{

ol

Information

MOdeImg

B
' R
ol = David Edmond

DD

Table of Contents ‘ '

Table of Contents

DR Y I I BO NI . i i i o i 5 i 1
1.1 Why Compute?
e e T T T o e e e i s e R ey T S ey PP Ty ey e P P, ey e B
13 Inside a Bank
1.4 Next Plaasal
G Ay e W ey e e, ,p,,,F,F__,___,, 12

o B I -

1.6 Summary............. 15
Exercises 17

G REEET R S RE P Rl e 18
2.1 Introduction 18
22 The Plain Facts 19
A P RCE R O B L R g N S R DR 20

231 Relatiops 20

25352 Delning FactaTUPeR:. ok s sa e S e s

2 Domnain s AN R I i S L el D

2 B U . e e e s R

235 FONPOIEING SONPACEE 5. iosssiusoisceccissinirussisosidocsiautessoriares ioosssonsestondissb ot iass isaisessntiag 23

A Onasto-miany RelatonShlpg . S B A S B s e g
241 Funclions 24

2 Partial F ; 26
Z25-One-to-one RelatoRships .o aia sl e el S i s e O
Z DY FORCHETY ADIDUCHUIONY o ociivirimsssininiisssevivatinyiimisisns i sismasssi frisisssssssiiyiesssssisnisiess ssssissora

262 Terms 31

263 Variables 32

26 4 Infix and Prefix Farm a3

2.ZThe Ciccle Database. a5
2B LMD Ml B MO TGy e s B s e e b A e e e i e S R
281 E0RERIIONA OO EBRIBNOEE ..o cniiiis v inisosios i iishAsians adesssuidbianibss iind ke sasse sussaabaisashIll

282 Nenallon uoss asuinsinnnaiae e siniibesiedinishinhshmiiNuien i
2.8.3 Conjunction: When both sentences mustbetrue. ... 37
2.8.4 Disjunction: When at least one of the sentences mustbe true...................oooonns 38
2.28.5 Sealence Construction a9
S N B R R S T)

O IS BB S . o o oot e o v aniinanss e saensuses evbabba siesH s s samesi s Sovaseatiie oy
29 Summary............. 42
Exercises 43

ChRBOr I BolS .. o i e s e e s s s il
3.1 Introduction 48

11 [ahle of Contents

3.2 Sels and EVeryoday LamOLEIGRot ovrooeee e v esees s pemmsmmene peees mrnpessns s semspmesses et pamsmqssas sess pemesse D
33 Bl Fytansinn A5
JaASample Database P TR TR PIRTPTORRRINL - X
4.5 Set Comprahangionoecsiiiiiiieenn T e, i penenae B2

351 Form 1: {Declaratson | Prodicall)}, . oo rremssesrrest corrrascem sres rrenr=asscasmes rrascssssraroes rossrzaas =¥

352 Form 2 {Declaration | Pradical® & Tem} i ittt ss it P
253 Form 3 [Declaration » Termb. oo i e e e innie s
4.8 Sel Operations .. a7
3.7 Highar Ordar Sef8 oo i e e e TR 08
271 Povier sals 53
472 Derlaratinng 1]
4.8 Produrct sets G2
4.9 Setz, Relations and FUnclions g3

30,1 Type ConEIMITR IOo o i oo i syt s errmanaserss s rcormsaessrissmarnam st e ssmmensanrerressmaessss IO
49 2 Relatinne and Eunelinng fid
4.8.3 Deriving Mew Retabions ..., PP PP PPN - <
3,84 Derhving New FLmelI0nS oo oo seeereee e ere s eressageses pmeran s s rpomopesessepssnns seeageseespoeeens 35
310 Set Terms [15]
311 Siammar ..., [a]

Eiprrisas i}

chapter 4 Relatinnsl-llll'Il'lﬂi'llllllllilt'll'lll-lllllil I-I-lllll-lll'lill-l-!ll-‘l‘i-'l-ll-i-'llll"l‘li'lll'l-l-"ll-‘l!-'l"'-'I-I-llli1‘1-1"!‘-!'!11-0‘1"!!"?T
4 1 Inbrodoction i

4.2 Moerlng Facis ... 77

4.1 Relations Eeli]

44 Tuples ..o, 21
AdddFermFilling. oo

]
4.4.2 Tuple or Aggregate Ohjects az2
4.4 3 A Dafnition 84
84
25

4.4.4 Idenlifying InAnidual TUDIES i i eieii s st cces it ss et smserm s
4.5 Damakng

4.6 Problemes with the Sutomatic a7
4.6.1 Solving the Problem of FepablOm L oo o oiie i coirrascm s s soresaseaames s saim s asees pomammaas 8H

4.6.2 Solving the Composte Domain Problami.ooooovveiomoiii oo
4 8.3 Solving the Set Valued Domain Prablem.n i, i e S0
&7 The Cars Dajabage 0
48 Anatomy of a Dafabase.. .o i, PP PP PPN 1
481 The SUBJECT Dalabass 92
4. 8.2 Keys... 93
A0 BlaOnial LArUEEEE oo ieiesirrs rns s mess sssn s e e re s e ermn e s s e e d Em s L £ LR A AL £ EERme Lt et R e O
401 Relational ANGBOIE . i s 95
4.9 2 Relational Calcyles 9B
493 The Sa et OparmEOR ... ot ett i ceeiea s ts ey seoen g oss boneaneses se s bbemas se s ot bnssmeesns .97
4.9.4 The Prosect Operalion.......oe i ieree oo ees SO U PURPUPPITRNE |-

Table of Contents

495 The ProguCt OBIRARIDTT o eosseeeeevsee s eeorcceeees s remeemne e s coepesens gee ermnmms amen s pemer g e e cressmmmmnn

99

4.9.6 The SO OpeTatM oo sisi i emseiise s ises s sssessins e st ssssss b ses i essesessssssussasasas

4.8 7 Relations Expressions

L1014

4 0.8 Relational Caleulus Sumsnamy ..o, e S PP PP .

101

410 The Circle Dalahaes

1602

I T et I = OO P O PSP

102

4102 Comparing the Two Views ol the Circle, oo e N

L 104

4.11 Summary,

106

Expicizas

107

Chapter 5 INEroducing SOLcoceeeeeerieriee e ssseesecessesresssensesseessssnseescessesnssnnnessece 111

5.1 Intredusction 117
5.2 S0 Dalabases 12
5 3 Oatahnae Definition 113
2.4 Dalabase Beireval 114

o5 Database Modification

17

2.6 Dalabase Secumy. i i e s T

. 118

5.7 Using SOL..

118

5.8 Summary...

120

Exarcises

121

Chapter E SDL RE“’EE"\\'HI GabEddE A AR R AR R AR H.-luu-l-lH.--uii-1+u+-u“-+ii+r-i||uri-H-H-ii“-HiHuu“h|i124

6.1 intraduction

124

6.2 Simple Queries. .

128

6.3 Jain Ouepes

126

6.4 Statistical Quaries

132

6.5 "Group By QUENES ..o e v ra v ver e ganrer

. 133

6.0 Muli=table "Group By QUBIIES o oot e e e e et e s e s e s e emmmmmnne s et s

136

6. 7 Product Quenes

138

BHPattam Malching e e et ettt .

... 139

6.9 Summary....

140

Exercisas

142

Chapter 7 SOL ModuUlariZationccoceeeeeiieiiieeeeniersrmeesssssmensesssssssmasenssssnsmsesssanesss | 4D

1 Intreduction

148

7.2 Query Nesting ...

145

7.3 Simple Mesting ..

151

740" Querias.......

152

7.5 “All-Any" Queries

. 153

T8 Corrlabme SubUEIIIES ittt baet by et a b b e an et et s e b e s e b s ed s S nds

155

I.T "Exsts”™ Queras

156

T SUBQUAETY BT Lottt s e soeesimess sere s s s rrm s PEma e g et Emmim s R e R AR S £ £ £ e g EEet s

158

TOThe Union ODEralir .o e

158

10 Umion Usags ..

161

¥ Table of Contents

T11 Whews 162
L2 View Usage, .. 164
7 A% Summand_ 164
Exprrisns 166

Cha ter B Fa{:—ts a“d R'Elatiﬂ“s EEEEPAEE RS I-I-lillllll'liI-I-'I--illlll1'I-I-'I-i-'l-llll'IH'-'IH'-'I-I-lllll1-'!-1ibilllll+litbbllllllﬁl+1?u
B Inlrodoctinn o]

B2 Facls iri

8.3 A Simple Design 173
8.4 An Experiment. .. 174
B8 Another EXpermenl oo e e e as ey e e e ena g s srenn sae s seranas 175

8.6 Unigqueness Constraint oo comannsos oot smmmssss sisissensss sssesssamsons s osrnnssass |8 o0

8.7 Single arnd Many-Vallet Faot TWESvouuerrs s ieresssreressssssnss pemssnssas s o1 norssasssess e s areassn sssres paass 181
88 lyeducihle Facls 183
B9 Nestod Fa0l TWIBE i ey e asen st omeanees e sy s e oo smimiessen e paien e ey wamen s 185
5.10 Apgregaficn..... 186
8.10.1 Daterminants 188
8102 Bocord Types..... . e e i e 10
8103 Attriburte MEmimmg o e e eere s e O <41
E I I I Tl Uy |-
811 Estaplishing the Database.o 195
B2 Summary..... 197
Exmrcisis 108

chapter E U"cuvering Factslllli-i'lll-lllil I-I-liil-llll-lI-I-i--lIlill-li-l++lllIlI++!-+I-llllli-i--l+I-illlil+ld'illlll+l‘++2“3
8 1 Introdiection 203

9.2 Dahning Syntax 203
S3 ANBINTING 3 WIBW oottt ereme e e s mmmemnen e pees mmmmmmn s s ms smmmmnm e e rees mmmmmm s nen enenes A
G RO ATBAINEIS | iiioiiiiaeis it ittt siedaien s b st d bR 8 e et 4 bR 4 L Sk R s b s 206
S5 A Summany of the Motabion 0 20D
9.6 Soma More Examplés..........occoccniiiiiciiiiniian, PPN Y e L 207
.7 View Analysis ... 208
9.8 Denving View Relabions ..o i i imminess i s danerssnas ssess 8mmseis 20 st bsmbad e ss 5501 0 ssnbasisisbins smansss SIS

281 Flatlening SructUres oo e TP TP .| - |

8.8.2 Separating Alternalives . .o i 210

9.8.3 Gather Them Together.......... e e et S 1.
9.9 Extractingg EMmiinilany FREL TWDEE . oottt oo s b oomsbeess bee bt brmmtmasd dm es b bmrmsdsmms §ont bbmme8dse 08 e b bsmeits 211
9 10 Fiertbhar Ahsiraction 213

911 Summanry ... 216
Exnirisos 217

Chapter 10 Fact-based ANalySisccccoceuinmiminnsinisinisaiiss s isissssesassssnssssasessessssns 221
101 Introduction 2y
10,2 The Frofterm 223

Table of Contents

10,3 Step 1) UnCOVET UB TACE BWDBE ...t oooeee ety oo mneee pees mrnpeemms s cmn g smes s et prmmemgsean mrrs pemems

223

1031 Derve Visw Sinictirss

A

103 2 Denve Yiew Belalions

225

10.3.3 Extract Elomentany Facl Tvposoooues e e i

..... comae . 22D

10.4 Step 2! Look lor Unigueness Conatraints . .. o0 coaiei v rrrmasrssri oo crras s irrrmrrasasas e s rras

................. £28

10.5 Step 3 Construch meoont D DmS ittt ettt ettt e g b b em i e bmmntis

230

10,6 Step 4. Decde which atfributes may be oull.. o v s e e

233

10.7 Stap 5 Define the database il .

......... o 20

10.B Step §: Review the design ...

R s 237

10,9 Summary.........

238

Exmirisas

238

Chapter 11 Entity-relationship Modeling.......cociiiiniiiininimsa,

oL |

11 1 Inteoyrdsiciinn

241

11,2 An Example ...

242

11.2.1 Enfities

242

11.2.2 Relationsips . i s et 1

L2l

246

11 29 A it tes,
11.2.4 Depandenl or Weak Enfity Typesoooeiiiciecicinn, e eree: .

248

I T o L o

245

LRI o T I O

114 The Copversinn Process

................. 252

253

11.5 Issues in ER Modaling.............

11.5.1 Entily oF AWFIBUIET . ..o s mmssi s e rosmsss s e sy sessr s ssss rrmsmms s e s ms e
11.5.2 Entrty o Rel@toaSnim ™ e

o 208

............... 258

258

11,53 Naming. ...,

. 20d

11.5.4 Optional and Mandatory Roles ...

. 261

11.6 Summany ..

261

Exprcises. ...

263

Chapter 12 Knowledge ... iissssmmsssis sssssssssnsssssssssssiassss s ssssas s @01,

12 1 Infroduction

267

12.2 The Predicale Caloulys

268

12,21 Simple Sententes.. o e e

o208

12.2 2 Torms

265

12.2.3 Compound Sentences ... e e et

L2id

12,3 Quantification .

271

12.3.1 Existential Quanlification

271

1232 The Ore-point Bule o e

12.3.3 Univarsal Quantficalion. ... oo
128 ITUDRCEIION it s coiibanin inis thobiansidint bibob bnieh idind) basbbaaned kst s bashda et 15 5Fbbanbns §5.54 b b bidn
12,35 ASummary of CuanUfieBLion s s e s s ssasssns e ssns
12, 5.6 Crantiliar EulivalEIOES . . o st eesssresssss s rmrmncas s rmes s marnssan 1 sms ame o ansams sas s ruman
12,4 Defiming Mew SummlE ..ottt e et eeccreee e sienan s s

Vi Table of Contents

1241 Intraducing MNew Total FUumSHonS ... e s s
12.4.2 Introducing Mew Partial FOnclions e i v i s e

283
285

12,5 Geneng Fuocliong and Relstions

286

12.6 Describing Changa e e s e e
1267 ASDiNGg MEW FRCIE. oo i i snms s o s e e et st e en s encn e e et nnnan
12082 ROMOWING F OIS oot d et b s m 6 h bt e e kit 8 ettt
1263 MOBIMING FATIS Lo e e eie et ic s e ottt s 1o s

12,7 Abbreviations ..

12.8 Sequancas
12,81 SEQUENEE COMBEUEEION (1 vvieoeoieetteeimeeesdemet entremmns bt bt eed bt benssmnsead et brmmnmsan ot bess bemnds

291

291
293
294
295
298
300

T2 8.2 SequenCe DI eCOmIDOBIIDI . o o eiennasssmen s camreas s o snsarss ss s s ass bomms 484888 EEs bEmnas tams bbb bamases
12, 8.3 Operations 0N SEOUEMEES . .o e et oo s e v s semes B IR
12.9 Summary........

201
301
a0z

Exprcises

203

Chapter 13 The Knowledge Base..........ccccvcecrrensrcssessressssssesassnssssnsssssarsssnsssssessersess S0 9

13,7 Introduction
13,2 Infarmation Systemes Development o e

309

b [

13.3 Knowledae ...

10

13.4 Representing Organizational BnowlBoma ... e e s e e et s ammens
135alookat”

31
312

‘Ij § .S'g nalures

314

1361 Daclacation

315

13,62 Twpe INIFOEUCHGIE Lot iese e eiscsrs s errs s eresoses e crsasmrmssens s e racras resarsrreaicras

S16

1363 Sats

A7

13.6.4 Sef Extension

17

T3.6.5 Sal ComPraPBrBIi . ..o e i csiss e bmrns s s e st oooabssas s30d brmns nsssss i SR
13.6.6 Type Construction. ..o TR
BB T T
13.6.8 SPECIBl DBl OMDBTALENNS . v i i isiee it o honitass s oa s Bmeeb 84 86 55 b m S84 5008 £ SRS 808 0880 SRS
13.6.9 Fact Types ..o PP
13.6.10 Soguences and Soquencs OperalionS ... i i

a8

A1E

s
e

320
321

j:i E Etedmﬂ]nq

321

13.7.1 The Struciure of 8 Predicale ettt e s emenns
13.7.2 Simple Predicales.. e E e 8 e e R et e et et ann
13.7.3 Compoting PromIEalES .. oo isiosssis s soessssss s smssmas 5550 raesms aasssssmns s20en e e

anftifi T

322
322
323

o324

13.8 Kinds of Schema

324

1381 Process Descrlptions . v ceniiiiinniviinnnn i e i i .

L34

13 8.2 State Des e i IS i iiee ity ies s irresaes s roreniatas i rse mmoneas rees s e sear s rnmgs taeas saes s monnes

326

13.8.3 Type DESTIRIONE i ittt ettt ittt eibie sttt e e b imsie bbbt st s et bments

326

13,8 Summary.
Exnrcisas

326
330

Table of Contents a

Chapter 14 From Specification to Implementation........cciiiciciiiniicccienniciiens 331
14 1 introduchion 574
142 The State Srchema 331
14,3 Schoama Inchis=on 332
14.4 Schema Decoraliln ..o it et kb an s d e s aebe et enms b
T4.5 SUAE TREMSIINT ..o e e e ettt e e s s 44 e s 8 me £t e mamemie 333
146 Operation Schemas o o
14.6.1 Enrolling & Mow Student oo e e e IR 1

14,6 2 Award o Mark 336

14 6 3 Amend 5 YAk 337
14.6.4 A Studen Drogs Oulie e o338

14.7 Read-only Transachions oo e 338
14 B Maintaining the State Invariant . 338
14.8 Matrtairing the Stabe Invaiiant i e i e s e 341
14,10 Implementation ... 3
T4, 11 Dl oping e D oS o iese e coeeriers s ireeniceserressooegoeeasss e s smmsaegesesss ppemmssasasssses mnas earatsssamanes 344
14.12 The State Schema and the Database .. 3486
14,13 IM P eI O B0 OIBIOI . 0 svesis e vsnesanmstrsr st ses t s nmsnssssss ors mpomsansssss oo bsasssess sss e sasnenasrasss s basasis 348
14,14 From Operallon 10 PROGRBM .o s sssssesssissmsmss s o8
14,15 Summary...... 350
Exorcizns 352

Chapter 15 Database Definition in SQL.....ccviiiimeriimmirismmessesissom s oo d 3O

151 Introduction 56
15,2 Tables 358
152 1 Tahka Cresling ASE
15.2.2 Tabhke Alteration ... R .. 361
152 3 Tabls Remeval 362
15.3 SO Datatypes 362
15 3 1 Datatypas L 352
153 2 Humbnes 383
15.3.3 Charactar Siangs. -1, G5

15.3.4 The Db DaBmVEE oottt ettt bttt cce st e semassees o omme s P
15.3.5 Conversion Between Datatypas ... LAl
15,4 Referential Inteqrity and Other Comstrainis. oo AT
15.5 Viows 372
156 Indaxes 374
15.6.1 Unigque of Primany INGERES .. e iomsasiii s omimim s s brsmsansasssosi brmnms senss bhns s mnanis 374
15.6.2 Secondary INASmSS . i s sy veieae e ir aersae ey e ey e sy s s iTE
15.6.3 The Rols of Indexas ina Join Operabion ..o v ar7
15.6.4 Advantages and Disadvantages of Indexes | 379
15,7 Summary......... 380

Eisirises

A81

Vil Table of Contents

Chapter 16 Database Manipulation in SQLccoiiinniiiiiiiiiiiiiisiisicii i 386
161 Infroduction 8B
6.2 Adding MNew BEws ..o e e e e e 346

1621 SingleRow Insert ..o e e e SO
162 2 8o ii-row Inger| a7
16.3 Modifying Existing oS ..o i i i i i i e e e s s s SO
L O = Lo o o O TP 381
16.5 Tratsaciong 92
VB FEIETEMIAD I BTN oo e v n e e s s o8 s s 22 8 s e 00 40 a2 2w amnen 393
16,7 View Updata.... 395
16.8 Controlling Database Access. ..., e — r—— P I —- .
1661 Granting Aceess o e R e JAT
16.0.2 Revoking Privilageso i . [P . . 1
16.9 Summary......... a5
Exprcizes 400

Chapter 17 Application Programming ... issssas sssssvasssss e e 40 9
174 Infroductinn 408
17.2 Llsing SQOL...... 408
17,3 HOSL LANCIUBGE ITMBETARE oot eeees v evecen e see s e seces cocenansnnsase srmcmcnssaencesemmeennnesessserene oo 407

17,31 Imtrogduction 407
I T -1 O PP - 1 .
1T 5.3 THe Errol PROGIFEITT i i s e sa s 40 shs g o s 100 b s 408
17.3.4 The Declare Secion ... S ——
17.3.5 The SOL Communicalioms APBB .. et e stie s m o teesmmsseet s emt e momss e e bmnins 411
LIPIRE T T e T T P 412
QI e L= PP RPPTOPY o L |
7 jabl 415

17.3.8 Tha Classlkst Program ... T I =
17,3 10 Cyraors 418
17311 [peficstior Yarsblag 414
17 4 Form-based Application Developmemt . e e 420

17.4.1 Transaction Procassing .o TP SRR O PR PPRPOL . 4
A T 0T T = P PO T 421
17.4.3 Using Aulomated FORMS . i iiinis i vins oo 22
17.4.4 Othar Paints on the Foim 434
T ASTNgOEred ACTOME . . i i e e 425
17,48 Awarding a Mark ... OO 1. -
17.5 Summary......... 428
Exprrisas 429

Chapter 18 Case SHUMIES ... s sissssssssssssssssssasassssssssssasss 430
18,1 Introduction ... 430
18.2 The Leamue Talle o e e e e 3

Table of Contents i

18.2.1 Introduction............. RPN & | |
18.2.2 Dafining e Lo i e i e e e 432
18.2. 3 Adding Mew RBSUIE ..o e e i s e s SHHY
18.2 4 Producing a Summany TaBIE i e i e, 435
18.2.5 The League Database oo, TR = -
18.3 The Bocky Contrele COMPAIN ..o rmeses s s e s cnss s e st b s a e 443

18.3.1 Developing @ Specificalion ... s s —
1832 Tho Rocky Staber .o e e eancaeens e B
18,33 ASAdiNg 8 Neww CuUSIOIMIET .o i i s mmesa s s s e sesssss s msas esssssss coans s S0 5
T 34 TaKING & B I L. osssises vers s vseesseeessees ermmsmemss sesn s ereesasan s s ere smmms s esanse s s rnmmmn aan s eramenee 450
18.3.5 Making a Beguest for ProdUolion ..o e e e 453
18.3.6 The Database e e e A e s LA
18.3.7 Implamenting the AddCustomear Operation ... i Y crvieisiioenns A

18,38 Implemeanting the TakeOrder Operation....... . R —— - T
Exarcisas 463
Additional Cases 464

Chapter 19 Refin@mMEntc.ccovieemeiiimmiiienmsmmmrsmmnsssessimassssssssssanssssnarnssnssssnssnsssssssnneri f 0
19 1 Introdiction AT

18.2 The Abstract Specification........eeo ETTTTTTN L T TP P TP TPP. T i

19.21 The class Sitluation 471

T9.2.2 The INdividual SUUEIE ... i et ms e e emcebs s as s bbamnsdsmma e shsmmmd e s sssasnnss T L

163 3 Aseaaement 473
162 4 The | ecymer 473
19,3 Cpamtions on Sdent Records. .o i eieiis s si e mras s ars e e s e ceivecreneen e BT
193 1 A Student Submits Some Work 474
19.3.2 AStudent |5 Awarded 8 Mamk s e e S 476
1833 & Mark is Amendad 477
19.4 The Concreta Specification ... e i e e e T
1941 The Tables Usad arg
18.4.2 Mapping Batween RepreSenlallonso e s an ans oo cremsmassas s msnsns 481
16.4.3 The Award Operation Re-specifed . i s e s 483
19.5 A Review ... 484
18.6 Verification 485
19,7 Verifyvineg Ui Award TS DD DREIAIGN oottt ie ettt et cass s et seb s eiess 487
18.7.1 The Dne-point Rule Revisited.........ccninieiinin, TP O PPTTPPPNNPL, [1.
19,72 ARPICRBIITY oo s e e cemmrs s s mnmasn e s s e sa s ae s sennnas ses o smeecss SHED
1873 Comeciness 489
18,74 The Initial State.... ... F e e e e e e 00
19.8 The External Interface............ U .- ||
19.9 Translating the Award ExE Schama inda S0OL . i ccar s e eeeimaam s crrraimias 4892
1810 Summary....... 453

x ‘ Table of Figures

Table of Figures

Eigure 11 .The Grest Computing Divide ... i il s en i it il it 2
Figure 1.2 In the bank s 5
Figure 2.1 Defining a fact type 22
Figure 2.2 The hasage relation 24

E b 0 T L A e SR s B o S i L B e A T TS i
Figure 2.4 The drives partial funetionccccoeeeninnianciiieniinenieiiane g i S anas i N i b O i 27
Figure 2.5 The left total INJECHON ... i s e
Flguns 2:6:The spoise parlal oo i e b e e i o P
Bgune 3 The KIDS DI RBE . ..o il i iiuiie foas o fosidheasasa bossuadss coody basas Sarvis 1 etosasoel §10s bisvonsrbon bid (Fbscsniocibint dsmeadiia 53
Figure 3.2 Set Evaluation 55
Figure 4.1 An easy merger....... 78
Figure 4.2 Bad and gOOd MEIGEIS...........ocoeeeiasssssies s sasssssesessssssscsssssssssnasssssssmsassass sanssssanasssnssnsnssnsnssssnsinas semsnssne 79
Bogure 4.3 The database anstomnyw.occceannin it siriieaingaiinnaian s anmsinsansns 94

OSBRI OB o e e e e e el i L P 95

EHoune 4.5 The salect ODBEIIN.......c.coviiii i iniiamamamiitoismttoses soriraivissisdasei ssrasson s soshrasusroryives favonavisssivsisonbnssos IIT.
FIOe 4.6 The DIl act ODBIBION - o e e o i i o ias s e S s s s e sy

Figure 8.1 Merging fact types 174

Elgure §:3 Introducing uniQUenass CONSLIANMME viviisiiiiicwsiniaiiid usias il satidisitississivsenbi s isiiiiiseis § 00
Figure 8.4 Single and many-valued faCt AVDBScooonee e 182

N B S Ty T R R R O I o e e e e e e s S sk eh oy b e sk it O
Figure 8.6 A uniqueness constraint ontwo roles ..oy, ot S e e e 185
Fiqure 8.7 A nested fact type. 186

D T T T o e P S P e P e PO (P SrerrTeT e e e i R T e o 187
Figure 8.8 The final conceptusl BENSMIB.isassioummisisiiiuscsismiisssiiiss sesssidis} 154 sotiasssedisessiseiiuosi lssussiss 188

Figure 8.10 Looking for nulls. 192
Fiqure 8.11 Looking at a nested facts for UNS ..o ooeenee i 194
Elgure10.1 An outing of facl-Dased analvels. .. . i e e e s s e 222
Figure 10.2 The first-draft conceptual schema diagram ..o s 227
Eiguna 10 A i el R R L e L e B O L LA 230

CIOUND A0S A NORIa TRCH Y. o i e o e o i A e S it i S dasadeicds 231
Figure 10.5 The final schema 232

o The camoiE el W8 il et b e s e e S A

Elgiae 1722 Anel nio: W T T oo st e S e e TG o e s Ve bt ak et bbbt s S S Tanail 243
Eaure- 113 Faculiies sre dividend Inlo SER00I:: .. o o e e e dt e o e M

Flgure 11.4 The Science Facully ISAIVded...............coooiiiiii ittt 243
Figure 11.5 introducing the campus BNty BYPe ..o 244

Figure 11.6 The story so far... 245
Figure 11.7 Faculty attributes 2486

Figure 11.8 Relationships may also have altributes ... 247
Figure 11.9 Attributes of a many-lo-many relationNsShipc.ocicii it iiiiee s ceeceeasvasessenasssassssnnssesasassssnssssnsses SO T,

Table of Figures

Figura 1190 CompoSill @bEBULES ..ot eeoeeooee 1t e essee sesermmsesesemrs prmmsemans pees o pmen 2 s er remmmmsns g et pememmsemen ees smmmess SAFEL
Flgure 11,71 A set-valusd SHPDUBE . oo i it i s e e s e e 249
Figqure 11,12 Weak or depengent entily types Lo
Figura 1113 A recursive melationshig. ..o . 250
Figuera 17714 A hiararchical Pl o bom a0 L it oy o atrse st rrera e rs rer e rreiwre i erranrooesrereirasiescrerripsears 250
Figura 11. 00 Momm o By L im0ttt e e b m b5 b Skt bn mmnits B]
Figure 11.16 Record {ypes based on entity types (pad 1300 254
Figura 1117 Record ivpes based on enfity typas (part @b .. 255
Figure 1118 Adapendant @nfity oo i i i i e T
Figure 1119 The many-Lo=many FEAUOMERIDEvir etttk eeire e b esbasees e e smnee 08§ et rmmmmsan ok be s bemni it s 256
Figure 11.20 The One-to-many Relatlonships. ..o i v, . 257
Figura 11.21 Resolving sel-valued SHHEBUIBE ..o i eeae e s o imee s e s st e panims seaes see s nmemes 258
Figuere 1722 The ARamol @miity. o i i i i e 260
Figura 11.23 Every lecturer belongs to a school 261
Figure 12.1 Exlstantial guanification with conunetionoomi 273
Figure 12 2 Universal ouantification with impleafon. ..o e, e 276
Figure 123 Implicatien.......... 277
FIGUTE T2 A Bamaral S I B IS i e i it s R A £ e e s 2768
Figgure 12 5 Equivalente, .. 282
Figure 12.6 Defining rEw PelBUONS e creaser oo sasss s s asssssrss e sessssssss e 283
Flgure 127 Dafining rew 08l FURGHOMS ..o e iemeemeecss e oo cass s e s mems s e e samcsms e sasesss emns seses raes s amec s SAF
Figure 12 8 Defining new padial functions e 2V
Figure 12.9 In the bank 200
Figure 14 1 Thres views of 1he cdassroonm oo s e i v e " ¥
Figure 14.2 Conceplual schema difsgramociscs o cisssssasin. 34
Figure 143 Entity-nel atiomSnim di0raimi. o e e i e meme e s s s a s e mmmn e e mnen e PR
FIUiE 144 The ClE55 DBIBDBSEottt iea st be et et amt e ee o2t eimt b8 0§t b 8 s b in s mb e emaias 346
Figure 14.5 Abstract and conGrebe SIAMESE .. i i e s s e e e . 346
Figiura 14.6 From spocification 1o implementalion . ..o . 351
Figura 147 Full circle 351
Figure 15.1 Revised Creale (ahhe SYMIAR oo it it s e iebiiam 08 b S0 £ immd bkt st itnmss) € L
Figure 171 Modes of SCHL USE0E i i i e e s L A06
Figura 17.2 Pre-processing .. 408
Figura 17.3 An electronic fonm ...,]
Figura 18.1 Catalog of ProdUols BNE BrECEE o ovieeiii e ton s hoemnses s feest brnstmmsnt S0t | mssbtssns 440t bmmnmntse 888 e b bbmnsmsn s bossbmsnsds 443
FIQUIE T2 LISLOT SEOCH BP0 i ot iniimiin i sns vrnsnmess somm s mes smeass 8044 smsas 48 64es | B8 E R3S 55 8§ S0 b SR8 408§ E5F b BRERE £ 000 B BRRREES 444
Figure 18.3 Produciion Begquasi.....o. i s L 444
g e B O I Tt = U U PO 445
Figure 18.5 Order Form......... 446
Figure 18.6 Belore and alter . 447
Figura 18.7 The AddCuslomer Scresn....oeee v, - 56
Figure T8 B The Take g o o B et ie s iee e it oo tae s eeeirieca et eecsanas e es prsomsees o socmes cas ppssammes s ges s csnnonnas 458
Figure 19.7 What the user thils .. e s s s e o emsr e s st 10 b mmsss s eas e L85
Figure 192 WHAE 1e DrOar i T BT BUIIKS ooooeeeieiuesssirrinsassss soomssmsnsssmess bommsansss ss orf K rbbesssssass shamnmssn ssssssbemnsn aass senbasnsss 486G

Chapter 1
Introduction

1.1 Why Compute?

What are computersfor? What istheir purpose? Suppose your life depended upon coming
up with a word or phrase that most accurately summed up what computing is all about.
What would your answer be?

Would you say that computing isabout . . .

sex?
drugs?
rock’n’roll?

No, there’s not too much of that in computing.

WEell then, perhapsit’'sabout . ..

money?
power?
food?
gambling?

No, these topics are hardly ever discussed in computing magazines.

2 Chapter 1

Thisissurely most regrettable. Doesthismean that, if wetake out all the interesting things
in life, computing is about what remains? Not quite, we hope!

Computing is concerned with taking the interesting things out of life and representing
them somehow. It isall about modeling. Everything inside acomputer is arepresentation
of something else.

1.2 Facts and Knowledge

Suppose we got together and tried to describe al the things we know about some orga-
nization and its environment. The organization need not necessarily be a commercia or
government organization. It could be the Great Barrier Reef, the town in which we live, or
even one of us.

Our description might take any form, such as drawings, plans or photographs, but let
us assume that it is a narrative written in English. That narrative might include many
statements that are merely opinions, so we will try to restrict ourselves to ones that we
collectively believeto be true. See Figure 1.1.

(A
All that

we know
/ about N\
the)

organization
N J
Simple specific More
statements general
of fact statements
The Application
database programs

Figure 1.1 The Great Computing Divide

Introduction 3

There will be two kinds of statements that we want to make.

1. Somewill be simplefacts, onesthat make connections between specific objects; should
we decide to represent these kinds of factsin a computer system they will be stored in
a database of some kind.

2. Other facts will make more general statements about the nature of the organization;
these tend to end up in computer programs.

Specific Statements
Thevast mgjority of thethingsthat we might write downwill berelatively simple statements
of fact. Thesewill relate particular objectsin someway. Some examplesof such statements
might be as follows.

Bill Smith isa senior programmer.

e Inthe December quarter, the Jones family used 1600 kilowatt hours of electricity.

e F. Garciaownsthe “River Breezes' property.

e The Accounts Department is located at Head Office.

¢ On Tuesday, 31 March, Ann Hampson spent two hours on the Fingle project.
These facts relate specific things — particular people, jobs, dates, quantities and locations,
for example. There may be billions of facts of thiskind. They constitute the raw data or

database upon which all information systems are founded. Asa consegquence of these large
numbers:

1. The facts are often partitioned in order to be more manageable, and so we have a
Customer database, a Personnel database and so on.

2. Even then, a database may contain millions of facts. Yet atypical transaction might
involve only two or three of these facts. Complex access methods are involved in
enabling rapid access to the required information.

But it isconsiderations of technology and volumethat drive these factsinto a databaseto be
controlled by adatabase management system, not anything intrinsic to the factsthemselves.
It is technological considerations that force us to make the division between simple facts
and the more generalized ones.

General Statements

Of the thingswe might like to say, some will require more complex language, for example:

e Senior programmers and above are not paid overtime.
e A client may own severa properties but a property is owned by only one client.

e Thequarterly tariff for the use of electricity is 15 cents per kilowatt hour (kwh) for the
first 300 kWh, 10 cents per kWh for the next 900 kWh, and 5 cents per kWh for the
remainder.

o If two successive dectricity meter readings are such that the second islessthan thefirst,
then meter tickover is assumed to have occurred (that is, the meter has reached its limit
and reset itself).

4 Chapter 1

What makes these statements more complex? Clearly they are longer, but they are longer
because they are trying to say more. They seem to be making more general statements
about classes rather than individuals; and in being more general, they are also more stable,
that is, they tend to remain true for a longer period. If this had not been the case, then
programming would have been quite a different discipline.

Let us call these more complex statements knowledge. Taken in conjunction with the
specific facts given previously, we can say, for example, that any claim for overtime made
by Bill Smith will be rgjected, and that the Jones family will be charged $155 for their
electricity. How many statements of knowledge might be made regarding the organization
—tens? thousands? tens of thousands? The answer is that there are probably millions. A
great many, but still several ordersof magnitudefewer than the simpler factsthat accompany
them.

Where do we store this knowledge? Do we have a knowledge base for complex facts,
one that mirrors the use of a database for ssimple facts? In practice, we usualy bundle
together a number of them and encode them using the currently favored programming
language. So the organization's computer programs constitute its knowledge base.

Do we have a knowledge base management system (KBMS) to manipul ate and modify
this knowledge? Most certainly not! Well ... we don’t have a computerized KBMS, but
one of the major roles of the Computing Department in any organization is to act as a
knowledge base management system. One of that department’s most important jobsis the
maintenance and enhancement of the organization’sknowledge base. Thisis done through
the tasks of program maintenance and new systems devel opment.

The knowledge base represents a kind of theory of that company. It represents the way
that the company believesthat it works and how it interacts with its environment. However,
it isatheory that is being constantly revised and refined, as the organization adjusts to that
environment.

1.3 Inside a Bank

For the remainder of this chapter, we will look at an example that tries to illustrate these
ideas. The situation to be described is one with which most of us are familiar. We are
inside a small suburban bank. A pictureis presented in Figure 1.2.

Specific Facts about the Bank
The specific facts that are relevant to the situation are these.

e Teller T1isopen.
Teller T3 is open.
Teller T4 is open.

e Teller T3isserving Sue.

e Firstinthe queueis Ann.
Second in the queue is Kim.
Third inthe queue is Dan.

e Lizisamong the other customers.
Jim is among the other customers.
Bob is among the other customers.

Introduction 5

(=] (@] [=] [«]

Q@
Sue
@ Bob
@ Ann
@ Kim
@ Dan
()
Liz Q@

Jim
Figure 1.2 Inthe bank

The facts have been separated into four different groups. Each group correspondsto a
certain type of fact. Every fact in a group has a fixed constant part and a variable part. For
example, thefirst group has the form:

Teller __isopen.

Each hole is to be filled by the name or identity of ateller. The sentences themselves are
not stored in the database. Rather, we store data that may be plugged into the holes of fact
templates such as the one above. For example, the Open table contains three rows and each
of these may be used to generate a true statement. Each group may giverise to onetable or
relation in arelational database. The bank database will contain four tables.

Open Busy Queue Others

Teller Teller Custld Place CustId CustId
T1 T3 Sue 1 Ann Liz
T3 ~ mmmmmmmmmmee—e- Kim Jim
T4 3 Dan Bob

Generally, there is not a one-to-one relationship between the fact types and the database
tables. Usually, anumber of fact types are compressed into asingle table. Database design
is, essentially, a process of deciding where to place the different types of fact that areto be
stored.

6 Chapter 1

General Statements about the Bank

There are a number of more general statements that we can make. They are rules that
describe the bank at any moment of time.

e There are anumber of teller windows, not all of which are open.
e Even at an open window, the teller may not be in the process of serving a customer.
e Thereisasinglefirst-come, first-served queue of customers awaiting attention.

e There are a number of other customers, some of whom have just been served and are
about to leave and some of whom have just come into the bank and have not yet joined
the queue.

Now we will restate these general observations more formally, using a state schemato
describe this situation.

__ Bank

open : Set of Teller
busy : Teller +> Person
queue : seq Person
others : Set of Person

dom busy C open

ran busy N ran queve = {}

ran queue N others = {}

ran busy N others = {}

#(dom queue) = #(ran queue)

This state schemaisintended to describe a state of affairs such asthe onefound in the bank.
The schemaand its contents are part of the Z specification language or Z notation. Thisis
the language we will use to specify the situations and events that we intend representing in
some subsequent information system.

The schema has two parts consisting of a declaration and a predicate separated by a
short horizontal line. The declaration in the above schemaintroduces the four components
of the state. The name of each component has been chosen to match the correspondingly
named table in the database. You should note that a table such as Open reflects one aspect
of the bank at a certain moment of time. Whereas a component of the bank schema such
as open is meant to represent some permanent aspect of the bank.

The Bank Declaration

1. open : Set of Teller
Thisisthe set of tellers whose windows are currently open.
2. busy : Teller +> Person

Thisisarelationship between tellers and people. It consists of a set of pairs with each
pair being of the form (teller, person), for example (T3,Sue).

Introduction 7

The domain of thisrelationship, written dom busy, isthe set of tellers actually serving
someone. The dom operator isjust one of anumber of useful general purpose operators
that may be employed in a specification written in Z. The operation may be applied
to any set of pairs and it returns us (or more precisely, allows us to talk about) the set
of left-hand components of each pair. If the set of pairsis regarded as a table such as
Busy, then the domain is the left-hand column.

The range of this relationship, written ran busy, is the set of people in the process of
being served. The ran operator complementsthe dom operator. It can also be applied
to any set of pairsand if that set is thought of as a two-column table then the range is
the right-hand column.

So athough only four components were named directly in the declaration, we can
access or describe other features of the bank that concern us.

3. queue : seq Person

This is a sequence of people intended to represent the customers who are currently
queuing. It isaset of pairs of the form (number, person), for example (2,Kim). Each
pair indicates a place in the queue and the person at that place.

Because a sequence is a set of pairs, although of a specia kind, we may talk about its
domainand itsrange. Therange of the queue, written ran queue, isthe set of customers
who are in the queue.

We can specify the customer at any given place in the queue by applying queue to the
place in question. For example the customer in second place can be denoted by the
expression queue(2).

4. others : Set of Person

Thisisasimple set of peopleintended to represent those customersin the bank but who
are not queuing and who are not being served.

We have said what the components are intended to represent but we have not yet written
the conditions that will make them such.

We should have a clear idea of the relationships between the components of the bank
and now we must specify these. Thisisdone in the predicate part of the schema. Here we
relate the state components to one another. We provide a number of conditions that must
hold within the bank at all times. For this reason the conditions that make the predicate are
known asthe state invariant. Thisinvariant characterizes the bank for us.

The Bank Predicate

1. dom busy C open

The set of busy tellers (dom busy) must be contained (C) in the set of open tellers. In
other words, only open tellers are allowed to serve customers.

2. ran busy N ran queue = {}

The set of customers being served (ran busy) has no eementsin common with the set
of customers queuing (ran queue). In other words, no customer is both being served
and in the queue.

8 Chapterl

3. ran queve N others = {}
ran busy N others = {}

Similarly, no person is both queuing and among those other customers. And neither is
anybody being served.

These last three statements ensure that the three sets of customers are digoint, that is,
they have nobody in common.

4. #(dom queue) = #(ran queue)

This is a more complex statement, yet merely states the ailmost self-evident fact that
no customer will be found more than once in the queue. The queue was declared to
be a sequence, but the sequence construct allows repetition. For example, the word
“irresistible” is a sequence of characters in which certain of the letters repeat. So a
sequence of objects of type Person will permit the same person to appear more than
once in the queue. This can be prevented with the help of the set cardinality or set size
operator #, which may be applied to any set. It allows us to talk about the number of
elementsin that set. We could write #busy to refer to the number of customers being
served, or we could write # open — #busy to refer to the number of open tellers not
actually serving at any moment.

The set dom queue is the set of places in the queue; and #(dom queue) is the size
of that set, that is, the number of placesin the queue. The set ran queue isthe set of
customersin the queue; and # (ranqueue) isthe size of that set, that is, the number of
different customersin the queue.

We declared the bank as constituting four primary components. As may be seen in the
predicate, however, we are able to use powerful operators such as dom and ran to “access’
other parts of the bank that interest us. We can also use other operators, such as set
intersection N to combine two parts or set inclusion C to compare two parts of the bank.

It should be remembered, at this stage, that Z is not a programming language. When
we write an expression such as dom busy we are not instructing a computer to return us
the left-hand column of the Busy table. Rather, the term dom busy is a convenient means
of naming that set of tellers. It issimply two words used together. We judge a specification
language by its expressive power. We look for economy of expression and it is operators
such as dom and ran that help us economize. However, you may still feel that the formal
description of the bank did not add to your understanding and that the effort involved in
learning the language is not justified. We will discuss this point shortly.

Suppose we now re-examine the database.

Open Busy Queue Others

Teller Teller Custld Place CustId CustId
T1 T3 Sue 1 Ann Liz
3~ Kim Jim
T4 3 Dan Bob

This database i's consistent with the rules stated in the Bank schema

Introduction 9

Every teller inBusy isalso in Open.

No person appearsin both Busy and Queue.

No person appearsin both Queue and Others.

No person appearsin both Busy and Others.

No person appears more than once in Queue.

1.4 Next Pleasel

However, the database merely satisifes the rules. 1t does not contain them. Nor are the
rules incorporated in the programs that are allowed to manipulate the database. But these
programs must be aware of therules, or at |east written with an awarenessin mind. Every
one of them must be written so as to maintain the integrity of the Bank state. Whenever
some event occurs that will change the situation within the bank, the program written to
capture that event should guarantee that, if given a valid bank state, it also returns one.
Consider what happens when a teller looks up at the queue and says “Next please!" How
can we describe that event in general terms?
We can conveniently divide the description into two sets of conditions.

1. The pre-conditions

These are the conditions that must apply before the change can proceed.

e Theteller must be open for business.
e Theteller must not be busy with a customer.
e There must be someone in the queue.
These are the conditionsthat we recognize as necessary for the event to bevalid. If any

oneis not true then we know something is wrong.

2. The post-conditions

These describe how the bank changesas aresult of the customer moving from the queue
totheteller. They relate the state of the bank before the event to its state after. For this
event, the conditions are;

e The teller is now serving the customer who was previously at the front of the
queue.
e Thequeueisnow formed from the tail of the previous queue.

o Nothing else has changed.

These conditions can now be combined and formalized in an oper ation schema.

10 Chapter 1

__NextPlease

ABank
t? : Teller

t? € open

t? ¢ dom busy

#queue > 0

busy' = busy U {(t?, head queue)}
queue’ = tail queue

open' = open

others' = others

Before we look at this specification, you should note three conventions used.
1. Theuseof thedeltasymbol in A Bank indicatesthat this schemais describing achange
to the bank.

2. The use of the question mark in the variable ¢? indicates that the teller is identified as
an input to the operation. It isinformation that will be supplied.

3. The four components of the Bank state are open, busy, queue and others. The
primed variables open’, busy’, queue’ and others' are used to indicate the value of the
corresponding component of the bank after the event.

The schema can be interpreted in the following way:
The NextPlease Declaration

1. ABank
Thislineindicatesthat the NextPlease operation is one that changesthe Bank statein
some way.

2. t?7: Teller

Thevariable t? represents the teller who islooking to serve the next customer. The use
of aquestion mark indicates that theteller isan input to the operation. In programming
terms, the identity of the teller is a value to be supplied at run-time.

The NextPlease Predicate

The predicate part of the specificationre-states,informal terms, the pre- and post-conditions
that were discussed informally.

1. t? € open
Theteller isamember of the open set. In other words, the teller is open for business.
The € symbol may beread as“is an element of " or “isamember of ".

2. t? & dom busy

The set dom busy isthe set of tellers actively serving a customer at this moment. The
teller must not be a member of that set.

Introduction 11

3. #queue >0

The # operator applied to queue givesthe size of the queue. So this condition merely
says that there must be somebody waiting to be served.

This takes us to the end of the pre-conditions. If they are all satisfied then we can
proceed to describe how the bank changes as a result of this operation.

4. busy' = busy U {(t7, head queue)}

Theteller ¢? is paired with the head of the queue and, using set union U, that pair is
“added" to the other pairings of tellers with customers.

The head operator may be applied to any non-empty sequence and it specifies the
first object in the sequence. We know that queue is not empty because of the third
pre-condition.

5. queue' = tail queue

The new queue is formed from the tail, that is, all but the head of the original queue.
The tail operator isanother specia one that may be applied to any sequence.

Applying tail to queue has the effect we desire. It removes the head and shuffles
everybody elseforward one place.

6. open’' = open

The set of open tellers is unchanged. No teller opened or closed as a result of this
operation, which is as we would expect.

7. others' = others

The other customersin the bank are also unaffected by this operation.

You might again argue that this formal specification does not tell you anything that was not
already clear from the original informal one.

There is another reason for preferring the formal version. We can use the formal
specification. We can use it to prove that the operation will maintain the integrity of the
bank, that is, the rules specified in the Bank schema. We cannot do that with the informal
version; we can only hazard a guess.

For exampl e, one of the conditions placed upon the bank isthat all busy tellersare open.
This was expressed formally as:

dom busy C open

After the NextPlease operation this condition must be held by the after versions of the
bank state components; in other words:

dom busy' C open'

After the NextPlease change, the set of busy tellers, dom busy’, is contained in the set of
open tellers, open'. Can we demonstrate that this latter condition does hold?

dom busy’

[We can start with the left-hand side of the equation, that is, the set of busy tellers, and
try to provethat it is a subset of the open tellers.]

12 Chapter 1

= dom (busy U {(t?, head queue)})

[In this line we have substituted for busy' according to the line in NextPlease that
states how the set isformed: busy’ = busy U {(t?, head queue)}.]

= dom busy U dom {(t?, head queue)}

N

[Herewe have“ distributed" the use of the dom operation into two separate applications.
Thisissimilar to the way in which the multiplicationin the expression 3 x (2 + 4) can
be distributed into two productsas 3 x 2 + 3 x 4.]

dom busy U {t7}
[The expression dom {(t?, head queue)} can be simplified to {¢7}.]
open U {t7}

[The previous expression must be a subset of the new one because of the line in the
Bank schemathat says: dom busy C open. Wecan assumethat, beforethe NextPlease
operation started, the bank was in avalid state.]

open

[This can be simplified to open because of the line in NeztPlease requiring that: t? €
open.]

open'

[The NextPlease operation leaves the set of open tellers unchanged as can be seen by
theline: open’ = open.]

Hence dom busy' C open’ which iswhat we were required to show.

Wehavenow demonstrated that one of thebank conditionsholdsthroughthe NextPlease

operation. We have achieved this by a series of transformations based upon avalid Bank
state and the NextPlease operation.

1.5 The NextPlease Program

Now we will ook at a program that will update the database according to the specification
laid down in the NeztPlease schema. The program is written in the language SQL which
wewill usetoimplement our specifications. SQL isastraightforward languagethat allows
us to inspect and manipulate a set of tables as if they were in front of our eyes rather on

electronic storage.

Open Busy Queue Others

Teller Teller Custld Place CustId CustId
T1 T3 Sue 1 Ann Liz
T3~ Kim Jim
T4 3 Dan Bob

Suppose we want to find out who is at the front of the queue. We would probably do it this

way:

Introduction 13

1. We would start by determining which table contained information about queues. The
table Queue isthe onerequired. It is fromthat table that the answer will be extracted:

From Queue

2. But that table contains information about the entire queue; so we need to narrow our
search to the row where the place indicates that the customer is at the head.

Where Place = 1

3. Havingfound the row we need, we can select from it the name of the customer involved.
Select CustId

We can link these three clauses to form the SQL statement required.

Select CustId
From Queue
Where Place = 1

The entire program is presented as a sequence of steps to be obeyed by the computer.
Each step consists of asimple instruction written in SQL. Each instruction will require the
computer to either read the database or to amend it in someway. Stepsthat involvelooking
up the database will have an extra condition that determines whether the computer is to
move to the next step or to abort the program. This condition will depend upon the results
obtained from the retrieval .

The program is written in general terms, making referenceto ateller 7. We will then
examine what happenswhent? = T1.

1. Istheteller open for business?

Select Teller
From Open
Where Teller = ’t?’

If no rows are returned by the query, then the teller is not open. With t? = T1, there
will be arow found.

2. Istheteller busy?

Select *
From Busy
Where Teller = ’t7?’

If arow satisfying the condition is found, then the teller is busy and so the program
should be abandoned. With t? = T1, no row will be found and so the program can
continue.

3. Isthere someone in the queue?

Select *
From Queue

14 Chapter 1

If any rows at all are returned, then the condition is satisfied. There are currently three
rows in the Queue table and so the program may continue.

Thisisthe last of the pre-conditions. The rest of the program is involved with making
the necessary amendments to the database.

4. Movethe customer at the front of the queue into the Busy table.

Insert

Into Busy

Select ’t?’, CustId
From Queue

Where Place =1

A row containing the name of the teller and the name of the customer first in the queue
iscreated. Thisrow isinserted into the Busy table. Witht? = T1, the row (T1,Ann) is
inserted into Busy and the table will now look like this:

Teller Custld

The database is now inconsistent. Ann is now at two places in the bank, breaking the
rule that no customer may be queuing and being served at the sametime.

5. Remove the customer from the front of the queue.
Delete

From Queue
Where Place =1

The row with Place = 1 will be deleted from the Queue table which will now ook
likethis:

Place CustIld

Well, now Ann is in only one place, but the database is still inconsistent, this time
because the queue is a sequence of people and our Queue table is not a proper repre-
sentation of a sequence.

6. Shuffle up the remainder of the queue.

Introduction 15

Update Queue
Set Place = Place-1

This SQL statement will change each row in Queue subtracting one from the value
stored in the P1ace column. The effect isto move everybody forward one place.

Open Busy Queue Others
Teller Teller CustId Place CustId CustId
T1 T3 Sue 1 Kim Liz
T3 T1 Ann Dan Jim
T4 = —mmmmmmmm—————— e Bob

After these changes, the bank is still in the state defined for it:
o All busy tellers are open.
e Every customer iseither:
— inthe queue, or
— being served, or
— elsawhere in the bank,
but only in one of these sets.
¢ No customer appears at more than one place in the queue.

The sequence of SQL statements has maintained the bank in its proper state. Yet it would
be impossible to tell. SQL is not amenable to forma methods. We can only rely on our
intuition and on trial and error. We believe that the SQL is adequate and it seems to work
on the test data supplied.

1.6 Summary

This book will cover the following topics.

e Chapters 2, 3 and 4 introduce simple facts and their specification.

In the bank situation, the simple facts correspond to the bank components open, busy,
queue and others. These chapterslook at their structure. In particular, we will ook at
sets, functions and relations.

16

Chapter 1

Chapters5, 6 and 7 introduce SQL , in particular its use as a database retrieval language.

In the bank we used SQL retrieval statements to check that the pre-conditions were
satisfied — that the given teller was open, and so on.

Chapters 8, 9, 10 and 11 look at how we design a database.

In the bank situation we used a rather simple-minded design. In these chapters we
will treat the subject more seriously. Two alternative approachesto data modeling are
presented. First we examine the fact-based approach which is founded on the belief
that databases contain lots of simple facts and that from these we should develop our
database structure. Then we look at the entity-relationship approach which takes a
more pragmatic line, based on the assumption that we surely know the kinds of things
that are going to form the basis for tables, and these are the basis for our database
structure.

Chapters 12, 13 and 14 look at general statements and their specification; these state-
ments are ones that will eventually be implemented as programs.

The predicate sections of the Bank and NeztPlease schemas contained examples of
these.

Chapters 15 and 16 look at database definition and manipulation in SQL. Thisis the
language that we will use to implement the general statements that were specified in
the three preceding chapters. Chapter 16 |ooks at how we integrate the necessary SQL
into a program.

Chapter 18 contains case studies that show the specificationin Z and implementationin
SQL of two different situations. Chapter 19 contains another case study, but thistime
we use the idea of data refinement, and its associated rules, to more rigorously ensure
that our SQL programs are a true implementation of the original specification.

Introduction 17

Exercises

> QL1

> Q1.2

Using the bank situation presented in this chapter, describe the pre-conditions
and post-conditions for each of the following events. Express these conditionsin
English. What do you think the SQL program might be?

A person ¢? comesinto the bank and joins the others.

A person ¢? |leaves the bank.

A teller ¢? opens up hisor her window.

A teller ¢? closes down his or her window.

A customer ¢? joins the queue.

A customer ¢7 finishes his or her transaction and preparesto leave the bank.
A customer ¢? leaves the queue and goes to fill out awithdrawal dlip.

A customer at the end of the queue leaves to fill out aform but only if he or
sheisnot at the front.

Q@ "0 o0 oo

Extending the bank model

Supposethat the bank isbeing enlarged. Instead of just one queue, there are several.
Each queueis served by adedicated set of tellers. How would the bank be described
now? We might start by introducing anew class of objects Stand, where each object
of thistype represents a place where a queue may form. Each teller servesjust one
of these places, and so we might represent this relationship as a function:

serves : Teller — Stand
Instead of just one queue, there will be several:
queues : Stand —> seq Person

This function maps each stand to a (possibly empty) sequence of people.

In the original model, we could have peoplein one of three places. queueing, being
served, or among the others. In this model, instead of just one queue, we have
several.

__ BiggaBank
open : Set of Teller

busy : Teller +> Person
queues : Stand —> seq Person
others : Set of Person

serves : Teller = Stand

How would your description of each event be changed, if at all?

Chapter 2
Specific Facts

2.1 Introduction

Computers are not magical. They are marvellous, but they are not magical. They may be
extremely fast, with computation speeds measured in millions of instructions per second.
They may have huge amounts of memory, measured in billions of characters. But there
is nothing happening inside them that we could not contemplate doing ourselves. We
may take alot longer; we may get bored and make mistakes, but we must believe that we
could. We must think of the computer as doing things that we could do with pencil and
paper or with a blackboard and some chalk. If we cannot do this, then we are resigned to
thinking of the computer as something beyond our comprehension. As a consequence of
this necessary act of faith, it isthe things that we can express (in conversation with afriend
or on apiece of paper, say) that are of importance. And, unless we are day-dreaming, these
expressions have some meaning. They are attempting to say something about reality. The
sentenceis the unit of language that allows us to say things about the world in which we
live. Sentences, however, come in all shapes and sizes; there are commands, questions,
forecasts and opinionsto name just afew. This book will focus on one particular category
consisting of what are called declarative sentences or, more simply, facts. A declarative
sentenceis one that is capable of being true or false. Consider the following sentences:

Stop, in the name of love!
Big girlsdon't cry.
Will you still love me tomorrow?

Only one of these three is somekind of statement about the world. Only oneis arepresen-
tation. Only one can be added to the end of:

| declare that:

18

Specific Facts 19

and make a grammatical sentence. Maybe big girls don’t cry; maybe they do. But it is
certain that only the second sentence may sensibly be inserted into the above framework.
Only the second sentenceis declarative. This chapter examines specific facts— declarative
sentences that relate particular people, places and things.

The chapter will also examine how we can formalize our everyday speech; that is, how
we can take an English sentence and rewriteit in ahighly structured way. Having expressed
our meaning formally, the formal sentence may be evaluated to decide whether it is true
or false. This evaluation is independent of whoever performsit. In this way, the formal
sentence has a precise meaning; one that isindependent of any particular reader or listener.

2.2 The Plain Facts

Imagine a situation involving two people who have just met for the first time. One of them
is attempting to describe his or her circle of friends, relations and acquaintances. We will
call that person the narrator. The other person issimply listening. The narrator beginswith
the following description.

SNAPSHOT #1
Alan is 21 years old; he plays tennis and golf. Sueis 18 and she
plays tennis. Kim is 23 and she too plays tennis. Bob is also 23
and his sports are golf and hockey.

There are four sentencesin the narrative, one for each person mentioned. Each of these
sentences can be replaced by a number of simpler ones which, collectively, provide the
same information. For example, the first sentence can be re-expressed as:

Alan is 21 years old.
Alan is a male.

Alan plays tennis.
Alan plays golf.

A similar kind of analysis could be performed on the other three sentences. The result
would be 14 different sentences, and within those 14, there are three kinds or types of
sentence: one type giving people’s age, one for their sex and one specifying which sports
they play.

Let uslook at thislast sentence type in some more detail. It has the general form:

There are two places where a substitution may be made. The underlining indicates the
placesinvolved. Inthisform, we have akind of templatefor asentence. After substitutions
have been made, the resulting sentence may be true or false. A sentence template, where,
after suitable substitutions, we are left with a declarative sentence, is called a predicate.
Predicates may be simple, as in this example, or they may be quite complex, as we shall
seein the remainder of this chapter and in Chapters 3, 4 and 12.

20 Chapter 2

For a simple predicate like this, the word plays is the predicate symbol, and we can
refer to the predicate asthe plays predicate.
Suppose our narrator divulges alittle more about the circle.

SNAPSHOT #2
There's also Mark, a bit past it at 48, but he still manages an
occasiona round of golf and an even more occasional hit on the
squash court. Oh! and not forgetting Ann who's 45.

We can use our plays sentence templates to analyze some of this new information.

Mark plays golf.
Mark plays squash.

With the aid of the template, we insert Mark into the first place and a sport he plays into
the second.
What else might have been substituted? Here are some possible ways.

Mark plays guitar. Harpo plays the clown.
Menhuin plays violin. Branagh plays Hamlet.
Menhuin plays Beethoven. Wilson plays fullback.
Gekko plays the stockmarket. Nancy plays on Saturdays.

There are alot of possible substitutions, every one of which may produce a true statement
and al of which are irrelevant to our purpose. We are only interested in the kind of
substitutions that consist of a person and a sport. We will see, shortly, how we can declare
thisinterest.

2.3 Facts as Relationships

2.3.1 Relations

We can summarize all the (Person, Sport) pairs that can be validly substituted in the
following table.

Person Sport

Alan tennis
Alan golf
Sue tennis
Kim tennis
Bob golf
Bob hockey
Mark golf

Mark squash

Specific Facts 21

Supposethat we now examinethistablein conjunction withthe
icate. If we substitute Alan in thefirst place, we get:

Alan plays

Looking at the table, now, it can be seen that there are two substitutions that will turn the
above into a true statement; these are tennis and golf. Alan plays two sports; and, in
general, a person may play several sports.

Conversely, if we return to the original predicate:

and, thistime, we insert tennis into the second place, we get:

plays tennis

There are three valid substitutions available to us, Alan, Sue and Kim; in general, a sport
may be played by several people.

A relationship between two types of thing, such as this one between people and sports,
iscaled arelation.

We should now introduce the plays relationship properly, by declaring it.

plays : Person <= Sport
The declaration says that:
e We can use plays to construct sentences, and it will be the verb in that sentence.
e Any such sentenceis required to involve aPerson and aSport, in that order.

e The underscore on either side, _plays_, says that, when a sentence is being formed,
the person isto precede the word plays and the sport is to follow it.

A sentence formed according to these rules may be either true or false; the rules relate
to sentence construction and not to sentence meaning. This is an example of a type
declaration. This particular one states that plays is something that is made true by a
relation <= betweenPerson and Sport. The predicateiscalled plays aswas discussed
before; however, it isa so common to use the same nameto refer to the complete set of pairs
that makes the predicate true. So we can talk about the plays relation and call "plays"
the relation name or symbol.

2.3.2 Defining Fact Types

From now on, in this chapter, we will show a relation name and its associated relation in
the way shown in Figure 2.1. There we see revealed the nature of the fact, through atype
declaration, and the extent of the fact, through an equation that defines the entire fact as a
set of pairs. Thisway of introducing a fact type is useful in an introductory chapter such
asthis one. However, it is generally unsatisfactory for two reasons:

1. In practical computing situations, the fact may involve thousands of pairs. We will
want to store these on disk, not on paper.

2. More importantly, as presented, the plays fact is fixed. Nobody can take up a new
sport; neither can anyone drop a sport. Thisis clearly unrealistic, and consequently
undesirable.

22 Chapter 2

plays : Person <= Sport The plays fact is declared.
plays =
{(Alan, tennis), It isthen defined in
(Alan, golf), terms of the set of
(Sue, tennis), (Person, Sport) pairs
(Kim, tennis), that, when substituted
(Bob, golf), into the fact template,
(Bob, hockey), giveriseto atrue
(Mark, golf), statement.
(Mark, squash)}

Figure 2.1 Defining a fact type

2.3.3 Domains and Ranges

Frequently wewill want to refer to those objectsthat areinvolved in aparticular relationship
suchasthe _plays_relation. If wewant to specify the peoplewho play asport (of any kind)
then we can refer to the domain of the relation. The domain of this relation correspondsto
the left-hand column of the relation when it is presented as atable, that is, to:

{Alan, Sue, Kim, Bob, Mark}

Ann doesn’t appear because she doesn’t seem to play any sport. This domain set can be
written more briefly as:

dom plays

In general, the domain of any relation can be referred to by prefixing the relation name by
the word dom.

Thereisacorresponding way of denoting the set of sports played by these people. This
isknown as the range of therelation. Thisisthe set:

{tennis, golf, hockey, squash}
This set corresponds to the right-hand column of the table. The range can bereferred to as:
ran plays
In general, the range of arelation may be specified by prefixing the relation name with the
word ran.
2.3.4 Base Types

Before proceeding any further, we had better clarify exactly what is meant by the words
Person andSport. Thesetermsaretwo of the basic typesof thing about which the narrator
wishes to make some statement or statements. They are basic because all subsequent

Specific Facts 23

declarations will be founded upon these types. For this reason it makes sense to preface
any narrative or specification with abrief introduction to these types.
Type Intended interpretation

[CarMake] the makes of car that interest the narrator
[Language] the set of foreign languages

[N] the set of whole numbersor integers {0,1,2,3,...}
[Person] the people who make up the circle that the narrator intends to describe
[Sport] those sports that interest the narrator

In describing these fundamental object or entity types, the narrator has the opportunity
of clarifying exactly what he or she means by a particular type name. So, for example,
Person isthe set of peopleinthecircle. It isnot necessarily the set of all people, anditis
not some arbitrary set of people that the listener might interpret it to mean. Similarly, the
type Sport isthe set of sports that interest the narrator and nothing else.

When being introduced, all of the types were enclosed within square brackets. These
brackets are not part of the type name; they are used to delimit it. We may, if we wish,
introduce several new types at the same time. We do this by enclosing, within square
brackets, a list of type names separated by commas. So the above types could also have
been introduced as follows.

[CarMake, Language, N, Person, Sport]

However, in this book, the preferred style is to introduce each type individually, and to
describe it briefly.

2.3.5 Formalizing Sentences

Anything that we may wish to write down or to say in conversation may be expressedin a
variety of ways, depending upon individual style and fluency. We could write about Alan’'s
agein any of the following, more or less acceptable, ways.

Alan’s age is 21.

Alan is 21 years old.

Alan is 21.

Alan was born 21 years ago.
The age of Alan is 21.

For the moment, we will use thefirst of these styles. Gathering together all the statements
about the peopl€e's ages gives:

Alan’s age is 21 Bob’s age is 23
Sue’s age is 18 Mark’s age is 48
Kim’s age is 23 Ann’s age is 45

These sentences would seem to suggest a sentence template like:

We could then declare the sentence type as follows.

24 Chapter 2

’s age is: Person<=>N

The name N is the one conventionally given to the set of integers 0,1,2,3,... The
declaration above would follow the pattern set for _plays_. However, among other things
in this chapter, we are trying to introduce the idea of a formal language to be used in
describing or specifying situations. This language will be a simplified version of the
original English, one that sacrifices flexibility for precision.

The first sacrifice that we must make is to use a single word or symbol to identify the
relation. Wearenot allowedtouse ’s age is which startswith apunctuation symbol and
contains spaces. Instead we must use aword, that is, a contiguous sequence of characters,
or we can use some specia symbol. We can try something like:

Now we can write the formal version of:
Alan’s age is 21

as.
Alan hasage 21

The sentence type may be declared as:
hasage: Person <> N

The declaration says that sentences constructed using _hasage_ are made true by pairs
drawn from the setsPerson and N. Collectively, these pairs form arelation like that shown
in Figure 2.2.

hasage : Person <> N

Figure 2.2 The hasage relation

2.4 One-to-many Relationships
2.4.1 Functions

In many ways, the _hasage_ relation is much more interesting than the _plays_ one.
Suppose, first, that we rephrase each sentence in this way.

Specific Facts 25

The age of Alan is 21.

The general form would be:

The age of is
If we start by inserting a number in the second place, such as 23,

The age of is 23

There are two valid insertions for the person slot, that is, insertions that will make the
sentence true; these are Kim and Bob. In general, in any group of people, there may be
severa of the same age. The converseisnot the case. Suppose weinsert Alan into thefirst
place.

The age of Alan is

Once we have inserted someone’s name, then we are constrained to just onevalid insertion
for the remaining place; that is the number 21. In general, a person has one and only one
age. Thereisapivotal point at theword is.

The age of Alan is 21.

The phrase The age of Alan is somehow balanced by the number 21. The partial
sentence: The age of Alan is ______ can only be made true by the insertion of one
number, 21. A person’s age is a single-valued fact about that person, whereas the sports
they play isamany-valued fact. To reflect the difference between these two sentencetypes,
we declare age in the following way:

age: Person —>N

The declaration states that age is a specia kind of relation called a function. A function
is a single-valued fact about something. The notation tries to indicate that when the age
functionisapplied to some person then we will be led or pointed to one particular number.
Thisiswritten as, for example:

age(Alan) = 21

The function symbol age iswritten next to its argument, in this case, Alan. The equality
symbol = corresponds to the word is. It isaformal statement equivalent to the English
sentence:

The age of Alan is 21.

So, we have two ways of representing the age relationship, as may be seenin Figure 2.3.
The underlying datais exactly the same, so why should we choose one style of declara-
tion rather than the other? The difference between the two declarationsis one of intended
usage. When this relationship between people and numbers is named as hasage and
declared to be of type Person <—> N then we expect to construct sentences such as:

Alan hasage 21
Ann hasage 45

26 Chapter 2

hasage:Person <> N age : Person —=> N
hasage = age =
{(Alan, 21), {(Alan, 21),
(Sue, 18), (Sue, 18),
(Kim, 23), (Kim, 23),
(Bob, 23), (Bob, 23),
(Mark, 48), (Mark, 48),
(Ann, 45)} (Ann, 45)}

Figure 2.3 Relation or function?

However, when we name the relationship age and declare it to be of type Person — N
then we intend to use it as a function, applying it to an appropriate argument. So the two
sentences above can be written using function application as:

age(Alan) = 21
age(Ann) = 45

However, we may choose to use it anywhere that a number may be used:

age(Alan) < age(Ann)
21 < 45
= true

By applying the function separately on two different arguments, we can determine that the
age of Alan islessthan the age of Ann, or more simply, Alan isyounger than Ann.

2.4.2 Partial Functions

Whenever we have the possibility of an incomplete functional relationship, we have a
partial function. We might have apartial height function.

height: Person +> N

Everybody has just one height, so it is a functional relationship, but if we do not know
every person’s height, or cannot guarantee that we will know, then the function is partial.
The symbol for apartial functionis +> whichissimilar to the — symbol used for total
functions but with avertical bar.

Beforewe can refer to someone’ s height we must ensure that the personisin thedomain
of the height function, in other words, we must ensure that we know that person’s height.

There are also many examples of what might be called naturally occurring partial
functions.

Specific Facts 27

SNAPSHOT #3
Alan has a Mercedes and Sue a Ford. Ann and Mark drive a
Toyota. Bob drives aPorsche. Kim doesn’t drive.

So everybody but Kim drives a car. We can represent thisdrives relationship as a partial
function. See Figure 2.4.

drives : Person +> CarMake

(Bob, Porsche),
(Mark, Toyota),
(Ann, Toyota),
(Sue, Ford),
(Alan, Mercedes)}

Figure 2.4 The drives partial function

The domain of thedrives function isthe set of people who drive or own acar of some
type, that is, the left-hand column of the drives table. This domain can be written more
briefly asdom drives, and:

dom drives = { Bob, Mark, Ann, Sue, Alan }

We can take any person from that domain, for example, Bob, and refer to the kind of car
that Bob drivesasdrives (Bob). Theterm drives (Kim) has no meaning, however.

The range of this particular function is the set of cars driven by one or more of the
people in whom we are interested. This can be written asran drives and:

ran drives = { Porsche, Ford, Toyota, Mercedes }

In general, therange of afunction isthe set of valuesinto which the domain of that function
maps.

Partial functions are a nuisance because, before we apply such a function to any
arguments, we must ensurethat they fall within the domain of thefunction. The subtraction
and division of positiveintegersare both partial functions. This probably explainsour slight
hesitation in using them. However, partial functions are common in information systems.

2.5 One-to-one Relationships

The narrator now decides to reveal how, last night, everybody was seated round the table
having ameal. Thistime, the descriptionis given visually:

28 Chapter 2

SNAPSHOT #4
Kim
@
4 ™\

Bob @ @ Mark
Sue @ @ Ann
- J
@

Alan

Suppose we work our way clockwise, or leftwards, around the table. Everybody has
someoneto theirimmediateleft; for example, Alan hasSueon hisleft. Moreover, everybody
has just one person there. Thisindicates atotal functional relationship; but it is more than
that because everybody is to the left of just one person. There is a one-to-one relationship
between each person and the person on their left. Thisrelationship isdefined in Figure 2.5.

left : Person >> Person

left = {
(Alan, Sue),
(Sue, Bob),
(Bob, Kim),
(Kim, Mark),
(Mark, Ann),
(Ann, Alan)}

Figure 2.5 The left total injection

The > symbol indicates that 1eft is an injection or one-to-one relationship. The
injection symbol is an annotated version of the total function symbol —> , indicating that
left isasgpecial kind of total function. It istotal because everybody is seated at the table.

There are also partia injections. Consider thisinsight into the circle.

Specific Facts 29

SNAPSHOT #5
Alan and Sue are married to one another, as are Ann and Mark.
Bob isn't married which may help to explain how he drives a
Porsche. Kimisn't married either.

Marriage is awell known one-to-one relationship, but it is not total. (Evenif it is il
death us do part.) Not everyone in the circle is married. The relationship is defined in
Figure 2.6.

spouse : Person >+> Person

spouse =

{(Ann, Mark),
(Mark, Ann),
(Alan, Sue),
(Sue, Alan)}

Figure 2.6 The spouse partial injection

The >+ symbol indicates that spouse relationship is a partial injection. The domain
of thisinjection isthe set of people who are married and the range of that function isthe set
of peopleto whom they are married. Of course these two sets should be the same, and so:

dom spouse = ran spouse

Thisis an example of ageneral statement or rule about marriages.

2.6 The Construction of Simple Sentences
2.6.1 Function Application

Supposethat, again, we are presented with some additional information regarding thecircle
of people.

SNAPSHOT #6
Mark is Alan’s father.

The relationship between a person and that person’s father is a functional one — we can
only have one father. This can be specified as:

father : Person +> Person

30 Chapter 2

The father function is partial. We do not know everybody’sfather. In fact, we appear to
know only Alan’s.

father (Alan) = Mark

Function application is the name given to the symbolic expression formed by applying a
function to its argument or arguments. The following terms are all examples of function
application:

age (Bob)
father (Alan)
spouse (Mark)

These are symbolic expressions denoting objects we might more conveniently refer to as,
respectively, the number 23, the person Mark and the person Ann.

In computing terms, function application can be thought of as the process of reading
down the left-hand column of the appropriate table until a match for the argument is found
and then extracting the corresponding entry in the right-hand column.

Function application may be performed repeatedly. For example, since both the fol-
lowing statements are true:

Mark = father (Alan)
spouse(Mark) = Ann

we may combine them to give:
spouse(father(Alan)) = Ann

by using the equation for Mark provided by the first statement and substituting it in the
second. The new sentence tells us that the spouse of the father of Alan is Ann (who is
possibly, but not necessarily, the mother of Alan; we don’t know).

Using this style of repeated function application, we can construct complex expressions
that provide us with ways of identifying objects. So, this new sentence tells us that there
are two ways, at least, of nhaming the person involved:

Ann
spouse (father(Alan))

We now know that the representation for a person need not be asimple name such asAlan.
It can be of any form that allows us to identify an individual person. The importance of
functional relationships (functionsand injections) isthat they provideuswith an aternative
way of identifying individual objects. Therelationship called 1eft providesuswith another
way of identifying people. Everybody at the table has just one person to their immediate
left, for example, Alan is on Ann’s left. We can construct a simple sentence to state this
formally:

left(Ann) = Alan

Thisequation showsthat thereare (at | east) two ways of representing the person in question,
left(Ann) and Alan. Thefact that Alan playstennis, can also be said as:

Specific Facts 31

left(Ann) plays tennis

In general, we will pair the symbol 1eft with a person, asfollows:

Person
left | Representation

The symbolic expression that resultsisyet another Person representation. The declaration
of left, which was;

left : Person > Person

tellsusthat. The symbol 1eft followed by aPerson representation will map us (>) to
another Person representation.

The representations used for a person may be as simple or as complex as we need or
care to make them. We could refer to the person second on the left from Ann as:

left(left(Ann))

Because of the nature of a functional relationship, for example, because each person has
just one person to their immediate left, we use functions to identify individual objects.
We expect to use 1left to identify somebody rather than using it to construct complete
sentencesin the way that plays was. It may seem that functions are being used in alesser
way than relations; but, in fact, they provide us with more flexibility of expression. The
following table summarises the uses we may make of function application in describing
thecircle.

Function Mapsfrom Type Mapsto Comment

sex Person —> Gender Givesan dternative way of identifying
the genders.

age Person - N Gives an aternative way of identifying
numbers.

drives Person -+> CarMake Givesan alternative way of identifying
makes of car.

spouse Person >> Person Givesanaternativeway of referring to
people.

left Person >> Person ... and another.

father Person +> Person ... and another.

The M aps to column shows various ways in which individual objects, of the type given,
may be identified indirectly.
2.6.2 Terms
An equation such as:
Mark = father(Alan)

tells us that Mark and father (Alan) stand for or denote the same thing. A symbolic
expression that denotes some object or collection of objectsis called aterm. A term may
be one of the following:

32 Chapter 2

o the proper name of something, for example, Mark; these are sometimes referred to as
constants;

e anoun phrase constructed using function application, for example, father (Alan); or
e apronoun in the form of avariable; examples of variableswill be shown later.

A termissimply the kind of symbolic expression that may be used to compl ete a sentence.
If wereturn to the plays predicate:

When we first completed this to form sentences, we substituted the names of people and
the names of sports, asin, for example:

Mark plays squash
Yet, as we know, Mark is Alan’s father, and so:
Mark = father(Alan)

It is reasonable to expect that anywhere that Mark is used, we could use the term
father (Alan) instead; thus we could write:

father(Alan) plays squash

Mark and father (Alan), and for that matter, spouse (Ann) are all terms denoting the
same object.

The declaration of plays tells us that any simple sentence using this relation must be
of the following form:

Person Sport
Term | plays | Term

And any term representing a person may be placed before the word plays and any term
representing a sport may appear after.

2.6.3 Variables

What do the following sentences have in common?

Ask not for whom the bell talls, it tolls for thee.
Take that!

You are my sunshine, my only sunshine.

They aso serve who only stand and wait.

In contrast to these sentences above, all our sentences have been of a rather prosaic
nature, such as:

Alan plays golf.
Ann drives a Toyota.
Alan is 21 years old.

Specific Facts 33

They have the advantage of being self-contained. In the context of the circle of people
under discussion, each sentence is capable of standing on its own. There are other, quite
grammatical, sentencesthat are not.

He plays golf.
She plays tennis.
Mark plays it.

Complete understanding of these sentences depends upon the context in which they are
spoken. They all contain pointers or references to previously mentioned people or things.
Doeshe refer to Alan or to Bob? They both play golf. Similarly, she might refer to either
Sue or to Kim, and it could be either golf or squash. These special words are, of course,
pronouns. A pronoun has avariable meaning whereas aword such asMark or 45 or golf
has a constant meaning, that is, one that does not vary from one usage to another, in the
context of the circle.
In English we have a small number of pronouns. This can cause confusion.

Alan spoke to Bob who agreed to ask Sue. He also spoke to Ann.

DoesHe in the second sentence refer to Alan or to Bob? It should be Alan but we can’t be
certain. To overcome such ambiguity we will allow ourselves any number of pronouns or
variables as they are called. And following the usual conventions of mathematics we will
givethese variables short names constructed from lower caseletters, for example, x, p, k or
me. We will also always declare the type of thevariable, for example, p: Person indicates
that the variable p will stand for a person and not a sport or anumber. This“typing" isjust
what we do with a word such as she which can only ever stand for a feminine person or
thing and aword such as they which can only ever refer to a set of things.

Finally, supposethat we have madethedeclarationp: Person. What can we say about
its use in this sentence?

p plays golf.

From the plays table we see that only Alan and Bob can be successfully substituted for p.
Thus the above sentence effectively defines a set of people, those who play golf. We will
return to this particular use of variablesin Chapter 3.

2.6.4 Infix and Prefix Form

In all the examples so far, predicate symbols have been written between the appropriate
terms, for example, Mark plays squash. The terms Mark and squash are placed on
either side of the predicate symbol plays. This predicate is said to be used in infix
form. Such usage reflects the normal English manner of declarative sentence construction
whereby a verb is placed between the subject and the object of the sentence. However,
the notation we are developing also allows us to place the predicate symbol before any
associated terms.

Finally, perhaps because the narrator is interested in overseas travel or the listener
teaches modern languages, the narrator reveals one last glimpse of the circle.

34 Chapter 2

SNAPSHOT #7
Both Alan and Sue speak French; Alan also speaks German and
Sue Italian. Also, Kim can speak Japanese.

We might introduce a speaks predicate:
speaks: Person <> Language

Thisform of declaration, without any underscores, indicatesthat any sentenceusing speaks
will be such as the following:

speaks(Alan, French)

This is to be interpreted as meaning that Alan speaks French. This form of sentence
construction uses the predicate symbol in prefix form.
We can analyze this snapshot into the following simple sentences.

speaks(Alan, French)
speaks (Alan,German)
speaks (Kim, Japanese)
speaks (Sue, French)
speaks(Sue, Italian)

Whether we use the predicatein infix or prefix form isindicated by the presence or absence
of underscoresin the corresponding declaration. Thisisthe only indication we will get, or
give.

Similar statements may be made regarding the usage of function symbols. So far, we
have always declared functions for usein prefix form, for example:

age: Person —=>N

The function symbol age prefixes any argument in any term formed through function
application, for example age (Mark). However we may also use functions in infix form.
The arithmetic operators are typical of these. When we write aterm such as3 + 5, the
function symbol + is placed between its arguments 3 and 5. Addition may be declared as
follows:

+:NXN—>N

This declares that addition is a function that maps from a pair of numbers to a third one.
Further, it states that any usage of the function to construct a term will require that the
arguments appear on either side of the plus sign.

Again, terms may be constructed to whatever level of complexity is required. For
example, if we want to discuss Ann'sagein ten years' time, we can write the term:

age (Ann)+10

In this example, the addition function, +, is applied to its two arguments, one of which is
a term constructed by applying the age function to Ann and the second of which is the
constant term 10.

Specific Facts 35

2.7 The Circle Database

Let us summarize the narrative so far. There are seven relationships represented. Each of
these relationships, in its own way, may be used to form simple sentences.

1. _plays_:Person <> Sport

Thisrelationshipiscalled play. Itisarelation (<) between people and sports, that
is, a person may play many sports and a sport may be played by many people. It may
be used to construct such sentencesasAlan plays tennis. Itisusedininfix form, that
is, when used, it appears between a person and a sport. The form taken by sentences
constructed with plays is dictated by the declaration. There we are told to use it this
way by the appearance of underscores(_).

2. speaks : Person <> Language

Thisisalso arelation. Some of the people speak more than one foreign language, and
some of the languages are spoken by more than one member of the circle. Itisusedin
prefix form to construct sentences such as: speaks (Sue, Italian).

3. sex : Person — Gender

Thisisatotal function, signified by the symbol — , meaning that it isa special kind of
relation, one that is special in two ways. Everyone has a gender and nobody has more
than one gender. Functions are used, not to construct complete sentences, but, through
function application, to describe objects such as sex(Alan). These objects are then
glued together to form sentences.

4. age : Person —> N

Thisis another total function used to identify numbers such asage (Kim) . Everyone's
ageis known but nobody has more than one age.

5. drives : Person +> CarMake

This is a partia function, signified by the symbol -+ . A partia function is less
restrictive than atotal function in that not everyone need participate in the relationship.
That is, not everyone need drive a car. It is used, like the two previous functions, to
identify objects using such expressionsasdrives (Ann).

6. spouse : Person >+> Person

This is a partia injection, signified by the symbol >~ . Thus, it is a one-to-one
relationship in which not everyone need participate. It should be treated as a particular
kind of partial function, and it will be used like a function to identify objects such as
spouse(Alan).

7. left : Person > Person

Thisisatotal injection, signified by the symbol > . It isaone-to-onerelationshipin
which everybody participates. Everyone has one person on their left, and everybody is
immediately to the left of just one person.

A typical commercial database also consists of a number of different sentence types.
However, that number is likely to be in the hundreds and thousands rather than just seven.
But the differenceis of degree, and of nothing else.

36 Chapter 2

The five types of relationships that we are likely to encounter, their names and their
synbols are shown in the following table.

Type of Name Partial Total
relationship symbol symbol
many-to-many relation <>
one-to-many function -+ -
one-to-one injection > >

2.8 Compound Sentences
2.8.1 Operations on Sentences

Given the above declarations and the associated data, we can take any arbitrary sentence
and decide whether or not it istrue. For example, speaks (Alan,German) istrue because
the pair (Alan, German) appears in the relation associated with speaks. Similarly, the
sentence Bob plays squash is false because the pair (Bob, squash) does not appear
in the table associated with plays.

What if wewant to know if Alan plays both tennisand golf? We know, informally, that
he does; but what if we attempt to formalize the question as:

Alan plays tennis and golf

The sentence isimproperly formed because the second term must represent a single sport.
We can rephrase the sentence as.

Alan plays tennis and Alan plays golf

The sentence is clearly one made of two simpler sentences, both of which are of the
form Person plays Sport. Both constituent sentences are true and we would want the
complete sentence to be true also.

Now what about Bob? Does he play tennis and golf? Again we can rephrase this as:

Bob plays tennis and Bob plays golf

Thistime only one of the constituent sentences is true and we know that the sentence, as a
whole, is untrue,

The word and has been used to connect two sentences, both of which might be either
true or false, in order to form a more complex sentence, which might itself be either true
or false. In this section and the ones that follow, we will consider three ways in which
complex sentences may be compounded from simpler ones.

The two values true and false are often referred to as Boolean (after the mathe-
matician George Boole) values. Just as we have arithmetic operators that combine two
numbers and return a third, we have Boolean operators that take Boolean values (that is,
true and false) and return a Boolean answer. Those of particular interest at this stage
are conjunction (and), disunction (or) and negation (not). The purpose of these three
operations is to enable us to take simple statements or sentences and to construct a more
complex sentence, one whose truth or fal seness depends solely upon the truth or falseness
of the simpler sentences of which it is composed.

Specific Facts 37

2.8.2 Negation

Thenot operator negates or reversesits argument.
Example 2.1 Annisnot 31 yearsold.
We can state that Ann is 31 asfollows:
age(Ann) = 31

To claim that sheis not 31, we prefix the above sentence with the word not.

not age(Ann) = 31
= not 45 = 31

not false

= true

Itistrue to say that Ann'sageisnot 31.
Example 2.2 Alan does not speak French.
not speaks(Alan, French)

= not true
= false

Itisfalse to say that Alan does not speak French.
The effect of this operator can be completely specified inwhat is called atruth table.

not
P not P
true false

false true

In the table, P represents any Boolean expression or proposition, such asage (Ann) = 21
ore6 > 2.

Thenot truth table symbolizes our conviction that if some statementisnot true then
itisfalse and vice versa. Negation isakind of prefix Boolean operator.

not: Boolean —> Boolean
We can apply the word not to a sentence that may be either true or false. This newly
formed sentence has atruth value that is the reverse of the original.
2.8.3 Conjunction: When both sentences must be true

The and operator returns a value of true if both its arguments are true; otherwise it
returns avalue of false.

Example 2.3 Suppose we are looking for someone who speaks German and drives a
Mercedes. Will Alan do?

38 Chapter 2

speaks(Alan, German) and (drives(Alan) = Mercedes)
= true and (Mercedes = Mercedes)

= true and true

= true

Yes, Alan will do. He does both; he speaks German and drives a Mercedes.

