written in a specification language that the computer can follow
and obey or execute. This implementation is, in effect, an executablespecification; that
is, it will be written using a programming language such as C or COBOL or SQL or some
combination of these.

The Z Notation is a particular style of writing two mathematical languages, settheory
and predicate calculus. Z is an amalgam of these. Most of the ideas relating to set
construction and manipulation were discussed in Chapter 3. In this chapter, we will see
how to write set expressions in Z. Mostly, this involves using a special symbol rather than
a word. For example, Z uses the symbol

�
for set union whereas in Chapter 3 and in the

coverage of SQL that followed, we would have used the word ��������� instead.
The second element of Z is predicate calculus, and many of the ideas behind this theory

have also been discussed previously. This was done in Chapter 2 where we discussed basic
simple facts and their construction. In Z, basic facts are also constructed in the same way,

267

268 Chapter 12

so Chapter 2 was also an introduction to the language. In that chapter, we also saw how
compound sentences may be formed from simpler ones using negation, conjunction and
disjunction. Z also allows us to compound sentences except that again, special symbols,
rather than words, are used. For example, the symbol 	 is used for negation rather than the
word �
��� .

There is a part of predicate calculus that has not yet been discussed. This chapter
examines quantification which is the fundamental method by which we may make a
statement about a class or set of objects.

12.2 The Predicate Calculus

This is the name given to a system for constructing and manipulating statements about the
world, or, at least, our perceptions of selected aspects of some situation. The statements
are referred to as predicates, and the rules relating to their manipulation are the calculus –
hence the name predicatecalculus.

The system contains two kinds of rules.

1. There are rules about how we construct predicates. These rules determine the way in
which we represent our knowledge of some world.

2. There are also rules and methods to help us manipulate existing predicates to derive or
provehitherto unstated knowledge of that world.

We can summarize the system in the following “equation":

����������
��������������� ����!#"%$'&�(�)#������*��+���
����
!,��&������-��(�&/.0��-('(�1324����5�(���!

This chapter is concerned with the representational aspects, and discusses how to construct
predicates of increasing complexity and generality.

12.2.1 Simple Sentences

We will return to the database of facts concerning the circle of friends, relations and
acquaintances that was introduced in Chapter 2. There are six basic types:

[687:9<;:=?>'@�A�B
=?9DC:@�E�@GFH7I>-J�7:9�@�K�L�>�M�N
L:M�7�@POQL?9<RSL,T�7]
There are also seven basic relationships represented. Each of these relationships, in its

own way, may be used to form simple sentences.

1. B�UVL�WX; Y�687:9<;I=�>[Z]\]_^`A�B
=?9DC
This relationship is called B-UVL?WX; . It is a relation (Z]_\]^) between people and sports,
that is, a person may play many sports and a sport may be played by many people. It
may be used to construct such sentences as a4UbL?>8B-UVL?WX;cCd7:>
>�ef; . It is used in infix form,
that is, when used, it appears between a person and a sport. The form that sentences
constructed with B�UVL�WX; take is dictated by the declaration. There we are told to use it
this way by the appearance of underscores ().

2. ;gB
7hLiTX;jY�6H7I9<;:=?>kZ_\]_^lK�L?>�M�N
L,M�7

Knowledge 269

This is also a relation. Some of the people speak more than one foreign language, and
some of the languages are spoken by more than one member of the circle. It is used in
prefix form to construct sentences such as: ;gB
7<L,T?;�mnA�N
7�@�oDCnL?Upe]L�>-q .

3. ;:7hrsY�687:9<;:=?>[\]_^kFH7I>-J�7:9
This is a total function, signified by the symbol \]_^ , meaning that it is a special kind of
relation, one that is special in two ways. Everyone has a gender and no-one has more
than one gender. Functions are used, not to construct complete sentences, but, through
function application, to describe objects such as ;:7hr�mda4UVL?>�q . These objects are then
glued together to form sentences.

4. L,M�7`Y�687:9<;:=?>k\]_^lE
This is another total function used to identify numbers such as L:M�7�m_tuewv#q . Everyone’s
age is known but nobody has more than one age.

5. J�9DewxX7I;yY�687:9<;:=?>k\ zp\]^#OGL�9<RSL,T�7
This is a partial function, signified by the symbol \ zp\]^ . A partial function is less
restrictive than a total function in that not everyone need participate in the relationship.
That is, not everyone need drive a car. It is used, like the two previous functions, to
identify objects using such expressions as J�9DewxX7I;�mga4>�>-q .

6. ;gB
=?N�;:7jY�6H7I9<;:=?>{^]\ zp\]^|687:9<;I=�>
This is a partial injection, signified by the symbol ^]\ zp\]^ . Thus it is a one-to-one
relationship in which not everyone need participate. It should be treated as a particular
kind of partial function, and it will be used like a function to identify objects such as
;gB
=?N�;:7�mga4UVL�>-q .

7. UV7_}<C~Y�687:9<;:=?>�^_\]\]^|687:9<;:=?>
This is a total injection, signified by the symbol ^_\]_^ . It is a one-to-one relationship in
which everybody participates. Everybody round the table has one person on their left,
and everybody is immediately to the left of just one person.

12.2.2 Terms

Given the declaration of B�UbL?WX; , we know that any simple sentence using this relation must
be of the following form:

687:9<;I=�> A�B
=?9DC
Representation B-UVL?WX; Representation

The representation for a person need not be a simple name such as a4UbL?> . It can be
of any form that allows us to identify an individual person. The relationship called UV7_}<C
provides us with another way using function application. Everybody at the table has just
one person to their immediate left, for example, Alan is on Ann’s left. We can construct a
simple sentence to state this formally:

UV7_}<C:mga4>�>-qQ��a4UVL�>
This equation shows that there are (at least) two ways of representing the person in question,
UV7_}<C:mda4>
>�q and a4UbL?> . The fact that Alan plays tennis, can also be said as:

270 Chapter 12

UV7]}<C,mga4>
>�q�B-UVL?WX;PCn7:>
>
ef;
Because of the nature of a functional relationship, for example, because each person has

just one person to their immediate left, we use functions to identify individual objects. We
expect to use UV7]}<C to identify somebody rather than using it to construct complete sentences
in the way that B�UVL�WX; was. It may seem that functions are being used in a more limited way
than relations; but, in fact, they provide us with more flexibility of expression.

In general, we will pair the symbol UV7_}<C with a person, as follows:

687:9<;:=?>
Ub7]}<C Representation

And again, the representation used for a person may be as simple or as complex as we
need or care to make it. We could refer to the person second on the left from Ann as:

UV7_}<C:m�UV7]}<C,mga4>
>�q�q
We give the name term to any symbol or symbolic expression that represents an object, so
we can follow the symbol UV7_}<C with any term that represents a person. More generally, a
term may be any of the following:

� a constantsuch as a4>�> or Cn7:>
>
ef; or �
� ; or
� a variable such as r or B ; or
� an expression constructed using function application, as discussed above, for example,
UV7_}<C:mda4UVL?>�q or ;I7hr'mn;gB
=?N�;:7�mfB�q�q .

12.2.3 Compound Sentences

We can construct more complex sentences from simpler ones using sententialoperators.
There are five of these. Three of them, negation, conjunction and disjunction, were
introduced in Chapter 2 and were used extensively in the chapters that followed.

1. Negation (>-=?C)
Previously, to say that Alan doesn’t speak Chinese, we would have written:

>�=�C-;gB�7<L,T?;�mda4UVL?>'@QO���ew>-7D;:7Xq
In Z, we use the symbol 	 instead of the word >-=?C and write the sentence as:

	�;gB�7<L,T?;�mda4UVL?>'@QO���ew>-7D;:7Xq
Apart from that difference, its usage is the same as discussed in Section 2.8.2.

2. Conjunction (L?>-J)

For this operation, we use the symbol � instead of the word L?>-J . To say that Bob and
Kim are both 23, we can write:

L:M�7�m_tuewv#q��/���j��L:M�7�mg�4=��iq��/���

Knowledge 271

3. Disjunction (=�9)
For this operation, we use the symbol � instead of the word =�9 . To say that Alan plays
tennis or golf (or possibly both), we write:

a4UVL�>8B�UbL?WX;PCn7I>�>
ef;���a4UVL?>HB�UVL�WX;'M�=�U }

The other two operators, implication and equivalence, are new and have a role in the
construction of the more general statements that are the concern of this chapter. These
operations are discussed in more detail later.

12.3 Quantification

12.3.1 Existential Quantification

We can use the B�UbL?WX; relation to verify such statements as:

Alan plays tennis

This statement is true because the B�UbL?WX; relation contains the pair mda4UVL?>'@:Cn7I>�>
ef;iq as one
of its elements. What if we wanted to make a slightly weaker but more general statement?
Perhaps we want to say something such as:

Somebody plays tennis

This, we are sure, is true; but we cannot claim that it is true in the same way as we claim
that Alan plays tennis. There is no pair m�A-=�v�7i�<=,J�W
@:Cn7:>
>
ef;Xq in the relation involved. We
could fudge the situation by inserting such a pair; but that would introduce many more
problems than it would solve. What if we wanted to say that:

Somebody speaks Spanish

We could insert a pair m�A-=?v�7i�h=iJ?W�@IA�B�L�>
ef;��
q into the ;gB�7<LiTX; relation. But would that
somebody be the same person who plays tennis?

Another, somewhat more acceptable, solution is to use set comprehension to define the
set of people who play tennis and then to count the result.

�#� BSY�687I9<;:=�>���B�B-UVL?WX;PCn7:>
>
ef;��|���
This statement says that the number of people who play tennis is greater than zero. It has
the meaning we intend, but it is hardly a natural way of expression; it does not match the
English equivalent.

The statement may be rephrased more naturally using existentialquantification:
� BSY�687I9<;:=�> � B�B-UVL?WX;PCn7:>
>
ef;

The predicate B�B-UVL?WX;PCn7:>
>
ef; has been taken from within the set expression and prefixed by
the quantifier

� B�Y�6H7I9<;:=?> . The spot � is used to separate them. The overall expression
corresponds very closely to the English expression:

There exists a person who plays tennis.

272 Chapter 12

The role of the pronoun who has been taken by the variable p. Note, however, that the
expression is more accurately translated as:

There is at least one person who plays tennis.

There may be more than one person, there may not. There is a special form of existential
quantification used when we want to make a statement about one person or thing:

�-� B+Y�687:9<;:=?> � B4B�UVL�WX;PCn7I>�>
ef;
This is to be read as:

There is exactly one person who plays tennis.

Existential Quantification:
�8� 7h :UVL�9�L?Cge]=?> � 6�9�7<J?e] <L?Cn7

Unique Quantification:
�-�<� 7< :UVL?9�L�C_e]=�> � 6�9h7hJ�e] <L?Cn7

Example 12.1 Somebody drives a Mercedes.
� BSY�687I9<;:=�> � J?9Dewx?7D;�mfB�q~��RS7:9� <7<J�7I;

This can be interpreted as saying that at least one person drives a Mercedes, whereas:
�-� B+Y�687:9<;:=?> � J�9DewxX7I;�mwB�q~��RS7I9h h7<J�7D;

means that only one person drives a Mercedes. This latter form is really just a short way of
saying that:

There is somebody who drives a Mercedes and there is no other person who does.

Put formally, this can be stated as:
� BSY�687I9<;:=�> � m�J�9DewxX7I;�mfB q��¡RS7I9� <7<J�7I;4�
	 �j¢ Y�687I9<;:=�> � m�J?9Dewx?7I;�m ¢ q~��RS7:9� <7hJ�7D;4� ¢[£��B q�q

In other words:

There is a person B who drives a Mercedes and there is no person
¢

(�¤¢ Y�687I9<;:=�>)
who drives a Mercedes and who is not B .

The existential quantifier (
�

) is often written using a predicate that involves the conjunction
(“and"-ing) of two simpler predicates. Fortunately, they are not all as complex as the last
one. If we want to say that:

There are people over 40 who play squash.

Knowledge 273

we can write this as:
� BSY�687:9<;:=?> � L:M�7�mwB�qH�¥���|�¦B�B-UVL?WX;P; ¢ N
LX;��

This can be read as saying that there exists at least one person who is aged over 40 and who
plays squash.

When an existentially quantified predicate involves conjunction, then we are effectively
strengthening our statement about the situation. We are not merely saying that somebody
plays squash, but that somebody over 40 plays squash. By making a weak statement about
a subset (those over 40) as distinct from the entire set (everybody in the circle), we are
making a stronger statement. A general pattern to follow is given in Figure 12.1.

A condition that A condition that is true�§� 7h :UVL�9�L?Cge]=?> � defines a set of � of at least one member
some kind. of that set.

Figure 12.1 Existential quantification with conjunction

Example 12.2 Some women speak Japanese.
The first condition defines the set of women and the second that some of them speak
Japanese.

� BSY�687:9<;:=?> � ;I7hr'mfB qP�©¨©�ª;_B
7<L,T?;�mfB«@�¬�LhB
L?>-7D;:7Xq

Setsand Existential Quantification
Set specification is exactly the same in Z as it was described in Chapter 3. For example, if
we want to specify the set of men in the circle, we can write it in extension as:

� a4UVL?>'@<�4=���@IRSL?9�T-�
or, we can define it by comprehension as:

� BSY�687:9<;I=�>��c;:7�r'mwB�qP�R©�
However, the set membership operator, in Z, is the symbol ® rather than the word ew> . For
example, to say that Bob is in the set of males, we would write:

�4=��y® � BSY�687:9<;:=?>��c;:7hr�mwB�qP�¡R©�
The above predicate can be read variously as:

Bob is an element of ¯:¯,¯
Bob is a member of ¯,¯:¯
Bob is in ¯,¯:¯
Bob belongs to ¯:¯,¯

274 Chapter 12

We can interchange expressions such as the one above with similar statements written
using existential quantification. For example, to say that Kim speaks Japanese, we would
probably write:

;gB
7hLiTX;�m_tuewvs@�¬�LhB
L?>-7D;:7Xq
However, we could say that “Kim is one of those people who speak Japanese" and write
this in terms of set membership as follows.

tuewv°® � BSY�687:9<;I=�>��c;gB�7<LiTX;�mwB'@'¬�L<B�L�>�7I;:7iqD�
We could also express the same fact as “somebody called Kim speaks Japanese". This form
seems to map to existential quantification.

� BSY�687I9<;:=�> � ;gB�7<L,T?;�mwB'@�¬�L<B�L�>�7I;I7Xqc�sB¦�/tuewv

12.3.2 The One-point Rule

This is an equivalence rule that allows us to move from a set theoretical expression to a
predicate calculus expression and vice versa. The rule is as follows:

The One-point Rule:� rsY�A � rk�CG�±6©²C�®+A+��6´³µCh¶�r
·
A is some set
6 is a predicate of some kind
C is a term
6´³VCh¶�r
· is the predicate 6 with all free occurrences of r replaced by the
term C , and is read as “P with C for r "

To say that:

“There is an object r of type A that satisfies 6 , and C is another name for r ."

is the same as saying that:

“ C is a member of the set A and 6 is true of C ."
and vice-versa. For example:

� BSY�687I9<;:=�> � B¦��a4UVL?>k�¦B�B-UVL?WX;cCd7:>
>�ef;
has the form of the left-hand side of the equivalence, with:

r replaced by B
A by 6H7I9<;:=?>
C by a4UVL�>
6 by B�B-UVL?WX;cCd7:>
>�ef;

The form: 6´³µCh¶�r
· becomes mfB4B�UVL�WX;PCd7:>
>�ef;iqI³¸a4UVL�>�¶iB�· which is: a4UVL�>8B�UbL?WX;PCn7I>�>
ef; , and
the right-hand side becomes:

a4UVL�>3®S687:9<;I=�>§��a4UVL?>HB�UVL�WX;PCn7I>�>
ef;

Knowledge 275

12.3.3 Universal Quantification

Suppose we want to say that:

Everybody plays golf

We could claim that this is false because mg¹�x?7:9DW��h=iJ?W�@hM�=?U }�q does not appear in the B�UVL�WX;
relation; the problem is solved.

What if we want to say that:

Everybody is under 80 years old.

Again, we could fudge this by inserting the pair md¹�x?7I9DW��<=iJ?W
@Dº?»�q into the relation; and,
again, this would introduce more problems than it would solve. It would allow us to say,
for example, that Mark is younger than everybody; which, of course, is untrue.

This problem can also be overcome by using set notation:
�#� BSY�687I9<;:=�>��8L:M�7�mfB�qH¼�½����4� � 687:9<;:=?>

The number of people aged under 80 is the same as the total number of all people.
There is a neater way of making our claim using universalquantification:
¾ BSY�687I9<;:=�> � L:M�7�mfB�q�¼¥½��

The predicate L,M�7�mfB q8¼�½�� has been extracted from the set expression and prefixed by the
quantifier

¾ B+Y�6H7I9<;:=?> . The new expression corresponds to the English:

All people are aged under 80.

The general form of universal quantification is:

Universal Quantification:
¾l� 7h :UVL�9�L?Cge]=?> � 6�9�7<J?e] <L?Cn7

12.3.4 Implication

Frequently we will want to make statements that narrow the extent of the quantification.
Thus we may want to write something such as:

All men are over 20.

This is a sentence that would suggest the use of universal quantification. However, we do
not have a type RSL?> and so cannot say:

¾ v¿Y�RSL?> � L,M�7�m�v�qH�����
We could look at the original sentence another way and say that:

Everybody is either not male or is over 20.

276 Chapter 12

Now we can use quantification:
¾ BSY�687I9<;:=�> � m_	c;:7hr�mwB�q���RÀqQ�¥L,M�7�mwB�q������
There are two conditions in the predicate (1) 	c;I7hr'mfB q���R and (2) L:M�7�mfB q������ . These

are “or"-ed together; that is, the entire predicate is true if either of these two conditions is
true.

The entire predicate mg	c;:7�r'mfB qc�RÁqP��L,M�7�mwB�q������ is true for all women, regardless
of their age, because 	c;:7�r'mfB qc�¡R must always be true for these people.

For men, for the predicate to be true, it requires that the second condition L:M�7�mfB�qH�����
be true because the first, 	c;:7hr�mwB�qP�R , will always be false for men. The effect is that the
entire quantification is true only if all men are aged over 20.

This argument is considerably simplified if a new Boolean operator or sentence con-
nective is introduced. This new operator is called implication and is written as Â . The
statement 6�ÂÄÃ is read as:

6 implies Ã ; or

if 6 then Ã .

It is defined as:

6�ÂÄÃ/²/	Q6©�©Ã
The original statement on men’s ages can now be written as:

¾ BSY�687I9<;:=�> � ;:7�r'mfB qP�RÅÂÆL:M�7�mfB q8�Á���
which can be interpreted as saying:

For all people, B , if B is a male then B is aged over 20.

For all people, B , B being male implies B is over 20.

Implication is frequently used with universal quantification to narrow down the class of
objects about whom or which the predicate is universally true. Implication is a way of
weakening a universal general statement. The pattern for its usage is shown in Figure 12.2.

A condition that A condition that is true¾S� 7< IUbL?9�L�C_e]=�> � defines a set of Â of all members
some kind. of that set.

Figure 12.2 Universal quantification with implication

Example 12.3 All women are over 25 years old.
¾ BSY�687:9<;:=?> � ;I7hr'mfB qP�©¨�ÂÆL,M�7�mfB q8�Á��Ç

The first condition specifies the set of women; the second states what is true of all members
of that set.

A summary of the implication operator is given in Figure 12.3.

Knowledge 277

Operation: Implication

Z Symbol: Â
Usage: 6�ÂÄÃ
Pronounced: �?ÈÁÉ���Ê
Ë��Ì

É��IÍ�Î�Ï
��Ë
Ð�Ì
Sometimes: Ñ or Ò
Example: If Mark is over 45 then he plays tennis.

L,M�7�m�R3L�9�T�qH�¥��Ç|ÂÓR3L�9�TcB-UVL?WX;PCn7:>
>
ef;

Truth Table:

6 Ã 6©ÂÔÃ
true true true
true false false
false true true
false false true

Notes: A sentence of the form 6ÓÂ Ã is true if
either 	Q6 or Ã , or both, are true and false
otherwise.
This suggests that we can define the implica-
tion operator in terms of negation and disjunc-
tion.

6�ÂÄÃ©²À	Q6��/Ã
The truth table is better interpreted by going
in from the left and right columns to the mid-
dle one. In particular, the first line of the table
says that, given the truth of 6 and of 6©ÂÔÃ ,
we can deduce that Ã is true. This is the rule
of inference known as modusponens. Impli-
cation is further discussed in Section 12.3.4.

Figure 12.3 Implication

12.3.5 A Summary of Quantification

The various forms of quantification provide ways of making general statements of various
degrees of strength. There are four major forms involved and they are presented in
Figure 12.4 as a spectrum from the strongest to the weakest.

278 Chapter 12

Strong ¯:¯,¯:¯,¯:¯:¯,¯I¯:¯,¯:¯,¯:¯:¯,¯:¯,¯I¯:¯,¯:¯:¯,¯:¯,¯:¯:¯:¯:¯:¯,¯:¯,¯:¯:¯,¯:¯I¯,¯:¯,¯:¯:¯,¯:¯,¯:¯I¯,¯:¯:¯,¯:¯,¯:¯:¯,¯I¯:¯,¯:¯,¯:¯:¯,¯:¯,¯ Weak

1.
Everybody plays

tennis.

¾ BSY�687:9<;:=?> �
BHB-UVL?WX;cCd7:>
>�ef;

2.
Everybody over
50 plays tennis.

¾ B¤Y�687:9<;I=�> �
L:M�7�mwB�q���Ç��`Â
B�B�UbL?WX;PCn7I>�>
ef;

3.
Somebody over
50 plays tennis.

� B+Y�687:9<;:=?> �
L:M�7�mfB�q���Ç��y�
B�B-UVL?WX;cCd7:>
>�ef;

4.
Somebody plays

tennis.

� B+Y�687I9<;:=�> �
B4B�UVL�WX;PCn7I>�>
ef;

Figure 12.4 General statements

12.3.6 Quantifier Equivalences

Although universal and existential quantification may seem to be quite different in the
kinds of statements that we would wish to make using them, any statement written using
universal quantification may, in fact, be rewritten using existential quantification, and vice
versa.

1. We would probably feel that the following two statements are equivalent:

Everybody plays badminton.

There isn’t anybody who doesn’t play badminton.

These may be written, respectively, as:
¾ B+Y�687:9<;:=?> � B�B�UVL�WX;��<L�J?v´ew>
Cn=?>
	 � BSY�687:9<;I=�> � 	~mwB�B�UbL?WX;��<L�J�vuew>�Cd=�>-q

These examples reflect the following general equivalence:

First Equivalence:
¾l� 7< :UVL?9�L�C_e]=�> � 6�9h7hJ�e] <L?Cn7l²©	 �8� 7< :UVL?9�L�C_e]=�> � 	Q6�9h7hJ�e] <L?Cn7

In the above example, the declaration is BSY�687:9<;I=�> and the predicate is B8B�UVL�WX;��<L�J?v´ew>
Cn=?> .

2. We would probably also feel that the following statements are equivalent:

Not everybody plays squash.

Some people don’t play squash.

These may be expressed, respectively, as:

Knowledge 279

	 ¾ BSY�687:9<;I=�> � BHB-UVL?WX;P; ¢ N
LX;��� B+Y�687:9<;:=?> � 	~mwB�B-UVL?WX;Q; ¢ N
LX;���q
These examples reflect a second general equivalence:

Second Equivalence:

	 ¾l� 7< IUbL?9�L�C_e]=�> � 6�9�7<J�e] hL�Cd7|² �8� 7< :UVL?9�L�C_e]=�> � 	Q6�9h7hJ�e] <L?Cn7

In the above example, the declaration is BSY�687:9<;:=?> and the predicate is BHB-UVL?WX;Q; ¢ N
LX;�� .

When writing an expression that involves some kind of quantification, we may use either
�

or
¾

depending on our personal style.
It was previously stated that, in existential quantification, the predicate part often

involves the conjunction or and’ing of two conditions.
This is not accidental; the above two statements reflect two different styles of saying

the same thing. Suppose that Õ is some type of thing that interests us and that 6 and Ã
are two conditions involving some element C of type Õ .

¾ C�Y'Õ � 6©ÂÄÃ
² ¾ C�Y«Õ � 	Q6©�©Ã
(from the definition of Â)

²/	 � CcY'Õ � 	~m_	Q6��©Ãlq
(quantifier equivalence)

²/	 � CcY'Õ � 	G	Q6��+	lÃ
(De Morgan’s laws)

²/	 � CcY'Õ � 6©�¤	lÃ
(simplification)

Using the following substitutions:

Õ becomes 687I9<;:=�>
6 becomes ;I7hr'mfB qP��R
Ã becomes L:M�7�mfB�q������

and the first and last lines of the above equations, we get:
¾ BSY�687I9<;:=�> � ;:7�r'mfB qP�RÅÂÆL:M�7�mfB q8�Á���
	 � B+Y�6H7I9<;:=?> � ;I7hr'mfB qP�¡RÅ�+	8L,M�7�mfB qH�Á���

Or, in English, the two equivalent sentences:

All men are over 20.

There isn’t a man who is not over 20.

280 Chapter 12

12.4 Defining New Symbols

The development of a new computer system presents us with what seem, at first, to be
almost insuperable problems. The task threatens to overwhelm us. The problems we face
range from user interface design to performance requirements, and from operational and
development costing to functional requirements. Suppose we look at the last of these, at
the functional requirements, that is, at what the system is basically meant to do. Even there,
the task is huge. The usual approach to this kind of situation is to divide the task into a
number of smaller tasks, and then attempt to handle and overcome each of these in turn.
We continue this process of decomposition until the tasks become ones that the computer
can perform itself, without any further direction.

As we do so, we will inevitably find that certain basic tasks are required in a number
of different parts of the system. Suppose the system is a loans system for a library. We
might discover that, in handling the return of overdue books, there is a need to calculate
the difference in days between the date the book was due back and the date on which it was
returned. In some other part, when calculating the average length of loans, we might need
to calculate the difference between the day on which the book was borrowed and the day it
was returned.

We make use of this commonality by creating a single program module (subroutine,
procedure, section, subprogram or whatever). That module is used whenever and wherever
required. Those programs needing the calculation merely refer to the module by name.
The corresponding instructions are accessed and executed.

An analogous situation occurs when specifying a system. In discussing or describing a
situation, we will repeatedly need to refer to certain relationships and objects. The solution
to this problem is to name that situation or object, that is, to introduce a single name that
stands for the set of conditions that make up the situation. To see how we might introduce
new symbols, suppose we try to formalize the following fact about the circle.

Sue is married to Alan.

We could look at this two ways, depending, perhaps, on whether we take Sue’s part or
Alan’s.

Either: ;gB
=?N�;:7�mnA�N
7iqc�/a4UVL�> Or: ;_B
=?N�;:7�mga4UbL?>�qP�¡A�N
7
We know that both these versions are correct because of a general law concerning marriages.

¾ B«@ ¢ Y�J�=�v�;_B
=?N�;:7 �
;_B
=?N�;:7�mfB qc� ¢4Ö ;_B
=?N�;:7�m ¢ q��¥B

We can interpret this as follows.

Suppose we take any two people B and
¢

from the set of all married people, then if
¢

is
the spouse of B then B is the spouse of

¢
and vice versa.

Because we took any two people from the set, the equivalence is universally true for all
pairs from that set. We can use this combination of an equivalence with some kind of
universal application to help introduce new symbols.

Knowledge 281

The phrase “If P then Q and vice-versa" means “If P then Q and if Q then P" which
may be written formally as:

6�ÂÄÃÀ�©ÃÀÂ×6
This pattern is used frequently enough to justify the introduction of a new sentence con-
nective called equivalence. Using this new connective, the above predicate is written
as:

6 Ö Ã
Equivalence is summarized in Figure 12.5.

Example 12.4 Suppose, in talking about the circle, we often want to say that one person
is older than another. This can be represented as a relation. In Chapter 3, where we looked
at sets, we would have defined the relation in the following way:

=?UbJ�7:9 Y�687:9<;:=?>kZ_\]\]^|687:9<;:=?>
=�UVJ�7:9y� � B'@ ¢ Y�6H7I9<;:=?>��8L:M�7�mwB�qH�¡L,M�7�m ¢ qD�

By this means, =?UVJ�7I9 is said to be a set of pairs of people, with the first person always being
older than the second. Using set comprehension as the means of construction helps remind
us that a relation is a set of pairs.

There is an alternative means of defining this relation, one that uses universal quantifi-
cation and the equivalence operator.

=?UbJ�7:9 Y�687:9<;:=?>kZ_\]\]^|687:9<;:=?>
¾ B«@ ¢ Y�687:9<;:=?> �

B�=�UVJ�7:9 ¢�Ö L:M�7�mwB�q���L,M�7�m ¢ q
The advantage of this second style is that it highlights the interchangeability of the expres-
sions involved. Suppose we know that the following statement is true:

m��iq-¯,¯:¯ RSL?9�Tj=�UVJ�7:9ca4UVL�>
We can then argue that:

mg��q-¯,¯:¯ L:M�7�mnRSL?9�T
q8�L:M�7�mga4UVL�>-q
We can also argue the reverse. We can do this because of the equivalence used in the
definition of =?UbJ�7:9 and because the equivalence is true for all people.

We are not so much defining a new relation as giving a name to an existing and hitherto
anonymous one. The =�UVJ�7:9 relation between people existed before we named it. This
naming or symbolizing allows us to simplify what might otherwise have been awkward,
long-winded or unnatural expressions. For example, consider the equivalent expressions
(1) and (2) shown above. Both have the same meaning, but one has three symbols and the
other has five. Since economy of expression is one of the ways in which we will judge

282 Chapter 12

Operation: equivalence

Z llllll
Ö

Usage: 6 Ö Ã
Pronounced: É��?È©Ø���Ù/���
Ï�ÚÛ�?È¡Ì

É¡Ë�Ü�Ø
Ý?�
Ï�Ú�Þ�Ê
Ë��¡Ì
Sometimes: ß
Example: Alan is the spouse of Sue if and only if Sue is

the spouse of Alan.

a4UbL?>§�;gB�=�N�;I7�m�A�N
7Xq Ö
A�N
7��;_B
=?N�;:7�mga4UbL?>�q

Truth Table:

6 Ã 6 Ö Ã
true true true
true false false
false true false
false false true

Notes: A sentence of the form 6 Ö Ã is true if (i)
both 6 and Ã are true or (ii) both 6 and Ã
are false. We can define equivalence in terms
of other operators.

6 Ö Ã©²md6¡ÂÄÃlq«��mIÃ©Âà6|q
Given 6 Ö Ã , we can interchange 6 for Ã
in any sentence involving Ã without affecting
the truth or falseness of the sentence. We can
also interchange Ã for 6 .

Figure 12.5 Equivalence

a specification, this reduction is important. However, there will always be some kind of
trade-off. We will need to remember the new symbol and its exact meaning. Will it be
worth learning? That will depend on how often we might expect to use it.

Example 12.5 Maybe we frequently need to discuss who is sitting next to whom, rather
than restricting ourselves to whether one person is to the left of another. We might want to

Knowledge 283

say that Alan is sitting next to Sue, not caring whether he is to her left or she to his.

a4UVL�>`>-7�r�CgCd=cA�N
7 if and only if UV7_}<C:mga4UVL�>-q���A�N
7 or UV7]}<C,mnA�N
7XqQ��a4UVL?>
We can generalize this relationship to one between any two people.

>�7hr�C_Cn= Y�687:9<;I=�>kZ]_\]^|687:9<;I=�>
¾ B«@ ¢ Y�687:9<;:=?> �

B´>-7�r�CgCd= ¢HÖ UV7]}<C,mfB�q�� ¢ ��UV7]}<C,m ¢ qc��B
Two people B and

¢
are sitting next to one another if

¢
is to the left of B or B is to the left

of
¢
.
The general pattern for defining new relation symbols is given in Figure 12.6.

The general form for defining new relations is as follows.

á Y�âãZ]_\]^Sä
¾ r¦Y�â¤å8W#YQä �

r á W Ö some predicate relating r and W .

A relation
á

between two types â and ä is defined by introducing a variable
of each type, say rSY�â and W§Ycä . The pair mgr�@,W�q is in the relation

á
if r

and W are related in the way specified.

Figure 12.6 Defining new relations

12.4.1 Introducing New Total Functions

A function may be considered as merely a special kind of relation and so a new function
symbol may be introduced in a very similar manner.

Example 12.6 Suppose we frequently need to refer to the number of sports that a person
plays.

B-UVL?W� <=�N�>
C8Y�687:9<;:=?>[\]_^|E
¾ B¤Y�687:9<;I=�>�å�>3Y�E �

B�UbL?W� <=?N�>�C:mfB qc�Û> Ö >§� �#� ;|Y�A�B
=?9DC¦��BHB�UbL?WX;Q;��
A person B plays a total of > sports if (and only if) the size of the set of sports he or she
plays is > .

In this particular example, the intermediate number > may be avoided if the function is
defined in the following equivalent manner.

284 Chapter 12

B-UVL?W� <=�N�>
C8Y�687:9<;:=?>[\]_^|E
¾ B¤Y�687:9<;I=�> �

B�UbL?W� <=?N�>�C:mfB qc� ��� ;lY�A�B
=?9DC¦��BHB�UVL�WX;Q;��
The number of sports that a person B plays is the size of the set of sports played.

Example 12.7 Now that the symbol B-UVL?W� <=�N�>
C has been formally introduced, further new
symbols may be defined in terms of it. Suppose we need to know whether one person is
more athletic or sportier than another. This would require the introduction of a new relation
symbol.

;gB�=�9DC_e]7:9 Y�6H7I9<;:=?>kZ_\]_^l6H7I9<;:=?>
¾ B«@ ¢ Y�687:9<;:=?> �

Bu;gB
=?9DCge]7I9 ¢lÖ B�UbL?W� <=?N�>�C:mfB q8�±B-UVL?W� <=�N�>
C:m ¢ q
Person B is sportier than person

¢
if B plays more sports than

¢
.

Example 12.8 Suppose that Alan is rather choosy about where he sits at the table. He
only sits next to men, and even then, only if he is sportier than them. We can use our newly
introduced symbols.

¾ BSY�687I9<;:=�> �
a4UVL?>u>�7hr�C_Cn=�B¦Âæ;:7hr�mwB�qP�¡RÅ��a4UVL?>`;gB�=�9DC_e]7:9�B

The general pattern for defining new total functions is shown in Figure 12.7.

There are two forms for defining total functions.

1. When a term can be constructed directly.

}¦Y�â°\]_^3ä
¾ r3Y�â �

}�mgr�qQ� some term of type ä
2. When the term cannot be expressed directly.

}¦Y�â°\]_^3ä
¾ r3Y�â¤å8W�YQä �

}�mgr�qQ�ÛW Ö some predicate defining W

Figure 12.7 Defining new total functions

Example 12.9 The “up to" function, defining a contiguous set of numbers, is commonly

Knowledge 285

used in computing. For example:

Ç�¯V¯ ½y� � Ç�@�ç
@<º�@�½��
Thus, Ç�¯V¯ ½ is the set of all numbers between 5 and 8 inclusive. If we take this second
definition and express it formally, we would have:

Ç�¯V¯ ½y� � >¦Y�Eè��>Sé�Çj��>3ê�½��
It is an infix function that, when applied to a pair of numbers, represents the set of numbers
in between. We can take the set comprehension version of Ç�¯V¯ ½ and use it as the basis of a
general definition.

ë_ë Y�EíìsE°_\]^`A�7IC =�}lE
¾ eh@]î[Y�E �

eh¯V¯ î�� � >3Y�Eè��>3é�e'��>SêSî
�
The term e�¯b¯ î is the set of numbers greater than or equal to e and less than or equal to î .

12.4.2 Introducing New Partial Functions

With partial functions, we must establish the domain of the function.

Example 12.10 We need to be able to refer to a man’s wife, where appropriate to do so,
in other words, when we have established that the man is married.

ï e }I7uY�6H7I9<;:=?>[\ zp\]^|687:9<;:=?>
J�=?v ï e }I7j� � B+Y�J�=�v�;_B
=?N�;:7ª�c;:7hr'mfB�qc�¡R��¾ B¤Y�J�=�v ï e }I7 �ï e }I7�mfB q��;gB�=�N�;I7�mwB�q

The ï e }I7 function is partial. Not every person has a wife. Its domain is the set of married
men. The first condition of the definition establishes that. The second condition then says
that for each such person, that person’s wife is the same as his spouse.

The two forms for defining new partial functions are more general forms of those used
for total functions and are shown in Figure 12.8.

Example 12.11 The v´ew> function takes a set of numbers and returns the smallest member
of that set. It is partial because it cannot operate on the empty set. Here are three examples
of its use: are they true or false?

v´ew> � Ç�@h��@�»��H����
v´ew> � Ç�@h��@�»��H�/Ç
v´ew> � Ç�@h��@�»��H�À�

We know that the first line is untrue because the number ��� is not even in the set
� Ç�@h��@h»�� .

The second line is untrue because, although the number Ç is in the set, it is not less than
or equal to all the members of the set and so cannot be the minimum. The third line

286 Chapter 12

Like total functions, there are two general forms for introducing new partial
function symbols.

1. When the term can be expressed.

}¦Y�â°\ z¸_^Sä
J�=?v±}k� some set expression that defines the domain of

}¾ r3Y�J�=�v�} �
}�mgr�qQ� some expression of type ä

Note that the quantification is restricted to the domain of the function
being defined. We are saying nothing about what happens when the
function is applied to some element outside the domain.

2. When the term cannot be expressed directly.

}¦Y�â°\ z¸_^Sä
J�=?v±}k� some set expression that defines the domain of

}¾ r3Y�J�=�v�}�å8W�YPä �
}�mgr�qQ�ÛW Ö some predicate defining W

Figure 12.8 Defining new partial functions

satisfies both these conditions and these two conditions seem to be enough to determine
the minimum element. We can summarize this as:

v´ew> � Ç�@h��@�»��H�À� because ��® � Ç�@h��@h»�� and
¾ >3Y � Ç�@h��@h»�� � �´ê�>

And we can generalize this to any non-empty set of numbers.

v´ew>SY�A-7:C�=�}4E°\ zp\]^lE
J�=?v¡v´ew>s��A�7IC =�}lE°ð � �¾ >
;:7IC�Y�J�=?v�vuew>'åHv°Y�E �

vã�¡v´ew>`>�;:7:C Ö v°®�>�;:7:C«� ¾ >3Y�>�;:7IC � v¿ê©>
Its definition takes the second, more complex, form of function definition.

12.5 Generic Functions and Relations

In the previous section we looked at defining functions and relations that operated on
specific types such as 687:9<;I=�> and E ; for example, the v´ew> function may be applied to a

Knowledge 287

set of integers and nothing else.
There are, fortunately, many general-purpose operations that may be applied to any

type. The J�=?v and 9�L�> operators are examples. They may be applied to any set of pairs.
There are also some even better known operators such as the union (

�
), intersection (ñ)

operators and the subset (ò) relation of set theory.
We will examine the J�=?v operator first. This function may be applied to any set of

pairs and it returns the set consisting of all the first or left-half elements of each pair. In
other words, we may apply it to any relation since a relation is defined to be a set of pairs.
Here is an example.

B�UbL?WX; Y�687:9<;:=?>kZ]_\]^yA�B
=?9DC
B-UVL?WX;l� �

mga4UVL�>�@,Cd7:>
>�ef;iqD@
mga4UVL�>�@<M�=�U } qD@
mnA�N
7�@,Cd7:>
>�ef;iqD@
m_tuewvs@:Cn7I>�>
ef;iqI@
mg�4=���@hM�=?U }�qD@
mg�4=���@<�
=, <T�7:W�qI@
mnRSL?9�T�@hM�=?U } qI@
mnRSL?9�T�@I; ¢ N
LX;��
qD�

The domain of plays is the left-hand column, so:

J�=?v¥B�UVL�WX;l� � a4UVL?>'@IA�N
7�@htuewvs@<�4=���@IRSL?9�T-�
Just by looking at the relation we can see that a person is in the domain of B�UbL?WX; if and only
if there is some sport played by that person, that is, if and only if:

� ;jY�A�B�=�9DC � B4B�UVL�WX;Q;
where B is the person in question. Looking at B�UVL�WX; as a set of pairs, we could say this as:

� ;jY�A�B�=�9DC � mwB'@I;Xq~®#B-UVL?WX;
The domain of B-UVL?WX; is the set of people who satisfy that condition. Put more formally, we
have:

J�=?v¥B�UVL�WX;l� � BSY�687:9<;:=?>�� � ;jY�A�B�=�9DC � mwB'@I;Xq~®#B-UVL?WX;��
If we were only interested in a J�=?v function that worked on sets of mfB
7I9<;:=�>�@:;_B
=?9DChq pairs
such as B�UVL�WX; , we could introduce it in the usual way.

J�=?v%Y
mg6H7I9<;:=?>kZ_\]_^`A�B
=?9DC�q'\]\]^`A�7IC =�}l687:9<;:=?>
¾ á Y�687:9<;:=?>kZ]_\]^yA�B
=?9DC �

J�=�v á � � BSY�687:9<;:=?>�� � ;jY�A�B�=�9DC � mwB'@:;iq~® á �
For all relations

á
between 687:9<;:=?> and A�B
=?9DC , the domain of that relation is the set of

people B for whom there is some sport with which they are connected through the relation.

288 Chapter 12

Now we can apply the J�=?v operator, as defined, to any such relation; for example,
given:

UV=iL?C���7I; Y�6H7I9<;:=?>kZ_\]_^jA�B�=�9DCï L?Cn h�
7D; Y�687:9<;:=?>kZ_\]\]^yA�B�=�9DC
N�;:7hJ�Cd= Y�6H7I9<;:=?>[Z_\]\]^yA�B�=�9DC

We can refer to:

J�=?v¡UV=iL?C���7I; – the set of people who loathe some sport;
J�=?v ï L?Cn h�
7D; – the set of people who watch some sport;
J�=?v¡N�;:7hJ�Cd= – the set of people who used to play some sport.

Of course, we have no intention of restricting ourselves to using this operator only upon
to relations between people and sports. It has widespread applicability. We can extend its
definition so that it may be used on any set of pairs.

³ â¤@
ä4·
J�=?v%Y
m_â¿Z]\]_^+älq«\]_^`A-7:C�=�}4â
¾ á Y�â°Z_\]\]^Sä �

J�=�v á � � rsY�âè� � W�YQä � mgr�@,W�q~® á �

We have generalized the definition from one involving sets of mfB
7I9<;:=?>'@I;gB
=?9DC�q pairs to
one that applies to arbitrary sets of pairs of the form m_r�@:W�q . The definition has been
parameterized on two types â and ä . If we were to replace â by 687:9<;I=�> and ä by A�B�=�9DC
then we would be back to our initial definition of J�=?v .

Example 12.12 The union operator is also a function. It takes two sets of the same type
and returns another set, of that same type. In Z, the symbol for union is

�
.

The union of two sets of people a and � is the set of people who are in either a or �
or both. We can extend this to the union of two sets of any type.

³ âk·� Y�A-7:C =�}lâíì+A-7:C =�}lâ°\]_^jA�7IC =�}lâ
¾ ajåc��Y�A-7:C =�}lâ �

a � �� � rsY�âè�Grs®Sa¥��rs®S���

The definition of
�

is parameterized on the type â . In other words, we may substitute any
type of our choosing, which is what we have been doing, off and on, throughout this book.

Example 12.13 Set subtraction is another function involving sets. Like set union, it also
takes two sets of the same type and returns another set, of that same type. The symbol for
subtraction is ð .

Subtracting the set of people � from the set of people a gives us the set of people who
are in a but not in � . The difference between any two sets may be defined as follows:

Knowledge 289

³ âk·
ð Y�A-7:C =�}|âóì+A-7:C =�}4â¿\]\]^yA�7IC�=�}4â

¾ ajåc��Y�A-7:C =�}lâ �
a¥ðª�� � rsY�âô�Gr3®¦a��¤	Gr¦®3�´�

GenericRelations
Generic relations may be defined in a similar way; for example, the containment of one set
within another is a generic relation. A set may be a subset of many sets and, equally, a set
may have many subsets. This means that the subset operator, wriiten ò in Z, is a relation.
A set may have many different subsets. The set of people in Queensland has, as subsets, the
set of people in Brisbane, the set of people in Rockhampton, and so on. In turn, the same
set may be a subset of many other sets. The set of people in Queensland is a subset of the
people in Australia; it is also a subset of the people who live in the Southern Hemisphere,
and so on. This generic relation may be defined as follows:

³ âk·
ò Y�mnA-7:C�=�}lâ¦q'Z_\]_^`m�A-7:C�=�}lâ¦q

¾ aj@<��Y�A�7IC =�}4â �
a©òÀ� Öõ¾ rsY�â � rs®SaÁÂörs®S�

A set a is a subset of set � if and only if r being an element of a implies that r is also
an element of � .

Example 12.14 Suppose we now return to the suburban bank that was introduced in
Chapter 1. The situation at the tellers is shown in Figure 12.9.

There are two components in this situation that are relevant here.

1. =<B�7:>SY�A�7IC =�}§Õ�7IUwUV7:9
The component =hB
7I> is the set of tellers who are ready to do business. At this moment
tellers T1, T3 and T4 are open, so:

=hB
7:>s� � Õ4��@�Õ���@�Õc���

2. �:N�;DW�Y'Õ
7:UwUV7:9l\ zp\]^|687:9<;I=�>
The other component �IN�;DW describes which tellers are in the process of serving by
pairing each busy teller with the customer involved, so:

�:N�;<W�� � mXÕ4��@D��=��,qI@,miÕ��
@IA�N
7iqD�

As part of the general conditions that characterize the bank at any and every moment of
time, we had:

J�=?vÛ�IN�;DW�ò=hB
7I>

290 Chapter 12

T1 T2 T3 T4

Ann

Kim

Dan

Sue

Bob

Jim

Liz

Figure 12.9 In the bank

The domain of �IN�;DW is the set of tellers actually serving a customer. The condition requires
that set to be a subset of the open tellers. In other words, every serving teller must also
be open. This is a general statement about the bank and yet seems to make no use of
quantification. Does this mean that not all general statements involve quantification? No,
the quantification has been hidden through the use of the J�=�v operator and the ò relation.
We can reveal the relative complexity of this statement by removing the J�=?v and ò
symbols. Suppose we first replace the subset symbol by its definition. The relevant line
from its generic definition is:

a©òÁ� Öõ¾ r¦Y�â � r¦®3aÁÂör¦®3�
The predicate J�=?vÛ�IN�;DW�ò=hB
7I> requires the substitution of:

â by Õ�7IUwUV7:9 as the base set involved
a by J�=?vÛ�:N�;<W
� by =<B�7:>
¾ C�Y'Õ�7IUwUV7:9 � C�®±J�=�vÛ�IN�;DWuÂÓC~®±=hB
7I>

The predicate now states that : “For every teller C , if that teller is in the domain of �:N�;DW
then the teller is also in =hB
7:> ."

We can now replace J�=?vÛ�:N�;DW using the generic definition of the J�=?v operator; its
generic definition was:

J�=?v á � � rsY�âè� � W#YQä � mgr�@,W�q~® á �

Knowledge 291

We need to make the following replacements.

â by Õ�7IUwUV7:9
ä by 687I9<;:=�>á

by �IN�;DW
We get:

J�=?vÛ�IN�;DWu� � rsY«Õ
7:UwUV7:9�� � W#Y�6H7I9<;:=?> � m_r�@:W�q~®��:N�;DW��
This gives a complete replacement of J�=?vÛ�IN�;DW#ò¡=hB
7I> by:

¾ C�Y'Õ�7IUwUV7:9 �
C�® � rsY'Õ�7:UwUV7I9�� � W�Y�687:9<;:=?> � mgr�@:W�q8®��:N�;DW��lÂÓC~®±=hB
7I>

The predicate now states that : “For every teller C , if that teller is in the set of tellers
for whom there is a person being served by that customer, then the teller is also in =hB
7I> ."
Compare the complexity of this statement with the relative simplicity of the original version.

12.6 Describing Change

In this section we will examine some new general-purpose functions. These are all used to
describe how a situation changes in response to some given event. What kinds of events
might happen, ones that change the circle? Here are three typical ones.

1. Bob takes up rugby.

There will be changes that cause the addition of new facts to the database of facts
relating to the circle. This is an example. The B�UVL�WX; relationship must be extended to
include a pairing of Bob and rugby.

2. Alan drops tennis.

There will be changes that require the removal of facts that are no longer relevant. The
pairing of Alan and tennis must be removed.

3. Bob celebrates his birthday.

There will be changes that modify facts. The L:M�7 relationship must be altered so as to
pair Bob with his new age rather than his previous one.

12.6.1 Adding New Facts

Extending our database can be described in terms of set union. We form a new version of
the appropriate relationship by adding new facts to the existing ones.

Example 12.15 Bob takes up rugby.

B-UVL?WX;,÷-��B-UVL?WX; � � mg�4=���@:9DN�M��IW�q<�
In all the examples in this section we will use a primed version of a relationship (B�UbL?WX;,÷
in this example) to represent the after version of the relationship that is changing. This

292 Chapter 12

primed version must have the same type in its declaration. So, in this example, we require
that B-UVL?WX;i÷ be introduced as follows:

B�UVL�WX;,÷ Y�6H7I9<;:=?>kZ_\]_^jA�B�=�9DC

Example 12.16 Sue learns Spanish.

;gB
7hLiTX; ÷ ��;gB
7<L,T?; � � mnA�N
7�@:A�B
L?>�ef;���q<�
This time the relationship to be extended is the ;_B
7<L,T?; one. The revised version of that
relationship, ;gB�7<LiTX;,÷ must be declared to be of the same type as the “before" version.

;gB�7<L,T?;,÷ Y�6H7I9<;:=?>kZ_\]_^jA�B�=�9DC

Example 12.17 Kim comes into a small inheritance and buys her first car, a Ford.

J�9DewxX7I;,÷���J?9Dewx?7I; � � m_tuewvs@<¨�=?9�J
q<�
This time the change involves a function. The new version will be declared in the same
way as J?9Dewx?7D; was, that is:

J�9DewxX7I;,÷ Y�687I9<;:=�>k\ zp_^#OQL�9<R3LiT�7
We must ensure that, in describing the change, we construct an equation that is consistent
with the type of the relationship involved. In this case, we must ensure that whatever
extension we make, J�9DewxX7I;,÷ truly is a function. That means that before making the change
we need to check that tuewv is not in the domain of J�9DewxX7I; , in other words, Kim must not
currently be driving a car.

Example 12.18 Kim and Bob get married (or, at least, enter into a spouse-like relation-
ship).

;gB
=?N�;:7i÷���;gB
=?N�;:7 � � m_tuewvs@<�4=��iqD@img�4=���@htuewv#q<�
Like the previous example, we would need to check that neither tuewv nor �4=�� are currently
involved with other people. As this example shows, we are not restricted to adding just one
new fact or pairing.

Example 12.19 In a touching display of marital support, Kim decides to take up all the
sports that Bob plays.

B-UVL?WX;,÷-��B-UVL?WX; � � m_tuewvs@hM�=?U }�qD@im_tuewvs@<�
=, <T�7:W�qD�
This assumes knowledge of the sports that Bob plays. If we didn’t then we could write the
change as:

B-UVL?WX;,÷-��B-UVL?WX; � � ;|Y�A�B
=?9DC§�Q�4=�� B-UVL?WX;Q; � m_tuewvs@I;Xq<�
This description pairs Kim with each of the sports that Bob plays.

Knowledge 293

12.6.2 Removing Facts

There are three different ways in which we can describe a change that involves forgetting
something. The basic method is set subtraction, but there are two other methods that make
the descriptions more compact. These are domain subtraction and range subtraction.

Example 12.20 Alan drops tennis.

B-UVL?WX;,÷-��B-UVL?WX;4ð � mga4UVL�>�@,Cd7:>
>�ef;iq<�
We can always remove a fact by creating a set containing just that fact and subtracting it
from the corresponding relationship as represented by a set of pairs.

Example 12.21 Bob loses heavily in the 1997 stockmarket crash and has to sell his car.

J�9DewxX7I;,÷���J?9Dewx?7I;Hð � mg�4=���@<68=�9<;I <��7XqD�
If we didn’t remember exactly what kind of car Bob drove, we could identify it through
function application.

J�9DewxX7I;,÷���J?9Dewx?7I;Hð � mg�4=���@iJ?9Dewx?7I;�mg�4=��iq�qD�
The pair identifies Bob and whatever make of car he previously drove.

This kind of change is so commonly required that a special operation called domain
subtraction has been defined to allow us to describe the change in the minimum number
of symbols.

J�9DewxX7I;,÷�� � �4=�����¼ J?9Dewx?7D;
The domain subtraction operator ¼ says to look for any pair in J?9Dewx?7D; that involves Bob
and form a new set of pairs J?9Dewx?7D;,÷ that contains no pair involving Bob on the domain side,
that is, involving Bob as the first half of any pair. Note how this third description of the
change uses the least number of symbols that could have been used. Compare this with the
first and second versions. Its generic definition is as follows:

³ â¤@
ä4·
¼ Y
mnA�7IC =�}4â¦q~ì�m_â°Z_\]_^3äjq«\]\]^umgâ°Z]_\]^+älq

¾ a©Y�A-7:C�=�}4â¤å á Y�â°Z]_\]^Sä �
a¥¼ á � � rsY�â¤å�W[YQä×�Gr £®Sa���mgr�@:W�q8® á �

a¥¼ á is the set of pairs mgr�@:W�q that are in
á

except those where r is not in a .

Example 12.22 Mark’s doctor strongly insists that he gives up all forms of sport. If we
know that he plays just golf and squash, we can write:

B-UVL?WX; ÷ ��B-UVL?WX;4ð � mnRSL?9�T�@hM�=?U }�qD@imnRSL?9�T�@I; ¢ N
LX;��
qD�
If we cannot remember exactly (in extension) what he plays, then we can use set compre-
hension to do the job:

B-UVL?WX;,÷-��B-UVL?WX;4ð � ;lY�A�B�=�9DCs�cRSL�9�TPB�UVL�WX;Q; � mnRSL?9�T�@I;iqD�

294 Chapter 12

The set expression forms a set of pairs consisting of Mark and each of the sports he plays.
Again, this kind of change may be expressed using domain subtraction:

B-UVL?WX;,÷-� � RSL?9�T��H¼ B-UVL?WX;
This means exactly the same, as we shall see when the operation is defined. Again, note
the economy of this expression compared with the previous ones.

Example 12.23 Sue and Alan separate. As before, this change might be described in
several ways.

;gB
=?N�;:7i÷���;gB
=?N�;:7�ð � mnA�N
7�@Da4UVL?>�qD@imga4UVL�>�@:A�N
7Xq<�
;gB
=?N�;:7i÷���;gB
=?N�;:7�ð � mnA�N
7�@:;_B
=?N�;:7�mnA�N
7Xq�qD@imn;gB
=?N�;:7�mnA�N
7XqI@IA�N
7XqD�
;gB
=?N�;:7 ÷ � � A�N
7�@<a4UbL?>��H¼ ;gB
=?N�;:7
There is a complementary operation, range subtraction, that targets the range side of

a set of pairs.

Example 12.24 Suppose the golf club has increased its fees enormously and everyone
has decided to stop playing golf. We can create a suitably modified version of the B�UVL�WX;
relation through the expression:

B-UVL?WX; � � M�=?U }��
The result is a relation that contains all the mfB
7I9<;:=�>�@:;_B
=?9DChq pairs from B-UVL?WX; except those
where the sport is golf.

