
GlobAl
edITIon

An Introduction to Programming Using Python™
david I. Schneider

An IntroductIon to
 ProgrAmmIng usIng

Python™

globAl EdItIon

David I. Schneider
University of Maryland

Boston • Columbus • Indianapolis • New York • San Francisco • Hoboken

Amsterdam • Cape Town • Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto

Delhi • Mexico City • São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World WideWeb at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2016

The right of David I. Schneider to be identified as the authors of this work has been asserted by him in accordance
with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled An Introduction to Programming Using Python, ISBN 978-0-
13-405822-1, by David I. Schneider published by Pearson Education © 2016.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior
written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does
not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such
trademarks imply any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

ISBN 10: 1-292-10343-4
ISBN 13: 978-1-292-10343-3

Typeset in 11/13 Goudy Old Style MT Std by Jouve India
Printed and bound by RR Donnelley Kendallville in The United States of America.

Vice President and Editorial Director, ECS: Marcia J.
Horton

Executive Editor: Tracy Johnson
Assistant Acquisitions Editor, Global Editions: Aditee

Agarwal
Executive Marketing Manager: Tim Galligan
Marketing Assistant: Jon Bryant
Team Lead Product Management: Scott Disanno
Production Project Manager: Greg Dulles and Pavithra

Jayapaul
Project Editor, Global Editions: K.K. Neelakantan
Program Manager: Carole Snyder
Director of Operations: Mary Fischer

Operations Specialist: Maura Zaldivar-Garcia
Senior Manufacturing Controller, Global Editions:

Trudy Kimber
Cover Designer: Lumina Datamatics
Global HE Director of Vendor Sourcing and

Procurement: Diane Hynes
Manager, Rights and Permissions: Rachel Youdelman
Associate Project Manager, Rights and Permissions:

William Opaluch
Media Production Manager, Global Editions: Vikram

Kumar
Full-Service Project Management: Shylaja Gattupalli,

Jouve India

http://www.pearsonglobaleditions.com

Guide to VideoNotes
www.pearsonglobaleditions.com/schneider

Chapter 1 An Introduction to Computing and Problem Solving

IDLE Walkthrough 30

Chapter 2 Core Objects, Variables, Input, and Output

Assignment Statements 41
String Functions 54
Print Formatting 67
The list Object 74

Chapter 3 Structures that Control Flow

Relational and Logical Operators 94
Decision Structures 105
The while Loop 121
The for Loop 134

Chapter 4 Functions

User-Defined Functions 160
Scope of Variables 168
Lambda Expressions 186

Chapter 5 Processing Data

Reading Text Files 208
Sets 214
Accessing Data in a CSV File 224
Dictionaries 237

Chapter 6 Miscellaneous Topics

Exception Handing 261
Random Values 267
Turtle Graphics 273
Recursion 285

Chapter 7 Object-Oriented Programming

Defining a Class 299
Inheritance 311
Overriding 316

Chapter 8 Graphical User Interface

Introduction to GUI 328

VideoNote

3

http://www.pearsonglobaleditions.com/schneider

This page intentionally left blank

Guide to Application Topics

Business and Economics
Admission fee, 240
Analyze fuel economy, 257
Annual percentage yield (APY), 119
Annuity, 50, 132, 133, 148
Automobile depreciation, 148
Balance in a savings account, 136, 181, 182
Balance on a car loan, 131, 148, 155
Balance on a mortgage, 292
Bond yield-to-maturity, 91
Break-even analysis, 49
Calculate a sale price, 119, 354
Calculate a tip, 64, 72, 116
Calculate monthly payment for a mortgage, 321,

322
Calculate weekly pay, 117, 164, 309
Change from a purchase, 118
Check out purchases from a website, 310
Compare interest rates, 119
Compare salary options, 149, 179
Compare simple and compound interest, 148
Compound interest, 49, 50, 119, 124, 132, 133,

148, 165
Consumer price index (CPI), 131
Cost of electricity, 63
Credit card payment, 197
Crop production, 50, 149
Currency exchange rates, 258
Depreciation, 205
Determine a company’s payroll, 326
Discounted price, 49, 62
Distribution of a mortgage payment, 197
Dogs of the DOW, 231
Doubling time of CPI, 131
DOW industrial average, 230, 231
Earnings, 197
Effects of a change in salary, 72, 73, 354, 355
Evaluate effects of different interest rates and com-

pounding periods, 361
Excel, 227
FICA tax, 110, 179
Future value, 73, 165
Growth of an investment, 148
Income tax, 119
Individual retirement account, 156
Interest earned in a savings account, 181, 182
Interest-only mortgage, 322
Journal subscriptions, 221
Lifetime earnings, 148
Make change, 90
Manage a bank account, 133, 325

Monetary units of countries, 258
Monthly payment on a car loan, 91, 355
Mortgage with points, 322
Municipal bonds, 64
Net income, 72
Number of restaurants in United States, 50
Pay raise, 179, 197
Pension calculation, 180, 362
Percentage markup, 64
Percentage profit, 50
Pizza consumption, 50
PNC Christmas price index, 233
Postage costs, 193
Present value, 73
Price-to-earnings ratio, 63
Profit, 49, 109, 120
Profit margin, 64
Retirement plan, 156
Rule of 88, 156
Sales receipt, 236, 310
Savings plan, 132
Simple interest, 148
Small dogs of the DOW, 231
Stock portfolio, 91
Stock purchase, 49
Supply and demand, 149
Toll booth register, 310
Total cost, 116, 117
Total interest payments on a car loan, 155
U.S. national debt, 51
Unit price, 91
Validate credit card number, 157
Validate ISBN, 205
Withdrawal from a savings account, 118

General Interest
Academy award winners, 235, 357
American flag, 295
Anagrams, 194
Analyze a sentence, 87, 250
Bachelor degrees, 256
Boston accent, 151
Caffeine absorption, 156
Calculate number of calories, 51
Calculate semester grades, 311, 312, 314
Computer pioneers, 234
Country flags, 277
Crayon colors, 179, 221, 222
Determine day of week, 236

5

 6 ◆ Guide to Application Topics

Distance from a storm, 62
Earliest colleges, 234
Freshman life goals, 285
Gettysburg Address, 221, 241
Great Lakes, 356, 357
Interpret weather beacon, 108
Military time, 118
Movie quotations, 122
New England states, 195
Number of restaurants, 50
Old McDonald’s Farm, 166
Palindrome, 158, 287
Percentage of college freshmen who smoke, 281
Pig Latin, 117
Pizza consumption, 50
Popular college majors, 284
Population densities, 168
Population growth, 51, 131, 133
Presidential colleges, 358
Principal Languages of the World, 279
Quiz, 106, 117
Qwerty words, 178
Radioactive decay, 131, 132, 147
Solve a puzzle, 150
Soundex system, 157
Speed of a skidding car, 63
State birds, 353
State capitals, 235, 266
Supreme Court justices, 152, 232, 233, 249, 250
Training heart rate, 62
Translate a language, 240
Two-year college enrollments, 284
Types of high schools attended, 284
U.S. cities, 251, 258
U.S. facts, 125
U.S. presidents, 141, 152, 212, 216, 223, 245, 250
U.S. Senate, 256, 357, 358
U.S. states, 82, 151, 196, 197, 211, 222, 235, 246
United Nations, 224, 225, 226, 243, 244, 324,

 340, 362
Validate ISBN, 205
Vowel words, 148, 165

Mathematics
Birthday probability, 132, 151
Calculate a maximum value, 123
Calculate a minimum value, 123
Calculate a range, 194
Calculate a sum, 147, 152, 262

Calculate an average, 75, 117, 123, 148, 150,
222, 262

Calculate with fractions, 308, 309
Calculator, 355
Card probability, 272
Coin toss probability, 272
Coefficient of restitution, 129
Convert lengths, 65, 254
Convert months, 65
Convert speeds, 63, 354
Convert temperatures, 129, 161
Curve grades, 254
Determine divisibility by 27, 125
Dice probability, 271, 307
Error detection system, 157
Factorial, 178
Famous probability problem, 271, 272, 307
Fibonacci sequence, 292
Fractals, 288
Greatest common divisor, 130, 292
Making change, 357
Median, 149, 226
Newton’s law of cooling, 133
Pascal’s triangle, 296
Percentages, 63, 150
Permutations, 295
Powerball probability, 272
Prime factorization, 130, 291
Projectile motion, 50, 204
Quadratic equation, 156
Standard deviation, 226, 254
Subsets, 291
Verbalize a number, 205, 363
Wilson’s theorem, 198

Sports and Games
Baseball, 63, 248, 255
Bridge, 272, 295, 310
Cards, 139, 308
Coin tosses, 272
Dice, 307
Football, 150, 250
Guess my number, 294
Poker, 268, 295, 309
Powerball lottery, 272, 355
Rock, paper, scissors, 272, 320
Roulette, 268
Slot machine, 269
Triathlon, 62

Contents

Guide to VideoNotes 3

Guide to Application Topics 5

Preface 11

Acknowledgments 15

Chapter 1 An Introduction to Computing

and Problem Solving 17
1.1 An Introduction to Computing and Python 18

1.2 Program Development Cycle 20

1.3 Programming Tools 22

1.4 An Introduction to Python 29

Chapter 2 Core Objects, Variables, Input,

and Output 39
2.1 Numbers 40

2.2 Strings 51

2.3 Output 65

2.4 Lists, Tuples, and Files–An Introduction 74

Key Terms and Concepts 87

Programming Projects 90

Chapter 3 Structures That Control Flow 93
3.1 Relational and Logical Operators 94

3.2 Decision Structures 105

3.3 The while Loop 121
7

 8 ◆ Contents

3.4 The for Loop 134

Key Terms and Concepts 153

Programming Projects 155

Chapter 4 Functions 159
4.1 Functions, Part 1 160

4.2 Functions, Part 2 180

4.3 Program Design 198

Key Terms and Concepts 202

Programming Projects 204

Chapter 5 Processing Data 207
5.1 Processing Data, Part 1 208

5.2 Processing Data, Part 2 223

5.3 Dictionaries 237

Key Terms and Concepts 251

Programming Projects 254

Chapter 6 Miscellaneous Topics 259
6.1 Exception Handling 260

6.2 Selecting Random Values 267

6.3 Turtle Graphics 273

6.4 Recursion 285

Key Terms and Concepts 293

Programming Projects 294

 Contents ◆ 9

Chapter 7 Object-Oriented Programming 297
7.1 Classes and Objects 298

7.2 Inheritance 311

Key Terms and Concepts 323

Programming Projects 324

Chapter 8 Graphical User Interface 327
8.1 Widgets 328

8.2 The Grid Geometry Manager 341

8.3 Writing GUI Programs 350

Key Terms and Concepts 359

Programming Projects 361

Appendices
Appendix A ASCII Values 365

Appendix B Reserved Words 367

Appendix C Installing Python and IDLE 369

Answers 371

Index 421

This page intentionally left blank

PrefaCe

Since its introduction in the 1990s, Python has become one of the most widely used
programming languages in the software industry. Also, students learning their first

programming language find Python the ideal tool to understand the development of
computer programs.

My objectives when writing this text were as follows:

1. To develop focused chapters. Rather than covering many topics superficially,
I concentrate on important subjects and cover them thoroughly.

2. To use examples and exercises with which students can relate, appreciate, and feel
comfortable. I frequently use real data. Examples do not have so many embel-
lishments that students are distracted from the programming techniques
illustrated.

3. To produce compactly written text that students will find both readable and informa-
tive. The main points of each topic are discussed first and then the peripheral
details are presented as comments.

4. To teach good programming practices that are in step with modern programming
methodology. Problem-solving techniques, structured programming, and
object-oriented programming are thoroughly discussed.

5. To provide insights into the major applications of computers.

Unique and Distinguishing Features
Programming Projects. Beginning with Chapter 2, every chapter contains programming
projects. The programming projects reflect the variety of ways that computers are
used. The large number and range of difficulty of the programming projects pro-
vide the flexibility to adapt the course to the interests and abilities of the students.
Some programming projects in later chapters can be assigned as end-of-the-semester
projects.

Exercises for Most Sections. Each section that teaches programming has an exercise
set. The exercises both reinforce the understanding of the key ideas of the section
and challenge the student to explore applications. Most of the exercise sets require
the student to trace programs, find errors, and write programs. The answers to every
odd-numbered exercise in the book, with the exception of Section 6.3 (Turtle Graph-
ics) and Chapter 8 (Graphical User Interface), are given at the end of the text. (The
answers to every other odd-numbered exercise from Section 6.3 are given. The Stu-
dent Solutions Manual contains the answer to every odd-numbered exercise in the
book.) A possible output accompanies nearly every programming exercise and pro-
gramming project.

Practice Problems. Practice Problems are carefully selected exercises located at the end
of a section, just before the exercise set. Complete solutions are given following the
exercise set. The practice problems often focus on points that are potentially confusing

11

 12 ◆ Preface

or are best appreciated after the student has thought about them. The reader should
seriously attempt the practice problems and study their solutions before moving on
to the exercises.

Comments. Extensions and fine points of new topics are deferred to the “Comments”
portion at the end of each section so that they will not interfere with the flow of the
presentation.

Key Terms and Concepts. In Chapters 2 through 8, the key terms and concepts (along
with examples) are summarized at the end of the chapter.

Guide to Application Topics. This section provides an index of programs that deal
with various topics including Business, Economics, Mathematics, and Sports.

VideoNotes. Twenty-four VideoNotes are available at www.pearsonhighered.com/
schneider. VideoNotes are Pearson’s visual tool designed for teaching key program-
ming concepts and techniques. VideoNote icons are placed in the margin of the text
book to notify the reader when a topic is discussed in a video. Also, a Guide to Video
Notes summarizing the different videos throughout the text is included.

Solution Manuals. The Student Solutions Manual contains the answer to every odd-
numbered exercise (not including programming projects). The Instructor Solutions
Manual contains the answer to every exercise and programming project. Both solu-
tion manuals are in pdf format and can be downloaded from the Publisher’s website.

Source Code and Data Files. The programs for all examples and the data files needed
for the exercises can be downloaded from the Publisher’s website.

How to Access Instructor and Student Resource
Materials
Online Practice and Assessment with

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of
programming. Through practice exercises and immediate, personalized feedback,
MyProgrammingLab improves the programming competence of beginning students
who often struggle with the basic concepts and paradigms of popular high-level pro-
gramming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hun-
dreds of small practice problems organized around the structure of this textbook. For
students, the system automatically detects errors in the logic and syntax of their code
submissions and offers targeted hints that enable students to figure out what went
wrong—and why. For instructors, a comprehensive gradebook tracks correct and
incorrect answers and stores the code inputted by students for review.

For a full demonstration, to see feedback from instructors and students, or to
get started using MyProgrammingLab in your course, visit www.myprogramminglab
.com.

Instructor Resources

The following protected instructor resource materials are available on the Publisher’s
website at www.pearsonglobaleditions.com/schneider.
• Test Item File

• PowerPoint Lecture Slides

MyProgrammingLab™

http://www.pearsonhighered.com/schneider
http://www.myprogramminglab.com
http://www.pearsonglobaleditions.com/schneider
http://www.pearsonhighered.com/schneider
http://www.myprogramminglab.com

 Preface ◆ 13

• Instructor Solutions Manual

• VideoNotes

• Programs for all examples and answers to exercises and programming projects
(Data files needed for the exercises are included in the Programs folder.)

Student Resources

Access to the Premium website and VideoNotes tutorials is located at www
.pearsonglobaleditions.com/schneider. Students must use the access card located
in the front of the book to register and access the online material. Instructors must
register on the site to access the material.

The following content is available through the Premium website:
• VideoNotes

• Student Solutions Manual

• Programs for examples (Data files needed for the exercises are included in the
Programs folder.)

http://www.pearsonglobaleditions.com/schneider
http://www.pearsonglobaleditions.com/schneider

This page intentionally left blank

aCknowledgments

Many talented instructors and programmers provided helpful comments and
constructive suggestions during the writing of this text and I am most grateful

for their contributions. The book benefited greatly from the valuable comments of
the following reviewers:

Daniel Solarek, University of Toledo
David M. Reed, Capital University
Debraj De, Georgia State
Desmond Chun, Chabot College
Mark Coffey, Colorado School of Mines
Randall Alexander, College of Charleston
Vineyak Tanksale, Ball State University
Zhi Wei, New Jersey Institute of Technology

Many people are involved in the successful publication of a book. I wish to thank
the dedicated team at Pearson whose support and diligence made this textbook pos-
sible, especially Carole Snyder, Program Manager for Computer Science, Kelsey
Loanes, Editorial Assistant for Computer Science, and Scott Disanno, Team Lead
Product Management.

I would like to thank Jacob Saina for his assistance with every stage in the writing
of the book. Production Editors Pavithra Jayapaul and Greg Dulles did a fantastic
job producing the book and keeping it on schedule. I am grateful to John Russo of
the Wentworth Institute of Technology for producing the VideoNotes, to Dr. Kathy
Liszka of the University of Akron for producing the test bank, and to Dr. Steve
 Armstrong of LeTourneau University for producing the PowerPoint slides that
accompany the book. The competence and graciousness of Shylaja Gattupalli at
Jouve India made for a pleasant production process.

I extend special thanks to my editor Tracy Johnson. Her ideas and enthusiasm
helped immensely with the preparation of the book.

David I. Schneider
dis@alum.mit.edu

Pearson would like to thank and acknowledge Shaligram Prajapat, Devi Ahilya Uni-
versity for contributing to the Global Edition and Somitra Sanadhya, Indian Institute
of Delhi, Rosanne Els, University of Kwazulu-Natal, and Shivani Pandit for review-
ing the Global Edition.

15

mailto:dis@alum.mit.edu

This page intentionally left blank

17

1

1.1 An Introduction to Computing and Python 18

1.2 Program Development Cycle 20

◆  Performing a Task on the Computer  ◆  Program Planning

1.3 Programming Tools 22

◆  Flowcharts  ◆  Pseudocode  ◆  Hierarchy Chart  ◆  Decision Structure
◆  Direction of Numbered NYC Streets Algorithm  ◆  Repetition Structure 

◆  Class Average Algorithm

1.4 An Introduction to Python 29

◆  Starting IDLE  ◆  A Python Shell Walkthrough 

◆  A Python Code Editor Walkthrough  ◆  An Open- a- Program Walkthrough

An Introduction to
 Computing and Problem
Solving

 18 ◆ Chapter 1 An Introduction to Computing and Problem Solving

1.1 An Introduction to Computing and Python

An Introduction to Programming Using Python is about problem solving using computers.
The programming language used is Python, but the principles apply to most modern pro-
gramming languages. Many of the examples and exercises illustrate how computers are
used in the real world. Here are some questions that you may have about computers and
programming.

Question: How do we communicate with the computer?

Answer: Programming languages are used to communicate with the computer. At the low-
est level, there is machine language, which is understood directly by the microprocessor
but is difficult for humans to understand. Python is an example of a high- level language. It
consists of instructions to which people can relate, such as print, if, and input. Some other
 well- known high- level languages are Java, C++, and Visual Basic.

Question: How do we get computers to perform complicated tasks?

Answer: Tasks are broken down into a sequence of instructions, called a program, that
can be expressed in a programming language. Programs can range in size from two or three
instructions to millions of instructions. The process of executing the instructions is called
running the program.

Question: Why did you decide to use Python as the programming language?

Answer: Many people consider Python to be the best language to teach beginners how to
program. We agree. Also, Python is being used by major software companies. Python is
powerful, easy to write and read, easy to download and install, and it runs under Windows,
Mac, and Linux operating systems.

Question: How did the language Python get its name?

Answer: It is named for the British comedy group Monty Python. Python’s creator, Guido
van Rossum, is a fan of the group.

Question: This book uses the editor IDLE to create programs. How did IDLE get its name?

Answer: IDLE stands for Integrated DeveLopment Environment. (Some people think the
name was chosen as a tribute to Eric Idle, a founding member of the Monty Python group.)
The IDLE editor has many features (such as color coding and formatting assistance) that
help the programmer.

Question: Python is referred to as an interpreted language. What is an interpreted language?

Answer: An interpreted language uses a program called an interpreter that translates a high-
 level language one statement at a time into machine language and then runs the program.
The interpreter will spot several types of errors and terminate the program when one is
encountered.

Question: What are the meanings of the terms “programmer” and “user”?

Answer: A programmer (also called a developer) is a person who solves problems by writing
programs on a computer. After analyzing the problem and developing a plan for solving it,
the programmer writes and tests the program that instructs the computer how to carry out
the plan. The program might be run many times, either by the programmer or by others.
A user is any person who runs the program. While working through this text, you will
function both as a programmer and as a user.

 1.1 An Introduction to Computing and Python ◆ 19

Question: What is the meaning of the term “code”?

Answer: The Python instructions that the programmer writes are called code. The pro-
cesses of writing a program is often called coding.

Question: Are there certain characteristics that all programs have in common?

Answer: Most programs do three things: take in data, manipulate data, and produce results.
These operations are referred to as input, processing, and output. The input data might be
held in the program, reside on a disk, or be provided by the user in response to requests
made by the computer while the program is running. The processing of the input data
occurs inside the computer and can take from a fraction of a second to many hours. The
output data are displayed on a monitor, printed on a printer, or recorded on a disk. As a
simple example, consider a program that computes sales tax. An item of input data is the
cost of the thing purchased. The processing consists of multiplying the cost by the sales
tax rate. The output data is the resulting product, the amount of sales tax to be paid.

Question: What are the meanings of the terms “hardware” and “software”?

Answer: Hardware refers to the physical components of the computer, including all periph-
erals, the central processing unit (CPU), disk drives, and all mechanical and electrical
devices. Programs are referred to as software.

Question: How are problems solved with a program?

Answer: Problems are solved by carefully reading them to determine what data are given
and what outputs are requested. Then a step- by- step procedure is devised to process the
given data and produce the requested output.

Question: Many programming languages, including Python, use a zero- based numbering system.
What is a zero- based numbering system?

Answer: In a zero- based numbering system, numbering begins with zero instead of one. For
example, in the word “code”, “c” would be the zeroth letter, “o” would be the first letter,
and so on.

Question: Are there any prerequisites to learning Python?

Answer: You should be familiar with how folders (also called directories) and files are managed
on your computer. Files reside on storage devices such as hard disks, USB flash drives, CDs,
and DVDs. Traditionally, the primary storage devices for personal computers were hard disks
and floppy disks. Therefore, the word disk is frequently used to refer to any storage device.

Question: What is an example of a program developed in this textbook?

Answer: Figure 1.1 shows a possible output of a program from Chapter 3. When it is first
run, the statement “Enter a first name:” appears. After the user types in a first name and

Figure 1.1 A possible output for a program in Chapter 3.

Enter a first name: James
James Madison
James Monroe
James Polk
James Buchanan
James Garfield
James Carter

 20 ◆ Chapter 1 An Introduction to Computing and Problem Solving

presses the Enter (or return) key, the names of the presidents who have that first name are
displayed.

Question: How does the programmer create the aforementioned program?

Answer: For this program, the programmer writes about 10 lines of code that search a text
file named USpres.txt, and extracts the requested names.

Question: What conventions are used to show keystrokes?

Answer: The combination key1+key2 means “hold down key1 and then press key2”. The
combination Ctrl+C places selected material into the Clipboard. The combination key1/
key2 means “press and release key1, and then press key2”. The combination Alt/F opens
the File menu on a menu bar.

Question: How can the programs for the examples in this textbook be obtained?

Answer: See the preface for information on how to download the programs from the
 Pearson website.

Question: Where will new programs be saved?

Answer: Before writing your first program, you should create a special folder to hold your
programs.

1.2 Program Development Cycle

We learned in Section 1.1 that hardware refers to the machinery in a computer system (such
as the monitor, keyboard, and CPU) and software refers to a collection of instructions,
called a program, that directs the hardware. Programs are written to solve problems or
perform tasks on a computer. Programmers translate the solutions or tasks into a language
the computer can understand. As we write programs, we must keep in mind that the com-
puter will do only what we instruct it to do. Because of this, we must be very careful and
thorough when writing our instructions.

 ■ Performing a Task on the Computer
The first step in writing instructions to carry out a task is to determine what the output
should be— that is, exactly what the task should produce. The second step is to identify the
data, or input, necessary to obtain the output. The last step is to determine how to process
the input to obtain the desired output— that is, to determine what formulas or ways of
doing things should be used to obtain the output.

This problem- solving approach is the same as that used to solve word problems in an
algebra class. For example, consider the following algebra problem:

How fast is a car moving if it travels 50 miles in 2 hours?

The first step is to determine the type of answer requested. The answer should be a num-
ber giving the speed in miles per hour (the output). The information needed to obtain the
answer is the distance and time the car has traveled (the input). The formula

speed = distance/time

is used to process the distance traveled and the time elapsed in order to determine the
speed. That is,

 1.2 Program Development Cycle ◆ 21

 speed = 50 miles/2 hours

 = 25 miles per hour

A graphical representation of this problem- solving process is shown in Fig. 1.2.

Figure 1.2 The problem- solving process.

We determine what we want as output, get the needed input, and process the input to
produce the desired output.

In the chapters that follow, we discuss how to write programs to carry out the preceding
operations. But first we look at the general process of writing programs.

 ■ Program Planning
A baking recipe provides a good example of a plan. The ingredients and the amounts are
determined by what is to be baked. That is, the output determines the input and the process-
ing. The recipe, or plan, reduces the number of mistakes you might make if you tried to
bake with no plan at all. Although it’s difficult to imagine an architect building a bridge or
a factory without a detailed plan, many programmers (particularly students in their first
programming course) try to write programs without first making a careful plan. The more
complicated the problem, the more complex the plan must be. You will spend much less
time working on a program if you devise a carefully thought out step- by- step plan and test
it before actually writing the program.

Many programmers plan their programs using a sequence of steps, referred to as the
Software Development Life Cycle. The following step- by- step process will enable you to use
your time efficiently and help you design error- free programs that produce the desired output.

1. Analyze: Define the problem.

Be sure you understand what the program should do— that is, what the output should
be. Have a clear idea of what data (or input) are given and the relationship between the
input and the desired output.

2. Design: Plan the solution to the problem.

Find a logical sequence of precise steps that solve the problem. Such a sequence of
steps is called an algorithm. Every detail, including obvious steps, should appear in
the algorithm. In the next section, we discuss three popular methods used to develop
the logic plan: flowcharts, pseudocode, and hierarchy charts. These tools help the pro-
grammer break a problem into a sequence of small tasks the computer can perform to
solve the problem. Planning also involves using representative data to test the logic of
the algorithm by hand to ensure that it is correct.

3. Code: Translate the algorithm into a programming language.

Coding is the technical word for writing the program. During this stage, the program is
written in Python and entered into the computer. The programmer uses the algorithm
devised in Step 2 along with a knowledge of Python.

4. Test and correct: Locate and remove any errors in the program.

Testing is the process of finding errors in a program. (An error in a program is called
a bug and testing and correcting is often referred to as debugging.) As the program is

 22 ◆ Chapter 1 An Introduction to Computing and Problem Solving

typed, Python points out certain kinds of program errors. Other kinds of errors are
detected by Python when the program is executed—however, many errors due to typ-
ing mistakes, flaws in the algorithm, or incorrect use of the Python language rules, can
be uncovered and corrected only by careful detective work. An example of such an
error would be using addition when multiplication was the proper operation.

5. Complete the documentation: Organize all the material that describes the program.

Documentation is intended to allow another person, or the programmer at a later
date, to understand the program. Internal documentation (comments) consists of
statements in the program that are not executed, but point out the purposes of vari-
ous parts of the program. Documentation might also consist of a detailed descrip-
tion of what the program does and how to use it (for instance, what type of input is
expected). For commercial programs, documentation includes an instruction manual
and on- line help. Other types of documentation are the flowchart, pseudocode, and
hierarchy chart that were used to construct the program. Although documentation
is listed as the last step in the program development cycle, it should take place as the
program is being coded.

1.3 Programming Tools

This section discusses some specific algorithms and describes three tools used to convert
algorithms into computer programs: flowcharts, pseudocode, and hierarchy charts.

You use algorithms every day to make decisions and perform tasks. For instance, when-
ever you mail a letter, you must decide how much postage to put on the envelope. One rule
of thumb is to use one stamp for every five sheets of paper or fraction thereof. Suppose a
friend asks you to determine the number of stamps to place on an envelope. The following
algorithm will accomplish the task.

1. Request the number of sheets of paper; call it Sheets. (input)

2. Divide Sheets by 5. (processing)

3. If necessary, round the quotient up to a whole number; call it Stamps. (processing)

4. Reply with the number Stamps. (output)

The preceding algorithm takes the number of sheets (Sheets) as input, processes the
data, and produces the number of stamps needed (Stamps) as output. We can test the algo-
rithm for a letter with 16 sheets of paper.

1. Request the number of sheets of paper; Sheets = 16.

2. Dividing 5 into 16 gives 3.2.

3. Rounding 3.2 up to 4 gives Stamps = 4.

4. Reply with the answer, 4 stamps.

This problem- solving example can be illustrated by Fig. 1.3.

Figure 1.3 The problem- solving process for the stamp problem.

 1.3 Programming Tools ◆ 23

Of the program design tools available, three popular ones are the following:

Flowcharts: Graphically depict the logical steps to carry out a task and show how the
steps relate to each other.
Pseudocode: Uses English- like phrases with some Python terms to outline the task.
Hierarchy charts: Show how the different parts of a program relate to each other.

 ■ Flowcharts
A flowchart consists of special geometric symbols connected by arrows. Within each sym-
bol is a phrase presenting the activity at that step. The shape of the symbol indicates the type
of operation that is to occur. For instance, the parallelogram denotes input or output. The
arrows connecting the symbols, called flowlines, show the progression in which the steps
take place. Flowcharts should “flow” from the top of the page to the bottom. Although the
symbols used in flowcharts are standardized, no standards exist for the amount of detail
required within each symbol.

The table of the flowchart symbols has been adopted by the American National Stand-
ards Institute (ANSI). Figure 1.4 shows the flowchart for the postage- stamp problem.

The main advantage of using a flowchart to plan a task is that it provides a graphical
representation of the task, thereby making the logic easier to follow. We can clearly see
every step and how each is connected to the next. The major disadvantage is that when a
program is very large, the flowcharts may continue for many pages, making them difficult
to follow and modify.

 ■ Pseudocode
Pseudocode is an abbreviated plain English version of actual computer code (hence, pseu-
docode). The geometric symbols used in flowcharts are replaced by English- like statements
that outline the process. As a result, pseudocode looks more like computer code than does

 24 ◆ Chapter 1 An Introduction to Computing and Problem Solving

a flowchart. Pseudocode allows the programmer to focus on the steps required to solve a
problem rather than on how to use the computer language. The programmer can describe
the algorithm in Python- like form without being restricted by the rules of Python. When
the pseudocode is completed, it can be easily translated into the Python language.

The pseudocode for the postage- stamp problem is shown in Fig. 1.5.

=

Figure 1.4 Flowchart for the postage- stamp problem.

Figure 1.5 Pseudocode for the postage- stamp problem.

Program: Determine the proper number of stamps for a letter.
Obtain number of sheets (Sheets) (input)
Set the number of stamps to Sheets / 5 (processing)
Round the number of stamps up to a whole number (processing)
Display the number of stamps (output)

Pseudocode has several advantages. It is compact and probably will not extend for many
pages as flowcharts commonly do. Also, the pseudocode looks like the code to be written
and so is preferred by many programmers.

 ■ Hierarchy Chart
The last programming tool we’ll discuss is the hierarchy chart, which shows the overall
program structure. Hierarchy charts are also called structure charts, HIPO (Hierarchy plus
 Input- Process- Output) charts, top- down charts, or VTOC (Visual Table of Contents) charts.
All these names refer to planning diagrams that are similar to a company’s organization chart.

 1.3 Programming Tools ◆ 25

Hierarchy charts depict the organization of a program but omit the specific processing
logic. They describe what each part of the program does and they show how the parts relate
to each other. The details on how the parts work, however, are omitted. The chart is read
from top to bottom and from left to right. Each part may be subdivided into a succession of
subparts that branch out under it. Typically, after the activities in the succession of subparts
are carried out, the part to the right of the original part is considered. A quick glance at
the hierarchy chart reveals each task performed in the program and where it is performed.
Figure 1.6 shows a hierarchy chart for the postage- stamp problem.

=

Figure 1.6 Hierarchy chart for the postage- stamp problem.

The main benefit of hierarchy charts is in the initial planning of a program. We break
down the major parts of a program so we can see what must be done in general. From this
point, we can then refine each part into more detailed plans using flowcharts or pseudocode.
This process is called the divide- and- conquer method.

 ■ Decision Structure
The postage- stamp problem was solved by a series of instructions to obtain the data, per-
form calculations, and display the results. Each step was in a sequence, that is, we moved
from one line to the next without skipping over any lines. This kind of structure is called a
sequence structure. Many problems, however, require a decision to determine whether a ser-
ies of instructions should be executed. If the answer to a question is “yes”, then one group of
instructions is executed. If the answer is “no”, then another is executed. This structure is called
a decision structure. Figure 1.7 contains the pseudocode and flowchart for a decision structure.

Sequence and decision structures are both used to solve the following problem.

Figure 1.7 Pseudocode and flowchart for a decision structure.

 26 ◆ Chapter 1 An Introduction to Computing and Problem Solving

 ■ Direction of Numbered NYC Streets Algorithm
Problem: Given a street number of a one- way street in New York City, decide the
 direction of the street, either eastbound or westbound.
Discussion: There is a simple rule to tell the direction of a one- way street in New York
City: Even- numbered streets run eastbound.
Input: Street number.
Processing: Decide if the street number is divisible by 2.
Output: “Eastbound” or “Westbound”.

Figures 1.8 through 1.10 show the flowchart, pseudocode, and hierarchy chart for the num-
bered New York City streets problem.

Figure 1.8 Flowchart for the numbered New York City streets problem.

Figure 1.9 Pseudocode for the numbered New York City streets problem.

Program: Determine the direction of a numbered NYC street.
Get street
if street is even
 Display Eastbound
else
 Display Westbound

Figure 1.10 Hierarchy chart for the numbered New York City streets problem.

 1.3 Programming Tools ◆ 27

 ■ Repetition Structure
A programming structure that executes instructions many times is called a repetition
 structure or a loop structure. Loop structures need a test (or condition) to tell when the
loop should end. Without an exit condition, the loop would repeat endlessly (an infinite
loop). One way to control the number of times a loop repeats (often referred to as the num-
ber of passes or iterations) is to check a condition before each pass through the loop and
continue executing the loop as long as the condition is true. See Fig. 1.11. The solution of
the next problem requires a repetition structure.

Figure 1.11 Pseudocode and flowchart for a loop.

 ■ Class Average Algorithm
Problem: Calculate and report the average grade for a class.

Discussion: The average grade equals the sum of all grades divided by the number of
 students. We need a loop to get and then add (accumulate) the grades for each student
in the class. Inside the loop, we also need to total (count) the number of students in the
class. See Figs. 1.12 to 1.14 on the next page.

Input: Student grades.

Processing: Find the sum of the grades; count the number of students; calculate average
grade sum of grades / number of students.
Output: Average grade.

 ■ Comments
1. Tracing a flowchart is like playing a board game. We begin at the Start symbol and pro-

ceed from symbol to symbol until we reach the End symbol. At any time, we will be
at just one symbol. In a board game, the path taken depends on the result of spinning
a spinner or rolling a pair of dice. The path taken through a flowchart depends on the
input.

2. The algorithm should be tested at the flowchart stage before being coded into a pro-
gram. Different data should be used as input, and the output checked. This process
is known as desk checking. The test data should include nonstandard data as well as
typical data.

 28 ◆ Chapter 1 An Introduction to Computing and Problem Solving

Figure 1.12 Flowchart for the class average problem.

Figure 1.13 Pseudocode for the class average problem.

Program: Calculate and report the average grade of a class.
Initialize Counter and Sum to 0
while there are more data
 Get the next Grade
 Increment the Counter
 Add the Grade to the Sum
Set Average to Sum / Counter
Display Average

 1.4 An Introduction to Python ◆ 29

3. Flowcharts, pseudocode, and hierarchy charts are universal problem- solving tools. They
can be used to plan programs for implementation in many computer languages, not
just Python.

4. Flowcharts are time- consuming to write and difficult to update. For this reason, profes-
sional programmers are more likely to favor pseudocode and hierarchy charts. Because
flowcharts so clearly illustrate the logical flow of programming techniques, they are a
valuable tool in the education of programmers.

5. There are many styles of pseudocode. Some programmers use an outline form, whereas
others use a form that looks almost like a programming language. Several Python key-
words, such as “if”, “else”, and “while”, are used extensively in pseudocode.

1.4 An Introduction to Python

The discussions in this book refer to IDLE, the editor that ships with Python. You should
be able to carry out the tasks from the book with a different editor by making simple adjust-
ments. We will assume that Python 3 is installed on your computer along with IDLE (or
whatever editor you have decided to use). If necessary, see Appendix C for instructions on
installing Python and IDLE.

 ■ Starting IDLE
WINDOWS: Depending on the version of Windows you are using, you should be
able to invoke IDLE with a sequence like Start/All Programs/Python 34/IDLE or by
 clicking on a tile similar to the one in Fig. 1.15.

Figure 1.14 Hierarchy chart for the class average problem.

Figure 1.15 IDLE tile from Windows.

MAC: To invoke IDLE, open Finder, select Applications, select the Python 3.x folder,
and run IDLE from there.
LINUX and UNIX: To invoke IDLE, run idle3 from the folder /usr/bin. IDLE can
also be invoked by entering idle3 into a terminal.

 30 ◆ Chapter 1 An Introduction to Computing and Problem Solving

With any of the above operating systems, a window similar to the one in Fig. 1.16 should
appear. This window is called the Python shell. The output of our programs will appear in the
Python shell. The Python shell can also be used to immediately evaluate Python expressions.

Figure 1.16 The Python shell.

 ■ A Python Shell Walkthrough
The three greater than signs (>>>) in Fig. 1.16 constitute the shell's prompt.

1. Type the expression 2 + 3 after the prompt and press the Enter (or return) key.

The shell should appear as shown in Fig. 1.17. Notice that the expression has been
evaluated and a second prompt has appeared.

Figure 1.17 The Python shell after the expression 2 + 3 has been evaluated.

2. Type the statement print("Hello World!") after the second prompt and press the
Enter (or return) key.

The shell should appear as shown in Fig. 1.18. Notice that the words between the
quotation marks have been displayed. The statement we entered is a valid Python in-
struction. If Fig. 1.18 were in color, we would see that the number 5 and the phrase
Hello World! are colored blue, the word print is colored purple, and the characters
inside the parentheses are colored green. IDLE uses color coding to differentiate the
different types of program elements. For instance, the number 5 and the phrase Hello
World! are outputs and IDLE colors all output blue.

The two evaluations we performed in the shell are said to be executed by Python in
interactive mode. The Python programs we will write in this book are created in a

VideoNote

IDLE
Walkthrough

 1.4 An Introduction to Python ◆ 31

different type of window, called a code editor window. However, the output of each
program will be displayed in a Python shell.

 ■ A Python Code Editor Walkthrough
1. From the Python shell, click on File in the menu bar and then click on the top command

in the drop- down list that appears. (The top command will be either New File or New
Window depending on the version of Python.)

See Figs. 1.19 and 1.20. Alternatively, the code editor window in Fig. 1.20 can be
 invoked directly by pressing Ctrl+N.

Figure 1.18 The Python shell after the statement print("Hello World!") has been executed.

Figure 1.19 The File drop- down list.

2. Type the three lines shown in Fig. 1.21 on the next page into the code editor window.

These instructions constitute a simple Python program. (The lines of instruction are
also referred to as source code.) Be careful to type the three lines exactly as they appear
in the figure. Notice that the first two lines begin at the left margin, that is, neither is
indented. (If one of them were indented, the interpreter would reject the program.)
However, the third line is indented by four spaces. Make sure to type the colon at the
end of the second line. This program will display the sum of 2 and 3, and then display
the phrase Hello World! four times. Python requires that all programs be saved as a file
in a folder on a storage device (usually the computer's hard disk) before they can be
executed.

 32 ◆ Chapter 1 An Introduction to Computing and Problem Solving

3. Click on File in the menu bar to reveal the drop- down list of commands shown earlier
in Fig. 1.19, and then click on the Save As command.

A Save As dialog box will appear. It is similar to the ones you've used with other ap-
plications, such as your word processor. The dialog box will look something like the
window shown in Fig. 1.22.

Figure 1.21 The code editor window containing a three- line Python program.

Figure 1.22 A Save As dialog box.

Figure 1.20 The code editor window generated after New File (or New Window) is clicked on.

 1.4 An Introduction to Python ◆ 33

4. Click on the small down- arrow button to the right of the box labeled "Save in:" and
navigate to the folder where you would like to save the program.

For right now, you can just use the default folder that appeared when you invoked the
Save As dialog box. Very likely the folder will have a name such as Python34.

5. Type a file name, such as MyFirstProgram, into the "File name:" box near the bottom of
the window. Note: The "Save as type:" box at the very bottom of the window contains the
words "Python files (*.py.*.pyw)". This will cause ".py" to be added as an extension of the
file name when the program is saved. All Python programs should have that extension.

6. Click on the Save button.

The code editor window will reappear with the name of the file in the title bar as
shown in Fig. 1.23.

Figure 1.23 The code editor window containing a three- line Python program.

7. Close the Python shell by clicking on the red Close button on the title bar.

This step is optional. However, by performing this step a new shell window will be
created when the program is executed. The new shell will not contain the output from
any prior programs.

8. Press the F5 key (or click on Run Module in the Run drop- down menu) to execute the
program.

The Python shell window in Fig. 1.24 will appear with the output of the program displayed
in blue. Note: If we had neglected to save the program before executing it, the message box
in Fig. 1.25 would have appeared and given us another chance to save the program.

Figure 1.24 The outcome of the Python program in Fig. 1.21.

 34 ◆ Chapter 1 An Introduction to Computing and Problem Solving

 ■ An Open- a- Program Walkthrough
Beginning with Chapter 2, most examples contain a program. (See the discussion in the
Preface for details on downloading the programs from the Pearson website for this book.)
Let’s open the program from Example 10 of Section 3.4. That program asks you to enter a
first name, and then displays the U.S. presidents having that first name.

1. From either a Python shell or code editor window, click on Open in the File drop- down
menu.

An Open dialog box similar to the ones you've seen with other applications will appear.
The dialog box will look something like the window in Fig. 1.26.

Figure 1.25 A Save message box.

Figure 1.26 An Open dialog box.

2. Click on the small down- arrow button to the right of the box labeled "Look in:",
navigate to the folder Programs downloaded from the Pearson website, and open the
subfolder Ch3.

The names of the files in the folder Programs/Ch3 will appear in the large rectangular
region in the center of the dialog box.

3. Double- click on 3-4-10.py.

The Python code window in Fig. 1.27 will appear. The program is now open and can
be altered or executed.

 1.4 An Introduction to Python ◆ 35

4. Press the F5 key to run the program.

The Python shell in Fig. 1.28 will appear with the phrase "Enter a first name:" followed
by a blinking cursor. Note: If you made any alterations to the program, you will be
asked to save it after you press the F5 key.

Figure 1.27 Example 10 of Section 3.4.

Figure 1.28 Request for input from Example 10 of Section 3.4.

5. Type in the name John and then press the Enter (or return) key.

6. The Python shell will now appear as shown in Fig. 1.29. You can close the shell by click-
ing on the red Close button on the title bar.

Figure 1.29 Complete output for Example 10 of Section 3.4.

 36 ◆ Chapter 1 An Introduction to Computing and Problem Solving

 ■ Comments
1. Indentation is semantically meaningful in Python. For instance, consider the presidents

program in Fig. 1.30. The indentation of the first line (the line beginning with ##) is
not important since it is a comment statement that is ignored by the Python interpreter.
However, the second- through- fifth lines must all begin at the left margin of the window
with no indentation. If one of those lines were preceded with any spaces, the program
would not run.

Three of the lines end with a colon. Such lines are called block headers and are fol-
lowed by a group of one or more lines called a block, each indented by four spaces. In
our program, each block header is the beginning of a repetition or decision structure.

Notice that each line of the block is indented four spaces from the beginning of the
header. Since the level of indentation determines the extent of the block, it is essential
that every line within the block have the same level of indentation. Due to this feature,
Python is referred to as a block- structured language. Blocks can be nested within
other blocks. In this particular program, the decision structure block is nested inside
the repetition block.

Display presidents with a specified first name.
firstName = input("Enter a first name: ")
foundFlag = False
infile = open("USPres.txt", 'r')
for line in infile:

if line.startswith(firstName + ' '):
print(line.rstrip())
foundFlag = True

if not foundFlag:
print("No president had the first name", firstName + '.')

decision
structure
block

repetition
block

block
headers

no indentation

Figure 1.30 Example 10 of Section 3.4.

2. Figure 1.31 explains the effects of the most useful commands from the File pull- down
menu. Note: With some versions of Python 3, New Window will appear instead of New
File in the File drop-down menu.

Figure 1.31 The File drop- down menu.

Some commandS From the File drop- down menu.

COmmAND EFFECT

New File Create a new code editor window.
Open Open a saved program.
Recent Files Display a list of the most recently

 accessed programs.
Save Save the current program.
Save As Save the current program with a

 different name and possibly different
location.

Print Window Print a copy of the program on a printer.
Close Close the current window.
Exit Terminate Python.

 1.4 An Introduction to Python ◆ 37

3. The program 3-4-10.py discussed above uses a text file named USPres.txt that is
located in the Programs/Ch3 folder downloaded from the Pearson website. To view the
text file, navigate to it with your computer's file explorer and open the text file. The
contexts of the text file will appear in a text editor such as Notepad (on a PC) or TextEdit
(on a Mac). The first line of the file gives the name of the first president, the second
line gives the name of the second president, and so on. To close the text file, click on
the text editor's Close button.

4. When the program in a code editor window is first created or is altered, the name of
the program in the title bar is surrounded by asterisks. See Fig. 1.21. The asterisks dis-
appear when a newly created or altered program is saved. See Fig. 1.23.

This page intentionally left blank

39

2

2.1 Numbers 40

◆  Two Types of Numbers: ints and floats  ◆  Arithmetic Operators 

◆  The print Function  ◆  Variables  ◆  The abs, int, and round Functions 

◆  Augmented Assignments  ◆  Two Other Integer Operators 

◆  Parentheses, Order of Precedence  ◆  Three Kinds of Errors 

◆  Numeric Objects in Memory

2.2 Strings 51

◆  String Literals  ◆  Variables  ◆  Indices and Slices  ◆  Negative Indices 

◆  Default Bounds for Slices  ◆  String Concatenation  ◆  String Repetition 

◆  String Functions and Methods  ◆  Chained Methods  ◆  The input Function 

◆  The int, float, eval, and str Functions  ◆  Internal Documentation 

◆  Line Continuation  ◆  Indexing and Slicing Out of Bounds

2.3 Output 65

◆  Optional print Argument sep  ◆  Optional print Argument end  ◆  Escape Sequences 

◆  Justifying Output in a Field  ◆  Justifying Output with the format Method

2.4 Lists, Tuples, and Files— An Introduction 74

◆  The list Object  ◆  Slices  ◆  The split and join Methods  ◆  Text Files 

◆  The tuple Object  ◆  Nested Lists  ◆  Immutable and Mutable Objects 

◆  Copying Lists  ◆  Indexing, Deleting, and Slicing Out of Bounds

Key Terms and Concepts 87

Programming Projects 90

Core Objects, Variables,
Input, and Output

 40 ◆ Chapter 2 Core Objects, Variables, Input, and Output

2.1 Numbers

Much of the data processed by computers consists of numbers. In programming termin-
ology, numbers are called numeric literals. This section discusses the operations that are
performed with numbers and the ways numbers are displayed.

 ■ Two Types of Numbers: ints and floats
A whole number written without a decimal point is called an int (short for integer) and a
number written with a decimal point is called a float (short for floating- point number).

Number TyPe Number TyPe

34 int 23.45 float
34. float -34 int

 ■ Arithmetic Operators
The five basic arithmetic operations are addition, subtraction, multiplication, division, and
exponentiation. The addition, subtraction, and division operators are denoted in Python
by the standard symbols + , - , and /, respectively. However, the notations for the multipli-
cation and exponentiation operators differ from the customary mathematical notations.

mAThemATICAL NOTATION meANINg PyThON NOTATION

a # b or a * b a times b a * b
ar a to the rth power a ** r

The result of a division is always a float, even if the quotient evaluates to a whole number.
The result of the other operations is a float if either of the numbers is a float and other-
wise is an int.

 ■ The print Function
The print function is used to display numbers on the monitor. If n is a number, then the
statement

print(n)

displays the number n. A combination of numbers, arithmetic operators, and parentheses
that can be evaluated is called a numeric expression. The print function applied to an
expression displays the result of evaluating the expression. A single print function can dis-
play several values. If m, n, r, . . . are numbers (or numeric expressions), then the statement

print(m, n, r, . . .)

displays the numbers (or values of the numeric expressions) one after another separated
by spaces.

The print function invokes a newline operation that causes the next print function to
display its output at the beginning of a new line.

 example 1 Arithmetic Operations The following program applies each of the five
standard arithmetic operations. [Run] indicates that the program should be executed (by
pressing the F5 key or clicking on Run Module in the Run menu). The lines after [Run] show

 2.1 Numbers ◆ 41

Note: All programs appearing in examples can be downloaded from the companion website
for this book. See the discussion in the preface for details.

 ■ Variables
In mathematics problems, quantities are referred to by names. For instance, consider the
following algebra problem: “If a car travels at 50 miles per hour, how far will it travel in
14 hours?” The solution to this problem uses the well- known formula

distance = speed * time elapsed .

Example 2 shows how this problem would be solved with a Python program.

the output of the program. In the evaluation of 2 * (3 + 4), the operation inside the paren-
theses was calculated first. (Expressions inside parentheses are always evaluated first.)

print(3 + 2, 3 – 2, 3 * 2)

print(8 / 2, 8 ** 2, 2 * (3 + 4))

[Run]

5 1 6

4.0 64 24

 example 2 Distance Traveled The following program uses the speed and the time
elapsed to calculate the distance traveled. The names given to the values are called variables.
The first line of the program is said to create (or declare) the variable speed and to assign it
the value 50. Similarly, the second and third lines create and assign values to other variables.

speed = 50

timeElapsed = 14

distance = speed * timeElapsed

print(distance)

[Run]

700

Numeric expressions may also contain variables. Expressions are evaluated by replacing
each variable by its value and then carrying out the arithmetic. Some examples of expres-
sions containing variables are (2 * distance) + 7, n + 1, and (a + b)/3.

In general, a variable is a name that refers to an item of data stored in memory. In this
section of the book, all data will be numbers. A statement of the form

variableName = numericExpression

is called an assignment statement. The statement first evaluates the expression on the right
and then assigns its value to the variable on the left. The variable is created the first time it
appears on the left side of an assignment statement. Subsequent assignment statements for
the variable alter the value assigned to the variable. Actually, each variable points to a loca-
tion in memory that stores the value. A variable must first be created with an assignment
statement before it can be used in an expression.

In Python, variable names must begin with a letter or an underscore, and can consist
only of letters, digits, and underscores. (The shortest variable names consist of a single

VideoNote

Assignment
Statements

 42 ◆ Chapter 2 Core Objects, Variables, Input, and Output

letter.) Descriptive variable names help others (and you at a later time) easily recall what
the variable represents. Some examples of descriptive variable names are totalSales, rate-
OfChange, and taxRate. As a convention, we write variable names in lowercase letters except
for the first letters of each additional word. This naming convention is called camel casing
since the uppercase letters appear to create humps in the name.

Python is case- sensitive, that is, it distinguishes between uppercase and lowercase letters.
Therefore, the variables amount and Amount are different variables.

There are 33 words, called reserved words (or keywords), that have special meanings in
Python and cannot be used as variable names. Some examples of reserved words are return,
for, while, and def. Appendix B lists the 33 reserved words. (Note: IDLE automatically color
codes reserved words in the color orange.)

 ■ The abs, int, and round Functions
There are several common operations that can be performed on numbers other than the
standard arithmetic operations. For instance, we may round a number or take its absolute
value. These operations are performed by built- in functions. Functions associate with one or
more values, called the input, a single value called the output. The function is said to return
the output value. The three functions considered in the next paragraph have numeric input
and output.

The absolute value function, abs(x), is |x|. The function strips the minus signs from
negative numbers while leaving other numbers unchanged. The int function leaves inte-
gers unchanged, and converts floating- point numbers to integers by discarding their deci-
mal part. The value of round(n, r) is the number n rounded to r decimal places. The
argument r can be omitted. If so, n is rounded to a whole number. Some examples are as
follows:

exPreSSION VALue exPreSSION VALue exPreSSION VALue

abs(3) 3 int(2.7) 2 round(2.7) 3
abs(0) 0 int(3) 3 round(2.317, 2) 2.32

abs(-3) 3 int(-2.7) -2 round(2.317, 1) 2.3

The terms inside the parentheses can be numbers (as shown), numeric variables, or numeric
expressions. Expressions are evaluated to produce the input.

 example 3 Functions The following program evaluates each of the preceding three
functions at an expression:

a = 2

b = 3

print(abs(1 - (4 * b)))

print(int((a ** b) + .8))

print(round(a / b, 3))

[Run]

11

8

0.667

Note: Function names, like variable names, are case- sensitive. For instance, the round func-
tion cannot be written Round.

 2.1 Numbers ◆ 43

 ■ Augmented Assignments
Since the expression on the right side of an assignment statement is evaluated before the
assignment is made, a statement such as

var = var + 1

is meaningful. It first evaluates the expression on the right (that is, it adds 1 to the value
of the variable var) and then assigns this sum to the variable var. The effect is to increase
the value of the variable var by 1. In terms of memory locations, the statement retrieves
the value of var from var’s memory location, uses it to compute var + 1, and then places the
sum into a memory location. This type of calculation is so common that Python provides
a special operator to carry it out. The statement

var = var + 1

can be replaced with the statement

var += 1

In general, if n has a numeric value, then the statement

var += n

adds the value of n to the value of var. The operator + = is said to perform an augmented
assignment. Some other augmented assignment operators are - = , *= , /= , and **= .

 example 4 Augmented Assignments The following program illustrates the different
augmented assignment operators.

num1 = 6

num1 += 1

num2 = 7

num2 -= 5

num3 = 8

num3 /= 2

print(num1, num2, round(num3))

num1 = 1

num1 *= 3

num2 = 2

num2 **= 3

print(num1, num2)

[Run]

7 2 4

3 8

 ■ Two Other Integer Operators
In addition to the five standard arithmetic operators discussed at the beginning of this
section, the integer division operator (written //) and the modulus operator (written %)
are also available in Python. Let m and n be positive whole numbers. When you use long
division to divide m by n, you obtain an integer quotient and an integer remainder. In

 44 ◆ Chapter 2 Core Objects, Variables, Input, and Output

Python, the integer quotient is denoted m // n, and the integer remainder is denoted m , n.
For instance,

3

4
�14

d 14 // 3

12
 2 d 14 , 3

Essentially, m // n divides two numbers and chops off the fraction part, and m , n is the
remainder when m is divided by n. Some examples are as follows:

exPreSSION VALue exPreSSION VALue

19 // 5 3 19 , 5 4
10 // 2 5 10 , 2 0

5 // 7 0 5 , 7 5

 example 5 Convert Lengths The following program converts 41 inches to 3 feet and
5 inches:

totalInches = 41

feet = totalInches // 12

inches = totalInches % 12

print(feet, inches)

[Run]

3 5

 ■ Parentheses, Order of Precedence
Parentheses should be used to clarify the meaning of an expression. When there are insuf-
ficient parentheses, the arithmetic operations are performed in the following order of
precedence:

1. terms inside parentheses (inner to outer)

2. exponentiation

3. multiplication, division (ordinary and integer), modulus

4. addition and subtraction.

In the event of a tie, the leftmost operation is performed first. For instance, 8 / 2 * 3 is
evaluated as (8 / 2) * 3.

A good programming practice is to use parentheses liberally so that you never have to
remember the order of precedence. For instance, write (2 * 3) + 4 instead of 2 * 3 + 4 and
write 4 + (2 ** 3) instead of 4 + 2 ** 3.

 ■ Three Kinds of errors
Grammatical and punctuation errors are called syntax errors. Some incorrect statements
and their errors are shown in Table 2.1.

 2.1 Numbers ◆ 45

If a syntax error is spotted when the code is analyzed by the interpreter (that is, before
the program begins to execute), Python displays a message box similar to one of those in
Fig. 2.1. After you click on the OK button, Python will display the program with a blinking
cursor placed near the location of the error.

Table 2.1 Three syntax errors.

Statement Reason for Error

print(3)) The statement contains an extraneous right parenthesis.
for = 5 A reserved word is used as a variable name.
print(2; 3) The semicolon should be a comma.

Windows Macintosh Linux

Figure 2.1 Syntax error message boxes.

Errors that are discovered while a program is running are called runtime errors or
exceptions. Some incorrect statements and their errors are shown in Table 2.2.

Table 2.2 Three runtime errors.

Statement Reason for Error

primt(5) The function print is misspelled.
x += 1, when x has not been created Python is not aware of the variable x.
print(5 / 0) A number cannot be divided by zero.

The first two errors in Table 2.2 are said to be of the type NameError, and the third is said
to be of the type ZeroDivisionError. When Python encounters an exception, Python ter-
minates execution of the program and displays a message such as the one in Fig. 2.2. The
last two lines of the error message identify the statement that caused the error and give
its type.

Figure 2.2 An error message for an exception error.

Traceback (most recent call last):

 File "C:\test1.py", line 2, in <module>

 print(5 / 0) #ZeroDivisionError

ZeroDivisionError: division by zero

 46 ◆ Chapter 2 Core Objects, Variables, Input, and Output

A third kind of error is called a logic error. Such an error occurs when a program does
not perform the way it was intended. For instance, the statement

average = firstNum + secondNum / 2

is syntactically correct. However, an incorrect value will be generated, since the correct way
to calculate an average is

average = (firstNum + second Num) / 2

Logic errors are the most difficult kind of error to locate.

 ■ Numeric Objects in memory
Consider the following lines of code:

n = 5

n = 7

Figure 2.3 shows what happens in memory when the two lines of code are executed.
When the first line of code is executed, Python sets aside a portion of memory to hold the
number 5. The variable n is said to reference (or point to) the number 5 in the memory loca-
tion. When the second line of code is executed, Python sets aside a new memory location
to hold the number 7 and redirects the variable n to point to the new memory location. The
number 5 in memory is said to be orphaned or abandoned. Python will eventually remove
the orphaned number from memory with a process called garbage collection.

n

after n=5
is executed

after n=7
is executed

5

7

5 n

Figure 2.3 Numeric objects in memory.

 ■ Comments
1. Names given to variables are sometimes referred to as identifiers.

2. A numeric expression is any combination of literals, variables, functions, and operators
that can be evaluated to produce a number. A single literal or variable is a special case
of an expression.

3. Numeric literals used in expressions or assigned to variables must not contain commas,
dollar signs, or percent signs. Also, mixed numbers, such as 8 1/2, are not allowed.

4. When the number n is halfway between two successive whole numbers (such as 1.5, 2.5,
3.5, and 4.5), the round function rounds it to the nearest even number. For instance,
round(2.5) is 2 and round(3.5) is 4.

5. In scientific notation, numbers are written in the form b # 10r, where b is a number of
magnitude from 1 up to (but not including) 10, and r is an integer. Python often displays
very large and very small numbers in scientific notation, where b # 10r is written as be+r
or be- r. (The letter e is an abbreviation for exponent.) For instance, when the statement
print(123.8 * (10 ** 25)) is executed, 1.238e+27 is displayed.

6. The functions discussed in this section are referred to as built- in functions since they
are part of the Python language. Chapter 4 shows how we can create our own func-
tions. Such functions are commonly referred to as user- defined functions. The term

 2.1 Numbers ◆ 47

 user- defined is a bit of a misnomer; such functions should really be called programmer-
 defined functions.

8. IDLE color codes the different types of elements. For instance, normal text is displayed
in black and built- in functions (such as print, abs, int, and round) are displayed in
purple.

9. The word "exception" is shorthand for "exceptional (that is, bad) event."

Practice Problems 2.1

1. Evaluate 7 - 4 % 3 .

2. Explain the difference between the assignment statement

var1 = var2

and the assignment statement

var2 = var1

3. Complete the table by filling in the value of each variable after each line of code is
executed.

a b c

a = 5 5 does not exist does not exist

b = 4 5 4 does not exist

c = a * b 5 4 20

a = c // a

print((a – b) * c)

b = b * b * b

4. Write a statement that increases the value of the numeric variable var by 5%.

exerCISeS 2.1

In Exercises 1 through 12, evaluate the numeric expression without the computer, and
then use Python to check your answer.

1. 1 .7 * 8 2. 7 ** 2 3. 1 / (2 ** 3)

4. 3 + (4 * 5) 5. (8 + 6) / 5 6. 3 * ((-2) ** 5)

7. 7 // 3 8. 14 , 4 9. 9 , 3

10. 14 // 4 11. 2 ** 2 12. 5 , 5

In Exercises 13 through 18, determine whether the name is a valid variable name.

13. _salesman1 14. room&Board 15. fOrM_1040

16. 1040B 17. @variable 18. INCOME 2008

In Exercises 19 through 24, evaluate the numeric expression where a = 5, b = 3, and
c = 7.

19. (a * b) + c 20. a * (b + c) 21. (1 + b) * c
22. a ** c 23. b ** (c - a) 24. (c - a) ** b

 48 ◆ Chapter 2 Core Objects, Variables, Input, and Output

In Exercises 25 through 30, write lines of code to calculate and display the values.

25. 5 # 3 + 3 # 5 26. (34) # (43) 27. 200 + 10, of 100

28. (23 - 1) + 5 29. 31 # (2 + 28) 30. 1
24

24

In Exercises 31 and 32, complete the table by filling in the value of each variable after
each line is executed.

31.
x y

x = -2

y = x + 5

x = x ** y

print((x/y) + 2)

y = y % 2 + 0.6

32.
bal inter withDr

bal = 100

inter = .05

withDr = 25

bal += (inter * bal)

bal = bal - withDr

In Exercises 33 through 38, determine the output displayed by the lines of code.

33. a = 3
b = 5

print(a * b ** 2)

34. d = 5
d -= 1

print(d, d + 1, d – 2)

35. n = 5
n ** = 2

print(n/5)

36. points = 30
points += 20 * 10

print(points)

37. totalBerries = 100
totalCost = 352

eachBerry = totalCost /

 totalBerries

print(eachBerry)

38. totalMeters = 30255
kiloMeters = totalMeters // 1000

meters = totalMeters % 1000

print(kiloMeters, meters)

In Exercises 39 through 42, identify the errors.

39. a = 2
b = 3

a + b = c

print(b)

40. balance = 1,234
deposit = $100

print(Balance + Deposit)

41. 0.05 = interest
balance = 800

print(interest * balance)

42. 9W = 2 * 9W
print(9W)

In Exercises 43 through 48, find the value of the function.

43. int(10.75) 44. int(9 - 2) 45. abs(3 - 10)

46. abs(10 ** (-3)) 47. round(3.1279, 3) 48. round(-2.6)

 2.1 Numbers ◆ 49

In Exercises 49 through 54, find the value of the function where a = 6 and b = 4.

49. int(-a / 2) 50. round(a / b) 51. abs(a - 5)

52. abs(4 - a) 53. round(a + 0.5) 54. int(b * 0.5)

In Exercises 55 through 60, rewrite the statements using augmented assignment
operators.

55. cost = cost + 5 56. sum = sum * 2 57. cost = cost / 6

58. sum = sum - 7 59. sum = sum % 2 60. cost = cost // 3

In Exercises 61 through 68, write a program that has one line of code for each step.

61. Calculate Profit The following steps calculate a company’s profit.

(a) Create the variable revenue and assign it the value 98,456.
(b) Create the variable costs and assign it the value 45,000.
(c) Create the variable profit and assign it the difference between the values of the

variables revenue and costs.
(d) Display the value of the variable profit.

62. Stock Purchase The following steps calculate the amount of a stock purchase.

(a) Create the variable costPerShare and assign it the value 25.625.
(b) Create the variable numberOfShares and assign it the value 400.
(c) Create the variable amount and assign it the product of the values of costPerShare

and numberOfShares.
(d) Display the value of the variable amount.

63. Discounted Price The following steps calculate the price of an item after a 30%
 reduction.

(a) Create the variable price and assign it the value 19.95.
(b) Create the variable discountPercent and assign it the value 30.
(c) Create the variable markdown and assign it the value of (discountPercent divided

by 100) times the value of price.
(d) Decrease the value of price by markdown.
(e) Display the value of price (rounded to two decimal places).

64. Break- Even Point The following steps calculate a company’s break- even point, the
number of units of goods the company must manufacture and sell in order to break
even.

(a) Create the variable fixedCosts and assign it the value 5,000.
(b) Create the variable pricePerUnit and assign it the value 8.
(c) Create the variable costPerUnit and assign it the value 6.
(d) Create the variable breakEvenPoint and assign it the value of fixedCosts divided by

(the difference of the values of pricePerUnit and costPerUnit).
(e) Display the value of the variable breakEvenPoint.

65. Savings Account The following steps calculate the balance after three years when
$100 is deposited in a savings account at 5% interest compounded annually.

(a) Create the variable balance and assign it the value 100.
(b) Increase the value of the variable balance by 5%.
(c) Increase the value of the variable balance by 5%.

 50 ◆ Chapter 2 Core Objects, Variables, Input, and Output

(d) Increase the value of the variable balance by 5%.
(e) Display the value of balance (rounded to two decimal places).

66. Savings Account The following steps calculate the balance at the end of three
years when $100 is deposited at the beginning of each year in a savings account at
5% interest compounded annually.

(a) Create the variable balance and assign it the value 100.
(b) Increase the value of the variable balance by 5%, and add 100 to it.
(c) Increase the value of the variable balance by 5%, and add 100 to it.
(d) Increase the value of the variable balance by 5%.
(e) Display the value of balance (rounded to two decimal places).

67. Savings Account The following steps calculate the balance after 10 years when
$100 is deposited in a savings account at 5% interest compounded annually.

(a) Create the variable balance and assign it the value 100.
(b) Multiply the value of the variable balance by 1.05 raised to the 10th power.
(c) Display the value of balance (rounded to two decimal places).

68. Profit from Stock The following steps calculate the percentage profit from the sale
of a stock.

(a) Create the variable purchasePrice and assign it the value 10.
(b) Create the variable sellingPrice and assign it the value 15.
(c) Create the variable percentProfit and assign it 100 times the value of the difference

between sellingPrice and purchasePrice divided by purchasePrice.
(d) Display the value of the variable percentProfit.

In Exercises 69 through 78, write a program to solve the problem and display the answer.
The program should use variables for each of the quantities.

69. Corn Production Suppose each acre of farmland produces 18 tons of corn. How
many tons of corn can be grown on a 30-acre farm?

70. Projectile Motion Suppose a ball is thrown straight up in the air with an initial
velocity of 50 feet per second and an initial height of 5 feet. How high will the
ball be after 3 seconds? Note: The height after t seconds is given by the expression
-16t2 + v0t + h0, where v0 is the initial velocity and h0 is the initial height.

71. Distance Covered If a car left the airport at 5 o’clock and arrived home at 9
o’clock, what was the distance covered? Note: Speed of the car is 81.34 km per hour.

72. Gas Mileage A motorist wants to determine her gas mileage. At 23,352 miles (on
the odometer) the tank is filled. At 23,695 miles the tank is filled again with 14 gal-
lons. How many miles per gallon did the car average between the two fillings?

73. Power Usage A survey showed that the average monthly electricity consump-
tion for a city was 750 million watts per month. What was the daily power
 consumption in watts of each resident? Note: The city has a population of about
5 million people.

74. Square Deck José is building a square deck at the back of his house. José has a
building permit for a 432-square-foot deck. How long will each side of the deck be?

75. Banks A bank offers 8.7% interest per year on all savings accounts. If a savings
account initially contains $1000, how much money will the account hold two years
later?

 2.2 Strings ◆ 51

76. Population Increase You grew up in a tiny village and had to move to a nearby city
for your undergraduate. When you left, the population was 845. You recently heard
that the population of your village has grown by 6.5%. What is the present popula-
tion of the village? Round the population to the nearest whole number.

77. Bacterial Growth Suppose a surface initially contained 2.19·1014 bacterial cells.
 After some time, the surface contained 4.68·1014 bacterial cells. Calculate the percent-
age of bacterial growth. Display the answer rounded to the nearest whole number.

78. Calories Estimate the number of calories in one cubic mile of chocolate ice cream.
Note: There are 5,280 feet in a mile and one cubic foot of chocolate ice cream con-
tains about 48,600 calories.

Solutions to Practice Problems 2.1

1. 6. Modulus operations are performed before subtractions. If the intent is for the subtraction to be per-
formed first, the expression should be written (7 - 4) % 3.

2. The first assignment statement assigns the value of the variable var2 to the variable var1, whereas the
 second assignment statement assigns var1’s value to var2.

3.
a b c

a = 5 5 does not exist does not exist

b = 4 5 4 does not exist

c = a * b 5 4 20

a = c // a 4 4 20

print((a – b)*c) 4 4 20

b = b * b * b 4 64 20

 Each time an assignment statement is executed, only one variable (the variable to the left of the equal sign)
has its value changed.

4. Each of the following four statements increases the value of var by 5%.

var = var + (.05 * var)

var = 1.05 * var

var += .05 * var

var *= 1.05

2.2 Strings

The most common types of data processed by Python are strings and numbers. Sentences,
phrases, words, letters of the alphabet, names, telephone numbers, addresses, and social
security numbers are all examples of strings.

 ■ String Literals
A string literal is a sequence of characters that is treated as a single item. The characters
in strings can be any characters found on the keyboard (such as letters, digits, punctuation
marks, and spaces) and many other special characters.

In Python programs, string literals are written as a sequence of characters surrounded
by either single quotes (') or double quotes ("). Some examples of strings are as follows:

"John Doe"
'5th Avenue'

 52 ◆ Chapter 2 Core Objects, Variables, Input, and Output

'76'
"Say it ain't so, Joe!"

Opening and closing quotation marks must be the same type— either both double
quotes or both single quotes. When a string is surrounded by double quotes, a single quote
can appear directly in the string, but not a double quote. Similarly, a string surrounded by
single quotes can contain a double quote, but not a single quote directly.1

 ■ Variables
Variables also can be assigned string values. As with variables assigned numeric values,
variables assigned string values are created (that is, come into existence) the first time they
appear in assignment statements. When an argument of a print function is a string literal
or a variable having a string value, only the characters within the enclosing quotation marks
(and not the quotation marks themselves) are displayed.

 ■ Indices and Slices
In Python, the position or index of a character in a string is identified with one of the
numbers 0, 1, 2, 3, For instance, the first character of a string is said to have index 0,
the second character is said to have index 1, and so on. If str1 is a string variable or literal,
then str1[i] is the character of the string having index i. Figure 2.4 shows the indices of the
characters of the string "spam & eggs".

1In Section 2.3, we show how to use escape sequences to override this restriction.

s p a m & e g sg

0 1 2 3 4 5 6 7 8 9 10

Figure 2.4 Indices of the characters of the string "spam & eggs".

A substring or slice of a string is a sequence of consecutive characters from the string.
For instance, consider the string “Just a moment”. The substrings “Jus”, “mom”, and “nt”
begin at positions 0, 7, and 11, and end at positions 2, 9, and 12, respectively. If str1 is a
string, then str1[m:n] is the substring beginning at position m and ending at position n - 1.
 Figure 2.5 helps to visualize slices. Think of the indices of the characters pointing just to the
left of the characters. Then "spam & eggs"[m:n] is the sequence of characters between the
arrows labeled with the numbers m and n. For instance "spam & eggs"[2:6] is the substring
"am &"; that is, the substring between the arrow labeled 2 and the arrow labeled 6.

0 1 2 3 4 5 6 7 8 9 10

s p a m & e g sg

Figure 2.5 Aid to visualizing slices.

Note: If m Ú n, that is, if the character in position m is not to the left of the character in pos-
ition n, then the value of str1[m:n] will be the empty string (""), the string with no characters.

If subStr is a string, then str1.find(subStr) is the positive index of the first appear-
ance of subStr in str1 with the search beginning at the left side of the string. The value of
str1.rfind(subStr) is the positive index of the first appearance of subStr in str1 with the
search beginning at the right side of the string. If subStr does not appear in str1, then the
value returned by the find and rfind methods will be -1.

 2.2 Strings ◆ 53

 ■ Negative Indices
The indices discussed above specify positions from the left side of the string. Python also
allows strings to be indexed by their position with regards to the right side of the string
by using negative numbers for indices. With negative indexing, the rightmost character is
assigned index -1, the character to its left is assigned index -2, and so on. Figure 2.6 shows
the negative indices of the characters of the string "spam & eggs".

 example 1 Indices The following program illustrates the use of indices.

print("Python")

print("Python"[1], "Python"[5], "Python"[2:4])

str1 = "Hello World!"

print(str1.find('W'))

print(str1.find('x'))

print(str1.rfind('l'))

[Run]

Python

y n th

6

-1

9

–11 –10 –9 –8 –7 –6 –5 –4 –3 –2 –1

s p a m & e g sg

Figure 2.6 Negative indices of the characters of the string "spam & eggs".

 example 2 Negative Indices The following program illustrates negative indices.

print("Python")

print("Python"[-1], "Python"[-4], "Python"[-5:-2])

str1 = "spam & eggs"

print(str1[-2])

print(str1[-8:-3])

print(str1[0:-1])

[Run]

Python

n t yth

g

m & e

spam & egg

 ■ Default bounds for Slices
In the expression str1[m:n], one or both of the bounds can be omitted. If so, the left
bound m defaults to 0 and the right bound n defaults to the length of the string. That is,
str1[:n] consists of all the characters from the beginning of the string to str1[n- 1], and

 54 ◆ Chapter 2 Core Objects, Variables, Input, and Output

str1[m:] consists of all the characters from str1[m] to the end of the string. The slice
str1[:] is the entire string str1.

 example 3 Default Bounds The following program illustrates default bounds.

print("Python"[2:], "Python"[:4], "Python"[:])

print("Python"[-3:], "Python"[:-3])

[Run]

thon Pyth Python

hon Pyt

 ■ String Concatenation
Two strings can be combined to form a new string consisting of the strings joined together.
This operation is called concatenation and is represented by a plus sign. For instance,
“good” + “bye” is “goodbye”. A combination of strings, plus signs, functions, and methods
that can be evaluated to form a string is called a string expression. When a string expression
appears in an assignment statement or a print function, the string expression is evaluated
before being assigned or displayed.

 ■ String repetition
The asterisk operator can be used with strings to repeatedly concatenate a string with itself.
If str1 is a string literal, variable, or expression and n is a positive integer, then the value of

str1 * n

is the concatenation of n copies of the value of str1.

exPreSSION VALue exPreSSION VALue

"ha" * 4 "hahahaha" 'x' * 10 "xxxxxxxxxx"
"mur" * 2 "murmur" (" cha-" * 2) + "cha" " cha- cha- cha"

 ■ String Functions and methods
A string function operates much like a numeric function; it takes a string as input and
returns a value. A string method is a process that performs a task on a string. We have
already seen two examples of methods— the find and rfind methods. These methods
 perform the task of locating an index. The general form of an expression applying a
method is

stringName.methodName()

where the parentheses might contain values. Like the numeric functions discussed in the
previous section, string functions and methods also can be applied to literals, variables,
and expressions. Table 2.3 below describes one string function and six additional string
methods where str1 is the string "Python". Some further string methods will be presented
in subsequent chapters.

VideoNote

String
Functions

 2.2 Strings ◆ 55

 ■ Chained methods
Consider the following two lines of code:

praise = "Good Doggie".upper()

numberOfGees = praise.count('G')

These two lines can be combined into the single line below that is said to chain the two
methods.

numberOfGees = "Good Doggie".upper().count('G')

Chained methods are executed from left to right. Chaining often produces clearer code
since it eliminates temporary variables, such as the variable praise above.

 ■ The input Function
The input function prompts the user to enter data. A typical input statement is

town = input("Enter the name of your city: ")

When Python reaches this statement, the string "Enter the name of your city: " is displayed
and the program pauses. After the user types in the name of his or her city and presses the
Enter (or return) key, the variable town is assigned the name of the city. (If the variable had not
been created previously, it is created at this time.) The general form of an input statement is

variableName = input(prompt)

where prompt is a string that requests a response from the user.

Table 2.3 String operations (str1 = "Python").

Function or
Method Example Value Description

len len(str1) 6 number of characters in the string
upper str1.upper() "PYTHON" uppercases every alphabetical character
lower str1.lower() "python" lowercases every alphabetical character
count str1.count('th') 1 number of non- overlapping occurrences

of the substring
capitalize "coDE".capitalize() "Code" capitalizes the first letter of the string

and lowercases the rest
title "beN hur".title() "Ben Hur" capitalizes the first letter of each word in

the string and lowercases the rest
rstrip "ab ".rstrip() "ab" removes spaces from the right side of

the string

 example 4 Parse a Name The following program requests a name from the user and
then parses the name. When the program is run, the phrase "Enter a full name: " appears
and execution of the program pauses. After the user types the words shown in black and
presses the Enter (or return) key, the last two lines of output are displayed.

 56 ◆ Chapter 2 Core Objects, Variables, Input, and Output

 ■ The int, float, eval, and str Functions
If str1 is a string containing a whole number, the int function will convert the string to an
integer. If str1 is a string containing any number, the float function will convert the string
to a floating- point number. (The float function also converts an integer to a floating- point
number.) If str1 is a string consisting of a numeric expression, the eval function will evaluate
the expression to an integer or floating- point number as appropriate.

fullName = input("Enter a full name: ")

n = fullName.rfind(" ")

print("Last name:", fullName[n+1:])

print("First name(s):", fullName[:n])

[Run]

Enter a full name: Franklin Delano Roosevelt

Last name: Roosevelt

First name(s): Franklin Delano

 example 5 Illustrate Functions The following program illustrates the use of the int,
float, and, eval functions.

print(int("23"))

print(float("23"))

print(eval("23"))

print(eval("23.5"))

x = 5

print(eval("23 + (2 * x)"))

[Run]

23

23.0

23

23.5

33

The input function always returns a string. However, a combination of an input func-
tion and an int, float, or eval function allows numbers to be input into a program. For
instance, consider the following three statements:

age = int(input("Enter your age: "))

age = float(input("Enter your age: "))

age = eval(input("Enter your age: "))

Suppose the user responds with an integer, say 25. Then, after each of the statements above
has been responded to, the statement print(age) would display 25, 25.0, and 25, respec-
tively. However, if the user was a youngster, he or she might respond with the number 3.5.
With the first input statement, a Traceback error message would result. After either the
second or third input statement was executed, the print function would display 3.5. The
eval function produced good results with either age.

The int and float functions execute faster than the eval function and are preferred by
many Python programmers when they can be used safely. In this book we will use all three
functions, but will favor the eval function.

 2.2 Strings ◆ 57

The int and float functions also can be applied to appropriate numeric expressions. If x
is an integer, the value of int(x) is x. If x is a floating- point number, the int function removes
the decimal part of the number. The float function operates as expected. The eval function
cannot be applied to numeric literals, variables, or expressions.

exAmPLe VALue exAmPLe VALue

int(4.8) 4 float(4.67) 4.67

int(-4.8) 4 float(-4) -4.0

int(4) 4 float(0) 0.0

The str function converts a number to its string representation. For instance, the value
of str(5.6) is "5.6" and the value of str(5.) is "5.0".

A string cannot be concatenated with a number. However, the invalid statement

strVar = numVar + '%'

can be replaced with the valid statement

strVar = str(numVar) + '%'

that concatenates two strings.

 ■ Internal Documentation
Program documentation is the inclusion of comments that specify the intent of the pro-
gram, the purpose of the variables, and the tasks performed by individual portions of
the program. To create a comment statement, begin a line with a number sign (#). Such a
statement is completely ignored when the program is executed. Comments are sometimes
called remarks. A line of code can be documented by adding a number sign, followed by

 example 6 Parse a Name The following rewrite of Example 4 uses documentation.
The first comment describes the entire program, the comment in the third line gives the
meaning of a variable, and the final comment describes the purpose of the two lines that
follow it.

Break a name into two parts -- the last name and the first names.

fullName = input("Enter a full name: ")

n = fullName.rfind(" ") # index of the space preceding the last name

Display the desired information.

print("Last name:", fullName[n+1:])

print("First name(s):", fullName[:n])

the desired information, after the end of the line. Pressing Alt+3 and Alt+ 4 can be used in
IDLE to comment and uncomment selected blocks of code.
Some of the benefits of documentation are as follows:

1. Other people can easily understand the program.

2. You can better understand the program when you read it later.

3. Long programs are easier to read because the purposes of individual pieces can be
determined at a glance.

 58 ◆ Chapter 2 Core Objects, Variables, Input, and Output

Good programming practice requires that programmers document their code while they
are writing it. In fact, many software companies require a certain level of documentation
before they release software and some judge a programmer’s performance on how well their
code is documented.

 ■ Line Continuation
A long statement can be split across two or more lines by ending each line (except the last)
with a backslash character (\). For instance, the line

quotation = "Well written code is its own best documentation."

can be written as

quotation = "Well written code is its own " + \

 "best documentation."

Python has a feature that can be used to eliminate the need for line continuation with
backslash characters. Any code enclosed in a pair of parentheses can span multiple lines.
Since any expression can be enclosed in parentheses, this feature can nearly always be used.
For instance, the statement above can be written as

quotation = ("Well written code is its own " +

 "best documentation.")

This method of line continuation has become the preferred style for most Python program-
mers and will be used whenever possible in this textbook.

 ■ Indexing and Slicing Out of bounds
Python does not allow out of bounds indexing for individual characters of strings, but does
allow out of bounds indices for slices. For instance, if

str1 = "Python"

then print(str1[7]) and print(str1[-7])trigger the Traceback error message IndexError.
If the left index in a slice is too far negative, the slice will start at the beginning of

the string, and if the right index is too large, the slice will go to the end of the string. For
instance,

 str1[-10:10] is "Python"
 str1[-10:3] is "Pyt"
 str1[2:10] is "thon"

 ■ Comments
1. In this textbook, we usually surround one- character strings with single quotation marks

and all other strings with double quotation marks.

2. Since a string expression is any combination of literals, variables, functions, methods,
and operators that can be evaluated to produce a string, a single string or variable is a
special case of an expression.

3. Every character in a string has two indices— one positive and one negative. Therefore,
the numbers m and n in an expression of the form strValue[m:n] can have opposite
signs. If the character having index m is to the left of the character having index n, then
the slice will consist of the substring beginning with the character having index m and

 2.2 Strings ◆ 59

ending with the character to the left of the character having index n. For instance, the
value of "Python"[-4:5] is "tho". Of course, if the character having index m is not to
the left of the character having index n, then the slice will be the empty string.

4. Individual characters within a string cannot be changed directly. For instance, the code
below, which intends to change the word resort to the word report, produces a Traceback
error message.

word = "resort"

word[2] = 'p'

5. The operator + = performs an augmented concatenation assignment for strings.

6. IDLE displays strings in the color green and comments in the color red.

7. Method names, like names of variables and functions, are case- sensitive.

8. For readability purposes, you should not chain more than three methods together.

9. Strings are said to have type str. The statement print(dir(str)) displays all the string
methods. (Ignore the items that begin and end with double underscore characters.)

Practice Problems 2.2

1. Assuming that 0 … m … n … len(str1), how many characters are in str1[m:n]?

2. What is displayed by the statement print("Computer".find('E'))?

exerCISeS 2.2

In Exercises 1 through 4, determine the output displayed by the lines of code.

1. print("Python") 2. print("Hello")

3. var = "Ernie"
print(var)

4. var = "Bert"
print(var)

In Exercises 5 through 46, determine the value of the expression.

5. "Python"[4] 6. "Python"[-2]

7. "Hello Python!"[-9] 8. "Python"[5]

9. "Python"[0:3] 10. "Python"[2:2]

11. "Python"[:2] 12. "Python"[2:]

13. "Python"[-3:-2] 14. "Python"[-5:-1]

15. "Python"[2:-2] 16. "Python"[-4:4]

17. "Python"[:] 18. "Python"[-10:10]

19. "Python".find("tho") 20. "Python".find("ty")

21. "Python".find("oh") 22. "Python".find("Pyt")

23. "whizzbuzz".rfind("zz") 24. "whizzbuzz".find("zz")

25. " Python".lstrip() 26. "hello_world".startswith("hell")

27. "smallElements".capitalize() 28. "hello_python".rpartition('_')

29. "PyThOn'.swapcase() 30. "python/java/c++".split('/')

 60 ◆ Chapter 2 Core Objects, Variables, Input, and Output

41. "let it go".title().find('G') 42. "Hello World!".lower().find('wo')

33. "8 Ball".upper() 34. "whippersnapper".count("pp")

35. "Python"[-1*len("Python")-1:3] 36. "Python".lower()

37. "the artist".title() 38. len("Gravity ".rstrip())

39. len("Grand Hotel"[:6].rstrip()) 40. "king lear".title()

43. "Amazon".lower().count('a') 44. "Python".upper().find("tho")

45. "john's school".capitalize() 46. "all clear".title().count('a')

31. "8 Ball".title() 32. len("brrr")

In Exercises 47 through 70, determine the output displayed by the lines of code.

47. a = 4
b = 6

c = "Municipality"

d = "pal"

print(len(c))

print(c.upper())

print(c[a:b] + c[b + 4:])

print(c.find(d))

48. m = 4
n = 3

s = "Microsoft"

t = "soft"

print(len(s))

print(s.lower())

print(s[m:m + 2])

print(s.find(t))

49. print("f" + "lute") 50. print("a" + "cute")

51. print("Your age is " + str(21) + ".")

52. print("Fred has " + str(2) + " children.")

53. r = "A ROSE"
b = " IS "

print(r + b + r + b + r)

54. sentence = "ALPHONSE TIPPYTOED AWAY."
print(sentence[12:15] + sentence[3:6])

55. var = "WALLA"
var += 2 * var

print(var)

56. str1 = "mur"
str1 += str1

print(str1)

57. str1 = "good"
str1 += "bye"

print(str1)

58. var = "eight"
var += "h"

print(var)

59. print('M' + ('m' * 3) * 2 + '.') 60. print(('*' * 3) + "YES" + ('*' * 3))

61. print('a' + (" " * 5) + 'b') 62. print("spam" * 4)

63. s = "trom"
n = 76

print(n, s + "bones")

64. str1 = "5"
num = 0.5 + int(str1)

print(num)

65. num = input("Enter an integer: ")
print('1' + str(num))

(Assume the response is 7.)

 2.2 Strings ◆ 61

66. num = int(input("Enter an integer: "))
print(1 + num)

(Assume the response is 7.)

67. num = float(input("Enter a number: "))
print(1 + num)

(Assume the response is 7.)

68. num = eval(input("Enter a number: "))
print(1 + num)

(Assume the response is 7.)

69. film = "the great gatsby".title()[:10].rstrip()
print(film, len(film))

70. batmanAndRobin = "THE DYNAMIC DUO".lower().title()
print(batmanAndRobin)

71. Give a simple expression that lops off the last character of a string.

72. Give a simple expression that lops off the first character of a string.

73. What is the negative index of the first character in a string of eight characters?

74. What is the positive index of the last character in a string of eight characters?

75. (True or false) If n is the length of str1, then str1[n – 1:] is the string consisting of
the last character of str1.

76. (True or false) If n is the length of str1, then str1[n - 2:] is the string consisting of
the last two characters of str1.

77. (True or false) str1[:n] consists of the first n characters of str1.

78. (True or false) str1[-n:] consists of the last n characters of str1.

In Exercises 79 through 92, identify all errors.

79. phoneNumber = 234-5678
print("My phone number is " + phoneNumber)

80. quote = I came to Casablanca for the waters.
print(quote + ": " + "Bogart")

81. for = "happily ever after."
print("They lived " + for)

82. age = input("Enter your age: ")
print("Next year you will be " + (age + 1))

83. print('Say it ain't so.') 84. print("George "Babe" Ruth")

85. print("Python".UPPER()) 86. print("Python".lower)

87. age = 19
print("Age: " + age)

88. num = 1234
print(num[3])

89. num = '1234'
print(num.find(2))

90. num = 45
print(len(num))

91. language = "Python"
language[4] = 'r'

92. show = "Spamalot"
print(show[9])

 62 ◆ Chapter 2 Core Objects, Variables, Input, and Output

In Exercises 93 through 96, write a program having one line for each step. Lines that
display data should use the given variable names.

93. Inventor The following steps give the name and birth year of a famous inventor.

(a) Create the variable firstName and assign it the value “Thomas”.
(b) Create the variable middleName and assign it the value “Alva”.
(c) Create the variable lastName and assign it the value “Edison”.
(d) Create the variable yearOfBirth and assign it the value 1847.
(e) Display the phrase “The year of birth of” followed by the inventor's full name,

followed by “is”, and the inventor's year of birth.

94. Price of Ketchup The following steps compute the price of ketchup.

(a) Create the variable item and assign it the value “ketchup”.
(b) Create the variable regularPrice and assign it the value 1.80.
(c) Create the variable discount and assign it the value .27.
(d) Display the phrase “1.53 is the sale price of ketchup.”

95. Copyright Statement The following steps display a copyright statement.

(a) Create the variable publisher and assign it the value “Pearson”.
(b) Display the phrase “(c) Pearson”.

96. Advice The following steps give advice.

(a) Create the variable prefix and assign it the value “Fore”.
(b) Display the phrase “Forewarned is Forearmed.”

Note: For each of the following exercises, a possible output is shown in a shaded box.
Responses to input statements appear underlined.

97. Distance from a Storm If n is the number of seconds between lightning and
thunder, the storm is n/5 miles away. Write a program that requests the number
of seconds between lightning and thunder and reports the distance from the storm
rounded to two decimal places. See Fig. 2.7.

98. Training Heart Rate The American College of Sports Medicine recommends that
you maintain your training heart rate during an aerobic workout. Your training heart
rate is computed as .7 * (220 - a) + .3 * r, where a is your age and r is your resting
heart rate (your pulse when you first awaken). Write a program to request a person’s
age and resting heart rate and display their training heart rate. See Fig. 2.8.

99. Triathlon The number of calories burned per hour by cycling, running, and swim-
ming are 200, 475, and 275, respectively. A person loses 1 pound of weight for each
3,500 calories burned. Write a program to request the number of hours spent at
each activity and then display the number of pounds worked off. See Fig. 2.9.

Enter number of seconds between

lightning and thunder: 1.25

Distance from storm: 0.25 miles.

Figure 2.7 Possible outcome of Exercise 97.

Enter your age: 20

Enter your resting heart rate: 70

Training heart rate: 161 beats/min.

Figure 2.8 Possible outcome of Exercise 98.

 2.2 Strings ◆ 63

100. Cost of Electricity The cost of the electricity used by a device is given by the
 formula

cost of electricity (in dollars) =
wattage of device # hours used

1,000 # cost per kWh (in cents)

where kWh is an abbreviation for “kilowatt hour.” The cost per kWh of electricity
varies with locality. Suppose the current average cost of electricity for a residential
customer in the United States is 11.76¢ per kWh. Write a program that allows the
user to calculate the cost of operating an electrical device. Figure 2.10 calculates the
cost of keeping a light bulb turned on for an entire month.

101. Baseball Write a program to request the name of a baseball team, the number of
games won, and the number of games lost as input, and then display the name of the
team and the percentage of games won. See Fig. 2.11.

Enter number of hours cycling: 2

Enter number of hours running: 3

Enter number of hours swimming: 1

Weight loss: 0.6 pounds

Figure 2.9 Possible outcome of Exercise 99.

Enter wattage: 100

Enter number of hours used: 720

Enter price per kWh in cents: 11.76

Cost of electricity: $6.12

Figure 2.10 Possible outcome of Exercise 100.