Example 2.4 Suppose, next, that we are looking for someone aged between 18 and 35
(inclusive). Will Ann do?

age(Ann) > 17 and age(Ann) < 36
= 45 > 17 and 45 < 36

= true and false

= false

No, Annisnot in that age range. Sheis not both older than 17 and younger than 36.
A truth table can also be used to specify the and operator.

and

P Q P and
true true true
true false false
false true false
false false false

Thistable summarizes and represents our experience that if, for example, police are on the
lookout for a“middle-aged male" then they are looking for a suspect who is both male and
middle-aged. Someone who meets one criterion but not the other will not do; and someone
who meets neither criterion clearly will not do.

Conjunction isakind of infix Boolean function.

and : Boolean X Boolean —> Boolean

It takes two sentences, which may or may not be true, and joins them with the word and to
form a new sentence which istrue only if both of the participating sentences are al so true.

2.8.4 Disjunction: When at least one of the sentences must be true

Theor operator returnsavaueof false if neither itsargumentsistrue, otherwiseit returns
avaueof true.

Example 2.5 We are looking for someone who is either over 40 or who speaks Japanese;
what about Kim?

age(Kim) > 40 or speaks(Kim, Japanese)
= 21 > 40 or true
false or true

true

Specific Facts 39

Yes, Kim satisfies at least one of the requirements.
The or operator aso involves two arguments. It returns a value of true if either or
both of itsarguments are true.

Example 2.6 Now we are looking for someone who speaks French or Italian. Will Kim
do thistime as well?

speaks (Kim, French) or speaks(Kim, Italian)
= false or false
= false

No, Kim cannot help us; she speaks neither of these two languages.
The truth table for the or operator is asfollows:

or

P Q P or Q
true true true
true false true
false true true
false false false

Again, thistable has been chosen to reflect our expectations and experience. If we wereto
ring a hotel and ask for aroom with aview or a southerly aspect then we would expect a
room that satisfies at least one and possibly both of these criteria.

Alternatively, supposean employer advertisesfor someonewho isacomputing graduate
or who has five years' experience. We might apply for the job if we satisfied either of the
selection criteria. We would also expect to be considered if we satisfied both of them.

Digjunction isakind of infix Boolean function.

or : Boolean X Boolean —> Boolean

It takes two sentences, which may or may not be true, and joins them with the word or to
form anew sentence which istrueif either of the participating sentencesis also true.

2.8.5 Sentence Construction

We can create new sentencesto whatever level of complexity isrequired. For example, the
sentences that we might connect with an and may themselves have been constructed using
and’s, or's and not’s. We determine the truth of a complex sentence in a hierarchical
manner. Simple sentences are evaluated first and their results slotted into the more complex
ones which are themselves evaluated, and so on.

Example 2.7 Suppose we are looking for someone who does not drive a Ford and who
speaks either French or Japanese. Will Sue do?

not drives(Sue)=Ford and (speaks(Sue,French) or speaks(Sue,Japanese))

= not true and (true or false)

40 Chapter 2

false and true
false

While the sentence is not exactly what might be termed “user friendly", it has a major
advantage; it has only one meaning. Provided that we correctly eval uate the sentence, there
is only one possible answer. Two competent people, working independently, will get the
same result; and so should a competently programmed computer.

The sentence becomes a useful means of communication as it has one and only one
interpretation. It isaformal expression of our original requirement — aformula, in other
words.

2.8.6 Evaluating Sentences

Suppose, now, that we are looking for someone who drives a Ford and who speaks French
or German. Will Alan do? The equivalent formal sentence could be written as follows:

drives(Alan)=Ford and speaks(Alan,French) or speaks(Alan,German)

Unfortunately, depending upon how the sentenceis evaluated, we can arrive at two different
conclusions.

1. drives(Alan)=Ford and speaks(Alan,French) or speaks(Alan,German)
= false and true or true
= false or true
= true

2. drives(Alan)=Ford and speaks(Alan,French) or speaks(Alan,German)
= false and true or true
= false and true
= false

We have decided in the first evaluation that Alan will do and in the second that he won't.
The conflict arises because of the order in which we evaluated the second line.

false and true or true

In one case the and operation was performed first and in the other case the or was.
Thetwo distinct resultsdirectly contradict the claim that two competent peopl e, working
independently, will get the same answer.
So asto recover from this situation, we use round brackets () to indicate the required
order of evaluation. Thuswe would probably write the sentence as:

drives(Alan)=Ford and (speaks(Alan,French) or speaks(Alan,German))
= false and (true or true)

false and (true)

= false and true

false

We retain the brackets until the enclosed sentence has been evaluated as true or false at
which time we can dispense with them.

In general, any compound sentence using amixtureof and’s, or’sandnot’swill require
bracketsto direct the order of evaluation.

Specific Facts 41

2.8.7 Phrasing Sentences

Although it has been claimed that a validly constructed compound sentence will have just
one correct evaluation, that does not mean that there is only one way of constructing a
sentence to meet our requirements.

As asimple example, if we want to assert that Alan speaks French and German, we
would hope that either of the following sentences:

speaks(Alan, French) and speaks(Alan, German)
speaks(Alan, German) and speaks(Alan, French)

would be an adequate expression of that claim. It does not matter which sentence precedes
the word and, or which onefollowsit.

This interchangeability is one of a number of general rules or laws that indicate the
equivalence of various alternative ways of phrasing sentences.

In the following discussion, two conventionsare used: (1) P, Q and R are any arbitrary
sentences; and (2) the symbol = isto be read as“is equivalent to" or “can equally well be
stated as".

1. Lawsof commutation

P and Q
P or Q

Q and P
Q or P

These laws state that it does not matter in which order we insert the participating
sentences when using conjunction (and) or disunction (or).

2. Laws of association

(P and Q) and R
(P or Q) or R

P and (Q and R)
P or (Q or R)

When eval uating a sentencethat only involves conjunction or only involvesdisjunction,
then it does not matter in which order we perform the evaluation. This allows us safely
to write the sentences as:

P and Q and R
Por Q or R

Even without the bracketsthere is no danger of differing evaluations.
3. DeMorgan’'slaws
There are two laws under this heading.

not (P and) = (not P) or (not Q)

This law states that, for example, if we say that Alan does not play both tennis and
squash then we are saying, equivalently, that either he doesn’t play tennis or he doesn’t
play squash.

not (P or Q) = (not P) and (not Q)

42 Chapter 2

This law states that, for example, if we say that Alan cannot speak either Italian or
Japanese, then thisis equivalent to saying that Alan cannot speak Italian and he cannot
speak Japanese.

2.9 Summary

In this chapter we have examined the use of the sentence as a means of representing reality.

e An informal narrative may be analyzed into a number of different sentence types or
forms. Each sentence type, such as _plays_ has, associated with it, a set of pairs.
These are the pairs that make the sentence true. This set of pairsis called a relation.
A relation is, in general, a many-to-many relationship between two sets of objects. A
person may play many sports and a sport may be played by many people.

e Thereareparticular sentencetypeswherethe corresponding rel ationshipisone-to-many
rather than many-to-many. For example, a person has only one mother, athough that
mother may have had several children. Thiskind of relationshipiscalled afunction. The
ideaof afunction alowsusto treat particular symbolic expressions as interchangeable.
If AnnisBob’smother, then Ann and mother (Bob) are equivalent terms. Any sentence
that could be written using one of these terms can be rewritten using the other.

e There are particular kinds of functions where the relationship is one-to-one rather than
one-to-many. These areinjections. Aninjectionisaspecial kind of function.

e More complex sentences may be constructed using negation (not), conjunction (and)
and disjunction (or). Such a sentence may be evaluated in a mechanical or algebraic
manner to decide whether it istrue or false.

e There are a number of general rules or laws governing the equivalence of sentences.
For example, the following two sentences mean the same.

Alan plays tennis and Bob plays squash
Bob plays squash and Alan plays tennis

Using these laws, two apparently different compound sentences may be shown to mean
the same thing. Thus we have avariety of ways of expressing our meaning.

Specific Facts 43

Exercises

> Q2.1 The CLuB Model

The following sets, functions and relations represent a (very) small computer club.
There are four basic typesin the model.

Member = {Bill,Sue,Alan}
Language = {COBOL, FORTRAN, C, SQL, Pascal, Ada}
CarMake = {BMW,Ford,GM, Honda, Mazda,Mercedes, Toyota}

N =:{0,1,2,3,.n}
There are four relationships between the types. These are shown below in tabular
form.
likes: Member <> Member _writes_: Member <= Language
likes = writes =
{(Bill, Sue), {(Bill, FORTRAN),
(Bill, Alan), (Sue, OC),
(Sue, Alan), (Sue, SQL),
(Alan, Bill)} (Alan, FORTRAN),
(Bill, SQL)}
age: Member —> N drives: Member >+> CarMake
age = drives =
{(Bil1, 19), {(Sue, Honda),
(Sue, 19), (Bill, Ford)}
(Alan, 16)}

a. Which of the above relationships are relations? Which are functions? Which
areinjections?
b. Not every member drives. Give two ways by which you can tell this.

c. Which of the four relationships are to be used in prefix form and which in
infix form?

d. Whatistherange of drives? How do we expressthat formally?
e. What isthe domain of 1ikes? How do we express that formally?

P Q2.2 Which of the following sentences are true and which are false?

a. Bill likes Sue
b. Sue writes Ada

C. age(Sue) = 19

44 Chapter 2

d.
e

drives(Sue) = Honda

Alan writes C

> Q2.3 If wewanted to say formally that Sue doted on Alan, the best we could do would
be Sue likes Alan. Rewrite each of the following English sentences formally.
State which are true and which are false and why.

® a0 T o

Bill canwritein SQL.
Bill iskeen on Sue.

Sue drives a Ford.

Alan adores Sue.

Sueis nineteen years old.

P Q2.4 Complex sentences may be formed using conjunction (and), disjunction (or) and
negation (not). Evaluate the following complex sentences.

a
b.

e ™~ o ao

not (Bill likes Sue)

(Bill likes Sue) or (Sue likes Bill)

(Bill likes Sue) and (Sue likes Bill)
(age(Bill)=age(Sue)) and (age(Bill)>age(Alan))
not (drives(Sue)=BMW)

(Sue writes Ada) and (drives(Sue)=BMW)

not (not age(Sue)=19)

(not (Alan writes C)) and (not (Sue writes C))
not (Alan writes C or Sue writes C)

Sue likes Alan and Alan writes SQL

P Q2.5 Wecanstatethat Bill doesn't like Sueasnot (Bill likes Sue). Formalizethe
following sentences. Determine whether each sentenceistrue or false.

= A

Alan didlikes Bill.

Bill can't writein SQL.

Sue and Bill get on well together.

Bill is older than Sue.

Sue can write in both C and in Pascal.

Neither Alan nor Sue can writein FORTRAN.
Either Sue drivesa Honda or Bill does.

Alan isfive years older than Bill.

Specific Facts 45

i. Sueand Bill both drive the same make of car.
j- BothBill and Sue can writein SQL.

P Q2.6 Wecantell that Alan doesn’t driveacar because heisnot in the domain of drives.
Use the appropriate domain or range to say, in your own words, why each of the
following statementsis true.

Somebody likes Bill.

Nobody can writein COBOL.

Everybody can write in some language or another.

Everybody is liked by somebody.

All club membersarein their teens.

© 20 T @

P Q2.7 Given the variable declaration m: Member, decide which people satisfy each of
the following sentences.

m likes Alan

Alan likes m

age(m) > 16

drives(m) = Toyota

age(m) = age(Bill)

Bill likes m and m likes Bill

not(m writes SQL)

Bill likes m and m writes SQL

Bill likes m or m writes SQL

e * o o0 T 9

Q2.8 Supposethat P isasentence. Thecompound sentence: P and true canbereduced
toP becausethetruthof P and true isentirely dependent onthetruth of P. Simplify
the following expressionsin asimilar way.

P or true

not not P

P or P

P and P

P or (not P)

P and (not P)

P

and false

@ 0o 20 o9

46 Chapter 2

P Q2.9 The GEOGRAPHY Modd.
The following sets are used to record the states and major towns of Australia.

State = {QLD, NSW, VIC, WA, SA, TAS}
Town = {Brisbane,Sydney,Cairns,Newcastle,...}

Three particular relationships are involved.

1. cap: State >> Town
This injection returns the capital city of each state, for example, cap (NSW)
would give Sydney.

2. loc : Town —> State
This returns the state in which atown is located, for example, loc(Cairns)
would return QLD.

3. pop: Town —> N
Thisreturnsthe population of each town, for example, pop (Brisbane) might
return 950 000.

As well as these specific relationships, there will be the more general arithmetic
functions and the numeric comparison operators.

Using function application, write termsto identify the following objects:

The capital of Queensland (QLD).

The population of Melbourne.

The population of the capital of Queensland.

Thelocation of Cairns.

The difference between the population of Sydney and that of Melbourne.

©® o0 T @

P Q2.10 Using the functions of the previous question we can make assertions regarding the
cities, statesand populations. For example, if wewanted to say that Cairnsand Syd-
ney wereindifferent states, wecouldwrite: not (loc(Cairns) = loc(Sydney))

Write formal assertions of the following English sentences.
a. Thecapital of New South Wales (NSW) is bigger, in terms of population, than
the capital of Queensland.
b. Thereare more peoplein Sydney than in either Melbourne or Brisbane.
There are more peoplein Sydney than in Melbourne and Brisbane combined.

The capitals of South Australia (SA) and Tasmania (TAS) are, respectively,
Adelaide and Hobart.

e. Newcastleisin either in New South Wales or in Western Australia (WA).

Specific Facts

47

Q2.11 The PARLIAMENT Model
The following sets are used to model a parliament.

1. Poli

Thisisthe set of paliticians, for example:

{ Wayne, Tom, Russell, Bob, Denzil, Molly, ... }
2. Party

Thisisthe set of political parties, for example:

{ Labor, Farmers, Business, Green }
3. Dept

Thisisthe set of government departments, for example:
{ Treasury, Transport, Health, Police, ... }

The following functions and relations are also involved.

1. belongs : Poli — Party

This maps each politician to his or her party, for example, belongs (Wayne)

might give Labor.

2. minister : Dept — Poli

Thismapseach department to therelevant minister, for example,minister (Police)

might give Terry.
3. leader : Party > Poli

This maps a party to its leader, for example, 1eader (Business) might map

toDenzil.
4. _talksto_:Poli <> Poli

This indicates whether one politician is prepared to talk to some other politi-

cian, for example, Neville talksto Russell.

Using either function application or a predicate, formally express the following:

Theleader of the Farmers party.

The Justice Minister.

The party to which the Minister for Health belongs.

That David isthe Minister for Transport.

That the Minister for Health is also the Minister for Police.

That Wayne talksto Russell.

That Wayne does not talk to the Justice Minister.

That Tom talks to Wayne but not vice versa.

That Molly talks to the leader of the Farmers Party.

j- That the leader of the Business Party actually belongsto that party.

Se@ "o o0 T

Chapter 3
Sets

3.1 Introduction

Suppose someone writes down a list of people's names and hands that list to you. Then
you are asked what these people have in common.

Itisfairly safeto claim that one way or another you would find something to connect
these people. Even if the names were as unlikely as John, Paul, George and Ringo. You
would probably feel frustrated and disappointed with yourself if you were unableto discern
some common feature.

A set isacollection of objects, with the objects usually sharing some property. The
formation of a set allows us, mentally, to gather things that seem to belong together, and
to provide them with a collective being. This process of generalization is a means of
conquering complexity. Defining a set is a way of enforcing order upon our world and
because of that order we can have reasonable expectations. We anticipate certain kinds of
behavior and not others.

By isolating an object and stating that thisthingisa®man", for example, we accomplish
two things:

1. We provide anumber of propertiesthat can be ascribed to that object — beards, beer and
bal dness perhaps.

2. We group this person with other men —al the people who share these properties.
Having decided that a person is aman or awoman or asinger or a computer programmer
we would expect awhole range of associated behavior patterns.

3.2 Sets and Everyday Language

There are two ways to specify a set: set extension and set comprehension. These two
methods form an essential part of our everyday language.

48

Sets 49

Mum sets them straight

Imagine that a family is sitting at the dining table. They have just finished the evening
meal; Mum has a meeting that night, and wants to get the evening chores over and
done with. What kinds of things might she say?

“Kylie and Tim, go and do your homework."

“ The boys will tidy the table and wash the dishes."

“ Girls, you must tidy your room!"

“WII Matthew, and anyone who didn’t have a bath last night, have one
tonight.”

She has used two basic styles of specifying the children that areinvolved. First, children
have been named individually, using set extension.

¢ “Kylieand Tim"
e “Matthew"

Secondly, particular children are also identified through properties they hold, using set
comprehension.

¢ “boys"
e “anyonewho didn’t have abath last night"
e “girls'
Further, having identified the girls, she hasthen specified another set, the set of girls' rooms.
e “Girls, you must tidy your room!"

Finally, she has also used a set operation (union, in this case) to join two sets together to
form another set.

¢ “Matthew and anyone who didn’'t have a bath last night"

In the following sections, wewill look at how theideas of set extension and set comprehen-
sion areformalized. Thiswill be done by introducing a notation or language for specifying
sets in each of these two ways.

3.3 Set Extension

In set extension, curly brackets {} are used to enclose the elements of the set. The set
“Kylieand Tim" will be written as:

{Kylie, Tim}

50 Chapter 3

Individual elementsare separated by commas. Theset “ Matthew" containsjust one element
and will be written as:

{Matthew}

There are several rules or conventionsregarding the definition of sets by extension. These
we will consider next. Suppose we want a set of integers representing the number of days
in each month, ignoring leap years. We can write it out as:

{31, 28,30}

However, aset has no duplicates, so that writing down an element more than once does not
change the nature of the set; for example, we could have specified the days by just running
through each of the 12 months, from January to December, and writing down the number
of daysin each month.

{31, 28,31, 30,31, 30, 31, 31, 30, 31, 30, 31}
= {31, 28,30}

Also, whenwriting out aset, the order in which we present itselementsis of no significance.
We could equally well have worked from December back to January, or we could have
followed the old “ Thirty days hath September . . ." rhyme, so that:

{31, 28,31, 30,31, 30, 31, 31, 30, 31, 30, 31}
= {31, 30, 31, 30,31, 31, 30, 31, 30, 31,28, 31}
= {30, 31,28}

This set of elements shown isjust one particular representation. Consider another set of
three integers:

{3,7,21}

The entire set has been written in a consistent fashion. Each of the elements has been
expressed using one style — the arabic or decimal notation. An equally valid, if slightly
ol d-fashioned representation of the same set would be:

{III,VII,XXI}

Other equally valid versions might be:
{3,7,3% 7}
{2+1,8-1,2% 10+1}
{three, seven, twenty one}
{trois, sept,vingt et un}

A dlightly less acceptable version might be;

{3,VII, twenty one}

Sets 51

Here, three different but recognizable notations have been used in one set. Clearly, if the
intention in writing down the set was to communicate its membership to other people,
the notation should be both consistent and recognizable. It isimportant to understand the
need for a suitable way of representing the members of a set. Why? Because the sets of
recordsthat make up adatabase are simply setswritten, in extension, uponacomputer's
memory. When we design a database, we are faced with the situation where:

o severa different ways of representing set elements may be available;

¢ somewill be more appropriate than others; and

¢ it may be that none of them appeal; in which case, we might have to create an artificial
representation.

Asan example, suppose we had to write down alist of cities, for example the state capitals
of Australia. A sensible representation would be:

{Sydney, Perth,Brisbane, Adelaide, Melbourne, Hobart}

Thecitiesare represented by their everyday names. Thiswould be the most sensible choice
for normal communication. However, if these cities were to be named millions of times, as
might be the case if we were maintaining a database of Australian city dwellers, then these
representations would use relatively large amounts of disk space. Alternative methods of
representation might be considered.

1. {2001, 6001, 4001, 5001, 3001, 7001}

Here the GPO post code has been chosen. We would have to know that a set of cities
was being represented.

2. {NSW, WA, Q1d, SA, Vic, Tas}

This is valid but potentially misleading. We would want to be quite sure that it was
cities that were being discussed.

3.{s, P, B, A, M, H}
Thisis rather cryptic, with the cities identified by their initial letter. However, at |east
thereis no likelihood of a city being mistaken for a state.

4. {2, 6, 4, 5, 3, 7}

Thisisalso cryptic, with theinitial digit of the businessdistrict post code being used to
identify each city.

In everyday conversation or in written communication, it is important that all parties are
familiar and comfortable with the notation used. When two or more parties have accessto
a shared pool of sets (to a database, in other words) it is essential that all sets be encoded
consistently.

3.4 A Sample Database

Beforewelook at set comprehension, we will set up alittle database that recordsthe family
situation involving the children.

52 Chapter 3

The basic setsinclude one for the children, one for sexes, one for (bed)rooms, one for
sports and one for the ubiquitous integers.

Kids = {Kylie,Tim,Matthew,Emma}
Sexes = {F,M}

Rooms = {sleepout,back,front}
Sports = {tennis, hockey, golf}

N =1{0,1,2,3,...}

An injection and two functions give access to each child's age, sex and bedroom.

age : Kids >> N
sex : Kids — Sexes
room : Kids —> Rooms

They can then be applied, for example, to determine the following:

age(Kylie) = 14
sex(Tim) = M

room(Emma) = sleepout

All of these relationships are total; in other words, we know everyone's age, everyone's
sex and everyone'sroom.
Finally, there is also arelation that tells us which sports each child plays, if any.

plays :Kids <> Sports
Thisrelation can be used in expressions such as:

Kylie plays tennis
Tim plays tennis

The specific facts concerning these children may be seen in Figure 3.1.

3.5 Set Comprehension

There is an alternative to physically writing out the contents of a set on a piece of paper
or onto an electronic storage device. We can use set compr ehension which enables us to
specify the set by stating some property that every chosen element must satisfy. There are
three formsthat can be used.

3.5.1 Form 1: {Declaration | Predicate}

Suppose we want to specify the set “boys". Thisis simply those children of the male sex.
If we were to pick out these children for ourselves then we would go through all of them
checking whether or not each child was amale.

To specify the set of boys, we can write an expression of thisform.

{k : Kids|sex(k) = M}

This expression can be thought of as giving rise to the following sequence:

Sets 53

age : Kids >N

sex : Kids — Sexes

age ={ sex ={
(Kylie, 14), (Kylie, F),
(Tim, 12), (Tim, M),
(Matthew, 4), (Matthew, M),
(Enma, 8)) (Enma,)}

room : Kids — Rooms

room ={
Kylie,
Tim,

Emma,

(
(
(Matthew front),
(

sleepout),
back),

sleepout)}

plays: Kids <> Sports

plays ={
(Kylie,tennis),
(Kylie,hockey),
(Tim, golf),
(Tim, hockey),
(Emma, tennis)}

Figure 3.1 The Kips Database

1. Letk beavariablethat ranges over the set Kids.

S0k, inturn, takes on each of the valuesKylie, Tim, Matthew and Emma.

2. Ask takes on each value, evaluate the predicate or Boolean expression that follows

the vertical bar |.
The vertical bar can be read as where or such that.

3. If the predicate evaluates as true, then include this element in the new set that isbeing

specified.
In this example, if the expression sex (k)
amale.

4. Moveto the next element in Kids, that is, move on to the next child.

= Mistrue, then the corresponding child is

The key word in the above description is range. We must picture the variable ranging over

the set with which it is associated.

To see how the set of boysis formed, the following steps should be pictured.
We start the set by writing down { and then let k range over the set Kids, that is, over

each of the four children.
1. Thefirst child might be Kylie, sok =

sex(k) =
= sex(Kylie) =
= F =M
= false

Kylie. The predicateis evaluated:

54 Chapter 3

Applying the sex function to the argument Kylie returnsavalueF. Thisdoesnot = M
and so the predicate isfalse. Kylie isnot amember of the set being formed.

2. The pointer k is moved to the next element of Kids, say k = Tim. Againthe predicate
is evaluated.

sex(k) =
= sex(Tim)
= M=M
= true

M
=M

The predicate is true so Tim isincluded in the set. We can now extend the set from {
to{ Tim.

3. The pointer k is moved to Matthew. The predicate is evaluated as true, so the set is
again extended, thistimefrom { Timto{ Tim, Matthew.

4. The pointer k is moved on to Emma; the predicate is false, so Emma is not included.

There are no further elements in Kids, so the set is finished with a closing bracket } to
become:

{ Tim, Matthew }

Thisprocessis summarized in Figure 3.2.

Example 3.1 Another example of thisform of set comprehension would be an expression
specifying the set of children over 10 years old.

{k : Kids|age(k) > 10}

Again, avariable k is allowed to range over al of Kids; but this time, the set is formed
according to age not sex. Theresulting set is:

{Kylie, Tim}

The variable used may be any validly named variable, k is used simply as a mnemonic.
The above set could equally well have been specified as:

{t : Kids |age(t) > 10}

The declaration part of any piece of set comprehension allows usto state which set or type
we will use as the basis for specifying the set that particularly interests us. In this case,
Kids isthe base set. The declaration also allows us to name a typical or representative
element of that set.

The predicate part allows usto test that element in someway and to arrive at a true or
false conclusion.

The braces { } then indicate that we want to let k range over all elements of Kids,
picking those aged over 10.

Sets

55

Value of Evaluation of Set constructed
k the predicate so far
Kylie sex(k) = M
= sex(Kylie) = M
=F =M
= false
Tim sex(k) = M { Tim
= sex(Tim) = M
=M=M
= true
Matthew sex(k) = M { Tim, Matthew
= sex(Matthew) = M
=M=M
= true
Emma sex(k) = M { Tim, Matthew
= sex(Emma) = M
=F =M
= false
- { Tim, Matthew }

3.5.2 Form 2: {Declaration | Predicate e Term}

Figure 3.2 Set Evaluation

There are occasions when we are interested not so much in the base set (the one named in
the declaration) as in the elements of some related set. The base set is used as a kind of
stepping-stone towards identifying the set that really interests us.

Suppose we want to specify the room(s) in which girls sleep. We can specify the girls
in the same way as the boys were specified.

{k : Kids|sex(k) = F}

However, now we are interested in rooms rather than children. We can extend the above
set comprehension as follows:

{k : Kids |sex(k) = F e room(k)}

This statement says:

56 Chapter 3

1. Runthrough theKids set, picking out the females.

2. For each element chosen (that is, for each girl) select the associated room.

3. Form aset from all the rooms thus chosen.
The spot, e, is used to precede aterm of some kind. In this example, the term isroom (k)
and it maps from a child (k) to that child’sroom (room(k)).

The spot can be read asselect or choose or pick. Theterm that follows can be any
valid statement that represents an object. Typically, it will involve the variable introduced
in the preceding declaration.

Thisform of set comprehension can be considered as an extension of Form 1; however

it ismore useful to think of Form 1 as an abbreviation of Form 2.
The example givenin Form 1 was:

(1)...{k: Kids | sex(k) = M}
This can be written in Form 2 as;
(2)...{k:Kids|sex(k) =M e k}

What Form 1 allows usto say isthat if the term part is omitted then it is assumed to consist
of the variable named in the declaration. Thus (1) isasimpler version of (2); and they
both specify the same set.

3.5.3 Form 3: {Declaration e Term}
Just as we can omit the term part, we can a so omit the predicate part, asin, for example:
{k : Kids e room(k)}

This specifies the rooms of all children as there is no predicate to filter out any children.

What can be expressed in the term part? Any thing that makes sense, however smple
or complex. For example, if we wanted to know what ages the children will be in two
years time, we could write:

{k : Kids e age(k) + 2}
Thiswould returntheset { 14+2, 12+2, 4+2, 8+2 }or{ 16, 14, 6, 10 }.

The term can involve some other piece of set comprehension. Suppose we want to
know which children are of each sex.

{s : Sexes e (s, {k: Kids|sex(k) = s})}

Theouter set declaresavariable s that ranges over the elementsof the set Sexes. So s takes
on, in turn, each of the valuesF and M. Each of these values is paired with the following
term:

{k : Kids|sex(k) = s}

Sets 57

This givesthe set of children whose sex iss. The set, in extension, looks like this:
{(F,{Kylie,Emma}), (M, {Tim, Matthew})}

Set comprehension is important because it is, in effect, what we do when we program
a computer to retrieve and process information from a database. The above examples are
small-scale versions of the kinds of information that can be obtained by means of a query
language such as SQL. A retrieval statement in SQL defines a set by comprehension. The
database management system searchesthe database and returnsusthe same set in extension.

3.6 Set Operations

What operations would we want to perform on sets? Suppose we have the following sets.

Men = {Bob,Alan, Ivan,Mark}
Women = {Sue, Sam, Ann}

Rich = {Bob,Alan, Ann}
Smart = {Sue, Alan}

The operations we will want to perform upon these sets are ones that will enable us to
answer some simple everyday questions.

Set Member ship: We will surely want to find out whether or not an element can be found
in aset. This can be done using the in operator.

Example 3.2 Is Sam aman?

Sam in Men
Sam in {Bob, Alan, Ivan, Mark}
= false

No, Samisnot aman. The set membership operator isan infix relation that appears between
an object of some type and a set of objects of the same type. The resulting expression is
either true or false.

Set Union: We will want to amalgamate two sets to form a bigger set. Thisis called the
union operator.

Example 3.3 Whoissmart or rich (or both, we don’t care)?
Smart union Rich

{Sue, Alan} union {Bob, Alan, Ann}
{Sue, Alan, Bob, Ann}

Theunion operator createsa set with elementsthat arein either or both of the participating
sets. Itisan infix function that appears between two sets of the same type. The resulting
expression is yet another set of that same type.

Set Subtraction: We might want to remove certain elements from a set. Thisis called set
subtraction and is performed by theminus operator.

Example 3.4 Who are the not-so smart women?

58 Chapter 3

Women minus Smart
{Sue, Sam, Ann} minus {Sue, Alan}
{Sam, Ann}

A new set isformed. Women minus Smart is the set of people in Women who are not in
Smart. Because Sue isthe only member of both sets, she not in the resulting set.

Set Intersection: We will want to see which elements are common to both sets. Thisis
called set intersection and is performed by the intersect operator.

Example 3.5 Who arethe rich men?
Men intersect Rich

{Bob, Alan, Ivan, Mark} intersect {Bob, Alan, Ann}
{Bob, Alan}

A new set isformed consisting of those people who are members of both sets. Only Bob
and Alan belong to both, and so they must be the rich men.

Set Size: We will want to know how many membersarein a set.
Example 3.6 How many smart people are there?

count Smart
count {Sue, Alan}
=2

We can apply the count operator to any set and be returned the size of that set. It isaprefix
function.

Example 3.7 How many poor (non-rich) people are there?
We answer this question by forming the set of all people, subtracting the rich from that
set and counting the result.

count ((Men union Women) minus Rich)
count (({Bob, Alan, Ivan, Mark} union {Sue, Sam, Ann})
minus {Bob, Alan, Ann})
count ({Bob, Alan, Ivan, Mark, Sue, Sam, Ann}
minus {Bob, Alan, Ann})

count {Ivan, Mark, Sue, Sam}
=4

Example 3.8 Arethere more poor men than rich women? This question concerns many
men.

We find the set of poor men and the set of rich women; then we compare the sizes of
these two sets.

count (Men minus Rich) > count (Rich minus Men)
count ({Bob, Alan, Ivan, Mark} minus {Bob, Alan, Ann})
> count ({Bob, Alan, Ann} minus {Bob, Alan, Ivan, Mark})
count ({Ivan, Mark}) > count ({Ann})
=2>1
true

Sets 59

3.7 Higher Order Sets
3.7.1 Power sets
Suppose we have two sets, say:
A={1,1525}
B ={1,3,5,15,25,35}

All the elements of A are also elements of B. In such acase, A is said to be a subset of B.
We can state this using the inclusion relation:

ACB

According tothisdefinition, A isasubset of itself; every element of A isobviously an element
of A. Theempty set {} isalso asubset of A; every element of {3}, of which thereare none, is
anelement of A. Every timewewriteanexpressionof theform{ k:Kids | Predicate }
weare specifying asubset of the set Kids. According to the predicate used, the set specified
might be anything from the empty set to the complete set of all children, Kids.

Predicate Set specified

1. age(k)> 100 {}

2. age(k) =38 {Emma}

3. k = Matthew {Matthew}

4. kplaysgolf {Tim}

5. age(k) > age(Tim) {Kylie}

6. age(k) <10 {Matthew, Emma}

7. age(k) > 4 and age(k) < 14 {Tim, Emma}

8. sex(k)=M {Tim, Matthew}

9. sex(k)=F {Kylie, Emma}
10. age(k) = 14 or k = Matthew {Kylie,Matthew}
11. age(k) > 10 {Kylie, Tim}
12. k = Emma or sex(k) =M {Tim, Matthew, Emma}

13. sleeps(k)in{sleepout,front} {Kylie,Matthew,Emma}

14. kplaystennisorkplayshockey {Kylie, Tim,Emma}

15. age(k) = 14orsex(k) =M {Kylie, Tim,Matthew}

16. age(k) < 100 {Kylie, Tim,Matthew, Emma}

Regardless of how creatively we construct our predicate, we will inevitably specify one
of the 16 sets shown. They represent the entire set of possibilities. What we achieve, by
varying the predicate, is access to this higher level set or type. Thisisthe set of all subsets
of Kids. It isformally termed:

Set of Kids

andisknownasthe power set of Kids. The 16 entriesin the Set specified column represent
that set in extension.

Example 3.9 If wedeclareavariable:

k : Kids

60 Chapter 3

then k isan individual child drawn from the set Kids. |If we declare avariable:
p: Set of Kids

then p isaset of children, all of whom are drawn from the set Kids.

Power set construction

e Theprefix Set of may be placed before any set T. The effect isto creste
anew set: Set of T, whichisthe set of all subsetsof T, or, more simply,
the power set of T.

e A power set may be used in a declaration wherever a set may appear.

Example 3.10 Consider the set of numbersX:
X=1{1,3,5}
The power set of X is:

SetofX =
{ {1,3,5},
{1,3},{1,5},{3,5},
{1},{3}, {5},
{11}

The set X has 3 elements and Set of X has 2% = 8 elements. This relationship always
holds; if X has n elementsthen Set of X will have 2™ elements, hence the name power
Set.

Example 3.11 A power set declaration may be used in set comprehension.
{y : Setof X|county =2 and 3iny}

Thisis the set of subsets of X that contain exactly 2 elements and where 3 is one of these
elements. Thisistheset { {3,5}, {1,3} }.

3.7.2 Declarations
So far, all the declarations have involved just one variable, like the following:
k : Kids

The variable k is of type Kids; this means that k represents or stands for an individual
child. But we may introduce two variablesin the same declaration, for example:

j,k:Kids

Sets 61

We have introduced a pair, j and k, each of which represents individual children. They
might even represent the same child; their identity has not yet been established.

To emphasizethat we have coupl ed the childrenin someway, we may show the coupling
in the form of atuple.

(3, ¥)

A tupleisacomposite object formed from anumber, two in this case, of component objects.
The pairing process may involve two different kinds of object.

k : Kids; s : Sports
This time two separate declarations have been connected by a semicolon. The pairing is
ow (k, s), for example, (Alan, tennis) or (Sue, golf).
We are not restricted to forming merely pairs. A tuple may involve any number of
components of any type, for example:

k : Kids; r : Rooms; s : Sports

This declaration introduces a triple (k, r, s) consisting of a child, aroom and a sport, in
that order.

The syntax of a declaration

Basic_Declaration:

Symbol : Set_Term
or Symbol,. .., Symbol : Set_Term

Declaration:

Basic_Declaration
or Basic_Declaration; ...; Basic_Declaration

The basic declaration style involves the introduction of one or more variables of the same
type, for example:

k : Kids
i, j,k:Kids

The general form of adeclaration allows usto introduce severa variables of different types,
using a semicolon as a separator:

k : Kids; r : Rooms
j,k:Kids; r,s,t : Rooms; p:Set of Sports

62 Chapter 3

3.8 Product sets

We saw that varying the predicate part of a set comprehension gives rise to the power set.
Now we will vary the declaration part. What happensif we use two variables?

{j,k : Kids}

The declaration pairstwo children (j, k). When used within set comprehension, the effect
isto specify the set of all possible pairs of children. There will be 16 elementsin this set,
as each of the four elements of Kids is paired with itself and the three others. So the set
looks like this:

{(Kylie, Kylie), (Kylie, Tim), (Kylie, Matthew), (Kylie,Emma),

(Tim, Kylie), (Tim, Tim), (Tim, Matthew), (Tim, Emma),

(Matthew, Kylie), (Matthew, Tim), (Matthew, Matthew), (Matthew, Emma),

(Emma, Kylie), (Emma, Tim), (Emma, Matthew), (Emma, Emma)}
This could equally have been expressed as follows:

{3,k Kids o (3,K))

When more than one variableis declared, then the default term isatuple formed from these
variables. The set of pairs may also be written:

Kids x Kids

Thisnew set is called the product set and is formed by “multiplying” Kids by itself.

Product set construction

e The product operator x may be placed between any two sets S and T.
Theeffect isto createanew set S x T whichisthe set of all pairs(s,t)
where s isdrawn from S and t from T.

e A product set may be used in a declaration wherever a set may appear.

Example 3.12 Supposethe set Sports isdefined as follows:
Sports = {tennis, hockey, golf}
The product set Kids x Sports isthe set of al (child, sport) pairs.

Kids X Sports =
{ (Kylie, tennis), (Kylie, hockey), (Kylie, golf),
(Tim, tennis), (Tim, hockey), (Tim, golf),
(Matthew, tennis), (Matthew, hockey), (Matthew, golf),
(Emma, tennis), (Emma, hockey), (Emma, golf) }

Sets 63

The size of this set can be calculated as follows:

count(Kids x Sports) = (count Kids) * (count Sports) =4 % 3 = 12

Example 3.13 The set Kids x Sports isthe set of al pars (k,s) wherek is achild
and s a sport. This set can aso be defined using set comprehension as follows.

k : Kids; s : Sports
; P

Whenever more than one variable is declared, a product set is formed implicitly.

Example 3.14 We could add acondition requiring that thefirst child in each pair be older
than the second.

{j,k:Kids|age(j) > age(k)}
Thiswould giveriseto this set:

{ (Kylie, Tim), (Kylie, Matthew), (Kylie, Emma),
(Tim, Matthew), (Tim, Emma),
(Emma, Matthew), }

Kylie is older than the other three but not herself. Tim is older than Matthew and Emma.
Only Matthew is younger than Emma.
Finally, rather than forming pairs of children, we could take the older one.

{3,k : Kids |age(j) > age(k) * j}
Thiswould give us the set of children who are older than some other child.

{ Kylie,
Tim,
Emma }

Thisisthe set containing all but the youngest child (Matthew).

3.9 Sets, Relations and Functions

In the previous section, we looked at the power set and the product set. In this section, we
combine these two ideas and see what arises.

3.9.1 Type Construction

Using the rules regarding power set and product set construction, we may define objects of
any complexity. This allows us to describe the kinds of organizational views that appear
in the shape of forms and reports. We could package all our knowledge regarding Kyliein
the form of arecord.

64 Chapter 3

CHILD RECORD
NAME: Kylie
AGE: 14
SEX: F
PLAys: tennis, hockey
Roowm: sleepout

Thisrecord could be formally declared as follows:
data:Kids X N X Gender X (Set of Sports) x Rooms

and our record of Kylieisaquintuple of datathat could be defined as:
data = (Kylie, 14, F, {tennis, hockey}, sleepout)

3.9.2 Relations and Functions
Suppose we were to form the product of Kids and Sports.

Kids X Sports =

{ (Kylie, tennis), (Kylie, hockey), (Kylie, golf),
(Tim, tennis), (Tim, hockey), (Tim, golf),
(Matthew, tennis), (Matthew, hockey), (Matthew, golf),
(Emma, tennis), (Emma, hockey), (Emma, golf) }

Another set has been constructed from the two more elementary sets. What if we were now
to consider the power set of this new set? Suppose we declare a variable as follows.

r : Set of (Kids x Sports)

Thisvariableis constrained to be a set and the elements of that set areto be drawn from the
product Kids x Sports shown above. Some possible values might be:

(1) ... { (Kylie, tennis), (Tim, tennis) }
(2) ... { (Matthew, golf) }
(3) ... { (Emma, hockey), (Emma, golf),

(Emma, tennis) }
(4) ... { (Kylie, tennis), (Kylie, hockey),
(Tim, golf), (Tim, hockey),
(Emma, tennis) }
In particular, one of the above setsisjust the same asthe plays relation.
plays:Kids <> Sports

In general, all of the above are examples of relations. A relation isjust an element of the
power set of the product of two or more sets. Or, more simply, a relation between two sets
isasubset of the product of these two sets. The following declarations mean the same.

r : Set of (A X B)
r:A<>B

Sets 65

The latter is preferred because it helpsto remind usthat r is arelation between A and B.
Suppose now that we form the product of Kids and Sexes.

Kids X Sexes =

{ (Kylie, F), (Kylie, M),
(Tim,), (Tim, W),
(Matthew, F), (Matthew, M),
(Emma, F), (Emma, M) }

Thisisthe set of al possible pairs of child and sex. One subset of this set is the following
one.

{ (Kylie, F), (Tim, M), (Matthew, M), (Emma, F) }

Thisisthe same as the sex function. So afunction isarelationin that it is a subset of the
product of two or more sets. However, afunctionisaspecial kind of relation. The function
sex isdeclared as follows.

sex : Kids — Sexes

The notation —> isused to indicate that through this function a child mapsto one and only
one sex. A function is arelation that carries this additional single-valued constraint. For
each element of Kids thereis only one element of Sexes.

3.9.3 Deriving New Relations

All thefunctionsand relations that we have examined so far have been defined in extension,
for example, plays and sex. This was done because these functions and relations were
meant to form adatabase, whichisthat part of an information system where sets are written
out on the secondary storage of some computer system.

In this section, we will ook at deriving new relations based on ones previously defined.

Example 3.15 Suppose that we want to construct a new relation that allows us to test
whether or not one child is the brother of another. The relationship is many-to-many as a
child may have several brothers and, in turn, may be the brother of several children. We
could declare it asfollows:

isbrotherof: Kids <> Kids

We can then use it in such sentences as Tim isbrotherof Kylie and so on. The
corresponding relation can be pictured as:

isbrotherof =
{ (Tim, Kylie),
(Tim, Matthew),
(Tim, Emma),
(Matthew,Kylie),
(Matthew, Tim),
(Matthew, Emma) }

66 Chapter 3

The relation is simply a set of pairs as shown above. We can use set comprehension to
define this set.

isbrotherof:Kids <> Kids
isbrotherof = {j,k : Kids | sex(j) = M and not j = k}

The specified set consists of pairs of children (j,k) related in the following way.

1 sex(j) = M
Thefirst child in the pair, child j, ismale. Only males can be the brother of anyone.

2. not j =k
The second child in the pair, child k, is not the same asthe first. A child, even amale
one, cannot be his or her own brother.

This definition of a relation helps to emphasize that a relation is a mapping between sets;
itisalso aset of pairs; the pairs are the mapping.

3.9.4 Deriving New Functions

A function isjust a specia kind of relation, therefore we can also define functions using
set comprehension.

Example 3.16 Supposewewant to be ableto map from one child to the oneimmediately
older. Let uscall thefunction next. We would expect it to look like the following.

next : Kids +> Kids

next =
{ (Tim, Kylie),
(Emma, Tim),
(Matthew, Emma) }

The next child older than Tim is Kylie so next (Tim) = Kylie. Notice that Kylie does
not appear in the domain of next (the left-hand column) because there is no child older
than her. This means that next is a partial function, symbolized by -+> . The function
may be fully specified in the following way.

next : Kids +> Kids

next = {j,k : Kids | age(j) < age(k) and”
count {1 :Kids|age(j) < age(1) and age(1) < age(k)} = 0}

Thefunctionnext isapairing of two children (j, k) wherethefirst child j isyounger
than the child k and the number of children whose age lies between these two is zero.

In detail, the predicate appearing within the outer set comprehension requires that both
of the following conditions be true:

Sets 67

1. age(j) < age(k)
Thefirst childin the pair, child j, must be younger than the second child, child k.
2. count {1:Kids|age(j) < age(l) and age(1) < age(k)} =0

Theinner item of set comprehension determinesthe set of children aged between child
j and child k. We require that set to be empty before k can be next to j.

Example 3.17 A simpler example of a derived function is older which tells which
children are older than some given child.

older : Kids —> Set of Kids
older = {k: Kids e (k,{j : Kids |age(j) > age(k)})}

Thisfunctionisapairing of each child with the set of children older than that particul ar
child, for example, (Emma, {Tim, Kylie}). Note that thisis atotal function because
although no child is older than Kylie, she can still be paired with the empty set. The
complete function can be thought of in the following way:

older(Matthew) = { Emma, Tim, Kylie }
older(Emma) = { Tim, Kylie }
older(Tim) = { Kylie }
older(Kylie) ={}

The complete function may be viewed in extension as follows:

older = { (Matthew, {Emma, Tim, Kylie}),
(Emma, {Tim, Kylie}),
(Tim, {Kylic}),

(Kylie, {}) }

In this example, as in the previous one, there are two levels of set comprehension, one
within the other. The outer level one has no predicate. Thisis becausethe functionistotal:
all children participate. Theterm (kx, {j:Kids | age(j) > age(k) }) isusedto par
achild x with the set of children older than that particular child. A typica pairing would
be (Emma, { Tim, Kylie }).

Example 3.18 Another related function, youngest, may be defined. Thisfunction maps
from a set of children to the youngest child in that set.

youngest : Set of Kids +> Kids

youngest = {sk : Set of Kids; k : Kids | k in sk and
age(k) = min{j : sk e age(j)}}

Thisfunction pairsaset of children sk with one particular child k. It also requiresthat
this child be a member of the set with which it is paired and that the age of this child be
the least of all the ages of the various children within that group. The function is partial

68 Chapter 3

because it is not defined for an empty set, naturally. Some sample applications of this
function are;

youngest{Kylie, Tim} = Tim
youngest{Emma} = Emma
youngest{Emma, Tim,Kylie} = Emma

This function may be applied in conjunction with the previous one in the following way:

youngest(older(Emma))
= youngest({Kylie, Tim})
=Tim

What this example saysisthat the youngest of those children older than Emmais Tim; but
thisisjust the same as saying next (Emma) = Tim. We can define next using these two
functions rather than defining it in terms of the base function age aswe did originally.

next : Kids +> Kids
next = {j,k : Kids| count older(j) > 0 and k = youngest(older(j))}

With this definition, next isapairing of children (j, k). The predicate requires that
both of the following conditions be true.

1. count older(j) > 0
There are some children older than child j.
2. k = youngest(older(j))
The second child k isthe youngest of these children.

3.10 Set Terms

In Chapter 2 aterm was defined as a symbol or symbolic expression that represents an
object of some kind. We can also have a set term which is a symbolic expression that
represents a set of objects.

1. A set may be represented simply by a symbol. Such a symbol may be a base type or a
variablethat has been declared to be set-valued.

2. A set may be defined in set extension.
3. A set may be defined by comprehension.

4. A set may result from a set expression that involves set operations such as union,
minus and intersect.

5. A higher order set may beformed using the power set and product set type constructors.
6. A set may be defined as afact type, which can be thought of as a set of pairs.

Sets 69

Set_Term: Ezamples:
Symbol Kids
or Set_Extension or {Kylie, Tim}
or Set_Comprehension or {k:Kids|age(k) < 10}
or Set_QOperation or Rich union Men
or Type_Construction or Set ofKids
or Fact_Type or Kids >N

3.11 Summary
This chapter has examined ways of identifying or specifying sets of objects.

e There are two ways of identifying the elements of aset. Thereis set extension where
the elements are named individually. Alternatively, we may use set comprehension
where elements are specified through some shared property.

¢ When expressing a set in English, we may choose either of these two methods. The
choice may depend on the relative ease with which we can use one form rather than the
other. Sometimesit may be easier to simply list the set and sometimes it may be more
convenient to specify the set through some shared attribute. We probably do a quick
mental calculation to see whether it will take longer to express the set in extension or
by comprehension.

¢ Inacomputer-based system, thischoiceisusually neither available nor appropriate. The
setsinvolved are much, much larger than any we would consider expressing ourselves.
There will be setsthat are stored explicitly, that is, in extension. These sets form what
is called the database. They are data because they are given to theinformation system
which has no other way of determining that information. In addition to these setsthere
will be othersthat may be deduced or derived programmatically; these are sets defined
by means of set comprehension.

¢ There are two type constructor sthat alow usto define higher level types and sets.

1. Thereisthe power set operator Set of which when applied to atype T gives
us Setof T whichisthe set of all subsets of T. For example, an element of the
Set of Person isitself a set whose elements are drawn from Person.

2. Theother constructor isthe product operator x which operates on two types, say
S and T, to form the type S x T which is the set of al pairs drawn from S and T.
For example, Person x Sport is anew type consisting of a set of pairs of the
form (Bob, tennis).

¢ Finally, the combination of these two type constructors allows us to understand more
clearly the nature of relations and functions which were introduced in the previous
chapter. A relation is a set of pairs, and a function is a particular kind of relation in
which no two pairs share the same first element.

70 Chapter 3

Exercises

» Q3.1 The CLuB Model

Here are the four relationships used in the CLUB model that was introduced in the
exercises at the end of Chapter 2.

likes: Member <—> Member _writes_: Member <= Language
likes = writes =
{(Bill, Sue), {(Bill, FORTRAN),
(Bill, Alamn), (Sue, O©),
(Sue, Alan), (Sue, SQL),
(Alan, Bill)} (Alan, FORTRAN),

(Bill, SQL)}

age: Member —> N drives: Member >+> CarMake
age = drives =
{(Bi11, 19), {(Sue, Honda),
(Sue, 19), (Bill, Ford)}
(Alan, 16)}

The set: {m : Member | age(m) = 19} is the set of members who are 19 years old.
This set could have been written in extension as: {Bill, Sue}. Describe, in your
own words, each of the sets specified below:

{m : Member |mlikes Alan}

{1: Language |Suewrites1}

: Member |mwrites SQL e age(m)}

{m : Member | age(m) = age(Bill)}

{m: Member |[mlikesAlan and Alanlikesm}

© QP T
~—
B

Re-state each set in extension.

P Q3.2 Expressthefollowing sets using set comprehension:

The people that Alan likes.

The ages of the people that Alan likes.

The people older than Alan.

The languages written by all the people of Sue's age.
The people of Sue's age that like her.

® o0 T @

Sets 71

» Q3.3 The GEOGRAPHY Model
The following sets are used to record the states and major towns of Australia.

State = {QLD, NSW, VIC, WA, SA, TAS}
Town = {Brisbane,Sydney,Cairns,Newcastle,...}

There are three relationships invol ved.

1. cap: State >> Town
This injection returns the capital city of each state, for example, cap (NSW)
would give Sydney.

2. loc: Town —> State
This function returns the state in which a town is located, for example,
loc(Rockhampton) would return QLD.

3. pop: Town =N
Thisfunction returnsthe popul ation of eachtown, for example, pop (Brisbane)
might return 950, 000.

Use set comprehension to specify the following sets.

The citieslocated in New South Wales (NSW).

The populations of the cities located in New South Wales.
The state capitals.

Townsthat have a population greater than Newcastle's.
The towns and the popul ation of each town.

" o0 T W

P Q3.4 Use set comprehension to specify the following sets.

State capitals with a population of more than one million.
The populations of the capital cities.

Towns located in the same state as Cairns.

Townsthat are not capital cities.

The states and the number of towns in each state.

® o0 T

P Q3.5 Supposewe have two sets of integers:

A={5,3,21,16}
B = {10,5,4}

Using set operations, we could obtain the union of A and B by requesting
A union B and theresulting set would be {10, 5, 3,4,21, 16}.

What are the results of the following expressions?

72 Chapter 3

A minus B

{n:A | n> 11}
count (A)

count (B minus A)

count (B minus B)

B T > S S I © S

A intersect {n:(B union A) | n < 16}

A intersect (B union {n:A | n < 16})

| @

count ((A intersect B) union {n:A | n > 16})
i. {n:Ben-11}
jo { n:B | n>5en*x(n-1) }

P Q3.6 Using the sets A and B from the previous question, evaluate the following set

expressions.

a { a:A; b:B | a=b }

b. a:A; b:B | a>b }

C. a:A; b:B | a<b }

d. a:Ae(a, { b:B | a>b }) }
e b:Be (b, { c:B | b>c }) }
f.

a,b:A | a>bea }

7 Q@

as:Set of A | count as = 2 }

as:Set of A | 5 in as }

as:Set of A | count as = 3 ecount as }

{
{
{
{
{a,b:A | a>b }
{
{
{
{

P Q3.7 Suppose that A is a set of some kind. What are the results of the following set
expressions?

A union {}

A union A

A minus {}

{} minus A

A minus A

B S S S S © S

A intersect {}

A intersect A

©Q

Sets 73

Q3.8 In the subject Applied Psychology there were both business and computing
students. The marks achieved by these two sets of students are represented as two
sets of integers Bus, Comp : Set of N and the results are;

Bus = {28,33,48,55,60,62,77,95}
Comp = {19, 22,58, 66,75,90}

Suppose a so that we have two operations on sets:

min : Setof N+ N
max : Setof N+ N

These operations return, respectively, the minimum and the maximum element of a
set of integers, for examplemin Bus = 28 and max Comp = 90.
We can write expressions to evaluate queries regarding the marks. For example, if

we wanted to know the highest mark overall, we could write:

max (Bus union Comp)

Write expressions that will answer the following queries.

What was the lowest mark attained by a computing student?

Isthe highest business mark higher than the highest computing mark?
Did any business student get a mark of 55?

Did any computing student get a mark over 807

What was the second |owest business mark?

® 20 T o

Q3.9 If A and B are both sets of integers, then the union of these setSA union B can be
written, using set comprehension, as:

{k:N|kinA or k inB}

This can beread as “the set of integersthat arein the set A or in the set B".
Rewrite the following expressions using set comprehension.

a A intersect B

b. A minus B

P Q3.10 Herearetwo small sets:

Us = {Jim,Sue,Alan,Bob}
City = {Yeppoon, London, Paris}

Give one member and cal cul ate the cardinality of each of the following sets.

a Us

74 Chapter 3

Set of Us

Us x City

Set of (Us x City)

(Set of Us) x City

Set of (Set of Us)

(Set of Us) x (Set of City)

@ "o oo o

P Q3.11 Using the Us and City sets given in the previous question, to which set does each
of the following elements belong?
a. Bob

b. (Jim, Bob)

c. { Jim }

d. { Jim, Bob }

e. { (Jim, Yeppoon), (Sue, Paris) }

f. (Jim, Bob, Alan)

9. { {Jim}, {Bob, Alan}, {} }

h. { (Jim, {Yeppoon, London}) }

P Q3.12 Write out, in extension, the following sets. Test your answer by checking that it
obeysthelaw regarding power set cardinality, whichis: count (Set of X) = 2¢0unt X,

Set of {spoon}

Set of {fork, spoon}

Set of (Set of {spoon})

Set of {}

Set of (Set of {})

® o0 T

P Q3.13 Based on the GEOGRAPHY model, provide a type declaration and definition for
each of the following.
A prefix function hascap that maps atown to its capital city.
b. A prefix function al1towns that maps a state to all thetownsin that state.

c. Aninfix relation sameloc that indicates whether or not two towns are located
in the same state.

d. A prefix function samepop that maps a town to al the other towns that have
the same population.

e. A prefix function exceed that maps an integer to all the towns with a larger
popul ation.

Sets 75

Q3.14

Q3.15

Given these new operations, examine the set comprehension question associated
with this model. How might the sets specified there be respecified using these
operations?

In computing, it is common to use a double dot notation to represent a range of
numbers, for example:

1.3 ={1,2,3}

7.12 ={7,8,9,10,11,12}
99..99 = {99}

2.1 ={}

The operator is an infix function and may be declared as:
__:NXN-—>SetofN

that is, it is a function that takes two integers as its arguments and returns a set of
integers. Use set comprehension to define this function.

The PARLIAMENT Model

Thismodel was introduced in the exercises at the end of the previous chapter. Asa
reminder, the following functions and relations are used.

1. belongs: Poli —> Party
This maps each politician to his or her party, for example, belongs (Wayne)
might give Labor.

2. minister: Dept —> Poli

Thismapseach department to therelevant minister, for example,minister (Police)
might give Terry.

3. leader: Party >+> Poli

Thismaps a party to its leader, for example, 1eader (Business) might map
toDenzil.

4. _talksto_: Poli <> Poli

This indicates whether one politician is prepared to talk to some other politi-
cian, for example, Neville talksto Russell.

Use set comprehension to specify the following sets.

The set of al ministers.

The set of Green paliticians.

The party leaders.

Those politicians who are ministers of more than one department.

® 20 T @

Those politicians who talk to the leader of their party.

76 Chapter 3

Q3.16 We can pair each politician with his or her party leader through a function takeme
which may be defined as follows:

takeme: Poli —> Poli

takeme = { p: Poli e (p, leader(belongs(p))) }

Using the above style, define sets of pairs to satisfy the following requirements.
Make sure you declare the set as afunction or as arelation.

Pair each party with the number of representativesthat it hasin parliament.
Pair each politician with the set of politiciansto whom that politician talks.
Pair each politician with the set of paliticiansthat talk to him or her.

Pair each party leader with the set of politicians that he or she leads.

Create pairs of party leaders such that the first one outranks the second in
terms of the number of politicians in the respective parties.

" o0 T

Chapter 4
Relations

4.1 Introduction

In this chapter we take a step towards the implementation of our specific facts. In previous
chapters, we attempted to represent situations in reasonably natural, if formal, way. We
would usually consider a person’s age and a person’s father to be separate facts about that
person; and so, in our specification, wewould probably want to treat them separately. Don't
forget that the specification is a description written for our benefit. An implementation,
however, is a description written with automation in mind. While a specification may be
written with arelatively free hand, an implementationisusually required to be efficient and
effective, using a minimum amount of storage space and providing an acceptabl e response
time.

Thischapter providesacontinuation of theformal notionsof relationsand setsthat were
introduced in the two previous chapters. It allows usto gather these ideas in a theoretical
manner before discussing their implementationin a*“real-live" computer language, namely
SQL.

The chapter introduces the relational model of data. Using this approach, facts are
combined to produce larger storage structures called relations. A relational database is a
cohesive collection of relations. We use the relational model (1) because it allows us to
access and to manipulate facts in arelatively easy manner, and (2) because there are many
commercially available database management systems that support the relational model.

4.2 Merging Facts

Theideaof arelation was introduced in Chapter 2 where it was described as a set of pairs.
In that chapter, relations were frequently shown in the form of a two-column table. For
that reason, we might call them binary relations to distinguish them from the more general
relations that are the subject of this chapter. But, because each binary relation corresponds
to a particular type of fact, we will also refer to binary relations as fact typesto make their
origin clear. Here are two examples of these fact typesthat were introduced in that chapter.

7

78 Chapter 4

age : Person > N drives : Person +> CarMake
age = drives =
{(Alan, 21), {(Bob, Porsche),
(Sue, 18), (Mark, Toyota),
(Kim, 23), (Ann, Toyota),
(Bob, 23), (Sue, Ford),
(Mark, 48), (Alan, Mercedes)}
(Ann, 45)}

These two fact types, age and drives, are more specialized relations called functions.
Viewed simply as tables, each table corresponds to a particular type of fact, and each row
corresponds to one specific fact of that type. The relational model extends the notion of a
two-column table to a table with any number of columns. Using the idea of an extended
relation, we can merge facts into a space-efficient package. They may be merged safely,
resulting in atable that has one row for each person: see Figure 4.1.

People

Name Age Drives
Alan 21 Mercedes
Sue 18 Ford
Kim 23 ?

Bob 23 Porsche
Mark 48 Toyota
Ann 45 Toyota

Figure 4.1 An easy merger

As aresult of the merge, a single three-column relation has replaced a pair of binary
relations. Consequently, some space has been saved. Oneminor (isit?) problem hasarisen
because Kim does not drive. A question mark (?) has been inserted to indicate what is
termed a null or missing value. However, the problem does seem minor compared with
the savings that result, especially when this processis repeated for al the facts that are to
be represented. We can save a lot of space by merging several smaller relations into one
bigger one.

The merging process cannot be performed carelessly, however. Suppose we were to
merge the plays fact with the age one. What happens?

Relations 79

age : Person > N _plays_: Person <> Sport
age = plays =
{(Alan, 21), {(Alan, tennis),
(Sue, 18), (Alan, golf),
(Kim, 23), (Sue, tennis),
(Bob, 23), (Kim, tennis),
(Mark, 48), (Bob, golf),
(Ann, 45)} (Bob, hockey),
(Mark, golf),
(Mark, squash)}
A Bad Merger A Good Merger
Name Age Plays Name Age Plays
Alan 21 tennis Alan 21 tennis, golf
Alan 7 golf Sue 18 tennis
Sue 18 tennis Kim 23 tennis
Kim 23 tennis Bob 23 golf, hockey
Bob 23 golf Mark 48 golf, squash
Bob ? hockey Ann 45 -
Mark 48 golf mmmmmmem——e—
Mark ? squash
Ann 45 ?

Figure 4.2 Bad and good mergers

Problems arise if we use the plays fact to control the merge:

e What do we do with the ages of people who play more than sport, for example, Alan?
Do we repeat the age for every sport he plays? Or, as has been done here, record his
age for the first sport and makeit null for al others?

e What do we do with people who don’t play any sport, for example, Ann? Here we have
recorded a null sport, but we would have to be careful should she decide to take one up.

From this one example, it is clear that the merging isnot arbitrary. It is part of the database
design processto determine which facts may be merged. Chapters 1 to 11 cover this.
There is an dternative way of merging these two fact types, one that avoids the need
for null values. This merge requires that we have one row per person and associate each
person with the set of sports that they play. In effect, we use the age fact as the basis for
the merger. Alan plays the set of sports consisting of tennis and golf. Ann is associated

80 Chapter4

with the empty set because she plays no sports. The empty set is alegitimate set value; it
isnot anull value. A null value would indicate that we do not know what sports she plays.

The relation so formed is quite valid. It is away of representing facts that is well-
established in computing. It makes its appearance in many file systems, where it would
be termed a file with variable-length records. However, it is not allowed in the relational
model asthat term is normally understood. That model of data representation permits only
table entries that have a simple or atomic value. So we have a conflict.

e Thereistherelational model that istheoretically possible. Wewill call thisthe general
relational model. This may be used in a specification.

e There is the relational model that is in current use and that is available in many
commercially available database management systems. We will call thisthe standard
relational model. This must be used in an implementation.

We will look at the general relational model and then ook at what compromises we must
make to follow the standard mode!.

4.3 Relations

One of our less endearing features is a tendency to label things, that is, to put things
into categories. Almost automatically, we try to see into how many slots we can place
something.

Suppose, for example, that we were touring a second-hand car yard looking for a
suitable car (we could equally well be browsing in a bookshop or a dress shop or a record
shop). Assoon as we see a car that we fancy, we make a mental note, such as:

CAR RECORD
MAKE: Ford
MODEL: Falcon
COLOR: red
YEAR: 1985
PRICE: 7000

We have categorized the car in five different ways. We have noted five different aspects
of the car. It isin the category of cars made by Ford; it isin the category of makes called
Falcon; it isin the category of red cars; and so on.

If the car does not meet our requirementsthen we will pass on to the next one. We look
at the car and notice its attributes. For each attribute, there is a set of allowable values,
those that make the car acceptable. Then we decide which element, if any, of that set fits
the car.

Attribute Domain

MAKE Ford, Toyota, Honda, BMW, Mitsubishi,...

MODEL Falcon, Laser, Prelude, Accord, 723i, Magna, Golf,...
CoLOR red, purple, green, blue, white, pink,...

YEAR 1970, 1971, 1972,...

PRICE 50..100000

Relations 81

The set of values associated with the attribute is known as the domain of the attribute.
Whileit would be nice to think that each attribute hasits own independent set of allowable
values, in practice the various domains may be highly interdependent. Suppose we are
creating a new car record. Once we have filled the MAKE attribute with the value Ford,
for example, our choice of values for the Model dot isimmediately reduced to a certain
subset of the original domain of that attribute; we cannot haveaFord Accord. There may
be many other inter-domain constraints. We may be happy with a purple BMW but not
with a purple Ford; we may be prepared to pay $2 000 for a 1970 BMW but not for a 1970
Toyota; and so on. The idea of a domain becomes so diluted that it ends up being some
general set such asthe set of integers or the set of character strings.

We might look at some other cars, perhaps writing down essential details aswe go. A
way of presenting thisinformation is to write it down the page, with each car taking up a
row and the result taking the form of atable.

Cars

Make Model Color Year Price
Ford Falcon red 1985 7000
BMW 7231 purple 7 2500
Ford Laser blue 1978 1000
Toyota Corona brown 1972 100
Ford Falcon red 1981 1199
Toyota Corolla white 1971 199

In computing, atable like the one above is often called arelation. A relation isadynamic
data object; that is, its contents are expected to change over time. So far we have seen six
cars, when we started we had seen none; tomorrow — who knows how lucky we will be
then? The Cars relation will vary accordingly. However, its structure will not change; it
will always have exactly those five attributes that it had at the beginning and that it has now.

4.4 Tuples
4.4.1 Form Filling

When we start our car hunt, we may not be too fixed in our ideas about the kind of car
that will suit us; but after seeing afew cars we will probably settle on those attributes that
are important to us. Once we have decided on these particular attributes, then the search
becomesrather likefilling in aform, once for each potential purchase.

CAR RECORD

82 Chapter 4

Theformisakind of templatefor asuitable car, with anumber of slotsto be completed.
Each dlot or attribute has a corresponding set of allowable values. For example, the Make
dot must be aFord or a Toyota and so on. This composite collection of valuesis called
atuple. However, it is often simply referred to as arecord. Supposethereis a classified
advertisement for a car that might be suitable.

"BMW 7231, purple, low mileage; one careful owner; $2500."

This description presents several features or attributes of the car; some of these will be of
interest; otherswewill ignore. We ignore the low mileage becauseit is not important to us,
and discount the ownership claim as unconvincing. We then fill out our car record or tuple.

CAR RECORD
MAKE: BMW
MODEL: 7231
COLOR: purple
YEAR: ?
PRICE: 2500

The advertisement also omits one feature that we did consider to be important, the year of
manufacture. What do we do about this attribute? That rather depends on how strongly
we feel about that particular feature. If we are not prepared to even consider a car without
knowing when it was made then we will be unable to complete the form and may have
to miss out on this great bargain. In practice we would probably not wish to be quite so
stringent. We should be able to discover, sooner or later, when the car was built. When
we are prepared to leave a dot unfilled, then thisis referred to as assigning a null value.
The alowable values for this slot consist then of the attribute’s domain plus the null value.
There appear to be two distinct decisions to be made regarding each car attribute.

1. What exactly isthe domain of the attribute, that is, what are the acceptable values?

2. Isit essentia that we have a value for that attribute? Or are we prepared to consider
cars, at least temporarily, where that attribute is unknown?

Thethreeideas of atuple, its definition and the associated relation are closely connected.

A tuple definition specifies a particular kind or form of tuple; it states which attributes
it has, the domain of each attribute, whether null valuesare to be permitted for that attribute
and other constraints on what makes avalid tuple of that kind. The relation associated with
aparticular tuple definition is the set of tuples that satisfy the definition.

4.4.2 Tuple or Aggregate Objects

Theprocessof gatheringtogether relatively simple objectsin order to createamore complex
one is called aggregation. There are two different ways of declaring aggregate objects.
We can use the Cartesian product operator, written x, to introduce these objects.

address : N x Street x Town x PostCode

Defined in thisway, address isafour-part tuple. Constant tuple objects may be created by
using round brackets to surround a collection of simple constants, for example:

address = (1, Geo St, Brisbane,4001)

Relations 83

Thetupleisan ordered list of values, so that:
(9,10,1991) # (10,9,1991)

Swapping the order creates another object, in this case, another date.
Almost as soon as we create an aggregate object, we will want to extract some compo-
nent part. Look at the following tuples.

date = (1,10, 90)
address = (6, HuttonSt, Yeppoon,4703)

We may talk about the “second" part of date or the “fourth" part of address, but thisis
counter-intuitive. We really want to refer to the“ month" part of date or the“ postcode” part
of address. Thereisasecond style that we can use to define aggregate objects. Thisisthe
style we will use when we want to define an aggregate object and where the components
of that object are to be identified by name rather than by position.

Date
Day : N
Month : N
Year : N

Thisis an example of a schema type or record type. We can now use Date as atypein
subsequent declarations.

d : Date
The variable d is atuple with three components.

d.Day
d.Month
d.Year

Theword*“schema' meansan outline, or askeleton. A schematype outlinesthevalid tuples
that may be inserted into arelation. The schema becomes, in effect, arelation schema as
well. We could choose to introduce a record type for a car object.

__CarRecord

Make : Make

Model : Model
Color : Color
Year : N|null
Price : Money

The Make, Model and Color attributes have been named after the parent type. This
should not cause confusion. If it does, then other attribute names should be picked. The
Year component may be unknown. The type associated with that attribute is a new one
constructed from the digoint union of the integers N and a special constant null. A car
year may be an integer or it may be null.

84 Chapter 4

4.4.3 A Definition

We are now ableto define arelation.

Relations

Any object R that is declared, either directly or indirectly, in the following
way:

R:Setof (AxBx---xPxQ)

isarelation. Thesets 4, B,..., P, may themselvesinvolve power sets
and product sets. A relation is a set of composite objects called tuples. In
itssimplest form, arelation is a set of pairs.

The carsrelation ismerely a set of car records.
Cars : Set of CarRecord
If we substitute the definition of a CarRecord, we get:

Cars : Set of (Make x Model x Color x (N|null) x Money

4.4.4 Identifying Individual Tuples

If the table is to serve its purpose as a set of suitable or adequate cars, then it must be
possible to distinguish one car from another. How else can we drive away with the car of
our choice?

Cars

Make Model Color Year Price
Ford Falcon red 1985 7000
BMW 7231 purple ? 2500
Ford Laser blue 1978 1000
Toyota Corona brown 1972 100
Ford Falcon red 1981 1199
Toyota Corolla white 1971 199

It may be that, depending upon what is available in the marketplace, we may see:

¢ only one Ford, but several Toyotas, so we cannot distinguish cars by means of their
make alone;

o only one Ford Falcon, but several Ford Lasers, so we cannot distinguish cars by means
of the combination of their make and their mode!;

Relations 85

e only one red Ford Falcon, but several blue ones, so the combination of make, model
and color will not help us either;

—and so on.

We may decide that none of the attributes, either singly or in conjunction, is enough
to uniquely identify each car. If thisis so, we will have to add some other attributes such
as the location of the car yard, or its phone number, or even the car’s registration number.
Thisis something that people do naturally. We can almost always go back in our mindsand
remember something about a car that made it different from the others. It may be atear in
the upholstery or adent in the driverside door or even the shiny Studebaker that stood next
toit.

When we are representing this kind of information within a computer system, we do
not have thiskind of recall. We must choose, in advance, the attributes that will enable us
and the computer to uniquely identify each car. The attribute or attributes chosen for this
purpose form what is called the relation key.

If none of the available attributes are of use, we will need to introduce an artificial
attribute to help us. Thisiswhat we will do now. Aswe approveacar it will be assigned a
unique number.

Cars

Nr Make Model Color Year Price
1 Ford Falcon red 1985 7000
2 BMW 7231 purple 7 2500
3 Ford Laser blue 1978 1000
4 Toyota Corona brown 1972 100
5 Ford Falcon red 1981 1199
6 Toyota Corolla white 1971 199

45 Domains

There are three possible types of domain that may be defined for an attribute. These
correspond to the three types that were introduced in Chapters 2 and 3.

1. There are simple domains where the set consists of atomic or single valued elements.
The word atomic is used to indicate that no useful fragmentation of any valueislikely
to occur. The Color attribute has an atomic domain. There is no separate meaning or
usein such fragmentsasyel or lue.

2. Thereare compound domainswhere the set consists of composite elements. When we
fill in aform and one of the questions is broken into a number of subguestions then
the corresponding domain is compound. Typical examples of compound domains are
dates and addresses. If we decide that we need to know on which day we saw a car,
we could use aDateSeen attribute whose domain consisted of three subdomains; one
for each of the day, month and year on which the car was seen. When the domain is
defined asthe product of two or more sets, for example, Day x Month x Year, thenthe
underlying domain is compound.

86 Chapter 4

3. There are set valued domains where each element of the domain isitself a set. When
we fill in aform and one of the questions asks us to answer with a list of some kind,
then the corresponding domain is set valued. As an example, suppose we wanted
to record extra features that each car has, such as air-conditioning, power steering,
automatic transmission, and so on. We could use an Extras attribute whose domain
was set valued. When the domain is defined using the power set operator, for example,
Set of Extra, then the underlying domainis set valued.

Any relation containing only attributeswith simpledomainsissaid to beinfir st-nor mal
form or to be normalized. The conventional or standard relational model permits only
simple domains. If we have relations that are not in first-normal form then they will have
to be modified before being processed by any of the commonly used relational database
management systems. However, there is no reason why our specification should not use
non-first normal form (NF2) relations, as long as we map to normalized ones for our
implementation.

Suppose that the car data entry form is now extended to include three new questions
and three corresponding attributes.

1. Therewill now be aquestion that allows usto allocate an identifying number to the car.
2. Therewill be a question regarding the date on which the car was seen.

3. There will be a question asking which additional features or extrasthe car has, if any.

The record types will be:

Date
Day : N
Mth: N
Yr: N

__CarRecord
Nr: N
DateSeen : Date
Make : Make
Model : Model
Color : Color
Year : N|null
Price : Money
Extras : Set of Extra

The car record has a composite DateSeen attribute and a set-valued Eztras attribute.
The form now looks like this:

Relations 87

CAR RECORD
NR: 1
DATESEEN: 12/10/92
MAKE: Ford
MODEL: Falcon
COLOR: red
YEAR: 1985
PRICE: 7000
EXTRAS: auto
a/c
radio
Cars
Nr DateSeen Make Model Color Year Price Extras
Day Mth Yr

1 12 10 92 Ford Falcon red 1985 7000 auto, a/c, radio
2 12 10 92 BMW 7231 purple ? 2500 radio

3 13 10 92 Ford Laser blue 1978 1000 -

4 13 10 92 Toyota Corona brown 1972 100 -

5 13 10 92 Ford Falcon red 1981 1199 radio, auto

6 15 10 92 Toyota Corolla white 1971 199 auto

4.6 Problems with the Automatic

Suppose now that we are planning to convert our manual or paper and pencil recording
system into a computer-based one.

Instead of writing the information down on a sheet of paper, we will enter it through
the keyboard of our laptop computer. The information entered will how form a database
on the machine’s disk. The questionnaire or form that we used to guide us in collecting
the right information will now appear on the laptop’s screen. (The more things change,
the more they stay the same.) It would seem that all the program has to do is to capture
the data and store it exactly asit is entered. The database will consist of a singlerelation
that contains all the information we need. Unfortunately, there are a number of problems
that must be overcome; the solutions to these will require that the database be split into a
number of smaller relations.

1. Every time we see a Falcon that we like, we record that it is made by Ford, regardiess
of how many Falcons we see and like. A similar statement might be made regarding
Ford Lasers, Toyota Corollas and so on. The practical consequenceis that we are both
wasting space in our database and irritating the user (ourselvesin this case).

2. Most relational database management systems will not support, that is they will not
permit, composite domains. This means that DateSeen, which has such a domain,

88 Chapter 4

must be modified in some way.

3. Most relational database management systems in common use will not support set
valued domains such as required by the Extras attribute. The practical consequence
is that we must avoid them somehow.

We will tackle each problem in turn.

4.6.1 Solving the Problem of Repetition

The solution to the first problem, where we repeated information, is to factor out the
repetition and place it in a relation of its own. In this case, the split will result in the
following relations.

Models

Make Model
Ford Falcon
BMW 723i
Ford Laser

Toyota Corona
Toyota Corolla

Nr DateSeen Model Color Year Price Extras
Day Mth Yr
1 12 10 92 Falcon red 1985 7000 auto, a/c, radio
2 12 10 92 7231 purple ? 2500 radio
3 13 10 92 Laser blue 1978 1000 -
4 13 10 92 Corona brown 1972 100 -
5 13 10 92 Falcon red 1981 1199 radio, auto
6 15 10 92 Corolla white 1971 199 auto

The key of this new Models relation is the model name attribute Model. No two models
have the same name and no manufacturer isever likely to name one of their new modelsthe
same as some other manufacturer’s. The Make attribute has been dropped entirely from the
cars relation but the Model one has been retained. Thisis essential. If we removed both
columns then we would have no way of knowing which make or model a particular car
was. The Model attribute now appearsin two relations. In one of these relations, Models,
it isthe relation key. Because of this, it istermed a foreign key within the other relation,
Cars.

The sensible step now is to turn the Models relation into atable listing all acceptable
models and their manufacturer. Whenever avalueisto be entered into the Model attribute
of the Cars relation, we refer to that attribute in Models to ensure that our entry is valid.

Relations 89

This cross-checking to ensure accuracy helps to maintain the referential integrity of the
database.

CAR RECORD
NR: 1
DATESEEN: 12/10/92
MAKE: Ford
MODEL: Falcon
COLOR: red
YEAR: 1985
PRICE: 7000
EXTRAS: auto
a/c
radio

Now when entering car details from the keyboard, we will fill in the MopEL: slot and
expect the computer system to look up the Models table, find the corresponding make and
display that inthe MAKE: slot asaform of confirmation.

4.6.2 Solving the Composite Domain Problem

The next problem occurs where we have attributes with composite domains. We must
eliminate these, without losing any information.

DateSeen
Day Mth Yr

12 10 92
There are two standard solutions to this problem.

1. The lower level attributes may be combined. The effect is to cram a collection of
separate values into a single one.

DateSeen DateSeen
Day Mth Yr
12 10 92 121092

This approach is commonly taken with dates and with addresses both of which are
essentially composite.

2. The second solution is simply to drop the top level composite attribute and to raise its
component attributes to this level.

90 Chapter4

DateSeen Day Mth Yr
Day Mth Yr
12 10 92 12 10 92

The choice of solution depends on whether or not we want the machineto be ableto access
the components or whether we are prepared to do it ourselves. If we want to access all
cars seen in October then we should keep the attributes separate, that is take the second
approach. However, if al we would ever want is a date then the first approach would
suffice.

4.6.3 Solving the Set Valued Domain Problem

The third problem to be solved is that of somehow getting rid of the set-valued Extras
attribute, without losing any information. Thisisalso done by splitting the Cars relation.
Each car isuniquely identified by a number, say 1, and each car has a set of extrafeatures,
say {auto, a/c, radio}. A new relationisformed and in thisrelation each feature will
appear in a separate tuple, paired off with the appropriate car number.

Cars CarExtras
Nr Extras Nr Extra
1 auto, a/c, radio 1 auto
1 a/c
1 radio

Cars CarExtras
Nr Model Color Year Price Nr Extra
1 Falcon red 1985 7000 1 auto
2 7231 purple 7 2500 1 a/c
3 Laser blue 1978 1000 1 radio
4 Corona brown 1972 100 2 radio
5 Falcon red 1981 1199 5 radio
6 Corolla white 1971 199 5 auto
———————————————————————————————————— 6 auto

Again, although a split has occurred, we can still reconnect the relations because both
relations have acar Nr attribute. Using thiscommon attribute we can awaysfind out which
features a particular car has; or aternatively, we can find out which cars have a particular
feature such as air-conditioning.

Relations 91

4.7 The Cars Database

Given the above analysis, we can now define a database for information regarding cars we
have seen. There will be arecord type for each of the three relations just discussed.

1. Therewill be arecord type for models and their makers.

ModelRecord

Make : Make
Model : Model

2. Therewill be arecord type for atomic attributes of each car.

__CarRecord
Nr:N
Seen : Date
Model : Model
Color : Color
Year : N|null
Price : Money

3. Therewill be arecord type for recording extrafeatures that a car may have.

ExtraRecord

Nr:N
Extra : Feature

We can even use this formalism to define the Cars database.

CarsDatabase

Models : Set of ModelRecord
Cars : Set of CarRecord
Extras : Set of ExtraRecord

Each component of the databaseisarelation. So we have an external user-view constructed
by meansof thegener al relational model; and wehave an internal program-view, arelational
database built by means of the standard relational model. It is the program’s purpose to
sustain a mapping between the two pictures, one that simulates the external picture by
suitable manipulation of the internal picture.

e When the user sees a likely car, one new car record is added to his or her “database’”;
the data capture program will:

1. Add anew record to the Cars relation.

92 Chapter4

2. Refer tothe Models relation to supply the Make.

3. Add anew record to the Extras relation for each extrathat this car features.

¢ When the user displays a car “record" on the screen, areverse process will take place,
withthe" apparent” record being constructed by referenceto thethree databaserelations.

4.8 Anatomy of a Database
4.8.1 The SuBJECcT Database

Here is an example of a relational database. This database will be used throughout the
rest of this chapter and extensively in the chapters on SQL that follow. It isworth taking
some time to become familiar with the relation and attribute names and, to some extent,
the database contents.

The database is used to keep track of student assessment for a subject at the Quilpie
Institute of Theft. The subject is called an Introduction to Crime. There are three
relationsin the database, Students, Assess and Results.

Seven people enrolled in the subject and their persona details are recorded in the
Students relation. Three items of assessment were set, two of these were to be done
during the semester and the third was an end of semester examination. As the semester
proceeded assignments were handed in and marked. The marks were then recorded in the
Results relation along with the date of submission.

The contents of the database at the end of the semester were as follows.

1 Petty Theft 10 0908
2 Tax Evasion 30 1021
3 Extortion 60 ?

Students Results
Id First Last Item Id Submitted Mark
871 Hans Zupp 1 871 0908 80
862 Bill Board 1 862 0907 60
869 Rip Orff 1 854 0908 70
854 Ann Dover 1 872 0910 55
831 Hans Orff 1 868 0906 90
872 Betty Kahn 1 869 0909 70
868 will Gambol 2 871 1021 70
——————————————————————— 2 869 1022 80

2 872 1021 65

2 862 1022 70
Assess 2 868 1021 75

3

3

3

3

3

3

Relations 93

The attributesDue and Submitted both hold datesin the form MMDD; so, for example, 1021
represents 21 October. This allows two dates to be compared numerically. A question
mark is used to indicate a null value.

4.8.2 Keys
Therelation keys are as follows:

Relation Key attributes

Students Id
Assess Item
Results Itemand Id

Given the above keys, then it is guaranteed that:

o Notworowsinthe Students relation have the same Id.
o Notworowsin the Assess relation have the same value in the Item column.
e NotworowsintheResults relation have the same Item and Id in combination.

If we inspect the relations, two other keys might seem possible, since:

¢ No two students have the same First and Last name, in combination.

e No two items of assessment have the sameDescription.
The database designer, however, must choose a key that will provide uniqueness for the
lifetime of the relation concerned. In this example, the designer thought that there might
have been two or more John Smith’sin the class and that there might have been, for ex-
ample, two essay assignments. In both cases an artificial key has been created specifically
to overcome problems that would ariseif such duplication did occur.

The best way to handle relationsis to think of them as being in two parts.
e Thereisaset of objects represented by the key.

e Each non-key attribute is a simple fact concerning the elements of that set.

Using thisas aguide, the Students relation dividesin two.

Id First Last
871 Hans Zupp
862 Bill Board
869 Rip Orff
Students = 854 + Ann Dover
831 Hans Orff
872 Betty Kahn
868 Will Gambol

The relation decomposes into the following:

94 Chapter 4

o aset of students represented by their 1d's; {871, 862, 869, 854, 831, 872, 868}.

¢ two facts concerning each student, that is, his or her first and last name.

Inthe sameway, the Assess relation can be decomposed into aset of assessments{1, 2, 3}
represented by their item number. Each assessment item has three facts recorded about it:
a description, aweight and a due date.

TheResults relation decomposes into a set of results {(1,871), (1,862), ...} repre-
sented by (Item, Id) pairs, and for each item, there isinformation concerning the date of
submission and the mark awarded.

Relation Attribute Domain
Students Id Integer
First CharString
Last CharString
Assess Item Integer
Description CharString
Weight Integer
Due Date
Results Item Integer
Id Integer
Submitted Date
Mark Integer

Figure 4.3 The database anatomy

There is more to anatomy than just structure. It is also concerned with the connections
between structures. The links between relations are also important. These may be seen
in the Results relation. Two of its attributes are the keys of other relations. When an
attribute of onerelation isthe key in another then we have alink between the two relations.
For example, thefirst row of theResults relation pointsto two other rowsin two separate
relations. See Figure 4.4.

The Item and Id attributesof theResults relation are both examples of foreign keys.
Each isaforeign key because each is the key of some other relation. Any attribute or set
of attributes within arelation may be aforeign key. It is by chance that Ttem and Id aso
form the key of theResults relation.

In summary, although a relational database may appear to consist of a humber of
quite digoint relations, they are always connected by means of foreign keys which act as
pointers from one relation to another. A relational database would be unusable without
these connectors.

4.9 Relational Languages

A database is kept in a box on a computer system and that box is guarded by a piece
of software known as a database management system or DBMS. The only access to the

Relations 95

Resul ts

Item Id Submitted Mark

Foreign keys provide
the links that turn a
collection of tables

into a database.

St udent s

Petty Theft 10 0908

Figure 4.4 Links between tables

database is viathe DBMS. We can only access the database indirectly, that is, by making
arequest to the software. This request must therefore be phrased in appropriate language.
There are two kinds of language for manipulating relations: ones based on relational
algebra and ones based on relational calculus. Although most of the discussion that
follows will concern the calculus, there are important terms and concepts involved in the
algebra.

4.9.1 Relational Algebra

Relational algebra attempts to treat relations as large units, capable of being manipul ated
as awhole. When parts of arelation are to be accessed then they are addressed by means
of the appropriate attributes.

There are four operations that are particularly associated with relational algebra.

¢ Theselect operation allowstuples to be extracted from arelation. The extracted tuples
then form arelation in their own right.

e Theproject allows attributes to be extracted from arelation to form another relation.

e Theproduct operation creates a product relation from two relations.

e The join extends each tuple in one relation with an appropriate tuple from another
relation. The effect isto makeit look asif one relation is glued to the other.

96 Chapter4

All of these operations are best pictured in a visual way. They all operate upon one
or two relations and yield another. Sometimes these operations are given the collective
title of the relational algebra. It isthe combination of simple tabular data structures and
easily conceived operations upon these tables that accounts for the great popularity of the
relational model. Because we can picture these operations being performed, because we
could do them ourselves, we find it easy to imagine a computer performing them.

In much of the rest of this book, the relational language SQL is discussed. Although
these four operations are not part of that language’s vocabulary, we should think of them
as being part of itsrepertoire. (To be precise, theword select isused by SQL but notin
the way described here.)

4.9.2 Relational Calculus

Languages based on relational calculus are, essentially, ones that treat relations as sets.
They are characterized by a tuple or row orientation. These languages are amalgams of
the predicate calculus introduced in Chapter 2 and of set comprehension introduced in
Chapter 3. SQL, to be covered extensively in the following chapters, is based on relational
calculus. The general formis:

{declaration|predicate term}

Asareminder:

e Thedeclaration alowsusto introducethe sets, in thiscase relations, used as abasis
for the query.

e The optional predicate alows us to express conditions that elements of these sets
must satisfy. Inrelational calculus, the elementsaretuplesof somekind. If no predicate
is supplied then all tuples are selected.

e The optional term allows us to identify the exact nature of the new set that is to be
formed. If notermis supplied then tuples from the base relations are to be used.

