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Preface 

As the field of statistics has developed over the years, the role of matrix 
methods has evolved from a tool through which statistical problems could be 
more conveniently expressed to an absolutely essential part in the development, 
understanding, and use of the more complicated statistical analyses that have 
appeared in recent years. As such, a background in matrix analysis has become 
a vital part of a graduate education in statistics. Too often, the statistics gradu
ate student gets his or her matrix background in bits and pieces through various 
courses on topics such as regression analysis, multivariate analysis, linear mod
els, stochastic processes, and so on. An alternative to this fragmented approach 
is an entire course devoted to matrix methods useful in statistics. This text has 
been written with such a COurse in mind. It also could be used as a text for an 
advanced undergraduate COurse with an unusually bright group of students and 
should prove to be useful as a reference for both applied and research statisti-

• clans. 
Students beginning a graduate program in statistics often have their previ

ous degrees in other fields, such as mathematics, and so initially their statistical 
backgrounds may not be all that extensive. With this in mind, I have tried to 
make the statistical topics presented as examples in this text as self-contained as 
possible. This has been accomplished by including a section in the first chapter 
that covers some basic statistical concepts and by having most of the statis
tical examples deal with applications that are fairly simple to understand; for 
instance, many of these examples involve least squares regression or applica
tions that utilize the simple conccpts of mcan vectors and covariancc matriccs. 
Thus, an introdUctory statistics course should provide the reader of this text 
with a sufficient background in statistics. An additional prerequisite is an under
graduate course in matrices or linear algebra, while a calculus background is 
necessary for some portions of the book, most notably Chapter 8. 

By selectively omitting some sections, all nine chapters of this book can be 
covered in a one-semester course. For instance, in a course targeted at students 
who end their educational careers with the master's degree, I typically omit 
Sections 2.10, 3.5 3.7,4.8, 5.4-5.7, and 8.6, along with a few other sections . 

• 
XI 
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XII PREFACE 

Anyone writing a book on a subject for which other texts have already been 
written stands to benefit from these earlier works, and that certainly has been the 
case here. The texts by Basilevsky (1983), Graybill (1983), Healy (1986), and 
Searle (1982), all books on matrices for statistics, have helped me, in varying 
degrees, to fOIlnulate my ideas on matrices. Graybill's book has been partic
ularly influential, since this is the book that I referred to extensively, first as 
a graduate student and then in the early stages of my research career. Other 
texts that have proven to be quite helpful are Horn and Johnson (1985, 1991), 
Magnus and Neudecker (1988), particularly in the writing of Chapter 8, and 
Magnus (1988). 

I wish to thank several anonymous reviewers who offered many very helpful 
suggestions and Mark Johnson for his support and encouragement throughout 
this project. I am also grateful to the numerous students who have alerted me to 
various mistakes and typos in earlier versions of this book. In spite of their help 
and my diligent efforts at proofreading, undoubtedly some mistakes remain, and 
I would appreciate being infoIlned of any that are spotted. 

JIM SCHOrr 

Orlando, Florida 
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CHAPTER ONE 

A Review' of Elementary Matrix 

Algebra 

1. INTRODUCTION 

In this chapter we review some of the basic operations and fundamental proper

ties involved in matrix algebra. In most cases properties will be stated without 

proof, but in some cases, when instructive, proofs will be presented. We end 

the chapter with a brief discussion of random variables and random vectors, 

expected values of random variables, and some important distributions encoun

tered elsewhere in the book. 

2. DEFINITIONS AND NOTATION 

Except when stated otherwise, a scalar such as ex will represent a real number. 

A matrix A of size m x n, is the m x n rectangular array of scalars given by 

all al2 • •• al n 

a21 a22 • • • a2n 

A= • • • , 
• • • 
• • • 

ami a m2 • • • a mn 

and sometimes simply identified as A = (aij). Sometimes it also will be conve

nient to refer to the (i,j)th element of A, as (A)ij; that is, aij = (A)ij' If m = n. 

then A is called a square matrix of order m. An m x I matrix 

al • 

a2 
a= • 

• 
• 

am 

1 



2 A REVIEW OF ELEMENTARY MATRIX ALGEBRA 

is called a column vector or simply a vector. The element aj is referred to as the 
ith component of a. A I x n matrix is called a row vector. The ith row and jth 
column of the matrix A sometimes will be refened to by (A)j. and (A).Jo respec
tively. We will usually use capital letters to represent matrices and lowercase 
bold letters for vectors. 

The diagonal element of the m X m matrix A are all, a22, ... ,amm• If all other 
elements of A are equal to 0, A is called a diagonal matrix and can be iden
tified as A = diag(all, ... , amm ). If, in addition, au = 1 for i = 1, ... , m so 
that A = diag(l, ... , I), then the matrix A is called the identity matrix of order 
m and will be written as A = 1m or simply A = I if the order is obvious. If 
A = diag(a" ... , am) and b is a scalar, then we will use Ab to denote the diago
nal matrix diag(at, ... ,a~). For any mXm matrix A, DA will denote the diagonal 
matrix with diagonal elements equal to the diagonal elements of A and, for any 
m x I vector a, Do denotes the diagonal matrix with diagonal elements equal to 
the components of a; that is, DA = diag(all' ... , amm) and Do = diag(al" .. , am). 

A triangular matrix is a square matrix that is either an upper triangular matrix 
or a lower triangular matrix. An upper triangular matrix is one which has all 
of its elements below the diagonal equal to 0, while a lower triangular matrix 
has all of its elements above the diagonal equal to 0. .. . . .. 

The ith column of the m X m identity matrix will be denoted by ej; that is, ej 
is the m x I vector which has its ith component equal to 1 and all of its other 
components equal to O. When the value of m is not obvious, we will make 
it more explicit by writing ej as ej,m' The m X m matrix whose only nonzero 
element is a I in the (i,j)th position will be identified as Eij. 

The scalar zero is written 0, while a vector of zeros, called a null vector, will 
be denoted by 0, and a matrix of zeros, called a null matrix, will be denoted 
by (0). The m x I vector having each component equal to I will be denoted 1m 
or simply 1 when the size of the vector is obvious. 

3. MATRIX ADDITION AND MULTIPLICATION 

The sum of two matrices A and B is defined if they have the same number of 
rows and the same number of columns; in this case 

The product of a scalar ex and a matrix A is 

cxA = Aex = (exaij) 

The premultiplication of the matrix B by the matrix A is defined only if the . 
nu.nber of columns of A equals the number of rows of B. Thus, if A is m X p 
and B is p x n, then C = AB will be the m x n matrix, which has its (i,j)th 

• 

, , 

I , 
! 
• 

• , , 
; 
• 

1 
i 
• 
• 
, 
• 

I 
• 
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THE TRANSPOSE 3 

element, Cjj' given by 

Cij = (A)j.(B).j = 
k=l 

There is a similar definition for BA, the postmultiplication of B by A. When 
both products are defined, we will not have, in general, AB = BA. If the matrix 
A is square, then the product AA, or simply A 2 , is defined. In this case, if we 
have A2 = A, then A is said to be an idempotent matrix. 

The following basic properties of matrix addition and multiplication are easy 
to verify. 

Theorem 1.1. Let a and (3 be scalars and A, B, and C be matrices. Then, 
when the operations involved are defined, the following properties hold. 

(a) A + B = B + A. 

(b) (A+B)+C=A+(B+C) . 

(c) a(A + B) = cxA + aB. 

(d) (a + (3)A = cxA + (3A. 

(e) A - A = A + (-A) = (0). 

(f) A(B+C)=AB+AC. 

(g) (A+B)C=AC+BC. 

(h) (AB)C = A(BC). 

4. 'fHI': TRANSPOSE 

The transpose of an m X n matrix A is the n x m matrix A' obtained by inter
changing the rows and columns of A. Thus, the (i,j)th element of A' is aj;. If 
A is m x p and B is p x n, then the (i,j)th element of (AB)' can be expressed as 

p 

«AB)');j = (AB)ji = (A)j.(B).j = L ajkbk; = (B');.(A')'j = (B' A');j 
k=l 

Thus, evidently (AB), = B' A'. This along with some other results involving the 
transpose are summarized below. 

Theorem 1.2. Let a and (3 be scalars and A and B be matrices. Then, when 
defined, the following hold. 

(a) (cxA)' = cxA'. 

(b) (A')' = A. 



• 

(c) (aA + (3B)' = aA' + {3B'. 

(d) (AB)' = B' A'. 

n. ,,1..:. II 11:" \''1' VJ" c.Lt:.tVic.J'" i At<. r IV1Al KIA ALllhJjKA 

If A is mxm, that is, A is a square matrix, then A' is also mXm. In this case, if 
A = A', then A is called a symmetric matrix, while A is called a skew-symmetric 
matrix if A = -A'. 

The transpose of a column vector is a row vector, and in some situtations 
we may write a matrix as a column vector times a row vector. For instance, the 
matrix Eij defined in the previous section can be expressed' as Eij = eje;. More 
generally, ej.mej,n yields an m x n matrix having 1, as its only nonzero dement, 
in the (i,j)th position, and if A is an m x n matrix then 

"' II 

A= 
, 

aijej,mej,t/ 
j = I j=1 

• 

5. THE TRACE 

The trace is a function that is defined only on square matrices. If A is an m x m 
matrix, then the trace of A, denoted by tr(A), is defined to be the sum of the 
diagonal elements of A; that is, 

m 

tr(A) = a .. 
II 

j = I 

Now if A is m x nand B is n x m, then AB is m x m and 

n n 

--

This property of the trace, along with some others, is summarized in the fol
lowing theorem. 

Theorem 1.3. Let ex be a scalar and A and B be matrices. Then, when the 
appropriate operations are defined, we have 

(a) tr(A') = tr(A), 

(b) tr(exA) = extr(A), 

. 

, . , , 

, , 

• 

• • 

• • 

• 

• , 
I 
• 



THE DETERMINANT 

(c) tr(A + B) = tr(A) + tr(B), 

(d) tr(AB) = tr(BA), 

(e) tr(A' A) = 0 if and only if A = (0). 

6. THE DETERMINANT 

The determinant is another function defined on square matrices. If A is an /IlX 11/ 

matrix, then its deteiminant, denoted by IAI, is given by 

IAI = 

--

(_l)!(i,,···.im)a . a . '" a .. 
I It 212 Irl/m 

where the summation is taken over all pellllutations, (i I, ... ,i"J of the set of 

integers (1, ... , m), and the function !UI> .. . , im ) equals the number of trans

positions necessary to change (i\, ... , im ) to (1, ... ,m). A transposition is the 

interchange of two of the integers. Although! is not unique, it is uniquely even 

or odd, so that IA I is uniquely defined. Note that the determinant produces all 

. products of m tenns of the elements of the matrix A such that exactly one ele

ment is selected from each row and each column of A. 

, . 

An alternative expression for IAI can be given in ten liS of the cofactors of A. 

The minor of the element au, denoted by mu, is the determinant of the (m- 1) x 

(m-l) matrix obtained after removing the ith row andjth column from A. The 

corresponding cofactor of aij, denoted by Aij, is then given as Aij = (_l)i+jm'j' 

For any i = 1, ... , m, the detellllinant of A can be obtained by expanding along 

the ith row, 

m 

IAI = ( 1. I ) 

or expanding along the jth column, 

m 

IAI = ( 1.2) 

; = 1 

On the other hand, if the cofactors of a row or column are matched with the 

elements from a different row or column, the expansion reduces to 0; that is, 

if k :J i, then 

m m 

aijAkj = (1.3) 

j=1 j=1 



6 A REVIEW OF ELEMENTARY MATRIX ALGEBRA 

Example 1.1. We will find the detenninant of the 5 X 5 matrix given by 

2 I 2 I I 
00300 

A= 0 0 2 2 0 
o 0 1 1 1 
o I 221 

Using the cofactor expansion fOIlllula on the first column of A, we obtain 

IAI = 2 

030 
022 
o 1 1 
122 

o 
o 
1 ' 
1 

and then using the same expansion fOIlllula on the first column of this 4 x 4 
matrix, we get 

300 
IAI=2·(-I)· 2 2 0 

I I I 

. .. 

Since the determinant of the 3 x 3 matrix above is·6 we have 

IAI = 2 . (-I) . 6 = -12 

The following properties of the determinant are fairly straightforward to verify 
using the definition of a determinant or the expansion fOIlllulas given in (1.1) 
and (1.2). 

Theorem 1.4. If ex is a scalar and A is an mx m matrix, then the foIlowing 
properties hold. 

(a) IA'I = IAI· 
(b) letA I = exlllIAI. . 

(c) If A is a diagonal matrix, then IAI = all ... amm = n:: I aii. 

(d) If all elements of a row (or column) of A are zero, IA I = O. 
(e) If two rows (or columns) of A are proportional to one another, IAI = O. 
(f) The interchange of two rows (or columns) of A changes the sign of IAI. 

(g) If all the elements of a row (or column) of A are multiplied by ex, then. 
the deteIlllinant is multiplied by ex. 
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TIlE DETERMINANT 7 

(h) The determinant of A is unchanged when a multiple of one row (or col
umn) is added to another row (or column). 

Consider the m x m matrix C whose columns are given by the vectors 
CJ, ••• ,Cm; that is, we can write C = (c), ... ,cm)' Suppose that, for some vector 
b = (b), ... ,bmY and matrix A = (at, ... ,am), we have 

m 

CI = Ab = L biai 
i = I 

Then, if we find the detenn.inant of C by expanding along the first column of 
C, we get 

m In 

Ie! = L CjlCjl = L 
j=1 j=1 

so that the determinant of C is a linear combination of m determinants. If B is 
an m X m matrix and we now define C = AB, then by applying the derivation 
above on each column of C we find that 

m m 

ICI = L billail"'" L bimmaim 
il=1 im=1 

m m 

= L ... L bill" ·bimml(aip ... ,aim)1 
il=1 im=1 

where this final sum is only over all peIlllUtations of (1, ... ,m), since Theorem 
1.4( e) implies that 

if ij = h for any j -:I. k. Finally, reordering the columns in I (ai I' ... ,aim) I and 
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using Theorem 1.4(f), we have 

This very useful result is summarized below. 

Theorem 1.5. If both A and B are square matrices of the same order, then 

IABI = IAI IBI 

7. THE INVERSE 

An m x m matrix A for which IA I oJ 0 is said to be a nonsingular matrix. In this 
case, there exists a nonsingular matrix denoted by A -I and called the inverse 
of A, such that 

(1.4) . 

This inverse is unique since, if B is another m x m matrix satisfying the inverse 
fOllllula (1.4) for A, then BA = 1m, and so 

The following basic properties of the matrix inverse can be easily verified by 
utilizing (1.4). 

Theorem 1.6. If ex is a nonzero scalar, and A and B are nonsingular m X m 
matrices, then 

(a) (aAr l = ex-lA-I, 
(b) (A'r l = (KI)', 
(c) (A-I)-I =A, 

(d) lA-II = IAI- I, 
(e) if A = diag(all, ... , amm ), then A -I = diag(all, ... , a;;'~), 
(0 if A = A', then A -I = (A -I)', 

(g) (AB)-I = B-IK I. 

As with the detellUinant of A, the inverse of A can be expressed in terms 
of the cofactors of A. Let A#, called the adjoint of A, be the transpose of the 
matrix of cofactors of A; that is, the (i,j)th element of A# is Aji, the cofactor 
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of ajj. Then 

AAu = AltA = diag(I.1-i..: ... , l11). =.IAllm' 
.E E 

since(AMAu).; = (Au)dA).; = IALfollows from (1.1) and (1.2), and (A);. (Au)·j =. 

(Au)dA)'j = 0, for U- j follows from (1.3). The equation above then yields the 

relationship -. _ A -'A::: i fJ. r' I A /1 m 

= /Af'A#1-1 

The relationship between the inverse of a matrix product and the product of 

the inverses, given in Theorem 1.6(g), is a very useful property. Unfortunately, 

such a nice relationship does not exist between the inverse of a sum and the sum 

of the inverses. We do, however, have the following result, which is sometimes 

useful. 

Theorem 1. 7. Suppose A and B are nonsingular matrices, with A being 

m x m and B being n x n. For any m X n matrix C and any n x m matrix D, it 

follows that if A + CBD is nonsingular then 

Proof. The proof simply involves verifying that (A + CBD)(A + CBDt I = 1m 

for (A + CBD)-I given above. We have 

(A + CBD){A-1 - A-1C(B- 1 + DA-1C)-1 DKI) 

= 1m - C(B- 1 + DA-1C)-1 DA-1 + CBDK 1 

- CBDA-1C(B- 1 +DK1C)-IDA-1 

=Im- C{(B- 1 +DK1Ctl-B+BDA-1C(B-1 +DA-1Crl}DA-1 

= 1m - C{B(B-1 + DA-1C)(B- 1 + DA-1C)-I- B}DA- 1 

=1m - C{B - B}DA-1 = 1m 0 

If m = n and C and D are identity matrices, then we obtain the following 

special case of Theorem 1.7. 

that B and A + B are all m x m 
" " ", 

We obtain another special case of Theorem 1.7 when n = 1. 
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1.7.2. Let A be an mX m matrix. If c 
//IX 

Example 1.2. Theorem 1.7 can be particularly useful when m is larger than 
Il and the inverse of A is fairly easy to compute. For instance, suppose we have 
A = 15, 

1 0 1 -1 

I I 
2 I -1 2 

B= C= -1 1 D'= 0 1 
1 2 

, , , 
0 2 1 0 
1 1 -1 1 

from which we obtain 

1 1 1 1 0 
-1 6 4 3 1 

G=A+ CBD= -1 2 2 0 1 
-2 6 4 3 2 
-1 4 3 2 2 

It is somewhat tedious to compute the inverse of this 5 x 5 matrix directly. 
However, the calculations in Theorem 1.7 are fairly straightforward. Clearly, 
A-I = Is and 

'. 

so that 

and 

B- 1 = 2 -1 
-1 

I I 2-1 
(B- + DA - C) = 1 + 

-1 

1 ' 

-2 0 0-1 -
34-25' 

2.5 0.5 
-1 0 

• 



• .. , 
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Thus, we find that 

-1 1.5 -0.5 -2.5 2 
-3 3 -1 -4 3 

- 3 -2.5 1.5 3.5 -3 -

2 -2 0 3 -2 
-1 0.5 -0.5 -1.5 2 

8. PARTITIONED MATRICES 

Occasionally we will find it useful to partition a given matrix into submatrices. 
For instance, suppose A is mx n and the positive integers ml, m2, nl, n2 are such 
that m = ml + m2 and n = nl + n2. Then one way of writing A as a partitioned 
matrix is 

A= 

where All is ml x nl, AI2 is ml x n2, A21 is m2 x nl, and A22 is m2 x n2. That 
is, All is the matrix consisting of the first ml rows and nl columns of A, AI2 

is the matrix consisting of the first ml rows and last n2 columns of A, and 
so on. Matrix operations can be expressed in teHllS of the submatrices of the 
partitioned matrix. For example, suppose B is an n x P matrix partitioned as 

where BII is nl x PI> BI2 is nl x P2, B21 is n2 x PI> B22 is n2 x P2, and PI + 
P2 = p. Then the premultiplication of B by A can be expressed in partitioned 
fOHll as 

AB= 
AIiBII + AI2B21 

A21BlI + A22B21 
AlIBI2 +A12B22 
A21BI2 + A22B22 

Matrices can be partitioned into submatrices in other ways besides the 2 x 2 
partitioning given above. For instance, we could partition only the columns of 
A, yielding the expression 
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where AI is m x nl and A2 is m x n2. A more general situation is one in which 

the rows of A are partitioned into r groups and the columns of A are partitioned 

into c groups so that A can be written as 

A II AI2 • • • Ale 

A21 A22 • • • A2c 
A= • • • , 

• • • 
• • • 

A,I A'2 • • • A,c 

where the submatrix Ai) is mi x nj and the integers ml, . .. ,m, and n I, ... ,nc 

are such that 

, c :...., 
mi = m and nj = n 

i=1 j=1 

The matrix A above is said to be in block diagonal fonn if r = c, Ajj is a square 

matrix for each i, and Aij is a null matrix for all i and j for which i -:I. j. In this 

case we will write A = diag(A I j, ... ,A,,); that is, 

All (0) • • • (0) 
(0) A22 • •• (0) 

diag(AIj, ... ,A,r) = • • • 
• • • 
• • • 

(0) (0) • • • A" 

Example 1.3. Suppose we wish to compute the transpose product AA'. 

where the 5 x 5 matrix A is given by 

1 0 0 1 1 

0 1 0 1 1 

A= 0 0 1 1 1 
-1 -1 -1 2 0 
-1 -1 -1 0 2 

The computation can be simplified by observing that A may be written 

A= 

• 

• • 

I 



• 

THE RANK OF A MATRIX 

As a result, we have 

M'= 

3 

h + 2131; 131; 
2 

• 

- - 2 - 121; 3121; + 4h -
1 
1 

9. THE RANK OF A MATRIX 

_ 13 + 131;121; 
- -121; + 2121; 

2 2 1 1 

3 2 I 1 
2 3 1 1 
1 1 7 3 
I 1 3 7 

13 

Our initial definition of the rank of an m x n matrix A is given in tel illS of 

submatrices. In general, any matrix fOllned by deleting rows or columns of A 

is called a submatrix of A. The determinant of an TXT submatrix of A is called 

a minor of order T. For instance, for an m x m matrix A, we have previously 

. defined what we called the minor of aij; this is, an example of a minor of order 

m - 1. Now the rank of a nonnull m x n matrix A is T, written rank(A) = T, if 

at least one of its minors of order T is nonzero while all minors of order T + I 

(if there are any) are zero. If A is a null matrix, then rank(A) = O. 

The rank of a matrix A is unchanged by any of the following operations, 

called elementary transformations. 

(a) The interchange of two rows (or columns) of A. 

(b) The multiplication of a row (or column) of A by a nonzero scalar. 

(c) The addition of a scalar multiple of a row (or column) of A to anothc!r 

row (or column) of A. 

Any elementary transfoIllIation of A can be expressed as the multiplication 

of A by a matrix referred to as an elementary transfoIlllation matrix. An elemen

tary transformation of the rows of A will be given by the premultiplication of 

A by an elementary transfolluation matrix, while an elementary transfolluation 

of the columns corresponds to a postmultiplication. Elementary transformation 

matrices are nonsingular and any nonsingular matrix can be expressed as the 

product of elementary transfolluation matrices. Consequently, we have the fol

lowing very useful result. 

Theorem 1.S. Let A be an mx n matrix, Ban mx m matrix, and C an II x II 

matrix. Then if B and C are nons in gular matrices, it follows that 

rank(BAC) = rank(BA) = rank(AC) = rank(A) 
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By using elementary transfollnation matrices, any matrix A can be trans
formed to another matrix of simpler form having the same rank as A. 

Theorem 1.9. If A is an m X n matrix of rank r > 0, then there exist nonsin
gular mx m and nx n matrices B and C, such that H = BAC and A = B-1HC- I , 

where H is given by 

(a) Ir if r = m = n , 

(c) 
Ir 

(0) 
if r = n < m, 

(b) [lr (0)] if r = m < n, 

(d) 
Ir (0) 

(0) (0) 
if r < m, r < n 

The following is an immediate consequence of Theorem 1.9. 

Corollary 1.9.1. Let A be an mX n matrix with rank(A) = r > O. Then there 
exist an m X r matrix F and an r x n matrix G such that rank(F) = rank(G) = r 
and A = FG. 

10. ORTHOGONAL MATRICES 

An m X 1 vector P is said to be a nOllnalized vector or a unit vector if pip = I. 
The mx 1 vectors, PI"" ,Pn' where n :s; m, are said to be orthogonal if P;Pj = 0 
for all i oJ j. If in addition, each Pi is a normalized vector then the vectors are 
said to be orthonollnal. An mx m matrix P whose columns fOlln an orthonollnal 
set of vectors is called an orthogonal matrix. It immediately follows that 

P'p = I 

Taking the detelillinant of both sides, we see that 

IP'PI = IP'IIPI = 1P12 = III = 1 

Thus, IPI = +1 or -1, so that P is nonsingular, p- I = P', and PP' = I in 
addition to P' P = I; that is, the rows of P also fOlln an orthonoilllal set of 
11/ x I vectors. Some basic properties of orthogonal matrices are summarized in 
the following theorem. . 

Theorem 1.10. Let P and Q be m x m orthogonal matrices and A be any 
11/ x m matrix. Then 

(a) IPI=±I, 
(b) IP'API = IAI, • 

(c) PQ is an orthogonal matrix. 
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An m x m matrix P is called a pelillutation matrix if each row and each 
column of P has a single element I, while all the remaining elements are 
zeros. As a result the columns of P will be e J. •.. , em, the columns of I"" 
in some order. Note then that the (h, h)th element of p'p will be e;e; = 1 
for some i, and the (h,l)th element of p'p will be e;ej = 0 for some i oJ j 
if h oJ I; that is, a pelillutation matrix is a special orthogonal matrix. Since 
there are m! ways of pelilluting the columns of 1m , there are m! different per
mutation matrices of order m. If A is also m x m, then PA creates an m x m 
matrix by pelllluting the rows of A, and AP produces a matrix by pelilluting the 
columns of A. 

11. QUADRATIC 

Let x be an m x I vector, y an n x I vector, and A an m x n matrix. Then the 
function of x and y given by 

m n:.:..., 

x' Ay = xiYja;j 

;~I j~1 

is sometimes called a bilinear fOlill in x and y. We will be most interested in 
the special case in which m = n so that A is m x m and x = y. In this case, the 
function above reduces to the function of x, 

m m 

f(x) = x' Ax = X;Xjaij, 

;=1 j=1 

which is called a quadratic fOlill in x; A is referred to as the matrix of the 
quadratic fOllll. We will always assume that A is a symmetric matrix since, if 
it is not, A may be replaced by B = ~(A + A'), which is symmetric, without 
altering f(x); that is, 

I I I I I I II 1 I I I 

X Bx = 2' x (A + A )x = 2' (x Ax +x A x) = 2' (x Ax +x Ax) = x Ax 

since x' A'x = (x' A'X)' = x' Ax. 
Every symmetric matrix A and its associated quadratic fOlill is classified into 

one of the following five categories. 

(a) If x' Ax > 0 for all x oJ 0, then A is positive definite. 
, 

(b) If x' Ax ~ 0 for all x oJ 0 and x' Ax = 0 for some x oJ 0, then A is positive 
semidefinite. 
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(c) If x' Ax < 0 for all x oJ 0, then A is negative definite. 

(d) If x' Ax ::; 0 for all x oJ ° and x' Ax = 0 for some x oJ 0, then A is negative 

semidefinite. 

(e) If x'Ax > 0 for some x and x'Ax < 0 for some x, then A is indefinite. 

Note that the null matrix is actually both positive semidefinite and negative 

semidefinite. 
Positive definite and negative definite matrices are nonsingular, whereas pos

itive semidefinite and negative semidefinite matrices are singular. Sometimes 

the term nonnegative definite will be used to refer to a symmetric matrix that 

is either positive definite or positive semidefinite. An m x m rna . B is called 

a square root of the nonnegative definite m x m matrix A if A = B . Sometimes 

we will denote such a matrix B as A 1/2. If B is also symmetric, so that A = B2, 

then B is called the symmetric square root of A. 

Quadratic fonns playa prominent role in inferential statistics. In Chapter 9, 

we will develop some of the most important results involving quadratic forms 

that are of particular interest in statistics. 

12. COMPLEX MATRICES 

Throughout this entire text we will be dealing with the analysis of vectors and 

matrices composed of real numbers or variables. However, there are occasions 

in which an analysis of a real matrix, such as the decomposition of a matrix in 

the form of a product of other matrices, leads to matrices that contain complex 

numbers. For this reason, we will briefly summarize in this section some of the 

basic notation and teullinology regarding complex numbers. 

Any complex number c can be written in the form 

c = a + ib, 

where a and b are real numbers and i represents the imaginary number ..",;:t. 
The real number a is called the real part of c, while b is referred to as the 

imaginary part of c. Thus, the number c is a real number only if b is O. If we 

have two complex numbers, Cl = al + ib1 and C2 = a2 + ib2, then their sum is 

given by 
, . 

while their product is given by 

• 
I 

Corresponding to each complex number c = a + ib is another complex number , 
• 
• • 
· , 
• 

• 
I 

• 
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denoted by c and called the complex conjugate of c. The complex conjugate 

of c is given by c = a - ib and satisfies cc = a2 + b2 , so that the product of a 

complex number and its conjugate results in a real number. 

A complex number can be represented geometrically by a point in the com

plex plane, where one of the axes is the real axis and the other axis is the 

complex or imaginary aXis. Thus, the complex number c = a + ib, would be 

represented by the point (a, b) in this complex plane. Alternatively, we can 
. . 

use the polar coordinates (r,O), where r is the length of the line from the ori-

gin to the point (a, b) and 0 is the angle between this line and the positi ve 

half of the real axis. The relationship between a and band rand 0 is then 

given by 

a = rcOS 0, b = r sin 0 

Writing c in terllls of the polar coordinates, we have 

c = r cos 0 + i r sin 0, 

or, after using Euler's fOllllula, simply c = reiO • The absolute value, also some

times called the modulus, of the complex number c is defined to be r. This is. 

of course, always a nonnegative real number, and since a 2 + b2 = r2 we have 

We also find that 

Using the identity above repeatedly, we also see that for any complex number 

c and any positive integer n, Ie" I = Icln. 
A uset)d identity relating a complex number c and its conjugate to the abso

lute value of c is 

Applying this to the sum of two complex numbers CI + C2 and noting that CIC2 

+ CIC2 S; 21c111c21. we get 



• 
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lei + c21 2 = (CI + C2)(CI + C2) = (CI + C2)(CI + (2) 

= CIGI + CIG2 + C2GI + C2C2 

~ ICI1
2 + 21cII IC21 + IC21

2 

= (icil + 1e2i)2 

From this we get the important inequality lei + c21 ~ led + 1e21. known as the 
triangle inequality. 

A complex matrix is simply a matrix whose elements are complex numbers. 
As a result, a complex matrix can be written as the sum of a real matrix and 
an imaginary matrix; that is, if C is an m X n complex matrix then it can be 
expressed as 

C= A + iB, 

where both A and B are m X n real matrices. The complex conjugate of C, -
denoted C, is simply the matrix containing the complex conjugates of the ele-
ments of C; that is, 

-
C= A - iB 

-, 
The conjugate transpose of C is C* = C . If the complex matrix C is square 
and C* = C, so that Cij = Gji' then C is said to be Hellnitian. Note that if C is 
HelIlIitian and C is a real matrix, then C is symmetric. The m x m matrix C 
is said to be unitary if C* C = 1m. This is the generalization of the concept of 
orthogonal matrices to complex matrices since if C is real then C* = C'. 

13. RANDOM VECTORS AND SOME RELATED STATISTICAL 
CONCEPTS 

In this section, we review some of the basic definitions and results in distri
bution theory which will be needed later in this text. A more comprehensive 
treatment of this subject can be found in books on statistical theory such as 
Casella and Berger (1990) or Lindgren (1993). To be consistem with our nota
tion, which uses a capital letter to denote a matrix, a bold lowercase letter 
for a vector, and a lowercase letter for a scalar, ·we will use a lowercase let
ter instead of the more conventional capital letter to denote a scalar random 
variable. 

A random variable x is said to be discrete if its collection of possible values, 
R" is a countable set. In this case, x has a probability function pAt) satisfying 
pAt) = P(x = t), for t E Rxo and pAt) = 0, for t fi Rx. A continuous random 

•• 

variable x, on the other hand, has for its range, Rx , an uncountably infinite set. 

• 
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Associated with each continuous random variable x is a density function fAt) 
satisfying fx(t) > 0, for t E Rx and fx(t) = 0, for t fi Rx- Probabilities for x are 
obtained by integration; if '13 is a subset of the real line, then 

P(x E '13) = fAt) dt 
'lJ 

For both discrete and continuous x, we have P(x E Rx) = I. 
The expected value of a real-valued function of x, g(x), gives the average 

observed value of g(x). This expectation, denoted E[g(x)], is given by 

E[g(x)] = L g(t)pAt), 
IE Rx 

if x is discrete and 

E[g(x)] = g(t)fAt) dt, 

, 
if x is continuous. Properties of the expectation operator follow directly from 
properties of sums and integrals. For instance, if x and yare random variables 
and c¥ and (3 are constants, then the expectation operator satisfies the properties 

E(c¥) = C¥, 

and 

• where g, and g2 are any real-valued functions. The set of expected values of a 
random variable x given by E(xk), k = 1,2, ... , are known as the moments of 
x. These are important for both descriptive and theoretical purposes. The first 
few moments can be used to describe certain features of the distribution of x. 
For instance, the first moment or mean of x, J.l.x = E(x), locates a central value 
of the distribution. The variance of x, denoted 11; or var(x), is defined as 

so that it is a function of the first and second moments of x. The variance gives 
a measure of the dispersion of the observed values of x about the central value 
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11-.,. Using properties of expectation, it is easily verified that 

var(a + (3x) = (32var(x) 

All of the moments of a random variable x are imbedded in a function called 

the moment generating function of x. This function is defined as a particular 

expectation; specifically, the moment generating function of x, mx(t), is given 

by 

provided this expectation exists for values of t in a neighborhood of 0. Other

wise, the moment generating function does not exist. If the moment generating 

function of x does exist, then we can obtain any moment from it since 

More importantly, the moment generating function characterizes the distribution 

of x in that ~ lW~ J!ifferent distributions h?ve the same moment gen~ratinL 

function. ' 
, 

We now focus on two particular families of distributions that we will 

encounter later in this text. A random variable x is said to have a normal distri

hution with mean II- and variance (12, indicated by x - N{JI., ( 2 ), if the density 

of x is given by 

-00 < t < 00 

• 

The corresponding moment generating function is 

A special member of this family of nOlIlIal distributions is the standard 

distribution N(O, 1). The importance of this distribution follows from the fact 

that if x - N{JI., ( 2
), then the standardizing transformation z = (x- p.)/u yields a 

random variable z which has the standard normal distribution. By differentiating 

the moment generating function of z - N(O, 1), it is easy to verify that the first 

six moments of z, which we will need in a later chapter, are 0, 1,0,3,0, and 

15, respectively. 
If r is a positive integer, then a random variable u has a chi-squared distri-

[,; 
r~ 
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bution with r degrees of freedom, written v - X;, if its density function is 

t(,/2) -I e- 1/ 2 

/u(t) = /2 ' 
2' r(r/2) 

t > 0, 

where r(r/2) is the gamma function evaluated at r/2. The moment generating 

function of v is given 'by mu(t) = (1 - 2tr,/2, for t < ~. The importance of the 

chi-squared distribution arises from its connection to the normal distribution. If 

Z - N(O, 1), then Z2 - xI. Further, if ZI,"" Z, are independent random variables 

with Zi - N(O, 1) for i = I, ... , r, then 

, 
( \.5) 

j = 1 

The chi-squared distribution mentioned above is sometimes referred to as a cen

tral chi-squared distribution since it is actually a special case of a more general 

family of distributions known as the noncentral chi-squared distributions. These 

noncentral chi-squared distributions are also related to the normal distribution. 

If XI> ••• ,X, are independent random variables with Xj - N(/Lj, I), then 

, 
~? ? 
£..- Xi - X;(A), ( 1.6) 

j = 1 

where X;(A) denotes the noncentral chi-squared distribution with r degrees of 

freedom and non centrality parameter 

A = 1 
2 

, 
~ 2. 
£..- /Lj' 
i = 1 

that is, the noncentral chi-squared density, which we will not give here, depends 

not only on the parameter r but also on the parameter A. Since (1.6) reduces 

to (1.5) when /Lj = 0 for all i, we see that the distribution X;(A) corresponds to 

X; when}. = O. 
A distribution related to the chi-squared distribution is the F distribution with 

r1 and r2 degrees of freedom, denoted by F",'2' If Y - F'I,'2' then the density 

function of y is . 

-('1 +,~)/2 

, 1>0 
-
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The importance of this distribution arises from the fact that if VI and IJ2 are 
independent random variables with v, - X;I and Ih - X;2' then the ratio 

has the F distribution with r, and '2 degrees of freedom. 
The concept of a random variable can be extended to that of a random vec

tor. A sequence of related random variables X" ••• ,Xm is modeled by a joint 
or multivariate probability function, p,,(t) if all of the random variables are dis
crete. and a inultivariate density function fAt), if all of the random variables 
are continuous, where x = (x" ... , xm)' and t = (t" •.. , tm)'. For instance, if 
they are continuous and '1J is a region in Rm , then the probability that x falls in 
'1J is 

while the expected value of the real-valued function g(x) of x is given by 

E[g(x)] = • • • 

_00 _00 

The random variables x" ... ,Xm are said to be independent, a concept we have 
already referred to, if and only if the joint probability function or density func
tion factors into the product of the marginal probability or density functions; 
that is, in the continuous case, x" ... ,Xm are independent if and only if 

for all t. 
The mean vector of x, denoted by .... , is the vector of expected values of the 

.I',S; that is. 

• 

A measure of the linear relationship between X; and Xj is given by the covariance 
of Xi and Xj' which is denoted cov(x;, Xj) or (J ij and is defined by . 

• 

• 
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When i = j, this covariance reduces to the variance of Xi; that is, (1;; = (11 = 
var(xi)' When j i j and Xi and Xj are independent, then COV(Xi,Xj) = 0 since 
E(xtxj) = JLiILj' If a], a2, {3], and {32 are scalars, then 

, 

The matrix 0, which has Uij as its (i,j)th element, is called the variance-covari-
ance matrix, or simply the covariance matrix, of x. This matrix will be also 
denoted sometimes by var(x) or cov(x,x). Clearly, Uij = uji so that 0 is a sym
metric matrix. Using (1.7) we obtain the matrix forIllulation for 0, 

o = var(x) = E[(x - .... )(x - .... )'] = E(xx') - ........ ' 

If a is an m x 1 vector of constants and we define the random variable y = a'x, 
then 

m m m 

E(y) = E(a'x) = E L ajXj = L a;E(x;) = L aiIL; = a' .... 
i; 1 ;;1 ;;1 

If, in addition, IJ is another m x 1 vector of constants and w = lJ'x, then 

m m 

cov(y, w) = cov(a'x, IJ'x) = COy L ajX;, L (3jXj 
;=1 j=1 

m m m m 

= L L ai{3jCov(x;,Xj) = L L aj{3ju;j = a'OIJ 
;;1 j;1 ;=1 j=1 

In particular, var(y) = cov(y,y) = a'Oa. Since this holds for any choice of a 
and since the variance is always nonnegative, -

More generally, if A is 11 (I X 11/ matrix y - /Ix, 

E(y) = E(Ax) = AE(x) = A .... , ( 1.8) 

var(y) = E[ {y - E(y)}{ y - E(y) n = E[(Ax - A .... )(Ax - A .... )'] 

= E[A(x - .... )(x - .... )' A'] = A {E[(x - fL)(X - 11)' nA' = AOA' (1,9) 
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Thus, the mean vector and covariance matrix of the transforIlled vector, Ax, is 

AJL and AOA'. If v and w are random vectors, then the matrix of covariances 

between components of v and components of w is given by 

, , , 
cov(v, w) = E(vw ) - E(v)E(w) 

In particular, if v= Ax and w = Bx, then 

cov(v, w) = Acov(x,x)B' = Avar(x)B' = AOB' 

A measure of the linear relationship between Xj and Xj that is unaffected 

by the measurement scales of Xj and Xj is called the correlation coefficient P;j> 

defined by 

=-.., 

When i = j, pj) = l. The correlation matrix P, which has pjj as its (i,j)th element, 

can be expressed in terIlls of the corresponding covariance matrix 0 and the 

d' al . D- 1/2 d' (-1/2 -1/2) 'fi II 
lagon matrIx {l = lag (111 , .•• ; (1 mm ; specl ca y, 

For any m x I vector a, we have 

'P _ 'D-I/2nD-I/2 _ (,l'n(,l 
a a-a {l .. {l a-pup, 

(1.10) 

where IJ = Dnl/2a, and so P must be 
~....o.:.;.= 

ve definite because {l is. In 

particular, if ej is the ith column the m x m 

and 

(ej + ej)'P(ej + ej) = (P)jj + (P)jj + (P)jj + (P)jj 

= 1(1 + pjj);:: 0, 

(e, - ej)' P(e, - ej) = (P)" - (P)ij - (P)ji + (P)jj 

= 2(1 - Pij) ;:: 0, 

from which we obtain the inequality, -1 :s; Pi} :s; 1. 
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lYpically, means, variances, and covariances are unknown and so they must 

be estimated from a sample. Suppose X" ... ,Xn represents a random sample 

of a random variable X that has some distribution with mean p. and variance 

(J2. These quantities can be estimated by the sample mean and sample variance 

given by 

1 
n I 

n 

S2 = 
0 - (Xi - X)-X= - Xi, 

n n- I 
i= 1 i = 1 

In the multivariate setting we have analogous estimators for JI. and {l; if 

Xl, ..• ,Xn is a random sample of an m x 1 random vector X having mean vector 

JI. and covariance matrix {l, then the sample mean vector and sample covariance 

matrix are given by 

I 
n I - LXi, s= X= 

n n-l 
i= 1 

n 

L (Xi - X)(Xi - of)' 

i = 1 

The sample covariance matrix can be then used in (1.10) to obtain an esti

mator of the correlation matrix, P; that is, if we define the diagonal matrix 

Ds 1/2 = diag(S~II/\ ... , S;;,:£2), the correlation matrix can be estimated by the 

sample correlation matrix defined as 

, 

R = Ds 1/2 SDs 1/2 

The one particular joint distribution that we will consider is the multivariate 

normal distribution. This distribution can be defined in teBllS of independent 

standard normal random variables. Let ZI, ... ,Zm be independently distributed 

as N(O, I) and put Z = (Zit ... ,Zm)'. The density function of Z is then given 

by 

m 

I(z) = 
i= I 

1 1 
exp - zl 

2 

I 
= ---::---;;;- exp - Z' Z 

(211")m/2 2· 
1 

Since E(z) = 0 and var(z) = 1m , this particular m-dimensional multivariate nor

mal distribution is denoted as Nm(O,lm). If JI. is an m x I vector of constants 

and T is an m x m nonsingular matrix, then X = JI. + Tz is said to have the 

m-dimensional multivariate nOIiJlal distribution with mean vector JI. and covari

ance matrix 0 = TT'. This is indicated by X - NII/(JI., {l). For instance, if 

m = 2, the vector X = (XI, X2)' has a bivariate normal distribution and its den

sity, induced by the transformation X = JI. + Tz, can be shown to be 
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1 
(111 

- 2p 
XI - J.l.1 

~ 
, (1.11) 

for all x E R2, where p = p 12 is the correlation coefficient. When p = 0, 
this density factors into the product of the marginal densities, so XI and X2 

are independent if and only if p = O. The rather cumbersome looking density 
function given in e 1.11) can be more conveniently expressed by utilizing matrix 
notation. It is straightforward to verify that this density is identical to 

I 
lex) = 211'1011/2 exp 

1'1 - (x - J1) n- (x - J1) 
2 

(1.12) 

The density function of an m-variate nOilnal random vector is very similar to 
the function given in e 1.12). If x - Nm (J1, 0), then its density is 

I 
lex) = e211')",/210 11/2 exp 

I , I 
- (x-J1)O-eX-J1) 

2 
, (1.13) 

for all x E Rm. 
If 0 is positive semidefinite, then x - Nm eJ1, 0) is said to have a singular 

nm IlIal distribution. In this case 0 -I does not exist, and so the multivariate 
nOlIllal density cannot be written in the form given in (1.13). However, the 
random vector x can still be expressed in tellllS of independent standard normal 
random variables. Suppose that rank(O) = rand U is an m x r matrix satisfying 
U U' = O. Then x - Nm eJ1, 0) if x is distributed the same as fl: + Uz, where 
now z - NreO, Ir). 

An important property of the multivariate nOllllal distribution is that a lin
ear transfOlIllation of a multivariate normal vector yields a multivariate normal 
vector; that is, if x - Nm eJ1, 0) and A is a px m matrix of constants, then y = Ax 
has a p-variate normal distribution. In particular, from (1.8) and (1.9) we know 
that y - N"eAJ1, AOA'). . 

One of the most widely used procedures in statistics is regression analy
sis. We will briefly describe this analysis here and subsequently use regression 
analysis to illustrate some of the matrix methods developed in this text. Some 
good references on regression are Neter, Wasserman, and Kutner (1985) and 
Sen and Srivastava (1990). In the typical regression problem, one wishes to 
study the relationship between some response variable, say y, and k explana
tory variables X" ... 'Xk. For instance, y might be the yield of some product of 

• • 

• 
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a manufacturing process, while the explanatory variables are conditions affect
ing the production process, such as temperature, humidity, pressure, and so on. 
A model relating the XjS to Y is given by 

(1.14) 

where 13o, .•• ,13k are unknown parameters and E is a random elior, that is, a 
random variable, with E(e) = O. In what is known as ordinary least squares 
regression, we also have the errors being independent random variables with 
common variance (12; that is, if ei and Ej are random errors associated with the 
responses Yi and Yj. then var(ei) = var(Ej) = (12 and COV(Ei, Ej) = O. The model 
given in (1.14) is an example of a linear model since it is a linear function of the 
parameters. It need not be linear in the XjS so that, for instance, we might have 
X2 = xI. Since the parameters are unknown, they must be

r 
estimated and this 

will be possible if we have some observed values of Y and the corresponding 
Xjs. Thus, for the. ith observation suppose that the explanatory variables are 
set to the values Xii' .•. ,Xik yielding the response Yi' and this is done for i =: 1, ... ,N, where N > k + 1. If model (1.14) holds, then we should have, approx
imately, 

for each i. This can be written as the matrix equation 

if we define 

YI 13o I X II • • • Xlk 
Y2 131 I X21 • • • Xu 

Y= • , IJ= • , X== • • • • • • • • • • • • • 

YN 13k I XNI • • • XNk 

One method of estimating the 13js, which we will discyss frpm timF to time 
in this text, is called the method of least squares. If IJ == (131,"" 13d is an , . estimate of the parameter vector IJ, then y == XIJ is the vector of fitted values, 
while y -Y gives the vector of errors or deviations of the actual responses from 
the corresponding fitted values, and 

A A , A 

f(lJ) = (Y - XIJ) (y - XIJ) 

gives the sum of squares of these errors. The method of least squares selects 
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, 
A 

as J3 any vector that minimizes the function f(J3). We will see i?ter that any 

such vector satisfies the system of linear equations, sometimes referred to as 

the nO! mal equations, 

, 
X'XJ3 = X'y 

If X has fulI column rank, that is, rank(X) = k + I, then (X'X)-l exists and so 

the least squares estimator of J3 is unique and is given by 

PROBLEMS 

1, Prove Theorem 1.3(e); that is, if A is an mX n matrix, show that tr(A' A) = 0 

if and only if A = (0). 

2. Show that if x and yare m x 1 vectors, tr(xy') = x'y. Show that if A and B 

are m x m matrices and B is nonsingular, tr(BAB- 1) co tr(A). 

3. Prove Theorem 1.4. 

4. Show that any square matrix can be written as the sum of a symmetric 

matrix and a skew-symmetric matrix. 

5. Define the m x m matrices, A, B, and C as 

Prove that IA I = I B I + I C\ . 

6. Verify the results of Theorem 1.6. 

7. Consider the 4 x 4 matrix 

, , 
. 
, 

.' , 
, 

" 

1:; 

f , 
• , 
, 
• , 

· . 
• , 

· , . , , 

, 
, 

· 

, 

, , 
• 

, , 
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A= 

1 
o 
1 

2 I 1 
120 

2 2 
o -I I 

I 
2 
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Find the determinant of A by using the cofactor expansion fO! mula on the 

first column of A. 

8. Using the matrix A from the previous problem, verify equation (1.3) when 

i = I and k = 2. 

9. Let}.. be a variable and consider the detenninant of A - AI"" where A is an 

m X m matrix, as a function of A. What type of function of A is this"? 

. 10. Find the adjoint matrix of the matrix A given in Problem 7. Use this to 

obtain the inverse of A. 

11. Using elementary transformations, detellnine matrices Band e so that 

BA e = 4 for the matrix A given in Problem 7. Use B and e to compute the 

inverse of A; that is, take the inverse of both sides of the equation BAe = ~ 

and then solve for A-I. 

12. Show that the detelJIunant of a triangular matrix is the product of its diago

nal elements. In addition, show that the inverse of a lower triangular matrix 

• 

is a lower triangular matrix. 

13. Let a and b be m X 1 vectors and D be an m X m diagonal matrix. Use 

Corollary 1.7.2 to find an expression for the inverse of D + aab', where a: 

isa scalar. 

14. Consider the m x m partitioned matrix 

A= 
(0) 
An 

, 

where the ml x ml matrix All and the m2 x m2 matrix A22 are nonsingular. 

Obtain an expression for A-I in tenns of All> An, and A21. 

15. Let 

A= , 

• 



30 A REVIEW OF ELEMENTARY MATRIX ALGEBRA 

where All is ml x mJ, An is m2 x m2, and AI2 is ml X m2' Show that if A 
is positive definite then A II and An are also positive definite. 

16. Find the rank of the 4 x 4 matrix 3 

A= 

2 0 1 -1 
I -1 1 -1 
1 -1 2 0 
2 0 0 -2 

'. 

17. Use elementary transfolIllations to transforIll the matrix A given in problem 
16 to a matrix H having the form given in Theorem 1.9. Consequently, 
detelllline matrices Band C so BAC = H. 

18. Prove parts (b) and (c) of Theorem 1.10. 

19. List all pellllutation matrices of order 3. 

20. Consider the 3 x 3 matrix 

P= 
1 

V6 

V2 
-Y'3 
P32 

V2 
o 

P33 • 

Find values for j,J, pj2, and p1 so that P is an orthogonal matrix. Is your 
solution unique? 

21. Suppose the m x m orthogonal matrix P is partitioned as P = [PI P2 ], 
where PI is //I x 1111, P2 is m x m2, and ml + m2 = m. Show that ~PI = Im" P;P2 = 1m2 , and PIP~ +P2P; = 1m· p'p= P,' [P, Pz,J: 111<, 

~' l..,z 22. Let A be an III x 111 matrix and suppose there exists a real n x m matrix T 
such that T'T = A. Show that A must be nonnegative definite. 

7<'~ If -= (HJ' (T-lf) 30 rIJ 
23. Prove that a nonnegative definite matrix must have nonnegative diagonal 

elements; that is, show that if a symmetric matrix has any negative diagonal 
elements then it is not nonnegative definite. Show that the converse is not 
true: that is, find a symmetric matrix that has nonnegative diagonal elements 
but is not nonnegati ve definite. 

24. Let A be an m x m nonnegative definite matrix, while B is an n x m matrix. 
Show that BAB' is a nonnegative definite matrix. 

• 
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25. Use the standard nOilna) moment-generating function, mz(t) = e12
/

2 to show 
that the first six moments of the standard norIllal distribution are 0, I, 0, 
3, 0, and 15. 

26. Use properties of expectation to show that for random variables XI and X2, 

and scalars a 10 a2, {31, and {32 

27. Suppose x - N3( .... , {l), where 

1 
.... = 2 

3 
, 

2 I -1 
{l= I 2 1 , 

-I I 3 

and let the 3 x 3 matrix A and 2 x 3 matrix B be given by 

2 2 1 
A = 1 0 -1 

o 1 -1 
, 

(a) Find the correlation matrix of x. 

B= 

(b) Deteunine the distribution of u = l'x. 
(c) Determine the distribution of v = Ax. 

(d) Determine the distribution of 

W= 
Ax 
Bx 

1 
-1 

1 1 
1 0 

(e) Which, if any, of the distributions obtained in (b), (c), and (d) are sin
gular distributions? 

28. Suppose x is an m x 1 random vector with mean vector .... and covariance 
matrix {l. If A is an n x m matrix of constants and c is an m x 1 vector of 
constants, give expressions for 

(a) E[A(x + c)], 

(b) var[A(x + c)] . 

• 



CHAPTER TWO 

Vector Spaces 

1. INTRODUCTION 

In statistics, observations typically take the fOil II of vectors of values of different 

variables; for example, for each subject in a sample, one might record height, 

weight, age, and so on. In estimation and hypotheses testing situations, we are 

usually interested in inferences regarding a vector of parameters. As a result, 

the topic of this chapter, vector spaces, has important applications in statistics. 

In addition, the concept of linearly independent and dependent vectors, which 

we discuss in Section 3, is very useful in the understanding and determination 

of the rank of a matrix. 

2. DEFINITIONS 

A vector space is a collection of vectors that satisfies some special properties; 

in particular, the collection is closed under the addition of vectors and under 

the mUltiplication of a vector by a scalar. 

Definition 2.1. Let S be a collection of m x 1 vectors satisfying the fol

lowing. 

(a) If XI E Sand X2 E S, then XI +X2 E S. 

(b) If XES and a is any real scalar, then a r E S. 

Then S is called a vector space in m-dimensional space. If S is a subset of T, 

which is another vector space in m-dimensional space, then S is called a vector 

subspace of T. This will be indicated by writing S c;: T. 

The choice of a = 0 in Definition 2.l(b) implies that the null vector 0 E S; 

that is, every vector space must contain the null vector. In fact, the set S = {O}, 

consisting of the null vector only, is itself a vector space. Note also that the two 

conditions (a) and (b) are equivalent to the one condition that says if XI E S, 
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X2 E S, and al and a2 are any real scalars, then (alxl + a2x2) E S. This can 

be easily generalized to more than two, say n, vectors; that is, if al, ... , all are 

real scalars and XI, ... ,XII vectors such that Xj E S, for all i, then for S to be a 

vector space we must have 

• 

II 

.L.. ajxj E S 
j = I 

(2. I ) 

The left-hand side of (2.1) is called a linear combination of the vectors 

XI, •.• ,Xn• Since a vector space is closed under the formation of linear combi

nations, vector spaces are sometimes also referred to as linear spaces. 

Example 2.1. Consider the sets of vectors given by 

SI = {(a,O,a)': -00 < a < oo}, 

S2 = {(a,b,a+ b)': -00 < a < 00,-00 < b < oo}, 

S3 = {(a,a,a)': a ~ O}. 

• 

Let XI = (a" 0, ail' and X2 = (a2, 0, a2)', where al and a2 are arbitrary scalars . 

Then XI E S" X2 E S" and 

so that Sl is a vector space. By a similar argument, we find that S2 is also a 

vector space. Further, SI consists of all the vectors of S2 for which b = 0, so SI 

is a subset of S2, and thus S I is a vector subspace of S2' On the other hand, S3 

is not a vector space since, for example, if we take a = - 1 and X = (1, I, 1)', 

then X E S3 but 

ax = -(1, 1, 1)' fi S3 

Every vector space with the exception of the vector space {O} has infinitely 

many vectors. However, by utilizing the process of forming linear combinations, 

a vector space can be associated with a finite set of vectors as long as each 

vector in the vector space can be expressed as some linear combination of the 

vectors in this set. 

Definition 2.2. Let {x" ... ,XII} be a set of m x 1 vectors in the vector 

space S. If each vector in S can be expressed as a linear combination of the 

vectors x" ... ,XII' then the set {x" ... ,XII} is said to span or generate the vector 

space S, and {x" ... ,XII} is called a spanning set of S. 
. 

Suppose we select from the vector space S a set of vectors {XI,'" ,X,,}. 

In general, we cannot be assured that every XES is a linear combination of 

• 
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X I, ... ,xn, and so it is possible that the set {Xl> ••• , xn} does not span S. This 
set must, however, span a vector space which is a subspace of S. 

Theorem 2.1. Let {x" ... ,xn } be a set of m x 1 vectors in the vector space S, 
and let W be the set of all possible linear combinations of these vectors; that is, 

n 

W = x: x = (X;X;, -00 < (X; < 00 for all i 
; = I 

Then W is a vector subspace of S. 

Proof Clearly, W is a subset of S since the vectors XI, ••. ,Xn are in S, and 
S is closed under the fOllllation of linear combinations. To prove that W is a 
suhspace of S. we must show that, for arbitrary vectors u and v in Wand scalars 
a and b, au + bv is in W. Since u and v are in W, by the definition of W, there 
must exist scalars CI, ... , Cn and d" ... , dn such that 

It then follows that 

au + bv = a 

n 

U = L C;X;, 

; = I 

n 

C;X; + b 
; = I 

n 

; = I 

n 

V = Ld;x; .. -
; = I 

d;x; --
n 

(ac; + bd;)x;, ... 
i = I 

so that au + bv is a linear combination of XI, ... ,Xn and thus au + bv E W. 
o 

The notions of the size or length of a vector, or the distance between two 
vectors are important concepts when dealing with vector spaces. Although we 
are most familiar with the standard Euclidean fOllllulas for length and distance, 
there are a variety of ways .of defining length and distance. These measures 
of length and distance sometimes utilize a product of vectors called an inner 
product. 

• 

Definition 2.3. Let S be a vector space. A function, (x,y), defined for all X E 

Sandy E S, is an inner product iffor any x,y, andz in S, and any scalar c, 

(a) (x,x) ~ 0 and (X, x) = 0 if and only if X = 0, 

(b) (x,y) = (y,x), 

(c) (x + y,z) = (x,z) + (y,z), 

(d) (cx,y) = c(x,y). 

• 
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A useful result regarding inner products is given by the Cauchy-Schwarz 
inequality. 

Theorem 2.2. If x and y are in the vector space Sand (x,y) is an inner 
product defined on S, then 

(x,y? ~ (x, x) (y,y) 

Proof The result is trivial if x = 0 since it is easily shown that, in this 
case, (x,y) = (x,x) = O. Suppose that x i 0, and let a = (x,x), b = 2(x,y), and 
c = (y,y). Then using Definition 2.3, we find that for any scalar t 

o ~ (tx + y, tx + y) = (x,x)p + 2(x,y)t + (y,y) = at- + bt + c 

Consequently, the polynomial at- + bt + c either has a repeated real root or no 
real roots. This means that the discriminant b2 - 4ac must be nonpositive, and 
this leads to the inequality 

which simplifies to (x,y)2 ~ (x,x) (y,y). o 

The most common inner product is the Euclidean inner product given by 
(x,y) = x'y. Applying the Cauchy-Schwarz inequality to this inner product, we 
find that 

m 2 m m 

XiYi < x2 L l - I 

i = I i = I i = I 

holds for any m x 1 vectors x and y . 
A vector n01l11 and a distance function provide us with the means of mea

suring the length of a vector and the distance between two vectors . 

• 

Definition 2.4. A function /lx/lis a vector n01l11 on the vector space S if, 
for any vectors x and y in S, we have 

(a) /lxll ~ 0, 

(b) /lx/l = 0 if and only if x = 0, 

(c) IIcx/i = /Ci/ix/l for any scalar c, 

(d) IIx + yll ~ IIxll + /lyll. 
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Definition 2.S. A function d(x,y) is a distance function defined on the vec

tor space S if for any vectors x, y, and Z in S, we have 

(a) d(x,y);;:: 0, 

(b) d(x,y) = 0 if and only if x = y, 

(c) d(x,y) = d(y,x), 

(d) d(x,z) $; d(x,y) + d(y,z). 

Property (d) given in the two definitions above is known as the triangle 

inequality because it is a generalization of the familiar relationship in two

dimensional geometry. One common way of defining a vector norm and a dis

tance function is in tellns of an inner product. The reader can verify that for any 

inner product, (x,y), the functions, Ilxll = (X,x)I/2 and d(x,y) = (x - y,x _ y)I/2 

satisfy the conditions given in Definitions 2.4 and 2.5. 

We will use Rm to denote the vector space consisting of all m x 1 vectors with 

real components; that is, Rm = {(XI, .. "XIII):-oo < Xi < oo,i = l, ... ,m}. We 

usually have associated with this vector space the Euclidean distance function 

dI(x,y) = IIx - y1l2; IIxll2 is the Euclidean nOlln given by 

1/2 

IIxl12 = {x'x} 1/2 = 

and based on the Euclidean inner product (x,y) = x'y. This distance formula 

is a generalization of the familiar formulas that we have for distance in two 

and three-dimensional geometry. The space with this distance function is called 

Euclidean m-dimensional space. Whenever this text works with the vector space 

R"', the associated distance will be this Euclidean distance unless stated other

wise. There are, however, many situations in statistics in which non-Euclidean 

distance functions are appropriate. 

Example 2.2. Suppose we wish to compute the distance between the III x 

I vectors x and p.., where x is an observation from a distribution having mean 

ve,t(1r V- and co\"arian,e matrix G. If we want to take into account the effe\:t 

,)i the covariance structure. then the Euclidean distance defined above would 

not he appropriate unless G = 1. For example. if III = 2 and G = diag(O.S, 2), 

thell a large value of (x\ - /.1.\)2 would be more surprising than a similar value 

of (X2 - 1-'2)2 because the variance of the first component of x is smaller than 

the variance of the second component; that is, it seems reasonable in defining 

distance to put more weight on (XI - 1-'1 )2 than on (X2 - 1-'2)2. A more appropriate 

distance function is given by 

• 

• 
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and is called the Mahalanobis distance between x and J.I.. This is sometimes 

also referred to as the distance between x and J.I. in the metric of {} and is 

useful in a multivariate statistical procedure known as discriminant analysis 

[see McLachlan (1992) or Huberty (1994)]. Note that if {} = I this distance 

function reduces to the Euclidean distance function. For {} = diag(0.5, 2), this 

distance function simplifies .to 

As a second illustration suppose that again m = 2, but now 

{}= 
1 

0.5 
0.5 
1 

. Because of the positive correlation, (XI - iLl) and (X2 - iL2) will tend to have 

the same sign. This is reflected in the Mahalanobis distance, 

1/2 
, 

through the last lellll, which increases or decreases the distance according to 

whether (XI - iLl )(X2 - iL2) is negative or positive. In Chapter 4, we will take a 

closer look at the construction of this distance function . 

. 

We end this section with examples of some other commonly used vector 

nOIlIlS. The nonn IIxlll' called the sum norm, is defined by 

m 

IIxlll = Ix,,! 
i= I 

Both the sum norm and the Euclidean nOrlll IIxll2 are members of the family 

of norms given. by 

lip 

Ix; IP , 

where p ~ 1. Yet another example of a vector norll1, known as the infinity nonn 

or max nOrIll, is given by 

IIxll~ = max Ix,,! 
1 $iSm 
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Although we have been confining attention to real vectors, the norms defined 
above also serve as nonns for complex vectors. However, in this case, the absolute 
values appearing in the expression for IIxlip are necessary even whenp is even. In 
particular, the Euclidean norm, valid for complex as well as real vectors, is 

1/2 

IIxII2 = 

3. LINEAR INDEPENDENCE AND DEPENDENCE 

We have seen that the formation of linear combinations of vectors is a fun
damental operation of vector spaces. This operation is what establishes a link 
between a spanning set and its vector space. In many situations, our investiga
tion of a vector space can be reduced simply to an investigation of a spanning set 
for that vector space. In this case, it will be advantageous to make the spanning 
set as small as possible. In order to do this, it is first necessary to understand 
the concepts of linear independence and linear dependence. 

Definition 2.6. The set of m x I vectors {Xl, ... , xn} is said to be a linearly 
independent set if the only solution to the equation 

n 

I, (XiXi = 0 
i = I 

is given by (XI = ... = (X" = O. If there are other solutions, the set is called a 
linearly dependent set. 

Example 2.3. Consider the three vectors XI = (1, I, 1)', X2 = (1,0, -1)', and 
XJ = (3,2, 1)'. To detelilline whether these vectors are linearly independent, we 
solve the system of equations (XIXI + (X2X2 + (X3X3 = 0 or, equivalently, 

(XI + (X2 + 3(X3 = 0, 

(XI + 2(X3 = 0, 

(X I - (X2 + (X3 = 0 
• 

These equations yield the constraints (X2 = 0.5(X1 and (X3 = -0.5(X1. Thus, for 
any scalar (x, a solution will be given by (XI = (X, (X2 = 0.5(X, (X3 = -0.5(X, and 
so the vectors are linearly dependent. On the other hand, any pair of the three 
vectors are linearly independent; that is, {Xr,X2}, {XI ,X3}, and {X2,X3} is each 
a linearly independent set of vectors. 
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The proofs of the following results are left to the reader. 

Theorem 2.3. Let {XI, ... ,xn } be a set of m x I vectors. Then the following 
statements hold. 

(a) The set is linearly dependent if the null vector 0 is in the set. 

(b) If this set of vectors is Iinearl~dependent, any nonempty subset of it is 
also linearly independent. , .. 

(c) If this set of vectors is linearly dependent, any other set containing this 
set as a subset is also linearly dependent. 

Note that in Definition 2.6, if n = I, that is, there is only one vector in the 
set, then the set is linearly independent unless that vector is O. If n = 2, the sct is 
linearly independent unless one of the vectors is the null vector, or each vector 
is a nonzero scalar mUltiple of the other vector; that is, a set of two vectors is 
linearly dependent if and only if at least one of the vectors is a scalar multiple 
of the other. In general, we have the following. 

Theorem 2.4. The set of m x I vectors {XI, ... , xn}, where n > I, is a lin
early dependent set if and only if at least one vector in the set can be expressed 
as a linear combination of the remaining vectors. 

Proof. The result is obvious if one of the vectors in the set is the null vector 
since then the set must be linearly dependent, and the m x I null vector is a 
linear combination of any set of m x I vectors. Now assume the set does not 
include the null vector. First suppose one of the vectors, say X n , can be expressed 
as a linear combination of the others; that is, we can find scalars Gil, ... , Gin _ I 

such that Xn = GiIXI + ... + Gin _ IXn _ I. But this implies that 

n 

Gi;X; = 0, (2.2) 
; = I 

if we define Gin = -1, so the vectors XI," .Xn are linearly dependent. Con
versely, suppose that the vectors XI, ... ,Xn are linearly dependent so that (2.2) 
holds for some choice of Gil, ••. ,Gin, with at least one of the Gi;S, say Gill , not 
equal to zero. Thus, we can solve (2.2) for X n , in which case we get 

so that Xn is a linear combination of X I, ... ,Xll _ I. This completes the proof. 
o 
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We end this section by proving two additional results that we will need later. 
Note that the first of these theorems, although stated in terms of the columns 
of a matrix, applies as well to the rows of a matrix. 

Theorem 2.5. Consider the m x m matrix X with columns XI,'" ,Xm• Then 
IXI f. 0 if and only if the vectors XI, . .. ,Xm are linearly independent. 

Proof. If IXI = 0, then rank(X) = r < m and soit foll()ws from Theorem 
1.9 that there are nonsingular m x m matrices U and V = [VI V2], with VI 
m x r such that 

I, 
XU=V (0) 

(0) 
(0) = [VI (0)] 

But then the last column of U gives coefficients for a linear combination of 
XI, ... ,Xm which equals the null vector. Thus, if these vectors are to be lin
early independent, we must have Ixi f. O. Conversely, if X" •.• , Xm are linearly 
dependent we can find a vector uf.O satisfying Xu = 0 and then construct a 
nonsingular matrix U with u as its last column. In this case, XU = [W 0], 
where W is an m x (m - 1) matrix and, since U is nonsingular, 

rank(X) = rank(X U) = rank([W 0])::; m - 1 

Consequently, if IXI f. 0, so that rank(X) = m, then XI, ... ,xm must be linearly 
independent. 0 

Theorem 2.6. The set {Xl,"" xn} of m x 1 vectors is linearly dependent 
if 11 > m. 

Proof. Consider the subset of vectors {XI,." ,xm }. If this is a linearly 
dependent set, it follows from Theorem 2.3(c) that so is the set {Xl, ... ,Xn}. 

Thus, the proof will be complete if we can show that when Xl, ••• ,Xm are lin
early independent, then one of the other vectors, say Xm+ j, can be expressed as 
a linear combination of Xl,'" ,Xm. When Xl, ... ,Xm are linearly independent, it 
follows from the previous theorem that if we define X as the mX m matrix with 
XI,'" ,Xm as its columns, then IXI f. 0 and so X-I exists. Let« = X- 1

X m+ 1 and 
• 

note that «f. 0 unless Xm+ 1 = 0, in which case the theorem is trivially true due 
10 Theorem 2.3(a). Thu~, we have 

and so the set 
dependent. 

m 

(XiXi = X« = X)\l xlII + 1 = X"'+ I, 

; = I 

{X" ... , X'" + d and hence also the set {,r" ... ,xn} is linearly 
o 
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4. BASES AND DIMENSION 

The concept of dimension is a familiar one from geometry. For example. we 

recognize a line as a one-dimensional region and a plane as a two-dimensional 

region. In this section, we generalize this notion to any vector space. The dimen

sion of a vector space can be detellnined by looking at spanning sets for that 

vector space. In particular, we need to be able to find the minimum number of 

vectors necessary for a spanning set. 

Definition 2.7. Let {x!, ... ,xn } be a set of mx I vectors in a vector space 

S. This set is called a basis of S if it spans the vector space S and the vectors 

XI, ... ,Xn are linearly independent. 

Every vector space, except the vector space consisting only of the null vector 

. 0, has a basis. Although a basis for a vector space is not uniquely defined, the 

number of vectors in a basis is unique, and this is what gives us the dimension 

of a vector space. 

• 

Definition 2.S. If the vector space S is {O}, then the dimension of S, 

denoted by dim(S), is defined to be zero. Otherwise, the dimension of the vector 

space S is the number of vectors in any basis for S. . 
• 

Example 2.4. Consider the set of m x I vectors {eI, ... , em}, where for 

each i, ej is defined to be the vector whose only nonzero component is the ith 

component, which is one. Now, the linear combination of the eiS. 

m 

• 

will equal 0 only if Gil = ... = Gim = 0, so the vectors eI, ... , em are linearly 

independent. Also, if X = (XI, •.. ,Xm)' is an arbitrary vector in Rm, then 

m • 

X= Xjej, 

;; I 

so that {elt ... , em} spans Rm. Thus, {e" ... , em} is a basis for the m-dimen

sional space gn and, in fact, any linearly independent set of m m x I vectors 

will be a basis for Rill. For instance, if the m x 1 vector "Ii has its first i compo

nents equal to one while the rest are all zero, then {"II, ... , "1m} is also a basis 

of gn. 
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Example 2.5. Consider the vector space S spanned by the vectors XI = 
(I. I. I)'. X2 = O. O. -I)'. and X3 = (3,2, 1)'. We saw in Example 2.3, that 
{XI ,X2. x)} is a linearly dependent set of vectors so that this set is not a basis 
for S. However. the set {XI ,X2} is linearly independent and X3 = 2xI + X2, so 
that {XI ,X2} and {XI.X2.X3} must span the same vector space. Thus. {X"X2} 

is a basis for S and so S is a two-dimensional subspace, that is, a plane in R3. 
Any pair of linearly independent vectors in S will be a basis for S; for example 
{x"x)} and {X2.X)} are also bases for S. 

Every vector X in a vector space can be expressed as a linear combination 
of the vectors in a spanning set. However, in general, there may be more than 
one linear combination that yields a particular x. Our next result indicates that 
this is not the case when the spanning set is a basis. 

Theorem 2.7. Suppose the set of m x 1 vectors {x" ... ,xn } is a basis for 
the vector space S. Then any vector XES has a unique representation as a 
linear combination of the vectors Xl •... ,Xn • 

Proof Since {Xl •...• Xn} spans S and X E· S, there must exist scalars 
Cil, ...• Cin such that 

n 

X = L Ci;X; 

;= I 

Thus. we only need to prove that the representation above is unique. Suppose 
it is not unique so there exists another set of scalars {31, ... ,{3n for which 

n 

X= {3;x; 
;= I 

But this then implies that 

n n n 

L (Ci; - {3;)x; = L Ci;X; - L {3;x; = X - X = 0 
; = I ; = I ; = I . 

Since {XI •... ,xn} is a basis. the vectors XI, ... ,x~ must be linearly independent 
and so the equation above is satisfied only if Ci; - {3; = 0 for all i. Thus we must 
have Ci; = {3;, for i = 1 .... , n and so the representation is unique. 0 

• 

Some additional useful results regarding vector spaces and their bases are 
summarized below. The proofs are left to the reader. 

• 
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Theorem 2.8 

(a) Any two bases of a vector space S must have the same number of vectors. 

(b) If {XI"" ,X,,} is a set of linearly independent vectors in a vector space 
S and the dimension of S is n, then {XI, ... ,x,,} is a basis for S. 

(c) If the set {xJ, ... ,x,,} spans the vector space S and the dimension of S 
is n, then the set {XI, ... ,x,,} must be linearly independent and thus a 
basis for S. 

(d) If the vector space S has dimension n and the set of linearly independent 
vectors {XIo ... x r } is in S, where r < n, there are bases for S which 
contain this set as a subset. 

5. MATRIX RANK AND LINEAR INDEPENDENCE 

We have seen that we often work with a vector space through one of its spanning 
sets. In many situations our vector space has, as a spanning set, vectors that are 
either the columns or rows of some matrix. We define the following terminology 
appropriate for such situations. 

Definition 2.9. Let X be an m x n matrix. The subspace of R" spanned 
by the m row vectors of X is called the row space of X. The subspace of Rill 
spanned by the n column vectors of X is called the column space of X. 

The column space of X is sometimes also referred to as the range of X, and 
we will identify it by R(X); that is, R(X) is the vector space given by 

R(X) = {y : y = Xa, a e R"} 

Note that the row space of X may be written as R(X'). 
A consequence of Theorem 2.5 is that the dimension of the column space 

of a square matrix, that is, the number of linearly independent column vectors, 
is identical to the rank of that matrix when it is nonsingular. The following 
result shows that this connection between the number of linearly independent 
columns of a matrix and the rank of that matrix always holds. 

. .' . 
~ . • • . . 

Theorem 2.9. Let X be an m x n matrix. If r is the number of linearly 
independent rows of X and c is the number of linearly independent columns of 
X, then rank(X) = r = c. . 

Proof. We will only need to prove that rank(X) = r since this proof can be 
repeated on X' to prove that rank(X) = c. We will assume that the first r rows of 
X are linearly independent since, if they are not, elementary row transfollnations 
on X will produce such a matrix having the same rank as X. It then follows 
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that the remaining rows of X can be expressed as linear combinations of the 

first r rOws; that is, if X I is the r x n matrix consisting of the first r rows of X, 

there exists some (m - r) x r matrix A such that 

X= - Ir X 
- A I 

Now from Theorem 2.6 we know that there can be at most r linearly indepen

dent columns in X I since these are r x I vectors. Thus, we may assume that the 

last n - r columns of X I can be expressed as linear combinations of the first r 

columns since, if this is not the case, elementary column transfollllations on X I 

will produce such a matrix having the same rank as XI. Consequently, if X\l is 

the r x r matrix with the first r columns of X I, then there exists an r x (n - r) 

matrix B satisfying 

If we define the m x m and n x n matrices V and V by 

V= 

then we have 

Ir 
-A 

-

(0) 
Im_ r 

VXV= 

and V= 

(0) 
(0) 

Ir -B 
(0) In - r ' 

Since the detelluinant of a triangular matrix is equal to the product of its diag

onal elements, we find that Ivi = IVI = 1, so that V and V are nonsingular and 

thus 

rank(X) = rank(VXV) = rank(Xld 

Finally, we must have rank(X II) = r, since if not, by Theorem 25 the rows of 

X II would be linearly dependent and this would contradict the already stated 

linear independence of the rows of X I = [X II X II BJ. 0 

Example 2.6. An implication of Theorem 2.9 is that the dimension of the 

column space of a matrix is the same as the dimension of the row space. How

ever, this does not mean that the two vector spaces are the same. As a simple 
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example consider the matrix 

001 
X= 0 I 0 , 

000 

4S 

which has rank 2. The c01umn space of X is the two-dimensional subspace of 

R3 composed of all vectors of the fOlln (a, b, 0)', while the row space of X is 

the two-dimensional subspace of R3 containing all vectors of the form (0, a, b)'. 

If X is not square then the column space and row space will be subspaces of 

different Euclidean spaces. For instance, if 

100 
X = 0 I 0 

001 

I 
I 
I 

, 

the column space is R3, while the row space is the three-dimensional subspace 

of ~ consisting of all vectors of the form (a, b, c, a + b + c)'. 

The fOlInulation of matrix rank in telms of the number of linearly inde

pendent rows or columns of the matrix is often easier to work with than our 

original definition in tellllS of submatrices. This is evidenced in the proof of 

the following basic results regarding the rank of a matrix. 

Theorem 2.10. Let A be an m x n matrix. Then the following hold. 

(a) If B is an n x p matrix, rank(AB) ~ min {rank(A), rank(B)}. 

(b) If B is an m x n matrix, rank(A + B) ~. rank(A) + rank(B) .. 

(c) rank(A) = rank(A') = rank(AA') = rank(A' A) . 

Proof. Note that we can write 

n 

(AB).j = 
j=\ 

that is, each column of AB can be expressed as a linear combination of the 

columns of A, and so the number of linearly independent columns in AB 

can be no more than the number of linearly independent columns in A. Thus 

rank(AB) ~ rank,(A). Similarly, each row of AB can be expressed as a linear 

combination of the rows of B from which we' get rank(AB) ~ rank(B), and so 

property (a) is proven. To prove (b), note that by using partitioned matrices we 
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can write 

A + B = [A B] In 
In 
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So using property (a) on the right~hand side of the equation above, we find that 

rank(A + B) ~ rank([A BD ~ rank(A) + rank(B), 

where the final inequality follows from the fact that the number of linearly inde-
pendent columns of [A B] exceed the sum of the numbers of linearly 
independent columns in A and proving (c), note that it follows immediately 
that rank(A) = rank(A'). It will to prove that rank(A) = rank(A' A) since 
this can then be used on A' to prove that rank(A') = rank {(A')' A'} = rank(AA'). 

Ilf rank(A) = r, there exists a full column rank m x r matrix AI such that, after 
possibly interchanging some of the columns of A, A = [A I A I C] = A I [Ir C], 
where C is an r xCn - r )matrix. As a result, we have 

Note that 

EA'AE' = 

• 

(0) 
(0) 

. 

if E = 
Ir 

-C' 
(0) 

In - r ' 

and since the triangular matrix E has 1 EI = I, E is nonsingular, so rank(A' A) == 

rank(EA'AE') = rank(A~AI)' If A~AI is less than full rank, then by Theorem 2.5 
its columns are linearly dependent so we can find an r x 1 vector x ,f. 0 such 
that A~Alx = 0, which implies that x'A;Alx = (Alx),(Alx) = O. However, for 
any real vector y, y'y = 0 only if y = 0 and hence Alx = O. But this contradicts 
rank(AI) = r, and so we must have rank(A'A) = rank(A~AI) = r. 0 

The next result gives some relationships between the rank of a partitioned 
matrix and the ranks of its submatrices. The proofs', which are straightforward, 
are left to the reader. 

• 

Theorem 2.11. Let A, B, and C be any matrices for which the partitioned 
matrices below are defined. Then 

• 

(a) rank([A BD ~ max {rank(A), rank(B)} 

• 
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(b) rank 

(c) rank 

A (0) 
(0) B 

A (0) 
C B 

• 

= rank 

= rank 

= rank 

(0) B 
A (0) 

C B 
A (0) 

(0) A 
B C 

= rank(A) + rank(B) 

= rank 
B C 
(0) A 

~ rank(A) + rank(B) 
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Our next result gives a useful inequality for the rank of the product of three 
• matIices. 

Theorem 2.12. Let A, B, and C be px m, mX n, and nx q matrices, respec
tively. Then 

rank(ABC) ~ rank(AB) + rank(BC) - rank(B) 

Proof It follows from Theorem 2.1l(c) that 

But, since 

rank 

B 
AB 

BC 
(0) 

B BC 
AB (0) 

--

~ rank(AB) + rank(BC) 

B (0) In C 
(0) -ABC (0) Iq , 

(2.3) 

where, clearly, the first and last matrices on the right-hand side are nonsingular, 
we must also have 

rank 
B BC 

AB (0) 
= rank 

B (0) 
(0) -ABC 

= rank(B) + rank(ABC) (2.4) 

Combining (2.3) and (2.4) we obtain the desired result. o 

A special case of Theorem 2.12 is obtained when n = m and B is the m x m 
identity matrix. The resulting inequality gives a lower bound for the rank of a 
matrix product complementing the upper bound given in Theorem 2.l0(a). 

Corollary 2.12.1. If A is an m x n matrix and B an n x p matrix, then 

rank(AB) ~ rank(A) + rank(B) - n 
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6. ORTHONORMAL BASES AND PROJECTIONS 

If each vector in a basis for a vector space S is orthogonal to every other vector 

in that basis, the basis is called an orthogonal basis. In this case, the vectors 

can be viewed as a set of coordinate axes for the vector space S. We will find 

it useful also to have each vector in our basis scaled to unit length, in which 

case we would have an orthonollllal basis. 
• 

Suppose the set {XI, ... ,xr } fonns a basis for the vector space S, and we 

wish to obtain an orthononnal basis for S. Unless r = 1, an orthonolInal . 

basis is not unique so there are many different orthonol'mal bases that we can 

construct. One method of obtaining an orthononnal basis from a given basis 

{x, , ... ,X r } is called Gram-Schmidt orthonollllalization. First, we construct the 

set {y I , ... ,Y r} of orthogonal vectors given by 

• 
• 
• , 

xrYr-1 
y, - ... - , 

Yr-IYr-1 Y r - " 

and then the set of orthonolInal vectors {x I, ... ,Xr}, where for each i, 

(2.5) 

Note that the linear independence of XI, ... ,Xr guarantees the linear indepen

dence of YI,'" ,Yr' Thus, we have the following result. 

Theorem 2.13. Every r-dimensional vector space, except the zero-dimen

sional space to}, has an orthonollllal basis. 

If {z" .... Zr} is a basis for the vector space S and XES, then from Theorem 

2.7 we know that x can be uniquely expressed in the fOIlll x = (XIZI + .. ·+(XrZr. 

When {XI, .•. , xr } is an orthonoJ'lnal basis, each of the scalars (XI, ••• ,(Xr has a 

rather simple fOlln; premultiplication of the equation for x above by z; yields 

the identity (Xi = x;x. 

Example 2.7. We will find an orthonollllal basis for the three-dimensional 

vector space S which has as a basis {XI,X2,X3}, where 

I 
I . 
• 

i 
i 
• 
I 

I 
I 
• , 
i 
• 
• , 
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1 1 

1 -2 
XI= 1 

, X2 = 1 
, 

1 -2 

The orthogonal 'is are given by 'I = (1,1,1,1)', 

and 

]3 = 

Y2 = 

3 
1 
1 

-1 

• 

1 
-2 

1 
-2 

(4) -
(4) 

-
(-2) 

1 
1 
1 
1 

4 

-

1 
1 
1 
1 

(6) 
(9) 

--

3 
1 

x, = 
1 

-1 

3/2 
-3/2 

3/2 ' 
-3/2 

3/2 
-3/2 

3/2 
-3/2 

--

1 
1 

-1 
-1 

Nonualizing these vectors yields the orthonollual basis {XI, X1, x,}, where 

1/2 
1/2 
1/2 ' 
1/2 

X2 = 

1/2 
-1/2 

1/2 ' 
-1/2 

X3 = 

1/2 
1/2 

-1/2 
-1/2 ... 
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Thus, for any xeS, x = alZI + a2X2 + a3X3, where ai = X'Xi. For instance, since 

x3Z1 = 2, X3Z2 = 2, X3Z3 = 2, we have X3 = 2%1 + 2%2 + 2%3· 

Now if S is a vector subspace of Rm and x e Rm , the following indicates 

how the vector x can be decomposed into the sum of a vector in S and another 

vector. 

Theorem 2.14. Let {zt. ... , xr } be an orthonollual basis for some vector 

subspace, S, of R"'. Then each x e Rm can be expressed uniquely as 

x = u + v, 

where u e S and v is a vector that is orthogonal to every vector in S. 

Proof. It follows from Theorem 2.8(d) that we can find vectors X, + I, ... ,Xm 

so that the set {ZI,,,.,Zm} is an orthononnal basis for the m-dimensional 

Euclidean space Rm. It also follows from Theorem 2.7 that there is a unique 

set of scalars a I , ... ,am such that 

• 
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m 

x= O!;Z; 
; = , 

Thus, if we let u == O!,Z, + ... + O!rZr and v = O!r+ 'Zr+' + '" + O!mZm, we have, 
uniquely, x == u + v, u e S, and v will be orthogonal to every vector in S due 
to the orthogonality of the vectors Z" ... ,Zm' 0 

The vector u in the theorem above is known as the orthogonal projection 
of x onto S. When In == 3, the orthogonal projection has a simple geometrical 
description that allows for visualization. If, for instance, x is a point in three
dimensional space and S is a two-dimensional subspace, then the orthogonal 

. . be the point of intersection of the plane S and the line 
that is to S and passes through x. 

The importance of the orthogonal projection u in many applications arises 
out of the fact that it is S is, if y is any other point 
in Sand d, is the Euclidean d.(x, u) ~ d.(x,y). This is 
fairly simple to verify. Since u andy are in S, it follows from the decomposition 
x = u + v that the vector u - y is orthogonal to v == x - u and, hence, (x -
u)'(u - y) == O. Consequently, 

{d. (x,y)}2 = (x - y)'(x - y) = {(x - u) + (u - y)}' {(x - u) + (u - y)} 

== (x - u)'(x - u) + (u - y)'(u - y) + 2(x - u)'(u - y) 

= (x - u)'(x - u) + (u - y)'(u - y) = {d.(x,u)}2 + {d.(u,y)}2, 

from which d,(x, u) ~ d,(x,y) follows since {d.(u,y)}2 ~ O. 

Example 2.8. Simple linear regression relates a response variable y to one 
explanatory variable x through the model 

y = f30 + f3,x + E; 

that is. if this model is correct, then observed ordered pairs (x, y) should be 
clustered about some line in the x, y plane. Suppose we have N observations, 
(x;.Yi),i = 1 •... ,N. and we form the N x 1 vector y = (Y"' .. ,YN)' and the 
N x 2 matrix 

1 x, 
1 X2 

x== = [IN x] • 

• • 
• • 
• • 

1 XN 
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A 

The least squares estimator P of P = (f3o, (3))' minimizes the sum of squared 
errors given by 

(y - y)'(y - y) = (y - XP)'(y - XP). 

A 

In Chapter 8 we will see how to find p using differential methods. Here we will 
A 

t,lse the g~metrical properties of projections to determine p. For any choice of 
p, y = Xp gives a point in the subspace of RN spanned by the columns of X, 
that is, the plane spanned by the two vectors IN and x. Thus, the point y that 
minimizes the distance from y will be given by the orthogonal projection of y 
onto. this plane spanned by IN and x. This means that y - y must be orthogonal 
to both IN and x. This leads to the two nOllnal equations 

N N 

0= (y - y)'IN =y'IN - p'X'IN = I, Yi - ~oN - ~I I, Xi, 

i = 1 i = 1 

N N N 

0= (y - y)'x =y'x- p'X'x= I, XiYi - ~o I, Xi - ~i 
i=1 i=1 i=1 

A A 

which when solved simultaneously for {3o and {31, yields 

"C'N N-
"-i=1 XiYi - xy 

"C'N 2 -2' 
,,-i=1 Xi -Nx 

If we want to test the hypothesis that {31 = 0, we would consider the reduced 
model 

y={30+€ 

and least squares estimation here only re,guires an estimate of {3o. In lhis case, 
the vector of fitted values satisfies y = (3/) IN, so for any choice of (3/), y will 
be given by a point on the line passing through the origin and IN" Thus if Y is 
to minimize the sum of squared errors and hence the distance from y, then it 
must be given by the orthogonal projection of y onto this line. Consequenlly. 
we must have 

N 
A 

Yi - {3oN, 

• 

or simply 

A 

{3o = Y 
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The vector v in Theorem 2.14 is called the component of x orthogonal to S. 

It is one vector belonging to what is known as the orthogonal complement of 

S. 

Definition 2.10. Let S be a vector subspace of Rill. The orthogonal com

plement of S, denoted by S1., is the collection of all vectors in Rm that are 

orthogonal to every vector in S; that is, S1. ::: {x: x e Rm and x'y ::: 0 for all 

YES}. 

Theorem 2.15. If S is a vector subspace of Rm then its orthogonal comple

ment S1. is also a vector subspace of Rm. 

Proof Suppose that XI e S1. and X2 e S1. so that x~y ::: x;y ::: 0 for any 

YES. Consequently, for any yeS and any scalars Cil and Ci2, we have 

and so (CiIXI + Ci2X2) E S1. and thus S1. is a vector space. o 

A consequence of the following theorem is that if S is a vector subspace of 

Rill and the dimension of S is r, then the dimension of S1. is m - r. 

Theorem 2.16. Suppose {ZI, ... ,Zm} is an orthonormal basis for l?" 

and {ZI,.'" z,} is an orthonormal basis for the vector subspace S. Then 

{Z,. + I , ... ,Zm} is an orthonormal basis for S1.. 