102. Price- to- Earnings Ratio Write a program that requests a company’s earnings- per-
 share for the year and the price of one share of stock as input, and then displays the
company’s price- to- earnings ratio (that is, price ÷ earnings). See Fig. 2.12.

103. Car Speed The formula s = 224d gives an estimate of the speed in miles per hour
of a car that skidded d feet on dry concrete when the brakes were applied. Write a
program that requests the distance skidded and then displays the estimated speed of
the car. See Fig. 2.13. Note: 2x = x.5.

Enter name of team: Yankees

Enter number of games won: 84

Enter number of games lost: 78

Yankees won 51.9% of their games.

Figure 2.11 Possible outcome of Exercise 101.

Enter earnings per share: 5.25

Enter price per share: 68.25

 Price- to- Earnings ratio: 13.0

Figure 2.12 Possible outcome of Exercise 102.

Enter distance skidded: 54

Estimated speed: 36.0 miles per hour

Figure 2.13 Possible outcome of Exercise 103.

Enter percentage: 125%

Equivalent decimal: 1.25

Figure 2.14 Possible outcome of Exercise 104.

104. Percentages Write a program that converts a percentage to a decimal. See Fig. 2.14.

105. Convert Speeds On May 6, 1954, British runner Sir Roger Bannister became the
first person to run the mile in less than 4 minutes. His average speed was 24.20 kilo-
meters per hour. Write a program that requests a speed in kilometers per hour as

 64 ◆ Chapter 2 Core Objects, Variables, Input, and Output

input and then displays the speed in miles per hour. See Fig. 2.15. Note: One kilom-
eter is .6214 of a mile.

Enter speed in KPH: 24.20

Speed in MPH: 15.04

Figure 2.15 Possible outcome of Exercise 105.

Enter amount of bill: 21.50

Enter percentage tip: 18

Tip: $3.87

Figure 2.16 Possible outcome of Exercise 106.

106. Server’s Tip Write a program that calculates the amount of a server’s tip, given the
amount of the bill and the percentage tip as input. See Fig. 2.16.

107. Equivalent Interest Rates Interest earned on municipal bonds from an investor’s
home state is not taxed, whereas interest earned on CDs is taxed. Therefore, in order
for a CD to earn as much as a municipal bond, the CD must pay a higher interest
rate. How much higher the interest rate must be depends on the investor’s tax brack-
et. Write a program that requests a tax bracket and a municipal bond interest rate
as input, and then displays the CD interest rate having the same yield. See Fig. 2.17.
Note: If the tax bracket is expressed as a decimal, then

CD interest rate =
municipal bond interest rate

(1 - tax bracket)
.

Enter tax bracket (as decimal): .37

Enter municipal bond interest rate (as %): 3.26

Equivalent CD interest rate: 5.175%

Figure 2.17 Possible outcome of Exercise 107.

108. Marketing Terms The markup of an item is the difference between its selling price
and its purchase price. Two other marketing terms are

percentage markup =
markup

purchase price
 and profit margin =

markup
selling price

where the quotients are expressed as percentages. Write a program that computes the
markup, percentage markup, and profit margin of an item. See Fig. 2.18. Notice that
when the purchase price is tripled, the percentage markup is 200%.

Enter purchase price: 215

Enter selling price: 645

Markup: $430.0

Percentage markup: 200.0%

Profit margin: 66.67%

Figure 2.18 Possible outcome of Exercise 108.

Enter number: 123.45678

3 digits to left of decimal point

5 digits to right of decimal point

Figure 2.19 Possible outcome of Exercise 109.

109. Analyze a Number Write a program that requests a positive number containing a
decimal point as input and then displays the number of digits to the left of the deci-
mal point and the number of digits to the right of the decimal point. See Fig. 2.19.

 2.3 Output ◆ 65

110. Word Replacement Write a program that requests a sentence, a word in the sen-
tence, and another word and then displays the sentence with the first word replaced
by the second. See Fig. 2.20.

Enter a sentence: What you don't know won't hurt you.

Enter word to replace: know

Enter replacement word: owe

What you don't owe won't hurt you.

Figure 2.20 Possible outcome of Exercise 110.

111. Convert Months Write a program that asks the user to enter a whole number
of months as input and then converts that amount of time to years and months.
See Fig. 2.21. The program should use both integer division and the modulus
 operator.

Enter number of months: 234

234 months is 19 years and 6 months.

Figure 2.21 Possible outcome of Exercise 111.

Enter number of inches: 185

185 inches is 15 feet and 5 inches.

Figure 2.22 Possible outcome of Exercise 112.

112. Convert Lengths Write a program that asks the user to enter a whole number of
inches and then converts that length to feet and inches. See Fig. 2.22. The program
should use both integer division and the modulus operator.

Solutions to Practice Problems 2.2

1. n - m. When m = 0 the number of characters in str1[0:n] is n. Increasing the number 0 to m, decreases
the number of characters by m.

2. -1. There is no uppercase letter E in the string “Computer”. The find method distinguishes between
 uppercase and lowercase letters.

2.3 Output

Enhanced output can be produced by the print function with two optional arguments and
the use of the format method.

 ■ Optional print Argument sep
A statement of the form

print(value0, value1, . . ., valueN)

where the values are strings or numbers, displays the values one after another with succes-
sive values separated by a space. We say that the print function uses the string consisting of
one space character as a separator. We can optionally change the separator to any string we
like with the sep argument. If sepString is a string, then a statement of the form

print(value0, value1, . . ., valueN, sep=sepString)

 66 ◆ Chapter 2 Core Objects, Variables, Input, and Output

displays the values with successive values separated by sepString. Some examples are as
follows:

STATemeNT OuTCOme

print("Hello", "World!", sep="**") Hello**World!

print("Hello", "World!", sep="") HelloWorld!

print("1", "two", 3, sep=" ") 1 two 3

 ■ Optional print Argument end
After any of the statements above are executed, the display of output on the current line
comes to an end, and the next print statement will display its output on the next line. We
say that the print statement ends by executing a newline operation. (We also say that the
print statement moved the cursor to the beginning of the next line or that the print state-
ment performed a “carriage return and line feed.”) We can optionally change the ending
operation with the end argument. If endString is a string, then a statement of the form

print(value0, value1, . . ., valueN, end=endString)

displays value0 through valueN and then displays endString on the same line, without per-
forming a newline operation. Here are some lines of code that use the end argument.

print("Hello", end=" ")

print("World!")

[Run]

Hello World!

print("Hello", end="")

print("World!")

[Run]

HelloWorld!

 ■ escape Sequences
Escape sequences are short sequences that are placed in strings to instruct the cursor or
to permit some special characters to be printed. The first character is always a backslash (\).
The two most common cursor- instructing escape sequences are \t (induces a horizontal
tab) and \n (induces a newline operation). By default, the tab size is eight spaces, but can be
increased or decreased with the expandtabs method.

 example 1 Escape Sequences The following program demonstrates the use of the
escape sequences \t and \n.

Demonstrate use of escape sequences.

print("01234567890123456")

print("a\tb\tc")

print("a\tb\tc".expandtabs(5))

print("Nudge, \tnudge, \nwink, \twink.".expandtabs(11))

[Run]

01234567890123456

a b c

a b c

Nudge, nudge,

wink, wink.

 2.3 Output ◆ 67

Each escape sequence is treated as a single character when determining the length of a
string. For instance, len("a\tb\tc") has value 5. The backslash is not considered to be a
character, but rather an indicator telling Python to treat the character following it in a special
way. The escape sequence \n is often referred to as the newline character.

The backslash also can be used to treat quotation marks as ordinary characters. For
instance, the statement print('Say it ain\'t so.') displays the third word as ain’t. The
backslash character tells Python to treat the quotation mark as an ordinary single quotation
mark and not as a surrounding quotation mark. Two other useful escape sequences are \"
and \\ which cause the print function to display a double quotation mark and a backslash
character, respectively.

In future chapters we frequently encounter strings that end with a newline character. For
instance, each line of a text file is a string ending with a newline character. The string method
rstrip can be used to remove newline characters from the ends of strings. For instance, if
str1 has the value "xyz\n", then str1.rstrip() will have the value "xyz". Also, when the
int, float, and eval functions are evaluated at a string ending with a newline character, they
ignore the newline character. For instance, int('7\n') has the same value as int('7').

 ■ Justifying Output in a Field
Programs often display output in columns of a fixed width. The methods ljust(n), rjust(n),
and center(n) can be used to left- justify, right- justify, and center string output in a field of
width n. If the string does not use the entire width of the field, the string is padded on the
right, left, or both sides with spaces. If the string is longer than the allocated width, the
justification method is ignored.

 example 2 Justifying Output The following program uses the three justification
methods to create a table of the top three home run hitters in professional baseball. The
first line was added to identify the columns of the table. The first five columns (columns 0
through 4) list the ranks of the top three hitters. The numbers 1, 2, and 3 are each centered
in a field of width 5. The next 20 columns (columns 5 through 24) hold the names of the
top three hitters, with each name left justified in a field of width 20. Each name is padded
on the right with space characters. The last three columns (columns 25 through 27) hold
the number of home runs hit by the players. Since each of the numbers is three digits long,
they exactly fill the field of width 3 set aside for them. The output for this column would
be the same even if the rjust method was not used.

Demonstrate justification of output.

print("0123456789012345678901234567")

print("Rank".ljust(5), "Player".ljust(20), "HR".rjust(3), sep="")

print('1'.center(5), "Barry Bonds".ljust(20), "762".rjust(3), sep="")

print('2'.center(5), "Hank Aaron".ljust(20), "755".rjust(3), sep="")

print('3'.center(5), "Babe Ruth".ljust(20), "714".rjust(3), sep="")

[Run]

0123456789012345678901234567

Rank Player HR

 1 Barry Bonds 762

 2 Hank Aaron 755

 3 Babe Ruth 714

VideoNote

Print
Formatting

 68 ◆ Chapter 2 Core Objects, Variables, Input, and Output

 ■ Justifying Output with the format method
The format method is a fairly recent addition to Python that can perform the same tasks as
the justification methods and much more. For instance, it can place thousands separators in
numbers, round numbers, and convert numbers to percentages. We will begin by demon-
strating the method's justification capabilities and then present some of its other features.

If str1 is a string and w is a field width, then statements of the forms

print("{0:<ws}".format(str1))

print("{0:^ws}".format(str1))

print("{0:>ws}".format(str1))

produce the same output as the statements

print(str1.ljust(w))

print(str1.center(w))

print(str1.rjust(w))

If num is a number and w is a field width, then statements of the forms

print("{0:<wn}".format(num))

print("{0:^wn}".format(num))

print("{0:>wn}".format(num))

produce the same output as the statements

print(str(num).ljust(w))

print(str(num).center(w))

print(str(num).rjust(w))

Notice that the format method accepts numbers directly; they do not have to be converted
to strings. The symbols 6 , ^, and 7 that precede the width of each field instruct the print
function to left- justify, center, and right- justify, respectively.

In each of the statements above containing the format method, there is a single argu-
ment (num) in the format method. Often there are several arguments, referred to by pos-
itions counting from zero. The 0 before the colon in the curly braces refers to the fact that
num is in the 0th position. When there are several arguments, there are several pairs of curly
braces, with each pair of curly braces associated with an argument. The numbers preceding
the colons inside each pair of curly braces give the position of the argument it formats.

 example 3 Justifying Output The following program produces the same output as
Example 2, but using the format method. Consider the fourth line. The formatting braces
50:^5n6, 51: 620s6, and 52: 73n6 determine the formatting of the number 1, the string
"Barry Bonds", and the number 762, respectively.

Demonstrate justification of output.

print("0123456789012345678901234567")

print("{0:^5s}{1:<20s}{2:>3s}".format("Rank", "Player", "HR"))

print("{0:^5n}{1:<20s}{2:>3n}".format(1, "Barry Bonds", 762))

print("{0:^5n}{1:<20s}{2:>3n}".format(2, "Hank Aaron", 755))

print("{0:^5n}{1:<20s}{2:>3n}".format(3, "Babe Ruth", 714))

When numbers are being formatted, rather than using the letter n inside the curly
braces, which corresponds to any type of number, we use the letter d for integers, the letter f

 2.3 Output ◆ 69

for floating- point numbers, and the symbol % for numbers to be displayed as percentages.
When f and % are used, they should be preceded by a period and a whole number. The
whole number determines the number of decimal places to be displayed. In each of the
three cases, we also can specify if we want thousands separators by inserting a comma after
the field- width number.

When the format method is used to format a number, right- justify is the default jus-
tification. Therefore, when none of the symbols 6 , ^, or 7 are present, the number will
be displayed right- justified in its field. Table 2.4 shows some statements and the outcomes
they produce.

Table 2.4 Demonstrate number formatting.

Statement Outcome Comment

print("{0:10d}".format(12345678)) 12345678 number is an integer
print("{0:10,d}".format(12345678)) 12,345,678 thousands separators added
print("{0:10.2f}".format(1234.5678)) 1234.57 rounded
print("{0:10,.2f}".format(1234.5678)) 1,234.57 rounded and separators added
print("{0:10,.3f}".format(1234.5678)) 1,234.568 rounded and separators added
print("{0:10.2%}".format(12.345678)) 1234.57% changed to % and rounded
print("{0:10,.3%}".format(12.34569)) 1,234.568% %, rounded, separators

The field- width number following the colon can be omitted. If so, the number is dis-
played (without any alignment) as determined by the other specifiers following the colon.

So far, the string preceding ".format" has consisted of one or more pairs of curly braces.
However, the string can be any string containing curly braces. In that case, the curly braces
are placeholders telling Python where to insert the arguments from the format method.

 example 4 State Data The following program demonstrates the use of placing curly
braces inside a string.

Demonstrate use of the format method.

print("The area of {0:s} is {1:,d} square miles.".format("Texas", 268820))

str1 = "The population of {0:s} is {1:.2%} of the U.S. population."

print(str1.format("Texas", 26448000 / 309000000))

[Run]

The area of Texas is 268,820 square miles.

The population of Texas is 8.56% of the U.S. population.

 ■ Comments
1. When the right side of the colon in a pair of curly braces is just the letter s, the colon

and the letter s can be omitted. For instance, 50:s6 can abbreviated to 506 . A place-
holder such as 506 applies not only to strings, but also to numbers and expressions.

2. When the format method is used to format a string, left- justify is the default justifica-
tion. Therefore, when a 6 , ^, or 7 symbol is not present, the string will be displayed
 left- justified in its field.

3. The rstrip method not only removes newline characters from the end of a string, but
removes all ending spaces and escape sequences. When the int, float, or eval function
is applied to a string, it ignores all spaces and escape sequences at the end of the string.

 70 ◆ Chapter 2 Core Objects, Variables, Input, and Output

4. A common error is to write an escape sequence with a forward- slash (/) instead of the
backslash (\), the proper character.

Practice Problems 2.3

Determine the output displayed by the lines of code.

1. print("{0:s} and {1:s}".format("spam", "eggs"))
2. str1 = "Ask not what {0:s} {1:s} you, ask what you {1:s} {0:s}."

print(str1.format("your country", "can do for"))

3. Rewrite the following statement without using escape sequences.
print("He said \"How ya doin?\" to me.")

exerCISeS 2.3

In Exercises 1 through 50, determine the output displayed by the lines of code.

1. print("merry", " christmas", '!', sep="")

2. print("Price: ", '$', 23.45, sep="")

3. print("Portion: ", 90, '%', sep="")

4. print("Py", "th", "on", sep="")

5. print(1, 2, 3, sep=" x ")

6. print("tic", "tac", "toe", sep='-')

7. print("father", "in", "law", sep='-')

8. print("one", " two", " three", sep=',')

9. print("What is your name",
end = '?\n'))

print("John")

10. print("spam", end=" and ")
print("eggs")

11. print("Py", end="")
print("thon")

12. print("on", "site", sep='-', end=" ")
print("repair")

13. print("Hello\n")
print("World!")

14. print("Hello\n" , end = ',')
print("World!")

15. print("One\t\tTwo\n--Three-Four") 16. print("1\t2\t3")
print("\tDetroit\tLions")

print("Indiana\t\tColts")

17. print("NUMBER\tSQUARE\tCUBE")
print(str(2) + "\t" + str(2 ** 2) + "\t" + str(2 ** 3))

print(str(3) + "\t" + str(3 ** 2) + "\t" + str(3 ** 3))

18. print("COUNTRY\t", "LAND AREA")
print("India\t", 2.5, "million sq km")

print("China\t", 9.6, "million sq km")

19. print("Hello\tWorld!")
print("Hello\t\tWorld!".expandtabs(2))

20. print("STATE\tCAPITAL".expandtabs(15))
print("North Dakota\tBismarck".expandtabs(15))

print("South Dakota\tPierre".expandtabs(15))

 2.3 Output ◆ 71

21. print("012345.67890")
print("A ".rjust(5), " B ".center(5)," C".ljust(5), sep="|")

22. print("0123456789012345")
print("one".center(7), "two".ljust(4), "three".rjust(6), sep="")

23. print("0123456789012345")
print("{0:^7s}{1:5s}{2:>7s}".format("one", "two", "three"))

24. print("01234567890")
print("{0:>5s}{1:^5s}{2:5s}".format("A", "B", "C"))

25. print("0123456789")
print("{0:10.1%}".format(.123))

print("{0:^10.1%}".format(1.23))

print("{0:<10,.1%}".format(12.3))

26. print("0123456789")
print("{0:10,d}".format(1234))

print("{0:^10,d}".format(1234))

print("{0:<10,d}".format(1234))

27. print("${0:,.1f}".format(1234.567))

28. print("{0:,.0f}".format(1234.567))

29. print("{0:,.1f}".format(1.234))

30. print("${0:,.2f}".format(1234))

31. print("{0:10s}{1:^16s} {2:s}".format("Team", "Fifa points",
 "% fans of World Pop."))

print("{0:10s}{1:^16,d}{2:10.2%}".format("Germany", 1725,.3412))

print("{0:10s}{1:^16,d}{2:10.2%}".format("Argentina", 1538,.25851))

print("{0:10s}{1:^16,d}{2:10.2%}".format("Columbia", 1450,.25523))

32. print("{0:14s}{1:s}".format("Major", "Percent of Students"))
print("{0:14s}{1:10.1%}".format("Biology", .062))

print("{0:14s}{1:10.1%}".format("Psychology", .054))

print("{0:14s}{1:10.1%}".format("Nursing", .047))

33. print("When nothing goes {0:s} go {1:s}.".format("right", "left"))

34. print("Plan {0:s}, code {1:s}.".format("first", "later"))

35. print("{0:s} are the {1:s} of {0:s}r own destiny".format("you","creator"))

36. print("And now for {0:s} completely {1:s}.".format("something",
"different"))

37. x=3
y = 4

print("The matrix of {0:d} and {1:d} has {2:d} elements.".format(x, y, x * y))

38. str1 = "{0:s} has {1:.1f} billion users in the world."
print(str1.format("Facebook", 1.3))

39. x = 2 # square root of 2 is 1.414213562 to 9 decimal places
print("The square root of {0:n} is about {1:.4f}.".format(x, x ** .5))

40. pi = 3.14159265898 # to 11 decimal places
print("Pi is approximately {0:.3f}.".format(pi))

 72 ◆ Chapter 2 Core Objects, Variables, Input, and Output

41. str1 = "In a randomly selected group of {0:d} people, the " + \
 "probability\nis {1:.2f} that 2 people have the same birthday."

print(str1.format(23, .507397))

42. # Population Survey of Canada in 2014
areaOfCanada = 9984670

popOfCanada = 35344962 #35344962/9984670 is 3.539922902 to 9 decimal places

str1 = "The population of Canada is ${0:.3f} per km square."

print(str1.format(costOfCanada / areaOfCanada))

43. str1 = "You miss {0:.0%} of the shots you never take. - Wayne Gretsky"
print(str1.format(1))

44. str1 = "{0:.0%} of the members of the U.S. Senate are from {1:s}."
print(str1.format(12 / 100, "New England"))

45. # 43/193 is .2227979275 to 10 decimal places
print("{0:.2%} of the UN nations are in {1:s}.".format(43/193, "Europe"))

46. # 9984670/3794000 is 2.631700053 to 9 decimal places
str1 = "The area of {0:s} is {1:.1%} of the area of the U.S."

print(str1.format("Canada", 9984670 / 3794000))

47. print("{0:s}{1:s}{0:s}".format("abra", "cad"))

48. print("When you have {0:s} to {1:s}, {1:s} {0:s}.".format("nothing", "say"))

49. str1 = "Be {0:s} whenever {1:s}. It is always {1:s}. - Dalai Lama"
print(str1.format("kind", "possible"))

50. str1 = "If {0:s} dream it, {0:s} do it. - Walt Disney"
print(str1.format("you can"))

51. Do print("Hello") and print("Hello", end="\n") produce the same output?

52. Do print("Hello\tWorld!") and print("Hello\tWorld!".expandtabs(8)) pro-
duce the same output?

In Exercises 53 through 58, write a program to carry out the stated task.2

53. Server’s Tip Calculate the amount of a server’s tip, given the amount of the bill
and the percentage tip as input. See Fig. 2.23.

2For each of the following exercises, a possible output is shown in a shaded box. Responses to input
statements appear underlined.

Figure 2.23 Possible outcome of Exercise 53.

Enter amount of bill: 21.50

Enter percentage tip: 18

Tip: $3.87

Enter revenue: 550000

Enter expenses: 410000

Net income: $140,000.00

Figure 2.24 Possible outcome of Exercise 54.

54. Income Request a company’s annual revenue and expenses as input, and display
the company’s net income (revenue minus expenses). See Fig. 2.24.

55. Change in Salary A common misconception is that if you receive a 10% pay raise
and later a 10% pay cut, your salary will be unchanged. Request a salary as input
and then display the salary after receiving a 10% pay raise followed by a 10% pay
cut. The program also should display the percentage change in salary. See Fig. 2.25.

 2.3 Output ◆ 73

56. Change in Salary A common misconception is that if you receive three successive
5% pay raises, then your original salary will have increased by 15%. Request a salary
as input and then display the salary after receiving three successive 5% pay raises.
The program also should display the percentage change in salary. See Fig. 2.26.

57. Future Value If P dollars (called the principal) is invested at r% interest com-
pounded annually, then the future value of the investment after n years is given by
the formula

future value = P a1 +
r

100
b

n

.

Calculate the future value of an investment after the user enters the principal, inter-
est rate, and number of years. Figure 2.27 shows that $1,000 invested at 5% interest
will grow to $1,157.63 in 3 years.

Enter beginning salary: 35000

New salary: $34,650.00

Change: -1.00%

Figure 2.25 Possible outcome of Exercise 55.

Enter beginning salary: 35000

New salary: $40,516.88

Change: 15.76%

Figure 2.26 Possible outcome of Exercise 56.

Enter principal: 1000

Enter interest rate (as %): 5

Enter number of years: 3

Future value: $1,157.63

Figure 2.27 Possible outcome of Exercise 57.

Enter future value: 10000

Enter interest rate (as %): 4

Enter number of years: 6

Present value: $7,903.15

Figure 2.28 Possible outcome of Exercise 58.

58. Present Value The present value of f dollars at interest rate r% compounded an-
nually for n years is the amount of money that must be invested now in order to
grow to f dollars (called the future value) in n years where the interest rate is r% per
year. The formula for present value is

present value =
f

a1 +
r

100
b

n.

Calculate the present value of an investment after the user enters the future value,
interest rate, and number of years. Figure 2.28 shows that at 4% interest per year,
$7,903.15 must be invested now in order to have $10,000 after 6 years.

Solutions to Practice Problems 2.3

1. spam and eggs. The s specifier in the curly braces is the default specifier. Therefore, the print statement
could have been written

print("{0} and {1}".format("spam", "eggs"))

We will use the s specifier in our programs since it improves readability. It reminds the programmer that
a string is required as the argument in the set of arguments.

2. Ask not what your country can do for you, ask what you can do for your
 country.

 74 ◆ Chapter 2 Core Objects, Variables, Input, and Output

The strings requested by the first two sets of curly braces are obvious. The third set of curly braces begins
with 1 and therefore is requesting the argument in position 1, namely "can do for". Similarly, the
fourth set of curly braces is requesting the argument in position 0. The ability to use arguments more than
once is a nice feature of the format method.

3. print('He said "How ya doin?" to me.')

2.4 Lists, Tuples, and Files— An Introduction

The Python documentation and this textbook use the term object to refer to any instance
of a data type. Python’s core objects are numbers, strings, lists, tuples, files, sets, and dic-
tionaries. We have already discussed numbers and strings. In this section we discuss lists,
tuples, and files. Sets and dictionaries are discussed in Chapter 5.

 ■ The list Object
A list is an ordered sequence of Python objects. The objects can be of any type and do not
have to all be the same type.

A list is constructed by writing its items enclosed in square brackets, with the items
separated by commas. Some examples of lists are

["Seahawks", 2014, "CenturyLink Field"]

[5, 10, 4, 5]

["spam", "ni"]

Lists are usually assigned to a name. For instance, we might write

team = ["Seahawks", 2014, "CenturyLink Field"]

nums = [5, 10, 4, 5]

words = ["spam", "ni"]

Table 2.5 List operations. (The lists team, nums, and words are given above.)

Function
or Method Example Value Description

len len(words) 2 number of items in list
max max(nums) 10 greatest (items must have same type)
min min(nums) 4 least (items must have same type)
sum sum(nums) 24 total (items must be numbers)
count nums.count(5) 2 number of occurrences of an object
index nums.index(4) 2 index of first occurrence of an object
reverse words.reverse() ["ni", "spam"] reverses the order of the items
clear team.clear() [] [] is the empty list
append nums.append(7) [5, 10, 4, 5, 7] inserts object at end of list
extend nums.extend([1, 2]) [5, 10, 4, 5, 1, 2] inserts new list’s items at end of list
del del team[-1] ["Seahawks",

2014]
removes item with stated index

remove nums.remove(5) [10, 4, 5] removes first occurrence of an object
insert words.insert(1, "wink") ["spam", "wink",

"ni"]
insert new item before item of given
index

+ ['a', 1] + [2, 'b'] ['a', 1, 2, 'b'] concatenation; same as
['a', 1].extend([2,'b'])

* [0] * 3 [0, 0, 0] list repetition

VideoNote

The list
Object

 2.4 Lists, Tuples, and Files— An Introduction ◆ 75

Like the characters in a string, items in a list are indexed from the front with positive
indices starting with 0, and from the back with negative indices starting with -1. The value
of the item with index i is denoted listName [i]. For instance, the value of team[1] is 2014,
and the value of words[-2] is "spam".

Some list functions and methods are shown in Table 2.5.

Note: After the del function or the remove method is executed, the items following the
eliminated item are moved one position left in the list. After the insert method is executed,
the items having index greater than or equal to the stated index are moved one position to
the right in the list.

 example 1 Grades The following program requests five grades as input and displays
the average after dropping the two lowest grades. The grades are placed into the list grades,
the two lowest grades are removed from the list, and the sum and len functions are used to
calculate the average of the remaining grades.

Calculate average of grades.

grades = [] # Create the variable grades and assign it the empty list.

num = float(input("Enter the first grade: "))

grades.append(num)

num = float(input("Enter the second grade: "))

grades.append(num)

num = float(input("Enter the third grade: "))

grades.append(num)

num = float(input("Enter the fourth grade: "))

grades.append(num)

num = float(input("Enter the fifth grade: "))

grades.append(num)

minimumGrade = min(grades)

grades.remove(minimumGrade)

minimumGrade = min(grades)

grades.remove(minimumGrade)

average = sum(grades) / len(grades)

print("Average Grade: {0:.2f}".format(average))

[Run]

Enter the first grade: 89

Enter the second grade: 77

Enter the third grade: 82

Enter the fourth grade: 95

Enter the fifth grade: 81

Average Grade: 88.67

The value of the item having index i can be changed with a statement of the form

listName[i] = newValue

For instance, after the statement words[1] = "eggs" is executed, the value of words will be
["spam", "eggs"].

Note: In Section 2.2 we mentioned that any code enclosed in a pair of parentheses can span
multiple lines. The same is true for code enclosed in a pair of square brackets. Therefore, the
statement

 76 ◆ Chapter 2 Core Objects, Variables, Input, and Output

team = ["Seahawks", 2014, "CenturyLink Field"]

can be written

team = ["Seahawks", 2014,

 "CenturyLink Field"]

 ■ Slices
A slice of a list is a sublist specified with colon notation. It is analogous to a slice of a string.
Some slice notations are shown in Table 2.6.

Table 2.6 meanings of slice notations.

Slice Notation Meaning

list1[m:n] list consisting of the items of list1 having indices m through n-1
list1[:] a new list containing the same items as list1
list1[m:] list consisting of the items of list1 from list1[m] through the end of list1
list1[:m] list consisting of the items of list1 from the beginning of list1 to the element

having index m-1

Note: The del function can be used to remove a slice from a list. Also, if the item of index
m is not to the left of the item of index n, then list1[m:n] will be the empty list.

Some examples of slices are shown in Table 2.7.

 ■ The split and join methods
The split and join methods are extremely valuable methods that are inverses of each other.
The split method turns a single string into a list of substrings and the join method turns a
list of strings into a single string.

In general, if strVar has been assigned a string of the form “value0,value1,value2, . . . ,
valueN”, then a statement of the form

L = strVar.split(",")

creates the list L containing the N + 1 string values as its items. That is, the first item of
the list is the text preceding the first comma of strVar, the second item of the list is the text

Table 2.7 examples of slices where list1 = ['a', 'b', 'c', 'd', 'e', 'f'].

Example Value

list1[1:3] ['b', 'c']
list1[-4:-2] ['c', 'd']
list1[:4] ['a', 'b', 'c', 'd']
list1[4:] ['e', 'f']
list1[:] ['a', 'b', 'c', 'd', 'e', 'f']
del list1[1:3] ['a', 'd', 'e', 'f']
list1[2:len(list1)] ['c', 'd', 'e', 'f']
(list1[1:3])[1] 'c' (This expression is usually written as list1[1:3][1])
list1[3:2] [], the list having no items; that is, the empty list

 2.4 Lists, Tuples, and Files— An Introduction ◆ 77

between the first and second commas, . . . , and the last item of the list is the text follow-
ing the last comma. The string consisting of the comma character is called the separator
for the statement above. Any string can be used as a separator. (Three common separators
consisting of a single- character string are ",", "\n", and " ".) If no separator is specified,
the split method uses whitespace as the separator, where whitespace is any string whose
characters are newline, vertical tab, or space characters. The split method will play a vital
role in Chapter 5.

The join method, which is the inverse of the split method, converts a list of strings into
a string value consisting of the elements of the list concatenated together and separated
by a specified string. The general form of a statement using join and having the string ","
as separator is

strVar = ",".join(L)

 example 2 The split Method The following statements each display the list ['a',
'b', 'c'].

print("a,b,c".split(','))

print("a**b**c".split('**'))

print("a\nb\nc".split())

print("a b c".split())

 example 3 The join Method The following program shows how the join method
can be used to display the items from a list of strings.

line = ["To", "be", "or", "not", "to", "be."]

print(" ".join(line))

krispies = ["Snap", "Crackle", "Pop"]

print(", ".join(krispies))

[Run]

To be or not to be.

Snap, Crackle, Pop

 ■ Text Files
Values used in a Python program reside in memory and are lost when the program termi-
nates. However, if a program writes the values to a file on a storage device (such as a hard
disk or a flash drive), any Python program can access the values at a later time. That is, files
create long-term storage of data.

A text file is a simple file consisting of lines of text with no formatting (that is, no
bold or italics) that can be created and read with Notepad (on a PC) or TextEdit (on a
Mac). Usually, text files have the extension txt. A text file actually can be created with
any word processor. For instance, after a document is created in Word, you can invoke
Save As and then select "Save as type: Plain Text (*.txt)" to save the document as a text
file. Also, any existing text file can be opened and edited in Word. Each line of a text file
(except possibly the last line) ends with a newline character.

 78 ◆ Chapter 2 Core Objects, Variables, Input, and Output

The lines of a text file (stripped of their newline characters) can be placed into a list
with code of the form

infile = open("Data.txt", 'r')

listName = [line.rstrip() for line in infile]

infile.close()

The next three chapters explain how this statement carries out the task. For now, let’s just
assume it does the job.

If the data in a text file is all numbers, the process in the preceding paragraph produces
a list consisting of strings, with each string holding a number. For a file of numbers, we can
place the numbers into a list with code of the form

infile = open("Data.txt", 'r')

listName = [eval(line) for line in infile]

infile.close()

 ■ The tuple Object
Tuples, like lists, are ordered sequences of items. The main difference between tuples and
lists are that tuples cannot be modified directly. That is, tuples have no append, extend, or
insert methods. Also, the items of a tuple cannot be directly deleted or altered. All other
list functions and methods apply to tuples, and its items can be accessed by indices. Tuples
also can be sliced, concatenated, and repeated.

Tuples are written as comma- separated sequences enclosed in parentheses. However,
they can often be written without the parentheses. For instance, the statements

t = ('a', 'b', 'c') and t = 'a', 'b', 'c'

create the tuple t and assign it the same value. However, print functions always display tuples
enclosed in parentheses.

 example 4 Tuple Functions The following program shows that tuples have several
of the same functions as lists.

t = 5, 7, 6, 2

print(t)

print(len(t), max(t), min(t), sum(t))

print(t[0], t[-1], t[:2])

[Run]

(5, 7, 6, 2)

4 7 2 20

5 2 (5, 7)

A statement such as

(x, y, z) = (5, 6, 7)

creates three variables and assigns values to them. The statement also can be written

x, y, z = 5, 6, 7

which can be thought of as making three variable assignments with a single statement.

 2.4 Lists, Tuples, and Files— An Introduction ◆ 79

 ■ Nested Lists
So far, all items in lists and tuples have been numbers or strings. However, items also can
be lists or tuples. Lists of tuples play a prominent role in analyzing data. If L is a list of
tuples, then L[0] is the first tuple, L[0][0] is the first item of the first tuple, L[-1] (same as
L[len(L)-1]) is the last tuple, and L[-1][-1] is the last item of the last tuple. An expression
such as L[0][0] can be thought of as (L[0])[0].

 example 5 Swap Values The following program swaps the values of two variables.
In essence, the third line of the program is assigning the tuple (6, 5) to the tuple (x, y)

x = 5

y = 6

x, y = y, x

print(x, y)

[Run]

6 5

 example 6 U.S. Regions The list regions contains four tuples, with each tuple giving
the name and 2010 population (in millions) of a region of the United States. The following
program displays the 2010 population of the Midwest and calculates the 2010 population
of the United States.

regions = [("Northeast", 55.3), ("Midwest", 66.9),

 ("South", 114.6), ("West", 71.9)]

print("The 2010 population of the", regions[1][0], "was", regions[1][1],

 "million.")

totalPop = regions[0][1] + regions[1][1] + regions[2][1] + regions[3][1]

print("Total 2010 population of the U.S: {0:.1f} million.".format(totalPop))

[Run]

The 2010 population of the Midwest was 66.9 million.

Total 2010 population of the U.S: 308.7 million.

 ■ Immutable and mutable Objects
An object is an entity that holds data and has operations and/or methods that can manipu-
late the data. Numbers, strings, lists, and tuples are objects. When a variable is created with
an assignment statement, the value on the right side becomes an object in memory, and
the variable references (that is, points to) that object. When a list is altered, changes are
made to the object in the list’s memory location. However, when a variable whose value is
a number, string, or tuple, has its value changed, Python designates a new memory location
to hold the new value and the variable references that new object. We say that lists can be
changed in place, but numbers, strings, and tuples cannot. Objects that can be changed in
place are called mutable, and objects that cannot be changed in place are called immutable.
Figure 2.29 shows eight lines of code and the memory allocations after the first four lines
of code have been executed and after all eight lines have been executed.

 80 ◆ Chapter 2 Core Objects, Variables, Input, and Output

 ■ Copying Lists
If the variable var1 has a mutable value (such as a list), then a statement of the form
var2 = var1 results in var2 referencing the same object as var1. Therefore, any change to
the value of var2 affects the value of var1. Consider the following four lines of code:

list1 = ['a', 'b'] # Lists are mutable objects.

list2 = list1 # list2 will point to the same memory location as list1

list2[1] = 'c' # Changes the value of the second item in the list object

print(list1)

[Run]

['a', 'c']

In the second line of code, the variable list2 references the same memory location as list1.
Therefore, any changes to an item in list2 produces the same change in the value of list1. This
effect will not occur if the second line of code is changed to either list2 = list(list1)
or list2 = list1[:]. In those cases, list2 will point to an object in a different memory
location containing the same value as list1. Then the third line of code will not affect the
memory location pointed to by list1 and so the output will be ['a', 'b'].

 ■ Indexing, Deleting, and Slicing Out of bounds
Python does not allow out of bounds indexing for individual items in lists and tuples, but
does allow it for slices. For instance, if

list1 = [1, 2, 3, 4, 5]

then print(list1[7]), print(list1[-7]), and del list1[7] trigger the Traceback error
message IndexError.

If the left index in a slice is too far negative, the slice will start at the beginning of the
list, and if the right index is too large, the slice will go to the end of the list. For instance,

list1[-10:10] is [1, 2, 3, 4, 5]
list1[-10:3] is [1, 2, 3]

L = [5, 6]
n = 2
s = "Python"
t = ('a','b','c')
L.append(7)
n += 1
s = s.upper()
t = t[1:] ('a','b','c')

[5, 6]

2

Python

L

n

s

t

after first 4 lines
of code have been
executed

[5, 6, 7]

2

Python

('b','c')

('a','b','c')

3

PYTHON

L

n

s

t

after all 8 lines of code
have been executed

Figure 2.29 Memory allocation corresponding to a program.

 2.4 Lists, Tuples, and Files— An Introduction ◆ 81

list1[3:10] is [4, 5]
del list1[3:7] is [1, 2, 3]

 ■ Comments
1. When max and min are applied to lists containing strings, lexicographical order

is used to compare two strings. Lexicographical ordering of strings is discussed in
Section 3.1.

2. The empty tuple is written as an empty pair of parentheses.

3. A single- item tuple must have a trailing comma, such as (0,).

4. The list function converts tuples or strings to lists. For instance, the value of
list(('a', 'b')) is ['a', 'b'], and the value of list("Python") is ['P', 'y', 't', 'h', 'o', 'n'].

5. The tuple function converts lists or strings to tuples. For instance, the value of
tuple(['a', 'b']) is ('a', 'b'), and the value of tuple("spam") is ('s', 'p', 'a', 'm').

6. Tuples are more efficient than lists and should be used in situations where no changes
will be made to the items. They execute faster, tie up less memory, and “ write- protect”
data. In Chapter 5 we discuss a powerful Python object called a dictionary. An important
feature of dictionaries requires the use of tuples.

7. As we have seen, the values of an item in a list can be altered by using its index in
a statement of the form listName[i] = newValue. Even though the characters in
a string and the items in a tuple can be accessed with indices, statements such as
stringName[i] = newValue and tupleName[i] = newValue are not valid.

8. The operator + = performs an augmented assignment for lists and tuples.

9. We have discussed the core objects numbers, strings, lists, and tuples. Two other impor-
tant core objects, sets and dictionaries, will be introduced in Chapter 5. Although they
could have been presented in Section 2.4, we decided to postpone their presentation
until they are needed.

Practice Problems 2.4

1. Determine the output of the following program.

companies = [("Apple", "Cupertino", "CA"), ("Amazon.com", "Seattle", "WA"),

 ("Google", "Mountain View", "CA")]

(name, city, state) = (companies[1][0], companies[1][1], companies[1][2])

print(name, " is located in ", city, ", ", state, '.',sep = "")

2. Determine the output of the following program.

a = 2

b = 3

print((a + b,))

print((a + b))

print(())

3. Do the statements s = 'a' + 'b' and s = "".join(['a', 'b']) assign the same
value to the variable s?

 82 ◆ Chapter 2 Core Objects, Variables, Input, and Output

exerCISeS 2.4

In Exercises 1 through 48, assume that the list countries contains the names of fifty
countries in the world, and determine the output displayed by the lines of code.

countries = ["Japan", "India", "Algeria", "Brazil", "Angola", "England", "Argentina",
"Portugal", "China", "Australia", "Austria", "Ghana", "Bahamas", "Bangla-
desh", "Belgium", "Bhutan", "Bosnia", "Cameroon", "Canada", "Denmark"]

1. print(countries[2], countries[-1]) 2. print(countries[3],
 countries[-3])

3. print(countries[18],
 countries[16])

4. print(len(countries))

5. print(countries[-1],
 countries[19])

6. print(countries.
index("Cameroon"))

7. print(countries.index("Ghana") 8. print(countries.
index(countries[10]))

9. print(countries[len(countries) - 1], countries[-1])

10. print(countries[0].upper())
11. countries[0] = countries[0].lower()

print(countries[0])

12. countries.insert(5, "Germany")
print(countries[5])

13. countries.append("Nigeria")
print(countries[20])

14. countries.insert(11,"Nepal")
print(countries.index("Ghana"))

15. del countries[4]
print(countries[4])

16. del countries[3]
print(countries.index("Argentina"))

17. print(countries[2:5]) 18. print(countries[-1:4])

19. print(countries[-5:-2]) 20. print(countries[4:-1])

21. print(countries[:10]) 22. print(countries[10:])

23. print(countries[-3:]) 24. print(countries[:-1])

25. print(countries[3:3]) 26. print(countries[-1:-4])

27. print(countries[1:10][2])) 28. print(countries[-
2:len(countries)])

29. print(countries[:][5]) 30. print(countries[-4][-4])

31. print(len(countries[10:20])) 32. print(len(countries[-20:]))

33. print(len([])) 34. print(len(countries[:]))

35. print(len(countries[1:-1])) 36. print(len(countries[2:-2]))
37. countries.

extend(["Algeria","Cuba"])

print(countries[-3:])

38. countries.append(["New Zealand",
"Norway"])

print(countries[-3:])

39. del countries[-2]
countries.insert(-1, "Mangolia")

print(countries[-3:])

40. countries[1] = "Poland"
print(countries[:3])

 2.4 Lists, Tuples, and Files— An Introduction ◆ 83

In Exercises 49 through 54, assume that list1 contains 100 items. Determine the number
of items in each of the slices.

49. list1[-8:]

50. list1[:8]

51. list1[:]

52. list1[-8:-1]

53. list1[8:8]

54. list1[1:-1]

In Exercises 55 through 58, assume that the list nums = [6, 2, 8, 0], and determine the
output displayed by the line of code.

55. print("Largest Number:", max(nums))

56. print("Length:", len(nums))

57. print("Total:", sum(nums))

58. print("Number lot", sum(nums) / list(nums))

In Exercises 59 through 94, determine the output displayed by the lines of code.

59. L = ["sentence", "contains", "five", "words."]
L.insert(0, "This")

print(" ".join (L))

del L[3]

L.insert(3, "six")

L.insert(4, "different")

print(" ".join (L))

60. L = ["one", "for", "all"]
L[0], L[-1] = L[-1], L[0]

print(L)

61. name = input("Enter name with two parts: ")
L = name.split()

print("{0:s}, {1:s}".format(L[1], L[0]))

(Assume the name entered is Charles Babbage.)

62. name = input("Enter name with three parts: ")
L = name.split()

print(L[0], L[2])

(Assume the name entered is Guido van Rossum.)

41. del countries[1]
countries.insert(1, "Russia")

print(countries[:3])

42. print(countries[-4].split())
states.insert(-1, "Seward's Folly")

print(states[-3:])

43. list2 = countries[2].split() +
countries[-4].split()

list2.remove("Algeria")

print(list2)

44. print((',').join(countries[1:4]))

45. print(('-').
join(countries[-10:-5]))

46. countries.remove(countries[-4])
print(countries[-4])

47. print(('*').
join(countries[-6:-3]))

48. countries[-1].append("Spain")
print(countries[-1])

 84 ◆ Chapter 2 Core Objects, Variables, Input, and Output

63. name = input("Enter name with three parts: ")
L = name.split()

print("Middle Name:", L[1])

(Assume the name entered is Guido van Rossum.)

64. list1 = ['h', 'o', 'n', 'P', 'y', 't']
list2 = list1[3:] + list1[:3]

print(("").join(list2))

65. tuple1 = ("course", "of", "human", "events", "When", "in", "the")
tuple2 = tuple1[4:] + tuple1[:4]

print((" ".join(tuple2)))

66. list1 = ["is", "Less", "more."]
list1[0], list1[1] = list1[1], list1[0]

print(" ".join(list1))

67. headEditor = ["editor", "in", "chief"]
print(('-').join(headEditor))

68. carousel = ["merry", "go", "round"]
print(('-').join(carousel))

69. motto = ["e", "pluribus", "unum"]
print(("**").join(motto))

70. allDay = " around- the- clock"
print(allDay.split('-'))

71. state = "New York,NY,Empire State,Albany"
stateFacts = state.split(',')

print(stateFacts)

72. nations = "France\nEngland\nSpain"
countries = nations.split()

print(countries)

73. nations = "France\nEngland\nSpain\n"
countries = nations.split()

print(countries)

74. # The three lines of Abc.txt contain a b, c, d
infile = open("Abc.txt", 'r')

alpha = [line.rstrip() for line in infile]

infile.close()

word = ("").join(alpha)

print(word)

75. # The three lines of Dev.txt contain mer, gram, pro
infile = open("Dev.txt", 'r')

dev = [line.rstrip() for line in infile]

infile.close()

dev[0], dev[-1] = dev[-1], dev[0]

word = ("").join(dev)

print(word)

76. # The two lines of Live.txt contain Live, let
infile = open("Live.txt", 'r')

 2.4 Lists, Tuples, and Files— An Introduction ◆ 85

words = [line.rstrip() for line in infile]

infile.close()

words.append(words[0].lower())

quote = (" ").join(words) + '.'

print(quote)

77. # The three lines of Star.txt contain your, own, star.
infile = open("Star.txt", 'r')

words = [line.rstrip() for line in infile]

infile.close()

words.insert(0, "Follow")

quote = (" ").join(words)

print(quote)

78. nums = (6, 2, 8, 0)
print("Largest Number:", max(nums))

print("Length:", len(nums))

print("Total:", sum(nums))

print("Number list:", list(nums))

79. phoneNumber = "9876543219"
list1 = list(phoneNumber)

list1.insert(3, '-')

list1.insert(7, '-')

phoneNumber = "".join(list1)

print(phoneNumber)

80. word = "diary"
list1 = list(word)

list1.insert(3, list1[1])

del list1[1]

word = "".join(list1)

print(word)

81. nums = (3, 9, 6)
print(list(nums))

82. nums = [-5, 17, 123]
print(tuple(nums))

83. word = "etch"
L = list(word)

L[1] = "a"

print("".join(L))

84. t = (1, 2, 3)
t = (0,) + t[1:]

print(t)

85. list1 = ["soprano", "tenor"]
list2 = ["alto", "bass"]

list1.extend(list2)

print(list1)

86. list1 = ["soprano", "tenor"]
list2 = ["alto", "bass"]

print(list1 + list2)

87. list1 = ["gold"]
list2 = ["silver", "bronze"]

print(list1 + list2)

88. list1 = ["gold"]
list2 = ["silver", "bronze"]

list1.extend(list2)

print(list1)

89. list1 = ["mur"] * 2
print("".join(list1))

90. list1 = [0]
print(list1 * 4)

91. t = ("Dopey", "Sleepy", "Doc", "Grumpy", "Happy", "Sneezy", "Bashful")
print(t[4:20])

 86 ◆ Chapter 2 Core Objects, Variables, Input, and Output

92. ships = ["Nina", "Pinta", "Santa Maria"]
print(ships[-5:2])

93. answer = ["Yes!", "No!", "Yes!", "No!", "Maybe."]
num = answer.index("No!")

print(num)

94. numbers = (3, 5, 7, 7, 3)
location = numbers.index(7)

print(location)

In Exercises 95 through 100, identify all errors.

95. threeRs = ["reading", "riting", "rithmetic"]
print(threeRs[3])

96. word = "sea"
location = numbers.index(7)

word[1] = 'p'

print(word)

97. list1 = [1, "two", "three", 4]
print(" ".join(list1))

98. # Four virtues presented by Plato
virtues = ("wisdom", "courage", "temperance", "justice")

print(virtues[4])

99. title = ("The", "Call", "of", "the", "Wild")
title[1] = "Calm"

print(" ".join(title))

100. words = ("Keep", "cool", "but", "don't")
words.append("freeze.")

print(words)

101. Analyze a Sentence Write a program that counts the number of words in a sen-
tence input by the user. See Fig. 2.30.

Figure 2.30 Possible outcome of Exercise 101.

Enter a sentence: Know what I mean?

Number of words: 4

Enter a sentence: Reach for the stars.

First word: Reach

Last word: stars

Figure 2.31 Possible outcome of Exercise 102.

102. Analyze a Sentence Write a program that displays the first and last words of a sen-
tence input by the user. See Fig. 2.31. Assume that the only punctuation is a period
at the end of the sentence.

103. Name Write a program that requests a two- part name and then displays the name
in the form "lastName, firstName". See Fig. 2.32.

Figure 2.32 Possible outcome of
Exercise 103.

Enter a 2-part name: John Doe

Revised form: Doe, John

Figure 2.33 Possible outcome of
Exercise 104.

Enter a 3-part name: Michael Andrew Fox

Middle name: Andrew

104. Name Write a program that requests a three- part name and then displays the mid-
dle name. See Fig. 2.33.

Solutions to Practice Problems 2.4

1. Amazon.com is located in Seattle, WA.

 The list companies is a list of tuples whose items can be referenced as companies[0], companies[1], and
companies[2]. The program references companies[1], the tuple for Amazon. The Amazon tuple's three
items are referenced as companies[1][0], companies[1][1], and companies[1][2]. Note: companies[1][0] can
be thought of as (companies[1])[0], companies[1][1] can be thought of as (companies[1])[1], and compa-
nies[1][2] can be thought of as (companies[1])[2].

2. (5,)
 5
 ()

 The arguments of the first and third print functions are tuples. The comma in the first print function
indicates that the argument is a single- element tuple, and therefore the function displays a tuple. Since the
argument in the second print function has no comma, the set of parentheses merely encloses an expres-
sion. The third print statement displays the empty tuple.

3. Yes. For performance purposes, the statement using join is superior.

Chapter 2 Key TermS
and ConCepts exAmPLeS

2.1 Numbers

int (integer) and float (floating point) are
numeric data types.

A variable is a name that points to a
location in memory that holds data.
The data pointed to (called the value
of the variable) can change during the
 execution of the program.

The print function displays values of
expressions separated by spaces.

Arithmetic operators: + , *, - , /, **, //
(integer division), % (modulus).

Reserved words cannot be used as
variable names.

Mathematical Functions: abs, int, round.

Python is case- sensitive.

Augmented assignments combine an
operator with an assignment statement.

Errors: syntax (misuse of Python
 language), exception (error that occurs
during runtime), logic (produces
 unintended result)

int: 3, -7, 0 float: 3., .025, -5.5

price = 19.99

numberOfGrades = 32

print(32, 3., .25, price) displays
32 3.0 0.25 19.99.

3 + 2 = 5, 3 * 2 = 6, 3 - 2 = 1, 3 / 2 = 1.5,
3 ** 2 = 8, 7 // 2 = 3, 7 , 2 = 1, 4 ** .5 = 2

return, lambda, while, and if are reserved
words.

abs(-2) = 2, int(3.7) = 3, round(1.28, 1) = 1.3

price is a different variable than Price.

Suppose n = 3. After n += 2 is executed, the
value of n is 5.

Syntax error: print((5) [should be print(5)]

Exception error: num = 5 / 0

Logic error: average = 3 + 5 / 2

 Key Terms and Concepts ◆ 87

 88 ◆ Chapter 2 Core Objects, Variables, Input, and Output

Chapter 2 Key TermS
and ConCepts exAmPLeS

2.2 Strings

A string is a data type consisting of a
sequence of characters surrounded by
quotation marks.

Each character of a string is identified by
its relative position from the left with a
 non- negative index starting with 0 and
its relative position from the right with a
negative index starting with -1.

A slice of a string is a substring denoted
by square brackets containing a colon
and possibly numbers.

String functions and methods: len, find,
upper, lower, count, title, rstrip.

Two string operators are concatenation
(+) and repetition (*).

The input function displays a prompt
and then assigns data entered by the user
to a variable.

A comment is a statement preceded with
a # character that documents a program.

You can break a statement within
parentheses or with the use of the
 line- continuation character (\).

"Hello World!", 'x', "123-45-6789"

Suppose s has the value "Python". The value
of s[3] is 'h' and the value of s[-4] is 't'. s[10]
generates an IndexError exception.

Suppose s has the value "Python". s[2:5] is
"tho", s[-3:] is "hon", and s[:] is "Python".

len("ab") is 2, "ab".find('b') is 1, "ab".upper()
is "AB", "Ab".lower() is "ab", "bob".count('b')
is 2, "quo vadis".title() is "Quo Vadis", and
"ab ".rstrip() is "ab".

"ab" + 'c' is "abc" and "ha" * 3 is "hahaha".

name = input("Enter name: ")

age = int(input("Enter age: "))

rate = 5 # interest rate

Find average grade.

print("Hello", n = 2 +\

 "World!") 3

2.3 Output

When a horizontal tab character (\t)
or a newline character (\n) appears in
a string, the print function displays the
characters following it at the next tab
stop or on the next line, respectively.

print(val1,...,valN, sep=str1,

end=str2) displays the N values
 separated by str1 and ending with str2.
The arguments sep and end are optional
and have default values " " and "\n".

print("spam\tand\neggs")

[Run]

spam and

eggs

print(1, 2, sep='*', end="") displays
1*2 and suppresses moving cursor to a new
line. print(1, 2) displays 1 2 and terminates
printing on the current line.

Chapter 2 Key TermS
and ConCepts exAmPLeS

The expandtabs method controls the
number of positions between horizontal
tab stops. (Default is 8.)

The ljust, rjust, and center methods
control the justification of data in a field
of a specified width.

The format method replaces numbered
placeholders of the form {n:format
 specifier} in a string with comma-
 separated arguments of the method.
Some common components of the
format specifier are a number giving
the width of the field in which the
 argument is to be displayed, a symbol
giving the type of justification in
the field, a comma to indicate that
a number is to be displayed with
 thousands separators, .rf (where r is a
whole number) to display a number as
a float rounded to r decimal places, d to
 indicate that the argument is a number,
and s to indicate that the argument is a
string.

print("a\tbc\td".expandtabs(3))
displays a bc d.

print("01234567")

print("spam".center(8))

[Run]

01234567
 spam

s = "{0:8s}{1:>10s}"

print(s.format("State", "Area"))

s = "{0:8s}{1:10,d}"

print(s.format("Ohio", 44830))

[Run]

State Area

Ohio 44,830

print("{0:.1%}".format(.4568))

print("{0:9,.2f}".format(5876.237))

[Run]

45.7%

 5,876.24

2.4 Lists, Tuples, and Files— An
Introduction

A list is an ordered sequence of items.
Items are referred by their position
(called their index) starting at 0 from the
left end or their position (starting at -1)
from their right end. Slices of lists are
defined in much the same way as slices
of strings.

List functions: del, len, max, min, sum.
(The sum function applies only to lists
of numbers.)

List methods: append, clear, count,
 extend, index, insert, remove.

L = ["spam", 35, 22.8]

The item "spam" can be referenced as L[0] or
L[-3]. The values of both L[0:2] and L[:-1]
are ["spam", 35].

See Table 2.5.

See Table 2.5.

 Key Terms and Concepts ◆ 89

 90 ◆ Chapter 2 Core Objects, Variables, Input, and Output

Chapter 2 Key TermS
and ConCepts exAmPLeS

A tuple is a sequence similar to a list
except that it cannot be altered in place.
The list functions mentioned above
 (except for del) also apply to tuples. Of
the list methods mentioned above, tuples
 support only count and index. Tuples
support concatenation and repetition.

The split method converts a string
 containing one or more instances of
a separator (usually a comma or a
blank space) to a list. The join method
 concatenates a list or tuple of strings
into a single string with a specified
 separator inserted between each pair of
items.

The open function can be used to fill a
list with each line of a file as an item of
the list.

When a list's items are all lists, the
 configuration is referred to as nested
lists.

An object whose data cannot be
 modified in place is said to be
 immutable.

Referencing an item of a list or tuple
with an improper index generates an
IndexError Traceback message

The list and tuple functions convert
tuples to lists and vice versa.

t = (2, 3, 1, 3)

print(t[1], t.index(3), end=" ")

print(t.count(3), len(t), sum(t))

print(t + (7, 5))

print(t * 2)

[Run]

3 1 2 4 9

(2, 3, 1, 3, 7, 5)

(2, 3, 1, 3, 2, 3, 1, 3)

print("spam,eggs".split(','))

print(", ".join(['spam','eggs']))

[Run]

['spam', 'eggs']

spam, eggs

infile = open("fileName", 'r')

L = [line.rstrip() for line in

 infile]

infile.close() creates a list of strings
 consisting of the lines from the file.

L = [["Bonds", 762],["Aaron", 755]]

L[0][1] has the value 762.

Numbers, strings, and tuples are immutable.
Lists are mutable.

(5, 3, 2)[6] generates an IndexError Traceback
message.

list(2, 3) has value [2, 3].
tuple[2, 3] has value (2, 3).

Chapter 2 PrOgrAmmINg PrOJeCTS

1. Make Change Write a program to make change for an amount of money from
0 through 99 cents input by the user. The output of the program should show the
number of coins from each denomination used to make the change. See Fig. 2.34.

2. Car Loan If A dollars is borrowed at r% interest compounded monthly to pur-
chase a car with monthly payments for n years, then the monthly payment is given
by the formula

monthly payment =
i

1 - (1 + i)-12n
A

where i = r
1200. Write a program that calculates the monthly payment after the

user gives the amount of the loan, the interest rate, and the number of years. See
Fig. 2.35.

3. Bond Yield One measure of a bond’s performance is its Yield To Maturity (YTM).
YTM values for government bonds are complex to calculate and are published in
 tables. However, they can be approximated with the simple formula YTM = intr + a

b ,

where intr is the interest earned per year, a = face value - current market price
years until maturity , and

b = face value + current market price
2 . For instance, suppose a bond has a face value of $1,000,

a coupon interest rate of 4%, matures in 15 years, and currently sells for $1,180.

Then intr = .04 # 1,000 = 40, a = 1000 - 1180
15 = -12, b = 1000 + 1180

2 = 1090, and

YTM = 40 - 12
1090 ≈ 2.57,. Note: The face value of the bond is the amount it will be

redeemed for when it matures, and the coupon interest rate is the interest rate stated
on the bond. If a bond is purchased when it is first issued, then the YTM is the same
as the coupon interest rate. Write a program that requests the face value, coupon
interest rate, current market price, and years until maturity for a bond, and then
calculates the bond’s YTM. See Fig. 2.36.

Figure 2.34 Possible outcome of
Programming Project 1.

Enter amount of change: 93

Quarters: 3 Dimes: 1

Nickels: 1 Cents: 3

Figure 2.35 Possible outcome of
Programming Project 2.

Enter amount of loan: 12000

Enter interest rate (%): 6.4

Enter number of years: 5

Monthly payment: $234.23

Figure 2.36 Possible outcome of
Programming Project 3.

Enter face value of bond: 1000

Enter coupon interest rate: .04

Enter current market price: 1180

Enter years until maturity: 15

Approximate YTM: 2.57%

Enter price of item: 25.50

Enter weight of item in

pounds and ounces separately.

Enter pounds: 1

Enter ounces: 9

Price per ounce: $1.02

Figure 2.37 Possible outcome of
Programming Project 4.

4. Unit Price Write a program that requests the price and weight of an item in pounds
and ounces, and then determines the price per ounce. See Fig. 2.37.

5. Stock Portfolio An investor’s stock portfolio consists of four Exchange Traded
Funds (SPY, QQQ, EEM, and VXX). Write a program that requests the amount

 Programming Projects ◆ 91

 92 ◆ Chapter 2 Core Objects, Variables, Input, and Output

invested in each fund as input and then displays the total amount invested and each
fund’s percentage of the total amount invested. See Fig. 2.38.

Figure 2.38 Possible outcome of Programming
Project 5.

Enter amount invested in SPY: 876543.21

Enter amount invested in QQQ: 234567.89

Enter amount invested in EEM: 345678.90

Enter amount invested in VXX: 123456.78

ETF PERCENTAGE

SPY 55.47%

QQQ 14.84%

EEM 21.87%

VXX 7.81%

TOTAL AMOUNT INVESTED: $1,580,246.78

Figure 2.39 Possible outcome of
Programming Project 6.

Enter number of miles: 5

Enter number of yards: 20

Enter number of feet: 2

Enter number of inches: 4

Metric length:

 8 kilometers

 65 meters

 73.5 centimeters

6. Length Conversion Write a program to convert a U.S. Customary System length
in miles, yards, feet, and inches to a Metric System length in kilometers, meters, and
centimeters. A sample run is shown in Fig. 2.39. After the numbers of miles, yards,
feet, and inches are entered, the length should be converted entirely to inches and
then divided by 39.37 to obtain the value in meters. The int function should be used
to break the total number of meters into a whole number of kilometers and meters.
The number of centimeters should be displayed to one decimal place. The needed
formulas are as follows:

 total inches = 63,360 * miles + 36 * yards + 12 * feet + inches

 total meters = total inches/39.37

 kilometers = int(meters/1000)

93

3

3.1 Relational and Logical Operators 94

◆  ASCII Values  ◆  Relational Operators  ◆  Sorting the Items in a List 

◆  Logical Operators  ◆  Short-Circuit Evaluation  ◆  The bool Data Type 

◆  Three Methods That Return Boolean Values  ◆  Simplifying Conditions

3.2 Decision Structures 105

◆  if-else Statements  ◆  if Statements  ◆  Nested if-else Statements  ◆  The elif Clause 

◆  Input Validation with if-elif-else Statements  ◆  True and False

3.3 The while Loop 121

◆  The while Loop  ◆  The break Statement  ◆  The continue Statement 

◆  Creating a Menu  ◆  Infinite Loops

3.4 The for Loop 134

◆  Looping Through an Arithmetic Progression of Numbers 

◆  Step Values for the range Function  ◆  Nested for Loops 

◆  Looping Through the Characters of a String 

◆  Looping Through the Items of a List or Tuple 

◆  Looping Through the Lines of a Text File  ◆  The pass Statement 

◆  Populating a List with the Contents of a Text File

Key Terms and Concepts 153

Programming Projects 155

Structures That
Control Flow

 94 ◆ Chapter 3 Structures That Control Flow

3.1 Relational and Logical Operators

In Chapter 1, we discussed the two logical programming constructs decision and loop. In
this chapter, we learn how to implement decision and loop structures. In order to make
decisions (and often in order to control loops), we must specify a condition that determines
the course of action.

A condition (or Boolean expression) is an expression involving relational operators
(such as 6 and 7 =) and logical operators (such as and, or, and not). ASCII values deter-
mine the order used to compare strings with relational operators. A condition evaluates to
either True or False (referred to as the truth value of the condition). True and False are
reserved words.

 ■ ASCII Values
Each of the 47 keys in the center typewriter portion of the keyboard can produce two char-
acters, for a total of 94 characters. Adding 1 for the character produced by the space bar
makes 95 characters. Associated with these characters are numbers ranging from 32 to 126.
These values, called the ASCII values of the characters, are given in Appendix A. Table 3.1
shows a few ASCII values.

Table 3.1 A few ASCII values.

32 (space) 48 0 66 B 122 z
33 ! 49 1 90 Z 123 {
34 “ 57 9 97 a 125 }
35 # 65 A 98 b 126 ~

The ASCII standard also assigns characters to some numbers above 126. Table 3.2
shows a few of the higher ASCII values.

Table 3.2 A few higher ASCII values.

162 ¢ 177 ; 181 µ 190 ¾
169 © 178 ² 188 ¼ 247 ,
176 ˚ 179 ³ 189 ½ 248 ø

If n is a nonnegative number, then

chr(n)

is the single-character string consisting of the character with ASCII value n. If str is any
single-character string, then

ord(str)

is the ASCII value of the character. For instance, the statement

print(chr(65))

displays the letter A, and the statement

print(ord('A'))

displays the number 65.

VideoNote

Relational
and Logical
Operators

 3.1 Relational and Logical Operators ◆ 95

Concatenation can be used with chr to obtain strings using the higher ASCII characters.
For instance, the statement

print("32" + chr(176) + " Fahrenheit")

displays 32˚ Fahrenheit.

 ■ Relational Operators
The relational operator less than (6) can be applied to numbers, strings, and other objects.
The number a is said to be less than the number b if a lies to the left of b on the number
line. For instance, 2 6 5, -5 6 -2, and 0 6 3.5.

The string a is said to be less than the string b if a precedes b when using the
ASCII table to order their characters. Digits precede uppercase letters, which pre-
cede lowercase letters. Two strings are compared character by character (work-
ing from left to right) to determine which string should precede the other. Thus,
“cat” 6 “dog”, “cart” 6 “cat”, “cat” 6 “catalog”, “9W” 6 “bat”, “Dog” 6 “cat”, and
“sales_99” 6 “sales_retail”. This type of ordering is called lexicographical ordering.
Table 3.3 shows the different relational operators and their meanings.

Table 3.3 Relational operators.

Python Notation Numeric Meaning String Meaning

== equal to identical to
!= not equal to different from
6 less than precedes lexicographically
7 greater than follows lexicographically
6 = less than or equal to precedes lexicographically or is identical to
7 = greater than or equal to follows lexicographically or is identical to
in substring of
not in not a substring of

 Example 1 Relational Operators Determine whether each of the following condi-
tions evaluates to True or False.

(a) 1 6 = 1

(b) 1 6 1

(c) “car” 6 “cat”

(d) “Dog” 6 “dog”

(e) “fun” in “refunded”

SOLuTIOn

(a) True. The notation 6 = means “less than or equal to.” That is, the condition is true
provided either of the two situations holds. The second one (equal to) holds.

(b) False. The notation 6 means “strictly less than” and no number can be strictly less
than itself.

 96 ◆ Chapter 3 Structures That Control Flow

Conditions can also involve variables, numeric operators, and functions. To determine
whether a condition is true or false, first evaluate the numeric or string expressions and then
decide if the resulting assertion is true or false.

(c) True. The characters of the strings are compared one at a time working from left
to right. Because the first two characters match, the third character determines the
order.

(d) True. Because uppercase letters precede lowercase letters in the ASCII table, the first
character of “Dog” precedes the first character of “dog”.

(e) True. The string “fun” is “refunded”[2:5], a substring of “refunded”.

An int can be compared to a float. Otherwise, values of different types cannot be com-
pared. For instance, a string cannot be compared to a number.

The relational operators can be applied to lists or tuples. In order for two lists or two
tuples to be equal, they must have the same length and corresponding items must have the
same value. The truth value of the condition is determined by comparing successive cor-
responding items until the two items differ (or cannot be compared) or until one of the
sequences runs out of items. The first pair of items that have different values determine
the truth value of the condition. If one of the sequences runs out of items and all items
pairs match, then the shorter sequence is said to be the lesser of the two. Some examples
of comparisons having truth value True are as follows:

[3, 5] < [3, 7]

[3, 5] < [3, 5, 6]

[3, 5, 7] < [3, 7, 2]

[7, "three", 5] < [7, "two", 2]

When the in operator is applied to a list or tuple, it should be taken to mean is an item
of. Two true examples are as follows:

'b' in ['a', 'b', 'c']

'B' not in ('a', 'b', 'c')

 Example 2 Relational Operators Suppose the variables a and b have values 4 and 3,
and the variables c and d have values “hello” and “bye”. Are the following conditions true
or false?

(a) (a + b) 6 (2 * a)

(b) (len(c) - b) = = (a/2)

(c) c 6 (“good” + d)

SOLuTIOn

(a) True. The value of a + b is 7 and the value of 2 * a is 8. Since 7 6 8, the condition is
true.

(b) True, because the value of len(c) - b is 2, the same as (a/2).

(c) False. The condition “hello” 6 “goodbye” is false, since h follows g in the alphabet.

 3.1 Relational and Logical Operators ◆ 97

 ■ Sorting the Items in a List
The items in a list where every pair of items can be compared can be ordered with the sort
method. The statement

list1.sort()

changes list1 to a list having the same items, but in ascending order either numerically or
lexicographically as appropriate.

 Example 3 Sort a List The following program illustrates how Python orders two
simple lists.

list1 = [6, 4, -5, 3.5]

list1.sort()

print(list1)

list2 = ["ha", "hi", 'B', '7']

list2.sort()

print(list2)

[Run]

[-5, 3.5, 4, 6]

['7', 'B', 'ha', 'hi']

 Example 4 Sort a List The following program illustrates how Python orders the
items in a complicated list of strings. Note: chr(177) is the { character and chr(162) is the
¢ character.

list1 = [chr(177), "cat", "car", "Dog", "dog", "8-ball", "5" + chr(162)]

list1.sort()

print(list1)

[Run]

['5¢', '8-ball', 'Dog', 'car', 'cat', 'dog', '±']

 Example 5 Sort a List The following program orders the items in a list of tuples.

monarchs = [("George", 5), ("Elizabeth", 2), ("George", 6), ("Elizabeth", 1)]

monarchs.sort()

print(monarchs)

[Run]

[('Elizabeth', 1), ('Elizabeth', 2), ('George', 5), ('George', 6)]

 ■ Logical Operators
Programming often requires more complex conditions than those considered so far. For instance,
suppose we would like to state that the value of the variable str1 is a string of length 10 and con-
tains the substring “gram”. The proper Python condition is

(len(str1) == 10) and ("gram" in str1)

 98 ◆ Chapter 3 Structures That Control Flow

This condition is a combination of the condition (len(str1) == 10) and the condition
("gram" in str1) with the logical operator and.

The three main logical operators are the reserved words and, or, and not. Conditions
that use these operators are called compound conditions. If cond1 and cond2 are conditions,
then the compound condition

cond1 and cond2

is true if both of the conditions are true. Otherwise, it is false. The compound condition

cond1 or cond2

is true if either (or both) of the two conditions are true. Otherwise, it is false. The com-
pound condition

not cond1

is true if the condition is false, and is false if the condition is true.

 Example 6 Logical Operators Suppose the variable n has value 4 and the variable
answ has value “Y”. Determine whether each of the following conditions evaluates to True
or False.

(a) (2 6 n) and (n 6 6)

(b) (2 6 n) or (n = = 6)

(c) not (n 6 6)

(d) (answ = = “Y”) or (answ = = “y”)

(e) (answ = = “Y”) and (answ = = “y”)

(f) not (answ = = “y”)

(g) ((2 6 n) and (n = = 5 + 1)) or (answ = = “No”)

(h) ((n = = 2) and (n = = 7)) or (answ = = “Y”)

(i) (n = = 2) and ((n = = 7) or (answ = = “Y”))

SOLuTIOn

(a) True, because the conditions (2 6 4) and (4 6 6) are both true.

(b) True, because the condition (2 6 4) is true. The fact that the condition (4 = = 6) is
false does not affect the conclusion. The only requirement is that at least one of the
two conditions be true.

(c) False, because (4 6 6) is true.

(d) True, because the first condition becomes (“Y” = = “Y”) when the value of answ is
substituted for answ.

(e) False, because the second condition is false. Actually, this compound condition is false
for any value of answ.

(f) True, because (“Y” = = “y”) is false.

(g) False. In this logical expression, the compound condition ((2 6 n) and (n = = 5 + 1))
and the simple condition (answ = = “No”) are joined by the logical operator or. Because
both these conditions are false, the total condition is false.

 3.1 Relational and Logical Operators ◆ 99

 ■ Short-Circuit Evaluation
When Python encounters the compound condition (cond1 and cond2), it first evaluates
cond1. If cond1 is false, Python realizes that the compound condition is false and therefore
does not bother to evaluate cond2. Similarly, when Python encounters the compound con-
dition (cond1 or cond2), it first evaluates cond1. If cond1 is true, Python realizes that the
compound condition is true and therefore does not bother to evaluate cond2. This process
is called short-circuit evaluation.

Some programming languages evaluate both parts of a compound condition before
assigning a value to the compound condition. If so, evaluation of the condition

(number != 0) and (m == (n / number))

will cause the program to crash and display an error message when number has the value 0.
However, due to short-circuit evaluation, the evaluation of this compound condition will
never cause a problem in Python.

Short-circuit evaluation sometimes improves the performance of a program. Such can
be the case, for instance, when the evaluation of cond2 is time-consuming.

 ■ The bool Data Type
A statement of the form

print(condition)

will display either True or False. The objects True and False are said to have Boolean data
type or to be of data type bool. The following lines of code display False:

x = 5

print((3 + x) < 7)

The following lines of code display True:

x = 2

y = 3

var = x < y

print(var)

The answer to part (i) of Example 6 can be confirmed to be False by executing the fol-
lowing lines of code:

n = 4

answ = "Y"

print((n == 2) and ((n == 7) or (answ == "Y")))

 ■ Three Methods That Return Boolean Values
If str1 and str2 are strings, then the condition

str1.startswith(str2)

(h) True, because the condition following or is true.

(i) False, because the first condition is false. (Comparing (h) and (i) shows the necessity
of using parentheses to specify the intended grouping.)

 100 ◆ Chapter 3 Structures That Control Flow

has the value True if and only if str1 begins with str2, and the condition

str1.endswith(str2)

has the value True if and only if str1 ends with str2.
For instance, the following two conditions are true:

"fantastic".startswith("fan")

"fantastic".endswith("stic")

If var1 has the value “fantastic” and var2 has the value “Fant”, then the following two
conditions are false:

var1.startswith(var2)

"elephant".endswith(var2)

If item is a literal or variable, then a condition of the form

isinstance(item, dataType)

has the value True if and only if the value of item has the specified data type, where dataType
is any data type (such as int, float, str, bool, list, or tuple).

For example, the condition isinstance("32", int) has the value False and the condi-
tion isinstance(32, int) has the value True.

Table 3.4 shows several other string methods that return Boolean values. In the table,
assume that str1 is not the empty string. Each of the methods in the table returns False
when str1 is the empty string.

Table 3.4 Methods that return either True or False.

Method Returns True when

str1.isdigit() all of str1’s characters are digits
str1.isalpha() all of str1’s characters are letters of the alphabet
str1.isalnum() all of str1’s characters are letters of the alphabet or digits
str1.islower() str1 has at least 1 alphabetic character and all of its alphabetic characters are

lowercase
str1.isupper() str1 has at least 1 alphabetic character and all of its alphabetic characters are

uppercase
str1.isspace() str1 contains only whitespace characters

 ■ Simplifying Conditions
Lists or tuples can sometimes be used to simplify long compound conditions containing
logical operators. For instance, the compound condition

(state == "MD") or (state == "VA") or (state == "WV") or (state == "DE")

can be replaced with the condition

state in ["MD", "VA", "WV", "DE"]

Sometimes compound conditions involving inequalities can be written in a clearer
form. For instance, the condition

(x > 10) and (x <= 20)

 3.1 Relational and Logical Operators ◆ 101

can be replaced with the condition

10 < x <= 20

and the condition

(x <= 10) or (x > 20)

can be replaced with the condition

not(10 < x <= 20)

Two principles of logic, known as De Morgan’s Laws, are as follows:

not(cond1 and cond2) is the same as not(cond1) or not(cond2)

not(cond1 or cond2) is the same as not(cond1) and not(cond2)

De Morgan’s Laws can be applied from left to right or from right to left. For instance,
according to De Morgan’s Laws, the compound condition

not((temperature >= 80) and (humidity <= 60))

is the same as

(temperature < 80) or (humidity > 60))

and the compound condition

not(len(word) == 5) and not(word.startswith('A'))

is the same as

not((len(word) == 5) or (word.startswith('A')))

 ■ Comments
1. A condition involving numeric variables is different from an algebraic identity or

inequality. The assertion (a + b) 6 (2 * a) considered in Example 2 is not a valid alge-
braic inequality because it isn’t true for all values of a and b. When encountered in a
Python program, however, it will be considered true if it is true for the current values
of the variables.

2. A common error is to replace the condition (not (n 6 m)) with the condition (n 7 m).
The correct replacement is (n 7 = m).

3. The condition “three” = = 3 evaluates to False, but the condition “three” 6 3 triggers
a Traceback error.

4. A common error is to use a single equal sign in a condition where a double equal sign
is required.

5. The sort method cannot be used in an assignment statement. For instance, the statement
list2 = list1.sort() is not valid because sort does not return a value; it just reorders
the items in place. It can be replaced with the following pair of statements:

list1.sort()

list2 = list1

6. Since the words and, or, not, True, and False are reserved words, they are colorized
orange by IDLE.

 102 ◆ Chapter 3 Structures That Control Flow

Practice Problems 3.1

1. Does the condition "Hello " == "Hello" evaluate to True or False?

2. Explain why (27 > 9) evaluates to True, whereas (“27” 7 “9”) evaluates to False.

3. Complete Table 3.5.

Table 3.5 Truth values of logical operators.

cond1 cond2 cond1 and cond2 cond1 or cond2 not cond2

True True True
True False True
False True False
False False

4. Consider Example 5. Suppose that monarchs had been a tuple instead of a list. Is there
a way to order the items in monarchs even though tuples do not have a sort method?

5. What is displayed by the statement print("Hello World".isalpha())?

6. What is the difference between = and = = ?

ExERCISES 3.1

In Exercises 1 through 8, determine the output displayed.

1. print(chr(42)*5)

2. print('Py'+chr(116)+'ho'+chr(110))

3. print("The upper case of letter g is " + chr((ord('g') - ord('a')) +
ord('A')) + '.')

4. print(chr(ord('B'))) # The ASCII value of B is 66

5. list1 = [17, 3, 12, 9, 10]
list1.sort()

print("Minimum:", list1[0])

print("Maximum:", list1[-1])

6. list1 = [17, 3, 12, 9, 10]
list1.sort()

print("Spread:", list1[-1] – list1[0])

7. letter = 'D'
print(letter + " is 4 positions before " + chr(ord(letter) + 4) +

" alphabetically.")

8. letter = 'D'
spread = ord('a') - ord('A')

print(chr(ord(letter) + spread))

 3.1 Relational and Logical Operators ◆ 103

13. a ** (5 – 2) > 7 14. 3e-2 < .01 * a

15. (a < b) or (b < a) 16. (a * a < b) or not(a * a < a)

17. not((a < b) and (a < (b + a)))

18. not(a < b) or not (a < (b + a))

19. ((a == b) and (a * a < b * b)) or ((b < a) and (2 * a < b))

20. ((a == b) or not (b < a)) and ((a < b) or (b == a + 1))

In Exercises 21 through 44, determine whether the condition evaluates to True or False.

21. 9W <> "9w" 22. 'Harry' > 'Mine'

11. b <= 3 12. a ** b == b ** a

23. ''Ab' == 'aB' 24. 'D' >= '//'

25. 'a' == 'A' 26. '1' < 'one'

27. ("Duck" < "pig") and ("pig" < "big") 28. "Duck" < "Duck" + "Duck"

29. not(('B' == 'b') or ("Big" < "big")) 30. "th" in "Python"

31. "ty" in "Python" 32. 7 < 34 and (not ("7" > "34" or "7"
== "34"))

33. isinstance(32, float) 34. isinstance(32., int)

35. isinstance(32., float) 36. isinstance(32, int)

37. "colonel".startswith('k') 38. "knight".startswith('n')

39. potato.endswith("o",2,4) 40. "flute".endswith('t')

41. True or False 42. True and False

43. not True 44. not False

In Exercises 45 through 54, determine whether or not the two conditions are
equivalent—that is, whether they will both evaluate to True or both evaluate to False
for any values of the variables appearing in them.

45. a <= b; (a < b) or (a == b)

46. not(a < b); a > b

47. (a == b) or (a < b); a != b

48. not((a == b) or (a == c)); (a != b) and (a != c)

49. not((a == b) and (a == c)); (a != b) or (a != c)

50. (a < b) and ((a > d) or (a > e));
((a < b) and (a > d)) or ((a < b) and (a > e))

In Exercises 9 through 20, assume the value of a is 1 and the value of b is 1.5, and
determine whether the condition evaluates to True or False. Then, use a print function
to confirm your answer.

9. 3 * a == 2 * b 10. ((5 – a) * b) < 7

 104 ◆ Chapter 3 Structures That Control Flow

51. (a <= b) and (a <= c); not((a > b) or (a > c))

52. not(a >= b); (a <= b) and not(a == b)

53. ch in "abcdefghijklmnopqrstuvwxyz"; 97 <= ord(ch) <= 122

54. str1.upper() == str1; str1.isupper() (Assume str1 has at least 1 alphabetic character.)

In Exercises 55 through 60, write a condition equivalent to the negation of the given
condition. (For example, a != b is equivalent to the negation of a = = b.)

55. a > b 56. (a == b) or (a == d)

57. (a < b) and (c != d) 58. not((a == b) or (a > b))

59. a <= b 60. (a != "") and (a < b) and (len(a) < 5)

In Exercises 61 through 68, simplify the expression. (In Exercises 63 through 68, assume
that the variable has an integer value.)

61. (ans == 'Y') or (ans == 'y') or (ans == "Yes") or (ans == "yes")

62. (name == "Athos") or (name == "Porthos") or (name == "Aramis")

63. (year == 2010) or (year == 2011) or (year == 2012) or (year == 2013)

64. (n == 1) or (n == 2) or (n == 3) or (n == 4) or (n == 5) or (n == 6)

65. (n >= 3) and (n < 9) 66. (n <= 22) and (n > 1)

67. (n <= 10) and (n > –20) 68. (n <= 200) and (n >= 100)

In Exercises 69 through 84, determine whether True or False is displayed.

69. str1 = "target"
print(str1.startswith('t') and str1.endswith('t'))

70. print("colonel".startswith('k'))

71. str1 = "target"
print(str1.startswith('t') or str1.endswith('t'))

72. str1 = "target"
str2 = "get"

print(str1.startswith(str2,3))

73. str1 = "Teapot"
str2 = "Tea"

print(str1.startswith(str2))

74. str1 = "Teapot"
print(str1.startswith(str1[0:4]))

75. str1 = "tattarrattat"
print(str1.endswith(str1[::-1]))

76. str1 = "spam and eggs"
print(str1.endswith(str1[10:len(str1)]))

77. str1 = "spam and eggs"
print(str1.startswith(str1[:len(str1) - 1]))

 3.2 Decision Structures ◆ 105

78. num = "1234.56"
print(isinstance(num, float))

79. print(isinstance(25.0, int))

80. num = object()
print(isinstance(num, int))

81. char = chr(80)
print(isinstance(char, int))

82. print(isinstance('34', str))

83. str1 = "-123"
print(str1.isdigit())

84. print("seven".isdigit())

85. Rewrite the following statement using the chr function instead of escape sequences.

print("He said \"How ya doin?\" to me.")

Solutions to Practice Problems 3.1

1. False. The first string has six characters, whereas the second string has five. Two strings must be 100%
identical to be equal.

2. When 27 and 9 are compared as strings, their first characters, 2 and 9, determine their order. Since 2 pre-
cedes 9 in the ASCII table, “27” 6 “9”.

3.

4. Yes. Apply the list function to the tuple in order to create a list containing the items in monarch. Then,
apply the sort method to the list and use the tuple function to convert the list back into a tuple.

5. False. The space is not an alphabetical character.

6. The symbol = is used for assignment, whereas the symbol = = is used for comparison.

3.2 Decision Structures

Decision structures (also known as branching structures) allow a program to decide on a
course of action based on whether a certain condition is true or false.

 ■ if-else Statements
An if-else statement is a statement of the form

if condition:

 indented block of statements

else:

 indented block of statements

causes the program to execute the first block of statements when the condition is true and
to execute the second block of statements when the condition is false. Each indented block
consists of one or more Python statements. The reserved words if and else must be written
entirely in lowercase letters and each line in the blocks of statements should be indented

cond1 cond2 cond1 and cond2 cond1 or cond2 not cond2
True True True True False
True False False True True
False True False True False
False False False False True

VideoNote

Decision
Structures

 106 ◆ Chapter 3 Structures That Control Flow

the same distance to the right. That is, they should be lined up vertically in columns. This
physical indentation tells the interpreter and the human reader where the block starts and
stops. (We will always indent blocks of statements by four spaces.)

 Example 2 Volume of a Ten-Gallon Hat The if-else statement in the following pro-
gram has relational operators in its condition.

A quiz.

Obtain answer to question.

answer = eval(input("How many gallons does a ten-gallon hat hold? "))

Evaluate answer.

if (0.5 <= answer <= 1):

 print("Good, ", end="")

 Example 1 Find the Larger Value The following program finds the larger of two
numbers input by the user. The condition is

num1 > num2

and each block consists of a single assignment statement. With the inputs 3 and 7 for num1
and num2, the condition is false, and so the second block is executed. Figure 3.1 shows the
flowchart for the if-else part of the program.

False

largerValue = num2 largerValue = num1

num1 7 num2?
True

Figure 3.1 Flowchart for the if-else statement in Example 1.

Determine the larger of two numbers.

Obtain the two numbers from the user.

num1 = eval(input("Enter the first number: "))

num2 = eval(input("Enter the second number: "))

Determine and display the larger value.

if num1 > num2:

 largerValue = num1 # execute this statement if the condition is true

else:

 largerValue = num2 # execute this statement if the condition is false

print("The larger value is", str(largerValue) + ".")

[Run]

Enter the first number: 3

Enter the second number: 7

The larger value is 7.

 3.2 Decision Structures ◆ 107

 ■ if Statements
The else part of an if-else statement can be omitted. If so, when the condition is false exe-
cution continues with the line after the if statement block. This type of if statement appears
twice in the next example.

else:

 print("No, ", end="")

print("it holds about 3/4 of a gallon.")

[Run]

How many gallons does a ten-gallon hat hold? 10

No, it holds about 3/4 of a gallon.

 Example 3 Find the Largest Value The following program contains two if state-
ments. Figure 3.2 shows the flowchart for the second part of the program. The value of max
(largest value) is initially set to the first number input and is updated by the if statements
when necessary.

max = 1st number

2nd number 7 max?
False True max = 2nd number

3rd number 7 max?

Display max

False True max = 3rd number

Figure 3.2 Flowchart for Example 3.

Find the largest of three numbers.

Input the three numbers.

firstNumber = eval(input("Enter first number: "))

secondNumber = eval(input("Enter second number: "))

thirdNumber = eval(input("Enter third number: "))

Determine and display the largest value.

max = firstNumber

if secondNumber > max:

 max = secondNumber

if thirdNumber > max:

 max = thirdNumber

print("The largest number is", str(max) + ".")

 108 ◆ Chapter 3 Structures That Control Flow

 ■ nested if-else Statements
The indented blocks of if-else and if statements can contain other if-else and if statements.
In this situation the statements are said to be nested. Examples 4 and 5 contain nested if-
else statements.

[Run]

Enter first number: 3

Enter second number: 7

Enter third number: 4

The largest number is 7.

 Example 4 Interpret Beacon The color of the beacon light atop Boston’s old John
Hancock building forecasts the weather according to the following rhyme:

Steady blue, clear view.
Flashing blue, clouds due.
Steady red, rain ahead.
Flashing red, snow instead.

The following program requests a color (Blue or Red) and a mode (Steady or Flashing)
as input and then displays the weather forecast. Both courses of action associated with the
main if-else statement consist of if-else statements.

Interpret weather beacon.

Obtain color and mode.

color = input("Enter a color (BLUE or RED): ")

mode = input("Enter a mode (STEADY or FLASHING): ")

color = color.upper()

mode = mode.upper()

Analyze responses and display weather forecast.

result = ""

if color == "BLUE":

 if mode == "STEADY":

 result = "Clear View."

 else: # mode is FLASHING

 result = "Clouds Due."

else: # color is RED

 if mode == "STEADY":

 result = "Rain Ahead."

 else: # mode is FLASHING

 result = "Snow Ahead."

print("The weather forecast is", result)

[Run]

Enter the color (BLUE or RED): RED

Enter the mode (STEADY or FLASHING): STEADY

The weather forecast is Rain Ahead.

 3.2 Decision Structures ◆ 109

 ■ The elif Clause
An extension of the if-else statement allows for more than two possible alternatives with
the inclusion of elif clauses. (elif is an abbreviation for “else if.”) A typical compound state-
ment containing elif clauses is as follows:

if condition1:

 indented block of statements to execute if condition1 is true

elif condition2:

 indented block of statements to execute if condition2 is true

 AND condition1 is not true

elif condition3:

 indented block of statements to execute if condition3 is true

 AND both previous conditions are not true

else:

 indented block of statements to execute if none of the above

 conditions are true

Python searches for the first true condition and carries out its associated block of state-
ments. If none of the conditions are true, then else’s block of statements is carried out.
Execution then continues with the statement following the if-elif-else statement. In general,
an if-elif-else statement can contain any number of elif clauses. As before, the else clause
is optional.

 Example 5 Evaluate Profit The following program requests the costs and revenue
for a company and displays the message “Break even” if the costs and revenue are equal;
otherwise, it displays the profit or loss. The indented block following the else header is
another if-else statement.

Evaluate profit.

Obtain input from user.

costs = eval(input("Enter total costs: "))

revenue = eval(input("Enter total revenue: "))

Determine and display profit or loss.

if costs == revenue:

 result = "Break even."

else:

 if costs < revenue:

 profit = revenue - costs

 result = "Profit is ${0:,.2f}.".format(profit)

 else:

 loss = costs - revenue

 result = "Loss is ${0:,.2f}.".format(loss)

print(result)

[Run]

Enter total costs: 9500

Enter total revenue: 8000

Loss is $1,500.00.

 110 ◆ Chapter 3 Structures That Control Flow

 Example 6 Find the Larger Value The following program modifies Example 1 so
that the program reports if the two numbers are equal.

Determine the larger of two numbers.

Obtain the two numbers from the user.

num1 = eval(input("Enter the first number: "))

num2 = eval(input("Enter the second number: "))

Determine and display the larger value.

if num1 > num2:

 print("The larger value is", str(num1) + ".")

elif num2 > num1:

 print("The larger value is", str(num2) + ".")

else:

 print("The two values are equal.")

[Run]

Enter the first number: 7

Enter the second number: 7

The two values are equal.

 Example 7 FICA Tax The Social Security or FICA tax has two components—the
Social Security benefits tax, which in 2014 was 6.2% of the first $117,000 of earnings for
the year, and the Medicare tax, which was 1.45% of earnings plus .9% of earnings above
$200,000 (for unmarried employees). The following program calculates a single employee’s
FICA tax withheld for the current pay period.

Calculate FICA tax for a single employee.

Obtain earnings.

str1 = "Enter total earnings for this year prior to current pay period: "

ytdEarnings = eval(input(str1)) # year-to-date earnings

curEarnings = eval(input("Enter earnings for the current pay period: "))

totalEarnings = ytdEarnings + curEarnings

Calculate the Social Security Benefits tax.

socialSecurityBenTax = 0

if totalEarnings <= 117000:

 socialSecurityBenTax = 0.062 * curEarnings

elif ytdEarnings < 117000:

 socialSecurityBenTax = 0.062 * (117000 - ytdEarnings)

Calculate and display the FICA tax.

medicareTax = 0.0145 * curEarnings

if ytdEarnings >= 200000:

 medicareTax += 0.009 * curEarnings

elif totalEarnings > 200000:

 medicareTax += 0.009 * (totalEarnings - 200000)

ficaTax = socialSecurityBenTax + medicareTax

print("FICA tax for the current pay period: ${0:0,.2f}".format(ficaTax))

[Run]

The if-elif statement in Example 7 allows us to calculate values that are not determined
by a simple formula.

 3.2 Decision Structures ◆ 111

Enter total earnings for this year prior to current pay period: 12345.67

Enter earnings for the current pay period: 543.21

FICA tax for current pay period: $41.56

 Example 8 Graduation Honors The program in Fig. 3.3 assumes that the user will
graduate and determines if they will graduate with honors.

Bestow graduation honors.

Request grade point average.

gpa = eval(input("Enter your gpa: "))

Determine if honors are warranted.

if gpa >= 3.9:

 honors = " summa cum laude."

elif gpa >= 3.6:

 honors = " magna cum laude."

elif gpa >= 3.3:

 honors = " cum laude."

else:

 honors = "."

