

Digital Signal
Processing

Demystified

by James D. Broesch

a volume in the Demystifj4ng Technology series

IiiqKTbxt publ icat ions

an imprint of

Technology Publishing
Eagle Rock, Virginia
www.LLH-Publishing.com

Digital Signal Processing Demystified © 1997 by LLH Technology
Publishing. All rights reserved. No part of this book may be reproduced,
in any form or means whatsoever, without permission in writing from the
publisher. While every precaution has been taken in the preparation of
this book, the publisher and the author assume no responsibility for errors
or omissions. Neither is any liability assumed for damages resulting from
the use of the information contained herein.

ISBN 1-878707-16-7
Library of Congress catalog number: 97-70388

Printed in the United States of America
10 9 8 7 6 5 4

Cover design: Sergio Villareal, SVGD Design, Vista, CA
Developmental editing: Carol Lewis, LLH Technology Publishing
Interior design and production services: Sara Patton, Maui, HI

LLH
Technology Publishing

Visit us on the web: www.LLH-Publishingxom

Contents

About the Accompanying Software xvii
What is the DSP Calculator! xvii
About This Manual xviii
Installation and General Information xviii
Fungen xx
Fourier xxii
DFT xxiii
FFT xxiv
Cmplxgen xxiv
REDISP XXV
IMDISP xxvi
CONVOLVE xxvi
FLTRDSGN xxvii

Preface 1

Chapter 1: Digital Signal Processing 3
The Need for DSP 3
Advantages of DSP 5
Chapter Summary 7

m

Digital Signal Processing Demystified

Chapter 2: The General Model of a DSP System 9

Introduction 9
Input 10
Signal-conditioning Circuit 10
Anti-aliasing Filter 11
Analog-tO'Digital Converter 11
Processor 12
Program Store, Data Store 12
Data Transmission 12
Display and User Input 13
Digital-to-Analog Converter 13
Output Smoothing Filter 13
Output Amplifier 14
Output Transducer 14
Chapter Summary 14

Chapter 3: The Numerical Basis for DSP 1 7

Introduction 17
Polynomials, Transcendental Functions,

and Series Expansions 18
Limits 23
Integration 24
Oscillatory Motion 26
Complex Numbers 31
A Practical Example 39
Chapter Summary 47

Chapter 4: Signal Acquisition 49

Introduction 49
Sampling Theory 51
Sampling Resolution 54
Chapter Summary 57

IV

Contents

Chapter 5: Some Example Applications 59
Introduction 59
Filters 61
A Simple Filter 62
Causality 69
Convolution 70
Chapter Summary 74

Chapter 6: The Fourier Series 75
Introduction 75
Background 75
The Fourier Series 76
The Nyquist Theorem Completed 78
Chapter Summary 81

Chapter 7: Orthogonality and Quadrature 83
Introduction 83
Orthogonality 83
Continuous Functions vs. Discrete Sequences 87
Orthogonality Continued 89
Quadrature 89
Chapter Summary : 95

Chapter 8: Transforms 97
Introduction 97
Background 97
The :^'Transform 101
Application of the DFT 106
The Fourier Transform 112
Properties of the Fourier Transform 113
The Laplace Transform 115
Chapter Summary 118

Digital Signal Processing Demystified

Chapter 9: FIR Filter Design 119
Introduction 119
What is an FIR Filter? 121
Stability of FIR Filters 123
Cost of Implementation 124
FIR Filter Design Methodology 125
FIR Design Example 127

Introduction 127
System Description 127
Generating a Test Signal 128
Looking at the Spectrum 130
Design the Filter 131
Convolution of the Signal 133
Windowing 135

Chapter Summary 135

Chapter 10: The MR 137
Introduction 137
Chapter Summary 152

Chapter 11: Tools for Working with DSP 153
Introduction 153
DSP Learning Software 154
Spreadsheets 154
Programming Languages 155
General Mathematical Tools 157
Special'purpose DSP Tools 158
Software/Hardware Development Packages 158
In-circuit Emulators 159
World Wide Web 160
Chapter Summary 161

VI

Contents

Chapter 12: DSP and the Future 163

Appendix A: Fundamentals of Engineering
Calculus and Other Math Tools 167

Introduction 168
Differential Calculus 168
Integral Calculus 173
Partial Derivatives 177
Taylor's Theorem 179

Appendix B: DSP Vendors 181
Mathematical Tool Vendors 182
DSP Chip Vendors 183
Board-level Products 165

Appendix C: Useful Magazines and Other
Publications 187

Additional Web Resources 189

Glossary 191
References 195
Index 197

Vll

This Page Intentionally Left Blank

So far as the laws of

mathematics refer to reality,

they are not certain.

And so far as they are certain,

they do not refer to reality.

- Albert Einstein

From almost naught to almost all I flee,

and almost has almost confounded me

zero my limit, and infinity!

On the Calculus,

- W. Cummings

IX

This Page Intentionally Left Blank

About the Author
James D. Broesch is a staff engineer at General Atomics-

He is responsible for the design and development of several

advanced control systems used on the DIII-D Tokamak

Fusion Research Program. He has over 10 years of experience

in designing and developing communications and control

systems for applications ranging from submarines to satellites.

Mr. Broesch teaches classes in signal processing and hardware

design via the Extension office of the University of California,

San Diego. He is the author of Practical Programmable Circuits

(Academic Press) as well as magazine articles and numerous

technical papers.

XI

This Page Intentionally Left Blank

Dedication

This book is dedicated to the Dubel family
for their many years of friendship.

This Page Intentionally Left Blank

Acknowledgments
In any project as large as this book there are a number of

people who, directly or indirectly, make major contributions.

I would like to thank Dr. Mike Walker of General Atomics

for his assistance and guidance, and for reviewing the final

manuscript. I would also like to thank Dr. Mark Kent for his

help with the initial concept and early development. Riley

Woodson's input on the initial draft of the manuscript, and

on the user interface of the DSP Calculator software, was

insightful and of great value.

I would also like to thank Tony Bowers of Quest-Rep

and Bruce Newgard of Xilinx. Their technical support of my

design work, and their willingness to share their knowledge

and skills in the classes I teach, have contributed to my

knowledge and understanding of digital signal processing.
Finally, I would like to thank the students in the UCSD
Extension Program and the other readers who took the time

to point out typos, suggest improvements, and otherwise

helped make this a better work.

XV

This Page Intentionally Left Blank

About the Accompanying
Software

What is the DSP Calculator?

The DSP Calculator suite of software routines is designed to

illustrate many of the basic concepts involved in working with DSP.

The tools included with the DSP Calculator enable you to create

waveforms, design filters, filter the waveforms, and display the

results. Also included are routines for generating complex wave-

forms based on the complex exponential, routines that perform

the discrete Fourier transform (DFT), and routines for computing

the more computationally efficient fast Fourier transform (FFT).

Several experiments that make use of the DSP Calculator are

included within the text of this book. These are indicated with the

following graphic symbol:

Interactive
Exercise

The programs can be, and have been, used to develop practical
commercial applications. They are not, however, intended for
developing large-scale or critical DSP implementations. Their

purpose is primarily educational. Use them to experiment with

the DSP concepts introduced in this book; you'll quickly develop
an intuitive sense for the math behind the concepts!

The DSP Calculator software runs under Microsoft Windows 3.1
or later. It is designed to run on a 386 system with at least 4 Mbytes

of RAM. A math co-processor is not required, but is recommended.
The programs have been tested under Windows 95 with both 486
and Pentium processors.

xvn

About the Accompanying Software

About This Manual
This manual describes the installation, use, and data formats for

each of the programs that make up the DSP Calculator. Examples
are given for each of the programs. This manual assumes that the
user is familiar with the concepts developed in the text* If some-
thing does not make sense to you, please refer to the appropriate
section in the text.

Installation and General Information
Each program in the DSP Calculator suite is designed to load or

save data in a standard file format. This makes it easy to use the
programs in combination with each other. The file format also makes
interchanging data with other programs relatively straightforward.

All data is stored as ASCII text in a "comma delimited format."

The comma separates the real part of the number from the imagi-

nary part. All data is stored as complex floating-point numbers. If

the data has only real values, then the imaginary part will be zero.

If the data has only imaginary values, then the real part will be set

to zero. All numbers are floating point values, though a number
may be expressed as an integer if it does not have any values in the

decimal place.

This is best illustrated with an example. The numbers 1, 2.3,

3.0, 4.3+jl, j5, would be stored in a file as follows:

1,0

2.3,0

3,0

4.3,1

0,5.

Notice that each number is on a line by itself. This format allows

xvin

Installation and General Information

data to be manipulated with a standard text editor, to be read or
written easily by C, BASIC, or FORTRAN programs, or to be easily
interchanged with spreadsheets or math programs-

When first invoked, all programs come up with a reasonable set

of default values for the program's parameters. Typical parameters

include amplitude, frequency, and the number of samples.

Two assumptions are made about all data. First, it is assumed

that all data is uniformly sampled, or, in other words, that the time

interval between all samples is the same. The other assumption

is that all angle data is in radians. Thus, all frequency graphs are

shown having values between -n and n. The actual frequency is

related to the sample rate by the equation:

2

For example, if the number of samples (f^) is 100 samples/sec-

ond, then a frequency of 7C is equivalent to 50 Hz. For this example,

a frequency of ^/i would be equal to 25 Hz, and so forth. Notice

that no time units are given in DSP Calculator, Only the number

of samples are used.

As noted above, all parameters are set at startup with reasonable
values. It is possible, however, to generate output that cannot be
properly displayed. One of two things will happen in this case:

a. The display will simply look strange, or

b. A message box will be generated that warns that the data

cannot be displayed correctly.

In either case, the data in the program's buffers will be correct. Even
if the data is not displayed correctly, the data in the buffers can still

be saved to a file.

XIX

About the Accompanying Software

The practical limitations of the DSP Calculator should be kept
in mind when using it with other programs. In general, the maximum
number of samples that can be placed in a file is 10,240. Some
modules have other restrictions. The FFT program, for example, is
restricted to a maximum 1024 samples, and the number of samples

must be even.

It should be kept in mind when using the DSP Calculator that

its primary purpose is educational. Thus, it will accept input values

that commercial design programs might block. For example, both

negative amplitudes and negative frequencies are accepted, and the

data generated accordingly. Engineers do not normally think about

amplitudes or frequencies as being negative, but these values are

not merely mathematical abstractions. A negative amplitude simply

means that the signal is inverted from an equivalent positive ampli-
tude; a negative frequency relates to the phase of the signal. See the

section in the text on complex numbers for a thorough discussion of

negative frequencies.

Fungen
Purpose: This is the general-purpose function generator. It will

produce sine waves, square waves, and triangle waveforms.

Inputs: There are five parameters that can be set:

Fraquancy

Amplitude

Offeet

Fhaee

Number of Samples

XX

Fungen

There are four buttons:

Sin

Square

Triangle

Clear

Most of these are self-explanatory. The number of samples must

be less than 10,241. The Clear button clears the screen and erases

the internal buffer.

Outputs: The waveform displayed is kept in an internal buffer.

This buffer can be saved to a file by using the FILE / SAVE option

on the menu bar.

Operation: Using Fungen is straightforward. Simply enter the

desired parameters, then press the appropriate button. The wave-

form will be shown on the screen, and the data will be saved in

the internal buffer. Each time one of the function buttons is

pushed, the internal buffer is erased and a new waveform is gener-

ated and stored. This makes it easy to adjust parameters: simply

change the desired parameter and hit the function button again.

Example: From the DSPCALC folder, double-click on the
Fungen icon. The function generator will appear. Using the
mouse, click on the Sin button. Two cycles of a sine waveform

will be shown. Save this waveform to a file by clicking on the

FILE menu. Then click on the SAVE button. Enter a file name
such as EXAMPL1.SIG and then click on the OK button. Open

the file using Window's Notepad application. Assuming that you
have used the standard installation path, the path name will be
DSPCALC/FUNGEN/EXAMPL1.SIG. You will see the numeric
values for the waveform.

XXI

About the Accompanying Software

Fourier
Purpose: Fourier is used for two purposes: It demonstrates the

concept of building up a waveform from simple sine waves. Sec-
ondly, it is used to create test waveforms for the filter functions.

Inputs: There are three parameters that can be set:

Frec\uer\cy

Amplitude

Number of Samplae

There are three buttons:

Sin

Coe

Clear Screen

Most of these are self-explanatory. The number of samples must

be less than 10,241. The Clear Screen button clears the screen and

erases the internal buffer.

Outputs: The waveform displayed is kept in an internal buffer.

This buffer can be saved to a file by using the FILE / SAVE option

on the menu bar.

Operation: To use Fourier enter the desired parameters, and

then press the appropriate button. The waveform will be shown on

the screen, and the data will be saved in the internal buffer. Unlike
the function generator, each time one of the function buttons is
pushed the internal buffer is not erased. The new waveform compo-
nent is added to the buffer and the waveform is displayed.

Example: From the PSPCALC folder, double-click on the Fourier

icon. When the Fourier window appears, click on the Sin button.
You will see a waveform appear on the screen. Now change the
value of the frequency to 6. Next change the value of the amplitude

xxn

DFT

to 03333. Click on the Sin button again. Notice that the new
waveform is a composite. Finally, change the value of the frequency
to 10 and the value of the amplitude to 0.2 and click on Sin again.
These values correspond to the first three terms in the Fourier series
for a square wave, so the resulting waveform should begin to look

like a square wave with rounded corners. Save the file under the

name EXAMPL2.5IG.

DFT
Purpose: DFT is used to convert a signal in the time domain to

a signal in the frequency domain. It is similar to FFT. The Discrete

Fourier Transform, however, is more flexible and should be used

whenever the transform of a complex series is required.

Inputs: There are two parameters that can be set:

Amplitude

Number of Samples

There are two buttons:

Transform

Refresh

The Amplitude dialog adjusts the amplitude of the signal display.

It does not affect the signal itself—only the display is affected. The
number of samples is limited to 1024. Transform performs the DFT
on the signal. Refresh is used to redraw the screen, if necessary.

This can be handy if other windows have erased part of the screen

display.

Outputs: The transformed waveform displayed is kept in an
internal buffer. This buffer can be saved to a file by using the
FILE / SAVE option on the menu bar.

xxni

About the Accompanying Software

Operation: Use the FILE / LOAD menu to load the signal. The
correct number of samples and the amplitude should be set before
the file is loaded. The waveform will be displayed. Click on the
waveform, and the display will change to show the spectrum of the
signal. The transformed signal can be saved using the FILE / SAVE

option on the menu bar.

Example: This example assumes that the file EXAMPL2.5I(5

exists. The EXAMPL2.5IG file was created in the example on the use

of the Fourier program. Use the FILE / LOAP menu to load the file

/P5PCALC/F0URIER/EXAMPL2.5IG.

FFT
The FFT program is similar to the PFT program. It uses a compu-

tationally efficient FFT algorithm to obtain the transform, however.

The FFT routine is considerably faster, but it is restricted to handling

sample counts that are a power of 2. The sample count must be 2, 4,

8, 16, 32, 64, 128, 256, 512, or 1024.

Example: Transform the signal file EXAMPLE2.SI(5, as described

in the discussion of the PFT program. You should get the same results.

However, the program will execute in much less time than PFT.

Cmplxgen
Purpose: TTie purpose of this program is to generate complex

waveforms based on the equatione^ where s = a+j2nf.

Inputs: There are four parameters that can be set:

Frec^uency

Amplitude

Alpha

Numbar of Samplee

XXIV

REDISP

There are two action buttons:

Ganerata

Claar Scraan

TTie Generate button computes and displays the waveform. The
Claar Screen button clears the display and erases the internal buffer.

The number of samples is limited to 10,240.

Outputs: The waveform displayed is kept in an internal buffer.

This buffer can be saved to a file by using the FILE / SAVE option
on the menu bar.

Operation: Enter the desired parameters and click on the

Generate button.

Example: Double-click on the Cmplxqen icon. Then click on the
Generate button. The unit circle will be plotted on the left-hand
side of the screen. The corresponding real and imaginary plots will
be generated on the right-hand side of the screen.

REDISP

Purpose: REDISP is a general-purpose display program. It will

display the real portion of waveforms stored in the DSPCALC format

signal files.

Inputs: There are two parameters that can be set:

Amplituda

Numbar of Samplas

There are no action buttons. There is, however, a frame slider

located at the bottom of the window. Please see the discussion

under "Operation."

Outputs: There are no outputs other than the display.

XXV

About the Accompanying Software

Operation: Enter the desired amplitude and the number of
samples for the signal that will be displayed. Use the FILE / LOAD
menu to select the file to display. The display is divided into ten
frames. Each frame can display up to 1024 samples.

Example: Use Cmplxgan to produce a signal with the following

parameters:

Freo[uer\cy = 20

Amplituda = 1

Alpha = - 2

Humber of eamplee = 10,240

Save this file as EXAMPL3.5IG. Then invoke REPI5P by double^

clicking on its icon. Set the number of samples to 1024. Then load

the EXAMPL3.SIG file using the FILE / LOAD menu. Notice that the

first few cycles of the signal are shown. Display the rest of the wave-

form by using the slider at the bottom of the screen.

IMDISP

IMDI5P is similar to REDI5P. The only difference is that IMDISP

displays the imaginary portion of the waveform.

CONVOLVE

Purpose: This program performs the convolution of two data

sequences. Each data sequence is stored in its own file.

Inputs: There are two parameters that can be set:

Amplituda

Number of 5amplae

There are two action buttons and a frame slider located at the

bottom of the window. Please see the discussion under "Operation."

XXVI

FLTRDSCN

Outputs: The result of convolving the two sequences is shown
on the screen and saved in the internal buffer. This data can be
saved to a file using the FILE menu.

Operation: Convolve is normally used to perform some type of

filtering operation. Enter the desired amplitude and the number of

samples for the signal that will be displayed. Use the FILE / LOAD

COEFFICIENTS menu to select the coefficients to use. The coeffi-

cients waveform will be displayed. Next, use the FILE / LOAD SIG-

NAL menu to load in the signal. The Convolve command button will

cause the signal to be convolved through the coefficients.

The result of the convolution will be displayed. The display is

divided into ten frames. Each frame can display up to 1024 samples.

Example: See the text on FIR filtering for a detailed example

of using Convolve.

FLTRDSGN

Purpose: This program is used to design filters. More specifi-

cally, it is used to produce the coefficients for low-pass, bandpass,

or high-pass filters.

Inputs: The inputs to this program depend upon the type of

filter being designed. There are no action buttons on the main

screen.

Outputs: The coefficients for the filter are saved in the internal

buffer. These can be saved to a file by using the FILE / SAVE AS

menu.

Operation: The type of filter to be designed is selected using

the FILTERS menu. The three selections are FILTERS / LOW PASS,.
FILTERS / BAND PASS, FILTERS / HIGH PASS.

xxvn

About the Accompanying Software

Example: Design a 33-tap bandpass filter that will pass signals

from ^4 to ̂ ^/4.

First, select the FILTERS / B>AND PASS menu. A window will
appear with boxes for the lower cutoff frequency, the upper cutoff

frequency, and the number of taps for the filter. In the lower cutoff

frequency box enter 0.785 (^4). In the upper cutoff frequency box

enter 2.36 (^^/4). Then enter 33 into the Numbar of Tape box.

Next, press the OK button. The frequency response curve for the

filter will be displayed. You can experiment with the shape of the

curve by changing the number of taps.

XXVUI

Preface
Digital signal processing (DSP) is one of the fastest-growing

fields in modern electronics. Only a few years ago DSP techniques

were considered advanced and esoteric subjects, their use limited to

research labs or advanced applications such as radar identification.

Today, the technology has found its way into virtually every segment

of electronics. Talking toys, computer graphics, and CD players are

just a few of the common examples.

The rapid acceptance and commercialization of this technology

has presented the modern design engineer with a serious challenge:

either gain a working knowledge of the new techniques or risk

obsolescence. Unfortunately, anyone attempting to gain this

knowledge has had to face some serious obstacles. Traditionally,

engineers have had two options for acquiring new skills: go back

to school, or turn to vendor s technical documentation. In the case

of DSP, neither of these approaches is a particularly good one.

Undergraduate programs—and even most graduate programs—

devoted to DSP are really only thinly disguised courses in the
mathematical discipline known as complex analysis. The purpose of

most college programs is not to teach a working knowledge of DSP;

the purpose of these programs is to prepare students for graduate
research on DSP topics. Many subjects such as the Laplace transfor-
mation, even and odd functions, and so forth are covered in depth,

while much of the information needed to really comprehend the
"whys and wherefores" of DSP techniques are left unmentioned.

Manufacturer documentation is often of little more use to the
uninitiated. Applications notes and design guides usually are either

Preface

reprints of textbook discussions, or they focus almost exclusively on

particular features of the vendor's instruction set or architecture.

The purpose of this book is to bridge the gap between the theory
of digital signal processing and the practical knowledge necessary to

understand a working DSP system. The mathematics is not ignored;

you will see many sophisticated mathematical relationships in

thumbing through the pages of this work. What is left out, however,

are the formal proofs, the esoteric discussions, and the tedious

mathematical exercises. In their place are thorough background

discussions explaining how and why the math is important, ex-

amples that can be run on any general-purpose computer, and tips

that can help you gain a comfortable understanding of the DSP

processes.

This book is specifically written for the working engineer, but

many others can benefit from the material contained here. Program

managers that find they need to understand DSP concepts will

appreciate the straightforward presentation. Students who are about

to embark on formal DSP programs will find this information useful

as a gentle introduction to an intimidating subject. Those students
who have had formal DSP training, but feel a lack of clear under-

standing, will find that this book provides a convenient place to

clear up many fuzzy concepts.

While the material is written for engineers, the mathematics is
kept as simple as possible. A first-year course in trigonometry com-

bined with a first-year course in calculus will provide more than

adequate preparation. Even those engineers who have been away
from the books for a while should have no difficulty in following
the mathematics. Special care is taken throughout to introduce all
mathematical discussions and, since formal proofs are not presented,

few esoteric relationships need to be mastered.

C H A P T E R I

Digital Signal Processing

The Need for DSP
What is digital signal processing (DSP) anyway, and why should

we use it? Before discussing either the hardware, the software, or the

underlying mathematics, it's a good idea to answer these basic

questions.

The term DSP generally refers to the use of digital computers to
process signals. Normally, these signals can be handled by analog
processes but, for a variety of reasons, we may prefer to handle them
digitally.

To understand the relative merits of analog and digital process-

ing, it is convenient to compare the two techniques in a common
application. Figure 1-1 shows two approaches to recording sounds
such as music or speech. Figure 1-la is the analog approach. It

works like this:

• Sound waves impact the microphone, where they are
converted to electrical impulses.

• These electrical signals are amplified, then converted to

magnetic fields by the recording head.

• As the magnetic tape moves under the head, the intensity

of the magnetic fields is stored on the tape.

Digital Signal Processing

Analog signal in

/I
Read head

> Write head I iw

—\l IH> K) I n.
Direaion of tape travel

(a) Analog signal recording.

Analog signal in

/I
Signal converted

to numbers

Computer h-O
Numbers converted

to signal

Analog signal out

/I

Analog signal out

(b) Digital signal recording.

Figure 1-1: Analog and digital sys tems.

The playback process is just the inverse of the recording process:

• As the magnetic tape moves under the playback head, the

magnetic field on the tape is converted to an electrical

signal.

• The signal is then amplified and sent to the speaker. The
speaker converts the amplified signal back to sound waves.

The advantage of the analog process is twofold: first, it is con-
ceptually quite simple. Second, by definition, an analog signal can
take on virtually an infinite number of values within the signal's
dynamic range. Unfortunately, this analog process is inherently
unstable. The amplifiers are subject to gain variation over tempera-
ture, humidity, and time. The magnetic tape stretches and shrinks,
thus distorting the recorded signal. The magnetic fields themselves
will, over time, lose some of their strength. Variations in the speed
of the motor driving the tape cause additional distortion. All of

Advantages of DSP

these factors combine to ensure that the output signal will be
considerably lower in quality than the input signal Each time the
signal is passed on to another analog process, these adverse effects
are multiplied. It is rare for an analog system to be able to make
more than two or three generations of copies.

Now let's look at the digital process as shown in Figure 1-lb:

• As in the analog case, the sound waves impact the micro-
phone and are converted to electrical signals. These
electrical signals are then amplified to a usable level.

• The electrical signals are measured or, in other words,

they are converted to numbers.

• These numbers can now be stored or manipulated by a
computer just as any other numbers are.

• To play back the signal, the numbers are simply converted

back to electrical signals. As in the analog case, these

signals are then used to drive a speaker.

There are two distinct disadvantages to the digital process: first, it

is far more complicated than the analog process; second, computers

can only handle numbers of finite resolution. Thus, the (potentially)
"infinite resolution" of the analog signal is lost.

Advantages of DSP
Obviously, there must be some compensating benefits of the

digital process, and indeed there are. First, once converted to num-
bers, the signal is unconditionally stable. Using techniques such as
error detection and correction, it is possible to store, transmit, and
reproduce numbers with no corruption. The twentieth generation
of recording is therefore just as accurate as the first generation.

Digital Signal Processing

This fact has some interesting implications. Future generations
will never really know what the Beatles sounded like, for example.
The commercial analog technology of the 1960s was simply not
able to accurately record and reproduce the signals. Several gener-
ations of analog signals were needed to reproduce the sound: First,
a master tape would be recorded, and then mixed and edited; from
this, a metal master record would be produced, from which would
come a plastic impression. Each step of the process was a new
generation of recording, and each generation acted on the signal
like a filter, reducing the frequency content and skewing the phase.
As with the paintings in the Sistine Chapel, the true colors and
brilliance of the original art is lost to history.

Things are different for today s musicians. A thousand years

from now historians will be able to accurately play back the digitally

mastered CDs of today. The discs themselves may well deteriorate,

but before they do, the digital numbers on them can be copied with

perfect accuracy. Signals stored digitally are really just large arrays

of numbers. As such, they are immune to the physical limitations of

analog signals.

There are other significant advantages to processing signals
digitally. Geophysicists were one of the first groups to apply the
techniques of signal processing. The seismic signals of interest to
them are often of very low frequency, from 0.01 Hz to 10 Hz. It is
difficult to build analog filters that work at these low frequencies.
Component values must be so large that physically implementing
the filter may well be impossible. Once the signals have been
converted to digital numbers, however, it is a straightforward
process to program a computer to perform the filtering.

Other advantages to digital signals abound. For example, DSP
can allow large bandwidth signals to be sent over narrow bandwidth

Chapter Summary

channels. A ZO-kHz signal can be digitized and then sent over a
5-kHz channel. The signal may take four times as long to get
through the narrower bandwidth channel, but when it comes out
the other side it can be reconstructed to its full 20-kHz bandwidth.

In the same way, communications security can be greatly im-

proved through DSP. Since the signal is sent as numbers, it can be

easily encrypted. When received, the numbers are decrypted and

then reproduced as the original signal. Modern "secure telephone"

DSP systems allow this processing to be done with no detectable

effect on the conversation.

Chapter Summary
Digitally processing a signal allows us to do things with signals

that would be difficult, or impossible, with analog approaches. With

modern components and techniques, these advantages can often be

realized economically and efficiently.

This Page Intentionally Left Blank

H A P T E R y

The General Model
of a DSP System

Introduction
The general model for a DSP system is shown in Figure 2-1.

From a high-level point of view, a DSP system performs the follow-
ing operations:

• Accepts an analog signal as an input.

• Converts this analog signal to numbers.

• Performs computations using the numbers.

• Converts the results of the computations back into an
analog signal.

1 7 ^

N
Low-pass

filter y

101111

AtoD
converter

Signal
conditioning

Display

"IT

010111

Keyboard '

^ ̂
Processor

i> 0
Program 1

store 1
1 Data
1 store

= ^

^—w

^

y
DtoA _\

converter

1
Modem ^ —

Smoothin(
filter

^ ^

— • T o o

/ / / / / /
' i
- • >a

Output
driver

ther DSP systems

Figure 2-1: The general model for a DSP system.

The General Model of a DSP System

Optionally, different types of information can be derived from
the numbers used in this process. This information may be analyzed,
stored, displayed, transmitted, or otherwise manipulated.

This model can be rearranged in several ways. For example, a

CD player will not have the analog input section. A laboratory

instrument may not have the analog output. The truly amazing

thing about DSP systems, however, is that the model will fit any

DSP application. The system could be a sonar or radar system,

voicemail system, video camera, or a host of other applications.

The specifications of the individual key elements may change,

but their function will remain the same.

In order to understand the overall DSP system, let's begin with

a qualitative discussion of the key elements.

Input
All signal processing begins with an input transducer. The input

transducer takes the input signal and converts it to an electrical

signal. In signal-processing applications, the transducer can take

many forms. A common example of an input transducer is a micro-
phone. Other examples are geophones for seismic work, radar

antennas, and infrared sensors. Generally, the output of the trans-

ducer is quite small: a few microvolts to several millivolts.

Signal-conditioning Circuit
The purpose of the signal-conditioning circuit is to take the

few millivolts of output from the input transducer and convert it
to levels usable by the following stages. Generally, this means
amplifying the signal to somewhere between 3 and 12V. The signal-
conditioning circuit also limits the input signal to prevent damage

10

Analog-tO'Digital Converter

to following stages. In some circuits, the conditioning circuit pro-
vides isolation between the transducer and the rest of the system
circuitry.

Typically, signal-conditioning circuits are based on operational
amplifiers or instrumentation amplifiers.

Anti-aliasing Filter
The anti-aliasing filter is a low-pass filter. The job of the anti-

aliasing filter is a little difficult to describe without more theoretical

background than we have developed up to this point (see Chapter 6

for more details). However, from a conceptual point of view, the

anti-aliasing filter can be thought of as a mechanism to limit how

fast the input signal can change. This is a critical function; the anti-

aliasing filter ensures that the rest of the system will be able to track

the signal. If the signal changes too rapidly, the rest of the system

could miss critical parts of the signal.

Analog-to-Digital Converter
As the name implies, the purpose of the analog-to-digital

converter (ADC) is to convert the signal from its analog form to
a digital data representation. Due to the physics of converter cir-
cuitry, most ADCs require inputs of at least several volts for their
full range input. Two of the most important characteristics of an
ADC are the conversion rate and the resolution. The conversion rate
defines how fast the ADC can convert an analog value to a digital
value. The resolution defines how close the digital number is to the
actual analog value.

The output of the ADC is a binary number that can be manipu-

lated mathematically.