P roof Let T be the vector space spanned by {z, + I , ... ,Zm }. We must show 

that this vector space is the same as S1.. If x e T and yeS, then there exist 

scalars Cil>"" Cim such thaty ::: CiIZI + ... + Ci,Z, and x::: Ci,+ IZ,+ 1+'" + CimZm • 

Due to the orthogonality of the ZiS, x'y ::: 0, so x e S1. and thus T ~ S1.. 

Conversely, suppose that x E S-1. Since x is also in Rill, there exist scalars 

Cil, ..• , Cim such that x::: CiIZI + ... + CimZm • Now if we let y ::: Ci\Z\ + ... + Ci,Z" 

then yeS, and since x e S1. we must have x'y ::: CiT + ... + Ci; ::: O. But this can 

only happen if Cil ::: .•. ::: Ci, ::: 0, in which case x::: Ci,+ \Z,+ \ + ... + CimZm and 

so x e T. Thus, we also have S1. ~ T, and so this establishes that T::: S1.. 0 

7. PROJECTION MATRICES 

The orthogonal projection of an m x I vector x onto a vector space S can be con

veniently expressed in matrix form. Let {ZI,"" z,} be any orthonormal basis 

for S while {XI, ... ,zm} is an orthonollual basis for Rm. Suppose Cil> ••• , Cim are 

the constants satisfying the relationship 

x::: (CiIZ\ + ... + Ci,Z,) + (Ci,+ IZ,+ \ + ... + CimZm )::: U + v, 

• 
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where u and v are as previously defined. Write a = (a;, az)' and Z = [Z 1 Z~ J. 

where al = (Cib ... ,Cir)', a2 = (Cir+I, ... ,Cim)" ZI = (z" ... ,Zr), and Z~ = 

(Zr+)' ... ,Zm). Then the expression for x given above can be written as 

that is, U = ZI al and v, = Z2a2. Due to the orthononnality of the ZiS, we have 

Z~ZI = Ir and Z;Z2 = (0), and so 

(0)] a I 
a, -

Thus, we have the following result. 

Theorem 2.17. Suppose the columns of the 111 x r matrix ZI form an 

orthonormal basis for the vector space S which is a subspace of Rm. If x E Rill, 

the orthogonal projection of x onto S is given by ZIZ;X . 

The matrix Z 1 Z; appearing in Theorem 2.17 is called the projection matrix 

for the vector space S and sometimes will be denoted by Ps. Similarly. Z~Z; 

is the projection matrix for S1. and ZZ: = 1m is the projection matrix for R"'. 

Since zZ: = ZIZ; + Z2Z;, we have the simple equation Z2Z; = 1m - ZIZ; 

relating the projection matrices of a vector subspace and its orthogonal com

plement. Although a vector space does not have a unique orthonolIIlal basis, 

the projection matrix fonued from these orthonormal bases is !lnigue. 

Theorem 2.18. Suppose the columns of the 111 x r matrices Z I and WI 

each fonn an orthononnal basis for the r-dimensional vector space S. Then 

ZIZ; = WI W;. 

Proof Each column of WI can be written as a linear combination of the 

columns of ZI since the columns of ZI span S and each column of WI is in S; 

that is, there exists an r x r matrix P such that WI = ZIP. But Z; ZI = W; WI = 

Ir, since each matrix has orthononnal columns. Thus, 

so that P is an orthogonal matrix. Consequently, P also satisfies PP' = If> and 

so 

o 
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We will take another look at the Gram-Schmidt orthononnalization pro
cedure, this time utilizing projection matrices. The procedure takes an initial 
linearly independent set of vectors {x" ... ,x,}, which is transformed to an 
orthogonal set {y I' ... ,y,}, which is then transformed to an orthonormal set 
{ZI, ... ,z,}. It is very easy to verify that for i = I, ... , r-I, the vector Y;+ I can 
be expressed as . 

; 

Y;+I= Im-
j=1 

that is, Yi+ I = (1m - 2(i)2~i))xi+" where 2(i) = (z" ... ,Zi). Thus, the (i + I)th 
orthogonal vector Yi + I is obtained as the projection of the (i + I)th original 
vector onto the orthogonal complement of the vector space spanned by the first 
i orthogonal vectors, YI" .. 'Yi' 

The Gram-Schmidt orthonOllllalization process represents one method of 
obtaining an orthonOllllal basis for a vector space S from a given basis 
{Xl •... • Xr}. In general. if we define the m x r matrix XI = (x" ... ,x,), the 
columns of 

(2.6) 

will fOlln an orthonollual basis for S if A is any r x r matrix for which 

The matrix A must be nonsingular since we must have rank(Xd = rank(21) = r; 
so A-I exists. and X~XI = (A-I)'A- I or (X~XI)-I = AA'; that is, A is a square 
root matrix of (X~ X I t I. Consequently, we can obtain an expression for the 
projection matrix Ps onto the vector space S in tellus of XI as 

(2.7) 

Note that the Gram-Schmidt equations given in (2.5) can be written in matrix 
fOlln as Y I = XIT. where Y I = (Yp ... ,y,). XI = (XI,""X,), and T is an rX r 
upper triangular matrix with each diagonal element equal to 1. The nonnaliza
tion to produce 21 can then be written as 21 = XI TD- I , where D is the diag
onal matrix with the positive square root of Y;Yi as its ith diagonal element. 
Consequently. the matrix A = TD- I is upper triangular with positive diagonal 
elements. Thus the Gram-Schmidt orthononnalization is the particular case 'of 
equation (2.6) in which the matrix A has been chosen to be the upper triangular 
square root matrix of (X~ X I )-1 having positive diagonal elements. 

• 

• 

. , , , 

-• 
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Example 2.9. Using the basis {XI,X2,X3} from Example 2.7, we fonn the 
XI matrix 

and it is easy to verify that 

4 -2 
-2 10 

4 4 

4 
4 , 

12 

I 
I 
I 
I 

I 3 
-2 I 

I I 
-2 -I 

, 

(X'X )-1 = 1 
1 1 36 

• 

26 10 -12 
10 8 -6 

-12 -6 9 

Thus, the projection matrix for the vector space S spanned by {XItX2,X3} is 
given by 

3 
1 
1 

L -1 

1 1 
3 -1 

-1 3 
1 1 

-1 
1 
1 
3 

This, of course, is the same as Z 1 Z~, where Z 1 = (z 1 ,Z2, Z3) and Zit Z2, Z3 are 
the vectors obtained by the Gram-Schmidt orthonollualization in the previ
ous example. Now if x = (l, 2, -1,0)', then the projection of x onto S is 
XI(X~XlrIX;x = x; the projection of x is equal to x since x = X3 -XI -X2 E S. 
On the other hand, if x = (1, -I, 2,1)" then the projection of x is given by 
u = XI(X;XlrIX;x = (~, -~,~, ~)'. The component of x orthogonal to S, or in 
other words, the orthogonal projection of x onto SJ., is {I - X 1 (X~ X 1 t 1 X~ }x = 

X (X'X)-IX' (I 1 1 I)' Th·· h d .. x- 1 I 1 IX=X- U = 4'-4'-4' 4. IS gives us t e ecomposttlOn 

I 3 1 
-1 1 -3 1 -I 

X= - + =U+V -
2 4 9 4 -I 
I 3 1 

of Theorem 2.14. • 

Example 2.10. We will generalize some of the ideas of Example 2.8 to the 
multiple regression model 
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relating a response variable y to k explanatory variables XI,.'" Xk. If we have 

N observations, this model can be written as 

y = Xp + E, 

wherey is Nx 1, X is Nx (k + 1), p is (k + l)x 1, and E is Nx 1, while the 

vector of fitted values is given by 

y = Xp, 
A 

A 

where P is an estimate of p. Clearly, for any p, y is a point in the subs£ace of 

RN spanned by the £olumns of X. To be a least squares estimate of p, p must 

be such that y = Xp yields the point in this subspace closest to the vector y, 

since this will have the sum of squared errors, 

A A 

(y - Xp)'(y - XP), 

A 

minimized. Thus Xp must be the orthogonal projection of y onto the space 

spanned by the columns of X. If X has fuB column rank, then this space has 

projection matrix X(X'X)-I X', and so the required projection is 

Premultiplying this equation by (X' Xr I X', we obtain the least squares estimator 

p = (X'XrIX'y 

In addition, we find that the sum of squared errors (SSE) for the fitted model 
A 

y = Xp can be written as 

SSEI = (y - XP)'(y - XP) = (y - X(X'Xr l X'y)'(y - x(x'x)-I X'y) 

= y' (IN - X(X'Xr I X')2y = y' (IN - X(X'X)-I X')y, 

and so this sum of squares represents the squared distance of the projection of 

y onto the orthogonal complement of the column space of X. Suppose now that 

p and X are partitioned as p = (P;, p;)' and X = (X" X2), where the number 

of columns of X I is the same as the number of elements in PI' and we wish 

to decide whether or not P2 = O. If the columns of XI are orthogonal to the 

columns of X2, then X;X2 = (0) and 

(X'X)-I = 

, 

, , 
, 

; 

, 
, 
, 

r
' 

" , 

, 

: , , 
, , , , , 
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.... 
.... AI AI ..... 

¥ld SO P can be partitioned as P == (PI'P2)" where /3, == (X;Xd-'X;y and 

/32 == (X;X2t I X;y. Further, the sum of squared errors for the fitted model, 

• • 
y = X/3, can be decomposed as 

(y - Xp)'(y - XP).= y'(IN - X(X'xrIX')y 

== y'(IN - X,(X;Xlr'~ - X2(X;X2)-IX;)y 
• 

On the other hand, the least squares estimator of /3, in the reduced model 
• 

• 
is /31 == (X;XI)-IX;y, while its sum of squared errors is given by 

Thus, the tenn SSE2 - SSEI = y'X 2 (X;X 2)-1 X; y gives the reduction in the sum 

of squared errors attributable to the inclusion of the tellll X2P2 in the model 

y == XP+E = XIPI +X2P2+E, and so its relative size will be helpful in deciding 

• 

whether or not P2 = O. If P2 = 0, then the N observations of y should be 

randomly clustered about the column space of X I in RN with no tendency to 

deviate from this subspace in one direction more than in any other direction. 

while if P2 :/. 0, we would expect larger deviations in directions within the 

column space of X2 than in directions orthogonal to the column space of X. 

Now, since the dimension.of the column space of X is k + 1, SSE, is the sum 

of squared deviations in N - k - 1 orthogonal directions, while SSE2 - SSE j 

gives the sum of squared deviations in k2 orthogonal directions, where kJ is the 

number of components in P2' Thus, SSEI/(N - k - 1) and (SSE2 - SSE, )jkJ 

should be of similar magnitudes if P2 == 0, while the latter should be larger than 

the foutler if P2 :/. O. Consequently, a decision about P2 can be based on the 

value of the statistic 

F = (SSE2 - SSEI)/ k2 . 

SSEt/(N - k - 1) 
(2.8) 

Using results that we will develop in Chapter 9, it can be shown that F -

Fk2•N - k - I if E - NN(O, (J"2IN) and P2 == O. 

When X;X2 :/. (0), the expression for (SS~ - SSEI) is not equal to 

y'X2(XiX2tIX;y since, in this case, y is not the sum of the projection of y 

onto the column space of X I and the projection of y onto the column space 

of X2. To properly assess the effect of the inclusion of the term X2P2 in the 

model. we must decompose y into the sum of the projection of y onto the col

umn space of X I and the projection of y onto the subspace of the column space 

of X2 orthogonal to the column space of X I. This latter subspace is spanned by 
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the columns of 

since (IN - X 1 (X~ X 1 )-1 X;) is the projection matrix of the orthogo!,lal complement 
of the column space of X I. Thus the vector of fitted values y = Xp can be written 
as 

Further, the sum of squared errors is given by 

and the reduction in the sum of squared errors attributable to the inclusion of 
the tellll X2P2 in the model y = Xp + E is 

Least squares estimators are not always unique as they have been throughout 
this example. For instance, let us return to the least squares estimation of P in 
the model y = Xp + E, where now X does not have full column rank. As before , 
y = Xp will be given by the orthogonal projection of y onto the space spanned 
by the columns of X, but the necessary projection matrix can not be expressed as 
X(X'X)-I X', since X'X is singular. If the projection matrix of the column space , 
of X is denoted by PRIX), then a least squares estimator of p is any vector p 
satisfying 

Since X does not have full column rank, the dimension of its null space is at 
least one, anq so we will be able to find a nonnull vector a satisfying Xa = O. 
In this case, p + a is also a least squares estimator since 

, 
X(P + a) = PR(X)y, 

• 

and so the least squares estimator is not unique. 

We have seen that if the columns of an mx r matrix ZI form an orthonormal 
basis for a vector space S, then the projection matrix of S is given by Z 1 Z;. 
Clearly this projection matrix is symmetric and, since Z~Zl = Ir , it is also idem
potent; that is, every projection matrix is symmetric and idempotent. Our next 

• 

• 
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result proves the converse. Every symmetric idempotent matrix is a projection 
matrix for some vector space. 

Theorem 2.19. Let P be an m x m symmetric idempotent matrix of rank 
r. Then there is an r-dimensional vector space which has P as its projection 
matrix. 

Proof From Corollary 1.9.\, there exist an m x r matrix F and an r X m 
matrix G such that rank(F) = rank(G) = rand P = FG. Since P is idempotent, 
we have 

FGFG= FG, 

which implies that 

F' FGFGG' = F' FGG' (2.9) 

Since F and G' are full column rank, the matrices F' F and GG' are nonsingular. 
Premultiplying (2.9) by (F' Ft I and postmultiplying by (GG')-I, we obtain 
GF = I r • Using this and the symmetry of P = FG, we find that 

F = FGF= (FG)'F = G'F'F, 

which leads to G' = F(F' F)-I. Thus, P = FG = F(F' F)-I F'. Comparing this to 
equation (2.7), we see that P must be the projection matrix for the vector space 
spanned by the columns of F. This completes the proof. 0 

Example 2.11. Consider the 3 x 3 matrix 

I 
P = --:-

6 

5 .1 2 
-I 5 2 

2 2 2 

Clearly, P is syminetric and it is easily verified that P is idempotent, so.P is a 
projection matrix. We will find the vector space S associated with this projection 
matrix. First note that the first two columns of P are linearly independent while 
the third column is the average of the first two columns. Thus, rank(P) = 2 and 
so the dimension of the vector space associated with P is 2. For any x E R3, 

Px yields a vector in S. In particular, Pel and Pe2 are in S. These two vectors 
fonn a basis for S since they are linearly independent and the dimension of S 
is 2. Consequently, S contains all vectors of the fOlln (5a - b, 5b - a, 2a + 2b)'. 
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8. LINEAR TRANSFORMATIONS AND SYSTEMS OF LINEAR 

EQUATIONS 

If S is a vector subspace of R"', with projection matrix Ps, then we have seen 

that for any x E Rm, u = u(x) = Psx is the orthogonal projection of x onto S; 

that is, each x E Rm is transfollned into a u E S. The function u(x) = Psx is 

an example of a linear transfollnation of Rm into S. 

Definition 2.11. Let u be a function defined for all x in the vector space 

T such that for any x E T, u = u(x) E S, where S is also a vector space. Then 

the transfollnation defined by u is a linear transfollnation of T into S if for any 

two scalars (XI and (X2 and any two vectors XI E T and X2 E T, 

We will be interested in matrix transfollnations of the fOl'm u = Ax, where 

x is in the subspace of Rn denoted by T, u is in the subspace of Rm denoted by 

S, and A is an m x n matrix. This defines a transformation of T into S, and the 

transformation is linear since for scalars (XI, (X2 and n x I vectors XI and X2, it 

follows immediately that 

(2.10) 

In fact, every linear transformation can be expressed as a matrix transformation. 

For the orthogonal projection described at the beginning of this section, A = Ps, 

so that n = m and thus we have a linear transfolmation of Rm into Rm, or to 

be more specific, a linear transformation of Rill into S. In partiCUlar, for the 

multiple regression problem discussed in Example 2.10, we saw that for any N 

x I vector of observations y, the vector of estimated or fitted values was given 

by y = X(X'Xt l X'y. Thus, since y E RN and Y E R(X), we have here a linear 

transformation of RN into R(X). 

It should be obvious from (2.10) that if S is actually defined to be the set 

{u: u = Ax;x E T}, then T being a vector space guarantees that S will also 

be a vector space. In addition, if the vectors XI , ... , Xr span T, then the vectors 

AXI, ... ,Axr span S. In particular, if T is Rn, then since el, ... , en span Rn, we 

find that (A). I> ... , (A)·n span S; that is, S is the column space or range of A 

since it is spanned by the columns of A. 

When the matrix A does not have full column rank. then there will be vectors 

x, other than the null vector, satisfying Ax = O. The set of all such vectors is 

called the null space of the transformation Ax or simply the null space of the 

matrix A. 

Theorem 2.20. Let the linear transfolmation of Rn into S be given by u = 

Ax, where x E Rn and A is an m x n matrix. Then the null space of A, given 

• 

• 

• 
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by the set 

N(A) = {x: Ax = O,X E R"}, 

is a vector space. 
• 

Proof Let XI and X2 be in N(A) so that AXI = AX2 = O. Then for any scalars 

Cil and Ci2, we have 

so that (CiIXI + Ci2X2) E N(A) and, hence, N(A) is a vector space. o 

The null space of a matrix A is related to the concept of orthogonal com

plements discussed in Section 2.6. In fact, the null space of the matrix A is the 

same as the orthogonal complement of the row space of A. Similarly, the null 

space of the matrix A' is the same as the orthogonal complement of the column 

space of A. The following result is an immediate consequence of Theorem 2.16 . 

Theorem 2.21. Let A be an mX n matrix. If the dimension of the row space 

of A is 'I and the dimension of the null space of A is '2, then '1 +'2 = II. 

Since the rank of the matrix A is equal to the dimension of the row space 

of A, the result above can be equivalently expressed as 

rank(A) = n - dim{N(A)} (2.1\) 

This connection between the rank of a matrix and the dimension of the null 

space of that matrix can be very useful in deteIlllining the rank of a matrix in 

• • • 
certam sItuations. 

Example 2.12. To illustrate the utility of (2.11), we will give an alternative 

proof of the identity rank(A) = rank(A' A), which was given as Theorem 2.1O(c). 

Suppose X is in the null space of A so that Ax = O. Then, clearly, we must have 

A' Ax = 0, which implies that x is also in the null space of A' A, so it follows 

that dim{N(A)} S; dim{N(A' A)}, or equivalently 

rank(A) ~ rank(A'A) (2.12) 

. On the other hand, if x is in the null space of A' A then A' Ax = O. Premultiplying 

by x' yields x' A' Ax = 0, which is satisfied only if Ax = O. Thus, x is also in 

the null space of A so that dim{N(A)} 2! dim{N(A'A)}, or 
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rank(A) 5: rank(A' A) (2.13) 

Combining (2.12) and (2.13), we get rank(A) = rank(A'A). 

When A is an m x m nonsingular matrix and x E Rm, then u = Ax defines 
a one-to-one transfOllllation of Rm onto Rm. One way of viewing this trans
fOllllation is as the movement of each point in ~ to another point in Rm. 
Alternatively, we can view the transfOllllation as a change of coordinate axes. 
For instance, if we start with the standard coordinate axes which are given by 
the columns, el, ... , em of the identity matrix 1m' then, since for any x E Rm, 
x = Xlel + '" + xmem, the components of x give the coordinates of the point x 
relative to these standard coordinate axes. On the other hand, if Xl, ••• ,Xm is 
another basis for Rm , then from Theorem 2.7 there exist scalars ut. ... , Um so 
that with u = (UI, ... , um)' and X = (XI, ..• , xm), we have 

m 

X = L UiXi = Xu; 
i = I 

that is, U = (UI, ... , um)' gives the coordinates of the point X relative to the 
coordinate axes Xt. .•. ,Xm • The transfOllllation from the standard coordinate 
system to the one with axes XI, ••• ,Xm is then given by the matrix transfonna
tion u = Ax, where A = X-I. Note that the squared Euclidean distance of u 
from the origin, 

u'u = (Ax)'(Ax) = x'A'Ax, 

will be the same as the squared Euclidean distance of x from the origin for every 
choice of x if and only if A, and hence also X, is an orthogonal matrix. In this 
case, XI, ... ,Xm fOllns an orthonollllal basis for Rm, and so the transformation 
has replaced the standard coordinate axes by a new set of orthogonal axes given 
by x I, ... ,Xm . 

Example 2.13. Orthogonal transfOllllations are of two types according to 
whether the detellllinant of A is +1 or -1. If IAI = I, then the new axes can be 
obtained by a rotation of the standard axes. For example, for a fixed angle 8, 

• 

let 

cos 8 - sin 8 0 
A = sin 8 

o 
cos 8 0 , 
o 1 

• 

so that IA I = cos2 8 + sin2 8 = I. The transfOllllation given by u = Ax trans
fOllns the standard axes et.e2,e3 to the new axes XI = (cos 8, - sin 8,0)" 

• 

, 

'. 

,..; 
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X2 = (sin 8, cos 8,0)" X3 = e3, and this simply represents a rotation of el and 
e2 through an angle of (). If instead we have 

cos 8 
A = sin 8 

o 

- sin 8 
cos 8 
o 

o 
o , 

-I 

then IAI = (cos2 8 + sin2 8) . (-I) = -1. Now the transformation given by 
U = Ax, transforms the standard axes to the new axes XI = (cos 8, - sin 8,0)" 
X2 = (sin 8,cos 8,0)', and X3 = -e3; these axes are obtained by a rotation of 
e] and e2 through an angle of 8 followed by a reflection of e3 about the XI, X2 
plane. 

Although orthogonal transfor mations are very common, there are situations 
in which nonsingular nonorthogonal transfOlmations are useful. 

Example 2.14. Suppose we have several three-dimensional vectors 
XI, ... ,Xr that are observations from distributions, each having the same posi
tive definite covariance matrix O. If we are interested in how these vectors differ 
from one another, then a plot of the points in R3 may be useful. However, as 
discussed in Example 2.2, if 0 is not the identity matrix, then the Euclidean 
distance is not appropriate, and so it becomes difficult to compare and interpret 
the observed differences among the r points. This difficulty can be resolved by 
an appropriate transformation. We will see in a later chapter that since 0 is 
positive definite, there exists a nonsingular matrix T satisfying 0 = TT'. If we 
let Uj = T-Ixj, then the Mahalanobis distance, which was defined in Example 
2.2, between X; and Xj is 

do(x;,Xj) = {(x; - Xj)'O-I(X; - Xj)}1/2 

= {(x; -Xj)'T'-lrl(x; _Xj)}1/2 

= {(rlx; - rIXj)'(rIXj - rIXj)}1/2 

= {(u; - Uj)' (u; - Uj)} 1/2 = dl(u;, Uj), 

while the variance of Uj is given by 

var(Uj) = var(rlx;) = rl {var(xj)}T'-1 = rIOT'-1 = 13 

That is, the transformation Uj = rl X; produces vectors for which the Euclidean 
distance function is an appropriate measure of distance between points. 

In our next two examples, we discuss some transfollnations that are some
times useful in regression analysis. 
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Example 2.15. A simple transfollnation that is useful in some situations is 

one lhal centers a colleclion or numbers at the origin. For instance, if l' is the 

mean of the components of x = (Xl, ... ,xN )', then the average of the compo

nents of 

-
XI - X 

-
X2 - X 

• 
• 
• 

is O. This transfonnation is sometimes used in a regression analysis to center 

each of the explanatory variables. Thus the mUltiple regression model 

y = Xil + E = [IN 

can be reexpressed as 

y = {301N + {N-IINl~ + (IN - N-IINl~)}XI III + E 

= 1\)lN + Villi + E = V'Y + E, 

where V = [IN,Vd = [IN, (IN - N-IINl~)Xtl and'Y = (1\l,Il~)' = ({3o + 

W 11~ X I Ill' Il~)'. Since the columns of V I are orthogonal to IN, the least 

squares estimator of 'Y simplifies to 

-y 
-
- (V~VltIV~y 

, 

Thus, .yo = y. The estimator, Ill' can be conveniently expressed in terms of the 

sample covariance matrix of the N (k + 1) x I vectors that f01l1l the rows of 

the matrix [y X d. If we denote this covariance matrix by S and partition it 

as 

then (N - I)-I V~ VI = S22 and, since V~ IN = 0, 

• 
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~ 

Consequently, III = siis21' Yet another adjustment to the original regression 

model involves the standardization of the explanatory variables, In this case, 

the model becomes 

where 0 :: (oo,o~)', Z:: (IN ,ZI), 00 :: 'Yo, ZI :: V I Ds,I!2 and 01 = D~(:IlI' 

The least estimators are 00:: y and'51 :: Riir21, -where we have parti
tioned the correlation matrix R in a fashion similar to that of S. 

The centering of explanatory variables, discussed previously, involves a lin

ear transfonnation on the columns of X I. In some situations, it is advantageous 

to employ a linear transfonnation on the rows of X" V I, or Z I. For instance. 

suppose that T is a kx k nonsingular matrix, and we define WI :: ZI T. ao = 00. 

and "I :: T-1o" so that the model 

can be written as 
, 

This second model uses a different set of explanatory variables than the first; 

its ith explanatory variable is a linear combination of the explanatory variables 

of the first model with the coefficients given by the ith column of T, However. 

the two models yield equivalent results in tellus of the fitted values, To see this. 

let 

so that W :: ZT*, and note that the vector of fitted values from the second 

model, 

y:: Wei:: W(W'WrIW'y = ZT*(T;Z'ZT*rIT;Z'y 

= ZT*T;I(Z'ZrIT;-IT;Z'y = Z(Z'Z)-IZ'y, 

is the same as that obtained from the first modeL 

Example 2.16. Consider the multiple regression model 

y = Xil + E, 

, , 

, 
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A 

where now Var(E):t a2IN' In this case, our previous estimator, p = (X'X)-IX'y, 
is still the least squares estimator of p, but it doesn't possess certain optimality 
properties, one of which is illustrated later in Example 3.13, that hold when 
Var(E) = a2IN. In this example, we will consider the situation in which the fiS 

are still uncorrelated, but their variances are not all the same. Thus, var( E) = 
n = a 2e, where e = diag(d, ... , c~) and the CiS are known constants. This 
special regression problem is sometimes referred to as weighted least squares 
regression. The weighted least squares estimator of P is obtained by miling 
a simple transfOlll1ation so that ordinary least squares regression applies to the 
transfollned model. Define the matrix e l / 2 = diag(ci l , ... ,c,} ) and transform 
the original regression problem by premultiplying the model equation by e- If2; 
the new model equation is 

or, equivalently, 

where y* = e- I/ 2y, X", = e- I/ 2x, and E* = e- I/2E. The covariance matrix of 
• 

• 

Thus. for the transfOlll1ed model, ordinary least squares regression applies and 
so the least squares estimator of P can be expressed as . 

A 

P = (X~X*rIX*y* 

Rewriting this in the original model tenns X and y, we get 

A • 

P = (X'C-1/2C-1/2Xrlx'C-1/2C-1/2y 

= (X'C-IX)-IX'C-Iy. 

A common application related to linear transfolll1ations is one in which the 
matrix A and vector u consist of known constants, while x ·is a vector of vari
ables, and we wish to deteIllline all x for which Ax = u; that is, we want to 
find the simultaneous solutions XI, •.. ,Xn to the system of m equations 

• 

• • 
" 

• , 
· 

• 

· , 

• 
• 
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• 
• 
• 

For instance, in Example 2.10, we saw that the least squares estimator of the , 
parameter vector p in the mUltiple regression model satisfies the, equation, XJl = 
X(X'XrlX'y; that is, here A = X, u = X(X'X)-IX'y, and x = Jl. In general, if 
u = 0, then this system of equations is referred to as a homogeneous system, and 
the set of all solutions to Ax = u, in this case, is simply given by the null space 
of A. Consequently, if A has full column rank, then x = 0 is the only solution, 
whereas there are infinitely many solutions if A has less than full column rank. 
A nonhomogeneous system of linear equations is one which has u :t O. While a 
homogeneous system always has at least one solution, x = 0, a nonhomogeneous 
system mayor may not have any solutions. A system of linear equations that 
has no solutions is called an inconsistent system of equations, while a system 
with solutions is referred to as a consistent system. If u :t 0 and Ax = u holds 
for some x, then u must be a linear combination of the columns of A; that is, 
the nonhomogeneous system of equations Ax = u is consistent if and only if u 
is in the column space of A. . 

The mathematics involved in solving systems of linear equations is most 
conveniently handled using matrix methods. For example, consider one of the 
simplest nonhomogeneous systems of linear equations in which the matrix A is 
square and nonsingular. In this case, since A -I exists, we find that the system 
Ax = u has a solution that is unique and is given by x = A -I u. Similarly, 
when the matrix A is singular or not even square, matrix methods can be used 
to detelllline whether the system is consistent, and if so, the solutions can be 
given as matrix expressions. These results regarding the solution of a general 
system of linear equations will be developed in Chapter 6. 

9. THE INTERSECTION AND SUM OF VECTOR SPACES 

In this section, we discuss some common ways of fOllning a vector subspace 
from two or more given subspaces. The first of these utilizes a familiar operation 
from set theory. 

Definition 2.12. Let SI and S2 be vector subspaces of Rm. The intersection 
of SI and S2, denoted by SI n S2, is the vector subspace given as 

Note that this definition says that the set sin S2 is a vector subspace if S I 
and S2 are vector subspaces. This follows from the fact that if XI and X2 are in 
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SI n S2, then XI E S" X2 E SI and XI E S2, X2 E S2. Thus, since SI and S2 are 

vector spaces, for any scalars (XI and (X2, (XIXI + (X2X2 will be in SI and S2 and 

hence also in SI n S2. Definition 2.12 can be generalized in an obvious fashion 

to the intersection, SI n ... n S,' of the r vector spaces S), ..• , S,. 

A second set operation, which combines the elements of SI and S2, is the 

union; that is, the union of S I and S2 is given by 

If SI and S2 are vector subspaces, then SI U S2 will also be a vector subspace 

only if SIS;;; S2 or S2 S;;; S I. It can be easily shown that the following combina

tion of SI and S2 yields the vector space with the smallest possible dimension 

containing S I U S2· 

Definition 2.13. If S I and S2 are vector subspaces of Rm , then the sum of 

SI and S2, denoted by SI + S2, is the vector space given by 

Again our definition can be generalized to SI + ... + S" the sum of the r 

vector spaces S I, ... , S,. The proof of the following theorem has been left as 
• an exercise. 

Theorem 2.22. If S I and Si are vector subspaces of Rm , then 

Example 2.17. Let SI and S2 be subspaces of R5 having bases {X),X2,X3} 

and {YI'Y2}' respectively, where 

XI = (1,0,0, 1,0)', 

X2 = (0,0, 1,0, 1)', 

x3 = (0, 1,0,0,0)', 

YI = (1,0,0, 1, 1)', 

Y2 = (0, 1, 1, 0, 0)' 

We wish to find bases for S I + S2 and sin S2. Now, clearly, S I + S2 is spanned 

by the set {XJ,X2,X3,YI'Y2}. Note that Y2 = XI + x2 + X3 - YI' and it can be 

easily verified that there are no constants (XI. (X2, (X3, (X4, except (XI = (X2 = (X3 = 

(X4 = 0, satisfying (XIXI + (X2X2 + (X3X3 + (X4YI = O. Thus, {XI ,X2,X3,YI} is a 

basis for SI + S2, and so dim(SI + S2) = 4. From Theorem 2.22, we know that 

dim(S I n S2) = 3 + 2 - 4 = 1, and so any basis for sin S2 consists of one vector. 

• 

• 
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The dependency between the xs and the ys will indicate an appropriate vector; 

that is, a basis for S, n S2 is given by the vector y, + Y2 = (1, I, I, I, I)', since 

y, + Y2 = x, +x2 +X3· 

When S, and S2 are such that S, n S2 = {O}, then the vector space obtained 

as the sum of S, and S2 is sometimes referred to as the direct sum of S, and 

S2 and written S, EB S2. In this special case, each XES, EB S2 has a unique 

representation as x = x, '+ X2, where x, E S, and X2 E S2. A further special 

case is one in which S, and S2 are orthogonal vector spaces; that is, for any 

x, E S, and X2 E S2, we have X;X2 = O. In this case, the unique representation 

x = x, + X2 for XES, EB S2 will have the vector x, given by the orthogonal 

projection of x onto S" while X2 will be given by the orthogonal projection of 

x onto S2. For instance, for any vector subspace S of Rill, Ern = S EB S.L, and for 

any x E Rm, 

x = Psx + PsJ.x 

In general, if a vector space S is the sum of the r vector spaces S" ... ,S" 

and Sj n Sj = {OJ for all i oJ j, then S is said to be the direct sum of S" ... , S, 

and is written as S = S, EB··· EB S,. 

Example 2.18. Consider the vector spaces S" ... , S"" where Si is spanned 

by {ej} and, as usual, ej is the ith column of the m x m identity matrix. Con

sider a second sequence of vector spaces, T" ... , T m, where Ti is spanned 

by {ei,ej+d if i ~ m - 1, while Tm isspanned by {e"em}. Then it follows 

that Rm = S, + ... + Sm,aswell as Rm = T, + ... + Tm. However, although 

Rm = SI EB ... EB Sm, it does not follow that Rm = T, EB ... EB T m, since it is 

not true that Ti n Tj = {O} for all i oJ j. Thus any x = (x" ... ,XIII)' in R"' can 

be expressed uniquely as a sum comprised of a vector from each of the spaces 

S" ... , Sm; namely 

where ej E Si' On the other hand, the decomposition corresponding to 

T" ... , T m is not unique. For instance, we can get the same sum above by 

choosing e, E T" e2 E T2,"" em E T m or by choosing e2 E T" e3 E 

T 2, ... , em E T m _ , , e lET m' In addition, the sum of the orthogonal projections 

of x onto the spaces S" ... ,Sm yields x, while the sum of the orthogonal projec

tions of x onto the spaces T" ... , T m yields 2x. Consider as a third sequence of 

vector spaces, VIo""'" Vm, where Vi has the basis {'Vi} and 'Vi = e, + .. ·+ei· 

Clearly, V/ n Vj = {OJ if i;J. j, so Rm = VI EB··· EB Vm and each x E Rill has 

a unique decomposition x = XI + ... + Xm with Xi E Vi. However, in this case, 

since the ViS are not orthogonal vector spaces, this decomposition of x is not 

given by the sum of the orthogonal projections of x onto the spaces V" ... , VIII' 
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10. CONVEX SETS 

A special type of subset of a vector space is known as a convex set. Such a set 
has the property that it contains any point on the line segment connecting any 
other two points in the set. A formal definition follows. 

Definition 2.14. 
and Xz E S, 

A set S !;; Rm is said to be a convex set if for any XI E S 

eXI + (I - e)x2 E S, 

where c is any scalar satisfying 0 < e < 1. 

The condition for a convex set is very similar to the condition for a vector 
space; for S to be a vector space, we must have for any XI E S and X2 E S, 

(XIXI + (X2XZ E S for all (XI and (X2, while for S to be a convex set, this need only 
hold when (XI and (X2 are nonnegative and (XI + (X2 = 1. Thus, any vector space 
is a convex set. However, many familiar sets that are not vector spaces are, in 
fact, convex sets. For instance, intervals in R, rectangles in R2, and ellipsoidal 
regions in Rm are all examples of convex sets. The linear combination of XI and 
Xz, (XIXI + (X2X2, is called a convex combination when (XI + (X2 = 1 and (Xj ~ 0 
for each i. More generally, (XIXI + ... + (XrX, is called a convex combination of 
the vectors XI, .•• ,X, when (XI + ... + (X, = I and (Xj ~ 0 for each i. Thus, by 
a simple induction argument, we see that a set S is convex if and only if it is 
closed under all convex combinations of vectors in S. 

The following result indicates that the intersection of convex sets and the sum 
of convex sets are themselves convex. The proof will be left as an exercise. 

Theorem 2.23. Suppose that SI and S2 are convex sets, where Sj !;; Rm for 
eac hi. Then the set 

(a) SI n S2 is convex, and 

(b) SI +S2 = {XI +X2: XI E S"X2 E S2} is convex. 

For any set S, the set C(S) defined as the intersection of all convex sets 
containing S is called the convex hull of S. Consequently, due to a generalization 
of Theorem 2.23(a), C(S) is the smallest convex ~et containing S. 

A point a is a limit or accumulation point of a set S ~ Rm if for any 0 > 0, 
the set So = {x: X E Rm, (x - a)'(x - a) < o} contains at least one point of S 
distinct from a. A closed set is one that contains all of its limit points. If S is a -
set, then S will denote its closure; that is, if So is the set of all limit points of S, - ' 

then S = SU So. In our next theorem, we see that the convexity of S guarantees -
the convexity of S. 
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-
Theorem 2.24. If S ~ Rm is a convex set, then its closure S is also a Convex 

set. 

Proof It is easily verified that the set Bn = {x: x E Rm, x' x ::;; n-]} is a 
convex set, where n is a positive integer. Consequently, it follows from Theorem 
2.23(b) that Cn = S + Bn is also convex. It also follows from a generalization 
of the result given in Theorem 2.23(a) that the set 

A= n Cn 

n= ] 

-
is convex. The result now follows by observing that A = S. o 

One of the most important results regarding convex sets is a theorem known 
as the separating hyperplane theorem. A hyperplane in Rm is a set of the fOlln, 
T = {x: x e Rm, a' x = e}, where a is an m x I vector and e is a scalar. Thus, 
if m = 2, T represents a line in R2 and if m = 3, T is a plane in R3. We will 
see that the separating hyperplane theorem states that two convex sets S] and 
S2 are separated by a hyperplane if their intersection is empty; that is, there 
is a hyperplane which partitions Rm into two parts so that S] is contained in 
one part, while S2 is contained in the other. Before proving this result, we will 
need to obtain some preliminary results. Our first result is a special case of 
the separating hyperplane theorem in which one of the sets contains the single 
point O. 

Theorem 2.25. Let S be a nonempty closed convex subset of Rm and sup
pose that 0 fJ. S. Then there exists an m x I vector a such that a'x > 0 for all 
xeS. 

Proof Let a be a point in S satisfying 

• , . f ' a a = In X x, 
rE S 

where inf denotes the infimum or greatest lower bound. It is a consequence of 
the fact that S is closed and nonemptythat such an a E S exists. In addition, 
a -J. 0 since 0 fJ. S. Now let e be an arbitrary scalar, x any vector in S except 
for a, and consider the vector ex + (1 - e)a. The squared length of this vector 
as a function of e is given by 

fee) = {ex + (1- e)a}' {ex + (I - e)a} = {e(x - a) +a}' {e(x - a) +a} 

= e2(x - a)'(x - a) + 2ea'(x - a) +a'a 



/ .. 

Since the second derivative of this quadratic function f(c) is positive. we find 

that it has a unique minimum at the point 

a'(x - a) 
c * = -,---':----'---,-

(x - a)'(x - a) 

Note that since S is convex. Xc ::= cx + (\ - c)a E S when 0 :s; c :s; 1. and so we 

must have x~xc = f(c) ~f(O) = a' a for 0 ::; c ::; 1 due to the way a was defined. 

But because of the quadratic structure of f(c). this implies thatf(c) > f(O) for 

all c > O. In other words. c* ::; O. and this leads to 

a'(x - a);::: O. 

or 

a'x;::: a'a > 0 o 
-

A point x* is an interior point of S if there exists a 0 > 0 such that the set 

S8 = {x: x E Rm. (x - xS(x - x*) < o} is a subset of S. On the other hand. x* 

is a boundary point of S if for each 0 > O. the set S8 contains at least one point 

in S and at least one point not in S. Our next result shows that the sets S and 
-
S have the same interior points if S is convex. 

Theorem 2.26. Suppose that S is a convex subset of Rm. while T is an open 
-

subset of Rm. If T c S. then T c S. 

Proof Let x* be an arbitrary point in T and define the sets 

It follows from the conditions of the theorem that S* is convex. T * is open. and 
-

T * c S*_ The proof will be complete if we can show that 0 E S* since this will 

imply that x* E S. Since 0 E T * and T * is an open set. we can find an e > 0 

such that each of the vectors. eel. _. _. eem • -elm are in T *. Since these vectors 
-

also must be in S*. we can find sequences. Xil,Xi2 ••..• for i = 1.2, ... ,m + 1, 

such that each xi) E S* and xi) -7 eej for i = l .... ,m, and xij -7 -elm for 

i = m+ 1, asj -7 00. Define the mxm matrix Xj = (Xlj, .... xmj) so thatXj -7 elm. 

as j -700. It follows that there exists an integer N, such that Xj is nonsingular 

for all j > N I . For j > N I • define 

(2.14) 

so that 



• , . 
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• 
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Thus there exists some integer N2 ~ N I , such that for all j > N2 , all of the 

components of Yj are negative. But from (2.14) we have 

Xm+I,j - XjYj = [Xj 
• 

This same e?:uation holds if we replace the vector (-yj, I)' by the unit vector 

(YfYj + 1)-1 2(_Yj, I)'. Thus 0 is a convex combination of the columns of 

[Xj xm+ I,j], each of which is in S*, so since S* is convex, 0 E S*. 0 

The next result is sometimes called the supporting hyperplane theorem. It 

states that for any boundary point of a convex set S, there exists a hyperplane 

. passing through that point such that none of the points of S are on one side of 

the hyperplane. 

Theorem 2.27. Suppose that S is a convex subset of Rm and that X* either 

is not in S or is a boundary point of S if it is in S. Then there exists an m x 1 

vector b -J. 0 such that b'x ~ b'x* for all XES. 

-
Proof It follows from the previous theorem that X* also is not in S or must 

- -
be a boundary point of S if it is in S. Consequently, there exists a sequence of 

-
vectors, Xl ,X2, ... with each Xi fJ. S such that Xi ~ X* as i ~ 00. Corresponding 

-
to each Xi, define the set Si = {y: Y = X - Xi, xeS}, and note that 0 fJ. Si since 

- -
Xi fJ. S. Thus, since Si is closed and convex by Theorem 2.24, it follows from 

Theorem 2.25 that there exists an m x m vector ai such that a;y > 0 for all 

Y e Si or, equival.!ntly, a; (x - Xi) > 0 for all xeS. Alternatively, we can write 

this as b;(x - Xi) > 0, where bi = (a;aj)-1/2ai . Now since b;bi = 1, the sequence 

b .. b2, ... , is a bounded sequence and so it has a convergent subsequence; that 

is, there are positive integers il < i2 < . ", and some m x I unit vector b such 

that bij ~ b as j ~ 00. Consequently, b;. (x - Xij) ~ b' (x - x *) as j ~ 00, and 

we must have b'(x - x*) ~ 0 for all X e'S since b;.(x - XI') > 0 for all XES. 
. , } 

This completes the proof. 0 

We are now ready to prove the separating hyperplane theorem. 

Theorem 2.28. Let SI and S2 be convex subsets of Rm with SI n S2 = 0. 

Then there exists an m x I vector b -J. 0 such that b' X I ~ b' X2 for all X I E S I 

and all X2 e S2. 

Proof. Clearly the set S2. = {x; -x E S2} is convex since S2 is convex. 

Thus from Theorem 2.23 we know that the set 
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is also convex. In addition, 0 e S since SI n S2 = 0. Consequently, using 
Theorem 2.27, we find that there is an m X I vector b:J. 0 for which b'x ~ 0 for 
all XES. But this implies that b' (XI - X2) ~ 0 for all XI E SI and all X2 E S2, 

as is required. 0 

Suppose thatf(x) is a nonnegative function which is symmetric about X = 0 
and has only one maximum, occurring at x = 0; in other words,f(x) =f(-x) 
for all x and f(x) ~ f(cx) if 0 ~ c ~ 1. Clearly, the integral of f(x) over an 
interval of fixed length will be maximized when the interval is centered at O. 
This can be expressed as 

a a 

f(x + cy) dx ~ f(x + y) dx, 
-0 -a 

for any y, a > 0, and 0 ~ c ~ I. This result has some important applications 
regarding probabilities of random variables. The following result, which is a 
generalization to a function f(x) of the m X 1 vector X replaces the interval in 
RI by a symmetric convex set in Rm. This generalization is due to Anderson 
(1955). For simple applications of the result to probabilities of random vectors, 
see Problem 2.44. 

Theorem 2.29. Let S be a convex subset of ~, symmetric about 0, so that 
if XES, -x E S also. Let f(x) ~ 0 be a function for which f(x) = f( -x), Sa = 
(x : f(x) ;;?: a} is convex for any positive a, and Jsf(x) dx < 00. Then 

f(x+cy)dx~ f(x+y)dx, 
s s 

for 0 ~ c ~ I and Y E Rm. 

A more comprehensive discussion of convex sets can be found in Kelly and 
Weiss (1979), Lay (1982), and Rockafellar (1970), while some applications of 
the separating hyperplane theorem to statistical decision theory can be found 
in Ferguson (1967). 

PROBLEMS 

I. Determine whether each of the following sets of vectors is a vector space. 
(a) {(a, b, a + b, I)': -00 < a < 00, -00 < b < oo}. J. 
(b) {(a,b,c,a+ b - 2c)': -00 < a < 00,-00 < b < 00,-00 < c < oo}. -I 
(c) {(a, b, c, I - a - b - c)': -00 < a < 00, -00 < b < 00, -00 < c < oo}. X 
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2. Consider the vector space 

s= {(a,a+b,a+ b, -b)': -00 < a < 00, -00 < b < oo} 

Determine which of the following sets of vectors are spanning sets of S. 

(a) {(I,0,0,1)',(1,2,2,-I)'}. 

(b) {(t, 1,0,0),,(0,0, I,-I)'}. 

(c) {(2, I, I, 1),,(3, I, 1,2)',(3,2,2, I)'}. 

(d) {(1,0, 0, 0)"(0, I, 1,0)',(0,0,0, I)'}. 

3. Is the vector x = (1, I, I, I)' in the vector space S given in Problem 2? Is 
the vector y = (4, I, 1,3)' in S? 

4. Let {XI, •.• ,xr } be a set of vectors in a vector space S and let W be the 
vector subspace consisting of all possible linear combinations of these vec
tors. Prove that W is the smallest subspace of S that contains the vectors 
XI, .•• ,Xr ; that is, show that if V is another vector subspace containing 
X" ... ,x" then W is a subspace of V. 

5. Suppose that X is a random vector having a distribution with mean vector 
fI. and covariance matrix 0 given by 

I 
fI.= I ' 

0= 
I 

-0.5 
-0.5 

I 

Let XI = (2,2), and X2 = (2,0)' be two observations from this distribution. 
Use the Mahalanobis distance function to determine which of these two 
observations is closer to the mean. 

6. Show that the functions IIxlip and Ilxll~ defined in Section 2.2 are, in fact, 
vector norms. 

7. Prove Theorem 2.3. 

8. Show that the set of vectors {(l,2,2,2)',(1,2, 1,2),,(1,1, I, I)'} is a lin
early independent set. 

9. Consider the set of vectors 

{(2, 1,4,3)', (3, 0, 5, 2)', (0, 3, 2, 5)', (4, 2, 8, 6)'} 

(a) Show that this set of vectors is linearly dependent. 
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(b) From this set of four vectors find a subset of two vectors that is a 

linearly independent set. 

10. Which of the following sets of vectors are bases for ~? 

(a) {CO, 1,0, 1)',(1, 1,0,0)',(0,0, 1, In. 

(b) {(2,2,2, 1),,(2, 1, 1, 1),,(3,2, I, 1)',(1, I, 1, I)'}. 

(c) {(2,0, 1, 1)',(3, 1,2,2)',(2, 1, 1,2)',(2, 1,2, In. 

II. Prove the results of Theorem 2.8. 

12. Prove that if a set of orthogonal vectors does not contain the null vector, 

it is a linearly independent set. 

13. Find a basis for the vector space given in Problem 2. What is the dimension 

of this vector space? Find a second different basis for this same vector 

space. 

14. Show that the set of vectors {'Y I' ... , 'Y m}' given in Example 2.4, is a basis 

for Rm. 

IS. Let A be an m x n matrix and B be an n x p matrix. Show that 

(a) R(AB) ~ R(A). 

(b) R(AB) = R(A) if rank(AB) = rank(A). 

16. Suppose A and Bare m x n matrices. Show that there exists an n x n matrix 

C satisfying AC = B if and only if R(B) ~ R(A). 

17. Prove the results of Theorem 2.11. 

18. Let A, B, and C be p x n, m x q, and m x n matrices, respectively. Prove 

that 

rank 
C B 
A (0) 

= rank(A) + rank(B) 

if there exist an mX p matrix F and a q x n matrix G such that C = FA + BG. 

19. Let A be an m x n matrix and B an n x p matrix with rank(B) = n. Show 

that rank(A) = rank(AB). 
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20. Refer to Examples 2.7 and 2.9. Find the matrix A satisfying 21 = XIA. 

where 21 = (Z"Z2, Z3) and XI = (XioX2,X3). Show that AA' = (X;XI )-1. 

21. Let S be the vector space spanned by the vectors XI = (1,2, 1,2)'.x~ = 

(2,3,1,2), ,x3 = (3,4, -1, 0)', and X4 = (3,4,0, 1)' . 
• 

(a) Find a basis for S. 

(b) Use the Gram-Schmidt procedure on the basis found in (a) to detellnine 

an orthonormal basis for S. 

(c) Find the orthogonal projection of X = (1, 0, 0, 1)' onto S. 

(d) Find the component of X orthogonal to S. 

22. Using equation (2.7), determine the projection matrix for the vector space 

S given in Problem 21. Use this to compute the orthogonal projection of 

x = (1,0,0,1)' onto S. 

23. Let S be the vector space spanned by the vectors XI = (1,2,3)' and X~ = 
(1, 1, -1)'. Find the point in S that is closest to the poin t X = (1, I, I)'. 

24. Suppose S is a vector subspace of f?4 having the projection matrix 

6 
1 -2 

Ps = 10 -2 
-4 

(a) What is the dimension of S? 

(b) Find a basis for S. 

-2 
9 

-1 
-2 

-2 -4 
-1 -2 

9 -2 
-2 6 

i 25. Consider the vector space S = {u: u = Ax,x E f?4}, where A is the 4 x 4 
I 
: matrix given by 

1 2 0 1 
• 

A= 
1 I 2 2 
1 0 4 3 
1 3 -2 0 

(a) Detennine the dimension of S and find a basis. 

(b) Detennine the dimension of the null space N(A) and find a basis for it 

(c) Is the vector (3,5,2,4)' in S? 

(d) Is the vector (1,1,1,1)' in N(A)? 
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26. Let x E R" and suppose that u(x) defines a linear transformation of 
Rn into R'". Using the basis {el, ... , en} for Jr' and the m x I vectors 
u(el),"" u(en ), prove that there exists an m x n matrix A for which 

u(x) = Ax, 

for every x E Rn. 

27. Let T be a vector subspace of Rn and suppose that S is the subspace of R'" 
given by 

S = {u(x): x E T}, 

where the transfOlll1ation defined by u is linear. Show that there exists an 
II! x 11 matrix A satisfying 

u(x) = Ax, 

for every x E T. 

28. Let T be the vector space spanned by the two vectors XI = (1, 1,0)' and X2 = 
(0, I, I)'. Let S be the vector space defined as S = {u(x): x E T}, where 
the function u defines a linear transformation satisfying u(xj} = (2,3, 1), 
and U(X2) = (2,5,3)'. Find a matrix A such that u(x) = Ax, for all x E T. 

29. Consider the linear transformation defined by 

-
XI -x 

-
u(x) = 

X2 - x 
• , 
• 
• 

-Xm -x 

for all x E Rill, where x = (l!m)Ex j • Find the matrix A for which u(x) = Ax 
and then detellnine the dimension of the range and null spaces. 

30. In an introductory statistics course, students must take three l00-point 
exams followed by a 150-point final exam. We will identify the scores on 
these exams with the variables XI.X~.X:1. and y. We want to be able to esti
mate the value of yonce X"X2, and X3 are known. A class of 32 students 
produced the following set of exam scores. 
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1 
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Student XI X2 X3 Y Student XI X2 X3 Y 
1 87 89 92 111 17 72 76 96 116 
2 72 85 77 99 18 73 70 52 78 
3 67 79 54 82 19 73 61 86 101 
4 79 71 68 136 20 73 83 76 82 
5 60 67 53 73 21 97 99 97 141 
6 83 84 92 107 22 84 92 86 112 
7 82 88 76 106 23 82 68 73 62 
8 87 68 91 128 24 61 59 77 56 
9 88 66 65 95 25 78 73 81 137 

10 62 68 63 108 26 84 73 68 118 
11 100 100 100 142 27 57 47 71 108 
12 87 82 80 89 28 87 95 84 121 
13 72 94 76 109 29 62 29 66 71 

• 

14 86 92 98 140 30 77 82 81 123 
15 85 82 62 117 31 52 66 71 102 
16 62 50 71 102 32 95 99 96 130 

(a) Find the least squares estimator for /3 = ({3o,{31, (32, (33)' in the multiple 
regression model 

(b) Find the least squares estimator for /31 = ((30,{31,{32)' in the model 

(c) Compute the reduction in the sum of squared errors attributable to the 
inclusion of the variable X3 in the model given in (a). 

31. Suppose that we have independent samples of a response y corresponding 
to k different treatments with a sample size of ni responses from the ith 
treatment. If the jth observation from the ith treatment is denoted, Yij, then 
the model 

is known as the one-way classification model. Here P.i represents the 
expected value of a response from treatment i, while the EijS are indepen
dent and identically distributed as N(O, u2 ). 

(a) If we let /3 = (p.1,"" p.d, write the model above in matrix form by 
defining y, X, and E so that y = X/3 + E. 

(b) Find the least squares estimator of /3 and show that the sum of squared 
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errors for the corresponding fitted model is given by 

where 

k IIi 

SSE, = (Yij - Yi)2, 

i=' j=' 

ni 

Yi = L Yij/ni 
j - I 

(c) If 1-" = ... = I-'k = 1-', then the reduced model 

Yij = I-' + Eij 

VECTOR SPACES 

holds for all j and j. Find the least squares estimator of I-' and the sum 

of squared errors SSE2 for the fitted reduced model. Show that SS~ -

SSE" referred to as the sum of squares for treatment and denoted SST, 

can be expressed as 

k 

SST= ( - -)2 ni Yi - Y , 
i = , 

where 

k 

Y = ~ niy;/n, 
i = , 

(d) Show that the F statistic given in (2.8) takes the fOlln 

F= 
SST/(k - 1) 

SSE,/(n - k) 

32. ~uppose that we have the model Y = Xp + E and wish to find the estimator 

p which minimizes 

. , . 
(Y - XP) (y - XP), 

• • 
subject to the restriction that p satisfies Ap = 0, where X has full column 

rank and A has full row rank. 

• 
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(a) Show that S = {y: y = Xp, AP = O} is a vector space. 

(b) Let C by any matrix whose columns fOlln a basis for the null space of 

A; that is, C satisfies the identity C(C'C)-'C' = 1- A'(AA't'A. Using 

the geometrical properties of least squares estimators. show that the 
~ 

restricted least squares estimator p is given by 

. p = C(C'X'XC)-'C'X'y 

33. Let S, and S2 be vector subspaces of Rm. Show that S, + S2 also must be 

a vector subspace of If". 

34. Let St and S2 be vector subspaces of Rm. Show that S, + S2 is the vector 

space of smallest dimension containing S, U S2' In other words. show that 

if T is a vector space for which S, U S2 ~ T, then S, + S2 ~ T. 

35. Prove Theorem 2.22. 

36. Let S, and S2 be vector subspaces of Rm. Suppose that {x" ... , X r} spans 

S, and {YI"",Yh} spans S2' Show that {XI, ... ,Xr,Y" ... ,y,,} spans the 

vector space SI + S2. 

37. Let SI be the vector space spanned by the vectors 

3 1 2 

1 1 . 1 
x, = 3 

, X2 = 1 
, X3 = 2 

1 1 1 

while the vector space S2 is spanned by the vectors 

3 
0 

YI= 5 
, Y2 = 

-1 

Find the following. 

(a) Bases for SI and S2' 

(b) The dimension of SI + S2' 

(c) A basis for SI + S2. 

(d) The dimension of SI n S2. 

(e) A basis for SI n S2' 

1 1 

2 -4 
• Y3 = 
3 

, -1 

1 -3 

, 
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38. Let 51 and 52 be vector subspaces of R'" with dim(S)) = '1 and dim(52) = '2. 

(a) Find expressions in terllls of m, 'I, and '2 for the smallest and largest 
possible values of dim(51 + 52). 

(b) Find the smallest and largest possible values of dim(SI n S2). 

39. Let T be the vector space spanned by the vectors {(l, I, 1)', (2,1, 2)'}. Find 
a vector space SI such that R3 = T E9 SI. Find another vector space 52 such 
that R3 = T E9 S2 and SI n S2 = {O}. 

40. Let 5, be the vector space spanned by {(1,I,-2,O)',(2,O,I,-3)'), while 
5c is spanned by {(I, I, I, -3)', 0, 1, 1, O'}. Show that Ir = s, + S2' Is this 
a direct sum? That is, can we write S, E9 S2? Are SI and S2 orthogonal 
vector spaces? 

41. Let 5, and 52 be vector subspaces of Rm and let T = SI + S2. Show that 
this sum is a direct sum, that is, T = S, E9 S2 if and only if 

42. The concept of orthogonal projections and their associated projection matri
ces can be extended to projections that are not orthogonal. In the case of 
orthogonal projections onto the vector space S ~ Rm, we decompose Rm 

as Rm = 5 E9 S1.. The projection matrix that projects orthogonally onto S 
is the matrix P satisfying Py E S and (y - Py) E S1. for all y E Rm and 
Px = x for alI XES. If S is the column space of the full rank matrix X, 
then S1. wiII be the null space of X', and the projection matrix described 
above is given by P = X(X'X)-IX'. Suppose now that we decompose Rm 

as Rm = S E9 T, where S is as before and T is the nuIl space of the full rank 
matrix Y'. Note that S and T are not necessarily orthogonal vector spaces; 
We wish to find a projection matrix Q satisfying Qy E S and (y - Qy) E T 
for alI Y E Rm and Qx = x for all XES. 

(a) Show that Q is a projection matrix if and only if it is an idempotent 
matrix. 

(b) Show that Q can be expressed as Q = X(y'X)-1 Y'. 

43. Prove Theorem 2.23. 
, 

44. Show that if 5, and 52 are convex subsets of Rm, then SI U S2 need not be 
convex. 

45. Show that for any positive scalar n, the set Bn = {x: x E Rm ,x'x $; n- I } is 
convex. 
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46. For any set S !;; Ir", show that its convex hull C(S) consists of all convex 
combinations of the vectors in S. 

47. Suppose that S is a nonempty subset of Rm. Show that every vector in the 
convex hull of S can be expressed as a convex combination of m + I or 
fewer vectors in S. 

48. Let x be an mx 1 random vector with density functionf(x) such thatf(x) = 
f( -x) and the set {x: f(x) <!: Ci} is convex for all positive Ci. Suppose that 
S is a convex subset of Rm, symmetric about 0. 

(a) Show that P(x + cy E S) <!: P(x + YES) for any constant vector YES 
andO~c~1. 

. 

(b) Show that the inequality in (a) also holds if Y is an mX 1 random vector 
distributed independently of x. 

(c) Show that if x - Nm(O, {1), its density function satisfies the conditions 
of this exercise. 

(d) Show that if x and y are independently distributed with x - Nm(O, {1 I) 
and y - Nm(O, {12) such that {1 I - {12 is nonnegative definite, then 
P(x E S) ~ P(y E S). 



CHAPTER THREE 

Eigenvalues and Eigenvectors 

1. INTRODUCTION 

Eigenvalues and eigenvectors are special implicitly defined functions of the 

elements of a square matrix. In many applications involving the analysis of 

a square matrix, the key infO! mation from the analysis is provided by some or 

all of these eigenvalues and eigenvectors. This is a consequence of some of the 

properties of eigenvalues and eigenvectors that we will develop in this chapter. 

But before we get to these properties, we must first understand how eigenvalues 

and eigenvectors are defined and how they are calculated. 

2. EIGENVALUES, EIGENVECTORS, AND EIGENSPACES 

If A is an m x m matrix, then any scalar A satisfying the equation 

Ax = AX, (3.1) 

for some mX 1 vector X 0/. 0, is called an eigenvalue of A. The vector x is called 

an eigenvector of A corresponding to the eigenvalue A, and equation (3.1) is 

called the eigenvalue-eigenvector equation of A. Eigenvalues and eigenvectors 

are also sometimes referred to as latent roots and vectors or characteristic roots 

and vectors. Equation (3.1) can be equivalently expressed as 

(A - AI)x = 0 (3.2) 

Note that if IA - All 0/. 0, then (A - Alt I would exist and so premultiplication of 

equation (3.2) by this inverse would lead to a contradiction of the already stated 

assumption that x 0/. o. Thus, any eigenvalue A must satisfy the detellllinantal 

equation . 

IA - All = 0, 

84 
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which is known as the characteristic equation of A. Using the definition of a 

detellninant, we readily observe that the characteristic equation is an mth degree 

polynomial in A; that is, there are scalars ao, ... ,am _ \ such that the character

istic equation above can be expressed equivalently as 

• 

Since an mth degree polynomial has m roots, it follows that an mx m matrix has 

m eigenvalues; that is, there are m scalars A \, ... ,Am, which satisfy the charac

teristic equation. When all of the eigenvalues of A are real, we will sometimes 

find it notationally convenient to identify the ith largest eigenvalue of the matrix 

A as A;(A). In other words, in this case the ordered eigenvalues of A may be 

written as A 1 (A) ~ ... ~ Am (A). 

The characteristic equation can be used to obtain the eigenvalues of the 

matrix A. These can be then used in the eigenvalue-eigenvector equation to 

obtain corresponding eigenvectors. 

Example 3.1. We will find the eigenvalues and eigenvectors of the 3 x 3 

matrix A given by 

5 -3 3 

A = 4 -2 3 
4 -4 5 

The characteristic equation of A is 

5 - A -3 3 

IA - All = 4 - 2 - A 3 
4 -4 5 - A 

= -(5 - Af(2 + A) - 3(4)2 - 4(3)2 

+ 3(4)(2 + A) + 3(4)(5 - A) + 3(4)(5 - A) 

= _A3 + 8A2 - 17A + 10 

= -(A - 5)(A - 2)(A - 1) = 0, 

so the three eigenvalues of A are I, 2, and 5. To find an eigenvector of A cor

responding to the eigenvalue A = 5, we must solve the equation Ax = 5x for x, 

which yields the system of equations 

5x\ - 3X2 + 3X3 = 5x\ 

4x\ - 2x2 + 3X3 = 5X2 

4x\ - 4X2 + 5X3 = 5X3 
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The first and third equations imply that X2 = X3 and XI = X2, which when used 
in the second equation yields the identity X2 = X2. Thus, X2 is arbitrary and so 
any x having XI = X2 = X3. such as the vector (1, I, I)', is an eigenvector of A 
associated with the root 5. In a similar fashion, by solving the equation Ax = AX, 
when A = 2 and A = I, we find that (I, 1, 0)' is an eigenvector corresponding 
to the eigenvalue 2. and (0, I, I)' is an eigenvector corresponding to the eigen
value I. 

Note that if a nonnull vector X satisfies (3.1) for a given value of A, then so 
will (ax) for any nonzero scalar a. Thus, eigenvectors are not uniquely defined 
unless we impose some scale constraint; for instance, we might only consider 
eigenvectors, x, satisfying x'x = l. In this case, for the previous example we 
would obtain the three normalized eigenvectors (l/-J3, 1/-J3, 1/-J3)', (1/V2, 
1/V2, 0)' and (0.1/V2. 1/V2)' corresponding to the eigenvalues 5, 2. and 1, 
respectively. These nOlll1alized eigenvectors are unique except for sign, since 
each of these eigenvectors. when multiplied by -I, yields another norillalized 
eigenvector. 

The following example illustrates the fact that a real matrix may have com
plex eigenvalues and eigenvectors. 

Example 3.2. The matrix 

has the characteristic equation 

I 

I I 
A= 

-2 -I 

IA - AI I = I - A 
-2 -I - A 

so that the eigenvalues of A are i = vCl and -i. To find an eigenvector cor
responding to the root i, write x = (Xt.X2)' = (YI + iZl,Y2 + iZ2)' and solve for 
)'1.)'2. Z I. <:2 using the equation Ax = ix. From this we find that for any real 
scalar a -I O. X = (a + ia. -2a)' is an eigenvector corresponding to the eigen
value i. In a similar manner, it can be shown that an eigenvector associated 
with the eigenvalue -i has the forill X = (01 - iOl, -ia)'. 

The m eigenvalues of a matrix A need not all be different since the char
acteristic equation may have repeated roots. An eigenvalue that occurs as a 
single solution to the characteristic equation will be called a simple or dis
tinct eigenvalue. Otherwise, an eigenvalue will be called a multiple eigen
value. and its multiplicity will be given by the number of times this solution is 
repeated. 
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In some situations, we will find it useful to work with the set of all eigenvec
tors associated with a specific eigenvalue. This collection, SA ()..), of all eigen
vectors corresponding to the particular eigenvalue }.., along with the trivial vec
tor 0, is called the eigenspace of A associated with }..; that is, SA (}..) is given by 
SA(}..) = {x: x E Rm and Ax = }..x}. 

Theorem 3.1. If SA (}..) is the eigenspace of the m x m matrix A correspond
ing to the root }.., then SA (}..) is a vector subspace of Rm. 

Proof By definition, if x E SA(}..), then Ax = }..x. Thus, if x E SA(}..) and 
Y E SA(}..), we have for any scalars a and {3 

A(ax + (3y) = aAx + (3Ay = a(}..x) + (3("Ay) = "A (ax + (3y) 

Consequently, (ax + (3y) E SA(}..), and so SA ("A) is a vector space. 

Example 3.3. The matrix 

2 -I 0 
A = 0 I 0 

has the characteristic equation 

2-}" 

o 
o 

-I 
I -"A 
o 

o 0 I 

o 
o = (l - "A)\2 - "A) = 0, 

l-}.. 

o 

and so the eigenvalues of A are I, with multiplicity 2, and 2. To find SA(l), the 
eigenspace corresponding to the eigenvalue I, we solve the equation Ax = x for 
x. We leave it to the reader to verify that this leads to two linearly independent 
solutions; any solution to Ax = x will be a linear combination of the two vectors 
XI = (0,0, I)' and X2 = (I, 1,0)'. Thus, SA (I) is thc subspace spanned by the basis 
{XhX2}; that is, SAO) is a plane in R3. In a similar fashion, we may find the 
eigenspace SA(2). Solving Ax = 2x, we find that x must be a scalar mUltiple of 
(1,0,0)'. Thus, SA(2) is the line in R3 given by {(a, 0, 0)': -00 < a < oo}. 

In the preceding example, for each value of}", we have dim{S(},,)} being 
equal to the multiplicity of}... This is not always the case; the following example 
illustrates that it is possible for dim {S(}")} to be less than the multiplicity of 
the eigenvalue }... 
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Example 3.4. Consider the 3 x 3 matrix given by 

123 
A= 0 1 0 

021 

Since IA - All = (1 - A)3, A has the eigenvalue 1 repeated three times. The 

eigenvalue-eigenvector equation Ax = AX yields the three scalar equations 

XI + 2X2 + 3X3 = XI 

X2 = X2 

2x2 +X3 = X3, 

which have as a solution only vectors of the fOHn x = (a, 0, 0)'. Thus, although 

the multiplicity of the eigenvalue 1 is 3, the associated eigenspace SA (1) = 

{(a, 0, 0)': -00 < a < oo} is only one-dimensional. 

3. SOME BASIC PROPERTIES OF EIGENV ALVES 

AND EIGENVECTORS 

In this section, we establish some very useful results regarding eigenvalues. 

The proofs of the results in our first theorem, which are left to the reader 

as an exercise, are easily obtained by using the characteristic equation or the 

eigenvaIue-eigenvector equation. 

Theorem 3.2. Let A be an m x m matrix. Then 

(a) The eigenvalues of A' are the same as the eigenvalues of A. 

(b) A is singular if and only if at least one eigenvalue of A is equal to O. 

(c) The .diagonal elements of A are the eigenvalues of A, if A is a triangular 

matrix. 

(d) The eigenvalues of BAB- I are the same as the eigenvalues of A, if B is 

a nonsingular m x m matrix. 

(e) Each of the eigenvalues of A is either +1 or -I, if A is an orthogonal 

matrix. 

We saw in Example 3.4 that it is possible for the dimension of an eigenspace 

associated with an eigenvalue A to be less than the multiplicity of A. The fol

lowing theorem shows that if dim{SA(A)} i. r, where r denotes the multiplicity 

of A, then dim{SA(A)} < r. 

Theorem 3.3. Suppose A is an eigenvalue, with multiplicity r <!: I, of the 

m x m matrix A. Then 

• 
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Proof. If A is an eigenvalue of A, by definition there exists an x of- 0 satisfy

ing the eigenvalue eigenvector equation Ax = AX and so, clearly, dim{SA(A)} ~ 

l. Now let k == dim{SA(A)}, and let x" ... ,Xk be linearly independent eigen

vectors corresponding to }.;. FOIm a nonsingular m x m matrix X which has 

these k vectors as its first k columns; that is, X has the fOl m X = [X I X ~), 
• 

where X I == (x" ... ,xd and X2 is m x (m - k). Since each column of X I is an 

eigenvector of A corresponding to the eigenvalue A, it follows that A XI = AX I. 

and 

follows from the fact that X-I X = 1m. As a result we find that 

--

where BI and B2 represent a partitioning of the matrix X-I AX2. If p. is an eigen

value of X-I AX, then 

O=IX-IAX- 11= (}..-p.)Ik 8 1 

p. m (0) 82 - p.l", _ k 

= (A - p.)k IB2 - p'lm _ k I. 

where the last equality can be obtained by repeated use of the cofactor expan

sion fOlillula for a determinant. Thus, A must be an eigenvalue of X-I AX with 

multiplicity of at least k. The result now follows since, from Theorem 3.2(d). 

the eigenvalues of X-lAX are the same as those of A. [J 

We now prove the following theorem involving both the eigenvalues and the 

I eigenvectors of a matrix. 

Theorem 3.4. Let A be an eigenvalue of the m x m matrix A and let x be 

a corresponding eigenvector. Then, 

(a) If n is an integer ~ I, An is an eigenvalue of A" corresponding to the 

eigenvector x. 

(b) If A is nonsingular, A-I is an eigenvalue of A -I corresponding to the 

eigenvector x. 
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Proof Part (a) is proven by repeatedly using the relationship Ax = AX; that 
is, we have 

To prove part (b), premultiply the eigenvalue eigenvector equation 

AX=AX 

by A -I, yielding the equation 

(3.3) 

Since A is nonsingular, we know from Theorem 3.2(b) that Ai. 0, and so divid
ing both sides of (3,3) by A yields 

A-I ,\-1 
X = 1\ X, 

which is the eigenvalue--eigenvector equation for A -I, with eigenvalue A -I and 
eigenvector x. 0 

The detellninant and trace of a matrix have very simple and useful relation
ships with the eigenvalues of that matrix. These relationships are established in 
the next theorem. 

Theorem 3.5. Let A be an m x m matrix with eigenvalues A I, ... ,Am. Then 

(a) tr(A) = 2.;~ IAi. 

(b) IAI = 11;: I A" 

Proof Recall that the characteristic equation, lA-AIl = 0, can be expressed 
in the polynomial f01 m 

(3.4) 

, 

We will first identify the coefficients ao and am-I. We can determine ao b)' 
evaluating the left-hand side of equation (3.4) atA = 0; thus, ao = IA - (0)11 = 
IAI. In order to find am _ I, recall that, from its definition, the detellninant is 
expressed as a sum of te1lns over all permutations of the integers (1,2, ... ,m). 
Since am _ I is the coefficient of (_A)m - I, to evaluate this term we only need 
to consider the telll1S in the sum which involve at least m - 1 of the diagonal 
elements of (A - AI). But each terlll in the sum is the product of m elements 
from the matrix (A - AI), multiplied by the appropriate sign, with one element 
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chosen from each row and each column of (A - AI). Consequently, the only 
term in the sum involving at least m - 1 of the diagonal elements of (A - AI) 
is the term that involves the product of all of the diagonal elements. Since this 
term involves an even perlllutation, the sign term will equal +1, and so O:m- I 

will be the coefficient of (_A)m-I in 

(all - A)(a22 - A)' .. (amm - A), 

which clearly is all + a22 + ... +amm or simply tr(A). Now to relate 0:0 = IAI and 
O:m _ I = tr(A) to the eigenvalues of A, note that since AI, ... ,Am are the roots to 
the characteristic equation, which is an mth degree polynomial in A, it follows 
that 

Multiplying out the left-hand side of this equation and then matching corre
sponding terms with those in (3.4), we find that 

m m 

IAI = tr(A) = o 
i = I i= I 

The following theorem gives a sufficient condition for a set of eigenvectors 
to be linearly independent. 

Theorem 3.6. Suppose XI, ••. ,Xr are eigenvectors of the m x m matrix A, 
where r ~ m. If the corresponding eigenvalues A I, ... ,Ar are such that Ai i- Aj 
for all i i-j, then the vectors XI, ... ,Xr are linearly independent. 

• 
Proof Our proof is by contradiction; that is, we begin by assuming that the 

vectors XI, .•. ,Xr are linearly dependent. Let h be the largest integer for which 
Xt. ... ,Xh are linearly independent. Such a set can be found since XJ, being 
an eigenvector, cannot equal 0, and so it is linearly independent. The vectors 
Xt. ... ,Xh+ I must be linearly dependent, so there exist scalars 0:1, .•• , O:h+ I with 
at least two not equal to zero since no eigenvector can be the null vector, such 
that 

Premultiplying the left-hand side of this equation by (A - Ah + I I), we find that 



t.lut.N v ALUt.:> ANU t.lut.N Vt.t; I UK:> 

al (A - Ah+ I I)xl + ... + Clh+ I (A - Ah+ Il)xh+ I 

= al(Axl - Ah+ IXI) + ... + Clh+ I(Axh+ 1- Ah+ IXh+ I) 

= al(AI - Ah+ l)xl + ... + Clh(Ah - Ah+ l)xh 

also must be equal to O. But XI, ... ,Xh are linearly independent so it follows 
that 

We know that at least one of the scalars a I, ... , ah is not equal to zero, and if, 
for instance, ai is one of these nonzero scalars, we then must have Ai = Ah + I. 
This contradicts the conditions of the theorem, so the vectors XI, ... ,Xr must 
be linearly independent. 0 

If the eigenvalues A I, ... , Am of an m x m matrix A are all distinct, then 
it follows from Theorem 3.6 that the matrix X = (XI, ... , xm), where Xi is 
an eigenvector corresponding to Ai, is nonsingular. It also follows from the 
eigenvalue-eigenvector equation AXi = AiXi that if we define the diagonal 
matrix A = diag(AI, ... , Am), then AX = XA. Premultiplying this equation by 
X-I yields the identity X-I AX = A. Any square matrix that can be transformed 
to a diagonal matrix through the postmultiplication by a nonsingular matrix 
and premultiplication by its inverse is said to be diagonalizable. Thus, a square 
matrix with distinct eigenvalues is diagonalizable. 

Clearly, when a matrix is diagonalizable, its rank equals the number of its 
nonzero eigenvalues, since 

rank(A) = rank(r l AX) = rank(A) 

follows from Theorem 1.8. This relationship between the number of nonzero 
eigenvalues and the rank of a square matrix does not necessarily hold if the 
matrix is not diagonalizable. 

Example 3.5. Consider the 2 x 2 matrices 

A= 
I 1 
o 0 

and B= 
o I 
o 0 

Clearly, both A and B have rank of l. Now the characteristic equation of A 
simplifies to A(l - A) = 0 so that the eigenvalues of A are 0 and 1, and thus, in 
this case, rank(A) equals the number of nonzero eigenvalues. The characteristic 
equation for B simplifies to A 2 = 0, so B has the eigenvalue 0 repeated twice. 
Hence, the rank of B exceeds its number of nonzero eigenvalues. 
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Our final theorem, known as the Cayley-Hamilton Theorem. states that a 

matrix satisfies its own characteristic equation. A proof of this result can be 

found in Harnmarling (1970). 

Theorem 3.7. Let A be an m x m matrix with eigenvalues A I •...• All!' Then 

m 

(A - Ail) = (0); 

that is, if (_A)m + O:m_I(-A)m-1 + ... + 0:1 (-A) + 0:0 = 0 is the characteristic 

equation of A, then 

4. MATRICES 

Many of the applications involving eigenvalues and eigenvectors in statistics 

are ones that deal with a symmetric matrix, and symmetric matrices have some 

especially nice properties regarding eigenvalues and eigenvectors. In this sec

tion, we will develop some of these properties. 

We have seen that a matrix may have complex eigenvalues even when the 

matrix itself is real. This is not the case for symmetric matrices. 

Theorem 3.B. Let A be an mX m real symmetric matrix. Then the eigenval

ues of A are real, and corresponding to any eigenvalue there exist eigenvectors 

that are real. 

Proof Let A = 0: + i{3 be an eigenvalue of A and x = y + iz a corresponding 

eigenvector, where i = vCl. We will first show that (3 = O. Substitution of 

these expressions for A and x in the eigenvalue-eigenvector equation Ax = AX 

yields 

A(y + iz) = (0: + i(3)(y + iz) (3.5) 

Premultiplying (3.5) by (y - ;z)" we get 

(y - iz)' A(y + iz) = (0: + i(3)(y - ;z)'(y + iz), 

which simplifies to 
• 

y'Ay + z'Az = (0: + i(3)(y'y + z'z), 
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since y' Az = z' Ay follows from the symmetry of A: Now x :/: 0 implies that 
(y'y + z'z) > 0 and, consequently, we must have ~ = 0 since the left-hand side 
of the equation above is real. Substituting ~ = 0 in (3.5), we find that 

Ay + iAz = ay + iaz 

Thus, x = y + iz will be an eigenvector of A corresponding to A = a as long as 
y and z satisfy Ay = ay, Az = az, and at least one is not 0 so that x:/: O. A real 
eigenvector is then constructed by selecting y :/: 0, such that Ay = ay and Z = O. 

o 

We have seen that a set of eigenvectors of an m x m matrix A is linearly 
independent if the associated eigenvalues are all different from one another. 
We will now show that, if A is symmetric, we can say a bit more. Suppose that 
x and y are eigenvectors of A corresponding to the eigenvalues A and 'Y, where 
A of. "I, Then, since A is symmetric, it follows that 

>-.x'y = (Ax)'y = (Ax)'y = x'A'y = x'(Ay) = x'('YY) = 'Yx'y 

Since A of. "I, we must have x'y = 0; that is, eigenvectors corresponding to 
different eigenvalues must be orthogonal. Thus, if the m eigenvalues of A are 
distinct. then the set of corresponding eigenvectors will fOlln a group of mutu
ally orthogonal vectors, We will show that this is still possible when A has 
multiple eigenvalues, Before we prove this, we will need the following result. 

Theorem 3.9. LetA be an mXm symmetric matrix and let x be any nonzero 
III x I vector. Then for some r 2: I, the vector space spanned by the vectors 
x.Ax .... ,Ar- lx, contains an eigenvector of A. 

Proof Let r be the smallest integer for which x, Ax, ... ,A'x form a linearly 
dependent set. Then there exist scalars, ao, ... , a r , not all of which are zero, 
such that 

where without loss of generality we have taken a r . = 1, since the way r was 
chosen guarantees that ar is not zero. The expression in the parentheses is an 
rth-degree matrix polynomial in A. This can be factored in a fashion similar to 
the way scalar polynomials are factored; that is, it can be written as 

, 

• 

where "I I , .•• ,"I r are the roots of the polynomial satisfying ao = (_I)r 'Y I • 'Y2 ••• 

"I" ... , a r - I = -('YI + "12 + ... + "Ir). Let 
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y = (A - 'Y2Im)··· (A - 'Yrlm}x, 

( I)r-I Ar-I = - 'Y2···'YrX+···+ x, 

and note thaty -:/: 0 since, otherwise, x, Ax, ... ,A' - I x would be a linearly depen
dent set, contradicting the definition of T. Thus, y is in the space spanned by 
x,Ax, ... ,Ar - I X and 

Consequently, y is an eigenvector of A corresponding to the eigenvalue 'Y I, and 
so the proof is complete. 0 

Theorem 3.10. If the m x m matrix A is symmetric, then it is possible to 
construct a set of m eigenvectors of A such that the set is orthonolillaI. 

Proof We first show that if we have an orthonolillal set of eigenvectors, 
x" ... ,Xh, where I ::;; h < m, then we can find another normalized eigenvector 
Xh+ I orthogonal to each of these vectors. Select any vector x which is orthog
onal to each of the vectors XI, .•. ,x". Note that for any positive integer k,Akx 
is also orthogonal to XI, ••. ,x" since, if A; is the eigenvalue corresponding to 
Xi, it follows from the symmetry of A and Theorem 3.4(a) that 

From the previous theorem we know that, for some T, the space spanned by 
x,Ax, ... ,A'-Ix contains an eigenvector, say y, of A. This vector y also must 
be orthogonal to XI, .•. ,X" since it is from a vector space spanned by a set 
of vectors orthogonal to XI, .•• ,X". Thus, we can take Xh+ I = (y'yt l / 2y. The 
theorem now follows by starting with any eigenvector of A, and then using the 
previous argument m - I times. 0 

If we let the m x m matrix X = (XI, •.. ,xm), where XI, •.. ,Xm are the 
orthonolillal vectors described in the proof, and A = diag( A" ... , Am), then the 
eigenvalue-eigenvector equation Ax; = A;x; can be expressed collectively as 
the matrix equation AX = XA. Since the colullllls of X are orthonolillalovectors, 
X is an orthogonaJ matrix. Premultiplication of our matrix equation by X yields 
the relationship X' AX = A, or equivalently 

A.:. XAX', 

which is known as the spectral decomposition of A. We will see in Section 4.2 
that there is a very useful generalization of this decomposition, known as the 
singular value decomposition, which holds for any mx n matrix A; in particular, 
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there exist m x m and n x n orthogonal matrices P and Q and an m x n matrix 
D with dij = 0 if i -Jj, such that A = PDQ'. 

Note that it follows from Theorem 3.2(d) that the eigenvalues of A are the 
same as the eigenvalues of A, which are the diagonal elements of A. Thus, if A 
is a multiple root of A with multiplicity r> I, then r of the diagonal elements 
of A are equal to A and r of the eigenvectors, say XI, ... ,X" cOllespond to this 
root A. Consequently, the dimension of the eigenspace of A, SA(A), cOllespond
ing to A, is equal to the multiplicity r. The set of orthonormal eigenvectors 
corresponding to this root is not unique. Any orthonollllal basis for SA(A) will 
be a set of r orthonormal vectors associated with the eigenvalue A. For exam
ple, if we let XI = (XI, ... ,xr) and let Q be any r x r orthogonal matrix, the 
columns of Y I = X I Q also form a set of orthonormal eigenvectors conespond
ing to A. 

Example 3.6. One application of an eigenanalysis in statistics involves 
overcoming difficulties associated with a regression analysis in which the 
explanatory variables are nearly linearly dependent. This situation is often 
referred to as multicollinearity. In this case, some of the explanatory variables 
are providing redundant infollllation about the response variable. As a result, 
the least squares estimator of fJ in the model y = XfJ + E 

will be imprecise since its covariance matrix 

var(~) " (X'Xr I X' (var(y) }X(X'X)-I 

= (X'X)-IX' (q2I}X(X'X)-1 = q2(X'X)-1 

will tend to have some large elements due to the near singularity of X'X. If 
the near linear dependence is simply because one of the explanatory variables, 
say Xj, is nearly a scalar multiple of another, say XI, one could simply elimi
nate one of these variables from the model. However, in most cases, the near 
linear dependence is not this straightforward. We will see that an eigenanalysis 
will help reveal any of these dependencies. Suppose that we standardize the 
explanatory variables so that we have the model 

discussed in Example 2.15. Let A = diag(AI, ... ,Ak) contain the eigenvalues 
of Z; ZI in descending order of magnitude, and let U be an orthogonal matrix 
that has corresponding normalized eigenvectors of Z~ZI as its columns, so that 
Z;ZI = UAU'. It was shown in Example 2.15 that the estimation of y is unaf
fected by a nonsingular transfollllation of the explanatory variables; that is, we 

• 
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could just as well work with the model 

, where o!o = oo,al = T-I~h WI = ZIT, and T is a nonsingular matrix. A 

method, referred to as principal components regression, deals with the problems 

associated with multicollinearity by utilizing the orthogonal transformations 

WI = ZI U and al = U'~i of the standardized explanatory variables and parame

ter vector. The k new explanatory variables are called the principal components; 

the variable corresponding to the ith column of WI is called the ith principal 

component. Since W~ WI = U'Z;ZI U = A and l~WI = l~ZI U = O'V = 0', the 

least squares estimate of a I is 

• 

A (W'W)-IW' A-IW' 
al= I I IY= IY' 

while its covariance matrix simplifies to 

If Z; ZI and hence also W~ WI is nearly singUlar, then at least one of the Ai s 

will be very small, while the variances of the couesponding O!iS will be very 

large. Since the explanatory variables have been standardized, W; W I is N - I 

times the sample coudation matrix of the principal components computed from 

the N observations. Thus, if Ai = 0, then the ith principal component is nearly 

constant from observation to observation, and so it contributes very little to the 

estimation of y. If A/ = 0 for i = k- r+ I, ... , k, then the problems associated with 

multicollinearity can be avoided by eliminating the last r principal components 

from the model; in other words, the principal components regression model 
• 
IS 

where WII and a~1 are obtained from WI and a; by deleting their last r 

columns. If we let AI = diag(Ah .. ' ,Ak-r), then the least squares estimate of 

all can be written as 

A (W' W )-1 W' A-I W' 
a II = II II IIY = IllY 

! Note that due to the orthogonality of the principal components, all is identical 

t to the first k - r components of al' The estimate all can be used to find the 

principal components estimate of ~I in the original standardized modeL Recall 

that ~I and al are related through the identity ~I = Val. By eliminating the 

last r principal components, we are replacing this identity with the identity 
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A set of orthonormal eigenvectors of a matrix A can be used to find what 
are known as the eigenprojections of A. 

Definition 3.1. Let},. be an eigenvalue of the m x m symmetric matrix 
A with multiplicity r ~ I. If XI, ... ,X, is a set of orthonormal eigenvectors 
corresponding to },., then the eigenprojection of A associated with the eigenvalue ., 
},. is given by 

r 

PAC},.) = LXiX; 
i= I 

The eigenprojection PAC}..) is simply the projection matrix for the vector 
space SAC},.). Thus, for any X E Rm,y = PAC}..)x gives the orthogonal pro
jection of X onto the eigenspace SACA). If we define XI as before, that is 
XI = (XI,""X r ), then PA(A) = XIX~, Note thatPACA)is unique even though 
the set of eigenvectors XI,'" ,X, is not unique; for instance, if YI = XI Q, where 
Q is an arbitrary r x r orthogonal matrix, then the columns of Y, forln another 
set of orthonOt lIIal eigenvectors corresponding to A, but 

The term spectral decomposition comes from the use of the tet III spectral set 
of A for the set of all eigenvalues of A excluding repetitions of the same value. 
Suppose the III x III matrix A has the spectral set {I'J, ... , I'd. where k ~ m, 
since some of the I'i may correspond to multiple eigenvalues. The set of I'i 
may be different from our set of Ai in that we do not repeat values for the I'i. 
Thus, if A is 4 x 4 with eigenvalues AI = 3, A2 = 2, A3 = 2, and A4 = 1, then the 
spectral set of A is {3,2, I}. Using X and A as previously defined, the spectral 
decomposition states that 

m k 

A = XAX' = L AiXiX; = L l'iPACI'i), 
i= I i= I 

so that A has been decomposed into a sum of telills, one corresponding to each 
value in the spectral set. 

Example 3.7. It can be easily verified by solving the characteristic equati'on 
for the 3 x 3 symmetric matrix 

, 

, 

, , 
" 
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5 -1 -1 

A= -1 5-1 
-I -I 5 

that A has the simple eigenvalue 3 and the multiple eigenvalue 6, with multiplic
ity 2. The unique (except for sign) unit eigenvector associated with the eigen
value 3 can be shown to equal (1/V3, 1/V3, 1/V3)', while a set of orthonor
mal eigenvectors associated with 6 is given by (-2/V6, 1/V6, 1/V6)' and 
(0, 1/V2, -1/.,)2"r, Thus, the spectral decomposition of A is given by 

5 -1 -I 1/V3 -2/V6 0 

-1 5 -I - 1/V3 1/V6 1/V2 -
-1 -I 5 1/V3 1/V6 -1/V2 

1/V3 1/V3 1/V3 
x -2/V6 1/V6 1/V6 

0 1/V2 -1/V2 

and the two eigenprojections of A are 

1/V3 
PA(3) = 1/V3 [1/V3 1/V3 1/V3] = ~ 

3 
1/V3 
-2/V6 0 

PA(6) = 1/V6 1/V2 
1/.,)6 -1/V2 

2 -I -I 
I 

=- -I 2-1 
3 -1 -1 2 

-2/V6 1/V6 
0 1/V2 

3 0 0 
0 6 0 
0 0 6 

, 

I I I 
I 1 I , 
I I I 

1/V6 
-1/V2 

The relationship between the rank of a matrix and the number of its nonzero 
eigenvalues becomes an exact one for symmetric matrices. 

