

MooTools 1.2 Beginner's Guide

Learn how to create dynamic, interactive, and
responsive cross-browser web applications using
one of the most popular JavaScript frameworks

Jacob Gube

Garrick Cheung

 BIRMINGHAM - MUMBAI

MooTools 1.2 Beginner's Guide

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, Packt Publishing, nor its dealers or
distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2009

Production Reference: 1111209

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847194-58-9

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Authors

Jacob Gube

Garrick Cheung

Reviewer

Chirstoph Pojer

Acquisition Editor

Douglas Paterson

Development Editor

Steven Wilding

Technical Editor

Bhupali Khule

Indexer

Hemangini Bari

Editorial Team Leader

Akshara Aware

Project Team Leader

Lata Basantani

Project Coordinators

Rajashree Hamine

Srimoyee Ghoshal

Proofreaders

Cathy Cumberlidge

Andy Scothern

Production Coordinator

Adline Swetha Jesuthas

Cover Work

Adline Swetha Jesuthas

About the Authors

Jacob Gube is a massive MooTools developer. He is the founder and Chief Editor of Six
Revisions, a website dedicated to web developers and web designers. He's also written for
other popular web publications such as Read Write Web and Smashing Magazine, discussing
web technologies and development. A web professional for 8 years, Jacob is an in-house
web developer specializing in distance-learning education and web accessibility, using PHP,
MooTools, and jQuery (alongside other web technology acronyms like VB.NET and AS3/
Flash) to get the job done.

Garrick Cheung is a designer-developer and a member of the official Mootools Community
team. He's currently a Senior Technical Producer for CBS Interactive developing for sites such
as GameSpot.com, TV.com and MP3.com. He's passionate about code optimization and loves
to teach and develop in MooTools. Garrick also writes about code and development at his
site, http://www.garrickcheung.com.

About the Reviewer

Christoph currently studies Software Engineering and Business Management at the Graz
University of Technology. He is an experienced web developer and has worked on numerous
web applications for the past 7 years. He focuses on JavaScript and is a core developer of the
MooTools JavaScript framework, as he enjoys pushing the limits of the Web. You can find a
lot of his open source work on cpojer.net. In his free time he enjoys watching TV series
and hanging out with friends.

Table of Contents
Preface 1

Chapter 1: MooTools and Me 7
What is MooTools? 8
Why use MooTools? 8

The advantages of using MooTools 9
Writing terse and elegant code 9
Extending native JavaScript 9
Cross-browser compatibility 10
Working with the Document Object Model 11
The advantage of using open-source projects 11

Downloading and installing MooTools 12
Time for action – downloading and installing the MooTools Core 12

Different MooTools downloads 15
The domready event listener 15

Rolling your own MooTools 15
MooTools Core 16

Time for action – exploring the MooTools Core Builder 16
MooTools More 20

Time for action – exploring the MooTools More Builder 21
The API concept 22
MooTools resources 22

MooTools Docs 22
MooTools Users Google groups 22
mooforum 23
The MooTorial 23

Summary 23

Table of Contents

[ii]

Chapter 2: Writing JavaScript with MooTools 25
Writing unobtrusive JavaScript with MooTools 26

An "obtrusive" JavaScript example 26
What's so bad about it? 27

Don't repeat it if you don't have to 27
It'll be hard to maintain 28
It's a bad practice to have functionality in your content structure 28

Time for action – rewriting our script unobtrusively 28
Removing our inline event handlers 32
Using the DOM to handle events 32

Creating MooTools classes 33
What the heck is a class? 33
Real-world analogy 33
Creating a MooTools class 33

The Implements property 34

Time for action – creating an instance of Dog 36
Time for action – giving our class instance some custom options 39
Time for action – determining the value of our options 40

Extending classes 40

Time for action – extending the ShowDog class with 41
the Dog class 41

Class inheritance 43

Using MooTools classes 44
The concept of chainability 44
The Chain class 45
A Chain example 45
A look ahead: Chaining Fx .Tween 45

Time for action – create a chain of Fx.Tween methods 46
Isn't MooTools classy? 51
Chainability 51

Summary 51

Chapter 3: Selecting DOM Elements 53
MooTools and CSS selectors 54
Working with the $() and $$() functions 55

The $() dollar function 55
The $$() dollars function 55
When to use which 56

Time for action – selecting an element with the dollar function 57
Time for action – selecting elements with the dollars function 58
Time for action – selecting multiple sets of elements 58
with the dollars function 58

$() versus document.getElementById() 59
Selecting multiple sets of elements 60

Table of Contents

[iii]

Common errors with the dollar and dollars functions 61
Selection using pseudo-classes 63

Pseudo-class example: Zebra striping a table 63
Time for action – using pseudo-classes to zebra stripe a table 64

Other pseudo-class selectors 67
Working with attribute selectors 68

Attribute selector operators 69
Attribute selector example: Styling different types of links 69

Time for action – using = attribute selector 69
Time for action – using != attribute selector 71
Time for action – using ^= attribute selector 72
Time for action – using $= attribute selector 73

Attribute selector case sensitivity 75
DOM selection makes unobtrusive JavaScript do-able 76
Summary 76

Chapter 4: The Core's Useful Utility Functions 77
What is the Core? 77
Browser: Getting information about the client 78

Determining if the client has a specific feature 78
Browser.Features.xpath 78
Browser.Features.xhr 78

Getting information about the client's rendering engine 78
Determining the client's rendering engine and version 79

Time for action – determining the client's rendering engine and version 79
Checking if the client is using a particular web browser 82
Determining if the client has Adobe Flash installed 82

Finding out information about the client's operating system 83
Potential uses of this property 83
Example scenario: Offering the correct download based on the client's platform 84

Time for action – using Browser.Platform to customize SuperSoftware's
download page 86
Exploring the Core utility functions 92

Checking to see if objects are defined 93
Seeing if an object has a value with $chk 93
Checking if an object is defined with $defined 94
Selecting the first defined object using $pick 95
Getting the return of first working function with $try 95

Dealing with time and intervals 96
The $time() function 96

Time for action – the $time() function 96
The $clear() function 98

Time for action – exploring the $clear() function with periodical() 99
Utility functions for working with objects 101

Table of Contents

[iv]

Extending objects with $extend() 101
Merging objects with $merge() 102
Iterating through objects using $each 103

Time for action – exploring the $each function 104
Other utility functions in the Core 105

Generating a random number with $random 105
Converting objects to arrays with $splat 105
Determining the data type using $type 105
Limited use functions 106

Summary 107

Chapter 5: Working with Events 109
What are events exactly? 109

Window events 110
Form events 110
Keyboard events 111
Mouse events 112
MooTools custom mouse events 112

Adding event listeners 113
Adding a single event listener 113

Time for action – highlighting focused fields of web forms 113
Adding multiple event listeners 117

Time for action – adding tooltips to the web form 117
Creating custom events 122
Time for action – creating a custom event for showing help tips 123
Removing, cloning, and firing off events 127

Removing events from elements 127
Removing a single event from elements 127

Time for action – removing an event 127
Removing a type of event, or all events, from elements 129
Cloning events from another element 130
Firing off events 130

Time for action – firing off a click event 130
The MooTools event object 132

Using event object methods 132
Preventing the default behavior 132

Time for action – preventing the default behavior of a hyperlink 133
Preventing event bubbling 134

Time for action – preventing event bubbling 134
Stopping default behavior and event propagation 138

Using event properties 138
Summary 140

Table of Contents

[v]

Chapter 6: Bringing Web Pages to Life with Animation 141
MooTools' Fx class 141

Basic syntax 142
Fx options 142

Animating a CSS property with Fx.Tween 143
Time for action - creating a hide/show FAQ page 143

Tweening a single CSS property using the tween() method 149
Time for action – toggling the visibility of a div 149

Fading elements 151
Time for action - fading an image in and out 152

Highlighting elements 155
Time for action - indicating blank form fields that are required 155
Animating multiple CSS properties with Fx.Morph 158
Time for action - enlarging an image 158

Using the morph() shortcut method 162
Time for action - experimenting with morph 162
Other Fx methods 165

Starting an effect 165
Setting properties immediately 165
Cancelling a transition 166
Pausing effect 166
Resuming a paused effect 166

Summary 166

Chapter 7: Going 2.0 with Ajax 167
What you'll need 168
Creating a Request object 168

Request object options 168
Request events options 170

Running a function immediately when a request is made 170
Running a function when the request is completed 170
Running a function when the request is cancelled 170
Other Request events 171

Requesting data 171
Time for action – requesting remote data 171

Requesting HTML and JSON data 173
Working with HTML data 174

Time for action – updating a web page with HTML 174
Loading HTML documents remotely 175

Time for action – loading HTML data 176
Working with JSON data 178

Time for action – working with Ajax and JSON 178

Table of Contents

[vi]

Cancelling a Request 179
Sending data 180
Time for action – sending data to PHP 180
Setting and getting HTTP headers 183

Setting an HTTP header for an Ajax Request object 183
Getting an HTTP header 184

Time for action – getting the Last-Modified HTTP header 184
Summary 186

Chapter 8: Beefing Up MooTools: Using the MooTools More Plugins 187
Downloading MooTools More plugins 188
Time for action – downloading the Fx.Accordion plugin 188
Installing MooTools plugins 190
Time for action – installing Fx.Accordion 190
Discovering a handful of MooTools More plugins 192

Creating engaging content using Fx.Accordion 192
Time for action – creating an accordion 192

Fx.Accordion options 198

Downloading all the MooTools More plugins we need 199
Time for action – downloading more Mootools More plugins 199

Extending JavaScript's native Date object 201
Time for action – building a Date calculator tool 201

Making web forms more user-friendly with the OverText plugin 208
Time for action – creating a web form that uses OverText 208

Drag-and-drop with Drag and Drag.Move 212
Time for action – creating a simple drag-and-drop game 212
Summary 220

Chapter 9: Creating Your Own Plugin 221
Why create a plugin? 222
Designing the plugin 222
Time for action – creating a design sheet for our plugin 223
Creating the ImageCaption script 225
Time for action – writing the ImageCaption script 226

Noting down pitfalls and places of improvement to the script 233
Converting the script to a flexible plugin 233
Time for action – creating the ImageCaption plugin 234
Instantiating the plugin 239
Time for action – basic instantiation of the ImageCaption plugin 239

Creating a more complex instance of the plugin 241
Time for action – creating new instances of the plugin 241

Creating multiple instances of the plugin 243

Table of Contents

[vii]

Time for action – multiple instances of the ImageCaption plugin 243
Preparing your plugin for the public 245

Documenting your plugin with comments 245
Time for action – documenting the ImageCaption plugin 246

External documentation 247
Time for action – creating a basic download page for the ImageCaption plugin 248
Summary 252

Index 253

Preface
This book is geared towards web developers who have a basic understanding of JavaScript
and the related technologies that are involved with it, namely HTML and CSS. If you're
familiar with a programming or server-side scripting language, code authoring in MooTools
will be very familiar.

The goal of this book is to give you a functional and pragmatic understanding of MooTools
and is not intended for learning JavaScript, HTML, CSS, and concepts such as the DOM and
unobtrusive JavaScript.

This is the first book specifically designed for absolute newcomers to MooTools. It is a
Packt Beginner's Guide, which means it is packed with clear step-by-step instructions for
performing the most useful tasks.

MooTools is an open source, lightweight, modular object-oriented programming JavaScript
web application framework. The goal of the software is to provide a means for intermediate
to advanced web developers to write cross-browser JavaScript in an elegant, flexible,
and efficient fashion. The MooTools JavaScript framework includes built-in functions for
manipulation of CSS, DOM elements, native JavaScript objects, AJAX requests, and more.

You will start learning by 'doing' immediately. As each chapter in the book progresses, the
topics get more complex. First you get to grips with the fundamentals of MooTools including
downloading, installation, and basic syntax. Once you've grasped the basics you learn to
make the most of MooTools' powerful framework. You will learn to bring web pages to life
with animation and create exciting web pages with AJAX. You will also learn to customize
MooTools to suit your own needs by creating your own plug-ins. You will soon be well on the
way to creating web applications and web pages worthy of the Web 2.0 world

Preface

[2]

What this book covers
Chapter 1, MooTools and Me shows how to download and install Mootools. It demonstrates
how to troubleshoot the most common installation problems. Writing a simple MooTools
code block to test that the installation has worked is also explained.

Chapter 2, Writing JavaScript with MooTools demonstrates the difference between normal
JavaScript against MooTools code. It explains how MooTools code can be far simpler and
more efficient than ordinary JavaScript to achieve the same task.

Chapter 3, Selecting DOM Elements gives an overview of the Document Object Model tree
and an in-depth discussion of the $() function in the Element class. It showcases basic DOM
relationships such as parents, children, and siblings. It also demonstrates how to select page
links and then give them a certain color or style

Chapter 4, The Core's Useful Utility Functions introduces native JavaScript variable
definitions. It goes through each function and demonstrates how it works.

Chapter 5, Working with Events explains different browser events such as mouse click,
mouse hover, mouse moving and key press. It demonstrates how to build a super-charged
web form in MooTools. Events are covered showing how to add event listeners to web page
elements.

Chapter 6, Bringing Web Pages to Life Using Animation introduces the different
animation options available in MooTools. It demonstrates how to create a featured area
slider. It demonstrates the MooTools Fx class and its useful methods for working with
MooTools effects.

Chapter 7, Going 2.0 with Ajax shows the basics of Ajax. It demonstrates how MooTools
makes working with Ajax easy. It will explain how XML files can be used to simulate a
relational database.

Chapter 8, Beefing up MooTools Using the MooTools More Plugins demonstrates how to
install and use the plug in system. It will explain how the Accordion area can be used to
display content in an engaging and compact manner using the Fx Accordian plugin. It will
also cover creating user-friendly forms using the OverText plugin.

Chapter 9, Creating Your Own Plugin will show the benefits of creating your own plugin such
as reusability and customization. It will explain the guidelines and standards that should be
adhered to for creating a plugin. It will also demonstrate how to build a simple plugin.

Preface

[3]

What you need for this book
You will need a computer. It can be running any operating system of your preference. To be
able to complete the exercises and examples in each chapter, you will need to have a text
editor. Operating systems usually come with one, such as Notepad, on Microsoft Windows,
or TextEdit, on Mac OS X. To view the results of the exercises and examples, you will need
access to a web browser. The web browsers used in this book are free and can be found on
the internet.

Below is a list of the web browsers used in this book:

 � Mozilla FireFox

 � Opera

 � Apple Safari

 � Google Chrome

 � Internet Explorer

Who this book is for
This book is perfect for MooTools newcomers. You do not require any familiarity with MooTools
whatsoever, only a willingness to learn. Basic knowledge of JavaScript syntax and concepts is
the only requirement. This book will allow you to grasp the basics of MooTools so that you will
be well on the way to creating exciting, customizable web pages and applications.

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text are shown as follows: "We build a function called pageCustomizer
that will customize our page."

A block of code will be set as follows:

if(Browser.Engine.trident){
 alert('You\'re using Internet Explorer');
} else{
 alert('You\'re not using Internet Explorer');
}

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items will be shown in bold:

if(userPlatform!='other' || userPlatform!='ipod') {

 $$('.download-options').destroy();

}

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in our text like this: "Click on the #child div ".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
and mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note
in the SUGGEST A TITLE form on www.packtpub.com or email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

[5]

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/4589_Code.zip to
directly download the example code.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in text or code—we
would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us to improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the let us know link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata added to any list of
existing errata. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or web site name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
MooTools and Me

In recent years, the Web has undergone a major evolution, an evolution
towards highly-interactive, dynamic, responsive web pages and web
applications. We're at a time where users expect (and often, demand)
web interfaces that talk to them.

Gone are the days where only desktop software was associated with smooth
and feature-packed user interfaces that performed complicated tasks. In fact,
applications that we normally think of as traditionally being for the desktop
(such as Word Processors, Image editors, and Spreadsheet software) are now
moving to browser-based environments because of the many advantages of
web-based applications (such as operating system/platform interdependency,
interoperability with other systems, and collaborative possibilities).

JavaScript is the technology that's driving this evolution by giving web
developers the capability to create complex, robust, interactive web page
components and Rich Internet Applications (RIA) that respond effortlessly to
user actions through a combination of techniques such as Ajax, on-the-fly DOM
manipulation, and smooth, animated effects.

However, JavaScript isn't perfect (in fact, it's far from it), its syntax is sometimes
unintuitive and repetitive, and often requires a great deal of code-authoring to
perform complicated and cross-browser-compatible operations.

MooTools and Me

[8]

This is where MooTools steps in! By providing web developers with a set of useful and
cross-browser-compatible functions, methods, and classes within an intuitive framework for
writing client-side scripts, we can side-step a lot of frustration and time, typically associated
with code-authoring in JavaScript:

In this chapter we shall:

 � Learn about what MooTools is

 � Discuss some advantages of using MooTools

 � Learn how to download and install MooTools

 � Learn about notable MooTools resources on the web

So let's get on with it!

What is MooTools?
MooTools (which stands for My Object-Oriented "JavaScript" Tools) is a lightweight, modular,
object-oriented JavaScript framework. It greatly speeds up and enhances the development
cycle of feature-rich Ajax/JavaScript web applications. Created by Valerio Proietti—who
originally intended it to be an extension to the Prototype JavaScript framework—MooTools
has since grown into an independent, open-source, and very robust JavaScript framework
with a solid team of core developers and thousands of users who support, contribute, and
rabidly evangelize the project.

MooTools, in essence, abstracts normal JavaScript code so that you can write more terse
and elegant client-side scripts. It has a host of useful functions, methods, and classes that'll
let you develop robust web components and web applications.

The developers of MooTools strongly believe in applying Object-Oriented Programming (OOP)
principles to JavaScript, a structural programming language. Since everything in JavaScript is an
object, MooTools provides a cleaner, easier, and more elegant way to manipulate the object to
our will. MooTools also helps make the JavaScript code cross-browser compatible.

Why use MooTools?
I've already mentioned that JavaScript isn't perfect; it's a language that's unintuitive at times
and doesn't have a lot of native functions and methods to deal with modern user demands.

For example, Ajax is all the rage these days; the concept of Ajax allows us to communicate
with our server-side scripts asynchronously. We heftily rely on Ajax requests and responses
to give users an uninterrupted experience as we update the Document Object Model (DOM)
behind the scenes after he or she performs an action such as submitting a web form or
adding an item to their shopping cart.

Chapter 1

[9]

If all of that sounds complicated and seems like it would take an insurmountable heap
of JavaScript code to write, then you're right.

If you believe that MooTools will save you a lot of time and will help you write more
efficient and terse JavaScript, then you're two for two!

Let's look at the advantages of using MooTools.

The advantages of using MooTools
There are many benefits to be had from learning and using MooTools.

Writing terse and elegant code
I think most would agree that what makes coding in JavaScript awful is stuff like browser
quirks and non-standard behavior. In addition, it's very long-winded and even simple
operations can sometimes take several lines of code to author because the language is very
lightweight.

MooTools, like many of the other JS frameworks, aims at allowing web developers to write
complicated procedures with clean, reusable, and understandable code. Not only will this
improve the speed at which you complete your projects, but it also makes your code easier
to read and maintain.

Extending native JavaScript
There are many functions and methods that web developers think JavaScript should have.
For example, Ajax can be challenging because there are no set standards to working with it in
JavaScript. MooTools attempts to address these missing parts in JavaScript by providing
web developers with a set of standardized and useful classes, methods, and functions.

For example, to address the lack of an Ajax class in JavaScript, MooTools has the Request
class which deals with operations involving XMLHttpRequest objects.

MooTools also has a variety of utility functions and methods that are extremely helpful
on many occasions, like the $each() function which allows you to easily loop through
objects such as non-regular arrays or function arguments, and the addEvent method which
attaches event listeners to page objects so that we can react to user actions like mouseovers
and mouse clicks.

MooTools and Me

[10]

Cross-browser compatibility
JavaScript has to run in a wide array of environments such as web browsers. Unlike
server-side scripting languages like PHP and Python, where the server is responsible
for compiling and interpreting your code, JavaScript is different in that the web browser
interprets your code. Web browsers all have different quirks and ways of interpreting
JavaScript, resulting in countless hours of debugging and browser testing.

MooTools handles these browser quirks for you. For example, web browsers have different
ways of dealing with Ajax requests. Internet Explorer 6 has the ActiveX object while
Mozilla-based browsers like Firefox have the XMLHttpRequest class.

Traditionally, whenever you create an Ajax request object in JavaScipt, you would have to
check first which web browser the user is using. Thus, creating Ajax request objects results
in a lot of if statements and browser-sniffing.

For example, this is one way of creating an Ajax request object in JavaScript:

var request;
//Try Compatible Browser
if (window.XMLHttpRequest) {
 request = new XMLHttpRequest();
}
//Try IE6
else if (window.ActiveXObject) { // IE
 request = new ActiveXObject("Microsoft.XMLHTTP");
}
<... More browsers here...>
else {
 //Code that deals with the event that a browser doesn't support
XMLHttpRequest objects
 document.write('Browser is unsupported');
}

In MooTools, you can forego all of that browser-sniffing. All you have to do to create an
XMLHttpRequest object is the following code:

var myRequest = new Request([insert arguments here]);

There are two important things to note here:

 � You've just saved a ton of code to write

 � The request object you created will function the same way in all browsers

Chapter 1

[11]

MooTools officially fully-supports and tests in the following web browsers (though it's very
likely that it'll work perfectly in most other web browsers):

•	 Safari 2+

•	 Internet Explorer 6+

•	 Firefox 2+ (and browsers based on gecko)

•	 Opera 9+

Working with the Document Object Model
A defining feature of most JavaScript frameworks and libraries is that they provide you
with a set of useful tools for working with the Document Object Model. Traversing and
manipulating the DOM in JavaScript can take massive amounts of code and can be
unintuitive to many web developers (not to mention having to deal with browser quirks that
can add to the length and development time of your functions).

MooTools has an intuitive syntax for selecting and working on page objects.

For example, if you want to select all the <a> hyperlinks with a class of big that links to
a .jpg file in a web page, it only takes a line of code:

var jpgLinks = $$('a.big[href$=.jpg]');

This line of code creates an array called jpgLinks containing the aforementioned set
of hyperlinks.

In ordinary JavaScript, this same complex selection operation would involve several
for loops and regular expression matching to accomplish. Modern browsers, such as
Safari 4, FireFox 3.5, and IE8 (only CSS 2.1 compliant), are slowly catching up by
implementing document.querySelector and document.querySelectorAll methods
to simplify things.

The advantage of using open-source projects
Remember the saying, "Two heads are better than one"? Now multiply that two by several
magnitudes of a thousand and that's the number of developers that constantly review, use,
and contribute to the MooTools project.

MooTools leverages the collective knowledge and skills of thousands of MooTools users
worldwide. Therefore, when a new bug is discovered, it is quickly reported and addressed.
Also, you'll encounter some of the most efficient JavaScript code written in MooTools
because it has been widely tested and inspected by MooTools users and the MooTools
development team.

By using MooTools, you'll have access to a tried-and-tested JavaScript code base.

MooTools and Me

[12]

Downloading and installing MooTools
The first thing we need to do is download a copy of MooTools from the official MooTools
website (http://www.mootools.net).

It's important to note that, at the time of this writing, http://www.
mootools.com is not associated with MooTools. If you've mistakenly
navigated to mootools.com, don't worry, MooTools is alive and well. A simple
Google search for "mootools" should result in http://mootools.net/.

What's great about MooTools is that it's extremely modular. You can—as I fondly refer to it—
roll your own version of it by downloading only the components that you're going to
use. This is important if you want to keep your web applications as light as possible.

For the purpose of this book, you should download the entire MooTools Core so that we can
make sure we're all in the same page.

Time for action – downloading and installing the MooTools Core
The following steps will help you to download and install MooTools Core:

1. Go to the MooTools Download page located at http://mootools.net/
download. You'll see three options, choose the Uncompressed version.

Chapter 1

[13]

2. Create an HTML document, call it whatever you want, but I'll call mine
index.html, as shown:

3. Install MooTools by referencing it in the <head> of your HTML document with
the following code:

<script type="text/javascript" src=”mootools-1.2.1-core-nc.js”></
script>

Right below the MooTools script reference, place the following block of code:

<script type="text/javascript">
window.addEvent('domready', function() {
 alert("Hello World!");
});
</script>

MooTools and Me

[14]

4. Test your code by opening your HTML document in your favorite web browser.
If everything went according to plan, you should see something like this:

What just happened?
We've just downloaded and installed MooTools by referencing it in an HTML document
that we created and then tested to see if we referenced the file correctly by writing a line
of JavaScript that displays "Hello World" in an alert box.

For your reference, your HTML markup should look similar to the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Installing MooTools</title>
<script type="text/javascript" src="mootools-1.2.1-core-nc.js">
</script>
<script type="text/javascript">
 window.addEvent('domready', function() {
 alert("Hello World!");
 });
</script>
</head>
<body>

</body>
</html>

If all went well, congratulations! You're on your way to becoming a MooTools rockstar!

Chapter 1

[15]

Different MooTools downloads
When you went to the MooTools download page, you had three options: YUI Compressor,
JSMin, and Uncompressed. These options have the same source code and differ only in
the source code format. The YUI Compressor and JSMin versions are compressed. They
are smaller in file size because unnecessary characters (such as those involved in code
formatting, like tabs, extra spaces, and inline comments) have been removed.

The process of removing extraneous characters in the source code is called Minification. The
trade-off in minifying your source code is that it's virtually unreadable, so we downloaded
the Uncompressed version, in case you wanted to see how MooTools works by studying the
source code.

The domready event listener
When writing MooTools code, you will often want to execute the code as soon as possible,
otherwise it'll wait until other webpage components are loaded before it runs.

Let's take a closer look at the code we wrote earlier:

window.addEvent('domready', function() {
 alert('Hello World');
});

In this block of code, we used the addEvent method and we tell it to watch out for the
event that the window's DOM is ready ('domready'). Once the DOM is ready, we ask
the method to run the following function:

function() {
 alert("Hello World");
}

We will discuss the MooTools syntax and concepts in detail in Chapter 2, but for now, let's
just say that all code we write throughout this book will be wrapped inside the domready
event listener so they are executed as soon as possible.

Rolling your own MooTools
MooTools is one of the few JavaScript frameworks that come in different components; it
has a very modular design—it is divided into several interdependent parts. Because of its
modularity, we're able to pick and choose which parts of MooTools we want. However, if
you have a project that doesn't use all of the MooTools components, then it's a good
practice to only include the components that you need to reduce page weight and
improve response times.

MooTools and Me

[16]

MooTools is organized into two major parts: the MooTools Core and MooTools More
(plugins that extend MooTools). Let's take a look at these two components.

MooTools Core
Let's explore the MooTools Core by using the MooTools Core Builder on the
official MooTools website. This will give us a basic understanding of the MooTools
Core file structure.

Time for action – exploring the MooTools Core Builder
To explore the MooTools Core Builder, perform the following steps:

1. Go to the MooTools Core Builder webpage by navigating
to: http://mootools.net/core.

2.	 Notice that the MooTools Core is subdivided into 7 sections. Each section
has 2 to 6 JavaScript libraries associated with it. Take the time to read each
description to help you get a better understanding of what each file does.

Chapter 1

[17]

MooTools and Me

[18]

3. Click on the Event component. Notice that several other components were
automatically selected for you. This ensures that you also include the dependency
files that are required for the Event component to run.

4. Notice the different compression types. YUI Compressor is selected by default.

What just happened?
We just covered how to roll your own MooTools Core file and learned about the MooTools
Core structure by exploring the MooTools Core builder. Once you're comfortable with how
MooTools works, you should use the MooTools Core Builder to create a MooTools Core file
that includes only the components you need.

Chapter 1

[19]

Have a go hero – explore the MooTools Core Builder output
Try to download the previous example with the Events component checked. After downloading
your own version of the MooTools Core, open the file in your favorite text editor. Also open
the MooTools Core file that you downloaded earlier. Notice that the one you just downloaded
is significantly shorter; that's because you only downloaded the Events component and its
dependency files.

MooTools and Me

[20]

The entire uncompressed MooTools Core is close to 4,000 lines long (and has a file size
of 96 KB).

In comparison, the Core Builder output where only Events and its dependencies are included
is just a little over 1,000 lines of code (and weighing only 24 KB).

MooTools More
The second part of the MooTools framework is simply called More. As the name implies,
it is a collection of useful plugins, functions, classes, and methods that extends the
MooTools Core.

Chapter 1

[21]

Time for action – exploring the MooTools More Builder
To explore through the MooTools More Builder, perform the following steps

1. Go to the MooTools More Builder page: http://mootools.net/more.

2.	 You'll see the same interface as the MooTools Core Builder.
Take some time to read the descriptions of each component.

MooTools and Me

[22]

What just happened?
You've just learned where to download the More components of MooTools. This knowledge
will come into play in later chapters when we utilize these plugins in our code.

The API concept
MooTools is designed in such a way that instead of modifying the MooTools Core files, you
use its API (Application Programming Interface) to utilize MooTools function. This makes
MooTools easier to maintain your projects and makes it easily extensible.

A plugin is a JavaScript file that's dependent on MooTools but is not part of the standard
MooTools code base. We'll learn about writing plugins in a later chapter, but for now, just
think of plugins as MooTools extensions that do a specific function, such as hiding and
showing a page element or managing browser cookies.

It is important to note that—unless you know exactly what you're
doing—you shouldn't modify the MooTools Core files. Even if you
know what you're doing, it's best to keep the file "as is" so that it's
standardized and can be easily updated.

MooTools resources
In order to take full advantage of MooTools, you should check out these excellent resources:

MooTools Docs
MooTools Docs (http://mootools.net/docs/) contains the official MooTools
documentation. Created by the MooTools team, it's the most comprehensive online resource
for MooTools syntax and usage. As you write in MooTools, you'll find that this is a handy
resource to have open for quickly finding references to particular MooTools code.

MooTools Users Google groups
The MooTools Users Google groups (http://groups.google.com/group/mootools-
users) is a discussion group on the topic of MooTools. You'll find a variety of topics here
and if you run into specific MooTools problems, it's a great place to seek help.

Chapter 1

[23]

mooforum
mooforum (http://www.mooforum.net/) is the unofficial forum for MooTools. If
you're looking for help on specific things or simply want to interact with other MooTools
developers, you should sign up for a free user account.

The MooTorial
The MooTorial (http://mootorial.com/wiki/) is an online wiki-style tutorial on the
MooTools framework written by Aaron Newton. It's a good starting point for learning the
basics of the MooTools framework and is a great online supplement to the things you learn
throughout this book.

Summary
In this chapter we specifically covered:

 � What MooTools is and some of the advantages of using MooTools

 � How to download and install MooTools

 � The MooTools Core and More Builders

 � Online resources about MooTools

We also learned that all of our MooTools code will go inside the window.
addEvent('domready', function) method, so that they can run as soon as the DOM is
ready. In addition, we talked a little bit about the API concept and how we shouldn't modify
the MooTools Core files.

Now that we've learned a little bit about MooTools, we're ready to delve into the MooTools
syntax and concepts, which is the topic of the next chapter.

2
Writing JavaScript with MooTools

Using MooTools means you'll be coding in a web application framework that
excels in object-oriented programming and JavaScript best practices. Modern
development principles, such as unobtrusive JavaScript programming and
object-based logic is the bread and butter of MooTools.

For example, modern development practices dictate that we separate our
site's functional and behavioral layers (server-side and client-side scripts)
from our site's content structural layer (HTML markup). This concept is known
as unobtrusive JavaScript, and we'll delve into this best practice here in this
chapter. You'll see one of the more important ways of how MooTools makes us
write better JavaScript.

But we're going to be covering more than just unobtrusive JavaScript. We're
going to work with classes, which is the design pattern of the entire MooTools
framework.

MooTools is structured into classes. In programming, a class is simply a
template of an object. A class can contain many methods or properties such as
normal variables or even references to other classes and objects.

To understand how to write great MooTools code that adheres to best practices,
you have to understand its fundamental structure and the concept of classes,
which I must admit, can be confusing and hard to grok.

If you know another programming language, especially an object-oriented one,
or a pseudo-object-oriented one like PHP (this is where I learned the concept of
a class), then the stuff we'll discuss here will look very familiar to you. You can
then compare and contrast the difference in syntax of classes in your particular
language. As an example, for you PHP folks out there, in PHP 5, we have the
__construct() function, which you'll soon see, is exactly like the initialize
method of a MooTools class.

Writing JavaScript with MooTools

[26]

In this chapter we shall:

 � Learn how MooTools helps us write unobtrusive JavaScript

 � Work with classes by creating our own class

 � See how MooTools works by exploring a couple of classes

 � Learn about the concept of chainability by working through a simple animation
example

So let's get on with it!

Writing unobtrusive JavaScript with MooTools
Unobtrusive JavaScript is a set of techniques and principles for writing code that's
separated from your web page's structure.

It's best to learn about unobtrusive JavaScript by way of example.

An "obtrusive" JavaScript example
In this example, you'll see JavaScript code that works perfectly fine but doesn't adhere
to unobtrusive JavaScript principles. The script contains a function called mouseClick()
that, when triggered, opens up an alert dialog box with the message, You clicked me!.

The HTML markup is a simple unordered list of links. The hyperlinks <a> are assigned an
onclick attribute which triggers the mouseClick() function when you click on them.

<html>
<head>
 <script type="text/javascript">
 // A simple function that opens an alert dialog box with a message
 function mouseClick()
 {
 alert('You clicked me!');
 }
</script>
</head>
<body>
<ul id="nav">
 Home
 About
 Contact

</body>
</html>

Chapter 2

[27]

What's so bad about it?
If the script works as intended, then what's the big deal?

Imagine this scenario: you have a 30 page website and each web page has to have that list of
links; if you noticed, the unordered list () tag has an id attribute of nav, so let's pretend
that this is your site's primary navigation. You would have to go through all 30 pages to add
mouseClick() to the list of links found on each page. This would be very time consuming.

Don't repeat it if you don't have to
That's a lot of repetition, and you'll be breaking a lot of MooTools' core developers' hearts
because they designed the framework with the Don't Repeat Yourself (DRY) principle.

If you have to manually implement that block of code, there's a big chance that
you'll commit an error that can result in your web pages rendering incorrectly or
behaving unexpectedly.

Writing JavaScript with MooTools

[28]

It'll be hard to maintain
Say that for some reason, you want to add something else to the onclick attributes of the
links (like calling another function) or remove it entirely. Whenever there's a change to the
onclick attribute, you'll have to go through each page and change them. That's not an ideal
situation, especially because by writing unobtrusively, you can sidestep this issue and write a
more maintainable code base.