11

The General Model of a DSP System

Processor
Theoretically, there is nothing special about the processor. It

simply performs the calculations required for processing the signal.
For example, if our DSP system is a simple amplifier, then the input
value is literally multiplied by the gain (amplification) constant.

In the early days of signal processing, the processor was often
a general-purpose mainframe computer. As the field of DSP pro-
gressed, special high-speed processors were designed to handle the
"number crunching."

Today, a wide variety of specialized processors are dedicated

to DSP These processors are designed to achieve very high data

throughputs, using a combination of high-speed hardware, special-

ized architectures, and dedicated instruction sets. All of these

functions are designed to efficiently implement DSP algorithms.

Program Store, Data Store
The program store stores the instructions used in implementing

the required DSP algorithms. In a general-purpose computer (von

Neumann architecture), data and instructions are stored together.

In most DSP systems, the program is stored separately from the
data, since this allows faster execution of the instructions. Data
can be moved on its own bus at the same time that instructions are

being fetched. This architecture was developed from basic research

performed at Harvard University, and therefore is generally called
a Harvard architecture. Often the data bus and the instruction bus
have different widths.

Data Transmission
DSP data is commonly transmitted to other DSP systems.

Sometimes the data is stored in bulk form on magnetic tape, optical

12

Output Smoothing Filter

discs (CDs), or other media. This ability to store and transmit the
data in digital form is one of the key benefits of DSP operations.
An analog signal, no matter how it is stored, will immediately begin
to degrade. A digital signal, however, is much more robust since it is
composed of ones and zeroes. Furthermore, the digital signal can be

protected with error detection and correction codes.

Display and User Input
Not all DSP systems have displays or user input. However, it is

often handy to have some visual representation of the signal. If the

purpose of the system is to manipulate the signal, then obviously

the user needs a way to input commands to the system. This can be

accomplished with a specialized keypad, a few discrete switches, or

a full keyboard.

Digital-to-Analog Converter
In many DSP systems, the signal must be converted back to

analog form after it has been processed. This is the function of the

digital'to-analog converter (DAC). Conceptually, DACs are quite
straightforward: a binary number put on the input causes a corre-

sponding voltage on the output. One of the key specifications of

the DAC is how fast the output voltage settles to the commanded
value. The slew rate of the DAC should be matched to the acquisi-
tion rate of the ADC.

Output Smoothing Filter
As the name implies, the purpose of the smoothing filter is

to take the edges off the waveform coming from the DAC. This
is necessary since the waveform will have a "stair-step" shape,
resulting from the sequence of discrete inputs applied to the DAC.

13

The General Model of a DSP System

Generally, the smoothing filter is a simple low-pass system. Often, a
basic RC circuit does the job.

Output Amplifier
The output amplifier is generally a straightforward amplifier

with two main purposes. First, it matches the high impedance of

the DAC to the low impedance of the transducer. Second, it boosts

the power to the level required.

Output Transducer
Like the input transducer, the output transducer can assume

a variety of forms. Common examples are speakers, antennas, and

motors.

Chapter Summary

The overall idea behind digital signal processing is to:

• Acquire the signal.

• Convert it to a sequence of digital numbers.

• Process the numbers as required.

• Transmit or save the data as may be required.

• Convert the processed sequence of numbers back to

a signal.

This process may be considerably more complicated than
the traditional analog signal processors (radios, telephones, TVs,

stereos, etc.) However, given the advances in modern technology,
DSP solutions can be both cheaper and far more efficient than
traditional techniques.

14

Chapter Summary

This chapter has looked at the key blocks in a DSP system.
Any DSP system will be composed of some subset of these blocks.
The key to understanding, specifying, or designing a DSP system is
to know how these blocks are related, and how the parameters of
any one block impact the parameters of the other blocks. The rest

of this book is dedicated to providing this level of understanding.

15

This Page Intentionally Left Blank

C H A P T E R \t

The Numerical
Basis for DSP

Introduction
The heart of DSP is, naturally enough, numbers. More speci-

fically, DSP deals with how numbers are processed. Most texts

on DSP either assume that the reader already has a background

in numerical theory, or they add an appendix or two to review

complex numbers. This is unfortunate, since the key algorithms

in DSP are virtually incomprehensible without a strong foundation

in the basic numerical concepts.

Since the numerical foundation is so critical, we begin our

discussion of the mathematics of DSP with some basic information.

This material may be review, especially for those readers who are

well versed in trigonometry. However, we suggest that you at least

scan the material presented in this section, as the discussions that
follow this section will be much clearer. Also, Appendix A reviews
some of the fundamentals of engineering calculus and other mathe-

matical tools.

In general, applied mathematics is a study of functions. Primarily,

we are interested in how the function behaves directly. That is, for

any given input, we want to know what the output is. Often, how-
ever, we are interested in other properties of a given function. For
example, we may want to know how rapidly the function is chang-

ing, what the maximum or minimum values are, or how much area
the function bounds.

17

The Numerical Basis for DSP

Additionally, it is often handy to have a couple of different
ways to express a function. For some applications, one expression
may make our work simpler than another.

Polynomials, Transcendental Functions,
and Series Expansions

Polynomials are the workhorse of applied mathematics. The

simplest form of the polynomial is the simple linear equation:

y = mx + b Equation 3-1

where m and b are constants. For any straight line drawn on an

x-y graph, an equation in the form of Equation 3-1 can be found.

The constant m defines the slope, and b defines the }'''intercept

point. Not all functions are straight lines, of course. If the graph

of the function has some curvature, then a higher-order function

is required. In general, for any function, a polynomial can be found

of the form:

fix) = ax"" + . . . + bx^ + CX̂ Equation 3-2

which closely approximates the given function, where a, b, and c
are constants called the coefficients of/(x).

This polynomial form of a function is particularly handy when
it comes to differentiation or integration. Simple arithmetic is
normally all that is needed to find the integral or derivative.
Furthermore, computing a value of a function when it is expressed
as a polynomial is quite straightforward, particularly for a computer.

If polynomials are so powerful and easy to use, why do we turn
to transcendental functions such as the sine, cosine, natural logarithm,
and so on? There are a number of reasons why transcendental

18

Polynomials, Transcendental Functions, and Series Expansions

functions are useful to us. One reason is that the transcendental
forms are simply more compact. It is much easier to write:

3̂ = s i n (x) Equation 3-3

than it is to write the polynomial approximation:

fix) = X X^ + — X ^ - . . . Equation 3-4

3! 5!

Another reason is that it is often much easier to explore and

manipulate relationships between functions if they are expressed

in their transcendental form.

For example, one look at Equation 3-3 tells us that/(x) will

have the distinctive shape of a sine wave. If we look at Equation

3-4, it s much harder to discern the nature of the function we are

working with. It is worth noting that, for many practical applica-
tions, we do in fact use the polynomial form of the function and its

transcendental form interchangeably. For example, in a spreadsheet

or high-level programming language, a function call of the form:

y — s i n (x) Equation 3-5

results in y being computed by a polynomial form of the sine func-

tion.

Often, polynomial expressions called series expansions are used for
computing numerical approximations. One of the most common of
all series is the Taylor series. The general form of the Taylor series is:

/ (x) = ^ a^X^ Equation 3-6

19

The Numerical Basis for DSP

Again, by selecting the values of a ,̂ it is possible to represent many
functions by the Taylor series. In this book we are not particularly
interested in determining the values of the coefficients for functions
in general, as this topic is well covered in many books on basic
calculus. The idea of series expansion is presented here because it
plays a key role in an upcoming discussion: the :^-transform.

A series may converge to a specific value, or it may diverge. An
example of a convergent series is:

°° 1
fM = X T Equation 3^7

n=0 2

As n grows larger, the term ^/l^ grows smaller. No matter how many

terms are evaluated, the value of the series simply moves closer to a

final value of 2.

A divergent series is easy to come up with:

oo

/ (^) = X ^" Equation 3-8

As n approaches infinity, the value of/(n) grows without bound.

Thus, this series diverges.

It is worth looking at a practical example of the use of series

expansions at this point. One of the most common uses of series
is in situations involving growth. The term growth can be applied

to either biological populations (herds, for example), physical laws

(the rate at which a capacitor charges), or finances (compound
interest).

Let's take a look at the concept of compound growth. The idea

behind it is simple:

20

Polynomials, Transcendental Functions, and Series Expansions

m You deposit your money in an account.

• After some set period of time (say, a month), your
account is credited with interest.

• During the next period, you earn interest on both the

principal and the interest from the last period.

• This process continues as described above.

Your money keeps growing at a faster rate, since you are earning

interest on the previous interest as long as you leave the money in

the account.

Mathematically, we can express this as:

f{x) = X + - Equation 3-9

where c is the interest rate. If we start out with a dollar, and have

an interest rate of 10% per month, we get:

/(1) = 1 + —
^ 10

= 1.10

for the first month. For the second month, we would be paid

interest on $1.10:

/(1.10) = 1.10 + —
^ 10

= 1.21

and so on. This type of computation is not difficult with a com-

puter, but it can be a little tedious. It would be nice to have a

21

The Numerical Basis for DSP

simple expression that would allow us to compute what the value
of our money would be at any given time. With some factoring and
manipulation, we can come up with such an expression:

/ (n)= x + ^ X

c
Equation 3-10

where n is the number of compounding periods. Using Equation

3-10 we can directly evaluate what our dollar will be worth after

two months:

\2

= 1.21

For many applications, the value of c is proportional to the number

of periods. For example, when a capacitor is charging, it will reach
half its value in the first time period. During the next time period,

it will take on half of the previous value (that is V4), etc. For this
type of growth, we can set c = n in Equation 340 . Assuming a

starting value of 1, we get an equation of the following form:

Equation 3-11

Equation 3-11 is a geometric series. As n grows larger, /(n) converges
to the irrational number approximated by 2.718282. (You can easily
verify this with a calculator or spreadsheet.) This number comes
up so often in mathematics that is has been given its own name: e.
Using e as a base in logarithm calculations greatly simplifies

22

Limits

problems involving this type of growth. The natural logarithm (In)
is defined from this value of e:

ln(e) = 1 Equation 3-12

It is worth noting that the function e^ can be rewritten in the
form of a series expansion:

e"̂ = 1 + X + "— + . . . — + ... Equation 3-13
2! n!

The natural logarithm and the base e play an important role in
a wide range of mathematical and physical applications. We're
primarily interested in them, however, for their role in the use of
imaginary numbers. This topic will be explored later in this chapter.

Limits
Limits play a key role in many modern mathematical concepts.

They are particularly important in studying integrals and derivatives.

They are covered here mainly for completeness of this discussion.

The basic mathematical concept of a limit closely parallels what
most people think of as a limit in the physical world. A simple
example is a conventional signal amplifier. If our input signal is
small enough, the output will simply be a scaled version of the
input. There is, however, a limit to how large an output signal we
can achieve. As the amplitude of the input signal is increased, we
will approach this limit. At some point, increasing the amplitude
of the input will make no difference on the output signal; we will
have reached the limit.

Mathematically, we can express this as:

23

The Numerical Basis for DSP

VQ^^ = lim /(x) Equation 3-14 ^OUt max

"max

where f{x) is the output of the amplifier, and v.^ is the maximum
input voltage that does not cause the amplifier to saturate.

Limits are often evaluated under conditions that make mathe-

matical sense, but do not make intuitive sense to most us. Consider,

for example, the function/(x) = 2 + ^jx. We can find the value of

this function as x takes on an infinite value:

In practice, what we are saying here is that as x becomes infinitely

large, then V̂ becomes infinitely small. Intuitively, most people

have no problem with dropping a term when it no longer has an

effect on the result. It is worth noting, however, that mathemati-

cally the limit is not just dropping a noncontributing term; the

value of 2 is a mathematically precise solution.

Integration
Many concepts in DSP have geometrical interpretations. One

example is the geometrical interpretation of the process of integra-

tion. Figure 3-1 shows how this works. Let's assume that we want to

find the area under the curve /(x). We start the process by defining
some handy interval—in this case, simply b - a. This value is usually
defined as Ax. For our example, the interval Ax remains constant
between any two points on the x-axis. This is not mandatory, but

it does make things easier to handle.

24

Integration

Figure 3-1: Geometric interpretation of integration.

Now, integration is effectively a matter of finding the area under

the curve /(x). A good approximation for the area in the region

from a to b and under the curve can be found by multiplying/(a)

by Ax. Mathematically:

J / (x)dx- / (a)Ax Equation 3-15

Our approximation will be off by the amount between the top of

the rectangle formed by /(a)Ax and yet still under the curve /(x).

This is shown as a shaded region in Figure 3-1. For the interval
from atob this error is significant. For some of the other regions
this error can be seen to be insignificant. The overall area under
the curve is the sum of the individual areas:

\f{x)dx^lf{x)A> Equation 3^16

2S

The Numerical Basis for DSP

It's worthwhile to look at the source of error between the
integral and our approximation. If you look closely at Figure 3-1,
you can see that the major factor determining the error is the size
of Ax. The smaller the value of Ax, the closer the actual value of the
integral and our approximation will be. In fact, if the value of Ax is

made vanishingly small, then our approximation would be exact.

We can do this mathematically by taking the limit of the right-

hand side of Equation 3-16 as Ax approaches 0:

J / (x) d x = lim X / (x) A x Equation 3-17
Ax-»0

Notice that Equation 3-17 is in fact the definition of the integral,
not an approximation.

There are a number of ways to find the integral of a function.

Numerically, a value can be computed using Equation 3-16 or some

more sophisticated approximation technique. For symbolic analysis,

the integral can be found by using special relationships or, as is

more often the case, by tables. For most DSP work, only a few

simple integral relationships need to be mastered. Some of the

most common integrals are shown in Table A.3 of Appendix A.

Oscillatory Motion
Virtually all key mathematical concepts in DSP can be directly

derived from the study of oscillatory motion. In physics, there are

a number of examples of oscillatory motion: weights on springs,

pendulums, LC circuits, etc. In general, however, the simplest form
of oscillatory motion is the wheel. Think of a point on the rim of a
wheel. Describe how the point on the wheel moves mathematically
and the foundations of DSP are in place. This statement may seem

26

Oscillatory Motion

somewhat dramatic, but it is truly amazing how often this simple

fact is overlooked.

The natural place to begin describing circular motion is with

Cartesian coordinates. Figure 3-2 shows the basic setup. The origin

of the coordinate system is, naturally, where the x- and y-axes

intersect. This point is designated as P(0,0). The other interesting

point shown in the figure is P{x,y).

)'-axis

/
/y = rsin(e)

.P(x,^)

P(0,0)
x-axis

X = r cos(6) /

/

Figure 3-2: Polar and rectangular coordinates.

The point Pixyj) can be thought of as a fixed point on the rim

of a wheel. The axle is located at the point P(0,0). The line from
P(0,0) to P{x,y) is a vector specified as r. We can think of it as the
radius of the wheel. (The variable r is shown in bold to indicate

that it is either a vector or a complex variable.)

The variable r is often of interest in DSP, since its length is
what defines the amplitude of the signal. This will become more

27

The Numerical Basis for DSP

clear shortly. When points are specified by their x and y values the
notation is called rectangular. The point Pix^y) can also be specified
as being at the end of a line of length r at an angle of 0. This nota-
tion is called polar notation.

It is often necessary to convert between polar and rectangular
coordinates. The following relationship can be found in any trigo-
nometry book:

l e n g t h o f r = ^X^ + y^ Equation 3-18

This is also called the magnitude of r and is denoted as |r|. The
angle 9 is obtained from x and }> as follows:

Equation 3-19

Two particularly interesting relationships are:

X = I r I c o s e Equation 3-20

and

^̂ = I r I s i n 9 Equation 3-21

The reason these two functions are so important is that they

represent the signals we are usually interested in. In order to
develop this statement further, it is necessary to realize that the
system we have just described is static—in other words, the wheel

is not spinning. In DSP, as with most other things, the more inter-
esting situation occurs when the wheels start spinning.

28

Oscillatory Motion

From basic geometry, we know that the circumference of the
wheel is simply Inr. This is important, since it defines the angular
distance around the circle. If 9 = 0, then the point P{Xyy) will have
a value of P(|r | ,0). That is, the point will be located on the x-axis
at a distance of |r| from the origin. As 0 increases, the point will

move along the dotted line. When 9 = ^/i the point will be at

P(0,|r |). That is, it will be on the ^/-axis at a distance |r| from

the origin. The point will continue to march around the circle as

9 increases. When 9 reaches a value of ZTC, the point will have come

full circle back to P(|r | ,0).

As the point moves around the circle, the values of x and y will

trace out the classic sine and cosine wave patterns. The two patterns

are identical, with the exception that the sine lags the cosine by ^/l.

This is more often expressed in degrees of phase; the sine is said to

lag the cosine wave by 90°.

When we talk about the point moving around the circle, we are

really talking about the vector r rotating around the origin. This

rotating vector is often called a phasor. As a matter of convenience,

a new variable co is often defined as:

CO = ZTCJ Equation 3^22

The variable co represents the angular frequency, The variable / is ,

of course, the frequency. Normally / is expressed in units of hertz

(Hz), where 1 Hz is equal to 1 cycle per second. As we will see a
little later, however, the concept of frequency can take on a some^
what surrealistic aspect when it is used in relation to DSP systems.

If all of this makes sense so far, you are in good shape with
respect to the fundamentals of digital signal processing. If, however.

29

The Numerical Basis for DSP

all of this is a little hard to grasp, don't feel left out. Many engineers
never really become completely comfortable with the mathematics.
This isn't to say it's not important, however. The material in this
section and the next must be well understood if you are to under-
stand the mathematical principles of DSP.

The question is then: what should you do if this material seems

vague? We have stepped through a lot of trigonometry quickly, so

don't feel too bad if the material does not seem obvious. This

section is intended only as a quick review. Also, the presentation

in the book is naturally static, but phasors are a dynamic process. It is

tough to get the feel of a dynamic process just by reading about it.

Interactive
Exercise

We will talk about complex numbers next, but first it is worth

noting that these relationships can be dynamically illustrated by

graphing a complex exponential function. The program cmplxgan

supplied on the accompanying disk is a good tool for this. To use

it, just double-click on the icon. The program comes up with the

appropriate values as a default. Then click on the GENERATE
button. You can watch the point rotate and simultaneously see the
waveforms that are generated for both the x and y values.

Feel free to change the values of amplitude and frequency.
Adjust the frequency for values between 0.25 and 12. Adjust the

amplitude for values between 0.25 and 1.25. Notice that it is OK

to enter negative values, as long as they are in the same range. It
may seem like an oversight that we have not included dimensions
(like hertz or volts) on the above values. It isn't. This too will make
sense as we proceed.

30

Complex Numbers

If, after working with cmplxgen for awhile, things still don't
make sense, it is probably a good idea to find a basic book or study
guide on trigonometry and do some studying. Then come back to
this chapter for another try.

Complex Numbers
Now, back to the subject of complex numbers. We have stayed

away from the subject until now simply because we did not want

to confuse things. Partially because of the names used with complex

numbers ("real" and "imaginary"), and partially because of their

somewhat esoteric use, people are often intimidated by them.

This is unfortunate, since complex numbers are really quite straight-

forward. As with many other areas of mathematics, however, the

notation can be a little confusing.

Part of the confusion over complex numbers—particularly as

they relate to DSP—comes from a lack of understanding over their

role in the "real world" (no pun intended). So, first we will present

a qualitative discussion of reaUworld signals and complex numbers.

After that, a more mathematical presentation will be in order.
Complex numbers can be thought of as numbers with two parts:

the first part is called the real part, and the second part is called

the imaginary part. Naturally, most numbers we deal with in the

real world are real numbers: 0, 3.3, 5.0, and 0.33 are all examples.
Since complex numbers have two parts, it is possible to represent
two related values with one number; x-y coordinates, speed and

direction, or amplitude and phase can all be expressed directly or
indirectly with complex numbers.

Initially, it is easy to think of signals as "real valued." These are
what we see when we look at a signal on an oscilloscope, look at a

31

The Numerical Basis for DSP

time vs. amplitude plot, or think about things like radio waves.
There are no "imaginary" channels on our TVs, after all.

In practice most of the signals we deal with are actually complex
signals. For example, when we hear a glass drop we immediately get

a sense of where the glass hit the floor. It is tempting to think of the

signals hitting our ear as "real valued"—the amplitude of the sound

wave reaching our ears as a function of time. This is actually an

oversimplification, as the sound wave is really a complex signal.

As the glass hits the floor the signal propagates radially out from the

impact point. Imagine a stone dropped in a pond; its graph would

actually be three-dimensional, just as the waves in a pond are three-

dimensional. These three-dimensional waves are, in fact, complex

waveforms. Not only is the waveform complex, but the signal

processing is also complex. Our ears are on opposite sides of our

head to allow us to hear things slightly out of phase. This phase

information is perceived by our brains as directional information.

Another way to look at this is to compare a monaural system—

such as an AM radio—with a stereo system. A good example of a

stereo system is an FM radio. While stereo systems are so ubiquitous

today that we take them for granted, at one time they were quite
novel. The early stereos came with a demonstration record, typi-
cally a recording of a train. The sound would slowly start in the

left speaker and then move across to the right speaker. The result

was the sensation of hearing the train actually pass by. These demo
records graphically illustrated the difference between complex and
real-valued signals.

The brain can find the direction of an AM radio because it is
processing the real signal as a complex waveform. The signal itself,
however, is a point source. There is no way to tell which way a train
is going if you hear it over a monaural (i.e., real) channel. In the

32

Complex Numbers

case of a stereo signal, however, the brain processes a complex
signal with complex detectors. Not only can the brain discern
where the speakers are, but it can also tell which direction the
train is moving.

The points we have been discussing, such as P(0,0) and P(x,3'),
are really complex numbers. That is, they define a point on a two-
dimensional plane. We do not generally refer to them this way,
however, as a matter of convention. Still, it is useful to remember
that fact if things get too confusing when working with complex
notation.

Historically, complex numbers were developed from examining

the real number line. If we think of a real number as a point on the

line, then the operation of multiplying by (-1) rotates the number

180° about the origin on the number line. For example, if the point

is 7, then multiplying by (-1) gives us (-7). Multiplying by (-1)

again rotates us back to the original value of 7. Thus, the quantity

(-1) can be thought of as an operator that causes a 180° rotation.

The quantity (-1)^ is just one, so it represents a rotation of either
0°, or equivalently, 360°.

This leads us to an interesting question: If (-1)^ = 1, then what
is the meaning of V-1 ? There is no truly analytical way of answer-
ing the question. One way of looking at it, however, is like this: If
1 represents a rotation of 360°, and (-1) represents a rotation of
180°, then V-1 must, by analogy, represent a rotation of 90°. In
short, multiplying by V-1 rotates a value from the x-axis to the
^i-axis. Early mathematicians considered this operation a purely
imaginary (that is, having no relation to the "real" world) exercise,
so it was given the letter i as its symbol. Since i is reserved for
current in electronics, most engineers use j as the symbol for V-1.
This book follows the engineering convention.

33

The Numerical Basis for DSP

In our earlier discussion, we pointed out that a point on the
Cartesian coordinates can be expressed as ?{Xy'y), This means, in
words, that the point P is located at the intersection of x units on
the X-axis, and)! units on the 3 -̂axis. We can use the j operator to
say the same thing:

P(x,y) = p(|r|cos(e),|r|sin(e))

= ^ + i}' Equation 3^23

Thus, we see that there is nothing magical about complex numbers.

They are just another way of expressing a point in the x^y plane.

Equation 3-23 is important to remember since most programming

languages do not support a native complex number data type, nor

do most processors have the capability of dealing directly with

complex number data types. Instead, most applications treat a

complex variable as two real variables. By convention one is real,

the other is imaginary. We will demonstrate this with some exam-

ples later.

In studying the idea of complex numbers, mathematicians
discovered that raising a number to an imaginary exponent pro-

duced a periodic series. The famous mathematician Euler demon-

strated that the natural logarithm base, e, raised to an imaginary
exponent, was not only periodic, but that the following relationship
was true:

e^^ = cos e + j sin 6 Equation 3^24

To demonstrate this relationship, we will need to draw on
some earlier work. Earlier we pointed out that the sine and cosine
functions could be expressed as a series:

34

Complex Numbers

sin (x) = X h -—-

and

3! 5!

cos(x) = 1 1
2! 4!

Equation 3-25

Equation 3-26

Now, if we evaluate e^^ using Equation 3-13 we get:

2! 3! 4! 5! 6!
Equation 3'27

Expanding and rearranging Equation 3-27 gives us:

-je = J^
m £\lm

(-ire
% (2m)!

• + J l
(-1)-$

m /)2m+l

% (2m+ 1)!
Equation 3-28

Substituting Equation 3^25 and Equation 3-26 into Equation 3-28

gives us Equation 3-24.

Euler's relationship is used quite heavily throughout the field

of signal processing, primarily because it greatly simplifies analytical

calculations. It is much simpler to perform integration and differen-

tiation using the natural logarithm or its base than it is to perform

the same operation on the equivalent transcendental functions.

Since this book is mainly aimed at practical applications, we will

not be making heavy use of analytical operations using e. It is

common in the literature, however, to use e^^ as a shorthand nota-

tion for the common cos(co) + jsin(co) expression. This convention

will be followed in this book.

Euler's relationship can also be used as another way to express a

complex number. For example:

35

The Numerical Basis for DSP

P(x,:y) = re^^ Equation 3^29

is equivalent to Equation 3-23.

We have pushed the mechanical analogy about as far as we can,

so it is time to briefly review what has been presented and then

switch over to an electronic model for our discussion.

• The basic model of a signal is oscillatory motion.

• The simplest conceptualization is a point rotating about

the origin.

• The motion of the point can be defined as:

where co = ZTI/, r is the radius, and / is the frequency of
rotation.

• Euler s relationship gives us the following:

e =cosO-f jsinG

e~^ = c o s 0 - j s i n 9

The electronic equivalent of the wheel is the LC circuit. An
example circuit is shown in Figure 3-3. By convention, the voltage
is generally defined as the real value, and the current is defined as
the imaginary value. The symbol co is used to represent the resonant
frequency and is determined by the value of the components.
Assuming the resistance in the circuitry is zero, then:

e^^^ = cos cot + j sin cot Equation 3-30

36

Complex Numbers

The current is Imaginary, and
lags the voltage by 90 degrees

The voltage is real, and is "m phase"

VJ V

Switch closes -

x:/

Switch opens

t

Figure 3-3: Ideal LC circuit showing voltage and
current relationships.

describes the amplitude and the phase of the voltage and the cur-
rent. In practice, we would add in a scale factor to define the value
of the maximum voltage and the maximum current. Notice that, as
in the case of the point rotating about the origin, the voltage is 90°
out of phase with the current.

What if the resistance is not equal to zero? Then the amplitude
decreases as a function of time. From any good book on circuit
analysis, we can find that the decay of the amplitude is an exponen-
tial function of time: e~"̂ This decay applies to both the current
and the voltage. If we add in our scale factor A, we get the follow-
ing equation:

f{t) = Ae-'''e^'^' Equation 3-31

which, from our log identities, gives us:

/(t) = Ae(-«^^^)^ Equation 3-32

37

The Numerical Basis for DSP

Generally, the exponential term is expressed as a single complex
variable, s:

S = - a + JCO Equation 3-33

The symbol s is familiar to engineers as the independent variable
in the Laplace transform. (Transforms will be covered in a later
chapter.)

Interactive
Exercise

Now it's time to return to our program cmplxgan* In our
previous example, we left the value of a at its default value of 0.
Since ê = 1, this is equivalent to saying that the amplitude is
constant, neither decaying nor increasing.

This time around, enter different values for the various options.

Start out with the following:

frequency = 3

amplitude = 1.25

a = -2

Notice that the resulting graph spirals in toward the origin. Try
different values. Notice that positive values of a cause the graph

to spiral out from the origin. Also notice that the amplitude of

the sine waves changes as the point moves. This is a complex
exponential at work!

This information on the complex exponential is critical to
understanding how the major algorithms in DSP work, so make
sure you feel comfortable with this material before proceeding.

38

A Practical Example

A Practical Example
In order to illustrate some of the basic principles of working

with discrete number sequences, we will begin with a simple
example. Referring back to Figure 2-1, let's assume that our task is
to use a DSP system to generate a sine wave of 1 Hz. We will also
assume that our DAC has a resolution of 12 bits, and an output
range of-5 volts to +5 volts.

This task would be difficult to do with conventional electronic
circuits. Producing a sine wave generally requires an LC circuit or
a special type of RC oscillator known as a Twin-T. In either case,
finding a combination of values that work well and are stable at
1 Hz is difficult.

On the other hand, designing a low-frequency oscillator like

this with DSP is quite straightforward. We'll take a somewhat

convoluted path, however, so we can illustrate some important

concepts along the way.

First, let s look at the basic function we are trying to produce:

fit) = sin (cot + e) Equation 3-34

where, for this example, co = 2nf, / = 1, and 9 = 0.

From a purely mathematical perspective. Equation 3-34 is
seemingly simple. There are some interesting implications in this
simple-looking expression, however. As Rorabaugh^ points out,
the notation/(t) is used to mean different things by various authors.
It may mean the entire function expressed over all values of t, or it
may mean the value of/evaluated at some point t.

^ Digital Filter Designers Handbook, page 36 (see References).

39

The Numerical Basis for DSP

Another interesting concept is the idea that/(t) is continuous.
In practice, we know that no physical quantity is truly infinitely
divisible. At some point quantum physics—if no other physical law
—will define discretely quantized values. Mathematically, however,
/(t) is assumed to be continuous, and therefore infinitely divisible. That

is, for any/(t) and any/(t + A) there is some value equal to/(t + ^li).

This leads to the rather interesting situation that between any two

finite points on a line there are an infinite number of points.^

The object is to use a digital computer to produce an electrical

output representing Equation 3'34- Clearly, we cannot compute an

infinite number of points, as this would take an infinite length of
time. We must choose some reasonable number of points to com-

pute. What is a "reasonable number of points"? The answer depends

on the system we are using and on how close an approximation we

are willing to accept. In practice we will need something like 5 to

50 points per cycle. Figure 3^4 shows an example of how 16 points

can be used to approximate the shape of a sine wave. Each point is

called one sample of the sine function (N = 15).

Notice that time starts at t = 0 and proceeds through t = ^V^-

In other words, there are 16 points, each evaluated at Vi6-second
intervals. This interval between samples is called (naturally enough)
the sample period. The sample period is usually given the symbol T.

Notice that the next cycle starts at t = 0 of the secoryi cycle, so there

is no point at the 1-second index mark. In order to incorporate T
in an equation we must define a new term: the digital frequency,

In our discussion of the basic trigonometry of a rotating point,

we defined the angular frequency, (O, as being equal to Inf. The

^ See pages 152-157 of The ^sAathematical Experience for a good discussion of this.