Theorem 3.11. Suppose that the mx m matrix A has r nonzero eigenvalues. 
Then, if A is symmetric, rank(A) = r. 

Proof If A = XAX' is the spectral decomposition of A, then the diagonal 
matrix A has r nonzero diagonal elements and 

rank(A) = rank(XAX') = rank(A), 
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since the multiplication of a matrix by nonsingular matrices does not affect the 

rank. Clearly, the rank of a diagonal matrix equals the number of its nonzero 

diagonal elements, so the result follows. 0 

Some of the most important applications of eigenvalues and eigenvectors in 

statistics involve the analysis of covariance and correlation matrices. 

Example 3.8. In some situations, a matrix has some special structure that 

when recognized can be used to expedite the calculation of eigenvalues and 

eigenvectors. In this example we consider a structure sometimes possessed by 

an m x m covariance matrix. This structure is one in which we have equal 

variances and equal correlations; that is, the covariance matrix has the fOlln 

I p • • • p 

p I • • • p 
= (J2 n • • • 

• • • 
• • • 

p p • • • I 

Alternatively, n can be expressed as n = (J2{(1 - p)Im + plml~,} so that it is 

a function of the vector 1m. This vector also plays a crucial role in the eigen

analysis of n since 

Thus, 1m is an eigenvector of n corresponding to the eigenvalue (J 2 {(l - p) + 

mp}. The remaining eigenvalues of n can be identified by noting that if x is 

any m x 1 vector orthogonal to 1/1" then 

and so x is an eigenvector of n corresponding to the eigenvalue (J2(l- p). Since 

there are m - I linearly independent vectors orthogonal to 1m , the eigenvalue 

(J2(l - p) is repeated m - 1 times. The order of these two distinct eigenvalues 

depends on the value of p; (J2{(1- p)+mp} will be larger than (J2(1- p) only 

if p is positive. 

Example 3.9. A covariance matrix can be any symmetric nonnegative de fie 

nite matrix. Consequently, for a given set of m nonnegative numbers and a given 

set of m orthonOllnal mx 1 vectors, it is possible to construct an mxm covariance 

matrix with these numbers and vectors as its eigenvalues and eigenvectors. On 

the other hand, a correlation matrix has the additional constraint that its diago

nal elements must each equal I, and this extra restriction has an impact on the 

• 
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eigenanalysis of correlation matrices; that is, there is a much more limited set 

of possible eigenvalues and eigenvectors for correlation matrices. For the most 

extreme case, consider a 2 x 2 correlation matrix that must have the fonn 

P= 
I 
p 

P 
I 

with -I ~ p ~ I, since P ·must be nonnegative definite. The characteristic equa

tion IP - Ahl = 0 readily admits the two eigenvalues I + p and I - p. Using 

these in the eigenvalue-eigenvector equation Px = AX we find that regardless 

of the value of p, (l/vIZ,l/vIZ)' must be an eigenvector corresponding to 

1 + p, while (l/vIZ, -l/vIZ)' must be an eigenvector corresponding to I - p. 

Thus, ignoring sign changes, there is only one set of orthonoJlllal eigenvectors 

possible for a 2 x 2 correlation matrix if p ,J O. This number of possible sets of 

orthonolillal eigenvectors increases as the order m increases. In some situations. 

such as simulation studies of analyses of correlation matrices, one may wish to 

construct a correlation matrix with some particular structure with regard to its 

eigenvalues or eigenvectors. For example, suppose that we want to construct an 

m x m correlation matrix that has three distinct eigenvalues with one of them 

being repeated m - 2 times. Thus, this correlation matrix has the fOIlll 

m 

P=AIXIX; +A2 X2X;+ L A;X;X;, 
;= 3 

where AI, A2, and A are the distinct eigenvalues of P, and XI, ... , XIII are 

corresponding normalized eigenvectors. Since P is nonnegative definite, we 

must have AI ~ 0, A2 ~ 0, and A ~ 0, while tr(P) = m implies that 

A = (m - AI - A2)/(m - 2). Note that P can be written as 

• 

so that the constraint (P)jj = I implies that 

or, equivalently, 

l-A-(AI-A)xfl 

(A2 - A) 

The constraints described can then be used to construct a particular matrix. For 
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instance. suppose that we want to construct a 4 X 4 correlation matrix with 
eigenvalues AI = 2. A2 = I. and A = 0.5 repeated twice. If we choose XI = 
(~.~. i. V. then we must have xt2 = !. and so because of the orthogonality 
of XI and X2. X2 can be any vector obtained from XI by negating two of its 
components. For example. if we take X2 = (t. - t, t. - t)'. then 

p= 

I 
0.25 
0.50 
0.25 

0.25 
I 

0.25 
0.50 

0.50 
0.25 

I 
0.25 

0.25 
0.50 
0.25 

I 

5. CONTINUITY OF EIGENV ALVES AND EIGENPROJECTIONS 

Our first result of this section is one which bounds the absolute difference 
between eigenvalues of two matrices by a function of the absolute differences 
of the elements of the two matrices. A proof of this theorem can be found in 
Ostrowski (1973). For some other similar bounds see Elsner (1982). 

Theorem 3.12. Let A and B be m x m matrices possessing eigenvalues 
A I ..... Am and 'Y I, ... , 'Y m. respectively. Define 

and 

Then 

max 
1$;<", 

M = max (laijl,lbijD. 
ISiSm.ISjSm 

o(A. B) = .!.. 
m 

min IAi - 'Yjl :S (m + 2)M 1-I/mo(A,ml/m 
I SJ $nr 

• 

Theorem 3.12 will allow us to establish a very useful result regarding the 
eigenvalues of any matrix A. Let B I • B2, ...• be a sequence of m x m matrices 
such that B" ~ A. as n ~ 00. and let o(A,Bn) be as defined in Theorem 3.12. 
It follows from the fact that B" ~ A. as n ~ 00; that c5(A. Bn) ~ O. as n ~ 00. 
Hence, if 'YI.", ... • 'Ym,n are the eigenvalues of Bn, then Theorem 3.12 tells us 
that 

max min IAi - 'Yj.nl ~ 0, 
ISiSm ISjSm 

• 

" , 

• 

"' · " " , · " 
.~ 

• • 
• 

• 
" 

• , 

• ; 
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as n ~ 00. In other words, if Bn is very close to A, then for each i, there exists 
some j such that 'Yj,n is very close to Ai, or more precisely, as Bn ~ A, the 

eigenvalues of Bn are converging to those of A. This leads to the following 
important result. 

Theorem 3.13. Let A" ... ,Am be the eigenvalues of the m x m matrix A. 
Then, for each i, Ai is a continuous function of the elements of A. 

Our next result addresses the continuity of the eigenprojection PACA.) of 
a symmetric matrix A. A detailed treatment of this problem, as well as the 
more general problem of the continuity of the eigenprojections of nonsymmet
ric matrices, can be found in Kato (1982). 

Theorem 3.14. Suppose that A is an mX m symmetric matrix and A is one of 
its eigenvalues. Then PA(A), the eigenprojection associated with the eigenvalue 
A, is a continuous function of the elements of A. 

Example 3.10. Consider the matrix A 

200 
A= 0 I 0 , 

001 

which clearly has the simple eigenvalue 2 and the repeated eigenvalue I. Sup
pose that BI , B2, ••• is a sequence of 3x 3 matrices such that Bn ~ A, as n ~ 00. 

Let 'YI," <!: 'Y2,n <!: 'Y3,n be the eigenvalues of Bn , while XI,n, X2,n, and X3,n is a 
cOllesponding set of orthonollual eigenvectors. Theorem 3.13 implies that, as 
n ~ 00, 

'YI,n ~ 2, and 'Yj,n~I, for i=2,3 

On the other hand, Theorem 3.14 implies that, as n ~ 00, 

where 

P 
, , 

2,11 = X2,II x2,n + X3.11 x 3,n 

For instance, suppose that 
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o 
I 

, 

so that, clearly, Bn ---7 A. The characteristic equation of Bn simplifies to 

so that the eigenvalues of Bn are 

3 
I - -, 2 , 

3 
- + 
2 

v'j + 4n-2 

2 
, 

which do converge to I, 1, and 2, respectively. It is left as an exercise for the 

reader to verify that 

100 000 

PI n ---7 0 0 0 = PA(2), , P2,n ---7 0 1 0 = PA(l) 

001 000 

6. EXTREMAL PROPERTIES OF EIGENV ALVES 

One of the reasons that eigenvalues playa prominent role in many applications 

is because they can be expressed as maximum or minimum values of certain 

functions involving a quadratic fOt III. In this section, we derive some of these 

extremal properties of eigenvalues. 

Let A be a fixed m x m symmetric matrix and consider the quadratic fOllll 

x'Ax as a function of x. If a is a nonzero scalar, then (ax)'A(ax) = a 2x'Ax, 

so that the quadratic form can be made arbitrarily small or large, depending 

on whether x' Ax is negative or positive, through the proper choice of a. Thus, 

any meaningful study of the variational properties of x' Ax as we change x will 

require the removal of the effect of scale changes in x. One way of doing this 

is through the construction of what is commonly called the Rayleigh quotient 

given by 

x'Ax 
R(x,A) = 

x'x 

Note that R(ax, A) = R(x, A). Our first result involves the global maximization 

and minimization of R(x,A). 
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Theorem 3.15. letA be a symmetric mxm matrix with ordered eigenvalues 

}.q ~ •.. ~ Am. For any m x 1 vector x ,;. 0, 

and, in particular, . 

Am = min 
r~O 

x'Ax 

x'x ' 

(3.6) 

x'Ax 
Al = max , 

r~O X X 
(3.7) 

Proof Let A = XAX' be the spectral decomposition of A, where the 

columns of X = (Xl>"" xm ) are nOllllalized eigenvectors of A and A = 

diag(AI> .... Am). Then, if y = X'x, we have 

• 

x'Ax x'XAX'x y' Ay 
- --- - -

x'x x'XX'x y'y 

so that (3.6) follows from the fact that 

m //I 

Am Y~ < ,- Ai Y; :S >'1 
i: I i: I 

~m " ' 
.t:...i: I I\i yj 
~m 1 , 

.t:...i: I Yi 

//I 

Y; 
i: I 

Now (3.7) is verified by choices of x for which the bounds in (3.6) are attained; 

for instance, the lower bound is attained with x = xm , while the upper bound 

holds with x = XI' 
0 

Note that, since for any nonnull x, z = (x'xt 1/2X is a unit vector, the min

imization and maximization of z' Az over all unit vectors z will also yield Am 

and AI> respectively; that is. 

Am = min z' Az. 
tz: I 

Al = max z'Az 
iz:1 

The following theorem shows that each eigenvalue of a symmetric matrix 

A can be expressed as a constrained maximum or minimum of the Rayleigh 

quotient. R(x,A). 

Theorem 3.16. Let A be an m x m symmetric matrix having eigenvalues 

>1.\ ~ A2 ~ ... ~ Am with XI, ..• , Xm being a corresponding set of orthononnal 

eigenvectors. For h = I •... , m, define Shand T h to be the vector spaces spanned 
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by the columns of Xh = (XI, ... ,Xh) and Yh = (Xh, ... ,xm ), respectively. Then 

and 

x'Ax 

x'x 

x'Ax 

x'x 

• x'Ax 
= min , 

r;,+ 1.r:0 x'x 

x'Ax 

x'x ' 

where the vector X = 0 has been excluded from the maximization and mini
mization processes. 

Proof We will prove the result concerning the minimum; the proof for the 
maximum is similar. Let X = (XI, ... , xm ) and A = diag(AI, ... , Am). Note that, 
since X' AX = A and X'X = 1m, it follows that X~ Xh = Ih and X~ AXh = Ah, 
where Ail = diag(Ah ... ,Ah)' Now X E Sh if and only if there exists an h xl 
vector y such that X = X"y. Consequently, 

x'Ax 

x'x 
• 

= mIn 
yf-O 

y'X~AXhY 

Y'X~XhY 
• = mIn 

yf-O 

where the last equality follows from Theorem 3.15. The second version of the 
minimization follows immediately from the first and the fact that the null space 
of Y~ + I is Sh' 0 

The next two examples give some indication of how the extremal properties 
of eigenvalues make them important features in many applications. 

Example 3.11. Suppose that the same m variables are measured on indi
viduals from k different groups with the goal being to identify differences in 
the means for the k groups. Let the m x I vectors fL1"'" fLk represent the k 
group mean vectors, and let fL = (fLl + ... + fLk)/k be the average of these 
mean vectors. To investigate the differences in group means, we will utilize 
the deviations (fL; - fL) from the average mean; in particular. we form the sum 
of squares and cross products matrix given by 

k 

A= 
i: 1 

• 

Note that for a particular unit vector x, x' Ax will give a measure of the dif-

, j'" , , 

j 
• 
• 

" 

';' , 

· · , 
, ,:. 

• 
• . J '. · .: " ' 

, . 
• 

• 

, 

~ 
.1 
;, 
, , -• · , 

• 

· 

• 

• , 

.' , 
• 

, 
· , , 
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ferences among the k groups in the direction x; a value of zero. indicates the 
groups have identical means in this direction, while increasingly large values 
of x' Ax indicate increasingly widespread differences in this same direction. If 
XI, ••• ,Xm are nonnalized eigenvectors of A corresponding to its ordered eigen
values AI <!: ... <!: Am, then it follows from Theorems 3.15 and 3.16 that the 
greatest difference among the k groups, in terIllS of deviations from the over
all mean, occurs in the direction given by XI. Of all directions orthogonal to 
XI,X2 gives the direction with the greatest difference among the k groups, and 
so on. If some of the eigenvalues are very small relative to the rest, then we 
wiII be able to effectively reduce the dimension of the problem. For exam
ple, suppose that A3, ... ,Am are all very small relative to A I and A2' Then all 
substantial differences among the group means will be observed in the plane 
spanned by XI and X2. In Example 4.11 we will discuss the statistical procedure, 
called canonical variate analysis, that utilizes this sort of dimension reducing 
process. 

Example 3.12. In Example 3.11, the focus was on means. In this exam
ple, we will look at a procedure that concentrates on variances. This technique, 
called principal component analysis, was developed by Hotelling (1933). Some 
good references on this subject are Jackson (1991) and Jolliffe (1986). Let X 

be an m x 1 random vector having the covariance matrix n. Suppose that we 
wish to find the m x 1 vector al so as to make the variance of a~x as large as 
possible. But from Section 1.13, we know that 

var(a~x) = a~ {var(x)}al = a~ nal (3.8) 

Clearly, we can make this arbitrarily large by taking al = o/.c for some scalar 0/. 

and some vector c i 0, and then let 0/. ~ 00. We will remove this effect of the 
scale of al by imposing a constraint. For example, we may consider maximizing 
(3.8) over all choices of al satisfying a~al = l. In this case, we are searching 
for the one direction in Rm , that is, the line, for which the variability of observa
tions of x projected onto that line is maximized. It follows from Theorem 3.15 
that this direction is given by the nonnalized eigenvector of n corresponding 
to its largest eigenvalue. Suppose we also wish to find a second direction, given 
bya2 and orthogonal to alo where a;a2 = 1 and var(a;x) is maximized. From 
Theorem 3.16, this second direction is given by the nOllllalized eigenvector or 
n cOllesponding to its second largest eigenvalue. Continuing in this fashion, 
we would obtain m directions identified by the set a I, ... ,am of orthononnal 
eigenvectors of n. Effectively, what we will have done is to find a rotation of 
the original axes to a new set of orthogonal axes, where each successive axis 
is selected so as to maximize the dispersion among the x observations along 
that axis. Note. that the components of the transforIlled vector (a~x, .. . ,a;nx)', 
which are called the principal components of n, are uncorrelated since for 
i i j, 
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cov(a;x,aix) = a;naj = 0 

For some specific examples, first consider the 4 x 4 covariance matrix given by 

n= 
4.65 4.35 0.55 0.45 

4.35 4.65 0.45 0.55 

0.55 0.45 4.65 4.35 

0.45 0.55 4.35 4.65 

The eigenvalues of n are 10, 8, 0.4, and 0.2, so the first two eigenvalues account 

for a large proportion, actually 18/18.6 = 0.97, of the total variabilityofx. This 

means that although observations of x would appear as points in gt, almost all 

of the dispersion among these points will be confined to a plane. This plane is 

spanned by the first two normalized eigenvectors of n, (0.25,0.25,0.25,0.25)' 

and (0.25,0.25, -0.25, -0.25)'. As a second illustration, consider a covariance 

matrix such as 

n= 
59 5 

5 35 
2 -10 

2 
- IO , 

56 

which has a repeated eigenvalue; specifically the eigenvalues are 60 and 30 with 

multiplicities 2 and 1, respectively. Since the largest e'igenvalue of n is repeated, 

there is no one direction al that maximizes var(aix). Instead, the dispersion of 

x observations is the same in all directions in the plane given by the eigenspace 

So (60), which is spanned by the vectors (1, 1, - 2)' and (2,0, 1)'. Consequently, 

a scatter plot of x observations would produce a circular pattern of points in 

this plane. 

Our final result, known as the Courant-Fischer min-max theorem, gives alter

native expressions for the intelluediate eigenvalues of A as constrained minima 

and maxima of the Rayleigh quotient R(x,A). 

Theorem 3.17. Let A be an m x m symmetric matrix having eigenvalues 

AI ~ A2 ~ ... ~Am' For h = l, ... ,m, let Bh be any mx (h - 1) matrix and Ch 

any m x (m - h) matrix satisfying B'"Bh = Ih-I and C~Ch == 1m - h. Then 

x'Ax 
(3.9) 

x'x ' 

as weIJ as 

, 
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• max nun 
Ch C;'r=O 

where the vector x = 0 has been excluded . 

• 

x'Ax 
x'x 

109 

(3.10) 

Proof We first prove the min-max result given by (3.9). Let XII = 

(XI, ... ,Xh), where XI. ... ,Xh is a set of orthonolillal eigenvectors of A, cor

responding to the eigenvalues A I, ... , Ah' Since Xh _ I is an m x (h - I) matrix 

satisfying X~ _ I XII _ I = Ih _ I. it follows that 

• mm max 
Bh 8/,r=O 

x'Ax 

x'x 

x'Ax 
x'x 

(3.11 ) 

where the equality follows from Theorem 3.16. Now for arbitrary BII satisfying 

B;.Bh = Ih- (, the matrix B;.Xh is (h - I) x h, so that the columns must be 

linearly dependent. Consequently, we can find an h x 1 nonnull vector Y such 

that B;.Xhy = O. Since XhY is one choice for x, we find that 

max 
8/,r=O 

x'Ax 
x'x 

(3.12) 

where Ah = diag(AI."" Ah)' and the last inequality follows from (3.6). Mini

mizing (3.12) over all choices of Bh gives 

This, along with (3.11), proves (3.9). The proof of (3.10) is along the same lines. 

Let Yh = (Xh, ..• ,xm), where Xh, ... ,Xm is a set of orthononnal eigenvectors of 

A, cOllcsponding to the eigenvalues All, ... , Am. Since Yh + I is an m x (m - h) 

matrix satisfying Y~+ I Yh+ 1= Im-h, it follows that 

• max mm 
Ch C;'r=O 

x'Ax x'Ax 
---,,--- ~ min -~ = All, 
x'x y;,+ Ir=O x'x 

(3.13 ) 

where the equality follows from Theorem 3.16. For an arbitrary ell satisfying 

C~Ch = Im- h, the matrix C~Yh is (m - h) x (m- h + 1), so the columns of C;'Y" 

must be linearly dependent. Thus, there exists an (m - h + I) x I nonnull vector 
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y satisfying C"Y/zy = O. Since YhY is one choice for x. we have 

x'Ax 
XiX 

(3.14) 

where ll" = diag(Ah •... ,Am) and the last inequality follows from (3.6). Maxi
mizing (3.14) over all choices of Ch yields 

x'Ax 
max min -- 5, Ah 

C I XiX h chx=o 

This together with (3.13) establishes (3.10). o 

Corolillry 3.17.1. Let A be an m X m symmetric matrix having eigenvalues 
AI 2: A2 2: ... 2: Am. For h = I, ... ,m. let Bh be any m X (h - 1) matrix and Ch 
be any m x (m - h) matrix. Then 

and 

x'Ax '. 
XiX ' 

x'Ax 

x'x 

Proof If B'"B/z = 1,,_ I and C;,Ch = Im - h, then the two inequalities follow 
directly from Theorem 3.17. We need to establish them for arbitrary Bh and 
Ch. When B'"Bh = 1"-1, the set SBh = {x:x E Rm,B'"x = O} is the orthogonal 
complement of the vector space which has the columns of Bh as an orthonollual 
basis. Thus, the first inequality holds when maximizing over all x -J 0 in any 
(m - h + I)-dimensional vector subspace of Rm. Consequently, this inequality 
also will hold for any m x (h - I) matrix Bh since, in this case, rank(Bh) 5, h - 1 
guarantees that the maximization is over a vector subspace of dimension at least 
III - II + I. A similar argument applies to the second inequality. 0 

The proof of the following result is left to the reader as an exercise. 

Theorem 3.1S. Suppose that A and Bare m x m symmetric matrices and 
A - B is nonnegative definite. Then Ai(A) 2: Ai(B) for i = I, ... , m. 

• 

Some additional extremal properties of eigenvalues can be found in Bellman 
(1970) and Hom and Johnson (1985). 
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7. SOM .. : ADDITIONAL RESULTS CONCERNING EIGENVALUES 

Let A be an m x m symmetric matrix and H, an m x h matrix satisfying 
H'H = Ih • In some situations it is of interest to compare the eigenvalues of A 
to those of H' AH. Some comparisons follow immediately from Theorem 3. 17. 
For instance, it is easily verified that from (3.9), we have 

and from (3.10) we have 

The following result, known as the Poincare separation theorem [Poincare, 
(1890); see also Fan (1949)], provides some inequalities involving the eigen
values of A and H' AH in addition to the two given above. 

Theorem 3.19. Let A be an m x m symmetric matrix and H be an m x h 
matrix satisfying H' H = I h. Then, for i = I, ... , h, it follows that 

Am - h + ;(A) ~ A;CH' AH) ~ A;CA) 

Proof. To establish the lower bound on A;(H' AH), let Y. = (x., ... , XIII), 
where n = m - h + i + 1, and XI, •.. ,Xm is a set of orthonormal eigenvectors of 
A corresponding to the eigenvalues A I (A) ~ ... ~ AIII(A). Then it follows that 

• x'Ax • x'Ax 
nun < mm -
Y~.r=o x'x Y:,x = 0 x'x 

r=Hy 

. y'H'AHy 
= mm =----:---''-::; A" -(111-11+ I)(H'AH) = A;(H'AH), 

, y'y Y nHy=O 

where the second equality follows from Theorem 3.16. The last inequality fol
lows from Corollary 3.17.1, after noting that the order of H' A H is h and Y;,H is 
(m-n+ l) x h. To prove the upper bound for A;(H' AH), let Xi _ I = (XI,··· ,Xi _ I), 
and note that 
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x'Ax 
Ai(A) = max 

, x'x 
x'Ax 

~ max 
, x'x x· Ir=O ,- x. Ir=O ,-
r=Hy 

--
'R'AR 

y y. ~ Ai (H' AH), 
y'y 

where the first equality follows from Theorem 3.16 and the final inequality 
follows from Corollary 3.17.1. 0 

Theorem 3.19 can be used to prove the following useful result. 

Theorem 3.20. Let A be an m x m symmetric matrix and let Ak be its 
leading k x k principal submatrix; that is, Ak is the matrix obtained by deleting 
the last m - k rows and columns of A. Then, for i = 1, ... , k, 

Am - i + I (A) :$ Ak - i + I (Ad :$ Ak - i + I (A) 

In Chapter 1, the conditions for a symmetric matrix A to be a positive definite 
or positive semidefinite matrix were given in terms of the possible values of the 
quadratic fonn x' Ax. We now show that these conditions also can be expressed 
in terms of the eigenvalues of A. 

Theorem 3.21. Let A be an m x m symmetric matrix with eigenvalues 
A I, ... , Am. Then 

(a) A is positive definite if and only if Ai > 0 for all i. 
(b) A is positive semidefinite if and only if Ai ~ 0 for all i and Ai = 0 for at 

least one i. 

Proof Let the columns of X = (XI, ... ,xm) be a set of orthonormal eigen
vectors of A corresponding to the eigenvalues AI, ... ,Am, so that A = XAX', 
where A = diag(A" . .. ,Am). If A is positive definite, then x'Ax > 0 for all 
x of. 0, so in particular, choosing x = Xi, we have 

Conversely, if Ai > 0 for all i, then for any x of. 0 define y = X'x, and note that 

m 

I 'XAX' 'A X Ax =X x=y Y = (3.15) 
i= I 

has to be positive because the Ai are positive and at least one of the yl is pos-

• 
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itive since y -:/: O. This proves (a). By a similar argument, we find that A is 

nonnegative definite if and only if Ai ~ 0 for all i. Thus, to prove (b) we only 

need to prove that x' Ax = 0 for some x-:/:O if and only if at least one Ai = O. It 

follows from (3.15) that if x' Ax = 0, then Ai = 0 for every i for which )'1 > O. 

On the other hand, if for soine i, Ai = 0, then x;Ax; = Ai = O. 0 

Since a square matrix is singular if and only if it has a zero eigenvalue, 

it follows imme(liately from Theorem 3.21 that positive definite matrices are 

nonsingular, while positive semidefinite matrices are singular. 

, 

Example 3.13. Consider the ordinary least squares estimator IJ 
(X' X)-I X' Y of ~ in the model 

y = X~ + E, 

where E(E) = 0 and var(E) = q2IN. For an arbitrary (k + I) x I vector c, we will 
A 

prove that c'~ is the best linear unbiased estimator of c'lJ; an estimator ( is an , 

unbiased estimator of c'~ if E(t) = c'~. Clearly, c'~ is unbiased since E(E) = 0 

implies that 

A 

E(c'~) = C' (X'X)-I X'E(y) = c'(X'Xr I X'X~ = c'~ 

To show that it is the best linear unbiased estimator, we must show that it has 

variance at least as small as the variance of any other linear unbiased estimator 

of c'p. Let a'y be an arbitrary linear unbiased estimator of c'p, so that 

c'p = E(a'y) = a'E(y) = a'XIJ, 

i· regardless of the value of the vector p. But this implies that 

Now 

while 

, 'X c = a 

," A, '), 1 ")" l' 

var(c P) = c' {var(p)}c = c {q"(X Xr }c = q"a X(X X)- X a, 

var(a'y) = a' {var(y)}a = a' {q 21N}a = q2a' a 

Thus, the difference in their variances is 
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var(a'y) - var(c'J1) = (/2a' a - (/2a'X(X'Xr IX' a 

= q 2a'(IN - X(X'X)-I X')a 

and so using Theorem 3.4, we find that each of the eigenvalues of IN -

X(X'X)-IX' must be 0 or 1. Thus, from Theorem 3.21, we see that IN -

X(X'X)-IX' is nonnegative definite and so 

A 

var(a'y) - var(c'p) ~ 0 

as is required. 

Symmetric matrices are often obtained as the result of a transpose product; 

that is, if T is an m x n matrix, then both T'T and TTi are symmetric matrices. 

The following two theorems show that their eigenvalues are nonnegative and 

their positive eigenvalues are equal . 

Theorem 3.22. Let T be an m x n matrix, with rank(T) = r. Then T'T has 

r positive eigenvalues. It is positive definite if r = n and positive semidefinite 

if r < n. 

Proof For any non null n x 1 vector x, let y = Tx. Then clearly 

m 

'T'T ' '" 2 X x=y y= k Yi 
i = I 

is nonnegative, so T'T is nonnegative definite and, thus, by Theorem 3.21 all 

of its eigenvalues are nonnegative. If x is an eigenvector of T'T corresponding 

to a zero eigenvalue, then the equation above must equal zero, and this can 

only happen if y = Tx = O. Since rank(T) = r, we can find a set of n - r linearly 

independent xs satisfying Tx = 0, that is, any basis of the null space of T, and 

so the number of zero eigenvalues of T'T is equal to n - r. The result now 

follows. 0 
• 

Theorem 3.23. Let T be an m x n matrix, with rankCD = r. Then the 
, 

positive eigenvalues of T'T are equal to the positive eigenvalues of TT'. 

Proof Let X. > 0 be an eigenvalue of T'T with multiplicity h. Since the n 

x n matrix T'T is symmetric, we can find an n x h matrix X, whose columns 

• 

, 
• • 

· 
• 

• 
• 

.'1 
, 
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are orthonormal, satisfying 

T'TX= AX. 

Let Y = TX and observe that 

TT'y = TT'TX = T(A.X) = hTX = n, 

so that A. is also an eigenvalue of TT'. Its multiplicity is also h since 

rank.(Y) = rank.(TX) = rank«TX)'TX) = rank(X'T'TX) 

= rank.(AX.'X) = rank(A.1h) = h 0 

Next we will use the Courant-Fischer min-max theorem to prove the follow
ing important monotonicity property of the eigenvalues of symmetric matrices. 

Theorem 3.24. Let A be an m x m symmetric matrix and B be an m x 111 

nonnegative definite matrix. Then, for h = I, ... , m, we have 

where the inequality is strict if B is positive definite. 

Proof For an arbitrary m x (h - 1) matrix B" satisfying It"Bh = I" _ I, we 
have 

max 
Jt"x = 0 

x'(A + B)x 
x'x 

= max 
B/,x= 0 

= max 
B/,X = 0 

x'Ax 
x'x 

x'Bx 
+-,,...-

x'x 
x'Ax 
x'x 

x'Bx 

x'Ax 
x'x 

x'Ax 
x'x 

• + min 
xiO 

x'Ex 
x'x 

x'Ax 
+ A.m(B) ;::: max --, 

, x'x BhxoO 

where the last equality follows from Theorem 3.15. The final inequality above 
is strict if B is positive definite since, in this case, A.m(B) > O. Now minimizing 
both sides of the equation above over all choices of B" satisfying B'"B" = I" 
and using (3.9) of Theorem 3.17, we get 
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hh(A + B) = min max 
Bh Jt"x= 0 

x'(A + B)x 

x'x 

This completes the proof. o 

Note that there is not a general bounding relationship between hh(A + B) and 

h,,(A) +h,,(B). For instance, if A = diag(1, 2, 3, 4) and B = diag(8, 6, 4, 2), then 

while 

In Example 3.11 we discussed a situation in which the eigenvalues and eigen

vectors of 

k 

A = L (1-1, - 1-1)(1-1; - 1-1)' 
; = I 

were utilized in analyzing differences among the group means 1-11" .• , I-1k' For 

instance, an eigenvector XI, corresponding to the largest eigenvalue of A, gives 

the direction of maximum dispersion among the group means in that 

is maximized. The division here by X;XI, which removes the effect of scale, may 

not be appropriate if the groups have covariance matrices other than the identity 

matrix. Suppose, for example, that each group has the same covariance matrix 

B. If y is a random vector with covariance matrix B, then the variability of y in 

the direction given by X will be var(x'y) = x'Bx. Since differences among the 

groups in a direction with high variability will not be as important as similar 

differences in another direction with low variability, we will adjust for these 

differences in variability by constructing the ratio 

x'Ax 

x'Bx 

The vector XI that maximizes this ratio will then identify the one-dimensional 

subspace of Rm in which the group means differ the most, when adjusting for 

• 
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differences in variability. The next step after finding XI would be to find the vec

tor X2 that maximizes the rlttio but has x;y unconelated with x;y; this would be 

the vector X2 that maximizes the ratio in the equation subject to the constraint 

that X~BX2 = O. Continuing in this fashion, we would detellnine the In vec

tors X), •.. ,Xm that yield the m extremal values AI> ... , Am of the ratio. These 

extremal values are identified in the following theorem. . 

Theorem 3.25. Let A and B be m x m matrices. with A being nonnegative 

definite and B positive definite. For h = 1, ... , m, define XII = (XI> ...• XII) and 

YII = (Xh,'" ,xm), where Xl •... ,Xm are linearly independent eigenvectors of 

B~IA corresponding to the eigenvalues AI(B-IA) ~ ... ~ A",(B-IA). Then 

and 

x'Ax 

x'Bx' 

x'Ax 

x'Ex' 

where X = 0 is excluded. and the min and max are over all X i 0 when It = 1/1 

and h = 1, respectively. 

Proof We will prove the result involving the minimum; the proof for the 

maximum is similar. Let B = PDP' be the spectral decomposition of B. so that 

D = diag(d), ... ,dm), where the eigenvalues of B. dl, ... ,dm • are all positive 

due to Theorem 3.19. If we let T = PDI/2P'. where DI/2 = diag(d :/\ ...• d )t). 

then B = TT = T 2 and T, like B, is symmetric and nonsingular. Putting y = Tx. 

we find that 

• 
x'Ax • 

x'TT-IA T- I Tx 

rrun - rrun -, x'Ex 11,+ I TTx=O x'TTx 
y h+ 18 .. =0 

• 
y'T-IAT-ly 

(3.16) - rrun - , y'y 
Y h+ITy=O 

Note that if we write Ai = Ai(B-IA), then B-IAxi = AiXi. so that 

which implies 

Thus, TXi is an eigenvector of T- I AT-I corresponding to the eigenvalue 

• • 
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Aj = Aj(T -I AT-I); that is, the eigenvalues of B- 1 A are the same as those of 
T-IAT- I. Since the rows of Yh+IT are the transposes of the eigenvectors 
TXh+I>"" Txm , it follows from Theorem 3.16 that(3.16) equals Ah(T-1AT-1), 
which we have already established as being the same as Ah(B-1A). 0 

Since Xj is an eigenvector of B-1A corresponding to the eigenvalue Ai = 
Aj(W I A), we know that 

or. equivalently. 

Ax; = A;Bx; (3.17) 

Equation (3.17) is similar to the eigenvalue-eigenvector equation of A, except 
for the multiplication of x; by B on the right-hand side of the equation. The 
eigenvalues satisfying (3.17) are sometimes referred to as the eigenvalues of A 
in the metric of B. Note that if we premultiply (3.17) by x; and then solve for 
Aj. we get 

that is. the extremal values given in Theorem 3.25 are attained at the eigenvec
tors of B- I A. 

The proof of the previous theorem suggests a way of simultaneously 
diagonalizing the matrices A and B. Since T-I AT-I is symmetric, it 
can be expressed in the foon QAQ', where Q is orthogonal and A = 
diag(AI(T-IAr-I), ... ,Am(T-IAT-I)). The matrix C = Q'T-1 is nonsingular 
since Q and T- 1 are nonsingular and 

CAC' = Q'T-IAT-1Q= Q'QA(jQ= A, 

CBC' = Q'T-1TTrIQ= Q'Q= 1m 

• 

Equivalently, if G = C-I we have A = GAG' and B = GG'. This simultane
ous diagonalization is useful in proving our next result. For some other related 
results see Olkin and Tomsky (1981). 

Theorem 3.26. Let A be an m x m nonnegative definite matrix and B be 
• 

an 111 x 111 positive definite matrix. If F is any m x h matrix with full column 
rank, then for i = I, ... , h 
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and further 

Proof Note that the second equation implies the first, so our proof sim
ply involves the verification of the second equation. Let the nonsingular 
m x m matrix G be such that B = GG' and A = GAG', where A = 
diag(AI(B-1A), ... ,Am(B-1A». Then 

max MCF'AF)(F'BF)-I) = max M(F'GAG'F)(F'GG'F)-I) 
F F· 

= max A,«E' AE)(E' E r 1 ), 
E 

where this last maximization is also over all m x h matrices of rank h, since 
E = G' F must have the same rank as F. Note that since E has rank h, the h 
X h matrix E'E is a nonsingular symmetric matrix. As was seen in the previ
ous proof, such a matrix can be expressed as E' E = TT for some nonsingular 
symmetric h x h matrix T. It then follows that 

max M(E' AE)(E'E)-I) = max A,«E' AE)(TT)-I) 
. E E 

= max A,(T-1E' AEr l ), 
E 

where this last equality follows from Theorem 3.2(d). Now if we define the 
m x h rank h matrix H = ET- 1, then H'H = T-1E'Er l = T-1TTT- 1 - I". 
Thus, 

where the final equality follows from Theorem 3.19 and the fact that equality 
is actually achieved with the choice of H' = [I" (0)]. 0 

• 

Example 3.14. Many multivariate analyses are simply generalizations or 
extensions of conesponding univariate analyses. In this example, we begin with 
what is known as the univariate one-way classification model in which we have 
independent samples of a response y from k different populations or treatments, 
with a sample size of ni from the ith population. The jth observation from the 
ith sample can be expressed as 

• 

Yij = Jl.i + € ij' 
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where the !LiS arc (:onstants and the f it_ arc independent and identically dis

trihuted as N(O, U 2). Our goal is to detellnine whether or not the !LiS are all the 

same; that is, we wish 10 test Jhe null hypothesis H":!LI '" ... = !Lk against the 

alternative hypothcsis III: al least two oi" the !LiS diiTcr. An analysis of variance 

compares (see Problem 2.31) the variability between treatments, 

k 

SST = L ni(Yi - y)2, 

i = I 

to the variability within treatments, 

k nj 

SSE = L L (Yij - yi, 
i~ I j~ I 

where 

n· I 
k k 

Yi= L Yij/ni' y= L ni y,/n, n= ni 

j~1 i ~ I i = I 

SST is referred to as the sum of squares for treatment while SSE is called the 

sum of squares for error. The hypothesis Ho is rejected if the statistic 

F= SST/(k - I) 

SSE/en - k) 

exceeds the appropriate quantile of the F distribution with k-I and n-k degrees 

of freedom. Now suppose that instead of obtaining the value of one response 

variable for each observation, we obtain the values of m different response vari

ables for each observation. If Yij is the m x 1 vector of responses obtained as the 

jth observation from the ith treatment, then we have the multivariate one-way 

classification model given by 

where ~i is an m X 1 vector of constants and Eij - Nm (0, D), independently. 

Measures of the between treatment variability and within treatment variability 

are now given by the matrices, 

k 

B = L ni(Yi - Y)(Yi - y)', 
i:;:. 1 

k 

W=L 
n· I 

i~1 j=1 

• 
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One approach to testing the null hypothesis Hu: ~I = ... = ~k against the alt~r

native hypothesis, HI: at least two of the ~iS differ, is by a IIlclhod I:albl Ihe 

union-intersection procedure. This technique is based on the following decom

position of the hypotheses Hu and HI into univariate hypotheses. If c is any 

m X I vector, and we define the hypothesis Ho(c): c' ~I = '" = C' ~k' then Ih~ 

intersection of Ho(c) over all c E Rm is the hypothesis Hu. In addition, if we 

define the hypothesis HI (c): at least two of the c' ~;s differ, then the union of 

the hypotheses HI (c) over all c E Rill is the hypothesis H I. Thus, we should 

reject the hypothesis Ho if and only if we reject Ho(c) for at least one c. Now 

the null hypothesis Ho(c) involves the univariate one-way classification model 

in which c'Yij is the response, and so we would reject Ho(c) for large values of 

the F statistic 

F _ SST(c)/(k - 1) 

(c) - SSE(c)/(n _ k) , 

where SST(c) and SSE(c) are the sums of squares for treatments and errors, 

respectively, computed for the responses c'Yij' Since Ho is rejected if Ho(c) is 

rejected for at least one c, we will reject Ho is F(c) is sufficiently large for at 

least one c or, equivalently, if 

max F(c) 
dO 

is sufficiently large. Omitting the constants (k - 1) and (/I - k) and noting that 

the sums of squares SST(c) and SSE(c) can be expressed using Band Was 

SST(c) = c' Bc, SSE(c) = c'Wc, 

we find that we reject Ho for large values of 

(3.18) 

where the right-hand side follows from Theorem 3.25. Thus, if III _ a is the 

(1 - a)th quantile of the distribution of the largest eigenvalue AI (W- I B) [see. 

for example, Morrison (1990)] so that 

(3.19) 

then we would reject Ho if AI (W- I B) > U I _ a' One advantage of the 

union-intersection procedure is that it naturally leads to simultaneous confi

dence intervals. It follows immediately from (3.18) and (3.19) that for any mean 
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vectors J11" .. , J1k' with probability 1 - 01, the inequality 

L~= 1 niC' {(ii - i) - (J1i - II-)}{(ii - i) - (II-i - II-)}'C 
C'WC 

holds for all m X I vectors c, where 

k 

II- = L ni II-/n 
i= 1 

(3.20) 

Scheffe's method [see Scheffe (1953) or Miller (1981)] can then be used on 
(3.20) to yield the inequalities 

, 

k I 

UI_aC'WC La;/ni 
k m 

~ L L aiej JI.;j 
;=1 j=1 

i = I ' 
, 

k 

UI_aC'WC L a;/ni 
; = 1 

which hold with probability 1 - 01, for all m X 1 vectors C and all k X 1 vectors 
a satisfying a'l. = O. 

PROBLEMS 

1. Consider the 3 X 3 matrix 

9 -3 -4 
A= 12 -4 -6 

8 -3 -3 
, 

(a) Find the eigenvalues of A. 
(b) Find a normalized eigenvector corresponding to each eigenvalue. 

2. Find the eigenvalues of A', where A is the matrix given in Problem 1. Deter-' 
mine the eigenspaces for A' and compare these to those of A. 
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3. Let the 3 x 3 matrix A be given by 

1 
A = 1 

o 

(a) Find the eigenvalues of A. 

-2 0 
4 0 
o 2 

123 

(b) For each different value of h, determine the associated eigenspace 
SA (h). 

(c) Describe the eigenspaces obtained in part (b). 

4. If the m x m matrix A has eigenvalues hi,"" hm and corresponding 
eigenvectors X(, ••. ,Xm , show that the matrix (A + 'YI) has eigenvalues 
hi + 'Y, ... ,hm + 'Y and corresponding eigenvectors XI,··. ,Xm· 

5. In Example 3.6, we discussed the use of principal components regres
sion as a way of overcoming the difficulties associated with multicollinear
ity. Another approach, called ridge regression~ replaces the ordinary )east 
squares estimator in the standardized model 01 = (Z; ZI )-1 Z;y by 01'Y = 
(Z; Zi +'Yn- 1 Z;y, where 'Yis a small positive number. This adjustment will 
reduce the impact of the near singularity of Z; ZI since the addition of 'YI 
increases each of the eigenvalues of Z; ZI by'Y. 

A 

(a) Show that if N > 2k + I, there is an N x k matrix W such that 01'Y is 
the ordinary least squares estimate of 01 in the model 

A 

that is, 01'Y can be viewed as the ordinary least squares estimator of 
01 after we have perturbed the matrix of values for the explanatory 
variables ZI by W. 

A 

(b) Show that there exists a k x k matrix U such that 01'Y is the ordinary 
least squares estimate of 0 I in the model 

y 
o -

where 0 is a k x I vector of zeros and E* - Nk(O, (J 21), independently of 
E. Thus, the ridge regression estimator also can be viewed as the least 
squares estimator obtained after adding k observations, each having 
zero for the response variable and the small values in U as the values 
for the explanatory variables . 

• 
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6. Refer to Example 3.6 and the previous exercise. 

(a) Find th~ expected values of the principal corpponents regression esti
mator, 01* and the ridge regression estimator Ol-y, thereby showing that 
each is a biased estimator of 01. 

, " 
(b) Find the covariance matrix of 01* and show that var(ol) - var(ol') is , 

a nonnegative definite matrix, where 01 is the ordinary least squares 
estimator of 0 I . 

, " 
(c) Find the covariance matrix of Ol-y and show that tr{var(ol) - var(ol-y)} 

is nonnegative. ' 

7. If A and Bare m x m matrices and at least one of them is nonsingular, 
show that the eigenvalues of AB and BA are the same. 

X. If A is a real eigenvalue of the m x m real matrix A, show that there exist 
real eigenvectors of A corresponding to the eigenvalue A. 

9. Prove the results given in Theorem 3.2. 

10. Suppose that A is a simple eigenvalue of the m X m matrix A. Show that 
rank (A - An = m - 1. 

II. If A is an m X m matrix and rank(A - AI) = m - 1, show that A is an 
eigenvalue of A with multiplicity of at least one. 

12. Consider the m x m matrix 

I 1 0 • • • 0 
0 1 1 • • • 0 

A= • • • • 
• • • • 
• • • • 

, 
0 0 0 • • • 1 
0 0 0 0 I 

which has each element on and directly above the diagonal equal to 1. Find 
the eigenValues and eigenvectors of A. 

13. Let A be an m x m nonsingular matrix with eigenvalues AI, ... , Am and cor
responding eigenvectors XI. . .. ,Xm . If I + A is nonsingular, find the eigen
values and eigenvectors of 

(a) (l+Arl, 
(b) A + A-I, 
(c) (I +A- I ). 

• 
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14. Let the m x m nonsingular matrix A be such that I + A is nonsingular, and 

define 

(a) Show that if x is an eigenvector of A corresponding to the eigen\'alue 

A, then x is an eigenvector of B corresponding to the eigenvalue I. 

(b) Use Theorem 1.7 to show that B = 1. 

15. Consider the 2 x 2 matrix 

4 2 
A= 3 5 

(a) Find the characteristic equation of A. 

(b) Illustrate Theorem 3.7 by su bstituting A for A in the characteristic equa

tion obtained in (a) and then showing that the resulting matrix is the 

null matrix. 

(c) Rearrange the matrix polynomial equation in (b) to obtain an expression 

for A2 as a linear combination of A and 1. 

(d) In a similar fashion, write A3 and A-I as linear combinations of A and 

1. 

16. Consider the general 2 x 2 matrix 

(a) Find the characteristic equation of A. 

(b) Obtain expressions for the two eigenvalues of A in terJlls of the ele

ments of A. 

(c) When will these eigenvalues be real? 

17. Find the eigenvalues and eigenvectors of the matrix 1/11 1;". 

18. Consider the m x m matrix A == aIm + iSlml~, where a and is are scalars. 

(a) Find the eigenvalues and eigenvectors of A. 

(b) Detelluine the eigenspaces and associated eigenprojections ofA. 

(c) For which values of a and is will A be nonsingular? 

(d) Using (a), show that when A is nonsingular, then 
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(e) Show that the determinant of A is am-I(a + m~). 

19. Consider the m x m matrix A::: aIm + (3cc', where a and (3 are scalars and 
c !. 0 is an m x I vector. 

(a) Find the eigenvalues and eigenvectors of A. 

(b) Find the detemunant of A. 

(c) Give conditions for A to be nonsingular and find an expression for the 
inverse of A. 

20, Let A be the 3 x 3 matrix given by 

2 -1 0 
A= -1 1 1 

012 

(a) Find the eigenvalues and associated normalized eigenvectors of A. 

(b) What is the rank of A? 
(c) Find the eigenspaces and associated eigenprojections of A. 

21. Construct a 3 x 3 symmetric matrix having eigenvalues 18,21, and 28, 
and corresponding eigenvectors (1, 1,2)', (4, - 2, -1)', and (1,3, - 2)'. 

22. Show that if A is an III x m symmetric matrix with eigenvalues hI, ... ,hm' 
then 

m m m 
2 h2 a .. --I) I 

i = 1 j=1 i = 1 

23. Show that if A is an m x m symmetric matrix with its eigenvalues equal 
to its diagonal elements, then A must be a diagonal matrix. 

24. Use Theorem 3, 17 to prove Theorem 3.18. Show that the converse is not 
true; that is, find symmetric matrices A and 8 for which hi (A) 2! hi (8) for 
i = I, ... , m, yet A - 8 is not nonnegative definite. 

25. Let A be an m x n matrix with rank(A) = r. Use the spectral decomposition 
of A' A to show that there exists an n x (n - r) matrix X such that 
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AX=(O) and X'X=In - r 

In a similar fashion. show that there exists an (m ~ r) x m matrix Y such 

that 

YA = (0) and yy' = Im-r 

26. Let A be the 2 x 3 matrix given by 

A = 6 4 4 
322 

Find matrices X and Y satisfying the conditions given in the previous exer-
• clse. 

27. An m x m matrix A is said to be nilpotent if Ak = (0) for some positive 

integer k. 
(a) Show that all of the eigenvalues of a nilpotent matrix are equal to O. 

(b) Find a matrix. other than the null matrix. that is nilpotent. 

28. Complete the details of Example 3.10 by showing that 

100 
P I •n ~ 0 0 0 • 

000 

000 
P2." ~ 0 1 0 

001 

29. Let A and B be m x m symmetric matrices. Show that 

30. Prove Theorem 3.20. 

hl(A + B) $ hl(A) + hl(B). 

hm(A + B) ~ Am(A) + h",(B) 

31. Our proof of Theorem 3.24 utilized (3.9) of Theorem 3.17. Obtain an alter
native proof of Theorem 3.24 by using (3.10) of Theorem 3.17. 

32. Let A be an m x m nonnegative definite matrix and B be an m x m positive 
definite matrix. If F is any m x h matrix with full column rank. then show 
the following: 
(a) hh_i+I«F'AF)(F'BFrl) 2!hm -i+I(AB- I ). for i = 1 ..... h. 
(b) minFhl«F'AF)(F'BF)-I) = Am-II+ I(AB- 1

). 

(c) minFhh«F'AF)(F'BFrl) = Am(AB- I ). 



33. Suppose A is an m x m matrix with eigenvalues AI>' .. ' Am and associated 
eigenvectors XI, ... , XIII' while B is n x n with eigenvalues 'YI, •.. , 'Yn and 
eigenvectors YI' ... • Y". What are the eigenvalues and eigenvectors of the 
(m + n) x (m + n) matrix 

A 
C = (0) 

(0) ? 
B . 

Generalize this result by giving the eigenvalues and eigenvectors of the 
matrix 

CI (0) • • • (0) 
(0) C2 • • • (0) 

C= • • • 
• • • 
• • • 

(0) (0) • • • Cr 

in tenns of the eigenvalues and eigenvectors of the matrices CI , ... , Cr. 

34. Let 

T= I -\ 2 
2 I 1 

(a) Find the eigenvalues and corresponding eigenvectors of TT'. 
(b) Find the eigenvalues and corresponding eigenvectors of T'T. 

35. Show that if A is a nonnegative definite matrix and aii = 0 for some i, then 
au = ajj = 0 for all j. 

36. Suppose that A is an m x m symmetric matrix with eigenvalues AI, •.. , Am 
and associated eigenvectors XI, ... ,Xm, while B is an m x m symmetric 
matrix with eigenvalues 'YI, .•. , 'Ym and associated eigenvectors XI> ... ,Xm; 
that is, A and B have common eigenvectors. 
(a) Find the eigenvalues and eigenvectors of A + B .. 

(b) Find the eigenvalues and eigenvectors of AB. 

(c) Show that AB = BA. 

37. Suppose that XI, ... , Xr is a set of orthonormal eigenvectors corresponding 
to the r largest eigenvalues 'YI, ... ,'Yr of the m x m symmetric matrix A 
and assume that 'Yr > 'Yr+ I. Let P be the total eigenprojection of A associated 

• 
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with the eigenvalues 'YI, ... ,'Yr; that is, 

r 

P= LXiX; 
i = I 

• 

Let B be another m x m symmetric matrix with its r largest eigenvalues 

given by Ill, ••. ,Il" where Jl.r > Jl.r + I, and a corresponding set of orthonor

mal eigenvectors given by YI'" . ,Yr' Let Q be the total eigenprojection of 

B associated with the eigenvalues Jl.1, ... ,Jl.r so that 

r 

Q= L YiY; 
i = I 

(a) Show that P = Q if and only if 

r 

L hi + Jl.i - Ai(A + B)} = 0 

. i = I 

(b) Let X = (XIo ... ,xm), where Xr+ 10 ••• ,Xm is a set of orthonorlllal eigen

vectors corresponding to the smallest m - r eigenvalues of A. Show 

that if P = Q, then X'BX has the block diagonal forlll 

u 
(0) 

(0) 
V 

, 

where U is r x r and V is (m - r) X (m - r). Show that the converse 

is not true. . 

38. Let AI ~ ... ~ Am be the eigenvalues of the m x m symmetric matrix 

A and let XIo ... ,Xm be a set of corresponding orthonollllal eigenvectors. 

For some k, define the total eigenprojection associated with the eigenvalues 

Ako ... ,Am as 

m 

P= LXiX; 
i=k 

Show that Ak = ... = Am = A if and only if 

P(A - AI)P = (0) 
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39. Let A I, ... , Ak be m X m symmetric matrices and let T; be one of the eigen
values of Ai' Let XI, ... ,x,be a set of orthonolmal m X 1 vectors, and 
define 

, 
p= 

; = I 

, 
X; x; 

• 

Show that if each of the eigenvalues T; has multiplicity r and has XI, ..• ,X, 

as associated eigenvectors, then 

k 

P 2: (A; - T;I)2 p = (0) 
; = I 
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CHAPTER FOUR 

. 

Matrix Factorizations and Matrix Norms 

1. INTRODUCTION 

In this chapter, we take a look at some useful ways of expressing a given matrix 
A in the fOlm of a product of other matrices having some special structure or 
canonical forIll. In many applications such a decomposition of A may reveal to 
us the key features of A that are of interest to us. These factorizations are par
ticularly useful in multivariate distribution theory in that they can expedite the 
mathematical developmentand often simplify the generalization of results from 
a special case to a more general situation. Our focus here will be on conditions 
for the existence of these factorizations as well as mathematical properties and 
consequences of the factorizations. Details on the numerical computation of the 
component matrices in these factorizations can be found in texts on numerical 
methods. Some useful references are Golub and Van Loan (1989) and Press, 
Flannery, Teukolsky, and VetterIing (1992). 

2. THE SINGULAR VALUE DECOMPOSITION 

The first factorization that we consider, the singular value decomposition, could 
be described as the most useful because this is a factorization for a matrix of any 
size; the subsequent decompositions will only apply to square matrices. We will 
find this decomposition particularly useful in the next chapter when we generalize 
the concept of an inverse of a nonsingular square matrix to any matrix. 

Theorem 4.1. . If A is an m x n matrix of rank r > 0, there exist orthogonal 
m x m and n X n matrices P and Q, such that A = PDQ' and D = P' AQ, where 
the m X n matrix D is given by 

• 

(a) ~ if r = m = n, 

(c) 
~ 

(0) 
if r = n < m, 

(b) r ~ (0) 1 if r -, m < n, 

(d) 
~ (0) 

(0) (0) if r < m, r < n, 
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and .:1 is an rX r diagonal matrix with positive diagonal elements. The diagonal 

elements of .:12 are the positive eigenvalues of A' A and AA'. 

Proof We will prove the result for the case r < m and r < n. The proofs 

of (a)-(c) only require notational changes. Let .:12 be the r X r diagonal matrix 

whose diagonal elements are the r positive eigenvalues of A' A which are iden

tical to the positive eigenvalues of AA' by Theorem 3.23. Define .:1 to be the 

diagonal matrix whose diagonal elements are the positive square roots of the 

corresponding diagonal elements of .:12 . Since A' A is an n x n 'symmetric matrix, 

we can lind an n x II orthogonal matrix Q such that 

Q'A'AQ = 
!:J,.2 (0) 

(0) (0) 

Partitioning Q as Q = [Q, Q2], where Q, is n x r, the identity above implies 

that 

(4.1) 

and 

(4.2) 

Note that from (4.2) it follows that 

AQ2 = (0) (4.3) 

Now let P = [PI P 21 be an m x m orthogonal matrix, where the m x r matrix 

P, = AQ,!:J,.-' and the m x (m - r) matrix P2 is any matrix which makes P 

orthogonal. Consequently, we must have ~P, = ~AQ,.:1-' = (0) or, equiva

lently, 

By using (4.1), (4.3), and (4.4), we find that 

P'AQ= 

-

~AQ, 
~AQ, 

t:.- I t:.2 

(0) 

t:.- I Q~A'(O) _ t:. (0) 
~(O) - (0) (0) 

.:1-'Q;A'AQ2 

~AQ2 

(4.4) 

o 

• 

, . 



• 

-- -

The diagonal elements of .:1, that is, the positive square roots of the positive 

eigenvalues of A' A and AA', are called the singular values of A. It is obvious 

from the proof of Theorem 4.1 that the columns of Q fOlln an orthonollllal 

set of eigenvectors of A' A and so A'A = QD' DQ'. It is important to note also 

that the columns of P fonn an orthonormal set of eigenvectors of AA' since 

AA' = PDQ'QD'P' = PDD'P'. 
If we again partition P and Q as P = [PI P2 ] and Q = [QI Q2], where PI 

is m X r and QI is n X r, then the singular value decomposition can be restated 

as follows. . 

Corollary 4.1.1. If A is an m X n matrix of rank r > 0, then there exist /1/ 

X rand n X r matrices PI and Qb such that P'.,P I = Q;QI = If and A = PI.:1Q;, 

where .:1 is an r X r diagonal matrix with positive diagonal elements. 

Quite a bit of information about the structure of a matrix A can be obtained 

from its singular value decomposition. The number of singular values gives 

the rank of A, while the columns of PI and QI are orthonormal bases for the 

column space and row space of A, respectively. Similarly, the columns of Pc 

span the null space of A' and the columns of Q2 span the null space of A. 

Theorem 4.1 and Corollary 4.1.1 are related to Theorem 1.9 and its corol

lary, Corollary 1.9.1, which were stated as consequences of the properties of 

elementary transformations. It is easily verified that Theorem 1.9 and Corollary 

1.9.1 also follow directly from Theorem 4.1 and Corollary 4.1.1. 

Example 4.1. We will find a singular value decomposition for the 4 x 3 

matrix 

A= 

First an eigenanalysis of the matrix 

2 0 1 
3 -1 1 

-2 4 1 
1 1 1 

18 -10 4 
A'A = -10 18 4 

4 4 4 

reveals that it has eigenvalues 28, 12, and 0 with associated normalized 

eigenvectors (1/-/2, -1/-/2, 0)" (l/v3, 1/v3, 1/v3)', and (l/V6, 1/V6, 

- 2/--16)', respectively. Let these be the columns of the 3 x 3 orthogonal matrix 

Q. Clearly, rank(A) = 2 and the two singular values of A are -h8 and .Ji2. 
Thus, the 4 X 2 matrix PI is given by 



134 MATRIX FACfORlZATIONS AND MATRIX NORMS 

2 

3 
PI = AQI~-I = -2 

-

I 

1/V14 1/2 
2/V14 1/2 

- -3/V14 1/2 
o 1/2 

0 

-1 
4 
I 

1 l/Vl 1/v'3 
1 1/V28 0 

-I/h 1/v3 I 1/.Jt2 0 
1/V3 0 I 

The 4 x 2 matrix P2 can be any matrix satisfying P'"P2 = (0) and P2P2 = Iz; 
for instance, we can take (l/.Jt2, 1/.Jt2, 1/.Jt2, -3f.Jt2)' and (-5/V42, 
4/V42. 1/V42, 0)' as the columns of P2• Then our singular value decompo
~ition of A is given by 

1/V14 1/2 1/.Jt2 -5/V42 , 
2/V14 1/2 1/.Jt2 4/V42 

-3/V14 1/2 1/.Jt2 1/V42 
0 1/2 -3/.Jt2 0 

1/V2 -1/V2 0 
• 1/V3 1/V3 1/V3 

1/v'6 1/v'6 -2/v'6 

or in the form of Corollary 4.1.1, 

1/V14 1/2 
2/V14 1/2 

-3/V14 1/2 
o 1/2 

58 0 
o .Jt2 

, 

58 0 0 
0 .Jt2 0 
0 0 0 
0 0 0 

Alternatively, we could have determined the matrix P by using the fact that its 
columns are eigenvectors of the matrix 

, 

5 7 -3 3 

AA' = 
7 II -9 3· 

-3 -9 21 3 
3 3 3 3 

However, when constructing P this way, one will have to check the decomposition 
A = PI ~Q; to determine the correct sign for each of the columns of PI. 
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The singular value decomposition of a vector is very easy to construct. We 

illustrate this in the next example. 

Example 4.2. Let x be an m X I nonnull vector. Its singular value decom

position will be of the form 

x = Pdq, 

where P is an m X m orthogonal matrix, d is an m X I vector having only its 

first component nonzero, and q is a scalar satisfying q 2 = I. The single singular 

value of x is given by ),.tI2, where A = x' x. If we define x * = A -1/2X, note that 

x~x", = I, and 

xx'x* = XX'()..-1/2X) = ().. -1/2X)X'X = AX* 

so that x'" is a normalized eigenvector of xx' corresponding to its single positive 

eigenvalue A. Any vector orthogonal to x* is an eigenvector of xx' correspond

ing to the repeated eigenvalue O. Thus, if we let d = ()..1/2, 0, ... ,0)" q = I, and 

P = [X*,P2' ... ,Pm] be any orthogonal matrix with x* as its first column, then 

• 
• , 

o 

as is required. 

When A is m x m and symmetric, the singular values of A are directly related 

to the eigenvalues of A. This follows from the fact that AA' = A2, and the 

eigenvalues of A2 are the squares of the eigenvalues of A. Thus, the singular 

values of A will be given by the absolute values of the eigenvalues of A, If 

we let the columns of P be a set of orthonormal eigenvectors of A, then the Q 

matrix in Theorem 4.1 will be identical to P except that any column of Q that 

is associated with a negative eigenvalue will be -I times the corresponding 

column of P. If A is nonnegative definite, then the singular values of A will 

be the same as the positive eigenvalues of A and, in fact, the singular value 

decomposition of A is simply the spectral decomposition of A discussed in the 

next section. This nice relationship between the eigenvalues and singular values 

of a symmetric matrix does not carry over to general square matrices. 

Example 4.3. Consider the 2 x 2 matrix 

A= 
6 6 

- I, I ' 
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which has 

MATRIX FACTORIZATION~ ANU MA1K1A I~V"-'n.., 

M' = 72 0 
o 2 ' 

A'A = 37 35 
35 37 

Clearly, the singular values of A are v02 = 6V2 and V2. Normalized eigen

vectors corresponding to 72 and 2 are (1,0), and (0, 1), for M', while A' A has 

(l/vI2, l/vI2)' and (-I/vI2, 1/V2)'. Thus, the singular value decomposition 

of A can be written as 

1 0 
o 1 

6V2 0 
0V2 

1/V2 1/V2 
-1/V2 1/v12 

On the other hand, an eigenanalysis of A yields the eigenvalues 4 and 3. Asso

ciated nOllualized eigenvectors are (3/vlO, -1/vlO)' and (2/0. -1/0)'. 

We end this section with an example which i\lustrates an application of the 

singular value decomposition to least squares regression. For more discussion of 

this and other uses of the singular value decomposition in statistics, the reader 

is referred to Mandel (1982), Eubank and Webster (1985), and Neider (1985). 

Example 4.4. In this example, we will take a closer look at the multi

collinearity problem, which we first discussed in Example 3.6. Suppose we have 

the standardized regression model 

We have seen in Example J..IS that the least squares estimator of 00 is y. The 

fitted model y = yIN + Z 151 gives points on a hyperplane in Rk + I, where the 

(k + I) axes correspond to the k standardized explanatory variables and the 

fitted response variable. Now let Z I = VD U' be the singular value decompo

sition of the N x k matrix ZI. Thus, V is an N x N orthogonal matrix, U is a 

k x k orthogonal matrix, and D is an N x k matrix that has the square roots of 

the eigenvalues of Z;ZI as its diagonal elements and zeros elsewhere. We can 

rewrite the model y = OOIN + Z I 5 1 + E as we did in Example 2.15 by defining 

au = 00, (XI = U'51, and WI = VD, so that y = aolN + WI(XI + E. Suppose 

that exactly r of the diagonal elements of D, specifically the last r diagonal 

elements, are zeros, and so by partitioning U, V, and D appropriately, we get 

Z I = V I DI U~, where DI is a (k - r) x (k - r) diagonal matrix. This means that 

the row space of Z\ is a (k - r)-dimensional subspace of Rk, and this subspace 

is spanned by the columns of UI ; that is, the points on the fitted regression 

hyperplane described above, when projected onto the k-dimensional standard-

• 



THE SINGULAR VALUE DECOMPOSITION .. " 

ized explanatory variable space, are actually confined to a (k - r)-dimensional 

subspace. Also, the model y = aolN + WI al + E simplifies to 

(4.5 ) 

where WII = VID I and all = V~Oh and the least squares estimator of the 

(k - r) x I vector all is given by all = (W~I WII)-I W;IY = Di l V;y. This can 
• 

be used to fit.!d a le}lst ~quares estimator of 01 since we l1}ust have all = v; 01. 

Partitioning ih = (o~ I, o~z)' and V; = (U; I' V;z), where 011 is (k - r) x I. we 

obtain the relationship 

PremuItiplying this by V~11 (if VII is not nonsingular, then 01 and VI can be 

rearranged so that it is), we find that 

A I A 

'" V'_· V'-I V' '" 
U\I = II all - II Izu \2; 

• •• 

. that is, the least squares estimator of 01 is no} unique since ~I = (o~ 1,0;2)' 

is a least squares estimator for any choice of 0\2, as long as 011 satisfies the 

identity given. Now suppose that we wish to estimate the response variable y 

corresponding to an observation that has the standardized explanatory variables 

at the values given in the k x 1 vector z. Using a least squares estimate 01 we 
. A 

• 

obtain the estimate y = y + Z'OI' This estimated response, like 01, may not be 

unique since, if we partition Z as z' = (z;, z;) with Z I (k - r) x I, 

A A A 

Y = Y +Z'OI = Y +Z~ 011 +Z;OIZ 
• 

- , V,-I A ( , , V'-I V' )'" 
=Y+ZI\lall+ZZ-ZIII12UI2 

A 

Thus, y does not depend on the arbitrary OIZ and is therefore unique, only if 

( ' 'V'-IV') 0' 
Zz - ZI II IZ = , (4.6) 

in which case the unique estimated value is given by y = Y + z; V;11 all. It is 

easily shown that the set of all vectors Z = (Z~, z;Y satisfying (4.6) is simply 

the column space of V I. Thus, Y = 00 + Z'OI is uniquely estimated only if the 

vector of standardized explanatory variables Z falls within the space spanned 

by the collection of all vectors of standardized explanatory variables available 

A 

to compute 01. 
. 

In the typical multicollinearity problem, 21 is full rank so that the matrix D 

has no zero diagonal elements but instead has r of its diagonal elements very 

small relative to the others. In this case, the row space of 21 is all of J?k, but 

• 
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the points corresponding to the rows of ZI all lie very close to a (k - r)-dimen
sional subspace S of K', specifically, the space spanned by the columns of U \. 
Small, changes in the values of the response variables corresponding to these 
points can, substantially alter the position of the fitted regression hyperplane 
)' = Y + Z'OI for vectors Z lying outside of and, in particular, far from S. For 
instance, if k = 2 and r = I, the points corresponding to the rows of ZI all lie 
very close to S, which in this case is a line in the ZI, Z2 plane, and y = y + to\ 
will be given by a pl~ne in R3 extended OVer the Zt.Z2 plane. The fitted regres
sion plane y = y + Z'OI can be identified by the line fonned as the intersection 
of this plane and the plane perpendicular to the ZI, Z2 plane and passing through 
the line S, along with the tilt of the fitted regression plane. Small changes in 
the values of the response variables will produce small changes in both the 
location of this line of intersection and the tilt of the plane. However, even a 
slight change in the tilt of the regression plane will yield large changes on the 
surface of this plane for vectors Z far from S. The adverse effect of this tilting 
can be eliminated by the use of principal components regression. As we saw 
in Example 3.6, principal components regression utilizes the regression model 
(4.5), and so an estimated response will be given by y = Y + z'UID. 1 V;y. Since 
this regression model technically holds only for z E S, by using this model for 
Z E S we will introduce bias into our estimate of y., The advantage of principal 
components regression is that this may be compensated for by a large enough 
reduction in the variance of our estimate so as to reduce the mean squared error 
(see Problem 4.9). However, it should be apparent that the predicted values of y 
obtained from both ordinary least squares regression and principal components 
regression will be poor if the vector Z is far from S. 

3. THE SPECTRAL DECOMPOSITION AND SQUARE ROOT 
MATRICES OF A SYMMETRIC MATRIX 

The spectral decomposition of a symmetric matrix, briefly discussed in the pre
vious chapter, is nothing more than a special case of the singular value decom
position. We summarize this result in the following theorem. 

Theorem 4.2. Let A be an m x m symmetric matrix with eigenvalues 
A I, ... ,Am and suppose that x" ... ,Xm is a set of orthonormal eigenvectors 
corresponding to these eigenvalues. Then, if A = diag(A I , ... , Am) and X = 
(XI, . .. ,Xm ), it follows that , 

A = XAX' 

We can use the spectral decomposition of a nonnegative definite matrix A to 
find a square root matrix of A; that is, we wish to find an m x m matrix A 1/2 

for which A = A 1/2A 1/2. If A and X are defined as in the theorem above, and 

, 
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we let AI/2 = diag(A:/2, ... ,"A!,{2) and AI/2 = XA I/2X', then since X'X = I, 

A 1/2A 1/2 = XA 1/2X'XA 1/2X' = XA 1/2 A 1/2X' = Xil' = A, 

as is required. Note that (Al/2)' = (XA I/2X')' = XA I/2X' = AI/2; consequently, 

XA1/2X' is referred to as the symmetric square root of A. Note also that if we 

did not require A to be nonnegative definite, then A 1/2 would be a complex 

matrix if some of the eigenvalues of A are negative. 

We can expand the set of square root matrices if we do not insist that 

A 1/2 be symmetric; that is, now let us consider any matrix A 1/2 satisfying 

A = AI/2(Al/2)'. If Q is any m x m orthogonal matrix, then AI/2 = XAI/2Q' 

is such a square root matrix since 

If A 1/2 is a lower triangular matrix with nonnegative diagonal elements, then 

the factorization A = AI/2AI/2' is known as the Cholesky decomposition of A. 

The following theorem establishes the existence of such a decomposition . 

• 

Theorem 4.3. Let A be an m x m nonnegative definite matrix. Then there 

exists an mXm lower triangular matrix T having nonnegative diagonal elements 

such that A = TT'. Further, if A is positive definite, the matrix T is unique and 

has positive diagonal elements. 

Proof We will prove the result for positive definite matrices. Our proof is 

by induction. The result clearly holds if m = I, since in this case A is a positive 

scalar, and so the unique T would be given by the positive square root of A. 

Now assume that the result holds for all positive definite (m - 1) x (m ~. 1) 

matrices. Partition A as 

where All is (m - 1) x (m - 1). Since All must be positive definite if A is, 

we know there eJtists a unique (m - 1) x (m - 1) lower triangular matrix Til 

having positive diagonal elements and satisfying A II = T II T~ I' Our proof will 

be complete if we can show that there is a unique (m - 1) x 1 vector 112 and a 

unique positive scalar 122 such that 

--
o 

t22 

112 _ TIIT;I 
t22 - 1;2T ; I 
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that is, we must have al2 = TII/12 and a22 = 1;2/12 + t~2. Since Til must be 

nonsingular, the unique choice of 112 is given by 112 = Tiial2, and so t~2 must 

satisfy 

Note that since A is positive definite, lin - a;2Aiial2 will be positive since, if 

we let x = (x;, -1)' = (a;2Aii, -1)', then 

Consequently, the unique t22 > 0 is given by t22 = (a22 - a;2Aj}aI2)1/2. 0 

The following decomposition, commonly known as the QR factorization, can 

be used to establish the triangular factorization of Theorem 4.3 for positive 

semidefinite matrices. 

Theorem 4.4. Let A be an m x n matrix, where m ~ n. There exist an n x n 

upper triangular matrix R and an m x n matrix Q satisfying Q' Q = In, such that 

A = QR. 

For a proof of Theorem 4.4 see Hom and Johnson (1985). If A is a positive 

semidefinite matrix and A = AI/2(A I/2)', then the triangular factorization of 

Theorem 4.3 for positive semidefinite matrices can be proven by using the QR 

factorization of (A 1/2)'. 

Example 4.5. Suppose that the m x 1 random vector x has mean vector fL 

and the positive definite covariance matrix {}. By using a square root matrix of 

{} , we can deteliuine a linear transformation of x so that the transformed random 

vector is standardized; that is, it has mean vector 0 and covariance matrix 1m. If 

we let {} 1/2 be any matrix satisfying {} = {} 1/2({} 1/2)' and put z = (}-1/2(x - fL), 

where {}-1/2 = ({) 1/2tl, then by using (1.8) and (1.9) of Section 1.13, we find 

that 

and 
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var(z) = var{{}-1/2(x - fL)} = (}-1/2{var(x - fL)}(W I/2)' 

= (}-1/2{var(x)}({}-1/2)' = (}-1/2{}({}-1/2)' = 1m 

141 

Since the covariance matrix of z is the identity matrix, the Euclidean distance 

function will give a meaningful measure of the distance between observations 

from this distribution. By making use of the linear transfonnation defined above, 

we can relate distances between z observations to distances between x obser

vations. For example, the Euclidean distance between an observation z and its 

expected value 0 is 

d,(z, O) = {(z - 0)' (z - O)} 1/2 = (z' Z)I/2 

= {(x - fL)'({}-1/2)'{}-1/2(X - fL)}I/2 

= {(x - fL),{}-I(X - fL)}I/2 

= do (x, fL), 

where do is the Mahalanobis distance function defined in Section 2.2. Similarly, 

if x, and X2 are two observations from the distribution of x and Zl and Z2 are 

the corresponding transfollued vectors, then d,(zj,z2) = do(xj,x2). This rela

tionship between the Mahalanobis distance and the Euclidean distance makes 

the construction of the Mahalanobis distance function more apparent. It is noth

ing more than a two-stage computation of distance; the first stage transfOl ms 

points so as to remove the effect of correlations and differing variances, while 

the second stage simply computes the Euclidean distance for these transfOl med 

points. 

Example 4.6. In Example 2.16, we obtained the weighted least squares 

estimator of P in the multiple regression model 

y = Xp + E, 

where Var(E) = a 2diag(ct, ... , c~) and ct, ... , c~ are known constants. We now 

consider a more general regression problem, sometimes referred to as general

ized least squares regression, in which Var(E) = a2e, where e is a known Nx N 

positive definite matrix. Thus, the random 'errors not only may have different 

variances but also may be correlated, and weighted least squares regression is 

simply a special case of generalized least squares regression. As with weighted 

least squares regression, the approach here is to tranSfOllil the problem to ordi

nary least squares regression; that is, we wish to transfo'lII the model so that 

the vector of random errors in the transfOi med model has a21N as its covariance 

matrix. This can be done by utilizing any square root matrix of e. Let T be 

any Nx N matrix satisfying TT' = e or, equivalently, T,-IT- I = e- I . Now 

transfOllil our original regression model to the model 

, 
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where y* = T-1y, X* = T- 1 X, and E* = T-1E, and note that E(E*) = T-1E(E) = 0 
and 

var(E*) = var(rIE) = rl {Var(E)} T'-I 

= T- 1(u 2e)T'-1 = u2T- 1TT'T'-1 = u2 IN 
• 

A 

Thus, the generalized least squares estimator ~* of p in the model y = Xp + E is 
given by the ordinary least squares estimator of ~ in the model y* = X*~ + E* 
and so can be expressed as 

11* = (X~X*)-IX~y* = (X'T'-lrIXr·IX'T'-lrly 

= (X'C-1X)-IX'C-1y 

In some situations a matrix A can be expressed in the form of the transpose 
product, BB', where the m x r matrix B has r < m, so that unlike a square root 
matrix, B is not square. This is the subject of our next theorem, the proof of 
which will be left to the reader as an exercise. 

Theorem 4.5. Let A be an m x m nonnegative definite matrix with 
rank(A) = r. Then there exists an m x r matrix B, having rank of r, such that 
A = BB'. 

The transpose product fOIln A = BB' of the nonnegative definite matrix A is 
not unique. However, if e is another matrix of order m X n where n ~ r and . 
A = ee', there is an explicit relationship between the matrices B and e. This 
is established in the next theorem. 

Theorem 4.6. Suppose that B is an m x h matrix and e is an m x n matrix, 
where h :s; n. Then BB' = ee' if and only if there exists an h x n matrix Q such 
that QQ' = Ih and e = BQ. 

Proof If e = BQ with QQ' = Ih , then clearly • 

ee' = BQ(BQ)' = BQQ'B'''; BB' 

Conversely, now suppose that BB' = ee'. We will assume that h = n since 
if II < n, we can fOIln the matrix B* = [B (0)] so that B* is m x n an" 
B*B'* = BB'; then proving that there exists an n x n orthogonal matrix Q* such 
that e = B*Q* wilI yield e = BQ, if We take Q to be the first h rows of Q*. 

• 

· , 

• • , 
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Now since BB' is symmetric, there exists an orthogonal matrix X such that 

BIt = CC' = X 
A (0) 
(0) (0) 

where rank(BB') = r and the r x r diagonal matrix A contains the positive 
eigenvalues of the nonnegative definite matrix BB'. Here X has been partitioned 
as X = [X I X2], where X I is m x r. FOlIll the matrices 

E= 

so that 

A -1/2 

(0) 

A-I/2 

(0) 

(0) 
X'B= 

Im-r 

(0) 
Im-r 

X'c= 

EE'=FF'= 
Ir (0) . 

(0) (0) , 

(4.7) 

(4.8) 

that is, EIE~ = FIFI = In E2E2 = F2F'z = (0), and so E2 = F2 = (0). 
Now let E3 and F3 be any (h - r) x h matrices such that E* = [E~ E;r and 
F * = [FI F;]' are both orthogonal matrices. Consequently, if Q = E~F *' then 
QQ' = E~F *F~E* = E~E* = Ih, so Q is orthogonal. Since E* is orthogonal, 
we have EIE; = (0), and so 

_ Ir (0) 
-

(0) (0) 

But using (4.7) and (4.8), EQ = F can be written as 

• 

A- I/ 2 

(0) 
(0) 

Im-r 
X'BQ= 

A- I / 2 

(0) 
(0) 

Im- r 
X'c 
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The result now follows by premultiplying this equation by 

Alj2 (0) 

X (0) I", _ r ' 

since XX' = 1m. 0 

4. THE DIAGONALIZATION OF A SQUARE MATRIX 

From the spectral decomposition theorem, we know that every symmetric 

matrix can be transfOIll1ed to a diagonal matrix by postrnultiplying by an appro

priately chosen orthogonal matrix and premultiplying by its transpose. This 

result gives us a very useful and simple relationship between a symmetric matrix 

and its eigenvalues and eigenvectors. In this section, we investigate a general

ization of this relationship to square matrices in general. We begin with the 

following definition. 

Definition 4.1. The mX m matrices A and B are said to be similar matrices 

if there exists a nonsingular matrix C such that A = CBC- I • 

It follows from Theorem 3.2(d) that similar matrices have identical eigen

values. However, the converse is not true. For instance, if we have 

A = 0 1 
o 0 ' 

o 0 
B = 0 0 ' 

then A and B have identical eigenvalues since each has 0 with multiplicity 2. 

Clearly, however, there is no nonsingular matrix C satisfying A = CBC- I • 

The spectral decomposition theorem given as Theorem 4.2 tells us that every 

symmetric matrix is similar to a diagonal matrix. Unfortunately, the same state

ment does not hold for all square matrices. If the diagonal elements of the diag

onal matrix A are the eigenvalues of A, and the columns of X are corresponding 

eigenvectors, then the eigenvalue eigenvector equation AX = XA immediately 

leads to the identity X-I AX = A, if X is nonsingular; that is, the diagonability 

of an m x m matrix simply depends on the existence of a set of m linearly inde

pendent eigenvectors. Consequently, we have the following result, previously 

mentioned in Section 3.3, which follows immediately from Theorem 3.6. 

Theorem 4.7. Suppose that the m x m matrix A has the eigenvalues 

Ai> ... ,Am which are distinct. If A = diag(A\, ... , Am) and X = (Xi> ... ,xm ), 

where XI, ••• ,Xm are eigenvectors of A corresponding to AJ, ... ,Am. then 

(4.9) 
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The theorem above gives a sufficient but not necessary condition for the diag

onalization of a general square matrix; that is, some nonsymmetric matrices that 

have multiple eigenvalues are similar to a diagonal matrix. The next theorem 

gives a necessary and sufficient condition for a matrix to be diagonalizable. 

Theorem 4.8. Suppose. the eigenvalues A I, ... ,Am of the m x m matrix A 

consist of h distinct values J-LI,." ,J-Lh having multiplicities n, ... , rh, so that 

rl + ... + rh = m. Then A· has a set of m linearly independent eigenvectors and, 

thus, is diagonalizable if and only if rank(A - J-Ljlm) = m - rj for i = 1, ... , h. 

Proof First, suppose that A is diagonalizable, so that using the usual nota

tion, we have X-I AX = A, or equivalently A = XAX- I . Thus, 

rank(A - J-Ljlm ) = rank(XAX- 1 
- J-Ljlm ) = rank{X(A - J-LjIIII)X-I} 

= rank(A - J-Ljlm ), 

where the last equality folIows from the fact that the rank of a matrix is unal

tered by its multiplication by a nonsingular matrix. Now, since J-LI has multi

plicity rio the diagonal matrix (A - J-Ljlm ) has exactly In - rj nonzero diagonal 

elements which then guarantees that rank(A - J-Ljlm ) = m - rj. Conversely, now 

suppose that rank:(A - J-Ljlm ) = m - rj, for i = I, ... , h. This implies that the 

dimension of the null space of (A - J-Ljlm ) is m - (m - rj) = rj, and so we can 

find rj linearly independent vectors satisfying the equation 

But any such x is an eigenvector of A corresponding to the eigenvalue ILi' Con

sequently, we can find a set of rj linearly independent eigenvectors associated 

with the eigenvalue J-Lj. From Theorem 3.6, we know that eigenvectors corre

sponding to different eigenvalues are linearly independent. As a result, any set 

of m eigenvectors of A, which has rj linearly independent eigenvectors corre

sponding to J-Lj for each i, will also be linearly independent. Therefore, A is 

diagonalizable and so the proof is complete. 0 

We saw in Chapter 3 that the rank of a symmetric matrix is equal to the 

number of its nonzero eigenvalues. The diagonal factorization given in (4.9) 

immediately yields the following generalization of this result. 

Theorem 4.9. Let A be an m x m matrix. If A is diagonalizable, then the 

rank: of A is equal to the number of nonzero eigenvalues of A. 

The converse of Theorem 4.9 is not true; that is, a matrix need not be diag

onalizable for its rank: to equal the number of its nonzero eigenvalues. 
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Example 4.7. Let A, B, and C be the 2x 2 matrices given by 

1 1 
1 ' 

B= A= 4 
o 1 
o 0 ' 

C= 1 o 
1 
1 

The characteristic equation of A simplifies to (A-3)(A+ 1) = 0, so its eigenvalues 

are A = 3, -1. Since the eigenvalues are simple, A is diagonalizable. Eigenvec

tors corresponding to these two eigenvalues are Xl = (1,2)' and X2 :: (1, - 2)', 

so the diagonalization of A is given by 

1/2 
1/2 

1/4 
-1/4 

1 
4 

1 
1 

1 1 
2 -2 

--
3 0 
o -1 

Clearly, the rank of A is 2, which is the same as the number of nonzero eigen

values of A. The characteristic equation of B reduces to A2 = 0, sO R has the 

eigenvalue A = 0 with multiplicity r:: 2. Since rank(R-AI2) = rankeR) = 1 i. 

o = m - r, B wi\l not have two linearly independent eigenvectors. The equation 

Bx = Ax = 0 has only one linearly independent solution for X, namely, vectors 

of the f01l11 (a,O)'. Thus, R is not diagonalizable. Note also that the rank of 

B is I, which is greater than the number of its nonzero eigenvalues. Finally, 

turning to C, we see that it has the eigenvalue A = 1 with multiplicity r = 2, 

since its characteristic equation simplifies to (1 - A)2 = O. This matrix is not 

diagonalizable since rank(C - Ah) = rank(C - lz) :: rank(B) = 1 i. 0 = m - r. 

Any eigenvector of C is a scalar multiple of the vector X = (1,0)'. However, 

notice that even though C is not diagonalizable, it has rank of 2, which is the 

same as the number of its nonzero eigenvalues. 

The next result shows that the connection between the rank and the number 

of nonzero eigenvalues of a matrix A hinges on the dimension of the eigenspace 

associated with the eigenvalue O. 

Theorem 4.10. Let A be an mX m matrix and let k be the dimension of the 

eigenspace associated with the eigenvalue 0 if 0 is an eigenvalue of A, and let 

k = 0 otherwise. Then 

rank(A) = m - k 

Proof From Theorem 2.21, we know that 

rank(A):: m - dim{N(A)}, 

. , 

• 

• 
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where N(A) is the null space of A. But since the null space of A consists of all 
vectors x satisfying Ax = 0, We see that N(A) is the same as SA(O), and so the 
result follows. 0 

We have seen that the 'lUmber of nonzero eigenvalues of a matrix A equals 
the rank of A if A is similar to a diagonal matrix; that is, A being diagonalizable 
is a sufficient condition for this exact relationship between rank and the number 
of nonzero eigenvalues. The following necessary and sufficient condition for 
this relationship to exist is an immediate consequence of Theorem 4.10. 

Corollary 4.10.1. Let A be an rnx rn matrix and let rno denote the mUltiplic
ity of the eigenvalue O. Then the rank of A is equal to the number of nonzero 
eigenvalues of A if and only if 

Example 4.8. We saw in Example 4.7 that the two matrices 

B= 
o 1 
o 0 ' 

1 
c= 0 

1 
1 

are not diagonalizable since each has only one linearly independent eigenvector 
associated with its single eigenvalue, which has multiplicity two. This eigen
value is 0 for B, sO 

rank(B) = 2 - dim{SB(O)} = 2 - I = I 

On the other hand, since 0 is not an eigenvalue of C, dim{Sc(O)} = 0, and so 
the rank of C equals the number of its nonzero eigenvalues, 2. 

5. THE JORDAN DECOMPOSITION 

Our next factorization of a square matrix A is one that could be described as 
an attempt to find a matrix similar to A, which, if not diagonal, is as diagonal 
as is possible. We begin with the following definition. 

Definition 4.2. For h > I, the h x h matrix J,.(A) is said to be a Jordan 
block matrix if it has the form 
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A I 0 • • • 0 

/i-I 0 A I • • • 0 

Jh(A) = Alh + 
, 0 0 A • • • 0 

eiei+ I = , 
• • • • 

. I I • • • • 
• • • • 

0 0 0 • • • A 

where ei is the ith column of II" If h = I, J I (A) = A . 
• 

The matrices B and C from Examples 4.7 and 4.8 are both 2x 2 Jordan block 

matrices; in particular, B = lz(O) and C = lz(l). We saw that neither of these 

matrices is similar to a diagonal matrix. This is true for Jordan block matrices 

in general; if h > 1, then h(A) is not diagonalizable. To see this, note that since 

h(A) is a triangular matrix, its diagonal elements are its eigenvalues, and so it 

has the one value, A, repeated h times. However, the solution to Jh(A)x = AX 

has x I arbitrary while X2 = .. , = Xli -:- 0; that is, h(A) has only one linearly 

independent eigenvector, which is of the fOlIll X = (x 1,0, ... ,0)'. 

We now state the Jordan decomposition theorem. For a proof of this result 

see Hom and Johnson (1985). 

Theorem 4.11. Let A be an m x m matrix. Then there exists a nonsingular 

matrix B such that 

B-IAB = J = diag(JII( (AI),·.· ,hr(Ar» 

iJ,,(AI) (0) • • • (0) 
. 

(0) h 2 (A2) • • • (0) 
-- • • • , 

• • • 
• • • 

(0) (0) • •• hr(Ar) 

where hi + .. ·+hr = m and AI>." ,Ar are the not necessarily distinct eigenvalues 

of A. 

The matrix J wiJ) be diagonal if hi = I for all i. Since the hi x hi matrix 

hi(Ai) has only one linearly independent eigenvector, it follows that the Jor

dan canonical fonn J = diag(J hi (A I), ... ,hr (Ar» has r linearly independent 

eigenvectors. Thus, if hi > I for at least one i, then J will not be diagonal; in 

fact, J will not be diagonalizable. The vector Xi is an eigenvector of J corre

sponding to the eigenvalue Ai if and only if the vector Yi = BXi is an eigenvector 

of A corresponding to Ai; for instance, if Xi satisfies JXi = AiXi, then 
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Thus, r also gives the number of linearly independent eigenvectors of A, and 

A is diagonalizable only if J is diagonal. 

