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So far as the laws of 

mathematics refer to reality, 

they are not certain. 

And so far as they are certain, 

they do not refer to reality. 

- Albert Einstein 

From almost naught to almost all I flee, 

and almost has almost confounded me 

zero my limit, and infinity! 

On the Calculus, 

- W. Cummings 
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About the Accompanying 
Software 

What is the DSP Calculator? 

The DSP Calculator suite of software routines is designed to 

illustrate many of the basic concepts involved in working with DSP. 

The tools included with the DSP Calculator enable you to create 

waveforms, design filters, filter the waveforms, and display the 

results. Also included are routines for generating complex wave-

forms based on the complex exponential, routines that perform 

the discrete Fourier transform (DFT), and routines for computing 

the more computationally efficient fast Fourier transform (FFT). 

Several experiments that make use of the DSP Calculator are 

included within the text of this book. These are indicated with the 

following graphic symbol: 

Interactive 
Exercise 

The programs can be, and have been, used to develop practical 
commercial applications. They are not, however, intended for 
developing large-scale or critical DSP implementations. Their 

purpose is primarily educational. Use them to experiment with 

the DSP concepts introduced in this book; you'll quickly develop 
an intuitive sense for the math behind the concepts! 

The DSP Calculator software runs under Microsoft Windows 3.1 
or later. It is designed to run on a 386 system with at least 4 Mbytes 

of RAM. A math co-processor is not required, but is recommended. 
The programs have been tested under Windows 95 with both 486 
and Pentium processors. 
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About the Accompanying Software 

About This Manual 
This manual describes the installation, use, and data formats for 

each of the programs that make up the DSP Calculator. Examples 
are given for each of the programs. This manual assumes that the 
user is familiar with the concepts developed in the text* If some-
thing does not make sense to you, please refer to the appropriate 
section in the text. 

Installation and General Information 
Each program in the DSP Calculator suite is designed to load or 

save data in a standard file format. This makes it easy to use the 
programs in combination with each other. The file format also makes 
interchanging data with other programs relatively straightforward. 

All data is stored as ASCII text in a "comma delimited format." 

The comma separates the real part of the number from the imagi-

nary part. All data is stored as complex floating-point numbers. If 

the data has only real values, then the imaginary part will be zero. 

If the data has only imaginary values, then the real part will be set 

to zero. All numbers are floating point values, though a number 
may be expressed as an integer if it does not have any values in the 

decimal place. 

This is best illustrated with an example. The numbers 1, 2.3, 

3.0, 4.3+jl, j5, would be stored in a file as follows: 

1,0 

2.3,0 

3,0 

4.3,1 

0,5. 

Notice that each number is on a line by itself. This format allows 
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Installation and General Information 

data to be manipulated with a standard text editor, to be read or 
written easily by C, BASIC, or FORTRAN programs, or to be easily 
interchanged with spreadsheets or math programs-

When first invoked, all programs come up with a reasonable set 

of default values for the program's parameters. Typical parameters 

include amplitude, frequency, and the number of samples. 

Two assumptions are made about all data. First, it is assumed 

that all data is uniformly sampled, or, in other words, that the time 

interval between all samples is the same. The other assumption 

is that all angle data is in radians. Thus, all frequency graphs are 

shown having values between -n and n. The actual frequency is 

related to the sample rate by the equation: 

2 

For example, if the number of samples (f^) is 100 samples/sec-

ond, then a frequency of 7C is equivalent to 50 Hz. For this example, 

a frequency of ^/i would be equal to 25 Hz, and so forth. Notice 

that no time units are given in DSP Calculator, Only the number 

of samples are used. 

As noted above, all parameters are set at startup with reasonable 
values. It is possible, however, to generate output that cannot be 
properly displayed. One of two things will happen in this case: 

a. The display will simply look strange, or 

b. A message box will be generated that warns that the data 

cannot be displayed correctly. 

In either case, the data in the program's buffers will be correct. Even 
if the data is not displayed correctly, the data in the buffers can still 

be saved to a file. 
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The practical limitations of the DSP Calculator should be kept 
in mind when using it with other programs. In general, the maximum 
number of samples that can be placed in a file is 10,240. Some 
modules have other restrictions. The FFT program, for example, is 
restricted to a maximum 1024 samples, and the number of samples 

must be even. 

It should be kept in mind when using the DSP Calculator that 

its primary purpose is educational. Thus, it will accept input values 

that commercial design programs might block. For example, both 

negative amplitudes and negative frequencies are accepted, and the 

data generated accordingly. Engineers do not normally think about 

amplitudes or frequencies as being negative, but these values are 

not merely mathematical abstractions. A negative amplitude simply 

means that the signal is inverted from an equivalent positive ampli-
tude; a negative frequency relates to the phase of the signal. See the 

section in the text on complex numbers for a thorough discussion of 

negative frequencies. 

Fungen 
Purpose: This is the general-purpose function generator. It will 

produce sine waves, square waves, and triangle waveforms. 

Inputs: There are five parameters that can be set: 

Fraquancy 

Amplitude 

Offeet 

Fhaee 

Number of Samples 

XX 



Fungen 

There are four buttons: 

Sin 

Square 

Triangle 

Clear 

Most of these are self-explanatory. The number of samples must 

be less than 10,241. The Clear button clears the screen and erases 

the internal buffer. 

Outputs: The waveform displayed is kept in an internal buffer. 

This buffer can be saved to a file by using the FILE / SAVE option 

on the menu bar. 

Operation: Using Fungen is straightforward. Simply enter the 

desired parameters, then press the appropriate button. The wave-

form will be shown on the screen, and the data will be saved in 

the internal buffer. Each time one of the function buttons is 

pushed, the internal buffer is erased and a new waveform is gener-

ated and stored. This makes it easy to adjust parameters: simply 

change the desired parameter and hit the function button again. 

Example: From the DSPCALC folder, double-click on the 
Fungen icon. The function generator will appear. Using the 
mouse, click on the Sin button. Two cycles of a sine waveform 

will be shown. Save this waveform to a file by clicking on the 

FILE menu. Then click on the SAVE button. Enter a file name 
such as EXAMPL1.SIG and then click on the OK button. Open 

the file using Window's Notepad application. Assuming that you 
have used the standard installation path, the path name will be 
DSPCALC/FUNGEN/EXAMPL1.SIG. You will see the numeric 
values for the waveform. 
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Fourier 
Purpose: Fourier is used for two purposes: It demonstrates the 

concept of building up a waveform from simple sine waves. Sec-
ondly, it is used to create test waveforms for the filter functions. 

Inputs: There are three parameters that can be set: 

Frec\uer\cy 

Amplitude 

Number of Samplae 

There are three buttons: 

Sin 

Coe 

Clear Screen 

Most of these are self-explanatory. The number of samples must 

be less than 10,241. The Clear Screen button clears the screen and 

erases the internal buffer. 

Outputs: The waveform displayed is kept in an internal buffer. 

This buffer can be saved to a file by using the FILE / SAVE option 

on the menu bar. 

Operation: To use Fourier enter the desired parameters, and 

then press the appropriate button. The waveform will be shown on 

the screen, and the data will be saved in the internal buffer. Unlike 
the function generator, each time one of the function buttons is 
pushed the internal buffer is not erased. The new waveform compo-
nent is added to the buffer and the waveform is displayed. 

Example: From the PSPCALC folder, double-click on the Fourier 

icon. When the Fourier window appears, click on the Sin button. 
You will see a waveform appear on the screen. Now change the 
value of the frequency to 6. Next change the value of the amplitude 
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to 03333. Click on the Sin button again. Notice that the new 
waveform is a composite. Finally, change the value of the frequency 
to 10 and the value of the amplitude to 0.2 and click on Sin again. 
These values correspond to the first three terms in the Fourier series 
for a square wave, so the resulting waveform should begin to look 

like a square wave with rounded corners. Save the file under the 

name EXAMPL2.5IG. 

DFT 
Purpose: DFT is used to convert a signal in the time domain to 

a signal in the frequency domain. It is similar to FFT. The Discrete 

Fourier Transform, however, is more flexible and should be used 

whenever the transform of a complex series is required. 

Inputs: There are two parameters that can be set: 

Amplitude 

Number of Samples 

There are two buttons: 

Transform 

Refresh 

The Amplitude dialog adjusts the amplitude of the signal display. 

It does not affect the signal itself—only the display is affected. The 
number of samples is limited to 1024. Transform performs the DFT 
on the signal. Refresh is used to redraw the screen, if necessary. 

This can be handy if other windows have erased part of the screen 

display. 

Outputs: The transformed waveform displayed is kept in an 
internal buffer. This buffer can be saved to a file by using the 
FILE / SAVE option on the menu bar. 
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Operation: Use the FILE / LOAD menu to load the signal. The 
correct number of samples and the amplitude should be set before 
the file is loaded. The waveform will be displayed. Click on the 
waveform, and the display will change to show the spectrum of the 
signal. The transformed signal can be saved using the FILE / SAVE 

option on the menu bar. 

Example: This example assumes that the file EXAMPL2.5I(5 

exists. The EXAMPL2.5IG file was created in the example on the use 

of the Fourier program. Use the FILE / LOAP menu to load the file 

/P5PCALC/F0URIER/EXAMPL2.5IG. 

FFT 
The FFT program is similar to the PFT program. It uses a compu-

tationally efficient FFT algorithm to obtain the transform, however. 

The FFT routine is considerably faster, but it is restricted to handling 

sample counts that are a power of 2. The sample count must be 2, 4, 

8, 16, 32, 64, 128, 256, 512, or 1024. 

Example: Transform the signal file EXAMPLE2.SI(5, as described 

in the discussion of the PFT program. You should get the same results. 

However, the program will execute in much less time than PFT. 

Cmplxgen 
Purpose: TTie purpose of this program is to generate complex 

waveforms based on the equatione^ where s = a+j2nf. 

Inputs: There are four parameters that can be set: 

Frec^uency 

Amplitude 

Alpha 

Numbar of Samplee 
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There are two action buttons: 

Ganerata 

Claar Scraan 

TTie Generate button computes and displays the waveform. The 
Claar Screen button clears the display and erases the internal buffer. 

The number of samples is limited to 10,240. 

Outputs: The waveform displayed is kept in an internal buffer. 

This buffer can be saved to a file by using the FILE / SAVE option 
on the menu bar. 

Operation: Enter the desired parameters and click on the 

Generate button. 

Example: Double-click on the Cmplxqen icon. Then click on the 
Generate button. The unit circle will be plotted on the left-hand 
side of the screen. The corresponding real and imaginary plots will 
be generated on the right-hand side of the screen. 

REDISP 

Purpose: REDISP is a general-purpose display program. It will 

display the real portion of waveforms stored in the DSPCALC format 

signal files. 

Inputs: There are two parameters that can be set: 

Amplituda 

Numbar of Samplas 

There are no action buttons. There is, however, a frame slider 

located at the bottom of the window. Please see the discussion 

under "Operation." 

Outputs: There are no outputs other than the display. 
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Operation: Enter the desired amplitude and the number of 
samples for the signal that will be displayed. Use the FILE / LOAD 
menu to select the file to display. The display is divided into ten 
frames. Each frame can display up to 1024 samples. 

Example: Use Cmplxgan to produce a signal with the following 

parameters: 

Freo[uer\cy = 20 

Amplituda = 1 

Alpha = - 2 

Humber of eamplee = 10,240 

Save this file as EXAMPL3.5IG. Then invoke REPI5P by double^ 

clicking on its icon. Set the number of samples to 1024. Then load 

the EXAMPL3.SIG file using the FILE / LOAD menu. Notice that the 

first few cycles of the signal are shown. Display the rest of the wave-

form by using the slider at the bottom of the screen. 

IMDISP 

IMDI5P is similar to REDI5P. The only difference is that IMDISP 

displays the imaginary portion of the waveform. 

CONVOLVE 

Purpose: This program performs the convolution of two data 

sequences. Each data sequence is stored in its own file. 

Inputs: There are two parameters that can be set: 

Amplituda 

Number of 5amplae 

There are two action buttons and a frame slider located at the 

bottom of the window. Please see the discussion under "Operation." 
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Outputs: The result of convolving the two sequences is shown 
on the screen and saved in the internal buffer. This data can be 
saved to a file using the FILE menu. 

Operation: Convolve is normally used to perform some type of 

filtering operation. Enter the desired amplitude and the number of 

samples for the signal that will be displayed. Use the FILE / LOAD 

COEFFICIENTS menu to select the coefficients to use. The coeffi-

cients waveform will be displayed. Next, use the FILE / LOAD SIG-

NAL menu to load in the signal. The Convolve command button will 

cause the signal to be convolved through the coefficients. 

The result of the convolution will be displayed. The display is 

divided into ten frames. Each frame can display up to 1024 samples. 

Example: See the text on FIR filtering for a detailed example 

of using Convolve. 

FLTRDSGN 

Purpose: This program is used to design filters. More specifi-

cally, it is used to produce the coefficients for low-pass, bandpass, 

or high-pass filters. 

Inputs: The inputs to this program depend upon the type of 

filter being designed. There are no action buttons on the main 

screen. 

Outputs: The coefficients for the filter are saved in the internal 

buffer. These can be saved to a file by using the FILE / SAVE AS 

menu. 

Operation: The type of filter to be designed is selected using 

the FILTERS menu. The three selections are FILTERS / LOW PASS,. 
FILTERS / BAND PASS, FILTERS / HIGH PASS. 
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Example: Design a 33-tap bandpass filter that will pass signals 

from ^4 to ̂ ^/4. 

First, select the FILTERS / B>AND PASS menu. A window will 
appear with boxes for the lower cutoff frequency, the upper cutoff 

frequency, and the number of taps for the filter. In the lower cutoff 

frequency box enter 0.785 (^4). In the upper cutoff frequency box 

enter 2.36 (^^/4). Then enter 33 into the Numbar of Tape box. 

Next, press the OK button. The frequency response curve for the 

filter will be displayed. You can experiment with the shape of the 

curve by changing the number of taps. 
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Preface 
Digital signal processing (DSP) is one of the fastest-growing 

fields in modern electronics. Only a few years ago DSP techniques 

were considered advanced and esoteric subjects, their use limited to 

research labs or advanced applications such as radar identification. 

Today, the technology has found its way into virtually every segment 

of electronics. Talking toys, computer graphics, and CD players are 

just a few of the common examples. 

The rapid acceptance and commercialization of this technology 

has presented the modern design engineer with a serious challenge: 

either gain a working knowledge of the new techniques or risk 

obsolescence. Unfortunately, anyone attempting to gain this 

knowledge has had to face some serious obstacles. Traditionally, 

engineers have had two options for acquiring new skills: go back 

to school, or turn to vendor s technical documentation. In the case 

of DSP, neither of these approaches is a particularly good one. 

Undergraduate programs—and even most graduate programs— 

devoted to DSP are really only thinly disguised courses in the 
mathematical discipline known as complex analysis. The purpose of 

most college programs is not to teach a working knowledge of DSP; 

the purpose of these programs is to prepare students for graduate 
research on DSP topics. Many subjects such as the Laplace transfor-
mation, even and odd functions, and so forth are covered in depth, 

while much of the information needed to really comprehend the 
"whys and wherefores" of DSP techniques are left unmentioned. 

Manufacturer documentation is often of little more use to the 
uninitiated. Applications notes and design guides usually are either 
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reprints of textbook discussions, or they focus almost exclusively on 

particular features of the vendor's instruction set or architecture. 

The purpose of this book is to bridge the gap between the theory 
of digital signal processing and the practical knowledge necessary to 

understand a working DSP system. The mathematics is not ignored; 

you will see many sophisticated mathematical relationships in 

thumbing through the pages of this work. What is left out, however, 

are the formal proofs, the esoteric discussions, and the tedious 

mathematical exercises. In their place are thorough background 

discussions explaining how and why the math is important, ex-

amples that can be run on any general-purpose computer, and tips 

that can help you gain a comfortable understanding of the DSP 

processes. 

This book is specifically written for the working engineer, but 

many others can benefit from the material contained here. Program 

managers that find they need to understand DSP concepts will 

appreciate the straightforward presentation. Students who are about 

to embark on formal DSP programs will find this information useful 

as a gentle introduction to an intimidating subject. Those students 
who have had formal DSP training, but feel a lack of clear under-

standing, will find that this book provides a convenient place to 

clear up many fuzzy concepts. 

While the material is written for engineers, the mathematics is 
kept as simple as possible. A first-year course in trigonometry com-

bined with a first-year course in calculus will provide more than 

adequate preparation. Even those engineers who have been away 
from the books for a while should have no difficulty in following 
the mathematics. Special care is taken throughout to introduce all 
mathematical discussions and, since formal proofs are not presented, 

few esoteric relationships need to be mastered. 
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Digital Signal Processing 

The Need for DSP 
What is digital signal processing (DSP) anyway, and why should 

we use it? Before discussing either the hardware, the software, or the 

underlying mathematics, it's a good idea to answer these basic 

questions. 

The term DSP generally refers to the use of digital computers to 
process signals. Normally, these signals can be handled by analog 
processes but, for a variety of reasons, we may prefer to handle them 
digitally. 

To understand the relative merits of analog and digital process-

ing, it is convenient to compare the two techniques in a common 
application. Figure 1-1 shows two approaches to recording sounds 
such as music or speech. Figure 1-la is the analog approach. It 

works like this: 

• Sound waves impact the microphone, where they are 
converted to electrical impulses. 

• These electrical signals are amplified, then converted to 

magnetic fields by the recording head. 

• As the magnetic tape moves under the head, the intensity 

of the magnetic fields is stored on the tape. 
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Analog signal in 

/I 
Read head 

> Write head I iw 

—\l IH> K) I n. 
Direaion of tape travel 

(a) Analog signal recording. 

Analog signal in 

/I 
Signal converted 

to numbers 

Computer h-O 
Numbers converted 

to signal 

Analog signal out 

/I 

Analog signal out 

(b) Digital signal recording. 

Figure 1-1: Analog and digital sys tems. 

The playback process is just the inverse of the recording process: 

• As the magnetic tape moves under the playback head, the 

magnetic field on the tape is converted to an electrical 

signal. 

• The signal is then amplified and sent to the speaker. The 
speaker converts the amplified signal back to sound waves. 

The advantage of the analog process is twofold: first, it is con-
ceptually quite simple. Second, by definition, an analog signal can 
take on virtually an infinite number of values within the signal's 
dynamic range. Unfortunately, this analog process is inherently 
unstable. The amplifiers are subject to gain variation over tempera-
ture, humidity, and time. The magnetic tape stretches and shrinks, 
thus distorting the recorded signal. The magnetic fields themselves 
will, over time, lose some of their strength. Variations in the speed 
of the motor driving the tape cause additional distortion. All of 
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these factors combine to ensure that the output signal will be 
considerably lower in quality than the input signal Each time the 
signal is passed on to another analog process, these adverse effects 
are multiplied. It is rare for an analog system to be able to make 
more than two or three generations of copies. 

Now let's look at the digital process as shown in Figure 1-lb: 

• As in the analog case, the sound waves impact the micro-
phone and are converted to electrical signals. These 
electrical signals are then amplified to a usable level. 

• The electrical signals are measured or, in other words, 

they are converted to numbers. 

• These numbers can now be stored or manipulated by a 
computer just as any other numbers are. 

• To play back the signal, the numbers are simply converted 

back to electrical signals. As in the analog case, these 

signals are then used to drive a speaker. 

There are two distinct disadvantages to the digital process: first, it 

is far more complicated than the analog process; second, computers 

can only handle numbers of finite resolution. Thus, the (potentially) 
"infinite resolution" of the analog signal is lost. 

Advantages of DSP 
Obviously, there must be some compensating benefits of the 

digital process, and indeed there are. First, once converted to num-
bers, the signal is unconditionally stable. Using techniques such as 
error detection and correction, it is possible to store, transmit, and 
reproduce numbers with no corruption. The twentieth generation 
of recording is therefore just as accurate as the first generation. 
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This fact has some interesting implications. Future generations 
will never really know what the Beatles sounded like, for example. 
The commercial analog technology of the 1960s was simply not 
able to accurately record and reproduce the signals. Several gener-
ations of analog signals were needed to reproduce the sound: First, 
a master tape would be recorded, and then mixed and edited; from 
this, a metal master record would be produced, from which would 
come a plastic impression. Each step of the process was a new 
generation of recording, and each generation acted on the signal 
like a filter, reducing the frequency content and skewing the phase. 
As with the paintings in the Sistine Chapel, the true colors and 
brilliance of the original art is lost to history. 

Things are different for today s musicians. A thousand years 

from now historians will be able to accurately play back the digitally 

mastered CDs of today. The discs themselves may well deteriorate, 

but before they do, the digital numbers on them can be copied with 

perfect accuracy. Signals stored digitally are really just large arrays 

of numbers. As such, they are immune to the physical limitations of 

analog signals. 

There are other significant advantages to processing signals 
digitally. Geophysicists were one of the first groups to apply the 
techniques of signal processing. The seismic signals of interest to 
them are often of very low frequency, from 0.01 Hz to 10 Hz. It is 
difficult to build analog filters that work at these low frequencies. 
Component values must be so large that physically implementing 
the filter may well be impossible. Once the signals have been 
converted to digital numbers, however, it is a straightforward 
process to program a computer to perform the filtering. 

Other advantages to digital signals abound. For example, DSP 
can allow large bandwidth signals to be sent over narrow bandwidth 



Chapter Summary 

channels. A ZO-kHz signal can be digitized and then sent over a 
5-kHz channel. The signal may take four times as long to get 
through the narrower bandwidth channel, but when it comes out 
the other side it can be reconstructed to its full 20-kHz bandwidth. 

In the same way, communications security can be greatly im-

proved through DSP. Since the signal is sent as numbers, it can be 

easily encrypted. When received, the numbers are decrypted and 

then reproduced as the original signal. Modern "secure telephone" 

DSP systems allow this processing to be done with no detectable 

effect on the conversation. 

Chapter Summary 
Digitally processing a signal allows us to do things with signals 

that would be difficult, or impossible, with analog approaches. With 

modern components and techniques, these advantages can often be 

realized economically and efficiently. 
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H A P T E R y 

The General Model 
of a DSP System 

Introduction 
The general model for a DSP system is shown in Figure 2-1. 

From a high-level point of view, a DSP system performs the follow-
ing operations: 

• Accepts an analog signal as an input. 

• Converts this analog signal to numbers. 

• Performs computations using the numbers. 

• Converts the results of the computations back into an 
analog signal. 
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Figure 2-1: The general model for a DSP system. 



The General Model of a DSP System 

Optionally, different types of information can be derived from 
the numbers used in this process. This information may be analyzed, 
stored, displayed, transmitted, or otherwise manipulated. 

This model can be rearranged in several ways. For example, a 

CD player will not have the analog input section. A laboratory 

instrument may not have the analog output. The truly amazing 

thing about DSP systems, however, is that the model will fit any 

DSP application. The system could be a sonar or radar system, 

voicemail system, video camera, or a host of other applications. 

The specifications of the individual key elements may change, 

but their function will remain the same. 

In order to understand the overall DSP system, let's begin with 

a qualitative discussion of the key elements. 

Input 
All signal processing begins with an input transducer. The input 

transducer takes the input signal and converts it to an electrical 

signal. In signal-processing applications, the transducer can take 

many forms. A common example of an input transducer is a micro-
phone. Other examples are geophones for seismic work, radar 

antennas, and infrared sensors. Generally, the output of the trans-

ducer is quite small: a few microvolts to several millivolts. 

Signal-conditioning Circuit 
The purpose of the signal-conditioning circuit is to take the 

few millivolts of output from the input transducer and convert it 
to levels usable by the following stages. Generally, this means 
amplifying the signal to somewhere between 3 and 12V. The signal-
conditioning circuit also limits the input signal to prevent damage 
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Analog-tO'Digital Converter 

to following stages. In some circuits, the conditioning circuit pro-
vides isolation between the transducer and the rest of the system 
circuitry. 

Typically, signal-conditioning circuits are based on operational 
amplifiers or instrumentation amplifiers. 

Anti-aliasing Filter 
The anti-aliasing filter is a low-pass filter. The job of the anti-

aliasing filter is a little difficult to describe without more theoretical 

background than we have developed up to this point (see Chapter 6 

for more details). However, from a conceptual point of view, the 

anti-aliasing filter can be thought of as a mechanism to limit how 

fast the input signal can change. This is a critical function; the anti-

aliasing filter ensures that the rest of the system will be able to track 

the signal. If the signal changes too rapidly, the rest of the system 

could miss critical parts of the signal. 

Analog-to-Digital Converter 
As the name implies, the purpose of the analog-to-digital 

converter (ADC) is to convert the signal from its analog form to 
a digital data representation. Due to the physics of converter cir-
cuitry, most ADCs require inputs of at least several volts for their 
full range input. Two of the most important characteristics of an 
ADC are the conversion rate and the resolution. The conversion rate 
defines how fast the ADC can convert an analog value to a digital 
value. The resolution defines how close the digital number is to the 
actual analog value. 

The output of the ADC is a binary number that can be manipu-

lated mathematically. 

11 



The General Model of a DSP System 

Processor 
Theoretically, there is nothing special about the processor. It 

simply performs the calculations required for processing the signal. 
For example, if our DSP system is a simple amplifier, then the input 
value is literally multiplied by the gain (amplification) constant. 

In the early days of signal processing, the processor was often 
a general-purpose mainframe computer. As the field of DSP pro-
gressed, special high-speed processors were designed to handle the 
"number crunching." 

Today, a wide variety of specialized processors are dedicated 

to DSP These processors are designed to achieve very high data 

throughputs, using a combination of high-speed hardware, special-

ized architectures, and dedicated instruction sets. All of these 

functions are designed to efficiently implement DSP algorithms. 

Program Store, Data Store 
The program store stores the instructions used in implementing 

the required DSP algorithms. In a general-purpose computer (von 

Neumann architecture), data and instructions are stored together. 

In most DSP systems, the program is stored separately from the 
data, since this allows faster execution of the instructions. Data 
can be moved on its own bus at the same time that instructions are 

being fetched. This architecture was developed from basic research 

performed at Harvard University, and therefore is generally called 
a Harvard architecture. Often the data bus and the instruction bus 
have different widths. 

Data Transmission 
DSP data is commonly transmitted to other DSP systems. 

Sometimes the data is stored in bulk form on magnetic tape, optical 

12 



Output Smoothing Filter 

discs (CDs), or other media. This ability to store and transmit the 
data in digital form is one of the key benefits of DSP operations. 
An analog signal, no matter how it is stored, will immediately begin 
to degrade. A digital signal, however, is much more robust since it is 
composed of ones and zeroes. Furthermore, the digital signal can be 

protected with error detection and correction codes. 

Display and User Input 
Not all DSP systems have displays or user input. However, it is 

often handy to have some visual representation of the signal. If the 

purpose of the system is to manipulate the signal, then obviously 

the user needs a way to input commands to the system. This can be 

accomplished with a specialized keypad, a few discrete switches, or 

a full keyboard. 

Digital-to-Analog Converter 
In many DSP systems, the signal must be converted back to 

analog form after it has been processed. This is the function of the 

digital'to-analog converter (DAC). Conceptually, DACs are quite 
straightforward: a binary number put on the input causes a corre-

sponding voltage on the output. One of the key specifications of 

the DAC is how fast the output voltage settles to the commanded 
value. The slew rate of the DAC should be matched to the acquisi-
tion rate of the ADC. 

Output Smoothing Filter 
As the name implies, the purpose of the smoothing filter is 

to take the edges off the waveform coming from the DAC. This 
is necessary since the waveform will have a "stair-step" shape, 
resulting from the sequence of discrete inputs applied to the DAC. 
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Generally, the smoothing filter is a simple low-pass system. Often, a 
basic RC circuit does the job. 

Output Amplifier 
The output amplifier is generally a straightforward amplifier 

with two main purposes. First, it matches the high impedance of 

the DAC to the low impedance of the transducer. Second, it boosts 

the power to the level required. 

Output Transducer 
Like the input transducer, the output transducer can assume 

a variety of forms. Common examples are speakers, antennas, and 

motors. 

Chapter Summary 

The overall idea behind digital signal processing is to: 

• Acquire the signal. 

• Convert it to a sequence of digital numbers. 

• Process the numbers as required. 

• Transmit or save the data as may be required. 

• Convert the processed sequence of numbers back to 

a signal. 

This process may be considerably more complicated than 
the traditional analog signal processors (radios, telephones, TVs, 

stereos, etc.) However, given the advances in modern technology, 
DSP solutions can be both cheaper and far more efficient than 
traditional techniques. 
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Chapter Summary 

This chapter has looked at the key blocks in a DSP system. 
Any DSP system will be composed of some subset of these blocks. 
The key to understanding, specifying, or designing a DSP system is 
to know how these blocks are related, and how the parameters of 
any one block impact the parameters of the other blocks. The rest 

of this book is dedicated to providing this level of understanding. 

15 
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C H A P T E R \t 

The Numerical 
Basis for DSP 

Introduction 
The heart of DSP is, naturally enough, numbers. More speci-

fically, DSP deals with how numbers are processed. Most texts 

on DSP either assume that the reader already has a background 

in numerical theory, or they add an appendix or two to review 

complex numbers. This is unfortunate, since the key algorithms 

in DSP are virtually incomprehensible without a strong foundation 

in the basic numerical concepts. 

Since the numerical foundation is so critical, we begin our 

discussion of the mathematics of DSP with some basic information. 

This material may be review, especially for those readers who are 

well versed in trigonometry. However, we suggest that you at least 

scan the material presented in this section, as the discussions that 
follow this section will be much clearer. Also, Appendix A reviews 
some of the fundamentals of engineering calculus and other mathe-

matical tools. 

In general, applied mathematics is a study of functions. Primarily, 

we are interested in how the function behaves directly. That is, for 

any given input, we want to know what the output is. Often, how-
ever, we are interested in other properties of a given function. For 
example, we may want to know how rapidly the function is chang-

ing, what the maximum or minimum values are, or how much area 
the function bounds. 
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Additionally, it is often handy to have a couple of different 
ways to express a function. For some applications, one expression 
may make our work simpler than another. 

Polynomials, Transcendental Functions, 
and Series Expansions 

Polynomials are the workhorse of applied mathematics. The 

simplest form of the polynomial is the simple linear equation: 

y = mx + b Equation 3-1 

where m and b are constants. For any straight line drawn on an 

x-y graph, an equation in the form of Equation 3-1 can be found. 