The generic definition is as follows:

³ â¤@
ä4·
� Y
m_â°Z_\]_^3äjq~ì�mnA�7IC =�}+älqG_\]^um_â°Z_\]_^3äjq

¾ á Y�â°Z_\]\]^Sä´åc��Y�A-7:C =�}Sä �á � �� � rsY�â¤å8W[YQä×��W £®S�¡��mgr�@,W�q~® á �

The set
á � � is the set of pairs m_r�@,W�q that are in

á
except those where W is not in � .

12.6.3 Modifying Facts

When a fact type or relationship involves a function, we often find ourselves in the position
of adding and dropping facts at the same time.

Example 12.25 Kim turns 23. This new information requires that we drop the fact that
she is 22 and add a new one stating that she is 23. We can express this as:

L,M�7i÷��øm�L,M�74ð � mgt`ewvs@<����qD�Xq � � mgt`ewvs@<����qD�
We can express this change using function override, an operator especially devised for
describing changes to relationships that are functions.

L,M�7i÷���L:M�7~ù � m_tuewvs@h����q<�

Knowledge 295

The pair after the operator symbol, ù , overrides any pair in L:M�7 to the extent that whatever
Kim’s age was before, she is now 23. No-one else’s age is changed. Function override
allows us to superimpose one function upon another. The function that follows the override
symbol ù has precedence over the function that appears before the symbol. The expression� m_tuewvs@h����q<� is a small function that overrides, that is, it has precedence over L:M�7 .
Example 12.26 It is Kim’s birthday.
Suppose we did not know how old Kim now is, merely that it’s her birthday. We can still
access her previous age.

L,M�7i÷���L:M�7~ù � m_tuewvs@iL:M�7�m_tuewv#q'úÀ�iqD�
We find out her previous age, add one to that and override her current age with that number.
It is no-one else’s birthday.

A guide for using function override is shown in the following diagram.

The relationship A set of pairs describing just
to be modified. ù those modifications required.

It shows that we place the relationship (function name, typically) before the override symbol
ù and a precise description of the changes to be made after.

Example 12.27 Suppose that Sue has sold her Ford and bought a Mazda instead. We
need to amend the J?9Dewx?7D; function to reflect this change.

J�9DewxX7I;�ù � mnA�N
7�@:RSL,ûiJ�L�q<�
Whatever Sue drove before, she now drives a Mazda.

Its generic definition is as follows:

³ â¤@
ä4·
ù Y
m_â°\ zp\]^Säjq�ì¤mgâ°\ zp\]^Sä|q«\]_^um_â°\ zp\]^Sälq

¾ }�@hMkY�âã\ zp\]^Sä �
}´ù¥M��ÛmhJ�=?vÀMu¼ }�q � M

Summary: The subtraction operators ¼ and � are useful for knocking pairs off a relation
and giving us whatever is left over.

Function override ù is useful for allowing us to speak of amendments to the information
in a database, when that information is in the form of a function.

12.7 Abbreviations

In Section 12.4, we were introduced to a method for defining new symbols. That method
allows us, primarily, to simplify the writing of predicates. This was highlighted in the case
of the bank. A complex condition, that all busy tellers are open, would otherwise have
involved both universal and existential quantification. With the introduction of the J�=?v
operator and the ò relation, the predicate was reduced to the compact J�=?vÛ�IN�;DW#ò¡=hB
7I> .

296 Chapter 12

In this section, we will see a technique that simplifies the writing of predicates by
introducing symbols that are used within declarations. We have already made frequent use
of one such symbol, the function symbol \]_^ . Consider the declaration of the L,M�7 function.

L,M�7`Y�687:9<;:=?>k\]_^lE
It says that L,M�7 is a set of pairs, each pair mapping a person to a number. It also makes two
restrictions or constraints on that set.

1. No person has more than one age, that is, no person is linked through the L:M�7 relationship
to more than one number. The relationship is a function.

2. Every person is involved in this relationship, that is, every person is mapped to a number.
The function is said to be total.

We do not need to specify these two constraints in any predicate using L:M�7 . Its declaration
as a total function does that for us. The knowledge has been encoded in the definition of
the total function symbol \]_^ . The way in which this symbol is defined is part of a more
general technique, within Z, for simplifying statements by introducing new symbols that
are to be used within a declaration of some kind.

The total function symbol has a fairly complex definition, so we will look at some
simpler examples first.

Example 12.28 Perhaps we might need to establish that a person is a woman before
making some further statement about such people (treading carefully). We could define the
set of women as:

ü =?v�7I>s�j� � a4>
>'@IA�N
7�@<t`ewv§�
The double equal sign is read as “is defined to be". So the set

ü =?v�7:> is defined to be the
set consisting of Ann, Sue and Kim. If we were unsure of their proper names, we could
play safe and define it as:

ü =?v�7I>s�j� � BSY�687:9<;I=�>��c;:7�r'mwB�qP�©¨`�
Either way, we can use this set to make some claim such as that all the women are over 30
years old.

¾ ï Y ü =�v�7:> � L,M�7�mfB q8�����

Example 12.29 We can use this newly introduced symbol
ü =?v�7I> as the basis for

defining another. If we want to name the set of married women, we could introduce it as
follows.

ü ewxX7I;4�j� ü =?v�7:>´ñ¤J�=?v�;gB
=?N�;:7
The set

ü ewx?7I; is the set of married women.

Knowledge 297

The left-hand side of an abbreviation definition may include symbols that have already
been introduced. A relation is a set of pairs drawn from the set of all pairs, that is the
product of two sets, 687:9<;:=?> and A�B�=�9DC say.

687:9<;:=?>[Z]_\]^`A�B�=�9DCQ�j�¡A-7:C =�}`md687:9<;I=�>+ì+A�B
=?9DChq
As a reminder:

� 687:9<;:=?>+ìSA�B�=�9DC is the product set consisting of all md687I9<;:=�>�@:A�B
=?9DC�q pairings.
� A�7IC =�}umg687:9<;:=?>¤ìSA�B�=�9DC�q is the power set consisting of all subsets of that product set.

So the declaration B�UVL�WX; YG687:9<;:=?>±Z]\]_^sA�B�=�9DC is an abbreviated way of declaring that
B-UVL?WX; is an element of that power set, that is, B�UVL�WX; is a set of mg687:9<;:=?>'@IA�B
=?9DChq pairs. In
particular, it is one in which not all people need necessarily participate.

More generally, the relation symbol may be defined as relating two arbitrary sets â and
ä in the following way:

âãZ_\]\]^+ä¡�j��A-7:C =�}um_âýì©äjq

A partial function is a special kind of relation, one with a uniqueness constraint on the
domain side of the relation. For example:

J�9DewxX7I;yY�687:9<;:=?>k\ zp\]^#OGL�9<RSL,T�7
Not everyone need drive a car, but no-one drives more than one. We can describe this
constraint formally:

¾ BSY-J�=?vÛJ�9DewxX7I; � m ��� lY�OQL?9<RSLiT�7 � mfB«@i iq~®±J?9Dewx?7D;iq
For all those people who do drive a car, there is exactly one car that they drive. It is this
constraint that enables us to use function application.

We can define the partial function symbol in terms of the relation symbol with that one
constraint:

â þÑÿä��j� � á Y�â¿Z]\]_^Sä×� ¾ rsY�J�=�v á � �-� W#YQä � mgr�@,W�q~® á �

A total function is a partial function with yet another constraint, that every element
from the domain side takes part. We know everybody’s age, so it was declared as:

L,M�7`Y�687:9<;:=?>k\]_^lE
Its totality can be expressed as J�=?vÛL:M�7´��687:9<;:=?> . Total functions between people and
numbers may be defined as follows:

687:9<;:=?>[\]_^|E%�j� � }¦Y�687I9<;:=�> þÑöEè�8J�=?v±}k��687:9<;:=?>��
They are the set of partial functions } from 687:9<;:=?> to E such that the domain of } is the
same as 687I9<;:=�> . This definition may be generalized to any two types â and ä .

âã_\]^+ä��j� � }sY�â þÑÿä×�8J�=�v±}k�/â+�

298 Chapter 12

A partial injection is a one-to-one partial function. The ;gB�=�N�;I7 relationship between
certain members of the circle is an example.

;gB
=?N�;:7jY�6H7I9<;:=?>k^_\ z¸_^|687I9<;:=�>
If two people, B and

¢
, have the same spouse, then B and

¢
must be the same people. We

can express this formally as:
¾ B«@ ¢ Y�J�=�v�;_B
=?N�;:7 � ;_B
=?N�;:7�mfB qc�;gB�=�N�;I7�m ¢ qPÂíB¦� ¢

And we can generalize this to arbitrary types â and ä :

âã^_\ zp_^3ä¡�j� � }3Y�â þÑ ä×� ¾ B«@ ¢ Y�J�=?v±} � }'mfB�q��±}'m ¢ q�ÂíBs� ¢
A total injection is a one-to-one function that is also a total function. An example is

the UV7_}<C relationship. Each person is on the left of just one person and everybody has just
one person on their left.

UV7_}<C~Y�687:9<;:=?>k^]_\]^8B
7I9<;:=?>
We can define the set of all total injections between people as follows:

687:9<;:=?>[^]_\]^j687:9<;:=?>¦�j�mg6H7I9<;:=?>k^_\ z¸_^|687I9<;:=�>-q ñ¤md687I9<;:=�>k\]\]^|687:9<;:=?>�q
Then we can generalize this definition to one involving arbitrary types â and ä .

âã^_\]\]^+ä¡�j�m_â¿^]\ zp\]^3ä|q ñ¤mgâã\]\]^+äjq

12.8 Sequences

There are many occasions, in practice and in theory, when we would wish to talk about one
element of a set coming before or after some other element. The � � Ù�Ë � clause of SQL is a
recognition of this need. Suppose we make another return to the bank. See Figure 12.9.

Now we want to talk about the people queuing for service. If we use a set to describe
some objects, there is no concept of order or sequence; so, for example:� a4>
>'@htuewvs@ � L?>���� � tuewvs@ � L?>'@<a4>�>��4� �X� L?>'@<a4>
>'@htuewv§�

All three expressions describe the same set of people. Nothing tells us that there is a
certain order to the queue. Yet we know that we cannot move Ann, Kim and Dan around
and claim that the queue is still the same. Declaring the queue to be a simple set of people
is not enough.

We could model the queue as an “is in front of" relation.

ew>,}<9h=?>
Cn=�} Y�687I9<;:=�>kZ]\]_^|687I9<;:=�>
ew>i}<9�=?>�Cd=�}§� �

mga4>�>�@<tuewv�qI@
mga4>�>�@ � L�>-qI@
m � L?>'@htuewv#q<�

This relation allows us to determine whether one person is in front of another, for example
a4>�>yew>,}<9�=�>
Cn=�}|tuewv ; however, it does not enable us, with ease, to decide who is first in the
queue, who is second and so on. We could use quantification:

Knowledge 299

1. The first person in the queue, say B'� , is the one who has nobody in front of him or her:
	 �j¢ Y�687:9<;:=?> � ¢ ew>i}<9�=?>�Cd=�}~B'�

2. The second in the queue, B�� , is the person with only one other person in front.�j¢ Y�687:9<;:=?> � ¢ ew>i}<9�=?>�Cd=�}8B �j�+	 � 9uY�687:9<;I=�> � 9�ew>,}<9�=�>
Cn=�}~B �y��9 £� ¢

This use of quantifiers, while it accurately expresses the concepts involved, does seem
rather lengthy. There is a nicer way, and that is to declare

¢ N
7IN
7 as a sequence.
¢ N
7IN
7yY�;:7 ¢ 6H7I9<;:=?>

This is almost equivalent to the declaration:
¢ N
7IN
7yY�E þÑà687:9<;I=�>

This latter form says that
¢ N
7:N
7 is a partial function mapping from the integers, E , to the

set 687:9<;I=�> . The function can be thought of in tabular form as follows:
¢ N
7:N
7jY�;:7 ¢ 687I9<;:=�>
¢ N
7:N
74� �

m���@<a4>�>-qI@
m_��@htuewv#qD@
m]�
@ � L?>�q<�

We can now use
¢ N
7:N
7 as a function and apply it to an integer, for example

¢ N
7IN
7�m��iq would
determine who is first in the queue,

¢ N
7IN
7�mg��q would give the person in second place.
The function is a partial function because the domain is not the entire set of integers but

simply the set
� ��@h��@h��� because there are three people in the queue. In general, the domain

of a sequence function will be a contiguous set of numbers ��¯b¯V> where > is the number of
entries in the sequence.

So the queue is a partial function with a domain consisting of a contiguous set of
numbers ranging from 1 up to > where > is the size of the sequence. For every sequence ; :

� >3Y�E � >§� � ;��¥J�=?v�;4�¡��¯b¯b>
Or, by eliminating the need for the intermediate > :

J�=?v�;4�¡��¯b¯ � ;
We can use this constraint to define the set of all sequences of people:

;:7 ¢ 687I9<;:=�>s�j� � ;jY�E þÑ×687I9<;:=�>��8J�=�v©;4���¯b¯ � ;��
And this definition, in turn, may be generalized into the set of sequences of some arbitrary
type â :

;:7 ¢ â%�j� � ;|Y�E þÑöâô�8J�=?v�;4�¡��¯b¯ � ;��
We could model the history of car driving within the circle as:

�
LX;:J?9Dewx?7I>¤Y�687:9<;:=?>k_\]^y;:7 ¢ OQL?9<RSLiT�7

300 Chapter 12

While
¢ N
7:N
7 is a valid use of the sequence, it does not quite provide the complete

picture as in a sequence of people one particular person may occur several times.
Suppose we want to model the results of a race and we are not interested in the names

of individual athletes but only in the names of the countries represented. There may be
several athletes from each country competing. The race may written out in full as:

9hL� <7yY�;I7 ¢ OQ=?N�>�C_9DW
9hL� <7l� �

m���@ � A�aHqI@
m_��@<a4N�;DCg9�L?Upe]L�qD@
m]�
@<a4N�;DCg9�L?Upe]L�qD@
m���@�FP�yqI@
m_Ç�@ � A�aHqD�

Because there may be several athletes from each country, that country appears several
times, once for each athlete.

12.8.1 Sequence Construction

There is a sequence equivalent to set extension. This notation allows us to write out, in
full, the contents of a sequence; for example, the 9�L� h7 sequence may be written as:

³ � A�a|@�a4N�;DC_9hL?Upe]L
@�a4N�;DC_9hL?Upe]L
@QFP��@ � A�a~·
The square brackets signify that the enclosed data forms a sequence. For that reason, the
order in which the countries are named is significant. This sequence is equivalent to the set
of pairs:

� m���@ � A�aHqD@�mg��@<a4N�;DCg9�L?Uµe]L�qI@�m]�
@<a4N�;DC_9hL?Upe]L�qD@�m]�
@�FQ�`qD@�mgÇ�@ � A�a�q<�
Written as a set, the order is not important because the sequencing information is encoded
within each pair.

We can have a sequence containing just one entry, for example ³ E���· , which is equivalent
to the set

� m���@<E��Hq<� . We can have an empty sequence ³n· which is the same as the empty
set

� � .
One of the most natural operations to be performed on sequences is to concatenate

or string together two or more sequences. If we want to concatenate two sequences of
characters ³dÕ4@��`@��H· and ³¸¨u@�a|@ á · we can write:

³nÕ4@��`@���·
	/³¸¨u@�a|@ á ·-�ø³dÕ4@��`@��`@�¨u@-a|@ á ·
Any number of sequences may be concatenated:

³µAc@ � @
E±@ � @�a|@8ä4·�	À³nÕ4@��`@���·
	/³¸¨u@�a|@ á ·�	À³¸a|@ ü @�aj@8ä�·
No brackets are required because it does not matter which sequences are joined first; the
result will always be the same.

Knowledge 301

12.8.2 Sequence Decomposition

As well as constructing new sequences we will want to pull them apart so as to isolate some
component or another. There are two operations for accomplishing this, ��7<L�J and CdL�ewU .

The ��7<L�J operation extracts the first entry in a sequence and returns the associated
element.

��7<L�Jl9�L� <7
� ��7<L�J|³ � A�a|@�a4N�;DCg9�L?Uµe]L�@�a4N�;DCg9�L?Uµe]L�@QFP��@ � A�a�·
� � A�a

This is simply another way of saying 9hL� <7�m��iq which returns the first element in the 9�L� <7
sequence. Thus we cannot apply ��7<L�J to the empty sequence.

The CnL?ewU operation removes the head of a sequence and returns a sequence consisting
of whatever is left over.

CnL?ewU�9�L� <7
� CnL?ewU�³ � A�a|@�a4N�;DC_9hL?Upe]L
@�a4N�;DC_9hL?Upe]L
@QFP��@ � A�a~·
� ³¸a4N�;DC_9hL?Upe]L
@�a4N�;DC_9hL?Upe]L
@QFP��@ � A�a~·

The tail of a sequence starts immediately after the head. So we are talking about a snake’s
tail and not a dog’s.

If there is only one entry, then applying CnL?ewU to that sequence returns the empty sequence.

CdL�ewU�³ a~·
� ³n·

We cannot apply CdL�ewU to the empty sequence.

12.8.3 Operations on Sequences

There is a kind of hierarchy involved in the operations that may be performed upon a
sequence or in conjunction with sequences.

1. Sequence operations

We can use the constructor operation ³n· and the concatenation operator 	 to build new
sequences; we can also use �
7hL�J and CnL?ewU to access components of a sequence.

2. Function operations

Because a sequence is a special kind of function, we can use function application to
identify entries in the sequence; for example 9�L� <7�m_��q returns the country that came
second.

3. Relation operations

Because a function is a special kind of relation, we can use relation operators such as
J�=?v and 9�L�> to determine the domain or range of a sequence considered as a relation.
For example the expression 9�L�>`9�L� <7 will return the set of countries represented in the
race.

302 Chapter 12

4. Set operations

Because a relation is a special kind of set, we can use all the set operations on sequences;
for example, we can use the set size operator in

� 9�L� <7 to find out how many runners
there were in the race.

We should be prepared to use whatever level of operation most naturally and appropriately
expresses our requirements.

12.9 Summary

In this chapter we have looked at several important aspects of information modeling.

� We have looked at the use of universal and existential quantification as means of making
statements about classes of people or things. This should be seen as an extension of
the ideas of Chapter 2 where we looked at ways of making statements about specific
things.

� We have looked at how new symbols may be introduced into a specification in order to
reduce the complexity of our predicates. In particular, the set operators, set union (

�
),

set intersection (ñ), and set subtraction can all be introduced in this way.
� We also looked at three operators – domain subtraction, range subtraction and function

override. These operators are of particular use when we want to describe how a situation
is to change as a result of changed circumstances.

� We have seen how abbreviation definitions may be introduced in order to save us from
repeatedly stating commonly used relationships.

� Finally, we have looked at a commonly used abbreviation, the sequence, a modeling
tool or notion that allows us to talk about ordered sets such as queues. As part of the
idea of a sequence we have special operators that enable us to construct sequences and
to pull them apart.

Knowledge 303

Exercises

Q12.1 The ����� Model

The following sets, functions and relations represent a (very) small computer club.
There are five basic types in the model.

³pRS7:v��<7:9�@�K�L�>�M�N
L:M�7�@POQL?9<RSL,T�7�@-E±@GF87:>�J�7I9i·
We can think of these types in the following terms.

1. Member =
�

Bill, Sue, Alan �
2. Language =

�
COBOL, FORTRAN, C, SQL, Pascal, Ada, RPG, Modula-2 �

3. CarMake =
�

BMW, Ford, GM, Honda, Mazda, Mercedes, Toyota �
4. N =

�
0, 1, 2, 3, ... �

5. Gender =
�

F, M �
There are five relationships between the types. These are shown below in tabular
form.

UpeVT�7D; Y�RS7Iv��<7I94Z_\]_^jRS7:v��<7:9
UpeVT�7D;l� � mg�HewUwUn@IA�N
7iqI@

md�8ewUwUn@Da4UVL?>�qD@
m�A�N
7�@<a4UbL?>�qD@
mda4UVL?>'@<�HewUwU]q<�

ï 9DewCd7I; Y�R37:v��h7:94Z]_\]^|K�L?>�M�N
L:M�7
ï 9DewCn7D;4� � mg�HewUwUn@<¨�� á Õ á a�E3qD@

m�A�N
7�@�OlqD@
m�A�N
7�@IA'ÃPK qD@
mda4UVL?>'@<¨�� á Õ á aHE3qI@
md�8ewUwUn@:A�ÃPK qD�

L:M�7`Y�RS7Iv��<7I94_\]^lE
L:M�7|� � mg�HewUwUn@:�i»�qD@

m�A�N
7�@:�i»�qI@
mda4UVL?>'@:�iç�qD�

J?9Dewx?7I;yY�RS7Iv��<7I9l^_\ z¸_^�OQL�9<R3LiT�7
J?9Dewx?7I;l� � mnA�N
7�@��`=�>�J�L�qD@

md�8ewUwUn@D¨�=�9�J�qD�

;:7�r3Y�RS7Iv��<7I9|\]\]^[FH7:>�J�7:9
;:7�r§� � mg�HewUwUn@IRÀqD@

m�A�N
7�@<¨|qI@
mda4UVL?>'@IRÀq<�

In Z, the statement that Alan dislikes Bill would be written as: 	~mda4UVL?>´UpeVT�7D;G�8ewUwU]q .
Rewrite each of the following English sentences using Z.

a. Bill can’t write in SQL.

304 Chapter 12

b. Sue and Bill get on well together.

c. Sue can write in both C and in Pascal.

d. Neither Alan nor Sue can write in FORTRAN.

e. Either Sue drives a Honda or Bill does.

f. Both Bill and Sue can write in SQL.

Q12.2 Rewrite the following English expressions formally, using quantifiers.

a. Everybody likes Alan.

b. Somebody likes Alan.

c. Nobody likes Alan.

d. No one is older than Bill.

e. No one is younger than Sue.

Q12.3 Use quantifiers to express the following statements.

a. Only women drive Hondas.

b. Women only drive Hondas.

c. Only those who can write in SQL drive a BMW.

d. Only BMW drivers can write in C.

e. Alan only likes people who drive a BMW.

f. Alan only likes females.

g. Alan can write in every language that Sue can.

h. Sue likes everybody that Bill likes.

i. All the men can write COBOL.

j. Some men can write SQL.

Q12.4 Use quantifiers to express the following statements.

a. Everybody is liked by somebody.

b. Only one person can write in FORTRAN.

c. Alan is the second youngest person.

d. There is no man who is not liked by some woman.

e. Every woman drives a car.

Q12.5 Write out, in extension, the set that results from each of the following domain
subtraction operations.

a.
� �8ewUwUd�4¼ UpeVT�7I;

Knowledge 305

b.
� �8ewUwUd�4¼ L,M�7

c.
� �8ewUwUn@:A�N
7��H¼ UpeVT�7D;

d.
� �8ewUwUn@:A�N
7��H¼ L:M�7

e. mhJ�=�vJ�9DewxX7I;iqQ¼ UµeVT�7I;
f. J�=?v¦m � �8ewUwUd�l¼ UpeVT�7I;iq
g. J�=?v¦m � �8ewUwUn@:A�N
7��4¼ UpeVT�7D;Xq
h. 9hL?>«m � �HewUwUd��¼ UpeVT�7D;Xq

Q12.6 Write out, in extension, the set that results from each of the following range
subtraction operations.

a. UµeVT�7I; � � �8ewUwUd�
b. L,M�7 � � �,ç��
c. L,M�7 � �i½�¯b¯ ���
d. J�9DewxX7I; � � ¨�=�9�J-@�Õ
=�W�=?CnL��
e. ï 9DewCn7I; � � ¨�� á Õ á aHE¤�
f. ï 9DewCn7I; � � U�Y�K�L?>�M�N
L:M�7��cA�N
7 ï 9DewCn7D;QUd�
g. ;:7hr � � ¨`�
h. J�=?v¦mn;:7hr � � ¨`�?q

Q12.7 Write out, in extension, the set that results from each of the following function
overrides.

a. L,M�78ù � md�8ewUwUn@<����qD�
b. L,M�78ù � m�A�N
7�@iL,M�7�mg�HewUwU]q�qD�
c. J�9DewxX7I;~ù � m�A�N
7�@�Õ�=?W�=�CdL�q<�
d. J�9DewxX7I;~ù � m�A�N
7�@�Õ�=?W�=�CdL�qD@imga4UVL�>�@D¨�=�9�J�q<�
e.

� mg�HewUwUn@h����q<��ù©L:M�7

Q12.8 The � �������f��2���& � Model

This model was introduced in the exercises at the end of Chapters 2 and 3. Two
basic types were used:

³ 6H=?Upeh@�6HL?9DCgW�·
The following functions and relations are used to represent the facts that we want
to represent here.

1. �<7:UV=?>�M?;yY�68=?Upe�_\]^j68L�9DC_W
This maps each politician to his or her party, for example, �<7:UV=?>�M?;�m ü L?W?>�7Xq
might give K�L��<=�9 .

306 Chapter 12

2. v´ew>
ef;DCn7I9uY � 7dB-C«\]_^|68=?Upe
This maps each department to its minister, for example, v´ew>
ef;DCn7I9�md68=?Upe] <7Xq
might give Õ�7:9D9DW .

3. Ub7hL�J�7:9uY�68L?9DCgW`^]\ zp\]^|68=?Uµe
This maps a party to its leader, for example, UV7<L�J�7I9�mg�HN�;Dew>�7I;<;iq might map
to
� 7:>�û:ewU .

4. CnL?U T?;DCd= Y�68=�Upe'Z_\]\]^|68=�Upe
This indicates whether one politician is prepared to talk to some other politi-
cian, for example, Eu7IxiewUwUV7�CnL?U T?;DCd= á N�;<;:7IUwU .

We can map each politician to his or her party leader through a total function
CdLiT�7:v�7 which may be defined as follows.

CnL,T�7Iv�7yY�68=?Upe¦\]_^l6H=?Upe
¾ B+Y�6H=?Upe �

CdLiT�7:v�7�mwB�q~�¡UV7<L�J�7I9�mh�h7:UV=�>�M�;�mfB q�q
Using the above style, define functions or relations to satisfy the following require-
ments.

a. Pair each party with the number of representatives that it has in parliament.

b. Pair each politician with the set of politicians to whom that politician talks.

c. Pair each politician with the set of politicians that talk to him or her.

d. Pair each party leader with the set of politicians that he or she leads.

e. Create pairs of party leaders such that the first one outranks the second in
terms of the number of politicians in the respective parties.

Q12.9 The results of the men’s 100 m final in the 1996 Olympics were as follows.

É
Ï�Ø
Ý�Ë
Ð ��������Ë � Ð ��������� � ��Ë
Ð �-�IÍ�Ë
Ð
� � ��Ï�Ï ����� ���! #"$ % � Ø��#& ' � ���!"#() ��Ê�Í-Ë�Ù *�Ë���Ú�Ø ���!�)+ ����Ë�È�Ø�� ,�ØXÍ-Ø���Ý�Ø �.- � -/�
(� � �-Ý�Ë ���-Ð?� � Ø�Ï
��Ø �.- � -#)0 � Ë�1�Ø�� ����� �.- � � "
 � Ø �#� Ú ���-Ð?� � Ø�Ï
��Ø �.- � $ (
" ,�Ë�Ø�� % � Ø��-Ý�Ë �.- �) (

The race results are modeled using the types ³ E�@ á N�>
>�7:9�@GOQ=?N�>
Cg9DW
@~Õ ewv�7:· and
the following functions between the types.

Knowledge 307

1. B-UVL� <7uY á N�>
>-7I9H\]_^lE
This enables us to determine which place a runner achieved, for example
B-UVL� <7�mg¨ 9�L�>�T�q��/� .

2. 9h7dB+Y á N�>�>�7:98_\]^[OQ=?N�>�C_9DW
This tells us which country an athlete represented, for example 9h7dBGmg�47Ix?L?>�qQ�� A�a .

3. Cgewv�7yY�6~UVL� <7�_\]^sÕ�ewv�7
This tells us the time taken by whoever took a particular place, for example
Cgewv�7�m_½�qP��,�
¯ ��Ç

Rewrite the following English sentences using quantification.

a. Every one came in under 11 seconds.

b. No one bettered 9.5 seconds.

c. There were no Australians in the top three.

d. Every Australian did better than 8th.

e. No Australian beat a Kenyan.

f. Only one person took less than 9.80 seconds.

g. No country got more than one medal.

Q12.10 Using only the set of integers, N, rewrite the following statements by means of
quantification.

a. There is a number greater than 1.

b. There is no number that is half of 25.

c. Every number greater than 1 is less than its square.

d. There is a number less than 25 that is the sum of 6 and 12.

e. Every number less than 10 has a square less than 100.

Restate your answer using the quantifier equivalents.

Q12.11 Which of the following statements are true and which are false?

a.
� >SY�E � �#2yúª�#2��©Ç�2

b.
� >SY�E � >43¦>¦�Áç���Ç

c.
¾ vs@,>3Y�E � vúÀ>§�©��>§ÂÓv �>

d.
¾ >SY�E � m � v°Y�E � v �>´úÀ�iq

e.
¾ >SY�E � >S¼©�i�����jÂÓ>3�ÁÇ

Q12.12 Write out, in extension, the following expressions.

308 Chapter 12

a. 5 $76 ¼ 598 �;: (�< : 8 $�:=�.- < : 8)>:?� < 6
b. 5 �;:@)A6 ¼ 598 �;: (�< : 8 $�:?�.- < : 8)�:?� < 6
c. 5B8 �/:C) < 6 ù 598 �;: (�< : 8 $�:=�.- < : 8)>:?� < 6
d. 5B8 �/: (�< : 8 $>:?�.- < : 8)�:?� < 6 ù 5D8 �/:C) < 6
e. 5B8 �/: (�< : 8 $>:?�.- < : 8)�:?� < 6 ù 5D8 $>: (�< : 8�" :C0 < 6
f. 5B8 �/: (�< : 8 �/: "�< : 8)�:=� < 6 � 5 �E6
g. 5B8 �/: (�< : 8 $>:?�.- < : 8)�:?� < 6 � 5 �;: " 6

Q12.13 Write the following sequences in set extension form.

a. [B,A,T]

b. [T,A] 	 [B]

c. [T,A] 	 [T,A]

d. [A]

e. [A] 	 [B] 	 [C]

f. []

g. [] 	 [A]

h. [A] 	 []

Q12.14 Rewrite the following sets as sequences.

a. 5B8 �/: ÌF< : 8 $>: �G< : 8)�: �/< 6
b. 5B8 $>: ÌF< : 8 �/: �G< 6
c. 5B8 �/: �G< 6 � 5B8 $>:IH < : 8)>:KJ < 6
d. 5B8 +�:IL < :M: 8 �;:!� < 6 � 5B8)�: �/< : 8 $�: �N< 6
e. 5B8 �/:IH < : 8 $>:�O < 6 \P598 $�:�O < : 8 �;:IH < 6

Q12.15 Given the following sequences of characters:

k = [K,I,N,G]
q = [Q,U,E,E,N]
b = [B,I,S,H,O,P]

simplify the expressions below.

a. head k

b. tail q

c. tail tail b

d. [head k] 	 (tail tail q)

e. 4..6 ¼ b

Chapter 13
The Knowledge Base

13.1 Introduction

Documentation is one of the most disliked features of computing. This is rather unfortunate
since program documentation is where we store our knowledge in its most (human) readable
form. As an example, consider a simple rule stating that a customer’s current balance must
not be allowed to exceed his or her credit limit. A rule like this is typically specified using
a program design technique such as pseudocode or a decision table. The rule might then
be encoded within a COBOL program. Thus the program becomes the rule enforcer. The
rule is specified in pseudocode and implemented in COBOL.

What happens next? If we are honest with ourselves we know that from now on all
attention turns to the program code; the specification takes on a secondary role of docu-
mentation. Changes to the rule occur, such as amendments, extensions, special cases and
so on. These are implemented directly in the program and the documentation becomes
increasingly obsolete, simply confirming the programmer’s prejudice against documenta-
tion. The result is that the database is encapsulated by a collection of programs, with each
program implementing any number of undocumented rules.The database starts to suffer
from hardening of its arteries. Organizational knowledge becomes buried in programs.
When the system is to be replaced, all this knowledge must be rediscovered by the next
generation of systems developers.

One answer to this problem is to keep the documentation up to date and to make
the programs subordinate to this documentation. In doing so, we would move towards a
more evolutionary style of systems development. Maybe the term specification should be
discarded. In the minds of many programmers, any specification is a disposable means
to an end; the end being an executable program. A better approach is to consider that
the programs constitute a knowledge-base of some kind; and that knowledge needs to be
expressed in at least two forms: (1) in a way that humans can understand; and (2) in a way
that machines can execute. Both forms are necessary; the first for us, and the second for the
machines. A knowledge base of the kind being proposed is simply continuously updated

�����

310 Chapter 13

documentation that is being used to drive the implementation rather than being treated as
an afterthought.

13.2 Information Systems Development

Historically, in the development of organizational information systems, three distinct styles
have arisen:

1. There is a process-oriented style characterized by an emphasis on the physical basis
of any new system, that is, on the kinds of storage devices used to store data and on
the instructions to be given to the computer. Development tools include system and
program flowcharts. This kind of development peaked with the structured analysis and
design schools. The processing is central and the data peripheral.

2. There is a data-oriented style in which the roles are reversed so that the database is
central and programs peripheral. Programs are seen as merely the means by which
the database is queried and updated. Entity-relationship modelling, conceptual schema
design and SQL are part of this school.

3. There is a knowledge-based style which can be thought of as an amalgamation of the
process and data styles. Programs and data are both seen to model or represent the
organization, each in their own way. Programs contain general knowledge, rules, equa-
tions or formulae. Databases contain specific knowledge or facts. Expert systems are
part of this school. CASE (Computer-Assisted Software Engineering) tools, especially
those based on repositories, are also a move to this style.

Although there is a historical trend, the process-oriented and data-oriented style are still in
active use.

13.3 Knowledge

An organizational information system models some aspect of the organization. If we take
the knowledge-based approach, then an information system comes in two parts. One part
implements organizational rules and the other contains specific facts about the organization,
but both model the organization in their different ways.

One of the prime reasons for data (or conceptual) modeling is that the end product, such
as a conceptual schema or an ER diagram, is a stable community view of an organization.
The resulting model provides a secure platform from which information systems may be
developed. The usefulness of this platform stems primarily from its stability. From the
model a relatively static data base structure may be derived. So, for example, a fact like:

���	��
�����������������������������!
may be replaced, in the database, by one like:

���	��
��������������"��#���$��
	���%���	
&
but the more general fact that:

'�
�	�#(�
�������)���*�$
	�������,+�
	�$���-

The Knowledge Base 311

remains unchanged. So the database changes but the knowledge base does not. The term
knowledge is used in this book to describe information that is true for a relatively long
period of time, that is, knowledge is more stable. It consists of generalized facts, that is,
facts not just about specific objects but about whole classes of objects. A knowledge base
contains the essence of organizational wisdom and experience, or at least, such of that
essence as may be formally represented.

A data model, such as a conceptual schema or an ER diagram, is a kind of knowledge
base, although a rather rudimentary one. It allows us to nominate enduring relationships
and to specify a little of the nature of these relationships (that is, whether they are one-to-
one, one-to-many or many-to-many). A data model, however, limits itself to basic types
and basic relationships because its purpose is to help us design the database. A more
useful knowledge base would be one that allows us to specify any type of object and any
relationships. Some examples of the kind of things that we would like to specify are as
follows:

1. We should be able to specify general constraints regarding things, for example, that a
customer’s current balance should always be less than their credit limit.

2. We should be able to specify that, after a bank teller says “Next please!", and the person
at the front of the queue has moved forward to be served, the queue is now formed
strictly from the tail of the queue beforehand.

3. We should be able to derive and specify new relationships based upon existing relation-
ships, for example, the total on an invoice is the sum of the totals for each line of the
invoice.

These usually form part of the program specification because they are implemented pro-
grammatically, rather than becoming part of a database.

13.4 Representing Organizational Knowledge

How do we represent or specify the knowledge to be kept in our knowledge base? In other
words, how do we best specify our information systems? What alternatives are there?
Current forms of program specification include:

. pseudocode
. decision tables or trees
. program flowcharts
. data flow diagrams
. structure charts
. Nassi-Shneiderman diagrams
. and, frequently, the programs themselves

There are two contrasting problems with these techniques and their usage.

1. On the one hand, some of them are too oriented towards the computer and it is difficult
to distinguish the rule from its implementation.

312 Chapter 13

2. On the other hand, some of them allow rules to be expressed too vaguely; the user is
happy with one interpretation and the programmer with another.

However, the number of alternatives and their variety of approaches do show that it is
possible to represent knowledge in many different ways. In this book we choose to express
the human-readable form of our knowledge using a language called Z. It can be thought of
as a language that integrates data and program design.

Z is a specification language. It is not a programming language, in the sense that a
statement in Z may not be directly executable or automatically translated into executable
instructions. It is a means of expressing our ideas and of organizing them in some way.

So our knowledge base will consist of two quite distinct descriptions of the organization:

. The first description will be called the specification. This will be for us.
. The second description will be called the implementation. This will be a machine-

executable version of the first.

It must be possible to say how these two versions are related or linked, and to demonstrate
their equivalence. Chapter 19 provides an example of what we need to prove in order to be
satisfied that they are equivalent. There are several comments that may be made as a result.

1. The link between the specification and any implementation should be maintained at
all times as one of the normal functions of the data processing department within the
organization.

2. This link, itself an information system, should be used as a means of gaining access to
the implementation. It forms a bridge between the non-executable and the executable
versions of the knowledge base.

3. Access to the implementation should be permitted only by means of this link.

4. Changes to any part of the implementation should only be permitted if they are consistent
with the specification; and such consistency will be provided by means of this linking
software.

In practice things are not done this way. Instead:

1. The link is only ever in the mind of the programmers involved, disappearing as they
disappear to create even bigger and better information systems.

2. Instead of using the specification to guide them, the maintenance programmer jumps
into the implementation with boots on.

3. The specification no longer matches the implementation; so it withers.

13.5 A look at Z

The chapter introduces some of the features of Z. In particular, we will look at the schema
which is the unit of specification within the language. Schemas are used to modularize
a specification written using Z, and a complete Z specification will consist of a number
of interdependent schemas. In essence, a schema allows us to state some truth regarding
the things that we are specifying. Each schema consists of two parts, a signature and a

The Knowledge Base 313

predicate. The signature is where variables are declared and associated with some set or
type. The predicate is where constraints are placed upon these variables.

Example 13.1 Here is an example of a schema called /!021�354,6	787 that might contain the
information that we want to keep regarding each employee.

/!021�354,6	7879�: 0;7=<$>?78@BADC :,EF:	G?H 7 E:�I 7J<�KL 4�MFC$NO> H 4 E 6P<$QR7 H 4TSVU E 4%0W4 H NX4 9
Y,Z\[:?I 7J]_^�`

The schema signature states that we are interested in three things about an employee:

. a 9�: 0;7 which is a sequence of characters;. an :?I 7 which is a number;
. a

L 4	MaC�NO> H 4 E 6 which is a set of promotions.

The schema predicate states that an employee is required to be at least 17 and younger than
65.

Example 13.2 Another schema might be used to define what we mean by a promotion.

U E 4,0;4 H NX4 9b :,H 7\< b : 6L 4�M=<$>?78@BADC :,EF:	G?H 7 EEc:%H 7\<$de4 9 7f6b 7g1 H <�>?7F@hADC :%Ec:	G?H 7 E
L 4�M=ikj �#(%l	+�m�
��$nFo�#����
	�#nT��l$���%
�np+��	���	q�
��$rEc:%H 7\s Y�tb 7g1 H ikj�u �����	���%
�nFv$�+���l$�����$q�nc"��	����
������qnc'����w�l������%	�$r

According to its signature, every promotion consists of:

. the date upon which the promotion occurred;
. the new job taken that day;. the rate of pay attached to this job;. the department.

The predicate part requires every promotion to satisfy three conditions:

. the job can only be one of
�#(,l	+�m�
��

,
o�#����
��

, x?x?x ;. the rate of pay must exceed $10.00 per hour;. the department involved must be one of u �����	���	
 , x?x?x

314 Chapter 13

In summary a schema looks like this:

y{z Q G C�7f0 :|�} /)Q�~,��K y |a��� /:;G 4%3�3�7 GfH NX4 9 4�S H 6F1�7 b 7 G 3 :,EF:,H NX4 9 >H C :,H&9�: 0;7B� :%E N : M?3�7f> :%9 b : >8>f4 G N :,H 7
7 :�G C�� :,E N : Mf357=��N H C : 1 :%E�H N G?� 3 :,E
>f7 H 4 E\H 6F1�7�x

|�} /*U � /��B~,A y | /:;G 4%3�3�7 GfH NX4 9 4�S E�� 3�7�>=4 EJG 4 9 > H�Ec: N 9�H >I 4%��7 E�9 N 9�I;H C�7B� : 3 � 7f>�C�7f3 b M?6 H C�7
� :%E N : M?3�7�> 9�: 0;7 b N 9�H C�7h>8N I	9�:%H��$E 7	x

Just like a COBOL program with its data division and its procedure division! Let us
pursue that analogy a little further.

13.6 Signatures

A signature is like the data division of a COBOL program. It consists of a series of type
declarations whereby each variable is associated with a type or set. A signature is written in
a data or type sublanguage that enables us to declare the kinds of things that interest us and
about which we want to make statements. However, there are differences. In a COBOL
data division we are reserving storage inside a computer in order to perform calculations
or to make comparisons. In a Z signature we are not restricted to the kinds of data that
some compiler is prepared to recognize. We can introduce any kind of object that interests
us.

Example 13.3 This can be seen in the following schema which has no predicate,consisting
only of a signature.

� N E > H Q : 021�3�7fQ#N I	9�:%H��$E 7
MV<��24 E 7� n 6;<�U E 4F1�7 E�H 6
1�<�U�7 E >?4 9G n b <�A�3�NX7 9�H

We can introduce variables that stand for things that no self-respecting COBOL compiler
would be prepared to let pass.

Example 13.4 The type associated with a variable may be given as a simple name such
as in the examples above. However, it may be a more complex expression.

The Knowledge Base 315

QR7 G 4 9 b Q : 021�3�7fQ#N I	9�:%H��$E 7
3�4 G8:,H NX4 9 <�K���KH 7 : 0�<�Q�7 H 4�SVU�3 : 6	7 E
>?@ E�H <�K��X���hK
0�N 9 <�K���K��X���VK
@ � 7 � 7\<$>?78@2A � > H 4,0;7 E

Briefly, the types associated with each of these variables are as follows:

. A 3�4 G8:,H NX4 9 is a pair of integers (K is the name usually given to the set of integers 0, 1,
2, x?x�x).

. A H 7 : 0 is a set of players, not the set of players, but a subset of that set.
. >?@ E�H is a function that maps from one integer to another, say from 4 to 2 or from 144 to

12; we can place this function in front of the first of the pair and expect it to equal the
second, for example, >?@ E�H?�¡ �¢�£¥¤ .

. 0�N 9 is a function that maps a pair of integers to another integer, say from (4,9) to 4;
again we can apply the function so that 0¦N 9��¡ nc§ ¢�£¨ .

. @ � 7 � 7 is a sequence of customers, that is, it is an ordered list of some kind, one that
allows us to talk of one customer being in front of another.

13.6.1 Declaration

A signature consists of a series of type declarations and each declaration has one of these
formats:

��7 G 3 :%Ec:,H NX4 9 :

� : >�N G ��7 G 3 :,Ec:%H NX4 9
4 E � : >�N G ��7 G 3 :,Ec:%H NX4 9ª© x�x?x © � : >�N G �¦7 G 3 :,EF:,H NX4 9
� : >�N G ��7 G 3 :%Ec:,H NX4 9 :

Q�6,0WM84%3-<�Q�7 H | 7 E 0
4 E Q�6,0WM84%3 n x?x�x n Q#6,0;MF4%3ª<�Q�7 H | 7 E 0

Essentially, a declaration introduces a symbol which will be used to represent an object
of the kind indicated.

Example 13.5 We might use the symbol 1 to represent a person, as follows.

1e<$U�7 E >?4 9
A symbol may be any mark that we (collectively) can construct, recognise and reproduce.
We are not restricted merely to letters and words, although the keyboard is a convenient

316 Chapter 13

way of making new symbols (in the form of words). We may borrow symbols from other
alphabets, for example « , or build new ones, for example ¬ .

Example 13.6 The basic declaration style also allows us to introduce several new objects
of the same type at the same time.

1 n @ n E <�U�7 E >?4 9
We must take care, however. Just because the symbols are different does not mean that
the objects they represent are different. They may be, they may not; it depends on any
subsequent constraints we choose to place upon these objects.

Example 13.7 Several basic declarations may be connected by semi-colons.

1 n @¦<�U�7 E >?4 9-© >=<$Q%1�4 E�H?© b n 7 n S�<�� :,H 7
Example 13.8 Although the semicolon has been shown as the separator, a new line may
also be used.

1 n @¦<�U�7 E >?4 9
>=<$Q	1�4 E�Hb n 7 n S�<�� :,H 7
Although all the examples so far have declared objects to be of a certain type, we

may use any symbolic expression (Q�7 H | 7 E 0) that represents a set. A Q�7 H | 7 E 0 may be
a primitive or basic type, that is, one whose existence is to be accepted without question,
for examples, people or cars or rivers. Alternatively it may be of a derived nature. We will
discuss these two alternatives next.

13.6.2 Type Introductions

The world according to Z is divided into a number of disjoint sets called types. Every
object has or belongs to just one type. No object can belong to more than one. When we
discuss an object, we must always declare its type, and we must have introduced its type
beforehand.

| 6F1�7 ~ 9�HpE 4 b ��G?H NX4 9 Q#6,0;M84,3O®
4 E Q#6,0;M84,3 n x?x?x n Q�6,0WM84,3O®

Example 13.9 We may introduce several new types together.
 U�7 E >f4 9 n Q%1�4 E�H n Q�¯,N�3�3O®

Example 13.10 However, it is better to introduce them one at a time and provide some
explanatory comment.

The Knowledge Base 317

Type Interpretation U�7 E >f4 9 ® The set of people who may belong to the circle.
Q	1�4 E�H ® The set of sports that they might take up. Q$¯%N�3�3O® The different levels of skill with which people may

play a sport.

A type should be thought of as a fixed immutable background set. It must be capable of
incorporating all candidate members by being defined broadly enough to cover all likely
changes to the situation being described.

We do not need to introduce all required types at the same time, but may choose to
spread their introduction throughout the specification, subject to the restriction that no type
is used before being introduced.

13.6.3 Sets

The second kind of set that may be used in a declaration is one defined by means of any
one of a number of ways in which sets may be constructed. These are as follows:

Q�7 H | 7 E 0 :

Q�6,0WM84%3
4 E QR7 H / ��H 7 9 >�NX4 9
4 E QR7 H A�4,021 E 78C�7 9 >�NX4 9

4 E | 6F1�7 A�4 9 > HpE���G?H NX4 9
4 E QR7 H ° 1�7 Ec:,H NX4 9
4 E Q	1�7 G N : 3 Q�7 H ° 1�7 Ec:%H NX4 9
4 E � :	G?H | 6F1�7
4 E QR78@ � 7 9�G 7 ° 1�7 Ec:%H NX4 9

4 E¥� Q�7 H | 7 E 0 ¢
4 E Q�6,0WM84%3�QR7 H | 7 E 0
4 E QR7 H | 7 E 0*Q#6,0;M84,3�Q�7 H | 7 E 0

13.6.4 Set Extension

The set may be defined by listing out its elements in full.

Q�7 H / �	H 7 9 >�NX4 9 :

j | 7 E 0 r
4 E j | 7 E 0 n | 7 E 0 n x�x5x n | 7 E 0 r

318 Chapter 13

Example 13.11 To introduce an object and identify it as being either Bob or his father:

1e<�j,�h4	M n S :,H C�7 E$� �h4	M ¢ r

Example 13.12 To introduce an odd number less than ten:

9 <�j Y n�±�n ` n Z n�§$r

13.6.5 Set Comprehension

The set to which an object belongs may be defined through some property shared by all
its members. This is done by set comprehension, which takes all the forms discussed in
Chapter 3.

Q�7 H A�4%0a1 E 7FC�7 9 >�NX4 9 :

j,�¦7 G 3 :,EF:,H NX4 9 r
4 E j,�¦7 G 3 :,EF:,H NX4 9;² U E 7 b N GF:%H 7 r
4 E j,�¦7 G 3 :,EF:,H NX4 9;² U E 7 b N GF:%H 7 . | 7 E 0 r
4 E j,�¦7 G 3 :,EF:,H NX4 9�. | 7 E 0 r

Example 13.13 To declare an object as being one of the sports that Alan plays:

>=<$j H <$Q	1�4 E�H�² y 3 :%9 1�3 : 6�> H r

13.6.6 Type Construction

All objects in the knowledge base are of one of three kinds:

| 6F1�7 A�4 9 > H�E���G?H NX4 9 :

4 E QR7 H 4�S=QR7 H | 7 E 0
4 E QR7 H | 7 E 0³�eQR7 H | 7 E 0

There are simple or atomic objects of some previously defined base type. There are
also two ways of constructing more complex types:

1. The power set operator, QR7 H 4�S . Any object of a type built using this constructor is a
set in its own right.

2. The Cartesian product set operator, � . Any object of a type built using this constructor
is a composite object.

The Knowledge Base 319

Example 13.14 We may declare an object U to be a set of people.

U´<$Q�7 H 4TSVU�7 E >?4 9
Example 13.15 We may declare an object to be a pair of numbers.

3�4 G <�K���K
Example 13.16 We can combine the constructors to declare an object to be a set of pairs
of numbers.

¯�<$QR7 H 4�S � Kµ��K ¢
Example 13.17 We can declare an object to be a pair of sets of numbers.

¯�< � Q�7 H 4TSBK ¢ � � Q�7 H 4TSVK ¢

13.6.7 Set Operations

The commonly used set operations, set union, set intersection and set difference give rise
themselves to sets.

Q�7 H ° 1�7 EF:,H NX4 9 :

QR7 H | 7 E 0)¶·QR7 H | 7 E 0
4 E QR7 H | 7 E 0)¸·QR7 H | 7 E 0
4 E QR7 H | 7 E 0º¹»QR7 H | 7 E 0

Example 13.18 We could declare an object to be a sport that is played by Bob or Alan.

>=< � j H <$Q%1�4 E�HD² �24�M�1�3 : 6�> H r ¶ej H <$Q	1�4 E�HD² y 3 :%9 1�3 : 6�> H r ¢
Example 13.19 We could declare a person to be one of the people that Sue does not like.

1e< � U�7 E >?4 9 ¹_j�@J<�Ua7 E >?4 9W² Q � 7�3�N�¯�7f>¼@ r ¢

13.6.8 Special Set Operations

There are also a number of other, less well known but just as useful, set operations. They
were discussed in Chapter 12.

Q%1�7 G N : 3 QR7 H ° 1�7 Ec:,H NX4 9 :

QR7 H | 7 E 0º] QR7 H | 7 E 0
4 E QR7 H | 7 E 0 s QR7 H | 7 E 0
4 E QR7 H | 7 E 0´¬{QR7 H | 7 E 0
4 E b 4,0³Q�7 H | 7 E 0
4 E¨EF:,9 QR7 H | 7 E 0

320 Chapter 13

All of these operations result in sets, and so may be used in a declaration.

. the domain subtraction operator]
. the range subtraction operator s
. function override ¬
. the domain operator

b 4%0
. the range operator Ec:%9

Example 13.20 We can declare an object to be any pair in the 1�3 : 6�> relation not involving
Alan.

I < � j y 3 :,9 r] 1�3 : 6�> ¢

Example 13.21 We can declare an object to be a married person.

1e< b 4,0½>p1�4 � >?7

13.6.9 Fact Types

In Chapter 2, a fact involving two objects was seen as a pairing of these objects. The fact
that Alan plays tennis was seen as a pairing � y 3 :,9 n H 7 9�9 NO> ¢ . All facts of this kind can be
gathered into a set of pairs.

� :	G?H | 6F1�7 :
QR7 H | 7 E 0¿¾��X�X�JQR7 H H 7 E 0

4 E QR7 H | 7 E 0¿� À��X�\Q�7 H | 7 E 0
4 E QR7 H | 7 E 0¿���X�JQ�7 H | 7 E 0
4 E QR7 H | 7 E 0¿��� À����=QR7 H | 7 E 0
4 E QR7 H | 7 E 0¿���X�X�JQR7 H | 7 E 0

There are five kinds of fact types. See Chapter 2 for further discussion.

. The set
y ¾X���X�;� is the set of all relations (many-to-many relationships) between

y
and � .

. The set
y � À��X�=� is the set of all partial functions (one-to-many relationships) from

y
to � .

. The set
y ���X�V� is the set of all total functions from

y
to � .

. The set
y �X� À��X�\� is the set of all partial injections (one-to-one relationships) from

y
to � .

. The set
y ���X���B� is the set of all total injections from

y
to � .

The Knowledge Base 321

Example 13.22 To declare that 1�3 : 6�> is a relation between people and sports:

1�3 : 6�> <�U�7 E >?4 9 ¾X���X�\Q%1�4 E�H
Example 13.23 To declare two quite different relationships between people and numbers:

:�I 7 n C�7fN I C H <�U�7 E >f4 9 �X���hK
Both :?I 7 and C�7?N I C H have the same type. They are not, of course, the same thing.

13.6.10 Sequences and Sequence Operations

A sequence is a special kind of set, and so may be used in a declaration.

Q�78@ � 7 9�G 7 ° 1�7 Ec:,H NX4 9 :

>?78@ | 7 E 0
4 E | 7 E 0ÂÁ | 7 E 0
4 E¨HÃ: N�3 | 7 E 0

Example 13.24 Declare a queue as a sequence of people.

@ � 7 � 7\<$>?78@�Ua7 E >?4 9
The set >f78@ y is the set of sequences of type

y
. Any individual element of >?78@ y is itself a

set.

Example 13.25 Declare an object to be one of the people in the above queue.

@ � 7 � 7 E < Ec:,9 @ � 7 � 7
The queue is a set of pairs. Its range is the people themselves.

Example 13.26 Declare an object to be one of the people in the queue, but not the person
at the front.

1e< Ec:,9��THÃ: N�3�@ � 7 � 7 ¢

13.7 Predicates

A predicate is a condition that is to hold or is held by one or more variables, typically those
variables declared in the preceding signature.

Example 13.27 Suppose we have the schema:
� N E > H Q : 021�3�78U E 7 b N GF:%H 7G 4�> H <�U E 4 b ��GfH �X�X�\de4 9 7f6
Ä 1�<�U E 4 b ��G?H�.�G 4�> H?� 1 ¢] Y�t�tÅ 1�<�U E 4 b ��G?H�.�G 4�> H?� 1 ¢ s § `

322 Chapter 13

The signature declares a function G 4,> H that enables us to map from a product to the cost of
that product. The predicate contains two statements:

. the first uses the universal quantifier (
Ä

) and it says that for all products, the cost is less
than $100, or more simply, every product costs less than $100;

. the second statement uses the existential quantifier (
Å
) and it says that there exists a

product that costs more than $95, or more simply, some products cost more than $95.

Example 13.28 The emphasis so far has been on the use of predicates to constrain or
limit the values taken by variables. However, the use of predicates can be extended to
defining computations or calculations.

Suppose that a company has a policy of allowing a discount of 15% on any order of
100 units or more. The charge for an order might be specified as in the following schema:

ADC :%E�I 7 � 4 E 0 � 3 :G 4�> H <�U E 4 b ��GfH �X�X�\de4 9 7f6G C :%E�I 7J<�U E 4 b ��GfH ��K��X���\d·4 9 7?6
Ä 1�<�U E 4 b ��G?Hf©�9 <�K .