A very simple exampleis:
{s : Students}

This statement returns the entire Students relation. Thereis no predicate to filter out any
students. Thevariables isatuplevariable. It rangesover the entirerelation taking in turn
the value of each tuple.

What if we wanted details on certain students only? Perhapswe are interested in those
whose first name is Hans. A tuple has a kind of segmented or composite value. There
is one segment for each attribute in the relation. We use tuple projection to isolate one
particular segment of atuple. Thisis achieved by an expression such as:

s.First

A tuple variable name followed by afull stop followed by an attribute name represents the
value of that attribute within the corresponding tuple. The expression s.First represents
thefirst name attribute of any Students tuple represented by s.

Relations 97

4.9.3 The Select Operation

A typical request that might be made of arelational database would be to report on those
tuplesthat satisfy some condition. Thisiscalled the select operation. The operation takesa
relation and a condition; it returns the subset of that relation for which the condition holds.

Example 4.1 Find out about students called Orff.
To create a predicate requiring that the last name attribute be Orff, we can write:

s.Last = Orff
This predicate can then be incorporated into a set comprehension expression:
{s : Students | s.Last = Drff}

To execute this request, we must imagine the required rows or tuples being cut from the
Students relation.

St udent s

Id First Last

871 Hans Zupp

862 Bill Boar d

869 Rip Off Id First Last

854 Ann bover | N oo Tttt
869 Ri p off

831 Hans Off 831 Hans Off

872 Betty Kabn |/ TTTTTTTTTTTTTTTTTTITOTT

868 W I Ganbol

Figure 4.5 The select operation

The Students relation is not atered by this operation. We may imagine that a copy
of it istaken, and that copy is chopped about in order to select the required tuples. The
resulting relation is merely a subset formed from the original .

Example 4.2 Find out about failuresin the final exam.
If we know that the final exam is assessment item 3, and afailureis defined to be any mark
less than 50%, then this query can be specified as follows:

{r : Results|r.Item = 3andr.Mark < 50}

Again, the resulting relation is a subset of the original.

Item Id Submitted Mark

98 Chapter4

Example 4.3 Which items of assessment have no due date scheduled yet?

{a : Assess|a.Due = null}

Item Description Weight Due

We need away of detecting null values. Since anull valueisreally the absence of avalue,
it isnot truly a value and cannot be equal to anything. However, in practice, it is common
to provide a specia constant called null.

4.9.4 The Project Operation

This operation is an extension of the project operation defined on tuples. That particular
operation allowed us to choose one attribute from a tuple. When used on a relation, the
effect isasif an entire column is removed from that relation.

Example 4.4 What arethe Id's of all studentsin the class?
To execute this request we must imagine the Students relation being split from top to
bottom.

St udent s
Id Id Fi rst Last
871 871 Hans Zupp
862 862 Bill Boar d
869 869 Ri p Off
854 854 Ann Dover
831 831 Hans Off
872 872 Betty Kahn
868 868 W | Ganbol

Figure 4.6 The project operation

Again, the original relation is unchanged, and again, we may imagine that a copy is
taken. From that copy, the 14 attribute or column is retained and the others are discarded.
Theresulting column is asingle attribute relation. In this case arelation actslike asimple
set. This operation can be specified as:

{s : Students e s.Id}

Example 4.5 What are the last names of all students?

{s : Students e s.Last}

Relations 99

The resulting relation is a set of names, and because it is a set, it should contain no
duplicates. For this reason the second appearance of the name Orff has been suppressed.

Example 4.6 What are the first names of people whose last nameis Orff?
{s : Students|s.Last = Orff e s.First}

The project operation can be applied to relations that result from other operations. To
answer this query, we select the correct tuples and then project the required attribute.

Example 4.7 What are the full names of all students?

So far, we have projected only one attribute. However, many queries require the projection
of several attributes. In this version of project, the required attributes appear as a list
between round brackets. To answer the query using this form of project we can write the
expression:

{s : Students e (s.First, s.Last)}

4.9.5 The Product Operation

The Select and Project operations work on one relation. This means, for example, that we
cannot, at least immediately, find out the names of students who got more than 80% in the

100 Chapter 4

final exam. To extract information from two or more relations we need an operation that
enables us to combine them in some way. The product operation allows usto do that. The
product of two relationsisformed by connecting each tuple from onerelation to each tuple
from the other, in turn.

The product of two relations can be formed by introducing two variables into the
declaration:

{r : Results; a: Assess}

The variable r ranges over the tuples of Results. For each tuple value taken on by r,
the variable a is allowed to range over Assess. The product formed in this way is shown
bel ow.

Item Id Submitted Mark Item Description Weight Due
1 1 Petty Theft 10 0908
1 2 Tax Evasion 30 1021
1 871 0908 80 3 Extortion 60 ?
1 1 Petty Theft 10 0908

The Results relation has 17 tuples and Assess has 3. Their product has 17 * 3 =
51 tuples, and each new tuple is formed by connecting two tuples, one from each of the
relationsinvolved.

Note that this product relation has two attributes with the same name. Two of the
columns are headed Item. Theresulting table is not atrue relation.

As can be seen at a glance, many of these newly formed tuples are of little use, but
some of them are. The first tuple in the product connects a tuple that contains specific
information on a result achieved in the first assignment to a tuple containing some general
information on that assignment. We could use such a tuple; for example, we can use it
to find out whether or not the assignment was handed in on time. The second and third
product tuples are not nearly so useful but we could use them (how?). The fourth oneis,
again, quite useful; and so on.

4.9.6 The Join Operation

The tuples that are most likely to be of use are those where the Ttem that originated from
Results equals the Ttem that originated from Assess. To preserve these tuples and
discard the others we can use a Select operation.

{r : Results; a: Assess|r.Item = a.Item}

The resulting relation looks like the following.

Relations 101

Results Assess

Item 1Id Submitted Mark Item Description Weight Due

1 871 0908 80 1 Petty Theft 10 0908
1 862 0907 60 1 Petty Theft 10 0908
1 854 0908 70 1 Petty Theft 10 0908
1 872 0910 55 1 Petty Theft 10 0908
1 868 0906 90 1 Petty Theft 10 0908
1 869 0909 70 1 Petty Theft 10 0908
2 871 1021 70 2 Tax Evasion 30 1021
2 869 1022 80 2 Tax Evasion 30 1021
2 872 1021 65 2 Tax Evasion 30 1021
2 862 1022 70 2 Tax Evasion 30 1021
2 868 1021 75 2 Tax Evasion 30 1021
3 869 ? 95 3 Extortion 60 ?
3 872 7 45 3 Extortion 60 ?
3 862 7 40 3 Extortion 60 ?
3 868 ? 50 3 Extortion 60 ?
3 871 ? 60 3 Extortion 60 ?
3 854 ? 65 3 Extortion 60 ?

The sequence of a Product followed by a particular Select is so commonly required that it
isgivenitsown name. It is called the Join operation.

4.9.7 Relational Expressions

In each of the four relational operations select, project, product and join, the result is
yet another relation. This means that the result of one operation may be used by a second
operation. This is just the same as when, in the expression (7+3) /5, the result of the
addition is used by the division.

We can build up very complex relational expressions to answer correspondingly com-
plex queries. Essentially, however, these relational expressions are to be thought of as no
different from arithmetic expressions.

4.9.8 Relational Calculus Summary

This is, essentially, set comprehension based on the use of tuple variables. The general
formis:

{declaration|predicate term}

The restrictions placed upon each of the components are;

e Thedeclaration usestuple variables.

e The predicate does not allow the use of terms formed using function application. This
rule is broken to alow simple arithmetic expressions.

102 Chapter 4

e Thetermisasimpletuple, that isonly atomic components are permitted.

Simple Formulae
A simple formula or predicate in the relational calculus has one of the following forms:

or
or

Simple Formula:

t.A relop u.B
t.A relop K
K relop t.A

Ezxamples:

or
or

t.Age < u.Age
p.Age > 25
18 < q.Age

where:

¢ t andu aretuplevariables;

¢ A and B are attributes of t and u respectively;

e K isaconstant;

e relop isarelationa operator consistent with the attributes A and B.

Formulaein General

Suppose F and G are any arbitrary formulag, and S isasimple formula. Then, in generdl, a
well-formed for mula can take any of the following forms:

or
or
or
or
or
or

Well-Formed Formula:

S

not F

F and G
F or G
(F)
dt:TeF
Vt:TeF

Ezamples:
p.Age < 25
or not (p.Age < 25 and p.Sex = F)

or
or
or
or
or

p-Age < 25 and p.Age > 20
p.Sex = M or p.Name=Helen
(p.Age < 16)

dp : People o p.Age < 25

Vp :People o p.Age > 16

Thelast two options, which usethe quantifiers3 and v, have beenincluded for compl eteness
at this stage. Quantification will be introduced in Chapter 12.

4.10 The Circle Database
4.10.1 Circle Record Types

Chapter 2 introduced us to a circle of people and certain facts about them. All the facts
were presented as sets of pairs. In this chapter we have seen another way of representing
simple facts using aggregate data structures called records which are gathered into sets
called relations. This section compares the two representations and the purpose of each.

Relations 103

Beforewe can do that wewill introducerecord typesfor thecircle. The choice of record
structure is determined by the results of a database design effort which will be discussed
in later chapters. For the moment we will take on trust that the circle may be adequately
represented using three record types.

1. There will be a record type based on the functions and injections involving people.
Partial functions and injections need to allow for the possibility of anull value.

__PersonRecord

Id : Name

Sex : Gender

Age:N

Drives : CarMake |null
Left : Name

Spouse : Name | null

2. Therewill be a structure to record information about the playing of a specific sport by
a specific person.

PlayingRecord

Player : Name
PlaysAt : Sport

3. There will be another structure to record the speaking of alanguage.

SpeakingRecord

Speaker : Name
FluentIn: Language

The database can now be defined as follows.

__CircleDatabase

People : Set of PersonRecord
Plays : Set of PlayingRecord
Speaks : Set of SpeakingRecord

count {p : People @ p.Id} = count People
{p : People @ p.Spouse} C {p : People o p.Id}
{p : People e p.Left} = {p : People ¢ p.Id}

The People relation would look like the following table, using the data from Chapter 2.

104 Chapter 4

People

Id Sex Age Drives Left Spouse
Alan M 21 Mercedes Sue Sue
Sue F 18 Ford Bob Alan
Bob M 23 Porsche Kim ?

Kim F 23 ? Mark 7
Mark M 48 Toyota Ann Ann
Ann F 45 Toyota Alan Mark

The database definition has not only declared the relations used, but has also added two
examples of constraints that would normally be placed upon these relations.
Relation Key Constraints

These are required to enforce the functional dependencies that existed before the aggre-
gation. For example, there is nothing in the declaration part of the database definition
requiring every PersonRecord to have adifferent name. To recover from this, aconstraint
is added requiring that the number of names (1d's) in the People relation be the same as the
number of tuplesin therelation.

count {p : People e p.Id} = count People

Foreign Key Constraints

These are required to enforce the referential integrity of the database. For example, the
person named as being somebody’ s spouse should also exist in the database. Thiscondition
may be expressed using set comprehension.

{p : People o p.Spouse} C {p : People o p.Id}
The set of people identified as being spouses should be a subset of the set of peoplein the

circle.

Other Constraints

The database definition should also specify any other constraints that might apply to the
particular database in question. The origina left relationship, for example, was a tota
injection. We can convey this constraint in the following way:

{p : People e p.Left} = {p: People e p.Id}

4.10.2 Comparing the Two Views of the Circle

We have now seen two different ways of describing the circle of peoplethat was introduced
in Chapter 2. In this section, we will compare the expressiveness of the two methods of
description on three queries.

Relations 105

Query 1. Who are the males?
Using set comprehension, as discussed in Chapter 3, we might specify the malesasfollows:

{p : Person|sex(p) = M}

The variable p ranges over each person in the circle, where people are represented by their
names. If the gender of the person isM then he is added to the set being formed.
Using relational calculus, we might write an expression such as:

{p : People |p.Sex = M e p.Id}

Thistime, the variable p ranges over the tuples of the People relation. For each tuple, the
Sex attribute is examined, and if it is equal to M then the Id attribute is projected from the
tuple and added to the set being formed.

Query 2. Whoison Sue'sleft?
Thisisasimple case of function application.
left(Sue)

The one-to-one function or injection 1eft maps from Sue to the next person. But, using
relational calculus, we have:

{p : People |p.Id = Sue e p.Left}

Relational calculusisaspecia form of set comprehension and so every query will return a
set of somekind. So we are obliged to form the set of people immediately to Sue'sleft. It
isaset of one but a set nonetheless. The query seems long and awkward.

Query 3: What is the gender of the person on Sue’s left?
Since left (Sue) isaperson, we can apply the sex function to that person and be mapped
to hisor her gender.

sex(left(Sue))
Alternatively, we may write:
{p,q: People|p.Id = Sueand p.Left = q.Id e g.Sex}

In Query 2, we were ableto find out the person on Sue'sleft merely by looking at theLeft
attribute of Sue’'stuple. To get the gender of that person, we need to look at that person’s
tuple. So we need two tuples from the People relation, (1) Sue'sto find the name (Id) of
that person, and (2) that person to find his or her gender.

p q

Id Sex Age Drives Left Spouse Id Sex Age Drives Left Spouse

Sue F 18 Ford Bob Alan Bob M 23 Porsche Kim ?

Projection provides the equivalent of a single application of a function but any greater
degree of application, such asisrequired in this case, requiresajoin.

106 Chapter 4

4.11 Summary

o Relations are the data structures in which we embed the simple specific facts about
some situation that we wish to represent. A relation is a set of aggregate structures
known asrecordsand it isfrom therichness of therecord structure that relationsinherit
their own potential variety.

e Therelational data structure, in general, isvery flexible, and is capable of representing
the wide variety of formats that we use to present organizational views—whether these
are management reports or data entry forms.

e Unfortunately, thereis agap between these kinds of relations and the kind that are sup-
ported by most commercially availablerelational database management systems. These
products can manipulate relations with only simple attributes. This is the standard
relational model, as that term is normally used.

¢ Thegap between thetwo isbridged programmatically, that is, wewrite programsto turn
data retrieved from a relational database into the kinds of richer relations and records
that people use to view their organizations.

The relational model of data can be more accurately described as the relational view
of data. We only picture the data as being stored in relations or tables. Since most forms
of electronic bulk storage consist of concentric tracks on a disk storage device, thereis no
way that the data can really be stored as atable. However, we, as the users of the data, are
allowed to refer to the data and to manipulate it asif it were.

A table is commonly used as a way of presenting a collection of similar pieces of
information. However, although we may suppose the informationisin atable, the way that
the information is stored within a computer system is another matter. But as long as we
can operate under the impression that the information isin atable, then that is all that we
require.

Itistherole of the Data Base Management System to take our request for information,
to decipher it, to determine the best access strategy, to execute that strategy, and to return
us the results. All that is required of us is that we have a tabular mental picture of the
relations and how they might be manipulated. We talk to the DBMS asif therelations are
tables and we use the operations of relational algebraasif they are executed in the simple-
minded manner shown in this chapter.

This relational carpentry is central to the attraction of relational databases. Such a
databaseis pictured as a number of tables and these tables can be processed by anumber of
appealingly visual operations. The operations allow existing tables to be chopped, shaped
and stuck together to form anew (result) table. In away, this might be compared to writing
a research report. There we take the results of laboratory experiments or of consumer
surveys and, by cutting and pasting, we massage these results until they are in a form that
enables us to communicate the essential details of our findings.

Relations 107

Exercises

> Q4.1 The AcapEMIC Database

The University of Wiseacres is divided into a number of schools and each school
consists of a number of academic staff and a Head of School who is aso an
academic. Thefollowing relations are to be used to store information regarding the
organizational structure at Wiseacres University. The database also records details
of staff and their qualifications. There are three relations in the database and they
have the following structure.

Schools Staff Quals
(%) School_Id (%) Staff_Id (%) Staff_Id
School_Name Staff_Name (*) Degree
Phone School_Id Place

(?) Head_Id Year

Anasterisk (x) indicatesthat the attributeis (part of) the primary key of therelation.
A question mark (?) indicatesthat null values are to be permitted for that attribute
in the associated relation. The domains of some of the attributes are as follows.

¢ TheSchool_Idistobeatwo-character codeuniquely identifying aparticular
school; for example, the accountancy school might be coded AC.

e TheStaff_Id isto bean integer uniquely identifying a member of staff.

e TheHead_Id attributeissimply the Staff_Id of the appropriate staff mem-
ber. The Head of School isto be recorded as amember of the staff within that
school.

e TheDegree isthe name of aqualification, such asBSc or PhD.

e The Place is the initial letters of the university or institute conferring the
degree; for example, Wiseacresis encoded as UW.

e TheYear isthe year in which the degree was conferred.
The following datais taken from the 1996 University Handbook.

School of Computing Science

Head: Prof B.Tree BSc(UW, 1925), PhD(UQ, 1928)

Phone: 2299

Staff: |.Drone BSc(UQ, 1979), MSc(UNSW,1984)
L.R.Parser BAppSc (QIT, 1987)

School of Accountancy
Head: @ MsC.R.Double-Entry BBus(QIT, 1972), MBA(UWA, 1975)
Phone: 8756
Staff: D.Fraud BComm(UQ, 1995), MBA(UCLA, 1998)
M.Bezzle BBus(UW, 1989)
PPLounge-Lizard BBus(QUT,1989), MBA(UQ, 1990)

108

Chapter 4

> Q4.2

> Q4.3

School of Chemistry

Head: Vacant

Phone 1869

Staff: C.A.Quick-Lime BSc(UNT, 1956), PhD(UW, 1958)
A.G.Silver BSc(UW, 1975), MSc(UW, 1977), PhD(UW, 1980)
H.H.Esso-Fore BSc(MU, 1970), PhD(UNT, 1974)

Take a sheet of paper and use the above data to create a database following the
layout suggested below. Choose a suitable two-character School_Id for each
school. Allocate each member of staff a number, starting at 1, so that the ten
members of staff shown in the handbook will be numbered 1 to 10 consecutively.

Schools

School_Id School_Name Phone Head_Id
Staff

Staff_Id Staff_Name School_Id
Quals

Staff_Id Degree Place Year

For each of the relations used in the previous exercise, answer the following:

a. How many attributes does the relation have?
b. How many tuples doesit have?

c. What foreign key appearsin thisrelation?

The RESOURCES Database

Acrosstown from Wiseacresisthe Witsend I nstitute of Technology, where resource
alocationisabigger issuethan staff qualifications. Thisisreflected in the structure
of their database.

Staff Theaters Allocation
(%) Teacher (*) Theater (*) Subject

Room Capacity Enrolled
(?) Phone Theater

Teacher

Relations 109

> Q4.4

> Q4.5

> Q4.6

> Q4.7

The Staff and Theaters relations represent the Institute’'s resources and the
Allocation relation shows, for each subject taught, the current enrollment as well
as the lecture theater and teacher normally allocated to that subject. There may
be more students enrolled for a subject than the allocated lecture theater can hold.
Here isthe current state of the database.

Staff Theaters
Teacher Room Phone Theater Capacity
Drone 21 2240 Tiny 15
Slack 16 ? Chockers 20
Tripp 21 2240 Cramp 15
Hacker 18 2868 Cosy 30
Allocation

Subject Enrolled Theater Teacher
Music 10 Tiny Drone

Ballet 25 Cosy Tripp
TapDancing 35 Cosy Tripp
Programming 10 Cramp Hacker
Singing 25 Tiny Drone
Surgery 15 Cramp Hacker
Poetry 10 Cramp Drone

For each of therelations:

a. How many attributes does the relation have?
b. How many tuples doesit have?

c. What foreign keys, if any, are therein therelation?

Dr Slack has no phone number recorded. Does this mean he has no phone?

How many tuples will there be in the product of Allocation and Staff? Write
down a sample tuple from this product.

Write out thejoin of Allocation and Staff. Isthisthe sameasthejoin of Staff
and Allocation?

Evaluate the following expressions and show the results. Suggest a possible equiv-
alent English expression.

110 Chapter 4

o o o

{s : Staff e s.Teacher}
{s : Staff e s.Teacher} minus {a: Allocation e a.Teacher}
{t : Theaters|t.Capacity > 15}

{s:Staff;a: Allocation
| s.Teacher = a.Teacher
e (a.Subject, s.Phone)}

{a,b: Allocation
| a.Subject = Ballet and b.Enrolled >= a.Enrolled
e (b.Subject,b.Enrolled)}

P Q4.8 For each of the following queries:

(i) Using the relational calculus, write an expression that specifies the required

answer.

(ii) State the relational operations (selects, projects, products and joins) implied

e "o o0 T o

by your answer.

What is Ms Hacker’s phone no?

What number is the Music teacher’sroom?

Which staff teach in the Cramp theater?

Which subjects are over-enrolled?

Which teachers share aroom with Mr Drone?

Which theaters are not currently allocated?

Which theaters have a capacity of over 25?

Which theaters have a greater capacity than the Chockers theater?

The singing class is over-enrolled for the room allocated. |s there any other
room that would be big enough?

What are the names and phone numbers of teachers involved with subjects
that are over-enrolled?

Chapter 5
Introducing SQL

5.1 Introduction

Inthischapter weintroduce one of the most important computer languages so far devel oped,
SQL. It represents amajor departure from the languages we usually think of in connection
with computer programming. These more conventional languages are primarily concerned
with giving instructions to a computer. SQL is different.

SQL s, first and foremost, a means of communication, a means of expressing our
requirements. These requirements are passed to a complex software product known as a
database management system (DBMS). This software is designed to control accessto and
usage of the database. SQL isameans of telling the DBM S what we want done. Because
the nature of the language allows us to concentrate on specifying the information to be
retrieved from our database, there is a consequential load placed upon the DBMS. It must
be able to determine a sufficiently rapid means of accessing the data, sufficiently rapid, that
is, to satisfy our need for the data.

SQL isan acronym for Structured Query L anguage, and the key word is query. This
word is to be taken in a more general sense than simply “retrieval”. The central ideain
SQL isthat of identifying the portion of the database that interests you. Having done that,
you may apply some operation to that portion: you may display it, you may update it, or
you may deleteit.

Thischapter isintended to provideabrief look at some of the language' smajor features.
These features are divided into four groups concerned with:

o database definition, whereby the major components of the database may be defined,
modified or discarded;

e databaseretrieval, whereby the portion of the database that meets certain conditions
may be identified and examined;

o database manipulation, whereby some part of the database may be extended, updated
or deleted;

111

112 Chapter5

o database security, whereby the right to access and modify the database is defined.

All the examples in this chapter are based upon the SUBJECT database introduced in
Chapter 4.

5.2 SQL Databases

SQL isalanguage for dealing with aset of relationsknown asarelational database. It takes
avery pictorial view of arelation. This means that the standard relational terminology of
the previous chapter is replaced by SQL’s own terms:

Standardterm SQL term

relation table
attribute column
tuple row

The usual way of presenting arelation is in the form of atable, so in SQL arelation is
called atable; atuple of the relation is presented horizontally, so it iscaled arow. Each
attribute of the relation appears vertically as a column.

a table

854 Ann Dover =mm———- a row

a column

An SQL databaseisacollection of tablesbut it ismorethan just sometablesthrown together
arbitrarily. It is a unified and interlocking set of tables; it is an organized body with an
administrative component. The make-up of every SQL database reflects this organization.

e There are the base tables which contain the data for which the database was designed.
For the Subject database, these are the Students, Assess and Results tables.

e There is a background component known as the system catalog. This consists of a
number of system tables which contain additional knowledge regarding the contents of
the database. This knowledge consists of information regarding which columns make
up each base table, what type of datais stored in each column, and so on.

The division between the base tables and the system tables is reflected in the language
itself. Thereis one style of statement for handling the base tables. There is another style
for defining the database — handling the system tables, in other words.

Introducing SQL 113

So the SQL context or environment incorporates both a database consisting of the base
tables and knowledge of that database contained in the system tables.

5.3 Database Definition

Thefirst category of SQL statementsto be examined contai nsthose concerned with defining
the database. These statements are used to create new structures within the database, to
modify these structures and to dispose of them.

Example 5.1 Define the Students table of the Subject database.

Create table Students

(1d integer mnot null,
First char(10),

Last char (10) not null)

The statement names the table (Students) and the three columns (Id, First and Last)
that form the table. For each column you must also declare the type of data that can be
stored in that column. Thusthe Id column can hold only integers, andtheFirst and Last
columns can hold only character data up to a maximum of 10 characters. Thefina part of
a column definition is optional; it allows you to specify whether or not null values (that is,
empty column entries) are to be permitted. The definition indicates that only the First
name column may contain nulls.
The statement creates an empty table called Students, which we can picture thus:

Students

As well as creating an empty Students table, the statement will cause entries to be
inserted into the system catalog, in particular into two system relations, Syscatalog and
Syscolumns.

If the Students table is the first to be defined in the database, then these two system
relations might appear as follows:

Syscatalog Syscolumns

Tname Cname Tname Coltype Length

Students Id Students integer 7

————————— First Students char 10
Last Students char 10

Other database definition statements allow us to ater tables by adding a new column, or by
dropping an entire table from the database. There are three kinds of database objects that
can be defined and modified.

114 Chapter 5

e Thetableisthemost important kind of object inthe database. Almost every single SQL
statement requires atable to be named as part of the user’s expression of reguirements.

e Theview, asthe name suggests, providesone particular aspect or subset of the database.
This aspect can cover just a portion of a single table, or it can be widened to spread
across several tables. A view is always presented as a table and the create view
statement is a way of naming that table. A view may be defined for either of two
reasons.

1. It can be used to restrict a user’s access to the database. The user only sees that
part of the database revealed through the view.

2. It can be used to simplify retrieval statements with the view name being used in
the statement asiif it was just another table.

e Theindex may serve two distinct purposes (and causes confusion because of this dual
function).

1. It may be used to ensure that no two rowsin atable are the same. If atableisto
be atrue set, then it must be indexed in this way.

2. It may be used to improve database accesstimes. In thisregard, an index is used
in the same way that a book index may be used to speed access to sel ected topics.

Thetableisthe only object that may be modified. Views and indexes may only be created
or deleted.

Example 5.2 Definean index on student 1d’sin the Students table.

Create unique index Student_Key
on Students (Id)

The index Student_Key will be used for two purposes. It will be used to ensure that no
two rowsin the Students table will have the same Id. Thisisindicated by the appearance
of theword unique. Secondly, theindex will be used to provide rapid access to individual
rows in the table. This rapid access will be based upon knowledge of the relevant Id.
Indexing and view properties are covered in more detail in later chapters.

Example 5.3 It isthe end of the semester and we are finished with the Results and
Assess tables but we want to keep the Students table for next semester.

Drop table Results
Drop table Assess

These two tables are not just emptied, they are completely removed from the database; any
space they use will be released and the corresponding entriesin the system catalog are al so
removed.

5.4 Database Retrieval

The next category is concerned with database retrieval. The category contains only one
statement, but that statement characterizes the whole of SQL. The select statement is
used to retrieve or identify some portion of the database.

Introducing SQL 115

The best way to understand the select isto seeit at work. Thefollowing examplesall
put forward queriesthat we ourselves could answer from the Subject database. Each query
isfollowed by an example of how SQL could be used, instead, to generate an answer.

Example 5.4 What are the Id’s and last names of all students?

Select Id, Last

From Students
Id Last

871 Zupp

862 Board
869 Orff

854 Dover

831 Orff

872 Kahn

868 Gambol

Theretrieval statement isvery brief; indeed it is hard to imagine how we could express our
requirements more briefly. We merely say which columns we want and where they are to
be found.

Example 5.5 Givedetailsof al students called Orff.
Select *

From Students
Where Last = ’0rff’

Id First Last
869 Rip Orff
831 Hans Orff

The asterisk (*) indicates that al columnsin the table are to be shown in the query answer.
The clause Where Last = ’0rff’ isused to specify a condition that all displayed rows
must satisfy.

Example 5.6 What are the last names of all students?

There are two ways of answering this query:

(D) 2
Select Last Select distinct Last
From Students From Students

116 Chapter5

Zupp Board
Board Dover
Orff Gambol
Dover Kahn
Orff Orff
Kahn Zupp
Gambol ===

The second method uses the keyword distinct to tell SQL to remove duplicates. So
the second Orff does not appear; but not only that, SQL has chosen, in this instance, to
remove duplicates by sorting the result table prior to output. When scanning this sorted
table duplicates can easily be detected and skipped. The manner in which duplicates are
removed isleft to SQL. Sorting isjust one way that might be used.

Example 5.7 List, in name order, the details of all students.

Select *
From Students
Order by Last, First

Id First Last
862 Bill Board
854 Ann Dover
868 Will Gambol
872 Betty Kahn
831 Hans Orff
869 Rip Orff
871 Hans Zupp

The result can be forced into some order by using the order clause. In this example, the
resulting rows are displayed in al phabetic order of last name. If two or more students have
the samelast name, the nameswill be displayed in order of first name, so Hans Orff appears
before Rip Orff.

Example 5.8 List Assignment One performancein order of merit.
For this query, we want to be able to direct SQL to produce the highest mark first.

Select Id, Mark
From Results
Where Item = 1
Order by Mark desc

The keyword desc (short for descending) may be used to reverse the default sequence.

Introducing SQL 117

868 90
871 80
854 70
869 70
862 60
872 55

Example 5.9 How many students are enrolled?

Select count (*)
From Students

The special count function is used to count the number of rows determined by the rest of
the query, in this case the whole of the Students table. The effect of the asterisk(*) makes
this query the equivalent of asking “how many rows are there in this table?' Count is a
summary function, and there are a number of similar summary functionsin SQL.

Example 5.10 What was the average mark in the final exam?

Select avg(Mark)
From Results
Where Item = 3

The avg function averages the Mark column values for each row containing 3 in the Item
column.

5.5 Database Modification

The third group of SQL statements to be examined in this chapter involves those used
to make changes to the database. The types of change allowed by these statements are
fine-grained ones aimed at adding, changing and deleting rows in just one table. More
specifically, these statements are:

e the Insert which allows new rowsto be added to the table concerned,;
¢ theUpdate which allows one or more rows to be amended; and

118 Chapter5

o theDelete which allows one or more rows to be deleted.

These database-modifying commands, and their correct use, are covered in more detail in
later chapters. Some examples only are given in this section.

Example 5.11 Thelecturer in the subject has discovered student 831's mark for the first
assignment. Add this result.

Insert
Into Results
Values (1,831,0908,55)

The valuesthat make up this new row of theResults table are separated by commas; they
are allocated to the columns of that table in the order specified for the table in the System
Catalog. Obviously the values must match in both number and type.

Example 5.12 Student 862 has been given an extra 5% for the second assignment. Make
the appropriate change.

Update Results

Set Mark = Mark + 5
Where Id = 862

and Item = 2

The row containing the result is located and the mark modified.

Example 5.13 Student 872 has been granted permission to withdraw from the subject.
Remove all details of her enroliment.

Delete
From Results
Where Id = 872

Delete
From Students
Where Id = 872

Two separate statements are required, one for each table involved.
Example 5.14 Itisthe end of the semester. Clear out the Results and Assess tables.

Delete
From Results

Delete
From Assess

After these deletes, the tables still continue to exist. They are just empty. The system
catalog still contains details of their structure. Thus the effect differs from similar Drop
table statements of Example 5.3.

Introducing SQL 119

5.6 Database Security

The fourth and final part of SQL deals with database security. A database is a shared
organizational model; it isakind of gigantic company noticeboard.

Consider a typical database. It consists of hundreds of tables containing a range of
information from the managing director’s silent phone number to the retail price of acan of
baked beans. Itsusersareamixtureof the corporatelifeform, both high and low. They will
be clerks, managers, assembly-line workers, engineers, programmers, and so on. These
people have correspondingly mixed needs and responsibilities with regard to the database.

Yet, through SQL, they are able to delete entire tables with a single statement, for
example, Delete From Employees; or they might give everyone a payrise. Clearly itis
undesirable to allow all users to have totally unconstrained access to the entire database.
People should have exactly those rights that they need to do their job, and no more.

To prevent potential disasters, SQL recognizes database users and is prepared to grant
access rights to these users.

Example 5.15 Suppose there are two kinds of user accessing the Subject database,
student and lecturer. Give student userstheright to read the Assess table and lecturersthe
right to read and generally modify it.

Grant Select
on Assess
to Student

Grant Select, Insert, Update, Delete
on Assess
to Lecturer

SQL makes appropriate entries in the system catalog. Whenever a user attempts to access
the database in someway, SQL first checksthe catalog to seeif the user hasthe appropriate
rights before going ahead. There is a corresponding revoke statement to remove access
rights from a user.

The view feature, which was discussed in an earlier section, can also be used to protect
the database. Not only doesaview present the user with arestricted portion of the database,
but the grant and revoke statements may be used to further control the user’s actions
against that portion.

5.7 Using SQL

How do weissue SQL requests? So far, the exact context in which SQL statements may be
issued has been ignored. We have suggested that the statements are issued directly. Thisis
only one of three waysin which SQL islikely to operate.

e We can use SQL interactively by issuing requests from a keyboard and having the
response appear on a screen. The results may be further manipulated by having the
general layout altered, by formating columns, and even by dropping columns entirely.
The eventual results may be printed or stored on afile for future use.

e A second way of using SQL isto have one or more statements embedded in a program
written in some other language, typically COBOL. This second language is said to be

120 Chapter5

the host language. When used in this way, the results of an SQL query will be stored
in the program’s own variables. The program can be written to use these results in
whatever way the designer chooses.

¢ Most versionsof SQL are accompanied by an application development tool or applica-
tion generator. Such software tools enable new information systems to be generated
with relative speed and ease, at least when compared with COBOL . Thesetoolsprovide
many features to help the software devel oper, features that are not part of SQL.

1. They assist with screen and dialog management.

N

. They enforce data capture rules, using SQL where necessary.
. They automatically update the database when appropriate.

. They will trandlate end-user query requirements, written in some other way, into
SQL retrieval statements.

5. They will format these results automatically, according to predefined specifica-
tions.

A W

A terminal user should not be able to distinguish between the second and third of these
methods of employing SQL. They need neither know nor care whether SQL is being used.
By contrast, an interactive terminal user needs to be familiar with the language, with its
power and with the dangers of using that power thoughtlessly.

5.8 Summary

Inthischapter, we have seen how SQL providesfour groups of statementsto useand manage
a database made up of tables. There are statements which define relations, statements
to retrieve relation contents, statements to ater the database’s information content and
statements to control access to the database.

From this brief introduction, it can be seen that the actual vocabulary of SQL is not
large. Most of the power of SQL isin its role as a retrieval language. Examples in the
following chapter show how SQL can be used to solve complex information requests,
which would regquire much more complicated programs if implemented in a conventional
procedural language such as COBOL or C.

Introducing SQL 121

Exercises

P Q5.1 The following table represents the results of games played by the Shinhackers
Rugby Club this season so far.

Games

Day Month Team Ours Theirs
7 3 Toecrushers 6 25
14 3 Headbutters 0 10
21 3 Necktwisters 21 10
28 3 Ankletappers 18 16
4 4 Armlockers 0 6
11 4 Kneeknockers 0 9
18 4 Bellyfloppers 9 3
25 4 Headbutters 14 6
2 5 Toecrushers 6 16

So the table tells us, for example, that on 7 March we lost to the Toecrushers team
by 25 pointsto 6. The table can be accessed by means of an SQL statement such
as.

Select Team
From Games
Where Qurs = 0

This would tell us the names of any teams that we (Shinhackers) failed to score
against.

State, in everyday English, the information that you think each of the following
SQL statementsisintended to provide.

a Select
From Games
Where Month = 4

b. Select Team
From Games
Where Ours > Theirs

C. Select
From Games

d. Select Day, Month, Team
From Games
Where Ours = Theirs
and Month = 5

122 Chapter 5

€. Select Qurs, Theirs
From Games
Where Team ’Bellyfloppers’
or Team = ’Kneeknockers’

f. Select count(*)
From Games
Where Ours > Theirs

0. Select max(Qurs - Theirs)
From Games

h. Select =*
From Games
Order by Month, Day

P Q5.2 Using the Games table, write SQL to answer the following queries.
a. How many games have we played so far, and what are the total points scored
by us and against us?
b. What teams have beaten us by 10 points or more?

c. List details of al matches, in order of points scored by us, with our highest
scorefirst.

What were the results in the second half of April?
e. Nameall the teamswe have played so far.

P Q5.3 Suggest astitable create statement for the Games table.

P Q5.4 Write database modification statements to record the following events.

On 9 May we beat the Knuckledusters by 6 pointsto 3.

b. A mistake was made when entering the result of 14 March. Our opponents
scored 5 more points than was originally recorded.

c. TheToecrushershave been g ected from the competition for over-gentlemanly
play. Cancel any results that involve them.

P Q5.5 Defineanindex that ensures that only one result isrecorded for any given date.

Q5.6 Writegrant or revoke statementsin response to the following club decisions.
a Theclub secretary isto be allowed to see the Games table and to insert
match resultsinto it.
b. Theclubmembers areto be allowed to see the table.

c. Theclubpresident isto beallowed to modify and even to delete rows from
the table.

Introducing SQL

123

Q5.7 A computer dating company keeps track of its membersin atable such as:

People

Name Age Sex Earns Likes Dislikes
Bill 55 m 18000 golf politics
Sue 28 f 15000 music beer
Ivan 19 m 25500 football dancing
Dave 21 m 18000 music sport
Judy 33 f 28000 walking men
Karen 41 f 48000 dancing SQL

Alan 40 m 45000 golf golf
Mark 32 m 17500 football alcohol
Mario 18 m 17500 dancing water
Paul 25 m 62500 music students
Jim 32 m 38500 squash alcohol
Kathy 19 £ 14500 dancing politics

Write SQL to satisfy the requirements bel ow.

List everybody’sname and age, with the youngest first.

List details of everybody, males then females and, within each of these cate-
gories, by earning power.

List the names of al people in their teens who like dancing.
How many people are recorded in the table?
What is the biggest income?

Q5.8 Suggest asuitable create statement for the People table.

Q5.9 Write a suitable database modification statement to suit each of the following

situations.

a. Paul lied about hisincome. He really earns $92 500.

b. Thewomen have decided that the men are wimps. Get rid of them all.

c. Inflation has been bad. Give everybody a 10% payrise.

d. Another year has passed. Age everybody by 1 year.

e. A new member hasjoined (thank goodness). HisnameisHarry; he's 25, likes

—h

sport, hates palitics and earns $28 000.

What if Harry did not want to reveal his age —how would we insert arow for
him then?

Chapter 6
SQL Retrieval

6.1 Introduction

This chapter contains a series of examples of database retrieval using SQL. The examples
attempt to show the basic retrieval capabilities of the language.

There are three basic ways in which information may be extracted or derived from a
table. These relate to the ways that we ourselves might extract information presented to us
in tabular form.

Sometimeswe are interested in detailed information. We scan down particular columns
looking for values that interest us, stopping when we find such a value. Then we will
examine the rest of the row upon which we found the value. Thisis how people look up
telephone numbers or exam results or sports results or atimetable. The search operation
will be repeated until we have, for example, noted our own exam results and those of our
friends.

There is another kind of retrieval. This kind is performed when, essentially, we are
looking for one particular value. The value may be one that can be extracted from the
table, or it may be aderived value. The situationswhen we scan atablein thisway are, for
example, when looking for the lowest mark in an exam or the total number of people who
passed or the time of the last train or bus.

Thethird kind of retrieval is the kind performed when we want to compare one group
of figures with another. Did chemistry students perform better than computing students?
Are there more trains to town than buses?

These are the basic means of retrieval offered by SQL. There is nothing performed by
SQL that we could not contemplate doing ourselves. SQL is alanguage, after all; itisa
means of expressing our wishes.

All examples are based on the SUBJECT database introduced in Chapter 4. This
database contains three tables:

e Students, which contains the names of students enrolled in the single subject offered;
e Assess, which contains details of assessment involved in the subject; and

124

SQL Retrieval 125

e Results, which records marks achieved by the studentsin the various items of assess-
ment.

6.2 Simple Queries

Queries that extract some portion of a single table are the simplest form of query. The
portion may be a subset of the columns of the table, of its rows, or of both.

Example 6.1 Describe all items of assessment, showing the weight attached to each.

Select Description, Weight
From Assess

Petty Theft 10
Tax Evasion 30
Extortion 60

The query is answered quite simply by naming the columns required, and by naming the
table in which the datawill be found.

Example 6.2 Which students failed the final exam?

Select *

From Results

Where Item = 3
and Mark < 50

The asterisk (*) in the select clause signifies that, for rows meeting the two conditions
specified, all columns are to be displayed:

Item Id Submitted Mark
3 872 45
3 862 ? 40

The order in which the columns appear will be determined by the order in which they
appeared in the create statement used to define the table.

Example 6.3 Which students got marks in the range 70 to 90 in the first assignment?
What were their marks?

Select Id, Mark

From Results

Where Mark between 70 and 90
and Item = 1

126 Chapter 6

Id Mark
871 80
854 70
868 90
869 70

Thebetween clause may be used to specify arange of values. The end-points of the range
areincluded as can be seen from the resulting table. The where clause aboveis equivalent
to the following:

Where Mark >= 70
and Mark <= 90

Example 6.4 Whichitem or items of assessment have no due date assigned to them?

Select *
From Assess
Where Due is null

Item Description Weight Due

This is the only way that we can check whether or not a column has a missing (i.e. null)
value. We are not allowed to say Where Due = null because null is not a value and
so cannot be compared with anything. A question mark is sometimes used to indicate the
presence of anull value, that is, the absence of avalue.

6.3 Join Queries

A well-designed relational database is devoid of any redundant data. For example, a
student’s name is recorded only once. The effect of this design is to produce some rather
cryptic or code-liketables. The Resultstableisan example; thistable refers to students by
means of their Id, and to items of assessment by means of their item number. To recover
from this state of affairs we must be able to bring the tables together in such away as to,
for example, find the names of students who did well in the second assignment. Thisvery
important processiscaled ajoin.

Suppose we were interested in how well students have done in the subject; we might
try the following SQL.

Select *
From Results

SQL Retrieval 127

This would tell us how each student performed, but it would tell usin arather unhelpful
style. We would have to be able to match the Id to a particular student. Thisislikely to be
of limited use in practical situations.

Thetable from which the datais drawnis specified in the from clause. If we wanted to
link aresult to a student, we can try:

Select *
From Students, Results

The from clauseis used to list the tables from which the displayed data can be produced.
What does this query achieve? SQL responds as follows:

Students Results

Id First Last Item Id Submitted Mark
871 Hans Zupp 1 871 0908 80
871 Hans Zupp 1 862 0907 60
871 Hans Zupp 1 854 0908 70
871 Hans Zupp 1 872 0910 55
871 Hans Zupp 1 868 0906 90
871 Hans Zupp 1 869 0909 70
871 Hans Zupp 2 871 1021 70
871 Hans Zupp 2 869 1022 80

What has happened? SQL has taken the two tables named in the from clause and “multi-
plied" them. It does this by creating a new table in which each row in Students is paired
with each row in Results. Thetable namesare placed at the top here simply to help identify
the parentage of each part of the row. For example, the first row:

Students Results
Id First Last Item Id Submitted Mark
871 Hans Zupp 1 871 0908 80

is formed from the first rows of Students and Results. As there are 7 student rows and
17 result rows, the relation resulting from the select statementhas7 * 17 = 119 rows.
This new tableistherelational product of Students and Results.

The resulting tableis much bigger than the original database. Obviously, thisfeature of
SQL will have to be used with some caution. Despite this, the relational product achieved
in thisway isthe only means by which we can directly compare the rows of onetable with
those of another. It is aso a means by which we can compare arow in atable with other
rowsin the sametable.

128 Chapter 6

A relational product will almost aways be followed by some condition that reduces the
size of the product. The most common form of restrictionisthejoin condition. Thisoccurs
when two tables each have a column that draws its values from a common set of values.
For example, both the Students and Results tables have a column called Id. Not only
are the names the same, but the values that might appear in each are essentially the same.
Thejoin condition states that the values in these shared columns must be equal; thus:

Select *
From Students, Results
Where Students.Id = Results.Id

Therearetwo Id columnsin the product, and they are distinguished by prefixing them with
the name of the parent relation followed by afull stop.
Theresulting tableis:

Id First Last Item Id Submitted Mark
871 Hans Zupp 1 871 0908 80
871 Hans Zupp 2 871 1021 70
871 Hans Zupp 3 871 ? 60
862 Bill Board 1 862 0907 60
862 Bill Board 2 862 1022 70
862 Bill Board 3 862 7 40
869 Rip Orff 1 869 0909 70
869 Rip Orff 2 869 1022 80
869 Rip Orff 3 869 7 95
854 Ann Dover 1 854 0908 70
854 Ann Dover 3 854 7 65
872 Betty Kahn 1 872 0910 55
872 Betty Kahn 2 872 1021 65
872 Betty Kahn 3 872 ? 45
868 Will Gambol 1 868 0906 90
868 Will Gambol 2 868 1021 75
868 Will Gambol 3 868 7 50

Further conditions may be added to the join condition. If we wanted the resultsfor thefinal
exam (item number 3) then we would add the appropriate condition:

Select *

From Students, Results

Where Students.Id = Results.Id
and Results.Item = 3

The new condition Results.Item = 3 causesall but item 3 results to be discarded from
the join to produce the following table.

SQL Retrieval 129

Id First Last Item Id Submitted Mark
871 Hans Zupp 3 871 ? 60
862 Bill Board 3 862 ? 40
869 Rip Orff 3 869 ? 95
854 Ann Dover 3 854 ? 65
872 Betty Kahn 3 872 7 45
868 Will Gambol 3 868 ? 50

It is only necessary to prefix a column name when it is defined in more than one of the
tables being joined and when that column is used in the query.

Example 6.5 What are the names and the marks of those people who failed the fina
exam?

Select First, Last, Mark 5.
From Students, Results 1.
Where Students.Id = Results.Id = 2.
and Item=3 ... 3.
and Mark <50 ... 4,

The events that take place in order to answer this query can be thought of as taking the
following sequence. However, the data management software can use whatever method it
chooses.

1. The product of Students and Results isformed.

2. The product is reduced to a join by equating the two Id columns. The join is shown
above.

3. All but final exam marks are removed. The resulting table is also shown above.
4. All but failures are removed.
The table defined by steps 1 to 4 now looks like this:

Id First Last Item Id Submitted Mark
872 Betty Kahn 3 872 7 45
862 Bill Board 3 862 ? 40

130 Chapter 6

Example 6.6 How much did the final exam contribute to each student’s overall total ?
Thisisanother query requiring ajoin of two tables, Resultsand Assess. Thereasonfor this
isthat the Resultstable contains amark out of 100, but each item of assessment hasitsown
particular weighting. For example, student 868 got 50% in the final exam, where the latter
isworth 60% of the overall subject assessment. So the final exam contributes 50* 60/100 =
30 marksto student 868’s overall total for the subject.

Select Id, Mark, Weight, MarkxWeight/100

From Results, Assess
Where Results.Item = Assess.Item
and Results.Item = 3
I4 Mark Weight Mark*Weight/100
869 95 60 57
872 45 60 27
862 40 60 24
868 50 60 30
871 60 60 36
854 65 60 39

Again, the result table can be thought of as being produced by the following sequence.
1. First, the relational product of Results and Assess isformed. Thisis accomplished
by the clause From Results,Assess.

2. From that product, the join of Results and Assessis created. Thisis accomplished by
the clause Where Results.Item = Assess.Item. (Theresulting joinisshownin
Section 4.9.6.)

3. Fromthat join, results for item 3 are retained and the rest discarded.
4. Finally, the result table shown above is produced.

Example 6.7 What are the names of students who were late in submitting their first
assignment?
This example requires information from all three tables:

e Students is needed to provide the names;
e Results becauseit contains the date of submission; and
e Assess because it contains the due date.

Straight away, we can write the from clause.
From Students, Results, Assess

This clause will cause the creation (in our minds) of a product table that combines all the
rows from all three tables. Thiswill contain 7 * 17 * 3 = 357 rows. Thefirst row and two

SQL Retrieval 131

other typical rowswill look like the following:

Students Results Assess

Id First Last Item Id Submitted Mark Item Description Weight Due

871 Hans Zupp 1 871 0908 80 1 Petty Theft 10 0908
862 Bill Board 2 868 1021 75 3 Extortion 60 ?
869 Rip Orff 1 869 0909 70 1 Petty Theft 10 0908

The second row comparesstudentBill Board against amark achieved in assessment item
2 by some other student against details of assessment item 3. Rows like this one one must
be discarded. These rows are removed by supplying the appropriate join condition, one
that joins three tables.

Where Students.Id = Results.Id
and Results.Item = Assess.Item

These two conditions leave us in a position where all remaining rows relate a student to a
mark attained by that student to details of that item of assessment. Now we can apply the
other conditionsthat will give us specific answersto our query.

and Results.Item = 1
and Submitted > Due

For the first of these two conditions, we could also have said and Assess.Item = 1
since the two Item columns must have the same value, as required by the join condition.
Whichever column we choose, however, we must use a prefix. The second condition
requires that the date of submission must come after (>) the due date. No prefixes are
required, although it might be better to be consistent, so that once prefixesare required, we
use them for al columns, whether they are needed or not. Thisisamatter of personal style
and convenience.
We are now in a position to writethe select clause.

Select Id, First, Last, Submitted, Due

The select clause must appear first in any SQL query; however, as a strategy for forming
queries, it is often better to leave selection until last. Determining the tables required and
supplying conditionsto be met are decisions that are easier donefirst.

The complete select statement is as follows.

Select Id, First, Last, Submitted, Due

From Students, Results, Assess

Where Students.Id = Results.Id
and Results.Item = Assess.Item
and Results.Item = 1

and Submitted > Due

132 Chapter 6

Id First Last Submitted Due

872 Betty Kahn 0910 0908
869 Rip Orff 0909 0908

6.4 Statistical Queries

There are five built-in functions that enable usto ask SQL to provide summary rather than
detailed information.

1. count which countsrowsfor us;

2. max which gives us the maximum of a set of values;
3. min which gives us the minimum of a set;

4. avg which averages a set of values; and

5. sum which adds up a set of valuesto provideatotal.

As may be seen, this summary information is of arather simple statistical nature.
Example 6.8 How many items of assessment are there?

Select count (*)
From Assess

The count function may be used to count the number of rows determined by the conditions
in the rest of the query.

Example 6.9 What were the highest, lowest and average marksin the final exam?

Select max(Mark), min(Mark), avg(Mark)
From Results
Where Item = 3

Example 6.10 Asacheck on our arithmetic, what is the total weighting for all items of
assessment?

SQL Retrieval 133

Select sum(Weight)
From Assess

The sum function adds up the values in the column specified as the function’sargument, in
this case the Weight column.

Example 6.11 What was student 871's overall total for the subject?
Select sum(Mark*Weight/100)
From Results, Assess

Where Results.Item = Assess.Item
and Id = 871

To see how thisworks, it is best to picture the intermediate table defined by the from and
where clauses above:

Item Id Submitted Mark Item Description Weight Due

1 871 0908 80 1 Petty Theft 10 0908
2 871 1021 70 2 Tax evasion 30 1021
3 871 ? 60 3 Extortion 60 ?

The sum function performs the calculation for each row in the above table, thus:

sum(Mark*Weight/100) = 80%10/100 + 70%30/100 + 60%*60/100
=8 + 21 + 36
= 65

6.5 “Group by" Queries

So far, we have seen examples of SQL that either provide detailed answers to queries, or
a single summary figure such as a count or atotal. The group by clause allows a kind

134 Chapter 6

of half-way house between the two. It allows atable to be partitioned into groups. Each
group can then be summarized.

Example 6.12 What was the average performance in each item of assessment?

Select Item, avg(Mark)
From Results

Group by Item

Order by Item

We can picture the Results table being divided into groups according to the value in
the Item column. This means that there are three groups, one for each item of assessment.
Thisis specified in the clause Group by Item.

Item Id Submitted Mark
1 871 0908 80
1 862 0907 60
1 854 0908 70
1 872 0910 55
1 868 0906 90
1 869 0909 70
2 871 1021 70
2 869 1022 80
2 872 1021 65
2 862 1022 70
2 868 1021 75
3 869 ? 95
3 872 ? 45
3 862 ? 40
3 868 ? 50
3 871 ? 60
3 854 ? 65

Theappearanceof agroup by clausesignals SQL to produce oneline of output per group,
so the actual output shows one line for each item of assessment. Each line produced by the
select clause will contain an item number and the average mark for that item.

SQL Retrieval 135

Because SQL will only produce one line per group, whatever items we select must be
single-valued for each group. Once we have used agroup by clause, the items that we
we may select for output are restricted to one of the following:

e the column grouped by (Ttem, in this case);

o adtatistical function applied to some column within the group (avg (Mark) in this case).
Finally, theorder by clauseisused to ensure that the results appear in item number order.

However, the likelihood isthat, as part of the grouping process, SQL hasalready performed
asort.

Example 6.13 Which students have done all threeitems of assessment?

Ttem Id Submitted Mark
1 854 0908 70
3 854 K 65
Select Id 1 862 0907 60
From Results 2 862 1022 70
Group by Id 3 862 7 40
Having count(*) = 3
1 868 0906 90
-—= 2 868 1021 75
Id 3 868 ? 50
862 1 869 0909 70
868 2 869 1022 80
869 3 869 ? 95
871
872 1 871 0908 80
-— 2 871 1021 70
3 871 ? 60
1 872 0910 55
872 1021 65
3 872 ? 45

Thegroup by clause used herewill partition the Resultstableinto six groups, onefor each
of the six students who submitted some work for assessment (student 831 never submitted
anything at al!). The effect of the grouping is shown in the table on the right-hand side
above. Of the six groups abtained, five will contain three rows and the other will contain
two rows (student 854 failed to submit item number 2). SQL will probably sort the table
as the best way of grouping; so that the table may be in student Id order.

The having clause, which follows the group by, may be used to eliminate entire
groupsfrom the output. In thisexample, any group that does not contain exactly three rows

136 Chapter 6

will be removed. Because the having clause is used to eliminate groups, the condition it
enforces should be one applying to the whole group.

Example 6.14 Which studentsfailed at least one item of assessment?

Select Id
From Results
Group by Id

Having min(Mark) < 50

Again, the Results table is divided into groups, one for each Id. Only groups where the
minimum mark islessthan 50 are reported in the output. For Id to appear, then the student
must have failed at least one item.

6.6 Multi-table “Group by" Queries

The group by clause, used on asingle table, partitions that table into a number of groups
according to the column used as the basis for the grouping. The clause can also be used on
two or more tables that have been linked together for some reason. The same restrictions
apply to the kind of expressions that may be used in the select clause. Once a group
by clause has been used, the items that may be selected are restricted to either (1) the
column(s) used in the group by clause or (2) a statistical function applied to the group as
awhole. SQL isonly prepared to display one row per group, regardless of the number of
rowsin each group. These two restrictions have the effect of guaranteeing that whatever is
chosen must be single-valued for the group.

Example 6.15 For eachitem of assessment, describe that item and give the average mark
attained.

Select R.Item, max(A.Description), avg(R.Mark)
From Results R, Assess A

Where R.Item = A.Item

Group by R.Item

1 Petty Theft 71
2 Tax Evasion 72
3 Extortion 59

SQL Retrieval 137

The use of the max function on the Description column is amost dreadful fudge. SQL
will not allow usto smply say:

Select ... , A.Description, ...

TheDescription columnwasnot usedinthegroup by clauseand so cannot appear onits
own in the select clause, even though we know that within any group the Description
column will only ever have one value, because an item of assessment only ever has one
description. So we are obliged to resort to trickery in order to fool SQL. Themax function,
when applied to a character string column, returns the highest alphabetic value. For
example:

Select max(Last)
From Students

Example 6.16 List, in order of merit, the final totals for each student.

Select S.Id, max(S.First), max(S.Last),
sum(R.Markx*A.Weight/100)

From Students S, Results R, Assess A
Where S.Id = R.Id
and R.Item = A.Item

Group by S.Id
Order by 4 desc

Id max(S.First) max(S.Last) sum(R.Mark*A.Weight/100)

869 Rip Orff 88
871 Hans Zupp 65
868 Will Gambol 62
872 Betty Kahn 52
862 Bill Board 51
854 Ann Dover 46

Once again, to get SQL to display first and last names, we use a built-in function to
overcome SQL's rules. Note also that student 831 makes no appearancein this final table.
Thisis because there is no mark for that student in the Results table.

The results were to be displayed in order of merit, that is, in descending order of total
mark. The total mark column is the fourth column displayed. It isaderived column, not
one existing in the database itself, but specially formed just to answer the query. Where

138 Chapter 6

such acolumn isto be used in the sorting process, then it must be identified by its position
in the select clause. In this case, the final total is the fourth column and can only be
referred to in this numerical way.

6.7 Product Queries

In Section 6.3 we discussed what were called join queries. The first step towards joining
two tables requires that the relational product of the tables be formed. It was, perhaps,
implied that the only reason for multiplying two tables was as a step towardsthejoin. This
is not the case. There are occasions when the product is of use in its own right. Thisis
especially true when we want to compare the rows of atable against other rowsin the same
table. To do this we need to multiply atable by itsalf.

Example 6.17 Which students did better in assignment 1 than in assignment 2?

Select R1.Id, Rl1.Mark, R2.Mark

From Results R1, Results R2
Where R1.Id = R2.1Id

and Ri.Item = 1

and R2.Item = 2

and R1.Mark > R2.Mark

R1.Id Ri1l.Mark R2.Mark

The aliasesR1 and R2 must be used in this example. The from clause, in the above SQL,
will cause the Results table to be multiplied by itself, squared so to speak! The product
will contain 17 x 17 = 289 rows, pairing every row in the table against every other row.
The table below shows one typical row and one row of the kind we want.

Results (R1) Results (R2)

Item 1Id Submitted Mark Item 1Id Submitted Mark

3 869 ? 95 1 862 0907 60
1 871 0908 80 2 871 1021 70

Each row isin two parts, but both originate from the same table. We cannot use the table
name to distinguish each part. Thisiswhy the aliases are required. However, aliases may
be used in any query. Often they are used simply to reduce the amount of typing necessary.

SQL Retrieval 139

6.8 Pattern Matching

SQL alows a limited form of pattern matching. This can be of use when we cannot
remember or do not know the exact value of some dataitem. It can also be useful when we
want to specify a complex range of possible values.

Example 6.18 Which students have afirst name starting with the letter B?
Select First, Last

From Students
Where First like ’BY%’

Bill Board
Betty Kahn

The percent character % is used to indicate a place where zero or more characters may
appear.
Example 6.19 Which students have the |etter o in their last name?

Select First, Last

From Students
Where Last like ’0%’
or Last like ’%o%’

Bill Board

Rip Orff
Ann Dover
Hans Orff

Will Gambol

We have to use two separate pattern strings because the 1ike operator is case sensitive,
that is, it distinguishes between upper case 0 and lower case o.

The second pattern string cannot be simply %o’ because that would imply that we
were looking for people whose last name ended in the letter o.

Example 6.20 Which students have the letter i as the second letter of their first name?

Select First, Last
From Students
Where First like ’_i%}’

The string _i% requires exactly one character before the letter i and any number after.

140 Chapter 6

Bill Board
Rip Orff
Will Gambol

The underscore character _ is used to indicate a place where any one character may be
substituted. This ensures that the second character must be ani. After the i there may be
any number of other characters asindicated by the ensuing % symbol.

Example 6.21 Which students have a four-letter surname?

Select First, Last
From Students
Where Last like °’ ’

Thepatternstring * ____~ indicatesthat the last name must contain exactly four characters.

6.9 Summary

In this chapter, you have seen examples of the basic SQL retrieval statements. These basic
capabilities reduce to three major categories.

e There are queries that involve examination of atable and the suppression of unwanted
rowsand columns. Therowswe want to see areretained by means of thewhere clause.
The columns we want are specified in the select clause. The table from which these
rows and columns are drawn may be one of the base tables of the database. However,
the table may equally be one formed by multiplying together all the tables mentioned
in the from clause. Regardless of how the table is formed, the same basic means of
retrieval apply.

e There are queries that work by subdividing a table into a number of groups according
to some value shared by all rowsin the group and by no others. Some of these groups
may be eliminated by applying a condition that each group must satisfy. After that, we
are allowed to select just one line of output per group. Asin thefirst category, thetable
that is partitioned in this way may be one of the base tables or it may be the product of
several tables.

SQL Retrieval 141

e There are queries that allow us to summarize a table by reporting some statistics
concerning that table such as the number of rowsin thetable. Again, the table reported
in this way may be a base table or the product of several tables.

SQL can provide much more complicated queries than these, but only by extending

the use of the features in this chapter. For example, queries can be nested. These more
advanced features are described in the following chapter.

142 Chapter 6

Exercises

> Q6.1 The AcADEMIC Database
Here is the University of Wiseacres database that was used in the exercises at the

end of Chapter 4.
Schools Staff Quals
(*) School_Id (x) Staff_Id (x) Staff_Id
School_Name Staff_Name (*) Degree
Phone School_Id Place
(?) Head_Id Year

Anasterisk (x) indicatesthat the attributeis (part of) the primary key of therelation.
A question mark (?) indicatesthat null values are to be permitted for that attribute
in the associated relation. Write SQL to satisfy the following requirements.

List the names and phone numbers of all the schools.

List the entire contents of the Staff table.

Name any schools where the Head of School position is vacant.

2 0o oo

Name each member of staff along with the name of hisor her school. Produce
thelist in aphabetic order of staff name.

Provide the name of each school and the name of the head of that school.

o)

f. Name members of staff along with their degrees. You will need a separate
line for each degree. Produce the list in alphabetic order of staff name and,
within that, by year of conferral.

g. How many staff are there altogether?
h. When was the earliest degree conferred on any staff member?
i. For each staff member, provide the staff 1d and the number of degrees held.

j- Giveeachschool’sld, itsnameand the number of staff inthe school (including
the Head of Schoal).

k. Givethe staff 1d of everyone who has more than one degree.

I. For any member of staff who has more than one degree, provide their staff Id
and the time between receiving their first and their last degree.

m. Name each member of staff and give the year in which they received their
most recent qualification.

n. Givethe staff 1d of anyone who received degreesin both 1975 and 1985.
0. Givethe staff Id of all those who received a bachelor degree before 1950.

p. Givethenameof all staff whoreceived their bachelor’sdegreefrom an I nstitute
of Technology (IT).

SQL Retrieval 143

P Q6.2 Anauction of ex-palice cars had the following results. TheKilo column represents
how many thousand kilometers the car has on its odometer.

Cars

Lot Color Aircon Kilo Sale
1 gray y 48 9650
2 white n 41 9200
3 white n 50 8500
4 white y 41 9200
4a beige n 46 9550
4b green n 50 9600
5 white y 50 9700
6 vanilla y 53 10100
6a white n 46 9300
7 white y 95 8650

State the outcome of each of the following SQL statements.

a Select count (*)
From Cars

b. Select avg(Kilo)
From Cars

C. Select avg(Kilo)
From Cars
Where kilo < 70

d. Select min(Sale)

From Cars
Where Aircon = ’y’
and Color <> ’white’

€. Select Aircon, max(Sale)
From Cars
Group by Aircon
Order by 2 desc

f. Select Kilo, count(*)
From Cars
Group by Kilo
Having count(x) > 1
Order by 2 desc

g. Select Aircon, Color, count(*)
From Cars
Group by Aircomn, Color
Order by Aircon, Color, 3 desc

144 Chapter 6

Q6.3 HereisthePeople table again, with the addition of one new member, Harry.

People

Name Age Sex Earns Likes Dislikes
Bill 55 m 18000 golf politics
Sue 28 f 15000 music beer
Ivan 19 m 25500 football poms
Dave 21 m 18000 music sport
Judy 33 £ 28000 walking men
Karen 41 f 48000 dancing SQL

Alan 40 m 45000 golf golf
Mark 32 m 17500 football alcohol
Mario 18 m 17500 dancing water
Paul 25 m 62500 music students
Jim 32 m 38500 squash alcohol
Kathy 19 f 14500 dancing politics
Harry ? m 28000 sport politics

Using the Peop1le table, write SQL to satisfy the requirements bel ow.

a. List eachlike, and the number of people who have that like.

b. List each shared like and the number of people sharing, in order of popularity.

c. Dofemalesor malesearn more, on average?

d. How many men and how many women are there?

e. List each like shared by members of the opposite sex. (Multiply the table by
itself.)

f. Do women who like music earn more, on average, than women who like
dancing?

g. Do women who like dancing earn more, on average, than men who like
football?

h. Givethe names of al peoplein their twenties.

i. Givethe names of al people with an a asthe second letter of their name.
j- Givethe names of al people whose name endsinay.

k. Whose ageis not recorded?

= Q6.4 TheRocky CONCRETE Database

The Rocky Concrete Company makes a range of concrete products from laundry tubs to
park benches to garden gnomes. Rocky’s regular customers include hardware shops, local
councils, nurseries, farmers and other small businesses. These customers are considered to

SQL Retrieval 145

be the company’s “bread and butter" and Rocky likes to satisfy their orders as quickly as
possible. To this end the company triesto keep an adequate level of stock for each product
made. Whenever the stock in hand falls below some predetermined level then another batch
is made.

There are four relations used to keep track of products, orders and customers.

customers products orders order_details
(%) cust_no (*) prod_code (x) order_mno (*) order_no

cust_name description order_date (*) prod_code

street prod_group cust_no order_qty

town list_price order_price

post_code qty_on_hand

cr_limit remake_level

curr_bal remake_qty

Relation key columns are marked with an asterisk (*). Some columns, such ascust_name,
are self-explanatory; however, others need some explanation:

cr_limit The maximum that a customer is allowed to owe Rocky Concrete; this
may be exceeded at the manager’s discretion.
curr_bal The amount currently owed by the customer.

list_price The advertised price for a single unit of a particular product; the price
charged to a customer might vary from this.

order_date Thedateonwhichtheorder wasmade; for these exercisesyou may assume
that the dateis held in YYMMDD form.

order_price Theunit price charged on this order for this product.

prod_group A code that indicates whether a product is grouped as agricultural (A), or
council (C), or garden (G) or household (H) in nature.

remake _level Thelevel at which the quantity on hand is compared; if stocksfall below
thislevel then Rocky will usually make another batch to avoid stockout.

remake_qty Theamount usualy involved in any new production.
The questions that follow have been divided into a number of categories according to the

kind of SQL that you are to use in answering them. In practice, however, a query may be
phrased in avariety of ways.

Simple Queries (SQ)

These are straightforward queries requiring access to only one of the four tables.
SQ1. Listthe namesof all customers.

SQ2. Listthe description and list price of all products.

SQ3. Listall details of al customers.

SQ4. Listal details of those products with alist price of more than $100.
SQ5. List the names and balances of all customers who owe more than $250.

146 Chapter 6

SQ6. Listal productsin the agricultural product group.

SQ7. List al details of products where stock on hand is worth (at list price) more than
$1000.

SQ8. List the customer number, credit limit and current balance of all customers whose
current balance exceeds their credit limit.

SQ9. List all details of all customers living in Queensland (post code in the range 4000

t0 4999).

SQ10. Which product lines require replenishing and how much should be made?

Join Queries (JQ)
These arerelatively simple queries requiring access (as the title suggests) to more than one

table.
JO1L.

JQ2.

JQ3.

JQ4.

JQ5.

JQ6.

JQ7.

JQ8.

JQO.

JQ10.

List the product code, description, order price and quantity ordered for each line on
order number 1234,

List, in date order, the customer name and address and the order date of all orders
taken in June 1991.

List the order number, order price, product code and list price of those orderswhere
the order price differed from the list price.

List the customer name, the order date and the value of each order line worth more
than $500. Produce the output in date order and, within date, in ascending order of
value.

List the product descriptions and customer names for al orders made by Brisbane
customers.

List the customer name, current balance, credit limit, order date and order linevalue
for all customers whose current balance has been allowed to exceed their credit
limit.

List the names of all customerswho ordered garden gnomesin April 1991.
(prod_code = ’GNOME’)

List the product code, description, order date and order quantity of all orders for
gardening products.

List the product code, order number and order date where the order quantity ismore
than the remake quantity.

List the customer name, order quantity, list price and order price for al orders for
agricultural products taken from Queensland customers.

Statistical Queries(ST)
These queries are to be answered using one or more of the five special functions: max, min,
avg, count and sum.

ST1.
ST2.

What isthe total value of order 1234?
What are the largest and smallest credit limits held by any customers?

SQL Retrieval 147

ST3.
ST4.
STS.
ST6.
ST7.
ST8.

ST9.

ST10.

What isthe largest amount of credit available to any customer?

What is the maximum amount by which any customer is over their credit limit?
When was the first order ever taken?

When was the latest order taken?

What isthe value of the best order for alarge cattletrough? (prod_code = ’L00’)

What isthe least remake cost for any product line where the quantity on hand isless
than the remake level ?

What is the most number of medium cattle troughs ever sold in a single order?
(prod_code = ’M00?)

How many orders have been made by customer 22557

Simple Group-by Queries
These (relatively) simple queries are to be answered by means of agroup by clause. Only
one table will be involved.

SG1.
SG2.
SG3.
SGA4.

SG5.

SG6.

SG10.

List the number of customersin each town, in town order.
List the number of orders made by each customer, in descending order of frequency.
For each product group, list the value of stock held. Value at list price.

For each town, provide alist of the number of customers whose current balance is
at least 90% of their credit limit.

For each product, list the product code and total value of orderstaken, in descending
value. Ignore products that have never been ordered.

For each order, list the order number and the total value of that order in descending
value. List only those orders worth more than $1000.

List those towns where the average credit limit is more than $1000.
For each product, list the product’s lowest and highest ever order price.

Consider June 1991. For each day on which an order was made, list the day and the
number of orders taken on that day. Producethelist in date order.

For each product, list the product code and the total value of orders taken, where
the average order line value was more than $1000.

Multi-table Group-by Queries (MG)
These queries are to be answered using a group by clause. More than one table may be

involved.

MG1. For each product ordered in May 1992, list the product code and the total value of
ordersfor that product.

MG2. For each product group, list the total value of orders taken and the total number of
units sold.

MG3. On what daysin June 1991 did the sum of the value of all orders taken on that day

exceed $10007?

148

Chapter 6

MG4.

MGS5.

MG6.

MG7.

MG8.

MGO.

For each order taken in May 1991, list the order number, the date and the value of
the order. Producethe list in date order.

For each customer who ordered in May 1991, list the customer’s number, name and
the number of orders made. Produce thelist by customer number.

For each product group, list the group code, the total value of all ordersat list price
and at order price. Producethelist in product group order.

From orderstakenin 1991, produce alist showing each customer number, name and
the total value of orders taken from that customer. Produce the list in descending
order of value.

For each product, list the product code, its description, the number of ordersinvolv-
ing this product in June 1991 and the total value of these orders.

For each product ordered in June 1991, list the product code and the number of
customers who ordered the product.

MG10.For each customer receiving a discount in May 1991, list the customer number,

name and the amount of discount. Produce the list in descending order of total
discount.

Product Queries (PQ)

These queries are to be answered by multiplying one table against another or against itself.
Thisisin contrast to Join queries.

PQL.

PQ2.
PQ3.

Customer 2345 isin financial trouble. Are there any other customers, in the same
town, with alarger current balance?

Name any customers who have ordered twice in the same day.

Customer 6789 isjust below the credit limit and wantsto buy a large cattle trough.
How much below the list price will we have to drop the price to prevent them from
going over their limit — as an amount and as a % of thelist price?

Chapter 7
SQL Modularization

7.1 Introduction

In computing, a module is the name we give to an item of work. A program module is
a discrete component of that program. It performs a particular task, such as finding the
minimum of a set of numbers. All the various modules of alarge program are put together
in such away asto achieve the program’soverall goal.

This process of conquering complexity is sometimes called modularization. Using
this technique a complex task may be reduced to a number of relatively simpler tasks.
Suitable program modules are then built to accomplish each of these tasks.

This chapter is concerned with how the fundamental query building methods of Chap-
ter 6 may be combined in different ways. In creating these more complex queries we can
answer more complex questions.

Three mechanisms are discussed. They are:

¢ query nesting whereby the results of one query are fed into another;

e the union operator which allows the results of two or more queries to be merged to
produce a single result table; and

¢ theview which allowstheresultsof aquery to be given anameand subsequently treated
asjust another database table.

7.2 Query Nesting

The first kind of query modularization considered in this chapter is query nesting. This
involves passing results from one query directly into another. Thus two queries may be
executed, one after the other, with no “manual” intervention required.

Example 7.1 Whatistheld of the student who got thelowest mark in thefirst assignment?
We could issue the following command:

149

150 Chapter7

Select min(Mark)
From Results
Where Item = 1

But thisdoesn’t entirely answer the question. We could then take the query result (55) and,
by using it in a second query, get what is wanted:

Select Id from Results
Where Item = 1
and Mark = 55

The two queries can be merged into a single nested query.

Select Id
From Results
Where Item = 1
and Mark = (Select min(Mark)

From Results
Where Item = 1)

The SQL inside the brackets (Select min(Mark)...) iscaled asubquery. Thisinner
subquery is executed first and the answer, 55, is fed back into the outer query to provide
the right answer.

There are two ways of looking at the kinds of query nesting that can occur.

1. Thefirst way is according to the manner in which the inner and outer queriesinteract.

e Thereis once-only nesting where the inner query is executed once and the outer
query then usesthat result. So the inner query is executed and then the outer one.
Example 7.1 is of thiskind.

e There is query correlation where the outer query executes a little and then the
inner query executesalittle; and thisisrepeated until the outer query is compl ete.
Thisisrather like amodule being executed within a program loop.

2. The other way of analyzing query nesting is by the matter of the interaction between
theinner and the outer query, in other words, by the kind of information that is returned
by the subquery.

SQL Modularization 151

e There are subqueries that return conventional data, such as names, addresses and
phone numbers; that is, they return the kind of information stored in the database.

e There are subqueriesthat simply return atrue or false answer.

7.3 Simple Nesting

There are situations where the query cannot properly be answered without first answering
some preliminary query.
Example 7.2 What is the name of the student who got the lowest mark in the first
assignment?

This question has already been partially answered in Example 7.1 where we found the
Id of the student who got the lowest mark. To get the name of that student, we can turn the
query that gave usthe Id into a subquery.

Select *
From Students
Where Id = (Select 1Id
From Results
Where Item = 1
and Mark = (Select min(Mark)

From Results
Where Item = 1))

Here we have athree-level hierarchy of queries. At the bottom level thereis oneto extract
the lowest mark; at the next there is one to get the Id of the student who got that mark; at
the top there is one to get us the name of that student.

Example 7.3 Which students were late handing in assignment one? When did they
submit?

Select S.*, R.Submitted

From Students S, Results R
Where S.Id = R.Id
and R.Item = 1
and R.Submitted > (Select Due
From Assess

Where Item = 1)

The inner query returns the due date for the first assignment. The outer query joins the
Studentsand Resultstabl es (because we want student names) and then checksto see whether
the student handed in late that same assignment.

152 Chapter 7

Id First Last Submitted
872 Betty Kahn 0910
869 Rip Orff 0909

The subquery obtains the due date of the first assignment, which is 0908 or 8 September.
The outer query joinsthe Students and Results tables, so as to be able to provide the names
of students who submitted the first assignment after that date.

An alternative solution to the one aboveistojoin al three tables.

Select S.*, R.Submitted

From Students S, Results R, Assess A
Where S.Id = R.Id

and R.Item = A.Item

and R.Item = 1

and R.Submitted > A.Due

Neither solution is better than the other. It is a matter of personal preference. The reason
for showing thisaternativeisthat it provides some clues asto when we can use a subquery
and when we need to perform ajoin. Although we need the assignment due date to answer
the question, it is not required as part of the result table and so can be accessed using a
subquery. If the due date was to be displayed then we would need to join all three tables as
was done in the alternative solution. This three-way join enables us to select and display
any column from the three tables.

7.4 “In" Queries

There are occasions when we might expect theinner query to result in aset of values, rather
than asingle value. When thisisthe case, we can usethe in clauseto seeif an item of data
isamember of thisset.

Example 7.4 Which studentsfailed at least one item of assessment?

Select *

From Students

Where Id in (Select Id
From Results
Where Mark < 50)

Id First Last
872 Betty Kahn
862 Bill Board

Theinner query returnstwo Id’s, 872 and 862. The outer query then worksitsway through
this set, matching the Id’swith student details from the Students table.

SQL Modularization 153

Example 7.5 Which students did either of the first two items of assessment?

Select Id
From Results
Where Item is in (1,2)

As can be seen from this example, the in clause need not necessarily be used with a
subquery. The clause aboveisequivalent to Where Item = 1 or Item = 2. Thisform
of the in clause is convenient when we have along list of alternative values.

7.5 “All-Any" Queries

In Section 1.4 we used the in clause to check for set membership. The clause returns a
true or false answer because an item is either a member of aset or it isnot. Any kind of
subquery that returns atrue or false answer can be incorporated directly into the condition
of awhere clause.

In Section 1.3 we saw examples of simple subqueries. Theseall returned asinglevalue
such as amark. Thisvalue can then be used in a comparison operator such as= or >. The
result of the comparison is either true or false and this answer can be incorporated into the
where clause.

In this section we will look at situations where the subquery is expected to return a set
of values and we want to perform more than just a membership test. We want to compare,
in amore general way, some item against the set returned.

Example 7.6 What isthe Id of the student who got the lowest mark in assignment 1?
Thisisthe same as Example 7.1, and there the solution was:

Select Id
From Results
Where Item = 1
and Mark = (Select min(Mark)

From Results
Where Item = 1)

Thisis an example of a subquery that is expected to provide a single answer, otherwise we
could not put the = sign in front of it.
An alternative solution isto use the all keyword, asfollows:

Select Id
From Results
Where Item = 1
and Mark <= all (Select Mark

From Results
Where Item = 1)

Two changes have been made.

e The= hasbeen changedto <= all.
e The subquery now selectsMark instead of min (Mark).

154 Chapter 7

Theinner query now returns the set of values (80, 60, 70, 55, 90). The second 70 has been
removed. The where clause of the outer query now becomes:

Where Item = 1
and Mark <= all (80, 60, 70, 55, 90)

Any item 1 mark that islessthan or equal to a1l of these markswill satisfy the condition.
Clearly 55 isthe only mark that is less than or equal to all of these and so is the minimum
mark. If we had specified Mark >= all (...) then we would have got the maximum
mark.

SQL alows either of the two keywordsall or any to be placed between a comparison
operator and a subquery. This is known as operator modification. The effect of each of
these keywordsis as follows.

all Theitem must bear the specified comparison against all members of the set returned
by the subquery. For example, Mark <= all (80, 60, 70, 55, 90) requiresthat
Mark be <= al the elements of the set, which means that it must be less than or equal
to 55.

any Theitem must bear the specified comparison against at least one member of the set.
For example, Mark > any (80, 60, 70, 55, 90) requiresthat themark begreater
than one of the set, which meansthat it must be greater than 55.

Example 7.7 Whichitem of assessment was best done, as measured by the average mark?
We could try this.

Select Item, avg(Mark)
From Results

Group by Item

Order by 2 desc

If we pick the first row in the result then we have answered the question. However,
computing people are lazy, we always want to get the computer to tell us the answer, no
matter how hard that might be.

We want to say something like Select max(avg(Mark)) ... butthisoffends SQL
and will be rejected. Built-in functions may only be applied to simple columns such as
Mark or to expressions involving these columns such as Mark*Weight/100. They may
not be used on other built-in functions, for example.

An alternative solution is as follows.

Select Item, avg(Mark)

SQL Modularization 155

From Results
Group by Item
Having avg(Mark) >= all (Select

From

avg(Mark)
Results

Group by Item)

The having clause is used to restrict groups reported to those where the average mark
is greater than or equal to all three of the averages obtained. This is equivalent to the

maximum average.

Any of the six standard comparison operators (<, <=, =, "=, >=, >) may beused
in thisway. Thusto get the lowest average we could amend the having clause to:

Having

avg(Mark) <= all (Select avg(Mark) ...)

Example 7.8 Which students handed in assignment 1 after students 871 and 8697

Select Id, Submitted
From Results
Where Item = 1
and Submitted > all (Select
From
Where
and

Submitted
Results

Item = 1

Id in (869, 871))

The subquery returns the dates on which 869 and 871 handed in their assignments (0909,
0908). Only student 872 submitted after all of these dates.

7.6 Correlated Subqueries

Rather than having an inner query finish before the outer query is attempted, there are times
when the inner and the outer query work as ateam, iteratively executing the inner and the
outer query in tandem.

Example 7.9 Which students did better in the first assignment than in the second?

Select Id

From Results One

Where Item = 1

and Mark > (Select Mark
From Results
Where Id = One.Id

and Item = 2)

156 Chapter 7

The above query is an example of a correlated subquery. In simple subqueriesit is best to
think of SQL as performing the subquery first and then passing the result to the outer query
which then executes. With correlated subqueriesit is better to think of the outer query as
doing a certain amount of work and then asking the subquery to do some. The outer query
then does some more work and then the inner does some more, and so on until the outer
guery isfinished. Thusthe outer and inner queries are correl ated.

The reference One is called a pseudonym or alias. Aliases are often an easy way to
refer several timesto a table with avery long name —we simply give it ashort alias when
it first appears, in the from clause. However, in this correlated subquery, Results hasto
have an alias, because the query passes an |d value into the subquery for comparison every
time the inner query is executed: if the inner query referred to Results. Id rather than
One. I4, it would be comparing the same Id value to itself.

Example 7.10 Who was the second best student in the final exam?

Select Id, Mark

From Results R1
Where Ri.Item = 3
and 2 = (Select count (*)

From Results

Where Item = 3

and Mark >= R1.Mark)

Id Mark
854 65

The outer query steps through the results for the final exam and for every one, asks the
inner query to count the number of marks that were better than or equal to it. If that count
is 2 then we have the second best student.

This query worksonly if just one student had the second best mark. How would it need
to be modified to handle situations where several students share a mark?

7.7 “Exists" Queries

There are occasions when we might want to know of the existence of certainrowsin atable
and act accordingly. This can be achieved by use of an exists clause within the where
clause. An exists clause evaluates the subquery; if the subquery returns an empty table
then the exists clause returns avalue of false; otherwiseit returns avalue of true.

SQL Modularization 157

Example 7.11 Name any student who got more than 90% in any item of assessment.

Select *

From Students S

Where exists (Select *
From Results
Where Id = S.Id
and Mark > 90)

Id First Last

869 Rip Orff

SQL picks arow from the Students table. It then passes control to the inner query. If the
student has achieved a mark higher than 90% then the inner query is successful and the
student row is displayed. If no such mark exists then SQL passes straight on to the next
row in the Studentstable. This processis repeated until all rows have been examined.

Example 7.12 Which students failed to submit any work for assessment?

Select *
From Students S
Where not exists (Select *
From Results
Where 1Id = S.id)
Id First Last
831 Hans Orff

In this example, each student row is examined and, if there are no results for that student,
the student row is displayed.

Example 7.13 Which students submitted assignment 1 but not assignment 2?

Select *
From Students S
Where exists (Select =*
From Results
Where Item = 1
and Id = S.Id)
and not exists (Select *
From Results
Where Item = 2
and Id = S.Id)

158 Chapter 7

Id First Last

In this example, the Students table is examined and for each row two subqueries are
evaluated, one for each assignment. If the subquery returns a row then the student did
the assignment, otherwise they did not. In this way the conditions required to satisfy the
guestion may be evaluated.

7.8 Subquery Usage

The ability to issue subqueries is an important and powerful feature of SQL. Subqueries
are not restricted to the select statement, but may be used within update and delete
Statements.

A subquery may use any number of tables; it may involve a group by clause and a
having clause. A subquery may invoke other lower level subqueries.

When writing a subquery, the following constraints are placed upon the the phrasing of
the subquery.

o The order clause must not be used.

e The select clause must contain only one column name or expression; for example,
(select p from ...) but not (select p, q from ...). An exception is the
exists clause where any number of columns may be selected.

The outer query may use several subqueries at the same level; see Example 7.13 which
has two. However, there are limitations placed upon the way in which a subquery may be
invoked by the query in which it is embedded.

e Subqueries must always appear within round brackets.

e Subqueries can only appear after, that is, to the right of an operator. So we can have,
for example, 8 = (subquery) but not (subquery) = 8.

e Subqueries cannot be used as part of between or 1ike clauses.

¢ A subquery should return only one value unless the subquery is preceded by one of the
keywordsin, exists, all or any.

7.9 The Union Operator

Use of theunion operator offersthe second kind of query modularization discussed in this
chapter.

The results of two or more queries may be merged to form a single result table. SQL
treats the result of each query as a set. It then creates the set union of each participating
query.

The keyword union is inserted between the select statements whose results are to
be merged. The rows produced by each individual query are amalgamated with duplicate
rows being removed.

SQL Modularization 159

Example 7.14 Which student got less than 70 in either assignment 1 or 2?

Select Id

From Results

Where Item = 1
and Mark < 70

Union

Select Id

From Results
Where Item = 2
and Mark < 70

The two query results are merged as shown below:

Id Union Id = Id
862 872 862
872 -—- 872

This query could have been answered more conventionally:

Select Id

From Results

Where (Item = 1 or Item = 2)
and Mark < 70

The use of the or in this answer should not surprise us. The union of two sets, A and B, is
the set whose elementsarein A or B (or both).

Example 7.15 List the resultsfor assignment 1, and give zero to any student who did not
submit any work at all.

Select Id, Mark

From Results

Where Item = 1

Union

Select Id, 0

From Students S

Where not exists (Select *
From Results
Where Item = 1

and Id = S.Id)

In the previous example, it was possible for the two sets of studentsinvolved to overlap. A
student might get less than 70 in both items of assessment. In this example, however, the
two setsshould be digjoint. Thetwo querieswould giveriseto thefollowing amal gamation.

160 Chapter 7

Id Mark union Id 0 = Id Mark?
871 80 831 0 831 0
862 e60 854 70
854 70 862 60
872 55 868 90
868 90 869 70
869 70 871 80
—————————— 872 55

Thefirst query getsitem 1 results and the second supplements these with a zero mark for
any student who did not do this assignment.

The result has been shown in Id order. SQL may decide that the easiest way of
performing aunion isfirst to sort the sets involved and then to merge them.

Example 7.16 List the results for assignment 1. Give a zero to any student who did
not do this assignment. Take 5 marks off any student who submitted it after the due date.
Producethelist in order of merit.

Select R.Id, R.Mark

From Results R, Assess A
Where R.Item = A.Item
and R.Item = 1
and R.Submitted <= A.Due
Union
Select R.Id, R.Mark - 5
From Results R, Assess A
Where R.Item = A.Item
and R.Item = 1
and R.Submitted > A.Due
Union
Select Id, 0
From Students S
Where not exists (Select *
From Results
Where Item = 1
and Id = S.Id)

Order by 2 desc

Three separate queries are used. The first identifies those who submitted on or before the
due date. The second takes 5 marks off anyone who submitted after that date. The third
“awards" azero to anybody who failed to submit at all. They will giveriseto the following
union:

SQL Modularization 161
Id Mark union Id Mark? union Id Mark?
871 80 872 50 831 0
862 60 869 65 000 mmmmm—————
854 7 mmm———————
868 90

The order clause requiresthat the results of the union be displayed in descending order of
the second column. So thefinal tableis:

Id Mark?
868 90
871 80
854 70
869 65
862 60
872 50
831 0

Inthefinal table, the second columnisheaded Mark?. Thequestionmark istheretoindicate
that while we know that the column represents marks, SQL has no such knowledge. Asfar
as SQL is concerned, the values in this column have three sources.

e Four values are taken directly from the database.

e Two aretheresults of calculations.

e Oneisgenerated by aselect clause.