The constant m defines the slope, and b defines the }'''intercept 

point. Not all functions are straight lines, of course. If the graph 

of the function has some curvature, then a higher-order function 

is required. In general, for any function, a polynomial can be found 

of the form: 

fix) = ax"" + . . . + bx^ + CX̂  Equation 3-2 

which closely approximates the given function, where a, b, and c 
are constants called the coefficients of/(x). 

This polynomial form of a function is particularly handy when 
it comes to differentiation or integration. Simple arithmetic is 
normally all that is needed to find the integral or derivative. 
Furthermore, computing a value of a function when it is expressed 
as a polynomial is quite straightforward, particularly for a computer. 

If polynomials are so powerful and easy to use, why do we turn 
to transcendental functions such as the sine, cosine, natural logarithm, 
and so on? There are a number of reasons why transcendental 
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functions are useful to us. One reason is that the transcendental 
forms are simply more compact. It is much easier to write: 

3̂  = s i n (x) Equation 3-3 

than it is to write the polynomial approximation: 

fix) = X X^ + — X ^ - . . . Equation 3-4 

3! 5! 

Another reason is that it is often much easier to explore and 

manipulate relationships between functions if they are expressed 

in their transcendental form. 

For example, one look at Equation 3-3 tells us that/(x) will 

have the distinctive shape of a sine wave. If we look at Equation 

3-4, it s much harder to discern the nature of the function we are 

working with. It is worth noting that, for many practical applica-
tions, we do in fact use the polynomial form of the function and its 

transcendental form interchangeably. For example, in a spreadsheet 

or high-level programming language, a function call of the form: 

y — s i n (x) Equation 3-5 

results in y being computed by a polynomial form of the sine func-

tion. 

Often, polynomial expressions called series expansions are used for 
computing numerical approximations. One of the most common of 
all series is the Taylor series. The general form of the Taylor series is: 

/ ( x ) = ^ a^X^ Equation 3-6 
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Again, by selecting the values of a ,̂ it is possible to represent many 
functions by the Taylor series. In this book we are not particularly 
interested in determining the values of the coefficients for functions 
in general, as this topic is well covered in many books on basic 
calculus. The idea of series expansion is presented here because it 
plays a key role in an upcoming discussion: the :^-transform. 

A series may converge to a specific value, or it may diverge. An 
example of a convergent series is: 

°° 1 
fM = X T Equation 3^7 

n=0 2 

As n grows larger, the term ^/l^ grows smaller. No matter how many 

terms are evaluated, the value of the series simply moves closer to a 

final value of 2. 

A divergent series is easy to come up with: 

oo 

/ ( ^ ) = X ^" Equation 3-8 

As n approaches infinity, the value of/(n) grows without bound. 

Thus, this series diverges. 

It is worth looking at a practical example of the use of series 

expansions at this point. One of the most common uses of series 
is in situations involving growth. The term growth can be applied 

to either biological populations (herds, for example), physical laws 

(the rate at which a capacitor charges), or finances (compound 
interest). 

Let's take a look at the concept of compound growth. The idea 

behind it is simple: 
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m You deposit your money in an account. 

• After some set period of time (say, a month), your 
account is credited with interest. 

• During the next period, you earn interest on both the 

principal and the interest from the last period. 

• This process continues as described above. 

Your money keeps growing at a faster rate, since you are earning 

interest on the previous interest as long as you leave the money in 

the account. 

Mathematically, we can express this as: 

f{x) = X + - Equation 3-9 

where c is the interest rate. If we start out with a dollar, and have 

an interest rate of 10% per month, we get: 

/(1) = 1 + — 
^ 10 

= 1.10 

for the first month. For the second month, we would be paid 

interest on $1.10: 

/(1.10) = 1.10 + — 
^ 10 

= 1.21 

and so on. This type of computation is not difficult with a com-

puter, but it can be a little tedious. It would be nice to have a 
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simple expression that would allow us to compute what the value 
of our money would be at any given time. With some factoring and 
manipulation, we can come up with such an expression: 

/ (n )= x + ^ X 

c 
Equation 3-10 

where n is the number of compounding periods. Using Equation 

3-10 we can directly evaluate what our dollar will be worth after 

two months: 

\2 

= 1.21 

For many applications, the value of c is proportional to the number 

of periods. For example, when a capacitor is charging, it will reach 
half its value in the first time period. During the next time period, 

it will take on half of the previous value (that is V4), etc. For this 
type of growth, we can set c = n in Equation 340 . Assuming a 

starting value of 1, we get an equation of the following form: 

Equation 3-11 

Equation 3-11 is a geometric series. As n grows larger, /(n) converges 
to the irrational number approximated by 2.718282. (You can easily 
verify this with a calculator or spreadsheet.) This number comes 
up so often in mathematics that is has been given its own name: e. 
Using e as a base in logarithm calculations greatly simplifies 
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problems involving this type of growth. The natural logarithm (In) 
is defined from this value of e: 

ln(e) = 1 Equation 3-12 

It is worth noting that the function e^ can be rewritten in the 
form of a series expansion: 

e"̂  = 1 + X + "— + . . . — + ... Equation 3-13 
2! n! 

The natural logarithm and the base e play an important role in 
a wide range of mathematical and physical applications. We're 
primarily interested in them, however, for their role in the use of 
imaginary numbers. This topic will be explored later in this chapter. 

Limits 
Limits play a key role in many modern mathematical concepts. 

They are particularly important in studying integrals and derivatives. 

They are covered here mainly for completeness of this discussion. 

The basic mathematical concept of a limit closely parallels what 
most people think of as a limit in the physical world. A simple 
example is a conventional signal amplifier. If our input signal is 
small enough, the output will simply be a scaled version of the 
input. There is, however, a limit to how large an output signal we 
can achieve. As the amplitude of the input signal is increased, we 
will approach this limit. At some point, increasing the amplitude 
of the input will make no difference on the output signal; we will 
have reached the limit. 

Mathematically, we can express this as: 
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VQ^^ = lim /(x) Equation 3-14 ^OUt max 

"max 

where f{x) is the output of the amplifier, and v.^ is the maximum 
input voltage that does not cause the amplifier to saturate. 

Limits are often evaluated under conditions that make mathe-

matical sense, but do not make intuitive sense to most us. Consider, 

for example, the function/(x) = 2 + ^jx. We can find the value of 

this function as x takes on an infinite value: 

In practice, what we are saying here is that as x becomes infinitely 

large, then V̂  becomes infinitely small. Intuitively, most people 

have no problem with dropping a term when it no longer has an 

effect on the result. It is worth noting, however, that mathemati-

cally the limit is not just dropping a noncontributing term; the 

value of 2 is a mathematically precise solution. 

Integration 
Many concepts in DSP have geometrical interpretations. One 

example is the geometrical interpretation of the process of integra-

tion. Figure 3-1 shows how this works. Let's assume that we want to 

find the area under the curve /(x). We start the process by defining 
some handy interval—in this case, simply b - a. This value is usually 
defined as Ax. For our example, the interval Ax remains constant 
between any two points on the x-axis. This is not mandatory, but 

it does make things easier to handle. 
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Figure 3-1: Geometric interpretation of integration. 

Now, integration is effectively a matter of finding the area under 

the curve /(x). A good approximation for the area in the region 

from a to b and under the curve can be found by multiplying/(a) 

by Ax. Mathematically: 

J / (x)dx- / (a)Ax Equation 3-15 

Our approximation will be off by the amount between the top of 

the rectangle formed by /(a)Ax and yet still under the curve /(x). 

This is shown as a shaded region in Figure 3-1. For the interval 
from atob this error is significant. For some of the other regions 
this error can be seen to be insignificant. The overall area under 
the curve is the sum of the individual areas: 

\f{x)dx^lf{x)A> Equation 3^16 
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It's worthwhile to look at the source of error between the 
integral and our approximation. If you look closely at Figure 3-1, 
you can see that the major factor determining the error is the size 
of Ax. The smaller the value of Ax, the closer the actual value of the 
integral and our approximation will be. In fact, if the value of Ax is 

made vanishingly small, then our approximation would be exact. 

We can do this mathematically by taking the limit of the right-

hand side of Equation 3-16 as Ax approaches 0: 

J / ( x ) d x = lim X / ( x ) A x Equation 3-17 
Ax-»0 

Notice that Equation 3-17 is in fact the definition of the integral, 
not an approximation. 

There are a number of ways to find the integral of a function. 

Numerically, a value can be computed using Equation 3-16 or some 

more sophisticated approximation technique. For symbolic analysis, 

the integral can be found by using special relationships or, as is 

more often the case, by tables. For most DSP work, only a few 

simple integral relationships need to be mastered. Some of the 

most common integrals are shown in Table A.3 of Appendix A. 

Oscillatory Motion 
Virtually all key mathematical concepts in DSP can be directly 

derived from the study of oscillatory motion. In physics, there are 

a number of examples of oscillatory motion: weights on springs, 

pendulums, LC circuits, etc. In general, however, the simplest form 
of oscillatory motion is the wheel. Think of a point on the rim of a 
wheel. Describe how the point on the wheel moves mathematically 
and the foundations of DSP are in place. This statement may seem 
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somewhat dramatic, but it is truly amazing how often this simple 

fact is overlooked. 

The natural place to begin describing circular motion is with 

Cartesian coordinates. Figure 3-2 shows the basic setup. The origin 

of the coordinate system is, naturally, where the x- and y-axes 

intersect. This point is designated as P(0,0). The other interesting 

point shown in the figure is P{x,y). 

)'-axis 

/ 
/y = rsin(e) 

.P(x,^) 

P(0,0) 
x-axis 

X = r cos(6) / 

/ 

Figure 3-2: Polar and rectangular coordinates. 

The point Pixyj) can be thought of as a fixed point on the rim 

of a wheel. The axle is located at the point P(0,0). The line from 
P(0,0) to P{x,y) is a vector specified as r. We can think of it as the 
radius of the wheel. (The variable r is shown in bold to indicate 

that it is either a vector or a complex variable.) 

The variable r is often of interest in DSP, since its length is 
what defines the amplitude of the signal. This will become more 
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clear shortly. When points are specified by their x and y values the 
notation is called rectangular. The point Pix^y) can also be specified 
as being at the end of a line of length r at an angle of 0. This nota-
tion is called polar notation. 

It is often necessary to convert between polar and rectangular 
coordinates. The following relationship can be found in any trigo-
nometry book: 

l e n g t h o f r = ^X^ + y^ Equation 3-18 

This is also called the magnitude of r and is denoted as |r|. The 
angle 9 is obtained from x and }> as follows: 

Equation 3-19 

Two particularly interesting relationships are: 

X = I r I c o s e Equation 3-20 

and 

^̂  = I r I s i n 9 Equation 3-21 

The reason these two functions are so important is that they 

represent the signals we are usually interested in. In order to 
develop this statement further, it is necessary to realize that the 
system we have just described is static—in other words, the wheel 

is not spinning. In DSP, as with most other things, the more inter-
esting situation occurs when the wheels start spinning. 
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From basic geometry, we know that the circumference of the 
wheel is simply Inr. This is important, since it defines the angular 
distance around the circle. If 9 = 0, then the point P{Xyy) will have 
a value of P(|r | ,0). That is, the point will be located on the x-axis 
at a distance of |r| from the origin. As 0 increases, the point will 

move along the dotted line. When 9 = ^/i the point will be at 

P(0,|r |). That is, it will be on the ^/-axis at a distance |r| from 

the origin. The point will continue to march around the circle as 

9 increases. When 9 reaches a value of ZTC, the point will have come 

full circle back to P(|r | ,0). 

As the point moves around the circle, the values of x and y will 

trace out the classic sine and cosine wave patterns. The two patterns 

are identical, with the exception that the sine lags the cosine by ^/l. 

This is more often expressed in degrees of phase; the sine is said to 

lag the cosine wave by 90°. 

When we talk about the point moving around the circle, we are 

really talking about the vector r rotating around the origin. This 

rotating vector is often called a phasor. As a matter of convenience, 

a new variable co is often defined as: 

CO = ZTCJ Equation 3^22 

The variable co represents the angular frequency, The variable / is , 

of course, the frequency. Normally / is expressed in units of hertz 

(Hz), where 1 Hz is equal to 1 cycle per second. As we will see a 
little later, however, the concept of frequency can take on a some^ 
what surrealistic aspect when it is used in relation to DSP systems. 

If all of this makes sense so far, you are in good shape with 
respect to the fundamentals of digital signal processing. If, however. 
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all of this is a little hard to grasp, don't feel left out. Many engineers 
never really become completely comfortable with the mathematics. 
This isn't to say it's not important, however. The material in this 
section and the next must be well understood if you are to under-
stand the mathematical principles of DSP. 

The question is then: what should you do if this material seems 

vague? We have stepped through a lot of trigonometry quickly, so 

don't feel too bad if the material does not seem obvious. This 

section is intended only as a quick review. Also, the presentation 

in the book is naturally static, but phasors are a dynamic process. It is 

tough to get the feel of a dynamic process just by reading about it. 

Interactive 
Exercise 

We will talk about complex numbers next, but first it is worth 

noting that these relationships can be dynamically illustrated by 

graphing a complex exponential function. The program cmplxgan 

supplied on the accompanying disk is a good tool for this. To use 

it, just double-click on the icon. The program comes up with the 

appropriate values as a default. Then click on the GENERATE 
button. You can watch the point rotate and simultaneously see the 
waveforms that are generated for both the x and y values. 

Feel free to change the values of amplitude and frequency. 
Adjust the frequency for values between 0.25 and 12. Adjust the 

amplitude for values between 0.25 and 1.25. Notice that it is OK 

to enter negative values, as long as they are in the same range. It 
may seem like an oversight that we have not included dimensions 
(like hertz or volts) on the above values. It isn't. This too will make 
sense as we proceed. 
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If, after working with cmplxgen for awhile, things still don't 
make sense, it is probably a good idea to find a basic book or study 
guide on trigonometry and do some studying. Then come back to 
this chapter for another try. 

Complex Numbers 
Now, back to the subject of complex numbers. We have stayed 

away from the subject until now simply because we did not want 

to confuse things. Partially because of the names used with complex 

numbers ("real" and "imaginary"), and partially because of their 

somewhat esoteric use, people are often intimidated by them. 

This is unfortunate, since complex numbers are really quite straight-

forward. As with many other areas of mathematics, however, the 

notation can be a little confusing. 

Part of the confusion over complex numbers—particularly as 

they relate to DSP—comes from a lack of understanding over their 

role in the "real world" (no pun intended). So, first we will present 

a qualitative discussion of reaUworld signals and complex numbers. 

After that, a more mathematical presentation will be in order. 
Complex numbers can be thought of as numbers with two parts: 

the first part is called the real part, and the second part is called 

the imaginary part. Naturally, most numbers we deal with in the 

real world are real numbers: 0, 3.3, 5.0, and 0.33 are all examples. 
Since complex numbers have two parts, it is possible to represent 
two related values with one number; x-y coordinates, speed and 

direction, or amplitude and phase can all be expressed directly or 
indirectly with complex numbers. 

Initially, it is easy to think of signals as "real valued." These are 
what we see when we look at a signal on an oscilloscope, look at a 
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time vs. amplitude plot, or think about things like radio waves. 
There are no "imaginary" channels on our TVs, after all. 

In practice most of the signals we deal with are actually complex 
signals. For example, when we hear a glass drop we immediately get 

a sense of where the glass hit the floor. It is tempting to think of the 

signals hitting our ear as "real valued"—the amplitude of the sound 

wave reaching our ears as a function of time. This is actually an 

oversimplification, as the sound wave is really a complex signal. 

As the glass hits the floor the signal propagates radially out from the 

impact point. Imagine a stone dropped in a pond; its graph would 

actually be three-dimensional, just as the waves in a pond are three-

dimensional. These three-dimensional waves are, in fact, complex 

waveforms. Not only is the waveform complex, but the signal 

processing is also complex. Our ears are on opposite sides of our 

head to allow us to hear things slightly out of phase. This phase 

information is perceived by our brains as directional information. 

Another way to look at this is to compare a monaural system— 

such as an AM radio—with a stereo system. A good example of a 

stereo system is an FM radio. While stereo systems are so ubiquitous 

today that we take them for granted, at one time they were quite 
novel. The early stereos came with a demonstration record, typi-
cally a recording of a train. The sound would slowly start in the 

left speaker and then move across to the right speaker. The result 

was the sensation of hearing the train actually pass by. These demo 
records graphically illustrated the difference between complex and 
real-valued signals. 

The brain can find the direction of an AM radio because it is 
processing the real signal as a complex waveform. The signal itself, 
however, is a point source. There is no way to tell which way a train 
is going if you hear it over a monaural (i.e., real) channel. In the 
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case of a stereo signal, however, the brain processes a complex 
signal with complex detectors. Not only can the brain discern 
where the speakers are, but it can also tell which direction the 
train is moving. 

The points we have been discussing, such as P(0,0) and P(x,3'), 
are really complex numbers. That is, they define a point on a two-
dimensional plane. We do not generally refer to them this way, 
however, as a matter of convention. Still, it is useful to remember 
that fact if things get too confusing when working with complex 
notation. 

Historically, complex numbers were developed from examining 

the real number line. If we think of a real number as a point on the 

line, then the operation of multiplying by (-1) rotates the number 

180° about the origin on the number line. For example, if the point 

is 7, then multiplying by (-1) gives us (-7). Multiplying by (-1) 

again rotates us back to the original value of 7. Thus, the quantity 

(-1) can be thought of as an operator that causes a 180° rotation. 

The quantity (-1)^ is just one, so it represents a rotation of either 
0°, or equivalently, 360°. 

This leads us to an interesting question: If (-1)^ = 1, then what 
is the meaning of V-1 ? There is no truly analytical way of answer-
ing the question. One way of looking at it, however, is like this: If 
1 represents a rotation of 360°, and (-1) represents a rotation of 
180°, then V-1 must, by analogy, represent a rotation of 90°. In 
short, multiplying by V-1 rotates a value from the x-axis to the 
^i-axis. Early mathematicians considered this operation a purely 
imaginary (that is, having no relation to the "real" world) exercise, 
so it was given the letter i as its symbol. Since i is reserved for 
current in electronics, most engineers use j as the symbol for V-1. 
This book follows the engineering convention. 
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In our earlier discussion, we pointed out that a point on the 
Cartesian coordinates can be expressed as ?{Xy'y), This means, in 
words, that the point P is located at the intersection of x units on 
the X-axis, and )! units on the 3 -̂axis. We can use the j operator to 
say the same thing: 

P(x,y) = p(|r|cos(e),|r|sin(e)) 

= ^ + i}' Equation 3^23 

Thus, we see that there is nothing magical about complex numbers. 

They are just another way of expressing a point in the x^y plane. 

Equation 3-23 is important to remember since most programming 

languages do not support a native complex number data type, nor 

do most processors have the capability of dealing directly with 

complex number data types. Instead, most applications treat a 

complex variable as two real variables. By convention one is real, 

the other is imaginary. We will demonstrate this with some exam-

ples later. 

In studying the idea of complex numbers, mathematicians 
discovered that raising a number to an imaginary exponent pro-

duced a periodic series. The famous mathematician Euler demon-

strated that the natural logarithm base, e, raised to an imaginary 
exponent, was not only periodic, but that the following relationship 
was true: 

e^^ = cos e + j sin 6 Equation 3^24 

To demonstrate this relationship, we will need to draw on 
some earlier work. Earlier we pointed out that the sine and cosine 
functions could be expressed as a series: 
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sin (x) = X h -—-

and 

3! 5! 

cos(x) = 1 1 
2! 4! 

Equation 3-25 

Equation 3-26 

Now, if we evaluate e^^ using Equation 3-13 we get: 

2! 3! 4! 5! 6! 
Equation 3'27 

Expanding and rearranging Equation 3-27 gives us: 

-je = J^ 
m £\lm 

(-ire 
% (2m)! 

• + J l 
(-1)-$ 

m /)2m+l 

% (2m+ 1)! 
Equation 3-28 

Substituting Equation 3^25 and Equation 3-26 into Equation 3-28 

gives us Equation 3-24. 

Euler's relationship is used quite heavily throughout the field 

of signal processing, primarily because it greatly simplifies analytical 

calculations. It is much simpler to perform integration and differen-

tiation using the natural logarithm or its base than it is to perform 

the same operation on the equivalent transcendental functions. 

Since this book is mainly aimed at practical applications, we will 

not be making heavy use of analytical operations using e. It is 

common in the literature, however, to use e^^ as a shorthand nota-

tion for the common cos(co) + jsin(co) expression. This convention 

will be followed in this book. 

Euler's relationship can also be used as another way to express a 

complex number. For example: 
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P(x,:y) = re^^ Equation 3^29 

is equivalent to Equation 3-23. 

We have pushed the mechanical analogy about as far as we can, 

so it is time to briefly review what has been presented and then 

switch over to an electronic model for our discussion. 

• The basic model of a signal is oscillatory motion. 

• The simplest conceptualization is a point rotating about 

the origin. 

• The motion of the point can be defined as: 

where co = ZTI/, r is the radius, and / is the frequency of 
rotation. 

• Euler s relationship gives us the following: 

e =cosO-f jsinG 

e~^ = c o s 0 - j s i n 9 

The electronic equivalent of the wheel is the LC circuit. An 
example circuit is shown in Figure 3-3. By convention, the voltage 
is generally defined as the real value, and the current is defined as 
the imaginary value. The symbol co is used to represent the resonant 
frequency and is determined by the value of the components. 
Assuming the resistance in the circuitry is zero, then: 

e^^^ = cos cot + j sin cot Equation 3-30 
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The current is Imaginary, and 
lags the voltage by 90 degrees 

The voltage is real, and is "m phase" 

VJ V 

Switch closes -

x:/ 

Switch opens 

t 

Figure 3-3: Ideal LC circuit showing voltage and 
current relationships. 

describes the amplitude and the phase of the voltage and the cur-
rent. In practice, we would add in a scale factor to define the value 
of the maximum voltage and the maximum current. Notice that, as 
in the case of the point rotating about the origin, the voltage is 90° 
out of phase with the current. 

What if the resistance is not equal to zero? Then the amplitude 
decreases as a function of time. From any good book on circuit 
analysis, we can find that the decay of the amplitude is an exponen-
tial function of time: e~"̂  This decay applies to both the current 
and the voltage. If we add in our scale factor A, we get the follow-
ing equation: 

f{t) = Ae-'''e^'^' Equation 3-31 

which, from our log identities, gives us: 

/(t) = Ae(-«^^^)^ Equation 3-32 
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Generally, the exponential term is expressed as a single complex 
variable, s: 

S = - a + JCO Equation 3-33 

The symbol s is familiar to engineers as the independent variable 
in the Laplace transform. (Transforms will be covered in a later 
chapter.) 

Interactive 
Exercise 

Now it's time to return to our program cmplxgan* In our 
previous example, we left the value of a at its default value of 0. 
Since ê  = 1, this is equivalent to saying that the amplitude is 
constant, neither decaying nor increasing. 

This time around, enter different values for the various options. 

Start out with the following: 

frequency = 3 

amplitude = 1.25 

a = -2 

Notice that the resulting graph spirals in toward the origin. Try 
different values. Notice that positive values of a cause the graph 

to spiral out from the origin. Also notice that the amplitude of 

the sine waves changes as the point moves. This is a complex 
exponential at work! 

This information on the complex exponential is critical to 
understanding how the major algorithms in DSP work, so make 
sure you feel comfortable with this material before proceeding. 
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A Practical Example 
In order to illustrate some of the basic principles of working 

with discrete number sequences, we will begin with a simple 
example. Referring back to Figure 2-1, let's assume that our task is 
to use a DSP system to generate a sine wave of 1 Hz. We will also 
assume that our DAC has a resolution of 12 bits, and an output 
range of-5 volts to +5 volts. 

This task would be difficult to do with conventional electronic 
circuits. Producing a sine wave generally requires an LC circuit or 
a special type of RC oscillator known as a Twin-T. In either case, 
finding a combination of values that work well and are stable at 
1 Hz is difficult. 

On the other hand, designing a low-frequency oscillator like 

this with DSP is quite straightforward. We'll take a somewhat 

convoluted path, however, so we can illustrate some important 

concepts along the way. 

First, let s look at the basic function we are trying to produce: 

fit) = sin (cot + e) Equation 3-34 

where, for this example, co = 2nf, / = 1, and 9 = 0. 

From a purely mathematical perspective. Equation 3-34 is 
seemingly simple. There are some interesting implications in this 
simple-looking expression, however. As Rorabaugh^ points out, 
the notation/(t) is used to mean different things by various authors. 
It may mean the entire function expressed over all values of t, or it 
may mean the value of/evaluated at some point t. 

^ Digital Filter Designers Handbook, page 36 (see References). 
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Another interesting concept is the idea that/(t) is continuous. 
In practice, we know that no physical quantity is truly infinitely 
divisible. At some point quantum physics—if no other physical law 
—will define discretely quantized values. Mathematically, however, 
/(t) is assumed to be continuous, and therefore infinitely divisible. That 

is, for any/(t) and any/(t + A) there is some value equal to/( t + ^li). 

This leads to the rather interesting situation that between any two 

finite points on a line there are an infinite number of points.^ 

The object is to use a digital computer to produce an electrical 

output representing Equation 3'34- Clearly, we cannot compute an 

infinite number of points, as this would take an infinite length of 
time. We must choose some reasonable number of points to com-

pute. What is a "reasonable number of points"? The answer depends 

on the system we are using and on how close an approximation we 

are willing to accept. In practice we will need something like 5 to 

50 points per cycle. Figure 3^4 shows an example of how 16 points 

can be used to approximate the shape of a sine wave. Each point is 

called one sample of the sine function (N = 15). 

Notice that time starts at t = 0 and proceeds through t = ^V^-

In other words, there are 16 points, each evaluated at Vi6-second 
intervals. This interval between samples is called (naturally enough) 
the sample period. The sample period is usually given the symbol T. 

Notice that the next cycle starts at t = 0 of the secoryi cycle, so there 

is no point at the 1-second index mark. In order to incorporate T 
in an equation we must define a new term: the digital frequency, 

In our discussion of the basic trigonometry of a rotating point, 

we defined the angular frequency, (O, as being equal to Inf. The 

^ See pages 152-157 of The ^sAathematical Experience for a good discussion of this. 
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Figure 3-4: Sample points on a sine wave. 

digital frequency \ is defined as the analog frequency times the 

period T: 

i2. 
N 

Equation 3-35 

The convention of using \ as the digital frequency is not universal. 
It was first used by Peled and Liu [2], and is used by Rorabaugh [3]. 
Giving the digital frequency its own symbol is useful as a means 
of emphasizing the difference between the digital and the analog 
frequencies, but is also a little confusing. In this text we denote the 
digital frequency as coT. The justification for defining the digital 
frequency in this way will be made clear shortly. 

The variable t is continuous, and therefore is not of much use 
to us in the computations. To actually compute a sequence of 
discrete values we have to define a new variable, n, as the index 
of the points. The following substitution can then be made: 
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t = nT, n = 0.. . N - 1 Equation 3-36 

Equation 3-35 and Equation 3-36 can be used to convert Equation 
3-34 from continuous form to a discrete form. Since our frequency 
is 1 Hz, and there is no phase shift, the equation for generating the 

discrete values of the sine wave is then: 

/(t) = sin(27r/t + 0)|^ 

= sin(27i(l)nT+0), n = a . . N - l 

= s in(27inT), n = O . . . N - - l Equation 3-37 

Remember that T is defined as V^. Therefore, Equation 3-37 is just 

evaluating the sine function at 0 to ^~V^ discrete points. The need 

to include T in Equation 3-37 is the reason that the digital fre-

quency was defined in Equation 3-35. 

For a signal this slow, we could probably compute the value of 

each point in real time. That is, we could compute the values as we 

need them. In practice, however, it is far more efficient to compute 

all of the values ahead of time and then save them in memory. The 
first loop of the listing in Figure 3-5 is an example of a C program to 

do just this. 

The first loop in Figure 3-5 generates the floatingpoint values of 

the sine wave. The DAC, however, requires binary integer values 
to operate properly, so it is necessary to convert the values in k to 
properly formatted integers. Doing this requires that we know the 
binary format that the DAC uses, as there are a number of different 
types. For this example, we will assume that a 0 input to the DAC 

causes the DAC to assume its most negative (-5 V) value. A hexi-
decimal value of OxFFF (that is, all ones) will cause the most posi-
tive output (+5 V). 
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#\Y\c\ude <etd\oM> 
#mc\ude <rY]athM> 

/* Define the number of samples. */ 
#define N 16 

void main() 
{ 

unsigned int DAC_values[N]; /* Values used by the PAC. */ 

double k[N]; /* Array to hold the floating point values. 7 
double pi; /* Value of pi. 7 

/* Declare an Index variable. 7 
unsigned int n; 

pi = atan(1) * 4; /* Compute the value of pi. 7 

for (n=0; n<N; n++) 
{ 
k[n] = sin(2 • pi * ((float)n/(float)N)); 
printf("%1.2f\n".k[n]); 
} 

for {n=0; n<N; n++) 

{ 
PAC_values[n] = ((k[n] / 2.0) + 0.5) * OxFFF; 
printf("%3X\n",DAC_values[n]); 
} 

// The following code is system dependent, so we have provided pseudo-
// code to illustrate the types of things that need to be done. The 
// functions wait_seconds() and Output_to_DAC() are user defined. 
// 
// while (1) /* Set up an infinite loop. 7 
// { 
// for{n=0; n<N; n++) 
// { 
// wa\t_eecor\d5 (1/ (float) N); /* Wait 1/N seconds. */ 
// Output_to_PAC(DAC_value6[n]); /* Output each value. */ 
// } 
// } 
// 
} 

Figure 3-5: C listing for generating a sine wave. 
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The floating point values in k[ ] have a range of-1.0 to +1.0. 
The trick then is to convert these values so that --1.0 maps to 0x000 
and +1.0 maps to OxFFF. We can do this by dividing all of the 
values in k by 2, and then adding 0.5. This scales the values in k 

from 0.0 to 1.0. Then, we can multiply the values in k by OxFFF. 
The result is a series of binary integers that represent equivalent 
values of the waveform. This operation is shown in the second loop 
of Figure 3-5, 

The final step is to periodically (every T = VN seconds) output 

the indexed value of/c[ ]. This step is highly system dependent, so it 

is not practical to present real code to perform the output function. 