9] Y�t	t=Æ G C :,EpI 7 � 1 n 9R¢!£´9�ÇVG 4�> H?� 1 ¢�È9·É Y�t	t=Æ G C :,EpI 7 � 1 n 9R¢!£´9�ÇVG 4�> H?� 1 ¢-ÇB� Y ¹ � Y `�Ê Y�t	t ¢c¢

In this kind of predicate, the charge for a particular quantity of some product is defined in
terms of other things, the quantity ordered and the discount allowed.

13.7.1 The Structure of a Predicate

The predicate of a schema was likened to the procedure division of a COBOL program. In
this section we have seen predicates that relate to the kinds of things done in a procedure
division, checking constraints and performing calculations. However, predicates are not
necessarily restricted to the kinds of things that we expect to see in a procedure division.

U E 7 b N GF:%H 7 :
Q�N�0a1�3�7 U E 7 b N G8:,H 7

4 E A�4%0a1�4 �$9 b U E 7 b N G8:,H 7
4 E)Ë���:%9�H N Ì¼7 b U E 7 b N G8:,H 7

A predicate may be a simple sentence, or one involving connectives such as È , or one
using quantifiers.

13.7.2 Simple Predicates

The kinds of sentences that come under this heading are shown below:

The Knowledge Base 323

Q#N�021�357 U E 7 b N G8:%H 7 :
Q�6,0WM84%3 | 7 E 0

4 E | 7 E 0�Q�6,0WM84%3 | 7 E 0
4 E | 7 E 0½i�Q�7 H | 7 E 0
4 E | 7 E 0 £ | 7 E 0

Example 13.29 To say that person 1 speaks Japanese:

>p1�7 : ¯�> � 1 n�Í : 1 :,9 7f>?7 ¢

Example 13.30 To say that Alan plays tennis:

y 3 :%9 1�3 : 6�> H 7 9�9 NO>
Example 13.31 To say that Bob is married:

�h4	M\i b 4,0*>p1�4 � >?7
Example 13.32 To say that Mark is Alan’s father:

d :,E ¯ £ S :,H C�7 E$� y 3 :%9�¢

13.7.3 Compound Predicates

These are statements formed using sentential connectives. See Chapters 2 and 12.

A�4,021�4 �$9 b U E 7 b N G8:%H 7 :
Î U E 7 b N G8:,H 7

4 E U E 7 b N G8:,H 7 È U E 7 b N G8:,H 7
4 E U E 7 b N G8:,H 7VÏkU E 7 b N G8:,H 7
4 E U E 7 b N G8:,H 7 Æ U E 7 b N G8:%H 7
4 E U E 7 b N G8:,H 7BÐÑU E 7 b N G8:%H 7

Example 13.33 To say that Bob is not Alan’s father:

Î � �24�M £ S :,H C�7 E�� y 3 :,9R¢�¢

Example 13.34 To say that Alan is aged somewhere between Sue and Ann:

:�I 7 � y 3 :,9R¢ s :�I 7 � Q � 7 ¢&È�:?I 7 � y 3 :%9�¢] :�I 7 � y 9#9�¢

324 Chapter 13

Example 13.35 To say that Sue is married to Alan or Bob:

>p1�4 � >?7 � Q � 7 ¢&£ y 3 :,9 ÏÒ>p1�4 � >?7 � Q � 7 ¢¼£ �h4	M
Unfortunately, this allows Sue to be married to both these men.

Example 13.36 To say that Sue is married to either Alan or Bob, but not both:

� >�1�4 � >?7 � Q � 7 ¢&£ y 3 :%9 ÏÓ>p1�4 � >f7 � Q � 7 ¢&£ �24�M ¢È»� Î � >p1�4 � >f7 � Q � 7 ¢&£ y 3 :,9�È >p1�4 � >?7 � Q � 7 ¢�£ �24�M ¢c¢
This last example shows that the predicates used to build a compound predicate may
themselves be compound.

13.7.4 Quantified Predicates

These allow us to make statements about classes of objects, rather than about individual
objects.

Ë���:,9#H N Ì!7 b U E 7 b N G8:,H 7 :Ä ��7 G 3 :,Ec:%H NX4 9�. U E 7 b N GF:%H 7
4 E Å ��7 G 3 :,Ec:%H NX4 9�. U E 7 b N GF:%H 7
4 E Å�Ô ��7 G 3 :,Ec:%H NX4 9�. U E 7 b N G8:%H 7

Example 13.37 To say that everybody plays tennis:
Ä 1e<$U�7 E >?4 9�. 121�3 : 6�> H 7 9�9 NO>

Example 13.38 To say that at least one person is over 45 years old:
Å 1e<$U�7 E >?4 9�.�:?I 7 � 1 ¢ s `

Example 13.39 To say that exactly one person drives a Porsche:
Å�Ô 1�<�Ua7 E >?4 9�. b E N��,7�> � 1 ¢�£ U�4 E > G C�7

13.8 Kinds of Schema

The schema structure is very simple and yet enables us to make a number of different kinds
of statements.

13.8.1 Process Descriptions

These allow us to describe a process or what we think of as a dynamic situation.

Example 13.40 Here is a schema that describes the process of taking two numbers and
returning their sum.

The Knowledge Base 325

y b	b
Ì E > HFÕ n >?7 G 4 9 b Õ <�K
> � 0 Ô <�K
> � 0 Ô £ Ì E > HcÕ¼Ö >?7 G 4 9 b Õ

A process is something that takes some input and returns some output. The
y b	b

process
takes two numbers, Ì E > HFÕ and >?7 G 4 9 b Õ It returns or produces a third number > � 0 Ô To help
us interpret process schemas, two conventions are followed:

1. Input variables are decorated with or end in a question mark: so, without any additional
comment, we can tell that Ì E > HcÕ and >?7 G 4 9 b Õ are inputs to the

y b�b
process.

2. Output variables are decorated with an exclamation mark: so > � 0 Ô is the output of this
process.

Example 13.41 Here is a schema QR@ ��:%E 7 that takes a number 9RÕ and returns its square
> 9 Ô

QR@ ��:%E 79RÕ n > 9 Ô <�K
> 9 Ô £)9RÕ¼Çh9RÕ

There is only one input and one output. We can declare them on the same line or on separate
lines as was done in the

y b	b
schema. It would seem better to separate the declaration of

input and output variables to help clarify the schema.

Example 13.42 Here is a schema Q�@ ��:,E 7 � 4�4 H that takes a number 9RÕ and outputs its
square root > E Ô

QR@ ��:%E 7 � 4�4 H9RÕ <�K
> E Ô <�K
> E Ô Ç > E Ô £)9RÕ

You think: what a cheat! The schema makes no attempt to describe how to derive the
root. It leaves that up to the programmer. The schema simply relates the input to the
output. But how would we test the program? We would square its output and compare
that with the input provided. If they are the same then the program would seem to meet
its specification. So that even if the specifier were to present the programmer with an
algorithm for calculating the square root, there would still be a “hidden agenda" that would
come out during testing.

Example 13.43 Here is a schema
� 1 H 4 that takes a number 9RÕ and returns : 3�3 Ô , the set

of numbers in the range
t

to 9�Õ

326 Chapter 13

� 1 H 49RÕ <�K: 3�3 Ô <$QR7 H 4TSBK
: 3�3 Ô £ j%¯�<�K ² ¯ [9�Õ r

The output is a set of numbers and so is declared as such. Set comprehension is used to
define the output.

13.8.2 State Descriptions

The schema structure can equally well be used to describe a situation in a static way. We
use the schema to provide a snapshot of some state of affairs that interests us.

Example 13.44 We can represent a college or university in terms of its students and their
names.

× NO>?7 :�GfE 7�> � 9 N
> Hp� b 7 9�H >B<$QR7 H 4�SBU�784F1�3�7G8: 3�357 b <�U�784F1�357h� À��X�hK : 0;7
b 4,0 G8: 3�3�7 b £ > Hp� b 7 9�H >

As far as we are concerned, Wiseacres consists of a set of people called > Hp� b 7 9�H > and a
partial function G8: 3�3�7 b that maps from people to their name. The variables > Hp� b 7 9�H > andG8: 3�357 b are called the components of the state. The predicate says that we are interested in
the names of just these people who are students. The domain of G8: 3�3�7 b is the set of people
for whom we know a last name. The predicate part of a state description is called the state
invariant. It characterizes the state. Regardless of what specific changes the University
undergoes, we will always want the invariant to be true.

Example 13.45 Here is a schema that makes a simple statement about a parliament.

U :%E 3�N : 0;7 9�H
1�4,3�N!<$QR7 H 4TSVU�784F1�3�7
Ø 1�4,3�N £¥Ù §

Parliament, as defined in this schema, consists of a set of people. The set is called 1�4,3�N and
consists of exactly 89 members.

13.8.3 Type Descriptions

This kind of schema is useful when we want to define a new type of object.

Example 13.46 Suppose we wish to define the structure of a rugby union team.

The Knowledge Base 327

| 7 : 0
1�3 : 6	7 E >\<$Q�7 H 4TSVU�784F1�3�7
Sf4 E � :,E b > n M :	G ¯,>J<$Q�7 H 4TSVU�784F1�357
1�3 : 6	7 E > £ Sf4 E � :,E b >!¶ÚM :	G ¯�>
Sf4 E � :,E b >!¸ÚM :�G ¯,> £ j rØ Sf4 E � :%E b > £¨ÙØ M :	G ¯�> £ Z

The team consists of three sets of people – 1�3 : 6	7 E > , Sf4 E � :%E b > and M :	G ¯�> . However
these sets are not disjoint. The predicate contains the following conditions.

1. The 1�3 : 6	7 E > set is made up of the forwards and the backs.

2. No person is both a forward and a back.

3. There are 8 forwards.

4. There are 7 backs.

A rugby team is often called a rugby XV or fifteen. We can demonstrate that a team must
have 15 players.

Ø 1�3 : 6	7 E >
£ Ø � Sf4 E � :,E b >!¶ÚM :	G ¯�> ¢

[from line 1 of the predicate part of the schema]
£ Ø Sf4 E � :%E b > Ö Ø M :	G ¯�>a¹ Ø � Sf4 E � :,E b >!¸ÚM :�G ¯,> ¢

[a law of set cardinality:
Ø � y ¶�� ¢�£ Ø y Ö Ø �*¹ Ø � y ¸�� ¢]

£ÛÙ2Ö Z ¹ Ø j r
[lines 2,3 and 4]

£ Y `2¹ t

£ Y `

Now that we have established that a team has 15 players, we can use the
| 7 : 0 schema

with increased confidence. One way of using the schema is to declare a variable to be of
type

| 7 : 0 , for example:

H < | 7 : 0
The variable H is now a composite variable with three components and these may be
accessed using projection as H x 1�3 : 6	7 E > , H x Sf4 E � :,E b > and H xOM :�G ¯,> . These components of H
are related in the way described in the predicate of

| 7 : 0 .

Example 13.47 We can describe a school as follows. A school consists of the staff, the
head of school and a secretary. The head is a member of staff; the secretary is not.

328 Chapter 13

Q G C�4�4%3
C�7 : b <�U�784F1�3�7
>?7 GfE 7 HÃ:,E 6Â<�U�784F1�357
> HÃ:TÜ <�Q�7 H 4�SBU�78481�3�7
C�7 : b ie> HÃ:TÜ
>?7 GfE 7 HÃ:,E 6�Êi�> Hg:�Ü

13.9 Summary

It is one of the ironies of computing that software writers are relatively unprovided for in
terms of computing support. When was a programmer ever asked what kind of information
system he or she would like? But what kinds of information systems do organizational
computing people need? They need software aids to help with the long-term management
of information systems. This computer support must help computing people to take a more
evolutionary approach to their work. If we take the view that programs contain encoded
organizational knowledge, then the true job of data processing professionals is that of
knowledge base management. They must revise their thoughts and habits accordingly.

To differentiate between data and programs is to make a distinction that is partly
technological and partly historical. Both data and programs contain information.

Programmers need to alter their mental image of what their job principally entails –
from a notion of construction to one of evolution. They need to see themselves less as
hackers and more as technical writers of programming and other languages. They need to
see themselves as knowledge maintainers.

1. They must start to see the provision of information systems in evolutionary rather than
revolutionary terms. User needs are continually changing. A computer system is just a
temporary implementation of user requirements, one using the current technology.

2. They must see that specification is not simply a means to an end, not merely a way
of reaching the desired goal of a new information system. The specification contains
organizational knowledge in its most concentrated form; it is a valuable organizational
asset. One of the DP department’s major responsibilities is the management of this
asset.

3. They must change their attitude towards documentation. They must see themselves as
producers of high quality documentation using CASE tools.

Organizational computing will continue without direction for as long as computing
professionals are obliged to play a purely support role. Computing people are quite without
the kind of computing support that other staff take for granted.

Of course, computing professionals (everywhere) must take some of the blame for this
state of affairs. We (from the computing viewpoint) encourage an “us and them" attitude
between computing people and so-called end-users. Unfortunately, the effect of this is that:

1. we are placed in a service, and consequently reactive, role with regard to users; and

2. we never see ourselves as possible end-users in our own right.

The Knowledge Base 329

Another barrier to our seeing ourselves as users is that we have no feel for what kinds
of information systems we should have ourselves. Other people can go out and touch the
things that their information systems record. Engineers can swim in their rivers, jump in
their dams or canoe down their canals. Managers can talk to their staff, pat them on the
back, kick them out the office and so on. In contrast, computing people deal with intangible
things.

In this chapter we have seen the use of the schema which is the basic structure upon
which we will hang the mathematical statements that form the essence of our knowledge
base. The schema has a simple structure and allows us to make a variety of statements.

. It can be used to describe processes in an active or dynamic way.
. It can equally be used to present a snapshot or static description.
. It can also be used to introduce and describe a new type of object which can then be

incorporated in other schemas.

Essentially, the schema allows us to express knowledge in the same way that we do in
proverbs such as:

“He who hesitates is lost."

The warning is issued to the variable (He) in the sentence; but it applies to us all!

330 Chapter 13

Exercises

Q13.1 Write process description schemas to satisfy each of the following requirements.
Make sure that input and output variables are decorated according to convention.

a. A schema Q ��G8G 7�>8>?4 E which takes an integer and returns the next integer in
sequence.

b. A schema d :�� which takes two integers and returns the larger of the two.

c. A schema Ý :%E�I 7f> H which takes a set of integers and returns the largest integer
in the set. The set must therefore contain at least one element.

d. A schema �27 H �&787 9 which takes two integers and returns any integer in the
range defined by the smaller and the larger of these two numbers.

Q13.2 Write a schema that describes a family according to the following requirements.

A family consists of two (tired) people 0 � 0 and
b : b as well as a set of peopleG C$N�3 b E 7 9 .

1. Mum is female; Dad is male.

2. All the children are appropriately related to Mum and Dad.

3. All the children are at least 16 years younger than both Mum and Dad.

4. No family has more than 15 children.

You may use the following functions which should be self-explanatory.

>?7 � <�U�784F1�3�72�X���JQ�7 � 7�>
0W4 H C�7 E <�U�78481�3�72���X�=U�78481�3�7
S :,H C�7 E <�U�784F1�357h�X���VU�784F1�357:?I 7\<�U�784F1�357h�X���BK

Chapter 14
From Specification
to Implementation

14.1 Introduction

In this chapter we will look at how the various schemas that form a Z specification might be
put together. The situation to be modeled is that of a class of students who are studying a
particular subject. The specification covers such typical activities as students being enrolled,
being awarded marks, having marks amended and, hard to believe, students dropping the
subject. We will begin by introducing a state schema which provides a static picture of
the classroom. Based on that picture we specify a number of operation schemas which
describe the ways in which the classroom may change. Then we return to the state schema
and discuss how it might be developed. Finally, we discuss the relationship between this
specification, which consists of a state schema and a number of operation schemas, and
the implementation, which consists of a database and a number of programs.

14.2 The State Schema

Suppose we describe the classroom in the following way.

���������
�	��
�������������������������� �����
�����	�!�"����� ���#�%$ &'$�(*)+��,-�
,-���/.%������� ���#�0$ &'$1(324�4657282
�8��,9���:�	�<;=� ��
��������
�8��,9,>�#�/.%?@�	��
��������

A7A�B

332 Chapter 14

This is called a state schema and is intended to capture or represent a particular state
of affairs that interests us. The

�����:� �
schema is a single, global and static picture of the

classroom. It introduces the students, their names and any marks they might have been
awarded for the subject under study. There are three basic sets or types used:

C ����� ���#�D
The set of all possible students.C)ED
The set of integers 0, 1, 2,

4�474
C)F�#,>��D

The set of names.

The schema above can be interpreted in the following way.

The
�����:� �

Declaration

1.
�	��
�������������������������� �����
The variable

�	��
��������
represents the set of people enrolled at any particular time.

2.
�����	�!�"����� ���#�%$ &'$�(*)+��,-�
This is a function that maps people to their last name.

3.
,-���/.%�G�H��� �����%$ &'$1(�)
This is a function that maps people to any mark that they may have been awarded.

The
�����:� �

Predicate

1.
�8��,9���:�	�<;I�	��
��������
This says that we will know or require to know the last name of just those students
enrolled in the class.

2.
�8��,9,>�#�/.%?@�	��
��������
This says that we may not necessarily have a mark for every student enrolled.

14.3 Schema Inclusion

One of the things we can do with a named schema is to include it within other schemas.
Suppose we wanted to define a small class, something like our original class but where the
class size was to be restricted to no more than 10 students. We can define this as follows:

�J,>�#�K�L�����:� �
���������
M �	��
�8���N�1�PO@5Q2

The schema
�R�6�:� �

is named in the declaration of
�J,>�#�K�L�����:� �

and the effect is to introduce
all the variables of

������� �
and to conjoin (logically “and") the predicate of

�����:� �
to that of�J,>�#�K�L�����:� �

. So,
�N,-���K�L���������

, when fully expanded, looks like this:

From Specification to Implementation 333

�J,>�#�K�L�����:� �
�	��
�������������������������� �����
�����	�!�"����� ���#�%$ &'$�(*)+��,-�
,-���/.%������� ���#�0$ &'$1(324�4657282
M �	��
�8���N�1�PO@5Q2
�8��,9���:�	�<;=� ��
��������
�8��,9,>�#�/.%?@�	��
��������

Using schema inclusion, we are able to emphasize that a small class is the same as any
other class with the additional constraint that there be no more than 10 students enrolled.

14.4 Schema Decoration

There is a convention that if we use a schema and decorate its name in some way, typically
with a prime S , then the effect is to consistently decorate or rename all the variables within
the schema, both within the declaration and within the predicate.

T �	U1��� VW� X ���/�#��U1�#�
��������� S

This expands to the following:

T �	U1��� VW� X ���/�#��U1�#�
�	��
�������� S ���Y�����Z�[����� ���#�
�����	� S �G����� �����%$ &'$1(�)F�#,>�
,-���/. S �G����� �����%$ &'$1(*2\464�5Q2�2
�8��,9���:�	� S ;9�	��
�������� S�8��,9,>�#�/. S ?]�	��
�8���N�1� S

Note that only the variables are decorated, not their types.

14.5 State Transition

Another use of the schema is to allow us to capture the essentials of any change that may
happen to a particular state of affairs. Suppose we want to be able to talk about changes
that might occur to our class. These changes could include such events as:

^ enrolling a new student;
^ awarding a mark to a student;
^ adjusting a student’s mark;
^ allowing a student to drop out.

334 Chapter 14

We will need to be able to talk about the set of students before and after a change, and about
their names and marks as well. We might define a new schema:

_ �����:� �
�	��
���������`��	��
�������� S ���Y�����Z���H��� �����
�����	��`������	� S �G����� �����%$ &'$1(�)F�#,>�
,-���/.�`�,-���/. S �G����� �����%$ &'$1(�)
�8��,9���:�	�<;=� ��
��������
�8��,9,>�#�/.%?@�	��
��������
�8��,9���:�	� S ;9�	��
�������� S�8��,9,>�#�/. S ?]�	��
�8���N�1� S

These are the kinds of variables that we might want to use, and these are the conditions to
be attached to them. But this can be achieved much more neatly using schema inclusion
and decoration.

_ �����:� �
���������
��������� S

We have built a frame schema, in this case
_ �����:� �

, that describes the features that are
common to all possible changes to some state, in this case the

�����:� �
state.

14.6 Operation Schemas

A schema that is intended to specify how something such as an event is expected to affect a
particular state of affairs is called an operation schema. The variables used in an operation
are ones that allow us to specify the allowable change of state and any inputs and outputs
involved in the change.

1. Variables are required to represent the state before the change. These variables are
defined in the corresponding state schema. The aPb�c�dQd schema is an example.

2. Variables are required to represent the state after the change. These variables can be
obtained from a version of the state schema decorated with a prime or apostrophe. The
schema aPb�c"d:dQS is an example.

3. Variables are possibly required to represent any input to the operation. These variables
are conventionally decorated with a question mark to indicate their role in the operation.

4. Variables may also be required to represent any output from the operation. These are
conventionally decorated with an exclamation mark.

Using the above conventions we will look at some operation schemas.

From Specification to Implementation 335

14.6.1 Enrolling a New Student

In this operation we will add a new student to the class. There are two inputs, the persone�f enrolling and his or her
�J�#,>� f .

g �N�/���
_ �����:� �
e�f �G�H��� �����
�Y��,-� f �8)+��,-�

e�f-hi �	��
�8���N�1�
�	��
�������� S ;9�	��
��������kjml e�f�n�����	� S ;o���:�	��jmlGp e�f `��J�#,>� f:q n,-���/. S ;9,-���/.

In this and each of the specifications that follow, we will provide an accompanying
explanation of both the declaration and the predicate parts of the schema.

The
g �N�/���

Declaration

1.
_ �����:� �
This signals a change to the

������� �
state.

2. e�f �G�H��� �����
This is the number or identifier of the student.

3.
�Y��,-� f �G)+��,-�
This is the new student’s name.

The
g �N�/���

Predicate

1. e�f-hi �	��
�8���N�1�
The student must not already be in the class.

2.
�	��
�������� S ;I�	��
��������rjsl e�f�n
The student is added to those already enrolled.

3.
�����	� S ;o���:�	��jmlGp e�f `��J�#,>� f:q n
An entry mapping this student to his or her name is added to the list of last names.

4.
,-���/. S ;9,-���/.
No change is made to any marks awarded to the students.

All the conditions in the predicate part of an operation schema must be made true by
any program implementing that specification. There is an implied conjunction of all the
conditions in the predicate. It does not supposedly matter in which order they appear.
In practice, however, the program will validate any input it receives before making any
changes to the database that are required. It is useful, therefore, to write the operation
schema conditions in a certain sequence.

336 Chapter 14

1. The pre-conditions are presented before the post-conditions. That is why the condition:

e�f0hi �	��
�8���N�1�

appears first.

2. The post-conditions appear next, but they too appear in a certain order. Those conditions
describing changes appear first. Thus the lines:

�	��
�8���N�1� S ;9�	��
��������kjml e�f�n����� � S ;9�6�:�	�tjmlGp e�f `��J�#,>� f:q n
come next because the

�	��
�8���N�1�
and

�6�:�	�
components are changed by this operation.

The condition:
,-���/. S ;=,-���/.

appears last because the
,-���/.

component is unchanged.

These are merely guidelines. It may be more convenient, in certain circumstances, to vary
or even ignore these suggestions.

14.6.2 Award a Mark

A mark is to be awarded to a student. There are also two inputs to this operation, the persone�f being awarded a mark and
, f , the mark itself.

u3v �#�/�
_ �����:� �
e�f �G�H��� �����
, f �G2\464�5Q2�2

e�f i �	��
�8���N�1�
e�f-hi ���#,I,-���/.
,-���/. S ;9,-���/.wjsl"p e�f `7, fQq	n�	��
�������� S ;9�	��
��������
�����	� S ;o���:�	�

The
u3v �����

Declaration

1.
_ �����:� �
This signals a change to the

������� �
state.

2. e�f �G�H��� �����
This is the number or identifier of the student.

3.
, f �82\464�5Q2�2
This is the mark that the student is to receive. It must be an integer in the range 0 to
100.

From Specification to Implementation 337

The
u3v �����

Predicate

1. e�f i �	��
�8���N�1�
The student must be in the class.

2. e�f-hi ���#,I,-���/.
The student must not already have a mark.

3.
,-���/. S ;9,-���/.wjsl"p e�f `7, fQq	n
An entry mapping this student to his or her mark is added to the list of marks.

4.
�	��
�������� S ;I�	��
��������
No change is made to any students enrolled.

5.
�����	� S ;o���:�	�
No change is made to the list of last names.

14.6.3 Amend a Mark

This operation allows an existing mark to be amended.
u ,-���Y�:xm���/.
_ �����:� �
e�f �G�H��� �����
, f �G2\464�5Q2�2

e�f i �	��
�8���N�1�
e�f i ���#,I,-���/.
,-���/. S ;9,-���/.Fyzl"p e�f `7, f:q	n�	��
�������� S ;9�	��
��������
�����	� S ;o���:�	�

The
u ,-���Y�:xm���/.

Declaration

1.
_ �����:� �
This signals a change to the

������� �
state.

2. e�f �G�H��� �����
This is the number or identifier of the student.

3.
, f �82\464�5Q2�2
This is the new mark that the student is to receive.

The
u ,-���Y�:xm���/.

Predicate

1. e�f i �	��
�8���N�1�
The student must be in the class.

338 Chapter 14

2. e�f i ���#,I,-���/.
The student must already have been awarded a mark.

3.
,-���/. S ;9,-���/.Fyzl"p e�f `7, f:q	n
The entry mapping this student to his or her mark is amended or overridden with the
new mark.

4.
�	��
�������� S ;I�	��
��������
No change is made to any students enrolled.

5.
�����	� S ;o���:�	�
No change is made to the list of last names.

14.6.4 A Student Drops Out

This operation records the person e�f dropping the class.
VF�/� e�{
��
_ �����:� �
e�f �G�H��� �����

e�f i �	��
�8���N�1�
�	��
�������� S ;9�	��
��������!|}l e�f�n�����	� S ;=l e�f�nH~ ����� �
,-���/. S ;Il e�f�n*~ ,>�#�/.

The
VF�/� e�{
��

Declaration

1.
_ �����:� �
This signals a change to the

������� �
state.

2. e�f �G�H��� �����
This is the number or identifier of the student dropping out.

The
VF�/� e�{
��

Predicate

1. e�f i �	��
�8���N�1�
The student must be in the class.

2.
�	��
�������� S ;I�	��
���������|}l e�f�n
The student is removed from the list of those enrolled.

3.
�����	� S ;=l e�f�nH~ ����� �
The student’s name is also removed.

4.
,-���/. S ;Il e�f�n*~ ,>�#�/.
Any mark awarded to the student is removed.

From Specification to Implementation 339

14.7 Read-only Transactions

There are occasions when we simply wish to inspect some component of the state, rather
than changing the state. The first step is to define a special version of the

_
schema,_ �����:� �

.

� ���������
_ �����:� �
�	��
�������� S ;9�	��
��������
�����	� S ;o���:�	�
,-���/. S ;9,-���/.

The
�

is to be read as “no change", so
� �����:� �

, when used within a operation schema,
signals that the transaction does not change any part of the state.

As an example of the use of this convention, here is a read-only transaction that simply
tells us the number of students enrolled in the class.

� � v xm���N�
� ���������
X ��
��N�����8)
X ��
��N���8; M �	��
��������

The
� � v xm����

Declaration

^ � ���������

This signals an inspection of the
�����:� �

state.

^ X ��
��N�����8)

This output variable will contain the number of students.

The
� � v xm����

Predicate

^ X ��
��N���8; M �	��
��������

The number of students in the class is simply the size of the
�	��
�8���N�1�

set.

14.8 Maintaining the State Invariant

The classroom situation was formally described by a state schema
�����:� �

.

340 Chapter 14

���������
�	��
�������������������������� �����
�����	�!�"����� ���#�%$ &'$�(*)+��,-�
,-���/.%������� ���#�0$ &'$1(324�4657282
�8��,9���:�	�<;=� ��
��������
�8��,9,>�#�/.%?@�	��
��������

The
���������

state consists of three parts.

1. There is a set of people; let us call that set
�	��
�8���N�1�

.

2. There is a mapping from some people to their name; let us call this mapping
���:�	�

.

3. There is a mapping from some people to an integer; let us call this mapping
,>�#�/.

.

Nothing specific is said about these things. The purpose of the state schema is to describe
the class in general terms. We don’t know which people are going to enrol, what their
names will be or what marks they will be awarded. But we do know that:

1. Every student’s name will be known.

2. Marks will only be awarded to students and to nobody else, although not every student
need have been awarded a mark.

These are permanent features of the class, and they are expressed in the predicate part of
the schema. They form the state invariant. No matter what changes the class undergoes, it
will retain these characteristics.

But how can we be sure of this? How can we be certain, for example, that the
g ������

operation will not corrupt the class in some way? If we are given:

^ a valid class, and
^ an operation of some kind,

can we prove that:

^ we get a valid state afterwards?

A valid class after an operation is one that satisfies the state invariant when that invariant is
expressed in terms of after variables; that is, it satisfies the conditions:

�8��,9���:�	� S ;9�	��
�������� S�8��,9,>�#�/. S ?]�	��
�8���N�1� S
When writing an operation schema, we should be ensuring that these two conditions are
satisfied. Let us try to establish the first of them. We are allowed to assume (1) that we had
a valid state before the operation, and (2) that the operation went ahead as specified.

�8��,9���:�	� S
(We start with the left-hand side of our equation)

From Specification to Implementation 341

;��8��,=pZ�����	�tj�l"p e�f `7�J��,-� f:q n:q
(substituting the post condition in the

g �N�/���
schema);��8��,9���:�	��j����#,�l"p e�f `7�J�#,>� f:q n

(using a general law of the form:
����,�p u j�� q ;�����, u j����#,@�

);��8��,9���:�	��jml e�f#n
(using an obvious law that

���#,ElGp���`7� q n ;9l�� n);��	��
��������kjml e�f�n
(using the first condition of the state invariant equating

����,9�����	�
and

�	��
�8���N�1�
);��	��
�������� S

(using the relevant post-condition from the
g �N�/���

operation)

Thus we have demonstrated that, given a valid
�����:� �

state, the
g ��/�#�

operation maintains,
in general terms, the rule that every student’s last name must be known.

Suppose an operation will, when given one valid instance of a state, create another valid
instance. It remains to ensure that, at the very beginning of its existence, the

���������
is valid.

We can do this by specifying the initial state. This can be done conveniently, as follows.

�������������UK��U1���K�'�
���������
�	��
��������H;9l n

This single condition, in conjunction with the state invariant, requires that
���:�	�

and
,>�#�/.

both be empty.

14.9 Developing a State Schema

Where did the
���������

schema come from? How was it developed? Perhaps it was like this:

^ Imagine that the user (the lecturer) saw the students, to begin with, as just a set of
numbers.

^ After a while, as he got to know them better, he was able to put a name to them.
^ At the end, he started to award marks for the subject.

The situation may be as shown in Figure 14.1.
So we have three views of a situation, but they are not completely distinct; they overlap

each other to some extent. We could say that the class situation is merely an amalgamation
of these views – it is a global all-encompassing view. We can use the extended Backus-Naur
Form (EBNF) language of Chapter 9 to describe these views.

���G�\�"�����J���J�#�����"�Z� lQ� ���J����� n
�G� ���G�Y�#�����G�Z� lQ� ���J����� &] �:¡ � n
¡Y� �"¢G�Y�#�����G�Z� lQ� ���J����� &] � ¡£ �8� n

342 Chapter 14

¤ �"¥Y�Q�J��� ¦ � �\�8�\§#� ¦ � ���8�\¨8�Y� �"�$"$G$ $"$"$"$"G"$"$"$"$G$"$"$ $"$"G"$"$"$"$G$"$
 � � ¦ � ��� � © � �"¢$"$G$ $"$"$"$"G"$"$"$"$G$"$"$ $"$"G"$"$"$"$G$"$
ª"«J¬ ª"«Y¬ �"®"® ª"«Y¬ «"¯
ª"°G± ª"°"± ² � � ��� ª"°"³ °"´
ª"°G³ ª"°"³ §���µ"µ ª"«"± °"´
ª"¯�¶ ª"¯8¶ · �8¸\�8� ª"°"ª ª"´
ª"¹J¬ ª"¹Y¬ §���µ"µ $"$"G"$"$"$"$G$"$
ª"«G± ª"«"± º ��» �ª"°Gª ª"°"ª ¼ �:¡£ � �$"$G$ $"$"$"$"G"$"$"$"$G$"$"$

Figure 14.1 Three views of the classroom

Next we can further abstract them. The repetition construct
lG4�4�4 n is replaced by the power

set operator
�Y���t�Z�

and the concatenation construct
4�4�4�&J4�4�4

is replaced by the product set
operator ½ . This gives us three declarations:

�	��
�������������������������� �����
�����	�!�\�Y�������Fp¾����� ���#� ½)F�#,>� q
,-���/.%�������t���Fp¾����� ���#� ½) q

But
���:�	�

and
,-���/.

are more than just sets of pairs or relations; they are also functions. And
further, the

,-���/.
function maps a student not to any number, but to a particular subset –

the numbers from 0 to 100.

�	��
�������������������������� �����
�����	�!�"����� ���#�%$ &'$�(*)+��,-�
,-���/.%�G�H��� �����%$ &'$1(324�4657282

Now we can gather these formalised view declarations into a single global declaration that
covers the class:

���������
�	��
�������������������������� �����
�����	�!�"����� ���#�%$ &'$�(*)+��,-�
,-���/.%������� ���#�0$ &'$1(324�4657282

There is still some work to be done. We must show all the constraints that apply to these
views collectively; that is, we must show how they relate to one another. This we do in the
predicate.

From Specification to Implementation 343

���������
�	��
�������������������������� �����
�����	�!�"����� ���#�%$ &'$�(*)+��,-�
,-���/.%������� ���#�0$ &'$1(324�4657282
�8��,9���:�	�<;=� ��
��������
�8��,9,>�#�/.%?@�	��
��������

What lessons does this particular development have for us? Turning what we have done
into what we should do, we:

^ Gather as many views as we need to adequately cover the situation.
^ Use the EBNF language to show the structure of each view.
^ Turn each view structure into the corresponding Z declaration.
^ Refine each view declaration by incorporating any constraints that are specific to that

view.
^ Gather the individually defined and constrained views into the declaration part of the

state schema.
^ Form the predicate part of the state schema by writing the constraints that apply to the

views collectively.

We can expect the schema to look like this:
TY¿ �P�N�À���À�H��X ¿ ��,-�

TJ�3g �"��Ár) u THÂYÃ*g
u �N
�,>Ä ���P���Å��� e �[��� X������/�#��U1�#�\��`
���8X ¿ ��� v ¿ U1X ¿ UK����/�Q��
X �	�[�+Æ7U1� v
���J� e ��� � U1Ä��'�ÇX ����	���/�#UK�\�*� ¿ �#�<ÆQU1� v
UK�%���#,>� v �#�4

TJ�3g � Ã*g V���� u TYg
u X ���K�6��X���U1���m�Z�E�	
������P�#�FX ���\�	���/��UK�N�1�
� ¿ ���r� e � X�U � � ¿ � v � ¿ ������ÆQU1� v ���/�����#�¾���À�
���J�%��Æ����	�6� e ���Y�[���Y��� ¿ ���G4

14.10 Implementation

In the rest of this chapter, we will examine how the
�R�6�:� �

situation might be implemented.
By implementation, we mean the rewriting of the specification in some programming
language. In this book, the language used is SQL. The programming of a specification will
involve two major steps.

1. The state schema,
������� �

in this case, will be turned into a relational database. In
particular, we use the declaration part of that schema. The declaration introduces each

344 Chapter 14

component of the state and the basic structure of that component. It says whether it is,
for example, a function or a relation or whether it is a simple object or a set of simple
objects.

2. Each operation schema will be turned into a program of instructions that will examine
and manipulate the database.

^ The pre-conditions will become SQL ��� � �È�� statements which, by retrieving
information from that database, allow the “before" state to be checked.

^ The post-conditions will become �Q�J���8�"� , �"®\� � ��� or ��� � �8��� statements (or a
mixture) depending upon the exact nature of the conditions involved.

14.11 Developing the Database

Two approaches to database design have been presented in this book. We will consider
each in turn.

A Conceptual Schema
According to Figure 14.1, there are two types of facts in the class and they both involve
people. We need to know people’s names and their marks, if any. We can analyze each fact
type and find any uniqueness constraints that apply (Figure 14.2).

Student
(Nr)

Name

Mark

is
called

by

has
been

awarded

Figure 14.2 Conceptual schema diagram

Each person has just one last name, but two people share the same one. Similar remarks
may be made regarding people’s marks. Two or more facts may be merged, without risk of
redundancy, if they all provide single-valued information about the same entity type. The
rules about aggregation suggest, therefore, that we should develop a ¨8�G�\�"����� record type
by merging the “ �G�@È ���"� �G� " and “

� � � �����G� " fact types.

From Specification to Implementation 345

An Entity-relationship Model
Alternatively, if we use the ER approach, we might develop a diagram such as the one
shown in Figure 14.3.

Student

Nr

MarkName

Figure 14.3 Entity-relationship diagram

According to that model, there will be a single entity type Student with an identifying
attribute Nr and two other attributes Name and Mark. From this model, we will extract a¨8�G�\�"����� record type.

The Class Database
Whatever data modeling approach we take, our database will consist of one record type:

¨��G�\�����"�
Record Type

Key? Attribute References?É�Ê�Ë �
¦ � ���É	ÌË © � �"¢

The formal definitionof this record type is:
¨8�G�\�"�����"Í\�\È��8���
 � �#� �8�J���#�
¦ � ��� �# �Q¡ �
© � �"¢ � ´ 4�4 ¬:´G´

The database will consist of a single relation:
· � � �#£� ���
¨8�G�\�"�����J� � ¨"�����Gµ!¨8�G�\���#���"Í\�È��8�"�
È����"�"��¨8�G���������J� ; È����"��� l � � ¨��G�\�����"�J� ^ � 4 � n

In SQL terms, we will have a ¨8�G���������J� table and we might have the following data in that
table. This is a specific instance of the

VW���À��Ä �:���
state.

346 Chapter 14

¨��G�\�����"�J�G"$"$"$"$G$"$"$"$"G"$"$"$"$8$"$"8
 � ¦ � ��� © � �G¢G"$"$"$"$G$"$"$"$"G"$"$"$"$8$"$"8
ªG«Y¬ �"®"® «"¯
ªG°"± ² � � ��� Ì
ªG°"³ §#��µ"µ °"´
ªG¯8¶ · �8¸\�8� Ì
ªG¹Y¬ §#��µ"µ Ì
ªG«"± º ��» � °"´
ªG°"ª ¼ �:¡£ � � ª"´
G"$"$"$"$G$"$"$"$"G"$"$"$"$8$"$"8

Figure 14.4 The Class Database

14.12 The State Schema and the Database

The development of the state schema and that of the database had the same starting point
– user views. This is not a coincidence. The state schema and the database are simply
two different pictures of the same situation. Figure 14.1 shows the classroom at the

������� �
state level, and Figure 14.4 shows it as a database. The state schema is written for our
benefit. It uses (or may use) the full range and richness of the Z specification language.
The database picture is written solely in terms of relations because that is the only structure
that a relational database management system will allow, and we have chosen to use this as
our implementation “vehicle". See Figure 14.5.

User Views

Outline the
situation

Design the
database

State
Schema

Database
Schema

Figure 14.5 Abstract and concrete states

The database is a machine-oriented realization of the state schema. We can show this

From Specification to Implementation 347

relationship between the database and the state schema by means of a mapping schema.xm� e8e UK�"Î
���������
· � � �#£� ���
�	��
��������H;9l � � ¨��G�\�����"�J� ^ � 4 � n�����	�r;=l � � ¨8�8�\�������N� ^ p � 4 � ` � 4 ¦ � ��� q	n,-���/.-;=l � � ¨��G�\�����"�J�HÏ � 4 © � �"¢ h; �"� �"� ^ p � 4 � ` � 4 © � �"¢ q n

This schema defines the components of
������� �

in terms of
· � � ��£� ��� components. The

following table shows how each component of the state schema is represented in terms of
the database.

Component How represented In SQL terms� ��
��������
The

 � attribute of the¨8�G�\���#���J� relation:
l � � ¨8�G�\�"�����J� ^ � 4 � n

The
 � column of the¨��G�\�����"�J� table:

¨"� � �È:� �
¥"�\� ¡ ¨8�G�\���#���J����:�	�

The
 � and ¦ � ��� attributes:
l � � ¨8�G�\�"�����J�
^ p � 4 � ` � 4 ¦ � ��� q n

The
 � and ¦ � ��� columns:

¨"� � �È:� �<Ð�¦ � ���
¥"�\� ¡ ¨8�G�\���#���J�,>�#�/.

The
 � and © � �G¢ attributes

where the latter is not null:
l � � ¨8�G�\�"�����J�
Ï	� 4 © � �"¢ h; �"� �G�
^ p � 4 � ` � 4 ¡Y� �"¢ q n

The
 � and © � �"¢ columns

where the latter is not null:

¨"� � �È:� �<ÐÅ© � �"¢
¥"�\� ¡ ¨8�G�\���#���J�Ñ"» �8�\� © � �"¢o�G�Ò��8�Ó�"� �G�

We can take this mapping process further and see how some of the secondary compo-
nents are represented.�8��,9���:�	�

Given the representation of
����� �

above, this must be the
 � column on its

own.
¨"� � �È:� �
¥"�\� ¡ ¨8�G�\���#���J�

This is the same as the
�	��
�8���N�1�

component above, so we can see that the�����:� �
invariant:���#,I�6�:�	�<;9�	��
��������

is satisfied at the concrete level.�8��,9,>�#�/.
Similarly, given the representation of

,-���/.
above, the domain of

,>�#�/.
must be:

¨"� � �È:� �
¥"�\� ¡ ¨8�G�\���#���J�Ñ"» �8�\� © � �"¢o�G�Ò��8�Ó�"� �G�

348 Chapter 14

14.13 Implementing an Operation

We have seen how the state schema is implemented as a database, but we still have to
implement the operation schemas as programs. In this section, we will look at how theu3v �#�/�

operation may be programmed.

1. The Pre-Conditions

We can take each of the pre-conditions of the
u3v �#�/�

operation schema; use the
mappings above and convert the condition to SQL syntax.

Condition In SQL terms
e�f i �	��
�8���N�1� ® Ì �Q� É ¨"� � �È:� �

¥"�\� ¡ ¨8�G�\���#���J� Ë
e�f-hi ���#,I,-���/. ® Ì ��8�Ô�Q� É ¨"� � �\È�� �

¥"�\� ¡ ¨8�G�\�"�����J�Ñ"» �8���Ó© � �"¢=�G�Ò��8�]�"� �"� Ë

2. The Post-Conditions

The post-conditions will specify changes to the database, whether in the form ofÕ �Y�����"� s, Ö ®\� � �\� s or of
· � � �8�\� s. What changes are required here?

Suppose student number 862 is to be awarded a mark of 80. The Students table needs
to be amended as follows:

¨��G�\�����"�J� ¨��G�\�����"�J��×G"$"$"$"$G$"$"$"$"G"$"$"$"$GG"$"$ G"$"$"$"$G$"$"$"$"G"$"$"$"$GG"8
 � ¦ � ��� © � �"¢ � ¦ � ��� © � �"¢G"$"$"$"$G$"$"$"$"G"$"$"$"$GG"$"$ G"$"$"$"$G$"$"$"$"G"$"$"$"$GG"8
ªG«Y¬ �G®"® «"¯ ªG«Y¬ �"®"® «"¯
ªG°"± ² � � ��� ÌIÊ ªG°"± ² � � ��� ª"´ Ê
ªG°"³ §��"µ"µ °"´ ªG°"³ §#��µ"µ °"´
ªG¯8¶ · ��¸\�8� Ì � (ªG¯8¶ · �8¸\�8� Ì
ªG¹Y¬ §��"µ"µ Ì ªG¹Y¬ §#��µ"µ Ì
ªG«"± º �#» � °"´ ªG«"± º ��» � °"´
ªG°"ª ¼ �Q¡£ � � ª"´ ªG°"ª ¼ �:¡£ � � ª"´
G"$"$"$"$G$"$"$"$"G"$"$"$"$GG"$"$ G"$"$"$"$G$"$"$"$"G"$"$"$"$GG"8

We do not need to add any new rows nor do we need to delete any. The only change
required is that the © � �"¢ column for student 862 be set to 80. For that, we use an
Ö ®\� � �\� statement.

Ö ®\� � �\�Ó¨8�G���������J�
¨"�8�]© � �G¢�� ¡ Ì

Ñ"» �8�\� ���]® Ì

This single SQL statement satisfies all three of the post-conditions.

From Specification to Implementation 349

(a)
,>�#�/. S ;o,-���/.[jmlGp e�f `�, f:q n
The before version,

,-���/.-;=lGp�ØGÙ"58` Ù�Ú q `Qp1Ø8Û�Ü\`�Û�2 q `7p�ØGÙ�Ý�`/Û�2 q `Qp1Ø8Û#Ø\`�Û#2 q	n .

The after version,
,-���/. S ;Il"p1Ø"Ù"5�`	Ù#Ú q `7p�Ø�ÛGÝ�`/Ø82 q `7p1Ø8Û�Ü`/Û�2 q `7p�ØGÙ�Ý"`/Û82 q `�Ø�Û#Ø`/Û#2 q n

(b)
� ��
�������� S ;=�	��
�8���N�1�
The ���8� clause of the �"®\� � �\� statement does not involve the

 � column, so
this column, which is the concrete version of the

������� �
component

�	��
��������
, is

unchanged.

(c)
���:�	� S ;9����� �
Similarly, the �#�8� clause does not affect either the

 � or the ¦ � ��� columns which
together form the concrete version of the

�����:� �
component

���:�	�
. This is therefore

unchanged.

14.14 From Operation to Program

We discussed the relationship between the state schema and the database and how we can
(and must be able to) map from one to the other. Can we map between an operation and
the corresponding program?

We certainly cannot easily map between the
u3v �����

schema, for example, and an SQL
program that implements it. The two languages have quite different syntaxes. We can,
however, write an operation schema that awards a mark to a student, but that changes the
database rather than the

�R�6�:� �
state.

u3v �#�/�7�!���/Î��/��,
_ VW���À��Ä �:���
e�f �G�H��� �����
, f �G2\464�5Q2�2
Þ �ß���J��
�8���N�1� ^�à4á)[��; e�f�à4�xs�#�/.0;9�N
��K�

Þ � S ���J��
�8���N� Ã � X��#�/� ^� S 4á)[�P;=�à4á)[�
� S 4'ât��� �<;=�à4'ât���	�
� S 4�xs�#�/.0;o, f�N��
�������� S ;=�N��
��������!|}l�� n j�l8� S n

We can interpret the predicate as requiring that:

1. There exists, in the
�J��
�8���N�1�

relation, a record
�

with the same number as the one
supplied, and where the mark is null.

2. Afterwards, the new
�J��
�8���N�1�

relation is the same as before, except that the record
�

is replaced by a record
� S that has the same

)w�
and

ât���	�
attributes, but with a

xm���/.
attribute set to the mark supplied.

350 Chapter 14

We will need to ensure that the language used is restricted to the relational calculus. That
language is as close as we can get, in Z, to SQL. So now we have two versions of the
operation:

^ An
u3v ���/�

operation that modifies the situation as represented by the abstract
������� �

state.
^ An

u3v ���/�Q�!�/��Î#�/�#,
that modifies the situation as represented by the concrete

VW���À��Ä �:���
state.

The question still stands. How do we know that the award program, as described byu3v �#�/�7�!���/Î��/��,
, is correctly implemented? This important issue is discussed in Chapter 19.

14.15 Summary

In this chapter we have seen how the schema may be used in a number of quite different
ways to specify different aspects of a situation.

^ We have used the schema to describe or present a general view of some state of affair,
one that avoids, of necessity, any specific details. Rather, it tries to characterize the
siuation by providing some general rules or conditions known as the state invariant.
In particular we created the

�����:� �
state schema which described a class of students.

^ Then we used schema decoration and schema inclusion to build a frame schema, in
this case

_ ���������
, that describes the features that are common to all possible changes

to some state, in this case the
�R�6�:� �

state.
^ Next we used the frame schema in conjunction with process description schemas to

create operation schemas that allow changes of state to be described. Each opera-
tion schema will describe the necessary pre-conditions for some event and the post-
conditions that describe how the state is changed as a result of the pre-conditions being
met.

^ Then we looked at how we might satisfy ourselves that an operation schema maintains
the state invariant.

Then we looked at how we might implement the specification collectively provided by
these schemas.

^ First we translated the state schema into a relational database.
^ Then we translated an operation schema into a program that applies the rules of that

schema in making changes to the database.

Figure 14.6 shows the interaction of the processes involved in specifying and implementing
an information system.

And finally, we are able to use the programs in conjunction with the database to maintain
and reproduce the user views. So we are back to our starting point.

From Specification to Implementation 351

User Views

Specify
the dynamics

Operation
Schemas

Outline the
situation

State
Schema

Implement
the dynamics

Computer
Programs

Design the
database

Database
Schema

Figure 14.6 From specification to implementation

Run the
system

User Views

The
Database

Computer
Programs

Figure 14.7 Full circle

352 Chapter 14

Exercises

Q14.1 Pete’s ãPäæåwç\è�éGêtë Company

One day, Peter realized that there was no future in writing COBOL programs.
Now he runs a TV rental company. We are interested in modeling the activities of
the company.

Two basic types are to be used.

C T*ì D
the set of all possible TV’s.C ����� �����ND
the set of people who may rent a TV.

The current situation is to be represented by the following state schema.

T*ìJÃ ����À���
�N�À�7X .%���������Z� T*ì
{ � � UK���[� T*ì $ &'$�(��H��� �����
í �#�/.�UK�"Î%�\�Y�����Z� THì
���#, { � � UK�/�w?]�N�À�QX�.
í �#�/.�UK�"Î%?@�J�¾�QX�.

The declaration and the predicate parts of the schema have the following interpre-
tion.

The
T*ìJÃ ����À���

Declaration

1.
�J�¾�QX .%���Y�����Z� THì
�J�¾�QX .

is the set of TV’s currently owned by the TV Rental company.

2. { � � UK�/�w� T*ì $ &'$1(P����� �����
{ � � UK�/�

is a partial function that maps each TV that is out on hire to the
person to whom it is hired.

3.
í ���/.#UK�GÎ%��Y������� T*ì
í ���/.#UK�GÎ

is the set of TV’s that are currently working, that is, not in need of
repair. A TV in need of repair may be on hire or it may be in the shop.

The
T*ìJÃ ����À���

Predicate

1.
�8��, { � � UK�/�[?@�N�À�7X .
The company can only hire out TV’s that it owns.

2.
í ���/.#UK�GÎ%?��N�À�7X .
We are only interested in working TV’s that the company owns.

From Specification to Implementation 353

Here is an operation schema that describes a TV being rented out to a customer.

Ã ���� T*ì
_ THìYÃ ����À���
� f � THì
e�f �G����� �����
� f i �N�À�QX�.
� f i í ���/.#UK�GÎ
� f>hi ���#, { � � UK�/�
{ � � UK��� S ; { � � UK�/�<jml"pZ� f ` e�f:q n�N�À�7X . S ;9�J�¾�QX�.
í �#�/.�UK�"Î S ; í �#�/.�UK�"Î

Explain the significance of each line of the schema, both its declaration and its
predicate. Use the style of the introduction to this question.

Q14.2 Using the
T*ìJÃ ����À���

state schema given in the previous question, write operation
schemas for the following events.

a.
)+���	,-��� Ã ����
��	�

– a TV
� f , currently out on hire, is returned at the end of its

period of contract.

b.
�H�/� �7.7VW� v �

– a TV
� f , currently out on hire, has broken down.

c.
�HUîÎQV+� ���

– a customer e�f rents a number of TV’s
��Æ������ f , all of which are in

working order of course.

d.
T ����Î8���

– a list
v ¿ UK�"Î8��� ���

of those customers with a faulty TV is to be
produced.

e. ï Uî�:�	�
– a faulty TV

� f is repaired at the customer’s home or premises.

f.
� v UK�¾X ¿tT*ì

– a working TV
�7. f , one that is not on hire, is provided in place

of a faulty TV
� � f that is currently on hire.

Q14.3 At the corner shop

In this question, we will attempt to model or represent the situation and happen-
ings in a self-service corner shop. There is only one person behind the counter.
Typically, people come into the shop, locate the goods they want, pay for them
and leave.

There is to be one basic type,
C ����� ���#�D

, representing the set of all people who
may, at some time, be customers. The state of the shop is to be modeled by the
following schema.

354 Chapter 14

� ¿ � e
� ¿ � e8e UK�"ÎÅ���Y�����Z���H��� �����
ð
��
�[����� ð ����� ���#�
�/��� ð
��
�!ñ�� ¿ � e�e UK�GÎÇ;9l nò U/`�ó0�J�8��, ð
��
� ^ U h;ôó+õ ð
��
�GpZU qPh; ð
��
�8pîó q

The first state component,
� ¿ � e8e UK�"Î , represents the set of customers who are still

shopping, that is, still looking for items to purchase. The second state component,ð
��
� , contains those customers who have found what they want and are waiting
to pay.

Using the conventions regarding state transition schemas and operation variable
naming, specify the following operations and queries.

a. How long is the queue?

b. How many people are there in the shop altogether?

c. Someone,
X f , enters the shop.

d. Someone,
X f , joins the queue.

e. The person at the front of the queue pays and leaves the shop.

f. Someone,
X f , waiting in the queue leaves the queue but not the shop.

g. Which customers are still “just looking"?

Q14.4 At the supermarket

The situation to be considered in the supermarket is one involving customers,
checkouts and and the queue at each checkout. Each customer may either still be
shopping or have joined a queue.

The basic types are:
C ����� �����ND

the set of all possible customersC � ¿ � X .��#
��ÀD
the set of checkouts

The state of the supermarket is to be modeled by a state schema with the following
declaration.

�N
 e ���	,-���/.8���
� ¿ � e8e UK�"ÎÅ���Y�����Z���H��� �����
ð
��
���P�[� ¿ ��X .8��
���$�$1(w��� ð ����� ���#�

We will assume that every checkout is in operation at all times. The components
of the schema have the following interpretations.

� ¿ � e�e UK�GÎ – the set of customers still shoppingð
��
�	� – the queue (possibly empty) of customers waiting at each
checkout

From Specification to Implementation 355

Assume that the first customer, if any, of a queue is being checked out.

Required:
Specify conditions to match each of the following requirements.

a. Nobody shopping in the aisles is also queueing at a checkout.

b. Nobody appears twice in the same queue.

c. Nobody appears in two different queues.

Q14.5 Specify schemas for the following operations or queries.

a. Which checkouts are free?

b. Someone comes into the supermarket and joins those in the aisles.

c. Someone shopping, e�f , joins the queue at checkout
X f

d. Someone, e�f , moves from one queue to the end of the queue at checkout
X f

That person will not be at the front of whatever queue he or she leaves.

e. The person e�f , at the front of the queue at some checkout, pays and leaves.

f. Someone, e�f , leaves a queue and returns to the aisles.

Q14.6 In the bank

Inside the bank there are, at any time, a number of tellers operating. Each teller
has his or her own window. However, not all windows need be open at any time.
And even if a teller’s window is open, there need not be a customer being served at
that window. There may also be a single queue of customers waiting to be served;
and there may also be a number of other customers who either have not yet joined
the queue or who have completed their transactions and have not yet left the bank.

The basic types are
����� �����

, the set of all possible customers, and
T ���K�����

, the set
of all tellers. The state of the bank is to be modeled using the following state
schema.