Display conclusion.

print("You graduated" + honors)

[Run]

Enter your gpa: 3.7

You graduated magna cum laude.

[Run]

Enter your gpa: 3

You graduated.

Get gpa

False

False

False

Display “You
graduated” + honors

True

True

True

gpa Ú 3.9?

gpa Ú 3.6?

gpa Ú 3.3?

honors = “.”

honors =
“summa cum laude”

honors =
“magna cum laude”

honors =
“cum laude”

Start

End

Figure 3.3 Program and Flowchart for Example 8.

 ■ Input Validation with if-elif-else Statements
Suppose a program asks the user to input a number, and then uses the number in a calcula-
tion. If the user does not enter a number or enters an inappropriate number, the program
will crash. The Boolean-valued method isdigit can be used to prevent this from happening.

The following example illustrates the fact that when a decision construct contains elif
clauses, Python executes the block of statements corresponding to the first condition that
is satisfied and ignores all subsequent elif clauses—even if they also satisfy the condition.

 112 ◆ Chapter 3 Structures That Control Flow

 Example 9 Input Validation The following program uses the method isdigit to guard
against improper input.

Request two numbers and find their sum. Validate the input.

num1 = input("Enter first number: ")

num2 = input("Enter second number: ")

Display sum if entries are valid. Otherwise, inform

the user where invalid entries were made.

if num1.isdigit() and num2.isdigit():

 print("The sum is", str(eval(num1) + eval(num2)) + ".")

elif not num1.isdigit():

 if not num2.isdigit():

 print("Neither entry was a proper number.")

 else:

 print("The first entry was not a proper number.")

else:

 print("The second entry was not a proper number.")

[Run]

Enter first number: 5

Enter second number: six

The second entry was not a proper number.

 ■ True and False
Every object has a truth value associated with it and therefore can be used as a condition.
When numbers are used as conditions, 0 evaluates to False and all other numbers evaluate
to True. Of course, the objects True and False evaluate to True and False, respectively.
A string, list, or tuple used as a condition evaluates to False if it is empty, and otherwise
evaluates to True.

 Example 10 True or False The following program illustrates the truth values of
objects.

Illustrate Boolean values.

if 7:

 print("A nonzero number is true.")

else:

 print("The number zero is false.")

if []:

 print("A nonempty list is true.")

else:

 print("An empty list is false.")

if ["spam"]:

 print("A nonempty list is true.")

else:

 print("The empty list is false.")

[Run]

A nonzero number is true.

An empty list is false.

A nonempty list is true.

 3.2 Decision Structures ◆ 113

 ■ Comments
1. A line of the form if boolExp == True: should be shortened to if boolExp:. Similarly,

a line of the form if boolExp == False: should be shortened to if not boolExp:.

2. if statements can be used to guarantee that a number input by the user is in the proper
range. For instance, when the user is asked to input an exam grade, a line such as

if (0 <= grade <= 100):

can be used to guarantee that the number entered is between 0 and 100.

3. The words if, else, and elif are reserved words and therefore are colorized orange by IDLE.

4. The use of indentation to mark blocks of code helps make Python code more readable.
IDLE helps with indentation by automatically indenting code when required. For
instance, when the Enter (or return) key is pressed after the colon is typed at the end of
an if, elif, or else header, IDLE automatically indents the next line of code.

5. Statements consisting of a header followed by an indented block of code are called
compound statements. Two other compound statements, the while statement and the
for statement, are discussed in the next two sections.

6. The last six lines of Example 6 could have been written without elif as follows:

if num1 > num2:

 print("The larger value is", str(num1) + ".")

if num2 > num1:

 print("The larger value is", str(num2) + ".")

if num2 = num1:

 print("The two values are equal.")

However, elif should always be used when the test conditions are mutually exclusive. In
the code above, all three if statements are executed even if the first one is true.

Practice Problems 3.2

1. Suppose the user is asked to input a number for which the square root is to be taken.
Complete the if statement so that the lines of code that follow will display either the
message “Number can’t be negative.” or will display the square root of the number.

Check reasonableness of input.

number = eval(input("Enter a non-negative number: "))

if

2. Improve the following code:

if a < b:

 if c < 5:

 print("hello")

3. Improve the following code:

if (name == "John") or (name == "George") or \

 (name == "Paul") or (name == "Ringo"):

 flag = True

else:

 flag = False

4. Rewrite Example 5 using elif.

 114 ◆ Chapter 3 Structures That Control Flow

ExERCISES 3.2

In Exercises 1 through 14, determine the output displayed.

1. num = 4
if num <= 9:

 print("Less than ten.")

elif num == 4:

 print("Equal to four.")

2. gpa = 3.49
result = ""

if gpa >= 3.5:

 result = "Honors"

print(result + "Student")

3. print('a+b' < 'b+c') 4. print('a*b' < 'b*c')

5. a = 5
b = 7

sentence = ""

if ((5 * a) – 2*b + 4) <= (3*b-1):

 sentence = "Remember,"

print(sentence + "tomorrow is New Year's Day.")

6. change = 356
if change >= 100:

 print("Your change contains", change // 100, "dollars.")

else:

 print("Your change contains no dollars.")

7. a = 2
b = 3

c = 7

if (a * b) < c:

 b = a

else:

 c = a+b+c

print(a, b, c)

8. length = eval(input("Enter length of cloth in yards: "))
if length < 1:

 cost = 3.00 # cost in dollars

else:

 cost = 3.00 + ((length - 1) * 2.50)

result = "Cost of cloth is ${0:0.2f}.".format(cost)

print(result)

(Assume the response is 6.)

9. letter = input("Enter A, B, or C: ")
letter = letter.upper()

if letter == "A":

 print("A, my name is Alice.")

elif letter == "B":

 print("To be, or not to be.")

elif letter == "C":

 print("Oh, say, can you see.")

else:

 print("You did not enter a valid letter.")

(Assume the response is B.)

 3.2 Decision Structures ◆ 115

10. isvowel = False
letter = input("Enter a letter: ")

letter = letter.upper()

if (letter in "AEIOU"):

 isvowel = True

if isvowel:

 print(letter, "is a vowel.")

elif (not(65 <= ord(letter) <= 90)):

 print("You did not enter a letter.")

else:

 print(letter, "is not a vowel.")

(Assume the response is a.)

11. a = 5
if (a > 2) and ((a == 3) or (a < 7)):

 print("Hi")

12. number = 5
if number < 0:

 print("negative")

else:

 if number == 0:

 print("zero")

 else:

 print("positive")

13. if "spam":
 print("A nonempty string is true.")

else:

 print("A nonempty string is false.")

14. if "":
 print("An empty string is true.")

else:

 print("An empty string is false.")

In Exercises 15 through 18, identify the errors, state the type of each error (syntax,
runtime, or logic), and correct the block of code.

15. n = eval(input("Enter a number: "))
if 'n'%2 = 0:

 print("The number is an even number.")

else:

 print("The number is an odd number.")

16. number = 6
if number > 5 and < 9:

 print("Yes")

else:

 print("No")

17. major = "Computer Science"
if major == "Business" Or "Computer Science":

 print("Yes")

 116 ◆ Chapter 3 Structures That Control Flow

18. if a not b:
 print("Both are unequal")

else:

 print(“Both are equal”)

In Exercises 19 through 24, simplify the code.

19. if (a*3%3):
 a = (a*a)/(a+a)

else:

 a=5

20. if (a == 7):
 print("seven")

elif (a != 7):

 print("eleven")

21. if (j == 7):
 b = 1

else:

 if (j != 7):

 b = 2

22. if state == "CA":
if city == "LA" or city == "SD":

 print("Large city!")

23. answer = input("Is the Indian Ocean bigger than the Pacific Ocean?")
if (answer[0]=="Y"):

 answer="YES"

elif (answer[0]=="y"):

 answer="YES"

if(answer=="YES"):

 print("Incorrect")

elif(answer=="NO"):

 print("Correct")

24. feet = eval(input("How tall (in feet) is the Statue of Liberty? "))
if (feet <= 141):

 print("Nope")

if (feet > 141):

 if (feet < 161):

 print("Good")

 else:

 print("Nope")

print("The statue is 151 feet tall from base to torch.")

25. Restaurant Tip Write a program to determine how much to tip the server in a restau-
rant. The tip should be 15% of the check, with a minimum of $2. See Fig. 3.4.

Figure 3.4 Possible outcome of Exercise 25.

Enter amount of bill: 25.98

Tip is $3.90

Enter number of bagels: 12

Cost is $7.20.

Figure 3.5 Possible outcome of Exercise 26.

26. Cost of Bagels A bagel shop charges 75 cents per bagel for orders of less than a
half-dozen bagels and 60 cents per bagel for orders of a half-dozen or more. Write a pro-
gram that requests the number of bagels ordered and displays the total cost. See Fig. 3.5.

27. Cost of Widgets A store sells widgets at 25 cents each for small orders or at 20 cents
each for orders of 100 or more. Write a program that requests the number of widgets
ordered and displays the total cost. See Fig. 3.6.

 3.2 Decision Structures ◆ 117

Enter number of widgets: 200

Cost is $40.00

Figure 3.6 Possible outcome of Exercise 27.

Enter number of copies: 125

Cost is $5.75.

Figure 3.7 Possible outcome of Exercise 28.

28. Cost of Copies A copy center charges 5 cents per copy for the first 100 copies and
3 cents per copy for each additional copy. Write a program that requests the number
of copies as input and displays the total cost. See Fig. 3.7.

29. Quiz Write a quiz program to ask “Who was the first Ronald McDonald?” The pro-
gram should display “You are correct.” if the answer is “Willard Scott” and “Nice
try.” for any other answer. See Fig. 3.8.

30. Overtime Pay Federal law requires that hourly employees be paid “time-and-a-half”
for work in excess of 40 hours in a week. For example, if a person’s hourly wage is $12
and he or she works 60 hours in a week, the person’s gross pay should be

(40 * 12) + (1.5 * 12 * (60 - 40)) = $840.

Write a program that requests the number of hours a person works in a given week and
the person’s hourly wage as input, and then displays the person’s gross pay. See Fig. 3.9.

31. Compute an Average Write a program that requests three scores as input and dis-
plays the average of the two highest scores. See Fig. 3.10.

Who was the first Ronald McDonald? Willard Scott

You are correct.

Figure 3.8 Possible outcome of Exercise 29.

Enter hourly wage: 12.50

Enter number of hours worked: 47

Gross pay for week is $631.25.

Figure 3.9 Possible outcome of Exercise 30. Figure 3.10 Possible outcome of Exercise 31.

Enter first score: 85

Enter second score: 93

Enter third score: 91

Average of two highest

scores is 92.00

32. Pig Latin Write a program that requests a word (in lowercase letters) as input and
translates the word into Pig Latin. See Fig. 3.11. The rules for translating a word into
Pig Latin are as follows:

 (a) If the word begins with a group of consonants, move them to the end of the word
and add ay. For instance, chip becomes ipchay.

 (b) If the word begins with a vowel, add way to the end of the word. For instance, else
becomes elseway.

Enter word to translate: chip

The word in Pig Latin is ipchay.

Figure 3.11 Possible outcome of Exercise 32.

Enter weight in pounds: 6

Enter payment in dollars: 20

Your change is $5.00.

Figure 3.12 Possible outcome of Exercise 33.

 118 ◆ Chapter 3 Structures That Control Flow

35. Input Validation Write a program that asks the user to enter a single uppercase let-
ter and then informs the user if they didn’t comply with the request. See Fig. 3.14.

36. Year The current calendar, called the Gregorian calendar, was introduced in 1582.
Every year divisible by four was created to be a leap year, with the exception of the
years ending in 00 (that is, those divisible by 100) and not divisible by 400. For instance,
the years 1600 and 2000 are leap years, but 1700, 1800, and 1900 are not. Write a pro-
gram that requests a year as input and states whether it is a leap year. See Fig. 3.15.

Enter current balance: 200

Enter amount of withdrawal: 25

The new balance is $175.00.

Figure 3.13 Possible outcome of Exercise 34.

Enter a single uppercase letter: TEE

You did not comply with the request.

Figure 3.14 Possible outcome of Exercise 35.

37. Military Time In military time, hours are numbered from 00 to 23. Under this sys-
tem, midnight is 00, 1 a.m. is 01, 1 p.m. is 13, and so on. Time in hours and minutes is
given as a four-digit string with minutes following hours and given by two digits rang-
ing from 00 to 59. For instance, military time 0022 corresponds to 12:22 a.m. regular
time, and military time 1200 corresponds to noon regular time. Write a program that
converts from military time to regular time. See Fig. 3.16.

38. Railroad Properties One of the four railroad properties in Monopoly is not an
 actual railroad. Write a program that displays the names of the four properties and
asks the user to identify the property that is not a railroad. The user should be in-
formed if the selection is correct or not. See Fig. 3.17.

Enter a year: 2016

2016 is a leap year.

Figure 3.15 Possible outcome of Exercise 36.

Enter a military time (0000 to

2359): 1532

The regular time is 3:32 pm.

Figure 3.16 Possible outcome of Exercise 37.

The four railroad properties

are Reading, Pennsylvania,

B & O, and Short Line.

Which is not a railroad? Short Line

Correct.

Short Line is a bus company.

Figure 3.17 Possible outcome of Exercise 38.

33. Make Change A supermarket sells apples for $2.50 per pound. Write a cashier’s
program that requests the number of pounds and the amount of cash tendered as
input and displays the change from the transaction. If the cash is not enough, the
message “You owe $x.xx more.” should be displayed, where $x.xx is the difference
between the total cost and the cash. See Fig. 3.12 on the previous page.

34. Savings Account Write a program to process a savings-account withdrawal. The
program should request the current balance and the amount of the withdrawal as
input and then display the new balance. If the withdrawal is greater than the original
balance, the program should display “Withdrawal denied.” If the new balance is less
than $150, the message “Balance below $150” should also be displayed. See Fig. 3.13.

 3.2 Decision Structures ◆ 119

39. Interest Rates Savings accounts state an interest rate and a compounding period.
If the amount deposited is P, the stated interest rate is r, and interest is compounded

m times per year, then the balance in the account after one year is P # a1 +
r
m b

m

. For

 instance, if $1,000 is deposited at 3% interest compounded quarterly (that is, four
times per year), then the balance after one year is

1,000 # a1 +
.03
4

b
4

= 1,000 # 1.00754 = $1,030.34.

Interest rates with different compounding periods cannot be compared directly. The
concept of APY (annual percentage yield) must be used to make the comparison. The
APY for a stated interest rate r compounded m times per year is defined by

APY = a1 +
r
m b

m

- 1.

(The APY is the simple interest rate that yields the same amount of interest after one
year as the compounded annual rate of interest.) Write a program to compare interest
rates offered by two different banks and determine the most favorable interest rate.
See Fig. 3.18.

40. Graduation Honors Rewrite the program in Example 8 without elif clauses. That is,
the task should be carried out with a sequence of simple if statements.

41. Graduation Honors Rewrite the program in Example 8 so that the GPA is validated
to be between 2 and 4 before the if-elif-else statement is executed.

42. Second-Suit-Half-Off Sale A men’s clothing store advertises that if you buy a suit,
you can get a second suit at half-off. What they mean is that if you buy two suits, then
the price of the lower-cost suit is reduced by 50%. Write a program that accepts the
two costs as input and then calculates the total cost after halving the cost of the lowest
price suit. See Fig. 3.19.

Enter annual rate of interest for Bank 1: 2.7

Enter number of compounding periods for Bank 1: 2

Enter annual rate of interest for Bank 2: 2.69

Enter number of compounding periods for Bank 2: 52

APY for Bank 1 is 2.718%.

APY for Bank 2 is 2.726%.

Bank 2 is the better bank.

Figure 3.18 Possible outcome of Exercise 39.

Figure 3.19 Possible outcome of Exercise 42.

Enter cost of first suit: 378.50

Enter cost of second suit: 495.99

Cost of the two suits is $685.24

Figure 3.20 Possible outcome of Exercise 43.

Enter your taxable income: 60000

Your tax is $1,500.

43. Income Tax The flowchart in Fig. 3.21 on the next page calculates a person’s state
income tax. Write a program corresponding to the flowchart. See Fig. 3.20.

 120 ◆ Chapter 3 Structures That Control Flow

Start

Get
taxable
income

Is
income …
20000?

End

Display
tax

Is
income …
50000?

Set tax =
400 + .025 *

(income - 20000)

Set tax =
.02 * income

True False

True False

Set tax =
1150 + .035 *

(income - 50000)

Figure 3.21 Flowchart for Exercise 43.

Solutions to Practice Problems 3.2

1. # Check reasonableness of input.
number = eval(input("Enter a non-negative number: "))

if number >= 0:

 print("The square root of the number is", str(number ** .5)+ ".")

else:

 print("Number can't be negative.")

2. The word hello will be displayed when (a 6 b) is true and (c 6 5) is also true. That is, it will be displayed
when both of these two conditions are true. The clearest way to write the code is

if (a < b) and (c < 5):

 print("hello")

3. flag = name in ["John", "George", "Paul", "Ringo"]

4. ## Evaluate profit.
Obtain input from user.

costs = eval(input("Enter total costs: "))

revenue = eval(input("Enter total revenue: "))

Determine and display profit or loss.

if costs == revenue:

 result = "Break even."

elif costs < revenue:

 profit = revenue - costs

 result = "Profit is ${0:,.2f}.".format(profit)

else:

 3.3 The while Loop ◆ 121

 loss = costs - revenue

 result = "Loss is ${0:,.2f}.".format(loss)

print(result)

3.3 The while Loop

A loop, one of the most important structures in programming, is a part of a program that
can execute a block of code repeatedly.

 ■ The while Loop
The while loop repeatedly executes an indented block of statements as long as a certain
condition is met. A while loop has the form

while condition:

 indented block of statements

The line beginning with while is called the header of the loop, the condition in the
header is called the continuation condition of the loop, the indented block of code is called
the body of the loop, and each execution of the body is called a pass through the loop.
The continuation condition is a Boolean expression that evaluates to either True or False.
Each line in the block of statements should be indented the same distance to the right. This
physical indentation of the block tells the interpreter where the block starts and stops.

When Python encounters a while loop, it first checks the truth value of the continua-
tion condition. If the condition evaluates to False, Python skips over the body of the loop
and continues with the line (if any) after the loop. If the continuation condition evaluates to
True, the body of the loop is executed. After each pass through the loop, Python rechecks
the condition and proceeds accordingly. That is, the body will be continually executed until
the continuation condition evaluates to False.

 Example 1 Numbers The program in Fig. 3.22, in which the continuation condition
is num <= 5, displays the numbers from 1 through 5. After the loop terminates, the value
of num will be 6.

Display the numbers from 1 to 5.

num = 1

while num <= 5:

 print(num)

 num += 1 # Increase the value of num by 1.

[Run]

1

2

3

4

5

Start

True

False

End

num = 1

num … 5?

Display
num

Increase
num by 1

Figure 3.22 Program and Flowchart for Example 1.

VideoNote

The while
Loop

 122 ◆ Chapter 3 Structures That Control Flow

A while loop can be used to ensure that a proper response is received from a request
for input. This process is called input validation.

 Example 2 Movie Quotations The following program requires the user to enter a
number from 1 through 3. The loop repeats the request until the user gives an acceptable
response.

Movie Quotations

print("This program displays a famous movie quotation.")

responses = ('1', '2', '3')

response = '0'

while response not in responses:

 response = input("Enter 1, 2, or 3: ")

 if response == '1':

 print("Plastics.")

 elif response == '2':

 print("Rosebud.")

 elif response == '3':

 print("That's all folks.")

[Run]

This program displays a famous movie quotation.

Enter 1, 2, or 3: one

Enter 1, 2, or 3: 5

Enter 1, 2, or 3: 2

Rosebud.

 Example 3 Numbers The following program finds the minimum, maximum, and
average of a sequence of nonnegative numbers entered by the user. The user is told to enter
the number -1 to indicate the end of data entry. Since the first request for input appears
before the loop is entered, there is the possibility that the entire loop will be skipped. The
values of min and max are initially set to the first number input and are updated during each
pass through the loop.

Find the minimum, maximum, and average of a sequence of numbers.

count = 0 # number of nonnegative numbers input

total = 0 # sum of the nonnegative numbers input

Obtain numbers and determine count, min, and max.

print("(Enter -1 to terminate entering numbers.)")

num = eval(input("Enter a nonnegative number: "))

min = num

max = num

while num != -1:

 count += 1

 total += num

 if num < min:

 min = num

 if num > max:

 max = num

 num = eval(input("Enter a nonnegative number: "))

In Example 3, the variable count is called a counter variable, the variable total is called
an accumulator variable, the number -1 is called a sentinel value, and the loop is referred
to as having sentinel-controlled repetition.

 3.3 The while Loop ◆ 123

Display results.

if count > 0:

 print("Minimum:", min)

 print("Maximum:", max)

 print("Average:", total / count)

else:

 print("No nonnegative numbers were entered.")

[Run]

(Enter -1 to terminate entering numbers.)
Enter a nonnegative number: 3

Enter a nonnegative number: 7

Enter a nonnegative number: 2

Enter a nonnegative number: -1

Minimum: 2

Maximum: 7

Average: 4.0

 Example 4 Numbers The following program performs the same tasks as the program
in Example 3. However, it first stores the numbers in a list, and then uses list methods and
functions to determine the requested values.

Find the minimum, maximum, and average of a sequence of numbers.

Obtain list of numbers.

list1 = []

print("(Enter -1 to terminate entering numbers.)")

num = eval(input("Enter a nonnegative number: "))

while num != -1:

 list1.append(num)

 num = eval(input("Enter a nonnegative number: "))

Display results.

if len(list1) > 0:

 list1.sort()

 print("Minimum:", list1[0])

 print("Maximum:", list1[-1])

 print("Average:", sum(list1) / len(list1))

else:

 print("No nonnegative numbers were entered.")

Loops allow us to calculate useful quantities for which we might not know a simple
formula.

 124 ◆ Chapter 3 Structures That Control Flow

 ■ The continue Statement
When the statement

continue

 Example 5 Compound Interest Suppose you deposit money into a savings account
and let it accumulate at 4% interest compounded annually. The following program deter-
mines when you will be a millionaire.

Calculate the number of years to become a millionaire.

numberOfYears = 0

balance = eval(input("Enter initial deposit: "))

while balance < 1000000:

 balance += .04 * balance

 numberOfYears += 1

print("In", numberOfYears, "years you will have a million dollars.")

[Run]

Enter initial deposit: 123456

In 54 years you will have a million dollars.

 ■ The break Statement
The break statement causes an exit from anywhere in the body of a loop. When the
statement

break

is executed in the body of a while loop, the loop immediately terminates. Break statements
usually appear in the bodies of if statements.

 Example 6 Numbers The rewrite in Fig. 3.23 of the “Obtain list of numbers” code
from Example 4 uses a break statement to avoid having two input statements. Many people
find this rewrite easier to read.

Obtain list of numbers.

list1 = []

print("(Enter -1 to terminate entering numbers.)")

while True:

 num = eval(input("Enter a nonnegative number: "))

 if num == -1:

 break # Immediately terminate the loop.

 list1.append(num)

True

False

num = -1?

Append num
to list.

Obtain
num

Figure 3.23 Code and Flowchart for Example 6.

is executed in the body of a while loop, the current iteration of the loop terminates and exe-
cution returns to the loop’s header. Continue statements usually appear inside if statements.

 Example 7 Integer Divisible by 11 The following program searches a list for the
first int object that is divisible by 11. The variable foundFlag tells us if such an int has been
found. (A flag is a Boolean-valued variable used to report whether a certain circumstance
has occurred. The value of the flag is initially set to False, and then is changed to True if
and when the circumstance occurs).

Find first integer divisible by 11.

list1 = ["one", 23, 17.5, "two", 33, 22.1, 242, "three"]

i = 0

foundFlag = False

while i < len(list1):

 x = list1[i]

 i += 1

 if not isinstance(x, int):

 continue # Skip to next item in list.

 if x % 11 == 0:

 foundFlag = True

 print(x, "is the first int that is divisible by 11.")

 break

if not foundFlag:

 print("There is no int in the list that is divisible by 11.")

[Run]

33 is the first int in the list that is divisible by 11.

 ■ Creating a Menu
Accessing menus is one of the fundamental tasks of interactive programs. The user makes
choices until he or she decides to quit.

 Example 8 U.S. Facts The following program uses a menu to obtain facts about the
United States.

Display facts about the United States.

print("Enter a number from the menu to obtain a fact")

print("about the United States or to exit the program.\n")

print("1. Capital")

print("2. National Bird")

print("3. National Flower")

print("4. Quit\n")

while True:

 num = int(input("Make a selection from the menu: "))

 if num == 1:

 print("Washington, DC is the capital of the United States.")

 3.3 The while Loop ◆ 125

 126 ◆ Chapter 3 Structures That Control Flow

 ■ Infinite Loops
Be careful to avoid infinite loops; that is, loops that never end.

 elif num == 2:

 print("The American Bald Eagle is the national bird.")

 elif num == 3:

 print("The Rose is the national flower.")

 elif num == 4:

 break

[Run]

Enter a number from the menu to obtain a fact

about the United States or to exit the program.

1. Capital

2. National Bird

3. National Flower

4. Quit

Make a selection from the menu: 3

The Rose is the national flower.

Make a selection from the menu: 2

The American Bald Eagle is the national bird.

Make a selection from the menu: 4

 Example 9 Infinite Loop The program in Fig. 3.24 contains an infinite loop because
the condition number >= 0 will always be true. Note: While an infinite loop is executing,
you can terminate the program by clicking on Close in the IDLE File menu.

Infinite loop.

print("(Enter -1 to terminate entering numbers.)")

number = 0

while number >= 0:

 number = eval(input("Enter a number to square: "))

 number = number * number

 print(number)

True

num = num2

Obtain
num

Display num

num ≥ 0?

Figure 3.24 Program and Flowchart for Example 9.

 3.3 The while Loop ◆ 127

Practice Problems 3.3

1. What is wrong with the following program?

initial_val = 10

while initial_val >0:

 print initial_val

 if initial_val == 5:

 break

 print initial_val

2. Change the following code segment so that the loop will execute at least once.

while answer.upper() != "SHAZAM":

 answer = input("Enter the password: "))

print("You may continue.")

3. How would you change the following code segment so that the word "Python" is displayed?

letters = ['P','y','t','h','o','n']

language = ""

i = 0

while letters: # This is the same as writing while letters != []

 language += letters [i]

 i = i+1

 letters = letters [i:]

print(language)

ExERCISES 3.3

In Exercises 1 through 8, determine the output displayed.

1. num = 5
while True:

 num = 2 * num

 if num % 4 == 0:

 break

print(num)

2. num = 3
while num < 15:

 num += 5

print(num)

3. total = 0
num = 1

while True:

 total += num

 num += 1

 if num == 10:

 break

print(total)

4. total = 0
num = 1

while num < 5:

 total += num

 num += 1

print(total)

5. list1 = [2, 4, 6, 8]
total = 0

while list1: # same as while list1 != []:

 total += list1[0]

 list1 = list1[1:]

print(total)

 128 ◆ Chapter 3 Structures That Control Flow

6. oceans = ["Atlantic", "Pacific", "Indian", "Arctic", "Antarctic"]
i = len(oceans) - 1

while i >= 0:

 if len(oceans[i]) < 7:

 del oceans[i]

 i = i - 1

print(", ".join(oceans))

7. list1 = ['a', 'b', 'c', 'd']
i = 0

while True:

 print(list1[i]*i)

 i = i + 1

 if i == len(list1):

 break

8. numTries = 0
year = 0

while (numTries < 7) and (year != 1964):

 numTries += 1

 year = int(input("Try #" + str(numTries) + ": In what year " +

"did the Beatles invade the U.S.? "))

 if year == 1964:

 print("\nYes. They performed on the Ed Sullivan show in 1964.")

 print("You answered correctly in " + str(numTries) + " tries.")

 elif year < 1964:

 print("Later than", year)

 else: # year > 1964

 print("Earlier than", year)

if (numTries == 7) and (year != 1964):

 print("\nYour 7 tries are up. The answer is 1964.")

(Assume that the responses are 1950, 1970, and 1964.)

In Exercises 9 through 12, identify the errors.

9. q = 1
while q!= 0:

 q=q-2

 print(q)

10. ## Display the numbers from 1 through 5.
num = 0

while True

 num = 1

 print(num)

 num += 1

11. ## Display the elements of a list
list1 = ['H', 'e', 'l', 'l', 'o']

i = len(list1)

while i > 1:

 i – = 1

 print(list1[i])

12. ## Display the elements from a list.
list1 = ['a', 'b', 'c', 'd']

i = 0

while True:

 print(list1[i])

 if i = len(list1):

 break

 i = i + 1

In Exercises 13 and 14, write a simpler and clearer code that performs the same task as
the given code.

13. sum = int(input("Enter a number: "))
num = int(input("Enter a number: "))

sum = sum + num

num = int(input("Enter a number: "))

sum = sum + num

print(sum)

14. L = [2, 4, 6, 8]
total = 0

while L != []:

 total += L[0]

 L = L[1:]

print(total)

15. Temperature Conversions Write a program that displays a Celsius-to-Fahrenheit
conversion table. Entries in the table should range from 10 to 30 degrees Celsius in

increments of 5 degrees. See Fig. 3.25. Note: The formula f = a9
5

cb + 32 converts
Celsius degrees to Fahrenheit degrees.

 3.3 The while Loop ◆ 129

16. Bouncing Ball The coefficient of restitution of a ball, a number between 0 and 1,
specifies how much energy is conserved when the ball hits a rigid surface. A coeffi-
cient of .9, for instance, means a bouncing ball will rise to 90% of its previous height
after each bounce. Write a program to input a coefficient of restitution and an initial
height in meters, and report how many times a ball bounces when dropped from its
initial height before it rises to a height of less than 10 centimeters. Also report the
total distance traveled by the ball before this point. See Fig. 3.26. The coefficients of
restitution of a tennis ball, basketball, super ball, and softball are .7, .75, .9, and .3,
respectively.

Celsius Fahrenheit

10 50

15 59

20 68

25 77

30 86

Figure 3.25 Outcome of Exercise 15.

Enter coefficient of restitution: .7

Enter initial height in meters: 8

Number of bounces: 13

Meters traveled: 44.82

Figure 3.26 Possible outcome of Exercise 16.

 130 ◆ Chapter 3 Structures That Control Flow

In Exercises 17 and 18, write a program corresponding to the flowchart.

17. Greatest Common Divisor The flowchart in Fig. 3.29 finds the greatest common
divisor (GCD) of two nonzero integers input by the user. Note: The GCD of two num-
bers is the largest integer that divides both. See Fig. 3.27.

Figure 3.27 Possible outcome of Exercise 17.

Enter value of M: 30

Enter value of N: 35

Greatest common divisor: 5

Enter a positive integer (>1): 2345

Prime factors are 5 7 67

Figure 3.28 Possible outcome of Exercise 18.

18. Factorization The flowchart in Fig. 3.30 requests a whole number greater than 1 as
input and factors it into a product of prime numbers. Note: A number is prime if its
only factors are 1 and itself. See Fig. 3.28.

Start

False

True

Get two
pos. integers

M and N

End

Display
M

Is
N Z 0

?

Set
T = N

Set
N = M mod N

Set
M = T

Figure 3.29 Greatest common
divisor.

True

True

False

False

Start

Get number
N 7 1

End

Display
F

Is
N 7 1

?

Does
F divide N

?

Set
F = 2

Increase
F by 1

Set
N = N/F

Figure 3.30 Prime factors.

In Exercises 19 through 31, write a program to answer the question.

19. Age A person born in 1980 can claim, “I will be x years old in the year x squared.”
What is the value of x? See Fig. 3.31.

 3.3 The while Loop ◆ 131

Person will be 45

in the year 2025.

Figure 3.31 Outcome of Exercise 19.

World population will be

8 billion in the year 2024.

Figure 3.32 Outcome of Exercise 20.

20. Population Growth The world population reached 7 billion people on October 21,
2011, and was growing at the rate of 1.1% each year. Assuming that the population
continues to grow at the same rate, approximately when will the population reach
8 billion? See Fig. 3.32.

21. Radioactive Decay Strontium-90, a radioactive element that is part of the fallout
from nuclear explosions, has a half-life of 28 years. This means that a given quantity
of strontium-90 will emit radioactive particles and decay to one-half its size every
28 years. How many years are required for 100 grams of strontium-90 to decay to less
than 1 gram? See Fig. 3.33.

The decay time is

196 years.

Figure 3.33 Outcome of Exercise 21.

Consumer prices will

double in 29 years.

Figure 3.34 Outcome of Exercise 22.

22. Consumer Price Index The consumer price index (CPI) indicates the average price
of a fixed basket of goods and services. It is customarily taken as a measure of infla-
tion and is frequently used to adjust pensions. The CPI was 9.9 in July 1913, was 100
in July 1983, and was 238.25 in July 2014. This means that $9.90 in July 1913 had
the same purchasing power as $100.00 in July 1983, and the same purchasing power
as $238.25 in July 2014. In 2009, the CPI fell for the first time since 1955. However,
for most of the preceding 15 years it had grown at an average rate of 2.5% per year.
Assuming that the CPI will rise at 2.5% per year in the future, in how many years will
the CPI have at least doubled from its July 2014 level? Note: Each year, the CPI will be
1.025 times the CPI for the previous year. See Fig. 3.34.

23. Car Loan When you borrow money to buy a house or a car, the loan is paid off with
a sequence of equal monthly payments with a stated annual interest rate compounded
monthly. The amount borrowed is called the principal. If the annual interest rate is 6%
(or .06), then the monthly interest rate is .06/12 = .005. At any time, the balance of
the loan is the amount still owed. The balance at the end of each month is calculated
as the balance at the end of the previous month, plus the interest due on that balance,
and minus the monthly payment. For instance, with an annual interest rate of 6%,

 [new balance] = [previous balance] + .005 # [previous balance] - [monthly payment]

 = 1.005 # [previous balance] - [monthly payment].

Suppose you borrow $15,000 to buy a new car at 6% interest compounded monthly
and your monthly payment is $290.00. After how many months will the car be half
paid off? That is, after how many months will the balance be less than half the amount
borrowed? See Fig. 3.35 on the next page.

 132 ◆ Chapter 3 Structures That Control Flow

24. Annuity An annuity is a sequence of equal periodic payments. One type of annuity,
called a savings plan, consists of monthly payments into a savings account in order to
generate money for a future purchase. Suppose you decide to deposit $100 at the end
of each month into a savings account paying 3% interest compounded monthly. The
monthly interest rate will be .03/12 or .0025, and the balance in the account at the end
of each month will be computed as

[balance at end of month] = (1.0025) # [balance at end of previous month] + 100.

After how many months will there be more than $3,000 in the account? See Fig. 3.36.

25. Annuity An annuity is a sequence of equal periodic payments. For one type of
 annuity, a large amount of money is deposited into a bank account and then a fixed
amount is withdrawn each month. Suppose you deposit $10,000 into such an account
paying 3.6% interest compounded monthly, and then withdraw $600 at the end of
each month. The monthly interest rate will be .036/12 or .003, and the balance in the
 account at the end of each month will be computed as

[balance at end of month] = (1.003) # [balance at end of previous month] - 600.

After how many months will the account contain less than $600, and what will be the
amount in the account at that time? See Fig. 3.37.

Figure 3.35 Outcome of Exercise 23.

Loan will be half paid

off after 33 months.

Annuity will be worth more

than $3000 after 29 months.

Figure 3.36 Outcome of Exercise 24.

Balance will be $73.91

after 17 months.

Figure 3.37 Outcome of Exercise 25.

Carbon-14 has a half-life

of 5776 years.

Figure 3.38 Outcome of Exercise 26.

26. Radioactive Decay Carbon-14 is constantly produced in Earth’s upper atmosphere
due to interactions between cosmic rays and nitrogen, and is found in all plants and an-
imals. After a plant or animal dies, its amount of carbon-14 decreases by about .012%
per year. Determine the half-life of carbon-14, that is, the number of years required for
1 gram of carbon-14 to decay to less than ½ gram. See Fig. 3.38.

27. Same Birthday as You Suppose you are in a large-lecture class with n other students.
Determine how large n must be such that the probability that someone has the same
birthday as you is greater than 50%? See Fig. 3.39. Note: Forgetting about leap years
and so assuming 365 days in a year, the probability that no one has the same birthday

as you is a364
365

b
n

.

With 253 students, the

 probability is greater than

50% that someone has the same

 birthday as you.

Figure 3.39 Outcome of Exercise 27.

Enter amount of deposit: 10000

Balance will be $73.19

after 17 months.

Figure 3.40 Possible outcome of Exercise 28.

28. Annuity Redo Exercise 25 with the amount of money deposited being input by the
user. See Fig. 3.40.

29. Population Growth In 2014 China’s population was about 1.37 billion and growing
at the rate of .51% per year. In 2014 India’s population was about 1.26 billion and
growing at the rate of 1.35% per year. Determine when India’s population will surpass
China’s population. Assume that the 2014 growth rates will continue. See Fig. 3.41.

 3.3 The while Loop ◆ 133

India's population will exceed China's

population in the year 2025.

Figure 3.41 Outcome of Exercise 29.

The coffee will cool to below

150 degrees in 7 minutes.

Figure 3.42 Outcome of Exercise 30.

30. Cooling Newton’s Law of Cooling states that when a hot liquid is placed in a cool
room, each minute the decrease in the temperature is approximately proportional
to the difference between the liquid’s temperature and the room’s tempera-
ture. That is, there is a constant k such that each minute the temperature loss is
k # (liquid′s temperature - room′s temperature). Suppose a cup of 212°F coffee is
placed in a 70°F room and that k = .079. Determine the number of minutes required
for the coffee to cool to below 150°F. See Fig. 3.42.

31. Saving Account Write a menu-driven program that allows the user to make transac-
tions to a savings account. Assume that the account initially has a balance of $1,000.
See Fig. 3.43.

Options:

1. Make a Deposit

2. Make a Withdrawal

3. Obtain Balance

4. Quit

Make a selection from the options menu: 1

Enter amount of deposit: 500

Deposit Processed.

Make a selection from the options menu: 2

Enter amount of withdrawal: 2000

Denied. Maximum withdrawal is $1,500.00

Enter amount of withdrawal: 600

Withdrawal Processed.

Make a selection from the options menu: 3

Balance: $900.00

Make a selection from the options menu: 4

Figure 3.43 Possible outcome of Exercise 31.

Solutions to Practice Problems 3.3

1. initial_val will never change. To correct the program, add the statement initial_val - = 1

2. Either precede the loop with the statement answer = "", or replace with the following loop.

while True:

 answer = input("Enter the password: ")

 134 ◆ Chapter 3 Structures That Control Flow

 if answer.upper() == "SHAZAM":

 break

print("You may continue.")

3. Remove the statement i = i + 1 in the loop, and change the starting index to i + 1.

3.4 The for Loop

The for loop is used to iterate through a sequence of values. The general form of a for
loop is

for var in sequence:

 indented block of statements

where sequence might be an arithmetic progression of numbers, a string, a list, a tuple,
or a file object. The variable is successively assigned each value in the sequence and the
indented block of statements is executed after each assignment. Each statement in the block
is indented to the same indentation level. This physical indentation tells the interpreter
where the block starts and stops.

 ■ Looping Through an Arithmetic Progression of numbers
The range function is used to generate an arithmetic progression of numbers. If m and n
have integer values and m 6 n, then the function

range(m, n)

generates the sequence of integers m, m + 1, m + 2, c, n- 1.
That is, the sequence begins with m, and 1 is repeatedly added to m until the number

just before n is reached. Some examples are as follows:

range(3, 10) generates the sequence 3, 4, 5, 6, 7, 8, 9.

range(0, 4) generates the sequence 0, 1, 2, 3.

range(-4, 2) generates the sequence -4, -3, -2, -1, 0, 1.

The function range(0, n) can be abbreviated to range(n) and is usually written in that
form.

The loop

for num in range(m, n):

 indented block of statements

executes the statement(s) in the block once for each integer in the sequence generated by
range(m, n). The line beginning with for is called the header of the loop. The variable fol-
lowing the word for is called the loop variable, the indented block of statements is called
the body of the loop, and each execution of the body is referred to as a pass through the
loop. The header creates the loop variable and successively assigns it the numbers in the
sequence, with each assignment followed by a pass through the loop. The most common
single-letter names for loop variables are i, j, and k; however, when appropriate, the name
should suggest the meaning of the numbers generated. For instance, we might write for
year in range(2000, 2015).

VideoNote

The for
Loop

 Example 1 Squares The following two lines of code display four integers and their
squares. The loop variable i first assumes the value 2 and uses that value in the execution of
the print statement. The variable then successively assumes and executes the print statement
for each of the integers 3, 4, and 5.

for i in range(2, 6)

 print(i, i * i)

[Run]

2 4

3 9

4 16

5 25

 3.4 The for Loop ◆ 135

 Example 2 Population Growth Suppose the population of a city was 300,000 in
the year 2014 and is growing at the rate of 3% per year. The following program displays a
table showing the population each year until 2018. Figure 3.44 shows the flowchart for the
program.

Start

End

False

True

Display year
and pop.

Is there
an item in

range(2014, 2019)
that has not been

assigned to
the variable

year?

Assign the next item
in the sequence to
the variable year.

pop = 300000

The for statement initially
assigns the first item to

the variable year.

Increase pop
by 3 percent.

Figure 3.44 Flowchart for Example 2.

Display population from 2014 to 2018.

pop = 300000

print("{0:10} {1}".format("Year", "Population"))

 136 ◆ Chapter 3 Structures That Control Flow

 ■ Step Values for the range Function
A variation of the range function generates a sequence of integers where successive inte-
gers differ by a value other than 1. If m, n, and s have integer values where m 6 n and s is
positive, then the function

range(m, n, s)

generates the sequence of integers m, m + s, m + 2s, m + 3s, c , m + r # s, where r is the
largest whole number for which m + r # s 6 n. That is, the sequence begins with m, and s
is repeatedly added to m until the next addition of s would have resulted in a number Ún.
The optional number s is called the step value of the range function. Some examples are
as follows:

range(3, 10, 2) generates the sequence 3, 5, 7, 9.

range(0, 24, 5) generates the sequence 0, 5, 10, 15, 20.

range(-10, 10, 4) generates the sequence -10, -6, -2, 2, 6.

for year in range(2014, 2019):

 print("{0:<10d} {1:,d}".format(year, round(pop)))

 pop += 0.03 * pop # Increase pop by 3 percent.

[Run]

Year Population

2014 300,000

2015 309,000

2016 318,270

2017 327,818

2018 337,653

 Example 3 Savings Account When A dollars is deposited into an account at the
annual interest rate r (in decimal form) compounded monthly, the balance after m months

is A # a1 +
r

12
b

m

. The following program requests the amount deposited into a savings

 account and the annual rate of interest, and then calculates the balance in the account after
each quarter-year for four quarters.

Calculate balance in savings account after every three months.

Obtain input.

initialDeposit = eval(input("Enter amount deposited: "))

prompt = "Enter annual rate of interest; such as .02, .03, or .04: "

annualRateOfInterest = eval(input(prompt))

monthlyRateOfInterest = annualRateOfInterest / 12

Display table.

print("{0}{1:>15}".format("Month", "Balance"))

for i in range(3, 13, 3):

 print("{0:2} ${1:<15,.2f}".

 format(i, initialDeposit * (1 + monthlyRateOfInterest) ** i))

In the range functions considered so far, the initial value was less than the terminating
value and the step value was positive. However, if a negative step value is used and the initial
value is greater than the terminating value, then the range function generates a decreasing
sequence that begins with the initial value and decreases until just before reaching the ter-
minating value. Some examples are as follows:

range(6, 0, -1) generates the sequence 6, 5, 4, 3, 2, 1.

range(5, 2, -3) generates the sequence 5.

range(10, -10, -4) generates the sequence 10, 6, 2, -2, -6.

 ■ nested for Loops
The body of a for loop can contain any type of Python statement. In particular, it can
contain another for loop. However, the second loop must be completely contained inside
the first loop and must have a different loop variable. Such a configuration is called nested
for loops.

 Example 4 Multiplication Table The following program displays a multiplication
table for the integers from 1 to 5. Here m denotes the left factors of the products, and n
denotes the right factors. Each factor takes on a value from 1 to 5. The values are assigned
to m in the outer loop and to n in the inner loop. Initially, m is assigned the value 1, and then
the inner loop is traversed five times to produce the first row of products. At the end of
these five passes, the value of m will still be 1, and the first execution of the inner loop will
be complete. Following this, m assumes the next number in the sequence, 2. The header of
the inner loop is then executed, and resets the value of n to 1. The second row of products
is displayed during the next pass of the inner loop, and so on.

Display a multiplication table for the numbers from 1 through 5.

for m in range(1, 6):

 for n in range(1, 6):

 print(m, 'x', n, '=', m * n, "\t", end="")

 print()

[Run]

1 x 1 = 1 1 x 2 = 2 1 x 3 = 3 1 x 4 = 4 1 x 5 = 5

2 x 1 = 2 2 x 2 = 4 2 x 3 = 6 2 x 4 = 8 2 x 5 = 10

3 x 1 = 3 3 x 2 = 6 3 x 3 = 9 3 x 4 = 12 3 x 5 = 15

4 x 1 = 4 4 x 2 = 8 4 x 3 = 12 4 x 4 = 16 4 x 5 = 20

5 x 1 = 5 5 x 2 = 10 5 x 3 = 15 5 x 4 = 20 5 x 5 = 25

[Run]

Enter amount deposited: 1000

Enter annual rate of interest; such as .02, .03, or .04: .03

Month Balance

 3 $1,007.52

 6 $1,015.09

 9 $1,022.73

12 $1,030.42

 3.4 The for Loop ◆ 137

 138 ◆ Chapter 3 Structures That Control Flow

 ■ Looping Through the Characters of a String
If str1 has a string value, then the loop

for ch in str1:

 indented block of statements

executes the statement(s) in the body once for each character of the string beginning with
the first character. Therefore, there are len(str1) passes through the loop.

 Example 5 Triangle of Asterisks The following program uses nested for loops to
display a triangle of asterisks.

Display a triangle of asterisks.

numberOfRows = int(input("Enter a number from 1 through 20: "))

for i in range(numberOfRows):

 for j in range(i + 1):

 print("*", end="")

 print()

[Run]

Enter a number from 1 through 20: 5

*

**

 Example 6 Reverse Letters The following program requests a word as input and
displays it backward. The program creates a string consisting of the first letter of the word,
and then successively appends each subsequent letter to the front of the string.

Reverse the letters in a word.

word = input("Enter a word: ")

reversedWord = ""

for ch in word:

 reversedWord = ch + reversedWord

print("The reversed word is " + reversedWord + ".")

[Run]

Enter a word: zeus

The reversed word is suez.

 ■ Looping Through the Items of a List or Tuple
If listOrTuple is a list or a tuple, then the loop

for item in listOrTuple:

 indented block of statements

executes the statement(s) in the body once for each item of the list or tuple beginning with
the first item. Therefore, there are len(listOrTuple) passes through the loop.

The program in Example 6 would work exactly the same if a list was used instead of
a tuple. We used a tuple since the sequence of items is fixed and not subject to change.
Otherwise, we would have used a list. The program accessed every item of the sequence
of months, but did not change any values in the sequence in place. A program that both
accesses items and changes values in place not only must use a list, but must iterate over
the index values of the list.

 3.4 The for Loop ◆ 139

 Example 7 R Months The following program displays the months whose names con-
tain the letter r.

Display months containing the letter "r".

months = ("January", "February", "March", "April", "May", "June",

 "July", "August", "September", "October", "November", "December")

for month in months:

 if 'r' in month.lower():

 print(month)

[Run]

January

February

March

April

September

October

November

December

 Example 8 Abbreviate Months The following program replaces the name of each
month with its three-letter abbreviation. Note: For any list, call it list1, the last item has index
len(list1) – 1, and therefore range(len (list1)) generates the indices of the list.

Replace each month with its three-letter abbreviation.

months = ["January", "February", "March", "April", "May", "June",

 "July", "August", "September", "October", "November", "December"]

for i in range(len(months)):

 months[i] = months[i][0:3]

print(months)

[Run]

['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov',

'Dec']

 Example 9 Deck of Cards The following program uses nested for loops with a list
of ranks and a list of suits to create a list consisting of the 52 cards in a deck of cards. The
cards are assigned their ranks in the outer loop and their suits in the inner loop. The first
for statement iterates through the items in ranks until every item has been accessed. At each
iteration of the outer loop, the second for statement iterates through the items of suits until
all of those items have been accessed. Each pass of the inner loop appends the name of a

 140 ◆ Chapter 3 Structures That Control Flow

card to the list deckOfCards. Figure 3.45 shows a flowchart for the nested for loops portion
of the program.

Display the names of the 52 cards in a deck of cards.

ranks = ['2', '3', '4', '5', '6', '7', '8', '9',

 "10", "jack", "queen", "king", "ace"]

suits = ["spades", "hearts", "clubs", "diamonds"]

deckOfCards = [] # List to hold the names of the 52 cards in a deck.

Use nested loops to fill the deckOfCards list.

for rank in ranks:

 for suit in suits:

 deckOfCards.append(rank + " of " + suit)

Display the 52 cards.

for card in deckOfCards:

 print(card)

[Run]

2 of spades

2 of hearts

.

.

.

ace of clubs

ace of diamonds

False

False

True

Is there
an item in the

ranks list that has
not been assigned

to the variable
rank?

Assign the next
item in ranks to

the variable rank.

Is there
an item in the

suits list that has
not been assigned

to the variable
suit?

The for statement
initially assigns the
first item to the
variable rank.

True Assign the next
item in suits to

the variable suit.

Append rank
+ “of” + suit
to the list

deckOfCards.

The for statement
initially assigns the
first item to the
variable suit.

Figure 3.45 Flowchart of nested for loops for Example 9.

 ■ Looping Through the Lines of a Text File
If fileName.txt is a text file, then code of the form

infile = open("fileName.txt", 'r')

for line in infile:

 indented block of statements

infile.close()

reads each line of the file in succession beginning with the first line and executes the
indented block of statement(s) for each line. The first statement establishes a connection
between the program and the file that allows the program to read data from the file and the
last statement terminates the connection. Throughout this textbook, we assume that the file
is contained in the same folder as the program file. That way, we can just use the file name
in the open function instead of giving a complete path leading to the file.

 Example 10 U.S. Presidents The file USPres.txt contains the names of the first
44 U.S. presidents in the order in which they served. The following program requests a
first name and then displays the names of the U.S. presidents having that first name. The
variable foundFlag tells us if at least one president had the requested first name. Each
line of a text file ends with a special newline character. The rstrip method removes that
character.

Display presidents with a specified first name.

firstName = input("Enter a first name: ")

foundFlag = False

infile = open("USPres.txt", 'r')

for line in infile:

 if line.startswith(firstName + ' '):

 print(line.rstrip())

 foundFlag = True

infile.close()

if not foundFlag:

 print("No president had the first name", firstName + '.')

[Run]

Enter a first name: John

John Adams

John Q. Adams

John Tyler

John Kennedy

 ■ The pass Statement
The header of a for loop must be followed by an indented block of at least one statement.
However, there are times when you want the loop to cycle through a sequence and not do
anything. In that case, the pass statement should be used. The pass statement is a do-nothing
placeholder statement.

 3.4 The for Loop ◆ 141

 142 ◆ Chapter 3 Structures That Control Flow

 ■ Populating a List with the Contents of a Text File
Sometimes the best way to analyze the data in a text file is to place the data into a list and
make use of list functions and methods. The following lines of code show one way of plac-
ing the contents of a text file into a list.

dataList = []

infile = open("Data.txt", 'r')

for line in infile:

 dataList.append(line.strip())

infile.close()

However, a more efficient way (to be explained in the next two chapters) is

infile = open("Data.txt", 'r')

dataList = [line.rstrip() for line in infile]

infile.close()

In either case, each item in the list will be a string. If the file Data.txt contained only
numbers, the items in the list can be converted from strings to numbers. The following two
lines of code will not do the job:

for item in dataList:

 item = eval(item)

However, the task can be accomplished with

for i in range(len(dataList)):

 dataList[i] = eval(dataList[i])

A more efficient method (to be explained in the next two chapters) is

infile = open("Data.txt", 'r')

dataList = [eval(line) for line in infile]

infile.close()

 ■ Comments
1. The parentheses of the range function can contain one, two, or three values. When

the parentheses contains two or three values, the first value is always the beginning of
the sequence generated. When the parentheses contains a single number, call it n, no
sequence will be generated when n … 0; otherwise the sequence of n numbers from 0
to n - 1 will be generated.

 Example 11 Last Line of File The following program displays the last line of a file.
After the for statement iterates through the entire file, the value of line will be the last line
of the file. The rstrip method removes the newline character that is at the end of each line
of a text file.

Display the last line of a text file.

infile = open("aFile.txt", 'r')

for line in infile:

 pass

print(line.rstrip())

infile.close()

2. The values generated by the range function can be displayed by applying the list func-
tion. For instance, the statement print(list(range(1, 8, 2))) displays [1, 3, 5, 7].

3. The function range(m, n, s) produces an empty sequence if n … m and s is positive
or if m … n and s is negative.

4. When the statement

continue

is executed in the body of a for loop, the remaining statements in the body of the loop
are skipped and execution continues with the next iteration of the loop.

5. When the statement

break

is executed in the body of a for loop, the loop is terminated and the loop variable keeps
its current value. Both break and continue statements usually appear in the body of an
if statement and provide an efficient way of transferring control.

6. Any type of loop can be nested inside another loop. For example, for loops can be
nested inside while loops and vice versa.

7. The pass statement can be used in any compound statement, such as a while loop or
an if-elif-else statement.

Practice Problems 3.4

1. What sequence is generated by the function range(5)?

2. Why won’t the following lines of code work as intended?

for i in range(15, 1):

 print(i)

3. Consider the 7th line of Example 10. How would the output change if print(line.
rstrip()) were changed to print(line).

4. Simplify the following code:

musketeers = ["Athos", "Porthos", "Aramis", "D'Artagnan"]

i = 0

while i < len(musketeers):

 print(musketeers[i])

 i += 1

5. What is the output of the following lines of code?

n = 7

for i in range(n):

 print(i, end=" ")

 n = 3

ExERCISES 3.4

In Exercises 1 through 8, determine the sequence generated by the range function.

1. range(1, 10) 2. range(1, 10, -1)

3. range(10, 1, -1) 4. range(5)

 3.4 The for Loop ◆ 143

 144 ◆ Chapter 3 Structures That Control Flow

5. range(5, -1) 6. range(-5, 1)

7. range(-1, 0) 8. range(10, 10)

In Exercises 9 through 16, determine a range function that generates the sequence of
numbers.

9. 4, 9, 14, 19 10. 0, 1, 2, 3

11. -21, -20, -19, -18 12. 4, 3, 2, 1

13. 20, 17, 14 14. 7

15. 5, 4, 3, 2, 1, 0 16. -5, -3, -1, 1

In Exercises 17 through 40, determine the output displayed.

17. for i in range(1, 5):
 print("Pass #" + str(i))

18. for i in range(3, 7):
 print(2 * i)

19. num = 5
for i in range(num, 2 * num - 2):

 print(i)

20. for i in range(-9, 0, 3):
 print(i)

21. # chr(162) is a cents symbol
stringOfCents = ""

for i in range(1, 11):

 stringOfCents += chr(162)

print(stringOfCents)

22. n = 3
total = 0

for i in range(1, n + 1):

 total += i

print(total)

23. for j in range(2, 9, 2):
 print(j)

print("Who do we appreciate?")

24. for countdown in range(10, 0, -1):
 print(countdown)

25. number_of_sibilants = 0
word = "stargazers"

for ch in word:

 if (ch == 's') or (ch == 'z'):

 number_of_sibilants += 1

print(number_of_sibilants)

26. numCaps = 0
name = "United States of America"

for ch in name:

 if ch.isupper():

 numCaps += 1

print(numCaps)

27. word = "183651"
sumOfOddIndexes = 0

oddIndex = False

for ch in word:

 if oddIndex:

 sumOfOddIndexes += int(ch)

 oddIndex = not oddIndex

print(sumOfOddIndexes)

28. word = "cloudier"
newWord = ""

evenIndex = True

for ch in word:

 if evenIndex:

 newWord += ch

 evenIndex = not evenIndex

print(newWord)

29. for ch in "Python":
 continue

print(ch)

30. for ch in "Python":
 break

print(ch)

31. numEvens = 0
sumOfEvens = 0

list1 = [2, 9, 6, 7, 12]

for num in list1:

 if num % 2 == 0:

 numEvens += 1

 sumOfEvens += num

print(numEvens, sumOfEvens)

32. list1 = [2, 9, 6, 7, 13, 3]
maxOfOdds = 0

for num in list1:

 if (num % 2 == 1) and (num > maxOfOdds):

 maxOfOdds = num

print(maxOfOdds)

33. boroughs = ("Manhatten", "Bronx", "Brooklyn", "Queens", "Staten Island")
minLetters = 100

for borough in boroughs:

 if len(borough) < minLetters:

 minLetters = len(borough)

print("The shortest word has length", minLetters)

34. numOfNumbers = 0
list1 = ["three", 4, 5.7, "six", "seven", 8, 3.1416]

for item in list1:

 if isinstance(item, str):

 continue

 numOfNumbers += 1

print(numOfNumbers)

35. list1 = [1, 2, "three", 4, 5.7, "six", "seven", 8, 3.1416]
for item in list1:

 if isinstance(item, str):

 break

print(item)

36. # I'm looking over a four leaf clover.
leaves = ("sunshine","rain", "the roses that bloom in the lane",

 "somebody I adore")

number = 1

for leaf in leaves:

 print("Leaf", str(number) + ':', leaf)

 number += 1

In Exercises 37 and 38, assume that the six lines of the file Numbers.txt contain the data
6, 9, 2, 3, 6, and 4.

37. sumEvens = 0
infile = open("Numbers.txt", 'r')

for line in infile:

 if eval(line) % 2 == 0:

 sumEvens += eval(line)

 infile.close()

print(sumEvens)

38. dataList = []
infile = open("Numbers.txt", 'r')

 3.4 The for Loop ◆ 145

 146 ◆ Chapter 3 Structures That Control Flow

for line in infile:

 dataList.append(eval(line))

infile.close()

print(sum(dataList))

In Exercises 39 and 40, assume that the 50 lines of the file States.txt contain the names
of the fifty states in the order they joined the union.

39. infile = open("States.txt", 'r')
for line in infile:

 if line.startswith("North"):

 print(line, end="")

infile.close()

40. infile = open("States.txt", 'r')
for line in infile:

 continue

infile.close()

print(line, end="")

In Exercises 41 through 46, identify all errors.

41. for j in range(1, 26, -1):
 print(j)

42. for i in range(1, 4):
 print(i + " " + 2 ** i)

43. list1 = [2, 5, 7, 2, 7, 8]
list2 = []

for item in list1:

 if item not in list2:

 list2.append(item)

print list2

44. list1 = ['a', 'b', 'c']
for letter in list1:

 letter = letter.upper()

print(list1)

45. # Display all numbers from 0 through 19 except for 13
for i in range(20, 0):

 if i != 13:

print(i)

46. list1 = ["one", "two", "three", "four"]
for item in list1:

 item = item.upper()

print(list1)

In Exercises 47 and 48, rewrite the program using a for loop.

47. num = 1
while num <= 9:

 print(num)

 num += 2

48. print("hello")
print("hello")

print("hello")

print("hello")

Simplify the programs in Exercises 49 and 50.

49. lakes = ["Erie", "Huron", "Michigan", "Ontario", "Superior"]
result = ""

for i in range(len(lakes)):

 result += lakes[i]

 if i < len(lakes) - 1:

 result += ", "

print(result)

50. lakes = ["Erie", "Huron", "Michigan", "Ontario", "Superior"]
for i in range(len(lakes)):

 print(lakes[i], end="")

 if i < len(lakes) - 1:

 print(" | ", end="")

In Exercises 51 through 65, write a program to carry out the stated task.

51. Radioactive Decay Cobalt-60, a radioactive form of cobalt used in cancer therapy,
decays over a period of time. Each year, 12% of the amount present at the beginning
of the year will have decayed. If a container of cobalt-60 initially contains 10 grams,
determine the amount remaining after five years. Round the amount remaining to two
decimal places. See Fig. 3.46.

 3.4 The for Loop ◆ 147

Figure 3.46 Outcome of Exercise 51.

The amount of cobalt-60 remaining

after five years is 5.28 grams.

Figure 3.47 Outcome of Exercise 52.

Enter a telephone number: 982-876-5432

Number without dashes is 9828765432.

52. Phone Number Remove the dashes from a telephone number input by the user. See
Fig. 3.47.

53. Vowels Count the number of vowels in a phrase input by the user. See Fig. 3.48.

Enter a phrase: Less is more.

The phrase contains 4 vowels.

Figure 3.48 Possible outcome of Exercise 53.

Enter a number: 3.4

Enter a number: 9.3

Enter a number: 5.5

Largest number: 9.3

Figure 3.49 Possible outcome of Exercise 54.

54. Largest Number Without using a list, find the largest of three numbers obtained
from the user. See Fig. 3.49.

55. Sum of Fractions Find the value of 1 + 1/2 + 1/3 + 1/4 + c + 1/100 to five
decimal places. See Fig. 3.50.

The sum 1 + 1/2 + 1/3 + ... + 1/100

is 5.18738 to five decimal places.

Figure 3.50 Outcome of Exercise 55.

The sum 1 + 2 + ... + 100

is 5050.

Figure 3.51 Outcome of Exercise 56.

56. Sum of Numbers Find the sum of the first one hundred positive integers. See
Fig. 3.51.

57. Alphabetical Order Accept a word as input and determine if its letters are in al-
phabetical order. Some examples of words whose letters are in alphabetical order are
biopsy, adept, chintz, and lost. See Fig. 3.52.

Enter a word: almost

Letters are in alphabetical order.

Figure 3.52 Possible outcome of Exercise 57.

Enter a word: education

EDUCATION is a vowel word.

Figure 3.53 Possible outcome of Exercise 58.

 148 ◆ Chapter 3 Structures That Control Flow

58. Vowel Words A vowel word is a word that contains every vowel. Some examples of
vowel words are sequoia, facetious, and dialogue. Determine if a word input by the user
is a vowel word. See Fig. 3.53 on the previous page.

59. Lifetime Earnings Estimate how much a young worker will earn before retiring at
age 65, where the worker’s name, age, and starting salary are input by the user. Assume
the worker receives a 5% raise each year. See Fig. 3.54.

Figure 3.54 Possible outcome of Exercise 59.

Enter name: Helen

Enter age: 25

Enter starting salary: 20000

Helen will earn about $2,415,995.

Figure 3.55 Outcome of Exercise 60.

 Simple Interest Compound Interest

1 $1,050.00 $1,050.00

2 $1,100.00 $1,102.50

3 $1,150.00 $1,157.62

4 $1,200.00 $1,215.51

60. Simple versus Compound Interest When $1,000 is invested at 5% simple interest,
the amount grows by $50 each year. When money is invested at 5% interest com-
pounded annually, the amount at the end of each year is 1.05 times the amount at
the beginning of that year. Display the amounts after the first four years for a $1,000
 investment at 5% simple and compound interest. See Fig. 3.55.

61. Car Loan Consider the car loan discussed in Exercise 23 of Section 3.3. The loan
will be paid off after five years. Assume that the car was purchased at the beginning
of January 2013, and display the balance at the end of each year for five years. See
Fig. 3.56. Note: The last payment will be slightly less than the other payments, since
otherwise the final balance would be a negative amount.

 AMOUNT OWED AT

YEAR END OF YEAR

2013 $12,347.85

2014 $9,532.13

2015 $6,542.74

2016 $3,368.97

2017 $0.00

Figure 3.56 Outcome of Exercise 61.

 BALANCE AT

YEAR END OF YEAR

2014 $1,216.64

2015 $2,470.28

2016 $3,762.06

2017 $5,093.12

2018 $6,464.67

Figure 3.57 Outcome of Exercise 62.

62. Annuity Refer to the annuity discussed in Exercise 24 of Section 3.3. Assume that
the first deposit is made at the end of January 2014, and display the balance in the ac-
count at the end of each year from 2014 to 2018. See Fig. 3.57.

63. Average Grade Ask the user to enter three grades, and then compute the average
after dropping the lowest grade. See Fig. 3.58.

64. Automobile Depreciation A rule of thumb states that cars in personal use depre-
ciate by 15% each year. Suppose a new car is purchased for $20,000. Produce a table
showing the value of the car at the end of each of the next four years. See Fig. 3.59.

65. Supply and Demand Each year’s level of production and price (per bushel) for most
agricultural products affects the level of production and price for the following year.
Suppose the soybean crop in a country was 80 million bushels in 2014 and

 [price each year] = 20 - .1 * [quantity that year]

 [quantity each year] = 5 * [price from the preceding year] - 10,

where quantity is measured in units of millions of bushels. Generate a table to show
the quantity and price from 2014 until 2018. See Fig. 3.60.

 3.4 The for Loop ◆ 149

Enter a grade: 70

Enter a grade: 90

Enter a grade: 80

Average: 85

Figure 3.58 Possible outcome of Exercise 63.

1 $17,000.00

2 $14,450.00

3 $12,282.50

4 $10,440.12

Figure 3.59 Outcome of Exercise 64.

YEAR QUANTITY PRICE

2014 80.00 $12.00

2015 50.00 $15.00

2016 65.00 $13.50

2017 57.50 $14.25

2018 61.25 $13.88

Figure 3.60 Outcome of Exercise 65.

How many numbers do you want to enter? 4

Enter a number: 9

Enter a number: 3

Enter a number: 6

Enter a number: 5

Median: 5.5

Figure 3.61 Possible outcome of Exercise 66.

66. Median The median of an ordered set of measurements is a number separating the
lower half from the upper half. If the number of measurements is odd, the median is
the middle measurement. If the number of measurements is even, the median is the
average of the two middle measurements. Write a program that requests a number n
and a set of n measurements (not necessarily ordered) as input and then displays the
median of the measurements. See Fig. 3.61.

67. Salary Options Suppose you are given the following two salary options:

Option 1: $20,000 per year, with a raise of $1,000 at the end of each year
Option 2: $10,000 per half-year, with a raise of $250 per half-year at the end of each
half-year

Write a program to calculate the amount you would receive for the next ten years
 under each option to determine the best choice. See Fig. 3.62. (Many people are sur-
prised at the answer.)

Option 1 earns $245,000.

Option 2 earns $247,500.

Figure 3.62 Outcome of Exercise 67.

The value of the stock at the

end of the year was $9,483.48.

Figure 3.63 Outcome of Exercise 68.

 150 ◆ Chapter 3 Structures That Control Flow

68. Misleading Percentages At the beginning of the year you purchased a stock for
$10,000. At the end of the year you are told that your stock gained 18% during the
past month and that the average monthly change was +1%. Sounds like good news,
doesn’t it? Later you learn that your stock lost 16% during each of the first six months
of the year and gained 18% during each of the last six months of the year. Write a
program to determine the value of the stock at the end of the year. See Fig. 3.63.

The file ColoredBalls.txt contains the sequence in which colored balls were drawn
out of a bag. The file is available on the companion website. Use the file in Exercises
69 and 70.

69. Colored Balls Write a program to determine the number of red balls in the bag. See
Fig. 3.64.

Number of red balls: 12

Figure 3.64 Outcome of Exercise 69.

A red ball was first drawn in turn 2.

Figure 3.65 Outcome of Exercise 70.

70. Colored Balls Write a program to determine the first turn in which a red ball was
drawn from the bag. See Fig. 3.65.

71. Average Grade The file Final.txt contains student grades on a final exam. Write a
program that displays the number of grades, the average grade, and the percentage of
grades that are above the average grade. See Fig. 3.66.

Number of grades: 24

Average grade: 83.25

Percentage of grades above

 average: 54.17%

Figure 3.66 Outcome of Exercise 71.

Enter one of five grades: 84

Enter one of five grades: 96

Enter one of five grades: 88

Enter one of five grades: 77

Enter one of five grades: 90

Average grade: 91.33

Figure 3.67 Possible outcome of Exercise 72.

72. Average Grade Write a program that requests five grades as input and then calcu-
lates the average after dropping the two lowest grades. See Fig. 3.67.

73. Number of Vowels Write a program that requests a word as input and counts the
number of different vowels in the word. See Fig. 3.68.

Enter a word: successful

Number of different vowels: 2

Figure 3.68 Possible outcome of
 Exercise 73.

Starting word: NAISNIENLGELTETWEORRSD

Crossed out letters: N I N E L E T T E R S

Remaining letters: A S I N G L E W O R D

Figure 3.69 Outcome of Exercise 74.

74. A Puzzle The following puzzle is known as The Big Cross-Out Swindle.“Beginning
with the word ‘NAISNIENLGELTETWEORRSD,’ cross out nine letters in such a

way that the remaining letters spell a single word”. Write a program that creates vari-
ables named startingWord, crossedOutLetters, and remainingLetters. The program should
assign to startingWord the string given in the puzzle, assign to crossedOutLetters a list
containing every other letter of startingWord beginning with the initial letter N, and
assign to remainingLetters a list containing every other letter of startingWord beginning
with the second letter, A. The program should then display the values of the three
variables. See Fig. 3.69.

75. Same Birthday In a group of r people, the probability that at least two people have
the same birthday is

1 - an
n *

n - 1
n *

n - 2
n * g *

n - (r - 1)
n b

where n is the number of days in the year. Write a program that calculates the prob-
abilities for r = 21 through 25. Use n = 365. See Fig. 3.70.

 3.4 The for Loop ◆ 151

NUMBER OF PEOPLE PROBABILITY

21 0.444

22 0.476

23 0.507

24 0.538

25 0.569

Figure 3.70 Outcome of Exercise 75.

Connecticut

Delaware

Georgia

Maryland

Massachusetts

Figure 3.71 Partial Outcome of Exercise 76.

76. Original U.S. States The file States.txt contains the 50 U.S. states in the order in
which they joined the union. Write a program to display the original 13 states in alpha-
betical order. Fig. 3.71 shows the first five lines of output.

77. Boston Accent Write a program that asks the user to input a sentence and then dis-
plays the sentence with all occurrences of the letter r removed. See Fig. 3.72.

Enter a sentence: Park the car in Harvard Yard.

Revised sentence: Pak the ca in Havad Yad.

Figure 3.72 Possible outcome of Exercise 77.

Since 4 times 2178 is 8712,

the special number is 2178.

Figure 3.73 Outcome of Exercise 78.

78. Special Number Write a program to find the four-digit number, call it abcd, whose
digits are reversed when the number is multiplied by 4. That is, 4 * abcd = dcba. See
Fig. 3.73.

In Exercises 79 and 80, use the file ICCWinners.txt provided on the companion website.

79. ICC Winners Write a program that places the names of the 11 winners of the ICC
Cricket World Cup into a list and uses the list to determine the name of the sixth win-
ner. See Fig 3.74.

 152 ◆ Chapter 3 Structures That Control Flow

80. ICC Winners Write a program that determines the name of the 4th winner of the
ICC Cricket World Cup. Do not use a list in the program. See Fig 3.75.

81. Odometer Readings The numbers appearing on a car’s odometer range from 000000
to 999999. Write a program to determine the number of readings that contain the
digit 1. See Fig. 3.76.

The 6th winner was Sri Lanka.

Figure 3.74 Outcome of Exercise 79.

The 4th winner was Australia.

Figure 3.75 Outcome of Exercise 80.

468,559 numbers on the odometer

contain the digit 1.

Figure 3.76 Outcome of Exercise 81.

The sum of the digits in the numbers

from 1 to one million is 27,000,001.

Figure 3.77 Outcome of Exercise 82.

82. Digit Sum Write a program to calculate the total sum of the digits in the integers
from 1 to a million. See Fig. 3.77.

83. Flowers and Vegetables The following list contains a mix of names of vegetables
and flowers. Each name is followed by a letter about whether it is a vegetable or a flower.

mixed = ["Broccoli V", "Lily F", "Cucumber V", "Rose F", "Lotus

F", "Cabbage V", "Onion V", "Anemone F", "Aster F"]

Write a program that creates two lists (one of vegetables, and one of flowers) and uses
the lists to produce the output shown in Fig 3.78.

Vegetables: Broccoli, Cucumber, Cabbage, Onion.

Flowers: Lily, Rose, Lotus, Anemone, Aster

Figure 3.78 Outcome of Exercise 83.

Solutions to Practice Problems 3.4

1. The sequence generated by range(5) is the same as the sequence generated by range(0, 5), that is,
0, 1, 2, 3, 4.

2. The loop will never be entered because 15 is greater than 1. The intended first line might have been

for i in range (15, 1, -1):

or

for i in range(2, 16):

3. Since each line of the file ends with a newline character, the names would have been displayed double-spaced.

4. musketeers = ["Athos", "Porthos", "Aramis", "D'Artagnan"]
for name in musketeers:

 print(name)

When no items of a list will be altered in place, use in instead of indices to iterate through the list.

5. 0 1 2 3 4 5 6. The header of the for loop generates a sequence of 7 numbers to be iterated over. That
 sequence is permanent. There will be 7 passes through the loop unless a break statement is encountered.

Chapter 3 KEy TERMS AnD
 COnCEPTS ExAMPLES

3.1 Relational and Logical Operators

The Boolean data type (or bool) has the two
values True and False.

The ASCII table associates characters with
nonnegative numbers. The value of chr(n) is
the character associated with the number n.
The function ord is the inverse of the chr
function. The use of the ASCII table to
order items of data is called lexicographical
 ordering.

The relational operators are 6 , 7 , = = ,
!= , 6 = , 7 = , in, and not in.

The principal logical operators are and, or,
and not.

A condition is an expression involving
literals, variables, functions, and operators
(arithmetic, relational, or logical) that can be
evaluated as True or False.

The list sort method lexicographically orders
items.

The startswith and endswith methods return
the values that their names imply.

String methods that return Boolean values:
isdigit, isalpha, isalnum, islower, isupper,
isspace

The in operator can be used to simplify
 complex conditions.

chr(49) is ‘1’, chr(65) is ‘A’, chr(97) is ‘a’.

ord(‘9’) is 57, ord(‘Z’) is 90, ord(‘z’) is 122.

“Spam” 6 “spa” lexicographically.

[8, ‘X’] 6 [8, ‘x’] has the value True.

2 6 3, 2 != 3, ‘a’ in [‘a’, ‘b’] have value
True.

2 = = 3, “spam”6 =“Spam” have value
False.

(7 6 5) or (2 != 3) has value True.

Let a = 3 and b = “spam”.

((5 6 (2*a)) and (len(b) = = 4)) has value
True; not ((2*len(b)) = = 8) has value
False.

[‘b’, ‘a’, ‘c’].sort() is [‘a’, ‘b’, ‘c’].

“spam”.startswith(“sp”) has value True.

“spam”.endswith(‘m’) has value True.

“hi!”.isalpha() has value False.

“ne1”.isalnum() has value True.

(s = = ‘p’) or (s = = ‘i’) or (s = = ‘e’) can
be replaced with (s in “pie”).

3.2 Decision Structures

An if statement has the form

if condition1:

 indented block of statements

elif condition2:

 indented block of statements

else:

 indented block of statements

It executes the first block whose associated
condition is true. The elif and else clauses
are optional and there may be multiple elif
clauses.

n = int(input("Enter an int: "))

if n <= 0:

 print(n, "is neg or zero")

elif n % 2 == 0:

 print(n, "is pos and even")

else:

 print(n, "is pos and odd")

[Run]

Enter an int: 5

5 is pos and odd

 Key Terms and Concepts ◆ 153

 154 ◆ Chapter 3 Structures That Control Flow

Chapter 3 KEy TERMS AnD
 COnCEPTS ExAMPLES

3.3 The while Loop

A while loop has the form
while condition:

 indented block of statements

The loop repeatedly executes the block as
long as the condition is true.

A while loop might use a counter variable
to keep track of the number of times a
 certain event has occurred, an accumulator
variable to hold a total, and a sentinel value
to indicate the end of a sequence of inputs.

If a break statement is encountered during
a pass through a while loop, the loop is
 immediately exited.

If a continue statement is encountered in
the block of a while loop, execution jumps
back to the closest enclosing while loop
header.

n = 1

while n < 6:

 print(n, end=" ")

 n += 1

[Run]

1 2 3 4 5

print("Enter -1 to end input.")

-1 is the sentinel value

counter = 0

accumulator = 0

s = "Enter a positive integer: "

n = int(input(s))

while n != -1:

 counter += 1

 accumulator += n

 n = int(input(s))

print(counter, "ints entered")

print("Sum:", accumulator)

[Run]

Enter -1 to end input.

Enter a positive integer: 3

Enter a positive integer: 4

Enter a positive integer: -1

2 ints entered

Sum: 7

Can replace lines 6–10 with
while True:

 n = int(input(s))

 if n == -1:

 break

 counter += 1

 accumulator += n

n = 9

while(n <= 15):

 n += 1

skip unlucky number

 if n == 13:

 continue

 print(n, end=" ")

[Run]

10 11 12 14 15 16

 Programming Projects ◆ 155

Chapter 3 KEy TERMS AnD
 COnCEPTS ExAMPLES

3.4 The for Loop

The range function generates an arithmetic
progression of numbers.

A for loop repeats a block of statements
as its loop variable iterates through a
 sequence. The sequence can be an arithmetic
 progression, the items of a list or tuple, the
characters of a string, or the lines of a file
object. The statements break and continue
have the same effect in for loops as they do
in while loops.

A flag is a variable used to indicate whether
a certain event has occurred or a certain situ-
ation exists.

The pass statement is a do-nothing
 placeholder that is sometimes used where the
syntax requires a statement.

range(5) generates 0, 1, 2, 3, 4

range(1, 9, 2) generates 1, 3, 5, 7

list1 = []

for i in range(9, 0, -1):

 list1.append(i)

for item in list1:

 print(item, end="")

[Run]

987654321

See Example 10.

See Example 11.

Chapter 3  PROgRAMMIng PROjECTS

1. Car Loan Write a program to analyze a car loan. See Fig. 3.79. The user should enter
the amount of the loan, the annual percentage rate of interest, and the duration of
the loan in months. After each piece of data is entered, the data should be checked to
make sure it is reasonable. If bad data has been supplied, the user should be so advised.
Otherwise, the monthly payment and the total amount of interest paid should be dis-
played. The formula for the monthly payment is

monthly payment =
p # r

1 - (1 + r)-n
,

where p is the amount of the loan, r is the monthly interest rate (annual rate divided
by 12) given as a number between 0 (for 0%) and 100 (for 100%), and n is the duration
of the loan in months. The formula for the total interest paid is

total interest = n # [monthly payment] - p.

Figure 3.79 Possible outcome of
 Programming Project 1.

Enter the amount of the loan: 18000

Enter the interest rate: 5.25

Enter the duration in months: 60

Monthly payment: $341.75

Total interest paid: $2,505.00

Enter a: 1

Enter b: -11

Enter c: 28

Solutions: 7 and 4

Figure 3.80 Possible outcome of
Programming Project 2.

 156 ◆ Chapter 3 Structures That Control Flow

2. Quadratic Equation Write a program to determine the real roots of the quadratic
equation ax2 + bx + c = 0 (where a ≠ 0) after requesting the values of a, b, and c.
 Before finding the roots, ensure that a is nonzero. [Note: The equation has 2, 1, or 0
 solutions depending on whether the value of b2 - 4ac is positive, zero, or negative. In the
first two cases, the solutions are given by the quadratic formula (-b { (b2 - 4ac).5)/2a.]
See Fig. 3.80 on the previous page.

3. Caffeine Absorption After caffeine is absorbed into the body, 13% is eliminated
from the body each hour. Assume a person drinks an 8-oz cup of brewed coffee con-
taining 130 mg of caffeine, and that the caffeine is absorbed immediately into the body.
Write a program to calculate the following values. See Fig. 3.81.

 (a) The number of hours required until less than 65 mg (one-half the original amount)
remain in the body.

 (b) The amount of caffeine in the body 24 hours after the person drinks the coffee.

 (c) Suppose the person drinks a cup of coffee at 7 a.m. and then drinks a cup of coffee
at the end of each hour until 7 a.m. the next day. How much caffeine will be in the
body at the end of the 24 hours?

Figure 3.81 Outcome of Programming Project 3.

CAFFEINE VALUES

One cup: less than 65 mg. will remain after 5 hours.

One cup: 4.60 mg. will remain after 24 hours.

Hourly cups: 969.24 mg. will remain after 24 hours.

4. Rule of 72 This rule is used to approximate the time required for prices to double
due to inflation. If the inflation rate is r%, then the Rule of 72 estimates that prices will
double in 72/r years. For instance, at an inflation rate of 6%, prices double in about
72/6 or 12 years. Write a program to test the accuracy of this rule. For each interest rate
from 1% to 20%, the program should display the rounded value of 72/r and the actual
number of years required for prices to double at an r% inflation rate. (Assume prices
increase at the end of each year.) Fig. 3.82 shows the first five sets of values.

 Rule of 72

Interest Doubling Time Actual Doubling

Rate (in years) Time (in years)

1% 72 70

2% 36 36

3% 24 24

4% 18 18

5% 14 15

Figure 3.82 Partial Outcome of Programming Project 4.

5. Individual Retirement Accounts Money earned in an ordinary savings account is
subject to federal, state, and local income taxes. However, a special type of retirement
savings account, called a traditional individual retirement account (traditional IRA),
allows these taxes to be deferred until after retirement. IRAs are highly touted by
 financial planners. The purpose of this programming project is to show the value of
starting an IRA early. Earl and Larry each begin full-time jobs in January 2015 and

 Programming Projects ◆ 157

plan to retire in January 2063 after working for 48 years. Assume that any money they
 deposit into IRAs earns 4% interest compounded annually. Earl opens a traditional
IRA account immediately and deposits $5,000 into his account at the end of each
year for fifteen years. After that he plans to make no further deposits and just let the
money earn interest. Larry plans to wait fifteen years before opening his traditional
IRA and then deposit $5,000 into the account at the end of each year until he retires.
Write a program that calculates the amount of money each person has deposited into
his account and the amount of money in each account upon retirement. See Fig. 3.83.

6. Soundex System Soundex is a system that encodes a word into a letter followed by
three numbers that roughly describe how the word sounds. Similar sounding words
have the same four-character codes. For instance, the words Carrot and Caret are both
coded as C123. A slight variation of the Soundex coding algorithm is as follows:

1. Retain the first letter.

2. For the remaining letters, delete all occurrences of a, e, i, o, u, h, y, and w.

3. Assign numbers to the other letters that remain so that

(a) b, f, p, and v become 1
(b) c, g, j, k, q, s, x, and z become 2
(c) d and t both become 3
(d) l (i.e., el) becomes 4
(e) m and n become 5
(f) r becomes 6

4. If two or more letters that have been replaced by the same number were next to each
other in the original full word, keep only the first of them.

5. Keep only the first four characters of what you have left. If you have fewer than
four, then add zeros on the end to make the string have length four.

Write a program that carries out the algorithm. See Fig. 3.84.

AMOUNTS DEPOSITED

Earl: $75,000.00 Larry: $165,000.00

AMOUNTS IN IRA UPON RETIREMENT

Earl: $365,268.39 Larry: $331,047.64

Figure 3.83 Outcome of Programming Project 5.

Enter a word to code: Robert

The coded word is R163.

Figure 3.84 Possible outcome of Programming Project 6.

7. Error Detection Suppose you type a 14-digit credit card number into a Web site, but
mistype one of the digits or inadvertently interchange two adjacent digits. The Web
site will perform a validation check that always detects the first type of error and near-
ly always detects the second type of error. The validation check is as follows:

1. Starting with the leftmost digit, double it and then double every other digit after it.
However, if any of the doubled digits is a two-digit number, subtract 9 from it. Then
sum these new digits. For instance, if the credit card number is 58667936100244,
then the digits considered are 5, 6, 7, 3, 1, 0, 4, their new replacements are 1, 3, 5, 6,
2, 0, 8, and the sum of the replacements is 25.

 158 ◆ Chapter 3 Structures That Control Flow

2. Sum together the remaining seven digits from the credit card number. That is, the
digits in the odd-numbered positions. With the credit card number above, we obtain
8 + 6 + 9 + 6 + 0 + 2 + 4 = 35.

3. Add together the two sums. If the result is a multiple of 10, then accept the credit
card number. Otherwise, reject it. We accept the credit card number above since
25 + 35 = 60, a multiple of 10.

Write a program that performs data validation on a credit card number. See Fig. 3.85.

8. Palindrome A palindrome is a word or phrase that reads the same forward and back-
ward, character for character, disregarding punctuation, case, and spaces. Some exam-
ples are “racecar”, “Madam, I’m Adam”, and “Was it a cat I saw?”. Write a program
that asks the user to input a word or phrase and then determines if it is a palindrome.
See Fig. 3.86. Note: Remove all spaces and punctuation before analyzing the word or
phrase.

Figure 3.86 Possible outcome of Programming Project 8.

Enter a word or phrase: A man, a plan, a canal: Panama.

A MAN, A PLAN, A CANAL: PANAMA. is a palindrome.

Figure 3.85 Possible outcome of Programming Project 7.

Enter a credit card number: 58667936100244

The number is valid.

159

4

4.1	 Functions,	Part 1	 160

◆  Built- In Functions  ◆  User- Defined Functions  ◆  Functions Having One Parameter
◆  Passing a Value to a Function  ◆  Functions Having Several Parameters 

◆  Boolean- and List- Valued Functions  ◆  Functions That Do Not Return Values 

◆  Functions Without Parameters  ◆  Scope of Variables  ◆  Named Constants 

◆  Library Modules

4.2	 Functions,	Part 2	 180

◆  Functions Calling Other Functions  ◆  Functions Returning Multiple Values 

◆  List Comprehension  ◆  Default Values  ◆  Passing by Parameter Name 

◆  Custom Sorting  ◆  Lambda Expressions  ◆  The sorted Function

4.3	 Program	Design	 198

◆  Top- Down Design  ◆  Structured Programming
◆  Advantages of Structured Programming  ◆  Object- Oriented Programming 

◆  A Relevant Quote

Key	Terms	and	Concepts	 202

Programming	Projects	 204

Functions

 160 ◆ Chapter 4 Functions

4.1	 Functions,	Part 1

Functions are used to break complex problems into small problems to be solved one at a
time. Functions allow us to write and read a program in such a way that we first focus on
the tasks and later on how to accomplish each task. They also eliminate repetitive code and
can be reused in other programs.

There are two types of functions— those that are designed to return values and those
that execute lines of code without the intent to return a value. The second type of function
often displays output with print statements or creates a file. We will begin by discussing
functions designed to return a value.

 ■ Built- In Functions
Python has many built- in functions. In one respect, functions are like miniature programs.
They receive input, they process the input, and they produce output. Some built-in func-
tions we encountered earlier are listed in Table 4.1.

Table 4.1 Some Python built- in functions.

Function Example Input Output

int int(2.6) is 2 number number
chr chr(65) is 'A' number string
ord ord('A') is 65 string number
round round(2.34, 1) is 2.3 number, number number

The output for each of the four functions in the table above is a single value. A func-
tion is said to return its output. For instance, in the first example of Table 4.1, we say that
the int function returns the value 2. The items inside the parentheses are called arguments.
The first three functions in Table 4.1 have one argument and the fourth function has two
arguments. Arguments can be literals (as in Table 4.1), variables, or any other type of expres-
sion. The following lines of code illustrate the use of literals, variables, and expressions as
arguments for the int function. The third line of code is said to call (or, invoke) the int
function and to pass the value of num1 to the function.

num = int(3.7) # literal as an argument

num1 = 2.6

num2 = int(num1) # variable as an argument

num1 = 1.3

num2 = int(2 * num1) # expression as an argument

 ■ User- Defined Functions
In addition to using built- in functions, we can define functions of our own (called user-
 defined functions) that return values. Such functions are commonly defined by statements
of the form

def functionName(par1, par2, ...):

 indented block of statements

 return expression

where par1, par2 are variables (called parameters) and the expression evaluates to a literal
of any type. (Note: def is an abbreviation of define.) As is the case with the control- flow

VideoNote

User-
Defined
Functions

 4.1 Functions, Part 1 ◆ 161

statements discussed in Chapter 3, the function header must end with a colon, and each
statement in the block below the header (including the return statement) must be indented
by the same number of spaces (usually four spaces). The indentation delimits the body of
the function definition. The IDLE editor helps with the indentation. Often there is more
than one return statement. If so, the function terminates as soon as the first return state-
ment is executed. The return statement(s) can appear anywhere in the block.

There are three ways to pass arguments to parameters: pass by position, pass by keyword,
and pass by default value. In this section we consider only passing by position. The other
two types of passing will be discussed in the next section. When arguments are passed by
position, the arguments in the calling statement are matched to the parameters in the func-
tion header based on their order. That is, the 1st argument is passed to the 1st parameter,
the 2nd argument is passed to the 2nd parameter, and so on. Note: When an argument is an
expression, the expression is first evaluated and then its value is passed to a parameter.

Parameters and return statements are optional in function definitions. However, initially
we will consider only functions having both.

Function names should describe the role performed by the function and must conform
to the rules for naming variables. Initially, we will place all function definitions at the top
of the editor and follow each function definition with a blank line.

 ■ Functions Having One Parameter
The following two functions have just one parameter. Figure 4.1 identifies the different parts
of the first function’s header.

def fahrenheitToCelsius(t):

 ## Convert Fahrenheit temperature to Celsius.

 convertedTemperature = (5 / 9) * (t - 32)

 return convertedTemperature

def firstName(fullName):

 ## Extract the first name from a full name.

 firstSpace = fullName.index(" ")

 givenName = fullName[:firstSpace]

 return givenName

keyword signifying
function definition function name parameter

def fahrenheitToCelsius(t):

Figure 4.1 Header of the fahrenheitToCelsius function.

 Example 1 Temperature Conversion The following program uses the function
 fahrenheitToCelsius. The next to last line of the program, celsiusTemp = fahrenheit-
ToCelsius(fahrenheitTemp), calls (that is, executes) the function. The value of the argu-
ment fahrenheitTemp is assigned to the parameter t in the function header. (We say that the
value of fahrenheitTemp is passed to the parameter t.) After the function does a calculation
using the value of the parameter t, the return statement specifies that the calculated value
is the output of the function fahrenheitToCelsius. That value is assigned to the variable
 celsiusTemp. The program then uses the value of the variable when displaying the output.

 162 ◆ Chapter 4 Functions

 ■ Passing a Value to a Function
If the argument in a function call is a variable, the object pointed to by the argument variable
(not the argument variable itself) is passed to a parameter variable. Therefore, if the object
is immutable and the function changes the value of the parameter variable, no change will
occur in the object pointed to by the argument variable. Even if the two variables have the
same name, they are treated as entirely different variables. Therefore, when the argument
variable points to a numeric, string, or tuple object, there is no possibility what- so- ever that
the value of the argument variable will be changed by a function call.

def fahrenheitToCelsius(t):

 ## Convert Fahrenheit temperature to Celsius.

 convertedTemperature = (5 / 9) * (t - 32)

 return convertedTemperature

fahrenheitTemp = eval(input("Enter a temperature in degrees Fahrenheit: "))

celsiusTemp = fahrenheitToCelsius(fahrenheitTemp)

print("Celsius equivalent:", celsiusTemp, "degrees")

[Run]

Enter a temperature in degrees Fahrenheit: 212

Celsius equivalent: 100.0 degrees

 Example 2 Extract First Name The following program uses the function firstName.
The last line of the program, print("First name:", firstName(fullName)), passes the
value of the argument fullName to the parameter fullName in the function. Although the
parameter in the function has the same name as the argument passed to it, they are not
the same variable.

def firstName(fullName):

 firstSpace = fullName.index(" ")

 givenName = fullName[:firstSpace]

 return givenName

Extract the first name from a full name.

fullName = input("Enter a person's full name: ")

print("First name:", firstName(fullName))

[Run]

Enter a person's full name: Franklin Delano Roosevelt

First name: Franklin

 Example 3 Passing a Value to a Function The following program shows that even
though the value of the parameter num in the function definition is changed, there is no
change in the value of the argument num in the part of the program that called the function.