Example 4.9. Suppose that A is a 4 x 4 matrix with the eigenvalue A hav

ing multiplicity 4. Then A will be similar to one of the following five Jordan 

canonical forms: 

diag(}z(}..), J I (}..), J I (}..» = 

diag(}z(}..), h(}"» = 

• 

A 0 0 0 

o A 0 0 

o 0 A 0 ' 

o 0 0 A 

.... A I o 0 
o o A 0 

o 0 A 
000 

o ' 
A..J 

A I o 0 
o o A 1 

o 0 A 
o o 0 

o ' 
A 

A I 0 0 

o A 0 0 

o 0 A I 

o 0 0 A 

A I o 0 
o o A I 

o 0 A I 

o 0 0 A 

, 

The first fonn given is diagonal so this corresponds to the case in which A has 

four linearly independent eigenvectors associated with the eigenvalue A. The 

second and last fonns correspond to A having three and one linearly independent 

eigenvectors, respectively. If A has two linearly independent eigenvectors, then 

it will be similar to either the third or the fourth matrix given. 

6. THE SCHUR DECOMPOSITION 

Our next result can be viewed as another generalization of the spectral decom

position theorem to any square matrix, A. The diagonalization theorem and 

the Jordan decomposition were generalizations of the spectral decomposition 

in which our goal was to obtain a diagonal or "nearly" diagonal matrix. Now, 
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instead we focus on the orthogonal matrix employed in the spectral decompo

sition theorem. Specifically, if we restrict attention only to orthogonal matrices, 

X. what is the simplest structure that we can get for X' AX? It turns out that for 

the general case of any real square matrix A, we can find an X such that X* AX 

is a triangular matrix, where we have broadened the choice of X to include all 

unitary matrices. Recall that a real unitary matrix is an orthogonal matrix and, 

in general, X is unitary if X * X = I, where X * is the transpose of the com

plex conjugate of X. This decomposition, sometimes referred to as the Schur 

decomposition, is given in the following theorem. 

Theorem 4.12. Let A be an m x m matrix. Then there exists an m x m 

unitary matrix X such that 

. 

* X AX= T, 

where T is an upper triangular matrix with the eigenvalues of A as its diagonal 

elements. 

Proof Let AI. ... , Am be the eigenvalues of A, and let YI be an eigenvector 

of A corresponding to AI and nOIlnalized so that yiYI = 1. Let Y be any m x 

1/1 unitary matrix having Y 1 as its first column. Writing Y in partitioned fOIln as 

Y = [YI Y:!l, we see that, since AYI = AIY! and YiYI = 0, 

--

-- , 

where the (Ill - I) x (m - I) matrix B = YiA Yz. Using the identity above and 

the cofactor expansion fOlll1ula for a detellninant, it follows that the character

istic equation of Y * A Y is 

(A I - A) I B - AIm _ I I = 0, 

and. since by Theorem 3.2(d) the eigenvalues of Y*AYare the same as those 

of A, the eigenvalues of B must be Az, .. . ,Am. Now if m = 2, then the scalar 

B must equal AZ and Y* A Y is upper triangular, so the 'proof is complete. For 

1/1 > 2. we proceed by induction~ that is, we show that if our result holds for 

(Ill - I) X (Ill - I) matrices, then it must also hold for m x m matrices. Since 

R is (Ill - I) x (m - I) we may assume that there exists a unitary matrix W 

such that W * B W = T 2, where T z is an upper triangular matrix with diagonal 

elements A2 .... , Am. Define the m x m matrix U by 

• 

• 

• • 

, 
• 

, 
• 

• 

· 
• 

• 

• 
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u = I 
o 

0' 
W' 
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. 

and note that U is unitary since W is. If we let X " Y U, then X is also unitary 
and 

X*AX= U*Y*AYU= 
1 0' 
o W* 

I 0' 
o W 

, 

where this final matrix is upper triangular with }.." .. . ,}..III as its diagonal ele
ments. Thus, the proof is complete. 0 

If all of the eigenvalues of A are real, then there exist corresponding real 
eigenvectors. In this case, a real matrix X satisfying the conditions of Theorem 
4.12 can be found. Consequently, we have the following result. 

Corollary 4.12.1. If the m x m matrix A has real eigenvalues, then there 
exists an m x m orthogonal matrix X such that X' AX = T, where T is an upper 
triangular matrix . 

Example 4.10. Consider the 3 x 3 matrix given by 

5 -3 3 
A = 4 -2 3 

4 -4 5 

In Example 3.1, the eigenvalues of A were shown to be }..I = 1, }..2 = 2, and 
}..3 = 5, with eigenvectors, XI = (0,1,1)', X2 = (1,1,0)" and X3 = (1,1, I)', 
respectively. We will find an orthogonal matrix X and an upper triangular matrix 
T so that A = XTX'. First, we construct an orthogonal matrix Y having a nor
malized version of XI 'as its first column; for instance, by inspection we set 

Y= 

Thus, our first stage yields 

° 1 
1/v2 ° 

-1/v2 ° 

• 
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The 2 x 2 matrix 

I 
Y'A Y- 0 

o 

B= 

-7 
2 

--3V2 

has a nonnalized eigenvector (l/V3, V2/V3)', and so we can construct an 
orthogonal matrix 

W= 

for which 

2312 W'BW= Vi. o 5 

Putting it all together, we have 

and 

X=y 
1 0' 
o W 

--
1 

v'6 

I 
T= X'AX= 0 

o 

o 2 V2 
V3 I-V2 
V3 -1 V2 

, 

, 

The matrices X and T in the Schur decomposition are not unique; that is, 
if A = XTX* is a Schur decomposition of A, then A = XoToX~ is also, where 
Xo = XP and P is any unitary matrix for which P*TP = To is upper triangular. 
The triangular matrices T and To must have the same diagonal elements, possi
bly ordered differently. Otherwise, however, the two matrices T and To may be 
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quite different. For example, it can be easily verified that the matrices 

2/v6 0 5 8/V2 
Xo = -ljv6 . -1/V2 , To = o 1 

-1/v6 1/V2 o 0 
• 

give another Schur decomposition of the matrix A of Example 4.10. 

In Chapter 3, by utilizing the characteristic equation of the m x m matrix A, 

we were able to prove that the detenrunant of A equals the product of its eigen

values, while the trace of A equals the sum of its eigenvalues. These results are 

also very easily proven using the Schur decomposition of A. If the eigenval

ues of A are AI> ... ,Am and A = XTX* is a Schur decomposition of A, then it 

follows that 

/11 

IA I = IXTX*I = IX *XIITI = ITI = Ai. 
i = I 

since IX*XI = I follows from the fact that X is a unitary matrix, and the deter

minant of a triangular matrix is the product of its diagonal elements. Also, using 

properties of the trace of a matrix, we have 

/11 

tr(A) = tr(XTX*) = tr(X*XT) = tr(T) = L Ai 
i = I 

The Schur decomposition also provides a method of easily establishing the fact 

that the number of nonzero eigenvalues of a matrix serves as a lower bound 

for the rank of that matrix. This is the subject of our next theorem. 

Theorem 4.13. Suppose the m x m matrix A has r nonzero eigenvalues. 

Then rank(A) ~ r. 

Proof. Let X be a unitary matrix and T be an upper triangUlar matrix such 

that A = XTX*. Since the eigenvalues of A are the diagonal elements of T, 

T must have exactly r nonzero diagonal elements. The r x r submatrix of T. 

fOil ned by deleting the columns and rows occupied by the zero diagonal ele

ments of T, will be upper triangular with nonzero diagonal elements. This sub

matrix will be nonsingular since the detenninant of a triangular matrix is the 

product of its diagonal elements, so we must have rank(T) ~ r. The result then 

follows from the fact that since X is unitary, it must be nonsingular, so 

* rank(A) = rank(XTX ) = rank(T) ~ r o 
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7. THE SIMULTANEOUS DIAGONALIZATION 
OF TWO S TRIC MATRICES 

We have already discussed in Section 3.7 one manner in which two symmet

ric matrices can be simultaneously diagonalized. We restate this result in the 

following theorem. 

Theorem 4.14. Let A and B be m X m symmetric matrices, with A being 

nonnegative definite and B, positive definite. Let A = diag(Xh ... ,Xm), where 

A I •...• Am are the eigenvalues of B- 1 A. Then there exists a nonsingular matrix 

C such that 

CAC' = A. CBC' = 1m 

Example 4.11. One application of the simultaneous diagonalization 

described in the theorem above is in a multivariate analysis commonly referred 

to as canonical variate analysis (see Krzanowski, 1988 or Mardia, Kent, and 

Bibby. 1979). This analysis involves data from the mUltivariate one-way clas

sification model discussed in Example 3.14, so that we have independent ran

dom samples from k different groups or treatments, with the ith sample of mx I 

vectors given by Yil .... 'Yini' The model is 

Yij = JLi + Eij. 

where JLi is an m X 1 vector of constants and Eij - Nm(O, 0). In Example 3.14, 

we saw how the matrices 

k k ni 

B= ni(Yi - Y)(Yi - y)'. W=L (Yij - Yi)(Yij - Yi)', 

j 0 I i = I j=1 

where 

ni 
Yij 

k - k 

- - niYi L Yj= Y= n= ni, • • nj n 
jol i = I i = I 

• 

could be used to test the hypothesis, Ho: fl.1 = ... = JLk' Canonical variate anal

ysis is an analysis of the differences in the mean vectors, perfonned when this 

hypothesis is rejected. This analysis is particularly useful when the differences 

between the vectors JLI' ... , JLk are confined, or nearly confined, to some lower 

dimensional subspace of Rm. Note that if these vectors span an r-dimensional 

subspace of ~, then the population version of B, 

, 

• 

. 
• 

, 

• 

, 
• 

• • 
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k 

~= 
i = I 

where fI. == Enifl.i In. will have rank r; in fact, the eigenvectors of <I> correspond
ing to its positive eigenvalues will span this r-dimensional space. Thus. a plot of 
the projections of fl.1' ••• , fl.k onto this subspace. will yield a reduced-dimension 
diagram of the population means. Unfortunately, if 0 i. 1m , it will be difficult to 
interpret the differences in these mean vectors since Euclidean distance would 
not be appropriate. This difficulty can be resolved by analyzing the transfonned 
data O-I/2y .. where 0'-1/20-1/2 == 0-1 since 0-1/2y .. - N (0- 1/2". I ) 

IJ ' 'IJ In .-" m . 

Thus. we would plot the projections of 0-1/2f1.1, ... ,0-I/2JLk onto the sub
space spanned by the eigenvectors of 0.- 1/2<1>0 '-1/2 corresponding to its r 
positive eigenvalues; that is. if the spectral decomposition of 0 -1/2<1>0 ,-1/2 
is given by PIAIP;. where PI is an m X r matrix satisfying P;P I == I, 
and AI is an r X r diagonal matrix. then we could simply plot the vec
tors P;0-1/2f1.1 •...• P;0-1/2 JLk in R'. The r components of the vector Vi = 
P; 0 -1/2f1.i in this r-dimensional space are called the canonical variates means 
for the ith population. Note that in obtaining these canonical variates we have 
essentially used the simultaneous diagonalization of <I> and 0, since if C' = 
(C~. C;) satisfies 

(0) 
(0) • 

I, 
(0) 

(0) 
1m -, , 

then we can take C 1 == P; 0 -1/2. When JL I •...• fl.k are unknown, the canonical 
variate means can be estimated by the sample canonical variate means. which 
are computed using the samples means Y I , ...• Y k and the corresponding simul
taneous diagonalization of B and W. 

The matrix C that diagonalizes A and B in Theorem 4.14 is nonsingular but not 
necessarily orthogonal. Further. the diagonal elements of the two diagonal matri
ces are not the eigenvalues of A nor B. This sort of diagonalization. one which 
will be useful in our study of quadratic fOllllS in nOllllal random vectors ins Chap
ter 9, is what we consider next; we would like to know whether or not there exists 
an orthogonal matrix that diagonalizes both A and B. The following result gives a 
necessary and sufficient condition for such an orthogonal matrix to exist. 

Theorem 4.15. Suppose that A and Bare m X m symmetric matrices. Then 
there exists an orthogonal matrix P such that p' AP and p' BP are both diagonal 
if and only if A and B commute; that is, if and only if AB = BA. 

Proof First suppose that such an orthogonal matrix does exist; that is, there 
is an orthogonal matrix P such P'AP = AI and P'BP = A2, where AI and 

• 



• 
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A2 are diagonal matrices. Then since A I and A2 are diagonal matrices, clearly 

AI A2 = A2AJ, so we have 

and, hence, A and B do commute. Conversely, now assuming that AB = BA, 

we need to show that such an orthogonal matrix P does exist. Let J.l.I, ••• ,J.l.h 

be the distinct values of the eigenvalues of A having multiplicities rl, ... , rh, 

respectively. Since A is symmetric there exists an orthogonal matrix Q satisfying 

Perfollning this same transfollnation on B and partitioning the resulting matrix 

in the same way that (f AQ has been partitioned, we get 

CII CI2 • • • Clh 

C21 C 22 • •• C 2h 
COO Q'BQ= • • • , . 

• • • 
• • • 

Chi Ch2 • • • C hh 

where Cij is rj x rj. Note that since AB = BA, we must have 

AIC= Q'AQQ'BQ= Q'ABQ= Q'BAQ= Q'BQQ'AQ= CAl 

Equating the (i,j)th submatrix of AI C to the (i,j)th submatrix of CAl yields 

the identity J.l.jC jj = J.l.jC jj . Since J.l.j f- J.l.j if i f- j, we must have C ij = (0) if i f- j; 

that is, the matrix C = diag(CIJ. ... , Chh) is block diagonal. Now since Cis 

symmetric so also is Cjj for each i, and, thus, we can find an rj x rj orthogonal 

matrix Xj satisfying 

x; Cj; Xj = I:l;, 

where I:l j is diagonal. Let P = QX, where X is the block diagonal matrix X = 

diag(XI, ... , Xh), and note that 

p' P = X' Q' QX = x'x = diag(X~XI"'" X~Xh) 

= diag(I'I ' ... , 1,/,) = 1m , 

so that P is orthogonal. Finally. the matrix I:l = diag(I:lI, ... , ~I) is diagonal and 
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and 

P'AP= X'Q'AQX= X' AIX 

= diag(X~, ... , X~) diag(JL I Irp ... , JL/.Irh) diag(X I, ... , XII) 

= diag(JL I X~ X 10 ••• , JLhX~Xh) = diag( JL I Iq , ... , JLI! I r/,) = A I, 

• 

P'BP = X'Q'BQX= X'CX 

= diag(X~, ... , X~) diag(CII, ... , Chi,) diag(X I,.:., XII) 

= diag(X~ C II X I, ... , X;, CI!I!Xh) = diag(~I' ... , ~,) = ~, 

and so the proof is complete. 
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The columns of the matrix P are eigenvectors of A as well as B; that is, A and 

B commute if and only if the two matrices have common eigenvectors. Also. 

note that since A and B are symmetric, (AB), = B' A' = BA, and so AB = BA 

if and only if AB is symmetric. The previous theorem easily generalizes to a 

collection of symmetric matrices. 

Theorem 4.16. Let A Io ••• ,Ak be m x m symmetric matrices. Then there 

exists an orthogonal matrix P such that p' AiP = Ai is diagonal for each i if and 

only if AiAj = AjAi for all pairs (i,j). 

The two previous theorems involving symmetric matrices are special cases of 

more general results regarding diagonalizable matrices. For instance, Theorem 

4.16 is a special case of the following result. The proof, which is similar to that 

given for Theorem 4.15, is left as an exercise. 

Theorem 4.17. Suppose that each of the mx m matrices AI, ... ,AI< is diag

onalizable. Then there exists a nonsingular matrix X such that X-I Ai X = Ai is 

diagonal for each i if and only if AjAj = AjA; for all pairs (i,j). 

8. MATRIX NORMS 

In Chapter 2, we saw that vector nouns can be used to measure the size of a 

vector. Similarly, we may be interested in measuring the size of an m X m matrix 

A or measuring the closeness of A to another m x m matrix B. Matrix nouns 

will provide the means to do this. In a later chapter, we will need to apply some 

of our results on matrix norms to matrices that are possibly complex matrices. 

Consequently, throughout this section, we will not be restricting attention only 

to real matrices. 
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Definition 4.3. A function IIA II defined on all m X m matrices A, real or 

complex. is a matrix nOlln if the following conditions hold for all mXm matrices 

A and B. 

(a) IIAII ~ o. 
(b) IIA II = 0 if and only if A = (0). 

(c) IIcAIl = IcillAIl for any complex scalar c. 
(d) IIA + BII ::;; IlAIl + IIBII· 
(e) !lAB II ::;; /lAIIIIBIi. 

Any vector nOlln defined on m2 X 1 vectors, when applied to the m2 X 1 vec

tor fOlllled by stacking the columns of A, one on top of the other, will satisfy 

conditions (a)-(d) since these are the conditions of a vector nOlln. However, 

condition (e), which relates the sizes of A and B to that of AB, will not neces

sarily hold for vector nOIlIlS; that is, not all vector nOllns can be used as matrix 

nOllns. 
We now give examples of some commonly encountered matrix nOllns. We 

win leave it to the reader to verify that these functions, in fact, satisfy the 

conditions of Definition 4.3. The Euclidean matrix norm is simply the Euclidean 

vector norm computed on the stacked columns of A, and so is given by 

m m 1/2 

IIAIIE = laijl2 = {tr(A*A)}1/2 

i=1 j=\ 

The maximum column sum matrix nOim is given by 

m 

while the maximum row sum matrix nOlln is given by 

m 

IIAII~ = max 
15iSm 

• 

j=1 

The spectral norm utilizes the eigenvalues of A * A; in particular, if J.l.1' ••• 'P-m 

are the eigenvalues of A * A, then the spectral norm is given by 

IIA 112 = max V;; 
I ~i~m 

• • 

• 



• 
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We will find the following theorem useful. The proof, which simply involves 
the verification of the conditions of Definition 4.3, is left to the reader as an 

• exercIse. 

Theorem 4.18. Let IIAII be any matrix nOlln defined on m x m matrices. If 
C is an m x m nonsingular matrix, then the function defined by 

is also a matrix nOlln. 

The eigenvalues of a matrix A play an important role in the study of matrix 
nouns of A. Particularly important is the maximum modulus of this set of eigen
values. 

Definition 4.4. Let >-1, ... ,>-m be the eigenvalues of the m x m matrix A. 
The spectral radius of A, denoted p(A), is defined to be 

p(A) = max IAil 
I ~i~m 

Although p(A) does give us some infollnation about the size of A, it is not 
a matrix nOlln itself. To see this, consider the case in which m = 2 and 

A = 0 I 
o 0 

Both of the eigenvalues of A are 0, so p(A) = 0 even though A is not the null 
matrix; that is, p(A) violates condition (b) of Definition 4.3. The following result 
shows that p(A) actually serves as a lower bound for any matrix nOlln of A. 

Theorem 4.19. For any m X m matrix A and any matrix nOlln IIAII, p(A) $ 

IIA II· 

Proof Suppose that >- is an eigenvalue of A for which IA I = p(A), and let x 
be a corresponding eigenvector, so that Ax = AX. Then xl~ is an m x m matrix 
satisfying Ax1~ = >-x1~, and so using properties (c) and (e) of matrix nOlIns, 
we find that 

p(A) IIxl~ II = 1>-llIxl~ II = IIAxl;1I11 = IIAxt;1I11 $ IIA IIl1xl~ II. 

The result now follows by dividing the equation above by IIxl;lIl1. 0 

• 
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Although the spectral radius of A is at least as small as every norm of A, 

our next result shows that we can always find a matrix nonn so that IIAII is 

arbitrarily close to p(A). 

Theorem 4.20. For any m x m matrix A and any scalar E > 0, there exists 

a matrix nOllU, IIAlk" such that 

IIA IIA., - p(A) < E 

Proof Let A = XTX* be the Schur decomposition of A, so that X is a 

unitary matrix and T is an upper triangular matrix with the eigenvalues of A, 

AI, ... , Am, as its diagonal elements. For any scalar e > 0, define the matrix Dc = 

diag(c, c 2, . .. , em) and note that the diagonal elements of the upper triangular 

matrix DcTD~1 are also A\> ... ,Am. Further, the ith column sum of DcTD~1 is 

given by 

i-I 

A' + "" c-(i-j)t·· 'k.. Jl 
j=1 

. 

Clearly, by choosing c large enough, we can guarantee that 

i-I 

L ic-(i-j)tjd < E, 

j=1 

for each i. In this case, since lAd $ p(A), we must have 

where IIA III denotes the maximum column sum matrix nOllu previously defined. 

For any m x m matrix B, define IIBlk, as 

IIBIIA" = II(XD~I)-IB(XDc 1)111 
• 

The result now follows from Theorem 4.18 and the fact that 

o 

Often we will be interested in the limit of a sequence of vectors or the limit 

of a sequence of matrices. The sequence of mx 1 vectors, XI,X2, ••• converges to 

the m x 1 vector x if the jth component of Xk converges to the jth component of 

x, as k ~ 00, for each j; that is, IXjk - Xj I ~ 0, as k ~ 00, for each j. Similarly, 
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a sequence of m x m matrices, A I, A2 , • .. converges to the III x III matrix A 

jf each element of Ak converges to the corresponding element of A as k ~ 00. 

Alternatively, we can consider the notion of the convergence of a sequence with 

respect to a specific nOlln. Thus, the sequence of vectors XI, X2, ... converges 

to X, with respect to the vector nOlln IIxlI, if IIxk - xII ~ 0 as k ~ 00. The 

following result indicates that the actual choice of a nOlln is not important. For 

a proof of this result, see Hom and Johnson (1985). 

Theorem 4.21. Let IIxlia and IIxllb be any two vector nOllns defined on any 

m x 1 vector x. If XI ,X2, .•• is a sequence of m x 1 vectors, then Xk converges to 

x, as k ~ 00, with respect to IIxlia if and only if Xk converges to x, as k ~ 00. 

with respect to IIxlib. 

Since the first four conditions of a matrix nOlln are the conditions of a vector 

nOlin, the previous theorem immediately leads to the following. 

Corollary 4.21.1. Let IIAlia and IIAlib be any two matrix nOllns defined on 

any m x m matrix A. If A I, A2, ... is a sequence of III x III matrices, then Ak 

converges to A, as k ~ 00, with respect to IIAlia if and only if Ak converges to 

A, as k ~ 00, with respect to IIAlib. 

A sequence of matrices that is sometimes of interest is the sequence, 

A,A2,A3, ••. , fOllned from a fixed m x m matrix A. A sufficient condition for 

this sequence of matrices to converge to the null matrix is given next. 

Theorem 4.22. Let A be an mx m matrix, and suppose that for some matrix 

nOlin, IIAII < 1. Then lim Ak = (0), as k ~ 00. 

Proof. By repeatedly using condition (e) of a matrix nOlIn, we find that 

IW II ~ IIA II k, and so IW II ~ 0, as k ~ 00, since IIA II < 1. Thus, A k converges 

to (0) with respect to the nOlln IIAII. But by Corollary 4.21.1, Ak also converges 

to (0) with respect to the matrix nOlln (see Problem 4.37) 

But this implies that la~j I 
complete. 

max laiJ'1 
I < .. < _i,J _ m 

~ 0, as k ~ 00, for each (i,j) and so the proof is 
o 

Our next result relates the convergence of Ak to (0), to the size of the spectral 

radius of A. 
• 

Theorem 4.23. Suppose that A is an m x m matrix. Then Ak converges to 

(0), as k ~ 00, if and only if p(A) < 1. 
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Proof Suppose that Ak --7 (0), in which case, AkX --7 0 for any m X I 
vector x. Now if x is an eigenvector of A corresponding to the eigenvalue >., 
we must also have 't.,.kx ~ 0, since Akx = 'Akx. This can only happen if I'AI < I, 
and so p(A) < l, since>. was an arbitrary eigenvalue of A. On the other hand, 
if p(A) < I, then we know from Theorem 4.20 that there is a matrix nonn 
satisfying IIAII < l. Hence, it follows from Theorem 4.22 that Ak --7 (0). 0 

• 

Our final result shows that the spectral radius of A is the limit of a particular 
sequence that can be computed from any matrix nOlln. 

Theorem 4.24. Let A be an m x m matrix. Then for any matrix nOlln IIA II 

Proof A is an eigenvalue of A if and only if >.k is an eigenvalue of Ak. 
Further, IAlk = IAkl. so p(Al = p(Ak ). This, along with Theorem 4.19, yields 
p(A)k :5; IWII, or equivalently, p(A):5; IIAkll'/k. Thus. the proof will be complete 
if we can show that for arbitrary e > 0, there exists an integer N. such that 
IIAk II Ilk < p(A) + e for all k > N,. But this is the same as showing that there 
exists an integer N, such that for all k > N., IIAk II < {p(A) + e}k. or equiv
alently, 

118"11 < I, (4.1 0) 

where B = {p(A)+etIA. Now (4.10) follows immediately from Theorem 4.23 
, 

smce 

PROBLEMS 

p(B) = p(A) < 1 
p(A) + e 

I. Ohtai nasi ngular value decomposition for the matrix 

A= 

2. Let A be an m x n matrix. 

1 2 2 1 
1 1 1 -1 

• 

(a) Show that the singular values of A are the same as those of A'. 

o 

(b) Show that the singular values of A are the same as those of FAG. if F 
and G are orthogonal matrices. 

• 

j 

. , 

• 
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(c) If a i. 0 is a scalar, how do the singular values of aA compare to those 
of A? 

3. Let A be an m X m matrix. Show that A has a zero eigenvalue if and only 
if it has fewer than m singular values . 

4. Let A be m x nand B be n x m. We will see in Chapter 7 that the nonzero 
eigenvalues of AB are the same as those of BA. This is not necessarily true 
for the singular values. Give an example of matrices A and B for which the 
nonzero singular values of AB are not the same as those of BA. 

5. Let A be an m x n matrix having rank r and singular values !J.I,· .. ,!J.r' 

Show that the (m + n) x (m + n) matrix 

B= 
(0) 
A' 

A 
(0) 

has eigen val ues !J. J, •.. , !J. r , -!J.I , ... , -!J." with the remaining eigenvalues 
being zero. 

6. Find a singular value decomposition for the vector x = (1,5,7,5)/. 

7. Let x be an m X 1 nonnull vector and y be an n x 1 nonnull vector. Obtain 
a singular value decomposition of xy' in tell us of x and y. 

8. Let A be an m x n matrix and let A = PI ~Q; be the decomposition gi ven 
in Corollary 4.1.1. Define the n x m matrix B as B = QI~-I~. Simplify, 
as much as possible, the expressions for ABA and BAB. 

9. If t is an estimator of 8, then the mean squared error (MSE) of t is defined 
by 

• 

o MSE(t) = var(t) + {E(t) - 8}-

Consider the multicollinearity problem discussed in Example 4.4 in which 
r of the singular values of ZI are very small relative to the others. Suppose 
that we want to estimate the response variable corresponding to an obser
vation which has the standardized explanatory variables at the values given 
in the k x 1 vector x. Let y = y + x' (Z; Z I)-I Z; Y be the estimate obtained 
using ordinary least squares, while ji = y + x' U I Di l V; Y is the estimate 
obtained using principal components regression. Assume throughout that 
E - NN(O, a2IN ) . 
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(a) Show that if the vector v = (UI, ... , UN)' satisfies z' = v'D if, then 

MSE( A) 2 N- I + y = a 

(b) Show that 

MSE(y) = a 2 
k-r 

N- I + 

; = I 

k 

;=1 i=k-r+1 

where di is the ith diagonal element of D. 

(c) If r = 1, when will MSE(y) < MSE(y)? 

2 

, 

10. Suppose that ten observations are obtained in a process involving two 

explanatory variables and a response variable resulting in the following 

data: 

(a) Obtain the matrix of standardized explanatory variables ZI, use ordi

nary least squares to estimate the parame~ers in the A model y = OOIN + 

Z 181 + E,and obtain the fitted values y = OOIN + Z\81. 

(b) Compute the singular value decomposition of Z I. Then use principal 

components regression to obtain an alternative vector of fitted values. 

(c) Use both models of (a) and (b) to estimate the response variable for an 

observation having x I = - 2 and X2 = 4. 

II. Consider the 3 x 3 symmetric matrix given by 



I 
I 

PROBLEMS 

3 1 -1 

A = 1 3 1 

-1 1 3 

(a) Find the spectral decomposition of A. 

(b) Find a symmetric square root matrix for A. 

(c) Find a non symmetric square root matrix for A. 

12. Use the spectral decomposition theorem to prove Theorem 4.5. 

13. Find a 3 x 2 matrix T such that TT' = A, where 

540 

A = 4 5 3 
035 

14. Suppose x - N3(O, n), where 

2 1 1 

n = 121 
112 

165 

Find a 3 x 3 matrix A such that the components of z = Ax are independently 

distributed. 

15. Let the matrices A, B, and C be given by 

125 

A= 2 1 4 , 
-1 1 1 

1 1 
B= -2 2 

-1 3 

-1 
2 , 
1 

(a) Which of these matrices are diagonalizable? 

C= 
2 1 
2 5 

-2 -1 

-I 
3 
1 

(b) Which of these matrices have their rank equal to the number of nonzero 

eigen values? 

16. Let A be an m x m matrix and B be an n X n matrix. Prove that the matrix 

A (0) 
C = (0) B 

is diagonalizable if and only if the matrices A and B are diagonalizable. 
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Using induction, show that the square matrices At. ... ,Ak are diagonaliz
able if and only if diag(A I, ... , Ak) is diagonalizable. 

17. Find a 4 x 4 matrix A having eigenvalues 0 and 1 with mUltiplicities 3 and 
I, respectively, such that 
(a) the rank of A is I, 
(b) the rank of A is 2, 
(c) the rank. of A is 3. 

18. Repeat Example 4.9 for 5 x 5 matrices; that is, obtain a collection of 5 x 
5 matrices in Jordan canonical fOlin such that every 5 x 5 matrix having 
the eigenvalue A with multiplicity 5 is similar to one of the matrices in this 
set. 

19. Consider the 6 x 6 matrix 

2 I 0 0 0 0 
0 2 0 0 0 0 

J= 
0 0 2 I 0 0 
0 0 0 2 0 0 

, 

0 0 0 0 3 I 
0 0 0 0 0 3 

which is in Jordan canonical fOIiIl. 
(a) Find the eigenvalues of J and their multiplicities. 
(b) Find the eigenspaces of J. 

• 

20. An 11/ x 11/ matrix B is said to be nilpotent if Bk = (0) for some positive 
integer k. 

(a) Show that Jh(A) = AI,. + Bh, where Bh is nilpotent. In particular, show 
that B~: = (0). 

(b) Let J = diag(Jhl (AI), .. ' , Jhr(Ar)) be a Jordan canonical fOIiIl. Show 
that J can be written as J = D + B, where D is diagonal and B is 
nilpotent. What is the smallest h such that Bh = (O)? 

(c) Use part (b) to show that if A is similar to J, then A can be expressed 
as A = F + G, where F is diagonalizable and G is nilpotent. 

• 

21. Let A be an m x m nilpotent matrix. In Problem 3.27, it was shown that all 
of the eigenvalues of A are O. Use this and the Jordan canonical f01i1l of A 
to show that there must be a positive integer h ::;;m satisfying Ah = (0). 

22. Let A be an m x m matrix. Show that the rank of A is equal to the number 
of nonzero eigenvalues of A if and only if rank.(A2) = rank.(A). 

, 

• 

• 

, 

• 
• 



, 
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23. Suppose that A is an eigenvalue of A with multiplicity r. Show that there 
are r linearly independent eigenvectors of A corresponding to }, if and only 

if - AI) = rank {(A - AIf). 

24. Let A and B be m x m matrices. Suppose that there exists an m x m unitary 
matrix X such X* AX and X* BX are both upper triangular matrices. Show 
then that the eigenvalues of AB - BA are all equal to O. 

25. Let T and U be m x m upper triangular matrices. In addition, suppose that 
for some positive integer r < m, tij = 0 for 1 ::; i ::; r, I ::; j ::; r, and 
Ur + I, r + I = O. Show that the upper triangular matrix V = T U is such that 
vij = 0 for 1 ::; i ::; r + I, 1 ::; j ::; r + 1. 

26. Use the Schur decomposition of a matrix A and the result of the previous 
exercise to prove the Cayley-Hamilton theorem given as Theorem 3.7; that 
is, if A I, ... ,Am are the eigenvalues of A, show that 

(A - A I I)(A - A21) ... (A - Ami) = (0). 

27. Obtain a Schur decomposition for the matrix C given in Problem 15. 

28. Repeat Problem 27 by obtaining a different Schur decomposition of C. 

29. Let A be m x n, with m ::; n. Show that there exist an m x m nonnegative 
definite matrix B and an m x n matrix H such that H H' = 1m and A = BH. 

30. Suppose that A and B are m x m and diagonalizable. Show that A and B 
commute; that is, AB = BA if and only if they are simultaneously diagonal
izable; in other words, AB = BA, if and only if there exists a nonsingular 
matrix X such that both X-lAX and X-I BX are diagonal matrices. This 
proves Theorem 4.17 when k = 2. 

31. Let 

A = I 
o 

(a) Show that AB = BA. 

o 
I ' 

B= 

(b) Show that AB is not diagonalizable. 

o I 
o 0 

(c) Why does this not contradict the result of Problem 30? 

32. Suppose that the m x m matrices A and Bare diagonalizable and AB = BA. 
Denote the eigenvalues of A by A I , ... ,Am and those of B by JL I, ... , JLm. 
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If the eigenvalues of A + B are 'YI, ... , 'Ym, show that for k = I, ... , m, 

where (i" ... ,im) and (jl, ... ,jm) are pelluutations of(I, ... ,m). 

33. The foJlowing is a generalization of Theorem 4.14 to arbitrary nonnegative 

definite matrices. Let A and B be m x m nonnegative definite matrices with 

rank(A) = r ::; s = rank(B). Show that there exists a nonsingular matrix C 

such that 

CAC' = DI 
(0) 

(0) 
(0) , 

, D2 (0) 
CBC = (0) (0) , 

where DI and D2 are txt diagonal matrices, t ~ s, and 

Ir (0) 

(0) (0) 

34. Let A and B be m x m matrices and suppose that A and B commute. 

(a) If A and B are nonsingular, show that A -I and B- 1 commute. 

(b) If i and j are positive integers, show that Ai and Bj commute. 

35. Suppose that A and B are m x m positive definite matrices. Show that A - B 

is positive definite if and only if B- 1 - A-I is positive definite. 

36. Show that the functions, IIAIIE, 1\A1I1, IIAI\~, and IIAII2 given in Section 4.8 . 

are, in fact, matrix nOllUs .. 

37. Let A be an m x m matrix and consider the function 

Show that IIA II * is a matrix nOllU. 

38. Prove Theorem 4.18. 

39. For any matrix nOllu defined on m X m matrices, show that 

(a) IIIIIIII~I, 

(b) I\A -III ~ IIA II-I, if A is an m x m nonsingular matrix. 

40. Show that if for some matrix nOlln 111m - All < 1 then A is a nonsingular 
• matnx. 
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41. Consider the 2 x 2 matrix of the fOlln 

A= a 1 
o a 

(a) Deteulline Ak for general positive integer k. 

(b) Find peA) and peAk). 

169 

(c) For which values of a does Ak converge to (0) as k -7 oo? In this case, 

show how to construct a nOlln so that IIA II < 1. 

42. Let A be an m X m matrix. Show that if for some matrix norm IIAII < I 

then the matrix 1m - A has an inverse and 

~ 

-I ~ k 
(1m - A) = 1m + £.oJ A 

k=1 

43. In this problem, we consider a factorization of an m X m matrix A of the 

fOlln A = L U, where L is an m X m lower triangular matrix and U is an 

m X m upper triangular matrix. 

(a) Let Aj be the) x) submatrix of A consisting of the first) rows and) 

columns of A. Show that if r = rank(A) and IAj I '" 0, ) = I, ... , r, then 

A, can be factored as A, = L* U *' where L* is an r X r nonsingular 

lower triangular matrix and U * is an r X r nonsingular upper triangu

lar matrix. Use this to then show that A may be factored as A = LU, 

where L is an m X m lower triangular matrix and U is an m x m upper 

triangular matrix. 

(b) Show that not every m x m matrix has an LU factorization by finding 

a 2 x 2 matrix that cannot be factored in this way. 

(c) Show how the LU factorization of A can be used to simplify the com

putation of a solution x, to the system of equations Ax = c. 

44. Suppose that A is an m x m matrix. Show that there exist an m X 111 lower 

triangular matrix L, an m X m upper triangular matrix U, and m x 111 per

mutation matrices P and Q, such that A = PLUQ. 

45. Suppose that A is an mX m matrix for which IAj I '" 0,) = 1, ... , m, where Aj 

denotes the)x) submatrix of A consisting of the first) rows and) columns 

of A. 

(a) Show that there exist m x m lower triangular matrices Land M having 

all diagonal elements equal to one and an m X m diagonal matrix D, 

such that A = LDM'. 

(b) Show that if A is also symmetric, then M = L so that A :: LD L' . 

• 



CHAPTER FIVE 

Generalized Inverses 

1. INTRODUCTION 

The inverse of a matrix is defined for all square matrices that are nonsingu
lar. There are some situations in which we may have a rectangular matrix 
or a square singular matrix, A, and still be in need of another matrix that in 
some ways behaves like the inverse of A. One such situation, which is often 
encountered in the study of statistics as well as many other fields of application, 
involves finding solutions to a system of linear equations. A system of linear 
equations can be written in matrix fOllu as 

Ax = c, 

where A is an m x n matrix of constants, c is an m x I vector of constants, and 
x is an n x I vector of variables for which we need to find solutions. If m = n 
and A is nonsingular, then A -I exists and so by premultiplying our system of 
equations by A-I, we see that the system is satisfied only if x = A-Ie; that is, the 
system has a solution, the solution is unique, and it is given by x = A -I e. When 
A-I does not exist, how do we detelluine whether the system has any solutions, 
and if solutions exist, how many solutions are there, and how do we find them? 
We will see in the next chapter that the answers to all of these questions can be 
conveniently expressed in terms of the generalized inverses discussed in this 
chapter. 

A second application of generalized inverses in statistics involves quadratic 
forllls and chi-squared distributions. Suppose we have an m-dimensional ran
dom vector x which has a mean vector of zero and covanance matrix n. A 
useful transformation in some situations is one that transforms x to another ran
dom vector. z, having the identity matrix as its covariance matrix. For instance, 
in Chapter 9 we will see that if z has a normal distribution, then the sum of 
~quares of the components of z, that is z'z, has a chi-squared distribution. We 
~aw in Example 4.5 that if T is any m X m matrix satisfying n -I = TT', then 
: = T' x will have 1m as its covariance matrix. Then 
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, '(T')'T' '(TT')x '0- 1 ZZ=X X=X =X x 

This, of course, will be possible only if 0 is positive definite. If 0 is positive 
. semidefinite with rank r, then it will be possible to find m x m matrices A and 

B, with A = BB', such that when Z is defined by z = B'x, 

. , var(z) = 
Ir 
(0) 

(0) 
(0) 

, 

and z'z = x'Ax. We will see later that A is a generalized inverse of 0 and z'z 
still has a chi-squared distribution if z has a nOllual distribution. 

2. 'I'HE MOORE-PENROSE GENERALIZED INVERSE 

A very useful generalized inverse in statistical applications is one developed 
by Moore (1920, 1935) and Penrose (1955). This inverse is defined so as to 
possess four properties that the inverse of a square nonsingular matrix has. 

Definition 5.1. The Moore-Penrose inverse of the m x n matrix A is the 
n x m matrix, denoted by A+, which satisfies the conditions 

(5.1 ) 

(5.2) 

(5.3) 

(5.4) 

One of the most important features of the Moore-Penro.~e inverse, one which 
distinguishes it from other generalized inverses that we will discuss in this chap-

· ter, is that it is uniquely defined. This fact, along with the existence of the 
Moore-Penrose inverse, is established in the following theorem. 

Theorem 5.1. Corresponding to each m x n matrix A, there exists one and 
only one nx m matrix A+ satisfying conditions (5.1)-(5.4). 

Proof First we will prove the existence of A +. If A is the m x n null matrix, 
then it is easily verified that the four conditions in Definition 5.1 are satisfied 
with A+ = (0), the n x m null matrix. If A -J. (0), so that rank(A) = r > 0, then 

• 
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from Corollary 4.1.1, we know there exist m x rand n x r matrices P and Q 

such that P' P = (f Q = 1, and 

A = PIlQ', 

where Il is a diagonal matrix with positive diagonal elements. Define A + = 

QIl- 1 P', and note that 

AA+ A = PIlQ'QIl-1 P'PIlQ' = PM-I IlQ' = PIlQ' = A 

A + AA+ = QIl-1 P' PIlQ' QIl-1 p' = QIl-1 M -I p' = QIl-1 p' = A+ 

AA+ = PIlQ' QIl-1 p' = pp' is symmetric 

A + A = QIl-1 p' P IlQ' = QQ' is symmetric 

Thus, A + = QIl-1 p' is a Moore-Penrose inverse of A, and so we have established 

the existence of the Moore-Penrose inverse. Next, suppose that Band C are 

any two matrices satisfying conditions (5.1)-(5.4) for A+. Then using these four 

conditions we find that 

AB = (A8)' = B 'A' = B '(ACA), = B'A'(AC)' = (AB), AC = ABAC = AC, 

and 

BA = (BA), = A' B' = (ACA)' B' = (CA)' A'B' = CA(BA)' = CABA = CA 

Now using these two identities, we see that 

B = BAB = BAC = CAC = C 

Since Band C are identical, the Moore-Penrose inverse is unique. 0 

We saw in the proof of Theorem 5.1 that the Moore-Penrose inverse of a 

matrix A is explicitly related to the singular value decomposition of A; that 

is, this inverse is nothing mOre than a very simple function of the component 

matrices making up the singular value decomposition of A. 

Definition 5.1 is the definition of a generalized ihverse given by Penrose 

(1955). The following alternative definition, which we will find useful on some 

occasions, is the original definition given by Moore (1935). This definition 

utilizes the concept of projection matrices that were discussed in Chapter 2. 

Recall that if S is a vector subspace of Rm and Ps is its projection matrix, 

then for any x E Rill, Psx gives the orthogonal projection of x onto S, while 

x - Psx is the component of x orthogonal to S; further, this unique matrix 

• 



• 

• 
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Ps is given by XIX~ + ... + xrx;, where {XI, ... ,xr} is any orthonormal basis 

for S. 

Definition 5.2. Let A be an m X n matrix. Then the Moore-Penrose inverse 

of A is the unique n x m matrix A +, satisfying 

where PR(A) and PRW) are the projection matrices of the range spaces of A and 

A +, respectively. 

The equivalence of Definitions 5.1 and 5.2 is not immediately obvious. Con

sequently, we will establish it in the next theorem. 

Theorem.5.2. Definition 5.2 is equivalent to Definition 5.1. 

Proof. We first show that a matrix A + satisfying Definition 5.2 must also 

satisfy Definition 5.1. Conditions (5.3) and (5.4) follow immediately since by 

definition, a projection matrix is symmetric, while (5.1) and (5.2) follow since 

the columns of A are in R(A) imply that 

and the columns of A+ are in R(A+) imply that 

Conversely, now suppose that A+ satisfies Definition 5.1. Premultiplying (5.2) 

by A yields the identity 

which along with (5.3) shows that M+ is idempotent and symmetric and thus 

by Theorem 2.19 is a projection matrix. To show that it is the projection matrix 

of the range space of A, note that for any matrices B and C, for which Be is 

defined, R(BC) !:; R(B). Using this twice along with (5.1), we find that 

so that R(AA+) = R(A). This proves that PR(A) = M+. A proof of P RW ) = A+ A 

is obtained in a similar fashion using (5.1) and (5.4). Ll 
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3. SOME BASIC PROPERTIES OF THE MOORE-PENROSE 

INVERSE 

In this section, we will establish some of the basic properties of the 

Moore-Penrose inverse, while in some of the subsequent sections, we wiII look 

at some more specialized results. First, we have the fonowing theorem. 

Theorem 5.3. Let A be an m x n matrix. Then 

(a) (aAr = a-IA+, if a oJ 0 is a scalar, 

(b) (A'r = (A+)', 

(c) (AT = A, 

(d) N = A-I. if A is square and nonsingular. 

(e) (A'Ar = A+A+' and (AA'r = A+'A+, 

(I') (AA+r '" AA+ and (A+Ar = A+A. 

(g) A+ '" (A'A)+A' =A'(AA')+, 

(h) A+ = (A' A)-lA' and A+A = In, if rank(A) = n, 

(i) N '" A'(AA')-I and AA+ = 1m, if rank(A) = m, 

(j) A+ = A'. if the columns of A are orthogonal, that is, A'A = In. 

Proof Each part is proven by simply verifying that the stated inverse satis

ties conditions (5.1)-(5.4). Here, we will only verify that (A'Ar = A+A+', given 

in (e). and leave the remaining proofs to the reader. Since A+ satisfies the four 

conditions of a Moore-Penrose inverse, we find that 

A'A(A'AtA'A = A'AA+A+'A'A = A'AA+(AA+)'A = A'AA+AA+A 

= A'AA+A = A'A, 

(A' At A' A(A' Ar = A+ A+'A'AA+ A+' = A+(AA+)' AA+ A+' = A+ AA+ AA+ A+' 

= A+AA+A+' = A+A+' = (A'Ar, 

so that A + A +' satisfies conditions (5.1) and (5.2) of the Moore-Penrose inverse 

(X At. In addition, note that 

and N A must be symmetric by definition, so condition (5.3) is satisfied for 

(A' A)+ = A+ A+'. Likewise condition (5.4) holds since 

This then proves that (A'Ar = A+A+'. o 

I 
I 
I 

I 
I 

\ 
I 

; 

I 

I 
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Exampls 5.1. Properties (h) and (i) ofTheorem 5.3 give useful ways of com
puting the Moore-Penrose inverse of matrices that have ful1 column rank or ful\ 
row rank. We wi11 demonstrate this by finding the Moore-Penrose inverses of 

a= 
I 
I 

and A = 
I 
2 

2 
I 

I 
o 

From property (h), for any vector a -J 0, a+ wi11 be given by (a' a)-la', so here 
I we find that 

a+ = [0.5 0.5] 

For A, we can use property (i) since rank(A) = 2. Computing AA' and (AA't I • 
we get 

AA' = 
6 4 
4 5 ' 

and so 

I 
(AA'r l = -

14 

1 2 
2 1 
1 0 

5 -4 
-4 6 

5 
-4 

--
I 

14 

-4 
6 ' 

-3 8 
6 -2 
5 -4 

Our next result establishes a relationship between the rank of a matrix and 
the rank of its Moore-Penrose inverse. 

Theorem 5.4. For any m x n matrix A, 

Proof. Using condition (5.1) and the facl that the rank or a matrix product 
cannot exceed the rank of any of the matrices in the product, we find that 

(5.5) 

In a similar fashion, using condition (5.2), we get 

The result follows immediately from (5.5) and (5.6). 0 

• 
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We have seen through Definition 5.2 and Theorem 5.2 that A+ A is the projec

tion matrix of the range of A +. It also will be the projection matrix of the range 

of any matrix B satisfying rank(B) = rank(A+) and A+ AB = B. For instance, 

from Theorem 5.4 we have rank(A') = rank(A+) and 

so A' A is also the projection matrix of the range of A'; that is PR(A') = A+ A. 

Our next result summarizes some of the special properties possessed by the 

Moore-Penrose inverse of a symmetric matrix. 

Theorem 5.5 Let A be an m x m symmetric matrix. Then 

(a) A + is also symmetric, 

(b) AA+ = A+A, 

(c) A+ = A, if A is idempotent. 

Proof Using Theorem 5.3(b) and the fact that A = A', we have 

which then proves (a). To prove (b), note that it follows from condition (5.3) 

of the Moore-Penrose inverse of a matrix, along with the symmetry of both A 

and A+, that 

Finally, (c) is established by verifying the four conditions of the Moore-Penrose 

inverse for A+ = A, when A2 = A. For instance, both conditions (5.1) and (5.2) 

hold since 

while conditions (5.3) and (5.4) hold because 
• 

(M)' = A' A' = M o 

In the proof of Theorem 5.1, we saw that the Moore-Penrose inverse of any 

matrix can be conveniently expressed in tellllS of the components involved in 

the singular value decomposition of that matrix. Likewise, in the special case 

of a symmetric matrix, we will be able to write the Moore-Penrose inverse in 

teons of the components of the spectral decomposition of that matrix; that is, in 

, 

, 

i , 
• 

I 
I 

I 
I 

I 
I 
I 

• 

I 

• 

I 
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tellus of its eigenvalues and eigenvectors. Before identifying this relationship. 

we first consider the Moore-Penrose inverse of a diagonal matrix. The proof 

of this result, which simply involves the verification of conditions (5.1 H5.4), 

is left to the reader. 

Theorem 5.6. Let A be the m x m diagonal matrix diag("" ... , "m). Then 

the Moore-Penrose inverse A+ of A, is the diagonal matrix diag(</>" ... ,</>m) • 
• 

where 

</>i= 
"i' , in i -J 0, 
0, ini = 0 

Theorem 5.7. Let X" . .. ,Xm be a set of orthonOlmal eigenvectors corre

sponding to the eigenvalues, "'" .. ,"m' of the m x m symmetric matrix A. If 

i we define A = diag("" ... '''m) and X = (x" ... ,x"J, then 

I 
: 
I 
I 
! 

• 

Proof Let r = rank(A) , and suppose that we have ordered the ''is so that 

"r+1 = ... = "m = O. Partition X as X = [X, X2], where X, is mX r, and parti

tion A in block diagonal fOlm as A = diag(A" (0)), where A, = diag("', ... , "r). 

Then, the spectral decomposition of A is given by 

I and similarly the expression above for A + reduces to A + = X, A I' X;. Thus. since 

X;X I = In we have 

• 

I 
• 

which is clea;ly symmetric, so condition (5.3) is satisfied. Similarly, A + A = 

X IX; and so (5.4) also holds. Conditions (5.1) and (5.2) hold since 

and 

and so the proof is complete. 
.-, . , -
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Example 5.2. Consider the symmetric matrix 

32 16 16 
• 

A = 16 14 2 
16 2 14 

It is easily verified that an eigenanalysis of A reveals that it can be expressed' 

as 

A= 

o 
-1/v2 

1/v2 

48 
o 

Thus, using Theorem 5.7, we find that 

A+ = 

1 
-~-

288 

4 
2 

o 
-1/v2 

1/v2 

2 2 
13 -11 

\3 2 -II 

1/48 
o 

o 
12 

o 
1/12 

2/V6 . 1/V6 
o -1/v2 

1/V6 
1/.)2 

In Section 2.7, we saw that if the columns of an mx r matrix X form a basis 

for a vector space S, then the projection matrix of S is given by X(X'X)-IX'; 

that is 

Definition 5.2 indicates how this can be generalized to the situation in which 

X is not full column rank. Thus, using Definition 5.2 and Theorem 5.3(g), we 

have 

PR(X) = X X+ = X(X' xt X' (5.7) 

Example 5.3. We will utilize (5.7) to obtain the projection matrix of the 

range of 

4 I 3 
X = -4 -3 -1 

o -2 2 

• 

• , 
i , 
, 

, 

I , 
• 

, 
, , , 
, 
· , , , 
• 
, , 
• , 
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i 
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The Moore-Penrose inverse of 

32 
X'X = 16 

16 

16 16 
14 2 
2 14 

was obtained in the previous exercise. Using this we find that 

PR(X) = X(X'xtx' 

--

--

1 

288 

\ 

3 

4 1 
-4 -3 
o -2 

2 -\ 1 
-\ 2 \ 

1 1 2 

3 
-1 

2 

4 2 
2 \3 
2 -11 

2 
-\I 

13 

4 
\ 
3 

-4 
-3 
-\ 

o 
-2 

2 
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This illustrates the use of (5.7). Actually, PR(X) can be computed without ever 
fonnally computing any Moore-Penrose inverse since PR(X) is the total eigen
projection corresponding to the positive eigenvalues of XX'. Here we have 

26 -22 4 
xX' = -22 26 4 , 

4 4 8 

which has the normalized eigenvectors ZI = O/V2, -1/V2, 0)' and Z2 = 
(1/..)6,1/..)6,2/..)6)' cOll'esponding to its two positive eigenvalues. Thus, if 
we let Z = (ZI, Z2), then 

\ 
PR(X) = zZ = -

3 

2 -\ \ 
-I 2 1 

\ I 2 

Example 5.4. The Moore-Penrose inverse is useful in constructing 
quadratic forms, in nOlIllal random vectors, so that they have chi-squared dis
tributions. This is a topic that we will in vestigate in more detail in Chapter 9; 
here we will look at a simple illustration. A common situation encountered in 
inferential statistics is one in which one has a sample statistic, t - Nm(O, 0), 
and it is desired to determine whether or not the m x \ parameter vector 0 = 0; 
formally, we want to test the null hypothesis Hn: 0 = 0 versus the alternative 
hypothesis HI: 0 i. O. One approach to this problem, if 0 is positive definite, 
is to base the decision between Ho and H I on the statistic • 
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Now if T is any m x m matrix satisfying T T' = 0, and we define u = T- \ t, then 

E(u) = T-IO and 

var(u) = T- I {var(t)} T'-I = rl(TT')T'-1 =: 1m, 

so u - Nm(T-IO,lm). Consequently, u" ... , Um are independently distributed 

nOlJllal random variables, and so 

In 

'n-I , ~ 2 
VI = t.. t = u u = ~ Ui 

i = I 

has a chi-squared distribution with m degrees of freedom. This chi-squared dis

tribution is central if 0 = 0 and non central if 0 f. 0, so we would choose HI over 

Ho is VI is sufficiently large. When 0 is positive semidefinite, the construction 

of VI above can be generalized by using the Moore-Penrose inverse of O. In 

this case, if rank(O) = r, and we write 0 = XIA\X; and 0+ = X\Ai'X\, where 

the m x r matrix X I and the r x r diagonal matrix A I are defined as in the proof 

of Theorem 5.7, then w = Ail/2X\t - Nr (Ai l/2X\O, lr), since 

Thus, since the WiS are independently distributed notlllal random variables, 

r 

'n+ ' ~ 2 
V2 = t .. t = w w = ~ Wj 

j = I 

has a chi-squared distribution, which is central if A,I/2X; 0 = 0, with r degrees 

of freedom. 

4. THE MOORE-PENROSE INVERSE OF A MATRIX PRODUCT 

If A and R each is an m x m nonsingular matrix, then it follows that (ARf \ = 

B- 1 A -I. This property of the matrix inverse does not immediately generalize 

to the Moore-Penrose inverse of a matrix; that is, if A is m x p and R is p x n, 

then we cannot, in general, be assured that (ARt = s+ A +. In this section, we 

look at some results regarding this sort of factorization of the Moore-Penrose 

inverse of a product. 
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Example 5.5. Here we look at a very simple example. given by Greville 

(1966), that illustrates a situation in which the factorization does not hold. 

Define the 2 x 1 vectors 
• 

so that 

Thus, we have 

, b= 
I 
1 

Actually, in the previous section, we have already given a few situations in 

which the identity (AB)+ = W A + does hold. For example in Theorem 5.3 we 

saw that 

and 

The next theorem gives yet another situation. 

Theorem 5.8. Let A be an m x n matrix, while P and Q are h x lIZ and 1/ x JI 

matrices satisfying P' P = 1m and QQ' = In. Then 

The proof of Theorem 5.8, which we leave to the reader. simply involves 

the verification of conditions (5.1)-{5.4). Note that Theorem 5.7, regarding the 

Moore-Penrose inverse of a symmetric matrix, is a special case of the theorem 

above. 
Our next result gives a sufficient condition on the matrices A and B to guar

antee that (AB)+ = B+ A + . 

Theorem 5.9. Let A be an mX p matrix and B be a p x n matrix. If rank(A) = 

rank(B) = p, then (ABt = B+ A +. 
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Proof Since A is fun column rank and B is full row rank, we know from 

Theorem 5.3 that A+ = (A'AtIA' and W = B'(BB't l • Consequently, we find 

that 

ABEr A+ AB = ABB'(BB')-I(A'A)-IA' AB = AB, 

B+ A+ ABB+ A+ = B'(BB'rl(A' ArIA'ABB'(BB'rl(A' AriA' 

= B'(BB'fl(A'A)-IA' = ErA+, 

so conditions (5.1) and (5.2) are satisfied. In addition, 

ABB+ A+ = ABB'(BB')-I(A' A)-lA' = A(A' A)-I A', 

B+ A + AB = B' (BB'r I (A' A)-I A' AB = B' (BB')-I B 

are symmetric, so W A + is the Moore-Penrose inverse of AB. 
• 

o 

While Theorem 5.9 is useful, its major drawback is that it only gives a suf

ficient condition for the factorization of (ABt. The following reSUlt, due to 

Greville (1966), gives several necessary and sufficient conditions for this fac

torization to hold. 

Theorem 5.10. Let A be an m x p matrix and B be a p x n matrix. Then 

each of the following conditions are necessary and sufficient for (AB)+ = WA+, 

(a) A+ ABB' A' = BB' A' and BEr A' AB = A' AB. 

(b) A+ABB' and A'ABEr are symmetric matrices. 

(c) A+ABB'A'ABEr = BB'A'A. 

(d) A+AB = B(ABYAB and BWA' = A'AB(AB)+ . 

. 

Proof We will prove that the conditions given in (a) are necessary and suf

ficient; the proofs for (b)-(d) will be left to the reader as an exercise. First 

assume that the conditions of (a) hold. Premultiplying the first identity by Er 

while postmultiplying by (AB)'+ yields 

B+ A + AB(AB)' (AB)'+ = Er BB' A' (AB)'+' (5.8) 

Now for any matrix C, 

C+CC' = (C+C)'C' =C'c+'C' = C'C'+C' = C' (5.9) 

Using this identity, when C = B, on the right-hand side of (5.8) and its transpose 

nn the left-hand side, when C = AB, we obtain the equation 

• 

I 
• 

I 

, · , , 
• , 
• , 
I 
! 
I , 
• • 
• 

I , 
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Er A + AB = (AB)' (AB)'+ , 

which, due to condition (5.4), is equivalent to 

. 

(5.10) 

The final equality in (5.10) follows from the definition of the Moore-Penrose 
inverse in telIllS of projection matrices, as given in Definition 5.2. In a similar 
fashion, if we take the transpose of the second identity in (a), which yields 

B'A'ABB+ = B'A'A 

and premultiply this by (AB)'+ and postmultiply by A+, then, after simplifying 
by using (5.9) on the left-hand side with C = (AB), and the transpose of (5.9) 
on the right-hand side with C = A', we obtain the equation 

. 

ABEr A+ = (AB)(ABt = PR(AB) (5.11 ) 

But from Definition 5.2, (ABr is the only matrix satisfying both (5.10) and 
(5.11). Consequently, we must have (ABr = B+A+. Conversely, now suppose 
that (ABr = s+ A +. Using this in (5.9), when C = AB, gives 

Premultiplying this by ABB' B, we obtain 

ABB'BB'A' = ABB'BB+ A+ABB'A', 

which, after using the transpose of (5.9) with C = B' and then rearranging, 
simplifies to 

ABB'(I - A + A)BB' A' = (0) 

Note that since D·= (I - A+ A) is symmetric and idempotent, the equation above 
is in the fOlIll E'D'DE = (0), where E = BB' A'. This then implies that ED = (0); 
that is, 

(I - A + A)BB' A' = (0), 

which is equivalent to the first identity in (a). In a similar fashion, using (ABr = 
s+ A+ in (5.9) with C = (AB)' yields 



184 GENERALIZED INVERSES 

This, when premultiplied by B' A' AA', can be simplified to an equation that is 

equivalent to the second identity of (a). 0 

Our next step is to find a general expression for (ABr which holds for all A 

and B for which the product AB is defined. Our approach involves transfolIlling 

A to a matrix A I and transfollning B to B I, such that AB = A I Bland (A I B 1)+ = 

Bt At. The result, due to Cline (l964a), is given in the next theorem. 

Theorem 5.11. Let A be an m x p matrix and B be a p x n matrix. If we 

define BI = A+ AB and AI = ABIBt, then AB = AIBI and (ABY = stAj. 

Proof Note that 

so the first result holds. To verify the second statement, we will show that the 

two conditions given in Theorem 5.IO(a) are satisfied for AI and B I • First note 

that 

(5.12) 

and 

(5.13) 

Taking the transpose of (5.13) and using (5.12), along with conditions (5.3) and 

(5.4), we get 

and so 

which is the first identity in Theorem 5.IO(a). The second identity can be 

obtained by noting that 

and then postmultiplying this identity by A I B 1. o 
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Note that in Theorem 5.11, B was transfolllled to BI by the projection matrix 

of the range space of A +, while A was transformed to A ( by the projection matrix 

of the range space of BI and not that of B. Our next result indicates that the 

range space of B can be used instead of that of B(, if we do not insist that 

AB = AIBI • A proof of this result can be found in Campbell and Meyer (1979). 

Theorem 5.12 •. Let A be an mxp matrix and B, a px 11 matrix. If we define 

BI = A+AB and AI = ABs+, then (ABt = BjAj. 

5. THE MOORE-PENROSE INVERSE OF PARTITIONED 

MATRICES 

Suppose that the m x 11 matrix A has been partitioned as A = [U V], where 

U is m x nl and V is m x 112. In some situations, it may be useful to have an 

expression for A+ in tellllS of the submatrices, U and V. We begin with the 

general case, in which no assumptions can be made regarding U and V. 

Theorem 5.13. Let the mx 11 matrix A be partitioned as A = [U V]. where 

U is m x nl, V is m x n2, and 11 = III + 112. Then 

U+ - U+V(C+ + W) 

C++ W 
, 

where C = (1m - U U+)V, M = {I1I2 + (11/2 - C+C)V' U+' U+ V(lll2 - C+C)} -(. and 

W = (1"2 - C+C)MV'U+'U+(lm - VC+). 

The proof of Theorem 5.13, which is rather lengthy, will be omitted. The 

interested reader should refer to Cline (l964b), Boullion and Odell (J 971). or 

Pringle and Rayner (1971). The proofs of the following consequences of The

orem 5.13 can also be found in these references . 

CorollDry 5.13.1. Let A and C be defined as in Theorem 5.13, and let K = 

(11/2 + V' U+' U+ V)-I. Then 

(a) A+ = 
U+ - U+VKV'U+'U+ 

C+ + KV'U+'U+ 

if and only if C+CV'U+'U+V = (0), 

U+ - U+VKV'U+'U+ 

KV'U+'U+ 

if and only if C = (0), 

(c) A+ = 
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if and only if ccv'U+'U+V = V'U+'U+v, 

if and only if U'V = (0). 

Our final theorem involves the Moore-Penrose inverse of a partitioned 

matrix that has the block diagonal form. This result can be easily proven by 

simply verifying that the conditions of the Moore-Penrose inverse are satisfied. 

Theorem 5.14. Let the m x n marix A be given by 

All (0) • • • (0) 
(0) A22 • • • (0) 

A= • • • , 
• • • 
• • • 

(0) (0) • • • A" 

where Ajj is mj x nj, ml + ... + mr = m, and nl + ... + nr = n. Then 

Ail (0) • • • (0) 
(0) Ah • • • (0) 

A+ = • • • 
• • • 
• • • 

(0) (0) • • • A;r 

6. THE MOORE-PENROSE INVERSE OF A SUM 

Theorem 1.7 gave an expression for (A+ CBD)-I, when the matrices A and B are 

both square and nonsingular. Although a generalization of this fOllllula to the 

case of a Moore-Penrose inverse is not available. there are some specialized 

results for the Moore-Penrose inverse of a sum of matrices. Some of these 

results are presented in this section. The proofs of our first two results utilize 

the results of the previous section regarding partitioned matrices. These proofs 

can be found in Cline (1965) or Boullion and Odell (1971). 

Theorem 5.15. Let U be an mxnl matrix and Vbe an mxn2 matrix. Then 

(Ull + vvy = (lm - C'V')U+'KifOm - VC+) + (CC')+, 

where K = 1,'1 
Theorem 5.13. 

- U+V(lIl' - C+C)M(U+V)', and C and M are defined as in 
• 

• 

I 

, 
• 

I 
I 

-
, 

• , , , 
• • 
• , 
, 
• , 
-
• , 

, 
• , 
, 

• , 
• 

I 
.. 
• , 
; 
,-
-

I 
• , 
I 

I 
I 
I 
• 
I 
I 
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Theorem 5.16. Suppose V and V are both m x n matrices. If VV' = (0), 
then 

(V + Vr = V+ + (In - V+V)(C + W), 

where C and W are as given in Theorem 5.13. 

Theorem 5.16 gives an expression for (V + V)+ that holds when the rows 
of V are orthogonal to the rows of V. If, in addition, the columns of V are 
orthogonal to the columns of V, this expression greatly Simplifies. This special 
case is summarized in the following theorem. 

Theorem 5.17. If V and V are III x II matrices satisfying V V' = (0) and 
V'V = (0), then 

(V + Vr = u+ + V+ 

Proof Using Theorem 5.3(g), we find that 

V+V = (V'VrV'V = (0) 

and 

Vu+ = vU'(vU'r = {(VU'r'VV'}' = (0) 

Similarly, we have V+ V = (0) and V V+ = (0) .. As a result, 

(V + V)(V+ + V+) = Vu+ + VV+ 

(V+ + V+)(V + V) = V+V + V+V, 

(5.14 ) 

(5.15) 

which are both symmetric, so that conditions (5.3) and (5.4) are satisfied. Post
multiplying equation (5.14) by (V + V) and (5.15) by (V' + V+) yields con
ditions (5.1) and (5.2), so the result follows. 0 

Theorem 5.17 can be easily generalized to more than two matrices. 

CorollDry 5.17.1. Let Vi> ... , Vk be m x n matrices satisfying V;V; = (0) 
and V; Vj = (0) for all i :/. j. Then 

(U I + ... + V d = VI + ... + Vk 
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7. THE CONTINUITY OF THE MOORE-PENROSE INVERSE 

It is very useful to establish the continuity of a function since continuous func

tions enjoy many nice properties. In this section, we will give conditions under 

which the elements of A+ are continuous functions of the elements of A. But 

before doing this, let us first consider the determinant of a square matrix A and 

the inverse of a nonsingular matrix A. Recall that the detellllinant of an m X m 

matrix A can be expressed as the sum of terms, where each terIll is + 1 or -1 

times the product of m of the elements of A. Thus, due to the continuity of 

sums and the continuity of scalar products, we immediately have the follow-
• mg. 

Theorem 5.18. Let A be an m x m matrix. Then the determinant of A, IAI, 
is a continuous function of the elements of A. 

Suppose that A is an m X m nonsingular matrix so that IA I of. o. Recall that 

the inverse of A can be expressed as 

(5.16) 

where A# is the adjoint matrix of A. If AI, A2, ... is a sequence of matrices such 

that Ai --7 A as i --7 00, then, due to the continuity of the detellllinant function, 

lAd --7 IA I, and so there must exist an N such that IAi I f. 0 for all i > N. 

Since each element of an adjoint matrix is + 1 or -1 times a detellllinant, it 

also follows from the continuity of the detellllinant function that if Ai# is the 

adjoint of Ai, then AiU --7 A# as i --700. As a result, equation (5.16) has allowed 

us to establish the following. 

Theorem 5.19. Let A be an m X m nonsingular matrix. Then the inverse of 

A, A -I, is a continuous function of the elements of A. 

The continuity of the Moore-Penrose inverse is not as straightforward as 

the continuity of the inverse of a nonsingular matrix. If A is an m x n matrix 

and AI, A2 , ••• is an arbitrary sequence of m x n matrices satisfying Ai --7 A as 

i --700, then we are not assured that Ai --7 A+. A simple example will illustrate 

the potential problem. 

Example 5.6. Consider the sequence of 2 x 2 matrices A"A2, ... , where 

Ai = 
Iji 0 
o I 

, 

, 
I 
I 
• 

I 

• 
• , 
I 

, 
• , 
I 
I , , 

• , 
I 
I , 

i , 

I 

I , 
, 
.' 

• 
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Clearly, Ai --7 A, where 

A= 
o 0 
o 1 

However, note that'rank(A) = 1, while rank(A j ) = 2 for all i. For this reason. 

we do not have Ai --7 A +. In fact, 

• 
I o 

1 

: does not converge to anything since its (1, I)th element, i, converges to 00. On 
• 

i the other hand 
! 
I , , 

• 

I 

• 

! 

. . 

• • 

• 

o 0 
o 1 

. 

If we have a sequence of matrices A I, A2, ... for which rank(A j ) = ranklA) 

for all i larger than some interger, say N, then we will not encounter the diffi

culty observed in the example above; that is, as Ai gets closer to A, AT wi II get 

closer to A+. This continuity property of A+ is summarized below. A proof of 

this important result can be found in Penrose (1955) or Campbell and Meyer 

(1979). 

Theorem 5.20. Let A be an m X n matrix and A I, A2,' .. a sequence of III 

x n matrices such that Ai --7 A, as j --7 00. Then 

A+ --7 A+ 
I , 

• as I --7 00 

if and only if there exists an integer N such that 

rank(Ai) = rank(A) for all i > N 

Example 5.7. The conditions for the continuity of the Moore-Penrose 

inverse have important implications in estimation and hypothesis testing prob

lems. In particular, in this example, we will discuss a property, referred to as 

consistency, that some estimators possess. An estimator t, computed from a 

sample of size n, is said to be a consistent estimator of a parameter (J if r con

verges in probability to (J; that is, if 

lim P(lt-(JI~E)=O 
n--+~ 
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for any E > O. An important result associated with the property of consistency 
is that continuous functions of consistent estimators are consistent; that is, .if t 
is a consistent estimator of fJ, and g(t) is a continuous function of t, then g(t) 
is a consistent estimator of g(fJ). We will now apply some of these ideas to 
a situation involving the estimation of the Moore-Penrose inverse of a matrix 
of parameters. For instance, let 0 be an m X m positive semidefinite covari
ance matrix having rank r < m. Suppose that the elements of the matrix 0 
are unknown and are, therefore, to be estimated. Suppose, in addition, that 

A 

our sample estimate of O. whjch we will denote by 0, is positiAve definite with 
probability one, so that rank(O) = m with probability one, and 0 is a consistent 

A 

estimator of 0; that is, each element of 0 is a consistent estimator of the corre-
A 

sponding element of O. However, since rank(O) = r < m, 0 + is .not a consistent 
estimator of 0 +. Intuitatively, the problem here is obvious. If 0 = XAX' is the A A A 
spectral decomposition of 0 so that 0 + = 0 -I = X A -I X', then the consistency 

A 

of 0 is implying that as n increases, the m - r smallest diagonal elements of 
A are converging to zero, while the m - r largest diagonal elements of A-I 
are increasing without bound. The:: difficulty here can be easily avoided if the 

A 

value of r is known. In this case, 0 can be adjusted to yield an estimator of 
A o having rank r. For example, if 0, has eigenvalues A I 2! A2 2! ... 2! Am 

and corresponding nOllnalized eigenvectors XI, ... ,Xm and Pr is the eigen
projection 

r 

i = I 

then 

r 

i = I 

will be an estimator of 0 having rank of r. It can be shown then that, due to 
A 

the continuity of eigenprojections, 0 * is also a consistent estimator of O. More 
A A 

importantly, since rank(O *) = rank(O) = r, Theorem 5.20 guarantees that Ot is 
a consistent estimator of 0 + • 

• 

8. SOME OTHER GENERALIZED INVERSES 

The Moore-Penrose inverse is just one of many generalized inverses that have 
been developed in recent years. In this section, we will briefly discuss two other· 
generalized inverses that have applications in statistics. Both of these inverses 
can be defined by utilizing some of the four conditions (5.1)-(5.4) or, for sim-
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plicity, 1-4 of the Moore-Penrose inverse. In fact, we can define a different 
class of inverses corresponding to each different subset of the conditions 1-4 
that the inverse must satisfy. 

Definition 5.3. For any m X n matrix A, let the nxm matrix denotedA(i'·····i,) 
be any matrix satisfying conditions ii, ... , ir from among the four conditions 
1-4; AUI, ... ,i,) will be called a {ii, ... , i, }-inverse of A. 

Thus, the Moore-Penrose inverse of A is the {1,2,3,4}-inverse of A; that, 
isA+ =A(l·2.3.4). Note that for any proper subset {il>".,i r } of {1,2,3,4}, A+ 
will also be a {il>"" ir }-inverse of A but it may not be the only one. Since 
in many cases there are many different {il, ... , ir }-inverses of A, it may be 
easier to compute a {il, ... , ir }-inverse of A than to compute the Moore-Penrose 
inverse. The rest of this section will be devoted to the {I }-inverse of A and the 
{t, 3 }-inverse of A, which have special applications that will be discussed in 
the next chapter. Discussion of other useful {i l , ... , i, }-inverses can be found 
in Ben-Israel and Greville (1974), Campbell and Meyer (1979), and Rao and 
Mitra (1971). 

In the next chapter, we will see that in solving systems of linear equations, 
we will only need an inverse matrix satisfying the first condition of the four 
Moore-Penrose conditions. We wi\l refer to any such {I }-inverse of A as simply 
a generalized inverse of A, and we will write it using the fairly common notation 
A-; that is, A(I) = A -. One useful way of expressing a generalized inverse of a 
matrix A makes use of the singular value decomposition of A. The following 
result, which is stated for a matrix A having less than full rank, can easily be 
modified for matrices having full row rank or full column rank. 

Theorem 5.21. Suppose that the m x n matrix A has rank r > 0 and the 
singular value decomposition given by 

A=P 
A 

(0) 
(0) 
(0) Q', 

where P and Q are m X m and n x n orthogonal matrices, respectively, and A 
is an r x r nonsingular diagonal matrix. Let 

E 
G p', 

where E is r x m - r, F is n - r x r, and G is (n - r) x (m - r). Then for alI 
choices of E, F, and G, B is a generalized inverse of A, and any generalized 
inverse of A can be expressed in the fOlln of B for some E, F, and G. 
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Proof Note that 

ABA = P 

=P 

D. (0) Q' Q D.-I 
(0) (0) F 

M- I D. (0) 

(0) (0) 
Q' = P 

E pIp 
G 

D. (0) 

(0) (0) 

GENERALIZED INVERSES 

D. (0) Q' 
(0) (0) 

Q' = A, 

and so the matrix B above is a generalized inverse of A regardless of the choice 

of E, F, and G. On the other hand, if we write Q = [QI Q2], P = [PI P2], 

where QI is nX r and PI is mX r, then, since pp' = 1m , QQ' = In, any generalized 

inverse B, of A, can be expressed as 

I 
• 

which is in the required forIll if we can show that Q; BPI = D.-I. Since B is a I 

generalized inverse of A, ABA = A, or equivalently, P' ABAQ = P' AQ. Writing 

this last identity in partitioned form and equating the (1, 1 )th submatrices on 

both sides, we find that 

from which it immediately follows that Q;BP I = D.-I, and so the proof is com

plete. 0 

Example 5.S. The 4 x 3 matrix 

1 0 0.5 

A= 
1 0 0.5 
0 -1 -0.5 
0 -I -0.5 

has rank r = 2 and singular value decomposition with 

1 
P= -

2 

1 I -1 I 
I 1 -I 1 

1 1 -1 1 
1 -\ -1 -1 

, Q' = 
1/v2 
1/-13 
1/.,)6 

I 
f 

, 

~ 

• 
• 

• 
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I and 
f 

, 

o 
o 

v!J 

If we take E, F, and G as null matrices, and use the equation for B given in 

Theorem 5.21, we obtain as a generalized inverse of A the matrix 

1 

12 

5 5 1 1 
-1 -1 -5 -5 

2 2 -2 -2 

Actually, from the proof of Theorem 5.1, we know that the matrix above is the 

Moore-Penrose inverse. Different generalized inverses of A may be constructed 

through different choices of E, F, and G; for example, if we again take E and 

I F as null matrices but now use 

• 

I 

G = 1/V6 0 , 

then we obtain the generalized inverse 

1 

6 

3 2 1 0 

o -1 
o 

-2 -3 
o 2 -2 

Note that this matrix has rank 3, while the Moore-Penrose inverse has its rank 

equal to that of A, which is 2. 

The following theorem summarizes some of the basic properties of {l}-

• 
Inverses. 

Theorem 5.22. Let A be an mX n matrix and let A-be a generalized inverse 

of A. Then 

(a) A-' is a generalized inverse of A', 

(b) if eo: is a nonzero scalar, eo:~IA- is a generalized inverse of aA, 

(c) if A is square and nonsingular, A- = KI uniquely, 

(d) if Band Care nonsingular, C-IK B-1 is a generalized inverse of BAC, 

(e) rank(A) = rank(AK) = rank(K A) ~ rank(K), 

(f) rank(A) = m if and only if AA- = 1m , 

(g) rank(A) = n if and only if K A = III. 
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-

Proof Properties (a}-(d) are easily proven by simply verifying that the one 

condition of a generalized inverse holds. To prove (e), note that since A = AA-A, 

we can use Theorem 2.10 to get 

rank(A) = rank(AA-A) ~ rank(AA-) ~ rank(A) 

and 

rank(A) = rank(AA -A) ~ rank(A - A) ~ rank (A), 

so that rank(A) = rank(AA -) = rank(A-A). In addition, 

so the result follows. It follgws from (e) that rank(A) = m if and only if AA- is 

nonsingular. Premultiplying the equation 

• 

by (AA - t' yields (f). Similarly, rank(A) = n, if and only if A-A is nonsingular 

and so premultiplying 

o 

Example 5.9. Some of the properties possessed by the Moore-Penrose 

inverse do not carry over to the {I }-inverse. For instance, we have seen that A 

is the Moore-Penrose inverse of A+; that is, (A+Y = A. However, in general, we 

are not guaranteed that A is a generalized inverse of A -, where A - is an arbi

trary general"ized inverse of A. For example, consider the diagonal matrix A = 

diag(O. 2. 4). One choice of a generalized inverse of A is A - = diag(l, 0.5, 0.25). 

Here A is nonsingular so it has only one generalized inverse, namely, (A-t' = 

diag(l, 2, 4) and, thus, A is not a generalized inverse of A- = diag(1, 0.5, 0.25) . 
• 

All of the generalized inverses of a matrix A can be expressed in terms of 

anyone particular generalized inverse. This relationship is given below. 

Theorem 5.23. Let A-be any generalized inverse of the m x n matrix A. 

Then for any II x m matrix C, . 

-
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is a generalized inverse of A, and each generalized inverse of A can be expressed 

in this fonn for some C. 

Proof Since AK A = A, 

A(A- + C - A-ACAK)A = AK A + ACA - AKACAA-A 

= A + ACA - ACA = A, 

so A- + C - A-ACAA- is a generalized inverse of A regardless of the choice of 
A- and C. Now let B be any generalized inverse of A and define C = B - A - . 
Then, since ABA = A, we have 

A- + C - A-ACAA- = A- + (B - A-) - A-A(B - A-)AA

= B - A - ABAA - + A -AA -AA -

= B - A -AA - + A -AA - = B, 

and so the proof is complete. 

We will find the following result useful in a later chapter. 

o 

Theorem 5.24. Let A, B, and C be matrices of sizes p x m, m x n, and n x q, 
respectively. If rank(ABC) = rank(B), then C(ABC)-A is a generalized inverse 
of B. 

Proof Our proof folIows that of Srivastava and Khatri (1979). Using The
orem 2.10, we have 

rank(B) = rank(ABC) $; rank(AB) $; rank(B) 

and 

rank(B) = rank(ABC) $; rank(BC) :$ rank(B), 
, , 

so that evidently 

rank(AB) = rank(BC) = rank(B) = rank(ABC) (5.17) 

Using Theorem 2.12 along with the identity 

A(BCHIq - (ABCt ABC} = (0), 
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we find that 

rank(ABC) + rank(BC{Iq - (ABCr ABC}) - rank(BC):':;; rank{(O)} = 0, 

so that 

. 

rank(BC {I'I - (ABC)- ABC}) :.:;; rank(BC) - rank(ABC) = 0, 

where the equality follows from (5,17). But this can be true only if 

BC{Iq - (ABCr ABC) = {Iq - BC(ABC)-A}B(C) = (0) 

Again applying Theorem 2.12, this time on the middle expression above, we 

ontain 

rank({Iq - BC(ABCr A}B) +rank(BC) - rank(B):':;; rank{(O)} = 0, 

or equivalently, 

rank( {Iq - BC(ABCr A }B) :.:;; rank(B) - rank(BC) = 0, 

where, again, the equality follows from (5.17). This implies that 

{Iq - BC(ABCr A}B = B - B{C(ABCr A}B = (0), 

and so the result follows. o 

We will see in the next chapter that the {I, 3 }-inverse is useful in finding least 

squares solutions to an inconsistent system of linear equations. Consequently, 

this inverse is commonly called the least squares inverse. We will denote the 

{t, 3 }-inverse of A by AL; that is, A(i,3) = AL. Since a least squares inverse of 

A is also a {I }-inverse of A, the properties given in Theorem 5.22 also apply 

to AL. Some additional properties of least squares inverses are given below. 

Theorem 5.25. Let A be an m x n matrix. Then 

(a) for any least squares inverse, AL, of A, AAL = AA+, 

(b) (A' Ar A' is a least squares inverse of A for any generalized inverse, 

(A'At, of A'A. 
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Proof Since AALA = A and (AA L)' = AAL, we find that 

AAL = AA+ AAL = (AA+)'(AAL), = A+' A'AL' A' 

= A+'(AALA)' = A+'A' = (AA+)' = AA+, 

and so (a) holds, To prove (b) first note that 
-

A(A'A)-A' A = AA+ A(A' Af A' A = (AA+)' A(A' Af A' A = A+'A'A(A'A)- A'A 

= A+' A' A = (AA+)' A = AA+ A = A, 

197 

so that (A' At A' satisfies condition 1, To verify that condition 3 holds, observe 

that 

A(A' A)-A' = A(A' Af A' A +' A' = A(A' A)-A'(M +)' 

=A(A'A)-A'AA+ =AA+, 

where the last equality uses the identity, A(A' At A' A = A, just proven, Thus, 

the symmetry of A(A' At A' follows from the symmetry of M + , 0 

• 

9. COMPUTING GENERALIZED INVERSES 

In this section we review some computational fOllnulas for generalized inverses. 

The emphasis here is not on the development of fOllnulas best suited for the 

numerical computation of generalized inverses on a computer. For instance, the 

most common method of computing the Moore-Penrose inverse of a matrix is 

through the computation of its singular value decomposition; that is, if A = 

P.AQ; is the singular value decomposition of A as given in Corollary 4.1, I. 

then A+ can be easily computed via the fOllllula A+ = QI ~-I p;. The fOllnulas 

provided here and in the problems are ones that, in some cases, may be useful 

for the computation of the generalized inverse of matrices of small size but, in 

most cases, are primarily useful for theoretical purposes. 

Greville (1960) obtained an expression for the Moore-Penrose inverse of 

a matrix partitioned in the fOlln [B c], where, of course, the matrix Band 

the vector C have the same number of rows. This fOllnula can be then used 

recursively to compute the Moore-Penrose inverse of an m x n matrix A. To 

see this, let aj denote the jth column of A and define Aj = (a I, ... ,aj), so that 

Aj is the m x j matrix containing the first j columns of A. Greville has shown 

that if we write Aj = [Aj _ • aj]' then 

A+
j -

M I - dJ,b~ 
J- J 

b~ , 
J 

(5.18) 
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h' = 
) 
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if Cj -J 0, 

if Cj = 0, 

and Cj = aj -Aj _ Idj . Thus, A> = A; can be computed by successively computing 

A2,Aj, ... ,A;. 

Example S.10. We will use the procedure above to compute the 

Moore-Penrose inverse of the matrix 

1 

A = I 
1 

123 
-1 0 1 

1 2 3 

We begin by computing the inverse of A2 = [al a2] = [AI a2]. We find that 

Since C2 oJ 0, we get 

111 

3 ' 3 ' 3 
, 

h I + (' )-1 I 1 [1 2 
2 = c2 = C2C2 c2 = 4 ' -, 

and, thus, 

Ai - d2h; _ 1 
b; - 4 

1 
1 

2 
-2 

2 
-4 

2 

1 
1 

1 ], 

The inverse of A, = [A2 aJ) now can be computed by using Ai and 
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I 
1 ' 

2 2 
C3 = a3 - A2d3 = 0 - 0 = ° 

2 2 

Since C3 = 0, we find that 

and so 

Aj = 

1 
1] 4 

1 2 1 
1 -2 1 

1 
= "6 [I 0 I], 

A! - d3h; _ 1 
b; 12 

1 
1 
2 

6 1 
-6 1 
o 2 

Finally, to obtain the Moore-Penrose inverse of A = A4 , we compute 

3 3 
C4 = a4 - A3d4 = 1 - 1 = 0, 

3 3 

Consequently, the Moore-Penrose inverse of A is given by 

0 4 0 

A+ - A3 - d4h~ 1 1 -6 1 -4 - b' 
-

12 1 -2 1 4 
1 2 1 

199 
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A common method of computing a generalized inverse, that is, a {I }-inverse, 

of a matrix is based on the row reduction of that matrix to Hermite form. 

Definition 5.4. An m x m matrix H is said to be in Hermite form if the 

following four conditions hold. 

(a) H is an upper triangular matrix. 

(b) hii equals 0 or I for each i. 

(c) If hi; = 0, then hi} = 0 for all j. 

(d) If hi; = I, then hj; = 0 for allj oJ i. 

Before applying this concept of Hermite forms to find a generalized inverse 

of a matrix, we wi II need a couple of results regarding matrices in Hermite form. 

The first of these two results says that any square matrix can be transformed to 

a matrix in He! Illite fOi III through its premultiplication by a nonsingular matrix. 

Details of the proof are given in Rao (1973). 

Theorem 5.26. Let A be an m x m matrix. Then there exists a nonsingular 

m x m matrix C such that CA = H, where H is in Hermite form. 

The proof of the next result will be left to the reader as an exercise. 

Theorem 5.27. Suppose the m x m matrix H is in HeIlllite form. Then H 

is idempotent; that is, H2 = H. 

The connection between a generalized inverse of a square matrix A and 

matrices in Hermite fOi III is established in the following theorem. This result 

says that any matrix C satisfying the conditions of Theorem 5.26 will be a 

generalized inverse of A. 

Theorem 5.2S. Let A be an m x m matrix and C be an m x m nonsingular 

matrix for which CA = H, where H is a matrix in Hellllite form. Then the 

matrix C is a generalized inverse of A. 

Proof We need to show that ACA = A. Now from Theorem 5.27 we know 

that H is idempotent and so 

CACA = H2 = H = CA 

The result then follows by premultiplying this equation by C- I . o 

The matrix C can be obtained by transfoIllling A, through elementary row 

transformations, to a matrix in Hermite form. This process is illustrated in the 

following example. 
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Example S.11. We will find a generalized inverse of the 3 x 3 matrix 

224 
A = 4 -2 2 

2 -4 -2 

• 

First, we perform row transformations on A so that the resulting matrix has its 

first diagonal element equal to one, while the remaining elements in the tirst 

column are all equal to zero. This can be achieved via the matrix equation 

CIA = AI where 

1/2 0 0 
-2 I 0 , 
-I 0 I 

I 2 
-6 -6 
-6 -6 

Next we use row transformations on AI so that the resulting matrix has its 

second diagonal element equal to one, while each of the remaining elements in 

the second column is zero. This can be written as C2A, = A2, where 

1/6 0 
-1/6 0 , 
-I I 

A,= -
101 
o I I 
000 

The matrix A2 satisfies the conditions of Definition 5.4, and so it is in Hwnite 

form. Thus, we have C2A, = C2C,A = A2, so by Theorem 5.28 a generalized 

inverse of A is given by 

I I 0 
2 -I 0 
6 -6 6 

Not only is a generalized inverse not necessarily unique, but this particular 

method of producing a generalized inverse does not, in general, yield a unique 

matrix. For instance, in the second transformation given above, C2A, = A2, we 

could have chosen 

I 0 1/6 
C2 = 0 -1/6 0 

o -2 2 

In this case, we would have obtained the generalized inverse 
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2 0 
2 -1 

12 -12 

1 
o 

12 
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The method of finding a generalized inverse of a matrix by transfonning it 
to a matrix in Hermite form can be easily extended from square matrices to 
rectangular matrices. The following result indicates how such an extension is 
possible. 

Theorem 5.29. Let A be an m x n matrix, where m < n. Define the matrix 
A* as 

A 
(0) , 

so that A* is Il x n, and let C be any n x n nonsingular matrix for which CA* is 
in HWllite form. If we partition C as C = [C1 C2], where C1 is n x m, then 
C1 is a generalized inverse of A. '. 

