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xiii

Preface

One can only describe what one knows, so most of the sailing examples 
presented here are based on small sailboats. This prejudice is reflected in 
topics ignored. For example, there is surely engaging physics in offshore 
navigation and global positioning systems. My lack of personal experi-
ence with these mean I would have no fresh ideas to offer. One can also 
notice a bias toward smaller boats by the relative lack of attention given 
to keels and an interest in capsizing, which is one of my specialties.

Bias is also evident in the choice of physics topics. Much of fluid 
mechanics requires numerical work and the acceptance of complex 
ideas as matters of faith. Advanced applications like “vortex sheets” 
cannot be found here, but the foundations of fluid mechanics, which 
give the overall picture, are included. Anyone planning to perform 
accurate calculations of lift and drag must look elsewhere.

Some of the simplifications presented here are a bit extreme. A 
graph of wind’s force on a sail and a sketch of a high-pressure weather 
system were both stylized with perfect circle constructions. The ice-
boat speed diagram was approximated by a double circle. More real-
istic approaches would give better accuracy, but circles have a special 
appeal for me.

Mathematics is the language of physics, and some physics related 
to sailing is unavoidable, complicated, and mathematical. Surprisingly, 
many people who love sailing do not share my affection for equations.
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xiv 		  Preface

I find some physical ideas associated with sailing to be particu-
larly appealing and elegant. This is the reason that the dimensional 
analysis of turbulence and the structure of wakes get extra attention. 
Most material presented here can be found elsewhere. An exception 
is the scaling model for wake drag, which has not withstood the test 
of time.

Although most of the equations presented here can be easily 
skipped, the occasional boxed formula probably deserves a cur-
sory glace.

Some derivations should be ignored by people who are in a hurry 
to just get the result. These sections are shaded.
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xv

Physics Facts

If one does not worry about circular definitions, all of classical physics 
follows from

	
r rF ma=

The total force on an object is 
r

F . The object’s mass is m, and the accel-
eration ra is the rate of change in velocity.

An important application to sailing occurs when the speed is con-
stant. Then, the acceleration a vanishes, and the total force must be zero. 
Often the total force is the sum of forces from the wind and water, so 
these forces must be equal and opposite when there is no acceleration.

For rotation, the analogous formula is

	 τ α= I

The total torque is t, I is the moment of inertia, and a is the angular 
acceleration. If a boat is not tipping over, the angular acceleration is 
zero. This means the total torque must vanish. This occurs when the 
buoyancy cancels the torque of the wind and water.

The kinetic energy of an object is

	 KE mV= 1
2

2
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xvi 		  Physics Facts

Here, V is the speed of the object, and m is its mass. The wind, the 
sailboat, and waves all have kinetic energy.

The power delivered to an object changes in its kinetic energy.
	 Power Force Speed= ×

A sailboat can move quickly over the water because of the power sup-
plied by the wind.

Newton’s laws applied to fluids yields the Navier–Stokes equation, 
which is simplified to the Euler equation when viscosity is ignored. 
Viscosity is the fluid analogue to friction.
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1

1
Depart, Depart from 

Solid Earth

1.1 � Why Sailing, Why Physics, Why Both?

Sailing is not a good career choice. As W. S. Gilbert said,

Stick close to your desks and never go to sea,
And you all may be rulers of the Queen’s Navee!

Prince Henry the Navigator knew this long before there was an H.M.S. 
Pinafore. This “explorer” who died in 1460, is often credited with extend-
ing Portugal’s domain along the west African coast and developing a 
better sailing ship, the caravel. But Henry never went to sea.

Coleridge’s “The Rime of the Ancient Mariner” reminds us that 
sailing can be uncomfortable,

The ice was here, the ice was there,
The ice was all around:
It cracked and growled, and roared and howled,
Like noises in a swound!

and boring,

Down dropt the breeze, the sails dropt down,
‘Twas sad as sad could be;
And we did speak only to break
The silence of the sea!

Despite its unprofitable, uncomfortable, and boring aspects, sailing still 
offers the sailor a mini-adventure that is rare in this age of sloth. An 
outstanding narrative of the rich rewards of sailing is Joshua Slocum’s 
Sailing Alone Around the World (1899). Writer Arthur Ransome’s cri-
tique of this extraordinary work, “Boys who do not like this book 
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2 	 Physics of Sailing﻿

ought to be drowned at once,” is inappropriate only because girls are 
not treated equally.

Every sailor can choose his own level of adventure, be it daysailing 
or a single-handed circumnavigation. Not every sailor would answer 
Sir Ernest Shackleton’s famous newspaper ad for his 1914 Antarctic 
expedition: “Men Wanted for Hazardous Journey. Small wages, bitter 
cold, long months of darkness, constant danger, safe return doubtful. 
Honour and recognition in case of success.” Sir Ernest can be forgiven 
for not inverting women too.

Faced with a sailing challenge, even villains become heroes. Odysseus 
and other legendary sailors would be thrown in jail today. Although 
Benedict Arnold is not a hero to Americans, he held off the British at 
Valcour Island in a naval “strife of pigmies for the prize of a continent.” 
The unfairly notorious Captain Bligh exhibited remarkable skill in his 
1789 forced sailing (and rowing) trip across the Pacific. Bligh and 18 
loyal crew members were stuffed onto an open boat only 7 m long. 
With insufficient food and water, a sextant and a pocket watch but no 
charts or compass, he navigated 6700 km in 47 d to safety in Timor.

Sailing must have magical powers. If it can elevate Odysseus, 
Benedict Arnold, and Caption Bligh to positions of honor, think what 
it can do for you.

The appeal of physics is equally hard to explain. For some, finding 
the correct explanation of familiar or exotic phenomena offers greater 
exhilaration than a successful day of sailing. Although the core of 
physics has a special elegance, much of day-to-day science lacks the 
seductive atmosphere of profundity. This is certainly the case for the 
physics of sailing, which is dominated by numerical calculations and 
enmeshed in the cumbersome apparatus and intimidating mathemat-
ics of fluid mechanics.

Sailing appears to have a special appeal for those interested in sci-
ence. Nobel Prize winners Albert Einstein and William Lawrence 
Bragg are high-profile examples. Scientific interests make sailing 
attractive, but scientific skills do not always translate into superior 
sailing ability. Albert Einstein enjoyed sailing, but he could not be 
called a skilled or careful sailor. He refused to wear a life jacket even 
though he never learned to swim.

You don’t have to master the Navier–Stokes equation to sail fast, 
and time on the water does not improve your math skills. Nonetheless, 
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	 Depart, Depart from Solid Earth	 3

many sailors are curious about how a sailboat works. In many ways, 
sailing is much more complicated than one would expect. Believe it 
or not, the messy diagrams and abundant formulas that follow are an 
attempt to make the physics of sailing comprehensible.

Only one bit of advice is offered. Scientists have a secret. They usu-
ally skip the math.

1.2 � Origins

1.2.1 � Egypt

Records of sailing are nearly as old as civilization. The earliest known 
depiction of a boat under sail appears on an Egyptian clay pot from 
around 3,100 BC. Being more than 5000 years old, the image is not 
very clear, but it roughly resembles the sketch in Figure 1.1.

The central role of sailing in ancient Egypt is seen in the two hiero-
glyphs of Figure 1.2. They mean “travel south” and “travel north.” Not 
surprisingly, they can also be interpreted as “fare upstream” and “fare 
downstream.”

The Nile was the highway of ancient Egypt. Sailing south in the 
prevailing north wind and drifting north with the Nile’s current were 
the preferred means of travel (with the help of rowing and towing). 
The hieroglyphs eloquently describe both the direction and preferred 
mode of travel.

Communication is a key marker of civilization, and sailing was 
essential for this communication in Egypt. One can speculate that 
sailing was one reason Egyptian dynastic rule lasted for millennia.

Figure 1.1  A sketch of the earliest known depiction of a sailing craft.
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4 	 Physics of Sailing﻿

Thanks to ancient religious burial customs and an extraordinarily 
dry climate, a ritual boat from ancient Egypt has been remarkably 
well preserved. More than 4,000 years ago, King Cheops (Khufu), 
second pharaoh of the Fourth Dynasty of the Old Kingdom, had a 
ritual vessel constructed. This Khufu ship was buried at the foot of 
the Great Pyramid of Giza where it lay, dry, disassembled and undis-
turbed, until 1954. The reconstructed Khufu ship shown in Figure 1.3 
is now in a museum near the Giza pyramid. This boat shows no signs 
of sails. It may never have been in water, but it does show remarkable 
boat construction skills from ancient times.

Figure 1.3  The 4,000-year-old reconstructed Khufu ship in Egypt.

Figure 1.2  Egyptian hieroglyphs meaning “travel south” and “travel north.”
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	 Depart, Depart from Solid Earth	 5

1.2.2 � The First Sailors

Egypt’s apparent historic primacy may only be the result of a climate 
that so effectively preserved records. There are other ancient traces of 
sailing. Fragments interpreted as boat parts have been found in Kuwait 
that date from earlier than 5000 BC. Fragments from a Turkish site 
in the Euphrates Valley are from about 3800 BC. A ship with mast, 
forestay, and backstay is depicted on a Syrian seal from around 1800 
BC. Sailing ships are on Minoan seals dating from around 2000 BC. 
Seals from Bahrain from around 2000 BC also may show sails. A 
drawing from around 2000 BC in India may indicate sails, but it is 
not clear.

Remarkably, Australia provides some of the earliest evidence of 
humans living outside of Africa. How did the ancient Africans of 
roughly 50,000 years ago make the trip of more than 10,000 km to 
Australia? They could have walked most of the distance, but even with 
the much lower sea level of an ice-capped world, Asia and Australia 
were separated by water. The route is unknown, but island hopping 
would still require significant ocean travel. The longest step was around 
200 km, which is a long way to paddle or drift. One can imagine that 
some rudimentary form of sailing played a role in this most ancient 
of all known explorations, but no one knows. Of course, rudimentary 
sailing can be nothing more than common sense. Gilgamesh, in what 
has been called the “oldest story in the world,” used his shirt as a sail 
in his quest to find the secret of immortality.

1.2.3 � Polynesia

Another extraordinary discovery era that surely did rely on sailing was 
the settling of the Pacific by the Polynesian people, starting around 
1500 BC. Doubled sailing canoes depicted in Figure 1.4 are the likely 
candidates for the craft that took these people to New Zealand and 
the islands that sparsely populate the Pacific Ocean. Sailing these 
flimsy-looking sailboats, the Polynesians managed journeys that few 
of us would attempt today. Most impressive is the discovery around 
440 AD of Easter Island, also called Rapa Nui, which means “navel 
of the world.” Easter Island is 3000 km from anything significant 
(the Marquesas). Even tiny Pitcairn Island (Mutiny on the Bounty) is 
1800 km to the west.
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6 	 Physics of Sailing﻿

How was the discovery accomplished? Perhaps fishermen wandered 
off course or chased fish long distances. Or they may have been blown 
to distant seas by storms. The exploration could have been planned. 
Prevailing winds are from east to west, so one could sail east to explore 
when winds were reversed and still be assured of easy return in the 
prevailing breeze.

Still, it is hard to understand the success. The likelihood of the occa-
sional west wind decreases as one sails east toward Easter Island. The 
Polynesian craft can (and could?) sail to windward, but the sailing angles 
are not good, requiring a 4 to 1 ratio for distance traveled compared to 
distance to windward. Sailing into waves of the open Pacific Ocean 
would have been very hard on the canoes. Perhaps there was an alterna-
tive path. The Polynesians might have found the west winds from 35° to 
50° south latitude. But weather this far south is notoriously dangerous. 
Another unlikely alternative is that climate could have been different 
1, 600 years ago, or an unusually strong El Nino–Southern Oscillation 
or some other weather anomaly could have temporarily changed wind 
patterns so the voyages of discovery could be accomplished.

Figure 1.4  Petroglyph of unknown age from Easter Island and a drawing of what the actual sail-
ing vessel may have looked like. (Drawing © by Herb Kane, with permission.)
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	 Depart, Depart from Solid Earth	 7

Granted that long-distance travel was somehow possible, how could 
people without compasses or maps travel thousands of kilometers to 
find an island barely 30 km across? Clouds can form above isolated 
islands and sometimes the cloud formations extend downwind. Terns 
and other sea birds sometimes cluster near islands. Even so, the dis-
covery of Easter Island seems miraculous.

The Polynesian boats and their construction are as impressive as 
the journeys they made. By examining present-day Polynesian sail-
ing canoes and scanty historical records, one can speculate on the 
structure and construction of these early sailboats. The two hulls 
were attached with crossbeams and a deck could be added. Then the 
double canoes could travel greater distances and carry more cargo. 
There were paddles, but large distances meant sailing was the essen-
tial means of transportation.

Like the Egyptians, the Polynesians had no nails, so boats were 
essentially tied together. The canoes were built using tools of stone, 
bone, and coral. The canoe hulls were gouged from tree trunks with 
adzes or made from planks sewn together with twisted and braided 
coconut fibers. Caulk was made from tree sap. The sails were woven 
from coconut leaves.

The result was impressive. Polynesian canoes, at least those of 
more than 1,000 years after the discovery of Easter Island, were fast: 
Around 1773, One of Captain Cook’s crew on the H.M.S Endeavour 
estimated that a Tongan canoe could sail “Three miles to our two.”

1.2.4 � China

The western world has traditionally been unaware of Chinese contri-
butions to science and technology in general, and to sailing in par-
ticular. For example, the Egyptian dynasties and the early Polynesians 
did not have rudders. The first depiction of a rudder in Europe is on 
a church carving of 1180 AD. But the Chinese invented the rudder 
1,000 years earlier, probably in the first century AD.

It is generally accepted that the Chinese invented the first compass, dat-
ing before 80 AD. Curiously, there is also a much older Central American 
artifact from the Early Formative Olmec period of 1400–1000 BC. It, 
too, may have been a compass. The Chinese probably sailed to the coast 
of India prior to 1000 AD with the help of a navigational compass.
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8 	 Physics of Sailing﻿

By 200 BC, Chinese were building ships the size of those used by 
Columbus. In the period 200–300 AD, the Chinese developed boats 
with multiple masts rigged fore and aft. They introduced full-length 
battens into their sails, resulting in a more efficient sail shape, easier 
handling, and greater resistance to tearing.

The first reference to centerboards and leeboards was Chinese. It 
dates from 759 AD.

By the 1300s, a variety of Chinese boats were constructed with 
watertight compartments to minimize the possibility of sinking and 
leeboards that reduce sideslip and make progress to windward more 
efficient. All of these innovations took place long before they appeared 
in Europe.

In the early 1400s, the Chinese imperial fleet comprised hundreds 
of ships much larger than those of the West. Voyages of exploration 
led by Zheng He, the “Three-Jewel Eunuch,” were extensive, but a 
speculation that China discovered the New World in 1421 is almost 
certainly wrong. A change in China’s politics in 1424 ended the most 
active aspects of this era of exploration and trade.

1.2.5 � Speculations

Chicken bones dating from 1400 AD were found in Chile. These 
bones had a genetic mutation also seen in chickens native to Samoa 
and Tonga. Since chickens can’t fly very far, one can speculate that the 
Polynesians made it all the way to South America.

It is commonly believed that North America was settled by migra-
tion through Siberia. However, very old Clovis arrowheads found on 
the east coast of the United States appear similar to stone tools found 
in France. A speculation that Europeans sailed along the southern edge 
ice age ice sheets around 13,000 years ago to North America is fea-
sible. A lack of confirming genetic evidence means any early European 
sailors to North America were minority immigrants.

The northern passage through the Bering Strait was blocked by 
glaciers until about 13,500 years ago. However, there is (unreliable?) 
evidence of humans in the Americas long before that time. If early 
migrants did make it to the Americas, they would have come a dif-
ferent way. Perhaps using sailing craft, they skirted the shores of 
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Japan-Siberia-Alaska-Canada-California, and so on. Kelp beds may 
have helped make seas safer and provided anchors.

1.3 � There’s Much More

There are more than 1,000 reasons to love sailing. Find a sailor and 
you will get plenty of stories. You will hear how sailors enjoy the most 
beautiful sunsets, survive blistering heat, and witness waves taller 
than basketball players. But it is far better to take up sailing yourself 
so you can tell your own stories.

There are 10,000 important facts in the history of sailing. The 
few speculations from antiquity I chose to describe are only a 
preface to an increasingly complex story. An expert can tell you 
the other 9,990 intriguing details. A European viewpoint tells 
you that “yacht” has a Dutch origin, and sailing characteristics of 
the Spanish Armada changed the history of the world. But sail-
ing from the earliest times has developed worldwide. Sailboats in 
the Middle East, the Orient, and many other areas have separate 
histories. The character of different people can be seen in their 
boats. It is hard to confuse a Chinese junk, a Mideast dhow, and a 
European clipper.