Note 1: Function definitions must have been processed by the Python interpreter before
they can be called.

Note 2: The last two lines of the program above could have been replaced with the single line
print("Celsius equivalent:", fahrenheitToCelsius(fahrenheitTemp), "degrees")

 4.1 Functions, Part 1 ◆ 163

Figure 4.2 shows the status of the memory locations as the program in Example 3
executes. The variable num inside the function is colored blue and the variable num outside
the function is colored black. The memory location holding the object 6, comes into exist-
ence in part (c). It still exists in part (d), but is abandoned;—that is, no variable points to it.

num

(a)
after

num=2 is
executed

2

num

(c)
after

num = 2* num
is executed

2

6

num num

(d)
after triple

is exited

2

6

num

num

(b)
after triple

is called

2

Figure 4.2 Passing a value to a function.

Some programmers feel that function definitions are easier to read if they never change
the values of function parameters. They would write the function definition in Example 3 as

def triple(num):

 product = 3 * num

 return product

 ■ Functions Having Several Parameters
The following two functions have more than one parameter. In the function futureValue,
 one- letter names have been used for the parameters so that the mathematical formulas will
look familiar and be easy to read. However, since the names are not descriptive, the mean-
ings of these parameters are spelled out in comments. Note: The formula for the future

value is p a1 +
r
m b

mt

.

def pay(wage, hours):

 ## Calculate weekly pay with time- and- a- half for overtime.

 if hours <= 40:

 amount = wage * hours

 else:

 amount = (wage * 40) + ((1.5) * wage * (hours – 40))

 return amount

def triple(num):

 num = 3 * num

 return num

num = 2

print(triple(num))

print(num)

[Run]
6

2

 164 ◆ Chapter 4 Functions

def futureValue(p, r, m, t):

 ## Find the future value of a savings account deposit.

 # p principal, the amount deposited

 # r annual rate of interest in decimal form

 # m number of times interest is compounded per year

 # t number of years

 i = r / m # interest rate per period

 n = m * t # total number of times interest is compounded

 amount = p * ((1 + i) ** n)

 return amount

Although Python allows functions to receive a varying number of arguments, initially
we will only consider functions that must receive a fixed number of arguments. When
calling a function and passing arguments by position, there must be the same number of
arguments as parameters. Also, the data types of the arguments’ values must be compatible
with (and in the same order) as the data types expected by the parameters. For instance, in
a statement of the form

numVar = futureValue(arg1, arg2, arg3, arg4)

the arguments must all have values that are numeric data types.

 Example 4 Earnings The following program uses the function pay. Here the argu-
ments have different names than the corresponding parameters. Figure 4.3 shows how the
values of the arguments are passed to the parameters of the function by position.

def pay(wage, hours):

 ## Calculate weekly pay with time- and- a- half for overtime.

 if hours <= 40:

 amount = wage * hours

 else:

 amount = (wage * 40) + ((1.5) * wage * (hours – 40))

 return amount

Calculate a person's weekly pay.

hourlyWage = eval(input("Enter the hourly wage: "))

hoursworked = eval(input("Enter the number of hours worked: "))

earnings = pay(hourlyWage, hoursWorked)

print("Earnings: ${0:,.2f}".format(earnings))

[Run]

Enter the hourly wage: 24.50

Enter the number of hours worked: 45

Earnings: $1,163.75

arguments

pay(hourlyWage, hoursWorked)

def pay(wage, hours):

parameters

Figure 4.3 Passing arguments to a function.

 4.1 Functions, Part 1 ◆ 165

 ■ Boolean- and List- Valued Functions
So far, the values returned by functions have been numbers or strings. However, a function
can return any type of value. The following two programs use a function that returns a
 Boolean value and a function that returns a list.

 Example 5 Future Value of a Bank Deposit The following program uses the func-
tion futureValue. The function computes the balance in a savings account given the amount
deposited (p), the annual rate of interest (r), the number of times interest is compounded
per year (m), and the number of years that interest accrues (t).

def futureValue(p, r, m, t):

 # p principal, the amount deposited

 # r annual rate of interest in decimal form

 # m number of times interest is compounded per year

 # t number of years

 i = r / m # interest rate per period

 n = m * t # total number of times interest is compounded

 amount = p * ((1 + i) ** n)

 return amount

Find the future value for a saving account deposit.

p = eval(input("Enter amount deposited: "))

r = eval(input("Enter annual rate of interest in decimal form: "))

m = eval(input("Enter number of times interest is compounded per year: "))

t = int(input("Enter number of years: "))

balance = futureValue(p, r, m, t)

print("Balance after", t, "years: ${0:,.2f}".format(balance))

[Run]

Enter amount deposited: 1000

Enter annual rate of interest in decimal form: .04

Enter number of times interest is compounded per year: 4

Enter number of years: 5

Balance after 5 years: $1,220.19

 Example	6	 Vowel Words A vowel word is a word that contains every vowel. Some
examples of vowel words are sequoia, facetious, and dialogue. The following program uses
a Boolean- valued function to determine whether a word input by the user is a vowel word.
The function isVowelWord examines the word for vowels one at a time and terminates when
a vowel is found to be missing or after all vowels have been considered.

def isVowelWord(word):

 word = word.upper()

 vowels = ('A', 'E', 'I', 'O', 'U')

 for vowel in vowels:

 if vowel not in word:

 return False

 return True

 166 ◆ Chapter 4 Functions

 ■ Functions That Do Not Return Values
Functions that do not return values look like the functions discussed above with the excep-
tion that they do not contain any return statements. They may or may not have parameters
and are called by placing their names (along with their arguments) as a statement on a
single line.

Determine if a word contains every vowel.

word = input("Enter a word: ")

if isVowelWord(word):

 print(word, "contains every vowel.")

else:

 print(word, "does not contain every vowel.")

[Run]

Enter a word: Education

Education contains every vowel.

 Example 7 Included Vowels The following program displays the vowels contained
in a word input by the user. The program uses a list- valued function.

def occurringVowels(word):

 word = word.upper()

 vowels = ('A', 'E', 'I', 'O', 'U')

 includedVowels = []

 for vowel in vowels:

 if (vowel in word) and (vowel not in includedVowels):

 includedVowels.append(vowel)

 return includedVowels

Display the vowels appearing in a word.

word = input("Enter a word: ")

listOfVowels = occurringVowels(word)

print("The following vowels occur in the word: ", end="")

stringOfVowels = " ".join(listOfVowels)

print(stringOfVowels)

[Run]

Enter a word: important

The following vowels occur in the word: A I O

 Example	8	 Old McDonald’s Farm The following program displays three verses of
a well- known children’s song. In this case, the function prevents having to write repetitive
code.

def oldMcDonald(animal, sound):

 print("Old McDonald had a farm. Eyi eyi oh.")

 print("And on his farm he had a", animal + ".", "Eyi eyi oh.")

 4.1 Functions, Part 1 ◆ 167

 ■ Functions Without Parameters
In the following rewrite of the program from Example 2, the leading function (named main)
has no parameters and no return statement.

def main():

 ## Extract the first name from a full name.

 fullName = input("Enter a person's full name: ")

 print("First name:", firstName(fullName))

def firstName(fullName):

 firstSpace = fullName.index(" ")

 givenName = fullName[:firstSpace]

 return givenName

main()

In this format, the program consists of a sequence of two functions beginning with the
function directing the program and appropriately named main. The final line of the program
calls the function main and thereby initiates the tasks to be performed. From now on, most
of our programs will be written in this style.

 print("With a", sound, sound, "here, and a", sound, sound, "there.")

 print("Here a", sound + ",", "there a", sound + ",",

 "everywhere a", sound, sound + ".")

 print("Old McDonald had a farm. Eyi eyi oh.")

Old McDonald Had a Farm

oldMcDonald("lamb", "baa")

print()

oldMcDonald("duck", "quack")

print()

oldMcDonald("cow", "moo")

[Run]

Old McDonald had a farm. Eyi eyi oh.

And on his farm he had a lamb. Eyi eyi oh.

With a baa baa here, and a baa baa there.

Here a baa, there a baa, everywhere a baa baa.

Old McDonald had a farm. Eyi eyi oh.

Old McDonald had a farm. Eyi eyi oh.

And on his farm he had a duck. Eyi eyi oh.

With a quack quack here, and a quack quack there.

Here a quack, there a quack, everywhere a quack quack.

Old McDonald had a farm. Eyi eyi oh.

Old McDonald had a farm. Eyi eyi oh.

And on his farm he had a cow. Eyi eyi oh.

With a moo moo here, and a moo moo there.

Here a moo, there a moo, everywhere a moo moo.

Old McDonald had a farm. Eyi eyi oh.

 168 ◆ Chapter 4 Functions

 ■ Scope of Variables
A variable created inside a function can only be accessed by statements inside that func-
tion, and ceases to exist when the function is exited. (The variable is recreated each time the
function is called.) The variable is said to be local to the function or to have local scope.
The same is true for the function’s parameters.

Therefore, if variables created in two different functions have the same name, they have
no relationship to each other; they are treated as completely different variables. The same
is true for the parameters of functions.

 Example 9 Population Density The following program calculates the population
density of a state. The parameterless function describeTask explains the purpose of the
program.

def main():

 ## Calculate the population density of Hawaii.

 describeTask()

 calculateDensity("Hawaii", 1375000, 6423)

def describeTask():

 print("This program displays the population")

 print("density of the last state to become")

 print("part of the United States.\n")

def calculateDensity(state, pop, landArea):

 density = pop / landArea

 print("The density of", state, "is")

 print("{0:,.2f} people per square mile.".format(density))

main()

[Run]

This program displays the population

density of the last state to become

part of the United States.

The density of Hawaii is

214.07 people per square mile.

 Example	10	 Scope of Variables The following program illustrates the fact that vari-
ables are local to the function in which they reside. The variable x in the function main and
the variable x in the function trivial are different variables. Python deals with them as if their
names were something like main_x and trivial_x.

def main():

 ## Demonstrate the scope of variables.

 x = 2

 print(str(x) + ": function main")

 trivial()

 print(str(x) + ": function main")

def trivial():

 x = 3

 print(str(x) + ": function trivial")

VideoNote

Scope of
Variables

 4.1 Functions, Part 1 ◆ 169

In general, the scope of a variable is the portion of the program that can refer to it.
Python provides a way to make a variable recognized everywhere in a program. Such a
variable is called a global variable. One way to make a variable global is to place the assign-
ment statement that creates it at the top of the program.

Any function can read the value of a global variable—however, the value cannot be
altered inside a function unless the altering statement is preceded by a statement of the form

global globalVariableName

The global statement affects only the statements following it in its function block. It
does not allow the global variable to be altered inside other functions.

main()

[Run]

2: function main

3: function trivial

2: function main

 Example 11 Local Variables The following program generates a NameError Trace-
back error message. The variable x created in the function main is not recognized by the
function trivial.

def main():

 ## Demonstrate the scope of local variables.

 x = 5

 trivial()

def trivial():

 print(x)

main()

 Example 12 Global Variable The following program contains a global variable.

x = 0 # Declare a global variable.

def main():

 ## Demonstrate the scope of a global variable.

 print(str(x) + ": function main")

 trivial()

 print(str(x) + ": function main")

def trivial():

 global x

 x += 7

 print(str(x) + ": function trivial")

main()

[Run]

0: function main

7: function trivial

7: function main

 170 ◆ Chapter 4 Functions

Many programmers limit the use of global variables; especially in large programs. They
can make a program difficult to follow and can easily cause errors. However, there is one
type of global variable, called a named constant that is quite useful and is frequently used.

 ■ Named Constants
A program sometimes employs a special constant that will be used several times in the pro-
gram. Such a constant might refer to an interest rate or a minimum age. One convention
programmers use is to create a global variable whose name is written in uppercase letters
with words separated by underscore characters, and assign the constant to it. Some exam-
ples are as follows:

INTEREST_RATE = 0.04

MINIMUM_VOTING_AGE = 18

BOOK_TITLE = "Programming with Python"

The special naming convention reminds the programmer that no reassignments to the
variable should be made during the execution of the program. Since Python allows reas-
signments to any variable, the programmer is responsible for not changing the value of the
variable. Such constants are called named constants.

Some examples of statements using named constants are

interestEarned = INTEREST_RATE * amountDeposited

if (age >= MINIMUM_VOTING_AGE):

 print("You are eligible to vote.")

print("The title of the book is", BOOK_TITLE + ".")

Although the value of a named constant such as INTEREST_RATE will not change dur-
ing the execution of a program, the value may need to be changed at a later time. The pro-
grammer can adjust to this change by altering just one line of code at the top of the program
instead of searching through the entire program for each occurrence of the old interest rate.

 ■ Library Modules
Python facilitates the reuse of functions with a file called a library module. A library
module is a file with the extension .py containing functions and variables that can be used
(we say imported) by any program. The library module can be created in IDLE or any text
editor and looks like an ordinary Python program. For instance, we might create a file
containing the two functions pay and futureValue, and name the file finance.py. Then,
assuming that finance.py is located in the same folder as Examples 4 and 5, Example 4
could be rewritten as

import finance

Calculate a person's weekly pay.

hourlyWage = eval(input("Enter the hourly wage: "))

hoursworked = eval(input("Enter the number of hours worked: "))

earnings = finance.pay(hourlyWage, hoursWorked)

print("Earnings: ${0:,.2f}".format(earnings))

and Example 5 could be rewritten as

import finance

Find the future value for a saving account deposit.

p = eval(input("Enter amount deposited: "))

 4.1 Functions, Part 1 ◆ 171

r = eval(input("Enter annual rate of interest in decimal form: "))

m = eval(input("Enter number of times interest is compounded per year: "))

t = int(input("Enter number of years: "))

balance = finance.futureValue(p, r, m, t)

print("Balance after", t, "years: ${0:,.2f}".format(balance))

The only changes in the two programs were the replacement of the functions with the
import statement and the replacement of pay and futureValue in the print statements with
finance.pay and finance.futureValue.

Python comes with a collection of library modules referred to as the standard library.
Table 4.2 shows the modules from the standard library that will be used in later chapters.

Table 4.2 Several modules from the standard library.

Module Some Tasks Performed by Its Functions

os delete and rename files
os.path determine whether a file exists in a specified folder. This module is a submodule of os
pickle store objects (such as dictionaries, lists, and sets) in files and retrieve them from files
random randomly select numbers and subsets
tkinter enable programs to have a graphical user interface
turtle enable turtle graphics

To gain access to the functions and variables of a library module, place a statement of
the form

import moduleName

at the beginning of the program. Then, any function from the module can be used in the
program by prepending the function name with the module name followed by a period.

A variation of the import statement is

from moduleName import *

After such a statement has been executed, any function from the module can be used dir-
ectly without having to prepend it with the module name and a period. This variation is
most often employed when a program uses many functions from the module. For instance,
in the program appearing on the previous page, if the statement import finance were
replaced with from finance import *, then the balance assignment statement could have
been written balance = futureValue(p, r, m, t). Programmers prefer the other import
statement when several library modules are being used since it gives explicit information
about where a particular function comes from.

 ■ Comments
1. Functions name code segments in much the way that variables name numbers, strings,

and lists. Functions allow programmers to focus on the main flow of a complex task
and defer the details of implementation. Modern programs use them liberally. This
method of program construction is known as modular or top- down design. As a rule,
a function should perform only one task, or several closely related tasks, and should
be kept relatively small.

2. Functions are used to break complex problems into small problems, to eliminate repeti-
tive code, and to make a program easier to read by separating it into logical units. Also,
functions can be reused in other programs.

3. IDLE displays the names of user- defined functions in the color blue.

 172 ◆ Chapter 4 Functions

4. The parameters in a function definition are also called formal parameters and the argu-
ments in a function call are also called actual parameters.

5. Some programmers prefer that functions have at most one return statement. They feel
this makes functions easier to understand and debug. Multiple return statements can
be avoided by assigning the different function values to a variable and then returning
the value of the variable at the end of the function block. For instance, the function on
the left below can be replaced with the function on the right.

def parityOfNumber(num):

 if num % 2:

 return "odd"

 else:

 return "even"

def parityOfNumber(num):

 if num % 2:

 parity = "odd"

 else:

 parity = "even"

 return parity

6.	Python has an object called None that is used to denote a lack of value, and has no
methods. The None object is returned by functions that have no return statement as
illustrated by the following program.

def f():

 pass

print(f())

[Run]

None

 7. As mentioned earlier, from now on most programs in this book will be written as a
sequence of functions. The first function will be named main and sometimes will be
preceded by import statements and global variables. All programs will end with the
statement main() to call the program’s main function.

	 8.	The function main should not perform lengthy computations. Ideally, main should be
a supervisory function calling other functions according to the application’s logic.

 9. The standard library module math contains trigonometric, exponential, and loga-
rithmic functions, and is regularly used in mathematics, science, and engineering
applications.

Practice Problems 4.1

1. Can the third line of Example 6 be replaced with vowels = "AEIOU"?

2. The program on the left below displays the number 7, but the program on the right
produces an error message. What is wrong with the program on the right?

x = 7

def main():

 print(x)

main()

x = 7

def main():

 x += 1

 print(x)

main()

 4.1 Functions, Part 1 ◆ 173

3. Simplify the following function.

def f(x):

 if x > 0:

 return True

 else:

 return False

ExERCISES 4.1

In Exercises 1 through 24, give the output of the program.

1. def main():
 print(uc('h'))

 print(uc('w'))

def uc(letter):

 if letter == 'h':

 return 'H'

 else:

 return letter

 main()

2. def main():
 acres = 5 # number of acres in a parking lot

 print("You can park around", cars(acres), "cars on a five- acre lot.")

def cars(n):

 numberOfCars = 100 * n

 return numberOfCars

main()

3. def main():
 t = float(input("Enter the time in which you want to double

 your money: "))

 print("To double your money in",t,"years, ", end="")

 print("get an interest rate of about {0:.2f}

 %.".format(doublingRate(t)))

def doublingRate(x):

 ## Estimate interest rate required for money

 ## to double in a time of t years.

 rate = 72 / x

 return rate

main()

(Assume the response is 2.)

4. def main():
 num = 27

 if isEven(num):

 print(num, "is an even number.")

 else:

 print(num, "is an odd number.")

 174 ◆ Chapter 4 Functions

def isEven(n):

 if n // 2 == 0:

 return True

 else:

 return False

main()

5. def main():
 taxableIncome = 16000

 print("Your income tax is ${0:,.2f}".format(stateTax(taxableIncome)))

def stateTax(income):

 ## Calculate state tax for a single resident of Kansas

 if income <= 15000:

 return .03 * income

 else:

 return 450 + (.049 * (income - 15000))

main()

6.	def main():
 massKg = 50

 # since one stone is equal to 14 pounds

 massStone(massKg * 2.2 / 14)

def massStone(num):

 print("You weigh", num, "stone.")

main()

7. def main():
 question()

 answer()

def answer():

 print("Because they were invented in the northern")

 print("hemisphere where sundials go clockwise.")

def question():

 print("Why do clocks run clockwise?")

 print()

main()

8.	def main():
 ## Beginning of Tale of Two Cities

 times("best")

 times("worst")

def times(word):

 ## Display sentence

 print("It was the", word, "of times.")

main()

9. import datetime as dt
def main():

 log_time("Message 1")

 log_time("Message 2", dt.datetime.now())

def log_time(message, time=dt.datetime.now()):

 4.1 Functions, Part 1 ◆ 175

 print("{0}: {1}".format(message, time.isoformat()))

main()

10.	def main():
 ## The fates of Henry the Eighth's six wives

 commonFates()

 print("died")

 commonFates()

 print("survived")

def commonFates():

 ## The most common fates

 print("divorced")

 print("beheaded")

main()

11. def main():
 winner = "Kailash Satyarthi"

 field = "Peace"

 nobelPrizeWinner(winner,field)

 winner = "Patrick Modiano"

 field = "Literature"

 nobelPrizeWinner(winner,field)

def nobelPrizeWinner(winner,field):

 print(winner,"won the Nobel", field, "prize.")

main()

12. def main():
 listPlayers = getListOfPlayers()

 num = int(input("Enter a number from 1 through 50: "))

 print("The world's number ",num,"football player is ",listPlayers[num

- 1].split()[0], "and he has scored ",listPlayers[num - 1].split()[1],

"goals.")

def getListOfPlayers():

 # The file FootballPlayers.txt contains the names of

 # the top 50 footballers and the goals they've scored.

 infile = open("FootballPlayers.txt", 'r')

 listPlayers = [line.rstrip() for line in infile]

 infile.close()

 return listPlayers

main()

(Assume the response is 1.)
13. x = 7

def main():

 x = 5

 f()

 print(x)

def f():

 print(x)

main()

14. x = 7

def main():

 global x

 x = 5

 f()

 print(x)

def f():

 print(x)

main()

 176 ◆ Chapter 4 Functions

15. name = "Fred"

def main():

 global name

 otherName = getName()

 name += otherName

 print(name)

def getName():

 name = "rick"

 return name

main()

16.	word = "spam"

def main():

 f()

 print(word)

def f():

 global word

 word = word.upper()

main()

17. PLANE_RIDE_COST = 200

def main():

 noOfDays = 3

 cost = PLANE_RIDE_COST + noOfDays * 20

 print("Total cost: ${0:,.2f}".format(cost))

main()

18.	ESTATE_TAX_EXEMPTION = 1000000
TAX_RATE = .45

def main():

 valueOfEstate = 3000000

 tax = TAX_RATE * (valueOfEstate - ESTATE_TAX_EXEMPTION)

 print("You owe ${0:,.2f} in estate taxes.".format(tax))

main()

19. def main():
 num = 5

 triple(num)

 print(num)

def triple(num):

 num = 3 * num

main()

20.	def main():
 word = "garb"

 reverseWord(word)

 print(word)

def reverseWord(word):

 list1 = list(word)

 list1.reverse()

 word = "".join(list1)

 print(word)

main()

21. def main():
 # The file Independence.txt contains seven lines.

 # Each line contains one of the following words:

 # When, in, the, course, of, human, events

 independenceList = obtainList("Independence.txt")

 print(" ".join(independenceList))

def obtainList(file):

 infile = open(file, 'r')

 independenceList = [line.rstrip() for line in infile]

 infile.close()

 return independenceList

main()

 4.1 Functions, Part 1 ◆ 177

22. def main():
 grades = [80, 75, 90, 100]

 grades = dropLowest(grades)

 average = sum(grades) / len(grades)

 print(round(average))

def dropLowest(grades):

 lowestGrade = min(grades)

 grades.remove(lowestGrade)

 return grades

main()

23. def main():
 ## Determine semester grade.

 grade = getAverageGrade()

 typeOfStudent = getTypeOfStudent()

 if typeOfStudent == "PASS/FAIL":

 semesterGrade = calculatePFgrade(grade)

 else:

 semesterGrade = calculateLetterGrade(grade)

 print("Semester grade:", semesterGrade)

def getAverageGrade():

 midtermGrade = int(input("Enter grade on midterm exam: "))

 finalExamGrade = int(input("Enter grade on final exam: "))

 return round((midtermGrade + finalExamGrade) / 2)

def getTypeOfStudent():

 prompt = "Enter type of student (Pass/Fail) or (Letter Grade): "

 typeOfStudent = input(prompt)

 return typeOfStudent.upper()

def calculatePFgrade(grade):

 if grade >= 60:

 return "Pass"

 else:

 return "Fail"

def calculateLetterGrade(grade):

 if grade >= 90:

 return "A"

 elif grade >= 80:

 return "B"

 elif grade >= 70:

 return "C"

 elif grade >= 60:

 return "D"

 else:

 return "F"

main()

(Assume each of the following responses: "85, 94, Letter Grade"; "50, 62, Pass/Fail";
"56, 67, Letter Grade".)

 178 ◆ Chapter 4 Functions

24. def main():
 ## Analyze a quotation.

 quotation = input("Enter a quotation: ")

 print("\nMENU")

 print(" 1. Count number of vowels in the quotation.")

 print(" 2. Count number of uppercase letters in the quotation.")

 choice = int(input("Select 1 or 2 from menu: "))

 if choice == 1:

 print("Number of vowels:", calculateNumberOfVowels(quotation))

 else:

 print("Number of uppercase letters:",

 calculateNumberOfCaps(quotation))

def calculateNumberOfVowels(quotation):

 numberOfVowels = 0

 for ch in quotation:

 if ch.upper() in "AEIOU":

 numberOfVowels += 1

 return numberOfVowels

def calculateNumberOfCaps(quotation):

 numberOfCaps = 0

 for ch in quotation:

 if 'A' <= ch <= 'Z':

 numberOfCaps += 1

 return numberOfCaps

main()

(Assume the quotation is "You miss 100% of the shots you never take.—Wayne Gret-
sky" and execute with each choice from the menu.)

25. Max Function Suppose the max function for a list didn’t exist. Define a function
that returns the maximum value in a list of numbers.

26.	Count Function Suppose the count function for a string didn’t exist. Define a
function that returns the number of non-overlapping occurrences of a substring in
a string.

27. Qwerty Word The keyboard in use on nearly all computers is known as the Qwerty
keyboard, since the letters in the top letter line read QWERTYUIOP. A word is called
a Qwerty word if all its letters appear on the top letter line of the keyboard. Some
examples are typewriter, repertoire, and treetop. Write a program that requests a word as
input and then determines whether or not it is a Qwerty word. Use a Boolean- valued
function named isQwerty that evaluates the word. See Fig. 4.4.

Figure 4.4 Possible outcome of Exercise 27.

Enter a word: TRY

TRY is a Qwerty word.

Figure 4.5 Possible outcome of Exercise 28.

Enter a positive integer: 5

5! is 120

28.	Factorial The factorial of a positive integer n (written n!) is the product 1 # 2 # 3 c # n.
Write a program that asks the user to input a positive integer and then calculates and
displays the factorial of the number. The program should call a function named getN

 4.1 Functions, Part 1 ◆ 179

that gets the input and guarantees that the input is a positive integer. Also, the factor-
ial of the number input should be calculated with a function named fact. See Fig. 4.5.

29. Salary Options You are offered two salary options for 10 days of work. Option 1:
$100 per day. Option 2: $1 the first day, $2 the second day, $4 the third day, and so on,
with the amount doubling each day. Determine which option pays better. Use func-
tions named option1 and option2 to calculate the amounts of money earned under the
two options. See Fig. 4.6.

30.	Pay Raise Write a pay- raise program that requests a person’s first name, last name,
and current annual salary, and then displays the person’s salary for next year. People
earning less than $40,000 will receive a 5% raise, and those earning $40,000 or more
will receive a raise of $2,000 plus 2% of the amount over $40,000. Use functions for
input and output, and a function to calculate the new salary. See Fig. 4.7.

31. FICA Taxes Rewrite Example 7 of Section 3.2 with WAGE_BASE, SOCIAL_ SECURITY_
TAX_RATE, and MEDICARE_RATE as named constants. The function main should call
functions to process the input and to display the output.

32. R Months The file Months.txt has 12 lines with each line containing one of the
months of the year.1 Write a program that displays the months containing the letter r.
The program should use a global variable months that is initialized as the empty list. The
function main should call three functions, one to fill the list months with the contents
of the text file, one to delete from the list months the months that do not contain the
letter r, and one to display the names of the months remaining in the list. See Fig. 4.8.

Figure 4.6 Possible outcome of Exercise 29.

Option 1 pays $1,000.00

Option 2 pays $1,023.00

Option 2 is better.

Figure 4.7 Possible outcome of Exercise 30.

Enter first name: John

Enter last name: Doe

Enter current salary: 48000

New salary for John Doe: $50,160.00

1The file Months.txt is located in the folder Programs/Ch4 of the material downloaded from the
Pearson website. All text files required for exercises in this chapter are located in that folder.

Figure 4.8 Outcome of Exercise 32.

The R months are:

January, February, March, April, September, October, November, December

33. Crayon Colors The file Colors.txt contains the names (beginning with uppercase
letters) of 123 crayon colors with one color per line. Write a program that requests a
letter of the alphabet as input and then displays the colors beginning with that letter.
The program should use a global variable colors that is initialized as an empty list. The
function main should call three functions, one to request the initial letter, one to fill
the list colors with the colors having the requested initial letter, and one to display the
names of the colors in the list. See Fig. 4.9.

 180 ◆ Chapter 4 Functions

34. Pensions A person in the Civil Service Retirement System can retire at age 55 with
at least 20 years of service. A simplified variation for the computation of the amount
of their pension is as follows:

1. Calculate the average annual salary for the person’s best three years; call it ave.

2. Calculate anumber of months
12

b and call it yrs.

3. Calculate percentage rate: 1.5% for first five years, 1.75% for next five years, 2%
for each additional year. Call it perRate.

4. Take the minimum of perRate and 80%; call it p.
5. The amount of the pension is p * ave.

Write a program that requests the input as shown in Fig. 4.10, and calculates the
amount of the pension. The values of ave and p should be computed in functions.

Solutions to Practice Problems 4.1

1. Yes.

2. The statement x += 1 changes the value of the global variable x. The values of global variables can be
accessed in any function, but only can be changed if the altering statement is preceded with the statement
global x.

3. def f(x):
 return (x > 0)

4.2	 Functions,	Part 2

 ■ Functions Calling Other Functions
A function can call another function. If so, when the called function terminates (that is,
after a return statement or the last statement of the called function is executed), the con-
trol returns to the place in the calling function just after where the function call occurred.

Figure 4.9 Possible outcome
of Exercise 33.

Enter a letter: D

 Dandelion

 Denim

 Desert Sand

Figure 4.10 Possible outcome of Exercise 34.

Enter your age: 65

Enter number of months of service: 448

Enter first of three highest salaries: 123456.78

Enter second of three highest salaries: 119876.55

Enter third of three highest salaries: 107546.45

Annual pension: $82,944.08

 Example 1 Function Calls In the following program, the function firstPart calls the
function secondPart. After the statements in secondPart are executed, the execution contin-
ues with the remaining statements in the function firstPart before returning to the function
main.

def main():

 ## Demonstrate functions calling other functions.

 firstPart()

 print(str(4) + ": from function main")

 4.2 Functions, Part 2 ◆ 181

 ■ Functions Returning Multiple Values
Functions can return any type of object, not just a number, string, or Boolean value. For
instance, a function can return a tuple.

def firstPart():

 print(str(1) + ": from function firstPart")

 secondPart()

 print(str(3) + ": from function firstPart")

def secondPart():

 print(str(2) + ": from function secondPart")

main()

[Run]

1: from function firstPart

2: from function secondPart

3: from function firstPart

4: from function main

 Example 2 Savings Account The balanceAndInterest function in the following pro-
gram returns a tuple giving values associated with a deposit into a savings account.

INTEREST_RATE = .04 # annual rate of interest

def main():

 ## Calculate the balance and interest earned from a savings account.

 principal = eval(input("Enter the amount of the deposit: "))

 numberOfYears = eval(input("Enter the number of years: "))

 (bal, intEarned) = balanceAndInterest(principal, numberOfYears)

 print("Balance: ${0:,.2f} Interest Earned: ${1:,.2f}".

 format(bal, intEarned))

def balanceAndInterest(prin, numYears):

 balance = prin * ((1 + INTEREST_RATE) ** numYears)

 interestEarned = balance - prin

 return (balance, interestEarned)

main()

[Run]

Enter the amount of the deposit: 10000

Enter the number of years: 10

Balance: $14,802.44 Interest Earned: $4,802.44

In Example 2, the return statement can be written

return balance, interestEarned

and the fifth line of the function main can be written

bal, intEarned = balanceAndInterest(principal, numberOfYears)

 182 ◆ Chapter 4 Functions

If so, the function balanceAndInterest appears to be returning two values. However, it is
actually returning just one value— a single tuple containing two values.

By using functions that return multiple values, we can perform the three basic parts of
a program (input, processing, and output) with three functions called from the main function.

 Example 3 Savings Account The following variation of Example 2 has the input,
processing, and output performed individually by three functions.

INTEREST_RATE = .04 # annual rate of interest

def main():

 ## Calculate the balance and interest earned from a savings account.

 (principal, numberOfYears) = getInput()

 bal, intEarned = balanceAndInterest(principal, numberOfYears)

 displayOutput(bal, intEarned)

def getInput():

 principal = eval(input("Enter the amount of the deposit: "))

 numberOfYears = eval(input("Enter the number of years: "))

 return (principal, numberOfYears)

def balanceAndInterest(prin, numYears):

 balance = prin * ((1 + INTEREST_RATE) ** numYears)

 interestEarned = balance - prin

 return (balance, interestEarned)

def displayOutput(bal, intEarned):

 print("Balance: ${0:,.2f} Interest Earned: ${1:,.2f}".

 format(bal, intEarned))

main()

 ■ List Comprehension
When we want to apply a certain function to each item of a list, an ordinary for loop will
do the job. However, a simpler way is to use list comprehension. If list1 is a list, then the
following statement creates a new list, list2, and places f(item) into the list for each item in
list1, where f is either a Python built- in function or a user- defined function.

list2 = [f(x) for x in list1]

For instance, if list1 = ['2', '5', '6', '7'], then

[int(x) for x in list1]

will be the list

[2, 5, 6, 7].

That is, the int function will be applied to each item of list1.
If the function g is defined by

def g(x):

 return(int(x) ** 2)

then

[g(x) for x in list1]

 4.2 Functions, Part 2 ◆ 183

will be the list

[4, 25, 36, 49].

The for clause in a list comprehension can optionally be followed by an if clause. For
instance, with g and list1 as above, then

[g(x) for x in list1 if int(x) % 2 == 1]

will be the filtered list

[25, 49].

That is, only the squares of the odd numbers will appear in the new list.

Note: There is nothing special about using x as the variable in the list comprehensions
above or the use of a variable for the list name. For instance, we could have written the first
list comprehension as

[int(num) for num in ['2', '5', '6', '7']].

List comprehension can be applied to objects other than lists, such as, strings, tuples,
and arithmetic progressions generated by range functions. Some other examples of list
comprehension are shown in Table 4.3.

Table 4.3 Examples of list comprehension.

List Comprehension Result

[ord(x) for x in "abc"] [97, 98, 99]

[x ** .5 for x in (4, -1, 9) if x >= 0] [2.0, 3.0]

[x ** 2 for x in range(3)] [0, 1, 4]

 ■ Default Values
Some (or all) of the parameters of a function can have default values—values that are
assigned to them when no values are passed to them. That is, if the corresponding argu-
ments are omitted when the function is called, the default values are assigned to the param-
eters. A typical format for a function definition using default values is

def functionName(par1, par2, par3=value3, par4=value4):

Then, a function call of the form functionName(arg1, arg2) will assign the value of arg1 to
par1, the value of arg2 to par2, value3 to par3, and value4 to arg4. The assignment of values
to par3 and par4 is optional. For instance, consider the function total defined by

def total(w, x, y=10, z=20):

 return (w ** x) + y + z

Table 4.4 shows the values of three function calls and how they will be calculated.

Table 4.4 Three function calls.

Function Call Value Calculated As

total(2, 3) 38 23 + 10 + 20
total(2, 3, 4) 32 23 + 4 + 20
total(2, 3, 4, 5) 17 23 + 4 + 5

 184 ◆ Chapter 4 Functions

Important note: In a function definition, the parameters without default values must pre-
cede the parameters with default values. For instance, a header such as

def func(par1, par2=value2, par3):

is not valid.

 Example 4 Quiz The following program gives the user three tries to answer a ques-
tion. The programmer can easily alter the number of tries. For instance, if the last line of
the function main is changed to askQuestion(q, a, 5), the user will have five tries in which
to answer the question.

def main():

 ## A quiz

 q = "What is the capital of California? "

 a = "Sacramento"

 askQuestion(q, a)

def askQuestion(question, answer, numberOfTries=3):

 numTries = 0

 while numTries < numberOfTries:

 numTries += 1

 ans = input(question)

 if ans == answer:

 print("Correct!")

 break

 if ans != answer:

 print("You have used up your allotment of guesses.")

 print("The correct answer is", answer + '.')

main()

 ■ Passing by Parameter Name
Arguments can be passed to functions by using the names of the corresponding parameters
instead of relying on position. This method of passing values to functions is called keyword
passing. For instance, the first function call in Table 4.4 can be written

total(w=2, x=3)

or

total(x=3, w=2)

The second function call in Table 4.4 can be written several ways. Three possibilities are

total(y=4, x=3, w=2), total(2, y=4, x=3), and total(2, 3, y=4)

Note: Arguments passed by position must precede arguments passed by keyword.
(Similarly for parameters.) For instance, the following function call is not valid.

total(w=2, 3, y=4)

 Example 5 Passing Values The following program shows several ways to pass values
when calculating the balance in a savings account given the principal, number of years, and
the annual rate of interest, with interest compounded annually. The formula used is

balance = principal # (1 + interest rate)number of years.

 4.2 Functions, Part 2 ◆ 185

Note: The program above shows that both positional passing and keyword passing can be
used in the same function call.

 ■ Custom Sorting
We have used the sort method to place the items of a list into ascending order. However,
functions can be used to order the items by any criteria we choose. For instance, starting
with a list of strings, we can sort them by their length, by their last characters, by the num-
ber of vowels they contain, or by many other properties.

To create a custom sort, we use a function that takes each item of the list as input and
returns the value of the property we want to sort on. For instance, if we wanted to sort
a list of strings by the number of vowels in each string, we would define a function, call
it numberOfVowels, that accepts a string as input and returns the number of vowels in the
string. Then we would add the argument key=numberOfVowels to the sort method. The
argument reverse=True can be added to sort in descending order.

def main():

 ## Demonstrate the passing of values.

 print("Balance:")

 print("${0:,.2f}".format(balance(1000, 5)))

 print("${0:,.2f}".format(balance(1000, 5, .04)))

 print("${0:,.2f}".format(balance(1000, intRate=.04, numYears=5)))

 print("${0:,.2f}".format(balance(numYears=5, prin=1000)))

 print()

 print("${0:,.2f}".format(balance(1000, 5, .03)))

 print("${0:,.2f}".format(balance(1000, intRate=.03, numYears=5)))

 print("${0:,.2f}".format(balance(intRate=.03, numYears=5, prin=1000)))

 print("${0:,.2f}".format(balance(numYears=5, intRate=.03, prin=1000)))

def balance(prin, numYears, intRate=.04):

 return prin * ((1 + intRate) ** numYears)

main()

[Run]

Balance:

$1,216.65

$1,216.65

$1,216.65

$1,216.65

$1,159.27

$1,159.27

$1,159.27

$1,159.27

	 	 Example	6 Sort Words The following program sorts a list of words using each of
the three properties cited above.

def main():

 ## Custom sort a list of words.

 list1 = ["democratic", "sequoia", "equals", "brrr", "break", "two"]

 list1.sort(key=len)

 print("Sorted by length in ascending order:")

 186 ◆ Chapter 4 Functions

Suppose we wanted to display the words in list1 above that contained the most and least
number of vowels. We could sort the list using key=numberOfVowels and then obtain the
first and last items in the custom- sorted list. However, the following extensions of the max
and min functions accomplish the task more easily.

maxValue = max(list1, key=numberOfVowels)

minValue = min(list1, key=numberOfVowels)

 ■ Lambda Expressions
Lambda expressions are one- line mini- functions that can often be used where a simple func-
tion is required. They compute a single expression and cannot be used as a replacement for
complex functions. Lambda expressions have the form

lambda par1, par2, ...: expression

where the expression is the value to be returned. For instance, the line

list1.sort(key=lastCharacter)

in Example 6 can be replaced with

list1.sort(key=lambda x: x[-1])

In this case there is no need to define the function lastCharacter. (Note: The function
 numberOfVowels in Example 6 is too complex to be replaced by a lambda expression.) One

 print(list1, '\n')

 list1.sort(key=lastCharacter)

 print("Sorted by last character in ascending order:")

 print(list1, '\n')

 list1.sort(key=numberOfVowels, reverse=True)

 print("Sorted by number of vowels in descending order:")

 print(list1)

def lastCharacter(word):

 return word[-1]

def numberOfVowels(word):

 vowels = ('a', 'e', 'i', 'o', 'u')

 total = 0

 for vowel in vowels:

 total += word.count(vowel)

 return total

main()

[Run]

Sorted by length in ascending order:

['two', 'brrr', 'break', 'equals', 'sequoia', 'democratic']

Sorted by last character in ascending order:

['sequoia', 'democratic', 'break', 'two', 'brrr', 'equals']

Sorted by number of vowels in descending order:

['sequoia', 'democratic', 'equals', 'break', 'two', 'brrr']

VideoNote

Lambda
Expressions

 4.2 Functions, Part 2 ◆ 187

useful feature of lambda expressions is that they make use of variables from the function
in which they are coded. This feature will be most helpful in the next chapter in the discus-
sion of dictionaries.

 Example 7 Sort Names The following program sorts names by their surnames. The
second line sorts the list of names, and the last two lines display the contents of the sorted
list.

names = ["Dennis Ritchie", "Alan Kay", "John Backus", "James Gosling"]

names.sort(key=lambda name: name.split()[-1])

nameString = ", ".join(names)

print(nameString)

[Run]

John Backus, James Gosling, Alan Kay, Dennis Ritchie

 ■ The sorted Function
Whereas the sort method alters the order of the items in a list, the sorted function returns
a new ordered list. In particular, after the statement

list2 = sorted(list1)

is executed, list2 will contain the same elements as list1, but ordered.
Both the sort method and the sorted function can make use of the optional arguments

key and reverse. Whereas the sort method only can be used with lists, the sorted func-
tion also can be used with lists, strings, and tuples. When used with strings, it produces an
ordered list consisting of the characters of the string. Table 4.5 shows the output of several
sorted statements.

Table 4.5 Values produced by sorted function (list1 = ["white", "blue", "red"]).

Statement Output of print(list2)

list2 = sorted(list1) ['blue', 'red', 'white']

list2 = sorted(list1, reverse=True) ['white', 'red', 'blue']

list2 = sorted(list1, key=len) ['red', 'blue', 'white']

list2 = sorted("spam") ['a', 'm', 'p', 's']

 ■ Comments
1. Summary: There are two types of parameters that a function can have— positional

parameters (also called non- default parameters) and default parameters. Default parameters
have the form param=defaultValue, where defaultValue is usually a literal, but can be
an expression. Positional parameters are not followed by an equal sign and a default
value. If a function has both types of parameters, the positional parameters must pre-
cede the default parameters.

2. Summary: There are two types of arguments that can appear in a function call—
 positional arguments (also called non- keyword arguments) and keyword arguments. Keyword
arguments have the form parameterName=value, where value is an expression. Posi-
tional arguments consist solely of an expression. If a function call has both types of

 188 ◆ Chapter 4 Functions

arguments, the positional arguments must precede the keyword arguments. The number
of positional arguments in the function call must equal or exceed the number of posi-
tional parameters in the function definition. If the number of positional arguments in
the function call exceeds the number of positional parameters in the function defini-
tion, the values of the extra arguments are passed to the remaining parameters in the
order of their appearance in the function definition. Default parameters that do not
have values passed to them assume their default values. The order of positional argu-
ments is most important; order is not important for keyword arguments.

3. List construction might be a better name for the process called list comprehension.

4. Since lambda expressions are functions without a name, they are often referred to as
anonymous functions.

Practice Problems 4.2

1. Rewrite the main function in Example 4 so that the body of the function consists of
just one statement— a function call that uses keyword passing.

2. Could the main function in Example 4 be written as follows?

def main():

 a = "Sacramento"

 askQuestion(question="What is the capital of California? ", a)

3. Rewrite the main function of Example 4 so that just one argument is passed by keyword.

4. If list1 = ['c', 'D', 'a', 'B'], the statement print(sorted(list1)) produces the
output ['B', 'D', 'a', 'c']. Add a lambda expression to the sorted function so that
the list will appear alphabetized as ['a', 'B', 'c', 'D']; that is, without regard to case.

5. Suppose the file Countries.txt contains the name of 20 countries , with one country
on each line. What is displayed by the following line of code?

infile = open("countries.txt", 'r')

print([line.rstrip() for line in infile if line.startswith("Aust")])

infile.close()

ExERCISES 4.2

In Exercises 1 through 24, determine the output of the program.

1. def main():
 howMany(24)

 print("a pie.")

def howMany(num):

 what(num)

 print("baked in", end=" ")

def what(num):

 print(num, "blackbirds", end = " ")

main()

 4.2 Functions, Part 2 ◆ 189

2. def main():
 ## Good advice to follow

 advice()

def advice():

 print("Keep cool, but don't freeze.")

 source()

def source():

 print("Source: A jar of mayonnaise.")

main()

3. def main():
 cost = 250

 displayBill(cost, shippingCost(cost))

def shippingCost(costOfGoods):

 if costOfGoods < 100:

 return 10

 elif costOfGoods < 500:

 return 15

 else:

 return 20

def displayBill(cost, addedCost):

 print("Cost: ${0:.2f}".format(cost))

 print("Shipping cost: ${0:.2f}".format(addedCost))

 print("Total cost: ${0:.2f}".format(cost + addedCost))

main()

4. def main():
 grade = int(input("Enter your numeric grade: "))

 showResult(grade)

def showResult(grade):

 if passedExam(grade):

 print("You passed with a grade of", str(grade) + '.')

 else:

 print("You failed the exam.")

def passedExam(grade):

 if grade >= 60:

 return True

 else:

 return False

main()

(Assume the response is 92.)

5. def main():
 gradeList = list(getThreeGrades())

 gradeList.sort()

 print(gradeList)

 190 ◆ Chapter 4 Functions

def getThreeGrades():

 x = int(input(("Enter first grade: ")))

 y = int(input(("Enter second grade: ")))

 z = int(input(("Enter third grade: ")))

 return x, y, z

main()

(Assume the three responses are 88, 99, and 92.)

6.	def main():
 n, yob = getNameAndYOB()

 print(n, "will be", 2020 - yob, "years old in 2020.")

def getNameAndYOB():

 name = input("Enter a name: ")

 yearOfBirth = int(input("Enter a year of birth: "))

 return name, yearOfBirth

main()

(Assume the two responses are Fred and 1995.)

7. list1 = ["pear", "Banana", "apple"]
list1.sort()

print(list1)

list1.sort(key=lambda x: x.upper())

print(list1)

8.	list1 = ["pear", "Banana", "apple"]
list1.sort(reverse=True)

print(list1)

list1.sort(key=lambda x: len(x), reverse=True)

print(list1)

9. def main():
 display("nudge ")

 display("nudge ", 4)

def display(x, times=2):

 print(x * times)

main()

10.	def main():
 for i in range(3):

 print(func())

def func(x=[]):

 x.append("wink")

 return x

main()

11. def main():
 display("spam", "and", "eggs", 5)

 display("spam", "and", "eggs")

def display(x, y, z, spacing=1):

 print(x + (" " * spacing) + y + (" " * spacing) + z)

main()

 4.2 Functions, Part 2 ◆ 191

12. def main():
 x, y = getTwoIntegers()

 x, y = calculateSumAndProduct(x, y)

 displaySumAndProduct(x, y)

def getTwoIntegers():

 a = int(input("Enter first integer: "))

 b = int(input("Enter second integer: "))

 return a, b

def calculateSumAndProduct(x, y):

 return x + y, x * y

def displaySumAndProduct(x, y):

 print("Sum" + ':', x)

 print("Product" + ':', y)

main()

(Assume the two responses are 4 and 25.)

13. presidents = [("John Adams", 61), ("George Washington", 57)]
presidents.sort(key=lambda pres: pres[1])

for pres in presidents:

 print(pres[0])

14. def main():
 composers = ["Johann Sebastian Bach", "Wolfgang Amadeus Mozart",

 "Franz Joseph Haydn", "Ralph Vaughan Williams"]

 composers.sort(key=lengthOfLastName)

 for composer in composers:

 print(composer)

def lengthOfLastName(composer):

 compList = composer.split()

 return len(compList[-1])

main()

15. def main():
 composers = ["Johann Sebastian Bach", "Wolfgang Amadeus Mozart",

 "Franz Joseph Haydn", "Ralph Vaughan Williams"]

 composers.sort(key=middleName)

 for composer in composers:

 print(middleName(composer))

def middleName(composer):

 compList = composer.split()

 return compList[1]

main()

16.	def main():
 list1 = ["e", "pluribus", "unum"]

 list2 = sorted(list1, key=numberOfVowels)

 print(list2)

def numberOfVowels(word):

 return len([ch for ch in word if (ch in "aeiou")])

main()

 192 ◆ Chapter 4 Functions

17. def main():
 list1 = sorted("alMoSt")

 print(list1)

 list2 = sorted("alMoSt", key=f)

 print(list2)

def f(letter):

 return letter.lower()

main()

18.	popularLanguages = ["Python", "Java", "C", "C++", "Ruby", "VB", "PHP"]
for item in sorted(popularLanguages):

 print(item, end = " ")

19. popularLanguages = ["Python", "Java", "C", "C++", "Ruby", "VB", "PHP"]
for item in sorted(popularLanguages, reverse=True):

 print(item, end = " ")

20.	popularLanguages = ["Python", "Java", "C", "C++", "Ruby", "VB", "PHP"]
for item in sorted(popularLanguages, key=len):

 print(item, end = " ")

21. popularLanguages = ["Python", "Java", "C", "C++", "Ruby", "VB", "PHP"]
for item in sorted(popularLanguages, key=len, reverse=True):

 print(item, end = " ")

22. numbers = [4, 6, -2, -3, 5]
for num in sorted(numbers, key=abs):

 print(num, end = " ")

23. numbers = [4, 6, -2, -3, 5]
for num in sorted(numbers, key=lambda x: x ** 3):

 print(num, end = " ")

24. popLanguages = ["Python", "Java", "C", "C++", "Ruby", "VB", "PHP"]
sentence = "I program in VB, Python, and Ruby."

list1 = sentence.split()

myLanguages = [word[:-1] for word in list1 if word[:-1] in popLanguages]

for language in myLanguages:

 print(language, end = " ")

In Exercises 25 through 30, determine the value of list2, where

list1 = ["democratic", "sequoia", "equals", "brrr", "break", "two"].

25. list2 = [len(word) for word in list1]

26.	list2 = [word.capitalize() for word in list1]

27. list2 = [word.upper() for word in list1 if len(word) < 5]

28.	list2 = [word for word in list1 if numberOfVowels(word) > 3], where number-
OfVowels is the function defined in Example 6.

29. list2 = [x[-1] for x in list1 if numberOfVowels(x) > 3], where numberOfVowels
is the function defined in Example 6.

30.	list2 = [x[0:2] for x in list1 if len(x) % 2 == 1]

 4.2 Functions, Part 2 ◆ 193

In Exercises 31 and 32 use list comprehension to simplify the code.

31. names = ["George Boole", "Charles Babbage", "Grace Hopper"]
lastNames = []

for name in names:

 lastNames.append(name.split()[-1])

32. numbers = [9, -5, 4, 1, -7]
newList = []

for num in numbers:

 if num >= 0:

 newList.append(num ** .5) # square root

print(newList)

In Exercises 33 through 36, describe the output displayed by the lines of code, where
the file Countries.txt contains 20 countries in alphabetical order.

33. infile = open("countries.txt", 'r')
print([line.rstrip().upper() for line in infile])

34. infile = open("countries.txt", 'r')
print(sorted([line.rstrip() for line in infile]))

35. infile = open("countries.txt", 'r')
print(sorted([line.rstrip() for line in infile], key=len))

36.	infile = open("countries.txt", 'r')
print([line.rstrip() for line in infile if len(line.rstrip()) == 6])

In Exercises 37 through 42, determine whether the calling statement is valid where the
function definition has the header def bestFilm(year, film, star):.

37. bestFilm(2012,"Argo", "Ben Affleck")

38.	bestFilm(2012, star="Ben Affleck", film="Argo")

39. bestFilm(star="Ben Affleck", film="Argo", year=2012)

40.	bestFilm(star="Ben Affleck", 2012, film="Argo")

41. bestFilm()

42. bestFilm(2012, director="Ben Affleck", film="Argo")

In Exercises 43 through 46, determine whether the calling statement is valid where the
function definition has the header def breakfast(toast, coffee, spam=0, eggs=0):.

43. breakfast(2, spam=1, eggs=1, coffee=1) 44. breakfast(2, 1, 1, 1)

45. breakfast(spam=1, 1, eggs=1, toast=2) 46.	breakfast(2, 1, 1)

In Exercises 47 and 48, determine the output displayed by the statement.

47. print("".join(sorted("stomal")))

48.	print("".join(sorted("pengos", reverse=True)))

49. Cost of Postage The original postage cost of airmail letters was 5 cents for the first
ounce and 10 cents for each additional ounce. Write a program to compute the cost of
a letter whose weight is given by the user. See Fig. 4.11. The cost should be calculated

 194 ◆ Chapter 4 Functions

by a function named cost. The function cost should call a function named ceil that
rounds noninteger numbers up to the next integer.

50.	Semester Grade Write a program that requests the numeric grades on a midterm
and a final exam and then uses a function named semesterGrade to assign a semester
grade (A, B, C, D, or F). The final exam should count twice as much as the mid-
term exam, the semester average should be rounded up to the nearest whole num-
ber, and the semester grade should be assigned by the following criteria: 90–100 (A),
80–89 (B), See Fig. 4.12. The function semesterGrade should call a function named
ceil that rounds noninteger numbers up to the next integer.

51. Anagrams An anagram of a word or phrase is another word or phrase that uses the
same letters with the same frequency. Punctuation marks, case, and spaces are ignored.
Some examples of anagram pairs are “angered”/“enraged” and “A gentleman”/“Elegant
man”. Write a program that requests two words or phrases as input and determines
if they are anagrams of each other. See Fig. 4.13. The program should use a Boolean-
 valued function with header

def areAnagrams(string1, string2):

that returns True when the two strings are anagrams, and otherwise returns False.

Figure 4.11 Possible outcome of Exercise 49.

Enter the number of ounces: 4

Cost: $0.35

Figure 4.12 Possible outcome of Exercise 50.

Enter grade on midterm: 88

Enter grade on final exam: 91

Semester Grade: A

Figure 4.13 Possible outcome of Exercise 51.

Enter the first word or phrase: Elvis

Enter the second word or phrase: lives

Are anagrams.

Figure 4.14 Possible outcome of
 Exercise 52.

Enter grade 1: 90

Enter grade 2: 75

Enter grade 3: 85

Enter grade 4: 72

Enter grade 5: 80

Range: 10

Average: 85

52. Grades Write a program that requests five grades as input, drops the lowest two
grades, and displays the range and average of the remaining three grades. See Fig. 4.14.
Note: The range of a set of numbers is the difference between the highest and lowest
numbers. The program should use a function that returns two values.

53. Programming Languages Consider the list

programmingLanguages =[[("Dennis Ritchie", "C"), ("Bjarne Stroustrup",

"C++"), ("Guido van Rossum", "Python")]

Write a program using the line above that displays the three programming languages
ordered by their chief developer name and then secondarily ordered by the name of
the langauge. Note: The code should use the sort function twice.

 4.2 Functions, Part 2 ◆ 195

In Exercises 54 through 57, use the following list of tuples, where each tuple contains
the name of a planet, its surface area in million square kilometers (approx.) and its
position relative to the sun.

Planets = [(“Mercury”, 75, 1), (“Venus”, 460, 2), (“Mars”, 140, 4), (“Earth”, 510, 3),
(“Jupiter”, 62000, 5), (“Neptune”, 7640, 8), (“Saturn”, 42700, 6), (“Ura-
nus”, 8100, 7)]

54. Planets Write a program that displays the names of the planets in the list Planets in
descending order by surface area. See Fig. 4.16.

Figure 4.15 Outcome of Exercise 53.

C, Dennis Ritchie

C++, Bjarne Stroustrup

Python, Guido van Rossum

Figure 4.16 Outcome of Exercise 54.

Sorted by surface area in descending order:

Jupiter Saturn Uranus Neptune Earth Venus Mars Mercury

55. Planets Write a program that displays the names of the planets in the list Planets in
descending order by their position from the Sun. See Fig. 4.17.

Figure 4.17 Outcome of Exercise 55.

Sorted by position from Sun in descending order:

Neptune Uranus Saturn Jupiter Mars Earth Venus Mercury

56.	Planets Write a program that displays the names of the planets in the list Planets in
ascending order by the length of the name of the planets. See Fig. 4.18.

Figure 4.18 Outcome of Exercise 56.

Sorted by length of name of planet in ascending order:

Mars Venus Earth Saturn Uranus Mercury Jupiter Neptune

57. Planets Write a program that displays the names of the planets in the list Planets in
ascending order by number of vowels in planet name. See Fig. 4.19.

Figure 4.19 Outcome of Exercise 57.

Sorted by number of vowels in name in ascending order:

Mars Mercury Venus Earth Saturn Jupiter Neptune Uranus

In Exercises 58 through 61, use the following list: numbers = [865, 1169, 1208, 1243, 329].

58.	Numbers Write a program that displays the values in the list numbers in ascending
order sorted by the sum of their digits. See Fig. 4.20.

 196 ◆ Chapter 4 Functions

59. Numbers Write a program that displays the values in the list numbers in ascend-
ing order sorted by their largest prime factor. Consult the flowchart in Fig. 3.30 of
 Section 3.3. See Fig. 4.21.

60.	Numbers Write a program that displays the values in the list numbers in descending
order sorted by their last digit. See Fig. 4.22.

Figure 4.20 Outcome of Exercise 58.

Sorted by sum of digits:

[1243, 1208, 290, 1169, 865]

Figure 4.21 Outcome of Exercise 59.

Sorted by largest prime factor:

[290, 1243, 1208, 1169, 865]

61.	Numbers Write a program that displays the values in the list numbers in descending
order sorted by the sum of their digits that are odd numbers. See Fig. 4.23.

62.	World Countries The file Countries.txt contains the names of 20 countries. Write
a program that places the countries names in a list, sorts the list alphabetically, and
displays the names of the first six countries. See Fig. 4.24.

Figure 4.22 Outcome of Exercise 60.

Sorted by last digit:

[1169, 1208, 865, 1243, 290]

Figure 4.23 Outcome of Exercise 61.

Sorted by sum of odd digits:

[1169, 290, 865, 1243, 1208]

63.	World Countries The file Countries.txt contains the names of 20 countries. Write
a program that places the names in a list, sorts the list by the length of the country
name, and displays the names of the first six countries in the list. See Fig. 4.25.

64.	World Countries The file Countries.txt contains the names of 20 countries. Write
a program that places the names of the countries in a list, sorts the list by the length
of the countries in descending order, and display the names of the first six countries
in the list. See Fig. 4.26.

Figure 4.24 Outcome of Exercise 62.

Algeria

Angola

Argentina

Australia

Austria

Bahamas

Figure 4.25 Outcome of Exercise 63.

India

China

Ghana

Japan

Brazil

Angola

Figure 4.26 Outcome of Exercise 64.

China

Ghana

India

Japan

Angola

Brazil

Figure 4.27 Outcome of Exercise 65.

New Zealand

Australia

Argentina

Portugal

Algeria

Austria

 4.2 Functions, Part 2 ◆ 197

65.	World Countries The file Countries.txt contains the names of 20 countries. Write
a program that places the names of the countries in a list, sorts the list by the number
of vowels in their names in descending order, and displays the names of the first six
countries in the list. See Fig 4.27.

66.	Pay Raise Write a pay- raise program that requests a person’s first name, last name,
and current annual salary, and then displays the person’s salary for next year. People
earning less than $40,000 will receive a 5% raise, and those earning $40,000 or more
will receive a raise of $2,000 plus 2% of the amount over $40,000. The main function
should call three functions— one (multi-valued) for input, one to calculate the new sal-
ary, and one for output. See Fig. 4.28.

67.	Credit Card Payment Write a program to calculate the balance and minimum pay-
ment for a credit card statement. See Fig. 4.29. The finance charge is 1.5% of the old
balance. If the new balance is $20 or less, the minimum payment should be the entire
new balance. Otherwise, the minimum payment should be $20 plus 10% of the amount
of the new balance above $20. The main function should call three functions— one
(multi-valued) for input, one (multi-valued) to calculate the new balance and minimum
payment, and one for output.

68.	Mortgage Calculations Write a program to calculate three monthly values associ-
ated with a mortgage. See Fig. 4.30. The interest paid each month is the monthly rate
of interest (annual rate of interest / 12) applied to the balance at the beginning of the
month. Each month the reduction of principal equals the monthly payment minus the
interest paid. At any time, the balance of the mortgage is the amount still owed—that
is, the amount required to pay off the mortgage. The end of month balance is calcu-
lated as [beginning of month balance] - [reduction of principal]. The main function
should call three functions— one (multi-valued) for input, one (multi-valued) to calcu-
late the values, and one for output.

Figure 4.28 Possible outcome of Exercise 66.

Enter first name: John

Enter last name: Doe

Enter current salary: 48000

New salary for John Doe: $50,160.00.

Enter old balance: 200

Enter charges for month: 150

Enter credits: 100

New balance: $253.00.

Minimum payment: $43.30

Figure 4.29 Possible outcome of Exercise 67.

Figure 4.30 Possible outcome of Exercise 68.

Enter annual rate of interest: 5

Enter monthly payment: 1932.56

Enter beg. of month balance: 357819.11

Interest paid for the month: $1,490.91

Reduction of principal: $441.56

End of month balance: $357,377.46

Enter hours worked: 42

Enter hourly pay: 10.00

Week’s pay: $430.00

Figure 4.31 Possible outcome
of Exercise 69.

69.	Earnings Write a program to determine a person’s weekly pay, where he or she
receives time- and- a- half for overtime work beyond 40 hours. See Fig. 4.31. The main
function should call three functions— one (multi-valued) for input, one to calculate
the value, and one for output.

 198 ◆ Chapter 4 Functions

70.	Wilson’s Theorem A number is prime if its only factors are 1 and itself. Write a
program that determines whether a number is prime by using the theorem "The num-
ber n is a prime number if and only if n divides (n - 1)! + 1." [See Exercise 28 of
 Section 4.1 for the definition of factorial (!).] The program should define a Boolean-
 valued function named isPrime that calls a function named factorial. See Fig. 4.32.

Figure 4.32 Possible outcome of Exercise 70.

Enter an integer greater than 1: 37

37 is a prime number.

Solutions to Practice Problems 4.2

1. def main():
 askQuestion(question="What is the capital of California? ",

 answer="Sacramento")

2. No. Arguments passed by position must precede arguments passed by keyword.

3. def main():
 q = "What is the capital of California? "

 askQuestion(q, answer="Sacramento")

4. Change the print statement to

print(sorted(list1, key=lambda letter: letter.upper()))

5. [North Carolina, North Dakota]. Since North Carolina was one of the original 13 states, it
precedes North Dakota.

4.3 Program Design

 ■ Top- Down Design
 Full- featured software usually requires large programs. One method programmers use to
make a complicated problem more understandable is to divide it into smaller, less complex
subproblems. Repeatedly using a “ divide- and- conquer” approach to break up a large prob-
lem into smaller subproblems is called stepwise refinement. Stepwise refinement is part of
a larger methodology of writing programs known as top- down design, in which the more
general tasks occur near the top of the design and tasks representing their refinement occur
below. Top- down design and structured programming emerged as techniques to enhance
programming productivity. Their use leads to programs that are easier to read and maintain.
They also produce programs containing fewer initial errors, with these errors being easier
to find and correct. When such programs are later modified, there is a much smaller likeli-
hood of introducing new errors.

The goal of top- down design is to break a problem into individual subtasks that can
easily be transcribed into pseudocode, flowcharts, or a function. Any subtasks that remain
too complex are broken down further. The process of refining subtasks continues until the
smallest subtasks can be coded directly. Each stage of refinement adds a more complete
specification of what tasks must be performed. The main idea in top- down design is to go
from the general to the specific. This process of dividing and organizing a problem into

 4.3 Program Design ◆ 199

tasks can be pictured using a hierarchy chart. When using top- down design, certain criteria
should be met:

1. The design should be easily readable and emphasize small function size.

2. Tasks proceed from general to specific as you read down the chart.

3. The subtasks, as much as possible, should be single- minded. That is, they should per-
form only a single well- defined job.

4. Subtasks should be independent of each other as much as possible, and any relation-
ships among subtasks should be specified.

The following example illustrates this process.

 Example 1 Car Loan Figure 4.33 is the beginning of a hierarchy chart for a program
that gives information about a car loan. The inputs are the amount of the loan, the dur-
ation (in years), and the interest rate. The output consists of the monthly payment and the
amount of interest paid for the first month. In the broadest sense, the program calls for
obtaining the input, making calculations, and displaying the output.

Make
calculations

Display
results

Get
input

Car
loan

Figure 4.33 Beginning of a hierarchy chart for the car loan program.

Each task can be refined into more specific subtasks. (See Fig. 4.34 for the final hierarchy
chart.) Most of the subtasks in the third row are straightforward and do not require further
refinement. For instance, the first month’s interest is calculated by multiplying the amount
of the loan by one- twelfth of the annual rate of interest. The most complicated subtask, the
computation of the monthly payment, has been broken down further. This task is carried
out by applying a standard formula found in finance books—however, the formula requires
the number of payments.

Make
calculations

Display
results

Get
input

Get
amount

Get
duration

Get
interest

rate

Compute
monthly
payment

Calculate
number of
payments

Apply
payment
formula

Compute
1st month’s

interest

Display
headings

Display
amounts

Car
loan

Figure 4.34 Hierarchy chart for the car loan program.

 200 ◆ Chapter 4 Functions

It is clear from the hierarchy chart that the top tasks manipulate the subtasks beneath them.
While the higher- level tasks control the flow of the program, the lower- level tasks do the
actual work. By designing the top modules first, we can delay specific processing decisions.

 ■ Structured Programming
A program is said to be structured if it meets modern standards of program design.
Although there is no formal definition of the term structured program, computer scien-
tists agree that such programs should use top- down design and use only the three types of
logical structures discussed in Chapter 1: sequences, decisions, and loops.

Sequences: Statements are executed one after another.
Decisions: One of several blocks of program code is executed based on a test for
some condition.
Loops (iteration): One or more statements are executed repeatedly as long as a speci-
fied condition is true.

 ■ Advantages of Structured Programming
The goal of structured programming is to create correct programs that are easy to write,
debug, understand, and change. Let us now take a closer look at the way structured program-
ming, along with a limited number of logical structures, contributes to attaining these goals.

1. Easy to write.

Structured design increases the programmer’s productivity by allowing the program-
mer to look at the big picture first and focus on the details later. During the actual
coding, the programmer works with a manageable chunk of the program and does not
have to think about an entire complex program. Several programmers can work on a
single large program, each taking responsibility for a specific task.

Studies have shown that structured programs require significantly less time to
write than unstructured programs.

Often, functions written for one program can be reused in other programs requir-
ing the same task. Not only is time saved in writing a program, but reliability is en-
hanced, because reused functions will already be tested and debugged. A function that
can be used in many programs is said to be reusable.

2. Easy to debug.

Because each function is specialized to perform just one task or several related tasks, a
function can be checked individually to determine its reliability. A dummy program,
called a driver, is set up to test the function. The driver contains the minimum defini-
tions needed to call the function to be tested. For instance, if the function to be tested
contains a return statement, the driver program assigns diverse values to the argu-
ments and then examines the corresponding values returned. The arguments should
contain both typical and special- case values.

The program can be tested and debugged as it is being designed with a technique
known as stub programming. In this technique, the key functions and perhaps some
of the smaller functions are coded first. Dummy functions, or stubs, are written for
the remaining functions. Initially, a stub function might consist of a print statement
to indicate that the procedure has been called, and thereby confirm that the function
was called at the right time. Later, a stub might simply display values passed to it in
order to confirm not only that the function was called, but also that it received the
correct values from the calling function. A stub also can assign new values to one or

 4.3 Program Design ◆ 201

more of its parameters to simulate either input or computation. This provides greater
control of the conditions being tested. The stub function is always simpler than the
actual function it represents. Although the stub program is only a skeleton of the final
program, the program’s structure can still be debugged and tested. (The stub program
consists of some coded functions and the stub functions.)

 Old- fashioned unstructured programs consist of a linear sequence of instructions
that are not grouped for specific tasks. The logic of such a program is cluttered with
details and therefore difficult to follow. Needed tasks are easily left out and crucial
details easily neglected. Tricky parts of the program cannot be isolated and examined.
Bugs are difficult to locate because they might be present in any part of the program.

3. Easy to understand.

The interconnections of the functions reveal the structured design of the program.
The meaningful function names, along with relevant comments, identify the tasks

performed by the functions.
The meaningful variable names help the programmer recall the purpose of each

variable.

4. Easy to change.

Because a structured program is self- documenting, it can easily be deciphered by an-
other programmer.

Modifying a structured program often amounts to inserting or altering a few functions
rather than revising an entire complex program. The programmer does not even have to
look at most of the program. This is in sharp contrast to the situation with unstructured
programs, where one must understand the entire logic of the program before any changes
can be made with confidence.

 ■ Object- Oriented Programming
An object is an encapsulation of data and code that operates on the data. Objects have
properties and respond to methods. The most effective type of programming for complex
problems is called object- oriented design. An object- oriented program can be viewed as a
collection of cooperating objects. Many modern programmers use a blend of traditional
structured programming along with object- oriented design. Python is an object- oriented
programming language—in fact, every structure, such as a list or a string is actually an
object. This book illustrates the building blocks of Python in the early chapters and then
puts them together using object- oriented techniques in Chapter 7.

 ■ A Relevant Quote
We end this section with a few paragraphs from Dirk Gently’s Holistic Detective Agency, by
Douglas Adams, Simon & Schuster, 1987:

“What really is the point of trying to teach anything to anybody?” This question seemed
to provoke a murmur of sympathetic approval from up and down the table.

Richard continued, “What I mean is that if you really want to understand something,
the best way is to try and explain it to someone else. That forces you to sort it out in your
own mind. And the more slow and dim- witted your pupil, the more you have to break
things down into more and more simple ideas. And that’s really the essence of program-
ming. By the time you’ve sorted out a complicated idea into little steps that even a stupid
machine can deal with, you’ve certainly learned something about it yourself. The teacher
usually learns more than the pupil. Isn’t that true?”

 202 ◆ Chapter 4 Functions

ChaPTEr 4 KEy TERMS
AND CONCEPTS ExAMPLES

4.1	Functions,	Part 1

A function definition begins with a header of the
form def functionName(par1, par2, . . .,
parN): followed by an indented block of
statements. The optional parameters, par1,
par2, . . ., parN, are variables. Optional
return statements in the block allow the function
to pass values back to calling statements. A
statement containing an expression of the form
functionName(arg1, arg2, . . ., argN),
where the arguments arg1, arg2, . . . ,
argN are expressions, assigns the values of the
arguments to the corresponding parameters of
the function and causes the function block to
be executed. The statement is said to call the
function. Positional passing passes the value
of the first argument to the first parameter, the
value of the second argument to the second
parameter, and so on.

When a variable is passed to a parameter, and
the value of the parameter is an immutable
object, then any change to the parameter by the
function block has no effect on the argument.

The scope of a variable is the portion of the
program that can refer to it. A variable created
in a function block can be referred to only inside
the block and is said to be a local variable. A
variable created outside of any function block
can be referred to anywhere in the program and
is said to be a global variable. However, its value
only can be altered in a function block if the
altering statement is preceded with a statement
in the function block of the form global
variableName.

def main():

 invented("browser", 1990)

def invented(what, when):

 print("The", what,

 "was invented in", when)

main()

[Run]

The browser was invented in 1990

def main():

 what = getInvention()

 invented(what, 1959)

def getInvention():

 s = "Enter an invention: "

invention = input(s)

 return invention

def invented(what, when):

 print("The", what,

 "was invented in", when)

main()

[Run]

Enter an invention: chip

The chip was invented in 1959

def main():

 what = "computer"

 alter(what)

 print(what)

def alter(what):

 what = "typewriter"

main()

[Run]

computer

(x, y) = (2, 3)

def main():

 z = 5

 global y

 y += 1 # x += 1 is an error

 display()

 print(x, y, z)

def display():

 print(x, y, end=" ")

 z = 8

main()

ChaPTEr 4 KEy TERMS
AND CONCEPTS ExAMPLES

Named constants are global variables that are
intended to never be altered by any function.

Library modules facilitate the reuse of functions
created by the programmer and the standard
libraries give the programmer access to a wide
variety of functions that are not built into Python.

[Run]

2 4 2 4 5

INTEREST_RATE = .04

import finance

4.2	Functions,	Part 2

A function can call other functions.

A function can return more than one value by
returning a record.

The sorted function creates a new ordered list
from a list, tuple, or string.

Custom sorting can be accomplished by
assigning a function name or a lambda expression
to the key argument and a value to the reverse
argument of a sort method or sorted function.

List comprehension creates a list by carrying
out whatever function precedes a for clause to
each item in the for clause (provided that the
item satisfies an optional condition specified by
an if clause).

Keyword passing allows an argument to be
passed to a parameter by writing the argument
in the form parameterName=value. If a
parameter in a function header has the form
par=defaultValue, the default value will be
assigned to the parameter when no argument
in the calling statement is assigned to the
parameter.

def main():

 str1 = getInput()

 str2 = precessInput(str1)

 displayOutput(str2)

def main():

 x, y = returnTwoValues()

 print(", ".join((x, y)))

def returnTwoValues():

 return ("spam", "eggs")

main()

[Run]

spam, eggs

print(sorted(("MBA","MA")))

displays ['MA', 'MBA'].

print(sorted(["MA", "MBA"],

 key=lambda x: len(x),

 reverse=True))

displays ['MBA', 'MA'].

L=[ord(x) for x in ['1','A','a']

 if x.isalpha()]

print(L)

[Run]

[65, 97]

def main():

 invented(what="Web")

def invented(what, when=1989):

 print("The", what,

 "was invented in", when)

main()

[Run]

The Web was invented in 1989

 Key Terms and Concepts ◆ 203

 204 ◆ Chapter 4 Functions

ChaPTEr 4 KEy TERMS
AND CONCEPTS ExAMPLES

4.3 Program Design

Structured programming uses top- down
design to refine large problems into smaller
subproblems.

See Section 4.3.

CHAPTER 4 PROgRAMMINg PROjECTS

1. Projectile Motion Write a program to provide information on the height of a ball
thrown straight up into the air. The program should request as input the initial height,
h feet, and the initial velocity, v feet per second. The height of the ball after t seconds
is h + vt - 16t2 feet. The program should perform the following two calculations:

(a) Determine the maximum height of the ball. Note: The ball will reach its maximum
height after v/32 seconds.

(b) Determine approximately when the ball will hit the ground. Hint: Calculate the
height after every .1 second and determine when the height is no longer a positive
number.

A function named getInput should be used to obtain the values of h and v and that
function should call a function named isValid to ensure that the input values are posi-
tive numbers. Each of the tasks (a) and (b) should be carried out by functions. See
Fig. 4.35.

Figure 4.35 Possible outcome of Programming Project 1.

Enter the initial height of the ball: 5

Enter the initial velocity of the ball: 34

The maximum height of the ball is 23.06 feet.

The ball will hit the ground after approximately 2.27 seconds.

2. Prime Factors Write a program that requests a positive integer greater than 1 as
input and displays the largest and smallest prime factors of the number. Refer to Exer-
cise 18 of Section 3.3 for a discussion of prime factorization. See Fig. 4.36. The pro-
gram should use a function that returns two values.

Figure 4.36 Possible outcome of Programming
Project 2.

Enter a positive integer > 1: 2345

Largest prime factor: 67

Smallest prime factor: 5

Figure 4.37 Outcome of Programming
Project 3.

123 septillion

 0 sextillion

 4 quintillion

 56 quadrillion

777 trillion

888 billion

999 million

 12 thousand

345

3. Verbalize a Number Write a function with header def verbalizeNumber(number):
that accepts a positive whole number with at most 27 digits as input and then dis-
plays a verbalization of the number. Figure 4.37 shows the output of verbalize-
Number(123000004056777888999012345).

4. Depreciation For tax purposes an item may be depreciated over a period of several
years, n. With the straight- line method of depreciation, each year the item depreciates
by (1/n)th of its original value. With the double- declining- balance method of deprecia-
tion, each year the item depreciates by (2/n)ths of its value at the beginning of that
year. (In the final year it is depreciated by its value at the beginning of the year.) Write
a program that performs the following tasks:

(a) Request a description of the item, the year of purchase, the cost of the item, the
number of years to be depreciated (estimated life), and the method of depreciation.

(b) Display a year- by- year description of the depreciation. See Fig. 4.38.

Figure 4.38 Possible outcome of Programming Project 4.

Enter name of item purchased: computer

Enter year purchased: 2012

Enter cost of item: 2000

Enter estimated life of item (in years): 5

Enter method of depreciation (SL or DDB): DDB

Description: computer

Year of purchase: 2012

Cost: $2,000.00

Estimated life: 5 years

Method of depreciation: double- declining balance

 Value at Amount Deprec Total Depreciation

 Beg of Yr. During Year to End of Year

2012 2,000.00 800.00 800.00

2013 1,200.00 480.00 1,280.00

2014 720.00 288.00 1,568.00

2015 432.00 172.80 1,740.80

2016 259.20 259.20 2,000.00

5. Alphabetical Order The following words have three consecutive letters that are also
consecutive letters in the alphabet: THIRSTY, NOPE, AFGHANISTAN, STUDENT.
Write a program that accepts a word as input and determines whether or not it has
three consecutive letters that are consecutive letters in the alphabet. The program
should use a Boolean- valued function named isTripleConsecutive that accepts an entire
word as input. Hint: Use the ord function. See Fig. 4.39.

Figure 4.39 Possible outcome of Programming Project 5.

Enter a word: HIJACK

HIJACK contains three successive letters

in consecutive alphabetical order.

6.	ISBN Validator Every book is identified by a 10-character International Stand-
ard Book Number (ISBN), which is usually printed on the back cover of the book.

 Programming Projects ◆ 205

 206 ◆ Chapter 4 Functions

The first nine characters are digits and the last character is either a digit or the letter
X (which stands for ten). Three examples of ISBNs are 0-13-030657-6, 0-32-108599-X,
and 0-471-58719-2. The hyphens separate the characters into four blocks. The first
block usually consists of a single digit and identifies the language (0 for English, 2 for
French, 3 for German, etc.). The second block identifies the publisher. The third block
is the number the publisher has chosen for the book. The fourth block, which always
consists of a single character called the check digit, is used to test for errors. Let’s refer
to the 10 characters of the ISBN as d1, d2, d3, d4, d5, d6, d7, d8, d9, and d10. The check
digit is chosen so that the sum

10 # d1 + 9 # d2 + 8 # d3 + 7 # d4 + 6 # d5 + 5 # d6 + 4 # d7 + 3 # d8 + 2 # d9 + 1 # d10 (*)

is a multiple of 11. (Note: A number is a multiple of 11 if it is exactly divisible by 11.)
If the last character of the ISBN is an X, then in the sum (*), d10 is replaced with 10.
For example, with the ISBN 0-32-108599-X, the sum would be

10 # 0 + 9 # 3 + 8 # 2 + 7 # 1 + 6 # 0 + 5 # 8 + 4 # 5 + 3 # 9 + 2 # 9 + 1 # 10 = 165

Since 165/11 is 15, the sum is a multiple of 11. This checking scheme will detect every
single digit and transposition- of- adjacent- digits error. That is, if while copying an IBSN
number you miscopy a single character or transpose two adjacent characters, then the
sum (*) will no longer be a multiple of 11.

Write a program to accept an ISBN type number (including the hyphens) as input, cal-
culate the sum (*), and tell if it is a valid ISBN. See Fig. 4.40. (Hint: The number n is
divisible by 11 if n % 11 is 0.) Before calculating the sum, the program should check
that each of the first nine characters is a digit and that the last character is either a digit
or an X.

Figure 4.40 Possible outcome of Programming Project 6.

Enter an ISBN: 0-13-030657-6

The number is valid.

207

5

5.1 Processing Data, Part 1 208

◆  Reading Text Files  ◆  Creating Text Files  ◆  Adding Lines to an Existing Text File 

◆  Altering Items in a Text File  ◆  Sets  ◆  Set Comprehension 

◆  Set-Theoretic Methods  ◆  Using Set Methods with Files

5.2 Processing Data, Part 2 223

◆  CSV Files  ◆  Accessing the Data in a CSV File 

◆  Analyzing the Data in a CSV File with a List  ◆  Analyzing Numeric Data 

◆  Excel and CSV Files

5.3 Dictionaries 237

◆  Dictionaries  ◆  The dict Function  ◆  Creating a Dictionary from a Text File 

◆  Using a Dictionary as a Frequency Table  ◆  Storing Dictionaries in Binary Files 

◆  Dictionary-Valued Dictionaries  ◆  Extracting Ordered Data from a Dictionary 

◆  Using a Dictionary with Tuples as Keys  ◆  Dictionary Comprehension

Key Terms and Concepts 251

Programming Projects 254

Processing Data

 208 ◆ Chapter 5 Processing Data

5.1 Processing Data, Part 1

So far, the output of our programs has been displayed on the screen and eventually lost.
In most real-life applications, we want the output to be preserved in files in permanent
storage (such as on a hard drive) that will be available for later use. Word processors and
spreadsheets are two types of programs whose output must be preserved and accessed at
a later time. We have already seen how data from text files can be retrieved. In this section
we will expand our ability to read data from text files, and will show how to write programs
that create new text files.

In Chapter 2 we discussed the core objects numbers, strings, lists, and tuples. In this chap-
ter we will present two other core objects—sets and dictionaries. Sets will be introduced in
this section and used to manage text files. Dictionaries will be introduced in Section 5.3 and
used to efficiently access large quantities of data. Note: In this textbook, we assume that all
files referred to by a program reside in the same folder as the program.

 ■ Reading Text Files
In previous chapters we showed how to access every line of a text file successively with a
for loop, and how to place all the lines of a text file into a list using list comprehension.

A statement of the form

infile = open(fileName, 'r')

establishes a connection between the program and the file that allows the program to read
data from the file. The file is said to be opened for reading (or opened for input). The open
function is said to return a file object. The variable infile is used to read lines from the file
and to eventually terminate the connection to the file. After a text file is opened for reading,
a for loop with header

for line in infile:

accesses the lines of the file in succession, and the statement

listVar = [line.rstrip() for line in infile]

creates a list of strings where each item of the list is a line of the file minus its newline
character.

Note: With the pure for loop, the newline character (\n) appears at the end of each line
(except possibly the last line).

At any time, the connection from the program to the file can be terminated with the
statement

infile.close()

Files are usually automatically closed when the functions in which they were opened
terminate. However, we will explicitly close all files when we have finished using them.

Note: Most text files have a newline character at the end of their last line—however, some
do not. For instance, if the text file was created in a text editor such as Notepad or TextEdit,
the presence of the final endline character depends on whether the person who created the
file pressed the Enter (or return) key after typing the last line. We have written our programs
so that they run as intended with both types of text files.

VideoNote

Reading
Text Files

 5.1 Processing Data, Part 1 ◆ 209

A file that is open for reading can also be accessed with the read and readline methods.
A statement of the form

strVar = infile.read()

places the entire contents of the file into a single string.
When a text file is opened for input, a pointer is set to the beginning of the first line of

the file. Each time a statement of the form

strVar = infile.readline()

is executed, the current line is assigned to strVar and the pointer advances to the end of that
line. After all the lines of the file have been read, the readline method returns the empty
string. The following function could be added to Example 1 as another way to display the
contents of the file FirstPresidents.txt.

def displayWithReadline(file):

 infile = open(file, 'r')

 line = infile.readline()

 Example 1 First Three Presidents The three lines of the file FirstPresidents.txt
contain the names of the first three U.S. presidents. The following program shows two ways
to display the contents of the file.

def main():

 ## Display the names of the first three presidents.

 file = "FirstPresidents.txt"

 displayWithForLoop(file)

 print()

 displayWithListComprehension(file)

def displayWithForLoop(file):

 infile = open(file, 'r')

 for line in infile:

 print(line, end="")

 infile.close()

def displayWithListComprehension(file):

 infile = open(file, 'r')

 listPres = [line.rstrip() for line in infile]

 infile.close()

 print(listPres)

main()

[Run. Assume the file ends with a newline character.]

George Washington

John Adams

Thomas Jefferson

['George Washington', 'John Adams', 'Thomas Jefferson']

 210 ◆ Chapter 5 Processing Data

 while line != "":

 print(line, end="")

 line = infile.readline()

 infile.close()

Figure 5.1 shows the successive positions of the pointer during the execution of the
displayWithReadline function. After the third readline method is executed, the pointer will
be at the end of the file and therefore the fourth readline method will return the empty
string. The values of line after each of the readline methods are George Washington\n,
John Adams\n, Thomas Jefferson\n, and "", respectively. Note: The newline character (\n)
serves to separate lines.

George Washington\nJohn Adams\nThomas Jefferson\n

George Washington\nJohn Adams\nThomas Jefferson\n position of pointer when
file is opened for reading

George Washington\nJohn Adams\nThomas Jefferson\n position of pointer after
first readline method

George Washington\nJohn Adams\nThomas Jefferson\n position of pointer after
second readline method

George Washington\nJohn Adams\nThomas Jefferson\n position of pointer after
third readline method

the file
FirstPresidents.txt

Figure 5.1 Pointer positions during the execution of the displayWithReadline function.

 ■ Creating Text Files
A statement of the form

outfile = open(fileName, 'w')

creates a new text file with the specified name. The file is said to be opened for writing.
The variable outfile is used to write lines to the file and to eventually close the file. If list1
is a list of strings, where each string ends with a newline character (\n), then the statement

outfile.writelines(list1)

writes each item of the list into the file as a line. If the value of strVar is a string, the
statement

outfile.write(strVar)

adds the value of strVar to the file.
Since memory access is much faster than disk access, Python sets aside a portion of

memory called a buffer as a temporary holding place for data to be written to the disk. The
contents of the buffer are written to the disk whenever the buffer is full or when the file is
closed. Therefore, after all write and writelines statements have been executed, the file must
be closed to guarantee that all data has been physically transferred to the disk.

 5.1 Processing Data, Part 1 ◆ 211

 Example 2 U.S. Presidents The following program shows two ways to create files
identical to FirstPresidents.txt. Figure 5.2 shows the contents of the buffer during the
execution of the last two lines of the main function. After the close method is executed,
the three lines will be written to the disk and no variable will reference the buffer. For all
practical purposes, the buffer no longer exists.

def main():

 ## Create two files containing the first three presidents.

 outfile = open("FirstPresidents2.txt", 'w')

 createWithWritelines(outfile)

 outfile = open("FirstPresidents3.txt", 'w')

 createWithWrite(outfile)

def createWithWritelines(outfile):

 list1 = ["George Washington", "John Adams", "Thomas Jefferson"]

 # Append endline characters to the list's items.

 for i in range(len(list1)):

 list1[i] = list1[i] + "\n"

 # Write the list's items to the file.

 outfile.writelines(list1)

 outfile.close()

def createWithWrite(outfile):

 outfile.write("George Washington\n")

 outfile.write("John Adams\n")

 outfile.write("Thomas Jefferson\n")

 outfile.close()

main()

[Run. Each of the newly created files will look as follows when opened in a text editor.]

George Washington

John Adams

Thomas Jefferson

contents of buffer when
file is opened for writing

George Washington\n
contents of buffer after
first write method

George Washington\nJohn Adams\n
contents of buffer after
second write method

George Washington\nJohn Adams\nThomas Jefferson\n
contents of buffer after
third write method

Figure 5.2 Contents of the buffer after execution of the second open statement
and the createWithWrite function in Example 2.

 Example 3 U.S. States The file States.txt contains the names of the U.S. states in
the order they joined the union. The following program uses this file to create a text file
named States Alpha.txt containing the states in alphabetical order.

 212 ◆ Chapter 5 Processing Data

def main():

 ## Create a text file containing the 50 states in alphabetical order.

 statesList = createListFromFile("States.txt")

 createSortedFile(statesList, "StatesAlpha.txt")

def createListFromFile(fileName):

 infile = open(fileName, 'r')

 desiredList = [line.rstrip() for line in infile]

 infile.close()

 return desiredList

def createSortedFile(listName, fileName):

 listName.sort()

 for i in range(len(listName)):

 listName[i] = listName[i] + "\n"

 outfile = open(fileName, 'w')

 outfile.writelines(listName)

 outfile.close()

main()

[Run. The newly created file StatesAlpha.txt will look as follows when opened in a text
editor.]

Alabama

Alaska

Arizona

 f
West Virginia

Wisconsin

Wyoming

 Example 4 U.S. Presidents The file USPres.txt contains the U.S. presidents in the
order they served and the file VPres.txt contains the names of the people who served as
vice presidents of the U.S. The following program creates a file named Both.txt containing
the names of the presidents who also served as vice president.

def main():

 ## Create a file of the presidents who also served as vice-presidents.

 vicePresList = createListFromFile("VPres.txt")

 createNewFile(vicePresList, "USPres.txt", "Both.txt")

def createListFromFile(fileName):

 infile = open(fileName, 'r')

 desiredList = [line.rstrip() for line in infile]

 infile.close()

 return desiredList

def createNewFile(listName, oldFileName, newFileName):

 infile = open(oldFileName, 'r')

 outfile = open(newFileName, 'w')

 for person in infile:

 if person.rstrip() in listName:

 outfile.write(person)

 5.1 Processing Data, Part 1 ◆ 213

 ■ Adding Lines to an Existing Text File
A statement of the form

outfile = open(fileName, 'a')

allows the program to add lines to the end of the specified file. Then the writelines and
write methods can be used to add new lines. The file is said to be opened for append.

 infile.close()

 outfile.close()

main()

[Run. The newly created file Both.txt will look as follows when opened in a text editor.]

John Adams

Thomas Jefferson

Martin Van Buren

 f
Richard Nixon

Gerald Ford

George H. W. Bush

 Example 5 After the following program is executed, the file FirstPresidents.txt
will contain the names of the first six U.S. presidents.

def main():

 ## Add next three presidents to the file containing first three presidents.

 outfile = open("FirstPresidents.txt", 'a')

 list1 = ["James Madison\n", "James Monroe\n"]

 outfile.writelines(list1)

 outfile.write("John Q. Adams\n")

 outfile.close()

main()

[Run. The file FirstPresidents.txt will now look as follows when opened in a text editor.]

George Washington

John Adams

Thomas Jefferson

James Madison

James Monroe

John Q. Adams

 ■ Altering Items in a Text File
There is one file-management operation that we have yet to discuss—altering, inserting, or
deleting a line of a text file. These types of changes cannot be made directly. A new file must
be created by reading each item from the original file and recording it, with the changes, into
the new file. The old file is then erased, and the new file is renamed with the name of the

 214 ◆ Chapter 5 Processing Data

original file. In order to gain access to the functions needed for these tasks, we must first
import the standard library module os with the statement

import os

This statement is customarily placed at the top of the program before the main function.
Then the statement

os.remove(fileName)

will delete the specified file, and the statement

os.rename(oldFileName, newFileName)

will change the name and possibly the path of a file. Notes: The remove and rename func-
tions cannot be used with open files; doing so generates an error message. Also, the second
argument of the rename function cannot be the name of an existing file.

An error message is generated if the file to be removed, renamed, or opened for reading
does not exist. The function

os.path.isfile(fileName)

that returns True if the specified file exists and False otherwise, can be used to verify that
a file exists before attempts are made to rename, delete, or read it.

We will now change the subject and discuss a new data type called a set. Then we will
show how sets provide a powerful tool for refining text files and for extracting data from
pairs of related text files.

 ■ Sets
A list is an ordered collection of items, possibly with repetitions. A set is an unordered col-
lection of items (referred to as elements) with no duplicates. Whereas the items in a list
are delimited with square brackets, the elements in a set are delimited with braces. Sets can
contain numbers, strings, tuples, and Boolean values. However, sets cannot contain lists or
other sets. Some examples of sets are {“spam”, “ni”}, {3, 4, 7}, {True, 7, “eleven”}, and
{‘a’, ‘b’, (3, 4)}.

Many list and tuple operations (like in, len, max, min, sum, and writelines) and being
able to use a for loop to iterate over all of their elements, also apply to sets. The main dif-
ferences between sets and lists (or tuples) are that no items in a set can appear twice and the
elements in a set have no order. Since the elements have no order, they cannot be indexed
and therefore slicing and list methods such as sort and reverse are meaningless with regards
to sets. Table 5.1 contains a few basic elementary methods and functions for sets. (Note that
when the set function is applied to a list or record, duplicate items only appear once in the
set.) Two sets are equal if they contain the same elements.