�*�#�".
� e ���ö���Y�����Z� T ���K�����
Ä�
"�	�0� T ���K�����3$ &'$�(��H��� �����
ð
��
�[�\��� ð ����� �����
��� ¿ ��� �w���Y�����Z�P����� ���#�

This schema is to be interpreted as follows:
� e ��� – the set of tellers whose window is currently openÄ�
"�	�

– a function that maps from tellers whose window is open to any
customer that they might be servingð
��
� – a sequence that indicates those who are waiting and their place
in the queue�#� ¿ ��� �

– the set of people who have either been served or who have not
yet joined the queue

356 Chapter 14

Specify operation schemas to handle the following situations or requirements. Use
the standard sequence operations, where appropriate.

a. Someone comes into the bank.

b. Someone leaves the bank.

c. Someone completes a transaction and leaves the teller’s window.

d. Someone goes from the front of the queue to a teller.

e. A teller opens his or her window.

f. A teller closes down, but only if he or she is not handling a customer and
only if there is at least one other teller still open.

g. Someone joins the queue.

h. Someone leaves the queue without commencing a transaction.

Q14.7 Files on floppy

We are interested in modeling the contents of a floppy disk and the operations that
may be performed upon it. Three basic types are to be used:

)+��,-�
– the possible names of files�H���À�
– the data (of whatever form) that may be stored in files)
– the set of integers 0,1,2,3,

4�474

The contents of the floppy at any given moment are to be represented by the
following state schema.

ï ��� e8e �
ï UK���/VW���À�Ç�8)F�#,>�H$ &'$1(w��� ð �H���À�
Â ��� �Y` â���� �!�G)
Â ��� �[÷}â��1� �<;@ø�Û82r2�282
Â ��� �-;@ùR�s�J����, ï UK����V+�#�¾� ^ M ï UK�6�/VW���À�p�� q

The declaration and the predicate parts of the schema have the following interpre-
tation.

From Specification to Implementation 357

The ï ��� e8e � Declaration

1. ï UK����VW���À�0�8)+��,-�H$ &á$�(w��� ð �H���¾�
ï UK����VW���À�

is a partial function that maps the name of any files on the disk to
the data contained in the file.

2.
Â ������` â��1� ���8)
Â �����

and
â��1� �

are numbers representing, respectively, the number of bytes
used and the number of bytes left on the disk.

The ï ��� e8e � Predicate

1.
Â �����[÷úât��� �<;]ø8Û�2r282�2
The number of bytes used and the number of bytes left unused must add up
to 360 000.

2.
Â �����-;�ùR�s�N�8��, ï UK���/VW���À� ^ M ï UK����V+�#�¾�Npî� q
The total space used is the sum of the sizes of all the individual files stored
on the disk.

Here is an operation schema that specifies the effect of deleting a file from the
disk.

V+�������¾� ï UK���
_ ï �6� e�e �� f �G)+��,-�
� f i ����, ï UK����V+�#�¾�
ï UK���/VW���À� S ;=l�� f#nH~ ï UK����V+�#�¾�
Â ��� � S ; Â ��� �+| M ï UK����V+�#�¾�Npî� f:qât��� � S ;Iâ��1� �t÷ M ï UK����VW���À�p�� f:q

Explain the significance of each line of the schema, both its declaration and its
predicate. Use the style of the introduction to this question.

Q14.8 Using the ï ��� e8e � state schema given in the previous question, write operation
schemas for each of the following. For each schema briefly explain the significance
of each line of its predicate.

a. A new file called
� f containing data

� f is to be created on the disk.

b. The contents of a file called
� �/��, f are to be copied to a new file to be called�À� f .

c. The file currently called
����� f is to be renamed as file

�Y� v f .

d. A list
�#�K�À�

of all the files on the disk and their sizes is to be output along with
the number of files

X��#
�����
and the amount of space available

� �/� �8�
.

e. The contents of the file called
� f are to be replaced with new data

�J� f .

Chapter 15
Database Definition
in SQL

15.1 Introduction

This chapter describes how to define the major objects that may appear in an SQL database.

� There are tables without which the database would be empty. These are sometimes
referred to as base tables.

� There are views which define virtual tables.

� There are indexes which enable the DBMS to respond to queries within an acceptable
period of time.

The word definition is used in the general sense of describing or delimiting the properties
of these objects. So, this chapter will discuss the creation, alteration and, in the extreme
case, removal of these properties.

Information about the properties of database objects is stored in the system catalog
or dictionary. The catalog itself takes the form of a set of tables which we may examine
ourselves using SQL. It forms a relational database that resides alongside our own.

15.2 Tables

15.2.1 Table Creation

A new table is introduced into the database by means of the ������� � � � �
	��� statement
which, in its simplest form, only requires that we name the table and then name and provide
a datatype for each column in the table.

�����

Database Definition in SQL 359

� �
	��� ������� �����
���������� �! �"�#� � ��	��� � ��$��%
list of � � ��&
$ � ' �(���)�������
� s *

� � ��&
$ � ' �(���)�������
���
� � ��&
$ � � ��$�� ' � � � �+, � [-/. #�#)0 -�1 -
. #�#]

There are a number of conventions used in presenting syntax for the statements discussed
in this chapter. They are discussed in more detail in Appendix A. Briefly:
� Upper case words in typewriter font, such as

������ ��2 ��/"�#�
, must appear verbatim.� Lower case words in typewriter font, such as � �
	��/�43 � ��$5� , represent places where we

must substitute something of our own choosing, for example, 6 � & ' � �4�57 .� The list of 8 s structure, for example, list of � � ��&
$ � ' �(���)�������
� s, means that we
should substitute one or more column definitions separated by commas.� Square brackets are used to enclose options, vertical bars to separate them.

For example, to define the 6 � & ' � �4��7 table:
� �4��� � � �
	���26 � & ' � �4�57%�9 ' ���4� �/:��/�<;= � � 7�� ��>��
� %�?�@ *A;# � 7�� ��>��
� %�?�@ **

Every row of the 6 � & ' � ���57 table, as defined above, is guaranteed to have three attributes
labelled

9 ' , = � � 7�� and
� 7�� . And further, each

9 ' attribute will be associated with an
integer value, and the

= � � 7�� and
� 7�� attributes will both be associated with strings of up

to ten characters. This is the lowest level of integrity support offered by SQL. It guarantees
the tabular appearance that we expect of a relation and the consistent type of data appearing
in each column of the table. However, apart from these constraints, the definition allows a
lot of freedom in what we might choose to store in the table. So, at some stage, the table
might contain any of the following data.?CB D<B EFB
6 � & ' � �4�57 6 � & ' � �4�57 6 � & ' � ���57G�G�G�GG�G�G�G�GG�G�G�G�GG�G�GGG G�G�G�G�GG�G�G�G�GG�G�G�G�GG�GG�G GG�G�G�G�GG�G�G�G�GG�G�G�G�GGG�G9 ' = � � 7�� # � 7�� 9 ' = � � 7�� # � 7�� 9 ' = � � 7�� # � 7��G�G�G�GG�G�G�G�GG�G�G�G�GG�G�GGG G�G�G�G�GG�G�G�G�GG�G�G�G�GG�GG�G GG�G�G�G�GG�G�G�G�GG�G�G�G�GGG�GH I � > � 6�$ ��� > D�J�J I � > � 6�$ ��� > DJ�J I � > � 6�$ ��� >D�D�E H 6�$ ��� > D�J�J I � > � 6�$ ��� > DJ�J I ����K L���MD�E�N I � > � H D�J�J I � > � 6�$ ��� > DJ�J " � �� + O ��> �H H 6�$ ��� > D�J�J I � > � 6�$ ��� > DJ�J � ��� � P&�� � �H I � > � H D�J�J I � > � 6�$ ��� > DJ�J ��Q � � � 7��D/R�S H H D�J�J I � > � 6�$ ��� > DJ�J " � � -�� Q �7H H H D�J�J I � > � 6�$ ��� > DJ�J � ��7�+ 1UTV6���&G�G�G�GG�G�G�G�GG�G�G�G�GG�G�GGG G�G�G�G�GG�G�G�G�GG�G�G�G�GG�GG�G GG�G�G�G�GG�G�G�G�GG�G�G�G�GGG�G

360 Chapter 15

Look at each sample in turn.

1. How many students do we really have here? There are at least three and maybe as many
as seven. When creating a table, the default is for columns to be allowed to contain null
values unless otherwise specified. It is part of the database design process to decide
which attributes may be null and which must never be.

2. In the second sample, we can see that, unless otherwise constrained, a table may hold
any number of identical rows. While the data in the table might be quite valid, it is
potentially misleading. We might count the rows believing that the result would indicate
the number of students in the subject.

3. As a consequence of the possibilities implied by the third sample, we must ensure that
if no two students can have the same Id, then the database reflects this constraint. In
other words, if the key of the relation is the student Id then there will only be one row
in the table with a particular Id.

In designing the database we took the view that each relation represented a set of entities
and zero or more single-valued facts concerning these entities. This caused each relation
to be divided into two disjoint sets of attributes.

1. There are the key attributes, of which there must be at least one. This attribute or this
combination of attributes uniquely identify each entity. For example, the key of the
6 � & ' � �4�57 table is the

9 ' attribute.

� Key attributes are never null. This rule prevents us from keeping information
about some as yet unidentified entity and is known as the entity integrity rule.

� We will normally define a unique index on the primary key. This requirement will
be further discussed in Section 15.6.1. This index will ensure that no two rows
in the table have the same key value. For the 6 � & ' � �4�57 table, no two rows will
have the same

9 ' value.

2. There are the non-key attributes. In some relations, there may not be any. Each of
these attributes supplies one single-valued fact about the entity identified by the key.
For 6 � & ' � �4��7 , the non-key attributes are

= � � 7�� and
� 7�� . Each provides a separate

fact about a student.

� Non-key attributes may or may not be null depending on the analysis performed
during database design. In this example we will assume that the first name may
not be known but the last name always will be.

This division of a relation and the rules that apply to each part leads to a revised definition:

� �4��� � � �
	��� 6 � & ' � �4�57%�9 ' ���4� �/:��/� ���/�2� &���U;= � � 7�� ��>��
� %�?�@ *A;# � 7�� ��>��
� %�?�@ * ���/�2� &����*

Database Definition in SQL 361

15.2.2 Table Alteration

From our database design effort, two outcomes may arise.

1. We got the design right first time and, more than that, we foresaw all the possible changes
that might occur and our design was flexible enough to cope with these changes.

2. Alternatively, as a result of using their information system, users have developed a
much better feel for the nature and extent of the information they really need to record
in the database.

The second scenario is much more likely and consequently, in order to respond to
organizational changes, there is a need to be able to alter the characteristics of a table. This
includes (1) adding entirely new columns, (2) modifying the nature of existing columns
such as the nullity, and (3) removing unnecessary columns.

The general syntax is:

� �
	��� �4� � �
��� ����������4# ����W ��/"�#� � �
	��/� � ��$��
[
� L�L 0 X 1
L 9 =�Y]

%
list of � � ��&
$ � ' �(�����������
� s *

Example 15.1 Suppose we now need to record the initial letter of each student’s middle
name.

� � � �/� �
	��/�26 � & ' � �4�57� '�' % X ��'�' �/�W��>��
� %�? *�*
We have now added an entirely null column called

X ��'�' �� to the 6 � & ' � ���57 table.
There may be restrictions upon the nature of any new or modified columns. For

example, a column added to a table must permit nulls, for the simple reason that we are, in
effect, adding an all null column.

� If we are modifying a column to the extent of disabling nulls then the column must not
currently contain any null values.

� The datatype or width of a column may only be changed if the contents of that column
are entirely null at the time of alteration.

� A column declared as ���/�2� &���� may only be added to an empty table.

Example 15.2 The descriptions associated with items of assessment are becoming in-
creasingly verbose. We need to widen the L�� 7 ��� ��,������
� column:

� � � �/� �
	��/� � 7�7 � 77X �'5� (+ % L�� 7 ��� ��,������
� ��>��/� %ZE�@ * ���/�W� &�����*
This statement will succeed only if the

� 77 � 7�7 table is empty.

362 Chapter 15

15.2.3 Table Removal

There will be occasions when we want to create a temporary table for some special purpose.
Afterwards we may discard it with a ' � �
,!� �
	��� statement.

� �
	��� ����$ � Q �4� �
L � 1
P ��"4#� � �
	��� � ��$��

Example 15.3 Suppose we only wish or need to know a student’s last name. We need to
be able to remove the

= � � 7�� name column.
We cannot delete a column with an �4� � �/� � �
	��� statement. We can, however, make

a copy of the parts of the table we wish to retain.

� ����� � � �
	���[-���M�36 � & ' � �4�57%�9 ' ����� �/:��/�F;# � 7�� ��>��/� %�?�@ *�*9 ��7 �/� �9 �4��� -��
M�36 � & ' � ���57
6��4���� � 9 ' ; # � 7��= � � $ 6 � & ' � �4�57
L�� �
, �
	���W6 � & ' � �4�57

If we want to retain the name 6 � & ' � �4��7 , then we will either copy the data back from
-��
M 6 � & ' � �4�57 to a reconstructed version of 6 � & ' � �4�57 . Alternatively, we may rename
the table if permitted.

15.3 SQL Datatypes

15.3.1 Datatypes

Most versions of SQL will offer a range of datatypes that match those available in more
conventional programming languages. These will include integers, floating point and fixed
point numbers as well as character strings.

Every item of data, large or small, that is stored in a database will be of a certain type.
A relation is a set of rows and a row is of type tuple. Each row is made up of a number of
elementary items of data. These are the attributes of the row. In the 6 � & ' � �4��7 relation each
row has three attributes. An attribute is the smallest unit of storage that SQL is prepared to
handle. Each attribute has an associated datatype.

There is more to a datatype than merely data storage.

� There are rules specifying how constants or literals may be written or displayed in
order to represent individual instances or values of the type. For example,

?�J/R�N
is a

legitimate representation of an integer literal but
? ; J
R�N is not. Note that these rules

relate to the external representation of instances of a datatype.

Database Definition in SQL 363

� There is the internal representation used by the database management system in con-
junction with the particular computer system upon which the database resides. This
representation will, of necessity, be quite unlike the external one. This internal repre-
sentation may be of concern to us because it may significantly determine the size of the
column and hence the size of the table and the database.� There are the operations that accompany the type. With numbers, for example, the
operations will include functions such as addition (\) and subtraction (G) as well as
relations such as] , ^ and _ . The operations may involve only one type or may relate
two types.

In the following sections we will discuss the datatypes are available from the ORACLE
relational database management system. However, these datatypes are typical of SQL
systems.

15.3.2 Numbers

Numbers come in all shapes and sizes. Here are some well-known ones. (No pun intended!)?�@�`�`
D<Ba?�bS�?�b
?CBc`�?�b�@�E�E�Jb�b
G D�S�E?CBcE�bedf?�@ S�?

There are several questions to be considered when writing down a number.

� Is it a whole number or is there some fractional component? If a fraction is involved
then how many places are required after the decimal point? The number of digits to the
right of the decimal point is referred to as the scale of the number.� How many digits of precision are required?� Is there a sign involved?

The � &
$�	��/� datatype may be declared in any of three formats.

-&
$�	��/� % , ; 7 *
-&
$�	��/� % , *
-&
$�	��/�
where:, is the precision, the total number of digits available;7 The scale, that is the number of digits to the right of the decimal point.

A datatype declaration of � &
$�	��
� %ZN ; D * would allow us, for example, to represent
numbers in the range G J�J�JFBcJ�J to \ J�J�J<BgJ�J such as might be used for supermarket prices.

When entering a value into a numeric column, two checks are made on the value.

1. Does it exceed the precision specified for the column? If so, the value is rejected. For
example, entering a value

?�D<BcD�N
into a column of type � &
$�	��/� %ZE ; D * will cause the

value to be rejected because it has four digits but the column is restricted to no more
than three.

364 Chapter 15

2. Does it exceed the scale specified for the column? If so, the number is rounded. For
example, entering a value of

?�D�E<BhR�N
into a column of type � &
$�	��
� %Z` ; ? * will cause

the number to be rounded to one decimal place and the value
?�D�E<BcN

will be stored.

ORACLE SQL has just one internal representation for all types of numbers. However, we
can use the precision and scale factors to ensure that only acceptable numbers are allowed
through to the database. Certain of these precision and scale combinations have been given
names of their own.

Datatype Equivalent to iai�i9 �4� �
:��/� -/&
$�	��/� %ZE�b ; @ *
L���� � $��4� -/&
$�	��/� %ZE�b ; @ *

As stated already, each datatype will have a package of operations that process and
relate elements or instances of that type. The most familiar of these are the arithmetic
functions \ , G , d and j , and the relational operations (] ,]/^ , _/^ , _ ,]_). There are also a
number of more specialized functions and relations.
� 	 7 % � * This is a prefix function that returns the absolute value of the given

number � .

�
	 7 %kD�? *l^ D�?
�
	 7 % G ?�E *l^ ?�E

� � � � % � * This is a prefix function that returns the smallest integer that is
larger than or equal to � .

�
� � � %Zb<Ba? *m^ J
�
� � � %Zb<BcN *m^ J
�
� � � %Zb *l^ b

= � ��� � % � * This is a prefix function that returns the largest integer that is less
than or equal to � .

(�� ��� � %Zb<Ba? *m^ b
(�� ��� � %Zb<BcN *m^ b
(�� ��� � %Zb *l^ b

X �' % $n; � * This is a prefix function that returns the remainder of $ divided by� .

$ �' %kb ; N *l^ E
$ �' %kb ; R *l^ @
$ �' %kb ; @ *l^ b

P � M��
� %Vo ; � * This is a prefix function that returns
o

to the power � (
o �

). The
exponent (�) must be an integer.

,�� M��
� %ZE ; D *m^ J,�� M��
� %�?CBcD ; D *p^ ?CBhRR

Database Definition in SQL 365

� � & �4' % $n; � * This is a prefix function that returns $ rounded to � decimal places.

� � & �4' %Zb<BcEN ; ? *p^ bFBhR
� � & �4' %Zb<BcEN�N ; D *p^ b<BcE�`

If � is omitted then
@

is assumed.

� � & �4' %Zb<BcEN *m^ b
� � & �4' %Zb<BcN *m^ J

6q� � % � * This is a prefix function that returns the positive square root of � .
7 q� � %ZJ *l^ E7 q� � %ZD *l^ ?CBhRA?�R4D�?�E�N�`

The square root is just another number and may be rounded.

� � & �4' % 7 q� � %ZD *C; E *r^ ?CBsRA?�R
 �& � � % $n; � * This is a prefix function that returns $ truncated to � decimal

places.
� �& � � %Zb<BcEN ; ? *p^ bFBcE� �& � � %Zb<BcEN�N ; D *p^ b<BcE�N

If � is omitted then
@

is assumed.
� �& � � %Zb<BcEN *m^ b� �& � � %Zb<BcN *m^ b

15.3.3 Character Strings

The character string datatype has one basic form:
� >��/� % � *

Where � is the maximum number of characters allowed in the associated column.
String literals are formed by enclosing the required characters between apostrophes.

T " � ��UT
Tc- � �
:��/��� = �4��� 7 T
Tct � 	��/� � ; � 7 $�� ��� �uT
T " ����7 � +[v t��
M4K�� 7 T

There is a minor problem when the apostrophe character itself is to form part of the string.
In this case, two apostrophes in succession are used to indicate that a single apostrophe is
to be included in the string. Here are some examples.

Required string Literal value

O’Reilly TZ1wT�T � � � ��� + T
rock’n’roll Tc� � ��K<T�T � T�Tc� � ���UT
plumber’s mate T , ��&
$�	��
�<T�T 7 $�� � �uT

366 Chapter 15

The operations associated with character strings are as follows.

7�� � ?yx�x 7�� � D This is an infix function that concatenates (strings together) two
strings to form another.

T I ����K<T x�x TV6�$ ��� ><Tz^{T I ����K�6�$ ��� >|T
TcL�� 7�, �/��� � �uT x�x T}T x�x TcL�� � T~^�TcL4� 7�, �/�4� � �}L4� � T

9 �)��� �
� , % 7�� ��* This is a prefix function that capitalizes the first letter of all words
in the string.

���)��� �
� , % T " 9 #�# Y Ta*r^�T " � ��� + T���)��� �
� , % Th	 � ��� +����
� � 7 Ta*l^{T " � ��� + I �
� � 7 T���)��� �
� , % T ��� L ��� R L O Ta*�^�T � � '5��� R ' K<T
9 ��7�� � % 7�� � ? ; 7�� � D * This is a prefix function that attempts to locate string 7�� � D within

string 7�� � ? .
����7�� � % T X � B ��Q �
��� 7�� T;�T � Ta*p^ D����7�� � % T I � $nT�;�Tk�UTa*r^ @

� � : � > % 7�� ��* This is a prefix function that returns the number of characters in a
given string.

� � : � > % Tk6 � � ��� :FTa*�^ `
7�� � ? � � K�� 7�� � D This is an infix relational operator used for pattern matching: see

page 139 for examples.

�
matches zero or more characters.
matches exactly one character.

All other characters match themselves, -���$��W� � K���T X ��� � T would
match any name starting with Mac, for example, MacTavish or
MacDonald. However, -���$��!� � K4��T X ���/3UT would match any
name containing four characters and starting with Mac, for exam-
ple, Mace or Mack.# � M��
� % 7 * This is a prefix function that turns all letters in the string 7 into
lower case.

� � M��
� % T " 11 X�� Ta*p^{Tg	 ��� $ � T
� � M��
� % T��
� 7 �uTa*p^�T��
� 7 �uT

, � ' % 7�� � ? ; � ; 7�� � D * This is a prefix function that pads string 7�� � on the � eft to length� with the string 7�� � D .

Database Definition in SQL 367

� , � ' % T D�b<BsR�N T�; b ;�T @ T�*r^�T @�@@�D�b<BhR4N T
� , � ' % Tg>��/�4�uT�; b ;T G _UT�*r^�T G _ G _�>��/�4�uT

� � � $ % 7�� � ? ; 7�� � D * This is a prefix function that trims string 7�� � ? from the left until
the first occurrence of a character not in the string 7�� � D .

� � � � $ % T X � B 6�$ ��� >|T�;�T X � B T�* ^{Tk6�$ ��� >|T
� � � � $ % T @�@5?�E/R�N T;�T @ T�*r^�T ?�E
R�N T

� � , �/���
� % 7 ? ; 7 D ; 7 E * This is a prefix function that replaces each occurrence of string 7 D
found in string 7 ? with the string 7 E .

��� , �/���
� % Tg��� 7�, 	��/�� + T�;Tg�<T;�TV�UTa*r^{TZ�� 7�, 	��4��� + T
��� , �/���
� % T D�? 7�� I � � &��/� + ?�J�JN T�;�T I � � &��/� + T;�T I � � Ta*
^�T D�? 7�� I � � ?�JJ�N T
��� , �/���
� % T D�? X � + ?�J�b�J T�;T2T�;�T G T�*�^�T D5? G X � + G ?�J�b�J T

� , � ' % 7�� � ? ; � ; 7�� � D * This is a prefix function that pads out string 7�� � ? on the � ight to
length � with string 7�� � D .

� , � ' % Tct��4� , T�; S ;T � Ta*�^�Tct���� , ����� T
� , � ' % T � o ��� T�; b ;T G _UT�*r^�T � o ��� G _ G _UT

� � � � $ % 7�� � ? ; 7�� � D * This is a prefix function that trims string 7�� � ? from the right until
a character not in 7�� � D is encountered.

� � � � $ % Tk6�� � > I ��� � 7 6 � �FT�;�T�6 � �FTa*}^�Tk6� � > I �
� � 7 T
� � � � $ % T " B � ��' �/� 7
�
� T�;T�6 � �FTa*�^�T " B � ��' �/� 7�� T

6 � & �4' � oF% 7�� ��* This is a prefix function that returns the 7�� & ��' � o value of a char-
acter string. It is used to compare names on a phonetic basis rather
than on spelling.

6��4���� � d= � � $ � $, � �/+ ��� 7� >��/�4� 7
� & �4' � oF% � ��$���*p^ 7�� & ��' � oF% T X �
:����uTa*

6
&�	 7�� � % 7�� �<;�$n; � * This is a prefix function that returns a selected substring from some
other string.

7 &�	 7�� � % Tk6�4��� + T; D ; E * returns the 3 characters from
Tk6��4�� + T starting at position 2.

7 &�	 7�� � % Tk6�4��� + T; D ; E *�^uTV�4��UT

368 Chapter 15

. ,�, �
� % 7�� �5* This is a prefix function that turns all lower case letters into upper
case.

& ,�, �
� % T � ��� : � Ta*p^{T � 1
-4�41UT
& ,�, �
� % TV�/&�$ ����uTa*�^{TV�
. XW ����� T

15.3.4 The Date Datatype

This is a datatype that programming languages do not provide as standard. This is really
rather odd as the great majority of organizational information systems are simple historical
models. They record the occurrence of events relevant to the organization. These are
everyday events such as receiving an order from a customer, ordering from a supplier or
paying an employee. Normally, the time of occurrence is also noted, and the unit of time
most commonly used is the date.

Many versions of SQL provide an inbuilt ' � � � datatype because of the need not only to
record dates but also to perform calculations and comparisons involving dates. ORACLE
SQL provides a single ' � � � datatype that handles units of time from seconds to centuries.

The standard form for date literals is TcLL G X 1
- G Y�Y T , for example, T D�? G � .�� G J�E T . When
(ORACLE) SQL encounters a character string literal where a date might be expected then
it will assume that it is in the above format. To register a date in one of the many other
forms in which dates (and times) may appear, we must state the format explicitly and use
a conversion function.

 � L�� � � % L�� � ��6 � � ��� :u; = � ��$�� � 6 � � ��� :�*
For example:

 � L�� � � % T ?�D G X� Y G ?�b/@�? T;}TgL�L G X 1�- G Y�Y�YY Ta* � L�� � � % T D�E G -�1
� G J�EW?�? � ?�N ��X T;!TgL�L G X 1�- G Y�Y tt � X 9 ��X Ta*
A
= � ��$5� � 6 � � ��� : is a character string consisting of one or more format “models". Each

model represents some unit of time, such as
X 1
- for a month name in three character form.

The format string is used to state how a date value is to be displayed or how it is being
entered. Some of the more common format models are shown below.

Model Example CommentY�Y�Y�Y ?�S/R�N
4 digit yearY�Y `�S
2 digit yearX�X @�J
2 digit monthX 1
- t 6 � P ��X"4��� full name of month
(padded to 9 characters)��� @�E
2 digit week of the year

L�L�L E�N
3 digit day of the year

L�L D�b
2 digit day of the month

L E
1 digit day of the week

The operations that may be used with dates are as follows.
� '�' X �
�4� > 7 % ' ;�$�* This is a prefix function that adds $ months on to the date ' .

Database Definition in SQL 369

� '' X ���4� > 7 % T ? G I � - G JE T�; ` *r^{T @�? G I . # G JE T� '' X ���4� > 7 % T ?�b G -�1
� G JN T; D *�^{T ?�b G I � - G J�` T
� 7�� L�� + % ' * This is a prefix function that determines the date of the last day

of the month in which date ' falls.

� 7�� L�� + % T ?�b G -�1�� G J�N T�*p^{T E�@ G -�1
� G J�N T
X �
�4� > 7 " � � M���� � % ' ;k��* This is a prefix function that returns a number representing the

months between dates � and ' .
X ���4� > 7 " � � M���� � % T ?�N G X���� G J/N T�;/T ? G = �" G J�N Ta*
^ ?CBhR�N5?�`�?�D�J

We would probably want to round the result.

� � & ��' % X �
�4� > 7 " � � M���� � % T ?�N G X��� G J�N T�;
T ? G = �" G JN Ta*C; ? *

^ ?CBcN
-�� o � L�� + % ' ; ' � + * This is a prefix function that returns the date of the next ' � + of

the week after date ' .

-�� o � L�� + % T D�N G X��� G J�? T;�T � � L�- � 6/L � Y Ta*
^{T D�S G X���� G J5? T

The next Wednesday after 25 March 1991 was dated 27 March
1991.� � & �4' % ' ;V(�$ � * This is a prefix function that “rounds" the date ' depending on
the format string (�$ � .

� � & ��' % � L�� � � % T D�N G X��� G J�N Ta*C;/T X 1
- t<T�*
^{T @�? G � P � G JN T� � & ��' % � L�� � � % T D�N G X��� G J�N Ta*C;/T Y ���/� Ta*
^{T @�? G I � - G JN T

6 +57�' � � � This is a variable that contains the current date and time. �& � � % ' ;V(�$ � * This is a prefix function that “truncates" the date ' depending on
the format string (�$ � .

 �/& � � % � L�� � � % T D�N G X��� G J�N Ta*C;/T X 1
- t<T�*
^{T @�? G X���� G JN T �/& � � % � L�� � � % T D�N G X��� G J�N Ta*C;/T Y ���/� Ta*
^{T @�? G I � - G JN T

370 Chapter 15

15.3.5 Conversion Between Datatypes

There will be, of necessity, a number of conversion operations that enable us to convert
from, for example, character strings to dates.

15.4 Referential Integrity and Other Constraints

The original version of SQL, SQL/DS, was released in 1983. It made no provision for the
definition of keys. However, newer products, such as Version 6 of ORACLE, allow us to
define the primary key of a table and the consequent foreign key connections. It does this
through the extensions to the ������ � � � �
	��� statement. See Figure 15.1.

� �
	��� ������ �����
��������� ��2 ��"�#/� � �
	��� � ��$��%
list of [� � ��&
$ � ' �(���)��������� 0 � �
	��/� � �
��7�� �4� ���4�]s *

� � ��&
$ � ' �(���)�������
���
� � ��&�$ � � ��$�� ' � � � ��+, � [� � ��&
$ � � �
�57�� ��� ���4�]

� � ��&
$ � � �
��7�� �4� ���4���
-/. #�#�0 -�1 -
. #�#��� � t �4� O % � �
��'��������
� *� �
	��� � �
�57�� ��� ���4���
P � 9 X��� Y O � Y % list of � � ��&
$ � � ��$�� s *��� .�- 9
� . � % list of � � ��&
$ � � ��$5� s *��� = 1 ��� 9 �- O � Y % list of � � ��&
$ � � ��$�� s *��� = ���� - �� 6 � �
	��� � ��$�� [

%
list of � � ��&
$ � � ��$�� s *]��� � t �4� O % � �
��'��������
� *

Figure 15.1 Revised ������� � � � �
	��� syntax

Column constraints are attached to the definition of a column and apply specifically to
that column. There are two kinds to consider.

� -/. #�#�0 -�1 -
. #�#
This is the same as before, either allowing or disallowing null values in the column.

� � t �4� O % � �
��'��������
� *
This kind of constraint will ensure that any value placed in this column will satisfy the
condition specified.

Database Definition in SQL 371

X �/��K ���4� �
:��/�f��>�����K % X �
��K�	�� � M���� � @ � ��' ?�@�@ *

The condition may only refer to the column concerned and to constants. The check
will be made prior to the execution of relevant ����7 �/� � and & ,�' � � � statements. If the
condition is not satisfied then the statement will be rejected.

Table constraints are more generalized restrictions applying to the table as a whole and
relating different rows and possibly several columns of the table. There are four kinds.

� P � 9 X��� Y O � Y % list of � � ��&
$ � � ��$�� s *
This constraint allows us to nominate the column or columns that make the primary
key of the table.

P�� � $5�/� +[O � + %�9 ' * for the 6 � & ' � �4��7 table.
P�� � $5�/� +[O � + %�9 � ��$n; 9 ' * for the

� 77 � 7�7 table.

With the above constraint on 6 � & ' � �4��7 , we are guaranteed that no two rows in that table
will have the same

9 ' . There may only be one such constraint per table. The column
or columns involved must not allow nulls, that is, they must be declared ���/�2� &��� .

� .�- 9
� . � % list of � � ��&
$ � � ��$5� s *
This constraint allows us to nominate other columns where uniqueness is required.
With it we can enforce one-to-one relationships between the columns and the primary
key.

. �)� q/&�� % L/&���* in the
� 7�7 � 7�7 table.

The column or columns should not have been declared as a primary key. Nor should
they allow nulls.

� = 1 ��� 9 �- O � Y % list of � � ��&
$ � � ��$�� s *��� = ���� - �� 6 � �
	��� � ��$�� [
%
list of � � ��&
$ � � ��$�� s *]

This constraint allows us to enforce referential integrity between two tables.

= � ��� � : � K�� + %�9 � ��$�*m�4�(4�/��� � �
� 7 � 7�7 � 77 %�9 � ��$�*

The above example will ensure that for every row inserted into the
� � 7 &�� �57 table, there

is a row in
� 7�7 � 77 with a matching

9 � ��$ number. The effect of this kind of table
constraint on the data manipulation statements is discussed more fully in Section 1.6.

� � t �4� O % � �
��'��������
� *
This is an extension of the column ��>�����K constraint. At the table level, the condition
may refer to several columns in the table, but not to columns in other tables.

For the �5�A�5������� database:

372 Chapter 15

� ����� � � �
	��/�26 � & ' � �4�57%�9 ' � &
$�	��
� %ZE<Bc@ * ���/�2� &���U;= � � 7�� ��>��/� %�?�@ *C;# � 7�� ��>��/� %�?�@ * ���/�2� &���U;
P�� � $��/� + K4� + %�9 ' *�*� ����� � � �
	��/� � 7�7 � 77%�9 � ��$ � &
$�	��
� %�? ; @ * ���/�2� &���U;
L�� 7 ��� ��,������
� ��>��/� %kE�@ *C;� � � :> � � &
$�	��
� %ZE ; @ *���>�����K % � � � :> � 	�� � M��� � @ � ��' ?�@�@ *C;
L&�� ' � � �u;
P�� � $��/� + K4� + %�9 � ��$C*�*� ����� � � �
	��/� � � 7 &�� �57%�9 � ��$ � &
$�	��
� %�? ; @ * ���/�2� &���U;9 ' � &
$�	��
� %ZE ; @ * ���/�2� &���U;
6
&	
$ ����� � ' ' � � �u;X �
��K � &
$�	��
� %ZE ; @ *���>�����K % X �/�K�	�� � M���� � @ � ��' ?�@�@ *C;
P�� � $��/� + K4� + %�9 � ��$�; 9 ' *C;
= � ��� � : � K4� + %�9 ' * �4�(4�/��� � �
� 7 6 � & ' � �4�57 %�9 ' *C;= � ��� � : � K4� + %�9 � ��$C*}�4�(4�/��� � �
� 7 � 7�7 � 77 %�9 � ��$�*�*

At this stage (Version 6 of ORACLE), the column and table constraints serve as a comment.
The uniqueness of the key must still be maintained through the application or through a
unique index (see Section 15.6.1).

15.5 Views

Views play a variety of roles in a database system.

� They can be used to provide a convenient name for a commonly used subset of the
database.� As a consequence of this, they may be used to secure the database by restricting users
to just that data they need to know.� They can be used to make inferences and to perform calculations based on values in the
database.

Example 15.4 Suppose we frequently have to deal with students who have failed any
item of assessment.

� �4��� � �[� � ��M = � � � 7 %�9 � ��$�; 9 ' ; X �/�K�*
� 7 6��4�/��� � 9 � ��$n; 9 ' ; X �/��K= � � $ � � 7 &�� �57� >��
��� X �/�Kf] N�@

Database Definition in SQL 373

This names as
= � � � 7 all the rows in

� � 7 &�� �57 where the mark is less than 50.
= � � � 7 ^ � � 7 &�� ��7 M�>��/��� X �/��Ke] N@

The
= � � � 7 table is a virtual table. It has no physical presence in the database, existing

merely through its definition. However, it may be treated as if it were a real table. For
example, to find out who failed the second assignment, we need only refer to the

= � � � 7
view.

6������� � d= � � $ = � � � 7� >��/��� 9 � ��$f^ D
This query is taken and expanded, with the word

= � � � 7 being replaced by its definition.

6��4���� � 9 � ��$�; 9 ' ; X �/��K= � � $ � � 7 &�� �57� >��/��� X �
��Ke] N�@
� ��' 9 � ��$ ^ D

This expanded version of the query refers only to base tables and may now be executed.

Example 15.5 Views are not merely subsets of the database. They can provide information
derived by calculations, such as the average mark for each assessment item:

� �4��� � �[� � ��M � 7�7 � 77 3 ��Q �
���/:�� %a9 � ��$�; X ��� � *
� 7 6��4�/��� � 9 � ��$n;�� Q : % $��
��K�*= � � $ � � 7 &�� �57

�� � & , 	 + 9 � ��$
This provides a table that contains the results of calculations.

Example 15.6 We can take views further and use them to derive “new" information. The
following view counts the number of assignments that each student has submitted.

� �4��� � �[� � ��M � 7�7 3 � � & �4� %a9 ' ;¡L ��' *
� 7 6��4�/��� � 9 ' ;p� � & �4� %ad *= � � $ � � 7 &�� �57

�� � & , 	 + 9 '
& �)���
�
6��4�/��� � 9 ' ; @= � � $ 6 � & ' � �4�57� >��
��� 9 'W���/� ��� % 6��4���� � 9 '= � � $ � � 7 &�� �57 *

The view combines the results of two separate queries. The first 7 �4���� � statement counts
the number of submissions made where the student actually made a submission. The second
deduces that any student without a result must have submitted a total of zero assignments.

In general the view mechanism allows us to make inferences stemming from data stored
in the database.

View Definition

374 Chapter 15

A base table is simply a set specified in extension, that is, one written out in full. A view or
virtual table is a set specified by comprehension, that is, its elements or rows are defined
through some property common to all rows in the view.

The 7 �4���� � statement is SQL’s version of set comprehension. Through its 7 ������ �
clause we may form rows that, by means of the M�>��/��� clause, have some shared property.
The syntax for view definition reflects this.

Q � ��M ' �(���)�������
���������� � � 9 � � Q � �
M � ��$�� [
%
list of � � ��&
$ � � ��$�� s *]� 6 7 �4���� � 7�� � � ��$�� �4�

� The view name is optionally followed by a list of column names. If these are omitted
then the names of the view columns are “inherited" from the column names that appear
in the 7 �4���� � clause.� If the 7 ������ � clause contains a calculation then this must be named.� If the view needs to be changed or we no longer need it then it can be dropped.

Q � ��M �4��$ � Q ��� �
L � 1
PW� 9 � � Q � �
M � ��$��

15.6 Indexes

15.6.1 Unique or Primary Indexes

In Section 15.2.1 it was pointed out that, unless advised otherwise, SQL will allow duplicate
rows in a table. This is clearly undesirable. We need to ensure that, for example, no two
students have the same Id. When inserting a new row into 6 � & ' � �4�57 , we should first check
that there is not already some student (row) with the new student’s Id. In general terms,
when inserting a new row into a table, we should check that no row already exists with the
same key value. To help speed up this process, it is recommended that there be a unique
index on the key. There will be one such index for each table in the database. The key of
the 6 � & ' � �4��7 relation is the student

9 ' and a corresponding index would be defined. It
may be that this is done automatically, as is the case with IBM’s SQL/DS product.

� �4��� � ��. �)� q/&�� 9 ��' � o 6 � & ' � �4� 3 O � +�
� 6 � & ' � �4�57 %�9 ' *
This is our way of telling SQL that we need to be able to rapidly access individual student
rows based on the

9 ' value and that only one row in the 6 � & ' � �4�57 table may have a given9 ' value. The index can be thought of as providing access to the 6 � & ' � �4�57 table in the
following way.

Database Definition in SQL 375

6 � & ' � �4� 3 O � + 6 � & ' � �4�57G�GG�G�G�G�GG�G�G�G�GG G�G�G�GG�G�G�G�GG�G�G�G�GG�G�GGGG9 ' P ������� �/� 9 ' = � � 7�� # � 7��G�GG�G�G�G�GG�G�G�G�GG G�G�G�GG�G�G�G�GG�G�G�G�GG�G�GGGGb�E5? N ?CB¢b�S�? t4� ��7 £ & ,�,b�N
R R D<B¢b�`�D " � ��� " � �/� 'b�`D D E<B¢b�`�J � ��, 1
�4(�(b�`b S R�B¢b�N/R � ��� L � Q �
�b�`J E N<B¢b�E�? t4� ��7 1
�4(�(b�S5? ? `<B¢b�S�D " � ����+ O �
> �b�SD ` S<B¢b�`�b � � ��� �4��$�	 � �G�GG�G�G�G�GG�G�G�G�GG G�G�G�GG�G�G�G�GG�G�G�G�GG�G�GGGG
The index is based on the primary key of the relation. There is one entry in the index for
each row in the relation. Each entry is presented as consisting of a value and a pointer to
the row that has that value for its key. For example, the first entry contains the value 831
and the number, 5, of the row for student 831.

There are two features of the index that should be noted in comparing it with the
associated table.

1. First and foremost it is an ordered structure. The student Id’s are held in numeric order.
As a result, the index may be searched in a binary way. For example, if we take the
mid-point of the index as being Id 868 then we are assured that all Id’s less than 868
will be before that entry in the index. All those Id’s greater than 868 will appear after.
This is the way we search a telephone directory. We don’t need to search anything like
the entire directory to find an entry.

2. Secondly, the index is physically smaller than the table. There is not much difference
in this example, but in general there will be.

It should be defined at the same time as the table is defined and maintained over the
lifetime of the associated table.

This type of index is used for two purposes.

1. It is used to preserve the integrity of the database by guaranteeing the uniqueness of the
primary key. For example, if we tried to insert a new row in 6 � & ' � �4�57 with an Id of
871 then the insertion would be rejected because there already exists such a row. This
is the significance of the word . ��� q/&�� in the index definition.

2. The index is also used to speed access to individual rows of the table. Because the
index is, typically, a much smaller structure than the corresponding table and because
it is ordered, the index can be searched in a much shorter time than it would take to
search the table. Once the correct entry in the index is found, the pointer or address can
be used to directly locate the corresponding row.

Based on this rather simplified view of the structure of an index, what improvement
in access time might we expect? Suppose that there are 100 rows in the 6 � & ' � �4�57 table.
What if we were to scan the table itself for a particular student’s row? We might find the
row at the very beginning of the table but we might equally have to search all the way to

376 Chapter 15

the end, and even then, not find it. On the average, we would expect to find the required
row halfway through the table; that is, after reading 50 rows. In general, when there are ¤
student rows we can expect to search through ¤u¥
¦ records.

Using the index, with its ordered structure, we search by dividing the index in two,
checking whether the key is in the first or the second half by examining the mid-point value.
Then we repeat this process on the reduced search area, stopping when we can divide no
longer. The search space will be reduced from 100 entries to 50 then 25, 13, 7, 4, 2 and 1,
taking us 7 binary chops. With ¤ student rows we can expect to search § �k¨�© ¤ entries.

The difference in search time can be seen in the following table:

¤ ¤u¥�¦ § �V¨�© ¤ª ¦ ¦« ª ¬
 ¦ « ® ª ¯
�° ¦ ª ± ¦ �°

The syntax for defining indexes requires that we name the index and specify the table
and attributes upon which it is based. Note that, although we have to provide the index
with a name, that name is never mentioned in any query that involves the associated table.
We must trust that SQL knows when and how to use the relevant indexes. We can create
an index on an empty table or on one with rows already in it.

����' � o ' �(���)������������������ �³² .�- 9
� . �4´ 9 -�L � 8 ����' � o � ��$��
1
- � �
	��� � ��$5� %

list of ����' � o � � $,���� � �4� s *����' � o � � $,��
� � �4�|�
� � ��&
$ � � ��$�� [

� 6 �)0 L � 6 �]

Where the Relation has a Composite Key
The

� � 7 &�� �57 table has a composite key made up of the
9 � ��$ and

9 ' attributes. When this
kind of situation arises, there will be several different ways of defining the unique index
required. In this particular case, we can create an index that will put the

9 � ��$ first or one
that puts the

9 ' first.
� �4��� � ��. �)� q/&�� 9 ��' � o � ����� � �}. �)� q
&�� 9 ��' � o� � 7 &�� �57 3 O � + 3�1 � � � � 7 &�� �57 3 O � + 3 M ��
� � � 7 &�� �57 %a9 � ��$n; 9 ' * �
� � � 7 &�� �57 %�9 ' ; 9 � ��$�*

15.6.2 Secondary Indexes

Suppose that we wanted to gain access to all the items submitted for assessment and the
marks obtained by individual students. A student may be expected to have several results.
If we build an index to help us access one particular student’s results then each entry in this

Database Definition in SQL 377

index will consist of a key value and several pointers, one for each result record for that
student.

6 � & ' � �4� 3 � � 7 &�� �57 � � 7 &�� �57G�GG�G�G�G�GG�G�G�G�GG�G�G�G G�G�G�GG�G�G�G�GG�G�G�G�GGG�G�G/G�GGG�GG�G/G�GO � + P �����4� �/� 7 9 � ��$ 9 ' 6
&	
$ ����� � ' X �/��KG�GG�G�G�G�GG�G�G�G�GG�G�G�G G�G�G�GG�G�G�G�GG�G�G�G�GGG�G�G/G�GGG�GG�G/G�Gb�N
R E ; ?�S ?CB ? b�S�? @�J@�b b�@
b�`D D ; ?�@ ; R D<B ? b�`�D @�J@�S `�@
b�`b N ; ?�? ; ?�N E<B ? b�N/R @�J@�b S�@
b�`J ` ; b ; ?�D R�B ? b�S�D @�J5?�@ N�N
b�S5? ? ; S ; ?�` N<B ? b�`�b @�J@�` J�@
b�SD R ; J ; ?�E `<B ? b�`�J @�J@�J S�@
G�GG�G�G�G�GG�G�G�G�GG�G�G�G S<B D b�S�? ?�@D�? S�@

b<B D b�`�J ?�@D�D b�@
J<B D b�S�D ?�@D�? `�N
?�@<B D b�`�D ?�@D�D S�@
??CB D b�`�b ?�@D�? S�N
?�D<B E b�`�J H J�N
?�E<B E b�S�D H R�N
?aR�B E b�`�D H R�@
?�N<B E b�`�b H N�@
?�`<B E b�S�? H `�@
?�S<B E b�N/R H `�N

G�G�G�GG�G�G�G�GG�G�G�G�GGG�G�G/G�GGG�GG�G/G�G
This is an example of a secondary index. Now if we want to find student 854’s marks we
can use the considerably smaller index which tells us that the results are located at rows 3
and 17. We can access these rows directly. Without the index we would have needed to
read through the entire table to find the marks. The index can be created as follows:

� �4��� � � 9 ��' � o 6 � & ' � �4� 3 � � 7 &�� ��7�
� � � 7 &�� �57 %a9 ' *
Secondary indexes have only one function and that is to speed access to one or more rows,
that is why they are designed to allow for several pointers per entry. There will be as many
of these indexes as it takes to make the database useable.

15.6.3 The Role of Indexes in a Join Operation

Suppose we want a list showing how each student went in the items of assessment he or
she submitted.

6������� � = � � 7�� ; # � 7�� ; 9 � ��$n; X �/�K= � � $ 6 � & ' � �4�57 ; � � 7 &�� ��7� >��/��� 6 � & ' � �4�57 B�9 ' ^ � � 7 &�� �57 B�9 '

Option 1: The Nested Loop Approach

378 Chapter 15

One rational method of answering this query, without the benefit of any indexes, is called
the nested loop method. It involves reading through the

� � 7 &�� ��7 table then scanning
6 � & ' � �4�57 for the corresponding student row. This can be presented as an algorithm:

For each row in the Results table, do:

For each row in the Students table, do:

� If the Id in the Students = the Id in the Results row, then:� Print the
= � � 7�� ,

� 7�� ,
9 � ��$ and

X �
��K columns

How long will this query take to execute? Using the above steps, we will be required to
make a scan of the entire

� � 7 &�� �57 table. For each row, we will have to scan the 6 � & ' � �4�57
table. Since the student row could be anywhere in that table, we can expect to scan half the
table on the average. So the cost is:

µ�¶¸· ¤u¥
¦
¹º ¯�¶¸·s¯ ¥�¦/¹º ±�» i ±

Option 2: Using Indexes
As stated before, in a relational database, there should be a primary or unique index on
each relation key and a secondary index for each foreign key.

6 � & ' � �4� 3 O � + 6 � & ' � �4� 3 � � 7 &�� ��7G�GG�G�G�G�GG�G�G�G�GG G�G�G�GG�G�G�G�GG�G�G�G�GGG9 ' P ������� �/� 9 ' P ������� �/� 7G�GG�G�G�G�GG�G�G�G�GG G�G�G�GG�G�G�G�GG�G�G�G�GGGb�E5? N b�N/R E ; ?�Sb�N
R R b�`�D D ; ?�@ ; Rb�`D D b�`�b N ; ?�? ; ?�Nb�`b S b�`�J ` ; b ; ?�Db�`J E b�S�? ? ; S ; ?�`b�S5? ? b�S�D R ; J ; ?�Eb�SD ` G�G�G�GG�G�G�G�GG�G�G�G�GGG
G�GG�G�G�G�GG�G�G�G�GG

Because both indexes are in Id order, we can work through both indexes concurrently. If
we have an entry in the left-hand index but none in the right- hand one, then that student
has no results to report. This is the case for student

b�E�?
. We can skip this student and move

down to the next entry on the left. Now we have entries for student
b�N/R

on the left and the
right. We can follow the pointer on the left to access the student’s first and last name; and
we can follow the pointers in the right-hand entry to access the two results for that student.
We can print as we go. In this way, we can join the tables speedily.

How can we cost this method? Suppose we make the following assumptions.

� We need two reads to access a student row, one to read the entry in the index and another
to follow the pointer and read the record itself.

Database Definition in SQL 379

� For results, we need one read to access the entry and one read for each individual result
record. This will vary from student to student, but it is not unreasonable to average this
at no more than three because there are three items of assessment and most students
will do all three. That makes four reads altogether.

The cost is therefore
® ¤ where there are ¤ students enrolled.® ¶ ¤º ® ¶n¯

º ª ¦
The relatively small sizes of the two tables used in the discussion gives a false impression
of the worth of the indexes. Let us move to a more realistic situation. Suppose there are
1000 students enrolled. That means, proportionately, that we might expect

�°/°
° ¶w· ¯ ¥ ¯ ¹ º ¯ °
°/° ¥ ¯ º ¦ ª ¦ » result rows. Let
µ º ¦ ª ¦ » .

The Nested Loop Approach
The cost is:µ�¶¸· ¤u¥
¦
¹º ¦ ª ¦ »n¶¸· �°
°
° ¥�¦/¹º ¦ ª ¦ »n¶�± °/°º ¦ ª�± °
°
Using the Indexes
The cost is:® ¶ ¤º ® ¶ �°/°
°
º ®
°/°
°

Now the benefits of indexing are clearly highlighted. With more typical table sizes,
the nested loop method is many times slower than the second option. This difference will
continue to grow as the table sizes increase.

15.6.4 Advantages and Disadvantages of Indexes

If indexes provide such benefits, why don’t we define indexes on every attribute on every
table? Then we would be guaranteed speedy access almost regardless of the kind of queries
we make. One drawback attached to each index is the maintenance required. Every time a
change is made to a table and that change involves an indexed column, then all associated
indexes must also be updated. Everybody involved in applying a change will need to wait
while this is done. The cost may prove too much because these overheads slow down a
crucial transaction to an unacceptable extent. What we are doing with indexes is spreading
the cost of a query across all the changes that are made. A second drawback is the additional
space required to store each index. Typically, the disk space overhead is 20% of the base
table size per index.

The expected advantages gained from indexes are as follows:

1. With a unique index, that is, one based upon the key of the table, rapid access is enabled
to the row with a given key value.

2. With a secondary index, rapid access to groups of records is enabled.

There are also unexpected advantages to be gained from an index.

380 Chapter 15

1. Sometimes a query may be answered by reference to the index alone. For example, if
we wanted to know which students had submitted all three items of assessment, then
the index can answer that by counting the number of pointers attached to each Id.

2. Sorted output can be achieved at a reduced cost. For example, if we wanted to list
student details in Id order then this can be done via the 6 � & ' � ��� 3 O � + index which is
in Id sequence.

An index may be dropped at any time:

����' � o ����$ � Q �4� �
L � 1
P 9 -�L � 8 ����' � o � ��$��

15.7 Summary

In this chapter we have discussed three of the major features of a relational database.

� There is the base table. This feature corresponds to the notion of a set defined in
extension. The elements or rows of such sets are written out in full on the bulk memory
of a computer system.� There is the view or virtual table. This corresponds to the notion of set comprehension
in which a set is defined by means of some property common to all its members.� There is the index of which there are two kinds. We use unique or primary indexes to
ensure the uniqueness of the primary key of a table and to speed access to individual
rows in the table. We use secondary indexes to improve the speed at which a query is
executed.

Database Definition in SQL 381

Exercises

Q15.1 The ¼½��¾C¿C��ÀÂÁÃ� Database

In the exercises at the end of Chapter 4 we were introduced to the University of
Wiseacres. They have a database with the following structure.

6���> �� � 7 6 � �/(�(� &��4� 7G�G�G�GG�G�G G�G�GG�G G�G�G�GG%ad *�6���> �� ��3 9 ' %ad *�6 � �/(�(�3 9 ' %ad *�6 � �((�3 9 '
6���> �� ��3
-���$�� 6 � �/(�(�3
-���$�� %ad *�L��/:��4���
P> �
� � 6���> ��� ��3 9 ' P�������% H *�t���� ' 3 9 ' Y ���/�

An asterisk
%ad * indicates that the attribute is (part of) the primary key of the

relation. A question mark
% H * indicates that null values are to be permitted for

that attribute in the associated relation.

a. Write ������� � � � �
	��/� statements for this database. As a guide, use the
sample data provided in the corresponding question at the end of Chapter 4.

b. Create unique indexes appropriate to the database.

c. Create secondary indexes appropriate to the database.

Q15.2 Write ������� � � � �
	��� statements for the ¼½��¾C¿C��ÀÂÁÃ� database that ensure the
following constraints.

a. The primary keys of each table are unique.

b. There is referential integrity between the tables.

c. No two schools will have the same name.

This time, use the extended ������ � � � �
	��� syntax discussed in Section 15.4.

Q15.3 The ÄÅ��Æ�ÇC�CÈ5�5��Æ Database

As before, across town from Wiseacres is the Witsend Institute of Technology
where resource allocation is still a bigger issue than staff qualifications. The
structure of their database is as follows.

6 � �((>��� � �/� 7 � ��� � �
� �������G�G�G�GG G�G�GG�G�G�G�G G�G�G�GG�G�G�G�GG%ad * ������>��/� %ad * >��� � �/� %ad *�6
&�	 � ��� �� ��� $ � � , ��� ����+ � � � � ���� '% H *�P> �
� � >���� � �/� ������>��/�
The 6 � �(�(and

 >���� � �/� 7 relations represent the Institute’s resources and the� �� � �
� �5���
� relation shows, for each subject taught, the current enrolment as well
as the lecture theatre and teacher normally allocated to that subject.

382 Chapter 15

a. Write ������� � � � �
	��/� statements for this database. As a guide, use the
sample data provided in the corresponding question at the end of Chapter 4.

b. Create unique indexes appropriate to the database.

c. Create secondary indexes appropriate to the database.

Q15.4 Write ���4��� � � � ��	��� statements for the ÄÅ��Æ�ÇC�CÈ5�5��Æ database to ensure that:

a. The primary keys of each table are unique.

b. There is referential integrity between the tables.

Use the extended ������� � � � �
	��/� syntax discussed in Section 15.4.

Q15.5 Assume you have access to a table
X ����7 that contains all the integers from

@
to?�R4E�J

. The table is shown below on the left.
X ����7 � $��43 D/RG�G�G�GG�G G�G�G�G�GG�GX ��� & � � t�t X�X
G�G�G�GG�G G�G�G�G�GG�G@ @ @

? @ ?
� � �N�J @ N�J
`�@ ? @
� � �?�R4E�J D�E N�J

G�G�G�GG�G G�G�G�G�GG�G
Develop a view

 � $�� D/R , like the one shown on the right above, that represents
each minute in 24-hour form.