The three select statements in the above union correspond to three organizational
rules regarding the submission of work.

1. 1IF asubmission is made on time
THEN no penalty is occurred.

2. IF asubmissionislate
THEN a5 point penalty is applied.

3. IF no submission is made at all
THEN amark of zero is awarded.

7.10 Union Usage

The union operator can be used to merge essentially similar items of information obtained
from two or more separate queries. The information may come from quite different parts
of the database. It may even be constructed by one of the participating queries.

There are, unfortunately, a number of restrictions on the use of the union.

162 Chapter 7

e The corresponding items in each select clause must have matching data types. So
we cannot merge an integer column with anything but another integer column. We
cannot even merge char (4) with char (5) asthe lengths must also match.

e Theitems to be merged must have matching nullity. We cannot merge a column that
might contain nulls with one that cannot.

e Theorder clause appears once only at the end, if at all. The columns used in the sort
must be identified by number.

¢ Insome versions of SQL, the union cannot be used within a subquery.

e Insome versions of SQL, the union cannot be used in the definition of aview. Seethe
following section.

Thefirst threerestrictions are oneswe can live with. Inversionswhere the latter two apply,
they limit the power of SQL considerably.

The union does give us the ability to perform IF. . .THEN. . .ELSE. .. queries. Some
problems are best thought of in the following terms:

IF condition
THEN extract certain information
ELSE extract some alternative information

Thiskind of query can be converted to a union query using the following template:

Select certain information
From .
Where condition

Union

Select alternative information
From .

Where inverse-condition

7.11 Views

In Chapter 3, where setswereintroduced, it was stated that there are two ways of specifying
aset: in extension and by comprehension. The base tables are sets in extension. A view
isaname given to a set defined by comprehension. The view mechanism is the third kind
of query modularization to be considered in this chapter. The result of an SQL query is
always shown as atable. A view issimply aname that we giveto aresult table.

Example 7.17 Define aview containing the results of the first assignment.

Create View Ass_1
as Select Id, Submitted, Mark
From Results
Where Item = 1

SQL Modularization 163

871 0908 80
862 0907 60
854 0908 70
872 0910 55
868 0906 90
869 0909 70

We can now, with certain restrictions, use thisview asif it is a database table.

Select Id, Mark
From Ass_1
Where Mark > 70

Id Mark
868 90
871 80

We can join the view to other tables, for example, to display the names of the two students
above.

Select S.Id, First, Last, Mark

From Students S, Ass_1 A
Where S.Id = A.Id
and Mark > 70

Id First Last Mark
868 Will Gambol 90
871 Hans Zupp 80

However, aview has no real existence as a separatetable; it merely existsas adefinitionin
the system catalog.

In this example, we have given the name Ass_1 to a particular subset of the Results
table. From now on, any usage of that name is a reference to that set. The set of values
defined is dynamic. It is not necessarily the set of values that apply when the view is
defined. It isthe set applying whenever the view is used in a query. The membership of
this set may vary from time to time because the underlying table may be updated from time
to time.

164 Chapter 7

Example 7.18 Create aview of the overall results for each student.

Create View Overall(Id, Total)
as Select R.Id, sum(R.Markx*A.Weight/100)
From Results R, Assess A
Where R.Item = A.Item
Group by R.Id

With this view, it is asif we now had atable called Overall in the database. The names
of the columnsin this new table are given in brackets after the view name. If no namesare
given in this way then SQL takes them from the select clause. In this example, column
names must be provided because one of the columnsinvolvesa calculation.

Unfortunately, we cannot join this table with the Students table to name the students.
Naturally, we would like to be able to do something like the following.

Select S.Id, First, Last, Total
From Students S, Overall 0
Where S.Id = 0.Id

Order by Total desc

When aview has been constructed with the aid of agroup by clause, it cannot be joined
to another table or view.

Another restriction resultsfrom the use of abuilt-in function in the view definition. The
Total column is based on a sum function. For any view column derived in this way, SQL
prevents us from using the column in the condition of a where clause. For example, we
might like to list those who passed the subject, Select * From Overall Where Total
>= 50. Thisisnot allowed.

Nor can we use such acolumn in a built-in function, for example, to find the top mark,
Select max(Total) From Overall. Thisisforbidden also.

7.12 View Usage

Initsview facility, SQL shows usa glimpse of a marvellous chance to be able to:

e exclude unwanted information from the view user by making the view incorporate
only the information wanted by the view user;

¢ hideinformation that is not the business of the user by making the view contain only
what the user needs to know; and by granting the user access to that view alone; and

e perform complex calculationsfor the user and present aresult table that can be treated
like any other table.

Unfortunately, SQL then neuters the facility with a whole series of limitations on how
the view can be used, saying, in effect “you can treat aview asif it isjust another database

table except when ... andwhen ... andwhen ...".

7.13 Summary

In this chapter, we have extended the retrieval capabilities of SQL that were introduced in
Chapter 6. That chapter showed three ssimple forms of SQL query whereby information
may be extracted from atable.

SQL Modularization 165

e We can extract from some table the rows and columns that we want.
¢ We can partition atable into groups and summarize each group.
e We can summarize an entiretablein asingleline.
This chapter showed three ways in which simple queries may be combined to form
more complex ones.
¢ We can nest queries so that the results of one query are passed directly to another.

e We can use the union operator to amalgamate the results of two or more queries to
form asingle result table.

¢ We can use the view facility to name a query and then refer to the results of that query
in subsequent retrievals.

These extensionsof the basic retrieval mechanismsallow usto respond to acomplex request
for information. We construct an answer from more simple queries and combine these to
form a single result table. This processis similar to the way in which complex programs
may be constructed from simpler program modules. Hence we have put query nesting, the
union operator and the view mechanism under the joint title of SQL modularization.

166 Chapter 7

Exercises

P Q7.1 TheMATcHING Database

People

Name Age Sex Earns Likes Dislikes
Bill 55 m 18000 golf politics
Sue 28 f 15000 music beer
Ivan 19 m 25500 football dancing
Dave 21 m 18000 music sport
Judy 33 f 28000 walking men
Karen 41 f 48000 dancing SQL

Alan 40 m 45000 golf golf
Mark 32 m 17500 football alcohol
Mario 18 m 17500 dancing water
Paul 25 m 62500 music students
Jim 32 m 38500 squash alcohol
Kathy 19 f 14500 dancing politics

Required:
Write nested queries to satisfy the requirements bel ow.

Who earns the most?

Which men earn less than the average male earnings?
Who likes the same thing as Mario?

Who dislikes students, politicsor SQL? [Useasimple in]
Which men earn more than all women? [Use all]

Which women earn more than at least one man? [Use any]
Which men like things liked by females? [Use in]

Which women are older than Kathy?

SQe "0 o0 T W

P Q7.2 Usethe union operator to satisfy the following requirements.

a. Find out how many men and women there arein the table.
Produce atable like this:

b. Peopleunder 30 are classified as young; those between 30 and 49 are middle-
aged and those 50 or over are elderly. Produce a table showing how many
men there are in each age range.

SQL Modularization 167

young 4
middle-aged 3
elderly 1

c. Itistimeto send out the annual accounts. The fees charged depend upon how
much a member earns.

Earns Fee
under 15000 0.5%
15000 —29999 0.75%
30000 and above 1.25%

Display all members, their incomes and the fees payable.

P Q7.3 Defineviewsto satisfy the following requirements.

a Createaview Men that contains details of all men in the People table.

b. CreateaviewRich (Name, Sex, Income) which containsinformation on
people who earn $40 000 or more.

c. UsetheviewsMenandRichtocreateaviewRich_Men (Name, Age, Worth).

B Q7.4 RocKYy CONCRETE
All of the following exercises are base upon the Rocky Concrete database described in the
exercises at the end of the preceding chapter.
Simple Nested Queries (SN)
These are queries to be answered by simple nested queries. Use of more than one table
might be required; also, queries might be nested to more than one level.
SN1. What isthe name of the customer with the largest credit limit?
SN2. What is the name and number of the customer most over his or her credit limit?
SN3. What isthe name of the customer who made the latest order? (nested 2 deep)
SN4. Describe the product that is normally the most expensive.
SN5. What product costs the most to remake?
SN6. Which customers have alarger credit limit than customer 2255?
SN7. Namethecustomer(s) that paid themost for asmall septictank. (prod_code = >STANK’)
SN8. Onwhat date did we get our most valuable order ever?

SN9. What isthe name of the customer that ordered our first garden gnome? (least order
no. involving prod_code GNOME).

SN10. For each customer that has not yet ordered this year, say 1991, give their number,
name and the date on which they last ordered.

168 Chapter 7

In Queries (1Q)

These queries are to be answered using in Or not in expressions.

IQ1l. Givethenamesand addressesof all customerswho made orderson 12 August 1991.

IQ2. Listthenamesof all customerswho ordered garden gnomesin April 1991 (same as
JQ7).

IQ3. List the product code and description of those products that were involved in order
no. 1234.

IQ4. List the names of all customers who have made orders worth more than $1000 in
total.

Q5. List the number of orders made in April 1991 by customers from Bundaberg.

IQ6. For each product that requires remaking, list the product code and the total value of
orderstaken in April 1991.

IQ7. List the product codes of those products sold to Gympie customers in July 1991
(double in).

1Q8. Onwhat daysin April 1991 wereindividua ordersfor morethan one garden gnome
taken?

1Q9. Listthe names of customerswho did not order in 1991.

1Q10. What are the product codes of products not ordered in July 1991?

Complex Group-by Queries (CG)
These queries are to be answered using agroup by clause. They may require any or all
clauses, subqueries and more than one table.

CGL
CG2.
CG3.
CG4.
CG5.
CG6.

CG7.
CGS8.

CGo.

Which product has led to the biggest volume of sales, in terms of units sold?
Which product has been the most valuable, in terms of value of orders taken?
Which order(s) contained the greatest number of lines? Give the order no. only.
Which customers are based in the town with the largest average current balance?
Give details of customers based in the town with the lowest maximum credit limit.

In which towns are there customers with more than twice the average available
credit for that town? Give the number of such customersin each town.

What was our most successful day in terms of value of orderstaken?

List the order no. and order date of all those 1991 orders that involved the most
popular product of that year (popularity measured in terms of units sold).

Which product group represents the biggest proportion of the total value of stock
on hand?

CG10. List customers based in Bundaberg that made less than 10 ordersin 1991.

Correlated Subqueries (CR)
These queries are to be answered using correlated subqueries.

SQL Modularization 169

CR1.

CR2.

CRa.

CR4.

List the product code and description of those products that have, at some time,
been sold below list price.

For each town, list the customers based in that town that have less than the average
current balance for that town.

For each product group, list the product code, description and list price of the most
expensive product in that group.

For the product with the code GNOME, list the addresses of all customersthat ordered
that product between 1 April and 16 May 1991.

Exists Queries (EQ)
These queries are to be answered using exists Or not exists expressions.

EQL.
EQ2.
EQS.
EQ4.
EQS.
EQS.

List any orders for which there is no corresponding customer.
List order details for which thereis no corresponding order.
List order details for which thereis no corresponding product.
List ordersfor which thereis no order detail.

List any customers that have never ordered.

List any products that have never been ordered.

Union Queries (UQ)
These queries are to be answered using the union operator to merge the results of two or
more separate select statements.

UQL.

uQ2.

uQs.

uQ4.

List the name and address of customers based in the towns of Bundaberg or
Toowoomba.

List the product code and description of all those products that have either been
ordered in April 1991 or that were ordered at least twicein May 1991.

For al products, list the product code, the total value of orders taken and the
description (some products may never have been ordered).

For al customers, list the customer no., the name and the total value of orders
made. Produce the list in descending value of orders (some customers may never
have made an order).

Chapter 8
Facts and Relations

8.1 Introduction

A fact is adeclarative sentence; that is, it is a statement which may be either true or false.
It describes a particular relationship between two or more things or entities; for example:

Billy Connolly was born in Scotland.
We use computers when we have lots of similar facts to remember.

Bill Cosby was born in the USA.
John Cleese was born in England.
Barry Humphries was born in Australia.

When we recognize that certain facts are similar, we can generalize them into a fact type
which isarelationship between two types of entity rather than between individual entities.
In this case the relationship is between people and countries. Or isit? Perhapsit’s between
comedians and countries, or between men and countries? To be more certain we need to
investigate the universe of discourse or UoD which is simply the situation that we intend
representing in our information system. In attempting to design the most appropriate
database structure for a given situation, we need to know the kinds of things that are
involved and the kinds of facts that relate them.

Fact types are not stored individually; rather, they are embedded within relationswith
each relation dedicated to representing a fixed number of fact types. This chapter looks at
some of the problems we face when deciding where to place a fact type when designing
adatabase. We will find that each fact type may be merged or grouped only with certain
others. Some we will be unable to merge; they must remain on their own. We will use
conceptual schema diagramsto help achieve this grouping. These diagrams are used to
depict the knowledge we need to design a database.

170

Facts and Relations 171

8.2 Facts

Consider this statement:
Harry lives in New York.

Thisis an example of afact. Isit afact more about Harry than New York? It seemsto be
more about Harry. Why is this so?
If we wanted to represent many facts of this particular type, we could tabul ate them.

LivesIn

Harry New York
Bruce Sydney
John New York
Sue Perth
Angus Aberdeen

Thistable or relation has five rows, one for each person. In contrast, one of the cities, New
York, appearsin two of the rows. Perhapsthiswaswhat madeusthink that "Harry lives
in New York." isafact about Harry rather than New York. In general, the "1ives in"
fact typeis afact about people rather than cities. Asarule, a person livesin just one city,
but a city will have many residents.

Therelation is called abinary relation because it has two attributes. This binary table
has two important features that might easily go unnoticed.

1. Peoplée's first names have been used to represent or symbolize the people concerned.
A one-for-one substitution has been made. Thiswill probably not be satisfactory if the
set of peopleislarge. Also, city names have been used to represent the cities. This
does not seem quite so likely to lead to problems. This symbolism may be disclosed if
we rewrite one of the facts rather pedantically as:

The PERSON with the first name ’Harry’
lives in
the CITY with the name ’New York’.

2. The lives in relationship between each person and a city has been made identical
and can hence be used as a heading. This is an example of abstraction at work, the
suppression of what is considered to be irrelevant detail. Harry might be happy in New
York and Bruce bored in Sydney. We can't tell from thistable; all that we can say is
that Harry lives in New York and Bruce in Sydney. This s the price we pay for the
simplicity of atabular representation.

This method of fact expression is called the “telephone heuristic". We imagine that we are
trying to communicate the fact down a rather bad line to arather dim-witted friend. It also
helps to remind us that *Harry’ and ’New York’ are merely symbols or labels that we

172 Chapter 8

stick on these two objects and that naming is the particular form of labeling that we used
for both.
Finally, the particular method of writing the fact:

Harry lives in New York.
isjust one way of stating the information; we could equally have written it as:
New York is the residence of Harry.

The two sentences have the same meaning. This second form is rather awkward. Perhaps
that iswhy we prefer to think of it as afact about Harry.

What the two forms help to show is the role that each entity plays in the relation-
ship. Harry plays a 1ives in role with regard to New York; and New York plays a
residence of role with respect to Harry. We can now display the entire fact type
schematically; that is, we can show the basic structure of the fact in terms of:

¢ thekinds of thingsthat participate in the fact; and
¢ therolestaken by each kind of thing involved.

Person

is the Clty
(ﬁl'St name) lives in |residence (name)

of

1. Thefact is one between people and cities; or between aPerson type and aCity type.
These are the entity typesinvolved.

2. Each individua person is represented or symbolized by his or her name. Each city is
represented by its name. The manner of representation is shown in brackets below the
entity type.

3. The roles that each entity plays in the relationship have been shown aongside the
corresponding role box.

We need to be able to generalize from specific facts relating specific objects to the corre-
sponding fact type. When designing a database, we are very much concerned with and, of
necessity, restricted to the type of information to be stored. We have no way of knowing
the information that will actually be stored in the relations we design.

What about thisfact?
Suppose we have more facts to record. Here is one of them.

New York is in the USA.

Is this afact about New York or about the USA? More about New York, it would seem.
Again, if we had many facts of this kind, we could tabul ate them.

Facts and Relations 173

LocatedIn

New York USA

Sydney Australia
Perth Australia
Aberdeen Scotland

Each fact relates a city to a country. Thefirst row of the table can be expressed as:

The CITY with the name ’New York’
is located in
the COUNTRY with the name ’USA’

The alternative phrasing, putting the country as the subject of the sentence might be:

The COUNTRY with the name ’USA’
is the location of
the CITY with the name ’New York’.

So the City entity type plays the role is located in in the fact type and the Country
entity type plays the role is the location of. We can now represent this fact type
diagrammatically.

City is s the Country
located location
(name) in of (name)

As before, the diagram emphasizes the two types of entity that participate in the fact
and the role that each entity plays. However, rather than representing each new fact type
as a separate diagram, we will extend the diagram to include additional fact types.

lives in is located in
| |

' City ' Country

In this way we get a composite picture of the relationship between people, cities and
countries. Thetwo fact typesinvolving cities are seen as stemming from the one City entity

type.
8.3 A Simple Design

Supposethesetwo fact typeswere all that we wished to record. We might, quiteinnocently,
decide to incorporate them in asingle relation.

174 Chapter 8

LivesIn LocatedIn MergeTable

Person City + City Country = Person City Country
Harry New York New York USA Harry New York USA

Bruce Sydney Sydney Australia Bruce Sydney Australia
John New York Perth Australia John New York USA

Sue Perth Aberdeen Scotland Sue Perth Australia
Angus Aberdeen @ ----------——————-—- Angus Aberdeen Scotland

Figure 8.1 Merging fact types

Is anything amiss here? We have had to incorporate a little bit of redundancy in the
table. The fact that New York is in the USA has been recorded twice, once for each
person who lives there. If there were 100 people recorded as living in New York then the
location of New York would also be recorded 100 times. Worse, if New York was likely
to move from one country to another then we would have to remember to make changesto
every one of the rows involving that city. Otherwise we risk recording New York as being
located in more than one country. Fortunately, thisis not the case! What is perhaps even
worse is that should Bruce decide to leave Sydney and live in New York, we would lose
our knowledge of Sydney’slocation entirely.

Conclusion: There can be no doubt. Fact types cannot arbitrarily be thrown together
into the same relation without the risk of redundancy and its associated problems arising.

8.4 An Experiment

Perhaps the problem arose because we mixed facts about people with facts about cities.

Hypothesis. We should keep facts about one type of thing separate from facts about
some other kind of thing. So, in the above examples we should have one relation for facts
about people and another for facts about cities. Now we would record the location of New
York only once no matter how many people we know there; and also, should Bruce move
there from Sydney, we would retain our knowledge of Sydney.

Experiment: We need to introduce another fact about people. Suppose the following
sentenceistrue:

Angus works as a welder.

This seems to be a fact about Angus rather than about welding. Suppose we know the
following facts about people and their jobs:

Harry works as a stockbroker.
Bruce works as an actor.

John works as a waiter.

Sue works as a welder.

Angus works as a welder.

We can construct acorresponding WorksAs tableand compareit against theLivesIntable.
TheresultisshowninFigure8.2. TheLivesInandWorksAs tablescan be merged without

Facts and Relations 175

redundancy arising. Thisis possible because there is one row per person in both tables.

LivesIn WorksAs

Person City Person Job

Harry New York Harry stockbroker
People = Bruce Sydney + Bruce actor

John New York John waiter

Sue Perth Sue welder

Angus Aberdeen Angus welder

Person City Job

Harry New York stockbroker

= Bruce Sydney actor

John New York waiter

Sue Perth welder

Angus Aberdeen welder

Figure 8.2 Merging single-valued facts

The merging is straightforward. The resulting table has been called People because it
contains facts about people. We can add this new fact directly to the previous diagram.

lives in is located in

| |
' City ' Country

works as

8.5 Another Experiment
Just to be safe we had better try some more sample data. Consider this fact:

Harry plays squash.

176 Chapter 8

This looks like another fact about Harry. Let us gather all facts of this kind. Harry plays
squash; Bruce plays tennis and golf; and both Harry and Angus play football.
This data could be presented as a table in the following way.

PlaysAt

Harry squash, football
Bruce tennis, golf
Angus football

This seemsavery natural way of tabulating the data, but SQL is not very adept at handling
multi-valued or set-valued columns, such asthe Sports column above.

Example 8.1 Who plays football?

Select Person
From PlaysAt
Where Sports like ’%footballl,’

We would need to use the 1ike operator to search for an occurrence of theword football
somewhere within the Sports attribute.

Example 8.2 Harry no longer plays squash. Amend his entry.
We would need to be able to unpick one sport from the list of sportsand rejointhe result in
someway. The problemisovercome by having one row for each sport that a person plays.

PlaysAt

Harry squash
Bruce tennis
Bruce golf
Harry football
Angus football

Now if Harry’s doctor tells him to quit squash, we can easily amend the table.

Delete
From PlaysAt

Facts and Relations 177

Where Person = ’Harry’

and Sport

’squash’

With thisway of presenting the sports data, writing SQL iseasier, but we are left with other
difficulties. What if we mergeLivesIn and P1laysAt? If we combine the tables, we get:

Harry New York
Harry New York
Bruce Sydney
Bruce Sydney

John New York
Sue Perth
Angus Aberdeen

squash
football
tennis
golf

7

?
football

John and Sue play no sport and null values have had to be introduced for this reason.
However, thisis not a problem. What is a nuisance is that, despite both being facts about
people, redundancy has arisen in the combined table. This is a direct result of the two

people who play more than one sport.

Conclusion: We can merge fact types about the same kind of thing, but only under

certain circumstances.

What are these circumstances? If we summarize the fact types involving people, we

have:
Related Number that one person
Fact type entity type may relateto
lives in City one
works as Job one

plays at Sport

many

1. Thefirst linein the table states that a person livesin only one city. A person’s city of
residenceis asingle-valued fact about that person.

2. The second line says that a person’sjob is also asingle-valued fact about a person. In
our universe of discourse, a person has only one job.

3. On the other hand, the third line states that a person may play many sports. The sport
aperson playsis amany-valued fact about a person.

The circumstances under which we can merge two fact types occur when:

¢ both fact types are directly concerned about the same kind of thing, that is, one of the
sets participates in both fact types; and

o these facts are both single-valued facts about that kind of thing.

178 Chapter 8

We need someway of differentiating single-valued factsfrom many-valued facts. What
we need, in effect, is to decide how the things participate in the relation. Does a person
live in one city or many? Does a person play one sport or many?

We can add this new fact to our conceptual schemadiagram. At the same time we can
annotate the diagram to show these uniqueness constraints. see Figure 8.3.

lives in is located in
| |

Person ' City '

works as

" ﬂ |

Sport

Figure 8.3 Introducing unigueness constraints

A bar is put alongside the appropriate role box to indicate the following knowledge:

e Each person livesin one city.
o Each person works at one job.

e Each city islocated in just one country.
But for the fact about sports, the bar goes al ongside both role boxes which indicates that:
e A person may play many sports and a sport may be played by many people.

So the diagram tells at a glance what facts about people may be merged. A bar alongside a
role box to which an entity typeisattached indicates a single-valued, and hence mergeable,
fact about that entity. Once we have the bars marked, it is relatively easy to decide what
may be merged. But first we must learn how to place these bars. We will do that in the
following section.

Facts and Relations 179

8.6 Uniqueness Constraints

Let usreturn to thefirst fact type, one example of which wasthat Harry livesin New York.
Thisfact type is represented schematically:

lives in

|
Person l City

To find out whether thisis a single-valued fact about a person, or acity, or both, we ask
ourselves two simple questions.

Q1. Doesany person livein morethan one city?

We can’t answer that question without being sure about the set of people we are modeling.
And we are not merely interested in the people that we know now. The relations in our
database are dynamic data objects; their contents can be expected to vary over time.

The tabulated form of the facts was as follows:

LivesIn

Harry New York
Bruce Sydney

John New York
Sue Perth
Angus Aberdeen

L et us suppose that this table contains a significant set of facts of thistype; that is, it may
not be the entire set, either currently or in the future, but it is extensive enough to enable us
to generalize about the nature of the relationship.

Suppose we again ask the question.

Q1. Doesany person livein morethan one city?

Using our sample data, the answer is NO. Each person appears only once. There is no
repetition in the Person column. Thisrestriction is called a uniqueness constraint. We
signify this constraint by placing a bar over, under or alongside the role box to which the
Person entity type is connected, that is, tothe 1ives in role box.

180 Chapter 8

lives in

|
Person l City

We can how move on to the second question that we ask of ourselves.
Q2. Isany city the residence of morethan one person?

This time, assuming our data is reliable, the answer is YES; two people whom we know
livein New York. This meansthat the is the residence of roleis unconstrained and
so we leave the corresponding role box unmarked.

In summary, to find out whether there are any uniqueness constraintsin afact type, we
take the entity types and each role and form these into an “Is any more

thanone___________ ?" sentence framework. If the answer to any question posed this
way is NO then there is a uniqueness constraint on therole.
Let us now try this technique with the fact type relating people and jobs. The sample

datawas as follows, and it too is assumed to be significant.

WorksAs

Person Job

Harry stockbroker
Bruce actor

John waiter

Sue welder
Angus welder

The two questions and their answers are:

Q1. Doesany person work at more than one job?

The answer iSNO; S0 there is a uniqueness constraint on thework at role.
Q2. Isanyjob (type) worked at by more than one person?

The answer is YES; there are two welders.

So the fact type has a uniqueness constraint placed over the works as role box.

works as

Person l Job

Facts and Relations 181

Next we can examine the facts we have about people and sports.

PlaysAt

Bruce golf
Harry football
Angus football

The two questions are as follows:

Q1. Doesany person play at more than one sport?

The answer is YES. Harry plays football and squash.
Q2. lIsany sport played by more than one person?

YES, both Harry and Angus play football.
The answer was YES to both questions and so there no uniqueness constraint associated
withany individual roleinthisfact type. The pairing of apersonwith asportisunrestricted.
But the combination will be unique; we do not expect to see the same row twice and so we

can say that thereis a uniqueness constraint across the roles in conjunction. So we place a
bar alongside both role boxes.

plays

Person l Sport

8.7 Single and Many-valued Fact Types

We saw, in Section 8.5, that we cannot mix single-valued facts about people, such as the
city they live in, with many-valued facts about people, such as the sports they play. If we
do mix them then redundancy can arise. How do we quickly decide whether a fact type
is single or many-valued? If we examine the conceptual schema so far, the answer should
become evident: see Figure 8.4.

We can tell at aglancethat:

aperson livesin one city;
aperson works at one job;

but a person may play many sports.

182 Chapter 8

lives in is located in
| |

Person ' City '

works as

" ﬂ |

Sport

Figure 8.4 Single and many-valued fact types

Thediagram allows usto easily decide which fact types may be aggr egated. Instead of the
above diagram, we could have expressed the same situation using the notation introduced
in Chapter 2. This notation also tells us which of the relationships are functions.

lives : Person +> City
works : Person +> Job
—_plays_: Person <= Sport
loc: City +> Country

We can tell from these declarations that 1ives and works may be merged. They are both
functions, that is, they are both single-valued facts about the Person entity type. If we
already have anotation for describing these ideas, why do we need another? The difference
is between a verbal notation and a visual one. With the verbal notation, we must scan the
relationships and decide for ourselves what facts may be merged. The conceptual schema
diagram, in contrast, helps to show that three of the facts apply to one entity type because
three arcs lead off the Person entity. What the graphical notation allows us to do is to
show the connectivity of the situation being modeled. If we try to write a single verbal
description of Harry, that is, if we write one sentence about him, we might write something
like this:

Harry plays squash and football; he works as a stockbroker and lives in New York
whichisinthe USA.

Facts and Relations 183

Because the sentenceis a one-dimensional stream we are obliged to use pronounsto point
back to previously introduced objects. The “he" refers to Harry and the “which" to New
York. In agraphical representation, pointers are not required; we can directly connect the

objects.
lives in located in USA

works as

football

A conceptual schema diagram merely tries to generalize these connections to express
something about the entire UoD rather than about a few individuals. It helps establish the
universe of discourse by allowing us to state the kinds of things that are to be found there,
whether they are connected and the nature of these connections. And it is the nature of
these connections that provides us with a design for our database. The diagram is a very
useful aid to database design. After that task has been done, we will no longer need the
diagram. It will have served its purpose.

8.8 Irreducible Facts

So far, al the facts we have discussed have been binary. They involved just two entity
types. It is quite common to have fact types that involve three, four, five or more entity
types. Suppose that some knowledge of the sporting ability of these people is revealed to
us. We aretold thisin sentences like the following.

Harry plays squash well.

We can present all the information provided in tabular form.

Person Sport Skill
Harry squash well
Harry football badly
Bruce tennis well
Bruce golf well

Angus football badly

184 Chapter 8

These facts are irreducible, which means that we cannot reduce them to simpler facts
without some loss of information. For example, take the two factsinvolving Harry:

Harry plays squash well.
Harry plays football badly.

Suppose we split these facts as follows:

Harry plays squash.

Harry plays some sport well.
Harry plays football.

Harry plays some sport badly.

Someone encountering these four facts, independently, would be unable to reconstruct the
two original sentences; and that is the situation with databases. Yet suppose the two facts:

Harry plays at squash.
Harry plays well.

comeinto thedatabase at the sametime. 1t would seem reasonableto expect theinformation
system to remember to make the connection. After all, we would. But the facts may end
up in separate rows of atable or even in separatetables; and therewill be other similar facts
about Harry.

The only way that we can make the information system remember to make the con-
nection is for it to retain the connection. And that means simply keeping the fact as one
sentence:

Harry plays squash well.

We can represent this three-part fact type diagrammatically: see Figure 8.5. Rather than
attempting to provide three different roles, it is simpler merely to show the outline of the
fact.

Figure 8.5 An irreducible fact type

Facts and Relations 185

8.9 Nested Fact Types

The new fact type just introduced may not be merged with any of the other fact types
discussed so far. Can it ever be merged? To answer that question, we must first find out
whether there are any uniqueness constraints to be applied. There is such a constraint
because, at least judging from the sample data provided, each person plays a particular
sport with just one skill level: see Figure 8.6.

Figure 8.6 A uniqueness constraint on two roles

Theuniquenessconstraint bar isdrawn acrossthe role boxes attached to both the Per son
and the Sport entity types. This is consistent with the table where no two rows have the
samePerson + Sport combination.

Another interpretation of this uniqueness constraint is to think of the fact as asingle-
valued fact about a person’s sporting abilities with regard to his or her playing of some
given sport. It is not surprising that the skill levels are expressed in terms of adverbs
(“well", “badly") because the sentence is about the ability with which an individual plays
aparticular sport. Itisafact about afact. To emphasize this, we can redraw the three-part
fact typeasanested fact: see Figure8.7. Thisnested form helpsto emphasizethat the skill
level isafact about the playing of asport. Therelationship is said to be objectified; afact
has been turned into an object. The fact type has been turned into a composite entity type,
with an entity circle (or ellipse) enclosing the role boxes that symbolize the relationship.

We can extend the diagram (see Figure 8.8) to incorporate any other single-valued facts
about the playing of sports. These could include the following.

e We may wish to record the club at which a person currently plays some given sport.
Theword “currently" is a common way of making afact single-valued.

e We may also wish to record the year in which they took up a sport. To discuss
when someone first (or last) did something is another common way of making a fact
single-valued.

Now we have three single-valued facts about a composite entity type. However, the
aggregationrulestill applies. These threefacts may be combined into the one table without
fear of redundancy. The table might look like this:

186 Chapter 8

Person

Sport
Figure 8.7 A nested fact type

Plays

PersonName Sport Skill Club TakeUpYear
Harry squash well Hibs 1991
Harry football Dbadly Hibs 1991
Bruce tennis well Squibs 1985
Bruce golf well Hibs 1991
Angus football Dbadly Squibs 1995

Note that the table incorporatesthe original fact concerning people and the sportsthey play.

8.10 Aggregation

Before discussing the process of turning a conceptual schema into a relational database
schema, we will introduce one final fact type. Suppose we want to record which languages
these peopl e speak.

Speaks

Facts and Relations 187

Person
pIaysI with

v

\/ays for
v

tookain

v

<:E%X%E:>

Figure 8.8 Multiple nested facts

Harry Spanish

Harry Japanese
Harry German
John Spanish
Sue German
Angus English
Angus Gaelic

A person may speak many languages and a language may be spoken by many people;
thusit is a many-to-many relationship and isincorporated into the final conceptual schema
diagram which is shown in Figure 8.9.

188 Chapter 8

Figure 8.9 The final conceptual schema

Facts and Relations 189

8.10.1 Determinants
The conceptual schema indicates the following.
o Wecansafely merge“lives in" and“works as" becausethey are both single-valued
facts about the same entity type.

¢ We can safely mergethe “plays with", “plays for" and “took up in" fact types
because they are all single-valued facts about the same complex entity type.

e We must leave the “speaks" relationship in atable of its own; it is many-to-many and
these may never be merged.

e Wemust also leavethe“is located in" factin atable of its own; but only because
thereis no other single-valued fact about cities with which it may be merged.

Determinants

Wherever an entity type appears in a conceptual schema diagram and it is
connected to arole box against which there is a uniqueness constraint, then
the associated rel ationship is asingle-valued fact about that entity type. The
entity typeis said to be a deter minant.

A single conceptual schemadiagramisto be replaced by acollection of relations. Each
relation corresponds to a particular fragment of the diagram. Yet, whereas the original
diagram represents a universe of discourse, the fragments are not self-contained. They
areinterrelated, and it is the determinants that are connected. We must make sure that the
database symbolically representsthe connectionsthat are shown graphically in thediagram.
The processof mergingiscalled aggr egation which meansa“flocking" or coming together.
The conceptual schema diagram will be divided into a number of digoint sesgments. An
aggregate data object or record type will be defined for each of these segments. The
following table shows how the conceptual schemais divided.

Nr Determinant Entity type(s) Fact type(s)

1. Person Person lives in
works as

2. City City is located in

3. Plays Person + Sport plays with
plays for
took up in

4. Speaks Person + Language -

Where the determinant involves only one entity type, it is named after that entity type.
Where more than one is involved then the determinant is named after the relationship.
Strictly speaking, the Speaks determinant is not really a determinant at all; it determines
nothing. But asfar asthe process of deriving record typesis concerned, it may betreated as
one. So there are four record typesto be extracted from this particular conceptual schema.

190 Chapter 8

8.10.2 Record Types

Wewill usearecor d typetableto show thedevel opment of arecordtypeanditsrelationship
to other record types and other restrictions to be placed upon records of any given type.
Thisis shown by example for the Person record type:

Person

Record Type

Fact Key? | Attribute References?
(*) | PersonName
lives in CityName City Record
works as WorksAs

The four columns are used in the following ways:

e TheFact column alows usto identify the associated fact in some way.
e TheKey? column alows us to express two things:
() signifies that the corresponding attribute is (part of) the relation key of relations
built upon thisrecord type.
(?7) indicatesthat, in any instance of this type, the attribute may be null.
For the PersonRecord type we can see that the key is the PersonName attribute, and
that the CityName and WorksAs attributes may be null.
e TheAttributes column merely lists all the attributes of the record type.

e The References? column allows to say whether there should be referentia integrity
between this attribute and the key of some other record type. We can see that the
CityName attribute depends on the existence of some parent record type which contains
information specifically regarding cities.

8.10.3 Attribute Naming

Here are three rules for naming attributes. The naming is done from the viewpoint of one
particular record type. The processis repeated for the others.

N1 Key attributes arise from the determinant that is the basis for this record type.

1.1 Each such attribute may be named by taking the name of the associated entity
type and appending the manner of itsrepresentation. So for the key of the Person
record type, we have an attribute;

PersonName Which has the form:
Entity RepresentationManner

1.2 Alternatively, wemay simply want to suggest that thisattribute somehow identifies
aparticular entity type and append the letters“ Id" to the entity nameto form, for
example:

Facts and Relations 191

PersonId

1.3 Or, we may simply use the entity type name, for example;

Person
N2 Non-key attributes may be divided into two categories:

2.1 There are those that provide alink to some other determinant. It is desirable that
al determinants (or their components) are named in a consistent way, wherever
they appear in the database. It makes joining tables less error-prone. Thus the
attribute that correspondsto the “1ives in" fact should be named according to
rule N1, for example: CityName.

2.2 Other non-key attributes may be named using any one of the following rules.

2.2.1 Use the role that most naturally characterises the information provided.
Thus the job that the person does may be named the WorksAs attribute.

2.2.2 If the corresponding fact is the only one that links this record’ s determinant
to the other entity involved, then we might use the entity name itself. As
works as isthe only fact that links a person to a job, we might name the
attribute Job.

2.2.3 Asavariation onthe previousrule, wemight prefix the entity by the determi-
nant name. Thus, for works as we might name the attribute PersonJob.

2.2.4 There may be some well-established name that it would be silly to ignore,
such asFather Or Mother

N3 Once you have established your own naming conventionsthen try to stick with them.
However, if application of any rule leads to an ungainly, ugly or misleading name,
then construct one of your own.

8.10.4 Looking for Nulls

Every instance of a PersonRecord consists of three components or attributes. But can
every dlot be filled? In using a record structure for people we are effectively forcing
everyone into the same mold. We anticipate keeping the same two facts about everybody
— everybody’scity of residence and everybody’sjob. But what if somebody doesn’t have a
job, or we don’'t know where he or she lives?

The problem is overcome by permitting a special null value for the WorksAs attribute
for that person. What other attributes should be allowed to be null? To help answer
that question, we can immediately divide the record's attributes into two digoint (non-
overlapping) sets.

1. There are the key attributes; those that correspond to the entity type or types around
which the aggregation occurred. In the case of the PersonRecord there is only one
key attribute — PersonName. These attributes form the key of the relation that will
be founded upon this record type. The entity integrity rule states that none of these
particular attributes may ever be null because otherwise we would be unableto identify
properly the entity involved.

192 Chapter 8

2. There are the non-key attributes, each of which is a fact about the entity identified by
the key attributes. For the PersonRecord type the non-key attributes are CityName
and WorksAs. For each of these attributes we must perform some additional analysis.
Thiswewill do next.

To determine whether or not a given attribute may ever be null, we must return to the
fact type that was its basis. For the CityName attribute, we return to the 1ives in fact
type and ask two questions: see Figure 8.10.

Will EVERY person live - Nulls ARE
in SOME city? no allowed.
yes
A 4
Will we ALWAYS KNOW in - Nulls ARE

no

which city a person lives? allowed.

yes

A 4

Nulls are NOT
allowed.

Figure 8.10 Looking for nulls

The questions are intended to be asked with a “for the duration of the database" time
frame in mind, not just for the specific facts at hand.

Two questions are involved in the decision because there are two distinct reasons why
anull may be required.

1. Not applicable

It may be that the fact is simply not applicableto the entity involved. If aperson isout
of work then we have no job to record. Or, if a person isunmarried we can't record his
or her spouse.
The first question: “Will every person live in some city?' is designed to handle this
kind of null.

2. Don't know

It may be that the information is not known. And yet we may wish to retain knowledge
of the entity and of other facts relating to that entity. A shopper does not ignore a

Facts and Relations 193

potentially interesting purchase just because he or she does not yet know how much it
will cost.

The second question: “Must wealwaysknow inwhich city aperson lives?' isdesigned
to handle this kind of null.

Suppose that we wished to continue recording people even if we have lost track of their
whereabouts or if they are out of ajob. Then nullsshould be allowed for the corresponding
attributes. Our final record type will be as follows:

Record Type
Fact Key? | Attribute References?
(x) | PersonName
lives in | (?) | CityName City Record
works as | (?) | WorksAs

We perform this analysis of null values for all record types that result from the aggre-
gation of one or more single-valued facts. This means that we must also look at the record
type created fromtheis located in fact type. It seemsreasonable to suggest that:

YES, every city islocated in some country; and
YES, we will always know that country.

In other words nulls are not to be allowed. So the record type can be introduced asfollows.

Record Type
Fact Key? | Attribute References?
(%) | CityName
is located in Location
Thethird record type isthe Plays record type.
Record Type
Fact Key? | Attribute References?
(%) | PersonName Person Record
(*) | SportName
plays with SkillLevel
plays for Club
took up in TakeUpYear

194 Chapter 8

The analysisfor the allowability of null values proceeds as before.

Key PersonName, SportName
Non-key SkillLevel, Club, TakeUpYear

The key attributes represent the (complex) entity type about which each non-key attribute
isasingle-valued fact. The key attributes should not be null. Looking at the first of the
non-key attributes, we apply the same two questions as before; see Figure 8.11.

Will EVERY person play a ~ Nulls ARE
sport with SOME ability no allowed.
level?
yes
Will we ALWAYS KNOW the ~ Nulls ARE

no

ability with which a person allowed.

plays a sport?

yes

|

Nulls are NOT
allowed.

Figure 8.11 Looking at a nested facts for nulls

Everybody who playsasport must play at somelevel or another, but we might not know
that level. So we should answer YES to thefirst question and No to the second. Therefore
nulls should be allowed.

We might analyze the other two fact typesin the following way:

YES, wewill always know for which club a person plays.
NO, we will sometimes not know in which year a person took up a sport.

Thus, we will have arecord with the following structure.

Facts and Relations 195

Record Type
Fact Key? | Attribute References?
(*) PersonName Person Record

(*) | SportName
plays with | (?) | SkillLevel
plays for Club

took up in | (?) | TakeUpYear

Any other record types are ones that do not result from the aggregation of fact types.
For these records, nulls are never allowed for any attribute. The fourth and final record
type in case under consideration isin this category. It is based upon the speaks fact type,
which is a many-to-many relationship. It causes the construction of a record type based
upon all of the entity typesinvolved (in this case two).

Speaks
Record Type
Fact Key? | Attribute References?
(%) | PersonName Person Record

(%) | Language

The decision not to allow any null values may seem rather arbitrary, but it more useful to
think of speaks not as a many-to-many fact type but as a more complex entity type. And
this new entity type corresponds to the speaking of alanguage by aperson. It isacomplex
entity about which we have no single-valued facts, and so there are no non-key attributes
and consequently there are no nulls to be considered.

8.11 Establishing the Database

We have now established four different types of records and we may now introduce them
formally.

__PersonRecord

PersonName : Person
CityName : City
WorksAs : Job|null

__CityRecord

CityName : City
Location : Country

196 Chapter 8

—_PlaysRecord

PersonlName : Person
SportName : Sport
SkillLevel : Skill|null
Club: Club

TakeUpYear : Year |null

SpeaksRecord

PersonName : Person
Language : Language

If these were all that were required, we could now define a relational database based
upon them.

Database

People : Set of PersonRecord
Cities: Set of CityRecord
Plays : Set of PlaysRecord
Speaks : Set of SpeaksRecord

Each relation would be a set based upon one of the record types. However, this definitionis
not enough; it does not mention some of the important constraints that must be enforced in
order to make the database more accurately reflect the situation being represented. There
are, in patricular, two very important restrictions on the kind of data that may be inserted
into the database as awhole. These are asfollows:

1. Relation key constraints

There is nothing in the definition of, for example, the People relation to prevent there
being two people with the same name. Yet it was decided earlier that people wereto be
identified by their names. We can specify this constraint by requiring that the number
of recordsin the People relation be the same as the number of people (when identified
by name).

count People = count {p : People e p.PersonName}

Similar constraints must be placed on the keys of the other two relations.
2. Referential Integrity

Itisreasonableto expect that anybody mentioned in aPlaysRecord should also appear
in aPersonRecord. On accessing aPlaysRecord, we should be able to refer to the
appropriate record in the People relation for more information. This will be true of
everybody named in the P1ays relation. We can express this constraint as follows:

{p : Plays e p.PersonName} C {p : People ® p.PersonName}

Facts and Relations 197

The people in Plays are a subset of those in People. This is sometimes called an
inclusion dependency. There will be a similar relationship between the cities in
People and thosein Cities.

We may now extend our defintion of the database:

__Database

People : Set of PersonRecord
Cities: Set of CityRecord
Plays : Set of PlaysRecord
Speaks : Set of SpeaksRecord

count People = count {p : People o p.PersonName}

count Cities = count {c: Cities c.CityName}

count Plays = count {p:Plays e (p.PersonName, s.SportName)}
{p : Plays e p.PersonName} C {p : People e p.PersonName}

{p : People @ p.CityName} C {c: Cities e c.CityName}

{s : Speaks e s.PersonName} C {p : People e p.PersonName}

8.12 Summary

This chapter has been an introduction to fact-based analysis which is an approach to
designing a database. The fact-based approach sees the database as a repository of simple
irreduciblefacts regarding some situation. However, these facts are not stored haphazardly.

¢ All thefacts of asimilar nature are stored together, forming what istermed afact type.

o A fact type, asarule, isnot stored separately; rather, it will be grouped or merged with
other fact typesinto data structures called relations.

Certain problems arise.

e What is the basis for the merging? Exactly what fact types may be merged? The
early sections of the chapter demonstrated that we should not arbitrarily group facts
into relations. Certain rules exist regarding what may be merged. Conceptual schema
diagrams were introduced to help us follow these rules.

e Having decided to merge individual facts into record structures, we will inevitably be
faced with the problem of missing or null values. A record is agroup of values and the
circumstances surrounding its creation may be such that we cannot supply all the data
required.

e And thereisalso the problem of deciding what exactly is an irreducible fact? How do
we know when a fact may be split without loss of information? Certainly, when the
fact is binary, that is, when it relates just two specific objects, then it is not splittable.
But there may be more complex facts, that is, onesinvolving three or more objects; and
it may be that these should not be split either. We must rely on our analytical skills.

198 Chapter 8

Exercises

P Q8.1 ThePig Intelligence Experiment

Breed
T

?
T
&
=
\

F3

} (Diet)
Type Type
yp " yp

A veterinary ingtitute is carrying out some investigations into the effect of diet on
pigs, with the work being funded by aresearch grunt, of course. Theresultsareto
be recorded in a database, and a conceptual schema has been designed. Examples
of the facts recorded on this schema are:

F1: The pig “Black Beauty" isin sty number 8.

F2: Black Beauty is of the Saddleback breed.

F3: On March 21, 1995, Black Beauty scored 118.

F4. Black Beauty ison aMulti-grain diet.

F5: InaMulti-grain diet, the daily alowance of caraway seedsis 50 gms.
Frominspection of the conceptual schema, decidewhich of thefollowing statements
aretrue and which are not. Explain your answe.

A pigison only onekind of diet.

Every pig isin adifferent sty.

A pig may have its score recorded several times a day.
A given type of food may bein only one type of diet.

® o p TP

A given pig may, for example, receive 50 gms of caraway seeds one day and
100gms the next.

Facts and Relations 199

P Q8.2 From the conceptual schema given in the previous question:

a. Decide which facts may be aggregated, and devel op a complete set of record
types.

b. Based on these record types, what questions need to be asked regarding null
values?

c. Formally define each record type, and based upon these, formally define the
database.

> Q8.3 The CLUB Model
The following entity types are involved in acomputer club.
Type Current Instances of the Type

[Member] { Bill, Sue, Alan }

[Language] { COBOL, Pascal, C, Ada, SQL, Modula, FORTRAN }
[Carmake] { BMW, Ford, GM, Honda, Mazda, Mercedes, Toyota }
[N] {0,1,2,3,...}

There are also four relationships between these types:

1. likes which indicates whether one member likes another;

N

writes which indicates which languages each member can write;

w

age Which says how old each member is;

>

drives which indicates the make of car driven by those members who do.

The current states of each of these relationships are tabul ated bel ow.

likes writes age drives

Bill Sue Bill FORTRAN Bill 19 Sue Honda
Bill Alan Sue C Sue 19 Bill Ford
Sue Alan Sue SQL Alan T S —
Alan Bill Alan FORTRAN -—-——-———--

------------- Bill SQL

For each of the four relationships:

a. Write one sample fact of the type represented by the relationship. Rewrite
the fact in the reverse order. In thisway, the roles played by each entity type
should be seen.

b. Draw a conceptual schema diagram representing just this fact type. Show
eachrole.

200 Chapter 8
c. Assuming the data in the associated table is significant, add any uniqueness
constraints that apply.
P Q8.4 Usethe conceptual schema diagrams that you devel oped in answering the previous
question to respond to the following.
Connect the diagrams into a single conceptual schema.
b. Which fact types may be merged?
c. Using the data supplied, show the contents of the table or tables that result
from the merging.
P> Q8.5 TheKips Model

The following entity types are involved in modeling the children in a family.
Type Current Instances of the Type

[Kid] { Kylie, Tim, Matthew, Emma }
[Gender] {f,m}

[Room] { sleepout, back, front }

[Sport] { tennis, hockey, golf }

[N] {0,1,2,3,...}

There are also four relationships between these types:
1. age which says how old each child is;
2. sex which indicateswhich gender achild is;
3. bedroom which indicates the room in which a child sleeps;
4. plays which indicates which sports each child plays.

The current states of each of these relationships are tabulated below.

age sex bedroom plays

Kid N Kid Gender Kid Room Kid Sport
Kylie 14 Kylie £ Tim back Kylie tennis
Tim 12 Emma £ Matthew front Kylie hockey
Matthew 4 Matthew m —m———————————- Tim golf
Emma 8§ - Tim hockey
——————————— Emma tennis

For each of the four relationships:

a. Writeone samplefact of the type represented by the relationship. Rewritethe
fact in the reverse order to show the role played by the other entity type.

Facts and Relations 201

Draw a conceptual schema diagram representing the fact type. Show each
role.

Assuming the data in the associated table is significant, add any uniqueness
constraints that apply.

P Q8.6 Usethe conceptual schema diagrams that were developed in the previous question
to respond to the following.

a
b.
C.

Connect the diagrams into a single conceptual schema.
Which fact types may be merged?

Using the data supplied, show the contents of the table or tables that result
from the merging.

For each table, and assuming the data supplied is significant, say which at-
tributes of that table may be null.

P Q8.7 The PARLIAMENT Model
The following entity types are involved in modeling a state parliament.

Type Meaning

[Poli] All state representatives.

[Party] Political parties, e.g. { Labor, Business, Green, ... }
[Dept] Government bureaucracies, e.g. { Transport, Justice, ... }

There are four basic relationships between these types:

1. belongs: Poli —> Party which mapsapolitician to hisor her party;
2. minister: Dept —> Poli which mapsagovernment department to its min-

ister;

3. leader: Party > Poli whichindicatesthe politicanswho are party lead-

ers,

4. _talksto_ Poli <= Poli which indicates which politicians talk and to

whom.

Draw aconceptual schemafor thismodel and construct record types based on your
diagram.

Q8.8 The GEOGRAPHY Model
The following entity types are involved in modeling Australia.

[State, Town, River, PeopleCount]

The basic relationships between these types are as follows:

1. loc: Town —> State maps each town to the statein which it is located;

202 Chapter 8

2. pop: Town —> PeopleCount indicates the population of each town;
3. cap: State >—> Town relates each state with its capital;

4. _flowsthru_: River <= State shows which rivers flow through which
states;

5. source: River —> State Saysin which state each river hasits source;

6. sink: River —> State Saysin which state each river terminates.

Draw aconceptua schemafor this model.

Chapter 9
Uncovering Facts

9.1 Introduction

Suppose we are required to design a database to support a new information system. In the
preceding chapter some rules were formulated regarding which facts may and which may
not be merged into relations. Once we have, in front of us, the kinds of facts that are to be
stored in the database then it is arelatively mechanical processto follow theserules and to
arrive at adesign for the database.

Unfortunately, this information is rarely presented to us in a neatly packaged and
labeled way. In other words, the basic facts types do not usually show themselves clearly
and obviously. We, the designers, must identify them.

The people who are going to use this new system will want the computer to extract
information from the database, to sort it, to merge it with other information, to summarize
it, and so on. They are most unlikely to be interested in receiving long lists of quite trivial
facts. They have sophisticated ideas of how the organization works and may want these
ideas reflected in complex reports.

A report is simply a view of the organization. This chapter introduces a language
that may be used to describe the structure of such views. From these descriptions, the
underlying simple facts may be uncovered.

9.2 Defining Syntax

The syntax of a language is a set of rules that govern exactly what may be said in that
language. Thisdefinition appliesas much to programming languages asit doesto any other
kind.

The language to be presented in this chapter is a special language used to describe the
syntax of programming languages. It isthe languagein which we write the rules of syntax.
The syntax of SQL, for example, tellsusthat “Select * From Students" islegal SQL
whereas “From Students Select *" isnot. Syntax is concerned with the superficial

203

204 Chapter 9

order of words and symbols within a language rather than with what any statement in the
language means. The syntax of SQL requires that the select clause appears before the
from clause within a select statement. It will also say that both these clauses must
appear and that the others (the where, the group, the having and the order clauses) are
optional.

This syntax definition language is called Extended Backus-Naur Form. The original
Backus-Naur Form was developed in order to describe the language Algol 60. It is named
after two of the people involved in the original report of that language, John Backus and
Peter Naur. The extensions were proposed by Nicklaus Wirth, the inventor of the Pascal
programming language.

9.3 Analyzing a View

The view to be examined is one we al know. It is atelephone directory.

Smith J., 21 Bell Stciiiiiiiinnnnnn.. 223 2240
Smith T.J., 8 Mutual Rd 875 6827
Smith W., 59 Palmerston St 388 9756
Speedie Deliveries, Hutton St 339 1123
Spendthrift Savings Bank, High St 987 1000
Stamp T., 35 Cliff Stttt 339 1234
Stamper R., 23 Bell Stccvvviiiiineenn 223 1119
StoneGround Flour Co., Mill Rd 777 2121
Stonehouse A.P., 11 Hutton St 339 5549

How can we describe the structure of this directory? Spend some time examining it.

All the entries are similar in some respects; and some are more similar than others. We
can start by recognizing that there is arecurring number of entries, and define the directory
asfollows:

Directory ::= { Entry }

The curly brackets are used to indicate that any enclosed item or items repeat a number of
times. The : := symbol isto be read as“is composed of". So the definition can be read as
saying the following:

e “A directory is composed of a number of entries."

The use of curly brackets is borrowed from set notation. Another way of reading the
definition would be to say that:

e “A directory isaset of entries."

Defined in thisway, we have provided a description of the overall structure of the directory;
the problem of defining the structure of the entries has been postponed. In this way, we
solve one problem at atimein what isknown as atop-down fashion. We have concentrated
on the similarities in the directory rather than on the differences. Now it istime to look at
the differences.

There seem to be, in general, two major kinds of entry. There are entries for private
subscribers and there are ones for businesses. Now we can define an entry as follows:

Uncovering Facts 205

Entry ::= [Private | Business]
y

This definition states that an entry is composed of either a private or a business entry. The
sguare brackets [] are used to enclose anumber of alternatives. Thevertical bar | isused
to separate these alternatives. We may specify as many alternatives asis required.

Now we continuethe analysisby providing definitionsof Private and Business. The
latter is slightly simpler, so in good top-down style, we will tackle it first. Each business
entry involves a business name, a street and a phone number. This may be defined in the
following way:

Business ::= BusinessName + StreetName + PhoneNo

The plus sign is used to concatenate two components of the structure being defined. It
should be read as “followed by". So the above definition says that a business entry is
composed of a business name followed by a street name followed by a phone number.

The next stage is to examine each of the components BusinessName, StreetName
and PhoneNo. If any of them has an internal structure that interests us then that component
will requireits own definition as a structure. If there can be no useful subdivision then the
component is called adata element. All three of these components are of this elementary
kind.

When we reach a data element then thisis as far as the analysis need proceed on this
path. Now we retrace our steps until we arrive back at a structure that has not yet been
defined. In this example, we return to the Private component and examineit.

Each private subscriber is given a name, an address and a phone number, so it can be
defined asfollows.

Private ::= Name + Address + PhonelNo

The PhoneNo is a data element as we have already discussed. What about the Name? Are
weinterested in parts of the name? We probably are. If we are looking for Jim Smith then
the initial letters will help us locate him. Are we interested in individual initial letters?
Again the answer is that we probably are. If we can't find Jim under Smith J. then we
might try Smith A.J. and so on.

So the definition of name could be;

Name ::= Surname + { Initial }

A name consists of a surname followed by a set of initial letters.
Finally, what about the address? Are we interested in components of the address? We
probably do want to know the street number, so the definition could be:

Address ::= StreetNo + StreetName

These two components are unlikely to need further dissection. So now we have completely
analyzed the directory. Thefinal set of definitionsisasfollows:

Directory ::= { Entry }

Entry ::= [Private | Business]

Business ::= BusinessName + StreetName + PhonelNo
Private ::= Name + Address + PhoneNo

Name ::= Surname + { Initial }

Address ::= StreetNo + StreetName

206 Chapter 9

Everything we have named is either a data structure or a data element and every structure
has its definition.

9.4 Another Analysis

Therewill be many ways of correctly describing the structure of the directory. Thereisnot
just one valid analysis. It is a matter of individual judgement and style. We will briefly
examine the directory in another way.

It is possible to ook at the directory and decide that “yes, it does consist of a number
of entries", just aswe did before.

Directory ::= { Entry }

But thistime, rather than having two main styles of entry, we may feel that thereisasingle
style; one that varies slightly at the beginning.

Entry ::= [BusinessName | PrivateName] + Address + PhoneNo

We have decided that the variation in each entry is determined by whether it starts with a
business name or with an individual’s name. After that, each entry is essentially the same,
consisting of an address and a phone number.

The business name is elementary. The individual name might be analyzed as before:

PrivateName ::= Surname + { Initial }
This time we define the address as:

Address ::= (StreetNo) + StreetName
The round brackets () are used to enclose an optional component. This definition states
that an address consists of a street name optionally preceded by a street number. Perhaps
we didn’'t notice that only private subscribers have a street number. Perhaps we thought

that it was unimportant. Maybe we wanted to retain flexibility.
We end up with a quite different analysis.

Directory ::= { Entry }

Entry ::= [BusinessName | PrivateName] + Address + PhoneNo
PrivateName ::= Surname + { Initial }

Address ::= (StreetNo) + StreetName

9.5 A Summary of the Notation

Here is atable showing the extent of the notation:

Uncovering Facts 207

1= Use like an assignment symbol. It allowsanameto be
assigned to a structure.

R Use aplus sign to link one component of the structure
to the one that followsiit.

{...} Curly brackets are used to enclose a component of the
structure that may occur zero or more times.

[...] Square brackets are used to enclose alternative
components.

A vertical bar isused to separate alternatives. Itisused
within square brackets.

... Round brackets are used to enclose an optiona
component.

noLum Quotation signsmay be used to encloseaconstant value
of somekind, for example, "male".

9.6 Some More Examples

Here are three views to be analyzed. Each is a particular picture of our friends and
acquaintances. Of course, we don’'t use computers to keep track of people this way;
however, the reports are like the ones produced by information systems.

1. The Green-Eyed Monster Report

We are puzzled asto how al our friends can go on holiday to exotic locations while we
haveto stay at home.

The Green-Eyed Monster Report
Name Job Earns Holiday
Year Place

Sue lecturer peanuts 1986 Bali
1984 Monte Carlo
1985 Acapulco

Bill plumber heaps 1985 Cairms
1982 Rio
Doug doctor heaps 1988 China

1987 France

208 Chapter 9

A definition of the structure of this report might be the following.

GreenEyedMonster ::= { Name + Job + Earnings
+ { Year + Place } }

The view contains an entry for each friend; and for each one we give their name, job,
the earning capacity of that job. Finally, for each friend, we detail their recent holidays,
in particular, when and where they went.

2. TheHot Gossip Report

We have ajuicy piece of gossip and want to spread it around. We will ring people who
live locally, but are too mean to ring long distance, so we need the address of anyone
who lives at adistance.

The Hot Gossip Report

Name Contact

Ann 22 Strand Bvd, Copenhagen
Bill 391 1615

Sue 223 2555

Doug 3 Via Appia, Rome

Thisview also has an entry for each friend (except those whom the gossip concerns, of
course). Each entry consists of the friend’s name followed by either their address or
their phone number.

HotGossip ::= { Name + [Address | Phone] }
It can be assumed from this definition that we are not interested in any further breakdown
of the address; that is, it can be treated asif it is a data element.
3. The Match-making Report
We want to interferein their private lives. What else are friends for?

The Match-making Report

Name Sex Age Interests

Bill m 29 sport, travel

Sue £ 31 travel

Ian m music, art, photography
Ann £ 32 Ian

Thisview lists each friend’s name followed by their sex, which we know, followed by
their age if we know it; and finally any spare time interests they might have.

MatchMaking ::= { Name + Sex + (Age) + { Interest } }

Uncovering Facts 209

9.7 View Analysis

We have used the syntax definition language to specify the structure of each view. Thisis

the first stage of a three-stage process that should help us to understand the user’s world

and to uncover the elementary types of fact that are used to build pictures of thisworld.
The process involves the following three stages.

1. Deriveview structures

Analyzeall thevariouspicturesor viewsof the user’sworld that we can obtain. Develop
view structures for each of these views. Using our friends and acquaintances as our
world, we derived three view structures.

GreenEyedMonster ::= { Name + Job + Earnings
+ { Year + Place } }
ame + [Address | Phone] }

HotGossip ::= { N
= { Name + Sex + (Age) + { Interest } }

MatchMaking ::

2. Deriveview relations

In the next stage, each view structure is examined in turn. Any structure that contains
repeating componentsis“flattened" out into anumber of view relations. Any structure
that contains alternative componentsis split into a number of separate view relations.

3. Extract elementary fact types

In the third and final stage, each view relation that results from the previous stage is
examined. Each view relation has a corresponding sentence. Sample sentences of that
type are formed. This sentence may be reduced to two or more simpler sentences,
without loss of information. Alternatively, it may be irreducible. Either way we are
reducing our more complex sentences into a number of elementary sentences.

The outcome of this entire processis a set of elementary sentence or fact types. These are
the basic sentencesthat areto be stored in the database. The next step isto use participation
rates to determine which fact types may be merged and where.

9.8 Deriving View Relations

As discussed above, this second stage of the view analysisis a two-part process in which
the possibly complex view structures are decomposed into a number of relatively smple
view relations.

9.8.1 Flattening Structures

The first part of the process of simplifying view structures is to remove any repeating
components. Two of the structures contain repetition.

GreenEyedMonster ::= { Name + Job + Earnings + { Year + Place } }
MatchMaking ::= { Name + Sex + (Age) + { Interest } }

Thefirst structure repeats the year and place at which people went on holiday. The second
one repeats any spare time interest the friend might have. The flattening can be done in
two steps. We will perform these steps on the GreenEyedMonster structurefirst.

210 Chapter 9

1. Identify the key component of the outermost level. The outermost level incorporates
al the components not involved in the repetition. In this casg, it involves the three
components Name, Job and Earnings. Which of these three items of data can we use
to distinguish one friend from another? L et us assume that the name alone is enough.

2. Split the structure into two separate ones by removing the repeating component entirely
and forming a new structure consisting of the key in conjunction with this repeating
component. The repeating component, inthiscase, is{ Year + Place }. Theresult
of the split isasfollows:

VR1 ::= { Name + Job + Earnings }
VR2 ::= { Name + Year + Place }

Eachflat structureis called aview relation (VR) and as we define one, we can assign it
anumber for future reference.

Because a structure may contain repeating components that themselves contain repetition,
these two steps may have to be performed anumber of times until the original structure has
been completely flattened.

The other view that contains repetition is the Match-making Report.

MatchMaking ::= { Name + Sex + (Age) + { Interest } }
Againthekey componentisthename. Splittingthisstructuregivesthesetwo view relations:

VR3 ::= { Name + Sex + (Age) }
VR4 ::= { Name + Interest }

9.8.2 Separating Alternatives

The second part of the process of simplifying view structures is to split any view that
contains alternative components and to create aview relation for each alternative. Thereis
only one example of thiskind here:

HotGossip ::= { Name + [Address | Phone] }
This view is separated out to become:

VR5 ::= { Name + Address }
VR6 ::= { Name + Phone }

Theouter level of theview, that isName, ispaired off with each of thealternative components
of theview, Address and Phone.

9.8.3 Gather Them Together

Now we have a number of simple view relations derived from the original view structures.

VR1 ::= { Name + Job + Earnings }
VR2 ::= { Name + Year + Place }
VR3 ::= { Name + Sex + (Age) }
VR4 ::= { Name + Interest }

VR5 ::= { Name + Address }

VR6 ::= { Name + Phone }

Uncovering Facts 211

9.9 Extracting Elementary Fact Types

Each view relation corresponds to a type of sentence. Many of these are capable of
being reduced to simpler, more fundamental, sentence types. The final process involves
examining each view relation to seeif any further reduction can be performed.

There are two steps to this process.

1. Carefully construct a sample sentence based on the view relation. Use some of the data
that was employed in forming the original view structure.

2. Examine that sentence to see if it can equally well be written as two or more simpler
sentences.

Each sentence will either be decomposable, in which case we form the appropriate number
of elementary fact types; or, aternatively, it will not be decomposable, in which case the
view relation itself becomes one of the basic fact types.
We will now examine each view relation in turn.
VR1 ::= { Name + Job + Earnings }
A sample sentenceis:

Sue is a lecturer; she earns peanuts.

We must examine this sentence and make sure that it says exactly what we mean it
to say. In this case, which of the following sentences more accurately expresses its
meaning?

(1) Sue is a lecturer, and as everybody knows, lecturers earn peanuts.
(2) Sue is a lecturer who also happens to earn peanuts.

In other words, is Sue’s earning capacity determined by her job or isit simply afact
about Sue? We will take the first of these aternatives as our choice. Therefore two
separate fact types are embedded in the sentence:

Sue works as a lecturer.
Lecturers earn peanuts.

Now we can generalize these into two fact types. We decide what types of thing
participate in the fact and we give a name to the relationship. For the first sentence,
the entity types would be something like Friend and Job; the relationship might be
called works as a. Sothisfirst sentence, in general, says that:

F1. Friend works as a Job.

The second sentence seems to involves jobs and the earning power of these jobs. It
might be generalized into a fact type like this:

F2. Job earn EarningPower.

VR2 ::= { Name + Year + Place }
A sentence of thistype might be:

212 Chapter 9
In 1986, Sue went on holiday to Bali.
Examination of the original report in Section 9.6 suggests that people have only one
holiday ayear, at most. If thisisthe case, then this sentenceisanirreduciblefact type.
So the complete view relation is one of the elementary fact types we are looking for.
It becomes our next fact type:
F3. In Year, Friend went on holiday to Place.
VR3 ::= { Name + Sex + (Age) 1}
A sample sentence of thistype would be:
Bill, a male, is 29 years old.
Obviously there are two basic sentences. A person’s sex has no bearing on his or her
age. Evenif we did not pick this, a significant clue is given by the optionality of the
age component. Thisisaclear signal that sex and age are separable.
F4. Friend is a Sex.
F5. Friend is N years old.
We will use the standard name N for the entity type consisting of the set of integers,
aswas done in Chapter 2.
VR4 ::= { Name + Interest }
Thisis abinary relation and consequently must be an elementary fact type. Hereis
an example:
Sue likes travel.
In general, the fact type would be something like this:
F6. Friend likes Interest.
VR5 ::= { Name + Address }
Thisisanother binary relation, so no decomposition is possible. A sample fact could
be:
Sue lives at 22 Strand Bvd, Copenhagen
The corresponding fact type would be:
F7. Friend lives at Address.
VR6 ::= { Name + Phone }

Thisisanother binary relation. A sample fact could be;
Bill’s phone number is 391 1615.
Thefact type would be something like the following:

F8. Friend can be telephoned on N.

Uncovering Facts 213

Summary: All the fact types can be written down together as follows:

F1. Friend works as a Job.

F2. Job earn EarningPower.

F3. In Year, Friend went on holiday to Place.
F4. Friend is a Sex.

F5. Friend is N years old.

F6. Friend likes Interest.

F7. Friend lives at Address.

F8. Friend can be telephoned on N.

All the views have now been converted into a number of elementary fact types. The next
step isto find out how and where these facts can be merged. To do this, we need to look at
the participation ratesinvolved in each fact type. However, aswe have no intention of ever
keeping a database on our friends, we will stop this exercise now.

9.10 Further Abstraction

The Extended Backus-Naur Form (EBNF) language has been used to describe the appear-
ance of views or reports. It has links, however, with other notations used in this book. In
particular, it may be compared with the higher-order setsintroduced in Chapter 3.

Therepetition construct { . . . } of EBNF correspondsto the power set operator. A view
of theform:

R == {A}
can be “trandated" into a declaration:
R:SetofA

For example, a series of people: Kim, Ann, Bob, ... isnothing more than a set of
people.

The concatenation construct . . . +. . . of EBNF correspondsto the product set operator.
A view of the form:

R == A + B
can be trand ated into a declaration:
R:AXB

For example, the sequenceBob tennis isnothing morethan atuplethat pairsaperson
with a sport.

We may use this method of conversionto turn our description of viewsinto declarations

in our formal specification language.

Example 9.1 The Green-Eyed Monster Report
The definition of the structure of this report was:

214 Chapter 9

GEM ::= { Name + Job + Earnings + { Year + Place } }

This may be turned into aformal declaration:

GEM : Set of (Person x Job x EarningPower X Set of (Year x Place))

The Green-Eyed Monster Report

Name Job Earns Holiday
Year Place
Sue lecturer peanuts 1986 Bali
1984 Monte Carlo
1985 Acapulco
Bill plumber heaps 1985 Cairms
1982 Rio
Doug doctor heaps 1988 China
1987 France

However, the Person (name) is the key of this (generalized) relation, and so there is a
functional relationship between the key and the rest of the tuple. We may choose to define

it as:

GEM : Person +> Job x EarningPower X Set of (Year x Place))

The view may be regarded as a (rather large) function that maps each person to the kind of
information on which we choose to base our prejudices about each person. The description
isstill clumsy, and we may prefer to declare it in the following way. First we declare two

record types.

__Holiday

Year : N
Destination : Place

__ GemlInfo

WorksAs : Job
FEarns : EarningPower
Holidays : Set of Holiday

The underlying nature of the GEM function may now be clearly revealed:

GEM : Person +> GemInfo

Uncovering Facts 215

Example 9.2 The Match-making Report
Thisview lists each friend’s name followed by their sex, which we know, followed by their
ageif we know it; and finally any spare time interests they might have.

MM ::= { Name + Sex + (Age) + { Interest } }
If we look at the sample report, we can seethat it is also afunction.

The Match-making Report

Name Sex Age Interests

Bill m 29 sport, travel

Sue f 31 travel

Tan m music, art, photography
Ann f 32 Ian

We may declare it directly as:

MM : Person -+ Sex X (N|null) x Set of Interest)

Example 9.3 TheHot Gossip Report
This report provides two alternative pieces of information about each friend.

The Hot Gossip Report

Name Contact

Ann 22 Strand Bvd, Copenhagen
Bill 391 1615

Sue 223 2555

Doug 3 Via Appia, Rome

It has the following structure:
HotGossip ::= { Name + [Address | Phone] }
Thisreport is better seen as an amalgamation of two separate reports:

HG1 ::= { Name + Address }

HG2 ::= { Name + Phone }

Both of these are functions, and we may declare them as:

HG1 : Friend +> Address
HG2 : Friend +> Phone

216 Chapter 9

9.11 Summary
Designing arelational database involvesthe following steps.

1. First of all, we must discover the basic kinds of information that are to be stored in the
database.

2. Then we need to examine each type of fact to see what kind of relationship isinvolved.
Isit afunctional one? We can use the idea of uniqueness constraints.

3. Having determined the participation rates we can then merge certain of these fact types
according to rules formulated in Chapter 8.

The second and third steps are relatively straightforward. The problems we encounter are
usually met in the first of these steps.

The peoplefor whom the database isbeing designed will not expect to and will probably
be unableto tell usthe basic kinds of factsthat are to be stored in their database. They will
present us with a number of complex overlapping pictures of their world. These pictures
are the facts that they wish to store. We, the designers, need to break up these views into
amuch larger number of elementary pictures or fact types. From these we can develop a
good design.

This chapter has looked at how we can perform thisfirst step of user view analysis.

e We have looked at alanguage that we can use to place some order on each view. The
language allows us to define the structure of the view.

¢ We havelooked at how we can decompose these view structure definitionsinto simpler
structures called view relations. From theseflat relations we can extract the el ementary
fact typesthat are built into them.

Uncovering Facts 217

Exercises

P Q9.1 The following advertisement is an extract from the latest issue of the computing
magazine PC PLOD.

THE SOFTWARE SOFTIES

Hereisalist of the cheapest software prices on the market!

Spreadshest Integrated
Lotus1-2-3 $500 PFS $675
Multiplan 795 Framework 999
Quiattro 250 Symphony 795
Languages Word Processing
Microsoft C $100 Wordstar $500
Turbo Pascal 125 Word Perfect 550
Turbo Prolog 125
Games
War $70
Chess 15
Gato 45

Purchasers are entitled to free after-sales service from our acknow!-
edged experts. For spreadsheet, word processing and integrated pack-
ages, ring BiLL BOARD on 228 1165; for languages and games, ring
FrRED HARDLY-EVERIN on 223 5162.

I STOP PRESS !!!

We are offering discountsfor ashort whileonly, 10% off all spreadsheet
and word processing software, 25% off all games.

There arethreedistinct views here; one giving prices, asecond the support available
and athird discounts.

a. Derivethe structure of each view.

b. Deriveview relations from these structures.

c. Extract the elementary fact types.

218 Chapter 9

P Q9.2 A small library wantsto keep track of books that are out on loan and to whom they
areon loan. The librarian envisages needing two reports.

On Loan Report

Patron Patron Item(s) Due Date

Nr Name On Loan

899 Bill Thompson 12099 13/08/91

151 John Smith 13678 21/08/91
54911 21/08/91
99887 23/08/91

755 Anne Davidson 22989 12/08/91
33244 27/08/89

234 John Smith 43559 9/08/89

Title Author (s) Copy Nr Item Nr Loan Type
Autumn Leaves Smith, Jones, Hale 1 45689 2 week

2 76119 4 week
Spring Rolls Edmond 1 87112 4 week
Summer Sales Walsh, Lee 1 26853 2 week
Winter Freeze Frost, Hale, Snow 1 98789 4 week

2 65456 4 week

3 11223 1 week

a. Derivethe structure of these reports.

b. Derive view relations from these structures. Assume that author names and
book titles are unique but patron names are not.

c. Extract the elementary fact types.

Q9.3 The Antarctic Computer Society publishes an occasional magazine called Cold
Comfort. Here isthe contents page of their latest issue.

Uncovering Facts 219

Vol. 21 1995
List of Contents
Page Title
3 Use of neural nets to
solve the Tower of
Hanoi problem
10 UNIX: How Secure?
12 An A to Z of formal
specification

Editor: K.G. Lyon

COLD COMFORT

Author(s)

Smith J., Ross C.

George I., Smith J.
and Dos P.C.

Berg I.C.

Derive the structure of the thistitle page and all the previous ones.

b. Deriveview relations from this structure. You may assume that, for all issues
of the magazine, people are uniquely represented by their names and that the

titles of articleswill never repeat.
c. Extract the elementary fact types.

Q9.4 The following information was extracted from a list of the complete results of the

1995 World Soccer League.

Date Stadium Team Score

21/3/95 Wembley Liverpool
Real Madrid

Hampden Park Rangers

Milan
28/3/95 Lang Park Brisbane
Liverpool
MCG Melbourne
Milan

a Derivethe structure of thelist.
b. Deriveview relations from this structure.

Scorer(s)
0°’Reilly(2), Smith(2),
Jones

Charles, Humble, Santana

Souness
Galileo, Michael

Lewis

Angel o(3), Galileo

220 Chapter 9

c. Extract the elementary fact types.

Chapter 10
Fact-based Analysis

10.1 Introduction

This chapter is presented as aworked exampl e in atechnique which wewill call fact-based
analysis. Thisisaway of designing a relational database. In particular, it is concerned
with developing a design that guarantees that in any resulting database each fact is stored
just once. Here are the stages that we follow.

1

Uncover the relevant entity types and the fact types that join them.

In this step, we apply the techniques of Chapter 9 to find the relevant elementary fact
types.

Look for any uniqueness constraints involved in each fact type.

In this step, we apply the question and answer technique of Section 8.6 to decide
whether a fact type is a many-to-many, a many-to-one or a one-to-one relationship.

. Construct record types by merging fact types, where appropriate.

In this step, we merge fact type according to the rule that permits the merging of
single-valued facts about the same kind of thing.

. Decide which attributes may be null.

In this step we process each record type in turn, examining each non-key attribute of
that record. Those that may contain null values are flagged.

. Define the database.

In this step, we provide an outline of the database.

. Review the design.

Finally, we should check that the database design is satisfactory. Has any computable
or derivable information slipped through into our design? Using SQL, can the major
views be reproduced with this design?

221

222 Chapter 10

. Uncover Conceptual
User Views
fact types Schema
A
Look for
unigueness
constraints
Review the Construct
design record types
A
Decide on
null values
\
Define
Database <
Schema < the Record Types
database

Figure 10.1 An outline of fact-based analysis

Figure 10.1 shows the processes and their outcomes.

e User Views
These are “pictures’ of the users and their environment.
e Conceptual Schema

This consists of entity types and the fact types that join them, typicaly shown in
graphical form.

e Record Types

These are the various aggregate data structures that form the basis of our relational
database.

e Database Schema

This is both a formal definition and and a number of Create Table statements to
define the database.

Fact-based Analysis 223

10.2 The Problem

We need to design a database that will help a firm of garment wholesalers in their order
processing. A typical order form looks like this:

FASHION

DISTRIBUTORS

Customer: 5678
Beauty Nook
369 Left Hand Lane

The sample order is one aspect of the business activities of a garment wholesaler such
as Fashion Distributors. A valid analysis is not possible without an understanding of the
events leading to its receipt. Further, we need some general knowledge of the business
environment in which the company operates.

Fashion Distributors (FD for short) sell women's clothes to boutiques, pharmacies,
souvenir shops and small department stores. None of their customers run more than one
shop. Sales representatives travel with samples of FD’s current styles. They have afairly
stable customer base and areputation for quality and reliability. Once acustomer has made
an order, thisis sent to FD’s head officefor credit approval. If approved, the order is passed
onto the warehouse. There awarehouse attendant attemptsto fill the order, but sometimes
there might not be sufficient stock on hand. Details of the shipment are sent to the accounts
department where an order is prepared and sent out to the customer.

10.3 Step 1: Uncover the fact types

This step requires that we write down all the entity types that we see on the order, that is,
the kinds of thingsthat will appear on order forms. The step a so says that we should write
down any significant factsthat connect these entity types. Although these two requirements
might be done separately, they are better accomplished concurrently.

Order No: 1234 Date: 21-Jul-

95

Style Description Unit | Quantity Total

Code Price

6216 Dress 18.00 5 90.00

Y53A Skirt 15.00 10 150.00

S9501 Dress 15.00 5 75.00
315.00

224 Chapter 10

The process involves the following three stages as was discussed in Section 9.7.

1. Deriveview structures

Analyzeall thevariouspicturesor viewsof the user’sworld that we can obtain. Develop
view structuresfor each of these views.

2. Deriveview relations

In the next stage, each view structure is examined in turn. Any structure that contains
repeating componentsis“flattened" out into anumber of view relations. Any structure
that contains alternative componentsis split into a number of separate view relations.

3. Extract elementary fact types

In the third and final stage, each view relation that results from the previous stage is
examined. Each view relation has a corresponding sentence. Sample sentences of that
type are formed. This sentence may be reduced to two or more simpler sentences,
without loss of information. Alternatively, it may be irreducible. Either way we are
reducing our more complex sentences into a number of elementary sentences.

The outcome of this entire processis a set of elementary sentence or fact types. These are
the basic sentences that are to be stored in the database.

10.3.1 Derive View Structures

We have been presented with only one picture of the user’s world, the order form. Each
completed form represents just one order but we are interested in the set of all orders, so
an appropriate view definition could be the following.
e Orders ::= { OrderForm }
The orders view consists, quite simply, of a set of order forms.
o OrderForm :: = Heading + { IndividualOrder } + OverallTotal

Each order form, such as the one shown, contains a heading, a number of individual
ordersfor specific stylesfollowed by an overall figure giving thetotal value of theentire
order.

e Heading ::= OrderNr + OrderDate + CustomerNr + CustName + Street
Thisiswhat will appear in the top part of each order form.

e IndividualOrder ::= StyleCode + StyleType + UnitPrice + Quantity
+ StyleTotal

Thisisthe information shown on each detail line of the order.
Amalgamating these into a single definition gives us:

Orders ::=

{ OrderNr + OrderDate + CustomerNr + CustName + Street
+ { StyleCode + StyleType + UnitPrice + Quantity + StyleTotal }
+ OverallTotal }

Fact-based Analysis 225

There are two data elements that can be derived from others, the individua style total,
StyleTotal andtheoverall total,0verallTotal. For the purpose of designing adatabase,
these may be discarded. Asaresult, we now have the view that we will analyze:

Orders ::=
{ OrderNr + OrderDate + CustomerNr + CustName + Street
+ { StyleCode + StyleType + UnitPrice + Quantity } }

10.3.2 Derive View Relations

The Orders structure contains a repeating component, and so we must flatten it into two,
simpler, view relations.

Firstweneed toidentify akey component of thestructure. Theview consists, essentially,
of a set of orders. The key will be whatever information we can use to distinguish one
order from another. The OrderNr was clearly designed for this purpose.

The structure is flattened by removing the repeating component entirely from Orders
and placing it in a new relation consisting of this component and the key, OrderNr. The
resulting view relations are:

VR1 ::
VR2 ::

{ OrderNr + OrderDate + CustomerNr + CustName + Street }
{ OrderNr + StyleCode + StyleType + UnitPrice + Quantity }

10.3.3 Extract Elementary Fact Types

Thefinal part of thisfirst step in fact-based analysisisto take the above view relations and
extract whatever irreducible fact typesthey contain.

VR1 ::= OrderNr + OrderDate + CustomerNr +CustName + Street

This view corresponds to the heading on an order form, so we should now construct a
sample sentence using the data on the form provided.

e Order number 1234, which was taken on 21-Jul-95, was made by customer number
5678; this customer trades asBeauty Nook at 369 Left Hand Lane.

Thisisalong-winded and awkwardly phrased sentence; a sure sign that it can, and should,
be decomposed. The sentence breaks most obvioudly at the semi-colon, so we can rewrite
it as:

e Order number 1234, which was taken on 21-Jul-95, was made by customer number
5678.

e Customer number 5678 trades asBeauty Nook a 369 Left Hand Lane.

In the first of these sentences, it should be clear that the date on which the order was taken
is independent of the customer who made the order. Looking at the second, it should be
seen that the customer’s trade name and address are separate facts about the customer. So
the two sentences can be further reduced.

226 Chapter 10

e Order number 1234 was taken on 21-Jul-95.

¢ Order number 1234 was made by customer number 5678.

e Customer number 5678 trades asBeauty Nook.

e Customer number 5678 islocated at 369 Left Hand Lane.

These are dl binary facts and so are irreducible. Generalizing them givesrise to four fact
types:

F1. Order was taken on Day.

F2. Order was made by Customer.

F3. Customer trades as Name.

F4. Customer is located at Address.

VR2 ::= OrderNr + StyleCode + StyleType + UnitPrice + Quantity
This view correspondsto aline on the order, so we can use data from one of these linesto
construct a sample sentence from this relation.

e On order number 1234 there was a request for 5 units of style 6216 which is a dress
and sellsfor $18. 00.

The phrase “which is a dress and sells for $18.00" contains two asides which are aimed
solely at the style code 6216. The sentence can be restated as follows.

e Style6216isadress.

e Style6216 sellsfor $18.00.

¢ On order number 1234 there was arequest for 5 units of style 6216.
The first two of these sentences are irreducible but what about the third? If we were to
re-expressit as three simple sentences we would get:

e On order number 1234 there was arequest for 5 units (of some style or another).

e On order number 1234 there was a request for style 6216 (but we don’t know how
many).

e There has been an order (but we don’t know which) for 5 units of style 6216.

These three facts are not enough to permit us to reconstruct the original sentence; this
sentence is also irreducible. This leaves us with three fact types to be extracted from this
view relation:

F5. Style is a StyleType.
F6. Style sells for Money.
F7. On Order, Quantity units of Style were requested.

TheResultsof Step 1

This step requires that we decide on the relevant entity types and the fact types that join
them. We have now accomplished thistask. Thefact typesand the entity typesthey connect
areasfollows:

Fact-based Analysis

227

F1.
F2.
F3.
F4,.
F5.
F6.
F7.

Order was taken on Day.

Order was made by Customer.

Customer trades as Name.

Customer is located at Address.

Style is a StyleType.

Style sells for Money.

On Order, Quantity units of Style were requested.

The conceptual schema diagram for these seven facts is shown in Figure 10.2.

Address

F4

(D ®

Cuﬂiii/ Name

F3

Day

StyleType

Money

L[]
L[]
L[]

O®

Figure 10.2 The first-draft conceptual schema diagram

228 Chapter 10

10.4 Step 2: Look for uniqueness constraints

Now we will examine each of the fact types uncovered in step 1 and try to establish the
nature of the relationship between the entity types that participate in the fact. We will be
looking for uniqueness constraints and will mark the conceptual schemadiagram according
to our findings.

F1. Order was taken on Day.

In diagrammatic form this fact type looks like:

was taken on generated
! !

v

The questions that we must answer are as follows.
Q1. Was any order taken on morethanoneday?
The answer is N0 so thereis a uniqueness constraint.

The other question is phrased using the opposite form of the relationship, namely
generated.

Q2. Didany day generate morethan oneorder?
The answer, we hope, is YES and so there is no uniqueness constraint.

The role boxes can now be marked to show the constraint involved in this fact type.

was taken on generated
! !

v

F2. Order was made by Customer.
Q1. Was any order made by more than one customer?
The answer isNO so thereis a constraint.
Q2. Hasany customer made morethan oneorder?

The answer issurely YES so there isno constraint on thisrole.

was made by made
| |

F3. Customer trades as Name.
QL. Doesany customer trade as morethan onename?
We will makeit No but the answer is one we might have to discuss with our client.

Q2. Isany name traded under by morethan one customer?

Fact-based Analysis 229

F4.

F5.

F6.

F7.

The answer isNO (alegal requirement), so thereisaconstraint here.

trades as traded under by
| |

0

Customer is located at Address.

QL. Isany customer located at more than one address?

The answer isNO so thereis a constraint.

Q2. Isany address the location of morethan oneshop?

Some customers might be located at shopping centres so we will make the answer
YES.

is located at is the location of

?

Style is a StyleType.

Q1. Does any style have morethan one style type?

The answer isNO so thisis a constraint.

Q2. Doesany style type include morethanonestyle?

The answer is YES. Thereis no constraint. It may be that shirt describes several
different styles.
isa includes

|

|
v

I

Style sells for Money.

Q1. Doesany style sell for more than one amount (of money)?
The answer isNO so thereis aconstraint.

Q2. Isany money amount the price of morethanonestyle?

The answer is YES S0 there is no constraint.

sells for is the price of
| |
v

On Order, Quantity units of Style were requested.

?

Thisfact type involvesthree entity types, Order, Style and Quantity.

230 Chapter 10

The question-answer technique can be modified to deal with three-part fact types.
This done by pairing two of the entity types and relating them to the third. Because
there are three participants, there are three ways of performing this permutation.
Theseare (1) Order and Style against Quantity; (2) Order and Quantity against
Style; and (3) Style and Quantity against Order.

QL. Doesany style on an order have morethan onequantity?
The answer is NO and so there is aconstraint.
Q2. Isany quantity on an order that of morethan one style?