40

A Practical Example

1.0 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 ^
0.1 -
0.0 —

-0.1 -

-0.2 -
-0.3 -
-0.4 -
0.5 -
0.6 -
0.7 -
0.8 -
0.9 -
1.0 -

1

/
/
/ / / /

i

/ftK
^

> V- VN seconc

\
\ •

l\
\̂

\ 8 9 10 11 12 13 14 15 1 sec.

M , i v l 1 2 3 4 5 6 7 \.

\
\ i

\ \ \

i \
>l \ . I

___^ ^

y
/

/
• / /

Time(N)

Figure 3-4: Sample points on a sine wave.

digital frequency \ is defined as the analog frequency times the

period T:

i2.
N

Equation 3-35

The convention of using \ as the digital frequency is not universal.
It was first used by Peled and Liu [2], and is used by Rorabaugh [3].
Giving the digital frequency its own symbol is useful as a means
of emphasizing the difference between the digital and the analog
frequencies, but is also a little confusing. In this text we denote the
digital frequency as coT. The justification for defining the digital
frequency in this way will be made clear shortly.

The variable t is continuous, and therefore is not of much use
to us in the computations. To actually compute a sequence of
discrete values we have to define a new variable, n, as the index
of the points. The following substitution can then be made:

41

The Numerical Basis for DSP

t = nT, n = 0.. . N - 1 Equation 3-36

Equation 3-35 and Equation 3-36 can be used to convert Equation
3-34 from continuous form to a discrete form. Since our frequency
is 1 Hz, and there is no phase shift, the equation for generating the

discrete values of the sine wave is then:

/(t) = sin(27r/t + 0)|^

= sin(27i(l)nT+0), n = a . . N - l

= s in(27inT), n = O . . . N - - l Equation 3-37

Remember that T is defined as V^. Therefore, Equation 3-37 is just

evaluating the sine function at 0 to ^~V^ discrete points. The need

to include T in Equation 3-37 is the reason that the digital fre-

quency was defined in Equation 3-35.

For a signal this slow, we could probably compute the value of

each point in real time. That is, we could compute the values as we

need them. In practice, however, it is far more efficient to compute

all of the values ahead of time and then save them in memory. The
first loop of the listing in Figure 3-5 is an example of a C program to

do just this.

The first loop in Figure 3-5 generates the floatingpoint values of

the sine wave. The DAC, however, requires binary integer values
to operate properly, so it is necessary to convert the values in k to
properly formatted integers. Doing this requires that we know the
binary format that the DAC uses, as there are a number of different
types. For this example, we will assume that a 0 input to the DAC

causes the DAC to assume its most negative (-5 V) value. A hexi-
decimal value of OxFFF (that is, all ones) will cause the most posi-
tive output (+5 V).

42

A Practical Example

#\Y\c\ude <etd\oM>
#mc\ude <rY]athM>

/* Define the number of samples. */
#define N 16

void main()
{

unsigned int DAC_values[N]; /* Values used by the PAC. */

double k[N]; /* Array to hold the floating point values. 7
double pi; /* Value of pi. 7

/* Declare an Index variable. 7
unsigned int n;

pi = atan(1) * 4; /* Compute the value of pi. 7

for (n=0; n<N; n++)
{
k[n] = sin(2 • pi * ((float)n/(float)N));
printf("%1.2f\n".k[n]);
}

for {n=0; n<N; n++)

{
PAC_values[n] = ((k[n] / 2.0) + 0.5) * OxFFF;
printf("%3X\n",DAC_values[n]);
}

// The following code is system dependent, so we have provided pseudo-
// code to illustrate the types of things that need to be done. The
// functions wait_seconds() and Output_to_DAC() are user defined.
//
// while (1) /* Set up an infinite loop. 7
// {
// for{n=0; n<N; n++)
// {
// wa\t_eecor\d5 (1/ (float) N); /* Wait 1/N seconds. */
// Output_to_PAC(DAC_value6[n]); /* Output each value. */
// }
// }
//
}

Figure 3-5: C listing for generating a sine wave.

43

The Numerical Basis for DSP

The floating point values in k[] have a range of-1.0 to +1.0.
The trick then is to convert these values so that --1.0 maps to 0x000
and +1.0 maps to OxFFF. We can do this by dividing all of the
values in k by 2, and then adding 0.5. This scales the values in k

from 0.0 to 1.0. Then, we can multiply the values in k by OxFFF.
The result is a series of binary integers that represent equivalent
values of the waveform. This operation is shown in the second loop
of Figure 3-5,

The final step is to periodically (every T = VN seconds) output

the indexed value of/c[]. This step is highly system dependent, so it

is not practical to present real code to perform the output function.

At the bottom of Figure 3-5 is pseudocode that shows a typical

sequence, however.

The result is shown in Figure 3-6. The stair-step shape is the

output of the DAC. The dashed line is the ideal sine wave. After

passing through the smoothing filter, the actual waveform will

approximate the ideal.

This example is quite straightforward, but it does illustrate some
very important concepts. One of these is, as we noted earlier, the

concept of digital frequency vs. analog frequency. Previously we just

defined the digital frequency as coT, where T is equal to VN seconds,
and N is the number of samples per seconds. In many practical
applications, however, there is really no need to keep the relation-

ship T = V̂ •̂ For example, we can just assume that T = 1. Then, all

we really care about is the ratio ^/N; the value of T simply becomes
a scaling factor. Another example will help illustrate the point.

In our previous example, we built a function generator, using
digital techniques, to output a sine wave of 1 Hz. In that example,

the digital and the analog frequency were the same thing. Now,

44

A Practical Example

x ~ i >| I ^ — V N second

1 second

Time

0x000-̂

Figure 3-6: DAC output for a sine wave.

let's consider how to modify the output frequency of the function

generator. There are actually two ways to accomplish this.

Let's assume we want to double the output frequency, from

1 Hz to 2 Hz. The first way to do this would be to decrease the

time we wait to output the next sample to the DAC. For example,
instead of waiting VN seconds to output the new value to the
DAC, we could wait only ^jiN seconds to output the value. This

would double the number of points that are output each second.

Or, equivalently, we could think of this as outputting one cycle
of the waveform in 0.5 seconds.

The important thing to notice here is that we have not re-
evaluated Equation 3-37. We have changed the value of T but,
as long as we understand what the implications are, there is no
need to recompute the values of/[n]. The actual frequency output,
interestingly enough, has nothing to do with the values computed.
The actual (analog) frequency will match the digital (computed)

45

The Numerical Basis for DSP

frequency only when the output interval between points is equal to
VN seconds. In this sense we see that digital frequency is computa-
tionally independent of the analog frequency.

This may seem a bit obtuse and esoteric, but it is of practical

importance. Many DSP applications do not require real-time evalu-

ation. For example, in seismic analysis the data is recorded first, and

then processed. Processing a sample generally takes much longer

than the time over which the signal was recorded. A 10-second

record, for example, may take hours or days of computation time to

process. In such situations, the value of T is critical only in scaling

the final results. What counts computationally is the value N.

If this still seems a little fuzzy, don't feel too frustrated. For the

moment, the key point we are trying to make is this: In many DSP

applications, the number of samples per some "unit period'' determines

how the signal is handled. Once processed^ the signal is mapped back into

real time by a scale factor T, T may or may not be directly related to VN
seconds.

What is the second way to change the output frequency? We
could leave the output interval at V̂ ^ seconds, and change the value
of / in Equation 3-37. If we let / = 2, then Equation 3-37 becomes:

/(t) = sin(27c/t-h0)|^

= sin(27i(2)nT+0), n = O...N~l

= sin(47cnT), n = O. . .N- l

^nn
= sm N

n = 0... N - 1 Equation 3-38

Notice that there will now be two cycles in 16 points. Each cycle

of the sine wave will only have 8 points, as shown in Figure 3-7.

46

Chapter Summary

1.0 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -
00 H

-0.1 -
-0.2 -
-0.3 -
-0.4 -
0.5 -
0.6 -
0.7 -
0.8 -
0.9 -
1.0 -

/
/
/

/
^

/ \ /
/

/ / /

I I

n r̂

1

"T

-W 1 ^ — VN second

\
\
\ /
\ /
i 1 1 1 1

^ ^ \ \ \ T ^
/

\ /
\ ! \

V /

\ /

v./

A
/ \

/ \ \

1 1 1
1 \ r

V

_ i 1
\ 1
\
\

\ \ \ \ • \ \ \

1 second
1 1 1 »
> \ ?

i
1
i
1

i
1

1 • / / /

Time

Figure 3-7: Two cycles of a sine wave.

This approach has the advantage that no adjustments have to
be made to the output interval timing routines. On the other hand,
the quality of the output waveform will vary as a function of fre-
quency. This is because the number of points per cycle varies as a
function of frequency. A practical DSP system must balance, and
sometimes adjust in real time, the tradeoffs between the number of
points used per second and the time interval between each point.

Chapter Summary
This chapter has discussed a number of mathematical relation-

ships that are used extensively in digital signal processing. The
emphasis has been on practical trigonometric relationships that
are often overlooked in textbook discussions. This is particularly

true concerning the role of complex numbers in trigonometric
relationships.

In DSP, complex numbers are of practical importance: they

are at the heart of many key DSP algorithms. There is, however,

47

The Numerical Basis for DSP

nothing magical about complex numbers. If we remember a couple
of simple relationships, complex numbers can be handled as easily
as any other number.

Finally, we introduced the concepts of analog and digital fre-

quencies. The two are, of course, closely related. At the same time,

they are strangely independent of each other. The analog frequency

is often dropped in DSP calculations and the digital frequency used

instead. Then, in the final result, the analog frequency is restored

by scaling the digital frequency. Often this operation is left out in

the discussion—a fact that can be very confusing.

In the following chapters, we'll apply the concepts developed

here.

48

C H A R T E R A

Signal Acquisition

Introduction
In the last chapter we looked at ways to generate a signal using

digital signal processing techniques. That discussion illustrated a

number of key concepts that are fundamental to more sophisticated

DSP applications. The concepts covered were the number of samples

per period y the relationship of the sample interval to number of

samples, and the related concept of analog vs. digital frequency.

In this section we will carry the discussion further. We'll introduce

the Nyquist theorem and discuss some practical considerations in

choosing sampling rates.

In the previous chapter we produced signals from their math-
ematical definitions. This is an important and useful area of DSP
known as digital signal synthesis. In most practical applications,
however, we will be acquiring a signal and then doing some manipu-
lation on this signal. This work is often called digital signal analysis.

One of the first things we must do when we are designing a
system to handle a signal is to determine what performance is
required. In other words, how do we know that our system can handle

the signal? The answer to this question, naturally, involves a number
of issues. Some of the issues are the same ones that we would deal
with when designing any system:

49

Signal Acquisition

• Are the voltages coming into our system within safe
ranges?

• Will our design provide adequate bandwidth to handle
the signal?

• Is there enough power to run the equipment?

• Is there enough room for the hardware?

We must also consider some additional requirements that are

specific to DSP systems or are strongly influenced by the fact that

the signals will be handled digitally. These include:

• How many samples per second will be required to handle

the signal?

• How much resolution is required to process the signal

accurately?

• How much of the signal will need to be kept in memory?

• How many operations must we do on each sample of the

signal?

Stating the requirements in general terms is straightforward.
We must ensure that the incoming analog signal is sufficiently

bandwidth'limited for our system to handle it; the number of

samples per second must be sufficient to accurately represent the
analog signal in digital form; the resolution must be sufficient to
ensure that the signal is not distorted beyond acceptable limits;

and our system must be fast enough to do all required calculations.

Obviously, however, these are qualitative requirements. To
determine these requirements explicitly requires both theoretical
understanding and practical knowledge of how a DSP system works.

In the next section we will look at one of the major design require-
ments: the number of samples per second.

50

Sampling Theory

Sampling Theory
In Equation 3-38 the frequency of the sine wave generated was

increased by the value of the frequency /. This had the effect of
increasing the number of cycles in a second—at the cost of the

number of samples per cycle. In the example, there were 16 samples

per second. Generating a frequency of 2 Hz meant that there were

now only 8 samples per cycle. Similarly, if the frequency had been

increased to 4 Hz, there would be only 4 samples per cycle.

The logical question is: How far can we carry the sequence?

In other words, what is the maximum frequency we can handle for a

given number of samples per second? We can get a good feeling for

the answer by trying one more frequency: 8 Hz. Using the tools and

techniques from Chapter 3 gives the graph shown in Figure 4-1.

The dashed line is the expected analog signal. Notice, however,

that all of the discrete points have a value of 0. We put a value

of 8 into Equation 3-38, but we got out a DC value of zero. What

went wrong?
VN second

1.0
0.9
0.8-1
0.7
0.6-1
0.5 H
0.4 H
0.3 -\

0.1
0.0

-0.1 -\
-0.2
-0.3 H
-0.4
-0.5 - I
- 0 . 6 - 1
-0.7
-0.8-H
-0.9
-1.0

/ \

A / \
/ \

/ \

/ \

Expected analog signal

/

I I I / I \ I M \ I / I \
1 second

- • T i m e

\ /
\

\/ v/
8-Hz signal generated with 16 samples/second. Actual digital signal is DC at 0 V.

Figure 4 -1 : Aliasing.

51

Signal Acquisition

The answer to this question can be demonstrated for the general
case when the frequency is equal to one-half the number of points.
We can do this by plugging/= ^/l into Equation 3-38:

/(t) = sin(27c/t + e)|,=^T

= sm 2 7 t [y] n T + o l n = a . . N - l

= sin(7cnNT), n = a . . N - l

= sm , n = O. . .N-l
y ^ N

= sin (Tin), n = 0 . . . N - 1 Equation 4-1

The sine function is 0 for a frequency of zero, and for integer mul'

tiples of 71. We have therefore stumbled onto the answer to the

question of what our maximum frequency is: The frequency must be

less than V2 the number of samples per second. This is a key building
block in what is known as the Nyquist theorem. We do not yet have

all of the pieces to present a discussion of the Nyquist theorem,

but we will shortly.

In the meantime, let's explore the significance of our discovery a
little further. Clearly, this is another manifestation of the difference
between the analog frequency and the digital frequency. Intuitively,
we can think of it as follows: To represent one cycle of a sine wave,
what are the minimum number of points needed? For most cases,
any two points are adequate. If we know that any two separate
points are points on one cycle of a sine wave, we can fit a curve to
the sine wave. There is one important exception to this, however:
when the two points have a value of zero. We need more than two
points per cycle to ensure that we can accurately produce the
desired waveform.

S2

Sampling Theory

From the example above, we saw that we get the same output
from Equation 4-1 if we put in a value for / of either 0 or 8 when
we are using 16 samples/second. For this reason, these frequencies
are said to be aliases of one another.

We just "proved," in a nonrigorous way, that our maximum

digital frequency is ^/2. But what happens if we were to put in

values for/greater than ^/2? For example, what if we put in a value

of, say, 10 for /when N = 16? The answer is that it will alias to a

value of 2, just as a value of 8 aliased to a value of 0. If we keep

playing at this, we soon see that we can only generate output

frequencies for a range of 0 to ^/i.

Our digital frequency is defined as ^ = coT. If we substitute ^/i

for / and expand this we get:

Equation 4*2

It would therefore appear that our digital frequency must be
between 0 and n. We can use any other value we want, but if it
is outside this range, it will map to a frequency that is within the
range of 0 to K. However, note that we said it would ^'appear that
our digital frequency must be between 0 and 7i." This is because
we haven't quite covered all of the bases.

Normally, in electronics we don't think of frequency as having

a sign. As we saw in Chapter 2, however, negative frequencies are
possible in the real world. Remember from that discussion that
there is no great mystery to a negative frequency. It simply means

53

Signal Acquisition

that the phase between the real and imaginary components are
opposite what they would be for a positive frequency. In the case
of a point on the unit circle, a negative frequency means that the
point is rotating clockwise rather than counterclockwise. The sign
of the frequency for a purely real or a purely imaginary signal is
meaningful only if there is some way to reference the phase.

The signals generated so far have been real, but there is no
reason not to plug in a negative value of/. Since sin(-co) = -sin(co),
we would get the same frequency out, but it would be 180° out of
phase. Still, this phase difference does make the signal unique;
thus, the actual unique range of a digital frequency is -n to TD.

This discussion may seem a bit esoteric, but it definitely has

practical significance. A common practice is to specify the perfor-

mance of a DSP algorithm over the range of-TC to K. The DSP system

will map this range to analog frequencies by selection of the number

of samples per second.

The second part of demonstrating the Nyquist theorem lies

in showing that what is true for sine waves will, if we are careful,

apply to any waveform. We will do this in the section covering
the Fourier series.

Sampling Resolution
In order to generate, capture, or reproduce a real-world analog

signal, we must ensure that we represent the signal with sufficient

resolution. Generally, resolution will have two characteristics:

• The number of samples per second.

• The resolution of the amplitude of each sample.

The resolution of the amplitude of each sample is a system parameter.
In other words, it will depend upon the input circuitry, how the

54

Sampling Resolution

system is used, and so forth. However, the theoretical limit for the
amplitude resolution is defined by the number of bits resolved in
the ADC or converted by the DAC.

The formula for determining the resolution of a system is:

1
r =•

min o n •*
Equation 4-3

where n is the number of bits. For example, if we have a 2-bit

system, then the maximum resolution will be:

min -2

Looking at this in table form shows the mapping for each of the

possible binary values:

Binary Value

00

01

10

11

Weight

0

V3
1

Notice that we have expressed the weight for each possible binary

value. As with the case of digital versus analog frequency, we can

only express the digital value as a dimensionless number. The actual
amplitude depends on the scaling performed by the DAC or the ADC.
Notice that in this example we are dealing with only positive values.
In practice there are a number of different schemes for setting

weights. Twos complement and offset binary are two of the most
common schemes used in signal processing.

Let's look at a typical example. Assume that we are designing a

5S

signal Acquisition

system to monitor an important parameter in a control system. The
signal has a possible range of-5 volts to +5 volts. Our analysis has
shown us that we must know the voltage to within ±.05 volts. How
many bits of resolution does our system need?

The first thing to do is to express the resolution as a ratio of

the minimum value to the maximum range:

' min
min

V
max

_ 0.05 volts

10 volts

= 0.005 Equation 4-4

We can now use Equation 4-3 to find the number of bits. In

practice, we would probably try a couple of values of n until we

found the right value. A more formal approach, however, would be

to solve Equation 4-3 for n:

r^.„ =
1

mm '^n 2 " - l

2"= — + 1
mm

n = log. ^ 1 ^

V̂ min y
Equation 4-5

Plugging in 0.005 for r̂ .̂̂ into Equation 4-5 yields a value for n
of 7.651. Rounding this value up gives a value of eight bits. There-
fore, we need to specify at least eight bits of resolution for our signal
monitor. As a side note, most calculators do not have a log2 func-
tion. The following identity is handy for such situations:

56

Chapter Summary

1 / X ln (x)
log|,(x) =7—77- Equation 4-6

ln(b)

In this example, we lightly skipped over the method for deter-
mining that we needed a resolution of 0.005 volts. Sometimes
determining the resolution is straightforward, but sometimes it is
not. As a general guide, you can make the following assumptions:
Eight bits is adequate for coarse applications. This includes control
applications that are not particularly sensitive, and signals that can
tolerate a lot of distortion. Eight-bit resolution is adequate for low-
grade speech applications, but twelve-bit resolution is much more
common. This resolution is generally adequate for most instrumen-
tation and control applications. Twelve-bit resolution produces
telephone-quality speech. Sixteen-bit resolution is used for high-
accuracy requirements. CD audio is recorded with 16-bit resolution.
It turns out that 21 bits is about the maximum practical value for
either an ADC or a DAC. Achieving this resolution is expensive,
so 21-bit resolution is generally reserved for very demanding appli-
cations.

One final word is required on the subject of resolution in terms
of the number of bits. The effect of quantizing a signal is to intro-
duce noise. This noise is called, naturally enough, the quantization
error. The noise can be thought of as the result of representing the
smooth and continuous waveform with the stair-step shape of the
digitally represented signal.

Chapter Summary
The performance of digital signal processing algorithms is

generally specified by frequency response over a normalized fre-
quency range of-7i to +7C. The actual analog frequencies are scaled

57

Signal Acquisition

over this range by multiplying the digital frequency by the sample
period. Accurately representing an analog signal in digital form
requires that we convert from the digital domain to the analog
domain (or the other way around) with sufficient resolution. In
terms of the number of cycles, we must sample at a minimum of
greater than twice the frequency of the sine wave. The resolution in
terms of the amplitude depends upon the application.

58

C H A R T E •5
Some Example Applications

Introduction
At this point let's take a look at where we have been and where

we are going. So far, weVe been concerned with the mechanics of

getting a signal into and out of our DSP system, and with reviewing

some general math principles we will use later on. We have seen

that we can sample a waveform, optionally store it, and then send it

back out to the world. This is, in and of itself, a very useful ability.

However, it represents only a small fraction of the things we can do

with a DSP system.

The rest of this book will be taken up with examining the

other things that we can do. Understanding how a DSP system is
designed and used basically requires two types of knowledge. The
first is an understanding of the applications that lend themselves

best to DSP. The second type is an understanding of the tools

necessary to design the system to accommodate these applications.

Most DSP texts, and even most engineering courses, focus only
on the tools necessary for designing DSP algorithms. Often, there is
little or no emphasis on why these tools are important, where they
would be required, what practical utility they bring to the process,
or how to start a design from a blank piece of paper.

59

Some Example Applications

This is unfortunate for a couple of reasons. One is that it leaves
the student to trust that the mathematical discussions of the tech^
niques will, sometime in the future, be of some practical use. Most
students who have tried to bring purely academic training to bear
on real-world design problems are justifiably suspicious of this

assumption. It reduces the motivation to understand the material

and contributes to much of the frustration many students find in

studying DSP techniques.

However, we have a more immediate and practical reason for

not liking this approach. Many of the key concepts in DSP are

understood in terms of other DSP concepts. What this means in

practice is that there is a critical mass of knowledge required for a

basic understanding of the DSP techniques. In my experience,

it is much easier to understand how the techniques and tools fit

together if they are presented in reference to real applications.

This provides guidance as to why a particular technique is required,

helps to tie the techniques together in a common framework, and

removes much of the abstraction from the process.

With this in mind, let's now turn our attention to the subject

of filtering, beginning with a simple filter that is easily understood
intuitively. We will then move on to developing the tools and
techniques that will allow us to create more sophisticated, higher-

performance filters of professional quality.

Filters
One of the most common DSP operations is filtering. As with

analog filters, DSP filters can provide low-pass, bandpass, and

high-pass filtering. (Specialized functions, such as notch filters, are
also possible, though we will not be covering them in this book.)

60

Filtets

The basic idea behind filtering in general is this: An input signal,
generally a function of time, is input to a transfer function. Normally,
the transfer function is a differential equation expressed as a func-
tion of frequency. The output of the transfer function is some subset

of the input signal.

A block diagram of a low-pass filter is shown in Figure 5-1. In

the figure, the input signal is a sum of two sine waves: one of them

at a fundamental frequency, the other at the third harmonic. After

passing through the transfer function H(co) only the fundamental

frequency remains; the first harmonic has been blocked. The top

portion of Figure 5-1 depicts the low-pass filter as a function of time.

The bottom portion of Figure 5-1 shows the filter as a function of

frequency. We will be revisiting these concepts in greater detail in

later chapters.

m
f ^ ,
[• w

F(o))

, l l l .

> •

•

hit)

\

(a) Time domain

H(co)

aTfn,

y{t) =f{t)*h{t)

> •

Y(co) = F(co) H(co)

• _LL
(b) Frequency domain

Figure 5-1: The basic low-pass filter.

61

Some Example Applications

In the world of analog electronics, the transfer function H(co)
is realized by arranging a combination of resistors, capacitors,
inductors, and possibly operational amplifiers. In DSP applications,
a computer is substituted for the resistors, capacitors, and inductors.
The computer then computes the output using the input and H(co).

The question for the DSP applications developer then becomes:

How do we define H(co) to give us the desired transfer function?

TTiis chapter shows, in an intuitive way, how simple digital filters

operate. After that, several key concepts are introduced that lay

the groundwork for developing more sophisticated filters. In the

next chapters, we will see how to apply these tools to develop some

practical working filters.

A Simple Filter
First, let s examine a simple application. Consider, for example,

that much of the most interesting music of the twentieth century is

stored on phonograph records. These records store their data using

variations in the groove running from the outside of the record to

its center. Over time, peaks in the groove can break off, or dents
can be forced in the walls of the groove. When the phonograph

needle hits one of these obstructions, the result is a "pop" in the

music being played, as shown graphically in Figure 5-2. A pop is
shown riding on an otherwise clean sine wave.

As these records are converted to CDs or tapes, it is natural to
look for ways to eliminate these pops, thus restoring the more
natural sound of the recording. One obvious solution is to manually
adjust the spike down to a level where it is consistent with the rest

of the signal. This could be done with a waveform editor or, in this
simple case, even with a spreadsheet program.

62

A Simple Filter

Figure 5-2: A noise "pop" on a sine wave.

Actually, manually editing the waveform is a good approach

since it makes use of the best signal processor in the world: the

human brain. For critical passages, it is fairly common for a person

to manually edit the waveform. However, this approach is quite

labor intensive. CDs are sampled at 44 kHz, and manually searching

44,000 points for each second of music rapidly becomes prohibitive.

It s reasonable to find a more automated approach.

One simple approach is to average the value on either side of

the spike with the value of the spike. This would not eliminate the

spike, but it certainly would minimize it. We can do this using a
simple algorithm:

(, ^) ^ / (n - l) + /(n) + /(n + l)
3 Equation SA

Table 5-1 shows what happens when we apply this averaging
routine to the signal in Figure 5-2. Notice that we have applied the
averager across the entire signal from n = -1 to n = 17. This has the
effect of moving the center point along the waveform. Therefore,

63

Some Example Applications

this type of filter is known as a moving average filter. Notice that the

table actually starts before the first sample—that is, we start evalu-
ating g{n) for n = - L This might seem a little strange, but it makes
sense when you consider that one of the terms in g{n) is /(n + 1).

By starting at n = - 1 , we begin evaluating the signal a t / (0) . For the
first output value that we compute, n = - 1 , we have defined / (-2)

and / (- I) to be zero. In a

Table 5-1 similar fashion, the value

of/(n + 1) is defined to

be zero when n = 16 and

n = 17.

The averaged values

closely track the original

values except at n = 4.

For n = 4 the average

value is much smaller

than the input value. It

is, in fact, much closer

to where we want it.

This routine does a fairly
good job of minimizing

the pops in a recording.

Figure 5-3 is a graph of
the original function
and the output of our

averaging routine.

Let's look more
closely at how and why
this routine works. Most

of the changes in values

n

-1
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

f(n)

0.000
0.000

0.383

0.707

0.924

2.000

0.924

0.707

0.383

0.000

-0.383

-0.707

-0.924

-1.000

-0.924

-0.707

-0.383

0.000

0.000

/ (n - l) + /(n) + /(n + l)

3

0.000
0.128

0.363

0.671

1.210

1.283

1.210

0.671

0.363

0.000

-0.363

-0.671

-0.877

-0.949

-0.877

-0.671

-0.363

-0.128

0.000

64

A Simple Filter

0 2 4 6 8 10 12 14 16

Figure 5-3: Effects of a moving average filter.

from one point to the next point in the original signal are relatively

small. Therefore, for most points, the average value of the three

points is relatively close to the center value. At n = 4 in the original

signal, however, the value makes a large (or, equivalently, rapid)

change. The moving average routine prevents this rapid change

from propagating through.

In summary, the action of the averager has little effect on
slowly changing signals and a much larger effect on rapidly chang-

ing signals. This is equivalent to saying that low-frequency signals

suffer little attenuation, while high-frequency signals are strongly
attenuated. That is, of course, the definition of a lovu-pass filter.

While it is clear that Equation 5-1 represents a low-pass filter,
it is not clear exactly what the frequency response of the filter is.
One conceptually simple way to find the frequency response of this
filter is to measure the response for a variety of sinusoidal inputs.
For example, let's divide the frequencies between 0 and n into six
frequencies. Next, feed into the filter cosine waveforms at these
frequencies and measure the peak output. We picked a cosine wave-

65

Some Example Applications

form because it gives us a value of 1 for an input of 0 Hz, keeping
the response consistent with a low-pass filter.^ With this informa-
tion, we can then create a table of the frequency response, as shown
in Table 5-2. From this table we can graph the frequency response
of our low-pass filter; the graph is shown in Figure 5-4.

So far our development of the low-pass filter, and its response,

has been very empirical This is often how it is done in the real

world. For example, the financial community often makes use of

moving averages to filter out the day-to-day variations in stock

prices, commodity prices, etc. This filter allows the stock analysts

Table 5-2

Frequency
(cosine wave

input)

0.000

V5

27t/5

[^ ^ 5

4n/^

n

Response
(peak ampli-

tude)

1.000

0.873

0.539

0.373

0.167

0.000

0.0 J H

0 ^ /5 2^/5 ^^/5 ^^/S n

Figure 5-4: Frequency response

of a simple fi lter.

^ A sine function with an input of 0 Hz produces an output of 0. A cosine function
with an input of 0 Hz produces an output of 1. Had we used a sine wave, the 0 Hz
input value would have produced an output value of 0. This is mathematically
acceptable, but it would not be consistent with generating test data for a low-pass
filter. In this respect, a sine wave of 0 Hz is a bit anomalous. This situation of switch-
ing between a sine and a cosine wave is a fairly common trick in the literature.

66

A Simple Filter

to see the underlying trend of the price, without having the trend
line distorted by transient perturbations.

On the other hand, this empirical approach can be difficult
to manage for more sophisticated filters. As can be seen from

Figure 5-4, the moving average filter is not very "crisp." It gradually

attenuates the signal as the frequency increases. Often, we are

more interested in a "brick wall" filter, which is a filter that does

not affect the signal at all up to a cutoff frequency, then reduces

any higher frequency components to zero above the cutoff.

Shortly we will look at more formal ways of developing and

evaluating filters. But first let's explore these intuitive filters a

little more.

Let's revisit Figure 5-2. On our last pass the signal was the sine

wave and the noise was the spike. It could just as easily have been

the other way around, however. For example, one problem that

constantly plagues engineers is the presence of the 60-Hz "hum"

created by the ubiquitous AC power wiring. This problem generally

manifests itself as a sine wave superimposed on top of the signal of

interest. A typical example is a system that monitors photons.