Table 5.1 Set operations (words = {“spam”, “ni”}).

Methods and
Functions Example Value of Set Description

add words.add(“eggs”) {“spam”, “ni”, “eggs”} adds item to set
discard words.discard{“ni”} {“spam”} removes specified item
clear words.clear() set() set() is the empty set
set set([3, 7, 3]) {3, 7} convert a list to a set

set((3, 7, 3)) {3, 7} convert a tuple to a set

VideoNote

Sets

 5.1 Processing Data, Part 1 ◆ 215

Although the elements of a set cannot be ordered, they can be placed into a list in a
customized order with a statement of the form

sorted(set1, key=f, reverse=BooleanValue)

 Example 6 The following program illustrates several set operations.

def main():

 # Use a set to remove the duplicates from a list.

 words = ["nudge", "nudge", "wink", "wink"]

 terms = set(words)

 print(terms)

 words = list(terms)

 print(words)

 # Demonstrate the effect of the add method.

 terms.add("nudge") # Has no effect since 'nudge' was already in the set.

 terms.add("maybe")

 print(terms)

 # Demonstrate the effect of the discard method.

 terms.discard("nudge")

 print(terms) # The word 'nudge' was removed from the set.

 # Convert the set to a tuple.

 words = tuple(terms)

 print(words)

main()

[Run]

{'nudge', 'wink'}

['nudge', 'wink']

{'nudge', 'wink', 'maybe'}

{'wink', 'maybe'}

('wink', 'maybe')

 ■ Set Comprehension
Like lists, sets can be created with comprehension. For instance, the statement

{x * x for x in range(-3, 3)}

creates the set {0, 1, 4, 9}.

 ■ Set-Theoretic Methods
Python has methods that create new sets from two existing sets. For instance, we might
want to merge the two sets. Or, we might want a new set to contain the items that appear in
both of the existing sets. Or, we might want to alter one set by deleting the items that also
appear in the other set. The three methods used to carry out such operations are as follows:

set1.union(set2) is the set containing the elements in either set1 or set2, without
duplications.

set1.intersection(set2) is the set containing the elements that are in both set1 and
set2.

set1.difference(set2) is the set containing the elements of set1 with the elements of
set2 removed.

 216 ◆ Chapter 5 Processing Data

 ■ Using Set-Theoretic Methods with Files
Three steps for extracting information from two related text files are as follows:

1. Create two sets, each containing the contents of one of the two text files.

2. Apply a set operation, such as union, intersection, or difference, to the sets.

3. Write the resulting set into a new text file.

 Example 7 Set-Theoretic Methods The following program demonstrates the use
of the three set-theoretic operations with two simple text files whose contents are shown
below. The program combines these two files in three ways. In the fifth and eighth lines,
precaution is taken in case the last line of the file does not end with a newline character.

File1.txt File2.txt

Alpha Bravo
Bravo Delta
Charlie

def main():

 ## Demonstrate set-theoretic methods.

 # Use the two files to create two sets.

 infile = open("File1.txt", 'r')

 firstSet = {line.rstrip() + "\n" for line in infile}

 infile.close()

 infile = open("File2.txt", 'r')

 secondSet = {line.rstrip() + "\n" for line in infile}

 infile.close()

 # Create files containing the union, intersection, and difference of

 # the original two files.

 outfile = open("Union.txt", 'w')

 outfile.writelines(firstSet.union(secondSet))

 outfile.close()

 outfile = open("Intersection.txt", 'w')

 outfile.writelines(firstSet.intersection(secondSet))

 outfile.close()

 outfile = open("Difference.txt", 'w')

 outfile.writelines(firstSet.difference(secondSet))

 outfile.close()

main()

[Run, and then look at the three new text files.]

The file Union.txt contains the four words Alpha, Bravo, Charlie, and Delta.
The file Intersection.txt contains the single word Bravo.
The file Difference.txt contains the two words Alpha and Charlie.

 Example 8 U.S. Presidents The following rewrite of Example 4 uses set methods to
create a file containing the names of vice presidents who became presidents.

def main():

 ## Create a file of the presidents who also served as vice-presidents.

 vicePresSet = createSetFromFile("VPres.txt")

 5.1 Processing Data, Part 1 ◆ 217

 ■ Comments
1. We have been using the variable names infile and outfile since they are suggestive of

the roles the variables play. However, any valid variable names can be used. Two other
suggestive names are fin, an abbreviation for “file input,” and fout, an abbreviation for
“file output.”

2. An attempt to open a nonexistent file for input generates a runtime error. If a file that
already exists is opened for writing, the contents of the file will be erased. One way
to prevent these two unwanted events from happening is to use the Boolean-valued
os.path.isfile function. Another way to prevent these events from happening is to use
a try statement. The try statement is discussed in Chapter 6.

3. If the file specified in an “open for append” statement does not exist, the open state-
ment will create a new file with the specified name. That is, in that case the append mode
will perform the same as the “open for writing” mode.

4. “Open for reading” is the default mode for opening a file. Therefore, a statement of
the form

infile = open(fileName, 'r')

can be abbreviated to

infile = open(fileName)

5. Only strings can be written to text files. Therefore a statement such as outfile.write(7)
is not valid.

6. The value of set1.union(object1), where object1 is a list or tuple, is the same as the value
of set1.union(set(object1)). Similarly for the intersection and difference methods.

 presSet = createSetFromFile("USPres.txt")

 bothPresAndVPresSet = createIntersection(vicePresSet, presSet)

 writeNamesToFile(bothPresAndVPresSet, "PresAndVPres.txt")

def createSetFromFile(fileName):

 # Assume that the last line of the file ends with a newline character.

 infile = open(fileName, 'r')

 namesSet = {name for name in infile}

 infile.close()

 return namesSet

def createIntersection(set1, set2):

 return set1.intersection(set2)

def writeNamesToFile(setName, fileName):

 outfile = open(fileName, 'w')

 outfile.writelines(setName)

 outfile.close()

main()

[Run. The file PresAndVPres.txt will resemble the file below when opened in a text editor.
(Assume both files end with a newline character.)]

Theodore Roosevelt

Andrew Johnson

 f
George H. W. Bush

Martin Van Buren

 218 ◆ Chapter 5 Processing Data

7. If s is a string, the value of set(s) is the set containing the characters of the string without
repetition. For instance, print(set("Mississippi")) displays {'M', 's', 'p', 'i'}.

8. The value of set() is the empty set.

Practice Problems 5.1

1. Suppose the file Words.txt contains words written in lowercase letters, with some
words appearing more than once. What is the effect of the following lines of code?

infile = open("Words.txt", 'r')

wordList = [line.rstrip() for line in infile]

infile.close()

wordSet = set(wordList)

outfile = open("Words.txt", 'w')

for word in sorted(wordSet):

 outfile.write(word + "\n")

outfile.close()

2. What would happen if the argument end="" was omitted from the displayWithReadline
function discussed earlier?

3. Suppose listNumbers is a list of numbers. Write lines of code to place the contents of
listNumbers into the file SomeNumbers.txt.

4. The statement list2 = list(set(list1)) creates a list with all duplicates from list1
removed. Write code that accomplishes the same task without using a set function.

ExERCISES 5.1

In Exercises 1 through 12, determine the output displayed by the lines of code.

1. outfile = open("Greetings.txt", 'w')
outfile.write("Hello\n")

outfile.write("Aloha\n")

outfile.close()

infile = open("Greetings.txt", 'r')

for line in infile:

 text = infile.readline().rstrip()

infile.close()

print(text)

2. outfile = open("Greetings.txt", 'w')
outfile.write("Hello\n")

outfile.write("Aloha\n")

outfile.close()

infile = open("Greetings.txt", 'r')

text = infile.readline().rstrip()

infile.close()

print(text)

3. list1 = ["Hello\n", "Aloha\n"]
outfile = open("Greetings.txt", 'w')

 5.1 Processing Data, Part 1 ◆ 219

outfile.writelines(list1)

outfile.close()

infile = open("Greetings.txt", 'r')

text = infile.read()

infile.close()

print(text.rstrip())

4. list1 = ["Hello", "Aloha\n"]
outfile = open("Greetings.txt", 'a')

outfile.writelines(list1)

outfile.close()

infile = open("Greetings.txt", 'r')

text = infile.read().rstrip()

infile.close()

print(text)

5. print(len(set("Bookkeeper")))

6. print(sorted(set([3, 4, 1, 4, 3])))

7. print([x ** 2 for x in range(-2, 3)])

8. print(sorted({x ** 2 for x in range(-2, 3)}))

9. s = {"Believe", "yourself."}
s.add("in")

print(" ".join(sorted(s)))

10. s = {"Always", "up.", "give", "Never"}
s.discard("Always")

print(" ".join(sorted(s, key=len, reverse=True)))

11. s = set("cat")
s.add('t')

print(sorted(s))

12. s = set("dozen")
s.discard('d')

print(sorted(s, reverse=True))

In Exercises 13 through 22, identify any errors in the code segments. Assume that the
file ABC.txt has three lines containing the data A, B, and C.

13. infile = open("ABC.txt", 'w')
line = infile.readline()

infile.close()

14. outfile = open(ABC.txt, 'a')
outfile.write("D\n")

outfile.close()

15. infile = open("ABC.txt", 'r')
line = infile.readline()

"ABC.txt".close()

16. outfile = open("ABC.txt", 'r')
outfile.write("D\n")

outfile.close()

17. outfile = open("Data.txt", 'w')
for i in range(5):

 outfile.write(i)

outfile.close()

18. list1 = ["spam\n", "eggs\n"]
outfile = open("Data.txt", 'w')

outfile.writelines(list1)

print(len(outfile))

outfile.close()

 220 ◆ Chapter 5 Processing Data

19. list1 = ["Hello\n", "Aloha"]
outfile = open("Greet.txt", 'w')

outfile.writelines(list1)

infile = open("Greet.txt", 'r')

text = infile.read()

outfile.close()

print(text)

20. list1 = ["spam", "and", "eggs"]
outfile = open("Data.txt", 'w')

for word in list1:

 outfile.write(word + "\n")

 outfile.write((len(word))

outfile.close()

21. infile = open("ABC.txt", 'r')
infile.close()

line = infile.readline()

22. set1 = {"xyz", 5, [3, 4]}
list1 = list(set1)

Exercises 23 and 24 refer to the following program. (Assume that the current folder does
not contain a file named ABC.txt.)

import os.path

if os.path.isfile("ABC.txt"):

 print("File already exists.")

else:

 infile = open("ABC.txt", 'w')

 infile.write("a\nb\nc\n")

 infile.close()

23. What happens the first time the program is run?

24. What happens the second time the program is run?

In Exercises 25 through 28, use sets to simplify the function. There is no need to maintain
the order of the items in the lists.

25. def removeDuplicates(list1):
 list2 = []

 for item in list1:

 if item not in list2:

 list2.append(item)

 return list2

26. def findItemsInBoth(list1, list2):
 list3 = []

 for item in list1:

 if (item in list2) and (item not in list3):

 list3.append(item)

 return list3

27. def findItemsInEither(list1, list2):
 list3 = []

 for item in list1:

 if (item not in list3):

 list3.append(item)

 for item in list2:

 if (item not in list3):

 list3.append(item)

 return list3

28. Use set comprehension to simplify the following lines of code.

names = ["Donald Shell", "Harlan Mills", "Donald Knuth", "Alan Kay"]

setLN = set() # empty set

 5.1 Processing Data, Part 1 ◆ 221

for name in names:

 setLN.add(name.split()[-1])

print(setLN)

29. Gettysburg Address The file Gettysburg.txt contains the entire Gettysburg
 Address as a single line.1 Write lines of code that display the first 89 characters of the
 Gettysburg Address, the number of words in the Gettysburg Address, and the number
of different words. See Fig. 5.3.

1The file Gettysburg.txt is located in the folder Programs/Ch5 of the material downloaded from
the Pearson website. All files required for exercises in this chapter are located in that folder.
2Crayola is a registered trademark of Binney & Smith.

Figure 5.3 Outcome of Exercise 29.

Four score and seven years ago, our fathers brought

forth on this continent a new nation:

The Gettysburg Address contains 268 words.

The Gettysburg Address contains 139 different words.

In Exercises 30 through 32, describe the new file created by the code. Assume the
file NYTimes.txt contains the names of subscribers to the New York Times and the file
WSJ.txt contains the names of the subscribers to the Wall Street Journal.

30. infile = open("NYTimes.txt", 'r')
timesList = [line.rstrip() for line in infile]

infile.close()

timesSet = set(timesList)

infile = open("WSJ.txt", 'r')

wsjList = [line.rstrip() for line in infile]

infile.close()

wsjSet = set(wsjList)

combinationSet = timesSet.union(wsjSet)

combinationList = list(combinationSet)

combinationString = ('\n').join(combinationList)

outfile = open("NewFile.txt", 'w')

outfile.write(combinationString)

outfile.close()

31. Rework Exercise 30 with the word union in the ninth line changed to intersection.

32. Rework Exercise 30 with the word union in the ninth line changed to difference.

33. Crayon Colors At the beginning of 1990, a complete box of Crayola2 crayons had
72 colors (in the file Pre1990.txt). During the 1990s, 8 colors were retired (in the file
Retired.txt) and 56 new colors were added (in the file Added.txt). Write a program
that creates a text file containing the post-1990s set of 120 colors in alphabetical order.
Note: The first four lines of the new text file will contain the colors Almond, Antique
Brass, Apricot, and Aquamarine.

The file Numbers.txt contains the integers 6, 9, 2, 3, 6, 4 with each integer on a separate
line. In Exercises 34 through 42, write a program that uses the file to carry out the task
without using lists.

34. Numbers Display the number of numbers in the file Numbers.txt. See Fig. 5.4.

35. Numbers Display the largest number in the file Numbers.txt. See Fig. 5.5.

 222 ◆ Chapter 5 Processing Data

36. Numbers Display the smallest number in the file Numbers.txt. See Fig. 5.6.

Figure 5.4 Outcome of Exercise 34.

The file Numbers.txt

contains 6 numbers.

Figure 5.5 Outcome of Exercise 35.

The largest number in the

file Numbers.txt is 9.

Figure 5.6 Outcome of Exercise 36.

The smallest number in the

file Numbers.txt is 2.

Figure 5.7 Outcome of Exercise 37.

The sum of the numbers in

the file Numbers.txt is 30.

37. Numbers Display the sum of the numbers in the file Numbers.txt. See Fig. 5.7.

38. Numbers Display the average of the numbers in the file Numbers.txt. See Fig. 5.8.

Figure 5.8 Outcome of Exercise 38.

The average of the numbers in

the file Numbers.txt is 5.0.

Figure 5.9 Outcome of Exercise 39.

The last number in the

file Numbers.txt is 4.

39. Numbers Display the last number in the file Numbers.txt. See Fig. 5.9.

40. Months The file SomeMonths.txt initially contains the names of the 12 months.
Write a program that deletes all months from the file that do not contain the letter r.

41. Crayon Colors The file ShortColors.txt initially contains the names of all the
colors in a full box of Crayola crayons. Write a program that deletes all colors from
the file whose name contains more than six characters.

42. Players The files SomePlayers.txt initially contains the names of 30 football play-
ers. Write a program that deletes those players from the file whose names do not begin
with a vowel.

43. Students The file AllStudents.txt contains the names and final grades of all 30 stu-
dents in a class, arranged in alphabetical order. The file PassedStudents.txt contains
the names of the 17 students who passed. Create a text file that contains the alphabet-
ized names of the remaining 13 students who did not pass.

44. States The 44 lines of the file PresStates.txt contain the names of the states that
produced each of the first 44 presidents. The first four lines of the file contain the
states Virginia, Massachusetts, Virginia, and Virginia. Write a program that deletes all
duplications from the file and also displays the number of states that have produced
presidents. See Fig. 5.10.

Figure 5.10 Outcome of Exercise 44.

18 different states have

produced presidents of the

United States.

Figure 5.11 Outcome of Exercise 45.

Enter the lower number for the range: 10

Enter the upper number for the range: 14

 10 John Tyler

 11 James Polk

 12 Zachary Taylor

 13 Millard Fillmore

 14 Franklin Pierce

 5.2 Processing Data, Part 2 ◆ 223

45. U.S. Presidents The file USPres.txt contains the names of the first 44 U.S. presi-
dents in the order they served. Write a program (without using a list) that requests a
range of numbers and displays all presidents whose number is in that range. Figure
5.11 shows one possible outcome. (John Tyler was the tenth president, James Polk was
the eleventh president, and so on.)

46. File of Names The file Names.txt contains a list of first names in alphabetical order.
Write a program that requests a name from the user and inserts the name into the file
in its proper location. If the name is already in the file, it should not be inserted.

Solutions to Practice Problems 5.1

1. A new file is created with all the words from the old file in alphabetical order and with no duplicates.

2. The names would be displayed double-spaced.

3. # Convert each number in the list to a string with "\n" appended to it.
for i in range(len(listNumbers)):

 listNumbers[i] = str(listNumbers[i]) + "\n"

Write the list to a file.

outfile = open("SomeNumbers.txt", 'w')

outfile.writelines(listNumbers)

outfile.close()

or

Write the list of numbers to a file. Convert to strings while writing.

outfile = open("SomeNumbers.txt", 'w')

for num in listNumbers:

 outfile.write(str(num) + "\n")

outfile.close()

4. list2 = []
for x in list1:

 if x not in list2:

 list2.append(x)

5.2 Processing Data, Part 2

Data to be processed usually comes in files containing large tables. This section shows how
to analyze such tables. It also shows how to obtain data from the Web.

 ■ CSV Files
The text files considered so far had a single piece of data per line. For instance, each line
of the file States.txt contained the name of a state, and each line of the file USPres.txt
 contained the name of a president. Another type of text file, called a CSV-formatted
file, has several items of data on each line with the items separated by commas. (CSV
stands for Comma-Separated Values.) An example is the file UN.txt that gives data about the
193 members of the United Nations with the countries listed in alphabetical order. Each

 224 ◆ Chapter 5 Processing Data

line of the file gives four pieces of data about a country—name, continent, population (in
millions), and land area (in square miles). Some lines of the file are

Canada,North America,34.8,3855000

France,Europe,66.3,211209

New Zealand,Australia/Oceania,4.4,103738

Nigeria,Africa,177.2,356669

Pakistan,Asia,196.2,310403

Peru,South America,30.1,496226

Each line of this text file is called a record and each record is said to contain four fields—a
name field, a continent field, a population field, and an area field. The data in the fields of
each record are related—they apply to the same country.

 ■ Accessing the Data in a CSV File
The split method is used to access the fields of CSV-formatted files. For instance, if the
variable line holds the first record shown above and the value of the variable data is the list
line.split(“,”), then the value of data[0] is Canada, the value of data[1] is North America,
the value of eval(data[2]) is the number 34.8, and the value of eval(data[3])is the
number 3855000.

 Example 1 United Nations The following program requests the name of a continent
and then displays the names of the U.N. member countries located on that continent.

def main():

 ## Display the countries in a specified continent.

 continent = input("Enter the name of a continent: ")

 continent = continent.title() # Allow for all lowercase letters.

 if continent != "Antactica":

 infile = open("UN.txt", 'r')

 for line in infile:

 data = line.split(',')

 if data[1] == continent:

 print(data[0])

 else:

 print("There are no countries in Antarctica.")

main()

[Run]

Enter the name of a continent: South America

Argentina

Bolivia

Brazil

 f
Uruguay

Venezuela

 ■ Analyzing the Data in a CSV File with a List
The data in a CSV file can be analyzed by placing the data into a list. The items of the list
are other lists holding the contents of a single line of the file.

VideoNote

Accessing
Data in a
CSV File

 5.2 Processing Data, Part 2 ◆ 225

 Example 2 United Nations The following program places the contents of the file
UN.txt into a list of 193 items, where each item is a list containing the four pieces of data
for a single country. Since all data in text files is stored as strings, the values for population
and area must be converted to numbers. Note: After the third line of the placeRecordsIntoList
function is executed, the first item in listOfRecords will be

“Afghanistan,Asia,31.8,251772”

After the split method is applied to this item in the sixth line of placeRecordsIntoList, the
item will be replaced with the four-item list

[“Afghanistan”, “Asia”, “31.8”, ”251772”]

After the eval function is applied to the last two entries in this list, the four-item list
becomes

[“Afghanistan”, “Asia”, 31.8, 251772].

The program then returns to the main function, where it sorts the countries by area in
descending order and calls a function to display the names and areas of the five largest
countries. Finally the program calls a function to create a new CSV file containing the
names and areas of all the countries in descending order by area.

def main():

 ## Create a file containing all countries and areas, ordered by area.

 ## Display first five lines of the file.

 countries = placeRecordsIntoList("UN.txt")

 countries.sort(key=lambda country: country[3], reverse=True) #sort by area

 displayFiveLargestCountries(countries)

 createNewFile(countries) # Create file of countries and their areas.

def placeRecordsIntoList(fileName):

 infile = open(fileName, 'r')

 listOfRecords = [line.rstrip() for line in infile]

 infile.close()

 for i in range(len(listOfRecords)):

 listOfRecords[i] = listOfRecords[i].split(',')

 listOfRecords[i][2] = eval(listOfRecords[i][2]) # population

 listOfRecords[i][3] = eval(listOfRecords[i][3]) # area

 return listOfRecords

def displayFiveLargestCountries(countries):

 print("{0:20}{1:9}".format("Country", "Area (sq. mi.)"))

 for i in range(5):

 print("{0:20}{1:9,d}".format(countries[i][0], countries[i][3]))

def createNewFile(countries):

 outfile = open("UNbyArea.txt", 'w')

 for country in countries:

 outfile.write(country[0] + ',' + str(country[3]) + "\n")

main()

[Run]

Country Area (sq. mi.)

Russian Federation 6,592,800

Canada 3,855,000

United States 3,794,066

 226 ◆ Chapter 5 Processing Data

Note: In Example 2, the individual pieces of data, such as a county’s name or a country’s
area, are accessed by a doubly-indexed variable. For instance, country[0][0] holds the name
of the first country and country[0][3] holds the area of the first country. The first index
determines the four-item list for the country, and the second index identifies one of the
four fields for the country. The population of the last country in the list can be accessed as
country[–1][2] or country[len(countries) – 1][2].

 ■ Analyzing Numeric Data
Suppose we wanted to do a statistical analysis of the areas of the 193 countries. For instance,
we might want to calculate their average, median, and standard deviation. These tasks would
be most easily accomplished by placing the 193 numbers into a list.

China 3,696,100

Brazil 3,287,597

The first three lines of the CSV file UNbyArea.txt are

Russian Federation,6592800

Canada,3855000

United States,3794066

 Example 3 United Nations The following program carries out a statistical analysis
of the areas of the countries in the United Nations. (See Exercise 66 in Section 3.4 and
Programming Project 2 of Chapter 5 for the definitions of median and standard deviation.)

def main():

 ## Do statistical analysis of country's areas.

 areasAsStrings = extractField("UN.txt", 4) # Place areas into a list.

 areas = [eval(num) for num in areasAsStrings]

 displaySomeStatistics(areas)

def extractField(fileName, n):

 ## Extract the nth field from each record of a CSV file

 ## and place the data into a list.

 infile = open(fileName, 'r')

 return [line.rstrip().split(',')[n - 1] for line in infile]

def displaySomeStatistics(listOfNumbers):

 ## Display the average, median, and standard deviation of the areas.

 average = sum(listOfNumbers) / len(listOfNumbers)

 median = calculateMedian(listOfNumbers)

 standardDeviation = calculateStandardDeviation(listOfNumbers, average)

 print("Average area: {0:,.2f} square miles".format(average))

 print("Median area: {0:,d} square miles".format(median))

 print("Standard deviation: {0:,.2f} square miles".format(standardDeviation))

def calculateMedian(listOfNumbers):

 listOfNumbers.sort()

 if len(listOfNumbers) % 2 == 1:

 median = listOfNumbers[int(len(listOfNumbers) / 2)] # middle number

 5.2 Processing Data, Part 2 ◆ 227

 ■ Excel and CSV Files
CSV files can be converted to Excel spreadsheets and vice versa. For instance, consider
the CSV file UN.txt. If you open the file in Excel and select comma when asked for the
delimiter, Excel will create a spreadsheet with 193 lines and 4 columns. Figure 5.12 shows
the first four lines of the spreadsheet.

 else:

 # Median will be the average of the two middle numbers.

 m = int(len(listOfNumbers) / 2)

 median = (listOfNumbers[m] + listOfNumbers[m + 1]) / 2

 return median

def calculateStandardDeviation(listOfNumbers, average):

 m = average

 n = len(listOfNumbers)

 listOfSquaresOfDeviations = [0] * n

 for i in range(n):

 listOfSquaresOfDeviations[i] = (listOfNumbers[i] - m) ** 2

 standardDeviation = (sum(listOfSquaresOfDeviations) / n) ** .5

 return standardDeviation

main()

[Run]

Average area: 268,550.96 square miles

Median area: 46,528 square miles

Standard deviation: 741,598.06 square miles

Figure 5.12 Spreadsheet created from UN.txt.

Conversely, a spreadsheet you create or download from the Internet can be converted
to a CSV file. After clicking on “Save As” from the FILE menu, choose “CSV (Comma
delimited)(*.csv)” in the “Save as type” dropdown box.

 ■ Comments
1. The function extractField from Example 3 is a good all-purpose function that will be

useful, with slight modifications, in several of the exercises in this book. Also, the func-
tions calculateMedian and calculateStandardDeviation come in handy whenever statistics
are needed.

2. In Example 2, we used a long list of four-item lists to hold the data. The information
in each four-item list was referenced by a pair of index numbers. In the next section,
we will discuss a structure that allows us to access data with meaningful names such as
popl and area instead of with index numbers.

 228 ◆ Chapter 5 Processing Data

Practice Problems 5.2

1. Describe the output of the following program.

def main():

 continents = extractField("UN.txt", 2) # Place continents into a set.

 displayElementsOfSet(continents)

def extractField(fileName, n):

 ## Extract the nth field from each record of a CSV file

 ## and place the data into a set.

 infile = open(fileName, 'r')

 return {record.rstrip().split(',')[n - 1] for record in infile}

def displayElementsOfSet(setName):

 ## Display ordered elements.

 for element in sorted(setName):

 print(element)

main()

2. Describe the output of the following program.

def main():

 list1 = extractFields("UN.txt", 1, 4)

 for pair in list1:

 pair[1] = eval(pair[1])

 for pair in list1:

 print(pair[0], pair[1])

def extractFields(fileName, m, n):

 ## Extract the mth and nth fields of each record.

 infile = open(fileName, 'r')

 return [[record.rstrip().split(',')[m - 1],

 record.rstrip().split(',')[n - 1]] for record in infile]

main()

ExERCISES 5.2

Exercises 1 through 6 refer to the file UN.txt that gives data about the 193 members of
the United Nations with the countries listed in alphabetical order. Each line of the file
gives four pieces of data about a single country—name, continent, population (in mil-
lions), and land area (in square miles). The first two lines of the file are as follows:

Afghanistan,Asia,31.8,251772

Albania,Europe,3.0,11100

In Exercises 1 through 4, determine the first two lines of the new file created by the code.

1. infile = open("UN.txt", 'r')
outfile = open("NewFile.txt", 'w')

for line in infile:

 line = line.rstrip()

 data = line.split(',')

 5.2 Processing Data, Part 2 ◆ 229

 data[3] = eval(data[3])

 outfile.write("The area of {0} is {1:,.0f} sq. miles.".format(data[0],

 data[3]) + '\n')

infile.close()

outfile.close()

2. infile = open("UN.txt", 'r')
outfile = open("NewFile.txt", 'w')

for line in infile:

 data = line.split(',')

 outfile.write(data[0] + " is in " + data[1] + '.\n')

infile.close()

outfile.close()

3. infile = open("UN.txt", 'r')
outfile = open("NewFile.txt", 'w')

for line in infile:

 data = line.split(',')

 country = data[0]

 continent = data[1]

 area = data[3]

 outfile.write(country + ',' + continent + ',' + area)

infile.close()

outfile.close()

4. infile = open("UN.txt", 'r')
outfile = open("NewFile.txt", 'w')

for line in infile:

 data = line.split(',')

 country = data[0]

 pop = 1000000 * eval(data[2])

 area = eval(data[3])

 popDensity = pop / area

 outfile.write("{0}'s pop. density is {1:0,.2f}".format(country,

 popDensity) + " people per sq. mile.\n")

infile.close()

outfile.close()

In Exercises 5 and 6, describe the new file created by the program.

5. def main():
 countries = placeDataIntoList("UN.txt")

 countries.sort(key=byPop, reverse=True)

 createFile(countries)

def placeDataIntoList(fileName):

 countries = []

 infile = open(fileName, 'r')

 for line in infile:

 line = line.split(',')

 if line[1] == "Europe":

 countries.append(list((line[0], eval(line[2]))))

 230 ◆ Chapter 5 Processing Data

infile.close()

return countries

def byPop(country):

 return country[1]

def createFile(countries):

 outfile = open("EuropeByPop.txt", 'w')

 for country in countries:

 outfile.write(country[0] + ',' + str(country[1]) + "\n")

 outfile.close()

main()

6. def main():
 countries = placeDataIntoList("UN.txt")

 countries.sort(key=byContinent)

 createFile(countries)

def placeDataIntoList(fileName):

 listOfInfo = []

 infile = open(fileName, 'r')

 line = infile.readline()

 while line.startswith('A'):

 line2 = line.split(',')

 listOfInfo.append(list((line2[0], line2[1])))

 line = infile.readline()

 infile.close()

 return listOfInfo

def byContinent(country):

 return country[1]

def createFile(countries):

 outfile = open("CountriesByContinent.txt", 'w')

 for country in countries:

 outfile.write(country[0] + ',' + str(country[1]) + "\n")

main()

In Exercises 7 through 10, use the file DOW.txt that contains the name, symbol,
exchange, industry, price at the end of trading on 12/31/2012, price at the end of trading
on 12/31/2013, 2013 earnings per share, and the dividend paid in 2013 for each of the
30 stocks in the Dow Jones Industrial Average. The first three lines of the file are

American Express,AXP,NYSE,Consumer finance,57.48,90.73,4.88,.89

Boeing,BA,NYSE,Aerospace & Defense,75.36,136.49,5.96,2.19

Caterpillar,CAT,NYSE,Construction & Mining Equipment,89.61,90.81,5.75,2.32

7. DOW Write a program that displays the symbols for the 30 DOW stocks in alpha-
betical order. When the user enters one of the symbols, the information shown in
Fig. 5.13 should be displayed. The Price/Earnings ratio should be calculated as the
price of a share of stock on 12/31/2013 divided by the 2013 earnings per share.

 5.2 Processing Data, Part 2 ◆ 231

8. DOW Write a program that determines the best and worst performing stock(s) in
2013 with regards to percentage growth. See Fig. 5.14.

Figure 5.13 Outcome of Exercise 7.

Symbols for the Thirty DOW Stocks

AXP BA CAT CSCO CVX DD DIS GE GS HD

IBM INTC JNJ JPM KO MCD MMM MRK MSFT NKE

PFE PG T TRV UNH UTX V VZ WMT XOM

Enter a symbol: CSCO

Company: Cisco Systems

Industry: Computer networking

Exchange: NASDAQ

Growth in 2013: 14.15%

Price/Earning ratio in 2013: 15.05

Figure 5.14 Outcome of Exercise 8.

Best performing stock: Boeing 81.12%

Worst performing stock: International Business Machines -2.08%

9. Dogs of the DOW A simple investment strategy known as “Dogs of the DOW” has
performed well in many years. An investor employing this strategy maintains a port-
folio of 10 DOW stocks. At the beginning of each year, the portfolio is readjusted so
that it contains equal amounts of money invested in the 10 stocks having the highest
dividend yields, that is, the highest ratios of dividend in 2013 to price at the end of the
year. Write a program to determine the 10 stocks that should be in the portfolio at the
beginning of 2014. See Fig. 5.15.

Figure 5.15 Outcome of Exercise 9.

Company Symbol Yield as of 12/31/2013

AT&T T 5.15%

Verizon VZ 4.19%

Intel INTC 3.47%

Merck MRK 3.46%

McDonald’s MCD 3.22%

Cisco Systems CSCO 3.21%

Chevron Corporation CVX 3.20%

Pfizer PFE 3.20%

Procter & Gamble PG 3.06%

Microsoft MSFT 2.86%

10. Small Dogs of the DOW An investment strategy known as “Small Dogs of the
DOW” has also performed well in many years. An investor employing this strategy
maintains a portfolio of the five lowest-priced DOW stocks. The portfolio is read-
justed at the beginning of each year. Write a program to determine the five stocks that
should be in the portfolio at the beginning of 2014. See Fig. 5.16.

 232 ◆ Chapter 5 Processing Data

In Exercises 11 through 14, use the file Justices.txt that contains data about the
Supreme Court justices, past and present as of January 2015. Each record of the file
contains six fields—first name, last name, appointing president, the state from which they
were appointed, year appointed, and the year the justice left the court. (For current justices,
the last field is set to 0.) The first five lines of the file are as follows:

Samuel,Alito,George W. Bush,NJ,2006,0

Henry,Baldwin,Andrew Jackson,PA,1830,1844

Philip,Barbour,Andrew Jackson,VA,1836,1841

Hugo,Black,Franklin Roosevelt,AL,1937,1971

Harry,Blackman,Richard Nixon,MN,1970,1994

11. Supreme Court Write a program that requests the name of a president as input
and then displays the justices appointed by that president. The justices should be
ordered by the length of time they served on the court in descending order. (Note:
For current justices, use 2015 - yrAppointed as their time of service. Otherwise, use
yrLeft - yrAppointed.) See Fig. 5.17.

Figure 5.16 Outcome of Exercise 10.

Company Symbol Price on 12/31/2013

Cisco Systems CSCO $22.43

Intel INTC $25.95

General Electric GE $28.03

Pfizer PFE $30.63

AT&T T $35.16

Figure 5.17 Possible outcome of Exercise 11.

Enter the name of a president: George W. Bush

Justices Appointed:

 John Roberts

 Samuel Alito

12. Supreme Court Write a program that displays the current justices ordered by the
year they joined the Supreme Court. See Fig. 5.18.

Figure 5.18 Outcome of Exercise 12.

Current Justices:

Antonin Scalia

Anthony Kennedy

Clarence Thomas

Ruth Ginsburg

Stephen Breyer

John Roberts

Samuel Alito

Sonia Sotomayor

Elena Kagen

Figure 5.19 Outcome of Exercise 13.

Justice Appointing President

William Brennan Dwight Eisenhower

Potter Stewart Dwight Eisenhower

Byron White John Kennedy

Thurgood Marshall Lyndon Johnson

Warren Burger Richard Nixon

Harry Blackman Richard Nixon

Lewis Powell Richard Nixon

William Rehnquist Richard Nixon

John Stevens Gerald Ford

 5.2 Processing Data, Part 2 ◆ 233

13. Supreme Court Write a program that displays the composition of the Supreme Court
at the beginning of 1980. The justices should be ordered by the year they were appointed,
and the names of the appointing presidents should be displayed. See Fig. 5.19.

14. Supreme Court Write a program that requests a state abbreviation as input and dis-
plays the justices appointed from that state. The justices should be ordered by their years
served. The output should also display the last name of the appointing president and the
length of time served. (Note: For current justices, use 2015 - yrAppointed as their time
of service. Otherwise, use yrLeft - yrAppointed.) Also, the program should inform the
user if no justices have been appointed from the requested state. See Fig. 5.20.

Figure 5.20 Possible outcome of Exercise 14.

Enter a state abbreviation: NH

Justice Appointing Pres Yrs Served

David Souter Bush 19

Levi Woodbury Polk 6

15. The 12 Days of Christmas Each year, PNC Advisors of Pittsburgh publishes a
Christmas price index. See Table 5.2. Write a program that requests an integer from
1 through 12 and then lists the gifts for that day along with that day’s cost. On the nth
day, the n gifts are 1 partridge in a pear tree, 2 turtle doves, . . . , n of the nth gift. The
program should also give the total cost up to and including that day. As an example,
Fig. 5.21 shows the output when the user enters 3. The contents of Table 5.2, along
with the day corresponding to each gift, are contained in the file Gifts.txt. The first
three lines of the file are as follows:

1,partridge in a pear tree,207.68

2,turtle doves,62.50

3,French hens,60.50

Table 5.2 Christmas price index for 2014.

Item Cost Item Cost

partridge in a pear tree 207.68 swan-a-swimming 1000.00
turtle dove 62.50 maid-a-milking 7.25
French hen 60.50 lady dancing 839.20
calling bird 149.99 lord-a-leaping 534.82
gold ring 150.00 piper piping 239.56
goose-a-laying 60.00 drummer drumming 237.83

Enter a number from 1 through 12: 3

The gifts for day 3 are

1 partridge in a pear tree

2 turtle doves

3 French hens

Cost for day 3: $514.18

Total cost for the first 3 days: $1,054.54

Figure 5.21 Possible output of Exercise 15.

 234 ◆ Chapter 5 Processing Data

16. Computer Pioneers The file Pioneers.txt contains some computer pioneers and
their accomplishments. The first three records in the file are

Charles Babbage,is called the father of the computer.

Augusta Ada Byron,was the first computer programmer.

Alan Turing,was a prominent computer science theorist.

Write a program that displays the names. When a name is entered as input, the
 person’s accomplishment should be displayed. See Fig. 5.22.

Figure 5.22 Possible outcome of Exercise 16.

Charles Babbage Augusta Ada Byron Alan Turing John V. Atanasoff

Grace M. Hopper John Mauchley J. Presper Eckert John von Neumann

John Backus Reynold B. Johnson Harlan B. Mills Donald E. Knuth

Ted Hoff Stan Mazer Robert Noyce Federico Faggin

Douglas Engelbart Bill Gates Paul Allen Stephen Wozniak

Stephen Jobs Dennis Ritchie Ken Thompson Alan Kay

Tim Berners–Lee Charles Simonyi Bjarne Stroustrup Richard M. Stallman

Marc Andreessen James Gosling Linus Torvalds Guido van Rossum

Enter the name of a computer pioneer: Augusta Ada Byron

Augusta Ada Byron was the first computer programmer.

In Exercises 17 and 18, use the file Colleges.txt that contains data (name, state, and year
founded) about colleges founded before 1800. The first four lines of the file are

Harvard University,MA,1636

William and Mary College,VA,1693

Yale University,CT,1701

University of Pennsylvania,PA,1740

17. Earliest Colleges Write a program that requests a state abbreviation as input and
then displays the colleges alphabetically ordered (along with their year founded) in that
state. If there are no early colleges in the state, so inform the user. See Fig. 5.23.

Figure 5.23 Possible outcome of
Exercise 17.

Enter a state abbreviation: PA

Dickinson College 1773

Moravian College 1742

University of Pennsylvania 1740

University of Pittsburgh 1787

Washington & Jefferson 1781

Figure 5.24 Possible outcome of
Exercise 18.

Enter a state abbreviation: PA

Last college in PA founded before 1800:

University of Pittsburgh

18. Earliest Colleges Write a program that requests a state abbreviation as input and
then displays the last college in that state founded before 1800. See Fig. 5.24.

In Exercises 19 and 20, use the file StatesANC.txt that contains the name, abbreviation,
nickname, and capital of each state in the United States. The states are listed in alpha-
betical order. The first three lines of the file are

Alabama,AL,Cotton State,Montgomery

Alaska,AK,The Last Frontier,Juneau

Arizona,AZ,Grand Canyon State,Phoenix

 5.2 Processing Data, Part 2 ◆ 235

19. State Capitals Write a program that displays the states (and their capitals) for which
the name of the state and its capital begin with the same letter. See Fig. 5.25.

20. State Data Write a program that requests the name of a state as input and displays
the abbreviation, nickname, and capital of the state. See Fig. 5.26.

In Exercises 21 and 22, use the file Oscars.txt that contains the names and genres of
each film that won an Oscar for best picture of 1928 through 2013. The films are listed
in the order they received the award. The first three lines of the file are

Wings,silent

The Broadway Melody,musical

All Quiet on the Western Front,war

21. Academy Awards Write a program that displays the different film genres, requests a
genre as input, and then displays the Oscar-winning films of that genre. See Fig. 5.27.

Figure 5.25 Outcome of Exercise 19.

Dover, Delaware

Honolulu, Hawaii

Indianapolis, Indiana

Oklahoma City, Oklahoma

Figure 5.26 Possible outcome of Exercise 20.

Enter the name of a state: Ohio

Abbreviation: OH

Nickname: Buckeye State

Capital: Columbus

Figure 5.27 Possible outcome of Exercise 21.

The different film genres are as follows:

adventure bioptic comedy crime drama

epic fantasy musical romance silent

sports thriller war western

Enter a genre: silent

The Academy Award winners are

 Wings

 The Artist

Figure 5.28 Possible outcome of Exercise 22.

Enter year from 1928–2013: 2012

Best Film: Argo

Genre: drama

22. Academy Awards Write a program that requests a year from 1928 through 2013
and then displays the name and genre of that year’s best picture winner. See Fig. 5.28.

Exercises 23 through 26 are related and use the data in Table 5.3. The file created in
Exercise 23 should be used in Exercises 24 through 26.

23. Cowboys Write a program to create the file Cowboy.txt containing the information
in Table 5.3 on the next page.

 236 ◆ Chapter 5 Processing Data

24. Cowboys Suppose the price of saddles is reduced by 20%. Use the file Cowboy.txt
to create a file, Cowboy2.txt, containing the new price list.

25. Cowboys Suppose an order is placed for 3 Colt Peacemakers, 2 Holsters, 10 pairs of Levi
Strauss jeans, 1 Saddle, and 4 Stetsons. Write a program to perform the following tasks:

(a) Create the file Order.txt to hold the numbers 3, 2, 10, 1, and 4 on five separate lines.
(b) Use the files Cowboy.txt and Order.txt to display a sales receipt giving the quan-

tity, name, and cost for each item ordered. See Fig. 5.29.
(c) Compute the total cost of the items and display it at the end of the sales receipt.

Table 5.3 Prices paid by cowboys in mid-1800s.

Item Price ($)

Colt Peacemaker 12.20
Holster 2.00
Levi Strauss jeans 1.35
Saddle 40.00
Stetson 10.00

Figure 5.30 Spreadsheet for Exercise 27. Figure 5.31 Possible outcome of Exercise 27.

Enter a date in 2015: 11/3/2015

11/3/2015 falls on a Tuesday

Figure 5.29 Outcome of Exercise 26.

3 Colt Peacemaker: $36.60

2 Holster: $4.00

10 Levi Strauss jeans: $13.50

1 Saddle: $40.00

4 Stetson: $40.00

TOTAL: $134.10

26. Cowboys Write a program to add the line Winchester Rifle,20.50 to the end of
the file Cowboy.txt.

27. (a) Calendar Use Excel to create a spreadsheet of 365 rows and 2 columns, where the
first column of each row contains a date in 2015 and the adjacent second column
contains the corresponding day of the week. Figure 5.33 shows the first two rows of
the spreadsheet. The remaining entries of the spreadsheet can be obtained by select-
ing the cells in Fig. 5.30 and dragging them down until 365 rows have been created.

(b) Save the spreadsheet as a CSV file named Calendar2015.csv. Note: Select “CSV
(Comma delimited)(*.csv)” in the “Save as type” dropdown box.

(c) Change the file’s name to Calendar2015.txt.
(d) Use the text file in a program that requests a date in 2015 as input and then gives

its day of the week. See Fig. 5.31.

Solutions to Practice Problems 5.2

1. The program displays the names of the six continents that contain countries. The first two lines of output
will be as follows:

Africa

Asia

 5.3 Dictionaries ◆ 237

2. The program displays the name and area of every member country in the United Nations. The first two
lines of output will be as follows:

Afghanistan 251772

Albania 11100

5.3 Dictionaries

Consider the following function that translates certain English words to Spanish.

def translate(color):

 if color == "red":

 return "rojo"

 elif color == "blue":

 return "aloz"

 elif color == "green":

 return "verdi"

 elif color == "white":

 return "blanco"

This function is a mini English-Spanish dictionary. A function of this type is called a
mapping. It maps English words to Spanish words. In mapping terminology, the words red,
blue, green, and white are called keys, and the words rojo, aloz, verdi, and blanco are called
values. The function, which could be extended to include thousands of words, associates a
value with each key. Python has a much more efficient and flexible mapping device, called a
dictionary. The dictionary that performs the same mapping as the function above is defined
as follows:

translate = {"red":"rojo", "blue":"aloz", "green":"verdi", "white":"blanco"}

Then, the value of translate["red"] is "rojo", the value of translate["blue"] is
"aloz", and so on. The dictionary is said to contain four items.

 ■ Dictionaries
In general, a Python dictionary is defined as a collection of comma-separated pairs of the
form “key:value” enclosed in curly braces. The keys must be immutable objects (such as
strings, numbers, or tuples), but the values can have any data types. The keys are unique,
but the values needn’t be unique.

The value associated with key1 is given by the expression dictionaryName[key1]. Some
examples of short programs using dictionaries are as follows:

bob = {"firstName":"Robert", "lastName":"Smith", "age":19}

print(bob["firstName"], bob["lastName"], "is", bob["age"], "years old.")

[Run]

Robert Smith is 19 years old.

phoneNum = {"Sam":2345678, "Ted":5436666, "Joe":4443456}

name = input("Enter a person's name: ")

print(name + "'s phone number is", phoneNum[name])

[Run]

VideoNote

Dictionaries

 238 ◆ Chapter 5 Processing Data

Enter a person's name: Ted

Ted's phone number is 5436666

band = {6:"Six", "instrument":"Trombone", 7:"seventy"}

print(band[7].capitalize() + '-' + band[6], band["instrument"] + "s")

[Run]

Seventy-Six Trombones

Table 5.4 shows functions and methods that can be applied to a dictionary.

Table 5.4 Dictionary operations.

Operation Description

len(d) number of items (that is, key:value pairs) in the dictionary
x in d has value True if x is a key of the dictionary
x:y in d has value True if x:y is an item of the dictionary. Otherwise, has value

False
x:y not in d has value True if x:y is not an item of the dictionary. Otherwise, has value

False
d[key1] = value1 if key1 is already a key in the dictionary, changes the value associated with

key1 to value1; otherwise, adds the item key1:value1 to the dictionary
d[key1] returns the value associated with key1. Raises an error if key1 is not a

key of d.
d.get(key1, default) if key1 is not a key of the dictionary, returns the default value. Otherwise,

returns the value associated with key1
list(d.keys()) returns a list of the keys in the dictionary
list(d.values()) returns a list of the values in the dictionary
list(d.items()) returns a list of two-tuples of the form (key, value) where d(key) = value
list(d) returns a list of the keys in the dictionary
tuple(d) returns a tuple of the keys in the dictionary
set(d) returns a set of the keys in the dictionary
c = {} creates an empty dictionary
c = dict(d) creates a copy of the dictionary d
del d[key1] removes the item having key1 as key; raises an exception if key1 is not

found
d.clear() removes all items (that is, key:value pairs) from the dictionary
for k in d: iterates over all the keys in the dictionary
d.update(c) merges all of dictionary c’s entries into dictionary d. If two items have

the same key, the value from c replaces the value from d
max(d) largest value of d.keys(), provided all keys have the same data type
min(d) smallest value of d.keys(), provided all keys have the same data type

 Example 1 Dictionary Functions and Methods The following program illustrates
many of the functions and methods for dictionaries. Note: When dictionaries are displayed
by print functions, single quotation marks are used for strings and spaces are inserted after

 5.3 Dictionaries ◆ 239

 ■ The dict Function
A list of two-item lists or two-item tuples can be converted to a dictionary with the dict
function. For instance if

list1 = [["one", 1], ["two", 2], ["three", 3]]

or

list1 = [("one", 1), ("two", 2), ("three", 3)]

then the value of

dict(list1)

will be the dictionary

{"one":1, "two":2, "three":3}

the colons. Unlike lists, dictionaries are not ordered structures. Therefore, the order in
which the pairs are displayed by print functions will not usually be the same as the order
used when the dictionary was created.

def main():

 ## Illustrate dictionary functions and methods.

 d = {} # an empty dictionary

 d["spam"] = 3

 print(d)

 d.update({"spam":1, "eggs":2})

 print(d)

 print("d has", len(d), "items")

 print("eggs" in d)

 print("keys:", list(d.keys()))

 print("values:", list(d.values()))

 for key in d:

 print(key, d[key])

 print(d.get("toast", "not in dictionary"))

 del(d["eggs"])

 print(d)

main()

[Run]

{'spam': 3}

{'eggs': 2, 'spam': 1}

d has 2 items

True

keys: ['eggs', 'spam']

values: [2, 1]

eggs 2

spam 1

not in dictionary

{'spam': 1}

 240 ◆ Chapter 5 Processing Data

 ■ Creating a Dictionary from a Text File
When a program incorporates a large dictionary, the dictionary is usually created from a
file, such as a text file. Each line of the file Textese.txt contains a word and its translation
into textese. The first five lines of the file are

anyone,ne1

are,r

ate,8

band,b&

be,b

 Example 2 Textese The following program translates simple sentences into textese.
The function createDictionary first places the contents of the text file into a list of two-item
lists and then uses the dict function to convert the list into a dictionary. Whenever a word
in the original sentence is not a key in the dictionary, the get method places the word itself
into the translated sentence.

def main():

 ## Translate an English sentence into textese.

 texteseDict = createDictionary("Textese.txt")

 print("Enter a simple sentence in lowercase letters without")

 sentence = input("any punctuation: ")

 print()

 translate(sentence, texteseDict)

def createDictionary(fileName):

 infile = open(fileName, 'r')

 textList = [line.rstrip() for line in infile]

 infile.close()

 return dict([x.split(',') for x in textList])

def translate(sentence, texteseDict):

 words = sentence.split()

 for word in words:

 print(texteseDict.get(word, word) + " ", end="")

main()

[Run]

Enter a simple sentence in lowercase letters without

any punctuation: enjoy the excellent band tonight

njoy the xlnt b& 2nite

 Example 3 Admission Fee A program with a long if-elif statement can be sim-
plified with the use of a dictionary. Consider the following program that calculates an
admission fee.

def main():

 ## Determine an admission fee based on age group.

 print("Enter the person's age group ", end="")

 5.3 Dictionaries ◆ 241

 ageGroup = input("(child, minor, adult, or senior): ")

 print("The admission fee is", determineAdmissionFee(ageGroup), "dollars.")

def determineAdmissionFee(ageGroup):

 if ageGroup == "child": # age < 6

 return 0 # free

 elif ageGroup == "minor": # age 6 to 17

 return 5 # $5

 elif ageGroup == "adult": # age 18 to 64

 return 10

 elif ageGroup == "senior": # age >= 65

 return 8

main()

[Run]

Enter the person's age group (child, minor, adult, or senior): adult

The admission fee is 10 dollars.

The rewrite of the determineAdmissionFee function below, replaces the if-elif statement
with a dictionary.

def determineAdmissionFee(ageGroup):

 dict = {"child":0, "minor":5, "adult":10, "senior":8}

 return dict[ageGroup]

 ■ Using a Dictionary as a Frequency Table

 Example 4 Counting Words The file Gettysburg.txt contains the entire Gettysburg
Address as a single line. The following program counts the number of words in the Get-
tysburg Address and displays the most frequently used words.

def main():

 ## Analyze word frequencies in the Gettysburg Address.

 listOfWords = formListOfWords("Gettysburg.txt")

 freq = createFrequencyDictionary(listOfWords)

 displayWordCount(listOfWords, freq)

 displayMostCommonWords(freq)

def formListOfWords(fileName):

 infile = open(fileName)

 originalLine = infile.readline().lower()

 # Remove punctuation marks from the line.

 line = ""

 for ch in originalLine:

 if ('a' <= ch <= 'z') or (ch == " "):

 line += ch

 # Place the individual words into a list.

 listOfWords = line.split()

 return listOfWords

def createFrequencyDictionary(listOfWords):

 ## Create dictionary with each item having the form word:word frequency.

 freq = {} # an empty dictionary

 242 ◆ Chapter 5 Processing Data

 ■ Storing Dictionaries in Binary Files
Text files store data as a sequence of characters that can be read with a text editor such as
Word or Notepad. Another file format, called a binary format, stores data as a sequence
of bytes that can only be accessed by special readers. Python has functions that store dic-
tionaries as binary files and retrieve dictionaries from binary files. These functions must be
imported from a module named pickle. Although text files are adequate for simple diction-
aries, binary files can handle the most complicated dictionaries with ease.

The following lines of code save a dictionary as a binary file, where the mode 'wb' states
that the file is to be opened for writing as a binary file.

import pickle

outfile = open(fileName, 'wb')

pickle.dump(dictionaryName, outfile)

outfile.close()

The following lines of code create a dictionary from a binary file, where the mode 'rb'
states that the binary file is to be opened for reading.

 for word in listOfWords:

 freq[word] = 0

 for word in listOfWords:

 freq[word] = freq[word] + 1

 return freq

def displayWordCount(listOfWords, freq):

 print("The Gettysburg Address contains", len(listOfWords), "words.")

 print("The Gettysburg Address contains", len(freq), "different words.")

 print()

def displayMostCommonWords(freq):

 print("The most common words and their frequencies are:")

 listOfMostCommonWords = [] # an empty list

 for word in freq.keys():

 if freq[word] >= 6:

 listOfMostCommonWords.append((word, freq[word]))

 listOfMostCommonWords.sort(key=lambda x: x[1], reverse=True)

 for item in listOfMostCommonWords:

 print(" ", item[0] + ':', item[1])

main()

[Run]

The Gettysburg Address contains 268 words.

The Gettysburg Address contains 139 different words.

The most common words and their frequencies are:

 that: 13

 the: 11

 we: 10

 to: 8

 here: 8

 a: 7

 and: 6

 5.3 Dictionaries ◆ 243

infile = open(fileName, 'rb')

dictionaryName = pickle.load(infile)

infile.close()

Note: In this book, we will use the extension “dat” for binary files that store dictionaries.
If the dictionary texteseDict from Example 2 had been saved as the binary file

 TexteseDict.dat and the pickle module had been imported, then the body of the function
createDictionary could have been written

infile = open(fileName, 'rb')

dictionaryName = pickle.load(infile)

infile.close()

return dictionaryName

 ■ Dictionary-Valued Dictionaries
A dictionary’s values can be any type of object, including a dictionary. Consider the CSV
file UN.txt that was discussed in Section 5.2. Each line of the file gives the name, continent,
population (in millions), and area (in square miles) of a member of the United Nations.
Some lines of the file are

Canada,North America,34.8,3855000

France,Europe,66.3,211209

New Zealand,Australia/Oceania,4.4,103738

Nigeria,Africa,177.2,356669

Pakistan,Asia,196.2,310403

Peru,South America,30.1,496226

This data could be efficiently accessed if it was placed into the following dictionary:

nations = {"Canada":{"cont":"North America", "popl":34.8, "area":3855000},

 "France":{"cont":"Europe","popl":66.3},"area":211209} ...}

Then, the value of nations["Canada"] would be the dictionary

{"cont":"North America", "popl":34.8, "area":3855000}

The value of nations["Canada"]["cont"] would be North America, the value of
nations["Canada"]["popl"] would be 34.8, and the value of nations["Canada"]["area]
would be 3855000.

The complete dictionary nations containing data for the 193 member nations of the
U.N. has been created and saved as the binary file UNdict.dat. This file will be used in the
next two examples.

 Example 5 United Nations The following program displays the data for a requested
nation.

import pickle

def main():

 ## Display the data for an individual country.

 nations = getDictionary("UNdict.dat")

 nation = inputNameOfNation(nations)

 displayData(nations, nation)

 244 ◆ Chapter 5 Processing Data

 ■ Extracting Ordered Data from a Dictionary
A dictionary is an unordered structure and therefore does not have a sort method. However,
the items of the dictionary can be placed into a list as two-tuples in a customized order with
a statement of the form

sorted(dict1.items(), key=f, reverse=BooleanValue):

def getDictionary(fileName):

 infile = open(fileName, 'rb')

 nations = pickle.load(infile)

 infile.close()

 return nations

def inputNameOfNation(nations):

 nation = input("Enter the name of a UN member nation: ")

 while nation not in nations:

 print("Not a member of the UN. Try again.")

 nation = input("Enter the name of a UN member nation: ")

 return nation

def displayData(nations, nation):

 print("Continent:", nations[nation]["cont"])

 print("Population:", nations[nation]["popl"], "million people")

 print("Area:", nations[nation]["area"], "square miles")

main()

[Run]

Enter the name of a UN member nation: Canada

Continent: North America

Population: 34.8 million people

Area: 3855000 square miles

 Example 6 United Nations The following program displays the U.N. member coun-
tries (and their populations) from a specified continent. The countries will be ordered by
their populations.

import pickle

def main():

 ## Display countries (and their population) from a specified continent.

 nations = getDictionary("UNdict.dat")

 continent = input("Enter the name of a continent other than Antarctica: ")

 continentDict = constructContinentNations(nations, continent)

 displaySortedResults(continentDict)

def getDictionary(fileName):

 infile = open(fileName, 'rb')

 nations = pickle.load(infile)

 infile.close()

 return nations

def constructContinentNations(nations, continent):

 ## Reduce the full 193 item dictionary to a dictionary consisting

 5.3 Dictionaries ◆ 245

 ■ Using a Dictionary with Tuples as Keys
The file USpresStatesDict.dat holds a dictionary giving the names of the presidents
and their home states. Each key is a tuple of the form (last name, first name(s)). Two of
the items in the dictionary are ('Kennedy', 'John'):'Massachusetts' and ('Reagan',
'Ronald'):'California'.

 ## solely of the countries in the specified continent.

 continentDict = {} # an empty dictionary

 for nation in nations:

 if nations[nation]["cont"] == continent:

 continentDict[nation] = nations[nation]

 return continentDict

def displaySortedResults(dictionaryName):

 ## Display countries in descending order by population.

 continentList = sorted(dictionaryName.items(),

 key=lambda k: k[1]["popl"], reverse=True)

 for k in continentList:

 print(" {0:s}: {1:,.2f}".format(k[0], k[1]["popl"]))

main()

[Run. The first six lines displayed are as follows:]

Enter the name of a continent other than Antarctica: Europe

 Russian Federation: 142.50

 Germany: 81.00

 United Kingdom: 66.70

 France: 66.30

 Italy: 61.70

 Example 7 U.S. Presidents The following program requests the name of a state and
then displays the presidents from that state ordered alphabetically by their last names. The
use of tuples to store the names simplifies alphabetizing the names. Although the items of
a dictionary cannot be ordered, they can be displayed in a specified order with statements
such as print(sorted(dictName)).

import pickle

def main():

 presDict = createDictFromBinaryFile("USpresStatesDict.dat")

 state = getState(presDict)

 displayOutput(state, presDict)

def createDictFromBinaryFile(fileName):

 infile = open(fileName, 'rb')

 dictionaryName = pickle.load(infile)

 infile.close()

 return dictionaryName

def getState(dictName):

 state = input("Enter the name of a state: ")

 246 ◆ Chapter 5 Processing Data

 ■ Dictionary Comprehension
Dictionaries can be created with dictionary comprehension. For instance,

{x: x * x for x in range(4)}

creates the dictionary {0:0, 1:1, 2:4, 3:9}.
Dictionary comprehension can be used to extract a subset of a dictionary. Consider

the dictionary presDict from Example 7. The following lines of code create the subset of
presDict consisting of the presidents from New England states.

NE = ["Maine", "Connecticut", "New Hampshire",

 "Massachusetts", "Vermont", "Rhode Island"]

subSet = {key:presDict[key] for key in presDict if presDict[key] in NE}

The createDictionary function from Example 2 can be rewritten with dictionary com-
prehension as follows:

def createDictionary(fileName):

 infile = open(fileName, 'r')

 return {line.split(',')[0]:line.split(',')[1].rstrip()

 for line in infile}

 ■ Comments
1. Dictionary keys must be immutable objects. Therefore, lists and sets cannot serve as

keys. Also, tuples whose items are lists or sets cannot serve as keys.

2. Strings, lists, tuples, and sets can also be saved as binary files using the pickle module.

 if state in dictName.values():

 return state

 else:

 return "There are no presidents from " + state + '.'

def displayOutput(state, dictName):

 if state.startswith("There"):

 print(state)

 else:

 print("Presidents from", state + ':')

 for pres in sorted(dictName):

 if dictName[pres] == state:

 print(" " + pres[1] + " " + pres[0])

main()

[Run]

Enter the name of a state: Virginia

Presidents from Virginia:

 Thomas Jefferson

 James Madison

 James Monroe

 John Tyler

 George Washington

 5.3 Dictionaries ◆ 247

Practice Problems 5.3

1. Modify the last two lines of the function displaySortedResults in Example 6 so that only
the first five most populous countries will be displayed.

2. Which of the following statements are true?

(a) Strings, numbers, tuples, and lists can be keys in a dictionary.
(b) Strings, numbers, tuples, and lists can be values in a dictionary.
(c) Two different keys can map to the same value.
(d) Two different values can have the same key.

ExERCISES 5.3

In Exercises 1 through 20 , determine the output of the print function where the diction-
ary WF gives the heights of five waterfalls in feet.
 WF = {"Angel Falls" : 3211.7, "Tugela Falls" : 3110.2, "Three Sisters

Fall" : 2998.5,"Olo'supena Falls": 2953.3, "Yumbilla Falls": 2940}

1. print(WF["Tugela Falls"]) 2. print(len(WF))

3. print(list(WF.keys())) 4. print(list(WF.values()))
5. print(list(WF.items())) 6. print("Three Sisters Fall" in WF)
7. print(WF .get("Vinnufossen", "ab-

sent"))

8. print(WF .get("Olo'supena Falls",
"absent"))

9. print(max(WF)) 10. print(min(WF))
11. WF["Tugela Falls"] += .4

print(round(WF["Tugela. Falls"]))

12. del WF["Tugela Falls"]
print(len(WF))

13. WF.update({"Tugela Falls":3110})
print(WF["Tugela Falls"])

14. WF.clear()
print(WF)

15. for x in WF:
 print(x + " ", end="")

16. for x in sorted(WF):
 print(x + " ", end="")

17. total = 0
for x in WF.values():

 total += x

print("{0:.1f}".format(total))

18. total = 0
for x in WF:

 total += WF[x]

print("{0:.1f}".format(total))

19. Waterfall = WF
del Waterfall["Angel Falls"]

print(len(WF))

20. Waterfall = dict (WF)
del Waterfall["Angel Falls"]

print(len(WF))

In Exercises 21 through 44, determine the output of the print function where the dic-
tionary studentData contains the names of students and their ages.

 studentData = {'std1': 'John', 'std1_age': 20, 'std2': 'Harry', 'std2_

age': 21}

21. print(len(studentData)) 22. print(studentData['std1_age'])
23. print("John" in studentData) 24. print(list(studentData.items())[3])

25. print(min(studentData)) 26. print('std1' in studentData)
27. print(list(studentData)[:-1]) 28. print('std1_age' not in studentData)
29. print(studentData.

setdefault('std1'))

30. print(list(studentData.
values()))

 248 ◆ Chapter 5 Processing Data

31. print(studentData.get("John","None"))

32. print(studentData.get("A", "Not Found"))

33. del studentData["std2"]
print(studentData)

34. studentData["std2"] = 'Smith'
print(studentData)

35. studentData.clear()
print(len(studentData))

36. studentData["std2_age"] += 4
print(studentData)

37. for x in studentData:
 print(x)

38. for x in studentData.values():
 print(x)

39. for x in studentData.items():
 print(x[1])

40. for x in sorted(studentData):
 print(x)

41. dupData = dict(studentData)
dupData["std1_age"] *= 2

print(studentData["std1_age"])

42. dupData = (studentData)
dupData["std1_age"] *= 2

print(studentData["std1_age"])

43. studentData.update({"std1_age":30, "std2_age":45})
print(studentData)

44. newData = {}
newData.update(studentData)

print(newData["std2"])

In Exercises 45 and 46, rewrite the code using a dictionary instead of an if statement.

45. pres = input("Who was the youngest U.S. president? ")
pres = pres.upper()

if (pres == "THEODORE ROOSEVELT") or (pres == "TEDDY ROOSEVELT"):

 print("Correct. He became president at age 42 ")

 print("when President McKinley was assassinated.")

elif (pres=="JFK") or (pres=="JOHN KENNEDY") or (pres=="JOHN F. KENNEDY"):

 print("Incorrect. He became president at age 43. However,")

 print("he was the youngest person elected president.")

else:

 print("Nope")

46. def determineRank(years):
 if years == 1:

 return "Freshman"

 elif years == 2:

 return "Sophmore"

 elif years == 3:

 return "Junior"

 else:

 return "Senior"

In Exercises 47 through 50, use the dictionary topHitters below.

topHitters = {"Gehrig":{"atBats":8061, "hits":2721},

 "Ruth":{"atBats":8399, "hits":2873},

 "Williams":{"atBats":7706, "hits":2654}}

47. Baseball Write lines of code to produce Fig. 5.32 that shows the batting averages of
the three baseball players.

 5.3 Dictionaries ◆ 249

48. Baseball What output is displayed by the code in Fig. 5.33.

49. Baseball Write lines of code to produce Fig. 5.34 that shows the average number of
hits by the three players.

Figure 5.32 Outcome of Exercise 47.

Ruth 0.342

Williams 0.344

Gehrig 0.338

Figure 5.33 Code for Exercise 48.

del topHitters[max(topHitters)]

del topHitters[min(topHitters)]

print(topHitters)

The average number of hits by

the baseball players was 2749.3.

Figure 5.34 Outcome of Exercise 49.

The most hits by one of the

baseball players was 2873.

Figure 5.35 Outcome of Exercise 50.

50. Baseball Write lines of code to produce Fig. 5.35 that shows the most hits by any of
the three players. The code should use the max function.

In Exercises 51 through 54, use the file JusticesDict.dat that stores a dictionary contain-
ing data about the Supreme Court justices, past and present. Each item of the dictionary
has the form “name of justice:data dictionary”. The data dictionary for a justice contains
their appointing president, the state from which they were appointed, the year appointed, and
the year they left the court. (For current justices, the year they left the court is set to 0.)
Three items from the dictionary are as follows:

'Earl Warren':{'pres':'Dwight Eisenhower','yrLeft':1969,'yrAppt':1953,'state':'CA'}

'Sonia Sotomayor':{'pres':'Barack Obama','yrLeft':0,'yrAppt':2009,'state':'NY'}

'Salmon Chase':{'yrAppt':1864,'pres':'Abraham Lincoln','state':'OH','yrLeft':1873}

51. Supreme Court Write a program that requests the name of a president as input and then
displays the names and years of the justices appointed by that president. See Fig. 5.36.

Figure 5.36 Possible outcome of Exercise 51.

Enter a president: John Kennedy

 Arthur Goldberg 1962

 Byron White 1962

Figure 5.37 Possible outcome of Exercise 52.

Enter a state abbreviation: NH

 David Souter 1990

 Levi Woodbury 1845

52. Supreme Court Write a program that requests a state abbreviation as input and then
displays the names and years of the justices appointed from that state. See Fig. 5.37.

53. Supreme Court Write a program that requests the name of a justice and displays the
justice’s data. See Fig. 5.38.

Figure 5.38 Possible outcome of
Exercise 53.

Enter name of a justice: John Roberts

Appointed by George W. Bush

State: MD

Year of appointment: 2005

Currently serving on Supreme Court.

31 states have produced justices.

 AL: 3

 AZ: 2

 CA: 5

 CO: 1

 CT: 3

Figure 5.39 First part of outcome of
Exercise 54.

 250 ◆ Chapter 5 Processing Data

54. Supreme Court Write a program that displays the name of each state (alphabeti-
cally) that has produced a Supreme Court justice and the number of justices pro-
duced. Fig. 5.39 shows the first six lines displayed.

55. Letter Frequency Write a program that requests a sentence as input and then dis-
plays the letters in the sentence along with their frequencies. The letters should appear
ordered by their frequencies. Fig. 5.40 shows the first five lines displayed.

Figure 5.40 Possible outcome of Exercise 55.

Enter a sentence: Always look on the bright side of life.

 O: 4

 L: 3

 I: 3

 E: 3

56. Rose Bowl The file Rosebowl.txt contains the names of the Rose Bowl winners (up
through 2014) in the order the games were played. Write a program that displays the
names of the teams that have won four or more Rose Bowls and the number of wins
for each team. The teams should appear ordered by the number of wins. See Fig. 5.41.

Figure 5.41 Outcome of Exercise 56.

Teams with four or more

Rose Bowl wins as of 2014:

 USC: 24

 Washington: 8

 Michigan: 8

 Ohio State: 7

 Stanford: 6

 UCLA: 5

 Alabama: 4

 Michigan State: 4

Figure 5.42 Outcome of Exercise 57.

States that produced three or

more presidents as of 2016:

 Ohio: 6

 New York: 6

 Virginia: 5

 Massachusetts: 4

 Tennessee: 3

 California: 3

 Texas: 3

 Illinois: 3

57. U.S. Presidents Use the file USpresStatesDict.dat to obtain an ordered list of the
states that were home to three or more presidents. Each state should be followed by
the number of presidents from that state and the states should be ordered by the num-
ber of presidents they produced. See Fig. 5.42.

58. U.S. Presidents Use the file USpresStatesDict.dat to obtain a list of the presidents
having a specified first name. See Fig. 5.43. If no president has the specified first name,
that fact should be displayed.

Figure 5.43 Possible outcome of Exercise 58.

Enter a first name: John

 John Adams

 John Q. Adams

 John Kennedy

 John Tyler

 Key Terms and Concepts ◆ 251

59. Calendar Redo Exercise 27 of Section 5.2 by placing the contents of the text file
into a dictionary and using the dictionary to find the requested day of the week.

In Exercises 60 and 61, use the file LargeCitiesDict.dat that stores a dictionary giving
the large cities (population > 250,000) for each state. Each item of the dictionary has
the form “name of state:list of large cities in that state”. The first three items in the dic-
tionary are as follows:

"Alabama":[],"Alaska":["Anchorage"],"Arizona":["Phoenix", "Tucson", "Mesa"]

60. Large Cities Write a program that requests the name of a state as input and then
displays the large cities in that state. See Figs. 5.44 and 5.45.

Figure 5.44 Possible outcome of Exercise 60.

Enter the name of a state: Arizona

Large cities: Phoenix Tucson Mesa

Figure 5.45 Possible outcome of Exercise 60.

Enter the name of a state: Alabama

There are no large cities in Alabama.

61. Large Cities Write a program that requests an integer from 0 through 13 and then
displays the names of the states (in alphabetical order) having exactly that many large
cities. See Fig. 5.46.

Figure 5.46 Possible outcome of Exercise 61.

Enter an integer from 0 to 13: 3

The following states have exactly 3 large cities:

Arizona Colorado Delaware Florida New York North Carolina

Solutions to Practice Problems 5.3

1. Change the last two lines of the function to the following:

for i in range(5):

 print(" " + continentList[i][0] + ':', continentList[i][1]["popl"])

2. (b) and (c) are true.

ChAPTER 5 KEy TERMS
and ConCepts ExAMPLES

5.1 Processing Data, Part 1

The functions open(fileName,'r'),
open(fileName,'w'), and
open(fileName,'a') create file objects
connected to the named text file. These
objects are used for reading content from the
file, writing content to the file, and adding
content to the file, respectively. After a file is
opened for writing or appending, a statement
of the form write(str1) writes str1 to the

f = open("Python.txt", 'w')

f.write("spam\n")

f.close()

f = open("Python.txt", 'a')

f.write("eggs\n")

f.close()

f = open("Python.txt", 'r')

L = [line.rstrip() for line in f]

print(L)

 252 ◆ Chapter 5 Processing Data

ChAPTER 5 KEy TERMS
and ConCepts ExAMPLES

file via a buffer. The close method makes sure
that all data still in the buffer is written to the
file and then terminates the connection.

Some other methods for file objects are
writelines (writes all the items in a list of
strings into the file), read (returns the entire
contents of the file as a single string), and
readline (reads the next line of the file).

After the os module has been imported, a
closed file can be renamed with a statement
of the form os.rename(oldFileName,
newFileName), deleted with a statement of
the form os.remove(fileName), and have its
existence verified with a Boolean function of
the form os.path.exists(fileName).

A set is an unordered collection of
distinct objects. It can be created by listing
its elements inside curly braces or by
applying the set function to a list or tuple.
Sets support the mathematical union,
intersection, and difference methods. Sets
support many list operations, but do not
support the list operations that rely on
indices or order.

Sets can be created with set comprehension.
Sets can be placed into an ordered list with
the sorted function.

[Run]

['spam', 'eggs']

L = ["a\n", "b\n"]

outfile = open("ab.txt", 'w')

outfile.writelines(L)

outfile.close()

infile = open("ab.txt", 'r')

print(infile.read(), end="")

f = open("ab.txt", 'r')

print(f.readline().rstrip(),end="")

print(f.readline().rstrip(),end="")

[Run]

a

b

ab

import os

Assume "ab.txt" in current folder

os.rename("ab.txt", "alpha.txt")

print(os.path.exists("ab.txt"))

print(os.path.exists("alpha.txt"))

os.remove("alpha.txt")

print(os.path.exists("alpha.txt"))

[Run]

False

True

False

s1 = {1, "one"}

s2 = set([2, "one"])

print(s1.union(s2))

print(s1.intersection(s2))

print(s1.difference(s2))

[Run]

{1, 'one', 2}

{'one'}

{1}

s = {x * x for x in range(-2, 3)}

print(s)

L = sorted(s, reverse=True)

print(L)

[Run]

{0, 1, 4}

[4, 1, 0]

 Key Terms and Concepts ◆ 253

ChAPTER 5 KEy TERMS
and ConCepts ExAMPLES

5.2 Processing Data, Part 2

CSV files store tabular data with each line
containing the same number of fields, where
the fields are separated by commas. The text
file InaugAge.txt gives the names of the U.S.
presidents and their ages at inauguration.
The first five lines of the file are shown in
the right column.

The split method is needed to extract
information from a CSV file.

The data from a CSV file can be placed into
an Excel spreadsheet and analyzed with
Excel; and data from an Excel spreadsheet
can be transferred to a CSV file and analyzed
with Python.

The contents of a CSV file can be placed
into a list of lists (or tuples), and individual
pieces of data accessed with doubly-indexed
variables.

George Washington,57

John Adams,61

Thomas Jefferson,57

James Madison,57

James Monroe,58

f = open("InaugAge.txt", 'r')

L = f.readline().split(',')

s = "{0} inaugurated at {1}"

print(s.format(L[0], L[1]))

[Run]

George Washington inaugurated at 57

infile = open("InaugAge.txt", 'r')

L = [line.rstrip().split(',') for

 line in infile]

infile.close()

s = "{0} inaugurated at {1}"

print(s.format(L[4][0], L[4][1]))

[Run]

James Monroe inaugurated at 58

5.3 Dictionaries

A dictionary is an unordered collection
of key:value pairs that map each key
into its value. One way to create a
dictionary is to place its key:value pairs
(separated by commas) inside curly braces.
dictionaryName[key] returns the value
associated with the key.

Dictionary operations: len, in, get, keys,
values, items, del, clear, update, list, tuple,
set, max, min

Numbers, strings, and tuples (but not lists)
can serve as keys and all types of Python
objects can serve as values.

translate to Spanish

d={"red":"rojo", "balloon":"globo"}

print(d["red"], d["balloon"])

[Run]

rojo globo

See Table 5.4.

d={("Blue","Green"):"Cyan"} valid
d={["Blue","Green"]:"Cyan"} invalid

 254 ◆ Chapter 5 Processing Data

ChAPTER 5 KEy TERMS
and ConCepts ExAMPLES

The dump and load functions from
the pickle module can be used to store
dictionaries as binary files and retrieve the
dictionaries from the binary files.

import pickle

d1 = {("Blue", "Yellow"):"Green"}

outfile = open("Colors.dat", 'wb')

pickle.dump(d1, outfile)

outfile.close()

infile = open("Colors.dat", 'rb')

d2 = pickle.load(infile)

print(d2)

[Run]

{('Blue', 'Yellow'): 'Green'}

ChAPTER 5 PROgRAMMINg PROjECTS

1. Unit Conversions Table 5.5 contains some lengths in terms of feet. Write a program
that displays the nine different units of measure; requests the unit to convert from, the
unit to convert to, and the quantity to be converted; and then displays the converted
quantity. A typical outcome is shown in Fig. 5.47. Use the file Units.txt to create a
dictionary that provides the number of feet for a given unit of length. The first two
lines of the file are inches,.083333; furlongs,660.

Table 5.5 Equivalent lengths.

1 inch = .083333 foot 1 rod = 16.5 feet
1 yard = 3 feet 1 furlong = 660 feet
1 meter = 3.28155 feet 1 kilometer = 3281.5 feet
1 fathom = 6 feet 1 mile = 5280 feet

Figure 5.47 Possible outcome of Programming Project 1.

UNITS OF LENGTH

inches furlongs yards

rods miles fathoms

meters kilometers feet

Units to convert from: yards

Units to convert to: miles

Enter length in yards: 555

Length in miles: 0.3153

2. Curve Grades Statisticians use the concepts of mean and standard deviation to
describe a collection of numbers. The mean is the average value of the numbers, and
the standard deviation measures the spread or dispersal of the numbers about the
mean. Formally, if x1, x2, x3, c, xn is a collection of numbers, then the mean is

m =
x1 + x2 + x3 + g + xn

n

 Programming Projects ◆ 255

and the standard deviation is

s = A (x1 - m)2 + (x2 - m)2 + (x3 - m)2 + g + (xn - m)2

n

The file Scores.txt contains exam scores. The first four lines of the file hold the num-
bers 59, 60, 65, and 75. Write a program to calculate the mean and standard deviation
of the exam scores, assign letter grades to each exam score, ES, as follows, and then
display information about the exam scores and the grades, as shown in Fig. 5.48.

ES Ú m + 1.5s A
m + .5s … ES 6 m + 1.5s B
m - .5s … ES 6 m + .5s C
m - 1.5s … ES 6 m - .5s D
ES 6 m - 1.5s F

Figure 5.48 Outcome of Programming Project 2.

Number of scores: 14

Average score: 71.0

Standard deviation of scores: 14.42

GRADE DISTRIBUTION AFTER CURVING GRADES.

A: 2 B: 1 C: 6 D: 4 F: 1

For instance, if m were 70 and s were 12, then grades of 88 or above would receive
A’s, grades between 76 and 87 would receive B’s, and so on. A process of this type is
referred to as curving grades.

3. Baseball The file ALE.txt contains the information shown in Table 5.6. Write a pro-
gram to use the file to produce a text file containing the information in Table 5.7. In
the new file, the baseball teams should be in descending order by the percentage of
games won.

Table 5.6 American League East games won and lost in 2014.

Team Won Lost

Baltimore 96 66
Boston 71 91
New York 84 78
Tampa Bay 77 85
Toronto 83 79

Table 5.7 Final 2014 American League East standings.

Team Won Lost Pct

Baltimore 96 66 0.593
New York 84 78 0.519
Toronto 83 79 0.512
Tampa Bay 77 85 0.475
Boston 71 91 0.438

 256 ◆ Chapter 5 Processing Data

4. U.S. Senate The file Senate113.txt contains the members of the 113th U.S. Senate—
that is, the Senate prior to the November 2014 election. Each record of the file consists
of three fields—name, state, and party affiliation.3 Some records in the file are as follows:

Richard Shelby,Alabama,R

Bernard Sanders,Vermont,I

Kristen Gillibrand,New York,D

The file RetiredSen.txt contains the records from the file Senate113.txt for senators
who left the Senate after the November 2014 election due to retirement, defeat, death,
or resignation. Some records in the file are as follows:

John Rockefeller,West Virginia,D

Tom Coburn,Oklahoma,R

Carl Levin,Michigan,D

The file NewSen.txt contains records for the senators who were newly elected in
 November 2014 or who were appointed to fill the seats of senators who left after the
November 2014 election. Some records in the file are as follows:

Shelly Capito,West Virginia,R

Steve Daines,Montana,R

Gary Peters,Michigan,D

(a) Write a program that uses the three files above to create the file Senate114.txt
that contains records (each consisting of three fields) for the members of the
114th Senate where the members are ordered by state. Use this file in parts (b),
(c), and (d).

(b) Write a program that determines the number of senators of each party affiliation.
See Fig. 5.49.

(c) Write a program that determines the number of states whose two senators have
the same party affiliation.

(d) Write a program that asks the user to input a state, and then displays the two sena-
tors from that state. See Fig. 5.50.

3We refer to anyone who is neither a Republican nor a Democrat as an Independent.

Figure 5.49 Outcome of Programming
 Project 4(b).

Party Affiliations:

 Republicans: 54

 Democrats: 44

 Independents: 2

Figure 5.50 Outcome of Programming
Project 4(d).

Enter the name of a state: Maryland

Benjamin Cardin

Barbara Mikulski

5. Bachelor Degrees Table 5.8 shows the number of bachelor degrees conferred in
1981 and 2010 in certain fields of study. Tables 5.9 and 5.10 show the percentage
change and a histogram of 2010 levels, respectively. Write a program that allows the
user to display any one of these tables as an option and to quit as a fourth option.
Table 5.8 is ordered alphabetically by field of study, Table 5.9 is ordered by decreasing
percentages, and Table 5.10 is ordered by increasing number of degrees. Use the file
DegreesDict.dat that stores a dictionary where each field of study is a key and each
value is a two-tuple of the form (number of degrees in 1981, number of degrees in 2010).
One item of the dictionary is “Business”:(200521,358293).

 Programming Projects ◆ 257

6. Fuel Economy A fuel-economy study was carried out for five models of cars. Each
car was driven 100 miles, and then the model of the car and the number of gallons
used were placed in a line of the file Mileage.txt. Table 5.11 shows the data for the
entries of the file. Write a program to display the models and their average miles per
gallon in decreasing order with respect to mileage. See Fig. 5.51. The program should
create a dictionary of five items, with a key for each model, and a two-tuple for each
value. Each two-tuple should be of the form (number of test vehicles for the model, total
number of gallons used by the model).

Table 5.8 Bachelor degrees conferred in certain fields.

Field of Study 1981 2010

Business 200,521 358,293
Computer and info. science 15,121 39,589
Education 108,074 101,265
Engineering 63,642 72,654
Social sciences and history 100,513 172,780

Source: National Center for Education Statistics.

Table 5.9 Percentage change in bachelor degrees conferred.

Field of Study % Change (1981–2010)

Computer and info. science 161.8%
Business 78.7%
Social sciences and history 71.9%
Engineering 14.2%
Education -6.3%

Table 5.10 Bachelor degrees conferred in 2010 in certain fields.

Computer and info. science **** 39,589
 Engineering ******* 72,654
 Education ********** 101,265
 Social sciences and history ***************** 172,780
 Business ************************************ 358,293

Table 5.11 gallons of gasoline used in 100 miles of driving.

Model Gal Model Gal Model Gal

Prius 2.1 Accord 4.1 Accord 4.3
Camry 4.1 Camry 3.8 Prius 2.3
Sebring 4.2 Camry 3.9 Camry 4.2
Mustang 5.3 Mustang 5.2 Accord 4.4

Figure 5.51 Outcome of Programming Project 6.

Model MPG

Prius 45.45

Camry 25.00

Sebring 23.81

Accord 23.44

Mustang 19.05

 258 ◆ Chapter 5 Processing Data

7. U.S. Cities The file Cities.txt contains information about the 25 largest cities in
the United States. Each line of the file has four fields—name,state,population in 2000
(in 100,000s), and population in 2010 (in 100,000s). Write a program that creates a new
file with each line containing the name of a city and its percentage population growth
from 2000 to 2010. The cities should be in decreasing order by their percent popula-
tion growth. The first four lines of the file Cities.txt are as follows:

New York,NY,80.1,82.7

Los Angeles,CA,36.9,38.84

Chicago,IL,29.0,28.7

Houston,TX,19.5,22.4

8. Exchange Rates The text file Exchrate.txt gives information about the currencies
of 49 major countries. The first eight lines of the file are as follows:

America,Dollar,1

Argentina,Peso,8.405692

Australia,Dollar,1.070835

Austria,Euro,0.760488

Belgium,Euro,0.760488

Brazil,Real,2.237937

Canada,Dollar,1.086126

Chile,Peso,591.4077

Each line of the file gives the name of a country, the name of its currency, and the
number of units of the currency that were equal to one American dollar (called the
exchange rate4). For instance, one American dollar is equal to 591.4077 Chilean pesos.
Use the text file Exchrate.txt in parts (a), (b), and (c).

(a) Write a program that requests the name of a county as input and then displays the
name of its currency and its exchange rate. See Fig. 5.52.

4The text file gives the exchange rates in September 2014.

Figure 5.52 Possible outcome of Programming
Project 8(a).

Enter the name of a country: Chile

Currency: Peso

Exchange rate: 591.4077

Figure 5.53 Outcome of Programming
Project 8(b).

Kuwait

United Kingdom

Australia

(b) Write a program that displays the names of the countries in ascending order
 determined by the number of units that can be purchased for one American dollar.
Figure 5.53 shows the first three countries displayed.

(c) Write a program that requests the names of two countries and an amount of
 money, and then converts the amount from the first country’s currency to the
equivalent amount in the second country’s currency. See Fig. 5.54.

Figure 5.54 Possible outcome of Programming Project 8(c).

Enter name of first country: America

Enter name of second country: Chile

Amount of money to convert: 100

100 dollars from America equals 59,140.77 pesos from Chile

259

6

6.1 Exception Handling 260

◆  Exceptions  ◆  The try Statement  ◆  The else and finally Clauses

6.2 Selecting Random Values 267

◆  Functions from the random Module  ◆  Games of Chance

6.3 Turtle Graphics 273

◆  Coordinates  ◆  Methods from the turtle Module  ◆  Rectangles  ◆  Flags 

◆  The write Method  ◆  Bar Charts  ◆  Line Charts

6.4 Recursion 285

◆  A Recursive Power Function  ◆  A Recursive Palindrome Function 

◆  A Recursive Fractal Function

Key Terms and Concepts 293

Programming Projects 294

Miscellaneous Topics

 260 ◆ Chapter 6 Miscellaneous Topics

6.1 Exception Handling

Python provides a mechanism called exception handling that allows the programmer to
report and recover from errors that occur while a program is running.

 ■ Exceptions
Exceptions are runtime errors that usually occur due to circumstances beyond the program-
mer’s control, such as when invalid data are input or when a file cannot be accessed. For
example, if a user enters a word when the program prompts for a number, an exception is
generated and the program terminates abruptly. In this situation, the programmer did not
employ faulty logic or mistype. If the user had followed the directions, no problem would
have occurred. Even though the user is at fault, however, it is still the programmer’s respon-
sibility to anticipate exceptions and to include code to work around their occurrence. This
section describes techniques used to anticipate and deal with exceptions. Table 6.1 lists
several exception types and some possible causes.

Table 6.1 Some common exceptions.

Exception name Description and example

AttributeError An unavailable functionality (usually a method) is requested for an object.
(2, 3, 1).sort() or print(x.endswith(3)) # where x = 23

FileNotFoundError Requested file doesn’t exist or is not located where expected.
open("NonexistentFile.txt", 'r')

ImportError Import statement fails to find requested module.
import nonexistentModule

IndexError An index is out of range.
letter = "abcd"[7]

KeyError No such key in dictionary.
word = d['c'] # where d = {'a':"alpha", 'b':"bravo"}

NameError The value of a variable cannot be found.
term = word # where word was never created

TypeError Function or operator receives the wrong type of argument.
x = len(23) or x = 6 / '2' or x = 9 + 'W' or x = abs(-3,4)

ValueError Function or operator receives right type of argument, but inappropriate value.
x = int('a') or L.remove(item) # where item is not in list

ZeroDivisionError The second number in a division or modulus operation is 0.
num = 1 / 0 or num = 23 % 0

If the programmer does not explicitly include exception- handling code in a program,
Python displays a Traceback error message and terminates the program when an exception
occurs. Consider a program containing the following lines of code:

numDependents = int(input("Enter number of dependents: "))

taxCredit = 1000 * numDependents

print("Tax credit:", taxCredit)

A user with no dependents might not enter a number and just press the Enter (or return)
key. If so, Python will terminate the program and display a Traceback error message whose
last line reads

ValueError: invalid literal for int() with base 10: ''

 6.1 Exception Handling ◆ 261

The first word in the line gives the type of the error and the rest of the line provides details
on the cause of the error. The exception was raised because the input value, the empty
string, cannot be converted to an integer.

 ■ The try Statement
A more robust program explicitly handles the previous exception by protecting the code
with a try statement. The following code shows one way to handle the exception. Python
first attempts to execute the code in the try block. If a ValueError exception occurs, execu-
tion jumps to the except clause. Whether an exception occurred or not, the code in the
last two lines will be executed.

try:

 numDependents = int(input("Enter number of dependents: "))

except ValueError:

 print("\nYou did not respond with an integer value.")

 print("We will assume your answer is zero.\n")

 numDependents = 0

taxCredit = 1000 * numDependents

print("Tax credit:", taxCredit)

A try statement can contain several except clauses. There are three types of except
clauses:

 except: (Its block is executed when any exception occurs.)
 except ExceptionType: (Its block is executed only when the specified type of

exception occurs.)
 except ExceptionType as exp: (Its block is executed only when the specified type of

exception occurs. Additional information about the
problem is assigned to exp.)

In the try statement discussed earlier, had the except clause been

except ValueError as exc:

then the variable exc would have been assigned the type of exception—in this case invalid
literal for int() with base 10: ''.

 Example 1 Exception Handling We will run the following program with different
assumptions.

def main():

 ## Display the reciprocal of a number in a file.

 try:

 fileName = input("Enter the name of a file: ")

 infile = open(fileName, 'r')

 num = float(infile.readline())

 print(1 / num)

 except FileNotFoundError as exc1:

 print(exc1)

 except ValueError as exc2:

 print(exc2)

main()

VideoNote

Exception
Handing

 262 ◆ Chapter 6 Miscellaneous Topics

 ■ The else and finally Clauses
A try statement can also include a single else clause that follows the except clauses. Its block is
executed when no exceptions occur and is a good place for code that does not need protection.

A try statement can end with a finally clause. Blocks for finally clauses are usually used
to clean up resources such as files that were left open. A try statement must contain either
an except clause or a finally clause.

[Run assuming that Numbers.txt is not present.]

Enter the name of a file: Numbers.txt

[Errno 2] No such file or directory: 'Numbers.txt'

[Run assuming that Numbers.txt is present and the first line contains the word TWO.]

Enter the name of a file: Numbers.txt

could not convert string to float: 'TWO\n'

[Run assuming that Numbers.txt is present and the first line contains the number 2.]

Enter the name of a file: Numbers.txt

0.5

 Example 2 Phonetic Alphabet The following program uses exception handling to
guarantee a proper response from the user.

def main():

 ## Request that the user enter a proper response.

 phoneticAlphabet = {'a':"alpha", 'b':"bravo", 'c':"charlie"}

 while True:

 try:

 letter = input("Enter a, b, or c: ")

 print(phoneticAlphabet[letter])

 break

 except KeyError:

 print("Unacceptable letter was entered.")

main()

[Run]

Enter a, b, or c: d

Unacceptable letter was entered.

Enter a, b, or c: b

bravo

 Example 3 Calculate an Average and a Total The following program attempts to
find the average and total of the numbers in a file. The program uses exception handling
to cope with the possibilities that the file is not found, the file contains a line that is not a
number, or the file is empty.

def main():

 ## Calculate the average and total of the numbers in a file.

 total = 0

 6.1 Exception Handling ◆ 263

 ■ Comments
1. The words try, except, else, and finally are reserved words and therefore are colorized

orange by IDLE. Error names are colorized purple by IDLE.

2. A program is said to be robust if it performs well under atypical situations. The try
statement is one of the primary tools for creating robust programs.

3. A single except clause may refer to several types of errors. If so, the error names
are listed in a tuple. For instance, a possible except clause is except (ValueError,
 NameError) as exc:.