The answer is YES and so there is no constraint on the quantity + order combi-
nation.

Q3. Doesany quantity of a style appear on morethan one order?

The answer is YES, because more than one customer may order 10 units of some
given style. So thereis no constraint on the quantity + style combination. See
Figure 10.3.

Figure 10.3 An irreducible fact type

We should now redraw this fact type as a nested one, as shown in Figure 10.4.

The revised conceptual schema diagram, now incorporating the uniqueness constraints and
the nested fact type, is shown in Figure 10.5.
10.5 Step 3: Construct record types

In this step we merge the fact types into record types. The basis for merging is the
determinant.

Wherever an entity type appears in a conceptual schema diagram and it is
connected to arole box against which there is a uniqueness constraint, then
the associated relationship isasingle-val ued fact about that entity type. The
entity typeis said to be a deter minant.

For example, fact type F1 is a single-valued fact about an order. Orders are taken on one
particular day. Asaresult of our work in step 2, we can quickly tell thisfrom the diagram.

Fact-based Analysis 231

Figure 10.4 A nested fact type

The entity type Order is called the determinant because knowledge of an order determines
one particular order date.

All the fact types that involve a particular determinant are merged to create a record
type. The determinants, with their associated entity and fact types, are summarized bel ow.

Determinant Entities Fact typesinvolved
Order Order F1, F2

Customer Customer F3, F4

Name Name F3

Style Style F5, F6

StyleOrder Order + Style F7

Fact type F3 is a one-to-one fact involving customers and their names. As a conse-
guence, it appears twice, once with Customer as the determinant and once with Name. We
choose to aggregate F3 with other factsrelating to Customers. The record types that result
from the merging process are:

Record Type
Fact Key? | Attribute References?
(%) | OrderNr
F1 OrderDate
F2 CustomerNr Customer Record

232 Chapter 10

;O T T T T/ T/ T N
} Address
\
\
_ \
| Name
\
\

\
\
\
\
. \
l Day
\
)

777777 marks the boundary of amerge

Figure 10.5 The final schema

Customer

Record Type
Fact Key? | Attribute References?
(x) | CustomerNr
F3 Name
F4 Address

Fact-based Analysis 233

Record Type

Fact Key? | Attribute References?
(*) | StyleCode
F5 StyleType
F6 UnitPrice

StyleOrder

Record Type

Fact Key? | Attribute References?

(*) | OrderNr Order Record
(*) | StyleCode Style Record
F7 OrderQty

Our model is going to end up inside a computer system, but we can’t put shops or
garments or customersinside our computer. Instead, we must represent them in some way.
What we do isto look for some way of symbolizing them.

The subsgtitutions are implied by the way that entities were represented in sample
sentences. For example:

e Order number 1234 was taken on 21-Jul-95.
The corresponding fact type was:
e Order wastaken on Day.

The generalization from the sample sentence to the fact type involved arecognition that (1)
an order number represented the entity type Order; and (2) a date represented the entity
typeDay. What we are doing in this step is returning to the symbolic level. A completelist
of the substitutions used is as follows:

Entity type Representation

Order Order Number
Day Date
Style Style Code

Customer Customer Number

10.6 Step 4: Decide which attributes may be null

We must now decide which attributes of each relation will permit null values. Thisrequires
that we return to the relevant fact type and find out the least participation rates for the
determinant only.

F1. Order was taken on Day.

To determine whether or not null values are to be allowed in the Day attribute, we
must answer the following questions.

234

Chapter 10

F2.

F3.

F4.

F5.

F6.

Q1. Will every order be taken on some day?

YEs, it could hardly be done outside of space and time, so we must go on and ask
the supplementary question.

Q2. Must we always know on which day an order was taken?

The answer cannot be answered from the sample order form we have been using so
far; we should really ask the users. If there is any doubt then the answer should be
NO. That isthe one we will use now.

The consequence of a negative answer is that nulls should be permitted for the Day
attribute in the Order proto-relation.

Order was made by Customer.

QL. Isevery order made by some customer?

The answer iS YES.

Q2. Must we always know which customer made an order?

The answer must surely be YEs. Nulls should not be alowed in the Customer
attribute of the Order proto-relation.

Customer trades as Name.

QL. Does every customer trade under some name?

The answer iS YES.

Q2. Must we always know under which name a customer trades?

Again, the answer must surely be YES. Nulls are not to be permitted for the Name
attribute of the Customer proto-relation.

Customer is located at Address.

QL. Isevery customer located at some address?

The answer iS YES.

Q2. Must we always know at which address a customer is located?
Again, the answer must be YESs.

Style is a StyleType.

QL. Isevery style of sometype?

The answer iS YES.

Q2. Must we always know which type the styleis?
We cannot be sure, so the answer must be No.

Style sells for Money.

QL. Doesevery style sell for some amount of money?
The answer iS YES.

Q2. Must we always know how much a style sellsfor?
The answer must surely be YEs.

Fact-based Analysis 235

F7. On Order, Quantity units of Style were requested.

Q1. Will there always be some quantity specified for every style appearing on an
order?

It would seem appropriate.
Q2. Must we always know how many units of a style were requested on an order?

The answer must be YES.

Two record types should now berevised to include theresults of thesequestions. A question
mark (?) is placed aongside any attribute that can contain nulls.

Record Type
Fact Key? | Attribute References?
(*x) | OrderNr
F1 (?) | OrderDate
F2 CustomerNr Customer Record
Style
Record Type
Fact Key? | Attribute References?
(%) | StyleCode
F5 (?7) | StyleType
Fé UnitPrice

10.7 Step 5: Define the database

We begin the formal definition of the database by defining schema record types for each
record type.

OrderRecord

OrderNr : Order
OrderDate : Date
CustomerNr : Customer

CustomerRecord

CustomerNr : Customer
Name : Name
Address : Address

236 Chapter 10

StyleRecord

StyleCode : Style
Style Type : Style Type
UnitPrice : Money

Style TypeRecord
OrderNr : Order
StyleCode : Style
OrderQty : N

Now we can define the database schema itself.

__Database

Orders : Set of OrderRecord
Customers : Set of CustomerRecord
Styles : Set of StyleRecord
StyleOrders : Set of StyleOrderRecord

count Orders = count {o : Orders @ 0.OrderNr}

count Customers = count {c : Customers o c.CustomerNr}

count Styles = count {s : Styles o s.StyleCode}

count StyleOrders = count {s : StyleOrders o (s.StyleCode, s.OrderNr)}

count {c¢ : Customers o c.CustomerNr} = count {c : Customers & c.Name}

{0 : Orders o 0.CustomerNr} C {c : Customers o c.CustomerNr}
{s: StyleOrders e s.OrderNr} C {o : Orders & 0.OrderNr}
{s: StyleOrders e s.StyleCode} C {s : Styles o s.StyleCode}

The relation key constraints are given first. Then the one-to-one relationship between
customers and their names is specified. Finaly, we define the referential integrity or
inclusion constraints between foreign keys and their parent tables.

The SQL create table Statements may now also be defined. Each record type gives
riseto aseparate create statement, with the attributes of the table being taken from those
of the record type, asisthe nullity of each. Theprimary key clauseisbased onthe Key?
column of the record type table. The foreign key clauses are based on the References?
column.

Create Table Orders
(OrderNr number (4,0) not null,
OrderDate date,
CustomerNr number(4,0) not null,

Primary key (OrderNr),
Foreign key (CustomerNr) references Customers(CustomerNr))

Fact-based Analysis 237

Create Table Customers

(CustomerNr number(4,0) not null,

Name char (30) not null,
Address char (30) not null,

Primary key (CustomerNr))

Create Table Styles

(StyleCode char(8) not null,

StyleType char(20),
UnitPrice number(7,2) not null,

Primary key (StyleCode))

Create Table StyleOrders

(OrderNr number (4,0) not null,

StyleCode char(8) not null,
OrderQty number (4,0) not null,

Primary key (OrderNr, Stylecode)

Foreign key (OrderNr) references Orders(0OrderiNr),
Foreign key (StyleCode) references Styles(StyleCode))

10.8 Step 6: Review the design

During atypical exercisein fact-based analysis, we examine user views in order to extract
fact types. The order form shown at the beginning of this particular exerciseis an example
of aview. The narrative that accompanies the order provides another. This final step in
fact-based analysis is not really part of the design process, nor does it truly validate the
design. Rather, it providessomekind of check on whether major flaws exist in the relations
we have defined. One way of validating the design is to see whether a view can be We
begin with the heading:

Select

From

Where
and

OrderNr, Date, CustomerNr, Name, Address

Orders, Customers

Orders.CustomerNr = Customers.CustomerNr

OrderNr = 1234

The following SQL will give us the body of the order:

238 Chapter 10

Select Styles.StyleCode, Styles.StyleType, Styles.UnitPrice,
OrderQty, OrderQty * Styles.UnitPrice

From Styles, StyleOrders
Where Styles.StyleCode = StyleOrders.StyleCode

and StyleOrders.0OrderNr = 1234
StyleCode Type UnitPrice OrderQty Cost
6216 Dress 18.00 5 90.00
Y53A Skirt 15.00 10 150.00
58701 Blouse 15.00 5 75.00

The following SQL will provide us with the overall order total:

Select sum(OrderQty * Styles.UnitPrice)

From Styles, StyleOrders

Where Styles.StyleCode = StyleOrders.StyleCode
and StyleOrders.OrderNr = 1234

Overall

Total

315.00

10.9 Summary

Thischapter has presented aworked example of relational databasedesign. It hasattempted
to integrate the tools and techniques introduced in Chapters 8 and 9.

Designing a database, like most other activities requiring skill, is something at which
we improve with practice. The fact-based analysis (FBA) method has been shown as a
rather large number of small steps. This has been done so asto make the steps manageable
for newcomers. The danger is that a multitude of steps will daunt. It is, therefore, worth
comparing thissituation to that of learningto drive. When we start, driving seemsto require
the almost simultaneous use of many new skills. Once we have driven for some time, all
these skills are applied with ease. We steer, change gear, put on indicators and scan the
road ahead without a hitch.

The same kind of comment applies to relational database design. An experienced
designer will apply all the steps of fact-based analysis almost without realizing it.

Fact-based Analysis 239

Exercises

Q10.1 MEGA CONSTRUCTORS

Mega Constructors is an international company that specialises in large-scale
construction. They build such things as bridges, dams, office blocks, hotels and
factories.

The company is divided into a number of departments. Each department special-
izes in one form of construction; for example, department 654 deals exclusively
with the erection of bridges, regardless of their geographical location.

Head Office, however, is interested in the activities of the various geographical
areas in which the company operates. Thisisfor political and financial reasons.

Each individual construction activity is termed a project. Each project is given a
code, which is used to uniquely identify the project in any reports.

Prior to the commencement of construction, the project is analyzed into a number
of tasks. Thisis done by the project leader and his or her assistants. Each task
is given a code, unique to that project. For each task, a time estimate is made.
A monthly budget is developed for the expected lifetime of the project. Aseach
project progresses, actual expenditureis monitored.

There are three reports to be analyzed.

1. The Departmental Summary

This report appears monthly. Each department’s projects are listed. For each
project run by that department, the actual and budgeted expenditurefor the previous
month are compared. The month and year are therefore significant.

Departmental Summary
Department: 654
Activity: Bridge Construction Manager: Sam Small

August 1998 Figures

Project Description Budget Actual
NOOSA Noosa Bridge 950 000 821 006
DIEGO San Diego Overpass 1 011 965 1 201 943
SAUCE Spaghetti Junction 21 854 30 446

TAY Perth Swan Bridge 124 300 110 477

240 Chapter 10

2. TheProject Status Report

This report appears on demand. Each task within aproject islisted along with the
original time estimates, the effort so far, revised estimates and the project leader’'s
feeling about the state of the task.

Project Status Report

Project: NOOSA

Leader: Harry Hasting Department: 654
Original Days Days Now
Task Description Estimate So Far Expected
DIG Dig Foundations 6 3 7
POUR Pour Cement 16 10 12
ERECT Erect Scaffolding 2 2 2
BOX Lay Girders 25 0 25

3. The Area Summary

This appears on demand. It simply lists current projectsin each area of the world.
The original contract value of the project also appears.

Area Summary

Area: 21 Australia Controller: Bill 0’Reilly
Department Project Description Contract ($M)
654 NOOSA Noosa Bridge 56.82
826 HEAP Hay Point Ship Loader 101.00
112 SWEETY Bondoola Sugar Mill 35.25
189 DTS Bondi Brewery 15.50

Required:

Perform afact-based analysis of the situation described above. You may assume
that people are identifiable by their name.

Fact-based Analysis 241

P Q10.2 Marge Butter and the Cholesterols have recently released a compilation of their
greatest hits on an album entitled Best Soread. This work consists of a hum-
ber of tracks taken from previously released albums. The sleeve notes provide
information on those involved with each track. Hereis atypical note.

Track 3: Case Tool Cool (4:30)

Music: Hans Zupp/ Rip Cord/ Norman D. Butter
First released on Seek Well in 1985

Producer: Norman D. Butter

Vocals. Marge Butter

Drums. Hans Zupp/Bill Board

Bass. Kerry Gould

Guitar: Marge Butter/Rip Orff/Norman D. Butter
Clarinet/Sax: Split Reed

Split Reed appears courtesy of
ILLWIND Records, Rip Orff courtesy
CANNYLAD Records.

Perform a fact-based analysis of the album. You can assume the following.

Most of the people are involved on several of the tracks.

Margie and friends have occasionally released more than one album in the
same year.

Thereis only ever one producer per track.

“Vocals' isjust another kind of instrument.

Chapter 11

Entity-relationship
Modeling

11.1 Introduction

Entity-relationship modeling is a very popular method for designing databases. ER mod-
eling, asit is often called, may be described as a top-down approach in that it encourages
to look at the “big picture” first. We begin by describing the world in terms of entity types
that are related to one another in various ways. We may then refine that picture to show
the attributes of each entity type. Thus we start by looking for the major kinds of things
that populate the situation to be modeled. These entity types will giverise, eventualy, to
the mgjor relations in our database. In a hospita situation, for example, the entity types
might be:

e patients

e wards

e beds

e surgeons

e nurses
We then establish any relationshipsthat exist between these entity types, such as:

o Patientsare operated on by surgeons.
o Patientsare located in beds.
¢ Bedsare placed in wards.

o Nursesare dlocated to wards.

241

242 Chapter 11

The relationships enliven the otherwise static picture of the hospital that is provided by the
entity types on their own. In database terms, some of these relationships might also be
represented by relations. For example, if details of the time and place of operations are
required, we might need an Operations relation. Other relationships might be adequately
represented by foreign key linkages between relations. Finally, we flesh out the entity
types by attaching propertiesto them. For example, we might want to know each surgeon’s
specialty, qualifications and home telephone number. Similarly, we can attach attributes
to relationships, adding the operating theatre as an attribute of the operation relationship.
Thuswe look for important features before examining them in detail. The techniqueis not
as clear-cut as this. We may need to cycle through the process a number of times until we
are satisfied with our model.

11.2 An Example

Moreton Bay University is a large institution with several campuses scattered across the
city of Moreton. Academically, the University is also divided, consisting of a number of
faculties, such as the Arts Faculty, the Science Faculty, and so on. Some of the faculties
operate on anumber of campuses. Faculties, in turn, are divided into schools; for example,
the Science Faculty has a School of Physics and a School of Chemistry. It is University
policy, however, not to split schools.

11.2.1 Entities

Supposewetry to model what has been described so far. Using the narrativeasaguide, the
first step would be to recognize that campuses are an important feature of the University.
In Entity-relationship modeling, we can do this by enclosing the name of that featurein a
rectangle, asisshownin Figure 11.1.

Campus

Figure 11.1 The campus entity type

Why did we not start with the University itself? It is obviously an important entity. Why
did we chooseto ignoreit? There are two reasons. To begin with, it isthe University itself
that we are modeling; so weare not ignoring it at all. However, thereis another reason. We
are not so much interested in specific entitiesasin types of entities. Notethat the type name
is singular. Thus the box represents both a typical campus and the set of all campuses.
The second entity typeis clearly the faculty. This new typeis added to the diagram we are
constructing. See Figure 11.2.

Thefirst two entity types show how diversethe concept of an entity can be. The Campus
entity type divides the University in a physical sense. The Faculty dividesit intellectually,
S0 to speak.

Entity-relationship Modeling 243

Campus Faculty

Figure 11.2 And now we have two!

11.2.2 Relationships

The third entity typeis the School, and by the time that we have drawn a box for schoals,
we will befeeling like showing how these three kinds of thing are related. The connection
between faculties and schools is clear. A faculty is divided into a number of different
schools, as can be seen in Figure 11.3. We show this relationship as a diamond-shaped
symbol that connects the types of entity involved.

1 N
divided

Figure 11.3 Faculties are divided into schools

Faculty School

The cardinality of the relationship isaso noted. This particular relationship is one-to-
many (1 to N). The N (for many) is written at the School side of the diamond to indicate
that a faculty may be divided into a number of schools. Conversely, however, a school is
part of just 1 faculty. The representation of any relationship may be interpreted at both the
individual and at the general level. At theindividua level, an instance of the relationship
might be that the Biology School is one of four schools into which the Science faculty is
divided. See Figure 11.4.

Science

Biology Chemistry Geology Physics

Figure 11.4 The Science Faculty is divided

The division of the Science Faculty is represented as four separate individual relationships
between that faculty and its constituent schools. At the general level, the relationship
cardinality indicates that no school is part of more than one faculty. As presented in the
diagram, the relationship has been named from the faculty point of view. Obvioudly, it is
the faculty that is divided, not the school. Given that we have only one chance at naming
the relationship, it is better to name it so that we can read the diagram from left to right as
we normally do. However, it remains that we are seeing just one side of the relationship.
We can extend the diagram to include the relationship between schools and campuses.

244 Chapter 11

Campus
1
N
1 N
Faculty divided School

Figure 11.5 Introducing the campus entity type

This is another one-to-many relationship. A school is located on just one campus,
although a campus may be the location of many schools. This time, the relationship has
been named from the campus point of view, because the Campus entity box is above that
of the School, and we tend to read from top to bottom.

The narrative actually discussed how faculties are spread across campuses. It might be
argued that we should have described this location as a relationship between faculties and
campuses rather than between school s and campuses. However, because a school is part of
just one faculty as well as being located on just one campus, we can determine over what
campuses any particular faculty is spread.

It should already be apparent that ER modeling and fact-based analysis approach
database design in two quite different ways. In the fact-based approach, we are required
to bring to the surface and express the facts that are to be stored in the database. In the
ER approach, we are encouraged to suppress this verbalization in the belief that there is
some deeper understanding of the situation, and that such understanding is better expressed
diagrammatically or spatially, rather than verbally. Thisisamatter of opinion.

However, it is not in doubt that, in any given situation, there will be some kinds of
things that are more important than others. The ER approach encourages us to start with
these, to establish the relationships between them, and to refine from there. If we look at
ER modeling as a graphical approach to database design, it saysthat there will be relations
for campuses, faculties, schoolsand so on. It then becomes a matter of deciding what kind
of information, that iswhat columns, these relations will have. Before we do that, we will
introduce some more important facts.

There are students, obviously, and each student is enrolled in a single course of study
which involves a fixed core of subjects specific to that course as well as a number of
electives taken from other courses. Each course is offered by one particular school. The
schools also employ lecturing staff to teach the students taking these subjects. A student
isawarded a grade in any subject taken; the nature of the grade may mean that the student

Entity-relationship Modeling 245

has to take the subject again! Finally, each campus hasits club, where the cares of the day
are eased, in one way or another. The diagram in Figure 11.6. shows how these things are
connected.

1 1
Campus Club

1

contains

N

1 N 1 N
Faculty divided School offers Course —
1 1
employs contains
N N
1
M N
Lecturer Subject enrolled

N

taken by

N

Student ——m———

Figure 11.6 The story so far

There are now course, subject, lecturer and student entity types, in addition to those
already introduced. These entity types are related in the way shown. There are three
possible kinds of relationship:

1. Many-to-many relationships:

taught A lecturer may havetaught many different subjectsand eventhe same subject
on many different occasions. A subject may also have been taught by many
different lecturers.

taken by A subject may be taken by many students and a student may take many
subjects.

2. One-to-many relationships:

246 Chapter 11

contains A campus may contain many schools, but a school is located on just one
campus.

contains A course contains many subjects, but a subject isin just one course.
divided A faculty isdivided into many schools, but aschool is part of just onefaculty.

enrolled A course may have many students enrolled, but a student is enrolled in just
one course.

offers A school may offer many courses, but a courseis offered by one school.

employs A school employs many lecturers, but a lecturer is employed by just one
school.

3. One-to-onerelationships:

has A campus hasjust one club and aclub is located on just one campus.

11.2.3 Attributes

We have developed an outline of the University, and now we may want to refine that de-
scription by providing more detailed information. Thisisachieved by supplying attributes
that show different facets of the entity and relationship types. There are three kinds of
attributes — simple, composite and set-val ued.

Simple Attributes

An attribute is shown as an ellipse that encircles the attribute name and which is attached
to the relevant entity type, as may be seenin Figure 11.7.

Faculty

00

Building

Figure 11.7 Faculty attributes

Identifying attributes, that is attributes that distinguish one entity from another of the
sametype, are underlined. So, according to the diagram, each faculty has adifferent name.

Simpl e attributes may be regarded as functions mapping from the entity type to the set
of values associated with the attribute.

Dean : Faculty +> Person
Building : Faculty +> Buildings

Each faculty is symbolized by itsidentifying attribute, that is, by its name. The domain of
each function is the entity type itself. The range of each function is the value set of the
attribute. The range of the Dean function isthe set of people who are deans. The range of
the Building function is the set of University buildingsin which faculties are housed.

Entity-relationship Modeling 247

Relationships may also have attributes. We might choose to represent the year that a
school moved to its current location as an attribute of the relationship rather than of the
school itself. We will avoid thisand make it an attribute of the school itself.

School

Figure 11.8 Relationships may also have attributes

There are relationships, however, for which we may need to record attributes. These
are the many-to-many relationships.

M N
Subject Student

Qreard Gomesy Corace)

Figure 11.9 Attributes of a many-to-many relationship

A student may (unfortunately) need to take a subject more than once. Each occasion on
which that subject wastaken by that student isidentified by the year and semester involved.
The grade achieved on that attempt is also an attribute of that relationship. Thisis shown
in Figure 11.9.

An attribute of a relationship may be also be considered as a function. The Grade

248 Chapter 11

attribute may be represented as follows:

Grade : Student x Subject x Year x Semester +> N

Composite Attributes

Certain attributes may be shown as being composite. Typical of these are names, addresses
and dates. We can show this subdivision by making the attribute have attributes of its
own, as may be seen in Figure 11.10. However, even this subdivision much simplifiesthe
situation. Addresses may take a great many different forms. It might be better to omit this
detail asit islikely to obscure the situation rather than clarify it.

Name Student

Year
Enrolled

Address

Figure 11.10 Composite attributes

Composite attributes may be defined using the Cartesian product operator or by means
of aschematype:

DOB : Student +> Day x Month x Year

Set-valued Attributes

A typical attribute is a single-valued feature, such as a person’s age, sex or height. There

may be occasions, however, when it seems more natural to associate a set of values with

some entity. Suppose we are interested in the sporting facilities offered by each of the

campus clubs, such aswhether it hasa swimming pool or squash courts or agym. We show

aset-valued attribute by enclosing it within adouble€llipse, asmay beseenin Figure 11.11.
A set-valued attribute may be described, formally, using the power set operator.

Facilities : Campus +> Set of Sport

11.2.4 Dependent or Weak Entity Types

Sofar, al the entitieswithin agiven type have been distinguishable from one another. Each
campus has its own name, as does each school and each faculty. There may be occasions
when it is not possible to provide such unique identification. Take the case of committees.

Entity-relationship Modeling 249

Club

Figure 11.11 A set-valued attribute

Every university operates by committee and Moreton Bay University is no exception.
By University policy, each faculty has to have a set number of committees, the Faculty
Executive, the Post-Graduate Studies Committee, the Health and Sanity Committee, and so
on. These committees meet at regular intervals, such asweekly or monthly. The frequency
is determined by the faculty involved. Because each faculty has committees with the
sametitles, thetitleis not enough to identify a particular committee, University-wide. We
need to add the faculty name to fully establish its identity. Having done so, we can talk
quite specifically about the Faculty of Science Executive Committee or the Faculty of Arts
Post-Graduate Studies Committee.

The committee is said to be a weak or dependent entity type. We will use the
latter term. A dependent entity type is enclosed within a double rectangle as shown in
Figure 11.12. Each committee entity may be fully identified by adding in the faculty name.
Thisidentifying relationship isenclosed within adoubl ediamond shape. A dependent entity
type may be involved in other relationships besides the identifying one. A committee's
membershipistakenfromthelecturers. A lecturer may be amember of several committees,
however, and so this is not an identifying relationship. The member relationship will be
represented within the single diamond shape.

The non-dependent entity types, such as Faculty and School, are said to be regular
entity typesto distinguish them from the dependent ones.

11.2.5 Recursive Relationships

So far, all the relationships discussed are ones between different entity types. It is quite
common, however, to have rel ationships between entities of the sametype. For example, at
Moreton Bay, it may be necessary for any student taking a particular subject to have taken,
and passed, one or more prerequisite subjects. Inturn, thissubject may be aprerequisitefor
anumber of other subjects. So we have arecursive relationship. This may be represented
as shown in Figure 11.13. This particular relationship is many-to-many.

A one-to-many recursive relationship may be used to represent a hierarchical situation.
Suppose that there is a pecking order amongst the lecturers. A lecturer may be in charge
of several lecturers, each of whom may be in charge of several other lecturers, and so
on. A lecturer, however, reports to just one superior. This hierarchy and its manner of
representation are shown in Figure 11.14.

The complete model for Moreton Bay University is presented in Figure 11.15.

250 Chapter 11

N gt

Committee Lecturer

(e Qe

Figure 11.12 Weak or dependent entity types

Subject

Figure 11.13 A recursive relationship

Bob
| I | Lecturer
Sue Kim Dan
1 in N
charge
Alex Mark of

Figure 11.14 A hierarchical relationship

Entity-relationship Modeling 251

——————— uepms ()

pruspnis

@ Aq uaxed N < bai-aid
S RPe oo

pajjoius e 109[gns Wbney 181n)097 Taquiaw PaNIWWo))|

N N N W

T 8pod
N D) N
Sureyuod sAojdwa @

—
i
=
£
=l
=
[3)
—

asIn0) Siayo |ooyas papinip Aynoe4

=

surejuod

@
=1
@\ anio sey sndwe)

b e

N

—

—
—

o

Buipiing

Figure 11.15 Moreton Bay University

252 Chapter 11

11.3 Database Design

We will begin with asimple example that shows the more important elements.
N

Course

We turn each entity type into arecord type, with the entity attributes becoming record
attributes. In the above situation, we will have two record types, one based on the School
entity type and the other on the Course.

School

Cour se

Record Type Record Type
Key? Attributes References? Key? Attributes References?
(*) : CourseCode (*) : School Name
P Title ! Head
Level Bui | di ng
Length I

It remains to represent the relationship. One solution is to create a record type that

contains the keys of the related entity types. This would enable us to connect any related
schools and courses. However, there is a more common solution based on the cardinality
of the relationship; a school may offer many courses but a course is offered by just one
school. So we can add the school name as an extra attribute of the Course record type
which now contains the necessary link between the entity types.

Cour se

Record Type

Record Type

Key?i Attributes References? Key?i Attributes References?
(*) Cour seCode »(*) School Name

L Title | Head

Level Bui | di ng

Length I

School Nare School

Entity-relationship Modeling 253

11.4 The Conversion Process

Step 1: Entity types

Introduce arecord type for each regular entity type. The key of this record type will be the
key attribute(s) of the entity type. All simpleattributesareincorporated directly. Composite
attributes are replaced by their (ssmple) components. Set-valued attributes are ignored at
this stage.

Those attributes forming the key should be marked as such. The Moreton Bay
model contains eight of these entity types. The resulting record types are shown in
Figures11.16 and 11.17.

Step 2: Dependent entity types

Introduce a record type for each dependent entity type in the same way as was done for
regular entity types. To each record, add the key of the owning entity type(s). The key of
this new record type is the combination of the key of the owning entity typein conjunction
with the partial key of the dependent entity type.

There is one such entity type in our model, the Committee. This record type will be
as shown in Figure 11.18. In adding the owning entity reference, we have dealt with the
relationship between these types.

Step 3: Many-to-many relationships

Introduce a new record type consisting of any attributes of that relationship. Add the keys
of the record types associated with the entity types that participate in the relationship. In
our model, there are four of these relationships:

Relationship Entity Types

took Student, Subject
taught L ecturer, Subject
member Lecturer, Committee
prereq Subject, Subject

The resulting record types are shown in Figure 11.19.

Step 4: One-to-many relationships

Next we handle one-to-many (or many-to-one) relationships. These are distinguished from
the many-to-many relationships just discussed. Consider the divided relationship. A
faculty may be divided into several schools but aschool is part of just onefaculty. We have
two options.

1. We can add the faculty name as an attribute of the school record type. We may do this
because a school can only ever be part of one particular faculty.

2. Alternatively, we can introduce a record type specifically to represent the relationship,
as was done with the many-to-many rel ationships.

Thefirst option is the one more likely to be taken, because it will help reduce the total
number of relationsin the eventual database. However, if it is possible for schoolsto exist
without being part of any faculty, then we must allow nulls in the faculty name attribute

254 Chapter 11

Record Type Record Type

Key?é Attributes References? Key?é Attributes References?
(*) : CourseCode (*) : School Nane
CTitle i Head
i Level ¢ Bui | di ng
i Length
Record Type Record Type

Key?é Attributes References? Key?é Attributes References?
(*) @ CanpusName (*) : O ubNane
i Addr ess ¢ Bui | di ng
. Di stance i PhoneNr
i BusNumber
Record Type Record Type

Key?é Attributes References? Key?é Attributes References?
(*) : Facul tyName (*) : staffld
i Dean i Name
' Bui | di ng CTitle
| | ; Room |

Figure 11.16 Record types based on entity types (part 1)

of the school record. If most of the schools are like this then we might choose the second
option, creating arelation for those few schools that are linked to a faculty.
To handle these relationshipsit is helpful to list them in the following tabular form:

Entity-relationship Modeling 255

Subj ect St udent
Record Type Record Type
Key?i Attributes References? Key?i Attributes References?
(*) ! SubjectCode (*) ! Studentld
P Title i FirstName
I I Last Name
| DateGBirth
Year Enrol | ed

Figure 11.17 Record types based on entity types (part 2)

Record Type

Key?i Attributes References?
(*) @ Title

i Meets ;
(*) : Facul tyNanme . Facul ty

Figure 11.18 A dependent entity

Relationship N-Side 1-Side

contains School Campus
divided School Faculty
offers Course School
employs Lecturer School
contains Subject Course
enrolled Student Course

Thetable showsthe relationship name and the entity type names. Theruns relationship
is omitted. It has already been processed in dealing with the dependent committee entity
type. The column headed N-Side contains the record types that are to be extended by
another attribute. The attribute to be added will be the key of the record type in the
corresponding entry under the column marked 1-Side. So, for example, with the contains
relationship, the School record type will be extended to include the key of the Campus
record type. This new attribute should be annotated to show which record type is being

256 Chapter 11

Record Type

Record Type

(*) | staffld

Key?i Attributes References? Key?i Attributes References?
(*) | Facul tyName _ (*) | staffld Lect urer
')) Committee ' .)
(*) + CommitteeTitle (*) : Subject Code Subj ect
i Lecturer :

Record Type

Record Type

Key?i Attributes References? Key?i Attributes References?
Year (*) Subj ect Code Subj ect
Senest er (*) Pr eReqCode Subj ect
G ade ' ' '

(*) St udent I d St udent

(*) | SubjectCode | Subject

Figure 11.19 The many-to-many relationships

referenced. In extending these record types we are adding a foreign key. The extended
record types are shown in Figure 11.20.

Step 5: One-to-onerelationships

These are a special case of the one-to-many situation, allowing us yet more options. There
isjust one example in the University, the has relationship between campuses and clubs.

1. We can represent the relationship as a separate relation, as we can with the other two
kinds.

2. Wecan add therelationship to either of the record types associated with the participating
entity types, rather than just one of them. We could have a Club record with a
CampusName attribute or a Campus record with a ClubName attribute.

3. Finaly, we can even merge the two record types together, in this case, forming asingle
Campus/Club record.

Perhaps we decide that the campus and the club are separate entities and should be
represented separately. Thereisafina problem, however. Suppose we decide to add the
CampusName to the Club record. Thelikelihood is that the ClubName is the same as that

Entity-relationship Modeling 257

Record Type Record Type
Key?i Attributes References? Key?i Attributes References?
(*) @ School Nane (*) @ CourseCode
' Head FTitle
¢ Buil ding i Level
i CanpusNane i Canpus . Length
i Facul t yNane . Faculty i School Name i School
Record Type Record Type
Key?i Attributes References? Key?i Attributes References?
(*) @ Staffld (*) @ Subject Code
 Nane P Title
FTitle i Cour seCode . Cour se
; Room E E E
i School Nare i School
Record Type
Key?i Attributes References?
(*) | Studentld :
i FirstName
! Last Name
| DateOiBirth !
! YearEnrolled !
! Cour seCode ! Cour se

Figure 11.20 The One-to-many Relationships

of the campus on which it islocated. So, after all this discussion, we decide to leave these
two record typeswith the same attributes that they had after we had handled the entity types
in Step 1; see Figure 11.16.

258 Chapter 11

Step 6: Set-valued attributes

At this stage, we are left with one part of the model that has not been discussed. This
consists of entity typeswith set-valued attributes. Thesewereignoredin Steps1and 2. We
could not incorporate them in the record types formed at that time because relations can
only have ssmple or atomic-valued attributes.

The usual solution is to introduce a new record type that consists of two parts: (1)
the key of the record type associated with the owning entity type, and (2) a single-valued
version of the set-valued attribute. The key of this record consists of all the attributes of
the record.

Cl ubSport

Record Type

Key? . Attributes References?
(*) Cl ubNare cd ub
(*) Sport

Figure 11.21 Resolving set-valued attributes

Thereis only one such attribute in the model, the Sport attribute of the Campus entity.
Therule requiresthat we form arecord type, say ClubSport, that consists of two attributes,
ClubName and Sport. See Figure 11.21. The effect isto create arelation that allows usto
add new sports that a club may offer and to remove ones that are no longer offered. This
relation certainly provides us with flexibility, but it may be a flexibility that perhapsis not
required. It may be that the information stored in thisrelation is quite static. Or it may be
that, typically, there are only one or maybe two sports for a club, or that the set of entities
isvery small.

11.5 Issuesin ER Modeling

In this section, we will discuss some issues that arise when we attempt to represent a
situation using entities, attributes and relationships as our modeling tools.

11.5.1 Entity or Attribute?

Thereisunlikely to be just one correct ER diagram for a given situation. Sometimes what
one person might see as an entity in its own right, another person will see as an attribute of

Entity-relationship Modeling 259

some other entity. For example, the building in which a school islocated is modeled as an
attribute of that school. It might be argued that, more truly, thereis alocation relationship
between schools and a new entity type Building. This view is supported by there being
Building attributes for the faculty and club entity types as well, suggesting that buildings
are important. But there are no facts specifically about buildings. It is the need to record
information about the buildingsthemsel vesthat makesbuildingsinto an entity type. Should
we need to know the age or height of abuilding, or whether or not it isair-conditioned, then
we would introduce a Building entity type. In generd, it isthe need to collect information
about things that makes them entities.
We can find three different kinds of attributes:

1. There are identifying attributes, which usually are labels, such as numerals or names,
that we use to symbolize the entity.

2. There are the more conventional attributes which give us some measure of an entity.
Examples are age, height, gender, and so on.

3. There are lesser relationships, involving things that failed the “entity of interest” test,
such as the location relationship between schools and buildings. A building was not
considered important enough to warrant an entity type of its own and so was made an
attribute instead.

11.5.2 Entity or Relationship?

The distinction between entities and relationships may also be unclear.

In the Moreton Bay model, the taking of a subject by a student was represented as a
relationship takenby. Each instance of this relationship corresponds to an attempt by a
specific student on a specific subject in a specific semester and year. We might see the
attempt as an entity and model it as shown in Figure 11.22.

The Attempt entity type is dependent on both the student and subject types, so it has
identifying relationshipswith each. These new relationships are one-to-many, whereas the
original takenby relationship was many-to-many.

In terms of its effect on any eventual database design, the choice of whether to model
the situation as an entity or as a relationship makes no difference, in this case. Instead of
generating a record type in Step 3 of the conversion process, an identical record will arise
in Step 2 instead.

11.5.3 Naming

Given that we might have trouble distinguishing between entities, attributes and relation-
ships, it isimportant that we name carefully each component of our ER diagram.

Entity Types: These should be given singular names that correspond to individual
instances of the type. Use Campus rather than Campuses. This follows the convention
used in Chapter 2 regarding the introduction of basic types. Naturally, every type should
have a unique name.

Relationships: Each entity that participatesin arelationship will play aparticular role
inthat relationship. A student takes a subject; a subject istaken by astudent. The student
playsthe takes role, and the subject the taken one.

260 Chapter 11

d Student Subject

MN

1

Attempt

Figure 11.22 The Attempt entity

There are a number of options for naming the relationship, given that we have a small
diamond-shaped symbol into which we must squeeze the meaning of the relationship.

1. We may decide that one of the rolesis more important than the other or others, and use
that role to identify the relationship.

2. We may choose, as has been donein this chapter, to usethe role of the entity typethat is
either aboveor to theleft of the relationship symbol. Thisalowsusto read the diagram
from top to bottom and from I€ft to right in the usual way.

3. We may derive a noun that amalgamates the roles, such as membership between
committees and lecturers or offering between schools and courses.

Note that relationship names need not be unique. It is enough that the name be unique to
all the relationships between the particular entity typesinvolved.

Attributes: In Section 11.5.1 it was suggested that there are three kinds of attributes.
There are three correspondings options regarding their names.

1. Identifying attributes are symbolsor label sby which the owning entities are recogni zed.
These will be names, titles, codes, numerals and other forms of identification.

2. Measuring attributes are ones such as height, width, distance, value, counts and so on.
Thereislittle point in attaching an attribute Number or Money to an entity type. Itis
sensibleto use the name of the corresponding property such as Distance or CostPrice.

3. There are attributes, such as the Building attribute of the school entity type, which
correspond to lesser or failed relationships. There are two choices. We can use the
name of the failed entity type, asin the case of the building attribute. Alternatively, we

Entity-relationship Modeling 261

can nametherole played by that |esser entity type, as was donein the case of the Head
attribute of the school.

Attribute names need only be unique for aparticular entity type, although when developing
records for the database, we will need to be careful.

11.5.4 Optional and Mandatory Roles
It is reasonable to suggest the following.

o Not every lecturer isamember of any committee.

¢ Not every student need have taken a subject yet (because he or she hasjust enrolled at
the University).

¢ Not every campus need necessarily have a club.

If alecturer need not be a member of a committee, then we say that the role is optional
for the lecturer entity type. Not every instance of the current lecturing population need
participate in the relationship; it isinappropriate or irrelevant for some.

Conversely, it is reasonable to suggest that every lecturer is employed by some school
or another. That role is said to be mandatory for lecturers. The compulsory nature of
this role is indicated by a double line connecting the lecturer entity type to the employs
relationship, as shown in Figure 11.23.

1 N
School Lecturer

Figure 11.23 Every lecturer belongs to a school

This analysis suggests that, when we construct a record type for lecturers and add the
SchoolName as aforeign key, we should not allow the SchoolName attribute to be null. If
every lecturer belongs to a school then there should never be a null value there. However,
the issue is more complex. It may be that we need to record details of lecturers even if
we are unaware which school employs them. Thus the semantics of the situation become
confused with therestrictionsimposed upon our recording of that situation. It may be better,
therefore, to postpone analysis of optionality until we have developed record structures,
that is, until the basic record types have evolved from the conversion process.

A similar situation arises with attributes. Every campus is a certain distance from the
city center; it cannot be otherwise. Yet, it may be that we do not know that distance, or
have not bothered to measure it, and so cannot record it. So we may have to permit a null
value in the Distance attribute of the Campus record type.

11.6 Summary

In this chapter we have looked at the entity relationship approach (ERA) as an aternative
to the fact-based approach (FBA) to database design that was introduced in Chapter 8 and
used in Chapter 10.

262 Chapter 11

o ERA says:
L ook for the objects that populate the situation to be modeled.
FBA says:
Write down the facts about the situation that are of interest to us.
¢ ERA says:

Let'sbepractical. In any situation, it will very quickly become clear which objects are
important. Inevitably, we will have relations based on these objects.

FBA says:

Let's not be hasty. A database is a repository of facts. We should look at these first,
analyze them, and let the rules about merging facts determine which relations we will
have.

¢ ERA says:

But your approach makesall objects of equal importance, whereas ERA allowsusto say
that some objects are important, we call them entities; others are of lesser importance,
we call them attributes. This hierarchy allows us more flexibility.

FBA says:

Yes, but to decide whether something is an entity or an attribute, for example, requires
some kind of analysis of the facts in which the thing is involved. In other words, you
are performing fact-based analysis but you won’t admit it!

¢ ERA says:

L ots more people use ER modeling than fact-based analysis.

FBA says:

Lots of people used to think the world was flat, but we have progressed since then.
e ERA says:

Graphical representations are an essential part of data modeling.

FBA says:

Yes, graphical representations are an essential part of data modeling.

Entity-relationship Modeling 263

Exercises

P Q11.1 TheRocky CONCRETE Model

An entity-relationship diagram has been devel oped for the Rocky Concrete Com-
pany.

Prodid Product @ Order
OnHand ReMake ReMake
Level Qty

made by

Customer
Balance

a. Listtheentity typesinthismodel and for each entity type, list theidentifying
attribute(s).

b. List therelationshipsand the cardinality of each.

c. Develop adatabase design from this model.

Q112 The CARE Model

A community action group, known as CARE, has been established. It plans to
maintain database on its members in which it will record their names, addresses
and phone numbers as well as any specific help they feel able to offer. The group
occasionally needsto quickly passinformation to its members regarding meetings
and other actions. Thisisto be done by means of a “telephone tree" whereby the
person at the top of the tree rings a few people, each of whom in turn ring a few
people, and so on. Develop a database design from this model.

264 Chapter 11

G
Helper

Q11.3 TheHORSE RAcCING Model

The following diagram shows the performance of horses over a number of races
at a number of tracksin a variety of track and weather conditions. It also shows
the breeding of each horsein terms of its sire and dam.

P
Horse o race

Ca) o) e

o

X

08

Track

b

Develop a database design from this model.

Entity-relationship Modeling 265

Q114 TheBEST SPREAD Model

Here is an entity-relationship diagram for Marge Butter and the Cholesterols. See
the corresponding question in the exercises at the end of Chapter 10.

contained

N M N

written by @
Track Nr !

Track Nl Musician
y

Length

M N
played

Develop a database design from this model.

Q115 TheObpD JoB COMPANY

The Odd Job Co. was started by some out-of-work computing graduates from the
Moreton Bay University. They were unfortunate enough to graduate in the middie
of arecession. The company claims to be able to accomplish any task, simple or
challenging, clean or dirty, as befits the company motto:

Tedium ad Nauseam
which roughly trandates as:
Anything is better than writing COBOL!

How ironic, then, that the company is made up of four divisions.

266

Chapter 11

The company will take on any job, no matter how unqualified it might be and no
matter how many other jobsit is already tackling or is committed to tackling. It
guarantees to finish the job on time. (Actually the fine print of the company’s
contract states that it guarantees to get ajob 95% complete.)

A jobisusually completed over aperiod of two or three days, and during that time,
several different employees may work on the job, either together or singly. Each
time an employee completes a task, a “work ticket" is filled out. On aticket an
employee records the job number, the date, the nature of the task, the number of
hours involved and the employee's own number. The tickets themselves already
have the ticket number pre-printed.

When thejob is (95%) compl ete, an invoice with the amount payableis sent to the
customer concerned. Thisinvoice itemizes the various tasks that were performed
on the job, showing the nature of the task, the date on which it was performed and
thetimeinvolved. Every employee'stimeis charged at the samerate. So thetotal
charge for the job is calculated by multiplying the hours spent by the company’s
hourly rate.

Customers pay for the jobs in different ways. Some customerswill pay for ajob
over anumber of separate payments. Other customers may pay off several jobsin
asingle payment. Anyway, each customer payment is recorded and a receipt sent
back to the customer. The receipt will show how the payment was apportioned
over a number of jobs and the amount of each apportionment.

Develop an entity-relationship model for the company.

Chapter 12
Knowledge

12.1 Introduction

This chapter is an introduction to the Z Notation which is a language that allows us to
expressour understanding of any given situation in aconciseand preciseway. In Chapter 1,
it wassuggested that if wewrite down all that we know about something, then our statements
may be divided into (1) simple specific statements that were termed facts and (2) more
genera statements that were termed knowledge This chapter is concerned with the more
genera statements, that is, it is about knowledge representation. Z is the language we will
use to express that knowledge.

The generality of knowledgeis achieved by the statements involved saying something
about whole classes or sets of objects. Such knowledge will eventually be encoded as
computer programs, so Z will beusedto specifythese programs. Theresulting specification
will then be implemented using a programming language. It is important, however, to
realize that the implementation is yet another description of the same situation that was
portrayed in the original specification. The implementation is akind of re-specification of
that situation, this time written in a specification language that the computer can follow
and obey or execute. Thisimplementation is, in effect, an executablespecification; that
is, it will be written using a programming language such as C or COBOL or SQL or some
combination of these.

The Z Notation is a particular style of writing two mathematical languages, settheory
and predicate calculus Z is an amalgam of these. Most of the ideas relating to set
construction and manipulation were discussed in Chapter 3. In this chapter, we will see
how to write set expressionsin Z. Mostly, thisinvolves using a special symbol rather than
aword. For example, Z uses the symbol U for set union whereas in Chapter 3 and in the
coverage of SQL that followed, we would have used the word union instead.

The second element of Z is predicate cal culus, and many of the ideas behind this theory
have al so been discussed previously. Thiswas donein Chapter 2 where we discussed basic
simple facts and their construction. In Z, basic facts are also constructed in the same way,

267

268 Chapter 12

so Chapter 2 was also an introduction to the language. In that chapter, we also saw how
compound sentences may be formed from simpler ones using negation, conjunction and
digunction. Z also allows us to compound sentences except that again, special symbals,
rather than words, are used. For example, the symbol — is used for negation rather than the
word not.

There is a part of predicate calculus that has not yet been discussed. This chapter
examines quantification which is the fundamental method by which we may make a
statement about a class or set of objects.

12.2 The Predicate Calculus

Thisisthe name given to a system for constructing and manipulating statements about the
world, or, at least, our perceptions of selected aspects of some situation. The statements
arereferred to as predicates, and the rules relating to their manipulation are the calculus —
hence the name predicatecalculus

The system contains two kinds of rules.

1. There are rules about how we construct predicates. These rules determine the way in
which we represent our knowledge of some world.

2. Thereare also rules and methods to help us manipulate existing predicates to derive or
prove hitherto unstated knowledge of that world.

We can summarize the system in the following “ equation”:
PREDICATE CALCULUS = KNOWLEDGE REPRESENTATION + PROOF METHODS

This chapter is concerned with the representati onal aspects, and discusses how to construct
predicates of increasing complexity and generality.

12.2.1 Simple Sentences

We will return to the database of facts concerning the circle of friends, relations and
acquaintances that was introduced in Chapter 2. There are six basic types:

[Person, Sport, N, Gender, Language, CarMake)

There are aso seven basic relationships represented. Each of these relationships, in its
own way, may be used to form simple sentences.

1. _plays_ : Person <> Sport

This relationship is called plays. It is aredation (<=) between people and sports,
that is, a person may play many sports and a sport may be played by many people. It
may be used to construct such sentences as Alan plays tennis. 1t isused ininfix form,
that is, when used, it appears between a person and a sport. The form that sentences
constructed with plays take is dictated by the declaration. There we are told to use it
thisway by the appearance of underscores ().

2. speaks : Person <= Language

Knowledge 269

Thisisalso arelation. Some of the people speak more than one foreign language, and
some of the languages are spoken by more than one member of the circle. Itisusedin
prefix form to construct sentences such as: speaks(Sue, Italian).

3. sex : Person = Gender

Thisisatotal function, signified by the symbol — , meaning that it isaspecial kind of
relation, one that is specia in two ways. Everyone has a gender and no-one has more
than one gender. Functions are used, not to construct complete sentences, but, through
function application, to describe objects such as sex(Alan). These objects are then
glued together to form sentences.

4. age : Person = N

Thisisanother total function used to identify numbers such as age(Kim). Everyone's
ageis known but nobody has more than one age.

5. drives : Person +> CarMake

This is a partia function, signified by the symbol -+ . A partia function is less
restrictive than atotal function in that not everyone need participate in the relationship.
That is, not everyone need drive a car. It is used, like the two previous functions, to
identify objects using such expressions as drives(Ann).

6. spouse : Person >+> Person

This is a partia injection, signified by the symbol >+ . Thus it is a one-to-one
relationship in which not everyone need participate. It should be treated as a particular
kind of partial function, and it will be used like a function to identify objects such as
spouse(Alan).

7. left : Person >> Person

Thisisatotal injection, signified by the symbol > . Itisaone-to-onerelationshipin
which everybody participates. Everybody round the table has one person on their | eft,
and everybody isimmediately to the | eft of just one person.

12.2.2 Terms

Given the declaration of plays, we know that any simple sentence using this relation must
be of the following form:

Person Sport
Representation | plays | Representation

The representation for a person need not be a simple name such as Alan. It can be
of any form that allows us to identify an individual person. The relationship called left
provides us with another way using function application. Everybody at the table has just
one person to their immediate | eft, for example, Alan ison Ann’sleft. We can construct a
simple sentence to state this formally:

left(Ann) = Alan

Thisequation showsthat thereare (at | east) two ways of representing the person in question,
left(Ann) and Alan. Thefact that Alan playstennis, can also be said as:

270 Chapter 12

left(Ann) plays tennis

Because of the nature of afunctional relationship, for example, because each person has
just one person to their immediate | eft, we use functions to identify individual objects. We
expect to use left to identify somebody rather than using it to construct compl ete sentences
intheway that plays was. It may seem that functions are being used in amore limited way
than relations; but, in fact, they provide uswith more flexibility of expression.

In general, we will pair the symbol left with aperson, asfollows:

Person
left | Representation

And again, the representation used for a person may be as simple or as complex aswe
need or care to makeit. We could refer to the person second on the left from Ann as:

left(left(Ann))

We givethe name term to any symbol or symbolic expression that represents an object, so
we can follow the symbol left with any term that represents a person. More generaly, a
term may be any of the following:

e aconstantsuch as Ann or tennis or 41; or
e avariable such asz or p; or
e an expression constructed using function application, as discussed above, for example,

left(Alan) or sex(spouse(p)).
12.2.3 Compound Sentences

We can construct more complex sentences from simpler ones using sententialoperators.
There are five of these. Three of them, negation, conjunction and disjunction, were
introduced in Chapter 2 and were used extensively in the chapters that followed.

1. Negation (not)
Previoudly, to say that Alan doesn’t speak Chinese, we would have written:

not speaks(Alan, Chinese)
In Z, we use the symbol — instead of the word not and write the sentence as:
- speaks(Alan, Chinese)

Apart from that difference, its usage is the same as discussed in Section 2.8.2.

2. Conjunction (and)
For this operation, we use the symbol A instead of the word and. To say that Bob and
Kim are both 23, we can write:

age(Kim) = 23 A age(Bob) = 23

Knowledge 271

3. Digunction (or)
For this operation, we use the symbol Vv instead of the word or. To say that Alan plays
tennis or golf (or possibly both), we write:

Alan plays tennis V Alan plays golf

The other two operators, implication and equivalence, are new and have a role in the
construction of the more general statements that are the concern of this chapter. These
operations are discussed in more detail later.

12.3 Quantification

12.3.1 Existential Quantification

We can use the plays relation to verify such statements as:
Alan playstennis

This statement is true because the plays relation contains the pair (Alan, tennis) as one
of itselements. What if we wanted to make a slightly weaker but more general statement?
Perhaps we want to say something such as:

Somebody plays tennis

This, we are sure, is true; but we cannot claim that it is true in the same way as we claim
that Alan plays tennis. There is no pair (Somebody, tennis) in the relation involved. We
could fudge the situation by inserting such a pair; but that would introduce many more
problems than it would solve. What if we wanted to say that:

Somebody speaks Spanish

We could insert a pair (Somebody, Spanish) into the speaks relation. But would that
somebody be the same person who plays tennis?

Another, somewhat more acceptable, solution is to use set comprehension to define the
set of people who play tennis and then to count the result.

#{p : Person | p plays tennis} >0

This statement says that the number of people who play tennisis greater than zero. It has
the meaning we intend, but it is hardly a natural way of expression; it does not match the
English equivalent.

The statement may be rephrased more naturally using existential quantification:

dp : Person e p plays tennis

The predicate p plays tennis has been taken from within the set expression and prefixed by
the quantifier 3 p : Person. The spot e is used to separate them. The overall expression
corresponds very closely to the English expression:

There exists a person who plays tennis.

272 Chapter 12

The role of the pronoun who has been taken by the variable p. Note, however, that the
expression is more accurately trandated as:

Thereis at least one person who playstennis.

There may be more than one person, there may not. Thereis a special form of existential
guantification used when we want to make a statement about one person or thing:

A!'p : Person e p plays tennis
Thisisto beread as:

Thereis exactly one person who plays tennis.

Existential Quantification:
d Declaration e Predicate
Unique Quantification:

A! Declaration e Predicate

Example 12.1 Somebody drives a Mercedes.
Ap : Person e drives(p) = Mercedes

This can be interpreted as saying that at least one person drives a Mercedes, whereas:
Alp : Person e drives(p) = Mercedes

means that only one person drivesa Mercedes. Thislatter formisreally just ashort way of
saying that:

There is somebody who drives a Mercedes and thereis no other person who does.
Put formally, this can be stated as:

dp : Person e (drives(p) = Mercedes N
= d¢q: Person e (drives(q) = Mercedes A q # p))

In other words:

Thereisaperson p who drives a Mercedes and thereisno person ¢ (— 3 ¢ : Person)
who drives a Mercedes and who is not p.

The existential quantifier (3) isoften written using a predicate that involvesthe conjunction
(“and"-ing) of two simpler predicates. Fortunately, they are not al as complex as the last
one. If wewant to say that:

There are people over 40 who play squash.

Knowledge 273

we can writethis as:
3 p : Person e age(p) > 40 A p plays squash

This can beread as saying that there exists at |east one person who is aged over 40 and who
plays squash.

When an existentially quantified predicate invol ves conjunction, then we are effectively
strengthening our statement about the situation. We are not merely saying that somebody
plays squash, but that somebody over 40 plays squash. By making aweak statement about
a subset (those over 40) as distinct from the entire set (everybody in the circle), we are
making a stronger statement. A general pattern to follow isgivenin Figure 12.1.

A condition that A condition that is true
3 Declaration o | definesasetof | A | of at least one member
some kind. of that set.

Figure 12.1 Existential quantification with conjunction

Example 12.2 Some women speak Japanese.
The first condition defines the set of women and the second that some of them speak
Japanese.

3 p: Person e sex(p) = F A speaks(p, Japanese)

Setsand Existential Quantification

Set specification is exactly the samein Z asit was described in Chapter 3. For example, if
we want to specify the set of men in the circle, we can writeit in extension as:

{Alan, Bob, Mark}
or, we can define it by comprehension as:
{p : Person | sex(p) = M}

However, the set membership operator, in Z, isthe symbol € rather than the word in. For
example, to say that Bob isin the set of males, we would write:

Bob € {p : Person | sex(p) = M}

The above predicate can be read variously as:

Bobisanelement of . ..
Bobisamember of ...
Bobisin...

Baob belongsto. ..

274 Chapter 12

We can interchange expressions such as the one above with similar statements written
using existential quantification. For example, to say that Kim speaks Japanese, we would
probably write:

speaks(Kim, Japanese)

However, we could say that “Kim is one of those people who speak Japanese”" and write
thisin terms of set membership as follows.

Kim € {p : Person | speaks(p, Japanese)}

We could also expressthe samefact as*“ somebody called Kim speaks Japanese”. Thisform
seems to map to existential quantification.

dp : Person e speaks(p, Japanese) A p = Kim

12.3.2 The One-point Rule

This is an equivalence rule that allows us to move from a set theoretical expression to a
predicate calculus expression and vice versa. Theruleisasfollows:

The One-point Rule:
Jdz:Sez=tANP=teSAP[t/z]

S issome set

P isapredicate of somekind

tisaterm

P[t/z] isthe predicate P with all free occurrences of z replaced by the
term ¢, and isread as“P with ¢ for z"

To say that:
“Thereisan object z of type S that satisfies P, and ¢ is another name for z."
isthe same as saying that:
“t isamember of theset S and P istrueof ¢."
and vice-versa. For example:
dp : Person e p = Alan A p plays tennis
has the form of the left-hand side of the equivalence, with:

z replaced by p

S by Person

t by Alan

P by p plays tennis

The form: P[t/z] becomes (p plays tennis)[Alan/p] which is. Alan plays tennis, and
the right-hand side becomes:

Alan € Person N Alan plays tennis

Knowledge 275

12.3.3 Universal Quantification
Suppose we want to say that:
Everybody plays golf

We could claim that this is false because (Everybody, golf) does not appear in the plays
relation; the problem is solved.
What if we want to say that:

Everybody is under 80 years old.

Again, we could fudge this by inserting the pair (Everybody, 79) into the relation; and,
again, this would introduce more problems than it would solve. It would allow us to say,
for example, that Mark is younger than everybody; which, of course, is untrue.

This problem can a so be overcome by using set notation:

#{p : Person | age(p) < 80} = #Person

The number of people aged under 80 is the same as the total number of all people.
Thereis aneater way of making our claim using universal quantification:

YV p : Person e age(p) < 80

The predicate age(p) < 80 has been extracted from the set expression and prefixed by the
quantifier V p : Person. The new expression corresponds to the English:

All people are aged under 80.

The general form of universal quantificationis:

Universal Quantification:

Y Declaration e Predicate

12.3.4 Implication

Frequently we will want to make statements that narrow the extent of the quantification.
Thus we may want to write something such as:

All men are over 20.

Thisis a sentence that would suggest the use of universal quantification. However, we do
not have atype Man and so cannot say:

V'm : Man e age(m) > 20
We could look at the original sentence another way and say that:

Everybody is either not male or is over 20.

276 Chapter 12

Now we can use quantification:
Vp : Person e (msex(p) = M) V age(p) > 20

Therearetwo conditionsinthe predicate (1) —sexz(p) = M and (2) age(p) > 20. These
are “or"-ed together; that is, the entire predicateis true if either of these two conditionsis
true.

The entire predicate (—sez(p) = M) V age(p) > 20 istrue for all women, regardless
of their age, because —sez(p) = M must always be true for these people.

For men, for the predicate to be true, it requires that the second condition age(p) > 20
be true becausethefirst, —=sez(p) = M, will alwaysbefalsefor men. The effect isthat the
entire quantification is true only if all men are aged over 20.

This argument is considerably simplified if a new Boolean operator or sentence con-
nective is introduced. This new operator is called implication and is written as =. The
statement P = () isread as:

P implies Q; or
if Pthen Q.
It isdefined as:
P=Q=-PVQ
The original statement on men’s ages can how be written as:
Vp : Person e sex(p) = M = age(p) > 20
which can be interpreted as saying:
For all people, p, if p isamalethen p isaged over 20.
For all people, p, p being maleimplies p isover 20.
Implication is frequently used with universal quantification to narrow down the class of

objects about whom or which the predicate is universally true. Implication is a way of
weakening auniversal general statement. The pattern for itsusageis shownin Figure 12.2.

A condition that A condition that istrue
VY Declaration o | definesasetof | = of all members
some kind. of that set.

Figure 12.2 Universal quantification with implication

Example 12.3 All women are over 25 years old.
V p : Person e sex(p) = F = age(p) > 25

Thefirst condition specifiesthe set of women; the second stateswhat istrue of all members
of that set.
A summary of the implication operator is givenin Figure 12.3.

Knowledge 277
Operation: Implication
Z Symbol: =
Usage: P=qQ
Pronounced: if P then Q
P implies Q
Sometimes: —orD
Example: If Mark is over 45 then he playstennis.
age(Mark) > 45 = Mark plays tennis
P Q P=Q
true true true
Truth Table: true false false
false true true
false false true
Notes: A sentence of the form P = @ is true if

either =P or @, or both, are true and false
otherwise.

This suggests that we can define the implica-
tion operator in termsof negation and disjunc-
tion.

PI>QE—|PVQ

The truth table is better interpreted by going
in from the left and right columns to the mid-
dleone. In particular, thefirst line of thetable
saysthat, giventhetruth of P andof P = (),
we can deducethat @) istrue. Thisistherule
of inference known asmodusponens Impli-
cation is further discussed in Section 12.3.4.

Figure 12.3 Implication

12.3.5 A Summary of Quantification

The various forms of quantification provide ways of making general statements of various
degrees of strength. There are four major forms involved and they are presented in
Figure 12.4 as a spectrum from the strongest to the weakest.

278 Chapter 12

S0 P Wesak
1 2. 3. 4.
Everybody plays Everybody over Somebody over Somebody plays
tennis. 50 plays tennis. 50 plays tennis. tennis.
Vp: Person e Vp : Person e dp : Person e dp : Person e

p plays tennis

age(p) > 50 =
p plays tennis

age(p) > 50 A
p plays tennis

p plays tennis

Figure 12.4 General statements

12.3.6 Quantifier Equivalences

Although universal and existentia quantification may seem to be quite different in the
kinds of statements that we would wish to make using them, any statement written using
universal quantification may, in fact, be rewritten using existential quantification, and vice
versa

1. Wewould probably feel that the following two statements are equivalent:

Everybody plays badminton.
There isn't anybody who doesn’t play badminton.

These may be written, respectively, as:

YV p : Person e p plays badminton
=3 p : Person e —(p plays badminton)

These examples reflect the following general equivalence:

First Equivalence:

Y Declaration e Predicate = — 3 Declaration e —Predicate

Intheaboveexample, thedeclarationisp : Person andthepredicateisp plays badminton.
2. We would probably also fedl that the following statements are equivalent:

Not everybody plays squash.
Some people don’t play squash.

These may be expressed, respectively, as:

Knowledge 279

=V p : Person e p plays squash
dp : Person e —(p plays squash)

These examples reflect a second general equivalence:

Second Equivalence:

=V Declaration e Predicate = 3 Declaration e —Predicate

Inthe aboveexample, thedeclarationisp : Person andthepredicateisp plays squash.

When writing an expression that involves some kind of quantification, we may use either 3
or V depending on our personal style.

It was previously stated that, in existential quantification, the predicate part often
involves the conjunction or and’ing of two conditions.

Thisis not accidental; the above two statements reflect two different styles of saying
the same thing. Suppose that T' is some type of thing that interests us and that P and @
are two conditions involving some element ¢ of type 7.

Vt:TeP=Q

=Vt: Te—-PV Q
(from the definition of =)

=-3t: Te—~(-PV Q)
(quantifier equivalence)

=-3t: Te-~PA-Q
(De Morgan'slaws)

=-3Jt: TePA-Q
(smplification)

Using the following substitutions:

T becomes Person
P becomes sez(p) = M
Q) becomes age(p) > 20

and thefirst and last lines of the above equations, we get:

Vp : Person e sex(p) = M = age(p) > 20
—3p : Person e sex(p) = M A —age(p) > 20

Or, in English, the two equivalent sentences:

All men are over 20.
Thereisn't aman who is not over 20.

280 Chapter 12

12.4 Defining New Symbols

The development of a new computer system presents us with what seem, at first, to be
almost insuperable problems. The task threatens to overwhelm us. The problems we face
range from user interface design to performance requirements, and from operational and
development costing to functional requirements. Suppose we look at the last of these, at
thefunctional requirements, that is, at what the system isbasically meant to do. Eventhere,
the task is huge. The usual approach to this kind of situation is to divide the task into a
number of smaller tasks, and then attempt to handle and overcome each of these in turn.
We continue this process of decomposition until the tasks become ones that the computer
can perform itself, without any further direction.

Aswe do so, we will inevitably find that certain basic tasks are required in a number
of different parts of the system. Suppose the system is a loans system for alibrary. We
might discover that, in handling the return of overdue books, there is a need to calculate
the differencein days between the date the book was due back and the date on which it was
returned. In some other part, when calculating the average length of loans, we might need
to calculate the difference between the day on which the book was borrowed and the day it
was returned.

We make use of this commonality by creating a single program module (subroutine,
procedure, section, subprogram or whatever). That moduleis used whenever and wherever
required. Those programs needing the calculation merely refer to the module by name.
The corresponding instructions are accessed and executed.

An anal ogous situation occurs when specifying a system. In discussing or describing a
situation, we will repeatedly need to refer to certain relationships and objects. The solution
to this problem is to name that situation or object, that is, to introduce a single name that
stands for the set of conditions that make up the situation. To see how we might introduce
new symbols, suppose we try to formalize the following fact about the circle.

Sueis married to Alan.

We could look at this two ways, depending, perhaps, on whether we take Sue's part or
Alan’s.

Either: spouse(Sue) = Alan Or: spouse(Alan) = Sue

We know that both these versionsare correct because of ageneral law concerning marriages.

VY p,q: dom spouse e
spouse(p) = q < spouse(q) = p

We can interpret this as follows.

Suppose we take any two people p and ¢ from the set of all married people, thenif ¢ is
the spouse of p then p isthe spouse of ¢ and vice versa.

Because we took any two people from the set, the equivalence is universally true for all
pairs from that set. We can use this combination of an equivalence with some kind of
universal application to help introduce new symbols.

Knowledge 281

The phrase “If P then Q and vice-versa' means “If P then Q and if Q then P" which
may be written formally as:

P=>=QANQ=>P

This pattern is used frequently enough to justify the introduction of a new sentence con-
nective called equivalence Using this new connective, the above predicate is written
as.

P& @

Equivalenceis summarized in Figure 12.5.

Example 12.4 Suppose, in talking about the circle, we often want to say that one person
is older than another. This can be represented asarelation. In Chapter 3, where we looked
at sets, we would have defined the relation in the following way:

‘ _older_ : Person <> Person

‘ older = {p, q : Person | age(p) > age(q)}

By thismeans, older issaid to be aset of pairs of people, with thefirst person always being
older than the second. Using set comprehension as the means of construction helps remind
usthat arelation isaset of pairs.

Thereis an aternative means of defining this relation, one that uses universal quantifi-
cation and the equivalence operator.

‘ _older_ : Person <= Person

Vp,q: Person e
p older q & age(p) > age(q)

The advantage of this second styleisthat it highlights the interchangeability of the expres-
sionsinvolved. Suppose we know that the following statement istrue:

1)... Mark older Alan
We can then argue that:
2)... age(Mark) > age(Alan)

We can also argue the reverse. We can do this because of the equivalence used in the
definition of older and because the equivalenceis true for all people.

We are not so much defining a new relation as giving a nameto an existing and hitherto
anonymous one. The older relation between people existed before we named it. This
naming or symbolizing allows us to simplify what might otherwise have been awkward,
long-winded or unnatural expressions. For example, consider the equivalent expressions
(1) and (2) shown above. Both have the same meaning, but one has three symbols and the
other has five. Since economy of expression is one of the ways in which we will judge

282 Chapter 12

Operation: equivalence

Z i &

Usage: P& Q

Pronounced: P if and only if Q

P exactly when Q
Sometimes: “

Example: Alanisthe spouse of Sueif and only if Sueis
the spouse of Alan.

Alan = spouse(Sue) <
Sue = spouse(Alan)

P Q P& Q
true true true
Truth Table: true false false
false true false
false false true

Notes: A sentence of the form P & @ istrueif (i)
both P and @ are true or (ii) both P and @
are false. We can define equivalencein terms
of other operators.

P&QQ=P=>Q) N (Q=P)

Given P < @, we can interchange P for @
inany sentenceinvolving @ without affecting
the truth or falseness of the sentence. We can
also interchange @ for P.

Figure 12.5 Equivalence

a specification, this reduction is important. However, there will always be some kind of
trade-off. We will need to remember the new symbol and its exact meaning. Will it be
worth learning? That will depend on how often we might expect to useit.

Example 12.5 Maybe we frequently need to discuss who is sitting next to whom, rather
than restricting ourselves to whether one person isto the left of another. We might want to

Knowledge 283

say that Alan is sitting next to Sue, not caring whether heisto her left or she to his.
Alan nextto Sue if and only if left(Alan) = Sue or left(Sue) = Alan

We can generalize this relationship to one between any two people.

‘ _nextto_ : Person <> Person

Vp,q: Person e
p nexttoq < left(p) = q V left(q) = p

Two people p and ¢ are sitting next to one another if ¢ isto theleft of p or p isto the left
of g.
The general pattern for defining new relation symbolsis givenin Figure 12.6.

The general form for defining new relations is as follows.

‘ _R_: XY

Ve:X;y:Y e
z R y & some predicaterelating z and y.
A relation R betweentwotypes X and Y isdefined by introducing avariable
of eachtype,say z : X andy : Y. Thepair (z,y) isintherelation R if z
and y arerelated in the way specified.

Figure 12.6 Defining new relations

12.4.1 Introducing New Total Functions

A function may be considered as merely a special kind of relation and so a new function
symbol may be introduced in avery similar manner.

Example 12.6 Suppose we frequently need to refer to the number of sportsthat a person
plays.

‘ playcount : Person = N

Vp:Person; n:N e
playcount(p) = n < n = #{s : Sport | p plays s}
A person p plays atotal of n sportsif (and only if) the size of the set of sports he or she
playsisn.
In this particular example, the intermediate number n may be avoided if the functionis
defined in the following equivalent manner.

284 Chapter 12

‘ playcount : Person —> N

Vp : Person e
playcount(p) = #{s : Sport | p plays s}
The number of sportsthat aperson p playsisthe size of the set of sports played.

Example 12.7 Now that the symbol playcount hasbeen formally introduced, further new
symbols may be defined in terms of it. Suppose we need to know whether one person is
more athletic or sportier than another. Thiswould require theintroduction of anew relation
symbol.

‘ _sportier_ : Person <=> Person

Vp,q: Person e
p sportier ¢ < playcount(p) > playcount(q)
Person p is sportier than person ¢ if p plays more sportsthan q.

Example 12.8 Suppose that Alan is rather choosy about where he sits at the table. He
only sits next to men, and even then, only if heis sportier than them. We can use our newly
introduced symbols.

Vp: Person e
Alan nextto p = sex(p) = M A Alan sportier p

The generd pattern for defining new total functionsis shownin Figure 12.7.

There are two formsfor defining total functions.

1. When aterm can be constructed directly.

f:X>Y

Vz:X e
f(z) = sometermof type Y

2. When the term cannot be expressed directly.

f: X—>Y

Vz:X;y:Y e
f(z) = y < some predicate defining y

Figure 12.7 Defining new total functions

Example 12.9 The"up to" function, defining a contiguous set of numbers, is commonly

Knowledge 285

used in computing. For example:
5.8 ={5,6,7,8}

Thus, 5..8 is the set of all numbers between 5 and 8 inclusive. [f we take this second
definition and expressit formally, we would have:

58={n:N | n>5An<8}

Itisaninfix function that, when applied to apair of numbers, representsthe set of numbers
in between. We can take the set comprehension version of 5..8 and useit as the basis of a
general definition.

‘ _-_:NxN—> Setof N

Vi,j:Ne
i.j={n:N|n>iAn<j}

Theterm i..j isthe set of numbers greater than or equal to ¢ and less than or equal to j.

12.4.2 Introducing New Partial Functions

With partial functions, we must establish the domain of the function.

Example 12.10 We need to be ableto refer to a man’swife, where appropriate to do so,
in other words, when we have established that the man is married.

wife : Person > Person

dom wife = {p : dom spouse | sex(p) = M}
Vp : dom wife o
wife(p) = spouse(p)

The wife function is partial. Not every person has awife. Its domain is the set of married
men. The first condition of the definition establishesthat. The second condition then says
that for each such person, that person’swife is the same as his spouse.

Thetwo formsfor defining new partial functions are more general forms of those used
for total functions and are shown in Figure 12.8.

Example 12.11 The min functiontakesaset of numbersand returnsthe smallest member
of that set. It ispartial because it cannot operate on the empty set. Here are three examples
of itsuse: arethey true or false?

min{5,3,9} = 11
min{5,3,9} =5
min{5,3,9} =3

We know that the first line is untrue because the number 11 isnot evenin the set {5, 3,9}.
The second line is untrue because, although the number 5 isin the set, it is not less than
or equal to all the members of the set and so cannot be the minimum. The third line

286 Chapter 12

Liketotal functions, there are two general formsfor introducing new partial
function symboals.

1. When the term can be expressed.

f: XY

dom f = some set expression that defines the domain of
f

Vz:domf e

f(z) = some expression of type ¥

Note that the quantification is restricted to the domain of the function
being defined. We are saying nothing about what happens when the
function is applied to some element outside the domain.

2. When the term cannot be expressed directly.

f: X+»Y

dom f = some set expression that definesthe domain of

f
Ve :domf; y:Y e
f(z) = y < some predicate defining y

Figure 12.8 Defining new partial functions

satisfies both these conditions and these two conditions seem to be enough to determine
the minimum element. We can summarize this as:

min{5,3,9} = 3 because3 € {5,3,9}andVn: {5,3,9} 3 <n
And we can generalize this to any non-empty set of numbers.

min : Set of N + N

dom min = Set of N — {}
V nset : dom min; m : N e
m = minnset <& m € nset AVn:nsete m<n

Its definition takes the second, more complex, form of function definition.

12.5 Generic Functions and Relations

In the previous section we looked at defining functions and relations that operated on
specific types such as Person and N; for example, the min function may be applied to a

Knowledge 287

set of integers and nothing else.

There are, fortunately, many general-purpose operations that may be applied to any
type. The dom and ran operators are examples. They may be applied to any set of pairs.
There are aso some even better known operators such as the union (U), intersection (N)
operators and the subset (C) relation of set theory.

We will examine the dom operator first. This function may be applied to any set of
pairs and it returns the set consisting of all the first or left-half elements of each pair. In
other words, we may apply it to any relation since arelation is defined to be a set of pairs.
Hereisan example.

plays: Person <= Sport

plays = {
(Alan, tennis),
(Alan, golf),
(Sue, tennis),
(Kim, tennis),
(Bob, golf),
(Bob, hockey),
(Mark, golf),
(Mark, squash)}

The domain of playsis the left-hand column, so:
dom plays = {Alan, Sue, Kim, Bob, Mark}

Just by looking at the relation we can see that aperson isin the domain of plays if and only
if there is some sport played by that person, that is, if and only if:

s : Sport e p plays s
where p isthe person in question. Looking at plays as a set of pairs, we could say this as:
s : Sport e (p, s) € plays

The domain of plays isthe set of people who satisfy that condition. Put more formally, we
have:

dom plays = {p : Person | Is: Sport e (p,s) € plays}

If we were only interested in a dom function that worked on sets of (person, sport) pairs
such as plays, we could introduce it in the usual way.

‘ dom : (Person <= Sport) = Set of Person

V R : Person <> Sport e
dom R = {p : Person | 3s: Sport e (p,s) € R}

For all relations R between Person and Sport, the domain of that relation is the set of
people p for whom thereis some sport with which they are connected through the relation.

288 Chapter 12

Now we can apply the dom operator, as defined, to any such relation; for example,
given:

loathes : Person <= Sport
watches : Person <= Sport
usedto : Person <= Sport

We can refer to:

dom loathes —the set of people who |oathe some sport;
dom watches — the set of people who watch some sport;
dom usedto —the set of people who used to play some sport.

Of course, we have no intention of restricting ourselves to using this operator only upon
to relations between people and sports. It has widespread applicability. We can extend its
definition so that it may be used on any set of pairs.

—[X, Y]
dom: (X <> Y)—> Setof X

VR: X<>Ye
domR={z:X | Jy: Y e (z,y) € R}

We have generalized the definition from one involving sets of (person, sport) pairs to
one that applies to arbitrary sets of pairs of the form (z,y). The definition has been
parameterized ontwotypes X and Y. If wewereto replace X by Person and Y by Sport
then we would be back to our initial definition of dom.

Example 12.12 The union operator is aso afunction. It takes two sets of the same type
and returns another set, of that sametype. In Z, the symbol for unionisu.

The union of two sets of people A and B isthe set of people who arein either A or B
or both. We can extend thisto the union of two sets of any type.

= [X]
U: Setof X x Setof X = Setof X

VA; B:Setof X e
AUB={z:X |z€ AVzeB}

The definition of U is parameterized on the type X . In other words, we may substitute any
type of our choosing, which iswhat we have been doing, off and on, throughout this book.

Example 12.13 Set subtraction is another function involving sets. Like set union, it also
takes two sets of the same type and returns another set, of that same type. The symbol for
subtraction is —.

Subtracting the set of people B from the set of people A gives usthe set of people who
arein A but not in B. The difference between any two sets may be defined as follows:

Knowledge 289

= [X]
—:Setof X x Set of X = Set of X

VA; B:Setof X e
A—-B={z:X | z€ AN—z € B}

GenericRelations

Generic relations may be defined in asimilar way; for example, the containment of one set
within another isa generic relation. A set may be a subset of many sets and, equally, a set
may have many subsets. This means that the subset operator, wriiten C in Z, isarelation.
A set may have many different subsets. The set of peoplein Queensland has, as subsets, the
set of people in Brisbane, the set of peoplein Rockhampton, and so on. In turn, the same
set may be a subset of many other sets. The set of people in Queensland is a subset of the
peoplein Australia; it is also a subset of the people who live in the Southern Hemisphere,
and so on. This generic relation may be defined as follows:

=[X]
_C _:(Set of X) <> (Set of X)

VA, B:Setof X e
ACB&Vz:XezeA=>z€B

A set A isasubset of set B if and only if 2 being an element of A impliesthat z isalso
an element of B.

Example 12.14 Suppose we now return to the suburban bank that was introduced in
Chapter 1. The situation at the tellersis shown in Figure 12.9.
There are two componentsin this situation that are relevant here.

1. open : Set of Teller
The component open isthe set of tellerswho are ready to do business. At this moment
tellers T, T3 and T4 are open, so:

open = {T1, T3, T4}

2. busy : Teller +> Person
The other component busy describes which tellers are in the process of serving by
pairing each busy teller with the customer involved, so:

busy = {(T1, Bob), (T3, Sue)}

As part of the general conditions that characterize the bank at any and every moment of
time, we had:

dom busy C open

290 Chapter 12

(=] (@] [=] [«]

Q@
Sue
@ Bob
@ Ann
@ Kim
@ Dan
()
Liz Q@

Jim
Figure 12.9 In the bank

The domain of busy isthe set of tellersactually serving acustomer. The condition requires
that set to be a subset of the open tellers. In other words, every serving teller must also
be open. Thisis a general statement about the bank and yet seems to make no use of
guantification. Does this mean that not all general statements involve quantification? No,
the quantification has been hidden through the use of the dom operator and the C relation.
We can reved the relative complexity of this statement by removing the dom and C
symbols. Suppose we first replace the subset symbol by its definition. The relevant line
from its generic definitionis:

ACB&VYr: XezxeA=>z€B
The predicate dom busy C open requires the substitution of:

X by Teller asthe base set involved
A by dom busy
B by open

Vt: Teller o t € dom busy = t € open

The predicate now states that : “For every teller ¢, if that teller isin the domain of busy

then theteller isalsoin open."
We can now replace dom busy using the generic definition of the dom operator; its

generic definition was:

domR={z:X | Jy: Y e(z,y) € R}

Knowledge 291

We need to make the following replacements.

X by Teller
Y by Person
R by busy

We get:
dom busy = {x : Teller | 3y : Person e (z,y) € busy}
This gives a compl ete replacement of dom busy C open by:

Vit: Teller o
t € {z: Teller | 3y : Person e (z,y) € busy} = t € open

The predicate now states that : “For every teller ¢, if that teller is in the set of tellers
for whom there is a person being served by that customer, then the teller isalso in open.”
Comparethe complexity of thisstatement with therelativesimplicity of theoriginal version.

12.6 Describing Change

In this section we will examine some new general-purpose functions. Theseare all used to
describe how a situation changes in response to some given event. What kinds of events
might happen, ones that change the circle? Here are three typical ones.

1. Bob takesup rugby.

There will be changes that cause the addition of new facts to the database of facts
relating to the circle. Thisisan example. The plays relationship must be extended to
include a pairing of Bob and rugby.

2. Alan dropstennis.

Therewill be changes that require the removal of factsthat are no longer relevant. The
pairing of Alan and tennis must be removed.

3. Bob celebrates his birthday.
There will be changes that modify facts. The age relationship must be altered so asto

pair Bob with his new age rather than his previous one.
12.6.1 Adding New Facts

Extending our database can be described in terms of set union. We form a new version of
the appropriate relationship by adding new factsto the existing ones.

Example 12.15 Bob takes up rugby.
plays' = plays U {(Bob, rugby)}

In all the examples in this section we will use a primed version of a relationship (plays’
in this example) to represent the after version of the relationship that is changing. This

292 Chapter 12

primed version must have the same typein its declaration. So, in this example, we require
that plays’ beintroduced as follows:

plays' : Person <= Sport

Example 12.16 Suelearns Spanish.
speaks' = speaks U {(Sue, Spanish)}

This time the relationship to be extended is the speaks one. The revised version of that
relationship, speaks’ must be declared to be of the same type as the “before" version.

speaks': Person <> Sport

Example 12.17 Kim comesinto asmall inheritance and buys her first car, a Ford.
drives' = drives U {(Kim, Ford)}

This time the change involves a function. The new version will be declared in the same
way as drives was, that is:

drives' : Person +> CarMake

We must ensure that, in describing the change, we construct an equation that is consistent
with the type of the relationship involved. In this case, we must ensure that whatever
extension we make, drives’ truly isafunction. That means that before making the change
we need to check that Kim is not in the domain of drives, in other words, Kim must not
currently be driving a car.

Example 12.18 Kim and Bob get married (or, at |east, enter into a spouse-like relation-
ship).

spouse’ = spouse U {(Kim, Bob), (Bob, Kim)}

Like the previous example, we would need to check that neither Kim nor Bob are currently
involved with other people. Asthisexample shows, we are not restricted to adding just one
new fact or pairing.

Example 12.19 Inatouching display of marital support, Kim decides to take up all the
sportsthat Bob plays.

plays’ = plays U {(Kim, golf), (Kim, hockey)}

This assumes knowledge of the sportsthat Bob plays. If we didn’t then we could write the
change as:

plays' = plays U {s : Sport | Bob plays s e (Kim,s)}

This description pairs Kim with each of the sportsthat Bob plays.

Knowledge 293

12.6.2 Removing Facts

There are three different ways in which we can describe a change that involves forgetting
something. The basic method is set subtraction, but there are two other methods that make
the descriptions more compact. These are domain subtraction and range subtraction.

Example 12.20 Alan dropstennis.
plays' = plays — {(Alan, tennis)}
We can always remove a fact by creating a set containing just that fact and subtracting it

from the corresponding relationship as represented by a set of pairs.
Example 12.21 Bob loses heavily in the 1997 stockmarket crash and hasto sell his car.

drives' = drives — {(Bob, Porsche)}

If we didn’t remember exactly what kind of car Bob drove, we could identify it through
function application.

drives' = drives — {(Bob, drives(Bob))}

The pair identifies Bob and whatever make of car he previously drove.

This kind of change is so commonly required that a special operation called domain
subtraction has been defined to allow us to describe the change in the minimum number
of symbols.

drives' = {Bob} < drives

The domain subtraction operator < saysto look for any pair in drives that involves Bob
and form anew set of pairs drives’ that containsno pair involving Bob on the domain side,
that is, involving Bob as the first half of any pair. Note how this third description of the
change uses the least number of symbolsthat could have been used. Compare thiswith the
first and second versions. Its generic definition is as follows:

:[Xa Y]
A (Setof X) x (X <= Y)> (X <>Y)

VA:Setof X; R: X <> Y e
AdR={z:X;y:Y |2 AN (z,y) € R}

A 4R istheset of pairs(z, y) that arein R except those where z isnot in A.

Example 12.22 Mark’s doctor strongly insists that he gives up al forms of sport. If we
know that he plays just golf and squash, we can write:

plays’ = plays — {(Mark, golf), (Mark, squash)}

If we cannot remember exactly (in extension) what he plays, then we can use set compre-
hension to do the job:

plays' = plays — {s : Sport | Mark plays s (Mark, s)}

294 Chapter 12

The set expression forms a set of pairs consisting of Mark and each of the sports he plays.
Again, thiskind of change may be expressed using domain subtraction:

plays’' = {Mark} <4 plays

This means exactly the same, as we shall see when the operation is defined. Again, note
the economy of this expression compared with the previous ones.

Example 12.23 Sue and Alan separate. As before, this change might be described in
several ways.

spouse’ = spouse — {(Sue, Alan), (Alan, Sue)}
spouse’ = spouse — {(Sue, spouse(Sue)), (spouse(Sue), Sue)}
spouse’ = {Sue, Alan} <4 spouse

There is a complementary operation, range subtraction, that targets the range side of
aset of pairs.

Example 12.24 Suppose the golf club has increased its fees enormously and everyone
has decided to stop playing golf. We can create a suitably modified version of the plays
relation through the expression:

plays &{golf}

The result is arelation that contains al the (person, sport) pairs from plays except those
where the sport is golf.
The generic definition is asfollows:

—[X, Y]
B (X = Y)x(Setof V) > (X <= Y)

VR: X<>Y; B:Setof Ve
RepB={z:X;y:Y |y¢& BA(z,y) € R}

Theset R &B istheset of pairs (z, y) that arein R except those where y isnot in B.

12.6.3 Modifying Facts

When afact type or relationship involves afunction, we often find ourselvesin the position
of adding and dropping facts at the sametime.

Example 12.25 Kimturns 23. This new information requires that we drop the fact that
she is 22 and add a new one stating that sheis 23. We can expressthisas:

age' = (age — {(Kim,22)}) U {(Kim,23)}

We can express this change using function override, an operator especialy devised for
describing changes to relationshipsthat are functions.

age' = age ® {(Kim,23)}

Knowledge 295

The pair after the operator symbol, @, overridesany pair in age to the extent that whatever
Kim's age was before, she is now 23. No-one else’s age is changed. Function override
allows usto superimpose one function upon another. The function that followsthe override
symbol & has precedence over the function that appears before the symbol. The expression
{(Kim, 23)} isasmall function that overrides, that is, it has precedence over age.

Example 12.26 It isKim'sbirthday.
Suppose we did not know how old Kim now is, merely that it's her birthday. We can till
access her previous age.

age' = age ® {(Kim, age(Kim) + 1)}

We find out her previous age, add oneto that and override her current age with that number.
It is no-one else’'s birthday.
A guide for using function override is shown in the following diagram.

Therelationship A set of pairs describing just
to bemodified. | & | those modifications required.

It showsthat we place the rel ationship (function name, typically) before the override symbol
@ and a precise description of the changesto be made after.

Example 12.27 Suppose that Sue has sold her Ford and bought a Mazda instead. We
need to amend the drives function to reflect this change.

drives @ {(Sue, Mazda)}

Whatever Sue drove before, she now drives a Mazda.
Its generic definition is as follows:

—[X, Y]
O (X P Y)x(X YY) (X+Y)

Vfi,g: X+ Y e
fog=(domg<f)Uyg

Summary: Thesubtraction operators 9and pareuseful for knocking pairs off arelation
and giving us whatever isleft over.