When a photon strikes a detector, it produces a small electrical
pulse. The result of such a pulse on top of the 60-Hz hum would
look like Figure 5-2.

How can we eliminate the 60-Hz hum and leave the signal
relatively intact? Obviously, our moving average filter will not do

the job in this case. It does, however, suggest a solution. If we took

the average of the points, and then subtracted this average value

from the center value, we get the desired result. Algorithmically:

t ^ rt \ / (n - l) + /(n) + /(n-hl)
g(n) = / (n) - ^ ^ ; Equation 5-2

67

Some Example Applications

Table 5-3 shows the results of applying Equation 5-2 to the data
shown in Figure 5-2. The graphical result is shown in Figure 5-5.
Notice that the sine wave is essentially eliminated, leaving only the
spike. Just as the moving average filter represented a low-pass filter,
this differential filter represents a high-pass filter; the low-frequency

Table 5-3

n

r î
0

1

2

3

4
5

6

7
8

9

10

11

12

13

14
15

16

17
18

fin)

0.000

0.000

0.383

0.707

0.924
2.000

0.924

0.707
0.383

0.000

-0.383

-0.707

-0.924
-1.000

-0.924
-0.707
-0.383

0.000

0.000

0.000

/(n)-/(n-l)+/(n)+/(n+l)

0.000 1

-0.128

0.019

0.036

-0.286

0.717
-0.286

0.036

0.019

0.000

-0.019

-0.036

-0.047
-0.051

-0.047
-0.036

-0.019

0.128

0.000

0.000

68

Causality

-0.5 f

Figure 5-5: Effects of a
difference filter.

sine wave is heavily
attenuated, the high-
frequency spike
is only moderately
attenuated.

These two ex-

amples illustrate in

an intuitive way how

digital filters work.

In practice, most

common digital filters

are simply more sophisticated

versions of these simple filters. A bandpass filter, for example, can

be achieved by combining a low-pass filter and a high-pass filter.

Causality
Causality refers to whether a filter can be implemented in real

time. This is not a very strong definition of causality, but we do not

yet have the mathematical tools to define the term more precisely.

What does causality mean from an intuitive standpoint? We

can get a good idea by looking back at our moving average filter.
Notice that for any given sample n, we used both n - 1 and n + 1
sample points as well. If we think about n as being the current

sample (that is, the one coming in immediately), we obviously

have a problem. Getting the n + 1 sample means that we must
know the future value of/.

In our recording example, this was not a problem. Since the
data is recorded, we can find values for points that appear, with
respect to n, to be both in the future (n + 1) and in the past (n - 1).

€9

Some Example Applications

For a real-time application, however, this is not an option; we are
constrained to using only the current and past values of/. Filters
that require only current and past values of a signal are called causal

filters. Filters, such as our moving average filter, that require future
values are called noncausal filters. As a matter of perspective, all
real'world analog filters are causal. This is another example of the
advantage of DSP: it allows us to build filters that could not be
realized in any other way.

Notice that we can make our filter causal by simply shifting the

index back by one:

which is equivalent to:

. s_ / (n) + / (n - l) + / (n - 2)
y\n) = Equation 5-4

Equation 5-4 will not work quite as well as the noncausal version,
since it is not symmetrical about the sample point. It will work
nearly as well, however. In fact, the difference may be virtually
undetectable in many applications. More important for our dis-
cussion is the fact that it does not significantly change our
conceptualization of how the moving average filter works.

Convolution
Convolution is one of the key concepts in DSP. In its simplest

terms, convolution is the process of feeding one function into (or
as it is sometimes called, through) another function. Conceptually,
for example, a filter can be thought of as a function. When we feed

70

Convolution

some function (such as the one in Figure 5-2) through our moving
average filter, we are convolving the input function with the moving
average filter. The asterisk (*) is normally used to denote convolu-
tion:

y [n] = f[n] * h[n] Equation 5-5

where h[n\ are the coefficients of our filter, and/[n] is the input

function. In our moving average filter h[n] had three coefficients

and they were all equal to ^/3.

Convolution is sufficiently important that it is worth developing

the subject in detail. In the following examples, the notation will

be somewhat simplified. Instead of using /[n], we will use the

simpler/^. The meaning is identical.

In review then, our moving average filter can be expressed as

follows:
/[n + l] + /[n] + / [n - l] ^ ,. , ^

31 [n J = Equation 5-6

Distributing the (V3) gives us:

y [n] = ^ / [n + l] + | / [n] H - i / [n - l] Equation 5-7

To make the expression more general, we replace the constants

with the function h:

y[n] = hjin + 1] + hj[n] + hj[n - 1] Equation 5-8

Converting to our simpler notation yields:

^n = ^ofn^l ^ Kfn "̂ ̂ iL-l Equation 5-9

71

Some Example Applications

It is worthwhile to study the actual computation sequence that
goes on in the filter. Let's take the first four samples of/: /Q, /p fi

and /3.

We start out at time n = - L The first computation is then:

y^l ^ 0̂-̂ 0 "*" '̂ I'̂ -l "̂ ^if-l Equation 5-10

Immediately, a problem crops up. We require values of/with a

negative index. In other words, we need values before our first

sample. We can get around this problem by simply defining/to

be 0 at any point where it is not explicitly defined. Thus, for n = -1

we obtain:
)'_l = ^ofo Equation 5^11

This notation is still a little awkward, since the y_^ implies that our

first output occurs at some time prior to the n = 0 point. This is just

a manifestation of our noncausal implementation. It really is our

first output.

In a similar fashion, we can get the next output for n = 0:

= /IQ/J + /IJ/Q Equation S-IZ

Proceeding along these lines, we obtain the results shown in
Table 5-4. Notice the symmetry and pattern of the terms in the
table. We have been careful to line up the terms in the equations
to emphasize this point. With a little contemplation, we can derive

a very compact expression for producing the terms in Table 5-4:

oo

y[n]= ^h[k]f[n''k] Equation5^13
k=-oo

72

Convolution

^ 1] =

^[0] =

>[1]=

yU] --

y[3] --

>[4] =

--¥o
--¥i'
'-h)h

Table 5-4

¥̂o
+hi/i-t

hh
•hfo

^hh
hfi'

+ hfo

^hh
hfi

One caveat: Don't try to apply Equation 5-13 too literally to pro-

duce Table 5-4, as the n = -1 term will throw you off. If you start

with n = 0, however, you will get the same terms shown in Table

5-4. More formally, we can say that Equation 5-13 is valid for all

non-negative index values of}'.

Equation 5-13 is called the convolution surUy and we can use it

directly to implement filters. We simply plug in the coefficients for

h, and then feed in the values for the input function/. Obviously,

finding the coefficients for h is of key interest. So far we have only
been able to come up with the simple moving average filter:

h[n] = ^,n = 0, 1, 2 . . . N - 1
N

Equation 5-14

Increasing N gives more terms to average, and therefore a lower
frequency response. Fewer terms give fewer terms to average, and
therefore a higher frequency response. As we saw, we can empiri-
cally determine the curve for the frequency response, but we
cannot really do much to control the shape of the curve.

It would be much more useful if we could simply draw the

73

Some Example Applications

frequency response we wanted, and then convert that frequency
response to the coefficients for h. That is exactly what we will do,
but first we must develop a few more tools.

Chapter Summary
In this chapter we accomplished two things. First, we demon-

strated how a low-pass filter and a high-pass filter can be developed

from a heuristic standpoint. Next, we presented one of the basic

concepts needed to develop more sophisticated filters: convolution.

As is generally the case in mathematics, it is difficult to appre-

ciate abstract concepts like convolution of discrete sequences without

seeing some practical application. If these concepts don't make

sense at this point, don't worry. As long as you got the general idea,

you will be prepared for the work ahead. If the material is unclear

at this point, we recommend reading ahead and looking at how

these tools are applied. Then, if necessary, come back and reread

this chapter. It will make more sense then.

74

C H A P "6
The Fourier Series

Introduction
In this chapter we will be discussing the Fourier series. The

Fourier series plays an important theoretical role in many areas of

DSR However, it generally does not play much of a practical role

in actual DSP system design. For this reason, we will spend most

of this section discussing the insights to be gained from the Fourier
series; we will not devote a great deal of time to the mathematical

manipulations commonly found in academic texts.

Background
The Fourier series is named after the French mathematician

Joseph Fourier. Fourier and a number of his contemporaries were

interested in the study of vibrating strings. In the simple case of just

one naturally vibrating string the analysis is quite straightforward:
the vibration is described by a sine wave. However, musical instru-
ments, such as a piano, are made of many strings all vibrating at

once. The question that intrigued Fourier was: How do you evaluate
the waveforms from a number of strings all vibrating at once?

As a product of his research, Fourier realized that the sound
heard by the ear is actually the arithmetic sum of each of the indi-
vidual waveforms. This is called the principle of superposition. This is
not such a dramatic observation and is, in fact, somewhat intuitive.

75

The Fourier Series

The really interesting thing that Fourier contributed, however, was
the realization that virtually any physical waveform can, in fact, be
represented as the sum of a series of sine waves.

The Fourier Series
Figure 6-1 shows an example of how the Fourier series can be

used to generate a square wave. The square wave can be approxi-
mated by the expression:

/ (t) = sinCOt + —sin(nQ)t) , n = 1, 3 , 5, 7, . . . , «^ Equation 6-1

The first term on the right side of Equation 6-1 is called the funda-
mental frequency. Each value of n is a harmonic of the fundamental

frequency.

Looking at Figure 6-1, we can see that after only two terms the

waveform begins to take on the shape of a square wave. Adding
in the third harmonic produces a closer approximation to a square

wave. If we keep adding in harmonics, we continue to obtain a
waveform that looks more and more like a square wave. Interestingly

enough, even if we added an infinity of odd harmonics we would not
get a perfect waveform. There would always be a small amount of

"ringing" at the edges. This is called the Gibbs phenomena.

There are some very interesting implications to all of this. The
first is the fact that the bandwidth of a signal is a function of the
shape of a waveform. For example, we could transmit a 1-kHz sine
wave over a channel having a bandwidth of 1 kHz, but if we wanted
to transmit a 1-kHz square wave we would have a problem.

Equation 6-1 tells us that we need infinite bandwidth to
transmit a square wave! And, indeed, to transmit a perfect square
wave would require infinite bandwidth. However, a perfect square

76

The Fourier Series

(a)

(b)

(c)

y = sin (cot)

y = sin (cot) + - sin (3cot)

y = sin (cot) H- - sin (3cot) + - sin (Scot)

Figure 6-1: Creating a square wave
from a series of sine waves.

77

The Fourier Series

wave is discontinuous; the change from the low state to the high
state occurs in zero time. Any physical system will require some time
to change state. Therefore, any attempt to transmit a square wave
must involve a compromise.

In practice, 10 to 15 times the fundamental frequency provides
enough bandwidth to transmit a high-quality square wave. Thus,
to transmit our l-kHz square wave would require something like a
10-kHz bandwidth channel. A wider channel would give a sharper
signal, while a narrower channel would give a more rounded square
wave.

These observations lead to some interesting correlations.

The higher the frequency that a system can handle, the faster it

can change value. Naturally, the converse is true: The faster a

system can respond, the higher the frequency it can handle.

This information also gives us the tools to complete the
development of the Nyquist theorem.

The Nyquist Theorem Completed
In Chapter 4 we demonstrated that we needed at least two

non-zero points to reproduce a sine wave. TTiis is a necessary but
not sufficient condition. For any two (or more) non-zero points
that lie on the curve of a sine wave, there are an infinite number
of harmonics of the sine wave that will also fit the same points.
We eliminated the harmonic problem by requiring that all of our
samples be restricted to one cycle of the sine wave. We will revisit
this limitation in a minute, but first let's look closer at our work on
the Nyquist theorem up to this point.

The big limitation on our development of the Nyquist theorem

so far has been the requirement that we only deal with sine waves.

78

The Nyqulst Theorem Completed

By taking into account the Fourier series we can remove this
limitation. The Fourier series tells us that, for any practical wave-
form, we can think of it as the sum of a number of sine waves.
All we need to concern ourselves with is handling the highest
frequency present in our signal.^ This allows us to state the Nyquist
theorem in the form normally seen in the literature:

To accurately reproduce a signaly we must sample at a

rate greater than twice the frequency of the highest

frequency component present in the signal.

The bold emphasis is to highlight two areas that are often
misinterpreted. It is often stated that it is necessary to sample at
twice the highest frequency of interest. As we saw earlier, sampling
at twice the frequency only guarantees that we will get two points
over one cycle. If these two points occur at the zero crossing, it
would be impossible to fit a curve to the two points.

Another common mistake is to assume that it is sufficient to
sample a signal at twice the frequency of interest. It is not the fre-
quency of interest, but rather the frequency present that is impor-
tant. If there are signal components higher in frequency than the
Nyquist frequency, they will be aliased into the frequency below
the Nyquist frequency and cause distortion of the sampled signal.

The next logical question then is: How do we ensure that

aliasing does not occur? The solution to this problem brings us

back to the anti-aliasing filter. In theory, we set the cutoff frequency
of the anti-aliasing filter just below the Nyquist frequency. This

^ To be more precise, this is strictly true only for base-band (that is, unmodulated)
signals. We can, in fact, exploit aliasing to demodulate a signal using a technique
called sub-sampling. Sub-sampling is beyond the scope of this book.

79

The Fourier Series

ensures that no frequency components equal to or greater than the
Nyquist frequency can be sampled by the rest of the system, and
therefore no aliasing of signals can occur. This removes our earlier
restriction that the two points be located on one cycle of the wave-
form. Tlie anti-aliasing filter ensures that this case is met for the

highest frequency. In practice, we seldom try to push the Nyquist

frequency. Generally, instead of sampling at twice the frequency, we

will sample at five to ten times the highest frequency we are trying

to capture.

This is easiest to demonstrate with an example. Let's say that we

are interested in building a DSP system that can record voices at

telephone-quality levels. Generally, telephone-quality speech can

be assumed to have a bandwidth of 5 kHz. Even though the human

hearing range is generally defined as 20 Hz to 20 kHz, most speech

information is contained in the spectrum below 5 kHz.

The limiting factor on an analog voice input is generally the

microphone. These typically handle frequencies up to 20 or 30 kHz,

though the cheaper mikes will start rolling off in amplitude around

10 kHz or so. Thus, there will be frequency components present

that are well above our upper frequency of interest. An anti-aliasing
filter is needed to eliminate these components.

If we assume that we want to sample our signal at five times the

highest frequency of interest, then our sampling rate would be 25

kHz. Strictly speaking, this would dictate a Nyquist frequency of
12.5 kHz. However, since we are not interested in frequencies this
high, it makes sense to set the cutoff of the anti-aliasing filter at
around 6 kHz or so. This gives us some headroom above our design

requirement of 5 kHz, but is low enough that we will be
oversampling the signal by a factor greater or equal to ^̂ ^ ̂ ^^6 kHz.

This oversampling allows us to relax the performance specifications

80

Chapter Summary

on the analog parts of the system, thus making our system more
robust and easier to build.

Setting the cutoff of the anti-aliasing filter well below the
Nyquist frequency has another significant advantage: it allows us to
specify a simpler filter with a slower roll-off. Such a filter is cheaper
and introduces much less phase distortion.

Chapter Summary
The Fourier series tells us that any practical signal can be repre-

sented as a series of sine waves. This allows us to do all of our

analysis of systems using only sinusoidal inputs—a very significant

simplification! By looking at the harmonics of any signals that we

wish to understand, we can gain a good understanding of the band-

width requirements for our system. This analysis allows us to specify

the sampling rate and the practical frequency cutoffs necessary to

implement a practical system.

81

This Page Intentionally Left Blank

C H A P T E R n

Orthogonality and
Quadrature

Introduction
The study of DSP can be confusing and frustrating. Hopefully,

the material presented so far has been sufficiently clear to help

alleviate some of this confusion and frustration. One of the areas

that is often subject to confusion is the concept of orthogonality.

Most DSP textbooks will at least mention the concept, but few

actually explain it thoroughly. This is unfortunate, since orthogo-

nality is one of the basic building blocks upon which all DSP work

is based. Without a good understanding of orthogonality, many

DSP concepts are nearly impossible to grasp at the intuitive level.

This subject is not particularly complicated. However, since it
is so critical to an understanding of DSP, we will take some time to

develop it in detail.

Orthogonality
The term orthogonaliVj derives from the study of vectors.

Most likely you have run across the term in basic math courses on
trigonometry or calculus. By definition, two vectors in a plane are
orthogonal when they are at a 90° angle to each other. When this
is the case, the dot product of two vectors is equal to zero:

S3

Orthogonality and Quadrature

"̂ • ti;2 = 0

The main point here is that the idea of multiplying two things
together and getting a result of zero has been generalized in mathe-

matics under the term orthogonality.

We will get back to this shortly, but let's look at another case

where an interesting function has a zero value: the average value

of a sine wave. Figure 7-1 shows one cycle of a sine wave. We have

shaded in the area under the curve for the positive cycle and the

area above the curve for the negative cycle. Notice that the area

for the negative portion of the waveform is labeled with a negative

symbol. A "negative area" is a hard concept to imagine, but be

reassured that we are simply talking about an area that has a

negative sign in front of it.

If we add the two areas together we will, naturally, get a value

of zero. This may seem too obvious to bother pointing out, but it is

just the first step. As an interesting side note, this fact was used in

the early days of electricity to "prove" that AC voltages were of

no practical use. Since they averaged to zero, so the analysis went,
they could not do work!

1.0 T

Figure 7-1: The average area under a sine wave is zero.

84

Orthogonality

The process of integration can be viewed as finding the area
under a curve. Therefore, you can write this idea mathematically
as follows, for any integer value of /c:

clnk
I s i n cot a t = 0 Equation 7-1

Now, if you multiply by a constant, on both sides of the integral,

the result is still the same:

clnk rink
A s m cot a t = A s m cot a t = 0 Equation 7-2

Jo Jo

That is, the amplitude of the waveform may be larger or smaller,
but the average value is still zero.

Now we come to the interesting part. What if we put in, not a

constant, but some function of time? That is:

j g(t) s i n cot d t = ? Equation 7-3

The answer naturally depends upon what our function of g(t) is.

But as we saw in the last chapter, we really only need to worry

about sinusoidal functions for g{t). We can extend our analysis to

other waveforms by simply considering the Fourier representation
of the waveform. Let's look at the specific case where g(t) = sin r|t.

I
Ink

s i n r|t s in cot = 0 , r| ^̂ CO Equation 7-4

Equation 7-4 is called the orthogonality of sines. It tells us that,
as long as the two sinusoids do not have the same frequency, then
the integral of their products will be equal to zero. This may be a
little hard to visualize. If so, think back to Equation T-l. When the
frequencies are not the same, the amplitude of the resulting wave-
form will tend to be symmetrically pushed both above and below the

85

Orthogonality and Quadrature

X-axis. This may result in some strange-looking waveforms but,
over time, the average will come out to zero. In effect, even though
g{t) is a function of time, it will have the same effect as if it were
the simple constant A.

So what about the case when r| = co? If we substitute co for r| in

Equation 7-4:

J 'lnk rink

sin cot sin cotat=
0 JO

J *2nk rink j ^

sin cot sin cotat= sin cotat ^ 0 Equation 7-5
0 Jo

2.0
1.0 t
0.0

-1.0 t
-2.0

y = sin cot

y = sin cot sin cot

= sin ̂ (cot)

l-cos(2cot)

Figure 7-2: The average of the square of a
sine wave is greater than zero.

86

Continuous Functions vs. Discrete Sequences

That is, we get the sum of the square of the sine wave. When we
square the sine waveform, we get a figure like the one shown in
Figure 7-2. Since a negative value times a negative value gives a
positive value, the negative portion of the original sine wave is
moved vertically above the x-axis. The resulting waveform is

always positive, so its average value will not be zero.

So far the discussion has made use of analytical functions

which are useful in developing algorithms and theoretical concepts.

As a practical matter, however, in DSP work we are generally more

interested in testing a sequence of numbers (the sampled signal)

for orthogonality. At this point, we need to take a slight diversion

through the subject of continuous functions versus discrete

sequences.

Continuous Functions vs. Discrete
Sequences

When we look at a function like y{t) = sin(27c/t) we normally

think of it as a continuous function of t. If we were to graph the

function, we would compute a reasonable number of points and
then plot these points. Next, we would draw a continuous and

smooth line through all of the points. We would therefore have a

continuum of points for t, even though we computed the value of
the function at a finite number of discrete points.

In general, we can apply numerical techniques to compute a

value for any specific function. For example, even if we cannot

analytically solve an integral, we can still compute a specific value
for it. From Equation 3-16:

]f{x)dx - X / U) A X Equation 7-6

87

Orthogonality and Quadrature

We point this out because it would seem reasonable, when
dealing with DSP functions, to adopt the same computational
methods. Interestingly enough, we generally do not. This fact is
not usually emphasized in most texts on DSP, and it can lead to
some confusion. While there is not normally a large leap between

continuous and discrete functions in mathematics, it often appears

that there is some mysterious difference between discrete and

continuous functions in DSP. In fact, the discrete and continuous

forms of functions used in DSP often are different, and therefore

have different properties.

Here's why: In Equation 7-6 we can think of both sides of the

equation as finding the area under the curve /. Whether or not

we find this area by analytically solving the integral, and then

evaluating the resulting function, or by numerically evaluating

the right-hand side, we expect to get essentially the same answer.

Most DSP applications involve an intensive amount of

computation. Anything that can be done to save computation

effort is important. Furthermore, it turns out that we are often

only interested in relative values. In most DSP applications the

Ax term is really just a scale factor. For these reasons, we often drop
the multiplication by Ax. Thus, it is common to see things like:

yc = J f{x)dx (the continuous form)

and

)ij = 2L fix) (the discrete form)

Now, these two forms will not give us numerically equivalent
results. However, surprisingly often, we don't really care. We will
demonstrate this concept next as we develop the idea of orthogo-
nality for discrete sequences.

88

Quadrature

Orthogonality Continued

The discrete form of Equation 7-3 is generally written as:

^ x[n]sin 27C/^ = 0, if x[n] ;«t sin
V

2nfn\

Equation 7*7

What is the significance of all this? Well, it provides us with

a means of testing to see if the sequence x[n] was generated from

sin(27c/n/^). This may not seem particularly useful, and in fact, in

this form it is not particularly useful. This is the case because we

need to know the exact phase of x[n] to make Equation 7-7 work.

If we could remove this restriction, then Equation 7-7 would have

more utility. It would allow us to test to see if the sequence x[n]

contained a frequency component at the frequency /. (The impor-

tance of this will be made clear in the next chapter.)

We would now like to remove the requirement that x[n] be in

phase with the sine function. This is where our next key building

block comes into play: quadrature.

Quadrature

The term quadrature has a number of meanings. For our pur-

poses the term is used to refer to signals that are 90° out of phase

with each other. The classic example of a quadrature signal is the
complex exponential:

ê ^ = coscoH- j sin co

This suggests that the complex exponential may be useful in our
quest to come up with a more usable form of Equation 7-7. If we
multiplied the sequence x[n] by the complex exponential instead
of just the sine function, then we would have a complex sequence.

89

Orthogonality and Quadrature

Since a complex number has both phase and magnitude, this allows
us much more flexibility in dealing with the phase of the sequence
x[n].

To illustrate this concept, take a look at Figure 7-3. The first
of three possible phase relationships for the sequence x[n] is shown.
In this case the sequence x[n] is in phase with the imaginary part
of e^^. Figure 7'3a shows the imaginary part, and Figure 7'3b shows
the real part of e^^. Figure 7'3c is the function for the sequence:

x[n] = sin "TT" Equation 7^8

Now comes the interesting part. Multiplying Figure 7'3a by Figure

7'3c point by point and summing yields:

Ix[n]Im(e^""^^)>0 Equation 7-9

and the real part is:

Equation 7'10

We can see this by simply looking at the graphs in Figure 7-'3d

and Figure 7'3e. In Figure 7-3d we see two interesting features.

First, the frequency has doubled. This is not particularly relevant to
our current argument, but it is a nice check: from any trigonometry
book we know that squaring a sine wave should double the frequency.

The second, and more relevant, point is that the waveform is offset

above the x-axis. This means that the waveform has some average
value greater than zero.

In Figure 7-3e we see that the waveform is symmetrical about
the X-axis. Thus, the average value is zero for the real product.

90

Quadrature

lm(e jcon/N>

ReCe^'""/^)

x[n] = s in (i ^)

x[n]lm(e^""^'^)

x[n]Re(eJ""/'^)

(a)

Figure 7-3: Orthogonality: imaginary part in phase.

91

Orthogonality and Quadrature

lm(ei<""/N)

Re(eicon/N)

x[n] = c o s | ^ j

x[n]lm(eJ'""^^)

c[n]Re(e-''""/^)

(a)

Figure 7-4: Orthogonality: real part in phase.

92

Quadrature

Figure 7-4 shows the opposite case. In this case, our input func-
tion (Figure 7-4c) is:

x[n] = cos — Equation 7-11

The sequence x[n] is in phase with the real part of e^ .̂ In this

case:

Z x [n] R e (e J ' " " / ^) > 0 Equation 7-12

as shown in Figure 7-4e.

Now, the really interesting part of all of this is shown in Figure

7-5. In this case, the sequence x[n\ is 45° (or, equivalently, ^4

radians) out of phase with both the real and imaginary parts of e^ .̂

At first, this may seem a lost cause. However, in this case, the x[n]

lies in the first quadrant. Therefore, a portion of the signal will

be mapped into the real sum of the products and a portion of the

signal will be mapped into the imaginary portions of the sum of

the products, as shown in Figure 7-5d and Figure 7-5e.

Figure 7-5e clearly shows this. Each has a value less than the

equivalent case when the input signal was in phase with the real or

imaginary part. On the other hand, the value is clearly greater than
zero.

We are really only interested in the magnitude of the signal,

however, so we can take the absolute value of the sum:

IxNe^^^/^ > 0 Equation 7-12

The key point here is that the magnitude of the complex sum is the

same regardless of the phase of x[n] with respect to e^ .̂

93

Orthogonality ami Quadrature

Imie^"''''^)

ReCê '""/̂)

x[n] = cos |^j

x[n]lm(eJ''""/̂)

xHReCe-"^"^)̂

Figure 7-5: Orthogonality: quadrature.

94

Chapter Summary

To summarize what we have just done, if we multiply a sinusoi-
dal signal by another sinusoidal signal of the same frequency and
phase y we can tell if two frequencies are the same. We can tell this
because the average value of the product will be greater than zero.
(OK, we could tell that just by looking at the two signals, too.)

We can eliminate the problem with the phase by multiplying
the input function by the complex exponential. When we do this,
it does not matter what the phase of the input signal is: part of the
signal will map into the real product, and part of the signal will map
into the imaginary product. By taking the absolute value of the
complex product, we get the same value as if the signal were in
phase with one of the real or imaginary parts.

Chapter Summary
Orthogonality, as it applies to most DSP work, simply means

that multiplying two orthogonal sequences together and taking

the sum of the resulting sequence yields a result that is zero. If the

multiplication and addition is done numerically, the result may not

be exactly zero, but it will be close to zero with respect to the ampli-
tude of the functions.

Orthogonality suggests some useful applications, and these are
presented in later chapters. By itself, however, the orthogonality of
real functions is of limited value because of an implicit assumption
that the two functions (or sequences) are in phase with respect to
each other. By using sequences of complex numbers, however, we
can bypass the requirement that the functions be in phase. The use
of complex numbers in this way is often referred to as quadrature.

This chapter has been one of the more esoteric ones. If you
understand the material presented here, then you are definitely
ready to move on to the rest of the book. If it does not makes

95

Orthogonality and Quadrature

sense to you, you have a couple of options. First, this type of cal-
culation is easily handled by spreadsheets. You can take a look at
Chapter 11 for a discussion of using spreadsheets for DSP calcula-
tions. The next chapter provides a spreadsheet example based on
the material presented here. Setting up a spreadsheet and working

through the example will often make these concepts clear. Some-

thing to keep in mind is that this material is here to build a base

for the subjects in the following chapters. It might be useful to

read ahead, and then come back to this section to provide some

perspective on orthogonality and quadrature.

96

C H A P T E R O

Transforms

Introduction
In this section we will look at what transforms are and why they

are of interest. We will then use the previous discussion on orthogo-

nality and quadrature to develop some useful transforms and their

applications. In the next chapter, we will make use of the tools

developed in this chapter to design practical digital filters.

Background
In general, a mathematical transform is exactly what the name

implies: it transforms an equation, expression, or value into another
equation, expression, or value. One of the simplest transforms is

the logarithmic operation. Let's say, for example, that we want to

multiply 100 by 1,000. Obviously the answer is 100,000. But how

do we arrive at this? There are two approaches. First, we could have
multiplied the 100 by 1000. Or we could have used the logarithmic
approach:

100x1000 =10^x10^ = 10^

The advantage of using the logarithmic approach is, of course,

that we only need to add the logarithms (2 + 3) to get the answer.
No multiplication is required.

97

Transforms

What we have done is use logarithmic operations to transform

the numbers 100 and 1000 into exponential expressions. In this
form we know that addition of the exponents is the same as multi-

plying the original numbers. This is typically why we perform
transforms: the transformed values are, in one way or another, easier
to work with.

Another common transform is the simple frequency-to-period
relationship:

/=VP

This states that if we know the fundamental period of a signal, we
can compute its fundamental frequency—a fact often used in elec-
tronics to convert between frequency and wavelength:

L = ?X

where L is the wavelength and A. is the speed of light.

The frequency of a radio wave and its wavelength represent the

same thing, of course. But for some things, such as antenna design,

it is much easier to work with the wavelength. For others, such as
oscillator design, it is simpler to work with the frequency. We
commonly transform from the frequency to the wavelength, and the

wavelength to the frequency, as the situation dictates.

This leads us to one of the most common activities in DSP:

transforming signals. Let's start by looking at a simple example.

Figure 8-la shows a simple oscillator. If we look at the output of

the oscillator as a function of time, we would get the waveform
shown in Figure 8-lb. If we look at the output as a function of
frequency, we would get the result shown in Figure 8-lc. Notice that
in Figure 8-lc we have shown both the positive frequency /and the

negative frequency - / .

98

Background

(a)

(b)

- /
0

(DC)

(c)

Figure 8-1: Spectrum analysis example.

In most electronics applications, we don't normally show the

negative frequency spectrum. The reason for this is that, for any

real'valued signal, the spectrum will be symmetrical about the
origin. Notice that in Figure S-lc we can determine both the

frequency and the amplitude of the signal. We get the frequency

from the distance from the origin and, of course, we get the ampli-
tude from the position on the ^i-axis.