At the bottom of Figure 3-5 is pseudocode that shows a typical 

sequence, however. 

The result is shown in Figure 3-6. The stair-step shape is the 

output of the DAC. The dashed line is the ideal sine wave. After 

passing through the smoothing filter, the actual waveform will 

approximate the ideal. 

This example is quite straightforward, but it does illustrate some 
very important concepts. One of these is, as we noted earlier, the 

concept of digital frequency vs. analog frequency. Previously we just 

defined the digital frequency as coT, where T is equal to VN seconds, 
and N is the number of samples per seconds. In many practical 
applications, however, there is really no need to keep the relation-

ship T = V̂ •̂ For example, we can just assume that T = 1. Then, all 

we really care about is the ratio ^/N; the value of T simply becomes 
a scaling factor. Another example will help illustrate the point. 

In our previous example, we built a function generator, using 
digital techniques, to output a sine wave of 1 Hz. In that example, 

the digital and the analog frequency were the same thing. Now, 
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x ~ i >| I ^ — V N second 
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Time 

0x000-̂  

Figure 3-6: DAC output for a sine wave. 

let's consider how to modify the output frequency of the function 

generator. There are actually two ways to accomplish this. 

Let's assume we want to double the output frequency, from 

1 Hz to 2 Hz. The first way to do this would be to decrease the 

time we wait to output the next sample to the DAC. For example, 
instead of waiting VN seconds to output the new value to the 
DAC, we could wait only ^jiN seconds to output the value. This 

would double the number of points that are output each second. 

Or, equivalently, we could think of this as outputting one cycle 
of the waveform in 0.5 seconds. 

The important thing to notice here is that we have not re-
evaluated Equation 3-37. We have changed the value of T but, 
as long as we understand what the implications are, there is no 
need to recompute the values of/[n]. The actual frequency output, 
interestingly enough, has nothing to do with the values computed. 
The actual (analog) frequency will match the digital (computed) 
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frequency only when the output interval between points is equal to 
VN seconds. In this sense we see that digital frequency is computa-
tionally independent of the analog frequency. 

This may seem a bit obtuse and esoteric, but it is of practical 

importance. Many DSP applications do not require real-time evalu-

ation. For example, in seismic analysis the data is recorded first, and 

then processed. Processing a sample generally takes much longer 

than the time over which the signal was recorded. A 10-second 

record, for example, may take hours or days of computation time to 

process. In such situations, the value of T is critical only in scaling 

the final results. What counts computationally is the value N. 

If this still seems a little fuzzy, don't feel too frustrated. For the 

moment, the key point we are trying to make is this: In many DSP 

applications, the number of samples per some "unit period'' determines 

how the signal is handled. Once processed^ the signal is mapped back into 

real time by a scale factor T, T may or may not be directly related to VN 
seconds. 

What is the second way to change the output frequency? We 
could leave the output interval at V̂ ^ seconds, and change the value 
of / in Equation 3-37. If we let / = 2, then Equation 3-37 becomes: 

/(t) = sin(27c/t-h0)|^ 

= sin(27i(2)nT+0), n = O...N~l 

= sin(47cnT), n = O. . .N- l 

^nn 
= sm N 

n = 0... N - 1 Equation 3-38 

Notice that there will now be two cycles in 16 points. Each cycle 

of the sine wave will only have 8 points, as shown in Figure 3-7. 
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Figure 3-7: Two cycles of a sine wave. 

This approach has the advantage that no adjustments have to 
be made to the output interval timing routines. On the other hand, 
the quality of the output waveform will vary as a function of fre-
quency. This is because the number of points per cycle varies as a 
function of frequency. A practical DSP system must balance, and 
sometimes adjust in real time, the tradeoffs between the number of 
points used per second and the time interval between each point. 

Chapter Summary 
This chapter has discussed a number of mathematical relation-

ships that are used extensively in digital signal processing. The 
emphasis has been on practical trigonometric relationships that 
are often overlooked in textbook discussions. This is particularly 

true concerning the role of complex numbers in trigonometric 
relationships. 

In DSP, complex numbers are of practical importance: they 

are at the heart of many key DSP algorithms. There is, however, 
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nothing magical about complex numbers. If we remember a couple 
of simple relationships, complex numbers can be handled as easily 
as any other number. 

Finally, we introduced the concepts of analog and digital fre-

quencies. The two are, of course, closely related. At the same time, 

they are strangely independent of each other. The analog frequency 

is often dropped in DSP calculations and the digital frequency used 

instead. Then, in the final result, the analog frequency is restored 

by scaling the digital frequency. Often this operation is left out in 

the discussion—a fact that can be very confusing. 

In the following chapters, we'll apply the concepts developed 

here. 
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Signal Acquisition 

Introduction 
In the last chapter we looked at ways to generate a signal using 

digital signal processing techniques. That discussion illustrated a 

number of key concepts that are fundamental to more sophisticated 

DSP applications. The concepts covered were the number of samples 

per period y the relationship of the sample interval to number of 

samples, and the related concept of analog vs. digital frequency. 

In this section we will carry the discussion further. We'll introduce 

the Nyquist theorem and discuss some practical considerations in 

choosing sampling rates. 

In the previous chapter we produced signals from their math-
ematical definitions. This is an important and useful area of DSP 
known as digital signal synthesis. In most practical applications, 
however, we will be acquiring a signal and then doing some manipu-
lation on this signal. This work is often called digital signal analysis. 

One of the first things we must do when we are designing a 
system to handle a signal is to determine what performance is 
required. In other words, how do we know that our system can handle 

the signal? The answer to this question, naturally, involves a number 
of issues. Some of the issues are the same ones that we would deal 
with when designing any system: 
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• Are the voltages coming into our system within safe 
ranges? 

• Will our design provide adequate bandwidth to handle 
the signal? 

• Is there enough power to run the equipment? 

• Is there enough room for the hardware? 

We must also consider some additional requirements that are 

specific to DSP systems or are strongly influenced by the fact that 

the signals will be handled digitally. These include: 

• How many samples per second will be required to handle 

the signal? 

• How much resolution is required to process the signal 

accurately? 

• How much of the signal will need to be kept in memory? 

• How many operations must we do on each sample of the 

signal? 

Stating the requirements in general terms is straightforward. 
We must ensure that the incoming analog signal is sufficiently 

bandwidth'limited for our system to handle it; the number of 

samples per second must be sufficient to accurately represent the 
analog signal in digital form; the resolution must be sufficient to 
ensure that the signal is not distorted beyond acceptable limits; 

and our system must be fast enough to do all required calculations. 

Obviously, however, these are qualitative requirements. To 
determine these requirements explicitly requires both theoretical 
understanding and practical knowledge of how a DSP system works. 

In the next section we will look at one of the major design require-
ments: the number of samples per second. 

50 



Sampling Theory 

Sampling Theory 
In Equation 3-38 the frequency of the sine wave generated was 

increased by the value of the frequency /. This had the effect of 
increasing the number of cycles in a second—at the cost of the 

number of samples per cycle. In the example, there were 16 samples 

per second. Generating a frequency of 2 Hz meant that there were 

now only 8 samples per cycle. Similarly, if the frequency had been 

increased to 4 Hz, there would be only 4 samples per cycle. 

The logical question is: How far can we carry the sequence? 

In other words, what is the maximum frequency we can handle for a 

given number of samples per second? We can get a good feeling for 

the answer by trying one more frequency: 8 Hz. Using the tools and 

techniques from Chapter 3 gives the graph shown in Figure 4-1. 

The dashed line is the expected analog signal. Notice, however, 

that all of the discrete points have a value of 0. We put a value 

of 8 into Equation 3-38, but we got out a DC value of zero. What 

went wrong? 
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Figure 4 -1 : Aliasing. 

51 



Signal Acquisition 

The answer to this question can be demonstrated for the general 
case when the frequency is equal to one-half the number of points. 
We can do this by plugging/= ^/l into Equation 3-38: 

/(t) = sin(27c/t + e)|,=^T 

= sm 2 7 t [ y ] n T + o l n = a . . N - l 

= sin(7cnNT), n = a . . N - l 

= sm , n = O. . .N-l 
y ^ N 

= sin (Tin), n = 0 . . . N - 1 Equation 4-1 

The sine function is 0 for a frequency of zero, and for integer mul' 

tiples of 71. We have therefore stumbled onto the answer to the 

question of what our maximum frequency is: The frequency must be 

less than V2 the number of samples per second. This is a key building 
block in what is known as the Nyquist theorem. We do not yet have 

all of the pieces to present a discussion of the Nyquist theorem, 

but we will shortly. 

In the meantime, let's explore the significance of our discovery a 
little further. Clearly, this is another manifestation of the difference 
between the analog frequency and the digital frequency. Intuitively, 
we can think of it as follows: To represent one cycle of a sine wave, 
what are the minimum number of points needed? For most cases, 
any two points are adequate. If we know that any two separate 
points are points on one cycle of a sine wave, we can fit a curve to 
the sine wave. There is one important exception to this, however: 
when the two points have a value of zero. We need more than two 
points per cycle to ensure that we can accurately produce the 
desired waveform. 
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From the example above, we saw that we get the same output 
from Equation 4-1 if we put in a value for / of either 0 or 8 when 
we are using 16 samples/second. For this reason, these frequencies 
are said to be aliases of one another. 

We just "proved," in a nonrigorous way, that our maximum 

digital frequency is ^/2. But what happens if we were to put in 

values for/greater than ^/2? For example, what if we put in a value 

of, say, 10 for /when N = 16? The answer is that it will alias to a 

value of 2, just as a value of 8 aliased to a value of 0. If we keep 

playing at this, we soon see that we can only generate output 

frequencies for a range of 0 to ^/i. 

Our digital frequency is defined as ^ = coT. If we substitute ^/i 

for / and expand this we get: 

Equation 4*2 

It would therefore appear that our digital frequency must be 
between 0 and n. We can use any other value we want, but if it 
is outside this range, it will map to a frequency that is within the 
range of 0 to K. However, note that we said it would ^'appear that 
our digital frequency must be between 0 and 7i." This is because 
we haven't quite covered all of the bases. 

Normally, in electronics we don't think of frequency as having 

a sign. As we saw in Chapter 2, however, negative frequencies are 
possible in the real world. Remember from that discussion that 
there is no great mystery to a negative frequency. It simply means 
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that the phase between the real and imaginary components are 
opposite what they would be for a positive frequency. In the case 
of a point on the unit circle, a negative frequency means that the 
point is rotating clockwise rather than counterclockwise. The sign 
of the frequency for a purely real or a purely imaginary signal is 
meaningful only if there is some way to reference the phase. 

The signals generated so far have been real, but there is no 
reason not to plug in a negative value of/. Since sin(-co) = -sin(co), 
we would get the same frequency out, but it would be 180° out of 
phase. Still, this phase difference does make the signal unique; 
thus, the actual unique range of a digital frequency is -n to TD. 

This discussion may seem a bit esoteric, but it definitely has 

practical significance. A common practice is to specify the perfor-

mance of a DSP algorithm over the range of-TC to K. The DSP system 

will map this range to analog frequencies by selection of the number 

of samples per second. 

The second part of demonstrating the Nyquist theorem lies 

in showing that what is true for sine waves will, if we are careful, 

apply to any waveform. We will do this in the section covering 
the Fourier series. 

Sampling Resolution 
In order to generate, capture, or reproduce a real-world analog 

signal, we must ensure that we represent the signal with sufficient 

resolution. Generally, resolution will have two characteristics: 

• The number of samples per second. 

• The resolution of the amplitude of each sample. 

The resolution of the amplitude of each sample is a system parameter. 
In other words, it will depend upon the input circuitry, how the 
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system is used, and so forth. However, the theoretical limit for the 
amplitude resolution is defined by the number of bits resolved in 
the ADC or converted by the DAC. 

The formula for determining the resolution of a system is: 

1 
r =• 

min o n •* 
Equation 4-3 

where n is the number of bits. For example, if we have a 2-bit 

system, then the maximum resolution will be: 

min -2 

Looking at this in table form shows the mapping for each of the 

possible binary values: 

Binary Value 

00 

01 

10 

11 

Weight 

0 

V3 
1 

Notice that we have expressed the weight for each possible binary 

value. As with the case of digital versus analog frequency, we can 

only express the digital value as a dimensionless number. The actual 
amplitude depends on the scaling performed by the DAC or the ADC. 
Notice that in this example we are dealing with only positive values. 
In practice there are a number of different schemes for setting 

weights. Twos complement and offset binary are two of the most 
common schemes used in signal processing. 

Let's look at a typical example. Assume that we are designing a 
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system to monitor an important parameter in a control system. The 
signal has a possible range of-5 volts to +5 volts. Our analysis has 
shown us that we must know the voltage to within ±.05 volts. How 
many bits of resolution does our system need? 

The first thing to do is to express the resolution as a ratio of 

the minimum value to the maximum range: 

' min 
min 

V 
max 

_ 0.05 volts 

10 volts 

= 0.005 Equation 4-4 

We can now use Equation 4-3 to find the number of bits. In 

practice, we would probably try a couple of values of n until we 

found the right value. A more formal approach, however, would be 

to solve Equation 4-3 for n: 

r^.„ = 
1 

mm '^n 2 " - l 

2"= — + 1 
mm 

n = log. ^ 1 ^ 

V̂  min y 
Equation 4-5 

Plugging in 0.005 for r̂ .̂̂  into Equation 4-5 yields a value for n 
of 7.651. Rounding this value up gives a value of eight bits. There-
fore, we need to specify at least eight bits of resolution for our signal 
monitor. As a side note, most calculators do not have a log2 func-
tion. The following identity is handy for such situations: 
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1 / X ln (x ) 
log|,(x) =7—77- Equation 4-6 

ln(b) 

In this example, we lightly skipped over the method for deter-
mining that we needed a resolution of 0.005 volts. Sometimes 
determining the resolution is straightforward, but sometimes it is 
not. As a general guide, you can make the following assumptions: 
Eight bits is adequate for coarse applications. This includes control 
applications that are not particularly sensitive, and signals that can 
tolerate a lot of distortion. Eight-bit resolution is adequate for low-
grade speech applications, but twelve-bit resolution is much more 
common. This resolution is generally adequate for most instrumen-
tation and control applications. Twelve-bit resolution produces 
telephone-quality speech. Sixteen-bit resolution is used for high-
accuracy requirements. CD audio is recorded with 16-bit resolution. 
It turns out that 21 bits is about the maximum practical value for 
either an ADC or a DAC. Achieving this resolution is expensive, 
so 21-bit resolution is generally reserved for very demanding appli-
cations. 

One final word is required on the subject of resolution in terms 
of the number of bits. The effect of quantizing a signal is to intro-
duce noise. This noise is called, naturally enough, the quantization 
error. The noise can be thought of as the result of representing the 
smooth and continuous waveform with the stair-step shape of the 
digitally represented signal. 

Chapter Summary 
The performance of digital signal processing algorithms is 

generally specified by frequency response over a normalized fre-
quency range of-7i to +7C. The actual analog frequencies are scaled 
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over this range by multiplying the digital frequency by the sample 
period. Accurately representing an analog signal in digital form 
requires that we convert from the digital domain to the analog 
domain (or the other way around) with sufficient resolution. In 
terms of the number of cycles, we must sample at a minimum of 
greater than twice the frequency of the sine wave. The resolution in 
terms of the amplitude depends upon the application. 
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C H A R T E •5 
Some Example Applications 

Introduction 
At this point let's take a look at where we have been and where 

we are going. So far, weVe been concerned with the mechanics of 

getting a signal into and out of our DSP system, and with reviewing 

some general math principles we will use later on. We have seen 

that we can sample a waveform, optionally store it, and then send it 

back out to the world. This is, in and of itself, a very useful ability. 

However, it represents only a small fraction of the things we can do 

with a DSP system. 

The rest of this book will be taken up with examining the 

other things that we can do. Understanding how a DSP system is 
designed and used basically requires two types of knowledge. The 
first is an understanding of the applications that lend themselves 

best to DSP. The second type is an understanding of the tools 

necessary to design the system to accommodate these applications. 

Most DSP texts, and even most engineering courses, focus only 
on the tools necessary for designing DSP algorithms. Often, there is 
little or no emphasis on why these tools are important, where they 
would be required, what practical utility they bring to the process, 
or how to start a design from a blank piece of paper. 
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This is unfortunate for a couple of reasons. One is that it leaves 
the student to trust that the mathematical discussions of the tech^ 
niques will, sometime in the future, be of some practical use. Most 
students who have tried to bring purely academic training to bear 
on real-world design problems are justifiably suspicious of this 

assumption. It reduces the motivation to understand the material 

and contributes to much of the frustration many students find in 

studying DSP techniques. 

However, we have a more immediate and practical reason for 

not liking this approach. Many of the key concepts in DSP are 

understood in terms of other DSP concepts. What this means in 

practice is that there is a critical mass of knowledge required for a 

basic understanding of the DSP techniques. In my experience, 

it is much easier to understand how the techniques and tools fit 

together if they are presented in reference to real applications. 

This provides guidance as to why a particular technique is required, 

helps to tie the techniques together in a common framework, and 

removes much of the abstraction from the process. 

With this in mind, let's now turn our attention to the subject 

of filtering, beginning with a simple filter that is easily understood 
intuitively. We will then move on to developing the tools and 
techniques that will allow us to create more sophisticated, higher-

performance filters of professional quality. 

Filters 
One of the most common DSP operations is filtering. As with 

analog filters, DSP filters can provide low-pass, bandpass, and 

high-pass filtering. (Specialized functions, such as notch filters, are 
also possible, though we will not be covering them in this book.) 
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The basic idea behind filtering in general is this: An input signal, 
generally a function of time, is input to a transfer function. Normally, 
the transfer function is a differential equation expressed as a func-
tion of frequency. The output of the transfer function is some subset 

of the input signal. 

A block diagram of a low-pass filter is shown in Figure 5-1. In 

the figure, the input signal is a sum of two sine waves: one of them 

at a fundamental frequency, the other at the third harmonic. After 

passing through the transfer function H(co) only the fundamental 

frequency remains; the first harmonic has been blocked. The top 

portion of Figure 5-1 depicts the low-pass filter as a function of time. 

The bottom portion of Figure 5-1 shows the filter as a function of 

frequency. We will be revisiting these concepts in greater detail in 

later chapters. 

m 
f ^ , 
[• w 

F(o)) 

, l l l . 

> • 

• 

hit) 

\ 

(a) Time domain 

H(co) 

aTfn, 

y{t) =f{t)*h{t) 

> • 

Y(co) = F(co) H(co) 

• _LL 
(b) Frequency domain 

Figure 5-1: The basic low-pass filter. 
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In the world of analog electronics, the transfer function H(co) 
is realized by arranging a combination of resistors, capacitors, 
inductors, and possibly operational amplifiers. In DSP applications, 
a computer is substituted for the resistors, capacitors, and inductors. 
The computer then computes the output using the input and H(co). 

The question for the DSP applications developer then becomes: 

How do we define H(co) to give us the desired transfer function? 

TTiis chapter shows, in an intuitive way, how simple digital filters 

operate. After that, several key concepts are introduced that lay 

the groundwork for developing more sophisticated filters. In the 

next chapters, we will see how to apply these tools to develop some 

practical working filters. 

A Simple Filter 
First, let s examine a simple application. Consider, for example, 

that much of the most interesting music of the twentieth century is 

stored on phonograph records. These records store their data using 

variations in the groove running from the outside of the record to 

its center. Over time, peaks in the groove can break off, or dents 
can be forced in the walls of the groove. When the phonograph 

needle hits one of these obstructions, the result is a "pop" in the 

music being played, as shown graphically in Figure 5-2. A pop is 
shown riding on an otherwise clean sine wave. 

As these records are converted to CDs or tapes, it is natural to 
look for ways to eliminate these pops, thus restoring the more 
natural sound of the recording. One obvious solution is to manually 
adjust the spike down to a level where it is consistent with the rest 

of the signal. This could be done with a waveform editor or, in this 
simple case, even with a spreadsheet program. 
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Figure 5-2: A noise "pop" on a sine wave. 

Actually, manually editing the waveform is a good approach 

since it makes use of the best signal processor in the world: the 

human brain. For critical passages, it is fairly common for a person 

to manually edit the waveform. However, this approach is quite 

labor intensive. CDs are sampled at 44 kHz, and manually searching 

44,000 points for each second of music rapidly becomes prohibitive. 

It s reasonable to find a more automated approach. 

One simple approach is to average the value on either side of 

the spike with the value of the spike. This would not eliminate the 

spike, but it certainly would minimize it. We can do this using a 
simple algorithm: 

( , ^ ) ^ / ( n - l ) + /(n) + /(n + l) 
3 Equation SA 

Table 5-1 shows what happens when we apply this averaging 
routine to the signal in Figure 5-2. Notice that we have applied the 
averager across the entire signal from n = -1 to n = 17. This has the 
effect of moving the center point along the waveform. Therefore, 
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this type of filter is known as a moving average filter. Notice that the 

table actually starts before the first sample—that is, we start evalu-
ating g{n) for n = - L This might seem a little strange, but it makes 
sense when you consider that one of the terms in g{n) is /(n + 1). 

By starting at n = - 1 , we begin evaluating the signal a t / (0) . For the 
first output value that we compute, n = - 1 , we have defined / ( -2) 

and / ( - I ) to be zero. In a 

Table 5-1 similar fashion, the value 

of/(n + 1) is defined to 

be zero when n = 16 and 

n = 17. 

The averaged values 

closely track the original 

values except at n = 4. 

For n = 4 the average 

value is much smaller 

than the input value. It 

is, in fact, much closer 

to where we want it. 

This routine does a fairly 
good job of minimizing 

the pops in a recording. 

Figure 5-3 is a graph of 
the original function 
and the output of our 

averaging routine. 

Let's look more 
closely at how and why 
this routine works. Most 

of the changes in values 

n 

-1 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

f(n) 

0.000 
0.000 

0.383 

0.707 

0.924 

2.000 

0.924 

0.707 

0.383 

0.000 

-0.383 

-0.707 

-0.924 

-1.000 

-0.924 

-0.707 

-0.383 

0.000 

0.000 

/ ( n - l ) + /(n) + /(n + l) 

3 

0.000 
0.128 

0.363 

0.671 

1.210 

1.283 

1.210 

0.671 

0.363 

0.000 

-0.363 

-0.671 

-0.877 

-0.949 

-0.877 

-0.671 

-0.363 

-0.128 

0.000 
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0 2 4 6 8 10 12 14 16 

Figure 5-3: Effects of a moving average filter. 

from one point to the next point in the original signal are relatively 

small. Therefore, for most points, the average value of the three 

points is relatively close to the center value. At n = 4 in the original 

signal, however, the value makes a large (or, equivalently, rapid) 

change. The moving average routine prevents this rapid change 

from propagating through. 

In summary, the action of the averager has little effect on 
slowly changing signals and a much larger effect on rapidly chang-

ing signals. This is equivalent to saying that low-frequency signals 

suffer little attenuation, while high-frequency signals are strongly 
attenuated. That is, of course, the definition of a lovu-pass filter. 

While it is clear that Equation 5-1 represents a low-pass filter, 
it is not clear exactly what the frequency response of the filter is. 
One conceptually simple way to find the frequency response of this 
filter is to measure the response for a variety of sinusoidal inputs. 
For example, let's divide the frequencies between 0 and n into six 
frequencies. Next, feed into the filter cosine waveforms at these 
frequencies and measure the peak output. We picked a cosine wave-
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form because it gives us a value of 1 for an input of 0 Hz, keeping 
the response consistent with a low-pass filter.^ With this informa-
tion, we can then create a table of the frequency response, as shown 
in Table 5-2. From this table we can graph the frequency response 
of our low-pass filter; the graph is shown in Figure 5-4. 

So far our development of the low-pass filter, and its response, 

has been very empirical This is often how it is done in the real 

world. For example, the financial community often makes use of 

moving averages to filter out the day-to-day variations in stock 

prices, commodity prices, etc. This filter allows the stock analysts 

Table 5-2 

Frequency 
(cosine wave 

input) 

0.000 

V5 

27t/5 

[ ^ ^ 5 

4n/^ 

n 

Response 
(peak ampli-

tude) 

1.000 

0.873 

0.539 

0.373 

0.167 

0.000 

0.0 J H 

0 ^ /5 2^/5 ^^/5 ^^/S n 

Figure 5-4: Frequency response 

of a simple fi lter. 

^ A sine function with an input of 0 Hz produces an output of 0. A cosine function 
with an input of 0 Hz produces an output of 1. Had we used a sine wave, the 0 Hz 
input value would have produced an output value of 0. This is mathematically 
acceptable, but it would not be consistent with generating test data for a low-pass 
filter. In this respect, a sine wave of 0 Hz is a bit anomalous. This situation of switch-
ing between a sine and a cosine wave is a fairly common trick in the literature. 
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to see the underlying trend of the price, without having the trend 
line distorted by transient perturbations. 

On the other hand, this empirical approach can be difficult 
to manage for more sophisticated filters. As can be seen from 

Figure 5-4, the moving average filter is not very "crisp." It gradually 

attenuates the signal as the frequency increases. Often, we are 

more interested in a "brick wall" filter, which is a filter that does 

not affect the signal at all up to a cutoff frequency, then reduces 

any higher frequency components to zero above the cutoff. 

Shortly we will look at more formal ways of developing and 

evaluating filters. But first let's explore these intuitive filters a 

little more. 

Let's revisit Figure 5-2. On our last pass the signal was the sine 

wave and the noise was the spike. It could just as easily have been 

the other way around, however. For example, one problem that 

constantly plagues engineers is the presence of the 60-Hz "hum" 

created by the ubiquitous AC power wiring. This problem generally 

manifests itself as a sine wave superimposed on top of the signal of 

interest. A typical example is a system that monitors photons. 

When a photon strikes a detector, it produces a small electrical 
pulse. The result of such a pulse on top of the 60-Hz hum would 
look like Figure 5-2. 

How can we eliminate the 60-Hz hum and leave the signal 
relatively intact? Obviously, our moving average filter will not do 

the job in this case. It does, however, suggest a solution. If we took 

the average of the points, and then subtracted this average value 

from the center value, we get the desired result. Algorithmically: 

t ^ rt \ / ( n - l ) + /(n) + /(n-hl) 
g(n) = / ( n ) - ^ ^ ; Equation 5-2 
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Table 5-3 shows the results of applying Equation 5-2 to the data 
shown in Figure 5-2. The graphical result is shown in Figure 5-5. 
Notice that the sine wave is essentially eliminated, leaving only the 
spike. Just as the moving average filter represented a low-pass filter, 
this differential filter represents a high-pass filter; the low-frequency 

Table 5-3 

n 

r î 
0 

1 

2 

3 

4 
5 

6 

7 
8 

9 

10 

11 

12 

13 

14 
15 

16 

17 
18 

fin) 

0.000 

0.000 

0.383 

0.707 

0.924 
2.000 

0.924 

0.707 
0.383 

0.000 

-0.383 

-0.707 

-0.924 
-1.000 

-0.924 
-0.707 
-0.383 

0.000 

0.000 

0.000 

/(n)-/(n-l)+/(n)+/(n+l) 

0.000 1 

-0.128 

0.019 

0.036 

-0.286 

0.717 
-0.286 

0.036 

0.019 

0.000 

-0.019 

-0.036 

-0.047 
-0.051 

-0.047 
-0.036 

-0.019 

0.128 

0.000 

0.000 
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-0.5 f 

Figure 5-5: Effects of a 
difference filter. 

sine wave is heavily 
attenuated, the high-
frequency spike 
is only moderately 
attenuated. 

These two ex-

amples illustrate in 

an intuitive way how 

digital filters work. 

In practice, most 

common digital filters 

are simply more sophisticated 

versions of these simple filters. A bandpass filter, for example, can 

be achieved by combining a low-pass filter and a high-pass filter. 

Causality 
Causality refers to whether a filter can be implemented in real 

time. This is not a very strong definition of causality, but we do not 

yet have the mathematical tools to define the term more precisely. 

What does causality mean from an intuitive standpoint? We 

can get a good idea by looking back at our moving average filter. 
Notice that for any given sample n, we used both n - 1 and n + 1 
sample points as well. If we think about n as being the current 

sample (that is, the one coming in immediately), we obviously 

have a problem. Getting the n + 1 sample means that we must 
know the future value of/. 

In our recording example, this was not a problem. Since the 
data is recorded, we can find values for points that appear, with 
respect to n, to be both in the future (n + 1) and in the past (n - 1). 
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For a real-time application, however, this is not an option; we are 
constrained to using only the current and past values of/. Filters 
that require only current and past values of a signal are called causal 

filters. Filters, such as our moving average filter, that require future 
values are called noncausal filters. As a matter of perspective, all 
real'world analog filters are causal. This is another example of the 
advantage of DSP: it allows us to build filters that could not be 
realized in any other way. 

Notice that we can make our filter causal by simply shifting the 

index back by one: 

which is equivalent to: 

. s_ / (n ) + / ( n - l ) + / ( n - 2 ) 
y\n) = Equation 5-4 

Equation 5-4 will not work quite as well as the noncausal version, 
since it is not symmetrical about the sample point. It will work 
nearly as well, however. In fact, the difference may be virtually 
undetectable in many applications. More important for our dis-
cussion is the fact that it does not significantly change our 
conceptualization of how the moving average filter works. 

Convolution 
Convolution is one of the key concepts in DSP. In its simplest 

terms, convolution is the process of feeding one function into (or 
as it is sometimes called, through) another function. Conceptually, 
for example, a filter can be thought of as a function. When we feed 
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some function (such as the one in Figure 5-2) through our moving 
average filter, we are convolving the input function with the moving 
average filter. The asterisk (*) is normally used to denote convolu-
tion: 

y [n] = f[n] * h[n] Equation 5-5 

where h[n\ are the coefficients of our filter, and/[n] is the input 

function. In our moving average filter h[n] had three coefficients 

and they were all equal to ^/3. 

Convolution is sufficiently important that it is worth developing 

the subject in detail. In the following examples, the notation will 

be somewhat simplified. Instead of using /[n], we will use the 

simpler/^. The meaning is identical. 