Function override® isuseful for allowing usto speak of amendmentsto theinformation
in a database, when that information is in the form of afunction.

12.7 Abbreviations

In Section 12.4, we were introduced to a method for defining new symbols. That method
allows us, primarily, to simplify the writing of predicates. Thiswas highlighted in the case
of the bank. A complex condition, that al busy tellers are open, would otherwise have
involved both universal and existential quantification. With the introduction of the dom
operator and the C relation, the predicate was reduced to the compact dom busy C open.

296 Chapter 12

In this section, we will see a technique that simplifies the writing of predicates by
introducing symbols that are used within declarations. We have already made frequent use
of one such symbol, thefunction symbol — . Consider the declaration of the age function.

age : Person > N

It saysthat age isaset of pairs, each pair mapping a person to anumber. It aso makes two
restrictions or constraints on that set.

1. Noperson hasmorethan oneage, thatis, no personislinked through the age relationship
to more than one number. Therelationship is afunction.

2. Every personisinvolvedinthisrelationship, thatis, every personismapped to anumber.
The function is said to be total.

We do not need to specify these two constraintsin any predicate using age. Its declaration
as atotal function does that for us. The knowledge has been encoded in the definition of
the total function symbol —> . The way in which this symboal is defined is part of a more
general technique, within Z, for simplifying statements by introducing new symbols that
are to be used within a declaration of some kind.

The total function symbol has a fairly complex definition, so we will look at some
simpler examplesfirst.

Example 12.28 Perhaps we might need to establish that a person is a woman before
making some further statement about such people (treading carefully). We could definethe
set of women as:

Women == {Ann, Sue, Kim}
The double equal signisread as“is defined to be". So the set Women is defined to be the
set consisting of Ann, Sue and Kim. If we were unsure of their proper names, we could
play safe and defineit as:

Women == {p : Person | sex(p) = F}

Either way, we can use this set to make some claim such as that all the women are over 30
yearsold.

Yw : Women e age(p) > 30

Example 12.29 We can use this newly introduced symbol Women as the basis for
defining another. If we want to name the set of married women, we could introduce it as
follows.

Wives == Women N dom spouse

The set Wives isthe set of married women.

Knowledge 297

The left-hand side of an abbreviation definition may include symbolsthat have already
been introduced. A relation is a set of pairs drawn from the set of all pairs, that is the
product of two sets, Person and Sport say.

Person <> Sport == Set of (Person X Sport)

Asareminder:

e Person x Sport isthe product set consisting of all (Person, Sport) pairings.
e Set of (Person x Sport) isthe power set consisting of all subsets of that product set.

So the declaration _plays_ : Person <= Sport is an abbreviated way of declaring that
plays is an element of that power set, that is, plays is aset of (Person, Sport) pairs. In
particular, it is onein which not all people need necessarily participate.

More generally, the relation symbol may be defined asrelating two arbitrary sets X and
Y inthefollowing way:

X<>Y ==0S8etof (X xY)

A partial function isaspecial kind of relation, one with a uniqueness constraint on the
domain side of the relation. For example:

drives : Person +> CarMake

Not everyone need drive a car, but no-one drives more than one. We can describe this
constraint formally:

Y p : dom drives o (I ¢ : CarMake o (p,c) € drives)

For all those people who do drive a car, there is exactly one car that they drive. It is this
constraint that enables us to use function application.

We can define the partia function symbol in terms of the relation symbol with that one
constraint:

X+»Y=={R:X<>Y |Vz:domRe3dly:Y e(z,y) € R}

A total function is a partial function with yet another constraint, that every element
from the domain side takes part. We know everybody’sage, so it was declared as.

age : Person > N

Its totality can be expressed as dom age = Person. Total functions between people and
numbers may be defined as follows:

Person —> N == {f : Person -» N | dom f = Person}

They are the set of partial functions f from Person to N such that the domain of f isthe
same as Person. This definition may be generalized to any two types X and Y.

X=>Y=={f: XY | domf=2X}

298 Chapter 12

A partial injection is aone-to-one partial function. The spouse relationship between
certain members of the circleis an example.

spouse : Person >+> Person

If two people, p and ¢, have the same spouse, then p and ¢ must be the same people. We
can expressthisformally as:

Y p, q : dom spouse e spouse(p) = spouse(q) = p = ¢
And we can generalize thisto arbitrary types X and Y':
X>>Y=={f: XY |Vp,qg:domfef(p)=f(¢)=>p=g¢q

A total injection is a one-to-one function that is also atotal function. An exampleis
the left relationship. Each person is on the left of just one person and everybody has just
one person on their left.

left : Person > person
We can define the set of all total injections between people as follows:
Person >> Person == (Person >+> Person) N (Person —> Person)
Then we can generalize this definition to oneinvolving arbitrary types X and Y.
X>»>YV==X>»»>Y)N(X—>Y)

12.8 Sequences

There are many occasions, in practice and in theory, when we would wish to talk about one
element of a set coming before or after some other element. The order clause of SQL isa
recognition of this need. Suppose we make another return to the bank. See Figure 12.9.

Now we want to talk about the people queuing for service. If we use a set to describe
some objects, there is no concept of order or sequence; so, for example:

{Ann, Kim, Dan} = {Kim, Dan, Ann} = {Dan, Ann, Kim}

All three expressions describe the same set of people. Nothing tells us that thereis a
certain order to the queue. Yet we know that we cannot move Ann, Kim and Dan around
and claim that the queue is still the same. Declaring the queue to be a simple set of people
is not enough.

We could model the queue as an “isin front of" relation.

_infrontof _ : Person <=> Person
infrontof = {
(Ann, Kim),
(Ann, Dan),
(Dan, Kim)}

Thisrelation alows us to determine whether one person isin front of ancther, for example
Ann infrontof Kim; however, it does not enable us, with ease, to decide who isfirstin the
gueue, who is second and so on. We could use quantification:

Knowledge 299

1. Thefirst person in the queue, say p1, isthe one who has nobody in front of him or her:
—dgq : Person e q infrontof pl

2. The second in the queue, p2, isthe person with only one other person in front.
g : Person e qinfrontof p2 A =3 r : Person e rinfrontof p2 A r # q

This use of quantifiers, while it accurately expresses the concepts involved, does seem
rather lengthy. Thereisanicer way, and that isto declare queue asasequence

queue : seq Person
Thisisamost equivalent to the declaration:
queue : N + Person

This latter form says that queue is apartia function mapping from the integers, N, to the
set Person. The function can be thought of in tabular form as follows:

queue : seq Person

queue = {
(1, Ann),
(2, Kim),
(3, Dan)}

We can now use queue asafunction and apply it to an integer, for example queue(1) would
determine who isfirst in the queue, queue(2) would give the person in second place.

Thefunctionisapartial function because the domain is not the entire set of integers but
simply theset {1, 2, 3} because there are three people in the queue. In general, the domain
of a sequence function will be a contiguous set of numbers 1..n where n is the number of
entries in the sequence.

So the queue is a partial function with a domain consisting of a contiguous set of
numbers ranging from 1 up to n where n isthe size of the sequence. For every sequence s:

dn:Nen=#sANdoms=1.n

Or, by eliminating the need for the intermediate n:
dom s = 1..4s

We can use this constraint to define the set of all sequences of people:
seq Person == {s : N + Person | dom s = 1..#s}

And this definition, in turn, may be generalized into the set of sequences of some arbitrary
type X:

segX =={s: N -» X | doms =1.#s}
We could model the history of car driving within the circle as:

hasdriven : Person — seq CarMake

300 Chapter 12

While queue is a valid use of the sequence, it does not quite provide the complete
picture asin a sequence of people one particular person may occur several times.

Suppose we want to model the results of a race and we are not interested in the names
of individual athletes but only in the names of the countries represented. There may be
severa athletes from each country competing. The race may written out in full as:

race : seq Country

race = {
(1, USA),
(2, Australia),
(3, Australia),
(4,GB),
(5, USA)}

Because there may be several athletes from each country, that country appears severa
times, once for each athlete.

12.8.1 Sequence Construction

There is a sequence equivalent to set extension. This notation allows us to write out, in
full, the contents of a sequence; for example, the race sequence may be written as:

[USA, Australia, Australia, GB, USA]

The square brackets signify that the enclosed data forms a sequence. For that reason, the
order in which the countries are named is significant. This sequenceis equivalent to the set
of pairs:

{(1, USA), (2, Australia), (3, Australia), (4, GB), (5, USA)}

Written as a set, the order is not important because the sequencing information is encoded
within each pair.

We can have aseguence containing just oneentry, for example[NZ], whichisequivalent
to the set {(1, NZ)}. We can have an empty sequence [] which is the same as the empty
set{}.

One of the most natural operations to be performed on sequences is to concatenate
or string together two or more sequences. If we want to concatenate two sequences of
characters [T, O, O] and [F, A, R] we can write:

[T, O, O]|F, A, R]=1[T, O, O, F, A, R]
Any number of sequences may be concatenated:
[S,U,N,D, A, YIIT, O, O] [F, A, R[4, W, A, Y]

No brackets are required because it does not matter which sequences are joined first; the
result will always be the same.

Knowledge 301

12.8.2 Sequence Decomposition

Aswell as constructing new sequenceswe will want to pull them apart so asto isolate some
component or another. There are two operations for accomplishing this, head and tail.

The head operation extracts the first entry in a sequence and returns the associated
element.

head race
= head [USA, Australia, Australia, GB, USA]
= USA
This is simply another way of saying race(1) which returns the first element in the race
sequence. Thus we cannot apply head to the empty sequence.

The tail operation removes the head of a sequence and returns a sequence consisting
of whatever is|eft over.

tail race
= tail [USA, Australia, Australia, GB, USA]
= [Australia, Australia, GB, USA)
Thetail of a sequence startsimmediately after the head. So we are talking about a snake's

tail and not adog’s.
If thereisonly oneentry, then applying tail to that sequence returnsthe empty sequence.

tail[A]
= I
We cannot apply tail to the empty sequence.

12.8.3 Operations on Sequences

There is a kind of hierarchy involved in the operations that may be performed upon a
seguence or in conjunction with sequences.

1. Sequence operations

We can use the constructor operation [] and the concatenation operator ~ to build new
sequences; we can also use head and tasl to access components of a sequence.

2. Function operations

Because a sequence is a specia kind of function, we can use function application to
identify entries in the sequence; for example race(2) returns the country that came
second.

3. Relation operations

Because a function is a specia kind of relation, we can use relation operators such as
dom and ran to determine the domain or range of a sequence considered as arelation.
For example the expression ran race will return the set of countries represented in the
race.

302 Chapter 12

4,

Set operations

Becausearelationisaspecia kind of set, we canuseall the set operati onson sequences;
for example, we can use the set size operator in #race to find out how many runners
there were in the race.

We should be prepared to use whatever level of operation most naturally and appropriately
EXPresses our requirements.

12.9 Summary

In this chapter we have looked at several important aspects of information modeling.

Wehavelooked at the use of universal and existential quantification asmeansof making
statements about classes of people or things. This should be seen as an extension of
the ideas of Chapter 2 where we looked at ways of making statements about specific
things.

We have looked at how new symbols may be introduced into a specification in order to
reduce the complexity of our predicates. In particular, the set operators, set union (U),
set intersection (N), and set subtraction can al be introduced in this way.

We also looked at three operators— domain subtraction, range subtraction and function
override. Theseoperatorsare of particul ar usewhen wewant to describe how asituation
isto change as a result of changed circumstances.

We have seen how abbreviation definitions may be introduced in order to save us from
repeatedly stating commonly used rel ationships.

Finally, we have looked at a commonly used abbreviation, the sequencea modeling
tool or notion that allows us to talk about ordered sets such as queues. As part of the
idea of a sequence we have special operatorsthat enable us to construct sequences and
to pull them apart.

Knowledge 303

Exercises
> Q12.1 The CLUB Modé

Thefollowing sets, functions and relations represent a (very) small computer club.

There are five basic types in the model.

[Member, Language, CarMake, N, Gender]

We can think of these typesin the following terms.

1. Member = { Bill, Sue, Alan }

N={0,1,23, ..}
Gender={F M }

o A~ 0N

Language = { COBOL, FORTRAN, C, SQL, Pascal, Ada, RPG, Modula-2 }
CarMake = { BMW, Ford, GM, Honda, Mazda, Mercedes, Toyota }

There are five relationships between the types. These are shown below in tabular

form.

likes : Member <= Member

likes =
{(Bill, Sue),
(Bill, Alan),
(Sue, Alan),
(Alan, Bill)}

age : Member = N

age =
{(Bill, 19),
(Sue, 19),
(Alan,16)}

sex : Member — Gender

T {(Bill, M),
(Sue, F),
(Alan, M)}

writes : Member <= Language

writes =

{(Bill, FORTRAN),
(Sue, C),

(Sue, SQL),

(Alan, FORTRAN),
(Bill, SQL)}

drives : Member >+> CarMake

drives =
{(Sue, Honda),
(Bill, Ford)}

In Z, the statement that Alan dislikes Bill would bewritten as; —(Alan likes Bill).
Rewrite each of the following English sentencesusing Z.

a. Bill can'twritein SQL.

304 Chapter 12

Sue and Bill get on well together.

Sue can writein both C and in Pascal.

Neither Alan nor Sue can write in FORTRAN.
Either Sue drivesa Honda or Bill does.

Both Bill and Sue can writein SQL.

-~ 0o a0

P Q12.2 Rewrite the following English expressions formally, using quantifiers.

Everybody likes Alan.
Somebody likes Alan.
Nobody likes Alan.

No oneis older than Bill.

® 20 o

No one is younger than Sue.

P Q12.3 Usequantifiersto expressthe following statements.

Only women drive Hondas.

Women only drive Hondas.

Only those who can writein SQL drivea BMW.
Only BMW drivers can writein C.

Alan only likes people who drivea BMW.

Alan only likes females.

Alan can write in every language that Sue can.
Sue likes everybody that Bill likes.

All the men can write COBOL.

j- Somemen can write SQL.

e "o o0 T o

P Q124 Use quantifiersto expressthe following statements.
Everybody is liked by somebody.
Only one person can writein FORTRAN.

Alan isthe second youngest person.
There is no man who is not liked by some woman.

® o0 o

Every woman drives a car.

P Q12.5 Write out, in extension, the set that results from each of the following domain
subtraction operations.

a {Bill} alikes

Knowledge 305

e "o oo T

{Bill} < age

{Bill, Sue} < likes
{Bill, Sue} 4 age

(dom drives) < likes
dom({Bill} < likes)
dom({Bill, Sue} < likes)
ran({Bill} < likes)

P Q12.6 Write out, in extension, the set that results from each of the following range
subtraction operations.

Q@ m o oo oW

likes & {Bill}

age {16}

age $18..20

drives t{Ford, Toyota}

writes &{FORTRAN}

writes & {1 : Language | Sue writes 1}
sex &{F}

dom(sex &{F})

P Q12.7 Write out, in extension, the set that results from each of the following function
overrides.

Q1258

)

® o0 T

age @ {(Bill,20)}

age ® {(Sue, age(Bill))}

drives @ {(Sue, Toyota)}

drives @ {(Sue, Toyota), (Alan, Ford)}
{(Bill,20)} & age

The PARLIAMENT Model

This model was introduced in the exercises at the end of Chapters 2 and 3. Two
basi c types were used:

[Poli, Party)

The following functions and relations are used to represent the facts that we want
to represent here.

1. belongs : Poli = Party

This maps each politician to his or her party, for example, belongs(Wayne)
might give Labor.

306

Chapter 12

2. minister : Dept — Poli

This maps each department to its minister, for example, minister(Police)
might give Terry.

. leader : Party > Poli

This maps a party to its leader, for example, leader (Business) might map
to Denzil.

. _talksto_ : Poli <= Poli

Thisindicates whether one politician is prepared to talk to some other politi-
cian, for example, Newille talksto Russell.

We can map each palitician to his or her party leader through a total function
takeme which may be defined as follows.

‘ takeme : Poli — Poli

‘ Vp:Polie

takeme(p) = leader (belongs(p))

Using the above style, definefunctionsor relationsto satisfy thefollowing require-
ments.

® 2 0 T @

Pair each party with the number of representativesthat it has in parliament.
Pair each politician with the set of politicians to whom that politician talks.
Pair each politician with the set of politicians that talk to him or her.
Pair each party leader with the set of politiciansthat he or she leads.

Create pairs of party leaders such that the first one outranks the second in
terms of the number of politiciansin the respective parties.

Q12,9 Theresults of the men's 100m final in the 1996 Olympics were as follows.

Places Runners Countries Times

1 Bill USA 9.78
2 Frank GB 9.85
3 Ahmed Kenya 9.93
4 Stefan Jamaica 10.01
5 Bruce Australia 10.03
6 Bevan USA 10.18
7 Barry Australia 10.25
8 Jean France 10.35

The race results are modeled using the types [N, Runner, Country, Time] and
the following functions between the types.

Knowledge 307

1. place : Runner > N

This enables us to determine which place a runner achieved, for example
place(Frank) = 2.

. rep : Runner — Country

Thistellsuswhich country an athleterepresented, for examplerep(Bevan) =
USA.

. time : Place = Time

This tells us the time taken by whoever took a particular place, for example
time(8) = 10.35

Rewrite the following English sentences using quantification.

@ "o a0 o9

Every one camein under 11 seconds.

No one bettered 9.5 seconds.

There were no Australiansin the top three.
Every Australian did better than 8th.

No Australian beat a Kenyan.

Only one person took less than 9.80 seconds.
No country got more than one medal.

Q12.10 Using only the set of integers, N, rewrite the following statements by means of

guantification.
a. Thereisanumber greater than 1.
b. Thereisno number that is half of 25.
c. Every number greater than 1 islessthan its square.
d. Thereisanumber lessthan 25 that isthe sum of 6 and 12.
e. Every number less than 10 has a square less than 100.

Restate your answer using the quantifier equivalents.

Q12.11 Which of the following statements are true and which are false?

© 2 0 T o

dn:N e3" 44" =5"

dn: N en x n =625
Vm,n:Nem+n=2n=>m=mn
Vn:Ne(Am:Nem=mn+1)
Vn:Nen<1000=n>5

Q12.12 Write out, in extension, the following expressions.

308 Chapter 12

{2} «{ (@@,8), (2,10), (3,1)

{1,3} 494 (,5), (2,100, (3,1) }
{@,3}r { (@,5), (2,10), (3,1)

{ (1,8), (2,10), &, & { (1,3 2

{ 1,8), (2,10), 3,1 @ { (2,5, (8,6) }
{@,8), (1,8, G, }r {1}

{ ,5), (2,10), 3,10} » {1,872

@ "o a0 o

P Q12.13 Write the following sequencesin set extension form.

[B,A,T]

[T.A] ™ [B]
[TA] T [TA]
[A]

[A]l ~[B] ™ [C]
[]

[1™[A]

[Al (]

Q@ o a0 T

P Q12.14 Rewrite the following sets as sequences.

{ 1,0, 2,», 3,7 }

{ 2,0, (1,0 }

{ ,0) ryu{@Nn, (3,D 12

{ (4,B), ,(1,B) YU { (3,n), (2,0 }
{@,M, (2,00 } - { (2,00, (1,0 }

© 20 op

P Q12.15 Given the following sequences of characters:

k =[K,I,N,G]
q=[QU,EEN]
b=[B,,SH,0,P]

simplify the expressions bel ow.
head k

tail g

tail tail b

[head k] — (tail tail)
4.6 4b

© 20 o

Chapter 13
The Knowledge Base

13.1 Introduction

Documentation isone of the most didliked features of computing. Thisisrather unfortunate
since program documentationiswherewe store our knowledgeinitsmost (human) readable
form. Asan example, consider asimplerule stating that a customer’s current balance must
not be allowed to exceed his or her credit limit. A rulelikethisistypically specified using
a program design technique such as pseudocode or a decision table. The rule might then
be encoded within a COBOL program. Thus the program becomes the rule enforcer. The
rule is specified in pseudocode and implemented in COBOL.

What happens next? If we are honest with ourselves we know that from now on all
attention turns to the program code; the specification takes on a secondary role of docu-
mentation. Changes to the rule occur, such as amendments, extensions, special cases and
so on. These are implemented directly in the program and the documentation becomes
increasingly obsolete, smply confirming the programmer’s prejudice against documenta-
tion. Theresult isthat the database is encapsulated by a collection of programs, with each
program implementing any number of undocumented rules.The database starts to suffer
from hardening of its arteries. Organizational knowledge becomes buried in programs.
When the system is to be replaced, all this knowledge must be rediscovered by the next
generation of systems developers.

One answer to this problem is to keep the documentation up to date and to make
the programs subordinate to this documentation. In doing so, we would move towards a
more evolutionary style of systems development. Maybe the term specification should be
discarded. In the minds of many programmers, any specification is a disposable means
to an end; the end being an executable program. A better approach is to consider that
the programs constitute a knowledge-base of some kind; and that knowledge needs to be
expressed in at least two forms: (1) in away that humans can understand; and (2) in away
that machines can execute. Both formsare necessary; thefirst for us, and the second for the
machines. A knowledge base of the kind being proposed is simply continuously updated

309

310 Chapter 13

documentation that is being used to drive the implementation rather than being treated as
an afterthought.

13.2 Information Systems Development

Historically, in the devel opment of organizational information systems, three distinct styles
have arisen:

1. There is a process-oriented style characterized by an emphasis on the physical basis
of any new system, that is, on the kinds of storage devices used to store data and on
the instructions to be given to the computer. Development tools include system and
program flowcharts. Thiskind of devel opment peaked with the structured analysis and
design schools. The processing is central and the data peripheral.

2. Thereis a data-oriented style in which the roles are reversed so that the database is
central and programs peripheral. Programs are seen as merely the means by which
the database is queried and updated. Entity-relationship modelling, conceptual schema
design and SQL are part of this school.

3. Thereis a knowledge-based style which can be thought of as an amalgamation of the
process and data styles. Programs and data are both seen to model or represent the
organization, each in their ownway. Programs contain general knowledge, rules, equa-
tions or formulae. Databases contain specific knowledge or facts. Expert systems are
part of this school. CASE (Computer-Assisted Software Engineering) tools, especially
those based on repositories, are also amoveto this style.

Although thereisa historical trend, the process-oriented and data-oriented style are till in
active use.

13.3 Knowledge

An organizational information system models some aspect of the organization. If we take
the knowledge-based approach, then an information system comes in two parts. One part
implements organi zational rules and the other contains specific facts about the organization,
but both model the organizationin their different ways.

One of the primereasonsfor data (or conceptual) modeling isthat the end product, such
as a conceptual schema or an ER diagram, is a stable community view of an organization.
The resulting model provides a secure platform from which information systems may be
developed. The usefulness of this platform stems primarily from its stability. From the
model arelatively static data base structure may be derived. So, for example, afact like:

Dave works in Dispatch.
may be replaced, in the database, by one like:

Dave works in Maintenance.
but the more general fact that:

People work in Departments.

The Knowledge Base 311

remains unchanged. So the database changes but the knowledge base does not. The term
knowledge is used in this book to describe information that is true for a relatively long
period of time, that is, knowledge is more stable. It consists of generalized facts, that is,
facts not just about specific objects but about whole classes of objects. A knowledge base
contains the essence of organizational wisdom and experience, or at least, such of that
essence as may be formally represented.

A data model, such as a conceptual schemaor an ER diagram, is akind of knowledge
base, athough a rather rudimentary one. It allows us to nominate enduring relationships
and to specify alittle of the nature of these relationships (that is, whether they are one-to-
one, one-to-many or many-to-many). A data model, however, limits itself to basic types
and basic relationships because its purpose is to help us design the database. A more
useful knowledge base would be one that alows us to specify any type of object and any
relationships. Some examples of the kind of things that we would like to specify are as
follows:

1. We should be able to specify general constraints regarding things, for example, that a
customer’s current balance should always be less than their credit limit.

2. Weshould be ableto specify that, after abank teller says*“ Next please!", and the person
at the front of the queue has moved forward to be served, the queue is now formed
strictly from the tail of the queue beforehand.

3. We should be able to derive and specify new relationships based upon existing relation-
ships, for example, the total on an invoice is the sum of the totals for each line of the
invoice.

These usualy form part of the program specification because they are implemented pro-
grammatically, rather than becoming part of a database.

13.4 Representing Organizational Knowledge

How do we represent or specify the knowledge to be kept in our knowledge base? In other
words, how do we best specify our information systems? What alternatives are there?
Current forms of program specification include:

e pseudocode

¢ decision tablesor trees

e program flowcharts

o dataflow diagrams

e structure charts

¢ Nassi-Shneiderman diagrams

¢ and, frequently, the programs themselves

There are two contrasting problems with these techniques and their usage.

1. Onthe one hand, some of them are too oriented towards the computer and it is difficult
to distinguish the rule from its implementation.

312 Chapter 13

2. On the other hand, some of them allow rules to be expressed too vaguely; the user is
happy with one interpretation and the programmer with another.

However, the number of alternatives and their variety of approaches do show that it is
possible to represent knowledge in many different ways. In this book we choose to express
the human-readable form of our knowledge using alanguage called Z. It can be thought of
as alanguage that integrates data and program design.

Z is a specification language. It is not a programming language, in the sense that a
statement in Z may not be directly executable or automatically translated into executable
instructions. It is ameans of expressing our ideas and of organizing them in some way.

So our knowledgebasewill consist of two quite distinct descriptions of the organization:

e Thefirst description will be called the specification. Thiswill befor us.

e The second description will be called the implementation. This will be a machine-
executable version of thefirst.

It must be possible to say how these two versions are related or linked, and to demonstrate
their equivalence. Chapter 19 provides an example of what we need to provein order to be
satisfied that they are equivalent. There are several commentsthat may be made as aresullt.

1. The link between the specification and any implementation should be maintained at
all times as one of the normal functions of the data processing department within the
organi zation.

2. Thislink, itself an information system, should be used as a means of gaining accessto
the implementation. It forms a bridge between the non-executable and the executable
versions of the knowledge base.

3. Access to the implementation should be permitted only by means of thislink.

4. Changesto any part of theimplementation should only be permittedif they are consistent
with the specification; and such consistency will be provided by means of this linking
software.

In practice things are not done thisway. |nstead:
1. Thelink is only ever in the mind of the programmers involved, disappearing as they
disappear to create even bigger and better information systems.

2. Instead of using the specification to guide them, the maintenance programmer jumps
into the implementation with boots on.

3. The specification no longer matches the implementation; so it withers.

135 AlookatZ

The chapter introduces some of the features of Z. In particular, we will look at the schema
which is the unit of specification within the language. Schemas are used to modularize
a specification written using Z, and a complete Z specification will consist of a number
of interdependent schemas. In essence, a schema allows us to state some truth regarding
the things that we are specifying. Each schema consists of two parts, a signature and a

The Knowledge Base 313

predicate. The signature is where variables are declared and associated with some set or
type. The predicate is where constraints are placed upon these variables.

Example 13.1 Hereisan example of a schema called Employee that might contain the
information that we want to keep regarding each employee.

__ Employee

name : seq Character
age : N
jobhistory : Set of Promotion

17 < age < 65

The schema signature states that we are interested in three things about an employee:

e aname Whichisasequence of characters;

e an age whichisanumber;

e ajob history whichisaset of promotions.
The schema predicate states that an employeeisrequired to be at least 17 and younger than
65.
Example 13.2 Another schema might be used to define what we mean by a promotion.

__ Promotion

date : day

job : seq Character
rate : Money

dept : seq Character

job € {plumber, joiner,nurse, manager}
rate > 10
dept € {Finance, Computing, Marketing, Production}

According to its signature, every promotion consists of:

¢ the date upon which the promotion occurred;
the new job taken that day;

the rate of pay attached to thisjob;

the department.

The predicate part requires every promotion to satisfy three conditions:

¢ thejob can only be one of plumber,joiner,...;
o therate of pay must exceed $10.00 per hour;
o the department involved must be one of Finance,.. .

314 Chapter 13

In summary a schemalookslike this:

A7 Schema
THE SIGNATURE

a collection of type declarations
that name variables and associate
each variable with a particular
set or type.

THE PREDICATE

a collection of rules or constraints
governing the values held by the
variables named in the signature.

Just like a COBOL program with its data division and its procedure division! Let us
pursue that analogy alittle further.

13.6 Signatures

A signature is like the data division of a COBOL program. It consists of a series of type
declarationswhereby each variableisassociated with atype or set. A signatureiswrittenin
adata or type sublanguage that enables usto declare the kinds of thingsthat interest us and
about which we want to make statements. However, there are differences. In a COBOL
datadivision we arereserving storageinside a computer in order to perform cal culations
or to make comparisons. In a Z signature we are not restricted to the kinds of data that
some compiler is prepared to recognize. We can introduce any kind of object that interests
us.

Example 13.3 Thiscan beseeninthefollowing schemawhich hasno predicate, consisting
only of asignature.

FirstSampleSignature
b : Bore
z,y : Property

p : Person
¢, d : Client

We can introduce variables that stand for things that no self-respecting COBOL compiler
would be prepared to | et pass.

Example 13.4 The type associated with a variable may be given as a simple name such
asin the examples above. However, it may be a more complex expression.

The Knowledge Base 315

—SecondSampleSignature

location : N x N
team : Set of Player
sqrt : N > N

min: NxN—>N

queue : seq Customer

Briefly, the types associated with each of these variables are as follows:

e A location isapair of integers (V isthe name usually given to the set of integers 0, 1,

2,...).

e A team isaset of players, not the set of players, but a subset of that set.

e sgrt isafunction that mapsfrom oneinteger to another, say from 4 to 2 or from 144 to
12; we can place this function in front of the first of the pair and expect it to equal the

second, for example, sqrt(4) = 2.

e min isafunction that maps a pair of integers to another integer, say from (4,9) to 4;
again we can apply the function so that min(4,9) = 4.

e queue iS a sequence of customers, that is, it is an ordered list of some kind, one that
alows usto talk of one customer being in front of another.

13.6.1 Declaration

A signature consists of a series of type declarations and each declaration has one of these

formats:

Declaration:

Basic_Declaration
or Basic_Declaration;

Basic_Declaration:
Symbol : Set_Term

...; Basic_Declaration

or Symbol, ..., Symbol : Set_Term

Essentially, a declaration introduces a symbol which will be used to represent an object

of the kind indicated.

Example 13.5 We might use the symbol p to represent a person, as follows.

p : Person

A symbol may be any mark that we (collectively) can construct, recognise and reproduce.
We are not restricted merely to letters and words, although the keyboard is a convenient

316 Chapter 13

way of making new symbols (in the form of words). We may borrow symbols from other
alphabets, for example X, or build new ones, for example &.

Example 13.6 Thebasic declaration style also allows usto introduce several new objects
of the same type at the same time.

p,q,7 : Person

We must take care, however. Just because the symbols are different does not mean that
the aobjects they represent are different. They may be, they may not; it depends on any
subsequent constraints we choose to place upon these objects.

Example 13.7 Several basic declarations may be connected by semi-colons.

D, q : Person; s : Sport; d,e, f : Date

Example 13.8 Although the semicolon has been shown as the separator, a new line may
also be used.

p,q: Person
s : Sport
d,e,f : Date

Although all the examples so far have declared objects to be of a certain type, we
may use any symbolic expression (Set Term) that represents a set. A Set Term may be
a primitive or basic type, that is, one whose existence is to be accepted without question,
for examples, people or carsor rivers. Alternatively it may be of a derived nature. We will
discuss these two alternatives next.

13.6.2 Type Introductions

The world according to Z is divided into a number of digoint sets called types. Every
object has or belongs to just one type. No aobject can belong to more than one. When we
discuss an object, we must always declare its type, and we must have introduced its type
beforehand.

Type_Introduction

[Symbol]
or [Symbol,. .., Symbol]

Example 13.9 We may introduce several new types together.

[Person, Sport, Skill]

Example 13.10 However, it is better to introduce them one at a time and provide some
explanatory comment.

The Knowledge Base 317

Type Interpretation

[Person] The set of people who may belong to the circle.
Sport] The set of sportsthat they might take up.
[Skill) Thedifferent levelsof skill with which people may

play a sport.

A type should be thought of as a fixed immutable background set. 1t must be capable of
incorporating all candidate members by being defined broadly enough to cover all likely
changes to the situation being described.

We do not need to introduce all required types at the same time, but may choose to
spread their introduction throughout the specification, subject to the restriction that no type
is used before being introduced.

13.6.3 Sets

The second kind of set that may be used in a declaration is one defined by means of any
one of anumber of waysin which sets may be constructed. These are asfollows:

Set_Term:

Symbol
or Set_FEztension
or Set_Comprehension

or Type_Construction
or Set_Operation

or Special_Set_Operation
or Fact_Type

or Sequence_QOperation

or (Set_Term)
or Symbol Set_Term
or Set_Term Symbol Set_Term

13.6.4 Set Extension
The set may be defined by listing out its elementsin full.

Set_Extension:

{Term}
or {Term, Term, ..., Term}

318 Chapter 13

Example 13.11 To introduce an object and identify it as being either Bob or hisfather:

p : {Bob, father(Bob)}

Example 13.12 To introduce an odd number less than ten:

n:{1,3,5,7, 9}

13.6.5 Set Comprehension

The set to which an object belongs may be defined through some property shared by all
its members. Thisis done by set comprehension, which takes all the forms discussed in
Chapter 3.

Set_Comprehension:

{Declaration}
or {Declaration | Predicate}
or {Declaration | Predicate ® Term}
or {Declaration & Term}

Example 13.13 To declare an object as being one of the sportsthat Alan plays:

s : {t: Sport| Alan plays t}

13.6.6 Type Construction

All objectsin the knowledge base are of one of three kinds:

Type_Construction:

or Set of Set_Term
or Set_Term x Set_Term

There are simple or atomic objects of some previously defined base type. There are
also two ways of constructing more complex types:

1. The power set operator, Set of . Any object of atype built using this constructor is a
setinitsown right.

2. The Cartesian product set operator, x. Any object of atype built using this constructor
is acomposite object.

The Knowledge Base 319

Example 13.14 We may declare an object P to be a set of people.
P : Set of Person

Example 13.15 We may declare an object to be a pair of numbers.
loc: N x N

Example 13.16 We can combinethe constructorsto declare an object to be a set of pairs
of numbers.

k: Set of (N x N)
Example 13.17 We can declare an object to be a pair of sets of numbers.

k : (Set of N) x (Set of N)

13.6.7 Set Operations

The commonly used set operations, set union, set intersection and set difference giverise
themselves to sets.

Set_Operation:

Set_Term U Set_Term
or Set_Term N Set_Term
or Set_Term — Set_Term

Example 13.18 We could declare an object to be a sport that is played by Bob or Alan.
s : ({t: Sport| Bob plays t} U {t : Sport | Alan plays t})
Example 13.19 We could declare a person to be one of the people that Sue does not like.

p : (Person — {q : Person| Sue likes q})

13.6.8 Special Set Operations

There are a'so a number of other, less well known but just as useful, set operations. They
were discussed in Chapter 12.

Special_Set_Operation:

Set_Term < Set_Term
or Set_Term Set_Term
or Set_Term @® Set_Term
or dom Set_Term
or ran Set_Term

320 Chapter 13

All of these operations result in sets, and so may be used in a declaration.

e the domain subtraction operator <«

function override @

the range operator ran

the range subtraction operator &

the domain operator dom

Example 13.20 We can declare an object to be any pair in the plays relation not involving

Alan.

g : ({Alan} <4 plays)

Example 13.21 We can declare an object to be a married person.

p : dom spouse

13.6.9 Fact Types

In Chapter 2, afact involving two objects was seen as a pairing of these objects. The fact
that Alan plays tennis was seen as a pairing (Alan, tennis). All facts of this kind can be
gathered into a set of pairs.

or
or
or
or

Fact_Type:

Set_Term
Set_Term
Set_Term
Set_Term
Set_Term

<> Set_term
—+> Set_Term
—> Set_Term
>+> Set_Term
>> Set_Term

There are five kinds of fact types. See Chapter 2 for further discussion.

e Theset A <> B isthe set of all relations (many-to-many relationships) between A

and B.

e Theset A +> B istheset of all partial functions (one-to-many relationships) from A

to B.

e Theset A — B istheset of all total functionsfrom A to B.

e Thesat A >+ B isthe set of all partia injections (one-to-one relationships) from A

to B.

e Theset A >> B istheset of all total injectionsfrom A to B.

The Knowledge Base 321

Example 13.22 To declarethat plays is arelation between people and sports:
plays : Person <= Sport

Example 13.23 To declaretwo quitedifferent rel ationshi ps between people and numbers:
age, height : Person —> N

Both age and height have the sametype. They are not, of course, the same thing.

13.6.10 Sequences and Sequence Operations

A sequenceisaspecia kind of set, and so may be used in a declaration.

Sequence_Operation:

seq Term
or Term™ Term
or tail Term

Example 13.24 Declare a queue as a sequence of people.
queue : seq Person

The set seq A isthe set of sequences of type A. Any individual element of seq A isitself a
Set.

Example 13.25 Declare an object to be one of the peoplein the above queue.
queuer : ran queue

The queueisaset of pairs. Itsrangeis the people themselves.

Example 13.26 Declare an object to be one of the peoplein the queue, but not the person
at the front.

p : ran (tail queue)

13.7 Predicates

A predicateisacondition that isto hold or is held by one or more variables, typically those
variables declared in the preceding signature.

Example 13.27 Suppose we have the schema:

__ FirstSamplePredicate

cost : Product = Money

Y p : Product e cost(p) < 100
Ap : Product e cost(p) > 95

322 Chapter 13

The signature declares afunction cost that enables us to map from a product to the cost of
that product. The predicate contains two statements:

o thefirst usesthe universal quantifier (V) and it saysthat for all products, the cost isless
than $100, or more simply, every product costs less than $100;

¢ the second statement uses the existential quantifier (3) and it says that there exists a
product that costs more than $95, or more simply, some products cost more than $95.

Example 13.28 The emphasis so far has been on the use of predicates to constrain or
limit the values taken by variables. However, the use of predicates can be extended to
defining computations or calculations.

Suppose that a company has a policy of alowing a discount of 15% on any order of
100 units or more. The charge for an order might be specified as in the following schema:

_ ChargeFormula

cost : Product = Money
charge : Product x N —> Money
Vp : Product; n: N e

n < 100 = charge(p,n) = n * cost(p) A
n > 100 = charge(p,n) = n * cost(p) * (1 — (15/100))

In thiskind of predicate, the charge for a particular quantity of some product is defined in
terms of other things, the quantity ordered and the discount allowed.

13.7.1 The Structure of a Predicate

The predicate of a schemawas likened to the procedure division of a COBOL program. In
this section we have seen predicates that relate to the kinds of things done in a procedure
division, checking constraints and performing calculations. However, predicates are not
necessarily restricted to the kinds of things that we expect to seein a procedure division.

Predicate:

Simple_Predicate
or Compound_Predicate
or Quantified_Predicate

A predicate may be a simple sentence, or one involving connectives such as A, or one
using quantifiers.

13.7.2 Simple Predicates

The kinds of sentences that come under this heading are shown below:

The Knowledge Base

323

Simple_Predicate:

Symbol Term
or Term Symbol Term
or Term € Set_Term
or Term = Term

Example 13.29 To say that person p speaks Japanese:

speaks(p, Japanese)
Example 13.30 To say that Alan playstennis:

Alan plays tennis

Example 13.31 To say that Bob is married:

Bob € dom spouse
Example 13.32 To say that Mark is Alan’s father:

Mark = father(Alan)

13.7.3 Compound Predicates

These are statements formed using sentential connectives. See Chapters 2 and 12.

Compound_Predicate:

= Predicate
or Predicate N\ Predicate
or Predicate V Predicate
or Predicate = Predicate
or Predicate < Predicate

Example 13.33 To say that Bob is not Alan’s father:

—(Bob = father(Alan))

Example 13.34 To say that Alan is aged somewhere between Sue and Ann;

age(Alan) > age(Sue) A age(Alan) < age(Ann)

324 Chapter 13

Example 13.35 To say that Sueis married to Alan or Bob:
spouse(Sue) = Alan V spouse(Sue) = Bob

Unfortunately, this allows Sue to be married to both these men.
Example 13.36 To say that Sueis married to either Alan or Bob, but not both:

(spouse(Sue) = Alan V spouse(Sue) = Bob)
A (= (spouse(Sue) = Alan A spouse(Sue) = Bob))

This last example shows that the predicates used to build a compound predicate may
themselves be compound.
13.7.4 Quantified Predicates

These allow us to make statements about classes of objects, rather than about individual
objects.

Quantified_Predicate:

V Declaration e Predicate
or 1 Declaration e Predicate
or A!Declaration e Predicate

Example 13.37 To say that everybody playstennis:

V p : Person e p plays tennis

Example 13.38 To say that at |east one person is over 45 years old:

dp : Person e age(p) > 45

Example 13.39 To say that exactly one person drives a Porsche:

Alp : Person e drives(p) = Porsche

13.8 Kinds of Schema

The schema structureis very simple and yet enables us to make a number of different kinds
of statements.

13.8.1 Process Descriptions

These allow us to describe a process or what we think of as a dynamic situation.

Example 13.40 Hereisaschemathat describes the process of taking two numbers and
returning their sum.

The Knowledge Base 325

__Add
first?, second? : N
sum!: N

sum! = first? + second?

A processis something that takes someinput and returns some output. The Add process
takes two numbers, first? and second? It returns or produces athird number sum! To help
us interpret process schemas, two conventions are followed:

1. Input variablesare decor ated with or end in aquestion mark: so, without any additional
comment, we can tell that first? and second? are inputsto the Add process.

2. Output variables are decorated with an exclamation mark: so sum! isthe output of this
process.

Example 13.41 Hereisaschema Square that takes anumber n? and returnsits square
sn!

—_Square
n?,sn!: N

snl=n?xn?

Thereisonly oneinput and one output. \We can declare them on the sameline or on separate
lines as was done in the Add schema. It would seem better to separate the declaration of
input and output variablesto help clarify the schema.

Example 13.42 Hereis a schema SquareRoot that takes a number n? and outputs its
square root sr!

__SquareRoot
n?: N
srl: N

srlxsrl =n?

You think: what a cheat! The schema makes no attempt to describe how to derive the
root. It leaves that up to the programmer. The schema simply relates the input to the
output. But how would we test the program? We would sguare its output and compare
that with the input provided. If they are the same then the program would seem to meet
its specification. So that even if the specifier were to present the programmer with an
algorithm for calculating the square root, there would still be a*“ hidden agenda” that would
come out during testing.

Example 13.43 Hereisaschema Upto that takes a number n? and returns all!, the set
of numbersin therange(to n?

326 Chapter 13

__ Upto
n?: N
alll : Set of N

all! = {k: N|k < n?}

The output is a set of numbers and so is declared as such. Set comprehension is used to
define the output.

13.8.2 State Descriptions
The schema structure can equally well be used to describe a situation in a static way. We
use the schemato provide a snapshot of some state of affairsthat interests us.

Example 13.44 We can represent acollege or university in terms of its students and their
names.

_ WiseacresUni

students : Set of People
called : People +> Name

dom called = students

As far as we are concerned, Wiseacres consists of a set of people caled students and a
partia function called that maps from people to their name. The variables students and
called are called the components of the state. The predicate says that we are interested in
the names of just these people who are students. The domain of called isthe set of people
for whom we know alast name. The predicate part of a state descriptionis called the state
invariant. It characterizes the state. Regardless of what specific changes the University
undergoes, we will always want the invariant to be true.

Example 13.45 Hereisaschemathat makes a simple statement about a parliament.

__ Parliament

poli : Set of People

#poli = 89

Parliament, as defined in this schema, consists of a set of people. The setiscalled poli and
consists of exactly 89 members.
13.8.3 Type Descriptions

Thiskind of schemais useful when we want to define anew type of object.
Example 13.46 Suppose we wish to define the structure of a rugby union team.

The Knowledge Base 327

_ Team

players : Set of People
forwards, backs : Set of People

players = forwards U backs
forwards N backs = {}
#forwards = 8

#backs =7

The team consists of three sets of people — players, forwards and backs. However
these sets are not digoint. The predicate contains the following conditions.
1. The players setis made up of the forwards and the backs.
2. No personis both aforward and a back.
3. Thereare 8 forwards.
4. Thereare 7 backs.

A rugby team is often called arugby XV or fifteen. We can demonstrate that a team must
have 15 players.

F#players
= #(forwards U backs)
[from line 1 of the predicate part of the schema]
= Ftforwards + #backs — #(forwards N backs)
[alaw of set cardinality: #(AU B) = #A+ #B — #(AN B)]
= 8+7—#{}
[lines 2,3 and 4]
15-0

=15

Now that we have established that ateam has 15 players, we can use the Team schema
with increased confidence. One way of using the schemais to declare a variable to be of
type Team, for example:

t: Team

The variable ¢ is now a composite variable with three components and these may be
accessed using projection as t.players, t.forwards and t.backs. These components of ¢
arerelated in the way described in the predicate of Team.

Example 13.47 We can describe a school asfollows. A school consists of the staff, the
head of school and a secretary. The head is amember of staff; the secretary is not.

328 Chapter 13

__School

head : People
secretary : People
staff : Set of People

head € staff
secretary ¢ staff

13.9 Summary

It is one of the ironies of computing that software writers are relatively unprovided for in
terms of computing support. When was a programmer ever asked what kind of information
system he or she would like? But what kinds of information systems do organizational
computing people need? They need software aidsto help with thelong-term management
of information systems. This computer support must help computing peopleto take amore
evolutionary approach to their work. If we take the view that programs contain encoded
organizational knowledge, then the true job of data processing professionals is that of
knowledge base management. They must revise their thoughts and habits accordingly.

To differentiate between data and programs is to make a distinction that is partly
technological and partly historical. Both data and programs contain information.

Programmers need to ater their mental image of what their job principally entails —
from a notion of construction to one of evolution. They need to see themselves less as
hackers and more as technical writers of programming and other languages. They need to
see themselves as knowledge maintainers.

1. They must start to see the provision of information systemsin evolutionary rather than
revolutionary terms. User needs are continually changing. A computer systemisjust a
temporary implementation of user requirements, one using the current technol ogy.

2. They must see that specification is not simply a means to an end, not merely a way
of reaching the desired goal of a new information system. The specification contains
organizational knowledgein its most concentrated form; it is a valuable organizational
asset. One of the DP department’s major responsihilities is the management of this
asset.

3. They must change their attitude towards documentation. They must see themselves as
producers of high quality documentation using CASE tools.

Organizational computing will continue without direction for as long as computing
professionalsare obliged to play apurely support role. Computing people are quite without
the kind of computing support that other staff take for granted.

Of course, computing professional s (everywhere) must take some of the blame for this
state of affairs. We (from the computing viewpoint) encourage an “us and them™ attitude
between computing people and so-called end-users. Unfortunately, the effect of thisisthat:

1. weareplaced in aservice, and consequently reactive, role with regard to users; and
2. we never see ourselves as possible end-usersin our own right.

The Knowledge Base 329

Another barrier to our seeing ourselves as usersis that we have no feel for what kinds
of information systems we should have ourselves. Other people can go out and touch the
things that their information systems record. Engineers can swim in their rivers, jump in
their dams or canoe down their canals. Managers can talk to their staff, pat them on the
back, kick them out the office and so on. In contrast, computing people deal withintangible
things.

In this chapter we have seen the use of the schema which is the basic structure upon
which we will hang the mathematical statements that form the essence of our knowledge
base. The schema has a simple structure and allows us to make a variety of statements.

e |t can be used to describe processes in an active or dynamic way.
e |t can equally be used to present a snapshot or static description.

e |t can also be used to introduce and describe a new type of object which can then be
incorporated in other schemas.

Essentially, the schema allows us to express knowledge in the same way that we do in
proverbs such as:

“Hewho hesitatesis|ost."

Thewarning isissued to the variable (He) in the sentence; but it appliesto usall!

330 Chapter 13

Exercises

P Q13.1 Write process description schemas to satisfy each of the following requirements.
Make sure that input and output variables are decorated according to convention.

a

A schema Successor which takes an integer and returns the next integer in
sequence.

A schema Mazx which takes two integers and returns the larger of the two.

A schema Largest whichtakesaset of integersand returnsthelargest integer
in the set. The set must therefore contain at |east one element.

A schema Between which takes two integers and returns any integer in the
range defined by the smaller and the larger of these two numbers.

P Q13.2 Write aschemathat describes afamily according to the following requirements.

A family consists of two (tired) people mum and dad as well as a set of people
children.

1. Mumisfemale; Dad is male.

2. All the children are appropriately related to Mum and Dad.

3. All the children are at |least 16 years younger than both Mum and Dad.
4. No family has more than 15 children.

You may use the following functions which should be self-explanatory.

sex : People = Sezxes
mother : People = People
father : People = People
age : People => N

Chapter 14

From Specification
to Implementation

14.1 Introduction

In this chapter wewill ook at how the various schemasthat form aZ specification might be
put together. The situation to be modeled isthat of a class of students who are studying a
particular subject. The specification coverssuchtypical activitiesasstudentsbeing enrolled,
being awarded marks, having marks amended and, hard to believe, students dropping the
subject. We will begin by introducing a state schema which provides a static picture of
the classroom. Based on that picture we specify a number of operation schemas which
describe the ways in which the classroom may change. Then we return to the state schema
and discuss how it might be developed. Finally, we discuss the relationship between this
specification, which consists of a state schema and a number of operation schemas, and
the implementation, which consists of a database and a number of programs.

14.2 The State Schema

Suppose we describe the classroom in the following way.

_ Class

students : Set of Person
last : Person +> Name
mark : Person +> 0..100

dom last = students
dom mark C students

331

332 Chapter 14

Thisis called a state schema and is intended to capture or represent a particular state
of affairs that interests us. The Class schemais a single, global and static picture of the
classroom. It introduces the students, their names and any marks they might have been
awarded for the subject under study. There are three basic sets or types used:

[Person] Theset of al possible students.
[N] The set of integers0, 1, 2, ...
[Name] The set of names.

The schema above can be interpreted in the following way.

The Class Declaration

1. students : Set of Person

The variable students represents the set of people enrolled at any particular time.
2. last : Person +> Name

Thisisafunction that maps peopleto their last name.
3. mark : Person +> N

Thisisafunction that maps people to any mark that they may have been awarded.

The Class Predicate

1. dom last = students

This says that we will know or require to know the last name of just those students
enrolled in the class.

2. dom mark C students

This says that we may not necessarily have amark for every student enrolled.

14.3 Schema Inclusion

One of the things we can do with a named schema is to include it within other schemas.
Suppose we wanted to define asmall class, something like our original class but where the
class size was to be restricted to no more than 10 students. We can define this as follows:

__SmallClass
Class

F#students < 10

The schema Class is named in the declaration of SmallClass and the effect isto introduce
all the variables of Class and to conjoin (logically “and") the predicate of Class to that of
SmallClass. S0, SmallClass, when fully expanded, 1ooks like this:

From Specification to Implementation 333

__SmallClass

students : Set of Person
last : Person +> Name
mark : Person +> 0..100

F#students < 10
dom last = students
dom mark C students

Using schema inclusion, we are able to emphasize that a small class is the same as any
other class with the additional constraint that there be no more than 10 students enrolled.

14.4 Schema Decoration

Thereisaconventionthat if we use a schemaand decor ate its name in some way, typically
with aprime’, then the effect isto consistently decorate or rename al the variables within
the schema, both within the declaration and within the predicate.

TrialDecoration

’7 Class'

This expands to the following:

__ TrialDecoration

students’ : Set of Person
last' : Person = Name
mark' : Person - 0..100

dom last' = students’
dom mark’ C students’

Note that only the variables are decorated, not their types.

145 State Transition

Another use of the schemaisto allow us to capture the essentials of any change that may
happen to a particular state of affairs. Suppose we want to be able to talk about changes
that might occur to our class. These changes could include such events as:

¢ enrolling anew student;

e awarding amark to a student;

¢ adjusting a student’s mark;

o alowing a student to drop out.

334 Chapter 14

We will need to be ableto talk about the set of studentsbefore and after a change, and about
their names and marks as well. We might define a new schema:

_ AClass

students, students’ : Set of Person

last, last' : Person +> Name

mark, mark' : Person += N

dom last = students
dom mark C students

dom last' = students’
dom mark’ C students’

These are the kinds of variables that we might want to use, and these are the conditionsto
be attached to them. But this can be achieved much more neatly using schemainclusion
and decoration.

AClass

Class
Class'

We have built a frame schema, in this case A Class, that describes the features that are
common to al possible changes to some state, in this case the Class state.

14.6 Operation Schemas

A schemathat isintended to specify how something such as an event is expected to affect a
particular state of affairsis called an operation schema. The variablesused in an operation
are ones that allow us to specify the allowable change of state and any inputs and outputs
involved in the change.

1. Variables are required to represent the state before the change. These variables are
defined in the corresponding state schema. The Class schemais an example.

2. Variables are required to represent the state after the change. These variables can be
obtained from aversion of the state schema decorated with a prime or apostrophe. The
schema Class' isan example.

3. Variablesare possibly required to represent any input to the operation. These variables
are conventionally decorated with aquestion mark to indicatetheir rolein the operation.

4, Variables may also be required to represent any output from the operation. These are
conventionally decorated with an exclamation mark.

Using the above conventionswe will ook at some operation schemas.

From Specification to Implementation 335

14.6.1 Enrolling a New Student

In this operation we will add a new student to the class. There are two inputs, the person
p? enrolling and his or her name?.

__ Enrol

A Class
p? : Person
name? : Name

p? & students
students' = students U {p?}
last' = last U {(p?, name?)}
mark' = mark

In this and each of the specifications that follow, we will provide an accompanying
explanation of both the declaration and the predicate parts of the schema.

The Enrol Declaration

1. AClass

Thissignals achange to the Class state.
2. p?: Person

Thisisthe number or identifier of the student.
3. name? : Name

Thisisthe new student’s name.

The Enrol Predicate

1. p? & students

The student must not already be in the class.
2. students' = students U {p?}

The student is added to those already enrolled.
3. last’ = last U {(p?, name?)}

An entry mapping this student to his or her nameis added to the list of last names.
4, mark' = mark

No change is made to any marks awarded to the students.

All the conditions in the predicate part of an operation schema must be made true by
any program implementing that specification. There is an implied conjunction of all the
conditions in the predicate. It does not supposedly matter in which order they appear.
In practice, however, the program will validate any input it receives before making any

changes to the database that are required. It is useful, therefore, to write the operation
schema conditionsin a certain sequence.

336 Chapter 14

1. Thepre-conditionsare presented before the post-conditions. That iswhy the condition:
p? & students

appearsfirst.

2. Thepost-conditionsappear next, but they too appear in acertain order. Those conditions
describing changes appear first. Thusthe lines:

students’ = students U {p?}
last’ = last U {(p?, name?)}

come next because the students and last components are changed by this operation.
The condition:

mark' = mark

appears last because the mark component is unchanged.

These are merely guidelines. It may be more convenient, in certain circumstances, to vary
or even ignore these suggestions.

14.6.2 Award a Mark

A mark isto be awarded to astudent. There are also two inputsto this operation, the person
p? being awarded amark and m?, the mark itself.

_ Award

A Class
p? : Person
m? :0..100

p? € students
p? & dom mark
mark' = mark U {(p?, m?)}
students' = students
last’ = last

The Award Declaration

1. AClass

Thissignals achange to the Class state.
2. p? : Person

Thisisthe number or identifier of the student.
3. m?:0..100

Thisis the mark that the student is to receive. It must be an integer in the range O to
100.

From Specification to Implementation 337

The Award Predicate

1. p? € students
The student must be in the class.
2. p? & dom mark
The student must not already have a mark.
3. mark’ = mark U {(p?,m?)}
An entry mapping this student to his or her mark is added to the list of marks.
4, students’ = students
No change is made to any students enrolled.
5. last' = last
No change is made to the list of last names.

14.6.3 Amend a Mark

This operation allows an existing mark to be amended.

__ AmendMark

AClass
p? : Person
m?:0..100

p? € students

p? € dom mark

mark' = mark @ {(p?, m?)}
students' = students

last’ = last

The AmendMark Declar ation

1. AClass
Thissignals achange to the Class state.
2. p? : Person
Thisisthe number or identifier of the student.
3. m?:0..100
Thisisthe new mark that the student is to receive.

The AmendMark Predicate

1. p? € students
The student must be in the class.

338 Chapter 14

2. p? € dom mark
The student must already have been awarded a mark.
3. mark’ = mark ® {(p?, m?)}

The entry mapping this student to his or her mark is amended or overridden with the
new mark.

4. students' = students

No change is made to any students enrolled.
5. last’ = last

No change is made to the list of last names.

14.6.4 A Student Drops Out
This operation records the person p? dropping the class.

— DropQOut

AClass
p? : Person

p? € students
students’ = students — {p?}
last' = {p?} qlast
mark’ = {p?} 4 mark

The DropOut Declaration

1. AClass
Thissignals achange to the Class state.
2. p?: Person
Thisisthe number or identifier of the student dropping out.

The DropOut Predicate

1. p? € students
The student must be in the class.
2. students' = students — {p?}
The student is removed from the list of those enrolled.
3. last' = {p?} qlast
The student’s nameis also removed.
4. mark' = {p?} < mark
Any mark awarded to the student is removed.

From Specification to Implementation 339

14.7 Read-only Transactions

There are occasions when we simply wish to inspect some component of the state, rather
than changing the state. The first step is to define a specia version of the A schema,

A Class.

__ZClass
A Class

students' = students
last' = last
mark' = mark

The Z is to be read as “no change", so =Class, when used within a operation schema,
signals that the transaction does not change any part of the state.

Asan example of the use of this convention, hereis aread-only transaction that simply
tells us the number of students enrolled in the class.

__HowMany

=Class
count!: N

count! = F#students

The HowMany Declaration

o =(Class

This signals an inspection of the Class state.

e count!: N

This output variable will contain the number of students.

The HowMany Predicate

e count! = #students

The number of studentsin the classis simply the size of the students set.

14.8 Maintaining the State Invariant

The classroom situation was formally described by a state schema Class.

340 Chapter 14

__Class

students : Set of Person
last : Person +> Name
mark : Person +> 0..100

dom last = students
dom mark C students

The Class state consists of three parts.

1. Thereisaset of people; let uscall that set students.

2. Thereisamapping from some peopleto their name; let us call this mapping last.

3. Thereisamapping from some people to an integer; let us call this mapping mark.
Nothing specific is said about these things. The purpose of the state schemais to describe
the class in general terms. We don’t know which people are going to enrol, what their
names will be or what marks they will be awarded. But we do know that:

1. Every student’'s name will be known.

2. Markswill only be awarded to students and to nobody else, although not every student

need have been awarded a mark.

These are permanent features of the class, and they are expressed in the predicate part of
the schema. They form the state invariant. No matter what changes the class undergoes, it

will retain these characteristics.
But how can we be sure of this? How can we be certain, for example, that the Enrol
operation will not corrupt the classin some way? If we are given:

e avalid class, and
e an operation of some kind,

can we provethat:
e weget avalid state afterwards?

A valid class after an operation is one that satisfiesthe state invariant when that invariant is
expressed in terms of after variables; that is, it satisfies the conditions:

dom last' = students’
dom mark' C students’

When writing an operation schema, we should be ensuring that these two conditions are
satisfied. Let ustry to establish thefirst of them. We are allowed to assume (1) that we had
avalid state before the operation, and (2) that the operation went ahead as specified.

dom last’
(We start with the left-hand side of our equation)

From Specification to Implementation 341

= dom (last U {(p?, name?)})
(substituting the post condition in the Enrol schema)

= dom last U dom {(p?, name?)}
(using ageneral law of theform: dom(A U B) = dom AU dom B)

= dom last U {p?}
(using an obviouslaw that dom{(z,y)} = {z})

= students U {p?}
(using thefirst condition of the state invariant equating dom last and students)

= students’
(using the relevant post-condition from the Enrol operation)

Thuswe have demonstrated that, given avalid Class state, the Enrol operation maintains,
in general terms, the rule that every student’s last name must be known.

Suppose an operation will, when given one valid instance of astate, create another valid
instance. It remainsto ensurethat, at the very beginning of itsexistence, the Class isvaid.
We can do this by specifying the initial state. This can be done conveniently, as follows.

_ ClassInitially
Class

students = {}

This single condition, in conjunction with the state invariant, requires that last and mark
both be empty.

14.9 Developing a State Schema

Where did the Class schemacome from? How was it developed? Perhapsit was like this:

e Imagine that the user (the lecturer) saw the students, to begin with, as just a set of
numbers.

o After awhile, as he got to know them better, he was able to put a name to them.
¢ At theend, he started to award marks for the subject.
The situation may be as shown in Figure 14.1.
So we have three views of asituation, but they are not completely distinct; they overlap
each other to some extent. We could say that the class situation is merely an amalgamation

of theseviews—itisaglobal all-encompassing view. We can usethe extended Backus-Naur
Form (EBNF) language of Chapter 9 to describe these views.

studentsView ::= {Person}
lastView ::= {Person + Name}

markView ::= {Person + Number}

342 Chapter 14

AtFirst LaterOn LaterStill
Nr Nr Last Nr Mark
871 871 Zupp 871 75
862 862 Board 869 60
869 869 Orff 872 60
854 854 Dover 868 80
831 831 Orff = -
872 872 Kahn
868 868 Gambol

Figure 14.1 Three views of the classroom

Next we can further abstract them. The repetition construct {.. . } is replaced by the power
set operator Set of and the concatenation construct . . . +. .. isreplaced by the product set
operator x. This gives us three declarations:

students : Set of Person
last : Set of (Person x Name)
mark : Set of (Person x N)

But last and mark aremorethan just setsof pairsor relations; they are a so functions. And
further, the mark function maps a student not to any number, but to a particular subset —
the numbers from O to 100.

students : Set of Person
last : Person +> Name

mark : Person +> 0..100

Now we can gather these formalised view declarationsinto asingle global declaration that
coverstheclass:

Class

students : Set of Person
last : Person +> Name
mark : Person +> 0..100

Thereis still some work to be done. We must show all the constraints that apply to these
views collectively; that is, we must show how they relate to one another. Thiswe do in the
predicate.

From Specification to Implementation 343

__Class

students : Set of Person
last : Person +> Name
mark : Person +> 0..100

dom last = students
dom mark C students

What lessons does this particular development have for us? Turning what we have done
into what we should do, we:
e Gather as many views as we need to adequately cover the situation.
e Usethe EBNF language to show the structure of each view.
e Turn each view structure into the corresponding Z declaration.

¢ Refine each view declaration by incorporating any constraints that are specific to that
view.

e Gather the individually defined and constrained views into the declaration part of the
state schema.

e Form the predicate part of the state schema by writing the constraints that apply to the
views collectively.

We can expect the schemato look like this:

__ The State Schema
THE SIGNATURE

A number of type declarations,
each of which introduces a view
and possibly constrains that view
in some way.

THE PREDICATE

A collection of rules or constraints
that specify how these views relate to
and overlap one another.

14.10 Implementation

In therest of this chapter, we will examine how the Class situation might be implemented.
By implementation, we mean the rewriting of the specification in some programming
language. In thisbook, the language used is SQL . The programming of a specification will
involve two major steps.

1. The state schema, Class in this case, will be turned into a relational database. In
particular, we use the declaration part of that schema. The declaration introduces each

344 Chapter 14

component of the state and the basic structure of that component. It sayswhether it is,
for example, afunction or arelation or whether it is a simple object or a set of smple
objects.

2. Each operation schemawill be turned into a program of instructions that will examine
and manipul ate the database.

e The pre-conditions will become SQL select statements which, by retrieving
information from that database, allow the “before" state to be checked.

e The post-conditions will become insert, update Or delete Statements (or a
mixture) depending upon the exact nature of the conditions involved.

14.11 Developing the Database

Two approaches to database design have been presented in this book. We will consider
eachinturn.

A Conceptual Schema

According to Figure 14.1, there are two types of facts in the class and they both involve
people. We need to know people’s names and their marks, if any. We can analyze each fact
type and find any uniqueness constraints that apply (Figure 14.2).

is
called Name
by
has
been Mark
awarded

Figure 14.2 Conceptual schema diagram

Each person hasjust onelast name, but two people sharethe sameone. Similar remarks
may be made regarding people’s marks. Two or more facts may be merged, without risk of
redundancy, if they al provide single-valued information about the same entity type. The
rules about aggregation suggest, therefore, that we should develop a Student record type
by mergingthe“is called" and “awarded" fact types.

From Specification to Implementation 345

An Entity-relationship M odel

Alternatively, if we use the ER approach, we might develop a diagram such as the one
shown in Figure 14.3.

Student

Figure 14.3 Entity-relationship diagram

According to that model, there will be a single entity type Student with an identifying
attribute Nr and two other attributes Name and Mark. From this model, we will extract a
Student record type.

The Class Database
Whatever data modeling approach we take, our database will consist of one record type:

Record Type
Key? | Attribute References?
() | Nr
Last
(?) | Mark

The formal definitionof thisrecord typeis:

__StudentRecord

Nr : Person
Last : Name
Mark : 0..100

The database will consist of asingle relation:

__Database

Students : Set of StudentRecord

count Students = count {s: Students e s.Nr}

In SQL terms, wewill haveaStudents table and we might have the following datain that
table. Thisisaspecific instance of the Database state.

346 Chapter 14

Students

Nr Last Mark
871 Zupp 75
862 Board ?
869 Orff 60
854 Dover ?
831 Orff ?
872 Kahn 60

Figure 14.4 The Class Database

14.12 The State Schema and the Database

The development of the state schema and that of the database had the same starting point
— user views. Thisis not a coincidence. The state schema and the database are simply
two different pictures of the same situation. Figure 14.1 showsthe classroom at the Class
state level, and Figure 14.4 shows it as a database. The state schema is written for our
benefit. It uses (or may use) the full range and richness of the Z specification language.
The database pictureiswritten solely in terms of relations because that is the only structure
that arelational database management system will allow, and we have chosen to usethisas
our implementation “vehicle". See Figure 14.5.

User Views

A

Outline the
situation

Design the
database

Y Y

State Database
Schema Schema

Figure 14.5 Abstract and concrete states

The database is a machine-oriented realization of the state schema. We can show this

From Specification to Implementation 347

relationship between the database and the state schema by means of a mapping schema.

_ Mapping

Class
Database

students = {s : Students e s.Nr}
last = {s : Students e (s.Nr, s.Last)}
mark = {s : Students | s.Mark # null e (s.Nr, s.Mark)}

This schema defines the components of Class in terms of Database components. The
following table shows how each component of the state schema s represented in terms of

the database.

Component How represented In SQL terms
students The Nr attribute of the The Nr column of the
Students relation: Students table:
{s : Students e s.Nr} Select Nr
. From Students
last TheNr and Last attributes: TheNr and Last columns:
{s : Students Select Nr, Last
e (s.Nr,s.Last)} From Students
mark The Nr and Mark attributes The Nr and Mark columns
where the latter is not null: where the latter is not null:
{s : Students Select Nr, Mark
| s.Mark # null From Students
e (s.Nr,s.mark)} Where Mark is not null

We can take this mapping process further and see how some of the secondary compo-
nents are represented.

dom last Given the representation of last above, this must be the Nr column on its
own.

Select Nr
From Students

Thisisthe same as the students component above, so we can seethat the
Class invariant:

dom last = students

is satisfied at the concrete level.

dom mark Similarly, given the representation of mark above, the domain of mark
must be:

Select Nr
From Students
Where Mark is not null

348 Chapter 14

14.13 Implementing an Operation

We have seen how the state schema is implemented as a database, but we still have to
implement the operation schemas as programs. In this section, we will look at how the
Award operation may be programmed.
1. The Pre-Conditions
We can take each of the pre-conditions of the Award operation schema; use the
mappings above and convert the condition to SQL syntax.
Condition In SQL terms

p? € students p? in (Select Nr
From Students)

p? € dommark p7? not in (Select Nr
From Students
Where Mark is not null)

2. The Post-Conditions

The post-conditions will specify changes to the database, whether in the form of
Inserts, Updatesor of Deletes. What changes are required here?

Suppose student number 862 is to be awarded a mark of 80. The Students table needs
to be amended as follows:

Students Students’

Nr Last Mark Nr Last Mark
871 Zupp 75 871 Zupp 75
862 Board ? ok 862 Board 80 *
869 Orff 60 869 Orff 60
854 Dover => 854 Dover

831 Orff ? 831 Orff ?
872 Kahn 60 872 Kahn 60
868 Gambol 80 868 Gambol 80

We do not need to add any new rows nor do we need to delete any. The only change
required is that the Mark column for student 862 be set to 80. For that, we use an
Update statement.

Update Students
Set Mark = m?
Where Nr = p?

Thissingle SQL statement satisfies all three of the post-conditions.

From Specification to Implementation 349

(@ mark’ = mark U {(p?, m?)}
The before version, mark = {(871,75), (869, 60), (872,60), (868, 60)}.
The after version, mark’ = {(871,75), (862, 80), (869, 60), (872, 60), 868, 60) }

(b) students’ = students

The set clause of the update statement does not involve the Nr column, so
this column, which is the concrete version of the Class component students, is
unchanged.

(©) last' = last
Similarly, the set clause does not affect either the Nr or the Last columnswhich

together form the concrete version of the Class component last. Thisistherefore
unchanged.

14.14 From Operation to Program

We discussed the relationship between the state schema and the database and how we can
(and must be able to) map from one to the other. Can we map between an operation and
the corresponding program?

We certainly cannot easily map between the Award schema, for example, and an SQL
program that implements it. The two languages have quite different syntaxes. We can,
however, write an operation schema that awards a mark to a student, but that changes the
database rather than the Class state.

__ AwardProgram

ADatabase
p? : Person
m? :0..100

385 : Students e

S.Nr = p?

S.Mark = null

38" : StudentRecord e
S'.Nr = S.Nr
S'.Last = S.Last
S!.Mark = m?
Students' = Students — {S} U {S'}

We can interpret the predicate as requiring that:

1. There exists, in the Students relation, a record S with the same number as the one
supplied, and where the mark is null.

2. Afterwards, the new Students relation is the same as before, except that the record S
isreplaced by arecord S’ that has the same Nr and Last attributes, but with a Mark
attribute set to the mark supplied.

350 Chapter 14

We will need to ensure that the language used is restricted to the relational calculus. That
language is as close as we can get, in Z, to SQL. So now we have two versions of the
operation:

e An Award operation that modifies the situation as represented by the abstract Class
State.

¢ An AwardProgram that modifiesthe situation as represented by the concrete Database
state.

The question till stands. How do we know that the award program, as described by
AwardProgram, iscorrectly implemented? Thisimportant issueisdiscussed in Chapter 19.

14.15 Summary

In this chapter we have seen how the schema may be used in a number of quite different
ways to specify different aspects of a situation.

e We have used the schemato describe or present a general view of some state of affair,
one that avoids, of necessity, any specific details. Rather, it tries to characterize the
siuation by providing some general rules or conditions known as the state invariant.
In particular we created the Class state schemawhich described a class of students.

e Then we used schema decoration and schema inclusion to build a frame schema, in
this case A Class, that describes the features that are common to all possible changes
to some state, in this case the Class state.

e Next we used the frame schema in conjunction with process description schemas to
create operation schemas that allow changes of state to be described. Each opera
tion schema will describe the necessary pre-conditions for some event and the post-
conditionsthat describe how the state is changed as aresult of the pre-conditions being
met.

e Then welooked at how we might satisfy ourselvesthat an operation schema maintains
the state invariant.

Then welooked at how we might implement the specification collectively provided by
these schemas.

o First wetrandated the state schemainto arelational database.

e Then we translated an operation schema into a program that applies the rules of that
schemain making changesto the database.

Figure 14.6 showsthe interaction of the processesinvolvedin specifying and implementing
an information system.

Andfinally, weareableto usethe programsin conjunction with the databaseto maintain
and reproduce the user views. So we are back to our starting point.

From Specification to Implementation 351

User Views

A

Outline the
situation

Design the
database

Database
Schema

State
Schema

Specify
the dynamics

Operation Implement
Schemas the dynamics

Computer
Programs

Figure 14.6 From specification to implementation

Computer The
Programs Database
Run the
system
A
Y
User Views

Figure 14.7 Full circle

352 Chapter 14

Exercises

P> Q14.1 Pete'sTV RENTAL Company

One day, Peter realized that there was no future in writing COBOL programs.
Now herunsa TV rental company. We are interested in modeling the activities of
the company.

Two basic types are to be used.

[TV] the set of all possible TV's.
[Person] the set of peoplewho may rentaTV.

The current situation is to be represented by the following state schema.

_ TVRental

Stock : Set of TV
OnHire : TV -+> Person
Working : Set of TV

dom OnHire C Stock
Working C Stock

The declaration and the predicate parts of the schema have the following interpre-
tion.

The TVRental Declaration

1. Stock : Set of TV
Stock isthe set of TV's currently owned by the TV Rental company.
2. OnHire : TV +> Person

OnHire is a partial function that maps each TV that is out on hire to the
person to whom it is hired.

3. Working : Set of TV
Working isthe set of TV'sthat are currently working, that is, not in need of
repair. A TV in need of repair may be on hire or it may bein the shop.

The TVRental Predicate

1. dom OnHire C Stock
The company can only hire out TV’sthat it owns.
2. Working C Stock
We are only interested in working TV'sthat the company owns.

From Specification to Implementation 353

> Q14.2

> Q14.3

Here is an operation schemathat describesa TV being rented out to a customer.

__ RentTV

A TVRental
t?7: TV
p? : Person

t? € Stock
t? € Working
t? & dom OnHire
OnHire' = OnHire U {(t7,p?)}
Stock! = Stock
Working' = Working

Explain the significance of each line of the schema, both its declaration and its
predicate. Use the style of the introduction to this question.

Using the T'VRental state schema given in the previous question, write operation
schemas for the following events.

a NormalReturn —aTV t?, currently out on hire, isreturned at the end of its
period of contract.
b. BreakDown —aTV t?, currently out on hire, has broken down.

C. BigDeal —acustomer p? rentsanumber of TV's tuset?, all of which arein
working order of course.

d. Target — a list whingers! of those customers with a faulty TV is to be
produced.

e. Fizlt —afaulty TV ¢? isrepaired at the customer’s home or premises.

f. SwitchTV —aworking TV ok?, onethat isnot on hire, is provided in place
of afaulty TV rs? that is currently on hire.

At the corner shop

In this question, we will attempt to model or represent the situation and happen-
ings in a self-service corner shop. There is only one person behind the counter.
Typically, people come into the shop, locate the goods they want, pay for them
and leave.

There is to be one basic type, [Person], representing the set of al people who
may, at some time, be customers. The state of the shop is to be modeled by the
following schema.

354 Chapter 14
__Shop
shopping : Set of Person
queue : seq Person
ran queue N shopping = {}
Vi,j: dom queue o i # j = queue(i) # queue(j)
The first state component, shopping, represents the set of customerswho are still
shopping, that is, still looking for itemsto purchase. The second state component,
queue, contains those customers who have found what they want and are waiting
to pay.
Using the conventions regarding state transition schemas and operation variable
naming, specify the following operations and queries.
a How long isthe queue?
b. How many people are there in the shop atogether?
c. Someone, c?, entersthe shop.
d. Someone, ¢?, joinsthe queue.
e. Theperson at the front of the queue pays and |eaves the shop.
f. Someone, ¢?, waiting in the queue leaves the queue but not the shop.
0. Which customers are still “just looking"?
Q144 At the supermarket

The situation to be considered in the supermarket is one involving customers,
checkouts and and the queue at each checkout. Each customer may either still be
shopping or have joined a queue.

Thebasic types are:

[Person) the set of all possible customers
[Checkout] the set of checkouts

The state of the supermarket isto be modeled by a state schemawith the following
declaration.

Supermarket

shopping : Set of Person
queues : Checkout — seq Person

We will assume that every checkout isin operation at all times. The components
of the schema have the following interpretations.

shopping — the set of customers still shopping
queues — the queue (possibly empty) of customers waiting at each
checkout

From Specification to Implementation 355

Assume that the first customer, if any, of a queue is being checked out.

Required:
Specify conditions to match each of the following requirements.

a
b.
C.

Nobody shopping in the aislesis also queueing at a checkout.
Nobody appears twice in the same queue.
Nobody appearsin two different queues.

Q14.5 Specify schemasfor the following operations or queries.

> Q14.6

a Which checkouts are free?

b. Someone comes into the supermarket and joins those in the aisles.

c. Someone shopping, p?, joins the queue at checkout ¢?

d. Someone, p?, movesfrom one queue to the end of the queue at checkout ¢?
That person will not be at the front of whatever queue he or she leaves.

e. Theperson p?, at the front of the queue at some checkout, pays and leaves.

f. Someone, p?, leaves aqueue and returnsto the aisles.

In the bank

Inside the bank there are, at any time, a number of tellers operating. Each teller
has his or her own window. However, not all windows need be open at any time.
And evenif ateller’swindow is open, there need not be a customer being served at
that window. There may also be a single queue of customerswaiting to be served;
and there may also be anumber of other customers who either have not yet joined
the queue or who have completed their transactions and have not yet | eft the bank.

The basic types are Person, the set of al possible customers, and Teller, the set
of al tellers. The state of the bank is to be modeled using the following state
schema.

Bank

open : Set of Teller
busy : Teller +> Person
queue : seq Person
others : Set of Person

This schemaisto beinterpreted as follows:

open — the set of tellers whose window is currently open

busy — afunction that maps from tellers whose window is open to any
customer that they might be serving

queue — asequence that indicates those who are waiting and their place
in the queue

others — the set of people who have either been served or who have not
yet joined the queue

356 Chapter 14

Specify operation schemasto handlethe following situationsor requirements. Use
the standard sequence operations, where appropriate.

Someone comes into the bank.

Someone leaves the bank.

Someone completes a transaction and leaves the teller’s window.

Someone goes from the front of the queueto ateller.

A teller opens hisor her window.

N B N S I © A

A teller closes down, but only if he or she is not handling a customer and
only if thereis at least one other teller still open.

g. Someonejoinsthe queue.
h. Someone leaves the queue without commencing a transaction.

P Q14.7 Fileson floppy

We are interested in modeling the contents of afloppy disk and the operationsthat
may be performed upon it. Three basic types are to be used:

Name — the possible names of files
Byte — thedata(of whatever form) that may be stored in files
N — the set of integers0,1,2,3, . ..

The contents of the floppy at any given moment are to be represented by the
following state schema.

__Floppy
FileData : Name > seq Byte
Used, Left : N

Used + Left = 360000
Used = Xf : dom FileData o # FileData(f)

The declaration and the predicate parts of the schema have the following interpre-
tation.

From Specification to Implementation 357

> Q14.8

The Floppy Declaration

1. FileData : Name —+> seq Byte

FileData isapartial function that maps the name of any files on the disk to
the data contained in thefile.

2. Used, Left : N

Used and Left are numbers representing, respectively, the number of bytes
used and the number of bytesleft on the disk.

The Floppy Predicate

1. Used + Left = 360000

The number of bytes used and the number of bytes left unused must add up
to 360 000.

2. Used = Xf : dom FileData e # FileData(f)

The total space used is the sum of the sizes of al the individual files stored
on thedisk.

Here is an operation schema that specifies the effect of deleting a file from the
disk.

__DeleteFile

AFloppy
f?: Name

f? € dom FileData

FileData' = {f?} 4 FileData
Used' = Used — # FileData(f?)
Left' = Left + #FileData(f?)

Explain the significance of each line of the schema, both its declaration and its
predicate. Use the style of the introduction to this question.

Using the Floppy state schema given in the previous question, write operation
schemasfor each of thefollowing. For each schemabriefly explainthesignificance

of

a
b.

each line of its predicate.

A new file called f7 containing data d? isto be created on the disk.

The contents of afile called from? areto be copied to anew file to be called
to?.

Thefile currently called old? isto be renamed asfile new?.

A list oll! of all thefileson the disk and their sizesisto be output along with
the number of files count! and the amount of space available free!.

The contents of the file called f 7 are to be replaced with new data nd?.

Chapter 15

Database Definition
In SQL

15.1 Introduction
This chapter describes how to define the major objectsthat may appear in an SQL database.

e There are tables without which the database would be empty. These are sometimes
referred to as base tables.

e Thereare viewswhich define virtual tables.

e There are indexes which enable the DBM S to respond to queries within an acceptable
period of time.

The word definition is used in the general sense of describing or delimiting the properties
of these objects. So, this chapter will discuss the creation, alteration and, in the extreme
case, removal of these properties.

Information about the properties of database objects is stored in the system catalog
or dictionary. The catalog itself takes the form of a set of tables which we may examine
ourselvesusing SQL. It forms arelational database that resides alongside our own.

15.2 Tables
15.2.1 Table Creation

A new table is introduced into the database by means of the create table statement
which, initssimplest form, only requiresthat we name the table and then name and provide
a datatype for each columnin the table.

358

Database Definition in SQL 359

table_creation:

CREATE TABLE table_name
(list_of _column _definitions)

column_definition:

column_name data type [NULL|NOT NULL]

Thereareanumber of conventions used in presenting syntax for the statementsdi scussed
in this chapter. They are discussed in more detail in Appendix A. Briefly:

e Upper case wordsin typewriter font, such as CREATE TABLE, must appear verbatim.

e Lower case words in typewriter font, such astable_name, represent places where we
must substitute something of our own choosing, for example, Students.

e Thelist_of_ Xs structure, for example, list_of _column definitions, means that we
should substitute one or more column definitions separated by commas.

e Square brackets are used to enclose options, vertical barsto separate them.
For example, to define the Students table:

Create Table Students
(1d integer,
First char(10),
Last char(10))

Every row of the Students table, as defined above, is guaranteed to have three attributes
labelled 14, First and Last. And further, each Id attribute will be associated with an
integer value, and the First and Last attributes will both be associated with strings of up
toten characters. Thisisthelowest level of integrity support offered by SQL. It guarantees
the tabular appearance that we expect of arelation and the consistent type of data appearing
in each column of the table. However, apart from these constraints, the definition allows a
lot of freedom in what we might choose to store in the table. So, at some stage, the table
might contain any of the following data.

1. 2. 3.

Students Students Students

Id First Last Id First Last Id First Last
7 John Smith 299 John Smith 299 John Smith
223 ? Smith 299 John Smith 299 Jack Daw
235 John ? 299 John Smith 299 Billy Kahn
? ? Smith 299 John Smith 299 Anna Purna
? John ? 299 John Smith 299 Eva Rest
247 ? ? 299 John Smith 299 Ben Nevis

360 Chapter 15

Look at each samplein turn.

1. How many studentsdo wereally have here? Thereare at | east three and maybe as many
as seven. When creating atable, the default isfor columnsto be alowed to contain null
values unless otherwise specified. It is part of the database design process to decide
which attributes may be null and which must never be.

2. In the second sample, we can see that, unless otherwise constrained, a table may hold
any number of identical rows. While the data in the table might be quite valid, it is
potentially misleading. We might count therowsbelieving that the result would indicate
the number of studentsin the subject.

3. Asaconsequence of the possibilitiesimplied by the third sample, we must ensure that
if no two students can have the same Id, then the database reflects this constraint. In
other words, if the key of the relation is the student 1d then there will only be one row
in the table with a particular Id.

In designing the database we took the view that each relation represented a set of entities
and zero or more single-valued facts concerning these entities. This caused each relation
to be divided into two digjoint sets of attributes.

1. There are the key attributes, of which there must be at least one. This attribute or this
combination of attributes uniquely identify each entity. For example, the key of the
Students tableisthe Id attribute.

o Key attributes are never null. This rule prevents us from keeping information
about some as yet unidentified entity and is known as the entity integrity rule.

¢ Wewill normally define auniqueindex on the primary key. Thisrequirement will
be further discussed in Section 15.6.1. This index will ensure that no two rows
in the table have the same key value. For the Students table, no two rows will
have the same I4 value.

2. There are the non-key attributes. In some relations, there may not be any. Each of
these attributes supplies one single-valued fact about the entity identified by the key.
For Students, the non-key attributes are First and Last. Each provides a separate
fact about a student.

o Non-key attributes may or may not be null depending on the analysis performed
during database design. In this example we will assume that the first name may
not be known but the last name always will be.

Thisdivision of arelation and the rulesthat apply to each part leads to arevised definition:

Create Table Students
(1d integer not null,
First char(10),
Last char(10) not null)

Database Definition in SQL 361

15.2.2 Table Alteration

From our database design effort, two outcomes may arise.

1. Wegot thedesignright firsttimeand, morethan that, weforesaw all the possiblechanges
that might occur and our design was flexible enough to cope with these changes.

2. Alternatively, as a result of using their information system, users have developed a
much better fedl for the nature and extent of the information they really need to record
in the database.

The second scenario is much more likely and consequently, in order to respond to
organizational changes, thereis a need to be able to alter the characteristics of atable. This
includes (1) adding entirely new columns, (2) modifying the nature of existing columns
such as the nullity, and (3) removing unnecessary columns.

The general syntax is:

table_alteration:

ALTER TABLE table_name
[ADD|MODIFY] (list_of_ column definitions)

Example 15.1 Suppose we now need to record the initial letter of each student’s middle
name.

Alter Table Students
Add(Middle char(1))

We have now added an entirely null column called Midd1e to the Students table.

There may be restrictions upon the nature of any new or modified columns. For
example, a column added to atable must permit nulls, for the simple reason that we are, in
effect, adding an all null column.

¢ If we are modifying a column to the extent of disabling nulls then the column must not
currently contain any null values.

e Thedatatype or width of a column may only be changed if the contents of that column
are entirely null at thetime of alteration.

e A column declared asnot null may only be added to an empty table.

Example 15.2 The descriptions associated with items of assessment are becoming in-
creasingly verbose. We need to widen the Description column:

Alter Table Assess
Modify(Description char(30) not null)

This statement will succeed only if the Assess table is empty.

362 Chapter 15

15.2.3 Table Removal

Therewill be occasionswhen wewant to create atemporary tablefor some special purpose.
Afterwards we may discard it with adrop table Statement.

table_removal:

DROP TABLE table_name

Example 15.3 Suppose we only wish or need to know a student’s last name. We need to
be able to remove the First name column.

We cannot delete a column with an alter table statement. We can, however, make
acopy of the parts of the table we wish to retain.

Create Table New_Students
(Id integer,
Last char(10))

Insert

Into New_Students
Select Id,Last

From Students

Drop Table Students

If we want to retain the name Students, then we will either copy the data back from
New_Students to a reconstructed version of Students. Alternatively, we may rename
thetable if permitted.

15.3 SQL Datatypes
15.3.1 Datatypes

Most versions of SQL will offer a range of datatypes that match those available in more
conventional programming languages. These will includeintegers, floating point and fixed
point numbers as well as character strings.

Every item of data, large or small, that is stored in a database will be of acertain type.
A relationisaset of rowsand arow is of typetuple. Each row is made up of a number of
elementary itemsof data. Thesearethe attributes of therow. Inthe Students relation each
row hasthree attributes. An attributeis the smallest unit of storage that SQL is prepared to
handle. Each attribute has an associated datatype.

There is more to a datatype than merely data storage.

e There are rules specifying how constants or literals may be written or displayed in
order to represent individual instances or values of the type. For example, 1945 isa
legitimate representation of an integer literal but 1,945 is not. Note that these rules
relate to the external representation of instances of a datatype.