There are 100,000 connections between science and sailing, but it 
is an exaggeration to say that physics can really explain how sailboats 
work. Much of sailing is related to the complex motion of air and 
water. The mysteries of fluid mechanics blended with the mystery of 
sailing can present daunting questions. Despite this, basic physics can 
take one a long way in the description of sailboat motion, which is the 
goal of the following chapters.
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2
Downwind—The 
Easy Direction

Sailing with the wind is surely the oldest and simplest type of 
sailing. In its primitive form, it is hardly sailing at all. When the 
wind is behind, standing up in a canoe or mounting a small tree 
on a raft could be considered downwind sailing.
  It is logical to wonder how fast a boat can go when sailing 
downwind. Physics gives clues about how to make faster sailing 
craft for both upwind and downwind sailing. The starting point 
is a general discussion of speed. Sailboat speeds are determined 
by the wind’s force and water’s opposing force. Newton’s simple 
characterization of the forces provides reasonable estimates of 
sailboat speeds. A more complicated description of the forces is 
needed for upwind sailing.

2.1 � Speed

The appeal and challenge of sailing arises, in part, from the enormous 
variation of conditions that occur as the wind speed varies from calm 
to a gale. A typical sailboat’s speed is comparable to the wind speed, 
so calms produce bored and frustrated sailors, while a really strong 
wind results in panic.

A knot is the historical nautical speed unit. In the “old days” 
(perhaps all the way back to the Netherlands in the 1500s), a series 
of knots were tied on a rope, separated by about 15 m. (A meter is a 
little more than a yard.) The number of knots paid out to a fixed point 
in the water in about 30 s gave the boat’s speed, U, in knots. Wind 
speeds, W, are also often quoted in knots.

One can use knots, kilometers per hour, miles per hour, furlongs 
per fortnight, or any other unit to characterize speed. The quaint units 
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of the American system and other historical oddities can be avoided 
by always specifying speed in meters per second. It is easy to estimate 
boat speed in meters/second using an analogy of the old knots mea-
surement. If a man overboard at the bow of a boat can be hauled up 
at the stern after 10 s, and if the boat is 10 m long, then you know the 
boat speed is 1 m/s. It must be a light wind. On the other hand, if this 
unfortunate crew zips past the stern after one second, you know the 
boat speed is 10 m/s. It is very windy.

A qualitative characterization of wind speed is the Beaufort scale, 
developed around 1800. This scale places wind speeds into about a 
dozen categories. A modern refinement of the Beaufort scale relates 
the Beaufort numbers, B, to the wind speed, W.

	
W B B= ⋅ ⋅0 836. meters

second 	
(2.1)

The Beaufort number  B = 5 is called Fresh Breeze. Many small boat 
sailors find this wind, which can produce white-capped waves, to 
be more than sufficient. They become nervous at much greater wind 
speeds. Others, particularly sailboarders, happily deal with more 
wind. Table 2.1 compares Fresh Breeze wind speeds in different units. 
It can be used as a conversion table for those more at ease with alter-
nate speed units. For example, doubling the speed in meters/second 
gives the approximate speed in knots.

Desirable wind speeds (for sailors) are similar to the speeds of 
human locomotion. Normal walking at a little more than 1 m/s cor-
responds to a minimum usable wind for sailing. The world’s fastest 
sprinters struggle mightily to obtain the Fresh Breeze speed of 10 m/s. 
Ice boats are a special case. Ice boat speeds of 30 m/s or more, corre-
sponding to automobile highway speeds, can be obtained.

For simple calculations, Fresh Breeze will be taken as 10 m/s and 
Gentle Breeze (3 on the Beaufort scale) to be half that speed, or 5 m/s.

Table 2.1  A comparison of speed measures

Beaufort number Meters/second Kilometers/hour Miles/hour Knots

5 9.35 33.6 20.9 18.2
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2.2 � Forces

Fluid mechanics explains why even a modest increase in wind speed 
makes sailing much more adventurous. The “quadratic approxima-
tion” is the key.

2.2.1 � Quadratic Approximation

The force a moving fluid (air or water) exerts on an object (the sailboat) is 
proportional to the square of the fluid velocity (relative to the sailboat).

As Figure 2.1 shows, increasing the speed by a mere factor of 5 
multiplies forces by 25. This relationship explains why anyone can 
trim a sail in “light air,” but it takes a surprising amount of strength to 
manage the same sail in a Fresh Breeze.

It may appear that someone forgot to label the units in Figure 2.1. 
This is not an oversight. The parabolic shape of the quadratic approxi-
mation has a universal quality, which means it doesn’t matter if the wind 
speed extends from zero to 10 m/s or to 50 m/s, and it doesn’t matter if 
the force is applied to a giant sail or a tiny sailboat hull. It doesn’t matter 
if it is the force of the wind or the force of the water. The shape of the 
curve is always the same. Only the scales on the axes would differ.

Isaac Newton was the first to obtain a plausible justification of the 
quadratic approximation by inventing the “impact theory” of fluid resis-
tance. Volume 2 of Newton’s Principia derives concepts of fluid mechanics 
from basic principles of mechanics, which he was the first to formulate. 

Speed

Fo
rc

e

Figure 2.1  The quadratic relation between speed (of the wind or water) and force (on the sail or 
the boat). Inserted lines show that a 25-fold increase in the force is produce by a 5-fold increase 
in speed.
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To test his theory, Newton dropped inflated hog’s bladders and glass 
balls filled with air and mercury from the top of St. Paul’s Cathedral 
in London. The quadratic approximation was confirmed. If Professor 
Newton plotted his data, the results would resemble Figure 2.1

Even in the “old days,” military concerns have intersected science. 
The relation between force and fluid velocity continues to attract con-
siderable attention because the air resistance of projectile motion has 
obvious military applications.

2.2.2 � Newton’s Impact Theory

Today, Newton’s impact theory is regarded as naïve. However, in 
Newton’s time, much was unknown about the nature of matter. So 
when Newton postulated “corpuscles” of fluid hitting a surface, he 
used this term because atoms and molecules were unknown. With his 
knowledge of mechanics, he could reason that each corpuscle exerts a 
force proportional to its velocity. The flux, or rate at which corpuscles 
hit a surface, is also proportional to the velocity.  The quadratic approx-
imation is a consequence of multiplying the two velocity terms. The 
following fills in some details of the quadratic approximation for wind 
on a sail. It is in the spirit of Newton’s impact theory.

A boat is sailing downwind with its sails extended to capture the 
wind, as shown in Figure 2.2. Visualize each air molecule striking a 
sail to be a tiny bullet with mass, m, and an average speed, V (with 
respect to the boat).

A sail stops the molecular bullets (Newton’s corpuscles). To do so, 
the sail must exert a force on each molecule for a short impact time, t. 
The stopping molecules exert an equal and opposite force on the sail, 
pushing it forward.

For each molecule, one can multiply Newton’s law, f = ma, by the 
impact time t to get

	 τ τ⋅ = ⋅f ma 	 (2.2)
The acceleration a multiplied by time is the wind speed (V = at). 
Thus,

	
f mV=

τ 	
(2.3)
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Equation 2.3 shows, as expected, that the single-molecule force 
f  is proportional to the wind speed. However, during the impact 
time, N molecules hit the sail and all the forces add to give the 
total force FD = N . f. To find N, multiply the number of mol-
ecules per unit volume by the volume of air that hits the sail in 
time t. As is shown in Figure 2.3, this volume is the sail area A 
multiplied by the distance the air moves during the impact time, 
which is x = V . t.

Figure 2.2  A Flying Scot sailboat sailing downwind. (Photograph by Sally Snowden. With 
permission.)
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Thus, the force of the wind is expressed in measurable quantities.

	 F wind air A sail VD ( ) ( ) ( )= ⋅ ⋅ρ 2
	 (2.6)

It is certainly no surprise that the force is proportional to the sail area 
A(sail) and the density of the air r(air). The subscript D, appended to 
the force, F, stands for “drag,” which is a force in the direction of the 
fluid motion. Later “lift” will be encountered with a subscript L.

The impact theory is not restricted to air and sails. Any moving 
fluid (such as water) exerts a force on an object (such as a boat). The 
formula is essentially the same, except r(air) → r(water), A(sail) → 
A(hull), and the wind speed is replaced by the boat speed V → U.

Combining Equations 2.2 and 2.3 gives

	 N A sail V Number Volume= ⋅ ⋅( ) [ ] ( )τ / 	 (2.4)
Multiplying the single molecule force f of Equation 2.4 by N 
gives the total force.

	 F wind m Number Volume A sail VD ( ) ( ) ( )= ⋅ ⋅ ⋅/ 2 	 (2.5)

The number density (Number/Volume) of air is not an easy quantity 
to measure. Surely Newton had no idea how small a molecule was 
and how many molecules were in a cubic meter of air. However, 
multiplying the number density by the mass of each molecule 
gives the mass density of the air, denoted r(air). Today, the mass 
density of air is easily measured, and ρ( ) . /air ≅ 1 25 3kg m .

A

x

Figure 2.3  The sail area, A, multiplied by the distance x the wind travels in the time t gives the 
volume of air that hits the sail in this time.
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2.2.3 � Refinements

Newton was well aware of the limitations of his impact theory. His 
model postulated a fluid that was “thin” so interactions between the 
corpuscles could be ignored. Newton never claimed any fluid to be 
thin and explicitly stated that water was not thin. Nonetheless, the 
impact theory was applied without careful scrutiny, due in part to 
Newton’s fame. Later, Leonard Euler, competing father and son 
Johann and Daniel Bernoulli, and others rejected the impact theory. 
They recognized the complexity of fluid motion. One obvious modi-
fication is illustrated in Figure 2.4.

Surprisingly, even though Newton’s impact theory is flawed, it 
remains a useful qualitative guide. To move from the impact theory 

Figure 2.4  The upper diagram assumes fluid flow is stopped by an object, as in Newton’s impact 
theory. The more realistic picture below shows fluid deflected and slowed by the object.
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to the physical result, the force of Equation 2.6 is written in a modi-
fied form that has become standard notation.

The additional “drag coefficient” CD summarizes a multitude of cor-
rections to the impact theory. Sailors are interested in even small 
changes in the drag coefficient because increased drag from the sail 
produces faster downwind sailing.

The “reasonable” approximation CD(sail) ≅ 4/3 taken from experi-
ments allows us to obtain estimates of downwind sail forces. A mea-
sured drag coefficient, CD, which is close to the impact theory value 
is partly a coincidence. Streamlined objects like centerboards have a 
much smaller CD. Cup-shaped objects like spinnakers produce larger 
drag coefficients. An anemometer made from cone-shaped objects 
attached to an axis works because the drag coefficient of the pointed 
side is considerably smaller than the drag coefficient of the cupped 
side. For flat objects like a sail perpendicular to the wind, CD does not 
change much with fluid speed. The limited variation of CD is evidence 
that the quadratic approximation is a reasonable starting point.

A comment on the mathematics and the equal sign

Sailing physics involves a lot of formulas. Equations of special significance 
are placed in a box. For example, FD = CD r AV2/2 (Equation 2.7) gets a 
box because it determines sailboat speed. Various forms of this equation 
appear again and again, for upwind and downwind sailboat characteriza-
tions. Even though Equation 2.7 is important, one can skip its justification 
in Equations 2.2–2.5. This is indicated by the shading of steps leading to 
the final result.

Some formulas describing the physics of sailing are accurate, but many 
are only reasonable guesses. Newton’s formula F = ma  is written with 
an (=) sign because it is an exact (or essentially exact) statement. FD = 
CD r AV2/2 has an equal sign because it is the definition of the drag coeffi-
cient CD. An accurate approximation, such as the acceleration of gravity g = 
9.8 m/(s)2, is given honorary status with an equal sign. On the other hand, 
CD (sail) ≅ 4/3 is written with the “approximately equal” (≅) sign because 
it is not very accurate. A sail’s drag coefficient could be more or less than 
4/3, but the estimate is not wrong by more than a factor of 2. If an esti-
mate is so questionable that it could easily be wrong by a factor of 2 or 

	
F C AVD

D=
2

2ρ
	

(2.7)
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more, the “roughly equal” (≈) is used. Proportional quantities are indicated 
by (µ). For example, the drag force is proportional to the drag coefficient 
(FD µ CD) even when other quantities like the sail area are not considered. 
Of course, this is illegal math. How many (≅)’s must be multiplied together 
before one gets a (≈)?

2.3 � Boatspeed

The quadratic approximation yields uncharacteristically simple results 
for downwind sailing. Actually, the results are not that simple, but 
sailing in other directions is much more complicated. Although sail-
ing downwind is relatively easy to describe, it is not necessarily a fast 
or exciting direction to sail.

Before proceeding to an answer, be warned that there are many 
reasons for caution and skepticism. The sailboat hull lives in the com-
plicated interface between air and water. Light sailboats can rise up 
and plane over the water. Heavier boats have their speed limited by 
the generation of a wake, which is described in Chapter 8. Since these 
modifications are ignored for now, the results that follow come closer to 
reality for heavier boats sailing in light winds where skipping over the 
water’s surface and wake generation are both relatively unimportant.

2.3.1 � Apparent Wind Speed, V

Anyone who has taken a sailboat ride quickly notices that the wind 
appears to nearly vanish as a sailboat changes from sailing upwind to 
downwind. Three different speeds make this observation precise. They 
are (1) the “true wind speed,” W, which is the wind speed relative to 
the water, (2) the “apparent wind speed,” V, which is the wind speed 
as observed by someone on the moving sailboat, (3) the “boat speed,” 
U, which is also relative to the water. (W for wind, V for viewed wind, 
and U for the speed you are going.) The apparent wind speed, V (not 
the true wind speed W), determines the wind force FD(wind). When 
sailing downwind, the boat’s speed subtracts from the wind speed, so

	 V W U= − 	 (2.8)

When the water is moving, one must make sure to measure all the speeds 
in the above formula with respect to the water. Someone sitting on the 
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shore next to a river could feel no wind at all even though sailboats in 
the river could be moving along smartly, enjoying the relative motion 
of the air with respect to the water. In many situations, water speed and 
direction of motion vary with location. Clever planning is required to 
take full advantage of the complicated patterns of water currents.

2.3.2 � Downwind Speed Ratio, S0

The downwind speed ratio, S0, compares the boat speed to the appar-
ent wind speed.

Slower cruising boats are characterized by S0 < 1. Light sailboats with 
big sails can have a downwind speed ratio greater than unity. Under 
ideal conditions, iceboats can have downwind speed ratios that are 
much greater than unity.

A sailor is normally interested in the boat speed as compared to 
the true wind speed, W, not the apparent wind speed, V. The ratio 
U/W can be expressed in terms of the downwind speed ratio using the 
Equations 2.8 and 2.9 (V = W – U and S0 = U/V). The result is

Equation 2.10 makes good sense. The fraction preceding W is always 
less than unity because you can’t sail faster than the wind when the 
wind is from behind. A graph of U/W as a function of S0 is shown in 
Figure 2.5. For a typical sailboat, the downwind speed ratio is S0 ≅ 1, 
meaning the downwind sailing speed is about half the true wind 
speed, or about 5 m/s in a Fresh Breeze.

2.3.3 � Calculating the Downwind Speed Ratio

The downwind speed ratio, S0, is the key to sailboat speed. So how big is S0 
and how can it be increased? Common sense tells us that a light boat with 
a big sail will be faster than a tubby boat with a stubby sail. The following 
calculation of S0 validates common sense and makes it quantitative.

	
S U

V0 =
	

(2.9)

	
U S

S
W=

+
0

01 	
(2.10)
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Call the wind force on the sail FD(wind). The opposing water 
force on the hull, including a rudder and keel or centerboard, is  
FD(water). No acceleration means the opposing wind and water 
forces are equal.

	 F wind F waterD D( ) ( )= 	 (2.11)

The quadratic approximation as expressed by Equation 2.7 pro-
vides expression for the opposing forces FD(wind) and FD(water)

	

F wind C sail A sail air V

F wat

D D

D

( ) ( ) ( ) ( )

(

≅ ⋅ ⋅ ⋅1
2

2ρ

eer C hull A hull water UD) ( ) ( ) ( )≅ ⋅ ⋅ ⋅1
2

2ρ
	

(2.12)

Equating these forces and remembering that S0 = U/V from 
Equation 2.9 gives an expression for the downwind speed ratio

	
S C sail A sail air

C hull A hull w
D

D
0
2 ≅ ( ) ( ) ( )

( ) ( ) (
ρ

ρ aater ) 	
(2.13)

Equation 2.13 is sufficiently complicated to be a bit discourag-
ing, especially because the underwater cross section A (hull) is not 
simple to estimate. Because the goal of this calculation is insight 
rather than precision, A (hull) is estimated using an ancient result.
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Downwind Speed Ratio = S0

Figure 2.5  The dependence of the ratio U/W = (boat speed)/(true wind speed) on the downwind 
speed ratio S0.
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The downwind speed ratio becomes

	
S C sail

C hull
air A sail L

m boat
D

D
0
2

2
≅ ⋅ ⋅( )

( )
( ) ( )

(
ρ

)) 	 (2.15)

Equation 2.15 is a basic result that summarizes the common sense of 
sailboat speed. It is no surprise that the downwind speed ratio is larger 
for longer boats with bigger sails. It is no surprise that S0 is smaller for 
a heavier boat. However, because these boat properties determine the 
square of S0, their influence on boat speed is not as large as one might 
imagine. For example, doubling the sail area only increases S0 by about 
40%. Quantitative estimates of S0 and the resulting sailboat speeds are 
given in Section 2.6.