In review then, our moving average filter can be expressed as 

follows: 
/[n + l] + /[n] + / [ n - l ] ^ ,. , ^ 

31 [n J = Equation 5-6 

Distributing the (V3) gives us: 

y [ n ] = ^ / [ n + l ] + | / [ n ] H - i / [ n - l ] Equation 5-7 

To make the expression more general, we replace the constants 

with the function h: 

y[n] = hjin + 1] + hj[n] + hj[n - 1] Equation 5-8 

Converting to our simpler notation yields: 

^n = ^ofn^l ^ Kfn "̂  ̂ iL-l Equation 5-9 
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It is worthwhile to study the actual computation sequence that 
goes on in the filter. Let's take the first four samples of/: /Q, /p fi 

and /3. 

We start out at time n = - L The first computation is then: 

y^l ^ 0̂-̂ 0 "*" '̂ I'̂ -l "̂  ^if-l Equation 5-10 

Immediately, a problem crops up. We require values of/with a 

negative index. In other words, we need values before our first 

sample. We can get around this problem by simply defining/to 

be 0 at any point where it is not explicitly defined. Thus, for n = -1 

we obtain: 
)'_l = ^ofo Equation 5^11 

This notation is still a little awkward, since the y_^ implies that our 

first output occurs at some time prior to the n = 0 point. This is just 

a manifestation of our noncausal implementation. It really is our 

first output. 

In a similar fashion, we can get the next output for n = 0: 

= /IQ/J + /IJ/Q Equation S-IZ 

Proceeding along these lines, we obtain the results shown in 
Table 5-4. Notice the symmetry and pattern of the terms in the 
table. We have been careful to line up the terms in the equations 
to emphasize this point. With a little contemplation, we can derive 

a very compact expression for producing the terms in Table 5-4: 

oo 

y[n]= ^h[k]f[n''k] Equation5^13 
k=-oo 
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^ 1 ] = 

^[0] = 

>[1]= 

yU] --

y[3] --

>[4] = 

--¥o 
--¥i' 
'-h)h 

Table 5-4 

¥̂o 
+hi/i-t 

hh 
•hfo 

^hh 
hfi' 

+ hfo 

^hh 
hfi 

One caveat: Don't try to apply Equation 5-13 too literally to pro-

duce Table 5-4, as the n = -1 term will throw you off. If you start 

with n = 0, however, you will get the same terms shown in Table 

5-4. More formally, we can say that Equation 5-13 is valid for all 

non-negative index values of}'. 

Equation 5-13 is called the convolution surUy and we can use it 

directly to implement filters. We simply plug in the coefficients for 

h, and then feed in the values for the input function/. Obviously, 

finding the coefficients for h is of key interest. So far we have only 
been able to come up with the simple moving average filter: 

h[n] = ^,n = 0, 1, 2 . . . N - 1 
N 

Equation 5-14 

Increasing N gives more terms to average, and therefore a lower 
frequency response. Fewer terms give fewer terms to average, and 
therefore a higher frequency response. As we saw, we can empiri-
cally determine the curve for the frequency response, but we 
cannot really do much to control the shape of the curve. 

It would be much more useful if we could simply draw the 
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frequency response we wanted, and then convert that frequency 
response to the coefficients for h. That is exactly what we will do, 
but first we must develop a few more tools. 

Chapter Summary 
In this chapter we accomplished two things. First, we demon-

strated how a low-pass filter and a high-pass filter can be developed 

from a heuristic standpoint. Next, we presented one of the basic 

concepts needed to develop more sophisticated filters: convolution. 

As is generally the case in mathematics, it is difficult to appre-

ciate abstract concepts like convolution of discrete sequences without 

seeing some practical application. If these concepts don't make 

sense at this point, don't worry. As long as you got the general idea, 

you will be prepared for the work ahead. If the material is unclear 

at this point, we recommend reading ahead and looking at how 

these tools are applied. Then, if necessary, come back and reread 

this chapter. It will make more sense then. 
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C H A P "6 
The Fourier Series 

Introduction 
In this chapter we will be discussing the Fourier series. The 

Fourier series plays an important theoretical role in many areas of 

DSR However, it generally does not play much of a practical role 

in actual DSP system design. For this reason, we will spend most 

of this section discussing the insights to be gained from the Fourier 
series; we will not devote a great deal of time to the mathematical 

manipulations commonly found in academic texts. 

Background 
The Fourier series is named after the French mathematician 

Joseph Fourier. Fourier and a number of his contemporaries were 

interested in the study of vibrating strings. In the simple case of just 

one naturally vibrating string the analysis is quite straightforward: 
the vibration is described by a sine wave. However, musical instru-
ments, such as a piano, are made of many strings all vibrating at 

once. The question that intrigued Fourier was: How do you evaluate 
the waveforms from a number of strings all vibrating at once? 

As a product of his research, Fourier realized that the sound 
heard by the ear is actually the arithmetic sum of each of the indi-
vidual waveforms. This is called the principle of superposition. This is 
not such a dramatic observation and is, in fact, somewhat intuitive. 
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The really interesting thing that Fourier contributed, however, was 
the realization that virtually any physical waveform can, in fact, be 
represented as the sum of a series of sine waves. 

The Fourier Series 
Figure 6-1 shows an example of how the Fourier series can be 

used to generate a square wave. The square wave can be approxi-
mated by the expression: 

/ ( t ) = sinCOt + —sin(nQ)t ) , n = 1, 3 , 5, 7, . . . , «^ Equation 6-1 

The first term on the right side of Equation 6-1 is called the funda-
mental frequency. Each value of n is a harmonic of the fundamental 

frequency. 

Looking at Figure 6-1, we can see that after only two terms the 

waveform begins to take on the shape of a square wave. Adding 
in the third harmonic produces a closer approximation to a square 

wave. If we keep adding in harmonics, we continue to obtain a 
waveform that looks more and more like a square wave. Interestingly 

enough, even if we added an infinity of odd harmonics we would not 
get a perfect waveform. There would always be a small amount of 

"ringing" at the edges. This is called the Gibbs phenomena. 

There are some very interesting implications to all of this. The 
first is the fact that the bandwidth of a signal is a function of the 
shape of a waveform. For example, we could transmit a 1-kHz sine 
wave over a channel having a bandwidth of 1 kHz, but if we wanted 
to transmit a 1-kHz square wave we would have a problem. 

Equation 6-1 tells us that we need infinite bandwidth to 
transmit a square wave! And, indeed, to transmit a perfect square 
wave would require infinite bandwidth. However, a perfect square 
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(a) 

(b) 

(c) 

y = sin (cot) 

y = sin (cot) + - sin (3cot) 

y = sin (cot) H- - sin (3cot) + - sin (Scot) 

Figure 6-1: Creating a square wave 
from a series of sine waves. 
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The Fourier Series 

wave is discontinuous; the change from the low state to the high 
state occurs in zero time. Any physical system will require some time 
to change state. Therefore, any attempt to transmit a square wave 
must involve a compromise. 

In practice, 10 to 15 times the fundamental frequency provides 
enough bandwidth to transmit a high-quality square wave. Thus, 
to transmit our l-kHz square wave would require something like a 
10-kHz bandwidth channel. A wider channel would give a sharper 
signal, while a narrower channel would give a more rounded square 
wave. 

These observations lead to some interesting correlations. 

The higher the frequency that a system can handle, the faster it 

can change value. Naturally, the converse is true: The faster a 

system can respond, the higher the frequency it can handle. 

This information also gives us the tools to complete the 
development of the Nyquist theorem. 

The Nyquist Theorem Completed 
In Chapter 4 we demonstrated that we needed at least two 

non-zero points to reproduce a sine wave. TTiis is a necessary but 
not sufficient condition. For any two (or more) non-zero points 
that lie on the curve of a sine wave, there are an infinite number 
of harmonics of the sine wave that will also fit the same points. 
We eliminated the harmonic problem by requiring that all of our 
samples be restricted to one cycle of the sine wave. We will revisit 
this limitation in a minute, but first let's look closer at our work on 
the Nyquist theorem up to this point. 

The big limitation on our development of the Nyquist theorem 

so far has been the requirement that we only deal with sine waves. 
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By taking into account the Fourier series we can remove this 
limitation. The Fourier series tells us that, for any practical wave-
form, we can think of it as the sum of a number of sine waves. 
All we need to concern ourselves with is handling the highest 
frequency present in our signal.^ This allows us to state the Nyquist 
theorem in the form normally seen in the literature: 

To accurately reproduce a signaly we must sample at a 

rate greater than twice the frequency of the highest 

frequency component present in the signal. 

The bold emphasis is to highlight two areas that are often 
misinterpreted. It is often stated that it is necessary to sample at 
twice the highest frequency of interest. As we saw earlier, sampling 
at twice the frequency only guarantees that we will get two points 
over one cycle. If these two points occur at the zero crossing, it 
would be impossible to fit a curve to the two points. 

Another common mistake is to assume that it is sufficient to 
sample a signal at twice the frequency of interest. It is not the fre-
quency of interest, but rather the frequency present that is impor-
tant. If there are signal components higher in frequency than the 
Nyquist frequency, they will be aliased into the frequency below 
the Nyquist frequency and cause distortion of the sampled signal. 

The next logical question then is: How do we ensure that 

aliasing does not occur? The solution to this problem brings us 

back to the anti-aliasing filter. In theory, we set the cutoff frequency 
of the anti-aliasing filter just below the Nyquist frequency. This 

^ To be more precise, this is strictly true only for base-band (that is, unmodulated) 
signals. We can, in fact, exploit aliasing to demodulate a signal using a technique 
called sub-sampling. Sub-sampling is beyond the scope of this book. 
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ensures that no frequency components equal to or greater than the 
Nyquist frequency can be sampled by the rest of the system, and 
therefore no aliasing of signals can occur. This removes our earlier 
restriction that the two points be located on one cycle of the wave-
form. Tlie anti-aliasing filter ensures that this case is met for the 

highest frequency. In practice, we seldom try to push the Nyquist 

frequency. Generally, instead of sampling at twice the frequency, we 

will sample at five to ten times the highest frequency we are trying 

to capture. 

This is easiest to demonstrate with an example. Let's say that we 

are interested in building a DSP system that can record voices at 

telephone-quality levels. Generally, telephone-quality speech can 

be assumed to have a bandwidth of 5 kHz. Even though the human 

hearing range is generally defined as 20 Hz to 20 kHz, most speech 

information is contained in the spectrum below 5 kHz. 

The limiting factor on an analog voice input is generally the 

microphone. These typically handle frequencies up to 20 or 30 kHz, 

though the cheaper mikes will start rolling off in amplitude around 

10 kHz or so. Thus, there will be frequency components present 

that are well above our upper frequency of interest. An anti-aliasing 
filter is needed to eliminate these components. 

If we assume that we want to sample our signal at five times the 

highest frequency of interest, then our sampling rate would be 25 

kHz. Strictly speaking, this would dictate a Nyquist frequency of 
12.5 kHz. However, since we are not interested in frequencies this 
high, it makes sense to set the cutoff of the anti-aliasing filter at 
around 6 kHz or so. This gives us some headroom above our design 

requirement of 5 kHz, but is low enough that we will be 
oversampling the signal by a factor greater or equal to ^̂ ^ ̂ ^^6 kHz. 

This oversampling allows us to relax the performance specifications 
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Chapter Summary 

on the analog parts of the system, thus making our system more 
robust and easier to build. 

Setting the cutoff of the anti-aliasing filter well below the 
Nyquist frequency has another significant advantage: it allows us to 
specify a simpler filter with a slower roll-off. Such a filter is cheaper 
and introduces much less phase distortion. 

Chapter Summary 
The Fourier series tells us that any practical signal can be repre-

sented as a series of sine waves. This allows us to do all of our 

analysis of systems using only sinusoidal inputs—a very significant 

simplification! By looking at the harmonics of any signals that we 

wish to understand, we can gain a good understanding of the band-

width requirements for our system. This analysis allows us to specify 

the sampling rate and the practical frequency cutoffs necessary to 

implement a practical system. 
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C H A P T E R n 

Orthogonality and 
Quadrature 

Introduction 
The study of DSP can be confusing and frustrating. Hopefully, 

the material presented so far has been sufficiently clear to help 

alleviate some of this confusion and frustration. One of the areas 

that is often subject to confusion is the concept of orthogonality. 

Most DSP textbooks will at least mention the concept, but few 

actually explain it thoroughly. This is unfortunate, since orthogo-

nality is one of the basic building blocks upon which all DSP work 

is based. Without a good understanding of orthogonality, many 

DSP concepts are nearly impossible to grasp at the intuitive level. 

This subject is not particularly complicated. However, since it 
is so critical to an understanding of DSP, we will take some time to 

develop it in detail. 

Orthogonality 
The term orthogonaliVj derives from the study of vectors. 

Most likely you have run across the term in basic math courses on 
trigonometry or calculus. By definition, two vectors in a plane are 
orthogonal when they are at a 90° angle to each other. When this 
is the case, the dot product of two vectors is equal to zero: 
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"̂  • ti;2 = 0 

The main point here is that the idea of multiplying two things 
together and getting a result of zero has been generalized in mathe-

matics under the term orthogonality. 

We will get back to this shortly, but let's look at another case 

where an interesting function has a zero value: the average value 

of a sine wave. Figure 7-1 shows one cycle of a sine wave. We have 

shaded in the area under the curve for the positive cycle and the 

area above the curve for the negative cycle. Notice that the area 

for the negative portion of the waveform is labeled with a negative 

symbol. A "negative area" is a hard concept to imagine, but be 

reassured that we are simply talking about an area that has a 

negative sign in front of it. 

If we add the two areas together we will, naturally, get a value 

of zero. This may seem too obvious to bother pointing out, but it is 

just the first step. As an interesting side note, this fact was used in 

the early days of electricity to "prove" that AC voltages were of 

no practical use. Since they averaged to zero, so the analysis went, 
they could not do work! 

1.0 T 

Figure 7-1: The average area under a sine wave is zero. 
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The process of integration can be viewed as finding the area 
under a curve. Therefore, you can write this idea mathematically 
as follows, for any integer value of /c: 

clnk 
I s i n cot a t = 0 Equation 7-1 

Now, if you multiply by a constant, on both sides of the integral, 

the result is still the same: 

clnk rink 
A s m cot a t = A s m cot a t = 0 Equation 7-2 

Jo Jo 

That is, the amplitude of the waveform may be larger or smaller, 
but the average value is still zero. 

Now we come to the interesting part. What if we put in, not a 

constant, but some function of time? That is: 

j g( t ) s i n cot d t = ? Equation 7-3 

The answer naturally depends upon what our function of g(t) is. 

But as we saw in the last chapter, we really only need to worry 

about sinusoidal functions for g{t). We can extend our analysis to 

other waveforms by simply considering the Fourier representation 
of the waveform. Let's look at the specific case where g(t) = sin r|t. 

I 
Ink 

s i n r|t s in cot = 0 , r| ^̂  CO Equation 7-4 

Equation 7-4 is called the orthogonality of sines. It tells us that, 
as long as the two sinusoids do not have the same frequency, then 
the integral of their products will be equal to zero. This may be a 
little hard to visualize. If so, think back to Equation T-l. When the 
frequencies are not the same, the amplitude of the resulting wave-
form will tend to be symmetrically pushed both above and below the 
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X-axis. This may result in some strange-looking waveforms but, 
over time, the average will come out to zero. In effect, even though 
g{t) is a function of time, it will have the same effect as if it were 
the simple constant A. 

So what about the case when r| = co? If we substitute co for r| in 

Equation 7-4: 

J 'lnk rink 

sin cot sin cotat= 
0 JO 

J *2nk rink j ^ 

sin cot sin cotat= sin cotat ^ 0 Equation 7-5 
0 Jo 

2.0 
1.0 t 
0.0 

-1.0 t 
-2.0 

y = sin cot 

y = sin cot sin cot 

= sin ̂  (cot) 

l-cos(2cot) 

Figure 7-2: The average of the square of a 
sine wave is greater than zero. 
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That is, we get the sum of the square of the sine wave. When we 
square the sine waveform, we get a figure like the one shown in 
Figure 7-2. Since a negative value times a negative value gives a 
positive value, the negative portion of the original sine wave is 
moved vertically above the x-axis. The resulting waveform is 

always positive, so its average value will not be zero. 

So far the discussion has made use of analytical functions 

which are useful in developing algorithms and theoretical concepts. 

As a practical matter, however, in DSP work we are generally more 

interested in testing a sequence of numbers (the sampled signal) 

for orthogonality. At this point, we need to take a slight diversion 

through the subject of continuous functions versus discrete 

sequences. 

Continuous Functions vs. Discrete 
Sequences 

When we look at a function like y{t) = sin(27c/t) we normally 

think of it as a continuous function of t. If we were to graph the 

function, we would compute a reasonable number of points and 
then plot these points. Next, we would draw a continuous and 

smooth line through all of the points. We would therefore have a 

continuum of points for t, even though we computed the value of 
the function at a finite number of discrete points. 

In general, we can apply numerical techniques to compute a 

value for any specific function. For example, even if we cannot 

analytically solve an integral, we can still compute a specific value 
for it. From Equation 3-16: 

]f{x)dx - X / U ) A X Equation 7-6 
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We point this out because it would seem reasonable, when 
dealing with DSP functions, to adopt the same computational 
methods. Interestingly enough, we generally do not. This fact is 
not usually emphasized in most texts on DSP, and it can lead to 
some confusion. While there is not normally a large leap between 

continuous and discrete functions in mathematics, it often appears 

that there is some mysterious difference between discrete and 

continuous functions in DSP. In fact, the discrete and continuous 

forms of functions used in DSP often are different, and therefore 

have different properties. 

Here's why: In Equation 7-6 we can think of both sides of the 

equation as finding the area under the curve /. Whether or not 

we find this area by analytically solving the integral, and then 

evaluating the resulting function, or by numerically evaluating 

the right-hand side, we expect to get essentially the same answer. 

Most DSP applications involve an intensive amount of 

computation. Anything that can be done to save computation 

effort is important. Furthermore, it turns out that we are often 

only interested in relative values. In most DSP applications the 

Ax term is really just a scale factor. For these reasons, we often drop 
the multiplication by Ax. Thus, it is common to see things like: 

yc = J f{x)dx (the continuous form) 

and 

)ij = 2L fix) (the discrete form) 

Now, these two forms will not give us numerically equivalent 
results. However, surprisingly often, we don't really care. We will 
demonstrate this concept next as we develop the idea of orthogo-
nality for discrete sequences. 
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Orthogonality Continued 

The discrete form of Equation 7-3 is generally written as: 

^ x[n]sin 27C/^ = 0, if x[n] ;«t sin 
V 

2nfn\ 

Equation 7*7 

What is the significance of all this? Well, it provides us with 

a means of testing to see if the sequence x[n] was generated from 

sin(27c/n/^). This may not seem particularly useful, and in fact, in 

this form it is not particularly useful. This is the case because we 

need to know the exact phase of x[n] to make Equation 7-7 work. 

If we could remove this restriction, then Equation 7-7 would have 

more utility. It would allow us to test to see if the sequence x[n] 

contained a frequency component at the frequency /. (The impor-

tance of this will be made clear in the next chapter.) 

We would now like to remove the requirement that x[n] be in 

phase with the sine function. This is where our next key building 

block comes into play: quadrature. 

Quadrature 

The term quadrature has a number of meanings. For our pur-

poses the term is used to refer to signals that are 90° out of phase 

with each other. The classic example of a quadrature signal is the 
complex exponential: 

ê ^ = coscoH- j sin co 

This suggests that the complex exponential may be useful in our 
quest to come up with a more usable form of Equation 7-7. If we 
multiplied the sequence x[n] by the complex exponential instead 
of just the sine function, then we would have a complex sequence. 
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Since a complex number has both phase and magnitude, this allows 
us much more flexibility in dealing with the phase of the sequence 
x[n]. 

To illustrate this concept, take a look at Figure 7-3. The first 
of three possible phase relationships for the sequence x[n] is shown. 
In this case the sequence x[n] is in phase with the imaginary part 
of e^^. Figure 7'3a shows the imaginary part, and Figure 7'3b shows 
the real part of e^^. Figure 7'3c is the function for the sequence: 

x[n] = sin "TT" Equation 7^8 

Now comes the interesting part. Multiplying Figure 7'3a by Figure 

7'3c point by point and summing yields: 

Ix[n]Im(e^""^^)>0 Equation 7-9 

and the real part is: 

Equation 7'10 

We can see this by simply looking at the graphs in Figure 7-'3d 

and Figure 7'3e. In Figure 7-3d we see two interesting features. 

First, the frequency has doubled. This is not particularly relevant to 
our current argument, but it is a nice check: from any trigonometry 
book we know that squaring a sine wave should double the frequency. 

The second, and more relevant, point is that the waveform is offset 

above the x-axis. This means that the waveform has some average 
value greater than zero. 

In Figure 7-3e we see that the waveform is symmetrical about 
the X-axis. Thus, the average value is zero for the real product. 
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lm(e jcon/N> 

ReCe^'""/^) 

x[n] = s in ( i ^ ) 

x[n]lm(e^""^'^) 

x[n]Re(eJ""/'^) 

(a) 

Figure 7-3: Orthogonality: imaginary part in phase. 
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lm(ei<""/N) 

Re(eicon/N) 

x[n] = c o s | ^ j 

x[n]lm(eJ'""^^) 

c[n]Re(e-''""/^) 

(a) 

Figure 7-4: Orthogonality: real part in phase. 
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Figure 7-4 shows the opposite case. In this case, our input func-
tion (Figure 7-4c) is: 

x[n] = cos — Equation 7-11 

The sequence x[n] is in phase with the real part of e^ .̂ In this 

case: 

Z x [ n ] R e ( e J ' " " / ^ ) > 0 Equation 7-12 

as shown in Figure 7-4e. 

Now, the really interesting part of all of this is shown in Figure 

7-5. In this case, the sequence x[n\ is 45° (or, equivalently, ^4 

radians) out of phase with both the real and imaginary parts of e^ .̂ 

At first, this may seem a lost cause. However, in this case, the x[n] 

lies in the first quadrant. Therefore, a portion of the signal will 

be mapped into the real sum of the products and a portion of the 

signal will be mapped into the imaginary portions of the sum of 

the products, as shown in Figure 7-5d and Figure 7-5e. 

Figure 7-5e clearly shows this. Each has a value less than the 

equivalent case when the input signal was in phase with the real or 

imaginary part. On the other hand, the value is clearly greater than 
zero. 

We are really only interested in the magnitude of the signal, 

however, so we can take the absolute value of the sum: 

IxNe^^^/^ > 0 Equation 7-12 

The key point here is that the magnitude of the complex sum is the 

same regardless of the phase of x[n] with respect to e^ .̂ 
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Imie^"''''^) 

ReCê '""/̂ ) 

x[n] = cos |^j 

x[n]lm(eJ''""/̂ ) 

xHReCe-"^"^ )̂ 

Figure 7-5: Orthogonality: quadrature. 
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Chapter Summary 

To summarize what we have just done, if we multiply a sinusoi-
dal signal by another sinusoidal signal of the same frequency and 
phase y we can tell if two frequencies are the same. We can tell this 
because the average value of the product will be greater than zero. 
(OK, we could tell that just by looking at the two signals, too.) 

We can eliminate the problem with the phase by multiplying 
the input function by the complex exponential. When we do this, 
it does not matter what the phase of the input signal is: part of the 
signal will map into the real product, and part of the signal will map 
into the imaginary product. By taking the absolute value of the 
complex product, we get the same value as if the signal were in 
phase with one of the real or imaginary parts. 

Chapter Summary 
Orthogonality, as it applies to most DSP work, simply means 

that multiplying two orthogonal sequences together and taking 

the sum of the resulting sequence yields a result that is zero. If the 

multiplication and addition is done numerically, the result may not 

be exactly zero, but it will be close to zero with respect to the ampli-
tude of the functions. 

Orthogonality suggests some useful applications, and these are 
presented in later chapters. By itself, however, the orthogonality of 
real functions is of limited value because of an implicit assumption 
that the two functions (or sequences) are in phase with respect to 
each other. By using sequences of complex numbers, however, we 
can bypass the requirement that the functions be in phase. The use 
of complex numbers in this way is often referred to as quadrature. 

This chapter has been one of the more esoteric ones. If you 
understand the material presented here, then you are definitely 
ready to move on to the rest of the book. If it does not makes 
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sense to you, you have a couple of options. First, this type of cal-
culation is easily handled by spreadsheets. You can take a look at 
Chapter 11 for a discussion of using spreadsheets for DSP calcula-
tions. The next chapter provides a spreadsheet example based on 
the material presented here. Setting up a spreadsheet and working 

through the example will often make these concepts clear. Some-

thing to keep in mind is that this material is here to build a base 

for the subjects in the following chapters. It might be useful to 

read ahead, and then come back to this section to provide some 

perspective on orthogonality and quadrature. 
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C H A P T E R O 

Transforms 

Introduction 
In this section we will look at what transforms are and why they 

are of interest. We will then use the previous discussion on orthogo-

nality and quadrature to develop some useful transforms and their 

applications. In the next chapter, we will make use of the tools 

developed in this chapter to design practical digital filters. 

Background 
In general, a mathematical transform is exactly what the name 

implies: it transforms an equation, expression, or value into another 
equation, expression, or value. One of the simplest transforms is 

the logarithmic operation. Let's say, for example, that we want to 

multiply 100 by 1,000. Obviously the answer is 100,000. But how 

do we arrive at this? There are two approaches. First, we could have 
multiplied the 100 by 1000. Or we could have used the logarithmic 
approach: 

100x1000 =10^x10^ = 10^ 

The advantage of using the logarithmic approach is, of course, 

that we only need to add the logarithms (2 + 3) to get the answer. 
No multiplication is required. 
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What we have done is use logarithmic operations to transform 

the numbers 100 and 1000 into exponential expressions. In this 
form we know that addition of the exponents is the same as multi-

plying the original numbers. This is typically why we perform 
transforms: the transformed values are, in one way or another, easier 
to work with. 

Another common transform is the simple frequency-to-period 
relationship: 

/=VP 

This states that if we know the fundamental period of a signal, we 
can compute its fundamental frequency—a fact often used in elec-
tronics to convert between frequency and wavelength: 

L = ?X 

where L is the wavelength and A. is the speed of light. 

The frequency of a radio wave and its wavelength represent the 

same thing, of course. But for some things, such as antenna design, 

it is much easier to work with the wavelength. For others, such as 
oscillator design, it is simpler to work with the frequency. We 
commonly transform from the frequency to the wavelength, and the 

wavelength to the frequency, as the situation dictates. 

This leads us to one of the most common activities in DSP: 

transforming signals. Let's start by looking at a simple example. 

Figure 8-la shows a simple oscillator. If we look at the output of 

the oscillator as a function of time, we would get the waveform 
shown in Figure 8-lb. If we look at the output as a function of 
frequency, we would get the result shown in Figure 8-lc. Notice that 
in Figure 8-lc we have shown both the positive frequency /and the 

negative frequency - / . 
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(a) 

(b) 

- / 
0 

(DC) 

(c) 

Figure 8-1: Spectrum analysis example. 

In most electronics applications, we don't normally show the 

negative frequency spectrum. The reason for this is that, for any 

real'valued signal, the spectrum will be symmetrical about the 
origin. Notice that in Figure S-lc we can determine both the 

frequency and the amplitude of the signal. We get the frequency 

from the distance from the origin and, of course, we get the ampli-
tude from the position on the ^i-axis. 

In this simple case, it was easy to move from the time domain 

(Figure 8-lb) of a signal to tht frequency domain (Figure 8-lc) 

because we know the simple relationship: 

/=VP 

Now, what if we wanted to look at the spectrum of a more 
complicated signal—for example, a square wave? 
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We can do this by inspection from our work on the Fourier 
series. We know that a square wave is composed of a sine wave at 
the fundamental frequency, and a series of sine waves at harmonic 
frequencies. With this information, we can take a signal like the 
one in Figure S-Za and find its spectrum. The spectrum is shown 

in Figure 8-2b. 

1-1 

(a) 

V3 

V5 

- 7 / - 5 / - 3 / - / OHz / 3 / 5/ 7/ 

(b) 

Figure 8-2: Transform of a square wave. 

This process of converting from the time domain to the fre-
quency domain is called a transform. In this case, we have per-
formed the transform heuristically, using the knowledge we have 
already developed of the square wave. There are lots of applications 
for transforms. Often, it is impossible to tell what frequency compo-
nents are present by simply looking at a the time domain represen-
tation of a signal. If we can see the signal's spectrum, however, these 
frequency components become obvious. This has direct application 
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in seismology, radar and sonar, speech analysis, vibration testing, 
and many other fields. 

With all of these applications, it is only logical to come up 

with some general-purpose method for transforming a signal from 

the time domain to the frequency domain (or vice versa). 

Fortunately, it turns out that there is a relatively simple 

procedure for doing this. As you have probably already guessed, 

it makes use of the techniques from the last chapter: quadrature 

and orthogonality. Before we move on, however, we need to take 

a detour through another interesting tool: the :^-transform. 

The z-Transform 
In Chapter 3 we reviewed the Taylor series for describing a 

function. In that discussion, we pointed out that virtually any 
function can be expressed as a polynomial series. The :^-transform 
is a logical extension of this concept. 

We will start by looking at the variable Zy and the associated 

concept of the :^'plane. Next, we will give the definition of the 
:^'transform. We will then take a look at the :^'transform in a more 

intuitive way. Finally, we will use it to derive another important 

(and simpler) transform: the discrete Fourier transform (DFT). 

The variable :̂  is a complex quantity. As we saw in Chapter 3, 

there are a number of ways of expressing a complex number. While 
all of the methods are interchangeable, some work better in certain 
situations than others, and the :^-transform is no exception. Thus, 
the variable z is normally defined as: 

Z-re^^ Equation 8̂ 1 

In words, any point on the :^'plane can be defined by the angle 
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formed by e^ ,̂ located r units from the origin. Or, more succinctly, 

the point P is a function of the variables r and co. This concept is 

shown graphically in Figure 8-3.^ 

^' 
/ / / 

Im(?) 
/ 
/ 
/ 

/ 
1 
1 

i 
\ 
\ 
\ \ \ \ \ \ \ 

\ 

~~ i 

; -..^^ 

/ \ / \ 

y 
/ CO \ 1 

/ 1 1 
Re(0 ; 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ 
y 

Figure 8-3: The z-piane. 