It's a bad practice to have functionality in your content structure
Modern web development best practices encourage separating your web page's
content/structure (HTML) from its presentation (CSS) and behavior/functionality
(client-side/server-side scripts). By relying on the onclick attribute, we're intermixing
our web page's structure with its behavior (opening a dialog box when the link is clicked).

Separating structure, style, and functionality goes back to maintainability; it allows us
to keep things separate so that we can work with each component individually without
affecting the other components. This involves taking out all inline event handlers (namely,
the onclick attribute on our <a> tags).

Adding on event handlers directly into the HTML could also cause memory leaks in Internet
Explorer and make adding multiple events of the same type impossible.

Time for action – rewriting our script unobtrusively
Let's rewrite the previous example to follow unobtrusive JavaScript principles:

1. First, we'll remove all the onclick attributes. By doing so, we've effectively
separated our website's functionality from its content structure. Here's the
revised code:

<html>

<head>

<script type="text/javascript">

function mouseClick()

{

 alert('You clicked me!');

}

</script>

</head>

<body>

<ul id="nav">

 Home

 About

Chapter 2

[29]

 Contact

</body>

</html>

2.	 Now remove the mouseClick() function; we don't need it anymore.

<html>

<head>

<!-- mouseClick() function is now bye-bye. -->

</head>

<body>

<ul id="nav">

 Home

 About

 Contact

</body>

3.	 Include the MooTools framework and put our code inside
window.addEvent('domready').

<html>

<head>

<script type="text/javascript" src="mootools-1.2.1-core-nc.js">

</script>

<script type="text/javascript">

window.addEvent('domready', function()

{

 // Our code will go in here

});

</script>

</head>

<body>

<ul id="nav">

 Home

 About

 Contact

</body>

</html>

Writing JavaScript with MooTools

[30]

4.	 Add an event listener to all child links of <ul id="nav">. You'll learn more about
event listeners in Chapter 5.

<html>

<head>

<script type="text/javascript" src="mootools-1.2.1-core-nc.js">

</script>

<script type="text/javascript">

window.addEvent('domready', function()

{

 $$('#nav a').addEvent('click', function()

 {

 // The alert function will go in here

 });

});

</script>

</head>

<body>

<ul id="nav">

 Home

 About

 Contact

</body>

</html>

5.	 Put our alert() function back, inside the addEvent method.

<html>
<head>
<script type="text/javascript" src="mootools-1.2.1-core-nc.js">
</script>
<script type="text/javascript">
window.addEvent('domready', function()
{
 $$('#nav a').addEvent('click', function()
 {
 alert('You clicked me!');
 });
});
</script>
</head>
<body>

Chapter 2

[31]

<ul id="nav">

 Home

 About

 Contact

</body>

</html>

6.	 Save your work and open it in a web browser. Click on any link. It
should open up a dialog box just like in our obtrusive example.

Just like before, if you did it correctly, you should see a dialog box that says You clicked me!

What just happened?
What we did was fix our poorly-written and obtrusive JavaScript example by rewriting
our code without the use of inline event handlers. We leaned on MooTools to help us
do this effortlessly by using the $$() function to select all <a> elements inside our
<ul id="nav"> element and then added an unobtrusive click event listener/handler.

Now we can go onto explore key aspects of what we just did.

Writing JavaScript with MooTools

[32]

Removing our inline event handlers
The first step we did was to remove all of our onclick attributes. This not only makes our
HTML and JavaScript leaner and cleaner, but we also effectively separated our web page's
structure from its functionality. Now, whenever we want to add, remove, or edit our event
handler for clicks, we just have to do it in one place—MooTools code.

Using the DOM to handle events
In step 4, we leveraged the DOM to add events to our <a> elements, first matching
all elements in the DOM that match our criteria via the $$() function, namely all
<a> elements that are the children of <ul id="nav"> element, which translates to
$$('#nav a') (notice that we selected it using CSS selectors syntax). Then we call the
MooTools Element method, .addEvent(), gave it a click argument. The .addEvent()
method with a click argument, in plain English, just says: add an event handler to perform
this function when a 'click' event is triggered.

function()
{
 alert('You clicked me!');
}

Now, when we clicked on any link on our web page, the alert() function was triggered
and we saw a dialog box.

You'll learn plenty more about selecting DOM elements and adding event handlers in
Chapters 3 and 5 respectively. For now, suffice it to say that we were able to revolutionize
our "obtrusive" JavaScript code into something magnitudes better. Now, if we wanted to
later on remove the event handler, we just remove it from our MooTools script, instead of
going to multiple pages to remove the inline event handler.

Pop quiz – rewriting our script unobstrusively
Which of the following statements is wrong?

1. Unobtrusive JavaScript separates JavaScript from your content's structure.

2. Unobtrusive JavaScript makes updating scripts easier.

3. Unobtrusive JavaScript is exclusive to the MooTools framework.

4. Unobtrusive JavaScript, oftentimes, can reduce the amount of code you
have to write.

Chapter 2

[33]

Alright, I think you've had more than your fair share of unobtrusive-ness, but if you
want to learn more, check out this URL: http://www.onlinetools.org/articles/
unobtrusivejavascript/.

Now it's time to move onto another topic: MooTools classes.

Creating MooTools classes
I've mentioned it, like, a million times already, but here I go again, MooTools is an
object-oriented web application framework. And what's OOP without classes? Not
OOP, that's for sure! MooTools is, to me, the only JavaScript library that effectively
implements and promotes the use of classes.

What the heck is a class?
A class, in terms of object-oriented programming, is a definition of an object, or an object's
blueprint, its design, its structure, its template, I can go on, but I think you get the picture.
Classes are best described in real-world terms.

Real-world analogy
Let's say our class is "Dog". A dog can have a lot of traits, such as its name, its type (for
example, Golden Retriever or Poodle), its age, and so on. In MooTools, these traits are called
options, which is an object that contains default key/value pairs specific to a particular class.

A dog can also do a lot of things, such as bark, sit, or eat. In the context of JavaScript and
classes, these are called class methods. A method is a function for a particular class or
object. For example, myPoodle.bark() can mean that we make my poodle bark by
triggering the bark() method.

Let's create a Dog class in MooTools.

Creating a MooTools class
We create a MooTools class using the following format:

var ClassName = new Class({ properties });

So for our Dog class, here's what we'll start with:

 var Dog = new Class(
 {
 // Implements is a class property
 // upon which other classes methods will be added
 Implements : [Options],

Writing JavaScript with MooTools

[34]

 // Default options for our Dog
 options : {
 name : 'Barkee',
 type : 'Poodle',
 age : 4
 },
 // initialize is a MooTools method/constructor that executes the
 //following function whenever a new instance of a class is created
 initialize : function(options)
 {
 this.setOptions(options); },

 // Create a method which when passed to a instance of Dog will
 //tell us our dog is barking.
 bark : function()
 {
 alert(this.options.name + ' is barking.');
 },
 // This method is similar to .bark() but will tell us our dog
 //is sitting.
 sit : function()
 {
 alert(this.options.name + ' is sitting.');
 }
 });

That's a big code block, but let me break it down for you all. Let's go through what's going on
inside the Dog class.

The Implements property
The Implements property basically tells our new class what other class properties/methods
to include as part of our new class. Either its classes are created by us or our MooTools
classes (like Options and Events).

Options and Events are MooTools utility classes in the Class.Extras component of
MooTools. Class.Extras includes the Chain class (which queues up and executes one
function after the next) and Events class (which adds customizable events to a class). In our
case, we're giving our class the instruction to implement the Options class.

Implements : [Options]

Chapter 2

[35]

The Options class provides us a way to deal with setting default options for our class,
and automatically decides what options to overwrite and leave alone depending on what
parameters are passed to it.

It also includes the .setOptions() method which is the method that triggers the setting
of these options.

The options property
The options property lets us set default options for our Dog class.

 options : {
 name : 'Barkee',
 type : 'Poodle',
 age : 4
 },

For example, if we don't pass a name option value when we create an instance of the Dog
class, then it's assumed that our dog's name is "Barkee". Likewise, if we don't pass a value for
type, then we're going to assume that it's a "Poodle" (and if your dog is really a Chihuahua, it
might get offended, so be sure you set the right type).

The initialize method
The initialize method executes the code block; it's paired with when a new instance of your
class is created. In our example, we definitely want to set our class options (name, type, and
age), so we write:

 initialize : function(options)
 {
 this.setOptions(options); }

Remember we implemented the Options class earlier? Well, in doing so, we get access
to the .setOptions() method which does all the hard work of merging our options for
us. For example, we don't have to check using if conditional statements, whether there is
or isn't value passed for name or type, and declare what to do in the case that they are or
aren't passed—it just does it for us. It sets the options to this instance.

Our own Dog class methods: .bark() and .sit()
For our class, we create two methods, .bark() and .sit(). When we trigger them from
an instance of Dog, they'll tell us that our dog is either barking or sitting, respectively.

Alright, now that we've set up the template of the Dog class, it's time for you to try out the
Dog class.

Writing JavaScript with MooTools

[36]

Time for action – creating an instance of Dog
Let's create an instance of a Dog class by deploying the following the steps:

1. Create an HTML document for this. Use the following code taken from our Dog class.

<html>

<head>

<script type="text/javascript" src="mootools-1.2.1-core-nc.js">

</script>

<script type="text/javascript">

 var Dog = new Class(

 {

 Implements : [Options],

 options : {

 name : 'Barkee',

 type : 'Poodle',

 age : 4

 },

 initialize : function(options)

 {

 this.setOptions(options);

 },

 bark : function()

 {

 alert(this.options.name + ' is barking.');

 },

 sit : function()

 {

 alert(this.options.name + ' is sitting.');

 }

 });

</script>

</head>

<body>

</body>

</html>

Chapter 2

[37]

Apart from taking out the comments, referencing the MooTools framework, and
putting in the basic tags for an HTML document, nothing has changed so far.

2. Create an instance of our Dog class, you can call the class instance anything
you like, but I'll call mine simply myDog. Place the following code right below
our class declaration.

var myDog = new Dog({ });

You've now created an instance of Dog, but we didn't declare any values for
options properties, so the options for myDog will be set to our default values
that we declared in the class.

3.	 Let's make myDog bark. Right below the code that we just wrote, place the following
code, which will pass the .bark() method to myDog:

myDog.bark();

4.	 Save your work and preview the HTML document in the web browser. It should
immediately open up a dialog box like this:

Writing JavaScript with MooTools

[38]

What just happened?
We just created a new instance of the Dog class called myDog. We didn't give myDog
any replacement options, so it used as the default option in our class. When we used the
.bark() method on myDog, it alerted us that "Barkee", the default name, "is barking".

If you followed along, this is the entire code you should have thus far:

<html>
<head>
<script type="text/javascript" src="mootools-1.2.1-core-nc.js">
</script>

<script type="text/javascript">
 var Dog = new Class(
 {
 Implements : [Options],

 options : {
 name : 'Barkee',
 type : 'Poodle',
 age : 4
 },

 initialize : function(options)
 {
 this.setOptions(options);
 },

 bark : function()
 {
 alert(this.options.name + ' is barking.');
 },

 sit : function()
 {
 alert(this.options.name + ' is sitting.');
 }
 });

 var myDog = new Dog({ });
 myDog.bark();
</script>
</head>
<body>
</body>
</html>

Chapter 2

[39]

Have a go hero – use the .sit() class method
We still haven't used the .sit() method. Why don't you modify our example to use the
.sit() method on myDog instead of .bark()?

Time for action – giving our class instance some
custom options

Let's give some custom options to our class by deploying the following:

1.	 Go back to the source code of the HTML document you just created. Go to the
var myDog = new Dog({ }); line.

2.	 Pass property values to name, type, and age like so:

var myDog = new Dog({

 name : 'Zensis',

 type : 'German Sheperd',

 age : 10

});

3.	 Open your HTML document in the web browser, and now, you should see
something like this:

Writing JavaScript with MooTools

[40]

Time for action – determining the value of our options
The following steps help us to determine the value of our options:

1.	 Right below where we use the .bark() method on myDog, type in the
following code:

document.write('My dog\'s name is ' + myDog.options.name +
 '.
');

document.write('My dog is a ' + myDog.options.type + '.
');

document.write('My dog is ' + myDog.options.age +
 ' years old.
');

2.	 Open up your HTML document on the web browser, and after you exit out of the
dialog box that .bark() calls, you should see something like this:

Extending classes
Oftentimes, you'll want to extend a class with another class. For example, we might want to
extend our Dog class with a class for show dogs that may use the same options, but may do
other special things.

We can extend classes with the Extends property. Extends is a property specifically
for classes, that not only inherits properties and methods from a parent class, it makes
all parent methods available inside a method.

Chapter 2

[41]

Time for action – extending the ShowDog class with
the Dog class

Let's see how we can extend our Dog class using the Extends property:

1.	 Let's clean up the Dogs class first by removing the things we don't need
any more to tidy up our code. We'll delete the .sit() class method,
the myDog.bark() call, and the document.write's that we used to
show the option property values of myDog. Here's our revised code:

<html>

<head>

<script type="text/javascript" src="mootools-1.2.1-core-nc.js">
</script>

<script type="text/javascript">

window.addEvent('domready', function()

{

 var Dog = new Class(

 {

 Implements : [Options],

 options :

 {

 name : 'Barkee',

 type : 'Poodle',

 age : 4

 },

 initialize : function(options)

 {

 this.setOptions(options);

 },

 bark : function()

 {

 alert(this.options.name + ' is barking.');

 }

 });

});

</script>

</head>

Writing JavaScript with MooTools

[42]

<body>

</body>

</html>

2.	 Create the ShowDog class right below the Dog class. Use the following code:

 var ShowDog = new Class(

 {

 Extends : Dog,

 options :

 {

 name : 'Xythian'

 },

 initialize : function(options)

 {

 this.parent(options);

 alert('I\'m no ordinary dog!');

 document.write('My name is ' + this.options.name + '
');

 document.write('I\'m a ' + this.options.type + '
');

 document.write('I\'m ' + this.options.age + '
');

 }

 });

3.	 Instantiate a new ShowDog object, like so:

var myOtherDog = new ShowDog();

We now have the myOtherDog object, which is an instance of the ShowDog class
that extends the Dog class.

4.	 Test your HTML document in a browser, and if everything went
according to plan, then you should see the following:

Chapter 2

[43]

Then, the next thing you would see is as shown:

What just happened?
We extended the ShowDogs class with the Dogs class. We did this by using the special
class property called Extends, which allows us to assign it the class we're extending it with.

Before we move onto the next topic, we should go over class inheritance a little bit.

Class inheritance
Note that the ShowDogs class takes on properties and methods of its parent class (Dogs)
if we don't explicitly define them.

Writing JavaScript with MooTools

[44]

For example, since we already defined an Implements property in Dogs, we need not do it
again for ShowDogs. We explicitly defined the name option value (Xythian), when we print
the value of it in the document, using the following line:

document.write('My name is ' + this.options.name + '
');

It printed "My name is Xythian".

However, we didn't explicitly define the type and age option values that we created in
the parent class when we performed the following:

document.write('I\'m a ' + this.options.type + '
');
document.write('I\'m ' + this.options.age + '
');

The values took on the default property values we set in Dogs (Poodle, and 4).

Have a go hero – doing more with the thing
Why don't you try using the .bark() method that's in the Dog class on the myOtherDog
object? What happens? Did it behave like you expected it to?

Using MooTools classes
Now that you know how to create a class in MooTools, it'll be a piece of cake to use the
already-existing classes in the MooTools framework. You've already used a MooTools class,
whether you know it or not, with the Options class that we implemented in the Dogs class.

Let's look at another class, the Chain class, so that we can explore how to use MooTools
classes. And we're going to hit three birds with one stone here: by covering the Chain
class to see how MooTools classes work in general, you'll also discover a key concept in the
MooTools framework—chainability, and be able to witness the power of the Chain class.
Once we're done, it'll be a cinch to use other MooTools classes such as Fx class for animation
effects (we'll cover in greater detail in a later chapter).

The concept of chainability
Alright, so you caught me, chainability isn't a real word. Chainability refers to MooTools'
ability to chain functions in sequence. It follows the concept of a Stack, a data structure that
follows the principle of "last in, first out". Chaining allows you to create a stack of functions
that you can execute in sequential order.

Chapter 2

[45]

The Chain class
The Chain class, as you would expect, is a class for dealing with a chain of functions. It
contains the following useful methods:

 � .chain()—pushes one or more functions onto a chain stack

 � .callChain()—executes the highest stack order function in our chain stack

 � .clearChain()—clears our chain stack

A Chain example
Let's set up an example for showcasing the concept of chaining and the abilities of the
Chain class. We're going to create a box using a <div> element that has a width and height
of 50px and a background color of blue (hexadecimal value of #00f). For convenience, we're
going to break my rule of separating style and structure that I discussed in the beginning of
this chapter by declaring an inline style attribute. Here's our HTML markup for the <div>
element:

<div id="box" style="background-color: #00f; height:50px;
width:50px;"> </div>

Avoid using inline styles. It's a bad practice, and though development best
practices for style and content separation is beyond the scope of this book,
I'll make all the efforts I can in advocating the use of best practices. We'll
break this rule in this case so that we're focused on the topic at hand and not
our CSS and HTML.

Now that we have a nice <div> box to work with, what are we going to do with it?

A look ahead: Chaining Fx .Tween
I don't think I can let you read any more chapters without seeing some cool animation
effects. So I'm going to cheat a bit (I hope the editors of this book don't notice that I snuck
in some animation effects in this chapter), and jump ahead to use a Fx.Tween class, except
that it's just like any other class in MooTools and that it deals with taking two CSS property
values and transitions between them.

This is what we're going to do:

1. Move the blue box to the right by tweening its left margin.

2. Double its width (100px).

3. Fade it out.

4. Fade it back in.

5. Tween it back to its original position.

Writing JavaScript with MooTools

[46]

We're going to do this by chaining these four methods one after the other.

Let's write out the methods now:

.start('margin-left', 150)

.start('width', 100)

.start(opacity, 0)

.start(opacity, 1)

.start('margin-left', 0)

Alright, so we have our HTML markup set up and we already know what methods we're
going to stack. Let's get your chain on!

Time for action – create a chain of Fx.Tween methods
Let's see how to create a chain of Fx.Tween methods by carrying out the following steps:

1.	 Create a new HTML document like we always do. It should have the following code:

<html>

<head>

<script type="text/javascript" src="mootools-1.2.1-core-nc.js">

</script>

<script type="text/javascript">

window.addEvent('domready', function()

{

});

</script>

</head>

<body>

<div id="box" style="background-color: #00f; height:50px;
width:50px;"> </div>

</body>

</html>

2.	 Create a new object called boxAnimation, an instance of the Fx.Tween class,
and giving it the target of our box element, which has an id of box, using the
following code in our domready event handler:

var boxAnimation = new Fx.Tween($('box'));

Chapter 2

[47]

3.	 Now that we have our boxAnimation object, let's apply the first method
(moving it to the right by adjusting the left margin) by entering this line of code:

boxAnimation.start('margin-left', 150);

4.	 We'll pause here and test our work. Save your document, and open it up in your
web browser. You should see the following animation:

Then, you will see the following animation:

5.	 Now, we'll add the second method, and we'll chain it to the previous method. That
way, as soon as the first method gets completed, it will start our next method. Here's
how to do it:

boxAnimation.start('margin-left', 150)

 .chain(function()

 {

 boxAnimation.start('width', 100);

 })

Writing JavaScript with MooTools

[48]

6.	 You can save and test your work if you wish. If you execute our script, you'll see two
consecutive animation effects move to the right and then increase width. This
should be what you end up with:

7.	 Let's add the rest of our chain methods, and this is what we should end up with:

 .chain(function()

 {

 boxAnimation.start('width', 100);

 })

 .chain(function()

 {

 boxAnimation.start('opacity', 0);

 })

 .chain(function()

 {

 boxAnimation.start('opacity', 100);

 })

 .chain(function()

 {

 boxAnimation.start('margin-left', 0);

 });

Here's the full sequence of the animation:

Chapter 2

[49]

The next goes like this:

Then comes the following:

Writing JavaScript with MooTools

[50]

The next in the slide happens to be like the following:

The next slide looks like the following:

Lastly, the one aligned to the left:

Chapter 2

[51]

What just happened?
Here, we just learned about how to create and instantiate an object of a MooTools class
(Fx.Tween), and learned how to use a method provided to us by another MooTools class
(Chain) using the .chain() method.

Isn't MooTools classy?
By working through an example of how to chain methods in Fx.Tween together (we chained
the .start() method which is actually in the Fx class and is available to classes that extend
Fx, such as Fx.Morph), we're able to see the fundamental structure of MooTools. Its design
is very class-based, and we work with objects by creating a blueprint, a template, and so
on—oh here I go again!

Chainability
We saw the concept of chaining in this example, and how we can trigger methods one after
the other on the same object (in our example, boxAnimation).

It doesn't seem so special now, especially since we're just moving and resizing a box, but
once we get into the thick of things, like making asynchronous server-side calls where we
need to fire off functions in a sequence based on the state returned by our server, you'll
see just exactly how great chaining is.

Have a go hero – doing more with chaining Fx.Tween methods
You can try to add or remove chained methods and experiment with different CSS properties.
Perhaps you'll want to transition the background color to red (#F00) or adjust the height to
double its size (to 100px).

Summary
In this chapter we learned about:

 � The concept of unobtrusive JavaScript. We did this by creating an "obtrusive"
example and then reworked into an unobtrusive and more elegant solution.

 � The concept of classes. We created our own class, explored it, and even extended
it with another class. This gives us the basis of the structure and design of the
MooTools framework.

 � We learned the basics of using a class in MooTools. We used the Fx.Tween and
Chain class to animate a blue box.

 � Chainability: We discovered how we can chain methods one after another and
execute them in sequence.

Writing JavaScript with MooTools

[52]

Though we covered a lot of theories in this chapter, it was necessary to give us a solid
foundation for the next chapters and to give us a full understanding of how to write good
MooTools code. Anyone can hack and dice with MooTools, but you now possess the
knowledge of writing MooTools code that you can be proud of.

Now that we have some understanding of how to write JavaScript with MooTools, we are
going to move right along with the thing you'll be doing the most of with MooTools, selecting
and manipulating things in the Document Object Model.

3
Selecting DOM Elements

In the last chapter, we learned about the MooTools syntax as well as
JavaScript best practices. More specifically, we discussed unobtrusive
JavaScript and how we should separate our structure (HTML) from our
website's behaviors (JavaScript).

In order to successfully and effortlessly write unobtrusive JavaScript, we must
have a way to point to the Document Object Model (DOM) elements
that we want to manipulate. The DOM is a representation of objects in our
HTML and a way to access and manipulate them. In traditional JavaScript,
this involves a lot (like, seriously a lot) of code authoring, and in many
instances, a lot of head-banging-against-wall-and-pulling-out-hair as you
discover a browser quirk that you must solve.

Let me save you some bumps, bruises, and hair by showing you how to
select DOM elements the MooTools way. This chapter will cover how you
can utilize MooTools to select/match simple elements (like, "All div elements")
up to the most complex and specific elements (like, "All links that are
children of a span that has a class of awesomeLink and points to
http://superAwesomeSite.com").

In this chapter we will look at:

 � The $() and $$() functions

 � Selecting HTML elements with pseudo-class selectors

 � Selecting HTML elements based on their attributes

So let's get on with it!

Selecting DOM Elements

[54]

MooTools and CSS selectors
MooTools selects an element (or a set of elements) in the DOM using CSS selectors syntax.

Just a quick refresher on CSS terminology; a CSS style rule consists of:

selector {
 property: property value;
}

 � selector—indicates what elements will be affected by the style rule

 � property—refers to the CSS property (also referred to as attribute). For
example, color is a CSS property, so is font-style. You can have multiple
property declarations in one style rule.

 � property value—the value you want assigned to the property. For example,
bold is a possible CSS property value of the font-weight CSS property.

For example, if you wanted to select a paragraph element with an ID of awesomeParagraph
to give it a red color (in hexadecimal, this is #ff0), in CSS syntax you'd write:

#awesomeParagraph {
 color: #ff0;
}

Also, if I wanted to increase its specificity and make sure that only paragraph elements
having an ID of awesomeParagraph are selected:

p#awesomeParagraph {
 color: #ff0;
}

You'll be happy to know that this same syntax ports over to MooTools. What's more is that
you'll be able to take advantage of all of CSS3's more complex selection syntax because even
though CSS3 isn't supported by all browsers yet, MooTools supports them already. So you
don't have to learn another syntax for writing selectors; you can use your existing knowledge
of CSS. Awesome, isn't it?

Chapter 3

[55]

Working with the $() and $$() functions
The $() and $$() functions are the bread and butter of MooTools. When you're working
with unobtrusive JavaScript, you need to specify which elements you want to operate on.

The dollar and dollars functions help you do just that, they will allow you to specify what
elements you want to work on.

Notice, the dollar sign $ is shaped like an S, which we can interpret
to mean 'select'.

The $() dollar function
The dollar function is used for getting an element by its ID, which returns a single element
that is extended with MooTools Element methods or null if nothing matches. Let's go back to
awesomeParagraph in the earlier example. If I wanted to select awesomeParagraph, this
is what I would write:

$('awesomeParagraph')

By doing so, we can now operate on it by passing methods to the selection. For example, if
you wanted to change its style to have a color of red, you can use the .setStyle() method
which allows you to specify a CSS property and its matching property value, like:

$('awesomeParagraph').setStyle('color', '#ff0');

The $$() dollars function
The $$()function is the big brother of $() (that's why it gets an extra dollar sign). The
$$() function can do more robust and complex selections, can select a group, or groups of
elements and always returns an array object, with or without selected elements in it.

Likewise, it can be interchanged with the dollar function. If we wanted to select
awesomeParagraph using the dollars function, we would write:

$$('#awesomeParagraph')

Note that you have to use the hash sign (#) in this case as if you were using CSS selectors.

Selecting DOM Elements

[56]

When to use which
If you need to select just one element that has an ID, you should use the $() function
because it performs better in terms of speed than the $$() function.

Use the $$() function to select multiple elements. In fact, when in doubt, use the $$()
function because it can do what the $() function can do (and more).

A note on single quotes (') versus double quotes (")

The example above would work even if we used double quotes such as
$("awesomeParagraph") or $$("#awesomeParagraph"), but
many MooTools developers prefer single quotes so they don't have to escape
characters as much (since the double quote is often used in HTML, you'll have
to do \" in order not to prematurely end your strings). It's highly recommended
that you use single quotes, but hey, it's your life!

Now, let's see these functions in action. Let's start with the HTML markup first. Put the
following block of code in an HTML document:

 <body>
 <ul id="superList">
 List item
 List item link
 <li id="listItem">List item with an ID.
 <li class="lastItem">Last list item.

 </body>

What we have here is an unordered list. We'll use it to explore the dollar and dollars
function. If you view this in your web browser, you should see something like this:

Chapter 3

[57]

Time for action – selecting an element with the dollar function
Let's select the list item with an ID of listItem and then give it a red color using the
.setStyle() MooTools method.

1. Inside your window.addEvent('domready') method, use the following code:

$('listItem').setStyle('color', 'red');

2.	 Save the HTML document and view it on your web browser.
You should see the third list item in red.

3.	 Now let's select the entire unordered list (it has an ID of superList),
then give it a black border (in hexadecimal, this is #000000). Place
the following code, right below the line we wrote in step 1:

$('superList').setStyle('border', '1px solid #000000');

4.	 If you didn't close your HTML document, hit your browser's
refresh button. You should now see something like this:

Selecting DOM Elements

[58]

Time for action – selecting elements with the dollars function
We'll be using the same HTML document, but this time, let's explore the dollars function:

1. We're going to select the last list item (it has a class of lastItem). Using the
.getFirst(), we select the first element from the array $$() returned. Then,
we're going to use the .get() method to get its text. To show us what it is,
we'll pass it to the alert() function. The code to write to accomplish this is:

alert($$('.lastItem').getFirst().get('text'));

2. Save the HTML document and view it in your web browser (or just hit your browser's
refresh button if you still have the HTML document from the preview Time for
action open). You should now see the following:

Time for action – selecting multiple sets of elements
with the dollars function

What if we wanted to select multiple sets of elements and run the same method (or
methods) on them? Let's do that now.

1. Let's select the list item that has an <a> element inside it and the last list item
(class="lastItem"), and then animate them to the right by transitioning
their margin-left CSS property using the .tween() method.

2. Right below the line we wrote previously, place the following line:

$$('li a, .lastItem').tween('margin-left', '50px');

Chapter 3

[59]

3. View your work in your web browser. You should see the second and last list
item move to the right by 50 pixels.

What just happened?
We explored the dollar and dollars functions to see how to select different elements
and apply methods to them. You just learned to select:

 � An element with an ID (#listItem and #superList) using the dollar $() function

 � An element with a class (.lastItem) using the dollars $$() function

 � Multiple elements by separating them with commas (li, a, and .lastItem)

 � You also saw how you can execute methods on your selected elements. In the
example, we used the .setStyle(), .getFirst(), .get(), and .tween()
MooTools methods.

Because DOM selection is imperative to writing MooTools code, before we go any further,
let's talk about some important points to note about what we just did.

$() versus document.getElementById()
When we used the $() dollar function, it's equivalent to using the .getElementById()
native JavaScript method. The difference is that using .getElementById() ends up with
longer code and, in Internet Explorer, elements returned by .getElementById() are not
extended with MooTools Element methods.

If we wanted to perform the same operation using JavaScript's .getElementById(),
instead of:

$('listItem').setStyle('color', 'red');

Selecting DOM Elements

[60]

We would first have to declare an object that will contain our desired DOM element, like:

var listItem = document.getElementById('listItem');

But we have to extend the element with MooTools Element methods, or else setStyle
will not be available. So we'll change the code a tiny bit:

var listItem = $(document.getElementById);

Then we'd pass the .setStyle() method on our object:

listItem.setStyle('color', 'red');

Can we all agree that we just saved a lot of typing and that we can worry less about
browser issues that may occur using the .getElementById() method? I think we can!

Selecting multiple sets of elements
In step 2 of Time for action – selecting multiple sets of elements with the dollars function,
we selected two sets of elements using one $$() function; we matched all <a> tags inside a
list item and all elements with the class of lastItem.

What we did in step 2 is the same as writing:

$$('li a').tween('margin-left', '50px');
$$('.lastItem').tween('margin-left', '50px');

Because one of MooTools' key design principles is to avoid repeating yourself (remember
"DRY" in Chapter 2), you use the $$() function if you will be performing the same
operations on the sets of elements, by separating your selection strings with a comma (,).

You can have as many sets of elements as you want.

Have a go hero – tween the list item element
Here's a good point to modify the example we wrote together. Try adding the list item with
an ID of lastItem to the set of elements that used the .tween() method to transition to
the left. If you did it correctly, the third list item should also move to the left when you test
the script.

Chapter 3

[61]

Common errors with the dollar and dollars functions
When selecting elements using the $$() function, the syntax is exactly like CSS selectors. For
example, if we wanted to select all instances of <a> that are inside a list item tag and
give them a color of red, in CSS, we'd write:

li a {
 color: red;
}

The same thing can be done in MooTools using the following line of code:

$$('li a').setStyle('color', 'red');

The dollar function doesn't work with CSS selectors!
Note the use of an exclamation point here - and you should pause here for a moment,
close your eyes, and imagine me shouting this at the top of my lungs to make sure
everyone hears it.

The $() function doesn't work with CSS selectors like the $$() function does because it
only takes the ID name, and nothing else. CSS selectors can look like #awesomeParagraph,
p#awesomeParagraph, or .lastItem.

A common mistake that MooTools beginners make is trying to do this:

$('li a')

MooTools interprets the above line as:

"Select the element with the ID of 'li a'"

 and not:

"Select all <a> elements that are inside a list item "

like we intended it to.

Selecting DOM Elements

[62]

So what happens when you do this? If you don't have an element in your web page with the
ID of li a (which you shouldn't, because spaces are not allowed for IDs as part of HTML
standard spec), then $() will return null since an element with the id "li a" does not exist.

Drop the pound # sign when using the $() function
If you're going to use the $$() function to select an element with an ID of superList, you
have to write:

$$('#superList')

Again, imagine you're writing CSS code; you wouldn't write:

superList {
 border: 1px solid #000000;
}

Instead, you'd write:

#superList {
 border: 1px solid #000000;
}

But when you're selecting an element by its ID using the $() function, always remember
to leave out the hash (#) sign because, like I said earlier, the $() function doesn't work with
CSS selectors.

For example, you'll be disappointed by a JavaScript error if you write this code:

$('#superList').setStyle('border', '1px solid #000000');

It won't work because you would be selecting an element with an ID name of #superList
and not superList like you intended.

Pop quiz – find the bad apple in the bunch
Which of the following selection operations won't work?

1. $$('ul li a span')

2. $$('.myClass', 'p.indentedText', 'myID')

3. $('myID')

4. $("thisID")

Chapter 3

[63]

Selection using pseudo-classes
MooTools' selection awesomeness is further awesome'ized in its ability to utilize
pseudo-classes. Pseudo-class selectors are special selectors that allow you to find items
from the DOM using properties that can't be easily deduced using ordinary ID, class, tag, or
attribute selectors. Psuedo-class selection will allow you to write complex selection strings;
ones that would involve a ton of code if you were to write them in native JavaScript syntax.

A pseudo-class, in CSS3 specifications, allows you to select DOM elements that are difficult to
select using normal selectors. The pseudo-class concept was introduced as part of CSS3
specifications by the W3C organization (the people in charge of establishing web standards).

Using a pseudo-class is simple, and follows the format:

:pseudo-classname

Or

:(pseudo-classname)

You can read more about the concept of pseudo-classes from the W3C CSS3
Selectors Level 3 Working Draft at

http://www.w3.org/TR/css3-selectors/#pseudo-classes

MooTools has a plethora of pseudo-class selectors that you can readily use, such as
:contains() pseudo-class which searches for elements containing a certain string of text.
For example, to find all paragraphs that have the text MooTools is l33t, you would write:

$$('p:contains(MooTools is l33t)')

If you've ever tried writing a similar piece of code using native JavaScript, you'll know
exactly how much pseudo-classes will help you save some time and keep your sanity.

Pseudo-class example: Zebra striping a table
Let's see what pseudo-class selection can do with an example. In the following section, we're
going to "zebra stripe" an HTML table, which basically means we're going to make the rows
of our table alternate between two colors. Zebra striping a table is usually done to make
HTML tables with a lot of data more readable.

Selecting DOM Elements

[64]

Time for action – using pseudo-classes to zebra stripe a table
Let's set up the markup for our HTML table. It'll have three columns and six rows listing my
favorite movies in order.