In this simple case, it was easy to move from the time domain

(Figure 8-lb) of a signal to tht frequency domain (Figure 8-lc)

because we know the simple relationship:

/=VP

Now, what if we wanted to look at the spectrum of a more
complicated signal—for example, a square wave?

99

Transforms

We can do this by inspection from our work on the Fourier
series. We know that a square wave is composed of a sine wave at
the fundamental frequency, and a series of sine waves at harmonic
frequencies. With this information, we can take a signal like the
one in Figure S-Za and find its spectrum. The spectrum is shown

in Figure 8-2b.

1-1

(a)

V3

V5

- 7 / - 5 / - 3 / - / OHz / 3 / 5/ 7/

(b)

Figure 8-2: Transform of a square wave.

This process of converting from the time domain to the fre-
quency domain is called a transform. In this case, we have per-
formed the transform heuristically, using the knowledge we have
already developed of the square wave. There are lots of applications
for transforms. Often, it is impossible to tell what frequency compo-
nents are present by simply looking at a the time domain represen-
tation of a signal. If we can see the signal's spectrum, however, these
frequency components become obvious. This has direct application

WO

The Z'Transform

in seismology, radar and sonar, speech analysis, vibration testing,
and many other fields.

With all of these applications, it is only logical to come up

with some general-purpose method for transforming a signal from

the time domain to the frequency domain (or vice versa).

Fortunately, it turns out that there is a relatively simple

procedure for doing this. As you have probably already guessed,

it makes use of the techniques from the last chapter: quadrature

and orthogonality. Before we move on, however, we need to take

a detour through another interesting tool: the :^-transform.

The z-Transform
In Chapter 3 we reviewed the Taylor series for describing a

function. In that discussion, we pointed out that virtually any
function can be expressed as a polynomial series. The :^-transform
is a logical extension of this concept.

We will start by looking at the variable Zy and the associated

concept of the :^'plane. Next, we will give the definition of the
:^'transform. We will then take a look at the :^'transform in a more

intuitive way. Finally, we will use it to derive another important

(and simpler) transform: the discrete Fourier transform (DFT).

The variable :̂ is a complex quantity. As we saw in Chapter 3,

there are a number of ways of expressing a complex number. While
all of the methods are interchangeable, some work better in certain
situations than others, and the :^-transform is no exception. Thus,
the variable z is normally defined as:

Z-re^^ Equation 8̂ 1

In words, any point on the :^'plane can be defined by the angle

101

Transforms

formed by e^ ,̂ located r units from the origin. Or, more succinctly,

the point P is a function of the variables r and co. This concept is

shown graphically in Figure 8-3.^

^'
/ / /

Im(?)
/
/
/

/
1
1

i
\
\
\ \ \ \ \ \ \

\

~~ i

; -..^^

/ \ / \

y
/ CO \ 1

/ 1 1
Re(0 ;

/
/

/
/

/
/

/

/
y

Figure 8-3: The z-piane.

Now, let's look back at the Taylor series:

n=0

This is a real-valued function that expresses the value of/(x) in

terms of the coefficients a ,̂ and the variable x raised to a corre-
sponding power. With only minimal effort, we can generalize this
expression to a complex form using Equation 8-1:

^ If this is a little confusing, it might help to compare Figure 8-3 with Figure 3-2.
They are really the same thing; only the nomenclature has changed.

102

The z-Transform

fiz) = X ^n^" Equation 8-2

where a^ is the input sequence.

Interesting, but what does this have to do with signal process-

ing? Well, as we have seen so far we are normally dealing with

signals as sequences of discrete values. It turns out that there are

some analytical advantages to using negative values for n, but

otherwise it does not make any difference to the overall discussion.

For example, let's say we have an input sequence:

a[n] = {3,2,1}

We could express this sequence, using Equation 8-2, as:

f[z] = 3:^^ + 2z~^ + U"^ Equation 8-3

Now, why we would want to do this probably isn't clear, but we will

get to this in a minute. In the meantime, let's look at one of the

often cited attributes of the :^-transform. There is a very interesting

property of a series called the shifting property. For example, we
could shift the sequence x[n] to the sequence x[n + 1]. This would
then produce a function:

g[z]=^Z^ -^ 2z^ + Z~^ Equation 8-4

Obviously f[z] is not equal to gk] .

For example, if we let z = 2, then:

f[2] = 3 x 2 0 + 2 x 2 - 1 + 1 x 2 - 2

= 4.25

103

Ttansforms

and:

g[2] = 3x21 + 2 x 2 0 + 1 x 2 - 1

= 8.5 Equation 8-5

If we look at these two values we might notice that y [2] is equal to

half the value of g[2]. And, not coincidentally, z~^ is also equal to

0.5. In fact, in general:

Y[z] = z-'G[z+l]

where the capital letter indicates the :^'transform expression of the
function. The relationship demonstrated in Equation 8-5 is called
the shifting theorem.

The shifting theorem is not as mysterious as it might seem at
first glance if we remember that multiplying by variables with
exponents is accomplished by adding the exponents. Thus, multi-
plying by z~^ is really the same as decrementing the exponent by 1.
Indeed, the exponent is often viewed as the index of the sequence
—just like a subscript.

The shifting theorem plays an important role in the analytical
development of functions using the :^'transform. It is also common

to see the notation z~^ used to indicate a delay. We will revisit the

shifting theorem when we look at the expression for the IIR filter.

Now, for a more direct application of the :^'transform. As we
mentioned earlier, we can think of :̂ as a function of the frequency
CO and magnitude r. If we set r = 1, then Equation 8-2 reduces to:

oo

Y{z)= X ^n^"". letting r = l
n=—oo

Y[e-n= X ^ n e - ^ ' " " / ^ Equation 8-6
n=-oo

104

The Z'Transform

The left side of Equation 8-6 is clearly an exponential function
of the frequency co. This has two important implications. First,
a graph of Y as a function is nearly impossible: it would mean
graphing a complex result for a complex variable, requiring a four-
dimensional graph. A second consideration is that, effectively,
the expression Y[e~^]̂ maps to the unit circle on the :^-plane. For
example, if we have co = 0:

Y[e-^^] = Y[cosO+jsinO] = Y[l,0]

or if CO = ̂ /4, then

Yle-^^] = Y | c o s ~ - / s i n - | = : Y
71 . . 7C

COS] s m —

4 4

V | V_2
2 ' 2

In our discussion of orthogonality, we pointed out that the

function Y, because it is complex, has information about both the
phase and magnitude of the spectrum in the signal. Sometimes we

care about the phase, but often we do not. If we do not care about

the phase, then we get the amplitude by taking the absolute value

ofY

We can make a further simplification to Equation 8-6. It is

acceptable to drop the e~^^ term and express Y simply as a function
of co.Therefore, we generally express Equation 8-6 as:

Y(C0)= X Xlnle-^'-"^^ Equation 8-7
n=—oo

Believe it or not, we are actually getting somewhere. Notice that
the right side of Equation 8-7 is familiar from our discussion of
orthogonality. With this revelation we can translate the action of

Equation 8-7 into words:

105

Transforms

Let's assume we have an input signal sequence {x[n]}.

We can determine if the signal has a frequency component

at the frequency co by evaluating the sum in Equation 8-7.

If we do this for values of co ranging from -n to n we will

get the complete spectrum of the signal.

Equation 8-7, when evaluated at the discrete points cô = ^^^/N,

/c = 0, 1... N - 1 , is commonly called the discrete Fourier transform

(DFT). It is one of the most common computations performed

in signal processing. As we noted above, it allows us to transform

a function of time into a function of frequency. Or, equivalently,

it means we can see the spectrum of an input signal by running it

through the DFT.

Application of the DFT

We will pull this all together with an example. First, we will

generate a signal. Since we are generating the signal we will know

its spectrum; it's always nice to know the correct answer before

setting out to solve a problem. Next, we will use the DFT to com-

pute the spectrum, and then see if it gives the answer we expect.

For this example, we will set everything up using a spreadsheet.
We could use the accompanying DSP Calculator software, but the
spreadsheet gives us more insight into what is happening. Table 8-1

shows how we generate the signal. It is composed by adding together

two separate signals:

/n = sin

g„=(0.5)sin

2nhn
N

\2nhn
N

,h

n
4

and

U = 4

106

Application of ti/ie DFT

where h is used to de-
note the frequency in
cycles per unit time.
Notice that the first
component (/) and the
second component (g)
are out of phase with
each other by 90° (^4).
This will help illustrate
why we need to use
complex numbers in
the computation.

The resulting wave-

form is shown in Figure

8-4. In Figure 8-5 we

can see the spectrum

for the signal. We can,

of course, draw the
spectrum by simple

inspection of the two
components. But let's

see if the DFT can give

us the same information
via computation.

1 "
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|30
31
32

Table 8 -1: Signal generation.

f = sln(27i(2)n/N) i g = sin(27t(4)n/N4-7i/4)/2
0.000 [0.354
0.383 1 b.506
0.707 1 0.354
6.924

1 1.000
0.924
0.707
0.383
0.000
-0.383
-0.707
-0.924
-1.000

0.000
-0.354
-6.500
-0.354
0.000
0.354
6.560
0.354
0.000
-0.354

-0.924 1 -0.500
-0.707 1 -0.354
-0.383 j 0.000
0.000 1 0.354
0.383 0.500
0.707 i 0.354
6.924 i 0.666
1.000 : -0.354
6.924 ! -0.566

L_ 0.707 j -0.354
0.383 1 0.000
0.660 1 6.354

I -0.383 1 0.500
-0.707 1 0.354
-0.924 0.000
-1.000 -0.354
-0.924 ' -0.500
-0.707 i -0.354
-0.383 1 0.000
6.666 1 0.354

0.354
0.883
1.061
0.924
0.646
0.424
0.354 1
0.383
0.354
0.117

-0.354
-0.924
-1.354
-1.424
-1.061
-0.383
0.354
0.883
1.661
0.924
0.646
0.424
0.354
0.383
0.354
0.117

-0.354
-0.924
-1.354
-1.424
-1.061
-0.383
0.354 1

Figure 8-4: Composite waveform.

107

Transforms

1.0

+0.5

— I — I — I — I — I — I — I — I — I — \ — I — I — I — I — I — I — — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — r —

16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 16

-n n
Figure 8-5: Spectrum for the signal in Figure 8-4.

In Table 8-2 we have set up the DFT with a frequency of zero.

In other words, we are going to see if there is any DC component.

As you can see, the real part of the sum is small and the imaginary

part of the sum is zero, so of course the absolute value is small. We

can repeat this for any frequency other than / = 2 or / = 4 and we

will get a similar result. So let's look at these last two cases.

Tables 8-2, 8-3, and 8-4 are set up to show the index n in the

first column. The second column is the signal/+g. The third column

is Re(e-^^^N)^ ^^^ ^^e fourth column is Im(e-^^N) j ^ e fifth col-

umn is Re(/^e"^^^^). The sixth column is, naturally, Im(/^e~^^^^).

For Y[2] we would expect to get a large value, since one compo-

nent of the signal was generated at this frequency. Since the signal

was generated with the sine function, we would expect the value to

be imaginary. This is exactly what we see in Table 8-3. The value

we get is not 1, but by convention, when we plot the spectrum we

normalize the largest value to 1.

The actual value in Table 8-3 is 16.0. This is a dimensionless
number, not really corresponding to any physical value. If we had
used a larger number of samples, the number would have been

larger. Correspondingly, a smaller number of samples would have

108

Application of the DFT

given us a smaller value. By normalizing the value, we account for

this variation in the signal length. With this caveat in mind, we
can think of the normalized value as the amplitude of the signal.

Table 8-2: DFT with frequency = 0.

1 "
0
1
2
3

1 4
5
6
7
8
9
10
11
12
13
14
15
16
17

1 ^^
1 19"

20
21
22
23
24
25
26
27
28
29
30
31

f+g
0.354
0.883
1.061
0.924
0.6"4'6
0.424
0.354
0.383
0.354
0.117
-0.354
-0.924
-1.354
-1.424
-1.061
-0.383
0.354
0.883
1.061
0.924
0.646
0.424
0.354
0,383
0.354
0.117
-0.354
-0.924
-1.354
-1.424
-1.061
-0.383

; - -

cos(27c(0)n/lSI)
1.000
1.000
1.000
1.000

' 1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
i.dod
1.000
1.000
1.000
1.000
1.00.0
1.000
1.000
1.000
1.000
1.000
1.000
1.000

sin(27c(0)n/N
0.000
0.000
0.000
0.000
o.odo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 1
0.000
0.000 j
0.000
o.doo
0.000
0.000
o.odd '
0.000

1 0.000
o.ood
0.000
0.000
0.000
o.ddo
0.000
0.000
0.000
0.000
0.000
sum =

abs(sum) =

Real Part
0.354
0.883
1.061
0.924
0.646
0.424
0.354
0.383
0.354
0.117

" -0.354"
-0.924
-1.354
-1.424
-1.061
-0.383
0.354
0.883
1.061
0.924
0.646
0.424
0.354
0.383
0.354
0.117
-0.354
-0.924
-1.354
-1.424
-1.061
-0.383

0
0

Imag. PaTt]
0.000
O.doo
0.000
0.000
d.ooo
o.odo
0.000
0.000
0.000
o.doo
o.ooo'" 1
0.000
0.000
0.000 1
0.000
0.000
o.ood
0.000
0.000
0.000
0.000
0.000
o.ood
d.ood
0.000
o.odo
d.ood
0.000
0.000
o.ddo
0.000
0.000

0

109

Transforms

What can we expect for the transform of the second frequency
component? Since the first component had a non-normalized value
of 16, we would expect the second frequency component to have
a value of 8. Further, since the second component was generated
with a ^/^ phase shift, we would expect this value to be distributed

between the imaginary and the real components.

Table 8-3

1 " 0

1 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 ""'
26
27
28
29
30
31

f+g
0.354
0.883
1.061
0.924
0.646
0.424
0.354
0.383
0.354
0.117
-0.354
-0.924
-1.354

" -1.424
[-1.061

-0.383
0.354
0.883
1.061
0.924
0.646
0.424
0.354
0.383

r 6.354
0.117
-0.354
-0.924

1 -1.354
-1.424
-1.061
-0.383

cos(27c(2)n/N)
1.000
0.924
0.707
0.383
0.000
-0.383
-0.707
-0.924
-1.000
-0.924
-0707
-0.383
0.000

~0.'383
0.707
0.924
1.000
0.924
0.707
0.383
0.000
-0.383

" -a707
-0.924
-1.000
-0.924 ^
-0.707
-0.383
0.000
0.383
0.707
0.924

sin(27c(2)n/N)
0.000
0.383
0.707
0.924
1.000
0.924
0.707
0.383
0.000
-0.383
-0.707
-0.924
-1.000
:oT924 "
-0.707
-6T383

1 0.000
0.383

"0.707
0.924
i"oo6'
0.924
0.707
0.383
0.000 "
-0383
-0.707
-0.924
-1.000

' -0.924
-0.707
-0.383
sum =

abs(sum) =

Real Part
1 0.354

0.815
0.750
0.354
b.ooo
-0.162
-0.250 "
-0.354
-0354
-0.108
0̂ 250
0.354
0.000
-0.545
-0.750
-0.354
0.354
0.815
'0.750
0.354
o7ooo'"
-0.162
-0.250
-0.354

"-0.354
-0.108"
0.250
0.354
0.000

'"-0.545
-0.750
-0.354
0.000

16

Imag. Part
0.000
0.338
0.750
0.854 J
0.646 1
0.392 1

' 0 ^ 0
0.146

"6.000
-0.045
0.250
0'854
1.354 1
i;315" 1
0.750
0.146
0.000
6.338

" 0.750 1
0.854 J

1 0.646 \
0.392
0.250
0.146
0.006 1

"-6.045 1
0.250
0.854
1.354

" 1̂ 315
0.750
0.146

16

no

Application of the DFT

In Table 8-4 we evaluate Y[4], and we see that we get exactly

what we would expect.

Table 8-4

1 " 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

f*g
0.354
0.883
1.061
0.924
0.646
0.424
0.354
0.383
0.354
0.117
-0.354
-0.924
-1.354
-1.424
-1.061
-0.383
0.354
0.883
1.061
0.924
0.646
0.424
0.354
0.383
0.354
0.117
-0.354
-0.924
-1.354
-1.424
-1.061
-0.383

cos(2ji(4)n/N)
1.000
0.707
0.000
-0.707
-1.000
-0.707
0.000
0.707
1.000
0.707
0.000
-0.707
-1.000
-0.707
0.000
0.707
1.000
0.707
0.000
-0.707
-1.000
-0.707
0.000
0.707
1.000
0.707
0.000
-0.707
-1.000
-0.707
0.000
0.707

sin(2»(4)n/N^
0.000
0.707
1.000
0.707
0.000
-0.707
-1.000
-0.707
0.000
0.707
1.000
0.707
0.000
-0.707
-1.000
-0.707
0.000
0.707
1.000
0.707
0.000
-0.707
'-lOOO"
-0.707
0.000
0.707
1.000
0.707
0.000
-0.707
-1.000
-0.707
sum =

abs(sum) =

Real Part
, 0.354
i 0.624

0.000
-0.653
-0.646
-0.300
0.000
0.271
0.354
0.083
0.000
0.653
1.354
1.007
0.000
-0.271
0.354
0.624
0.000
-0.653"
-0.646

"^.300
aoob
0.271
0.354
0.083
0.000
0.653
1.354
1.007
0.000
-0.271
5.657

8

Imag. Part
0.000
0.624
1.061
0.653
0.000
-0.300
-0.354
-0.271
0.000
0.083
-O.354J
-0.653n
6.606
1.667"
1.061_1
6.27TI
0.000
0.624

'""1.66I
"67653" J
'6.OO6JI
-0.300 1
-0.354
-0.271
0.000
0.083
-0.354
-0.653
0.000
1.007
1.061
0.271
5.657

Hopefully, this discussion has been sufficiently clear to demon-

strate the basics. If it seems a little fuzzy, it is probably a good idea to

work it through. Using a spreadsheet application, try to reproduce
the tables in this section. Try different values. A little bit of this
kind of work will usually help bring the concepts into clearer focus.

In later chapters, we will see additional uses for the DFT. But
for now, let's just point out some characteristics of the DFT. First,
the DFT works in both directions: if we feed the spectrum of a
signal into the DFT, we will get the time domain representation

111

Transforms

of the signal out. We may have to add a scaling factor (since we
normalized the DFT). Sometimes the DFT with this normalizing
factor is called the inverse discrete Fourier transform (IDFT), (Re-
member that this inversion applies only to the DFT. It is not true
for the more general :^'transform.)

Next, we'll look at two other transforms: the Fourier transform

and the Laplace transform. Both are covered here briefly. We are

discussing them primarily to make some important comparisons

to the DFT and their general relationship to signal processing.

The Fourier Transform
Considering that we just discussed the discrete Fourier trans-

form, we might gather that the Fourier transform is simply the

continuous case of the DFT. One of the confusing things in the

literature of DSP is that, in fact, the DFT is not simply the numerical

approximation of the Fourier transform obtained by using discrete

mathematics. This goes back to our previous discussion about

continuous versus discrete functions in DSP.

This is why we approached the DFT via the :^-transform. It

really is a special case of the :^-transform, and therefore the deriva-
tion is more direct. In the DFT, as in the :^-transform (or any power
series representation), we are working with discrete values of the

function. When we move to the continuous case of the Fourier

transform, we are actually working with the integral of the function.
Geometrically, this can be thought of as follows: The discrete form
uses points on the curve of a function. The continuous form makes

use of the area under the curve. In practice, the distinction is not
necessarily critical. But it can lead to some confusion when trying
to implement algorithms from the literature, or when studying the
derivation of certain algorithms.

112

Properties of the Fourier Transform

The forms of the DFT and the Fourier transform are quite
similar. The Fourier transform is defined as:

oo

H(co) = J /(t) e'^'^^dt Equation 8-8
—oo

The Fourier transform operator is often written as F:

H((o) = F(/(t))

or, equivalently:

x(t) <=> X(co)

It is a fairly uniform convention in the literature to use lower-

case letters for time domain functions and uppercase letters for
frequency domain functions. In this book, this convention is

followed.

Properties of the Fourier Transform
Table 8-5 presents a table of the common mathematical

properties of the Fourier transform. These properties follow in
straightforward fashion from Equation 8-8. For example. Property 1

states that:

oo

aH((o) = a\ fit) e'^'^'dt = F(a/(t))
—oo

where a is an arbitrary constant.

It is worth noting that, as with the geometric series discussed in

Chapter 3, the shifting operation applies to the Fourier transform:

113

Transforms

This property is rarely used with relationship to the Fourier
transform. It is pointed out here because of the significance it
plays in the relationship to the ^[-'transform discussion presented
earlier.

A number of other properties of the Fourier transform are

pointed out in Table 8.5. Some of these properties, such as the

homogeneity property discussed above, follow fairly naturally.

Other properties, such as convolution, have not yet been discussed

in a context that makes sense. These properties will be discussed

in later chapters.

Table 8-5: Some properties of the
Fourier transform.

Property

1 Homogeneity

2 Additivity

3 Linearity

4 Differentiation

5 Integration

6 Sine Modulation

7 Cosine Modulation

8 Time Shifting

9 Time Convolution

10 Multiplication

Time function

fit)

ax(t)

xit)+)it)

oxiO + byit)

S*(0
L^i)dt

x(/)sin((DoO

x(Ocos(©oO

xil-x)
\l^h(t-x)x{z)dt

xitM)

11 Time and Frequency Scaling jc(̂),(2 > 0

12 Duality

13 Conjugation
m
x*(0

Fourier transform
X(co)

aX((i>)

jr(co)+y((o)
aX{(o) + bY{(s>)

0<i>rX(m)

fi-fi^(0)6W

j[AX(o -coo) +Xi(o +<0o)]

\[Xi(o-(i}Q)-X(w+(iio)]

e-J'o^Xioi)

H((Si)Xi(o)

l1X(w)Y(oi-X)dk

a(Xa(Q)

xirf)

X*(rf)

114

The Laplace Transform

The Laplace Transform
The Laplace transform is a natural extension of the Fourier

transform. Typically, the Laplace transform does not play a direct
role in DSP applications. However, it is being discussed here for
several reasons.

One reason is simply to provide completeness of the discussion

of transforms in general. Another is the fact that the Laplace trans^

form is often used in many electronics applications that have analo'

gous DSP operations. For example, analog filters are often evaluated

using the Laplace transform.

±

(a) (b)

Figure 8-6: Damped LRC circuit.

Before we look at the Laplace transform, let's consider what
inspires us to go beyond the Fourier transform. As noted earlier,
the Fourier transform can be used to generate almost any wave^

form from a series of sinusoidal signals. Some signals, however, are

either difficult or mathematically impossible to model efficiently.
Consider, for example, the case of an LRC circuit, as shown in
Figure 8-6. The general response of this circuit is a second-order
differential equation:

L—7-+R--^ + —= <u
dt' dt C

Equation 8*9

115

Transforms

V(t) will have the general solution:

Ke^e^^ Equation 8-10

The circuit response for the underdamped case is also shown in

Figure 8-6. Notice that Equation 8-10 simply states what most

electrical engineers know intuitively: the response is a damped sine

wave. Mathematically, that is a sinusoid multiplied by an exponen-

tial function of time. In other words, the output will simply be a

"ringing waveform"—a sine wave whose amplitude diminishes

exponentially over time.

Solving (or mathematically modeling) something like this with

the Fourier transform quickly becomes difficult. The sinusoidal

components of the Fourier series are all uniform in amplitude over
time. This, naturally, suggests that we expand our definition of the

Fourier transform to include an expression something like the one

shown in Equation 8-10. This gives us:

CX)

L(x{t)) = J X(t) e^^e-^^^dt Equation 8-11

0

Notice that this is just our definition of the Fourier transform

with the addition of the e"̂ term. In fact, if you set a equal to zero,
then Equation 8-11 reduces back to the Fourier transform. Gener-
ally, Equation 8-11 is simplified by defining a complex variable

s = a + jco. With this substitution. Equation 8-11 then becomes:

oo

L(x{t)) = X(s) = J x(t) e~'Ut Equation 8^12

0

This is the classic definition of the Laplace transform. One very
interesting aspect of the Laplace transform is that it provides a

176

The Laplace Transform

handy means of solving differential equations, analogous to using
logarithms to perform multiplication by adding the exponents.

• First, the individual functions are converted to an expres-

sion in the variable s via the Laplace transform.

• Next, the overall system equation is solved algebraically,

m Then, the solution is converted back from a variable in s

to a variable in t by the inverse Laplace transform.

For example, an inductor become sL, and a capacitor becomes

VsC- ^^^ l^^P equation for the circuit shown in Figure 8-6 then

can be expressed as:

sU{s) + Rl (s) + -— I{s) = V(s) Equation 8^13
Cs

Equation 8-13 is mathematically equivalent to Equation 8-9.

Notice, however, that Equation 8-13 is an algebraic expression;

there are no differential operators required.

As we noted earlier, the Laplace transform is not often a direct
player in DSP applications. Therefore, the development here is

kept very brief.^ In future chapters, however, we will occasionally

return to the Laplace transform to make some comparisons and

analogies, and to remove some points of confusion between the
Laplace transform and the :^-transform.

^ For an excellent discussion of the practical use of the Laplace transform, see
Network Analysis with Applications, by William D. Stanley, Reston Publishing,
Reston, Virginia, 1985. For a good general discussion of the Laplace transform
as it applies to engineering, see Complex Variables and the Laplace Transform
for Engineers, by Wilbur R, LePage, Dover Publications, Inc., New York, 196L

117

Transforms

Chapter Summary
In this chapter the concept of orthogonality and quadrature

have been developed into the discrete Fourier transform (DFT).
From there, we moved to the Fourier transform. The Fourier

transform was shown to map a function of time into a function of

frequency. This is just the mathematical equivalent of a spectrum

analyzer. The Fourier transform was then expanded into the Laplace

transform.

The last two chapters have of necessity been rather mathe-

matically oriented. It was necessary to first build the tools that we

will use in the following chapters. Unfortunately, this rather mathe-

matical orientation sometimes makes it hard to grasp the concepts

at an intuitive level. As the remaining subjects that actually make

use of this material are introduced, it will become easier to see the

relevance. At that point, it may be a good idea to come back and

reread these sections.

118

CHAPTER Q

FIR Filter Design

Introduction
In the previous chapters we developed a number of tools for

working with signals. In order to keep the discussion as tight as

possible, these tools were generally presented in a context where

they could be understood independently. Convolution, for

example, was presented as a generalization of the moving average

filter. In a similar manner, the DFT was shown to be a tool that

mapped a function of time (the signal) to a function of frequency

(the signaPs spectrum). We also pointed out, though we did not

demonstrate it, that the DFT was a reversible function: given a
signal's spectrum, we could use the DFT to get the signal.

It is now time to start tying these tools together to develop a

more sophisticated methodology for filter design. Actually, we

have all the parts, so let's see how we can arrange them to make a

practical design.

Normally, we think of a filter as a function of frequency. That is,
we draw a graph showing what frequencies we want to let through

and what frequencies we want to block. Such graphs are shown in
Figure 9-1, where we show the three most common types of filters:
the low-pass, bandpass, and high-pass filter.

119

FIR Filter Design

Gain
II H(a))

Frequency, co

(a) Low-pass

n{(a)
Gain

ll H(to)

-n
Frequency, co

(b) Bandpass

^/2 K

H((o)
Gain

11 H(co)

-7t -^ /2 0
Frequency, co

(c) High-pass

^/2 71

Figure 9-1: Three standard filters.

120

What is an FIR Filter?

In Chapter 5 we looked at the simple moving average filter.
We saw how we could implement it as a convolution of the input
signal x[n] with the filter function /i[/c], where h[k] = ^/k. We found
h[k] by a purely intuitive process. However, we could also find the
function h[k] directly from the DFT.

This provides us with a simple and direct way of generating a

filter: we define a filter as a function of frequency H[co]. We then
use the DFT to convert H[co] to the sequence h[k]. Convolving h[k]

with x[n] will then give us our filter output y[n]! This is another way

of looking at the corollary that convolution in the time domain is
equivalent to multiplication in the frequency domain. We will look

at a practical example, using the DSP Calculator software, shortly.
First, however, let's point out that a filter of this type is called a

Finite Impulse Response filter, or FIR. Let's explore a few of the
characteristics of the FIR.

What is an FIR Filter?

The simplest example of a causal FIR filter is our simple moving
average filter. As we noted in Chapter 5, the moving average filter

can be generated by convolving the input sample x[n] with the
transfer function h[n]. In the general form, an FIR filter then is:

L

yM = X MlT^)^(^ - ^) Equation 9-1
n=0

where L is the length of the filter, and m and n are indexes.

FIR filters get their name from—naturally enough—the way
they respond to an impulse. For our definition, an impulse is an
input of value 1 lasting just long enough to be sampled once and

only once. If the response of the filter must be finite, then the filter
is an FIR. From a practical point of view, a finite response means

121

FIR Filter Design

that, when excited by a unit impulse, the filter's output will return

to zero in a reasonable amount of time.

Our simple averaging filters are examples of non-causal FIR

filters; given an impulse input, the output will eventually return to

zero. As long as the response must return to zero for an impulse

input, the filter is classified as an FIR. TTie other major type of filter

is the Infinite Impulse Response (IIR) filter. As we will see, an IIR

filter may return to zero for an impulse response, but its architecture

does not require this to happen.

One helpful way of looking at an FIR filter is shown in Figure

9-2. This type of architectural drawing is generally called diflouj

diagram. As the name implies, a flow diagram sketches the flow of

the signal through the system. Notice that the input sequence is

shown in what may—intuitively—appear to be the reverse order.

In practice, this format is simply showing that/Q is the first sample

of the input sequence. The opposite, but more common, conven-

tion is used on the output sequence y.

Several other things in Figure 9-2 deserve comment. The square
boxes represent multiplication and the arrows represent delay. Each
box is commonly called a tap. In this drawing, we have been careful
to show two outputs. The output on the bottom of the box is the
product of the input sequence and h{n). For the first box, and the

fvfvfo

u OJO hilo ^2/0

^0>^1>^2

Figure 9-2: Standard architecture for an FIR filter.

122

stability of FIR Filters

first computation cycle, this would be h^/^. The output from the
right side of the box is just the input delayed by one cycle time.
The output of the second box would be h^f^ after the second cycle
of computation.