Now, let's look back at the Taylor series: 

n=0 

This is a real-valued function that expresses the value of/(x) in 

terms of the coefficients a ,̂ and the variable x raised to a corre-
sponding power. With only minimal effort, we can generalize this 
expression to a complex form using Equation 8-1: 

^ If this is a little confusing, it might help to compare Figure 8-3 with Figure 3-2. 
They are really the same thing; only the nomenclature has changed. 
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fiz) = X ^n^" Equation 8-2 

where a^ is the input sequence. 

Interesting, but what does this have to do with signal process-

ing? Well, as we have seen so far we are normally dealing with 

signals as sequences of discrete values. It turns out that there are 

some analytical advantages to using negative values for n, but 

otherwise it does not make any difference to the overall discussion. 

For example, let's say we have an input sequence: 

a[n] = {3,2,1} 

We could express this sequence, using Equation 8-2, as: 

f[z] = 3:^^ + 2z~^ + U"^ Equation 8-3 

Now, why we would want to do this probably isn't clear, but we will 

get to this in a minute. In the meantime, let's look at one of the 

often cited attributes of the :^-transform. There is a very interesting 

property of a series called the shifting property. For example, we 
could shift the sequence x[n] to the sequence x[n + 1]. This would 
then produce a function: 

g[z]=^Z^ -^ 2z^ + Z~^ Equation 8-4 

Obviously f[z] is not equal to gk] . 

For example, if we let z = 2, then: 

f[2] = 3 x 2 0 + 2 x 2 - 1 + 1 x 2 - 2 

= 4.25 
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and: 

g[2] = 3x21 + 2 x 2 0 + 1 x 2 - 1 

= 8.5 Equation 8-5 

If we look at these two values we might notice that y [2] is equal to 

half the value of g[2]. And, not coincidentally, z~^ is also equal to 

0.5. In fact, in general: 

Y[z] = z-'G[z+l] 

where the capital letter indicates the :^'transform expression of the 
function. The relationship demonstrated in Equation 8-5 is called 
the shifting theorem. 

The shifting theorem is not as mysterious as it might seem at 
first glance if we remember that multiplying by variables with 
exponents is accomplished by adding the exponents. Thus, multi-
plying by z~^ is really the same as decrementing the exponent by 1. 
Indeed, the exponent is often viewed as the index of the sequence 
—just like a subscript. 

The shifting theorem plays an important role in the analytical 
development of functions using the :^'transform. It is also common 

to see the notation z~^ used to indicate a delay. We will revisit the 

shifting theorem when we look at the expression for the IIR filter. 

Now, for a more direct application of the :^'transform. As we 
mentioned earlier, we can think of :̂  as a function of the frequency 
CO and magnitude r. If we set r = 1, then Equation 8-2 reduces to: 

oo 

Y{z)= X ^n^"". letting r = l 
n=—oo 

Y[e-n= X ^ n e - ^ ' " " / ^ Equation 8-6 
n=-oo 

104 



The Z'Transform 

The left side of Equation 8-6 is clearly an exponential function 
of the frequency co. This has two important implications. First, 
a graph of Y as a function is nearly impossible: it would mean 
graphing a complex result for a complex variable, requiring a four-
dimensional graph. A second consideration is that, effectively, 
the expression Y[e~^ ]̂ maps to the unit circle on the :^-plane. For 
example, if we have co = 0: 

Y[e-^^] = Y[cosO+jsinO] = Y[l,0] 

or if CO = ̂ /4, then 

Yle-^^] = Y | c o s ~ - / s i n - | = : Y 
71 . . 7C 

COS ] s m — 

4 4 

V | V_2 
2 ' 2 

In our discussion of orthogonality, we pointed out that the 

function Y, because it is complex, has information about both the 
phase and magnitude of the spectrum in the signal. Sometimes we 

care about the phase, but often we do not. If we do not care about 

the phase, then we get the amplitude by taking the absolute value 

ofY 

We can make a further simplification to Equation 8-6. It is 

acceptable to drop the e~^^ term and express Y simply as a function 
of co.Therefore, we generally express Equation 8-6 as: 

Y(C0)= X Xlnle-^'-"^^ Equation 8-7 
n=—oo 

Believe it or not, we are actually getting somewhere. Notice that 
the right side of Equation 8-7 is familiar from our discussion of 
orthogonality. With this revelation we can translate the action of 

Equation 8-7 into words: 
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Let's assume we have an input signal sequence {x[n]}. 

We can determine if the signal has a frequency component 

at the frequency co by evaluating the sum in Equation 8-7. 

If we do this for values of co ranging from -n to n we will 

get the complete spectrum of the signal. 

Equation 8-7, when evaluated at the discrete points cô  = ^^^/N, 

/c = 0, 1... N - 1 , is commonly called the discrete Fourier transform 

(DFT). It is one of the most common computations performed 

in signal processing. As we noted above, it allows us to transform 

a function of time into a function of frequency. Or, equivalently, 

it means we can see the spectrum of an input signal by running it 

through the DFT. 

Application of the DFT 

We will pull this all together with an example. First, we will 

generate a signal. Since we are generating the signal we will know 

its spectrum; it's always nice to know the correct answer before 

setting out to solve a problem. Next, we will use the DFT to com-

pute the spectrum, and then see if it gives the answer we expect. 

For this example, we will set everything up using a spreadsheet. 
We could use the accompanying DSP Calculator software, but the 
spreadsheet gives us more insight into what is happening. Table 8-1 

shows how we generate the signal. It is composed by adding together 

two separate signals: 

/n = sin 

g„=(0.5)sin 

2nhn 
N 

\2nhn 
N 

,h 

n 
4 

and 

U = 4 
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where h is used to de-
note the frequency in 
cycles per unit time. 
Notice that the first 
component (/) and the 
second component (g) 
are out of phase with 
each other by 90° (^4). 
This will help illustrate 
why we need to use 
complex numbers in 
the computation. 

The resulting wave-

form is shown in Figure 

8-4. In Figure 8-5 we 

can see the spectrum 

for the signal. We can, 

of course, draw the 
spectrum by simple 

inspection of the two 
components. But let's 

see if the DFT can give 

us the same information 
via computation. 

1 " 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
|30 
31 
32 

Table 8 -1: Signal generation. 

f = sln(27i(2)n/N) i g = sin(27t(4)n/N4-7i/4)/2 
0.000 [ 0.354 
0.383 1 b.506 
0.707 1 0.354 
6.924 

1 1.000 
0.924 
0.707 
0.383 
0.000 
-0.383 
-0.707 
-0.924 
-1.000 

0.000 
-0.354 
-6.500 
-0.354 
0.000 
0.354 
6.560 
0.354 
0.000 
-0.354 

-0.924 1 -0.500 
-0.707 1 -0.354 
-0.383 j 0.000 
0.000 1 0.354 
0.383 0.500 
0.707 i 0.354 
6.924 i 0.666 
1.000 : -0.354 
6.924 ! -0.566 

L_ 0.707 j -0.354 
0.383 1 0.000 
0.660 1 6.354 

I -0.383 1 0.500 
-0.707 1 0.354 
-0.924 0.000 
-1.000 -0.354 
-0.924 ' -0.500 
-0.707 i -0.354 
-0.383 1 0.000 
6.666 1 0.354 

0.354 
0.883 
1.061 
0.924 
0.646 
0.424 
0.354 1 
0.383 
0.354 
0.117 

-0.354 
-0.924 
-1.354 
-1.424 
-1.061 
-0.383 
0.354 
0.883 
1.661 
0.924 
0.646 
0.424 
0.354 
0.383 
0.354 
0.117 

-0.354 
-0.924 
-1.354 
-1.424 
-1.061 
-0.383 
0.354 1 

Figure 8-4: Composite waveform. 
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1.0 

+0.5 
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16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16 

-n n 
Figure 8-5: Spectrum for the signal in Figure 8-4. 

In Table 8-2 we have set up the DFT with a frequency of zero. 

In other words, we are going to see if there is any DC component. 

As you can see, the real part of the sum is small and the imaginary 

part of the sum is zero, so of course the absolute value is small. We 

can repeat this for any frequency other than / = 2 or / = 4 and we 

will get a similar result. So let's look at these last two cases. 

Tables 8-2, 8-3, and 8-4 are set up to show the index n in the 

first column. The second column is the signal/+g. The third column 

is Re(e-^^^N)^ ^^^ ^^e fourth column is Im(e-^^N) j ^ e fifth col-

umn is Re(/^e"^^^^). The sixth column is, naturally, Im(/^e~^^^^). 

For Y[2] we would expect to get a large value, since one compo-

nent of the signal was generated at this frequency. Since the signal 

was generated with the sine function, we would expect the value to 

be imaginary. This is exactly what we see in Table 8-3. The value 

we get is not 1, but by convention, when we plot the spectrum we 

normalize the largest value to 1. 

The actual value in Table 8-3 is 16.0. This is a dimensionless 
number, not really corresponding to any physical value. If we had 
used a larger number of samples, the number would have been 

larger. Correspondingly, a smaller number of samples would have 
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given us a smaller value. By normalizing the value, we account for 

this variation in the signal length. With this caveat in mind, we 
can think of the normalized value as the amplitude of the signal. 

Table 8-2: DFT with frequency = 0. 

1 " 
0 
1 
2 
3 

1 4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

1 ^^ 
1 19" 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

f+g 
0.354 
0.883 
1.061 
0.924 
0.6"4'6 
0.424 
0.354 
0.383 
0.354 
0.117 
-0.354 
-0.924 
-1.354 
-1.424 
-1.061 
-0.383 
0.354 
0.883 
1.061 
0.924 
0.646 
0.424 
0.354 
0,383 
0.354 
0.117 
-0.354 
-0.924 
-1.354 
-1.424 
-1.061 
-0.383 

; - -

cos(27c(0)n/lSI) 
1.000 
1.000 
1.000 
1.000 

' 1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
i.dod 
1.000 
1.000 
1.000 
1.000 
1.00.0 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

sin(27c(0)n/N 
0.000 
0.000 
0.000 
0.000 
o.odo 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 1 
0.000 
0.000 j 
0.000 
o.doo 
0.000 
0.000 
o.odd ' 
0.000 

1 0.000 
o.ood 
0.000 
0.000 
0.000 
o.ddo 
0.000 
0.000 
0.000 
0.000 
0.000 
sum = 

abs(sum) = 

Real Part 
0.354 
0.883 
1.061 
0.924 
0.646 
0.424 
0.354 
0.383 
0.354 
0.117 

" -0.354" 
-0.924 
-1.354 
-1.424 
-1.061 
-0.383 
0.354 
0.883 
1.061 
0.924 
0.646 
0.424 
0.354 
0.383 
0.354 
0.117 
-0.354 
-0.924 
-1.354 
-1.424 
-1.061 
-0.383 

0 
0 

Imag. PaTt] 
0.000 
O.doo 
0.000 
0.000 
d.ooo 
o.odo 
0.000 
0.000 
0.000 
o.doo 
o.ooo'" 1 
0.000 
0.000 
0.000 1 
0.000 
0.000 
o.ood 
0.000 
0.000 
0.000 
0.000 
0.000 
o.ood 
d.ood 
0.000 
o.odo 
d.ood 
0.000 
0.000 
o.ddo 
0.000 
0.000 

0 
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What can we expect for the transform of the second frequency 
component? Since the first component had a non-normalized value 
of 16, we would expect the second frequency component to have 
a value of 8. Further, since the second component was generated 
with a ^/^ phase shift, we would expect this value to be distributed 

between the imaginary and the real components. 

Table 8-3 

1 " 0 

1 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 ""' 
26 
27 
28 
29 
30 
31 

f+g 
0.354 
0.883 
1.061 
0.924 
0.646 
0.424 
0.354 
0.383 
0.354 
0.117 
-0.354 
-0.924 
-1.354 

" -1.424 
[ -1.061 

-0.383 
0.354 
0.883 
1.061 
0.924 
0.646 
0.424 
0.354 
0.383 

r 6.354 
0.117 
-0.354 
-0.924 

1 -1.354 
-1.424 
-1.061 
-0.383 

cos(27c(2)n/N) 
1.000 
0.924 
0.707 
0.383 
0.000 
-0.383 
-0.707 
-0.924 
-1.000 
-0.924 
-0707 
-0.383 
0.000 

~0.'383 
0.707 
0.924 
1.000 
0.924 
0.707 
0.383 
0.000 
-0.383 

" -a707 
-0.924 
-1.000 
-0.924 ^ 
-0.707 
-0.383 
0.000 
0.383 
0.707 
0.924 

sin(27c(2)n/N) 
0.000 
0.383 
0.707 
0.924 
1.000 
0.924 
0.707 
0.383 
0.000 
-0.383 
-0.707 
-0.924 
-1.000 
:oT924 " 
-0.707 
-6T383 

1 0.000 
0.383 

"0.707 
0.924 
i"oo6' 
0.924 
0.707 
0.383 
0.000 " 
-0383 
-0.707 
-0.924 
-1.000 

' -0.924 
-0.707 
-0.383 
sum = 

abs(sum) = 

Real Part 
1 0.354 

0.815 
0.750 
0.354 
b.ooo 
-0.162 
-0.250 " 
-0.354 
-0354 
-0.108 
0̂ 250 
0.354 
0.000 
-0.545 
-0.750 
-0.354 
0.354 
0.815 
'0.750 
0.354 
o7ooo'" 
-0.162 
-0.250 
-0.354 

"-0.354 
-0.108" 
0.250 
0.354 
0.000 

'"-0.545 
-0.750 
-0.354 
0.000 

16 

Imag. Part 
0.000 
0.338 
0.750 
0.854 J 
0.646 1 
0.392 1 

' 0 ^ 0 
0.146 

"6.000 
-0.045 
0.250 
0'854 
1.354 1 
i;315" 1 
0.750 
0.146 
0.000 
6.338 

" 0.750 1 
0.854 J 

1 0.646 \ 
0.392 
0.250 
0.146 
0.006 1 

"-6.045 1 
0.250 
0.854 
1.354 

" 1̂ 315 
0.750 
0.146 

16 
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In Table 8-4 we evaluate Y[4], and we see that we get exactly 

what we would expect. 

Table 8-4 

1 " 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

f*g 
0.354 
0.883 
1.061 
0.924 
0.646 
0.424 
0.354 
0.383 
0.354 
0.117 
-0.354 
-0.924 
-1.354 
-1.424 
-1.061 
-0.383 
0.354 
0.883 
1.061 
0.924 
0.646 
0.424 
0.354 
0.383 
0.354 
0.117 
-0.354 
-0.924 
-1.354 
-1.424 
-1.061 
-0.383 

cos(2ji(4)n/N) 
1.000 
0.707 
0.000 
-0.707 
-1.000 
-0.707 
0.000 
0.707 
1.000 
0.707 
0.000 
-0.707 
-1.000 
-0.707 
0.000 
0.707 
1.000 
0.707 
0.000 
-0.707 
-1.000 
-0.707 
0.000 
0.707 
1.000 
0.707 
0.000 
-0.707 
-1.000 
-0.707 
0.000 
0.707 

sin(2»(4)n/N^ 
0.000 
0.707 
1.000 
0.707 
0.000 
-0.707 
-1.000 
-0.707 
0.000 
0.707 
1.000 
0.707 
0.000 
-0.707 
-1.000 
-0.707 
0.000 
0.707 
1.000 
0.707 
0.000 
-0.707 
'-lOOO" 
-0.707 
0.000 
0.707 
1.000 
0.707 
0.000 
-0.707 
-1.000 
-0.707 
sum = 

abs(sum) = 

Real Part 
, 0.354 
i 0.624 

0.000 
-0.653 
-0.646 
-0.300 
0.000 
0.271 
0.354 
0.083 
0.000 
0.653 
1.354 
1.007 
0.000 
-0.271 
0.354 
0.624 
0.000 
-0.653" 
-0.646 

"^.300 
aoob 
0.271 
0.354 
0.083 
0.000 
0.653 
1.354 
1.007 
0.000 
-0.271 
5.657 

8 

Imag. Part 
0.000 
0.624 
1.061 
0.653 
0.000 
-0.300 
-0.354 
-0.271 
0.000 
0.083 
-O.354J 
-0.653n 
6.606 
1.667" 
1.061_1 
6.27TI 
0.000 
0.624 

'""1.66I 
"67653" J 
'6.OO6JI 
-0.300 1 
-0.354 
-0.271 
0.000 
0.083 
-0.354 
-0.653 
0.000 
1.007 
1.061 
0.271 
5.657 

Hopefully, this discussion has been sufficiently clear to demon-

strate the basics. If it seems a little fuzzy, it is probably a good idea to 

work it through. Using a spreadsheet application, try to reproduce 
the tables in this section. Try different values. A little bit of this 
kind of work will usually help bring the concepts into clearer focus. 

In later chapters, we will see additional uses for the DFT. But 
for now, let's just point out some characteristics of the DFT. First, 
the DFT works in both directions: if we feed the spectrum of a 
signal into the DFT, we will get the time domain representation 
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of the signal out. We may have to add a scaling factor (since we 
normalized the DFT). Sometimes the DFT with this normalizing 
factor is called the inverse discrete Fourier transform (IDFT), (Re-
member that this inversion applies only to the DFT. It is not true 
for the more general :^'transform.) 

Next, we'll look at two other transforms: the Fourier transform 

and the Laplace transform. Both are covered here briefly. We are 

discussing them primarily to make some important comparisons 

to the DFT and their general relationship to signal processing. 

The Fourier Transform 
Considering that we just discussed the discrete Fourier trans-

form, we might gather that the Fourier transform is simply the 

continuous case of the DFT. One of the confusing things in the 

literature of DSP is that, in fact, the DFT is not simply the numerical 

approximation of the Fourier transform obtained by using discrete 

mathematics. This goes back to our previous discussion about 

continuous versus discrete functions in DSP. 

This is why we approached the DFT via the :^-transform. It 

really is a special case of the :^-transform, and therefore the deriva-
tion is more direct. In the DFT, as in the :^-transform (or any power 
series representation), we are working with discrete values of the 

function. When we move to the continuous case of the Fourier 

transform, we are actually working with the integral of the function. 
Geometrically, this can be thought of as follows: The discrete form 
uses points on the curve of a function. The continuous form makes 

use of the area under the curve. In practice, the distinction is not 
necessarily critical. But it can lead to some confusion when trying 
to implement algorithms from the literature, or when studying the 
derivation of certain algorithms. 

112 



Properties of the Fourier Transform 

The forms of the DFT and the Fourier transform are quite 
similar. The Fourier transform is defined as: 

oo 

H(co) = J /(t) e'^'^^dt Equation 8-8 
—oo 

The Fourier transform operator is often written as F: 

H((o) = F(/(t)) 

or, equivalently: 

x(t) <=> X(co) 

It is a fairly uniform convention in the literature to use lower-

case letters for time domain functions and uppercase letters for 
frequency domain functions. In this book, this convention is 

followed. 

Properties of the Fourier Transform 
Table 8-5 presents a table of the common mathematical 

properties of the Fourier transform. These properties follow in 
straightforward fashion from Equation 8-8. For example. Property 1 

states that: 

oo 

aH((o) = a\ fit) e'^'^'dt = F(a/(t)) 
—oo 

where a is an arbitrary constant. 

It is worth noting that, as with the geometric series discussed in 

Chapter 3, the shifting operation applies to the Fourier transform: 
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This property is rarely used with relationship to the Fourier 
transform. It is pointed out here because of the significance it 
plays in the relationship to the ^[-'transform discussion presented 
earlier. 

A number of other properties of the Fourier transform are 

pointed out in Table 8.5. Some of these properties, such as the 

homogeneity property discussed above, follow fairly naturally. 

Other properties, such as convolution, have not yet been discussed 

in a context that makes sense. These properties will be discussed 

in later chapters. 

Table 8-5: Some properties of the 
Fourier transform. 

Property 

1 Homogeneity 

2 Additivity 

3 Linearity 

4 Differentiation 

5 Integration 

6 Sine Modulation 

7 Cosine Modulation 

8 Time Shifting 

9 Time Convolution 

10 Multiplication 

Time function 

fit) 

ax(t) 

xit)+)it) 

oxiO + byit) 

S*(0 
L^i)dt 

x(/)sin((DoO 

x(Ocos(©oO 

xil-x) 
\l^h(t-x)x{z)dt 

xitM) 

11 Time and Frequency Scaling jc(̂ ),(2 > 0 

12 Duality 

13 Conjugation 
m 
x*(0 

Fourier transform 
X(co) 

aX((i>) 

jr(co)+y((o) 
aX{(o) + bY{(s>) 

0<i>rX(m) 

fi-fi^(0)6W 

j[AX(o -coo) +Xi(o +<0o)] 

\[Xi(o-(i}Q)-X(w+(iio)] 

e-J'o^Xioi) 

H((Si)Xi(o) 

l1X(w)Y(oi-X)dk 

a(Xa(Q) 

xirf) 

X*(rf) 
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The Laplace Transform 
The Laplace transform is a natural extension of the Fourier 

transform. Typically, the Laplace transform does not play a direct 
role in DSP applications. However, it is being discussed here for 
several reasons. 

One reason is simply to provide completeness of the discussion 

of transforms in general. Another is the fact that the Laplace trans^ 

form is often used in many electronics applications that have analo' 

gous DSP operations. For example, analog filters are often evaluated 

using the Laplace transform. 

± 

(a) (b) 

Figure 8-6: Damped LRC circuit. 

Before we look at the Laplace transform, let's consider what 
inspires us to go beyond the Fourier transform. As noted earlier, 
the Fourier transform can be used to generate almost any wave^ 

form from a series of sinusoidal signals. Some signals, however, are 

either difficult or mathematically impossible to model efficiently. 
Consider, for example, the case of an LRC circuit, as shown in 
Figure 8-6. The general response of this circuit is a second-order 
differential equation: 

L—7-+R--^ + —= <u 
dt' dt C 

Equation 8*9 
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V(t) will have the general solution: 

Ke^e^^ Equation 8-10 

The circuit response for the underdamped case is also shown in 

Figure 8-6. Notice that Equation 8-10 simply states what most 

electrical engineers know intuitively: the response is a damped sine 

wave. Mathematically, that is a sinusoid multiplied by an exponen-

tial function of time. In other words, the output will simply be a 

"ringing waveform"—a sine wave whose amplitude diminishes 

exponentially over time. 

Solving (or mathematically modeling) something like this with 

the Fourier transform quickly becomes difficult. The sinusoidal 

components of the Fourier series are all uniform in amplitude over 
time. This, naturally, suggests that we expand our definition of the 

Fourier transform to include an expression something like the one 

shown in Equation 8-10. This gives us: 

CX) 

L(x{t)) = J X(t) e^^e-^^^dt Equation 8-11 

0 

Notice that this is just our definition of the Fourier transform 

with the addition of the e"̂  term. In fact, if you set a equal to zero, 
then Equation 8-11 reduces back to the Fourier transform. Gener-
ally, Equation 8-11 is simplified by defining a complex variable 

s = a + jco. With this substitution. Equation 8-11 then becomes: 

oo 

L(x{t)) = X(s ) = J x(t) e~'Ut Equation 8^12 

0 

This is the classic definition of the Laplace transform. One very 
interesting aspect of the Laplace transform is that it provides a 
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handy means of solving differential equations, analogous to using 
logarithms to perform multiplication by adding the exponents. 

• First, the individual functions are converted to an expres-

sion in the variable s via the Laplace transform. 

• Next, the overall system equation is solved algebraically, 

m Then, the solution is converted back from a variable in s 

to a variable in t by the inverse Laplace transform. 

For example, an inductor become sL, and a capacitor becomes 

VsC- ^^^ l^^P equation for the circuit shown in Figure 8-6 then 

can be expressed as: 

sU{s) + Rl (s) + -— I{s) = V(s) Equation 8^13 
Cs 

Equation 8-13 is mathematically equivalent to Equation 8-9. 

Notice, however, that Equation 8-13 is an algebraic expression; 

there are no differential operators required. 

As we noted earlier, the Laplace transform is not often a direct 
player in DSP applications. Therefore, the development here is 

kept very brief.^ In future chapters, however, we will occasionally 

return to the Laplace transform to make some comparisons and 

analogies, and to remove some points of confusion between the 
Laplace transform and the :^-transform. 

^ For an excellent discussion of the practical use of the Laplace transform, see 
Network Analysis with Applications, by William D. Stanley, Reston Publishing, 
Reston, Virginia, 1985. For a good general discussion of the Laplace transform 
as it applies to engineering, see Complex Variables and the Laplace Transform 
for Engineers, by Wilbur R, LePage, Dover Publications, Inc., New York, 196L 
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Chapter Summary 
In this chapter the concept of orthogonality and quadrature 

have been developed into the discrete Fourier transform (DFT). 
From there, we moved to the Fourier transform. The Fourier 

transform was shown to map a function of time into a function of 

frequency. This is just the mathematical equivalent of a spectrum 

analyzer. The Fourier transform was then expanded into the Laplace 

transform. 

The last two chapters have of necessity been rather mathe-

matically oriented. It was necessary to first build the tools that we 

will use in the following chapters. Unfortunately, this rather mathe-

matical orientation sometimes makes it hard to grasp the concepts 

at an intuitive level. As the remaining subjects that actually make 

use of this material are introduced, it will become easier to see the 

relevance. At that point, it may be a good idea to come back and 

reread these sections. 
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FIR Filter Design 

Introduction 
In the previous chapters we developed a number of tools for 

working with signals. In order to keep the discussion as tight as 

possible, these tools were generally presented in a context where 

they could be understood independently. Convolution, for 

example, was presented as a generalization of the moving average 

filter. In a similar manner, the DFT was shown to be a tool that 

mapped a function of time (the signal) to a function of frequency 

(the signaPs spectrum). We also pointed out, though we did not 

demonstrate it, that the DFT was a reversible function: given a 
signal's spectrum, we could use the DFT to get the signal. 

It is now time to start tying these tools together to develop a 

more sophisticated methodology for filter design. Actually, we 

have all the parts, so let's see how we can arrange them to make a 

practical design. 

Normally, we think of a filter as a function of frequency. That is, 
we draw a graph showing what frequencies we want to let through 

and what frequencies we want to block. Such graphs are shown in 
Figure 9-1, where we show the three most common types of filters: 
the low-pass, bandpass, and high-pass filter. 
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Gain 
II H(a)) 

Frequency, co 

(a) Low-pass 
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Gain 

ll H(to) 

-n 
Frequency, co 

(b) Bandpass 

^/2 K 

H((o) 
Gain 

11 H(co) 

-7t -^ /2 0 
Frequency, co 

(c) High-pass 

^/2 71 

Figure 9-1: Three standard filters. 
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What is an FIR Filter? 

In Chapter 5 we looked at the simple moving average filter. 
We saw how we could implement it as a convolution of the input 
signal x[n] with the filter function /i[/c], where h[k] = ^/k. We found 
h[k] by a purely intuitive process. However, we could also find the 
function h[k] directly from the DFT. 

This provides us with a simple and direct way of generating a 

filter: we define a filter as a function of frequency H[co]. We then 
use the DFT to convert H[co] to the sequence h[k]. Convolving h[k] 

with x[n] will then give us our filter output y[n]! This is another way 

of looking at the corollary that convolution in the time domain is 
equivalent to multiplication in the frequency domain. We will look 

at a practical example, using the DSP Calculator software, shortly. 
First, however, let's point out that a filter of this type is called a 

Finite Impulse Response filter, or FIR. Let's explore a few of the 
characteristics of the FIR. 

What is an FIR Filter? 

The simplest example of a causal FIR filter is our simple moving 
average filter. As we noted in Chapter 5, the moving average filter 

can be generated by convolving the input sample x[n] with the 
transfer function h[n]. In the general form, an FIR filter then is: 

L 

yM = X MlT^)^(^ - ^ ) Equation 9-1 
n=0 

where L is the length of the filter, and m and n are indexes. 

FIR filters get their name from—naturally enough—the way 
they respond to an impulse. For our definition, an impulse is an 
input of value 1 lasting just long enough to be sampled once and 

only once. If the response of the filter must be finite, then the filter 
is an FIR. From a practical point of view, a finite response means 
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that, when excited by a unit impulse, the filter's output will return 

to zero in a reasonable amount of time. 

Our simple averaging filters are examples of non-causal FIR 

filters; given an impulse input, the output will eventually return to 

zero. As long as the response must return to zero for an impulse 

input, the filter is classified as an FIR. TTie other major type of filter 

is the Infinite Impulse Response (IIR) filter. As we will see, an IIR 

filter may return to zero for an impulse response, but its architecture 

does not require this to happen. 

One helpful way of looking at an FIR filter is shown in Figure 

9-2. This type of architectural drawing is generally called diflouj 

diagram. As the name implies, a flow diagram sketches the flow of 

the signal through the system. Notice that the input sequence is 

shown in what may—intuitively—appear to be the reverse order. 

In practice, this format is simply showing that/Q is the first sample 

of the input sequence. The opposite, but more common, conven-

tion is used on the output sequence y. 

Several other things in Figure 9-2 deserve comment. The square 
boxes represent multiplication and the arrows represent delay. Each 
box is commonly called a tap. In this drawing, we have been careful 
to show two outputs. The output on the bottom of the box is the 
product of the input sequence and h{n). For the first box, and the 

fvfvfo 

u OJO hilo ^2/0 

^0>^1>^2 

Figure 9-2: Standard architecture for an FIR filter. 
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first computation cycle, this would be h^/^. The output from the 
right side of the box is just the input delayed by one cycle time. 
The output of the second box would be h^f^ after the second cycle 
of computation. 

The symbol z~^ is the standard notation for a unit delay. The 
circle represents summation, and the output of the summation is 
the output of our filter. 

The simple averaging filter from the last chapter is implemented 

by setting h{n) = V3 for n = 0, 1, 2. Notice that the flow diagram 

then exactly mimics both the simple averaging routine and the 

more elaborate convolution sum. It is also worth noting that the 

flow diagram works equally well for either a software or a hardware 

implementation. Normally, an FIR filter is implemented in soft-

ware. However, for systems that require the fastest performance, 

there is no reason that the multiplication and addition cannot be 

handled by separate hardware units. 

In the real world, when we sit down to design a filter we are 

usually most concerned with the frequency response. Other con-

siderations are also important, but they are generally second-order 

concerns. These additional characteristics include such things as 
the stability of the filter, phase delay, and the cost of implementing 
the filter. It is worthwhile to look at these second-order concerns 

before we proceed to a discussion of designing with FIR filters. 