Pseudo-class example HTML table markup:

<body>
<table width="100%" cellpadding="1" cellspacing="0">
 <!-- column headings -->
 <tr>
 <th>Rank</th>
 <th>Movie</th>
 <th>Genre</th>
 </tr>
 <tr>
 <td>1</td>
 <td>The Matrix</td>
 <td>Action</td>
 </tr>
 <tr>
 <td>2</td>
 <td>Die Hard</td>
 <td>Action</td>
 </tr>
 <tr>
 <td>3</td>
 <td>The Dark Knight</td>
 <td>Action</td>
 </tr>
 <tr>
 <td>4</td>
 <td>Friday</td>
 <td>Comedy</td>
 </tr>
 <tr>
 <td>5</td>
 <td>Love Actually</td>
 <td>Drama</td>
 </tr>
</table>
</body>

Chapter 3

[65]

Our HTML table should look like this:

1. To color even rows with a light gray color, write this line of code (again, we use the .
setStyle() method):

$$('table tr:even').setStyle('background-color', '#ebebeb');

2. Save your work. View your document in a web browser. You should see something
like this:

Selecting DOM Elements

[66]

3. Now we're going to style the odd rows. This time, instead of .setStyle(), we're
going to use the .setStyles() method so that we can supply more than one CSS
property/CSS property value pair to be implemented. Here's the code to accomplish
what we set out to do (which you can place right below the code in step 1):

 $$('table tr:odd').setStyles({

 'background-color' : '#252525',

 'color' : '#ffffff'

 });

4. Save and view your work in a web browser. Your HTML table that contains my
favorite movies of all time should now look like this:

What just happened?
We learned one of the many ways in which pseudo-class selectors are helpful. In this
case, we took a regular HTML table and zebra striped it so that we have different styles
at alternating rows.

To zebra stripe our HTML table, we used the :even and :odd pseudo-class selectors to
change the background color of even rows with a light gray color (#ebebeb in hexadecimal)
and all odd rows of our tables with a dark gray background (#252525) with a white
foreground color (#ffffff).

Chapter 3

[67]

A couple of notes on the :odd and :even pseudo-class selectors
The :odd and :even pseudo-classes aren't available in W3C specifications;
although the concept of using them is the same, they are custom MooTools
pseudo-class selectors.

Secondly, the index of each one starts at 0. Because of this, using :even would
select the first element (index 0) and third child elements because their index
is actually 0 and 2, respectively. So they're kind of switched around in the
conventional sense of odd and even.

Other pseudo-class selectors
There are nine MooTools pseudo-class selectors as of version 1.2:

Pseudo-class selector Description

:contains Matches elements that contain a particular text string.
For example, matching all <div>'s with the text I love MooTools is
$$('div:contains(I love MooTools)').

:empty Matches elements that don't contain anything.
For example, $$(div:empty) would match this: <div></div>.

:enabled Matches elements that are enabled. Usually used in <input> tags.
:even Matches all child elements that have an even index.

For example, if there are four paragraphs, using $$('p:even')
would select the first and third paragraphs (remember that the index
starts at 0).

:first-child Matches the first child element (that is, the child with an index of 0).
For example, if there are four paragraphs in a <div> element, using
$$('div p:first-child') would select the first paragraph
inside the <div> element.

:last-child Matches the last child element (that is, the child with the highest
index).
For example, if there are four paragraphs in a <div> element,
using $$('div p:last-child') will select the fourth
paragraph inside the <div> element.

:not Matches elements that do not match a particular selector.
For example, matching all paragraphs that do not have the class
.intro would be $$('p:not(.intro)').

Selecting DOM Elements

[68]

Pseudo-class selector Description

:nth-child Matches the nth expression child element. You can use mathematical
expressions.

For example, $$('div:nth-child(3n+1)') would select the first
div (3(0)+1 = index 0 position), 4th div (3(1)+1 = index 4 position)…
3(n)+1 index position.

You can also use, as an argument: even, odd, first, and last
as in div:nth-child(even) which is exactly like the :even
pseudo-class selector.

:odd Matches all child elements with an odd index.

For example, if there are four paragraphs, using $$('p:odd')
would select the second paragraph and fourth paragraph
(index 1 position and index 3 position).

:only-child Matches all elements that are the only children of the only
child element.

For example, $$(p:only-child) would match the paragraph
<div><p>only child></p></div>, but will not match these
paragraphs <div>><p>not an only child></p>><p>not
only child></p></div> because it has a sibling paragraph.

Working with attribute selectors
If you thought MooTools can't get any cooler with element selection, well, it gets much
better. MooTools also implements CSS3's attribute selectors. An attribute selector allows
you to select elements based on their CSS attributes, also commonly referred to as
"properties" in MooTools.

For example, an <input> tag's type is considered one of its attributes (or properties),
so is its class.

<input type="text" name="query" value="" />

In MooTools (as well as CSS3), the syntax for an attribute selector is as follows:

element[attribute=attribute value]

For example, if we wanted to select all <input> elements with a type of text, we
would write:

$$('input[type=text]');

Chapter 3

[69]

Attribute selector operators
Attribute selectors can match attribute values in various ways using attribute selector
operators. The following table depicts a list and description of each attribute selector operator.

Operator Description

= Matches attribute value exactly and literally.

For example, $$('a[class=myLinkClass]') will match all <a> elements
with the class of myLinkClass.

!= Matches all elements with the attribute value that is not the value given.

For example, $$('a[class!=myLinkClass]') will select all <a> elements
that don't have the class of myLinkClass.

^= Matches all elements with the attribute value that starts with the value given.

For example, $$('img[src^=big]') will match all images with the src
attribute value that begin with the word big, such as big-picture.png or
biggiesmalls.jpg.

$= Matches all elements with the attribute value that ends with the value given.

For example, $$('img[src$=.jpg]') will select all images that end with
.jpg. Useful in selecting particular file extensions.

Attribute selector example: Styling different types of links
Often, you want to indicate to a user what a particular type of link is. For example, you may
want to indicate to the user that a particular link goes to another website or that a link is a
mailto: link that will open up their default email client. Perhaps, you want to highlight all
links that point to a particular domain name like sixrevisions.com.

Time for action – using = attribute selector
Let's see exactly what attribute selectors can do. In the following HTML markup, you'll see a
variety of links. Just pop this into an HTML document and we'll be good to go:

<body>
 <p>Go to the home page.</p>
 <p>This link will not go to
 the home page.</p>
 <p>Please email me or
 email Matt.</p>
 <p>Download this ZIP file.</p>
</body>

Selecting DOM Elements

[70]

You should have something like this:

Let's style the first link with MooTools. Its href attribute goes to http://mywebsite.com.
Let's say that we want all links in our web page to point to the site's home page, and they
will be a green color. We'll use the .setStyle() method to apply the style.

1. To select all links in a web page that have the href attribute
of http://mywebsite.com, we write:

$$('a[href="http://mywebsite.com"]').setStyle('color', '#7cc576');

2. Open up your HTML document in a web browser. You
should see that the first link is now green:

Chapter 3

[71]

3. Your JavaScript should look like this at this point:

<script type="text/javascript">

window.addEvent('domready', function(){

$$('a[href="http://mywebsite.com"]').setStyle('color', '#7cc576');

});

</script>

Time for action – using != attribute selector
Now, continuing with our example, we should try out the NOT (!=) attribute selector.
We're going to color all of the links in the web page that don't point to the home page
in red (#9e0b0f).

1. To color all links that don't go to http://mywebsite.com, we write this after
our previous line of JavaScript:

$$('a[href!="http://mywebsite.com"]').setStyle('color',
'#9e0b0f');

2. Save your work and open or refresh your web browser to view what our
HTML document looks like now. You should see something like this:

3. Your JavaScript should look like this at this point:

<script type="text/javascript">

window.addEvent('domready', function(){

$$('a[href="http://mywebsite.com"]').setStyle('color', '#7cc576');

Selecting DOM Elements

[72]

$$('a[href!="http://mywebsite.com"]').setStyle('color',
'#9e0b0f');

});

</script>

Time for action – using ^= attribute selector
For all hyperlinks that have the mailto: attribute value inside its href attribute, let's make
their underline dashed, and then give them a light blue color. This can give users a visual clue
that the link they're going to be clicking on will open up their default email client.

Since we have to set multiple CSS properties, we'll use the .setStyles() method.

1. To select all links that start with the mailto: value in its href attribute, we write
the following after our previous line of JavaScript:

$$('a[href^=mailto:]').setStyles({

 // Remove link underline first

 'text-decoration' : 'none',

 // Add a dashed bottom border

 'border-bottom' : '1px dashed #9e0b0f',

 // Set background color

 'background-color' : '#7da7d9'

 });

2. Open or refresh your HTML document. If all went according to plan, you should see
the two links with the mailto: attribute styled in a similar fashion, as the
screenshot below:

Chapter 3

[73]

3. Your JavaScript should look like this at this point:

<script type="text/javascript">

window.addEvent('domready', function(){

$$('a[href="http://mywebsite.com"]').setStyle('color', '#7cc576');

$$('a[href!="http://mywebsite.com"]').setStyle('color',
'#9e0b0f');

$$('a[href^=mailto:]').setStyles({

 // Remove link underline first

 'text-decoration' : 'none',

 // Add a dashed bottom border

 'border-bottom' : '1px dashed #9e0b0f',

 // Set background color

 'background-color' : '#7da7d9'

 });

});

</script>

Time for action – using $= attribute selector
Let's give the link that points to a ZIP file a different font style and a gray border by utilizing
the $= attribute selector. This can be helpful in distinguishing links that will prompt the user
to download a file from a web page.

1. In order to give links that point to a ZIP file a different style, use the $= as follows,
after the previously entered JavaScript code:

$$('a[href$=.zip]').setStyles({

 // Remove link underline first

 'text-decoration' : 'none',

 // Assign a different font style

 'font' : 'bold 14px "Courier New"',

 // Give them some padding

 'padding' : 2,

 //Add a solid gray border around the link

 'border' : '1px solid #898989',

 });

Selecting DOM Elements

[74]

2. Open or refresh your web browser and you should see something like this:

3.	 Your JavaScript should look like this at this point:

<script type="text/javascript">

window.addEvent('domready', function(){

$$('a[href="http://mywebsite.com"]').setStyle('color', '#7cc576');

$$('a[href!="http://mywebsite.com"]').setStyle('color',
'#9e0b0f');

$$('a[href^=mailto:]').setStyles({

 // Remove link underline first

 'text-decoration' : 'none',

 // Add a dashed bottom border

 'border-bottom' : '1px dashed #9e0b0f',

 // Set background color

 'background-color' : '#7da7d9'

 });

$$('a[href$=.zip]').setStyles({

 // Remove link underline first

 'text-decoration' : 'none',

 // Assign a different font style

 'font' : 'bold 14px "Courier New"',

Chapter 3

[75]

 // Give them some padding

 'padding' : 2,

 //Add a solid gray border around the link

 'border' : '1px solid #898989',

 });

});

</script>

What just happened?
We experienced how attribute selectors can help us write complex DOM selections. More
specifically, we:

 � Used the = attribute selector to select all links that point to
http://mywebsite.com and assigned them a green color

 � Used the != attribute selector to select all links that don't point
to http://mywebsite.com and gave them a red color

 � Used the ^= attribute selector to select all links that have an href attribute value
that begins with mailto: to give users a visual clue that when the link is clicked,
it will open up their default mail client; we gave these links a dashed underline
and light blue background.

 � Used the $= attribute selector to select all links that have an href attribute value
the end in .zip to distinguish links that point to ZIP files; we gave these links a
different font style and a gray border.

Attribute selector case sensitivity
When using attribute selectors, the criteria values you give them are case-sensitive. For
example, in the example that uses http://mywebsite.com as the criteria for the =
attribute selector, writing:

$$('a[href!="http://MyWebsite.Com"]').setStyle('color', '#9e0b0f');

This will not work! It's important to make sure you have the exact cases for the values you're
trying to match. You'll have to extend your selector if you want to match different strings.

A common problem is in file extensions. Many people will write .ZIP as well as .zip, so
your selector should look like this:

$$('a[href$=.zip], a[href$=.ZIP"]').setStyles({
...
 });

Selecting DOM Elements

[76]

Note that we just added another selector string that matches all links with an href attribute
value that ends in .ZIP.

DOM selection makes unobtrusive JavaScript do-able
Throughout this chapter, we've just seen how to create very narrow and refined DOM
element selections. This will enable us to pinpoint exactly the elements we need to
operate on.

What this means is that we're able to write JavaScript without touching our HTML markup.
We simply have to hone into the elements we want to work on using the selection
techniques we learned in this chapter.

Summary
In this chapter we learned about:

 � The $() and $$() functions: how to use them to select DOM elements

 � Pseudo-class selectors: how to use them to select otherwise difficult
sets of DOM elements such as "all even rows of a table"

 � Attribute selectors: how to further refine our selections by matching attribute
(otherwise known as properties) values of elements in the DOM

We also discussed how the $$()function uses a similar syntax to CSS selectors, common
mistakes to avoid in using the dollar and dollars functions, as well as the case sensitivity of
attribute selector criteria.

Now that we've learned about selecting DOM elements, we'll learn other things we can
do to manipulate the DOM to our will (cue evil 'muhahaha' laughter), and that's in the
next chapter.

4
The Core's Useful Utility Functions

In this chapter, we'll be investigating the MooTools Core component which
contains a collection of useful utility/helper functions and properties that we
can use to write less code and obtain information about the browser client.

In this chapter we shall:

 � Learn about browser properties that MooTools makes available to us, and how
to use them to gain more data about our users

 � Explore the Core's utility functions in order to discover functions that will make
writing JavaScript easier

So let's get on with it!

What is the Core?
The Core is a MooTools component (Core.js) that contains a plethora of useful functions
that deal with common JavaScript tasks, such as checking if the objects are defined, and
merging the objects into one.

The Core is split into two sub-components: Browser, which gives you a set of tools for
acquiring information about the client accessing your scripts, and Core, which contains
a mixture of helpful functions for dealing with everyday JavaScript-related processes.

The Core's Useful Utility Functions

[78]

Browser: Getting information about the client
There are plenty of reasons why you would want to gain insight about the people viewing
your web pages. For example, if you'd like to determine what the most popular web browser
accessing your website/web application is, or what operating system people use, then you
can use MooTools in conjunction with a server-side scripting language (like PHP), and a
database (like MySQL), to mine this information.

The Browser component can do three things:

1. Determine whether a browser has a specific feature (Browser.Features)

2. What rendering engine (Browser.Engine) it uses

3. What operating system (Browser.Platform) the client is running on

Determining if the client has a specific feature
MooTools can help you find out whether or not XPath (a querying language for XML
documents) or the XMLHTTP object (used for Ajax) are available in the client browser by
using Browser.Features.

Browser.Features.xpath
Browser.Features.xpath returns a Boolean value (true or false).

By writing:

alert(Browser.Features.xpath)

You will be alerted whether or not the browser being used to view the web page
supports xPath.

Browser.Features.xhr
Browser.Features.xhr works the same way as Browser.Features.xpath by
evaluating true if the browser supports the XMLHTTP object.

Getting information about the client's rendering engine
A browser rendering engine, also known as a layout engine, is what the browser uses to
interpret markup (HTML) and formatting/styles (CSS). For example, Microsoft's Internet
Explorer browser uses the Trident rendering engine and Mozilla Firefox uses the Gecko
rendering engine.

Chapter 4

[79]

Knowing the client's rendering engine will enable you to deal with browser quirks more
effectively using JavaScript-based techniques.

Let's go over some of the things Browser.Engine can do for us.

Determining the client's rendering engine and version
Browser.Engine.name returns a string value of the name of the rendering engine.
Browser.Engine.version returns a string value of the version of the rendering engine.
Let's see these two in action.

Time for action – determining the client's rendering
engine and version

We're going to check what rendering engine you're using. If you have several browsers
installed in your work station, try the same script in all of them:

1. For the markup, you can use the following:

<body>
<div id="browser-info">
 <p>The rendering engine you're using is: </p>
 <p>The rendering engine's version is: </p>
</div>
</body>

2. Open your HTML document in a browser to preview your work. You should see
the following figure (it shouldn't have the rendering engine information yet):

The Core's Useful Utility Functions

[80]

3. We'll get information about the browser engine name and version using
Browser.Engine.name and Browser.Engine.version, and then assign
them to the variables browserEngine and browserEngineVersion.
If for some reason we can't determine the values, we assign them values
"Unknown" by using || (which means "or"). To do this write:

 var browserEngine = Browser.Engine.name || "Unknown";

 var browserEngineVersion = Browser.Engine.version || "Unknown";

4. Now we'll use the .appendText() method to add to the browserEngine
and browserEngineVersion at the end of their respective
paragraphs. Right below the code in step 3, do the following:

 //Selects the first paragraph

 $$('#browser-info p:first-child').appendText(browserEngine);

 // Selects the last paragraph

 $$('#browser-info p:last-child')
 .appendText(browserEngineVersion);

5. Now refresh your browser. Depending on your web browser, you
should see something similar to one of the following:

 � Mozilla Firefox 3.0

Chapter 4

[81]

 � Internet Explorer 7.0

 � Safari 4.0 beta

6. Your JavaScript should look like the following:

<script type="text/javascript">

window.addEvent('domready', function(){

var browserEngine = Browser.Engine.name || 'Unknown';

var browserEngineVersion = Browser.Engine.version || 'Unknown';

//Selects the first paragraph

$$('#browser-info p:first-child').appendText(browserEngine);

// Selects the last paragraph

$$('#browser-info p:last-child').appendText(browserEngineVersion);

}

</script>

The Core's Useful Utility Functions

[82]

Checking if the client is using a particular web browser
Browser.Engine can check what particular rendering engine the client is using. This is
especially helpful if you want to do something specifically for a particular browser, such as
serving a script to fix a browser rendering quirk for certain browsers.

The following block of code (for example), would display "You're using Internet Explorer" if
your MooTools detects the Trident layout engine.

if(Browser.Engine.trident){
 alert('You\'re using Internet Explorer');
} else{
 alert('You\'re not using Internet Explorer');
}

In the following table, you will see the Browser.Engine properties for common rendering
engines and some of the browsers that use them. They return a Boolean value of either true
or false.

Property Rendering Engine Some browsers that use it

Browser.Engine.gecko Gecko Mozilla Firefox, Flock, SeaMonkey,
K-Meleon, Netscape 9

Browser.Engine.presto Presto Opera
Browser.Engine.trident Trident Internet Explorer
Browser.Engine.webkit WebKit Safari

Have a go hero – checking to see if your browser uses Gecko
Why don't you try out the previous example to check for Gecko, which Mozilla-based
browsers (Firefox and SeaMonkey) use. Just change Browser.Engine.trident in the
if statement to the appropriate browser property.

Determining if the client has Adobe Flash installed
If you work with Flash, it's often beneficial to check whether the client has the Flash plugin
installed, so that if they don't, you can perform an alternative action, such as displaying a
message with instructions on how to obtain the Flash plugin.

You can use Browser.Plugins.Flash.version to determine what version of Flash the
user has. If the property returns a null value, then the client doesn't have Flash installed.

Chapter 4

[83]

In the following example, if the client has the Flash plugin installed, it will output: "Flash
plugin detected and the version is: #versionnumber" if MooTools can detect it.

if(Browser.Plugins.Flash.version){
 alert('Flash plugin detected and the version is: '+Browser.Plugins.
Flash.version);
} else{
 alert('Flash plugin not detected');
}
});

Alternatively, you can use Browser.Plugins.Flash.build to find out what the Flash
plugin build is.

Finding out information about the client's operating system
Often, it's valuable to find out what operating system (Windows, Linux, Mac OS) the client
uses. The Browser.Platform property will allow us to do just that.

The following table showcases all the properties available for Browser.Platform:

Property Platform What it will tell you

Browser.Platform.mac Mac OS Boolean. Will return true if the client uses
the Mac OS platform.

Browser.Platform.linux Linux-based Boolean. Will return true if the client uses
the Linux operating system.

Browser.Platform.ipod iPhone or
iPod touch

Boolean. Will return true if the client uses an
iPhone or iPod touch to access the web page.

Browser.Platform.other Other
platforms

Boolean. It will return true if the client's
platform is not any of the above platforms.

Browser.Platform.name N/A String. Will return the name of the client's
platform.

Potential uses of this property
You can gain information about your site's visitors by using this property in conjunction
with server-side scripting and a database.

Perhaps though, a common usage of "platform-sniffing" is when you're offering downloads
on your site and want to tailor the download page specifically to the client platform.
Wouldn't it be cool if you could change the page on-the-fly and customize the user
experience based on the operating system they're using?

The Core's Useful Utility Functions

[84]

Example scenario: Offering the correct download based on the client's
platform
Let's pretend that you're a software application developer and that you just created an
awesome application called SuperSoftware. There are multiple versions of it so that people
with the Windows, Mac OS, and Linux machines can use SuperSoftware.

Let's set up the markup first.

SuperSoftware HTML
The HTML is simple; just a level 1 heading tag for the web page, a paragraph with
instructions (p class="instructions"), and an unordered list with download options
(ul class="download-options").

<body>
 <h1>Download SuperSoftware</h1>
 <p id="instructions">Select the download for your operating
 system</p>
 <ul class="download-options">
 Windows XP/Windows Vista
 Mac OS X
 Linux

</body>

Now we have our markup set up and the above figure is what our download page will look
like without CSS or JavaScript. People will still be able to access the download links without
JavaScript or CSS, but we should probably make it prettier with some CSS.

Chapter 4

[85]

SuperSoftware CSS
For styles, we just change the body background color, the default font family and colors, and
place a border at the bottom of our <h1> tag to separate it from the page content.

body {
 background-color: #e0e9f3;
 font:normal 12px/14px Verdana, Geneva, sans-serif;
 color:#333;
}
h1 {
 font:normal 26px "Lucida Sans Unicode", "Lucida Grande",
 sans-serif;
 padding-bottom:5px;
 letter-spacing:-2px;
 border-bottom:1px solid #999;
}
a {
 color:#930;
}

With just a few CSS style rules, our download page looks a bit better. Now it's time to
supercharge SuperSoftware's download page with MooTools!

The Core's Useful Utility Functions

[86]

Time for action – using Browser.Platform to customize
SuperSoftware's download page

We'll use the Browser.Platform property to detect what platform the client uses so that
we can tailor the page based on the user's operating system.

1. Let's figure out what the user's operating system is and put it in a variable called
userPlatform. The values will be of a string data type and will be of the following
values: win (for Windows), mac (for Mac OS), linux (for Linux machines), ipod
(Apple iPhone and Apple iPod touch), and other (platform can't be detected
or is unrecognized).

window.addEvent('domready', function(){

 var userPlatform = Browser.Platform.name;

});

2. Next, we build a function called pageCustomizer that will customize our page.
We'll pass userPlatform (later on) to it so that it knows what platform it'll
be working with. Let's set that up now:

window.addEvent('domready', function(){

 var userPlatform = Browser.Platform.name;

// Customizes download page depending on client's platform

 var pageCustomizer = function(platform) {

 // ...code goes here...

}

});

3. pageCustomizer will have three local variables: platformNameFull which will
contain the full name of the platform, instructions, which will be assigned
instructions that are specific to a particular platform, and downloadURL, which is
the location of the file for the particular platform.

We'll display all of these in the download page. Let's declare them now so that
they're ready to be used.

 var pageCustomizer = function (platform) {

 var platformNameFull = '';

 var instructions = '';

 var downloadURL = '';

 }

Chapter 4

[87]

4. Next, we need a control structure. We'll use if/else statements to give
platformNameFull and instructions the appropriate values.

 // Control structure

 if(platform == 'win') {

 } else if(platform == 'mac') {

 } else if(platform == 'linux') {

 } else {

 // If the platform is iPod or other

 }

5. Let's assign values for platformNameFull and instructions. You can assign them
any string values, but this is what I used:

 // Control stucture

 if(platform == 'win') {

 platformNameFull = ' for Windows XP/Vista';

 instructions = 'We recommend installing SuperSoftware in
 C:\\Program Files';

 downloadURL = 'win.zip';

 } else if(platform == 'mac') {

 platformNameFull = 'for Mac OS X';

 instructions = ' Mac OS X users should be aware of a
 minor bug in SuperSoftware.
 See this page for details.';

 downloadURL = 'mac.zip';

 } else if(platform == 'linux') {

 platformNameFull = 'for Linux';

 instructions = ' Ubuntu users may experience some
 sluggishness with SuperSoftware.';

 downloadURL = 'linux.zip';

 } else {

 instructions = 'We couldn\'t detect your operating
 system. Please select a compatible download link below';

 }

6. Let's manipulate the <h1> tag to display the operating system we detected.

 // Display full name of platform.

 $$('h1').appendText(platformNameFull);

The Core's Useful Utility Functions

[88]

Our first page customization is done! Here's what our page looks like now in a
Windows platform (notice the title page has changed to display the full name of
the platform).

7. Next, we need to display the custom instructions. We'll replace the text inside <p
id="instructions"> with the value inside the instructions variable.
We use the .set() method for this, which takes two arguments: the property
you want to target, and the value you want to set it to. We want to the target
#instructions HTML property and set it equal to the contents on our
instructions variable. Here's what we do:

$('instructions').set('html', instructions);

This is what our page looks like in Windows:

Chapter 4

[89]

8. If userPlatform is not other or ipod, we want to get rid of the unordered list
with the class of download-options, since we don't need it anymore. We will use
the .destroy() method which removes selected objects from the DOM. We'll also
use a control structure to check whether or not userPlatform isn't other or ipod
so that we still display the download options if we can't detect the operating system.

We'll select download-options and run the destroy method on it, just like so:

if(userPlatform!='other' || userPlatform!='ipod') {

 $$('.download-options').destroy();

}

Just like magic, our unordered list is gone.

9. We should now present the user with their download option. We'll create
a new div element (just like in Chapter 2) and give it some styles.

 // New div element

 var downloadBox = new Element('div', {

 'styles' : {

 'border': '2px solid #555555',

 'padding' : 10,

 'background-color' : '#a0c1e9'

 }

 });

The Core's Useful Utility Functions

[90]

10. We should customize the content of downloadBox with the downloadURL value.
We'll set its HTML property like so:

'html' : 'Download location: '+
 downloadURL+'</p>'

11. Next, we inject the downloadBox element right after the #instructions
paragraph using the .inject() method.

downloadBox.inject($('instructions'), 'after');

12. Lastly, we need to call our pageCustomizer() function:

pageCustomizer(userPlatform);

We're done! We just supercharged an ordinary download page into a tailored web page
that acts according to what the user's operating system is. Let's pull the entire script in one
big go:

<script type="text/javascript">
window.addEvent('domready', function() {
 var userPlatform = Browser.Platform.name;

//Customizes download page depending on client's platform
 var pageCustomizer = function (platform) {
 var platformNameFull = '';
 var instructions = '';
 var downloadFilePath = '';

// Control stucture
 if(platform == 'win') {
 platformNameFull = ' for Windows XP/Vista';
 instructions = 'We recommend installing SuperSoftware in
 C:\\Program Files';
 downloadURL = 'win.zip';
 } else if(platform == 'mac') {
 platformNameFull = 'for Mac OS X';
 instructions = ' Mac OS X users should be aware of a minor
 bug in SuperSoftware. See this page
 for details.';
 downloadURL = 'mac.zip';
 } else if(platform == 'linux') {
 platformNameFull = 'for Linux';
 instructions = ' Ubuntu users may experience some
 sluggishness with SuperSoftware.';
 downloadURL = 'linux.zip';
 } else {
 instructions = 'We couldn\'t detect your operating system.
 Please select a compatible download link below';
 }

// Display full name of platform.
 $$('h1').appendText(platformNameFull);

Chapter 4

[91]

// Display instructions
 $('instructions').set('html', instructions);

// Dispose download-options
 if(userPlatform!='other' && userPlatform!='ipod') {
 $$('.download-options').destroy();

// New div element
 var downloadBox = new Element('div', {
 'styles' : {
 'border': '2px solid #555555',
 'padding' : 10,
 'background-color' : '#a0c1e9'
 },
 'html' : 'Download location:
 '+downloadURL+'</p>'
 });

downloadBox.inject($('instructions'), 'after');
 }
 }

 // Call pagecustomizer
 pageCustomizer(userPlatform);
});
</script>

Here's the final result of SuperSoftware's download page and what it looks like in a Windows
system (and yours should be different if you're using another operating system):

The Core's Useful Utility Functions

[92]

What just happened?
We explored the Browser.Platform property provided to us by MooTools by way of an
example scenario—SuperSoftware's download page. We customize the page depending
on what the user's operating system was. More specifically, this is what we did together:

 � Determined the user's operating system using Browser.Platform.name

 � Constructed a function called pageCustomizer(), that contains a control structure
(if/else statements) to assign three local variables (platformNameFull,
Instructions, downloadFilePath) appropriate values depending on the client's
platform name

 � Got rid of the unordered list using the .dispose() method (if the platform name
was either win, linux, or mac)

 � Created a new element called downloadBox, that we injected into the DOM using
the .inject() method

You learned a lot in this section, so let's cap it off with a little pop quiz.

Pop quiz – finding out information about the client's operating system
If a user uses an Apple iPhone to navigate to SuperDownload page, which of the following
choices would return true?

1. Browser.Platform.mac

2. Browser.Platform.iPhone

3. Browser.Platform.other

4. Browser.Platform.ipod

Exploring the Core utility functions
Now that we've investigated the Browser component of MooTools, let's check out the
Core component.

The Core component contains a plethora of useful functions (15 of them to be exact)
that many JavaScript developers believe should have been in native JavaScript. You'll find
functions that will check if an object is defined, functions that work with date and time, and
a hodgepodge of miscellaneous functions that will save you a lot of code-writing.

Let's delve into the Core by exploring all of its functions.

Chapter 4

[93]

Checking to see if objects are defined
You can often run into trouble when an object you're trying to access in your script is
null or undefined. Because JavaScript allows you to create empty objects and create them
on-the-fly without declaring them first, you'll often need to check if an object you're trying
to use contains something.

This leads to a lot of if/else statements and try/catch methods. Let MooTools do all the
hard work by leveraging some of the useful utility functions it makes available to us, namely:
$chk, $defined, $pick, $try.

Seeing if an object has a value with $chk
You can use the $chk function to see if an object is a true value or if it's false. This is
especially useful for ascertaining that an object contains something.

For example:

window.addEvent('domready', function() {
 var myObject;
 if($chk(myObject)) {
 alert('Object has a value');
 } else {
 alert('Object does not have a value');
 }
});

In the above example, the alert box will display the second condition Object does not have
a value because even though we declared myObject, we didn't assign it a value.

Compare it with the following code block:

window.addEvent('domready', function() {
 var myObject;
 myObject = 0;

 if(myObject) {
 alert('Object exists');
 } else {
 alert('Object does not exist');
 }
});

We've assigned a value to myObject, but it will still alert us that the object does not exist.
It's because JavaScript uses a falsy/truthy system where "0" is considered "false" and "1" is
considered "true".

The Core's Useful Utility Functions

[94]

If you need myObject to evaluate true even when it's given a value of 0 (or vice versa, you
want it to evaluate false when it's given a value of 1), then you should use $chk().

$chk also checks to see if the value is not '', which is used to initiate variables that will hold
string literals, such as:

var myString = '';

In the following example, we'll be alerted that the object does not exist because it doesn't
contain a value:

window.addEvent('domready', function() {
 var myObject;
 myObject = '';
 if($chk(myObject)) {
 alert('Object exists');
 } else {
 alert('Object does not exist');
 }
});

Checking if an object is defined with $defined
$defined is very similar to $chk but it only evaluates whether an object is defined or not.

For example:

window.addEvent('domready', function() {
 var myObject;
 if($defined(myObject)) {
 alert('Object is defined');
 } else {
 alert('Object is not defined');
 }
});

Will alert us that the Object is not defined because we haven't assigned it a value.

Chapter 4

[95]

Comparing it to $chk, the following block is considered as defined (evaluates true) even if
the string literally contains nothing.

window.addEvent('domready', function() {
 var myObject;
 myObject = '';
 if($defined(myObject)) {
 alert('Object is defined');
 } else {
 alert('Object is not defined');
 }
});

Selecting the first defined object using $pick
$pick allows you to pass several objects into it, and it will select the first object that
is defined.

In the following example, definedFruit will be assigned the value of oranges have
vitamin C because it is the first object passed into $pick that is defined.

window.addEvent('domready', function() {
 var apples;
 var oranges = 'oranges have vitamin C';
 var grapes = 'grapes are purple';

 var definedFruit = $pick(apples, oranges, grapes);
});

Getting the return of first working function with $try
$try accepts multiple functions, and it will attempt to execute each one. It will return the
first function that does not fail without executing consecutive functions. $try is really useful
because this avoids having to write several try/catch blocks that "try" whether some code
will fail or work properly.

Here's an example that sets the value of myObject to This is my String. It's mine.:

window.addEvent('domready', function() {
 var myObject = $try(
 function myFailedFunction() {
 myCounter++;
 //myCounter is not defined so it skips it
 return myCounter;
 },
 function myWorkingFunction() {

The Core's Useful Utility Functions

[96]

 var myString="This is my string. It's mine.";
 return myString;
 });

 alert(myObject);
});

Dealing with time and intervals
The core utility functions include two awesome functions that deal with time and intervals:
$time() and $clear().

The $time() function
The $time() function simply returns the current system time of the client, in the number
of milliseconds that's elapsed since January 01, 1970.

Instead of figuring dates (which can be hard with leap years and such), the function can be
used to determine how fast or slow certain processes are.

Let's explore a simple example, seeing how fast you can click on a button.

Time for action – the $time() function
We're going to see how fast (or slow) you click a button:

1. First, we'll grab the start time and place it in an object called startTime. Right
below it, we'll call the alert function to print out a message soliciting the user to
click on the OK button. Right after that, we'll get the ending time and place
it into an object called endTime.

 var startTime = $time();

 alert('Click on the OK button.');

Chapter 4

[97]

 // The $time() function will be called again as soon as the
user presses 'OK' to get the endTime.

var endTime = $time();

2. Next, we need to calculate the difference between endTime and startTime. Let's
place that value inside an object called totalTime.

var startTime = $time();

alert('Click on the OK button.');

// The $time() function will be called again as soon as the user
//presses "OK" to get the endTime.

var endTime = $time();

var totalTime = endTime - startTime;

3. Finally, we want to print out the results. We'll use the .write() JavaScript method
to write the results into our document. We'll print out the time in milliseconds,
and also the time in seconds for readability (we just divide totalTime by 1000).

document.write('It took '+totalTime+' milliseconds (or
'+totalTime/1000+' seconds) for you to click the OK button.');

4. Open the HTML in your web browser. The first thing you'll see should be the alert
dialog box, asking you to click on the OK button.

The Core's Useful Utility Functions

[98]

Once you click on the OK button of the dialog box, you'll see the total time it took for you to
click the OK button (in units of milliseconds and seconds).