In principle, Equation 2.15 tells one how to engineer a faster sail-
boat. To achieve maximum speed, sailboat designers attempt to make 
CD(sail) as large as possible and the counterbalancing hull drag coeffi-
cient CD(hull) should be as small as possible. Practical considerations, 
such as stability, limit the ratio CD(sail)/CD(hull).

It is curious that S0 of Equation 2.15 depends on the density of air but 
not on the density of water. Although it’s harder to push a boat through 
heavier salt water, the boat floats higher, giving it a smaller cross section. 
The two effects cancel. Within the approximations described here, sail-
ing on a lake of alcohol should be neither faster nor slower than sailing 
in ordinary water.

2.3.3.1  Archimedes Principle  “The mass of the displaced water is 
equal to the mass of the boat.”

The boat mass m(boat), which includes the mass of the crew and 
all the extra equipment brought on board, is the product of the 
water density r(water) and the volume of the displaced water. For a 
streamlined hull, the volume is roughly half the boat length L mul-
tiplied by the cross-sectional area A (hull). Thus, Archimedes gives

	
A hull L water m boat( ) ( ) ( )⋅ ⋅ ≅

2
ρ 	 (2.14)

The approximation of Equation 2.14 for the hull cross section 
gives a more practical expression for S0.
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In general, maximizing S0 (and boat speed) is accomplished only 
by sacrificing stability, safety, and sailing ease. An adventurous youth 
will enjoy the large S0 of a light boat with large sails. Old salts are hap-
pier with the comfort of a boat with a modest downwind speed ratio.

2.4 � Wind Shadow

Anyone trying to get out of the wind knows about wind shadows. 
Immediately downwind of any large object, the wind nearly vanishes, 
but as one moves away, the wind gradually returns to its original velocity. 
The same effect occurs with sailboats even though they are moving. A 
wind shadow extends downwind from every sail. Racing sailors should 
avoid one another’s wind shadows. A sailor trying to catch boats ahead 
is not ashamed to cast his downwind shadow on competitors, thereby 
producing some curious downwind tactics, as suggested in Figure 2.6.

Figure 2.6  MC sailboat #2077 is in danger of losing wind because #2444 is close behind and 
in the wind path.
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There is some confusing terminology relating to wind shadows. In 
fluid mechanics, a “wind shadow” is an example of a “wake.” For sail-
ors, wakes are the surface water waves produced by fast boats. They 
are described in Chapter 8.

Physical principles provide an estimate of the extent and severity 
of a wind shadow. As is always the case, the basic ideas come from 
Newton’s laws. Newton tells us that forces always appear as equal and 
opposite pairs. In this case, the wind force driving the boat is exactly 
countered by the sail’s force that slows the wind.

The apparent wind speed (not the true wind speed) in the wind 
shadow is decreased from V to (V – ΔV). The rate at which the 
wind recovers is described by ΔV(x), where x is the distance 
downwind of the shadowing sail. As one moves away from the 
sail and the wind recovers, ΔV(x) becomes smaller and smaller. 
For large enough x, ΔV(x) is insignificant. At the same time that 
the wind is recovering, the size of the wind shadow is growing. 
Its spreading width L(x) and growing cross-sectional area A(x)  
can also be estimated.

An approximation for the change in wind speed in the wind 
shadow starts with conservation of momentum. The sail decreases 
the wind’s total momentum. However, after the wind passes the 
sail, there are no additional forces on the wind. This means the 
decrease in total momentum should not change as one moves 
downwind of the shadowing boat. This momentum change is the 
product ∆V x A x( ) ( )⋅ . Just behind the sail where x = 0, the shadow 
area is roughly the sail area, A A sail( ) ( )0 ≅  and ∆V V( )0 ≅ , 
because there is essentially no apparent wind right behind the 
sail. Conservation of momentum then means that for all x

	 ∆V x A x V A sail( ) ( ) ( )⋅ ≈ ⋅ 	 (2.16)

The wind shadow grows both horizontally and vertically at 
about the same rate. Since A sail L sail( ) ( ( ))≈ 2 and A x L x( ) ( )≈ 2, 
where L(sail)  and L(x)  are the linear dimensions of the sail and 
the wind shadow, Equation 2.15 means

	
∆V x V L sail

L x
( ) ( )

( )
≈







2

	 (2.17)
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As an example, Equation 2.17 means that by the time the wind 
shadow width has increased by a factor of 5, the decrease in wind 
speed will be only about 1/25 the wind speed. This 4% change may be 
difficult to notice.

The wind shadow is actually more complicated than just a decreased 
average wind speed. The edges of the wind shadow are vaguely defined. 
As one would expect, the decrease in wind speed, ΔV, varies smoothly 
and becomes largest at the center of the wind shadow. By interrupting 
the steady flow, the sail increases the random swirling of wind in the 
wind shadow. Thus, a sailboat sitting in the wind shadow of another 
boat is subject to both a decreased average wind speed and increased 
turbulent fluctuations, known by sailors as “dirty air.” The rapid wind 
fluctuations in dirty air make sailing much more difficult.

Sailboats are not the only source of a wind shadow. A hill on a 
windward shore means a decreased wind velocity and increased tur-
bulence. Since hills are bigger than sails, their wind shadows extend 
much farther. It is generally a good idea to avoid sailing directly down-
wind of steep hills.

How far does a wind shadow extend? That is the important question, 
but it is also the hardest question. An estimate of a wind shadow’s vitality 
at distance x downwind of the shadowing boat uses some pretty “shad-
owy” reasoning. The result is based on ideas about turbulence originated 
by Ludwig Prandtl and others in the first half of the 20th century.

The turbulence caused by the shadow includes sideways winds, 
which allow the shadow’s size to grow as it moves downwind. 
Assume the swirling speeds are comparable to the decrease 
in the mean speed ΔV. Then, in a short time dt, a sideways 
speed ΔV would cause the wind shadow to grow by a distance 
δ δL shadow t V( ) ≈ ⋅ ∆ . Here “d” stands for “very small change 
in.” In the same short time dt, the wind shadow has moved 
downwind a distance δ δx t V= ⋅ . This means

	
δ

δ
δ
δ

L x
x

t V
t V

V
V

( ) = ⋅
⋅

=∆ ∆
	 (2.18)

Then using the relation ( ) ( ( ( ))∆V V L sail L x/ /≈ 2  from Equation 
2.17 gives an estimate that requires either calculus or a willingness
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Combining Equations 2.17 and 2.19, the decrease in the average wind 
speed in the shadow for x > L(sail) is

	
∆V x V L sail

x
( ) ( )

/

≈






2 3

	 (2.20)

Wind shadow physics is essentially described by Equations 2.19 and 
2.20. These equations mean that the shadow size should be (very 
roughly) double the boom length at 8 boom lengths downwind. Its 
size will be trippled at 27 boom lengths downwind. At 8 boom lengths 
downwind, the shadowed wind speed has recovered to roughly 3/4 V. 
At 27 boom lengths, it is about 8/9 V. Although this makes qualitative 
sense, the numerical values are only rough guides. This wind shadow 
shape and the wind recovery curve are sketched in Figure 2.7.

to cancel the d ’s in dL(x)/dx. Either way, the result is

	

L x
L sail

x
L sail

( )
( ) ( )

/

≈






1 3

	 (2.19)

x

V

Wind Shadow Edge 

Wind Speed in Shadow

Figure 2.7  A rough outline of a wind shadow that grows slowly as the cube root of the down-
wind distance. The arrows in the wind shadow suggest the decreased wind speed and increased 
turbulence near the sail. Also shown is the recovery of the apparent wind speed as a function of the 
distance x. The loss of wind speed decreases as the 2/3 power of the distance downwind.
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This theory has some pretty bold approximations, and the theoretical 
results do not exactly agree with sailor’s experience. For example, sail-
ing lore says wind shadows extend farther and are more of a nuisance 
in lighter winds. There is nothing in the theory described here (or my 
understanding) that explains a more prominent light wind shadow.

Wind shadows also occur for upwind sailing. The geometry and 
the details are different, and the upwind wind shadow extends in the 
direction of the apparent wind, which is described in Chapter 3.

The wind shadow is not the only consequence of the tit-for-tat sym-
metry of Newtonian mechanics. As the boat plows through the water, 
it drags water behind it and a small current follows the boat. A sailboat 
is a mechanism for transferring the motion (momentum) of the wind 
into motion (momentum) of the water. The wind pushes the boat which, 
in turn, pushes the water. The 800-fold difference between water and 
air densities means the water current following the boat is much less 
noticeable than the wind shadow in front of the sail. However, there 
is still a slight advantage in following directly behind another sailboat 
because of the current it drags behind. The opposite is true behind a 
power boat, because the propeller pushes the water backward.

2.5 � Acceleration

Neither the wind speed nor the sailboat speed remains constant. 
Increases in the wind will accelerate the boat, but it takes some time 
for the boat to respond. Using Newton’s laws (F(total) = ma) means

	
m d

dt
u t F wind F waterD D

* ( ) ( ) ( )= − 	 (2.21)

Here, u(t)  is the boat speed at time t, and the derivative du(t)/dt  is the 
acceleration or the rate at which the speed changes. The two terms on 
the right are subtracted because the force from the wind opposes the 
force from the water. The mass in F = ma has been replaced by an “effec-
tive mass” m*. Objects moving through the water drag some water with 
them, and thereby increase their effective mass. A famous but compli-
cated calculation for a deeply submerged object moving through a fluid 
with no viscosity shows that the effective mass is increased by 50%, so 
m m boat* ( )= 3 2/ . This is another result that deserves a skeptical recep-
tion. Sailors certainly hope their boats never become deeply submerged 
objects, and the assumption of zero viscosity is surely wrong.
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The equation for downwind acceleration simplifies when S0 = 1, 
which is a typical value for the downwind speed factor. In this case, 
Equation 2.21 simplifies to

	
d
dt

u t U u t U( ( ) ) ( ( ) )− = − −1
τ 	 (2.22)

Equation 2.22 is a precise way of stating the obvious. The boat slows 
down when u(t) is greater than the steady-state speed U, and it will 
speed up if u(t) < U. An example result for the acceleration of a boat 
whose initial speed was only half of U is shown in Figure 2.8

The time it takes to approach the steady-state speed is the “time 
constant” t. Nearly 2/3 of the speed change is accomplished in one 
time constant t. The significance of this quantitative description is a 
relatively simple expression for the time constant, which is presented 
in the following section.

2.6 � Examples

2.6.1 � Force and Power

Force and power vary a great deal with the wind speed. The sail force 
is essentially given by Equation 2.7, written more explicitly as

	
F wind C sail air A sail VD

D( ) ( ) ( ) ( )= ⋅ ⋅
2

2ρ 	 (2.23)

4
Time/τ

Sp
ee

d/
U

1 2 3

0.25

0.5

0.75

1.0

Figure 2.8  The time dependence of boat speed that is initially moving at half the steady-state 
speed U.
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In order to sail well in light winds, the sail area A(sail) should be quite 
large. But then FD(wind) is dangerous in heavy blows. If it is too 
windy, sailors can reduce the force by decreasing the sail area. To keep 
the force constant, a doubled apparent wind speed V would require 
reducing the sail area by a factor of four.

The force is also proportional to the air density r(air), which is 
roughly 10% smaller on a hot day than it is on a cold day. Altitude 
and barometric pressure also make a difference in the density. If a 
sailor takes a boat from sea level to a regatta near Denver, Colorado, 
the density r(air) and the corresponding force of the wind will be 
decreased by about 15%. These variations in density (and the wind’s 
force) could influence a sailor’s decision on how much crew weight 
is needed or which sail to use. Even though high humidity makes 
muggy air feel heavy, water molecules are lighter than the oxygen and 
nitrogen molecules of dry air, so higher humidity means a smaller 
force. In practice, high humidity has a much larger effect on a sailor’s 
mood than it does on the air density or sailing physics.

One can check out the force formula for a “typical” condition. 
An example is a Thistle sailboat shown in Figure 2.9 whose sail area 
is A = 17.75 m2 (ignoring spinnaker) sailing downwind in a Fresh 
Breeze W = 10 m/s. For simplicity, assume the steady-state speed U 
is half the true wind speed W so V = W/2. Assuming the sail’s drag 
coefficient is C(sail) = 4/3 means F Thistle Fresh BreezeD ( : ) ≅ 370 N. 
This is about half the force needed to lift a person off the ground. 
(For people living in the United States, Myanmar, and Liberia, a 
Newton is between a fifth and a quarter of a pound. For a traditional 
Britisher, one stone is 31 N.) Since the force is proportional to the 
square of the wind speed, the force in a Gentle Breeze, W = 5 m/s, is 
four times smaller, or about 92 N.

Physically, the force on the sail results from a pressure difference Δp 
between the windward and leeward sides of the sail. The force is the 
average pressure difference multiplied by the sail area A. For the down-
wind Thistle sailboat example, this gives ∆p Fresh Breeze( ) ≅ 21 N/m2

. This pressure difference between the two sides of the sail is only 
one part in 5,000 of the 100,000 N/m atmospheric pressure. For all 
practical purposes, there is just as much air on the back side of a sail 
as there is on the front. In a Gentle Breeze with half the wind speed, 
the pressure difference is four times smaller.
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Wind powers the sailboat in a real sense because force times veloc-
ity is power (at least for downwind sailing). Multiplying a Fresh 
Breeze force on the Thistle by the boat speed of 5 m/s gives an esti-
mated Thistle power as Power Thistle Fresh Breeze( : ) ≅ 1 850, W. The 
1,850 W is about the same as 2.5 hp, but the wind will push the boat 
faster than a 2.5 hp engine because the 2.5 hp rating is the maximum 
power in the drive shaft. The conversion of this power to force on the 
boat through the action of a propeller is not very efficient.

The force and power estimates can be performed for the boat of your 
choice. The force on a Laser sailboat is less than half that for a Thistle. 
On the other hand, the force on an America’s Cup boat with a sail area of 
around 300 m2 (again ignoring spinnaker) is F America sD ( )’ ≅ 6 250, N, 
which is about 42 hp. However, as is described in Chapter 10, it is never 
advantageous for an America’s Cup boat to sail directly downwind.

For boats of any size, the force is proportional to the square of the 
speed, and the power is force times speed. In other words, the power 

Figure 2.9  The Thistle sailboat sailing approximately downwind. The raised spinnaker and low-
ered jib change the sail area estimate.
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is proportional to the cube of the wind speed. The power in Gentle 
Breeze (with half the wind speed) is only one-eighth the power in 
Fresh Breeze.

A sailboat provides a vivid illustration of the wind’s power. One 
could attach a sailboat to an electric generator and harness the wind, 
but there is a more practical way to help supply the world with energy. 
A modern wind turbine (windmill) whose blades sweep out an area 
A does a better job in harvesting the power of the wind. For both 
sailboat and wind turbine, the power is proportional to the cube of 
the wind speed, which explains why wind turbines are of almost no 
use in locations where the average wind speed is small. In practice, 
wind turbines are designed with a maximum wind speed limit, so the 
Power W∝ 3 relation has an upper limit.

Wind turbine efficiencies are often compared to a theoretical maxi-
mum power called “Betz’s law,” which says,

	
P Betz air W A(max; ) ( )= 16

27
3ρ 	 (2.24)

A comparison with sailboat power yields a similar expression. The 
sailboat power is

	
P C sail air U W U A sailD= −1

2
2( ) ( ) ( ) ( )ρ 	 (2.25)

This power takes its maximum value when U = W/3. The wind does 
more work on a relatively slow sailboat because it must push harder. 
At this slow speed

	
P Sail C sail air W A sailD( ) ( ) ( ) ( )= 2

27
3ρ 	 (2.26)

The value of P (sail) depends on the drag coefficient, CD(sail). Assuming 
this drag coefficient is roughly unity and assuming wind turbines are 
half as efficient as the Betz’s law maximum, one concludes that sail-
boats are only one-fourth as effective as wind turbines in extracting 
the wind’s energy.