Stability of FIR Filters 
One of the great advantages of the FIR filter is that it is inher-

ently stable. What this means in practice is that, regardless of what 

signal we feed into an FIR filter or how long we feed the signal in, 
when we set the input to zero the output will eventually go to zero. 
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This conclusion becomes obvious when we think through 
what the filter is doing. Since it is just multiplying and adding up 
various parts of the input signal, it follows that the products will 
eventually all be zero after the last element of the input signal 

propagates through the filter. This also makes it easy to figure out 

what the worst-case delay through the filter will be. It is simply the 

number of taps times the sample rate. 

As we will see, this inherent stability is not universal to all 

digital filters. 

Cost of Implementation 
The cost of implementation is not just a matter of dollars. 

The cost is also measured in the resources required and in how long 
it takes these resources to do the job. 

For example, as we mentioned earlier, it is possible to improve 

the response of an FIR filter by simply increasing the number of 

taps we use. This has several important consequences, however. 

First, the more taps we use, the longer it takes to compute the 

output. For a real-time system, this computation must be completed 
in less than one sample interval. Further, the more taps we use, the 
greater the phase delay of the filter. Also of concern is the rounding 

error. The more computations we make, the more likely round-off 

errors will increase beyond a reasonable limit. 

These factors suggest that we would like to get our output at a 

minimum cost in terms of the number of computations. The FIR 
filter is not always the best approach when it is important to 
minimize computation cycles. On the other hand, the simplicity 
of designing an FIR filter, combined with its inherent stability, 

make the FIR filter the preferred choice for many designers. 
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FIR Filter Design Methodology 
As we discussed earlier in the chapter, a variety of filters can 

be implemented by convolving an input sequence with a transfer 
sequence. The trick is to come up with a transfer sequence that 
will produce the desired output from the actual input. While it 

probably is not obvious, we have already developed the tools we 

need to do this. 

In general, the idea behind FIR filter design is to define the 

transfer function as a function of frequency. This function of fre-

quency, generally named H(a)), is then transformed into a sequence 

that is a function of time: h[n]. The transformation is accomplished 

by the inverse discrete Fourier transform (IDFT). A filter is imple-

mented by convolving h{n) with the input sequence x[n]. TTie 

resulting sequence, y[n]y is the output of the filter. This process 

works for either a real-time process or an off-line processing system. 

In practice, the sequence described above will not always pro-

duce the desired output y[n]. Or, more simply, the filter will not 

always do what we designed it to do. If this is the case, the function 

H[co] or the sequence h[n] will generally be tweaked to obtain the 
desired output. This whole design process is shown in Figure 9-3. 

Theoretically, any realizable filter can be designed using this 

simple process. In some cases, however, it will turn out that no 
amount of tweaking will yield a practical design. As we discussed in 

previous sections, an FIR filter implementation may end up requiring 

a great number of taps. From a practical point of view, a large number 
of taps often leads to "mushy" or noisy filter response. When this 
happens, more sophisticated (that is, more complicated) filters can 
be tried. These are the subject of later chapters. 

The easiest way to understand this design method is with an 

example. 
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(^ FIR design ^ 

i 
Define H(co) 

I 
Convert H(co) to h(n) 
using the inverse DFT 

Optionally, tweak 
h(n) using a window 

I 
Compute y(n) by con-
volving x(n) with h(n) 

I 
Compare y(n) 

with desired result 

Does the result meet 
the requirements? 

Implement the filter 

Done 

Figure 9-3: Filter design process for an FIR fi lter. 
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FIR Design Example 

Introduction 

The purpose of this section is twofold. First, we will demonstrate 
the design of a typical DSP application. Second, this application 

will demonstrate the use of the accompanying DSP Calculator 

software. This example assumes a basic understanding of DSP 

architecture, convolution, and the discrete Fourier transform. If 

any of these seem confusing while working through the example, 

please refer to the appropriate chapters. 

For our example, we will design and implement a low-pass filter, 
requiring the following steps: 

• Create a sample waveform with the desired characteristics. 

• Look at the spectrum of the sample waveform to ensure 
that it meets our needs. 

• Design the low-pass filter. 

• Generate a transfer function to realize the low-pass 

function. 

• Test the design by convolving the transfer function with 
the sample waveform. 

System Description 

A block diagram of our system is shown in Figure 9-4. Our 
system is designed to monitor process signals for an industrial 
plant. The bandwidth of the signals is 0 Hz to 60 Hz. An anti-
aliasing filter is in the front end of the system, and it ensures that 
any signals will be within this bandwidth. 

The signal that we are interested in is a 16-Hz sine wave. Along 

with this signal is a separate, lower-amplitude, sine wave at 48 Hz. 
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m m ~ \ 
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per second 

y[n] = x[n]»h[n] Snfioothing 
filter 

Figure 9-4: Block diagram for low-pass filter example. 

Our task is to come up with a digital filter that will keep the 16-Hz 

signal but eliminate the 48-Hz signal. 

Interactive 
Exercise 

Generating a Test Signal 

Before we can modify a signal, we must first have a signal-

Coming up with test signals that have the right characteristics to 

correctly exercise a DSP system is an important part of the design 

process. In this case, we can easily generate a test signal using the 

program Fourier. The first thing to do is create a working directory. 

Use the Windows File Manager to create a directory called 

c:\t(56t6ig. Next, open the DSP application group and double click 
on the icon labeled Fourier. Set up the following values in the 
appropriate boxes: 

Fraq^uancy: 16 

Amplitude: 1 

Number of Samples: 128 
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Then click on the Sin button. You should see a sine wave appear 
on the screen. Next, set the following values: 

Fraquency: 48 

Amplitude: 03333 

Number of Samples: 128 

Then click the Sin button again. The resulting waveform 
should look like the one in Figure 9-5. Now save the file to 
c:\te6t6ig\x.dat. (Use the Fila / Save command to do this.) 
Then close the Fourier window; we are done with it for now. 

Now we have an input sample with the correct spectral charac-
teristics. The next step is to prove this to be true. 

Frequency Amplilude Number of Samples 

Figure 9-5: Sample waveform for the low-pass filter example. 
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Looking at the Spectrum 

We can look at the spectrum of our signal using the DFT 
program. Double click on the DFT icon, then load in the file 
c:\teete\q\x.dat. (Use the Fil(5 / Load Signal menu to do this.) 
You should see the same wave that was generated in the Fourier 

program. Now click on the Transform button. Depending upon the 

speed of your computer, the transformation from the time domain 

to the frequency domain may take several tens of seconds. 

The result should look like Figure 9-6. The first thing to note 

is that the x-axis is the frequency axis. For digitally processed sig-
nals, the frequency spectrum is always -n to +71:. This is called the 

normalized frequency. Any frequency outside the range of-7C to +n 

will alias to a frequency with this range. The next logical question 
is, of course, how does this relate to our actual frequencies? 

The answer is that n corresponds to the Nyquist frequency, 

which is one-half of the sample rate. In this example, our sample 

rate can be assumed to be equal to the number of samples: 128. 

Therefore, the value of 71 corresponds to a value of 64 Hz. Our base 

signal is 16 Hz, which is one-fourth of 64. And that is exactly where 
we see the spectral peak for the 16-Hz signal: one-quarter of the 

way from 0 Hz to 7C. We also see the 48-Hz spectral peak at three-

quarters of the way to K. 

As we would expect, the amplitude of the 48-Hz signal is one-

third of the base signal's amplitude. The vertical axis does not really 
conform to any common physical units such as watts or volts. This 
is due to the way the transform works. However, the height of the 
spectral line can loosely be thought of as the amplitude of the 

signal. The vertical axis is usually scaled to conveniently show the 
relative amplitude of the signals present. 
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! in Frequency Display 

-n - ^ / 2 0 ^/2 n 

Figure 9-6: Resulting spectrum for the sample signal. 

The spectrum is mirrored around the DC (that is, 0 Hz) line. 
The fact that the negative frequency amplitude components are an 
exact mirror image tells us that the input signal was either purely 
real or purely imaginary. Only complex signals can have a positive or 
negative frequency component that is not symmetrical in amplitude. 

This signal meets our spectral requirements for a test signal, so 

we can now proceed to design and test our filter. 

Design the Filter 
There are a number of ways to meet our design requirements. 

Figure 9-7 shows one approach. We have defined a low-pass filter 

that simply splits the difference between the signal that we want 
to keep and the signal that we want to reject. So we have set our 
cutoff frequency at ^/z, or, equivalently, 32 Hz. The filter shape is 

shown with a dashed line. 
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Ideal filter 
response, H(co) 

-71 -^/2 0 ^ /2 n 

Figure 9-7: Desired fi lter shape. 

Filtering in the frequency domain is a simple operation: we 

just multiply the frequency components we want to keep by unity. 

All other frequency components are multiplied by zero. Mathemati-

cally, we can define our filter function as: 

H((o) = 
l , - y < C O < ^ 

0, otherwise 

Theoretically, we could actually implement our filter this way. 

We could transform the incoming signal, zero out the 48-Hz spec-
tral line, and then perform an inverse transform to get back to a 
time domain representation of the signal. Occasionally, filtering 

is done this way. In general, however, this is extremely inefficient 

from a computational and implementation point of view. Instead, 
we make use of the fact that multiplication in the frequency domain 
corresponds to convolution in the time domain: 

H(co)#G(co)<^Mn)*g(n) 

Thus, we need to generate a transfer function that, when its impulse 
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response is transformed to the frequency domain, approximates 
H(co). Notice that we said approximates H(co). Our impulse function 
will generally not be identical to the ideal case. 

We can generate a transfer function by double clicking on 

the Filter Dasign icon. Select FWtere I Low ?aee from the menu. 

A dialog box with two entries will come up. The first entry is the 

upper cutoff frequency. We decided in the last section that we 

wanted a value of ^2, which is equivalent to 32 Hz in this case. 

So, enter a value of 1.5708 for the cutoff frequency. 

The number of taps determines how closely our filter will ap-

proximate the ideal H(co). More taps will provide a closer fit. For 

this example, we will use 15 taps, so enter 15 into the Numbar of 

Taps box. Then click on the OK box. The cursor will change to an 

hourglass, indicating that the transfer function is being computed. 

(This may take some time if you are working on a slow computer.) 

When the computations are done, the hourglass will turn 

back into the normal cursor and the transfer function will be 

displayed. Notice that this is the frequency domain representation 

of the transfer function. Save the transfer function by selecting 

Fila / Sava Ae. Save the file to c:\te6t6ig\h.dat. The save operation 
saves the time domain representation of the transfer function. This 
is also called the impulse response of the transfer function. 

Feel free to experiment with the number of taps and with mov-
ing the cutoff frequency around, if you like. Close the filter design 
window when you are done, and we will be ready for the next step. 

Convolution of the Signal 

We now have our test signal, x[n], and we have just generated a 

transfer function in the form of h[n]. The only thing left to do is to 
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perform the filtering. We will do this by convolving x[n] with /i[n]. 

Double click on the Convolve icon. Make sure that the values are 
set as follows: 

Amplitude: 1 

Numbar of Samples: 15 

The value of 15 for the Number of Samples entry, in this case, 

corresponds to the number of taps we selected for the filter. Now 

select File / Load Coefficients. Select the file c:\testsig\h.dat. The 

transfer function we generated in the last step will be loaded and 

displayed. Notice that this is the time domain representation, so it 

will not have the same shape as shown in the filter design program. 

Next set the Number of Samples to 128. Then select File / Load 

5\0na\ and load the file c:\testsig\x.dat. The test signal will be 

displayed. 

Now click on the Convolve button. The cursor will turn into an 

hourglass to indicate that the computations are being performed. 

A dialog box will appear when the convolution is completed. Click 

OK. The result of the convolution will be displayed. In this case, it 

is the original 16'Hz sine wave we started with. 

We have successfully designed a filter that will allow the 16'Hz 
signal through, but will block the 48'Hz signal. 

For a real application, we would take our transfer function and 

use it as the h values in the convolution sum: 

oo 

m=-oo 

Programming the DSP processor to compute this sum would 

then complete the process. 

134 



Chapter Summary 

Windowing 
The theoretical definition of the IDFT requires an infinite 

number of terms to transform H(co) into h{n). If we could generate, 
and make use of, an infinite number of terms from the IDFT we 
could realize the filter function perfectly. In practice, of course, 

we must use a finite number of terms for h[n]. By truncating the 

sequence, we are effectively distorting the original function H[co]. 

It turns out that we can correct for this distortion of H[co] by 

applying a compensating distortion to h[n\. This process is some-

times referred to as prewarping the function h[n\. Generally, this 

prewarping process is accomplished by passing h[n] through a 

window function. 

There are a number of different windows that can be used. 

One of the simplest and most common is the Bartlett window. The 

Bartlett window is a simple triangular window. Many other windows 

exist (rectangular, Manning, and Hamming, for example), but the 

idea is the same for all windows: they are "fudge factors" that tweak 

the coefficients in order to achieve improved performance. 

Chapter Summary 
In this chapter we defined the general class of filters known as 

Finite Impulse Response (FIR) filters. These filters are essentially 
sophisticated versions of the simple moving average filter. An 
FIR is designed by specifying the transfer function H(co). The 
function H(co) is then converted to a sequence using the IDFT. 
This sequence, /i(n), then becomes the coefficients of the filter. 
The FIR is then realized by convolving the input with h{n). 

The FIR filter has a number of significant advantages. It is 
unconditionally stable, easily designed, and easily implemented. 
It is possible to design an FIR filter with a linear phase delay. 
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The one major disadvantage of the FIR is that it can require 
a large number of computations to implement. A general rule is 
that an FIR filter should not make use of more than about 30 taps. 
Beyond this, the response of the filter can get mushy, and the noise 
caused by truncations can become a problem. However, like all 

rules of thumb, this one needs to be applied with some caution. 

What happens if the number of taps becomes too large? The 
answer is that we try an infinite impulse response (IIR) filter. 
This is the subject of the next chapter. 
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The IIR 

Introduction 
One of the easiest ways to approach the Infinite Impulse 

Response (IIR) is to start with the basic equation for the Finite 

Impulse Response (FIR) and then expand on this base. 

If we look back at the basic FIR, we see something like this: 

3i(k) = ax [/c] + bx [k -1] -f ex [/c - 2] -f... + :̂ x [k - n] 
Equation 10-1 

If we set the coefficients ayh, c ,,. z equal to ^l{n-\), then we have 
the simple moving average filter. Or we could choose the coeffi-

cients according to some function, such as the IDFT of the fre-

quency response of the desired filter, as we did in the last chapter. 

Theoretically, any filter function can be realized with Equation 
10-1. What then motivates us to try something else? The answer 

is that while any function can be realized with an FIR, there is no 

guarantee that the function will be realized in an efficient manner. 
For example, filters with fast roU-offs take a large number of terms 
to implement. This has two effects: first, the filter algorithm will 
execute slowly and, second, the delay through the filter may be 

unacceptably long. 
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One way to improve the performance of the filter is to make use 
of the signal values that have already been processed. That is, we can 
make use of previous values of 31. For example: 

# ] = c[0]x[/c] + c[l]x[/c-l] + ... + c[N]x[/c-N] 

+ a[ib[/c-i]-ha[2]x[/c-2]+...+a[Mb[/c-M] 
Equation 10^2 

Notice that we have two sets of coefficients in this form of filter 

function. One set is called the c coefficients and the other is the 

d coefficients. If we set the d coefficients equal to zero, then we 

have our basic FIR filter. 

Equation 10-2 is often expressed more compactly as: 

N M 
3'['̂ ]= ^ c[n]x[/c-n]+ ^ dfmj^^l/c-m] 

"=0 ^=0 Equation 10-3 

As a side note, the FIR filter is sometimes called a nonrecursive 

filter, since it does not make use of the previously processed signal. 
As one might expect, the IIR is sometimes called a recursive filter 

since it does make use of previously processed values. 

The Infinite Impulse Response (IIR) filter is a little hard to get 
a handle on in a purely intuitive way. Unlike the FIR, which could 
be thought of as a modified moving average, the IIR has no conve-

nient intuitive analog. As with the FIR, one of the major attributes 

of an IIR filter that we are interested in is the frequency response 
of the filter. In the case of the FIR, we simply took the DFT of 
the function we were convolving to get the frequency response. 

Unfortunately, this will not work on Equation 10-2 because 
Equation 10-2 has both the input and output terms on both sides 
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of the equation. We need a more sophisticated tool than the DFT 
to handle the situation. 

The answer is to make use of the :j'transform. This will provide 

us with all the information we need. If we take the :^-transform of 

each side of Equation 10-2 and rearrange the terms we get: 

Yiz) - d{l)z-^ Yiz)"... - diM)z-^ Yiz) 

= c{0)%{z) + c{l)z-' Xiz) + ... + c{N)z-^ Xiz) 
Equation 10-4 

where Y{z) is the transform of the output and X(:̂ ) is the transform 

of the input. 

We can define the transfer function as the output o{ the filter 

over the input of the filter: 

^^^) ~ ^^77^ Equation 10-5 

Now, if rearrange Equation 10-4 into the form of Equation 10-5, 

we get: 

\-d{l)z~^-...-d{M)-^ 
Equation 10-6 

This is important because it shows us that the transfer function is 

the ratio of two polynomials in z- This means that H[z] can vary 

quickly; the denominator can be used to drive the overall response. 

This rapid change in H[:̂ ] is another way of saying that the filter 

can have very sharp transition regions, and this can be achieved 

with far fewer terms than would be required with an FIR filter. 
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The next step is to rearrange Equation 10-6 into the form of 
summations, where M is the number of samples we're transforming: 

N 

H{z] = -^^ 
M 

m=l 

Equation 10-7 

- m 

Now, just as we did with the IDFT, we can find the frequency 
response by letting r = 1 in the definition oiz = Te'*^. This gives us: 

N -jca 
N 

Tn=l 

Equation 10'8 

And, just as with the :^-transform, this gives us the frequency re-

sponse as a complex function. It is, in fact, the value above the unit 

circle in the :^'plane. A common practice is to take the absolute 

value of both sides of Equation 10-9. For simplicity, the resultant 

function is usually expressed as a simple function of co: 

H[co] = 

N 

Cn^ - ' " ^ 

n=0 

M 

1- Ẑ m^ 
- j C O 

M 

1=1 

Equation 10-9 

Or, in other words, we can find out the frequency response of an IIR 
filter from its coefficients. Since the IIR filter is a ratio of polynomi-
als, the process is more involved than is the case for the FIR filter. 
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So far, the discussion has followed a more or less standard text-
book development. That is, the discussion assumes that we know 
the coefficients, and that we want to find out what filter response 
they will give us. The problem with this is that in the real world 
we generally know what frequency response we want. The problem 

is to come up with the coefficients. 

The news on obtaining the coefficients for an IIR is mixed. 
The bad news is that there is no simple and practical way of analytic 
cally deriving the coefficients if we are given the desired transfer 
function. The good news is that there are numerous software tools 
that make the design of llR filters relatively straightforward. 

Conceptually, an IIR can be designed by starting off with a 

conventional analog filter. Normally, the filter is expressed in 

the Laplace form. The Laplacian of the filter is then mapped from 

the S'plane onto the :^'plane. The coefficients of the :^-plane repre-

sentation are then found. This is the approach generally taught in 

an academic course on DSP filter design. In practice, the process is 

quite tedious, and not often performed by working engineers. 

For practical IIR design, it is generally a good idea to use one 
of the better filter design software packages. There are a number 

of reasons for this, mostly centering around the touchy behavior of 

the IIR. In the case of the FIR filter, we did not have to worry 
about filter stability, nor did we have to worry a great deal about the 
phase of the filter. This is not true with the IIR. It is quite possible 

to design an llR that has the desired frequency response but is 

unusable because of stability. It is important to note that even if 
an IIR is technically stable, it may still exhibit an unacceptable 
amount of ringing or phase distortion. 

With all of these caveats noted, we will now proceed to design 
an IIR filter. We will design it to meet the same basic requirements 
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as the FIR filter example from the last chapter: a low-pass filter that 
will pass a frequency at a digital frequency of ^4, and eliminate a 
signal at ^^/4. The reason that we are going ahead with the design of 
the IIR using a somewhat analytical approach needs to be addressed. 
While we highly recommend the use of professional-quality filter 
design software for developing digital filters (especially IIRs), 
designing an IIR from basic principles can illustrate a number of 
interesting and useful concepts. 

Before we proceed, we should discuss the design approach we 

will be using. This will give us a chance to also look at some key 

concepts related to the :^-'transform. Our approach will be to place 

poles and zeroes appropriately around the :^-plane. From the 

pole/zero graph we will then generate the :^-transform in factored 

form. Next, we will evaluate the partial fraction into a standard 

polynomial form. From there, we will put the :^-transform in the 

standard form of the definition; then, we can find the coefficients 

of the IIR by simple inspection. 

For this approach to work, we must understand some basic ideas 

behind the graphical representation of the transfer function in the 
:^-plane. The :^-transform of a sequence is complex, as is the function 
itself. Thus, a graphical representation requires four dimensions. 

In practice, however, we can obtain a useful graphical image if we 
look at the absolute value of the transfer function. The absolute 
value corresponds directly to the amplitude of the transfer function 

response. We can also find the phase by looking at the angular 

component, but this is of less interest at this point in the design. 

We can think of the absolute value of the transfer function as 
rubber membrane above the :^-plane. The poles of the transfer 
function are created when any of the factors in the denominator 

go to zero. Anything divided by zero is undefined, but let's think 
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about what happens as the denominator approaches zero. The 
transfer function is going to approach infinity, or, in other words, 
the function will "blow up." Graphically, we can think of the poles 
as raising up the rubber membrane to an infinite height. 

The zeroes in the numerator, on the other hand, produce a 
value of zero for the transfer function. The zeroes will thus "tack 
down" the rubber membrane that represents the transfer function. 
As we noted above, the frequency response of the transfer function 
is just the :^'transform evaluated around the unit circle. 

One other key piece of information is required before we pro-

ceed. Let s think about what happens on the :^-'plane. Any point 

on the :^'plane is defined by: 

Z = re^^ 

where r is the distance from the origin, and co defines the angle, 

relative to the positive real axis. The key concept here, however, 

is that CO is the angular frequency. We can think about the zero 

frequency (DC) value lying at (1,0) on the :^'plane. The positive 

frequencies increase, in a counterclockwise direction, until we 

reach the point (-1,0), which corresponds to an angular value of 7i. 

The negative frequencies increase from (1,0) in a clockwise direc-
tion until we reach (-1,0). 

Now, let's think about what happens when we place a pole 
directly on the unit circle—at an angle of ^/4, for example. Assum-

ing we start at a frequency of DC, as the frequency increases from 

DC, we will approach the pole. The denominator will approach 0, 
and the frequency response of the filter will approach infinity. The 
filter will blow up; in this case, when the input frequency is /̂4 the 

output of the filter will be undefined. In practical terms, this means 
that even a very small input signal at /̂4 (including, for example. 
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a small amount of noise) will cause the output of the filter to try 
to go to an infinite value. Such a filter is unstable, and therefore 
probably not of much use to us. This will be true, in fact, for almost 
any case in which a pole lies on or outside the unit circle. Thus, 
we have a general rule for filter design: All poles must lie within the 

unit circle. 

The corollary to this is that, as the poles move closer to the 

origin, the amplitude response will decrease, and the general stabil-

ity of the filter will improve. In general, if we want a sharp filter 

with high gain we will move the poles as close to the unit circle as 

practical; if we want a smooth and well-behaved filter, we move the 

poles as close to the origin as we can get. Note that the relative 

position of the poles to the zeroes will have a strong effect on the 

shape of the response. 

This all makes more sense if we look at an example. Lets recall 

the parameters from our FIR example. We have a test signal that is 

composed of: 

y[n] = sin 27i(16) 
N 

+ —sin 
3 

27c(48)— 
N 

where n = 0 ... N - 1, and N = 128. Our sample rate was specified as 

128 samples/second. Thus, the digital frequency of the fundamental 
component of the signal is: 

16Hz^ n 
71 = — 

64 4 

and the third harmonic's digital frequency is: 

48Hz^ 37C 
71 = 

64 4 
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OUT design specification was to pass the /̂4 component, and block 
the ^̂ /4 component. In the case of the FIR filter, we simply split 
the difference; we designed a filter that would pass frequencies 
below ^/2, and block frequencies above ^/l. 

For our IIR filter, we can be more specific. We can place the 

zeroes on the :^-plane along the ^^4 radial. The zeroes will cancel 

the high-frequency components. To keep the low-frequency com-

ponents, we will place the poles of the filter along the ^4 radial. 

For reasons we will discuss shortly, we will also place a pole at the 

origin. 

First, a couple of general design rules: 

• We must maintain symmetry about the x-axis. This 

will give us the same response for positive and negative 

frequencies. It will also ensure that the coefficients in the 

:^-transform turn out to be real, and thus the coefficients 

of the filter will also be real. So, wherever we place a pole 

or zero, we will also place its complex conjugate on the 

:^-plane. 

• To ensure that the resultant filter is causal (that is, 
we can build a version of it that will run in real time) 
the order of the denominator must be greater than the 
order of the numerator. 

• As we noted above, all poles must be inside the unit 

circle to ensure stability.^ Zeroes can be placed anywhere 
on the :^-plane. 

^ Strictly speaking, it is possible to have poles outside the unit circle and still 
have a stable filter. For example, a zero may cancel out an unstable pole. See 
Designing Digital Filters for a discussion of this. 
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The key question now, of course, is: Where along the radial to 
place the poles and zeroes? We will start our selection by making 
some educated guesses. First, for the poles, a reasonable starting 
point would be 0.5. We want a little sharper filter, however, so we 
will set r = 0.6. From experience with playing around with this kind 

of design, we can guess that we will need another pole to smooth 

out the valley caused by the other two poles. We can achieve this 

by setting a pole at the origin. This also accomplishes the second 

design requirement above: it ensures that the denominator will 

have a higher degree than the numerator, therefore ensuring that 

our filter will be causal. The zeroes are less of an issue. We can 

place the zeroes directly on the unit circle at the frequency that 

we want to suppress. 

A pole/zero plot is shown in Figure 10-1. 

I Imaginary 
axis 

(Equivalent 
to 48 Hz) 

(Equivalent 
to 16 Hz) 

CO = -

^/ 
(Equivalent 
to -48 Hz) 

\ ( 0 = 
\ 

\ 
\ 

Jl 

4 
(Equivalent 
to-16 Hz) 

Figure 10-1: Pole/zero plot for the low-pass fi lter example. 
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We will develop our filter with the use of one of the standard 
math packages (see Chapter 11 for a general discussion of design 

tools). This will give us a chance to explore the use of these tools 
a little, and it makes our life much simpler. In this case, we will 
make use of the MathCAD package from MathSoft, Inc. Notice 

that we are using this package to expedite dealing with the math; 

we are not using it as a design tool for developing the IIR. The 

worksheet for the llR filter is shown in Figure 10-2. 

The first thing to note in Figure 10-2 is the initial calculation 

that we perform at the top of the page. We have chosen a value 

for N of 40. This needs a little explanation. This value determines 

the number of points we will plot when we look at the frequency 

response of our filter. That is all it does; it is not related in any way 

to the sample rate or the coefficients of the filter. Next, we define 

an index. In this case, n will take on values from 0 to N. We need 

this index so that we can compute discrete values of the digital 

frequency. We do this next when we define cô , which takes on 

values from -n to n. We then use cô  to compute the values of z 

that we will be using in our plot. 

The next step is take the poles and zeroes and turn them into 

the :^-transform. We do this by placing the poles in the numerator 
and zeroes in the denominator. It is fairly straightforward to perform 
the symbolic computations, but we let the computer do it. First we 

simplify the numerator, then we simplify the denominator. Notice 

that we did not try to simplify the entire expression, as this would 
lead to an unusable and needlessly complex result. As always, we can 
let the computer do the work, but we cannot let it do the thinking! 

At this point we graph H{z^) to see if it really is close to what 
we are looking for. Looking at the graph in Figure 10-2, we see that 
the filter indeed has the frequency response we set out to obtain. 
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N: = 40 

n:=O..N 

N is the number of points that we will be using. This number is used for generating 
the graph of the frequency response. It is not related to number of samples. 

n is the index variable. 

M̂  ~ - Here, we are computing the indexed digital frequency 
ft) :=2jt- from-nto71. 

o>nJ Next, we compute the value of z at each of the index points. 

H(z):= 
, z - e ' ^ ' M z - e ' 

,z-0.6e'* /•\z-0.6e'^ i ( z - O ) 

We start the derivation of the transfer function by putting 
the zeroes over the poles: 

H(z): 
(z^-hz-V2i-l) 

H(z): 

z -0 .6e^ / \ z - 0 . 6 e ^ / ( z - O ) 

(ZVZV2-HI) 

(z^- 0.6-z^V2 + .36-: 

We symbolically evaluate the numerator. 

Then evaluating the denominator symbolically gives us our 
transfer function in a usable form. 