Q15.6 Using the
X ����7 table of the previous question, create another view

 � $���6 � � ��� :
that represents each minute of the day in 24-hour form using a five-character string.

 � $��6 � � ��� :G�G�G�GG�G�G�G�GG�G�G�G�GX ��� & � � � $��G�G�G�GG�G�G�G�GG�G�G�G�G@ @@ � @�@? @@ � @�?
� �N�J @@ � N�J`�@ @5? � @�@
� �?�R4E�J DE � N�J

G�G�G�GG�G�G�G�GG�G�G�G�G

Database Definition in SQL 383

Q15.7 Using the
 � $5��6 � � ��� : view of the previous question, create a view

X ����7 L � (�(
that indicates the difference, in minutes, between two times.

X ����7 L � (�(G�G�G�GG�G�G�G�GG�G�G�G�GG�GG�G/G�G � $�� � � $5� " L � (�(G�G�G�GG�G�G�G�GG�G�G�G�GG�GG�G/G�G@�@ � @@ @�@ � @�@ @
@�@ � @@ @�@ � @�? ?
� � �@�@ � @@ D�E � N�J ?aR�E�J

@�@ � @5? @�@ � @�@ G ?@�@ � @5? @�@ � @�? @
� � �@�J � @@ @�J � R�R R�R
� � �

G�G�G�GG�G�G�G�GG�G�G�G�GG�GG�G/G�G
How many rows will there be in the entire view?

Q15.8 ÉÊÈ5�AÀÂ�5Ë/��ÈAÆ
The famous old gentlemen’s club ÉÌÈ��AÀÍ��Ë��ÈAÆ recently elected a new manage-
ment committee. One of this committee’s first decisions was to move the mem-
bership accounting system onto computer. Because of the historical importance
of the club it was decided to record all members, past and present. A table has
been created showing membership information exactly as it was recorded in the
original books.

��&
$�	���/� 7G�G�G�GG�G�G�G�GG�G�G�G�GG�GG�G/G�G�G/G�GG�G/G�G�G/G�GG�GGG�G/G�G�GGGG�G/G�G9 ' ��&
$�	���/� L�� + X � > Y ��/�G�G�G�GG�G�G�G�GG�G�G�G�GG�GG�G/G�G�G/G�GG�G/G�G�G/G�GG�GGG�G/G�G�GGGG�G/G�G? 6 � � � � :4�/�WP��� �4� �/� E�@ = �
	 ?�SS�`D # � � ' 1 Q �/���4��� E�D I &�� ?�J@�?E # � � ' L& � :��/���� 7 E�? I & � ?�J`�NR X �!t�� � K Q � � P���&
$, D�N X �/� ?�bD�?N X �e6���$ 6�� ,)� � D�J = �
	 ?�`J�N` 6 � �[. � >��/� M ����� D�J = �
	 ?�J@�@S P�� � (9wB B � B � � ��� 7 E�@ I &�� ?�bS�NG�G�G�GG�G�G�G�GG�G�G�G�GG�GG�G/G�G�G/G�GG�G/G�G�G/G�GG�GGG�G/G�G�GGGG�G/G�G
As may be seen, the data is not as accurate as it should be.

The rules regarding valid dates are as follows:

1. Thirty days hath September, April, June and November.

2. All the rest have 31 except February alone

384 Chapter 15

3.1 In a year not divisible by 4, February has 28 days.

3.2 In a year divisible by 4 and, if divisible by 100 then also divisible by 400,
February has 29 days.

3.3 Otherwise February has 28 days.

Create a view
= � o ��� %�9 ' ;~L�� + ; X � >|; Y ���/�F; � &��� " � � K�� � * that will flag each

invalid row in ��/&
$�	���
� 7 and indicate the code of the rule broken.

(Hint: Write a separate 7 �4���� � statement for each rule and then combine them
using the & �)���
� operator.)

Q15.9 The ÎÊÇ�ÈAÆ��rÄÏ¾A�5ÁÑÐCÒ Database

Suppose we are a group of professional punters and we keep a database of horse
racing results. There are four basic tables.

t � � 7 � 7 � ���
� 7 � � 7 &�� �57 � �
��'5�������
��7
GG�G�G�G�G G�GG�G�G G�GG�G�G�G�G G�G�G�G�GG�G�G�G�G%ad *}t � � 7 �43�-���$�� %ad * � ���
�43
- � %ad * � � &4� 7 � %ad * � � &4� 7 �� :�� � ���
�43
-���$�� %ad * � ���
�43
L�� � � %ad * � ���
�43�L�� � �
6� o � $�� %ad * � ���
�43
- � � ��� � >��/�% H *�6 � ��� # � � : � > �4� � �43
- � ������K% H *}L4��$ %ad * � � &4� 7 � t�� ��'5� �
� ,%ad * � ���
�43
L�� � � % H *21 ''�7

P�� ��Ó �43 X �
� � + t � � 7 �43
-4��$��I � ��K�� + 3�-���$�� �4� ��� �/��3
-���$��%ad *�P��/���
�
L �/7�� � � ���

General comments:

1. Columns that form (part of) the key are marked with an asterisk (
d
).

2. Columns that may be null are marked with a question mark
% H * .

3. The handicap is kept in kilograms.

4. Odds are expressed as a single number, for example:

Odds Stored AsD G ? �
� @<BgN
� Q � ��7 ?CBg@
D G ? D<Bg@
?�? G D N<BgN

5. The L �7�� � � �
� column represents how far the horse was behind the horse in
front of it when the winner passed the post.

6. Prize money is awarded for first place only.

7. A horse’s sire is its father.

8. A horse’s dam is its mother.

Database Definition in SQL 385

Required:

a. For each table, identify any foreign keys it contains.

b. Write ������� � � � �
	��� statements for this database.

c. Define primary indexes.

d. Define secondary indexes for the foreign keys.

Q15.10 Write SQL statements in response to each of the following.

a. How much money has the horse Lucky Streak won in total?

b. Define a view
� ����� �
� that enables us to identify race winners quickly.� ����� �
�G�G�G�G�GG�G�G�G�GG�G�G�G�GG�GG�GGG�G/G�GG�GGG�G/G�G�GGGG�G/G�G�GGGG�G�G/G�GGG�GG�G� � &4� 7 � � ���
��3
L�� � � � ���
��3
- � t � � 7 �43�-���$��ÔP�� ��Ó �43 X �
� � +G�G�G�G�GG�G�G�G�GG�G�G�G�GG�GG�GGG�G/G�GG�GGG�G/G�G�GGGG�G/G�G�GGGG�G�G/G�GGG�GG�G

Use this view to determine Lucky Streak’s prize winnings.

c. Define a view
= � � 7�� 3
P������� that summarizes a horse’s race wins.= � � 7�� 3
P�������G�G�G�G�GG�G�G�G�GG�G�G�G�GG�GG�GGG�G/G�GG�G

t � � 7 ��3
-���$�� � ���57 � �����)��� : 7G�G�G�G�GG�G�G�G�GG�G�G�G�GG�GG�GGG�G/G�GG�G
Be sure to allow for horses that have never won a race.

d. From the base tables alone, list horses with more than 25 wins, in order of
merit. Repeat this query using the view

= � � 7�� 3�P�����
� .
e. Assuming the existence of two views:

6���� �
�4' 3
P�����
� % t � � 7 �43�-4��$��u;V6���� �
��'�7 * , and > � � ' 3
P������� % t � � 7 ��3
-4��$��w; > � � '�7 *
that provide the number of second and third places that a horse has had,
write a view

= � � 7�� 3
P�����
� , like the following, that provides a summary of
a horse’s performance:

t � � 7 � � �����)��� : 7 � ���57 6���� �
��'�7 > � � '�7
 M � " ��� D�NN�E�? ?�E ?�b ?�?
= ���� " ���� � � bE�D�b ` N @
� � � = ���' @ @ @ ?

Chapter 16
Database Manipulation
in SQL
16.1 Introduction

In this chapter we look at the three data manipulation commands of SQL.
� The

���������
	
statement enables one or more new rows to be added to a table.� The �
���� 	�� statement allows one or more existing rows to be modified in some way.� The ������	�� statement allows one or more existing rows to be removed from a table.

These statements allow the user’s model (or information system) to be manipulated so as
to reflect changes that have occurred in the user’s environment.

16.2 Adding New Rows

The
���������
	

statement allows one or more rows to be inserted into a table.
There are two forms of the statement, one that allows us to insert a single row, and one

that allows the insertion of a set of rows.

16.2.1 Single Row Insert

This form allows one new row to be placed in the table specified.

Example 16.1 We want to add a new student number 999, with the name Meg Murphy.
To do this we construct the row with a ��� � � ��� clause and then insert that into the � 	 �� ����	��
table. � �������
	� �
	�� � 	 �� ����	��� � � � �������
�
�! #"%$���&'"�
"%$ � � �
(�) "+*

,.-�/

Database Manipulation in SQL 387

The three values supplied are attached to attributes according to the order of their appearance
in the 0 ��� � 	�� statement used to set up the � 	 �� ����	�� table.

If we didn’t know Ms Murphy’s first name, then we must leave a gap. We can do this
in either of two ways:� � � � �������
�
�!
 �"%$ � � ��(�) "1*� � � � �������
�
�! 2� � �
�3 4"%$ � � �
(�) "+*
It is better style to state explicitly where any null values are to be used; that is, of the above
two examples, the second form is preferable.

It is even better style to state explicitly the attributes to which values are to be associated.
This can be done by specifying the columns into which the values are to be placed:� �������
	� �
	�� � 	 �� ����	���� � 65 � �7	�*� � � � ���8�9�
���! :"%$ � � �
(�) "+*
Not only does this document the

�.�������
	
, it also allows us to write the values in any order;

so we could have written:� �������
	� �
	�� � 	 �� ����	�����5 � �7	' � *� � � � �����
"%$ � � ��(�) "
 ;�
�
��*
The general syntax of this form of insert is as follows:

�����
&���� ����< ���������
	>=
�@? ��A
B�C�@? C�D 	 ��E ��� � �@F � [

�
list of 0 ��� ��F � � �@F � s *]�
G 5�H A�� � list of ��� � � � s *

The value may be a constant such as
�
�
�

or
"%$ � � �
(�) " , or a program variable. It may

also be an expression of the type appropriate to the associated column, it cannot involve a������� 0 	 statement.

16.2.2 Multi-row Insert

The second form allows any number of rows to be inserted into a table. This can be useful
if we want to make a copy of the table or to extract a significant amount of data from
elsewhere in the database. However, since the database will have been designed to avoid
any redundancy, we might ask if it is wise to duplicate information already in existence.
This will be discussed shortly.

We could create a table ��(���
	 � 	 �� ����	�� that contains only the last name and Id
attributes: I���� � 	�� C���E ��� ��(����	 � 	 �� ����	��� � ����	���&����' 5 � �7	 0@(�� �J�@K@LM*�*

388 Chapter 16

Now we can fill this table with a “mass" insert:

� �������
	� �
	�� ��(���
	 � 	 �� ����	��� �
��� 0 	 � N5 � �7	O ��� F � 	 �� ����	��

Why would we want to do this when we can create a view that offers the same information?

I���� � 	�� � ����< ��(���
	 � 	 �� ����	��� �� �
��� 0 	 � N5 � �7	O ��� F � 	 �� ����	��

The view will save space, existing only as a definition in the catalog. It will also automati-
cally include any new students added to the underlying base table � 	 �� ����	�� .

This form of the
���������
	

does offer a way of dropping a column from a table. With��(����	 � 	 �� ����	�� we have, in effect, dropped the
O �@���7	

column from the � 	 �� ����	M� table.
The mass insert also enables us take a snapshot of the database. If we want to examine the
state of some portion of the database at a certain moment, then we can do so with this form
of
���������
	

. The syntax is as follows:

F�� ��	�� ����< ���������
	>=�@? ��A
B�C�@? C�D 	 ��E ��� � �@F � [
�
list of 0 ��� ��F � � �@F � s *]������� 0 	 �@	 � 	�� F ����	

Example 16.2 Suppose we want to add a new student and automatically allocate a new� to that student.

� �������
	� �
	�� � 	 �� ����	��P� � O �@���@	' Q5 � �7	�*� �
��� 0 	 F���R � � *7S�KT U"%V�� � &'"
 :"WV��
� � "O ��� F � 	 �� ����	��

16.3 Modifying Existing Rows

The ������ 	�� statement allows us to make changes to rows that already exist in the database.
All the rows will be from the same table, that is, only one table at a time can be updated.

Database Manipulation in SQL 389

�
��
� 	�� �7	 � 	�� F ���
	>=H�X
V G C�A 	 ��E ��� � ��F ���A
C list of � �
���@&�� F ����	 s
[Y�Z
A�B
A[0 ��� ��	������]

� �
�
�@&�� F ����	>=
0 ��� ��F � � �@F �:\ ��� � � �

Example 16.3 The update may target one row if the
< (����� clause refers to the key.

Suppose we discover that student 871 is called Stan Zupp, not Hans Zupp.
H ���� 	�� � 	 �� ����	��� ��	 O �@�M�7	4\]" � 	 � �^"Y
(����� � \`_
a�K

The
����	

clause allows us to assign a new value to a column. The value assigned may be
one of:

� a constant� a program variable� an expression constructed using either or both of the above in conjunction with any
built-in function� a subquery that returns a single value� � � �
�

Obviously the value must be of the same type as the column to which it is being assigned.

Example 16.4 We can change a number of columns in the set clause, separating each
new assignment with a comma. Suppose we find that student 854 is not Betty Kahn after
all, but Liz Kant.

H ���� 	�� � 	 �� ����	� ��	 O �@�M�7	4\]"%5��7bJ"
 5 � �@	 \]"Wc � ��	'"Y
(����� � \`_
d�e
Example 16.5 We can change a number of rows with a single statement. Suppose we
want to increase everybody’s marks in assignment 1 by 5%.

H ���� 	�� B ��� � ��	��� ��	 $ � ��f4\`$ � ��f`S`dY
(����� � 	�� F \gK
Example 16.6 The

< (����� clause may involve a subquery. Suppose we want to take 5
marks away from anybody who submitted the second assignment after the due date.

390 Chapter 16

H ���� 	�� B ��� � ��	��� ��	`$ � �
fh\h$ � �
fjihdY
(����� � 	�� F \`k� � ���
E�F �@	
	�� :l � � ����� 0 	:V � �O ��� F G �
�����
�
Y�(����� � 	�� F \jk�*

This would cause two results to be changed, those marked with an asterisk below:

i
i�i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i
i�i
i�i
i�i�i
i�i
� 	�� F � ���
E�F �@	
	�� $ � �
fi
i�i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i
i�i
i�i
i�i�i
i�ik _
a�K K@L
k�K a
Lk _
m
� K@L
k
k _
L nk _
a
k K@L
k�K m
dk _
m
k K@L
k
k a
L nk _
m
_ K@L
k�K a
di
i�i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i
i�i
i�i
i�i�i
i�i

The assignment was due on 1021 that is the twenty-first of October. Two students handed
in their assignments after that date,

_
m��
and

_
m
k
; they will have 5 marks deducted.

i
i�i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i
i�i
i�i
i�i�i
i�i
� 	�� F � ���
E�F �@	
	�� $ � �
fi
i�i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i
i�i
i�i
i�i�i
i�ik _
a�K K@L
k�K a
Lk _
m
� K@L
k
k a
d nk _
a
k K@L
k�K m
dk _
m
k K@L
k
k m
d nk _
m
_ K@L
k�K a
di
i�i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i
i�i
i�i
i�i�i
i�i

Example 16.7 Having penalized some of the students we can now be kind to them all by
scaling the marks upwards. We do this here by taking the best mark, which was 75 and set
this to 100 and then adjust all the others accordingly.

a
d i
i l a
d�n�K@L�L�o�a
dU\pK@L
L
a
L i
i l a
L�n�K@L�L�o�a
dU\`�
qm
d i
i l m
d�n�K@L�L�o�a
dU\`_
a

It would seem straightforward to turn this calculation into an ������ 	�� statement.

H ���� 	�� B ��� � ��	��� ��	`$ � �
fh\r�s$ � �
f�n�K�L
LM*�ot� � ����� 0 	 F���R �s$ � �
f�*O ��� F B ��� � ��	��Y
(����� � 	�� F \`kM*Y
(����� � 	�� F \`k

Database Manipulation in SQL 391

Unfortunately this form of assignment is not allowed. If the
����	

clause uses a subquery
then the assignment must be of the form:

����	 0 �
� ��F �Mu7� �@F �v\r�+� �
E�w�� ���) *
whereas the statement above uses a

����	
clause of the form:

����	 0 �
� ��F �Mu7� �@F �v\ F�� �
f�n�K@L�L�ot�+� ��E�w�� ���) *
We can overcome this problem by incorporating the F�� �
f�n�K@L
L factor into the subquery
and using a F ��� function instead of a F���R :

H ���� 	�� B ��� � ��	�� B� ��	 B>x $ � �
f4\y� � ����� 0 	 F ���'� B>x $ � ��f�n�K@L
L
o�$ � �
f�*O ��� F B ��� � ��	��Y
(����� � 	�� F \jkM*Y
(����� B>x � 	�� F \`k
The revised table now contains the scaled marks.

i
i�i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i
i�i
i�i
i�i�i
i�i
� 	�� F � ���
E�F �@	
	�� $ � �
fi
i�i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i
i�i
i�i
i�i�i
i�ik _
a�K K@L
k�K �
q �%< � �Ua
LM*k _
m
� K@L
k
k K@L
L �%< � �Ua
d! Q	 (�4	�� �zF�� �
f�*k _
a
k K@L
k�K _
a �%< � �Um
dM*k _
m
k K@L
k
k _
a �%< � �Um
dM*k _
m
_ K@L
k�K K@L
L �%< � �Ua
dM*i
i�i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i
i�i
i�i
i�i�i
i�i

Note that the new version uses a correlated subquery and may be expected to be slower to
execute because the F �.� function is calculated for every row updated.

16.4 Removing Rows

We can remove unwanted or outdated rows from the database by using the ������	�� state-
ment. Like the

����������	
and �
��
� 	�� statements, the ������	�� targets just one table.

Example 16.8 We can rid ourselves of a troublesome student.
V��
����	��
O ��� F � 	 �� ����	��Y
(����� � \j_
q�K

Example 16.9 We can even rid ourselves of all students.
V��
����	��O ��� F{� 	 �� ����	��

The table is now empty. It remains defined in the catalog. To get rid of the table entirely
we would need to ��� � it.

392 Chapter 16

 ������	�� �7	 � 	�� F ���
	>=V A 5 A
C�AO B�D $4	 ��E ��� � �@F �
[Y�Z
A�B
A[0 ��� ��	������]

Example 16.10 The condition in the
< (����� clause may involve a subquery. Suppose we

want to remove any student who has failed to submit any item for assessment.

V��
����	��
O ��� F{� 	 �� ����	��Y
(����� � ����	{���]� � ����� 0 	 � | ��� F B ��� � ��	���*

The subquery
� � ����� 0 	 � O ��� F}B ��� � ��	���* identifies students who have a result of some

kind. The �
����	�� statement removes those who are not in this list.

16.5 Transactions

Each of the data manipulation statements operates on just one table at a time. Yet there will
be events that, to be adequately captured, require changes to several tables. For example, in
the ~��P���1���M� database, if a student drops out, then not only should his or her student row be
removed, but any result rows associated with that student should also be removed. These
two deletions cannot be achieved through a single delete statement. Two are required.
Consequently, after the first delete, the database is no longer in a consistent state. There
are two possible ways of dropping the student.

1. If we perform the update as:

V�������	��
O ��� F � 	 �� ����	M�Y
(����� � \j_
a
k

At this stage the database has results for a non-existing student.

V�������	��O ��� F B ��� � ��	��Y
(����� � \j_
a
k
Now the results are gone as well and once again the database is consistent.

2. Alternatively we might change the database in the reverse order.

V�������	��
O ��� F B ��� � ��	��Y
(����� � \j_
a
k

Database Manipulation in SQL 393

Now we have a student 872 without any results, and should the transaction stop here
then it might appear as though the student had not obtained any results, which is not
the case.

V�������	��
O ��� F � 	 �� ����	M�Y
(����� � \j_
a
k

The database is again consistent.

At the halfway stage of this transaction, and regardless of which table we tackle first, the
database will be in an inconsistent state. Now there are two ways to recover consistency;
we can either go forward and complete the second delete; or we can attempt to undo the
first ������	�� , which might be rather difficult.

Why would we want to undo the work done so far?

1. We might be sitting at a terminal typing in the commands interactively when suddenly
we realize that it was student 862 who dropped out, not 872.

2. More likely, we are operating on the database through a program, and that program is
issuing the SQL statements on our behalf. We merely identify the student as 872 (or
was it 862?) and the program fires off both �
����	�� statements for us. Our one action
gives rise to two database actions. Should there be a hardware or software error in the
middle of this transaction then the database is potentially in error.

Regardless of exactly how we are modifying the database, there is a need to be able to
unpick our current activities and get back to where we started. But where did we start?
Perhaps we have just successively dropped two students with the error occurring while
processing the second. Clearly we must wipe out the current transaction. Do we want to
wipe the first one as well? Probably not but how can SQL tell how far to rollback? As far
as it is concerned it is merely receiving a stream of commands and executing them one at
a time. How can SQL tell that certain comments are packaged together as a transaction?
While processing a transaction we have two ways of signaling completion.

1. The
I D $
$ � C Statement

This command indicates to SQL that we are satisfied with the current transaction and
are prepared to have its effects irrevocably fixed in the database. Once issued there is
no return.

2. The B�D 5
5�� G I�c Statement

This command undoes any changes that have been made since the most recent 0 � F
F �@	 .

We will return to transaction management in Chapter 1 where we consider it from the user’s
point of view.

16.6 Referential Integrity

If the tables in the database have been defined with
O �����M�@&��4f��) references, there are two

such linkages in the ~��P���1���M� database, both are from the B ��� � ��	M� table. This was shown
in Section 15.4. For the ~��P���1���M� database:

394 Chapter 16

I���� � 	�� C���E ��� � 	 �� ����	��� � � ��F�E ���J�9q x L�*�����	:� � ���3 O �����7	 0@(�� �J��K@LM*� 5 � �7	 0@(�� �J��K@LM* ����	:� � ���3
X
��� F�� �) f��) � � *
*

I���� � 	�� C���E ��� G �
�������� � 	�� F � ��F�E ���J�@KT �L�*�����	:� � ���3 V���� 0 ��� � 	������ 0@(�� �J��q
LM*� Y ���@& (� ��F�E ���J�9q! �L�* 0@(� 0 fJ� Y �M��& (E ��	�<������`L � � K@L
LM*� V � � �� 	��!
X
��� F�� �) f��) � � 	�� F *
*

I���� � 	�� C���E ��� B ��� � ��	��� � 	�� F � ��F�E ���J�@KT �L�*�����	:� � ���3 � � ��F�E ���J�9q! �L�*�����	:� � ���3 ����E�F �@	
	�� �� 	��! $ � �
f � ��F�E ���J�9q! �L�* 0@(� 0 fJ�s$ � ��f E ��	�<��
���`L � � K@L
L�*�
X
��� F�� �) f��) � � 	�� F � *�
O �����M�@&��4f��) � � * ��� | ������� 0 ��� � 	 �� ����	���� � *� O �����M�@&��4f��) � � 	�� F *v��� | ������� 0 ��� G �
��������� � 	�� F *
*

As we build up the database, SQL will maintain this referential integrity.

1.
� �������
	
If we attempt to insert a row into the B ��� � ��	�� table, then the value in the

� attribute
must match the

� attribute of some existing row in the � 	 �� ����	M� table. For example,
if we try to add a result for student Id

�
�
�
, then student

�
�
�
must exist in the � 	 �� ����	��

table.

Similar comments apply to the
� 	�� F attribute of any result being inserted. There must

exist a corresponding item in the
G �
�����
�

table.

2.
H ���� 	��
Once a result row is successfully inserted, we may change it with an update statement.
However, the same conditions apply. The new value to which the Id is set must still
match an existing student row,

3.
V�������	��
For the delete statement, we must switch our attention to the parent tables, � 	 �� ����	��
and

G �
�����
�
. We cannot delete a row from the � 	 �� ���
	�� table, for example, if that

student is recorded as having any results. Nor can we delete an assessment item fromG �
�����
�
if results have been awarded for that item.

Database Manipulation in SQL 395

16.7 View Update

In all the discussion in the chapter so far, it has been assumed that the table being manipulated
is a base table. What might happen if we were to try, for example, to insert a row into
a view rather than an ordinary base table? Later we will consider why we might wish to
insert through a view.

Suppose we define two views of the Students table, one that gives each student’s first
name and one that gives the student’s last name.

I���� � 	�� � ����< O �@���7	�u � ����< I���� � 	�� � ����<`5 � �7	�u � �7��<� � � �� �
��� 0 	 � O �@���7	 � ����� 0 	 � s5 � �7	O ��� F{� 	 �� ����	�� O ��� F{� 	 �� ����	M�
� �
��� 0 	[n � ����� 0 	}nO ��� F O �@�M�7	�u � �7��< O ��� F 5 � �7	�u � ����<O �����7	�u � ����< 5 � �7	�u � ����<i
i�i
i
i
i
i�i
i
i
i i
i
i
i�i
i
i
i
i�i
i
i
� O �@���@	 � 5 � �7	i
i�i
i
i
i
i�i
i
i
i i
i
i
i�i
i
i
i
i�i
i
i_
a�K Z�� ��� _
a�K � �
�
�_
m�k �T���
� _
m
k ��� � � _
m�� B � � _
m
� D � |
|= = = =_
m�_ Y ���
� _
m
_ � �@F�E �
�i
i�i
i
i
i
i�i
i
i
i i
i
i
i�i
i
i
i
i�i
i
i

The
O �@���7	 � �7��<

can never be used to update the database. It omits a column that was
defined as

����	:� � �
� in the 0 ��� � 	��U	 ��E ��� statement. SQL can work out into which base
table a row should be inserted, but cannot construct an adequate ��� � � ��� clause because an
essential base table column is missing from the view. However, if we want to add a student
whose first name is unknown then we could use the

5 � �7	 � ����<
� �������
	� �
	��:5 � �7	�u � ����<� � � � �������
�
�! #"%$ � � ��(�) "+*

SQL can, through the view definition, turn this into an insert into the base table.

� �������
	� �
	�� � 	 �� ����	���� � 65 � �7	�*� � � � �������
�
�! #"%$ � � ��(�) "+*
This is a valid insert statement for the Students table.

Suppose we now define a view which selects certain rows rather than certain columns.
I���� � 	�� � ����<�� ��0 ��	M�� �� �
��� 0 	 � O �����7	' Q5 � �7	

396 Chapter 16

O ��� F{� 	 �� ����	��Y
(�����:5 � �7	h5���f���"%$ 0�� "��� 5 � �7	h5���f���"%$ ��0�� "
Anybody whose last name starts with Mc or Mac will appear on the view. Nobody does
at the moment. Clearly we can insert into Students through this view because all three
columns are involved.� �������
	� �
	�� ��0 ��	��P� � O �@���7	' Q5 � �7	�*� � � � ���8�9q�K+e' :" G ��& � ��"

"W$ ��0 f ��) "�*
This translates directly into a straightforward insert into the base table. If we try using the
view in a query we will expect to see Angus.

� �
��� 0 	[nO ��� F ��0 ��	��
��0 ��	��i
i�i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i
i
� O �@���@	 5 � �@	i
i�i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i
iq�K+e G ��& � � $ ��0 f ��)i
i�i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i
i

What if we try another insert?
� �������
	� �
	�� ��0 ��	��� � � � ���8�9�
���!
"W��� E "

" ��F ��	 ("�*

This can be translated into an insert into � 	 �� ����	�� . But if we look at the view now, we
still get only Angus because his row is the only one that satisfies the view condition. Bob’s
clearly does not. This is rather unfortunate. After a seemingly successful insert into the��0 ��	M� view the row has disappeared. This is particularly undesirable because the user may
be completely unaware that he or she is working with a view and not a table.

To overcome this problem we can require that all inserts into a view can be seen through
the view. This is done by using the optional 0@(� 0 f clause:

� ����< � | ���T��	�������=I B
A G C�A ��� A�Yh� ����< � �@F � [
�
list of 0 �
� ��F � � ��F � s *]G � ������� 0 	 �@	 � 	�� F ����	

[Y � C�Z I Z
A I�c D X C � D ?]

Suppose we now try to insert Bob. SQL will now check that this new row satisfies the
view condition. If it does not, then the insert will be rejected.

The check is also made on any update statements applied to the view. If we change
Angus’ name to Hamish:

Database Manipulation in SQL 397

H ���� 	�� ��0 ��	��� ��	 O �����7	4\r" Z��@F ��� ("Y
(����� � \jq�K+e
the record will satisfy the view condition so the update is allowed to proceed. However, if
we try to change the last name:

H ���� 	�� ��0 ��	��� ��	j5 � �7	h\]"9����������"
Y
(����� � \jq�K+e

this update will be rejected because afterwards the row involved will not appear through
the view, so the update will have operated like a delete. To make this kind of change we
will have to revert to the base table.

16.8 Controlling Database Access

In almost all of the discussion of SQL that has taken place so far, it has been assumed
that either there was only one user or that the users formed a single homogeneous group
of people. This is not normally true. Typically, the database is a composite picture
of the organization or of some part of it. It is, in fact, constructed from a number of
individual views, some of which overlap and some of which have nothing in common. Yet,
when integrated, the result is a kind of communal organizational noticeboard containing
information ranging from the managing director’s expense sheet to the date of acquisition
and purchase price of somebody’s personal computer. We must be able to control access
to the database so that sensitive information is available only to those who need it. We also
need to ensure that those entrusted with updating the database have the right kind of access.
Controlling access to the database is achieved through the

&�� � ��	 and
��� � ��f�� statements.

We will consider each of these in turn.

16.8.1 Granting Access

The
&
� � �
	 statement has the following syntax.

&
� � ��	 �7	 � 	�� F ����	^=� B G
? C [list of � ��� � ������&�� s � G 5
5]D ? 	 ��E ��� � �@F �C�D list of � ����� � �@F � s
[Y � C�Z � B G
? CjD X C � D ?]

� ��� � ������&��'=
[��A 5 A I C6� �@? ��A�B
C�� V A 5 A
C�A�� G 5 C
A
B6� �@? V A
�]�7� H�X
V G C�A list of 0 ��� ��F � � �@F � s

Suppose we have the following users.

398 Chapter 16

User Role
��� 0 	 � ����� supervises the whole affair
�7	 �� ����	 suffers throughout the whole affair

��7F �.� adds new students to the class, corrects any mistakes in the spelling of student
names, and drops students when they fail to pay their fees

��� 0 ��� � ��� receives items of assessment submitted by students

F�� �
f���� awards marks to students

Example 16.11 The ��7F ��� user not only needs to add new rows to the student table but
also needs to read the table to ensure that the student is not already enrolled. He or she also
may need to change names, and to drop students.

��� � ��	 � ����� 0 	' � �������
	' H ���� 	�� O �@���@	' Q5 � �7	J V�������	��
D � � 	 �� ����	��C � ��7F �.�

Example 16.12 The marker needs to add rows to the results table.

��� � ��	 � ����� 0 	' � �������
	��� B ��� � ��	��	�� F�� �
f����
��� � ��	 � ����� 0 	��� � 	 �� ����	��	�� F�� �
f����
��� � ��	 � ����� 0 	��� G �
�����
�	�� F�� �
f����

Example 16.13 The lecturer might be granted complete access to all privileges on all
tables.

��� � ��	 G �
���� � 	 �� ����	��	��`��� 0 	 � �����

16.8.2 Revoking Privileges

There is a complementary command for removing privileges.

Database Manipulation in SQL 399

��� � ��f�� �7	 � 	�� F ���
	>=
B
A � D c A [list of � ��� � ������&�� s � G 5
5]D ? 	 ��E ��� � �@F �O B�D $ list of � ����� � �@F � s

Either individual, and possibly all, access rights may be removed from users; and either
just one user and possibly several different users may be involved.

Example 16.14 Once the semester has finished and results have been finalized, we may
want to prevent any subsequent changes to the database.

B � � ��f�� G �
���� � 	 �� ����	��| ��� F{��7F ���^ ��7	 �� ����	' F�� �
f����

16.9 Summary

In this chapter we have examined the three data manipulation commands of SQL.

� The
���������
	

statement enables one or more new rows to be added to a table.� The �
���� 	�� statement allows one or more existing rows to be modified in some way.� The ������	�� statement allows one or more existing rows to be removed from a table.

We have also looked at how these statements operate (1) when applied in a situation where
the database management system supports referential integrity, and (2) when the statements
are applied to a view rather than to a base table.

Finally, we have looked at how access rights may be granted and/or revoked.

400 Chapter 16

Exercises

Q16.1 The ���M����������� Database

��0@(������� � 	 � |
| � ��� ���i
i
i
i�i
i
i i
i
i�i
i i
i
i
i�i�+n�* ��0@(�����
u � �+n�* � 	 � |
| u � �+n�* � 	 � |�| u � ��0@(�����
u ? ��F � � 	 � |
| u ? ��F � �+n�*�V���&
���
�X (����� ��0@(�
���
u � X�� ��0 ��1��* Z � �� u � � � �

Change the database to reflect each of the following events.

a. A new staff member has been hired by the School of Accountancy [��0�(����� � \]" G IJ"
]. The person involved has been allocated the � 	 � |
| � \jk
d and

his name is J. Muir, BA, MBA. John was awarded his arts degree by the Uni-
versity of Florida at Orlando (UFO) in 1985 and his MBA by the University
of Bute (UBute) in 1992.

b. Mr M. Bezzle [� 	 � |
| � \jm] has resigned.

c. Prof. B. Tree [� 	 � |�| � \pK] has, at last, been persuaded to retire.

d. L. R. Parser has finally (1995) been awarded his PhD by the University of
Central Casting (UCC).

e. The School of Chemistry has closed due to lack of interest.

Q16.2 The ¡¢��£�¤���¥�����£ Database

� 	 � |�| C�(� � 	������ G �
��� 0�� 	������i
i
i
i�i i
i
i�i
i
i
i
i i
i
i
i�i
i
i
i
i�i�+n�* C � ��0�(��� �+n�* C�(� � 	���� �+n�* ���
E�¦ � 0 	B �
� F I ������0 �@) A �����
�
��� �1��*�X (����� C�(� � 	����C � ��0�(���
Change the database to reflect each of the following events.

a. The Cosy Theater has been partitioned into two smaller ones, Tiddly and
Winks, with capacities of 5 and 25 respectively.

b. The Tiny and Cramp Theaters have been knocked together resulting in a new
larger Cramp Theater. The overall capacity is unchanged.

c. Any class allocated to too small a room is to be cancelled.

d. Yet another student has enrolled for a course in Tap Dancing.

e. All Ms Tripp’s classes are to be taken by Mr Hacker instead.

Database Manipulation in SQL 401

Q16.3 §!��¥T¨��©������ªP�
$�� F�E ����� X � ��	������ C�� ��fM� C �i
i
i
i�i
i
i i
i
i�i
i
i
i i
i
i
i�i
i
i�+n�*�$�� F�E ��� �+n�*vX � ��) �+n�* C�� ��f����X � �
) �1��*#5�� �� ��� �+n�*v5����7	��������
� � � 	

Change the database to reflect each of the following events.

a. Mike has been elected as the Labor member for the seat of West Wyalong.

b. Duane has resigned as the leader of his party. An election for a new leader
has yet to take place.

c. Denzil is the new leader of the Business Party.

d. Duane no longer talks to Denzil.

e. Nobody talks to Duane any more.

f. Marge has resigned from parliament.

Q16.4 The following tables are being used to represent the situation in a supermarket:

� � � � ��� I (� 0 f�� � 	M� ��(� ��� ����&i
i
i
i�i
i i
i
i�i
i
i
i
i�i i
i
i
i�i
i
i
iI � �7	 � I (� 0 f � I � �7	 � I (� 0 f � X�� ��0 �
Change the database to reflect each of the following events.

a. Alan comes into the supermarket and joins those people still shopping.

b. Sue joins the end of the queue at checkout C3.

c. The customer at the front of checkout C2 pays and leaves.

d. Bob, queueing somewhere, returns to the aisles.

e. Jackie goes from the end of the queue at checkout C5 to checkout C6 which
may have no customers.

Q16.5 A takeover

Wiseacres has taken over the tiny University of Hard Knox (UHK) and is in the
process of merging some academic departments (as UHK calls them) and closing
down others. Some information about Hard Knocks has already been copied from
their database into Wiseacres own ���M�������«��� database. The relevant tables are
as follows:

402 Chapter 16

V�� � 	�� A�F�� ���) �
���i�i
i
i
i i
i
i
i�i
i
i
i
i�+n�*�V�� � 	�u ? � �+n�* A�F�� �
u ? �V�� � 	�u ? �@F � A�F�� �
u ? �@F �� ��0�(��������1��*v$ � �@	������V�� 0 	���� � 	��V�� � 	�u ? �
Some of the contents of these two tables should indicate the kind of information
they contain in general.

V�� � 	��i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i�i
iV�� � 	�u ? � V�� � 	�u ? �@F �i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i�i
iK G �
	��k � � ���������
�q I
� F��
� 	�����&e V�����	����@	
�)= =i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i�i
i
A�F�� ���) �
���i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i�i
i�i
i�i�i
i�i
i�i
i
i�i
i�i
i�i
i
i�i
i�i
i�i�i
i�i
i
i�i�i�i
i�i
i
i�i�i�i
A�F�� �
u ? � ? �@F � � ��0@(�
�������¬$ � �7	������V�� 0 	���� � 	�� V�� � 	�u ? �i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i�i
i�i
i�i�i
i�i
i�i
i
i�i
i�i
i�i
i
i�i
i�i
i�i�i
i�i
i
i�i�i�i
i�i
i
i�i�i�iK V x%�@F �@	 (� ��0 $
X (��� ? � K@Lk � x ��� � � G � ? � Kq G x 5 � � � ��V ��0 � ��� e= = = = = =i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i�i
i�i
i�i�i
i�i
i�i
i
i�i
i�i
i�i
i
i�i
i�i
i�i�i
i�i
i
i�i�i�i
i�i
i
i�i�i�i

Change the ���M�������«��� database to reflect the following decisions taken by the
“Joint Amalgamation Committee" (stacked, of course, to ensure that the correct
decisions are made).

a. The Department of Business [
V�� � 	 ���4\jk] is to be merged into Wiseacres’

School of Accountancy [��0@(�
�
� � \]" G IJ"
]. Every member of that depart-

ment is to be offered a place.

b. Wiseacres’ School of Chemistry will only be required to take in UHK
chemists who have a PhD.

Q16.6 The ®«�¯¡¢° Database

A community action group known as Citizens Against Ruining the Environment
(CARE) has been set up to protest against a proposed freeway. CARE has set up

Database Manipulation in SQL 403

a database containing information on helpers and the help they are able to offer.
This has required the creation of three tables.

Z ��� � ����� Z ��� � C ���
�i
i
i
i�i
i
i i
i
i
i i
i
i
i�+n�* � �+n�* � �+n�* � O �@���@	 �+n�* Y ���
� � � ��u B�� ��&�u��)5 � �7	� 	
������	X (�����
The key of the Helper table is the Id column, that of the Tree table is also the Id
column. The key of the Help table is both the Id and the Willdo columns.

Z ��� � �����i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i�i
i�i
i�i�i
i�i
i�i
i
i�i
i�i
i�i
i
i�i
i�i
i�i�i
i�i
i
i�i�i�i
i�i
i
i�i
� O �@�M�7	 5 � �7	 � 	
���
��	 X (�����i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i�i
i�i
i�i�i
i�i
i�i
i
i�i
i�i
i�i
i
i�i
i�i
i�i�i
i�i
i
i�i�i�i
i�i
i
i�ik�K ��� F Y
(�@	�� k�_45M�7b
b���� � 	 k
m
L4q�K.e�dq
m G �
� �T����fM� Z ���
� B � �� �= = = = =i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i�i
i�i
i�i�i
i�i
i�i
i
i�i
i�i
i�i
i
i�i
i�i
i�i�i
i�i
i
i�i�i�i
i�i
i
i�i
Z ��� � C ���
�i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i i
i
i
i
i�i
i
i
i
i�i
i
i
i
i
� Y ����� � � � ��u B�� ��&�u7�)i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i i
i
i
i
i�i
i
i
i
i�i
i
i
i
ik�K V
� � | 	�����& k�K q
_k
_ C
)�� ����& k
k q
_q
d 5�� � | ����	��.��& q
_ K@dk�K C
)�� ����& K@d �= = = =i
i
i
i
i�i
i
i
i
i�i
i
i
i
i�i
i i
i
i
i
i�i
i
i
i
i�i
i
i
i
i

The C ���
� table is used to quickly disseminate information, for example, to notify
people of an urgent public meeting or for a demonstration. The method used is
known as a telephone tree. The person at the top rings several people and they, in
turn, ring several other people. So person 15 must be at the top of the tree because
nobody rings him or her.

Write SQL to answer the following queries.

a. What is the phone number of Bill Smith?

b. How many helpers live on Hill St (not to be confused with Hill Rd)?

c. Give the name and phone numbers of all helpers who can type.

d. We need some leafleting done quickly. How may people can we get to help?

e. Bill Smith claims that he has never been contacted through the telephone
tree. What is the name of the person who should be ringing him?

404 Chapter 16

f. What is the name of the person at the top of the telephone tree?

g. How many helpers do we have who cannot be contacted through the telephone
tree?

h. Who are at the bottom of the tree? Who rings each of these people? Give
names.

i. Who rings the most people?

j. Which is the largest group at the bottom of the tree and who rings that group?

k. Are there any people on the tree who do not have a phone?

Q16.7 Write SQL that amends the ®���¥T� database to reflect the following events.

a. One of the helpers, Mary Wood, has been shy about herself. It turns out that
she is an experienced political lobbyist. Update the Z �
� � table to reflect this
new knowledge. [Y ����� ��\J"%5�� E
E�) ����&J"]

b. A new helper has volunteered:G ��& � �v$ ��0 f ��)d
q A �
��� R`� 	m
q
qh�
��K@k
Angus can type and is prepared to do leafleting. Add him to the database,
giving him the next available Id number.

c. One of the helpers, Doug Deep [
� \
d
d], is disgusted with the political

infighting. He wants to leave CARE.

1. Remove him from the Z ��� � ����� and Z ��� � tables.
2. Pick someone from the largest group at the bottom of the telephone tree

and make that person take Doug’s place on the tree. You may assume
that Doug is somewhere in the middle of the tree.

Chapter 17
Application Programming

17.1 Introduction

This chapter is concerned with how we program our information systems or application.
The system will, typically, consist of a database and a set of programs. This split reflects
that division first discussed in Chapter 1.

� The database contains simple specific facts concerning the organisation.
� The programs contain more general statements or knowledge.

The programs themselves can be divided into two groups according to the kind of knowledge
they encode. Some of them are report programs. They inspect the database, make
calculations using the data retrieved, and report on the results of their calculations. The
other group of programs process transactions, that is, they allow events and changes in
the real world to be represented in the database. Each of these latter programs will be
dedicated to handling one particular kind of event.

A large part of the work involved in operating an organisational information system
is concerned with this latter group of programs. The information system must be able to
record changes in the organisation’s environment and circumstances.

This chapter is mainly concerned with such transaction processing. It examines how
the operation schemas that are used to specify the transactions are implemented as SQL
programs.

Each operation schema could be divided into two separate sets of conditions.

� There are the pre-conditions which, collectively, state what conditions must apply
before some event may truly be said to have occurred.

� There are the post-conditions which, on the basis of the pre-conditions being satisfied,
say how the situation changes as a result of this event.

�����

406 Chapter 17

U

S

E

R

S

Report Programs

Interactive SQL

Transactions

The

Data

Base

D

B

M

S

Figure 17.1 Modes of SQL Usage

In this chapter we will look at how these operation schemas may be turned into computer
programs that use SQL retrieval statements to check the pre-conditions and SQL data
manipulation statements to implement the post-conditions.

17.2 Using SQL

In all the discussion relating to SQL, it has been tacitly assumed that the user was entering
queries directly by means of a keyboard, and the results were being displayed on the screen.
There are three major ways in which the language may be used, as is shown in Figure 17.1.

1. There are users who receive reports from the system, perhaps on a daily, weekly or
other regular basis, or perhaps on demand. These people might rarely use the system
directly. Let us call such people managers.

2. There are people who use SQL directly to inspect the database by means of queries
specific to their needs at the time. They may also use SQL interactively with the results
of one query being used to trigger other queries.

3. There are people whose usage of the system is closely bound with the work they do.
These people might be order entry clerks, airline reservation clerks, nurses or air traffic
controllers. These people mainly supply information to the system.

These three groups may overlap in some systems and be quite separate in others. How-
ever, the major difference is between the direct users and the other two groups combined.
Direct users need to know SQL and they need to know about the tables that make the
database and the columns that make each table. They have, or are obliged to have, a simple
relational view of the world represented by the information system.

Other users will have views determined by the programs with which they interact; and
these views are unlikely to be simple relational ones. Hopefully, if the users have been
properly consulted during the requirements analysis stage and participate in it properly,
these programs will present pictures of the world as the users see it. This chapter looks at
how we might construct these non-first normal form interfaces that provide richer views

Application Programming 407

than the one provided by the database alone. In doing so, we will also implement the
operation schemas that specify the programs concerned.

This chapter examines the two ways in which we can do this:

1. We can use SQL in conjunction with a conventional third generation procedural
programming language such as COBOL or C.

2. We can use a fourth generation product that allows us to develop forms for each
transaction and to attach triggers or relatively short sequences of SQL to appropriate
points on a form.

17.3 Host Language Interface

17.3.1 Introduction

Third generation or procedural languages, such as COBOL and C, are flexible and multi-
purpose programming tools. Millions of information systems meeting many different needs
and satisfying many different kinds of users have been written in such languages. Yet they
do not provide the brevity and simplicity of database access that SQL provides. Their
file-handling capabilities are very limited. To overcome this problem it is common to
embed SQL statements in programs written in languages like COBOL. In this way, we
achieve a blend of the fine control provided by procedural languages with the powerful
database access facilities of a query language. The SQL is said to be embedded in the host
procedural language. The rules governing the way in which the embedding occurs is the
host language interface. The description of the interface that follows is written in terms
of a COBOL interface. Besides being a “venerable language of the ’50’s", COBOL is the
most commonly used application development language and it is readable to people with
some knowledge of programming. However, the general style of the interface is common
to any of the languages, such as C, Pascal, FORTRAN and Ada, for which interfaces have
been developed. The differences between them stem from the variations in the ways in
which, for example, statements are separated.

In this section we will discuss the major components of the interface. These are as
follows.

1. The Declare Section

This is a part of the program set aside specifically for us to introduce any host language
variables that are required. These variables are any program variables that are involved
in an SQL statement of any kind.

2. The SQL Communications Area

This is a record structure (group, in COBOL terms) in which the DBMS will return
information regarding any SQL statement that the program attempted to execute. It
will tell us whether the SQL was successful or not, and if not, then why not. An
unsuccessful call to SQL will fail, typically, because no rows were found to match the
condition specified.

3. Exception Handling

Rather than having to write program code that checks for errors and other exception
conditions after every call to SQL, it is possible to direct the interface to handle them.

408 Chapter 17

4. Cursors

An SQL ���
	����� statement is designed to return a set of rows in one “go", so to speak.
A typical procedural language handles a set by means of a �
��������	�� or other loop
structure. The cursor is the way in which the host language interface handles this
mismatch. It is a mechanism for releasing the results of a query to the program, one
row at a time.

5. Null Values

In the datatypes used in programming languages, there is no concept of a null value.
A variable declared as an integer will always have some integer value associated with
it. Yet a row retrieved from the database, may contain null values. How are these
signalled to the receiving program? The problem is overcome by introducing indicator
variables. These are used to indicate whether or not some related variable would have
received a null value, had that been possible.

17.3.2 Pre-processing

Any program that results from embedding SQL within a COBOL program is not itself
a COBOL program. It cannot be compiled. Before it can, it is converted into a con-
ventional COBOL program by a special converter program known as a pre-processor
or pre-compiler. The program produced by this process contains all the COBOL code
contained in the original one plus new COBOL code generated and inserted at appropriate
places. After preprocessing, the normal sequence of compilation and linking is followed
in producing an executable program. See Figure 17.2.

COBOL Program
+ SQL

Conventional
COBOL Program

Pre-
processor

Figure 17.2 Pre-processing

The host language interface is designed to mark clearly those sections of the program
that contain either embedded SQL or information relevant to the embedding. Mostly, this
is achieved by having each relevant section commence with ������������� and finish with
�� ���!������� . The pre-processor can then concentrate solely on sections of code marked in
this way, expanding them into conventional COBOL and merely transcribing the rest of the
program.

17.3.3 The ��
"���	 Program

This program will be used to show how the following interface features are used:

� the declare section
� the communications area
� exception handling

Application Programming 409

It is an implementation of the #%$&('*) operation that was originally specified in Chapter 14.
The complete program is shown at the end of this subsection. The program allows students
to be enrolled in a class of study. There is only one table in the database:

����+��
��
�,�
!�!�!�!�!-/.
021 �
�
3����-54076 3�"�8

When first enrolled, a student will not yet have been awarded a mark. That is the role of
some other program. A typical dialog will look like this:

�� �����"9����+�����
� 1 �;:=<�>@?
�
3����A�3�BC�D:=E�+�F�F

G�G�G �� �"��
	�	����
The program asks for the student’s Id and last name. It then signals that the student has
been (successfully) enrolled. Were someone now to enrol a student with the Id 831, then
the dialog would look like this:

�� �����"9����+�����
� 1 �;:=<�>@?H ���I����+��
��
��E�+�F�FJ����3
	�"���3���KL��
"
�
	�	���� G
If an error is encountered, for example, if someone has dropped the ����+��
�*
�@� table, then
the dialog will look like this:

�� �����"9����+�����
� 1 �;:=<�>@?H ����M3��N!�!� �O��+C���9�
3�M,	�����"LPC�*�*�
The program will then close down.

QSR�R
Q
Q T�U�V*W�XSY�V*Z/U�[�Z�\/]�^�W/U
Q
Q_Y�`�^�[ba�V*Wdc�V*Zfe�X�Wdc*[SW/Ug]�Wh]�`*igj/k�l*m�mhn�Zd]*Z/o�Z�[diCpqa�V*Wfe*a�]�[h]�`*ibr�[di�V
Q_s*WdVtZg[/]�r�n�idU�]vu/ntZ/U�ntX�Z�[/]gU�Zfe�i�wxlhU�idytV*W/yz^�[_]�`*i/UzZdn�n�idng]*W
Q_]�`*igmd]�r�n�i/U�]�[h]*Z/o*X�i�w
Q
QSR�R
T�U�{*^/V*W/U/e�idU�]t|�^/{�^�[�^�W/U}w
|�Zd]�Zh|�^/{�^�[�^�W/U}w
~ WdV/��^�U�c*R�md]*WdV*Z/c�i�mdi*\/]�^�W�U}w

T���i*\gm���kS�*i�c*^�Ut|*i*\�X�ZdV�i7m�i*\�]�^�W/UgT�U�n*R/T���i*\@w

410 Chapter 17

��� |�Z/]*Z/o�Z�[/i�R/��Zfe�i ��^�\b��� ������� ZdV���^�U�c�w��� ��Z�[�[�y�WdV�n ��^�\b��� ������� ZdV���^�U�c�w
��� md]dr�n�idU�]�w��� u/n ��^�\b������w��� k�Z�[/]�R/��Zfe�i ��^�\b��� �5��� w
T���i*\gm���kST�U�nh|*i*\�X�Z/V�i7m�i*\/]*^�W/UtT�U�n�R/T���i*\,w
T���i*\gm���kzu�U�\dX/r�n�i7m���k*j�lgT�U�n�R/T���i*\,w

��V*W�\di�n�r�V�it|�^/{�^�[�^dW/U}w
T�U�V�W�X�R/��Z�^�U}w
T���i*\Sm���kgy�`*idU�i�{�i�Vzm���k*i�V�V*W/V7��Wd]*Wgm��/k�R/T�V�V*WdVtT�U�n*R�T���i*\@w

j�W/U�U*i*\/]*R/]*W�R/|�Z/]*Z/o�Z�[/i�w
�*Wd{�i��fj/k�l*m�m/|�����]*Wb|�Z/]*Z/o�Z�[/i�R/��Zfe�i�Rdl�V�V�w
�*Wd{�ig�S]�Wb|�Zd]�Z/o�Z�[di�R/��Zfe�i�R/k*idU}w
�*Wd{�i��5�djd��l���T
��Y*�_��Z�[�[�y�WdV�n�Rdl�V�V�w
�*Wd{�ig�SY��b��Z�[�[�y�WdV�n�R/k*idU}w
T���i*\Sm���k7j�W/U�U�i*\/]J��|�Z/]*Z/o�Z�[/i�R/��Zfe�i�^�n�idU�]�^�s�^di�nto�������Z�[�[�y*WdV�ngT�U�n�R/T���i*\,w

��i�]�R�md]�r�n�idU�]*R�u�n�w
|�^�[�a�X�Z/�2���
w
|�^�[�a�X�Z/�2�(T�U�]�idVzmd]�r�n�i/U�]zu/n�����y�^/]�`SU�WgZdn�{�Z/U�\�^�U�c�w
l*\�\dida�]vu�n�w
T���i*\Sm���kzm�i�X�i�\/]gk�Z�[/]

u�U�]*W ��k�Z�[�]*R/��Zfe�i V*Wfe md]�r�n�idU�]�[~ `*i�V�i¡u/ng¢O�£u/n
T�U�n*R/T���i*\@w
u�s7m��/k�\dWdn�it¢ �
Y�`*idU
|�^�[�a*X�Zd�2�¤Y�`�i7[/]�r�n�idU�]2��p¥k�Z�[/]*R���Zfe�iCpb��^�[SZ�XdV�i�Zdn��7idU�V*W�X�X�idn�w¤�
T���i*\hm��/ktV*W�X�X/o�Z�\f�zV�i�X�i�Z�[diST�U�n*R�T���i*\
md]*W/agV�r�U}w

|�^�[�a�X�Z/�2� k�Z�[/]h��Zfe�i�����y�^/]�`SU�WgZdn�{�Z/U�\�^�U�c�w
l*\�\dida�]gk*Z�[/]*R/�*Zfe�i�w

u�U�[/i�V�]*R/��idy�R/¦�W�y}w
T���i*\Sm���kvu�U�[didV�]

Application Programming 411

u�U�]*WSmd]�r�n�i/U�]�[,�§u�n�p¨k�Z�[�] �� Z�X/r�i*[,���£u�n�p���k�Z�[/]*R/��Z¤e�i �
T�U�n*R/T���i*\@w

T���i*\Sm���kv\�Wfe�e�^/]tV�i�X�i�Z�[diST�U�n�R/T���i*\,w
|�^�[�a�X�Z/�2���
w
|�^�[�a�X�Z/�2�
w�w�w©i/U�V*W�X�Xdi�n�w¤�
w
m/]*W/atV�r�U}w

m��/k*R/T�V�V*W/V�w
|�^�[�a�X�Z/�2���
w
|�^�[�a�X�Z/�2�¤Y*W�W_o*Zdn7R�R���pqm��/k�i�V�V�e
\,w
T���i*\Sm���kgy�`*idU�i�{�i�Vzm���k*i�V�V*W/Vv\�W/U�]�^5U�r*iST�U�n�R/T���i*\,w
T���i*\Sm���ktV*W�X�X�o�Z�\5�zV�i�X�i�Z�[diST�U�n*R/T���i*\@w
m/]*W/atV�r�U}w

17.3.4 The Declare Section

As stated previously, this is a section of the program where we introduce any host language
variables that are required. These are program variables that are involved in an SQL
statement of any kind. All such variables must be declared in this section. The variables
required in the ��
"���	 program are shown below:

���
����
����ª��«C�d 2¬����	�3�"���������@�*�� 2�� ��
!������� G
 ?®¬
3���3�M3����
!�A�3�BC� ¯@���z° - ?�± 0t² 3�"�KC�� �« G ?®¯
3�������"
� ¯@���z° - ?�± 0t² 3�"�KC�� �« G
 ?³����+��
�� �� G�´ 1 � ¯@���z°�°�° G�´ �
3���!*A�3�BC� ¯@���z° - ? 0 G
���
����
������ ���¬����	�3�"����������C�*�� 2�� ���!����
�� G

The ¬
3���3�M3����
!�A�3�BC� and ¯�3�������"
� variables will allow us to identify the database we
want to access and the password required. The ����+��
��
� record contains two fields that
allow us to supply the identity and last name of the enrolling student.