Proof We know from Theorem 5.28 that C is a generalized inverse of A*. 
Hence, A*CA* = A*. Simplifying the left-hand side of this identity, we find that 

--

A 
(0) 

AC2 

(0) 

A 
(0) 

A 
(0) 

-

Equating this to A*, we get AC1A = A, and so the proof is complete. 0 

Clearly, an analogous result holds for the case in which m> n. 

Example 5.12. Suppose that we wish to find a generalized inverse of the 
matrix 

A= 

1 1 2 
101 
112 
202 

Consequently, we consider the augmented matrix 

, 

, 

. " 
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1 I 2 0 
1 0 1 0 
1 1 2 0 
2 0 2 0 

203 

Proceeding as in the previous example, we obtain a nonsingular matrix C so 
that CA* is in Hennite form. One such matrix is given by 

o 1 0 0"" 

Thus, partitioning this matrix as 

1 -I 0 0 
-1 0 1 0 
o -2 0 1 

We find that a generalized inverse of A is given by 

o 1 0 0 
C) = 1 -1 0 0 

-1 0 1 0 

A least squares generalized inverse of a matrix A can be computed by first 
computing a generalized inverse of A' A and then using the relationship, A L = 
(A' A)-A', established in Theorem 5.25(b). 

Example 5.13. To find a least squares inverse of the matrix A from Exam
ple 5.12, we first compute 

7 2 9 
A'A = 2 2 4 

9 4 13 

By transforming this matrix to Hermite form, we find that a generalized inverse 
of (A' A) is given by 

I 2 -2 0 
(A'Ar = -2 7 0 

10 -10 -10 10 



204 GENERALIZED INVERSES 

Hence, a least squares inverse of A is given by 

1 
AL = (A'AtA' "'-

10 

o 2 0 4 
5 -2 5 -4 
o 0 0 0 

PROBLEMS 

1. Prove results (a)-(d) of Theorem 5.3. 

2. Use Theorem 5.3(h) to find the Moore-Penrose inverse of 

1 1 I 
0 1 0 

A= 0 1 I 
2 0 I 

3. Find the Moore-Penrose inverse of the vector 

a= 

2 
I 
3 
2 

4. Provide the proofs for (f)-(j) of Theorem 5.3. 

5. Prove Theorem 5.6. 

6. Use the spectral decomposition of the matrix 

I , , 

\ 
i , 
• , 

I 
• , , , 
I 
· • 

I , , 
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(a) Find the Moore-Penrose inverse of AA', and then use Theorem 5.3(g) 

to find A+. 

(b) Use A+ to find the projection matrix for the range of A and the projec

tion matrix for the row space of A. 

8. Let A be an m X II matrix with rank(A) = 1. Show that A+ = c-iA', where 

c = tr(A' A). 

9. Let x and y be m x 1 vectors, and let 1 be the III x I vector with each 

element equal to one. Obtain expressions for the Moore-Penrose inverses 

of 

(a) 11' (b) 1m - m- i 11' (c) xx' (d) xy'. 

10. Let A be an m x II matrix. Show that each of the matrices, AA +, A + A, (lm -

AA+), and (In - A+ A) is idempotent. 

11. Let A be an m x II marix. Establish the following identities. 

(a) A'AA+=A+AA'=A'. 

12. 

(b) A' A+' A+ = A+ A+' A' = A+. 

(c) A(A' A)+A' A = AA'(AA't A = A. 

Let A be an m x II matrix. Show that 

(a) AB = (0) if and only if IrA + = (0), where B is an II x p matrix. 

(b) A+ B = (0) if and only if A' B = (0), where B is an m x p matrix. 

13. Let A be an mX m syrnrnetric matrix having rank r. Show that if A has one 

nonzero eigenvalue" of multiplicity r, then A + = ,,-2 A. 

14. Let A be an m x II matrix and B be an /I x p matrix. Show that if B has full 

row rank, then 

15. Let A be an m x m syrnrnetric matrix. Show that 

(a) if A is nonnegative definite, then so is A +, 

16. 

17_ 

(b) if Ax = 0 for some vector x, then A+x = 0 also. 

Let A be an m X m symmetric matrix with rank(A) = r. Use the spectral 

decomposition of A to show that if B is any III x III symmetric matrix with 

rank(B) = m - r such that AB = (0), then A+ A + s+ B = 1m. 

Let A be an m X II matrix and B be an n X m matrix. Suppose that 
rank,(A) = rank(B) and, further, that the space spanned by the eigenvec-



• 

206 GENERALIZED INVERSES 

tors corresponding to the positive eigenvalues of A' A is the same as that 

spanned by the eigenvectors corresponding to the positive eigenvalues of 
BB'. Show that (ABt = B+ A +. 

18. Prove Theorem 5.8. 

19. Prove (b)-(d) of Theorem 5.10. 

20. For each case below use Theorem 5.10 to determine whether (AB)+ = W A +. 

0 0 0 1 0 0 

(a) A = 1 0 0 , B= 0 0 0 

0 1 0 0 0 2 

1 1 0 0 0 0 

(b) A = 0 1 0 , B= 0 1 1 
0 0 0 0 1 0 

21. Let A be an mX /I matrix and B be an /IX m matrix. Show that (ABt = WA + 

if A' ABB' = BB' A' A. 

22. Prove Theorem 5.14. 

23. Find the Moore-Penrose inverse of the matrix 

21 0 0 0 

1 1 0 0 0 

A= 0 0 1 2 0 

00120 

o 0 0 0 4 

24. Use Corollary 5.13.I(d) to find the Moore-Penrose inverse of the matrix 

A ~ r u Vl. where 

I 1 1 

U= I I I , 
I I I 

• 

1 -2 
V = -1 1 

o 1 

• 

25. Use Corollary 5.13.I(c) to find the Moore-Penrose inverse of the matrix 

A = [U V], where 
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1 1 2 2 
1 -1 2 0 

u= 1 0 , V= -I 0 
1 0 I -2 
0 0 0 1 

26. Let the vectors w, x, y, and z be given by 

1 1 1 1 
1 1 -I 1 

W= 
1 

, X= -2 
, Y= 0 

, Z= I 
1 0 0 -3 

Use Theorem 5.17 to find the Moore-Penrose inverse of the matrix A = 

WX' + yz'. 

27. Find a generalized inverse, different from the Moore-Penrose inverse, of 
the vector given in Problem 3. 

28. Consider the diagonal matrix A = diag(O, 2, 3). 

(a) Find a generalized inverse of A having rank of 2. 

(b) Find a generalized inverse of A that has rank of 3 and is diagonal. 

(c) Find a generalized inverse of A that is not diagonal. 

29. Let A be an m X n matrix and B be an n x p matrix. Show that B-A-wi 11 be 
a generalized inverse of (AB) for any choice of A-and B- if rank(B) = II. 

30. Let A be an m X n matrix and B be an n x p matrix. Show that for any 
choice of A- and B-, B-A- will be a generalized inverse of (AB) if and 
only if A - ABB- is idempotent. 

31. Let A, P, and Q by m x n, p x m, and n x q matrices, respectively. Show 
that if P has full column rank and Q has full row rank, then Q-A - p" is a 
generalized inverse of PAQ. 

32. Let (A' At be any generalized inverse of the matrix A' A, where A is m x n. 
Establish the following. 

(a) A(A' A)-A' does not depend on the choice of (A' A)- . 

(b) A(A' A)-A' is symmetric even if (A' A)- is not symmetric. 

33. Suppose that the m x n matrix A is partitioned as A = [A I A2], where A I 
is m X r, and rank(A) = rank(A 1) = r. Show that A(A' At A' = AI (A;AI fA;. 
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34. Use the recursive procedure described in Section 9 to obtain the 

Moore-Penrose inverse of the matrix. 

I -I -1 

A= - I 1 1 

2 -I 1 

35. Find a generalized inverse of the matrix A in the previous exercise by find

i ng a nonsingular matrix that transforms it into a matrix having Hennite 

fOIlIl. 

36" Find a generalized inverse of the matrix 

1 -I -2 I 

A = -2 4 3-2 

I I -3 1 

37. Find a least squares inverse for the matrix A given in the previous exercise. 

38. It was shown in Theorem 5.28 that a generalized inverse of A can be 

obtained by finding a nonsingular matrix that row reduces A to Hennite 

form. Show that there is a similar result for column reduction to Hermite 

fonn; that is. show that if C is a nonsingular matrix such that AC = H. 

where H is in Hennite fOIlIl. then C is a generalized inverse of A. 

39. Prove Theorem 5.27. 

40" Penrose (1956) obtained the following recursive method for calculating 

the Moore-Penrose inverse of an m x n matrix A. Successively calculate 

B2• B3 •...• where 

B; + I = i-I tr(B;A' A)I" - B;A' A 

and BI is defined to be the n x n identity matrix. If rank(A) = r. then 

B,+ IA'A = (0) and 

Use this method to compute the Moore-Penrose inverse of the matrix A of 

Example 5.10. 

41. Let 'l\ be the largest eigenvalue of AA', where A is an m x n matrix. Let 

0/ be any constant satisfying 0 < 0/ < 2/A and define X I = OIA'. Ben-Israel 
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(1966) has shown that if we define 

X/+ I = X,{2Im - AX/) 

for i = 1,2, ... then Xi -7 A+ as i -7 00. Use this iterative procedure to 

compute the Moore-Penrose inverse of the matrix A of Example 5.10 on 

a computer. Stop the iterative process when 

tr{(Xi+ 1- X,)' (Xi + I - X,)} 

gets small. Note that 'l\ does not need to be computed since we must have 

2 2 
tr(AA') < 'l\ 

42. Use the results of Section 5 to obtain the expression given in (5.18) for the 

Moore-Penrose inverse of the matrix Aj = [Aj _ I aj]' 



CHAPTER SIX 

Systems of Linear Equations 

1. INTRODUCTION 

As mentioned at the beginning of Chapter 5, one of the applications of gen

eralized inverses is in finding solutions to a system of linear equations of the 

form 

Ax = c, (6.1) 

where A is an m x n matrix of constants, c is an m x 1 vector of constants, 

and x is an n x 1 vector of variables for which solutions are needed. In this 

chapter, we discuss such issues as the existence of solutions to (6.1), the form 

of a general solution, and the number of linearly independent solutions. We 

conclude the chapter by taking a look at the special application of finding least 

squares solutions to (6.1), when an exact solution does not exist. 

2. CONSISTENCY OF A SYSTEM OF EQUATIONS 

In this section, we will obtain necessary and sufficient conditions for the exis

tence of a vector x satisfying equation (6.1). When one or more such vectors 

exist, the system of equations is said to be consistent; otherwise, the system is 

referred to as an inconsistent system. Our first necessary and sufficient condi

tion for consistency is that the vector c is in the column space of A or, equiv

alently, that the rank of the augmented matrix [A c] is the same as the rank 

of A. 

Theorem 6.1. The system of equations, Ax = c, is consistent if and only if 

rank([A cD = rank(A). 
• 

Proof If a" ... ,a" are the columns of A, then the equation Ax = c can be 

written as 

210 

• 
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Ax = [a) '" all] • 
• 
• 

XII 

n 

= L, Xiai = c 

i = ) 
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Clearly, this holds for some x if and only if c is a linear combination of the 
columns of A, in which case rank[A c] = rank(A). 0 

Example 6.1. Consider the system of equations which has 

1 
A = 2 

1 

Clearly, the rank of A is 2 while 

2 
1 
o 

, 

I 
I [A c] I = 2 

I 

c= 

I 

1 
5 
3 

2 
1 5 = 0, 
o 3 

so that the rank of [A c] is also 2. Thus, we know from Theorem 6.1 that the 
system of equations Ax = c is consistent. 

Although Theorem 6.1 is useful in detellllining whether a given system of 
linear equations is consistent, it does not tell us how to lind a solution to the 
system when it is consistent. Our next result gives an alternative necessary and 
sufficient condition for consistency utilizing a generalized inverse, A-, of A. An 
obvious consequence of this result is that when the system Ax = c is consistent, 
then a solution will be given by x = A-c. 

-
Theorem 6.2. The system of equations Ax = c is consistent if and only if 

for some generalized inverse, A -, of A, AA-c = c. 

Proof First, suppose that the system is consistent and x * is a solution, so 
that c = Ax*. Premultiplying this identity by AA -, where A-is any generalized 
inverse of A, yields 

as is required. Conversely, now suppose that there is a generalized inverse of 
A satisfying AA-c = c. Define x* = A-c and note that 
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Thus, since x* = A-c is a solution, the system is consistent and so the proof is 
complete. 0 

Suppose that A I and A2 are any two generalized inverses of A so that AAIA = 
AA2A = A. In addition, suppose that AI satisfies the condition of Theorem 6.2; 
that is, AAlc = c. Then A2 satisfies the same condition since 

Thus, in applying Theorem 6.2, one will need to check the given condition 
for only one generalized inverse of A, and it doesn't matter which generalized 
inverse is used. In particular, we can use the Moore-Penrose inverse A +, of A. 

The following results involve some special cases regarding the matrix A. 

Corollary 6.2.1. If' A is an m x m nonsingular matrix and c is an m x I 
vector of constants, then the system Ax = c is consistent. 

Corollary 6.2.2. If the mX n matrix A has rank equal to m, then the system 
Ax = c is consistent. 

Proof Since A has full row rank, it follows from Theorem 5.22(f) that 
AA - = 1m. As a result, AA - c = c, and so from Theorem 6.2, the system must 
be consistent. 0 

Example 6.2. Consider the system of equations Ax = c, where 

I 1 I 2 3 
A= I 0 I 0 , c= 2 

2 1 2 2 5 

A generalized inverse of the transpose of A was given in Example 5.12. Using 
this, we find that 

0 1 -1 
I I I 2 3 

1 -I 0 AA-c= 1 0 1 0 2 
0 0 1 

2 I 2 2 5 
0 0 0 

I 0 0 3 3 
- 0 I 0 2 - 2 - -

I 1 0 5 5 

Since this is c, the system of equations is consistent, and a solution is given 
by " , 

• , 
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0 1 -1 
3 

-3 
1 -1 0 I 

A-c = 2 --
0 0 I 5 

5 
0 0 0 0 

• 

The system of linear equations Ax = c is a special case of the more general 

system of linear equations given by AXB = C, where A is m x II, B is P x q, C 

is m x q, and X is n x p. A necessary and sufficient condition for the existence 

of a solution matrix X satisfying this system is given in the following theorem. 

Theorem 6.3. Let A, B, and C be matrices of constants, where A is m x 11, 

B is p x q, and C is m x q. Then the system of equations 

AXB = C, 

is consistent if and only if for some generalized inverses A - and B-, 

(6.2) 

Proof Suppose that the system is consistent and the matrix X* is a solution. 

so that C = AX*B. Premultiplying by AA - and postmultiplying by S- B, where 

A- and B- are any generalized inverses of A and B, we find that 

and so equation (6.2) holds. On the other hand, if A-and B- satisfy (6.2), define 

X* = A-CB-, and note that X* is a solution since 

Using an argument similar to that given after Theorem 6.2, we can verify 

that if (6.2) is satisfied for anyone particular choice of A-and B-, then it will 

hold for all choices of A - and B-. Consequently, the application of Theorem 

6.3 is not dependent upon the choices of generalized inverses for A and B. 

3. SOLUTIONS TO A CONSISTENT SYSTEM OF EQUATIONS 

We have seen that if the system of equations Ax = c is consistent, then x = A-c 

is a solution regardless of the choice of the generalized inverse A -. Thus, if A -c 

is not the same for all choices of A -, then our system of equations has more 

than one solution. In fact, we will see that even when A - c does not depend 



214 SYSTEMS OF LINEAR EQUATIONS 

on the choice of A -, which is the case if c = 0, our system of equations may 

have many solutions. The following theorem gives a general expression for all 

solutions to the system. 

Theorem 6.4. Suppose that Ax = e is a consistent system of equations, and 

let A- be any generalized inverse of the m x n matrix A. Then, for any n x 1 

vectory y, 

(6.3) 

is a solution, and for any solution, x*, there exists a vector y such that x* = xy. 

Proof Since Ax = c is a consistent system of equations, we know from 

Theorem 6.2 that AA-c = c, and so 

Axy = AA -e + A(ln - A -A)y 

= c + (A - AA - A)y = e, 

since AA - A = A. Thus, Xy is a solution regardless of the choice of y. On the other 

hand. ifx* is an arbitrary solution, so thatAx* = e, it follows thatA-Ax* = A-c. 

Consequently, 

so that x * = X.to • This completes the proof. o 

The set of solutions given in Theorem 6.4 is expressed in tenlls of a fixed 

generalized inverse A-and an arbitrary n x I vector y. Alternatively, this set 

of all solutions can be expressed in tenlls of an arbitrary generalized inverse 

of A. 

Corollary 6.4.1. Suppose that Ax = e is a consistent system of equations, 

where c i O. If B is a generalized inverse of A, then x = Be is a solution, and 

for any solution x*, there exists a generalized inverse B such that x* = Be. 

Proof Theorem 6.4 was not dependent upon' the choice of the generalized 

inverse, so by choosing A - = Band y = 0 in (6.3), we prove that x = Be is a 

solution. All that remains to be shown is that for any particular A- and y, we 

can find a generalized inverse B such that the expression in (6.3) equals Be. 

Now since c i 0, it has at least one component, say Ci, not equal to O. Define 

the II x //I matrix C as C = cj lye; so that Ce = y. Since the system of equations 

Ax = C is consistent, we must have AA-e = e, and so 

• 
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Xy = A-c+ (In - A-A)y = A-c + (In - A-A)Cc 
= A-e + Ce - A-ACe = A-e + Ce - A-ACAA-e 

= (A- + C - A-ACAA-)e 

215 

But it follows from Theorem 5.23 that A - + C - A - ACAA - is a generalized 
inverse of A for any choice of the n x m matrix C and so the proof is complete. 

D 

Our next theorem gives a result, analogous to Theorem 6.4, for the system 
of equations AXB = C. The proof will be left to the reader as an exercise. 

Theorem 6.5. Let AXB = C be a consistent system of equations, where A 
is m x n, B is p x q, and Cis m x q. Then for any generalized inverses, A-and 
B-, and any n x p matrix, Y, 

is a solution, and for any solution, X *' there exists a matrix Y such that X * = X y. 

Example 6.3. For the consistent system of equations discussed in Example 
6.2, we have 

o 
1 

o 

1 
-1 
o 
o 

-1 
o 
1 
0....1 

1 
1 
2 

1 
o 
I 

1 2 
\ 0 = 
2 2 

-\ 
o 
2 
o 

-1 
\ 
1 
o 

-1 
o 
2 
o 

-2 
2 
2 
o 

Consequently, a general solution to this system of equations is given by 

--

--

-3 2 \ 1 
1 0 0 0 
5 + -2 -\ - 1 
0 0 0 0 

- 3 + 2YI + Y2 + Y3 + 2Y4 
1 - 2Y4 

5 - 2YI - Y2 - Y3 - 2Y4 

Y4 

where y is an arbitrary 4 x 1 vector. 

2 YI 
-2 Y2 
-2 Yo 

\ Y4 
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In some applications, it may be important to know whether a consistent sys

tem of equations yields a unique solution; that is, under what conditions will 

(6.3) yield the same solution for all choices of y? 

Theorem 6.6. If Ax =' c is a consistent system of equations, then the solu

tion x* = A-c is a unique solution if and only if A-A = In, where A- is any 

generalized inverse of the m x n matrix A. 

Proof Note that x* = A-c is a unique solution if and only if Xy = x* for 

all choices of y, where Xy is as defined in (6.3). In other words, the solution is 

unique if and only if 

(Ill - A - A)y = 0 

for all y, and clearly this is equivalent to the condition (In - A-A) = 

A-A=ln • 

(0) or 
o 

We saw in Theorem 5.22(g) that rank(A) = n if and only if A-A = In. As a 

result, we can restate the necessary and sufficient condition of Theorem 6.6 as 

follows. 

Corollary 6.6.1. Suppose that Ax = c is a consistent system of equations. 

Then the solution x * ~ A-c is a unique solution if and only if rank(A) = n. 

Example 6.4. We saw in Example 6.1 that the system of equations Ax = c, 

where 

A= 

1 
2 
I 

2 
1 

o 
, c= 

1 
5 , 
3 

is consistent. The Moore-Penrose inverse of the transpose of A was obtained 

in Example 5.1. Using this, we find that 

1 
A+A= -

14 

-3 
8 

6 5 
-2 -4 

1 

2 
1 

2 
1 
o 

- I 
14 

14 
o 

o =h 
14 

Thus, the system of equations Ax = c has the unique solution given by 

1 -3 6 5 
1 1 42 3 

A+c = 5 - -- -
14 8 -2 -4 14 -14 -1 

3 

, 
• • 

• , 
• 
• 

• 

· , 
• 

, -
• 

-
• , 
r , , 
f 

• 
• 

• 

• 

• 

i 
r • 

, 
I 
r 
i 

I • , 

t 
I 
h 
, 
• 

-· -. 
• 
• -. · ., 
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Suppose that a system of linear equations has more than one solution, and 

let XI and X2 be two different solutions. Then, since Ax; " c for i -' 1 ;tnd 2. il 

follows that for any scalar a 

Thus, X = {axi + (1- a)x2} is also a solution. Since a was arbitrary, we see (hal 

if a system has more than one solution, then it has infinitely many solutions. 

However, the number of linearly independent solutions to a consistent system 

of equations having c i 0 must be between 1 and n; that is, there exists a set 

of linearly independent solutions, {XI, ... ,x,}, such that every solution can be 

expressed as a linear combination of the solutions, XI, ... ,X,. In other words, 

any solution X can be written as X = alxl + ... + a,x" for some coefficients, 

al,"" a,. Note that since AXi = c for each i, we must have 

Ax=A 

, 
:2, ajXj 

i = I 

, 
=:2, 

i = I 

, 
ajAxj = :2, 

i = I 

aic = c, 
i = I 

and so if X is a solution, the coefficients must satisfy the identity, al + ... + a, = 

1. Our next result tells us exactly how to detellnine this number of linearly 

independent solutions r when c i O. We will delay the discussion of the situation 

in which c = 0 until the next section. 

Theorem 6.7. Suppose that the system Ax = c is consistent, where A is 

m x n and c i O. Then each solution can be expressed as a linear combination 

of r linearly independent solutions, where r = n - rank(A) + I. 

Proof Using (6.3) with the particular generalized inverse A+, we begin with 

the n+ 1 solutions, Xo = A +c, X'I = A + c+(In - A + A)el, ... , x." = A + c+(I" - A + A)e". 

where, as usual, ej denotes the nX 1 vector whose only nonzero element is 1 in 

the ith position. Now every solution can be expressed as a linear combination 

of these solutions since for any y = (Yh ... ,Yn)', 

n 

1 - :2, Yi 
i = I 

n 

Xo + :2, YiX'j 
i = I 

Thus, if we define the n x (n + 1) matrix X = (xo,x. I , ••• ,x,,,), the proof will 

be complete if we can show that rank(X) = n - rank(A) + 1. Note that we can 

write X as X = BC, where B and C are the n x (n + 1) and (n + 1) x (n + 1) 
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matrices given by B = (A+c, In - A+ A) and 

I 1
, 

c= n o In 

Clearly, C is nonsingular since it is lower triangular and the product of its diag
onal elements is l. Consequently, from Theorem 1.8, we know that rank(X) = 
rank(B). Note also that . , 

(In - A+A)'A+c = (In - A+A)A+c = (A+ - A+AA+)c 

=(A+-A+)c=O, 

so that the first column of B is orthogonal to the remaining columns. This 
implies that 

since the consistency condition, AA + C = c and c-:/.O guarantee that A + c -:/. O. All 
that remains is to show that rank(ln - A+ A) = n - rank(A). Now since A+ A is 
the projection matrix of R(A +) = R(A'), it follows that In - A + A is the projection 
matrix of the orthogonal complement of R(A') or, in other words, the null space 
of A, N(A). Since dim{N(A)} = n - rank(A), we must have rank(ln - A+ A) = 
II - rank(A). 0 

Since Xo = A +c is orthogonal to the columns of (In -A+ A), when constructing 
a set of r linearly independent solutions, one of these solutions always will be 
Xu, with the remaining solutions given by Xy for r- I different choices of y -:/. 0 .. 
This statement is not dependent upon the choice of A+ as the generalized inverse 
in (6.3). since A - c and (I" - A - A)y are linearly independent regardless of the 
choice of A - if c i O,y i O. The proof of this linear independence is left as an 

• exercise. 

Example 6.5. We saw that the system of equations Ax = c of Examples 
6.2 and 6.3 has the set of solutions consisting of all vectors of the fmlll 

Xy = A -c + (14 - A - A)y = 

Since the last row of the 3 x 4 matrix 

-3+2YI :+-Y2+Y3+2Y4 
1- 2Y4 

5 - 2YI - Y2 - Y3 - 2Y4 
Y4 

• 

• 
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\ \ \ 2 
A= 1 0 1 0 

2 122 

219 

is the sum of the first two rows, rank(A) = 2. Thus, the system of equations 
possesses 

n - rank(A) + 1 = 4 - 2 + 1 = 3 

linearly independent solutions. Three linearly independent solutions can be 
obtained through appropriate choices of the y vector. For instance, since A - c 
and (4 - A - A)y are linearly independent, the three solutions 

will be linearly independent if the ith andjth columns of (14 - A-A) are linearly 
independent. Looking back at the matrix (4 - A-A) given in Example 6.3, we 
see that its first and fourth columns are linearly independent. Thus, three linearly 
independent solutions of Ax = c are given by 

-3 -3 2 -\ 

A-c= 
1 

A - c + (4 - A - A)·I 
I 0 I - + -, - -

5 5 -2 3 
, 

0 0 0 0 

-3 2 -I 

A - c + (4 - A - A)·4 = 
I -2 -I 

+ --
5 -2 3 

• 

0 I I 

4. HOMOGENEOUS SYSTEMS OF EQUATIONS 

The system of equations Ax = c is called a nonhomogeneous system of equa
tions when c -:/. 0, while Ax = 0 is referred to as a homogeneous system of equa
tions. In this section. we obtain some results rcgarding homogeneous systcms 
of equations. One obvious distinction between homogeneous and nonhomoge
neous systems is that a homogeneous system of equations must be consistent 
since it will always have the trivial solution, x = O. A homogeneous system will 
then have a unique solution only when the trivial solution is the only solution. 
Conditions for the existence of nontri vial solutions, which we state in the next 
theorem, follow directly from Theorem 6.6 and Corollary 6.6.1. 
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Theorem 6.8. Suppose that A is an m x n matrix. The system Ax = 0 
has nontrivial solutions if and only if A A 4. In, or equivalently if and only 
if rank(A) < n. 

If the system Ax = 0 has more than one solution, and {XI, .•• ,Xr } is a set 
of r solutions, then x = (XIXI + ... + (XrXr is also a solution regardless of the 
choice of (XI, ... , (Xr, since 

Ax= A 
r 

L (X;X; 

; = I 

r 

=L 
; = I 

r 

(X;Ax! = L 
i = I 

In fact, we have the following. 

Theorem 6.9. If A is an m x n matrix, then the set of all solutions to the 
system of equations Ax = 0 fOIJlls a vector subpsace of Rn having dimension 
n - rank(A). 

Proof The result follows immediately from the fact that the set of all solu-
tions of Ax = 0 is the null space of A. 0 

In contrast to Theorem 6.9, the set of all solutions to a nonhomogeneous 
system of equations will not fDlm a vector subspace. This is because, as we 
have seen in the previous section, a linear combination of solutions to a non
homogeneous system yields another solution only if the coefficients sum to one. 
Additionally, a nonhomogeneous system cannot have 0 as a solution. 

The general fOIJIl of a solution given in Theorem 6.4 applies to both homo
geneous and nonhomogeneous systems. Thus, for any n x I vector y, 

Xy = (III - A - A)y 

is a solution to the system Ax = 0, and for any solution, x *, there exists a 
vector y such that x * = x, .. The following result shows that the set of solutions 
of Ax = c can be expressed in teIJIlS of the set of solutions to Ax = O. 

Theorem 6.10. Let x * be any solution to the system of equations Ax = c. 
Then 

la) if xu is a solution to the system Axu = 0, x = x* + xu is a solution of 
Ax = c, and 

(b) for any solution x to the equation Ax = c, there exists a solution Xu to 
the equation Ax = 0 such that X = x*+ Xu. 

Proof Note that if Xu is as defined in (a), then 

A(x * + xu) = Ax * + Axu = c + 0 = c, 

, . 
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and so x = x* +x# is a solution to Ax = c. To prove (b), define Xu = x - x*. so 
that x = x* +X#. Then since Ax = c and Ax* = c, it follows that 

Ax# = A(x - x*) = Ax - Ax* = c - c = 0 

Our next result, regarding the number of linearly independent solutions pos
sessed by a homogeneous system of equations, follows immediately from The
orem 6.9. 

Theorem 6.11. Each solution of the homogeneous system of equations 
Ax = 0 can be expressed as a linear combination of r linearly independent 
solutions, where r = n - rank(A). 

Example 6.6. Consider the system of equations Ax = 0, where 

I 2 
A = 2 I 

I 0 

We saw in Example 6.4 that A+ A = h. Thus, the system only has the trivial 
solution O. 

Example 6.7. Since the matrix 

I 
A = 1 

2 

1 I 2 
010 
122 

from Example 6.5 has rank of 2, the homogeneous system of equations Ax = 0 
~ 

has r = n - rank(A) = 4 - 2 = 2 linearly independent solutions. Any set of two 
linearly independent columns of the matrix (4 - A-A) will be a set of linearly 

. independent solutions; for example, the first and fourth columns, 

2 2 
0 -2 

-2 , -2 
0 1 

are linearly independent solutions. 
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5. LEAST SQUARES SOLUTIONS TO A SYSTEM OF LINEAR 
EQUATIONS 

In some situations in which we have an inconsistent system of equtions Ax = c, 
it may be desirable to find the vector or set of vectors which comes "closest" to 
satisfying the equations. If x* is one choice for x, then x* will approximately 
satisfy our system of equations if Ax • - c is close to O. One of the most common 
ways of measuring the closeness ofAx* - c to 0 is through the computation 
of the sum of squares of the components of the vector Ax* - c. Any vector 
minimizing this sum of squares is referred to as a least squares solution. 

Definition 6.1. The n x I vector x. is said to be a least squares solution 
to the system of equations Ax = e if the inequality 

(Ax* - e)'(Ax* - e)::;:; (Ax - e)'(Ax - e) (6.4) 

holds for every n x 1 vector x. 

Of course, we have already utilized the concept of a least squares solution 
in many of our examples on regression analysis. In particular, we have seen 
that if the matrix X has full column rank, then the least squares solution for 

A A A 

13 in the fitted regression equation, y = XI3 is given by 13 = (X'X)-I X'y. The 
generalized inverses that we have discussed in this chapter will enable us to 
obtain a unified treatment of this problem including cases in which X is not of 
full rank. 

In Section 5.8, we briefly discussed the {I, 3 }-inverse of a matrix A, that 
is, any matrix satisfying the first and third conditions of the Moore-Penrose 
inverse. We referred to this inverse as the least squares inverse of A. The fol
lowing result motivates this description. 

Theorem 6.12. Let A ~ by any {I, 3 }-inverse of a matrix A. Then the vector 
x* = ALe is a least squares solution to the system of equations Ax = e. 

Proof We must show that (6.4) holds when x* = ALe. The right-hand side 
of (6.4) can be written as 

(Ax- e)'(Ax - e) = {(Ax - AALe) + (AALe - e)}'{(Ax - AALe) + (AALe - e)} 

= (Ax - AALe)'(Ax - AALe) + (AALe - e)'(AALe - e) 

+ 2(Ax - AALe)'(AALe - e) 

~ (AALe - e)'(AALe - e) = (Ax* - e)'(Ax* - e), 

where the inequality follows from the fact that 

• 
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and 

(Ax - AALe)'(AALe - e) = (x - ALe)' A' (AALe - e) 

= (x - ALe)' A'«AAL)' e - e) 

= (x - ALe)'(A' AL'A' e - A' e) 

= (x-ALe)'(A'e-A'e)=O (6.5) 

This completes the proof. 0 

Corollary 6.12.1. The vector x * is a least squares solution to the system 
Ax = e if and only if 

Proof From the previous theorem, ALe is a least squares solution for any 
choice of AL , and its sum of squared errors is given by 

(AALe - e)'(AALe - e) = e'(AAL - Im)'(AAL - Im)e 

= e'(AAL - Imfe = e'(AALAAL - 2AAL + Im)e 

= e'(AAL - 2AAL + Im)e = e'(lm - AAL)e 

The result now follows since, by definition, a least squares solution minimizes 
the sum of squared errors, and so any other vector x* will be a least squares 
solution if and only if its sum of squared errors is equal to this minimum sum 
of squares, e'(lm - AAL)e. . 0 

Example 6.S. Let the system of equations Ax = e have A and e given by 

A= 

I 
1 
I 
2 

I 2 
o 1 
1 2 
o 2 

, e= 

4 
1 
6 
5 

In Example 5.13 we computed the least squares inverse 

o 2 0 4 
5 -2 5 -4 
000 0 



224 

Since 

505 0 

o 204 

505 0 

040 8 

SYSTEMS OF LINEAR EQUATIONS 

4 
I 
6 
5 

--

5 
2.2 
5 

4.4 

-:I- e, 

it follows from Theorem 6.2 that the system of equations is inconsistent. A least 

squares solution is then given by 

o 2 0 4 
5 -2 5 -4 
o 0 0 0 

4 
I 2.2 

6 = 2.8 
o 

5 

Since (AALe - e)' = (5,2.2,5,4.4) - (4,1,6,5) = (1,1.2, -I, -0.6), the sum of 

squared errors for the least squares solution is 

In general, a least squares solution is not unique. For instance, the reader can 

easily verify that the matrix 

B= 
-2 -0.8 -2 -1.6 

-1.5 
2 

-1.2 -1.5 
I 2 

-2.4 
2 

is also a least squares inverse of A. Consequently, 

-2 -0.8 -2 -1.6 
4 
1 

Be= -1.5 -1.2 -1.5 -2.4 
6 

2 I 2 2 
5 

-28.8 
-28.2 --

31 

is another least squares solution. However, (ABc - e)' = (5,2.2,5,4.4)

(4, 1,6,5) = (I, 1.2, - I, -0.6), and so the sum of squared errors for this least 

squares solution is, as it must be, identical to that of the previous solution. 

The following result will be useful in establishing the general fonn of a least 

squares solution. It indicates that while a least squares solution x* may not be 

unique, the vector Ax* will be unique. 

: 
• 

• 
• 

, 
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Theorem 6.13. The vector x* is a least squares solution to the system Ax = 

c if and only if 

(6.6) 

Proof. Using Theorem .6.2, we see that the system of equations given in 

(6.6) is consistent since 

The sum of squared errors for any vector x* satisf)4jilg (6.6) is 

(Ax* - c)'(Ax* - c) = (AALc - e)'(AALe - c) 

= c'(AAL - IIIJ2e 

= e' (I", - AAL)e, 

so by Corollary 6.12.1, x* is a least squares solution. Conversely, now suppose 

that x* is a least squares solution. Then from Corollary 6.12.1 we must have 

(Ax* - c)'(Ax* - c) = e'(lm - AAL)c 

= e'(lm - AAL)'(lm - AAL)e 

= (AALe - e)'(AALe - e). (6.7) 

where we have used the fact that (lm - AAL) is symmetric and idempotent. 

However, we also have 

(Ax* - c)'(Ax* - c) = {(Ax* - AALe) + (AALe - c)}' 

, . {(Ax* - AALc) + (AALe - en 
= (Ax* - AALc)'(Ax* - AALc) + (AALe - e)'(AALe - e), 

(6.8) 

since (Ax* - AALc)'(AALc - e) = 0, as shown in (6.5). Now (6.7) and (6.8) 

imply that 

which can be true only if 

• 
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. , 

and this establishes (6.6). 
o 

We now give an expression for a general least squares solution to a system 

of equations. 

Theorem 6.14. Let A L be any {I, 3 }-inverse of the m x n matrix A. Define 

the vector 

where y is an arbitrary n x 1 vector. Then, for each y, Xy is a least squares 

solution to the system of equations Ax = e, and for any least squares solution 

x * there exists a vector y such that x * = xy. 

Proof Since 

A(l" - ALA)y = (A - AALA)y = (A - A)y = 0, 

we have Axy = AALe, and so by Theorem 6.13 Xy is a least squares solution. 

Conversely, if x * is an arbitrary least squares solution, then by using Theorem 

6.13 again, we must have 

which. when premultiplied by AL, implies that, 

Adding x* to both sides of this identity, and then rearranging we get 

x* = x* - ALA(x* - ALe) 

= ALe +x* - ALe - ALA(x*'- ALe) 

= ALe + (In - ALA)(x. - ALe) 

This completes the proof since we have shown that x* = xy, where y = (x. -

ALe). 
0 

We saw in Example 6.8 that least squares solutions are not necessarily 
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unique. Theorem 6.14 can be used to obtain a necessary and sufficient con
dition for the solution to be unique. 

Theorem 6.15. If A is an mx n matrix, then the system of equations Ax = c 
has a unique least squares solution if and only if rank(A) = n . 

Proof It follows immediately from Theorem 6.14 that the least squares 
solution is unique if and only if (1- ALA) = (0), or equivalently, ALA = I". The 
result now follows from Theorem 5.22(g). 0 

Even when the least squares solution to a system is not unique, certain linear 
combinations of the elements of least squares solutions may be unique. This is 
the subject of our next theorem. 

Theorem 6.16. Let x* be a least squares solution to the system of equations 
Ax = c. Then a'x* is unique if and only if a is in the row space of A. 

Proof Using Theorem 6.14, if a'x* is unique regardless of the choice of 
the least squares solution x*, then 

is the same for all choices of y. But this implies that 

(6.9) 

Now if (6.9) holds, then 

a' = b' A, 

where b' = a' AL, and so a is in the row space of A. On the other hand, if a is 
in the row space of A, then there exists some vector b such that a' = b' A. This 
implies that 

and so the least squares solution must be unique. o 

. Example 6.9. We will obtain the general least squares solution to the sys
tem of equations presented in Example 6.8. First note that 
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so that 

Xy = ALe + (13 - ALA)y 

0 2 0 4 
1 

- 5 -2 5 -4 -
10 0 0 0 0 

2.2 - Y3 
- 2.8 - Y3 -

Y3 

101 
o 1 1 
000 

4 
1 
6 

+ 

5 

, 

0 
0 
0 

0 -1 YI 
0 -1 Y2 
0 1 Y3 

is a least squares solution for any choice of Y3. The quantity a'xy does not 

depend on the choice of Y3 as long as a is in the row space of A; in this case, 

that corresponds to a being orthogonal to the vector (-1, -1, 1 )'. 

6. LEAST SQUARES ESTIMATION FOR LESS THAN 

FULL RANK MODELS 

In all of our previous examples of least squares estimation for a model of the 

fOlln 

y = X~ + E, (6.10) 

where y is N xl, X is N x m, ~ is m xl, and E is N xl, we have assumed that 

rank(X) = m. In this case, the nonnal equations, 

X'X~ = X'y, (6.11) 

yield a unique solution, the unique least squares estimator of ~, given by 

However, in many applications, the matrix X has less than full rank. 

Example 6.10. Consider the univariate one-way classification model, 

which was written as 

, 
, 
f 
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• 

I 
I , 

I 
I , 
I , 
I , 
• , 
I , , 
, 
• 

· , 
: 
• , , 
, 
• , 
\ 
I , 
• I 
I 
• l 
• I , ,. 
• 
• 
I , , 
• • , 
• 
• , 

• , 
• 

l , 
I 
• • 

I 

! 
• 
! , , 

, 
: 
, 
, 
• 
, , 
• 
• • • , , , 
• 
• 
• • 
! , , 
• 

I , 
• , 
• 

• 



• • • 

I 
• 

, , 
I 
I 
• 
I , 
I 
• • 
• 
I 
• , 
• • 

· , , 
• 
• • 
• • , 
\ 
I , , 
I 
I 
• I 
• I , 
I 
• 
• 
I , 
• 

• • • • · • 
I 
· 

, '. .. 
• 

.. 
• .. 
• · . 

• 

LEAST SQUARES ESTIMATION FOR LESS THAN FULL RANK MODELS 229 

in Example 3.14, where i = 1" .. , k and j = 1, ... ,nj. This model can be written 

in the forlll of (6.10), where ~ = <P I, ... ,iJ.d' and 

1,'1 0 • • • 0 

0 1m • • • 0 
X= -

• • • 

• • • 
• • • 

0 0 • • • l"k 

, 

In this case, X is of full rank, and so ~ = (X'xt 1 X'y - _v -

(L Ylj/nl, .. ',L Ykj!nk)'. An alternative way of writing this one-way clas

sification model is 

which has k+ 1 parameters instead of k. Here iJ. represents an overalI effect while 

T; is an effect due to treatment i. In some respects, this f01l11 of the model is 

more natural in that the reduced model, which has alI treatment means identical, 

is simply a submodel with some of the parameters equal to 0, that is, TI = ... " 

Tk = O. If this second f01'1II of the model is written as Y = X*~* + E, then 

~* = <p, T" •.• , Tk)' and 

Inl Inl 0 • • • 0 

In2 0 In2 • • • 0 

X*= In3 0 0 • • • 0 

• • • • 
• • • • 

• • • • 

Ink 0 0 • • • l"k 

! 

i Thus, this second parameterization of the one-way classification model has the 

! design matrix X * less than full rank since rank (X *) = k. 
• 
! 
• , 
• 

, 
; 
• 
, 
• 

• 
I , 
, 
i , 
• 
• , 
• 
• 

! , 
I 
I 

I 
• , , 
• 
• 

· , 
• 

In this section, we will apply some of the results of this chapter to the esti

mation of parameters in the model given by (6.10) when X is less than full 

rank. First of all, let us consider the task of solving the nonnal equations given 

by (6.11); that is, using our usual notation for a system of equations, we want 
, 

to solve Ax = c, where A = X'X,X = ~, and c = X'y. Now from Theorem 6.2. 

we see that (6.11) is a consistent system of equations since 

X'X(X'XYX'y = X'XXtx'tx'y = X'XX+(XX')'y = X'XX'XX'y 

= X'XX+y = X'(XX')'y = X'X"X'y = X'y 
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A 

Consequently, using Theorem 6.4, we find that the general solution 14 can be 

written as 

A 

14 = (X'XrX'y + {I - (X'X)-X'X}u, 

or, if we use the Moore-Penrose generalized inverse, as 

P = (X'XrX'y + {I - (X'X)+X'X}u 

= x+y + (1- X+X)u, 

(6.12) 

where u is an arbitrary m x I vector. The same general solution can be obtained 

by using the least squares results of Section 6.5 on the system of equations 

A 

y=Xp 

A 

Thus, using Theorem 6.14 with A 

solution is given by 
- X x-- , - 14, and c = y, the least squares 

which is, of course, equivalent to that given by (6.12). 

One key difference between the full rank model and the less than full rank 

model is that the least squares solution is unique only if X has full rank. When 

X is less than full rank, the model y = Xp + E is overparameterized, and so not 

all of the parameters or linear functions of the parameters are uniquely defined; 
A 

this is what leads to the infinitely many solutions for p. Thus, when estimating 

linear functions of the parameters, we must make sure that we are trying to 

estimate a function of the parameters that is uniquely defined. This leads to the 

following definition of what is known as an estimable function. 

Definition 6.2. The linear function a'p of the parameter vector 

estimable if and only if there exists some N x 1 vector b such that 

a'p = E(b'y) = b'E(y) = b'XP; 
" 

• 
IS 

that is, if and only if there exists a linear function of the components of y, b'y, 

which is an unbiased estimator of a'p. 

The condition that a linear function a'p be estimable is equivalent to the 
A 

condition that the corresponding estimator a'p be unique. To see this, note that 

from the definition above, the function a'p is estimable if and on!>' if a is "in 

the row space of X, while it follows from Theorem 6.16 that a'p is unique 



LEAST SQUARES ESTIMATION FOR LESS THAN FULL RANK MODELS 231 

if and only if a is in the row space of X. In addition, since X'(Xx:yX is the 
projection matrix for the row space of X, we get the more practical condition 

for estimability of a'p given by 

X'(XX'tXa = a (6.13) 
• 

It follows from Theorems 5.3 and 5.25 that 

X'(XX'tx = X'X'+ = X'X'L = X'(XX'r X, 

and so equation (6.13) is not dependent upon the Moore-Penrose inverse as the 
choice of the generalized inverse of X X'. 

Finally, we will demonstrate the invariance of the vector of fitted values 
A 

y = Xp and its sum of squared errors (y - y)'(y - y) to the choice of the least 
A 

squares solution p. Since XX+X = X 

y = XJl = X {X+y + (I - X+X)u} = Xx+y + (X - XX+X)u = XX+y, 

which does not depend on the vector u. Thus, y is unique, while the uniqueness 
of 

(y - y)'(y - y) = y'(I - XX+)y 

follows immediately from the uniqueness of y. 

Example 6.11. Let us return to the one-way classification model 

of Example 6.10, where Il* = (p., 7"1 , ••• , 7"k)' and 

1nl 1nl 0 • • • 0 

In2 0 1n2 • • • 0 

X* = 1n3 0 0 • • • 0 
• • • • 
• • • • 
• • • • 

Ink 0 0 • • • l"k 

Since the rank of the n X (k + 1) matrix X *' where n = 2. ni is k, the least 
squares solution for Il* is not unique. To find the fOlIll of the general solution, 
note that 
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while a generalized inverse is given by 

-I n 
o 

n n' 
D" , 

0' 
D- I -11 I' , ,,-n kk 

where n = (n" ... , nd' and D" = diag(nl, ... , nd. Thus, using (6.12) we have 
the general solution 

-I n 
o 

0' 
D- I -11 I' ,,-n kk 

- I , -n n 

-ny 

D"y 

-11 ' u, n kn 

+ 
I 
o u 

where y = (Y I' ... ,y.r and y = L 1\ j)';/ 1\. Choosing u = 0, we get the particular 
least squares solution that has ~ = y and Tj = Yj - Y for i = 1, ... , k. Since a'~* 
is estimable only if a is in the row space of X, we find that the k quantities, 
/.t + 7'j, i = I, ... , k, as well as any linear combinations of these quantities, are 
estimable. In particular, since /.t + 7'j = a;~*. where aj = (I,e;)" its estimator is 
given by 

-y -
= Yi - -Y-Y 

The vector of fitted values is 

1" I 1"1 0 0 -
• • • Y 

1", 0 1"2 0 - -• • • YI - Y -
A 

1"3 0 0 0 - -
y=X*~*= 

• • • Y2 - Y 
• • • • • 
• • • • • 
• • • • • 

l"k 0 0 l"k 
- -

• • • Yk - Y 

while the sum of squared errors is given by 

k II; 

(y - y)'(y - y) = L L (Yij - Yj)2 
;;1 j;1 

YI 1", 
Y2 1"2 

-- • , 
• 
• 

Yk l"k 
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7. SYSTEMS OF LINEAR EQUATIONS AND THE SINGULAR 

VALUE DECOMPOSITION 

When A is square and nonsingular, then the solution to the system of equations 

Ax = c can be conveniently expressed in tenns of the inverse of A, as x = A -I c. 
, 

For this reason, it has seemed somewhat natural to deal with the solutions for the 

more general case in tenns of the generalization of A -I, A +. This is the approach 

that we have taken throughout this chapter. Alternatively, we can attack this 

problem by directly using the singular value decomposition, an approach that 

may offer more insight. In this case, we will always be able to transfOlIll our 

system to a simpler system of equations of the fOlIn 

Dy = b, (6. 14) 

where y is an n X 1 vector of variables, b is an III x I vector of constants, and 

D is an m x n matrix such that d ij = 0 if i :/: j. In particular, D will have one of 

the four fOlIllS, as given in Theorem 4.1, 

(a) Ll (b) [Ll (0)] (c) 

. 

Ll 
(0) 

(d) 
Ll (0) 

(0) (0) , 

where Ll is an r x r nonsingular diagonal matrix and r = rank(A). Now if D 

has the fonn given in (a), then the system (6.14) is consistent with the unique 

solution given by y = Ll-1b. For (b), if we partition y as y = (y;,y;)" where YI 

is r x 1, then equation (6.14) reduces to 

Thus, (6.14) is consistent and has solutions of the fOlIn 

y= , 

where the (n - r) X 1 vector Y2 is arbitrary. Since we then have n - r linearly 

independent choices for Y2' the number of linearly independent solutions is n - r 

if b = 0 and n - r + I if b :/: O. When D has the forill given in (c), the system 

in (6.14) takes the forill 

where b l is r x I and b2 is (m - r) X 1, and so it is consistent only if b2 = O. If 
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this is the case, the system then has a unique solution given by y : a-I b l . For 

the final fann given in (d), the system of equations in (6.14) appears as 
• 

where y and b have been partitioned as before. As in the case of form (c), 

this system is consistent only if b2 : 0, and as in the case of form (b), when 

consistent, it has n - r linearly independent solutions if b : 0, and n - r + 1 

linearly independent solutions if b -j. O. The general solution is given by 

y: , 

where the (n - r) x 1 vector Y2 is arbitrary. 

All of the above can now be readily applied to the general system of equa

tions, 
. " 

Ax: c (6.15) 

by utilizing the singular value decomposition of A given by A : PD(1 as in 

Theorem 4.1. Premultiplication of this system of equations by P' produces the 

system of equations in (6.14), where the vector of variables is given by y : (1 x 

and the vector of constants is b: p' c. Consequently, if y is a solution to (6.14), 

then x = Qy will be a solution to (6.15). Thus, in the case of forms (a) and (b), 

(6.15) is consistent with the unique solution given by 

when (a) is the f01'111 of D, while for form (b) the general solution is 

x = 0'= lOl 

where QI is n x r and Y2 is an arbitrary (n - r) x l·vector. The term Q2 Y2 has 

no effect on the value of Ax since the columns of the n x (n - r) matrix Q2 

f01111 a basis for the null space of A. In the case offorms (c) and (d), the system 

(6.15) is consistent only if C: Plbl so that P2b2: 0, where P = (PhP2) and 

PI is m x r; that is, since the columns of PI form a basis for the range of A, 

the system is consistent if c is in the column space of A. Thus, if we partition c 

as c = (c;,c;)' where CI is rx 1, then when form (c) holds, the unique solution 

will be given by 
, 

• 
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In the caSe of form (d), the general solution is 

x = Qy = [QI 

8. SPARSE LINEAR SYSTEMS OF EQUATIONS 

The typical approach to the numerical computation of solutions to a consis
tent system of equations Ax = c, or least squares ~olutions when the system 
is inconsistent, utilizes some factorization of A such as the QR factorization, 
the singular value decomposition, or the LV decomposition, which factors A 
into the product of a lower triangular matrix and upper triangular matrix. Any 
method of this type is referred to as a direct method. One situation in which 
direct methods may not be appropriate is when our system of equations is large 
and sparse; that is, m and n are large and a relatively large number of the ele
ments of the m X n matrix A are equal to zero. Thus, although the size of A 
may be quite large, its storage will not require an enormous amount of computer 
memory since we only need store the nonzero values and their location. How
ever, when A is sparse, the factors in its decompositions need not be sparse, so 
if A is large enough, the computation of these factorizations may easily require 
more memory than is available. 

If there is some particular structure to the sparsity of A, then it may be pos
sible to implement a direct method that exploits this structure. A simple example 
of such a situation is one in which A is m x m and tridiagonal; that is, A has 
the form 

VI WI 0 • • • 0 0 0 
U2 V2 W2 • • • 0 0 0 

A= • • • • • • 
• • • • • • 
• • • • • • 

0 0 0 • • • Urn - I Vrn-I Wm - I 

0 0 0 • • • 0 Urn Vm 

In this case, if we define 

'1 0 • • • 0 0 1 SI • • • 0 0 
U2 '2 • •• 0 0 0 1 • • • 0 0 

L= • • • • V= 
• • • • 

• • • • • • • • , , 
• • • • • • • • 

0 0 • • • 'm-I 0 0 0 • • • 1 Sm- I 

0 0 • • • Um 'rn 0 0 • • • 0 1 
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where" = Vi> ri = Vi - Uiwi-I!ri-I, and Si-I = wi-I!ri-i> for i = 2, ... ,m, 

then A can be factored as A = LV as long as each ri ,J O. Thus, the two factors, 

L and V are also sparse. The system Ax = c can easily be solved by first solving 

. the system Ly = c and then solving the system Vx = y. For more details on this, 

and adaptations of direct methods for other structured matrices such as banded 

matrices and block tridiagonal matrices see Duff, Erisman, and Reid (1986) and 

Golub and Van Loan (1989). 
A second approach to the solution of sparse systems of equations utilizes 

iterative methods. In this case, a sequence of vectors, XO,Xh." is generated 

with Xo being some initial vector while Xj for j = 1,2, ... is a vector that is 

computed using the previous vector Xj _ I, with the property that Xj --7 x, as 

j --7 00, where x is the true solution to Ax = c. Typically, the computation 

in these methods only involves A through its product with vectors, and this is 

an operation that will be easy to handle if A is sparse. Two of the oldest and 

simplest iterative schemes are the Jacobi and Gauss-Seidel methods. If A is 

m x m with nonzero diagonal elements, then the system Ax = c can be written 

as 

which yields the identity 

This is the motivation for the Jacobi method that computes Xj as 

On the other hand, the Gauss-Seidel method utilizes the splitting of A as A = 

Al + A2, where Al is lower triangular and A2 is upper triangular with each of 

its diagonal elements equal to zero. In this case, Ax = c can be rearranged as 

and this leads to the iterative scheme 

which is easily solved for Xj since the system is triangular. 

In recent years, some other more sophisticated iterative methods, requiring 

less computation and having better convergence properties, have been devel

oped. We will briefly discuss a method for solving a system of equations, which 

utilizes an algorithm known as the Lanczos algorithm [Lanczos (1950)]. For 

-

• 

• • 
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more information on this procedure, including convergence properties. gener

alizations to a general mX n matrix, and to the problem of finding least squares 

solutions, as well as other iterative methods, the reader is referred to Young 

(1971), Hageman and Young (1981), and Golub and Van Loan (\989). 

Consider the function 

J(x) = !X' Ax - x' e, 

where x is an m x I vector and A is an m x m positive definite matrix. The 

vector of partial derivatives of J(x) given by 

VJ(x) = 
aJ aJ 
ax I , ... , aXm 

I 

=Ax- e 

is sometimes referred to as the gradient of J(x). Setting this equal to the zero 

vector, we find that the vector minimizingJ, x = A-Ie, is also the solution to the 

system Ax = c. Thus, a vector which approximately minimizesJ will also be an 

approximate solution to Ax = e. One iterative method for finding the minimizer 

x involves successively finding minimizers Xj of J over a j-dimensional sub

space of Rm, starting with j = 1 and continually increasing j by I. In particular. 

for some set of orthonormal m x 1 vectors, ql" .. , qm' we will define the jth 

subspace as the space with the columns of the m x j matrix, Qj = (q I' ... , qj ). 

as its basis. COrisequently, for some j x 1 vector Yj' 

(6.16 ) 

and 

where 

g(y) = ty'(QiAQj)Y - ylQi e 

Thus, the gradient of g(Yj) must be equal to the null vector, and so 

(6.17) 

To obtain Xj' we can first use (6.17) to calculate Yj and then use this in (6.16) to 
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get Xj. The final Xj' X m , will be the solution to Ax = c, but the goal here is 

to stop the iterative process before j = m with a sufficiently accurate solu

tion Xj. 

The iterative scheme described above will work with different sets of 

orthonoIlnal vectors q I , ... , q m but we will see that by a judicious choice of 

this set, we may guarantee that the computation involved in computing the XjS 

will be fairly straightforward even when A is large and sparse. These same vec

tors are also useful in an iterative procedure for obtaining a few of the largest 

and smallest eigenvalues of A. We will derive these vectors in the context of 

this eigenvalue problem and then later return to our discussion of the system 

of equations Ax = c. Let}\1 and Am denote the largest and smallest eigenvalues 

of A, while Alj and Ajj denote the largest and smallest eigenvalues of the j xi 

matrix QjAQj. Now we have seen in Chapter 3 that Alj ~ A\, Ajj ~ Am and 

that AI and Am are the maximum and minimum values of the Rayleigh quo

tient, 

R( A) = x'Ax 
x, x'x 

Suppose that we have the j columns of Qj, and we wish to find an additional 

\'cctor qj + 1 so as to fOlln the matrix Qj + I and have AI.j + I and Aj + I,} + I as close 

to AI and Am as possible. If Uj is a vector in the space spanned by the columns 

of Qj and satisfying R(uj, A) = AIj, then since the gradient 

gives the direction in which R(uj ,A) is increasing most rap~dly, we would 

want to choose qj + I so that V R(uj, A) is in the space spanned by the columns 

of Qj + I. On the other hand, if v j is a vector in the space spanned by Qj 

and satisfying R(vj,A) = Ajj, then since R(vj,A) is decreasing most rapidly 

in the direction given by - V R(vj, A), we would want to make sure that 

V R(vj ,A) is also in the space spanned by the columns of Qj+ I. Both of these 

objectives can be satisfied if the columns of Qj are spanned by the vectors 
. - I 

q I. Aq I' ..• ,A' q I and we select qj + I so that the columns of Qj + I are spanned 

by the vectors ql,Aqp'" ,A'ql' since both VR(uj,A) and VR(vj,A) are of the 

fOlI\1 aAx + bx for some vector x spanned by the columns of Qj. Thus, we 

start with an initial unit vector ql' while for j ;?: 2, qj is selected as a unit 

vector orthogonal to q I' ... ,qj. _ I and such that the columns of Qj are spanned 

by the vectors q I' Aq I' ••• ,A' - I q I' These particular qj vectors are known as 

the LanclOs vectors. The calculation of the qjS can be facilitated by the use of 

the tridiagonal factorization A = PTP', where P is orthogonal and T has the 

tridiagonal fOIln 
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Clq {31 0 • • • 0 0 0 

~I (X2 ~2 • • • 0 0 0 

T= • • • • • • 
• • • • • • 
• • • • • • 

0 0 0 • • • {3m-2 (Xm-I {3m- I 
0 0 0 • •• 0 {3m- I (Xm. 

Using this factorization. we find that if choose P and ql so that Pel = ql' then 

Since (elo Tel, ...• Tj-I el ) has upper triangular structure. this means that the 
firstj columns of P span the column space of (ql.Aql ..... Aj-I ql ); that is. 
the qjS can be obtained by calculating the factorization A = PTP'. or in other 
words. we can take Q = (ql •...• qm) = P. Thus. since AQ = QT. we have 

(6.18) 

and 

(6.19) 

for j = 2 •... ,m - 1. Using these equations and the orthonollnality of the qjS, 
it is easily shown that (Xj = qi Aqj for all j. and as long as Pj = (A - (Xj Im)qj -
{3j-Iqj_1 =I O. then {3J = piPj and qj+ I = Pj/{3j for j = 1 •.. .• m - 1. if we 
define qo = O. Thus. we can continue calculating the qjS until we encounter a 
Pj = O. To see the significance of this event. let us suppose that the iterative 
procedure has proceeded through the first j - 1 steps with Pi =I 0 for each i = 
2, ...• j - 1. and so we have obtained the matrix Qj whose columns fOlln a basis 
for (ql' Aql' ...• Aj - I ql)' Note that it follows immediately from the relationship 
AQ = QT that 

where Tj is the j xj submatrix of T consisting of its first j rows and j columns. 
This leads to the equation QiAQj = Tj + QiPj ei . But q;Aqi = (Xi. while it follows 
from (6.18) and (6.19) that q;+ IAqi = {3i and qkAqi = 0 if k > i + 1. Thus, 
Qi AQj = Tj and so we must have Qip· = O. Now if Pj =I O. then qj + I = Pj I {3j is 
orthogonal to the columns of Qj. F~er. it follows from the fact that qj + I is a 
linear combination of Aqj' qj. and qj _ I that the columns of Qj + I = (Qj, qj + I ) 

form a basis for the column space of (ql' Aql •...• Ai ql). If. on the other hand. 
Pj = O. then AQj = QjTj . From this we see that the vectors Ajql •... • Am-1ql 
are in the space spanned by the columns of Qj. that is. the space spanned by the 
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vectors ql, Aql, ... , Aj - 1 q I. Consequently, the iterative procedure is complete 

since there are only j qiS. 

In the iterative procedure described above, the largest and smallest eigen

values of Tj serve as approximations to the largest and smallest eigenvalues of 

A, In practice, the telluination of this iterative process is usually not due to the 

encounter of a Pj = 0, but due to sufficiently accurate approximations of the 

eigenvalues of A. 
Now let us return to the problem of solving the system of equations Ax = e 

through the iterative procedure based on the calculation of Yj in (6.17) and then 

Xj in (6.16). We wi\l see that the choice of the LanclOS vectors as the columns 

of Qj will simplify the computations involved. For this choice of Qj, we have 

already seen that QiAQj = Tj , so that the system in (6.17) is a special case of 

the tridiagonal system of equations discussed at the beginning of this section, 

special in that Tj is symmetric. As a result, the matrix Tj can be factored as 

Tj = Lj Dj Li, where Dj = diag(h ... , dj ). 

1 0 • • • 0 0 

II 1 • • • 0 0 

Lj = • • • • 
• • • • , 
• • • • 

0 0 • • • 1 0 
0 0 • • • Ij _ I 1 

d l = ai, and for i = 2, ... ,}, Ii-I = {3i-l/d i - 1 and d j = aj - {3j- l / j -l. Thus, the 

solution for Yj in (6.l7) can be easily found by first solving Ljwj = Qje, then 

Djzj = Wj, and finally 11Yj = zj. Even as j increases, the computation required 

is not extensive since Dj _ I and Lj _ I are submatrices of Dj and Lj , and so in 

the jth iteration we only need to calculate dj and Ij _ I to obtain Dj and Lj from 

Dj _ I and Lj _ I . 

The next step is to compute Xj from Yj using (6.16). We will see that this 

also may be done with a small amount of computation. Note that if we define 

the m x j matrix Bj = (b I, ... , bj ) so that Bj Li = Qj, then by premultiplying the 

equation TjYj = Qie by QjT"t and using (6.16), we get 

(6.20) 

where Zj is as previously defined. It will be easier to compute Xj from (6.20) 

than from (6.16) since Bj and Zj are simple to compute after Bj _ 1 and Zj-I 

have already been calculated. For instance, from the definition of Bj , we see 

that b l = ql and b j = qi -li_lb j _ 1 for i> 1, and consequently, Bj = (Bj_l,bj ). 

U sing the defining equations for Wj and Zj, we find that . 

(6.21 ) 

, . 
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If we partition Zj as Zj = ("Ii _ I' 'Yj )', where 'Yj _ I is a (j - I) x I vector, then by 

using the fact that 

Lj _ I o o 
Ij _ I ei- I 1 ' d ' 

) 

we see that (6.21) implies that Lj_1Dj_I'Yj_1 = Qi-Ic. But this means that 

'Yj _ I = Zj - I, and so to compute Zj, we only need to compute "ij; which is given 

by 

where 'Yj _ I is the last component of Zj _ I. Thus, (6.20) becomes 

and so we have a simple fonllula for computing the jth iterative solution from 

hj , 'Yj, and the (j - 1 )th iterative solution Xj _ I. 

PROBLEMS 

1. Consider the system of equations Ax = c, where A is the 4x 3 matrix given 

in Problem 5.2 and 

I 

c= 
3 

-1 
0 .... 

(a) Show that the system is consistent. 

(b) Find a solution to this system of equations. 

(c) How many linearly independent solutions are there? 

2. The system of equations Ax = c has A equal to the 3 x 4 matrix given in 

Problem 5.36 and 

1 

c = 1 
4 
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(a) Show that the system of equations is consistent. 

(b) Give the general solution. 

(c) Find r, the number of linearly independent solutions. 

(d) Give a set of r linearly independent solutions. 

3. Suppose the system of equations Ax = c has 

A= 

5 2 
3 1 

1 
1 

2 
1 

1 0 
2 -3 

For each c given below, detelinine whether or not the system of equations 
is consistent. 

(a) c = 

1 
1 
1 
1 

, (b) c = 

3 
2 

(c) c = 
1 

, 

-1 

4. Consider the system of equations Ax = c, where 
• 

1 
A = 2 

1 -1 
1 1 

o 2 
1 1 ' 

3 
c= 

1 

(a) Show that the system of equations is consistent. 

(b) Give the general solution. 

(c) Find r, the number of linearly independent solutions. 

(d) Give a set of r linearly independent solutions. 

S. Prove Theorem 6.S. 

1 
-1 

1 
-1 

6. Consider the system of equations AXB = C, where X is a 3 x 3 matrix of 
variables and . 

A= 
1 3 
3 2 

1 
1 ' 

B= 
1 
1 
o 

-1 
o , 
1 

C= 4 2 
2 1 

(a) Show that the system of equations is consistent. 

(b) Find the fOlin of the general solution to this system. 
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7. The general solution of a consistent system of equations was given in Theo
rem 6.4 as A-c+(In-A-A)y. Show that the two vectors Kc and (In-A- A)y 
are linearly independent if c -j. 0 and y -j. O. 

8. Suppose the m x n matrix A and m x 1 vector c -j. 0 are such that A - c is 
the same for all choices of A - .. Use Theorem 5.23 to show that, if Ax = c 
is a consistent system of equations, then it has a unique solution. 

9. For the homogeneous system of equations Ax = 0 in which 

-1 
A= 

3 
2 -3 

-2 1 
o -2 ' 

detelinine r, the number of linearly independent solutions, and find a set 
of r linearly independent solutions. 

10. Show that if the system of equations AXB = C is consistent, then the solu
tion is unique if and only if A has full column rank and B has full row 
rank. 

11. Let 

1 
A= 2 

-1 
3 

B = 2 1 
o 1 

1 
1 

1 
-1 ' 

2 -1 
1 I' 

1 
c= 

2 ' 

2 
d = 4 . 

(a) Show that the system Ax = c is consistent and has three linearly inde
pendent solutions. 

(b) Show that the system Bx = d is consistent and has three linearly inde
pendent solutions. 

(c) Show that the systems Ax = c and Bx = d have a common solution and 
that this common solution is unique. 

12. Consider the systems of equations AX = C and XB = D, where A is m x n, 
B is p x q, Cis m x p, and D is n x q. 

(a) Show that the two systems of equations have a common solution X if 
and only if each system is consistent and AD = CB. 

(b) Show that the general common solution is given by 

where Y is an arbitrary n x p matrix. 
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13. In Exercise 5.37, a least squares inverse was found for the matrix 

1 -1 
A = -2 4 

1 1 

-2 1 
3 -2 

-3 1 

. 

(a) Use this least squares inverse to show that the system of equations 

Ax = c is inconsistent, where c' = (2, 1,5). 

(b) Find a least squares solution. 

(c) Compute the sum of squared errors for a least squares solution to this 

system of equations. 

14. Consider the system of equations Ax = c, where 

I 0 2 2 

A= 
2 -1 3 2 

-1 2 0 
, c= 5 

-2 1 -3 0 

(a) Find a least squares inverse of A. 

(b) Show that the system of equations is inconsistent. 

(c) Find a least squares solution. 

(d) Is this solution unique? 

15. Show that x * is a least squares solution to the system of equations Ax = c 

if and only if 

A'Ax*=A'c 

16. Let A be an mX n matrix, and x*,Y*, and c, nx 1, mx 1, and mx 1 vectors, 

respectively. Suppose that x* and y* are such that the system of equations 

1m A 
A' (0) 

y* _ c 
- o ' 

holds. Show that x* then must be a least squares solution to the system 

Ax = c. 

17. The balanced two-way classification model with interaction is of the form 

Yijk = II- + Ti + 'Yj + f/ ij + tijk. 

• 
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where i = 1, ... , a,j = 1, ... , b, and k = 1, ... , n. The parameter}l. represents 

an overall effect, Ti is an effect due to the ith level of factor one, 'Yj is an 

effect due to the jth level of factor two, and '1/ ij is an effect due to the 

interaction of the ith and jth levels of factors one and two; as usual, the 

eijkS represent independent random errors, each distributed as N(O, a"). 

(a) Set up the vectors y, IJ, and E and the matrix X so that the two-way 

model above can be written in the matrix fOIln y = XIJ + E . 
• 

(b) Find the rank r, of X. DeteIllline a set of r linear independent estimable 

functions of the parameters, }l., Ti, 'Yj, and '1/ ij. 

(c) Find a least squares solution for the parameter vector IJ. 

18. Consider the regression model 

y = XIJ + E, 

where X is N x m, E - NN (0, a2C), and C is a known positive definite 

matrix. In Example 4.6, for the case in which X is full column rank, we 
, 

obtained the generalized least squares estimator IJ = (X' C- I X t I X' C- Iy, 

which minimizes 

(6.22) 

Show that if X is less than full column rartk, then the generalized least 

squares estimator of IJ which minimizes (6.22) is given by 

where u is an arbitrary m x 1 vector. 

, 

,19. Restricted least squares obtains the vectors IJ that minimize 

, , 

subject to the restriction that IJ satisfies BIJ = b, where B is p x m and b is , 

P x 1 such that BB-b = b. Use Theor~m 6.4 to find.rhe general solution l3u to 

the consistent system of equations BI3 =;: b, where 131/. depends, on an arbitrary 

vector u. Substitute this expression for IJ into (y- XI3 )'(y- X(3), and then use 

Theorem 6.14 to obtain the general least squares solution u .. , for u, where UK' , 

depends on an arbitrary vector w. Substitute u .. for U in l3u to show that the 

general restricted least squares solution for 13 is gi ven by 

~ .. = B-b + (1- B-B){[X(1- B- B)]L(y - XB- b) 

+ (I - [XCI - B-B)]LX(I- B-B»w}. 
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20. In the previous exercise. show that if we use the Moore Penrose inverse 
as the least squares inverse of [X(I- B-B)] in the expression given for P .... 
then it simplifies to 

~M' = B-b + [XCI - B-BW(y - XB-b) 

+ (1- B-B){I - [X(I- B-BWX(I- B-B)}w. 

21. Consider the iterative procedure. based on the Lanczos vectors. for solving 
the system of equations Ax = c. Suppose that for the initial Lanczos vector 
ql we use (e' et l / 2e. 

• 

(a) Show that if for some j. Pj = (A - {Xj Im)qj - {3j- Iqj_1 = O. then AXj = c. 
(b) Show that for any j. the procedure easily yields a measure of the ade

quacy of the jth iterative solution since 

where )jj is thejth component of the vector Yj in (6.16). 

• 

• 

• 

• 

. . 

• 



• 

• 

CHAPTER SEVEN 

Special Matrices and Matrix Operators 

1. INTRODUCTION 

The concept of partitioning matrices was first introduced in Chapter I, and we 
have subsequently used partitioned matrices throughout this text. In this chap
ter we develop some specialized formulas for the detelIllinant and inverse of 
partitioned matrices. In addition to partitioned matrices, we will look at some 
other special types of structured matrices that we have not previously discussed. 
In this chapter, we will also introduce and develop properties of some special 
matrix operators. In many situations, a seemingly complicated matrix expres
sion can be written in a fairly simple form by making use of one or more of 
these matrix operators. 

2. PARI'ITIONED MATRICES 

Up to this point. most of our applications involving partitioned matrices have 
utilized only the simple operations of matrix addition and multiplication. In this 
section. we will obtain expressions for the inverse and detelIllinant of an m x m 
matrix A that is partitioned into the 2 x 2 block fOlln given by 

A= (7.1 ) 
• 

where All is ml x mI. AI2 is ml x m2. A21 is m2 x ml, and A22 is m2 x m2. We 
wish to obtain expressions for the inverse and determinant of A in telIllS of its 
submatrices. We begin with the inverse of A. 

Theorem 7.1. Let the m x m matrix A be partitioned as in (7.1), and sup
pose that A, All, and A22 are nonsingular matrices. For notational convenience 
write B = A-I and partition B as 

247 
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B= 

where the submatrices of B are of the same sizes as the corresponding subma

trices of A. Then we have 

(a) BII =(AII-AI2A2~A2Ifl =Aii +AiiAI2B22A2IAii, 

(b) B22 = (A22 - A2IA,iAI2fl = A2~ + A2~A2IBIIAI2A2L 

(c) BI2 = -AiIIAI2B22, 

(d) B21 =-A2"iA2I BII . 

Proof The matrix equation 

AB= 

yields the four equations 

AIIBII +A12B21 = Imp 

A21BI2 +A22B22 = 1m2 , 

AIIBI2 +A12B22 = (0), 

A21 BII + A22B21 = (0) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

Solving (7.4) and (7.5) for BI2 and B21 , respectively, immediately leads to the 

expressions given in (c) and (d). Substituting these solutions for BI2 and B21 

into (7.2) and (7.3) and solving for BII and B22 yields the first expressions given 

for BII and B22 in (a) and (b). The second expressions in (a) and (b) follow 

immediately from the first after using Theorem 1.7. 0 

Example 7.1. Consider the regression model 

y = Xil + E, 

where y is N x I, X is N x (k + I), 11 is (k + I) xl, and E is N x 1. Suppose that 

11 and X are partitioned as 11 = (11;, 11;)' and X = (X" X2) so that the product 

X 1111 is defined, and we are interested in comparing the complete regression 

model given above to the reduced regression model 

If X has full column rank, then the least squares estimators for the two models 
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A 
A 

are Il = (X'Xr'X'y and Il, = (X;X,r'X;y, respectively, and the difference in 

the sums of squared errors for the two models 

(y - X,~,)'(y - X,~,) - (y - X~)'(y - X~) 

= /(1 - X,(X;X,)-' X;)y - y'(I - X(X'X)-' X')y 

=/X(X'Xr'X'y - y'X,(X;X,)-'X;y (7.6) 

gives the reduction in the sum of squared errors attributable to the inclusion of 

the term X21l2 in the complete model. By using the geometrical properties of 

least squares regression in Example 2.10, we showed that this reduction in the 

sum of squared errors simplifies to 

where X2* = (1- X,(X;X,)-'X;)X2' An alternative way of showing this, which 

we illustrate here, uses Theorem 7.1. Now X'X can be partitioned as 

X'X= 

and so if we let C= (X;X2-X;X1(X;X,)-'X;X2)-' = (X;*Xh )-', we find from 

a direct application of Theorem 7.1 that 

(X'X)-' = 
(X;X,r' + (X;X,)-'X;X2CX;X,(X;X,)-' 

-CX;XI (X; X ,r' 
-(X;X,)-'X;X2C 

C 

Substituting this into (7.6) and then simplifying, we get y' X 2 *(X;,.X 2 * r ' X~,. y. 

as required. 

Before obtaining expressions for the detel minant of A, we will first consider 

some special cases. 

Theorem 7.2. Let the m x m matrix A be partitioned as in (7.1). If A22 " I"" 

and AI2 = (0) or A21 = (0), then IAI = IAII I· 

· Proof To find the detellninant 
'. • .. , .. 
, , 
· , 
t , 
i , 
! 
I • • 

I 
~ 

IAI = 
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first use the cofactor expansion fOIlllula for a detellilinant on the last column 

of A to obtain 

IAI = A~I (0) 
1m2 - I • 

where B is the (m2 - I) x ml matrix obtained by deleting the last row from A21' 
Repeating this process another (m2 - 1) times yields IA I = IAlIl. In a similar 
fashion. we obtain IA I = IA I I I. when A2 I = (0). by repeatedly expanding along 
the last row. 0 

Clearly we have a result analogous to Theorem 7.2 when All = Iml and 
AI2 = (0) Or A21 = (0). Also. Theorem 7.2 can be generalized to the following. 

Theorem 7.3. Let the m x m matrix A be partitioned as in (7.1). If AI2 = (0) 
or A21 = (0), then IA I = IA II IIA221· 

Proof Observe that • 

(0) --
1m2 

where the last equality follows from Theorem 7.2. A similar proof yields IAI = 
IA liliAn I when A21 = (0). 0 . 

We are now ready to find an expression for the determinant of A in the 
general case. 

Theorem 7.4. Let the m x m matrix A be partitioned as in (7.1). Then 

(a) IAI = IAnllAl1 -AI2A2iA2d. if A22 is nonsingular. and 

(b) IAI = IAIIIIA22 - A2IAiiAI2i. if All is nonsingular. 

Proof Suppose that A22 is nonsingular. Note that in this case the identity 

Im, -AI2A2"i All AI2 I~I (0) 
(0) 1m2 A21 A22 -:-A2"iA21 1m2 

_ All - A12A2"iA21 (0) 
(0) A22 

holds. After taking the detelIllinant of both sides of this identity and using the 
previous theorem. we immediately get (a). The proof of (b) is similar. 0 

. , 
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Example 7.2. We will find the deteIIllinant and inverse of the 2m x 2m 

matrix A given by 

A= 
• 

1111 (" 
hIm , 

where a and b are nonzero scalars. Using (a) of Theorem 7.4, we find that 

a - --:b- , 

where we have used the result of Problem 3.18(e) in the last step. The matrix 
A will be nonsingular if IA I f. 0 or, equivalently, if 

In this case, using Theorem 7.1, we find that 

m -) 
= aIIII - 1m 1;', 

b 

-) I =a m+ 
m 

a(ab - m2) 

where this last expression follows from Problem 3.18(d). In a similar fashion, 
we find that 

m 
1", (" b(ab - m2) 



252 SPECIAL MATRICES AND MATRIX OPERATORS 

The remaining submatrices of B = A -I are given by 

m 

b(ab - m2 ) 

and, since A is symmetric, B21 = B;2 = B\2. Putting this all together, we have 

where c = (ab - m2r 1 • 

a-I (I", + mel",1;,,) 

- c I", t;" 
-elmI;n 

b- I (1m + melm I;n) , 

We will use Theorem 7.4 to establish the following useful result. 

Theorem 7.5. Let A and B be m x nand n x m matrices, respectively. Then 

Proof Note that 

I,,, A 
-B I" 

11m + ABI '" II" + BAI 
• 

III/ (0) 1m + AB A -
B I" (0) I,,' 

so that by taking the deteIlninant of both sides and using Theorem 7.4, we 

obtai n the identity 

Similarly, observe that 

1m (0) 

B I" 

so that 

I", 
-B 

A 

I" 

I", A 

-B I" 

= II", + ABI 

I", 
(0) 

I", 
-B 

A 
I = II" + BAI 

" 

A 
In + BA • 

The result now follows by equating (7.7) and (7.8). 

(7.7) 

• 

(7.8) 

o 

Our final result follows directly from Theorem 7.5 if we replace A by -M. 
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Corollary 7.5.1. Let A and B be m x nand 11 x /11 matrices. Then the 

nonzero eigenvalues of AB are the same as the nonzero eigenvalues of BA. 

3. THE KRONECKER PRODUCT 

Some matrices possess a special type of structure that pelmits them to be 

expressed as a product, commonly referred to as the Kronecker product, of 

two other matrices. If A is' an m x n matrix and B is a f? x q matrix, then the 

Kronecker product of A and B, denoted by A ® B, is the /lip x IIlI matrix 

ailB al2 B • • • al"B 
a21 B a22B • • • a2"B 

• • • 
(7.9) 

• • • 

• • • 

amlB am2B • • • alll"B 

Jhe Kronecker product defined above is more precisely known as the right 

Kronecker product, and it is the most common definition of Kronecker prod

uct appearing in the literature. However, some authors [for example, Graybill 

(1983)] define the Kronecker product as the left Kronecker product, which has 

B ® A as the matrix given in (7.9). Throughout this book, any reference to the 

Kronecker product will be refening to the right Kronecker product. The spe

cial structure of the matrix given in (7.9) leads to simplified fOllllulas for the 

computation of such things as its inverse, detellninant, and eigenvalues. In this 

section, we will develop some of these fOllllulas as well as some of the more 

basic properties of the Kronecker product. 

Unlike ordinary matrix multiplication, the Kronecker product A ® B is 

defined regardless of the sizes of A and B. However, as with ordinary matrix 

multiplication, the Kronecker product is not, in general, commutative as is 

demonstrated in the following example. 

Example 7.3. Let A and B be the 1 x 3 and 2 x 2 matrices given by 

A = [0 

Then we find that 

A ®B= [OB 

while 

1 2], B= 

o 0 
IB 2B] = 0 0 

[ 2 
3 4 

122 
346 

4 
8 ' 
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IA 24. 0 1 2 0 2 4 
B ® A = 3A 4A = 0 3 6 0 4 8 

Some of the basic properties of the Kronecker product, which are easily 

proven from its definition, are summarized below. The proofs are left to the 

reader as an exercise. 

Theorem 7.6. Let A, B, and C be any matrices and a and b be any two 

vectors. Then 

(a) 0: ® A = A ® 0: = o:A, for any scalar 0:, 

(b) (o:A) ® ((3B) = o:{3(A ® B), for any scalars 0: and (3, 

(c) (A ® B) ® C = A ® (B ® C), 

(d) (A + B) ® C = (A ® C) + (B ® C), if A and B are of the same size, 

(e) A ® (B + C) = (A ® B) + (A ® C), if Band C are of the same size, 

(f) (A ® B)' = A' ® B', 

(g) ab' = a ®b' = b' ®a. 

We have the following very useful property involving the Kronecker product 

and ordinary matrix multiplication. 

Theorem 7.7. Let A, B, C, and D be matrices of sizes m X h, p x k, h X n, 

and k x q, respectively. Then 

(A ®B)(C®D) = AC®BD (7.10) 
• 

Proof The left-hand side of (7.10) is 

aliB • • • alhB cliD .. . clnD FII . .. Fin 

• • • • • • -
• • • • - • • 

• • • • • • 
, 

amlB • • • amhB chiD • • • chnD Fml . .. Fmn 

• 

where 

h 

I = I 

The result now follows since 
• 

. , 

• 

· 
, I 

.-. 
• , 

• 
• .. 
, 

'. 

, 
, 
, 
I , 
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AC®BD= • • o • • 
• • 

Our next result demonstrates that the trace of the Kronecker product A ® B 
can be expressed in terms of the trace of A and the trace of B when A and B 
are square matrices. 

Theorem 7.S. Let A be an m x m matrix and B be a p x p matrix. Then 

tr(A ® B) = tr(A)tr(B) 

Proof Using (7.9) when n = m, we see that 

m m 

tr(A ® B) = L" aii tr(B) = L aii tr(B) = tr(A) tr(B), 
i= I i = I 

so that the result holds. o 

Theorem 7.8 gives a simplified expression for the trace of a Kronecker prod
uct. There is an analogous result for the detellninant of a Kronecker product. 
But before we get to that, let us first consider the inverse of A ® B and the 
eigenvalues of A ® B when A and B are square matrices. 

Theorem 7.9. Let A be an m x n matrix and B be a p x q matrix. Then 

(a) (A ® 8)-1 = A-I ® B- 1, if m = n, p = q and A ® B is nonsingular, 

(b) (A ®B)+ =A+ ®W, 

(c) (A ® 8)- = A - ® B-, for any generalized inverses, K and B-, of A and 
B. 

Proof Using Theorem 7.7, we find that 

so (a) holds. We will leave the verification of (b) and (c) as an exercise for the 
reader. 0 

Theorem 7.10. Let AI> ... ' Am be the eigenvalues of the m x m matrix A, 
and let 8 I, ... ,8 p be the eigenvalues of the p x p matrix B. Then the set of mp 
eigenvalues of A ® B is given by {Ai 8j : i = 1, ... , m;j = 1, ... ,p}. 
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Proof It follows from Theorem 4.12 that there exist nonsingular matrices 

P and Q such that < 

where T 1 and T 2 are upper triangular matrices with the eigenvalues of A and 

B, respectively, as diagonal elements. The eigenvalues of A ® B are the same 

as those of 

(P ® Qf 1 (A ® B)(P ® Q) = (P 1 ® Q-I )(A ® B)(P ® Q) 

= P 1 AP ® Q-I BQ = TI ® T2, 

which must be upper triangular since TI and T2 are upper triangular. The result 

now follows since the eigenvalues of TI ® T2 are its diagonal elements, and 

these are clearly given by ('''j8{ i = l, ... ,m;j = I, ... ,p}. 0 

A simplified expression for the determinant of A ® B, when A and B are 

square matrices, is most easily obtained by using the fact that the detellllinant 

of a matrix is given by the product of its eigenvalues. 

Theorem 7.11. Let A be an m x m matrix and B be a p x p matrix. Then 

IA ® BI = IAIPIBI'" 

Proof Let f.q, .. . , A", be the eigenvalues of A, and let 81" .. ,8 P be the 

eigenvalues of B. Then we have 

m 

IAI = 

and from the previous theorem 

/, m 

IA ® BI = 
j=1 1=1 

P 

= IA I" 8 } 
'" 

IBI = 

8'" 
} 

'" 

= IAIPIBI'" 

P 

P 

-- 8J' IA I 

o 

Our final result on Kronecker products identifies a relationship between 

rank(A ® B), and rank(A) and rank(B). 



• 
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Theorem 7.12. Let A be an m x n matrix and B be a p x q matrix. Then 

rank(A ® B) = rank(A)rank(B) 

Proof Our proof utilizes Theorem 3.11, which states that the rank of a 
• 

symmetric matrix equals the number of its nonzero eigenvalues. Although A ® B 

as given is not necessarily symmetric, the matrix (A ® B)(A ® B)" as well as 

AA' and BB', is symmetric. Now from Theorem 2. \0 we have 

rank(A ® B) = rank{(A ® B)(A ® B)'} = rank(AA' ® BB') 

Since AA' ® BB' is symmetric, its rank is given by the number of its nonzero 

eigen values. Now if "1, ... '''m are the eigenvalues of AA', and 81> ... ,8" are 

the eigenvalues of BB' then, by Theorem 7.10, the eigenvalues of AA' ® BB' 

are given by {"i8j: i = 1, ... , m;j = 1, ... ,p}. Clearly, the number of nonzero 

values in this set is the number of nonzero ''is times the number of nonzero 

8j s. But, since AA' and BB' are symmetric, the number of nonzerO ''is is given 

by rank(AA') = rank(A), and the number of nonzero 8j s is given by rank(BB') = 

rank(B). The proof is now complete. 0 

Example 7.4. The computations involved in an analysis of variance are 

sometimes particularly well suited for the use of the Kronecker product. For 

example, consider the univariate one-way classification model 

Yu = P. + T i + f ij' 

which was discussed in Examples 3.14, 6.10, and 6.11. Suppose that we have 

the same number of observations available from each of the k treatments. so 

thatj = 1, ... , n for each i. In this case, the model may be written as 

Y = Xp + E, 

where X = (lk ® 1n,Ik ® 1n), P = (p.,TJ, ... ,Td', Y = (y;, ... ,y~)', and Yi = 
(Yil, ... ,Yin>'. Consequently, a least squares solution for p is easily computed 

as 

l' ® l' 
-

1~ ® 1;, , 
P = (X'XrX'y = k n [1k ® 1n Ik ® 11ll Y 

Ik ® 1~ lk ® 1:, 

nl~ 
-

1~ ® (, nk - y - Ik ® 1~ n1k nlk 
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--
0' 

n-\(Ik - k-\Id~) 

I' ® I' k n 
h ®I~ Y 

• 

(nk)-\(I; ® I~) 

- n-l(lk®I~)-(nk)-\(lkl~®I~) Y 

This yields /L = y and TI = YI - y, where 

1 
k n 1 

n 

L L Ylj' 
- -
Y= YI= Ylj 

nk n 
I; 1 j;1 j;1 

Note that this solution is not unique since X is not full rank, and hence the 

solution depends on the choice of the generalized inverse of X'X. However, 

for each i, p. + T 1 is estimable and its estimate is given by ~ + T; = y;. In addi

tion, the sum of squared errors for the model is always unique and is given 

by 

(y - X~)'(y - X~) =y'(lnk - X(X'XFX')y =y'(Ink - n-I(lk ® Inl~»y 

k k n 

= Ly;(ln-n-'lnl~)YI= L (Yij_YI)2 

1=1 1=1 j;1 

• 

Since {(1k ® 1,,)'(lk ® In)} -1(lk ® In)'y = y, the reduced model 

Yij = P. + Eij 

has the least squares estimate ~ = y, while its sum of squared errors is 

k n 

{y - y(lk ® In)}' {y - y(lk ® In)} = L (Yij - y)2 
;;1 j;\ 

The difference in the sums of squared errors for these two models, the so-called 

sum of squares for treatments (SST), is then . 
• 

k n k ·n 

SST = L L (Yij - y)2 - L L (yij - YI )2 

1=\ j=\ ;;\ j;\ 

k 

= L n(Yi - y)2 
1 = \ 

• 
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Example 7.5. In this example, we will illustrate some of the computations 
involved in the analysis of the two-way classification model with interaction, 

which is of the form 

YUk = P. + Ti + 'Yj + 1/ ij + EUk, 

where i = 1, ... ,a,j = 1, ... ,b, and k = 1, ... ,n (see Problem 6.17). Here p. can 
be described as an overall effect, while Ti is an effect due to the ith level of fac
tor A, "0 is an effect due to the jth level of factor B, and 1/ ij is an effect due to the 
interaction of the ith andjth levels of factors A and B. If we define the parameter 
vector, p = (p., TJ, ••• ,T a, 'YJ, ... , 'Yb, 1/ II , 1/ 12, .•. , 1/ "" - J, 1/ ab)' and the response 
vector, Y = (YIII. .. ·,Ylln,YI2h ... ,Ylbn,Y211, .. · ,Y"I",)', then the model ahove 
can be written as 

Y = Xp + E, 

where 

Now it is easily verified that the matrix 

abn bn1~ anI;' n1~ ® 1;' 

X'X= 
bn1a bnIa n1a ® 1~ nIa ® 1;' 
an1b nl:' ® 1" anI" nl:' ® Ib 

n1a ® 1" nI" ® I" nIa ® I" nl" ® I" 

has as a generalized inverse the matrix 

where 
• 

C = n-IIa ® Ib - (bnflIa ® 1b1;' - (anfI1a1:' ® Ib 

+ (abnfI1al~ ® 1b1;' 

Using this generalized inverse, we find that a least squares solution for P is 
given by . 
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where 

y .. =' (abn)-I 

- ( )-1 Y'j =' an 

u b 

LL 
i = I j= I 

u u 

-y .. 
- -h - y .. 