Betz’s law is not a rigorous bound because there are special situa-
tions where the drag coefficient CD can become very large. In principle 
only, P sail P Betz( ) (max; )>  is a possibility. This violation can occur 
because a very small object in the path of a very slow wind acquires 
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a very large drag coefficient. This low Reynolds number limit is never 
of interest to sailors or the manufacturers of wind turbines. However, 
the low-speed and small-size limit is an important footnote in the 
history of physics. In 1909, Robert Millikan used the drag force on 
slowly falling tiny drops of oil to obtain the first measurement of the 
electron’s charge.

2.6.2 � Real Boat Speeds

The numerical estimates of force and power assumed the steady-state 
downwind sailboat speed, U, is half the wind speed, W. In principle, 
this can be checked using the previously derived formulas

	
U S

S
W=

+
0

01 	 (2.10)

and

	
S C sail

C hull
air A sail L

m boat
D

D
0
2

2
≅ ⋅ ⋅( )

( )
( ) ( )

(
ρ

)) 	 (2.15)

Using the Thistle sailboat as a generic example, the mass m(boat) of 
the boat and crew is typically 400 kg. The boat length L is 5.18 m, and 
the sail area is 17.75 m2. This means

	
S C sail

C hull
D

D
0
2 1

7
≈ ( )

( ) 	 (2.27)

The guess for the sail was C(sail) = 4/3. For a sphere, CD ≅ 2/5 (or less). 
If the hull had one-third the drag coefficient of a sphere, one obtains 
S0 = 1, and thus U = W/2. It would appear that a streamlined design 
could make CD(hall) even smaller, which would imply sailboat speed 
significantly larger than half the wind speed. An ideal CD(hall) is dif-
ficult to achieve because of wake generation, stability considerations, 
and other practical limitations of hull shapes.

Since the square of the speed ratio is proportional to the sail area 
divided by the boat’s mass (S A sail m boat0

2 ∝ ( ) ( )/ ), the simplest way a 
sailor can increase downwind boat speed is to increase the sail area 
A(sail) or decrease the boat mass m(boat). This outcome can be achieved 
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by raising a spinnaker or taking on a lighter crew. Attempting to go 
faster is not as rewarding as one would hope. For a “typical” case 
where S0 ≅ 1 and the boat speed is about half the wind speed, a 4% 
decrease of m or increase of A(sail) results in a 2% increase in S and 
only a 1% change in boat speed. If one wishes to travel at three-frouths 
the wind speed downwind, one would have to achieve an unrealistic 
S0 = 3. Although variations in S0 are small, they are not insignificant 
for racing sailors.

On light boats, a change in crew weight can make a difference. The 
mass of a Laser sailboat is only 57 kg. In theory, a light Laser sailor 
whose mass is 57 kg will be faster downwind than an 87 kg Laser sailor. 
The theoretical speed difference is about 5%. At the end of a run that 
is 1 km long, the lighter sailor should gain about 50 m on the heavier 
sailor. The situation on lighter boats is actually more complicated 
because proper crew placement, which may be done more effectively 
by a heavier crew, can decrease the hull drag. Also, when it is windy 
the extra weight can increase stability even for downwind sailing. For 
heavier boats, the advantage of a lighter crew is much less significant.

The speed advantage of raising a spinnaker is more apparent. If 
the extra sail increases the effective sail area by 50%, then the boat 
speed will increase by about 10% (again, assuming U/W ≅ 1/2 ). It is 
not so easy to estimate the effective area of a spinnaker because sails 
overlap.

2.6.3 � A Check

The simplified theory says that on calm or windy days, sailboats 
should sail downwind at about half the wind speed. In practice, sail-
boats run into problems when the wind increases. Some typical results 
in Figure 2.9 show the ratio of downwind boat speed to wind speed 
for four sailboats. In order from slowest to fastest, they are the Cal 
40, Beneteau 17.7, Grand Soliel 40, and the Fastcat 435. Except for 
the catamaran (Fastcat 435) these boats can achieve half the wind 
speed only in relatively light winds. Wake formation and overpowered 
sails at higher speeds are probably the major causes of decreasing U/W  
when the wind blows hard. A fairly large variation in S0 is needed to 
produce the modest differences in boat speeds shown in Figure 2.10. 
The catamaran’s 57% of the wind speed corresponds to S0 ≅ 4/3, which 
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is significantly larger than the S0 ≅ 1 for the two slower sailboats. The 
wide stance of the catamaran allows it to have a relatively large sail 
area while maintaining a light weight, leading to a larger value of S0.

Results shown in Figure 2.10 should be taken as qualitative indica-
tions rather than precise measurements. The wind is never steady and 
wave conditions are never the same. Figure 2.10 is also misleading 
because it suggests that there is little speed difference between sail-
boats. This is only true for downwind sailing. For other sailing direc-
tions, the speed difference is amplified, and fast sailboats can have 
twice the speed of slower boats.

2.6.4 � Better Speed Calculations

The formula U WS S= +0 01/( ) from Equations 2.10 is primitive. The 
simplest approximation for the speed ratio S0 depends only on the mass 
m, sail area A(sail), length L, and guesses for the drag coefficients. 
Although m, A(sail) and L are basic to determining speed, many other 
sailboat properties enter into any realistic estimate of speed.

An alternative and practical way to find a formula for boat speeds 
is to compare the speeds of real sailboats in real sailing situations. An 
example formula that has been used for larger boats with keels is the 
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Figure 2.10  The ratio of downwind sailboat speed to wind speed for (from slow to fast) Cal40, 
Beneteau 17.7-shallow draft, Grand Soliel 40, Fastcat 435.
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Schell Regression Formula

   

U
K K K A K K L KA

m
P

J E
d
A

=
− ( ) + − ( ) − + ( )+

1

1 2 3
2

4 5 61 3
2

/

	 (2.28)

In this monster formula, K1, K2, K3, K4, K5, K6 are numbers picked to 
give a good fit to observed speeds of different sailboats. As before, A 
stands for sail area, m is the mass of the boat, and L is its length. Also 
(and approximately), P and E are the height and length of the main-
sail, J is the distance from the mast to the bow, and d is the depth of 
the keel.

The Schell Regression Formula doesn’t look anything like Equation 
2.10, U WS S= +0 01/( ). As is usually the case, a phenomenological 
formula fits the data better than an oversimplified theory. However, 
there is no fundamental justification for Equation 2.28.

If one desires an accurate and realistic calculations of a sailboat 
speed, both the simple expression U WS S= +0 01/( ) for downwind 
sailing and the Schell Regression Formula are far from the last word. 
Simple formulas can describe only simplified physics. Vastly more 
complicated calculations are needed to do a good job. Many equa-
tions relating many variables are needed, and some of these equations 
must be based on experimental results rather than theory. Computers 
are good at dealing with this messy business. Commercially available 
computer-generated velocity prediction programs give fairly accurate 
results, especially for standard heavy-duty sailboats. The most sophis-
ticated calculations are closely guarded secrets, for obvious reasons.

2.6.5 � Acceleration

The acceleration described by Equation 2.22 has a simple interpreta-
tion, as is illustrated in an example. Two identical sailboats are ini-
tially next to each other. They each wish to sail downwind. However, 
one of these boats is stopped dead in the water while the other is sail-
ing with the steady speed U. It takes the stalled boat roughly one time 
constant t to get moving. By the time the stalled boat is up to speed, 
the total distance lost is

	 X U= τ 	 (2.29)
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Doing the algebra needed to derive the time constant gives a relatively 
simple expression for the distance lost.

	
X L

C hullD
≈ 3

8 ( ) 	
(2.30)

Hull-drag coefficients are typically considerably less than unity. 
Roughly speaking, this means that when a sailboat completely stops, 
it will lose a couple of boat lengths (or more) before it is up to speed 
again. Since X does not depend on the wind speed, the distance lost 
is (approximately) the same in light air and heavy winds. In very light 
air, it takes a long time to regain speed. The lesson from all of this is 
“don’t rock the boat,” especially in light winds.

Although it was derived for downwind sailing, the distance X is a 
rough guide to the response of a sailboat for all sailing directions. An 
example is tacking when sailing upwind. Typically, one boat length 
is lost when one makes the roughly 90° turn needed to change the 
wind from one side of the boat to the other. Much of this lost distance 
occurs after the tack is finished and the boat is regaining speed. The 
lesson: the best tack is not the quickest tack; it is the tack in which 
the least speed is lost during the maneuver. A tactical consequence of 
this result tells a sailor that it is better to tack in a strong wind than a 
calm. The distance lost in each case is the same, but more time is lost 
in light air. In the final analysis, time is what counts.

This example is, like all the examples, an oversimplification. There 
is a second delay time that has been ignored. When a boat changes 
orientation or sail trim, it takes a little time for the wind pattern to 
settle down to its steady-state motion. So the sailboat that is stalled 
and suddenly aims downwind must wait for the pressure to develop on 
the sail. Generally, the time to accelerate the boat is the larger time, 
and loss of time should not be blamed on a lazy wind.

2.7 � The Speed Limit

Downwind sailing has a speed limit. No matter how big the sail, and 
no matter how light the sailboat, sailing downwind faster than the 
wind is impossible. Only a sailboat that weighs nothing (a balloon) 
can keep up with the wind.
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There is also a speed limit in special relativity. Only a zero mass 
particle (a photon) can move with the speed of light. But this is the 
end of the analogy. Light speed is associated with physics being 
the same in every coordinate system. Boat speed is limited because 
the physics is different in every coordinate system. In particular, a sail-
boat moving at wind speed is in a special coordinate system in which 
one feels no wind at all, so there can be no force on the sails.

The formulas presented here are approximations. Errors can be 
considerable. But the speed limit is absolute and does not depend on 
formulas. The explanation of this speed limit is the essence of down-
wind sailing.

The boat is pushed ahead by the wind.•	
The water pulls the boat back.•	
The boat accelerates until the wind and water forces are equal.•	
The boat’s speed subtracts from the wind speed, so the wind •	
force vanishes as the boat speed approaches the wind speed.

There is no speed limit for upwind sailing. Upwind sailing can be 
more exciting.
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3
Upwind—The Hard 

Direction

3.1 � Overview

Sailing against the wind is mysterious. It is easier to sail upwind than 
to understand it. Sitting on a sailboat, you see the water moving past 
from bow to stern. The wind is coming slightly from the side, but it 
can also be mostly from the bow. How can a sailboat move against 
both the wind and the water?

Lift is the key. Sailing upwind, as shown in Figure 3.1, is possible 
only because the wind’s force is not parallel to the wind direction, 
and the water’s force is not parallel to its motion relative to the boat. 
Combining lift from the wind with lift from the water produces the 
miracle of upwind sailing. Lift also produces the miracle of flight, 
but sailing upwind is more complicated. Birds and airplanes must 
contend with only a single fluid—air. Sailing is the story of two 
fluids (air and water), and the boat that lies at their interface.

3.1.1 � Lift and Drag

For sailors, lift and drag are the essence of fluid mechanics. Drag is 
simple. When wind or water pushes something in the direction it is 
moving, it is a drag. The drag force is denoted FD in general. When 
the distinction is needed, drag from the wind and water are denoted 
FD(wind) and FD(water). Lift is drag’s exciting partner, which pushes 
perpendicular to the drag. For an immediate experience of lift and 
drag, stick your hand out the window of a speeding car and feel the 
variations of the force as you tilt the orientation of your hand. Lift 
lifts your hand and drag pulls it back. The lift force is denoted FL, 
FL(wind) or FL(water), as is appropriate.

The sum of the perpendicular lift and drag forces from either the wind 
or the water is a vector, denoted F

→

, F
→

 (wind) or F
→

 (water). Little arrows 
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over a total force mean it has both magnitude and direction. Examples of 
lift and drag forces and their vector sums are shown in Figure 3.2.

3.1.2 � Wind Direction

Which way is the wind blowing? This is a tricky question on a sailboat. 
The air is moving (wind), the boat is moving, and sometimes the water 
is moving (current). The boat’s velocity with respect to the water is U

→

. 

FD
F

Water
Flow

Air
Flow

FL FL

FDF

(a) (b)

Figure 3.2  Lift and drag forces for shapes similar to the cross sections of a centerboard (a) and 
a sail (b).

Figure 3.1  Thistle sailboats sailing upwind. The boat on the right is on starboard tack because 
the wind is coming from its starboard side (right side when facing forward). The other boat is on port 
tack. (Photograph by Sally Snowden. With permission.)
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The arrow over the U
→

 means it is another vector with both magnitude 
and direction. Without the arrow on top, U means the speed without 
reference to a direction. The “true wind” velocity (with respect to the 
water) is another vector W

→

. The apparent wind velocity V
→

 represents 
the wind observed on the moving sailboat. Note: Traditional terminol-
ogy for wind directions (W

→

 and V
→

) is confusing. The velocity vector for 
a “north wind” points south, which is the direction the air is moving.

The true wind velocity W
→  is the vector sum of the boat’s velocity U

→

 
and the apparent wind velocity V

→

:

A special case of Equation 3.1 for downwind sailing is Equation 2.8 
where (in this special case) V = W – U means the apparent wind speed 
is obtained by subtracting the boat speed from the true wind speed. 
For sailing in any other direction, the vectors must be treated with 
respect. Graphically, Equation 3.1 describes a “velocity triangle,” with 
sides of length W, U, and V. An example is shown in Figure 3.3. The 
three angles of the velocity triangle are defined in the sense used by 
sailors, which is a little unconventional. The “true wind angle,” w, is the 

W
V

U
w

w-v

v

Figure  3.3  A velocity triangle illustrating W
→ 

= V
→ 

+ U
→

. The smaller letters w and v are the 
angles between the wind source and the boat velocity, and (w – v) is the shift in the apparent wind 
direction.

	
r r r

W V U= + 	 (3.1)
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angle between the direction the true wind is coming from and the 
direction the sailboat is moving. A boat pointing directly at the wind 
corresponds to w = 0, and downwind is w = 180°. The “apparent 
wind angle” v is defined in the same eccentric way, with the apparent 
wind replacing the true wind. The third angle is the “apparent wind 
shift,” (w – v). It is the angle the apparent wind is rotated from the 
true wind direction by the boat’s motion.

3.1.3 � Forces

Upwind sailing is a vector generalization of the downwind case. The 
steady-state condition means the wind and water forces are equal and 
opposite, so

On the sailboat, the wind that matters is the apparent wind. So the 
forces on a sailboat are expressed most directly in terms of the appar-
ent wind speed V and the apparent wind angle v.

For the example in Figure 3.4, the apparent wind V
→

  is a “north wind” 
blowing south, so the wind’s drag is directed south (bottom of page), and 
the wind’s lift is to the east (right). The water’s drag is opposite the boat’s 
velocity U

→

, and the lift (perpendicular to U
→

) is produced by a small side-
ways motion of the sailboat. In this example, the angle v between U

→

 and 
(–V

→

) is 50°, and the boat’s orientation is rotated an almost imperceptible 
4° from U

→

 toward (–V
→

). Because the boat is moving, the true wind W
→

 in 
this example is from a direction west of north.

V
U

F(wind)

F(water)

Lift

Lift

DragDrag

Figure 3.4  A force diagram showing the lift and drag components of the wind and water forces on 
a sailboat. When sailing at a constant speed, F

→

(wind) and F
→

(water) are equal and opposite.

	
r r

F wind F water( ) ( )+ = 0 	 (3.2)
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At this stage, one could look at the force diagram and say “OK, 
that’s how it works. Let’s go sailing.” But if sailing does not go as 
planned, one may be motivated to ask how the forces could be changed 
to make sailing faster, safer, or more comfortable. In principle, sailing 
performance can be improved through a better understanding of what 
pushes the sailboat. In practice, my sailing fiascos provide ample evi-
dence that sailing physics alone does not produce a winning sailor.

Sailboat forces can be pretty confusing. Iceboating may not be 
easier than sailing, but it is easier to understand. So this example is 
considered first.

3.2 � Iceboats

Until the 20th century, iceboating was the fastest known mode of 
human transportation. In 1888, the first automobile speed record was 
established at 17.5 m/s. For trains, the record speed in 1890 was 40 m/s. 
At essentially the same time, 1888, an iceboat on the Hudson River was 
reported to travel faster than the car or the train at nearly 48 m/s. An 
article from the January 22, 1871, edition of The New York Times describes 
a race between a “lightning train” and two iceboats, the Zephyr and the 
Icicle, on the Hudson River near Poughkeepsie, New York. The iceboats 
won. If the same race were held today, an iceboat could still win because 
trains traveling along the Hudson don’t go very fast. Unfortunately, 
the Hudson at Poughkeepsie hasn’t frozen solid for many years. Trains 
haven’t changed much in over a century, but they don’t make winters like 
they used to. Modern iceboats, such as those in Figure 3.5, are generally 
much smaller than the iceboats of a century ago.