17.3.5 The SQL Communications Area

This is a record with a standard structure. It is used by the DBMS to return information
regarding any SQL statement that the program attempted to execute. We can request many
different services of the DBMS and the communications area must be able to deliver a cor-
responding variety of responses. These include error messages, warnings and information
on the number of rows processed during execution of a request. The record is shown below:

412 Chapter 17

 ?³������µ�¶ G�´ �
����µ�¶@��� ¯@���z° - < 0 G�´ �
����¶�ª
µ ¯@���2��· - · 0 �*��BF G�´ �
���,�����
� ¯@���2��· - · 0 �*��BF G�´ �
���
��"�"*B G
? �
���
��"�"*B�	 ¯@���2��· - · 0 �*��BF G
? �
���
��"�"*B}�¸¯@���z° -f¹ 0 G�´ �
���
��"�"�F ¯@���z° - < 0 G�´ �
���
��"�"
� ������+
"@�vº��C��B@��

¯@���2��· - · 0 �*��BF G�´ �
�����3�"� G
? �
�����3�"� ¯@���z° G
? �
�����3�"� }?»¯@���z° G
? �
�����3�"� ± ¯@���z° G
? �
�����3�"� > ¯@���z° G
? �
�����3�"�
¼ ¯@���z° G
? �
�����3�"� ´ ¯@���z° G
? �
�����3�"� º ¯@���z° G
? �
�����3�"� ¹ ¯@���z° G�´ �
���
����� ¯@���z° - < 0 G

Some of the fields are reserved for future use and others are beyond the scope of this text,
and so only certain fields will be discussed here.
� �
���,�*���
�

This field will tell us whether some particular use of SQL was successful or not. An
unsuccessful call to SQL will fail, typically, because no rows were found to match the
condition specified.

� �
���
��"�"*B}�
If a call does fail, then this 70-byte character string will contain the text of any relevant
error message.

� �
������3�"�
This is a group of eight warning flags only some of which are ever used. They warn
us of possibly non-fatal occurrences such as the truncation of data retrieved from the
database.

17.3.6 Exception Handling

We can write program code to check for possible errors or exceptions after every call to
SQL. However, we may also direct the interface to handle them automatically. Suppose
that, in the event of an error, we mostly want to close down the program and exit. We can
include a directive, like the following, at the start of the program’s procedure division:

������������������� ��P���"L�
������"�"���"�½
�����2�
���
!���"�"���"��� ���!*������ G
Such a directive causes the pre-processor to generate code that tests the �
���,�*���
� field and if
it is negative then program control is transferred to the paragraph labeled �
����!*��"�"���" . This

Application Programming 413

code is generated after every SQL call that follows the directive, and the pre-processor con-
tinues to generate it until it encounters another directive, such as the one in the ������!���"�"���"
paragraph itself.

�
����!���"�"
��" G
¬C����F,	�3�KJ¾�¾ G
¬C����F,	�3�KJ¾ H ����M3��9!�!�¾�¿_�����
��"�"�B}� G
������������������� ��P���"L�
������"�"���"9����
�C�d �+�v��
��!�������� G
��������������"��
	�	*M�3��8�"��
	���3���v�� ���!����
�� G
�����*F9À�+� G

Errors are handled merely by displaying the error message returned in the field �
���
��"�"*B}� ,
rolling back any changes that might have been made, releasing the database and stopping
the program. However, before we rollback and release, a different error-handling directive
is issued:

������������������� ��P���"L�
������"�"���"9����
�C�d �+�v��
��!�������� G
The program will now ���� ��C�� �+� in the event of an error. This prevents the program from
getting into a loop should there be a failure in attempting to rollback and release.

����* ��P���" �
���	�3�"�3��C�*�* %:Á
Â ��A�� ² ��ÀL���@�*��F
�C�*�* L3���C����
���@�*��F
�C�*�* %:

[�
������"�"���"ÄÃ(�������3�"� ��d
«ÅÃ£AÆ H7Ç Æ�È
A�¬]
3���@�*�� %:

[½�Æ H ÆL	�3�M�
	ÉÃÊµ�Æ*A H 1 A�È
�ËÃÊ� H Æ�¯]

The interface recognizes three different exception conditions.
� �
���
��"�"���"

This occurs when an error (usually fatal) is detected. They are fatal because the program
will not be able, sensibly, to continue. They include such events as:

– the program being denied access to the database;

– the table involved in a ���
	������ statement not existing; or

– a column involved in a �*�
	����� statement not being defined for any of the tables
involved.

� �
������3�"� ��� �«
This occurs when a non-fatal error, such as truncation, occurs.

� AÆ H2Ç Æ�È
A�¬
This occurs when no rows were found (retrieved) when processing a �*�
	����� statement.

414 Chapter 17

Three possible actions may be specified.
� ½�Æ H Æ2	�3*M�
	

Program control is transferred according to the label supplied.
� µ�Æ�A H 1 A�È��

Any errors or warnings are to be ignored. This is the action taken in programs without
a ����� ��P
��" declaration.

� � H Æ�¯
The program is to stop without delay. This is not normally an acceptable course of
action.

17.3.7 Assignment

One of the most characteristic statements in any programming language is the assignment
statement, in which new values are inserted into program variables. The host language
interface allows us to extract data from the database, to be inserted into one or more host
variables. This is made possible by the introduction of another clause into the ����	�����
statement. The �� ���� clause comes immediately after the ���
	����� clause. The following
excerpt from the �� �"��
	 program shows an example.

½
���!�����+
�
��
�! 1 � G
¬C����F,	�3�KJ¾�¾ G
¬C����F,	�3�KJ¾d��
����"L����+��
��
� 1 �;:S¾t�������2 �93���P�3� C����
« G
¶@���*��F
� 1 � G
�������������L���
	�����2�
3���1
��� :§�
3����!�A�3�BC�Ç "���B ����+��
�*
�@�Á ���"�� 1 �9ÌÍ: 1 �
�� ��
!������� G

The code prompts for the Id of the enrolling student. It checks whether or not there already
is someone with that Id. If there is, then that student’s last name will be stored in the host
variable :§�
3���!�A�3�B@� . Note how the host language variable

1 � is distinguished from the
column name

1 � by being prefixed with a colon. Outside the ��������
��� G�G�G ��
��!��������
delimiters, there is no need to prefix.

3������«� �BC�*
�Î:
���
���
µ H list of ����F
"�������*�� s1 A H Æ list of :£P�3�"C�*3�M,	�� 3�BC� [:5��
�@����3��
��"]sÇ ÀÆ 6 list of ��3�M	�� 3�BC� s
[
Á
Â ��À��x���* ��@���C����]

[½�ÀÆ�È�¯�ª
Ï list of ����F
"������
�*�� s
[
Â ¶ ²@1 A
½N����
�@���C�*�*]]

Application Programming 415

17.3.8 The �
���,�*���
� Variable

This variable is a field in the SQL communications area. The DBMS will use it to return
some indication of the success or otherwise of a request made to it. There are three values
of interest.

� �
���,�*���
��Ì
If a value of zero is returned then the call to SQL was successful. In the case of the
above request to ���
	����� , this means that a student with the given Id was found. For
the ��
"��
	 program, this is an error, and an error message is displayed.

1�Ð �
���,�����
��Ì H ����
¬C����F,	�3�KJ¾ H ��N����+�����
��¾�¿��
3���!�A�3�B@�Ñ¿S¾�����3�	�"���3���K2��
"���	�	���� G ¾
���
����
����"��
	�	�M3��8�"���	���3���z�� ���!�������
���
��FL"�+� G

The program then stops! Of course, it should ask if the user wants to enter another Id.
� �
���,�*���
��ÌÒ? �

A value of ? � is the standard indication that no rows were returned, that is, no data
was found to match the �����"�� clause or the table was empty.

� �
���,�*���
��Ó
A negative value indicates an error of some kind. These could arise because of a number
of problems. The programmer does not need to check for a negative value because of
the directive discussed earlier which will cause the pre-processor to generate a check
for errors after every ensuing SQL statement.

17.3.9 The µ�	�3���*�@����� Program

The second program in this section is designed to show the following two interface features:

� how a set of rows may be retrieved and then processed under program control; and
� how null values are handled.

The program is shown at the end of this subsection. It displays, in alphabetical order,
a list of all the students in the class. Apart from this, it does little more than display the
letters Ô�3 for students who have not been awarded a mark. Suppose the table contains the
following data:

����+��
��
�,�
!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!1 � �
3��� 6 3�"�8
!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!
<�>@? E�+�F�F ¹ ¼
± ´ º ª���«���� 4
?�±�< ¯������" <�º
!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!

416 Chapter 17

The program will display the following class list:

± ´ º ª���«���� ,Ô�3
?�±�< ¯������" <�º
<�>@? E�+�F�F ¹ ¼
��
�N� Ð µ�	�3����z�@�����

u/n�i/U�]�^/s�^�\�Zd]�^�W�Uv|�^�{�^�[�^�W�U}w
��V*W/c�V*Zfe�R�u/n�wÕj�X�Z�[�[�k�^�[/]�w

QSR�R
Q
Q Y�`*igjdk�l*m�mh|�Zd]�Z/o�Z�[di
Q
Q j�X�Z�[�[_k�^�[/]S¦*i/a�WdV�]
Q
Q_Y�`�^�[ba�V*Wdc�V*Zfe�X�^�[�]�[SZ�X�X_]�`*i7[/]dr�n�idU�]*[t^�Ut]�`*iSmd]�r�n�idU�]�[S]*Z/o*X�i�w
Q
QSR�R
T�U�{*^/V*W/U/e�idU�]t|�^/{�^�[�^�W/U}w
|�Zd]�Zh|�^/{�^�[�^�W/U}w
~ WdV/��^�U�c*R�md]*WdV*Z/c�i�mdi*\/]�^�W�U}w

T���i*\gm���kS�*i�c*^�Ut|*i*\�X�ZdV�i7m�i*\�]�^�W/UgT�U�n*R/T���i*\@w
��� |�Z/]*Z/o�Z�[/i�R/��Zfe�i ��^�\b��� ����� {�ZdV���^�U�c�w��� ��Z�[�[�y�WdV�n ��^�\b��� ����� {�ZdV���^�U�c�w
��� ��Z/Vd��R�u�U�s*WCw��� ��ZdVd� ��^�_Ö�Ö�Ö�w��� ��ZdVd��u�U�n ��^�\hm�ÖC�©× � \dWfe�a}w
��� md]�r�n�idU�]*R�k�^�U*i�w��� u/n ��^�\b������w��� ^�X�Xdi�V ��^�\b����� {�Z�X/r*i7[5a�Z�\di*[,w��� k�Z�[/]�R/��Zfe�i ��^�\b��� ����� w��� ^�X�Xdi�V ��^�\b����� {�Z�X/r*i7[5a�Z�\di*[,w��� m/`�W/y*R/��ZdVd� ��^�_Ø�Ø�Ö�w��� m/�tV�idn�i�s�^�U�i*[gm/`�W/y*R/��ZdVd�}w�5� �*W�R/��ZdV/� ��^�\b������w
T���i*\gm���kST�U�nh|*i*\�X�Z/V�i7m�i*\/]*^�W/UtT�U�n�R/T���i*\,w
T���i*\gm���kzu�U�\dX/r�n�i7m���k*j�lgT�U�n�R/T���i*\,w

Application Programming 417

��V*W�\di�n�r�V�it|�^/{�^�[�^dW/U}w
j�X�Z�[�[�k�^�[�]*R/��Z�^5U}w
T���i*\Sm���kgy�`*idU�i�{�i�Vzm���k*i�V�V*W/V7��Wd]*Wgm��/k�R/T�V�V*WdVtT�U�n*R�T���i*\@w

j�W/U�U*i*\/]*R/]*W�R/|�Z/]*Z/o�Z�[/i�w
�*Wd{�i��fj/k�l*m�m/|�����]*Wb|�Z/]*Z/o�Z�[/i�R/��Zfe�i�Rdl�V�V�w
�*Wd{�ig�S]�Wb|�Zd]�Z/o�Z�[di�R/��Zfe�i�R/k*idU}w
�*Wd{�i��5�djd��l���T
��Y*�_��Z�[�[�y�WdV�n�Rdl�V�V�w
�*Wd{�ig�SY��b��Z�[�[�y�WdV�n�R/k*idU}w
T���i*\Sm���k7j�W/U�U�i*\/]J��|�Z/]*Z/o�Z�[/i�R/��Zfe�i�^�n�idU�]�^�s�^di�nto�������Z�[�[�y*WdV�ngT�U�n�R/T���i*\,w
T���i*\Sm���kg|*i*\�X�ZdV�iz\�r�V*[�WdVzm_s�WdV

m�i�X�i�\/] u/nCpxk�Z�[/]CpÙ��ZdVd� V*Wfe md]dr�n�idU�]*[
�dV�n�idVgo��hk�Z�[/]

T�U�n*R/T���i*\@w
T���i*\Sm���kz�/a*idU7m
T�U�n*R/T���i*\@w
T���i*\Sm���k i�]�\5`vmg^�U�]�WO�£u/n�pg��k�Z�[/]�R/��Zfe�i@pv����ZdVd�Ú����ZdVd��u5U�n
T�U�n*R/T���i*\@w
��i�V�s*WdV5evr�U�]�^�XSm��/k�\�W/n�it¢ �5���
u/sh��Z/Vd��u�U�nv^�[bU�Wd]t¢SR �
]�`�idU
��W/{�ih��ZdV/�z]*WSm/`*W/y�R/��Z/Vd�
i�X�[di
��W/{�i��(U�Û�Z���]*Wb�*W�R/��ZdV/�

T�U�n*R�u�s
|�^�[�a�X�Zd�7md]�r�n�idU�]*R�k�^�U*i
T���i*\Sm��/k i�]*\�`zmg^5U�]*WI�£u/nCp���k�Z�[�]*R/��Zfe�iCpz����ZdVd�}����ZdVd��u�U�n
T�U�n*R/T���i*\
T�U�n*R/��i�V�s*WdV5eÜw

j�X�W�[di7mCw
T���i*\Sm���kv\�Wfe�e�^/]tV�i�X�i�Z�[diST�U�n�R/T���i*\,w
|�^�[�a�X�Z/�2���
w
|�^�[�a�X�Z/�2�(T�U�n7W/stj�X�Z�[�[bk�^�[/]��
w
m/]*W/atV�r�U}w

m��/k*R/T�V�V*W/V�w

418 Chapter 17

|�^�[�a�X�Z/�2���
w
|�^�[�a�X�Z/�tY*W�W_o�Z/n7R�Rv��pÕm��/k*idV�V�e
\@w
T���i*\Sm���kgy�`*idU�i�{�i�Vzm���k*i�V�V*W/Vv\�W/U�]�^5U�r*iST�U�n�R/T���i*\,w
T���i*\Sm���ktV*W�X�X�o�Z�\5�zV�i�X�i�Z�[diST�U�n*R/T���i*\@w
m/]*W/atV�r�U}w

17.3.10 Cursors

An SQL �*�
	����� statement will return a set of rows. In contrast, a procedural language
handles a set by looping under the control of a �������C��	�� or other loop structure. In
COBOL, the loop structure is the ¯���" Ð ��"*BL�� ���!�¯
��" Ð ��"�B . The cursor is the mechanism
by which the host language interface handles this mismatch. It releases the results of a
query to the program, one row at a time.

The µ�	�3�����@����� program is intended to produce, in alphabetical order, a list of all the
students in the class and any mark they may have been awarded. A cursor is associated
with the appropriate ���
	������ statement.

��������������¬����	�3�"��9��+
"@�*��"L� Ð ��"
���
	����� 1 �Ý¿��
3����D¿ 6 3�"�8Ç "���B ����+
�
��
�@�
Æ�"
�
��"�M
K9�
3���

�� ��
!������� G
A cursor, � , is declared and linked to a query. However, the query is not executed until
the cursor is opened. Once the cursor is open, the result rows are made available to the
program, one at a time, by means of a

Ð ���,��� statement. This new command is only
available as part of the host language interface. The cycle of fetch and display is shown
below:

�������������9Æ*F�� N�
�� ��
!������� G
������������� Ç ���@���N�I��
���Þ: 1 �Ý¿9:§�
3����!�A�3�BC�Ü¿�: 6 3�"�8Î: 6 3�"�8 1 ��
�� ��
!������� G
¯���" Ð ��"*B9+� ��C��	��
��������
��Ìß? �
1�ÐL6 3�"�8 1
�O���7 ���9ÌO!@?
����� 6 ��P�� 6 3�"�82���L����*�,! 6 3�"�8
��	����6 ��P���¾/ ,Ô�3@¾S���2A
�
! 6 3�"�8

�� ���! 1�Ð

¬C����F,	�3�KL����+�����
�!��,�� �
��������
��� Ç ���,���9���d
���Þ: 1 �Ý¿
:§�
3����!�A�3�BC�Ü¿�: 6 3�"�8Î: 6 3�"�8 1
�
�� ���!�������

Application Programming 419

�� ���!�¯
��" Ð ��"�B G
µ�	������2� G

The first row is fetched outside the loop, which is then repeatedly performed until the
�
���,�*���
� variable contains ? � which indicates that the most recent

Ð ���@��� statement was
unable to be satisfied. The cursor is then closed. It may be opened again later in the
program, if required.

Ð ���,��� ����3��
��BC��
�;:Ç � H µ Â ��+�"@����" 3�BC�1 A H Æ list of :£P�3�"C�*3�M,	�� 3�BC� [:5��
�@����3��
��"]s

When the cursor is declared, it is associated with a particular �*�
	����� statement. The
order in which host variables are listed in a

Ð ���@��� should match the ���
	����� clause of that
���
	������ statement.

��+
",����" �
���	�3�"�3��@�*�� %:
¬��
µ���¶�À��2µ�È�À���Æ�ÀO��+
"@�*��" 3�BC� Ç Æ*À
select statement

17.3.11 Indicator Variables

In the ����+
�
��
�@� table, the
6 3�"�8 attribute may be null, as some students may not yet have

received one. The program must deal with these students slightly differently. They require
that ,Ô�3 , for “not applicable", appear instead of a number. The

Ð ���@��� statement must be
instructed to indicate when a null value is returned. It can do this because it is supplied with
an indicator variable. This special variable is piggy-backed onto the

6 3�"�8 host variable in
the form : 6 3�"�8Î: 6 3�"�8 1 �� .

��������
��� Ç ���,���9���d
���Þ: 1 �Ý¿
:§�
3����!�A�3�BC�Ü¿�: 6 3�"�8Î: 6 3�"�8 1
�
�� ���!�������

This instructs the
Ð ���@��� statement to set the

6 3�"�8 1 �� according to the value found in the6 3�"�8 attribute. The settings are as follows.

� 6 3�"�8 1 ���ÌO!@?
This indicates that a null value was found in the

6 3�"�8 column for that student.
� 6 3�"�8 1 ���Ì

This indicates that a normal mark was found.

420 Chapter 17

� 6 3�"�8 1 ��2à

A positive value indicates that some kind of truncation was performed. This would be
the case if the host language variable

6 3�"�8 was not large enough to hold the student’s
mark.

The code within the loop then checks to see whether a null mark was fetched and displays
the student information accordingly.

1�ÐL6 3�"�8 1
�O���7 ���9ÌO!@?
����� 6 ��P�� 6 3�"�82���L����*�,! 6 3�"�8
��	����6 ��P���¾/ ,Ô�3@¾S���2A
�
! 6 3�"�8

�� ���! 1�Ð

We can attach an indicator variable to all or any of the host variables used in a
Ð ���@���

statement. Indicator variables should be declared as two-byte integer fields.

17.4 Form-based Application Development

17.4.1 Transaction Processing

In the development of any new information system, a large amount of effort is spent in
specifying and writing transaction processing programs. These are programs that update
the information system, in particular, the database, to reflect changes in the situation
modeled by the information system. They have developed a well-defined style, being
screen-based and interactive. The user is presented with a fixed layout or form on which
the details of the transaction will be displayed. The transaction follows a common pattern.

1. There is a set-up stage during which the user specifies the input. The program will
validate user input and warn of any errors detected.

2. Once the user is satisfied with the set-up, then he or she signals that the transaction
should go ahead. If the input values are valid, then the database will be updated
accordingly.

3. However, it may be that either the user is unable to satisfy the program or, possibly, the
user decides to abandon the transaction.

Here is an example of how an event, such as enrolling a student in a class, may be entered
into the database. The user will enrol the student by filling out a form like the one shown
below.

Application Programming 421

H ��2µ�	�3���� 1 Ð ��"*BC3��C���� 2��K,������B
��
"
�
	�	�BC�*
�2Æ*F���"�3��C����

1 �;: < ¹ ?
�
3���Î: E�+�F�F

The user will normally follow the layout of the form and enter data into the two fields
in a top-to-bottom flow.

1. The
1 � field

When the user enters the Id of an enrolling student, the program will look up the database
to establish whether or not a student with this Id is already enrolled. If someone is, then
an error message is displayed and the user will have to correct the Id or abort the entire
transaction.

2. The �
3��� field

Once an acceptable Id has been entered, the program will take the user on to the last
name field, for which no particular checks are likely to be made.

The user may then be satisfied with the data entered and signal that the transaction should
be accepted, in which case, a new row will be inserted into the µ�	�3��� table. Alternatively,
upon checking the data, the user may realize that mistakes have been made, for example,
the last name may have been misspelt. If so the user may move back, change the mistake
or mistakes and then signal that the transaction is complete.

The need for programs that operate in this way is so great that a class of development
tools called application generators has arisen. These tools allow form-based programs to
be generated rapidly.

17.4.2 Using Forms

Before looking at how we might build a form program, we should have a clear picture of
how the form is presented to its user and how the user fills it in, because these programs
are a continuation and an extension of the paper forms that we are all obliged to complete
at most stages in our lives.

There is a certain appearance common to most forms.

� There will be a number of questions to be answered.
� These questions will be presented in the sequence that seems the most natural for the

information to be entered.
� Each question will be numbered and there will be a small “prompt" indicating the kind

of information to be entered with an appropriate amount of space for the answer.

422 Chapter 17

� There will be notes to help us with individual questions and with the form as a whole.

Doing the Deed
Having established that we can fill it out or that we will die in the attempt, we answer
the questions as best we can, perhaps returning to earlier questions to amend our original
answer, perhaps skipping forwards because we are unable to work out what the question
means.

Now we (should) scan the form to check it as a whole and then submit it. Alternatively,
we screw it up into a ball and throw it away, perhaps starting a new form, perhaps not.

Office Use Only
There will, inevitably, be a part of the form marked “Office Use Only". We view this
section with a mixture of relief and suspicion. We are pleased that this is something that
we don’t have to answer; yet we are concerned as to the meaning of the various cryptic
codes that appear there, such as Æ 6 ¬�ª or AÆ*Ï
� .

This part is used by the bureaucrats in two ways.

1. It is used to check that the form has been filled in correctly, that all claims have been
verified.

2. It is used to note that the appropriate changes have been recorded and dealt with, or to
record how far through the bureaucratic process the form has reached.

In other words, it is used to check the pre-conditions and implement the post-conditions,
or to monitor their implementation.

17.4.3 Using Automated Forms

Filling out an electronic form involves essentially the same actions as completing a paper
one. See Figure 17.3.

1. The monitor or screen takes the place of the paper.

2. The keyboard (or mouse, etc.) takes the place of the pen or pencil.

3. There will be a cursor on the screen to indicate the current position of the “tip" of the
pencil, that is, where the next item of input will appear.

4. There will be a number of form navigation and control keys.

5. We will be presented with a series of questions. Each question will involve, typically,
a small label or prompt and a data entry area.

1 �;: < ¹ ?
The data entry area will be called a field. The label will be used to identify the field.

6. Some of the fields will be mandatory and some will be optional.

7. Some of the fields will be used for display purposes only. These allow the user access
to information that will assist them in the transaction but which should not be changed.

8. The data to be entered in a field will be of a certain type or format such as a date or a
name or a money amount.

Application Programming 423

9. A default value may be placed in a field by the program. This will be the most commonly
used value for that field, thus reducing the keystrokes required by the user who may
skip over the field.

10. There will be an area for the program to send messages to the user. These messages
may describe errors in input or information about the kind of data that should be placed
in the current field, or help on using the form.

H ��2µ�	�3���� 1 Ð ��"*BC3��C���� 2��K,������B
��
"
�
	�	�BC�*
�2Æ*F���"�3��C����

1 �;: < ¹ ?
�
3���Î: E�+�F�F

6 ��«;:

The Screen� Æ�á â�ã2äNåLæJçzè .é-t0�êìë
� µ
3� C����	 ?v±9>2¼ ´ º ¹ <L· !�Ì G� Â �
	*F � Á �LÀ H Ï2È 1 Æ�¯îí�ï
Control Panel Data Entry Panel

Figure 17.3 An electronic form

There is a section of the keyboard that can be likened to the control panel of any
machine, such as a car. On some computer systems this control panel may take the form of
a “soft" panel located on the screen and activated by a mouse.

For electronic forms we use this control panel for activities such as the following.

� À�+�M�*+
� to erase or undo the most recently pressed data key.
� ª,	�3� �8 to start a field over again.
� A������ and ¯�"���PC����+C� Ç ���
	�� to allow users to navigate the form.
� A������ and ¯�"���PC����+C�t¯�3�«�� to move between the pages of a multi-page form.
� Â �
	*F as a token gesture to the user interface.
� Æ�á to indicate that the form has been completed to our satisfaction.
� µ
3� C�*�
	 to abandon the transaction entirely.

424 Chapter 17

These control keys may not be marked as such, appearing as the function keys
Ç ? , Ç ± , and

so on, or as µ���"	 , ¶	�� or ����� Ð � in conjunction with some other key, for example, µ���"	�!�È .

Office Use Only
The major difference between a hand-filled paper form and an electronic form is here. A
paper form is completed off-line, that is, away from the bureaucracy that will process it.
The electronic form is on-line, that is, its completion is being supervised by a computer
program. The consequences are as follows.

1. Errors may be detected immediately, with the program refusing to budge from a field
until it receives correct input.

2. Confirmation of data entered may be shown on display only fields.

3. Help may be brought up automatically.

4. Lists of currently correct values for a field may be shown on request in the form of a
pick list with the user able to choose a value from the list.

Once the user has entered all the required data and the program has approved it, then two
distinct actions may be taken.

1. The user may press Æ*á to indicate that he or she is satisfied and wishes the transaction
to be completed.

2. Alternatively, the user may press µ
3� C�*�
	 to indicate that the whole thing is to be
abandoned. This is the electronic equivalent of screwing up the form and throwing it
away.

17.4.4 Other Points on the Form

A form will be more than a string of individual data fields.
� There may be groups of related fields. When the user reaches, or more likely leaves,

a group then some action may be required by the computer program driving the form.
The form itself is a group of fields and the Æ�á command can be considered as a signal,
from the user, that he or she has finished that group.

� There may be sets of fields or sets of groups, upon which reaching or leaving, some
action may be required by the program.

The structure of the form and the data fields it contains may best be described by means of
the BNF language introduced in Chapter 9. The ��
"��
	�	�BC��
� screen may be summarized
by the following definition:

��
"���	�	�BC�� ��ð:�:§Ì 1 � ê �
3���
According to this definition, there are two data fields involved in enrolling a student. The
fields and their manner of use may be summarized in a Field Usage table.

Enrollment
Field Usage

Field Usage Format Default1 � Entry, mandatory integer
�
3���� Entry, mandatory name

Application Programming 425

The kind of information about a field that may appear in the columns is summarized
below.

Usage
This indicates whether the field is to be used for data entry (by the user) and, if so, whether
the user must enter some data (mandatory) or whether the field may be skipped (optional).
There are three kinds of usage.

Usage Purpose

Entry for the entry of data

Display for fields to be used, by the program, to display information to the user

Hidden for fields that will contain data relevant to the workings of the transaction, but
which need not, or perhaps should not, concern the user

Format
This column indicates the kind of data that may be entered, or displayed, in the field.
Typical formats are:

Format Allowable Keystrokes

Integer a sequence of digits

Money a sequence of digits followed by a period (full stop) followed by two more digits

Date a valid date, perhaps with a further restriction of the kind of date, for example,
Ï�Ï 6�6 ¬�¬ or ¬�¬! 6 Æ�A!�Ï�Ï

Time a valid time, also perhaps with a variety of options

Name for moderately sized character strings such as might be required to represent
someone’s name

Text for arbitrarily sized blocks of text, perhaps giving access to word-processing
facilities

A format is similar to, but not quite the same as, a datatype. It indicates a kind of
syntactic filter that permits certain keystrokes and disallows others. These format filters are
provided by the application generator and relieve the programmer of considerable effort.
The programmer merely has to specify the kind of format required.

Default
This is a preset value automatically inserted into the field by the program. It is useful when
there is one particularly common value for the field, for example, the city center postcode
for a postcode field.

17.4.5 Triggered Actions

So far, we have only specified some superficial checks that the form program must make.
For the ��
"
�
	�	�BC�*
� form, for example, we have only required that the Id be an integer
and that the last name be a name. Now we need to connect the form to the database, both

426 Chapter 17

to do some integrity checking and to add the new student to the class. We specify this extra
activity by associating actions with appropriate points on the form. For example, we might
require that the program, on receiving an Id from the user, checks that no enrolled student
has that particular Id. These actions are triggered whenever the user passes through that
point and are often called triggers for that reason.

The actions that are required may be summarized in a Form Action table.

��
"��
	�	dBC��
�
Form Action Table

Position Structure Action

Start of Form 1 � µ������8 1 �ê ��3���
End of Form ¶
��������+��
�*
�

There are two actions. One is triggered when the Id is entered; the other when the user
signals that the transaction is Æ�á . The details of these actions are shown below.

� The µ�����8 1 � Action

The µ�	�3���� table is checked to ensure that no student with the given Id is currently
enrolled.

1. Check the table retrieving the student’s last name if possible.

����	�����2�
3����1 ���� :§��3���Ç "
��B µ�	�3���Á ����"�� 1 �LÌÍ: 1 �
If no row was returned then the user’s input is valid and the user may proceed to
the next field. If data was retrieved, then a student with the same Id as the one
entered (: 1 �) is already enrolled. That student’s last name is now displayed in the
��3��� field. An error message should be displayed and the user can either enter
the correct Id or abandon the transaction.

� The ¶
���
����+��
�� �� Action

This action is taken when the user signals that he or she is satisfied that the data on the
screen is valid and complete.

1. Add a new row to the µ�	�3��� table.1 @����"��1 ���� µ�	�3���� -d1 �Ñ¿��
3��� 0² 3�	*+�� - : 1 �Ý¿�:£�
3��� 0

17.4.6 Awarding a Mark

This form allows a mark to be awarded to a student and is an implementation of theñóòDô &(õ�ö ô &(÷ operation of Chapter 14.

Application Programming 427

H ��2µ�	�3���� 1 Ð ��"*BC3��C���� 2��K,������B
¶���3�"
�LÆ*F��"�3��C�*�*

1 �;: < ¹ ?
�
3���Î: E�+�F�F
6 3�"�8Î: ´�´

In a typical successful transaction, the user will enter the student’s Id; the program
will respond with the student’s last name as confirmation; and the user will then enter that
student’s mark.

The structure of the form is as follows.

¶��3�"�� Ç ��"*Bø:�:§Ì 1 � ê �
3���� êL6 3�"�8
Award

Field Usage
Field Usage Format Default1 � Entry, mandatory integer
�
3���� Display name6 3�"�8 Entry, mandatory integer

¶��3�"
�
Form Action Table

Position Structure Action

Start of Form 1 � ½
���
����+��
�*
�ê ��3���êL6 3�"�8 µ������8 6 3�"�8
End of Form ¶��3�"
� 6 3�"�8

� The ½
��������+��
�� �� Action

1. Retrieve the student’s record and move his or her name and any mark awarded
onto the screen.

����	�����2�
3����D¿ 6 3�"�81 ���� :§��3���D¿�: 6 3�"�8Ç "
��B µ�	�3���Á ����"�� 1 �LÌÍ: 1 �
2. Check that the student has not already been awarded a mark.

: 6 3�"�8I���z �+,	�	

428 Chapter 17

� The µ�����8 6 3�"�8 Action

1. Check that the mark is in the range 0 to 100. This will take place after the user
has keyed something into this field.

: 6 3�"�8�M��������� 3� ��J? �
� The ¶��3�"�� 6 3�"�8 Action

1. Update the student’s record.

È
F
�
3�����µ�	�3���
����� 6 3�"�8LÌø: 6 3�"�8Á ���"�� 1 �LÌÍ: 1 �

17.5 Summary

When a transaction is specified by an operation schema, no constraints are placed upon
how we might implement that specification. Nor is any guidance given. In this chapter we
have seen two quite contrasting ways by which a program may be built to meet a given
specification.

� We may embed the necessary SQL within the framework of a conventional third
generation programming language such as COBOL.

� We may employ an application development package which allows us to create a form-
based program saving us from much of the work involved in the user interface and
where the SQL is attached to appropriate places on the form.

Application Programming 429

Exercises

Q17.1 Amend a mark

The following form allows an existing mark to be amended. It is an implementation
of the

ñóùÕú $@õ�ö ô &(÷ operation.

H ���µ�	�3��� 1 Ð ��"*BC3��@�*�� 2��K@������B
¶�BC�� ��LÆ*F���"�3��C����

1 �D: < ¹ ?
�
3����Î: E�+�F�F

Æ�	��;: ´�´
A��*�%: º ´

a. Define the structure of the form.

b. Specify a Field Usage Table for the form.

c. Specify a Form Action Table for the form.

Q17.2 A student drops out

This form removes a student from the class. It is an implementation of theû &¤'¤üþý%ÿ�� operation.

H ���µ�	�3��� 1 Ð ��"*BC3��@�*�� 2��K@������B
¬�"���FOÆ*+
�OÆ*F��"�3��C�*�*

1 �D: < ¹ ?
�
3����Î: E�+�F�F

a. Define the structure of the form.

b. Specify a Field Usage Table for the form.

c. Specify a Form Action Table for the form.

Chapter 18
Case Studies
18.1 Introduction

In this chapter we will look at two data processing situations.

� The first situation involves deriving a compact yet complex report or view from some
simple data.

� The second situation involves monitoring the handling of orders made on a small
manufacturer.

For both situations, we will (1) present an informal introduction, (2) describe it formally,
and (3) look at an implementation in SQL.

18.2 The League Table

18.2.1 Introduction

Last year, a number of rugby clubs agreed to take part in a competition to decide the best
team in the district. The competition is to take place over a number of weeks. Every week
there will be a round of matches with each team playing one match per round. There are
six clubs altogether, so each round will involve three games. In the first round, the results
were as follows:

Round 1 Results�������	�
����� ��������
�����
�������������
��� ��� ������ ��
���"!
���#� $
%�����������&�& $ ����'(���)
* ��+
%���,
���(� - .�����/�� -

The convention about presenting results is that the home team and its score are given first
and the away team and its score second. Each team will play all the others twice, once at

0�1�2

Case Studies 431

home and once away. This helps eliminate any bias resulting from the home team’s ground
advantage.

After each round, the results are added to the results recorded previously and a summary
table is produced. This table shows the relative standing of each team. After round 1, the
table looked like this:

�
����� ���� �� 3���������� 4��
�)��� 5���� �6
���� ��"' 7
�#�� �'(�
����'(���)
* � + + ��+ $ �
���������
�"�
��� � + + ��� $ �
.�����/�� + + � - - �
%
��,
���#� + + � - - �
������ ��
���"!
���#� + � + $ ��� +
%
�������
��&�& + � + $ ��+ +

Each column in the table provides a specific piece of summary information regarding a
team’s performance for the competition so far. The meaning of each column is as follows.

���� ��
The total number of matches that the corresponding team has won in the com-
petition so far. For example, after round 1, both Witsend and Wiseacres have
had a total of 1 win so far. They were the only victorious teams in the first
round, so all the other have had 0 wins.

3������)���
The total number of matches that the team has lost so far in the competition.
Only Shinhackers and Rosewell have lost at all, so they have lost a total of 1
match; all the others have lost 0 matches.

4��
���(�
A draw occurs when each team scores the same number of points in a game.
This column indicates the total number of drawn matches involving the team in
question. Jeeps and Rovers drew their first match, so they have a total of 1 draw
so far.

5
���
This column shows the total number of points scored by the team in all its
matches so far. It is the total points counting for the team. For example,
Witsend scored 20 points in its first round game and so has scored a total of 20
points in all its (one) matches.

�6
�#�8 ��"'
This column shows the total number of points scored by other teams against
this particular team. For example, Witsend had 8 points scored against it in its
round 1 match, so its total against is also 8.

7
�#�� �'(�
This column shows the total number of merit points awarded to each team as
a result of its performance in the competition so far. It is these merit points
that primarily determine the ranking of each team in the competition and the
eventual winner. The merit points are awarded according to the following rules:

2 merit points are given for each game won by a team;

1 point is awarded for each drawn game;

no points are awarded for a lost game.

432 Chapter 18

Both Witsend and Wiseacres have won once and drawn no times; so they both
have a total of 2 merit points. Jeeps and Rovers drew their first match, and so
have 1 merit point each.

Conventionally, the summary table is presented in order of merit. The team with the
most merit points is shown first, the second best team next, and so on. Where two or
more teams have the same number of merit points, these teams are ranked according to
the difference between the team’s

5
���
and

�6
�#�� ���'
columns. For example, after round 1,

both Witsend and Wiseacres have 2 merit points; but, for Witsend,
5
���:9	�6
�#�� (�"'�;<��+

9=$=;>���
and for Wiseacres,

5
���<9	�6
�#�� (�"'�;>���<9�$=;�?
and so Witsend is placed

ahead of Wiseacres in the summary table.

Round 2 Results�
���(�@������� ��
�����
�����
����'#����
* ��- ������ �������!
���(� A
.����)/�� ��+ �����������"����� +
%
���)������&�& A %
��,
���(� A

The status of each team after two rounds can be seen in the updated summary table:

�
����� ���� �� 3���������� 4��
�)��� 5���� �6
���� ��"' 7
�#�� �'(�
����'(���)
* � + + ?
- �8? ?
.�����/�� � + � ��- - B
%
��,
���#� + + � ��� ��� �
���������
�"�
��� � � + ��� ��$ �
%
�������
��&�& + � � �8? ��A �
������ ��
���"!
���#� + � + �8? B�C +

Witsend has won both its matches and is the only team to have done so. It now tops the
“ladder" with 4 merit points. Witsend won its latest match by 25 points to 6 and so hasD�EGF@D�HJILK�H

points in total for and M F	NOIQPRK
against. Jeeps has won one match and

drawn the other; so it now has 3 merit points. Wiseacres and Rovers have 2 merit points
each, but Rovers is placed ahead because its

5
���<9	�6
�#�� (�"'
difference is

P�PTS@P�PUIVE
whereas it is

P�DWSXP M I:SYN for Wiseacres.

18.2.2 Defining the League

The league simply consists of a set of teams and the results of matches played between
these teams. We will use the following basic types.

Type InterpretationZ\[�]_^)`ba
The set of teams that may participate in the tournament.Z cda
The set of integers 0,1,2,3, e8eRe

We will also use a schema type to represent the result of a game.

Case Studies 433

f]hghi�jlk
mon i�p(qJr�cs n `t]�u�^"vw^)xOry[#]_^"`s g{z n)m]�u�^�gRz n"m]|r�c
s n `t]t}I ^"vw^)x

A result consists of the home and away teams, their scores, and the round in which the
game was played. The only constraint is that a team cannot play against itself.
Now we can present a schema that outlines the state of the competition at any moment.

~]_^R��i�]
[#]_^"`bg�r
��]Rk n�� [#]_^"`f]hghi�jlk�gGr
��]Rk n�� f]hghi�jlk
� m r f]{ghi�jlk�g �|m e s n `t]��=[#]�^)`|g� m r f]{ghi�jlk�g �|m e ^)vw^"xJ��[#]�^)`|g� m u{g�r f]hghi�jlk�g �U��m e mon i�p(q I g e mon i�p(q�� m e s n `�] I g e s n `t]��w� m I g
� m u{g�r f]hghi�jlk�g �U��m e mon i�p(q I g e mon i�p(q�� m e ^"vw^)x I g e ^)vw^"x���� m I g
� m p�qJr
� m r f]hghi�jlk�g �bm e mon i�p(q(�� m r f]{ghi�jlk�g�� m e mon i�p(q I m p�q �bm e s n `�]����� m r f]{ghi�jlk�g�� m e mon i�p(q I m p�q �bm e ^"vw^)x
� I ���

The
~]�^8�)i�]

Declaration

1.
[#]_^"`bg�r
��]Rk n�� [#]_^"`
There is a particular set of teams involved in the competition;

2.
f]hghi�jlk�gWr���]Rk n�� f]hghi�jlk
and there is a set of results.

The rules relating these teams and these results are given in the predicate.

The
~]�^8�)i�]

Predicate

1.
� m r f]{ghi�jlk�g �bm e s n `t]��=[#]�^)`|g� m r f]{ghi�jlk�g �bm e ^)vw^"xJ��[#]�^)`|g
All the home teams must be rugby teams participating in the tournament; and so must
all the away teams.

2.
� m u{g�r f]hghi�jlk�g �U��m e mon i�p(q I g e mon i�p(qU� m e s n `�] I g e s n `t]��w� m I g
No two results in the same round have the same home team.

3.
� m u{g�r f]hghi�jlk�g �U��m e mon i�p(q I g e mon i�p(qU� m e ^"vw^)x I g e ^)vw^"x���� m I g
No two results in the same round have the same away team.

4.
� m p�q�r�� m r f]hghi�jlk�g ��m e mon i�p�q(�

434 Chapter 18

In any given round, say m p(q , no team played both home and away. For that round,
the set of teams that played at home does not overlap with the set of teams that played
away.

18.2.3 Adding New Results

We should specify the operation of adding new results to the set of results posted so far.
� q�q f]{g_i�j�k
� ~]_^8�)i�]
m)� r f]{g_i�j�k

m)� e s n `t]��=[#]_^"`bgm)� e ^)vw^"xO�@[#]_^"`bg
��� m r f]{g_i�j�k�g �|m e mon i�p(q I m)� e m�n i�p(q����m e s n `t] I m)� e s n `�]G� m e ^)vw^"x I m)� e s n `�]��
��� m r f]{g_i�j�k�g �|m e mon i�p(q I m)� e m�n i�p(q����m e s n `t] I m)� e ^"vw^)xU� m e ^)vw^"x I m)� e ^)vw^"xf]hghi�jlk�g8� I f]hghi�jlk�g �¡� m)� �[#]_^"`bg8� I [�]_^"`bg

The interpretation of this schema is as follows.

The
� q�q f]hghi�jlk

Declaration

1.
� ~]_^8�)i�]
This operation changes the league state.

2. m)� r f]{g_i�j�k
The result being added is input as a result record m)� . This means that there will be
variables m)� e mon i�p(q for the round, m)� e s n `t] for the home team, and so on. Note that
the definition of

f]hghi�jlk
requires that m)� e s n `t]t}I m)� e ^)vw^"x .

The
� q�q f]hghi�jlk

Predicate

1. m)� e s n `t]��=[#]_^"`bgm)� e ^)vw^"xO�@[#]_^"`bg
Both teams must be registered with the league.

2. ��� m r f]{g_i�j�k�g �|m e mon i�p(q I m)� e m�n i�p(q����m e s n `�] I m"� e s n `�]G� m e ^"vw^)x I m"� e s n `�]��
There is no other result for the home team in this round.

3. ��� m r f]{g_i�j�k�g �|m e mon i�p(q I m)� e m�n i�p(q����m e s n `�] I m"� e ^"vw^)xU� m e ^"vw^)x I m)� e ^"vw^)x��
There is no other result for the away team in this round.

4.
f]hghi�jlk�g8� I f]hghi�jlk�g �¡� m)� �
The new result is added to the results recorded so far.

Case Studies 435

5.
[#]_^"`bg8� I [�]_^"`bg
No teams enters or leaves the competition.

18.2.4 Producing a Summary Table

Now we can specify how each team’s position on the ladder is to be calculated. To do this,
we can introduce a record type that summarizes a team’s performance in the competition
so far.

�(i�`b`t^ m x
k\]_^"`Qr¢[�]_^"`
v�£¤p�g�u�q m ^"v¢g�u8j n g_gR]{g�u
�{n)m u�^R��^"£¤p�g_kRu\¥(k�g�r�c

This record matches a line on the summary table.
The following schema specifies how the summary table, which is a set of

�#i�`U`�^ m x
records, is to be formed.

� s n vW[#^�¦Rj§]
¨w~]_^R��i�]
j§^�q�q�] m�© r���]Rk nª� �(i�`b`t^ m x
��k�r
j«^�q�q�] m�©
� k e k\]_^"`d� I [#]_^"`bg
� k¬r
j§^�q�q�] m�©��k e v�£¤p�g I= � m r f]{ghi�jlk�gw� � k e k®]_^)` I m e s n `�]G� m e s gRz n"m]�¯ m e ^�gRz n"m]����� k e k\]�^)` I m e ^)vw^"xb� m e ^"gRz n)m]|¯ m e s gRz n)m]��_�k e q m ^"v¢g I< � m r f]{g_i�j�k�g � m e s gRz n"m] I m e ^�gRz n"m]G��ªm e s n `t] I k e k\]�^)`>� m e ^)vw^"x I k e k®]_^)`t�h�k e j n g_gR]hg I< � m r f]hghi�jlk�g � � k e k\]_^"` I m e s n `t]W� m e s gRz n)m]|° m e ^�gRz n"m]�� �� k e k\]�^)` I m e ^)vw^"xb� m e ^"gRz n)m]|° m e s gRz n)m]��_�k e �{n)m I<± �ªm r f]{ghi�jlk�gw�{k e k\]_^"` I m e s n `t] �bm e s gRz n"m]��F�± ��m r f]hghi�jlk�g �hk e k®]_^)` I m e ^"vw^)x �bm e ^"gRz n)m]��k e ^8��^)£¤p
ghk I²± ��m r f]hghi�jlk�gw�hk e k\]�^)` I m e ^"vw^)x �|m e s gRz n)m]��F�± ��m r f]hghi�jlk�g �hk e k®]_^)` I m e s n `�] �|m e ^"g{z n)m]��k e ¥�k�g I²DY³ k e v�£¤p�g F k e q m ^"v¢g

The interpretation of this schema is as follows.

The
� s n vW[#^�¦Rj§] Declaration

1.
¨w~]_^R��i�]
Producing the ladder involves an examination of the current state of the league. No
changes are involved.

2.
j§^�q�q�] m�© r���]Rk nª� �(i�`b`t^ m x
This operation produces the summary table or ladder which shows the status of each
team in the competition.

436 Chapter 18

The
� s n vW[#^�¦Rj§] Predicate

1.
��k�r
j«^�q�q�] m�©
� k e k\]_^"`d� I [#]_^"`bg
Just those teams in the league have an entry in the ladder.

2.
� k¬r
j§^�q�q�] m�©��
All status records in the ladder are to be defined in the following way:

3.
k e v�£¤p
g I< � m r f]hghi�jlk�g � � k e k\]_^"` I m e s n `t]W� m e s gRz n"m]|¯ m e ^�gRz n"m]��w�� k e k\]_^"` I m e ^)vw^"x�� m e ^�gRz n"m]|¯ m e s gRz n"m]��h�
The number of times that a team has won can be determined by counting the number
of results in which either the team played at home and the home team won (

k e k®]_^"` I
m e s n `t]´� m e s gRz n)m]µ¯ m e ^"gRz n)m]) or the team played away and the away team won
(
k e k®]_^"` I m e ^"vw^"x�� m e ^�gRz n"m]|¯ m e s gRz n"m]).

4.
k e q m ^"v¢g I² � m r f]{ghi�jlk�g � m e s g{z n)m] I m e ^"g{z n)m]W���m e s n `�] I k e k\]_^"`¶� m e ^"vw^"x I k e k\]_^"`��_�
The number of drawn games in which a team has been involved can be found by counting
the number of results in which the both teams had the same score (m e s gRz n"m] I m e ^�gRz n"m])
and the team in question (

k e k\]_^"`) was one of the participating teams (m e s n `t] Ik e k\]�^)`>� m e ^)vw^"x I k e k®]_^"`).

5.
k e j n g�gR]{g I= � m r f]{ghi�jlk�gw� � k e k®]_^)` I m e s n `�]�� m e s gRz n"m]�° m e ^"g{z n)m]�� �� k e k\]_^"` I m e ^)vw^"x�� m e ^�gRz n"m]|° m e s gRz n"m]��h�
The number of losses is the number of results in which the team has played at home
and the home team has lost or the team has played away and the away team has lost.

6.
k e �{n"m I²± ��m r f]hghi�jlk�gw�hk e k\]�^)` I m e s n `�] �bm e s gRz n)m]��FX± �ªm r f]{ghi�jlk�gw�{k e k\]_^"` I m e ^)vw^"x ��m e ^�gRz n"m]��
The total number of points scored by a team is the sum of all the points scored by the
team at home plus the sum of all the points scored in away games.

7.
k e ^R��^"£¤p�ghk I<± �ªm r f]{ghi�jlk�g��{k e k\]_^"` I m e ^"vw^"x �bm e s gRz n"m]��FX± �ªm r f]{ghi�jlk�gw�{k e k\]_^"` I m e s n `t] �bm e ^�gRz n"m]��
The total number of points scored against a team is obtained by calculating the total num-
ber of points scored against that team while playing at home (

± ��m r f]hghi�jlk�gw�hk e k\]�^)` I
m e ^"vw^"x �Om e s gRz n)m]) and adding to that the total number of points scored against that
team when playing away.

8.
k e ¥(k�g I=DY³ k e v�£¤p
g F k e q m ^)v¢g
The total number of merit points may be calculated from the total number of wins and
draws.

18.2.5 The League Database

We will create two tables, one for the teams participating in the competition and another to
keep a record of all the results so far.

· ������'
�	�
��¸�&��X�
�����¹�
º �
�����¼»"* · ����� º ���#½µ ���'= �¾�&�&�½

This table provides us with a list of the teams participating in the competition.

Case Studies 437

�
�����¿�
9�9�9�9�9�9�9�9�9�9�9
�
�����¼»"*
9�9�9�9�9�9�9�9�9�9�9
.�����/��
%
�
��������&�&
%
��,
���(�
������ �������!
���(�
�����������"�����
����'(����
*
9�9�9�9�9�9�9�9�9�9�9

The second table will contain a row for each result.

· ������'
�	�
��¸�&��X%
����¾�&�'(�
º %
��¾�
* »� �'
��6���� ���'= �¾�&�&¢À
�
���(� · ����� º ���#½µ ���'= �¾�&�&¢À
�(���)���
� »� �'
��6���� ���'= �¾�&�&¢À
������ · ����� º ���#½µ ���'= �¾�&�&¢À
(���)���
� »� �'
��6���� ���'= �¾�&�&�½

The
%
����¾#&)'(�

table seems a natural way of representing the raw data that will eventuate
from each game played. After two rounds the table will look like the following.

%
�
��¾#&�'(�
9�9
%
�)¾�
* ������� �#�������
� ������ (�������
�
9�9
� �������������
��� ��� ������ ������"!
���(� $
� %�����������&�& $ ����'(�)��
* ��+
� %���,
���(� - .�����/(� -
� ����'(���� �* ��- ������ ������"!
���(� A
� .�����/�� ��+ �����������"�
��� +
� %�����������&�& A %
��,
���(� A

9�9

However, there are difficulties with the table. Suppose we try to process the results for an
individual team. That team, it is likely, will have played some games at home and some
away. To find out how many games

����'(�)��
*
have won we can try the following SQL.

����&����"' ����¾� �' ºRÁ ½
5������ %
����¾#&)'(�
���
���
� º �
�����	;ÃÂª����'(����
*�Â

��
*
�(���)���
��Ä�#�������
��½

��� º �������;ÃÂª����'(����
*�Â
��
*
(���)���
��Ä��#�������
��½

438 Chapter 18

9�9�9�9�9�9�9�9
���)¾� �' ºRÁ ½
9�9�9�9�9�9�9�9

�
9�9�9�9�9�9�9�9

In general, a team may, like
����'#����
*

, have won games both at home and away.
To find out the total

5
���
is more difficult. Witsend have scored 45 points but this is

calculated by adding the 20 points from their round 1 away match to the 25 points from
their round 2 home game. Suppose we try this:

����&����"' ��¾�� º �#�������
��½ÆÅÇ��¾�� º #�������
��½
5������ %
����¾#&)'(�
���
���
� �
�����@;ÃÂª����'(�)��
* Â
��� ������=;ÃÂª����'(�)��
* Â

The query will perform the following calculations:
��¾)� º �(���)���
�#½µ; $�Å:��-�;<B�B
��¾)� º (���)���
�#½µ;:��+@Å A=;<��A

9�9
-�È

This is clearly incorrect. What we have calculated is the total points scored in all the
matches in which Witsend have been involved. This total includes points scored by both
Witsend and their opponents. What we need is a view that places a team in one slot, so to
speak. The following table shows what is meant.

5
�����6���
9�9
%
�)¾�
* �������¼»"* 5����
�������
� �6��� ����)���
�
9�9
� �������������
��� ��� $
� �)���� ����
�"!
���(� $ ���
� %�����������&�& $ ��+
� ����'(���� �* ��+ $
� %���,
���(� - -
� .�����/�� - -
� ����'(���� �* ��- A
� �)���� ����
�"!
���(� A ��-
� .�����/�� ��+ +
� �������������
��� + ��+
� %�����������&�& A A
� %���,
���(� A A

9�9

Each match result, that is, each row in the
%
����¾�&�'(�

table, will give rise to two rows in
this view showing the scores for and against each team. Each row in the view provides
information on just one team. The view can be defined as follows:

Case Studies 439

· ������'
�	É��)�)��5
�����6(�� º %
�)¾�
* À��
�����ÊÀË5����
�������
��ÀJ�6(�� ��������
�#½
���
����&����"'�%
��¾�
* ÀO�
���(��ÀO�(�������
��ÀO(���)���
�
5������ %
����¾#&�'(�
Ì� ��)��
����&����"'�%
��¾�
* ÀO������wÀO(�������
��ÀO�(���)���
�
5������ %
����¾#&�'(�

The required doubling up is achieved by processing the entire
%
����¾#&�'(�

table twice and
merging the resulting rows with a union operation. The view may be usefully manipulated
with a

6��
��¾�/@¸��
clause. Suppose we were to group by the

�
�����¿»"*
. The view will be

partitioned as follows:
5
�����6���
9�9
%
�)¾�
* �������¼»"* 5����
�������
� �6��� ����)���
�
9�9
� .�����/�� - -
� .�����/�� ��+ +
� �)���� ����
�"!
���(� $ ���
� �)���� ����
�"!
���(� A ��-
� %�����������&�& $ ��+
� %�����������&�& A A
� %���,
���(� - -
� %���,
���(� A A
� �������������
��� ��� $
� �������������
��� + ��+
� ����'(���� �* ��+ $
� ����'(���� �* ��- A

9�9
We can use the view to give us two of the columns of the summary table.