• 
• 

• 

- -YIl" - y .. 
- -
Y'I - y .. 

• 
• 
• 

- -
Y·" - y .. 

YII - YI' - Y'I +y .. 
• 
• 
• 

Yab -Yu' - Y'b+Y" 

n 

L Yijk. 

k=1 

Yi' =' (bn)-I 

n 

L L Yijk, 
_ -I 
Yij =' n L Yijk 

i= I k = I k=1 

, 

b 

L 
j=1 

n 

L Yijk 

k=1 

Clearly, J.l. + Ti + 'Yj + 11 ij is estimable, and its estimate, which is the fitted value 

for Yijk, is P. + T i + -Yj + ~ ij = Yij' We will leave the computation of some of the 

sums of squares associated with the analysis of this model for the reader as an 
• 

exercIse. 

4. THE DIRECT SUM 

The direct sum is a matrix operator that transfolllls several square matrices into 

one block diagonal matrix with these matrices appearing as the submatrices 

along the diagonal. Recall that a block diagonal matrix is of the fOllll 

Al (0) • • • (0) 
(0) A2 • • • (0) 

diag(A], ... ,A r ) = • • • , 
• • • 
• • • 

(0) (0) • • • Ar 

where Ai is an mi x mi matrix. This block diagonal matrix is said to be the direct 

sum of the matrices A I, ... ,Ar and is sometimes written as . 
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Clearly, the commutative property does not hold for the direct sum since, for 

instance, 

unless AI = A2. Direct sums of a matrix with itself can be expressed as Kro

necker products; that is, if A I = ... = Ar = A, then 

Some of the basic properties of the direct sum are summarized in the fol

lowing theorem. The proofs, which are fairly straightforward, are left to the 

reader. 

Theorem 7.13. Let A I, ... ,Ar be matrices, where A; is Ill; x Ill;. Then 

(a) tr(A I E9 ... E9 Ar ) = tr(A I) + ... + tr(Ar ), 

(b) IAI E9 ... E9 Arl = lAd·· 'IArl, 
. 

(c) if each A; is nonsingular, A = AI E9 '" E9 Ar is also nonsingular and 

KI = A\"I E9 ... E9A;I, 

(d) rank(A I E9 ... E9 Ar) = rank(A d + ... +rank(Ar), 

(e) if the eigenvalues of A; are denoted by A;.!, ... , A;."", the eigenvalues of 

A I E9 ... E9 Ar are given by {Aj,j: i = 1, ... , r;j = I, ... , Ill; } . 

• 

S. THE VEe OPERATOR 

There are situations in which it is useful to transfooll a matrix to a vector that 

has as its elements the elements of the matrix. One such situation in statistics 

involves the study of the distribution of the sample covariance matrix S. It is 

usually more convenient mathematically in distribution theory to express den

sity functions and moments of jointly distributed random variables in teolls of 

the vector with these random variables as its components. Thus, the distribu

tion of the random matrix S is usually given in tenllS of the vector fOlllled by 

stacking columns of S, one underneath the other. 

The operator that transfor1l1s a matrix to a vector is known as the vec oper

ator. If the m x n matrix A has aj as its ith column, then vec(A) is the "111 x I 

vector given by 
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vec(A) = 

Example 7.6. If A is the 2 x 3 matrix given by 

A= 
2 0 
8 1 

then vec(A) is the 6 x 1 vector given by 

vec(A) = 

5 
3 ' 

2 
8 
o 
1 
5 
3 

In this section, we develop some of the basic algebra associated with this 
operator. For instance, if a is m x 1 and b is n x 1, then ab' is m x nand 

vec(ab') = vec([b1a, b2a, ... , bnaD = • =- b ®a 
• 
• 

Our first theorem gives this result and some others that follow directly from 
the definition of the vec operator. 

Theorem 7.14. Let a and b be any two vectors, while A and 8 are two 
matrices of the same size. Then 

(a) vec(a) = vec(a') = a, 

(b) vec(ab') = b ® a, 

• 

(c) vec( aA + (38) = 0: vec(A) + (3 vec(8), where 0: and (3 are scalars. 

The trace of a product of two matrices can be expressed in tenus of the vecs 
of those two matrices. This result is given next. 
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Theorem 7.15. Let A and B both be m x n matrices. Then 

tr(A' B) = (vec(A)}' vec(B) 

Proof. As usual, let a 1. ... ,an denote the columns of A and b J, ... , b" 
denote the columns of B. Then 

n n 

tr(A'B) = L (A 'B);; = L a;b; = [a;, ... ,a~] 
;=1 ;=1 

= (vec(A)}' vec(B) 

• 
• 
• 

o 

A generalization of Theorem 7.14(b) to the situation involving the vec of 
the product of three matrices is our next result. 

Theorem 7.16. Let A, B, and C be matrices of sizes m x n, n x p, and p 
x q, respectively. Then 

vec(ABC) = (C' ® A )vec(B) 

Proof. Note that if b l , ... ,bp are the columns of B, then B can be written 
as 

p 

B = L b;e;, 
j = I 

where ej is the ith column of Ip. Thus, 

p 

vec(ABC) = vec A L bje; C 
j = I 

p 

= L vec(Abje; C) 
j = I 

p p 

= L vec{(Abj)(C'ej)'} = L C'ej ®Ab j 
j = I ;= I 

p 

= (C' ®A) L (ej ®b j ), 
j = I 

where the second last equality follows from Theorem 7.14(b). The result now 
follows since, by again using Theorem 7.14(b), we find that 
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p p 

L (ej®bj)= L vec(bje;) = vec = vec(B) o 
j; I 

Example 7.7. In Chapter 6, we discussed systems of linear equations of 
the fOlln Ax = c, as well as systems of equations of the fOlln AXB ::: C. Using 
the vec operator and Theorem 7.16, this second system of equations can be 
equivalently expressed as 

vec(AXB)::: (B' ®A)vec(X) = vec(C); 

that is, this is an equation of the fOlln Ax = c, where in place of A, x, and c, we 
ha ve (B' ® A), vec(X), and vec( C). As a result, Theorem 6.4, which gives the 
general fOlln of a solution to Ax = c, can be used to prove Theorem 6.5, which 
gives the general fOlln of a solution to AXB = C. The details of this proof are 
left to the reader. 

Theorem 7.15 also can be generalized to a result involving the product of 
more than two matrices. 

Theorem 7.17. Let A, B, C, and D be matrices of sizes m x n, n x p, p x q, 
and q x m, respectively. Then 

tr(ABCD) = {vec(A') }'(D' ® B)vec(C) 

Proof Using Theorem 7.15, it follows that 

tr(ABCD) = tr{A(BCD)} = {vec(A')}' vec(BCD) 

But from the previous theorem, we know that vec(BCD) = (D' ®B)vec(C), and 
so the proof is complete. 0 

The proofs of the following consequences of Theorem 7.17 are left to the 
reader as an exercise. 

Corollary 7.17.1. Let A and C be matrices of sizes m x nand n x m, 
respectively, while Band D are n x n. Then 

• 

(a) tr(ABC) = {vec(A') }'(Im ® B)vec(C), 

(b) treAD' BDC) = {vec(D) rcA' c' ® B)vec(D). 

Other transfollnations of a matrix, A, to a vector may be useful when the 
matI;", A has some special suucture. One such transfollnation for an 111 x 111 

• 
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matrix, denoted by v(A), is defined so as to produce the /11(/11 + I )/2 x I vector 

obtained from vec(A) by deleting from it all of the elements that are above the 

diagonal of A. Thus, if A is a lower triangular matrix, v(A) contains all of the 

elements of A except for the zeros in the upper triangular portion of A. Yet 

another transformation of the m x m matrix A to a vector will be denoted by 

v(A) and yields the m(m - 1)/2 x I vector fOllned from v(A) by deleting from it 

all of the diagonal elements. of A; that is, v(A) is the vector obtained by stacking 

only the portion of the columns of A that are below its diagonal. If A is a skew

symmetric matrix, then A can be reconstructed from v(A) sin(.:e the diagonal 

elements of A must be zero, while aji = -aij if i -J. j. The notation we lise 

here, that is, v(A) and v(A), corresponds to that used by Magnus (1988). Others 

[see, for example, Henderson and Searle (1979)] use the notation vech(A) and 

veck(A). In Section 8, we will discuss some transfollnations which relate the \" 

and v operators to the vec operator. 

Example 7.8. The v and v operators are particularly useful when deal

ing with covariance and correlation matrices. For instance, suppose that we are 

interested in the distribution of the sample covariance matrix or the distribu

tion of the sample correlation matrix computed from a sample of observations 

on three different variables. The resulting sample covariance and correlation 

matrices would be of the form 

so that 

SII SI2 S\3 1 rl2 rl3 

S = S 12 S22 S23 , R= rl2 I rOJ -. 
SI3 S23 S33 rl3 r23 I 

vec(S) = (SII' SI2, S\3, S12, S22, S23, S\3, SB, S33)', 

vec(R) = (1, rl2, r\3, r12, I, r23, r\3, r23, I)' 

, 

Since both S and R are symmetric, there are redundant elements in vec(S) and 

vec(R). The elimination of these results in v(S) and v(R) given by 

v(S) = (SI j, S12, SI3, S22, S23, S33)', 

v(R) = (I, rl2, r\3, 1, r23, 1)' 

Finally, by eliminating the nonrandom 1 s from v(R), we obtain 

. which contains all of the random variables in R. 
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6. THE HADAMARD PRODUCT 

A matrix operator that is a little more obscure than our other matrix operators, 

but one which is finding increasing applications in statistics, is known as the 

Hadamard product. This operator, which we will denote by the symbol 0, sim

ply perfolllls the elementwise multiplication of two matrices; that is, if A and 

B are each m x n, then 

allb ll ••• alnb1n 

A0B= • • 
• • 
• • 

am1bml • • • amnbmn 

Clearly, this operation is only defined if the two matrices involved are of the 
• 

same size. 

Example 7.9. If A and B are the 2 x 3 matrices given by 

A= 

then 

1 4 
o 2 

2 
3 ' 

B= 
3 1 
6 5 

346 
A 0 B = 0 10 3 

3 
1 ' 

One of the situations in which the Hadamard product finds application in 

statistics is in expressions for the covariance structure of certain functions of. 

the sample covariance and sample correlation matrices. We will see examples 

of this later in Section 9.7. In this section, we will investigate some of the 

properties of this operator. For a more complete treatment, along with some 

other examples of applications of the operator in statistics, the reader is referred 

to Styan (1973) and Hom and Johnson (1991). We begin with some elementary 

properties that follow directly from the definition of the Hadamard product. 

Theorem 7.18. Let A, B, and C be m x n matt ices. Then 

(a) A 0 B = B 0 A, 

(b) (A 0 B) 0 C = A 0 (B 0 C), 

(c) (A + B) 0 C = A 0 C + B 0 C, 

(d) (A 0B)' = A' 08', 

(e) A 0 (0) = (0), 

/ 

. , 

• 
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(f) A 01ml~ = A, 

(g) A 01m = DA = diag(all,"" amm ), if m = n, 
(h) C(A 0B) = (CA) 0B = A o (CB) and (A 0 B)C = (AC) 0B = A 0 (BC), 

if m = n and C is diagonal, 

(i) ab' 0 cd' = (a 0 c )(b 0 d)', where a and c are m x 1 vectors and band 
d are n x 1 vectors. 

We will now show how A 0 B is related to the Kronecker product A ® B; 
specifically, A 0B is a submatrix of A ®B. To see this, define the mX m 2 matrix 
i'm as 

m 

i'm = 
i = I 

where ei,m is the ith column of the identity matrix 1m. Note that if A and Bare m 
x n, then i' m(A ®B)i'~ fonus the m x n submatrix of the m2 x n2 matrix A ® B, 
containing rows 1, m + 2, 2m + 3, ... ,m2 and columns I, n + 2, 2n + 3, ... , n2 . 

Taking a closer look at this sub matrix, we find that 

m n;;.., 

i'm(A®B)i'~ = ei,m(ei,m ®ei,m)'(A ®B)(ej,n ®ej,n)ej,n 
i=1 j=1 
m n 

= L L ei,m(e;,mAej,n ® e;,mBej,n)ej,n 
, 

i= I j= I 
m n 

= L L aijbijei,mej,n = A 0 B 
i=1 j=1 

Although the rank of A 0 B is not detelluined, in general, by the rank of A 
and the rank of B, we do have the following bound, 

Theorem 7.19. Let A and B be III x II matrices, Then 

rank(A 0 B) ~ rank(A) rank(B) 

Proof Let rA = rank(A) and rB = rank(B). It follows from the singular value 
decomposition theorem (Theorem 4.1 and Corollary 4.1.1) that there exist III x 
rA and n x rA matrices U = (UIo"" urA ) and V = (VI, ... , v rA ), and mx rB and 
nX rB matrices W = (WI,.'" wrB ) and X = (XI,." ,xrB ), such that A = UV' and 
B= WX'. Then 
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'A 'B , , 
A 0 B = U V' 0 W X' = Ui V i 0 WjXj 

i 0 1 jol 

'A 'B 'A 'B 

- (ui v ;0Wj Xi) = -
; 0 1 j 1 i 0 1 jol 

where we have used Theorem 7.18(c) and (i). The result follows since we have 

now expressed A 0 B as the sum of r ArB matrices, each having rank of at most 

one. 0 

Example 7.10. While Theorem 7.19 gives an upper bound for rank(A 0B) 

in tellBS of rank(A) and rank(B), there is no corresponding lower bound. In 

other words, it is possible that both A and B have full rank while A 0 B has 

rank equal to O. For instance, each of the matrices 

010 
A= I 0 0 , 

001 

100 
B= 0 0 1 

010 

clearly has rank 3, yet A 0 B has rank 0 since A 0 B = (0). 

The following result shows that a bilinear fOlm in a Hadamard product of 

two matrices may be written as a trace. 

Theorem 7.20. Let A and B be m x n matrices, and let x and y be m x 1 

and n x 1 vectors, respectively. Then 

(a) 1~(A 0 B)ln = tr(AB') 

(b) x' (A 0 B)y = trCDx ADy B'), 

where Dx = diag(xl, ., ., XIII) and similarly for Dr 

Proof (a) follows since 

m " m ,..;..," 

1~ (A 0 B)I" = a·· b·· IJ IJ 

111 It I 

-- "-:0 (A);.(B').; = L (AE);; = tr(AB') 

;=1 ;=1 

• 
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To prove (b), note that x = Dx1m and y = Dyl", so that by using Theorem 

7.20(a) and Theorem 7.18(h), we find that 

x' (A 0 B)y = 1~ Dx (A 0 B)Dy 1" = 1;" (DxA 0 BDy)l" = tr(Dx AD)" 8') 0 

The following result can be helpful in determining whether the Hadamard 

product of two symmetric matrices is nonnegative definite or positive definite. 

Theorem 7.21. Let A and B each be an m x m symmetric matrix. Then 

(a) A 0 B is nonnegative definite if A and B are nonnegative definite, 

(b) A 0 B is positive definite if A and B are positive definite. 

. Proof Clearly, if A and B are symmetric, then so also is A 0 B. Let B = 

XAX' be the spectral decomposition of B so that bij = "L;AkXjkXjb where Ak ~ 0 

for all k since B is nonnegative definite. Then we find that for any m x 1 vector 

y, 

m m m m In 

y'(A 0 B)y = aijbijYi Yj = 
j = I j=1 k=1 i = I j=1 

In 

- Ak(y 0xk)'A(y 0xk), - (7.11) 

k = I 

where Xk represents the kth column of X. Since A is nonnegative definite, the 

sum in (7.11) must be nonnegative, and so A 0 B is also nonnegative definite. 

This proves (a). Now if A is positive definite, then (7.11) will be positive for 

any y ;J 0 that satisfies y 0 Xk ;J 0 for at least one k for which Ak > O. But if 

B is also positive definite, then Ak > 0 for all k and if y has its hth component 

Yh ;J 0, then y 0Xk = 0 for all k only if the hth row of X has a1l zeros. This is 

not possible since X is nonsingular. Consequently, there is no y -J. 0 for which 

(7.11) equals zero and so (b) follows. 0 

Theorem 7 .21(b) gives a sufficient condition for the matrix A 0 B to be pos

itive definite. The foUowing example demonstrates that this condition is not 

necessary. 

Example 7.11. Consider the 2 x 2 matrices 

A= I 
1 

I 
1 ' 

B= 4 2 
2 2 
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The matrix B is positive definite since, for instance, B = VV', where 

V= 
2 0 
1 1 

and rank(V) = 2. Clearly, A 0 B is also positive definite since A 0 B = B. 

However, A is not positive definite since rank(A) = 1. 

A sufficient condition for the positive definiteness of A 0 B, weaker than that 

given in Theorem 7.21(b), is given in our next theorem. 

Theorem 7.22. Let A and B each be an m x m symmetric matrix. If B is 

positive definite and A is nonnegative definite with positive diagonal elements, 

then A 0 B is positive definite. 

Proof We need to show that for any x i O,x'(A 0 B)x > O. Since B is 

positive definite, there exists a nonsingular matrix T such that B = TT'. It 

follows then from Theorem 7.20(b) that 

(7.12) 

Since A is nonnegative definite, so is DrADr. In addition, if x ;J 0, and A has no 

diagonal elements equal to zero, then DrADr ;J (0); that is, D"AD" has rank of at 

least one, and so it has at least one positive eigenvalue. Since T is nonsingular, 

rank(DrADr ) = rank(T'DrADr T), and so T'DrADrT is also nonnegative def

inite with at least one positive eigenvalue. The result now follows since (7.12) 

implies that x' (A 0 B'p: is the sum of the eigenvalues of T' D"AD" T. 0 
• 

The following result, which gives a relationship between the detellilinant of 

a positive definite matrix and its diagonal elements, is commonly known as the 

Hadamard inequality. 

Theorem 7.23. If A is an m X m positive definite matrix, then 

m 

IA I ::; au, • 

with equality if and only if A is a diagonal matrix. 

Proof Our proof is by induction. If m = 2, then 
• 

• 
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with equality if and only if al2 = 0, and so the result clearly holds when m = 2. 
For general m, use the cofactor expansion fonnula for the detelluinant of A to 
obtain 

a22 a23 • • • 

a32 a33 • • • 

IAI = all • • 
• • 
• • 

a m2 a m3 • • • 

o a' 
=aIlIAI!+ a AI' 

a2m 

a3m 
• 
• 
• 

a mm 

0 al2 • • • aim 

a21 a22 • • • a2m 
+ • • • 

• • • 
• • • 

ami a m2 • • • a mm 

(7.13) 

where Al is the (m - 1) x (m - I) submatrix of A fOllned by deleting the 
first row and column of A and a' = (aI2,"" aim)' Since A is positive definite, 
Al also must be positive definite. Consequently, we can use Theorem 7.4(a) to 
simplify the second telln in the right-hand side of (7.13), leading to the equation 

• 

Since AI and All are positive definite, it follows that 

with equality if and only if a = O. Thus, the result holds for the m x m matrix 
A if the result holds for the (m - I) x (m - I) matrix A I, and so our induction 
proof is complete. 0 

Corollary 7.23.1. Let B be an m X m nonsingular matrix. Then 

m m 

IBI2 ~ bt ' 
i= I j= I 

with equality if and only if the rows of B are orthogonal. 

Proof Since B is nonsingular, the matrix A = BB' is positive definite. Note 
that 

IAI = IB8'1 = IBII8'1 = IBI2 

and 
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m 

a;; = (BB');; =- (B);.(B').; = (B);.(8);. = 
j=1 

and so the result follows immediately from Theorem 7.23. o 

Theorem 7.23 also holds for positive semidefinite matrices except that in 

this case A need not be diagonal for equality since one or more of its diagonal 

elements may equal zero. Likewise, Corollary 7.23.1 holds for singular matrices 

except for the statement concerning equality. 

Hadamard's inequality given in Theorem 7.23 can be expressed, using the 

Hadamard product, as 

IA I (7.14) 

; = I 

where the tel m (TI 1) corresponds to the product of the diagonal elements of 

11/1' Theorem 7.25 will show that the inequality (7.14) holds for other matrices 

besides the identity. But first we will need the following result. 

Theorem 7.24. Let A be an III x III positive definite matrix and define 

An .. A 

where 0: = IAI/IAII and AI is the (m - 1) x (m - 1) submatrix of A fOllned by 

deleting its first row and column. Then AI> is nonnegati ve definite. 

Proof Let A be partitioned as 

a 
, 

and note that since A is positive definite, so is A I. Thus, using Theorem 7.4, 

we find that 

and so 0: = IAI/IAII = (all - a' Alia). Consequently, Aa may be written as 
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'A- I _ a I a 
- a 

. 

_ (all - a'Alla) 0' 

a' --

o (0) 

'A- I a I 

111/ - I 
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Since A I is positive definite, there exists an (m - 1) x (m - I) matrix T such 
that Al = TT'. If we let V' = T'[Aila Im- 11, then AI> = VV', and so A" is 
nonnegative definite. ::J 

Theorem 7.25. Let A and B be m x m nonnegative definite matrices. Then 

11/ 

IA I bii ~ IA 0 BI 
i = I 

Proof The result follows immediately if A is singular since IA I = 0, while 
IA 0 BI ~ 0 is guarlmteed by Theorem 7.21. For the case in which A is positive 
definite, we will prove the result by induction. The result holds when /11 " 2. 
since in this case 

. 

IA 0 BI = 
, 

= alla22bllbn - (aI2 b I2)-

1 1 , 

= (alla22 - ai2)b ll b22 + ai2(b ll b22 - bill 

= IAlb ll b22 + af21BI ~ IAlb ll b22 

To prove the result for general m, assume that it holds for m - I, so that 

m 

lAd (7.15) 
i= 2 

where A I and BI are the submatrices of A and B fOllned by deleting their first 
row and first column. From Theorem 7.24 we know that (A - ael e~) is nonneg
ative definite, where a = IAI/IAII. Thus, by using Theorem 7.21(a), Theorem 
7 .18( c), and the expansion fOllnula for deteuninants, we find that 

o ~ I(A - aele~)OBI = IA OB- aele~ OBI = IA OB - abllele~1 

= IA (:) BI- o:blll(A (:) B)II, 

where (A 0 B)I denotes the (m - I) x (m - I) submatrix of A 0 B formed by 
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deleting its first row and column. But (A 0 B) I = A I 0 B I so that the inequality 

above, along with (7.15) and the identity alAI I = IAI, implies that 

m m 

hii = IAI hii 
;= 2 ; = I 

The proof is now complete. o 

Our final results on Hadamard products involve their eigenvalues. First we 

obtain bounds for each eigenvalue of the matrix A 0 B when A and B are sym

metric. 

Theorem 7.26. Let A and B be m x m symmetric matrices. If B is nonneg

ative definite, then the ith largest eigenvalue of A 0 B satisfies 

A11I (A) min bii ~ Ai (A 0 B) ~ AI (A) 
I Si~m 

max b·· II 
I S;Sm 

. 

Proof Since B is nonnegative definite there exists an m X m matrix T such 

that B = TT'. Let tj be the jth column of T, while tij denotes the (i,j)th element 

of T. For any m x 1 vector, x -:/. 0, we find that 

m m m m m 

x'(A0B)x = L aijbijxiXj = aij tihtjh XiXj 
. 

; = I j=1 i = I j=1 h= I 

m m m m 

L (Xi til,)aij (Xj tjh) = L (X 0tdA(x0th) --
1r=1 i=1 j=1 h=1 

m m m 

~ AI(A) (X 0td(x 0th) = AI(A) L 
h=1 h=1 j=1 

m m 

j=1 h=1 

~AI(A){max bii}x'x, 
I SiSm 

where the first inequality arises from the relation 

• 

m 

j=1 

(7.16) 

" , 

• 

, 

. . -i , 
• · , 
" 
" 

" 1 • 

" , 
", 
" 

" 
,~ 
" 

" 
" 
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y'Ay 
AI(A) = max 

y'y'O y'y 

275 

given in Theorem 3.15. Using this same relationship for A 0 B, along with 
(7.l6), we find that for any i, 1 S; i S; m, 

which is the required upper bound on Ai (A 0 B). The lower bound is obtained 
in a similar fashion by using the identity 

. y'Ay 
Am(A) = mm , 

y'y.O Y Y 
o 

Our final result provides an alternative lower bound for the eigenvalues of 
(A 0 B). The derivation of this bound will make use of the following result. 

Theorem 7.27. Let A be an m X m positive definite matrix. Then the matrix 
(A 0 A -I) - 1m is nonnegative definite. 

Proof Let :L?:.I Ai Xi X; be the spectral decomposition of A so that A-I = 

:L~= 1 AjlxiX;. Then 

m m m 

-- L AiXiX; 0 L Aj'XjXi - L XiX; 0 
i= 1 j= 1 i= 1 

m m 

= L L (AiAjl - l)(xix ; 0Xj Xi) 
i=1 j=1 

--
iij 

--
i<j 

where X is the m x m(m - 1 )/2 matrix having (Xi 0 Xj), i < j as its columns, 
while D is the diagonal matrix with its corresponding diagonal elements given 
by (AiAjl + AjAjl - 2), i <j. Since A is positive definite, Ai > 0 for all i, and 
so 
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Thus, D is nonnegative definite and consequently so is XDX'. o 

Theorem 7.28. Let A and B be m x m nonnegative definite matrices. Then 

Proof Due to Theorem 7.21, A 0 B is nonnegative definite, and so the 

inequality is obvious if either A or B is singular since in this case AB will have 

a zero eigenvalue. Suppose that A and B are positive definite, and let T be any 

matrix such that TT' = B. Note that TAT' - Am(AB)I", is nonnegative definite 

since its ith largest eigenvalues is Aj (TA T') - A",(AB), and A",(AB) = A",(TA T'). 

As a result, 

is also nonnegative definite. Thus, (A - A",(AB)B- I ) 0 B is nonnegative definite 

due to Theorem 7.21, while Am(ABH (B- 1 0 B) - 1m} is nonnegative definite due 

to Theorem 7.27, and so the sum of these two matrices, which is given by . 

{(A - Am(AB)B- I ) 0 B} + A",(AB){(B- I OB) - 1m} 

= A 0 B - A",(AB)(B· I 0 B) + AIII(AB)(B- I 0 B) - Am(AB)lm 

= A 0 B - A",(AB)lm 

is also nonnegative definite. Consequently, for any x, 

x'(A 0 B)x ~ Am (AB)x'x, 

and so the result follows from Theorem 3.15. 

7. THE COMMUTATION MATRIX 

o 

An /11 X m pellnutation matrix was defined in Section 1. \0 to be any matrix 

that can be obtained from 1m by pellnuting its columns. In this section, we dis

cuss a special class of pellllutation matrices, known as commutation matrices, 

which are very useful when computing the moments of the multivariate nor

mal and related distributions. We will establish some of the basic properties of 

commutation matrices. A more complete treatment of this subject can be found 

in Magnus and Neudecker (1979) and Magnus (1988). 
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Definition 7.1. Let Hij be the m x n matrix that has its only nonzero ele

ment, a one, in the (i,j)th position. Then the mn x mn commutation matrix. 

denoted by Kmn , is given by 

m II 

Kmn = L (Hij ® H;j) (7.17) 

i=1 j=1 

The matrix Hij can be conveniently expressed in telIl1S of columns from the 

identity matrices 1m and III' If e;.111 is the ith column of 1m and ej,1I is the jth 

column of In, then Hij = e;,mej,n' 
Note that, in general, there is more than one commutation matrix of order 

mn, For example, for mn = 6, we have the four commutation matrices. K 10' 

K23, K32, and K 61 . Using (7.17), it is easy to verify that K lo = Khl = Ih. while 

I 0 0 0 0 0 

0 0 I 0 0 0 

K23 = 
0 0 0 0 I 0 

0 1 0 0 0 0 
, 

0 0 0 1 0 0 

0 0 0 0 0 1 

1 0 0 0 0 0 

0 0 0 1 0 0 

K32 = 
0 1 0 0 0 0 

0 0 0 0 1 0 

0 0 1 0 0 0 
0 0 0 0 0 1 

The fact that K 32 =. K;3 is not a coincidence, since this is a general property 

that follows from the definition of Kmn. 

Theorem 7.29. The commutation matrix satisfies the properties 

(a) Kml:: Kim:: 1m, 

(b) K~n = Knm , 

(c) K~:,::KII/II' 

Proof When H;j is m x 1, then Hij = e;,/II and so 

/II /II 

Kml = L (e;,/ll ® e;,m) = 1m = L (e;,m ® e;,m) = Kim, 

;=1 ;=1 

• 



, 
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proving (a), To prove (b), note that 

m II m 

K ;"" - (Hi) ®H;)' = -
; = I j = I ; = I 

Finally. (c) follows since 

H' H ' , 
.. kl=eJ'ne, ekmel = 
'J . I, m. ,n 

and so 

m n m n 

--
;=1 j=1 k=1 1=1 

m n 

--
;=1 j=1 

m 

--
;= I 

n 

j=1 

n 

j=1 

, 

if j = 1, 
if iiI, 

ifi = k, 
ifi i k, 

n 

(Hkl ® H~/)' 
1 = 1 

, 

Commutation matrices have important relationships with the vec operator 

and the Kronecker product. For an m X n matrix A, the two vectors vec(A) and 

vec(A') are related since they contain the same elements arranged in a different 

order; that is, an appropriate reordering of the elements of vec(A) will produce 

vec(A'), The commutation matrix Kmn is the matrix multiplier which transforms 

vec(A) to vec(A'), 

Theorem 7.30. For any m X n matrix A, 

Kmll vec(A) = vec(A') 
, 

, 

, 

, 



• 
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Proof Clearly, since aijH;j is the n x m matrix whose only nonzero ele
ment, aij, is in the (j, i)th position, we have 

m n m n 

A'= aijH;j = (e;,mAej,n )ej,1I e;, m 

;; 1 j;1 ;; 1 j;1 

m n m n 

- L ej,n(e;,mAej,n)e;,m = (ej,1I e;, m )A(ej, n e;, m ) -
;; 1 j;1 ;; 1 j;1 

m ;;.,n 

=L H'·Alt· .) .) 

;;1 j;1 

The result now follows by taking the vec of both sides and using Theorem 7.16, 
• SInce 

vec(A') = vec 
m n 

~ ~ H'·Alt· £..J £..J .) .) 
;;1 j;1 

m n 

m n 

= L L vec(H;jAF;j) 
;; 1 j; 1 

= L L (Hij ®H;j)vec(A) = Kmnvec(A) 
;;1 j:1 

D 

The term commutation arises from the fact that commutation matrices pro
vide the factors that allow a Kronecker product to commute. This property is 
summarized in Theorem 7.31. 

Theorem 7.31. Let A be an m X n matrix, B be a p x q matrix, x be an m x I 
vector, and Y be a p x I vector. Then 

(a) Kpm(A ® B) = (B ® A)Kqn , 

(b) Kpm(A ® B)Knq = B ® A, 
• 

(c) Kpm(A®y)=y®A, 

(d) Kmp(Y ®A) = A ®y, 

(e) Kpm(x®y)=y®x, 

(f) tr{(B ® A)Kmn } = tr(BA), if p = nand q = m. 

Proof If X is a q x n matrix, then by using Theorems 7.16 and 7.30, we 
find that 
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KplII(A ® 8)vec(X) = KplII vec(BXA') = vec {(BXA')'} 

= vec(AX' B') = (B ® A)vec(X') 

- (8 ® A)K',II vec(X) 

Thus, if X is chosen so that vec(X) equals the ith column of Iqll , we observe 

that the ith column of KplII(A ® B) must be the same as the ith column of 

(B®A)Kqn , so (a) follows. PostInultiplying (a) by Knq and then using Theorem 

7.29(c) yields (b). Properties (c)-(e) follow from (a) and Theorem 7.29(a) since 

Kpm(A ® y) = (y ® A)K III = Y ® A, 

KIIIP(y ®A) = (A ®y)KIII = A ®y, 

Kpm(x®y) = (y®x)K II =y®x 

To prove (0, use the definition of the commutation matrix to get 

m II 

tr{(B ®A)Kmll } = L tr{(B ® A)(Hij ® H;j)} 

;=1 j=1 

m II 

= L L {tr(BH;j)}{ tr(Aff;j)} 

;=1 j=1 

In 11 m n 

= L w(ej.nBe;.m)(e;.mAej,n)= L bj;aij 

;=1 j=1 ;=1 j=1 

" " 
= L (B)j.(Ah = L (BA)jj = tr(BA) 

j=1 j=1 

o 

The commutation matrix also can be utilized to obtain a relationship between 

the vec of a Kronecker product and the Kronecker product of the corresponding 

vecs. 

Theorem 7.32. Let A be an m X n matrix and B be a p x q matrix. Then 

vec(A ® B) = (In ® Kqm ® Ip){vec(A) ® vec(B)} 

Proof Our proof follows that given by Magnus (1988). Let al, ... ,an be 

the columns of A and b l , ... ,bq the columns of B. Then since A and B can be 

written as 
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we have 

II 

A = L ale;,,,, 
i = I 

• 

n q. 

q 

B = L bie;.", 
j=1 

vec(A ® B) = vec(aj e;, II ® bj ej, q) 

i=1 j=1 

II 

-- vec{(ai ® bj )(e;, II ® ej.q)} 
~ 

i=1 j=1 

n 

--

II q 

--
i=1 j=1 

II 

=L 
i=1 j=1 

(ei,,, ® ai) 
~ 

" 
= (In ® Kqm ® Ip) L vec(aie;,,,) 

i ~ 1 

= (In ® Kqm ® Ip ){ vec(A) ® vec(B)} 

281 

-

Our next theorem establishes some results for the special commutation 

matrix Kmm. Corresponding results for the general commutation matrix K",,, 

can be found in Magnus and Neudecker (1979) or Magnus (1988). 

Theorem 7.33. The commutation matrix K""" has the eigenvalue + 1 

repeated ~m(m + 1) times and the eigenvalue -1 repeated tlll(1II - I) times. 

In addition. 

tr(K) d I Km,n I = (-1 )111(111 - 1)/".2 
mm = m an 
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• 

Proof Since Kmm is real and symmetric, we know from Theorem 3.8 that 

its eigenvalues are also real. Further, since Kmm is orthogonal, the square of 
each eigenvalue must be 1, so it has eigenvalues +1 and -1 only. Let p be 

the number of eigenvalues equal to -1, implying that m2 - p is the number 

of eigenvalues equal to +1. Since the trace equals the sum of the eigenvalues, 

we must have tr(Kmm) = p( -1) + (m2 - p)(I) = m2 - 2p. But by using basic 

properties of the trace, we also find that 

m m m m 

tr(Kmm ) = tr (e;e) ® eje;) 

;= 1 j= 1 ;=1 j=1 

m m m m 

-- (e~ed ... 
;=1 j=1 ;=1 j=1 

m 

-- I '" m 
; = 1 

Evidently, m2 - 2p = m, so that p = ~m(m - l) as claimed. Finally, the formula 

given for the determinant follows directly from the fact that the determinant 

equals the product of the eigenvalues. 0 

We will see later that the commutation matrix Kmm appears in some important 

matrix moment formulas through the term Nm = ~(Im2 + Kmm). Consequently, 

we will establish some basic properties of Nm • 

Theorem 7.34. Let N m = ~ (1m2 + K mm), and let A and B be m X m matrices .. 

Then 

(a) Nm = N~ = N~, 

(b) NmKmm = Nm = KmmNm, 

(c) Nm vec(A) = ~vec(A +A'), 

(d) Nm(A ® B)Nm = Nm(B ® A)Nm. 

• 

Proof The symmetry of Nm follows from the symmetry of 1m2 and Kmm, 

while • 

~ I 2 1 
NI1I =: 4" (I/1I~ + Kmm) = 4 

since K ;,,,,, =: I follows from the fact that K;;'~ = Kmm. Similarly, (b) follows 

from the fact that K~,m =: ImL Part (c) is an immediate consequence of 

• 
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1m2 vec(A) = vec(A), Kmm vec(A) = vec(A') 

Finally, to prove (d), note that, by using Theorem 7.31(b), and Theorem 7.34(b), 

The proof of our final result will be left to the reader as an exercise. 

Theorem 7.35. Let A and B be m x m matrices such that A = BB'. Then 

(a) Nm(B ® B)Nm = (B ® B)Nm = Nm (B ® B), 

(b) (B ® B)Nm (8' ® 8') = Nm (A ® A). 

8. SOME OTHER MATRICES ASSOCIATED WITH '1'011: VEC 
OPERATOR 

In this section, we introduce several other matrices that, like the commutation 
matrix, have important relationships with the vec operator. However, each of 
the matrices we discuss here is useful in working with vec(A) when the matrix 
A is square and has some particular structure. A more thorough discussion of 
this and other related material can be found in Magnus (1988). 

When the m x m matrix A is symmetric, then vec(A) contains redundant 
elements since aij = aji for i oJ. j. For this reason, we previously defined v(A) 
to be the m(m + 1)/2 x I vector fonned by stacking the columns of the lower 
triangular portion of A. The matrix that transforlUs v(A) into vec(A) is called 
the duplication matrix; that is, if we denote this duplication matrix by Dm , then 
for any m x m symmetric matrix A, 

Dmv(A) = vec(A) (7.18) 

For instance, the duplication matrix D3 is given by 

I 0 0 0 0 0 
0 I 0 0 0 0 
0 0 I 0 0 0 
0 I 0 0 0 0 

D3= 0 0 0 I 0 0 
0 0 0 0 I 0 
0 0 I 0 0 0 
0 0 0 0 I 0 
0 0 0 0 0 I 
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For an explicit expression for the m2 x m(m + I )/2 duplication matrix Dm , refer 

to Magnus (1988) or Problem 7.54. 

Some properties of the duplication matrix and its Moore-Penrose inverse are 

summarized in Theorem 7.36. 

Theorem 7.36. Let D", be the m2 x m(m + 1)/2 duplication matrix and D; 

its Moore-Penrose inverse. Then 

(a) rank(D",) '" m(m + 1 )/2. 

(b) D:n = (D~ Dm )-1 D;,I' 

(c) D~,Dm = Im(m + 1 )/2, 

(d) D7n vec(A) = yeA) for every m x m symmetric matrix A. 

Proof Clearly, for every m(m + I )/2 x I vector x there exists an m x m 

symmetric matrix A such that x'" yeA). But if for some symmetric A, Dmv(A) = 

0, then from the definition of Dm , vec(A) = 0, which then implies that v(A) = O. 

Thus, Dmx = 0 only if x '" 0, and so Dm has full column rank. Parts (b) and 

(c) follow immediately from (a) and Theorem 5.3, while (d) is obtained by 

premultiplying (7.18) by D:', and then using (c). 0 

The duplication matrix and its Moore-Penrose inverse have some important 

relationships with Km", and Nm. 

Theorem 7.37. Let Dm be the m2 x m(m + 1)/2 duplication matrix and D; 

its Moore-Penrose inverse. Then 

Ca) KmmDm = NmDm = Dm, 

(h) /)~ K",,,, = D~, NII/ . D~" 

(c) DII/D;',"'N",. 

Proof For any m x m symmetric matrix A, it follows that 

KmmDm yeA) '" Kmm vec(A) '" vec(A') '" vec(A) = Dm yeA) 

Similarly, we have 

1 I 

N", Dm yeA) = N", vec(A) = 2 vec(A + A ) = vec(A) = D", yeA) 

(7.19) 

(7.20) 

Since {v(A): A 1/1 X III and A' = A} is all of I/I(m + I )/2-dimensional space, (7.19) 

and (7.20) establish (a). To prove (b), take the transpose of (a), premultiply all 

three sides by CD;" D", r I, and then use Theorem 7.36(b). We will prove (c) by 

showing that for any m X m matrix A, 
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DmD;" vec(A) = Nm vec(A) 

If we define A* = ! (A + A'), then A* is symmetric and 

1 1 
N m vec(A) = 2 (1m2 + Kmm )vec(A) = 2 (vec(A) + vec(A')} 

= vec(A*) 

Using this and (b), we find that 

DmD; vec(A) = DmD~, Nm vec(A) = D",D~, vec(A*) 

= Dm v(A*) = vec(A*) = N",vec(A), 

and so the proof is complete. 

We will need the following result in the next chapter 

285 

...., 

....J 

Theorem 7.38. If A is an m X m nonsingular matrix, then D;,,(A ® A)Dm is 

nonsingular and its inverse is given by D;"(A -I ® A -I )D~: . 

Proof To prove the result we simply show that the product of the two 

matrices given above yields Im(m+ 1)/2. Using Theorem 7.35(a), Theorem 7.36(c). 

and Theorem 7.37(a) and (c), we have 

D~ (A ® A )Dm D;"(A -I ® A -I )D:;; 

= D' (A ® A)N (A -I ®A -I)D+' 
m 111 In 

= D~Nm (A ® A)(A- 1 ® A-1)D:;; = D;" NmD~; 

= (N m Dm )' D:'; = D;n D~; == (D~, Dn,)' == Im(III + I) /2 o 

We next consider the situation in which the m x m matrix A is lower trian

gular. In this case, the elements of vec(A) are identical to those of v(A) except 

that vec(A) has some additional zeros. We will denote by L;" the m2x m(m+ 1 )/2 

matrix which transfolills v(A) into vec(A); that is, L;" satisfies 

L~ v(A) == vec(A) (7.21 ) 
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Thus, for instance, for m = 3, 

I 0 0 0 0 0 
0 I 0 0 0 0 
0 0 I 0 0 0 
0 0 0 0 0 0 , 

L3 = 0 0 0 I 0 0 
0 0 0 0 I 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 1 

Note that L~ can be obtained from Dm by replacing m(m - 1)/2 of the rows of 
Dm by rows of zeros. The following properties of the matrix L", can be proven 
directly from its definition given in (7,21). 

Theorem 7.39. The m(m + 1)/2 x m2 matrix Lm satisfies 

(a) rank(Lm)= m(m+ 1)/2, 

(b) LIII L;n = IIII(m + 1 )/2, 

(c) L~, = L~, 

(d) L",vec(A) = v(A), for every m x m matrix A. 
• 

Proof Note that if A is lower triangular, then vec(A)'vec(A) = v(A),v(A) 
and so (7.21) implies 

v(A)' LmL~ yeA) - v(A)'v(A) = v(A)'(LmL~ - Im(m+ 1)/2)v(A) = 0 

for all lower triangular matrices A. But this can be true only if (b) holds since 
{yeA): A m x m and lower triangular} = Rm(m+ 1)/2. Part (a) follows immediately 
from (b), as does (c) since L:;' = (L~LmtIL~. To prove (d), note that every 
matrix A can be written A = Ai, + Au, where Ai, is lower triangular, and Au is 
upper triangular with each diagonal element equal to zero. Clearly, 

• 

,. , o = vec(Ad vec(Au) = v(AL,) L,;, vec(Au ), 

and since, for fixed Au, this must hold for all choices of the lower triangUlar 
matrix Ai" it follows that 

Lm vec(Au) = 0 

. , 

• 

• 



, 
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Thus, using this along with (7.21), (b), and the fact that v(Ad = v(A), we have 

. 

We see from property (d) in Theorem 7.39 that Lm is the matrix that elimi-
nates the zeros in vec(A) coming from the upper triangular portion of A so as 
to yield v(A). For this reason, Lin is sometimes referred to as the elimination 
matrix. Our next result gives some relationships between Lm and the matrices 
Dm and Nm • We will leave the proofs of these results as an exercise for the 
reader. 

Theorem 7.40. The elimination matrix Lm satisfies 

(a) LmDm=Im(m+I)/2, 

(b) DmLmNm = Nm, 

(c) D~ = LmNm. 

The last matrix related to vec(A) that we will discuss is another sort of elimi
nation matrix. Suppose now that the m x m matrix A is a strictly lower triangular 
matrix; that is, it is lower triangular and all of its diagonal elements are zero. -
In this case, v(A) contains all of the relevant elements of A. We denote by L;" 
the m2 X m(m - 1)/2 matrix that transforms v(A) into vec(A); that is, 

Thus, for m = 3 we have 

-

L~ v(A) = vec(A) 

o 0 0 0 0 0 0 
o 000 0 0 

o I 
001 
000 

• 

o 0 I o 0 o 

Since Lm is very similar to Lm, some of its basic properties parallel those of 
Lm. For instance, the following results are analogous to those in Theorem 7.39. 
The proofs, which we omit, are similar to those of Theorem 7.39. 

Theorem 7.41. The m(m - 1)/2 x m2 matrix Lm satisfies 

-
(a) rank(Lm) = m(m - 1)/2, - -
(b) LmL~ = Im(m - 1)/2, - -
(c) L~ = L~, 

-(d) Lm vec(A) = v(A), for every m x m matrix A. 
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-
Our final theorem gives some relationships between Lm, Lnh Dm, Kmm and 

N",. The proof is left to the reader as an exercise. 

Theorem 7.42. The m(m - I )/2 x m2 matrix [III satisfies. 

- -
(a) LIIIKmmL~ = (0), 

-
(b) L", Kmm L~ = (0), - -
(c) L", D", = L", L;'" - -
(d) L;nLmL~=L~, - -
(e) D", Lm L~ = 2Nm L;n' - -
(f) LIIIL~LmL~ = Im(m-I)/2. 

9. NONNEGATIVE MATRICES 

The topic of this section, nonnegati ve and positi ve matrices, should not be con

fused with nonnegative definite and positive definite matrices, which we have 

discussed earlier on several occasions. An m x n matrix A is a nonnegative 

matrix, indicated by A ~ (0), if each element of A is nonnegative. Similarly, A 

is a positive matrix, indicated by A > (0), if each element of A is positive. We 

will write A ~ B and A> B to mean tbat A-B ~ (0) and A-B > (0), respectively. 

Any matrix A can be transfoIlIled to a nonnegative matrix by replacing each 

of its elements by its absolute value. This will be denoted by abs(A); that is, if 

A is an m x n matrix, then abs(A) is also an m x n matrix with (i,j)th element 

gi ven by 1 aij I. We will investigate some of the properties of nonnegative square 

matrices as well as indicate some of their applications in stochastic processes. 

For a more exhaustive coverage of this topic the reader is refened to the texts 

on nonnegative matrices by Belman and Plemmons (1994), Minc (988), and 

Seneta ( 1973), as well as the books by Gantmacher (1959) and Hom and John

son (1985). Most of the proofs that we present here follow along the lines of 

the derivations, based on matrix nOllns, given in Hom and Johnson (1985). 

We begin with some results regarding the spectral radius of nonnegative and 

positive matrices. 

Theorem 7.43. Let A be an m x m matrix and x be an m x 1 vector. If 

A ~ (0) and x > 0, then 

• mm 
I ;5;iSm 

m 

max 
l'5:i'5:m 

m 

(7.22) 

j=1 

(7.23) 

• 
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with similar inequalities holding when minimizing and maximizing over 

columns instead of rows. 

Proof Let 

1/1 

• 

a= mm aij 
1 <;,is,m -

j;1 

and define the m x m matrix B to have (i, h)th element 

-I 

if a > 0 and bil, = 0 if a = O. Note that /lB/I~ = a and bi/, ::;; ai/" so that A ~ B. 

Clearly, it follows that for any positive integer k, Ak ~ II and this then implies 

that /lAk /I~ ~ /lBk /I~ or, equivalently, 

. 

Taking the limit as k ~ 00, it follows from Theorem 4.24 that p(A) ~ p(B). But 

this proves the lower bound in (7.22) since p(B) = a follows from the fact that 

p(B) ~ a since 

Blm = aIm 

and p(B) ::;; IIBII~ = a due to Theorem 4.19. The upper bound is proven in a 

similar fashion using . 

m 

a = max aij 
1 <;,i<;'m 

j;1 

The bounds in (7.23) follow directly from those in (7,.22) since if we define the 

matrix C= D;lAD", then C ~ (0), p(C) = p(A), and Cij = aijxil Xj. D 

Theorem 7.44. Let A be an m x m positive matrix. Then p(A) is positive 

and is an eigenvalue of A. In addition, there exists a positive eigenvector of A 

corresponding to the eigenvalue p(A). 

Proof p(A) > 0 follows immediately from Theorem 7.43 since A is pos
itive. By the definition of p(A), there exists an eigenvalue of A, A, such that 
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\A\ = peA). Let X be an eigenvector of A conesponding to A so that Ax = Ax. 
Note that 

p(A)abs(x) = \AI abs(x) = abs(Ax) = abs(Ax):S; abs(A)abs(x) = A abs(x), 

where the inequality clearly follows from the fact that 

m m 

j= 1 j= 1 
• 

for each i. Thus, the vector y = A abs(x) - p(A)abs(x) is nonnegative. The vec
tor Z = A abs(x) is positive since A is positive and the eigenvector x must be 
a non null vector. Now if we assume that y is positive, then again since A is 
positive, we have 

o < Ay = Az - p(A)z, 

or simply Az > p(A)z. Premultiplying this inequality by D;I, we get 

or in other words, 

-I z· I 

m 

aijZj > peA) 
j=1 

holds for each i. But using Theorem 7.43 implies that peA) > peA). Thus, y can
not be positive and, since we have already shown that it is nonnegative, we must 
have y = O. This yields A abs(x) = p(A)abs(x), so that abs(x) is an eigenvector 
corresponding to peA), and from this we get abs(x) = p(Atl A abs(x), which 
shows that abs(x) is positive since peA) > 0 and A abs(x) > O. This completes 
the proof. 0 

• 

An immediate consequence of the proof of Theorem 7.44 is the following. 

Corollary 7.44.1. Let A be an m X m positive matrix and suppose that A is 
an eigenvalue of A satisfying IAI = peA). If x is any eigenvector corresponding 
to A, then 

A abs(x) = p(A)abs(x) 

• 
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Before detellIlining the dimensionality of the eigenspace associated with the 
eigenvalue p(A), we need the following result. 

Theorem 7.45. Let x be an eigenvector corresponding to the eigenvalue A 
of the m X m positive matrix A. If IAI = p(A), then there exists some angle () 
such that e- i8 x > O. 

Proof Note that 

abs(Ax) = abs(Ax) = p(A)abs(x), (7.24) 

while it follows from Corollary 7.44.1 that 

A abs(x) = p(A)abs(x) (7.25) 

Now by using (7.24) and (7.25), we find that 

m m 

ajkXk ~ 

k=1 k=1 

m 

--
k=1 

• 

holds for each j. Evidently 

m m 

ajkXk - lajkllxkl, 

k=1 k=1 

and this can happen only if the, possibly complex, numbers ajkXk = rk e i8k = 
rk (cos () k + i sin () d, for k = 1, ... , m, have identical angles; that is, there exists 
some angle () such that each ajkXk, for k = 1, ... , m can be written in the fOlll1 
ajkXk = rkei8 = rk (cos () + i sin ()). In this case, e- i8 ajkXk = rk > 0, which implies 
that e-i8 Xk > 0 since ajk > O. 0 

• 

The following result not only indicates that the eigenspace corresponding to 
p(A) has dimension one, but also that p(A) is the only eigenvalue of A having 
modulus equal to p(A). 

Theorem 7.46. If A is an m X m positive matrix, then the dimension of 
the eigenspace corresponding to the eigenvalue p(A) is one. Further, if A is an 
eigenvalue of A and Ai p(A), then IAI < p(A). 
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Proof The first statement will be proven by showing that if u and v are 
nonnull vectors satisfying Au = p(A)u and Av = p(A)v, then there exists some 
scalar c such that v = cu. Now from Theorem 7.45, we know there exist angles 
(J I and (J2 such that s = e~j91 u > 0 and I = e~;92 v > O. Define w = 1- ds, where 

d 
. ~ I 

= mm s) Ij' 
1 '5.) ~m 

so that w is nonnegative with at least one component equal to O. If wi 0, then 
clearly Aw > 0 since A is positive. This leads to a contradiction since 

Aw = AI - dAs :: p(A)t - p(A)ds = p(A)w 

then implies that w > O. Thus, we must have w = 0, so I = ds and v = cu, 
where c = de;(82 -oJ). To prove the second statement of the theorem, first note 
that from the definition of the spectral radius, IAI ::; peA) for any eigenvalue 
A, of A. Now if x is an eigenvector corresponding to A and IAI = p(A), then it 
follows from Theorem 7.45 that there exists an angle (J such that u = e-iO x > O. 
Clearly, Au = AU. Premultiplying this identity by Du I, we get 

so that 

m 

ujl L aijuj = A 
)=1 

holds for each i. Now applying Theorem 7.43, we get A = peA). o 

We will see that the first statement in the previous theorem actually can be 
replaced by the stronger condition that peA) must be a simple eigenvalue of 
A. But first we have the following results, the last of which is a very useful 
limiting result for A. 

• 

Theorem 7.47. Suppose that A is an m x m positive matrix, and x and y 
are positive vectors satisfying Ax = p(A)x, A'y = p(A)y, and x'y = 1. Then the 
following hold. 

(a) (A - p(A)xy')k :: Ak - p(Alxy', for k:: 1,2, .... 
(b) Each nonzero eigenvalue of A - p(A)xy' is an eigenvalue of A. 

(c) p(A) is not an eigenvalue of A - p(A)xy'. 

Cd) peA - p(A)xy') < peA). 

(e) limk-->~{p(ArIA}k = xy'. 
• 
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Proof (a) is easily established by induction, since it clearly holds for k = I, 

and if it holds for k = j - 1, then 

• 

(A - p(A)xy')J = (A - p(A)xy')J-I(A - p(A)xy') 

= (Ai-I -p(A)i-1Xy')(A - p(A)xy') 

= Ai - p(A)Ai - Ixy' - p(A)i - I xy' A + plA)!xy' xy' 

= Ai - p(A)ixy' - p(A)ixy' + p(A)ixy ' = Ai - p(A)ixy' 

Next, suppose that A i 0 and u are an eigenvalue and eigenvector of (A -

p(A)xy'), so that 

(A - p(A)xy')u = AU 

Premultiplying this equation by xy' and observing that xy' (A - p(A)xy') = 0, 

we see that we must have xy' u = O. Consequently, 

Au = (A - p(A)xy')u = AU, 

and so A is also an eigenvalue of A, as is required for (b). To prove (c), suppose 

that A = peA) is an eigenvalue of A - p(A)xy' with u a corresponding eigenvec

tor. But we have just seen that this would imply that u is also an eigenvector 

of A corresponding to the eigenvalue peA). Thus, from Theorem 7.46, u = ex 

for some scalar c and 

p(A)u = (A - p(A)xy')u = (A - p(A)xy')cx = p(A)ex - p(A)ex = 0 

But this is impossible since peA) > 0 and u i 0, and so (c) holds. Now (d) 

follows directly from (b), (c), and Theorem 7.46. Finally, to prove (e), note that 

by dividing both sides of the equation given in (a) by p(Ai and rearranging, 

we get 

Take the limit, as k ~ 00, of both sides of this equation and observe that from 

(d), 

{ (A)-IA _ '} = p{A - p(A)xy'} < I, 
p p xy peA) 

and so 
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. 

follows from Theorem 4.23. D 

Theorem 7.48. Let A be an m x m positive matrix. Then the eigenvalue 
peA) is a simple eigenvalue of A. 

Proof Let A = XTx* be the Schur decomposition of A, so that X is a 
unitary matrix. and T is an upper triangular matrix with the eigenvalues of 
A as its diagonal elements. Write T = TI + T2, where TI is diagonal and 
T 2 is upper triangular with each diagonal element equal to O. Suppose that 
we have chosen X so that the diagonal elements of TI are ordered as TI = 
diag(p(A) •. ..• peA). Ar+ I, •.. , Am), where r is the multiplicity of the eigenvalue 
peA) and IAj I < peA) for j = r + I, ... ,m, due to Theorem 7.46. We need to 
show that r = I. Note that, for any upper triangular matrix U with ith diagonal 
element lIii, Uk is also upper triangular with its ith diagonal element given by 
II ~i. Using this, we find that 

= X lim diag 
k~oo 

Am 

peA) 

k 

1, ... ,1, 
Ar+ I 

peA) 

k 

= X {diag(l, ... , 1,0, ... , 0) + T 3}X *, 

, ... , 

where this last diagonal matrix has r Is and T3 is an upper triangular matrix 
with each diagonal element equal to o. Clearly, this limiting matrix has rank at 
least r. But from Theorem 7.47(e), we see that the limiting matrix must have 
rank I. This proves the result. D 

To this point, we have concentrated on positive matrices. Our next step is to 
ex.tend some of the results above to nonnegative matrices. We will see that many 
of these results generalize to the class of irreducible· nonnegative matrices. 

Definition 7.2. An mX m matrix A, with m ~ 2, is called a reducible matrix 
if there exist some integer rand m x m permutation matrix P such that 

PAP' = 
B 

(0) 
C 
D' 

. , 



• 
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where B is r x r, C is r x (m - r), and D is (m - r) x (m - r). If A is not 
reducible, then it is said to be irreducible. 

We will need the following result regarding irreducible nonnegative matrices. 

Theorem 7.49. An m x m nonnegative matrix A is irreducible if and only 
if (1m + A)m - I > (0). 

Proof First suppose that A is irreducible. We will show that if x is an 
m x 1 nonnegative vector with r positive components 1 S; r S; m - I, then 
(1m + A)x has at least r + 1 positive components. Repeated use of this result 
verifies that (1m + A)m-I > (0) since each column of 1m + A has at least one 
positive component. Since A ~ (0), (1m + A)x = x + Ax must have at least 
r positive components. If it has exactly r positive components, then the jth 
component of Ax must be 0 for every j for which Xj = O. Equivalently, for 
any permutation matrix P, the jth component of PAx must be 0 for every j 
for which the jth component of Px is O. If we choose a permutation matrix for 
which y = Px has its m - r Os in the last m - r positions, then we find that the jth 
component of PAx = PAP'y must be 0 for j = r + 1, ... ,m. Since PAP' ~ (0) 
and the first r components of y are positive, PAP' would have to be of the 
form 

PAP' = 
B C 

(0) D 

Since this contradicts the fact that A is irreducible, the number of positive com
ponents in the vector (1m + A)x must exceed r. Conversely, now suppose that 
(1m + A)m - I > (0) so that, clearly, (1m + A)m - I is irreducible. Now A cannot be 
reducible since, if for some permutation matrix P, 

PAP' = 

then 

B 
(0) 

Ir + B 
(0) 

C 
D' 

'C 

Im-r + D 

m-I 

, 

and the matrix on the right-hand side of this last equation has the upper trian
gular form given in Definition 7.2. 0 

We will generalize the result of Theorem 7.44 by showing that peA) is pos-
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itive, is an eigenvalue of A, and has a positive eigenvector when A is an irre
ducible nonnegative matrix. But first we need the following result. 

Theorem 7.50. Let A be an m x m irreducible nonnegative matrix, x be an 
m x I nonnegative vector, and define the function 

f(x) = min xi I (A)j.x = min xii 
XjiO XjiO 

Then there exists an m x 1 nonnegative vector b such that b'lm = 1 andf(b) ~ 
f(x) holds for any nonnegative x. 

Proof Define the set 

Since S is a closed and bounded set, and f is a continuous function on S due 
to the fact thaty > 0 ify E S, there exists aCE S such thatf(c) ~f(y) for all 
yES. Define b = c/(c'lm), and note thatf is unaffected by scale changes, so 
f(b) = f(c). Let x be an arbitrary nonnegative vector and define x* = x/(x'lm) 
and y = (1m + A)m - I X *. Now it follows from the definition off that 

• 

Premultiplying this equation by (1m + A)m - I and using the fact that (1m + 
A)'" - I A = A(lm + A)m - I, we find that 

But a = f(y) is the largest value for which Ay - ay ~ 0 since at least one 
component of Ay - f(y)y is 0; that is, for some k,J(y) = Ykl(Ah.y and, conse
quently, the kth component of Ay - f(y)y will be O. Thus, we have shown that 
f(y) "C.f(x*) =f(x). The result then follows from the fact thatf(y) ~f(c) =f(b). 

o 

Theorem 7.51. Let A be an m x m irreducible nonnegative matrix. Then A 
has the positive eigenvalue p(A) and associated with it a positive eigenvector 
x. 

Proof We first show thatf(b) is a positive eigenvalue of A, wheref(b) is 
defined as in Theorem 7.50, and b is a nonnegative vector satisfying b'lm = 1 
and maximizing f. Since b maximizes f(x) over all nonnegative x, we have 

• 

• • 

• 
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m 
• 

= mm 
I SiS-m 

aij > 0, 
j=1 

since A is nonnegative and irreducible. To prove thatf(b) is an eigenvalue of A, 

recall that from the definition off it follows that Ab - f(b)b ~ O. If Ab - f(b)b 

has at least one positive component, then since (1m + A)'" - I > (0), we must 

have 

(lm + A)m-I(Ab - f(b)b) = Ay - f(b)y > 0, 

wherey = (lm+A)m-1b. But ex = fey) is the largest value for which Ay - exy ~ 0, 

so we would have f(y) > feb) which cannot be true since b max.imizes f(y) 

over all y ~ O. Thus, Ab - f(b)b = 0 and so feb) is an eigenvalue of A and b 

is a corresponding eigenvector. Our nex.t step is to show that feb) = peA) by 

showing thatf(b) ~ lAd, where Ai is an arbitrary eigenvalue of A. Now if u is 

an eigenvector of A corresponding to Ai, then Au = AiU or 

m 

j=1 

for h = 1, ... , m. Consequently, 

m 

j=1 

for h = 1, ... ,m or simply 

A abs(u) - lAd abs(u) ~ 0, 

and this implies that IAil S; f(abs(u» S; feb). Finally, we must find a positive 

eigenvector associated with the eigenvalue peA) = feb). We have already found 

a nonnegative eigenvector, b. Note that Ab =f(b)b implies that (1", +A)III- i b = 

{I + f(b)}m-1b, and so 

(1 + A)III - I b 
b = --:-n;,.:,.' --:-:-':-::_-;-

{I + f(b)}m- I 

Thus, using Theorem 7.49, we find that b is actually positive. o 
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The proof of the following result will be left to the reader as an exercise. 

Theorem 7.52. If A is an m x m irreducible nonnegative matrix, then p(A) 
is a simple eigenvalue of A. 

Although p(A) is a simple eigenvalue of an irreducible nonnegative matrix 
A, there may be other eigenvalues of A that have absolute value p(A). Conse
quently, Theorem 7.47(e) does not immediately extend to irreducible nonneg
ative matrices. This leads us to the following definition. 

Definition 7.3. An m x m nonnegative matrix A is said to be primitive if 
it is irreducible and has only one eigenvalue satisfying IAi I = p(A). 

Clearly, the result of Theorem 7.47(e) does extend to primitive matrices and 
this is summarized below. 

Theorem 7.53. Let A be an m X m primitive nonnegative matrix and sup
pose that the m x I vectors x and y satisfy Ax = p(A)x, A'y = p(A)y, x > 0, 
y > O. and x'y = I. Then 

Our final theorem of this section gives a general limit result that holds for all 
irreducible nonnegative matrices. A proof of this result can be found in Hom 
and Johnson (1985). 

Theorem 7.54. Let A be an m X m irreducible nonnegative matrix and sup
pose that the mx I vectors x and y satisfy Ax = p(A)x, A'y = p(A)y, and x'y = 1. 
Then 

N 
I 

=xy 
k= I 

Nonnegative matrices play an important role in the study of stochastic pro
cesses. We will illustrate some of their applications to a particular type of 
stochastic process known as a Markov chain. Additional information on Markov 
chains, and stochastic processes in general, can be found in texts such as Bhat
tacharya and Waymire (1990), Medhi (1994), and Taylor and Karlin (1984) . 

• 

Example 7.12. Suppose that we are observing some random phenomenon 
over time, and at anyone point in time our observation can take on anyone 
of the m values, sometimes referred to as states, 1, ... , m. In other words, we 
have a sequence of random variables XI' for time periods t = 0, 1, ... , where 
each random variable can be equal to anyone of the numbers, 1, ... , m. If the 
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probability that Xt is in state i depends only on the state that Xt _ J is in and 
not on the states of prior time periods, then this process is said to be a Markov 
chain. If this probability also does not depend on the value of t, then the Markov 
chain is said to be homogeneous. In this case, the state probabilities for any time 
period can be computed from the initial state probabilities and what are known 
as the transition probabilities. We will write the initial state probability vector 
p(O) = (p~O), ... ,p~»', where p~O) gives the probability that the process starts out 
at time 0 in state i. The matrix of transition probabilities is the m x m matrix 
p whose (i,j)th element, Pij, gives the probability of X, being in state i given 
that Xt-I is in state j. Thus, if p(t) = (pjt), ... ,p~»' and pV) is the probability 
that the system is in state i at time t, then, clearly, 

, 
p(2) = pp(l) = ppp(O) = p2p(O), 

or for general t, 

p(t) = P' p(O) 

If we have a large population of individuals subject to the random pro
cess discussed above, then p~t) could be described as the proportion of individ
uals in state i at time t, while pjO) would be the proportion of individuals starting 
out in state i. A natural question then is what is happening to these proportions 
as t increases? That is, can we detelluine the limiting behavior ofp(t)? Note that 
this depends on the limiting behavior of pI, and P is a nonnegative matrix since 
each of its elements is a probability. Thus, if P is a primitive matrix, we can apply 
Theorem 7.53. Now, since thejth column of P gives the probabilities of the vari
ous states for time period t when we are in state j at time period t - I, the column 
sum must be 1; that is, 1~ P = 1~ or P'lm = 1m, so P has an eigenValue equal to 
1. Further, a simple application of Theorem 7.43 assures us that p(P) S; I, so we 
must have p(P) = 1. Consequently, if P is primitive and 1T is the m x I positive 
vector satisfying P1T = 1T and 1T'lm = I, then 

lim {p(Pt I P}t = lim pI = 1Tl~ 
t ---4> 00 t ~ 00 

Using this, we see that 

• 

where the last step follows from the fact that l~p(O) = 1. Thus, the system 
approaches a point of equilibrium in which the proportions for the various states 
are given by the components of 1T, and these proportions do not change from 
time period to time period. Further, this limiting behavior is not dependent upon 
the initial proportions in p(O). 

As a specific example, let us consider the problem of social mobility that 
involves the transition between social classes over successive generations in a 
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family. Suppose that each individual is classified according to his occupation 
as being upper, middle, or lower class, and these have been labelled as states 1, 
2, and 3, respectively. Suppose that the transition matrix relating a son's class 
to his father's class is given by 

0.45 0.05 0.05 
P = 0.45 0.70 0.50 , 

0.10 0.25 0.45 

so that, for instance, the probabilities that a son will have an upper, middle, 
or lower class occupation when his father has an upper class occupation are 
given by the entries in the first column of P. Since P is positive, the limiting 
result just discussed applies. A simple eigenanalysis of the matrix P reveals 
that the positive vector 'IT, satisfying P'IT = 'IT and 'IT'lm = 1, is given by 'IT = 
(0.083,0.620,0.297)'. Thus, if this random process satisfies the conditions of a 
homogeneous Markov chain, then after many generations, the male population 
would consist of 8.3% in the upper class, 62% in the middle class, and 29.7% 
in the lower class. 

10. CIRCULANT AND TOEPLITZ MATRICES 

In this section, we briefly discuss some structured matrices that have applica
tions in stochastic processes and time series analysis. For a more comprehensive 
treatment of the first of these classes of matrices, the reader is referred to Davis 
( 1979). 

An m x m matrix A is said to be a circulant matrix if each row of A can be 
obtained from the previous row by a circular rotation of elements; that is, if we 
shift each element in the ith row over one column, with the element in the last 
column being shifted back to the first column, we get the (i + l)th row, unless 
i = m, in which case we get the first row. Thus, if the elements of the first row 
of A are a" a2, ... ,am, then to be a circulant matrix, A must have the fOlln 

a, a2 a3 • • • am_ , am 
am a, a2 • • • am-2 am- , 

am - I am a, • • • am -3 am -2 
A= • • • • • (7.26) 

• • • • • 
• • • • • 

a3 a4 as • • • a, a2 
a2 a3 a4 • • • am a, 

We will sometimes use the notation A = circ(a" a2,.'" am) to refer to the cir
culant matrix in (7.26). One special circulant matrix, which we will denote by 
lIm, is circ(O, 1,0, ... ,0). This matrix, which also can be written as 

• 

, , 
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, 
e2 , 
e3 

• 
• , 
• , 

em , 
el 

is a pellllutation matrix, so ll;;,1 == ll;n' Note that if we use al, ... ,am to denote 

the columns. of an arbitrary m x m matrix A and b;, ... , b;1I to denote the rows, 

then 

All", == (ai, a2, ... , a", )(e"" e I, ... ,em _ I) = (a"" a I, ... , a", _ I)' (7.27) 

, 
b; b; e2 -, b; b' e3 3 

llmA == 
• • • (7.28) -
• • - • , 
• • • 

e' m b;n _ I b' m , bm b' el I 

and (7.27) equals (7.28) if and only if A is of the fOlln given in (7.26). Thus 

we have the following result. 

Theorem 7.55. The m x m matrix A is a circulant matrix if and only if 

A == ll", All;n 

Our next theorem gives an expression for an mx m circulant matrix in terllls 

of a sum of m matrices. 

as 
Theorem 7.56. The circulant matrix A == circ(al,.'" a",) can be expressed 

A I II ll2 llm - I 

== at m + a2 m + a3 m + ... + am '" 

Proof Using (7.26), we see that 

A == allm + a2(em ,e" ... ,em-I) + a3(e",_I,e""el, ... ,e",-2) + ... 

+ am (e2,e3, ... ,em,el) 

Since the postmultiplication of any m x m matrix by II", shifts the columns of 
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that matrix one place to the right, we find that 

• 
• 
• 

and so the result follows. o 

Certain operations on circulant matrices produce another circulant matrix. 
Some of these are given in the following theorem. 

Theorem 7.57. Let A and B be m x m circulant matrices. Then 

(a) A' is circulant, 

(b) for any scalars ex and {3, etA + (3B is circulant, 

(c) for any positive integer r, Ar is circulant, 
. 

(d) A -I is circulant, if A is nonsingular, ... 

(e) AB is circulant. 

Proof. If A = circ(al' ... , am) and B = circ(bI, ... , bm), it follows directly 
from (7.26) that A' = circ(al, am, am _ I, ... ,a2) and 

Since A is circulant, we must have A - IImAII~. But 11m is an orthogonal 
matrix, so 

and so by Theorem 7.55, A r is also a circulant matrix. In a similar fashion, we 
find that if A is nonsingular, then 

and so A-I is circulant. Finally, to prove (e), note that we must have both A = 
II", AII~, and B = 11m BII~, implying that 

and so the proof is complete. o 

• 



CIRCULANT AND TOEPLITZ MATRICES 303 

T4e representation of a circulant matrix given in Theorem 7.56 provides a 

simple way of proving the following result. 

Theorem 7.58. Suppose that A and B are m x m circulant matrices. Then 

their product commutes; that is, AB = BA. 

Proof If A = circ(aI, ... ,am) and B = circ(b l , ... ,bm), then it follows from 

Theorem 7.56 that 

m m 

A= II
i - 1 

ai m , B= 
i = 1 j=1 

where II~ = 1m. Consequently, 

• m m m 

AB= IIi - 1 b·:rJi-1 ai m 
--J m 

i= 1 j=1 i= 1 

m m m m 

- ai bj II:;j-2 = -
i = 1 j=1 j = 1 j=1 

m 

--
j=1 

b·IIj-1 
J m 

m 

j = 1 

II
i - 1 

aj m =BA 

b nj-I 
j In , 

m 

(a·IIi-I)(b·IIj-l) 
l m J In 

j=1 

D 

All circulant matrices are diagonalizable. We will show this by dete1lnining 

the eigenvalues and eigenvectors of a circulant matrix. But first let us find the 

eigenvalues and eigenvectors of the special circulant matrix lIm. 

Theorem 7.59. Let A I, ... ,Am be the m solutions to the polynomial 

equation Am - 1 = 0; that is, Aj = ()j-I, where () = exp(21Ti/m) = 
Cos(21T/m) + i sin(21T/m) and i = ..J=l. Define A. to be the diagonal matrix 

diag(1, (), ... , ()m- I) and let 

1 1 1 • • • 1 

1 () ()2 • • • ()m - 1 

F= 
1 1 ()2 ()4 ()2(m - I) 

• • • 

Vm • • • • 
• • • • 

• • • • 

1 ()m - 1 ()2(m-l) • • • 
() (/II - 1 )(m - I) 

Then the diagonalization of lIm is given by lIm = FA.F*, where F* is the 
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conjugate transpose of F; that is, the diagonal elements of A are the eigenvalues 
of Ilm, while the columns of F are corresponding eigenvectors. 

Proof The eigenvalue-eigenvector equation, IImx = Ax, yields the equa
tions 

for j = I, ... , m - I, and 

After repeated substitution, we obtain for any j, Xj = Am Xj. Thus, Am = 1, and so 
the eigenvalues of IIm are I, (), ... ,()m - I. Substituting the eigenvalue ()j - I and 
XI = m- I/2 into the equations above, we find that an eigenvector corresponding 
to the eigenvalue ()j-I is given by x = m- I/2(1,()j-I, ... ,()(m-llU-I»)'. Thus, 
we have shown that the diagonal elements of A are the eigenvalues of IIm and 
the columns of F are corresponding eigenvectors. The remainder of the proof, 
which simply involves the verification that F- I = F*, is left to the reader as 
an ex.ercise. D 

The matrix. F given in Theorem 7.59 is sometimes referred to as the Fourier 
matrix. of order m. The diagonalization of an arbitrary circulant matrix., which 
follows directly from Theorems 7.56 and 7.59, is given in our nex.t theorem. 

Theorem 7.60. Let A be the m x m circulant matrix. circ(al,' .. , am). Then 

A = FM'*, 

where ~ = diag(oJ, ... ,Dill), OJ = al + a2A) + ... + amA'J'-I, and Aj and F are 
defined as in Theorem 7.59. 

Proof Since IIm = FA.F* and FF* = I"" we have II{" = 
j = 2, ... , m - 1, and so by using Theorem 7.56, we find that 

A = allm + a2IIm + a3II~ + ... + amII:- I 

= aIFF* + a2FAI F* + a3FA2F* + ... + amFAm- 1 F* 

. * FNF , for 

= F(allm + a2AI + a3A2 + ... + aIllAm-I)F* = FM'* D 

The class of circulant matrices is a subclass of a larger class of matrices 
known as Toeplitz matrices. The elements of an mX m Toeplitz matrix. A satisfy 
au = aj - i for scalars a-m + J, a-,n+ 2, ... ,am _ I; that is, A has the fOlln 

, . 
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ao al a2 • • • am -:2 a", _ I 

a_I ao al • • • am - 3 am - '2 

a-2 a_I ao • • • am -4 am - 3 

A= • • • • • 

• • • • • 

• • • • • 

a-m+2 a-m +3 a_ m +4 • • • ao al 
• 

a-m + I a-m +2 a-m +3 • • • a_I ao 

If aj = a_j for j = 1, ... , m - 1, then the matrix A is a symmetric Toeplitz 

matrix. One important and fairly simple symmetric Toeplitz matrix is one that 

has aj = a_j = 0 for j = 2, ... , m - 1, so that 

ao al 0 • • • 0 0 

al ao al • • • 0 0 

0 al ao • • • 0 0 
A= • • • • • 

(7.29) 
• • • • • 
• • • • • 

0 0 0 • • • ao al 
0 0 0 • • • al ao 

Some specialized results, such as formulas for eigenvalues and fOlll\ulas for the 

computation of the inverse of a Toeplitz matrix, can be found in Grenander and 

Szego (1984) and Heinig and Rost (1984). 

11. HADAMARD AND VANDERMONDE MATRICES 

In this section, we discuss some matrices that have applications in the areas 

of design of experiments and response surface methodology. We begin with a 

class of matrices known as Hadamard matrices. An mX m matrix H is said to be 

a Hadamard matrix if first, each element of H is either + I or - I, and second, 

H satisfies 

H' H = HIt = mIm ; (7.30) 

that is, the columns of H f01I1I an orthogonal set of vectors, and the rows for III 

an orthogonal set as well. For instance, a 2 x 2 Hadamard matrix is given by 

H= 
1 

1 
1 

-1 

while a 4 x 4 Hadamard matrix is given by 

, 
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1 1 1 1 

H= 
-1 -1 1 1 

1 -I 1 -1 
I -1 -1 1 

Some of the basic properties of Hadamard matrices are given in the following 
theorem. 

Theorem 7.61. Let Hm denote any m x m Hadamard matrix. Then 

(a) m- I/ 2Hm is an m X m orthogonal matrix, 

(b) IHml = ±mm/2, 

(c) Hm ® Hn is an mn x mn Hadamard matrix. 

Proof (a) follows directly from (7.30). Also using (7.30), we find that 

But 

and so (b) follows. To prove (c), note that each element of Hm ® Hn is +1 or 
- 1 since each element is the product of an element from Hm and an element 
from HII , and 

Hadamard matrices which have all of the elements of the first row equal 
to +1 are called normalized Hadamard matrices. Our next result addresses the 
existence of nOllnaIized Hadamard matrices. 

Theorem 7.62. If there exists an m x m Hadamard matrix, then there exists 
an 1/1 x 1/1 nOli nal ized Hadamard matrix. 

• 

Proof Suppose that H is an m x m Hadamard matrix. Let D be the diag
onal matrix with the elements of the first row ofB as its diagonal elements; 
that is, D = diag(h ll , ... , hIm). Note that D2 = 1m since each diagonal ele
ment of D is + 1 or -1. Consider the m x m matrix H * = HD. Each column 
of H * is the corresponding column of H multiplied by either +1 or -1, so 
clearly each element of H * is +1 or -1. The jth element in the first row of 
H * is h7j = I, so H * has all of its elements of the first row equal to + 1. In 

• 



• 
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addition, 

H;H * = (HD)' HD = D' H' HD = D(mIm)D = mIY = mIm 

Thus, H * is an m X m nOllualized Hadamard matrix and so the proof is com
plete. r-l 

Hadamard matrices of size m x m do not exist for every choice of m. We 
have already given an example of a 2 x 2 Hadamard matrix, and this matrix 
can be used repeatedly in Theorem 7.61 (c) to obtain a 2" x 2n Hadamard matrix 
for any n ~ 2. However, m x m Hadamard matrices do exist for some values 
of m -J 2n. Our next result gives a necessary condition on the order m so that 
Hadamard matrices of order m exist. 

Theorem 7.63. If H is an m x m Hadamard matrix, where m > 2, then m 
is a multiple of 4 . 

. Proof . The result can be proven by using the fact that any three rows of 
H are orthogonal to one another. Consequently, we will refer to the first three 
rows of H, and, due to Theorem 7.62, we may assume that H is a nOllualized 
Hadamard matrix, so that all of the elements in the first row are+l. Since the 
second and third rows are orthogonal to the first row, they must each have r 
+ I s and r -I s, where r = n/2; thus clearly, 

n = 2r, (7.31 ) 

or in other words, n is a multiple of 2. Let n+_ be the number of columns 
in which row 2 has a +1 and row 3 has a -1. Similarly, define n_+, n++, and 
n __ . Note that the value of anyone of these ns detenuines the others since 
n++ + n+_ = r, n++ + n_+ = r, and n __ + n+_ = r. For instance, if n++ = s, then 
n+_ = (r - s), n_+ = (r - s), and n __ = s. But the orthogonality of rows 2 and 3 
guarantee that n++ + n __ = n_+ + n+_, which yields the relationship 

2s=2(r-s) 

Thus, r = 2s, and so using (7.31) we get n = 4s, which completes the proof. 
o 

Some additional results on Hadamard matrices can be found in Hedayat and 
Wallis (1978) and Agaian (1985). 

An m x m matrix A is said to be a Vandelluonde matrix if it has the form 
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I I I • • • I 

al a2 a3 • • • am , , , 2 

A= aj ai a- • • • am (7.32) 3 

• • • • 
• • • • 
• • • • 

tTl - I a2' - I 
/n- 1 m - I 

a l a, • • • am 
• 

For instance, if F is the m x m Fourier matrix discussed in Section 7.10 then 

A = /Ill /2 F is a Vandel1l1onde matrix with aj = () j - I, for i = I, ... ,m. Our final 

result of this chapter gives an expression for the detellninant of a Vandeunonde 

matrix. 

Theorem 7.64. Let A be the m x m VanderIllonde matrix given in (7.31). 

Then its deterIllinant is given by 

IAI = 
(7.33) 

l:Si<j<m 

Proof Our proof is by induction. For m = 2, we find that 

I I 

and so (7.33) holds when A is 2 x 2. Next we assume that (7.33) holds for 

VanderIllonde matrices of order m - I and show that then it must also hold for 

order m. Thus, if B is the (m - 1) x (m - I) matrix obtained from A by deleting 

its last row and first column, then, since B is a Vanderlflonde matrix of order 

m - 1, we must have 

IBI = 

Define the m x m matrix 

• 



• 

• 
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and note that by repeatedly using the cofactor expansion fOllnula for a deter

minant on the first row, we find that I C! = 1. Thus, IA I = I CA I. But it is easily 

verified that CA = E, where 

• 

E= I o , 

and D = diag«a2 - ad, (a3 - a,), ... , (am - a,». Consequently, 

IAI = lEI = IBDI = IBIIDI = 

-- (a' - a·) J I , 

'!.i<j!.m 

where the second equality was obtained by using the cofactor expansion fomlUla 

on the first column of E. This completes the proof. u 

PROBLEMS 

1. Consider the 2m X 2m matrix 

A= 
bIm 
dIm ' 

where a, b, c, and d are nonzerO scalars . 

(a) Give an expression for the detellilinant of A. 

(b) For what values of a, b, c, and d will A be nonsingular? 

(c) Find an expression for A-'. 

2. Let A be of the fOllll 

A= 
A'2 
(0) • 

where each submatrix is m X m and the matrices A 12 and A21 are nonsin

gular. Find an expression for the inverse of A in teBns of AI" A 12, and A~I 

by utilizing equations (7.2H7.S). 

• 
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3. Generalize Example 7.2 by obtaining the detelluinant, conditions for non
singularity, and the inverse of the 2m x 2m matrix 

A= 

where a, b, c, and d are nonzero scalars. 

4. Let the matrix G be given by 

ABC 
G = (0) DE, 

(0) (0) F 

, 

where each of the matrices A, D, and F is square and nonsingular. Find the 
inverse of G. 

5. Use Theorems 7.1 and 7.4 to find the detelluinant and inverse of the matrix 

40012 
03012 

A= 0 0 2 2 3 
o 0 123 
1 I 0 1 2 

6. Let A be an m x n matrix partitioned as 

A= 

where All is r x rand rank(A) = rank(AI I) = r. 

(a) Show that A22 = A2IAiiAI2. 
(b) Use the result of part (a) to show that . 

B= 
A-I 

I I 

(0) 

is a generalized inverse of A. 

(0) 
(0) 

• 

(c) Show that the Moore-Penrose inverse of A is given by 

• 

• 
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C[A~ I 

7. Use Theorem 7.4 to show that if 

is nonsingular and All is nonsingular, then A22 -A2IAjlA I2 is nonsingular. 

8. Let A be an mX m positive definite matrix and let B be its inverse. Partition 
A and B as 

A= B= 

where All and BII are r x r matrices. Show that the matrix 

• All - Bjl AI2 
A;2 A22 

is positive semidefinite with rank of m - r. 

9. Consider the m x m matrix 

a 

where the (m - 1) x (m - I) matrix All is positive definite. 

(a) Prove that IAI ~ ammlAlI1 with equality if and only if a = O. 
(b) Use part (a) to obtain an alternative proof of Theorem 7.23; that is, 

generalize the result of part (a) by proving that if all, ... ,amm are the 
diagonal elements of a positive definite matrix A, then IA I ~ a II ... a""11 
with equality if and only if A is a diagonal matrix. 

10. Let A be an m x m matrix and define Ai to be the i x i matrix obtained 
by deleting the last m - i rows and columns of A. The leading principal 
minors of A are given by the detellninants, IAII, ... , IAml, where Am = A. 
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Show that if A is a symmetric matrix, then it is positive definite if and only 
if all of its leading principal minors are positive. 

11. Let the 2 x 2 matrices A and B be given by 

A = 2 3 
I 2 ' 

(a) Compute A® Band B ® A. 

(b) Find tr(A ® B). 

(c) Compute IA ® BI. 

(d) Give the eigenvalues of A ® B. 
(e) Find (A ® B) I . 

B= 
5 3 
3 2 

12. Give a simplified expression for I", ® I". 

13. Prove the properties given in Theorem 7.6. 

14. Prove results (b) and (c) of Theorem 7.9. 

15. Show that if A and B are symmetric matrices, then A ® B is also symmetric. 

16. Find the rank of A ® B, where 

2 6 
A = 1 4 , 

3 I 

524 
B = 2 I 1 

102 

17. For matrices A and B of any size, show that A ® B = (0) if and only if 
A = (0) or B = (0). 

18. Let Xi be an eigenvector of the m x m matrix A corresponding to the eigen
value Ai. Let Yj be an eigenvector of the p x p matrix B corresponding to 
the eigenvalue () j. 

(a) Show that Xi ® Yj is an eigenvector of A ® B. 
(b) Give an example of matrices A and B such that A ® B has an eigen

vector that is not the Kronecker product of an eigenvector of A and an 
eigenvector of B. 

19. Show that if A and B are positive definite matrices, then A ® B is also 
positive definite. 

• 

• 

, . 



• 
'-
c. 
• 
> 

• 
• 
• 
• , 

• 
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20. Let x be an m x 1 vector and y be an n x I vector. Verify that the three 

matrices xy', y' ®x, and x ® y' are identical. 

21. Compute the sum of squared errors SSE = (y - y)'(y - y) for the two-way 

classification model with interaction discussed in Ex.ample 7.5. 
o 

22. Consider the two-way classification model without interaction given by 

Yijk = P. + Ti + 'Yj + €ijk. 

where i = 1, ... , a, j = 1, ... , b, and k = 1, ... , n. 

(a) Find a least squares solution for Il = (p., TI, ... , T", 'YI, ... ,'YI>)', and use 

this to obtain the vector of fitted values and the sum of squared errors 

for this model. 

(b) Compute the sum of squared errors for the reduced model Y'jk = 11 + 

'Yj + Eijk and use this along with the SSE computed in Ca) to show that 

the sum of squares for factor A is 

SSA = nb 
a 

-; = I 

( - -)" y;.-y .. -

(c) In a similar fashion, show that the sum of squares for factor B is 

b 

SSB ( - -)2 = na Y'j - y .. 
j=1 

(d) Find a set of as many linearly independent estimable functions of 11, 

T;, and 'Yj as possible. 

(e) Use the sum of squared errors computed in (a) and the SUm of squared 

errors computed in Problem 21 to show that the sum of squares for 

interaction in the model of Problem 21 is given by 

a b 

SSAB = n (Yij - Y;. _ Y'j + y .. )2 

;= I j= I 

23. Prove Theorem 7.13. 

24. Let AI. A2, A3, and A4 be square matrices. Show that, when the sizes of 

these matrices are such that the appropriate operations are defined, 

(a) (A I E9 A2) + (A3 E9 A4) = (A I + A3) E9 (A2 + A4), 
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(b) (AI ffi A 2 )(A3 ffi A4) = AIA3 ffi A2A.t, 

(C) (A I ffi A2) ® A3 = (AI ® A3) EB (A2 ® A3)' 

25. Give an example to show that, in general, 

26. Complete the details of Example 7.7; that is, use Theorem 6.4 and Theorem 
7.16 to prove Theorem 6.5. 

27. Prove the results of Corollary 7.17.1. 

28. Let A and B be m x nand n x p matrices, respectively, while e and d are 
p x 1 and n x 1 vectors. Show that 

(a) ABc = (e' ® A) vec(B) = (A ® e') vec(B'), 
(b) d' Be = (e' ® d') vec(B). 