The symbol z~^ is the standard notation for a unit delay. The
circle represents summation, and the output of the summation is
the output of our filter.

The simple averaging filter from the last chapter is implemented

by setting h{n) = V3 for n = 0, 1, 2. Notice that the flow diagram

then exactly mimics both the simple averaging routine and the

more elaborate convolution sum. It is also worth noting that the

flow diagram works equally well for either a software or a hardware

implementation. Normally, an FIR filter is implemented in soft-

ware. However, for systems that require the fastest performance,

there is no reason that the multiplication and addition cannot be

handled by separate hardware units.

In the real world, when we sit down to design a filter we are

usually most concerned with the frequency response. Other con-

siderations are also important, but they are generally second-order

concerns. These additional characteristics include such things as
the stability of the filter, phase delay, and the cost of implementing
the filter. It is worthwhile to look at these second-order concerns

before we proceed to a discussion of designing with FIR filters.

Stability of FIR Filters
One of the great advantages of the FIR filter is that it is inher-

ently stable. What this means in practice is that, regardless of what

signal we feed into an FIR filter or how long we feed the signal in,
when we set the input to zero the output will eventually go to zero.

123

FIR Filter Design

This conclusion becomes obvious when we think through
what the filter is doing. Since it is just multiplying and adding up
various parts of the input signal, it follows that the products will
eventually all be zero after the last element of the input signal

propagates through the filter. This also makes it easy to figure out

what the worst-case delay through the filter will be. It is simply the

number of taps times the sample rate.

As we will see, this inherent stability is not universal to all

digital filters.

Cost of Implementation
The cost of implementation is not just a matter of dollars.

The cost is also measured in the resources required and in how long
it takes these resources to do the job.

For example, as we mentioned earlier, it is possible to improve

the response of an FIR filter by simply increasing the number of

taps we use. This has several important consequences, however.

First, the more taps we use, the longer it takes to compute the

output. For a real-time system, this computation must be completed
in less than one sample interval. Further, the more taps we use, the
greater the phase delay of the filter. Also of concern is the rounding

error. The more computations we make, the more likely round-off

errors will increase beyond a reasonable limit.

These factors suggest that we would like to get our output at a

minimum cost in terms of the number of computations. The FIR
filter is not always the best approach when it is important to
minimize computation cycles. On the other hand, the simplicity
of designing an FIR filter, combined with its inherent stability,

make the FIR filter the preferred choice for many designers.

124

FIR Filter Design Methodology

FIR Filter Design Methodology
As we discussed earlier in the chapter, a variety of filters can

be implemented by convolving an input sequence with a transfer
sequence. The trick is to come up with a transfer sequence that
will produce the desired output from the actual input. While it

probably is not obvious, we have already developed the tools we

need to do this.

In general, the idea behind FIR filter design is to define the

transfer function as a function of frequency. This function of fre-

quency, generally named H(a)), is then transformed into a sequence

that is a function of time: h[n]. The transformation is accomplished

by the inverse discrete Fourier transform (IDFT). A filter is imple-

mented by convolving h{n) with the input sequence x[n]. TTie

resulting sequence, y[n]y is the output of the filter. This process

works for either a real-time process or an off-line processing system.

In practice, the sequence described above will not always pro-

duce the desired output y[n]. Or, more simply, the filter will not

always do what we designed it to do. If this is the case, the function

H[co] or the sequence h[n] will generally be tweaked to obtain the
desired output. This whole design process is shown in Figure 9-3.

Theoretically, any realizable filter can be designed using this

simple process. In some cases, however, it will turn out that no
amount of tweaking will yield a practical design. As we discussed in

previous sections, an FIR filter implementation may end up requiring

a great number of taps. From a practical point of view, a large number
of taps often leads to "mushy" or noisy filter response. When this
happens, more sophisticated (that is, more complicated) filters can
be tried. These are the subject of later chapters.

The easiest way to understand this design method is with an

example.

125

FIR Filter Design

(^ FIR design ^

i
Define H(co)

I
Convert H(co) to h(n)
using the inverse DFT

Optionally, tweak
h(n) using a window

I
Compute y(n) by con-
volving x(n) with h(n)

I
Compare y(n)

with desired result

Does the result meet
the requirements?

Implement the filter

Done

Figure 9-3: Filter design process for an FIR fi lter.

126

FIR Design Example

FIR Design Example

Introduction

The purpose of this section is twofold. First, we will demonstrate
the design of a typical DSP application. Second, this application

will demonstrate the use of the accompanying DSP Calculator

software. This example assumes a basic understanding of DSP

architecture, convolution, and the discrete Fourier transform. If

any of these seem confusing while working through the example,

please refer to the appropriate chapters.

For our example, we will design and implement a low-pass filter,
requiring the following steps:

• Create a sample waveform with the desired characteristics.

• Look at the spectrum of the sample waveform to ensure
that it meets our needs.

• Design the low-pass filter.

• Generate a transfer function to realize the low-pass

function.

• Test the design by convolving the transfer function with
the sample waveform.

System Description

A block diagram of our system is shown in Figure 9-4. Our
system is designed to monitor process signals for an industrial
plant. The bandwidth of the signals is 0 Hz to 60 Hz. An anti-
aliasing filter is in the front end of the system, and it ensures that
any signals will be within this bandwidth.

The signal that we are interested in is a 16-Hz sine wave. Along

with this signal is a separate, lower-amplitude, sine wave at 48 Hz.

127

FIR Filter Design

m m ~ \
^ AtoD

converter

x[n]

DSP
processor

Vfnl
DtoA

converter A
y(t)

48-Hz
bandwidth

signal

60-Hz
anti-aliasing

filter

128
conversions
per second

y[n] = x[n]»h[n] Snfioothing
filter

Figure 9-4: Block diagram for low-pass filter example.

Our task is to come up with a digital filter that will keep the 16-Hz

signal but eliminate the 48-Hz signal.

Interactive
Exercise

Generating a Test Signal

Before we can modify a signal, we must first have a signal-

Coming up with test signals that have the right characteristics to

correctly exercise a DSP system is an important part of the design

process. In this case, we can easily generate a test signal using the

program Fourier. The first thing to do is create a working directory.

Use the Windows File Manager to create a directory called

c:\t(56t6ig. Next, open the DSP application group and double click
on the icon labeled Fourier. Set up the following values in the
appropriate boxes:

Fraq^uancy: 16

Amplitude: 1

Number of Samples: 128

128

FIR Design Example

Then click on the Sin button. You should see a sine wave appear
on the screen. Next, set the following values:

Fraquency: 48

Amplitude: 03333

Number of Samples: 128

Then click the Sin button again. The resulting waveform
should look like the one in Figure 9-5. Now save the file to
c:\te6t6ig\x.dat. (Use the Fila / Save command to do this.)
Then close the Fourier window; we are done with it for now.

Now we have an input sample with the correct spectral charac-
teristics. The next step is to prove this to be true.

Frequency Amplilude Number of Samples

Figure 9-5: Sample waveform for the low-pass filter example.

129

FIR Filter Design

Looking at the Spectrum

We can look at the spectrum of our signal using the DFT
program. Double click on the DFT icon, then load in the file
c:\teete\q\x.dat. (Use the Fil(5 / Load Signal menu to do this.)
You should see the same wave that was generated in the Fourier

program. Now click on the Transform button. Depending upon the

speed of your computer, the transformation from the time domain

to the frequency domain may take several tens of seconds.

The result should look like Figure 9-6. The first thing to note

is that the x-axis is the frequency axis. For digitally processed sig-
nals, the frequency spectrum is always -n to +71:. This is called the

normalized frequency. Any frequency outside the range of-7C to +n

will alias to a frequency with this range. The next logical question
is, of course, how does this relate to our actual frequencies?

The answer is that n corresponds to the Nyquist frequency,

which is one-half of the sample rate. In this example, our sample

rate can be assumed to be equal to the number of samples: 128.

Therefore, the value of 71 corresponds to a value of 64 Hz. Our base

signal is 16 Hz, which is one-fourth of 64. And that is exactly where
we see the spectral peak for the 16-Hz signal: one-quarter of the

way from 0 Hz to 7C. We also see the 48-Hz spectral peak at three-

quarters of the way to K.

As we would expect, the amplitude of the 48-Hz signal is one-

third of the base signal's amplitude. The vertical axis does not really
conform to any common physical units such as watts or volts. This
is due to the way the transform works. However, the height of the
spectral line can loosely be thought of as the amplitude of the

signal. The vertical axis is usually scaled to conveniently show the
relative amplitude of the signals present.

130

FIR Design Example

! in Frequency Display

-n - ^ / 2 0 ^/2 n

Figure 9-6: Resulting spectrum for the sample signal.

The spectrum is mirrored around the DC (that is, 0 Hz) line.
The fact that the negative frequency amplitude components are an
exact mirror image tells us that the input signal was either purely
real or purely imaginary. Only complex signals can have a positive or
negative frequency component that is not symmetrical in amplitude.

This signal meets our spectral requirements for a test signal, so

we can now proceed to design and test our filter.

Design the Filter
There are a number of ways to meet our design requirements.

Figure 9-7 shows one approach. We have defined a low-pass filter

that simply splits the difference between the signal that we want
to keep and the signal that we want to reject. So we have set our
cutoff frequency at ^/z, or, equivalently, 32 Hz. The filter shape is

shown with a dashed line.

131

FIR Filter Design

Ideal filter
response, H(co)

-71 -^/2 0 ^ /2 n

Figure 9-7: Desired fi lter shape.

Filtering in the frequency domain is a simple operation: we

just multiply the frequency components we want to keep by unity.

All other frequency components are multiplied by zero. Mathemati-

cally, we can define our filter function as:

H((o) =
l , - y < C O < ^

0, otherwise

Theoretically, we could actually implement our filter this way.

We could transform the incoming signal, zero out the 48-Hz spec-
tral line, and then perform an inverse transform to get back to a
time domain representation of the signal. Occasionally, filtering

is done this way. In general, however, this is extremely inefficient

from a computational and implementation point of view. Instead,
we make use of the fact that multiplication in the frequency domain
corresponds to convolution in the time domain:

H(co)#G(co)<^Mn)*g(n)

Thus, we need to generate a transfer function that, when its impulse

132

FIR Design Example

response is transformed to the frequency domain, approximates
H(co). Notice that we said approximates H(co). Our impulse function
will generally not be identical to the ideal case.

We can generate a transfer function by double clicking on

the Filter Dasign icon. Select FWtere I Low ?aee from the menu.

A dialog box with two entries will come up. The first entry is the

upper cutoff frequency. We decided in the last section that we

wanted a value of ^2, which is equivalent to 32 Hz in this case.

So, enter a value of 1.5708 for the cutoff frequency.

The number of taps determines how closely our filter will ap-

proximate the ideal H(co). More taps will provide a closer fit. For

this example, we will use 15 taps, so enter 15 into the Numbar of

Taps box. Then click on the OK box. The cursor will change to an

hourglass, indicating that the transfer function is being computed.

(This may take some time if you are working on a slow computer.)

When the computations are done, the hourglass will turn

back into the normal cursor and the transfer function will be

displayed. Notice that this is the frequency domain representation

of the transfer function. Save the transfer function by selecting

Fila / Sava Ae. Save the file to c:\te6t6ig\h.dat. The save operation
saves the time domain representation of the transfer function. This
is also called the impulse response of the transfer function.

Feel free to experiment with the number of taps and with mov-
ing the cutoff frequency around, if you like. Close the filter design
window when you are done, and we will be ready for the next step.

Convolution of the Signal

We now have our test signal, x[n], and we have just generated a

transfer function in the form of h[n]. The only thing left to do is to

133

FIR Filter Design

perform the filtering. We will do this by convolving x[n] with /i[n].

Double click on the Convolve icon. Make sure that the values are
set as follows:

Amplitude: 1

Numbar of Samples: 15

The value of 15 for the Number of Samples entry, in this case,

corresponds to the number of taps we selected for the filter. Now

select File / Load Coefficients. Select the file c:\testsig\h.dat. The

transfer function we generated in the last step will be loaded and

displayed. Notice that this is the time domain representation, so it

will not have the same shape as shown in the filter design program.

Next set the Number of Samples to 128. Then select File / Load

5\0na\ and load the file c:\testsig\x.dat. The test signal will be

displayed.

Now click on the Convolve button. The cursor will turn into an

hourglass to indicate that the computations are being performed.

A dialog box will appear when the convolution is completed. Click

OK. The result of the convolution will be displayed. In this case, it

is the original 16'Hz sine wave we started with.

We have successfully designed a filter that will allow the 16'Hz
signal through, but will block the 48'Hz signal.

For a real application, we would take our transfer function and

use it as the h values in the convolution sum:

oo

m=-oo

Programming the DSP processor to compute this sum would

then complete the process.

134

Chapter Summary

Windowing
The theoretical definition of the IDFT requires an infinite

number of terms to transform H(co) into h{n). If we could generate,
and make use of, an infinite number of terms from the IDFT we
could realize the filter function perfectly. In practice, of course,

we must use a finite number of terms for h[n]. By truncating the

sequence, we are effectively distorting the original function H[co].

It turns out that we can correct for this distortion of H[co] by

applying a compensating distortion to h[n\. This process is some-

times referred to as prewarping the function h[n\. Generally, this

prewarping process is accomplished by passing h[n] through a

window function.

There are a number of different windows that can be used.

One of the simplest and most common is the Bartlett window. The

Bartlett window is a simple triangular window. Many other windows

exist (rectangular, Manning, and Hamming, for example), but the

idea is the same for all windows: they are "fudge factors" that tweak

the coefficients in order to achieve improved performance.

Chapter Summary
In this chapter we defined the general class of filters known as

Finite Impulse Response (FIR) filters. These filters are essentially
sophisticated versions of the simple moving average filter. An
FIR is designed by specifying the transfer function H(co). The
function H(co) is then converted to a sequence using the IDFT.
This sequence, /i(n), then becomes the coefficients of the filter.
The FIR is then realized by convolving the input with h{n).

The FIR filter has a number of significant advantages. It is
unconditionally stable, easily designed, and easily implemented.
It is possible to design an FIR filter with a linear phase delay.

135

FIR Filter Design

The one major disadvantage of the FIR is that it can require
a large number of computations to implement. A general rule is
that an FIR filter should not make use of more than about 30 taps.
Beyond this, the response of the filter can get mushy, and the noise
caused by truncations can become a problem. However, like all

rules of thumb, this one needs to be applied with some caution.

What happens if the number of taps becomes too large? The
answer is that we try an infinite impulse response (IIR) filter.
This is the subject of the next chapter.

136

C H A P T E R 10
The IIR

Introduction
One of the easiest ways to approach the Infinite Impulse

Response (IIR) is to start with the basic equation for the Finite

Impulse Response (FIR) and then expand on this base.

If we look back at the basic FIR, we see something like this:

3i(k) = ax [/c] + bx [k -1] -f ex [/c - 2] -f... + :̂ x [k - n]
Equation 10-1

If we set the coefficients ayh, c ,,. z equal to ^l{n-\), then we have
the simple moving average filter. Or we could choose the coeffi-

cients according to some function, such as the IDFT of the fre-

quency response of the desired filter, as we did in the last chapter.

Theoretically, any filter function can be realized with Equation
10-1. What then motivates us to try something else? The answer

is that while any function can be realized with an FIR, there is no

guarantee that the function will be realized in an efficient manner.
For example, filters with fast roU-offs take a large number of terms
to implement. This has two effects: first, the filter algorithm will
execute slowly and, second, the delay through the filter may be

unacceptably long.

137

The IIR

One way to improve the performance of the filter is to make use
of the signal values that have already been processed. That is, we can
make use of previous values of 31. For example:

] = c[0]x[/c] + c[l]x[/c-l] + ... + c[N]x[/c-N]

+ a[ib[/c-i]-ha[2]x[/c-2]+...+a[Mb[/c-M]
Equation 10^2

Notice that we have two sets of coefficients in this form of filter

function. One set is called the c coefficients and the other is the

d coefficients. If we set the d coefficients equal to zero, then we

have our basic FIR filter.

Equation 10-2 is often expressed more compactly as:

N M
3'['̂]= ^ c[n]x[/c-n]+ ^ dfmj^^l/c-m]

"=0 ^=0 Equation 10-3

As a side note, the FIR filter is sometimes called a nonrecursive

filter, since it does not make use of the previously processed signal.
As one might expect, the IIR is sometimes called a recursive filter

since it does make use of previously processed values.

The Infinite Impulse Response (IIR) filter is a little hard to get
a handle on in a purely intuitive way. Unlike the FIR, which could
be thought of as a modified moving average, the IIR has no conve-

nient intuitive analog. As with the FIR, one of the major attributes

of an IIR filter that we are interested in is the frequency response
of the filter. In the case of the FIR, we simply took the DFT of
the function we were convolving to get the frequency response.

Unfortunately, this will not work on Equation 10-2 because
Equation 10-2 has both the input and output terms on both sides

138

Introduction

of the equation. We need a more sophisticated tool than the DFT
to handle the situation.

The answer is to make use of the :j'transform. This will provide

us with all the information we need. If we take the :^-transform of

each side of Equation 10-2 and rearrange the terms we get:

Yiz) - d{l)z-^ Yiz)"... - diM)z-^ Yiz)

= c{0)%{z) + c{l)z-' Xiz) + ... + c{N)z-^ Xiz)
Equation 10-4

where Y{z) is the transform of the output and X(:̂) is the transform

of the input.

We can define the transfer function as the output o{ the filter

over the input of the filter:

^^^) ~ ^^77^ Equation 10-5

Now, if rearrange Equation 10-4 into the form of Equation 10-5,

we get:

\-d{l)z~^-...-d{M)-^
Equation 10-6

This is important because it shows us that the transfer function is

the ratio of two polynomials in z- This means that H[z] can vary

quickly; the denominator can be used to drive the overall response.

This rapid change in H[:̂] is another way of saying that the filter

can have very sharp transition regions, and this can be achieved

with far fewer terms than would be required with an FIR filter.

7 39

The IIR

The next step is to rearrange Equation 10-6 into the form of
summations, where M is the number of samples we're transforming:

N

H{z] = -^^
M

m=l

Equation 10-7

- m

Now, just as we did with the IDFT, we can find the frequency
response by letting r = 1 in the definition oiz = Te'*^. This gives us:

N -jca
N

Tn=l

Equation 10'8

And, just as with the :^-transform, this gives us the frequency re-

sponse as a complex function. It is, in fact, the value above the unit

circle in the :^'plane. A common practice is to take the absolute

value of both sides of Equation 10-9. For simplicity, the resultant

function is usually expressed as a simple function of co:

H[co] =

N

Cn^ - ' " ^

n=0

M

1- Ẑ m^
- j C O

M

1=1

Equation 10-9

Or, in other words, we can find out the frequency response of an IIR
filter from its coefficients. Since the IIR filter is a ratio of polynomi-
als, the process is more involved than is the case for the FIR filter.

140

Introduction

So far, the discussion has followed a more or less standard text-
book development. That is, the discussion assumes that we know
the coefficients, and that we want to find out what filter response
they will give us. The problem with this is that in the real world
we generally know what frequency response we want. The problem

is to come up with the coefficients.

The news on obtaining the coefficients for an IIR is mixed.
The bad news is that there is no simple and practical way of analytic
cally deriving the coefficients if we are given the desired transfer
function. The good news is that there are numerous software tools
that make the design of llR filters relatively straightforward.

Conceptually, an IIR can be designed by starting off with a

conventional analog filter. Normally, the filter is expressed in

the Laplace form. The Laplacian of the filter is then mapped from

the S'plane onto the :^'plane. The coefficients of the :^-plane repre-

sentation are then found. This is the approach generally taught in

an academic course on DSP filter design. In practice, the process is

quite tedious, and not often performed by working engineers.

For practical IIR design, it is generally a good idea to use one
of the better filter design software packages. There are a number

of reasons for this, mostly centering around the touchy behavior of

the IIR. In the case of the FIR filter, we did not have to worry
about filter stability, nor did we have to worry a great deal about the
phase of the filter. This is not true with the IIR. It is quite possible

to design an llR that has the desired frequency response but is

unusable because of stability. It is important to note that even if
an IIR is technically stable, it may still exhibit an unacceptable
amount of ringing or phase distortion.

With all of these caveats noted, we will now proceed to design
an IIR filter. We will design it to meet the same basic requirements

141

The IIR

as the FIR filter example from the last chapter: a low-pass filter that
will pass a frequency at a digital frequency of ^4, and eliminate a
signal at ^^/4. The reason that we are going ahead with the design of
the IIR using a somewhat analytical approach needs to be addressed.
While we highly recommend the use of professional-quality filter
design software for developing digital filters (especially IIRs),
designing an IIR from basic principles can illustrate a number of
interesting and useful concepts.

Before we proceed, we should discuss the design approach we

will be using. This will give us a chance to also look at some key

concepts related to the :^-'transform. Our approach will be to place

poles and zeroes appropriately around the :^-plane. From the

pole/zero graph we will then generate the :^-transform in factored

form. Next, we will evaluate the partial fraction into a standard

polynomial form. From there, we will put the :^-transform in the

standard form of the definition; then, we can find the coefficients

of the IIR by simple inspection.

For this approach to work, we must understand some basic ideas

behind the graphical representation of the transfer function in the
:^-plane. The :^-transform of a sequence is complex, as is the function
itself. Thus, a graphical representation requires four dimensions.

In practice, however, we can obtain a useful graphical image if we
look at the absolute value of the transfer function. The absolute
value corresponds directly to the amplitude of the transfer function

response. We can also find the phase by looking at the angular

component, but this is of less interest at this point in the design.

We can think of the absolute value of the transfer function as
rubber membrane above the :^-plane. The poles of the transfer
function are created when any of the factors in the denominator

go to zero. Anything divided by zero is undefined, but let's think

142

Introduction

about what happens as the denominator approaches zero. The
transfer function is going to approach infinity, or, in other words,
the function will "blow up." Graphically, we can think of the poles
as raising up the rubber membrane to an infinite height.

The zeroes in the numerator, on the other hand, produce a
value of zero for the transfer function. The zeroes will thus "tack
down" the rubber membrane that represents the transfer function.
As we noted above, the frequency response of the transfer function
is just the :^'transform evaluated around the unit circle.

One other key piece of information is required before we pro-

ceed. Let s think about what happens on the :^-'plane. Any point

on the :^'plane is defined by:

Z = re^^

where r is the distance from the origin, and co defines the angle,

relative to the positive real axis. The key concept here, however,

is that CO is the angular frequency. We can think about the zero

frequency (DC) value lying at (1,0) on the :^'plane. The positive

frequencies increase, in a counterclockwise direction, until we

reach the point (-1,0), which corresponds to an angular value of 7i.

The negative frequencies increase from (1,0) in a clockwise direc-
tion until we reach (-1,0).

Now, let's think about what happens when we place a pole
directly on the unit circle—at an angle of ^/4, for example. Assum-

ing we start at a frequency of DC, as the frequency increases from

DC, we will approach the pole. The denominator will approach 0,
and the frequency response of the filter will approach infinity. The
filter will blow up; in this case, when the input frequency is /̂4 the

output of the filter will be undefined. In practical terms, this means
that even a very small input signal at /̂4 (including, for example.

143

The IIR

a small amount of noise) will cause the output of the filter to try
to go to an infinite value. Such a filter is unstable, and therefore
probably not of much use to us. This will be true, in fact, for almost
any case in which a pole lies on or outside the unit circle. Thus,
we have a general rule for filter design: All poles must lie within the

unit circle.

The corollary to this is that, as the poles move closer to the

origin, the amplitude response will decrease, and the general stabil-

ity of the filter will improve. In general, if we want a sharp filter

with high gain we will move the poles as close to the unit circle as

practical; if we want a smooth and well-behaved filter, we move the

poles as close to the origin as we can get. Note that the relative

position of the poles to the zeroes will have a strong effect on the

shape of the response.

This all makes more sense if we look at an example. Lets recall

the parameters from our FIR example. We have a test signal that is

composed of:

y[n] = sin 27i(16)
N

+ —sin
3

27c(48)—
N

where n = 0 ... N - 1, and N = 128. Our sample rate was specified as

128 samples/second. Thus, the digital frequency of the fundamental
component of the signal is:

16Hz^ n
71 = —

64 4

and the third harmonic's digital frequency is:

48Hz^ 37C
71 =

64 4

144

Introduction

OUT design specification was to pass the /̂4 component, and block
the ^̂ /4 component. In the case of the FIR filter, we simply split
the difference; we designed a filter that would pass frequencies
below ^/2, and block frequencies above ^/l.

For our IIR filter, we can be more specific. We can place the

zeroes on the :^-plane along the ^^4 radial. The zeroes will cancel

the high-frequency components. To keep the low-frequency com-

ponents, we will place the poles of the filter along the ^4 radial.

For reasons we will discuss shortly, we will also place a pole at the

origin.

First, a couple of general design rules:

• We must maintain symmetry about the x-axis. This

will give us the same response for positive and negative

frequencies. It will also ensure that the coefficients in the

:^-transform turn out to be real, and thus the coefficients

of the filter will also be real. So, wherever we place a pole

or zero, we will also place its complex conjugate on the

:^-plane.

• To ensure that the resultant filter is causal (that is,
we can build a version of it that will run in real time)
the order of the denominator must be greater than the
order of the numerator.

• As we noted above, all poles must be inside the unit

circle to ensure stability.^ Zeroes can be placed anywhere
on the :^-plane.

^ Strictly speaking, it is possible to have poles outside the unit circle and still
have a stable filter. For example, a zero may cancel out an unstable pole. See
Designing Digital Filters for a discussion of this.

145

The IIR

The key question now, of course, is: Where along the radial to
place the poles and zeroes? We will start our selection by making
some educated guesses. First, for the poles, a reasonable starting
point would be 0.5. We want a little sharper filter, however, so we
will set r = 0.6. From experience with playing around with this kind

of design, we can guess that we will need another pole to smooth

out the valley caused by the other two poles. We can achieve this

by setting a pole at the origin. This also accomplishes the second

design requirement above: it ensures that the denominator will

have a higher degree than the numerator, therefore ensuring that

our filter will be causal. The zeroes are less of an issue. We can

place the zeroes directly on the unit circle at the frequency that

we want to suppress.

A pole/zero plot is shown in Figure 10-1.

I Imaginary
axis

(Equivalent
to 48 Hz)

(Equivalent
to 16 Hz)

CO = -

^/
(Equivalent
to -48 Hz)

\ (0 =
\

\
\

Jl

4
(Equivalent
to-16 Hz)

Figure 10-1: Pole/zero plot for the low-pass fi lter example.

146

Introduction

We will develop our filter with the use of one of the standard
math packages (see Chapter 11 for a general discussion of design

tools). This will give us a chance to explore the use of these tools
a little, and it makes our life much simpler. In this case, we will
make use of the MathCAD package from MathSoft, Inc. Notice

that we are using this package to expedite dealing with the math;

we are not using it as a design tool for developing the IIR. The

worksheet for the llR filter is shown in Figure 10-2.

The first thing to note in Figure 10-2 is the initial calculation

that we perform at the top of the page. We have chosen a value

for N of 40. This needs a little explanation. This value determines

the number of points we will plot when we look at the frequency

response of our filter. That is all it does; it is not related in any way

to the sample rate or the coefficients of the filter. Next, we define

an index. In this case, n will take on values from 0 to N. We need

this index so that we can compute discrete values of the digital

frequency. We do this next when we define cô , which takes on

values from -n to n. We then use cô to compute the values of z

that we will be using in our plot.

The next step is take the poles and zeroes and turn them into

the :^-transform. We do this by placing the poles in the numerator
and zeroes in the denominator. It is fairly straightforward to perform
the symbolic computations, but we let the computer do it. First we

simplify the numerator, then we simplify the denominator. Notice

that we did not try to simplify the entire expression, as this would
lead to an unusable and needlessly complex result. As always, we can
let the computer do the work, but we cannot let it do the thinking!

At this point we graph H{z^) to see if it really is close to what
we are looking for. Looking at the graph in Figure 10-2, we see that
the filter indeed has the frequency response we set out to obtain.

147

The IIR

N: = 40

n:=O..N

N is the number of points that we will be using. This number is used for generating
the graph of the frequency response. It is not related to number of samples.

n is the index variable.

M̂ ~ - Here, we are computing the indexed digital frequency
ft) :=2jt- from-nto71.

o>nJ Next, we compute the value of z at each of the index points.

H(z):=
, z - e ' ^ ' M z - e '

,z-0.6e'* /•\z-0.6e'^ i (z - O)

We start the derivation of the transfer function by putting
the zeroes over the poles:

H(z):
(z^-hz-V2i-l)

H(z):

z -0 .6e^ / \ z - 0 . 6 e ^ / (z - O)

(ZVZV2-HI)

(z^- 0.6-z^V2 + .36-:

We symbolically evaluate the numerator.

Then evaluating the denominator symbolically gives us our
transfer function in a usable form.

I»^)| 5

Now we graph the absolute value of the transfer
function from -«to n to see if it is really what we
want. It is. (Remember, since this is a real function,
we could have just graphed 0 to i)

Figure 10-2: Electronic worksheet for
designing the low-pass filter.