����&����"' �
�����¼»�* À¡��¾�� º 5
���
�
�����
�#½¹ÀË��¾)� º �6��8 ����������#½
5������ 5
�����6(��
Í ����¾�/�¸��=�
�����¼»�*
9�9
�
�����¼»"* ��¾)� º 5
�����������
��½ ��¾�� º �6��� ��
�����
�#½
9�9
.�����/�� ��- -
������ �������!
���(� �8? B�C
%
�
��������&�& �8? ��A
%
��,
���(� ��� ���
�����������"����� ��� ��$
����'(����
* ?
- �R?
9�9

440 Chapter 18

This satisfies the specification regarding the calculation of the
5
���

and
�6
�#�8 ��"'

columns
of the summary table. Although each of these columns was defined as the addition of two
separate summations, we have reduced that to one. We might expect to be able to use this
view to calculate the other columns of the summary table. To find the number of wins by
Witsend, we could write:

����&����"' ����¾� �' ºRÁ ½
5������ 5
�����6(��
���
���
� �
�����¼»�*@;ÎÂª����'(���� �* Â
�)
* 5
���
���)���
�@Ä	�6���
�������
�
9�9�9�9�9�9�9�9
���)¾� �' ºRÁ ½
9�9�9�9�9�9�9�9

�
9�9�9�9�9�9�9�9

This gives us the correct answer, but not for all teams:
����&����"' �
�����¼»�* À¡����¾� �' ºRÁ ½
5������ 5
�����6(��
���
���
� 5
���
���)���
�@Ä	�6���
�������
�
Í ����¾�/�¸��=�
�����¼»�*
9�9
�
�����¼»"* �)��¾� �' º{Á ½
9�9
.�����/�� �
�����������"����� �
����'(����
* �
9�9

The other three teams make no appearance. Their rows in
5������6��8

were excluded by the���������
clause. We can overcome this problem by simply “adding" in these three teams by

means of a union operation.
¾� ��)��
����&����"' �
�����¼»�* Àd+
5������ �
�����¿�
���
���
� �
�����¼»�*X ���'Ï�� º ����&��
�"'@�
�����¿»"*

5��
��� 5
�����6���
��������� 5
���
�
�����
�@Ä	�6��8 ����������#½

The subquery returns the teams that have won at least one match. The outer query goes
through the list of all teams and returns each team that is not in the list of winners.

9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9
%
�
��������&�& +
%
��,
���(� +
������ �������!
���(� +
9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9

Case Studies 441

Now we can create a view that counts the number of wins achieved by each team.
· ������'
�	É��)�)�@���� ���¾)� º �
�����¼»"* ÀU���� ���½
���
����&����"' �
�����¼»�* À¡����¾� �' ºRÁ ½
5������ 5
�����6(��
���
���
� 5
���
���)���
�@Ä	�6���
�������
�
Í ����¾�/�¸��=�
�����¼»�*
¾� ��)��
����&����"' �
�����¼»�* Àd+
5������ �
�����¿�
���
���
� �
�����¼»�*X ���'Ï�� º ����&��
�"'@�
�����¿»"*

5��
��� 5
�����6���
��������� 5
���
�
�����
�@Ä	�6��8 ����������#½

This view has now provided us with another column for the summary table.

����&����"' �
�����¼»�* À����� (�
5������ ���� ���¾)�
Ð ��*����@¸������� ��Ñ*������
9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9
�
�����¼»"* ���� ��
9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9
����'(����
* �
.�����/�� �
�����������"����� �
%
�
��������&�& +
%
��,
���(� +
������ �������!
���(� +
9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9�9

The losses and draws columns can be delivered by two views similar to
����
��¾��

.

· ������'
�	É��)�)�=3��������)¾�� º �
�����¼»"* Àt3�����������½
���
����&����"' �
�����¼»�* À¡����¾� �' ºRÁ ½
5������ 5
�����6(��
���
���
� 5
���
���)���
�@Ò	�6���
�������
�
Í ����¾�/�¸��=�
�����¼»�*
¾� ��)��
����&����"' �
�����¼»�* Àd+
5������ �
�����¿�
���
���
� �
�����¼»�*X ���'Ï�� º ����&��
�"'@�
�����¿»"*

5��
��� 5
�����6���
��������� 5
���
�
�����
�@Ò	�6��8 ����������#½

· ������'
�	É��)�)��4��
�����)¾�� º �
�����¼»"* À�4��
�)����½
���

442 Chapter 18

����&����"' �
�����¼»�* À¡����¾� �' ºRÁ ½
5������ 5
�����6(��
���
���
� 5
���
���)���
�X;��6���
�������
�
Í ����¾�/�¸��=�
�����¼»�*
¾� ��)��
����&����"' �
�����¼»�* Àd+
5������ �
�����¿�
���
���
� �
�����¼»�*X ���'Ï�� º ����&��
�"'@�
�����¿»"*

5��
��� 5
�����6���
��������� 5
���
�
�����
�X;��6��8 ����������#½

The final column in the summary table is for merit points and this can be calculated.
We can now define the summary table as yet another view.

· ������'
�	É��)�)�²��¾���������� º �
�����ÓÀt���� ��¼Àd3��
�������¼ÀO4��
�����¼À
5
���wÀd�6��#�� ��"' ÀJ7�'(��½

���
����&����"' �
�����¼»�* À

���� ��¼À
3��������
�¼À
4��
�����¿À
5
���wÀ
�6
�#�� (�"'wÀ
� Á ���� (�ÔÅ=4��������

5������ ���� ���¾)�²�
3��������)¾��<3 À
4��
�����)¾��²4wÀ
5
�����6(�� @5�wÀ

���
���
� �ÊÕ\�
�����¼»"*	;=3�Õ\�
�����¼»"*
�)
* 3�Õ\�
�����¼»"*	;�4¬Õ\�
�����¼»"*
�)
* 4¬Õ\�
�����¼»"*	;�5�¬Õ\�������¼»"*

We can now print the summary table in order of merit.
����&����"' Á
5������ ��¾����������
Ð ��*����@¸��=7�'(�Ñ*������¿ÀË5�����9��6��#�� ��"'X*������

Case Studies 443

18.3 The Rocky Concrete Company

We have been commissioned by that well-known manufacturer of highly regarded concrete
products. The company wants us to develop an information system. The system is to help
it answer questions such as:

� What kinds of products does Rocky sell? How much does it have in stock? Should it
make another batch of product X or not?

� Who are its customers? How are they distributed across the country? How much do
they owe?

� What orders have been taken and when? Who made them? What products and how
many of each product were involved in an order?

A. Rocky’s Product Line-Up
Perhaps the best introduction to the company is to have a look at part of its catalog. See
Figure 18.1.

%����"!�� · �� (�"�
��'
�Ô7��
��*�¾(�"'(�
�6��(����¾#&�'�¾��
��&Ö7��
��*�¾(�"'(�

7��
��*�¾��"' 4
�����"����/�'(�)�� 3(����'=7��������
× Ð�Ð ×
��*#��¾�� · ��'�'
&��X���
��¾�6�� ��-�+
3 Ð�Ð 3�����6
� · ��'�'�&��X���
��¾�6�� ��-�+

4
���(���"'����Ø7��
��*�¾���'(�
�����Ù�Ú ������&�&@����/�'����Ø�
�� �! B�+�+
3����Ù�Ú 3�����6
������/�'����Ø�
�� �! ?�-�+
3���Ì�Û 3���¾�
*����@��¾�¸ ��+�+
Í Ù Ð ×�Ü Í ����*��� Í ����(� ��+

3����)��& · ��¾� �����&Ñ7��
��*�¾��"'(�
�����Ù�4 Û������(��&��@��'���
* -�+
���3�3�Ý ��'
��'�¾�����Þ@%�¾�6�¸��=7
&����
��� -�+�+

Figure 18.1 Catalog of products and prices

The catalog is for customer use. Rocky is just as much interested in other aspects of its
stock. An inventory is shown in Figure 18.2.

444 Chapter 18

3(���"'²��Þ²��'
�
�"!
7�����*�¾��"' ����/
� · ����' Ð <�
�)
* %���×
��!
� %
��×���!
�

7������)� 3���,
��& ß�'��
× Ð�Ð C�+ A B -
3 Ð�Ð ��+�+ � � B
�����Ù�Ú 4 ��+�+ ��+ - ��-
3����Ù�Ú 4 B�+�+ � � �
3���Ì�Û 4 A�+ ��+ ��- ��+
Í Ù Ð ×�Ü 4 � ��+�+ ��-�+ ��+�+
�����Ù�4 · ��+ -�+ B�- ��+
���3�3�Ý · ��+�+ ��+ ��- ?
+

Figure 18.2 List of Stock Report

When the quantity on hand of a particular product falls below a given level then a new
batch of that product will be made. The batch size is determined by the product. For
example, the number of garden gnomes in stock has fallen dangerously low. It is down to
only 100 units. This is below the re-make level of 150 units. (Rocky must have had a busy
Sunday.) Therefore a batch of 200 units, the re-make quantity for this product, will need
to be made. However, before a request is made, a list is made, showing all products that
need replenishing and the cost involved. An example is shown in Figure 18.3.

7��
��*�¾��"'��"�� 	%
��à�¾����"'
7��
��*�¾(�"' Ð ²����
* %�������!
� Ì� ���' �
��'
��&

ß�'�� · ���"' · �
�"'
3����Ù�Ú � � B�+�+ A�+�+
Í Ù Ð ×�Ü ��+�+ ��+�+ � ?�+�+
���3�3�Ý ��+ ?�+ ��+�+ ?
+�+�+

Figure 18.3 Production Request

B. Rocky’s Customer Base
Next we will look at the kinds of customers that Rocky serves. Figure 18.4 shows an
excerpt from its customer ledger.

Each customer is granted a credit limit, beyond which they are never allowed to stray;
that is, the total amount that a customer currently owes Rocky, the current balance, is never
allowed to exceed the particular limit of credit imposed on that customer.

Case Studies 445

3(���"'²��Þ · ¾��"'
���(���(�
· ¾��"'
������� Ù
����� �*�*�������� · �
��*#��' · ¾����
�� �'

3(�h�¼��' Û
��&��� ��)�
��+�A�A Ù
��,wÂ{�ØÙ�¾��(������� ������'��@������'=3��� ��¢À -�+�+ ?
-�+

Û�¾�
*���¸�����6 ÀJ?
A�C�+
��B��8? �&�Þ��
��*��������
� ×
����*����@Û��� �! À B�+�+�+ ��+�+�+

· ��¾� �����& �&�Þ(�"��'
�� �À�?
-�-�-
��C�C�A 4��Ø��¾� �'
��� �������� �'
�� �5
���)�ÓÀ -�+�+ -�+�+

%
������,
��&���À�?
C�A�-
��+�+�� Í &���* Âh� Í &���*�*#�)��� ��¾���!����	Û���������À -�+�+ +

Í &���*��"'
�� ��¢ÀJ?
C�-�+

Figure 18.4 List of Customers

C. Customer Orders
These are the company’s lifeblood! Every customer order is recorded on an order form.
Figure 18.5 shows a typical example of one. The order is allowable, from Rocky’s point of
view, because it satisfies the following conditions:

1. The quantity of each product ordered is less than or equal to the quantity on hand for
that product. In other words, Rocky had enough in stock.

2. The total value of the order, $1400, when added to the customer’s current balance,
which is $1000, is less than or equal to the customer’s credit limit of $3000.

Note that the unit price charged for two of the products is less than the list price. This is the
benefit of being a valued customer. The effect that this order will have on Rocky’s records
can be seen in the excerpts shown in Figure 18.6.

For each of the products ordered, the OnHand quantity is reduced by the amount
ordered. The current balance of the customer making the order is increased by the total
value of the order.

18.3.1 Developing a Specification

We start by introducing some base types that we will clearly need.

446 Chapter 18

áãâÏä	å<æ çãâÇè<ä	é=êµë=ê ìíéXâÇîÇï:äÑë²ð
ñ"ò{ñ�óyô�õ�õ�ö)÷hø¹ùwú"ûoü)õlôhý

Order:
��A�+��

Date:
��A�9)×
����9�È�-

Customer:
��B��8?
�&�Þ�����*���������� · ��¾� ����)&
×
����*����@Û��� �! ÀË
&�Þ(�)��'��� �À
?
-�-�-

Product Description Qty Unit Total
Code Price

�����Ù�4 Û����"�#��&��@��'
�)
* ��+ ?�+ ?
+�+
Í Ù Ð ×�Ü Í ����*��� Í ����(� ��+ ��+ ��+�+
���3�3�Ý ��'
��'�¾��@��Þ�%�¾�6�¸��@7
&����
��� � ?
-�+ È�+�+

9�9�9�9
�R?
+�+
;�;�;�;

Figure 18.5 Order Form

Type InterpretationZÿþ mon q"i�zRk\a All the products that Rocky might ever makeZÿþ mon q#[
x�¥
]Ra The product types, e.g. domestic, agricultural, and so onZ��¢i�g_k n `t] m a All the company’s possible customersZ�� m q�] m a All possible ordersZ\[�]���k\a
For names and addressesZ cda
The integers 0, 1, 2, e8eReZ �b^)k®]Ra
For order dates and whatever other dates might be required

We need a money type, but will treat it as a synonym for integers.

� n p�]{x I�I c

Next we will create some schema or record types that gather together relevant informa-
tion on some of the major entity types just introduced.

The Product Record Type
This record gathers together all the simple data that Rocky keeps about product, except for
the identity of the product itself.

Case Studies 447

��'
�
�"! · ���� �6����
7��
��*�¾��"' 4
����������/�'��"�� Ð =�
�� �* Ð ��*���� Ð ²�
��
*

Û�Ü�5 Ð %�Ü ß�'�� �5���Ü�%
Í Ù Ð ×�Ü Í ����*��� Í ����(� ��+�+ ��+ È�+
�����Ù�4 Û����"�#��&��@��'
�)
* -�+ ��+ ?�+
���3�3�Ý ��'
��'�¾��@��Þ�%�¾�6�¸���7�&����
��� ��+ � $

· ¾��"'
���(��� · ���) �6
���
· ¾���'
������� Ù
���(� Û�Ü�5 Ð %�Ü Ð ��*���� �5���Ü�%

Û���&��� ���� ����'
��& Û���&��� ����
��B��R? �&�Þ��
��*��������
� · ��¾� �����& ��+�+�+ �8?
+�+ ��?
+�+

Figure 18.6 Before and after

þ m�n q f]_z
�U]hgRz�r¢[�]���k
[
x�¥
]|r�þ m�n q([�x�¥�]~ £ g_kRu�� n ghkÊr � n p�]{x
�Êp s ^"p�qJr�c
f] � ^	��] ~]�
"]Rj\u f] � ^	��] �Êk xtr�c

This record may be thought of as an individual product view. It is an amalgamation of
the information provided about a product on the

3(���"'²��Þ²��'
����!
report (see Figure 18.2)

and the catalog (see Figure 18.1).

The Customer Record Type
This schema type gathers some important facts about a customer. It is an individual
customer’s view of its relationship with Rocky.

�¢i�ghk f]_z
cb^"`t]�u
� q�q m]hg_g�ry[#]��k~ £¤`b£¤k{u
� ^"j§^)p(z_]br � n p�]{x
� ^"j§^)p(z_]�� ~ £¤`b£¤k

It corresponds to the information about a customer found on a row of the
3#���"'Ñ��Þ · ¾��"'��������(�

report (see Figure 18.4).

448 Chapter 18

Every customer is required to have a current balance that is less than or equal to their
credit limit.

The Order Record Types
Two record types will be defined to help specify orders. The first corresponds to a physical
line on an order form.

� m q�] m ~ £¤p(]
þ m�n q�� n q�]br�þ mon q)i�z{k
�Êk xtr�c
� n j§q � k¬r � n p(]Rx
�Êk xt¯ E

Every order line must involve an order quantity greater than zero.
The second record type captures the essential details of a complete order. It corresponds,

approximately, to an individual order form including heading and body. See Figure 18.5.
� m q�] m f]�z
� m q�] m �U^"k\]�r��U^"k\]
�¢i�ghk��8q�r��¢i�g_k n `t] m~ £¤p(]{g�r
��]Rk n�� � m q�] m ~ £¤p(]
 ~ £¤p�]hg I< ��j¿r ~ £¤p�]hg � j e þ mon q�� n q�])�

The predicate requires that every line on the order involve a different product, that is, the
number of lines on the order must equal the number of different kinds of product ordered.

18.3.2 The Rocky State

We can now bring these types together in a schema that attempts to summarize the analysis
that appeared in the introduction. The components or observations introduced in the schema
correspond to the three major reports, the List of Stock, the List of Customers and the Order
Form.

f n z��"x
þ m�n q)i�z{k�g�r�þ mon q"i�zRk 9 Ål9�Ä þ mon q f]�z
�¢i�ghk n `�] m g�r��¢i�ghk n `�] m 9 Åÿ9�Ä �¢i�ghk f]_z
� m q�] m g�r�� m q�] m 9 Ål9�Ä � m q�] m f]_z
� n)m qOr#q n `�� m q�] m g �

� m q�] m g �on)m q
� e �¢i�ghk��8qJ�Øq n `��¢i�g_k n `t] m g� jl£¤p(]|r�� m q�] m g ��n"m q
� e ~ £¤p(]{g � jl£¤p(] e þ mon q�� n q�]U�Øq n `=þ m�n q)i�z{k�g

The schema is to be interpreted as follows.

Case Studies 449

The
f n z��"x Declaration

1.
þ m�n q)i�z{k�g�r�þ mon q"i�zRk 9 Ål9�Ä þ mon q f]�z
Information relating to all the products currently manufactured by Rocky is represented
as a partial function that maps each product to all the information relevant to that product.
The domain of the function,

q n `=þ mon q"i�zRk�g , represents the products themselves. An
application of the function, say

þ mon q"i�zRk�g � ¥¹� , provides us with a
þ m�n q f]_z tuple of

information about product
¥

.

2.
�¢i�ghk n `�] m g�r��¢i�ghk n `�] m 9 Ål9�Ä �¢i�ghk f]_z
The customer base is also represented as a partial function, one that maps each ex-
isting customer to information about that customer. The domain of the function,q n `��¢i�g_k n `t] m g is the set of existing customers. An application of the function, say�¢i�ghk n `�] m g � z8� , provides a record of the customer

z
.

3.
� m q�] m g�r�� m q�] m 9 Ål9�Ä � m q�] m f]_z
In a similar fashion to products and customers, each order is mapped to information
about that order.

The
f n z��"x Predicate

1.
� n)m qOr#q n `�� m q�] m g �
In every order eReRe

2.
� m q�] m g ��n"m q�� e �yi�ghk��RqO�Öq n `��¢i�ghk n `�] m g
the customer identified is one of Rocky’s and e8eRe

3.
� jl£¤p�]�r�� m q�] m g �on)m q
� e ~ £¤p�]hg � jl£¤p�] e þ m�n q�� n q�]U�Øq n `=þ mon q"i�zRk�g
every product identified on the order is from Rocky’s stock.

18.3.3 Adding a New Customer

The following schema describes how a new customer may be added to Rocky’s customer
base and the conditions that apply.

� q�q��yi�ghk n `t] m
� f n z��"xp�]{v m]_z � r��¢i�ghk f]_z
p�]{v m]_z � e � ^"j§^)p(z_] I�E� p�]��k £�q�r��¢i�ghk n `t] m�� p(]���k £�q }�Æq n `��¢i�ghk n `�] m g

�¢i�ghk n `t] m g8� I �¢i�ghk n `�] m g��´� � p�]��k £�q�uRp�]{v m]_z � �_�þ m�n q)i�z{k�g8� I þ mon q"i�zRk�g
� m q�] m g8� I � m q�] m g

The schema is to be interpreted as follows.

450 Chapter 18

The
� q�q��¢i�ghk n `t] m Declaration

1.
� f n z��"x
This signals that the operation causes a change to the

f n z��"x state.

2.
p�]{v m]_z � r��¢i�ghk f]_z
All the necessary information, apart from the customer’s Id, is supplied in this input
customer record.

The
� q�q��¢i�ghk n `t] m Predicate

1.
p�]{v m]_z � e � ^"j§^)p(z_] I�E
The customer will start with a zero current balance.

2. � p�]��k £�q�r��¢i�ghk n `t] m�� p(]���k £�q¡}�Öq n `��¢i�ghk n `�] m g
This condition establishes that there is a customer (Id)

p(]���k £�q
for this new customer

and that the Id is not already allocated to some existing customer.

3.
�¢i�ghk n `�] m g8� I �¢i�ghk n `�] m gw�¡� � p�]��k £�q�uRp�]{v m]_z � �_�
The customer base is extended to include a mapping from the customer to the customer’s
record.

18.3.4 Taking a New Order

In this section, we will discuss the operation of taking an order and how that operation
affects the

f n z��"x state. We will start by seeing what inputs the operation will require and
what output it will produce.

1.
zRi�ghk�£�q � r��¢i�ghk n `�] m
We will need to know the customer making the order to ensure both that they have
enough credit and that their current balance is updated.

2.
q � r��U^"k\]
We need to know on what date the order was made.

3.
jl£¤p�]hg � r���]{k n�� � m q�] m ~ £¤p�]
The most important input will be a set of

� m q�] m ~ £¤p(] records that show what products
were ordered, how many of each were ordered and what price they were sold at.

4.
k n k\^"j © r � n p(]Rx
The total value of the order is to be calculated.

The operation affects all three of the components of the state schema and before we introduce
the

[#^	��]�� m q�] m schema, we will describe how these state components are altered. These
descriptions also take the form of schemas and, eventually, they will be incorporated into
the complete description of the ordering process.

1. The
þ m�n q)i�z{k�g Component

The effect of an order on the
þ m�n q)i�z{k�g component is to reduce the quantity on hand of

each of the products involved by the amount ordered. We do not need to worry whether
there are enough in stock. This will be handled in the operation schema itself.

Case Studies 451

���]_zRk� � [#^	��] � m q�] m �Êp�þ mon q"i�zRk�g
þ mon q"i�zRk�g�u_þ m�n q)i�z{k�g8��r�þ mon q)i�z{k 9 Åÿ9�Ä þ mon q f]_zjl£¤p�]hg � r���]{k nª� � m q�] m ~ £¤p�]
þ mon q"i�zRk�g8� I þ mon q"i�zRk�g"!��j¿r�jl£¤p(]{g � u\¥¢u\¥ � r�þ m�n q f]_z�

¥ I þ mon q"i�zRk�g � j e þ mon q�� n q�]��¬�¥�� e �Êp$#|^)p(q I ¥ e �Êp%#|^"p�q S j e �Êk�x|�¥�� e �b]{gRz I ¥ e �U]{g{zW�¥ � e [�x�¥�] I ¥ e k x�¥
]��¥�� e ~ £ ghk I ¥ e ~ £ g_kw�¥�� e � n ghk I ¥ e � n ghkw�¥�� e f] � ^	��] ~]&
"]{j I ¥ e f]{`t^	��] ~]&
�]Rj��¥�� e f]R`�^'��] �¬k x I ¥ e f] � ^'��] �Êk�x
�
� j e þ mon q�� n q�]�u\¥����_�

The
þ mon q"i�zRk�g component is a function and function override is used to describe how

this component is changed. For each of the products in
jl£¤p�]hg � , the record for that

product is established as
¥

. A new product record,
¥��

, is created, using
¥

as a basis.
This new record is identical to

¥
except that the

�Êp$#|^)p(q
quantity is reduced by the

quantity (
j e �¬k x) of the product that was ordered. The current record

¥
is replaced by¥��

. This overriding is repeated for every line on the order.

2. The
�¢i�ghk n `�] m Component
���]_zRk� � [#^	��] � m q�] m �Êp��yi�ghk n `t] m g
�¢i�ghk n `�] m g�u��¢i�ghk n `t] m g8�¹r��¢i�g_k n `t] m 9 Ål9�Ä �¢i�ghk f]_z
zRi�g_k £�q � r��¢i�ghk n `�] mk n k\^"j © r � n p(]Rx
�¢i�ghk n `�] m g8� I �¢i�g_k n `t] m g(!��z�u�z8��r��¢i�g_k f]_z

�
z I �yi�ghk n `t] m g � zRi�g_k £�q � � �
z8� e � ^)j§^"p�z_] I z e � ^"j§^)p(z_] F k n k\^"j © �z8� e c|^)`�] I z e cb^"`t]W�z8� e � q�q m]{g_g I z e � q�q m]{g�gT�z � e ~ £¤`U£¤k I z e ~ £¤`b£¤k�
� zRi�ghk�£�q � u�zR� �_�

The
�¢i�ghk n `�] m g component is also a function. The current version of the customer’s

record is established as
z
. A new version,

zR�
, of the record is constructed from

z
except

452 Chapter 18

that the
� ^)j§^"p�z_]

field is increased by the total value of the order. This new customer
record is then used to override the previous one.

3. The
� m q�] m g Component

���]_zRk� � [#^	��] � m q�] m �Êp�� m q�] m g
� m q�] m g�u�� m q�] m g8��r�� m q�] m 9 Ål9�Ä � m q�] m f]_zzRi�g_k £�q � r��¢i�ghk n `�] mq � r#q�^)k®]jl£¤p�]hg � r���]{k nª� � m q�] m ~ £¤p�]

� c|]���k� m q�] m �8q�r�� m q�] m��c|]���k�� m q�] m �Rq¡}�Öq n `�� m q�] m gT�
� m q�] m g8� I � m q�] m g¼�

� n)m r�� m q�] m f]_z �
n"m e � m q�] m �b^)k®] I q � �
n"m e ~ £¤p�]hg I jl£¤p(]{g � �
n"m e �¢i�g_k��Rq I z{i�ghk £�q �
�
� cb]��k�� m q�] m �Rq�u n"m �_�

A new order Id
c|]���k� m q�] m �8q is found. This must not currently be in use. A new order

record n"m is then constructed from the input supplied. A new pairing is added to the� m q�] m g function. This pairing maps the new order Id to the new order record.

[#^	��] � m q�] m
� f n z��"xzRi�ghk�£�q � r��¢i�ghk n `�] mq � r��U^"k\]jl£¤p�]hg � r
��]{k n�� � m q�] m ~ £¤p�]k n k\^"j © r � n p(]Rx
zRi�ghk�£�q � �Æq n `��¢i�ghk n `�] m g��j¿r
jl£¤p�]hg �G� j e þ mon q�� n q�]��*)Çq n `=þ m�n q)i�z{k�g jl£¤p�]hg � I= ��j¼r
j�£¤p(]{g �G� j e þ mon q�� n q�]��� jyr
jl£¤p�]hg �G� j e �Êk x+�	þ m�n q)i�z{k�g � j e þ mon q�� n q�]�� e �Êp s ^"p(qk n k\^"j © I²± j¼r�jl£¤p(]{g ��� j e � n j§q � k ³ j e �Êk�x�¢i�ghk n `�] m g � z{i�ghk £�q � � e � ^)j§^"p�z�] F k n k®^)j © ���yi�ghk n `t] m g � zRi�g_k £�q � � e ~ £¤`U£¤k
���]�zRk�� � [#^	��]�� m q�] m �¬p�þ mon q"i�zRk�g
���]�zRk�� � [#^	��]�� m q�] m �¬p��¢i�g_k n `t] m g
���]�zRk�� � [#^	��]�� m q�] m �¬p�� m q�] m g

The schema is to be interpreted as follows.

Case Studies 453

The
[#^	��] � m q�] m Declaration

The inputs and output have been discussed already.

The
[#^	��] � m q�] m Predicate

1.
zRi�ghk�£�q � �Æq n `��¢i�ghk n `�] m g
The customer identified as making the order must be a current customer.

2.
��j¿r
jl£¤p�]hg �G� j e þ mon q�� n q�]���)Çq n `=þ m�n q)i�z{k�g
Every product code that appears on an order line must identify one of Rocky’s current
stock.

3.
 jl£¤p�]hg � I= ��j¼r
j�£¤p(]{g �W� j e þ mon q�� n q�]��
Every line on the order must have a different product code.

4.
� jyr
jl£¤p�]hg �G� j e �Êk x+�	þ m�n q)i�z{k�g � j e þ mon q�� n q�]�� e �Êp s ^"p(q
For every product ordered, there must be enough stock on hand.

5.
k n k\^"j © I²± j¼r�jl£¤p(]{g ��� j e � n j§q � k ³ j e �Êk�x
The total value of the order is the sum of the product of the sale price and the order
quantity over all the products ordered.

6.
�¢i�ghk n `�] m g � z{i�ghk £�q � � e � ^)j§^"p�z�] F k n k®^)j © ���yi�ghk n `t] m g � zRi�g_k £�q � � e ~ £¤`U£¤k
The customer’s credit limit, after the order, must still be less than the customer’s credit
limit.

7.
���]�zRk�� � [#^	��]�� m q�] m �¬p�þ mon q"i�zRk�g
���]�zRk�� � [#^	��]�� m q�] m �¬p��¢i�g_k n `t] m g
���]�zRk�� � [#^	��]�� m q�] m �¬p�� m q�] m g
The three state components are changed in the ways described previously.

18.3.5 Making a Request for Production

In this last operation, we will look at specifying a report that lists all the products that have
fallen below the relevant re-make level. This corresponds to the

7��
��*�¾��"'��"�� @%
��à�¾����"'
which looks like the following.

7��
��*�¾(�"'��)�� 	%
��à�¾��
�"'
7�����*�¾��"' Ð ²�
��
* %
������!
� Ì� ���' ����'
��&

ß�'�� · ���"' · ���"'
3����Ù�Ú � � B�+�+ A�+�+
Í Ù Ð ×�Ü ��+�+ ��+�+ � ?
+�+
���3�3�Ý ��+ ?
+ ��+�+ ?
+�+�+

454 Chapter 18

þ m�n q)i�z{k £ n p f]�,{i�]{ghk
¨ f n z��"x
m]R`t^	��] jl£ ghk © r���]Rk n��|� þ mon q"i�zRk.-Ëc/-´c0- � n p(]Rx1- � n p�]{x��

m]R`t^	��] jl£ ghk © I �{¥2� n q�]br#q n `=þ mon q"i�zRk�g�3�¥ f]_zGr�þ mon q f]�z�
¥ f]_z I þ mon q)i�z{k�g � ¥(� n q�]��w�¥ f]_z e �Êp$#|^)p(q1�Ø¥ f]_z e f] � ^	��] ~]�
"]Rj
�
� ¥2� n q�]�u¥ f]_z e �Êp$#|^)p(q�u¥ f]_z e f] � ^	��] �Êk�x#u
¥ f]_z e � n ghk{u¥ f]_z e f] � ^	��] ~]&
"]{j ³ ¥ f]_z e � n ghko�_�

The
þ mon q"i�zRk £ n p f]�,{i�]{ghk Declaration

1.
¨ f n z��"x
This is a read-only operation.

2. m]R`t^	��] jl£ ghk © r���]{k n��|� þ mon q"i�zRk.-Ëc4-Ëc/- � n p(]Rx1- � n p�]{x��
The list is composed, essentially, of a set of rows. Each row consists of a product code,
two numbers, and two money amounts.

The
þ mon q"i�zRk £ n p f]�,{i�]{ghk Predicate

Set comprehension is used to define the report.

1. m]R`t^	��] jl£ ghk © I �{¥2� n q�]|r(q n `=þ mon q"i�zRk�g�3�¥ f]�z�r�þ mon q f]�z
The variable

¥(� n q�] ranges over
q n `	þ mon q"i�zRk�g , that is, over the set of products currently

made by Rocky. The variable
¥ f]_z

is a product record, the contents of which are yet
to be determined.

2.
�®¥ f]_z I þ mon q"i�zRk�g � ¥(� n q�]��w�
The variable

¥ f]_z
is now established as the product record for the product identified

by
¥(� n q�] .

3.
¥ f]_z e �Êp$#b^"p(q1�Ö¥ f]_z e f] � ^	��] ~]�
"]Rj
However, the report only identifies products for which stock has fallen to a level at
which manufacture is warranted.

4. �b� ¥2� n q�]�uª¥ f]�z e �¬p%#|^)p(q�u eReRe u\¥ f]_z e f] � ^	��] ~]�
"]Rj ³ ¥ f]_z e � n ghko�
The details of the report are specified.

18.3.6 The Database

We will use a database with the following structure.

Case Studies 455

7��
��*�¾��"'(� · ¾��"'
�������(� Ð ��*����(� Ð ��*�����4
��'
�#�)&
�
9�9�9�9�9�9�9�9 9�9�9�9�9�9�9�9�9 9�9�9�9�9�9 9�9�9�9�9�9�9�9�9�9�9�9

ºRÁ ½Ø7��
��* · ��*�� º{Á ½ · ¾��"'�»�* ºRÁ ½ Ð ��*�����»"* º{Á ½ Ð ��*����(»"*
4
����� Ù
����� Ð ��*�����4
��'�� º{Á ½Ø7��
��* · ��*��
7��
��*�����/�� ��'��
����' · ¾���'�»"* Ð ��*����
ß�'��
3(����'�7������)� �
���� ����&���7��������
· ����'�7������)� 7
���"' · ��*��
Ð �����
*
ß�'�� 3(�{�¼��'
%
���(��!
��3���,
��& Û���&��� (���
%
���(��!
��ß�'��

The
7��
��*�¾(�"'(�

and
· ¾(�"'
�������(�

tables are direct implementations of the corresponding
components of the

f n z��"x state schema:
þ m�n q)i�z{k�g I 7��
��*�¾��"'(�
�¢i�ghk n `�] m g I · ¾��"'��������(�

The domain of the
þ mon q"i�zRk�g function corresponds to the key of the

7��
��*�¾��"'(�
table:

q n `=þ mon q"i�zRk�g I � / r 7��
��*�¾(�"'(� � / e 7��
��* · ��*�� �

or, in SQL terms:
q n `=þ mon q"i�zRk�g I ����&����"'�/ e 7��
��* · ��*��Y5��
����7�����*�¾��"'#�y/

The
� m q�] m g component of that schema is represented by the

Ð ��*����(�
and

Ð ��*�����4
��'
�#�)&
�
tables in conjunction:

� m q�] m g I � r Ð ��*����(� �
� � u{� ��* r Ð ��*�����4
��'
�#��&
� � ��* e Ð ��*����(»�* I � e Ð ��*�����»"* �� ��* e 7��
��* · ��*�� u ��* e Ð ��*�����ß�'�� u ��* e ����&���7��(����� �_�)�

In SQL terms, we have:
q n `�� m q�] m g I ����&����"'|� e Ð ��*����(»"*G5��
��� Ð ��*����#� �

We need two further tables to enable us to allocate new customer and new order numbers:
Ù
��5�' · ¾��"' Ù
��5�' Ð ��*����
9�9�9�9�9�9�9�9 9�9�9�9�9�9�9�9�9

ºRÁ ½ØÙ
��5�' · ¾��"'(»"* ºRÁ ½ÔÙ
��5�' Ð ��*�����»�*
The

Ù
��5�' · ¾��"'
table might be created as follows:

· �
����'
�X'
��¸�&��	Ù
��5�' · ¾��"' º Ù���5�' · ¾(�"'�»"*=�� �'
��6����	 ���'@ �¾#&�&�½
One row will be inserted:

»� ��)����'
»� �'��@Ù���5�' · ¾(�"'
,
��&"¾���� º ��½

The first customer will be given the number
�

and the
Ù
��5�' · ¾���'

table will be updated to
contain the number

�
, and so on for every new customer.

456 Chapter 18

18.3.7 Implementing the
� q�q��¢i�ghk n `t] m Operation

Suppose we decide to use a data entry screen like that shown in Figure 18.7.

Rocky Concrete Products

Add a Customer

Name:

Address:

Limit:

CustId: 1770

23 Hanover Terrace

CookTown

4670

2500

Orchid Enterprises

Figure 18.7 The
� q�q��yi�ghk n `t] m screen

The form has the following structure:

�*�* · ¾��"'���������5����)�76%6ª; · ¾��"'(»"*@Å=Ù������@Å²�*�*��
�����ÖÅ²3(�h�¼��'
�*�*��
�����86$6ª;=��'��
����'²Å��
���� <Å�7
����' · ��*��

� q�q��¢i�ghk n `t] m
Field Usage Table

Field Usage Format Default
· ¾��"'�»"*

Display integerÙ������
Mandatory Entry name��'��
����'
Mandatory Entry name������
Mandatory Entry name7����"'(����*��
Mandatory Entry integer3#�{�¼��'
Mandatory Entry integer

The new customer’s Id is supplied by the system; all other fields are to be filled by the user.

Case Studies 457
� q�q��¢i�ghk n `t] m

Form Action Table
Position Structure Action

Start of Form · ¾��"'(»"* Í ��'�Ù
��5�'�»"*
Å=Ù������
Å<��'��
����'
Å=������
Å=7����"'(����*��
Å²3#�{�¼��'

End of Form
�*�* · ¾(�"'
�������

� q�q��yi�ghk n `t] m Form Actions

Í ��'�Ù���5�'�»"*Ñ(�"'��)�) 96

1. Extract the next available customer number.
����&����"'@Ù
��5�' · ¾��"'(»"*
»� �'�� 6 · ¾(�"'�»"*
5��
��� Ù
��5�' · ¾��"'

2. Update the table to prepare for the next new customer.
Ì�/
*���'
�XÙ
��5�' · ¾��"'
����'=Ù
��5�' · ¾��"'(»"*X;�Ù
��5�' · ¾��"'�»�*	Å>�

�*�* · ¾��"'
���(���X(��'��)�� 96

1. Add a new row to the
· ¾��"'
�������(�

table.
»� ��)����'
»� �'�� · ¾��"'
���(���(�
,
��&"¾���� º 6 · ¾��"'�»�* À�6\Ù����(��À%6���'��
����' À�6\������ wÀ�6®7
���"'(�)��*���À�6®3(�h�¿��'wÀt+#½

The customer is given a zero current balance.

18.3.8 Implementing the
[#^	��] � m q�] m Operation

The screen layout for this transaction is shown in Figure 18.8.
This form has the following structure:

�
��!
� Ð ��*�����5
���)�76%6ª;
Ð ��*�����»"*@Å�4
��'
�

Å · ¾���'�»"*@Å�Ù
�����@Å��*�*��
�
���ÔÅ=7����"' · ��*��
Å � 7��
��* · ��*��XÅ�4
����������/�'��"�� @Å Ð ��*�����ß�'���Å²����&���7��������ÑÅ²3(�8 ����
��'���& �
Å Ð ��*������
��'���&

�*�*���������6%6\;<��'��
����'�Å��
����

458 Chapter 18

Order:

Customer:

Code Description

STAND Bicycle Stand

GNOME Garden Gnome

WALLY Statue of Rugby Player

1314

Alfred Shire Council

Meadow Bank, Alfieton

4555

Qty Price Total

10

10

2

40

10

450

400

100

900

1400

Rocky Concrete Products

Take an Order

Date:1601 16-Mar-95

OrderTotal:

Figure 18.8 The
[#^	��] � m q�] m screen

Three hidden fields are added. These are shown in italics.

�
��!
� Ð ��*�����5
���)�76%6ª;
Ð ��*�����»"*@Å�4
��'
�

Å · ¾���'�»"*@Å�Ù
�����@Å��*�*��
�
���ÔÅ=7����"' · ��*��	Å
Balance

Å
LimitÅ � 7��
��* · ��*��XÅ�4
����������/�'��"�� @Å

OnHandQty
Å Ð ��*�����ß)'��@Å²����&���7��������

Å²3(�8 ����
��'���& �
Å Ð ��*������
��'���&

�*�*���������6%6\;<��'��
����'�Å��
����

These hidden fields are added because, during the processing of an order, we will need to
ensure that the customer’s credit limit is not exceeded and, for each product ordered, there
is enough stock on hand.

Case Studies 459
[#^	��] � m q�] m

Field Usage Table
Field Usage Format Default
Ð ��*�����»�*

Display integer4���'
�
Mandatory Entry date· ¾��"'�»"*
Mandatory Entry integer��'��
����'
Display name������
Display name7����"'(����*��
Display integer

Balance Hidden money
Limit Hidden money7��
��* · ��*��

Mandatory Entry name4������"���8/�'��)��
Display name

OnHandQty Hidden integerÐ ��*�����ß)'��
Mandatory Entry integer����&���7��(�����
Mandatory Entry money3#�� ����
��'
��&
Display moneyÐ ��*���������'
��&
Display money

The sequence of usage is as follows.

� The program will supply the order number.

� The user will supply the order date.

� The user will supply the customer number. The program will check that such a customer
exists, and if so, will retrieve their name, address, current balance and credit limit. All
but the latter two fields will be displayed on the screen.

� The program will then loop through the body of the order.

– The user will supply a product code.

– The program will verify the existence of a product with that code.

– If one is found then the product description will be displayed.

– The user will supply the order quantity for that product.

– The program will check that there is enough on hand.

– If there is, then the program will ask for the unit sale price for this product. The
program will calculate the line total for this product and check that, given this line
and all the other lines on the order, the customer has enough credit.

460 Chapter 18
[#^	��] � m q�] m

Form Action Table
Position Structure Action

Start of Form Ð ��*�����»"* Í ��'�Ù���5�'�»"*
Å�4
��'
�
Å · ¾��"'�»�* · ������! · ¾��"'�Ü�'(�
Å�Ù
�����
Å��*�*��
�
���

Start of Body
Å � ����'�����'
��&

Start of Line 7��
��* · ��*�� · ������!�7��
��*
Å�4
�����"�(��/�'��)�)
Å Ð ��*����
ß�'�� · ������!�Ü� ���¾�6��
����&���7������)� · ������!�Û���&��) ����
3(��
���
��'
��&

End of Line
�*�*�3#�� ���Ü�'#�

End of Body
� Ì�/
*���'
� · ¾���'
Å Ð ��*������
��'
��&

End of Form

[#^	��] � m q�] m Form Actions

� Í ��'�Ù���5�'�»"* Action:

1. Extract the next available order number.
����&����"'@Ù
��5�' Ð ��*�����»"*
»� �'�� 6 Ð ��*�����»"*
5��
��� Ù
��5�' Ð ��*����

2. Update the table to prepare for the next new order.
Ì�/
*���'
�XÙ
��5�' Ð ��*����
����'=Ù
��5�' Ð ��*�����»"*X;�Ù
��5�' Ð ��*�����»"*XÅV�

� · ������! · ¾��"'(»"* Action:

1. Retrieve the customer record.
����&����"'@Ù
���(��À´��'��
����';:%:"Â�ÀÑÂ<:%:������� �ÀO7
�
�"' · ��*���À

Û���&��� �����Àd3#�{�¼��'
»� �'�� 6\Ù
������À=6\�*�*��
�����¿À>6\7
����' · ��*��¢À>6®Û���&��� �����À?6ª3(�{�¼��'
�������
� · ¾���'�»"*@;46 · ¾��"'�»�*

If not found then display an error message.

This condition also satisfies the condition of the operation schema that requiresz{i�ghk £�q � �Øq n `��yi�ghk n `t] m g .

Case Studies 461

2. Insert an Order (header) record into the database.»� ��)����'
»� �'�� Ð ��*����#�
É
��&"¾���� º 6 Ð ��*����(»"* À@6\4
��'���À=6 · ¾���'�»"*(½

� The
· ������!�7��
��*

Action:

1. Retrieve the product record for the product specified.����&����"'@4
�����"����/�'(�)�� �À Ð ��
�� �*
ß�'��
»� �'�� 6\4
�
���"����/�'��)�� �ÀA6 Ð ��
��
*
ß)'��
5��
��� 7��
��*�¾��"'(�
�������
� 7��
��* · ��*��	;B6\7�����* · ��*��

If not found then display an error message.
This condition, since it is applied to every product entered, causes the condition��jyr
jl£¤p(]{g �G� j e þ m�n q�� n q�]��C)<q n `=þ mon q"i�zRk�g to be satisfied.

� The
· ������!�Ü� ���¾�6��

Action:

1. Check that there is enough stock on hand.
6 Ð ��*�����ß�'��=Ò�;B6 Ð ��
�)
*
ß�'��

If not found then display an error message.
This condition, since it is also applied to every product entered, causes the opera-
tion schema condition

� j¿r#jl£¤p(]{g �W� j e �Êk�x+�@þ mon q"i�zRk�g � j e ¥ mon q&�8q
� e �Êp s ^)p(q to be
satisfied.

� The
· ������!�Û���&��) ����

Action:

1. Calculate the line total.
6ª3(�8 ����
��'���&D6ª;76 Ð ��*�����ß�'�� Á 6ª����&���7��������

2. Check that this line does not take the customer over their credit limit.
6 Ð ��*������
��'
��&ÔÅB6ª3(�8 ����
��'���&ÑÅB6®Û���&��) ����@Ò�;B6ª3(�h�¼��'

These two actions cause the condition:

�¢i�ghk n `�] m g � zRi�ghk�£�q � � e � ^"j«^"p(z_] F k n k®^)j © �E�¢i�ghk n `t] m g � z{i�ghk £�q � � e ~ £¤`U£¤k

to be satisfied.
� The

�*�*�3#�� ���Ü�'#�
Action:

This action updates the order total, adds a new line to the database and updates the
relevant product record.

1. Update the order total.
6 Ð ��*������
��'
��&86\;06 Ð ��*���������'
��&ØÅ06ª3#�� ����
��'
��&

2. Add the order line to the database.

462 Chapter 18

»� ��)����'
»� �'�� Ð ��*�����4
��'
�#�)&
�
É
��&"¾���� º 6 Ð ��*����(»"* À@6\7��
��* · ��*��¢À>6 Ð ��*�����ß�'�� À?6�����&���7��������#½

This satisfies the
���]_z{k�� � [�^'��]�� m q�] m �Êp�� m q�] m g condition.

3. Update the product record.Ì�/
*���'
�X7��
��*�¾��"'(�
����' Ð �����
*
ß�'��@; Ð ��
��
�ß�'��=9F6 Ð �������ß�'��

�������
� 7��
��* · ��*��
This satisfies the

���]_z{k�� � [�^'��]�� m q�] m �Êp�þ m�n q)i�z{k�g condition.

� The
Ì�/
*���'
� · ¾���'

Action:

1. Add the order total value to the customer’s current balance.Ì�/
*���'
� · ¾���'
�������#�
����'@Û���&��� ����	;@Û���&��) ����	ÅB6 Ð ��*������
��'
��&

�������
� · ¾���'�»"*@;46 · ¾��"'�»�*
This satisfies the part of the

���]_zRk� � [#^	��] � m q�] m �Êp��yi�ghk n `t] m g condition that
relates to the body of the order.

Case Studies 463

Exercises

Q18.1 The League

Suppose the state schema for this case study had been specified somewhat differ-
ently.

~]_^8�)i�]
[�]_^)`|g�r���]{k n�� [#]�^)`s n `�]{g�r f n i�p(q1-@[#]_^"` 9 Ål9�Ä ��z n)m]^"vw^)x�g�r f n i�p(qG-@[#]_^"` 9 Ål9�Ä ��z n)m]¥(j§^)x�]_qËr f n i�p(q1-@[#]_^"` 9 Ål9�Ä [#]�^)`
q n ` s n `t]hg��Æq n `Ï^"vw^)x�g I q n `Ñ¥(j§^)x�]_qq n ` s n `t]hg��Æq n `Ï^"vw^)x�g I � �

The three functions are to be used as follows:
s n `�]{g What the home teams scored in each round.

s n `t]hg � P uIHO£ gR]_^�z m]{g�� IÏP�D
s n `t]hg � P u f n g{]Rvw]Rj¤j�� I M

^"vw^)x�g
What the away teams scored in each round.

^)vw^"x�g � P uR� s £¤p s ^�z���] m g�� I M^)vw^"x�g � P uIHO£¤k�gR]{p�q
� I�D�E
¥(j§^)x�]_q

Each team’s opposition in each round.

¥�j§^"x�]_q � P uIHO£ gR]_^�z m]{g�� I � s £¤p s ^�z���] m g¥�j§^"x�]_q � P uR� s £¤p s ^�z���] m g�� I HO£ gR]_^�z m]{g

a. Respecify the
� q�q f]{ghi�jlk

operation using this new schema.

b. Respecify the
� s n vW[�^�¦{j§] operation.

c. The predicate does not mention the relationship between the teams in
[#]_^"`bg

and those in
s n `�]{g , ^)vw^"x�g and

¥(j«^"x�]_q
. What is that relationship?

Q18.2 Rocky Concrete

a. Specify an operation schema
�U]{jl£�
"] m x that describes what happens when a

new batch of product
¥ � arrives from production.

b. Specify an operation schema
þ s x�gh£�z_^"j

that describes the result of physical
inspection of stock that finds that there are actually

g � units of product
¥ �

out in the yard.

464 Chapter 18

Additional Cases
The Sporrandangle Valley Water Board
The soils of the Sporrandangle Valley are fertile, but the rainfall is erratic. Fortunately,
farmers are able to irrigate their crops from the Sporran River that flows through the valley.
This was the way for many years until the late fifties when excessive irrigation by farmers
higher up the valley meant that, downstream, the crops failed because of water shortage.
The State Government intervened and decided that the most equitable solution was to dam
the upper reaches of the river including the famous Sporrandangle Falls. The flow into
the river could then be controlled. To pay for the works and to contain any over-watering,
they decided to charge farmers for the water (and you can imagine how that suggestion
was received). To oversee the situation, the government created the Sporrandangle Valley
Water Board.

Water Billing: The Board’s water usage accounting system operates on an annual cycle
known as the Water Year. This runs from July 1 in one year to June 30 in the following.
Every farm is allocated a volume of water known as the water right. The volume depends
on various factors including the size of the farm and its position in the valley (and how well
the farmer knows the Board Chairman, perhaps). This water is free of charge. Any water
usage in excess of the farm’s water right must be paid for. Notification of charges is sent to
each farm in the form of a number of periodic, usually monthly, invoices.

The water used by any farm is taken from the river through a number of metered offtakes
that deliver water specifically to the farm. The volume of water used in the Water Year
so far is calculated for each offtake. This calculation is based on the readings taken at the
offtake from the start of the Water Year until the present. The volume taken from each
offtake is summed to get the total for the farm over the period specified.

Periodic Charges: The Board normally starts sending invoices about the time that water
usage starts to exceed the water right. Typically this occurs around November. From then
until the end of the Water Year, at approximately monthly intervals, bills are sent out to
farmers for any additional water usage. As a rule, readings are taken at the end of a month
and invoices are sent out in the middle of the following one.

When the invoice program is run, two dates are supplied, a start date and an end date.
The start date is usually the middle of the month prior to the start of the Water Year. The
end date is the middle of the month following the last of the water use readings. Charges
accruing in the interval defined by the two dates are calculated.

Although it might be thought that calculating usage is merely a matter of subtracting
the usage at the start from that of the end, there are two factors that must be taken into
account.

1. The meter may have ticked over, that is, it may have reached the limit of its measuring
capacity and reset itself.

2. There may have been repairs to the meter attached to an offtake, to the extent that the
meter may even have been replaced.

A monthly invoice requires the production of the following information.

� the farm number

Case Studies 465

� the water right for that farm
� the previous usage, that is, the amount of water calculated as used at the time that the

previous invoice was produced
� the latest usage

All the readings for the date range specified for the offtake are examined. For each pair of
successive readings, any repairs for that offtake in the interval defined by these readings
are interspersed.

The last use figure for this farm is read out and this latest usage is inserted. This last use
figure provides the total water usage for this farm as determined at the end of the previous
period. By comparing the previous usage against the latest usage, the periodic charge can
be determined.

Meter Tickover: When a meter reaches the limit of its measuring capacity, it ticks over or
resets itself, say from

È�È�È�È
to
+�+�+�+

. The capacity of the meter depends on its type. This
capacity is entered during a repair transaction, and is known as the maximum reading. It
may vary over time as the meter attached to an offtake may require replacement. At any
particular time, an offtake meter’s maximum may not have been recorded, in which case,
a default of

È�È�È�È
is used. When examining meter readings, a meter tickover is judged to

have occurred if:

1. the water use reading this month is less than last month’s, or more generally,

2. if one reading is less than the immediately preceding one.

When tickover occurs, water usage is calculated as follows:
H´^"k\] m�J gR^8��] I � ^&� f]_^�q"£¤p�� S þ m]&
�£ n i�g f]_^�q"£¤p�� F�P�F cb]{v f]_^�q"£¤p��

Suppose an offtake has a maximum reading of
È�È�È�È

. Two successive readings are
È�È�$�+

and
+�+���+

, so tickover has occurred.
H´^"k\] m�J gR^8��] I>K�K�K�KGSLK�K M EÓF@P�FÔE�E�P8E�IÇP'KÓF�P�F�P8E�I>M�E

Repairs: When water usage at an offtake is being calculated, possible meter repairs must
be taken into consideration. When a faulty meter is repaired, or even replaced, the following
details are recorded:

� the associated offtake
� the date of the repair
� the meter setting before the repair
� the meter setting after the repair
� an assessment of the water unaccounted for due to the fault; this may be a negative

figure

The calculation of water usage at an offtake in the period between two successive
readings is subject to the following rules:

466 Chapter 18

� If there are no repairs in the interval between the readings:
then

The usage is the reading at the end of the period less the usage at the start of the
period.

� If there are repairs in the interval:
then

the usage is the sum of the following:

the difference between the before reading for the first repair and the first
readingF
the sum of all adjustments madeF
the difference between the second reading and the after reading for the last
repairF
the sum of the differences between successive repairs.

An Example of Repair Accounting
Suppose the following readings had been taken at an offtake, and that certain repairs had
been made to the meter at that offtake.

%
����*(�� �6(� %
�)/��#���(�
4
��'�� %
����*(�� �6 4
��'
� Û���Þ����
� �Þ�'
��� (���)�����R���) �'
B��ON�B A�+

��$%N�? ��+�+ C�- �
��+%N�? $�+ ����+ -
��-%N�? ��B�+ ��+�+ ?

B�+�N)? ����+

�/��(��&ØÌ�����6���;V��+�+=9=A�+
Å²�=Å<-=Å�?
Å º $�+²9=C�-�½ÑÅ º ��B�+²9�����+�½
ÅV����+²9L��+�+

;�?
+�Å>���ÔÅ²-=ÅV��+�Å<��+
;²$�A

Even though invoices are produced monthly, water usage is always calculated from the
beginning of the Water Year. This is done because repairs may not appear in the accounting
system in time to be incorporated into the next invoice to be prepared. Even then, the
assessment may be disputed. The Board therefore always re-calculates the entire year’s
usage.

Case Studies 467

Nuclear Medicine
Nuclear medicine is one of a number of diagnostic services that are available at most medium
to large hospitals. It is one of a family of similar services known as medical imaging.
Nuclear medicine is an aid that is concerned with physiology, that is, the functioning of
organs and bones. Other diagnostic aids in medicine, such as cat scans, ultrasound and
X-rays are concerned with anatomy, that is, the shape or structure of the organs and bones.

The images produced by a nuclear medicine camera are not as striking (in terms
of clarity) as those produced by other imaging techniques. However nuclear medicine
physicians joke that these other scanning methods would produce equally good pictures of
a cadaver! As a practical example, bone infection such as osteomyelitis will show up much
earlier on nuclear medicine scans than on others (1 or 2 days as against 2 weeks).

Nuclear medicine exists because different parts of the body tend to process different
substances; for example, bones take up calcium, and the liver filters large particles. Ad-
vantage is taken of this fact by labeling or adding a radioactive nuclide to these carrier
substances.

Normally the patient is injected, and after the dose has had time to reach its target the
patient is scanned by a special camera. The resulting image is usually produced on X-ray
film, although it may also be taken by a Polaroid camera or shown on a screen linked to the
computer that interfaces with the camera. Generally, the dose is only taken up by active
parts of the body. So, when ordering a bone scan, doctors would be looking at bone growth.
Such growth might be a normal part of fracture repair, but it might also be a result of cancer
or infection. Some scans, like the bone scan, are looking for active areas, but other scans
are looking for a lack of activity.