The extraordinary speed of iceboats seems to defy logic. They can sail 
at four (some claim five) times the speed of the wind. When the iceboat 
speed is greater than the true wind speed, the apparent wind is unavoid-
ably from the bow. Only the magic of lift forces allows such speeds.

Friction destroys tidy physics theories. This is certainly the case 
for sailing in water. The water’s drag force means one must construct 
messy diagrams and resort to computer programs to accurately estimate 
speed. Even the bare-bones description of sailboat speeds presented 
in Section 3.3 is not really simple. For iceboating, the ice friction is so 
small that an idealized frictionless model provides a reasonable first 
approximation of this fast but cold version of sailing.
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3.2.1 � Iceboat Forces

Assume the idealized runners on an iceboat present no drag force for 
forward motion, even though they completely eliminate sideslip. If 
an iceboat equipped with these perfect runners were to zip along on a 
frictionless ice surface, one might think it could be accelerated with-
out limit. That is not the case because the apparent wind direction 
shifts toward the bow as speed increases. When the iceboat goes fast 
enough, the apparent wind blows it backward. The idealized iceboat 
will accelerate until the wind’s accelerating force vanishes. As shown 
in Figure 3.6, the approximation of vanishing ice drag simplifies the 
force diagram. There are only three nonzero force components.

Because the ice force F
→

(ice) is entirely lift, it is perpendicular to 
the iceboat’s velocity. The opposing wind force F

→

(wind) is also abeam. 
For this geometry, the apparent wind angle v is also the angle between 
the wind’s lift and the wind’s total force, as is shown in the Figure 3.6. 
Trigonometry (tan = opposite/adjacent) relates the apparent wind angle 

Figure 3.5  No matter which direction they are sailing, iceboat sails should be trimmed in tight. 
(Photograph by Stéphane Caron. With permission.)
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to the lift-and-drag forces. Omitting the unnecessary (wind) qualifier,

In practice, an iceboat accelerates until the apparent wind angle is as 
small as possible. This occurs when the lift-to-drag ratio is as large 
as possible, and the maximum ratio is denoted [L/D] = max{FL/FD}. 
This result is peculiar. It says the apparent wind angle is always the 
same because tan(v) = 1/[L/D], and [L/D] is a property of the iceboat, 
not the direction or magnitude of the wind. Iceboats (and their sails) 
are designed to maximize [L/D], so the apparent wind angle v is as 
small as possible. As a result, the wind is always blowing in your face. 
Although chilled iceboaters might wish it were different, the wind is 
never at your back.

3.2.2 � Iceboat Speed Diagram

When sailing in a sailboat or an iceboat, what direction should one 
sail to go most quickly upwind or downwind? A speed diagram (also 
called polar diagram, or just “polar”) explains everything and tells a 
sailor which direction to sail. Directions on a speed diagram are like 

V

Drag
Lift

F(wind)

F(ice)

v

v

Figure 3.6  In the approximation of vanishing ice drag, the ice force F
→

(ice) and the wind force 
F
→

(wind) are both perpendicular to the iceboat velocity.

	
tan( )

[ ]
v

F F L DL D
= →1 1

/ / 	 (3.3)
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directions on a map. North, corresponding to the true wind angle 
w = 0, is at the top. East with w = 90° is to the right and so on. A 
point at the center of the map (the origin) is the initial position of a 
sailboat or iceboat. A curve surrounds this central point. Each point 
on the curve corresponds to a boat’s position after sailing in the given 
direction for a fixed time (say, 1 min). For each direction, the distance 
to the curve is proportional to the boat’s speed, so the speed diagram 
is really a graphical representation of speed. Since neither iceboat nor 
sailboat can sail north in a north wind, the speed diagram shows a 
range of directions close to north where sailing is impossible.

The speed diagram for the idealized iceboat has a surprisingly simple 
shape. There are two keys to an algebraic construction of the iceboat 
speed diagram. The first key is Equation 3.3, tan(v) = 1/[L/D], which 
was derived by ignoring the ice drag. The second key is a “speed-angle 
formula,” which can be derived from the velocity triangle shown again 
in Figure 3.7. This time the little sailboat has been omitted and an extra 
line of length d has been added to the triangle. The extra line is per-
pendicular to the side V and meets the sides U and W at their vertex. 
Trigonometry (sin(q) = opposite/hypoteneus) means d = U sin(v) = W sin 

W V

U

w-v

d

v

w

Figure 3.7  The extra line labeled d in the velocity triangle allows one to derive the iceboat speed 
equations that give the speed, U, as a function of the true wind angle, w.
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(w – v). From this, one obtains the speed-angle-formula

The notation is changed a little. Since the iceboat speed depends on 
the true wind angle, w: U → U(w).

These keys are sufficient to show that the idealized iceboat speed 
diagram is the double-circle of Figure 3.8.

3.2.3 � Derivation of Iceboat Speed Diagram

Algebra and Equations 3.3 and 3.4 yield a simple double-circle form 
for the iceboat speed diagram.

	
U w W w v

v
( ) sin( )

sin( )
= − 	 (3.4)

The demonstration comes in three parts: Part 1 presents the 
equation for a circle in polar coordinates; Part 2 shows the speed-
angle formula is really the circle equation of Part 1; Part 3 adds 
the second circle.

Figure 3.8  The speed diagram for an idealized iceboat whose maximum speed is twice the wind 
speed. The dotted circles indicate the wind speed and double the wind speed.
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3.2.4 � Iceboat Speed Diagram Interpretation

The idealized iceboat speeds are proportional to the wind speed. Thus, 
only one speed diagram is needed, and distances from the origin of 
this diagram represent the ratio of the iceboat speed to the wind 
speed. The two dotted circles in Figure 3.8 denote speeds equal to and 
double the wind speed. Nine arrows have been drawn to illustrate the 
speed for some representative directions. Reading top to bottom, the 
arrows on the right correspond to port tack directions that produce 
(1) the optimum velocity for upwind sailing, (2) sailing perpendicu-
lar to the true wind, (3) the velocity with the largest speed, which is 
double the wind speed in this example, (4) the optimum velocity for 
downwind sailing, and (5) downwind sailing with a speed equal to 
the wind speed. The superposed little iceboats show that the sail angle 
is the same for every sailing direction because the apparent wind angle 
v never varies for this idealized iceboat model.

It is never fastest to sail an iceboat directly downwind. If you want 
to go south, jibing downwind (sailing southwest and then southeast) is 

Part 1: In polar coordinates, r = sin(q) describes a circle. 
To show this, multiply both sides of the equation by r to 
obtain r x y r x2 2 2= + = =sin( )θ , which can be rewrit-
ten  ( )x y− + =1 2 1 42 2/ / . This is the equation of a cir-
cle with unit diameter centered at x = 1/2, so the circle 
passes through the origin.

Part 2: Starting with the speed-angle formula, U(w) = 
W  sin(w – v)/ sin(v). Let r = U(w)sin(v)/W and q =  
(w – v). Since W and v are fixed, U(w)sin(v)/W describes 
a circle with unit diameter as q (or w) is varied. Multiply 
by W/sin(v) to obtain a circle with diameter W/sin(v) 
when U(w) is plotted as a function of w. Because q has 
been replaced with (w – v), the circle is rotated so that it 
passes through the origin when w = v.

Part 3: The circle of  Part 2 describes sailing on a port tack. 
Changing the sign of w and v gives the mirror image circle 
for sailing on starboard. Combining the two circles produces 
the double-circle form of the idealized iceboat speed dia-
gram shown in Figure 3.8.
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quicker. The geometry of a circle means the iceboat’s optimum upwind 
velocity (1) is perpendicular to its optimum downwind velocity (3). 
This is not the case for ordinary sailboats, and jibing downwind is not 
a smart strategy for slow sailboats. Of course, all sailing craft of any 
speed must tack upwind (sailing northwest and then northeast).

The speed diagram in Figure 3.8 was drawn for an iceboat of moder-
ate speed in ideal conditions, where the maximum speed is double the 
wind speed. For this case, sin(v) = 1/2, which means the apparent wind 
angle is v = 30° and tan( )v = 1 3/ . Thus, the sail’s lift-to-drag ratio is 
[ ] .L D/ = ≅3 1 7, which is not a difficult lift-to-drag ratio to achieve.

In this idealized view, iceboats are distinguished only by their lift-
to-drag ratios. A comparison to two iceboats with different values of 
[L/D] is shown in Figure 3.9. The inner dotted curve is the same speed 
diagram as shown in Figure 3.8, corresponding to an iceboat whose 
maximum speed is twice the wind speed. The outer speed diagram 
corresponds to a very fast iceboat whose maximum speed is 3.5 times 
the wind speed. To achieve this speed requires [ ] .L D/ /= =3 5 2 3 35. 
Sails can provide a ratio of lift to drag forces that is this large. However, 
the ratio [L/D] includes the wind drag on the hull and the cold ice-
boater. Fast iceboats are designed to be as streamlined as possible to 
minimize this drag because it has a dramatic effect on the speed.

Figure 3.9 also shows that the faster iceboat makes quickest prog-
ress to windward at a smaller wind angle w than the slower iceboat. 
This is often not the case for sailboats.

Regardless of speed, these iceboat speed diagrams always have two 
points in common. One is the origin corresponding to zero speed 

Figure 3.9  A comparison of two iceboat speed diagrams whose maximum speeds are twice and 
3.5 times the speed of the wind. The arrows show the directions these two iceboats would sail for 
maximum progress to windward, for maximum speed, and for maximum progress downwind.
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when sailing directly at the wind. The second common point is at the 
vertex due south of the origin that corresponds to inefficient down-
wind sailing at the speed of the wind.

3.2.5 � Ice Friction

Even the smoothest ice slows an iceboat and destroys the simple ele-
gance of the double-circle iceboat speed diagram shown in Figure 3.8. 
Reality shrinks and distorts the circles. When a smooth object with 
mass m moves over smooth ice, the drag force is approximately 
described in terms of a friction coefficient m.

	 F iceD ( ) = µmg 	 (3.5)

The coefficient of friction for ice can be as small as 0.02, and it actu-
ally decreases a little with speed. This is completely different from the 
lift and drag forces of fluid mechanics that are proportional (approxi-
mately) to the square of a speed. The weight of a DN (named for the 
Detroit News) iceboat plus crew is roughly mg = 1300 N. Thus, the 
drag force computed from the coefficient could be as small as 25 N, 
which is the force needed to lift two champagne bottles. The sail area 
of the DN is only about 5.5 m2. However, if the iceboat speed is really 
several times the wind speed, the corresponding sail force can be hun-
dreds of Newtons. Thus, the friction force really can be a small fraction 
of the wind force on a windy day. When this is the case, the idealized 
double-circle speed diagram is a reasonable approximation.

Ice is seldom ideal. Roughness or a little snow significantly increases 
the coefficient of friction. Also, the iceboat runners must cut into the 
ice in order to prevent sideslip. This will also increase the drag, but the 
magnitude of the effect is difficult to estimate. The ability of iceboats 
to move very fast is proof that the drag is small.

3.3 � Sailboat Speeds

A sailboat has a speed diagram analogous to the iceboat speed dia-
gram, but calculations of sailboats speeds are long and tedious. One 
can avoid the tedium by skipping to the results in Section 3.3.7.

Sailboats are slower than iceboats because a sailboat must push 
the water out of its path. Water’s drag complicates the forces and the 
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geometry. Even computations based on numerical simulations and 
measured forces yield only approximate results. Despite the complex-
ity, three key sailboat properties go a long way to determine sailboat 
speeds. These are:

	 1.	The downwind speed ratio S0. This is the same S0 used to 
describe downwind sailing.

	 2.	The wind’s lift-to-drag ratio [L/D](wind), evaluated at maxi-
mum lift.

	 3.	The water’s maximum lift-to-drag ratio [L/D](water).

The following will describe sailboat speeds entirely in terms of these 
three numbers. If sailboats had feelings, they would be insulted at the 
prospect of being described by only three numbers, and they would 
rightly insist that they deserve a more sophisticated characterization.

An Aside on Physics and Approximations

Despite appearances to the contrary, one goal of physics is simplicity. A 
search for simplicity can lead to important physical discoveries, like the 
heliocentric theory of our solar system. But sailboats are not solar systems. 
There is nothing profound to be discovered through a search for sailboat 
simplicity. Ignoring details by reducing a sailboat to just three numbers can 
only introduce errors. However, including all the details can overwhelm our 
ability to understand.

When physics strips away complicated details, the approach is called a 
“model calculation,” a “toy problem,” or a “spherical cow approximation.” 
Generating a sailboat’s speed diagram in terms of just three numbers is the 
spherical cow approximation of sailing.

For many difficult problems, the model calculation is just the first step 
toward a correct and detailed understanding. This applies to the sailing 
model as well. One can examine the results, see their shortcomings, and 
add improvements so the spherical cow gains a little shape.

Back to the Sailboats

Even the naïve approach described here yields results only after a sobering 
six-step program. These steps are:

	 1.	Lift and drag phenomenology
The standard notation describing lift and drag means the really hard 

problems of fluid mechanics can be buried in the lift and drag coef-
ficients, CL and CD.

	 2.	Centerboard lift and drag
The lift of a streamlined object like a centerboard can be surprising 

large. The drag is surprisingly small. These combine to allow efficient 
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sailing. The theory behind lift and drag is complicated and an exam-
ple shows how one may easily obtain erroneous results.

	 3.	Pushing the sailboat
The force needed to push a sailboat is the first piece of the sailing puzzle. 

This force is complicated because both the lift and drag components 
depend on the sailboat’s speed and its leeway (sideways motion).

	 4.	Wind’s lift and drag
The force produced by the wind is the second piece of the sailing puz-

zle. The wind’s force is also complicated because sailboats must 
sail both upwind and downwind. Upwind sailing is “aerodynamic,” 
and the wind skims by sails at a small angle of attack. Downwind 
“impact” sailing is more intuitive. The transition between aerody-
namic sailing and impact sailing has special significance in the char-
acterization of sailboat speeds.

	 5.	Wind and water forces
The two-piece sailing puzzle is solved by requiring equality of the force 

needed to push the sailboat and the force produced by the wind. The 
equality is obtained by superposing graphical representations of the 
wind and water forces. The result is an expression for the sailboat 
speed U in terms of the apparent wind speed V and the apparent 
wind angle v.

	 6.	Sailboat speed diagrams
Additional geometry is needed to describe the boat speed U in terms of 

the true wind speed W and true wind angle w. 

3.3.1 � Step 1: Lift and Drag Phenomenology

Lift and drag forces produced by a fluid moving past an object have 
some universal characteristics.

Lift and drag are roughly proportional to the square of the •	
fluid speed, U (for the water) or V (for the wind).
They depend on the size, shape, and orientation of the object •	
in complicated ways.
They can both be changed by the surface texture in compli-•	
cated ways.
They are both influenced by fluid turbulence.•	

The standard notation that characterizes lift and drag forces (FL 
and FD) recalls Newton’s impact theory (Section 2.2.1). Corrections 
to the impact theory for the drag are expressed in terms of the drag 
coefficient CD. A lift coefficient CL is defined analogously. Thus, the 
drag and lift forces are written as an extension of Equation 2.7.
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Here A is an area and r is the fluid density. The apparent wind speed 
is V . The analogous expression for the water force replaces V with the 
boat speed U. Although the drag and lift coefficients CD and CL hide 
a multitude of complexities, they sometimes appear to be quite simple. 
For example, when sailing downwind, A is the sail area, and a typical 
drag coefficient for a flat sail is CD(downwind sail) ≈ 4/3. Curvature of 
the sail can increase the drag coefficient. There is no lift downwind, so 
CL(downwind sail) = 0.

3.3.2 � Step 2: Centerboard Lift and Drag

Reasonably efficient upwind sailing is only possible because of the 
centerboard. (“Centerboard” is a shorthand term that means either 
centerboard or keel.) Wind tries to push a sailboat sideways. The cen-
terboard’s role is to limit leeway (sideways motion) by supplying a 
large portion of the lift force, labeled FL in Figure 3.10.

The shape shown in Figure 3.10 resembles the cross section of a 
typical centerboard. The similarity to the cross section of a bird’s wing 
or the top view of a fast fish is not a coincidence. Evolution has done 
a remarkably good job of finding streamlined shapes without the aid 
of a computer. However, since “fish gotta swim, birds gotta fly,” the 
analogy can be overstated.