Database Definition in SQL 363

e Thereistheinternal representation used by the database management system in con-
junction with the particular computer system upon which the database resides. This
representation will, of necessity, be quite unlike the external one. Thisinternal repre-
sentation may be of concern to us because it may significantly determinethe size of the
column and hence the size of the table and the database.

e There are the operations that accompany the type. With numbers, for example, the
operations will include functions such as addition (+) and subtraction (=) as well as
relations such as <, = and >. The operations may involve only one type or may relate
two types.

Inthe following sectionswe will discussthe datatypes are available from the ORACLE
relational database management system. However, these datatypes are typical of SQL
systems.

15.3.2 Numbers
Numberscomein all shapesand sizes. Hereare somewell-known ones. (No pun intended!)

1066
2.18718
1.618033988
-273

1.38 * 1071

There are several questions to be considered when writing down a number.

e Isit awhole number or is there some fractional component? If afraction is involved
then how many places are required after the decimal point? The number of digitsto the
right of the decimal point is referred to as the scale of the number.

¢ How many digits of precision are required?
¢ Isthereasigninvolved?

The number datatype may be declared in any of three formats.

Number (p, s)
Number (p)
Number
where:
p istheprecision, thetotal number of digits available;
s Thescale, that isthe number of digitsto the right of the decimal point.

A datatype declaration of number (5,2) would alow us, for example, to represent
numbersin the range -999.99 to +999. 99 such as might be used for supermarket prices.
When entering avalue into a numeric column, two checks are made on the value.

1. Doesit exceed the precision specified for the column? If so, the valueisrejected. For
example, entering a value 12.25 into a column of type number (3,2) will cause the
value to be rejected because it has four digits but the column is restricted to no more
than three.

364 Chapter 15

2. Does it exceed the scale specified for the column? If so, the number is rounded. For
example, entering a value of 123.45 into a column of type number (6,1) will cause
the number to be rounded to one decimal place and the value 123 .5 will be stored.

ORACLE SQL hasjust oneinternal representation for all types of numbers. However, we
can use the precision and scale factors to ensure that only acceptable numbers are allowed
through to the database. Certain of these precision and scale combinations have been given
names of their own.

Datatype Equivalentto...

Integer Number(38,0)
Decimal Number(38,0)

As stated already, each datatype will have a package of operations that process and
relate elements or instances of that type. The most familiar of these are the arithmetic
functions +, -, * and /, and the relational operations (<, <=, >=, >, <>). Thereare aso a
number of more specialized functions and relations.

Abs(n) Thisisaprefix function that returnsthe absol ute value of the given
number n.
abs(21) = 21
abs(-13) = 13
Ceil(n) This is a prefix function that returns the smallest integer that is
larger than or equal to n.
ceil(8.1) =9
ceil(8.5) =9
ceil(8) = 8
Floor(n) Thisisaprefix function that returns the largest integer that isless
than or equal to n.
floor(8.1) = 8
floor(8.5) = 8
floor(8) = 8
Mod (m,n) Thisisaprefix function that returns the remainder of m divided by
n.
mod(8,5) = 3
mod(8,4) = 0
mod(8,0) = 8
Power (x,n) Thisis a prefix function that returns x to the power n (x™). The

exponent (n) must be an integer.

power(3,2)

=9
power(1.2,2) =

1.44

Database Definition in SQL 365

Round (m,n) Thisisaprefix function that returnsm rounded to n decimal places.

round(8.35,1) = 8.4
round(8.355,2) = 8.36

If n is omitted then 0 is assumed.

round(8.35) = 8
round(8.5) = 9

Sqrt(n) Thisis aprefix function that returns the positive square root of n.
sqrt(9) = 3
sqrt(2) = 1.41421356

The squareroot is just another number and may be rounded.
round(sqrt(2),3) = 1.414

Trunc(m,n) This is a prefix function that returns m truncated to n decimal
places.

trunc(8.35,1) = 8.3
trunc(8.355,2) = 8.35

If n is omitted then 0 is assumed.

trunc(8.35) = 8
trunc(8.5) = 8

15.3.3 Character Strings
The character string datatype has one basic form:
Char (n)

Where n is the maximum number of characters allowed in the associated column.
String literals are formed by enclosing the required characters between apostrophes.

’Bill’

’Niagara Falls’
’Hobart, Tasmania’
’Boosey & Hawkes’

Thereisaminor problem when the apostrophe character itself isto form part of the string.
In this case, two apostrophes in succession are used to indicate that a single apostropheis
to beincluded in the string. Here are some examples.

Required string Literal value
O'Relilly >0’ ’Reilly’

rock’ n'roll ’rock’’n’’roll’
plumber'smate ’plumber’’s mate’

366 Chapter 15

The operations associated with character strings are as follows.

strl || str2

Initcap(str)

Instr(strl,str2)

Length(str)

strl like str2

Lower(s)

Lpad(strl,n,str2)

Thisis an infix function that concatenates (strings together) two
strings to form another.

>Jack’ | |’Smith’ = ’JackSmith’
’Desperate’ ||’ ’||’Dan’ = ’Desperate Dan’

Thisisaprefix function that capitalizesthefirst letter of all words
in the string.

initcap(’BILLY’) = ’Billy’
initcap(’billy jones’) = ’Billy Jones’
initcap(’RADio 4DK’) = ’Radio 4dk’

Thisisa prefix function that attemptsto locate string str2 within
string stri.

instr (’Mt. Everest’,’t’) = 2
instr(’Jim’,’e’) = 0

Thisisaprefix function that returns the number of charactersin a
given string.

Length(’String’)=6

Thisis an infix relational operator used for pattern matching: see
page 139 for examples.

% matches zero or more characters.
_ matches exactly one character.

All other charactersmatchthemselves, Name 1like ’Macy’ would
match any name starting with Mac, for example, MacTavish or
MacDonald. However, Name like ’Mac_’ would match any
name containing four characters and starting with Mac, for exam-
ple, Mace or Mack.

Thisis a prefix function that turns al letters in the string s into
lower case.

lower (’BOOM!’) = ’boom!’
lower(’case’) = ’case’

Thisisa prefix function that pads string str on the 1eft to length
n with the string str2.

Database Definition in SQL 367

Ltrim(strl,str2)

Replace(sl,s2,s3)

Rpad(strl,n,str2)

Rtrim(stril,str2)

Soundex (str)

Substr(str,m,n)

1lpad(’28.45°,8,°07) ’00028.45°
lpad(’here’,8,’->’) = ’->->here’

Thisis a prefix function that trims string str1 from the left until
the first occurrence of a character not in the string str2.

1trim(’Mr. Smith’,’Mr. ’) = ’Smith’
1trim(’001345°,°0’) = 71345’

Thisisa prefix function that replaces each occurrence of string s2
found in string s1 with the string s3.

replace(’raspberry’,’r’,’1’) = ’laspbelly’
replace(’21st January 1995’,’January’,’Jan’)

= ’21st Jan 1995’

replace(’21 May 1989’,’ ’,’-?) = ’21-May-1989’

Thisis a prefix function that pads out string str1 on the right to
length n with string str2.

rpad(’Help’,7,7!?)
rpad (’Exit’,8,7->’)

’Help!'!'!’
YExit->->?

Thisisaprefix function that trims string str1 from the right until
acharacter not in str2 is encountered.

rtrim(’Seth Jones Snr’,’ Snr’) = ’Seth Jones’
rtrim(’B. Anderson’,’ Snr’) = ’B. Anderso’

Thisisaprefix function that returns the soundex value of a char-
acter string. It isused to compare names on a phonetic basisrather
than on spelling.

Select *
From Employees
Where soundex(name) = soundex(’Magee’)

Thisisaprefix function that returnsasel ected substring from some
other string.

substr(’Sally’,2,3) returnsthe 3 charactersfrom
’Sally’ starting at position 2.

substr(’Sally’,2,3)="all’

368 Chapter 15

Upper (str) Thisisaprefix function that turns all lower case lettersinto upper
case.

upper (’Congo’) = ’CONGO’
upper (’Gum Tree’) = ’GUM TREE’

15.3.4 The Date Datatype

This is a datatype that programming languages do not provide as standard. Thisis really
rather odd asthe great majority of organizational information systems are simple historical
models. They record the occurrence of events relevant to the organization. These are
everyday events such as receiving an order from a customer, ordering from a supplier or
paying an employee. Normally, the time of occurrence is aso noted, and the unit of time
most commonly used is the date.

Many versionsof SQL providean inbuilt date datatype because of the need not only to
record dates but also to perform cal culations and comparisons involving dates. ORACLE
SQL providesasingle date datatype that handles units of time from seconds to centuries.

Thestandard form for dateliteralsis > DD-MON-YY’, for example, > 21-AUG-93°. When
(ORACLE) SQL encounters a character string literal where a date might be expected then
it will assume that it isin the above format. To register a date in one of the many other
forms in which dates (and times) may appear, we must state the format explicitly and use
aconversion function.

To_Date(DateString, FormatString)
For example:

To_Date(’12-MAY-1801’, ’DD-MON-YYYY’)
To_Date(’23-N0V-93 11:15 AM’, ’DD-MON-YY HH:MI AM’)

A FormatString is a character string consisting of one or more format “models’. Each
model represents some unit of time, such as MON for amonth namein three character form.
The format string is used to state how a date value is to be displayed or how it is being
entered. Some of the more common format models are shown bel ow.

Model Example Comment

YYYY 1745 4 digit year

YY 67 2 digit year

MM 09 2 digit month

MONTH SEPTEMBER full name of month
(padded to 9 characters)

Ww 03 2 digit week of the year

DDD 35 3 digit day of the year

DD 28 2 digit day of the month

D 3 1 digit day of the week

The operations that may be used with dates are as follows.

Add_Months(d,m) Thisisaprefix function that adds m months on to the date d.

Database Definition in SQL 369

Last_Day(d)

Months_Between(d,e)

Next_Day(d,day)

Round (d,fmt)

Sysdate
Trunc(d,fmt)

Add _Months(’1-JAN-93°,6) = ’01-JUL-93°
Add _Months(’18-NOV-95°’,2) = ’18-JAN-96°

Thisis a prefix function that determines the date of the last day
of the month in which dated falls.

Last_Day(’18-NOV-95’) = ’30-N0OV-95°

Thisis a prefix function that returns a number representing the
months between dates e and d.

Months_Between(’15-MAR-95’,’1-FEB-95’)
= 1.4516129

We would praobably want to round the result.

round (Months_Between(’15-MAR-95",
’1-FEB-957),1)
=1.5

Thisis a prefix function that returns the date of the next day of
the week after date d.

Next_Day (’25-MAR-91’,’WEDNESDAY’)
= ’27-MAR-91’

The next Wednesday after 25 March 1991 was dated 27 March
1991.

Thisis a prefix function that “rounds' the date 4 depending on
the format string fmt.

Round (To_Date (’25-MAR-95’) , ’MONTH’)
= ’01-APR-95’

Round (To_Date(’25-MAR-95),’YEAR’)
= ’01-JAN-95’

Thisisavariable that contains the current date and time.

Thisisaprefix function that “truncates’ the dated depending on
the format string fmt.

Trunc(To_Date(’25-MAR-95’), ’MONTH’)
= ’01-MAR-95’
Trunc (To_Date (’25-MAR-95°),’YEAR’)
= ’01-JAN-95°

370 Chapter 15

15.3.5 Conversion Between Datatypes

There will be, of necessity, a number of conversion operations that enable us to convert
from, for example, character stringsto dates.

15.4 Referential Integrity and Other Constraints

The original version of SQL, SQL/DS, was released in 1983. It made no provision for the
definition of keys. However, newer products, such as Version 6 of ORACLE, alow usto
define the primary key of atable and the consequent foreign key connections. It does this
through the extensionsto the create table statement. See Figure 15.1.

table_creation:

CREATE TABLE table_name
(list_of_[column definition|table_constraint]s)

column definition:
column name data type [column constraint]
column _constraint:
NULLJNOT NULL
or CHECK (condition)
table_constraint:
PRIMARY KEY(list of_column_names)
or UNIQUE(list_of_column _nameS)

or FOREIGN KEY(list_of_column _nameS)
REFERENCES table_name [(list of column nameS)]

or CHECK (condition)

Figure 15.1 Revised create table syntax

Column constraints are attached to the definition of a column and apply specifically to
that column. There are two kinds to consider.

e NULL|NOT NULL
Thisisthe same as before, either allowing or disallowing null valuesin the column.
e CHECK (condition)

Thiskind of constraint will ensure that any value placed in this column will satisfy the
condition specified.

Database Definition in SQL 371

Mark integer check(Mark between O and 100)

The condition may only refer to the column concerned and to constants. The check
will be made prior to the execution of relevant insert and update statements. If the
condition is not satisfied then the statement will be rejected.

Table constraints are more generalized restrictions applying to the table as awhole and
relating different rows and possibly several columns of the table. There are four kinds.
e PRIMARY KEY(list of column nameS)

This constraint allows us to nominate the column or columns that make the primary
key of the table.

Primary Key (Id) for the Students table.
Primary Key (Item, Id) fortheAssess table.

With theabove constraint on Students, we areguaranteed that no two rowsinthat table
will have the same Id. There may only be one such constraint per table. The column
or columnsinvolved must not alow nulls, that is, they must be declared not null.

e UNIQUE(list_of_column nameS)

This constraint allows us to nominate other columns where uniqueness is required.
With it we can enforce one-to-one rel ationships between the columns and the primary

key.

Unique (Due) inthe Assess table.

The column or columns should not have been declared as a primary key. Nor should
they alow nulls.

e FOREIGN KEY (list_of_column nameS)
REFERENCES table_name [(list_0of column nameS)]

This constraint allows usto enforce referential integrity between two tables.

Foreign key(Item) references Assess(Item)

The above examplewill ensurethat for every row inserted into theResults table, there
isarow in Assess with a matching ITtem number. The effect of this kind of table
constraint on the data manipulation statements is discussed more fully in Section 1.6.

e CHECK (condition)

Thisis an extension of the column check constraint. At the table level, the condition
may refer to several columnsin the table, but not to columnsin other tables.

For the SUBJECT database:

372 Chapter 15

Create Table Students

(Id number (3.0) not null,
First char(10),
Last char (10) not null,

Primary key (Id))

Create Table Assess

(Item number (1,0) not null,

Description char(30),

Weight number (3,0) check(Weight between 0 and 100),
Due date,

Primary key (Item))
Create Table Results

(Item number (1,0) not null,

Id number (3,0) not null,

Submitted date,

Mark number (3,0) check(Mark between 0 and 100),

Primary key (Item,Id),

Foreign key (Id) references Students(Id),
Foreign key (Item) references Assess(Item))

At thisstage (Version 6 of ORACLE), the column and tabl e constraints serve as acomment.
The uniqueness of the key must still be maintained through the application or through a
unique index (see Section 15.6.1).

15.5 Views
Views play avariety of rolesin a database system.

e They can be used to provide a convenient name for a commonly used subset of the
database.

e Asaconsequence of this, they may be used to secure the database by restricting users
to just that data they need to know.

e They can be used to make inferences and to perform cal cul ations based on valuesin the
database.

Example 15.4 Suppose we frequently have to deal with students who have failed any
item of assessment.

Create View Fails(Item, Id, Mark)
as Select Item, Id, Mark
From Results
Where Mark < 50

Database Definition in SQL 373

ThisnamesasFails all therowsinResults wherethe mark islessthan 50.
Fails = Results where Mark < 50

The Fails table is a virtual table. It has no physical presence in the database, existing
merely through its definition. However, it may be treated as if it were areal table. For
example, to find out who failed the second assignment, we need only refer to the Fails
view.

Select *
From Fails
Where Item = 2

This query is taken and expanded, with the word Fails being replaced by its definition.

Select Item, Id, Mark

From |Results

|Where Mark < 50|
and Item = 2

This expanded version of the query refers only to base tables and may now be executed.

Example 15.5 Viewsarenot merely subsetsof thedatabase. They can provideinformation
derived by calculations, such as the average mark for each assessment item:

Create View Assess_Average(Item, Mean)
as Select Item, avg(mark)
From Results
Group by Item

This provides atable that contains the results of calculations.
Example 15.6 We can take views further and use them to derive“ new" information. The
following view counts the number of assignments that each student has submitted.

Create View Ass_Count(Id, Did)
as Select Id, count(*)
From Results

Group by Id
union

Select Id, O
From Students

Where Id not in (Select Id
From Results)

The view combines the results of two separate queries. Thefirst select statement counts
the number of submissionsmadewherethe student actually made a submission. Thesecond
deduces that any student without a result must have submitted a total of zero assignments.

In general the view mechanism allows usto make inferences stemming from data stored
in the database.

View Definition

374 Chapter 15

A basetableissimply a set specified in extension, that is, onewritten out in full. A view or
virtual table is a set specified by comprehension, that is, its elements or rows are defined
through some property common to all rowsin the view.

The select statement is SQL's version of set comprehension. Through its select
clause we may form rows that, by means of the where clause, have some shared property.
The syntax for view definition reflects this.

view_definition:

CREATE VIEW view_name [(list_Of_column_nameS)]
AS select_statement

e Theview nameis optionally followed by alist of column names. If these are omitted
then the names of the view columnsare “inherited" from the column names that appear
inthe select clause.

e If the select clause contains a calculation then this must be named.
o If the view needsto be changed or we no longer need it then it can be dropped.

view_removal:

DROP VIEW view_name

15.6 Indexes
15.6.1 Unique or Primary Indexes

In Section 15.2.1 it was pointed out that, unless advised otherwise, SQL will allow duplicate
rowsin atable. Thisis clearly undesirable. We need to ensure that, for example, no two
students have the same Id. When inserting anew row into Students, we should first check
that there is not already some student (row) with the new student’s Id. In general terms,
when inserting a new row into atable, we should check that no row already exists with the
same key value. To help speed up this process, it is recommended that there be a unique
index on the key. There will be one such index for each table in the database. The key of
the Students relation is the student Id and a corresponding index would be defined. It
may be that thisis done automatically, asis the case with IBM’s SQL/DS product.

Create Unique Index Student_Key
on Students (Id)

Thisisour way of telling SQL that we need to be able to rapidly access individual student
rows based on the Id value and that only one row in the Students table may have a given
Id value. Theindex can be thought of as providing access to the Students table in the
following way.

Database Definition in SQL 375

Student_Key Students

Id Pointer Id First Last
831 5 1. 871 Hams Zupp
854 4 2. 862 Bill Board
862 2 3. 869 Rip Orff
868 7 4. 854 Ann Dover
869 3 5. 831 Hans Orff
871 1 6. 872 Betty Kahn
872 6 7. 868 Will Gambol

The index is based on the primary key of the relation. There is one entry in the index for
each row in the relation. Each entry is presented as consisting of a value and a pointer to
the row that has that value for its key. For example, the first entry contains the value 831
and the number, 5, of the row for student 831.

There are two features of the index that should be noted in comparing it with the
associated table.

1. Firstandforemost itisan ordered structure. The student Id’s are held in numeric order.
As aresult, the index may be searched in a binary way. For example, if we take the
mid-point of the index as being Id 868 then we are assured that all 1d’'s less than 868
will be before that entry in theindex. All those Id’s greater than 868 will appear after.
Thisisthe way we search atelephone directory. We don’t need to search anything like
the entire directory to find an entry.

2. Secondly, theindex is physically smaller than the table. There is not much difference
in this example, but in general there will be.

It should be defined at the same time as the table is defined and maintained over the
lifetime of the associated table.
Thistype of index is used for two purposes.

1. Itisusedto preservetheintegrity of the database by guaranteeing the uniqueness of the
primary key. For example, if we tried to insert a new row in Students with an Id of
871 then the insertion would be rejected because there already exists such arow. This
isthe significance of the word Unique in the index definition.

2. The index is also used to speed access to individual rows of the table. Because the
index is, typically, a much smaller structure than the corresponding table and because
it is ordered, the index can be searched in a much shorter time than it would take to
search thetable. Oncethe correct entry in theindex isfound, the pointer or address can
be used to directly locate the corresponding row.

Based on this rather simplified view of the structure of an index, what improvement
in access time might we expect? Suppose that there are 100 rows in the Students table.
What if we were to scan the table itself for a particular student’s row? We might find the
row at the very beginning of the table but we might equally have to search all the way to

376 Chapter 15

the end, and even then, not find it. On the average, we would expect to find the required
row halfway through the table; that is, after reading 50 rows. In general, when there are S
student rows we can expect to search through .S/2 records.

Using the index, with its ordered structure, we search by dividing the index in two,
checking whether the key isin thefirst or the second half by examining the mid-point value.
Then we repeat this process on the reduced search area, stopping when we can divide no
longer. The search space will be reduced from 100 entries to 50 then 25, 13, 7, 4, 2 and 1,
taking us 7 binary chops. With S student rows we can expect to search log, S entries.

The difference in search time can be seen in the following table:

S 5/2 logpS
4 2 2
8 4 3
128 64 7

1024 512 10

The syntax for defining indexes requires that we name the index and specify the table
and attributes upon which it is based. Note that, although we have to provide the index
with a name, that name is never mentioned in any query that involves the associated table.
We must trust that SQL knows when and how to use the relevant indexes. We can create
an index on an empty table or on one with rows already init.

index_definition:

CREATE [UNIQUE] INDEX index_name
ON table _name (list of index_components)

index_component:

column_name [ASC|DESC]

Wherethe Relation hasa Composite Key

TheResults table has a composite key made up of the Item and Id attributes. When this
kind of situation arises, there will be several different ways of defining the unique index
required. In this particular case, we can create an index that will put the Item first or one
that putsthe 14 first.

Create Unique Index Create Unique Index
Results_Key_0One Results_Key_Two
on Results (Item, Id) on Results (Id, Item)

15.6.2 Secondary Indexes

Suppose that we wanted to gain access to al the items submitted for assessment and the
marks obtained by individual students. A student may be expected to have several results.
If we build an index to help us access one particular student’sresults then each entry in this

Database Definition in SQL 377

index will consist of a key value and several pointers, one for each result record for that
student.

Student_Results Results
Key Pointers Item 1Id Submitted Mark
854 3, 17 1. 1 871 0908 80
862 2, 10, 4 2. 1 862 0907 60
868 5, 11, 15 3. 1 854 0908 70
869 6, 8, 12 4. 1 872 0910 55
871 1, 7, 16 5. 1 868 0906 90
872 4, 9, 13 6. 1 869 0909 70
———————————————— 7. 2 871 1021 70
8. 2 869 1022 80
9. 2 872 1021 65
10. 2 862 1022 70
11. 2 868 1021 75
12. 3 869 7 95
13. 3 872 ? 45
14. 3 862 ? 40
15. 3 868 ? 50
16. 3 871 7 60
17. 3 854 7 65

Thisis an example of a secondary index. Now if we want to find student 854's marks we
can use the considerably smaller index which tells us that the results are located at rows 3
and 17. We can access these rows directly. Without the index we would have needed to
read through the entire table to find the marks. The index can be created asfollows:

Create Index Student_Results
on Results (Id)

Secondary indexes have only one function and that is to speed access to one or more rows,
that iswhy they are designed to alow for several pointers per entry. Therewill be as many
of these indexes as it takes to make the database useable.

15.6.3 The Role of Indexes in a Join Operation

Suppose we want a list showing how each student went in the items of assessment he or
she submitted.

Select First, Last, Item, Mark
From Students, Results
Where Students.Id = Results.Id

Option 1: The Nested Loop Approach

378 Chapter 15

One rational method of answering this query, without the benefit of any indexes, is called
the nested loop method. It involves reading through the Results table then scanning
Students for the corresponding student row. This can be presented as an agorithm:

For each row in the Results table, do:
For each row in the Students table, do:

o |f theld in the Students = the Id in the Results row, then:
e PrinttheFirst, Last, Item and Mark columns

How long will this query take to execute? Using the above steps, we will be required to
make a scan of the entireResults table. For each row, we will haveto scan the Students
table. Sincethe student row could be anywherein that table, we can expect to scan half the
table on the average. So thecostis:

R*(5/2)

17 (7/2)
59.5

Option 2: Using Indexes
As stated before, in a relational database, there should be a primary or unique index on
each relation key and a secondary index for each foreign key.

Student_Key Student_Results

Id Pointer Id Pointers

831 5 854 3, 17

854 4 862 2, 10, 4

862 2 868 5, 11, 15
868 7 869 6, 8, 12

869 3 871 1, 7, 16

871 1 872 4, 9, 13

872 6 mmmmmmmm—m—————

Because both indexes are in Id order, we can work through both indexes concurrently. |If
we have an entry in the left-hand index but none in the right- hand one, then that student
has no resultsto report. Thisisthe casefor student 831. We can skip this student and move
down to the next entry on the left. Now we have entries for student 854 on the left and the
right. We can follow the pointer on the left to access the student’s first and last name; and
we can follow the pointersin the right-hand entry to access the two results for that student.
We can print aswe go. In thisway, we can join the tables speedily.
How can we cost this method? Suppose we make the following assumptions.

o \We need two readsto accessa student row, oneto read the entry in theindex and another
to follow the pointer and read the record itself.

Database Definition in SQL 379

o For results, we need one read to access the entry and one read for each individual result
record. Thiswill vary from student to student, but it is not unreasonable to average this
at no more than three because there are three items of assessment and most students
will do all three. That makes four reads atogether.

The cost istherefore 6.5 where there are S students enrolled.

6%.S
= 6x%7
= 42

Therelatively small sizes of the two tables used in the discussion gives a false impression
of the worth of the indexes. Let us move to a more realistic situation. Suppose there are
1000 studentsenrolled. That means, proportionately, that we might expect 1000 (17/7) =
17000/7 = 2429 result rows. Let R = 2429.
The Nested L oop Approach
Thecostis:
Rx(5/2)
= 2429x(1000/2)
= 2429 %500
= 1214500
Using the I ndexes

Thecostis:
6x.5

= 6x%1000
= 6000
Now the benefits of indexing are clearly highlighted. With more typica table sizes,
the nested loop method is many times slower than the second option. This difference will
continue to grow as the table sizes increase.

15.6.4 Advantages and Disadvantages of Indexes

If indexes provide such benefits, why don’'t we define indexes on every attribute on every
table? Then wewould be guaranteed speedy accessalmost regardless of thekind of queries
we make. One drawback attached to each index isthe maintenancerequired. Every timea
change is made to atable and that change involves an indexed column, then all associated
indexes must also be updated. Everybody involved in applying a change will need to wait
while this is done. The cost may prove too much because these overheads slow down a
crucial transaction to an unacceptable extent. What we are doing with indexesis spreading
the cost of aquery acrossall the changesthat are made. A second drawback isthe additional
space required to store each index. Typically, the disk space overhead is 20% of the base
table size per index.
The expected advantages gained from indexes are as follows:

1. Withauniqueindex, that is, one based upon the key of thetable, rapid accessis enabled
to the row with agiven key value.

2. With a secondary index, rapid access to groups of recordsis enabled.

There are also unexpected advantages to be gained from an index.

380 Chapter 15

1. Sometimes a query may be answered by reference to the index alone. For example, if
we wanted to know which students had submitted all three items of assessment, then
the index can answer that by counting the number of pointers attached to each Id.

2. Sorted output can be achieved at a reduced cost. For example, if we wanted to list
student details in Id order then this can be done via the Student _Key index which is
in 1d sequence.

An index may be dropped at any time:

index_removal:

DROP INDEX index_name

15.7 Summary

In this chapter we have discussed three of the major features of arelational database.

e There is the base table. This feature corresponds to the notion of a set defined in
extension. The elementsor rows of such setsare written out in full on the bulk memory
of acomputer system.

e Thereistheview or virtua table. This corresponds to the notion of set comprehension
in which a set is defined by means of some property common to all its members.

e Thereistheindex of which there are two kinds. We use unique or primary indexes to
ensure the uniqueness of the primary key of atable and to speed access to individual
rows in the table. We use secondary indexes to improve the speed at which a query is
executed.

Database Definition in SQL 381

Exercises

» Q15.1

P Q15.2

Q153

The AcapeEMic Database

In the exercises at the end of Chapter 4 we were introduced to the University of
Wiseacres. They have a database with the following structure.

Schools Staff Quals
(*) School_Id (*) Staff_Id (*) Staff_Id

School_Name Staff_Name (*) Degree

Phone School_Id Place
(?) Head_Id Year

An asterisk (*) indicates that the attribute is (part of) the primary key of the
relation. A question mark (7) indicates that null values are to be permitted for
that attribute in the associated relation.

a. Write create table statements for this database. As a guide, use the
sample data provided in the corresponding question at the end of Chapter 4.

b. Create unique indexes appropriate to the database.

c. Create secondary indexes appropriate to the database.

Write create table statements for the AcApEMIC database that ensure the
following constraints.

a. Theprimary keys of each table are unique.

b. Thereisreferentia integrity between the tables.

c. Notwo schoolswill have the same name.

Thistime, use the extended create table syntax discussed in Section 15.4.

The RESOURCES Database

As before, across town from Wiseacres is the Witsend Institute of Technology
where resource allocation is till a bigger issue than staff qualifications. The
structure of their databaseis asfollows.

Staff Theaters Allocation
(*) Teacher (*) Theater (*) Subject
Room Capacity Enrolled
(?) Phone Theater
Teacher

The Staff and Theaters relations represent the Institute's resources and the
Allocation relation shows, for each subject taught, the current enrolment aswell
asthe lecture theatre and teacher normally allocated to that subject.

382 Chapter 15

a. Write create table statements for this database. As a guide, use the
sample data provided in the corresponding question at the end of Chapter 4.

b. Create unique indexes appropriate to the database.
c. Create secondary indexes appropriate to the database.

Q154 Writecreate table Statementsfor the RESOURCES database to ensure that:

a. Theprimary keys of each table are unique.
b. Thereisreferential integrity between the tables.

Use the extended create table syntax discussed in Section 15.4.

P Q15,5 Assume you have access to a table Mins that contains all the integers from 0 to
1439. Thetableis shown below on the |ft.

Mins Time_24
Minute HH MM
0 0 0

1 0 1

59 0 59

60 1 0
1439 23 59

Develop aview Time_24, like the one shown on the right above, that represents
each minute in 24-hour form.

Q15.6 Using the Mins table of the previous question, create another view TimeString
that represents each minute of the day in 24-hour form using afive-character string.

TimeString

0 00:00
1 00:01
59 00:59
60 01:00

Database Definition in SQL 383

Q15.7 Using the TimeString view of the previous question, create a view MinsDiff
that indicates the difference, in minutes, between two times.

MinsDiff

00:01 00:00 -1
00:01 00:01 0
09:00 09:44 44

How many rows will there bein the entire view?

P Q15.8 GRUMBLERS

The famous old gentlemen’s club GRUMBLERS recently elected a new manage-
ment committee. One of this committee’s first decisions was to move the mem-
bership accounting system onto computer. Because of the historical importance
of the club it was decided to record all members, past and present. A table has
been created showing membership information exactly as it was recorded in the
original books.

Grumblers
Id Grumbler Day Mth Year
1 Sir Roger Planter 30 Feb 1776
2 Lord Overall 32 Jul 1901
3 Lord Dungarees 31 Jun 1965
4 Mr Hank van Plump 25 Mar 1821
5 Mr Sam Sepia 29 Feb 1695
6 Sir Uther Twitt 29 Feb 1900
7 Prof I.T.E. Rolls 30 Jul 1875

Asmay be seen, the dataiis not as accurate as it should be.
Therulesregarding valid dates are as follows:

1. Thirty dayshath September, April, June and November.
2. All therest have 31 except February alone

384 Chapter 15

3.1 Inayear not divisible by 4, February has 28 days.

3.2 In ayear divisible by 4 and, if divisible by 100 then aso divisible by 400,
February has 29 days.

3.3 Otherwise February has 28 days.
Createaview Fixit (Id, Day, Mth, Year, RuleBroken) that will flag each
invalid row in Grumblers and indicate the code of the rule broken.

(Hint: Write a separate select statement for each rule and then combine them
using the union operator.)

P Q15.9 The HoRSE RacinG Database

Suppose we are a group of professional punters and we keep a database of horse
racing results. There are four basic tables.

Horses Races Results Conditions
(*) Horse_Name (*) Race_No (*) Course (x) Course

Age Race_Name (*) Race_Date (*) Race_Date

Sex Time (*) Race_No Weather
(?) Sire Length Gate_No Track
(?) Dam (%) Course Handicap

(*) Race_Date (?) 0dds
Prize_Money Horse_Name

Jockey_Name
Trainer_Name
(*) Place
Distance
General comments:

1. Columnsthat form (part of) the key are marked with an asterisk ().

2. Columnsthat may be null are marked with a question mark (7).
3. The handicap is kept in kilograms.
4. Odds are expressed as a single number, for example:

Odds Stored As

2-1 on 0.5

evens 1.0

2-1 2.0

11-2 5.

5. TheDistance column represents how far the horse was behind the horsein
front of it when the winner passed the post.

6. Prize money isawarded for first place only.
7. A horse'ssireisitsfather.
8. A horse'sdam isits mother.

Database Definition in SQL 385

Required:
a. For eachtable, identify any foreign keysit contains.
b. Writecreate table statementsfor this database.
c. Define primary indexes.
d. Define secondary indexesfor the foreign keys.

Q15.10 Write SQL statementsin response to each of the following.

How much money has the horse Lucky Streak won in total?
b. Defineaview Winner that enables us to identify race winners quickly.

Winner

Course Race_Date Race_No Horse_Name Prize_Money

Use this view to determine Lucky Streak’s prize winnings.
c. Defineaview First_Place that summarizes ahorse’s race wins.

First_Place

Horse_Name Wins Winnings

Be sureto allow for horses that have never won arace.

d. From the base tables alone, list horses with more than 25 wins, in order of
merit. Repeat this query using theview First_Place.

e. Assuming the existence of two views:

Second_Place (Horse_Name,Seconds), and
Third_Place(Horse_Name,Thirds)

that provide the number of second and third places that a horse has had,
writeaview First_Place, like the following, that provides a summary of

a horse’s performance;
Horse Winnings Wins Seconds Thirds
Two Bit 25531 13 18 11
Flea Bitten 8328 6 5

Cat Food 0 0 0 1

Chapter 16

Database Manipulation
In SQL

16.1 Introduction

In this chapter we look at the three data manipulation commands of SQL.
e The insert statement enables one or more new rowsto be added to atable.
e Theupdate statement allows one or more existing rows to be modified in some way.
e Thedelete statement allows one or more existing rows to be removed from a table.

These statements allow the user’s model (or information system) to be manipulated so as
to reflect changes that have occurred in the user’s environment.

16.2 Adding New Rows

The insert statement allows one or more rowsto be inserted into atable.
There are two forms of the statement, one that allows us to insert a single row, and one
that allowsthe insertion of a set of rows.

16.2.1 Single Row Insert

Thisform allows one new row to be placed in the tabl e specified.

Example 16.1 We want to add a new student number 999, with the name Meg Murphy.
To do thiswe construct therow with avalues clause and theninsert that intothe Students
table.

Insert
Into Students
Values (999, ’Meg’,’Murphy’)

386

Database Manipulation in SQL 387

Thethreevalues supplied are attached to attributes according to the order of their appearance
in the create statement used to set up the Students table.

If wedidn't know Ms Murphy’sfirst name, then we must leave a gap. We can do this
in either of two ways:

Values (999, ,’Murphy’)
Values (999, null, ’Murphy’)

Itisbetter styleto state explicitly where any null values are to be used; that is, of the above
two examples, the second form is preferable.

Itiseven better styleto stateexplicitly the attributesto which valuesareto be associated.
This can be done by specifying the columns into which the values are to be placed:

Insert
Into Students(Id, Last)
Values (999, ’Murphy’)

Not only does this document the insert, it also allows usto write the valuesin any order;
so we could have written:

Insert
Into Students(Last, Id)
Values (’Murphy’, 999)

The general syntax of thisform of insert is as follows:

single_row_insert:

INSERT
INTO table_name [(list_ Of _column names)]
VALUES (list_of_values)

The value may be a constant such as 999 or ’Murphy’, or a program variable. It may
also be an expression of the type appropriate to the associated column, it cannot involve a
select statement.

16.2.2 Multi-row Insert

The second form allows any number of rowsto be inserted into atable. This can be useful
if we want to make a copy of the table or to extract a significant amount of data from
elsawhere in the database. However, since the database will have been designed to avoid
any redundancy, we might ask if it is wise to duplicate information aready in existence.
Thiswill be discussed shortly.

We could create a table ShortStudents that contains only the last name and Id
attributes:

Create Table ShortStudents
(Id integer,
Last char(10))

388 Chapter 16

Now we can fill thistable with a“mass" insert:

Insert

Into ShortStudents
Select Id, Last
From Students

Why would we want to do thiswhen we can create aview that offersthe sameinformation?

Create View ShortStudents
as

Select Id, Last

From Students

The view will save space, existing only as adefinition in the catalog. It will also automati-
cally include any new students added to the underlying base table Students.

This form of the insert does offer a way of dropping a column from a table. With
ShortStudents we have, in effect, dropped the First column from the Students table.
The mass insert also enables us take a snapshot of the database. If we want to examine the
state of some portion of the database at a certain moment, then we can do so with thisform
of insert. The syntax isasfollows:

multi_row_insert:

INSERT
INTO table_name [(list of column nameS)]
select_statement

Example 16.2 Suppose we want to add a new student and automatically allocate a new
I4d to that student.

Insert

Into Students(Id, First, Last)
Select max(Id)+1, ’Doug’, ’Deep’
From Students

16.3 Modifying Existing Rows

Theupdate statement allows usto make changesto rowsthat already exist in the database.
All therowswill be from the sametable, that is, only onetable at atime can be updated.

Database Manipulation in SQL 389

update_statement:

UPDATE table_name
SET list_of _assignments
[WHERE condition]

assignment:

column_name = value

Example 16.3 The update may target one row if the where clause refers to the key.
Suppose we discover that student 871 is called Stan Zupp, not Hans Zupp.

Update Students
Set First = ’Stan’
Where Id = 871

The set clause alows us to assign a new value to a column. The value assigned may be
one of:

e aconstant

e aprogram variable

e an expression constructed using either or both of the above in conjunction with any
built-in function

e asubquery that returnsasingle value

e null

Obviously the value must be of the same type as the column to which it is being assigned.

Example 16.4 We can change a number of columns in the set clause, separating each
new assignment with a comma. Suppose we find that student 854 is not Betty Kahn after
al, but Liz Kant.

Update Student

Set First = ’Liz’,
Last = ’Kant’

Where 1Id = 854

Example 16.5 We can change a number of rows with a single statement. Suppose we
want to increase everybody’s marksin assignment 1 by 5%.

Update Results
Set Mark = Mark + 5
Where Item = 1

Example 16.6 The where clause may involve a subquery. Suppose we want to take 5
marks away from anybody who submitted the second assignment after the due date.

390 Chapter 16

Update Results
Set Mark = Mark - 5
Where Item = 2
and Submitted > (Select Due
From Assess
Where Item = 2)

Thiswould cause two results to be changed, those marked with an asterisk below:

2 871 1021 70
2 869 1022 80 *
2 872 1021 65
2 862 1022 70 *
2 868 1021 75

The assignment was due on 1021 that is the twenty-first of October. Two students handed
in their assignments after that date, 869 and 862; they will have 5 marks deducted.

2 871 1021 70
2 869 1022 75 *
2 872 1021 65
2 862 1022 65 *
2 868 1021 75

Example 16.7 Having penalized some of the students we can now be kind to them all by
scaling the marks upwards. We do this here by taking the best mark, which was 75 and set
thisto 100 and then adjust al the others accordingly.

75 --> 75%100/75 = 100
70 --> 70%100/75 = 93
65 --> 65%100/75 = 87

It would seem straightforward to turn this calculation into an update statement.

Update Results

Set Mark = (Mark*100)/(Select max(Mark)
From Results
Where Item = 2)

Where Item = 2

Database Manipulation in SQL 391

Unfortunately this form of assignment is not allowed. If the set clause uses a subquery
then the assignment must be of the form:

set column_name = (subquery)
wheress the statement above uses a set clause of the form:
set column_name = mark*100/(subquery)

We can overcome this problem by incorporating the mark*100 factor into the subquery
and using amin function instead of amax:

Update Results R

Set R.Mark = (Select min(R.Mark*100/Mark)
From Results
Where Item = 2)

Where R.Item = 2

The revised table now contains the scaled marks.

2 871 1021 93 (was 70)
2 869 1022 100 (was 75, the top mark)
2 872 1021 87 (was 65)
2 862 1022 87 (was 65)
2 868 1021 100 (was 75)

Note that the new version uses a correlated subquery and may be expected to be slower to
execute because themin function is calculated for every row updated.

16.4 Removing Rows

We can remove unwanted or outdated rows from the database by using the delete state-
ment. Likethe insert and update statements, the delete targetsjust onetable.
Example 16.8 We can rid ourselves of atroublesome student.

Delete

From Students
Where Id = 831

Example 16.9 We can even rid ourselves of all students.

Delete
From Students

Thetable is now empty. It remains defined in the catalog. To get rid of the table entirely
we would need to drop it.

392 Chapter 16

delete_statement:
DELETE

FROM table_name
[WHERE condition]

Example 16.10 The condition in the where clause may involve a subquery. Suppose we
want to remove any student who has failed to submit any item for assessment.

Delete
From Students
Where Id not in (Select Id
from Results)

Thesubquery (Select Id From Results) identifiesstudentswho havearesult of some
kind. Thedelete statement removesthose who are not in thislist.

16.5 Transactions

Each of the datamanipulation statements operateson just onetable at atime. Yet therewill
be eventsthat, to be adequately captured, require changesto several tables. For example, in
the SUBJECT database, if astudent drops out, then not only should hisor her student row be
removed, but any result rows associated with that student should aso be removed. These
two deletions cannot be achieved through a single delete statement. Two are required.
Consequently, after the first delete, the database is no longer in a consistent state. There
are two possible ways of dropping the student.

1. If we perform the update as:

Delete
From Students
Where Id = 872

At this stage the database has results for a non-existing student.

Delete
From Results
Where Id = 872

Now the results are gone as well and once again the database is consi stent.
2. Alternatively we might change the database in the reverse order.
Delete

From Results
Where Id = 872

Database Manipulation in SQL 393

Now we have a student 872 without any results, and should the transaction stop here
then it might appear as though the student had not obtained any results, which is not
the case.

Delete
From Students
Where Id = 872

The database is again consistent.

At the halfway stage of this transaction, and regardless of which table we tackle first, the
database will be in an inconsistent state. Now there are two ways to recover consistency;
we can either go forward and complete the second delete; or we can attempt to undo the
first delete, which might be rather difficult.

Why would we want to undo the work done so far?

1. We might be sitting at aterminal typing in the commands interactively when suddenly
we redlize that it was student 862 who dropped out, not 872.

2. Morelikely, we are operating on the database through a program, and that program is
issuing the SQL statements on our behalf. We merely identify the student as 872 (or
wasit 862?) and the program fires off both delete statementsfor us. Our one action
givesrise to two database actions. Should there be a hardware or software error in the
middle of this transaction then the database is potentialy in error.

Regardless of exactly how we are modifying the database, there is a need to be able to
unpick our current activities and get back to where we started. But where did we start?
Perhaps we have just successively dropped two students with the error occurring while
processing the second. Clearly we must wipe out the current transaction. Do we want to
wipe thefirst one as well? Probably not but how can SQL tell how far to rollback? Asfar
asitisconcerned it is merely receiving a stream of commands and executing them one at
atime. How can SQL tell that certain comments are packaged together as a transaction?
While processing a transaction we have two ways of signaling completion.

1. The COMMIT Statement

This command indicates to SQL that we are satisfied with the current transaction and
are prepared to have its effects irrevocably fixed in the database. Once issued thereis
no return.

2. TheROLLBACK Statement
This command undoes any changesthat have been made since the most recent commi t.

Wewill return to transaction management in Chapter 1 wherewe consider it fromthe user’s
point of view.
16.6 Referential Integrity

If the tablesin the database have been defined withForeign key references, there aretwo
such linkagesin the SUBJECT database, both arefrom theResults table. Thiswas shown
in Section 15.4. For the SUBJECT database:

394 Chapter 16

Create Table Students

(Id number (3.0) not null,
First char (10),
Last char (10) not null,

Primary key (Id))

Create Table Assess

(Item number (1,0) not null,

Description char(30),

Weight number(3,0) check(Weight between 0 and 100),
Due date,

Primary key (Item))

Create Table Results

(Item number (1,0) not null,

Id number (3,0) not null,

Submitted date,

Mark number (3,0) check(Mark between 0 and 100),

Primary key (Item,Id),

Foreign key (Id) references Students(Id),
Foreign key (Item) references Assess(Item))

Aswe build up the database, SQL will maintain this referential integrity.

1. Insert

If we attempt to insert arow into the Results table, then the value in the 14 attribute
must match the Id attribute of some existing row in the Students table. For example,
if wetry to add aresult for student Id 999, then student 999 must exist inthe Students
table.

Similar comments apply to the ITtem attribute of any result being inserted. There must
exist acorresponding item in the Assess table.

2. Update

Once aresult row is successfully inserted, we may change it with an update statement.
However, the same conditions apply. The new vaue to which the Id is set must till
match an existing student row,

3. Delete

For the delete statement, we must switch our attention to the parent tables, Students
and Assess. We cannot delete a row from the Students table, for example, if that
student is recorded as having any results. Nor can we delete an assessment item from
Assess if results have been awarded for that item.

Database Manipulation in SQL 395

16.7 View Update

Inall thediscussioninthechapter sofar,it hasbeen assumed that the tabl e bei ng manipul ated
is a base table. What might happen if we were to try, for example, to insert a row into
aview rather than an ordinary base table? Later we will consider why we might wish to
insert through a view.

Suppose we define two views of the Students table, one that gives each student’s first
name and one that gives the student’s last name.

Create View First_View Create View Last_View
as as

Select Id,First Select Id,Last
From Students From Students
Select * Select *

From First_View From Last_View
First_View Last_View

Id First Id Last

871 Hans 871 Zupp

862 Bill 862 Board

869 Rip 869 Orff

868 Will 868 Gambol

The First_View can never be used to update the database. It omits a column that was
defined asnot nullinthecreate table statement. SQL can work out into which base
table arow should be inserted, but cannot construct an adequate values clause because an
essential base table column is missing from the view. However, if we want to add a student
whose first name is unknown then we could use the Last_View

Insert
Into Last_View
Values (999, ’Murphy’)

SQL can, through the view definition, turn thisinto an insert into the base table.

Insert
Into Students(Id, Last)
Values (999, ’Murphy’)

Thisisavalid insert statement for the Students table.
Suppose we now define a view which selects certain rows rather than certain columns.

Create Views Scots
as
Select Id, First, Last

396 Chapter 16

From Students
Where Last Like ’Mc%’
or Last Like ’Mac’

Anybody whose last name starts with Mc or Mac will appear on the view. Nobody does
at the moment. Clearly we can insert into Students through this view because all three
columns are involved.

Insert
Into Scots(Id, First, Last)
Values (314, ’Angus’,’Mackay’)

Thistrandates directly into a straightforward insert into the base table. If wetry using the
view in aquery we will expect to see Angus.

Select *
From Scots

What if we try another insert?

Insert
Into Scots
Values (999,’Bob’,’Smith’)

This can be trandated into an insert into Students. But if we look at the view now, we
till get only Angus because hisrow isthe only onethat satisfiesthe view condition. Bob's
clearly does not. Thisis rather unfortunate. After a seemingly successful insert into the
Scots view the row hasdisappeared. Thisis particularly undesirable because the user may
be completely unaware that he or she isworking with aview and not atable.

To overcomethis problem we can requirethat all insertsinto aview can be seen through
the view. Thisis done by using the optional check clause:

view_definition:

CREATE VIEW view_name [(listof _column nameS)]
AS select_statement
[WITH CHECK OPTION]

Suppose we now try to insert Bob. SQL will now check that this new row satisfies the
view condition. If it does not, then the insert will be rejected.

The check is also made on any update statements applied to the view. If we change
Angus' name to Hamish:

Database Manipulation in SQL 397

Update Scots
Set First = ’Hamish’
Where Id = 314

the record will satisfy the view condition so the updateis allowed to proceed. However, if
we try to change the last name:

Update Scots
Set Last = ’Jones’
Where Id 314

this update will be rejected because afterwards the row involved will not appear through
the view, so the update will have operated like a delete. To make this kind of change we
will have to revert to the base table.

16.8 Controlling Database Access

In almost all of the discussion of SQL that has taken place so far, it has been assumed
that either there was only one user or that the users formed a single homogeneous group
of people. This is not normally true. Typically, the database is a composite picture
of the organization or of some part of it. It is, in fact, constructed from a number of
individual views, some of which overlap and some of which have nothing in common. Yet,
when integrated, the result is a kind of communal organizational noticeboard containing
information ranging from the managing director’s expense sheet to the date of acquisition
and purchase price of somebody’s personal computer. We must be able to control access
to the database so that sensitiveinformation is available only to those who need it. We also
need to ensure that those entrusted with updating the database have the right kind of access.
Controlling access to the database is achieved through the grant and revoke statements.
We will consider each of these in turn.

16.8.1 Granting Access

The grant statement has the following syntax.

grant_statement:

GRANT [list of privileges| ALL]
ON table_name

TO list_of_user_names

[WITH GRANT DPTIDN]

privilege:
[SELECT | INSERT | DELETE | ALTER, | INDEX]
or UPDATE list of_column nameS

Suppose we have the following users.

398 Chapter 16

User Role
lecturer supervisesthewhole affair
student suffersthroughout the whole affair

admin adds new students to the class, corrects any mistakesin the spelling of student
names, and drops students when they fail to pay their fees

receiver receivesitems of assessment submitted by students

marker awards marksto students

Example 16.11 Theadmin user not only needs to add new rows to the student table but
also needs to read the table to ensure that the student is not already enrolled. He or she also
may need to change names, and to drop students.

Grant Select,
Insert,
Update First, Last,
Delete
On Students
To admin

Example 16.12 The marker needsto add rowsto the resultstable.

Grant Select, Insert
on Results
to marker

Grant Select
on Students
to marker

Grant Select
on Assess
to marker

Example 16.13 The lecturer might be granted complete access to all privileges on all
tables.

Grant All
on Students
to lecturer

16.8.2 Revoking Privileges

There is acomplementary command for removing privileges.

Database Manipulation in SQL 399

revoke_statement:

REVOKE [list_of privileges|ALL]
ON table_name
FROM list_of _user_nameS

Either individual, and possibly al, accessrights may be removed from users; and either
just one user and possibly several different users may be involved.

Example 16.14 Once the semester has finished and results have been finalized, we may
want to prevent any subsequent changes to the database.

Revoke All
on Students
from admin, student, marker

16.9 Summary
In this chapter we have examined the three data manipulation commands of SQL.

e The insert statement enables one or more new rows to be added to a table.

e Theupdate statement allows one or more existing rows to be modified in some way.
e Thedelete statement allows one or more existing rows to be removed from a table.
We have also looked at how these statements operate (1) when applied in a situation where
the database management system supportsreferential integrity, and (2) when the statements

are applied to aview rather than to a base table.
Finally, we have looked at how access rights may be granted and/or revoked.

400 Chapter 16

Exercises

P> Q16.1 The Acapemic Database

Schools Staff Quals
(*) School_Id (x) Staff_Id (x) Staff_Id

School_Name Staff_Name (%) Degree

Phone School_Id Place
(?) Head_Id Year

Change the database to reflect each of the following events.

a. A new staff member hasbeen hired by the School of Accountancy [School_Td
= 7AC’]. The person involved has been alocated the Staff_Id = 25 and
hisnameisJ. Muir, BA, MBA. John was awarded his arts degree by the Uni-
versity of Florida at Orlando (UFO) in 1985 and his MBA by the University
of Bute (UBute) in 1992.

b. Mr M. Bezzle[Staff_Id = 6] hasresigned.
Prof. B. Tree[Staff_Id = 1] has, at last, been persuaded to retire.

L. R. Parser has finally (1995) been awarded his PhD by the University of
Central Casting (UCC).

e. The School of Chemistry has closed dueto lack of interest.

P Q16.2 The RESOURCES Database

Staff Theaters Allocation
(*) Teacher (*) Theater (*) Subject
Room Capacity Enrolled
(?) Phone Theater
Teacher

Change the database to reflect each of the following events.
a. The Cosy Theater has been partitioned into two smaller ones, Tiddly and
Winks, with capacities of 5 and 25 respectively.

b. TheTiny and Cramp Theaters have been knocked together resulting in anew
larger Cramp Theater. The overall capacity is unchanged.

Any class allocated to too small aroomisto be cancelled.
Yet another student has enrolled for a course in Tap Dancing.
e. All MsTripp'sclasses are to betaken by Mr Hacker instead.

Database Manipulation in SQL 401

P Q16.3 PARLIAMENT

Members Parties TalksTo

(*) Member (*) Party (*) Talker
Party (?) Leader (*) Listener
Seat

Change the database to reflect each of the following events.

a. Mike has been elected as the Labor member for the seat of West Wyalong.

Duane has resigned as the leader of his party. An election for a new leader
has yet to take place.

o

Denzil isthe new leader of the Business Party.
Duane no longer talks to Denzil.

Nobody talks to Duane any more.

- oo o

Marge has resigned from parliament.

P Q16.4 Thefollowing tables are being used to represent the situation in a supermarket:

Queues Checkouts Shopping
CustId CheckId CustId
CheckId

Place

Change the database to reflect each of the following events.

Alan comesinto the supermarket and joins those people still shopping.
Suejoins the end of the queue at checkout C3.
The customer at the front of checkout C2 pays and leaves.

Baob, queueing somewhere, returnsto the aisles.

® 2 0 T o

Jackie goes from the end of the queue at checkout C5 to checkout C6 which
may have no customers.

Q16.5 A takeover

Wiseacres has taken over the tiny University of Hard Knox (UHK) and is in the
process of merging some academic departments (as UHK callsthem) and closing
down others. Someinformation about Hard Knocks has aready been copied from
their database into Wiseacres own ACADEMIC database. The relevant tables are
asfollows:

402 Chapter 16

Depts Employees

(*) Dept_No (*) Empl_No
Dept_Name Empl_Name
Bachelor

(7) Masters
Doctorate

Dept_No

Some of the contents of these two tables should indicate the kind of information
they contain in general.

1 Arts

2 Business

3 Computing

4 Dentistry
Employees

Empl_No Name Bachelors Masters Doctorate Dept_No

1 D.Smith BSc MPhil No 10
2 B.Bop BA 7 No 1

3 A.Lulu BDSc ? Yes 4

Change the AcADEMIC database to reflect the following decisions taken by the
“Joint Amalgamation Committee” (stacked, of course, to ensure that the correct
decisions are made).

a. TheDepartment of Business[Dept_no = 2] istobemergedinto Wiseacres
School of Accountancy [School_TId = ’AC’]. Every member of that depart-
ment isto be offered a place.

b. Wiseacres School of Chemistry will only be required to take in UHK
chemistswho have a PhD.

Q16.6 The CARE Database

A community action group known as Citizens Against Ruining the Environment
(CARE) has been set up to protest against a proposed freeway. CARE has set up

Database Manipulation in SQL 403

a database containing information on helpers and the help they are able to offer.
This has required the creation of three tables.

Helpers Help Tree
(*) Id (x) Id (%) Id
First (%) Willdo Is_Rung_By
Last
Street
Phone

The key of the Helper table is the Id column, that of the Tree tableis also the Id
column. The key of the Help table is both the Id and the Willdo columns.

Helpers

Id First Last Street Phone

21 Jim White 28 Lizzie St 260 3145
36 Ann Binks Hill Road ?

Help Tree

Id Willdo Id Is_Rung_By
21 Drafting 21 38

28 Typing 22 38

35 Leafleting 38 15

21 Typing 15 7

The Tree tableis used to quickly disseminate information, for example, to notify
people of an urgent public meeting or for a demonstration. The method used is
known as atelephone tree. The person at the top rings several people and they, in
turn, ring several other people. So person 15 must be at the top of the tree because
nobody rings him or her.

Write SQL to answer the following queries.

a

® o0 T

What is the phone number of Bill Smith?

How many helperslive on Hill St (not to be confused with Hill Rd)?

Give the name and phone numbers of all helperswho can type.

We need some | eafl eting done quickly. How may people can we get to help?

Bill Smith claims that he has never been contacted through the telephone
tree. What is the name of the person who should be ringing him?

404 Chapter 16

f.
g.

What is the name of the person at the top of the telephone tree?

How many hel persdo we havewho cannot be contacted through thetel ephone
tree?

Who are at the bottom of the tree? Who rings each of these people? Give
names.

Who rings the most people?
Whichisthelargest group at the bottom of the tree and who ringsthat group?
Are there any people on the tree who do not have a phone?

Q16.7 Write SQL that amends the CARE database to reflect the following events.

a. Oneof the helpers, Mary Wood, has been shy about herself. It turns out that

sheisan experienced political lobbyist. Update the Help tableto reflect this
new knowledge. [Willdo=’Lobbying’]
A new helper has volunteered:

Angus Mackay

53 Essex St
633 9912

Angus can type and is prepared to do leafleting. Add him to the database,
giving him the next available |d number.

One of the helpers, Doug Deep [Id=55], is disgusted with the political
infighting. He wants to leave CARE.

1. Remove him from the Helpers and Help tables.

2. Pick someonefrom the largest group at the bottom of the telephone tree
and make that person take Doug’s place on the tree. You may assume
that Doug is somewherein the middle of the tree.

Chapter 17
Application Programming

17.1 Introduction

This chapter is concerned with how we program our information systems or application.
The system will, typically, consist of a database and a set of programs. This split reflects
that division first discussed in Chapter 1.

e The database contains simple specific facts concerning the organisation.

e The programs contain more general statements or knowledge.

The programsthemsel ves can be divided into two groups according to the kind of knowledge
they encode. Some of them are report programs. They inspect the database, make
calculations using the data retrieved, and report on the results of their calculations. The
other group of programs process transactions, that is, they allow events and changes in
the real world to be represented in the database. Each of these latter programs will be
dedicated to handling one particular kind of event.

A large part of the work involved in operating an organisational information system
is concerned with this latter group of programs. The information system must be able to
record changes in the organisation’s environment and circumstances.

This chapter is mainly concerned with such transaction processing. It examines how
the operation schemas that are used to specify the transactions are implemented as SQL
programs.

Each operation schema could be divided into two separate sets of conditions.

e There are the pre-conditions which, collectively, state what conditions must apply
before some event may truly be said to have occurred.

e There are the post-conditions which, on the basis of the pre-conditions being satisfied,
say how the situation changes as a result of this event.

405

406 Chapter 17

SR R 4 N
U 4—[Report Programs }4—
D
S The
B
E |<—> [Interactive SQL J —] Data
M
R Base
S
S |— [Transactions J ——
N — - /

Figure 17.1 Modes of SQL Usage

Inthischapter wewill look at how these operation schemas may beturned into computer
programs that use SQL retrieval statements to check the pre-conditions and SQL data
mani pulation statements to implement the post-conditions.

17.2 Using SQL

In all the discussion relating to SQL, it has been tacitly assumed that the user was entering
queriesdirectly by meansof akeyboard, and the results were being displayed on the screen.
There are three major waysin which the language may be used, asisshown in Figure 17.1.

1. There are users who receive reports from the system, perhaps on a daily, weekly or
other regular basis, or perhaps on demand. These people might rarely use the system
directly. Let us call such people managers.

2. There are people who use SQL directly to inspect the database by means of queries
specificto their needs at thetime. They may also use SQL interactively with the results
of one query being used to trigger other queries.

3. There are people whose usage of the system is closely bound with the work they do.
These people might be order entry clerks, airline reservation clerks, nursesor air traffic
controllers. These people mainly supply information to the system.

These three groups may overlap in some systems and be quite separatein others. How-
ever, the mgjor difference is between the direct users and the other two groups combined.
Direct users need to know SQL and they need to know about the tables that make the
database and the columnsthat make each table. They have, or are obliged to have, asimple
relational view of the world represented by the information system.

Other users will have views determined by the programs with which they interact; and
these views are unlikely to be simple relational ones. Hopefully, if the users have been
properly consulted during the requirements analysis stage and participate in it properly,
these programs will present pictures of the world as the users see it. This chapter looks at
how we might construct these non-first normal form interfaces that provide richer views

Application Programming 407

than the one provided by the database alone. In doing so, we will aso implement the
operation schemas that specify the programs concerned.
This chapter examines the two ways in which we can do this:

1. We can use SQL in conjunction with a conventional third generation procedural
programming language such as COBOL or C.

2. We can use a fourth generation product that allows us to develop forms for each
transaction and to attach triggers or relatively short sequences of SQL to appropriate
points on aform.

17.3 Host Language Interface
17.3.1 Introduction

Third generation or procedural languages, such as COBOL and C, are flexible and multi-
purpose programming tools. Millionsof information systems meeting many different needs
and satisfying many different kinds of users have been written in such languages. Yet they
do not provide the brevity and simplicity of database access that SQL provides. Their
file-handling capabilities are very limited. To overcome this problem it is common to
embed SQL statements in programs written in languages like COBOL. In this way, we
achieve a blend of the fine control provided by procedural languages with the powerful
database access facilities of aquery language. The SQL is said to be embedded in the host
procedural language. The rules governing the way in which the embedding occurs is the
host language interface. The description of the interface that follows is written in terms
of aCOBOL interface. Besides being a “venerable language of the'50's", COBOL isthe
most commonly used application development language and it is readable to people with
some knowledge of programming. However, the general style of the interface is common
to any of the languages, such as C, Pascal, FORTRAN and Ada, for which interfaces have
been developed. The differences between them stem from the variations in the ways in
which, for example, statements are separated.

In this section we will discuss the magjor components of the interface. These are as
follows.

1. The Declare Section

Thisisapart of the program set aside specifically for usto introduce any host language
variablesthat arerequired. Thesevariablesare any program variablesthat are involved
in an SQL statement of any kind.

2. The SQL Communications Area

This is a record structure (group, in COBOL terms) in which the DBMS will return
information regarding any SQL statement that the program attempted to execute. It
will tell us whether the SQL was successful or not, and if not, then why not. An
unsuccessful call to SQL will fail, typically, because no rows were found to match the
condition specified.

3. Exception Handling

Rather than having to write program code that checks for errors and other exception
conditions after every call to SQL, it is possible to direct the interface to handle them.

408 Chapter 17

4. Cursors

An SQL select statement is designed to return a set of rowsin one“go", so to speak.
A typical procedural language handles a set by means of ado while or other loop
structure. The cursor is the way in which the host language interface handles this
mismatch. It is a mechanism for releasing the results of a query to the program, one
row at atime.

5. Null Vaues

In the datatypes used in programming languages, there is no concept of a null value.
A variable declared as an integer will always have some integer val ue associated with
it. Yet arow retrieved from the database, may contain null values. How are these
signalled to the receiving program? The problem is overcome by introducing indicator
variables. These are used to indicate whether or not some related variable would have
received a null value, had that been possible.

17.3.2 Pre-processing

Any program that results from embedding SQL within a COBOL program is not itself
a COBOL program. It cannot be compiled. Before it can, it is converted into a con-
ventional COBOL program by a special converter program known as a pre-processor
or pre-compiler. The program produced by this process contains all the COBOL code
contained in the original one plus new COBOL code generated and inserted at appropriate
places. After preprocessing, the normal sequence of compilation and linking is followed
in producing an executable program. See Figure 17.2.

COBOL Program Pre- Conventional
+SQL processor COBOL Program

Figure 17.2 Pre-processing

The host language interface is designed to mark clearly those sections of the program
that contain either embedded SQL or information relevant to the embedding. Mostly, this
is achieved by having each relevant section commence with Exec SQL and finish with
End-exec. The pre-processor can then concentrate solely on sections of code marked in
thisway, expanding them into conventional COBOL and merely transcribing the rest of the
program.

17.3.3 The Enrol Program

This program will be used to show how the following interface features are used:

o the declare section
e the communications area
o exception handling

Application Programming 409

It is an implementation of the Enrol operation that was originally specified in Chapter 14.
The complete programis shown at the end of this subsection. The program allows students
to be enrolled in aclass of study. Thereisonly onetablein the database:

Students

When first enrolled, a student will not yet have been awarded a mark. That is the role of
some other program. A typical dialog will look like this:

Enter Student Id: 831
Last Name: Zupp

. enrolled

The program asks for the student’s Id and last name. It then signals that the student has
been (successfully) enrolled. Were someone now to enrol a student with the Id 831, then
the dialog would look like this:

Enter Student Id: 831
The student Zupp is already enrolled.

If an error is encountered, for example, if someone has dropped the Students table, then
the dialog will ook like this:

Enter Student Id: 831
Too bad -- no such table or view

The program will then close down.

Enrol Transaction

This program logs on to the CLASS database, prompts the user
for a student Id and last name. A new row is then added to
the Students table.

* K K K K X K X *

Environment Division.
Data Division.
Working-Storage Section.

Exec SQL Begin Declare Section End-Exec.

410 Chapter 17

01 Database-Name Pic X(12) Varying.
01 Password Pic X(12) Varying.
01 Student.

05 Id Pic XXX.

05 Last-Name Pic X(10).

Exec SQL End Declare Section End-Exec.

Exec SQL Include SQLCA End-Exec.
Procedure Division.
Enrol-Main.

Exec SQL whenever SQLerror Goto SQL-Error End-Exec.
Connect-to-Database.

Move "CLASSDB" to Database-Name-Arr.

Move 7 to Database-Name-Len.

Move "OCHAYE" TO Password-Arr.

Move 6 TO Password-Len.
Exec SQL Connect :Database-Name identified by :Password End-Exec.

Get—-Student-Id.

Display "".
Display "Enter Student Id: " with no advancing.
Accept Id.
Exec SQL Select Last
Into :Last-Name
From Students
Where Id = :Id
End-Exec.
If SQLcode = 0
Then

Display "The student ", Last-Name, " is already enrolled."
Exec SQL rollback release End-Exec
Stop run.

Display " Last Name: " with no advancing.
Accept Last-Name.

Insert-New-Row.

Exec SQL Insert

Application Programming 411

Into Students(Id,Last)
Values(:Id, :Last—-Name)
End-Exec.

Exec SQL commit release End-Exec.
Display "".

Display "...enrolled.".

Stop run.

SQL-Error.

Display "".

Display "Too bad -- ", SQLerrmc.

Exec SQL whenever SQLerror continue End-Exec.
Exec SQL rollback release End-Exec.

Stop run.

17.3.4 The Declare Section

Asstated previoudly, thisis a section of the program where we introduce any host language
variables that are required. These are program variables that are involved in an SQL
statement of any kind. All such variables must be declared in this section. The variables
required in the Enrol program are shown below:

Exec SQL Begin Declare Section End-Exec.

01 Database-Name Pic X(12) Varying.
01 Password Pic X(12) Varying.
01 Student.

05 Id Pic XXX.

05 Last-Name Pic X(10).

Exec SQL End Declare Section End-Exec.

The Database-Name and Password variables will allow us to identify the database we
want to access and the password required. The Student record contains two fields that
allow usto supply the identity and last name of the enrolling student.

17.3.5 The SQL Communications Area

Thisis arecord with a standard structure. It is used by the DBMS to return information
regarding any SQL statement that the program attempted to execute. We can regquest many
different services of the DBM S and the communications area must be able to deliver acor-
responding variety of responses. These include error messages, warnings and information
on the number of rows processed during execution of arequest. Therecord isshown below:

412 Chapter 17

01 SQLCA.
05 SQLCAid Pic X(8).
05 SQLABC Pic s9(9) comp.
05 SQLcode Pic s9(9) comp.
05 SQLerrm.

10 SQLerrml Pic s9(9) comp.
10 SQLerrmc Pic X(70).
05 SQLerrp Pic X(8).
05 SQLerrd occurs 6 times
Pic s9(9) comp.
05 SQLwarn.
10 SQLwarn0 Pic
10 SQLwarnl Pic
10 SQLwarn2 Pic
10 SQLwarn3 Pic
10 SQLwarn4 Pic
10 SQLwarnb Pic
10 SQLwarn6 Pic
10 SQLwarn7 Pic
05 SQLext Pic

P P4 DA DA DA D D

<
~\
(2]
p—4

Some of the fields are reserved for future use and others are beyond the scope of this text,
and so only certain fields will be discussed here.
e SQLcode

This field will tell us whether some particular use of SQL was successful or not. An
unsuccessful call to SQL will fail, typically, because no rows were found to match the
condition specified.

e SQLerrmc

If acall doesfail, then this 70-byte character string will contain the text of any relevant
error message.

e SQLwarn

Thisis agroup of eight warning flags only some of which are ever used. They warn
us of possibly non-fatal occurrences such as the truncation of data retrieved from the
database.

17.3.6 Exception Handling

We can write program code to check for possible errors or exceptions after every call to
SQL. However, we may also direct the interface to handle them automatically. Suppose
that, in the event of an error, we mostly want to close down the program and exit. We can
include adirective, like the following, at the start of the program’s procedure division:

Exec SQL whenever SQLerror Goto SQL-Error End-Exec.

Such adirective causesthe pre-processor to generate codethat teststhe SQLcode field and if
it is negativethen program control istransferred to the paragraph labeled SQL-Error. This

Application Programming 413

codeisgenerated after every SQL call that followsthe directive, and the pre-processor con-
tinuesto generateit until it encounters another directive, such asthe oneinthe SQL-Error
paragraph itself.

SQL-Error.

Display "".

Display "Too bad -- ", SQLerrmc.

Exec SQL whenever SQLerror continue End-Exec.
Exec SQL rollback release End-Exec.

Stop Run.

Errors are handled merely by displaying the error message returned in the field SQLerrmc,
rolling back any changes that might have been made, releasing the database and stopping
the program. However, before we rollback and release, a different error-handling directive
isissued:

Exec SQL whenever SQLerror continue End-Exec.

The program will now continue in the event of an error. This prevents the program from
getting into aloop should there be afailure in attempting to rollback and rel ease.

whenever_declaration:
WHENEVER exception action
exception:
[SQLerror | SQLwarning | NOT FOUND]
action:

[GOTO label | CONTINUE | STOP]

The interface recognizes three different exception conditions.

e SQLerror
Thisoccurswhen an error (usually fatal) isdetected. They arefatal becausethe program
will not be able, sensibly, to continue. They include such events as:
— the program being denied access to the database;
— thetableinvolved in aselect statement not existing; or
— acolumninvolved in aselect statement not being defined for any of the tables
involved.
e SQLwarning
This occurs when anon-fatal error, such as truncation, occurs.
e NOT FOUND
This occurswhen no rowswerefound (retrieved) when processing aselect statement.

414 Chapter 17

Three possible actions may be specified.

e GOTO label
Program control is transferred according to the label supplied.
e CONTINUE

Any errors or warnings are to beignored. Thisisthe action taken in programs without
awhenever declaration.

e STOP

The program is to stop without delay. This is not normally an acceptable course of
action.

17.3.7 Assignment

One of the most characteristic statements in any programming language is the assignment
statement, in which new values are inserted into program variables. The host language
interface allows us to extract data from the database, to be inserted into one or more host
variables. This is made possible by the introduction of another clause into the select
statement. The into clause comes immediately after the select clause. The following
excerpt from the Enrol program shows an example.

Get-Student-Id.

Display "".
Display "Enter Student Id: " with no advancing.
Accept Id.
Exec SQL Select Last
Into :Last-Name

From Students
Where Id = :1Id
End-Exec.

The code promptsfor the Id of the enrolling student. It checks whether or not there already
is someone with that 1d. If thereis, then that student’s last name will be stored in the host
variable :Last-Name. Note how the host language variable 14 is distinguished from the
column name Id by being prefixed with a colon. Outside the Exec SQL...End-Exec
delimiters, there is no need to prefix.

assignment:

SELECT list_of_expressions

INTO list.of_:variable_name[:indicator]s
FROM list_of_table_nameS

[WHERE condition]

[GROUP BY list of_expressions

[HAVING condition]]

Application Programming 415

17.3.8 The SQLcode Variable

Thisvariableis afield in the SQL communications area. The DBMS will useit to return
some indication of the success or otherwise of arequest madeto it. There are three values
of interest.

e SQLcode = 0

If avalue of zero is returned then the call to SQL was successful. In the case of the
above request to select, this means that a student with the given Id was found. For
the Enrol program, thisis an error, and an error message is displayed.

If SQLcode = 0O
Then
Display "The student ", Last-Name, " is already enrolled."
Exec SQL rollback release End-Exec
Stop rumn.

The program then stops! Of course, it should ask if the user wants to enter another Id.

e SQLcode = 100
A value of 100 is the standard indication that no rows were returned, that is, no data
was found to match the where clause or the table was empty.

e SQLcode < 0

A negativevalueindicates an error of somekind. These could arise because of anumber
of problems. The programmer does not need to check for a negative val ue because of
the directive discussed earlier which will cause the pre-processor to generate a check
for errors after every ensuing SQL statement.

17.3.9 The ClassList Program
The second program in this section is designed to show the following two interfacefeatures:

¢ how a set of rows may be retrieved and then processed under program control; and
¢ how null values are handled.

The program is shown at the end of this subsection. It displays, in alphabetical order,
alist of al the students in the class. Apart from this, it does little more than display the
lettersn/a for students who have not been awarded amark. Suppose the table containsthe
following data:

Students

831 Zupp 74
256 Bight 7
128 Power 86

416 Chapter 17

The program will display the following classlist:

256 Bight n/a
128 Power 86
831 Zupp 74

End of Class List
Identification Division.

Program-Id. ClassList.

The CLASS Database

Class List Report

This program lists all the students in the Students table.

* K K K K K X ¥ ¥

Environment Division.
Data Division.
Working-Storage Section.
Exec SQL Begin Declare Section End-Exec.

01 Database-Name Pic X(12) varying.
01 Password Pic X(12) varying.

01 Mark-Info.
05 Mark Pic 999.
05 MarkInd Pic S9(4) comp.

01 Student-Line.

05 Id Pic XXX.

05 Filler Pic XXX value spaces.
05 Last-Name Pic X(20).

05 Filler Pic XXX value spaces.
05 Show-Mark Pic ZZ9.

05 SM redefines Show-Mark.
10 No-Mark Pic XXX.

Exec SQL End Declare Section End-Exec.

Exec SQL Include SQLCA End-Exec.

Application Programming 417

Procedure Division.
ClassList-Main.

Exec SQL whenever SQLerror Goto SQL-Error End-Exec.
Connect-to-Database.

Move "CLASSDB" to Database-Name-Arr.

Move 7 to Database-Name-Len.

Move "OCHAYE" TO Password-Arr.

Move 6 TO Password-Len.

Exec SQL Connect :Database-Name identified by :Password End-Exec.

Exec SQL Declare cursor S for
Select Id, Last, Mark
From Students
Order by Last

End-Exec.

Exec SQL Open S
End-Exec.

Exec SQL Fetch S into :Id, :Last-Name, :Mark:MarkInd
End-Exec.

Perform until SQLcode = 100

If MarkInd is not = -1

then

Move Mark to Show-Mark

else

Move "n/a" to No-Mark
End-If

Display Student-Line
Exec SQL Fetch S into :1Id,:Last-Name, :Mark:MarkInd
End-Exec

End-Perform.

Close S.

Exec SQL commit release End-Exec.
Display "".

Display "End of Class List".

Stop run.

SQL-Error.

418 Chapter 17

Display "".

Display Too bad -- ", SQLerrmc.

Exec SQL whenever SQLerror continue End-Exec.
Exec SQL rollback release End-Exec.

Stop run.

17.3.10 Cursors

An SQL select statement will return a set of rows. In contrast, a procedural language
handles a set by looping under the control of a do while or other loop structure. In
COBOL, the loop structureisthe Perform End-Perform. The cursor isthe mechanism
by which the host language interface handles this mismatch. It releases the results of a
guery to the program, one row at atime.

The ClassList program isintended to produce, in alphabetical order, alist of all the
students in the class and any mark they may have been awarded. A cursor is associated
with the appropriate select statement.

Exec SQL Declare cursor S for
Select Id, Last, Mark
From Students
Order by Last

End-Exec.

A cursor, S, is declared and linked to a query. However, the query is not executed until
the cursor is opened. Once the cursor is open, the result rows are made available to the
program, one at a time, by means of a fetch statement. This hew command is only
available as part of the host language interface. The cycle of fetch and display is shown
below:

Exec SQL Open S
End-Exec.

Exec SQL Fetch S into :Id, :Last-Name, :Mark:MarkInd
End-Exec.

Perform until SQLcode = 100

If MarkInd is not = -1

then

Move Mark to Show-Mark

else

Move "n/a" to No-Mark
End-If

Display Student-Line
Exec SQL Fetch S into :Id,:Last-Name, :Mark:MarkInd
End-Exec

Application Programming 419

End-Perform.

Close S.

The first row is fetched outside the loop, which is then repeatedly performed until the
SQLcode variable contains 100 which indicates that the most recent fetch statement was
unable to be satisfied. The cursor is then closed. It may be opened again later in the
program, if required.

fetch_statement:

FETCH cursor_name
INTO list_ of_:variable_name[:indicator]|s

When the cursor is declared, it is associated with a particular select statement. The
order in which host variablesare listed in a fet ch should match the select clause of that
select Statement.

cursor_declaration:

DECLARE CURSOR cursor_name FOR
select_statement

17.3.11 Indicator Variables

In the Students table, the Mark attribute may be null, as some students may not yet have
received one. The program must deal with these students dlightly differently. They require
that n/a, for “not applicable", appear instead of a number. The fetch statement must be
instructed to indicatewhen anull valueisreturned. It can do thisbecauseit is supplied with
anindicator variable. Thisspecia variableis piggy-backed onto the Mark host variablein
the form :Mark:MarkInd.

Exec SQL Fetch S into :1d,:Last-Name, :Mark:MarkInd
End-Exec

Thisinstructs the fetch statement to set the MarkInd according to the value found in the
Mark attribute. The settings are asfollows.

e MarkInd = -1

Thisindicates that a null value was found in the Mark column for that student.
e MarkInd = 0

Thisindicates that a normal mark was found.

420 Chapter 17

e MarkInd > O

A positive value indicates that some kind of truncation was performed. Thiswould be
the case if the host language variable Mark was not large enough to hold the student’s
mark.

The code within the loop then checks to see whether anull mark was fetched and displays
the student information accordingly.

If MarkInd is not = -1
then
Move Mark to Show-Mark
else
Move "n/a" to No-Mark
End-If

We can attach an indicator variable to all or any of the host variables used in a fetch
statement. Indicator variables should be declared as two-byte integer fields.

17.4 Form-based Application Development
17.4.1 Transaction Processing

In the development of any new information system, a large amount of effort is spent in
specifying and writing transaction processing programs. These are programs that update
the information system, in particular, the database, to reflect changes in the situation
modeled by the information system. They have developed a well-defined style, being
screen-based and interactive. The user is presented with a fixed layout or form on which
the details of the transaction will be displayed. The transaction follows a common pattern.

1. Thereis a set-up stage during which the user specifies the input. The program will
validate user input and warn of any errors detected.

2. Once the user is satisfied with the set-up, then he or she signals that the transaction
should go ahead. If the input values are valid, then the database will be updated
accordingly.

3. However, it may bethat either the user is unable to satisfy the program or, possibly, the
user decides to abandon the transaction.

Here is an example of how an event, such as enrolling a student in a class, may be entered
into the database. The user will enrol the student by filling out a form like the one shown
below.

Application Programming 421

The Class Information System

Enrollment Operation

Id: 871

Last: Zupp

The user will normally follow the layout of the form and enter data into the two fields
in atop-to-bottom flow.

1. The1d field

Whenthe user enterstheld of an enrolling student, the program will ook up the database
to establish whether or not astudent with thisId isalready enrolled. If someoneis, then
an error message is displayed and the user will haveto correct the Id or abort the entire
transaction.

2. Thelast field

Once an acceptable Id has been entered, the program will take the user on to the last
name field, for which no particular checks are likely to be made.

Theuser may then be satisfied with the dataentered and signal that thetransaction should
be accepted, in which case, a new row will be inserted into the Class table. Alternatively,
upon checking the data, the user may realize that mistakes have been made, for example,
the last name may have been misspelt. If so the user may move back, change the mistake
or mistakes and then signal that the transaction is complete.

The need for programs that operate in this way is so great that a class of devel opment
tools called application generator s has arisen. These tools allow form-based programsto
be generated rapidly.

17.4.2 Using Forms

Before looking at how we might build a form program, we should have a clear picture of
how the form is presented to its user and how the user fillsit in, because these programs
are a continuation and an extension of the paper forms that we are all obliged to complete
at most stagesin our lives.

Thereis a certain appearance common to most forms.

e Therewill be anumber of questions to be answered.

e These questions will be presented in the sequence that seems the most natural for the
information to be entered.

e Each question will be numbered and there will be asmall “prompt” indicating the kind
of information to be entered with an appropriate amount of space for the answer.

422 Chapter 17

e Therewill be notesto help uswith individual questions and with the form as awhole.

Doing the Deed
Having established that we can fill it out or that we will die in the attempt, we answer
the questions as best we can, perhaps returning to earlier questions to amend our original
answer, perhaps skipping forwards because we are unable to work out what the question
means.

Now we (should) scan the form to check it asawhole and then submit it. Alternatively,
we screw it up into aball and throw it away, perhaps starting a new form, perhaps not.

Office Use Only

There will, inevitably, be a part of the form marked “Office Use Only". We view this
section with a mixture of relief and suspicion. We are pleased that this is something that
we don’'t have to answer; yet we are concerned as to the meaning of the various cryptic
codes that appear there, such as OMDB or NOYL.

This part is used by the bureaucrats in two ways.

1. Itisused to check that the form has been filled in correctly, that all claims have been
verified.

2. It isused to note that the appropriate changes have been recorded and dealt with, or to
record how far through the bureaucratic process the form has reached.

In other words, it is used to check the pre-conditions and implement the post-conditions,
or to monitor their implementation.

17.4.3 Using Automated Forms

Filling out an electronic form involves essentially the same actions as completing a paper
one. See Figure 17.3.

1. The monitor or screen takes the place of the paper.

2. The keyboard (or mouse, etc.) takes the place of the pen or pencil.

3. Therewill be acursor on the screen to indicate the current position of the “tip" of the
pencil, that is, where the next item of input will appear.

4. Therewill be anumber of form navigation and control keys.

5. We will be presented with a series of questions. Each question will involve, typically,
asmall label or prompt and a data entry area.

Id: |871

The dataentry areawill be called afield. Thelabel will be used to identify the field.
6. Some of the fieldswill be mandatory and some will be optional.

7. Some of the fields will be used for display purposes only. These allow the user access
to information that will assist them in the transaction but which should not be changed.

8. Thedatato be entered in afield will be of a certain type or format such as adate or a
name or a money amount.

Application Programming 423

9. A default valuemay be placed in afield by theprogram. Thiswill bethe most commonly
used value for that field, thus reducing the keystrokes required by the user who may
skip over thefield.

10. There will be an area for the program to send messages to the user. These messages
may describe errorsin input or information about the kind of datathat should be placed
in the current field, or help on using the form.

The Class Information System

Enrollment Operation

Iq: 871

Last: Zupp

Msg:
The Screen
o 0K te#$% "~ &x () + |
e Cancel 1234567890 -=.
e Help QWERTYUIOPTI]
Control Panel Data Entry Panel

Figure 17.3 An electronic form

There is a section of the keyboard that can be likened to the control panel of any
machine, such asacar. On some computer systems this control panel may take the form of
a"“soft" panel located on the screen and activated by a mouse.

For electronic forms we use this control panel for activities such as the following.

e Rubout to erase or undo the most recently pressed data key.

e Blank to start afield over again.

e Next and Previous Field to allow usersto navigate the form.

e Next and Previous Page to move between the pages of a multi-page form.
¢ Help asatoken gestureto the user interface.

¢ 0K toindicate that the form has been completed to our satisfaction.

e Cancel to abandon the transaction entirely.

424 Chapter 17

These control keys may not be marked as such, appearing as the function keysF1, F2, and
soon, or asCtrl, A1t or Shift in conjunction with some other key, for example, Ctr1-U.
Office Use Only

The major difference between a hand-filled paper form and an electronic form is here. A
paper form is completed off-line, that is, away from the bureaucracy that will process it.
The electronic form is on-line, that is, its completion is being supervised by a computer
program. The consequences are as follows.

1. Errors may be detected immediately, with the program refusing to budge from a field
until it receives correct input.

2. Confirmation of data entered may be shown on display only fields.

3. Help may be brought up automatically.

4. Lists of currently correct values for a field may be shown on request in the form of a
pick list with the user able to choose a value from the list.

Once the user has entered all the required data and the program has approved it, then two

distinct actions may be taken.

1. The user may press OK to indicate that he or she is satisfied and wishes the transaction
to be compl eted.

2. Alternatively, the user may press Cancel to indicate that the whole thing is to be
abandoned. Thisis the electronic equivalent of screwing up the form and throwing it
away.

17.4.4 Other Points on the Form

A form will be more than a string of individual datafields.

e There may be groups of related fields. When the user reaches, or more likely leaves,
a group then some action may be required by the computer program driving the form.
Theform itself isagroup of fields and the 0K command can be considered asa signal,
from the user, that he or she has finished that group.

e There may be sets of fields or sets of groups, upon which reaching or leaving, some
action may be required by the program.

The structure of the form and the datafieldsit contains may best be described by means of
the BNF language introduced in Chapter 9. The Enrollment screen may be summarized
by the following definition:

Enrollment ::= Id + Last

According to this definition, there are two data fields involved in enrolling a student. The
fields and their manner of use may be summarized in a Field Usage table.

Enrollment

Field Usage
Fidd Usage Format Default
I4 Entry, mandatory integer
Last Entry, mandatory name

Application Programming 425

The kind of information about a field that may appear in the columns is summarized
below.

Usage

Thisindicates whether the field isto be used for data entry (by the user) and, if so, whether
the user must enter some data (mandatory) or whether the field may be skipped (optional).
There are three kinds of usage.

Usage Purpose
Entry for theentry of data
Display for fieldsto be used, by the program, to display information to the user

Hidden for fields that will contain data relevant to the workings of the transaction, but
which need not, or perhaps should not, concern the user

Format

This column indicates the kind of data that may be entered, or displayed, in the field.
Typical formats are:

Format Allowable Keystrokes
Integer asequence of digits
Money asequence of digitsfollowed by aperiod (full stop) followed by two more digits

Date avalid date, perhaps with a further restriction of the kind of date, for example,
YYMMDD or DD-MON-YY

Time avalidtime, aso perhaps with avariety of options

Name for moderately sized character strings such as might be required to represent
SOMeone’' s name

Text for arbitrarily sized blocks of text, perhaps giving access to word-processing
facilities

A format is similar to, but not quite the same as, a datatype. It indicates a kind of
syntactic filter that permits certain keystrokesand disallows others. Theseformat filtersare
provided by the application generator and relieve the programmer of considerable effort.
The programmer merely has to specify the kind of format required.

Default

Thisisapreset value automatically inserted into the field by the program. It is useful when
there is one particularly common value for the field, for example, the city center postcode
for a postcode field.

17.4.5 Triggered Actions

So far, we have only specified some superficial checks that the form program must make.
For the Enrollment form, for example, we have only required that the Id be an integer
and that the last name be a name. Now we need to connect the form to the database, both

426 Chapter 17

to do someintegrity checking and to add the new student to the class. We specify thisextra
activity by associating actions with appropriate points on the form. For example, we might
require that the program, on receiving an Id from the user, checks that no enrolled student
has that particular Id. These actions are triggered whenever the user passes through that
point and are often called trigger sfor that reason.

The actions that are required may be summarized in a Form Action table.

Enrollment
Form Action Table
Position Structure Action

Start of Form
Id CheckId
+ Last
End of Form AddStudent

There are two actions. One istriggered when the Id is entered; the other when the user
signalsthat the transaction is OK. The details of these actions are shown below.

e TheCheckId Action

The Class table is checked to ensure that no student with the given Id is currently
enrolled.