Practice Problems 6.1

1. Rewrite the following lines of code without using a try statement.

phoneBook = {"Alice":"123-4567", "Bob":"987-6543"}

name = input("Enter a name: ")

try:

 print(phoneBook[name])

except KeyError:

 print("Name not found.")

2. Python will not delete a file that is open. Attempting to do so generates an exception.
Write a short program that creates a file and uses exception handling to deal with such
an exception.

 counter = 0

 foundFlag = True

 try:

 infile = open("Numbers.txt", 'r')

 except FileNotFoundError:

 print("File not found.")

 foundFlag = False

 if foundFlag:

 try:

 for line in infile:

 counter += 1

 total += float(line)

 print("average:", total / counter)

 except ValueError:

 print("Line", counter, "could not be converted to a float.")

 if counter > 1:

 print("Average so far:", total / (counter - 1))

 print("Total so far:", total)

 else:

 print("No average can be calculated.")

 except ZeroDivisionError:

 print("File was empty.")

 else:

 print("Total:", total)

 finally:

 infile.close()

main()

 264 ◆ Chapter 6 Miscellaneous Topics

ExERCiSES 6.1

Each of the statements in Exercises 1 through 22 generates one of the Traceback error
messages [labeled (a) through (t)] in Table 6.2. Determine the error message generated
by each statement.

1. x = str(asdf) 2. f = open("abc.txt", 'R')

3. str = abs("str") 4. total = ('2' * '3')

5. x = ['a', 'b', 'c'][] 6. x = list(range(1, 9, '1'))[8]

7. x = '23'
print(x.startswith(2))

8. x = '8'
x.append(2)

9. {'1':"uno", 2:"dos"}['2']

10. {"Mars":"War","Neptune":"Sea"}.values()[2]

11. num = [1, 3].remove(2) 12. num = ('1', '3').index(3)

13. letter = ("ha" * '5')[9] 14. s = ['s', 'e', 'd']['0']

15. x = {1, 2, 3}[1] 16. (2, 3, 1).insert(0)

17. num = eval('x = 3*3') 18. value = min(1, 'a')[1]

19. del ['11', '12', '13'][0][0] 20. print([2] in {1: [2], 2: [3], 3: [1]})

21. ["air", "fire", "earth", "water"].sort()[2]

22. "1, 2, 3".find(1)

Table 6.2 Error messages for Exercises 1 through 22.
(a) ValueError: tuple.index(x): x not in tuple

(b) TypeError: 'dict_values' object does not support indexing

(c) AttributeError: 'str' object has no attribute 'append'

(d) SyntaxError: invalid syntax

(e) TypeError: 'str' object cannot be interpreted as an integer

(f) NameError: name 'asdf' is not defined

(g) TypeError: list indices must be integers, not str

(h) TypeError: 'str' object doesn't support item deletion

(i) TypeError: startswith first arg must be str or a tuple of str, not int

(j) TypeError: can't multiply sequence by non-int of type 'str'

(k) ValueError: invalid mode: 'R'

(l) TypeError: bad operand type for abs(): 'str'

(m) TypeError: unhashable type: 'list'

(n) TypeError: 'set' object does not support indexing

(o) ValueError: list.remove(x): x not in list

(p) TypeError: Can't convert 'int' object to str implicitly

(q) TypeError: unorderable types: str() < int()

(r) TypeError: 'NoneType' object is not subscriptable

(s) KeyError: '2'

(t) AttributeError: 'tuple' object has no attribute 'insert'

 6.1 Exception Handling ◆ 265

In Exercises 23 through 28, determine the output displayed by the lines of code.

23. # Assume the user enters a letter.
try:

 num = float(input("Enter a number: "))

 print("Your number is", num)

except:

 print("You must enter a number.")

24. nafta = ["Canada", "United States", "Mexico"]
try:

 print("The third member of NAFTA is", nafta[3])

except IndexError:

 print("Error occurred.")

25. flower = "Bougainvillea"
try:

 lastLetter = flower[13]

 print(lastLetter)

except TypeError:

 print("Error occurred.")

except IndexError as exc:

 print(exc)

 print("Oops")

26. Assume that the file Ages.txt is located in the current folder and the first line of the
file is Twenty- one\n.

try:

 infile = open("Ages.txt", 'r') # FileNotFound if fails

 age = int(infile.readline()) # ValueError if fails

 print("Age:", age)

except FileNotFoundError:

 print("File Ages.txt not found.")

except ValueError:

 print("File Ages.txt contains an invalid age.")

 infile.close()

else:

 infile.close()

27. Assume that the file Salaries.txt is located in the current folder and the first line of
the file contains the string 20,000.

def main():

 try:

 infile = open("Salaries.txt", 'r') # FileNotFound if fails

 salary = int(infile.readline()) # ValueError if fails

 print("Salary:", salary)

 except FileNotFoundError:

 print("File Salaries.txt not found.")

 except ValueError:

 print("File Salaries.txt contains an invalid salary.")

 infile.close()

 else:

 infile.close()

 266 ◆ Chapter 6 Miscellaneous Topics

 finally:

 print("Thank you for using our program.")

main()

28. Redo Exercise 26 with the assumption that the file Ages.txt is not located in the same
folder as the program.

29. The following program will perform properly if the user enters 0 in response to the
request for input. However, the program will crash if the user responds with “eight”.
Rewrite the program using a try/except statement so that it will handle both types of
responses. See Fig. 6.1.

while True:

 n = int(input("Enter a nonzero integer: "))

 if n != 0:

 reciprocal = 1 / n

 print("The reciprocal of {0} is {1:,.3f}".format(n, reciprocal))

 break

 else:

 print("You entered zero. Try again.")

Figure 6.1 Possible outcome of Exercise 29.

Enter a nonzero integer: 0

You entered zero. Try again.

Enter a nonzero integer: eight

You did not enter a nonzero integer. Try again.

Enter a nonzero integer: 8

The reciprocal of 8 is 0.125

30. State Capitals Assume that the list stateCapitals contains the names of the 50 state
capitals. Write a robust code segment that requests the name of a capital and removes
it from the list. See Fig. 6.2.

Figure 6.2 Possible outcome of Exercise 30.

Enter a state capital to delete: Chicago

Not a state capital.

Enter a state capital to delete: Springfield

Capital deleted.

31. Enter a Number Write a robust program that requests an integer from 1 through
100. See Fig. 6.3.

Figure 6.3 Possible outcome of Exercise 31.

Enter an integer from 1 to 100: 5.5

You did not enter an integer.

Enter an integer from 1 to 100: five

You did not enter an integer.

Enter an integer from 1 to 100: 555

Your number was not between 1 and 100.

Enter an integer from 1 to 100: 5

Your number is 5.

 6.2 Selecting Random Values ◆ 267

Solutions to Practice Problems 6.1

1. phoneBook = {"Alice":"123-4567", "Bob":"987-6543"}
name = input("Enter a name: ")

print(phoneBook.get(name, "Name not found."))

2. import os

def main():

 createFile()

 infile = open("NewFile.txt", 'r')

 deleteFile("NewFile.txt")

def createFile():

 f = open("NewFile.txt", 'w')

 f.write("Hello, World!\n")

 f.close()

def deleteFile(fileName):

 try:

 os.remove(fileName)

 except:

 print("File is open and cannot be deleted.")

main()

6.2 Selecting Random Values

The random module contains functions that randomly select items from a list and ran-
domly reorder the items in a list.

 ■ Functions from the random Module
If L is a list, then

random.choice(L)

will be a randomly selected item from L,

random.sample(L, n)

will be a list containing n randomly selected items from L, and

random.shuffle(L)

will randomly reorder the items in L.
If m and n are integers with m … n, then

random.randint(m, n)

will return a randomly selected integer from m to n, inclusive.

 Example 1 Random Functions The following program demonstrates functions from
the random module.

import random

elements = ["earth", "air", "fire", "water"]

print(random.choice(elements))

VideoNote

Random
Values

 268 ◆ Chapter 6 Miscellaneous Topics

print(random.sample(elements, 2))

random.shuffle(elements)

print(elements)

print(random.randint(1, 5))

[Run. A possible outcome is shown below.]

fire

['air', 'earth']

['water', 'fire', 'earth', 'air']

5

 ■ Games of Chance

 Example 2 Poker Hand The file DeckOfCardsList.dat is a pickled binary file con-
taining a list of the 52 cards in an ordinary deck of playing cards. The following program
randomly selects five cards from the deck.

import random

import pickle

infile = open("DeckOfCardsList.dat", 'rb')

deckOfCards = pickle.load(infile)

infile.close()

pokerHand = random.sample(deckOfCards, 5)

print(pokerHand)

[Run. A possible outcome is shown below.]

['2♠', '2♦', '6♠', 'Q♠', '10♦']

 Example 3 Roulette American roulette wheels have 38 numbers (1 through 36 plus 0
and 00). Many different types of bets are possible. We shall consider the “odd” bet. When
you bet $1 on “odd”, you win $1 if an odd number appears and you lose $1 otherwise. In
the following program, the user specifies an amount of money, called the bankroll, to risk
at the roulette table. He decides to bet $1 on each spin of the wheel and to quit when he
doubles his bankroll or goes broke. The program simulates his session at the roulette table.

import random

def main():

 bankroll = int(input("Enter the amount of the bankroll: "))

 (amount, timesPlayed) = playDoubleOrNothing(bankroll)

 print("Ending bankroll:", amount, "dollars")

 print("Number of games played:", timesPlayed)

def isOdd(n):

 if (1 <= n <= 36) and (n % 2):

 return True

 else:

 return False

def profit(n):

 if isOdd(n):

 return 1

 6.2 Selecting Random Values ◆ 269

In the next example, items are selected from a list of six items. However, some items
are more likely to be selected than others. In this case, we must use an if- elif- else statement
to do a truly random selection.

 else:

 return -1

def playDoubleOrNothing(bankroll):

 amount = bankroll

 timesPlayed = 0

 while 0 < amount < 2 * bankroll:

 # let 37 represent 00

 n = random.randint(0, 37)

 timesPlayed += 1

 amount += profit(n)

 return (amount, timesPlayed)

main()

[Run. A possible outcome is shown below.]

Enter the amount of the bankroll: 12

Ending bankroll: 24 dollars

Number of games played: 74

 Example 4 Slot Machine A slot machine is operated by inserting a coin in a slot and
pulling a lever. This causes three wheels containing pictures of cherries, oranges, plums,
melons, bars, and bells to spin around and finally come to rest with one picture showing
on each wheel. Certain combinations of pictures, such as three of a kind, produce a pay-
off to the player. Suppose each wheel contains five cherries, five oranges, five plums, three
melons, one bell, and one bar. The following program simulates the outcome from pulling
the lever. Each wheel contains 20 pictures, which we will associate with the numbers from
1 through 20.

import random

def main():

 for i in range(3):

 outcome = spinWheel()

 print(outcome, end=" ")

def spinWheel():

 n = random.randint(1, 20)

 if n > 15:

 return "Cherries"

 elif n > 10:

 return "Orange"

 elif n > 5:

 return "Plum"

 elif n > 2:

 return "Melon"

 elif n > 1:

 return "Bell"

 else:

 return "Bar"

 270 ◆ Chapter 6 Miscellaneous Topics

 ■ Comments
1. The numbers generated by the random module are said to be pseudorandom. They

are generated by an algorithm that makes them appear to be random. The time on the
system clock, which changes approximately every hundredth of a second, is used by
the algorithm.

Practice Problems 6.2

1. Assuming that list1 contains three or more items, the following lines of code will dis-
play a list of two randomly selected items from list1. Write some lines of code that will
accomplish the same result without using the sample function.

import random

print(random.sample(list1, 2))

2. Assuming that list1 contains two or more items, the following lines of code will display
a randomly selected item from list1. Write some lines of code that will accomplish the
same result without using the choice function.

import random

print(random.choice(list1))

ExERCiSES 6.2

In Exercises 1 through 8, describe an event whose outcome could be simulated by the
lines of code. Assume that the random module has been imported.

1. freeHit = ['Hit', 'Miss', 'Miss', 'Hit']
print(random.choice(freeHit))

2. result = ("Selected", "Rejected")
print(random.choice(result))

3. hitStrength = random.randint(1, 100)
if hitPower >= 50:

 print("BROKE")

else:

 print("SAFE")

4. player1 = random.randint(1, 6)
player2 = random.randint(1, 6)

print("palyer1: " + player1 + "player2: " + player2)

5. colors = ['red', 'cyan', 'teal', 'yellow', 'black']
flagTriplet = random.sample(colors, 3)

print(flagTriplet)

main()

[Run. A possible outcome is shown below.]

Plum Melon Cherries

 6.2 Selecting Random Values ◆ 271

6. songs = ['song1.mp3', 'song2.mp3','song3.mp3', 'song4.mp3', 'song5.mp3',
'song6.mp3']

print(random.shuffle(songs))

7. presenters = {'Cheryll': 1, 'Rio': 2, 'Tim': 3, 'Miranda': 4, 'Paul': 5}
order = [1, 2, 3, 4, 5]

for person in presenters:

 c = random.choice(order)

 presenters[person] = c

 order.remove(c)

8. ticketNumber = ['2', '4', '6', '1', '3', '5']
print(random.choice(ticketNumber))

In Exercises 9 through 14, write lines of code to carry out the stated task. Assume that
the random module has been imported.

9. Alphabet Display three letters selected at random from the alphabet.

10. Perfect Square Display a perfect square integer between 1 and 10,000 (inclusive)
selected at random.

11. Even Numbers Display two even numbers between 2 and 100 (inclusive) selected at
random.

12. Vowel Display a vowel selected at random.

13. Coin Toss a coin 100 times and display the number of times that a “Heads” occurs.

14. Dice Roll a pair of dice 100,000 times and display the percentage of times the sum
of the numbers is 7.

15. U.S. States The file StatesAlpha.txt contains the names of the 50 U.S. states in
 alphabetical order. Write a program that selects three states at random without placing
them into a list.

16. U.S. States The file StatesAlpha.txt contains the names of the 50 U.S. states in
alphabetical order. Write a program that creates a new file named RandomStates.txt
that contains the names in a random order.

17. Matching Cards Suppose two shuffled decks of cards are placed on a table, and
then cards are drawn from the tops of the decks one at a time and compared. On
average, how many matches do you think will occur? Write a program to carry out
this process 10,000 times and calculate the average number of matches that occur. See
Fig. 6.4. (Note: This problem was first analyzed in 1708 by the French probabilist Pierre
Remond de Montmort who determined that the theoretical answer is 1. There are
many variations on the problem, and the theoretical answer is always 1 even when the
number of items is other than 52. One variation of the problem is as follows: A typist
types letters and envelopes to 20 different people. The letters are randomly put into
the envelopes. On average, how many letters are put into the correct envelope?)

Figure 6.4 Possible outcome of Exercise 17.

The average number of cards that

matched was 1.005659.

Figure 6.5 Possible outcome of Exercise 18.

Player 1: paper

Player 2: scissors

Player 2 wins.

 272 ◆ Chapter 6 Miscellaneous Topics

18. Rock, Paper, Scissors Write a program to simulate a game of Rock, Paper, Scissors
between two players and display the outcome. Assume the players randomly make their
choices. See Fig. 6.5. (Note: Paper beats Rock (Paper can cover Rock), Scissors beats
Paper (Scissors can cut Paper), and Rock beats Scissors (Rock can break Scissors).)

Exercises 19 and 20 refer to the Powerball lottery. In the Powerball lottery, five balls
are randomly selected from a set of white balls numbered 1 through 59, and then a
single ball, called the Powerball, is randomly selected from a set of red balls numbered
1 through 35.

19. Powerball Lottery Write a program to randomly produce a Powerball drawing. See
Fig. 6.6.

Figure 6.6 Possible outcome of Exercise 19.

White balls: 22 28 51 11 5

Powerball: 20

Figure 6.7 Possible outcome of Exercise 20.

31% of the time there were at least

two consecutive numbers in the set

of five numbers.

20. Powerball Lottery Often the five selected white balls contain two or more balls with
consecutive numbers. Write a program that simulates 100,000 selections of white balls
and displays the percentage of times the selection contains at least two consecutive
numbers. See Fig. 6.7. Feel free to use the function random.sample((range(1,60), 5)).

21. Coin Toss Write a program to display the result of tossing a coin 32 times. Then
 determine if there is a run of five consecutive Heads or a run of five consecutive Tails.
See Fig. 6.8. (Note: When you toss a coin 2r times, you are more likely than not to have
a run of r Heads or r Tails.)

Figure 6.8 Possible outcome of Exercise 21.

THTHHTHHTTTTHTHHHHTTHHHHHTTHHHTH

There was a run of five consecutive

same outcomes.

Figure 6.9 Possible outcome of Exercise 22.

The average number of cards

turned up was 10.61.

22. Locate First Ace Suppose you shuffle an ordinary deck of 52 playing cards, and then
turn up cards from the top until the first ace appears. On average, how many cards do
you think must be turned up until the first ace appears? Estimate the average by writing
a program that shuffles a deck of cards 100,000 times and finds the average of the num-
ber of cards that must be turned up to obtain an ace for each shuffle. See Fig. 6.9. Note:
Your average will differ from the one in the figure, but should be close to 10.6.

23. Bridge (HPC) A bridge hand consists of 13 cards. One way to evaluate a hand is to
calculate the total high point count (HPC) where an ace is worth four points, a king is
worth three points, a queen is worth two points, and a jack is worth one point. Write
a program that randomly selects 13 cards from a deck of cards and calculates the HPC
for the hand. See Fig. 6.10. Note: Use the pickled file DeckOfCardsList.dat.

Figure 6.10 Possible outcome of Exercise 23.

7♥, A♦, Q♠, 4♣, 8♠, 8♥, K♠, 2♦, 10♦, 9♦, K♥, Q♦, Q♣

HPC = 16

 6.3 Turtle Graphics ◆ 273

In Exercise 24, use the file StatesANC.txt that contains the name, abbreviation, nick-
name, and capital of each state in the United States. The states are listed in alphabetical
order. The first three lines of the file are

Alabama,AL,Cotton State,Montgomery

Alaska,AK,The Last Frontier,Juneau

Arizona,AZ,Grand Canyon State,Phoenix

24. State Capital Quiz Write a program that asks the user to name the capitals of five
randomly chosen states. The program should then report the number of incorrect
answers and display the answers to the missed questions. See Fig. 6.11.

Figure 6.11 Possible outcome of Exercise 24.

What is the capital of Minnesota? Saint Paul

What is the capital of California? Sacramento

What is the capital of Illinois? Chicago

What is the capital of Alabama? Montgomery

What is the capital of Massachusetts? Boston

You missed 1 question.

Springfield is the capital of Illinois.

Solutions to Practice Problems 6.2

1. import random
random.shuffle(list1)

print(list1[:2])

or

import random

m = random.choice(list1)

list1.remove(m)

n = random.choice(list1)

print([m, n])

2. import random
n = random.randint(0, len(list1) - 1)

print(list1[n])

or

import random

random.shuffle(list1)

print(list1[0])

6.3 Turtle Graphics

Turtle graphics uses objects and methods from the turtle module.

 ■ Coordinates
After the statements

import turtle

t = turtle.Turtle()

VideoNote

Turtle
Graphics

 274 ◆ Chapter 6 Miscellaneous Topics

are executed, the window in Fig. 6.12 appears. The white region inside the border is called
the canvas and the small chevron in the center of the canvas is called a turtle. The canvas
contains around 360,000 points called pixels that are identified by ordered pairs of num-
bers determined by the coordinate system in Fig. 6.13. The pixel in the center of the canvas
has coordinates (0, 0). The variable t is said to refer to a turtle object, and for simplicity is
called a turtle.

Figure 6.12 Turtle graphics window.

100−100

−100

100

200

−200

−200−300 200 300

Figure 6.13 Coordinate system for canvas.

Think of the chevron as a small turtle with a pen attached to its tail. Python statements
can move the tail up or down (thereby raising or lowering the pen), select a color for the
pen, change the direction the turtle is facing, move the turtle in a straight line, and draw a
dot of any diameter centered at the current position of the pen. Initially
the turtle’s tail is located at the origin of the coordinate system, the turtle
is facing East, and its tail is down.

Intricate shapes can be drawn by repeating simple moves. The figure
on the right was drawn by repeatedly having the turtle move 200 pixels in
a straight line and rotate 170° counterclockwise. The program that draws
the figure is given in Comment 4.

 ■ Methods from the turtle Module
The statements

t.up() and t.down()

raise and lower the pen. At any time, the turtle has a position (given by its coordinates), head-
ing (the counterclockwise angle it makes with a horizontal line through it), pen status (up or
down), and color. Turtles facing East, North, West, and South have headings of 0°, 90°, 180°,
and 270°, respectively. All of the standard colors (such as, red, blue, green, white, and black)
are available as pen colors. The colorful insert page shows 32 available colors.

The statement

t.hideturtle()

makes the chevron invisible. The statement

t.forward(dist)

 6.3 Turtle Graphics ◆ 275

moves the turtle dist pixels in the direction it is headed, the statement

t.backward(dist)

moves the turtle dist pixels in the opposite direction in which it is headed, and the statement

t.goto(x, y)

moves the turtle to the pixel having coordinates (x, y).
The color of the pen is initially black, but can be changed with a statement of the form

t.pencolor(colorName)

When the pen is down, each of the three statements above that move the turtle draw a line
in the current color.

The statement

t.setheading(deg)

sets the heading of the turtle to deg degrees. The statements

t.left(deg) and t.right(deg)

rotate the turtle deg degrees counterclockwise or clockwise, respectively, from the direction
it was headed.

The statement

t.dot(diameter, colorName)

draws a dot with the specified diameter and color centered at the current position of the
pen. If the colorName argument is omitted, the current pen color is used. If both arguments
are omitted, the statement uses a diameter of five pixels and the current pen color.

 ■ Rectangles
Figure 6.14 shows a rectangle of width w, height h, and lower- left corner at (x, y). After the
statements import turtle, t = turtle.Turtle(), and t.hideturtle() have been executed,
either of the following two functions can be used to draw a rectangle of any size, in any
color, and any location specified by a calling statement. The first function uses the coor-
dinates of the corners of the rectangle, and the second function uses the width and height
of the rectangle.

h

w
(x, y)

(x, y+h)

(x+w, y)

(x+w, y+h)

Figure 6.14 A general rectangle.

import turtle

def drawRectangle(t, x, y, w, h, colorP="black"):

 ## Draw a rectangle with bottom- left corner (x, y),

 ## width w, height h, and pencolor colorP.

 276 ◆ Chapter 6 Miscellaneous Topics

 t.pencolor(colorP)

 t.up()

 t.goto(x, y) # start at bottom- left corner of rectangle

 t.down()

 t.goto(x + w, y) # draw line to bottom- right corner

 t.goto(x + w, y + h) # draw line to top- right corner

 t.goto(x, y + h) # draw line to top- left corner

 t.goto(x, y) # draw line to bottom- left corner

def drawRectangle2(t, x, y, w, h, colorP="black"):

 ## Draw a rectangle with bottom- left corner (x, y),

 ## width w, height h, and pencolor colorP.

 t.pencolor(colorP)

 t.up()

 t.goto(x, y) # start at bottom- left corner of rectangle

 t.down()

 for i in range(2):

 t.forward(w) # draw horizontal side of rectangle

 t.left(90) # rotate 90 degrees counterclockwise

 t.forward(h) # draw vertical side of rectangle

 t.left(90) # rotate 90 degrees counterclockwise

Enclosed regions, such as rectangles, can be filled with any color. The statement

t.fillcolor(colorName)

is used to specify the color for the interior of the region. Then the statements

t.begin_fill() and t.end_fill()

must be placed before and after the statements that actually draw the region.

 Example 1 Draw a Filled Rectangle The following program draws a rectangle having
a red border and a yellow interior.

import turtle

def main():

 t = turtle.Turtle()

 t.hideturtle()

 drawFilledRectangle(t, 0, 0, 100, 150, "red", "yellow")

def drawFilledRectangle(t, x, y, w, h, colorP="black", colorF="white"):

 ## Draw a filled rectangle with bottom- left corner (x, y),

 ## width w, height h, pen color colorP, and fill color colorF.

 t.pencolor(colorP)

 t.fillcolor(colorF)

 t.up()

 t.goto(x, y) # start at bottom- left corner of rectangle

 t.down()

 t.begin_fill()

 t.goto(x + w, y) # draw line to bottom- right corner

 t.goto(x + w, y + h) # draw line to top- right corner

 6.3 Turtle Graphics ◆ 277

 ■ Flags
Many types of flags can easily be drawn with turtle graphics.

 t.goto(x, y + h) # draw line to top- left corner

 t.goto(x, y) # draw line to bottom- left corner

 t.end_fill()

main()

 Example 2 Flag The following program draws the flag shown on the right. The width
of the flag is 1.5 times the height, the center blue strip is twice the height of each of the light
blue strips, and the diameter of the circle is .8 times the height of the
center blue strip. We have made the height of each light blue strip
25 pixels. Therefore, the center blue strip will have height 50 pixels
and flag itself will have height 100 pixels. The width of the flag will
be 1.5 # 100 = 150 pixels. We have placed the bottom- left corner of
the flag at (0, 0), the center of the canvas.

import turtle

def main():

 t = turtle.Turtle()

 t.hideturtle()

 # Draw the three stripes.

 drawFilledRectangle(t, 0, 0, 150, 25, "light blue", "light blue")

 drawFilledRectangle(t, 0, 25, 150 , 50, "blue", "blue")

 drawFilledRectangle(t, 0, 75, 150, 25, "light blue", "light blue")

 # Draw white dot. Center of flag is (75, 50). 40 = .8 * 50.

 drawDot(t, 75, 50, 40, "white")

def drawFilledRectangle(t, x, y, w, h, colorP="black", colorF="white"):

 ## Draw a filled rectangle with bottom- left corner (x, y),

 ## width w, height h, pen color colorP, and fill color colorF.

 t.pencolor(colorP)

 t.fillcolor(colorF)

 t.up()

 t.goto(x, y) # bottom- left corner of rectangle

 t.down()

 t.begin_fill()

 t.goto(x + w, y) # bottom- right corner of rectangle

 t.goto(x + w, y + h) # top- right corner of rectangle

 t.goto(x, y + h) # top- left corner of rectangle

 t.goto(x, y) # bottom- left corner of rectangle

 t.end_fill()

def drawDot(t, x, y, diameter, colorP):

 ## Draw a dot with center (x, y) and color colorP.

 t.up()

 t.goto(x, y)

 t.pencolor(colorP)

 t.dot(diameter)

main()

 278 ◆ Chapter 6 Miscellaneous Topics

 ■ The write Method
If s is a string, then the statements

t.write(s)

displays the string s with the bottom- left corner of the string approximately1 at the current
position of the pen. The statements

 Example 3 Five- Pointed Star Figure 6.15(a) shows the star that appears on the
American flag. In Fig. 6.15(b), L is the length of each side of the star, and the lower- left
point of the star is at (0, 0). The coordinates of the center of the star are given, but are not
needed in order to draw the star. However, the coordinates are useful if you want to draw
a five- pointed star having a specified center rather than a specified lower- left point. The
following program draws the five- pointed star in Fig. 6.15(b). The drawing of the entire
American flag is given as a programming project.

import turtle

def main():

 t = turtle.Turtle()

 t.hideturtle()

 lengthOfSide = 200

 drawFivePointStar(t, 0, 0, lengthOfSide)

def drawFivePointStar(t, x, y, lengthOfSide):

 # Drawing begins at (x, y) and moves in a north- east direction.

 t.up()

 t.goto(x, y)

 t.left(36)

 t.down()

 for i in range(5):

 t.forward(lengthOfSide)

 t.left(144) # 144 = 180 – 36

main()

(0, 0)

(a) (b)

(.309 * L, .425 * L)

36°
36°

Figure 6.15 Five- pointed star.

1The exact positioning of the string is tricky to describe and depends in part on whether the string
contains descending letters (that is, g, j, p, q, and y). Often slight trial- and- error modifications must
be made in order to place strings exactly where we want them.

 6.3 Turtle Graphics ◆ 279

t.write(s, align="right") and t.write(s, align="center")

display the string s with the bottom- right corner and bottom center of the string approxi-
mately at the current position of the pen, respectively. The write method displays its string
whether the pen is up or down. (Note: The statement t.write(s, align="left") has the
same effect as the statement t.write(s).)

 Example 4 Demonstration of the write Method The following program displays the
word Python with different alignments.

import turtle

t = turtle.Turtle()

t.hideturtle()

t.up()

t.goto(0, 60)

t.dot()

t.write("Python")

t.goto(0, 30)

t.dot()

t.write("Python", align="right")

t.goto(0, 0)

t.dot()

t.write("Python", align="center")

[Run]

Python

Python

Python

The font used to display the string can be specified by assigning a three- tuple of the
form (fontName, fontSize, styleName) to the font argument of the write method. The value
of styleName can be italic, bold, underline, or normal. For instance, the statement

t.write("Python", font=("Courier New", 12, "bold"))

displays the word Python in a boldface, 12-point, Courier New font. A write method can
contain one, both, or neither of the align and font arguments.

 ■ Bar Charts
Certain types of data is visually enhanced when placed in a bar chart.

 Example 5 Languages The following program creates the bar chart on the next page.
The x- coordinates of the bottom- left corners of the rectangles begin at -200 and succes-
sively increase by 76 pixels. The y- coordinates of the points are given by the list heights,
with each value divided by 4. (The divisor is needed in order for the bar chart to fit in the
canvas.) In the displayText function, the numbers -162, -10, -25, and -45 were obtained
by trial- and- error.

 280 ◆ Chapter 6 Miscellaneous Topics

Spanish

856

420
360

260
205

English Hindi BengaliMandarin

Principal Languages of the World
(in millions of “first language” speakers)

import turtle

heights = [856, 420, 360, 260, 205] # number of speakers for each language

def main():

 t = turtle.Turtle()

 t.hideturtle()

 for i in range(5):

 drawFilledRectangle(t, -200 + (76 * i), 0, 76, heights[i] / 4,

 "black", "light blue")

 displayText(t)

def drawFilledRectangle(t, x, y, w, h, colorP="black", colorF="white"):

 ## Draw a filled rectangle with bottom- left corner (x, y), width w,

 ## height h, pen color colorP, and fill color colorF.

 t.pencolor(colorP)

 t.fillcolor(colorF)

 t.up()

 t.goto(x, y) # bottom- left corner of rectangle

 t.down()

 t.begin_fill()

 t.goto(x + w, y) # bottom- right corner of rectangle

 t.goto(x + w, y + h) # top- right corner of rectangle

 t.goto(x, y + h) # top- left corner of rectangle

 t.goto(x, y) # bottom- left corner of rectangle

 t.end_fill()

def displayText(t):

 languages = ["Mandarin", "Spanish", "English",

 "Hindi", "Bengali"]

 t.pencolor("blue")

 t.up()

 for i in range(5):

 # Display number at top of rectangle.

 t.goto(-162 + (76 * i), heights[i] / 4)

 t.write(str(heights[i]), align="center",

 font=("Arial", 10, "normal"))

 # Display language.

 t.goto(-162 + (76 * i), 10)

 t.write(languages[i], align="center",

 font=("Arial", 10, "normal"))

 # Display title of bar chart.

 t.goto(-200, -25)

 6.3 Turtle Graphics ◆ 281

 ■ Line Charts
Simple tabular data, such as that in Table 6.3, can be visually displayed in a line chart.

 t.write("Principal Languages of the World",

 font=("Arial", 10, "normal"))

 t.goto(-200, -45)

 t.write('(in millions of "first language" speakers)',

 font=("Arial", 10, "normal"))

main()

Table 6.3 Percentage of college freshmen who smoke.

2000 2002 2004 2006 2008 2010 2012

Percent 10.0 7.4 6.4 5.3 4.4 3.7 2.6

Source: Higher Education Research Institute.

 Example 6 Smokers The following
program uses the data in Table 6.3 to create
the line chart on the right. The x- coordinates
of the points begin at 40 and successively
increase by 40. The y- coordinates of the
points are given by the list yValues, with
each value multiplied by 15. (The multiplier
improves the readability of the graph.)

In the displayText function, the numbers
-3, -10, -20, and -50 were obtained by
 trial- and- error.

import turtle

yValues = [10.0, 7.4, 6.4, 5.3, 4.4, 3.7, 2.6] # percent for each year

def main():

 t = turtle.Turtle()

 t.hideturtle()

 drawLine(t, 0, 0, 300, 0) # Draw x- axis.

 drawLine(t, 0, 0, 0, 175) # Draw y- axis.

 for i in range(6):

 drawLineWithDots(t, 40 + (40 * i), 15 * yValues[i],

 40 + (40 * (i + 1)), 15 * yValues[i + 1], "blue")

 drawTickMarks(t)

 displayText(t)

def drawLine(t, x1, y1, x2, y2, colorP="black"):

 ## Draw line segment from (x1, y1) to (x2, y2) having color colorP.

 t.up()

 t.goto(x1, y1)

 t.down()

 t.pencolor(colorP)

 t.goto(x2, y2)

2000

2.6

10.0

2002 2004

Percentage of College Freshmen Who Smoke

2006 2008 2010 2012

 282 ◆ Chapter 6 Miscellaneous Topics

 ■ Comments
1. The pair of statements

t.pencolor(colorP)

t.fillcolor(colorF)

can be condensed into the single statement

t.color(colorP, colorF)

2. An optional statement of the form t.speed(n), where n is an integer from 0 through 10,
determines the quickness that the turtle moves. The value n = 1 produces the slowest

def drawLineWithDots(t, x1, y1, x2, y2, colorP="black"):

 ## Draw line segment from (x1, y1) to (x2, y2) having color

 ## colorP and insert dots at both ends of the line segment.

 t.pencolor(colorP)

 t.up()

 t.goto(x1, y1) # beginning of line segment

 t.dot(5)

 t.down()

 t.goto(x2, y2) # end of line segment

 t.dot(5)

def drawTickMarks(t):

 ## Draw tick marks along x- axis.

 for i in range(1, 8):

 drawLine(t, 40 * i, 0, 40 * i , 10)

 # Draw tick mark on y- axis to indicate greatest value.

 drawLine(t, 0, 15 * max(yValues), 10, 15 * max(yValues))

 # Draw tick mark on y- axis to indicate least value.

 drawLine(t, 0, 15 * min(yValues), 10, 15 * min(yValues))

def displayText(t):

 t.pencolor("blue")

 t.up()

 # Display greatest y- value next to upper tick mark on y- axis.

 t.goto(-3, (15 * max(yValues)) - 10)

 t.write(max(yValues), align="right")

 # Display least y- value next to lower tick mark on y- axis.

 t.goto(-3, (15 * min(yValues)) - 10)

 t.write(min(yValues), align="right")

 # Display the years below the tick marks on x- axis.

 x = 40

 for i in range(2000, 2013, 2):

 t.goto(x, -20)

 t.write(str(i), align="center")

 x += 40

 # Display title of graph.

 t.goto(0, -50)

 t.write("Percentage of College Freshmen Who Smoke")

main()

 6.3 Turtle Graphics ◆ 283

speed and n = 10 produces the fastest speed. If the argument is omitted, the speed will
be 3. An argument of 0 causes the turtle to move instantly.

3. Some drawings are easier to program if you first sketch them on a piece of paper. Graph
paper can be especially useful.

4. The following program generates the 36-leaved flower shown at the beginning of this
section (p. 258):

import turtle

t = turtle.Turtle()

t.hideturtle()

t.color("blue", "light blue")

t.begin_fill()

for i in range(36):

 t.forward(200)

 t.left(170)

t.end_fill()

Practice Problems 6.3

1. Change the function drawFivePointStar in Example 3, so that the star has its center,
rather than its lower- left point, at (x, y)?

2. The drawFilledRectangle function appearing in Example 1 is a useful function that
could be reused in other programs. However, after it executes, the current pen colors
might be altered. Modify the function definition so that it does not alter the current
colors.

ExERCiSES 6.3

In Exercises 1 through 8, write a few lines of code to draw the requested figure without
using the drawLine, drawRectangle, drawFilledRectangle, or drawDot function.

1. A blue line segment from (20, 30) to (80, 90) with small dots at each end.

2. A blue horizontal line tangent to a red dot of diameter 100 pixels.

3. Two blue dots of different sizes with one sitting on top of the other.

4. A purple line segment from (25, 55) to (80, 40) with small dots at each end.

5. A solid rectangle with lower- left corner at (-30, -40) and upper- right corner at
(50, 60).

6. An orange square with a red border having sides of length 80 pixels and centered in
the turtle window.

7. A right triangle having sides of length 60 and 80 pixels.

8. An equilateral triangle with each side having length 100 pixels. (Note: The interior
 angles will each have measure 60°.)

 284 ◆ Chapter 6 Miscellaneous Topics

Exercises 9 through 26 can be found on the colorful insert pages.

27. College Majors Write a program to create the bar chart in Fig. 6.16.

7.6%

5.0%

Biology
(general)

Most Popular Majors for College Freshmen in Fall 2013

Mechanical
Engineering

Bus. Admin.
(general)

Nursing Psychology

4.7%

2.8% 2.8%

Figure 6.16 Bar chart for Exercise 27.

28. High Schools Write a program to create the bar chart in Fig. 6.17.

75.3%

17.2%

7%Public (not
charter or magnet) Private

Type of High School Attended by Fall 2013 College Freshmen

Other

Figure 6.17 Bar chart for Exercise 28.

29. College Enrollments Write a program to create the line chart in Fig. 6.18. Use the
data in Table 6.4.

1970

945

4415
Females

Males

Two-Year College Enrollments
(in thousands)

1980 1990 2000 2010

Figure 6.18 Line chart for Exercise 29.

 6.4 Recursion ◆ 285

30. Life Goals Write a program to create the line chart in Fig. 6.19. Use the data in
Table 6.5.

Table 6.4 Two- year college enrollments (in thousands).

1970 1980 1990 2000 2010

Male 1,375 2,047 2,233 2,559 3,265
Female 945 2,479 3,007 3,398 4,415

meaningful philosophy of life

1978

Freshman Life Goals
(% of students committed to goal)

43

60

1988 1998 2008

well off financially

Figure 6.19 Line chart for Exercise 30.

Table 6.5 Freshman life goals (% of students committed to goal).

1978 1988 1998 2008

Be very well off financially 59 74 73 77
Develop a meaningful philosophy of life 60 43 44 51

Solutions to Practice Problems 6.3

1. Replace the statement t.goto(x, y) with

t.goto(x - .309 * lengthOfSide, y - .425 * lengthOfSide)

2. Insert the first two lines below at the beginning of the function definition, and the last two lines at the end
of the function definition.

originalPenColor = t.pencolor()

originalFillColor = t.fillcolor()

t.pencolor(originalPenColor)

t.fillcolor(originalFillColor)

6.4 Recursion

A recursive function is a function that calls itself, where successive calls reduce a computa-
tion to smaller computations of the same type until a base case with a trivial solution is
reached.

VideoNote

Recursion

 286 ◆ Chapter 6 Miscellaneous Topics

 ■ A Recursive Power Function
The nth power of a number can be defined iteratively as

rn = r # r # c # r

n terms

or recursively as

 r1 = r

 rn = r # rn - 1

In the recursive definition, the power function is defined in terms of a simpler version of
itself. For instance, the computation of r4 is successively reduced to the computation of
r3, r2, and finally r1, a trivial case.

 Example 1 Power Function The following program uses the iterative definition of
a power function. The function definition requires two temporary variables (value and i).
Also, the function definition does not resemble the iterative definition above.

def power(r, n):

 ## iterative definition of power function

 value = 1

 for i in range(1, n + 1):

 value = r * value

 return value

print(power(2, 3))

[Run]

8

 Example 2 Power Function The following program uses the recursive definition of
a power function. The function definition resembles the recursive definition above.

def power(r, n):

 ## recursive definition of power function

 if n == 1:

 return r

 else:

 return r * power(r, n - 1)

print(power(2, 3))

[Run]

8

Recursive algorithms have two traits.

1. There are one or more base cases with trivial solutions.

2. There is an “inductive step” that successively reduces the problem to smaller versions
of the same problem, with the reduction eventually culminating in a base case. This
inductive step is called the reducing step.

 6.4 Recursion ◆ 287

The pseudocode for a recursive solution to a problem has the general form

if a base case is reached
 Solve the base case directly.
else
 Repeatedly reduce the problem to a version increasingly closer to a base case until it

becomes a base case.

Suppose the recursive function power is called upon to compute power(r, n), with
r = 2 and n = 3. Figure 6.20 traces the process of evaluation. The value in (a) cannot be
calculated right away since n ≠ 1. Therefore, the recursive step replaces power(2, 3) with
the expression in (b). (That is, the return statement does not immediately return a value.)
Similarly, power(2, 2) in (b) is replaced by the expression in (c). Since n = 1 in (c), the base
case has been reached. power(2,1) is evaluated directly as 2. Now the recursion process
traces backward through (c), (b), and (a), denoted as (c’), (b’), and (a’) for the return trip.

power(2, 3)(a)

(b)

(c)

(a’)

(b’)

(c’)

2 * power(2, 2)

2 * 2 * 2

2 * 4

8

2 * 2 * power(2, 1)

Figure 6.20 The recursive computation of power(2, 3).

 ■ A Recursive Palindrome Function
Any function definition using recursion can be rewritten using iteration, but sometimes
the recursive solution is easier to understand and code. The Boolean- valued function
 isPalindrome, which determines whether or not a word is a palindrome, is one such func-
tion. (A word is a palindrome if it reads the same forward and backward. Some examples
are racecar, kayak, and pullup.) When designing the recursive function we use the fact that
a word is a palindrome if the beginning and ending letters are the same and the remaining
letters form a palindrome. Therefore, we initially look at the first and last letters of the
word. If they are different, we end the examination and return False. Otherwise, we delete
the first and last letters, and continue the process with the shorter remaining word. We con-
tinue this process until we find a mismatch or the reduced word has 0 or 1 letter. We have
solved the problem by breaking it into smaller problems of the same type.

 Example 3 Palindrome The following function uses recursion to determine whether
or not a word containing no punctuation is a palindrome.

def isPalindrome(word):

 word = word.lower() # Convert all letters to lowercase.

 if len(word) <= 1: # Words of zero or one letters are palindromes.

 return True

 elif word[0] == word[-1]: # First and last letters match.

 word = word[1:-1] # Remove first and last letters.

 return isPalindrome(word)

 else:

 return False

 288 ◆ Chapter 6 Miscellaneous Topics

 ■ A Recursive Fractal Function

 Example 4 Draw a Fractal The program in this example uses recursion to create
Fig. 6.21, a drawing known as a fractal.

A four- step algorithm creates the fractal. (Note: We have added two blue dots to the fig-
ure that are not part of the fractal to show where the drawing begins and ends. The drawing
begins at the left blue dot and ends at the right blue dot.)

a. Specify an intricacy level, a nonnegative integer, for the fractal.
b. Start with a straight line. The line, shown in Figure 6.22(a), is called the level 0 fractal.
c. To obtain the fractal for the next level, replace each line in the drawing with the sides

of an isosceles right triangle having the line as hypotenuse. Figures 6.22(b), (c), and (d)
show the level 1, 2, and 3 fractals.

d. Repeat step (c) until the desired level of recursion is reached. The fractal in Fig. 6.21 has
intricacy level 12.

The following program creates the level 12 fractal in Fig. 6.21:

import turtle

def main():

 t = turtle.Turtle()

 t.hideturtle()

 t.speed(10)

 level = 12

 fract(t, -80, 60, 80, 60, level)

def fract(t, x1, y1, x2, y2, level):

 # Drawing begins at (x1, y1) and ends at (x2, y2).

 newX = 0

 newY = 0

Figure 6.21 A fractal.

(b) (c) (d)(a)

Figure 6.22 Fractals of levels 0, 1, 2, and 3.

 6.4 Recursion ◆ 289

 ■ Comments
1. The base case of the recursive solution of a problem is also called the terminating case

or stopping condition.

2. Any problem that can be solved with recursion can also be solved with iteration.
 Iterative methods usually execute faster and make less of a demand on memory. How-
ever, recursive solutions often generate less code, and are more elegant and easier to
read.

3. If a recursive algorithm is coded incorrectly and the terminating case is never reached,
the program probably will end with the error message “RuntimeError: maximum recur-
sion depth exceeded.”

4. Another kind of recursion, called indirect recursion, results when two procedures
call each other. In the following program, the variable counter is used to terminate
repetition:

counter = 0

def main():

 one()

def one():

 global counter

 counter += 1

 if counter < 5:

 print("1 ", end="")

 two()

def two():

 print("2 ", end="")

 one()

main()

[Run]

1 2 1 2 1 2 1 2

 if level == 0:

 drawLine(t, x1, y1, x2, y2)

 else:

 newX = (x1 + x2)/2 + (y2 - y1)/2

 newY = (y1 + y2)/2 - (x2 - x1)/2

 fract(t, x1, y1, newX, newY, level - 1)

 fract(t, newX, newY, x2, y2, level - 1)

def drawLine(t, x1, y1, x2, y2):

 # Draw line from (x1, y1) to (x2, y2).

 t.up()

 t.goto(x1, y1)

 t.down()

 t.goto(x2, y2)

main()

 290 ◆ Chapter 6 Miscellaneous Topics

Practice Problems 6.4

1. If n is a positive integer, then n factorial (written n!) is the product of the numbers from
1 through n. Write a recursive function to calculate n factorial.

2. What is the output of the following program? (Note: chr(ord(letter) - 1) is the letter of
the alphabet that precedes letter.)

def main():

 print(alpha('H'))

def alpha(letter):

 if letter == 'A':

 return 'A'

 else:

 return letter + alpha(chr(ord(letter) - 1))

main()

ExERCiSES 6.4

In Exercises 1 through 5, determine the output of the program.

1. def main():
 print(factorial(5))

def factorial(n):

 if n == 1:

 return 1

 else:

 return n * factorial(n - 1)

main()

2. def main():
 digitSum(12345)

def digitSum(n):

 total = 0

 while n:

 total += n % 10

 n = n / 10

 print total

main()

3. def main():
 stars(6)

def stars(n):

 if n==0:

 return

 else:

 print ("*"*n)

 stars(n - 1)

main()

 6.4 Recursion ◆ 291

4. def main():
 print(power(5, 4))

def power(m, n):

 if n == 1:

 return m

 else:

 return m * power(m, n-1)

main()

5. def main():
 print(repeatLastLetter("oprah"))

def repeatLastLetter(w):

 if len(w) == 1:

 return w

 else:

 return repeatLastLetter(w[1:]) + repeatLastLetter(w[1:])

main()

6. Prime Factors The following recursive function returns the prime factors of the
number n. Explain how the function works.

def factor(n):

 ## Return a list containing the prime factors of n.

 if n==1:

 return []

 b = 2

 while b <= n:

 while not n % b:

 return [b] + factor(n // b)

 b += 1

7. Alphabetical Order The following iterative function determines whether a list of
lowercase words is in alphabetical order. Write the equivalent recursive function.

def isAlpha(L):

 ## Determine whether list of lowercase words is in alphabetical order.

 for i in range(len(L) - 1):

 if L[i] > L[i + 1]:

 return False

 return True

8. Sequence of Numbers The following iterative function displays a sequence of num-
bers. Write the equivalent recursive function.

def displaySequenceOfNumbers(m, n):

 ## Display the numbers from m to n, where m <= n.

 while m <= n:

 print(m)

 m = m + 1

9. Subsets The number of subsets of r elements that can be selected from a set of n ele-
ments is written as C(n , r). The value of C(n , r) is also the coefficient of x r in the bino-
mial expansion of (x + 1)n. If r = 0 or r = n, then the value of C(n, r) is 1. Otherwise,
C(n , r) = C(n - 1, r - 1) + C(n - 1, r). Write a program using a recursive function

 292 ◆ Chapter 6 Miscellaneous Topics

that allows n to be input by the user and displays the coefficients in the expansion of
(x + 1)n. See Fig. 6.23.

Figure 6.23 Possible outcome of Exercise 9.

Enter a positive integer: 5

1 5 10 10 5 1

Figure 6.24 Possible outcome of Exercise 10.

Enter a positive integer: 7

Fibonacci number: 13

10. Fibonacci Sequence The famous Fibonacci sequence, 1, 1, 2, 3, 5, 8, 13, . . . , begins
with two 1s. After that, each number is the sum of the preceding two numbers. Write
a program using a recursive function that requests an integer n as input and then dis-
plays the nth number of the Fibonacci sequence. See Fig. 6.24.

11. Greatest Common Divisor The greatest common divisor (GCD) of two nonnegative
integers is the largest integer that divides both numbers. For instance, GCD(6, 15) = 3
and GCD(9, 0) = 9. The standard algorithm for calculating the GCD of two num-
bers depends on the fact that GCD(m, n) = GCD(n, m % n), where % is the modulus
operator. Write a program that requests two positive integers as input and displays
their GCD. Use a recursive function (with n = 0 as the terminating case) to calculate
the GCD. See Fig. 6.25.

Figure 6.25 Possible outcome of Exercise 11.

Enter the first integer: 35

Enter the second integer: 14

GCD = 7

12. Mortgage The mortgage on a house is paid off in equal monthly payments for a
period of years. If p is the initial amount of the mortgage, pmt is the monthly pay-
ment, and r is the annual rate of interest, then the amount owed after n months can be
computed as

balance(p, pmt, r, n) = a1 +
r

1200
b * balance(p, pmt, r, n - 1) - pmt

Write a program that requests the amount of the mortgage, the monthly payment, the
annual rate of interest, and the number of months elapsed as input, and displays the
amount owed. See Fig. 6.26. Note: balance(p, pmt, r, 0) = p.

Figure 6.26 Possible outcome of Exercise 12.

Enter the principal: 204700

Enter the annual rate of interest: 4.8

Enter the monthly payment: 1073.99

Enter the number of monthly payments

made: 300

The amount still owed is $57,188.74.

Figure 6.27 Possible outcome of
Exercise 13.

Enter a state: Ohio

Enter a state: Texas

Enter a state: Oregon

Enter a state: End

Oregon

Texas

Ohio

13. Reverse Order Write a program that asks the user to input an arbitrary number of
names of states, and then displays the names in the reverse order they were entered.
Do not use lists or files to store the names. See Fig. 6.27.

14. Sum Function Suppose that the sum function for lists did not exist. Write a recur-
sive function that totals the numbers in a list of numbers.

Solutions to Practice Problems 6.4

1. n! = n # (n - 1) # (n - 2) # g # 3 # 2 # 1
As written, n! can be calculated iteratively with a for loop—however, when rewritten as

n! = n # ((n - 1) # (n - 2) # g # 3 # 2 # 1) = n # (n - 1)!

n! is expressed in terms of (n - 1)! and can be calculated recursively with n = 1 as the base case.

def factorial(n):

 if n == 1:

 return 1

 else:

 return n * factorial(n - 1)

2. HGFEDCBA

Recursive functions needn’t have numeric parameters.

Chapter 6 Key terms
and ConCepts ExAMPLES

6.1 Exception Handling

Table 6.1 contains a list of several
common exceptions. Exception handling
allows the programmer to deal with
runtime errors that otherwise might crash
the program. If an exception occurs while
the code in the try block is executing,
execution branches to the code in an
except clause that hopefully provides a
workaround. An else clause contains code
that runs if no exceptions have occurred.
Except clauses can be either exception
specific or activated by any exception.
The block of a finally clause is always
executed, even when no exceptions occur.

while True:

 try:

 s = "Enter a number: "

 num = float(input(s))

 except ValueError:

 print("You didn't",end="")

 print(" enter a number.")

 else:

 print("You entered", num)

 break

 finally:

 print("This prints ",end="")

 print("even when we break.")

6.2 Selecting Random Values

Three functions from the random module
that operate on lists are choice (selects an
item at random), sample (selects a sublist
of a specified size at random), and shuffle
(randomly reorders the items of the list).
The randint function selects a number at
random from a sequence of numbers.

import random

L = ["red", "blue", "tan", "gray"]

print(random.choice(L))

print(random.sample(L, 2))

random.shuffle(L)

print(L)

print(random.randint(1, 6))

 Key Terms and Concepts ◆ 293

 294 ◆ Chapter 6 Miscellaneous Topics

Chapter 6 Key terms
and ConCepts ExAMPLES

[Run, possible outcome]

tan

['tan', 'red']

['blue', 'gray', 'red', 'tan']

4

6.3 Turtle Graphics

Turtle graphics are drawn with a pen that
can be thought of as being attached to the
tail of a robotic turtle. The turtle responds
to commands from the turtle module. The
turtle can be instructed to raise or lower
the pen, use a specified color, rotate in
place, move to a designated point, move
forward or backward for a specified dis-
tance, draw a dot, and display text. When
the pen is lowered, the pen draws while
the turtle moves. If the set of statements
that draw an enclosed region are preceded
by t.begin_fill() and followed by
t.end_fill(), the inside of the region will
have the color specified by a statement of
the form t.fillcolor(colorName).

Section 6.3 defines functions that draw
rectangles, lines, dots, stars, and text with
specified locations, sizes, and colors. These
functions simplify writing programs that
draw flags and charts.

import turtle

t = turtle.Turtle()

t.hideturtle()

t.up() # raise the pen

move to (10,20) without drawing

t.goto(10,20)

draw red dot of diameter 6 with

center at (10,20)

t.dot(6, "red")

t.down() # lower the pen

t.pencolor("blue")

draw blue line from (10,20) to

(30,40)

t.goto(30,40)

display hi to right of (30,40)

t.write("hi")

2000

2.6

10.0

2002 2004

Percentage of College Freshmen Who Smoke

2006 2008 2010 2012

6.4 Recursion

A recursive function is a function that
calls itself, where successive calls reduce
a computation to smaller computations
of the same type until a base case with a
 trivial solution is reached.

def factorial(n):

 if n == 1: # base case

 return 1

 else:

 return n * factorial(n - 1)

CHAPTER 6 programming projeCts

1. Guess My Number Write a robust program that randomly selects a number from
1 through 100 and asks the user to guess the number. At each guess the user should
be told if the guess is proper, and if so, whether it is too high or too low. The user
should be told of the number of guesses when finally guessing the correct number.
See Fig. 6.28.

2. Analyze a Poker Hand Write a program using the file DeckOfCardsList.dat that
randomly selects and displays five cards from the deck of cards and determines which
of the following seven categories describes the hand: four- of- a- kind, full house (three
cards of one rank, two cards of another rank), three- of- a- kind, two pairs, one pair, or
 ranks- all- different. See Fig. 6.29. (Hint: Determine the number of different ranks in
the hand and analyze each of the four possible cases.)

Figure 6.28 Possible outcome of Programming Project 1.

I've thought of a number from 1 through 100.

Guess the number: 50

Too low

Try again: 123

Number must be from 1 through 100.

Try again: sixty

You did not enter a number.

Try again: 60

Too high

Try again: 56

Correct. You took 5 guesses.

Figure 6.29 Possible outcome of Programming Project 2.

K♥, K♦, 2♦, K♣, 5♠

 three- of- a- kind

3. Analyze a Bridge Hand Write a program using the file DeckOfCardsList.dat that
randomly selects and displays 13 cards from the deck of cards and gives the suit dis-
tribution. See Fig. 6.30.

Figure 6.30 Possible outcome of Programming Project 3.

10♥, 3♥, J♣, 2♣, 10♦, K♣, 2♥, 6♦, 6♣, 4♣, 7♦, 6♠, 4♦

Number of ♣ is 5

Number of ♦ is 4

Number of ♥ is 3

Number of ♠ is 1

4. American Flag The width (w) of the official American flag is 1.9 times the height

(h). The blue rectangular canton (referred to as the “union”) has width
2
5

 w and height
7

13
 h. Write a program that draws an American flag. See Fig. 6.31. The colorful insert

pages contain a picture of the flag with its true colors.

5. Permutations A reordering of the letters of a word is called a permutation of
the word. A word of n different characters has n! permutations where n! =
n # (n - 1) # (n - 2) # c # 2 # 1. For instance, the word python has 6! or 720 permuta-
tions. Some of its permutations are pythno, ypntoh, tonyhp, and ontphy. Write a program
that requests a word without repeated characters as input and then displays all the

 Programming Projects ◆ 295

 296 ◆ Chapter 6 Miscellaneous Topics

permutations of the word. See Fig. 6.32. (Hint: Suppose the word has six characters.
Consider the characters of the word one at a time. Then display the words beginning
with that character and followed by each of the 5! permutations of the remaining char-
acters of the word.)

Figure 6.31 Outcome of Programming Project 4.

Figure 6.33 Pascal’s Triangle.

 Row

 1 0

 1 1 1

 1 2 1 2

 1 3 3 1 3

 1 4 6 4 1 4

1 5 10 10 5 1 5

With the coefficients arranged in this way, each number in the triangle is the sum of
the two numbers directly above it (one to the left and one to the right). For example,
in row four, 1 is the sum of 1 (the only number above it), 4 is the sum of 1 and 3, 6 is
the sum of 3 and 3, and so on. Since each row can be calculated from the previous row,
recursion can easily be used to generate any row of Pascal’s triangle. Write a program
that prompts the user for a nonnegative integer n and then displays the numbers in the
nth row of the triangle. See Fig. 6.34.

Figure 6.32 Possible outcome of Programming Project 5.

Enter a word: ear

ear era aer are rea rae

6. Pascal’s Triangle The triangular array of numbers in Fig. 6.33 is called Pascal’s
triangle, in honor of the seventeenth century mathematician Blaise Pascal. The nth row
of the triangle gives the coefficients of the terms in the expansion of (1 + x)n. For
 instance, the 5th row tells us that

(1 + x)5 = 1 + 5x + 10x 2 + 10x 3 + 5x 4 + 1x 5

Enter a nonnegative integer: 6

Row 6: 1 6 15 20 15 6 1

Figure 6.34 Possible outcome of Programming Project 6.

297

7

7.1 Classes and Objects 298

◆  Built- in Classes  ◆  User- Defined Classes  ◆  Other Forms of the Initializer Method 

◆  Number of Methods in a Class Definition  ◆  Lists of Objects

7.2 Inheritance 311

◆  A Semester Grade Class  ◆  The “ is- a” Relationship  ◆  The isinstance Function 

◆  Adding New Instance Variables to a Subclass  ◆  Overriding a Method 

◆  Polymorphism

Key Terms and Concepts 323

Programming Projects 324

 Object- Oriented
Programming

 298 ◆ Chapter 7 Object-Oriented Programming

7.1 Classes and Objects

Practical experience in the financial, scientific, engineering, and software design industries
has revealed some difficulties with traditional program design methodologies. As programs
grow in size and become more complex, and as the number of programmers working on the
same project increases, the number of dependencies and interrelationships throughout the
code increases exponentially. A small change made by one programmer in one place may
have unintended effects in other places. The effects of this change may ripple throughout
the entire program, requiring the rewriting of a great deal of code along the way. A partial
solution to this problem is data hiding where, within a program, as much implementa-
tion detail as possible is hidden. Data hiding is an important principle underlying object-
 oriented programming. An object is an encapsulation of data and methods that act on the
data. A programmer using an object is concerned only with the tasks that the object can
perform and the parameters used by these tasks. The details of the data structures and
methods are hidden within the object.

 ■ Built- in Classes
We have been using the word object throughout this book. For instance, we have made the
following sorts of statements:

“Hello World!” is an object of type str.
[1, 2, 3] is an object of type list.

 Example 1 Object Types The following program identifies the types of the above
two objects. Notice that Python uses the word class instead of the word type in the output
of the program.

s = "Hello World!"

L = [1, 2, 3]

print(type(s))

print(type(L))

[Run]

<class 'str'>

<class 'list'>

 ■ User- Defined Classes
Python allows us to create our own classes, that is, data types. Like a Python built- in class,
each class we define will have a specified set of methods and each object (that is, instance)
of the class will have its own value(s). As an analogy, the difference between a class and an
object is often compared to the difference between a cookie cutter and a cookie. A cookie
cutter is a template that can be used to create cookies. You can’t eat a cookie cutter, but
you can eat the cookies it creates. A class is used to create objects that appear in programs.

All strings are instances of the class str, and all lists are instances of the class list.
Although each string holds its own value, all strings have the same methods. Similarly, all
lists have the same methods. We will refer to the data types str, int, float, list, tuple, diction-
ary, and set as built- in Python classes. We will refer to a specific literal from one of these
classes as an instance of the class.

 7.1 Classes and Objects ◆ 299

Class definitions have the general form

class ClassName:

 indented list of methods for the class

The class header consists of the reserved word class, followed by the name of the class, and
a colon. Class names must follow the same naming rules as variables. By convention, class
names begin with an uppercase letter and use camel casing.

Methods are defined much like ordinary functions. The main difference is that methods
have self as their first parameter. When an object (that is, an instance of the class) is created,
each method’s self parameter references the object so that the method knows which object
to operate on. Figure 7.1 shows a typical class definition.

class Rectangle:
def __init__(self, width=1, height=1):

self._width = width
self._height = height

def setWidth(self, width):
self._width = width

def setHeight(self, height):
self._height = height

def getWidth(self):
return self._width

def getHeight(self):
return self._height

def area(self):
return self._width * self._height

def perimeter(self):
return 2 * (self._width + self._height)

def __str__(self):
return ("Width: " + str(self._width)
+ "\nHeight: " + str(self._height))

Figure 7.1 A typical class definition.

The Rectangle class defined in Fig. 7.1 has variables that store the values for the width
and height of a rectangle. The first and last methods (_ _init_ _ and _ _str_ _) are special meth-
ods whose names have beginning and ending double underscores. (You should never name a
method of your own in such a way.) The _ _init_ _ method (also known as the constructor) is
automatically called when an object is created. It creates and assigns values to the instance
variables _width and _height that store the values for the object. Instance variables are also
called the properties of the class, and the collections of values of the instance variables
are called the state of the object. Unlike variables declared in other definitions, instance
variables are visible everywhere in the class. They can be accessed from every method in the
class. The _ _str_ _ method provides a customized way to represent the state of an object
as a string. The mutator methods are used to assign new values to the instance variables,
and the accessor methods are used to retrieve the values of instance variables. The other
methods operate on objects just like the methods we have been using in previous chapters
of the book.

A class is a template from which objects are created. The class specifies the properties
and methods that will be common to all objects that are instances of that class. Classes can
be either typed directly into programs or stored in modules and brought into programs

VideoNote

Defining
a Class

 300 ◆ Chapter 7 Object-Oriented Programming

with import statements. An object, which is an instance of a class, is created in a program
with a statement of the form

objectName = ClassName(arg1, arg2, . . .)

or

objectName = moduleName.ClassName(arg1, arg2, . . .)

This type of statement declares what type of object the variable will refer to, automatically
calls the class’ initializer, causes the parameter self to reference the object, and passes its
arguments to the other parameters of the initializer.

 Example 2 Rectangle Suppose the class Rectangle from Fig. 7.1 has been stored in the
file rectangle.py. The following program shows the effect of three different constructor
statements. The statement print(r) calls the special _ _str_ _ method that displays the state
of the object in a form specified by the programmer.

import rectangle

Create a rectangle of width 4 and height 5

r = rectangle.Rectangle(4, 5)

print(r)

print()

Create a rectangle with the default values for width and height

r = rectangle.Rectangle()

print(r)

print()

Create a rectangle of width 4 and default height 1

r = rectangle.Rectangle(4)

print(r)

[Run]

Width: 4

Height: 5

Width: 1

Height: 1

Width: 4

Height: 1

In Example 2, we used only two methods. The two special methods whose names began and
ended with double underscores were called implicitly. The method _ _init_ _ set the values of the
instance variables and the _ _str_ _ method (along with the print function) reported the values of
the instance variables. These same tasks, along with the computation of the area and perimeter of
the rectangle, can be carried out with the other methods of the Rectangle class. The two mutator
methods can be used to assign values to the instance variables, and the two accessor methods can
be used to obtain the values of the instance variables. The area and perimeter methods calculate
the values indicated by their names.

 7.1 Classes and Objects ◆ 301

However, such replacements are considered poor programming style. We have given instance
variables names beginning with a single underscore to indicate to users of the class that
these variables should not be directly accessed from outside of the class definition. They
should only be accessed from outside of the class definition via methods. One reason for
only using methods to access instance variables is that validity- checking code can be inserted
into the methods to make programs more robust. Also, one objective of object- oriented
programming is to hide the implementation of methods from the users of the class.

 ■ Other Forms of the Initializer Method
The way we defined the initializer of the Rectangle class gives the greatest flexibility to
the programmer. However, three other ways the initializer could have been defined are as
follows:

def _ _init_ _(self):

 self._width = 1

 self._height = 1

 Example 3 Rectangle The following program employs the Rectangle class methods
not used in Example 2 to set and get various measurements of a rectangle.

import rectangle

Create a rectangle with the default values for width and height

r = rectangle.Rectangle()

Use the mutators to assign values to the instance variables.

r.setWidth(4)

r.setHeight(5)

print("The rectangle has the following measurements:")

Use the accessor methods to retrieve the values of the instance variables.

print("Width is", r.getWidth())

print("Height is", r.getHeight())

Use methods to calculate the area and perimeter of the rectangle.

print("Area is", r.area())

print("Perimeter is", r.perimeter())

[Run]

The rectangle has the following measurements:

Width is 4

Height is 5

Area is 20

Perimeter is 18

Note: Instead of using the mutator methods in the fifth and sixth lines of the program in
Example 3, we could have replaced the two lines with the lines

r._width = 4

r._height = 5

Similarly, the accessor methods in the ninth and tenth lines could have been replaced with

print("Width is", r._width)

print("Height is", r._height)

 302 ◆ Chapter 7 Object-Oriented Programming

def _ _init_ _(self, width=1):

 self._width = width

 self._height = 1

def _ _init_ _(self, width, height):

 self._width = width

 self._height = height

With the third form of the initializer method, constructor statements must provide two
arguments. Also, like the parameters in any other functions, the parameters having default
values must come after those without default values.

 ■ Number of Methods in a Class Definition
Class definitions can contain as many methods as desired. The following valid class defini-
tion contains no methods.

class Trivial:

 Pass

 Example 4 Card The following program uses a class containing no mutator or acces-
sor methods.

import random

def main():

 ## Select a card at random.

 c = Card() # Create an instance of a Card object and call _ _init_ _ method.

 c.selectAtRandom() # Invokes the selectAtRandom method on the object c.

 print(c) # Calls the _ _str_ _ method that displays the returned value.

class Card:

 def _ _init_ _(self, rank="", suit=""):

 self._rank = rank

 self._suit = suit

 def selectAtRandom(self):

 ## Randomly select a rank and a suit.

 ranks = ['2', '3', '4', '5', '6', '7', '8', '9',

 "10", "jack", "queen", "king", "ace"]

 self._rank = random.choice(ranks)

 self._suit = random.choice(["spades", "hearts", "clubs", "diamonds"])

 def _ _str_ _(self):

 return (self._rank + " of " + self._suit)

main()

[Run. Outcomes will vary.]

queen of hearts

 Example 5 Semester Grade The following program uses a class containing no acces-
sor methods. The program requests a student’s name and two grades, and then calculates
the letter grade for the semester. The “LG” at the beginning of the class name signifies that

 7.1 Classes and Objects ◆ 303

the student is registered to receive a letter grade at the end of the semester. In Section 7.2 we
will consider a class named PFstudent that calculates the grade for a student who is registered
on a Pass/Fail basis. The mutator methods increase flexibility. See first Practice Problem.

def main():

 ## Calculate and display a student's semester letter grade.

 # Obtain student's name, grade on midterm exam, and grade on final.

 name = input("Enter student's name: ")

 midterm = float(input("Enter student's grade on midterm exam: "))

 final = float(input("Enter student's grade on final exam: "))

 # Create an instance of an LGstudent object.

 st = LGstudent(name, midterm, final)

 print("\nNAME\tGRADE")

 # Display student's name and semester letter grade.

 print(st)

class LGstudent:

 def _ _init_ _(self, name="", midterm=0, final=0):

 self._name = name

 self._midterm = midterm

 self._final = final

 def setName(self, name):

 self._name = name

 def setMidterm(self, midterm):

 self._midterm = midterm

 def setFinal(self, final):

 self._final = final

 def calcSemGrade(self):

 average = (self._midterm + self._final) / 2

 average = round(average)

 if average >= 90:

 return "A"

 elif average >= 80:

 return "B"

 elif average >= 70:

 return "C"

 elif average >= 60:

 return "D"

 else:

 return "F"

 def _ _str_ _(self):

 return self._name + "\t" + self.calcSemGrade()

main()

[Run]

Enter student's name: Fred

Enter student's grade on midterm exam: 87

Enter student's grade on final exam: 92

NAME GRADE

Fred A

 304 ◆ Chapter 7 Object-Oriented Programming

 ■ Lists of Objects
The items of a list can have any data type— including a user- defined class. The program in
Example 6 uses a list where each item is an LGstudent object.

 Example 6 Semester Grades In the following program, assume that the class
 LGstudent has been stored in the file lgStudent.py.

import lgStudent

def main():

 ## Calculate and display several students' semester letter grades.

 listOfStudents = [] # List to hold an object for each student.

 carryOn = 'Y'

 while carryOn == 'Y':

 st = lgStudent.LGstudent()

 # Obtain student's name, grade on midterm exam, and grade on final.

 name = input("Enter student's name: ")

 midterm = float(input("Enter student's grade on midterm exam: "))

 final = float(input("Enter student's grade on final exam: "))

 # Create an instance of an LGstudent object.

 st = lgStudent.LGstudent(name, midterm, final)

 listOfStudents.append(st) # Insert object into list.

 carryOn = input("Do you want to continue (Y/N)? ")

 carryOn = carryOn.upper()

 print("\nNAME\tGRADE")

 # Display students, names, and semester letter grades.

 for pupil in listOfStudents:

 print(pupil)

main()

[Run]

Enter student's name: Alice

Enter student's grade on midterm exam: 88

Enter student's grade on final exam: 94

Do you want to continue (Y/N)? Y

Enter student's name: Bob

Enter student's grade on midterm exam: 82

Enter student's grade on final exam: 85

Do you want to continue (Y/N)? N

NAME GRADE

Alice A

Bob B

 ■ Comments
1. Consider Example 4. If the Card class did not contain the _ _str_ _ method, the

statement print(c) would display something like <_ _main_ _.Card object at

0x0000000002FE1320>.

2. The statement objectName = ClassName(arg1, arg2, . . .) is said to instantiate
the object.

 7.1 Classes and Objects ◆ 305

3. Additional code can be added to mutator and accessor methods to prevent the object
from storing or returning invalid or corrupted data. For example, an if block could be
added to allow only grades between 0 and 100 to be processed.

4. The process of bundling together data and methods that operate on the data, while
hiding the implementation of the methods, is called encapsulation.

5. The parameter self is always the first parameter of every method in a class definition.
When a method is applied to an object, the object itself is implicitly passed to the self
parameter of the method definition.

6. We have given the name self to the parameter that refers to the object on which the
_ _init_ _ method was invoked. Any name, such as this, could have been used for the
parameter. However, self is almost universally used by Python programmers.

Practice Problems 7.1

1. Rewrite the main function in the Student Grade program of Example 5 under the
 assumption that that initializer method of LGstudent was changed to

 def _ _init_ _(self):

 self._name = ""

 self._midterm = 0

 self._final = 0

2. Add a line of code to the main function of the Student Grades program in Example 6 so
that the names will always be displayed in alphabetical order in the output.

ExErCIsEs 7.1

In Exercises 1 through 4, identify the errors.

1. class Triangle:
 def _ _init_ _(base, altitude):

 self._base = base

 self._altitude = altitude

2. class Triangle:
 def _ _init_ _(self, base, altitude)

 self._base = base

 self._altitude = altitude

3. class Triangle()
 def _ _init_ _(self, base, altitude)

 self._base = base

 self._altitude = altitude

4. class Triangle:
 def _ _init_ _(self, base=1, altitude):

 self._base = base

 self._altitude = altitude

 306 ◆ Chapter 7 Object-Oriented Programming

In Exercises 5 through 12, assume that the code shown below is contained in the file
circle.py and determine the output produced by the lines of code.

class Circle:

 def _ _init_ _(self, radius=1):

 self._radius = radius

 def setRadius(self, radius):

 self._radius = radius

 def getRadius(self):

 return self._radius

 def area(self):

 return 3.14 * self._radius * self._radius

 def circumference(self):

 return 2 * 3.14 * self._radius

5. import circle
c = circle.Circle()

print(c.getRadius())

6. import circle
c = circle.Circle()

print(c.area())

7. import circle
c = circle.Circle(4)

print(c.getRadius())

8. import circle
c = circle.Circle()

c.setRadius(5)

print(c.getRadius())

9. import circle
c = circle.Circle(2)

print(c.area())

10. import circle
c = circle.Circle(3)

print(c.circumference())

11. import circle
c = circle.Circle()

c.setRadius(3)

print(c.circumference())

12. import circle
c = circle.Circle()

c.setRadius(2)

print(c.area())

In Exercises 13 and 14, assume that the code shown below is contained in the file point.py.

class Point:

 def _ _init_ _(self, x, y):

 self._x = x

 self._y = y

 def distanceFromOrigin(self):

 return (self._x ** 2 + self._y ** 2) ** .5

13. Point in Plane Write a program that requests the coordinates of a point as input and
then displays the distance of the point from the origin. See Fig. 7.2.

Enter x- coordinate of point: 8

Enter y- coordinate of point: -15

Distance from origin: 17.00

Figure 7.2 Possible outcome of Exercise 13. Figure 7.3 Possible outcomes of Exercise 14.

Enter x- coordinate of first point: 2

Enter y- coordinate of first point: 3

Enter x- coordinate of second point: 7

Enter y- coordinate of second point: 15

Distance between points: 13.00

 7.1 Classes and Objects ◆ 307

14. Distance Between Two Points Write a program that requests the coordinates of
two points as input and then displays the distance between the two points. See Fig. 7.3.
Note: The distance between the points (x1, y1) and (x2, y2) is the same as the distance of
the point (x2 - x1, y2 - y1) from the origin.

In Exercises 15 through 18, assume that the code shown below is contained in the file
pairOfDice.py.

import random

class PairOfDice:
 def _ _init_ _(self):
 self._redDie = 0
 self._blueDie = 0

 def getRedDie(self):
 return self._redDie

 def getBlueDie(self):
 return self._blueDie

 def roll(self):
 self._redDie = random.choice(range(1, 7))
 self._blueDie = random.choice(range(1, 7))

 def sum(self):

 return self._redDie + self._blueDie

15. Dice Write a program that displays the outcome from rolling a pair of dice (a red die
and a blue die). See Fig. 7.4.

Red die: 4

Blue die: 2

Total: 6

Figure 7.4 Possible outcome of Exercise 15. Figure 7.5 Possible outcomes of Exercise 16.

Player 1: 8

Player 2: 6

Player 1 wins.

Player 1: 7

Player 2: 7

TIE

16. Dice Write a program for a game in which each of two players rolls a pair of dice.
The person with the highest tally wins. See Fig. 7.5. The program should use two
 instances of the class PairOfDice.

17. Dice Write a program that rolls a pair of dice 100,000 times, and displays the per-
centage of times that the sum of the two faces is 7. (Note: The outcome should be
around 16.67%.)

18. Dice One of the earliest probability problems was posed in 1654 by Chevalier de
Méré, a French nobleman with an interest in gambling. A casino was betting even odds
that the gambler would get at least one double- six in 24 throws of a pair of dice. Chev-
alier de Méré asked some prominent mathematicians to determine if the game favored
the house or the gambler. Write a program that repeats the 24 rolls 10,000 times and
determines the percentage of times that at least one double- six appeared. (Note: The
outcome should be around .4914. Therefore, the game slightly favors the gambler.)

In Exercises 19 through 24, assume that the code shown below is contained in the file
pCard.py and determine the output produced by the lines of code.

import random

class PlayingCard:

 def _ _init_ _(self, rank="queen", suit="hearts"):

 308 ◆ Chapter 7 Object-Oriented Programming

 self._rank = rank

 self._suit = suit

 def setRank(self, rank):

 self._rank = rank

 def setSuit(self, suit):

 self._suit = suit

 def getRank(self):

 return self._rank

 def getSuit(self):

 return self._suit

 def selectAtRandom(self):

 ## Randomly select a rank and a suit.

 ranks = ['2', '3', '4', '5', '6', '7', '8', '9',

 "10", "jack", "queen", "king", "ace"]

 self._rank = random.choice(ranks)

 self._suit = random.choice(["spades", "hearts", "clubs", "diamonds"])

 def _ _str_ _(self):

 return(self._rank + " of " + self._suit)

19. import pCard
c = pCard.PlayingCard()

print(c)

20. import pCard
c = pCard.PlayingCard()

print(c.getRank())

21. import pCard
c = pCard.PlayingCard()

c.setRank("10")

c.setSuit("clubs")

print(c)

22. import pCard
c = pCard.PlayingCard()

c.setSuit("diamonds")

print(c.getSuit())

23. import pCard
c = pCard.PlayingCard('7')

print(c)

24. import pCard
c = pCard.PlayingCard('5', "clubs")

print(c)

25. Cards Write a program that displays a face card (jack, queen, or king) selected at ran-
dom. Use the class pCard defined above.

26. Cards Write a program that displays a card with suit diamond selected at random.
Use the class pCard defined above.

27. Fraction Create a class named Fraction having instance variables for numerator and
denominator, and a method that reduces a fraction to lowest terms by dividing the
numerator and denominator by their greatest common divisor. (Exercise 17 of Sec-
tion 3.3 gives an algorithm for calculating the greatest common divisor of two num-
bers.) Save the class in the file fraction.py. Note: This class will be used in Exercis-
es 28 through 30.

28. Reduce a Fraction Write a program that requests a fraction as input and reduces
the fraction to lowest terms. See Fig. 7.6. Use the class Fraction created in Exercise 27.

Figure 7.6 Possible outcome of Exercise 28.

Enter numerator of fraction: 12

Enter denominator of fraction: 30

Reduction to lowest terms: 2/5

 7.1 Classes and Objects ◆ 309

29. Convert a Decimal to a Fraction Write a program that converts a decimal number
to an equivalent fraction. See Fig. 7.7. Use the class Fraction created in Exercise 27.

Figure 7.7 Possible outcome of Exercise 29.

Enter a positive decimal number less than 1: .375

Converted to fraction: 3/8

30. Add Fractions Write a program to find and display the roots of a quadratic
 equation if the equation is of the form ax2 + bx + c and the roots are real.

Note: x =
-b±2b2-4ac

2a
, x is real if b2 - 4ac > 0

Figure 7.8 Possible outcome of Exercise 30.

Enter numerical coefficient a: 6

Enter numerical coefficient b: 3

Enter numerical coefficient c: -63

The roots are 3.0 and -3.5

31. Earnings Write a program that requests an hourly worker’s name, hours worked,
and hourly wage, and then calculates his or her week’s pay. The program should contain
a class named Wages with instance variables for a worker’s name, hours worked, and
hourly wage, and a method named payForWeek. See Fig. 7.9. Note: Federal law requires
that hourly employees be paid “ time- and- a- half” for work in excess of 40 hours in a
week.

Figure 7.9 Possible outcome of Exercise 31.

Enter person's name: Alice

Enter number of hours worked: 45

Enter hourly wage: 20

Pay for Alice: $950.00

Figure 7.10 Possible outcome of Exercise 32.

Enter grade on quiz 1: 9

Enter grade on quiz 2: 10

Enter grade on quiz 3: 5

Enter grade on quiz 4: 8

Enter grade on quiz 5: 10

Enter grade on quiz 6: 10

Quiz average: 9.4

32. Quiz Grades An instructor gives six quizzes during a semester with quiz grades
0 through 10, and drops the lowest grade. Write a program to find the average of
the remaining five grades. The program should use a class named Quizzes that has an
 instance variable to hold a list of the six grades, a method named average, and a _ _str_ _
method. See Fig. 7.10.

In Exercises 33 and 34, use the class PlayingCard given before Exercise 19 and saved in
the file pCard.py. Each program should create a list of 52 playing cards.

33. Poker Hand Write a program to randomly select and display five cards from a
deck of cards. Cards having the same rank should appear adjacent to one another. See
Fig. 7.11 on the next page.

 310 ◆ Chapter 7 Object-Oriented Programming

34. Bridge Hand Write a program to randomly select and display 13 cards from a deck
of cards. The cards should be sorted by suits in the order spades, hearts, diamonds, and
clubs. See Fig. 7.12.

35. Proceed to Checkout Write a program that checks out the items in the user’s cart
on a shopping website. The program should use a class named Purchase to hold the
 information about a single item purchased (that is, description, price, and quantity) and
a class named Cart to hold a list whose items are objects of type Purchase. See Fig. 7.13.

Figure 7.11 Possible outcome of
Exercise 33.

6 of diamonds

6 of clubs

king of spades

king of clubs

king of hearts

Figure 7.12 Partial possible outcome of
Exercise 34.

4 of spades

7 of spades

 f
3 of hearts

queen of diamonds

jack of clubs

8 of clubs

Figure 7.13 Possible outcome of Exercise 35.

Enter description of article: shirt

Enter price of article: 35

Enter quantity of article: 3

Do you want to enter more articles (Y/N)? Y

Enter description of article: tie

Enter price of article: 15

Enter quantity of article: 2

Do you want to enter more articles (Y/N)? N

ARTICLE PRICE QUANTITY

shirt $35.00 3

tie $15.00 2

TOTAL COST: $135.00

36. Toll Booth Register Write a program to count the number of vehicles and the
amount of money collected at a toll booth. The program should use a class named
Register with instance variables for the number of vehicles processed and the total
amount of money collected. One dollar should be collected for each car and two dol-
lars for each truck. See Fig. 7.14.

Figure 7.14 Possible outcome of Exercise 36.

Enter type of vehicle (car/truck): car

Number of vehicles: 1

Money Collected: $1.00

Do you want to enter more vehicles (Y/N)? Y

Enter type of vehicle (car/truck): truck

Number of vehicles: 2

Money Collected: $3.00

Do you want to enter more vehicles (Y/N)? N

Have a good day.

 7.2 Inheritance ◆ 311

solutions to Practice Problems 7.1

1. def main():
 st = LGstudent()

 # Obtain student's name, grade on midterm exam, and grade on final.

 name = input("Enter student's name: ")

 st.setName(name)

 midterm = float(input("Enter student's grade on midterm exam: "))

 st.setMidterm(midterm)

 final = float(input("Enter student's grade on final exam: "))

 st.setFinal(final)

 # Display student's name and semester letter grade.

 print("\nNAME\tGRADE")

 print(st)

The version of the _ _init_ _ method in this practice problem is less flexible than the version in Example 5,
since it requires the use of mutators, whereas in Example 5 the programmer can assign values to the
 instance variables with or without mutators.

2. Precede the for statement with the following statement:

listOfStudents.sort(key=lambda x: x.getName())

7.2 Inheritance

Inheritance is a feature of object- oriented programming that allows us to define a new class
(called the subclass, child class, or derived class) that is a modified version of an existing
class (called the superclass, parent class, or base class). The subclass inherits properties and
methods of the superclass in addition to adding some of its own properties and methods,
and overriding some of the superclass’ methods.

 ■ A semester Grade Class
Consider the class LGstudent presented in Example 5 of Section 7.1. LGstudent could have
been defined as a subclass of a superclass named Student.

 Example 1 Create Two Subclasses In the following class definitions, the statements

class LGstudent(Student):

and

class PFstudent(Student):

specify that LGstudent and PFstudent are subclasses of the superclass Student and inherit
all the properties and methods of the class Student. Students in the class PFstudent receive
either Pass or Fail as their semester grades.

class Student:

 def _ _init_ _(self, name="", midterm=0, final=0):

 self._name = name

 self._midterm = midterm

 self._final = final

 def setName(self, name):

 self._name = name

VideoNote

Inheritance

 312 ◆ Chapter 7 Object-Oriented Programming

 def setMidterm(self, midterm):

 self._midterm = midterm

 def setFinal(self, final):

 self._final = final

 def getName(self):

 return self._name

 def _ _str_ _(self):

 return self._name + "\t" + self.calcSemGrade()

class LGstudent(Student):

 def calcSemGrade(self):

 average = round((self._midterm + self._final) / 2)

 if average >= 90:

 return 'A'

 elif average >= 80:

 return 'B'

 elif average >= 70:

 return 'C'

 elif average >= 60:

 return 'D'

 else:

 return 'F'

class PFstudent(Student):

 def calcSemGrade(self):

 average = round((self._midterm + self._final) / 2)

 if average >= 60:

 return "Pass"

 else:

 return "Fail"

 Example 2 Semester Grades The following function creates a list of both types of
students and uses the list to display the names of the students and their semester grades,
where the names are displayed in alphabetical order. Assume that the class definitions in
Example 1 are contained in the file student.py.

import student

def main():

 listOfStudents = obtainListOfStudents() # students and grades

 displayResults(listOfStudents)

def obtainListOfStudents():

 listOfStudents = []

 carryOn = 'Y'

 while carryOn == 'Y':

 name = input("Enter student's name: ")

 midterm = float(input("Enter student's grade on midterm exam: "))

 final = float(input("Enter student's grade on final exam: "))

 category = input("Enter category (LG or PF): ")

 if category.upper() == "LG":

 st = student.LGstudent(name, midterm, final)

 7.2 Inheritance ◆ 313

 ■ The “ is- a” relationship
Child classes are specializations of their parent’s class. They normally have all the charac-
teristics of their parents, but more functionality. Such child classes have a so- called “ is- a”
relationship with their parent class. For instance, consider Example 2. Each letter- grade
student is a student. Similarly, each pass- fail student is a student.

Some parent– child pairs appearing in the exercises are shown in Table 7.1. In each pair,
the child is a specialized version of the parent and each child satisfies the “ is- a” relationship
with the parent.

 else:

 st = student.PFstudent(name, midterm, final)

 listOfStudents.append(st)

 carryOn = input("Do you want to continue (Y/N)? ")

 carryOn = carryOn.upper()

 return listOfStudents

def displayResults(listOfStudents):

 print("\nNAME\tGRADE")

 listOfStudents.sort(key=lambda x: x.getName()) # Sort students by name.

 for pupil in listOfStudents:

 print(pupil)

main()

[Run]

Enter student's name: Bob

Enter student's grade on midterm exam: 79

Enter student's grade on final exam: 85

Enter category (LG or PF): LG

Do you want to continue (Y/N)? Y

Enter student's name: Alice

Enter student's grade on midterm exam: 92

Enter student's grade on final exam: 96

Enter category (LG or PF): PF

Do you want to continue (Y/N)? Y

Enter student's name: Carol

Enter student's grade on midterm exam: 75

Enter student's grade on final exam: 76

Enter category (LG or PF): LG

Do you want to continue (Y/N)? N

NAME GRADE

Alice Pass

Bob B

Carol C

Table 7.1 some parent–child pairs.

Parent Children

employee hourly employee, salaried employee
mortgage mortgage with points, interest- only mortgage
regular polygon equilateral triangle, square

 314 ◆ Chapter 7 Object-Oriented Programming

 ■ The isinstance Function
A statement of the form

isinstance(object, className)

returns True if object is an instance of the named class or any of its subclasses, and other-
wise returns False. The isinstance function can be applied to both built- in and user- defined
classes. Table 7.2 shows the values of some expressions involving the isinstance function.

Table 7.2 some expressions involving the isinstance function.

Expression Value Expression Value

isinstance("Hello", str) True isinstance((), tuple) True

isinstance(3.4, int) False isinstance({'b':"be"}, dict) True

isinstance(3.4, float) True isinstance({}, dict) True

isinstance([1, 2, 3], list) True isinstance({1, 2, 3}, set) True

isinstance([], list) True isinstance({}, set) False

isinstance((1, 2, 3), tuple) True isinstance(set(), set) True

 Example 3 Semester Grades The following function displays semester grades as in
Example 2. However, the addition of a few lines of code to the displayResults function results
in the program counting the number of letter- grade and the number of pass- fail students.
As each student is displayed, the isinstance function is used to count the number of letter-
 grade students. The expanded displayResults function is as follows:

def displayResults(listOfStudents):

 print("\nNAME\tGRADE")

 numberOfLGstudents = 0 # Counter for number of letter- grade students.

 listOfStudents.sort(key=lambda x: x.getName())

 for pupil in listOfStudents:

 print(pupil)

 # Keep track of number of letter- grade students.

 if isinstance(pupil, student.LGstudent):

 numberOfLGstudents += 1

 # Display number of students in each category.

 print("Number of letter- grade students:", numberOfLGstudents)

 print("Number of pass- fail students:",

 len(listOfStudents) - numberOfLGstudents)

The following output results when the program from Example 2 is run with the revised
displayResults function.

NAME GRADE

Alice Pass

Bob B

Carol C

Number of letter- grade students: 2

Number of pass- fail students: 1

 7.2 Inheritance ◆ 315

 ■ Adding New Instance Variables to a subclass
So far, the child classes in our examples have only added functions to their parent classes.
However, they can also add properties, that is, instance variables. In that situation, the
child class must contain an initializer method which draws in the parent’s properties and
then adds its own new properties. The parameter list in the header of the child’s initializer
method should begin with self, list the parent’s parameters, and add on the new child’s
parameters. The first line of the block should have the form

super()._ _init_ _(parentParameter1, . . . , parentParameterN)

This line should be followed by standard declaration statements for the new parameters of
the child.

 Example 4 PFstudent The following class definition adds a new parameter to the
class PFstudent. We will assume that pass– fail students can be registered as either full- time
or part- time. The new Boolean- valued parameter (named _fullTime) has the value True for
 full- time students and the value False for part- time students.

class PFstudent(Student):

 def _ _init_ _(self, name="", midterm=0, final=0, fullTime=True):

 super()._ _init_ _(name, midterm, final) # Import base's parameters.

 self._fullTime = fullTime

 def setFullTime(self, fullTime):

 self._fullTime = fullTime

 def getFullTime(self):

 return self._fullTime

 def calcSemGrade(self):

 average = round((self._midterm + self._final) / 2)

 if average >= 60:

 return "Pass"

 else:

 return "Fail"

 def _ _str_ _(self):

 if self._fullTime:

 status = " Full- time student"

 else:

 status = " Part- time student"

 return (self._name + "\t" + self.calcSemGrade() +

 "\t" + status)

 Example 5 Semester Grade and Status Assume that the file studentWithStatus.py
is a modified version of the file student.py, where the definition of the class PFstudent has
been replaced with the altered version shown in Example 4.

import studentWithStatus

def main():

 ## Calculate and display a student's semester letter grade and status.

 # Obtain student's name, grade on midterm exam, and grade on final.

 316 ◆ Chapter 7 Object-Oriented Programming

 ■ Overriding a Method
A subclass can change the behavior of an inherited method. If a method defined in the
subclass has the same name as a method in its superclass, the child’s method will override
the parent’s method.

 name = input("Enter student's name: ")

 midterm = float(input("Enter student's grade on midterm exam: "))

 final = float(input("Enter student's grade on final exam: "))

 category = input("Enter category (LG or PF): ")

 if category.upper() == "LG":

 st = studentWithStatus.LGstudent(name, midterm, final)

 else:

 question = input("Is" + name + "a full time student (Y/N)? ")

 if question.upper() == 'Y':

 fullTime = True

 else:

 fullTime = False

 st = studentWithStatus.PFstudent(name, midterm, final, fullTime)

 # Display student's name, semester letter grade, and status.

 semesterGrade = st.calcSemGrade()

 print("\nNAME\tGRADE\tSTATUS")

 print(st)

main()

[Run]

Enter student's name: Alice

Enter student's grade on midterm exam: 92

Enter student's grade on final exam: 96

Enter category (LG or PF): PF

Is Alice a full-time student (Y/N)? N

NAME GRADE STATUS

Alice Pass Part- time student

 Example 6 Semester Grade The following program is an alternate version of
Example 2, where PFstudent is defined as a subclass of LGstudent. Although the two classes
do not have an “ is- a” relationship, this new class definition is shorter and easier to read than
the original definition.

def main():

 listOfStudents = obtainListOfStudents() # students and grades

 displayResults(listOfStudents)

def obtainListOfStudents():

 listOfStudents = []

 carryOn = 'Y'

 while carryOn == 'Y':

 name = input("Enter student's name: ")

 midterm = float(input("Enter student's grade on midterm exam: "))

 final = float(input("Enter student's grade on final exam: "))

VideoNote

Overriding

 7.2 Inheritance ◆ 317

 category = input("Enter category (LG or PF): ")

 if category.upper() == "LG":

 st = LGstudent(name, midterm, final)

 else:

 st = PFstudent(name, midterm, final)

 listOfStudents.append(st)

 carryOn = input("Do you want to continue (Y/N)? ")

 carryOn = carryOn.upper()

 return listOfStudents

def displayResults(listOfStudents):

 print("\nNAME\tGRADE")

 listOfStudents.sort(key=lambda x: x.getName())

 for pupil in listOfStudents:

 print(pupil)

class LGstudent:

 def _ _init_ _(self, name="", midterm=0, final=0):

 self._name = name

 self._midterm = midterm

 self._final = final

 def setName(self, name):

 self._name = name

 def setMidterm(self, midterm):

 self._midterm = midterm

 def setFinal(self, final):

 self._final = final

 def getName(self):

 return self._name

 def calcSemGrade(self):

 average = round((self._midterm + self._final) / 2)

 if average >= 90:

 return "A"

 elif average >= 80:

 return "B"

 elif average >= 70:

 return "C"

 elif average >= 60:

 return "D"

 else:

 return "F"

 def _ _str_ _(self):

 return self._name + "\t" + self.calcSemGrade()

class PFstudent(LGstudent):

 def calcSemGrade(self):

 average = round((self._midterm + self._final) / 2)

 if average >= 60:

 return "Pass"

 else:

 return "Fail"

main()

 318 ◆ Chapter 7 Object-Oriented Programming

 ■ Polymorphism
In Example 1, the child classes LGstudent and PFstudent have calcSemGrade methods with
the same header but with different definitions. The feature of Python (and every object-
 oriented programming language) that allows two classes to use the same method name
(but with different implementations) is called polymorphism. The program in Example 2
adjusts the implementation of the calcSemGrade method depending on the type of
object that calls it. The word polymorphism is derived from a Greek word meaning “many
forms.”