148

Introduction

Just for reference, the values of the foity discrete points are as follows:

Hfz

-0.3141

-3.142
-2.985
- 2.827

2.67
-2.513
2.356
2.199
2.042

-1.885
1.728

-1.571
-1.414

1.257
1.1

0.942
0.785
0.628
0.471

0.157

0.157
0.314

0.471
0.628
0.785
0.942

1.1
1.257
1.414
1.571
1.728
1.885
2.042

2.199
2.356
2.513
2.67
2.827

2.985
3.142

1
0.988-0156j

-0.951-0.309J
0.891 - 0.454J
0.809-0.588J
0.707-0.707J
0.588-0.809J
0.454-0.891J
0.309-0.951 j
0.156 0.9881

-J
0.156-0.988J
0.309-0.95 Ij
0.454-0.891J
0.588 - 0.809J
0.707 - 0.707J
0.809-0.588J
0.891-0.454J
0.951 - 0.309J
0.988-0.156j

1
0.988-H0.156J
0.951 +0.309J
0.89U0.454J
0.809-h0.588j
0.707 + 0.707J
0.588-H0.809J
0.454-h0.891j
0.309+0.951]
0.156H 0.988J

J
0.1S6-h0.988j
0.309-h0.951j

I-0.454-f 0.891 j
-0.588 + 0.809J
- 0.707+ 0.707J
- 0.809+0.588J
0.891 + 0.454J
0.951+0.309J

j-0.988+ 0.156J
1

(a) (b) (c)

nL
-0.265

0.251+0.05 Ij
-0208 + 0.091
-0.145 +O.lOlj

-0.07 +0.07 5j

0.044-0.13 Ij
0.032- 0.32i

0.075-0.561J
0.331 - 0.828i
0.801- 1.062J

-1.555- 1.137J
2.609-0.804J
-3.76+ 0.325J
4.287 + 2.533J
-3.12+5.199J
0.258+6.694J
2.832+ 6.26J
5.064 + 4.555i
6.292 + 2.345J

6.675
6.292 - 2.345J
5064- 4.555J
2.832 - 6.26J
0.258 - 6.694J
-3.12- 5.199J
4.287 - 2.533J
-3.76-0.325j
2.609 + 0.804J
1.555+ 1.137J

-0.801+ 1.062J
0.331+ 0.828J
0.075+0.561J
0.032+0.32J
0.044+0.13 Ij

0

0.07 - 0.075j
0.145-O.lOlj

i-0.208-0.09J
0.251 - 0.051J

-0.265

(d)

4.979
6.063
6.699
6.871
6.811
6.715

£K
0.265!
0.256
0.227

0.177
0.103

0

0.138
0.322

0.566
0.892
1.331
1.926
2.731
3.774

6.675
6.715
16.811
16.871
6.699
6.063
4.979
3.774

2.731
1.926
1.331
0.892
0.566
0.322

0.138
0

0.103
10.177!
0.227

0.256
0.265

(e)

"(^
|0.044
0.042
0.037
0.029
0.017

0
0.023
0.053
0.093
0.147
0.219
0.318
0.45
0.622
0.821

1
1.105
1.133
1.123
1.108
1.101
1.1081
1.123
1.133
1.105

1
0.821
0.622
0.45
0.318
0.219
0.147
0.093
0.053
0.023

0
0.017
0.029
0.037
0.042
0.044

' 6.063

(f)

Figure 10-3: Table of the computations used in Figure 10-2.

149

The IIR

Now that we have the :^-transform, it is time to develop the
actual filter. The first thing, in this case, is to look at the gain of the
filter. We did not specify a gain in our design, but in general we will
want a filter that has a gain of 1 at the passband frequencies. Look-
ing at the graph in Figure 10-2, we see that our gain is well above 5.

In fact, we can find out exactly what it is if we look at Figure 10-3.

In Figure 10-3 we have displayed all of the internal tables that were

generated in Figure 10-2. If we look at the frequency response for

-^/4 (i.e, n = 15), we see that the frequency response (column e) is
6.063. We want to scale H{z) by the reciprocal of this to give us a

gain of 1 at the passband frequency.

The scaled frequency response is shown in column f of Figure

10-3. Now we that we have our scale factor, we can begin to work

out the values for the coefficients. The :^-transform then is:

6.063 z^ + {Q.e)4lz^+0.2>6z

which, doing the arithmetic, yields:

0.165^2+0.233^ + 0.165
HU) =

^^-0.849^2+0.360^

Now, we must put this in the form of the definition of the trans-

form:

^ , - 0.165^2+0.233^ + 0.165 ^-"^~
H(^) = — X

^^-0.849^2 ^0.360^ Z-'

-1 I c^ nil ^-1 I r\i/:c: ^-3 ^ 0 . 1 6 5 ^ ^ + 0 . 2 3 3 ^ ^ + 0 . 1 6 5 ^

1-0.849^^ + 0.360^2
Equation 10-10

150

Introduction

One of the very nice things about the :^-transform is that we can
find our coefficients by simple inspection. The numerator gives us
the c coefficients and the denominator provides the d coefficients.
The equation for our IIR then is:

^[n] = a i65x[n~l] -ha233x[n-2] + 0.165x[n-3]

+ a 8 4 9 ^ [n - l] - 0 . 3 6 0 ^ [n - 2] Equation lO-ll

Notice that the sign of the coefficients in the denominator is

inverted when we put them in the form of the equation.

Several comments are in order on this filter. First, this filter

perfectly meets our requirements. That is, it passes the frequencies

of /̂4 with a gain of exactly 1, and it blocks signals at ^̂ /4 com-

pletely. In practice, however, this filter is not a particularly good

design. It is not very flat in the passband, and the frequency transi-

tion is not particularly sharp. We could have done much better by

starting with one of the standard analog filters, and mapping the

poles and zeroes onto the :^'plane. Or, more practically, we could

have used a good filter design software package.

Another factor that can cause problems when designing with

IIR filters is that the phase of the filter is not linear. Certain fre-
quency components may come out of the filter skewed with respect
to other components. All of these factors make it important to

carefully evaluate any IIR. The best approach is to use design

software to generate plots of the frequency response, phase, group
delays, and the pole/zero plots. Remember, the poles of an IIR are
the roots of the polynomial in the denominator. The zeroes are the

roots of the polynomial in the numerator.

Once the plots for a given IIR look good, it is a good idea to

simulate the filter and feed in samples of actual signals. The output

151

The IIR

of the filter can then be evaluated to see if it will create any prob-
lems for the given application.

Chapter Summary
In this chapter we have taken the basic FIR filter and expanded

it to the more general IIR filter. The high potential performance
of the IIR was noted, but we also pointed out the risks of using the
IIR.

A natural question is which to use: the FIR or the IIR? This is

a good conversational bomb to drop on a group of DSP experts!

Some will argue that, due to the computational efficiency, only

IIRs are of any practical use. Others will argue that, due to issues

of stability, phase, etc., FIRs are the best choice, with IIRs reserved

only for rare cases where the work cannot be handled by an FIR.

In practice, naturally, the decision depends upon the circum-

stances. FIRs may take 32, 64, or even 128 terms to accomplish a

filter requirement. This number of computations may produce an

unacceptable loss oi precision, especially if the math is done with

integers. Or it may simply be too slow. In these cases, it may well

be best to go to the IIR. On the other hand, the conceptual, design,
and implementation simplicity make the FIR the logical place to
start on any design requirement.

152

C H A R T E •11
Tools for Working with DSP

Introduction
DSP techniques became feasible only when computers were

commonly used on a large scale. Therefore, the computer is

an extremely important tool for studying, designing, and testing

systems based on DSP techniques. For a variety of reasons, this fact

was largely ignored by academic courses on DSP in previous years.

This is changing, as today even the humblest freshman is likely

to have access to computer power that NASA could have only

dreamed about 10 or 15 years ago. Academic departments are no

longer constrained to dealing with only the analytical approaches

to developing a DSP curriculum.

The point of all of this is that the study of DSP can be greatly
simplified by use of a good computer and the right tools. The

purpose of this chapter is to look at some of the types of tools that

are available, and approaches to getting the most out of each tool.

Where practical, names of specific tools are given. Addresses
of various sources are provided in the appendix. This listing should
not be considered as comprehensive, nor as a recommendation.

Software tools come and go. This is particularly true of the tools
specifically devoted to DSP. Other, more general, tools will stay
around indefinitely—but their applicability to DSP may change.

153

Tools for Working with DSP

DSP Learning Software
It is becoming more common for books on DSP to come with

some type of programming support. The least useful examples of
this are simple listings of C code. This code can be helpful to

study and can often be used as a basis for starting a DSP application.

On the other hand, code of this type is generally limited in its

sophistication. The code is rarely written for a specific compiler

or operating system, and therefore is not likely to contain any

graphical or display output.

A more useful form of programming support is of the interactive

variety. The DSP Calculator code included with this book is a

good example. DS? Calculator's strong point is that it is intuitive

and easy to use. You get immediate visual feedback on the various

operations. On the other hand, it is relatively simple, and is not

intended for developing DSP applications in a demanding produc-

tion environment.

Other books also contain executable software. Some of this soft-

ware provides a great deal of capability, but often at the expense of

understandability or ease of use.

DSP learning software is available from many sources other
than just books. Commercial training programs, university BBSs,
and the BBSs of the DSP processor vendors are often good sources.

Spreadsheets
A number of general-purpose software tools are useful for

studying and developing DSP systems. The first of these is the

spreadsheet. The examples using spreadsheets in this book are
done with Microsoft Excel,^^ though most modem spreadsheets
will work just as well.

154

Programming Languages

The main use of spreadsheets is in setting up simple series and
then manipulating them. The results of these manipulations are
then easily graphed. This is how many of the graphs used in the
book were generated. It is possible to do very complicated opera-
tions with spreadsheets, but it can quickly become more trouble

than it is worth. For example, implementing an FIR or an IIR is

possible with a spreadsheet, but it requires considerable effort.

On the other hand, a spreadsheet is a great way to see what

happens when you multiply two sine waves together on a point-

by-point basis, or for studying what happens when sine waves are

added together. It's a very convenient way, for example, of getting a

feel for the Fourier series.

The big advantage of spreadsheets is that they are available on

most PCs, they are simple to use, and they can present the results

graphically. For more complicated operations, or when it is useful to

actually produce working code, a number of programming languages

are available.

Programming Languages
Almost any programming language can be used for studying

DSR For actually producing DSP applications, however, there
are three basic choices: assembly language, C, and FORTRAN.
It is quite common to use assembly language to produce working

applications. Generally, however, coding in assembly is not

recommended for studying DSP, or for the early phases of DSP
development, due to the tediousness of the programming and
the relative difficulty of being able to visualize the algorithm when
it is expressed in assembly code. Another difficulty with assembly

language programming is that it requires an intimate knowledge of
the particular processor being used. Further, depending upon the

755

Tools for Working with DSP

development environment (see the section later in the chapter),
assembly language programming can be difficult to debug and
experiment with.

C has become the de facto standard for programming DSP

applications and is therefore a natural selection for any type of

DSP work. In fact, it is quite common to develop DSP algorithms

in a user-friendly environment (such as Borland's C/C++, or Micro-

soft's Visual C/C+ +), and then port the application over to the

DSP system for the final implementation. Currently, C environ-

ments for DSP chips generally follow the ANSI standards. Work is

underway, however, that would expand the ANSI C standard to

include support of DSP-specific needs. Interestingly, the object-

oriented nature of C++ makes it generally less useful for DSP

applications. Interest is growing in using C++ for DSP applications,

however, and as the language becomes familiar to more program-
mers, we may see an increase in DSP applications based on C+ + .

FORTRAN has lost much of its application base to C over

the last several years. It is also fairly rare to find a FORTRAN

compiler on a PC. For these reasons, the general use of FORTRAN
is declining. It is, however, by no means a dead language. Further,

a great deal of early program development in DSP was done in

FORTRAN. FORTRAN still offers two significant advantages over
C: FORTRAN code is simpler to read and write, and FORTRAN
has native support for a complex data type.

While these are the three most common working languages
for DSP applications, other languages should not be overlooked
for studying or developing DSP applications. Probably the best
choice, in many regards, is Basic. While Basic is often considered
a programmer training language, it has been used in a wide variety
of sophisticated applications. Modern Basic languages offer sophis-

156

General Mathematical Tools

ticated error handling, easy graphic implementation, structured
program development, and other sophisticated attributes.

For working in the Windows environment, Microsoft's Visual
Basic^^ is one practical way to write programs without enduring
an extremely long learning curve. (The DSF Calculator software
is written in Visual Basic.) It offers a combination of simple basic
programming, an object-oriented interface to Windows, and an
affordable price tag.

General Mathematical Tools
A number of good general-purpose mathematical tools are

available. Unfortunately, they tend to be fairly expensive. If they

are available, however, they are an invaluable aid in studying DSP.

Like the other tools discussed so far, these tools automate the

frustratingly tedious computations involved in DSP techniques.

They have another significant advantage over the other tools

discussed so far: they can symbolically evaluate analytical expres-
sions. A good example of this is the IIR example in Chapter 10.

Here, both symbolic and arithmetical computations were carried

out using MathCAD^'^ by MathSoft.

Other popular tools include MatLab™ by Math Works and
Mathematical'^ by Wolfram Research. Generally, these tools

come with optional modules that provide DSP-specific functions.

Like any software tool, some effort is required to learn how to use
these products effectively. It must also be kept in mind that these
tools can unload much of the work involved in developing a DSP

application, but they cannot unload the creative part of the design.
Nor can they be expected to catch system design errors, or to
provide good results if they are fed bad data. These responsibilities
still reside with the design engineer. As always, it is necessary to

157

Tools for Working with DSP

have a firm understanding of the principles and limitations of DSP
techniques to obtain meaningful results.

Most of these tools are available in versions that will run on
UNIX workstations and on Windows-based PCs. Some versions
are available for the Macintosh computer, but these are often
inferior to the versions available for other two platforms.

Special-purpose DSP Tools
The quality and availability of these tools vary too much to

present a meaningful list here. Often, these packages are customized

for specific processors. In fact, not only will these tools give you the

desired coefficients, but they will also often give you the assembly

language code for implementing the filter. (Since all DSP processors

provide special instruction sets designed to implement common

DSP operations, this is not as sophisticated a feature as it may seem.

On the other hand, every little bit helps when you are on a tight

schedule.)

The best way to find out about these packages is through the

manufacturer of the DSP processor you plan to use. The manufac-

turer will generally provide a list of third-party vendors. Another
approach is to ask the FAE (field application engineer) that sup-
ports the processor in your area for their recommendation on which

products to use.

Software/Hardware Development Packages
A wide range of products are available that provide for complete

hardware and software development. These products generally
come in two flavors: evaluation units and development systems.

Evaluation units generally include the DSP processor, program and

158

In-circuit Emulators

data memory, and limited analog I/O. They are typically provided
by the vendor of the DSP processor. Some of these can be quite
reasonably priced (under $100). The price for more sophisticated
units can run into thousands of dollars. Evaluation units, as the
name implies, are designed to allow you to play with the processor

in a real setting to see if it will meet the anticipated requirements.

For simpler projects, evaluation units may meet all of your develop-

ment needs.

There are some things to keep in mind about evaluation units,

however. These systems are generally designed to be sold at or

below cost to vendor. As such, they generally don't offer a great

deal of flexibility. The analog I/O is typically limited, and often

some of the processor resources (such as interrupts, internal

memory, etc.) are devoted to supporting the evaluation configura-

tion. Evaluation units are generally limited to providing assembly

language development tools.

More sophisticated systems are typically available under the

heading of development systems. Often, these units are designed

as add-on cards that fit into a standard IBM AT clone PC. Typi-
cally, compilers, source level debuggers, assemblers, and Host PC

interface software are provided. A particularly useful feature of

many of these systems is the included library of software routines.
Depending upon your application, these libraries may more than
pay for the whole development system by shortening design and

coding time.

In-circuit Emulators
Another tool available for developing applications is the in-

circuit emulator. The emulator is an electronic pod with the same

159

Tools for Working with DSP

pin-out as the target processor. The pod is connected to a PC or
UNIX workstation, where the development software resides. Emu-
lators are useful when the actual product hardware already exists.
The emulator is plugged into the target hardware instead of the
DSP processor, allowing programs to be downloaded to the target

system. The pod emulates the processor, but it also provides com-

plete visibility into the operation of the system.

In-circuit emulators are invaluable aids for developing embedded

applications. They often greatly shorten the hardware and software

debug time. Unfortunately, emulators are also fairly expensive.

They start at around $5,000, and go up to $30,000 or more.

World Wide Web
In the last few years the World Wide Web (WWW) has

become a major tool for researching a wide variety of topics.

The material on the Web that relates to DSP is large, varied, and

rather dynamic. As with using the Web to find about any subject,

the problem is to find the URL (Universal Resource Locator) that

has what you are looking for.

The tools for searching the Web are the search engines,

Magellan, Yahoo, and InfoSeek are a few examples. Each search
engine has its advantages and disadvantages. The trick is to try
the various options for each search engine, and if that does not

produce what you are looking for, try a different search engine.

Another way to find relevant information is to start with the
home pages of the manufacturers of DSP hardware and software.
See Appendix B for a list of vendors. Often these pages will have
links to other pages that contain useful information.

160

Chapter Summary

Chapter Summary
Understanding the concepts behind DSP techniques requires

developing practical applications. Even if these applications are
simple ones, the benefits to you are twofold. First, the hands-on
experience will help solidify the abstract concepts into practical

skills. And, second, only by actually developing working appli-

cations do you confirm that you do indeed understand the key

concepts. The tools discussed in this chapter provide a good

starting point to begin your DSP exploration. A little time invested

in mastering these tools will return a significant gain in practical

knowledge and understanding.

Finally, most of the software and hardware tools discussed

here are based on, or are at least available for, the IBM PC clones.

It should be remembered, however, that a modern 486DX or

Pentium class machine, with its hardware floating point and high-

speed peripheral busses, actually makes a decent signal processing

machine on its own.

161

This Page Intentionally Left Blank

C H A P T E R 12
DSP and the Future

One of the continuing themes of this book is that learning

DSP techniques can sometimes seem intimidating. This is not so

much that the actual techniques are particularly difficult, but the

difficulty often lies in the fact that the techniques are, for the most

part, purely mathematical. When we set out to learn about analog

filters—a simple LC circuit, for example—we have a number of

different tools to use. The circuit physically exists, so we can

approach it from a physics point of view. We can imagine the

currents flowing, the various potentials. We can see these things

on an oscilloscope. Only when we need to compute specific values

for components must we turn to algebra. Or, if our application

requires more detailed analysis, we can bring higher mathematics
into play and work with the differential equations that describe
the behaviors of the components.

When we turn to DSP techniques it initially seems like we

lose this "big picture." Instead, we are faced with obscure integrals,
unfamiliar summations, and expressions that are intuitive only to
professional mathematicians. As we gain some experience, however,
some interesting insights evolve. Among these are the fact that

many of the concepts from physics and electrical engineering carry
over. Frequency is still frequency (though we have to deal with the
digital frequency), the same relationships between the frequency

163

DSP and the Future

domain and time domain still hold, and so forth. In fact, we quickly
find that the digital domain is much simpler than the analog domain.
Differential equations are replaced with simpler difference equations.
We are largely removed from the real-world constraints of specific
component values, parasitic effects, and the like. This does not

mean that no real craftsmanship goes into producing a workable

DSP system, but the digital approach is almost always simpler to

implement from a conceptual point of view. The hardware may

or may not be simpler, but getting a digital system to do what we

want is usually simpler than getting an analog system to respond

the way we want.

This fact, combined with the fact there are some operations

that simply are not practical in the analog domain, ensure that DSP

techniques will continue to take over a larger and larger percentage

of applications. Even a modern analog-based cellular phone, for

example, still contains a significant amount of digital circuitry.

The rapid acceptance of DSP techniques is having a snowball

effect. Twenty years ago DSP was an esoteric practice largely

confined to Ph.D.s. Today, virtually all engineers and a significant

percentage of technicians will have at least some exposure to DSP.
As the price continues to fall for DSP components, more and
more projects are being based around them. In a few short years,

proficiency in DSP will not simply be an advantage; it will be a

requirement of almost any technical position.

Not all of the gains in DSP applications will place a burden
on the typical design engineer. A good example is the modern
modem chip. These specialized devices are practical marvels of
signal processing, and yet designing them into a product requires
only a rudimentary understanding of communications theory. The
DSP expertise is largely buried in the silicon. For some applications.

164

DSP and the Future

this trend will continue. Obviously, for these types of products,
only the chip designer must be a true expert in DSR As embedded
applications grow, however, the need for a greater understanding
of DSP techniques will continue to grow as well.

Finally, the thought I would like to leave with you is that DSP

can honestly be fun. The resources of the modern desktop computer

make it possible to easily and rapidly experiment with the ideas

behind digital signal processing. Once you get past the seemingly

formidable nature of the techniques, DSP algorithms are often quite

simple and easy to implement.

Remember, even though we live in an analog world, the future

is digital!

165

This Page Intentionally Left Blank

A P P E N DIX A

Fundamentals of
Engineering Calculus

and Other Math Tools

167

Fundamentals of Engineering Calculus and Other Math Tools

A.I Introduction

Even though calculus is taught at the high'
school level today, many technically oriented
people (engineers among them) still avoid it
like the plague. For some reason, many of us—
maybe because of past bad experiences with
math— f̂eel uncomfortable with calculus. TKe
problem is made worse by the fact that it seems
it is always taught by people who know little
about engineering. However, whether you like
hearing this or not, I have to say it: A good
engineer needs to be comfortable with calculus.
If you don't master this essential tool at some
point, you will limit your career.

This appendix is an attempt to present a
low'B.S, fog'free review of the essentials of cal-
culus from an engineering systems point of view.
I've tried to keep fancy words and theorems to a
minimum. I use a familiar engineering system—
your automobile—to introduce the concepts of
differential and integral calculus.

A.2 Differential Calculus
One of the first helpful things to realize

about calculus is that you deal with it every day.
If you drive a car, every time you use the gas
pedal you are directly applying calculus as you
control the car's speed. As-
sume your car is at a standstill
and you tramp down on the
gas pedal. Refer to Figure A. 1
and let's dig into calculus.

Starting
Point -

At some time t you will have
traveled a distance x from the
starting point. We say x is a
function of time and write it

using symbols like x(t), or x = /(c), where /()
means "a function of."

During a small time interval At, your car will
travel a distance Ax. This incremental change in
distance can be expressed in equation form as:

Ax = x{t + At)-'x(t) (A.1)

That is, the change in distance is equal to the
future position x(t+At) minus the present posi-
tion x(t).

If both sides of (A.l) are divided by the time
interval At then

Ax _x{t-^ At) - x(t)

At" At
(A.2)

If Ax is measured in feet and At in seconds, the
units of Ax/At are feet per second—otherwise
known as velocity. Equation (A.2) is an approx-
imation of the velocity of your car. I'll use the
symbol v to indicate velocity.

Let's work with an example. Say the dis-
tance your car is away from its starting point is
given by the function

x{t) = 5t^ (A.3)

X(t)

Figure A . l . At time t the automobile will
have travelled a distance jr(f).

168

Differential Calculus

and you want to determine its velocity two seC'
onds after you tramped down on the accelerator
(that is at t = 2 sec). Using equation (A.2) we
write

Ax_x{t-^ At)-x(t) _ 5(t + At)^ -5t^ ^ ^ ^ j

At At At

If we now expand equation (A.4) we get

A 7 " Â

1 0 A r / + 5Ar^

or

At

— = 10r + 5A/
At

(A.5)

Now let's apply equation (A.5) to determine
the velocity at t = 2 using various values for the
time increment At as shown in Table A.l. You
can see from this table that as At gets smaller,
the velocity approximation Ax / At is approach-
ing 20 ft/sec.

Table A . l .

Af
(seconds)

v(ft/sec) at
t = 2 seconds

1.0000 10 X 2 + 5 X (1.0000)2 = 25.00000000

0.5000 10 X 2 + 5 X (0.5000)2 = 21.25000000

0.2500 10 X 2 + 5 X (0.2500)2 = 20.31250000

0.1000 10 X 2 + 5 X (0.1000)2 = 20.05000000

0.0100 10 X 2 + 5 X (0.0100)2 = 20.00050000

0.0010 10 X 2 + 5 X (0.0010)2 = 20.00000500

0.0001 10 X 2 + 5 X (0.0001)2 = 20.00000005

From equation (A.5) we can see that

asA/->0 (A.6) Ax
— = 10r
At

So we go back to equation (A.2) and define the
derivative of a function x(t) with respect to t as

dx ,. Ax ,. x(t'l-At)-x{t)
— = lim — = lim —̂̂ ^^
dt -̂>o At -̂*o At 1

(A.7)

As you just saw in the example, equation (A.7)
can be used to derive the derivative of a func^
tion.

Figure A.2 shows a plot of equation A.3.

t

Figure A.2.

You can see that Ax divided by At is a slope.
As At gets smaller and smaller, this slope ap-
proaches the derivative Ax/At. Therefore, the
derivative of function x(t) at the time t is equal
to the slope of the function at time t.

169

Fundamentals of Engineering Calculus and Other Math Tools

Go back now to equation (A.6) and rewrite

It as

v = — = 10r
dt

(A.8)

You can see that the velocity v is also a func-
tion of time. That is, v = v(t). Since v(t) is just
another function of time, we can also take the
derivative of this function. That is,

dv ,. Av ,. v(r + A /) - v (0
— = hm — = lim -̂ ^ ^^
dt A/->oAr At-^o At

(A.9)

— = lim
dt A/->o

10(r-HAr)-10r_10Ar_
At At

= 10
(A.IO)

In this case, the derivative of velocity dv/dt
(which has the units of feet per second per
second, or acceleration) is a constant. Now you
know that your car is accelerating at 10 ft/sec^,
which of course you would feel on your back as
you are pressed against the seat.

We twice differentiated the function describ-
ing the distance of your car from its starting
point. This is called double differentiation and can
be expressed as

d_(dx)^^d^ (A. l l)
dtydt J dt

This is called taking the second derivative of a
function.

We can also write derivatives in shorthand

dt
(A.12)

d^

dt^ • = x = v = a

You can also use the operator

D = ±
dt

(A.13)

(A.14)

to express the derivative. This can be extremely
handy. For example, equations (A.12) and
(A.13) above can be expressed in operator nota-
tion form as follows

Dx=^ — = jc = V
dt

(A.15)

D^x = ̂ ='x = v = a (A.16)

Throughout this book block diagrams are
used as an aid in building mathematical models.
If x(t) is an input or forcing function into the
block below and the output is the derivative of
the function, then the block must contain the
differentiation operator. That is,

x(t)\

>

is the s;

x(t)

^

D

ame as

D

k(t) ^ X ̂ '^.
^ or ^

equation (A.15) anc

1 m=v(t) ^

d
dt

1

D

x(t)

^

x(t)=v(t)=a(t)

is the same as equation (A.16). The operator D
is often called a differentiator when used in block
diagrams.

170

Differential Calculus

A differentiator can abo be written for a
digital computer. Listing A.l is a "differentiator"
BASIC computer program and Listing A.2 is a
spreadsheet version. Carefully review these pro'

Listing A. l .
Digital computer differentiator.

5

10

20

30

40

50

60

70

80

90

REM BASIC DIFFERENTIATOR

DEFFNX(T) = 5*TA2

INPUT "VALUE OF T, PLEASE"; T

INPUT "VALUE OF DELTA T,
PLEASE"; DELT

XI = FN X(T)

X2 = FN X(T + DELT)

DELX = X2 - XI

XDOT = DELX/DELT

PRINT "DERIVATIVE IS"; XDOT

END

Listing A.2.
Spreadslieet differentiator.

1

2

3

4

5

6

A

T

DELT

X(T)

X(T-HDELT)

DELX

XDOT

B

=5*B1A2

=5*(B1+B2)A2

=B4'B3

=B5/B2

grams. I tried to write them as simply as possible
to emphasize that differential calculus is in fact
simple. Experiment with the programs on your
computer. Input various values of At while hold-
ing t constant to see how it affects the answer
that the "digital computer differentiator" pro-
vides. Use the programs to experiment with
other functions by changing the define function
statement in the BASIC program or the state-
ments in cells B3 and B4 in the spreadsheet ver-
sion.

Even though the programs given in Listings
A.l and A.2 are handy and demonstrate just
how easy differential calculus is, I found out
early in my career that I saved a lot of time by
committing to memory the most frequently used
derivatives, provided in Table A.2. You can al-
ways look these up in this or other books, but it
will take you time and you may not always have
your books with you. Every one of these formu-
las can be derived using equation (A.7), but it's
still easier to commit them to memory.

Incidentally, 1 have been using time t as the
independent variable and x as the dependent vari-
able. That is, X = j(t). I've done this because in
many real-life engineering problems, the vari-
ables depend on time. However, variables can
be a function of another variable that is not
time. For example:

y = / W

171

Fundamentals of Engineering Calculus and Other Math Tools

Table A.2. Most frequently used derivatives
(where c = a constant and

If and V are functions of x).

dc ^
— = 0
dx

f(x) = l
dx

d , ^ du
---(M + V) = —- +
dx dx

d ^ ^ du
-ricu) = c—-
dx dx

dy dy du

dx du dx

d , K —log^w = - log ,
dx u

dv

dx

du

' " ^

d ^ I du
— \nu =
dx u dx

dx^ ^ dx

d . . du dv
—(MV) = V 1- u—
dx dx dx

du dv
J / \ V U

^\^\- dx dx
dx\v) v̂

d . du
SinM = COSM

dx dx

d . du
—cosw = -s inw—
dx dx

1
d ^ I du

-—tanu = sec u- - -
dx dx

d I du
---cotu = - c sc u-—
dx dx

d du
—secM = secwtanw—
dx dx

d du
CSCM = -CSCMCOtM 1

dx dx

d u ui du I
— a = a Ina— 1
dx dx 1

d . du. 1

dx dx 1

d V v-i du VI dv 1
— u -vu — + w Inw— 1
dx dx dx \

or even two variables that are not functions of
time

Nothing changes in the formulas for differentia^
tion except the symbol used for the independent
variable. Sometimes you will see a prime symbol
(') used for the shorthand version of differentia-
tion instead of the dot notation. That is,

dx'
• = y

172

Integral Calculus

A.3 Integral Calculus
Integral calculus is nothing more than the

reverse of differentiation. For example, given that
the distance your car is from its starting point is
described by x = 5t̂ , we found that the velocity of
the car at any point in time was v = lOc and the
acceleration at any point in time was a = 10. If
integration is the reverse of differentiation, then
given the acceleration of the car is 10 ft/sec^, we
should be able to integrate once and get v = lOt
and integrate again and get x = 5t̂ . Let*s look at
how we can do this.

We know that the velocity is given by equa-
tion (A.8) as

dt
(A.8)

repeated

The derivative dxl dt is approximately equal to
Ax / At when At is very small and was given in
equation (A.6) as

^ = 10r
At

asAr->0

We can rewrite (A.6) as

Ax = vAt

(A.6)
repeated

(A.17)

Figure A.3 shows the velocity of the car as a
function of time and the graphical representa-
tion of equation (A.17).