What just happened?
You discovered a way to use the $time() function to monitor the time it takes in between
two processes. This has many uses, including profiling your scripts to see how long certain
tasks take to execute. If you find a really slow function, it's time to rewrite (called refactor) it!

The $clear() function
The $clear() function simply removes delays and timeouts you may have set. It's often
used with the .delay() method (which delays an execution of a function by the time, in
milliseconds, that you pass to it) and the periodical() function, which executes a function
in set intervals.

Let's explore the $clear() function with an example. We'll execute a function that
transitions a blue box (a div element) to the right repeatedly using the periodical()
function, then stop it from executing any further after the third execution.

Here's the HTML structure we'll be using (there's nothing fancy about it):

<div id="bluebox">
 <p>I'm Blue.</p>
</div>

To make our blue box easier to see, you can use this CSS style rule:

#bluebox {
 width:100px;
 height:100px;
 background-color:#00f;
 border:1px solid #006;
 text-align:center;
 color:#fff;
}

Chapter 4

[99]

With everything set up, this is what you should see when previewing your HTML document.

Let's look at making this box move using MooTools.

Time for action – exploring the $clear() function with
periodical()

To showcase the use of $clear(), we'll use one of its complimentary functions,
periodical(). We'll create a function that will transition #bluebox to the left in
increments of 50 pixels, five times. Then we're going to stop executing the function
further (or else it will keep moving to the left infinitely).

1. First, we'll create an integer object that will hold the number of times our function
has executed.

 var counter = 0;

2. Next, let's create our function, we'll called it moveLeft().

 var moveLeft = function() {

 // our function code goes here.

 }

3. Inside moveLeft, we'll write use the tween() method to move #bluebox to the left.

$('bluebox').tween('margin-left', (counter+1)*50);

4. Now, we need to increment the counter every time the function is called. We'll use
the following line of code, which will execute as soon as our box has finished
the animation to the left:

counter++;

The Core's Useful Utility Functions

[100]

5. Let's now use periodical() to execute the moveLeft() at intervals
of 1 second (or 1000 milliseconds).

var moving = moveLeft.periodical(1000);

6. The problem with this is that it will keep on moving to the left. So we'll have
to stop moving.

7. Inside the moveLeft function, we'll add an if conditional statement that checks
whether the counter is equal to 5 or not. If it's equal to 5, then we know our
function has been called five times, and therefore it's time to use $clear()
on our periodical() function (which we call moving). Add the following if
statement inside the moveLeft() function:

 if(counter == 5) {
 $clear(moving);
 }

8. We're done! Our #bluebox should now move left five times in set intervals of
1 second. Then when it's moved 5 times, it will stop moving. Here's the final
script that we wrote together:

window.addEvent('domready', function() {
 var counter = 0;
 var moveLeft = function() {
 $('bluebox').tween('margin-left', (counter+1)*50);
 counter++;
 if(counter == 5) {
 $clear(moving);
 }
 }
 var moving = moveLeft.periodical(1000);
});

Chapter 4

[101]

What just happened?
We explored one of the ways to use the $clear function, stopping/clearing periodical after
a certain amount of time.

Besides that, you got a chance to discover another handy MooTools function—the
periodical() function, which is helpful when you want to execute another function
at set intervals.

Utility functions for working with objects
There are several utility functions that will come in handy for working with objects and
saving a few more lines of code. Namely, they are:

 � $extend()

 � $merge()

 � $each()

Extending objects with $extend()
$extends() accepts two arguments: the first one is the target object that will be extended,
and the second argument is the object whose properties will be copied to the target object.

Here's an example script that uses the $extend function to extend the first object (called
firstObject):

window.addEvent('domready', function() {
 //firstObject object
 var firstObject = {
 'color' : 'blue',
 'length' : 50
 };
 //secondObject object
 var secondObject = {
 'width' : 100,
 'depth' : 200
 }
 $extend(firstObject, secondObject);
 alert('firstObjects width is ' + firstObject.width);
});

The Core's Useful Utility Functions

[102]

Even though we didn't declare a 'width' index for firstObject, you can see that it took on
the value of 'width' from secondObject.

Merging objects with $merge()
$merge works similarly to $extend, but it can take more than two objects as arguments and
"deep-copies" objects, which means objects within objects will also be merged. If there is a
conflict in properties (two objects have the same property), then the last object supplied into
the $merge() function takes precedence.

In the following example, three arrays are merged into an array called combinedObject.
Then we use the .write() method on our document to print out the values of
inside combinedObject.

window.addEvent('domready', function() {
 //firstObject array
 var firstObject = {
 'color' : 'blue',
 'length' : 50
 };
 //secondObject array
 var secondObject = {
 'width' : 100,
 'depth' : 200
 }
 var thirdObject = {
 'width' : 300,
 'height' : 100
 }
 var combinedObject = $merge(firstObject, secondObject,
 thirdObject);

Chapter 4

[103]

 document.write('color: '+ combinedObject.color + "
");
 // This should be 300 because thirdObject comes later than
 //secondObject
 document.write('width: '+ combinedObject.width + "
");
 document.write('depth: '+ combinedObject.depth + "
");
 document.write('height: '+ combinedObject.height + "
");
});

Iterating through objects using $each
$each is a helpful function to save you some time in having to write loops (like for, while,
and so on). It takes two arguments: an object or array to be iterated upon, and the function
to run on each item inside the object. The basic format of an $each function call is:

$each(targetObject, function(){});

The second argument, the function to run, can take in three arguments: the current item (or
value), the index (or key), and the object that's being iterated upon. You can then use these
arguments as references inside the function. The basic format of the function() argument
for $each is:

function(currentItem, indexOrKey, targetObject)

Let's examine the $each() function in action. Let's say we have an object that contains the
cars I'll be buying with the massive profits I make from the sales of this book (thank you by
the way, I'll be thinking of you as I cruise around town with one of these bad boys):

 var myCars = {
 'Ferrari 612 Scaglietti' : 'first',
 'Bugatti EB 16.4 Veyron' : 'second',
 'Masarati Quattroporte' : 'third'
 }

Let's write a script that uses $each to print out my cars.

The Core's Useful Utility Functions

[104]

Time for action – exploring the $each function
Let's see how the $each function helps us to list down our dream cars:

1. Let's set up the structure of the $each function. As our target object, we pass the
argument of myCars. priority a the current item value, and car the current
object's key.

 $each(myCars, function(priority, car){

 // Code to print out each car goes here.

 });

2. We'll use the .write() method to display the contents of myCars.

 $each(myCars, function(priority, car){

 document.write('Priority: '+priority+',
 Car name: '+car+'
');

 });

3. Preview the script in your browser, and voila, you've got a list of my dream cars.

What just happened?
We explored a quicker way of iterating through objects using the $each function. $each
can be used on any objects that are iterable, including arrays and class objects. The $each
function saves you time in having to write complex, nested for and while loops.

Chapter 4

[105]

Other utility functions in the Core
Here are hodgepodges of miscellaneous functions that are included in the Core.

Generating a random number with $random
$random is a helpful function and a shortcut for executing a numerical value between
two ranges.

The basic format is:

$random(minValue, maxValue)

Using $random in the following way will assign myDiceRoll a numerical value between 1
and 6.

var myDiceRoll = $random(1,6);

Converting objects to arrays with $splat
$splat will take one argument and convert it into an array, if it isn't already one and if
it's defined.

In the following example, $splat will create an empty array with a single value
called newArray.

$splat(' newArray ');

If we pass an array as an argument, $splat won't do anything to it. In the following
example, the alert dialog box will display 1, because we passed an array into $splat.

var myArray = $splat([1,2,3]);
alert(myArray[0]);

Determining the data type using $type
JavaScript is a liberal and lenient language. It doesn't require you to declare a data type
before creating an object, and you can switch data types at any time.

$type allows you to check what your object's data type is. In the following example,
switchy is an integer first, then changed to a string literal datatype, and lastly changed to a
Boolean (true or false).

window.addEvent('domready', function() {
 // First it's Number
 switchy = 0;
 alert($type(switchy));
 // Switcheroo, now it's a String

The Core's Useful Utility Functions

[106]

 switchy = '';
 alert($type(switchy));
 // Another Switcheroo, now it's a Boolean
 switchy = true;
 alert($type(switchy));
});

Typically, in other languages, assigning a variable that's previously declared as a certain data
type will issue an error and break your scripts. With JavaScript, it'll just go along with it and
convert your variable's data type to the appropriate one. This is convenient when you're fully
aware of the conversion happening, but if you're not, this can lead to logical errors which are
very hard to catch since they may not break your scripts or alert you to an error. $type will
check to make sure your variable is the data type that you need it to be.

Limited use functions
Here are a few functions that are included in the Core, but have a very limited and specific
use. These functions are typically used for MooTools' internal functions (but are readily
available to you anyway).

Creating a function placeholder with $empty
$empty simply creates an empty function. You typically use this inside class and events
functions to avoid logical errors in your scripts while developing.

To create an empty function, simply write:

var myPlaceholderFunction = $empty;

Returning arguments using $lambda
$lambda just returns the value you pass to it. In the following example, $lambda just
assigns myObject a value of false.

$myObject = $lambda(false);

$lambda is very obscure and is of limited use, so don't expect to be using it too much.

Creating a function that returns the specified value using $arguments
$arguments creates a function that returns the argument that you point to. In the following
example, $mySimpleFunction will return a value of banana because $arguments points
to the second argument of mySimpleFunction.

mySimpleFunction = $arguments(1);
alert(mySimpleFunction('apple', banana', 'grapes'));

Chapter 4

[107]

Summary
In this chapter, we covered the Core component of MooTools, which is split up into two
sub-components: Core->Browser and Core->Core.

Specifically, we:

 � Learned how to obtain information about the client using browser properties, such
as what browser they're using and what operating system they're using

 � Explored the Core->Core's useful (and not so useful) helper/utility functions

Now that we've learned about the Core component, we're ready to animate objects in the
DOM, which is the topic of the next chapter.

5
Working with Events

In this chapter, we'll be exploring browser events. We'll also see how MooTools
can help us watch out for events such as mouse clicks, mouse movements,
keyboard presses, and all the events that make our web pages more responsive
to user actions.

In this chapter, we shall:

 � Define what events are in web development terms

 � Learn how to add event listeners to web page elements

 � Find out how to create custom events to extend MooTools' event object

 � Learn how to remove, clone, and fire off events

 � Investigate MooTools events methods and properties

We have a lot of things to cover in this chapter, so hold on to your seats and enjoy the ride!

What are events exactly?
Events are simply things that happen in our web pages. MooTools supports all HTML 4.01
event attributes like onclick and onmouseout, but the framework refers to them without
the "on" prefix (click instead of onclick, mouseout instead of onmouseout).

What's neat about MooTools is that it not only extends HTML 4.01 event attributes with a
few of its own, but also ensures that methods and functions that deal with web page events
work across all web browsers by providing us with a solid, built-in object called events. Event
is part of the native component of MooTools, and is also referred to as the "event hash".

Working with Events

[110]

You can read the official W3C specifications on events in the
HTML 4.01 Specification, section 18.2.3, under Intrinsic
events: http://www.w3.org/TR/html401/
interact/scripts.html#h-18.2.3

We'll go over all of the available event attributes in MooTools so that you can learn what
stuff we can listen to. There are several events that we can detect or "listen to". We can, for
the sake of discussion, divide them into five groups: window events, form events, keyboard
events, mouse events, and MooTools custom events.

Window events
Window events refer to activities that occur in the background. There are only two
window events.

HTML event attribute / MooTools event name What is it?

onload / load This event occurs when the window and images
on the page have fully loaded, and/or when all of
the iFrames in the page have loaded. It can be
used for monitoring when the web page has fully
loaded (such as when you want to know if all
images have been downloaded).

onunload / unload This even happens when a window or an
iFrame is removed from the web page. It has
limited use.

Form events
There are events that occur within form elements (such as <input> elements), and we'll
refer to these as form events.

For example, the onfocus event is triggered when the user clicks on an input field (you'll
see this in action in this chapter), effectively focusing on that particular input field. Some of
these events apply even to non-form elements.

Chapter 5

[111]

HTML event attribute / MooTools event name What is it?

onblur / blur This event occurs when an element loses focus,
either because the user has clicked out of it,
or because the user used the Tab key to move
away from it. This is helpful for monitoring the
instant when the user loses focus on a particular
element.

onchange / change This event happens when the element loses focus
or when its original value has changed. This is
helpful for knowing when the user starts typing
in the input text field or text area, or when a user
selects different option in a select drop-down
element.

onfocus / focus This event is the opposite of the blur event;
it is triggered when the user focuses on an
element. This is useful for watching when the
user highlights a form field or when they have
navigated to it using the Tab key.

onreset / reset This event only applies to form elements. This
event is triggered when the form has been reset
to its default values.

onselect / select This event happens when the user highlights
(selects) text in a text field.

onsubmit / submit This event is only for form elements. This event
occurs when the user submits a web form.

Keyboard events
There are events that happen when a user presses on a keyboard input device; let's call
these the keyboard events.

For example, the onkeypress event is triggered when you press any key on your keyboard.

HTML event attribute / MooTools event name What is it?

onkeydown / keydown This event occurs when the user holds down a
keyboard key.

onkeypress / keypress This event is triggered whenever the user
presses a keyboard key.

onkeyup / keyup This event happens when the user releases a
key.

Working with Events

[112]

Mouse events
There are several HTML event properties that allow you to deal with activities related to the
mouse. Clicking, moving, double-clicking, and hovering are all mouse events.

HTML event attribute / MooTools event name What is it?

onclick / click This event occurs whenever the user uses
the mouse button to click on an element.

ondblclick / dblclick This event occurs whenever the user
double-clicks on an element.

onmousedown / mousedown This event occurs when the mouse button is held
down.

onmouseup / mouseup This event occurs when the mouse button is
released.

onmousemove / mousemove This event occurs when the mouse is moved.

onmouseout / mouseout This event occurs when the mouse pointer is
removed from the target element.

onmouseover / mouseover This event occurs when the mouse pointer enters
the target element.

MooTools custom mouse events
MooTools supplies us with three custom events that extend the standard mouse events.

MooTools event name What is it?

mouseenter This event is triggered when the user's mouse pointer
enters an element, but does not fire again when the
mouse goes over a child element (unlike mouseover).
This is useful for detecting the mouseover event once
in nested element structures, such as <a>item</
a>. If we were to use the mouseover event, it
would be triggered twice, once for and once again
for <a>.

mouseleave This event works similarly to mouseenter in that it is
triggered only once when the mouse pointer exits the
target element, unlike the mouseout event that gets
triggered more than once for nested element structures.

mousewheel This even is triggered when the scroller on a mouse
is used (available in most modern mouse input devices,
usually situated in between the left and
right buttons).

Chapter 5

[113]

Adding event listeners
We can attach event listeners to elements on a web page using the addEvent and
addEvents methods. By doing so, we're able to find out whenever that event happens,
as well as execute a function to react to them.

Adding event listeners is the basis for interactivity, and is where JavaScript and
(subsequently) MooTools has gained its popularity. Imagine being able to perform an
operation whenever a user hovers over an image, or clicks on a link, or whenever the user
submits a form; the possibilities are endless.

Adding a single event listener
The addEvent method allows you to add one event listener to an element method, and
follows the format:

$(yourelement).addEvent(event, function(){})

For example, in the following code block, we attach a click event listener for all <a>
elements. When the user clicks on any hyperlink on our web page, it runs a function that
opens up an alert dialog box that says, You clicked on a hyperlink.

 $$('a').addEvent('click', function(){
 alert('You clicked on a hyperlink');
 });

In a moment, we'll create a simple web form highlighting the input field that the user is
focused on.

Time for action – highlighting focused fields of web forms
Let's start with our web form's HTML.

1. We'll use <input> and <textarea> tags that will hold our user's
information as well as provide them a means to submit the web form
(input type="button"). We use the <label> tag to indicate
to the user what information to put inside each form field.

<form action="" method="get">

 <p><label for="Name">Name: </label>
 <input name="Name" type="text"></p>

 <p><label for="Email">Email: </label>
 <input name="Email" type="text"></p>

Working with Events

[114]

 <p><label for="Comment">Comment: </label>
 <textarea name="Comment" cols="" rows=""></textarea></p>

 <p><input name="Submit" type="button" value="Submit"></p>

</form>

With the above markup, this is how our form looks:

2. Our web form is a bit dull, so how about we spruce it up a bit
with some CSS? Read the comments to gain insight on some of
the more important CSS properties to take a note off.

/* Center the fields using text-align:center */

form {

 width:300px;

 border:1px solid #b1b8c2;

 background-color:#e3e9f2;

 text-align:center;

 padding:25px 0;

}

label {

 display:block;

 font:12px normal Verdana, Geneva, sans-serif;

}

/* Give the input and textarea fields a 1px border */

input, textarea {

 width:250px;

 border:1px solid #5c616a;

Chapter 5

[115]

}

textarea {

 height:100px;

}

p {

 text-align:left;

 display:block;

 width:250px;

 overflow:auto;

 padding:0;

 margin:5px 0;

}

/* We will give fields that are currently focused on the .focus
class which will give them a distinct thicker border and
background color compared to the other input fields */

.focused {

 border:3px solid #b1b8c2;

 background-color: #e8e3e3;

}

With just a few styles, our simple web form has transformed to a more attractive
form field.

Working with Events

[116]

3. Let us move onto the JavaScript. We use the addEvent method to add an event
listener for the form event, onfocus. When the user focuses on a particular field,
we run a function that adds the .focus CSS class on that field which we declared
as a style rule in step 2. We'll also remove .focus class on other fields on the
web page.

window.addEvent('domready', function(){

 var els = $$('input, textarea')

 els.addEvent('focus', function(){

 els.removeClass('focused');

 this.addClass('focused');

 })

});

Now, when you focus on a form field, it will be highlighted with a thick blue border and with
a lighter blue background. Users who use the Tab key to navigate in between form fields will
appreciate this feature since they'll clearly see which field is active.

Chapter 5

[117]

What just happened?
In the previous example, we created a simple and interactive web form that highlights the
current field (the user has active). We did this by using the addEvent method, adding an
event listener for the focus form event. When the user focuses on a particular input field,
we executed a function that adds the .focus CSS class, which highlights the focused field
<input> or <textarea> with a thick blue border with a light blue background.

By highlighting active fields in a web form, we have just improved our form's usability by
providing visual feedback about which field the user is currently on.

Adding multiple event listeners
The addEvents method allows you to add more than one event listener to an element
(or set of elements). This is the format for running the addEvents method on an element.

$(yourelement).addEvents({
 'event1' : function {},
'event2' : function {}
})

Let's explore the addEvents method using the previous web form example.

Time for action – adding tooltips to the web form
We'll use the same web form as before, but we'll modify it to provide a hover over tooltip
for users. This can be used to provide more explanation for a particular field. Although the
example we're using is pretty straightforward, there are some web forms that have labels
that could use a little tooltip help to clarify to the users what they need to enter.

1. First, we have to modify our HTML. We'll add tags with the text (?), which
when the user hovers over them, will display a relevant tooltip/information box
beside our web form. We give each of these span tags a unique ID so that we
can tell MooTools which help text to display. The tooltip/information box is a
div with the ID of feedback.

<form action="" method="get">

 <p><label for="Name">Name: (?)
 </label><input name="Name" type="text" /></p>

 <p><label for="Email">Email: (?)
 </label><input name="Email" type="text" />
 </p>

 <p><label for="Comment">Comment: <span class="help"
 id="hComment">(?)</label><textarea name="Comment"
 cols="" rows=""></textarea></p>

 <p><input name="Submit" type="button" value="Submit" /></p>

Working with Events

[118]

</form>

<!-- holds user feedback -->

<div id="feedback"> </div>

2. Let's give our new elements some CSS styles.

#feedback {

 width:200px;

 border:1px solid #f90;

 background-color:#ffc;

 padding:5px;

 font:bold 12px Verdana, Geneva, sans-serif;

 /* Displays the div to the right of our web form */

 position:absolute;

 top:15px;

 left:315px;

}

.help {

 color:#009;

 font:bold 12px Arial, Helvetica, sans-serif;

/* Changes mouse cursor to pointer when mouse hovers on .help */

 cursor:pointer;

}

3. It's time for some MooTools code. First, we should hide the #feedback div.

 $('feedback').setStyle('opacity', 0);

4. Let's create an array object called helptext that will hold our help text
which we will display. For the index, we use the ID of the .help span tag
for each input field, so that we easily reference the array position later on.

 // Initialize helptext array, will store help text

 var helptext = {};

 // Put help text inside array

 Helptext.hName = 'Enter your first and last name';

 Helptext.hEmail = 'Enter a valid email address';

 Helptext.hComment = 'Leave your feedback';

Chapter 5

[119]

5. Next we'll add two event listeners using the .addEvents() method. The first event
listener is for mouseover: when the user puts their mouse cursor over a .help
span element, we show tween the #feedback div in, and give it the associated text.

 'mouseover' : function() {

 // Get the span's ID

 var spanID = $(this).get('id');

 // Set the text inside feedback div, reference

 // array index using spanID

 $('feedback').set('html', helptext[spanID]);

$('feedback').tween('opacity', 1);

 }

6. The second event listener that we add to our span elements is mouseout; when the
user removes their mouse cursor from a span tag, it will hide the #feedback div.

 'mouseout' : function() {

 $('feedback').tween('opacity', 0);

 }

7. Our addEvent() code block now looks like this:

 $$('.help').addEvents({

 'mouseover' : function() {

 $('feedback').tween('opacity', 1);

 // Get the span's ID

 spanID = $(this).get('id');

 // Set the text inside feedback div, reference

 // array index using spanID

 $('feedback').set('html', helptext[spanID]);

 },

 'mouseout' : function() {

 $('feedback').tween('opacity', 0);

 }

 });

Working with Events

[120]

Our form should now look like this:

8. Here is the entire MooTools script:

window.addEvent('domready', function(){

 $('feedback').setStyle('opacity', 0);

 $$('input, textarea').addEvent('focus', function(){

 $$('input, textarea').removeClass('focused');

 $(this).addClass('focused');

 });

 // Initialize helptext array, will store help text

 var helptext = [];

 // Put help text inside array

 helptext['hName'] = 'Enter your first and last name';

 helptext['hEmail'] = 'Enter a valid email address';

 helptext['hComment'] = 'Leave your feedback';

 // Add events to span.help

 $$('.help').addEvents({

 'mouseover' : function() {

 $('feedback').tween('opacity', 1);

 // Get the span's ID

 spanID = $(this).get('id');

Chapter 5

[121]

 // Set the text inside feedback div, reference

 // array index using spanID

 $('feedback').set('html', helptext[spanID]);

 },

 'mouseout' : function() {

 $('feedback').tween('opacity', 0);

 }

 });

});

9. When you hover over a (?), you should see something similar to the following image:

What just happened?
In the previous example, we discovered how to add more than one event listener to an
element using the .addEvents() method.

Working with Events

[122]

Creating custom events
Besides the standard HTML events that you saw earlier in this chapter, you can also create
custom events of your own. For example, you may want to create a custom event for a
user pressing the Caps Lock key; you can do this by adding (extending) properties to the
Element.Events object in MooTools. Here is the format for adding event properties to
the Element.Events MooTools object:

Element.Events.eventname = {
 'base' : 'click', // A base event such as click, keypress,
 keydown, onload, etc.
 'condition' : function() {
 // conditions that need to be met to trigger event
 },
 'onAdd' : function() {
 // Functions to trigger when you bind/add the event to elements
 },
 'onRemove' : function() {
 // Functions to execute when you unbind/remove elements
 }
};

There are five things to take a note off in the above code sample.

 � eventname: This is the name of your custom event.

 � base: This is an optional string value which gives our custom event a standard event
to listen to. If you have condition set, which is also an optional property, then you
must also have base set.

 � condition: This is a function that must be met to trigger the event; in other words,
the function must return a boolean value of true in order for the event to fire. This
is an optional property to set, but if you have condition set, you must also have
base set.

 � onAdd: This is an optional function property; it fires off the function that you assign
to it whenever the custom event is added or bound to elements.

 � onRemove: This is an optional function property, and it does the opposite of
onAdd; if the custom event is removed or un-bound from elements, then it will
trigger the function.

There's really no better way to learn about creating custom events than by creating one.
That's what we'll do next!

Chapter 5

[123]

Time for action – creating a custom event for showing help tips
Imagine that you created a web application that supports keyboard shortcuts. Keyboard
shortcuts allow users to use web applications more efficiently. For this example, let us say
that one of your keyboard shortcuts is Shft + H, which displays a box with help tips in it.

1. First step, let's set up the HTML for our help tip box. Our help tip box will be a
<div> with an ID of help.

<body>

 <h1>myWebApp</h1>

 <p>Use Shift + H to view Help tips on how to
 use this web application.</p>

 <div id="help">

 <h1>Help Tips</h1>

 <p>This is the help tip box. It will display helpful tips on
 how to use this web application.</p>

 <p>Press Shift + H on the keyboard to
 toggle this box.</p>

 </div>

</body>

2. Let's give the help tip box some styles, as well as change the default font style of
the HTML web page with some CSS. Let us give the help tip box a gray background
with a dotted border to make it easy to distinguish. This step is optional.

body {

 font:12px solid Verdana, Geneva, sans-serif;

}

#help {

 width:200px;

 background:#ccc;

 padding:5px;

 border: 1px dotted #00f;

}

3. It's time for MooTools to step in. The first thing we'll do is hide the help tip box. We'll
do this using the .setStyle() MooTools method, setting the opacity property to 0.

$('help’).setStyle('opacity', 0);

Working with Events

[124]

4. Next, we'll create our custom event. This custom event will be called shiftH. We'll
use the base event keypress so that whenever you press something on the
keyboard, the event will check to see if the appropriate keys are pressed
(Shift and H keys at the same time).

 // Add custom event to MooTools Events object
 Element.Events.shiftH = {
 // Set our base event to 'keypress'
 base: 'keypress'
 };

5. We should set the condition for this custom event. We want this event to be
triggered whenever we have pressed Shift and H keys at the same time. We can
use the MooTools event property called .shift, which returns a boolean value of
true when the Shift key is pressed.

We will also use the .key event property, which returns a string that has the value
of the key that was pressed in lowercase. In our instance the .key property should
be equal to 'h'.

Both Shift and H keys must be pressed at the same time. In other words, our
custom event (shiftH) will not be triggered when you press the H key without
also pressing the Shift key (and vice versa). Therefore, the condition will return
the true value only when customEvent.shift is true and customEvent.
key=='h' is true.

 // Add custom event to MooTools Events object
 Element.Events.shiftH = {
 // Set our base event to 'keypress'
 base: 'keypress',
 // Condition that must be met
 condition: function(customEvent){
 if(customEvent.shift && customEvent.key=='h'){
return true;
 else{
 return false;
}
 }
 };

6. The only thing that is left is adding an event listener for shiftH. We'll use the
addEvent method, that will run a function that toggles the #help div.

 // Add custom event on document object
 window.addEvent('shiftH', function(){
 // execute the stuff in here
 });

Chapter 5

[125]

7. The code we want to execute when the shiftH event is triggered is showing the
#help div when it's hidden, and vice versa; in other words, we want to toggle the
opacity of #help div. We'll transition the opacity using the .tween() method.

We'll create a variable for the opacity value we want to assign to the #help div;
opacityValue. If the current opacity is 0, then opacityValue will be 1. If the
current opacity is 1, then opacityValue will be 0. Then, we tween the #help div
opacity property to opacityValue.

 // If opacity is 0 then we tween to 1, and vice versa

 var opacityValue = ($('help').get('opacity')) == 0 ? 1 : 0;

 $('help').tween('opacity', opacityValue);

8. All together, our MooTools script looks like:

window.addEvent('domready', function(){

 $('help').setStyle('opacity', 0);

 // Add custom event to MooTools Events object

 Element.Events.shiftH = {

 // Set our base event to 'keypress'

 base: 'keypress',

 // Event condition

 condition: function(customEvent){

 if(customEvent.shift && customEvent.key=='h') return true;

 }

 };

 // Add custom event on document object

 window.addEvent('shiftH', function(e){

 // If opacity is 0 then we tween to 1, and vice versa

 var opacityValue = ($('help').get('opacity')) == 0 ? 1 : 0;

 $('help').tween('opacity', opacityValue);

 });

});

Working with Events

[126]

9. Test your web page in your favorite web browser. Then toggle the help tip box
by pressing Ctrl + H keys.

What just happened?
You've discovered how to create a custom event by extending the MooTools event object.
We created a custom event called shiftH which had a base event of keypress. The
condition that must be met for shiftH to be triggered is that both the Shift key and
the H key are pressed at the same time.

Additionally, we were able to explore two MooTools methods included inside events:
.shift which returns true if the Shift key is pressed, and .key which returns a
lowercase string value of the key that is pressed.

Chapter 5

[127]

Have a go hero – create your own custom event
Why don't you try to create your own custom event? How about modifying shiftH to
ctrlH, and so that #help div is toggled when your users press Ctrl + H keys.

You can see what other event methods are available to you in the official MooTools
documentation: http://mootools.net/docs/core/Native/Event#Event. In this
instance, you'll have to replace the .shift event method to .control event method.

Removing, cloning, and firing off events
Besides adding event listeners, other operations you may want to do are removing events
from an element, cloning events from other elements, and firing off events for elements
manually. We'll go through each one of these operations.

Removing events from elements
There are instances when you want to remove an event listener that you've added to an
element. One reason would be that you only want an element to be triggered once, and
after that event has been triggered, you no longer want to trigger it again. To ensure it only
fires once, you should remove the event once certain conditions have been met.

Removing a single event from elements
There are two methods available to you for removing events from elements. The first is
removeEvent(), which removes a single specified event.

Time for action – removing an event
Let's say you have some hyperlinks on a page, which when clicked, will alert the user that
they have clicked a hyperlink, but you only want to do it once. To ensure that the warning
message appears only once, we'll have to remove the event after it has been fired.

This type of thing may be utilized for instructional tips: when the user sees an unfamiliar
interface element, you can display a help tip for them, but only once, because you don't
want the tip to keep showing up every single time they perform an action.

1. First, let's put some links on a web page.

Hyperlink 1 Hyperlink 2

Working with Events

[128]

2.	 Next, let's create a function object which we will call whenever a click event
happens
on any of the links on our page. When the function fires, it will open up an alert
box with a message, and then it will remove the click event from all <a> elements
on the web page.

// Create an function object

var warning = function() {

 alert('You have clicked a link. This is your only warning');

 // After warning has executed, remove it
 $$('a').removeEvent('click', warning);

};

3.	 Now we add a click event listener that will fire off the warning function object.

// Add a click event listener which when triggered, executes the
//warning function

$$('a').addEvent('click', warning);

4.	 Our script should look like the following:

window.addEvent('domready', function(){

 // Create an function object that will be executed when a
 //click happens

 var warning = function() {

 alert('You have clicked a link. This is your only warning');

 // After warning has executed, remove it from all <a>
 //elements on the web page

 $$('a').removeEvent('click', warning);

 };

 // Add a click event listener which when triggered, executes
 //the warning function

 $$('a').addEvent('click', warning);

});

5.	 Test in your web browser by clicking on any of the hyperlinks on the page. The first
time you click, you'll see an alert dialog box with our message. The second (or third,
fourth, fifth, you get the picture) time you click on any hyperlink, the alert
dialog box will no longer show up.

Chapter 5

[129]

Removing a type of event, or all events, from elements
If you want to remove a type of event on an element (or set of elements), or if you
want to remove all events regardless of their type from an element, you have to use
the removeEvents method.

To remove a type of event from an element, you pass the type of event you want to remove
as a parameter of the removeEvents method. For example, if you wanted to remove all
click events that were added using the MooTools addEvent method from an element called
myElement, you would do the following:

$('myElement').removeEvents('click');

Working with Events

[130]

If instead, you wanted to remove all events that myElement has, regardless of the type of
event it has, then you would simply run removeEvents as follows:

$('myElement').removeEvents();

Cloning events from another element
What if you wanted to copy all event listeners from another element? This could be useful
in situations where you clone an element using the clone MooTools element method.
Cloning an element doesn't copy the event listeners attached to it, so you also have to run
the cloneEvents method on the element being cloned if you wanted to also port the event
listeners to the copy.

To clone the events of an element, follow the format:

// clone the element
var original = $('originalElement');
var myClone = original.clone();

// clone the events from the original
myClone.cloneEvents(original);

Firing off events
Sometimes you want to fire off events manually. This is helpful in many situations, such as
manually firing off an event listener function that is triggered by another event. For example,
to fire off a click event on myElement, without having the user actually clicking on
myElement, you would do the following:

$('myElement').fireEvent('click');

Time for action – firing off a click event
Imagine that you have a hyperlink with a click event listener attached to it, that when
triggered, alerts the user with a message. But you also want to fire off this alert message
when the user presses the Ctrl key. Here's how you'd do this:

1.	 First, let us place a hyperlink in an HTML document. We'll put it inside a
<p> element and tell the users that clicking on the hyperlink or pressing the
Ctrl key will open up an alert dialog box.

<body>

 <p>Show a warning by clicking on this link: Click
me. Alternatively, you can show the warning by pressing the
Ctrl key on your keyboard.</p>

</body>

Chapter 5

[131]

2.	 Next, let's add an event to <a> elements. We'll use the addEvent method to do this.

// Add a click event

$$('a').addEvent('click', function(){

 alert('You either clicked a link or pressed the Ctrl key.');

});

3.	 Now we have to add another event listener onto our HTML document that
watches out for a keydown event. The function that the event listener executes
will check if the key pressed is the Ctrl key by using the control event
method, which returns a Boolean value of true if the Ctrl key is pressed.

If the key that was pressed is the Ctrl key, we ask it to fire the click event function
that we set in all our a elements by using the fireEvent method with click as
its parameter.

// Add a keydown event on our web page

window.addEvent('keydown', function(e){

// If the keypress is the Ctrl key

 // manually fire off the click event

 if(e.control) {

 $$('a').fireEvent('click');

 }

});

4.	 All together, our MooTools script should look like this:

window.addEvent('domready', function(){

 // Add a click event

 $$('a').addEvent('click', function(){

 alert('You either clicked a link or pressed the Ctrl key.');

 });

 // Add a keydown event on our web page

 window.addEvent('keydown', function(e){

 // If the keypress is the Ctrl key

 // manually fire off the click event

 if(e.control) {

 $$('a').fireEvent('click');

 }

 });

});

Working with Events

[132]

5.	 Test your HTML document in the web browser. Click on the Click me link.
It should show you the alert message we created. Press the Ctrl key as
well. It should also open up the same alert message we created.

The MooTools event object
The MooTools event object, which is part of the native component, is what allows us to
create and work with events. It's therefore worth it to take a bit of time to explore the
events object.