Nuclear medicine can only hint (however strongly) at why the body is acting in the way
it does. Only pathology can accurately determine the cause.

Types of Scan
The most common types of scan done by a nuclear medicine department within a hospital
are:

� liver

� bone

� lung

� cardiac

� renal (kidney)

There are other types of scan such as biliary (gall bladder), thyroid and bladder scans;
however, we will concentrate on the everyday ones. Some of the relevant features of each
of these more common scans are described next.

Liver Scan: Here the liver is being examined with regard to its size, shape and function.
The scan might be done because of suspected abscesses or cirrhosis; but such a scan might
also be done to check the functioning of a patient known to have cancer. The patient is
normally injected 15 to 20 minutes before the scan which lasts about 30 minutes. The scan
may be delayed for up to an hour before scanning.

468 Chapter 18

Bone Scan: Bones may be scanned to check for regrowth after trauma or for suspected
disease. The patient is injected about two and a half hours prior to the scan although the
scan may be delayed for up to four hours. Patients normally come for their injection and
then return some time later. The scan takes about 45 minutes.

Lung Scan: These scans are usually done on extremely ill patients who either have cardiac
problems or who are in traction after an operation. The doctor is looking for pulmonary
emboli (blood clots) that may be in the lung. There are two parts to the scan.

1. Ventilation, where patients breathe a gas labeled with technetium. The patients breathe
for about 10 minutes and are then scanned for 20 minutes.

2. After ventilation the patient is injected with a particle that sticks to the lung. A 20-
minute scan follows immediately.

By allowing a gap between the two steps, patients can be interleaved. However, it is
desirable that patients remain in the department for the minimum possible time.

Cardiac Scan: This kind of scan is done to check the functioning of the patient’s heart. It
is often done prior to ordering chemotherapy because of the damage such treatment may
cause. Patients are injected with a cold (non-radioactive) tin compound which excites the
red blood cells. Twenty minutes later some technetium is mixed with the patient’s blood.
This allows for the detection of blood pooled in the heart and major vessels. It takes an
hour to complete.

Renal Scan: This is a differential function scan. It checks for differences in the functioning
of the patient’s two kidneys. Sometimes it is used before or after transplant. Hypertension
can be caused by kidney malfunction or obstruction. Patients are injected directly under the
machine. It takes 45 minutes for the complete scan. A blood test is performed alongside
this type of scan. A sample is taken every hour for three hours after the injection. For this
reason the latest time for injection is 12 noon.

Cameras
There are two rooms used for the scans. Each room has its own camera. Each camera can
operate independently, but they may also be linked to a dedicated computer which operates
as an extension of the camera. There are two different cameras. Both can handle all the
different types of scan. The newer model gives better resolution. The two cameras are:

� the GEEWHIZ1 made by Geelong Electronics

� the ISEEU made by Nuclear Cameras

Although both cameras are capable of all types of scan, there are sufficient differences
between cameras and between scans as to make either camera preferable on occasion. In
other words, each camera has its own niche. The GEEWHIZ1 is used for fine work such
as bone and cardiac scans where there is a need to see greater detail. Patients having these
kinds of scans are booked onto the GEEWHIZ1. The rules for booking are roughly as
follows:

Case Studies 469

Scan Type Camera
Bone

9�9�9�Ä
GEEWHIZ1

Cardiac
9�9�9�Ä

GEEWHIZ1
Renal

9�9�9�Ä
ISEEU

Lung
9�9�9�Ä

ISEEU
Livers

9�9�9�Ä
either

Even though the two cameras scan at slightly different rates, they are sufficiently close for
these differences to be ignored as far as booking is concerned.

Patient Information
The kind of information required by the technologist in order to handle each patient is
summarised below:

� type of scan
� name
� address
� phone number
� date of birth
� referring doctor
� drugs used
� hospital UR (unit record) number (if known)

If the patient is an inpatient then the ward number will also be required.

Problems
Things that do happen that upset normal operation include:

Camera Failure: When a camera breaks down it is often very difficult for the service
engineer to say exactly when it might be working again. This will have an effect upon
bookings.

A New Camera: The introduction of another camera may cause problems. It might have
significantly faster or slower scanning rates than the current cameras. It might also be
preferable for certain types of scan.

Chapter 19
Refinement

19.1 Introduction

This chapter is about how we implement our specification, that is, it is about how we turn it
into a collection of computer programs operating upon a database. The situation we want
to reach is one where we will have two quite distinct pictures of the same situation.

We start with one picture, the one provided by the specification. This will be stated or
expressed in a language that tries to describe the situation as we see it. The other picture
is a re-statement of that same situation; but this time the language used is ambivalent. It
can be taken as just another way of perceiving the problem, but it can also be thought
of as providing instructions to a machine in order for that machine to create an animated
equivalent of the original specification. It is a version that is executable by the machine. In
other words we have made the original problem tractable to information technology.

This use of different forms of language is not restricted to computing. We would give
a stranger to town instructions expressed differently from those given to an obvious local
asking directions. We would talk to the local in terms of shared knowledge such as familiar
streets and landmarks. Conversely, we would talk to the stranger in physical terms – “turn
left", “straight ahead for 2 km", “third on the left" and so on.

In this chapter we will take a relatively abstract specification such as shown in Chapter 14
and show how to map that to another specification this time expressed in the relational
calculus or tuple oriented set comprehension of Chapter 4. This language is the basis for
SQL and it will be assumed that the transformation to SQL is straightforward.

This chapter provides a worked example of how to move, formally, from a specification
to its implementation. The technique used is data refinement, and here it is used on a
database system.

A small situation is described along with some of the events that might impinge upon it.
The description or specification is written using the Z notation. The intention is to explain
the situation as the user sees it.

That same situation is then recast in terms of tables and the events in terms of operations

�����

Refinement 471

upon these tables. The language used is, again, Z but now the style is clearly oriented
towards SQL. This second specification is intended to be an “executable" equivalent of the
original.

How can we be satisfied that the two specifications are equivalent? Some discussion is
made regarding what we must do in order to demonstrate their equivalence. These rules or
requirements are then applied to the case at hand.

19.2 The Abstract Specification

19.2.1 The class Situation

We will study a typical educational situation in which a group of people undertake a course
of study for a semester. An information system is required. This system, to be written in
SQL, will record details of the students enrolled, the assessment set and the marks awarded.
It will therefore also need to handle the activities and events that are likely to occur in such
an environment. Typically, these events occur when:

� a student enrols in the class;

� an item of assessment is set for the class;

� a student submits work for assessment;

� a student is awarded a mark for some assessment item;

� a mark is amended;

� a student drops out of the class.

We will now develop and describe the classroom situation along the following lines.

� Several different views or observations of the class are made.

� These views are integrated in a state schemawhich provides a static picture of the
entire situation.

� Each event that may affect the class is described by a separate operation schema.
These schemas provide a dynamic picture of the class and how it may evolve.

We will refer to this as the abstract specification.
A second specification is then created. Why? Because the target or implementation

language, SQL, has limitations. In particular, it cannot handle the generalised relation that is
a major component of the abstract specification. This second specification is intended to be
executable. The language used is still Z but the style is oriented towards a relational database
implementation. We will refer to this as the concrete specification. The equivalence of
these two specifications will be discussed.

We will begin by modeling the class from three points of view, from that of an individual
student who sees only his or her work; from that of the lecturer who sees a set of students;
and from a shared viewpoint, that of the assessment set for the subject.

472 Chapter 19

19.2.2 The Individual Student

This view concentrates upon a typical individual student. It contains all that we might wish
to know about any student and it can fairly be described as a “student record".

���
	������������
�����

Id: �����
First: ��� �"!
Last: #"$&%�%
Item Submitted Mark

� ���&'(��)"% ��*+ + �-,.�0/�1.� 2�*
� �",.�43�5�6

This particular student has submitted three pieces of work for assessment. The first
two of these have been marked; he is still waiting on a mark for the third. Using the above
example as a guide, we can introduce some base types:

Type Inter pretation798;:=<?>A@-B�C
the set of all possible students7EDF@-<EG&C
all possible items of assessment7 HIC
numbers such as weightings and marks7 HKJ-LM:=C
the names of people and things7 NOJ-PQ:=C
the various dates that may arise

The
NRJ.PS:

type will need a number of associated functions and relations that, for
example, enable us to say whether one date comes before or after another.

T :VUA@.<E: W
JXU?PQ:=< Y&NRJ.PS:;Z\[\[V]^NOJ-PQ:

We can model the student view as a schema record type. This use of the Z schema
corresponds to a record type in Pascal or to a group level in COBOL.

>_Pa`�b":=B�P
c bdY�8e:A<?>=@.B
f <?>?P=W=ghJ.>?PiY�HOJ.Lj:
>_` T YkDl@.<EGR[mn[\]oNOJ-PQ:
LjJ.<EG.>pYkDF@-<EGM[mn[V]eq�rhrts�q�q

Information regarding what work the student has submitted and the marks received is
recorded using two separate partial functions

>?` T
and

LjJ.<EG.>
.

Refinement 473

19.2.3 Assessment

The assessment is a kind of shared view seen by student and lecturer alike. It might appear
on a study guide like this:

u ��)�v w
x���y&) z&$�) {�)|x�}&' �
� ~���5�}�� ��v�v�x�!�} ��*���'(�&)"% +��
+ z�)�, x�}�! + �",��(/ 1.� +��
� �
x�!�� y��&����v �",.�43�5�6 � *

Several items of assessment can be expected. Each item will be identified by a number and
have a title, a due date and a weighting relative to other items.

J.>�>=:A>?>
P c PVgt:pYkDl@.<EGM[mn[\]�HKJ.Lj:
� : c���� P;YkDl@.<EGR[mn[V]�q�rhrts�q�q
b-`�:pYkDl@.<EGM[mn[\]�NOJ-PQ:
b�@.L � : c���� P���b"@-L�b-`�:o��b"@-L�P c Pagh:

There are mappings that provide the title,weighting and due date of every item of assessment
set for the class.

There will be a schema to handle any changes to the assessment. These will occur
while assessment is unfinalized and before any students are enrolled.

� J�>?>=:A>�>
J.>�>=:A>?>
J.>�>=:A>?>��

The usual Z conventions for naming such schemas are used. There will also be a “read
only" schema to describe inspections of the assessment.

� J.>�>=:A>?>
� J�>?>=:A>�>
P c PVgt: � �(P c PVgt:
� : c���� P � � � : c���� Pb-`�: � ��b-`�:

This leaves the assessment unaltered.

19.2.4 The Lecturer

The lecturer sees the class as a whole – all the students and all the assessment.

474 Chapter 19

� ghJ�>?>
>_Pa`�b":=B�PV>oY ��:AP�@XUp>_PV`�b�:AB|P
J.>�>=:A>?>
� >"W�P�Y�>?Pa`�b":=B�PV> � >�r c b���PAr c b���>e��P
� >pY >_Pa`�b":=B�PV> � b"@-L0>"r�>_` T^� b"@-L(P c Pagh:
� >pY >_Pa`�b":=B�PV> � b"@-L0>"rhLjJ.<EG.> � b�@.L0>"rh>_` T

This is the abstract state schema for our situation. The three lines of the predicate state
that:

1. If two students have the same
c b

then they are the same student. More simply, every
student has a different

c b
.

2. All the work submitted by a student must relate to some item of assessment set for the
class.

3. No student can have received a mark for assessment unless he or she has first submitted
some work.

The initial state of the classroom will be one where there are no students and no work for
assessment has yet been set.

� ghJ�>?>X�_B c P c J-g gn¡
� ghJ�>?>
>_Pa`�b":=B�PV>e�(¢"£
P c PVgt:���¢"£

From the definition of
J�>?>=:A>�>

we can infer that, initially, � : c���� P and
b-`�:

must also be null
functions.

19.3 Operations on Student Records

19.3.1 A Student Submits Some Work

In this section we will describe what happens to the class when a student submits some
work for assessment.

Refinement 475

��` T L c P
� � ghJ�>?>� J.>�>=:A>?>
>�¤�Y&8;:=<?>=@.B
c ¤�Y¥DF@-<EG
b�¤�Y�NRJ.PS:
c ¤�¦§b"@-L(P c Pagh:
¨ b�¤iJ©U?PS:=<;b-`�:&ª c ¤�«¬ >pY >_Pa`�b":=B�PV> �>�¤���>"r c b

c ¤I¦®b"@.L0>"rh>_` T
¬ > � Y >_Pa`�b":=B�P �>��Vr c b���>"r c b

> � r�>_` T ��>"rh>_` Tk¯ ¢&ª c ¤�W�b�¤�«_£
> � r f <?>_Pk�(>"r f <?>_P
> � rhgtJ�>_P¥�(>"rtghJ.>?P
> � rhLjJ.<EG.>o�0>�rhLjJ.<EG.>
>_PV`�b�:AB|P\> � �(>_Pa`�b":=B�PV>i°�¢">-£ ¯ ¢"> � £

The intended interpretation is as follows.

The
�|` T L c P

Declaration
The submission will cause a change to the class and an inspection of the assessment. The
inputs will be

>�¤pY�8;:A<?>=@-B
the Id of the student making the submission,

c ¤�Y�DF@-<EG
the item

number of the assessment and
b�¤pY�NRJ.PS:

the date upon which the work was submitted.

The
�|` T L c P

Predicate

1.
c ¤�¦§b"@-L(P c Pagh:
The item number supplied must identify some item of assessment.

2. ¨ b�¤iJ©U?PS:=<;b-`�:&ª c ¤�«
No work will be accepted after the due date set for this item of assessment.

3.
¬ >pY >_Pa`�b":=B�PV> �
There is a student record

>or=r�r
4.

>�¤o�0>"r c b
with the same Id as the one supplied

r�r=r
5.

c ¤d¦§b"@-L0>"r�>_` T
and the student should not have already submitted this item. This line effectively
concludes the pre-conditions for the operation.

6.
¬ > � Y >_PV`�b�:AB|P �
We now start describing how the class changes by introducing a student record

> �
that

will become the new version of the record for student
>�¤

7.
> � r c bM��>"r c b
First of all, there will be no change to the student’s Id.

476 Chapter 19

8.
> � rh>?` T �(>"rh>_` Tk¯ ¢&ª c ¤�W�b�¤�«_£
The submission of work

c ¤
on date

b�¤
is now recorded by being added to whatever list

of submissions the student has already made.

9.
> � r f <?>_P±��>"r f <?>_P
> � rtghJ�>_P¥�(>�rhghJ.>_P
There will be no change to the student’s name.

10.
> � rtLMJ-<EG�>���>"rhLjJ.<EG.>
No marks are awarded at this stage, so there is to be no change here.

11.
>_Pa`�b":=B�PV> � �0>_Pa`�b":=B�PV>²°�¢">"£ ¯ ¢�> � £
The previous version of the student’s record is removed and replaced by the new one.

19.3.2 A Student Is Awarded a Mark

³ � J-<Eb
� � ghJ�>?>� J.>�>=:A>?>
>�¤�Y&8;:=<?>=@.B
c ¤�Y¥DF@-<EG
L�¤pY&q�rtrhs�q"q
¬ >pY >_Pa`�b":=B�PV> �>�¤���>"r c b

c ¤K¦®b"@.L0>"rh>_` T
c ¤I¦®b"@.L0>"rtLjJ.<EG.>
¬ > � Y >_Pa`�b":=B�P �> � r c b���>"r c b

> � rhLjJ.<EG.>o�0>�rhLjJ.<EG.> ¯ ¢&ª c ¤�W=L�¤�«?£
> � r f <?>_Pk�(>"r f <?>_P
>��VrhgtJ�>_P¥�(>"rtghJ.>?P
> � r�>_` T ��>"rh>_` T
>_PV`�b�:AB|P\> � �(>_Pa`�b":=B�PV>i°�¢">-£ ¯ ¢"> � £

The intended interpretation is as follows.

The
³ � J.<�b Declaration

The award will cause a change to the class and an inspection of the assessment. The inputs
will be

>�¤KY 8;:=<?>A@-B
the Id of the student receiving the award,

c ¤KYiDl@.<EG
the item number

of the assessment, and
L�¤�Y"q�rhrts�q�q

the mark awarded.

The
³ � J.<�b Predicate

1.
¬ >pY >_Pa`�b":=B�PV> �
There is a student record

>or=r�r
2.

>�¤o�0>"r c b
with the same Id as the one supplied

r�r=r

Refinement 477

3.
c ¤�¦§b"@-L0>"r�>_` T
and the student must have previously submitted this item

r=r=r
4.

c ¤d¦§b"@-L0>"rhLjJ.<EG.>
but not yet been awarded a mark.
This line effectively concludes the preconditions for the operation.

5.
¬ > � Y >_PV`�b�:AB|P �
We now start describing how the class changes by introducing a student record

>��
that

will become the new version of the record for student
>�¤

6.
> � r c bM��>"r c b
First of all, there will be no change to the student’s Id.

7.
> � rtLMJ-<EG�>���>"rhLjJ.<EG.> ¯ ¢&ª c ¤�W=L�¤�«?£
The award of a mark

L�¤
for work

c ¤
is now recorded by being added to whatever list

of marks the student has already received.

8.
> � r f <?>_P±��>"r f <?>_P
> � rtghJ�>_P¥�(>�rhghJ.>_P
There will be no change to the student’s name.

9.
> � rh>?` T �(>"rh>_` T
There is no submission involved in this operation, so there is no change here.

10.
>_Pa`�b":=B�PV> � �0>_Pa`�b":=B�PV>²°�¢">"£ ¯ ¢�> � £
The old version of the student’s record

>
is removed and replaced by the new version> �

.

19.3.3 A Mark is Amended

Occasionally a mark may have to be amended, such as when it was entered incorrectly or
when the student makes a case for it.³ Lj:AB
b

� � ghJ�>?>� J.>�>=:A>?>
>�¤�Y&8;:=<?>=@.B
c ¤�Y¥DF@-<EG
L�¤pY&q�rtrhs�q"q
¬ >pY >_Pa`�b":=B�PV> �>�¤���>"r c b

c ¤K¦®b"@.L0>"rtLjJ.<EG.>
¬ > � Y >_Pa`�b":=B�P �> � r c b���>"r c b

>��VrhLjJ.<EG.>o�0>�rhLjJ.<EG.>i´µ¢�ª c ¤�W=L�¤�«?£
> � r f <?>_Pk�(>"r f <?>_P
> � rhgtJ�>_P¥�(>"rtghJ.>?P
> � r�>_` T ��>"rh>_` T
>_PV`�b�:AB|P\> � �(>_Pa`�b":=B�PV>i°�¢">-£ ¯ ¢"> � £

478 Chapter 19

The intended interpretation is as follows.

The
³ Lj:AB
b

Declaration
The award will cause a change to the class and an inspection of the assessment. The inputs
will be

>�¤KY 8;:=<?>A@-B
the Id of the student receiving the award,

c ¤KYiDl@.<EG
the item number

of the assessment, and
L�¤�Y"q�rhrts�q�q

the new mark.

The
³ Lj:AB
b

Predicate

1.
¬ >pY >_Pa`�b":=B�PV> �
There is a student record

>or=r�r
2.

>�¤o�0>"r c b
with the same Id as the one supplied

r�r=r
3.

c ¤�¦§b"@-L0>"rhLjJ.<EG.>
and the student must have previously been awarded a mark.
This line effectively concludes the pre-conditions for the operation.

4.
¬ > � Y >_PV`�b�:AB|P �
We now start describing how the class changes by introducing a student record

> �
that

will become the new version of the record for student
>�¤

5.
> � r c bM��>"r c b
First of all, there will be no change to the student’s Id.

6.
> � rtLMJ-<EG�>���>"rhLjJ.<EG.>�´µ¢�ª c ¤�W=L�¤�«?£
The previous mark for work

c ¤
is now amended to

L�¤
.

7.
>��Vr f <?>_P±��>"r f <?>_P
> � rtghJ�>_P¥�(>�rhghJ.>_P
There will be no change to the student’s name.

8.
> � rh>?` T �(>"rh>_` T
There is no submission involved in this operation, so there is no change here.

9.
>_Pa`�b":=B�PV> � �0>_Pa`�b":=B�PV>²°�¢">"£ ¯ ¢�> � £
The old version of the student’s record

>
is replaced by the new version

> �
.

19.4 The Concrete Specification

We will now re-examine the classroom situation with the intention of constructing an
information system from the description just given. The abstract state schema � gtJ�>?> is,
effectively, re-specified as a relational database. We will also need to re-specify the abstract
operations in equivalent concrete terms, that is, as operations upon the database.

19.4.1 The Tables Used

The database for the classroom will involve three distinct relations or tables in SQL
terminology. There will be a relation for students, one for assessment and one for results.
A relation, in the database sense, is a set of tuples or records. We will begin by defining
three appropriate record types. Each of these types corresponds to an individual tuple of
the kind found in the three relations.

Refinement 479

� ��P·¶�: � – the student record type:�|P ¶�: �
�=bdY 8;:A<?>=@-B
¸ c <?>_PAW?¹�J�>_P²Y�HKJ-LM:

There will be a relation corresponding to this record type.

���&$�º)-! ��,[�[�[�[�[&[�[�[�[�[&[�[�[�[�[&[�[&[�[
u º �
x���,.� » ��,.�[�[�[�[�[&[�[�[�[�[&[�[�[�[�[&[�[&[�[
���
� ��� �"! #"$�%�%¼ ¼ ¼[�[�[�[�[&[�[�[�[�[&[�[�[�[�[&[�[&[�[

This relation corresponds to the
c b

,
f <?>_P

and
ghJ.>?P

components of the abstract
>_Pa`�b":=B�P

record. Information regarding submission of work and its consequent marking is
omitted. SQL cannot handle their set-valued nature.

� ¶�P ¶�: � – the result record type:¶�P·¶�: �
�=bdY 8;:A<?>=@-B
�_PS:=L½YkDl@.<EG
�|` T Y�NOJ-PQ:
¾ J.<EGIY&q�rtrhs�q"q�¿AB�` g g

The corresponding relation for this record type looks like the following.
À)�,�$|y-��,[�[�[�[�[&[�[�[�[�[&[�[�[�[�[&[�[&[�[�[�[�[�[�[&[�[&[&[
u º u �)�v �"$&Á Â ����Ã[�[�[�[�[&[�[�[�[�[&[�[�[�[�[&[�[&[�[�[�[�[�[�[&[�[&[&[
¼ ¼ ¼ ¼
���
� � ����'(�&)"% ��*
���
� + + �-,.�0/�1.� 2�*
���
� � �",��43 5�6 Ä¼ ¼ ¼ ¼[�[�[�[�[&[�[�[�[�[&[�[�[�[�[&[�[&[�[�[�[�[�[�[&[�[&[&[

This relation is used to hold submission and mark information for every student in the
class. A record is inserted when an item is submitted and updated when the mark
is awarded. In the abstract specification, this information was kept as part of each
student’s individual record and separate from that of other students. To distinguish one
student’s results from another’s we have tagged the result with the student’s Id.

480 Chapter 19

� ³ >©¶�: � – the assessment record type:
³ >X¶�: �
�_PS:=L½YkDl@.<EG
Å c PVgt:KY&HKJ.Lj:
NK`�:pY�NRJ.PS:
Dl: c���� P;Y"q�rhrts�q�q

The corresponding relation may be pictured as follows.

Æ ,�,")�,&,[�[�[�[�[&[�[�[�[�[&[�[�[�[�[&[�[&[�[�[�[�[�[�[&[�[&[&[�[�[�[&[�[&[&[�[�[�[�[&[
u ��)�v w
x���y&) z&$�) {�)�x�}&' �[�[�[�[�[&[�[�[�[�[&[�[�[�[�[&[�[&[�[�[�[�[�[�[&[�[&[&[�[�[�[&[�[&[&[�[�[�[�[&[
� ~���5�}�� ��v�v�x�!�} ��*��&'0��)-% +��
+ z�)�, x�}�! + �",.�0/�1�� +��
� �
x�!�� yÇ��� ��v �",.�43�5�6 � *[�[�[�[�[&[�[�[�[�[&[�[�[�[�[&[�[&[�[�[�[�[�[�[&[�[&[&[�[�[�[&[�[&[&[�[�[�[�[&[

We anticipate having a Class database consisting of these three relations, one for each
record type. We can define the database as follows.

È ghJ.>�>?É�Ê
��PV`�b�:AB|P\>oY��
:=P�@©U��|P ¶�: �³ >�>=:A>?>oY��
:=P�@XU ³ >©¶�: �¶�:_>_` gnPV>oY��
:=P�@XU�¶�P ¶�: �
� �iW Å Y �|Pa`�b":=B�PV> � �ir ��bM� Å r ��b��Ë�Ì� Å
� ³ W?Í�Y ³ >�>=:A>?> � ³ r �APQ:=LÎ��ÍMr9�_PS:ALÏ� ³ ��Í
� ¶OWA�§Y�¶�:_>_` gnPV> � ¶Kr9�=bM����r9�=bMÐÑ¶Or9�_PS:ALÏ�(�ir �APQ:=LÎ�Ò¶4�(�
¢.¶(Y�¶�:A>_` gnPV> � ¶Or9�=b�£ � ¢"�§Y �|Pa`�b":=B�PV> � �ir ��b�£¢.¶(Y�¶�:A>_` gnPV> � ¶Or9�_PS:ALI£ � ¢ ³ Y ³ >?>=:_>?> � ³ r9�_PS:ALI£

The predicate is divided into two groups of conditions. The first group provides the
conditions required of the primary key of each relation. Consider, for example, the first of
that group.� �iW Å Y �|Pa`�b":=B�PV> � �ir ��bM� Å r ��b��Ë�Ì� Å

This states that if any two rows in the Students table have the same Id then the two rows
will be entirely the same; in other words the Id is the primary key.

The second group of conditions provides the referential integrity constraints required
of foreign keys. Take the first of that group:

¢.¶(Y�¶�:A>_` gnPV> � ¶Or ��b�£ � ¢��®Y �|Pa`�b":=B�PV> � �ir ��b�£

Refinement 481

This states that the set of values in the Id column of the Results table must be a subset of
those values in the Id column of the Students table. Thus every Id in Results refers to an Id
in Students.

The natural starting state for the database is to have three empty tables.

È ghJ.>�> É�Ê �AB c P c J.g gn¡
È ghJ.>�> É�Ê
��PV`�b�:AB|P\>e�(¢�£
³ >�>=:A>?>e��¢"£
¶�:_>_` gnPV>e�(¢"£

19.4.2 Mapping Between Representations

We can now define a mapping between the abstract and the concrete versions of the class,
that is between � ghJ�>?> and

È ghJ.>�>?É�Ê
. This mapping is known as the abstraction schema. It

defines a relationship between the components of the abstract state and those of the concrete
one (the database).

¾ J�Ó�Ó c B �
� ghJ�>?>È ghJ.>�>?É�Ê
>_Pa`�b":=B�PV>e�

¢">^Y�>_PV`�b�:AB|P
¿
¬ �§Y ��PV`�b�:AB|P\> �>�r c bj����r9�=b
>�rhghJ.>_Pk�(��rn¹�J.>_P
>�r f <?>?Pk�0�ir ¸ c <?>_P
>�r�>_` T ��¢�¶(Y�¶�:A>?` g�P\>&¿ ¶Or ��bO����r9�=b � ªV¶Or9�_PS:ALFW�¶Orh�|` T «?£
>�rhLjJ.<EG.>��0¢�¶�Y�¶�:A>_` gnPV>&¿ ¶Or9�=bR�(�ir ��bRÐÌ¶Or ¾ J-<EGÑÔ��B|` g g

� ªV¶Or9�_PS:ALFW?¶Kr ¾ J.<EG�«?£
£

P c PVgt:���¢ ³ Y ³ >?>=:A>�> � ª ³ r �APQ:=LFW ³ r Å c Pagh:�«?£
b-`�:���¢ ³ Y ³ >?>=:A>�> � ª ³ r9�_PS:ALFW ³ r NK`�:�«?£
� : c���� P��0¢ ³ Y ³ >?>=:_>?> � ª ³ r �APQ:=LFW ³ r�Dl: c���� PE«_£

The mapping contains four individual mappings, one for each component of the abstract
state � ghJ�>?> . Each of these says how an abstract component may be constructed in terms
of components of the concrete state, that is, in terms of the database. In particular, the
first equation shows how the set of abstract student records may be retrieved from the two
separate relations that we are obliged to have at the concrete level.

It is important to be able to make statements about individual students. From the

482 Chapter 19

definition of
>_PV`�b�:AB|P\>

we can say of any individual student
>

that:

¬ �§Y���PV`�b�:AB|P\> � ��r9�=bM�(>�r c b
��rn¹�J.>_P±��>"rtghJ�>_P
��r ¸ c <?>?P¥�(>"r f <?>_P

>�r�>_` T ��¢�¶(Y�¶�:_>_` gnPV>¥¿X¶Or9�=bj�0>"r c b � ªV¶Or9�_PS:ALFW�¶Orh�|` T «?£
>�rhLjJ.<EG.>��0¢�¶�Y�¶�:A>_` gnPV>±¿E¶Kr9�=bj��>"r c bRÐÌ¶Or ¾ J-<EGÑÔ��B|` g g

� ªV¶Or9�_PS:ALFW?¶Kr ¾ J.<EG�«?£

Using the above rule for any student
>

we can construct the
>_` T

function for that student:

>"rh>_` T �0¢.¶�Y�¶�:_>_` gnPV>k¿X¶Or ��bj�(>"r c b � ªV¶Or �APQ:=LFW�¶Orh�|` T «?£

In database terms, the set comprehension on the right-hand side of the equation is a relational
calculus expression that corresponds to the SQL statement:

��) y�)�1.� ÀiÕ_u ��)�v;Ö ÀiÕ �"$�Á
����5�v À)�,�$|y"��, À
{�'�)"��) ÀiÕ_u º4×�, Õ x�º

In the abstract specification, two terms have an important role,
b�@.L0>"rh>?` T

and
b�@.L�>"rhLjJ.<EG.>

.
The first of these,

b"@.L0>"rh>_` T
, is the set of items of assessment that the student

>
has sub-

mitted. From the definition of
>_` T

above, we can see that:

b�@.L0>"rh>?` T �0¢�¶�Y�¶�:A>_` gnPV>±¿E¶Kr9�=bj�(>"r c b � ¶Or9�_PS:ALI£

The second of these terms,
b"@.L0>"rtLjJ.<EG.>

, is the set of items of work that the student
>

has
submitted and which have received a mark. From the definition of

LjJ.<EG.>
we can see that:

b�@.L0>"rtLMJ-<EG�>���¢�¶(Y�¶�:_>_` gnPV>k¿X¶Or ��bj�(>"r c bMÐØ¶Kr ¾ J.<EGÑÔ��B�` g g � ¶Kr9�_PS:=Ld£

If we subtract the two sets then we have the set of items that have been submitted but not
yet marked. This set is important for the awarding of a mark. The difference

b�@.L0>"rh>?` T °
b�@.L0>"rtLMJ-<EG�>

, when expressed in terms of the concrete state as above, has the form:

¢&P�Y Å ¿�8K£e°Ù¢&P�Y Å ¿�84Ð ¨oÚ £

When we consider the set of things of type
Å

that are
8

, and subtract from it the set of
things of type

Å
that are

8
and not Ú , then we are left with the set of things that are both8

and Ú . In other words, the difference reduces to:

¢&P�Y Å ¿�84Ð Ú £

Applying this rule to the difference between
b�@.L0>"rh>?` T

and
>"rtLjJ.<EG.>

gives us:

¢.¶(Y�¶�:A>_` gnPV>k¿E¶Or ��bR��>"r c bRÐØ¶Or ¾ J-<EG��(B|` g g � ¶Or9�_PS:ALI£

Refinement 483

19.4.3 The Award Operation Re-specified

We will now re-specify the
³ � J.<Eb operation in terms of the

È ghJ.>?> É�Ê
database rather than

the � gtJ�>?> state. This new specification will be deemed executable for the following reasons.

� It will operate upon a state defined using data structures available in the implementation
language. In this case there is one major type of data structure, the relation or table.

� It will manipulate that data structure using a mixture of set theoretical and relational
calculus expressions, mimicking in Z, the implementation language, SQL.

³ � J-<Eb�Û&Ü�Û
� È ghJ�>?>?É�Ê
>�¤�Y&8;:=<?>=@.B
c ¤�Y¥DF@-<EG
L�¤pY&q�rtrhs�q"q
¬ ¶�Y&¶�:A>?` g�P\> �¶Or9�=bj�0>�¤

¶Or9�_PS:ALÏ� c ¤
¶Or ¾ J.<EG���B�` g g
¬ ¶ � Y&¶�P ¶�: �;�¶ � r9�=bj��¶Or ��b

¶ � r9�_PS:=LÎ��¶Kr9�_PS:=L
¶ � rh�|` T �4¶Orh�|` T
¶ � r ¾ J.<EG���L�¤
¶�:A>_` gnPV> � �4¶�:_>_` gnPV>²°Ù¢.¶�£ ¯ ¢�¶ � £

��PV`�b�:AB|P\> � �(�|Pa`�b":=B�PV>
³ >�>=:A>?> � � ³ >?>A:A>?>

The
³ � J.<�b�Û&Ü�Û Declaration

1.
� È ghJ�>?>?É�Ê
This operation changes the class database.

2.
>�¤�Y&8;:=<?>=@.B
c ¤�Y¥DF@-<EG
L�¤pY�q�rtrhs�q"q
These three inputs supply the student, the item and the mark respectively.

The
³ � J.<�b Û&Ü�Û Predicate

1.
¬ ¶(Y�¶�:A>?` g�P\> �
There will be a result record

¶
in the

¶�:_>_` gnPV>
relation

r=r�r
2.

¶Or9�=bj�0>�¤
that relates to the student in question

r=r�r

484 Chapter 19

3.
¶Or9�_PS:ALÏ� c ¤
and that also relates to the item of assessment in question

r�r=r
4.

¶Or ¾ J-<EG��(B|` g g
but where the student must not yet have been awarded a mark. This line concludes the
pre-conditions for the operation.

5.
¬ ¶ � Y�¶�P ¶�: �;�
Here we introduce a result record

¶o�
that will represent the state of the result after the

amendment.

6.
¶ � r ��bM��¶Or ��b
¶ � r �APQ:=LÎ��¶Or �APQ:=L
¶ � r���` T �Ý¶Orh�|` T
None of these aspects of the result record are to be changed, naturally.

7.
¶ � r ¾ J.<EGÞ��L�¤
The student is awarded the mark supplied.

8.
¶�:_>_` gnPV> � �Ý¶�:_>_` gnPV>²°Ù¢.¶�£ ¯ ¢�¶ � £
The new set of results is formed by taking the original results, removing the old result
record and adding the new one.

9.
��PV`�b�:AB|P\>����(�|Pa`�b":=B�PV>
³ >�>=:A>?> � � ³ >?>A:A>?>
Neither of the other relations is affected by this operation.

19.5 A Review

A classroom situation has been modelled. The � ghJ.>?> schema provides a static picture; theß B|<E@.g
,
³ � J.<Eb and

³ LM:=B�b
schemas picture it dynamically.

The state schema is to be replaced by a relational database, and the operations by
programs that retrieve from and manipulate that database. However, this replacement is
of no concern to the user. The user sits at a machine and imagines that he or she is, for
example, carrying out an

³ � J-<Eb operation. This operation may be viewed in terms of its
pre-conditions and its post-conditions.

1. The user believes that the
³ � J.<�b “program" makes checks upon his or her “database"

as represented by the � gtJ�>?> state schema. If an error is detected then the error message
will be phrased in terms of the operation’s inputs and the current state of the � gtJ�>?> .

2. If the pre-conditions are satisfied then the “program" proceeds to update the “database"
according to the requirements set out in the post-conditions.

Figure 19.1 shows this interpretation pictorially.
However satisfying this picture may be to the user, it is not the way that the programmer

sees it. The programmer does not have at his or her disposal a machine that is directly
executing or interpreting its conditions as instruction. Nor does he or she have a DBMS
that is capable of storing the data structures used to build the schema. The programmer
must describe the situation and operations upon it in a way that is genuinely executable,
that is, in a way that a machine can obey directly. So he or she must describe changes using

Refinement 485

Pre-conditions

Post-conditions

U

S

E

R

input(s)

output(s)

The
State

Figure 19.1 What the user thinks

operators that the machine can execute upon data structures the machine can support. The
programmer must simulate the original abstract operation. What does this mean?

� The programmer must disguise his or her presence. No dialog with the user must hint
that, when the pre-conditions are being evaluated, it is not the user’s database that is
being examined, but is instead some substitute. Any checks made by the real program
upon its data structures must somehow correspond to those that the abstract program
would have made.

� No traces may be left upon the user’s database to suggest other than that the operation
affected that database in the way expected. Any changes made by the real program
upon its data structures must somehow correspond to those that the abstract program
would have made.

This process of simulation is shown in Figure 19.2.

19.6 Verification

How can we satisfy ourselves that this re-specification is equivalent to the original? In
other words is it a correct refinement?

There are conditions relating the concrete and the abstract that must hold true for each
operation. The set of conditions to be satisfied will be determined by the nature of the
relationship between the concrete and the abstract states. In our case, the relationship is
a total onto function. The conditions apply only if the mapping is a relationship of that
kind.

486 Chapter 19

Post-conditions

U

S

E

R

input(s)

output(s)

Pre-conditions

Post-conditions

Abstract
State

Concrete
State

Mapping

The Abstract
Operation

The Concrete
Operation

Figure 19.2 What the programmer thinks

Applicability
If the pre-conditions of the abstract operation are met and the abstract
and the concrete states are related in the way specified by the mapping
schema, then the concrete operation should go ahead; that is, its pre-
conditions should also be satisfied.

� È >?PSJ.PS:�à ³ >?PSJ.PS:�à�á
¤^Y&â �Ó�<E: ³ @�ÓIÐ ³ T >e�ãÓ�<E: È @�Ó

Corr ectness
If the pre-conditions are met and the concrete operation is satisfied, then
the abstract operation should also be satisfied.

� ³ >_PSJ.PS:"à ³ >_PQJ-PQ: � à È >_PQJ-PQ:�à È >_PSJ.PS: � á
¤pY�â �Ó�<E: ³ @�ÓIÐ ³ T >;Ð È @�ÓFÐ ³ T > � � ³ @�Ó

The Initial State
In general, for any situation where we are relating the initial state of
some abstract situation to its initial concrete realization, we can say:

� ³ >_PSJ.PS:"à È >_PSJ.PS: �È c B c P¥Ð ³ T >�� ³ c B c P

These rules are presented as they appear in [Spi89a]. When interpreting them for the class
situation, and for the award operation, we should make the following substitutions.

Refinement 487

llllll Representing Our Situation³ >?PSJ.PS:
the abstract state schema � ghJ.>?>È >_PQJ-PQ:
the concrete state schema

È gtJ�>?> É�Ê
³ @�Ó

an abstract operation
³ � J.<EbÈ @�Ó

the (supposedly) equivalent concrete operation
³ � J.<Eb.Û&Ü�Û³ T >

the abstraction mapping
¾ J?Ó"Ó c B �

³ T > �
the abstraction mapping between the after states

¾ J?Ó"Ó c B � �
È @�Ó

a concrete operation
³ � J.<Eb Û&Ü�Û³ c B c P

the initial abstract state � ghJ.>?>©�AB c P c J.g gn¡È c B c P
the initial concrete state

È gtJ�>?>?É�Ê¥�_B c P c J.g g�¡

19.7 Verifying the Award
Û&Ü�Û

Operation

19.7.1 The One-point Rule Revisited

Before applying the rules discussed in the previous section, we should look at one particular
inference rule that we will need. This rule is known as the one-point rule and it was
introduced in Section 12.3.2. The rule allows us to move from a set theoretical expression
to a predicate calculus expression and vice versa. It has the following form:

¬ áFY�� � áÞ��P±Ð§8�ä�P²¦å�ÑÐØ8R7�P?-á�C
�

is some set8
is a predicate of some kindP

is a term8R7hP�-á�C
is the predicate

8
with all free occurrences of

á
replaced by the term

P

If there is an object
á

of type
�

that satisfies
8

and
P

is another name for that object then
P

is an element of
�

and
8

is true of
P
, and vice-versa.

This rule may be extended to the case where the set
�

is a generalized relation, that is,
a set of records. Suppose that the record type forming the basis for the relation is defined
as follows:

Å
Y
J-PVPiY ³ PaP Å ¡�Ó�:
Y

It has any number of attributes but we are only interested in the one labelled
J.PaP

which is
of type

³ PaP Å ¡�Ó�:
. The relation

�
is declared as:

�§Y���:AP�@XU Å

The one-point rule is revised to allow for the object in question being part of some record
structure.

¬ áFY�� � á�r J.PaPk�(PkÐÌ80ä�P�¦ ³ PaP Å ¡�Ó�:�ÐÌ8R7hP�"á�r J.PaPSC

488 Chapter 19

Suppose we have the following set-up:

³ � :�¶�: � @.<�b
HOJ.Lj:pY�8e:A<?>=@.B
³ � :�Y�H

and this record is used to define the relation
³ � :A>

:

³ � :A>^Y��
:=P�@©U ³ � :E¶�: � @-<Eb

The left-hand side of the equivalence is:

¬ J�Y ³ � :A> � J�rhB
J.Lj:o� ³ ghJ-BdÐµJ�r9HKJ-LM:�Ó�gtJ.¡�>¥PS:AB|B c >

the right-hand size is:

³ ghJ-Bæ¦å8;:=<?>A@-BIÐ�ªEJ�r HOJ.Lj:�Ó�ghJ-¡�>¥PQ:=B�B c >�«A7 ³ ghJ-B��J�r9HKJ-LM:=C

which reduces to:

³ ghJ-Bæ¦å8;:=<?>A@-BIÐ ³ ghJ.BeÓ�ghJ-¡�>¥PS:AB|B c >

19.7.2 Applicability

Applying the pre-conditions check to this operation requires us to prove that:

� � ghJ�>?>"à È gtJ�>?>?É�Ê;à >�¤pY 8;:=<?>A@-B�à c ¤KYkDl@.<EG�à�L�¤pY"q�rhrts�q�q �Ó
<E: ³ � J-<EbMÐ ¾ J?Ó"Ó c B � �çÓ
<E: ³ � J.<Eb Û&Ü�Û

The pre-conditions for the (abstract) Award operation,
Ó�<E: ³ � J.<�b are:

¬ >pY >_Pa`�b":=B�PV> � >�¤o�(>"r c bMÐ
c ¤�¦§b"@-L0>"r�>_` T Ð c ¤d¦§b"@-L0>"rhLjJ.<EG.>

Now we can attempt to derive the pre-conditions for the concrete operation.
¬ >pY >_Pa`�b":=B�PV> � >�¤o�(>"r c bMÐ
c ¤�¦§b"@-L0>"r�>_` T Ð c ¤d¦§b"@-L0>"rhLjJ.<EG.>
(The abstract state invariant says that for all students

b"@-L�>�rhLjJ.<EG.> � b�@.L0>"rh>?` T
.)� ¬ >pY >_Pa`�b":=B�PV> � >�¤o�(>"r c bMÐ

c ¤�¦ØªEb�@.L(>"rh>_` T °èb"@.LO>"rtLMJ-<EG�>�«
(We can replace the set difference by its equivalent concrete representation as discussed
in Section 19.4.2.)� ¬ >pY >_Pa`�b":=B�PV> � >�¤o�(>"r c bMÐ
c ¤�¦Ñ¢�¶�Y�¶�:A>_` gnPV>±¿E¶Kr9�=bj��>"r c bRÐÌ¶Or ¾ J-<EG���B|` g g � ¶Or9�_PS:ALI£
(The set membership is rephrased using existential quantification. If

PØ¦Ï¶
then¬ áFY&¶ � áÞ��P

. This is a special case of the one-point rule with
8�ä�Pa<_`�:

.)

Refinement 489

� ¬ >pY >_Pa`�b":=B�PV> � >�¤o�(>"r c bMÐ
¬ ¶�Y�¶�:A>_` gnP\> � ¶Or ��bM�(>"r c bjÐÑ¶Or ¾ J-<EG���B�` g g�ÐØ¶Or9�_PS:ALÏ� c ¤
(We can now apply the modified one-point rule discussed previously.)� >�¤�¦å>_Pa`�b":=B�PV>;Ð
¬ ¶�Y�¶�:A>_` gnP\> � ¶Or ��bM�(>�¤�ÐØ¶Or ¾ J-<EG��(B|` g g
ÐÌ¶Or �APQ:=LÎ� c ¤
(We can eliminate the first conjunct.)� ¬ ¶�Y�¶�:A>_` gnP\> � ¶Or ��bM�(>�¤�ÐØ¶Or ¾ J-<EG��(B|` g g
ÐÌ¶Or �APQ:=LÎ� c ¤
(Now we have the pre-condition of the concrete operation, that is,

Ó
<E: ³ � J.<Eb.Û&Ü�Û .)

19.7.3 Correctness

Now we must show that the changes that the concrete operation makes to the concrete state
correspond to those that are required to be made to the abstract state.

� � ghJ�>?>"à � ghJ.>?>��aà È ghJ�>?> É�Ê à È ghJ�>?>��É�Ê �Ó
<E: ³ � J-<EbMÐ ¾ J?Ó"Ó c B � Ð ³ � J.<Eb Û&Ü�Û Ð ¾ J�Ó"Ó c B � � � ³ � J.<�b

In this section, we will concentrate our proof on the most significant line of the
³ � J-<Eb

operation, which is:
>��VrtLMJ-<EG�>���>"rhLjJ.<EG.> ¯ ¢&ª c ¤�W=L�¤�«?£

We will attempt to show that the set on left-hand side of this equation is the same as the
one on the right-hand side.

> � rtLMJ-<EG�>
(This may be replaced by its concrete representation using

¾ J?Ó"Ó c B � �
the after version

of the abstraction schema.)

=
¢&P�Y�¶�:_>_` gnPV> � ¿APAr9�=bM�(>"r c bMÐ�PAr ¾ J-<EGåÔ��B|` g g � ª©P=r �APQ:=LFW=PAr ¾ J.<EG�«_£
(The post-condition of the concrete operation

³ � J.<Eb Û&Ü�Û provides an equation relating¶�:_>_` gnPV> �
and

¶�:A>?` g�P\>
.)

=
¢&P�Y�ªa¶�:A>_` gnP\>²°�¢�¶K£ ¯ ¢.¶ � £.«�¿_PAr9�=bM��>"r c bMÐÙPAr ¾ J-<EGÑÔ��B�` g g � ªXPAr9�_PS:ALFW=P=r ¾ J.<EG�«?£
(The declaration of the set comprehension involves three sets in a set expression¶�:_>_` gnPV>i°�¢�¶K£ ¯ ¢�¶ � £

. This may be expanded to three separate pieces of set compre-
hension.)

=
¢&P�Y�¶�:_>_` gnPV>k¿_PAr9�=bj�0>�r ��bRÐ�PAr ¾ J.<EGåÔ��B�` g g � ª©PAr9�_PS:ALFW�PAr ¾ J-<EG�«?£
°�¢�PiY ¢�¶K£i¿APAr9�=bO��>"r c bMÐ®PAr ¾ J.<EGÑÔ��B�` g g � ª©PAr9�_PS:=LIW�PAr ¾ J-<EG�«_£
¯ ¢�PiY ¢.¶ � £i¿_P=r ��bR��>"r c bRÐ�PAr ¾ J.<EGåÔ��B�` g g � ª©PAr9�_PS:ALFW�PAr ¾ J-<EG�«?£
(The first piece is just

>�rhLjJ.<EG.>
as defined in the mapping. The second piece reduces to

the empty set because
¶Kr ¾ J.<EGÑ�ÏB|` g g

according to
³ � J.<Eb Û&Ü�Û and so the predicatePAr ¾ J.<EGÝÔ�éB|` g g

is not satisfied. The third piece simplifies to a set consisting of one
element, the pair

ª c ¤"W�L�¤�«
. This is because

¶ � r ��b4�ê¶Or ��b
and

¶Or9�=b4�ë>"r c b
and¶ � r ¾ J.<EG§Ô��B�` g g

and
¶ � r ¾ J.<EGF��L�¤

and
¶ � r �APQ:=Lì�(¶Or �APQ:=L

and
¶Or9�_PS:ALì� c ¤

. All
of these come from

³ � J.<�b�Û&Ü�Û .)

490 Chapter 19

=
>"rtLjJ.<EG.>²°�¢"£ ¯ ¢�ª c ¤"W�L�¤�«_£
(The empty set makes no difference to the set expression and so the line may be further
simplified.)

=
>"rtLjJ.<EG.> ¯ ¢�ª c ¤"W�L�¤�«_£

We have proved the most significant line of the abstract operation:

> � rtLMJ-<EG�>���>"rhLjJ.<EG.> ¯ ¢&ª c ¤�W=L�¤�«?£

19.7.4 The Initial State

We require that the initial state of the database corresponds to the initial state of the abstract
specification.

� � ghJ�>?>"à È gtJ�>?>?É�Ê �È ghJ.>�>?É�Ê¥�AB c P c J.g gn¡MÐ ¾ J�Ó�Ó c B � � � ghJ�>?>X�_B c P c J-g gn¡

The initial state of the concrete specification, that is, the database, in conjunction with the
abstraction mapping must represent a valid initial abstract state. The initial state of the
classroom will be one where there are no students and no assessable assignments have yet
been set. A set of concrete results gives rise to one set of abstract results.

È ghJ.>�>?É�Ê¥�AB c P c J.g gn¡
È ghJ.>�>?É�Ê
��PV`�b�:AB|P\>e�(¢�£
³ >�>=:A>?>e��¢"£
¶�:_>_` gnPV>e�(¢"£

An empty Students table guarantees that the existential quantification in the retrieval func-
tion for

>_Pa`�b":=B�PV>
can never be satisfied and so the

>_Pa`�b":=B�PV>
set will be empty which is what

we require. An empty Assess table will guarantee that no assessment exists in the abstract
state. What about the Results table? The initial state of the database must also conform to
the concrete state invariant. Therefore, the referential integrity conditions:

¢.¶(Y�¶�:A>_` gnPV> � ¶Or ��b�£ � ¢��®Y �|Pa`�b":=B�PV> � >�r ��b�£¢.¶(Y�¶�:A>_` gnPV> � ¶Or �APQ:=LI£ � ¢ ³ Y ³ >?>=:_>?> � J�r9�_PS:=Ld£

each require that the Results table be empty initially in order to provide referential integrity.

� ghJ�>?>X�_B c P c J-g gn¡
� ghJ�>?>
>_Pa`�b":=B�PV>e�(¢"£
P c PVgt:���¢"£

Refinement 491

19.8 The External Interface

We will now examine how a student may be awarded a mark by an application system using
the

È gtJ�>?>
database. A simple user interface might look like the following.

w&'�)Ýí�y&��,�, u !�î 5"�-v
���
x.5"!Ý��ï|,.��)�v
Æ&ð ����º��èÂ����&Ã(/.%�)�������x-5"!
u º ¼ ���
�
u ��)�v ¼ �
Â����&Ã ¼ ��*

Â�,.} ¼

The screen offers none of the usual feedback that one would expect. It simply allows
the user to enter the three values that the operation requires. About the only concession to
user-friendliness is a message area at the bottom of the screen.

1. The pre-conditions

When the lecturer has entered the three inputs required by this operation, he or she will
press some kind of /"ñ button. The program will then make the following check.

���
x&,.�|,�ò?��) y&)�1.�(ó
����5�v À)�,�$�y"��, À
{�'�)��) ÀiÕ_u ºÝ×�,�Ä
�"! º ÀiÕ_u �)�v(×�x-Ä
�"! º ÀiÕ Â��"��Ã�x&,Ù!�$|y�y�ô

If there exists a row in the
À)�,�$|y"�|, table for the student in question, relating to the item

of assessment in question and no mark has yet been awarded then the pre-conditions
are satisfied. If these conditions are not satisfied then a message will be displayed and
the inputs will need to be resupplied.

2. The post-conditions

If the pre-conditions are met then the program will proceed to change the database.
õ %�º �"��) À)�,�$�y"��, À
��)�� ÀiÕ Â��"��ÃÝ×Çv
Ä
{�'�)��) ÀiÕ_u ºÝ×�,�Ä
�"! º ÀiÕ_u �)�v(×�x-Ä

The Â�����Ã column of the appropriate
À)�,�$�y"� row will be set to the value supplied.

492 Chapter 19

19.9 Translating the Award
Û&Ü�Û

Schema into SQL

The SQL statements shown above can be derived in a mechanical fashion from the concrete
specification. That specification was designed, after all, to mimic in Z the operations of
SQL. In this section we will step through that specification interpreting it in the form of
SQL syntax.

� Those lines in the schema involving just
¶

become the pre-conditions.

¬ ¶�Y&¶�:A>?` g�P\> �¶Or9�=bj�(>�¤
¶Or9�_PS:ALÏ� c ¤
¶Or ¾ J-<EG���B�` g g

They are interpreted as the following SQL condition.

���
x&,.�|,�ò?��) y&)�1.�(ó
����5�v À)�,�$�y"��, À
{�'�)��) ÀiÕ_u ºÝ×�,�Ä
�"! º ÀiÕ_u �)�v(×�x-Ä
�"! º ÀiÕ Â��"��Ã�x&,Ù!�$|y�y�ô

� The line introducing the “after" variable
¶ �

merely establishes that an update is occur-
ring. Its type

¶�P·¶�: � indicates that the corresponding table
À)�,�$�y"��, is the one to be

updated.

¬ ¶ � Y�¶�P ¶�: �e�

� Lines involving corresponding components of
¶

and
¶ �

that merely equate these
components can be ignored from an SQL point of view.

¶ � r9�=bj��¶Or ��b
¶ � r9�_PS:=LÎ��¶Kr9�_PS:=L
¶o�\rh�|` T �Ý¶Or���` T

� Lines that set an after component, that is some part of
¶ �

, to some other value should
be mapped to the ,")�� clause of the $&%�º ����) statement.

¶ � r ¾ J.<EG���L�¤

Thus the above line gives rise to the clause:

�&)�� ÀiÕ Â����&ÃÝ×Çv�Ä
� The final line of this group confirms that an update is required:

¶�:A>_` gnPV> � �Ý¶�:_>_` gnPV>i°�¢�¶K£ ¯ ¢�¶ � £

Refinement 493

� The rest of the schema lists the database tables that are unaffected by the operation.
These lines may safely be ignored.

�|Pa`�b":=B�PV>������|Pa`�b":=B�PV>
³ >?>=:A>�> � � ³ >?>A:A>?>

Although we have formed part of the $�% º ����) statement, it remains to calculate its
ð '�)���)

clause, if any. For that we can return to the pre-conditions. There we established the record<
that was to be changed and the conditions that it had to satisfy. These conditions can be

transferred to the
ð '�)���) clause. The entire statement becomes as follows:

õ % º ����) À)�,�$|y"��, À
��)�� ÀiÕ Â ����ÃÝ×�v�Ä

{&'�)���) ÀiÕ_u ºè×�,�Ä
�"!�º ÀiÕ_u ��)�v(×�x"Ä

19.10 Summary

This chapter has demonstrated the technique of data refinement for a practical database
application. We have taken an abstract specification of the class situation and implemented
it as a concrete specification. The abstraction schema

¾ J?Ó"Ó c B �
relates the components

of the two specifications by defining the abstract ones in terms of the concrete. A typical
operation, the awarding of a mark for some item of assessment submitted by a student, is
specified as

³ � J-<Eb for the abstract state � ghJ�>?> and as
³ � J-<Eb Û�Ü�Û for the concrete stateÈ ghJ.>�> É�Ê

.
The initialization, applicability and correctness rules for functional data refinement are

used to prove the validity of the concrete representation. In Section 19.9, the concrete
operation

³ � J-<Eb�Û&Ü�Û is shown to be a near-SQL statement of the operation.