The lift and drag forces depend on the direction of the fluid 
flow. When the centerboard is aligned with the north-to-south 
fluid flow, the “angle of attack” q and the lift force vanish. The drag 
is also quite small because of the streamlined shape. Using A as 
the front cross sectional area, the drag coefficient can be as small 
as 1/30th of the drag coefficient of a flat plate facing the flow with 
the same area. For example, if a centerboard extends one meter into 

	
F C A VD

D= ⋅ ⋅
2

2ρ 	 (3.6)

and

	
F C A VL

L= ⋅ ⋅
2

2ρ 	 (3.7)
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the water, is 3 cm wide, is moving at 5m/s in Fresh Breeze, and is 
characterized by a drag coefficient that is 20 times smaller than a 
flat plate,

  

F centerboard fresh breezeD ( : ) ≈ × × ×1
2

4
3

1
20

1000 3
1100

5

25

2×

≈

N

NF centerboard fresh breezeD ( : ) 	
(3.8)

This estimate is small compared to that of the total drag estimate for a 
Thistle sailboat in Fresh Breeze (around 370 N). Leeway is not impor-
tant for downwind sailing, so the extra 25 N of drag can be eliminated 
by raising the centerboard. The relations between the drag coefficient, 
the downwind speed factor and the boat speed (Equations  2.9 
and 2.14) mean that raising the centerboard should increase the speed 
by not more than two percent.

When the centerboard orientation is changed so the angle of attack 
is no longer zero, the lift grows rapidly with increasing q. The drag 
also increases, but less spectacularly. It is a fortuitous peculiarity of 
fluid mechanics that the lift is linear in the attack angle but the drag 
increase is proportional to the square of the attack angle. For small 
angles, the drag and lift forces are accurately represented by two fairly 
simple equations.

θ Water
Flow

FL

FDF

Figure 3.10  The lift and drag forces FL and FD depend on the angle of attack q.
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Here FD is the centerboard drag when the angle of attack is zero. Two 
additional angles appear in these equations; d0 is the angle at which 
the drag doubles and L0 is the angle at which the lift equals the drag 
FD. For the streamlined shape of a typical centerboard, the drag dou-
bling angle d0 is typically 5° to 8°. The linear increase of the lift force 
FL is more dramatic and l0 is typically only a small fraction of one 
degree. A sketch of the angular dependence of the lift and drag forces 
described by Equations 3.9 and 3.10 is shown in Figure 3.11.

The forces described by Equations 3.9 and 3.10 and shown in 
Figure 3.11 are valid only for small angles of attack. As q becomes 
larger (typically more than 10°), more complex fluid motion often 
leads to abrupt increases in drag without any further increase in 
lift. The breakdown of the simple picture means lift is typically a 
maximum for q not exceeding 20°. These are not large angles. The 
angle q in Figure 3.9 is about 12 degrees, so the centerboard shown in 
Figure 3.10 would produce much more lift than drag.

	
F centerboard F

dD ( ) ≅ +














0
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F centerboard F

lL ( ) ≅




0

0

θ
	 (3.10)
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2

3
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F/
F 0

θ (degrees)

Lift

Drag

Figure 3.11  The dependence of lift and drag forces on the angle of attack. The forces are scaled 
by FD, which is the drag for q = 0. At larger angles, the forces are more complicated.
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These lift and drag characteristics apply as well to a sailboat’s rudder. 
A sailboat is steered by the lift force on the rudder. Changing the rud-
der orientation changes the angle of attack q and produces a lift that 
pushes the stern in the appropriate direction. If the rudder is turned 
sharply, the associated drag increase can be quite large, and this slows 
the boat. If the rudder is turned so sharply that the angle of attack is 
20° or more, the lift can decrease. Since extreme steering is unproduc-
tive, sailors should treat their tillers (or wheels) gently. When a sailboat 
is making a turn, as from port to starboard tack, the water flow past the 
rudder is no longer from bow to stern. This means a larger, but gradual, 
increase in rudder angle with respect to the boat’s axis is justified.

3.3.3 � Where Is the Theory?

The relatively large lift illustrated in Figure 3.10 is a key to successful sail-
ing because it allows one to design sailboats and sails with large lift-to-
drag ratios. It is also one of many surprising results of fluid mechanics 
because a simple extension of Newton’s impact theory fails to describe lift. 
If Newtonian common sense prevailed, sailing would be no fun at all.

Warning: the following attempt to describe lift using common sense 
is wrong.

Assume the impact theory remains valid for calculating lift, so 
molecules are little bullets bouncing off a surface. This is illustrated in 
Figure 3.12, where water molecules are reflected from a thin centerboard.

Fluid
Flow

θ

2θ

Figure 3.12  A wrong demonstration of lift based on the impact theory. Molecules bouncing elas-
tically from a surface at an angle q would have their direction changed by 2q.
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Stated more qualitatively, it seems reasonable amount of fluid deflected 
should be proportional to the angle, and the deflection should also be 
proportional to the angle. Multiplying these gives the incorrect and 
relatively insignificant lift proportional to q 2.

It would be much more sensible at this point to simply provide the 
correct calculation of lift and drag. If these forces were nailed down, 

When the centerboard angle with respect to the fluid flow is q, the 
flux of molecules that hit the side of the centerboard is proportional 
to sin(q). Elastic scattering means the molecules should be scattered 
by an angle 2q. The horizontal momentum given to a reflected mol-
ecule is proportional to sin(2q). Equal and opposite forces mean the 
total force on the centerboard is proportional to both the particle 
flux and the momentum given the molecules. Thus

	 F WRONGL ( ) sin( )sin( )∝ →θ θ θ2 2 	 (3.11)

The following rationale for the linear dependence on the angle 
of attack is either profound or vacuous, depending on your 
viewpoint. The smooth nature of physical quantities makes one 
believe that lift can be written as a power series in q, so the 
angular dependence of the lift force is

	 F a b cL ( ) ...θ θ θ= + + +2 .	 (3.12)
Since the lift vanishes when q = 0, the coefficient a must be 
zero. Also, the lift force changes sign when the angle of attack 
is reversed and q → –q. Since q 2 is always positive and does 
not change sign, the coefficient c must also vanish. If no higher 
terms in the series are considered, the only possibility is

	 F bL ( )θ θ= 	 (3.13)
This is the result characterized by Equation 3.9 and shown 
in Figure  3.11. Unfortunately, a symmetry argument can not 
determine the coefficient b or the magnitude of the lift force. 
The steps leading to Equation 3.13 also fail to explain why the 
impact theory gives the wrong result.
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one could proceed to a solid quantitative description of sailing. Sadly, 
fluid mechanics does not provide easy answers. So for now, accept 
the numbers characterizing lift and drag as quantities determined by 
experiments or computer simulations. Fluids and the problems of cal-
culating lift and drag are discussed in Chapter 8.

3.3.4 � Step 3: Pushing the Sailboat

One can determine sailboat speed only if one knows how hard it is to 
push the boat through the water. Because sailboats make leeway (move 
sideways) the force needed to keep the sailboat moving depends on 
both its speed and its leeway. The centerboard will be considered first. 
Then a generalization gives the force needed to move the whole boat.

Assume the wind supplies the force needed to push a centerboard 
directly north. Moving north is equivalent to the water flowing south 
past the centerboard. If the centerboard is aligned north-south, the 
required force will be north because there is no lift. However, if the cen-
terboard is aligned west of north as in Figure 3.10, the force to the north 
must be increased because of increased drag and the lift means the wind 
must also push to the east.

Signs are confusing. The force needed to move the centerboard is 
exactly opposite the force F

→

 shown in Figure 3.10, which is the water’s 
force on the centerboard. Focusing on the force needed to push the cen-
terboard rather than the forces shown in Figure 3.10 appears to intro-
duce a confusing and annoying sign change. However, this annoying 
reversal simplifies the graphical representations that follow. The force 
needed to move the boat is the same (no sign change) as the force pro-
vided by the sails, so the two forces can be compared on a single graph.

For a given centerboard speed U, one can eliminate the angle of 
attack q by combining FD = F0(1 + q/d0)2) with FL = F0(q/l0) (the lift 
and drag forces of Equations 3.9 and 3.10). This yields

	
F F

F
l
d

FD L= +




0

0

0

0

2
21 	 (3.14)

Thus, if the drag FD is plotted as a function of the lift FL, the curve has 
the shape of a parabola. This makes sense. If lift is required of a center-
board, its drag will increase. The shape of the parabola depends on the 
centerboard speed because F0 is proportional to the square of the speed.
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Figure  3.13 shows four different parabolas obtained from 
Equation  3.14 with different boat speeds and thus different values 
of F0. For each parabola, a vector from the origin to a point on the 
curve gives the magnitude and direction of the force needed to keep 
the centerboard moving north. Two example force vectors are shown 
in Figure 3.13. These are the darker arrows with large heads, one of 
which is labeled “Force.” The centerboards decorating the parabolas 
illustrate the orientation associated with the force. Angles and scales in 
Figures 3.13 and 3.14 are exaggerated for the purposes of illustration.

The force needed to push the centerboard is only part of the total 
force needed to move the sailboat. The relatively large drag and lim-
ited lift of sailboat hulls means the centerboard produces most of 
the lift and the rest of the boat produces most of the drag. The extra 
drag changes the coefficients in Equation 3.14 and the details of 
Figure 3.13, resulting in the steeper parabolas shown in Figure 3.14.

FastSlow

Force
Fast Curve

Slow Curve

Drag

Lift

Figure  3.13  Each of the four curves shows the force needed to keep a centerboard moving 
north (toward the top of the page). The four curves correspond to pushing the centerboard at four 
different speeds.

Lift

Drag

Fast

Fo
rce

Slow

Slow Curve

Fast Curve

Figure 3.14  The drag and lift forces needed to keep a boat moving north. Each curve corre-
sponds to a different speed. Even though the boats are not aiming north, the applied force pushes 
them north.
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The small “star” placed in Figure 3.14 indicates a point where the 
“fast curve” and the “slow curve” intersect. This intersection means 
that two identical boats with the same sail force can both travel north, 
but at two different speeds. Whenever a boat appears to be moving 
slowly and sliding sideways, the boat is wallowing on a “slow curve” 
instead of zipping along on a “fast curve.” Slow sailing typically results 
from aiming too close to the wind. The boat loses speed; less speed 
means less lift and more leeway; more leeway means the boat must 
aim even more toward the wind. Temporarily changing course away 
from the wind to gain speed allows a transition to the “fast curve” and 
a happier sailor.

Sails are not shown on the boats in Figure 3.14 because the water 
force is determined only by the orientation and speed of the boat. The 
next section considers wind force.

3.3.5 � Step 4: Wind Lift and Drag

In some ways, the force generated by the wind F
→

(wind) is analogous 
to F

→

(water). There are lift and drag components whose sum is the total 
force vector. An idealized plot of F

→

(wind) is shown in Figure 3.15. The 
horizontal lift axis is denoted “L” and the vertical drag axis is “D.”

The graphical representation of F
→

(water) has additional structure 
because the angle of attack between the sail and the wind is not always 

D

L
v*

Wind, V

Fo
rce

Figure 3.15  The wind’s force vector F
→

(wind) can be any point on the boundary of the shaded 
region. Example sail alignments and the corresponding forces are shown for five points on the curve. 
The apparent wind angle v * to the “kink” in the curve has special significance.
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small. The full range of angles generates a closed curve (with shaded 
interior) instead of a simple parabola. Each point on the curve corre-
sponds to a vector wind force that can be produced with the appropriate 
sail orientation. The top views of five little sails decorating the outside 
of the curve show the sail orientations needed to provide the forces 
indicated by the smaller arrows. In this and subsequent figures, the 
apparent wind, V

→

, is from the south (bottom of the page). In general, 
the boat’s motion means the true wind, W

→

, is not from the south.
The wind-force curve consists of two clearly different sections. The 

lower part is a parabola and the upper part is a circle. To explain:

	 1.	The sail’s lift-drag characteristics on the lower curve are 
analogous to those of the centerboard’s lift-drag parabola 
F

→

(water). The sail’s angle of attack is small because the wind is 
just skimming past its surface. Just as with the centerboard, a 
small increase in the sail angle produces a large increase in lift 
and smaller increase in the drag. The point at the bottom of 
the parabola corresponds to a luffing sail exactly aligned with 
the apparent wind. This sail orientation is never efficient.

	 2.	The upper boundary of the shaded area shows the wind force 
when the angle of attack between the sail and the wind is 
larger. The sail is no longer acting aerodynamically and the 
physics is different. It is similar to sailing directly downwind 
in the sense that the wind on the back side of the sail is not 
flowing smoothly past the sail.

The point on the top of the Figure 3.15 corresponds to a sail 
positioned for downwind sailing, extended perpendicular to 
the apparent wind. The force on the sail is entirely drag with 
no lift, so L = 0.

A simple but imprecise approximation is used to obtain the sail 
forces on other parts of the upper curve. It is assumed that the 
force is produced only by a pressure difference, and this pres-
sure difference is the same for all points on the upper curve. 
In other words, the force is perpendicular to the sail, and the 
magnitude of the force does not vary with sail orientation. 
Changing the sail angle changes the direction of the force but 
not its magnitude. Thus, the upper curve has a circular shape 
whose radius is proportional to the magnitude of the force. 
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This approximate form of the wind-force curve introduces 
errors on the order of 25%, but it is qualitatively faithful to 
sailboat physics.

	 3.	The “kink” in the curve where the upper and lower pieces 
meet corresponds to a transition between the two sailing 
modes. These modes correspond roughly to “impact sailing” 
on the upper curve and “aerodynamic sailing” on the lower 
curve. Sailors often want to adjust their sails so that F

→

(wind) 
is at this transition point because sailing at the kink produces 
maximum lift. This maximum lift-to-drag ratio is called 
[L/D](wind). The angle between the apparent wind and the 
force at this special point is denoted v* in Figure 3.15.

The simplifying approximations of the sail force curve are most out-
rageous at the kink. For real sails, the kink is smoothed out to a 
“transition region” between impact sailing and aerodynamic sailing. 
Sometimes the word “stall” is associated with the transition region.

3.3.6 � Step 5: Wind and Water Forces Combined

The next step in the long path to sailboat speeds is a comparison of the 
forces F

→

(wind) and F
→

(water). In steady-state sailing, the force needed 
to push the sailboat is exactly the force supplied by the wind. Since 
F

→

(wind) = F
→

(water), superposing these forces on a single graph yields 
real sailing conditions at points where the curves touch.

Equating the forces essentially solves the problem of sailboat speeds, 
but there are annoying details. First, one must make sure all forces are 
measured in the same units. Second, each sailing direction requires a 
different graphical comparison because the orientation of the curves 
changes with the sailing direction. After three example directions are 
considered, the general result is presented.

3.3.6.1  Scaled Units  Only one F
→

(wind) curve is shown in 
Figure 3.15 because only one wind speed was considered. There 
is a way to avoid drawing a different wind-force curve for each 
wind speed. For each wind speed, pick the units of force so the 
upper circle of the wind force curve has unit radius. Then only
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3.3.6.2  Comparing Graphs  A superposition of the wind-force and 
water-force curves for downwind sailing is shown in Figure  3.15. 
Intersection points correspond to equal forces. Six different F

→

(water) 
curves are placed on top of the single F

→

(wind) curve. Each curve corre-
sponds to a solution to Equation 3.15 with a different downwind boat 
speed U. Counting up from the bottom, these speeds are S V0 1 5⋅ /  
and S V0 2 5⋅ /  and S V0 3 5⋅ /  and S V0 4 5⋅ /  and S0V and at the top 
S V0 6 5⋅ / . The top F

→

(water) curve corresponds to a speed faster than 
is possible because U > S0V, so it makes sense that this curve never 
touches the wind-force curve. The next F

→

(water) curve describes proper 
downwind sailing, with U = S0V. A little sailboat is centered at the top 
point where the two curves touch. This sailboat shows that proper 
downwind sailing is achieved with the sail fully extended. There is no 
lift force so the boat can aim directly downwind.

The slower speed F
→

(water) curves also intersect F
→

(wind). Little 
sailboats have been centered at two of these slower-speed intersection 

one curve is needed. There is a complication to the simplification. 
For each wind speed, the water force curve must be expressed in 
the same units. Replacing FD and FL with the scaled D and L 
gives a version of Equation 3.14 that can be compared directly 
to the wind force.

D water U
S V

S V
U L D wat

( )
[ / ](

=






+




0

2
0

2
1

2 eer
L water

)
( )





2
2 		

		
(3.15)

Before proceeding, one should make sure this works for a sim-
plest case of downwind sailing. If the sails are adjusted prop-
erly, there should be no lift force downwind. The wind drag was 
scaled so D(wind) = 1. Force equality means D(water) = 1, as 
well, and letting L(water) = 0 in Equation 3.16 means

	
D water U

S V
( ) = =







1
0

2

	 (3.16)

This is just a restatement of Equation 2.8, U = S0V, which describes 
downwind sailing. Retrieving the previous result is really a check 
to make sure Equation 3.15 has been properly scaled.
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points. They show that it is possible to sail downwind with a speed 
less than U = S0V by pulling the sail toward the center of the boat so 
the wind’s force is deflected to the side. This action reduces the wind’s 
drag and adds lift. The boat must sail slightly to the side to compen-
sate for the leeway produced by the lift, and this increases the water’s 
drag. Figure 3.16 shows that the boat on the left is sailing at speed 
U S V= ⋅4 5 0/ , and the boat on the right that has pulled sails in even 
further is a sailing at U S V= ⋅3 5 0/ .