I»^)| 5 

Now we graph the absolute value of the transfer 
function from -«to n to see if it is really what we 
want. It is. (Remember, since this is a real function, 
we could have just graphed 0 to i) 

Figure 10-2: Electronic worksheet for 
designing the low-pass filter. 
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Just for reference, the values of the foity discrete points are as follows: 

Hfz 

-0.3141 

-3.142 
-2.985 
- 2.827 

2.67 
-2.513 
2.356 
2.199 
2.042 

-1.885 
1.728 

-1.571 
-1.414 

1.257 
1.1 

0.942 
0.785 
0.628 
0.471 

0.157 

0.157 
0.314 

0.471 
0.628 
0.785 
0.942 

1.1 
1.257 
1.414 
1.571 
1.728 
1.885 
2.042 

2.199 
2.356 
2.513 
2.67 
2.827 

2.985 
3.142 

1 
0.988-0156j 

-0.951-0.309J 
0.891 - 0.454J 
0.809-0.588J 
0.707-0.707J 
0.588-0.809J 
0.454-0.891J 
0.309-0.951 j 
0.156 0.9881 

-J 
0.156-0.988J 
0.309-0.95 Ij 
0.454-0.891J 
0.588 - 0.809J 
0.707 - 0.707J 
0.809-0.588J 
0.891-0.454J 
0.951 - 0.309J 
0.988-0.156j 

1 
0.988-H0.156J 
0.951 +0.309J 
0.89U0.454J 
0.809-h0.588j 
0.707 + 0.707J 
0.588-H0.809J 
0.454-h0.891j 
0.309+0.951] 
0.156H 0.988J 

J 
0.1S6-h0.988j 
0.309-h0.951j 

I-0.454-f 0.891 j 
-0.588 + 0.809J 
- 0.707+ 0.707J 
- 0.809+0.588J 
0.891 + 0.454J 
0.951+0.309J 

j-0.988+ 0.156J 
1 

(a) (b) (c) 

nL 
-0.265 

0.251+0.05 Ij 
-0208 + 0.091 
-0.145 +O.lOlj 

-0.07 +0.07 5j 

0.044-0.13 Ij 
0.032- 0.32i 

0.075-0.561J 
0.331 - 0.828i 
0.801- 1.062J 

-1.555- 1.137J 
2.609-0.804J 
-3.76+ 0.325J 
4.287 + 2.533J 
-3.12+5.199J 
0.258+6.694J 
2.832+ 6.26J 
5.064 + 4.555i 
6.292 + 2.345J 

6.675 
6.292 - 2.345J 
5064- 4.555J 
2.832 - 6.26J 
0.258 - 6.694J 
-3.12- 5.199J 
4.287 - 2.533J 
-3.76-0.325j 
2.609 + 0.804J 
1.555+ 1.137J 

-0.801+ 1.062J 
0.331+ 0.828J 
0.075+0.561J 
0.032+0.32J 
0.044+0.13 Ij 

0 

0.07 - 0.075j 
0.145-O.lOlj 

i-0.208-0.09J 
0.251 - 0.051J 

-0.265 

(d) 

4.979 
6.063 
6.699 
6.871 
6.811 
6.715 

£K 
0.265! 
0.256 
0.227 

0.177 
0.103 

0 

0.138 
0.322 

0.566 
0.892 
1.331 
1.926 
2.731 
3.774 

6.675 
6.715 
16.811 
16.871 
6.699 
6.063 
4.979 
3.774 

2.731 
1.926 
1.331 
0.892 
0.566 
0.322 

0.138 
0 

0.103 
10.177! 
0.227 

0.256 
0.265 

(e) 

"(^ 
|0.044 
0.042 
0.037 
0.029 
0.017 

0 
0.023 
0.053 
0.093 
0.147 
0.219 
0.318 
0.45 
0.622 
0.821 

1 
1.105 
1.133 
1.123 
1.108 
1.101 
1.1081 
1.123 
1.133 
1.105 

1 
0.821 
0.622 
0.45 
0.318 
0.219 
0.147 
0.093 
0.053 
0.023 

0 
0.017 
0.029 
0.037 
0.042 
0.044 

' 6.063 

(f) 

Figure 10-3: Table of the computations used in Figure 10-2. 
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Now that we have the :^-transform, it is time to develop the 
actual filter. The first thing, in this case, is to look at the gain of the 
filter. We did not specify a gain in our design, but in general we will 
want a filter that has a gain of 1 at the passband frequencies. Look-
ing at the graph in Figure 10-2, we see that our gain is well above 5. 

In fact, we can find out exactly what it is if we look at Figure 10-3. 

In Figure 10-3 we have displayed all of the internal tables that were 

generated in Figure 10-2. If we look at the frequency response for 

-^/4 (i.e, n = 15), we see that the frequency response (column e) is 
6.063. We want to scale H{z) by the reciprocal of this to give us a 

gain of 1 at the passband frequency. 

The scaled frequency response is shown in column f of Figure 

10-3. Now we that we have our scale factor, we can begin to work 

out the values for the coefficients. The :^-transform then is: 

6.063 z^ + {Q.e)4lz^+0.2>6z 

which, doing the arithmetic, yields: 

0.165^2+0.233^ + 0.165 
HU) = 

^^-0.849^2+0.360^ 

Now, we must put this in the form of the definition of the trans-

form: 

^ , - 0.165^2+0.233^ + 0.165 ^-"^~ 
H(^) = — X 

^^-0.849^2 ^0.360^ Z-' 

-1 I c^ nil ^-1 I r\i/:c: ^-3 ^ 0 . 1 6 5 ^ ^ + 0 . 2 3 3 ^ ^ + 0 . 1 6 5 ^ 

1-0.849^^ + 0.360^2 
Equation 10-10 
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One of the very nice things about the :^-transform is that we can 
find our coefficients by simple inspection. The numerator gives us 
the c coefficients and the denominator provides the d coefficients. 
The equation for our IIR then is: 

^[n] = a i65x[n~l ] -ha233x[n-2] + 0.165x[n-3] 

+ a 8 4 9 ^ [ n - l ] - 0 . 3 6 0 ^ [ n - 2 ] Equation lO-ll 

Notice that the sign of the coefficients in the denominator is 

inverted when we put them in the form of the equation. 

Several comments are in order on this filter. First, this filter 

perfectly meets our requirements. That is, it passes the frequencies 

of /̂4 with a gain of exactly 1, and it blocks signals at ^̂ /4 com-

pletely. In practice, however, this filter is not a particularly good 

design. It is not very flat in the passband, and the frequency transi-

tion is not particularly sharp. We could have done much better by 

starting with one of the standard analog filters, and mapping the 

poles and zeroes onto the :^'plane. Or, more practically, we could 

have used a good filter design software package. 

Another factor that can cause problems when designing with 

IIR filters is that the phase of the filter is not linear. Certain fre-
quency components may come out of the filter skewed with respect 
to other components. All of these factors make it important to 

carefully evaluate any IIR. The best approach is to use design 

software to generate plots of the frequency response, phase, group 
delays, and the pole/zero plots. Remember, the poles of an IIR are 
the roots of the polynomial in the denominator. The zeroes are the 

roots of the polynomial in the numerator. 

Once the plots for a given IIR look good, it is a good idea to 

simulate the filter and feed in samples of actual signals. The output 
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of the filter can then be evaluated to see if it will create any prob-
lems for the given application. 

Chapter Summary 
In this chapter we have taken the basic FIR filter and expanded 

it to the more general IIR filter. The high potential performance 
of the IIR was noted, but we also pointed out the risks of using the 
IIR. 

A natural question is which to use: the FIR or the IIR? This is 

a good conversational bomb to drop on a group of DSP experts! 

Some will argue that, due to the computational efficiency, only 

IIRs are of any practical use. Others will argue that, due to issues 

of stability, phase, etc., FIRs are the best choice, with IIRs reserved 

only for rare cases where the work cannot be handled by an FIR. 

In practice, naturally, the decision depends upon the circum-

stances. FIRs may take 32, 64, or even 128 terms to accomplish a 

filter requirement. This number of computations may produce an 

unacceptable loss oi precision, especially if the math is done with 

integers. Or it may simply be too slow. In these cases, it may well 

be best to go to the IIR. On the other hand, the conceptual, design, 
and implementation simplicity make the FIR the logical place to 
start on any design requirement. 
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Tools for Working with DSP 

Introduction 
DSP techniques became feasible only when computers were 

commonly used on a large scale. Therefore, the computer is 

an extremely important tool for studying, designing, and testing 

systems based on DSP techniques. For a variety of reasons, this fact 

was largely ignored by academic courses on DSP in previous years. 

This is changing, as today even the humblest freshman is likely 

to have access to computer power that NASA could have only 

dreamed about 10 or 15 years ago. Academic departments are no 

longer constrained to dealing with only the analytical approaches 

to developing a DSP curriculum. 

The point of all of this is that the study of DSP can be greatly 
simplified by use of a good computer and the right tools. The 

purpose of this chapter is to look at some of the types of tools that 

are available, and approaches to getting the most out of each tool. 

Where practical, names of specific tools are given. Addresses 
of various sources are provided in the appendix. This listing should 
not be considered as comprehensive, nor as a recommendation. 

Software tools come and go. This is particularly true of the tools 
specifically devoted to DSP. Other, more general, tools will stay 
around indefinitely—but their applicability to DSP may change. 
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DSP Learning Software 
It is becoming more common for books on DSP to come with 

some type of programming support. The least useful examples of 
this are simple listings of C code. This code can be helpful to 

study and can often be used as a basis for starting a DSP application. 

On the other hand, code of this type is generally limited in its 

sophistication. The code is rarely written for a specific compiler 

or operating system, and therefore is not likely to contain any 

graphical or display output. 

A more useful form of programming support is of the interactive 

variety. The DSP Calculator code included with this book is a 

good example. DS? Calculator's strong point is that it is intuitive 

and easy to use. You get immediate visual feedback on the various 

operations. On the other hand, it is relatively simple, and is not 

intended for developing DSP applications in a demanding produc-

tion environment. 

Other books also contain executable software. Some of this soft-

ware provides a great deal of capability, but often at the expense of 

understandability or ease of use. 

DSP learning software is available from many sources other 
than just books. Commercial training programs, university BBSs, 
and the BBSs of the DSP processor vendors are often good sources. 

Spreadsheets 
A number of general-purpose software tools are useful for 

studying and developing DSP systems. The first of these is the 

spreadsheet. The examples using spreadsheets in this book are 
done with Microsoft Excel,^^ though most modem spreadsheets 
will work just as well. 
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The main use of spreadsheets is in setting up simple series and 
then manipulating them. The results of these manipulations are 
then easily graphed. This is how many of the graphs used in the 
book were generated. It is possible to do very complicated opera-
tions with spreadsheets, but it can quickly become more trouble 

than it is worth. For example, implementing an FIR or an IIR is 

possible with a spreadsheet, but it requires considerable effort. 

On the other hand, a spreadsheet is a great way to see what 

happens when you multiply two sine waves together on a point-

by-point basis, or for studying what happens when sine waves are 

added together. It's a very convenient way, for example, of getting a 

feel for the Fourier series. 

The big advantage of spreadsheets is that they are available on 

most PCs, they are simple to use, and they can present the results 

graphically. For more complicated operations, or when it is useful to 

actually produce working code, a number of programming languages 

are available. 

Programming Languages 
Almost any programming language can be used for studying 

DSR For actually producing DSP applications, however, there 
are three basic choices: assembly language, C, and FORTRAN. 
It is quite common to use assembly language to produce working 

applications. Generally, however, coding in assembly is not 

recommended for studying DSP, or for the early phases of DSP 
development, due to the tediousness of the programming and 
the relative difficulty of being able to visualize the algorithm when 
it is expressed in assembly code. Another difficulty with assembly 

language programming is that it requires an intimate knowledge of 
the particular processor being used. Further, depending upon the 
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development environment (see the section later in the chapter), 
assembly language programming can be difficult to debug and 
experiment with. 

C has become the de facto standard for programming DSP 

applications and is therefore a natural selection for any type of 

DSP work. In fact, it is quite common to develop DSP algorithms 

in a user-friendly environment (such as Borland's C/C++, or Micro-

soft's Visual C/C+ + ), and then port the application over to the 

DSP system for the final implementation. Currently, C environ-

ments for DSP chips generally follow the ANSI standards. Work is 

underway, however, that would expand the ANSI C standard to 

include support of DSP-specific needs. Interestingly, the object-

oriented nature of C++ makes it generally less useful for DSP 

applications. Interest is growing in using C++ for DSP applications, 

however, and as the language becomes familiar to more program-
mers, we may see an increase in DSP applications based on C+ + . 

FORTRAN has lost much of its application base to C over 

the last several years. It is also fairly rare to find a FORTRAN 

compiler on a PC. For these reasons, the general use of FORTRAN 
is declining. It is, however, by no means a dead language. Further, 

a great deal of early program development in DSP was done in 

FORTRAN. FORTRAN still offers two significant advantages over 
C: FORTRAN code is simpler to read and write, and FORTRAN 
has native support for a complex data type. 

While these are the three most common working languages 
for DSP applications, other languages should not be overlooked 
for studying or developing DSP applications. Probably the best 
choice, in many regards, is Basic. While Basic is often considered 
a programmer training language, it has been used in a wide variety 
of sophisticated applications. Modern Basic languages offer sophis-
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ticated error handling, easy graphic implementation, structured 
program development, and other sophisticated attributes. 

For working in the Windows environment, Microsoft's Visual 
Basic^^ is one practical way to write programs without enduring 
an extremely long learning curve. (The DSF Calculator software 
is written in Visual Basic.) It offers a combination of simple basic 
programming, an object-oriented interface to Windows, and an 
affordable price tag. 

General Mathematical Tools 
A number of good general-purpose mathematical tools are 

available. Unfortunately, they tend to be fairly expensive. If they 

are available, however, they are an invaluable aid in studying DSP. 

Like the other tools discussed so far, these tools automate the 

frustratingly tedious computations involved in DSP techniques. 

They have another significant advantage over the other tools 

discussed so far: they can symbolically evaluate analytical expres-
sions. A good example of this is the IIR example in Chapter 10. 

Here, both symbolic and arithmetical computations were carried 

out using MathCAD^'^ by MathSoft. 

Other popular tools include MatLab™ by Math Works and 
Mathematical'^ by Wolfram Research. Generally, these tools 

come with optional modules that provide DSP-specific functions. 

Like any software tool, some effort is required to learn how to use 
these products effectively. It must also be kept in mind that these 
tools can unload much of the work involved in developing a DSP 

application, but they cannot unload the creative part of the design. 
Nor can they be expected to catch system design errors, or to 
provide good results if they are fed bad data. These responsibilities 
still reside with the design engineer. As always, it is necessary to 
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have a firm understanding of the principles and limitations of DSP 
techniques to obtain meaningful results. 

Most of these tools are available in versions that will run on 
UNIX workstations and on Windows-based PCs. Some versions 
are available for the Macintosh computer, but these are often 
inferior to the versions available for other two platforms. 

Special-purpose DSP Tools 
The quality and availability of these tools vary too much to 

present a meaningful list here. Often, these packages are customized 

for specific processors. In fact, not only will these tools give you the 

desired coefficients, but they will also often give you the assembly 

language code for implementing the filter. (Since all DSP processors 

provide special instruction sets designed to implement common 

DSP operations, this is not as sophisticated a feature as it may seem. 

On the other hand, every little bit helps when you are on a tight 

schedule.) 

The best way to find out about these packages is through the 

manufacturer of the DSP processor you plan to use. The manufac-

turer will generally provide a list of third-party vendors. Another 
approach is to ask the FAE (field application engineer) that sup-
ports the processor in your area for their recommendation on which 

products to use. 

Software/Hardware Development Packages 
A wide range of products are available that provide for complete 

hardware and software development. These products generally 
come in two flavors: evaluation units and development systems. 

Evaluation units generally include the DSP processor, program and 
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data memory, and limited analog I/O. They are typically provided 
by the vendor of the DSP processor. Some of these can be quite 
reasonably priced (under $100). The price for more sophisticated 
units can run into thousands of dollars. Evaluation units, as the 
name implies, are designed to allow you to play with the processor 

in a real setting to see if it will meet the anticipated requirements. 

For simpler projects, evaluation units may meet all of your develop-

ment needs. 

There are some things to keep in mind about evaluation units, 

however. These systems are generally designed to be sold at or 

below cost to vendor. As such, they generally don't offer a great 

deal of flexibility. The analog I/O is typically limited, and often 

some of the processor resources (such as interrupts, internal 

memory, etc.) are devoted to supporting the evaluation configura-

tion. Evaluation units are generally limited to providing assembly 

language development tools. 

More sophisticated systems are typically available under the 

heading of development systems. Often, these units are designed 

as add-on cards that fit into a standard IBM AT clone PC. Typi-
cally, compilers, source level debuggers, assemblers, and Host PC 

interface software are provided. A particularly useful feature of 

many of these systems is the included library of software routines. 
Depending upon your application, these libraries may more than 
pay for the whole development system by shortening design and 

coding time. 

In-circuit Emulators 
Another tool available for developing applications is the in-

circuit emulator. The emulator is an electronic pod with the same 
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pin-out as the target processor. The pod is connected to a PC or 
UNIX workstation, where the development software resides. Emu-
lators are useful when the actual product hardware already exists. 
The emulator is plugged into the target hardware instead of the 
DSP processor, allowing programs to be downloaded to the target 

system. The pod emulates the processor, but it also provides com-

plete visibility into the operation of the system. 

In-circuit emulators are invaluable aids for developing embedded 

applications. They often greatly shorten the hardware and software 

debug time. Unfortunately, emulators are also fairly expensive. 

They start at around $5,000, and go up to $30,000 or more. 

World Wide Web 
In the last few years the World Wide Web (WWW) has 

become a major tool for researching a wide variety of topics. 

The material on the Web that relates to DSP is large, varied, and 

rather dynamic. As with using the Web to find about any subject, 

the problem is to find the URL (Universal Resource Locator) that 

has what you are looking for. 

The tools for searching the Web are the search engines, 

Magellan, Yahoo, and InfoSeek are a few examples. Each search 
engine has its advantages and disadvantages. The trick is to try 
the various options for each search engine, and if that does not 

produce what you are looking for, try a different search engine. 

Another way to find relevant information is to start with the 
home pages of the manufacturers of DSP hardware and software. 
See Appendix B for a list of vendors. Often these pages will have 
links to other pages that contain useful information. 
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Chapter Summary 
Understanding the concepts behind DSP techniques requires 

developing practical applications. Even if these applications are 
simple ones, the benefits to you are twofold. First, the hands-on 
experience will help solidify the abstract concepts into practical 

skills. And, second, only by actually developing working appli-

cations do you confirm that you do indeed understand the key 

concepts. The tools discussed in this chapter provide a good 

starting point to begin your DSP exploration. A little time invested 

in mastering these tools will return a significant gain in practical 

knowledge and understanding. 

Finally, most of the software and hardware tools discussed 

here are based on, or are at least available for, the IBM PC clones. 

It should be remembered, however, that a modern 486DX or 

Pentium class machine, with its hardware floating point and high-

speed peripheral busses, actually makes a decent signal processing 

machine on its own. 
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C H A P T E R 12 
DSP and the Future 

One of the continuing themes of this book is that learning 

DSP techniques can sometimes seem intimidating. This is not so 

much that the actual techniques are particularly difficult, but the 

difficulty often lies in the fact that the techniques are, for the most 

part, purely mathematical. When we set out to learn about analog 

filters—a simple LC circuit, for example—we have a number of 

different tools to use. The circuit physically exists, so we can 

approach it from a physics point of view. We can imagine the 

currents flowing, the various potentials. We can see these things 

on an oscilloscope. Only when we need to compute specific values 

for components must we turn to algebra. Or, if our application 

requires more detailed analysis, we can bring higher mathematics 
into play and work with the differential equations that describe 
the behaviors of the components. 

When we turn to DSP techniques it initially seems like we 

lose this "big picture." Instead, we are faced with obscure integrals, 
unfamiliar summations, and expressions that are intuitive only to 
professional mathematicians. As we gain some experience, however, 
some interesting insights evolve. Among these are the fact that 

many of the concepts from physics and electrical engineering carry 
over. Frequency is still frequency (though we have to deal with the 
digital frequency), the same relationships between the frequency 
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domain and time domain still hold, and so forth. In fact, we quickly 
find that the digital domain is much simpler than the analog domain. 
Differential equations are replaced with simpler difference equations. 
We are largely removed from the real-world constraints of specific 
component values, parasitic effects, and the like. This does not 

mean that no real craftsmanship goes into producing a workable 

DSP system, but the digital approach is almost always simpler to 

implement from a conceptual point of view. The hardware may 

or may not be simpler, but getting a digital system to do what we 

want is usually simpler than getting an analog system to respond 

the way we want. 

This fact, combined with the fact there are some operations 

that simply are not practical in the analog domain, ensure that DSP 

techniques will continue to take over a larger and larger percentage 

of applications. Even a modern analog-based cellular phone, for 

example, still contains a significant amount of digital circuitry. 

The rapid acceptance of DSP techniques is having a snowball 

effect. Twenty years ago DSP was an esoteric practice largely 

confined to Ph.D.s. Today, virtually all engineers and a significant 

percentage of technicians will have at least some exposure to DSP. 
As the price continues to fall for DSP components, more and 
more projects are being based around them. In a few short years, 

proficiency in DSP will not simply be an advantage; it will be a 

requirement of almost any technical position. 

Not all of the gains in DSP applications will place a burden 
on the typical design engineer. A good example is the modern 
modem chip. These specialized devices are practical marvels of 
signal processing, and yet designing them into a product requires 
only a rudimentary understanding of communications theory. The 
DSP expertise is largely buried in the silicon. For some applications. 
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this trend will continue. Obviously, for these types of products, 
only the chip designer must be a true expert in DSR As embedded 
applications grow, however, the need for a greater understanding 
of DSP techniques will continue to grow as well. 

Finally, the thought I would like to leave with you is that DSP 

can honestly be fun. The resources of the modern desktop computer 

make it possible to easily and rapidly experiment with the ideas 

behind digital signal processing. Once you get past the seemingly 

formidable nature of the techniques, DSP algorithms are often quite 

simple and easy to implement. 

Remember, even though we live in an analog world, the future 

is digital! 
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A.I Introduction 

Even though calculus is taught at the high' 
school level today, many technically oriented 
people (engineers among them) still avoid it 
like the plague. For some reason, many of us— 
maybe because of past bad experiences with 
math— f̂eel uncomfortable with calculus. TKe 
problem is made worse by the fact that it seems 
it is always taught by people who know little 
about engineering. However, whether you like 
hearing this or not, I have to say it: A good 
engineer needs to be comfortable with calculus. 
If you don't master this essential tool at some 
point, you will limit your career. 

This appendix is an attempt to present a 
low'B.S, fog'free review of the essentials of cal-
culus from an engineering systems point of view. 
I've tried to keep fancy words and theorems to a 
minimum. I use a familiar engineering system— 
your automobile—to introduce the concepts of 
differential and integral calculus. 

A.2 Differential Calculus 
One of the first helpful things to realize 

about calculus is that you deal with it every day. 
If you drive a car, every time you use the gas 
pedal you are directly applying calculus as you 
control the car's speed. As-
sume your car is at a standstill 
and you tramp down on the 
gas pedal. Refer to Figure A. 1 
and let's dig into calculus. 

Starting 
Point -

At some time t you will have 
traveled a distance x from the 
starting point. We say x is a 
function of time and write it 

using symbols like x(t), or x = /(c), where /( ) 
means "a function of." 

During a small time interval At, your car will 
travel a distance Ax. This incremental change in 
distance can be expressed in equation form as: 

Ax = x{t + At)-'x(t) (A.1) 

That is, the change in distance is equal to the 
future position x(t+At) minus the present posi-
tion x(t). 

If both sides of (A.l) are divided by the time 
interval At then 

Ax _x{t-^ At) - x(t) 

At" At 
(A.2) 

If Ax is measured in feet and At in seconds, the 
units of Ax/At are feet per second—otherwise 
known as velocity. Equation (A.2) is an approx-
imation of the velocity of your car. I'll use the 
symbol v to indicate velocity. 

Let's work with an example. Say the dis-
tance your car is away from its starting point is 
given by the function 

x{t) = 5t^ (A.3) 

X(t) 

Figure A . l . At time t the automobile will 
have travelled a distance jr(f). 
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and you want to determine its velocity two seC' 
onds after you tramped down on the accelerator 
(that is at t = 2 sec). Using equation (A.2) we 
write 

Ax_x{t-^ At)-x(t) _ 5(t + At)^ -5t^ ^ ^ ^ j 

At At At 

If we now expand equation (A.4) we get 

A 7 " Â  

1 0 A r / + 5Ar^ 

or 

At 

— = 10r + 5A/ 
At 

(A.5) 

Now let's apply equation (A.5) to determine 
the velocity at t = 2 using various values for the 
time increment At as shown in Table A.l. You 
can see from this table that as At gets smaller, 
the velocity approximation Ax / At is approach-
ing 20 ft/sec. 

Table A . l . 

Af 
(seconds) 

v(ft/sec) at 
t = 2 seconds 

1.0000 10 X 2 + 5 X (1.0000)2 = 25.00000000 

0.5000 10 X 2 + 5 X (0.5000)2 = 21.25000000 

0.2500 10 X 2 + 5 X (0.2500)2 = 20.31250000 

0.1000 10 X 2 + 5 X (0.1000)2 = 20.05000000 

0.0100 10 X 2 + 5 X (0.0100)2 = 20.00050000 

0.0010 10 X 2 + 5 X (0.0010)2 = 20.00000500 

0.0001 10 X 2 + 5 X (0.0001 )2 = 20.00000005 

From equation (A.5) we can see that 

asA/->0 (A.6) Ax 
— = 10r 
At 

So we go back to equation (A.2) and define the 
derivative of a function x(t) with respect to t as 

dx ,. Ax ,. x(t'l-At)-x{t) 
— = lim — = lim —̂̂  ^^ 
dt -̂>o At -̂*o At 1 

(A.7) 

As you just saw in the example, equation (A.7) 
can be used to derive the derivative of a func^ 
tion. 

Figure A.2 shows a plot of equation A.3. 

t 

Figure A.2. 

You can see that Ax divided by At is a slope. 
As At gets smaller and smaller, this slope ap-
proaches the derivative Ax/At. Therefore, the 
derivative of function x(t) at the time t is equal 
to the slope of the function at time t. 
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Go back now to equation (A.6) and rewrite 

It as 

v = — = 10r 
dt 

(A.8) 

You can see that the velocity v is also a func-
tion of time. That is, v = v(t). Since v(t) is just 
another function of time, we can also take the 
derivative of this function. That is, 

dv ,. Av ,. v(r + A / ) - v ( 0 
— = hm — = lim -̂ ^ ^^ 
dt A/->oAr At-^o At 

(A.9) 

— = lim 
dt A/->o 

10(r-HAr)-10r_10Ar_ 
At At 

= 10 
(A.IO) 

In this case, the derivative of velocity dv/dt 
(which has the units of feet per second per 
second, or acceleration) is a constant. Now you 
know that your car is accelerating at 10 ft/sec^, 
which of course you would feel on your back as 
you are pressed against the seat. 

We twice differentiated the function describ-
ing the distance of your car from its starting 
point. This is called double differentiation and can 
be expressed as 

d_(dx)^^d^ (A. l l ) 
dtydt J dt 

This is called taking the second derivative of a 
function. 

We can also write derivatives in shorthand 

dt 
(A.12) 

d^ 

dt^ • = x = v = a 

You can also use the operator 

D = ± 
dt 

(A.13) 

(A.14) 

to express the derivative. This can be extremely 
handy. For example, equations (A.12) and 
(A.13) above can be expressed in operator nota-
tion form as follows 

Dx=^ — = jc = V 
dt 

(A.15) 

D^x = ̂ ='x = v = a (A.16) 

Throughout this book block diagrams are 
used as an aid in building mathematical models. 
If x(t) is an input or forcing function into the 
block below and the output is the derivative of 
the function, then the block must contain the 
differentiation operator. That is, 

x(t)\ 

> 

is the s; 

x(t) 

^ 

D 

ame as 

D 

k(t) ^ X ̂ '^. 
^ or ^ 

equation (A.15) anc 

1 m=v(t) ^ 

d 
dt 

1 

D 

x(t) 

^ 

x(t)=v(t)=a(t) 

is the same as equation (A.16). The operator D 
is often called a differentiator when used in block 
diagrams. 
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A differentiator can abo be written for a 
digital computer. Listing A.l is a "differentiator" 
BASIC computer program and Listing A.2 is a 
spreadsheet version. Carefully review these pro' 

Listing A. l . 
Digital computer differentiator. 

5 

10 

20 

30 

40 

50 

60 

70 

80 

90 

REM BASIC DIFFERENTIATOR 

DEFFNX(T) = 5*TA2 

INPUT "VALUE OF T, PLEASE"; T 

INPUT "VALUE OF DELTA T, 
PLEASE"; DELT 

XI = FN X(T) 

X2 = FN X(T + DELT) 

DELX = X2 - XI 

XDOT = DELX/DELT 

PRINT "DERIVATIVE IS"; XDOT 

END 

Listing A.2. 
Spreadslieet differentiator. 

1 

2 

3 

4 

5 

6 

A 

T 

DELT 

X(T) 

X(T-HDELT) 

DELX 

XDOT 

B 

=5*B1A2 

=5*(B1+B2)A2 

=B4'B3 

=B5/B2 

grams. I tried to write them as simply as possible 
to emphasize that differential calculus is in fact 
simple. Experiment with the programs on your 
computer. Input various values of At while hold-
ing t constant to see how it affects the answer 
that the "digital computer differentiator" pro-
vides. Use the programs to experiment with 
other functions by changing the define function 
statement in the BASIC program or the state-
ments in cells B3 and B4 in the spreadsheet ver-
sion. 

Even though the programs given in Listings 
A.l and A.2 are handy and demonstrate just 
how easy differential calculus is, I found out 
early in my career that I saved a lot of time by 
committing to memory the most frequently used 
derivatives, provided in Table A.2. You can al-
ways look these up in this or other books, but it 
will take you time and you may not always have 
your books with you. Every one of these formu-
las can be derived using equation (A.7), but it's 
still easier to commit them to memory. 

Incidentally, 1 have been using time t as the 
independent variable and x as the dependent vari-
able. That is, X = j(t). I've done this because in 
many real-life engineering problems, the vari-
ables depend on time. However, variables can 
be a function of another variable that is not 
time. For example: 

y = / W 
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Table A.2. Most frequently used derivatives 
(where c = a constant and 

If and V are functions of x). 

dc ^ 
— = 0 
dx 

f(x) = l 
dx 

d , ^ du 
---(M + V) = —- + 
dx dx 

d ^ ^ du 
-ricu) = c—-
dx dx 

dy dy du 

dx du dx 

d , K —log^w = - log , 
dx u 

dv 

dx 

du 

' " ^ 

d ^ I du 
— \nu = 
dx u dx 

dx^ ^ dx 

d . . du dv 
—(MV) = V 1- u— 
dx dx dx 

du dv 
J / \ V U 

^\^\- dx dx 
dx\v) v̂  

d . du 
SinM = COSM 

dx dx 

d . du 
—cosw = -s inw— 
dx dx 

1 
d ^ I du 

-—tanu = sec u- - -
dx dx 

d I du 
---cotu = - c sc u-— 
dx dx 

d du 
—secM = secwtanw— 
dx dx 

d du 
CSCM = -CSCMCOtM 1 

dx dx 

d u ui du I 
— a = a Ina— 1 
dx dx 1 

d . du. 1 

dx dx 1 

d V v-i du VI dv 1 
— u -vu — + w Inw— 1 
dx dx dx \ 

or even two variables that are not functions of 
time 

Nothing changes in the formulas for differentia^ 
tion except the symbol used for the independent 
variable. Sometimes you will see a prime symbol 
(') used for the shorthand version of differentia-
tion instead of the dot notation. That is, 

dx' 
• = y 
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A.3 Integral Calculus 
Integral calculus is nothing more than the 

reverse of differentiation. For example, given that 
the distance your car is from its starting point is 
described by x = 5t̂ , we found that the velocity of 
the car at any point in time was v = lOc and the 
acceleration at any point in time was a = 10. If 
integration is the reverse of differentiation, then 
given the acceleration of the car is 10 ft/sec^, we 
should be able to integrate once and get v = lOt 
and integrate again and get x = 5t̂ . Let*s look at 
how we can do this. 