Using event object methods
There are three event methods: preventDefault, stopPropagation, and stop.

Preventing the default behavior
An event usually has a default behavior; that is, it has a predefined reaction in the instance
that the event is triggered. For example, clicking on a hyperlink will direct you to the URL
that href property is assigned to. Clicking on a Submit input field will submit the form to
the value that the action property of the form element is assigned to.

Chapter 5

[133]

Perhaps you want to open the page in a new window, but instead of using the non-standard
target property on an <a> element, you can use JavaScript to open the page in a new window.
Or maybe you need to validate a form before submitting it. You will want to prevent the default
behaviors of an event doing either one of these things. You can use the preventDefault
method to do so.

Time for action – preventing the default behavior of a hyperlink
Imagine that you have a list of hyperlinks that go to popular sites. The thing is, you don't
want your website visitors to ever get to see them (at least coming from your site). You can
prevent the default behavior of your hyperlinks using the preventDefault method.

1. Here is the HTML markup for a list of <a> elements that go to popular websites.
Place it inside an HTML document.

<h1>A list of links you can’t go to.</h1>

 Google

 Yahoo!

 Digg

2. We will warn the user with an alert dialog box that tells them they can't access
the links, even when they click on it. We'll fire this alert dialog box when a user
clicks on it. Notice the e argument in the function? That is the event object that is
passed into the function, allowing us to access events' methods and properties.

 $$('a').addEvent('click', function(e){

alert('Sorry you can\'t go there. At least not from this page.');

 });

3. Open your HTML document in a web browser and verify that the links still open
their destination, since we haven't prevented the default yet. You will, however,
see the alert dialog box we set up in step 2, showing you that, indeed, the
click event listener function fires off.

4. Now we will prevent the links from opening by using the preventDefault
method. We'll just add the following line above the alert(); line:

e.preventDefault();

Working with Events

[134]

5. Test the document again in your web browser. Clicking on any hyperlink
opens the alert dialog box, but doesn't open the hyperlink.

Preventing event bubbling
Event bubbling occurs when you have an element inside another element. When an event
is triggered from the child element, the same event is triggered for the parent element, with
the child element taking precedence by being triggered first.

You can prevent event bubbling using the stopPropagation method. Let's explore the
concept of event bubbling and how to prevent it from occurring (if you want to), using the
stopPropagation event method.

Time for action – preventing event bubbling
Let's say you have two divs, one inside another. When a div is clicked, it will open up the alert
box that displays the div's ID property value.

1. Let's start with the HTML. In the following HTML markup, we have two div elements.
The parent div has an ID of #parent and the child div has an ID of #child.

<body>

<div id="parent">

 <p>#parent</p>

 <div id="child">

 <p>#child</p>

Chapter 5

[135]

 </div>

</div>

</body>

2. We'll style them with different background colors, widths, and heights so we
can see each div better.

#parent {

 width:200px;

 height:200px;

 background-color: #999;

}

#child {

 width:100px;

 height:100px;

 background-color:#ccc;

}

3. Open the HTML browser. You should see the following:

4. Let's explore the concept of event bubbling by adding a click event on all
divs in the web page. When the click event is triggered, we will display
an alert dialog box with the ID of the div that triggered the event.

Working with Events

[136]

 $$('div').addEvent('click', function(e){

 alert('You clicked on #' + this.get('id'));

 });

5. Open or refresh your work in your web browser. Click on the #parent div.
You should see one alert dialog box that displays the ID of the parent div.

6. This step is where you'll see event bubbling in action. Click on the #child div. You
should see two alert boxes, one right after the other. The first one will display an
alert that you clicked on #child div, and the second one will alert you that you
clicked on #parent div, effectively running the same function twice in one click.

Chapter 5

[137]

7. Let's prevent event bubbling from occurring. All we have to do is add this one line
of code above the alert() line in step 4.

alert('You clicked on #' + this.get('id'));

8. Refresh your HTML document. Click on the child element. You should only see
one alert dialog box this time. In effect, we've prevented event bubbling, which is
helpful when you only want to run the event's function once, not multiple times.

What just happened?
You've learned the concept of event bubbling, which is a useful thing to know because event
bubbling can yield unexpected results if you don't keep it in mind. Sometimes you want to
run a function only once, so you have to prevent the propagation of the event listener to the
parent elements.

We did this by using the stopPropagation MooTools event method.

Working with Events

[138]

Stopping default behavior and event propagation
If you want to stop the default behavior of an element (preventDefault) as well as
prevent event propagation (stopPropagation), you should use the "stop the event"
method. This is a combination of both methods and it's a great way to save lines of code
if you want to perform both operations.

If you had a link inside a <p> element, like so:

<p>link</p>

By default, clicking on this link will take you to the Digg.com website as well as trigger the
click event on the <a> element and the <p> element. To prevent this from happening, which
in essence means limiting the operation performed only to triggering the click event on the
<a> element and nothing else, you can do the following:

$$('a').addEvent('click', function(e){
 e.stop();
});

Using event properties
MooTools event objects also contain a variety of properties (similar to the Browser
Properties in Chapter 4). With these properties, you can find out many things about an
event. We've already used several of these properties in this chapter, such as the shift,
control, and key properties.

Here are all the properties of event objects. You can find a similar summary in the MooTools
official documentation In the Event section: http://mootools.net/docs/core/
Native/Event#Event:constructor.

Event property Data type What it does

code Number This property returns the key code that was pressed.

You can see a list of JavaScript Key Codes for standard
keyboard keys in Mozilla Developer Center, under KeyEvent:
https://developer.mozilla.org/en/DOM/
Event/UIEvent/KeyEvent.

For example, if the user presses the Enter key, the key code
number is 14, and thus event.code will return a number
value of 14.

Chapter 5

[139]

Event property Data type What it does

key String Returns the lowercase value of the key pressed. For example, it
will return q if the Q key is pressed, and enter when the Enter
key is pressed.

Possible values of the key property are:

letters a - z

numbers 0 - 9

'enter', 'up', 'down', 'left', 'right', 'space', 'backspace', 'delete',
and 'esc'.

shift Boolean This property will return true if the Shift key was pressed.

control Boolean This property will return true if the Ctrl key was pressed.

alt Boolean This property will return true if the Alt key was pressed.

meta Boolean This property will return true if the Meta key was pressed.

wheel Number How many times the scoller button on a mouse was used.

page.x Number Returns the x coordinate position of the mouse relative to the
entire browser window.

page.y Number Returns the y coordinate position of the mouse relative to the
entire browser window.

client.x Number Returns the x coordinate position of the mouse relative to the
browser's viewport.

client.y Number Returns the y coordinate position of the mouse relative to the
browser's viewport.

target Element Returns the element or elements that are targeted by the
event.

relatedTarget Element Returns the related element or elements that are targeted by
the event (useful for seeing what elements can be affected by
event bubbling).

Working with Events

[140]

Summary
We learned a lot in this chapter. We learned about web browser events and how they can
help us watch for, and react to, user actions. We saw events in action in web forms and in
a mythical web application that allows users to toggle a help tip box with a shortcut key.

Specifically, we covered:

 � Adding event listeners to elements: We learned how to add a single event listener,
as well as multiple event listeners, using the addEvent and addEvents methods.
You'll find a lot of use for these as you get into the more advanced facets
of MooTools.

 � Removing, cloning, and firing off events: We saw how to remove events from
elements using the removeEvent and removeEvents methods, cloning events
with the clone method, and systematically firing off events, even when they are
not triggered by users, using the fireEvent method.

 � Creating custom events: We found out how to create custom events to extend
MooTools' event object.

 � Event properties and methods: We saw the available methods and properties that
will help us work with events.

Your newfound understanding of events will tremendously help us in the chapter, when we
deal with the fun stuff: JavaScript effects and animation, which, you'll be glad to know, is the
topic of the next chapter.

6
Bringing Web Pages to Life with

Animation

Users expect a highly-interactive experience when interfacing with websites and
web applications. With MooTools, you can create stunning animation within
your web pages with MooTools' smooth and slick JavaScript effects.

In this chapter we shall:

 � Learn about the MooTools Fx class

 � Learn how to animate a CSS property of an element

 � Discover how to animate multiple CSS properties of an element

 � Investigate some of Fx's useful methods for working with MooTools effects

So let's get on with it!

MooTools' Fx class
The MooTools Fx class is where the magic happens (or at least, one of the places where it
happens). It contains the framework's animation effects logic that will help you transform
CSS properties in a smooth and slick fashion. Before we get started with the fun stuff, let's
go over the basics.

Bringing Web Pages to Life with Animation

[142]

Basic syntax
Declaring a new Fx object follows the same syntax as declaring any other object in MooTools
(like a new Event in Chapter 5). You create a new Fx object using the following format:

var nameOfFxObject = new Fx([options]);

However, it's unlikely that you will use the Fx class in the above manner, but rather, you'll
use one of its extensions (Fx.Tween or Fx.Morph).

Let's go over the options and properties you can use to define your animation effect.

Fx options
You have a myriad of options that you can take advantage of inside the Fx class, giving you
unprecedented control over your JavaScript animation effects. In the following table, you'll
find the option name, the data type it accepts, its default value (if you don't declare a value
for the option), and what the option is for.

It's important to note that when constructing your Fx object, you do not need to include
any of these options because they're optional.

Option Name (Data Type) Default Value What it's for

fps (number) 50 Allows you to specify the number of frames per
second of the effect.

unit (string) 'false' The unit used for the effect transition (px, em, or
%).

link (string) 'ignore' What to do when the effect starts. The values you
can use are:

'ignore': will ignore the other effects currently
running when this effect starts.

'cancel': will cancel other effects currently running
when this effect starts.

'chain': the effect will start as soon as currently
running effects end.

duration (number or
string)

500 How long the effect will last in milliseconds (that
is the value of 500 is half a second); the longer it
is, the slower the transition. You can use numbers
or one of the three preset duration values: short
(250 ms), normal (500 ms), and long (1000 ms).

Chapter 6

[143]

Option Name (Data Type) Default Value What it's for

transition sine:in:out The mathematical formula used for the effect
transition. There's a big list of values you
can use to learn about all the different types
of transitions at the official MooTools Docs:
http://mootools.net/docs/core/Fx/
Fx.Transitions

Now that you know the basics of the Fx class, it's time to get "Mooving" and shaking, and
that's what we'll do in the next part of the chapter.

Animating a CSS property with Fx.Tween
JavaScript animation effects have come a long way with the help of frameworks like
MooTools that allow you to perform very fine-tuned, slick animations that rival the likes
of Adobe Flash.

MooTools allows you to smoothly transition a CSS property from one value to another. For
example, if you would like to transition the width of an element from 100px to 200px, or the
color from #ffffff to #000000, you can.

The term "tween" comes from the animation industry; it is when the animator fades a frame
into the picture while fading out the existing frame, giving the appearance of a smooth and
seamless transition between the two frames.

Fx.Tween is a class extension of Fx that deals with animating one CSS property value into
another. We'll explore just how cool Fx.Tween is with an example.

Time for action - creating a hide/show FAQ page
Let's say that you have a boring FAQ page on your website, and you'd like to add a bit of
interactivity to it, as well as shorten the page so that users can quickly find the questions
they're looking for. One of the ways we can achieve these two goals is by hiding the answers
to the questions, and then showing them when the user clicks on the question.

Bringing Web Pages to Life with Animation

[144]

To help us achieve our goals, we will use Fx.Tween to let users click on a frequently-asked
question, which would reveal their corresponding answers.

1. We will start with the HTML.definition list <dl> element so that we can
pair up the questions with their respective answers (dd). Here is the HTML
code we're going to use (place your questions inside the <dt> element,
and their corresponding answers in the following <dd> element).

<body>

<h1>My Product FAQ Page</h1>

<dl>

 <dt>...Question 1...<dt>

 <dd>...Answer 1...<dd>

 <dt>...Question 2...<dt>

 <dd>...Answer 2...<dd>

 <dt>...Question 3...<dt>

 <dd>...Answer 3...<dd>

 <dt>...Question 4...<dt>

 <dd>...Answer 4...<dd>

</body>

2. Let's make the FAQ page a bit prettier. We'll change the default font style
to Verdana. For the questions (dt), we'll give them green color, a green
bottom border, a bit of space in between each other, and change the cursor
property to pointer to indicate to the users that they are clickable. For the
answers (dd), we'll simply give them a bit of space from the questions.

Chapter 6

[145]

body {

 font:normal 14px Verdana, Geneva, sans-serif;

 color:#333;

}

dt {

 color:#030;

 border-bottom:1px solid #090;

 margin-top:20px;

 cursor: pointer;

}

dd {

 margin-top:5px;

}

3. It's MooTools time! First, let's create some objects, namely two arrays that
will hold all of the questions (called questions), and one that will hold the
answers (called answers). This will make our code a bit cleaner and easier
to read, as well as make the sets easier to reference later down the script.

window.addEvent('domready', function(){

// Define some objects to make code cleaner

// and easier to reference

Bringing Web Pages to Life with Animation

[146]

var questions = $$('dt');

var answers = $$('dd');

4. When the page first loads, we have to hide all of the answers. We
do this by using the .setStyle() method to immediately set the
opacity CSS property of all the answer elements (dd) to 0%.

// On first load, hide the answers

answers.setStyle('opacity', 0);

5. We will need an event listener for the event that a user clicks on a question, so we'll
use what we learned in Chapter 5 and utilize the addEvent() method to add a
click event listener to the questions.

When the user clicks on a question, we want to get the index position of the
question so that we know which answer to show or hide. We do this using the
indexOf() method on the definition term set (dt) and then storing this numerical
value into a variable called questionIndex. If the user clicks on the first
question: questionIndex will be 0, second question: questionIndex is 1, and
so forth. Then we will pass questionIndex as an argument to a function called
toggleAnswer which we will create in the next step. Note that you do not have to
put the index position inside a variable like questionIndex, but doing so makes
the code a bit more readable.

// Add click event listener to questions

// (all dt elements)

questions.addEvent('click', function(){

 // Get the index position of the question

 var questionIndex = questions.indexOf(this);

 // Call toggleAnswer function with the index

 // of this question as the argument

 toggleAnswer(questionIndex);

});

6. We're going to create a function that will deal with the hiding and showing
(toggling) of the answers; we shall call this function toggleAnswer which
accepts an argument that points to the index position of the answer to show
(or hide). The argument will be questionIndex from the previous step.

// The toggleAnswer function

function toggleAnswer(index){

}

Chapter 6

[147]

7. Inside toggleAnswer, we will declare a new Fx.Tween object called
toggleEffect. It will transition the opacity CSS property of the element we
pass to it, and the effect will have a short duration. The element we will pass
to it as an argument is the answer whose index matches the question that was
clicked (answers[index]).

 var toggleEffect = new Fx.Tween(answers[index], {

 property : 'opacity',

 duration : 'short'

 });

8. Next, we create a control structure for determining whether we will be transitioning
to 100% opacity (the question is hidden) or 0% opacity (the question is currently
showing). We use the get() method to see if the target element has a 0 opacity,
and if it does, we'll start the effect at 0% opacity, and then end at 100% opacity,
otherwise, we do the opposite. To start the toggleEffect animation, we use
the start() method and pass the starting value and ending value of the opacity.
We'll talk about the start() method in greater detail later on in the chapter.

 if(answers[index].getStyle('opacity')==0){

 // If answer is hidden, transition to 100%

 toggleEffect.start(0, 1);

 } else {

 // Else if answer is shown, hide it

 // and transistion to 0%

 toggleEffect.start(1, 0);

 }

9. Review the entire MooTools script that we wrote together. Here it is without
the comments.

window.addEvent('domready', function(){

var questions = $$('dt');

var answers = $$('dd');

answers.setStyle('opacity', 0);

questions.addEvent('click', function(){

 var questionIndex = questions.indexOf(this);

 toggleAnswer(questionIndex);

});

function toggleAnswer(index){

 var toggleEffect = new Fx.Tween(answers[index], {

 property : 'opacity',

Bringing Web Pages to Life with Animation

[148]

 duration : 'short'

 });

 if(answers[index].getStyle('opacity')==0){

 toggleEffect.start(0, 1);

 } else {

 toggleEffect.start(1, 0);

 }

}

});

What just happened?
In the previous example, we used Fx.Tween to hide and show elements, namely dd
elements which contain the answers to a hypothetical set of frequently asked questions (dt).

We did this by getting the index position of the question, then sending it to a function called
toggleAnswer, which determines whether the corresponding answer is already showing or
not; if it's hidden, it fades the question in, if it is shown, then it fades it out.

Chapter 6

[149]

Have a go hero – modifying the hide/show transition effect
Try to see what happens when you modify the duration option (give it a slower or faster
value). You should notice that the effect becomes more pronounced and noticeable as
you increase the duration option of the Fx.Tween class instance.

Tweening a single CSS property using the tween() method
Fx.Tween comes packed with a few helpful methods for quickly transitioning a CSS property
of an element. tween() is one such method that allows you to transition one CSS property
value to another with fewer keystrokes than declaring a new Fx.Tween instance.

Using .set('tween', options) before starting the effect allows you to change the
options before using tween(). You should use tween() on an element (or set of elements)
instead of creating a new instance of Fx.Tween to save some lines of code. We've used the
tween() method in a previous chapter, but let's talk about it in a bit more detail here.

Using tween() is simple, and follows the format:

$(yourelement).tween(property, [startvalue, endvalue]);

If you want to start the tween at the current value, then just providing an end value
will transition the element from the current value to the end value, that is:

$(yourelement).tween(property, endvalue);

tween() is a deceptively simple method that provides you a quick way of creating
highly-interactive and appealing user interaction.

Time for action – toggling the visibility of a div
Imagine you have a div that you would like to hide or show. The tween() method will allow
you to do this very easily and with very few lines of code. Let's just jump right to it.

1. First, we set up the HTML. We use an <a> tag as the trigger. When clicked
it will either hide or show the #panel div depending on its visibility.

Toggle div

<div id="panel">

 <!-- Div content -->

</div>

Bringing Web Pages to Life with Animation

[150]

2.	 We give the #panel div some simple styles by changing its background color
to gray and giving it a black border. This step is optional but it makes it easier
to see the transition.

#panel {

 background-color:#ccc;

 border:1px solid #000;

}

3.	 Moving on to MooTools. First, we declare a variable that holds the <a> element.
This makes it easier to reference in our code. We also immediately set the opacity
of the #panel div to 0.

 // target is the div we hide or show

 var target = $('panel');

 // Hide div immediately

 target.setStyle('opacity',0);

4.	 Finally, we add a click event for the <a> element. When the click event is triggered,
we tween the opacity CSS property of the #panel div. If the opacity is currently
0, we set the end value to 1, and if the opacity is 1, we set the end value to 0.

 // Click event

 $$('a').addEvent('click', function(){

 // Tween opacity to 1 if currently 0, tween to 0 if
 //currently 1

 target.tween('opacity', target.getStyle('opacity')==0 ? 1 :
 0);

 });

5.	 Test your work in a browser. At first, the #panel div should be hidden
when the page loads. When you click on the <a> element, it will animate
the visibility of the #panel div. Clicking on the <a> element when the
#panel div is shown should animate the div to be hidden again.

Chapter 6

[151]

What just happened?
We learned how to use the tween() method by hiding and showing a web page element.
More specifically, we animated the opacity CSS property of a div using the tween() method.

Fading elements
There is another shortcut method for animating elements within the Fx.Tween class, called
fade(), that simply fades an element in and out. Rather than talking about it in length, let's
just jump right into it with an example.

Bringing Web Pages to Life with Animation

[152]

Time for action - fading an image in and out
Imagine that you have an element (or a set of elements) that you'd like to fade in and out
from a web page. We can use the fade() method, in conjunction with event listeners, to
make this happen with very few lines of code. This can be used for simple hide and show
interactions, much like in the earlier example in this chapter with FAQ's.

1. We'll be fading an image in and out of a web page. We use a click event
on a link to trigger the animation. For the image, we'll use an image from
my Flickr account: http://www.flickr.com/photos/31288116@
N02/3380520852/in/set-72157615731243219/.

2.	 We'll use two sizes of the images, one small and one big. The small
one, when clicked, will fade in the bigger image, much like in thumbnail
galleries. To download the small image, visit this link: http://farm4.
static.flickr.com/3636/3380520852_5494538698_s_d.jpg

3.	 Download the large image using this link: http://farm4.static.
flickr.com/3636/3380520852_5494538698_d.jpg

Chapter 6

[153]

4. Store both images in the same directory with your HTML document
that you will use for this example, so that we can easily reference them.
Rename them to a shorter file name. How about flower_small.
jpg for the small one and flower_large.jpg for the larger one?

5. Let's start with the HTML code. We'll simply put the images inside
paragraph elements. The smaller image (the thumbnail) will have a class
of .small, and the larger version will have a class of .large.

<body>

<p><img class="small" src="flower_small.jpg" width="75"
 height="75" /></p>

<p><img class="large" src="flower_large.jpg" width="404"
 height="500" /></p>

</body>

6. First, we need to hide the larger image immediately when the first
page loads; we do so with the .setStyle method with opacity as
the property argument, and 0 as the property value to set it to.

// Set opacity immediately to 0

$$('.large').setStyle('opacity', 0);

7. Next we need a click event listener on the thumbnail; we'll target
the .small class and add a click event listener to it.

$$('.small').addEvent('click', function(){

 // Code to execute

});

8. It's time to utilize the .fade method. First, we create an object called large,
just to make our code a bit cleaner. Then we run the fade method on large.
We feed fade either a 1 or 0 using a ternary control structure; if the opacity
of large is 0, then we fade to 1 (showing it), otherwise, we fade to 0 opacity.

$$('.small').addEvent('click', function(){

 // Make code cleaner

 var large = $$('.large');

 // Run fade on method on .large

 // If opacity of .large is 0 fade to 1

 // Otherwise, fade to 0

 large.fade((large.get('opacity') == 0) ? 1 : 0);

});

Bringing Web Pages to Life with Animation

[154]

9. Review the script we wrote together. Here it is without comments.

window.addEvent('domready', function(){

$$('.large').setStyle('opacity', 0);

$$('.small').addEvent('click', function(){

 var large = $$('.large');

 large.fade((large.get('opacity') == 0) ? 1 : 0);

});

});

Now, test the web page in a web browser.

Chapter 6

[155]

What just happened?
We learned how to use one of the Fx.Tween shortcuts, the fade method. We applied it to
an image to create a gallery style effect where you click on a thumbnail (flower_small.
jpg) and it shows the full scale version of itself (flower_large.jpg).

Now we're ready to move on to another awesome Fx.Tween shortcut.

Highlighting elements
The other Fx.Tween shortcut that is helpful is the highlight method. You can use the
highlight method to draw attention to elements by momentarily transitioning its background
color, creating a "flashing" or "blinking" effect.

If you use the highlight method without any options, it uses a light yellow color (#ff8) as
the "highlighting" color and makes the background of the element flash for a split second
to draw the user's attention to it.

Time for action - indicating blank form fields that are required
Let's see what the highlight method can do for us. We're going to use it on a web form.

1. First we'll set up the form's HTML.

<form action="" method="">

<p>

 <label for="firstName">First Name:</label> <input
name="firstName" type="text" />

</p>

<p>

 <label for="lastName">Last Name:</label> <input name="lastName"
type="text" />

</p>

<p>

 <label for="email">Email:</label> <input name="email"
type="text" />

</p>

</form>

Bringing Web Pages to Life with Animation

[156]

2.	 Then we target all the input elements and add a focus event listener to them.
When an input field is focused on, we grab its parent (p) element and then
run the highlight method on that element to animate its background color.

 $$('input').addEvent('focus', function(){

 this.getParent('p').highlight();

 });

On testing the above script in a web browser, you should see that the background
color momentarily flashes to a light yellow color, and then fades back to the original
background color (which defaults to transparent or no color in most web browsers).

3.	 Let's see what happens when we pass one color value to the method as an
argument. This effectively functions as the starting color of the highlight. We'll use
a blue color (#6dcff6).

 $$('input').addEvent('focus', function(){

 this.getParent('p').highlight('#6dcff6');

 });

Chapter 6

[157]

4.	 Now let's modify it so that we pass both a starting and ending value for the color
options. You should see the blue color transitioning to the red color, then the red
color transitioning to the element's default background color (transparent).

 $$('input').addEvent('focus', function(){

 this.getParent('p').highlight('#6dcff6', '#ff0000');

 });

Bringing Web Pages to Life with Animation

[158]

What just happened?
We explored the highlight method and how we can use it to draw attention to the focused
input fields on a web form. By passing no color options to the method, it uses a light yellow
color that acts as a "blinking" or "flashing" animation effect. With one option, it replaces the
default light yellow color to the one we've specified, and with two options, it uses the first
color passed as the starting value, the second color as the ending value, before transitioning
back to its original background color (which is transparent or 0% opacity).

Now that we've fully seen what Fx.Tween can do for us, let's see how we can use more than
one CSS property to animate elements.

Animating multiple CSS properties with Fx.Morph
When you want to transition more than one CSS property at the same time, you'll have to
use another Fx class extension, Fx.Morph. The biggest difference between Fx.Morph and
Fx.Tween is that the former is able to transition more than one CSS property simultaneously
(imagine transitioning the color, width, and height of an element at the same time).

Let's learn about Fx.Morph through an example!

Time for action - enlarging an image
Say you have an image that you'd like to scale up or down when the user clicks on it.
This type of interaction is common in thumbnail galleries where images are displayed in
thumbnails so that the web page can display many images at once. When the user clicks on
an image that they find interesting, it enlarges so they can see the full size.

We'll do this for one image, but I'm sure that once you're done with the chapter, you can
figure out how to apply it to multiple images on a web page (if you wish).

1. Let's grab an image to use for the example. You can download an image from one of
my Flickr sets of a blue flower and save on your local machine as blueflower.jpg:
http://farm4.static.flickr.com/3429/3379703917_835a79555f_d.jpg

Chapter 6

[159]

Place the image in an HTML document with an ID of "image".

<body>

<img id="image" src="blueflower.jpg" width="500" height="301"
alt="blue flower" />

</body>

2. First, we'll declare a bunch of variables for helping us easily reference them.

 // Create variable for easier referencing

 var image = $('image');

 // Get the current width, height, opacity as numbers

 var width = image.getProperty('width').toInt();

 var height = image.getProperty('height').toInt();

 var opacity = image.getStyle('opacity').toInt();

3. Next, we immediately set the width and height of the image to 25% of its
original value, and its opacity to 50% of its value by using division operations.

 // On page load, reduce width and height to 25%

 // reduce opacity to 50%

 image.setStyles({

 'width' : width / 4,

 'height' : height / 4,

 'opacity' : opacity / 2

 });

4. We add an event listener to our image to listen for mouse clicks on itself.

 // Click event listener

 image.addEvent('click', function(){

 // code to execute

 });

5. Inside the click event listener, the first thing we will do is add a class property of
"enlarged". We use the toggleClass method, which adds the specified class if it's
not there, or remove the class if isn't there. This is how we'll know if the image is
thumbnail size or full size (enlarged).

 // Toggle enlarge class value

 this.toggleClass('enlarged');

Bringing Web Pages to Life with Animation

[160]

6. Next we set up the Morph object. Instead of the default transition type, we'll
use one of my favorite transition types: Fx.Transitions.Bounce.easeOut
which does a bouncy type of animation.
 // Declare Fx.Morph object

 var scaleEffect = new Fx.Morph(this, {

 'duration' : 550,

 'transition' : Fx.Transitions.Bounce.easeOut

 });

7. Next we start the effect. We use the hasClass() method to determine whether
or not the image is thumbnail class or if it is already enlarged, so that we know
what values to transition to.

 // Start the effect

 var enlarged = this.hasClass(‘enlarged’);

 scaleEffect.start({

 // If the element has a class of enlarged

 // Then we scale all properties to 100%,

 // Otherwise we scale it down to 25% width/height

 // and 50% opacity

 'width' : enlarged ? width : width / 4,

 'height' : enlarged ? height : height / 4,

 'opacity' : enlarged ? opacity : opacity / 2

 });

8. Review the script we wrote together, here it is all together without comments.

window.addEvent('domready', function(){

 var image = $('image');

 var width = image.getProperty('width').toInt();

 var height = image.getProperty('height').toInt();

 var opacity = image.getStyle('opacity').toInt();

 image.setStyles({

 'width' : width / 4,

 'height' : height / 4,

 'opacity' : opacity / 2

 });

 image.addEvent('click', function(){

Chapter 6

[161]

 this.toggleClass('enlarged');

 var scaleEffect = new Fx.Morph(this, {

 'duration' : 550,

 'transition' : Fx.Transitions.Bounce.easeOut

 });

 var enlarged = this.hasClass(‘enlarged’);

 scaleEffect.start({

 'width' : enlarged ? width : width / 4,

 'height' : enlarged ? height : height / 4,

 'opacity' : enlarged ? opacity : opacity / 2

 });

 });

});

9. Test your work. If done correctly, when you click on the image it should enlarge.
If you click on it again, it should shrink back to the smaller, thumbnail size.

Bringing Web Pages to Life with Animation

[162]

What just happened?
In the previous example, we witnessed how fun Fx.Morph can be. We used an image that
we shrunk down to thumbnail size, and then we added a click event listener to it. When the
image is clicked, we use Fx.Morph transition, configuring the width, height, and opacity
properties of the image, all at the same time.

Have a go hero – modify the transition type
In the above example, I used my favorite transition type. There are a lot more types of
transitions and the best way to find about all the different types of transitions is heading
over to the MooTools Official Docs site, Fx.Transitions.

http://mootools.net/docs/core/Fx/Fx.Transitions

Modify the example by changing the transition option value to ones that you find interesting.

Using the morph() shortcut method
Fx.Morph comes with a useful method called morph() that you can use on elements to
transition their CSS properties with very few lines of code. What's cool about morph() is
that it can also use a class name as an argument, so if you have a class in your stylesheet
with style properties, you can use it. Like the tween() method in Fx.Tween, you can use
.set('morph' options) on the element to change the options before calling morph().

Enough of chit-chat! Let's just jump right into it to see how exactly the morph method works.

Time for action - experimenting with morph
To explore the morph method, we will use a div with text inside it to morph several of
its properties.

1. We will use an element to trigger the animation effect. We will run the animation on
a div element with an ID of morphDiv.

Morph

<div id="morphDiv">

 <p>My Morphing Box.</p>

</div>

2. We will give morphDiv some CSS styles to modify its default styles.

#morphDiv {

 width:100px;

 height:100px;

 border:1px solid #333;

Chapter 6

[163]

 background:#ccc;

 font:normal 12px Arial, Helvetica, sans-serif;

}

3. We add a click event listener to the <a> element so that when it's clicked, it
executes the morph method on morphDiv. We transition several properties.

 $$('a').addEvent('click', function(){

 $('morphDiv').morph({

 'width' : 200,

 'height' : 200,

 'border' : '5px dashed #ff0000',

 'font-size' : '24px'

 });

 });

Bringing Web Pages to Life with Animation

[164]

4. When you click on the <a> element, it should transition all of the CSS
properties of morphDiv to the values we've specified in step 3.

5. Let's declare a style rule for a class called morphed, with the exact
values we used in the morph method arguments in step 3.

.morphed {

 width:200px;

 height:200px;

 border:5px dashed #ff0000;

 font-size:24px;

}

6. Let's modify the code in step 3 to instead use morphed as the argument.

 $$('a').addEvent('click', function(){

 $('morphDiv').morph('.morphed');

 });

7. Test your work again. It should still perform the exact same transition.

Chapter 6

[165]

What just happened?
We saw how we could save a few lines of code using the morph() method. First, we used
CSS properties as arguments to specify the end value of our transition effect. Then we used
a class argument to perform the same transition effect.

Other Fx methods
There are several Fx methods that are useful for working with animation Fx. You've already
seen one of them, the start() method, which simply starts an animation effect. In this
section, we shall go over methods available to you when working with MooTools animation.

Starting an effect
The start() method allows you to start an effect. It takes in the properties you'd like to
transition, and their end value. Here are a few examples of using the start method format on
instances of Fx.Tween and Fx.Morph.

// In Fx.Tween this transitions the width from the current value
//to 100px
myTween.start('width', 100);
// In Fx.Tween this transitions the width from 50px to 100px
myTween.start('width', 50, 100);

// In Fx.Morph this transitions the height to 100 and the color
//to #ff0000
myMorph.start({
 'height' : 100,
 'color' : #ff0000
});
// In Fx.Morph this transitions the height from 50px to 100px
myMorph.start({
 'height' : [50px, 100px]
});

Setting properties immediately
If you want to set CSS properties immediately without a transition, you should use the
set() method. This method is useful for quickly setting CSS properties and can be a great
way to 'reset' properties to their original values without a transition.

Here's an example which sets the opacity to 0%.

var effect = new Fx.Tween('myElement', {'duration' : 'short'});
// myElement is set to 0 opacity immediately
effect.set('opacity', 0);

Bringing Web Pages to Life with Animation

[166]

Cancelling a transition
There may be instances when you want to cancel a transition immediately while it is still
running. If so, you can use the cancel() method which stops the specified transition. Used
with event listeners, you can cancel an effect when certain events occur.

Here's an example format:

myEffect.cancel();

Pausing effect
Instead of cancelling an effect, maybe you'd just like to pause it. If so, you can use the
pause() method. It uses the following format:

myEffect.pause();

Resuming a paused effect
If you'd like to resume an effect that you paused, you can use the resume() method.
The format is similar to the pause(), and cancel(), methods:

myEffect.resume();

Summary
In this chapter we learned about JavaScript animation effects:

 � We covered the basic Fx syntax and options available to you, so that you can have
utmost control over your animation effects

 � We learned how to animate one CSS property with the Fx.Tween

 � We covered some useful effects methods in the Fx.Tween class: tween(), fade(),
and highlight()

 � We then learned how to animate multiple CSS properties with Fx.Morph, as well
as learned a shortcut method called morph() that allows us to quickly transition
several CSS properties at once

 � Finally, we briefly covered other Fx methods for starting, cancelling, pausing, and
resuming effect transitions

Now that we know about animation effects, it's time to move onto even more interactivity
in our web pages, and next chapter, we're going to super-charge our web pages with Ajax!

7
Going 2.0 with Ajax

Prior to the conceptualization and widespread adoption of Ajax techniques,
web pages used to reload the entire page whenever data was sent or requested
from the server.

With Ajax, websites and web applications become highly-responsive, no longer
needing to request an entire page's content when new data is available. You
have the ability to request certain types of data as well as only update parts
that you need to update.

What this ultimately means is that websites that leverage Ajax techniques are
able to provide the user a much fuller and seamless experience that provides
them with instantaneous server-side data. There is less waiting for requested
information on the user's behalf and our web servers save bandwidth by not
having to reacquire an entire web page's content.