The increment Ax that your car travels in At
seconds can be seen to be an incremental area
under the v(t) curve. If this represents a small
part of X, then to get x at any arbitrary time t,
all we should have to do is sum all of these
small incremental areas up to that time. This
can be expressed using the summation symbol I
as follows:

AC = ^ A J C = ^ V A r (A.18)

As At is made smaller and smaller, the
summation symbol (Z) is replaced by another
symbol (1) called the integration symbol and Ax
and At are replaced with dx and dt. That is,

x=r"dx=r\dt (A.
Jr=0 Jf=0

19)

Since in our example i; = lOt we can write

: = j\Otdt (A.20)

We have already seen that one way to evalu-
ate this integral is to find the area under the
curve v(t). Another way is to simply find the
function whose derivative is lOt. From our table
of derivatives given in Table A.2 we find

jc = 5r^ + C (A.21)

173

Fundamentals of Engineering Calculus and Other Math Tools

TTie unknown constant C must be included be-
cause when we differentiate equation (A.21) we
get

dx_

dt
= 10r (All)

no matter what the value of C is. This constant
is called the constant of integration or the integra-
tion constant. It must be evaluated from known
conditions. In our car example, we said at t = 0
that X = 0. Thus,

x(r = 0) = 5.0^ + C = C (A.23)

So C must equal 0 and we arrive at our answer,

x = 5t'^ (A.24)

We can now generalize what we have
learned in the following equation

]f{t)dt = F(t) + C I (A.25)

In words, given a function /(t), its integral is
another function ¥(t), plus a constant, where
d¥(t) I dt = /(t). Integration in the form defined
by equation (A.25) is called an indejinite integral
because it does not show the limits over which
the integration is to take place. When these
limits are shown, we call the integral a definite
integral and write it as

j;;;;V(r)^r=[F(o-HC]:::;=F(g^F(o|

(A.26)
The limits over which integration is to take
place are defined by tj and tj. The constant of
integration drops out.

Sometimes the best way to view integration
is with graphs. For example, equation (A.25)
indicates that F(t) is equal to \f(t)dt minus the
integration constant. For simplicity, assume the
integration constant is zero and look at the
following graphs:

f(t)

f(t)
- •1 l^dt ^

LLu •
t , U t .

A
F(t)

F(t3)

F(t2)

F(ti)

^^F(t)=Jf(t)dt

^r 1 1
jf 1 1

^ ' • • • • •

t

You can see that V{t) is equal to the area under
the /(t) curve. Clearly, when t is very small, this
area is zero. Each time t increases by an amount
dt, the area under the curve increases a constant
amount. Since ¥{t) represents the area under
the curve described by /(t) from time t = 0 to
time t, then ¥(t^ - F(ti) must equal the area
under the f(t) curve from t = 0 to t2, minus the
area under the f(t) curve from t = 0 to tj. In
graphical form:

174

Integral Calculus

f(t)
f(t)dt

' t ' 2 <3

f(t) |V)d t = F(t,) + C

t , t , t .

f(t)
,f(t)dt = F(t,) + C

Generally, the independent variable is under-
stood when writing the definite integral and
only the limits are shown. That is,

=[FW+c];;=F(r,)-F(0

are all equivalent. Notice that a definite integral is
a function of its limits, not a function of the depen-
dent variable t.

As with differential calculus, integration
formulas are available for finding the integral of
many functions. I found that I saved a lot of
time by committing to memory the formulas
given in Table A.3.

You can also double^integrate a function just
as you can double^differentiate a function. TTiat
is,

JJ/(rVr = F(0 + q/ + C2 (A.27)

Two constants of integration must now be
evaluated. For example, in the car example we
can take/ft) as

f{t) =a = lOft/scc^

That is, f(t) is a constant. Double-integrating to
get X gives

X = jjWdt = 5/^ + C,/ -h C2 (A.28)

We know that at t = 0, x = 0 and v = 0.
Tlierefore

A: = 5-0^ + C - 0 + ^ = 0 = ^ C = 0

and
(A.29)

v = 10f,+C, =10 0 + C, = 0 =»C, = 0
(A.30)

We arrive at

as before.
x = 5t'

I introduced you earlier to the differentia-
tion operator D = d/dt. The inverse integration
operator is

l=lfm

175

Fundamentals of Engineering Calculus and Other Math Tools

Table A.3. Most frequently used integrals
(where c and a are constants and

If and vare functions of x).

J du = u + c

J(du+d<i;) = Jdu+Jdv

^u-^-v-^c

J adu - a] du = au + c

•̂ n + 1
i f n ? t - l

Ju -^du=J^ = ln|u|^c

J sin udu= -cos w + c

J cos u du = sin u + c

J sec u du = tan u + c

J CSC u <iu =-cot u + c

" • ' 1

J sec u tan u du= sec u-hc

J CSC M cot U du = —CSC U + C

In a 1

Je"du = e"+c

and in block form

f (t) -

Example:

x(t) • D

• If(t)dt

- •x (t) = |v(t)dt

An "integrator" BASIC computer program is
given in Listing A.3 and a spreadsheet version is
given in Listing A.4. Carefully review these
programs, and experiment with both of them.
Change the number of steps required to com-
pute the integral. Notice that you get a different
answer each time. Remember that both of these
programs give approximations to the integral
and are based on equation (A. 18). As At gets
smaller, the answer you get will better approxi-
mate the correct value.

176

Partial Derivatives

Listing A.3. BASIC integrator.

5 REM BASIC INTEGRATOR

10 DEFFNX(T) = 10*TA2

20 INPUT "VALUE OF UPPER LIMIT, T2,
PLEASE";T2

30 INPUT "VALUE OF LOWER LIMIT,
Tl, PLEASE";T1

40 INPUT "NUMBER OF INTEGRATION
STEPS, PLEASE";N

50

60

70

80

90

00

10

DELT«(T2-T1)/N

SUM = 0: T = Tl

FORI =1 TON

SUM = SUM + DELT*FN X(T)

T = T + DELT

NEXT

PRINT "VALUE OF INTEGRAL
IS";SUM

120 END

A.4 Partial
Derivatives

The equation for the volume V of a cylinder
shows that it is a function of two variables, r and
h. That is,

V = V(r,/i) = 7ir'/i

As I indicated earlier, you can hold one inde-
pendent variable constant in this equation and
then investigate the effect the other has on the
dependent variable. You can do this regardless
of how many independent variables there are in
an equation. In essence, you convert a multiple
independent variable function into a single vari-
able function. You can then take derivatives of
this function just as you would for a function
that had only one independent variable. Such
derivatives are called partial derivatives and the
symbol du I dx is used to denote the partial de-
rivative of u with respect to x.

For the general function u = f(x,y)y the first
partial derivatives are defined as

Listing A.4. Spreadsheet integrator.

1

1 2
1 3

4

1 5
1 ^

7

8

A

Tl

T2

N

DELT

T

=B1

=A7+B4

B

=(B2'B1)/B3

X(T)

= 10*A(7)A2

= 10*A(8)A2

C

X(T)*DELT

=B7*B4

=B8*B4

D

SUM

=0

=D7+C8

177

Fundamentals of Engineering Calculus and Other Math Tools

^ = t- / (^ + AAC,y)-/U,y)
lim

Ax

and

dy Ay->0 ^y

(A.31)

(A.32)

You can see that these definitions are es-
sentially identical to the definition previously
given for a function of a single variable. Because
the function has two independent variables,
there are now two partial derivatives.

Let's take the partial derivatives of the equa-
tion for the volume of a cylinder. First, the par-
tial derivative of V with respect to r is:

dV ,. Wr + Ar,/i)-V(r,/i)
-r— = lim —̂^

= lim
Ar-*0

= lim
Ar->0

n(r-^Ar)^h-nr^h

Ar

nr^h -t- InrArh -hnjArfh- nr^h

Ar

= lim Inrh + nArh
Ar->0

= 2nrh (A.33)

Next take the partial derivative of V with
respect to h:

dy__ V{nh-\-Ah)-V{r,h)

dh ^-•o Ah

= lim
AA-»0

= lim
AA->0

Kr\h + Ah)-nr^h

Ah

nr^h + nr^Ah - nr^h

Ah

,. nr^Ah
• lim

= 7cr (A.34)

You can see that taking a partial derivative
simply involves treating one variable as if it
were a constant. You don't have to use the defi-
nition equations to compute the partial deriva-
tives; simply recall or refer to the differentiation
formulas for a single variable function given in
Table A.2.

You can also take higher partial derivatives
of multivariable functions. The partial deriva-
tives are written as:

dx[dx) dx'

dy\dxj dxdy dx^dy J

dy[dy} dy'

(A.35)

(A.36)

(A.37)

Let's take these higher partial derivatives for
the volume of a cylinder:

dh{dr) dhdr dr{dh)

±(^V^ = 0 (A.40)
dh\dhj dh"

178

Taylor's Theorem

Increments,
Differentials and
Total Derivatives

We previously defined the incremental
change Ay in a function 31 = j(x) of a single inde^
pendent variable x as

Ay = /(A: + A^)-/(jc)

When Ax is small, the increment A;y is essen^
tially the same as the differential dj. So for small
values of Ax, we can write

Ay = dy = ^dx = ^Ax (A.41)
ax ax

For a function uix^y) of two independent vari'
ables the increment Au is

Aw = f{x + AJC,}' + Ay) - f(x,y)

= [/(x + Ax,)' + A:y) - /(x, y + A31)]

-f[/(x,^ + A>)-/(x,>)]

AV=:-—-Ar-k"—-Ah
dr dh

(A.44)

3w . 3M .
(A.42)

As before, we can replace Ax with dx and A31
with d> and write the total differential as

du =^dx-t^dy (A.43)
dx ay

Let's now apply these equations to the volume
of a cylinder. We can write

Substituting the partial derivatives from above
gives

AV = {2nrh)Ar + {nr^)Ah (A.45)

The application of this latter equation should
now be clear. If "operating point" values for r
and hy say r̂ and /î , are chosen, then this last
equation provides the incremental change in
volume of the cylinder as a function of the in-
cremental changes in the radius and the height
about the operating point r̂ ./î That is,

AV = {2Kr^h^)Ar-l-{Kr^)Ah (A.46)

You will note that this latter equation is linear
in Ar and Ah.

A. 5 Taylor's Theorem

You may recall from your algebra that any
continuous function y - f(x) can be expanded
into an infinite series. We can restrict our atten-
tion to a point, x = a, and expand the function
fix) about this point in the form

f(^x) = b„+b^{x-a) + b^{x-af

+. . .+6„(x-ar (A.47)

The coefficients for this equation can be found
by taking successive derivatives and then evalu-
ating the derivatives at x = a. That is,

179

Fundamentals of Engineering Calculus and Other Math Tools

df(x)
dx

= i>, + 2£»2 {x - a)+.. .+«&„ {x - a)"

(A.48)

^ t o = 2b,+...+n(n - l)b„ix - a)-'

'^ (A.49)

and so forth. Evaluating these at x = a gives

na) = b„ (A.50)

df(x)\
dx

d'f(x)i

dx'

= b,

= 2b.

(A.51)

(A.52)

This equation is known as Taylor's Series and it
can be proven that the series converges.

One of the most important applications of
this equation is associated with the linearization
of functions. If we let Ax = x - a, and use only
the first two terms of the Taylor's Series, then
any function can be approximated by

/ W = /(«) + df(x)
dx

X Ax (AM)

Taylor's Series can also be used with multi-
variable functions. The function u(x,y) can
expand about a point (x̂ , yj. Then a linear
approximation of the function would be

and so forth. Substituting these values back into
the expression for f(x) gives

f(x) = f{a) + df(x)
dx

X I d^f(x) x (x - a) + —^—-̂ -̂̂

,2 1 d'fix) x(x-ar+.. . -H -^^-^
n\ dx"

2 dx"

x (x - a r

(A.53)

u{x,y) = u(x^,y„) +
^u{x,y)

dx

X Ax + dujx^y)
dx

xAy
(A.55)

You can see that this is equivalent to the total
derivative given by equation (A.44) earlier.

ISO

A P P E N D I X B
DSP Vendors

181

DSP Vendors

Mathematical Tool Vendors

MathSoft Inc (makers of MathCAD)
101 Main Street
Cambridge, MA 02142
(800) 6284223
e-mail: sales-info@mathsoftxom
Web address: www.mathsoftxom

Math Works, Inc. (makers of MatLab)
24 Prime Park Way
Natick,MA 01760
(508) 653-.1415
e-mail: info@mathworks.com
Web address: www.mathworks.com

Wolfram Research, Inc. (makers of Mathematica)
100 Trade Center Drive
Champaign, IL 61820
(800) 441 -6284
e-mail: info@wolfram.com
Web address: www.wolfram.com

182

DSP Chip Vendors

DSP Chip Vendors
Ariel Corporation (headquarters)

2540 Route 130
Craribury,NJ 08512
(609) 860-2900
fax:(609)860-1155
e-mail: ariel@ariel.com

Analog Devices
1 Technology Way
Norwood, MA 02062
(617)461-3881
Web address: www.analog.com

AT&T Microelectronics
555 Union Blvd.
Dept. AL500404200
AUentown, PA 18103
(800) 372-2447
Web address: www.att.com

Motorola DSP Division
6501 William Cannon Dr. W
Austin, TX 78735
(512)891-2030

Motorola Semiconductor Products Sector
Communications & Advanced Consumer Technology

Group
Austin, Texas
e-mail: dsphelp@dsp.sps.mot.com
Web address: www.mot.com/SPS/DSP (great DSP site!)

183

DSP Vendors

NEC Electronics
475 Ellis Street
Mountain View, CA 94039
(415) 965-6159

Pentek, Inc.
55 Walnut Street
Norwood, NJ 07648
(201) 767-7100
fax: (201) 767-3994
e-mail: rodger@pentek.com

Texas Instruments, Semiconductor Group
P.O. Box 1712228
Denver, CO 80217
(800) 477-8924
Web address: www.ti.com
Check out TI's on-line DSPLab at www.dsplab.com
Customer Response Center: (800) 336-5236

White Mountain DSP, Inc.
Suite 433
131 DW Highway
Nashua, NH 03060-5245
(603) 883-2430
fax: (603) 882-2655
e-mail: info@wmdsp.com

184

Board-level Products

Board-level Products

Communication Automation & Control, Inc
1642 Union Blvd.
Suite 200
Allentown, PA 18103

CSPI (VME boards)
40 Linnel Circle
BiUerica, MA 01821
(800)325-3110

Data Translation (PC, PCI)
100 Locke Drive
Marlboro, MA 01752
(508)481-3700
e-mail: lnfo@datx.com
Web address: www.datx.com

DSP Research, Inc. (PC, PCI)
1095 East Duane Avenue
Suite 203
Sunnyvale, CA 94086
(408) 773-1042

National Instruments (PC)
6504 Bridge Point Parkway
Austin, TX 78730
(800) 443-3488
e-mail: info@natinst.com
Web address: www.natinst.com

185

DSP Vendors

SONITEC International Inc. (PC)
14 Mica Lane
Wellesly, MA 02181
(617) 235-6824

White Mountain DSP (PC)
131 DW Highway
Suite 433
Nashua, NH 03060-5245
(603) 883-2430

186

A P P E N D I X c
Useful Magazines and

Other Publications

187

Useful Magazines and Other Publications

Communication Automation & Control, Inc.
1642 Union Boulevard, Suite 200
AUentown, PA 181034585
(610) 776^6669
e-mail: sales@cacdspxom
Web address: www.cacdsp.com

Communication Systems Design
Monthly, devoted to communications, multimedia,

and DSP.
FREE to qualified engineers.
(415) 905-2200
Web address: www.csdmag.com

Communications Week
CMP publication with lots of graphics.
(516)562-5000
techweb.cmp.com/cw/current

Computer Design
Monthly, articles on computer design, DSP, embedded

systems, etc.
FREE to qualified engineers.
(603)891-0123
Web address: www.computer-design.com

DSP and Multimedia Technology
Bi-monthly, paid circulation.
(415) 969-6920
na.htm

188

Additional Web Resources

IEEE Signal Processing Magazine
IEEE's flagship magazine for DSP and signal processing

issues.
Available to IEEE members and non-members.
(212) 705-7900

Personal Engineering and Instrumentation News
Mark Sullivan writes a DSP column for this magazine.
He provides downloadable source code on the Web

at www.access.digex.net/~dalek.

Tech Central
Online product mart devoted to DSP, embedded systems,

machine vision, and other areas. Registration required.
Web address: www.techcentral.com

Tech Online
Another online product mart.
Web address: www.techonline.com

Additional Web Resources

Amateur Radio DSP Page
Web address: www.tapr.org/dsp/index.html

DSP Internet Resource List
Web address: www.cera2.com/dsp.htm

189

This Page Intentionally Left Blank

Glossary

Analog-to-Digital Converter (ADC) — Converts an analog voltage
into a digital number. There are a number of different types,
but the most common ones found in DSP are the Successive
Approximation Register (SAR) and the Flash converter.

Analog Frequency — The analog frequency is what we normally
think of as the frequency of the signal. See Digital Frequency.

Anti-Aliasing Filter — A filter that is used to limit the bandwidth
of any incoming signal.

Digital Signal Processing (DSP) — As the term states, this is the use
of digital techniques to process signals. Examples include the
use of computers to filter signals, enhance music recordings,
study medical and scientific phenomena, create and analyze
music, and numerous other related applications.

DigitaUto-Analog Converter (DAC) — Converts a digital number
to an analog voltage.

Digital Frequency — The digital frequency is the analog frequency
scaled by the sample interval. If X is the digital frequency,
/ is the analog frequency, and T is the sample period, then
X = / / T The digital frequency is normally expressed over the
range of-7C to 71. See Analog Frequency,

191

Digital Signal Processing Demystified

Discrete Fourier Transform (DFT) — A computational technique
for computing the transform of a signal Normally used to
compute the spectrum of a signal from the time domain
version of the signal. See Inverse Discrete Fourier Transform
(IDFT)y Fourier Transform, and Fast Fourier Transform (FFT).

DSP Processor — DSP processors are specialized to perform compu-
tations in a very fast manner Typically, they have special
architectures that make moving and manipulating data more
efficient. Typically, DSP processors have both hardware and
software features that are optimized to perform the more
common DSP functions (convolution, for example.)

Fast Fourier Transform (FFT) — Computationally efficient version
of the Discrete Fourier Transform. The FFT is based on elimi-
nating redundant computations often found in processing the
DFT. For large transforms, the FFT may be thousands of times
faster than the equivalent DFT. See Inverse Discrete Fourier
Transform (IDFT), Fourier Transform, and Fast Fourier Trans-
form (FFT),

Finite Impulse Response Filters (FIR) — A filter whose architecture
guarantees that its output will eventually return to zero if the
filter is excited with an impulse imput. FIR filters are uncondi-
tionally stable. See Infinite Impulse Response Filter.

Fourier Transform — A mathematical transform using sinusoids as
the basis function. See the Discrete Fourier Transform (DFT)
and the Fast Fourier Transform (FFT).

Fourier Series — A series of sinusoid wave forms that, when added
together, produce a resultant wave form.

192

Glossary

Harvard Architecture — A common architecture for DSP processors,
the Harvard architecture splits the data path and the
instruction path into two separate streams. This increases
the parallelism of the processor, and therefore improves the
throughput. See DSP Processors,

Infinite Impulse Response Filters (IIR) — A filter that, once excited,
may have an output for an infinite period of time. Depending
upon a number of factors, an IIR may be unconditionally
stable, conditionally stable, or unstable.

Inverse Discrete Fourier Transform (IDFT) — A computational
technique for computing the transform of a signal. Normally
used to compute the time domain representation of a signal
from the spectrum of the signal. See Discrete Fourier Transform
(DFT), Fourier Transform, and Fast Fourier Transform (FFT).

Smoothing filter — A filter that is used on the output of the DAC
in a DSP system. Its purpose is to smooth out the stair step
pattern of the DAC's output.

Von Neumann Architecture — The standard computer architecture.
A Von Neumann machine combines both data and instructions
into the same processing stream. Named after mathematician
Johaan Von Neumann (1903-1957), who conceived the idea.

Window — As applied to DSP, a window is a special function that
shapes the transfer function. Typically used to tweak the
coefficients of filters.

193

This Page Intentionally Left Blank

References

1. Foster, Caxton C , Real Time Programming, ISBN 0-201-
01937-X, Addison Wesley Publishing Company, Inc., 1981

2. Peled, Abraham , and Liu, Bede, Digital Signal Processing,
ISBN 0-471-01941-0, John Wiley and Sons, Inc., 1976

3. Rorabaugh, C. Britton, Digital Filter Designer's Handbook,
ISBN 0-07-911166-1, McGraw-Hill, 1993

4. Smith, Mark J.T., and Mersereau, Russell M., Introduction to
Digital Signal Processing, ISBN 0-471-51693-7, John Wiley
and Sons, Inc., 1992

5. Stanley, Willam D., Network Analysis with Applications,
ISBN 0-8359-4880-3, Reston Publishing Company, Inc.,
1985

6. Stearns, Samuel D., Digital Signal Analysis, ISBN 0-8104-
5828-4, Hayden Book Company, 1975

7. Willams, Charles S., Designing Digital Filters, ISBN 0-13-
20186-X, Prentice Hall, 1986

795

This Page Intentionally Left Blank

Index

acquisition rate, 13

ADC, 11,55

algorithm, DSP, 54

aliasing, 51, 53, 79

amplification, 4, 10

amplifier, 12, 23
operational, 11
instrumentation, 11
output, 14

amplitude, 27, 37, 85

analog filter, 6

analog frequency vs. digital
frequency, 44, 48-49, 52

analog playback process, 4

analog processing, 3
advantages, 4

analog-tO'digital converter,
11,55

angular frequency, 29

anti-aliasing filter, 11, 79

assembly language, 156

average value of sine wave, 84

averaging routine, 63

D
bandpass filter, 69, 119

bandwidth, 50
as function of waveform

shape, 76

Basic language, 156

binary number, 11, 13

C language, 156

C listing for sine wave, 43

calculus, 2

capacitor, 22

Cartesian coordinates, 34

causal filter, 70

causality, 69

CD player, 10

circuit, signal conditioning 10

197

circular - DSP

circular motion, 36

coefficients, 18, 140-141

communications security, 7

compensating distortion, 135

complex analysis, 1

complex conjugate, 145

complex exponential func-
tion, 89

complex numbers, 30-34

complxgen, 30, 38

compound growth, 20

computer, 12

continuous function, 40, 87

converging series, 20

conversion rate, 11

convolution sum, 73

convolution, 70-74, 119,
121, 133-134

cosine, 18, 29

cutoff frequency, 81

cycle, 40, 46

DAC, 13, 42, 55

data bus, 12

data transmission, 12

DC component, 108

decay, amplitude, 37

derivative, 23

DFT, 101,105-112, 119

difference equation, 162

differential equation, 61

differentiation, 18, 35

digital frequency, 40, 48,
163

digital processing, 5

digital signal synthesis, 49

digital-to-analog converter,
13,42,55

dimensionless number, 55

discrete Fourier transform,
101,119

discrete functions in DSP,

88

display, 13

distortion, 4

divergent series, 20
DSP

algorithm, 54
applications, 10
definition, 3
learning software, 154
need for, 3
numerical basis, 17
tools, 153-161

198

DSP - geophysicists

DSP processor, 158-159

DSP system
algorithms, 12
general model, 9
performance, 49
practicalities, 47

6,22,34

editing, waveform, 63

emulator, in-circuit, 159

equation, linear, 18

error correction, 13

error detection, 5, 13

Euler, 34

evaluation unit, 159

exponential function, 30,
89, 105

•
filter design, 62

filter, 60
"brick^wall", 67
anti-aliasing, 11, 80
bandpass, 60, 69, 119
causal, 70
FIR, 119, 137-138
high-pass, 60, 68, 119
IIR, 104, 122, 137-152
low-pass, 11, 60-61, 65,

119,127
moving average, 64, 69

filter (continued)
noncausal, 70
notch, 60
stability, 123-124

finite impulse response filter,
119-135

FIR design example, 127-135

floating point, 42, 44

flow diagram, 122

FORTRAN, 156

Fourier series, 75-81, 100

Fourier transform, 112, 116

frequency domain, 61, 99

frequency response, 65-66, 138

frequency, 29, 119

functions, 17
continuous, 40, 87
discrete, 88
exponential, 30, 89
polynomial form, 18
series expansions, 19
transcendental, 18
transfer, 62

fundamental frequency, 61

future of DSP, 163-165

gain, 12, 150

geometric series, 22

geophysicists, 6

199

Cibbs - natural

Gibbs phenomena, 76

growth, 20

Hamming window, 135

harmonic, 76, 78

Harvard architecture, 12

hertz, 29

higher-order functions, 18

high-pass filter, 68, 119

homogeneity property, 114

D
IDFT, 112

IIRfilter, 104, 122, 137-152

imaginary number, 31

impulse response, 121, 133

in-circuit emulator, 159-160

input signal, 5, 23

input transducer, 10

instruction bus, 12

integral, 23, 112

integration, 18, 24, 35, 85

interest, 21
inverse discrete Fourier

transform, 112

isolation, 11

j as symbol for V-1, 33

keyboard, 13

keypad,13

knowledge, critical mass for
DSP, 60

D
Laplace transform, 1, 115-117

large bandwidth signals, 6

LC circuit, 36

limits, 23

linear equation, 18

Liu, 41

logarithm, natural, 18, 23, 34

low-pass filter, 65, 119, 127

magnetic tape, 4

mainframe computer, 12

microphone, 80

monaural system, 32

motion, oscillatory, 26

moving average filter, 64-65,
69, 121

natural logarithm, 18, 34

200

noise - rectangular

noise, 57
60'Hz, 67

noncausal filter, 70

nonrecursive filter, 138

notch filter, 60

number crunching, 12

numerical basis, 17

Nyquist frequency, 130

Nyquist theorem, 49, 52,

78-80

operational amplifier, 11

orthogonality, 83-87, 105
of sines, 85

oscillator design, 39, 98

oscillatory motion, 26, 36

output amplifier, 14

output frequency, 46

output signal, 5, 23

output smoothing filter, 13

output transducer, 14

output voltage, 13

oversampling, 80

phase, 29, 42, 54

phasor, 29

Piled, 41

playback process, 4

polar coordinates, 28

pole, 142-147

polynomial, 18

pop, 62

prewarping, 135

principal, 21

principle of superposition, 75

processor, 12
DSP, 12, 158-159

programming languages,
155-157

properties of functions, 17

pseudocode, 44

purpose of book, 2

GI
quantization error, 57

quadrature, 89, 93

radial signal, 32

RC circuit, 14

real time mapping, 46

real time, 42, 46

recording, sound, 4

rectangular coordinates, 28

201

relative - time

relative energy, 130

resistance, 37

resolution, 5, 11, 54-57
determining, 57

resonant frequency, 36

ringing, 76

rol^off, 81

Rorabaugh, 39, 41

sample, 40, 46

samples-per-second, 50

sampling rate, 49, 51

scale factor, 46

seismic signals, 6

series
convergent, 20
divergent, 20
geometric, 22
Taylor, 19
Fourier, 75-81

series expansions, 19

shifting property, 103

shifting theorem, 104

signal conditioning circuit, 10

signal generation, 39-48

signal spectrum, 106-108

sine, 18, 29, 40

sme wave
average value of, 84
C listing, 43
DAC output, 45
frequency of, 51

slew rate, 13

slope, 18

smoothing filter, 13

software/hardware develop-
ment packages, 158-159

sound recording, 3

spike, 63

spreadsheets, 154-155

square wave approximation,
76

square wave, transform of,
100

stair-step waveform, 13, 44,
57

Stereo system, 32

storage
data, 12
instructions, 12

sum, convolution, 73

tap, 122, 125

Taylor series, 19, 101-102

time domain, 61, 99, 133

202

transcendental - z-transfotm

transcendental function, 18

transducer
input, 10, 14
output, 14

transfer function, 61-62

transform, 38, 97-118

trigonometry, 2, 17, 28

Twin^T, 39

undergraduate programs, 1

unit circle, 144

user input, 13

vector, 27, 83

von Neumann architecture, 12

Q]
waveform editing, manual, 63

weight, binary, 55

wheel, 26, 36

window function, 135

working knowledge of DSP, 1

x-y coordinates, 31

y-intercept, 18

B
zero, 142-147

^'plane, 101, 143

:^'transform, 20, 101-106

203

This Page Intentionally Left Blank

	Front Cover
	Digital Signal Processing Demystified
	Copyright Page
	Contents
	About the Accompanying Software
	What is the DSP Calculator?
	About This Manual
	Installation and General Information
	Fungen
	Fourier
	DFT
	FFT
	Cmplxgen
	REDISP
	IMDISP
	CONVOLVE
	FLTRDSGN

	Preface
	Chapter 1. Digital Signal Processing
	The Need for DSP
	Advantages of DSP
	Chapter Summary

	Chapter 2. The General Model of a DSP System
	Introduction
	Input
	Signal-conditioning Circuit
	Anti-aliasing Filter
	Analog-to-Digital Converter
	Processor
	Program Store, Data Store
	Data Transmission
	Display and User Input
	Digital-to-Analog Converter
	Output Smoothing Filter
	Output Amplifier
	Output Transducer
	Chapter Summary

	Chapter 3. The Numerical Basis for DSP
	Introduction
	Polynomials, Transcendental Functions, and Series Expansions
	Limits
	Integration
	Oscillatory Motion
	Complex Numbers
	A Practical Example
	Chapter Summary

	Chapter 4. Signal Acquisition
	Introduction
	Sampling Theory
	Sampling Resolution
	Chapter Summary

	Chapter 5. Some Example Applications
	Introduction
	Filters
	A Simple Filter
	Causality
	Convolution
	Chapter Summary

	Chapter 6. The Fourier Series
	Introduction
	Background
	The Fourier Series
	The Nyquist Theorem Completed
	Chapter Summary

	Chapter 7. Orthogonality and Quadrature
	Introduction
	Orthogonality
	Continuous Functions vs. Discrete Sequences
	Orthogonality Continued
	Quadrature
	Chapter Summary

	Chapter 8. Transforms
	Introduction
	Background
	The z-Transform
	Application of the DFT
	The Fourier Transform
	Properties of the Fourier Transform
	The Laplace Transform
	Chapter Summary

	Chapter 9. FIR Filter Design
	Introduction
	What is an FIR Filter?
	Stability of FIR Filters
	Cost of Implementation
	FIR Filter Design Methodology
	FIR Design Example
	Chapter Summary

	Chapter 10: The IIR
	Introduction
	Chapter Summary

	Chapter 11. Tools for Working with DSP
	Introduction
	DSP Learning Software
	Spreadsheets
	Programming Languages
	General Mathematical Tools
	Special-purpose DSP Tools
	Software/Hardware Development Packages
	In-circuit Emulators
	World Wide Web
	Chapter Summary

	Chapter 12. DSP and the Future
	Appendix A. Fundamentals of Engineering Calculus and Other Math Tools
	Introduction
	Differential Calculus
	Integral Calculus
	Partial Derivatives
	Taylor's Theorem

	Appendix B. DSP Vendors
	Mathematical Tool Vendors
	DSP Chip Vendors
	Board-level Products

	Appendix C. Useful Magazines and Other Publications
	Additional Web Resources
	Glossary
	References
	Index