We know that the velocity is given by equa-
tion (A.8) as 

dt 
(A.8) 

repeated 

The derivative dxl dt is approximately equal to 
Ax / At when At is very small and was given in 
equation (A.6) as 

^ = 10r 
At 

asAr->0 

We can rewrite (A.6) as 

Ax = vAt 

(A.6) 
repeated 

(A.17) 

Figure A.3 shows the velocity of the car as a 
function of time and the graphical representa-
tion of equation (A.17). 

The increment Ax that your car travels in At 
seconds can be seen to be an incremental area 
under the v(t) curve. If this represents a small 
part of X, then to get x at any arbitrary time t, 
all we should have to do is sum all of these 
small incremental areas up to that time. This 
can be expressed using the summation symbol I 
as follows: 

AC = ^ A J C = ^ V A r (A.18) 

As At is made smaller and smaller, the 
summation symbol (Z) is replaced by another 
symbol (1) called the integration symbol and Ax 
and At are replaced with dx and dt. That is, 

x=r"dx=r\dt (A. 
Jr=0 Jf=0 

19) 

Since in our example i; = lOt we can write 

: = j\Otdt (A.20) 

We have already seen that one way to evalu-
ate this integral is to find the area under the 
curve v(t). Another way is to simply find the 
function whose derivative is lOt. From our table 
of derivatives given in Table A.2 we find 

jc = 5r^ + C (A.21) 
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TTie unknown constant C must be included be-
cause when we differentiate equation (A.21) we 
get 

dx_ 

dt 
= 10r (All) 

no matter what the value of C is. This constant 
is called the constant of integration or the integra-
tion constant. It must be evaluated from known 
conditions. In our car example, we said at t = 0 
that X = 0. Thus, 

x(r = 0) = 5.0^ + C = C (A.23) 

So C must equal 0 and we arrive at our answer, 

x = 5t'^ (A.24) 

We can now generalize what we have 
learned in the following equation 

]f{t)dt = F(t) + C I (A.25) 

In words, given a function /(t), its integral is 
another function ¥(t), plus a constant, where 
d¥(t) I dt = /(t). Integration in the form defined 
by equation (A.25) is called an indejinite integral 
because it does not show the limits over which 
the integration is to take place. When these 
limits are shown, we call the integral a definite 
integral and write it as 

j;;;;V(r)^r=[F(o-HC]:::;=F(g^F(o| 

(A.26) 
The limits over which integration is to take 
place are defined by tj and tj. The constant of 
integration drops out. 

Sometimes the best way to view integration 
is with graphs. For example, equation (A.25) 
indicates that F(t) is equal to \f(t)dt minus the 
integration constant. For simplicity, assume the 
integration constant is zero and look at the 
following graphs: 

f(t) 

f(t) 
- •1 l^dt ^ 

LLu • 
t , U t . 

A 
F(t) 

F(t3) 

F(t2) 

F(ti) 

^^F(t)=Jf(t )dt 

^r 1 1 
jf 1 1 

^ ' • • • • • 

t 

You can see that V{t) is equal to the area under 
the /(t) curve. Clearly, when t is very small, this 
area is zero. Each time t increases by an amount 
dt, the area under the curve increases a constant 
amount. Since ¥{t) represents the area under 
the curve described by /(t) from time t = 0 to 
time t, then ¥(t^ - F(ti) must equal the area 
under the f(t) curve from t = 0 to t2, minus the 
area under the f(t) curve from t = 0 to tj. In 
graphical form: 
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f(t) 
f(t)dt 

' t ' 2 <3 

f(t) |V )d t = F(t,) + C 

t , t , t . 

f(t) 
,f(t)dt = F(t,) + C 

Generally, the independent variable is under-
stood when writing the definite integral and 
only the limits are shown. That is, 

=[FW+c];;=F(r,)-F(0 

are all equivalent. Notice that a definite integral is 
a function of its limits, not a function of the depen-
dent variable t. 

As with differential calculus, integration 
formulas are available for finding the integral of 
many functions. I found that I saved a lot of 
time by committing to memory the formulas 
given in Table A.3. 

You can also double^integrate a function just 
as you can double^differentiate a function. TTiat 
is, 

JJ/(rVr = F(0 + q/ + C2 (A.27) 

Two constants of integration must now be 
evaluated. For example, in the car example we 
can take/ft) as 

f{t) =a = lOft/scc^ 

That is, f(t) is a constant. Double-integrating to 
get X gives 

X = jjWdt = 5/^ + C,/ -h C2 (A.28) 

We know that at t = 0, x = 0 and v = 0. 
Tlierefore 

A: = 5-0^ + C - 0 + ^ = 0 = ^ C = 0 

and 
(A.29) 

v = 10f,+C, =10 0 + C, = 0 =»C, = 0 
(A.30) 

We arrive at 

as before. 
x = 5t' 

I introduced you earlier to the differentia-
tion operator D = d/dt. The inverse integration 
operator is 

l=lfm 
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Table A.3. Most frequently used integrals 
(where c and a are constants and 

If and vare functions of x). 

J du = u + c 

J(du+d<i;) = Jdu+Jdv 

^u-^-v-^c 

J adu - a] du = au + c 

•̂  n + 1 
i f n ? t - l 

Ju -^du=J^ = ln|u|^c 

J sin udu= -cos w + c 

J cos u du = sin u + c 

J sec u du = tan u + c 

J CSC u <iu =-cot u + c 

" • ' 1 

J sec u tan u du= sec u-hc 

J CSC M cot U du = —CSC U + C 

In a 1 

Je"du = e"+c 

and in block form 

f ( t ) -

Example: 

x(t) • D 

• If(t)dt 

- •x ( t ) = |v(t)dt 

An "integrator" BASIC computer program is 
given in Listing A.3 and a spreadsheet version is 
given in Listing A.4. Carefully review these 
programs, and experiment with both of them. 
Change the number of steps required to com-
pute the integral. Notice that you get a different 
answer each time. Remember that both of these 
programs give approximations to the integral 
and are based on equation (A. 18). As At gets 
smaller, the answer you get will better approxi-
mate the correct value. 
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Listing A.3. BASIC integrator. 

5 REM BASIC INTEGRATOR 

10 DEFFNX(T) = 10*TA2 

20 INPUT "VALUE OF UPPER LIMIT, T2, 
PLEASE";T2 

30 INPUT "VALUE OF LOWER LIMIT, 
Tl, PLEASE";T1 

40 INPUT "NUMBER OF INTEGRATION 
STEPS, PLEASE";N 

50 

60 

70 

80 

90 

00 

10 

DELT«(T2-T1)/N 

SUM = 0: T = Tl 

FORI =1 TON 

SUM = SUM + DELT*FN X(T) 

T = T + DELT 

NEXT 

PRINT "VALUE OF INTEGRAL 
IS";SUM 

120 END 

A.4 Partial 
Derivatives 

The equation for the volume V of a cylinder 
shows that it is a function of two variables, r and 
h. That is, 

V = V(r,/i) = 7ir'/i 

As I indicated earlier, you can hold one inde-
pendent variable constant in this equation and 
then investigate the effect the other has on the 
dependent variable. You can do this regardless 
of how many independent variables there are in 
an equation. In essence, you convert a multiple 
independent variable function into a single vari-
able function. You can then take derivatives of 
this function just as you would for a function 
that had only one independent variable. Such 
derivatives are called partial derivatives and the 
symbol du I dx is used to denote the partial de-
rivative of u with respect to x. 

For the general function u = f(x,y)y the first 
partial derivatives are defined as 

Listing A.4. Spreadsheet integrator. 

1 

1 2 
1 3 

4 

1 5 
1 ^ 

7 

8 

A 

Tl 

T2 

N 

DELT 

T 

=B1 

=A7+$B$4 

B 

=(B2'B1)/B3 

X(T) 

= 10*A(7)A2 

= 10*A(8)A2 

C 

X(T)*DELT 

=B7*$B$4 

=B8*$B$4 

D 

SUM 

=0 

=D7+C8 
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^ = t- / ( ^ + AAC,y)-/U,y) 
lim 

Ax 

and 

dy Ay->0 ^y 

(A.31) 

(A.32) 

You can see that these definitions are es-
sentially identical to the definition previously 
given for a function of a single variable. Because 
the function has two independent variables, 
there are now two partial derivatives. 

Let's take the partial derivatives of the equa-
tion for the volume of a cylinder. First, the par-
tial derivative of V with respect to r is: 

dV ,. Wr + Ar,/i)-V(r,/i) 
-r— = lim —̂^ 

= lim 
Ar-*0 

= lim 
Ar->0 

n(r-^Ar)^h-nr^h 

Ar 

nr^h -t- InrArh -hnjArfh- nr^h 

Ar 

= lim Inrh + nArh 
Ar->0 

= 2nrh (A.33) 

Next take the partial derivative of V with 
respect to h: 

dy__ V{nh-\-Ah)-V{r,h) 

dh ^-•o Ah 

= lim 
AA-»0 

= lim 
AA->0 

Kr\h + Ah)-nr^h 

Ah 

nr^h + nr^Ah - nr^h 

Ah 

,. nr^Ah 
• lim 

= 7cr (A.34) 

You can see that taking a partial derivative 
simply involves treating one variable as if it 
were a constant. You don't have to use the defi-
nition equations to compute the partial deriva-
tives; simply recall or refer to the differentiation 
formulas for a single variable function given in 
Table A.2. 

You can also take higher partial derivatives 
of multivariable functions. The partial deriva-
tives are written as: 

dx[dx) dx' 

dy\dxj dxdy dx^dy J 

dy[dy} dy' 

(A.35) 

(A.36) 

(A.37) 

Let's take these higher partial derivatives for 
the volume of a cylinder: 

dh{dr) dhdr dr{dh) 

±(^V^ = 0 (A.40) 
dh\dhj dh" 
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Taylor's Theorem 

Increments, 
Differentials and 
Total Derivatives 

We previously defined the incremental 
change Ay in a function 31 = j(x) of a single inde^ 
pendent variable x as 

Ay = /(A: + A^)-/(jc) 

When Ax is small, the increment A;y is essen^ 
tially the same as the differential dj. So for small 
values of Ax, we can write 

Ay = dy = ^dx = ^Ax (A.41) 
ax ax 

For a function uix^y) of two independent vari' 
ables the increment Au is 

Aw = f{x + AJC,}' + Ay) - f(x,y) 

= [/(x + Ax,)' + A:y) - /(x, y + A31)] 

-f[/(x,^ + A>)-/(x,>)] 

AV=:-—-Ar-k"—-Ah 
dr dh 

(A.44) 

3w . 3M . 
(A.42) 

As before, we can replace Ax with dx and A31 
with d> and write the total differential as 

du =^dx-t^dy (A.43) 
dx ay 

Let's now apply these equations to the volume 
of a cylinder. We can write 

Substituting the partial derivatives from above 
gives 

AV = {2nrh)Ar + {nr^)Ah (A.45) 

The application of this latter equation should 
now be clear. If "operating point" values for r 
and hy say r̂  and /î , are chosen, then this last 
equation provides the incremental change in 
volume of the cylinder as a function of the in-
cremental changes in the radius and the height 
about the operating point r̂ ./î  That is, 

AV = {2Kr^h^)Ar-l-{Kr^)Ah (A.46) 

You will note that this latter equation is linear 
in Ar and Ah. 

A. 5 Taylor's Theorem 

You may recall from your algebra that any 
continuous function y - f(x) can be expanded 
into an infinite series. We can restrict our atten-
tion to a point, x = a, and expand the function 
fix) about this point in the form 

f(^x) = b„+b^{x-a) + b^{x-af 

+. . .+6„(x-ar (A.47) 

The coefficients for this equation can be found 
by taking successive derivatives and then evalu-
ating the derivatives at x = a. That is, 
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df(x) 
dx 

= i>, + 2£»2 {x - a)+.. .+«&„ {x - a)" 

(A.48) 

^ t o = 2b,+...+n(n - l)b„ix - a)-' 

'^ (A.49) 

and so forth. Evaluating these at x = a gives 

na) = b„ (A.50) 

df(x)\ 
dx 

d'f(x)i 

dx' 

= b, 

= 2b. 

(A.51) 

(A.52) 

This equation is known as Taylor's Series and it 
can be proven that the series converges. 

One of the most important applications of 
this equation is associated with the linearization 
of functions. If we let Ax = x - a, and use only 
the first two terms of the Taylor's Series, then 
any function can be approximated by 

/ W = /(«) + df(x) 
dx 

X Ax (AM) 

Taylor's Series can also be used with multi-
variable functions. The function u(x,y) can 
expand about a point (x̂ , yj. Then a linear 
approximation of the function would be 

and so forth. Substituting these values back into 
the expression for f(x) gives 

f(x) = f{a) + df(x) 
dx 

X I d^f(x) x ( x - a ) + —^—-̂ -̂̂  

,2 1 d'fix) x(x-ar+.. . -H -^^-^ 
n\ dx" 

2 dx" 

x ( x - a r 

(A.53) 

u{x,y) = u(x^,y„) + 
^u{x,y) 

dx 

X Ax + dujx^y) 
dx 

xAy 
(A.55) 

You can see that this is equivalent to the total 
derivative given by equation (A.44) earlier. 
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DSP Vendors 

Mathematical Tool Vendors 

MathSoft Inc (makers of MathCAD) 
101 Main Street 
Cambridge, MA 02142 
(800) 6284223 
e-mail: sales-info@mathsoftxom 
Web address: www.mathsoftxom 

Math Works, Inc. (makers of MatLab) 
24 Prime Park Way 
Natick,MA 01760 
(508) 653-.1415 
e-mail: info@mathworks.com 
Web address: www.mathworks.com 

Wolfram Research, Inc. (makers of Mathematica) 
100 Trade Center Drive 
Champaign, IL 61820 
(800) 441 -6284 
e-mail: info@wolfram.com 
Web address: www.wolfram.com 
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DSP Chip Vendors 

DSP Chip Vendors 
Ariel Corporation (headquarters) 

2540 Route 130 
Craribury,NJ 08512 
(609) 860-2900 
fax:(609)860-1155 
e-mail: ariel@ariel.com 

Analog Devices 
1 Technology Way 
Norwood, MA 02062 
(617)461-3881 
Web address: www.analog.com 

AT&T Microelectronics 
555 Union Blvd. 
Dept. AL500404200 
AUentown, PA 18103 
(800) 372-2447 
Web address: www.att.com 

Motorola DSP Division 
6501 William Cannon Dr. W 
Austin, TX 78735 
(512)891-2030 

Motorola Semiconductor Products Sector 
Communications & Advanced Consumer Technology 

Group 
Austin, Texas 
e-mail: dsphelp@dsp.sps.mot.com 
Web address: www.mot.com/SPS/DSP (great DSP site!) 
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NEC Electronics 
475 Ellis Street 
Mountain View, CA 94039 
(415) 965-6159 

Pentek, Inc. 
55 Walnut Street 
Norwood, NJ 07648 
(201) 767-7100 
fax: (201) 767-3994 
e-mail: rodger@pentek.com 

Texas Instruments, Semiconductor Group 
P.O. Box 1712228 
Denver, CO 80217 
(800) 477-8924 
Web address: www.ti.com 
Check out TI's on-line DSPLab at www.dsplab.com 
Customer Response Center: (800) 336-5236 

White Mountain DSP, Inc. 
Suite 433 
131 DW Highway 
Nashua, NH 03060-5245 
(603) 883-2430 
fax: (603) 882-2655 
e-mail: info@wmdsp.com 
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Board-level Products 

Board-level Products 

Communication Automation & Control, Inc 
1642 Union Blvd. 
Suite 200 
Allentown, PA 18103 

CSPI (VME boards) 
40 Linnel Circle 
BiUerica, MA 01821 
(800)325-3110 

Data Translation (PC, PCI) 
100 Locke Drive 
Marlboro, MA 01752 
(508)481-3700 
e-mail: lnfo@datx.com 
Web address: www.datx.com 

DSP Research, Inc. (PC, PCI) 
1095 East Duane Avenue 
Suite 203 
Sunnyvale, CA 94086 
(408) 773-1042 

National Instruments (PC) 
6504 Bridge Point Parkway 
Austin, TX 78730 
(800) 443-3488 
e-mail: info@natinst.com 
Web address: www.natinst.com 
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SONITEC International Inc. (PC) 
14 Mica Lane 
Wellesly, MA 02181 
(617) 235-6824 

White Mountain DSP (PC) 
131 DW Highway 
Suite 433 
Nashua, NH 03060-5245 
(603) 883-2430 
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Useful Magazines and Other Publications 

Communication Automation & Control, Inc. 
1642 Union Boulevard, Suite 200 
AUentown, PA 181034585 
(610) 776^6669 
e-mail: sales@cacdspxom 
Web address: www.cacdsp.com 

Communication Systems Design 
Monthly, devoted to communications, multimedia, 

and DSP. 
FREE to qualified engineers. 
(415) 905-2200 
Web address: www.csdmag.com 

Communications Week 
CMP publication with lots of graphics. 
(516)562-5000 
techweb.cmp.com/cw/current 

Computer Design 
Monthly, articles on computer design, DSP, embedded 

systems, etc. 
FREE to qualified engineers. 
(603)891-0123 
Web address: www.computer-design.com 

DSP and Multimedia Technology 
Bi-monthly, paid circulation. 
(415) 969-6920 
na.htm 
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Additional Web Resources 

IEEE Signal Processing Magazine 
IEEE's flagship magazine for DSP and signal processing 

issues. 
Available to IEEE members and non-members. 
(212) 705-7900 

Personal Engineering and Instrumentation News 
Mark Sullivan writes a DSP column for this magazine. 
He provides downloadable source code on the Web 

at www.access.digex.net/~dalek. 

Tech Central 
Online product mart devoted to DSP, embedded systems, 

machine vision, and other areas. Registration required. 
Web address: www.techcentral.com 

Tech Online 
Another online product mart. 
Web address: www.techonline.com 

Additional Web Resources 

Amateur Radio DSP Page 
Web address: www.tapr.org/dsp/index.html 

DSP Internet Resource List 
Web address: www.cera2.com/dsp.htm 
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Glossary 

Analog-to-Digital Converter (ADC) — Converts an analog voltage 
into a digital number. There are a number of different types, 
but the most common ones found in DSP are the Successive 
Approximation Register (SAR) and the Flash converter. 

Analog Frequency — The analog frequency is what we normally 
think of as the frequency of the signal. See Digital Frequency. 

Anti-Aliasing Filter — A filter that is used to limit the bandwidth 
of any incoming signal. 

Digital Signal Processing (DSP) — As the term states, this is the use 
of digital techniques to process signals. Examples include the 
use of computers to filter signals, enhance music recordings, 
study medical and scientific phenomena, create and analyze 
music, and numerous other related applications. 

DigitaUto-Analog Converter (DAC) — Converts a digital number 
to an analog voltage. 

Digital Frequency — The digital frequency is the analog frequency 
scaled by the sample interval. If X is the digital frequency, 
/ is the analog frequency, and T is the sample period, then 
X = / / T The digital frequency is normally expressed over the 
range of-7C to 71. See Analog Frequency, 
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Digital Signal Processing Demystified 

Discrete Fourier Transform (DFT) — A computational technique 
for computing the transform of a signal Normally used to 
compute the spectrum of a signal from the time domain 
version of the signal. See Inverse Discrete Fourier Transform 
(IDFT)y Fourier Transform, and Fast Fourier Transform (FFT). 

DSP Processor — DSP processors are specialized to perform compu-
tations in a very fast manner Typically, they have special 
architectures that make moving and manipulating data more 
efficient. Typically, DSP processors have both hardware and 
software features that are optimized to perform the more 
common DSP functions (convolution, for example.) 

Fast Fourier Transform (FFT) — Computationally efficient version 
of the Discrete Fourier Transform. The FFT is based on elimi-
nating redundant computations often found in processing the 
DFT. For large transforms, the FFT may be thousands of times 
faster than the equivalent DFT. See Inverse Discrete Fourier 
Transform (IDFT), Fourier Transform, and Fast Fourier Trans-
form (FFT), 

Finite Impulse Response Filters (FIR) — A filter whose architecture 
guarantees that its output will eventually return to zero if the 
filter is excited with an impulse imput. FIR filters are uncondi-
tionally stable. See Infinite Impulse Response Filter. 

Fourier Transform — A mathematical transform using sinusoids as 
the basis function. See the Discrete Fourier Transform (DFT) 
and the Fast Fourier Transform (FFT). 

Fourier Series — A series of sinusoid wave forms that, when added 
together, produce a resultant wave form. 
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Harvard Architecture — A common architecture for DSP processors, 
the Harvard architecture splits the data path and the 
instruction path into two separate streams. This increases 
the parallelism of the processor, and therefore improves the 
throughput. See DSP Processors, 

Infinite Impulse Response Filters (IIR) — A filter that, once excited, 
may have an output for an infinite period of time. Depending 
upon a number of factors, an IIR may be unconditionally 
stable, conditionally stable, or unstable. 

Inverse Discrete Fourier Transform (IDFT) — A computational 
technique for computing the transform of a signal. Normally 
used to compute the time domain representation of a signal 
from the spectrum of the signal. See Discrete Fourier Transform 
(DFT), Fourier Transform, and Fast Fourier Transform (FFT). 

Smoothing filter — A filter that is used on the output of the DAC 
in a DSP system. Its purpose is to smooth out the stair step 
pattern of the DAC's output. 

Von Neumann Architecture — The standard computer architecture. 
A Von Neumann machine combines both data and instructions 
into the same processing stream. Named after mathematician 
Johaan Von Neumann (1903-1957), who conceived the idea. 

Window — As applied to DSP, a window is a special function that 
shapes the transfer function. Typically used to tweak the 
coefficients of filters. 
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acquisition rate, 13 

ADC, 11,55 

algorithm, DSP, 54 

aliasing, 51, 53, 79 

amplification, 4, 10 

amplifier, 12, 23 
operational, 11 
instrumentation, 11 
output, 14 

amplitude, 27, 37, 85 

analog filter, 6 

analog frequency vs. digital 
frequency, 44, 48-49, 52 

analog playback process, 4 

analog processing, 3 
advantages, 4 

analog-tO'digital converter, 
11,55 

angular frequency, 29 

anti-aliasing filter, 11, 79 

assembly language, 156 

average value of sine wave, 84 

averaging routine, 63 

D 
bandpass filter, 69, 119 

bandwidth, 50 
as function of waveform 

shape, 76 

Basic language, 156 

binary number, 11, 13 

C language, 156 

C listing for sine wave, 43 

calculus, 2 

capacitor, 22 

Cartesian coordinates, 34 

causal filter, 70 

causality, 69 

CD player, 10 

circuit, signal conditioning 10 
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circular - DSP 

circular motion, 36 

coefficients, 18, 140-141 

communications security, 7 

compensating distortion, 135 

complex analysis, 1 

complex conjugate, 145 

complex exponential func-
tion, 89 

complex numbers, 30-34 

complxgen, 30, 38 

compound growth, 20 

computer, 12 

continuous function, 40, 87 

converging series, 20 

conversion rate, 11 

convolution sum, 73 

convolution, 70-74, 119, 
121, 133-134 

cosine, 18, 29 

cutoff frequency, 81 

cycle, 40, 46 

DAC, 13, 42, 55 

data bus, 12 

data transmission, 12 

DC component, 108 

decay, amplitude, 37 

derivative, 23 

DFT, 101,105-112, 119 

difference equation, 162 

differential equation, 61 

differentiation, 18, 35 

digital frequency, 40, 48, 
163 

digital processing, 5 

digital signal synthesis, 49 

digital-to-analog converter, 
13,42,55 

dimensionless number, 55 

discrete Fourier transform, 
101,119 

discrete functions in DSP, 

88 

display, 13 

distortion, 4 

divergent series, 20 
DSP 

algorithm, 54 
applications, 10 
definition, 3 
learning software, 154 
need for, 3 
numerical basis, 17 
tools, 153-161 
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DSP - geophysicists 

DSP processor, 158-159 

DSP system 
algorithms, 12 
general model, 9 
performance, 49 
practicalities, 47 

6,22,34 

editing, waveform, 63 

emulator, in-circuit, 159 

equation, linear, 18 

error correction, 13 

error detection, 5, 13 

Euler, 34 

evaluation unit, 159 

exponential function, 30, 
89, 105 

• 
filter design, 62 

filter, 60 
"brick^wall", 67 
anti-aliasing, 11, 80 
bandpass, 60, 69, 119 
causal, 70 
FIR, 119, 137-138 
high-pass, 60, 68, 119 
IIR, 104, 122, 137-152 
low-pass, 11, 60-61, 65, 

119,127 
moving average, 64, 69 

filter (continued) 
noncausal, 70 
notch, 60 
stability, 123-124 

finite impulse response filter, 
119-135 

FIR design example, 127-135 

floating point, 42, 44 

flow diagram, 122 

FORTRAN, 156 

Fourier series, 75-81, 100 

Fourier transform, 112, 116 

frequency domain, 61, 99 

frequency response, 65-66, 138 

frequency, 29, 119 

functions, 17 
continuous, 40, 87 
discrete, 88 
exponential, 30, 89 
polynomial form, 18 
series expansions, 19 
transcendental, 18 
transfer, 62 

fundamental frequency, 61 

future of DSP, 163-165 

gain, 12, 150 

geometric series, 22 

geophysicists, 6 
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Cibbs - natural 

Gibbs phenomena, 76 

growth, 20 

Hamming window, 135 

harmonic, 76, 78 

Harvard architecture, 12 

hertz, 29 

higher-order functions, 18 

high-pass filter, 68, 119 

homogeneity property, 114 

D 
IDFT, 112 

IIRfilter, 104, 122, 137-152 

imaginary number, 31 

impulse response, 121, 133 

in-circuit emulator, 159-160 

input signal, 5, 23 

input transducer, 10 

instruction bus, 12 

integral, 23, 112 

integration, 18, 24, 35, 85 

interest, 21 
inverse discrete Fourier 

transform, 112 

isolation, 11 

j as symbol for V-1, 33 

keyboard, 13 

keypad,13 

knowledge, critical mass for 
DSP, 60 

D 
Laplace transform, 1, 115-117 

large bandwidth signals, 6 

LC circuit, 36 

limits, 23 

linear equation, 18 

Liu, 41 

logarithm, natural, 18, 23, 34 

low-pass filter, 65, 119, 127 

magnetic tape, 4 

mainframe computer, 12 

microphone, 80 

monaural system, 32 

motion, oscillatory, 26 

moving average filter, 64-65, 
69, 121 

natural logarithm, 18, 34 

200 



noise - rectangular 

noise, 57 
60'Hz, 67 

noncausal filter, 70 

nonrecursive filter, 138 

notch filter, 60 

number crunching, 12 

numerical basis, 17 

Nyquist frequency, 130 

Nyquist theorem, 49, 52, 

78-80 

operational amplifier, 11 

orthogonality, 83-87, 105 
of sines, 85 

oscillator design, 39, 98 

oscillatory motion, 26, 36 

output amplifier, 14 

output frequency, 46 

output signal, 5, 23 

output smoothing filter, 13 

output transducer, 14 

output voltage, 13 

oversampling, 80 

phase, 29, 42, 54 

phasor, 29 

Piled, 41 

playback process, 4 

polar coordinates, 28 

pole, 142-147 

polynomial, 18 

pop, 62 

prewarping, 135 

principal, 21 

principle of superposition, 75 

processor, 12 
DSP, 12, 158-159 

programming languages, 
155-157 

properties of functions, 17 

pseudocode, 44 

purpose of book, 2 

GI 
quantization error, 57 

quadrature, 89, 93 

radial signal, 32 

RC circuit, 14 

real time mapping, 46 

real time, 42, 46 

recording, sound, 4 

rectangular coordinates, 28 
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relative - time 

relative energy, 130 

resistance, 37 

resolution, 5, 11, 54-57 
determining, 57 

resonant frequency, 36 

ringing, 76 

rol^off, 81 

Rorabaugh, 39, 41 

sample, 40, 46 

samples-per-second, 50 

sampling rate, 49, 51 

scale factor, 46 

seismic signals, 6 

series 
convergent, 20 
divergent, 20 
geometric, 22 
Taylor, 19 
Fourier, 75-81 

series expansions, 19 

shifting property, 103 

shifting theorem, 104 

signal conditioning circuit, 10 

signal generation, 39-48 

signal spectrum, 106-108 

sine, 18, 29, 40 

sme wave 
average value of, 84 
C listing, 43 
DAC output, 45 
frequency of, 51 

slew rate, 13 

slope, 18 

smoothing filter, 13 

software/hardware develop-
ment packages, 158-159 

sound recording, 3 

spike, 63 

spreadsheets, 154-155 

square wave approximation, 
76 

square wave, transform of, 
100 

stair-step waveform, 13, 44, 
57 

Stereo system, 32 

storage 
data, 12 
instructions, 12 

sum, convolution, 73 

tap, 122, 125 

Taylor series, 19, 101-102 

time domain, 61, 99, 133 
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transcendental - z-transfotm 

transcendental function, 18 

transducer 
input, 10, 14 
output, 14 

transfer function, 61-62 

transform, 38, 97-118 

trigonometry, 2, 17, 28 

Twin^T, 39 

undergraduate programs, 1 

unit circle, 144 

user input, 13 

vector, 27, 83 

von Neumann architecture, 12 

Q] 
waveform editing, manual, 63 

weight, binary, 55 

wheel, 26, 36 

window function, 135 

working knowledge of DSP, 1 

x-y coordinates, 31 

y-intercept, 18 

B 
zero, 142-147 

^'plane, 101, 143 

:^'transform, 20, 101-106 
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