JavaScript is at the forefront of this evolution of websites and web applications.

MooTools helps us write our Ajax scripts quicker, faster, and better.

This chapter shows you how to deal with Ajax requests and responses. By the end, you will
have enough expertise on the subject to be able to implement Ajax functionalities into your
web applications. In this chapter, we shall:

 � Learn about MooTools' Request class

 � Discover how to create Ajax Request objects

 � Find out how to get data from the server and other files asynchronously

 � Figure out how to send data to the server without a page refresh

 � Learn about HTTP headers and the methods available to us in working with them

Let's get started, shall we?

Going 2.0 with Ajax

[168]

What you'll need
Before you begin your Ajax adventure, you should be aware that—because of the JavaScript
security model—most of the examples in this chapter require a web server or a local host
web server installed on your computer for you to get the examples to work.

If you have a remote web hosting account, you should upload your files through FTP in a
location where you can test it.

If you don't have a web server available, it's quite easy to install one on your computer.
Some notable web server packages include WAMP and XAMPP.

On my site, you can find a step-by-step tutorial on installing XAMPP which you can read
and review to get you up and running in no time. What's great about XAMPP is that it is
one of the few tools you can use that is compatible with Windows, Mac OS, and Linux
operating systems.

http://sixrevisions.com/tutorials/web-development-tutorials/using-
xampp-for-local-wordpress-theme-development/

Creating a Request object
In order to start utilizing the Ajax features of MooTools, let's take a few moments to discuss
the Request class.

The Request class is MooTools' class for creating Request objects for dealing with Ajax-based
HTTP server-side/client-side communication. With this class, you'll be able to easily send and
retrieve data, as well as perform useful operations on these data.

To create a Request object, use the following format:

var requestObject = new Request(options);

The Request class is feature-packed; it has oodles of options for making your life as an Ajax
developer much easier. Let's look at the options available to you.

Request object options
In the following table, you will see the Request class options. You will see the option name,
the data type that it accepts, its default value, and what it's for. We will use several of these
throughout the chapter, so it would be ideal if you reviewed them now.

Chapter 7

[169]

Request option Data type / Default value What it does

url String / null The url option points to the location of the file
where data is to be sent.

Example, 'http://example.com/scripts/ajax.php'
or '/scripts/ajax.php'

method String / 'post' The HTTP method used to send data. Possible
values: 'post' or 'get'.

data String / ' ' The data to be sent. When no data is explicitly
mentioned, it sends an empty string.

link String / 'ignore' What to do when another request is created
while this request is running.

'ignore' will not run the new request.

'cancel' will stop the current request.

'chain' will perform the request after the
current request has been made.

async Boolean / true If set to false, only the current request
can run, making the request "synchronous".
Possible values: true or false.

encoding String / 'utf-8' The character set type of the data to be set.

headers Object / null An object for HTTP request headers.

isSuccess function Function to execute when request is successful.

evalScripts Boolean / true Evaluates code inside <script> tags in HTML
document.

evalResponse Boolean / false If true, evaluates the entire response
data set.

emulation Boolean / true If set to true, other HTTP request methods
other than 'post' and 'get' are allowed
where the method is sent as post-data named
'_method'.

urlEncoded Boolean / true If true, URL encodes data set.

noCache Boolean / false Prevents caching, specifically to remedy Internet
Explorer cache settings that are troublesome for
refreshed data.

Going 2.0 with Ajax

[170]

Request events options
The Request class has its own event listeners. They're used for performing operations during
certain situations of an Ajax request. Let's take a few moments to discuss them here.

Running a function immediately when a request is made
If you want to run a function just when a request is made, you can do so with
onRequest. Here is an example that alerts users when a request is sent to a file on
the server called myscript.php.

 var makeRequest = new Request ({
 url: 'myScript.php',
 onRequest: function(){

 alert('You just sent a request!');

 }

 });

Running a function when the request is completed
If you want to run a function after the request has been completed, you can do so with
onComplete. You should only use this option when you want to run a function when the
request is finished, regardless if it was a success or not. Here is an example:

 var makeRequest = new Request ({
 url: 'myScript.php',
 onComplete: function(response){

 $('#log-box').inject(response);

 }

 });

Running a function when the request is cancelled
Sometimes you want to cancel an ongoing request. A situation might be that a new request
is triggered by the user and it conflicts with the current request. If you want to run a function
when the request has been cancelled, you can do so with the onCancel option. Here is an
example:

 var makeRequest = new Request ({
 url: 'myScript.php',
 onCancel: function(){

 alert('You cancelled the previous Ajax request!');

 }

 });

Chapter 7

[171]

Other Request events
Sometimes, things don't work out and your request is terminated. At that event you only
want to run a certain function if the request is successful; use the onSuccess option.

On the same token, if you only want to run a function when the request fails,
use onFailure.

When you want to run a function when an exception in the HTTP header occurs, check
out onException.

Now that we know the Request class inside out, it's time to see it in action. We'll start
by learning how to request data from remote files.

Requesting data
One of the most basic tasks involved in Ajax/RIA development is requesting data from server
files. We will learn about a method for requesting static data.

Time for action – requesting remote data
Imagine that you have a file on the server that contains data that you'd like to use on a web
page. We will devise a way to get that data, and then display it on our web page without
requiring a page refresh.

1. Create an HTML document that will hold our remote data, and save it with
 the file name of mydata.html.

2.	 In mydata.html, put in some HTML content. This is what I used, but feel free
 to put your own valid HTML markup:

<p>This is some remote data that I requested.</p>

3.	 Next we need an HTML document that will be our web page that requests the
 data from mydata.html. Create this HTML document and place it in the
 same location as mydata.html.

Going 2.0 with Ajax

[172]

4.	 In our web page HTML document, we place an <a> element that will serve as
the trigger for making our Ajax request. This document also has a div where
we will place the data we get from mydata.html; give this div an ID of
content-holder. In the HTML document, we use the following markup:

Click this to request data.

<div id="content-holder"> </div>

5.	 The first thing we should do is write an event listener for the <a> element.
Here, we utilize the addEvent method with an event argument of click.

window.addEvent('domready', function(){

$$('a').addEvent('click', function(){

 // Code to execute goes here

 });

});

6.	 Next, we build our Request object; we're going to call it requestData. We
point to the location of our remote data (mydata.html) via the url option.
Then, when our request has been completed, we update the #content-holder
div's content with the response that we get from the request; we do this with
 our trusty set() method.

window.addEvent('domready', function(){
 $$('a').addEvent('click', function(){
 var requestData = new Request ({
 url: 'mydata.html',
 onComplete: function(response){
 $('content-holder').set('html', response);
 }
 });
 });
});

Chapter 7

[173]

7.	 Now the only thing left is to send the request; we do so with the send() method
 included in the Request class.

 requestData.send();

8.	 Test your work in a web browser. When you click on the <a> element, the page
should display the HTML data we got from mydata.html, without a page refresh.

What just happened?
In the above example, we learned the very basics of how Ajax works; we can request data
from a file and then load that data in using JavaScript. Imagine if we had sent the request to
a server-side script, that, when passed a value gives us a result (all in the background). The
possibilities are endless!

Note that the example we just did will not work if you're not running your web
page in a web server. The above example, and subsequent examples in this
chapter, must run in a web server. If you have a web host account, upload your
files in a testing directory. If you don't have one, install a web server package on
your local machine, and use a web server deployment package such as XAMPP
to make this easier.

Requesting HTML and JSON data
You can use the general Request class to get all sorts of data, but if you know that you'll be
working with HTML or JSON data, there is the Request.HTML and Request.JSON classes
that extend the Request class with useful features specifically for those formats.

Going 2.0 with Ajax

[174]

Working with HTML data
In the previous example, we requested an entire HTML document. By using Request.HTML,
we can work more easily with data returned as HTML. We'll learn about this subclass by way
of an example.

Time for action – updating a web page with HTML
We'll use the Request.HTML to update a web page with HTML data. This can be useful
when you are receiving data as HTML markup.

1.	 First, we create a text file that holds our HTML data. Save this text file in the same
location as the HTML document that will contain your MooTools code. For the text
 file, I used the following markup (and again, feel free to customize your
 HTML document):

<html>
<head>
</head>
<body>

 List item #1
 List item #2
 List item #3

</body>
</html>

2.	 Create a new HTML document that will serve as our web page; it will contain our
MooTools code and the following HTML markup:

<body>

Click to make the request!

 <div id="holder"></div>

</body>

3.	 Create an event handler for the <a> element being clicked (which triggers the request).

<script type="text/javascript">

window.addEvent('domready', function(){

 $$('a').addEvent('click', function(){

 // code goes in here.

 });

});

</script>

Chapter 7

[175]

4.	 Let's build our Request.HTML object. We use the url option to point to our
myhtmldata.txt file. We use the update option to specify what element we want
to update with the requested data. We chain the send() method as a shortcut.

 $$('a').addEvent('click', function(){

 var requestHTMLData = new Request.HTML ({

 url: 'myhtmldata.txt',

 update: $('holder')

 }).send();

 });

5.	 Test your work in the web browser. When you click on the link, it should update
the #holder div with the unordered list we placed in myhtmldata.txt.

What just happened?
We learned how to load remote data from a text file into our HTML document using
the Request.HTML class.

In the process, we encountered a nifty class option that can be used throughout the
Request.HTML class called update that will update an HTML element in the web page
with the received data. Additionally, we learned that we can chain the send() right after
declaring the Request object to immediately send the request as soon as it is created.

Loading HTML documents remotely
If you have HTML documents that you would like to load into a web page, you can easily do
so with the load() method for Request.HTML. Let's explore this useful method by way of
an example.

Going 2.0 with Ajax

[176]

Time for action – loading HTML data
We're going to give the user the option to load data from other HTML files. This gives us the
ability to provide them with requested data on demand.

1. Start by creating two HTML documents that will serve as our remote HTML data.
Save them as htmlremote1.html and htmlremote2.html. Place some sample
HTML markup to help you determine which file is being loaded. Here is what
 I used for htmlremote1.html:

 <p>This is data from htmlremote1.html</p>

2. Next, create a new HTML document that will be our web page that loads the two
 HTML documents. Name it anything you like, but save it in the same location
 as the two other HTML files.

3. In our HTML document, we will add two <a> elements that will serve as means
for the user to request the data they want. We also create a div element
with an ID of load-area that will contain the HTML that we retrieve.

Load content from htmlremote1.
html
|
Load content from htmlremote2.
html
<div id="load-area"></div>

4. We will create an event listener for the event that an <a> element is clicked,
using the addEvent() method.

<script type="text/javascript">
window.addEvent('domready', function(){
 $$('a').addEvent('click', function(){
 // Code goes in here
 });
});
</script>

Chapter 7

[177]

5. Before we work on the code logic for loading in the remote HTML files, we should
first determine the ID of the link that was clicked so that we know which file
to load; we conveniently place it in a variable named linkID for later use.

 var linkID = this.get('id');

6. Then we run the load() method on the #load-area element so that the
retrieved data is placed inside it. To indicate which HTML files to load, we use a
ternary operator with the logic: "if linkID is equal to load-htmlremote1 then
the value is htmlremote1.html, otherwise the value is htmlremote2.html".

 // Load the appropriate html document based on linkID value

 $('load-area').load((linkID=='load-htmlremote1') ?
 'htmlremote1.html' : 'htmlremote2.html');

7. Test your work in a web browser. When you click on one of the links, it should load
 the appropriate external HTML file.

Going 2.0 with Ajax

[178]

Working with JSON data
JSON, which stands for JavaScript Object Notation, is a standard data format written in
JavaScript syntax. It is a great way to interchange complex data sets because it's lightweight
and universal. For more information about JSON, visit http://www.json.org.

Just as you would expect, MooTools has a class for working with JSON data: Request.JSON.
This subclass extends the Request class with tools and options specifically for working with
JSON objects.

This class works well alongside MooTools' JSON object which is MooTools' JSON parser
and encoder.

Time for action – working with Ajax and JSON
In this example, we will use a JSON object from a remote server file to update a web page
when the user requests it.

1. First, we need some sample JSON data to work with. In the following code block you
can see an example of a JSON object that you can use as your sample data.
Save this file as myjsondata.json.

{

 "name": "Jacob Gube",

 "age": 26,

 "hairStyle": "Short",

 "location": "Bloomington"

}

2.	 Next, create an HTML document that will serve as the web page requesting JSON
data. This document contains the <a> element that triggers the request, and a
div called holder that will be updated with the JSON data.

Click to make the JSON request!

 <div id="holder"></div>

3.	 The final step is building our Request.JSON object (named jsonRequest). In
this object, we point our request to our JSON file using the url option. By using
the onSuccess method, we can run a function that sets #holder div's HTML
to the data inside the JSON object when the server's response is successful.

 $$('a').addEvent('click', function(){

 var jsonRequest = new Request.JSON({

 url: 'myjsondata.json',

 onSuccess: function(personData){

 $('holder').set('html',

Chapter 7

[179]

 'Name: ' + personData.name +

 '
Age: ' + personData.age +

 '
Hair Style: ' +
 personData.hairStyle +

 '
Location: ' +
 personData.location);

 }

 }).send();

 });

4.	 Test your work in a web browser. When you click the <a> element, you should see
something like the following figure:

What just happened?
In the previous example, we saw how the Request.JSON class works to our advantage.
JSON is a great way to exchange data because it's lightweight and standardized; it's ideal
for interoperable systems development.

Cancelling a Request
If you would like to immediately cancel an ongoing Ajax request, you may do so using the
cancel() method. This can be helpful in terminating a specific Request object when a
certain event occurs. One reason you would cancel an Ajax request is if it conflicts with a
certain process.

The format of cancelling a request is:

requestObject.cancel()

Now that we've learned about requesting data, we will now discuss how to pass data to
other files so that they can perform their own operations on that data.

Going 2.0 with Ajax

[180]

Sending data
In the previous section, we dealt with getting data from web server files; however, usually
we would also like to send data out of our web page.

Time for action – sending data to PHP
We're going to demonstrate how powerful Ajax is via a simple example; we're going to send
a PHP script a string, and it will reverse the string as we type. We do this by asynchronously
updating the web page as the user presses on their keyboard.

This involves server-side scripting, and we'll use one of the most widely-available languages
out there—PHP. Chances are, your web server has the capability to run PHP files (and if you
followed my advice on installing XAMPP, you're all set). Don't worry, we won't be working
with complex PHP and if you know any language, even just JavaScript, you'll understand
what's going on.

This simulates more complex examples, such as sending in a user string, which PHP, or your
preferred server-side scripting language, processes to query the database and check if that
user string exists. Depending on the query's result, it will respond to MooTools accordingly.

1. We'll start by creating our web page. The structure of our document will have a
textarea element that will house the text that the user types. Additionally, we
create an empty div element called response that will print out the response
we get from PHP. We use a label to display the instructions for the textarea.

<body>

 <label for="user-input">Enter stuff:</label>

 <textarea name="user-input" type="text" ></textarea>

 <div id="response"></div>

</body>

2. We start the JavaScript by creating a request instance first. We shall call it
ajaxRequest. This way we can reuse the request instead of having to create
a new one whenever the user types. For the url option, we use the value to
PHP script's file name (which we will create in the subsequent steps). Upon
a successful Ajax request and response, we update the HTML content of our
#response div with the value that PHP sends back using the set() method.

<script type="text/javascript">

window.addEvent('domready', function(){}

 var ajaxRequest = new Request({

 url: 'php-script.php',

 onSuccess: function(response){

Chapter 7

[181]

 $('response').set('html', response);

 }

 });

 // Additional lines of code here

});

</script>

3. We need to construct an event handler for the user-input text area. First, we
need to select it from the DOM, and to do so, we use the name= operator in the
Selectors class to match the text area. We want to send our Ajax request
whenever the user presses and then releases a keyboard key, so we listen
to the keyup event.

 $$('textarea[name=user-input]').addEvent('keyup', function(){

 // Next lines of code will go here

 });

4. Next, we create a variable that takes the current value inside the text
area. Every time the user types something in the text area, this variable
will be updated and sent into our PHP script for processing.

var value = this.get('value');

5. Now there are two more things we will have to do to send the Ajax request.
First we will have to use the .cancel() method to overcome stalled requests.
If a previous request takes longer to finish, it will complete later and update the
text content with old data. Then we will make the request with the .send()
method by sending the data option. We assign it an HTTP URL variable
called userInput with the value of what is currently in the text area.

ajaxRequest.cancel().send({

 data: {'userInput': value}

});

6. Finally, we create the PHP script. To start, place the following code block inside a
new document in your source code/text editor. Then save it in the same location
as your HTML document using the file name php-script.php. The script is very
simple; it puts the data that we sent (userInput) into a holder variable called
$dataSent. Then we pass that variable into a PHP function called strrev(), which
simply reverses the string. We put the output of that function into a variable called
$dataToSendBack. The last task is printing out the PHP response, which is what
gets sent back to our client-side script. The last line that starts with echo is what the
response argument in the onSuccess method in our MooTools script will contain.

Going 2.0 with Ajax

[182]

<?php

// Put the data that is sent into a variable

$dataSent = $_POST['userInput'];

// Pass the current input to a function called strrev which

// reverses the string and place into dataToSendBack

$dataToSendBack = strrev($dataSent);

// Send back back the new variable

echo 'You are typing backwards:
'.$dataToSendBack;

?>

7. Test your work on a web browser. Type in some text. You should see the
#response div updated every time there is a keystroke.

Chapter 7

[183]

What just happened?
In the preceding example, we saw how to talk to the server using MooTools. Specifically, we
used the MooTools Request class to create an Ajax Request object that sent the user input
to a PHP script. That PHP script took the user input and operated upon it; it ran the data into
a PHP function called strrev() that reversed the string. After the PHP process was done,
it sent back the processed data to our client-side script, we then took the response and
performed a DOM manipulation to insert the data into a div called #response.

Through this simple example, we witnessed Ajax in action. We saw how we could
communicate with the server, sending and receiving data from a script, without needing a
web page reload. This created a seamless experience, one that would be valuable in web
applications that mimic functionalities and instant feedback that desktop applications have.

Setting and getting HTTP headers
HTTP headers are meta information about an HTTP response; they define a lot of
information about the data that you are sending and receiving. For example, with the
Cache-Control HTTP response header, you can determine whether your data will be cached
on the user's browser, and the Date HTTP request header gets a timestamp of the request.

This information is contained in the documents that you request, but is not shown explicitly
in the HTML document's source code. But you can easily attain and set HTTP request and
response headers by using JavaScript.

For a full list of HTTP headers, please view the Wikipedia page entitled List of
HTTP headers via the following HTTP address: http://en.wikipedia.
org/wiki/List_of_HTTP_headers.

Setting an HTTP header for an Ajax Request object
When you create a MooTools Request object, you can choose to set HTTP headers for it
using the setHeader() method in the Request class. For example, let's say you created a
Request object called myRequest; to set an HTTP header/value pair, follow the format:

myRequest.setHeader('headername', 'headervalue');

If you want to set Cache-Control to instruct the browser not to cache the information
being requested, you would write:

myRequest.setHeader('Cache-Control', 'no-cache');

Going 2.0 with Ajax

[184]

One instance where you would want to do this is when requesting sensitive data that
you don't want to store in the user's computer, or if you want to avoid caching issues for
constantly-updated data (such as Flash objects). Doing this will not guarantee that the
browser will actually follow your command, but in most instances, it would work.

Alternatively, you can use the headers option when creating the prototype of your Request
object to set HTTP headers.

Getting an HTTP header
Whenever you get a server response, it provides you contextual information about that
particular response via HTTP headers. Think of it as meta information. Sometimes you want
to obtain this information after a successful Ajax response. Perhaps, you want to know the
date the response was sent to output to the user how long an Ajax request/response took,
or how the data is encoded.

Use the getHeader() method in the MooTools Request class to obtain this information.
The format of getting HTTP headers about a Request object is as follows:

myRequest.getHeader('headername');

If you want to see when the HTTP response was sent, you could write:

myRequest.getHeader('Date');

Let us explore the setting and getting of HTTP headers by way of example.

Time for action – getting the Last-Modified HTTP header
We are going to get HTTP headers from the server during our Ajax request. This can be
helpful in displaying contextual information about the server that's sending us our response.
In this particular instance, we're going to determine when the file that we requested was
last modified.

1. The first thing we're going to do is get the time when our HTML document was
last modified. Start by creating an HTML document and saving it onto your
server with MooTools ready to go.

2.	 Next, set up our MooTools Request object. For the url value, set it to the name of
the HTML document that you uploaded to your server. We will use the onSuccess
Request class method to watch for the eventuality that our Ajax request was
successful. Upon success, we alert the date that the HTML document was last
modified by getting the value of the Last-Modified HTTP header using the
getHeader method. Finally, we use the send() method to initiate the Ajax request.

Chapter 7

[185]

<script type="text/javascript">

window.addEvent('domready', function(){

 var ajaxRequest = new Request({

 // Make the request to the same page

 url: 'e05_getting_headers.html',

 // When the server response is completed

 onSuccess: function(){

 // Display the last time the document was modified

 alert(this.getHeader('Last-Modified'));

 }

 }).send();

});

</script>

3.	 Test your work in a web browser. Upon the success of your Ajax Request,
you should see the something like the following dialog box.

What just happened?
In the previous example, we learned how we can get information about a web page that
we've requested. More specifically, we looked into an HTTP header called Last-Modified
to see when the web page was last modified.

Going 2.0 with Ajax

[186]

Have a go hero – get the content length of the requested page
Did you know that you can determine the content length of a requested document? To do
so, you can see what the value of the Content-Length HTTP header is. This gives you the
size in terms of 8-bit bytes.

Modify the previous example to alert the Content-Length value instead of the
Last-Modified value, and see how big our HTML document is.

Summary
Congratulations, you're now a professional Ajax developer! We covered plenty of things in
this chapter.

Specifically, we covered:

 � Creating a Request object: We learned how to create an Ajax Request object in
MooTools, as well as the options and methods available to us for working with
Request objects.

 � Requesting data: We discovered how to request data from the web server. In the
process we explored the Request.HTML and Request.JSON classes, which make
working with HTML and JSON data a breeze.

 � Sending data: With the help of PHP, we witnessed just how powerful Ajax is by
sending data to a server-side script that processed our data and sent it back to us,
asynchronously. This allowed us to create an uninterrupted user experience that
instantly updated the web page upon a user event.

 � Setting and getting HTTP headers: We learned that HTTP requests and responses
have attached meta information that tell us about the server and the data we're
requesting. They're called HTTP headers and we used MooTools methods in the
Request class to get and set this information.

Now that we've learned about the classes, methods, and functions we can use for working
with Ajax, we're ready to extend MooTools' core functionalities with plugins; that's the topic
of the next chapter.

8
Beefing Up MooTools: Using the

MooTools More Plugins

The MooTools project offers highly useful additional classes that extend the
MooTools Core library, officially called MooTools More. These classes are often
referred to as plugins because you can simply plug them into your web pages to
extend the MooTools Core library.

You'll find a diverse set of plugins that do a wide variety of tasks, from adding
simple text hints on web form input fields, to permitting drag--and-drop
functionality to be used in web games.

Plugins are, in essence, MooTools classes written by either MooTools core
developers and/or members of the MooTools community. They utilize the
MooTools API to either extend functionalities of existing Core classes, or create
an entirely new class utilizing Core functions and methods.

Although there are many third-party plugins out there that are equally
awesome when compared to the More plugins, we'll limit our discussion
specifically to official MooTools plugins.

In this chapter we shall:

 � Learn how to obtain and install MooTools More plugins

 � Learn how to make a slick Accordion area to display content in an engaging
and compact manner using the Fx.Accordion plugin

 � Make more user-friendly forms using the OverText plugin

 � Create a simple web game, to make things fun, using the Drag and
Drag. Move plugin

Beefing Up MooTools: Using the More Plugins

[188]

Downloading MooTools More plugins
MooTools More plugins can be found on the official MooTools website. To see the available
plugins, go to the More Builder section of the site, located at the following web address:
http://mootools.net/more

The More Builder is a web tool for downloading a customized library containing your
plugins of interest. You can select the plugins you'd like to acquire, and the More Builder
will automatically include any other plugins and JavaScript libraries that are required
(dependencies) in order for the selected plugins to work.

Time for action – downloading the Fx.Accordion plugin
Let us see how the MooTools More Builder works by downloading an Fx plugin called
Fx.Accordion.

1. In your web browser, navigate to the More section in the MooTools official site.
The web address is: http://mootools.net/more.

2.	 Scroll down to the section called Fx and click on the box beside Fx.Accordion.

Chapter 8

[189]

3.	 Click on the box beside Fx.Accordion. This will automatically include other
components, namely: Fx.Elements and More. These components are required
for Fx.Accordion to run, so they must be included in the download.

4.	 Scroll down the page towards the heading, Download Options. Choose the
compression type that you want. If you are interested in studying the code
of the plugins (which I suggest you do), choose No Compression. Otherwise,
choose a compressed version to reduce the file size to minimum.

5.	 Click on the Download button to proceed with the download. Save this JavaScript
file in a convenient location, because we will be using this later in the chapter.

Beefing Up MooTools: Using the More Plugins

[190]

What just happened?
We learned how to download a MooTools More plugin using the More Builder. You should
have noted that when selecting a plugin to download, the other plugins are automatically
checked for you; these are other plugins that are required in order for the selected plugins
to work.

Installing MooTools plugins
Using a MooTools plugin is as simple as referencing it in the HTML document. However,
important considerations must be made to make sure that they are included in the correct
order in your HTML documents. More specifically, the order should be:

1. MooTools Core Library

2. MooTools More Library

3. Your MooTools script

Time for action – installing Fx.Accordion
Before we proceed any further in our exploration of MooTools plugins, we should first learn
how to install them in our HTML documents.

1. To start, create an HTML document and reference the MooTools Core library's
location in the <head> section. Make sure that the file path in the src attribute
is pointing to the correct location.

<html>

<head>

<script type="text/javascript" src="/filelocationofscript"></
script>

</head>

<body>

…

</body>

</html>

2.	 Next, include the More library that you downloaded earlier, right beneath the
Core library.

<html>

<head>

<script type="text/javascript" src="/filelocationofscript">
</script>

Chapter 8

[191]

<script type="text/javascript" src="mootools-1.2.3.1-more.js">
</script>

</head>

<body>

…

</body>

</html>

3. Finally, create another <script> tag pair where you will insert your own MooTools
code, right below the inclusion of the More library.

<html>

<head>

<script type="text/javascript" src="http://ajax.googleapis.com/
ajax/libs/mootools/1.2.2/mootools-yui-compressed.js"></script>

<script type="text/javascript" src="mootools-1.2.3.1-more.js">
</script>

<script type="text/javascript">

window.addEvent('domready', function(){

 // MooTools script goes in here

});

</script>

</head>

<body>

</body>

</html>

Now, we are ready to move on and utilize MooTools plugins.

What just happened?
You learned the correct way of installing a MooTools plugin in an HTML document.
We learned that the order of <script> tags in our document is essential for the plugins
to work properly.

Now that we know how to download and install MooTools plugins, it's time to see some
plugins in action.

Beefing Up MooTools: Using the More Plugins

[192]

Discovering a handful of MooTools More plugins
There are—at the time of this writing—over 40 MooTools plugins available on the MooTools
site, and there's no indication that this collection will stop growing as more and more
developers contribute their own work to share to their fellow coders. Though we won't get
to use all of the plugins in the More collection, we will certainly see a handful of them in
action in this chapter.

By using a few plugins, I hope that you see just how great More plugins are, how they uphold
the MooTools way of reducing the amount of code you have to write, and that I prompt you
to explore other More plugins to enhance your JavaScripts.

To find full documentation of each MooTools More plugin, check out the official MooTools
More docs pages at: http://mootools.net/docs/more

We'll start with a plugin we already have in hand, Fx. Accordion.

Creating engaging content using Fx.Accordion
Fx.Accordion is a class for making a group of elements, whose visibility is toggled, by clicking
on a trigger. Clicking on a trigger expands or collapses the target element in a smooth and
animated manner.

Time for action – creating an accordion
Accordions are great for displaying a large amount of content in a compact manner, as well
as establishing an engaging experience by allowing users to interact with your content. In
this example, we're going to create an accordion area that displays information about a
hypothetical development firm. We'll have accordion sections for work, services, clients,
and contact.

1. First things first: solid HTML. We have to make sure that our accordion has
good markup so that when JavaScript and CSS are disabled, users can still
access content. We contain our accordion inside a div that's intuitively called
accordion. Then we have h2/div pairs for each section. The h2s will serve as
the trigger for expanding a section later on; we give then a class of trigger.
The content of each section is inside divs with a class of section.

<body>
<h1>Portfolio Site</h1>
<div id="accordion">
 <h2 class="trigger">Work</h2>
 <div class="section">
 <!-- Work section content -->
 </div>

Chapter 8

[193]

 <h2 class="trigger">Services</h2>
 <div class="section">
 <!-- Work section content -->
 </div>
 <h2 class="trigger">Clients</h2>
 <div class="section">
 <!-- Work section content -->
 </div>
 <h2 class="trigger">Contact</h2>
 <div class="section">
 <!-- Work section content -->
 </div>
</div>
</body>

Beefing Up MooTools: Using the More Plugins

[194]

2. Next, we'll use some CSS to make our accordion a bit more pleasing to the eye.
Read the comments in the following CSS code block to take note of some
style rules.

<style type="text/css">

/* Reset margin and padding of all elements to 0 */

* {

 margin:0;

 padding:0;

}

body {

 background:#ccc;

 font:12px Arial, Helvetica, sans-serif;

 color:#333;

}

#accordion {

 background:#fff;

 border:1px solid #999;

 width:640px;

 margin-left:5px;

}

/* Change mouse pointer to pointer when hovering over trigger */

.trigger {

 height:30px;

 line-height:30px;

 display:block;

 letter-spacing:10px;

 background: #333;

 border-bottom:2px solid #ccc;

 color:#fff;

 margin:0;

 cursor:pointer;

}

h1, p, img { margin:5px; }

img { float:left; }

</style>

Chapter 8

[195]

3. Next, we'll include the Fx.Accordion library that we downloaded earlier in the
chapter. Remember the importance of the order of including our libraries and
scripts: MooTools Core library first, then MooTools More, and finally, our own scripts.

<script type="text/javascript" src="mootools-core.js"></script>

<script type="text/javascript" src="mootools-more.js"></script>

<script type="text/javascript">

window.addEvent('domready', function(){

Beefing Up MooTools: Using the More Plugins

[196]

 // Script goes here

});

</script>

4. Finally, we instantiate our accordion. We create a new object called accordion.
We feed it with three arguments: the elements that will trigger the expanding and
collapsing of the sections (.trigger), the sections that will be hidden and shown
(.section), and finally, the container of our accordion (#accordion). Then
we set a few option values: alwaysHide is set to true to permit us to collapse
all sections (by default, the plugin forces at least one section to be shown), and
trigger set to 'mouseover' which lets us expand and collapse each section when
the user mouses over the .trigger elements (by default, the value is 'click').

window.addEvent('domready', function(){

 var accordion = new Accordion('.trigger', '.section',
 $('accordion'), {

 alwaysHide: true,

 trigger: 'mouseover'

 });

});

5. Test your work in a web browser. On initial page load, you should see
an animated transition as the first section is displayed. Then, when
you hover over other section titles (like Clients, for example), the first
section should collapse, and the new section should expand.

Chapter 8

[197]

Beefing Up MooTools: Using the More Plugins

[198]

What just happened?
In the previous example, we created a simple accordion using the Fx.Accordion MooTools
More plugin. We instantiated an object called accordion using the Accordion class and
pointed to our accordion by feeding it the value of the trigger class ('.trigger'), the
sections that will be expanded and collapsed ('.section'), and the container of our
Accordion elements ($('accordion')).

Just like with most MooTools classes, the format for instantiating a MooTools Accordion
object is as follows:

var objectName = new Accordion('trigger', 'sections', 'container');

Fx.Accordion options
Before moving onto another MooTools more plugin, let's go over some options available
in the Fx.Accordion plugin. We've already used two: alwaysHide and trigger in the
above example.

In the following table, you will see a list of Fx.Accordion options that you can set to
customize your own accordions.

Option name Data type Default value What it's for

alwaysHide boolean false When set to true, users can collapse
all sections. The plugin (by default)
forces at least one section to be shown
at all times.

display integer 0 By default, it shows the first section
(which has an index of 0). Set this to -1
to hide all sections.

fixedHeight boolean false Sets a fixed height for all sections.
fixedWidth boolean false Sets a fixed width for all sections.
height boolean true By default, there is an animated

transition when expanding and
collapsing sections; set this to false if
you don't want any animations.

initialDisplayFx boolean true If you don't want an effect transition
when the page first loads, set this to
false.

opacity boolean true If you don't want an opacity transition
when hiding and collapsing sections,
set this option to false.

show integer 0 Makes the index of the element show
first.

Chapter 8

[199]

Option name Data type Default value What it's for

trigger string 'click' The event type to be used on the
trigger elements for expanding or
collapsing section.

width string false If set to true, there will be a width
transition for expanding and collapsing
sections.

Downloading all the MooTools More plugins we need
Before we move onto exploring the other More plugins in this chapter, let's go ahead and
download them in one go.

Time for action – downloading more Mootools More plugins
In the next part of this chapter, we're going to work with four more MooTools More plugins:
Date, OverText, Drag, and Drag.Move.

1. Head over to the More Builder on the official MooTools site. As a reminder, the
web address is http://mootools.net/more.

2. Click on the box beside the Date plugin. It should automatically check other
plugins that are required for it to work.

Beefing Up MooTools: Using the More Plugins

[200]

3. Click on the box beside OverText. It should automatically check other plugins
that are required for it to work.

4. Click on the box beside Drag. It should automatically check other plugins that
are required for it to work.

5. Finally, click on the box beside Drag.Move. It should automatically check other
plugins that are required for it to work.

6. Scroll down the page to the Download Options section. Check the compression
type you want (I chose YUI Compressor, which is the default) and then click
the Download button.

7. Place the file in same location as your MooTools Core library and the HTML
documents you will use.

Chapter 8

[201]

Extending JavaScript's native Date object
JavaScript's Date object is useful for working with date and time formats, but it lacks a lot of
common utilities that web developers need. The Date plugin extends the native Date object
with a host of useful functions and methods for dealing with date inputs.

Let's explore some of these functions.

Time for action – building a Date calculator tool
Let's witness the power of the Date plugin by building a pure client-side web tool that adds
or subtracts values based on the current date. The tool will allow users to enter how many
days, months, or years to add or subtract to the current date. This can be helpful for getting
the exact date of past events. Note that this calculator doesn't do input validation, and thus,
if you were to use it, you would have to modify it so that it validates the user's input. In
particular, if the user inputs an invalid value to add or subtract to the current date, such as
'apple' instead of a number, the script will break.