Practice Problems 7.2

1. What is the output of the following program?

def main():

 creature = Vertebrate()

 print(creature.msg())

 print(isinstance(creature, Animal))

class Animal:

 def msg(self):

 return("Can Move.")

class Vertebrate:

 def msg(self):

 return("Has a backbone.")

main()

2. If the line

class Vertebrate:

in Problem 1 is changed to

class Vertebrate(Animal):

how will the output of the program be affected?

ExErCIsEs 7.2

In Exercises 1 through 4, determine the output of the code where the code uses the
following classes:

class RegularPolygon:

 def _ _init_ _(self, side=1):

 self._side = side

class Square(RegularPolygon):

 def area(self, side):

 return side * side

class EquilateralTriangle(RegularPolygon):

 def area(self, side):

 return side * side * 0.433

 7.2 Inheritance ◆ 319

1. sq = Square()
print(sq.area(2))

2. et = EquilateralTriangle()
print(et.area(1))

3. sq = Square()
et = EquilateralTriangle()

print(et.area(sq.area(2)))

4. sq = Square()
et = EquilateralTriangle()

print(sq.area(et.area(2)))

5. What is the output of the following program?

def main():

 r = Rectangle(2, 3)

 print("The {0} has area {1:,.2f}.".format(r.name(), r.area()))

class Shape:

 def _ _init_ _(self, width=1, height=1):

 self._width = width

 self._height = height

 def setWidth(self, width):

 self._width = width

 def setHeight(self, height):

 self._height = height

class Rectangle(Shape):

 def name(self):

 return "rectangle"

 def area(self):

 return (self._width * self._height)

main()

6. What is the output of the program in Exercise 5 if the second line of code is replaced
with the following two lines of code?

r = Rectangle(5)

r.setHeight(6)

The programs in Exercises 7 and 8 illustrate the concept of polymorphism. Determine
the output of these programs.

7. def main():

class Shape:

 def __init__(self, l, h):

 self._length = l

 self._height = h

class Rectangle(Shape):

 def area(self):

 return self._length * self._height

 320 ◆ Chapter 7 Object-Oriented Programming

class Triangle(Shape):

 def area(self):

 return (self._length * self._height) / 2

 calculateArea = Rectangle(5,10)

 print("Area of Rectangle is: " + str(calculateArea.area()))

 calculateArea = Triangle(5,10)

 print("Area of Triangle is: " + str(calculateArea.area()))

main()

8. def main():

class TempratureConversion:

 def __init__(self, temp = 1):

 self._temp = temp

class CelsiusToFahrenheit(TempratureConversion):

 def conversion(self):

 return (self._temp * 9) / 5 + 32

class CelsiusToKelvin(TempratureConversion):

 def conversion(self):

 return self._temp + 273.15

 tempInCelsius = float(input("Enter the temprature in Celsius: "));

 convert = CelsiusToKelvin(tempInCelsius)

 print(str(convert.conversion()) + " Kelvin")

 convert = CelsiusToFahrenheit(tempInCelsius)

 print(str(convert.conversion()) + " Fahrenheit")

main()

9. Semester Grades Modify the program in Example 2 so that only the names of the
 letter- grade students with the grade A are displayed.

10. Semester Grades Modify the program in Example 2 so that only the names of the
 pass– fail students who pass are displayed.

11. Rock, Paper, Scissors Write a program to play a three- game match of “rock, paper,
scissors” between a person and a computer. See Fig. 7.15. The program should use a
class named Contestant having two subclasses named Human and Computer. After the
person makes his or her choice, the computer should make its choice at random. The
Contestant class should have instance variables for name and score. (Note: Rock beats
scissors, scissors beats paper, and paper beats rock.)

 7.2 Inheritance ◆ 321

12. Semester Grades Redo Example 2 so that each subclass has its own _ _str_ _ method,
and therefore the program will illustrate polymorphism with the _ _str_ _ methods.
Assume that all letter- grade students are full- time students, but that pass– fail students
might be either full- time or part- time. The output of the program should give each
student’s name, grade, and status. See Fig. 7.16.

Enter name of human: Garry

Enter name of computer: Big Blue

Garry, enter your choice: rock

Big Blue chooses paper

Garry: 0 Big Blue: 1

Garry, enter your choice: scissors

Big Blue chooses paper

Garry: 1 Big Blue: 1

Garry, enter your choice: rock

Big Blue chooses scissors

Garry: 2 Big Blue: 1

GARRY WINS

Figure 7.15 Possible outcome of Exercise 11.

Enter student's name: Bob

Enter student's grade on midterm exam: 79

Enter student's grade on final exam: 85

Enter category (LG or PF): LG

Do you want to continue (Y/N)? Y

Enter student's name: Alice

Enter student's grade on midterm exam: 92

Enter student's grade on final exam: 96

Enter category (LG or PF): PF

Are you a full- time student (Y/N)? N

Do you want to continue (Y/N)? N

NAME GRADE STATUS

Alice Pass Part- time student

Bob B Full- time student

Figure 7.16 Possible outcome of Exercise 12.

Exercises 13 through 16 involve mortgages. A mortgage is a long- term loan used to
purchase a house. The house is used as collateral to guarantee the loan. The amount
borrowed, called the principal, is paid off in monthly payments over a stated number
of years called the term (usually 25 or 30 years). The amount of the monthly payment
depends on the principal, the interest rate, and the term of the mortgage.

13. Mortgage If A dollars are borrowed at r% interest compounded monthly to pur-
chase a house with monthly payments for n years, then the monthly payment is given
by the formula

 322 ◆ Chapter 7 Object-Oriented Programming

monthly payment =
i

1 - (1 + i)-12n # A,

where i =
r

1200
.

Create a class named Mortgage with instance variables for principal, interest rate, and
term, and a method named calculateMonthlyPayment.

14. Mortgage Write a program that uses the class Mortgage from Exercise 13 to calculate
the monthly payment where the principal, interest rate, and term are input by the user.
See Fig. 7.17.

Figure 7.17 Possible outcome of Exercise 14.

Enter principal of mortgage: 350000

Enter percent interest rate: 5.25

Enter duration of mortgage in years: 30

Monthly payment: $1,932.71

15. Interest- Only Mortgage With an interest- only mortgage, the monthly payment
for a certain number of years (usually, five or ten years) consists only of interest pay-
ments. At the end of the interest- only period, the amount owed is the original prin-
cipal and the monthly payment is determined by the number of years remaining. We
will assume that the interest rate for the second period is the same as the interest rate
for the first period. With some interest- only mortgages, the interest rate is reset to
conform to prevailing interest rates at that time.

Create a class named InterestOnlyMortgage that is a subclass of the class Mortgage from
Exercise 13. The class should inherit the instance variables from its parent class and
have an additional instance variable named numberOfInterestOnlyYears, a method to
calculate the monthly payment for the interest- only years, a mutator method named
setTerm, and an accessor method named getTerm. Write a program that uses the class
 InterestOnlyMortgage to calculate the monthly payment where the principal, interest
rate, term, and number of interest- only years are input by the user. The program should
calculate the monthly payments for the early years and for the later years. See Fig. 7.18.

Figure 7.18 Possible outcome of Exercise 15.

Enter principal of mortgage: 350000

Enter percent interest rate: 5.25

Enter duration of mortgage in years: 30

Enter number of interest- only years: 10

Monthly payment for first 10 years: $1,531.25

Monthly payment for last 20 years: $2,358.45

16. Mortgage with Points Some loans carry discount points. Each discount point
 requires the borrower to pay up- front an additional amount of money equal to 1% of
the stated loan amount. For instance, for a $200,000 mortgage with 3 discount points,
the purchaser must pay $6,000 immediately. Even though this payment has the effect
of reducing the loan to $194,000, the monthly payment is calculated using a principal

 Key Terms and Concepts ◆ 323

of $200,000. The up- front interest payment is tax deductible and the interest rate on
a mortgage with points is slightly lower than the interest rate on a standard mortgage
without points. Mortgages with discount points usually are advantageous to people
who intend to keep their house for more than seven years.

Create a class named MortgageWithPoints that is a subclass of the class Mortgage from
Exercise 13. The class should inherit the instance variables from its parent class, have an
additional instance variable named numberOfPoints, and have an additional method to
calculate the cost of the points. Write a program that uses the class Mortgage WithPoints
to calculate the monthly payment where the principal, interest rate, term, and number
of discount points are input by the user. See Fig. 7.19.

Figure 7.19 Possible outcome of Exercise 16.

Enter principal of mortgage: 350000

Enter percent interest rate: 5

Enter duration of mortgage in years: 30

Enter number of discount points: 2

Cost of discount points: $7,000.00

Monthly payment: $1,878.88

solutions to Practice Problems 7.2

1. Has a backbone.
False

2. Since every instance of a subclass is also an instance of its superclass, the output will change to

Has a backbone.
True

Chapter 7 Key terms
AND CONCEPTs

ExAMPLEs

7.1 Classes and Objects

Python has many built- in classes such as int,
float, str, list, tuple, bool, dict, and set.

An object is an entity that stores data (in
instance variables), and has methods that
 manipulate the data. A class is a template from
which objects are created. The header of a class
definition has the form class ClassName:. The
first method is usually an initializer named
_ _init_ _ that is called automatically when an
object is created. The first parameter of the
initializer is named self. The parameter self is a
variable that refers to the object itself.

print(type(2), type({1:"one"}))

[Run]

<class 'int'> <class 'dict'>

class Rectangle:

 def _ _init_ _(self, width=1,

 height=1):

 self._width = width

 self._height = height

 324 ◆ Chapter 7 Object-Oriented Programming

Chapter 7 Key terms
AND CONCEPTs

ExAMPLEs

An object is created with a statement of
the form
objectName = ClassName(arg1, arg2, ...)

Data are stored in instance variables and
accessed by methods called mutators (change
values of instance variables) and accessors
(retrieve values of instance variables).

The _ _str_ _ method returns a customized
string representation of an object.

r = Rectangle(4, 5)

def setWidth(self, width):

 self._width = width

def getWidth(self):

 return self._width

def _ _str_ _(self):

 return ("Width: " +

 str(self._width))

7.2 Inheritance

Inheritance allows a new class (called the
subclass, child class, or derived class) to
be created from an existing class (called the
superclass, parent class, or base class) and to
inherit its instance variables and methods.

Usually a child object has an “ is- a”
relationship with its parent.

The isinstance function is used to identify the
type of an object.

When a child class creates a new instance
variable, it must include a super function in its
initializer block to pull in its parent’s instance
variables.

A method defined in a child class with the
same name as a method in its parent class
overrides the parent’s method.

Polymorphism is the ability to use the same
syntax for objects of different types.

parent

class LGstudent(Student)

child

Every letter- grade student is a student.

st = LGstudent()

print(isinstance(st, LGstudent))

[Run]
True

super()._ _init_ _(name, midterm,

 final)

Chapter 7 PrOGrAMMING PrOjECTs

1. United Nations The file UN.txt gives data about the 193 members of the United
Nations. Each line of the file contains four pieces of data about a country— name, con-
tinent, population (in millions), and land area (in square miles). Some lines of the file are

Canada,North America,34.8,3855000

France,Europe,66.3,211209

New Zealand,Australia/Oceania,4.4,103738

Nigeria,Africa,177.2,356669

 Programming Projects ◆ 325

Pakistan,Asia,196.2,310403

Peru,South America,30.1,496226

(a) Create a class named Nation with four instance variables to hold the data for a
country and a method named popDensity that calculates the population density of
the country. Write a program that uses the class to create a dictionary of 193 items,
where each item of the dictionary has the form

name of a country: Nation object for that country

Use the file UN.txt to create the dictionary, and save the dictionary in a pickled
binary file named nationsDict.dat. Also, save the class Nation in a file named
 nation.py.

(b) Write a program that requests the name of a U.N. member country as input, and
then displays information about the country as shown in Fig. 7.20. Use the pickled
binary file nationsDict.dat and the file nation.py created in part (a).

Figure 7.20 Possible outcome of Prog.
Project 1(b).

Enter a country: Canada

Continent: North America

Population: 34,800,000

Area: 3,855,000.00 square miles

Enter a continent: South America

 Ecuador

 Colombia

 Venezuela

 Brazil

 Peru

Figure 7.21 Outcome of Prog.
Project 1(c).

(c) Write a program that requests the name of a continent as input, and then displays the
names (in descending order) of the five most densely populated U.N. member coun-
tries in that continent. See Fig. 7.21. Use the pickled binary file nationsDict.dat
and the file nation.py created in part (a).

2. Savings Account Write a program to maintain a savings account. The program
should use a class named SavingsAccount with instance variables for the customer's
name and the account balance, and two methods named makeDeposit and make-
Withdrawal. The makeWithdrawal method should deny withdrawals that exceed the
balance in the account. See Fig. 7.22.

Figure 7.22 Possible outcome of Programming Project 2.

Enter person's name: Fred

D = Deposit, W = Withdrawal, Q = Quit

Enter D, W, or Q: D

Enter amount to deposit: 1000

Balance: $1,000.00

Enter D, W, or Q: W

Enter amount to withdraw: 4000

Insufficient funds, transaction denied.

Balance: $1,000.00

Enter D, W, or Q: W

Enter amount to withdraw: 400

Balance: $600.00

Enter D, W, or Q: Q

End of transactions. Have a good day Fred.

 326 ◆ Chapter 7 Object-Oriented Programming

3. Cab Fare Management Write a program for a cab owner to display the complete list
of rides for his cabs. He has both sedans and hatchbacks. The program should contain
a class named Cab having two subclasses named Sedan and Hatchback. The Cab class
should have instance variables for type of cab and number of kilometers driven. Each
subclass should have a caculateFare method. The fare for sedans should be $2 per kilo-
meter and the fare for hatchbacks should be $1.5 per kilometer.

After the data for all cabs has been entered, the program should display the total
kilometers driven for both types of cabs. The program should also display the total
kilometers driven for all cabs, and the total fare earned from all cabs. See Fig 7.23. The
program should use a list of objects.

Figure 7.23 Possible outcome of Programming Project 3.

Enter cab type(Hatchback/Sedan): hatchback

Enter the number of kilometers travelled: 10

Do you want to continue (Y/N)? Y

Enter cab type(Hatchback/Sedan): Sedan

Enter the number of kilometers travelled: 12

Do you want to continue (Y/N)? N

-----Kilometers driven for each cab-----

Hatchback: 10 kilometers

Sedan: 12 kilometers

Total number of kilometers driven by all Cabs: 22.0

Total fare earned from all cabs (in dollars): 39.0

327

8

8.1 Widgets 328

◆  What Is a Graphical User Interface?  ◆  The Button Widget  ◆  The Label Widget 

◆  The Entry Widget  ◆  The ReadOnly Entry Widget  ◆  The Listbox Widget 

◆  The Scrollbar Widget

8.2 The Grid Geometry Manager 341

◆  Grids  ◆  The sticky Attribute  ◆  Attaching a Vertical Scroll Bar to a List Box 

◆  Designing the Screen Layout

8.3 Writing GUI Programs 350

◆  Converting TUI Programs to GUI Programs  ◆  Filling List Boxes from a File 

◆  GUI Programs Written in Object- Oriented Style

Key Terms and Concepts 359

Programming Projects 361

Graphical User Interface

 328 ◆ Chapter 8 Graphical User Interface

8.1 Widgets

Widgets are the components of a graphical user interface. In this section we discuss the
capabilities of five widgets. In the next two sections we show how to position widgets in a
window and how to write programs that manipulate the widgets. Widgets are objects, and
their classes are defined in a module named tkinter (pronounced t- k- inter; stands for TK
interface). The screen captures appearing in this chapter were generated with a PC computer
running Windows. They will appear slightly different when the programs are executed with
other operating systems.

 ■ What Is a Graphical User Interface?
The programs in previous chapters are said to have a text- based user interface (TUI). A
graphical user interface, or GUI (pronounced “gooie”), presents the user with a window
containing visual objects such as boxes where the user can type in data, and buttons that
initiate actions. These visual objects (called widgets) respond to events such as mouse
clicks. Since events are so central to GUI programs, GUI programs are said to be event
driven.

Figure 8.1 shows the output of Python programs that calculate the monthly payment
for a mortgage. Each program requests three pieces of data and then displays the amount
of the monthly payment.

Figure 8.1 Mortgage Program.

Enter principal: 300000

Enter interest rate (as percent): 4.9

Enter number of years: 30

Monthly payment: $1,592.18

(a) Output of TUI program. (b) Output of GUI program.

In Fig. 8.1(b) the three white boxes above the button may be filled in any order. When
the user clicks on a white box with the mouse, the cursor moves to that box. The user can
either type in new information or edit the existing information. When satisfied that all
the information is as intended, the user clicks on the Calculate Monthly Payment button to
display the amount of the monthly payment in the box below the button. The user can
experiment with different input values. For instance, the user can replace the number 30
with the number 25 and then click on the button to see how much the monthly payment
would be for a 25-year mortgage. There is no need for the user to reenter the other two
pieces of input.

The boxes appearing in the GUI window are called Entry widgets, the text displayed
to the left of the boxes is contained in Label widgets, and the button is called a Button
widget. Each widget is an object with properties and each widget can respond to events
such as mouse movements, key presses, and mouse clicks. For example, each Entry widget
has a width property and each Label widget has a text property. In Fig. 8.1(b), the button
responds to a mouse click event. When the user clicks on the button, the event calls a
function that calculates the monthly payment and displays it in the tinted Entry widget in
the bottom right corner of the window. The employment of widgets and events allows the
user to decide the order in which things happen by triggering events.

VideoNote

Introduction
to GUI

 8.1 Widgets ◆ 329

In this section we will discuss buttons, labels, entry boxes, list boxes, and scroll bars one
at a time, and will write short programs that illustrate some of their properties and events.
Each program will begin with the two statements

from tkinter import *

window = Tk()

and end with the statement

window.mainloop()

The first statement imports the tkinter module and the second statement creates an
instance of the Tk class and gives it the name window. Most GUI programs contain events.
The mainloop function acts like an infinite loop that keeps looking for events until you
close the window by clicking on its Close button (, , or) at the top of the window.

Depending on the operating system and the way the program is invoked, the mainloop
function may or may not be needed. However, in order to cover all bases, we will always
include the function.

Each window has a title property that places text in its title bar. For instance, in Fig. 8.1(b)
the word “Mortgage” is placed in the title bar with the statement

window.title("Mortgage")

 ■ The Button Widget
The code in Fig. 8.2(a) produces the output in Fig. 8.2(b), where the color of the button is
light blue.

Figure 8.2 Button Demo.

(a) Code.

from tkinter import *

window = Tk()

window.title("Button")

btnCalculate = Button(window,

 text="Calculate", bg="light blue")

btnCalculate.grid(padx=75, pady=15)

window.mainloop()

(b) Output.

The fourth statement in Fig. 8.2(a) creates an instance of a Button widget and the fifth
statement displays the widget in the window. [The grid method controls the placement of
widgets on the window, and plays such an essential role in GUI programming that the entire
second section of this chapter is devoted to it. For now, we just need to know that the grid
method makes the button visible and puts blank space around it. The setting for padx speci-
fies how much blank space (in pixels) should be placed to the left and right of the widget
and pady does the same for blank space above and below the widget.] The left side of the
fourth statement is the name chosen for the widget. We like to begin each name with three
letters that indicate the type of widget being instantiated. The right side of the statement
(called the constructor) contains the type of widget followed by several arguments inside a
pair of parentheses. The first argument is always the name of the widget’s container. (In this
book, the container will always be named window.) The terms text and bg In the arguments
text="Calculate" and bg="light blue" are called attributes. The text attribute specifies the

 330 ◆ Chapter 8 Graphical User Interface

caption to be displayed on the button. The optional bg (background) attribute specifies the
color of the button. If this attribute is omitted, the button will have the color gray. By default
the button will be just wide enough to accommodate its caption. However, an argument of the
form width=n can be inserted to set the width of the button to n characters. By default, the
caption is centered in its button. There are several other arguments that can be inserted into
the constructor to make additional alterations to the appearance of the button and its caption.

Run the program in Fig. 8.2(a) and then left- click on the button with the mouse. The
button appears to be pushed in and then to pop out. The left- click triggered an event that
pushed the button. However, the event can do much more than just push the button; it can
call a function. Note: To end the program, click on the Close button at the top of the window.

The program in Example 1 extends the program in Fig. 8.2(a) by inserting a function
named changeColor and adding an additional argument (command=changeColor) into the
constructor. The argument command=changeColor causes the left- click event to call the
changeColor function. (This function is referred to as the callback function associated
with the event, or the event handler, and the argument is said to bind the function to the
button.) The value of the expression btnCalculate["fg"] is the color of the caption. In
general, the value of an expression of the form

widgetName["attribute"]

gives the value assigned to the attribute. For instance, the value of btnCalculate["text"]
is the string “Calculate”.

 Example 1 Toggle Colors Buttons have two colors— a foreground color (the color
of the caption) and a background color (the color of the button itself). By default, the fore-
ground color is black and the background color is gray. However, these colors can be altered
by fg and bg arguments. The following program extends the program in Fig. 8.2(a) by using
an event to toggle the foreground color of the Button widget. Run the program and then
press the button several times. Each press triggers an event that calls the changeColor func-
tion that toggles the color of the button’s caption between blue and red.

from tkinter import *

def changeColor():

 if btnCalculate["fg"] == "blue": # if caption is blue

 btnCalculate["fg"] = "red" # change color to red

 else:

 btnCalculate["fg"] = "blue" # change color to blue

window = Tk()

window.title("Button")

btnCalculate = Button(window, text="Calculate",

 fg="blue", command=changeColor)

btnCalculate.grid(padx=100, pady=15)

window.mainloop()

 ■ The Label Widget
The Label widget is one of the simplest widgets. In Fig. 8.1(b), Label widgets were placed to
the left of each Entry widget to identify the contents of the boxes. In this book, that is the
only use we will make of labels. The code in Fig. 8.3(a) produces the output in Fig. 8.3(b).
Note: By default, all text placed into widgets has the color black. However, the process that
converted the multi-colored screen captures to the figures for this book, changed all the
black text to blue. Therefore, unless an example or exercise specifically calls for blue text,

 8.1 Widgets ◆ 331

By default the Label widget has the same background color as the window itself. Actually,
the label is just wide enough to accommodate its caption. If we insert the argument bg="light
blue" into the constructor, the actual width of the label will be revealed. See Fig. 8.4. Although
Labels have a width attribute, it is never needed in the programs we will write.

Figure 8.3 Label Demo.

(b) Output.

from tkinter import *

window = Tk()

window.title("Label")

lblPrincipal = Label(window, text="Principal:")

lblPrincipal.grid(padx=100, pady=15)

window.mainloop()

(a) Code.

Figure 8.4 Label with light blue background color.

 ■ The Entry Widget
The Entry widget is used both to obtain input from the user and to display output. The
code in Fig. 8.5(a) produces the output in Fig. 8.5(b).

Figure 8.5 Entry Demo.

(a) Code.

from tkinter import *

window = Tk()

window.title("Entry Widget")

entName = Entry(window, width=20)

entName.grid(padx=100, pady=15)

window.mainloop()

(b) Output.

Run the program in Fig. 8.5(a) and then left-click on the Entry widget to place the cur-
sor inside the widget. You can now type any characters into the Entry box. Since the width
was set to 20 characters in the constructor, if you type more than 20 characters your text
will scroll to the left. You can use many features that are common to word processors. For
instance, you can double- click on a word to select it and then use the Delete key to remove
it, or use Ctrl+C to place the word in the clipboard. You can also use the Home, End, Insert,
and Backspace keys as you would with any word processor. However, you cannot use Ctrl+B
to bold text or Ctrl+I to italicize text.

Unlike Button widgets, Entry widgets do not have a command argument that binds it to
a callback function that is called when a certain event is triggered. However, the bind method
can be used with Entry widgets to play that role. For instance, a line of code of the form

nameOfEntryWidget.bind("< Button- 3>", functionName)

treat all text in the figures as if it were colored black. The Student Solution Manual for the
book, which can be downloaded from the Pearson website, contains all the screen captures
in their true colors.

 332 ◆ Chapter 8 Graphical User Interface

calls the named function when the Entry widget is clicked on with the right mouse button.
Note: In this situation, the named function must contain a parameter. We will give the par-
ameter the name event.

 Example 2 Toggle Colors The following program is similar to the program in
Example 1. Run the program, left- click on the Entry widget with the mouse, and type some
words into the widget. The words will appear in the color blue. However, right- clicks on the
widget with the mouse toggle the color of the text between blue and red. At any time you
can change the contents of the widget from the keyboard.

from tkinter import *

def changeColor(event):

 if entName["fg"] == "blue": # if Entry widget text is colored blue

 entName["fg"] = "red" # change color of text to red

 else:

 entName["fg"] = "blue" # change color of text to blue

window = Tk()

window.title("Entry widget")

entName = Entry(window, fg="blue")

entName.grid(padx=100, pady=15)

entName.bind("< Button- 3>", changeColor) # specify right- click as an event

window.mainloop()

 Example 3 Convert to Upper case The following program uses both the get and set
methods. Run the program, type some lowercase letters into the Entry widget, and then
 right- click on the widget with the mouse. The letters in the Entry widget will be converted
to upper case.

from tkinter import *

def convertToUpperCase(event):

 conOFentName.set(conOFentName.get().upper())

window = Tk()

window.title("Entry widget")

The standard way of retrieving data from an Entry widget is to first create a string
variable with a statement of the form

variableName = StringVar()

and insert the argument textvariable=variableName into the Entry’s constructor. After
that, the value of

variableName.get()

will be a string consisting of the data in the Entry widget, and a statement of the form

variableName.set(aValue)

will place the specified string or numeric value into the Entry widget. In our examples,
 variableName will have the form conOFentEntryName, an abbreviation of contents of the
named Entry widget.

 8.1 Widgets ◆ 333

 ■ The ReadOnly Entry Widget
The ReadOnly Entry widget is a special type of Entry widget that is used only to display
output. The code in Fig. 8.6(a) produces the output in Fig. 8.6(b). A ReadOnly Entry widget
is specified by adding the argument state="readonly" to the constructor of an ordinary
Entry widget.

conOFentName = StringVar() # contents of the Entry widget

entName = Entry(window, textvariable=conOFentName)

entName.grid(padx=100, pady=15)

entName.bind("< Button- 3>", convertToUpperCase)

window.mainloop()

Figure 8.6 ReadOnly Entry Demo.

from tkinter import *

window = Tk()

window.title("ReadOnly Entry Widget")

entOutput = Entry(window, width=20,

 state="readonly")

entOutput.grid(padx=100, pady=15)

window.mainloop()

(a) Code. (b) Output.

Run the program in Fig. 8.6(a) and notice that the box is not white. Left-click on the
Entry widget. Nothing happens; the cursor does not appear in the widget, and therefore you
cannot type any text into the widget. The only way to display text in a ReadOnly widget is
to insert a textvariable attribute into the constructor and modify the attribute’s contents
using the set method.

 Example 4 Hello World The following program uses the textvariable attribute and
the set method to display text into a ReadOnly Entry widget.

from tkinter import *

window = Tk()

window.title("ReadOnly Entry Widget")

conOFentOutput = StringVar() # contents of widget

entOutput = Entry(window, state="readonly", textvariable=conOFentOutput)

entOutput.grid(padx=100, pady=15)

conOFentOutput.set("Hello World!")

window.mainloop()

[Run]

 334 ◆ Chapter 8 Graphical User Interface

 ■ The Listbox Widget
The Listbox widget is primarily used to select from a list of items displayed in a vertical
rectangular box. However, it also can be used to display data generated by the program.
The code in Fig. 8.7(a) produces the output in Fig. 8.7(b). The height attribute specifies the
number of lines that can appear in the list box at one time, and the width attribute speci-
fies the number of characters that can appear in each line. The default values of height and
width are 10 and 20, respectively.

Figure 8.7 Listbox Demo.

from tkinter import *

window = Tk()

window.title("Listbox")

lstName = Listbox(window, width=10,

 height=5)

lstName.grid(padx=100, pady=15)

window.mainloop()

(a) Code. (b) Output.

Code places data into and retrieves data from a Listbox widget in a way similar to
that of an Entry widget. The statement that instantiates the Listbox widget is proceeded
with a statement of the form variableName = StringVar(). However, the Entry attribute
 textvariable in the constructor is replaced with the Listbox attribute listvariable.

To place items into a list box, first create a list (call it L) containing the items and then
execute a statement of the form

variableName.set(tuple(L))

 Example 5 List of Colors The following program places four items into a list box.
When the user left- clicks on one of the items, the item becomes highlighted and underlined.

from tkinter import *

window = Tk()

window.title("Colors")

L = ["red", "yellow", "light blue", "orange"]

conOFlstColors = StringVar() # contents of the list box

lstColors = Listbox(window, width=10, height=5,

 listvariable=conOFlstColors)

lstColors.grid(padx=100, pady=15)

conOFlstColors.set(tuple(L))

window.mainloop()

[Run]

 8.1 Widgets ◆ 335

[Left-click on one of the items in the list box.]

 Example 6 List of Colors The following extension of the program in Example 5
changes the background color of the list box to the color selected by the user. The third
line of the program uses the get method to obtain the name of the color that was clicked
on and then makes it the background color.

from tkinter import *

def changeBackgroundColor(event):

 lstColors["bg"] = lstColors.get(lstColors.curselection())

window = Tk()

window.title("Colors")

L = ["red", "yellow", "light blue", "orange"]

conOFlstColors = StringVar()

lstColors = Listbox(window, width=10, height=5,

 listvariable=conOFlstColors)

lstColors.grid(padx=100, pady=15)

conOFlstColors.set(tuple(L))

lstColors.bind("<<ListboxSelect>>", changeBackgroundColor)

window.mainloop()

[Run, and then left- click on the color “light blue” in the list box.]

When the user left- clicks on an item in a list box, the event <<ListboxSelect>> is
 triggered and the value of the item (a string) is returned by an expression of the form

listboxName.get(listboxName.curselection())

where the curselection method identifies the selected item.

To change the contents of a list box, use list methods to change the list L and then
 execute the set method. For instance, you can use the sort method to order the items in the
list box.

 336 ◆ Chapter 8 Graphical User Interface

 ■ The Scroll bar Widget
The code in Fig. 8.8(a) produces the output in Fig. 8.8(b).

 Example 7 List of Colors The following extension of the program in Example 5
sorts the colors in the list box when the user right- clicks on the list box.

from tkinter import *

def sortItems(event):

 L.sort()

 conOFlstColors.set(tuple(L))

window = Tk()

window.title("Colors")

L = ["red", "yellow", "light blue", "orange"]

conOFlstColors = StringVar()

lstColors = Listbox(window, width=10, height=5, listvariable=conOFlstColors)

lstColors.grid(padx=100, pady=15)

conOFlstColors.set(tuple(L))

lstColors.bind("< Button- 3>", sortItems)

window.mainloop()

[Run, and then right- click on the list box.]

Figure 8.8 Vertical Scroll bar Demo.

(a) Code.

from tkinter import *

window = Tk()

window.title("Scrollbar")

yscroll = Scrollbar(window, orient=VERTICAL)

yscroll.grid(padx=110, pady=15)

window.mainloop()

(b) Output.

Vertical scroll bars can be connected to list boxes containing long lists to allow the user
to move up and down through the items. Scrolling takes place when the user clicks on one
of the arrows or drags the small raised- looking rectangle located between the two arrows.

Note: The height, call it h, of a list box specifies that the list box can display only h items
at a time. If you use a list containing more than h items to fill the list box, only the first
h items will be visible initially. However, you can press the Tab key and then use the Page
Down and Page Up keys, the DownArrow and UpArrow keys, or the scroll wheel on the
mouse to scroll through the list box.

 8.1 Widgets ◆ 337

The process of connecting a vertical scroll bar to a list is covered in Section 8.2 since it
requires an understanding of the intricacies of the grid geometry manager.

 ■ Comments
1. The event triggered by < Button- 1> is the left- button equivalent of the right- button

event triggered by < Button- 3>.

2. In Example 6, the horizontal blue bar that extends from the selected item will be elim-
inated if the statement lstColors.selection_clear(0, END) is added to the end of
the changeBackgroundColor function.

3. The Label, Entry, and Listbox widgets each have both a fg (foreground) and bg (background)
attribute. However, a ReadOnly Listbox widget ignores the setting of its bg attribute.

4. The third and fourth lines in Fig. 8.3(a) can be combined to the single line shown below.
If so, the widget will appear in the window, but will not have a name. The name is not
needed since in most programs, labels just sit there and do not have any of their prop-
erties accessed while the program is executing.

Label(window, text="Principal:").grid(padx=100, pady=15)

5. The text in a Label or Button widget can consist of more than one line. For instance,
the code in Fig. 8.9(a) produces the output in Fig. 8.9(b).

Figure 8.9 Button Program.

(a) Code.

from tkinter import *

window = Tk()

btn = Button(window, text="Push\nMe")

btn.grid(padx=75)

window.mainloop()

(b) Output.

Practice Problems 8.1

1. The code in Fig. 8.10(a) produces the output in Fig. 8.10(b). Alter the code so that the
caption in the title bar will not be cut off.

Figure 8.10 Flawed Button Program.

(a) Code.

from tkinter import *

window = Tk()

window.title("Python")

btnTest = Button(window, text="PYTHON")

btnTest.grid(padx=70, pady=15)

window.mainloop()

(b) Output.

2. Buttons and labels automatically adjust their widths to accommodate the text placed
in them. Do Listbox and Entry widgets do the same?

3. Consider the program in Example 6. Change the event so that the clicked- on item is
removed from the list box.

 338 ◆ Chapter 8 Graphical User Interface

ExERCISES 8.1

In Exercises 1 through 6, write a program to produce the display.

1. 2.

3. 4.

5. 6.

7. Padding Consider the program in Fig. 8.2(a). Assign different values to padx and
pady and observe the effect.

8. Padding Consider the program in Fig. 8.2(a). In the last line of the program add the
argument ipadx=50 and determine its effect. Do the same with ipady=50.

In Exercises 9 and 10, use the file USpres.txt that contains the names of the U.S. presi-
dents in the order they served.

9. U.S. Presidents Write a program that places the names of the presidents into a list
box. See Fig. 8.11. Hint: Use list comprehension.

Figure 8.11 Outcome of Exercise 9. Figure 8.12 Outcome of Exercise 10.

10. U.S. Presidents Write a program that places the names of the presidents into a list
box ordered by their last names. See Fig. 8.12. Hint: Use list comprehension.

In Exercises 11 through 14, use the file StatesANC.txt containing the name, abbrevi-
ation, nickname, and capital of each state in the United States. The states are listed in
alphabetical order. The first three lines of the file are

Alabama,AL,Cotton State,Montgomery

Alaska,AK,The Last Frontier,Juneau

Arizona,AZ,Grand Canyon State,Phoenix

 8.1 Widgets ◆ 339

11. U.S. States Write a program that places the names of the states into a list box. See
Fig. 8.13. Hint: Use list comprehension.

Figure 8.13 Outcome of Exercise 11. Figure 8.14 Outcome of Exercise 12.

12. U.S. States Modify the program in Exercise 11 so that both the name of the state
and its nickname are displayed in the list box. See Fig. 8.14.

13. U.S. States Extend the program in Exercise 11 so that when you click on the name
of a state, the name is converted to all uppercase letters. See Fig. 8.15.

Figure 8.15 Possible outcome of Exercise 13. Figure 8.16 Possible outcome of Exercise 14.

14. U.S. States Extend the program in Exercise 11 so that when you click on the name
of a state, the state’s abbreviation is written alongside the name. See Fig. 8.16.

In Exercises 15 and 16, use the file UN.txt that gives data about the 193 members of the
United Nations with the countries listed in alphabetical order. Each line of the file gives
the name, continent, population (in millions), and area (in square miles) of a U.N. mem-
ber. Some lines of the file are

Canada,North America,34.8,3855000

France,Europe,66.3,211209

New Zealand,Australia/Oceania,4.4,103738

Nigeria,Africa,177.2,356669

 340 ◆ Chapter 8 Graphical User Interface

Pakistan,Asia,196.2,310403

Peru,South America,30.1,496226

15. United Nations Write a program that uses the file UN.txt to place the names of
the U.N. member nations in a list box of width=38 and height=10. See Fig. 8.17.
Hint: Use list comprehension.

Figure 8.17 Outcome of Exercise 15. Figure 8.18 Outcome of Exercise 16.

16. Continents Having Countries Write a program that uses the file UN.txt to deter-
mine the names of the continents that contain countries, and places the continents in
alphabetical order in a list box. See Fig. 8.18. Hint: Use set comprehension.

17. Change Colors Write a program that initially displays the button in Fig. 8.19 with
blue text. When the button is left- clicked with the mouse, the button should appear
with black text and the caption replaced with “Change color of Text to Blue”. Subse-
quent left- clicks should toggle between the two displays. Note: Insert padx=50 into the
grid statement.

Figure 8.19 Original window of Exercise 17.

18. Change Colors Redo Exercise 17 with a label instead of a button.

19. Change Salutation Write a program that initially displays the button in Fig. 8.20(a).
When the button is left- clicked with the mouse, the caption should change to GOODBYE
as in Fig. 8.20(b). Subsequent left- clicks should toggle between the two salutations.

Figure 8.20 Outputs of Exercise 19.

(a) Original display. (b) Display after first left- click.

 8.2 The Grid Geometry Manager ◆ 341

Figure 8.21 Filling an Entry widget.

from tkinter import *

window = Tk()

window.title("Monty Python")

conOFentSong = StringVar()

entSong = Entry(window, state="readonly",

 textvariable=conOFentSong)

entSong.grid(padx=60, pady=15)

song = "Always look on the bright" + \

 "side of life."

conOFentSong.set(song)

window.mainloop()

(a) Code. (b) Output.

3. The new program is as follows:

from tkinter import *

def deleteItem(event):

 L.remove(lstColors.get(lstColors.curselection()))

 conOFlstColors.set(tuple(L))

 lstColors.selection_clear(0, END)

window = Tk()

window.title("Listbox")

L = ["red", "yellow", "green", "orange"]

conOFlstColors = StringVar()

lstColors = Listbox(window, width=25, height=5,

 listvariable=conOFlstColors)

lstColors.grid(padx=100, pady=15)

conOFlstColors.set(tuple(L))

lstColors.bind("<<ListboxSelect>>", deleteItem)

window.mainloop()

8.2 The Grid Geometry Manager

Geometry managers are tools used to place widgets on the screen. There are three geom-
etry managers available in tkinter— grid, pack, and place. In this book we will use the grid
geometry manager since it is the easiest to learn and produces the nicest layouts. The pack
manager is also easy to use, but is limited in its possibilities compared to the grid manager.

20. Change Salutation Consider the program in Exercise 19. Each time the button
was pressed, the width of the button changed. Modify the program so that the width
 always stays the same.

Solutions to Practice Problems 8.1

1. Either increase the value assigned to the padx attribute in the fifth statement or insert an argument such
as width=10 into the constructor for the button.

2. No. For instance, consider the program in Fig. 8.21.

 342 ◆ Chapter 8 Graphical User Interface

The place manager provides complete control in the positioning of widgets, but is compli-
cated to program.

In this section we learn how to use the grid geometry manager. In the next section we
will combine the knowledge gained from the first two sections of this chapter to write com-
plete GUI programs.

 ■ Grids
A grid is an imaginary rectangle containing horizontal and vertical lines that subdivide it
into rectangles called cells. The first row of cells is referred to as row 0, the second row is
referred to as row1, and so on. Similarly, the first column of cells is referred to as column 0,
the second column of cells is referred to as column 1, and so on. Each cell is identified by
its row and column numbers. Figure 8.22 shows a grid having three rows and four columns,
with each cell identified by its row and column number.

Figure 8.22 A grid of three rows and four columns.

row 0 , column 0 row 0 , column 1 row 0 , column 2 row 0 , column 3

row 1 , column 0 row 1 , column 1 row 1 , column 2 row 1 , column 3

row 2 , column 0 row 2 , column 1 row 2 , column 2 row 2 , column 3

In Fig. 8.22 the horizontal and vertical lines are uniformly spaced. However, such is not
the case for grids used in GUI programs. Figure 8.23 shows grids typical of those used in
GUI programs.

Figure 8.23 Typical grids used in GUI programs.

A graphical interface is created by placing widgets into a grid. A widget can be inserted
into an individual cell or can span a consecutive sequence of rows or columns. Each row
and column expands to fit the largest widget in that row and column. Padx and pady can
be used to specify how much blank space should be put around a widget within its cell. By
default, widgets are centered within a cell. However, an attribute named sticky can be used to
change the placement inside a cell and also to enlarge the widget so that it fills an entire cell.

Figure 8.24 shows the visual interface from Fig. 8.1 in the previous section. The grid
consists of five rows (row 0 through row 4) and two columns (column 0 and column 1). Each
Label and Entry widget is placed in a single cell. For instance, the Entry widget containing
the number 30 has been placed in the cell in row 2, column 1. The button begins at the cell
in row 3, column 0 and spans two columns. Those two widgets are declared and placed in
the window with the lines of code below. The argument padx=5 places five pixels of space
both to the left and to the right of the widget. The argument pady=5 places five pixels of
space both above and below the widget. The argument sticky=W moves the Entry widget
to the left side (that is, the West side) of its cell. The argument columnspan=2 specifies that
the button should span two columns.

 8.2 The Grid Geometry Manager ◆ 343

entNumberOfYears = Entry(window, width=2)

entNumberOfYears.grid(row=2, column=1, padx=5, pady=5, sticky=W)

btnCalculate = Button(window, text="Calculate Monthly Payment")

btnCalculate.grid(row=3, column=0, columnspan=2, pady=5)

Figure 8.24 Grid for the mortgage program.

In general, a statement of the form

widgetName.grid(row=m, column=n)

places the widget in the cell located at row m and column n. Additional attributes, such as
padx, pady, and sticky, can be placed into the grid method.

A statement of the form

widgetName.grid(row=m, column=n, columnspan=c)

places the widget beginning in the cell located at row m and column n, and spanning c col-
umns. (If columnspan is replaced with rowspan, the widget will span c rows.)

The arguments in Table 8.1 improve layouts by adding space to the sides of widgets.

Table 8.1 Padding arguments.

Argument Effect

padx=r puts r pixels of space to the left and to the right of the widget
pady=r puts r pixels of space above and below the widget
padx=(r,s) puts r pixels of space to the left and s pixels of space to the right of the widget
pady=(r,s) puts r pixels of space above and s pixels of space below the widget

Note: You don’t have to specify the number of rows and columns in the grid; the grid man-
ager automatically determines them from the locations of the widgets that have been placed
into the grid. Also, the width of each column and the height of each row are automatically
adjusted to accommodate the widths, heights and paddings of the widgets they contain.

 ■ The sticky Attribute
A statement of the form

widgetName.grid(row=m, column=n, sticky=letter)

 344 ◆ Chapter 8 Graphical User Interface

where letter is N, S, E, or W, causes the widget (along with its padding) to attach to the North
(that is: top) side of the cell, South (that is: bottom) side of the cell, East (that is: right) side
of the cell, or West (that is: left) side of its cell, respectively.

The contents of the windows in Fig. 8.25 are similar to the contents of the third and
fourth rows of Fig. 8.24. The Entry widget containing the number 30 was declared with
the statement

entNumberOfYears = Entry(window, width=2)

In the top- left window, the widget was placed into the grid with the statement

entNumberOfYears.grid(row=0, column=1)

Notice that the widget appears in the center of its cell— its default location. In the remaining
windows, the sticky attribute was used to change the location of the widget within its cell.
In the top- right window, the widget was placed into the grid with the statement

entNumberOfYears.grid(row=0, column=1, sticky=N)

The remaining three windows were created by setting the value of sticky to S, W, and E,
respectively.

without sticky sticky=N

sticky=S sticky=W sticky=E

Figure 8.25 Some interfaces produced by the sticky attribute.

The value assigned to the sticky attribute also can consist of two letters chosen from N,
S, E, and W or can even consist of all four of the letters. The argument sticky=NS causes
the widget to attach to both the North and South sides of its cell. This can only happen if
the widget is stretched vertically. Similarly, the argument sticky=EW stretches the widget
horizontally, and the argument sticky=NSEW stretches the widget both vertically and hori-
zontally so that it fills the entire cell. See Fig. 8.26.

sticky=NS sticky=EW sticky=NSEW

Figure 8.26 Sticky attributes that resize the widget.

 8.2 The Grid Geometry Manager ◆ 345

 ■ Attaching a Vertical Scroll Bar to a List Box
Figure 8.27 shows a list box with a vertical scroll bar attached to its right side. The items in
the list box scroll when the user clicks on one of the scroll bar’s arrows or drags the small
 raised- looking rectangle located between the two arrows.

Figure 8.27 List box with scroll bar attached.

The following code produces Fig. 8.27, where the names of the two widgets are lstNE
and yscroll.

from tkinter import *

window = Tk()

window.title("New England")

yscroll = Scrollbar(window, orient=VERTICAL)

yscroll.grid(row=0, column=2, rowspan=4, padx=(0,100), pady=5, sticky=NS)

statesList = ["Connecticut", "Maine", "Massachusetts",

 "New Hampshire","Rhode Island", "Vermont"]

conOFlstNE = StringVar()

lstNE = Listbox(window, width=14, height=4, listvariable=conOFlstNE,

 yscrollcommand=yscroll.set)

lstNE.grid(row=0, column=1, rowspan=4, padx=(100,0), pady=5, sticky=E)

conOFlstNE.set(tuple(statesList))

yscroll["command"] = lstNE.yview

window.mainloop()

Notes:
1. The scroll bar must be declared before the list box.

2. The argument yscrollcommand=yscroll.set must be inserted into the list box’s
constructor.

3. The statement yscroll["command"] = lstNE.yview must be added to the program.

The last two steps attach the scroll bar to the list box.
To create the interface shown in Fig. 8.27, the list box and the scroll bar were placed in

adjacent cells and given the same rowspan values. In addition, sticky was used to guarantee
they are touching and that the scroll bar fills its cells vertically. The arguments padx=(100,0)
and padx=(0,100) put some space to the left of the list box and to the right of the scroll
bar without separating them.

 ■ Designing the Screen Layout
The following guidelines are useful in creating the layout for a GUI program:

1. Input from the user can be obtained by having the user type the information into an
Entry widget or click on an item in a list box. A label should be placed to the left of each

 346 ◆ Chapter 8 Graphical User Interface

Entry widget to specify the type of information that should be typed into the Entry
widget. Often labels are placed above list boxes to describe their contents.

2. The output of a program is usually displayed either in a ReadOnly Entry widget or in
a list box. If the output consists of a large number of items displayed in a list box, a
vertical scroll bar should be connected to the list box.

3. Often, but not necessarily, buttons span more than one column.

4. By default, list boxes hold 10 items.

5. Some programmers make a rough sketch of the screen layout on a piece of paper and
then draw grid lines to guide them in deciding where to place each of the widgets. If the
grid lines look awkward, the programmers make adjustments to the layout.

6. After the first draft of the program is run, the programmer usually will want to tweak
the layout by adding padding and sticky arguments into the grid methods of the widg-
ets. This process is typically repeated many times.

 ■ Comments
1. Empty rows are discarded—that is, they do not make blank space. For instance, the

pair of lines

Label(window, text="Hello").grid(row=0, column=0, padx=25)

Label(window, text="World").grid(row=0, column=5, padx=25)

produce the same effect as the pair of lines

Label(window, text="Hello", bg="beige").grid(row=0, column=0, padx=25)

Label(window, text="World", bg="tan").grid(row=0, column=1, padx=25)

2. Some other settings for the sticky attribute are NW, NE, SE, and SW that place the
associated widget in one of the corners of its cell.

Practice Problems 8.2

1. Write a program to produce the interface in Fig. 8.28.

Figure 8.28 Interface for Practice Problem 1.

2. Consider the interface in Fig. 8.29.

(a) What argument was inserted into the Workplace list box’s grid statement to
cause the list box to be attached to the top of its cell?

(b) Which three widgets most likely had the argument padx=10 in their grid methods?
(c) Which widget had the argument pady=5 in its grid method?
(d) Which widget had the argument pady=(0,5) in its grid method?

 8.2 The Grid Geometry Manager ◆ 347

ExERCISES 8.2

Consider the six lines of code below and the interfaces labeled A through F in Fig. 8.30.
In Exercises 1 through 6 determine the interface from Fig. 8.30 generated by adding the
line of code as a seventh line of code.

from tkinter import *

window = Tk()

window.title("Button")

Label(window, text="Column 0").grid(row=0, column=0, padx=25, pady=5)

Label(window, text="Column 1").grid(row=0, column=1, padx=25, pady=5)

btnButton = Button(window, text="I'm a Button")

Figure 8.29 Interface for Practice Problem 2.

A B C

D E F

Figure 8.30 Six interfaces.

1. btnButton.grid(row=1, column=0, columnspan=2, sticky=E)

2. btnButton.grid(row=1, column=0, columnspan=2, sticky=W)

3. btnButton.grid(row=1, column=0, columnspan=2, sticky=EW)

4. btnButton.grid(row=1, column=0, columnspan=2)

5. btnButton.grid(row=1, column=0)

6. btnButton.grid(row=1, column=0, sticky=E)

 348 ◆ Chapter 8 Graphical User Interface

In Exercises 7 and 8, write a program to produce the output shown. (Note: In Exercise 7,
the first reindeer is Cupid and the last is Vixen. In Exercise 8, the last ocean is Antarctic.)

7. 8.

Each screen capture below shows the output of a complete program. In Exercises 9
through 22, write just the part of the program that displays the interface. When the half-
 finished program is run, all widgets should appear as shown, but no text should appear
inside the Entry widgets or list boxes.

9. 10.

11. 12.

13. 14.

15. 16.

 8.2 The Grid Geometry Manager ◆ 349

17. 18.

19. 20.

21.

22.

 350 ◆ Chapter 8 Graphical User Interface

Solutions to Practice Problems 8.2

1. Arguments of the form pady=(m,n) can be used to place the buttons at the top and bottom of the win-
dow with a large space between them.

from tkinter import *

window = Tk()

window.title("Buttons")

btnButton1 = Button(window, text="I'm a Button")

btnButton1.grid(row=0, column=0, padx=(100,100), pady=(0,20))

btnButton2 = Button(window, text="I'm also a Button")

btnButton2.grid(row=1, column=0, padx=(100,100), pady=(20,0))

window.mainloop()

2. (a) The argument sticky=N. The argument pady=(0,18) also would have worked, but repeated trial
and error would have been required to determine the number 18.

(b) The two list boxes and the Entry widget.
(c) The button, since it is the only widget having space both above and below it in its cell.
(d) The ReadOnly Entry widget.

8.3 Writing GUI Programs

GUI programs are normally written in an object- oriented style. However, in order to sim-
plify the coding as much as possible, we will use a direct coding style. At the end of the
section, we will show how to write GUI programs in an object- oriented style. Some of the
programs in the Solutions Manual will be given in both styles.

Every program from the preceding chapters can be written as a GUI program—but
not conversely. For instance, a GUI program using a list box with a scroll bar tied to it and
containing a long list usually cannot be converted to a TUI program.

 ■ Converting TUI Programs to GUI Programs
In general, programs consist of three components— input, processing, and output. In TUI
programs, input is usually obtained from an input statement or by importing data from
a file. Output is usually given by a print statement or stored in a file. When we convert a
TUI program to a GUI program, we replace input and print statements with Label/Entry
pairs. Processing data and inputting and outputting data to files works much the same in
both types of programs. The primary difference is that the processing in GUI programs is
usually triggered by an event

Figure 8.31 shows a TUI program and a possible output.

Figure 8.31 A TUI program and a possible output.

def main():

 ## Find the largest of three numbers.

 L = []

 num1 = eval(input("Enter the first number: "))

 L.append(num1)

 num2 = eval(input("Enter the second number: "))

 L.append(num2)

 num3 = eval(input("Enter the third number: "))

 L.append(num3)

 print("The largest number is", str(max(L)) + '.')

main()

Enter the first number: 2345

Enter the second number: 5678

Enter the third number: 1234

The largest number is 5678.

 8.3 Writing GUI Programs ◆ 351

 Example 1 Conversion to a GUI Program The following program is a conversion
of the TUI program in Fig. 8.31 to a GUI program. The grid consists of five rows and two
columns.

from tkinter import *

def findLargest():

 L = []

 L.append(eval(conOFentNum1.get()))

 L.append(eval(conOFentNum2.get()))

 L.append(eval(conOFentNum3.get()))

 conOFentLargest.set(max(L))

window = Tk()

window.title("Largest Number")

Label(window, text="First number: ").grid(row=0, column=0, pady=5, sticky=E)

conOFentNum1 = StringVar()

ententNum1 = Entry(window, width=8, textvariable=conOFentNum1)

ententNum1.grid(row=0, column=1, sticky=W)

Label(window, text="Second number: ").grid(row=1, column=0, pady=5, sticky=E)

conOFentNum2 = StringVar()

ententNum2 = Entry(window, width=8, textvariable=conOFentNum2)

ententNum2.grid(row=1, column=1, sticky=W)

Label(window, text="Third number: ").grid(row=2, column=0, pady=5, sticky=E)

conOFentNum3 = StringVar()

ententNum3 = Entry(window, width=8, textvariable=conOFentNum3)

ententNum3.grid(row=2, column=1, sticky=W)

btnFind = Button(window, text="Find the Largest Number", command=findLargest)

btnFind.grid(row=3, column=0, columnspan=2, padx=75)

Label(window, text="Largest number: ").grid(row=4, column=0, sticky=E)

conOFentLargest = StringVar()

entLargest = Entry(window, state="readonly", width=8,

 textvariable=conOFentLargest)

entLargest.grid(row=4, column=1, pady=5, sticky=W)

window.mainloop()

[Run, type three numbers into the Entry widgets, and click on the button.]

 ■ Filling List Boxes from a File
List boxes tied to scroll bars are extremely useful in GUI programming. List boxes contain-
ing long lists are usually filled from files. The program in Example 2 uses set comprehension
to fill a list box in order to avoid the duplication of items in the list box.

 352 ◆ Chapter 8 Graphical User Interface

 Example 2 State Birds The file StateBirds.txt contains the name and state bird of
each state in the United States, where the states are listed in alphabetical order. (Note: Often
two of more states have the same state bird. For instance, seven states have the cardinal as
their state bird.) The first three lines of the file are

Alabama,Yellowhammer

Alaska,Willow ptarmigan

Arizona,Cactus wren

The following program uses the file StateBirds.txt to display the state birds in a list box,
and gives the number of different state birds. Each bird appears once in the list box and the
birds are in alphabetical order.

from tkinter import *

def displayBirds():

 infile = open("StateBirds.txt", 'r')

 birdSet = {line.split(',')[1].rstrip() for line in infile}

 infile.close()

 conOFlstBirds.set(tuple(sorted(birdSet))) # sorted(birdSet) is a list

 numBirds = len(birdSet)

 conOFentNumBirds.set(numBirds)

window = Tk()

window.title("State Birds")

textForButton = "Display the Different State Birds"

btnDisplay = Button(window, text=textForButton, command=displayBirds)

btnDisplay.grid(row=0, column=0, columnspan=3, pady=5)

yscroll = Scrollbar(window, orient=VERTICAL)

yscroll.grid(row=1, column=1, rowspan=10, pady=(0,5), sticky=NS)

conOFlstBirds = StringVar()

lstBirds = Listbox(window, width=20, height=8, listvariable=conOFlstBirds,

 yscrollcommand=yscroll.set)

lstBirds.grid(row=1, column=0, padx=(5,0), pady=(0,5), rowspan=10)

yscroll["command"] = lstBirds.yview

textForLabel = "Number of\ndifferent\nstate birds:"

Label(window, text=textForLabel).grid(row=1, column=2, padx=10, pady=5)

conOFentNumBirds = StringVar()

entNumBirds = Entry(window, width=2, state="readonly",

 textvariable=conOFentNumBirds)

entNumBirds.grid(row=2, column=2)

window.mainloop()

[Run, and click on the button.]

 8.3 Writing GUI Programs ◆ 353

 ■ GUI Programs Written in Object- Oriented Style

 Example 3 Object- Oriented Style The following program is an object- oriented
version of the program in Example 2.

from tkinter import *

class StateBirds:

 def __init__(self):

 window = Tk()

 window.title("State Birds")

 textForButton = "Display the Different State Birds"

 btnDisplay = Button(window, text=textForButton,

 command=self.displayBirds)

 btnDisplay.grid(row=0, column=0, columnspan=3, pady=5)

 yscroll = Scrollbar(window, orient=VERTICAL)

 yscroll.grid(row=1, column=1, rowspan=10, pady=5, sticky=NS)

 self._conOFlstBirds = StringVar()

 self._lstBirds = Listbox(window, width=20, height=8,

 listvariable=self._conOFlstBirds, yscrollcommand=yscroll.set)

 self._lstBirds.grid(row=1, column=0, padx=(5,0), pady=(0,5),

 rowspan=10)

 yscroll["command"] = self._lstBirds.yview

 textForLabel = "Number of\ndifferent\nstate birds:"

 Label(window, text=textForLabel).grid(row=1, column=2, padx=10, pady=5)

 self._conOFentNumBirds = StringVar()

 entNumBirds = Entry(window, width=2, state="readonly",

 textvariable=self._conOFentNumBirds)

 entNumBirds.grid(row=2, column=2)

 window.mainloop()

 def displayBirds(self):

 infile = open("StateBirds.txt", 'r')

 birdSet = {line.split(',')[1].rstrip() for line in infile}

 self._conOFlstBirds.set(tuple(sorted(birdSet)))

 numBirds = len(birdSet)

 self._conOFentNumBirds.set(numBirds)

StateBirds()

 ■ Comments
1. The program in Example 3 ended with the statement StateBirds(). That statement

could have been replaced with a statement such as bird = StateBirds() that creates
an instance of the class StateBirds. This works since whenever a class is instantiated, the
__init__ function is automatically executed.

2. The class created in Example 3 could have been saved in a file named stateBirds.py.
Then the following program would produce the same output.

from stateBirds import *

bird = StateBirds

 354 ◆ Chapter 8 Graphical User Interface

Figure 8.32 Possible outcome of Exercise 1. Figure 8.33 Possible outcome of Exercise 2.

2. Graduation Honors Write a program that assumes that the user will graduate (that
is, has a GPA of 2 or more) and determines if the user will graduate with honors.
(Summa cum laude requires a GPA of 3.9, magna cum laude requires a GPA of 3.6, and
cum laude requires a GPA of 3.3.) See Fig. 8.33.

3. Buy Two, Get One Free Sale A clothing store advertises “BUY 2 ITEMS AND
THE 3RD IS FREE.” What they mean is that if you buy three items, then the lowest
cost item is free. Write a program that accepts the three costs as input and then calcu-
lates the total cost after dropping the lowest cost. See Fig. 8.34.

Figure 8.34 Possible outcome of Exercise 3. Figure 8.35 Possible outcome of Exercise 4.

4. Convert Speeds Speedometers in the United States measure speed in miles per
hour, whereas speedometers in European countries measure speed in kilometers per
hour. Write a program that converts miles per hour to kilometers per hour. See Fig. 8.35.
Note: kph = 1.61 # mph.

5. Change in Salary A common misconception is that if you receive a 10% pay raise
and later a 10% pay cut, your salary will be unchanged. Write a program that requests
a salary as input and then calculates the salary after receiving a 10% pay raise followed
by a 10% pay cut. The program also should display the percentage change in salary.
See Fig. 8.36.

ExERCISES 8.3

1. Full Name Write a program that requests a person’s last name and first name, and
then displays their full name. See Fig. 8.32.

 8.3 Writing GUI Programs ◆ 355

6. Change in Salary A common misconception is that if you receive three successive
5% pay raises, then your original salary will have increased by 15%. Write a program
that requests a salary as input and then calculates the salary after receiving three suc-
cessive 5% pay raises. The program also should display the percentage change in sal-
ary. See Fig. 8.37.

7. Car Loan If A dollars are borrowed at r% interest compounded monthly to pur-
chase a car with monthly payments for n years, then the monthly payment is given by
the formula

monthly payment =
i

1 - (1 + i)-12n
A

where i = r
1200. Write a program that calculates the monthly payment after the user

gives the amount of the loan, the interest rate, and the number of years. Figure 8.38
shows that monthly payments of $234.23 are required to pay off a five- year car loan
of $12,000 at 6.4% interest.

Figure 8.36 Possible outcome of Exercise 5. Figure 8.37 Possible outcome of Exercise 6.

Figure 8.38 Possible outcome of Exercise 7. Figure 8.39 Possible outcome of Exercise 8.

8. Powerball Powerball numbers are obtained by drawing 5 balls out of a drum con-
taining 59 white balls (numbered 1 through 59) and then drawing 1 ball (the Powerball)
out of a drum containing 35 red balls (numbered 1 through 35). Write a program to
produce a Powerball drawing. See Fig. 8.39. Note: The attribute bg has no effect on
ReadOnly Entry widgets. Therefore, the first Entry widget should not be designated
as ReadOnly.

9. Calculator Write a program that allows the user to specify two numbers and then
adds, subtracts, or multiplies them when the user clicks on the appropriate button. See
Fig. 8.40 on the next page.

 356 ◆ Chapter 8 Graphical User Interface

10. Change Write a program to make change for an amount of money from 0 through
99 cents input by the user. The output of the program should show the number of
coins from each denomination used to make change. See Fig. 8.41.

11. Great Lakes Table 8.2 contains the names and areas of the five Great Lakes. Write
a program that displays the lakes in alphabetical order in a list box and produces the
area of the lake selected by the user. See Fig. 8.42. Hint: Use the dictionary lakesDict =
{“ Huron”:23000, “Ontario”:8000, “Michigan”:22000, “Erie”:10000, “ Superior”:32000}.

Figure 8.40 Possible outcome of Exercise 9. Figure 8.41 Possible outcome of Exercise 10.

Table 8.2 Great Lakes.

Lake Area (sq. miles)

Huron 23,000
Ontario 8,000
Michigan 22,000
Erie 10,000
Superior 32,000

Figure 8.42 Possible outcome of Exercise 11.

12. DOW The file DOW.txt contains the name, symbol, exchange, industry, price at the
end of trading on 12/31/2012, price at the end of trading on 12/31/2013, 2013 earnings
per share, and dividend paid in 2013 for each of the 30 stocks in the Dow Jones Indus-
trial Average. The first three lines of the file are

American Express,AXP,NYSE,Consumer finance,57.48,90.73,4.88,.89

Boeing,BA,NYSE,Aerospace & defense,75.36,136.49,5.96,2.19

Caterpillar,CAT,NYSE,Construction & mining equipment,89.61,90.81,5.75,2.32

Write a program that displays the symbols for the 30 DOW stocks in a list box. When
the user clicks on one of the symbols, the information shown in Fig. 8.43 should be
displayed. The Price/Earnings ratio should be calculated as the price of a share of
stock on 12/31/2013 divided by the 2013 earnings per share.

Figure 8.43 Possible outcome of Exercise 12.

 8.3 Writing GUI Programs ◆ 357

In Exercises 13 and 14, use the file Oscars.txt that contains the names and genres
of each film that won an Oscar for best picture. The films are listed in the order they
received the award. The first three lines of the file are

Wings,silent

The Broadway Melody,musical

All Quiet on the Western Front,war

13. Academy Awards Write a program using the file Oscars.txt that fills a list box
with genres and then displays the Oscar- winning films of a specific genre when the user
clicks on the genre in the list box. See Fig. 8.44.

Figure 8.44 Possible outcome of Exercise 13.

14. Academy Awards Write a program using the file Oscars.txt that requests a year
and then displays the name and genre of that year’s best picture winner. See Fig. 8.45.

Figure 8.45 Possible outcome of Exercise 14.

In Exercises 15 through 17, use the file Senate114.txt that contains a record for each mem-
ber of the 114th U.S. Senate. (The 114th U.S. Senate was installed in 2015.) Each record
contains three fields— name, state, and party affiliation. Some records in the files are

John McCain,Arizona,R

Bernie Sanders,Vermont,I

Kirsten Gillibrand,New York,D

15. U.S. Senate Write a program that asks the user to type the name of a state into an
Entry widget and then displays the two senators from that state. See Fig. 8.46.

 358 ◆ Chapter 8 Graphical User Interface

16. U.S. Senate Write a program that determines the number of senators of each affili-
ation. See Fig. 8.47.

17. U.S. Senate Write a program that asks the user to select a state from a list box, and
then displays the two senators from that state. See Fig. 8.48.

Figure 8.46 Possible outcome of Exercise 15. Figure 8.47 Possible outcome of Exercise 16.

18. Presidential Colleges This exercise requires the file PresColl.txt that contains the
names of U.S. presidents and the undergraduate college attended by each of them. The
presidents are listed in the order they served. The first three lines of the file are

George Washington,No college

John Adams,Harvard

Thomas Jefferson,William and Mary

Write a program that fills a list box with the colleges (in alphabetical order) attended
by U.S. presidents and then displays the presidents who attended that college when the
user clicks on a college in the list box. See Fig. 8.49.

19. Workplaces Table 8.3 holds the names of five people and their places of employ-
ment. Write a program that displays the people in one list box and the workplaces in
another list box, with the items in each list box in alphabetical order. The user should
try to match a person with their workplace by selecting an item from each list. When
they click on the button, they should be told whether or not they made a correct
match. See Fig. 8.50. Note: Normally, if there are two list boxes in the window, when
you select a value in one, it deselects whatever you selected in the other. However, this
behavior will not occur if you insert the argument exportselection=0 into each list
box’s constructor.

Figure 8.48 Possible outcome of Exercise 17. Figure 8.49 Possible outcome of Exercise 18.

 Key Terms and Concepts ◆ 359

Chapter 8 KEy TERMS
and ConCepts ExAMPLES

8.1 Widgets

Some widgets (short for “window
gadgets”) are:
Button: triggers an event when clicked on
with the mouse
Label: provides an identity for another
widget
Entry: accepts input from the user and
displays output
Listbox: allows user to select from a list
of options or to display output
Scrollbar: adds scrolling capability to list
boxes

The captions for Button and Label widgets
are specified by text attributes in their
constructors.

Code can be used to retrieve text from
and put text into an Entry widget. First
an object (call it x) of type StringVar
is declared and assigned to the Entry
widget’s textvariable attribute. Then
x’s get and set methods can be used to
retrieve text from and put text into the
Entry widget.

Although text can be typed into ordinary
Entry widgets, text only can be placed
into ReadOnly Entry widgets via the set
method. An Entry widget is specified as
ReadOnly by inserting state="readonly"
into its constructor.

Label

Listbox

Entry

Bu�on

lblName=Label(window,text="Name:")

Display "Hello World!" in Entry

x = StringVar()

entHW = Entry(window, textvariable=x)

entHW.grid()

x.set("Hello")

y = x.get()

x.set(y + " World!")

entOutput = Entry(window,

 state="readonly", textvariable=x)

Table 8.3 Place of employment.

Person Workplace

Bruce Wayne Wayne Enterprises
Clark Kent Daily Planet
Peter Parker Daily Bugle
Rick Blaine Rick’s American Cafe
Willie Wonka Chocolate Factory

Figure 8.50 Possible outcome of Exercise 19.

 360 ◆ Chapter 8 Graphical User Interface

Chapter 8 KEy TERMS
and ConCepts ExAMPLES

The best way to put items into a list box is
to create a list and a StringVar object (call
it x), insert the argument listvariable=x
into the list box’s constructor, and then
evaluate x’s set method at a tupled version
of the list.

A vertical scroll bar attached to a
list box must contain the argument
orient=VERTICAL in its constructor
and its grid method must contain the
 argument sticky=NS. The constructor
of the attached list box must contain
the argument yscrollcommand=yscroll.
set and the program must contain
the statement yscroll["command"] =
 lstName.yview where yscroll is the name
of the vertical scroll bar.

GUI programs can react to events by
executing a callback function that is
 specified either in a constructor or in a
bind method.

The callback function to be triggered
when clicking on a button is specified by
the command attribute in the button’s
constructor.

The callback function triggered by clicking
on an item in a list box is specified
with the list box’s bind method having
“<<ListboxSelect>>” as its first argument
and the callback function as its second
argument. The item clicked on is returned
by the list box’s curselection method.

L = ["red", "blue", "tan"]

x = StringVar()

lstC = Listbox(window, listvariable=x)

lstC.grid()

x.set(tuple(L))

yscroll = Scrollbar(window,

 orient=VERTICAL)

yscroll.grid(row=0,column=1,sticky=NS)

lstNE = Listbox(window,

 yscrollcommand=yscroll.set)

lstNE.grid(row=0, column=0, sticky=E)

yscroll["command"] = lstNE.yview

btnGo = Button(window, text="Go",

 command=doSomething)

lstC.bind("<<ListboxSelect>>",

 changeBackgroundColor)

lstC["bg"] =

 lstC.get(lstC.curselection())

8.2 The Grid Geometry Manager

The grid manager controls the
arrangement of widgets into a table- like
structure.

The layout of a widget within a cell is
determined by the following attributes
specified in the widget’s grid method:
row: row to place the widget in
column: column to place the widget in

lstBox.grid(row=1, column=2,

 rowspan=5, padx=(5,0))

 Programming Projects ◆ 361

Chapter 8 KEy TERMS
and ConCepts ExAMPLES

rowspan: number of rows occupied by
the widget
columnspan: number of columns
occupied by the widget
padx and pady: number of pixels to pad
sides of the widget
sticky: used to attach a widget to a
particular side of a cell or to enlarge
a widget to fill a cell horizontally,
vertically, or both.

btn.grid(row=2, column=1,

 columnspan=2, pady=5)

yscroll.grid(row=1, column=1,

 rowspan=10, sticky=NS)

8.3 Writing GUI Programs

TUI programs can be written as
 graphical user interface programs after
importing the tkinter module. GUI
programs are event driven, visually
appealing, and give the user more control
than TUI programs.

Chapter 8 PROGRAMMInG PROjECTS

1. Investment If $10,000 is invested at an annual interest rate r compounded n times
per year, then the amount of the investment after five years will be 10,000 (1 + r

n)5
#n

Some possible values for r are .02, .025, .03, .035, and .04. Some possible values for n are
1, 2, 4, 12, and 52. Write a program that allows the user to select interest rates and com-
pounding periods from list boxes and calculate the amount after five years. See Fig. 8.51.
Note: Normally, if there are two list boxes in the window, when you select a value in one,
it deselects whatever you selected in the other. However, this behavior will not occur if
the argument exportselection=0 is inserted into each list box’s constructor.

Figure 8.51 Possible outcome of Programming Project 1.

 362 ◆ Chapter 8 Graphical User Interface

2. United Nations Each line of the file UN.txt gives the name, continent, population
(in millions), and area (in square miles) of a member of the United Nations. Some lines
of the file are

Canada,North America,34.8,3855000

France,Europe,66.3,211209

New Zealand,Australia/Oceania,4.4,103738

Nigeria,Africa,177.2,356669

Pakistan,Asia,192.2,310403

Peru,South America,30.0,496226

This data has been placed into the following dictionary- valued dictionary, and then
pickled into the binary file UNdict.dat.

nations = {"Canada":{"cont":"North America", "popl":34.8, "area":3855000},

 "France":{"cont":"Europe", "popl":66.3}, "area":211209} ...}

Write a program using the file UNdict.dat that allows the user to display the conti-
nent, population, and area of a country by clicking on the name of the country in a
list box. See Fig. 8.52.

Figure 8.52 Possible outcome of Programming Project 2.

3. Pensions A person in the Civil Service Retirement System can retire at age 55 with
at least 20 years of service. A simplified variation for the computation of the amount
of their pension is as follows:

(a) Calculate the average annual salary for the person’s best three years; call it ave.

(b) Calculate anumber of years +
number of months

12
b ; call it yrs.

(c) Calculate percentage rate: 1.5% for first five years, 1.75% for next five years, and
2% for each additional year. Call it perRate.

(d) Take the minimum of perRate and 80%; call it p.
(e) The amount of the pension is p*ave.

Write a program that requests the input shown in Fig. 8.53 and calculates the amount
of the pension.

4. Verbalize a Number Write a program that allows the user to enter a positive whole
number having no more than 27 digits (with commas included) and then verbalizes the
number. See Fig. 8.54.

Figure 8.53 Possible outcome of
Programming Project 3.

Figure 8.54 Possible outcome of
Programming Project 4.

 Programming Projects ◆ 363

This page intentionally left blank

365

ASCII
Value Character
000 (null)
001
002
003
004
005
006
007
008
009 (tab)
010 (line feed)
011
012
013 (carriage return)
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032 (space)
033 !
034 "
035 #
036 $
037 %
038 &

ASCII
Value Character
039 '
040 (
041)
042 *
043 +
044 ,
045 -
046 .
047 /
048 0
049 1
050 2
051 3
052 4
053 5
054 6
055 7
056 8
057 9
058 :
059 ;
060 6
061 =
062 7
063 ?
064 @
065 A
066 B
067 C
068 D
069 E
070 F
071 G
072 H
073 I
074 J
075 K
076 L
077 M

ASCII
Value Character
078 N
079 O
080 P
081 Q
082 R
083 S
084 T
085 U
086 V
087 W
088 X
089 Y
090 Z
091 [
092 \
093]
094 ^
095 _
096 `
097 a
098 b
099 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t

Appendix A

AsCII Values

 366 ◆ Appendix A ASCII Values

ASCII
Value Character
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ,
127
128
129
130 ,
131 f
132 ”
133 …
134 †
135 ‡
136 ˆ
137 ‰
138 Š
139 ‹
140 Œ
141
142 Ž
143
144
145 ‘
146 ’
147 “
148 ”
149 •
150 –
151 —
152 ,
153 ™
154 š
155 ›
156 œ
157
158 ž
159 Ÿ
160 (no-break space)
161 ¡
162 ¢
163 £

ASCII
Value Character
164 ¤
165 ¥
166 ¦
167 §
168 ¨
169 ©
170 ª
171 «
172 ¬
173 -
174 ®
175 ¯
176 °
177 ±
178 ²
179 ³
180 ´
181 µ
182 ¶
183 ·
184 ¸
185 ¹
186 º
187 »
188 ¼
189 ½
190 ¾
191 ¿
192 À
193 Á
194 Â
195 Ã
196 Ä
197 Å
198 Æ
199 Ç
200 È
201 É
202 Ê
203 Ë
204 Ì
205 Í
206 Î
207 Ï
208 Ð
209 Ñ
210 Ò

ASCII
Value Character
211 Ó
212 Ô
213 Õ
214 Ö
215 *
216 Ø
217 Ù
218 Ú
219 Û
220 Ü
221 ý
222 þ
223 ß
224 à
225 á
226 â
227 ã
228 ä
229 å
230 æ
231 ç
232 è
233 é
234 ê
235 ë
236 ì
237 í
238 î
239 ï
240 ð
241 ñ
242 ò
243 ó
244 ô
245 õ
246 ö
247 ,
248 ø
249 ù
250 ú
251 û
252 ü
253 ‡
254 þ
255 ÿ

367

Appendix B

Reserved Words

The 33 reserved words (or keywords) in Python are as follows:

and as assert break class

continue def del elif else

except False finally for from

global if import in is

lambda None nonlocal not or

pass raise return True try

while with yield

This page intentionally left blank

369

Installing Python and IDLE

Appendix C

Note: IDLE, short for Integrated DeveLopment Environment, is a graphical interface for writing and
running Python programs. Integrated development environments (IDEs) integrate the interpreter, text
editor, and more to help program more efficiently. IDLE works in Windows, Mac OS, and Linux.

Windows

1. Go to the website http://python.org/downloads. The top part of the display will be similar to the
picture in Fig. C.1.

2. To download the installer for the latest version of Python 3, click on the button with a caption of
the form “Download Python 3.x.x,” and then click on the Save File button in the small window that
appears. (Python 3.4.2 was the latest version of Python when this book was written.) The name of
the installer will be similar to python-3.4.2.msi.

3. Run the installer by double-clicking on it and then follow all the prompts. If Windows asks, give the
installer permission to continue.

4. With Windows 8, Python can be invoked from the Start screen by typing IDLE. With earlier ver-
sions of Windows, IDLE can be invoked from the Start menu.

Figure C.1 Python download screen for Windows.

Mac OS X

1. Python is usually preinstalled on Mac computers. To see if Python 3 has been installed on your
computer, open Finder, select Applications, and check that there is a folder labeled “Python 3.x” in
the Applications directory. You likely have Python 2 already, but we will be using Python 3. If you
see “Python 3.x,” skip to Step 4. Otherwise, download and install Python 3.

2. Visit the website http://python.org/downloads. The top part of the display will be similar to the
picture in Fig. C.1, except that “Download the latest version for Windows” will be replaced with

http://python.org/downloads
http://python.org/downloads

 370 ◆ Appendix C Installing Python and IDLE

“Download the latest version for Mac OS X.” Click on the left yellow button to download
the installer for the latest version of Python 3. (Python 3.4.2 was the latest version when
this book was written.) The file name will be similar to python-3.4.2-macosx10.6.pkg.

3. Run the installation package (with Installer), and follow all the prompts. If OSX asks,
give the installer permission to continue.

4. Python 3 and IDLE should appear in the Applications directory, where we looked in
Step 1. Run IDLE from there to start programming.

Linux or Unix

Note: The directions below will refer to opening a terminal. The exact process depends on
which distribution you are using, so if it is not easy to figure out using your desktop man-
ager, try an Internet search.

Note: If you have a version of Python 3 earlier than 3.3, everything in this book should
work except small portions like those involving the FileNotFoundError. The installation
process below will install the latest stable release your package manager can access, which
may be earlier than Python 3.3.

1. Python is usually already installed on computers running the Linux or Unix operating
system. To see if you have the right version of Python, open a terminal and enter:

python3 --version

If you get something like “command not found,” you need to install Python 3. If you
get something like “Python 3.x.x,” then Python 3 is already installed on your com-
puter, so skip to Step 3.

2. Python 3 should be available by default on most package managers. We will demon-
strate using the common apt-get package manager. In a terminal, enter:

sudo apt-get install python3

You should be asked for your administrator password. Follow any prompts, and
Python 3 will be installed as python3.

3. To install IDLE for Python 3, use your package manager like we did above. For example,
with apt-get, enter:

sudo apt-get install idle3

and follow any prompts. IDLE can be run from a terminal by entering idle3 or by navi-
gating to the /usr/bin directory and running idle3 from there. In a terminal, enter:

idle3

or

/usr/bin/idle3

371

Answers

This section contains the answers to all odd- numbered exercises from Chapters 2 through 7, with the
exception of Section 6.3 (Turtle Graphics). In Exercises 6.3, the answers to every other odd- numbered
exercise are given. The Student Solutions Manual, which can be downloaded from the companion
website for the book, contains the answer to every odd- numbered exercise in the book.

ChApter 2

ExErcisEs 2.1

 1. 13.6 3. .125 5. 2.8

x y

x = -2 -2 does not exist

y = x + 5 -2 3

x = x**y -8 3

print((x/y)+2) -8 3

y = y % 2 + 0.6 -8 1.6

 7. 2 9. 0 11. 4

 13. Valid 15. Valid 17. Not valid

 19. 22 21. 28 23. 9

 25. print((5 * 3)+(3 * 5)) 27. print(200 +(1 * 100)) 29. print(31 * (2 + 28))

 31.

 33. 75 35. 5 37. 3.52

 39. The third line should read c = a + b.

 41. The first line should read interest = 0.05.

 43. 10 45. 7 47. 3.128

 49. -3 51. 1 53. 6

 55. cost += 5 57. cost /= 6 59. sum %= 2

 61. revenue = 98456
costs = 45000

profit = revenue - costs

print(profit)

 372 ◆ Answers

 63. price = 19.95
discountPercent = 30

markdown = (discountPercent / 100) * price

price -= markdown

print(round(price, 2))

 65. balance = 100
balance += 0.05 * balance

balance += 0.05 * balance

balance += 0.05 * balance

print(round(balance, 2))

 67. balance = 100
balance *= 1.05 ** 10

print(round(balance, 2))

 69. tonsPerAcre = 18
acres = 30

totalTonsProduced = tonsPerAcre * acres

print(totalTonsProduced)

 71. averageSpeed = 81.34
elapsedTime = 9 - 5

distance = averageSpeed * elapsedTime

print(distance)

 73. wattsPerMonth = 750000000
numberOfPeople = 5000000

numberOfDays = 30

wattsPerPersonDaily = wattsPerMonth/ (numberOfPeople * numberOfDays)

print(wattsPerMonth)

 75. initialMoney = 1000
interestRate = .087

numberOfYears = 2

totalMoney = initialMoney * (1+ (interestRate**numberOfYears))

print(round(totalMoney))

 77. initialAmt = 2.59e+14
finalAmt = 4.68e+14

percentGrowth = (finalAmt - initialAmt) * 100 / initialAmt

print(round(percentGrowth))

ExErcisEs 2.2

 1. Python 3. Ernie 5. o 7. o

 9. Pyt 11. Py 13. h 15. th

 17. Python 19. 2 21. -1 23. 7

 25. python 27. Smallelements 29. pYtHoN 31. 8 Ball

 33. 8 BALL 35. Pyt 37. The Artist 39. 5

 41. 7 43. 2 45. John's school 47. 12
MUNICIPALITY

city

6

 49. flute 51. Your age is 21.

 53. A ROSE IS A ROSE IS A ROSE 55. WALLAWALLAWALLA

 Answers ◆ 373

 57. goodbye 59. Mmmmmmm. 61. a b 63. 76 trombones

 65. 8.0 67. 8 69. The Great 9 71. s[:-1]

 73. -8 75. True 77. True

 79. 234-5678 should be surrounded with quotation marks.

 81. for is a reserved word and cannot be used as a variable name.

 83. The string should be replaced with "Say it ain't so."

 85. UPPER should be changed to upper.

 87. A string cannot be concatenated with a number. The second line should be written
print("Age: " + str(age)) or print("Age:", age).

 89. find accepts a character as an argument, not a number.

 91. The str object does not support item assignment.

 93. ## Display an inventor's name and year of birth.
firstName = "Thomas"

middleName = "Alva"

lastName = "Edison"

yearOfBirth = 1847

print("The year of birth of "+firstName, middleName, lastName+" is

"+yearOfBirth)

 95. ## Display a copyright statement.
publisher = "Pearson"

print("(c)", publisher)

 97. ## Calculate the distance from a storm.
prompt = "Enter number of seconds between lightning and thunder: "

numberOfSeconds = float(input(prompt))

distance = numberOfSeconds / 5

distance = round(distance, 2)

print("Distance from storm:", distance, "miles.")

 99. ## Calculate weight loss during a triathlon.
cycling = float(input("Enter number of hours cycling: "))

running = float(input("Enter number of hours running: "))

swimming = float(input("Enter number of hours swimming: "))

pounds = (200 * cycling + 475 * running + 275 * swimming) / 3500

pounds = round(pounds, 1)

print("Weight loss:", pounds, "pounds")

 101. ## Calculate percentage of games won by a baseball team.
name = input("Enter name of team: ")

gamesWon = int(input("Enter number of games won: "))

gamesLost = int(input("Enter number of games lost: "))

percentageWon = round(100 * (gamesWon) / (gamesWon + gamesLost), 1)

print(name, "won", str(percentageWon) + '%', "of their games.")

 103. ## Determine the speed of a skidding car.
distance = float(input("Enter distance skidded (in feet): "))

speed = (24 * distance) ** .5

 374 ◆ Answers

speed = round(speed, 2)

print("Estimated speed:", speed, "miles per hour")

 105. ## Convert speed from kph to mph.
speedInKPH = float(input("Enter speed in KPH: "))

speedInMPH = speedInKPH * .6214

print("Speed in MPH:", round(speedInMPH, 2))

 107. ## Calculate equivalent CD interest rate for municipal bond rate.
taxBracket = float(input("Enter tax bracket (as decimal): "))

bondRate = float(input("Enter municipal bond interest rate (as %): "))

equivCDrate = bondRate / (1 - taxBracket)

print("Equivalent CD interest rate:", str(round(equivCDrate, 3)) + '%')

 109. ## Analyze a number.
number = input("Enter number: ") # Note: number is a string

decimalPoint = number.find('.')

print(decimalPoint, "digits to left of decimal point")

print(len(number) - decimalPoint - 1, "digits to right of decimal point")

 111. ## Convert a number of months to years and months.
numberOfMonths = int(input("Enter number of months: "))

years = numberOfMonths // 12

months = numberOfMonths % 12

print(numberOfMonths, "months is", years, "years and", months, "months.")

ExErcisEs 2.3

 1. merry

 christmas!

 3. Portion: 90% 5. 1 x 2 x 3 7. father- in- law

 9. What is your name?
 John

 17. NUMBER SQUARE CUBE
2 4 8

3 9 27

 19. Hello World!
Hello World!

 21. 01234567890
 A | B | C

 23. 01234567890123456
 one two three

 25. 0123456789
 12.30%

 123.0%

1,230.00%

 27. $1,234.6 29. 1.2

 31. Team Fifa points % fans of World Pop.
Germany 1,725 34.12%

Argentina 1,538 25.85%

Columbia 1,450 25.52%

 33. Be yourself – everyone else is taken.

 35. you are the creator of your own destiny.

 37. The matrix of 3 and 4 has 12 elements.

 39. The square root of 2 is about 1.4142.

 41. In a randomly selected group of 23 people, the probability is 0.51 that 2
people have the same birthday.

 11. Python 13. Hello

World!

 15. One Two
Three Four

 Answers ◆ 375

 43. You miss 100% of the shots you never take. - Wayne Gretsky

 45. 22.28% of the UN nations are in Europe.

 47. abracadabra

 49. Be kind whenever possible. It is always possible. - Dalai Lama

 51. Yes

 53. ## Calculate a server's tip.
bill = float(input("Enter amount of bill: "))

percentage = float(input("Enter percentage tip: "))

tip = (bill * percentage) / 100

print("Tip: ${0:.2f}".format(tip))

 55. ## Calculate a new salary.
beginningSalary = float(input("Enter beginning salary: "))

raisedSalary = 1.1 * beginningSalary

cutSalary = .9 * raisedSalary

percentChange = (cutSalary - beginningSalary) / beginningSalary

print("New salary: ${0:,.2f}".format(cutSalary))

print("Change: {0:.2%}".format(percentChange))

 57. ## Calculate a future value.
p = float(input("Enter principal: "))

r = float(input("Enter interest rate (as %): "))

n = int(input("Enter number of years: "))

futureValue = p * (1 + (r / 100)) ** n

print("Future value: ${0:,.2f}".format(futureValue))

ExErcisEs 2.4

 1. Algeria Denmark 3. Canada Bosnia

 5. Denmark Denmark 7. 12

 9. Denmark Denmark 11. japan

 13. Denmark 15. Germany

 17. ['Algeria', 'Germany', 'England']

 19. ['Bosnia', 'Cameroon', 'Canada']

 21. ['japan', 'India', 'Algeria', 'Germany', 'England', 'Argentina', 'Portu-
gal', 'China', 'Australia', 'Austria']

 23. ['Canada', 'Denmark', 'Nigeria']

 39. ['Algeria', 'Mangolia', ['New Zealand', 'Norway']]

 41. ['japan', 'Russia', 'Algeria']

 43. ['Nigeria']

 45. Belgium-Bhutan-Bosnia-Cameroon-Canada

 47. Cameroon*Canada*Denmark

 31. 10

 25. [] 27. Germany 29. Germany

 33. 0 35. 19 37. ['Nigeria', 'Algeria', 'Cuba']

 376 ◆ Answers

 49. 8 51. 100 53. 0

 55. Largest Number: 8 57. Total: 16

 59. This sentence contains five words.
This sentence contains six different words.

 61. Babbage, Charles 63. Middle Name: van

 65. When in the course of human events 67. editor- in- chief

 69. e**pluribus**unum

 71. ['New York', 'NY', 'Empire State', 'Albany']

 73. ['France', 'England', 'Spain']

 75. programmer 77. Follow your own star.

 79. 987-654-3219 81. [3, 9, 6]

 83. each 85. ['soprano', 'tenor', 'alto', 'bass']

 87. ['gold', 'silver', 'bronze'] 89. murmur

 91. ('Happy', 'Sneezy', 'Bashful') 93. 1

 95. Index out of range. The list does not have an item of index 3.

 97. The join method only can be applied to a list consisting entirely of strings.

 99. The second line is not valid. Items in a tuple cannot be reassigned values directly.

 101. ## Count the number of words in a sentence.
sentence = input("Enter a sentence: ")

L = sentence.split(" ")

print("Number of words:", len(L))

 103. ## Display a name.
name = input("Enter a 2-part name: ")

L = name.split()

print("{0:s}, {1:s}".format(L[1], L[0]))

ChApter 3

ExErcisEs 3.1

 1. ***** 3. The upper case of letter g is G.

 5. Minimum: 3
Maximum: 17

 7. D is 4 positions before H
 alphabetically.

 9. True 11. True 13. False 15. True 17. False 19. False

 21. True 23. False 25. False 27. False 29. False 31. False

 33. False 35. True 37. False 39. False 41. True 43. False

 45. Equivalent 47. Not equivalent 49. Equivalent

 51. Equivalent 53. Equivalent 55. a <= b

 Answers ◆ 377

 65. 3 <= n < 9 67. -20 < n <= 10

 57. (a >= b) or (c == d) 59. a > b

 61. ans in ['Y', 'y', "Yes", "yes"] 63. 2010 <= year <= 2013

 69. True 71. True 73. True 75. True

 77. True 79. False 81. False 83. False

 85. print("He said " + chr(34) + "How ya doin?" + chr(34) + " to me.")

ExErcisEs 3.2

 1. Less than ten. 3. True

 5. Remember, tomorrow is New Year's day.

 7. 2 2 7 9. To be, or not to be.

 11. Hi 13. A nonempty string is true.

 15. Syntax error and logic error. Second line should be if n%2==0. n should not be a
string. Third line should be print("The square is", n ** 2).