29. For any matrix A and any vector b, show that 

vec(A ® b) = vec(A) ® b 

30. Let A be an m x m matrix, B be an n x n matrix, and C be an m x n matrix. 
Prove that 

vec(AC + CB) = {(In ® A) + (B' ® 1m )}vec( C) 

31. If e,. is the ith column of the identity matrix 1m, verify that 

m 

vec(lm) = (ei ® ei) 
i= I 

32. Prove property (h) of Theorem 7.18. 

33. Let the 2 X 2 matrices A and B be given by 

A= 
1 2 
2 4 ' 

(a) Compute A G B. 

B= 

• 

4 1 
I 3 

(b) Which of the matrices, A, B, and AGB, are positive definite or positive 
semidefinite? How does this relate to Theorem 7.227 

• 
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34. Give an example of matrices A and B such that neither is nonnegative def
inite, yet A 0 B is positive definite. 

35. Let A, B, and C be m x n matrices. Show that 

tr{(A' 0 B')C} = tr{A'(B 0 C)} 

36. Suppose that the m x m matrix A is diagonalizable; that is, there exist a 
nonsingular matrix X and a diagonal matrix A = diag(AI, ... ,Am) such that 
A = XAX- I. Show that if we define the vector of diagonal elements of A, 
a = (all"~" amm )' and the vector of eigenvalues of A, A. = (A I, ... , Am)', 
then 

and 

37. Let A and B be m x m nonnegative definite matrices. Show that 

(a) IA 0 BI :?! IAIIBI, 
(b) IA 0 A -II:?! 1, if A is positive definite. 

38. For each of the following pairs of 2 x 2 matrices, compute the smaller 
eigenvalue A2(A0B) and the lower bounds for this eigenvalue given by The
orem 7.26 and Theorem 7.28. Which bound is closer to the actual value? 

(a) A = 
4 0 
o I ' 

(b) A = I o 
. 

o 
I ' 

B= 2 0 
o 3 

B= 
2 

.J2 
.J2 

3 

39. Let A be an m x m positive definite matrix. Use Theorem 7.24 to show 
that, if B = A -I then all hll :?! I. Show how this generalizes to (Ii; hii > I 
for i = I, ... , m. 

40. Let A and B be mX m positive definite matrices and consider the inequality 

III III 

IA 0 BI + IAIIBI :?! IAI h;; + IBI au 
;=1 ;=1 
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(a) Show that this inequality is equivalent to 

where RA and R8 represent the correlation matrices computed from A 
and B. 

(b) Use Theorem 7.25 on IRA 0 CI. where C: R8 - (e~R8Ie,)-'e,e~, to 
establish the inequality given in (a). 

41. Suppose that A and Bare m x m positive definite matrices. Show that A 0 
R c AB if and only if both A and B are diagonal matrices. 

42. Let A be an m x m positive definite matrix and B be an m x m positive 
semidefinite matrix with exactly r positive diagonal elements. Show that 
rank(A 0 B) = r. 

43. Show that if A and B are singular 2x 2 matrices then AOB is also singular. 

44. Let R be an m x m positive definite correlation matrix having A as its 
smallest eigenvalue. Show that if T is the smallest eigenvalue of ROR and 
R of. 1m, then T > A. 

45. Consider the matrix 

1/1 

'lrl/l = L e;,m(e;,m ® e;,m)', 
; = 1 

which we have seen satisfies 'lr meA ® B)'lr:n : A 0 B for any m x m matrices 
A and B. Define w(A) to be the mX 1 vector containing the diagonal elements 
of A; that is, w(A) : (all, . .. , amm )'. Also let Am be the m2x m2 matrix given 
by 

m m 

Am: L(Eii®Eii )= L(e;,me;,m®e;,me;,m) 
;01 ;=1 

Show that 

(a) 'lr~w(A): vec(A) for every diagonal matrix A, 

(b) 'lrmvec(A): w(A) for every matrix A, 

(c) 'lr m 'lr~ : 1m so that 'lr~ : 'lr~, 

(d) 'It;" 'It m = Am, 



• 

• , 
, 
· 
" · . · , 
, 
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i, 
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(e) AmNm = NmAm = Am, 

(0 {vec(A)}' Am(B ® B)Am vec(A) = {w(A)}'(B 0 B)w(A). 

Additional properties of 'I'ln can be found in Magnus (1988). 

46. Verify that the commutation matrix Kmn is a pellllutation matrix; that is, 

show that each column of Kmn is a column of I"", and each column of I",,, 

is a column of Kmn. 

47. Write out the commutation matrices Kn and K24. 

48. The eigenvalues of Kmm were given in Theorem 7.33. Show that cor

responding eigenvectors are given by the vectors of the form e/ ® e/. 

(el ® ek) + (ek ® el), and (el ® ek) - (ek ® el). 

49. Show that the commutation matrix Kn", can be expressed as 

m 

i = 1 

where ej is the ith column of 1m. Use this to show that if A is II X III, X is 

m xl, Y is an arbitrary vector, then 

K~II(x ®A ®y') = A ®xy' 

50. Let A be an m x n matrix with rank r and let A I, ... , Ar be the nonzero 

eigenvalues of A' A. If we define 

show that 

, . (a) P is symmetric, 

(b) rank(P) = r2, 
(c) tr(P) = tr(A'A), 

(d) p2 = (AA') ® (A' A), 

P = Kmn(A' ®A), 

(e) the nonzero eigenvalues of P are AI,." ,A r and ±(A,A})1/2 for all i <j. 

51. Prove the results of Theorem 7.35. 

52. Show that if A and B are m X m matrices, then 
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Nm(A ® B + B ®A)Nm = (A ® B+B ®A)Nm = Nm(A ®B+B®A) 

= 2Nm(A ® B)Nm 

53. Write out the matrices N2 and N3. 

54. For i = 1, ... , m, j = 1, ... , i, define the m(m + 1)/2 x 1 vector uij to be the 

vector with one in its {(j - 1)m + i - j(j - 1)/2}th position and zeros 

elsewhere. It can be easily verified that these vectors are the columns of 

the identity matrix of order m(m + 1)/2; that is, 

Let Eij be the m x m matrix whose only nonzero element is a one in the 

(i,j)th position, and define 

E'j + Eji, 
Ea, 

if i -J.j, 
if i = j 

Show that Dm = L.i~j {vec(Tij ) }u;j; that is, verify that 

. > . 
,-) 

where A is an arbitrary m x m symmetric matrix. 

55. Prove the results of Theorem 7.40. 

56. If A is an m x m matrix show that 

(a) Dm D;;' (A ® A)Dm = (A ® A)Dm, 

(b) {D~, (A ® A)Dm}i = D-:;' (A'" ® Ai)Dm, where i is any positive integer. 

57. If uij and Eij are defined as in Problem 54, show that L~ 

L.'~j{vec(Eij)}U;j; that is, verify that 

. 

{vec(Eij )}u;j v(A) = vec(A), 

where A is an arbitrary m x m lower triangular matrix. 

58. Prove Theorem 7.41. 

--

• • 

• 



• 
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59. For i = 2, ... , m, j = 1, ... , i-I, define the m(m - 1)/2 x 1 vector Uij to be 
the vector with one in its {(j - l)m + i - j(j + 1)/2}th position and zeros 
elsewhere. It can be easily verified that these vectors are the columns of 
the identity matrix of order m(m - 1)/2; that is, 

Show that L~ = Li>j{vec(Eij)}u;j; that is, verify that 

{vec(Eij) }u;j v(A) = vec(A), 
i>j 

where A is an arbitrary m x m strictly lower triangular matrix. 

60. Prove the results of Theorem 7.42. 

61. Find a 2x 2 nonnegative matrix A which has its spectral radius equal to 1, 
yet Ak does not converge to anything as k -700. 

62. Show that if A is a nonnegative matrix and, for some positive integer k, Ak 
is a positive matrix, then p(A) > O. 

63. It can be shown [see, for example, Horn and Johnson (1985)] that if A is 
an m x m nonnegative matrix, then p(A) is an eigenvalue of A and there 
exists a nonnegative eigenvector x corresponding to the eigenvalue p(A). 
This result is weaker than the result for irreducible nonnegative matrices. 
For each of the following, find a 2x 2 nonnull reducible matrix A such that 
the stated condition holds. 
(a) p(A) = O. 
(b) x is not positive for any x satisfying Ax = p(A)x. 

(c) p(A) is a multiple eigenvalue. 

64. Verify that the absolute value of each of the eigenvalues of the 2 x 2 irre
ducible matrix 

is equal to p(A) . 
• 

A = 0 1 
1 0 

65. Let A be an m x m irreducible nonnegative matrix. 
(a) Show that p(Irn + A) = 1 + p(A). 
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(b) Show that if Ak > (0) for some positive integer k, then peA) is a simple 
eigenvalue of A. 

(c) Apply part (b) on the matrix (1", + A) to prove Theorem 7.52; that is, 
prove that for any irreducible nonnegative matrix A, peA) must be a 
simple eigenvalue. 

66. Consider the homogeneous Markov chain that has three states and the 
matrix of transition probabilities given by 

p= 
0.50 0.25 
0.50 0.50 

° 0.25 

(a) Show that P is primitive. 

° 0.25 
0.75 

(b) Determine the equilibrium distribution; that is, find 'iT such that 
I . (I) 
Im/->~p = 'iT. 

67. Let A be the m x m circulant matrix circ(al, ... , am). 

(a) Find the trace of A. 
(b) Find the determinant of A. 

68. Show that the conjugate transpose of the matrix F given in Theorem 7.59 

69. 

• 

IS 

1 1 1 • • • 1 
1 0- 1 0- 2 • • • o-(m-I) 

F*= 
1 1 0- 2 0- 4 0-2(m-l) • • • 

..;m • • • • 
• • • • 
• • • • 

1 o-(m-I) 0-2(m-l) 
• • • o-(m-I)(m-I) 

Then use the geometric series partial sum forilluia 

to prove that F- 1 = F*. 

Let F be defined as in Theorem 7.59 and let r 
Show that 

(a) F2 = r, 
(b) F 4 =Im , 

(e) F3 = F*. 

• 



• 
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70. Let nm be the circulant matrix defined in Section 7.10. Show that 

(a) nm-I = n-I 
min' 

(b) n:;: = 1m , 

(c) n;::nH = n:;., for any integers nand r. 

71. If A = circ(al, ... , am). and B = circ(b l , ... , bin), find the eigenvalues of 

A + Band AB. 

72. Use Theorem 7.60 to find the eigenvalues of the circulant matrix A -

circ(1, ... , 1). 

73. Show that if A is a singular circulant matrix, then its Moore-Penrose 

inverse, A+, is also a circulant matrix. 

74. Find square matrices A and B of the same order such that A and B are not 

circulant matrices yet their product AB is a circulant matrix. 

75. Let B be the m x m Jordan block matrix J m(O). Show that an III x III matrix 

A is a Toeplitz matrix if and only if it can be written in the fOllll 

m- I 

A = aolm + L (a}B) + a_}B'}) 

}=I 

76. Consider the m x m Toeplitz matrix 

1 b b2 • • • bill - I 

a 1 b • • • bm- 2 

A= a2 a 1 • • • bln - 3 

• • • • 
• • • • 
• • • • 

a m- I a 111-2 a m- 3 • • • 1 

, 

where ab,j. 1. Verify by multiplication that the inverse of A is given by 

e -be 0 • • • 0 0 

-ae (ab + l)e -be • • • 0 0 

0 -ae (ab+ l)e • • • 0 0 
A- I = • • • • • , 

• • • • • 

• • • • • 

0 0 0 • • • (ab + l)e -be 

0 0 0 • • • -QC C 

where e = (1 - ab)-I. Show that A is singular if ab = I. 
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77. Suppose that z" . .. ,Zm + I are independent random variables each having 

mean 0 and variance 1. Let x be the m x 1 random vector that has as its 

ith component 

Xj = Zj + I - PZj, 

where p is a constant. Show that the covariance matrix of x is a ToepIitz 

matrix of the form given in (7.29), and find the values of ao and al. 

78. Find a Hadamard matrix of order 8. 

79. Give a Hadamard matrix of order 12, thereby illustrating the existence of 

a Hadamard matrix of order m, where m ,j. 2n for any positive integer n. 

80. Show that the detellninant of a Hadamard matrix attains the upper bound 

of the Hadamard inequality given in Corollary 7.23.1. 

81. Let A, B, e, and D be m X m matrices with all of their elements equal to 

+ 1 and -1, and define H as 

Show that if 

and 

H= 

A B 
-B A 

-C D 
-D -C 

C D 
-D e 

A -B 
B A 

M' + BE' + ec' + DD' = 4m1m 

Xy' = YX' 

for every pair of matrices X and Y, chosen from A, B, C, and D, then H is 

a Hadamard matrix of order 4m. 

82. Show that the Vanderillonde matrix A given in (7.32) is nonsingular if and 

only if the m elements of the second row are distinct. 
• 

83. Let A be the m X m Vandenllonde matrix given in (7.32). Prove that if there 

are r distinct values in the set {al,.'" am}, then rank(A) = r. 

84. Let P be the m X m orthogonal matrix (em, em _ t. ... ,ed. Show that if A is 

an mx m Vandell110nde matrix, then PM' and M'P are Toeplitz matrices. 



CHAPTER EIGHT 

Matrix Derivatives and Related Topics 

1. INTRODUCTION 

Differential calculus has widespread applications in statistics. For example, esti
mation procedures such as the maximum likelihood method and the method 
of least squares utilize the optimization properties of derivatives, whereas the 
so-called delta method for obtaining the asymptotic distribution of a func
tion of random variables uses the first derivative to obtain a first-order Tay
lor series approximation. These and other applications of differential calculus 
often involve vectors or matrices. In this chapter, we obtain some of the most 
commonly encountered matrix derivatives. 

2. MULTIV ARIABLE DIFFERENTIAL CALCULUS 

We will begin with a brief review of some of the basic notation, concepts, 
and results of elementary and multivariable differential calculus. Throughout 
this section, we will assume differentiability or multiple differentiability of the 
functions we discuss. For more details on the conditions for differentiability see 
Magnus and Neudecker (1988). Iff is a real-valued function of one variable, 
x, then its derivative at x, if it exists, is given by 

f(l)(x) =J'(x) = d f(x) = lim f(x + u) - f(x) 
dx u-->O U 

• 

Equivalently,J '(x) is the quantity that gives the first-order Taylor forillula for 
f(x + u). In other words, 

( 

f(x + u) =f(x) + uf'(x) + rl(u,x), (8.1 ) 

where the remainder rl(u,x) is a function of u and x satisfying 

323 
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lim 
u-->o 

The quantity , 
" , 

• 

dll/(x) = uf' (x) 
, 

(8.2) 

appearing in (8.1) is called the first differential of I at x with increment u. This, 

increment U is the differential of x. Later we will use dx in place of u, that is, 
- .- -

write I(x + dx) instead of I(x+ u), to emphasize the fact that u is the differential 

of x. For notational convenience, we will often denote the differential given in 

(8.2) simply by d/. Generalizations of (8.1) can be obtained by taking higher

ordered derivatives; that is, with the ith derivative of I at x defined as 

• 

d' 
dxi I(x) = 11-->0 

I (i - 1) (x + u) - I (i - 1) (x) 
lim =--_'-c'-_-'---"-__ '-'--, 

we have the kth-order Taylor forilluia 

k 

I(x + u) =/(x) + L 
i = 1 

k 

=/(X) + L 
i = 1 

. I 
I . 

d~/(x) 
. I 
I . 

where rk(u,x) is a function of u and x satisfying 

lim 
11-)0 

and 

rk(u,x) 
--,---- = 0, 

k U 

u 

+ rk(u, x), 

or simply dil, is the ith differential of I at x with increment u. 

. 
•• 

. . 
• , . 

' . 

The chain rule is a useful fOllllula for calculating the derivative of a com

posite function. If y, g. and I are functions such that y(x) = g(f(x)), then 

y' (x) = g' (f(x))f' (x) (8.3) 

If I is a real-valued function of the n X I vector x = (XI, ... , xn)', then its 



, 

.. 
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derivative at x, if it exists, is given by the 1 x n row vector 
., • • , 

a 
ax' f(x) = 

a a f(x) 
XI 

a 
, " ax" f(x) , 

where 
• 

f(x + u;ej) - f(x) 

Ui 

is the partial derivative of f with respect to Xi, and ei is the ith column of I". 

The first-order Taylor formula analogous to (8,1) is given by 

f(x+ u) =f(x) + 
a 

ax' f(x) u + rl (u, x), (8.4) 

where the remainder, n (u, x), satisfies 

I, 
n(u,x) = 0 

1m 
u -->0 (U'U)I/2 

The second terlll on the right-hand side of (8.4) is the first differential of f at 

x with incremental vector u; that is, 

df = duf(x) = 
a 

ax' f(x) u= 
11 a 

Ui ax; f(x) 
; = I 

It is important to note the relationship between the first differential and the first 

derivative; the first differential of f at x in u is the first derivative of f at x 

times u, The higher-order differentials off at x in the vector u are given by 

11 11 aj 

• • 

d'f = d~f(x) = ' , , Ujl ' , , Uj; 
aXh , , , 

h: I j;: I 

and these appear in the kth-order Taylor forlllula, 

k 

f(x + u) =f(x) + 
;: I 

• 

d'f 
'I + rk(u, x), 
/. 

aXj; 
f(x), 
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where the remainder rk(u,x) satisfies 

lim rk(u,x) = 0 
u-->o (u'u)k/2 

The second differential, d2/, can be written as a quadratic fonn in the vector 
u; that is, 

where Hf' called the Hessian matrix, is the matrix of second-order partial 
derivatives given by 

• • • 
i:l

2 

i:l i:l I(x) 
XI Xn 

i:l
2 

I(x) 
i:l2 

i:l
2 

I(x) i:l 2 I(x) • • • 

Hf= i:lX2i:lXI i:lx2i:lxn x2 
• • • 
• • • 
• • • 

i:l
2 

I(x) 
i:l2 

I(x) 
i:l

2 
• • • i:l 2 I(x) 

i:lXni:lXI i:lxn i:lX2 Xn 

3. VECTOR AND MATRIX FUNCTIONS 

Suppose now that I I, ... ,f m each is a function of the same n x I vector x = 
(x I, ... ,xn )'. These m functions can be conveniently expressed as components 
of the vector function . 

fix) = 

The function I is differentiable at x if and only if each component function 
Ii is differentiable at x. The Taylor fonnulas from the previous section can 
be applied componentwise to f For instance, the first-order Taylor forilluia is 
given by 

I(x + u) =/(x) + 
i:l 

ax,/(x) U + 'I(U,X) =f(x) + df(x) +r1(U,X), 

• 



• 
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where the vector remainder, 7, (U, x), satisfies 

lim =0 
u ->0 

and the first derivative of I at x is given by 

• • • 

a a 
h(x) 

a 
h(x) 

a 
h(x) • • • 

ax' I(x) = ax, aX2 aXn 
• • • 
• • • 
• • • 

a 1m (X) 
a 1m (X) 

a 1m (X) • • • 

ax, aX2 aXn 

This matrix of partial derivatives is sometimes referred to as the Jacobian matrix 
of I at x. Again, it is ~rucial to understand the relationship between the first 
differential and the first derivative. If we obtain the first differential of I at x 
in u and write it in the form 

d/= Bu, 

then the m x n matrix B must be the derivative of I at x. 
If y and g are real-valued functions satisfying y(x) = g(f(x)), then the gen

eralization of the chain rule given in (8.3) is 

a m 

a y(x) = 
Xi j=' 

for i = 1, ... , n, or simply 

a 
ax' y(x) = 

a 
ax, h(x) = 

a 
af' g(J) 

a 
ai' g(/) 

a 
ax' j(x) 

a 
ax,l(x) 

In some applications the hs or the XiS are arranged in a matrix instead of a 
vector. Thus, the most general case involves the p x q matrix function 
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! II (X) ! 12(X) • • • !lq(X) . 

hl(X) !22(X) • • • hq(X) 
F(X) = 

• • • 

• • • 
• • • 

fl'l(X) fI'2(X) • • • !"q(X) 

of the m X n matrix X. Results for the vector functionfix) can be easily extended 

to the matrix function F(X) by utilizing the vec operator; that is, let f be the 

pq X I vector function such thatfivec(X» = vec(F(X». Then, for instance, the 

Jacobian matrix of F at X is given by the pq X mn matrix 

a 
avec(XY !(vec(X» = 

a 
avec(XY vec(F(X», 

which has as its (i,j )th element, the partial derivative of the ith element of 

vec(F(X» with respect to the jth element of vec(X). This could then be used 

to obtain the first-order Taylor formula for vec(F(X + U». The differentials of 

the matrix F(X) are defined by the equations 

. . ,. 

vec(d'F) = vec(duF(X» = d'f= d~ec(u)fivec(X»; 

that is, d' F, the ith order differential of F at X in the incremental matrix U, is 

defined to be the p X q matrix obtained by unstacking the ith-order differential 

of! at vec(X) in the incremental vector vec(U). 

Basic properties of vector and matrix differentials follow in a fairly straight

forward fashion from the corresponding properties of scalar differentials. We 

will summarize some of these properties here. If x and y are functions and ex 

is a constant, then the differential operator, d, satisfies 

(a) dex = 0, 

(b) d(ax) = ex dx, 

(c) d(x + y) = dx + dy, 

(d) d(xy) = (dx)y + x(dy), 

(e) dx'" = ax'" - I dx, 

(f) dex = eX dx, 

(g) d log(x) = [I dx. 

For instance, to illustrate property (d), note that 

(x + dx)(y + dy) = xy + x(dy) + (dx)y + (dx)(dy), 

and d(xy) will be given by the first-degree term in dx and dy, which is (dx)y + 

x(dy) as required. Using the properties above and the definition of a matrix 

• 
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differential, it is easily shown that if X and Y are matrix functions and A is a 
• 

matrix of constants, then 

(h) dA == (0), 

(i) d(aX) == adX, 

(j) d(X') == (dX)', 

(k) d(X + Y) == dX + dY, 

(I) d(Xy)==(dX)Y+X(dy). 

We will verify property (I). Thus, we must show that the (i,j)th element of 

the matrix on the left-hand side of the equation, (d(X Y»ij. is the same as the 

(i,j)th element on the right-hand side. (dX)i.(Y)·j + (X);.(dY).j. where X is //I 

x nand Y is n x m. Using properties (c) and (d). we find that 

(d(XY»U == d{(X)j.(Yh} == d 

n n 

--

/I /I 

-

and so (I) is proven. 
We illustrate the use of some of these properties first by finding the deriva

tives of some simple scalar functions of a vector x, and then by finding the 

derivatives of some simple matrix functions of a matrix X. 

Example 8.1. Let x be an m x 1 vector of unrelated variables and define 

the functions 

f(x) == a'x, 

where a is an m x 1 vector of constants, and 

g(x) = x'Ax. 

where A is an m x m symmetric matrix of constants. The differential of the 

first function is 
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df = d(a'x) = a' dx 

Since this differential and the derivative are related through the equation 

df= 
a 

ax' f dx, 

we immediately observe that the derivative is given by 

a , 
ax' f = a 

The differential and derivative of our second function are given by 

dg = d(x' Ax) = d(x')Ax + x' d(Ax) = (dx)' Ax + x' A dx 

= {(dx)'Ax}' + x' A dx = x'A' dx + x' A dx = 2x'A dx, 
- ,-. -

and 

a 2 ' 
ax'g= xA 

Example 8.2. Let X be an m X n matrix of unrelated variables and define 

the functions 

F(X) = AX, 

where A is a p X m matrix of constants, and 

G(X) = (X - C)' B(X - C), 

where B is an m X m symmetric matrix of constants and C is an m x n matrix of 

constants. We will find the Jacobian matrices by first obtaining the differentials 

of these functions. For our first function, we find that 

dF = d(AX) = A dX, 

so that 

d vec(F) = vec(dF) = vec(A dX) = (In ® A)vec(dX) = (In ® A)d vec(X) 

Thus, We must have 

• 
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a 
-::---=- vec(F) = In ® A 
ovec(X)' 

The differential of our second function is 

dG = d{(X - C)'B(X - C)} 

= {d(X' - C')}B(X - C) + (X - C)'B{d(X - C)} 

= (dX)'B(X - C) + (X - C)'BdX 

From this we obtain 

d vec(G) = {(X - C)' B ® In }vec(dX') + {In ® (X - C)' B}vec(dX) 

= {(X - C)'B ® In}Kmn vec(dX) + {In ® (X - C)'B}vec(dX) 

= Knn{In ® (X - C)'B}vec(dX) + {In ® (X - C)'B}vec(dX) 

= (ln2 + KnnH1n ® (X - C)' B}vec(dX) 

= 2Nn {In ® (X - C)'B}dvec(X), 
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where we have used properties of the vec operator and the commutation matrix. 
Consequently, we have 

a 
-::---- vec(G) = 2Nn {In ® (X - C)'B} 
avec(XY 

In our next example, we show how the Jacobian matrix of the simple trans
fonnation z = c + Ax can be used to obtain the multivariate nonnal density 
function given in (1.13). 

Example 8.3. Suppose thatz is an m x 1 random vector with density function 
I I (z) that is positive for all z E S I k Rm. Let the m x 1 vector x = x(z) represent a 
one-to-one transformation of S 1 onto S2 k Rm , so that the inverse transfor mation 
Z = z(x), x E S2 is unique. Denote the Jacobian matrix of Z at x as 

a 
1 = ax' z(x) 

If the partial derivatives in J exist and are continuous functions on the set S2, 
then the density of x is given by 

h(x) = II (z(x» 1 11 

We will use the formula above to obtain the multivariate nonnal density, given 
in (1.13), from the standard normal density. Now recall that by definition, 
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x "- N",(Jl., n) if x can he expressed as x Jl. + 1'z, where 1'1" , n and the 
components ofz,zh ... , Zm are independently distributed each as N(O, I). Thus, 
the density function of z is given by 

I I I 
f I (Z) = vz; exp - 2 Z,2 - -:-::--:---C/;;;-"2 exp 

(2~)m i = I 27r .. 

m 
I , 

- 2 Z Z 

The differential of the inverse transformation Z = T-1(x - Jl.) is dz = T- 1 dx, 
and so the necessary Jacobian matrix is J = T- 1

• Consequently, we find that 
the density of x is given by 

4. SOME USEFUL MATRIX DERIVATIVES 

In this section we will obtain the differentials and the corresponding derivatives 
of some important scalar functions and matrix functions of matrices. Through
out this section, when dealing with functions of the fonnf(X) or F(X) we will 
assume that the m x n matrix X is composed of mn unrelated variables; that 
is, X is assumed not to have any particular structure such as symmetry, trian
gularity, and so on. We begin with some scalar functions of X. 

Theorem 8.1. Let X be an m x m matrix. Then 

, 0 , 
(a) d{tr(X)} = vec(ll1/) d vec(X); ovec(XY tr(X) = vec(Im), 

o 
(b) dixi = tr(XudX) = Ixl tr(X- 1 dX); -,,-----:-:::::-:- IXI = vec(XN)', . o vec(XY 

where Xu is the adjoint matrix of X. 

Proof Part (a) follows directly from the fact that 

d tr(X) = tr(dX) = tr(lm dX) = vec(lm)' vec(dX) = vec(lm)' d vec(X), 
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with the third equality following from Theorem 7.15. Since XII i~ the transpose 
, of the matrix of cofactors of X, to obtain the derivative in (b), we simply need 
to show that 

where Xij is the cofactor of xI}. By using the cofactor expansion fOllllula on the 
ith row of X, we can write the determinant of X as 

m 
, 

Ixi = L XikXik 

k=1 

Note that for each k, Xik is a detenninant computed after deleting the ith row 
so that each Xik does not involve the element xij. Consequently, we have 

IXI = 
a 

ax-I} 
a 

a Xik x .. 
I} 

Using the relationship between the first differential and derivative and the fact 
that X-I = lXI-I XN, we also get 

dlXI = {vec(XN)}' vec(dX) = tr(X#<iX) = IXI tr(X- 1 dX). 0 

An immediate consequence of Theorem 8.1(b) is the following. 

Corollary 8.1.1. Let X be an m x m nonsingular matrix. Then 

d{log(IXI)} = tr(X- 1 dX); 
vec X), 

Our next result gives the differential and derivative of the inverse of a non
singular matrix. 

Theorem 8.2. If X is a nonsingular m x m matrix, then 

a vec(X-I) = -(X- I' ® X-I) 
ovec(XY 

Proof Computing the differential of both sides of the equation 1m = XX-I, 
we find that 
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Premultiplying this equation by X-I, and then solving for dX- 1 yields 

The expression given for the derivative now follows since 

d vec(X- I) = vec(dX- l ) = -vec(X-I(dX)X-I) 

= _(X-II ® X-I )vec(dX) = _(X-II ® X-I) d vec(X) 0 

A natural generalization of Theorem 8.2 is one that gives the and 

derivative of the Moore-Penrose inverse of a matrix. The following theorem 

gives the form of these when they exist at a matrix X. 

Theorem 8.3. If X is an m X n matrix and X+ is its Moore-Penrose inverse, 

then 

and 

Proof Note that 

from which we get 

(8.5) 
• 

Since X+ = X+XX+, we also have 

dX+ = d(X+XX+) = d(X+X)X+ + X+XdX+ 

= d(X+X)X+ + X+ d(XX+) - X+(dX)X+' (8.6) 

where we have used (8.5) in the last step. Thus, if we obtain expressions for 

d(X+X) and d(XX+) in tellllS of dX, we can then find dX+. To find d(XX+), 
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use the fact that XX+ is symmetric and idempotent to get 

d(XX+) = d(XX+XX+) = d(XX+)XX+ + XX+d(XX+) 

= d(XX+)XX+ + (d(XX+)Xx+)', 

since d(XX+)' = d«XX+),) = d(XX+). But 

since X = XX+X implies that 

Now substituting (8.8) in (8.7), we find that 

dXX+ = (1- XX+)(dX)X+ + {(I - XX+)(dX)X+)' 
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• 

(8.7) 

(8.8) 

= (1- XX+)(dX)X+ + x+'(dX')(I- XX+) (8.9) 

By using the fact that X+X is symmetric and idempotent, we can show in a 
similar fashion that 

Substituting (8.9) and (8.10) into (8.6) and noting that (1- X+X)X+ = (0) and 
X+(I- XX+) = (0), we get 

as is required. The expression given for the derivative follows since, when we 
take the vec of both sides of the equation above, we get 

d vec(X+) = {X+'x+ ® (1- X+X) }vec(dX') + {(I - XX+) ® x+X+' }vec(dX') 

- (X+' ® X+)vec(dX) 

= {X+'X+ ® (I - X+X) + (I - XX+) ® X+X+'}Kmn d vec(X) 

- (X+' ® X+)dvec(X) 0 

5. DERIVATIVES OF FUNCTIONS OF PATTERNED MATRICES 

In this section, we consider the computation of the derivative of a function of 
an m X n matrix X when some of the variables of X are related to one another. 
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In particular, we will focus on the situation in which X is square and symmetric. 

For a more general treatment of the topic of derivatives of functions of patterned 

matrices see Nel (1980). 
If X is an m X m symmetric matrix of variables, then due to the symmetry it 

only contains m(m+ I )/2 mathematically independent variables. These variables 

are precisely the variables comprising the vector v(X). If fiX) is some vector 

function of the matrix X, then the derivative off will be given by the matrix 

We can compute derivatives of this form by utilizing the derivative 

a 
a vec(X)' fiX), 

for a general non symmetric matrix X, along with the chain rule. Specifically, 

from the chain rule we have 

a 
av(x)' fiX) = 

a fiX) 
a vec(X)' 

a 
a v(X )' vec(X) 

It must be emphasized here that the first of the two derivatives on the right

hand side of this equation is computed ignoring the symmetry of X. The sec

ond of these two derivatives can be conveniently expressed by making use 

of the duplication matrix Dm. Since Dm v(X) = vec(X), we immediately get 

Dill d v(X) = d vec(X), and so 

a f(X-a v(X), )-
a 

avec(X)' fiX) Dm 

Consequently, the following results follow directly from Theorems 8.1-8.3. 

Theorem 8.4. Let X be an m X m symmetric matrix of variables. Then 

a I I ' , 
(a) a v(X), X = vec(Xu) Dm , 

a 
(b) -=--=-- vec(X- I) = _(X-I ® X-I )Dm , 

av(x), 

(c) 
v( )' 

• • 



• 

~ 
~. 
• 

• 

f 
• , 
:~ 
;:. .. , 
• • .. · . , 
, 

• 

TIIE PERTURBATION METHOD 337 

The derivatives given in (b) and (c) of Theorem 8.4 still have some redundant 

elements due to the symmetry of X-I and X+. In general, if X is an III x III 

symmetric matrix of variables and the m x m matrix function F(X) is also 

symmetric, then all derivatives of elements of F(X) with respect to elements 

of X will be contained in the. matrix derivative 

a 
av(x), v{F(X)} 

This matrix derivative can be easily computed from the derivative 

A= 
a 

a v(X), vec{F(X)}, (8.11 ) 

by again using the relationship vec(F) = Dm v(F). Thus, since (8.11) implies 

that d vec(F) = A d v(X), we have 

Dm d v(F) = A d v(X), 

or 

D;nDIII d v(F) = d v(F) = D~,A d v(X), 

since D;,Dm = I by Theorem 7.36. Using this we obtain the following deriva

tives. 

Corollary 8.4.1. Let X be an m x m symmetric matrix of variables. Then 

a 
(a) av(x), v(X-') = -D~(X-' ® X-')Dm , 

a 
(b) av(x), v(X+)=D~({X+X+ ® (I-X+X)+(I-XX+) ®X+X+} 

6. THE PERTURBATION METHOD 

The perturbation method is a technique, closely related to the method utilizing 

the differential operator, for finding successive tellllS in a Taylor expansion 

forlllula. In this section. we will use this method to obtain Taylor formulas for 

some important matrix functions. A more rigorous treatment of this SUbject can 

be found in texts such as Hinch (1991). Kato (1982), or Nayfeh (1981). 
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Suppose that the elements of dX are small, which we can emphasize by 

writing dX = e Y, where e is a small scalar and Y is an m X n matrix. Then X + 

e Y represents a small perturbation of the m X n matrix X. The Taylor formula 

for the vector function f of X would then be of the form 

• 

f(X +ey) =f(X) + e'g;(X, y), 

;= I 

where g;(X, Y) represents some vector function of the two matrices X and Y. 

Similarly, if we have a matrix function F then the expansion would be of the 

forlll 

F(X + eY) = F(X) + (8.12) 

; = 1 

Our goal is to determine the first few terllls in the summations given above. 

These then can be used in an approximation of.f'X + e Y) or F(X + e Y) when e 

is small. For instance, suppose that m = n and our function is the matrix inverse 

function; that is, F(X) = X-I. For notational simplicity write Gi(X, Y) = G; and 

suppose that the m x m matrices X and (X + eY) are nonsingular. Then (8.12) 

can be written 

But we must have 

1m = (X + ey)(X + ey)-I 

= (X + ey)(X- 1 + eGI + e2 G2 + e3G3 + ... ) 

= I", + e(Y X-I + XGI) + e2(YGI + XG2) + e\YG2 + XG3) + " . 

If this is to hold for all e, then we must have (YX-I +XGI) = (0) or, equivalently, 

• 

Similarly, we must have (YG I + XG2) = (0) so that 

and, in fact, it should be apparent that we have the recursive relationship 

. . 

• 

• 



• 

• 
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As a result, we have 

(X +€ f)-I = X-I - eX-I YX- I + e2X-1 YX- I YX- I 

- e3X- 1 YX- I YX- I YX- I + "', 

or, if we return to the notation dX = e Y, 

(X + dX)-1 = X-I - X-I (dX)X- 1 + X-I (dX)X- 1 (dX)X- 1 

- X-I (dX)X- 1 (dX)X-1 (dX)X- 1 + ... 

Next we will use this perturbation method to determine the first few telII1S in 
the Taylor series expansion for an eigenvalue of a symmetric matrix. Such an 
expansion will be possible only if the corresponding eigenvalue of the unper
turbed matrix X is distinct. We will first consider the special case in which X 
is a diagonal matrix. 

Theorem 8.5. Suppose X = diag(xl, ... ,XIII)' where XI ~ '" ~ x/ I > x/ > 
XI+ I ~ .. , ~ Xm , so that the lth diagonal element XI differs from the other 
diagonal elements of X. Let U be an m x m symmetric matrix and denote the 
lth largest eigenvalue and corresponding normalized eigenvector of X + U by 
A/(X + U) and 'Y I(X + U), respectively. Then 

+ 
U ·/u ·/u·· , J 'J 

i~l j~l 

. I 
'YI/(X + U)= 1- 2 

and for h il • 

• 
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Ui/U'r; 

-1:1: 
iii jn 

(X/r - x, )(Xj - XI )(Xj - XI) 

where "tlr/(X + U) denotes the hth element of "I I(X + U), and the approximations 

above are accurate up through third-order terms in the us. 

Proof Here U is the perturbation matrix, and we wish to write AI = A/(X + 

U) and "II = "I/(X + U) in the fOllll 

AI = XI + a I + a2 + a3 + ... , 

"I I = el + b I + b2 + b3 + ... , 

(8.13) 

(8.14) 

where a; and b; only involve ith degree tellllS in the elements of U. Substituting 

these expressions in the defining equation (X + U)"I1 = A/"II and then equating 

ith degree tellllS in the elements of U on the left-hand side of this equation to 

those on the right-hand side, we obtain 

Xel = Xlel, 

Xb l + Uel = xlb l + aiel, 

Xb2 + Ubi = xlb2 + alb l + a2el, 

Xb3 + Ub2 = x lb3 + a lb2 + a2bl + a3el 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

In a similar fashion, the normalizing equation "I; "I I = I yields the identities 

, 
elel = 1, 

e;h, +h~el = 0, 

e;b2 + b~bl + b;el = 0, 

e;b3 + b~b2 + b;b l + b;e/ = O. 

(8.19) 

(8.20) 
(8.21) 

(8.22) 
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Equations (S.15) and (S.19) are trivially true, while equations (8.16) and (8.20) 

can be used to find al and bl. Premultiplying (8.16) bye; and then solving for 

aJ, we find that 

(8.23) 

We can then rewrite (8.16) as the system of linear equations 

with the general solution for b l given by 

where CI is an arbitrary constant. Since (X - x/Illite/ = 0 and (8.20) implies 

that e;bl = 0, it follows that CI = ° and thus, 

(8.24) 

Next, we will use (8.17) and (8.21) to find a2 and b2. Premultiplying (8.17) by 

e; and then solving for a2, we find, after again using the fact that e;b l = 0, that 

(8.25) 

Rewriting (8.17) as the system of equations in b2 , 

which for any scalar C2 has as a solution 

1 
C2 =-

2 
, ' 

(Xi - x/)-

and so with this value for C2, the solution for b2 is given by 

(8.26) 



342 MATRIX DERIVATIVES AND RELATED TOPICS 

To find a3. premultiply (8.18) by e~ and solve for a3. after using e~bt = O. to 

get 
• 

a3 = e;(U - at Im)b2 

= e;(U - ul/lm){(X - x,Imt(U - u/llm)(X - x/lmt Vel + C2e,} 

= e;V(X - x,lmt(V - u/llm)(X - x,lmtVe/ 

Equation (8.18) can be expressed as 

so that the solution for b3 will be given by 

b3 = (X - x/lmt {a3e/ + a2bt - (V - at Im)b2 } + C3e/ 

= (X - x/lmt {a2bt - (V - at1m)b2} + C3e" 

(8.27) 

(8.28) 

where c, is an arbitrary constant. By premultiplying this equation bye; and 

using e;b, = -b;b2• which follows from (8.22). we find that 

The results now follow by substituting (8.23). (8.25). and (8.27) in (8.13) and 

(8,24). (8.26). and (8.28) in (8.14). 0 

Theorem 8.5 can be used to obtain expansion forlllulas for a general sym

metric matrix; that is. if Z is an m x m symmetric matrix and W is its associ

ated symmetric perturbation matrix. then we can obtain expansion formulas for 

A,<Z + W) and 'Y,(Z + W). Let Z = QXQ' be the spectral decomposition of Z, so 

that X = diag(x\, .... xm) with x/ being an eigenvalue of Z corresponding to the 

eigenvector q" which is the lth column of Q. As in Theorem 8.5, we assume that 

x, is a distinct eigenvalue. If we let V = Q'WQ, then the vector 
, 

equatIOn 

can be equivalently expressed as 

(X + V)Q' {"f ,(Z + W)} = (>\/(Z + W) }Q' {"I /(Z + W)}; 

, 

, 

• 
• 
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that is, U is the perturbation matrix of X, and A/(Z + W) is an eigenvalue of 
(X + U) corresponding to the eigenvector Q''Y/(Z + W). Thus, if we use the 
elements of U = QWQ' in place of those of U in the formulas in Theorem 
8.5, we will obtain expansions for A/(Z + W) and Q''Y/(Z + W). For instance, 
first-order approximations of A/(Z + W) and 'Y/(Z + W) are given by 

A/(Z + W) = XI + q~W ql' 

'Y/(Z + W) = Q{el - (X - x/lmt(Q'WQ)el} 

= ql - (Z - x/ImtWql 

The following is an immediate consequence of the first-order Taylor expansion 
formulas given above. 

Theorem 8.6. Let A/(Z) be the eigenvalue defined on m x m symmetric 
matrices Z, and let 'Y/(Z) be a corresponding normalized eigenvector. If the 
matrix Z is such that the eigenvalue A/(Z) is distinct, then differentials and 
derivatives at that matrix Z are given by 

d" a, ( , , 
"I = 'Y/(dZ)'Y/, av(z), "I Z) = ("II ® 'Y/)Dm, 

d'Yl = -(Z- A/lmt(dZ)'Y/, 

The expansions given in and immediately following Theorem 8.5 do not 
hold when the eigenvalue XI is not distinct. Suppose, for instance, that again 
XI ~ ••• ~ Xm, but now XI = XI+ 1 = ... = XI+r- It so that the value XI 
is repeated as an eigenvalue of Z = QXQ', r times. In this case, we can -
get expansions for A/,I+r-1 (Z + W), the average of the perturbed eigenvalues 
A/(Z + W), ... ,AI +r- I (Z + W), and the total eigenprojection ~ I associated with 
this collection of eigenvalues; if Pz+ w {A/+i- 1 (Z + W)} represents the eigen
projection of Z + W associated with the eigenvalue AI + i-I (Z + W), then this 
total eigenprojection is given by 

r 

~I = L Pz+ w {A/+i- I(Z + W)} 
i = I 

r 

= L "I I + i - i (Z + W)( "I I + i-I (Z + W»' 
i = I 

These expansions are summarized below. The proof, which is similar to that of 
Theorem 8.5, is left to the reader. 

• 
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Theorem 8.7. Let Z be an m X m symmetric matrix with eigenvalues XI ~ 
... ~ X'_I > X, = X'+I = ... = X'H-I > X'H ~ .. , ~ Xm , so that X, is an 
eigenvalue with multiplicity r. Suppose that W is an m X m symmetric matrix 
and let AI ~ A2 ~ ... ~ Alii be the eigenvalues of Z+ W, while };.U+r-I = r-I(A,+ 
... + A, +' _ I)' Denote the eigenprojection of Z corresponding to the repeated 
eigenvalue X, by P, and denote the total eigenprojection of Z+ W corresponding 
to the collection of eigenvalues A" ... ,A'H-I by <1>,. Define Y = (Z - x,In,)+. 
Then the third-order Taylor approximations 

-
Au+,- I :::: X, + al + a2 + a), 

<1>, :::: P, + B I + B2 + B3 , 

have 

I 
al = - treWP,), 

r 
I 

a2 = - - tr(WYWP,), 
r 

1 2 a, = -{tr(YWYWP,W) - trey WP,WP,W)}, 
r 

BI = -YWP,- P,WY, 

B2 = YWP,WY+ YWYWP, - y 2Wp,Wp, + P,WYWY - p,Wp,Wy 2 

- P,WY 2WPJ, 

B) = Y 2Wp,WYWp, + p,WYWp,Wy 2 + Y 2Wp,Wp,WY + YWp,Wp,Wy 2 

+ y 2WYWp,Wp, + p,Wp,WYWy 2 + YWy 2Wp,Wp, + p,Wp,Wy 2WY 

- y 3Wp,Wp,WP,- p,Wp,Wp,Wy 3 - YWYWP,WY - YWP,WYWY 

- YWYWYWP, - P,WYWYWY + YWp,Wy 2Wp, + p,Wy 2Wp,WY 

+ p,Wy 2WYWp, + p,WYWy 2Wp,- p,Wy 3Wp,Wp, 

- p,Wp,WyJWp, 

7. MAXIMA AND MINIMA 

One important application of derivatives involves finding the maxima or minima 
of a function. A function f has a local maximum at an n x 1 point a if for some 
o > 0, f(a) ~f(a+x) whenever x'x < o. This function has an absolute maximum 
at a if f(a) ~f(x) for all x for whichf is defined. Similar definitions hold for a 
local minimum and an absolute minimum; in fact, iff has a local minimum at 
a point a, then -f has a local maximum at a, and iff has an absolute minimum 
at a. then -f has an absolute maximum at a. For this reason, we will at times 

• 
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confine our discussion to only the case of a maximum. In this section and the 
next section, we state some results that are helpful in finding local maxima and 
minima. For proofs of these results the reader is referred to Khuri (1993) or 
Magnus and Neudecker (1988). Our first result gives a necessary condition for 
a function / to have a local maximum at a. 

Theorem 8.8. Suppose the function lex) is defined for all 11 x I vectors 
xeS, where S is some subset of R". Let a be an interior point of S; that is. 
there exists a 0 > 0 such that a + u e S for all u'u < O. If / has a local 
maximuim at a and / is differentiable at a, then 

a , 
aa' lea) = 0 (8.29) 

Any point a satisfying (8.29) is called a stationary point off. While Theorem 
8.8 indicates that any point at which a local maximum or local minimum occurs 
must be a stationary point, the converse does not hold. A stationary point that 
does not correspond to a local maximum or a local minimum is called a saddle 
point. Our next result is helpful in deteliuining whether a particular stationary 
point is a local maximum or minimum in those situations in which the function 
/ is twice differentiable. 

Theorem 8.9. Suppose the function lex) is defined for all 11 x I vectors 
xeS, Where S is some subset of Rn. Suppose also that/ is twice differentiable 
at the interior point a of S. If a is a stationary point of / and Hr is the Hessian 
matrix of / at a, then 

(a) / has a local minimum at a if HI is positive definite, 

(b) / has a local maximum at a if HI is negative definite. 

(c) / has a saddle point at a if HI is nonsingular but not positive definite or 
negative definite, 

(d) / may have a local minimum, a local maximum, or a saddle point at a 
if HI is singular. 

Example 8.4. On several occasions, we have discussed the problem of find-
A 

ing a least squares solution ~ to the inconsistent system of equations 

y = X~, 

where y is an N x 1 vector of constants, X is an N x (k + I) matrix of constants, 
and p is a (k+ 1) x 1 vector of variables. A solution was obtained in Chapter 2 
by using the geometrical properties of least squares regression, while in Chapter 
6 we utilized the results developed on least squares generalized inverses. In this 
example, we will show how the methods of this section may be used to obtain 
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a solution. We will assume that rank(X) = k xl; that is, the matrix X has 
A 

fun column rank. Recall that a least squares solution P is any vector which 
• 

minimizes the sum of squared errors given by 

A 

The differential of f(Jl) is 

df = d{(y - X~)'}(y - X~) + (y - X~)' d(y - X~) 

= -(d~)'X'(y - X~) - (y - X~)'X d~ = -2(y - X~)'X d~, 

so that 

a" "I 

A' f(Jl) = -2(y - XJl) X 
aJl 

Thus, upon setting this first derivative equal to 0' and rearranging, we find that 
A 

the stationary values are given by the solutions Jl to the system of equations 

A 

X'XJl = X'y (S.30) 

Since X has full column rank, X'X is nonsingular, and so the unique solution 

to (S.30) is 

(S.31) 

In order to verify that this solution minimizes the sum of squared errors, we 
A 

need to obtain the Hessian matrix HI' The second differential of f(Jl) is given 

by 

so that 

d2f = d(df) = -d{2(y - X~)'X d~} = -2{d(y - X~)}'X d~ 

= 2(d~)'X'X d~, 
• 

• 

Since this matrix is positive definite, it follows from Theorem S.9 that the solu-
A 

tion given in (S.31) minimizes f(Jl). 

. , 

• 
• 
• 
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Example 8.5. One of the most popular ways of obtaining estimators of 
unknown parameters is by a method known as maximum likelihood estimation. 
If we have a random sample of vectors Xl, ... ,xn from a population having 
density function f(x; 9), where 9 is a vector of parameters, then the likelihood 
function of 9 is defined to be the joint density function of Xl, .. ' ,X" viewed as 
a function of 9; that is, this likelihood function is given by 

" 
L(9) = 

A 

The method of maximum likelihood estimates 9 by the vector 9, which maxi-
mizes L(9). In this example, we will use this method to obtain estimates of 
.... and () when our sample is coming from the norlllal distribution, Nm ( .... , (}). 

Thus, .... is an m X 1 vector, () is an m x m positive definite matrix, and the 
require~ density function,f(x; .... , (}) is given in (1.13). In deriving the estimates 
tl and (), we will find it a little bit easier to maximize the function 10g(L( .... , () )), 
which is, of course, maximized at the same solution as L( .... , (}). After omitting 
terms from 10g(L( .... , (})) that do not involve .... or (), we find that we must 
maximize the function 

1 1 
g( .... ,(}) = - 2 nlogl(}l- 2 tr(WIU), 

where 

" 
u= (X; - .... )(x; - .... )' 

; = I 

The first differential of g is given by 

• 

" " 1 
+ 2 tr 

; = I ; = I 

=-



348 MATRIX DERIVATIVES AND RELATED TOPICS 

1 
- 2 tr{(dO)o-l(U - nO)o-l} + n(i' - JL)'o-l dJL 

1 
= --::- vec(dO)'(O-1 ® O-I)vec(U - nO) +n(X - JL)'O-I dJL, 

2 

where the second equality used Corollary 8.1.1 and Theorem 8.2, and the fifth 

used Theorem 7.17. Since 0 is symmetric, vec( dO) = d vec(O) = Dm d v(O), 

and so the differential may be reexpressed as 

(8.32) 

and thus, 

a I 
-;:--- g = - {vec(U - nO)},(O-1 ® O-I)Dm 
av(o), 2 

Upon equating these first derivatives to null vectors, we obtain the equations 

nO-I (i' - JL) = 0, 

D~(o-I ® O-I)vec(U - nO) = 0 

From the first of these two equations, we obtain the solution for JL, t1 = i', while 

the second can be rewritten as 

since the symmetry of (U - nO) implies that vec( U - nO) = Dm v( U - nO). 

Premultiplying this equation by D;:'(O ® 0 )D:;; and using Theorem 7.38, we 

find that 

v(U - nO) = 0 

Since (U - nO) is symmetric this implies that (U - nO) = (0), and so the solution 
A 

A 

for 0 is 0 = n- I U. All that remains is to show that the solution (p" 0) yields 

a maximum. By differentiating (8.32), we find that 

• 
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Evaluating this at fl- = x and 0 = n- I U, we find that the first and the fourth 

terllls on the right-hand side of the equation above vanish. In addition, note that 

also vanishes when evaluated at J1. = x. Thus, at J1. = x and 0 = n- I U, 

• 

where 

n -I -n .. 

(0) 
(0) 

_ n D' (0-1 ®O-I)D 
2 m m 

Clearly, Hg is negative definite since 0-1 and D~(O-I ® 0-12Dm are posi

ti ve definite matrices. This then establishes that the solution (,1, 0) = (x, 11- I U) 

yields a maximum. 

8. CONVEX AND CONCAVE FUNCTIONS 

In Section 2.10, we discussed convex sets. Here we will extend the concept of 

convexity to functions and obtain some special results that apply to this class 

of functions. 

Definition 8.1. Let f(x) be a real-valued function defined for aU XES, 

where S is a convex subset of Rm. Thenf(x) is a convex function on S, if 
• 

for all XI E S, X2 E S, and 0 ~ c ~ l. If -f(x) is a convex function, then f(x) 

is said to be a concave function. 
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If f(x) is a convex function, then it is easily verified that the set defined by 

T = {z = (x',y)': XES, Y ~j(x)} 

is a convex subset of Rm + I. For instance, if m = 1, then T will be a convex 

subset of R2. 1n this case, for any a E S, the point (a,j(a» will be a boundary 

point of the set T. Now from the supporting hyperplane theorem, Theorem 2.27, 

we know that there is a line passing through. the point (a,j(a)) such that the 

function f(x) is never below this line. Since this line passes through the point 

(a,/(a», it can be written in the fonn g(x) = j(a) + t(x - a), where t is the slope 

of the line, and thus, for all XES, we have 

j(x) ~f(a) + t(x - a) (8.33) 

The generalization of this result to arbitrary m is given below. 

Theorem 8.10. Let f(x) be a real-valued convex function defined for all 

XES, where S is a convex subset of Rm. Then, corresponding to each interior 

point a E S, there exists an m X 1 vector t such that 

j(x) ~j(a) -+- t'(x - a) (8.34) 

for all XES. 

Proof For any a E S, the point z* = (a' ,j(a))' is a boundary point of the . 

convex set T defined above, and so it follows from Theorem 2.27 that there 

exists an (m + I) x I vector b = (b~, bm + d-:/.O for which b' z ~ b' z* for all 

Z E T. Clearly, for any z = (x',y)' E T, we can arbitrarily increase the value 

of y and get another point in T. For this reason, we see that bm + 1 cannot be. 

negative since if it were, we would be able to make b'z arbitrarily small and, 

in particular, less than b'z*. Thus, bm + 1 is either positive or O. Now for any 

XES, (X',/(X»' E T and so for this choice of z in the inequality b'z ~ b'z*, 

we get 

If bm + 1 is positive, then the inequality above may be rearranged to the fonn 

given in (8.34) with t = -b;;'~lbl' If, on the other hand, bm+1 = 0, then b'z ~ 

b' z* reduces to 

which implies that a is a boundary point of S. Thus, the proof is complete. 0 
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If I is a differentiable function, then the hyperplane given on the right-hand 
side of (8.34) will be given by the tangent hyperplane to I(x) at x = a. 

Theorem 8.11. Let I(x) be a real-valued convex function defined for all 
XES, where S is an open convex subset of Rm. If I(x) is differentiable and 
a E S, then 

I(x) ?/(a) + 
a 

aa,/(a) (x-a) 

for all XES. 

Proof Suppose that XES and a E S, and let y = a - x so that a = x + y. 
Since S is convex, the point 

ca + (1 - c)x = c(x + y) + (I - c)x = x + cy 

is in S for 0 ~ c =:;; 1. Thus, due to the convexity of I, we have 

I(x + cy) ~ cfix + y) + (I - c)/(x) = I(x) + c{f(x + y) - I(x)}, 

or, equivalently, 

I(x + y) ?/(x) + c- I {f(x + cy) - I(x)} (8.35) 

Now since I is differentiable, we also have the Taylor fO[,lIIula 

I(x + cy) = I(x) + 
a 

ax' I(x) cy + rl (cy, x), (8.36) 

where the remainder satisfies lim c-1rl(cy,x) = 0 as c ~ O. Using (8.36) in 
(8.35), we get 

I(x + y) ?/(x) + 
• 

and so the result follows by letting c ~ o. D 

The previous theorem can easily be used to show that a stationary point 
of a convex function will actually be an absolute minimum. Equivalently, a 
stationary point of a concave function will be an absolute maximum of that 

• 

function. 



Theorem 8.12. Let f(x) be a real-valued convex function defined for all 
XES, where S is an open convex subset of Rill. If f(x) is differentiable and 
a E S is a stationary point of f, then f has an absolute minimum at a. 

Proof If a is a stationary point of f, then 

a f(a) = 0' 
aa' 

Using this in the inequality of Theorem 8.11, we getf(x) ~f(a) for all XES, 

and so the result follows. 0 

The inequality given in (8.34) can be used to prove a very useful inequal
ity involving the moments of a random vector x. This inequality is known as 
Jensen's inequality. But before we can prove this result, we will need the fol
lowing. 

Theorem 8.13. Suppose that S is a convex subset of Rm and y is an m x 
1 random vector with finite first moments. If P(y E S) = 1, then E(y) E S. 

• 

Proof We will prove the result by induction. Clearly, the result holds if 
m = 1, since in this case S is an interval, and it is easily demonstrated that a 
random variable y satisfying Pea :::; y :::; b) = 1 for some constants a and b will 
ha ve a :::; E( y) :::; b. Now assuming that the result holds for dimension m - 1, we 
will show that it must then hold for m. Define the conveX set S* =: {x: x=: U -

E(y), U E S} So that the proof will be complete if We show that 0 E S*. Now 
if 0 e S*, it follows from Theorem 2.27 that there exists an m x 1 vector a '" 0 
such that a'x ~ 0 for all x E S*. Consequently, since P(y E S) = pew E S*) =: 1, 
where the random vector w = y - E(y), we have a'w ~ 0 with probability 1, yet 
E(a'w) = O. This is possible only if a'w = 0, in which case w is on the hyperplane 
defined by {x: a'x = O}, with probability one. But since pew e S*) =: 1 as well, 
we must have pew E So) = 1, where So = S* n {x: a'x = O}. Now it follows 
from Theorem 2.23 that So is a convex set, and it is contained within an (m-l)
dimensional vector space since {x: a'x = O} is an (m - I)-dimensional vector 
space. Thus, since our result holds for m - I-dimensional spaces, we must have 
E(w) = 0 E So. This leads to the contradiction 0 E S*, since So ~ S*, and so 
the proof is complete. 0 

, 

We now prove Jensen's inequality. 

Theorem 8.14. Let f(x) be a real-valued convex function defined for all 
XES, where S is a convex subset of Rm. If y is an m x 1 random vector with 
finite first moments and satisfying P(y e S) = 1, then 

• 
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E(f(y» ~f(E(y» 

Proof The previous theorem guarantees that E(y) E S. We first prove the 
result for m = 1. If E( y) is an interior point of S, the result follows by taking 
the expected value of both sides of (8.33) when x = y and a = E( y). Since when 
m = 1, S is an interval, E( y) can be a boundary point of S only if S is closed 
and P( y = c) = 1, where c is an endpoint of the interval. In this case, the result 
is trivial since the terms oil the two sides of the inequality above are equal. We 
will complete the proof by showing that if the result holds for m - 1, then it must 
hold for m. If the m X 1 vector E(y) is an interior point of S, the result follows 
by taking the expected value of both sides of (8.34) with x = y and a = E(y). If 
E(y) is a boundary point of S, then we know from the supporting hyperplane 
theorem that there exists an m X 1 unit vector b such that w = b'y ~ b'E(y) = J.l 
with probability one. But since we also have E(w) = b'E(y) = J.l, it follows that 
b'y = J.l with probability one. Let P be any m X m orthogonal matrix with its 
last column given by b, so that the vector u = P'y has the form u = (u;. J.l)'. 
where UI is an (m - I) x 1 vector. Define the function g(ul) as 

= fey), 

for all UI e S* = {x: x = Ply, YES}, where PI is the matrix obtained from P 
by deleting its last column. The convexity of S* and g follow from the convexity 
of S andf, and so, since UI is (m - 1) x 1. our result applies to g(ud. Thus. 
we have .. . . '" 

E(f(y» = E(g(ud) ~ g(E(ud) =f P E(ul) 
JL 

9. THE METHOD OF LAGRANGE MULTIPLIERS 

=f(E(y» o 

In some situations we may need to find a local maximum of a function f(x). 
where f is defined for all XES, while the desired maximum is over all x in T. a 
subset of S. The method of Lagrange multipliers is useful in those situations in 
which the set T can be expressed in terms of a number of equality constraints; 
that is, there exist functions g" ... ,gm such that 

T = {x: x E R", g(x) = O}, 

whereg(x) is the m x 1 function given by (g1(X), .... gm(x»'. 
The method of Lagrange multipliers involves the maximization of the 
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Lagrange function 

L(x, ~) = I(x) - ~' g(x), 

where the components of the m x 1 vector~, X I , ... , Xm, are called the Lagrange 

multipliers. The stationary values of L(x,~) are the solutions (x,~) satisfying 

o 0 , 
ox' L(x,~) = ox' I(x) - ~ 

o 
ox' g(x) = 0', (8.37) 

o , , 
o~' L(x,~) = -g(x) = 0 

The second equation above is simply the equality constraints 

g(x) = 0 (8.38) 

that detelllline the set T. Under certain conditions,the local maximum of the 

function f(x), subject to x e T, will be given by a vector x that. for some ~, 

satisfies equations (8.37) and (8.38). We will present a procedure for detellnin

ing whether a particular solution vector x is a local maximum. This procedure 

is based on the following result, a proof of which can be found in Magnus and 

Neudecker (1988). 

Theorem 8.15. Suppose the function I(x) is defined for all n x 1 vectors 

xeS, where S is some subset of R" and g(x) is an m x 1 vector function 

defined for all xeS, where m < n. Let a be an interior point of S and suppose 

that the following conditions hold. 

(a) f and g are twice differentiable at a. 

(b) The first derivative of g at a, (o/da')g(a), has full rank m. 

(c) g(a) = O. 

(d) (o/da')L(a,~) = 0', where L(x, ~) = I(x) - ~' g(x) and ~ is m x 1. 

• 

Let Hf and H gj be the Hessian matrices of the functionsf(x) and gi(X) evaluated 

at x = a and define 

m 

;= I 

B= 
o 

oa' g(a) 

• 
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Then I(x) has a local maximum at x = a, subject to g(x) = 0, if 

x'Ax < 0 

for all x-:/:.O for which Bx = O. 

A similar result holds for a local minimum with the inequality x' Ax > 0 
replacing x'Ax < O. Our next result provides a method for determining whether 
x' Ax < 0 or x' Ax > 0 holds for all x-:/:.O satisfying Bx = O. Again, a proof can 
be found in Magnus and Neudecker (1988). 

Theorem 8.16. Let A be an n x n symmetric matrix and B be an m X n 
matrix. For r = I, ... , n, let Arr be the r x r matrix obtained by deleting the 
last n - r rows and columns of A, and let Br be the m x r matrix obtained by 
deleting the last n-r columns of B. For r = \, ... ,n, define the (m+r) x (m+r) 
matrix Ar as 

(0) Br 
B',. Arr 

Then, if Bm is nonsingular, x' Ax > 0 holds for all x-:/:.O satisfying Bx = 0 if 
and only if 

for r = m + 1, ... , n, and x'Ax < 0 holds for all x-:/:.O satisfying Bx = 0 if and 
only if 

• 

for r = m + 1, ... , n. 

Example 8.6. We will find solutions x = (xt. X2, X3)', which maximize and 
minimize the function 

subject to the constraints 

2 2 1 XI + x2 = , 

X3 - XI - X2 = 1 

(8.39) 

(8.40) 
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Setting the first derivative of the Lagrange function 

with respect to x, equal to 0', we obtain the equations 

1- 2A\x\ +A2 = 0, 

1 - 2A\X2 + A2 = 0, 

1 - A2 = 0 

The third equation gives A2 = 1, and when this is substituted in the first two 
equations, we find that we must have 

1 

Using this in (8.39), we find that A\ = ±v2, and so we have the stationary 
points 

1 

v'2' 
when A\ = v'2, 

_ 1 _ 1 1-v22 
v'2' v'2' 

when A\ =-v2 

To detelllline whether either of these solutions yields a maximum or minimum 
we use Theorems 8.15 and 8.16. Thus, since m = 2 and n = 3, we only need 
the dete! minant of the matrix 

0 0 2x\ 2x2 0 
0 0 -1 -1 1 

a3= 2x\ -1 -2A\ 0 0 
2x2 -1 0 -2A\ 0 
0 I 0 0 0 

By using the cofactor expansion fOllllula for a detellllinant, it is fairly straight

forward to show that 
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Thus, when (XI, X2, X3, AI, A2) = (l/Vi, I/Vi, I + Vi, Vi, I), we have 

and so the solution (Xlo X2, X3) = (l/Vi, I/Vi, I + Vi) yields a constrained 

maximum. On the other hand, when (XI, X2, X3, Alo A2) = (-I/Vi, -I/Vi, l-

Vi, - Vi, I), . 

so the solution (Xl. X2, X3) = (-I/Vi, -I/Vi, I - Vi) yields a constrained 
• • 

rrurumum. 

In some situations, in the process of obtaining the stationary values of 

L(x, ~), it becomes apparent which solution yields a maximum and which solu

tion yields a minimum. Thus, in this case, there will be no need to compute the 

ar matrices. 

Example 8.7. Let A be an m x m symmetric matrix and X be an III x I 

vector. We saw in Section 3.6 that 

. . 
• 

x'Ax 

x'x 
(8.41 ) 

has a maximum value of A I (A) and a minimum value of Am(A), where A I (A) ~ 

... ~ Am(A) are the eigenvalues of A. We will prove this result again, this time 

using Lagrange's method. Note that since z = (X'xtl/2x is a unit vector, it 

follows that maximizing or minimizing (8.41) over all X -J. 0 is equivalent to 

maximizing or minimizing the function 

f(z) = z'Az, 

subject to the consbaint 

z'z = I (8.42) 

Thus, the Lagrange function is 

L(z, X) = z'Az - A(Z;'Z; - 1) 
• 

Setting its first derivative, with respect to z, equal to 0', we obtain the equation 
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2Az - 2Az = 0, 

or. equivalently, 

Az = Az, (8.43) 

which is the eigenvalue--eigenvector equation. Thus, the Lagrange multiplier A 
is an eigenvalue of A. Further, premultiplying (8.43) by z' and using (8.42), we 
find that 

A = z'Az; 

that is, if Z is a stationary point of L(z, A), then z' Az must be an eigenvalue 
of A. Consequently, the maximum value of z'Az, subject to z'z = I, is Al(A), 
which is attained when Z is equal to any unit eigenvector corresponding to A 1 (A). 
Similarly, the minimum value of z' Az, subject to z' Z = I, is Am(A), and this is 
attained at any unit eigenvector associated with Am(A). 

In our final example, we obtain the best quadratic unbiased estimator of (12 
in the ordinary least squares regression model. 

Example S.S. Consider the multiple regression model y = Xp + E, where 
E - NN (0, (121). A quadratic estimator of (12 is any estimator, 82 that takes the 
fOllll &2 = y' Ay, where A is a symmetric matrix of constants. We wish to find 
the choice of A that minimizes var(&2) over all choices of A for which 82 is 
unbiased. Now since E(E) = 0 and E(EE') = (121, we have 

E(y'Ay) = E{(XI3 + E)'A(XI3 + E)} = E{I3'X'AXI3 +213'X'AE + E'AE} 

= j3'X' AXI3 + tr{AE(EE')} = I3'X' AXI3 + (12 tr(A), 

and so &2 = y' Ay is unbiased regardless of the value of 13 only if 

X'AX = (0) (8.44) 

and 
• 

tr(A) = 1 (8.45) 

Using the fact that the components of E are independently distributed and the 
first four moments of each component are 0, I, 0, 3, it is easily verified that 
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Thus, the required Lagrange function is 

where the Lagrange mUltipliers are given by A and the components of the matrix 

A, which is symmetric since X' AX is symmetric. Differentiation with respect 

to A yields 

dL = 2a4 tr{(dA)A + A dA} + 4a2p'X' {(dA)A + A dA}XP 

- tr{AX'(dA)X} - Atr(dA) 

= tr( {4a 4A + 4a 2(AXpp'X' + XPP'X' A) - XAX' - AIN } dA) 

Thus, we must use 

along with (8.44) and (8.45) to solve for A. Premultiplying and postmultiplying 

(8.46) by XX+ and using (8.44) and the fact that X+ = (X'xt X', we find that 

, 

XAX' = -}..Xx'" 

Substituting this back into (8.46), we get 

(8.47) 

where H = ky'Y' + 'Y'Y' A and 'Y = Xp. Putting (8.47) back into (8.46) and 

simplifying, we obtain 

(8.48) 

By postmultiplying (8.48) by 'Y, we find that 'Y must be an eigenvector of II, and 

in light of equation (8.48), this can he true only if H is of the fOlIll H ~ c'Y'Y' 

for some scalar c. Further, when we put H = C'Y'Y' in (8.48), we find that we 

must have c = 0; ·thus H = (0). In addition, if we take the trace of both sides of 

(8.47) and use (8.45), we see that 

where r is the rank of X. Consequently, we have shown that (8.47) simplifies 
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to 

(8.49) 

so that 0- 2 = y' Ay = SSE/(N - r) is the familiar residual variance estimate. We 
can easily demonstrate that (8.49) yields an absolute minimum by writing an 
arbitrary symmetric matrix satisfying (8.44) and (8.45), as A* = A + B, where B 
must then satisfy tr(B) = 0 and X' BX = (0). Then, since tr(AB) = 0 and AX = (0), 
we have 

var(y' A*y) = 20-4 tr(A~) + 40-2p'X' A~XP 

PROBLEMS 

= 20-4 {tr(A2) + tr(B2) + 2 tr(AB)} + 40-2p'X' 

. (A2 + B2 + AB:r BA)XP 

= 20-4 {tr(A2) + tr(B2)} + 40-2p'X'B2Xp 

~ 20- 4 tr(A2) = var(y' Ay) 

1. Consider the natural log function, J(x) = log(x). 
(a) Obtain the kth-order Taylor fonllula for J(1 + u) in powers of u. 

(b) Use the fonllula in part (a) with k = 5 to approximate log(1.1). 

2. Suppose the functionJ of the 2 x I vector x is given by 

Give the second-order Taylor fonllula for J(O + u) in powers of UI and U2· 

3. Suppose the 2 x 1 functionJ of the 3 x I vector x is given by 

J(x) = 

and the 2 x I function g of the 2 x 1 vector z is given by 

g(z) = Z2/ZI 
ZIZ2 
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Use the chain rule to compute 

a 
ax' y(x), 

where y(x) is the composite function defined by y(x) = g(J(x» . 

• 

4. Let A and B be m x m symmetric matrices of constants and x be an III x I 
vector of variables. Find the differential and first derivative of the function 

f(x) = x'Ax 
x'Bx 

5. Let A and B be m x n matrices of constants and X be an II x II! matrix of 
variables. Find the differential and derivative of 
(a) tr(AX), 

(b) tr(AXBX). 

6. Let X be an m x m nonsingular matrix and A be an III x m matrix of 
constants. Find the differential and derivative of 

(a) IX2 1, 
(b) tr(AX-'). 

7. Let X be an m x n matrix with rank(X) = n. Show that 

vec(X)' 

8. Let X be an m x m matrix and n be a positive integer. Show that 

9. Let A and B be n x m and m x n matrices of constants, respectively. If X 
is an m x m nonsingular matrix find the derivatives of 

(a) vec(AXB), 

(b) vec(AX-' B). 

10. Show that if X is an m x m nonsingular matrix and X# is its adjoint matrix, 
then 



• 

362 MAI'RIX DERIVATIVES AND RELATED TOPICS 

I \. Prove Corollary 8. \. \. 

12. Let X be an m x m symmetric matrix of variables. For each of the following 

functions, find the Jacobian matrix 

o 
o v(X), vec(F) 

(a) F(X) = AXA', where A is an m x m matrix of constants. 

(b) F(X) = XBX, where B is an m x m symmetric matrix of constants. 

13. Let X be an m x m matrix having correlation structure; that is, X is a 

symmetric matrix of variables except that each of its diagonal elements is 

equal to one. Show that, if X is nonsingular, then 

o v(X-I) = -2i (X-I ® X-I)i' 
ov(X)' m m 

14. Suppose that Y is an m x m symmetric matrix and E is a scalar such that 

Om + € n- I exists. Let (1m + E n- I/ 2 be the symmetric square root of (1m + 

€ n- I so that . 

Using perturbation methods, show that 

i= I 

where 

B I Y B J Y 2 B 5 Y 3 d B 35 Y 4 
I = - 2 ' 2 = ii ' J = - T6 ' an 4 = 128 . 

15. Let S be an III x m sample covariance matTix, and suppose that n, the 

corresponding population covariance matrix, has each of its diagonal ele

ments equal to one. Define A to be the difference between these two matri

ces; that is. A = S - n, so that S = n + A. Note that the population 

correlation matrix is also n, while the sample correlation matrix is given 

b R D -I/2SD-I/2 h D- I/2 d' -1/2 -1/2) Sh th th 
y = s s, were s = lag(s II , ... , Smm' ow at e 
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approximation R = {} + C I + C2 + C3, accurate up through third-order tel illS 

in the elements of A, is given by 

where DA = diag(all,"" amm }. 

16. Derive the results given in Theorem 8.7. First obtain expressions for B" B2, 

and B3 by utilizing the equations (2 + W}<I> I = <I> 1(2 + W), <I>i = <I> I, and 

~I = <I> I. Then obtain expressions for aJ, a2, and a3 by using the fact that 

hl,/H-1 = ,-1 tr{(2 + W}<I>/}. 

17. Let X = diag(xl,.,. ,xm }, where XI ~ '" ~ Xm , and suppose that the lth 

diagonal element is distinct so that XI -f- Xi if i -f- l. Let hi ~ '" ~ hIlI 

and "'I I, ' . , ,"'I m be the eigenvalues and corresponding eigenvectors of (1", + 

V }-I (X + U), where U and V are m x m symmetric matrices; that is, for 

each i 

(X + U}'Y i = M1m + V }'Y i 

The purpose of this exercise is to obtain the first-order approximations 

hl = XI + al and "'I 1 = eel + b l, where el is the lth column of 11/1' Higher

order approximations can be found in Sugiura (I 976}, These approxima

tions can be detelJuined by using the eigenvalue--eigenvector equation just 

given along with the appropriate scale constraint on "'I I. 

(a) Show that al = UI/ - XlVII. 

(b) Show that if e = I and "'I; "'I I = I, then 

Uti - XlVii 
bi , = - for all i -f- I, 

Xi - XI 

where bil is the ith component of the vector bl' 

(c) Show that if e = 1 and 'Y;(1m + V}'YI = I, then 

Uli - XlVii 
bi! = - for alI if- l 

Xi - XI 
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(d) Show that if c = xi/2 and "I; "I / = A/, then 

bll = , 
1/2( ) 

b 
_ x/ Uti - X/Vii 

i1 - - , for all i -J. l 
Xi - XI 

I 8. Consider the function f of the 2 x I vector x given by 
• 

f(x) = 2xi + xi - 6xI - 27x2 

(a) Detelllline the stationary points of f. 
(b) Identify each of the points in part (a) as a maximum, minimum, or 

saddle point. 

19. For each of the following functions detelluine any local maxima or minima. 

(a) xi + ix~ - 2x1 X2 + XI - 2x2 + I. 
(b) xi + ~xf + x~ - 6xI - 2x2· 

(c) xi + 2xi +xj + 2xIX3 - 3X2 - X3· 

20. Let a be an m x I vector and B be an m x m symmetric matrix, each 
containing constants. Let x be an m x I vector of variables. 
(a) Show that the function 

f(x) = x'Bx + a'x 

has stationary solutions given by 

where y is an arbitrary m x I vector. 

(b) Show that if B is nonsingular, then there is only one stationary solution. 
When will this solution yield a maximum or a minimum? 

21. If the Hessian matrix HI of a function f is singular at a stationary point 
x, then we must take a closer look at the behavior of this function in the 
neighborhood of the point x to detelluine whether the point is a maximum, 
minimum, or a saddle point. For each of the functions below, show that 0 
is a stationary point and the Hessian matrix is singular at O. In each case, 
detelllline whether 0 yields a maximum, minimum, or a saddlepoint, 

(a) xi+x~. 
(b) XTX~ - xt - 4 
(c) xi - x~. 
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22. Suppose that we have independent random samples from each of k mul

tivariate normal distributions with the ith distribution being NIIIC .... i • n). 

Thus. these distributions have possibly different mean vectors but identical 

covariance matrices. If the ith sample is denoted by Xii, ...• Xi",. show that 

the maximum likelihood estimators of .... i and n are given by 

nI 

L 
xij tL; = Xi = , 
nj 

j=1 

where n=nl + ···+nk. 

• 

23. Consider the multiple regression model. 

y = Xp + E, 

• n 

where y is N xl, X is N x m. (3 is m x 1. and E is N x 1. Suppose that 

rank(X) = m and E - NN(O,q2IN). so that y - NN(Xp.q 2IN). Find the 

maximum likelihood estimates of P and q2. 

24. Letf(x) be a real-valued convex function defined for all XES. where S is 

a convex subset of Rm. Show that the set T = {z = (x'.y)': XES. y ~f(x)} 
• 
IS convex. 

25. Suppose thatf(x) and g(x) are convex functions both defined on the convex 

set S ~ ~. Show that the function aj{x) + bg(x) is convex if a and b are 

nonnegative scalars. 

26. Prove the converse of Theorem 8.11; that is. show that if f(x) is defined 

and differentiable on the open convex set Sand 

f(x) ~f(a) + 
a a f(a) (x - a) 
a' 

for all xeS and a e S, thenf(x) is a convex function. 

27. Letf(x) be a real-valued function defined for all xeS, where S is an open 

convex subset of Rm, and suppose thatf(x) is a twice differentiable function 

on S. Show thatf(x) is a convex function if and only if the Hessian matrix 

HI is nonnegative definite at each xeS. 

28. Let x be a 2 x 1 vector and consider the function f<x) = xf x~ -" for all 

xeS, where 0 < a < 1 and S = {x: XI > 0, X2 > O}. 
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(a) Use the previous exercise to show that!(x) is a concave function. 

(b) Show that if y is a 2 x 1 random vector with finite first moments and 
satisfying P(y E S) = 1, then 

if 0 < Ci < I. 

29. Let x be a 3 x 1 vector and define the function 

f(x) = XI +X2 - X3 

Find the maximum and minimum of f(x) subject to the constraint x'x = 1. 

30. Find the shortest distance from the origin to a point on the surface given 

by 

31. Let A be an m x m positive definite matrix and x be an m x 1 vector. Find 

the maximum and minimum of the function 

f(x) = x'x, 

subject to the constraint x' Ax = 1. 

32. Find the maximum and minimum of the function 

subject to the constraints xT + x~ = I and XIX3 + X2 = 2 . 

• 

33. For a 3 x 1 vector x, maximize the function 

subject to the constraint XI +X2 +X3 = a, where a is some positive number. 

Use this to establish the inequality . 

for all positive real numbers XI, X2, and X3. Generalize this result to m 
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variables; that is, if x is m xl, show that 

m 

holds for all positive real numbers x I, ... , Xm . 

34. Let A and B be m x m matrices, with A being nonnegative definite and 
B being positive definite. Following the approach of Example 8.7, use the 
Lagrange method to find the maximum and minimum values of 

x'Ax 
f(x) = 'B ' x x 

over all x 4:. O. 

35. Let a be an m x 1 vector and B be an m x m positive definite matrix. Using 
the results of the previous exercise, show that for x 4:. 0, 

has a maximum value of 

f(x) = (a'x)2 
x'Bx 

'B- 1 a a 

• 

This result can be used to obtain the union-intersection test (see Example 
3.14) of the multivariate hypothesis Ho: f.L = f.Lo against HI: f.L,J f.Lo. where 
f.L represents the m x 1 mean vector of a population and f.Lo is an m x I 
vector of constants. Let x and S denote the sample mean vector and sample 
covariance matrix computed from a sample of size n from this population. 
Show that if we base the union-intersection procedure on the univariate t 
statistic 

for testing Ho: /L = /Lo, then the union-intersection test can be based on 
T 2 = n(X - f.Lo)' S-I (X - f.Lo). 

36. Suppose that XI, ••• , Xn are independent and identically distributed random 
variables with mean /L and variance q2. Consider a linear estimator of /L 

which is any estimator of the fOHn Ii = Ea;x;, where a I •... , an are constants. 
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(a) For what values of aJ, ... , an will Ii. be an unbiased estimator of p.? 

(b) Use the method of Lagrange multipliers to show that the sample mean 
x is the best linear unbiased estimator of p.; that is, oX has the smallest 
variance among all linear unbiased estimators of p.. 

37. A random process involves n independent trials, where each trial can result 
in one of k distinct outcomes. Let Pi denote the probability that a trial results 
in outcome i and note that then PI + .. ·+Pk = 1. Define the random variables, 
XI> ••• ,Xk, where Xi counts the number of times that outcome i occurs in 
the n trials. Then the random vector x = (x\, ... ,Xk)' has·the multinomial 
distribution with probability function given by 

where nl, ... , nk are nonnegative integers satisfying nl + ... + nk = n. Find 
the maximum likelihood estimate of p = (P\,··· ,Pd'. 

38. Suppose that the m x m positive definite covariance matrix 0 is partitioned 
in the fOIIIl 

0= 

where 0 II is ml x ml, 0 22 is m2 x m2, and ml +m2 = m. Suppose also that 
the m x 1 random vector x has covariance matrix 0 and is partitioned as 
x = (x; ,x;)" where XI is ml x 1 and X2 is m2 x 1. If the ml x 1 vector a and 
m2 x 1 vector b are vectors of constants, then the square of the correlation 
between the random variables u = a'xl and v = b'X2 is given by 

Show that the maximum value of f(x), that is, the maximum squared cor
relation between u and v, subject to the constraints 

a'Olla=l, b'022b = 1 

is the largest. eigenvalue of 0 Ii 0 120 2i 0 ~ 2 or, equivalently, the largest 
eigenvalue of 02iO;20Ilo 12. What are the vectors a and b that yield this 
maximum? 
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39. Consider the function,f(P) = tr(PXP'D), where P is an III x /II orthogonal 

matrix, and both X and D are m x m positive definite matrices. Further, 

suppose that D is diagonal with distinct, descending, positive diagonal ele

ments; that is, D= diag(d" ... ,dm) with d l > ... > din> O. 

(a) By working with the Lagrange function, 

L(P,A)=tr(PXP'D)+tr{A(PP' -1m)}, 

where A is a symmetric matrix of Lagrange multipliers, show that the 

stationary points of f(P) occur when PXP' is diagonal. 

(b) Use part (a) to show that 

and 

max f(P) = 
P;PP'=I 

III 

min f(P) = 
P;PP'=I 

i= 1 

In 

djAj(X), 
j = 1 

dm + 1- jAi(X), 

where AI(X) ~ ... ~ Am(X) > 0 are the eigenvalues of X. 



CHAPTER NINE 

Some Special Topics Related 

to uadratic Fonns 

1. INTRODUCTION 

We have seen that if A is an m x m summetric matrix and x is an m x 1 vector, 

then the function of x, x'Ax, is called a quadratic fOlJn in x. In many statistical 

applications, x is a random vector, while A is a matrix of constants. The most 

common situation is one in which x has as its distribution, or its asymptotic 

distribution, the multivariate normal distribution. In this chapter, we investigate 

some of the distributional properties of x' Ax in this setting. In particular, we 

are most interested in detelluining conditions under which x' Ax will have a 

chi-squared distribution. 

2. SOME RESULTS ON IDEMPOTENT MATRICES 

We have noted earlier that an m x m matrix A is said to be idempotent if A 2 = A. 

We will see in the next section that idempotent matrices play an essential role in 

the discussion of conditions under which a quadratic fOllll in normal variates has 

a chi-squared distribution. Consequently, this section is devoted to establishing 

some of the basic results regarding idempotent matrices. 

Theorem 9.1. Let A be an m x m idempotent matrix. Then 

(a) 1m - A is also idempotent, 

(b) each eigenvalue of A is 0 or 1, 

(c) A is diagonalizable, 
(d) rank(A) = tr(A). 

370 

• 



SOME RESULTS ON IDEMPOTENT MATRICES 371 

Proof. Since A2 = A, we have 

(1m - Al = 1m - 2A + A 2 = 1m - A, 

and so (a) holds. Let "A be an eigenvalue of A corresponding to the eigenvector 
x so that Ax = "Ax. Then since A2 = A, we find that 

which implies that 

"A("A-I)x=O 

Since eigenvectors are nonnull vectors, we must have A("A - I) = 0, and so (b) 
follows. Let r be the number of eigenvalues of A equal to one, so that m - r is 
the number of eigenvalues of A equal to zero. As a result, A - 1m must have r 
eigenvalues equal to zero and m - r eigenvalues equal to -1. By Theorem 4.8, 
(c) will follow if we can show that 

rank(A) = r, rank(A - I"J = m - r (9.1 ) 

Now from Theorem 4.10, we know that the rank of any square matrix is at least 
as large as the number of its nonzero eigenvalues, so we must have 

rank(A) ;::: r, rank(A - 1m) ;::: m - r (9.2) 

But Corollary 2.12.1 gives 

rank(A) + rank(lm - A) $; rank{A(lm - A)} + m = rank{(O)} + m = m, 

which together with (9.2) implies (9.1), so (c) is proven. Finally, (d) is an imme
diate consequence of (b) and (c). 0 

Since any matrix with at least one 0 eigenvalue has to be a singular matrix, 
a nonsingular idempotent matrix has all of its eigenvalues equal to I. But the 
only diagonalizable matrix with all of its eigenvalues equal to I is the identity 
matrix; that is, the only nonsingular m x m idempotent matrix is 1m. 

If A is a diagonal matrix, that is, A = diag(a" ... , am), then A2 = 
diag(ai, ... ,a~). Equating A and A 2, we find that a diagonal matrix is idempo
tent if and only if each diagonal element is 0 or l. 

Example 9.1. Although an idempotent matrix has each of its eigenvalues 
equal to 1 or 0, the converse is not true; that is, a matrix having only eigenvalues 



" 
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or I and 0 need not be an idempotent matrix. For instance, it is easily verified 
that the matrix 

010 
A = 0 0 0 

001 
. 

• 

has eigenvalues 0 and I with multiplicities 2 and I, respectively. However, 

so Ihat A is not idempotent. 

000 
A2 = 0 0 0 , 

001 

The matrix A in the example above is not idempotent because it is not diag
onalizable. In other words, an m X m matrix A is idempotent if and only if 
each of its eigenvalues is 0 or I and it is diagonalizable. In fact, we have the 
following special case. 

Theorem 9.2. Let A be an m X m symmetric matrix. Then A is idempotent 
if and only if each eigenvalue of A is 0 or L 

Proof Let A = XAX' be the spectral decomposition of A, so that X is an 
orthogonal matrix and A is diagonal. Then 

Clearly, this equals A if and only if each diagonal element of A, that is, each 
eigenvalue of A, is 0 or 1. 0 

Our next result gives some conditions for the sum of two idempotent matrices 
and the product of two idempotent matrices to be idempotent. 

Theorem 9.3. Let A and B be m x m idempotent matrices. Then 

(a) A + B is idempotent if and only if AB = BA = (0), 

(b) AB is idempotent if AB = BA. 

Proof Since A and B are idempotent, we have 

(A + Bi = A2 + B2 + AB + BA = A + B + AB + BA, 
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so that A + B will be idempotent if and only if 

AB= -BA (9.3 ) 

Premultiplication of (9.3) by B and postmultiplication by A yields the identity 

(BA)2 = -BA, (9.4) 

since A and B are idempotent. Similarly, premultiplying (9.3) by A and post
multiplying by B, we also find that 

(AB)2 = -AB (9.5) 

. Thus, it follows from (9.4) and (9.5) that both -BA and -AB are idempotent 
matrices, and due to (9.3), so then is AB. Part (a) now follows since the null 
matrix is the only idempotent matrix whose negative is also idempotent. To 
prove (b). note that if A and B commute under multiplication, then 

(AB)2 = ABAB = A(BA)B = A(AB)B = A2 B2 = AB, 

and so the result follows. o 

Example 9.2. The conditions given for (A + B) to be idempotent are neces
sary and sufficient, while the condition given for AB to be idempotent is only 
sufficient. We can illustrate that this second condition is not necessary through 
a simple example. Let A and B be defined as 

A= 
1 I 
o 0 ' 

B = 0 0 
I I ' 

and observe that A2 = A and B2 = B, so that A and B are idempotent. In addition. 
AB = A, so that AB is also idempotent. However, AB f. BA since BA = B. 

Most of the statistical applications involving idempotent matrices deal with 
symmetric idempotent matrices. For this reason, we end this section with some 
results for this spt.cial class of matrices. The first result gives some restrictions 
on the elements of a symmetric idempotent matrix. 

Theorem 9.4. Suppose A is an m X m symmetric idempotent matrix. Then 

(a) aii ;::: 0 for i = 1 ..... m, 

(b) aii:S; 1 for i= 1 •...• m, 
(c) aij = aji = 0, for allj f. i. if ai,. = 0 or aii = 1. 
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Proof Since A i"s idempotent and symmetric, it follows that 

m 

aii = (A)ii = (A 2)ii = (A' A)ii = (A')i·(A)·i :: L aJi' 
j=1 

which clearly must be nonnegative. In addition, from (9.6) we have 

(9.6) 

so that aii ~ a;'. and, thus (b) must hold. If aii :: 0 or aii :: 1, then ajj :: ali and 

so we must have 

j~i 

which. along with the symmetry of A, establishes (c). o 

The following theorem is useful in those situations in which it is easier to 

verify an identity such as A" = A2 than the identity A2 = A. 