Beefing Up MooTools: Using the More Plugins

[202]

1. We'll start by setting up the HTML. The first key element is a paragraph that will
show the current date. We will have three form fields to allow users to set the
options for the calculation. The first form field is a <select> element (drop-down
menu) that will determine what operation we will use: either Add or Subtract.
The second form field is an input text element, which will take a numerical whole
number as a valid value (if the user enters something else, our script will break). The
third form field is another <select> element that will determine whether we're
adding/subtracting days, months, or years. Lastly, we have a paragraph element
called #new-date that will show the resultant date after we run our script.

<body>

<h1>Date Calculator</h1>

<!-- Today's date -->

<p id="current-date">Current date: </p>

<!-- Input fields -->

<select id="operation" name="operation">

 <option value="add">Add</option>

 <option value="subtract">Subtract</option>

</select>

<input id="number" name="number" type="text" value="" />

<select id="interval" name="interval">

 <option value="day">Days</option>

 <option value="month">Months</option>

 <option value="year">Years</option>

</select>

<p><input id="calculate" name="calculate" type="button"
 value="Calculate" /></p>

<!-- Element to display calculated date -->

<p id="new-date"> </p>

</body>

Chapter 8

[203]

2. Next, make sure that you have the MooTools libraries and your script set
up correctly.

<script type="text/javascript" src="mootools-1.2.3.1-core.js">

</script>

<script type="text/javascript" src="mootools-1.2.3.1-more.js">

</script>

<script type="text/javascript">

window.addEvent('domready', function(){

 // Script goes here

});

</script>

3. First, we will initiate a date object—aptly named date—that will hold the current
date (which it takes from the computer's date and time settings). Once this is
done, we can run methods onto the object, such as date.get('year').

 // Initiate date object

 var date = new Date();

Beefing Up MooTools: Using the More Plugins

[204]

4. Next, we will build a string that will hold today's date to output on the web page.
The text format of the date is month/day/year (that is, February 18, 2009 is
2/18/2009); we put this string inside a variable called currentDateDisplay. The
Date plugin extends the Core library in such a way that we can use the get
method to determine the month (.get('mo')), day (.get('date')), and year
(.get('year')) of a date instance. We then use the appendText method to
append the #current-date paragraph element with the string value inside
currentDateDisplay.

 // Build current date as a string to display in web page

 // Format: mm/dd/yyyy

 var currentDateDisplay =
 date.get('mo')+'/'+date.get('date')+'/'+date.get('year');

 // Append #current-date paragraph with currentDateDisplay

 $('current-date').appendText(currentDateDisplay);

5. The next step is pretty straightforward; we add a click event listener on the
Calculate button.

 $('calculate').addEvent('click', function(){

 // Calculation happens in here

 });

Chapter 8

[205]

6. The first part of calculating the new date is to get the values from the form fields.
To make our code cleaner and easier to maintain, we place these values into
variables. To determine which option is selected in the <select> elements, we
use a handy MooTools method called getSelected(). To get the text input field
value, we can simply use the trusty get method with 'value' as the argument.

 // Get values and place in variables

 var operationSelected = $('operation').getSelected();

 var numberValue = $('number').get('value');

 var intervalSelected = $('interval').getSelected();

7. The next chunk of code is the meat of our programming logic. We get
the value of the selected option using the getProperty method with
'value' as the argument. If the value is 'add', then we use the increment
method, otherwise, we use the decrement method. Both methods are
part of the Date plugin, which takes two arguments: the interval ('month,
'day', 'year', 'seconds') you would like to add (or subtract) and the how
many (in integers) to add (or subtract). For the interval, we use the value
of the option selected in the <select id="interval"> element. And
for the how many part, we get the value entered in the #number text
input field (which we earlier placed inside a variable called numberValue).
We place the calculated date inside a date object called newDate.

 // If value of $('operation') is 'add', use increment method...

 if(operationSelected.getProperty('value')=='add'){

 var newDate =
 date.increment(intervalSelected.getProperty('value'),
 numberValue);

 // otherwise use decrement method

 } else{

 var newDate =
 date.decrement(intervalSelected.getProperty('value'),
 numberValue);

 }

8. The final process we need to perform is to produce the calculated date
inside the <p id="new-date"> element. First, we build the new
date as a string, placing the value inside newDateDisplay. Then we
use the set method to set the HTML inside the <p> element.

 // Build new date as a strong to display in web page

 var newDateDisplay =
 newDate.get('mo')+'/'+newDate.get('date')+'/'+
 newDate.get('year');

 // Set #new-date paragraph's HTML with newDateDisplay

Beefing Up MooTools: Using the More Plugins

[206]

 $('new-date').set('html', 'Result:
 '+newDateDisplay);

9. Here is the entire Date calculator script without comments. Study it to make sure
you understand the code logic.

<script type="text/javascript">

window.addEvent('domready', function(){

 var date = new Date();

 var currentDateDisplay =
 date.get('mo')+'/'+date.get('date')+'/'+date.get('year');

 $('current-date').appendText(currentDateDisplay);

 $('calculate').addEvent('click', function(){

 var operationSelected = $('operation').getSelected();

 var numberValue = $('number').get('value');

 var intervalSelected = $('interval').getSelected();

 if(operationSelected.getProperty('value')=='add'){

 var newDate =
 date.increment(intervalSelected.getProperty('value'),
 numberValue);

 } else{

 var newDate =
 date.decrement(intervalSelected.getProperty('value'),
 numberValue);

 }

 var newDateDisplay =
 newDate.get('mo')+'/'+newDate.get('date')+'/'+
 newDate.get('year');

 $('new-date').set('html', 'Result:
 '+newDateDisplay);

 });

});

</script>

10. Test your work in a web browser. Enter a numerical integer value, click
on the Calculate button, and you should have the desired date.

Chapter 8

[207]

Beefing Up MooTools: Using the More Plugins

[208]

What just happened?
We created a simple web tool for calculating past and future dates, based on the current
date. More specifically, we allow users to select whether they want to add or subtract from
the current date, enter a numerical integer, and then also ask whether they'd like to add or
subtract days, months, or years. The script we wrote used the Date plugin and some of its
useful utility functions and methods to make this whole script possible in fewer than 20 lines
of code.

To learn more about the Date plugin and other useful functions and methods it has, visit the
official MooTools docs pages for it at http://mootools.net/docs/more/Native/Date.

Making web forms more user-friendly with the OverText plugin
MooTools More plugins range from very simple features to complicated features (such as input
validation in web forms). Overtext is in the simple range. What it does is it shows text in an
input field (which can be used to prompt the user on what to enter), and when they focus on
the input field, the text disappears so that they can proceed with entering their text.

Let's explore this plugin by way of an example.

Time for action – creating a web form that uses OverText
OverText is great for providing contextual hints about an input field. For example, an input
field that takes a birth date could suggest the proper date format, or a password text field
could give the user a reminder to use a strong and memorable password. In some instances,
you may even consider replacing input labels with OverText to save some space. In this
simple web form example, we'll use OverText for input fields.

1. Let us create the HTML web form. We have three input fields with IDs of name,
email, and dateofbirth. They also have corresponding labels for semantics
and web accessibility. The most important thing to note is that our input
elements have alt properties: the value of its alt property will be the
text that will be shown as an over text.

<body>

<h1>Web Form with OverText</h1>

<form>

 <p>

 <label for="name">Name: </label>

 <input id="name" alt="Enter first and last name" type="text"/>

 </p>

 <p>

 <label for="name">Email: </label>

Chapter 8

[209]

 <input id="email" alt="Format: email@email.com" type="text"/>

 </p>

 <p>

 <label for="name">Date of Birth: </label>

 <input id="dateofbirth" alt="Format: mm/dd/yyyy" type="text"/>

 </p>

</form>

</body>

2. Let's give the form some basic styles. The most important style rule to note is the
span: our over text will be span elements.

<style type="text/css">

label {

 width:100px;

 display:block;

 float:left;

}

input { width:200px; }

/* A few style rules for the OverText text*/

span {

 color:#999;

 width:300px;

 font:12px Verdana, Geneva, sans-serif;

}

</style>

Beefing Up MooTools: Using the More Plugins

[210]

3. Time to write our OverText script. We use the each method to cycle through each
input field. For each iteration, we create a new OverText class instance with
the first argument set to the ID of the input element (which we determine via
the get method). We set the element option of the class instance to span
(by default, they are labels).

<script type="text/javascript">

window.addEvent('domready', function(){

 $$('input').each(function(el){

 new OverText(el.get('id'), {

 element: 'span'

 });

 });

});

</script>

4. That's it! Now, test the script in a web browser. You should see the over text
as gray text equal to the value of the alt properties of each input element.
When you click on an input to start typing, the over text disappears.

Chapter 8

[211]

What just happened?
In the previous example, we used the OverText plugin to make a web form more usable by
giving contextual hints to users while filling out the form. For example, for the Date of Birth
input field, we suggested the correct date format to enter.

Beefing Up MooTools: Using the More Plugins

[212]

Drag-and-drop with Drag and Drag.Move
The last two plugins we'll explore in this chapter are the Drag and Drag.Move plugins. The
Drag plugin extends the MooTools Core library to enable draggable elements; elements that,
when clicked on with the mouse, can be moved around the web page. The Drag.Move plugin
is an extension of the Drag plugin and is a subclass that opens up even more functions and
methods for working with drag and drop content.

Important note on web accessibility

Though the drag-and-drop interaction pattern is becoming more and more
popular, you should ensure that web pages that use this type of interactivity
degrade correctly. Specifically, you should make sure that users who have
vision impairments—and thus cannot see where to click and drag to, and
mobility impairments—and thus, cannot move conventional input devices
such as a mouse—are still able to access important information and perform
critical site tasks.

We will learn about these two plugins by creating a simple web game.

Time for action – creating a simple drag-and-drop game
We're going to create a web game that will utilize the Drag and Drag.Move plugins. There will
be a small gray box that you can drag around the web page (called a draggable). There will
also be a larger box to drag to (called a droppable). When the draggable is dropped inside
the droppable, you get 1 point.

1. First, we will set up the HTML. We contain the draggable and droppable
elements inside a div called #drag-container. The draggable element will
have an ID of #draggable and the droppable element will have an ID of
#dropbox. Finally, we have a section for placing the user's score called #log.

<body>

<h1>Drag and Drop</h1>

<p>Instructions: drag the smaller gray box inside
the larger box. You get 1 point for each successful drop.</p>

<div id="drag-container">

 <div id="draggable"> </div>

 <div id="dropbox">Drag stuff here.</div>

</div>

<div id="log"> </div>

</body>

Chapter 8

[213]

2. As you can see in the previous figure, we need some CSS styles to make our web
game visually relevant. Let's discuss the important styles. For #drag-container,
we need to explicitly declare the position attribute as relative, or else dragging
will not function in Internet Explorer. For the #draggable element, we need to
explicitly declare a position property set to absolute, even though the plugin
automatically does this for us via DOM manipulation (also for IE). We also set a
z-index property to 1—a higher value than #dropbox—so that it always appears
on top of the latter. Finally, .start-drag is a class that we will apply via JavaScript
to #draggable once the dragging has started; it will be a visual indication that
shows when the element has been dragged, and when it has been dropped.

body { font:10px Verdana, Geneva, sans-serif; }

#drag-container {

 height:250px;

 width:250px;

 border:1px solid #999;

 /* Needed for Internet Explorer */

 position:relative;

}

#draggable {

 background-color:#ccc;

 width:60px;

 height:60px;

 text-align:center;

 /* Needed for Internet Explorer */

Beefing Up MooTools: Using the More Plugins

[214]

 position:absolute;

 top:0;

 left:0;

 /* Keep draggable on top of #dropbox */

 z-index:1;

}

#dropbox {

 border:2px solid #999;

 text-align:center;

 width:100px;

 height:100px;

 position:absolute;

 top:75px;

 left:75px;

 /* Keep #dropbox below #draggable */

 z-index:0;

}

/* Class to apply when dragging starts */

.start-drag {

 background-color:#000;

 border:2px solid #000;

}

#log { font-size:18px; }

Chapter 8

[215]

3. In the previous screenshot, you can see our web game taking shape. The structure
and styles are in; now all there is left to do is make it functional. To start, we
will initiate a variable that will hold the user's score (called successCount).

<script type="text/javascript">

$(window).addEvent('domready', function(){

 // Counts successful drops

 var successCount = 0;

});

</script>

4. Next, we set up the structure of our Drag.Move instance. We call the instance
dragEl, and pass as an argument $('draggable') to indicate the target
element to make draggable.

 // Create Drag.Move class instance

 var dragEl = new Drag.Move($('draggable'),{

 // Options, methods, event listeners go here

 });

5. Next, we set the droppables option to $('dropbox'), to indicate that the
#dropbox div is a droppable area.

 var dragEl = new Drag.Move($('draggable'),{

 // Indicates elements considered as drop areas

 droppables: $('dropbox'),

 // Rest of the stuff will go here...

 });

6. Drag has a special event option called onStart that watches out for the event that
the dragging has started (that is, the user clicks and holds down the mouse button
on the draggable element). We use the set method to DOM insert the text
Start drag... inside it, and the addClass method to assign the element
the .start-drag class.

 var dragEl = new Drag.Move($('draggable'),{

 // Indicates elements considered as drop areas

 droppables: $('dropbox'),

 // Event listener for when dragging starts

 onStart: function(el){

 el.set('html','<p>Start drag...</p>')

 .addClass('start-drag');

 },

 // Rest of the stuff goes here...

 });

Beefing Up MooTools: Using the More Plugins

[216]

7. There's an event option just for the Drag.Move class called onEnter, which
can run a function when the draggable element comes in contact with
the droppable element. When this event occurs, we use the highlight
method (from Fx.Tween) to make #dropbox flash red (hexidecimal value
of #ff0000), indicating that the element has entered the area.

 // Create Drag.Move class instance
 var dragEl = new Drag.Move($('draggable'),{
 // Indicates elements considered as drop areas
 droppables: $('dropbox'),
 // Event listener for when dragging starts
 onStart: function(el){
 el.set('html','<p>Start drag...</p>')
 .addClass('start-drag');
 },
 // Event listenter for when draggable object
 // enters a droppable area.
 onEnter: function(el, dropbox){
 // Highlight the droppable area entered
 dropbox.highlight('#ff0000');
 },
 // Rest of the stuff goes here...
 });

8. The final option we will set for our Drag.Move instance (and the most verbose
one) is the onDrop option, which runs a function when the draggable element
is dropped inside the droppable element. The function after the onDrop option
uses two arguments. The first argument (el) refers to the element being dragged.
The second argument (dropArea) will contain the DOM element that the el
has been dropped upon; if the value of this argument is null, it means it was
not dropped in a droppable element. We set up a control structure (if/else)
to check the value of dropArea. If it is not null, then we increment our score
tracker (successCount) by 1 to indicate that the user successfully gained 1
point. We also update the #log div with the new score. And then we set the
HTML inside el to say "Dropped in dropbox" to add a visual queue that the
drop was a success, as well as remove the .start-drag class because we're
no longer dragging. Otherwise, if dropArea is null, then we set the HTML
of el to say "Not in dropbox." and still remove the .start-drag class.

 var dragEl = new Drag.Move($('draggable'),{

 // Indicates elements considered as drop areas

 droppables: $('dropbox'),

 // Event listener for when dragging starts

 onStart: function(el){

Chapter 8

[217]

 el.set('html','<p>Start drag...</p>')

 .addClass('start-drag');

 },

 // Event listenter for when draggable object

 // enters a droppable area.

 onEnter: function(el, dropbox){

 // Highlight the droppable area entered

 dropbox.highlight('#ff0000');

 },

 // Event listener for when draggable is dropped

 onDrop: function(el, dropArea){

 // Second argument is null if

 // draggable is not dropped in a droppable

 if(dropArea!=null){

 // Increment variable by 1

 successCount++;

 // Update #log div with new successCount value

 $('log').set('html','<p>Successful drops: ' +
 successCount + '</p>');

 // Update #draggable HTML to indicate it was dropped
 //inside a droppable

 el.set('html','<p>Dropped in dropbox.</p>')

 .removeClass('start-drag');

 }

 else{

 // If not dropped in droppable area

 el.set('html','<p>Not in dropbox.</p>')

 .removeClass('start-drag');

 }

 }

 });

9. Here is the drag-and-drop script in its entirety (without code comments);
study it to make sure you understand what we just accomplished.

<script type="text/javascript">

$(window).addEvent('domready', function(){

 var successCount = 0;

 var dragEl = new Drag.Move($('draggable'),{

Beefing Up MooTools: Using the More Plugins

[218]

 droppables: $('dropbox'),

 onStart: function(el){

 el.set('html','<p>Start drag...</p>')

 .addClass('start-drag');

 },

 onEnter: function(el, dropbox){

 dropbox.highlight('#ff0000');

 },

 onDrop: function(el, dropArea){

 if(dropArea!=null){

 successCount++;

 $('log').set('html','<p>Successful drops: ' +
 successCount + '</p>');

 el.set('html','<p>Dropped in dropbox.</p>')

 .removeClass('start-drag');

 }

 else{

 el.set('html','<p>Not in dropbox.</p>')

 .removeClass('start-drag');

 }

 }

 });

});

</script>

10. Test your work in a web browser and enjoy your newly created web game!

Chapter 8

[219]

Beefing Up MooTools: Using the More Plugins

[220]

What just happened?
We created a very simple web game that allows users to drag-and-drop an element into
another element. When they successfully drop the draggable element inside the droppable
element, they get a score of one. This was accomplished using the Drag and Drag.Move
MooTools More plugin.

Summary
In this chapter we learned about MooTools More plugins:

 � What MooTools More plugins are: We determined that they're useful classes
that can be used to extend the MooTools Core library.

 � Downloading and installing MooTools More plugins: We learned that the More
Builder in the official MooTools site is where we obtain More plugins and that we
can customize our download so that only the plugins we want will be included.

 � Discovering some More plugins: We discovered four out of the 40+ More plugins
to see just how useful More plugins are. We used Fx.Accordion to create a slick
and interactive content area, OverText to make web forms more user-friendly,
and Drag/Drag.Move to create a simple web game.

Now that we've learned about MooTools More plugins, how about we create our own
MooTools plugins? That's the topic of the next chapter.

9
Creating Your Own Plugin

Authoring your own plugin is a great practice for creating flexible, extensible,
and reusable scripts. Plugins are inline with the MooTools philosophy of writing
reusable code that you can instantiate and customize. For example, if you build
many websites and find that there are certain JavaScript functionalities that
you reuse and tweak for each project, you can simply write a class for it and
instantiate them with varying options in your projects.

You can also release plugins to the public, and, thus, participate and help your
fellow MooTools developers. This can be an added advantage to your curriculum
vitae; it can showcase your abilities in writing MooTools code, the right way.

In this chapter we shall:

 � Design a plugin by making a design sheet

 � Create a script that accomplishes the function of the plugin; it will serve as a pattern
and as a lesson on converting your existing scripts into a reusable and flexible plugin

 � Create documentation for the plugin and preparing it for public release

Let's get started, shall we?

Creating Your Own Plugin

[222]

Why create a plugin?
As I mentioned in the preceding chapter, plugins are flexible classes that you can reuse and
share, whether you have an existing script that you want to reuse several times in multiple
projects, or have an idea of a useful script that you'll know will be used over and over again.
It's a good idea to write a class that you can instantiate and provide customizable options for.

In this chapter, we're going to create a simple auto image captioning plugin. We'll start from
the design/conceptualization phase of the plugin, all the way up to documenting our code
and preparing it for public release. We're going to follow MooTools coding standards (which
you can learn about by simply downloading a MooTools More plugin and studying the code
and comments).

Designing the plugin
With a little forethought, we can effectively build a flexible class. We have to think of what
the plugin is meant to do (and what it isn't meant to do), what options will be helpful, and
the basic logic of how the plugin will work.

Often, it is helpful to invest some time in writing down necessary information about a
plugin you're about to write. Your notes can be the blueprint of what you're building,
and also serve as a great way to conceptualize the code logic of the plugin. I call this
document a design sheet.

This design sheet can also help greatly when we finalize our code's documentation, and for
preparation of the plugin for public release. The design sheet can change; you may realize
that there are more options that you need in order to make the plugin truly customizable,
and there may be options that you thought would be good to have, but would just be overkill
in the final product.

Before we begin any writing, we're going to design our plugin, so grab your favorite
notebook or word-processing software and get ready to do some writing.

Chapter 9

[223]

Time for action – creating a design sheet for our plugin
We are going to create a design sheet for the auto image captioning plugin that we're going
to build. The format that you should use for this design sheet should be one that you and/or
your team is comfortable with. In this example, I will show you how to create a design sheet
arranged as a table: you can do this by depicting it in a notebook, or on a word-processing
application (such as Microsoft Word or OpenOffice).

1. Create the headings of the design sheet: Plugin name, What will it do,
How will it do it, and Plugin Options.

Plugin name What will it do How will it do it Plugin Options

2.	 Write in the plugin name. The plugin name must be capitalized. MooTools best
practices for naming a class is by camelcasing words of the class name, that is,
where each elements initial letter is capitalized. When coming up with a class
name, make sure that it's as intuitive as possible and outlines what it does. Since
we're creating an image auto captioning plugin, the name is ImageCaption.

Plugin name What will it do How will it do it Plugin Options

ImageCaption

3.	 Next, we should define what the intent of the plugin is. This will help us
conceptualize the code we will have to write and find options we might want
to provide the user for customizing the class instance, as well as uncover some
potential pitfalls when writing our script. In this case, the plugin will take the alt
property of the image and place it as HTML text below it. If the alt property is not
present, it will try to check if the title property is present. Now we can see the
first potential pitfall of our script: what if both alt and title properties weren't
available? We should have a backup plan for this situation. Our backup plan is
that the caption text will equal to an empty string (''). We don't have to write
all this down, we just want a basic one to two sentence definition of our plugin
(which you'll see in action later in the chapter when we document our code).

Plugin name What will it do How will it do it Plugin Options

ImageCaption ImageCaption will
take the alt property
(or title property) of
an image, and insert it
as HTML text to serve
as a photo caption (its
description).

Creating Your Own Plugin

[224]

4.	 The next step is to plot out the code logic. For this to work, we will iterate through all
the images in a web page, take each image's alt property and store it in a variable,
wrap the image in another element that will contain both the image and the caption,
and then inject the caption text in it, right below the image, as a element.

By writing down the code logic, we've discovered a couple of things. First, what
if the user doesn't want all images in a web page to be captioned? This means
we should have a plugin option for specifying which images should be captioned.
Second, what if the user wanted the image caption to be above instead of below the
image? We should also have a plugin option for the position of the caption text. By
writing this down, we're able to flesh out two options for the final column.

Plugin name What will it do How will it do it Plugin Options

ImageCaption ImageCaption will
take the alt property
(or title property) of
an image, and insert it
as HTML text to serve
as a photo caption (its
description).

We will take the
alt (or title)
property value
of the target
images in a web
page, wrap that
image in another
element that will
contain the image
and the caption
text, and then
inject the caption
text into the
DOM, above or
below the image,
as a
element.

5.	 In the last column, we should determine options we'd like to provide to the user.
This list should be flexible: while writing the plugin, you might realize there are
more options that we should provide, or that some options that you initially
thought were great, aren't really that useful or can't be made available due to
the way the script was written.

We should allow the user to specify the class name to the wrapper of the image/
caption pair so that they may be able to style these elements using CSS. Next, we
should allow users to change the element type of the wrapper (by default, both
will be elements). Finally, users should be able to position the caption
text above the image. To make this easier, we'll follow the format: option name
- (datatype, defaults to default value) description. This format is consistent with
MooTools docs and will help us later on when we document our plugin.

Chapter 9

[225]

Plugin name What will it do How will it do it Plugin Options

ImageCaption ImageCaption will
take the alt property
(or title property) of
an image, and insert it
as HTML text to serve
as a photo caption (its
description).

We will take the
alt (or title)
property value
of the target
images in a web
page, wrap that
image in another
element that will
contain the image
and the caption
text, and then
inject the caption
text into the
DOM, above or
below the image,
as a
element.

wrapperClass - (string, defaults
to 'imgWrapper') the class
name of the wrapper element.

wrapperType - (string, defaults
to 'span') the element type of
the wrapper.

captionType - (string, defaults
to 'span') the element type of
the caption text.

captionPosition - (string,
defaults to 'after') where the
caption text element will be
injected to the DOM relative
to the image.

What just happened?
In the previous example, we constructed a design sheet for our plugin in order to give us
a better understanding of what we will be coding. In addition, it will serve as a guide (or
"blueprint") of our plugin while we write it, and later on, when we document our code, we
can take parts of it.

Now that we've got a good understanding of what we'll be doing, it's time to start coding.

Creating the ImageCaption script
Oftentimes, you will already have a script lying around that you wish to convert to a plugin
because you found yourself using it repeatedly in your projects. For beginner MooTools
developers, it may be helpful to first get the functionality working, and then convert it to a
flexible plugin, thus using the script as a pattern.

To begin, we'll focus on scripting the image caption function. This will also help you
understand how the code works to make it easier to transition it into a MooTools plugin.

Creating Your Own Plugin

[226]

Time for action – writing the ImageCaption script
Before we start writing our MooTools plugin, we'll take an additional step; we're going
to write a functional script that accomplishes the task we've set out to do, which is to
automatically caption images in a web page using their alt (or title) property. Imagine
auto-captioning 20 images (or more) in a web page without having to do much other work
than assigning them an alt or title property? This reduces the amount of HTML we have
to write, which in turn, reduces HTML clutter and file size.

1. Start with some HTML by putting images in a web page. In this web page, place
three image elements (encapsulating these image elements inside a p tag is
optional). For the first image, include an alt property/value pair. For the second
image, do not provide any alt or title property/value pairs. This will serve as
a test case on how our script will work without an image caption. The third one
will have a title property instead of an alt property.

<h1>ImageCaption Script</h1>

<p><img src="lake_mead.jpg" width="300" height="201" alt="Lake
mead in a speeding car." /></p>

<p></p>

<p><img src="red_rocks.jpg" width="300" height="201" title="A
photo of Red Rock Mountain near Las Vegas, Nevada." /></p>

</body>

Chapter 9

[227]

2. Next, we write our MooTools script. We will iterate through each img element,
adding a caption for each of them. We do this by using the each method.

<script type="text/javascript">

window.addEvent('domready', function(){

$$('img').each(function(image){

 // code to execute goes here

});

});

</script>

3. The first action is to get the caption text value and the width of the image. We get
the alt property value by using the getProperty method, and place it inside a
variable called captionText. Since we have to take into account that the alt property
may not be present because the user does not have it assigned to the image (and
thus, using the getProperty method will return null), we use the || operator.

Here's how it works: the value to the left of the || will take precedence over the
value on its right. If the value on the left is null, then it will try the value on its
right. You can have as many || operators as you would like and if the last value is
still null, then the variable will be assigned a null value.

Therefore, the last value should avoid returning null (unless you want it to) and is
the "back up" plan.

In this instance, if there are no title or alt properties, then we use an empty
string ('') as our caption text; this will prevent our script from malfunctioning
because captionText will never be equal to null.

$$('img').each(function(image){

 var captionText = image.getProperty('alt') || image.
getProperty('title') || '';

});

4. Next, we should get the width of the image so that we can set its wrapper
element equal to it; this makes it so that our wrapper is not too wide, which will
affect the position of the image caption. Again, we utilize the getProperty
method to do this. Because the getProperty method returns a string value,
we can use the toInt() method to convert it to an integer data type. Like with
captionText, we want to avoid a null value (which will happen when the
user does not include a width property on the img element). Therefore, we
use the || operator to conditionally assign width a string value of 'auto'.

$$('img').each(function(image){

 var captionText = image.getProperty('alt') || image.
getProperty('title') || '';

Creating Your Own Plugin

[228]

 var width = image.getProperty('width').toInt() || 'auto';

});

5. Now, it's time to construct the wrapper element. We use the Element constructor
with an argument of string value of span to denote that our wrapper element
will be a element. We use the class option to define the value of the
wrapper's CSS class—imageCaption. We use the styles option to set required
CSS styles onto the wrapper element: it has to be a block element so that we
can float the image/caption set if we choose to. We also need to set the width
CSS property to either the width property of the image defined by the user,
or to auto, this is where the width variable earlier on comes into play. We
call this element wrapper and we will be referencing it later in the script.

$$('img').each(function(image){

 var captionText = image.getProperty('alt') || image.
getProperty('title') || '';

 var width = image.getProperty('width').toInt() || 'auto';

 var wrapper = new Element('span', {

 'class': 'imgCaption',

 'styles': {

 'display': 'block',

 'width': width

 }

 });

});

6. Next, we create the caption text element, again, using the Element constructor,
named caption. caption will be a element. To set the text inside the
 , we use the html option with the value of captionText that we took
earlier from the alt (or title) property. Finally, we use the styles option to set
the basic CSS styles of the element; it has to be a block element so that it displays
below the img element, and so that we may make adjustments to it easily.

$$('img').each(function(image){

 var captionText = image.getProperty('alt') || image.
getProperty('title') || ' ';

 var width = image.getProperty('width').toInt() || 'auto';

 var wrapper = new Element('span', {

 'class': 'imgwrapper',

 'styles': {

 'display': 'block',

Chapter 9

[229]

 'width': width

 }

 });

 var caption = new Element('span', {

 'html': captionText,

 'styles': {

 'display': 'block',

 'width': width

 }

 });

});

7. Now we have to modify the DOM to wrap the img element with the wrapper
element as well as inject the caption element after the image. This only takes up
two lines of code. We use the wraps method to wrap the image with the wrapper.
We then use the inject method to insert the caption element after image.

window.addEvent('domready'’, function(){

$$('img').each(function(image){

 var captionText = image.getProperty('alt') ||
 image.getProperty('title') || ' ';

 var width = image.getProperty('width').toInt() || 'auto';

 var wrapper = new Element('span', {

 'class': 'imgwrapper',

 'styles': {

 'display': 'block',

 'width': width

 }

 });

 var caption = new Element('span', {

 'html': captionText,

 'styles': {

 'display': 'block',

 'width': width

 }

 });

 wrapper.wraps(image);

 caption.inject(image,'after');

});

});

</script>

Creating Your Own Plugin

[230]

8. Test your work in your web browser. You should see that our first and
third images have text captions, but the second one will not (because
we didn't set an alt or title property on that img element).

Chapter 9

[231]

9. We can stop there and call it a day, but our image captions don't look very pleasing
to the eyes. We'll use CSS to style our captions. Here, it is important to note a
crucial concept: separating functionality from style. By not using JavaScript to limit
our CSS styles, we give our script a lot more flexibility in its design. We only set the
display CSS property and width property because they are necessary, the rest is in
the hands of the developer/designer. The following are the CSS styles used here,
but you should take the liberty to get the style and layout you wish your image
captions to have.

/* Styles for the wrapper */

.imageCaption {

 background-color:#e1e1e1;

 border:1px solid #ccc;

 padding:5px;

 text-align:center;

 float:left;

 margin:0 10px 5px 0;

}

/* Styles for the image */

.imageCaption img {

 border:1px thin #fff;

}

/* Styles for caption text */

.imageCaption span {

 font:italic 12px Georgia, "Times New Roman", Times, serif;

 color:#333;

 letter-spacing:-1px;

 margin-top:5px;

}

/* Web page styles not related to image captions */

body {

 font:normal 11px/20px Verdana, Geneva, sans-serif;

 color:#363636;

}

h1 {

 font:30px Georgia, "Times New Roman", Times, serif;

 letter-spacing:-1px;

 color:#930;

}

p {

 margin:10px 0;

}

Creating Your Own Plugin

[232]

10. To get the full effect of how the image captions work, dummy text was also inserted.
Testing your work in a web browser should show you something similar to the
following screenshot:

Chapter 9

[233]

What just happened?
In the above example, we created a simple script that automatically captions the images in a
web page. This is the pattern that we will use in constructing our ImageCaption plugin. One
of the things we learned is that, in order to create flexible scripts, we must limit the amount
of CSS styles we use in the script and let the user determine the styles they would like for
their image caption.

Noting down pitfalls and places of improvement to the script
In preparation for writing our plugin, the next step we should take is review our script to
find places where we can run into trouble, and places where we can improve flexibility
and customizability.

In reviewing the ImageCaption script we wrote, we noticed that we use the $$() to select
all the images on a web page. What if the user just wants a particular class of images to have
captions? We will have to address that issue when writing our plugin.

On the same token, we noticed that we use the element for the wrapper and
caption text element, what if the user wanted to use a <div> element for the wrapper and
<p> element for the caption text? That's another issue we'll resolve in our plugin.

Also, we can see that we're committed to using the imageCaption class for our figures, but
what if the user is already using that class for something else, or they would like to name it
something different to follow their coding conventions? We need our plugin to be able to
allow the user the option to set their class name(s).

Finally, we can see that although the script works, we'd need to modify it heavily if we
wanted two types of image captions in a web page. For example, if we wanted one image
caption with a different background or floated to the left, we'd have to write a lot of
duplicate code to get that instance. Writing this script into a plugin allows us to instantiate
different variations of the plugin class that can have different classes.

Now that we know the places where we can improve our script and provide the user script's
more customizability options, it's time to start writing our plugin.

Converting the script to a flexible plugin
In this section, we will take the previous script and convert it into a MooTools plugin. We'll be
using, to the best of our abilities, MooTools More coding conventions and standards so that
MooTools developers using your plugin can easily read it and modify it (if needed).

The best way to learn MooTools coding conventions is by reading the Core library's code.
Perhaps a more pertinent method in this chapter is to read a MooTools More plugin's source
code by downloading an uncompressed version of it.

Creating Your Own Plugin

[234]

Additionally, you can take a look at the following web page in GitHub, which is where the
MooTools project is stored for Core developers:

Syntax and Coding Style Conventions on GitHub

http://wiki.github.com/mootools/mootools-core/syntax-
and-coding-style-conventions

Time for action – creating the ImageCaption plugin
We'll now create our plugin.

1. A plugin should be in its own JavaScript file. The file name, for best practice, must
be the same as the class name. Since our class name is ImageCaption, our
JavaScript file should be named ImageCaption.js. To start, create a new
JavaScript file and name it ImageCaption.js.