 17. Syntax error. Second line is full of errors. It should be as follows:
if (major == "Business") or (major == "Computer Science"):

 19. a = 5

 21. if (j == 7):
 b = 1

else:

 b = 2

 23. answer = input("Is the Indian Ocean bigger than the Pacific Ocean?")
if answer[0].upper() == 'Y':

 print("Correct")

else:

 print("Wrong")

 25. ## Calculate a tip.
bill = float(input("Enter amount of bill: "))

tip = bill * 0.15

if (tip < 2):

 tip = 2

print("Tip is ${0:,.2f}".format(tip))

 27. ## Calculate the cost of widgets.
num = int(input("Enter number of widgets: "))

if num < 100:

 cost = num * 0.25

else:

 cost = num * 0.20

print("Cost is ${0:,.2f}".format(cost))

 29. ## A quiz
response = input("Who was the first Ronald McDonald? ")

if response == "Willard Scott":

 print("You are correct.")

 378 ◆ Answers

else:

 print("Nice try.")

 31. ## Calculate an average after dropping the lowest score.
scores = []

scores.append(eval(input("Enter first score: ")))

scores.append(eval(input("Enter second score: ")))

scores.append(eval(input("Enter third score: ")))

scores.remove(min(scores))

average = sum(scores) / 2

print("Average of the two highest scores is {0:.2f}".format(average))

 33. ## Make change for a purchase of apples.
weight = float(input("Enter weight in pounds: "))

payment = float(input("Enter payment in dollars: "))

cost = (2.5 * weight)

if payment >= cost:

 change = payment - cost

 print("Your change is ${0:,.2f}.".format(change))

else:

 amountOwed = cost - payment

 print("You owe ${0:,.2f} more.".format(amountOwed))

 35. ## Validate input.
letter = input("Enter a single uppercase letter: ")

if (len(letter) != 1) or (letter != letter.upper()):

 print("You did not comply with the request.")

 37. ## Convert military time to regular time.
militaryTime = input("Enter a military time (0000 to 2359): ")

hours = int(militaryTime[0:2])

minutes = int(militaryTime[2:4])

if hours >= 12:

 cycle = "pm"

 hours %= 12

else:

 cycle = "am"

 if hours == 0:

 hours = 12

print("The regular time is {0}:{1} {2}.".format(hours, minutes, cycle))

 39. ## Use APYs to compare interest rates offered by two banks.
r1 = float(input("Enter annual rate of interest for Bank 1: "))

m1 = float(input("Enter number of compounding periods for Bank 1: "))

r2 = float(input("Enter annual rate of interest for Bank 2: "))

m2 = float(input("Enter number of compounding periods for Bank 2: "))

ipp1 = r1 / (100 * m1) # interest rate per period

ipp2 = r2 / (100 * m2)

apy1 = ((1 + ipp1) ** m1) - 1

apy2 = ((1 + ipp2) ** m2) - 1

print("APY for Bank 1 is {0:,.3%}".format(apy1))

print("APY for Bank 2 is {0:,.3%}".format(apy2))

if (apy1 == apy2):

 print("Bank 1 and Bank 2 are equally good.")

 Answers ◆ 379

else:

 if(apy1 > apy2):

 betterBank = 1

 else:

 betterBank = 2

 print("Bank", betterBank, "is the better bank.")

 41. ## Bestow graduation honors.
Request grade point average.

gpa = eval(input("Enter your grade point average (2 through 4): "))

Validate that GPA is between 2 and 4

if not (2 <= gpa <=4):

 print("Invalid grade point average. GPA must be between 2 and 4.")

else:

 # Determine if honors are warranted and display conclusion.

 if gpa >= 3.9:

 honors = " summa cum laude."

 elif gpa >= 3.6:

 honors = " magna cum laude."

 elif gpa >= 3.3:

 honors = " cum laude."

 else:

 honors = "."

 print("You graduated" + honors)

 43. ## Calculate a person's state income tax.
income = float(input("Enter your taxable income: "))

if income <= 20000:

 tax =.02 * income

else:

 if income <= 50000:

 tax = 400 + .025 * (income - 20000)

 else:

 tax = 1150 + .035 * (income - 50000)

print("Your tax is ${0:,.0f}.".format(tax))

ExErcisEs 3.3

 1. 20 3. 2 5. 20 7.
b

cc

ddd

 9. Infinite loop

 11. while condition should be i >0

 13. sum = int(input("Enter a number: "))
 for i in range(2):

 sum = sum + int (input("Enter a number: "))

 print(sum)

 15. ## Display a Celsius- to- Fahrenheit conversion table.
print("Celsius\t\tFahrenheit")

for celsius in range(10, 31, 5):

 380 ◆ Answers

 fahrenheit = (celsius * (9 / 5)) + 32

 print("{0}\t\t{1:.0f}".format(celsius, fahrenheit))

 17. ## Find the GCD of two numbers.
m = int(input("Enter value of M: "))

n = int(input("Enter value of N: "))

while n != 0:

 t = n

 n = m % n # remainder after m is divided by n

 m = t

print("Greatest common divisor:", m)

 19. ## Find special age.
age = 1

while (1980 + age) != (age * age):

 age += 1

print("Person will be {0} \nin the year {1}.".format(age, age * age))

 21. ## Radioactive decay
mass = 100 # weight in grams

year = 0

while(mass > 1):

 mass /= 2

 year += 28

print("The decay time is")

print(year, "years.")

 23. ## Determine when a car loan will be half paid off.
principal = 15000

balance = principal # initial balance

monthlyPayment = 290

monthlyFactor = 1.005 # multiplier due to interest

month = 0

while(balance >= principal / 2):

 balance = (monthlyFactor * balance) - monthlyPayment

 month += 1

print("Loan will be half paid \noff after", month, "months.")

 25. ## Annuity with withdrawals
balance = 10000

interestMultiplier = 1.003 # multiplier due to interest

monthlyWithdrawal = 600

month = 0

while balance > 600:

 balance = (interestMultiplier * balance) - monthlyWithdrawal

 month += 1

print("Balance will be ${0:,.2f} \nafter {1} months.".

 format(balance, month))

 27. ## Determine class size for which the probability is greater
than 50% that someone has the same birthday as you.

num = 1

while (364 / 365) ** num > 0.5:

 Answers ◆ 381

num += 1

print("With", num, "students, the probability")

print("is greater than 50% that someone")

print("has the same birthday as you.")

 29. ## Determine when India's population will surpass China's population.
chinaPop = 1.37

indiaPop = 1.26

year = 2014

while indiaPop < chinaPop:

 year += 1

 chinaPop *= 1.0051

 indiaPop *= 1.0135

print("India's population will exceed China's")

print("population in the year", str(year) + '.')

 31. ## Maintain a savings account.
print("Options:")

print("1. Make a Deposit")

print("2. Make a Withdrawal")

print("3. Obtain Balance")

print("4. Quit")

balance = 1000

while True:

 num = int(input("Make a selection from the options menu: "))

 if num == 1:

 deposit = float(input("Enter amount of deposit: "))

 balance += deposit

 print("Deposit Processed.")

 elif num == 2:

 withdrawal = float(input("Enter amount of withdrawal: "))

 while (withdrawal > balance):

 print("Denied. Maximum withdrawal is ${0:,.2f}"

 .format(balance))

 withdrawal = float(input("Enter amount of withdrawal: "))

 balance -= withdrawal

 print("Withdrawal Processed.")

 elif num == 3:

 print("Balance: ${0:,.2f}".format(balance))

 elif num == 4:

 break

 else:

 print("You did not enter a proper number.")

ExErcisEs 3.4

 13. range(20, 13, -3)

 1. 1,2,3,4,5,6,7,8,9

 3. 10, 9, 8, 7, 6, 5, 4, 3, 2

 5.

 7. -1

 9. range(4, 20, 5)

 11. range(-21, -17)

 15. range(5, -1, -1)

 382 ◆ Answers

 17. Pass #1
Pass #2

Pass #3

Pass #4

 19. 5
6

7

 21. ¢¢¢¢¢¢¢¢¢¢

 23. 2
4

6

8

Who do we appreciate?

 25. 3 27. 15 29. n 31. 3 20

 33. The shortest word has length 5

 35. three 37. 18 39. North Carolina
North Dakota

 41. The range generates no elements because the step argument’s direction is opposite
the direction from start to stop.

 43. The print function call is missing parentheses.

 45. The range constructor should read range(0, 20) or range(20) because range(20,0)
will not generate any values. Also, the print statement must be indented twice so it
belongs to the if block.

 47. for num in range(1, 10, 2):
 print(num)

 49. lakes = ["Erie", "Huron", "Michigan", "Ontario", "Superior"]
print(", ".join(lakes))

 51. ## Determine amount of radioactive material remaining after five years.
amount = 10

for i in range(5):

 amount *= .88

print("The amount of cobalt- 60 remaining")

print("after five years is {0:.2f} grams.".format(amount))

 53. ## Count the number of vowels in a phrase.
total = 0

phrase = input("Enter a phrase: ")

phrase.lower()

for ch in phrase:

 if ch in "aeiou":

 total += 1

print("The phrase contains", total, "vowels.")

 55. ## Total the fractions 1/n for n = 1 through 100.
sum = 0

for i in range(1, 101):

 sum += 1 / i

print("The sum of 1 + 1/2 + 1/3 + . . . + 1/100")

print("is {0:.5f} to five decimal places.".format(sum))

 Answers ◆ 383

 57. ## Determine if the letters of a word are in alphabetical order.
word = input("Enter a word: ")

firstLetter = ""

secondLetter = ""

flag = True

for i in range(0, len(word) - 1):

 firstLetter = word[i]

 secondLetter = word[i + 1]

 if firstLetter > secondLetter:

 flag = False

 break

if flag:

 print("Letters are in alphabetical order.")

else:

 print("Letters are not in alphabetical order.")

 59. ## Calculate a person's lifetime earnings.
name = input("Enter name: ")

age = int(input("Enter age: "))

salary = float(input("Enter starting salary: "))

earnings = 0

for i in range(age, 65):

 earnings += salary

 salary += .05 * salary

print("{0} will earn about ${1:,.0f}.".format(name, earnings))

 61. ## Display the balances on a car loan.
print(" AMOUNT OWED AT")

print("YEAR ", "END OF YEAR")

balance = 15000

year = 2012

for i in range(1, 49):

 balance = (1.005 * balance) - 290

 if i % 12 == 0:

 year += 1

 print(year, " ${0:,.2f}".format(balance))

print(year + 1, " $0.00")

 63. ## Calculate the average of the best two of three grades.
grades = []

for i in range(3):

 grade = int(input("Enter a grade: "))

 grades.append(grade)

grades.sort()

average = (grades[1] + grades[2]) / 2

print("Average: {0:n}".format(average))

 65. ## Display the effects of supply and demand.
print("YEAR QUANTITY PRICE")

quantity = 80

price = 20 – (.1 * quantity)

print("{0:d} {1:.2f} ${2:.2f}".format(2014, quantity, price))

 384 ◆ Answers

for i in range(4):

 quantity = (5 * price) - 10

 price = 20 – (.1 * quantity)

 print("{0:d} {1:.2f} ${2:.2f}".format(i + 2015, quantity, price))

 67. ## Compare two salary options.
Calculate amount earned in ten years with Option 1.

salary = 20000

option1 = 0

for i in range(10):

 option1 += salary

 salary += 1000

print("Option 1 earns ${0:,d}.".format(option1))

Calculate amount earned in ten years with Option 2.

salary = 10000

option2 = 0

for i in range(20):

 option2 += salary

 salary += 250

print("Option 2 earns ${0:,d}.".format(option2))

 69. ## Determine the number of Super Bowl wins for the Pittsburg Steelers.
teams = open("SBWinners.txt", 'r')

numberOfWins = 0

for team in teams:

 if team.rstrip() == "Steelers":

 numberOfWins += 1

print("The Steelers won")

print(numberOfWins, "Super Bowl games.")

 71. ## Analyze grades on a final exam.
infile = open("Final.txt", 'r')

grades = [line.rstrip() for line in infile]

infile.close()

for i in range(len(grades)):

 grades[i] = int(grades[i])

average = sum(grades) / len(grades)

num = 0 # number of grades above average

for grade in grades:

 if grade > average:

 num += 1

print("Number of grades:", len(grades))

print("Average grade:", average)

print("Percentage of grades above average: {0:.2f}%"

 .format(100 * num / len(grades)))

 73. ## Count the number of different vowels in a word.
word = input("Enter a word: ")

word = word.upper()

vowels = "AEIOU"

vowelsFound = []

numVowels = 0

 Answers ◆ 385

for letter in word:

 if (letter in vowels) and (letter not in vowelsFound):

 numVowels += 1

 vowelsFound.append(letter)

print("Number of vowels:", numVowels)

 75. ## Calculate probabilities that at least two
people in a group have the same birthday.

print("{0:17} {1}".format("NUMBER OF People", "PROBABILITY"))

r = size of group

for r in range(21, 26):

 product = 1

 for t in range(1, r):

 product *= ((365 - t) / 365)

 print("{0:<17} {1:.3f}".format(r, 1 - product))

 77. ## Display sentence with Boston accent.
sentence = input("Enter a sentence: ")

newSentence = ""

for ch in sentence:

 if ch.upper() != 'R':

 newSentence += ch

print(newSentence)

 79. ## Identify ICC winner by number.
infile = open("ICCWinners.txt", 'r')

for i in range(5):

 infile.readline()

print("The 6th winner was")

print(infile.readline().rstrip() + '.')

 81. ## Calculate number of odometer readings containing the digit 1.
total = 0

for n in range(1000000):

 if '1' in str(n):

 total += 1

print("{0:,d} numbers on the odometer".format(total))

print("contain the digit 1.")

 83. ## Display vegetable and flower.
mixed = ["Broccoli V", "Lily F", "Cucumber V", "Rose F", "Lotus F",

 "Cabbage V", "Onion V", "Anemone F", "Aster F"]

vegetable = []

fruit = []

for mixed in mixed:

 if mixed[-1] == 'V':

 vegetable.append(mixed[:-2])

 else:

 fruit.append(mixed[:-2])

namesV = ", ".join(vegetable))

namesF = ", ".join(fruit)

print("Vegetable:", namesV)

print("Fruit:", namesF)

 386 ◆ Answers

ChApter 4

ExErcisEs 4.1

 1. H
w

 3. Enter the time in which you want to double your money: 2
To double your money in 2.0 years, get an interest rate of about 36.00 %.

 5. Your income tax is $499.00

 7. Why do clocks run clockwise?

Because they were invented in the northern

hemisphere where sundials go clockwise.

 9. Message 1: 2015-07-14T16:25:26.169705
Message 2: 2015-07-14T16:25:26.180707

 11. Kailash Satyarthi won the Nobel Peace prize.
Patrick Modiano won the Nobel Literature prize.

 13. 7
5

 15. Fredrick

 17. Total cost: $260.00 19. 5

 21. When in the course of human events

 23. Enter grade on midterm exam: 85
Enter grade on final exam: 94

Enter type of student (Pass/Fail) or (Letter Grade): Letter Grade

Semester grade: A

Enter grade on midterm exam: 50

Enter grade on final exam: 62

Enter type of student (Pass/Fail) or (Letter Grade): Pass/Fail

Semester grade: Fail

Enter grade on midterm exam: 56

Enter grade on final exam: 67

Enter type of student (Pass/Fail) or (Letter Grade): Letter Grade

Semester grade: D

 25. def maximum(list1):
 largestNumber = list1[0]

 for number in list1:

 if number > largestNumber:

 largestNumber = number

 return largestNumber

 27. def main():
 word = input("Enter a word: ")

 if isQwerty(word):

 print(word, "is a Qwerty word.")

 else:

 print(word, "is not a Qwerty word.")

 Answers ◆ 387

def isQwerty(word):

 word = word.upper()

 for ch in word:

 if ch not in "QWERTYUIOP":

 return False

 return True

main()

 29. def main():
 ## Compare salary options

 opt1 = option1()

 opt2 = option2()

 print("Option 1 = ${0:,.2f}.".format(opt1))

 print("Option 2 = ${0:,.2f}.".format(opt2))

 if opt1 > opt2:

 print("Option 1 pays better.")

 elif opt1 == opt2:

 print("Options pay the same.")

 else:

 print("Option 2 is better.")

def option1():

 ## Compute the total salary for 10 days,

 ## with a flat salary of $100/day.

 sum = 0

 for i in range(10):

 sum += 100

 return sum

def option2():

 ## Compute the total salary for 10 days,

 ## starting at $1 and doubling each day.

 sum = 0

 daySalary = 1

 for i in range(10):

 sum += daySalary

 daySalary *= 2

 return sum

main()

 31. # Named constants.
WAGE_BASE = 117000 # There is no social security benefits

 # tax on income above this level.

SOCIAL_SECURITY_TAX_RATE = 0.062 # 6.2%

MEDICARE_TAX_RATE = 0.0145 # 1.45%

ADDITIONAL_MEDICARE_TAX_RATE = .009 # 0.9%

def main():

 ## Calculate FICA tax for a single employee.

 ytdEarnings, curEarnings, totalEarnings = obtainEarnings()

 socialSecurityBenTax = calculateBenTax(ytdEarnings, curEarnings,

 totalEarnings)

 388 ◆ Answers

 calculateFICAtax(ytdEarnings, curEarnings, totalEarnings,

 socialSecurityBenTax)

def obtainEarnings():

 str1 = "Enter total earnings for this year prior to current pay period: "

 ytdEarnings = eval(input(str1)) # year- to- date earnings

 curEarnings = eval(input("Enter earnings for the current pay period: "))

 totalEarnings = ytdEarnings + curEarnings

 return(ytdEarnings, curEarnings, totalEarnings)

def calculateBenTax(ytdEarnings, curEarnings, totalEarnings):

 ## Calculate the Social Security Benefits tax.

 socialSecurityBenTax = 0

 if totalEarnings <= WAGE_BASE:

 socialSecurityBenTax = SOCIAL_SECURITY_TAX_RATE * curEarnings

 elif ytdEarnings < WAGE_BASE:

 socialSecurityBenTax = SOCIAL_SECURITY_TAX_RATE * (WAGE_BASE –

 ytdEarnings)

 return socialSecurityBenTax

def calculateFICAtax(ytdEarnings, curEarnings, totalEarnings,

 socialSecurityBenTax):

 ## Calculate and display the FICA tax.

 medicareTax = MEDICARE_TAX_RATE * curEarnings

 if ytdEarnings >= 200000:

 medicareTax += ADDITIONAL_MEDICARE_TAX_RATE * curEarnings

 elif totalEarnings > 200000:

 medicareTax += ADDITIONAL_MEDICARE_TAX_RATE * (totalEarnings - 200000)

 ficaTax = socialSecurityBenTax + medicareTax

 print("FICA tax for the current pay period: ${0:,.2f}".format(ficaTax))

main()

 33. colors = []

def main():

 ## Display colors beginning with a specified letter.

 letter = requestLetter()

 fillListWithColors(letter)

 displayColors()

def requestLetter():

 letter = input("Enter a letter: ")

 return letter.upper()

def fillListWithColors(letter):

 global colors

 for color in open("Colors.txt", 'r'):

 if color.startswith(letter):

 colors.append(color.rstrip())

def displayColors():

 for color in colors:

 print(color)

main()

 Answers ◆ 389

ExErcisEs 4.2

 1. 24 blackbirds baked in a pie.

 3. Cost: $250.00
Shipping cost: $15.00

Total cost: $265.00

 5. Enter first grade: 88
Enter second grade: 99

Enter third grade: 92

[88, 92, 99]

 7. ['Banana', 'apple', 'pear']
['apple', 'Banana', 'pear']

 9. nudge nudge
nudge nudge nudge nudge

 11. spam and eggs
spam and eggs

 13. George Washington
John Adams

 15. Amadeus
Joseph

Sebastian

Vaughan

 17. ['M', 'S', 'a', 'l', 'o', 't']
['a', 'l', 'M', 'o', 'S', 't']

 19. VB Ruby Python PHP Java C++ C

 21. Python Java Ruby C++ PHP VB C

 23. -3 -2 4 5 6

 25. [10, 7, 6, 4, 5, 3]

 27. ['BRRR', 'TWO']

 29. ['c', 'a']

 31. names = ["George Boole", "Charles Babbage", "Grace Hopper"]
lastNames = [name.split()[-1] for name in names]

 33. A list consisting of the 20 countries in uppercase characters.

 35. A list consisting of the 20 countries ordered by the lengths of the names in ascending
order.

 37. Valid 39. Valid 41. Not valid

 43. Valid 45. Not valid 47. almost

 49. def main():
 ## Calculate the original cost of mailing a letter.

 weight = float(input("Enter the number of ounces: "))

 print("Cost: ${0:0,.2f}".format(cost(weight)))

 390 ◆ Answers

def cost(weight):

 return 0.05 + 0.1 * ceil(weight - 1)

def ceil(x):

 if int(x) != x:

 return int(x + 1)

 else:

 return x

main()

 51. def main():
 ## Determine whether two words are anagrams.

 string1 = input("Enter the first word or phrase: ")

 string2 = input("Enter the second word or phrase: ")

 if areAnagrams(string1, string2):

 print("Are anagrams.")

 else:

 print("Are not anagrams.")

def areAnagrams(string1, string2):

 firstString = string1.lower()

 secondString = string2.lower()

 # In the next two lines, the if clauses remove all

 # punctuation and spaces.

 letters1 = [ch for ch in firstString if 'a' <= ch <= 'z']

 letters2 = [ch for ch in secondString if 'a' <= ch <= 'z']

 letters1.sort()

 letters2.sort()

 return (letters1 == letters2)

main()

 53. def main():
 ## Sort three names.

 programming_language=[("Guido van Rossum", "Python"), ("Dennis

 Ritchie", "C"), ("Bjarne Stroustrup", "C++")]

 programming_language.sort(key=lambda pl: pl[0]) # sort by first name

 programming_language.sort(key=lambda pl: pl[1]) # sort by last name

 for pl in programming_language:

 print(pl[1] + ',', pl[0])

main()

 55. def main():
 ## Sort planets by surface area.

 Planets = [("Mercury", 75, 1), ("Venus", 460, 2), ("Mars", 140, 4),

 ("Earth", 510, 3), ("Jupiter", 62000, 5), ("Neptune", 7640, 8),

 ("Saturn", 42700, 6), ("Uranus", 8100, 7)]

 Planets.sort(key=lambda planet: planet[2], reverse=True)

 print("Sorted by position from Sun in descending order:")

 for planet in Planets:

 print(planet[0])

main()

 Answers ◆ 391

 57. def main():
 ## Sort by numbers of vowels in planet name.

 Planets = [("Mercury", 75, 1), ("Venus", 460, 2), ("Mars", 140, 4),

 ("Earth", 510, 3), ("Jupiter", 62000, 5), ("Neptune", 7640, 8),

 ("Saturn", 42700, 6), ("Uranus", 8100, 7)]

 Planets.sort(key=numberOfVowels)

 print("Sort by numbers of vowels in planet name:")

 for planet in Planets:

 print(planet[0])

def numberOfVowels(planet)

 vowels = ('a', 'e', 'i', 'o', 'u',)

 total = 0

 for vowel in vowels:

 total += planet[0].lower().count(vowel)

 return total

main()

 59. def main():
 ## Sort numbers by largest prime factor.

 numbers = [865, 1169, 1208, 1243, 290]

 numbers.sort(key=largestPrimeFactor)

 print("Sorted by largest prime factor:")

 print(numbers)

def largestPrimeFactor(num):

 n = num

 f = 2

 max = 1

 while n > 1:

 if n % f == 0:

 n = int(n / f)

 if f > max:

 max = f

 else:

 f += 1

 return max

main()

 61. def main():
 ## Sort numbers by the sum of their odd digits.

 numbers = [865, 1169, 1208, 1243, 290]

 numbers.sort(key=sumOfOddDigits, reverse=True)

 print("Sorted by sum of odd digits:")

 print(numbers)

def sumOfOddDigits(num):

 listNums = list(str(num))

 total = 0

 for i in range(len(listNums)):

 if int(listNums[i]) % 2 == 1:

 total += int(listNums[i])

 return total

main()

 392 ◆ Answers

 63. def main():
 infile = open("countries.txt", 'r')

 listCountries = [country.rstrip() for country in infile]

 infile.close()

 listCountries.sort(key=sortByLengthOfFirstName, reverse=True)

 for i in range(6):

 print(listCountries[i])

def sortByLengthOfFirstName(country):

 return len(country)

main()

 65. def main():
 infile = open("countries.txt", 'r')

 listCountries = [country.rstrip() for country in infile]

 infile.close()

 listCountries.sort(key=numberOfVowels, reverse=True)

 for i in range(6):

 print(listCountries[i])

def numberOfVowels(country):

 vowels = ('a', 'e', 'i', 'o', 'u')

 total = 0

 for vowel in vowels:

 total += country.lower().count(vowel)

 return total

main()

 67. def main():
 ## Calculate new balance and minimum payment for a credit card.

 (oldBalance, charges, credits) = inputData()

 (newBalance, minimumPayment) = calculateNewValues(oldBalance,

 charges, credits)

 displayNewData(newBalance, minimumPayment)

def inputData():

 oldBalance = float(input("Enter old balance: "))

 charges = float(input("Enter charges for month: "))

 credits = float(input("Enter credits: "))

 return (oldBalance, charges, credits)

def calculateNewValues(oldBalance, charges, credits):

 newBalance = (1.015) * oldBalance + charges - credits

 if newBalance <= 20:

 minimumPayment = newBalance

 else:

 minimumPayment = 20 + 0.1 * (newBalance - 20)

 return (newBalance, minimumPayment)

def displayNewData(newBalance, minimumPayment):

 print("New balance: ${0:0,.2f}".format(newBalance))

 print("Minimum payment: ${0:0,.2f}".format(minimumPayment))

main()

 Answers ◆ 393

 69. def main():
 ## Determine a person's earnings for a week.

 (wage, hours) = getWageAndHours()

 payForWeek = pay(wage, hours)

 displayEarnings(payForWeek)

def getWageAndHours():

 hoursworked = eval(input("Enter hours worked: "))

 hourlyWage = eval(input("Enter hourly pay: "))

 return(hourlyWage, hoursworked)

def pay(wage, hours):

 ## Calculate weekly pay with time- and- a- half for overtime.

 if hours <= 40:

 amount = wage * hours

 else:

 amount = (wage * 40) + ((1.5) * wage * (hours - 40))

 return amount

def displayEarnings(payForWeek):

 print("Week’s pay: ${0:,.2f}".format(payForWeek))

main()

ChApter 5

ExErcisEs 5.1

 1. Aloha 3. Hello
Aloha

 5. 6

 7. [4, 1, 0, 1, 4]

 9. Believe in yourself.

 11. ['a', 'c', 't']

 13. ABC.txt should be open for reading, not for writing.

 15. close() should be called on the file object, infile, not on ABC.txt. That is, the last line
should read infile.close().

 17. The argument for write() must be a string, not an integer.

 19. The code should close the file after writing it. Otherwise, the value of list1 will still
be in the buffer and not on the disk drive when the file is opened for reading.

 21. The file cannot be read since it has been closed.

 23. The file ABC.txt is created. Nothing is displayed on the monitor.

 25. def removeDuplicates(list1):
 set1 = set(list1)

 return list(set1)

 27. def findItemsInEither(list1, list2):
 set1 = set(list1).union(list2)

 return list(set1)

 394 ◆ Answers

 29. ## Count the words in the Gettysburg Address.
infile = open("Gettysburg.txt")

originalLine = infile.readline()

print(originalLine[:89])

originalLine = originalLine.lower()

Remove punctuation marks from the original line.

line = ""

for ch in originalLine:

 if ('a' <= ch <= 'z') or (ch == " "):

 line += ch

Place the words into a list.

listOfWords = line.split()

Form a set of the words without duplications.

setOfWords = set(listOfWords)

print("The Gettysburg Address contains", len(listOfWords), "words.")

print("The Gettysburg Address contains", len(setOfWords),

 "different words.")

 31. The new file will contain the names of the people who subscribe to both the New York
Times and the Wall Street Journal.

 33. def main():
 ## Update colors.

 setOfNewColors = getSetOfNewColors()

 createFileOfNewColors(setOfNewColors)

def getSetOfNewColors():

 infile = open("Pre1990.txt", 'r')

 colors = {line.rstrip() for line in infile}

 infile.close()

 infile = open("Retired.txt", 'r')

 retiredColors = {line.rstrip() for line in infile}

 infile.close()

 infile = open("Added.txt", 'r')

 addedColors = {line.rstrip() for line in infile}

 infile.close()

 colorSet = colors.difference(retiredColors)

 colorSet = colorSet.union(addedColors)

 return colorSet

def createFileOfNewColors(setOfNewColors):

 orderedListOfColors = sorted(setOfNewColors)

 orderedListOfColorsString =('\n').join(orderedListOfColors)

 outfile = open("NewColors.txt", 'w')

 outfile.write(orderedListOfColorsString)

 outfile.close()

main()

 35. def main():
 ## Display the largest number in the file Numbers.txt

 max = getMax("Numbers.txt")

 print("The largest number in the \nfile Numbers.txt is",

 str(max) + ".")

 Answers ◆ 395

def getMax(fileName):

 infile = open("Numbers.txt", 'r')

 max = int(infile.readline())

 for line in infile:

 num = int(line)

 if num > max:

 max = num

 infile.close()

 return max

main()

 37. def main():
 ## Display the sum of the numbers in the file Numbers.txt.

 sum = getSum("Numbers.txt")

 print("The sum of the numbers in \nthe file Numbers.txt is",

 str(sum) + ".")

def getSum(fileName):

 infile = open("Numbers.txt", 'r')

 sum = 0

 for line in infile:

 sum += int(line)

 infile.close()

 return sum

main()

 39. def main():
 ## Display the last number in the file Numbers.txt.

 lastNumber = getLastNumber("Numbers.txt")

 print("The last number in the \nfile Numbers.txt is",

 str(lastNumber) + '.')

def getLastNumber(fileName):

 infile = open("Numbers.txt", 'r')

 for line in infile:

 pass

 lastNumber = eval(line)

 infile.close()

 return lastNumber

main()

 41. import os

infile = open("ShortColors.txt", 'r')

outfile = open("Temp.txt", 'w')

for color in infile:

 if len(color.rstrip()) <= 6:

 outfile.write(color)

infile.close()

outfile.close()

os.remove("ShortColors.txt")

os.rename("Temp.txt", "ShortColors.txt")

 396 ◆ Answers

 43. def main():
 ## Create alphabetical file of last 13 students who failed.

 failedStudents = getListOfFailedStudents()

 createFileOfFailedStudents(failedStudents)

def getListOfFailedStudents():

 infile = open("Allstudents.txt", 'r')

 students = {student.rstrip() for student in infile.readlines()}

 infile.close()

 infile = open("PassedStudents.txt", 'r')

 passedStudents = {student.rstrip() for student in infile}

 failedStudents = list(students.difference(passedStudents))

 failedStudents.sort()

 return failedStudents

def createFileOfFailedStudents(failedStudents):

 outfile = open("failedStudents.txt", 'w')

 for student in failedStudents:

 outfile.write(student + "\n")

 outfile.close()

main()

 45. def main():
 ## Display a range of presidents.

 lowerNumber, upperNumber = getRange()

 displayPresidents(lowerNumber, upperNumber)

def getRange():

 lowerNumber = int(input("Enter the lower number for the range: "))

 upperNumber = int(input("Enter the upper number for the range: "))

 return (lowerNumber, upperNumber)

def displayPresidents(lowerNumber, upperNumber):

 infile = open("USpres.txt", 'r')

 count = 0

 for pres in infile:

 count += 1

 if lowerNumber <= count <= upperNumber:

 print(" ", count, pres, end="")

main()

ExErcisEs 5.2

 1. The area of Afghanistan is 251,772 sq. miles.
The area of Albania is 11,100 sq. miles.

 3. Afghanistan,Asia,251772
Albania,Europe,11100

 5. Each line of the new file contains the name of a European country and its population
in millions. The countries are listed in descending order by population. The first two
lines of the file contain the data Russian Federation,142.5 and Germany,81.0.

 7. def main():
 ## Display information about a DOW stock.

 Answers ◆ 397

 symbols = placeSymbolsIntoList("DOW.txt")

 displaySymbols(symbols)

 print()

 symbol = input("Enter a symbol: ")

 infile = open("DOW.txt", 'r')

 abbrev = ""

 while abbrev != symbol:

 line = infile.readline()

 lineList = line.split(',')

 abbrev = lineList[1]

 print("Company:", lineList[0])

 print("Industry:", lineList[3])

 print("Exchange:", lineList[2])

 increase = ((float(lineList[5]) - float(lineList[4])) /

 float(lineList[4]))

 print("Growth in 2013: {0:0,.2f}%".format(100 * increase))

 priceEarningsRatio = float(lineList[5]) / float(lineList[6])

 print("Price/Earning ratio in 2013: {0:0,.2f}".

 format(priceEarningsRatio))

def placeSymbolsIntoList(fileName):

 symbolList = [""] * 30

 infile = open(fileName, 'r')

 for i in range(30):

 line = infile.readline()

 lineList = line.split(',')

 symbolList[i] = lineList[1]

 infile.close()

 return symbolList

def displaySymbols(symbols):

 ## Display symbols in alphabetical order

 symbols.sort()

 print("Symbols for the Thirty DOW Stocks")

 for symbol in symbols:

 print("{0:5} \t".format(symbol), end='')

main()

 9. def main():
 ## Determine the dogs of the DOW.

 stockList = placeDataIntoList("DOW.txt")

 stockList.sort(key=byDividendToPriceRatio, reverse=True)

 displayDogs(stockList)

def placeDataIntoList(fileName):

 infile = open(fileName, 'r')

 listOfLines = [line.rstrip() for line in infile]

 infile.close()

 for i in range(len(listOfLines)):

 listOfLines[i] = listOfLines[i].split(',')

 listOfLines[i][4] = eval(listOfLines[i][4])

 listOfLines[i][5] = eval(listOfLines[i][5])

 listOfLines[i][6] = eval(listOfLines[i][6])

 398 ◆ Answers

 listOfLines[i][7] = eval(listOfLines[i][7])

 return listOfLines

def byDividendToPriceRatio(stock):

 return stock[7] / stock[5]

def displayDogs(listOfStocks):

 print("{0:25} {1:11} {2:s}".

 format("Company", "Symbol", "Yield as of 12/31/2013"))

 for i in range(10):

 print("{0:25} {1:11} {2:0.2f}%".format(listOfStocks[i][0],

 listOfStocks[i][1], 100 * listOfStocks[i][7] / listOfStocks[i][5]))

main()

 11. def main():
 ## Display justices appointed by a given president.

 president = input("Enter the name of a president: ")

 justices = getJusticesByPresident(president)

 fixCurrentJustices(justices)

 justices.sort(key=lambda justice: justice[5] - justice[4], reverse=True)

 if len(justices) > 0:

 print("Justices Appointed:")

 for justice in justices:

 print(" " + justice[0] + " " + justice[1])

 else:

 print(president, "did not appoint any justices.")

def getJusticesByPresident(president):

 infile = open("Justices.txt", 'r')

 listOfRecords = [line for line in infile

 if line.split(',')[2] == president]

 infile.close()

 for i in range(len(listOfRecords)):

 listOfRecords[i] = listOfRecords[i].split(',')

 listOfRecords[i][4] = int(listOfRecords[i][4])

 listOfRecords[i][5] = int(listOfRecords[i][5])

 return listOfRecords

def fixCurrentJustices(justices):

 for justice in justices:

 if justice[5] == 0:

 justice[5] = 2015

main()

 13. def main():
 ## Makeup of Supreme Court in 1980.

 infile = open("Justices.txt", 'r')

 justices = [line for line in infile

 if (int(line.split(',')[4]) < 1980)

 and (int(line.split(',')[5]) >= 1980)]

 justices.sort(key=lambda x: int(x.split(',')[4]))

 print("{0:20} {1}".format("Justice", "Appointing President"))

 Answers ◆ 399

 for justice in justices:

 print("{0:20} {1}".format(justice.split(',')[0] + " " +

 justice.split(',')[1], justice.split(',')[2]))

main()

 15. def main():
 ## Twelve Days of Christmas

 listOfDaysCosts = createListOfDaysCosts()

 day = int(input("Enter a number from 1 through 12: "))

 displayOutput(day, listOfDaysCosts)

def createListOfDaysCosts():

 infile = open("Gifts.txt", 'r')

 costs = [float(line.split(',')[2]) for line in infile]

 infile.close()

 listOfDaysCosts = [0] * 12

 for i in range(12):

 listOfDaysCosts[i] = (i + 1) * costs[i]

 return listOfDaysCosts

def displayOutput(day, listOfDaysCosts):

 print("The gifts for day 3 are")

 infile = open("Gifts.txt", 'r')

 for i in range(day):

 data = infile.readline().split(',')

 print(int(data[0]), data[1])

 print()

 print("Cost for day {0}: ${1:,.2f}".

 format(day, sum(listOfDaysCosts[:day])))

 totalCosts = 0

 for i in range(day):

 totalCosts += sum(listOfDaysCosts[:i + 1])

 print("Total cost for the first {0} days: ${1:,.2f}"

 .format(day, totalCosts))

main()

 17. def main():
 ## Display colleges from requested state.

 colleges = getOrderedListOfColleges()

 displayListOfColleges(colleges)

def getOrderedListOfColleges():

 infile = open("Colleges.txt", 'r')

 colleges = [line.rstrip() for line in infile]

 infile.close()

 colleges.sort()

 return colleges

def displayListOfColleges(colleges):

 found = False

 abbrev = input("Enter a state abbreviation: ")

 for college in colleges:

 college = college.split(",")

 400 ◆ Answers

 if college[1] == abbrev:

 print(college[0], college[2])

 found = True

 if not found:

 print("There are no early colleges from", abbrev + '.')

main()

 19. def main():
 ## Find states whose name and capital begin with the same letter.

 infile = open("StatesANC.txt", 'r')

 for line in infile:

 data = line.split(",")

 letter = data[0][0:1]

 if data[3].startswith(letter):

 print((data[3].rstrip()) + ",", data[0])

 infile.close()

main()

 21. def main():
 ## Display Oscar- winning films of requested genre.

 displayGenres()

 displayFilms()

def displayGenres():

 print("The different film genres are as follows:")

 print("{0:12}{1:12}{2:10}{3:11}{4:11}".

 format("adventure","bioptic","comedy","crime","drama"))

 print("{0:12}{1:12}{2:10}{3:11}{4:11}".

 format("epic","fantasy","musical","romance","silent"))

 print("{0:12}{1:12}{2:10}{3:11}".

 format("sports","thriller","war","western"))

 print()

def displayFilms():

 films = open("Oscars.txt",'r')

 genre = input("Enter a genre: ")

 print()

 print("The Academy Award winners are")

 for line in films:

 if line.endswith(genre + "\n"):

 temp = line.split(",")

 print(" " + temp[0])

 films.close()

main()

 23. def main():
 ## Create file of articles purchased by cowboys.

 articles = ["Colt Peacemaker,12.20\n", "Holster,2.00\n",

 "Levi Strauss jeans,1.35\n", "Saddle,40.00\n", "Stetson,10.00\n"]

 outfile = open("Cowboy.txt", 'w')

 outfile.writelines(articles)

 outfile.close()

main()

 Answers ◆ 401

 25. def main():
 ## Create receipt

 createOrdersFile()

 total = 0

 infile1 = open("Cowboy.txt", 'r')

 infile2 = open("Orders.txt", 'r')

 for line in infile1:

 quantity = int(infile2.readline())

 cost = quantity * float(line.split(',')[1])

 print("{0} {1}: ${2:,.2f}".format(quantity, line.split(',')[0],

 cost))

 total += cost

 print("{0}: ${1:,.2f}".format("TOTAL", total))

def createOrdersFile():

 orders = ["3\n", "2\n", "10\n", "1\n", "4\n"]

 outfile = open("Orders.txt", 'w')

 outfile.writelines(orders)

 outfile.close()

main()

 27. def main():
 ## Determine the day of the week for a date.

 infile = open("Calendar2015.txt", 'r')

 date = input("Enter a date in 2015: ")

 for line in infile:

 temp = line.split(',')

 if temp[0] == date:

 print(date, "falls on a", temp[1].rstrip())

 break

main()

ExErcisEs 5.3

 1. 3110.2

 3. ['Three_Sisters_fall', "Olo'supena_falls", 'Tugela_falls', 'Angle_falls',
'Yumbilla_falls']

 5. [('Three_Sisters_fall', 2998.5), ("Olo'supena_falls", 2953.3), ('Tugela_

falls', 3110.2), ('Angle_falls', 3211.7), ('Yumbilla_falls', 2940)]

 15. Angle_falls Yumbilla_falls Three_Sisters_fall Tugela_falls Olo'supena_

falls

 25. std1 29. John

 35. 0 37. std1_age std2_age std1 std2

 7. absent 9. Yumbilla_falls 11. 3111.0 13. 3110

 27. ['std1_age', 'std2_age', 'std1']

 17. 15213.7 19. 4 21. 4 23. False

 31. John 33. {'std1_age': 20, 'std2_age': 21, 'std1': 'John'}

 39. 20 25 John Smith 41. 20

 43. {'std1': 'John', 'std2': 'Harry', 'std1_age': 30, 'std2_age': 45}

 402 ◆ Answers

 45. pres = input("Who was the youngest U.S. president? ")
pres = pres.upper()

trResponse = "Correct. He became president at age 42\n" + \

 "when President McKinley was assassinated."

jfkResponse = "Incorrect. He became president at age 43. However,\n" + \

 "he was the youngest person elected president."

responses = {}

responses["THEODORE ROOSEVELT"] = trResponse

responses["TEDDY ROOSEVELT"] = trResponse

responses["JFK"] = jfkResponse

responses["JOHN KENNEDY"] = jfkResponse

responses["JOHN F. KENNEDY"] = jfkResponse

print(responses.get(pres, "Nope."))

 47. def main():
 ## Display batting averages of top hitters.

 topHitters = {"Gehrig":{"atBats":8061, "hits":2721},

 "Ruth":{"atBats":8399, "hits":2873},

 "Williams":{"atBats":7706, "hits":2654}}

 displayBattingAverage(topHitters)

def displayBattingAverage(topHitters):

 for hitter in topHitters:

 print("{0:10} {1:.3f}".format(hitter,

 topHitters[hitter]["hits"] / topHitters[hitter]["atBats"]))

main()

 49. def main():
 ## Display average number of hits by the top three hitters.

 topHitters = {"Gehrig":{"atBats":8061, "hits":2721},

 "Ruth":{"atBats":8399, "hits":2873},

 "Williams":{"atBats":7706, "hits":2654}}

 displayAveNumberOfHits(topHitters)

def displayAveNumberOfHits(topHitters):

 hitList = []

 for hitter in topHitters:

 hitList.append(topHitters[hitter]["hits"])

 value = "{0:.1f}".format(sum(hitList) / len(hitList))

 print("The average number of hits by")

 print("the baseball players was", value + '.')

main()

 51. import pickle

def main():

 ## Display justices appointed by a specified president.

 justicesDict = createDictFromFile("JusticesDict.dat")

 displayPresidentialAppointees(justicesDict)

def createDictFromFile(fileName): # from binary file

 infile = open(fileName, 'rb')

 dictionaryName = pickle.load(infile)

 Answers ◆ 403

 infile.close()

 return dictionaryName

def displayPresidentialAppointees(dictionaryName) :

 pres = input("Enter a president: ")

 for x in dictionaryName:

 if dictionaryName[x]["pres"] == pres:

 print(" {0:16} {1:d}".format(x, dictionaryName[x]["yrAppt"]))

main()

 53. import pickle

def main():

 ## display information about a specific justice.

 justicesDict = createDictFromFile("JusticesDict.dat")

 displayInfoAboutJustice(justicesDict)

def createDictFromFile(fileName): # from binary file

 infile = open(fileName, 'rb')

 dictionaryName = pickle.load(infile)

 infile.close()

 return dictionaryName

def displayInfoAboutJustice(dictionaryName):

 justice = input("Enter name of a justice: ")

 print("Appointed by", dictionaryName[justice]["pres"])

 print("State:", dictionaryName[justice]["state"])

 print("Year of appointment:", dictionaryName[justice]["yrAppt"])

 if dictionaryName[justice]["yrLeft"] == 0:

 print("Currently serving on the Supreme Court.")

 else:

 print("Left court in", dictionaryName[justice]["yrLeft"])

main()

 55. def main():
 ## Calculate letter frequencies for a sentence.

 sentence = input("Enter a sentence: ")

 sentence = sentence.upper()

 letterDict = dict([(chr(n),0) for n in range(65, 91)])

 for char in sentence:

 if 'A' <= char <= 'Z':

 letterDict[char] += 1

 displaySortedResults(letterDict)

def displaySortedResults(dictionaryName):

 letterList = list(dictionaryName.items())

 letterList.sort(key=f, reverse=True)

 for x in letterList:

 if x[1] != 0:

 print(" " + x[0] + ':', x[1])

def f(k):

 return k[1]

main()

 404 ◆ Answers

 57. import pickle

def main():

 ## Determine states that were home to three or more presidents.

 presidents = getDictionary("USpresStatesDict.dat")

 states = createStatesDict(presidents)

 sortedStates = [state for state in states if states[state] > 2]

 sortedStates.sort(key=lambda state: states[state], reverse=True)

 print("States that produced three or")

 print("more presidents as of 2016:")

 for state in sortedStates:

 print(" ", state + ":", states[state])

def getDictionary(fileName):

 infile = open(fileName, 'rb')

 dictName = pickle.load(infile)

 infile.close()

 return dictName

def createStatesDict(presidents):

 states = {}

 for state in presidents.values():

 if not states.get(state, False):

 states[state] = 1

 else:

 states[state] += 1

 return states

main()

 59. def main():
 ## Determine the day of the week for a date.

 calender2015Dict = createDictionary("Calendar2015.txt")

 date = input("Enter a date in 2015: ")

 print(date, "falls on a", calender2015Dict[date])

def createDictionary(fileName):

 infile = open(fileName, 'r')

 textList = [line.rstrip() for line in infile]

 infile.close()

 return dict([x.split(',') for x in textList])

main()

 61. import pickle

def main():

 ## Determine states having a specified number of large cities.

 largeCities = createDictionaryFromBinaryFile("LargeCitiesDict.dat")

 number = int(input("Enter an integer from 1 to 13: "))

 states = sorted(getStates(number, largeCities))

 displayResult(number, states)

def createDictionaryFromBinaryFile(fileName):

 infile = open(fileName, 'rb')

 dictionaryName = pickle.load(infile)

 Answers ◆ 405

 infile.close()

 return dictionaryName

def getStates(number, dictionaryName):

 states = []

 for state in dictionaryName:

 if len(dictionaryName[state]) == number:

 states.append(state)

 return states

def displayResult(number, states):

 if len(states) == 0:

 print("No states have exactly", number, "large cities.")

 else:

 print("The following states have exactly", number, "large cities:")

 print(" ".join(states))

main()

ChApter 6

ExErcisEs 6.1

 1. f 3. l 5. d 7. i 9. s 11. o

 13. j 15. n 17. d 19. h 21. r

 23. You must enter a number.

 25. string index out of range
Oops

 27. File Salaries.txt contains an invalid salary.
Thank you for using our program.

 29. while True:
 try:

 n = int(input("Enter a nonzero integer: "))

 reciprocal = 1 / n

 print("The reciprocal of {0} is {1:,.3f}".format(n, reciprocal))

 break

 except ValueError:

 print("You did not enter a nonzero integer. Try again.")

 except ZeroDivisionError:

 print("You entered zero. Try again.")

 31. while True:
 try:

 num = int(input("Enter an integer from 1 to 100: "))

 if 1 <= num <= 100:

 print("Your number is", str(num) + '.')

 break

 else:

 print("Your number was not between 1 and 100.")

 except ValueError:

 print("You did not enter an integer.")

 406 ◆ Answers

ExErcisEs 6.2

 1. A free hit by a cricketer who makes 50% of his or her free hits.

 3. Breaking the target when hitting strength is greater than 50%.

 5. The random selection of three colors for a flag.

 7. Randomly selecting the order of presentations in a class.

 9. import random
Select three letters at random from the alphabet.

Create a list of the 26 uppercase letters of the alphabet.

list1 = [chr(n) for n in range(ord('A'), ord('Z') + 1)]

Select three letters at random.

list2 = random.sample(list1, 3)

Display the three letters

print(", ".join(list2))

 11. import random
Randomly select two even numbers from 2 through 100.

Create a list of the even numbers from 2 through 100.

list1 = [n for n in range(2, 101, 2)]

Select two of the even numbers at random.

list2 = random.sample(list1, 2)

Display the two numbers.

print(list2[0], list2[1])

 13. import random
Count the number of "Heads" in 100 coin tosses.

numberOfHeads = 0

for i in range(100):

 if (random.choice(["Head","Tail"]) == "Head"):

 numberOfHeads += 1

print("In 100 tosses, Heads occurred {0} times.".format(numberOfHeads))

 15. import random
Select three states at random from a file containing the 50 states.

allNumbers = [n for n in range(1, 51)]

Randomly select three numbers from 1 through 50.

threeNumbers = random.sample(allNumbers, 3)

infile = open("StatesAlpha.txt", 'r')

line Number = 1

for line in infile:

 if lineNumber in threeNumbers:

 print(line.rstrip())

 lineNumber += 1

infile.close()

 17. import random
import pickle

NUMBER_OF_TRIALS = 10000

def main():

 ## Carry out matching process NUMBER_OF_TRIALS times.

 totalNumberOfMatches = 0

 Answers ◆ 407

 for i in range(NUMBER_OF_TRIALS):

 totalNumberOfMatches += matchTwoDecks()

 averageNumberOfMatches = totalNumberOfMatches / NUMBER_OF_TRIALS

 print("The average number of cards that")

 print("matched was {0:.3f}.".format(averageNumberOfMatches))

def matchTwoDecks():

 ## Determine the number of matches when comparing

 ## two shuffled decks of cards.

 # Create two decks as lists using the binary file

 # DeckOfCardsList.dat from Example 2.

 infile = open("DeckOfCardsList.dat", 'rb')

 deck1 = pickle.load(infile)

 infile.close()

 infile = open("DeckOfCardsList.dat", 'rb')

 deck2 = pickle.load(infile)

 infile.close()

 # Shuffle both decks of cards.

 random.shuffle(deck1)

 random.shuffle(deck2)

 # Compare cards and determine the number of matches.

 numberOfMatches = 0

 for i in range(52):

 if (deck1[i] == deck2[i]):

 numberOfMatches += 1

 return numberOfMatches

main()

 19. import random
Simulate a Powerball Drawing.

whiteBalls = [num for num in range(1, 60)]

Randomly sample and display five white balls.

whiteBallSelection = random.sample(whiteBalls, 5)

for i in range(5):

 whiteBallSelection[i] = str(whiteBallSelection[i])

print("White Balls:", " ".join(whiteBallSelection))

Randomly select and display the Powerball.

powerBall = random.randint(1, 35)

print("Powerball:", powerBall)

 21. import random
Simulate 32 coin tosses and check for runs of length five.

coin = ['T', 'H']

result = ""

for i in range(32):

 result += random.choice(coin)

print(result)

if ("TTTTT" in result) or ("HHHHH" in result):

 print("There was a run of five consecutive")

 print("same outcomes.")

else:

 print("There was not a run of five consecutive ")

 print("same outcomes.")

 408 ◆ Answers

 23. import random
import pickle

def main():

 ## Calculate the High Point Count for a bridge hand.

 bridgeHand = getHand()

 print(", ".join(bridgeHand)) # Display the bridge hand.

 HCP = calculateHighCardPointCount(bridgeHand)

 print("HPC =", HCP)

def getHand():

 infile = open("DeckOfCardsList.dat", 'rb')

 deckOfCards = pickle.load(infile)

 infile.close()

 bridgeHand = random.sample(deckOfCards, 13)

 return bridgeHand

def calculateHighCardPointCount(bridgeHand):

 countDict = {'A':4, 'K':3, 'Q':2, 'J':1}

 HPC = 0

 for card in bridgeHand:

 rank = card[0] # Each card is a string of

 # two characters.

 if rank in "AKQJ":

 HPC += countDict[rank]

 return HPC

main()

ExErcisEs 6.3

 1. import turtle
t = turtle.Turtle()

t.pencolor("blue")

t.hideturtle()

t.up()

t.goto(20, 30)

t.dot(5)

t.down()

t.goto(80, 90)

t.dot(5)

 5. import turtle
t = turtle.Turtle()

t.hideturtle()

t.color("red", "red")

t.up()

t.goto(-30, -40)

t.down()

t.begin_fill()

t.goto(-30, 60)

t.goto(50, 60)

t.goto(50, -40)

t.goto(-30, -40)

t.end_fill()

 9. import turtle
def main():

 ## Draw a yellow square inside a blue dot.

 t = turtle.Turtle()

 t.hideturtle()

 drawDot(t, 50, 50, 100, "blue")

 drawFilledRectangle(t, 20, 20, 60, 60, "red", "yellow")

def drawFilledRectangle(t, x, y, w, h, colorP="black", colorF="black"):

 ## Draw a filled rectangle with bottom- left corner (x, y),

 Answers ◆ 409

 ## width w, height h, pen color colorP, and fill color colorF.

 t.pencolor(colorP)

 t.fillcolor(colorF)

 t.up() # Disable drawing of lines.

 t.goto(x, y) # Move to bottom- left corner of rectangle.

 t.down() # Enable drawing of lines.

 t.begin_fill()

 t.goto(x + w, y) # Draw line to bottom- right corner.

 t.goto(x + w, y + h) # Draw line to top- right corner.

 t.goto(x, y + h) # Draw line to top- left corner.

 t.goto(x, y) # Draw line to bottom- left corner.

 t.end_fill()

def drawDot(t, x, y, diameter, colorP):

 ## Draw dot with center (x, y) and color colorP.

 t.up()

 t.goto(x, y)

 t.dot(diameter, colorP)

main()

 13. import turtle

def main():

 ## Draw a partial moon.

 t = turtle.Turtle()

 t.hideturtle()

 drawDot(t, 0, 0, 200, "orange") # Draw moon.

 drawDot(t, -100,0, 200, "white") # Take bite out of moon.

def drawDot(t, x, y, diameter, colorP):

 ## Draw a dot with center (x, y) having color colorP.

 t.up()

 t.goto(x, y)

 t.dot(diameter, colorP)

main()

 17. import turtle

def main():

 ## Draw a blue square containing the underlined word PYTHON.

 t = turtle.Turtle()

 t.hideturtle()

 drawFilledRectangle(t, 0, 0, 200, 200, "blue", "blue") # Square

 drawFilledRectangle(t, 15, 75, 165, 5, "white", "white") # Underline

 t.up()

 t.goto(100, 80)

 t.pencolor("white")

 t.write("PYTHON", align="center", font=("Arial", 25, "bold"))

def drawFilledRectangle(t, x, y, w, h, colorP="black", colorF="black"):

 ## Draw a solid rectangle with bottom- left corner (x, y),

 ## width w, height h, pen color colorP, and fill color colorF.

 t.pencolor(colorP)

 t.fillcolor(colorF)

 t.up()

 410 ◆ Answers

 t.goto(x, y) # Start at bottom- left corner of rectangle.

 t.down()

 t.begin_fill()

 t.goto(x + w, y) # Draw line to bottom- right corner.

 t.goto(x + w, y + h) # Draw line to top- right corner.

 t.goto(x, y + h) # Draw line to top- left corner.

 t.goto(x, y) # Draw line to bottom- left corner.

 t.end_fill()

 main()

 21. import turtle

def main():

 ## Draw the Italian flag.

 t = turtle.Turtle()

 t.hideturtle()

 drawFilledRectangle(t, 0, 0, 50, 100, "black", "green")

 drawFilledRectangle(t, 50, 0, 50, 100, "black", "white")

 drawFilledRectangle(t, 100, 0, 50, 100, "black", "red")

def drawFilledRectangle(t, x, y, w, h, colorP="black", colorF="black"):

 ## Draw a filled rectangle with bottom- left corner (x, y),

 ## width w, height h, pen color colorP, and fill color colorF.

 t.pencolor(colorP)

 t.fillcolor(colorF)

 t.up()

 t.goto(x, y) # Start at bottom- left corner of rectangle.

 t.down()

 t.begin_fill()

 t.goto(x + w, y) # Draw line to bottom- right corner.

 t.goto(x + w, y + h) # Draw line to top- right corner.

 t.goto(x, y + h) # Draw line to top- left corner.

 t.goto(x, y) # Draw line to bottom- left corner.

 t.end_fill()

main()

 25. import turtle

def main():

 ## Draw the flag of Burkina Faso.

 t = turtle.Turtle()

 t.hideturtle()

 t.down()

 drawFilledRectangle(t, 0, 50, 150, 50, "red", "red")

 drawFilledRectangle(t, 0, 0, 150, 50, "forest green", "forest green")

 drawFivePointStar(t, 65, 33, 40, "yellow", "yellow")

def drawFivePointStar(t, x, y, lenthOfSide, colorP="black",

 colorF="white"):

 # Drawing begins at (x, y) and moves in a north- east direction.

 t.pencolor(colorP)

 t.fillcolor(colorF)

 t.up()

 t.goto(x, y)

 Answers ◆ 411

 t.setheading(0)

 t.left(36)

 t.down()

 t.begin_fill()

 for i in range(6):

 t.forward(lenthOfSide)

 t.left(144) # 144 = 180 - 36

 t.end_fill()

def drawFilledRectangle(t, x, y, w, h, colorP="black",

 colorF="black"):

 ## Draw a filled rectangle with bottom- left corner (x, y),

 ## width w, height h, pen color colorP, and fill color colorF.

 t.pencolor(colorP)

 t.fillcolor(colorF)

 t.up()

 t.goto(x, y) # Start at bottom- left corner of rectangle.

 t.down()

 t.begin_fill()

 t.goto(x + w, y) # Draw line to bottom- right corner.

 t.goto(x + w, y + h) # Draw line to top- right corner.

 t.goto(x, y + h) # Draw line to top- left corner.

 t.goto(x, y) # Draw line to bottom- left corner.

 t.end_fill()

main()

 29. import turtle

MALE_ENROLLMENTS = [1375, 2047, 2233, 2559, 3265]

FEMALE_ENROLLMENTS = [945, 2479, 3007, 3390, 4415]

def main():

 ## Draw line chart of two- year college enrollments.

 t = turtle.Turtle()

 t.hideturtle()

 drawLine(t, 0, 0, 200, 0) # Draw x- axis.

 drawLine(t, 0, 0, 0, 200) # Draw y- axis.

 ## Draw graphs.

 for i in range(4):

 drawLineWithDots(t, 20 + (40 * i), MALE_ENROLLMENTS[i]/ 25,

 60 + 40 * i, MALE_ENROLLMENTS[i+1]/25, "black")

 for i in range(4):

 drawLineWithDots(t, 20 + (40 * i), FEMALE_ENROLLMENTS[i]/ 25,

 60 + 40 * i, FEMALE_ENROLLMENTS[i+1]/25, "black")

 drawTickMarks(t)

 insertText(t)

def drawLine(t, x1, y1, x2, y2, colorP="black"):

 ## Draw line segment from (x1, y1) to (x2, y2) having color colorP.

 t.up()

 t.goto(x1, y1)

 t.down()

 t.color(colorP)

 t.goto(x2, y2)

 412 ◆ Answers

def drawLineWithDots(t, x1, y1, x2, y2, colorP="black"):

 ## Draw line segment from (x1, y1) to (x2, y2) having color

 ## colorP and insert dots at both ends of the line segment.

 t.pencolor(colorP)

 t.up()

 t.goto(x1, y1)

 t.dot(5)

 t.down()

 t.goto(x2, y2)

 t.dot(5)

def drawTickMarks(t):

 for i in range(5):

 drawLine(t, 20 + (40 * i), 0, 20 + 40 * i , 10)

 drawLine(t, 0, max(FEMALE_ENROLLMENTS)/25, 10,

 max(FEMALE_ENROLLMENTS)/25)

 drawLine(t, 0, min(FEMALE_ENROLLMENTS)/25, 10,

 min(FEMALE_ENROLLMENTS)/25)

def insertText(t):

 t.up()

 t.pencolor("black")

 t.goto(110, 150)

 t.write("Females")

 t.goto(120, 80)

 t.write("Males")

 # Display greatest enrollment value.

 t.color("blue")

 t.goto(-30, (max(FEMALE_ENROLLMENTS)/25)-10)

 t.write(max(FEMALE_ENROLLMENTS))

 # Display least enrollment value.

 t.goto(-22, (min(FEMALE_ENROLLMENTS)/25) - 10)

 t.write(min(FEMALE_ENROLLMENTS))

 # Display labels for tick marks on x- axis.

 t.goto(0, -20)

 x = 20

 for i in range(1970, 2011, 10):

 t.goto(x, -20)

 t.write(str(i), align="center")

 x += 40

 # Display title of line chart.

 t.goto(0, -40)

 t.write(" Two- Year College Enrollments")

 t.goto(0, -55)

 t.write("(in thousands)")

main()

ExErcisEs 6.4

 1. 120 3. Six decreasing lines of stars. 5. hhhhhhhhhhhhhhhh

 7. def isAlpha(L):
 ## Determine whether items in a list are in alphabetical order.

 Answers ◆ 413

 if len(L) == 1:

 return True

 elif L[0] > L[1]:

 return False

 else:

 return isAlpha(L[1:])

 9. def main():
 ## Determine the coefficients in a binomial expansion.

 n = int(input("Enter a positive integer: "))

 for r in range(0, n + 1):

 print(C(n, r), end=" ")

def C(n, r):

 if (n == 0) or (r == 0) or (n == r):

 return 1

 else:

 return C(n - 1, r - 1) + C(n - 1, r)

main()

 11. def main():
 ## Find the greatest common divisor of two non- negative integers.

 m = int(input("Enter the first integer: "))

 n = int(input("Enter the second integer: "))

 print("GCD =", GCD(m, n))

def GCD(m, n):

 if n == 0:

 return m

 else:

 return GCD(n, m % n)

main()

 13. def main():
 ## Reverse the order of items entered by the user.

 state = ""

 getState(state)

def getState(state):

 state = input("Enter a state: ")

 if state != "End":

 getState(state)

 print(state)

main()

ChApter 7

ExErcisEs 7.1

 1. The self parameter is missing from the second line.

 3. The pair of parentheses in the first line should be replaced by a colon. Also, a colon
should be placed at the end of the second line.

 414 ◆ Answers

 5. 1 7. 4 9. 12.56 11. 18.84

 13. import point

def main():

 ## Determine the distance of a point from the origin.

 x = float(input("Enter x- coordinate of point: "))

 y = float(input("Enter y- coordinate of point: "))

 p = point.Point(x, y)

 print("Distance from origin: {0:,.2f}".

 format(p.distanceFromOrigin()))

main()

 15. import pairOfDice

def main():

 ## Roll a pair of dice.

 dice = pairOfDice.PairOfDice()

 dice.roll()

 print("Red die:", dice.getRedDie())

 print("Blue die:", dice.getBlueDie())

 print("Sum of the dice:", dice.sum())

main()

 17. import pairOfDice

def main():

 ## Determine the likelihood of obtaining 7

 ## when rolling a pair of dice.

 numberOfSevens = 0

 for i in range(100000):

 dice = pairOfDice.PairOfDice()

 dice.roll()

 if dice.sum() == 7:

 numberOfSevens += 1

 print("7 occurred {0:.2%} of the time.".

 format(numberOfSevens / 100000))

main()

 19. queen of hearts 21. 10 of clubs 23. 7 of hearts

 25. import pCard
import random

def main():

 ## Randomly select a face card.

 c = pCard.PlayingCard()

 c.selectAtRandom()

 picture = random.choice(["jack", "queen", "king"])

 c.setRank(picture)

 print(c)

main()

 Answers ◆ 415

 27. class Fraction:
 def _ _init_ _(self, numerator=0, denominator=1):

 self._numerator = numerator

 self._denominator = denominator

 def setNumerator(self, numerator):

 self._numerator = numerator

 def getNumerator(self):

 return self._numerator

 def setDenominator(self, denominator):

 self._denominator = denominator

 def getDenominator(self):

 return self._denominator

 def GCD(self, m, n): # Greatest Common Divisor

 while n != 0:

 t = n

 n = m % n

 m = t

 return m

 def reduce(self):

 gcd = self.GCD(self._numerator, self._denominator)

 self._numerator = int(self._numerator / gcd)

 self._denominator = int(self._denominator / gcd)

 29. import fraction

def main():

 ## Convert a decimal number to a fraction.

 decimal = input("Enter a positive decimal number less than 1: ")

 decimal = decimal[1:] # Strip off decimal point.

 f = fraction.Fraction()

 f.setNumerator(int(decimal))

 f.setDenominator(10 ** len(decimal))

 f.reduce()

 msg = "Converted to fraction:"

 print(msg, str(f.getNumerator()) + '/' + str(f.getDenominator()))

main()

 31. def main():
 ## Calculate a workers weekly pay.

 salary = Wages()

 name = input("Enter person's name: ")

 salary.setName(name)

 hours = float(input("Enter number of hours worked: "))

 salary.setHours(hours)

 wage = float(input("Enter hourly wage: "))

 salary.setWage(wage)

 print("Pay for", salary.getName() + ':', salary.payForWeek())

 416 ◆ Answers

class Wages:

 def _ _init_ _(self, name="", hours=0.0, wage=0.0):

 self._name = name

 self._hours = hours # Number of hours worked during week

 self._wage = wage # Hourly wage

 def setName(self, name):

 self._name = name

 def getName(self):

 return self._name

 def setHours(self, hours):

 self._hours = hours

 def getHours(self):

 return self._hours

 def setWage(self, wage):

 self._wage = wage

 def getHours(self):

 return self._hours

 def payForWeek(self):

 amount = self._hours * self._wage

 if self._hours > 40:

 amount = 40 * self._wage + ((self._hours - 40) *

 (1.5 * self._wage))

 return "${0:,.2f}".format(amount)

main()

 33. import random
import pCard

def main():

 ## Randomly select a poker hand.

 deckOfCards = []

 ranks = ['2', '3', '4', '5', '6', '7', '8', '9',

 "10", "jack", "queen", "king", "ace"]

 suits = ["spades", "hearts", "clubs", "diamonds"]

 for i in ranks:

 for j in suits:

 c = pCard.PlayingCard(i, j)

 deckOfCards.append(c)

 pokerHand = random.sample(deckOfCards, 5)

 pokerHand.sort(key = lambda x: x.getRank())

 for k in pokerHand:

 print(k)

main()

 35. def main():
 ## Check out at a shopping Web site.

 myPurchases = Cart()

 carryOn = 'Y'

 Answers ◆ 417

 while carryOn.upper() == 'Y':

 description = input("Enter description of article: ")

 price = float(input("Enter price of article: "))

 quantity = int(input("Enter quantity of article: "))

 article = Purchase(description, price, quantity)

 myPurchases.addItemToCart(article)

 carryOn = input("Do you want to enter more articles (Y/N)? ")

 printReceipt(myPurchases)

def printReceipt(myPurchases):

 print("\n{0:12} {1:<s} {2:<12}".format("ARTIClE",

 "PRICE", "QUANTITY"))

 for purchase in myPurchases.getItems():

 print("{0:12s} ${1:,.2f} {2:5}".format(purchase.getDescription(),

 purchase.getPrice(), purchase.getQuantity()))

 print("\nTOTAl COST: ${0:,.2f}".format(myPurchases.calculateTotal()))

class Purchase:

 def _ _init_ _(self, description="", price=0, quantity=0):

 self._description = description

 self._price = price

 self._quantity = quantity

 def setDescription(self, description):

 self._description = description

 def getDescription(self):

 return self._description

 def setPrice(self, price):

 self._price = price

 def getPrice(self):

 return self._price

 def setQuantity(self, quantity):

 self._quantity = quantity

 def getQuantity(self):

 return self._quantity

class Cart:

 def _ _init_ _(self, items=[]):

 self._items = items

 def addItemToCart(self, item):

 self._items.append(item)

 def getItems(self):

 return self._items

 def calculateTotal(self):

 amount = 0

 for item in self._items:

 amount += item.getPrice() * item.getQuantity()

 return amount

main()

 418 ◆ Answers

ExErcisEs 7.2

 1. 4 3. 6.928

 5. The rectangle has area 6.00. 7. Area of Rectangle is: 50
Area of Triangle is: 25

 9. Change function displayResults to the following:

def displayResults(listOfStudents):

 listOfStudents.sort(key=lambda x: x.getName())

 for pupil in listOfStudents:

 if pupil.calcSemGrade() == 'A':

 print(pupil.getName())

 11. import random

def main():

 ## Play three games of rock, paper, scissors.

 # Get names of contestants and instantiate an object for each.

 nameOfHuman = input("Enter name of human: ")

 h = Human(nameOfHuman)

 nameOfComputer = input("Enter name of computer: ")

 c = Computer(nameOfComputer)

 print()

 # Play three games and keep score.

 for i in range(3):

 humanChoice = h.makeChoice()

 computerChoice = c.makeChoice()

 print("{0} chooses {1}".format(c.getName(), computerChoice))

 if humanChoice == "rock":

 if computerChoice == "scissors":

 h.incrementScore()

 elif computerChoice == "paper":

 c.incrementScore()

 elif humanChoice == "paper":

 if computerChoice == "rock":

 h.incrementScore()

 elif computerChoice == "scissors":

 c.incrementScore()

 else: # humanChoice = scissors

 if computerChoice == "rock":

 c.incrementScore()

 elif computerChoice == "paper":

 h.incrementScore()

 print(h, end=" ")

 print(c)

 print()

 if h.getScore() > c.getScore():

 print(h.getName().upper(), "WINS")

 elif c.getScore() > h.getScore():

 print(c.getName().upper(), "WINS")

 else:

 print("TIE")

 Answers ◆ 419

class Contestant():

 def _ _init_ _(self, name="", score=0):

 self._name = name

 self._score = score

 def getName(self):

 return self._name

 def getScore(self):

 return self._score

 def incrementScore(self):

 self._score += 1

 def __str__(self):

 return "{0}: {1}".format(self._name, self._score)

class Human(Contestant):

 def makeChoice(self):

 choices = ["rock", "paper", "scissors"]

 while True:

 choice = input(self._name + ", enter your choice: ")

 if choice.lower() in choices:

 break

 return choice.lower()

class Computer(Contestant):

 def makeChoice(self):

 choices = ["rock", "paper", "scissors"]

 selection = random.choice(choices)

 return selection

main()

 13. class Mortgage:
 def _ _init_ _(self, principal, interestRate, term):

 self._principal = principal

 self._interestRate = interestRate

 self._term = term

 def calculateMonthlyPayment(self):

 i = self._interestRate / 1200

 return ((i / (1 - ((1 + i) ** (-12 * self._term))))

 * self._principal)

 15. def main():
 ## Calculate the values for an interest- only mortgage.

 principal = float(input("Enter principal amount of mortgage: "))

 interestRate = float(input("Enter percent interest rate: "))

 term = float(input("Enter duration of mortgage in years: "))

 numberOfInterestOnlyYears = \

 float(input("Enter number of interest- only years: "))

 mort = InterestOnlyMortgage(principal, interestRate,

 term, numberOfInterestOnlyYears)

 print("Monthly payment for first {0:.0f} years: ${1:,.2f}"

 .format(numberOfInterestOnlyYears, mort.initialMonthlyPayment()))

 420 ◆ Answers

 mort.setTerm(term - numberOfInterestOnlyYears)

 print("Monthly payment for last {0:.0f} years: ${1:,.2f}"

 .format(mort.getTerm(), mort.calculateMonthlyPayment()))

class Mortgage:

 def _ _init_ _(self, principal, interestRate, term):

 self._principal = principal

 self._interestRate = interestRate

 self._term = term

 def calculateMonthlyPayment(self):

 i = self._interestRate / 1200

 return ((i / (1 - ((1 + i) ** (-12 * self._term))))

 * self._principal)

class InterestOnlyMortgage(Mortgage):

 def _ _init_ _(self, principal, interestRate,

 term, numberOfInterestOnlyYears):

 super().__init__(principal, interestRate, term)

 self._numberOfInterestOnlyYears = numberOfInterestOnlyYears

 def initialMonthlyPayment(self):

 return self._principal * (self._interestRate / 1200)

 def setTerm(self, numberOfInterestOnlyYears):

 self._term -= self._numberOfInterestOnlyYears

 def getTerm(self):

 return self._term

main()

421

Index

__init__ method (OOP), 299, 301–2
__str__ method (OOP), 299, 304

A
abs function, 42
Accessor method (OOP), 299, 305
Accumulator variable, 123
Actual parameter, 172
add method (set), 214
Algorithm, 21
and logical operator, 98
Anonymous function, 188
append method (list), 74
Argument, 160

keyword, 187–88
non-keyword, 187–88
positional, 187–88

Arithmetic operators, 40
addition, 40
augmented, 43
division, 40
exponentiation, 40
integer division (//), 43–44
modulus (%), 43–44
multiplication, 40
order of precedence, 44
subtraction, 40

ASCII values, 94, 365–66
Assignment statement, 41

augmented, 43, 59, 81
Asterisk

exponentiation operator, 40
multiplication operator, 40
repetition operator, 54, 74
to indicate unsaved program, 37

AttributeError, 260
Augmented assignment statement, 43, 59, 81

B
Backslash (\)

escape sequence character, 66–67, 70
line continuation character, 58

Bar charts (turtle graphics), 279
Base case (recursion), 285, 287, 289
Base class (OOP), 311
Binary file

use to store and populate a dictionary, 242
use to store and populate a list, set, or tuple, 246

Block, 36
bool data type, 99
Boolean, 314

data type, 99
expression, 94
functions

isfile, 214, 217
isinstance, 100, 314

methods, 99–100
endswith, 100
isalnum, 100
isalpha (string), 100
isdigit, 100
islower, 100
isspace, 100
startswith, 99, 100

Braces, 68–69, 214, 237
break statement, 124, 143
Buffer, 211
Bug, 21
Built-in function, 46, 160

C
calculateMedian function, 227
calculateStandardDeviation function, 227
Call a function, 160, 180
Camel casing, 42, 299
capitalize method (string), 55
Case-sensitivity, 42, 59
center method (string), 67
Chained methods, 55, 59
Child class (OOP), 311
choice function (random), 267
chr function, 94
Class, 298

built-in, 298
constructor of a, 300
instance of a, 298

 422 ◆ Index

Class (continued)
instance variables, 299
methods, 299, 302
properties, 299

class reserved word, 299
clear method

dictionary, 238
list, 74
set, 214

Close button, 35, 37, 329
Close command (IDLE), 36
close method (file), 208
Code, 19
Code editor, 31, 32
Coding, 21
Colon (:)

in format specifiers, 68, 69
in headers, 36, 113, 161
in slices, 76

Color coding (IDLE), 47, 59, 101, 113, 171
Comment, 57
Compound statement, 113
Comprehension

dictionary, 246
list, 182–83, 188
set, 215

Concatenation
list, 74
string, 54, 59
tuple, 78

Condition, 94
simplifying a, 100–1

Constructor, 299, 329
Continuation condition, 121
continue statement (loop), 124–25, 143
Copying lists, 80
count method

list, 74
string, 55

Counter variable, 123
CSV file, 223–24

convert to Excel spreadsheet, 227
create with Excel, 227

Curly braces, 68–69, 214, 237
Custom sorting, 185

D
Data hiding, 298
Data type

bool, 99
dict, 237
float, 40
int, 40
list, 74

set, 214
str, 59
tuple, 78, 81

De Morgan’s Laws, 101
Decision

flowchart symbol, 23
structure, 25, 200

def reserved word, 160
Default value, 183–84
del function

dictionary, 238
list, 74, 75

Derived class (OOP), 311
Design

modular, 171, 198
top-down, 171, 198

Desk-checking, 27
dict function, 238, 239
Dictionary, 237

comprehension, 246
extracting ordered data from, 244
functions and methods, 238
key, 237, 246
methods

clear, 238
get, 238
items, 238
keys, 238
update, 238
values, 238

populate with a text file, 240
use as frequency table, 241
using a binary file to store and populate, 242
value, 237
with dictionaries as values, 243
with tuples as keys, 245

difference method (set), 215, 217
discard method (set), 214
Divide and conquer method, 25
Documentation, 22
Driver, 200
dump function (pickle), 242

E
elif clause, 109, 111
else clause, 105–6

of a try statement, 262
Empty

dictionary ({}), 238
list ([]), 74, 76, 112
set (set()), 214, 218
string (""), 52, 112
tuple (()), 81, 112

Encapsulation (OOP), 305

 Index ◆ 423

end argument (of print function), 66
endswith method (string), 100
Enter key, 30
Equality relational operator (==), 95, 101
Error

exception, 45
logic, 46
runtime, 45
syntax, 44–45
Traceback message, 45

Escape sequence, 66–67, 69, 70
eval function, 56
Event driven program, 328
Excel spreadsheet, 227
except clause (of a try statement), 261, 263
Exception, 45, 260

handling, 261–63
Exit command (IDLE), 36
expandtabs method, 66–67
Expression, 40, 41, 58
extend method (list), 74
extractField function, 227

F
F5 key, 33
False Boolean value, 99, 112
File

buffer, 211
drop-down menu (IDLE), 31, 36
object, 208

FileNotFoundError, 260
finally clause (of a try statement), 262
find method (string), 52
Flag variable, 125
float

data type, 40
function, 56, 57

Flowchart, 23, 27, 29
Flowline, 23
Folders, 19
for loop, 134–43, 214

body, 134
header, 134
iterate through a dictionary, 238
iterate through a list, 138
iterate through a string, 138
iterate through a text file, 141, 208
iterate through a tuple, 138
nested, 137
pass, 134
variable, 134

Formal parameter, 172
format method, 68–69
Fractal, 288

Frequency table, 241
Functions

anonymous, 188
Boolean-valued, 165
built-in, 46, 160
calculateMedian, 227
calculateStandardDeviation, 227
call, 160
calling other functions, 180
Dictionary, 238
extractField, 227
from random module, 267
header, 161
indentation, 161
List, 74
list-valued, 165
main, 167, 172
naming, 161
not returning values, 166
Numeric, 42
parameter, 160, 162
parameterless, 167
returning multiple values, 181
Set, 216
String, 54–55
Tuple, 78
user-defined, 46–47, 160

G
get method (dictionary), 238
Global scope, 169–70
global statement, 169
Graphical user interface

bg attribute, 331, 337
Button widget, 329, 337

command attribute, 330
callback function, 330
column attribute, 342
columnspan attribute, 342
empty rows, 346
Entry widget, 331, 332

get method, 332
set method, 332
textvariable attribute, 332

event handler, 330
fg attribute, 329, 337
Grid geometry manager, 341
grid method, 329, 343
Label widget, 331, 337
Listbox widget, 334, 351

curselection method, 335
get method, 335
height attribute, 334
listvariable attribute, 334

 424 ◆ Index

Graphical user interface (continued)
selection_clear method, 337
set method, 334
width attribute, 334
yview property, 345

mainloop function, 329
OOP-style programs, 353
padding arguments, 343
padx attribute, 342
pady attribute, 342
ReadOnly Entry widget, 333
row attribute, 342
Scrollbar widget, 336, 345
sticky attribute, 342, 343–44, 346
text attribute, 329, 337
tkinter, 328
width attribute, 330

Graphics (turtle), 273–83
Greater than relational operator (>), 95
GUI (Graphical User Interface), 328

H
Hardware, 19
Header

block, 36
for loop, 134
function, 161
if statement, 113
while loop, 121

Hierarchy chart, 24–25
High-level language, 18
Horizontal tab character (\t), 66–67

I
Identifier, 46
IDLE, 18, 29

color coding, 47, 59, 101, 113, 171
indentation, 161
installing, 369–70
starting, 29

if statement, 107, 113
if-else statement, 105–6
Immutable object, 79, 246
import statement, 171, 300
ImportError, 260
in relational operator, 95, 238
Indentation, 36, 113, 161
Index

default bounds, 53–54
list, 75
negative, 53

out of bounds error, 58, 80
string, 52
tuple, 78

index method (list), 74
IndexError, 58, 80, 260
Indirect recursion, 289
Inequality relational operator (!=), 95
Infinite loop, 126
Inheritance (OOP), 311
Initializer method (OOP), 299, 301–2
Input, 19, 20, 21

flowchart symbol, 23
validation, 111, 122

input function, 55, 56
insert method (list), 74, 75
Instance

of a class, 298
variable (OOP), 299, 315

Instantiate, 304
int

data type, 40
function, 42, 56, 57

Integer division operator (//), 43–44
Interactive mode, 30
Internal documentation, 57
Interpreter, 18
intersection method (set), 215, 217
is-a relationship (OOP), 313
isalnum method (string), 100
isalpha method (string), 100
isdigit method (string), 100
isfile Boolean function, 214, 217
isinstance function, 100, 314
islower method (string), 100
isspace method (string), 100
isupper method (string), 100
items method (dictionary), 238
Iteration, 200

J
join method, 76–77

K
Key

Enter, 30
F5, 33
in a dictionary, 237
return, 30

key argument (sorting), 185, 186, 244
KeyError, 260

 Index ◆ 425

keys method (dictionary), 238
Keystroke conventions, 20
Keyword, 42

passing, 184, 187–88

L
Lambda expressions, 186, 188
len function, 55, 74, 214, 238
Less than relational operator (<), 95, 113
Lexicographical order, 95
Library module, 170
Line

charts (turtle graphs), 281
continuation, 58

list
comprehension, 182–83, 188
concatenation operator (+), 74
copying, 80
function, 81, 143, 214, 238
nested, 79
object, 74, 138, 142, 217
of objects, 304
operations, 74
repetition operator (*), 74
saving as binary file, 246
sort a, 97, 101
use to analyze data from CSV file, 224
use to analyze numeric data, 226

Literal
numeric, 40, 46
string, 51–52

ljust method (string), 67
load function (pickle), 243
Local scope, 168
Logic error, 46
Logical operators, 97–98

and, 98
not, 98
or, 98

Loop
exit a, 124
for, 134–43
infinite, 126
structure, 27, 200
variable, 134
while, 121–26

lower method (string), 55

M
Machine language, 18
main function, 167, 172

math module, 172
max function, 74, 81, 214, 238
Mean, 254
Median, 149
Menu, 125
Methods

chained, 55, 59
Dictionary, 238
formatting, 67–69
List, 74
overriding (OOP), 316
String, 54–55
Tuple, 78

min function, 74, 81, 214, 238
Modular design, 171, 198
Module, 170
Modulus operator (%), 43–44
Mutable object, 79
Mutator method (OOP), 299, 305

N
Named constant, 170
NameError, 45, 260
Negative index, 53
Nested

for loops, 137
if statements, 108
lists, 79
while loops, 143

New File command (IDLE), 31, 36
New Window command (IDLE), 31, 36
Newline character (\n), 66–67, 208, 210
Newline operation, 40, 66
None value, 172
not in relational operator, 95, 238
not logical operator, 98
Number sign (#), 57
Numeric literal, 40, 46

O
Object, 79

in memory, 46
instantiate, 304
oriented programming, 201, 297–325, 353
point to an, 46
reference an, 46

OOP (Object Oriented Programming), 297–325
Open

command (IDLE), 36
dialog box (IDLE), 34
for appending, 213, 217

 426 ◆ Index

Open (continued)
for input, 208, 217, 243
for output, 210, 242
for reading, 34, 208, 217, 243
for writing, 210, 242

open function (file), 208, 210, 242
Operators

equality (==), 101
logical, 97–98
relational, 95

or logical operator, 98
ord function, 94
Order of precedence, 44
os module, 171
os.path module, 171, 217
Output, 19, 20, 21, 65–70

flowchart symbol, 23
Overriding a method (OOP), 316

P
Palindrome, 158, 287
Parameter, 160, 162

actual, 172
default, 187
default value, 183–84
formal, 172
non-default, 187
positional, 187

Parent class (OOP), 311
Parentheses, 44
Pascal’s triangle, 296
Pass (loop), 121, 134
Pass a value to a function, 160

by keyword, 184
by position, 161, 162, 163, 164

pass statement, 141, 143
Percent character (%)

format specifier, 69
modulus operator, 43

pickle module, 171, 242, 246
Polymorphism (OOP), 318
Position in a string, 52
print function, 40, 65, 68–69
Print Window command (IDLE), 36
Problem solving, 19
Processing, 19, 20, 21, 182

flowchart symbol, 23
Program, 18, 20

creating, 20
debugging, 21
Development Cycle, 20–22
opening, 34
planning, 21

robust, 263
running, 18
saving, 20, 32
testing, 21

Programmer, 18
Pseudocode, 23, 29
Pseudorandom, 270
Python, 18

block-structured language, 36
code editor, 31–32
installing, 369–71
reserved words, 42, 367
shell, 30

Q
Quotation marks, 58, 67

R
randint function (random), 267
random module, 171

functions
choice, 267
randint, 267
sample, 267
shuffle, 267

range function, 134, 136, 142, 143
read method (file), 209
Reading text files, 208, 209, 210
readline method (file), 209
Recent Files command (IDLE), 36
Recursive function, 285, 286, 287
Reducing step (recursion), 286
Reference an object, 46
Relational operators, 95–96

equality (==), 95
greater than (>), 95
in, 95, 238
inequality (!=), 95
less than (<), 95, 113
not in, 95, 238

remove
function (file), 214
method (list), 74, 75

rename function (file), 214
Repetition

operator (*)
list, 74
string, 54
tuple, 78

structure, 27
Reserved word, 42, 367
return key, 30

 Index ◆ 427

return statement, 161, 166, 172
Reusable code, 200
reverse

argument (sorting), 185, 187, 244
method (list), 74

rfind method (string), 52
rjust method (string), 67
Robust program, 263
round function, 42, 46
rstrip method (string), 55, 67, 69
Run program from IDLE (F5), 40
Runtime error, 45, 260

S
sample function (random), 267
Save

a program, 20, 32
command (IDLE), 36
message box, 34

Save As
command (IDLE), 36
dialog box, 32

Scientific notation, 46
Scope

global, 169
local, 168

self parameter (OOP), 299, 300, 305
Sentinel, 123
sep argument (of print function), 65–66
separator, 77
Sequence structure, 25, 200
set

comprehension, 215
data type, 214
empty (set()), 218
function, 214, 216, 218, 238
methods

add, 214
clear, 214
discard, 214

theoretic methods
difference, 215
intersection, 215
union, 215

Short-circuit evaluation, 99
shuffle function (random), 267
Slice

default bounds, 53–54
of a list, 76
of a string, 52
of a tuple, 78
out of bounds, 80

Software, 19
Development Life Cycle, 21

sort method (list), 97, 101
sorted function

dictionary, 244
list, 187
set, 216
string, 187
tuple, 187

Source code, 31
split method, 76–77, 224
Standard deviation, 254
Standard library, 171
startswith method (string), 99
Step value (of a range function), 136
Stepwise refinement, 198
Stopping condition (recursion), 289
str

data type, 59
function, 56, 57

String, 138
concatenation, 54, 59
functions, 54–55
literal, 51–52
methods, 54–55
slice, 52
repetition operator, 54

Structure
decision, 25, 200
loop, 27, 200
repetition, 27
sequence, 25, 200

Structured programming, 200
Stub programming, 200
Subclass (OOP), 311, 315
Substring, 52
sum function, 74, 214
Superclass (OOP), 311
Syntax error, 44–45

message box, 45

T
Terminating case (recursion), 289
Text file, 37, 77–78

appending lines, 213
creating, 210

iterating with for loop, 141
reading, 208
use to populate a dictionary, 240
use to populate a list, 142

Text-based user interface (TUI), 328, 350
title method (string), 55

 428 ◆ Index

tkinter (see Graphical user interface), 328
tkinter module, 171
Top-down

chart, 24–25
design, 171, 198–99

Traceback error message, 45
True Boolean value, 99, 112
Truth value, 94, 100, 112
try statement, 261
TUI (Text-based User Interface), 328
tuple

function, 81, 214, 238
object, 78, 81, 138, 181, 217
with single item, 81

turtle graphics, 273–83
bar charts, 279
canvas, 274
coordinate system, 274
flags, 277
graphics window, 274
line charts, 281
methods

backward, 275
begin_fill, 276
dot, 275
down, 274
end_fill, 276
fillcolor, 276, 282
forward, 274
goto, 275
hideturtle, 274
left, 275
pencolor, 275, 282
right, 275
setheading, 275
speed, 282
up, 274
write, 278

align argument, 279
font argument, 279
TypeError, 260

U
union method (set), 215, 217
update method (dictionary), 238
upper method (string), 55
User, 18
User-defined

class, 298
function, 160

V
Value (in a dictionary), 237
ValueError, 260
values method (dictionary), 238
Variable, 41–42, 52

global, 169–70
local, 168
named constant, 170
naming a, 42
scope, 168–70

W
while loop, 121–26

continuation condition, 121
header, 121
pass, 121

Whitespace, 77
Widget (GUI), 328, 329
write

method (file), 210, 211, 213, 217
method (turtle graphics), 278

writelines method (file), 210, 213

Z
Zero-based numbering, 19
ZeroDivisionError, 45, 260

Some Available Pen Colors for use in Section 6.3 (Turtle Graphics).

In Exercises 9 through 20, write a program to create the output.

9. 10. 11. 12. 13. 1

1This figure illustrates the so-called “bullseye illusion.” Although the tri-colored inner region has
the same area as the outer black annulus, it appears to be larger.

14. 15. 16. 17.

18. 19. 20.

In Exercises 21 through 26, write a program to create the flag of the designated country.
Note: The Swiss flag is square. For the other five flags, the width is 1.5 times the height.

Flags of six countries.

Italy Niger Japan

Switzerland Burkina Faso Panama

26. Panama 21. Italy 22. Niger 23. Japan 24. Switzerland 25. Burkina Faso

Outcome of Programming Project 4 from Chapter 6.

	Cover
	Title Page
	Copyright Page
	Guide to VideoNotes��������������������������
	Guide to Application Topics����������������������������������
	Contents
	Preface��������������
	Acknowledgments����������������������
	Chapter 1 An Introduction to Computing and Problem Solving���
	1.1 An Introduction to Computing and Python��
	1.2 Program Development Cycle������������������������������������
	1.3 Programming Tools����������������������������
	1.4 An Introduction to Python������������������������������������

	Chapter 2 Core Objects, Variables, Input, and Output���
	2.1 Numbers������������������
	2.2 Strings������������������
	2.3 Output�����������������
	2.4 Lists, Tuples, and Files–An Introduction���
	Key Terms and Concepts�����������������������������
	Programming Projects���������������������������

	Chapter 3 Structures That Control Flow���
	3.1 Relational and Logical Operators���
	3.2 Decision Structures������������������������������
	3.3 The while Loop�������������������������
	3.4 The for Loop�����������������������
	Key Terms and Concepts�����������������������������
	Programming Projects���������������������������

	Chapter 4 Functions��������������������������
	4.1 Functions, Part 1����������������������������
	4.2 Functions, Part 2����������������������������
	4.3 Program Design�������������������������
	Key Terms and Concepts�����������������������������
	Programming Projects���������������������������

	Chapter 5 Processing Data��������������������������������
	5.1 Processing Data, Part 1����������������������������������
	5.2 Processing Data, Part 2����������������������������������
	5.3 Dictionaries�����������������������
	Key Terms and Concepts�����������������������������
	Programming Projects���������������������������

	Chapter 6 Miscellaneous Topics�������������������������������������
	6.1 Exception Handling�����������������������������
	6.2 Selecting Random Values����������������������������������
	6.3 Turtle Graphics��������������������������
	6.4 Recursion��������������������
	Key Terms and Concepts�����������������������������
	Programming Projects���������������������������

	Chapter 7 Object-Oriented Programming��
	7.1 Classes and Objects������������������������������
	7.2 Inheritance����������������������
	Key Terms and Concepts�����������������������������
	Programming Projects���������������������������

	Chapter 8 Graphical User Interface���
	8.1 Widgets������������������
	8.2 The Grid Geometry Manager������������������������������������
	8.3 Writing GUI Programs�������������������������������
	Key Terms and Concepts�����������������������������
	Programming Projects���������������������������

	Appendices�����������������
	Appendix A ASCII Values������������������������������
	Appendix B Reserved Words��������������������������������
	Appendix C Installing Python and IDLE��

	Answers��������������
	Index������������
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Color Insert