Pulling a sail in when sailing downwind is generally a foolish move, 
but there are occasions when it may be useful. If a boat is about to 
overrun the stern of a boat ahead, reducing speed is definitely a good 
idea. Such situations occur more often than one might expect when 
sailboats are racing around turning marks.

Up to now, the only thing accomplished is an exceedingly cum-
bersome derivation of the downwind sailing speed. By changing the 
direction the boat is moving, we can finally calculate boat speed for 
sailing in other directions.

3.3.6.3  Broad Reach  The water force F
→

(water) is changed when the 
boat sails in a different direction. If the sailboat is sailing northeast 
instead of north, the F

→

(water) curves are rotated because the D(water) 
axis is parallel to the boat velocity U

→

, as shown in Figure 3.16. The 
apparent wind V

→

 continues to blow from south to north, so the shaded 
part of Figure 3.15 is unchanged and wind’s drag is still north.

D(wind), V;  D(water),U

L

Fast

Slow

Figure  3.16  Downwind lift and drag of the wind and water displayed in the scaled (L,D) 
units. The drag axis is also labeled with the U and V because both these velocities are north 
in this example. The several water-force curves correspond to different boat speeds. Little sail-
boats have been drawn on three of the intersection points where the wind and water forces are 
equal.
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Again, a sailor has a choice of sail orientations when sailing on 
the broad reach. Trimming a sail too tightly will again place the 
boat on a slower curve. The boat shown in Figure 3.17 has picked 
the proper sail orientation for maximum speed. The fastest sailing 
speed is again U = S0V. The ratio of boat speed to the apparent 
wind speed has not changed because the upper sail-force curve has 
an (assumed) circular shape. This simple model says the sail should 
remain fully extended so the wind force pushes the boat directly 
forward. No lift is required from the water, and there is no leeway 
on this broad reach.

Even though the boat speed is the same fraction of the apparent wind 
speed, U = S0V, the ratio of the boat speed and the true wind speed W 
is increased. This outcome is not clear from Figure 3.16 because it is 
related to the apparent wind speed. The correction for the difference 
between the true and apparent wind is Step 6, Section 3.3.7.

Sailors may view Figure 3.17 as unrealistic, since they know that 
some lift from the water is required when sailing on a reach. The 
sailors are right. However, after correcting for the difference between 
the true wind and the apparent wind direction, the boat shown in 
Figure 3.17 is actually sailing much closer to downwind than the fig-
ure suggests. Sailors know that very little lift is needed when sailing 
close to downwind, so the error of Figure 3.17 is real, but it is smaller 
than one would think.

D(water), U

D(wind), V

v

Figure 3.17  Water forces are tied to the direction of the boat’s velocity, U
→

, so this component 
of the figure is rotated when the angle between the sailing direction and the source of the apparent 
wind, labeled v in the figure, is not 180°.
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3.3.6.4  Sailing Closer to Windward  Further rotation of the water-
force curve is required for sailing closer to the wind. For the upwind 
sailing example shown in Figure  3.18, the boat sails fastest when 
the wind-force and water-force curves touch at the transition point 
(kink) on the wind-force curve. For this example, F

→ 

(wind) touches 
F

→ 

(water) when the boat speed is a smaller fraction of the apparent 
wind speed. The maximum speed of the boat, relative to the apparent 
wind, is now only U S V= ⋅0 3 5/ . A small sailboat has been placed 
at the point where the curves touch. Unlike downwind and broad-
reach sailing, the sail is not fully extended, and the wind pushes the 
boat to the side. Considerable lift is required from the centerboard, 
and the boat makes some leeway. As in the other examples, the boat 
will sail slower if the sail is improperly adjusted. Pulling the sail in 
moves the boat to the circular part of the wind-force curve. Letting 
the sail out moves the boat to the bottom parabola of the water-force 
curves. Either adjustment slows the boat significantly. When sailing 
in this direction, the speed penalty for incorrect sail alignment is 
more severe.

3.3.6.5  Generalization  For downwind and broad-reach sailing, the 
boat speed is a constant fraction of the apparent wind speed, given by 
U = S0V. For upwind sailing, the ratio of boat speed to apparent wind 
speed is decreased whenever the apparent wind angle is smaller than the 

D(wind), V

D(water), U

v

Figure 3.18  Sailing closer to the wind. Fastest sailing requires the sail to be adjusted to produce 
maximum lift. The ratio of sailboat speed to apparent wind speed is reduced and the intersection 
point lies on the curve with U S V= 3 / 50 ⋅ .

73761.indb   66 11/13/09   4:51:18 PM



	 Upwind—The Hard Direction	 67

direction to the transition point, or v < v*. (The transition point angle v * is 
shown in Figure 3.15.) The example in Figure 3.18 gives U S V= ⋅0 3 5/ , 
but a different angle v would give a different value for U/V.

3.3.6.6  Closest to the Wind  In some cases, when a boat sails very close 
to the wind, the intersection of the wind-force and water-force curves 
can move to a point on the lower parabola of the wind-force curve. For 
the iceboat, this part of the curve is important because the maximum 
value of lift to drag determines the speed. But for sailboats, this por-
tion of the wind force usually corresponds to sailing too close to the 
wind (pinching). A pinching example is shown in Figure 3.19, where 
U S V= ⋅0 1 5/  corresponds to relatively slow upwind progress, even 
though the apparent wind angle v is small. An attempt to sail even 
closer to the wind will fail because the wind-force and water-force 
curves will not touch.

The general result that includes both upwind and downwind 
sailing is obtained by replacing the downwind speed ratio S0 by 
an angle-dependent speed ratio, S(v).

	 U S v V= ( ) 	 (3.17)
Figure  3.18 shows that fastest upwind sailing is accomplished 
when a water-force parabola just touches the transition point 
(kink) on the wind-force curve. This condition is expressed alge-
braically as a quadratic equation. Combining the quadratic equa-
tion result for v v< *  with the condition S(v) = S0 for v > v* gives

S v
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		  (3.18)

Although Equation 3.18 may appear hopelessly complicated, it 
yields a sensible result. The ratio of the boat speed to the apparent 
wind speed decreases as the apparent wind angle v decreases.
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3.3.7 � Step 6: Sailboat Speed Diagram

The final step is a transformation from S(v), given by Equation 3.19, to the 
speed diagram, which is a polar plot of U(w)/W. Another side trip into the 
geometry of the velocity triangle of Equation 3.1 is needed to express the 
boat speed in terms of the true wind. This final step will finish the job.

The velocity triangle is shown again in Figure 3.20. The extra line 
d and two additional distances, x and y have been added.

D(wind),V

v

D(water),U

Figure 3.19  Sailing as close to the wind as possible. This boat is “pinching” and would make 
better progress by sailing at a larger angle, v.

W V

U

w-v

d
x

y

w

v

Figure 3.20  Velocity triangle with added distances x and y.
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The desired speed diagram is now obtained from a “bootstrap-
like” process:

	 1.	Pick an apparent wind angle v.
	 2.	Find S(v) using Equation 3.18.
	 3.	Use the triangle identity of Equation 3.20 to obtain U/W  as 

a function of v.
	 4.	Use the second triangle identity of Equation 3.21 to replace v 

with the appropriate w and obtain U(w)/W.

In principle, these equations are simple enough that a sailor with a scien-
tific calculator could compute boat speed. A computer program shortens 
the speed diagram calculation time from hours to less than a second.

3.3.7.1  Basic Example: A Standard Sailboat  The three numbers cho-
sen to characterize the “standard sailboat” are S0 = 1, [L/D](water) = 
10, and [L/D](wind) = 3, which corresponds to the kink angle (see 
Figure 3.15) v* ≅ 110°. These values for the downwind speed ratio, the 
lift-to-drag ratios, and the kink angle are roughly characteristic of an 
efficient sailboat of moderate size. The speed diagram obtained from 
these three numbers is shown in Figure 3.21.

Using x = U cos(v), d = U sin(v), W 2 = d 2 + (V – x)2 and sin2v + 
cos2 v = 1 gives the “law of cosines,” which generalizes Pythagoras 
to a triangle without a right angle,

	 W U V UV v2 2 2 2= + − cos( ) 	 (3.19)

Combining this with U = S(v)V gives a generalization of the relation 
between the true wind speed, the boat speed, and the speed ratio

	
U S v

S v S v v
W=

+ −

( )
( ) ( )cos( )1 22

	
(3.20)

Using y U w V w v= = −sin( ) sin( ), the trigonometric identity 
sin (w – v) = sin( )cos( ) cos( )sin( )w v w v− and the definition of the 
speed ratio U S v V= ( )  gives another triangle identity.

	
tan( ) sin( )

cos( ) ( )
w v

v S v
=

− 	
(3.21)
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As with the iceboat speed diagram, the distance from the origin 
to any point on the speed diagram’s curve gives the ratio of the boat 
speed, U, to the true wind speed, W. The true wind angle, w, is the 
angle between a point on the speed diagram and due north (straight 
up). The direction a sailboat moves can differ a little from the direc-
tion that the boat is aimed because of leeway. The diagram is decorated 
with three little sailboats that show the approximate sail orientation 
for three example sailing directions.

The standard sailboat speed diagram shows that the downwind 
speed is half the wind speed, which should not be a surprise. The 
downwind result (for S0 = 1) was obtained with much less trouble in 
Chapter 2. Downwind is not the fastest sailing direction. By sailing 
on a reach with w ≅ 90°, the standard sailboat achieves its maximum 
speed that is a little more than 90% of the true wind speed.

The sailboat at the upper right of the diagram illustrates a sail-
ing direction that makes the most rapid progress to windward. For 
this direction, the speed is about two-thirds the wind speed. However, 
since the boat is sailing at an angle w that is a little larger than 45°, the 
windward component of the boat speed is only about 42% of the wind 
speed. Thus, net progress for upwind sailing is slower than downwind 
sailing, even though sailing upwind moves the boat faster through the 
water.

For every sailing direction except downwind, the apparent wind 
angle v is always less than the true wind angle w. For the standard 

0.5

0.50.5

0.5

1.01.0

Figure 3.21  A “standard sailboat” speed diagram. The axis scales are values of U/W . The sepa-
rations between the little crosses correspond to 3° changes in the apparent wind angle. They are not 
shown at the bottom where they crowd together, being separated by only 1.5°.
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sailboat shown in Figure 3.21, the comparative values are

Fastest progress to windward (sailboat at upper right); •	 w ≅ 45°, 
v ≅ 33°.
A reach, perpendicular to the true wind: •	 w ≅ 90°. v ≅ 50°
At the edge of the flat section (sailboat at lower right); •	 w ≅ 
145°, v ≅ 110°

These angle differences mean a sailor can think the wind is coming 
from the bow even when the true wind is more from the stern.

When sailing to windward, a relatively large change in direction 
is needed to change the apparent wind angle. The opposite is true for 
downwind sailing, where a small change in sailing direction produces 
relatively large changes in the apparent wind direction. This is illus-
trated by the little crosses on the speed diagram, which are separated 
by 3° increments of the apparent wind direction, starting at v = 27°. 
This standard sailboat cannot sail at an angle smaller than v ≅ 26°. 
The crosses are not shown at the bottom of the speed diagram where 
they crowd together and are separated by a constant 1.5°.

Downwind sailing has a special property when S0 = 1. The flat sec-
tion of the speed diagram for directions near downwind means one 
can sail directly downwind at half the wind speed, or one can sail at 
a 30° angle from downwind and achieve the same downwind prog-
ress. When considering a strategy, this gives sailors extra flexibility, as 
described in Section 10.1.4.

3.3.7.2  Comparison of Speeds  Different sailboats are characterized by 
different downwind speed ratios S0, which changes the shape and size 
of the speed diagram. Speed diagrams for three different model sail-
boats are shown in Figure 3.22: a slow one with S0 = 2/3, the standard 
sailboat with S0 = 1, and a fast sailboat with S0 = 3/2. The [L/D]  ratios 
for wind and water are all the same as the standard sailboat values 
used to generate Figure 3.21.

The fast and slow curves in the Figure 3.22 represent fairly extreme 
cases. Most sailboats, with the possible exception of some catamarans 
and light weight skiffs, are characterized by downwind speed ratios 
between 2/3 and 3/2.

Boat speed is the obvious difference between the three curves in 
Figure  3.22, which shows that some sailboats can sail on a reach 
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faster than the wind. Sailboats with S0 > 1 can make better progress 
downwind by sailing at an angle w that is less than 180°. Sailing 
directly downwind is a bad strategy for these fast boats because the 
boat speed so effectively subtracts from the wind speed that “down-
wind” is nearly “no wind.” For the boat with S0 = 3/2, the apparent 
wind speed for sailing directly downwind is 40% of the true wind 
speed because the boat speed is 60% of the wind speed. However, 
when sailing at w = 135° or 45° from downwind, apparent wind 
speed increases to about 55% of the true wind speed. When sailing 
in this direction, the apparent wind is from the bow at v ≅ 70°. The 
net progress downwind is increased by about 1 part in 6 by sailing 
at this angle.

Heavier cruising boats and some smaller sailboats are more accu-
rately characterized by the S0 = 2/3 slow boat speed diagram. For 
these boats, the best downwind course is a straight line.

The difference between sailboat speeds is most noticeable on a 
reach. When sailing downwind, the fast boat in Figure 3.22 is 1.5 
times as fast as the slow boat. On the reach, the fast boat speed is 2.2 
times the speed of the slow boat.

When sailing to windward, the speed ratio of the fast to slow boat 
is again a little more than two to one. However, because the fast boat 
must deal with a larger shift in the apparent wind direction, it cannot 
sail at as close an angle to the wind as the slow boat, so the ratio of 
progress to windward is a little less than two to one.

0.5

0.50.5

0.5

1.01.0

Figure 3.22  Three different speed diagrams for slow S0 = 2/3, standard S0 = 1, and fast S0 = 3/2 
sailboats. The lift-to-drag ratios are the same for all three boats.
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3.3.7.3  Comparisons of Lift-to-Drag Ratios  The lift-to-drag ratios of the 
wind and water are important for upwind sailing. In Figure 3.23, the 
standard sailboat speed diagram of Figure 3.21 (outer curve) is com-
pared with diagrams where the water’s lift-to-drag ratio is reduced 
by a factor of three (middle curve) or the sail’s lift-to-drag ratio to 
two-thirds of its initial value (inner curve). These alternative speed 
diagrams could result from neglecting to lower a centerboard or hav-
ing a sail that is too “baggy.” The lift-to-drag ratios have essentially no 
effect on downwind sailing.

The results shown in Figure 3.23 are sensitive to the initial choice 
of lift-to-drag ratios. However, the basic conclusion is always the 
same. Reducing the lift to drag of either the wind or the water always 
slows upwind progress.

3.4 � Why Is Sailing Upwind So Complicated?

Is it really necessary to draw so many diagrams and write so many for-
mulas to describe sailing? Sadly, I have been unable to find a shortcut 
path to the speed diagram. In fact, sailing is really more complicated 
than all the diagrams and formulas suggest. A good deal of cheating 
was needed to obtain the shapes of the speed diagrams that are the 
ultimate accomplishment of this section. It is worth remembering the 
sacrifices of accuracy that were needed to obtain the results. A few of 
the shortcuts are listed here.