1. Check the table retrieving the student’s last name if possible.

Select Last
Into :Last
From Class
Where Id = :Id

If no row was returned then the user’sinput is valid and the user may proceed to
the next field. If data was retrieved, then a student with the same Id as the one
entered (: Id) isalready enrolled. That student’slast nameisnow displayed inthe
Last field. An error message should be displayed and the user can either enter
the correct Id or abandon the transaction.

e TheAddStudent Action
This action is taken when the user signals that he or sheis satisfied that the data on the
screen isvalid and compl ete.
1. Add anew row tothe Class table.

Insert
Into Class(Id, Last)
Values(:1d, :Last)

17.4.6 Awarding a Mark

This form alows a mark to be awarded to a student and is an implementation of the
AwardMark operation of Chapter 14.

Application Programming 427

The Class Information System

Award Operation

Id: 871
Last: Zupp
Mark: 55

In atypical successful transaction, the user will enter the student’s Id; the program
will respond with the student’s last name as confirmation; and the user will then enter that
student’s mark.

The structure of theformis as follows.

AwardForm ::= Id + Last + Mark
Award
Field Usage
Fidd Usage Format Default
I4 Entry, mandatory integer
Last Display name
Mark Entry, mandatory integer

Award
Form Action Table

Position Structure Action
Start of Form

Id GetStudent

+ Last

+ Mark CheckMark
End of Form AwardMark

e TheGetStudent Action

1. Retrieve the student’s record and move his or her name and any mark awarded
onto the screen.

Select Last, Mark
Into :Last, :Mark
From Class
Where Id = :Id
2. Check that the student has not already been awarded a mark.

:Mark is null

428 Chapter 17

e TheCheckMark Action

1. Check that the mark isin the range 0 to 100. This will take place after the user
has keyed something into thisfield.

:Mark between 0 and 100
o The AwardMark Action

1. Update the student’s record.

Update Class
Set Mark = :Mark
Where Id = :Id

17.5 Summary

When a transaction is specified by an operation schema, no constraints are placed upon
how we might implement that specification. Nor is any guidance given. In this chapter we
have seen two quite contrasting ways by which a program may be built to meet a given
specification.

e We may embed the necessary SQL within the framework of a conventional third
generation programming language such as COBOL.

¢ We may employ an application development package which allows usto create aform-
based program saving us from much of the work involved in the user interface and
where the SQL is attached to appropriate places on the form.

Application Programming 429

Exercises

Q17.1 Amend amark

Thefollowingform allowsan existing mark to beamended. Itisanimplementation
of the AmendMark operation.

The Class Information System

Amend Operation

Id: 871
Last: Zupp
01d: 55
New: 65

a. Definethe structure of the form.
b. Specify aField Usage Table for the form.
c. Specify aForm Action Table for the form.

Q17.2 A student drops out

This form removes a student from the class. It is an implementation of the
DropQOut operation.

The Class Information System

Drop Out Operation

Id: 871

Last: Zupp

a. Definethe structure of the form.
b. Specify aField Usage Table for the form.
c. Specify aForm Action Table for the form.

Chapter 18
Case Studies

18.1 Introduction
In this chapter we will look at two data processing situations.
e Thefirst situation involves deriving a compact yet complex report or view from some
simple data.
e The second situation involves monitoring the handling of orders made on a small
manufacturer.

For both situations, we will (1) present an informal introduction, (2) describe it formally,
and (3) look at an implementation in SQL .

18.2 The League Table
18.2.1 Introduction

Last year, a number of rugby clubs agreed to take part in a competition to decide the best
teamin the district. The competition isto take place over a number of weeks. Every week
there will be a round of matches with each team playing one match per round. There are
six clubs altogether, so each round will involve three games. In the first round, the results
were as follows:

Round 1 Results

Home Team Away Team

Wiseacres 12 Shinhackers 8
Rosewell 8 Witsend 20
Rovers 5 Jeeps 5

The convention about presenting results is that the home team and its score are given first
and the away team and its score second. Each team will play all the others twice, once at

430

Case Studies 431

home and once away. This helps eliminate any bias resulting from the home team’s ground

advantage.

After each round, theresults are added to theresults recorded previously and asummary
table is produced. This table shows the relative standing of each team. After round 1, the
table looked like this:

Team Wins Losses Draws For Against Points
Witsend 1 0 0 20 8 2
Wiseacres 1 0 0 12 8 2
Jeeps 0 0 1 5 5 1
Rovers 0 0 1 5 5 1
Shinhackers 0 1 0 8 12 0
Rosewell 0 1 0 8 20 0

Each column in the table provides a specific piece of summary information regarding a
team'’s performance for the competition so far. The meaning of each columnisasfollows.

Wins

Losses

Draws

For

Against

Points

The total number of matches that the corresponding team has won in the com-
petition so far. For example, after round 1, both Witsend and Wiseacres have
had a total of 1 win so far. They were the only victorious teams in the first
round, so all the other have had O wins.

The total number of matches that the team has lost so far in the competition.
Only Shinhackers and Rosewell have lost at al, so they have lost a total of 1
match; al the others have lost O matches.

A draw occurs when each team scores the same number of points in a game.
This column indicates the total number of drawn matches involving theteamin
question. Jeeps and Roversdrew their first match, so they have atotal of 1 draw
so far.

This column shows the total number of points scored by the team in al its
matches so far. It is the total points counting for the team. For example,
Witsend scored 20 pointsin itsfirst round game and so has scored atotal of 20
pointsin all its (one) matches.

This column shows the total number of points scored by other teams against
this particular team. For example, Witsend had 8 points scored against it in its
round 1 match, so itstotal against isalso 8.

This column shows the total number of merit points awarded to each team as
aresult of its performance in the competition so far. It is these merit points
that primarily determine the ranking of each team in the competition and the
eventual winner. The merit points are awarded according to thefollowing rules:
2 merit points are given for each game won by ateam;
1 point is awarded for each drawn game;

no points are awarded for alost game.

432 Chapter 18

Both Witsend and Wiseacres have won once and drawn no times; so they both
have atotal of 2 merit points. Jeeps and Rovers drew their first match, and so
have 1 merit point each.

Conventionally, the summary table is presented in order of merit. The team with the
most merit points is shown first, the second best team next, and so on. Where two or
more teams have the same number of merit points, these teams are ranked according to
the difference between the team’sFor and Against columns. For example, after round 1,
both Witsend and Wiseacres have 2 merit points; but, for Witsend, For - Against = 20
- 8 = 12 and for Wiseacres, For - Against = 12 - 8 = 4 and so Witsend is placed
ahead of Wiseacresin the summary table.

Round 2 Results

Home Team Away Team

Witsend 25 Shinhackers 6
Jeeps 10 Wiseacres 0
Rosewell 6 Rovers 6

The status of each team after two rounds can be seen in the updated summary table:

Team Wins Losses Draws For Against Points
Witsend 2 0 0 45 14 4
Jeeps 1 0 1 15 5 3
Rovers 0 0 2 11 11 2
Wiseacres 1 1 0 12 18 2
Rosewell 0 1 1 14 26 1
Shinhackers 0 2 0 14 37 0

Witsend has won both its matches and is the only team to have done so. It now tops the
“ladder" with 4 merit points. Witsend won its latest match by 25 points to 6 and so has
20 + 25 = 45 pointsin total for and 8 + 6 = 14 against. Jeeps has won one match and
drawn the other; so it now has 3 merit points. Wiseacres and Rovers have 2 merit points
each, but Rovers is placed ahead because its For - Against differenceis1l — 11 =0
whereasitis12 — 18 = —6 for Wiseacres.

18.2.2 Defining the League

The league simply consists of a set of teams and the results of matches played between
these teams. We will use the following basic types.

Type I nterpretation

[Tean] The set of teamsthat may participate in the tournament.
[N] The set of integers 0,1,2,3,. ...

We will also use a schematype to represent the result of a game.

Case Studies 433

__ Result

round : N
home, away : Team
hscore, ascore : N

home # away

A result consists of the home and away teams, their scores, and the round in which the
gamewas played. The only constraint is that ateam cannot play against itself.
Now we can present a schema that outlines the state of the competition at any moment.

__League

Teams : Set of Team
Results : Set of Result

V r : Results r.home € Teams
Vr: Results o r.away € Teams

Vr,s: Results ® (r.round = s.round A r.home = s.home) = r = s
Vr,s: Results e (r.round = s.round A r.away = s.away) = r =$

Vrad : {r : Results e r.round}
{r : Results | r.round = rnd e r.home}N
{r : Results | r.round = rnd e r.qway} = {}

The League Declaration
1. Teams : Set of Team
Thereisaparticular set of teamsinvolved in the competition;
2. Results : Set of Result
and there is a set of results.
The rules relating these teams and these results are given in the predicate.
The League Predicate

1. Vr: Results e r.home € Teams
Vr: Results o r.away € Teams
All the home teams must be rugby teams participating in the tournament; and so must

al the away teams.

2. Vr,s: Results e (r.round = s.round A r.home = s.home) = r =s
No two results in the same round have the same home team.

3. Vr,s : Results ® (r.round = s.round A r.away = s.away) =1 =§
No two results in the same round have the same away team.

4. Yrnd : {r : Results ® r.round}

434 Chapter 18

In any given round, say rnd, no team played both home and away. For that round,
the set of teams that played at home does not overlap with the set of teams that played

away.
18.2.3 Adding New Results
We should specify the operation of adding new results to the set of results posted so far.

__AddResult

A League
r? : Result

r?.home € Teams
r?.away € Teams
=37 : Results ® r.round = r?.round A
(r.home = r?.home V r.away = r?.home)
=37 : Results o r.round = r?.round A
(r.home = r?.away A r.away = r?.away

Results' = Results U {r?}
Teams' = Teams

Theinterpretation of this schemais asfollows.
The AddResult Declaration

1. A League
This operation changes the league state.

2. r?: Result
The result being added is input as a result record 7?. This means that there will be
variables r?.round for the round, r?.home for the home team, and so on. Note that
the definition of Result requiresthat r?.home # r?.away.

The AddResult Predicate

1. r?.home € Teams
r?.away € Teams
Both teams must be registered with the league.

2. =37 : Results o r.round = r?.round N
(r.home = r?.home V r.away = r?.home)
Thereisno other result for the home team in this round.

3. =37 : Results e r.round = r?.round A
(r.home = r?.away V r.away = r?.away)
Thereis no other result for the away team in this round.

4. Results' = Results U {r?}
The new result is added to the results recorded so far.

Case Studies 435

5. Teams' = Teams
No teams enters or leaves the competition.
18.2.4 Producing a Summary Table

Now we can specify how each team'’s position on the ladder isto be calculated. To do this,
we can introduce a record type that summarizes a team’s performance in the competition
so far.

Summary

team : Team
wins, draws, losses,
for, against, pts : N

This record matches a line on the summary table.
The following schema specifies how the summary table, which is a set of Summary
records, is to be formed.

__ShowTable
ZLeague
ladder! : Set of Summary

{t : ladder! o t.team} = Teams
Vi : ladder! o
t.wins = #{r : Results | (t.team = r.home A r.hscore > r.ascore) V
(t.team = r.away A r.ascore > r.hscore)}
t.draws = #{r : Results | r.hscore = r.ascore A
(r.home = t.team V r.away = t.team)}
t.losses = #{r : Results | (t.team = r.home A r.hscore < r.ascore) V
(t.team = r.away A r.ascore < r.hscore)}
t.for = X(r : Results | t.team = r.home e r.hscore)
+3(r : Results|t.team = r.away e r.ascore)

t.against = X(r : Results | t.team = r.away e r.hscore)
+X(r : Results | t.team = r.home e r.ascore)

t.pts = 2 * t.wins + t.draws

Theinterpretation of this schemais as follows.

The ShowTable Declar ation

1. ZLeague
Producing the ladder involves an examination of the current state of the league. No
changes areinvolved.

2. ladder! : Set of Summary
This operation produces the summary table or ladder which shows the status of each
team in the competition.

436 Chapter 18

The ShowTable Predicate

1. {t: ladder! o t.team} = Teams
Just those teams in the league have an entry in the ladder.

2. Vt: ladder! e
All status recordsin the ladder are to be defined in the following way:

3. t.wins = #{r : Results|(t.team = r.home A r.hscore > r.ascore) V
(t.team = r.away A r.ascore > r.hscore)}
The number of times that a team has won can be determined by counting the number
of results in which either the team played at home and the home team won (¢.team =
r.home A r.hscore > r.ascore) or the team played away and the away team won
(t.team = r.away A r.ascore > r.hscore).

4. t.draws = #{r : Results | r.hscore = r.ascore A
(r.home = t.team V r.away = t.team)}
Thenumber of drawn gamesinwhich ateam hasbeen involved can befound by counting
the number of resultsin which the both teams had the same score (r.hscore = r.ascore)
and the team in question (¢.team) was one of the participating teams (r.home =
t.team V r.away = t.team).

5. t.losses = #{r : Results | (t.team = r.home A r.hscore < r.ascore) V
(t.team = r.away A r.ascore < r.hscore)}
The number of losses is the number of results in which the team has played at home
and the home team haslost or the team has played away and the away team haslost.

6. t.for = X(r : Results | t.team = r.home o r.hscore)
+ X(r : Results | t.team = r.away e r.ascore)
The total number of points scored by ateam is the sum of al the points scored by the
team at home plus the sum of all the points scored in away games.

7. t.against = X(r : Results | t.team = r.away e r.hscore)
+ X(r : Results|t.team = r.home o r.ascore)
Thetotal number of points scored against ateam isobtained by cal culating thetotal num-
ber of points scored against that team while playing at home (X(r : Results | t.team =
r.away e r.hscore) and adding to that the total number of points scored against that
team when playing away.

8. t.pts = 2 x t.wins + t.draws
The total number of merit points may be calculated from the total number of winsand
draws.

18.2.5 The League Database

We will create two tables, one for the teams participating in the competition and another to
keep arecord of all the results so far.

Create Table Teams
(TeamId Char(12) not null)

Thistable provides us with alist of the teams participating in the competition.

Case Studies 437

Jeeps
Rosewell
Rovers
Shinhackers
Wiseacres
Witsend

The second table will contain arow for each result.

Create Table Results
(Round Integer not null,

Home Char(12) not null,
Hscore Integer not null,
Away Char (12) not null,

Ascore Integer mnot null)

The Results table seems a natural way of representing the raw data that will eventuate
from each game played. After two rounds the table will ook like the following.

Results
Round Home Hscore Away Ascore
1 Wiseacres 12 Shinhackers 8
1 Rosewell 8 Witsend 20
1 Rovers 5 Jeeps 5
2 Witsend 25 Shinhackers 6
2 Jeeps 10 Wiseacres 0
2 Rosewell 6 Rovers 6

However, there are difficulties with the table. Suppose we try to process the results for an
individual team. That team, it is likely, will have played some games at home and some
away. To find out how many gamesWitsend have won we can try the following SQL.

Select count (*)

From Results
Where (Home = ’Witsend’
and
Hscore > Ascore)
or (Away = ’Witsend’
and

Ascore > Hscore)

438 Chapter 18

In general, ateam may, like Witsend, have won games both at home and away.

To find out the total For is more difficult. Witsend have scored 45 points but thisis
calculated by adding the 20 points from their round 1 away match to the 25 points from
their round 2 home game. Suppose we try this:

Select sum(Hscore) + sum(Ascore)

From Results
Where Home = ’Witsend’
or Away = ’Witsend’

The query will perform the following calculations:

sum(Hscore) = 8 + 25 = 33
sum(Ascore) = 20 + 6 = 26
59

This is clearly incorrect. What we have calculated is the total points scored in all the
matches in which Witsend have been involved. This total includes points scored by both
Witsend and their opponents. What we need isaview that places ateam in one slot, so to
speak. The following table shows what is meant.

ForAgin

Round TeamlId ForScore AginScore
1 Wiseacres 12 8
1 Shinhackers 8 12
1 Rosewell 8 20
1 Witsend 20 8
1 Rovers 5 5
1 Jeeps 5 5
2 Witsend 25 6
2 Shinhackers 6 25
2 Jeeps 10 0
2 Wiseacres 0 10
2 Rosewell 6 6
2 Rovers 6 6

Each match result, that is, each row in the Results table, will give rise to two rows in
this view showing the scores for and against each team. Each row in the view provides
information on just one team. The view can be defined as follows:

Case Studies 439

Create View ForAgin(Round, Team, ForScore, AginScore)
as

Select Round, Home, Hscore, Ascore

From Results

Union

Select Round, Away, Ascore, Hscore

From Results

The required doubling up is achieved by processing the entire Results table twice and
merging the resulting rows with a union operation. The view may be usefully manipul ated
with a group by clause. Suppose we were to group by the TeamId. The view will be
partitioned as follows:

ForAgin

Round Teamld ForScore AginScore
1 Jeeps 5 5
2 Jeeps 10 0
1 Shinhackers 8 12
2 Shinhackers 6 25
1 Rosewell 8 20
2 Rosewell 6
1 Rovers 5
2 Rovers 6
1 Wiseacres 12
2 Wiseacres 0 10
1 Witsend 20 8
2 Witsend 25 6

We can use the view to give us two of the columns of the summary table.

Select TeamId, sum(ForScore), sum(AginScore)
From ForAgin
Group by TeamId

TeamId sum(ForScore) sum(AginScore)
Jeeps 15 5
Shinhackers 14 37
Rosewell 14 26
Rovers 11 11
Wiseacres 12 18

Witsend 45 14

440 Chapter 18

This satisfies the specification regarding the calculation of the For and Against columns
of the summary table. Although each of these columns was defined as the addition of two
separate summations, we have reduced that to one. We might expect to be able to use this
view to calculate the other columns of the summary table. To find the number of wins by

Witsend, we could write:

Select

From

Where
and

count (*)

ForAgin

TeamId = ’Witsend’
ForScore > AginScore

This gives us the correct answer, but not for all teams:

Select TeamId, count (*)
From ForAgin

Where ForScore > AginScore
Group by TeamId

TeamId count (*)

Jeeps 1
Wiseacres 1

Witsend 2

The other three teams make no appearance. Their rowsin ForAgin were excluded by the
where clause. We can overcome this problem by simply “adding” in these three teams by
means of a union operation.

union
Select
From
Where

TeamId, O
Teams
TeamId not in (Select TeamId
From ForAgin
Where ForScore > AginScore)

The subquery returns the teams that have won at least one match. The outer query goes
through the list of all teams and returns each team that is not in the list of winners.

Rosewell

Rovers

Shinhackers 0

Case Studies 441

Now we can create a view that counts the number of wins achieved by each team.

Create View WinSum(TeamId, Wins)

as

Select TeamId, count (*)
From ForAgin

Where ForScore > AginScore
Group by TeamId

union

Select TeamId, O

From Teams

Where TeamId not in (Select TeamId
From ForAgin
Where ForScore > AginScore)

This view has now provided us with another column for the summary table.

Select TeamId, Wins
From WinSum
Order by Wins desc

Witsend 2
Jeeps 1
Wiseacres 1
Rosewell 0
Rovers 0
Shinhackers 0

The losses and draws columns can be delivered by two views similar to WinSum.

Create View LoseSum(TeamId, Losses)

as

Select TeamId, count (*)
From ForAgin

Where ForScore < AginScore
Group by TeamId

union

Select TeamId, O

From Teams

Where TeamId not in (Select TeamId
From ForAgin
Where ForScore < AginScore)

Create View DrawSum(TeamId, Draws)
as

442 Chapter 18

Select TeamId, count (%)

From ForAgin

Where ForScore = AginScore
Group by TeamId

union

Select TeamId, O

From Teams

Where TeamId not in (Select TeamId
From ForAgin
Where ForScore = AginScore)

Thefinal column in the summary tableis for merit points and this can be calcul ated.
We can now define the summary table as yet another view.

Create View Summary(Team, Wins, Losses, Draws,
For, Against, Pts)
as
Select TeamId,
Wins,
Losses,
Draws,
For,
Against,
2*Wins + Draws

From WinSum W
LoseSum L,
DrawSum D,
ForAgin FA,

Where W.TeamId = L.TeamId
and L.TeamId = D.TeamId
and D.TeamId = FA.TeamlId

We can now print the summary table in order of merit.

Select *
From Summary
Order by Pts desc, For-Against desc

Case Studies 443

18.3 The Rocky Concrete Company

We have been commissioned by that well-known manufacturer of highly regarded concrete
products. The company wants us to develop an information system. The systemisto help
it answer questions such as:

e What kinds of products does Rocky sell? How much doesit have in stock? Should it
make another batch of product X or not?

e Who are its customers? How are they distributed across the country? How much do
they owe?

e What orders have been taken and when? Who made them? What products and how
many of each product were involved in an order?

A. Rocky’sProduct Line-Up

Perhaps the best introduction to the company is to have a look at part of its catalog. See
Figure 18.1.

Rocky Concrete Products

Agricultural Products

Product Description List Price
MO0 Medium Cattle Trough 150
LOoOo Large Cattle Trough 250

Domestic Products

STANK Small Septic Tank 300
LTANK Large Septic Tank 450
LTUB Laundry Tub 100
GNOME Garden Gnome 10

Local Council Products

STAND Bicycle Stand 50
WALLY Statue of Rugby Player 500

Figure 18.1 Catalog of products and prices

The catalog isfor customer use. Rocky isjust as much interested in other aspects of its
stock. Aninventory is shown in Figure 18.2.

444 Chapter 18

List of Stock

Product Type Cost On Hand ReMake ReMake

Price Level Qty
MO0 A 70 6 3 5
L0oo A 100 1 1 3
STANK D 200 10 5 15
LTANK D 300 1 2 2
LTUB D 60 20 15 20
GNOME D 2 100 150 200
STAND C 20 50 35 20
WALLY C 100 10 15 40

Figure 18.2 List of Stock Report

When the quantity on hand of a particular product falls below a given level then a new
batch of that product will be made. The batch size is determined by the product. For
example, the number of garden gnomesin stock has fallen dangerously low. It is down to
only 100 units. Thisis below the re-make level of 150 units. (Rocky must have had a busy
Sunday.) Therefore a batch of 200 units, the re-make quantity for this product, will need
to be made. However, before a request is made, alist is made, showing al products that
need replenishing and the cost involved. An exampleis shown in Figure 18.3.

Production Request

Product On Hand Remake Unit Total
Qty Cost Cost

LTANK 1 2 300 600
GNOME 100 200 2 400
WALLY 10 40 100 4000

Figure 18.3 Production Request

B. Rocky’s Customer Base

Next we will look at the kinds of customers that Rocky serves. Figure 18.4 shows an
excerpt from its customer ledger.

Each customer is granted a credit limit, beyond which they are never allowed to stray;
that is, the total amount that a customer currently owes Rocky, the current balance, is never
allowed to exceed the particular limit of credit imposed on that customer.

Case Studies 445

List of Customers

Customer Name Address Credit Current
Limit Balance

1066 Nev’s Nursery White Hart Lane, 500 450
Bundaberg, 4670

1314 Alfred Shire Meadow Bank, 3000 1000
Council Alfieton, 4555
1776 Di Hunter Thornton Farm, 500 500

Rosevale, 4765

2001 Glad’s Gladdies Turkey Beach, 500 0
Gladstone, 4750

Figure 18.4 List of Customers

C. Customer Orders

These are the company’s lifeblood! Every customer order is recorded on an order form.
Figure 18.5 shows atypical example of one. The order is allowable, from Rocky’s point of
view, because it satisfies the following conditions:

1. The quantity of each product ordered is less than or equal to the quantity on hand for
that product. In other words, Rocky had enough in stock.

2. The total value of the order, $1400, when added to the customer’s current balance,
which is $1000, isless than or equal to the customer’s credit limit of $3000.

Note that the unit price charged for two of the productsislessthan thelist price. Thisisthe
benefit of being avalued customer. The effect that this order will have on Rocky’s records
can be seen in the excerpts shown in Figure 18.6.

For each of the products ordered, the OnHand quantity is reduced by the amount
ordered. The current balance of the customer making the order is increased by the total
value of the order.

18.3.1 Developing a Specification

We start by introducing some base types that we will clearly need.

446 Chapter 18

Rocky CONCRETE PRODUCTS
212 Bell St. Rocklea
Order: 1601 Date: 16-Mar-95
Customer: 1314
Alfred Shire Council
Meadow Bank, Alfieton,
4555
Product Description Qty | Unit Total
Code Price
STAND Bicycle Stand 10 40 400
GNOME Garden Gnome 10 10 100
WALLY Statue of Rugby Player 2 450 900
1400
Figure 18.5 Order Form
Type I nterpretation
[Product] All the products that Rocky might ever make
[ProdType] The product types, e.g. domestic, agricultural, and so on
[Customer] All the company’s possible customers
[Order] All possible orders
[Text] For names and addresses
[N] Theintegers0, 1, 2, . ..
[Date] For order dates and whatever other dates might be required

We need amoney type, but will treat it as a synonym for integers.

Money ==

Next wewill create some schemaor record types that gather together relevant informa-
tion on some of the major entity types just introduced.
The Product Record Type

Thisrecord gatherstogether all the simple data that Rocky keeps about product, except for
the identity of the product itself.

Case Studies 447

Stock Changes

Product Description On Hand Order On Hand

BEFORE Qty AFTER
GNOME Garden Gnome 100 10 90
STAND Bicycle Stand 50 10 40
WALLY Statue of Rugby Player 10 2 8

Customer Changes

Customer Name BEFORE Order AFTER
Balance Total Balance
1314 Alfred Shire Council 1000 1400 2400

Figure 18.6 Before and after

__ ProdRec

Desc : Text

Type : ProdType

List, Cost : Money

Onhand : N

ReMake_Level, ReMake_Qty : N

Thisrecord may be thought of as an individual product view. It is an amalgamation of
the information provided about a product on theList of Stock report (see Figure 18.2)
and the catalog (see Figure 18.1).

The Customer Record Type

This schema type gathers some important facts about a customer. It is an individual
customer’s view of its relationship with Rocky.

__ ClustRec
Name,
Address : Text
Limit,

Balance : Money

Balance < Limit

It correspondstotheinformation about acustomer found onarow of theList of Customers
report (see Figure 18.4).

448 Chapter 18

Every customer is required to have a current balance that is less than or equal to their
credit limit.
TheOrder Record Types

Two record typeswill be defined to help specify orders. Thefirst correspondsto aphysical
line on an order form.

__ OrderLine
ProdCode : Product

Qty: N
SoldAt : Money

Qty >0

Every order line must involve an order quantity greater than zero.
Thesecond record type capturesthe essential detailsof acompleteorder. It corresponds,
approximately, to an individual order form including heading and body. See Figure 18.5.

__ OrderRec

OrderDate : Date
Custld : Customer
Lines : Set of OrderLine

#Lines = #{l : Lines o l.ProdCode}

Thepredicaterequiresthat every line on the order involve adifferent product, that is, the
number of lines on the order must equal the number of different kinds of product ordered.

18.3.2 The Rocky State

We can now bring these types together in a schemathat attemptsto summarizethe analysis
that appeared in theintroduction. The componentsor observationsintroduced in the schema
correspond to the three major reports, the List of Stock, the List of Customersand the Order
Form.

— Rocky

Products : Product + ProdRec
Customers : Customer +> CustRec
Orders : Order +> OrderRec

Y ord : dom Orders o
Orders(ord).Custld € dom Customers
V line : Orders(ord).Lines o line.ProdCode € dom Products

The schemaisto be interpreted as follows.

Case Studies 449

The Rocky Declaration

1. Products : Product +> ProdRec
Information relating to all the products currently manufactured by Rocky isrepresented
asapartial function that mapseach product to all theinformation relevant to that product.
The domain of the function, dom Products, represents the products themselves. An
application of the function, say Products(p), provides us with a ProdRec tuple of
information about product p.

2. Customers : Customer +> CustRec
The customer base is also represented as a partial function, one that maps each ex-
isting customer to information about that customer. The domain of the function,
dom Customers is the set of existing customers. An application of the function, say
Customers(c), provides arecord of the customer c.

3. Orders : Order +> OrderRec
In a similar fashion to products and customers, each order is mapped to information
about that order.

The Rocky Predicate
1. Yord : dom Orders o
Inevery order ...

2. Orders(ord).Custld € dom Customers
the customer identified is one of Rocky’sand

3. Vline : Orders(ord).Lines e line.ProdCode € dom Products
every product identified on the order is from Rocky’s stock.

18.3.3 Adding a New Customer

The following schema describes how a new customer may be added to Rocky’s customer
base and the conditions that apply.

__ AddCustomer

A Rocky
newrec? : CustRec

newrec?.Balance = 0
dnextid : Customer o nextid ¢ dom Customers
Customers' = Customers U {(nextid, newrec?)}
Products' = Products
Orders' = Orders

The schemaisto be interpreted as follows.

450 Chapter 18

The AddCustomer Declaration

1

2.

A Rocky
This signals that the operation causes a change to the Rocky state.

newrec? : CustRec
All the necessary information, apart from the customer’s Id, is supplied in this input

customer record.

The AddCustomer Predicate

1

newrec?.Balance = 0
The customer will start with azero current balance.

I nextid : Customer o nextid ¢ dom Customers
This condition establishes that there is a customer (1d) nextid for this new customer
and that the Id is not already allocated to some existing customer.

. Customers' = Customers U {(neztid, newrec?)}

Thecustomer baseisextended to include amapping fromthe customer to the customer’s
record.

18.3.4 Taking a New Order

In this section, we will discuss the operation of taking an order and how that operation
affectsthe Rocky state. We will start by seeing what inputs the operation will require and
what output it will produce.

1. custid? : Customer

We will need to know the customer making the order to ensure both that they have
enough credit and that their current balance is updated.

. d?: Date

We need to know on what date the order was made.

. lines? : Set of OrderLine

The most important input will be aset of OrderLine records that show what products
were ordered, how many of each were ordered and what price they were sold at.

. total! : Money

Thetotal value of the order isto be calcul ated.

Theoperation affectsall three of the components of the state schemaand beforeweintroduce
the TakeOrder schema, we will describe how these state components are altered. These
descriptions aso take the form of schemas and, eventually, they will be incorporated into
the compl ete description of the ordering process.

1. The Products Component

The effect of an order on the Products component is to reduce the quantity on hand of
each of the productsinvolved by the amount ordered. We do not need to worry whether
there are enough in stock. Thiswill be handled in the operation schemaitself.

Case Studies 451

_ EffectOfTake Order OnProducts

Products, Products' : Product +> ProdRec
lines? : Set of OrderLine

Products' = Products®
{l: lines?,p,p" : ProdRec

p = Products(l.ProdCode) N
p'.OnHand = p.OnHand — 1.Qty N\
p'.Desc = p.Desc A

p'. Type = p.type A

p'.List = p.List A

p'.Cost = p.Cost N

p'.ReMake_Level = p.Remake_Level N
p'.Remake_Qty = p.ReMake_Qty

(1.ProdCode, p")}

The Products component is a function and function override is used to describe how
this component is changed. For each of the products in lines?, the record for that
product is established as p. A new product record, p’, is created, using p as a basis.
This new record is identical to p except that the OnHand quantity is reduced by the
quantity (1. Qty) of the product that was ordered. The current record p is replaced by
p'. Thisoverriding is repeated for every line on the order.

2. The Customer Component

_ EffectOfTake OrderOnCustomers

Customers, Customers' : Customer +> CustRec
custid? : Customer
total! : Money

Customers' = Customers ®
{¢, ¢’ : CustRec

¢ = Customers(custid?) A
¢'.Balance = c.Balance + total! A
¢".Name = c.Name A

c'.Address = c.Address N
¢'.Limit = c.Limit

[]

(custid?, ')}

The Customers component is also afunction. The current version of the customer’s
record is established as ¢. A new version, ¢’, of therecord is constructed from ¢ except

452 Chapter 18

that the Balance field is increased by the total value of the order. This new customer
record is then used to override the previous one.

3. The Orders Component

_ EffectOfTakeOrderOnOrders

Orders, Orders' : Order +> OrderRec
custid? : Customer

d? : date

lines? : Set of OrderLine

3 NextOrderld : Order o
NextOrderld & dom Orders A
Orders' = Orders U
{or : OrderRec|
or.OrderDate = d? A
or.Lines = lines? N\
or.Custld = custid?

(NextOrderld, or)}

A new order Id NextOrderId isfound. Thismust not currently bein use. A new order
record or is then constructed from the input supplied. A new pairing is added to the
Orders function. This pairing maps the new order 1d to the new order record.

_ TakeOrder

ARocky

custid? : Customer

d? : Date

lines? : Set of OrderLine
total! : Money

custid? € dom Customers

{1 : lines? o I.ProdCode} C dom Products

#lines? = #{l : lines? o |.ProdCode}

Vi: lines? o 1.Qty < Products(l.ProdCode).Onhand

total! = X1 : lines? o [.SoldAt x |.Qty
Customers(custid?).Balance + total! < Customers(custid?).Limit

EffectOf TakeOrderOnProducts

EffectOfTake OrderOnCustomers
EffectOf Take OrderOnOrders

The schemaisto be interpreted as follows.

Case Studies 453

The TakeOrder Declaration

The inputs and output have been discussed already.

The TakeOrder Predicate

1

custid? € dom Customers
The customer identified as making the order must be a current customer.

. {l: lines? o [.ProdCode} C dom Products

Every product code that appears on an order line must identify one of Rocky’s current
stock.

. #lines? = #{l : lines? o I.ProdCode}

Every line on the order must have a different product code.

. V1: lines? o 1.Qty < Products(l.ProdCode).Onhand

For every product ordered, there must be enough stock on hand.

. total! = X1 : lines? o 1.SoldAt x |.Qty

The total value of the order is the sum of the product of the sale price and the order
quantity over al the products ordered.

. Customers(custid?).Balance + total! < Customers(custid?).Limit

The customer’s credit limit, after the order, must still be |ess than the customer’s credit
limit.

. EffectOfTakeOrderOnProducts

EffectOf TakeOrderOnCustomers
EffectOf TakeOrderOnOrders
The three state components are changed in the ways described previoudly.

18.3.5 Making a Request for Production

In thislast operation, we will ook at specifying areport that listsall the products that have
fallen below the relevant re-make level. This corresponds to the Production Request
which looks like the following.

Production Request

Product On Hand Remake Unit Total
Qty Cost Cost

LTANK 1 2 300 600
GNOME 100 200 2 400
WALLY 10 40 100 4000

454 Chapter 18

__ ProductionRequest

ZRocky
remake_list! : Set of (Product x N x N x Money x Money)

remake_list! = {pCode : dom Products; pRec : ProdRec
|
pRec = Products(pCode) A
pRec.OnHand < pRec.ReMake_Level

[]

(pCode,

pRec.OnHand,

pRec. ReMake_Qty,

pRec.Cost,

pRec.ReMake_Level * pRec.Cost)}

The ProductionRequest Declaration

1. ZRocky
Thisisaread-only operation.

2. remake_list! : Set of (Product x N x N x Money x Money)
Thelistis composed, essentially, of aset of rows. Each row consists of a product code,

two numbers, and two money amounts.

The ProductionRequest Predicate
Set comprehension is used to define the report.

1. remake_list! = {pCode : dom Products; pRec : ProdRec
Thevariable pCode rangesover dom Products, that is, over theset of productscurrently
made by Rocky. The variable pRec is a product record, the contents of which are yet
to be determined.

2. | pRec = Products(pCode) A
The variable pRec is now established as the product record for the product identified

by pCode.

3. pRec.OnHand < pRec.ReMake_Level
However, the report only identifies products for which stock has fallen to a level at

which manufacture is warranted.

4. e (pCode, pRec.OnHand, . .., pRec.ReMake_Level * pRec.Cost)
The details of the report are specified.

18.3.6 The Database

We will use a database with the following structure.

Case Studies 455

Products Customers Orders OrderDetails
(*) ProdCode (x) CustId (x) OrderId (*) OrderId

Desc Name OrderDate (*) ProdCode

ProdType Street CustId OrderQty

ListPrice Town SalePrice

CostPrice PostCode

OnHandQty Limit

RemakeLevel Balance

RemakeQty

The Products and Customers tables are direct implementations of the corresponding
components of the Rocky state schema:

Products = Products
Customers = Customers

The domain of the Products function corresponds to the key of the Products table:
dom Products = {p : Products e p.ProdCode}

or, in SQL terms:
dom Products = Select p.ProdCode From Productsp

The Orders component of that schema is represented by the Orders and OrderDetails
tablesin conjunction:

Orders = o : Orders
(o,{od : OrderDetails|od.OrderId = o.0rderId e
(0d.ProdCode, 0od.0rderQty, od.SalePrice)}}

In SQL terms, we have:
dom Orders = Select o.0rderId From Orders o

We need two further tables to enable us to allocate new customer and new order numbers;

NextCust NextOrder

(*) NextCustId (%) NextOrderId
The NextCust table might be created as follows:
Create table NextCust (NextCustId integer not null)
Onerow will be inserted:

Insert
Into NextCust
values(1)

The first customer will be given the number 1 and the NextCust table will be updated to
contain the number 2, and so on for every new customer.

456 Chapter 18

18.3.7 Implementing the AddCustomer Operation

Suppose we decide to use a data entry screen like that shownin Figure 18.7.

/ N\

Rocky Concrete Products

Add a Custoner

Cust | d:

Name: | O chid Enterprises

Addr ess: | 23 Hanover Terrace
CookTown

4670
Limt:

Figure 18.7 The AddCustomer screen

The form has the following structure:

AddCustomerForm ::= Custld + Name + Address + Limit
Address ::= Street + Town + PostCode
AddCustomer
Field Usage Table

Field Usage Format Default

CustId Display integer

Name Mandatory Entry name

Street Mandatory Entry name

Town Mandatory Entry name

Postcode Mandatory Entry integer

Limit Mandatory Entry integer

The new customer’sd is supplied by the system; all other fields areto befilled by the user.

Case Studies 457

AddCustomer
Form Action Table
Position Structure Action

Start of Form
CustId GetNextId
+ Name

+ Street

+ Town

+ Postcode

+ Limit

End of Form AddCustomer

AddCustomer Form Actions

GetNextId Action:

1. Extract the next available customer number.

Select NextCustId
Into :CustId
From NextCust

2. Update the table to prepare for the next new customer.

Update NextCust
Set NextCustIld = NextCustld + 1

AddCustomer Action:

1. Add anew row to the Customers table.

Insert
Into Customers
values(:CustId, :Name, :Street, : Town, :Postcode, :Limit, 0)

The customer is given a zero current balance.

18.3.8 Implementing the TakeOrder Operation

The screen layout for this transaction is shown in Figure 18.8.
Thisform has the following structure:

TakeOrderForm ::=
OrderId + Date
+ CustIld + Name + Address + PostCode
+ {ProdCode + Description + OrderQty + SalePrice + LineTotal}
+ OrderTotal

Address ::= Street + Town

458 Chapter 18

4 Rocky Concrete Products h
Take an Order
O der: 1601 Date: |[16- Mar-95
Cust oner: | 1314
Al fred Shire Council
Meadow Bank, Alfieton
4555
Code Descri ption Qy Price Total
STAND Bicycle Stand 10 40 400
GNOVE Garden Gnore 10 10 100
WALLY Statue of Rugby Pl ayer 2 450 900
Order Total : {1400
. J/

Figure 18.8 The TakeOrder screen

Three hidden fields are added. These are shown in italics.

TakeOrderForm ::=
OrderId + Date
+ CustId + Name + Address + PostCode + Balance + Limit
+ {ProdCode + Description + OnHandQty + OrderQty + SalePrice
+ LineTotal}
+ OrderTotal

Address ::= Street + Town

These hidden fields are added because, during the processing of an order, we will need to
ensure that the customer’s credit limit is not exceeded and, for each product ordered, there
is enough stock on hand.

Case Studies 459

TakeOrder

Field Usage Table
Field Usage Format Default
OrderId Display integer
Date Mandatory Entry date
CustId Mandatory Entry integer
Street Display name
Town Display name
Postcode Display integer
Balance Hidden money
Limit Hidden money
ProdCode Mandatory Entry name
Description Display name
OnHandQty Hidden integer
OrderQty Mandatory Entry integer
SalePrice Mandatory Entry money
LineTotal Display money
OrderTotal Display money

The sequence of usage is asfollows.
e The program will supply the order number.
e Theuser will supply the order date.

e Theuser will supply the customer number. The programwill check that such acustomer
exists, and if so, will retrieve their name, address, current balance and credit limit. All
but the latter two fields will be displayed on the screen.

e The program will then loop through the body of the order.

— The user will supply a product code.

— The program will verify the existence of a product with that code.

— If oneisfound then the product description will be displayed.

— The user will supply the order quantity for that product.

— The program will check that there is enough on hand.

— If there is, then the program will ask for the unit sale price for this product. The

program will calculatethelinetotal for this product and check that, giventhisline
and all the other lines on the order, the customer has enough credit.

460 Chapter 18

TakeOrder
Form Action Table
Position Structure Action
Start of Form
OrderId GetNextId
+ Date
+ CustId CheckCustEtc
+ Name
+ Address
Start of Body + { SetTotal
Start of Line
ProdCode CheckProd
+ Description
+ OrderQty CheckEnough
SalePrice CheckBalance
LineTotal
End of Line AddLineEtc
End of Body } UpdateCust
+ OrderTotal
End of Form

TakeOrder Form Actions

e GetNextId Action:

1. Extract the next available order number.

Select NextOrderId
Into :0rderId
From NextOrder

2. Update the table to prepare for the next new order.

Update NextOrder
Set NextOrderlId = NextOrderId + 1

e CheckCustId Action:

1. Retrieve the customer record.

Select Name, Street||’, ’||Town, PostCode,
Balance, Limit
Into :Name, :Address, :PostCode, :Balance, :Limit

Where CustId = :Custld

If not found then display an error message.
This condition also satisfies the condition of the operation schema that requires
custid? € dom Customers.

Case Studies 461

2. Insert an Order (header) record into the database.

Insert
Into Orders
Values(:0rderId, :Date, :CustId)

o TheCheckProd Action:

1. Retrieve the product record for the product specified.

Select Description, OnHandQty
Into :Description, :0nHandQty
From Products

Where ProdCode = :ProdCode

If not found then display an error message.
This condition, sinceit is applied to every product entered, causes the condition
{l: lines? & .ProdCode} C dom Products to be satisfied.

e TheCheckEnough Action:

1. Check that there is enough stock on hand.
:0rderQty <= :0nHandQty

If not found then display an error message.

This condition, sinceit is also applied to every product entered, causesthe opera-
tion schemaconditionV [: lines? e I.Qty < Products(l.prodId).Onhand to be
satisfied.

e TheCheckBalance Action:

1. Cdculatethelinetotal.
:LineTotal := :0rderQty * :SalePrice
2. Check that thisline does not take the customer over their credit limit.

:0rderTotal + :LineTotal + :Balance <= :Limit
These two actions cause the condition:
Customers(custid?).Balance + total! < Customers(custid?).Limit

to be satisfied.
e TheAddLineEtc Action:
This action updates the order total, adds a new line to the database and updates the
relevant product record.
1. Update the order total.
:0rderTotal := :0rderTotal + :LineTotal

2. Add the order line to the database.

462 Chapter 18

Insert
Into OrderDetails
Values(:0rderId, :ProdCode, :0rderQty, :SalePrice)

This satisfies the EffectOf Take OrderOnOrders condition.
3. Update the product record.

Update Products
Set OnHandQty = OnHandQty - :0rderQty
Where ProdCode

This satisfiesthe EffectOf TakeOrderOnProducts condition.

e TheUpdateCust Action:

1. Add the order total valueto the customer’s current balance.

Update Customers
Set Balance = Balance + :0rderTotal
Where CustId = :CustId

This satisfies the part of the EffectOfTakeOrderOnCustomers condition that
relates to the body of the order.

Case Studies 463

Exercises

Q18.1 TheLeague
Suppose the state schema for this case study had been specified somewhat differ-

ently.

_League
Teams : Set of Team

homes : Round x Team —+> Score
aways : Round x Team —+> Score
played : Round x Team +> Team

dom homes U dom aways = dom played
dom homes N dom aways = { }

The three functions are to be used as follows:

homes What the home teams scored in each round.

homes(1, Wiseacres) = 12
homes(1, Rosewell) = 8

aways What the away teams scored in each round.

aways(1, Shinhackers) = 8
aways (1, Witsend) = 20

played Each team’s opposition in each round.

played (1, Wiseacres) = Shinhackers
played (1, Shinhackers) = Wiseacres

Respecify the AddResult operation using this new schema.

b. Respecify the ShowTable operation.

C. Thepredicate doesnot mention the relationship between theteamsin Teams
and those in homes, aways and played. What isthat relationship?

Q18.2 Rocky Concrete
a Specify an operation schema Delivery that describes what happens when a
new batch of product p? arrivesfrom production.

b. Specify an operation schema Physical that describes the result of physical
inspection of stock that finds that there are actually s? units of product p?

out in the yard.

464 Chapter 18

Additional Cases

The Sporrandangle Valley Water Board

The soils of the Sporrandangle Valley are fertile, but the rainfall is erratic. Fortunately,
farmersare ableto irrigate their crops from the Sporran River that flowsthrough the valley.
Thiswas the way for many years until the | ate fifties when excessive irrigation by farmers
higher up the valley meant that, downstream, the crops failed because of water shortage.
The State Government intervened and decided that the most equitabl e solution was to dam
the upper reaches of the river including the famous Sporrandangle Falls. The flow into
the river could then be controlled. To pay for the works and to contain any over-watering,
they decided to charge farmers for the water (and you can imagine how that suggestion
was received). To oversee the situation, the government created the Sporrandangle Valley
Water Board.

Water Billing: The Board's water usage accounting system operates on an annual cycle
known as the Water Year. This runsfrom July 1 in one year to June 30 in the following.
Every farm is allocated a volume of water known as the water right. The volume depends
on variousfactorsincluding the size of the farm and its position in the valley (and how well
the farmer knows the Board Chairman, perhaps). This water is free of charge. Any water
usage in excess of the farm’swater right must be paid for. Notification of chargesis sent to
each farm in the form of a number of periodic, usualy monthly, invoices.

Thewater used by any farm istaken from theriver through anumber of metered offtakes
that deliver water specifically to the farm. The volume of water used in the Water Year
so far is calculated for each offtake. This calculation is based on the readings taken at the
offtake from the start of the Water Year until the present. The volume taken from each
offtake is summed to get the total for the farm over the period specified.

Periodic Charges: The Board normally starts sending invoices about the time that water
usage starts to exceed the water right. Typically this occurs around November. From then
until the end of the Water Year, at approximately monthly intervals, bills are sent out to
farmersfor any additional water usage. Asarule, readings are taken at the end of amonth
and invoices are sent out in the middle of the following one.

When the invoice program is run, two dates are supplied, a start date and an end date.
The start date is usually the middle of the month prior to the start of the Water Year. The
end date is the middle of the month following the last of the water use readings. Charges
accruing in the interval defined by the two dates are calcul ated.

Although it might be thought that calculating usage is merely a matter of subtracting
the usage at the start from that of the end, there are two factors that must be taken into
account.

1. The meter may have ticked over, that is, it may have reached the limit of its measuring
capacity and reset itself.

2. There may have been repairs to the meter attached to an offtake, to the extent that the
meter may even have been replaced.

A monthly invoice requires the production of the following information.

o the farm number

Case Studies 465

o thewater right for that farm

o the previous usage, that is, the amount of water calculated as used at the time that the
previous invoice was produced

¢ thelatest usage

All the readings for the date range specified for the offtake are examined. For each pair of
successive readings, any repairs for that offtake in the interval defined by these readings
areinterspersed.

Thelast usefigurefor thisfarmisread out and thislatest usageisinserted. Thislast use
figure provides the total water usage for this farm as determined at the end of the previous
period. By comparing the previous usage against the latest usage, the periodic charge can
be determined.

Meter Tickover: When ameter reachesthe limit of its measuring capacity, it ticks over or
resets itself, say from 9999 to 0000. The capacity of the meter depends on itstype. This
capacity is entered during a repair transaction, and is known as the maximum reading. It
may vary over time as the meter attached to an offtake may require replacement. At any
particular time, an offtake meter’s maximum may not have been recorded, in which case,
adefault of 9999 isused. When examining meter readings, a meter tickover is judged to
have occurred if:

1. thewater use reading this month is less than last month’s, or more generally,

2. if onereading isless than the immediately preceding one.
When tickover occurs, water usage is calculated asfollows:
Water Usage = Max Reading — Previous Reading + 1 + New Reading

Suppose an offtake has a maximum reading of 9999. Two successive readings are 9980
and 0010, so tickover has occurred.

Water Usage = 9999 — 9980 + 1 + 0010 =19+ 1+ 10 =30

Repairs: When water usage at an offtake is being calculated, possible meter repairs must
betakeninto consideration. When afaulty meter isrepaired, or even replaced, thefollowing
details are recorded:

¢ the associated offtake

¢ the date of the repair

¢ the meter setting before the repair

¢ the meter setting after the repair

e an assessment of the water unaccounted for due to the fault; this may be a negative
figure

The calculation of water usage at an offtake in the period between two successive
readingsis subject to the following rules:

466 Chapter 18

o |f there are no repairsin the interval between the readings:
then

The usage is the reading at the end of the period less the usage at the start of the
period.

o |f therearerepairsintheinterval:
then

the usage is the sum of the following:
the difference between the before reading for the first repair and the first
reading
+ the sum of all adjustments made
+ the difference between the second reading and the after reading for the last
repair
+ the sum of the differences between successive repairs.

An Example of Repair Accounting

Suppose the following readings had been taken at an offtake, and that certain repairs had
been made to the meter at that offtake.

Readings Repairs
Date Reading Date Before After Assessment
31/3 60
18/4 100 75 2
20/4 80 220 5
25/4 230 100 4
30/4 120

100 - 60

+ 2 +5+ 4

+ (80 - 75) + (230 - 220)
+ 120 - 100

April Usage

40 + 11 + 5 + 10 + 20

= 86

Even though invoices are produced monthly, water usage is always calculated from the
beginning of the Water Year. Thisisdone because repairs may not appear in the accounting
system in time to be incorporated into the next invoice to be prepared. Even then, the
assessment may be disputed. The Board therefore always re-calculates the entire year's

usage.

Case Studies 467

Nuclear Medicine

Nuclear medicineisoneof anumber of diagnostic servicesthat areavailableat most medium
to large hospitals. It is one of a family of similar services known as medical imaging.
Nuclear medicine is an aid that is concerned with physiology, that is, the functioning of
organs and bones. Other diagnostic aids in medicine, such as cat scans, ultrasound and
X-rays are concerned with anatomy, that is, the shape or structure of the organsand bones.

The images produced by a nuclear medicine camera are not as striking (in terms
of clarity) as those produced by other imaging techniques. However nuclear medicine
physicians joke that these other scanning methods would produce equally good pictures of
acadaver! Asapractical example, boneinfection such as osteomyelitiswill show up much
earlier on nuclear medicine scans than on others (1 or 2 days as against 2 weeks).

Nuclear medicine exists because different parts of the body tend to process different
substances; for example, bones take up calcium, and the liver filters large particles. Ad-
vantage is taken of this fact by labeling or adding a radioactive nuclide to these carrier
substances.

Normally the patient is injected, and after the dose has had time to reach its target the
patient is scanned by a special camera. The resulting image is usually produced on X-ray
film, although it may also be taken by a Polaroid camera or shown on a screen linked to the
computer that interfaces with the camera. Generally, the dose is only taken up by active
parts of the body. So, when ordering abone scan, doctorswould be looking at bone growth.
Such growth might be anormal part of fracturerepair, but it might also be aresult of cancer
or infection. Some scans, like the bone scan, are looking for active areas, but other scans
arelooking for alack of activity.

Nuclear medicine can only hint (however strongly) at why the body is acting in the way
it does. Only pathology can accurately determine the cause.

Types of Scan
The most common types of scan done by a nuclear medicine department within a hospital

are:
o liver
e bone
e lung
e cardiac

o rend (kidney)

There are other types of scan such as hiliary (gall bladder), thyroid and bladder scans;
however, we will concentrate on the everyday ones. Some of the relevant features of each
of these more common scans are described next.

Liver Scan: Herethe liver is being examined with regard to its size, shape and function.
The scan might be done because of suspected abscesses or cirrhosis; but such a scan might
also be done to check the functioning of a patient known to have cancer. The patient is
normally injected 15 to 20 minutes before the scan which lasts about 30 minutes. The scan
may be delayed for up to an hour before scanning.

468 Chapter 18

Bone Scan: Bones may be scanned to check for regrowth after trauma or for suspected
disease. The patient is injected about two and a half hours prior to the scan although the
scan may be delayed for up to four hours. Patients normally come for their injection and
then return some time later. The scan takes about 45 minutes.

Lung Scan: These scansare usually done on extremely ill patientswho either have cardiac
problems or who are in traction after an operation. The doctor is looking for pulmonary
emboli (blood clots) that may be in the lung. There are two parts to the scan.

1. Ventilation, where patients breathe a gas |abeled with technetium. The patients breathe
for about 10 minutes and are then scanned for 20 minutes.

2. After ventilation the patient is injected with a particle that sticks to the lung. A 20-
minute scan followsimmediately.

By alowing a gap between the two steps, patients can be interleaved. However, it is
desirable that patients remain in the department for the minimum possible time.

Cardiac Scan: Thiskind of scan isdone to check the functioning of the patient’s heart. It
is often done prior to ordering chemotherapy because of the damage such treatment may
cause. Patients are injected with a cold (non-radioactive) tin compound which excites the
red blood cells. Twenty minutes later some technetium is mixed with the patient’s blood.
This allows for the detection of blood pooled in the heart and major vessels. It takes an
hour to complete.

Renal Scan: Thisisadifferential functionscan. It checksfor differencesin the functioning
of the patient’stwo kidneys. Sometimesit is used before or after transplant. Hypertension
can be caused by kidney malfunction or obstruction. Patientsareinjected directly under the
machine. It takes 45 minutes for the complete scan. A blood test is performed alongside
thistype of scan. A sampleistaken every hour for three hours after the injection. For this
reason the latest time for injection is 12 noon.

Cameras

There are two rooms used for the scans. Each room hasits own camera. Each camera can
operate independently, but they may also be linked to a dedicated computer which operates
as an extension of the camera. There are two different cameras. Both can handle all the
different types of scan. The newer model gives better resolution. The two cameras are:

¢ the GEEWHIZ1 made by Geelong Electronics

o the ISEEU made by Nuclear Cameras

Although both cameras are capable of al types of scan, there are sufficient differences
between cameras and between scans as to make either camera preferable on occasion. In
other words, each camera has its own niche. The GEEWHIZ1 is used for fine work such
as bone and cardiac scans where there is a need to see greater detail. Patients having these
kinds of scans are booked onto the GEEWHIZ1. The rules for booking are roughly as
follows:

Case Studies 469

Scan Type Camera
Bone ---> GEEWHIZ1
Cardiac ---> GEEWHIZ1
Rena ---> |ISEEU
Lung ---> |ISEEU
Livers ---> @ither

Even though the two cameras scan at slightly different rates, they are sufficiently close for
these differencesto be ignored as far as booking is concerned.

Patient I nfor mation
The kind of information required by the technologist in order to handle each patient is
summarised below:

o typeof scan

e Name

e address

phone number

date of birth

referring doctor

drugs used

¢ hospital UR (unit record) number (if known)

If the patient is an inpatient then the ward number will also be required.

Problems
Things that do happen that upset normal operation include:

Camera Failure: When a camera breaks down it is often very difficult for the service
engineer to say exactly when it might be working again. Thiswill have an effect upon
bookings.

A New Camera: The introduction of another camera may cause problems. It might have
significantly faster or slower scanning rates than the current cameras. It might also be
preferable for certain types of scan.

Chapter 19
Refinement

19.1 Introduction

This chapter is about how we implement our specification, that is, it is about how weturn it
into a collection of computer programs operating upon a database. The situation we want
to reach is one where we will have two quite distinct pictures of the same situation.

We start with one picture, the one provided by the specification. Thiswill be stated or
expressed in a language that tries to describe the situation as we see it. The other picture
is a re-statement of that same situation; but this time the language used is ambivalent. It
can be taken as just another way of perceiving the problem, but it can also be thought
of as providing instructions to a machine in order for that machine to create an animated
equivalent of the original specification. It isaversion that is executable by the machine. In
other words we have made the original problem tractable to information technol ogy.

This use of different forms of language is not restricted to computing. We would give
a stranger to town instructions expressed differently from those given to an obvious local
asking directions. Wewould talk to the local interms of shared knowledge such asfamiliar
streets and landmarks. Conversely, we would talk to the stranger in physical terms—“turn
left", “ straight ahead for 2km™, “third on the left" and so on.

Inthischapter wewill takearel atively abstract specification such asshownin Chapter 14
and show how to map that to another specification this time expressed in the relational
calculus or tuple oriented set comprehension of Chapter 4. This language is the basis for
SQL and it will be assumed that the transformation to SQL is straightforward.

This chapter provides aworked exampl e of how to move, formally, from a specification
to its implementation. The technique used is data refinement, and here it is used on a
database system.

A small situation is described along with some of the eventsthat might impinge uponiit.
The description or specification iswritten using the Z notation. The intention isto explain
the situation as the user seesiit.

That same situation isthen recast in terms of tablesand the eventsin terms of operations

470

Refinement 471

upon these tables. The language used is, again, Z but now the style is clearly oriented
towards SQL. This second specification isintended to be an “executable" equivalent of the
original.

How can we be satisfied that the two specifications are equivalent? Some discussion is
made regarding what we must do in order to demonstrate their equivalence. Theserules or
requirements are then applied to the case at hand.

19.2 The Abstract Specification
19.2.1 The classSituation

We will study atypical educational situation in which agroup of people undertake a course
of study for a semester. An information system isrequired. This system, to be written in
SQL, will record details of the students enrolled, the assessment set and the marks awarded.
It will therefore also need to handle the activities and events that are likely to occur in such
an environment. Typically, these events occur when:

e astudent enrolsin the class;

e anitem of assessment is set for the class;

e astudent submits work for assessment;

e astudent is awarded a mark for some assessment item;
e amark is amended;

e astudent drops out of the class.
We will now devel op and describe the classroom situation along the following lines.

e Several different views or observations of the class are made.

e These views are integrated in a state schemawhich provides a static picture of the
entire situation.

e Each event that may affect the class is described by a separate operation schema
These schemas provide a dynamic picture of the class and how it may evolve.

We will refer to this as the abstract specification.

A second specification is then created. Why? Because the target or implementation
language, SQL , haslimitations. In particular, it cannot handlethe generalisedrelationthat is
amajor component of the abstract specification. This second specificationisintended to be
executable. Thelanguage usedisstill Z but the styleisoriented towardsarel ational database
implementation. We will refer to this as the concrete specification. The equivalence of
these two specifications will be discussed.

Wewill begin by modeling the classfrom three points of view, fromthat of anindividual
student who sees only his or her work; from that of the lecturer who sees a set of students;
and from a shared viewpoint, that of the assessment set for the subject.

472 Chapter 19

19.2.2 The Individual Student

Thisview concentrates upon atypical individual student. It containsall that we might wish
to know about any student and it can fairly be described as a*“ student record".

STUDENT RECORD

Id: 831
First: Stan
Last: Zupp

Item Submitted Mark

1 8th Sep 80
2 21st Oct 70
3 1st Nov

This particular student has submitted three pieces of work for assessment. The first
two of these have been marked; he is still waiting on a mark for the third. Using the above
example as a guide, we can introduce some base types:

Type Inter pretation

[Person] theset of al possible students
[Work] dl possible items of assessment

[N] numbers such as weightings and marks
[Name] the namesof people and things
[Date] the various dates that may arise

The Date type will need a number of associated functions and relations that, for
exampl e, enable us to say whether one date comes before or after another.

before,
after : Date <= Date

We can model the student view as a schema record type. This use of the Z schema
corresponds to a record type in Pascal or to agroup level in COBOL.

student

id : Person

first, last : Name

sub : Work -+ Date
marks : Work -+ 0..100

Information regarding what work the student has submitted and the marks received is
recorded using two separate partial functions sub and marks.

Refinement 473

19.2.3 Assessment

The assessment is akind of shared view seen by student and lecturer aike. It might appear
on astudy guide like this:

Item Title Due Weight
1 Programming 10th Sep 25
2 Design 21st Oct 25
3 Final Exam 1st Nov 50

Several items of assessment can be expected. Each item will be identified by a number and
have atitle, a due date and a weighting relative to other items.

— ASSESS

title : Work = Name
weight : Work +> 0..100
due : Work +> Date

dom weight = dom due = dom title

Therearemappingsthat providethetitle, weighting and due date of every item of assessment
set for the class.

There will be a schema to handle any changes to the assessment. These will occur
while assessment is unfinalized and before any students are enrolled.

Aassess

assess
assess’

The usual Z conventions for naming such schemas are used. There will also be a “read
only" schemato describe inspections of the assessment.

__Zassess

Aassess

title' = title
weight' = weight
due' = due

This |eaves the assessment unaltered.

19.2.4 The Lecturer

The lecturer seesthe class as awhole —all the students and all the assessment.

474 Chapter 19

__class

students : Set of student
assess

Vs,t: students e s.id = t.id => s =t
V s : students o dom s.sub C dom title
Vs : students e dom s.marks C dom s.sub

This is the abstract state schema for our situation. The three lines of the predicate state
that:

1. If two students have the same id then they are the same student. More simply, every
student has a different id.

2. All the work submitted by a student must relate to some item of assessment set for the
class.

3. No student can havereceived amark for assessment unless he or she hasfirst submitted
some work.

Theinitia state of the classroom will be one where there are no students and no work for
assessment has yet been set.

— classInitially

class

students = {}
title = {}

From the definition of assess we can infer that, initialy, weight and due must aso be null
functions.

19.3 Operations on Student Records
19.3.1 A Student Submits Some Work

In this section we will describe what happens to the class when a student submits some
work for assessment.

Refinement 475

__Submit

Aclass
Zassess
s?: Person
i?7 . Work
d? : Date

i? € dom title
—d? after due(i?)
ds : students o
s? = s.id
i? ¢ dom s.sub
ds' : student e
s'.id = s.id
s'.sub = s.sub U {(i?,d?)}
s'.first = s.first
s'.last = s.last
s'.marks = s.marks
students' = students — {s} U {s'}

Theintended interpretation is as follows.

The Submit Declaration

The submission will cause a change to the class and an inspection of the assessment. The
inputswill be s? : Person the Id of the student making the submission, 7 : Work theitem
number of the assessment and d? : Date the date upon which the work was submitted.

The Submit Predicate

1

i? € dom title

Theitem number supplied must identify some item of assessment.

—d? after due(i?)

No work will be accepted after the due date set for this item of assessment.
ds : students o

Thereisastudentrecord s . ..

s? = s.id

with the same Id as the one supplied . . .

. i7 ¢ dom s.sub

and the student should not have already submitted this item. This line effectively
concludes the pre-conditions for the operation.

. ds' : student o

We now start describing how the class changes by introducing a student record s’ that
will become the new version of the record for student s?

. s'4d = s.id

First of al, there will be no change to the student’s I d.

476 Chapter 19

8.

10.

11

s'.sub = s.sub U {(i?,d?)}

The submission of work i? on date d? is now recorded by being added to whatever list
of submissionsthe student has already made.

s'.first = s.first

s'.last = s.last

There will be no change to the student’s name.

s'.marks = s.marks
No marks are awarded at this stage, so there isto be no change here.

students’ = students — {s} U {s'}
The previous version of the student’s record is removed and replaced by the new one.

19.3.2 A Student Is Awarded a Mark

_ Award

Aclass
Zassess
s?: Person
1?7 : Work
m? :0..100

ds : students o

s? = s.id

1?7 € dom s.sub

i? ¢ dom s.marks

s’ : student o
s'.id = s.id
s'.marks = s.marks U {(i?,m?)}
s'.first = s.first
s'.last = s.last
s'.sub = s.sub
students' = students — {s} U {s'}

Theintended interpretation is as follows.

The Award Declaration

The award will cause a changeto the class and an inspection of the assessment. The inputs
will be s? : Person the Id of the student receiving the award, 7 : Work the item number
of the assessment, and m? : 0..100 the mark awarded.

The Award Predicate

1. ds : students o

Thereisastudent record s . . .

2. s7=s.id

with the same 1d as the one supplied . . .

Refinement 477

10.

i? € dom s.sub
and the student must have previously submitted thisitem ...

i? ¢ dom s.marks
but not yet been awarded a mark.
Thisline effectively concludes the preconditions for the operation.

s’ : student o

We now start describing how the class changes by introducing a student record s’ that
will become the new version of the record for student s?

s'.id = s.id

First of al, there will be no change to the student’s I d.

s'.marks = s.marks U {(i?, m?)}

The award of amark m? for work 47 is now recorded by being added to whatever list
of marksthe student has already received.

s'.first = s.first

s'.last = s.last

There will be no change to the student’s name.

s'.sub = s.sub
There is no submission involved in this operation, so there is no change here.

students’ = students — {s} U {s'}
The old version of the student’s record s is removed and replaced by the new version

s'.

19.3.3 A Mark is Amended

Occasionaly a mark may have to be amended, such as when it was entered incorrectly or
when the student makes a case for it.

_ Amend

Aclass
=assess

s? : Person
i?7 . Work
m? :0..100

ds : students e

s?7 = s.id

1?7 € dom s.marks

ds' : student o
s'.id = s.id
s'.marks = s.marks ® {(i?, m?)}
s'.first = s.first
s'.last = s.last
s'.sub = s.sub
students' = students — {s} U {s'}

478 Chapter 19

Theintended interpretation is as follows.

The Amend Declaration

The award will cause a changeto the class and an inspection of the assessment. The inputs
will be s? : Person the Id of the student receiving the award, 7 : Work the item number
of the assessment, and m? : 0..100 the new mark.

The Amend Predicate

1. 35 : students e
Thereisastudentrecord s . . .

2. s7=s.id
with the same Id as the one supplied . . .

3. i? € dom s.marks
and the student must have previously been awarded a mark.
Thisline effectively concludes the pre-conditions for the operation.

4, 35" : student o
We now start describing how the class changes by introducing a student record s’ that
will become the new version of the record for student s?

5. §'.id = s.id
First of al, there will be no change to the student’s I d.

6. s'.marks = s.marks & {(i?, m?)}
The previous mark for work 77 is now amended to m?.

7. s'.first = s.first
s'.last = s.last
There will be no change to the student’s name.

8. s'.sub = s.sub
There is no submission involved in this operation, so there is no change here.

9. students' = students — {s} U {s'}
The old version of the student’srecord s is replaced by the new version s’.

19.4 The Concrete Specification

We will now re-examine the classroom situation with the intention of constructing an
information system from the description just given. The abstract state schema class is,
effectively, re-specified asarelational database. We will aso need to re-specify the abstract
operations in equivalent concrete terms, that is, as operations upon the database.

19.4.1 The Tables Used

The database for the classroom will involve three distinct relations or tables in SQL
terminology. There will be arelation for students, one for assessment and one for results.
A relation, in the database sense, is a set of tuples or records. We will begin by defining
three appropriate record types. Each of these types corresponds to an individual tuple of
the kind found in the three relations.

Refinement 479

e StRec —the student record type:

StRec

Id : Person
First, Last : Name

There will be arelation corresponding to this record type.

Students

This relation corresponds to the id, first and last components of the abstract student
record. Information regarding submission of work and its consequent marking is
omitted. SQL cannot handle their set-valued nature.

e RtRec —theresult record type:

RtRec

Id : Person

Item : Work

Sub : Date

Mark : 0..100 | null

The corresponding relation for this record type looks like the following.

Results

Id Item Sub Mark
831 1 8th Sep 80
831 2 21st Oct 70

831 3 1st Nov ?

Thisrelation is used to hold submission and mark information for every student in the
class. A record is inserted when an item is submitted and updated when the mark
is awarded. In the abstract specification, this information was kept as part of each
student’sindividual record and separate from that of other students. To distinguish one
student’s results from another’ s we have tagged the result with the student’s 1d.

480 Chapter 19

e AsRec —the assessment record type:

AsRec

Item : Work
Title : Name
Due : Date
Weight : 0..100

The corresponding relation may be pictured as follows.

Assess

Item Title Due Weight
1 Programming 10th Sep 25
2 Design 21st Oct 25
3 Final Exam 1st Nov 50

We anticipate having a Class database consisting of these three relations, one for each
record type. We can define the database as follows.

_ Classpp

Students : Set of StRec
Assess : Set of AsRec
Results : Set of RtRec

VS, T: Students @ S.Id = T.Id = S=T
VA,B: Assess o A.Item = B.Item = A= B
VR,S : Results « R.Id = S.Id A\ R.Item = S.Item = R= S

{R : Results « R.Id} C {S : Students e S.Id}
{R : Results ® R.Item} C {A : Assess o A.Item}

The predicate is divided into two groups of conditions. The first group provides the
conditions required of the primary key of each relation. Consider, for example, the first of
that group.

VS, T: Students e S.Id = T.Id = S=T

This states that if any two rows in the Students table have the same Id then the two rows
will be entirely the same; in other words the Id is the primary key.

The second group of conditions provides the referential integrity constraints required
of foreign keys. Take the first of that group:

{R : Results « R.Id} C {S : Students S.Id}

Refinement 481

This states that the set of valuesin the Id column of the Results table must be a subset of
those valuesin the Id column of the Studentstable. Thusevery I1d in Resultsreferstoan Id

in Students.

The natural starting state for the database is to have three empty tables.

Classpp

— Classpp Initially

Students = {}
Assess = {}
Results = {}

19.4.2 Mapping Between Representations

We can now define a mapping between the abstract and the concrete versions of the class,
that is between class and Classpg. This mapping isknown asthe abstraction schema It
defines arel ationship between the components of the abstract state and those of the concrete

one (the database).

__ Mapping

class
Classpg

students =

}

{s:

student |

35 : Students o

sad = S.1d

s.last = S.Last

s.first = S.First

s.sub = {R : Results|R.Id = S.Id & (R.Item, R.Sub)}

s.marks = {R : Results|R.Id = S.Id A R.Mark # null
e (R.Item, R.Mark)}

title = {A : Assess o (A.Item, A.Title)}
due = {A : Assess o (A.Item, A.Due)}
weight = {A : Assess o (A.Item, A. Weight)}

The mapping contains four individual mappings, one for each component of the abstract
state class. Each of these says how an abstract component may be constructed in terms
of components of the concrete state, that is, in terms of the database. In particular, the
first equation shows how the set of abstract student records may be retrieved from the two
separate relations that we are obliged to have at the concrete level.

It is important to be able to make statements about individual students. From the

482 Chapter 19

definition of students we can say of any individual student s that:

35 : Students @ S.Id = s.id
S.Last = s.last
S.First = s.first
s.sub = {R : Results | R.Id = s.id e (R.Item, R.Sub)}
s.marks = {R : Results| R.Id = s.id A R.Mark # null
e (R.Item, R.Mark)}

Using the above rule for any student s we can construct the sub function for that student:
s.sub = {R : Results| R.Id = s.id e (R.Item, R.Sub)}

In databaseterms, the set comprehension ontheright-hand side of the equationisarel ational
calculus expression that corresponds to the SQL statement:

Select R.Item, R.Sub
From Results R
Where R.Id = s.id

Intheabstract specification, twotermshaveanimportantrole, dom s.sub and dom s.marks.
Thefirst of these, dom s.sub, is the set of items of assessment that the student s has sub-
mitted. From the definition of sub above, we can see that:

dom s.sub = {R : Results | R.Id = s.id e R.Item}

The second of these terms, dom s.marks, isthe set of items of work that the student s has
submitted and which have received amark. From the definition of marks we can see that:

dom s.marks = {R : Results | R.Id = s.id A R.Mark # null ¢ R.Item}

If we subtract the two sets then we have the set of items that have been submitted but not
yet marked. This set isimportant for the awarding of amark. The difference dom s.sub —
dom s.marks, when expressed in terms of the concrete state as above, has the form:

(t:T|PY—{t: T|PA-Q)}

When we consider the set of things of type T that are P, and subtract from it the set of
things of type T that are P and not @, then we are |eft with the set of things that are both
P and (). In other words, the difference reduces to:

{t:T|PAQ}
Applying thisrule to the difference between dom s.sub and s.marks gives us:

{R : Results| R.Id = s.id A R.Mark = null ¢ R.Item}

Refinement 483

19.4.3 The Award Operation Re-specified

We will now re-specify the Award operation in terms of the Classpp database rather than
the class state. Thisnew specification will be deemed executablefor thefollowing reasons.

o It will operate upon astate defined using data structures availablein the implementation
language. In this case there is one major type of data structure, the relation or table.

o It will manipulate that data structure using a mixture of set theoretical and relational
calculus expressions, mimicking in Z, the implementation language, SQL .

_AwardEXE

AClasspp
s? : Person
i?7 . Work
m? :0..100

3 R : Results o

R.Id = s?

R.Item = i?

R.Mark = null

3R’ : RtRec o
R'.Id = R.Id
R'.Item = R.Item
R'.Sub = R.Sub
R'.Mark = m?

Results' = Results — {R} U {R'}

Students’ = Students
Assess' = Assess

The Awardgxg Declaration

1. AClasspg
This operation changes the class database.

2. s?7: Person
i?7 . Work
m? :0..100
These three inputs supply the student, the item and the mark respectively.

The Awardgxr Predicate

1. 3 R : Results o

Therewill be aresult record R in the Results relation . . .
2. R.Id = s?

that relates to the student in question

484 Chapter 19

3. R.Item = i?
and that also relatesto the item of assessment in question . . .

4. R.Mark = null
but where the student must not yet have been awarded a mark. Thisline concludesthe
pre-conditions for the operation.

5. 3R': RtRec o
Here weintroduce aresult record R’ that will represent the state of the result after the
amendment.

6. R'.Id=R.Id
R'.Item = R.Item
R'.Sub = R.Sub

None of these aspects of the result record are to be changed, naturally.

7. R'.Mark = m?
The student is awarded the mark supplied.

8. Results' = Results — {R} U{R'}
The new set of resultsis formed by taking the original results, removing the old result
record and adding the new one.

9. Students' = Students
Assess' = Assess
Neither of the other relationsis affected by this operation.

19.5 A Review

A classroom situation has been modelled. The class schema provides a static picture; the
Enrol, Award and Amend schemas picture it dynamically.

The state schema is to be replaced by a relational database, and the operations by
programs that retrieve from and manipulate that database. However, this replacement is
of no concern to the user. The user sits at a machine and imagines that he or she is, for
example, carrying out an Award operation. This operation may be viewed in terms of its
pre-conditions and its post-conditions.

1. The user believesthat the Award “program” makes checks upon his or her “ database”
as represented by the class state schema. If an error is detected then the error message
will be phrased in terms of the operation’sinputs and the current state of the class.

2. If the pre-conditions are satisfied then the “ program” proceedsto update the “ database”
according to the requirements set out in the post-conditions.

Figure 19.1 shows this interpretation pictorially.

However satisfying this picture may beto the user, it isnot the way that the programmer
sees it. The programmer does not have at his or her disposal a machine that is directly
executing or interpreting its conditions as instruction. Nor does he or she have a DBMS
that is capable of storing the data structures used to build the schema. The programmer
must describe the situation and operations upon it in a way that is genuinely executable,
that is, in away that a machine can obey directly. So he or she must describe changesusing

Refinement 485

(—v input(s) =————
4 N

U v

4—@——(Pre-conditions D\

v \ The
State
E CR /

< Post-conditions)‘
t N\ J
output(s) —

Figure 19.1 What the user thinks

operators that the machine can execute upon data structures the machine can support. The
programmer must simulate the original abstract operation. What does this mean?

e The programmer must disguise his or her presence. No dialog with the user must hint
that, when the pre-conditions are being evaluated, it is not the user’s database that is
being examined, but is instead some substitute. Any checks made by the real program
upon its data structures must somehow correspond to those that the abstract program
would have made.

o No traces may be left upon the user’s database to suggest other than that the operation
affected that database in the way expected. Any changes made by the real program
upon its data structures must somehow correspond to those that the abstract program
would have made.

This process of simulation is shown in Figure 19.2.

19.6 Verification

How can we satisfy ourselves that this re-specification is equivalent to the original? In
other wordsis it a correct refinement?

There are conditions relating the concrete and the abstract that must hold true for each
operation. The set of conditions to be satisfied will be determined by the nature of the
relationship between the concrete and the abstract states. In our case, the relationship is
atotal onto function. The conditions apply only if the mapping is a relationship of that
kind.

486 Chapter 19

ﬁ input(s) . ~N
ST ™ 4 I
U HN S 3 v
e—(X)— — Pre-conditions
S | : §
K«’J:\ : Abstract Concrete <
R State State

Post-conditions

E A :
! " Post-conditions !
BNt iesind A Mapping

R 3 : :

The Abstract The Concrete
Operation Operation

Figure 19.2 What the programmer thinks

Applicability

If the pre-conditions of the abstract operation are met and the abstract
and the concrete states are related in the way specified by the mapping
schema, then the concrete operation should go ahead; that is, its pre-
conditions should also be satisfied.

Y Cstate; Astate; z7: X o
pre Aop N Abs = pre Cop

Correctness
If the pre-conditions are met and the concrete operation is satisfied, then
the abstract operation should also be satisfied.

V Astate; Astate'; Cstate; Cstate’'z? : X o
pre Aop A Abs A Cop N Abs' = Aop

The Initial State
In general, for any situation where we are relating the initial state of
some abstract situation to itsinitial concrete realization, we can say:

Y Astate; Cstate o
Cinit A Abs = Ainit

These rules are presented as they appear in [Spi89a]. When interpreting them for the class
situation, and for the award operation, we should make the following substitutions.

Refinement 487

i Representing Our Situation
Astate the abstract state schema class

Cstate the concrete state schema Classpp

Aop an abstract operation Award

Cop the (supposedly) equivalent concrete operation Awardgxg

Abs the abstraction mapping Mapping

Abs' the abstraction mapping between the after states Mapping'

Cop aconcrete operation Awardgxg

Ainit theinitial abstract state classInitially
Cinit theinitia concrete state Classpp Initially

19.7 Verifying the Awardzx; Operation
19.7.1 The One-point Rule Revisited

Before applying the rules discussed in the previous section, we should ook at one particular
inference rule that we will need. This rule is known as the one-point rule and it was
introduced in Section 12.3.2. The rule alows us to move from a set theoretical expression
to apredicate cal culus expression and vice versa. It has the following form:

dz:Sez=tANP=teSAP[t]z]

S is some set

P isapredicate of some kind

tisaterm

Plt/z] isthe predicate P with all free occurrences of z replaced by theterm ¢

If thereisan object z of type S that satisfies P and ¢ is another name for that object then ¢
isan element of S and P istrue of ¢, and vice-versa.

Thisrule may be extended to the case wherethe set S is ageneralized relation, that is,
a set of records. Suppose that the record type forming the basis for the relation is defined
asfollows:

T

att : AttType

It has any number of attributes but we are only interested in the one labelled att whichis
of type AttType. Therelation S isdeclared as:

S:Setof T

The one-point ruleis revised to allow for the object in question being part of some record
structure.

dz:Sezx.att =t AP =t e AttType A P[t/z.aitt]

488 Chapter 19

Suppose we have the following set-up:

AgeRecord

Name : Person
Age: N

and this record is used to define the relation Ages:

Ages : Set of AgeRecord
The left-hand side of the equivalenceis:

Ja: Ages o a.name = Alan A a.Name plays tennis
theright-hand sizeis:

Alan € Person A (a.Name plays tennis)[Alan/a.Name]
which reduces to:

Alan € Person N Alan plays tennis

19.7.2 Applicability

Applying the pre-conditions check to this operation requires us to prove that:

V class; Classpp; s? : Person; i? : Work; m? : 0..100 e
pre Award A Mapping = pre Awardgxg

The pre-conditions for the (abstract) Award operation, pre Award are:;

ds : students ® s? = s.id A
i? € dom s.sub A i? ¢ dom s.marks

Now we can attempt to derive the pre-conditions for the concrete operation.
ds : students ® s7 = s.id A
i? € dom s.sub A i? ¢ dom s.marks
(The abstract state invariant saysthat for al students dom s.marks C dom s.sub.)

= ds: students ® s? = s.id A
i? € (dom s.sub — doms.marks)

(We can replace the set difference by its equivalent concrete representation as discussed
in Section 19.4.2.)

= s : students ® s7 = s.id A
i? € {R : Results| R.Id = s.id A R.Mark = null R.Item}

(The set membership is rephrased using existential quantification. If ¢ € R then
dz: Rex =t. Thisisaspecia case of the one-point rulewith P = true.)

Refinement 489

= s : students e s?7 = s.id N\
3R : Results ¢ R.Id = s.id N R.Mark = null A R.Item = i?

(We can now apply the modified one-point rule discussed previously.)

= s7 € students A
R : Results R.Id = s? AN R.Mark = null A R.Item = i?

(We can eliminate the first conjunct.)
= JR: Results « R.Id = s? A R.Mark = null A R.Item = i?
(Now we have the pre-condition of the concrete operation, that is, preAwardgxg.)

19.7.3 Correctness

Now we must show that the changes that the concrete operation makesto the concrete state
correspond to those that are required to be made to the abstract state.

VY class; class'; Classpg; Classpg ®
pre Award A Mapping A Awardgxg N Mapping' = Award

In this section, we will concentrate our proof on the most significant line of the Award
operation, which is:

s'.marks = s.marks U {(i?, m?)}

We will attempt to show that the set on left-hand side of this equation is the same as the
one on the right-hand side.

s'.marks

(This may be replaced by its concrete representation using Mapping' the after version
of the abstraction schema.)

= {t: Results' | t.Id = s.id A t.Mark # null e (t.Item, t.Mark)}

(The post-condition of the concrete operation Awardgx g providesan equation relating
Results' and Results.)

= {t: (Results — {R} U{R'}) | t.Id = s.id N\ t.Mark # null & (t.Item,t.Mark)}

(The declaration of the set comprehension involves three sets in a set expression
Results — {R} U {R'}. Thismay be expanded to three separate pieces of set compre-
hension.)

= {t: Results |t.Id = s.Id A t.Mark # null e (t.Item,t.Mark)}
—{t:{R}|t.Id = s.id A t.Mark # null e (t.Item, t.Mark)}
U{t:{R'}|t.Id = s.id A t.Mark # null e (t.Item, t. Mark)}

(Thefirst pieceisjust s.marks as defined in the mapping. The second piece reducesto
the empty set because R. Mark = null according to Awardgxg and so the predicate
t.Mark # null is not satisfied. The third piece simplifies to a set consisting of one
element, the pair (i?,m?). Thisis because R'.Id = R.Id and R.Id = s.id and
R'.Mark # null and R'.Mark = m? and R'.Item = R.Item and R.Item = 1?. All
of these come from Awardgxg.)

490 Chapter 19

= s.marks — {} U{(i?, m?)}
(The empty set makes no difference to the set expression and so the line may be further
simplified.)

= s.marks U {(i?, m?)}

We have proved the most significant line of the abstract operation:

s'.marks = s.marks U {(i?,m?)}

19.7.4 The Initial State

We requirethat theinitial state of the database correspondsto theinitial state of the abstract
specification.

V class; Classpp ®
Classpp Initially A Mapping = classInitially

Theinitia state of the concrete specification, that is, the database, in conjunction with the
abstraction mapping must represent a valid initial abstract state. The initial state of the
classroom will be one where there are no students and no assessable assignments have yet
been set. A set of concrete results givesrise to one set of abstract resullts.

— Classpp Initially

Classpp

Students = {}
Assess = {}
Results = {}

An empty Students table guarantees that the existential quantification in the retrieval func-
tionfor students can never be satisfied and so the students set will be empty which iswhat
we require. An empty Assess table will guarantee that no assessment existsin the abstract
state. What about the Resultstable? The initial state of the database must also conform to
the concrete state invariant. Therefore, the referential integrity conditions:

{R : Results R.Id} C {S : Students & s.Id}
{R : Results R.Item} C {A : Assess e a.ltem}

each requirethat the Resultstable be empty initially in order to providereferentia integrity.

— classInitially

class

students = {}
title = {}

Refinement 491

19.8 The External Interface

Wewill now examine how a student may be awarded amark by an application system using
the Class database. A simple user interface might look like the following.

The Class Information System

Award a Mark Operation

Id: 831
Item: 3
Mark: 80
Msg:

The screen offers none of the usual feedback that one would expect. 1t ssimply allows
the user to enter the three values that the operation requires. About the only concession to
user-friendliness is amessage area at the bottom of the screen.

1. The pre-conditions

When the lecturer has entered the three inputs required by this operation, he or she will
press some kind of 0K button. The program will then make the following check.

Exists (Select *
From Results R
Where R.Id = s?
and R.Item = i7?
and R.Mark is null)

If thereexistsarow inthe Results tablefor the student in question, relating to theitem
of assessment in question and no mark has yet been awarded then the pre-conditions
are satisfied. If these conditions are not satisfied then a message will be displayed and
the inputs will need to be resupplied.

2. The post-conditions
If the pre-conditions are met then the program will proceed to change the database.
Update Results R
Set R.Mark = m?

Where R.Id = s7?
and R.Item = i7

TheMark column of the appropriate Result row will be set to the value supplied.

492 Chapter 19

19.9 Translating the Awardgxz Schema into SQL

The SQL statements shown above can be derived in amechanical fashion from the concrete
specification. That specification was designed, after all, to mimic in Z the operations of
SQL. In this section we will step through that specification interpreting it in the form of

SQL syntax.

e Thoselinesin the schemainvolving just R become the pre-conditions.

JdR : Results o

R.Id = s?
R.Item = i?
R.Mark = null

They are interpreted as the following SQL condition.

Exists (Select *
From Results R
Where R.Id = s7
and R.Item = i?
and R.Mark is null)

e Thelineintroducing the “after" variable R’ merely establishes that an update is occur-
ring. Itstype RtRec indicates that the corresponding table Results is the one to be
updated.

| IR': RtRec o

e Lines involving corresponding components of R and R’ that merely equate these
components can be ignored from an SQL point of view.

R'.Id = R.Id
R'.Item = R.Item
R'.Sub = R.Sub

e Linesthat set an after component, that is some part of R/, to some other value should
be mapped to the set clause of the update statement.

| R'.Mark = m?
Thus the aboveline givesrise to the clause:
Set R.Mark = m?
e Thefinal line of this group confirmsthat an updateis required:

| Results' = Results — {R} U {R'}

Refinement 493

e Therest of the schema lists the database tables that are unaffected by the operation.
These lines may safely be ignored.

Students’ = Students
Assess’ = Assess

Although we have formed part of the update statement, it remainsto calculate its where
clause, if any. For that we can return to the pre-conditions. There we established the record
7 that was to be changed and the conditions that it had to satisfy. These conditions can be
transferred to the where clause. The entire statement becomes as follows:

Update Results R
Set R.Mark = m?

Where R.Id = s?
and R.Item = i7

19.10 Summary

This chapter has demonstrated the technique of data refinement for a practical database
application. We have taken an abstract specification of the class situation and implemented
it as a concrete specification. The abstraction schema Mapping relates the components
of the two specifications by defining the abstract ones in terms of the concrete. A typical
operation, the awarding of a mark for some item of assessment submitted by a student, is
specified as Award for the abstract state class and as Awardgxg for the concrete state
Classpg.

Theinitialization, applicability and correctnessrules for functional data refinement are
used to prove the validity of the concrete representation. In Section 19.9, the concrete
operation Awardgxg is shown to be a near-SQL statement of the operation.

ISBN: 978-1-60267-015-0

50

917816021670