2.	 Next, let us set up the "template" for our class. A plugin will have three staples.
The first is Implements, which handles the Options. Because a
plugin is typically flexible and customizable , it will have an options
option. Finally, it will have the initialize option, which, if you can
remember, runs the code whenever our class is instantiated.

var ImageCaption = new Class({
 Implements: [Options],
 options: {
 // Available options

 },
 initialize: function(){
 // Code to run whenever this class is instantiated.
 }
});

3. We will start with the plugins options. Our plugin will have four options, as we've
defined in our design sheet earlier. wrapperClass is the class of the wrapper
element, wrapperType and captionType are the element types of the wrapper
and the caption elements. Finally, captionPosition allows the user to specify
where to insert the caption element relative to the img element. The values
assigned to each option are the default values that we also mentioned down in our
design sheet. They're all string data types. If the user specifies an option during class
instantiation, then our default options are overwritten and their specifications
take precedence over the default values.

Chapter 9

[235]

var ImageCaption = new Class({

 Implements: [Options],

 options: {

 wrapperClass: 'imageCaption',

 wrapperType: 'span',

 captionType: 'span',

 captionPosition: 'after'

 },

 initialize: function(){

 }

});

4. Next, let us write the code which will be run when our plugin is instantiated.
Our plugin requires one argument from the user, the target image elements to be
captioned, which can use either the $$() or $() function to point to the
elements. It also requires the options argument so that it can set the options
of the class instance.

var ImageCaption = new Class({

 Implements: [Options],

 options: {

 wrapperClass: 'imageCaption',

 wrapperType: 'span',

 captionType: 'span',

 captionPosition: 'after'

 },

 initialize: function(images, options){

 // Code to run whenever this class is instantiated.

 }

});

5. First, we need to set the options of the instance so that we can reference it
throughout our class. We use the setOptions method to do this, with the
options object as the argument.

var ImageCaption = new Class({

 Implements: [Options],

 options: {

 wrapperClass: 'imageCaption',

 wrapperType: 'span',

 captionType: 'span',

 captionPosition: 'after'

Creating Your Own Plugin

[236]

 },

 initialize: function(images, options){

 this.setOptions(options);

 }

});

6. The next phase is creating the code for captioning the target images. We
can do this in two ways: run it right in the initialize function or create
a class method to compartmentalize our class. We'll choose the latter
option by creating an ImageCaption method called addCaption. For
each target image, we call the addCaption method to add a caption to it
(we use the each method to iterate through each target img element).

var ImageCaption = new Class({

 Implements: [Options],

 options: {

 wrapperClass: 'imageCaption',

 wrapperType: 'span',

 captionType: 'span',

 captionPosition: 'after'

 },

 initialize: function(images, options){

 this.setOptions(options);

 images.each(function(image){

 this.addCaption(image);

 }, this);

 },

 addCaption: function(image){

 // captioning code

 }

});

7. Let's work on the addCaption method. Since we use the script we built
earlier in the chapter, this part should be a piece of cake. First, we get the
captionText and width value of the image, just like in the previous example.

 addCaption: function(image){

 var captionText = image.getProperty(captionProperty) ||
 image.getProperty('title') || ' ';

 var width = image.getProperty('width').toInt() || 'auto';

 }

Chapter 9

[237]

8. Then let's create the wrapper and caption elements. Instead of explicitly declaring
the values, we use the class options to set them; this way, we create a flexible class.

 var wrapper = new Element(this.options.wrapperType, {

 'class': this.options.wrapperClass,

 'styles': {

 'display': 'block',

 'width': width

 }

 });

 var caption = new Element(this.options.captionType, {

 'html': captionText,

 'styles': {

 'display': 'block',

 'width': width

 }

 });

9. Finally, we perform our DOM manipulation, just like before.

 addCaption: function(image){

 var captionText = image.getProperty(captionProperty) ||
image.getProperty('title') || ' ';

 var width = image.getProperty('width').toInt() || 'auto';

 var wrapper = new Element(this.options.wrapperType, {

 'class': this.options.wrapperClass,

 'styles': {

 'display': 'block',

 'width': width

 }

 });

 var caption = new Element(this.options.captionType, {

 'html': captionText,

 'styles': {

 'display': 'block',

 'width': width

 }

 });

 wrapper.wraps(image);

 caption.inject(image, this.options.captionPosition);

 }

Creating Your Own Plugin

[238]

10. Here is our entire plugin's code; review it to make sure you
understand how we converted our script into a plugin.

var ImageCaption = new Class({

 Implements: [Options],

 options: {

 wrapperClass: 'imageCaption',

 wrapperType: 'span',

 captionType: 'span',

 captionPosition: 'after'

 },

 initialize: function(images, options){

 this.setOptions(options);

 images.each(function(image){

 this.addCaption(image);

 }, this);

 },

 addCaption: function(image){

 var captionText = image.getProperty(captionProperty) ||
image.getProperty('title') || ' ';

 var width = image.getProperty('width').toInt() || 'auto';

 var wrapper = new Element(this.options.wrapperType, {

 'class': this.options.wrapperClass,

 'styles': {

 'display': 'block',

 'width': width

 }

 });

 var caption = new Element(this.options.captionType, {

 'html': captionText,

 'styles': {

 'display': 'block',

 'width': width

 }

 });

 wrapper.wraps(image);

 caption.inject(image, this.options.captionPosition);

 }

});

Chapter 9

[239]

What just happened?
We converted the script that we built earlier into a flexible class (plugin) which we can reuse
and share with other MooTools developers.

In the next section, we shall test our plugin by instantiating it.

Instantiating the plugin
Now that we have successfully converted our ImageCaption script into a plugin, it's time to
give it a test run.

Time for action – basic instantiation of the ImageCaption plugin
We will see how our plugin works under various circumstances.

1. Create an HTML document (or modify the example we used earlier).

<body>

<h1>ImageCaption Script</h1>

<p><img src="lake_mead.jpg" width="300" height="201" alt="Lake
mead in a speeding car." /></p>

<p></p>

<p><img src="red_rocks.jpg" width="300" height="201" title="A
photo of Red Rock Mountain near Las Vegas, Nevada." /></p>

</body>

2. In the <head> section of your HTML document, reference the MooTools Core
library and the ImageCaption plugin, and create a section where we will
instantiate our Caption class.

<script type="text/javascript" src=”mootools.js"></script>

<script type="text/javascript" src="ImageCaption.js"></script>

<script type="text/javascript">

$(window).addEvent('domready',function(){

 // Instantiate here.

});

</script>

Creating Your Own Plugin

[240]

3. Finally, let's instantiate our ImageCaption plugin. We do this by creating a class
object called captionMyImages (the name doesn't matter). We provide the
class instance its one required argument, which is the target elements: in
this instance $$('img').

<script type="text/javascript" src="http://ajax.googleapis.com/
ajax/libs/mootools/1.2.2/mootools-yui-compressed.js"></script>

<script type="text/javascript" src="ImageCaption.js"></script>

<script type="text/javascript">

$(window).addEvent('domready',function(){

 var captionMyImages = new ImageCaption($$('img'));

});

</script>

4. Test your work in a web browser; you should see something like the following
screenshot. As you can see, it's not at all different from our original script,
which is a good thing.

Chapter 9

[241]

What just happened?
We created a basic class instance of our ImageCaption plugin. Now that we know how to
instantiate our plugin, we'll go into more advanced implementations of the plugin.

Creating a more complex instance of the plugin
It's time to see our plugin's capability. We'll start by creating multiple instances of it.

Time for action – creating new instances of the plugin
Imagine that you'd like several instances of the ImageCaption class. We'll create a situation
where one of the images will have its caption at the top of the image instead of before.

1. First, modify the HTML markup in such a way that the last image has an ID
of #caption-on-top.

<body>

<h1>ImageCaption Script</h1>

<p><img src="lake_mead.jpg" width="300" height="201"
 alt="Lake mead in a speeding car." /></p>

<p></p>

<p><img id="caption-on-top" src="red_rocks.jpg"
 width="300" height="201"
 title="A photo of Red Rock Mountain near Las Vegas,
 Nevada." /></p>

</body>

2.	 Next, let's create a class instance of the ImageCaption class. This time, we limit
the image caption to only the image with the ID of #caption-on-top.
Also, we use one of our options, captionPosition, to change the default
value of 'after' to 'before'.

 var captionOnTop = new ImageCaption($$('#caption-on-top'), {

 captionPosition: 'before'

 });

Creating Your Own Plugin

[242]

3.	 Finally, test your work in a web browser. You should see something like the following
screenshot. Note that only the last photo has an image caption because we limited
the plugin implementation to the image with the ID of #caption-on-top.

Chapter 9

[243]

Creating multiple instances of the plugin
Another great thing about creating a plugin that is flexible is that it gives us the ability to
create multiple instances of it in one web page without a lot of code and duplication. We'll
now create two instances of the class.

Time for action – multiple instances of the ImageCaption plugin
We are going to create two instances of our ImageCaption class on the same web page to
outline just how powerful creating plugins can be.

1.	 We're still going to use the same HTML markup and just build on top of the code
we already have from the preceding example. We create a new instance called
captionNormal, and then use this instance for all other images that don't have
the ID of #caption-on-top.

 var captionOnTop = new ImageCaption($$('#caption-on-top'), {

 captionPosition: 'before'

 });

 var captionNormal =
 new ImageCaption($$('img[id!=caption-on-top]'), {

 captionPosition: 'after'

 });

Creating Your Own Plugin

[244]

2.	 Test your work in a web browser. You should see that the other images will have
their caption text after the img element.

Chapter 9

[245]

What just happened?
In the previous two examples, we learned how to create a more complex instance of our
ImageCaption plugin, as well as how to create multiple instances of it in the same web
page. By doing so, we can see the advantages of using plugins, in terms of reducing code
duplication and the ability to customize easily.

Now that we have our plugin finished and we know how it works, it's time to document our
code and prepare it for sharing with the public.

Preparing your plugin for the public
If you'd like to make your plugin available to the public for use in their own projects, there
are a few tips and guidelines you can follow. In the following section, we will obey, as much
as we can, MooTools standard documentation. Though there isn't an official standard
method for documentation yet, we can use the official MooTools docs and coding styles in
MooTools More plugin so that our documentation will be familiar to MooTools developers,
making it easy for them to understand and learn how to implement our work.

Documenting your plugin with comments
At the top of ImageCaption.js, we should put some meta information about our plugin
so that people studying its working can know a little bit more about it. In MooTools More
plugin, here is the format of this comment block.

Script: Plugin file name
 Brief description of the plugin

 License:
 Licensing type and copyright information

 Authors:
 FirstName-1 LastName-1 - Website URL
 FirstName-2 LastName-2 - Website URL
 ...
 FirstName-n LastName-n - Website URL
*/

Let's modify ImageCaption.js with the above information.

Creating Your Own Plugin

[246]

Time for action – documenting the ImageCaption plugin
Let's document the ImageCaption plugin with the standard MooTools More plugin
documentation block comment (sometimes abbreviated as docblock comments).

1. Open ImageCaption.js in your source code editor.

2.	 At the very top of the file, insert the following docblock comment.

Script:

…

…

 License:

 Authors:

*/

var ImageCaption = new Class({

 Implements: [Options],

 options: {

 wrapperClass: 'imageCaption',

 wrapperType: 'span',

 captionType: 'span',

 captionPosition: 'after'

 },

...

3.	 Finally, fill in the information. This is where our design sheet comes in handy
for the description of the script; we can simply take what we wrote down in
the "What it will do" column of the design sheet we developed, and modify
it as necessary. Use tab spaces to indent the docblock comment items.

Script: ImageCaption.js

 Takes the alt property (or title property) of an image,
and insert it as HTML text to serve as a photo caption (its
description).

 License:

 MIT-style license

 Authors:

Chapter 9

[247]

 Jacob Gube - http://sixrevisions.com

*/

var ImageCaption = new Class({

 Implements: [Options],

 options: {

 wrapperClass: 'imageCaption',

 wrapperType: 'span',

 captionType: 'span',

 captionPosition: 'after'

 },

...

What just happened?
We documented our plugin with the standard docblock comment that MooTools More
plugin uses. This enables others to better understand our code.

To provide greater context, you might consider also leaving comments on your code to help
others better understand what's going on in the plugin. This will also serve as a reminder for
you when you modify the plugin.

External documentation
When you offer a plugin for download, it's a good idea to give people context on what it
does and how to implement it into their work. For this, we can use the Official MooTools
More structure for documenting MooTools More plugins.

Let's create a simple download page template for our plugin. Here's the information we'll
need if we were to follow the official MooTools docs style of external documentation.

 � PluginName—name of the plugin

 � Description

 � Notes—any special requirements or things the user needs to know up-front

 � Extends—any MooTools Core or More classes that our plugin extends

 � Syntax—basic structure of instantiating the class

 � Arguments—required parameters that the class instance needs in order to work,
listed down in an ordered list to denote the parameter order

 � Options—all the available options

 � Examples—example usage

•	 Returns—after the class has been instantiated, what will the instance object get
back?

Creating Your Own Plugin

[248]

Besides the above items, we should also have download information and a section where we
document any changes and updates we make to the plugin (called changelog).

Time for action – creating a basic download page for
the ImageCaption plugin

We're going to create a simple HTML web page where we can offer the ImageCaption plugin
for download. We will borrow the content structure from the Official MooTools docs, so that
MooTools users will be familiar with the documentation we're about to write.

1. Create a new HTML document. You can use the following markup as an HTML
template of your plugin's download page.

<body>

<h1>PluginName</h1>

<p>Description of the plugin.</p>

<h2>Notes: </h2>

 Note #1

 Note #2

<h2>Extends: </h2>

<p>MooTools classes that plugin extends.</p>

<h2>Syntax: </h2>

<pre>example code usage

</pre>

<h2>Arguments:</h2>

 argument #1 - (data type) Brief description.

 argument #2 - (data type) Brief description.

<h3>Options:</h3>

 option #1 - (data type: defaults to somevalue) Brief
description.

 option #2 - (data type: defaults to somevalue) Brief
description.

Chapter 9

[249]

<h2>Examples: </h2>

<pre>example usage

</pre>

<h2>Returns:</h2>

 (data type) Description of what it returns..

<h2>Download</h2>

 Latest version: <a href="#download-
link">PluginName.js

 Previous versions:

 PluginName-version.number1.js</
a>

 PluginName-version.number2.js</
a>

<h2>Changelog</h2>

 version.number1 - Brief description of
updates

 version.number2 - Brief description of
updates

</body>

Creating Your Own Plugin

[250]

2. Now, modify the template with the ImageCaption information. Remove any
sections that aren't pertinent. In the following screenshot, I've written the
information regarding the ImageCaption plugin.

Chapter 9

[251]

Creating Your Own Plugin

[252]

What just happened?
In the above example, we constructed a download page for our plugin so that we can easily
share it with other developers in an easy-to-understand fashion, giving them the information
that they need in order to understand how to implement the plugin.

Summary
In this chapter, we learned how to build a plugin; a plugin that automatically captions images
in a web page with their respective alt (or title) property.

This is what we covered in this chapter:

 � Designing a plugin: We created a design sheet that we can easily reference as we
build our plugin, and when we document it for public use.

 � How to convert a script to a flexible MooTools class: We converted an image
captioning script that we wrote into a class (plugin) with various options that allow
its class instance to be customized.

 � Instantiating our plugin: We learned how useful plugins can be in allowing us to
customize instances to reduce the amount of code we have to write (and re-write).

 � How to properly document our plugin: We followed documentation and used the
MooTools coding style and plugin documentation to let other MooTools developers
quickly learn how to implement our plugin into their own projects.

At this point, you're now officially a MooTools rockstar!

Index
Symbols
$$() function

about 55
errors 61, 62
using 56
working with 55

$arguments() function 106
$= attribute selector

using 73, 74
$chk function 93
$clear() function

about 98
exploring, with periodical() 99

$defined function 94
$each() function

about 103
exploring 104

$empty() function 106
$extends() function 101
$() function

about 55
errors 61
working with 55

$lambda() function 106
$merge() function 102
$pick function 95
$random() function 105
$splat() function 105
$time() function 96
$try function 95
$type() function 105
$() versus document.getElementByID() 59, 60

^= attribute selector
using 72, 73

!= attribute selector
using 71

= attribute selector
using 69, 70

.delay() method 98

.dispose() method 92

.inject() method 92

A
addEvent method 113
advantages, MooTools

cross-browser compatibility 10
DOM, working with 11
elegant code 9
JavaScript, extending 9
open-source projects, using 11

API concept, MooTools 22
arguments

returning, $lambda() used 106
attribute selector operators

^= 69
!= 69
= 69
$= 69
about 69

attribute selectors
about 68
case sensitivity 75
example 69
operators 69
working with 68

[254]

B
browser component

about 78
Adobe Flash plugin, determining 82
browser rendering engine 78
client’s operating system, determining 83
client’s rendering engine, determining 79-82
client with specific feature, determining 78

Browser.Features.xhr 78
Browser.Features.xpath 78
Browser.Platform property

about 83
example scenarios 84
uses 83

browser rendering engine 78

C
cancel() method 166
chainabilityt 44, 51
Chain class

about 45
.callChain() method 45
.chain() method 45
.clearChain() method 45

changelog 248
Core 77
Core component

$chk function 93
$clear() function 98, 99
$clear() function, exploring with

periodical() 99, 101
$defined function 94
$pick function 95
$time() function 96
$try function 95
about 77, 92
browser 78
objects, checking 93
time and intervals, dealing with 96
utility functions 101

CSS property
animating, Fx.Tween used 143

CSS property, animating
elements, fading 151
elements, highlighting 155

Fx.Tween used 143
hide/show FAQ page, creating 143-147
hide/show transition effect, modifying 149
tweening, tween() method used 149

CSS property, tweening
div visibility, toggling 149, 150
tween() method, using 149

CSS selectors 54
CSS style rule

property 54
property value 54
selector 54

custom events
creating 122
creating, for showing help tips 123-125

D
data

requesting, from server files 171
sending 180-183

data type
determining, $type() used 105

Date plugin
about 201
date calculator tool, building 201-208

design sheet 222
docblock comments 246
domready event listener 15
downloading options, MooTools

JSMin 15
uncompressed 15
YUI Compressor 15

Drag.Move plugin
about 212
drag-and-drop game, creating 212-220

Drag plugin
about 212
drag-and-drop game, creating 212-220

E
element

selecting, with $$() function 58
selecting, with $() function 57

elements, CSS property
blank form fields, indicating 155-157

[255]

fading 151
highlighting 155
image, fading in and out 152, 153

event listeners
adding to, web page elements 113
focused fields of web forms,

highlighting 113-117
multiple event listeners, adding 117
single event listener, adding 113
tooltips, adding to web form 117-121

event object methods
about 132
preventDefault method 132
stop method 138
stopPropagation method 134

event properties
about 138
alt 139
client.x 139
client.y 139
code 138
control 139
key 139
meta 139
page.x 139
page.y 139
relatedTarget 139
shift 139
target 139
wheel 139

events
about 109
cloning, from elements 130
firing off 130, 131
form events 110
keyboard events 111
MooTools custom mouse events 112
mouse events 112
removing, from elements 127
single event, removing from elements 127-129
window events 110

F
fade() method 151
form events

about 110

blur 111
change 111
focus 111
reset 111
select 111
submit 111

function placeholder
creating, $empty() used 106

Fx.Accordion options
about 198
alwayshide 198
display 198
fixedHeight 198
fixedWidth 198
height 198
initialDisplayFx 198
opacity 198
show 198
trigger 199
width 199

Fx.Accordion plugin
about 192
accordion, creating 192-198
downloading 188, 190
options 198

Fx methods
about 165
cancel() method 166
pause() method 166
resume() method 166
set() method 165
start() method 165

Fx.Morph 158
Fx options

about 142
duration 142
fps 142
link 142
transition 143
unit 142

Fx.Tween 143

G
getHeader() method 184
getProperty method 227

[256]

H
hide/show FAQ page

creating 143
hide/show transition effect

modifying 149
HTML data

loading 176
web page, updating 174, 175
working with 174

HTTP headers
about 183
getting 184, 185
setting 183, 184

I
ImageCaption plugin

creating 234-238
documenting, with comments 245-247
download page, creating 248-252
external documentation 247, 248
instantiating 239-241
multiple instances, creating 243, 245
new instances, creating 241
preparing, for public 245

ImageCaption script
converting, to flexible plugin 233
creating 225
pitfalls 233
writing 226-233

J
JSON data

working with 178

K
keyboard events

about 111
keydown 111
keypress 111
keyup 111

L
list Item element

tweening 60

M
mooforum 23
MooTools

about 8
advantages 9
API concept 22
domready event listener 15
downloading 12
downloading options 15
features 8
installing 12
MooTools Core 16
MooTools More 16
Request class 168
resources 22
unobtrusive JavaScript, writing 26

MooTools class
.bark() method 35
classes, extending 40
class inheritance 43
creating 33, 34
custom options 39
custom options value, determining 40
Implements property 34
initialize method 35
instance of Dog, creating 36-38
options property 35
ShowDog class, extending with dog class 41-43
.sit() method 35

MooTools classes, using
chainability 44
Chain class 45
Chain example 45
Fx.Tween class, chaining 45
Fx.Tween methods chain, creating 46-50

MooTools Core
about 16
downloading 12
installing 13, 14
MooTools Core Builder, exploring 16-18

MooTools Core Builder
exploring 16-18
output, exploring 19, 20

MooTools custom mouse events

[257]

about 112
mouseenter 112
mouseleave 112
mousewheel 112

MooTools Docs 22
MooTools event object

about 132
default behavior, preventing 132-134
default behavior, stopping 138
event bubbling, preventing 134-137
event object methods, using 132
event propagation, stopping 138
event properties, using 138

MooTools Fx class
about 141
basic syntax 142
Fx options 142

MooTools More
about 20, 187
eMooTools More Builder, exploring 21

MooTools More Builder
about 21
exploring 21

MooTools More plugins
about 188
Date plugin 201
discovering 192
downloading 188-200
Drag.Move plugin 212
Drag plugin 212
Fx.Accordion plugin 192
Fx.Accordion plugin, downloading 188, 190
Overtext plugin 208

MooTools plugins
installing 190

MooTools plugins installation
about 190
Fx.Accordion, installing 190, 191

MooTools resources
about 22
mooforum 23
MooTools Docs 22
MooTools Users Google groups 22
MooTorial 23

MooTools Users Google groups 22
MooTorial 23
More Builder 188

mouse events
about 112
click 112
dbclick 112
mousedown 112
mousemove 112
mouseout 112
mouseover 112
mouseup 112

multiple CSS properties
animating, Fx.Morph used 158
image, enlarging 158-161
morph() method, experimenting with 162-164
morph() method, using 162
transition type, modifying 162

multiple sets, of elements
selecting 60
selecting, with $$() function 58

O
object, Core component

checking, $chk function used 93
checking, $defined function used 94
checking, $pickfunction used 95
converting, $splat() used 105
extending, $extend() used 101
iterating, $each() used 103
merging, $merge() used 102
selecting, $pick function 95

obtrusive JavaScript example
about 26
limitations 27-31

onSuccess method 181
Overtext plugin

about 208
web form, creating 208-211

P
pause() method 166
plugin

creating 222
designing 222
design sheet, creating 223-225

preventDefault method 132
properties, Browser.Platform

[258]

ipod 83
linux 83
mac 83
name 83
other 83

pseudo-class
about 63
HTML table, zebra striping 63
using, for zebra striping a table 64-66

pseudo-class selectors
about 67
:contains 67
:empty 67
:enabled 67
:even 67
:first-child 67
:last-child 67
:not 67
:nth-child 68
:odd 68
:only child 68

R
random number

generating, $random() used 105
remote data

requesting 171-173
removeEvent() method 127
Request class

about 168
cancelling 179
creating 168
events options 170
options 168

Request class options
about 168
async 169
data 169
emulation 169
encoding 169
evalResponse 169
evalScripts 169
headers 169
isSuccess 169
link 169
method 169

noCache 169
url 169
urlEncoded 169

Request events options
about 170
onCancel 170
onComplete 170
onException 171
onFailure 171
onRequest 170
onSuccess 171

resume() method 166

S
setHeader() method 183
set() method 165
start() method 165
stop method 138
stopPropagation method 134
SuperSoftware CSS 85
SuperSoftware download page

customizing, Browser.Platform used 86-91
SuperSoftware HTML 84

T
time and intervals

dealing with 96
toggleClass method 159
tween() method 149

U
unobtrusive JavaScript

about 26
event handling, DOM used 32
inline event handlers, removing 32
rewriting 32
wirtting, MooTools used 26

utility functions, Core component
$arguments() 106
$each() 103
$empty() 106
$extends() 101
$lambda() 106
$merge() 102

[259]

$random() 105
$splat() 105
$type() 105
about 101

W
window events

about 110
load 110
unload 110

Thank you for buying

Mootools 1.2 Beginner's Guide

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that project.
Therefore by purchasing Mootools 1.2: Beginner's Guide, Packt will have given some of the money
received to the Mootools project.

In the long term, we see ourselves and you—customers and readers of our books—as part of the Open
Source ecosystem, providing sustainable revenue for the projects we publish on. Our aim at Packt is
to establish publishing royalties as an essential part of the service and support a business model that
sustains Open Source.

If you're working with an Open Source project that you would like us to publish on, and subsequently
pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss
it first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information, please
visit our website: www.PacktPub.com.

Learning Dojo
ISBN: 978-1-847192-68-4 Paperback:264 pages

A practical, comprehensive tutorial to building beautiful,
scalable interactive interfaces for your Web 2.0
applications with Dijits

1. Learn real-world Dojo programming with detailed
examples and analysis of source code

2. Comprehensive guide to available Dojo widgets
(dijits) and how to use them

3. Extend Dojo by creating your own dijits

4. Highly practical, with hands on examples and
short, clear explanations right from the start.

 Ext JS 3.0 Cookbook
ISBN: 978-1-847198-70-9 Paperback: 376 pages

Clear step-by-step recipes for building impressive rich
internet applications using the Ext JS JavaScript library

1. Master the Ext JS widgets and learn to create
custom components to suit your needs

2. Build striking native and custom layouts, forms,
grids, listviews, treeviews, charts, tab panels,
menus, toolbars and much more for your real-world
user interfaces

3. Packed with easy-to-follow examples to exercise all
of the features of the Ext JS library

4. Part of Packt's Cookbook series: Each recipe is a
carefully organized sequence of instructions to
complete the task as efficiently as possible

Please check www.PacktPub.com for information on our titles

Google Web Toolkit GWT Java AJAX
Programming
ISBN: 978-1-847191-00-7 Paperback:248 pages

A practical guide to Google Web Toolkit for creating AJAX
applications with Java, fast.

1. Create rich Ajax applications in the style of Gmail,
Google Maps, and Google Calendar

2. Interface with Web APIs create GWT applications
that consume web services

3. Completely practical with hands-on examples and
complete tutorials right from the first chapter

Learning jQuery 1.3
ISBN: 978-1-847196-70-5 Paperback: 444 pages

Better Interaction Design and Web Development with
Simple JavaScript Techniques

1. An introduction to jQuery that requires minimal
programming experience

2. Detailed solutions to specific client-side problems

3. For web designers to create interactive elements for
their designs

4. For developers to create the best user interface for
their web applications

5. Packed with great examples, code, and clear
explanations

6. Revised and updated version of the first book to
help you learn jQuery

\
Please check www.PacktPub.com for information on our titles

	Copyright
	Credits
	About the Authors
	About the Reviewer
	Table of Contents
	Preface
	Chapter 1: MooTools and Me
	What is MooTools?
	Why use MooTools?
	The advantages of using MooTools
	Writing terse and elegant code
	Extending native JavaScript
	Cross-browser compatibility
	Working with the Document Object Model
	The advantage of using open-source projects

	Downloading and installing MooTools
	Time for action – downloading and installing the MooTools Core
	Different MooTools downloads
	The domready event listener

	Rolling your own MooTools
	MooTools Core

	Time for action – exploring the MooTools Core Builder
	MooTools More

	Time for action – exploring the MooTools More Builder
	The API concept
	MooTools resources
	MooTools Docs
	MooTools Users Google groups
	mooforum
	The MooTorial

	Summary

	Chapter 2: Writing JavaScript with MooTools
	Writing unobtrusive JavaScript with MooTools
	An "obtrusive" JavaScript example
	What's so bad about it?
	Don't repeat it if you don't have to
	It'll be hard to maintain
	It's a bad practice to have functionality in your content structure

	Time for action – rewriting our script unobtrusively
	Removing our inline event handlers
	Using the DOM to handle events

	Creating MooTools classes
	What the heck is a class?
	Real-world analogy
	Creating a MooTools class
	The Implements property

	Time for action – creating an instance of Dog
	Time for action – giving our class instance some
	custom options
	Time for action – determining the value of our options
	Extending classes

	Time for action – extending the ShowDog class with
	the Dog class
	Class inheritance

	Using MooTools classes
	The concept of chainability
	The Chain class
	A Chain example
	A look ahead: Chaining Fx .Tween

	Time for action – create a chain of Fx.Tween methods
	Isn't MooTools classy?
	Chainability

	Summary

	Chapter 3: Selecting DOM Elements
	MooTools and CSS selectors
	Working with the $() and $$() functions
	The $() dollar function
	The $$() dollars function
	When to use which

	Time for action – selecting an element with the dollar function
	Time for action – selecting elements with the dollars function
	Time for action – selecting multiple sets of elements
	with the dollars function
	$() versus document.getElementById()
	Selecting multiple sets of elements
	Common errors with the dollar and dollars functions

	Selection using pseudo-classes
	Pseudo-class example: Zebra striping a table

	Time for action – using pseudo-classes to zebra stripe a table
	Other pseudo-class selectors

	Working with attribute selectors
	Attribute selector operators
	Attribute selector example: Styling different types of links

	Time for action – using = attribute selector
	Time for action – using != attribute selector
	Time for action – using ^= attribute selector
	Time for action – using $= attribute selector
	Attribute selector case sensitivity

	DOM selection makes unobtrusive JavaScript do-able
	Summary

	Chapter 4:The Core's Useful Utility Functions
	What is the Core?
	Browser: Getting information about the client
	Determining if the client has a specific feature
	Browser.Features.xpath
	Browser.Features.xhr

	Getting information about the client's rendering engine
	Determining the client's rendering engine and version

	Time for action – determining the client's rendering
	engine and version
	Checking if the client is using a particular web browser
	Determining if the client has Adobe Flash installed

	Finding out information about the client's operating system
	Potential uses of this property
	Example scenario: Offering the correct download based on the client's platform

	Time for action – using Browser.Platform to customize
	SuperSoftware's download page
	Exploring the Core utility functions
	Checking to see if objects are defined
	Seeing if an object has a value with $chk
	Checking if an object is defined with $defined
	Selecting the first defined object using $pick
	Getting the return of first working function with $try

	Dealing with time and intervals
	The $time() function

	Time for action – the $time() function
	The $clear() function

	Time for action – exploring the $clear() function with
	periodical()
	Utility functions for working with objects
	Extending objects with $extend()
	Merging objects with $merge()
	Iterating through objects using $each

	Time for action – exploring the $each function
	Other utility functions in the Core
	Generating a random number with $random
	Converting objects to arrays with $splat
	Determining the data type using $type
	Limited use functions

	Summary

	Chapter 5:Working with Events
	What are events exactly?
	Window events
	Form events
	Keyboard events
	Mouse events
	MooTools custom mouse events

	Adding event listeners
	Adding a single event listener

	Time for action – highlighting focused fields of web forms
	Adding multiple event listeners

	Time for action – adding tooltips to the web form
	Creating custom events
	Time for action – creating a custom event for showing help tips
	Removing, cloning, and firing off events
	Removing events from elements
	Removing a single event from elements

	Time for action – removing an event
	Removing a type of event, or all events, from elements
	Cloning events from another element
	Firing off events

	Time for action – firing off a click event
	The MooTools event object
	Using event object methods
	Preventing the default behavior

	Time for action – preventing the default behavior of a hyperlink
	Preventing event bubbling

	Time for action – preventing event bubbling
	Stopping default behavior and event propagation
	Using event properties

	Summary

	Chapter 6:Bringing Web Pages to Life with Animation
	MooTools' Fx class
	Basic syntax
	Fx options

	Animating a CSS property with Fx.Tween
	Time for action - creating a hide/show FAQ page
	Tweening a single CSS property using the tween() method

	Time for action – toggling the visibility of a div
	Fading elements

	Time for action - fading an image in and out
	Highlighting elements

	Time for action - indicating blank form fields that are required
	Animating multiple CSS properties with Fx.Morph
	Time for action - enlarging an image
	Using the morph() shortcut method

	Time for action - experimenting with morph
	Other Fx methods
	Starting an effect
	Setting properties immediately
	Cancelling a transition
	Pausing effect
	Resuming a paused effect

	Summary

	Chapter 7:Going 2.0 with Ajax
	What you'll need
	Creating a Request object
	Request object options
	Request events options
	Running a function immediately when a request is made
	Running a function when the request is completed
	Running a function when the request is cancelled
	Other Request events

	Requesting data
	Time for action – requesting remote data
	Requesting HTML and JSON data
	Working with HTML data

	Time for action – updating a web page with HTML
	Loading HTML documents remotely

	Time for action – loading HTML data
	Working with JSON data

	Time for action – working with Ajax and JSON
	Cancelling a Request

	Sending data
	Time for action – sending data to PHP
	Setting and getting HTTP headers
	Setting an HTTP header for an Ajax Request object
	Getting an HTTP header

	Time for action – getting the Last-Modified HTTP header
	Summary

	Chapter 8:Beefing Up MooTools: Using the MooTools More Plugins
	Downloading MooTools More plugins
	Time for action – downloading the Fx.Accordion plugin
	Installing MooTools plugins
	Time for action – installing Fx.Accordion
	Discovering a handful of MooTools More plugins
	Creating engaging content using Fx.Accordion

	Time for action – creating an accordion
	Fx.Accordion options
	Downloading all the MooTools More plugins we need

	Time for action – downloading more Mootools More plugins
	Extending JavaScript's native Date object

	Time for action – building a Date calculator tool
	Making web forms more user-friendly with the OverText plugin

	Time for action – creating a web form that uses OverText
	Drag-and-drop with Drag and Drag.Move

	Time for action – creating a simple drag-and-drop game
	Summary

	Chapter 9:Creating Your Own Plugin
	Why create a plugin?
	Designing the plugin
	Time for action – creating a design sheet for our plugin
	Creating the ImageCaption script
	Time for action – writing the ImageCaption script
	Noting down pitfalls and places of improvement to the script

	Converting the script to a flexible plugin
	Time for action – creating the ImageCaption plugin
	Instantiating the plugin
	Time for action – basic instantiation of the ImageCaption plugin
	Creating a more complex instance of the plugin

	Time for action – creating new instances of the plugin
	Creating multiple instances of the plugin

	Time for action – multiple instances of the ImageCaption plugin
	Preparing your plugin for the public
	Documenting your plugin with comments

	Time for action – documenting the ImageCaption plugin
	External documentation

	Time for action – creating a basic download page for
	the ImageCaption plugin
	Summary

	Index