Theorem 9.5. Suppose that for some positive integer i, the m X m sym

metric matrix A satisfies Ai + I :: Ai. Then A is an idempotent matrix. 

Proof If A I, ... ,Am are the eigenvalues of A, then A\ + I, ... ,A~+ I and 

A;, ... , A;" are the eigenvalues of Ai+ I and Ai, respectively. But the iden~ 

. Ai + I Ai' I' h ~ i + I ~ i & • I h ~ b 
lIty = Imp les t at I\j :: I\j' lOr]:: , ... ,m, so eac I\j must e 

either 0 or I. The result now follows from Theorem 9.2. 0 

3. COCHRAN'S THEOREM 

The following result, sometimes referred to as Cochran's Theorem [Cochran 

( 1934) j, will be very useful in establishing the independence of several different 

quadratic forms in the same normal variables. 
• 

Theorem 9.6. Let each of the m X m matrices A I, ... ,Ak be symmetric and 

idempotent, and suppose that AI + ... +Ak :: 1m. Then AiAj :: (0) whenever i:/- j. 

Proof Select anyone of the matrices, say Ah, and denote its rank by r. Since 

A" is symmetric and idempotent, there exists an orthogonal matrix P such that 

• 
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For j -:/- h, define Bj = P' AjP, and note that 

1m = P'lmP = P' P= 

= diag(l" (0)) + Bj , 

ji-h 

or, equivalently, 

Bj = diag((O), 1m - r) 

In particular, for 1 = 1, ... , r, 

~ (Bj )/1 = 0 
jill 

p'A-P 
J 

375 

But clearly, Bj is symmetric and idempotent since Aj is, and so, from Theorem 
9.4(a), its diagonal elements are nonnegative. Thus, we must have (Bj )/1 = 0 for 
each 1 = 1, ... , r, and this, along with Theorem 9.4(c), implies that Bj must be 
of the form 

where Cj is an (m - r) X (m - r) symmetric idempotent matrix. Now, for any 
j -:/- h, 

p' Ah, AjP = (P' AhP)(P' AjP) = diag(l" (0)) diag((O), Cj ) = (0), 

which can be true only if AhAj = (0), since P is nonsingular. Our proof is now 
complete, since h was arbitrary. 0 

Our next result is an extension of Cochran's Theorem. 

Theorem 9.7. Let AI, ... ,Ak be m X m symmetric matrices and define A = 
A I + ... + Ak. Consider the following statements. 



376 SOME SPECIAL TOPICS RELATED TO QUADRATIC FORMS 

(a) Aj is idempotent for i = 1, ... , k. 

(b) A is idempotent. 

(c) AjAj = (0), for all i '" j. 

Then if any two of these conditions hold, the third condition must also hold. 

Proof First we show that (a) and (b) imply (c). Since A is symmetric and 
idempotent, there exists an orthogonal matrix P such that 

p' AP = P'(A 1 + ... + AdP = diag(I" (0», (9.7) 

where r = rank(A). Let Bj = p' AjP for i = I, ... , k, and note that Bj is symmetric 
and idempotent. Thus, it follows from (9.7) and Theorem 9.4 that Bi must be 
of the fOlln diag(Cj, (0», where the rX r matrix Cj also must be symmetric and 
idempotent. But (9.7) also implies that 

Consequently, CJ, ... , Ck satisfy the conditions of Theorem 9.6 and so CjCj = 
(0) ('or every i '" j. From this we get BjBj = (0) and, hence, AjAj = (0) for every 
i '" j as is required. That (a) and (c) imply (b) follows immediately, since 

• 

k 2 

A2= LA; 
j ~ I j~1 j~1 j ~ I 

k 

= L Aj =A 
j ~ I 

Finally, we must prove that (b) and (c) imply (a). If (c) holds, then AjAj = 
AjAj for all i :/- j, and so by Theorem 4.16, the matrices A J, ... , Ak can be 
simultaneously diagonalized; that is, there exists an orthogonal matrix Q such 
that 

Q'AjQ = D j , 

where each of the matrices D\, ... , Dk is diagonal. Further, 
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for every j -:/- j. Now since A is symmetric and idempotent so also is the diagonal 
matrix 

Q' AQ = DI + ... + Dk 
• 

As a result, each diagonal element of Q' AQ must be either 0 or 1, and due 
to (9.8) the same can be said of the diagonal elements of D 1, ••• , Dk . Thus, 
for each i, Di is symmetric and idempotent, and hence so is Ai = QDiQ'. This 
completes the proof. 0 

Suppose that the three conditions given in Theorem 9.7 hold. Then (a) 

implies that tr(Ai~ = rank(A j ), and (b) implies that 

k 

rank(A) = tr(A) = tr L Ai 
i = I 

k k 

= L tr(Aj) = L rank(A;) 
j = I j = I 

Thus, we have shown that the conditions in Theorem 9.7 imply the founh con
dition 

",k (d) rank(A) = ~i= I rank(A j ). 

Conversely, suppose that conditions (b) and (d) hold. We will show that these 
imply (a) and (c). Let H = diag(AIo ... ,Ad and F = 111/ ® 111/ so that A = F' H F. 
Then (d) can be written rank(F'HF) = rank(H), and so it follows from Theorem 
5.24 that F(F' H F)-F' is a generalized inverse of H for any generalized inverse 
(F' H F)-, of F' H F. But since A is idempotent, AlmA = A and hence 111/ is a 
generalized inverse of A = F'HF. Thus, FF' is a generalized inverse of H, 
yielding the equation 

HFF'H = H, 

which in partitioned fOlln is 

A2 
I AIA2 ... AIAk Al (0) • • • (0) 

A2AI A2 • • • A2Ak (0) Ao • • • (0) 2 ---• • • • • • 
• • • • • • 
• • • • • • 

AkAI AkA2 • • • A2 (0) (0) • • • Ak k 

This immediately gives conditions (a) and (c). The following result summarizes 
the relationship among these four conditions. 
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Corollary 9.7.1. Let AI> . .. , Ak be m X m symmetric matrices and define 

A = AI + ... + Ak. Consider the following statements. 

(a) Ai is idempotent for i = 1, ... , k. 

(b) A is idempotent. 

(c) AiAj = (O), for all i -j. j. 
",k 

(d) rank(A} = ""'i= I rank(A j }. 

All four of the conditions hold if any two of (a), (b), and (c) hold, or if (b) and 

(d) hold. 

4. DISTRIBUTION OF QUADRATIC FORMS IN NORMAL 

VARIATES 

The relationship between the nOllnal and chi-squared distributions is fundamen

tal in obtaining the distribution of a quadratic fOlln in nOllllal random variables. 

Recall that if ZI •... , Zr are independent random variables with Zi - N(O, I} for 

each i, then 

r 

i = I 

This is used in our first theorem to determine when the quadratic form x' Ax has 

a chi-squared distribution if the components of x are independently distributed, 

each having the N(O, 1) distribution. 

Theorem 9.8. Let x - Nm(O, 1m}, and suppose that the m x m matrix A is 

symmetric, idempotent, and has rank r. Then x'Ax - X;. 

Proof Since A is symmetric and idempotent, there exists an orthogonal 

matrix P such that 

A = PDP', 
• 

where D = diag(l" (0)). Let Z = P'x and note that since x - Nm(O, 1m}, 

E(z} = E(P'x} = P'E(x} = p'O = 0, 

var(z} = var(P' x} = p' {var(x}}P = P'lmP = p' P = 1m, 

. 

and so z - Nm(O, 1m}; that is, the components of z are, like the components of 

x, independent standard nOIlnal random variables. Now due to the forll1 of D, 

• 
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we find that 

r 

x'Ax=x'PDP'x=z'Dz= L z~, 
i = I 

and the result then follows. 

379 

o 

The result above is a special case of the next theorem in which the multi

variate nOllnal distribution has a general nonsingular covariance matrix. 

Theorem 9.9. Let x - Nm(O, O}, where 0 is a positive definite matrix, and 

let A be an m X m symmetric matrix. If AO is idempotent and rank(AO} = r, 

then x'Ax - x~. 

Proof Since 0 is positive definite, there exists a nonsingular matrix T sat

isfying 0 = TT'. If we define z = T-1x, then E(z} = T-1E(x} = 0, and 

so that z - Nm(O, 1m}. The quadratic fOlln x' Ax can be written in tellns of z 
• 

SInce 

All that remains is to show that T'AT satisfies the conditions of the previous 

theorem. Clearly, T' A T is symmetric, since A is, and idempotent since 

(T'AT}2 = T'ATT'AT= T'AOAT= T'AT, 

where the last equality follows from the identity AOA = A, which is a conse

quence of the fact that AO is idempotent and 0 is nonsingular. Finally, since 

T' A T and AO are idempotent, we have 

rank(T' AT) = tr(T' AT} = tr(A TT'} = tr(AO} = rank(AO} = r, 

and so the proof is complete. o 

It is not uncommon to have a quadratic fOlln in a vector that has a singu

lar multivariate nOllnal distribution. Our next result generalizes the previous 

theorem to this situation. 
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Theorem 9.10. Let x - NII1 (O,!l), where !l is positive semidefinite, and 
suppose that A is an m X m symmetric matrix. If !lA!lA!l = !lA!l and tr(A!l) = 
r, then x' Ax - X;. 

Proof Let n = rank(!l), where n < m. Then there exists an m X m orthogonal 
matrix P = [PI P21 such that 

A 
(0) 

(0) 
(0) 

where PI is m x n and A is an n X n nonsingular diagonal matrix. Define 

Z= = P'x, 

and note that since P'O = 0 and P'!l P = diag(A, (0», z - Nm(O, diag(A, (0))). 
But this means that z = (z;, 0')', where z I has the nonsingular distribution 
N,,(O, A). Now 

x'Ax = x'PP'APP'x = z'P'APz = z;P;APIZI, 

and so the proof will be complete if we can show that the symmetric matrix 
P;API satisfies the conditions of the previous theorem, namely, that P;APIA 
is idempotent and rank(P;AP I A) = r. Since !lA!lA!l = !lA!l, we have 

(AI/2p~APIAI/2)3 = AI/2p;A(PIAP~)A(PIAP~)APIAI/2 

= AI/2p;A!lA!lAPIAI/2 = AI/2p;A!lAPIAI/2 

= AI/2p;A(PIAP;)APIAI/2 = (AI/2p;APIAI/2)2, 

• 

and so the idempotency of A 1/2 P;API AI/2 follows from Theorem 9.5. However, 
this also establishes the idempotency of P;API A since A is nonsingular. Its rank 
• • 

IS r SiOce 

. To this point, all of our results have dealt with normal distributions having 
the· zero mean vector. In some applications, such as the detellllination of non
null distributions in hypothesis testing situations, we encounter quadratic fonns 
in nOlll1al vectors having nonzero means. The next two theorems are helpful 

• 



• • 

• 
• • 

• 

• 

• , 
• , , 
• 

• 

DISTRIBUTION OF QUADRATIC FORMS IN NORMAL VARIATES 381 

in detellllining whether such a quadratic fOIlf! has a chi-squared distribution. 
The proof of the first of these two theorems, which is very similar to that of 
Theorem 9.9, is left to the reader. It utilizes the relationship between the nOJ lIlal 
distribution and the noncentral chi-squared distribution; that is, if YI, ... ,y, are 
independently distributed with Yi - N{JLi, 1), then 

, 
L Y~ - X;(A), 
i = I 

where the noncentrality parameter of this noncentral chi-squared distribution is 
given by 

1 ' 0 

A = 2 L lLi 
i = I 

. Theorem 9.11. Let x - Nm(JI., 0), where 0 is a positive definite matrix, and 
let A be an m x m symmetric matrix. If AO is idempotent and rank(AO) = r, 
then x' Ax - X;(A), where A = + JI.' AJI.. 

Theorem 9.12. Let x - Nm(JI., 0), where 0 is positive semidefinite of rank 
n, and suppose that A is an m x m symmetric matrix. Then x' Ax - x; (A), where 
A = + JI.' AJI. if 

(a) OAOAO = OAO, 

(b) JI.' AOAO = JI.' AO, 

(c) JI.' AOAJI. = JI.' AJI., 

(d) tr(AO) = r. 

Proof. Let PI. P2, and A be defined as in the proof of Theorem 9.10 so that 
o = PIAP~. Put C= [PIA- 1j2 P2] and note that 

ZI Z= 

In other words, 

• 

= c'x - Nm 

Z= 
z, 

P' , 
2J1. 

, I" (0) 
(0) (0) 
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x'Ax = x'CC-'Ac'-'c'x = z'C-IAc'-'z 

, AI/2p,APIAI/2 AI/2p,AP2 
JI. P2] P;API A '/2 P;AP2 

= Z,A'/2p,APIAI/2ZI + JI.'P2 P;AP2P;JI. 

+ 2J1.' P2P;API A 1/2ZI 

But conditions (a)-(c) imply the identities 

(i) p,AnAP, = P,AP" 

(ii) JI.' P2 P;AOAP, = JI.' P2 P;API, 

(iii) JI.' P2 P;AOAOAP2P;JI. = JI.' P2~AOAP2~JI. = JI.' P2P;AP2P;JI.; 

. 

(9.9) 

in particular, (a) implies (i), (b) and (i) imply (ii), while (iii) follows from (c), 
(i) and (ii). Utilizing these identities in (9.9), we obtiain 

x'Ax = Z,A'/2p,AP,A'/2Z1 + JI.'P2P;AOAOAP2P;JI. 

+ 2J1.' P2P;AOAP, A 1/2ZI 

= (ZI + A'/2p'AP2P;JI.)' A'/2p,AP1A
I/2(ZI + AI/2p'AP2P;JI.) 

= w'A*w. 

'" - A-'/2p ' A'/2p 'AP p' " - , JI. + ,2 2 JI., 

and. since A* = A'/2p,AP,A'/2 is idempotent, a consequence of (i), we may 
apply Theorem 9.11; that is, w' A*w - X;(A), where 

and 

A = I 
2 

• 

x A'/2p,AP,A'/2(A- I/2p,JI. + AI/2p'AP2P;JI.) 

= + (JI.' P, PIAP, PI JI. + JI.' P2P;AOAOAP2P;JI. + 2J1.' PI P'AOAP2P;JI.) 

• 

. , 

, 

, 

, 

• 

" I • , 

, 

1 , 
• 
, 
• • 
! , 
I , , , , , 

.' , 
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This completes the proof. n 

A matrix A satisfying conditions (a), (b), and (c) of Theorem 9.12 i~ W. 
the Moore Penrose inverse of {}. That is, if x - NII/(JI., {}), then x'{} + x will 
have a chi-squared distribution since the identity {} +{} n+ = 0 + ensures that 
conditions (a), (b), and (c) hold. The degrees of freedom r = rank(n) since 
rank(W{}) = rank({}). 

All of the theorems presented in this section give sufficient conditions for 
a quadratic fOlln to have a chi-squared distribution. Actually, in each case, the 
stated conditions are necessary conditions as well. This is most easily proven 
using moment generating functions. For details on this, the interested reader is 
referred to Mathai and Provost (1992) or Searle (1971). 

Example 9.3. Let XI, ••• ,Xn be a random sample from a nOllnal distribution 
with mean p. and variance 0"2; that is the XiS are independent random variables, 
each having the distribution N(/L, 0"2). The sample variance s2 is given by 

1 n 
s2 = ~ (Xi - x)2 

(n - 1) £..J 
I = I 

We will use the results of this section to show that 

(n - l)s2 II 
t = -c--O"--:2::-'-- = L 

i = I 

2 
- Xn - I 

• 

Define the n x I vector x = (XI,'" ,XII)' so that x - NII(p.1m 0"2In). Note that if 
the n x n matrix A = (In - n-llnl~)/0"2, then 

x'Ax= 
{x'x-n-l(l~xi} 

II 

L 2 -I x· - n I 

n 

=L 
i = I 

0"2 

(Xi - X)2 

0"2 

--
i = I 

(n - l)s2 
= -C----,:-'-_ = t 

0"2 ' 

II 2 

LXi 
i = I 

and so t is a quadratic form in the random vector x. The matrix A(0"2III ) = 0"2A 
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is idempotent since 

(q2A)2 = (In - n-llnl~)2 = In - 2n-llnl~ + n-21nl~lnl~ 

= In - n -11111~ = q 2 A, 

and so by Theorem 9.11, f has a chi-squared distribution. This chi-squared dis-
tribution has n - I degrees of freedom since . 

and the noncentrality parameter is given by 

Thus, we have shown that t - X~ _ I' 

1 p.2 

2 q2 

5. INDEPENDENCE OF QUADRATIC FORMS 

We now consider the situation in which we have several different quadratic 
fOJ ms, each a function of the same multivariate nOllnal vector. In some settings, 
it is important to be able to detellnine whether or not these quadratic fOlillS 
are distributed independently of one another. For instance, this is useful in the 
partitioning of chi-squared random variables as well as in the fOJ mation of ratios 
having an F distribution. 

We begin with the following basic result regarding the statistical indepen
dence of two quadratic fOllnS in the same nOllnal vector. 

Theorem 9.13. Let x - Nm(JI., n), where n is positive definite, and suppose 
that A and B are m X m symmetric matrices. If An B = (0), then x' Ax and x' Bx 
are independently distributed. 

Proof Since n is positive definite, there exists a nonsingular matrix T such 
that n = T T'. Define G = T' A T and H = T' B T, and note that if An B = (0), 
then 

GH = (T' AT)(T' BT) = T'AOBT = T'(O)T = (0) (9.10) 

Consequently, due to the symmetry of G and H, we also have 

• 



• 
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(O) = (O)' = (GH)' = H'G' = HG, 

and so we have established that GH = HG. From Theorem 4.15, we know that 

there exists an orthogonal matrix P that simultaneously diagonalizes G and H; 

that is, for some diagonal matrices C and D, 

P'GP= P'T'ATP= C, P'HP= P'T'BTP= D (9. II ) 

But using (9.1O) and (9.11), we find that 

(O) = GH = PCP' PDP' = PCDP', 

which only can be true if CD = (O). Since C and D are diagonal matrices, 

this means that if the ith diagonal element of one of these matrices is nonzew, 

the ith diagonal element of the other must be zero. As a result, by choosing 

P appropriately, we may obtain C and D in the f01l11 C = diag(cl, .... clI'!. 

O, ... ,O} and D = diag(O, ... , 0, dm1 + I,"" dm } for some integer 1111. If we let 

y = P'T-Ix, then our two quadratic fOIlI1S simplify as 

and 

"11 

x'Ax = X'T,-I PP'T' ATPP'r-lx = y'Cy = L CiY;, 
i;:. I 

III 

X'Bx=x'T'-lpp'T'BTPP'T-lx=y'Dy= L 
i=11I1 + I 

that is, the first quadratic fOIln is a function only of Yl, ... ,YII'! ' while the second 

quadratic fonn is a function of Yml + 1, ... ,y,n. The result now follows from the 

independence of YI, ... ,Ym, a consequence of the fact that y is nOllllal and 

var(y} = var(P'T- I x} = P'T- 1 {} T'-I P = rIll -, , , -

Example 9.4. Suppose that XI, ••• ,Xk are independently distributed with 

Xi = (Xii, ... ,X;n)' - Nn0Lln,0"2In} for each i. Let tl and '2 be the random 

quantities defined by 

k k n 

tl C -}2 t, = (x .. - x)2 =n Xi - X , - I) " 

; = 1 ; = I j=1 
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where 

n k -
Xij 

x=L 
X· - I 

Xi= , 
k n 

}=I 1=\ 

Note that (I and (2 are the formulas for the sum of squares for treatments and the 

sum of squares for error in a balanced one-way classification model (Example 

7.4). Now (I can be expressed as 

k 

L -2 k- I 
X· -I 

i = I 

2 

where x = (XI, ... ,xd. If we define x as x = (x;, ... ,xU, then x - Nkn(JI., 0) 

with JI. = lk ® ILl" = 1L1kn and 0 = 1k ® a21n = a21kn> and x = n- I(lk ® l~)x, so 

(I = n- I x'(Ik ® In)(lk - rllkl~)(Ik ® l~)x 

= n-Ix'{(lk - rllklk) ® lnl~}x = x'A\x, 

where AI = n- I {(Ik - k-Ilklk) ® lnl~}. Since (lnl~)2 = nlnl~ and (Ik -

k-llkl~)2 = (Ik - k-Ilklk)' we find that AI is idempotent and hence so is 

(A 1/a 2)O. Thus, by Theorem 9.11, x'(A\/a 2 )x = II/a2 has a chi-squared dis

tribution. This distribution is central since A = tJl.'A IJI./a2 = 0, which follows 

from the fact that 

{(lk - k-Ilk l ;) ® lnl~ }(lk ® 1L1n) = nlL{[(Ik - rllklk)® tn} 

= nIL {(lk - lk) ® In} = 0, 

while its degrees of freedom is given by 
• 

rl = tr{(AI/a 2)O} = tr(AI) = n- I tr{(lk - rllklD ® lnl~)} 

= n- I tr(lk - rllklk)tr(lnl~) = n-I(k - I)n = k - I 
• 

Turning to (2, observe that it can be written as 

k" n 2 k 

(2 = L L x5 - n- I L Xij = L x;(ln - n-\lnl~)xi 
;=1 }=I j=1 i = I 

= X' {lk ® (In - n-Ilnl~)}x = X' A2x, 

• 
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where A~ = Il ® (1" - n- \ 1" 1:). Clearly. A: is idemp'-'tent since On - 1\ \ 1., (,) 

is idempotent. Thus, (A2/0'2)0 is idempotent and so x' (A21 0'2)x = t21 (J: also 
, . 

has a chi-squared distribution. In particular. 1:/0: - Xk\lI- \) since 

tr{(A2/02)O} = tr(A 2) = tr{lk ® (In - n-\ III I:)} 

= tr(Idtr(III - n-\ Inl;,)} = k(n -1), 

and 

A2J1. = {Ik ® (In - n-llnl~)}(1k ® 1L1 11 ) 

= lk ® lL(ln - n -llnl~)ln = lk ® 1L(ln - In) = 0, 

thereby guaranteeing that tJl.' A2J1./02 = O. Finally, we establish the indepen

dence of 11 and 12 by using Theorem 9.13. This simply involves verifying that 

(Al/02)O(A2/02) = AIA2/02 = (0), which is an immediate consequence of the 

fact that 

• 

Inl~(ln - n-llnl~) = (0) 

Example 9.5. Let us return to the general regression model 

y = Xil + E, 

where y and E are N X 1, X is N x m, and Il is m X I. Suppose that Il and 

X are partitioned as 11 = (Il~ 11;)' and X = (X I X2), where III is ml x I, 

112 is m2 X 1, and we wish to test the hypothesis that 112 = O. We will assume 

that each component of 112 is estimable since this test would not be meaningful 

otherwise. It is easily shown that this then implies that X2 has full column rank 

and rank(X I) = r - m2, where r = rank(X). A test of 112 = 0 can be constructed 

by comparing the sum of squared errors for the reduced model y = Xl III + E, 

which is 

to the sum of squared errors for the complete model, which is given by 

Now if E - NN(O, ( 21), then y - NN(XIl, ( 21). Thus, by applying Theorem 

9.11 and using the fact that X(X'XrX'XI = XI> we find that (11 - (2)/0 2 is 

chi-squared since 
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(X(X'X)-X' - XI(X;XI)-X;) 
q2 

(X(X'XfX' - XI(X;XI)-X;) 
q2 

(X(X'X)-X' - XI(X;XI)-X;) 
q2 

In particular, if P2 = 0, (II - t2)/q2 - X~/" since 

and 

-

tr{X(X'X)-X' - XI(X;X,fX;} = tr{X(X'X)-X'} - tr{XI(X;XI)-X;} 

= r - (r - m2) = m2, 

(X(X'X)-X' - XI (X;XI f X;) 
q2 

By a similar application of Theorem 9-11, we observe that t2/q2 - X~-r' In 
addition, it follows from Theorem 9.13 that (tl - t2)/ q2 and t2/ q2 are indepen
dently distributed since 

(X(X'X)-X' - X I (X;XI r X;) 
q2 

(IN - X(X'X)- X') 
q2 

=0 

This then pellnits the construction of an F statistic for testing that P2 = 0; that 
is, if P2 = 0, then the statistic 

F= 
(tl - t2)/m2 

t2/(N - r) 

has the F distribution with m2 and N - r degrees of freedom_ 

The proof of the next result, which is very similar to the proof of Theorem 
9.13, is left to the reader as an exercise. 

Theorem 9.14. Let x - Nm(JI., n), where n is positive definite, and suppose 
that A is an m X m symmetric matrix while B is an n x m matrix. If Bn A = (0), 
then x' Ax and Bx are independently distributed. 

Example 9.6. Suppose that we have a random sample XI, ... , Xn from a 
nOllnal distribution with mean JJ. and variance q2. In Example 9.3, it was shown 

• 

• 



• 

• 
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that (n - 1)s2jq2 - X~-I' where s2, the sample variance, is given by 

1 s2 = __ -:-
(n - 1) 

i = , 

n 

We will now use Theorem 9.14 to show that the sample mean, 

1 
n 

-X= Xi, 
n 

i = , 

is independently distributed of s2. In Example 9.3, we saw that .\.2 is a scalar 

multiple of the quadratic fOlln 

where x = (x" . .. ,xn)' - Nn{JLlm q2In). On the other hand, x can be expressed 

as 

- -'I' x = n "x 

Consequently, the independence of :x and s2 follows from the fact that 

When 0 is positive semidefinite, the condition AOB = (0), given in Theorem 

9.13, will still guarantee that the two quadratic fOIlns x' A x and x' Bx are inde

pendently distributed. Likewise, When 0 is positive semidefinite, the condition 

BOA = (0), given in Theorem 9.14, wiII still guarantee that x' Ax and Bx are 

independently distributed. However, in these situations a weaker set of condi

tions will guarantee independence. These conditions are given in the following 

two theorems. The proofs are left as exercises. 

Theorem 9.15. Let x - Nm(JI., 0), where 0 is positive semidefinite, and 

suppose that A and B are m X m symmetric matrices. Then x' Ax and x' Bx are 

independently distributed if 

(a) OAOBO = (0), 

(b) OAOBp. = 0, 
(c) OBOAJI. = 0, 

. (d) JI.' AOBJI. = O. 
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Theorem 9.16. Let x - Nm(fL, n), where n is positive semidefinite, and 

suppose that A is an m X m symmetric matrix while B is an n X m matrix. If 

BnAn = (0) and BnAfL = 0, then x' Ax and Bx are independently distributed. 

Our final result can be helpful in establishing that several quadratic fOllns 

in the same nOllnal random vector are independently distributed, each having 

a chi-squared distribution. 

Theorem 9.17. Let x - Nm(fL, n), where n is positive definite. Suppose 

that Aj is an m x m symmetric matrix of rank ri, for i = 1, ... , k, and A = 

A I + ... + Ak is of rank r. Consider the conditions 

(a) Ajn is idempotent for each i, 

(b) An is idempotent, 

(c) AjnAj = (0), for all i i j, 

""k (d) r = £"'j= I rio 

If any two of (a), (b), and (c) hold, or if (b) and (d) hold, then 

(i) x' AjX - x~/ t fL' AjfL), 

(ii) x'Ax - xhtfL'AfL), 

(iii) x' A IX, ... , x' AkX are independently distributed. 

Proof Since n is positive definite, there exists a nonsingular matrix T sat

isfying n = TT', and the conditions (a)-(d) can be equivalently expressed as 

(a) T' Aj T is idempotent for each i, 

(b) T' A T is idempotent, 

(c) (T'AjT)(T'AjT)=(O),foraIlUj, 

(d) rank(T'AT) = L~=I rank(T'AjT). 

Since, T'AIT, ... , T'AkT and T'AT satisfy the conditions of Corollary 9.7.1, 

we are ensured that if any two of (a), (b), and (c) hold or if (b) and (d) hold, 

then all four of the conditions (a)-(d) above hold. Now using Theorem 9.11, (a) 

implies (i) and (b) implies (ii), while Theorem 9.13, along with (c), guarantees 
• 

that (iii) holds. 0 

6. EXPECTED V ALVES OF QUADRATIC FORMS 

When a quadratic fOi 111 satisfies the conditions given in the theorems of Sec

tion 6.4, then its moments can be obtained directly from the appropriate chi

squared distribution. In this section, we derive fOllnulas for means, variances, 

, 

l 
I , 
! 
.1 , , 
I , , 
, 
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and covariances of quadratic fOllns that will be useful when this is not the case. 

We will start with the most general case in which the random vector x has an 

arbitrary distribution. The expressions we obtain involve the matrix of second 

moments of x, E(xx'), and the matrix of fourth moments E(xx' ® xx'). 

Theorem 9.18. Let x be an m X 1 random vector having finite fourth 

moments, so that both E(xx') and E(xx' ® xx') exist. Denote the mean vec

tor and covariance matrix of x by JI. and O. If A and B are m X m symmetric 

matrices, then 

(a) E(x'Ax) = tr{AE(xx')} = tr(AO) + JI.'AJI., 

(b) var(x' Ax) = tr{(A ® A)E(xx' ® xx')} - [tr(AO) + JI.' AJI.]2, 

(c) cov(x'Ax,x'Bx) = tr{(A ®B)E(xx' ®xx')} - [tr(AO) + JI.'AJI.][tr(BO) + 

JI.' BJI.]' 

Proof The covariance matrix 0 is defined by 

o = E {(x - JI. )(x - JI.)'} = E(xx') - Jl.JI.', 

so that E(xx') = 0 + Jl.JI.'. Since x' Ax is a scalar, we have 

E(x'Ax) = E{tr(x'Ax)} = E{tr(Axx')} = tr{AE(xx')} = tr{A({} + Jl.JI.')} 

= tr(AO) + tr(AJl.JI.') = tr(AO) + JI.' AJI., 

and so (a) holds. Part (b) will follow from (c) by taking B = A. To prove (c), 

note that 

E(x' Axx'Bx) = E[tr{(x' ®x')(A ® B)(x ® x)}] 

= E[tr{(A ® B)(x ® x)(x' ® x')}] 

= tr{(A ®B)E(xx' ®xx')} 

Then use this, along with part (a), in the equation 

• 

cov(x'Ax,x'Bx) = E(x' Axx'Bx) - E(x' Ax)E(x'Bx) o 

When x has a nOllnal distribution, the expressions for variances and covari

ances, as well as higher moments, simplify somewhat. This is a consequence 

of the special structure of the moments of the multivariate normal distribution. 

The commutation matrix K mm , discussed in Chapter 7, plays a crucial role in 

obtaining some of these matrix expressions. We will also make use of the m x m 

matrix Tij defined by 
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that is, all of the elements of Tij are equal to 0 except for the (i,j)th and (j, i)th 
elements, which equal 1, unless i =), in which case the only nonzero element 
is a 2 in the (i, i)th position. Before obtaining expressions for the variance and 
covariance of quadratic fOllns in nOllnal variates, we will need the following 
result. 

Theorem 9.19. If Z - NII/(O, 11/1) and c is a vector of constants, then 

(a) E(z ® z) = vec(lm), 

(b) E(cz' ®zz') = (0), E(zc' ®zz') = (0), E(zz' ®cz') = (0), E(zz' ®zc') = (0), 

(c) E(zz' ®zz') = 2Nm + vec(lm){vec(II/I)}', 

(d) var(z ® z) = 2NI/I' 

Proof Since E(z) = 0, 1m = var(z) = E(zz') and so 

E(z ® z) = E{ vec(zz')} = vec {E(zz')} = vec(lm) 

It is easily verified using the standard normal moment generating function that 

E(Z)) = 0, E(Z;) = 3 (9.12) 

Each element of the matrices of expected values in (b) will be of the form 
CjE(2jZk2/). Since the components of z are independent, we get 

when the three subscripts are distinct, 

when) = k -:I- I, and similarly for) = I-J k and 1= k -J), and 

when) = k = I. This proves (b). Next we consider teIlns of the fOlm E(ZjZjZkZ/). 

These equal 1 if i = ) -J 1= k, i = k -J) = I, or i = 1-:1- ) = k, equal 3 if i =) = k = I, 
and equal zero otherwise. This leads to 
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where {)ij is the (i,j)th element of 1m. Thus, 

E(zz' ® zz') = E 

m m 

m m 

;... L E;jz;zj 
;=1 j=1 

• 

®zz' 

= L L {E;j ® (T;j + {)ij II1J} 
;=1 j=1 

m m m III 

=L (E ·· ® T·) + IJ IJ 

;=1 j=1 

. The third result now follows since 

m m 

--
;= 1 j= 1 

m m m m m iii 

L "':0 (Eij ® Tij) = L L (Eij ® Ej ;) + 
;=1 j=1 ;=1 j=1 ;=1 j=1 

III 

= Klllm + L (e; ® e;) 
; = 1 

m 

= Kmm + L vec(e;e;) 
; = I 

= Kmm + vec(lm){vec(lI1Jr, 

m m m 
({)ijEij ® 1m) = L Ejj 

; = 1 j=1 ; = 1 

III 

L (ej ® ej) 
j~1 

m 

~ {vec(ejej)}' 
j=1 

393 

and 1m2 + Kmm = 2Nm • Finally, (d) is an immediate consequence of (a) and (c) . 
• o 

The next result generalizes the results of Theorem 9.19 to a multivariate 
normal distribution having a general positive definite covariance matrix. 

Theorem 9.20. Let x - Nm(O, {}), where {} is positive definite, and let e be 
an m X 1 vector of constants. Then 

(a) E(x ® x) = vec({}), 

(b) E(cx' ® xx') = (0), E(xc' ® xx') = (0), E(xx' ® ex') = (0), E(xx' ® 
xc') = (0), 
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(c) E(xx' ®xx') = 2Nm (0 ® 0) + vec(O){vec(O)}', 

(d) var(x ®x) = 2N",{O ® 0). 

Proof Let T be any nonsingular matrix satisfying 0 = T T', so that z = T-I x 
and x = Tz, where z - Nm(O,lm). Then the results above are consequences of 
Theorem 9.19 since 

E(x ® x) = (T ® T)E(z ® z) = (T ® T)vec(lm) = vec(TT') = vec(O), 

E(cx' ® xx') = (1m ® T)E(cz' ® zz')(T' ® T') = (0), 
• 

and 

E(xx' ® xx') = (T ® T)E(zz' ® zz')(T' ® T') 
= (T ® T)(2Nm + vec(lm){vec(lm)}')(T' ® T') 

= 2(T ® T)Nm(T' ® T') + (T ® T)vec(lm){vec(lm)}'(T' ® T') 

= 2N",(T ® T)(T' ® T') + vec(TT'){vec(TT')}' 

= 2Nm (0 ® 0) + vec(O){vec(O)}' . 0 

We are now ready to obtain simplified expressions for the variance and 
covariance of quadratic fOIIIIS in nOIIIIal variates. 

Theorem 9.21. Let A and B be mx m symmetric matrices and suppose that 
x - Nm(O, 0). where 0 is positive definite. Then 

(a) E{x' Ax x' Ex} = tr(AO )tr(BO) + 2 tr(AO BO), 
. 

(b) cov(x'Ax.x'Bx) = 2 tr(AOBO). 

(c) var(x' Ax) = 2 tr{(AO)2}. 

Proof Since (c) is the special case of (b) in which B = A, we only need to 
prove (a) and (b). Note that by making use of Theorem 9.20, we find that 

Now 

E{x' Ax x' Bx} = E{(x' ®:r')(A ® B)(x ®x)} 

= E[tr{ (A ® B)(xx' ® xx')}] = tr{(A ® B)E(xx' ® xx')} 

= tr{(A ® B)(2Nm(0 ® 0) + vec(O){vec(O)}')} 

= tr{(A ® B)«(lm2 + Kmm)(O ® 0) + vec(O){vec(O)}')} 

= tr {(A ® B)(O ® O)} + tr{(A ® B)Kmm(O ® O)} 

+ tr«A ® B)vec(O )(vec(O) }') 

• 

• 
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tr{(A ® B)(O ® O)} = tr(AO ® BO) = tr(AO )tr(BO) 

foIlows directly from Theorem 7.8, while 

tr{(A ® B)Kmm(O ® O)} = tr{(AO ® BO )Kmm} = tr(AO BO) 

follows from Theorem 7.31. Using the symmetry of A and 0 along with The
orems 7.15 and 7.16, the last term in E{x'Axx'Bx} simplifies as 

tr«A ® B)vec(O){vec(O)}') = {vec(O )}'(A ® B)vec(O) 

== {vec(O)}, vec(BOA) = tr(AOBO) 

This then proves (a). To prove (b) we use the definition of covariance and The
orem 9.18(a) to get 

cov(x'Ax,x'Bx) = E{x'Axx'Bx} - E(x'Ax)E(x'Bx) = 2 tr(AOBO) D 

The formulas given in the previous theorem become somewhat more compli
cated when the normal distribution has a non null mean vector. These formulas 
are given in the following theorem. 

Theorem 9.22. Let A and B be symmetric m x m matrices and suppose 
that x - Nm ( .... , 0), where 0 is positive definite. Then 

(a) E{x'Axx'Bx} = tr(AO)tr(BO) + 2 tr(AOBO) + tr(AO) .... 'B .... + 4 .... 'AOB .... 
+ .... 'A .... tr(BO) + .... 'A ........ 'B .... , 

(b) cov(x'Ax,x'Bx) = 2 tr(AOBO) + 4 .... ' AOB .... , 

(c) var(x'Ax) = 2tr{(AO)2} + 4 .... 'AOA .... . 

Proof Again (c) is a special case of (b), so we only need to prove (a) and 
(b). We can write x = y + .... , where y - Nm(O, 0) and, consequently, 

E{x' Ax x'Bx} = E{(y + .... )' A(y + .... )(y + .... )' B(y + Jl.)} 

. = E{(y'Ay+ 2 .... 'Ay+ .... 'A .... )(y'By + 2 .... 'By+ .... 'B .... )} 

= E{y'Ayy'By} + 2E{y'Ay .... 'By} + E(y'Ay) .... 'B .... 

+ 2E{ .... ' Ay y' By} + 4E( .... ' Ay .... ' By) + 2E( .... ' Ay) .... ' B .... 

+ .... 'A .... E(y'By) + 2 .... 'A .... E( .... 'By) + .... 'A ........ 'B .... 

The sixth and eighth terms in this last expression are zero since E(y) = 0, while 
it follows from Theorem 9.20(b) that the second and fourth terms are zero. To 
simplify the fifth telIll note that 
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E(J.l' Ay J.l' By) = E{ (J.l' A ® J.l' B)(y ® y)} = (A J.l ® BJ.l)'E{(y ® y)} 

= {vec(BJ.lJ.l' A)}, vec(n) = tr{(BJ.lJ.l' A)'n} 

= tr(AJ.lJ.l'Bn) = J.l'AnBf.l 

Thus, using this and Theorems 9.18(a) and 9.21(a), we find that 

E {x' Ax x' Bx} = tr(An) tr(Bn) + 2 tr(An Bn) + tr(An )J.l' BJ.l + 4J.l' An BJ.l 

+ J.l' AJ.l tr(Bn) + J.l' AJ.l J.l' BJ.l, 

thereby proving (a); (b) then follows immediately from the definition of covari
ance and Theorem 9.18(a). 0 

Example 9.7. Let us return to the subject of Example 9.4, where we defined 

and 

It was shown that if x = (x~, ... ,xi)' - Nk,,(J.l, n) with J.l = h ® ~I" and 
n = lk ® q2In, then tl/q2 = X'(AI/q2)x - xL I' 12/q2 = x'(A2/q2)x - Xi(n-I)' 
independently. Since the mean of a chi-squared random variable equals its 
degrees of freedom, while the variance is two times the degrees of freedom, 
we can easily calculate the mean and variance of II and 12 without employing 
the results of this section; in particular, we have 

E(tl) = q2(k - 1), 

E(12) = q 2k(n - 1), 

var(tl) = 2q4(k - 1), 

var(12) = 2q4k(n - 1) 

Suppose now that Xi - N,,~ln' q;In) so that n = var(x) = D ® In, where D = 
diag(q~, ... , qi). It can be easily verified that, in this case, II/q2 and Izlq 2 no 
longer satisfy the conditions of Theorem 9.11 for chi-squaredness, but are still 
independently distributed. The mean and variance of II and 12 can be computed 
by using Theorems 9.18 and 9.22. For instance, the mean of 12 is given by 

E(12) = E(x' A2X) = tr(A2n ) + J.l' A2J.l 

= tr({Ik ®(In - n-llnl~)}(D®In» 

+ ~2(1~ ® 1~){Ik ® (In - n-Ilnl:)}(h ® In) 

• 
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= tr(D)tr(ln - n-ll/11~) +~2(1;ld{I;,(1/l -1I-
ll/1t;,)I/1} 

k 

= (n - 1) L uT, 
i = 1 

while its variance is • 

var(t2) = var(x'A2x) = 2tr{(A20)2} + 4J.l'A20A2J.l 

= 2 tr{D2 ® (In - n- 1l nt;,)} 

+4~2(l~ ® 1:){D® (1/1- n- 1l/11;,)}(1k ® 1/1) 

= 2tr(D2)tr{(ln - n- 1l nl;,)} + 4~\I;Dld{I;,(I/I - II-
l l/1(,)I/1} 

k 

= 2(n - 1) L u; 
i = 1 

We will leave it to the reader to verify that 

k 

E(tl) = (l - k- I
) L UT, 

i = 1 

k 

(l - 2k- l ) L u; + k-2 

i = 1 

, -
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So far we have considered the expectation of a quadratic form as well as the 
expectation of a product of two quadratic forms. A more general situation is 
one in which we need the expected value of the product of 11 quadratic fOllllS. 
This expectation becomes more tedious to compute as n increases. For example. 
if A, B, and C are m x m symmetric matrices and x - Nm(O, 0). the expected 
value E(x' Axx' Bxx'Cx) can be obtained by first computing E(xx' ®xx' ®xx'). 
and then using this in the identity 

E(x'Axx'Bxx'Cx) = tr{(A ® B ® C)E(xx' ®xx' ®xx')} 

The details of this derivation are left as an exercise. Magnus (1978) used an 
alternative method, utilizing the cumulants of a distribution and their relation
ship to the moments of a distribution, to obtain the expectation of the product 
of an arbitrary number of quadratic fOIlIlS. The results for a product of three 
and four quadratic fOlms are summarized below. 



398 SOME SPECIAL TOPICS RELATED TO QUADRATIC FORMS 

Theorem 9.23. Let A, B, C, and D be symmetric m X m matrices and sup

pose that x - Nm(O,lm). Then 
• 

(a) E(x' Ax x'Bxx' Cx) = tr(A) tr(B) tr(C) + 2 {tr(A) tr(BC) + tr(B) tr(AC) 

+ tr( C) tr(AB)} + 8 tr(ABC), 

(b) E(x' Ax x'Bxx' Cxx'Dx) 

= tr(A) tr(B) tr(C) tr(D) + 8 {tr(A) tr(BCD) 

+ tr(B) tr(ACD) + tr(C) tr(ABD) + tr(D)tr(ABC)} + 4 {tr(AB) tr(CD) 

+ tr(AC) tr(BD) + treAD) tr(BC)} + 2 {tr(A) tr(B) tr(CD) 

+ tr(A) tr(C) tr(BD) + tr(A) tr(D) tr(BC) + tr(B) tr(C) treAD) 

+ tr(B) tr(D) tr(AC) + tr(C) tr(D) tr(AB)} 

+ 16{tr(ABCD) + tr(ABDC) + tr(ACBD)} 

If x - Nm(O, 0), where 0 is positive definite, then A, B, C, and D appearing in 

the right-hand side of the equations in Theorem 9.23 are replaced by AO, BO, 

CO, and DO. 
An alternative approach to the calculation of moments of quadratic forms 

utilizes tensor methods. This approach may be particularly appealing in those 

situations in which higher ordered moments are needed or the random vector x 

does not have a multivariate nOllnal distribution. A detailed discussion of these 

tensor methods can be found in McCullagh (1987). 

7. THE WISHART DISTRIBUTION 

When x" ... , x" are independently distributed, with Xj - N(O,O'2) for every i, 

then 

, 
xx= 

n 

where x' = (x" ... ,x,,); that is, x'x/O'2 has a chi-squared distribution with n 

degrees of freedom. A natural matrix generalization of this situation. one which 

has important applications in multivariate analysis, involves the distribution of 

X'X= 
" 
-j = , 

, 
XjXj • 

where X' =: (xJ,", ,xn) is an m X n matrix such that XI, .. .,Xn are indepen

dent and Xi - NII/(O, 0) for each i. Thus, the components of the jth column of 

, 
., 
• 
I 
• 
• 

• 

• 
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X are independently distributed each as N(O, (Jjj), where (Jjj is the jth diago

nal element of {), so that the jth diagonal element of X' X has the distribution 

(JjjX~. The joint distribution of all of the elements of the m X m matrix X'X 

is called the Wishart distribution with scale matrix [} and degrees of freedom 

n, and will be denoted by W m([}, n). This Wishart distribution, like the chi

squared distribution X~, is said to be central. More generally, if X" ••. ,XII are 

independent and Xj - Nm("'j, [}), then X' X has the noncentral Wishart distribu

tion with noncentrality matrix cJ> = 1M'M, where M' is the m x n matrix given 

by M' = (,.." ... , ",,,). We will denote this noncentral Wishart distribution as 

W m([}, n, cJ». Additional infonnation regarding the Wishart distribution, such as 

the forIll of its density function, can be found in texts on multivariate analysis 

such as Srivastava and Khatri (1979) and Muirhead (1982). 

If A is an n X n symmetric matrix and X' is an m x n matrix, then the 

matrix X' AX is sometimes called a generalized quadratic fOIIll. The following 

theorem gives some generalizations of the results obtained in Sections 9.4 and 

9.5 regarding quadratic fOIIllS to these generalized quadratic fOIIllS. 

Theorem 9.24. Let X' be an m x n matrix whose columns are indepen

dently distributed, with the ith column having the Nm (,..j' [}) distribution, where 

[} is positive definite. Suppose that A and B are n x n symmetric matrices while 

e is k x n. Let M' = (,.." ... , "'n), cJ> = 1M' AM, and r = rank(A). Then 

(a) X' AX - W m([}, r, cJ», if A is idempotent, 

(b) X' AX and X' BX are independently distributed if AB = (0), 

(c) X' AX and ex are independently distributed ifCA = (0). 

Proof The proof of (a) will be complete if we can show that there exists an 

m X r matrix Y' such that X'AX = Y'Y, where the columns of Y' are indepen

dently distributed each having a nonnal distribution with the same covariance 

matrix [}, and 1E(Y')E(Y) = cJ>. Since the columns of X' are independently 

distributed, it follows that 

vec(X') - Nnm( vec(M '),1" ® [}) 

Since A is symmetric, idempotent, and has rank r, there must exist an n x r 

matrix P satisfying A = pP' and P'P = Ir. Consequently, X'AX = Y'Y, where 

the m x r matrix Y' = X' P so that 

vec(Y') = vec(X' P) = (P' ® 1m )vec(X') 

- Nmr«P' ® III/)vec(M'), (P' ® 1".)(\" ® [} )(P ® 1m» 

- Nmr(vec(M' P), (lr ® [}» 
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But this means that the columns of y' are independently and nonnally dis
tributed, each with covariance matrix !l. Further, 

I 

2 

and so (a) follows. To prove (b), note that since A and B are symmetric, AB = (0) 
implies that AB = BA, so A and B are diagonalized by the same orthogonal 
matrix; that is, there exist diagonal matrices C and D and an orthogonal matrix 
Q such that Q' AQ = C and Q' BQ = D. Further, AB = (0) implies that CD = (0), 
so that by appropriately choosing Q we will have C = diag(c\, ... , Ch, 0, ... ,0) 
and D = diag(O, ... , 0, d" + \ , ... , dn ) for some h. Thus, if we let U = QX, we 
find that 

h n 

X'AX= U'CU= L CjUjU;, X'BX= U'DU= L djuju;, 
j = \ j=h+ \ 

where Uj is the ith column of U'. Since vec(U') - Nnm(vec(M'Q'), (In ® !l», 
these columns are independently distributed and so (b) follows. The proof of 
(c) is similar to that of (b). 0 

If the columns of the m x n matrix X' are independent and identically 
distributed as Nm(O,!l) and M' is an m X n matrix of constants, then V = 
(X + M)'(X + M) has the Wishart distribution W m(!l ,n, ~ M' M). A more gen
eral situation is one in which the columns of X' are independent and identically 
distributed having zero mean vector and some nonnolIllal multivariate distribu
tion. In this case, the distribution of V = (X + M)'(X + M), which may be 
very complicated, will depend on the specific nonnolIllal distribution. In par
ticular, the moments of V are directly related to the moments of the columns 
of X'. Our next result gives expressions for the first two moments of V when 
M = (0). Since V is a matrix and joint distributions are more conveniently 
handled in the fOlln of vectors, we will vectorize V; that is, for instance, vari
ances and covariances of the elements of V can be obtained from the matrix 
var{ vec(V)}. 

Theorem 9.25. Let the columns of the m x n matrix X' = (XI> ... ,xn) 

be independently and identically distributed with E(xj) = 0, var(xj) = !l, and 
E(xjx; ®XjX;) = v. If V = X'X, then 

(a) E(V) = n!l, 

(b) var{vec(V)} = n{i' - vec(!l )vec(!l)'}. 
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Proof Since E(xj) = 0, we have n = E(xjx;) and so 

" " 
E(V) = E(X'X) = n = lin 

j = I j = I 

• 

In addition, since XI, ... ,X" are independent, we have 

" 
var{vec(V)} = var vec 

, 
X·X· I I =var vec(xjx;l 

j = I 

n 

-- var{ vec(xjx;)} 

j = I 

" " 
= L var(xj®xj) = L {E(xjx; ®xjx;l - E(x; ®x;lE(x; ®x;)} 

j=1 ;=1 

" -- {v - vec(n)vec(n)'} = n{v - vec(n)vec(n)'}. 

The expression for var{vec(V)} simplifies when V has a Wishart distribution 

due to the special structure of the fourth moments of the normal distribution. 

This simplified expression is given in our next theorem. Note that although this 

theorem is stated for nOllllally distributed columns, the first result given applies 

to the general case as well. 

Theorem 9.26. Let the columns of the m x n matrix X' be independently 

and identically distributed as Nm(O, 0). Define V = (X +M)' (X +M), where M' = 

(J.lI, ··.,J.ln) is an m x n matrix of constants, so that V - Wm(n,lI, iM'M)' 

Then 

(a) E(V)=nn +M'M, 

(b) var{vec(V)}= 2Nm {n(n ®n)+o ®M'M+M'M®n}. 

Proof Since E(X) = (0) and E(X'X) = nn from the previous theorem, it 

follows that 

E(V):: E(X'X + X'M + M'X + M'M) :: E(X'X) + M'M = /10 + M'M 

Proceeding as in the proof of Theorem 9.25, we obtain 
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• 
var{ vec(V)} = 

j = 1 

(Xj + p.) ®(Xj + JLj) =Xj ®Xi +Xj ®JLi + JLj ®Xi + JLi ® JLi 

= Xj ®Xi + (1m + Kmm)(Xi ® JLi) + JLi ® JLj 

= Xi ® Xi + 2N m(lm ® JLi)xi + JLi ® JLi 

(9.13) 

Since all first and third order moments of Xi are equal to 0, Xi ®Xi and Xi are 

uncorrelated, and so using Theorem 9.20 and Problem 7.52, we find that 

var{(Xj + JLi)®(Xi + JLj)} = var(xi ®Xi) + var{2Nm(lm ® JLi)xi} 

= 2N m (0 ® 0) + 4N m (1m ® JLi)O (1m ® JL;)N m 

= 2Nm(0 ® 0) + 4Nm(0 ® JLiJL;)Nm 

= 2N m (0 ® 0 + 0 ® JLi JL; + JLi JL; ® 0 ) (9.14) 

Now substituting (9.14) in (9.13) and simplifying, we obtain (b). o 

Example 9.8. In Examples 9.3 and 9.6 it was shown that, when sampling 

from a nonnal distribution, a constant multiple of the sample variance S2 has a 

chi-squared distribution, and it is independently distributed of the sample mean 

x. In this example, we consider the multivariate version of this problem involv

ing x and S; that is, suppose that Xlo'" ,X. are independently distributed with 

Xi - Nm(JL, O) for each i, and define X' to be the m x n matrix (Xlo ... ,xn). 

Then the sample mean vector and sample covariance matrix can be expressed 

as 

and 

I • 
S= 

n- 1 
i = 1 

1 -X= -
n 

• 1 
Xi = X'I., 

n 

1 
(Xi - X)(Xi - X)' = 

n-l 

• 

• L I ! XiXi - nxx 
i = 1 

• 

• 

• • 

1 , 

, 

" 



THE WISHART DISTRIBUTION 403 

Since A = (In - n-Ilnl~) is idempotent and rank(A) = tr(A) = n - I, it follows 
from Theorem 9.24(a) that (h-I)S has a Wishart distribution. To its 
noncentrality matrix, note that M' = (p., ... , p.) = p.l:, so that 

Thus, (n,... l)S has the central Wishart distribution W m(O , n - 1). Further, using 
Theorem 9.24(c), we see that S and x are independently distributed since 

• l' (I - -11 1') = (1' - 1') = 0' nnnnn n n 

In addition, it follows from Theorem 9.26 that 

E(S) = 0, 
2 2 

var{vec(S)} = --,- Nm(O ® 0) = --,- Nm{n ® O)NIII 
n-l n-l 

The redundant elements in vec(S) can be eliminated by utilizing v(S). Since 
v(S) = D~ vec(S), where Dm is the duplication matrix discussed in Section 7.8, 
we have 

In some situations, we may be interested only in the sample variances and not 
the sample covariances; that is, the random vector of interest here is the m x 
1 vector S = (SI\, ... , smm)'. Expressions for the mean vector and covariance 
matrix of s are easily obtained from the fOlil1ulas in this example since s -
w(S) = 'l}fm vec(S) as seen in Problem 7.45, where 

III 

'l}fm = L ei.m(ei.m ® ei.m)' 
i ~ I 

Thus, using the properties of 'I}f III obtained in Problem 7.45, we find that 

E(s) = 'I}f,;, vec{E(S)} = 'l}fm vec(O) = w{n), 

var(s) = 'l}fm var{vec(S)}'I}f~ = 'l}fm n ~ 1 Nm(O ® O)Nm 'I}f~ 

where 0 is the Hadamard product. 

2 (000), 
n - I 
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Example 9.9. The perturbation fOlll1ulas for eigenvalues and eigenvectors 
of a symmetric matrix obtained in Section 8.6 can be used to approximate the 
distributions of an eigenvalue or an eigenvector of a matrix having a Wishart 
distribution. One important application in statistics that utilizes these asymp
totic distributions is principal components analysis, an analysis involving the 
eigenvalues and eigenvectors of the m x m sample covariance matrix S. The 
exact distributions of an eigenvalue and an eigenvector of S are rather com
plicated, while their asymptotic distributions follow in a fairly straightforward 
manner from the asymptotic distribution of S. Now it can be shown by using 
the central limit theorem [see Muirhead, (1982)] that v'n - 1 vec(S) has an 
asymptotic normal distribution. In particular, using results from Example 9.8, 
we have, asymptoticall y, 

v' n - I {vec(S) - vec(O)} - Nm2(0, 2Nm(O ® 0)), 

, 

where 0 is the population covariance matrix. Let W = S - 0 and W * = 
v' n - I W, so that vec(W *) has the asymptotic normal distribution indicated 
above. Suppose that 'Yi is a normalized eigenvector of S = 0 + W correspond
ing to the ith largest eigenvalue,Ai, while qi is a nOllllalized eigenvector of 0 
corresponding to its ith largest eigenvalue Xi. Now if Xi is a distinct eigenvalue 
of O. then we have the first-order approximations from Section 8.6 

Ai = Xi + q;Wqi = Xi + (q; ® q;)vec(W), 

'Yi=q;-(O -xiImrWqi=qi- {q;®(O -xiIm)+}vec(W) (9.15) 

Thus, the asymptotic normality of ai = -,j n _. 1 (Ai - Xi) follows from the asymp-
, 

totic normality of vec(W *). Further, we have, asymptotically, 

E(ai) = (q; ® q;)E{ vec(W *)} = (q; ® q;)O = 0, 

var(a;) = (q; ® q;)(var{vec(W *)})(qi ® q;) 

= (q; ® q)(2Nm(O ® 0 ))(qi ® q;) = 2(q;Oqi ® q;Oqi) = 2xT; 

that is, for large n, Ai - N(x;, 2xl/(n - 1)), approximately. Similarly, hi = 
v' n - I ('Y; - q;) is asymptotically normal with 
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= {(O - Xi lrnt ® q; + q; ® (0 - Xi ImY H (0 ® 0) Hqi ® (0 - Xi IlIIt} 

, 

and so for large n, "Ii - N;n(qi' (n - 1)-1 cJ», approximately. While the first-order 

approximations in (9.15) can be used to obtain the asymptotic distributions. 

higher-order approximations, such as those given in Theorem 8.5, can be used 

to further improve the perfollllance of these asymptotic distributions. The most 

common application of this process involves asymptotic chi-squared distribu-
, 

tions, so we will illustrate the basic idea with the statistic 

(n - 1)O'i - Xi)2 
t = -'---'--'--:<--"'--, 

2x2 
I 

which, due to the asymptotic normality of ai, is asymptotically chi-squared with 

one degree of freedom. The mean of this chi-squared distribution is I, while 

the exact mean of t is of the form 

C' } 
E(t) = 1 + 

j=1 
(n - 1)(j + 1)/2 ' 

where the CjS are constants. The higher-order approximations of A.i can be used 

to deteulline the first constant CI, and then this may be used to compute an 

adjusted statistic 

CI I - -:.-,-,,-
(n - 1) 

The mean of this adjusted statistic is 

--

CI 
1 - -:---:-:-

(n - 1) 

CI 
1---

(n - 1) 

E(t) 

I + 
j=1 

d ) 
= 1 + 

j=2 
(n-1)(j+1)/2 ' 

t 

C' } 

(n - l)U + 1)/2 

where the djs are constants that are functions of the Cjs. Note that the mean of 

1* converges to I at a faster rate than does E(t). For this reason, the chi-squar~d 



406 SOME SPECIAL TOPICS RELATED TO QUADRATIC FORMS 

distribution with one degree of freedom should approximate the distribution of 

this adjusted statistic better than it would approximate the distribution of t. This 
type of adjustment of asymptotically chi-squared statistics is commonly referred 

to as a Bartlett adjustment (Bartlett (1937, 1947)]. Some discussion of Bartlett 

adjustments can be found in Barndorff-Nielsen and Cox (1994). 

Some of the inequalities for eigenvalues developed in Chapter 3 have impor

tant applications regarding the distributions of eigenvalues of certain functions 

of Wishart matrices. One such application is illustrated in our next example. 

Example 9.10.' A multivariate analysis of variance, such as the multivariate 

one-way classification model discussed in Example 3.14, utilizes the eigenval

ues of B Wi, where the m x m matrices B and W are independently distributed 

with B - W m(lm, b, cJ» and W - W m(lm, w) (Problem 9.30). We will show that 

if the rank of the noncentrality matrix cJ> is r < m and VI and V2 are inde

pendently distributed with VI - Wm-r(lm-nb - r) and V2 - Wm-r(lm-n w), 

then 

for i = I, ... , III - r and any constant c. This result is useful in determining the 

the dimensionality in a canonical variate analysis (see Schott (1984)]. Since 

rank(cJ» = r, there exists an r X m matrix T such that tT'T = cJ>. If we define 

the II! x b matrix M' = (T' (0», then since tM'M = cJ> and B - Wm(Im,b,cJ», 

it follows that B can be expressed as B = X'X, where X' is a m x b matrix 

for which vec(X') - Nh",(vec(M'), Ib ® 1m). Partitioning X' as X' = (X~ X~), 

where X; is 11/ X r, we find that 

where BI - W",(I"" r, cJ» and B2 - Wm(lm, b - r) since vec(X~) - Nrm(vec(T'), 

I, ® 1m) and vec(X;) - N(b-r)",(vec{(O)},lb-r ® 1m). Now for fixed Bh let F 

be any 11/ x (II! - r) matrix satisfying F'BIF = (0) and F'F = Im - n and define 

the sets 
, 

SI(BI) = {B2, W: Ar+i(BW- I) > c}, 
• 

S2(B I ) = {B2• W: A;{(F'B2F)(F'WF)-I}) > c} 

It follows from Problem 3.32(a) that 

• 
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so for each fixed B.,S.(B.) !: S2(B.), and it can be easily verified that VI = 

F' B2F - W m _ ,(1m _" b - r) and V 2 = F' W F - W m - ,(1m - " w). Consequently, 

if g(W),!.(BI), andh(B2) are the density functions for W,BI , and B2, respec

tively, then 

g(W)!2(B2)dWdB2 ::;; g(W)!2(B2) dW dB2 = P{Ai(V I V 21) > c} 

S.(B.) S2(BI) 

If we also define the sets 

c. = {B I • B2, W: Ar+i(BW- I
) > c} 

C2 = {BI : BI positive definite}, 

" 

then the desired result follows since 

--

The relationship between the sample correlation and covariance matrices and 

the expression for var{ vec(S)} given in Example 9.8 can be used to obtain an 

expression for the asymptotic covariance matrix of vec(R). This is the subject 

of our final example. 

Example 9.11. As in Example 9.8, let XI,." ,XII be independently dis

tributed with Xj - Nm ( .... , [}), for each i, and let Sand R be the sample covariance 

and cOIl"elation matrices computed from this sample. Thus, if we use the nota

tionDX = diag(xl., ... ,x::'m ), where X is an m x m matrix, then the sample 

matrix can be expressed as 

while the population correlation matrix is given by 
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Note that if we define Yi = Do I j 2xi , then YI' ... ,Yn are independently distributed 
with 'Yi - Nm(Dii

1j2
,.., P). If S* is the sample covariance matrix computed 

fo th S th S -D-lj2SD-lj2 D-lj2_D-I/2DIj2-DI/2D-I/2 ds r m e Yi' en * - {J 0' s* - S 0 - 0 S ,an 0 

that is, the sample correlation matrix computed from the YiS is the same as that 
computed from the XiS. If A = S* - P, then the first-order approximation for R 
is given by (see Problem 8.15) 

and so 

. 1 
vec(R) = vec(P) + vec(A) - '2 (vec(PDA) + vec(DAP)} 

where 

Thus, since 

1 
= vec(P) + vec(A) - 2 {(1m ® P) + (P ® Im)}vec(DA) 

= vec(P) + 
1 

1m2 - '2 {(1m ® P) + (P ® Im)}Am vec(A), (9.16) 

m 

Am = L. (Eli ® Eii ) 
i = I 

2 
var{vec(A)} = var{vec(S*)} = ----,-- Nm(P®P)Nm, 

n - 1 

we get the first-order approximation 

2 
var{vec(R)} = H Nm(P ® P)NmH', 

n-l 
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where the matrix H is the premultiplier on vec(A) in the last expression given 
in (9.16). Simplification (see Problem 9.~3) leads to 

2 
var{vec(R)} = . Nmif>NIII> 

.' n - 1 
(9.17) 

where • 

Since R is symmetric and has each diagonal element equal to one, its redun
dant and nonrandom elements can be eliminated by utilizing v(R). Since v(R) = - -Lm vec(R), where Lm is the matrix discussed in Section 7.8, we find that the 
asymptotic covariance matrix of v(R) is given by 

2 - -
var{v(R)} = -- L",NIllif>N",L;" 

n-l 

The Hadamard product and its associated properties can be useful in analyses 
involving the manipulation of if> since 

if> = P ® P - (1m ® P)Am(P ® P) - (P ® P)Am(lm ® P) 

+(Im ® P)Am(P ® P)Am(lm ® P), 

and the last term on the right-hand side of this equation can be expressed as 

(1m ® P)Am(P ® P)Am(lm ® P) = (1m ® P)i!;,,(P 0 P)i!",(lm ® P) 

PROBLEMS 

1. We saw in the proof of Theorem 9.1 that if A is an III x III idempotent 
matrix, then rank(A) + rank(lrn - A) = m. Prove the converse; that is, show 
that if A is an m x m matrix satisfying rank(A) + rank(l", - A) = Ill, then A 
is idempotent. 

2. Suppose that A is an m X III idempotent matrix. Show that each of the 
following matrices is also idempotent. 

(a) A'. 
(b) BAB- 1, where B is any m x III nonsingular matrix. 

(c) An, where n is a positive integer. 

3. Let A be an m x n matrix. Show that each of the following matrices is 
idempotent. 
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(a) AA-. 

(b) A-A. 
(c) A(A' A)-A'. 

SOME SPECIAL TOPICS RELATED TO QUADRATIC FORMS 

• 

4. Determine the class of m x 1 vectors {x}, for which xx' is idempotent. 

5. Determine constants a, b, and c so that each of the following is an idem
potent matrix. 

(a) alml~. 

(b) bIm + clml~. 

6. Let A be an m x n matrix with rank(A) = m. Show that A'(AA')-IA is 
symmetric and idempotent and find its rank. 

7. Let A and B be m x m matrices. Show that if B is nonsingular and AB is 
idempotent, then BA is also idempotent. 

8. Show that if A is an m x m matrix and A2 = rnA for some scalar m, then 

tr(A) = m rank(A) 
, 

9. Oi ve an example of a collection of matrices A It ... ,Ak that satisfies condi
tions (a) and (d) of Corollary 9.7.1, but does not satisfy conditions (b) and 
(c). Similarly, find a collection of matrices that satisfies conditions (c) and 
(d) but does not satisfy conditions (a) and (b). 

10. Prove Theorem 9.11. 

II. Let A be an m X m symmetric matrix with r = rank(A) and suppose that 
x - Nm(O, 1m). Show that the distribution of x' Ax can be expressed as a lin
ear combination of r independent chi-squared random variables, each with 
I degree of freedom. What are the coefficients in this linear combination 
when A is idempotent? 

12. Extend the result of Problem 11 to the situation in which x - Nm(O, [}), 
where [} is nonnegative definite; that is, show that if A is a symmetric 
matrix, then x' Ax can be expressed as a linear combination of independent 
chi-squared random variables each having one degree of freedom. How 
many chi-squared random variables are in this linear combination? 

\3. Let XI,'" ,Xn be a random sample from a normal distribution with mean 
JI. and variance a", and let x be the sample mean. Write 
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as a quadratic form in the vector (x - ~ln)' where x = (XI, ... ,x,,)'. What 
is the distribution of t? 

14. Suppose that x - Nn(J.l, 0), where 0 is positive definite. Partition x, J.l. and 
o as 

XI 
X= 

X2 
, J.l= J.l1 0= , 

J.l2 

where XI is r x 1 and X2 is (n - r) X I. Show that 

(a) tl = (XI - J.l1)'Oill(xl - J.l1) -X;. 
(b) t2 = (x - J.l)'O-I(X - J.l) - (XI - J.l1)'oii(xl - J.l1) - X~-r' 
(c) tl and t2 are independently distributed. 

15. Prove Theorem 9.14. 

16. Pearson's chi-squared statistic is given by 

m 

t= L 
j ~ I 

, 
n~j 

where n is a positive integer. the XjS are random variables. and the ~jS are 
nonnegative constants satisfying ~I + '" + ~m = I. Let X = (XI, ... ,xm)'. 
J.l = (~I> ... '~m)', and 0 = D - J.lJ.l', where D = diag(~ I, ... , ~m)' 

(a) Show that n is a singular matrix. 

(b) Show that if vn(x - J.l) - Nm(O, 0). then t - X;" _ I' 

17. Suppose that X - N4(O, Ld and consider the three functions of the compo
nents of X given by 
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(a) Write tl, t2, and t3 as quadratic forms in x. 

(b) Which of these statistics have chi-squared distributions? 

(c) Which of the pairs tl and t2, tl and t3, and t2 and t3 are independently 
distributed? 

IS. Suppose that x - N4 (J1.,[}}, where J1. = (1,-1,1,-1), and [} = 4 + 141~. 
Define 

• 

(a) Does tl or t2 have a chi-squared distribution? If so, identify the param
eters of the distribution. 

(b) Are tl and t2 independently distributed? 

19. Prove Theorem 9.15. 

20. Prove Theorem 9.16. 

21. The purpose of this exercise is to generalize the results of Example 9.5 to 
a test of the hypothesis that Hjl = c, where H is an m2 x m matrix having 
rank m2 and c is an mj X 1 vector; Example 9.5 dealt with the special 
case in which H = «O) 1m2 } and c = O. Let G be an (m - m2) x m matrix 
having rank m-m2 and satisfying HG' = (O). Show that the reduced model 
may be written as 

where y* = y - XH'(HH'}-I C, X* = XG'(GG'r l , and jl* = Gjl. Use the 
sum of squared errors for this reduced model and the sum of squared errors 
for the complete model to construct the appropriate F statistic. 

22. Suppose that x - Nm(O, [}}, where r = rank([}} < m. If T is any m x r 
'matrix satisfying TT' = [}, and z - N,(O, I,}, then x is distributed the same 
as Tz. Use this to show that the fOllllulas given in Theorem 9.21 for positive 
definite n also hold when n is positive semidefinite. 

23. Let x - Nm(O, 1m}. Use the fact that the first six moments of the standard 
normal distribution are 0, 1, 0, 3, 0, and 15 to show that 
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I m m 

E(xx' ® xx' ® xx') = 1m3 + -2 L L (1'1/ ® Tij ® Tij + Tij ® 11/1 ® Til 
i~ I j= I 

where Tij = Ejj + Eji. 

m m m 

+ L L L (Tij ® Tik ® Tjd. 
j=, j=' k~' 

413 

24. Let A, B, and C be m x m symmetric matrices and suppose that x -
Nm(O, 1m). 
(a) Show that 

E(x'Axx'Bxx'Cx) = tr{(A ® B ® C)E(xx' ®xx' ®xx')} 

(b) Use part (a) and the result of the previous exercise to derive the fOllllula 
for E(x'Axx'Bxx'Cx) given in Theorem 9.23. 

25. Let x - Nm (J1., 0), where 0 is positive definite. 

(a) Using Theorem 9.20, show that 

var(x ® x) = 2N m(O ® n + n ® J1.J1.' + J1.J1.' ® n) 

(b) Show that the matrix (n ® n + n ® J1.J1.' + J1.J1.' ® n) is nonsingular. 

(c) Determine the eigenvalues of N m. Use these along with part (b) to show 
that rank{var(x ®x)} = m(m + 1)/2. 

26. Suppose that the m x 1 vector x and the n x I vector y are independently 
distributed with E(x) = J1." E(y) = fL2, E(xx') = V" and E(yy') = V2 • Show 
that 

(a) E(xy' ® xy') = vec(Vd{ vec(V2)}', 

(b) E(xy' ®yx') = (VI ® V2)Kmn = K mn{V2 ® VI). 

(c) E(x ®x ® y ® y) = vec(Vd ® vec(V2), 

(d) E(x ® y ® x ® y) = (1m ® Knm ® InH vec(V,) ® vec(V2)}. 

(e) var(x ® y) = VI ® V2 - J1.1 J1.~ ® fL2"';. 

27. Let A, B, and C be m x m symmetric matrices, and let a and b be 111 x I 
vectors of constants. If x - Nm(O. n). show that 
(a) E(x'Aar'Bb)=a'AOBb, 

(b) E(x'Aax'Bbx'Cx) = a'AnBb tr(n C) + 2a' An cnBb. 
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28. Suppose that x - N4(1-1, n), where 1-1 = 14 and n = 44 + 141~. Let the 

random variables tl and t2 be defined by 

tl = (XI + X2 - 2X3)2 + (X3 - X4)2, 

t2 = (XI - X2 - X3)2 + (XI + X2 - X4)2 

Use Theorem 9.22 to find 

(a) var(tl), 

(b) var(t2), 

(c) COV(II' 12)' 

29. Verify the formulas given at the end of Example 9.7 for E(tl) and var(tl)' 

30. Suppose that the m x I vectors {Yij' 1 ~ i ~ k, 1 ~ j ~ nd are indepen

dently distributed with Yij - Nm(l-1i' n). A multivariate analysis of variance 

utilizes the matrices (Example 3.14) 

k k ni 

B = L ni(Yi - Y)(Yi - y)', W = L L (Yij - yJ(Yij - Yi)" 

i = I i=1 j=1 

where 

nj k - k 

Y, = L Yij 
Y=L 

niYi 
n= L n· , , I 

/I' n 
j=1 I i = I i = I 

Use Theorem 9.24 to show that W and B are independently distributed, 

W - Wm(n, w), and B - Wm(n,b,cI», where w = n - k,b = k - 1, and 

k 

cI> = ~ L ni(l-1i - 'jI)(l-1i - 'jI)', 
i = I 

k 

'jI= L 
i= I 

n· IL 'r, 
n 

31. Let X' = (XI, •.. ,xn) be an m X n matrix, where XI, ••• ,Xn are independent 

and Xi - N",(O, n) for each i. Show that 

E(X ® X ® X ® X) = {vec(ln) ® vec(ln)}{ vec(n) ® vec(n)}' 

+ vec(In ® In){vec(n ® n)}' + vec(Knn) 

. [vec{Kmm(n ®n)}]' 

• • 

, , 
" 

\ 
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32. Suppose that the columns of X' = (XI,." ,Xn ) are independently distributed 
with Xi - Nm( .... i' 0). Let A be an m x m symmetric matrix, and let M' = 

(1-11' ... ,l-1n)' Use the spectral decomposition of A to show that 
(a) E(X' AX) = tr(A)n + M' AM, 

(b) var{vec(X'AX)}= 2Nm {tr(A2)(n ®n)+n ®M'A2M+M'A2M®O} 

I 33. Use the results of Problems 7.45(e) and 7.52 to show that 
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thereby verifying the simplified formula for var{ vec(R)} given in (9.17). 
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Accumulation point, 70 

Adjoint, 8 
Analysis of variance, 120. See also 

One-way classification model; Two-way 

classification model 

Bartlett adjustment, 406 

Basis, 41-43 
orthonormal, 48-52 

Bilinear form, 15 

Block diagonal matrix, 12 

Boundary point, 72 

Canonical variate analysis, 107, 154-155, 

406-407 
Cauchy-Schwarz inequality, 35 

Cayley-Hamilton theorem, 93 

Chain rule, 324, 327 

Characteristic equation, 85 

Characteristic root, 84. See Eigenvalue 

Characteristic vector, 84. See Eigenvector 

Chi-squared distribution: 

central, 20-21 

and Moore-Penrose inverse, 179-180 

noncentral, 21 
and quadratic forms, 378-384 

Cholesky decomposition, 139 

Circulant matrix, 300-304 

Closure, 70 
Cochran's theorem, 374-378 

Cofactor, 5, 8 
expansion formula for determinant, 5-6 

Column space, 43 

Commutation matrix, 276-283 

eigenvalues, 281 
eigenvectors, 317 

Complex matrix, 16-18 

Concave function, see Convex function 

Consistent equations. ' I 0-21 ~ 

Consistent estimator. 189-190 

Continuity: 
of determinant, 188 
of eigenvalues. I O~ 

of inverse matrix. 188 

of Moore-P~nrose inverse. 189 

Convex combination, 70 

Convex function, 349-353 

absolute maximum, 352 

Convex hull, 70 
Convex set, 70-74 

Correlation coefficient, 24 

maximum squared. 368 

Correlation matrix. 24 
nonnegativ~ d~linitc, 24 

sample, 25 
Courant-Fischer min-max theorem. 108-11 () 

Covariance, 22-2~ 
of quadratic forms, 391, 394 

Covariance matrix, 23 

nonnegative definite, 23 

sample, 25 

Decomposition: 

Cholesky, 139 
Jordan, 147-149 

LU, 169 
QR, 140 
Schur, 149-153 
singular value, 131-138 

spectral, 95, 98, 138 

Density function, 19 
Derivative, 323. 325 

of determinant, 332, 336 

of eigenvalue. 343 

421 
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Derivative (Continlled) 

or eigcnvcctor. 343 
of inverse. 333. 336-337 

of Moort'-Penrose inverse. 333-334. 

336-337 
partial. 325 
of pallemed matrices. 335-337 

second-order partial. 326 

of trace. 332 
of vector function. 327 

Detemlinant. 5-8 
continuit\' of. 188 
derivative of. 332. 336 

and eigenvalues. 90 

expansion formula for. 5~ 

of partitioned matrix. 249-250 

Dia2onalization. 92. 1'1'1 147 -
simultaneous. 118. 154-157 

Diagonal matrix. 2 -
Differential. 32-t. 325 

of detemlinant. 332 
of ei2envalue. 343 -
of eigenvector. 343 
of inverse. 333. 336-337 

llf matrix function. 328 

of ~100re-Penrose inverse. 334-335 . 

. <36-337 
s~l'ond .. ~2.tl 

of trace. 332 
of vector function. 327 

Dimension of vector space. 41 

Direct sum of matrices. 260-261 

Discriminant analvsis. 37 -
Distance function. 36 

Euclidean. 36. 50. 62~3. 141 

~tahalanohis. 37. 63. 141 

Di,tance in the metric of. 37 

Duplication matrix. 238-285 

Ei£enprojcction. 98 
clmtinuit\" of. 103 

ri~t',,'p"l:c. 1\7. loll> 
Eigel1\·alue. 84 

asymptotic distribution of. 404 406 

<,,,ntinuit\" of. 103 -
derivative of. 343 
distinct. 86 
extremal properties. 104-110 

(11' idempotent matrix. 370-371 

in the metric of. 118 

monotonicity. 115 
mUltiple. 86 
of ortho20nal matrix. 88 -

perturbation of, 339-343 

of positive definite matrix, 112 
of positive semidefinite matrix, 112 

and rank, 92, 99, 146-147, 153 

simple, 86 
of symmetric matrix, 93-102 

of transpose product, 114-115 

of triangular matrix, 88 

Eigenvectors, 84 
asymptotic distribution of, 404-406 

common. 128, 157 
derivative of, 343 
linear independence of, 91 

of symmetric matrix, 94-96 

Elementary transformations, 13 

Elimination matrices, 285-288 

Estimable fUnction, 230 

Euclidean norm, 36, 37, 158 

Euclidean space, 36 
Euler's formula. 17 
Expected value, 19 

of quadratic form. 390-398 

F distribution, 21-22 

Fourier matrix, 303-304 

Gauss-Seidel method. 236 

Generalized inverse. 190-196. See also 

Moore-Penrose inverse 
computation of, 200-203 

properties, 193 
Gradient, 237 
Gram-Schmidt orthonormalization, 48, 

54-55 

Hadamard inequality, 270 

Hadamard matrix. 305-307 

normalized. 306 
Hadamard product, 266-276 

eigenvalues of. 274-276 

as a Kronecker product. 267 

rank of. 267 
Hermite form. 200 
Hermitian matrix, 18 

Hessian matrix, 326 

INDEX 

Homogeneous system of equations, 219-221 

Hyperplane, 71 

Idempotent matrix, 3, 58-59, 370-374 

eigenvalues of. 370-37 I 
rank of. 370-371 
symmetric, 372. 373-374 

trace of. 370-371 

, 
. ' 

, 

. , 
• • 

, , 



INDEX 

Identity matrix. 2 
Indefinite matrix, 16 

Independence (linear). 38-40 
Independence (stochastic): 

of quadratic forms, 384-390 
of random variables, 22 

Inner product, 34-35 
Euclidean, 35 

Interior point, 72 
Intersection of vector spaces, 67 
Inverse matrix. 8-11 

and cofactors. 8-9 
continuity of. 188 
derivative of. 333. 336--337 
of partitioned matrix. 347 
of a sum, 9-10 

Irreducible matrix, 294-295 

Jacobian matrix. 327 
Jacobi method. 236 
Jensen's inequality, 352-353 
Jordan decomposition, 147-149 

Kronecker product, 253 
detenninant of, 256 
eigenvalues of, 255 
eigenvectors of, 312 
inverse of, 255 
Moore-Penrose inverse of, 255 
rank of, 257 
trace of, 255 

Lagrange function. 354 
Lagrange multipliers. 354 
Lanczos vectors. 238 
Latent root, 84. See Eigenvalue 
Latent vector. 84. See Eigenvector 
Least squares, see also Regression 

and best linear unbiased estimator, 
113-114 

generali7.ed. 141-142. 245 
in less than full rank models, 58, 

228-232 
and multicollinearity. 96--98. 136 
in multiple regression, 55-58 
in one-way classification model, 79-80 
ordinary. 26--28 
restricted. 80-81. 245 
in ridge regression. 123 
in simple linear regression, 50-51 
and solutions to a system of equations. 

222-228, 345-346 

423 

with standardized explanatory variables, 
64-65 

weighted, 65-66 
Least squares inverse, 196--197 

computation of, 203-204 
Limi t poi nt, 70 
Linear combination, 33 
Linear dependence, 38-40 
Linear equations, 66--67 

consistency of, 210-2 \3 
homogeneous system of, 219-221 
least squares solutions of, 222-228 
linearly independent solutions to, 217 
and singular value decomposition. 

233-235 
solutions to, 213-219 
sparce systems of. 235-241 

direct methods. 235-236 
iterative methods. 236--241 

unique solution to. 216 
Linear independence, 38-40 
Linear model. 27 
Linear space, 33 
Linear transformation. 60-67 . 
LU factorization. 169 

Mahalanobis distance. 37. 63. 141 
Markov chain. 298-300 
Matrix: 

block diagonal. 12 
circulant. 300-304 
commutation, 276-283 
complex. 16--18 
correlation, 24 
covariance, 23 
diagonal, 2 
duplication. 283-285 
eigenprojection. 98 
elimination. 285-288 
Fourier, 303-304 
Hadamard. 305-307 
Hermitian. I R 
Hessian. 326 
idempotent, 3. 58-59. 370-374 
identity. 2 
indefinite. 16 
irreducible, 294-295 
Jacobian, 327 
negative definite, 16 
negative semidefinite. 16 
nilpotent. 127. 166 
nonnegative. 288 
nonnegative definite. 16 
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Matrix (Continued) 
nonsingular, 8 
null, 2 
order of. I 
orthogonal, 14-15 
partitioned, ll-I3 
permutation, 15 
positive, 288 
p,,,itivc definite, 15-16 
posi live scmidelinite, 15-1 () 
primitive, 298 
projection, 52-59 
reducible, 294-295 
similar, 144 
skew-symmetric, 4 
s4uare root, 16 
symmetric, 4 
Toeplitz, 304-305 
transpose, 3 
triangular, 2 
unitary, 18, 150 
Vandermonde, 307-309 

Matrix function, 327 
Matrix norm, 158 

Euclidean, 158 
maximum column sum, 158 
maximum row sum, 158 
spectral. 158 

Maximum: 
absolute. 344 
of a concave function, 351 
conditions for local maximum. 345 
with equality constraints, 353-360 
local, 344 

Maximum likelihood estimation, 347-349 
Mean 19 , 

sample, 25 
Mean squared error, 163-164 
Mean vector, 22 

differences in, 106-107, 116-117, 154 
sample, 25 

Minimum, see Maximum 
Minor,S, 13 

Icading principal, 311 
Modulus of a complex number, 17 
Moment generating function, 20 
Moments. 19-20 
Moore-Penrose inverse, PI 

of block diagonal matrix. 186 
computation of, 175, 197-199 

continuity of, 188-190 
derivative of, 333-334, 336-337 
of diagonal matrix, 177 

existence of, 171-172 
of a matrix product, 180-185 
of partitioned matrices, 185-186 
and projection matrices, 172-173 
properties, 174-180 
and quadratic form in normal random 

vectors, 179-180 
and rank, 175 
and singular value decomposition, 172 
and spectral decomposition, 176-177 
of a sum, 186-187 
of a symmetric mau-ix, 176-178 
uniqueness of, 171-172 

Multicollinearity, 96-98, 136 
Mullinomial distribution, 368 
Multiplicity of an eigenvalue, 86 
Multivariate normal distribution, 25-26, 

331-332,347-349 

Negative definite matrix, 16 
Negative semidefinite matrix, 16 
Nilpotent matrix, 127 
Nonnegative definite matrix, 16 

correlation matrix, 24 
covariance matrix, 23 

Nonnegative matrix, 288 
irreducible, 294-295 

eigenvalues of, 296-298 
eigenvectors of, 296-297 

primitive, 298 
spectral radius of, 288 

Nonsingular matrix, 8 
Norm: 

matrix, 157-162 
vector, 35, 37-38 

Normal distribution: 
multivariate, 25-26, 331-332, 347-349 
singular, 26, 379 
univariate, 20 

Normalized vector, 14 
Null matrix, 2 
Null space, 60-61 
Null vector, 2 

One-way classification model: 
multivariate, 119-122, 154, 406-407 
univariate, 79-80, 119,228-229,231-232, 

257-258, 385-387, 396-397 
Order: 

of a minor, 13 
of a square matrix, I 

Orthogonal complement, 52 
dimension of, 52 
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INDEX 

Orthogonal matrix, 14-15 
Orthogonal vectors, 14 
Orthononnal basis, 48-52 
Orthononnal vectors, 14 

Partitioned matrix, 11-13 
detenninant of, 249-250 
in verse of, 247 
rank,46-47 

Pearson's chi-squared statistic, 411 
Pennutation matrix. 15 
Perturbation methods. 337-344 

eigenprojection. 343-344 
eigenvalue. 339-343 
matrix inverse. 338-339 

Poincare separation theorem. III 
Polar coordinates. 17 
Positive definite matrix, 15-16 
Positive matrix. 288 

eigenvalues. 289-294 
eigenvectors. 289-293 
spectral radius. 288 

Positive semidefinite matrix, 15-16 
Primitive matrix, 298 
Principal components analysis, 107-108, 404 
Probability function. 18 
Projection matrix. 52-59 
Projection (orthogonal), 50 

Quadratic fonn, 15-16 
distribution of, 378-384 
expected value of, 390-398 
generalized, 399 
independence of, 384-390 
and Moore-Penrose inverse, 179-180 

QR factorization, 140 

Random variable. 18-22 
Random vector, 22-26 
Range, 43 
Rank. 13-14 

and linear independence, 43-47 
Rayleigh quotient, 104 
Reducible matrix, 294-295 
Regression. 26-28. See also Least squares 

best quadratic unbiased estimator, 358-360 
F test, 387-388 
generalized least squares. 141-142 
multiple, 55-58, 248-249 
principal components. 96-98. 136-138, 

163 
ridge, 123 
simple linear, 50-51 

425 

with standardized explanatory variables. 
64-65 

weighted least squares, 65-66 
Row space, 43 

Saddle point, 345 
Sample correlation matrix, 25 

asymptotic covariance matrix of. 407~09 
Sample covariance matrix. 25 

distribution or. 402~03 
Sample mean, 25 
Sample mean vector, 25 
Sample variance. 25 

distribution, 383-384 
independent of sample mean. 388-389 

Schur decomposition. 149-153 
Separating hyperplane theorem. 73-74 
Similar matrices. 144 
Simultaneous conlidencc illlcrvais. I ~ 1-122 
Simultaneous diagonalization. 118. 154-157 
Singular value decomposition. 131-138 

and system of equations. 233-~35 
Singular values. 133 

and eigenvalues. 135 
Skew-symmetric matrix. 4 
Spanning set. 33 
Spectral decomposition. 95. 98. 138 
Spectral radius, 159 
Spectral set, 98 
Square root of a matrix. 16. 138-139 
Stationary point, 345 
Submatrix, 11-13 

principal. 112 
Subspace, 32 
Sum of squares: 

for error. 27 
for treatment. 120 

Sum of vector spaces. 68 
Supporting hyperplane theorem. 73 
Symmetric matrix, 4 

Taylor fonnula: 
first-order, 323. 325 
kth-order, 324, 325 
vector function. 326 

Toeplitz matrix, 304-305 
Trace, 4-5 

derivative of. 332 
and eigenvalues, 90 

Transition prObabilities, 299 

Transpose, 3 
Transpose product, 114-115. 142-144 
Triangle inequality, 18. 36 
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Triangular matrix. 2 

Two.way dassilicalion model. 244. 259-260, 
J13 

Union-intersection procedure. 121. 367 
UnitarY matrix. 18. 150 • 
Unit vector. 14 

Vandermonde matrix. 307-309 
Variance. 19-20 

of quadratic form. 391. 394 
,ample. 25 

Vee operator. 26 I -265 
Vector. 2 

normalized. 14 
null. 2 
ortho20nal. 14 -orthonormal. 14 
unit. l.t 

Vector norm. 35 
Euclidean norm, 36, 37 
infinity norm, 37 
max norm. 37 
sum norm, 37 

Vector space, 32 
basis of. 41-43 
dimension of, 41 
direct sum, 69 
Euclidean, 36 
intersection, 67 
projection matrix of, 52-59 
sum, 68 

Wishart distribution, 398-409 
covariance matrix of. 401 
mean of. 401 
and sample covariance matrix, 

402-403 
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