0.5

0.5

0.5

1.0 0.5 1.0

Figure 3.23  A comparison of speed diagrams when lift-to-drag ratios are decreased. The outer 
curve is the standard sailboat. The center curve results from a decreased lit-to-drag ratio from the 
water, and the inner curve results from a reduced lift-to-drag ratio from the wind.
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The quadratic approximation means that the sailboat speed is •	
proportional to the wind speed. However, neither the wind 
nor the water forces (F

→

(wind), F
→

(water)) are exactly propor-
tional to the square of the wind speed. If the ratio U(w)/W 
is accurately measured or calculated, one finds that it often 
decreases with wind speed, so a separate speed diagram is 
really needed for every wind speed. Real examples of the rela-
tive decrease in boat speed are shown in Figure 2.9. For some 
sailboats, this means S0 > 1 in light winds but S0 < 1 on windy 
days. The tactical significant of this change in S0 is described 
in Chapter 10.
Many sailboats deploy spinnakers for downwind sailing that •	
increase S(v) for large angles v where the spinnaker can be 
used. A boat equipped with a spinnaker really has two speed 
diagrams. Many sailboats use different sized jibs in different 
wind conditions. A change in sails means a change in the speed 
diagram. When the wind is so strong that not all of the sail’s 
power can be used because of the danger of capsize, the speed 
diagram is altered.
The wind force •	 F

→

(wind) sketched in Figure 3.15 is an idealiza-
tion. The upper part of the curves is not really part of a circle 
and the transition between impact sailing and aerodynamic 
sailing is not really a sharply defined kink. In principle, this 
error could be corrected by using measured curves for F

→

(wind). 
Although the details are different, the procedure would be the 
same and the sailboat speed can still be determined graphi-
cally by finding points where the wind and water forces are 
equal.
The force on a sail is not entirely due to pressure. As the wind •	
slides by a sail, there is a side force due to the air’s viscosity. 
This side force must be countered by lift from the center-
board. Also, since the upper curve of F

→

(wind) is not exactly a 
circle, a sail should often be trimmed more tightly on a broad 
reach. This gives an addition side force that must be coun-
tered by a centerboard.
When there is enough wind to heel a boat, all the forces are •	
changed. Matching the altered wind and water force of a 
heeled sailboat changes the speed diagram.
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These and many other complications mean the speed diagrams shown 
in Figures 3.21–3.23 are not the speed diagrams of any real sailboats. 
For example, the speed diagrams derived here all show that the most 
efficient upwind sailing corresponds to a true wind angle that is a little 
more than 45°. In the real world, some sailboats can sail efficiently at 
slightly smaller true wind angles. Which oversight is responsible for 
this difference between theory and practice is not clear to me.
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4
Tipping, Torques, 

and Trouble

4.1 � Roll, Pitch, and Yaw

Boats rock, bob, and weave in complicated ways as they respond 
to the wind, the waves, and the person holding the tiller. To make 
sense of this, three kinds of angular motion are distinguished. Roll 
is side-to-side tipping. Extreme roll leads to capsize. Pitch corre-
sponds to rotation where the bow lifts and falls. Extreme pitch leads 
to an especially exciting summersault version of capsize called a 
“pitch poll.” Yaw is a change in direction. Often one thinks of yaw 
as the unintentional variation in direction caused by waves and the 
wind. Too much roll, pitch, and yaw results in discomfort and sea 
sickness.

A boat that rotates too easily is unstable and uncomfortable. 
Designing a sailboat that stays upright but still moves easily through 
the water is a practical problem with an ancient history. Long 
ago, Archimedes investigated the stability of some simple float-
ing shapes. Roughly 2,000 years later Leonhard Euler and a less 
famous pioneer of nautical engineering, Pierre Bouguer, explained 
the basic physics of boat stability, which is the foundation of our 
present knowledge.

4.2 � Torques

For angle changes, torques play the role of forces. A torque twists or 
rotates something without changing its position. The sailboat is sub-
ject to torques when the wind pushes the sail to one side and the water 
pushes back with an equal and opposite force on the centerboard (or 
keel) and hull. This torque will capsize the boat unless there is an 
opposing torque of equal magnitude.
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4.2.1 � Winch: A Simple Example

A winch is an example that may be too familiar to exhausted crew 
members on large sailboats. The winch sketched in Figure  4.1 is a 
cylinder that can rotate on its fixed axis.

A crew member supplies a torque by pushing with a force F on a 
bar attached to the cylinder. The wind supplies an opposing torque by 
pulling with a force f on a line wound around the cylinder. The general 
formula for the magnitude of a torque

allows one to evaluate the torques applied to the winch. If the bar 
has length R, the crew’s torque is τ1 = ×F R. The wind’s torque is
τ 2 = − ×f r , where r is the cylinder radius. The negative sign for the 
wind’s torque means it rotates the cylinder in the opposite direction. 
The cylinder will not rotate if the two torques cancel, so requiring 
that τ τ1 2 0+ = gives

	
f R

r
F=

	
(4.2)

The crew member’s force, F, is magnified by the winch. For the exam-
ple in Figure 4.1, Equation 4.2 shows that the magnification factor is 
(R/r) ≅ 4, which can be a great help when trimming a large sail on a 
windy day.

	

Torque Force Distance= ×

= ×τ F R
	 (4.1)

r

f

R

F

Figure 4.1  A winch showing opposing torques t1 = F × R and t2 = − f × r.
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4.2.2 � More General Torques

There are (at least) four ways that sailboat torques generalize the 
torques applied to the winch.

	 1.	The sailboat can rotate in three different directions. A sepa-
rate torque determines roll, pitch, and yaw.

	 2.	For the winch, the distance in Equation 4.1 is between the 
point the force is applied and the rotation axis. A sailboat has 
no obvious rotation axis, but it is generally acceptable to use 
the sailboat’s “center of mass” as the reference point.

	 3.	For the winch, the forces are perpendicular to the distances. 
When forces and distances are not perpendicular, the formula 
is modified. A horizontal force is multiplied by only the verti-
cal part of the distance, and a vertical force is multiplied by 
only the horizontal part of the distance.

	 4.	The forces on a sailboat are not applied at one point. For 
example, all parts of a sail contribute to the total sail force. 
The torque formula can still be applied if the force is consid-
ered to act at its “center of effort.”

For a sailboat, one must consider torques produced by the wind, water, 
and buoyancy. The total torque for each rotation direction must vanish 
if the boat is to sail steadily. For high-performance sailboats, achiev-
ing balanced torques can be delicate and difficult.

4.3 � Centers of Mass, Buoyancy, and Effort

Gravity pulls on every part of the boat. Wind pushes on the entire 
sail. Water’s buoyant force pushes up on all submerged surfaces. These 
distributed forces are equivalent to forces acting at a single point. 
Knowing the positions of these special points simplifies the calcula-
tions of the torques.

4.3.1 � Center of Mass

The most familiar “center” is the center of mass. Simple experiments 
(in principle) can determine the center of mass of any object, includ-
ing a sailboat. Suspend a sailboat from a single point. A line drawn 
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directly down from the suspension point passes through the center of 
mass. It doesn’t matter if you lift the boat by the bow, the stern, or the 
mast. All lines descending from the suspension points pass through 
the same center of mass. Sailboat symmetry means the center of mass 
lies in the plane that separates port from starboard.

Although gravity pulls down on every piece of a sailboat, all the 
forces act as if they were pulling on the center of mass with a force 
Mg, where M is the total mass and g = 9.8 m/s2 is the acceleration of 
gravity.

4.3.2 � Center of Buoyancy

Just as gravity pulls down, buoyancy keeps a boat from sinking by 
pushing up with a force that is equal but opposite to gravity. Buoyancy 
pushes up on all submerged parts of a boat, but these forces act as 
if they were pushing at a single point. That point is the center of 
buoyancy.

When a boat is placed in water, it sinks down and moves water 
away. The mass of this displaced water equals the boat’s mass. That is 
Archimedes principle. The center of buoyancy is the center of mass of 
this displaced water. Although the boat’s center of mass is fixed, the 
center of buoyancy moves as a boat tips. A sailboat is stable when tip-
ping causes the center of buoyancy to move in a direction that stops 
the tipping.

4.3.3 � Center of Effort

Wind pushes on a sail. The total wind force can be represented as if 
it acted on a single point. That point is the center of effort. A simple 
example is a mainsail shaped like a right triangle. If the pressure is 
uniform over a sail’s surface, the center of effort is one-third of the 
way up from the boom to the top of the sail (the “head”), and one-
third of the way back from the mast to the end of the boom. If the 
pressure is nonuniform, the total force can still be represented by a 
center of effort, but its position will be different.

There is also a center of effort for the water’s horizontal force on 
a centerboard (or keel). This center of effort is centrally located on 
the centerboard.
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4.4 � Catamaran

The catamaran is the first application of torques because its geom-
etry makes estimates relatively simple. A typical catamaran sailboat 
has two narrow canoe-like hulls that are separated by about half 
a boat length. The mast is centered in a structure rigidly connect-
ing the two hulls. Over the ages, variations of the catamaran have 
been invented many times and in many places. The word “catama-
ran” [kattumaran = tied logs] comes from the Indian Tamil lan-
guage. Polynesians colonized much of the Pacific in catamaran-like 
doubled canoes.

4.4.1 � Catamaran Roll and Capsize

Normally, catamarans don’t tip much, unless they tip over. The forces 
jeopardizing a catamaran on the edge of stability for roll are shown in 
Figure 4.2. For the boat in (a), the left hull is about to leave the water. 
Any increase in sail force produces the tipping shown in (b).

The rotational stability is determined by three torques (assuming 
the mass of the very skinny sailor is ignored). The first torque 
t1 is produced by the wind’s horizontal force F on the sail. The 
center of effort is a vertical distance h1 above the center of mass, 
so

	 τ1 1= − ×F h 	 (4.3)

The negative sign applies because this torque rotates clockwise.
The second torque t2 is produced by the equal and opposite 

horizontal force of the water on the catamaran hull that keeps it 
from sliding sideways. (For simplicity, the hull was taken to be 
wedge shaped, so no centerboard is needed.) The center of effort 
of the water force is a vertical distance h2 below the center of 
mass. Thus,

	 τ 2 2= − ×F h 	 (4.4)

The negative sign indicates another clockwise torque.
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(a)

Mg

F

Mg
F

(b)

Figure 4.2  (a) A sailboat stays balanced when the sum of the applied torques vanish. (b) When the 
torque from the wind and water exceeds the compensating torque supplied by buoyancy, capsize results.
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Setting the sum of torques equal to zero yields a maximum value for 
the force of the wind.

	
F MgB

h h
(max)= /2

2 2+ 	
(4.7)

A wind force any larger than F(max) will tip the boat over. Equation 4.7 
makes intuitive sense. In order to withstand a larger wind force, the 
catamaran should be wider (larger B) or heavier (larger M). If the 
mast is taller (larger h1) or the water force is applied to a deep board 
(larger h2), the F(max) will be smaller.

Rough estimates of the forces and wind speeds are given here for a 
catamaran with properties similar to a Hobie-17 (see Figure 4.9), 
L ≅ 5.2 m, B ≅ 2.3 m, and M ≅ 143 kg. The mast is about 8.2 m high, 
so h1 + h2 ≅ 3 m is a reasonable rough approximation, which yields 
F(max) ≅ 540 N. Any greater wind force would capsize the boat.

The maximum sail force F(max) can be used to estimate the wind 
speed needed for capsize. Assuming the wind is coming from the side, 
the wind force is the drag force. Using Equation 2.6 again,

	
F C A VD= ⋅ ⋅

2
2ρ

	
(2.6)

The drag coefficient for downwind sailing was roughly estimated to be 
CD ≅ 4/3. For wind coming from the side, the sails would be adjusted 

The third torque is produced by the buoyant force, which is 
equal to the force of gravity, Mg. If the catamaran is barely bal-
anced, this force is applied only to the right hull section. Half the 
boat width (or beam), B/2 is the distance to the center of gravity. 
Thus,

	
τ 3 2

= ×Mg B
	

(4.5)

The positive sign means the buoyancy torque is counterclockwise.
The boat will be stable only if the sum of the three torques 

vanishes.

	 τ τ τ1 2 3 0+ + = 	 (4.6)
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to make a considerably smaller (CD). A reasonable (but very approxi-
mate) estimate is CD ≅ 2/3. The sail area on a Hobie-17 is about 16 m2. 
Using these estimates, the boat would capsize when V > 9 m/s.

This result seems unrealistic because 10 m/s is only a Fresh Breeze. 
The error lies in the neglect of the crew member’s weight. If the stick 
figure man in Figure 4.2 has m = 75 kg, and if he sits in the appro-
priate extreme left position, his mass would contribute an additional 
balancing torque. Because the crew member with half the boat mass 
is the full boat width B from the submerged hull section, his restoring 
torque is equal to that of the boat itself. The doubled torque means the 
maximum wind could be increased by  2, and the boat could remain 
balanced for V < 13 m/s. An apparent wind speed of 13 m/s is consid-
erably more intimidating.

The crucial role of the crew for catamaran balance is typical for 
many small sailboats. The proper position of the crew in a Fresh 
breeze or greater wind is essential for boat balance. If the crew falls 
off the boat and the sails are not released, the boat will probably 
tip over.

Catamarans do not commonly tip over sideways. When the boat 
starts to tip, the sail can be released until it luffs, which reduces the 
force and avoids an embarrassing event. There is still an advantage for 
a heavier crew in strong winds. If a bigger crew member makes luffing 
unnecessary, the wind won’t be wasted.

4.4.2 � Catamaran Pitch

For a catamaran, pitch rather than roll can be the crucial rota-
tion. The story for pitch starts out in a similar manner. Assume the 
apparent wind is still coming from the side. Rotating Figure  4.2 
by 90° means the sail’s lift force FL replaces the drag, as shown in 
Figure 4.3. As with roll, the center of buoyancy moves forward as 
the boat starts to tip. If the sail force is too large, the boat will top-
ple forward. As with roll, pitching becomes unstable when apparent 
winds are strong. The lift force is typically larger than the drag force 
when sailing in this direction and a catamaran is not that much 
longer than it is wide, so instability to pitch is a real possibility for 
some catamarans.
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The more dramatic pitch poll capsize has some surprises. As the 
wind’s torque increases and the center of buoyancy moves forward, 
the bow can plunge, as shown in Figure 4.3b. As soon as this happens 
there is an abrupt increase in the drag force from the water. It sud-
denly becomes larger than the sail’s force F.

	 F hull BIG( ) ( )→ 	 (4.8)

Mg
Mg

F

F

(a)

(b)

Figure 4.3  For pitching motion in (a), uncompensated torques along a different axis produce 
capsize with a different geometry, shown in (b).
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When this happens, forces are unbalanced and the resulting 
(negative) acceleration a of the center of mass is obtained from

	 ( ) | | |( )|M m a F BIGL+ = − 	 (4.9)

At the same time, the torque from the water is increased

	 τ 2 2→ ×( )BIG h 	 (4.10)

Here h2 is again the vertical distance between the point where the 
(BIG) force is applied and the center of mass. Because (BIG) is very 
large, the boat tips and moves the center of mass up. The increased 
vertical distance h2 yields a larger and often irresistible torque.

A sudden increase in torque combined with a sudden backward 
acceleration of the boat produces a catapult-like action, giving the 
crew a spectacular but brief experience that some find exhilarating.

Single-hulled boats are too long and narrow to allow the sort of pitch 
poll that can be experienced in a catamaran. However, a diving bow is 
seldom a happy event. For many sailboats, it can lead to a complicated 
capsize involving both rolling and pitching. It is quite a challenge to con-
trol a sailboat with a submerged bow, especially if the dive is deep enough 
to lift the rudder out of the water. Steering becomes impossible.

4.5 � Iceboat

Iceboaters who wish to stay off the ice must perform similar balanc-
ing acts by reducing sail pressure when the torques become too large. 
There are some differences. Since two runners stay on the ice when 
the third runner lifts (as is happening in Figure 4.4), only one rotation 
is relevant. The rotation axis is determined by the line connecting the 
front runner to the leeward runner that remains on the ice. To see if 
the iceboat will tip, it is simpler to calculate torques with respect to 
this line. It is analogous to the rotation axis on the winch. With this 
choice, there are only two torques. The first is the wind force applied 
at the sail’s center of effort. The opposing second torque is produced 
by the weight of the boat plus crew acting at the center of mass. As 
with the sailboat, when the wind is so strong that its torque cannot be 
canceled by gravity, the result can be unpleasant.
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4.6 � Monohull

Most boats are narrow compared to a catamaran, so capsize is poten-
tially a more serious threat. Some boats counter this threat with a 
weighted keel. There is a big difference between sailboats with keels 
and sailboats that lack keels. It is virtually impossible for a heavy keel 
sailboat to capsize. No matter how far the boat tips, there is an oppo-
site torque that restores the boat to its upright position. This is illus-
trated, and slightly exaggerated, in Figure 4.5.

The heavy keel on the boat on the left of Figure 4.5 moves the center 
of mass close to the end of the keel. Even when the boat is tipping at 70°, 
there is a large restoring torque, given by τ = ×Mg R, where R is the hori-
zontal distance between the center of mass and the center of buoyancy. 
The similar boat on the right that lacks a keel is on the verge of instability 

Figure 4.4  Iceboat on the verge of instability. (Photograph by Stéphane Caron. With permission.)
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when it is tipped 70° because the center of mass lies directly above the 
center of buoyancy, corresponding to R = 0 and no restoring torque.

When a boat is tipped at 70°, the wind force on the sail is much 
reduced, so one would expect the restoring force on the keel boat to 
save the day. This is not the case for centerboard boats.

For small centerboard sailboats, the restoring torque is initially propor-
tional to the tipping angle, but when the boat tips around 30° or more, 
the center of mass starts to move over the center of buoyancy, reducing the 
restoring torque. Any small boat sailor who has capsized is familiar with 
this unpleasant effect. Once a sailboat tips too far, little can be done to save 
the ship. A boat in this unfortunate position is shown in Figure 4.6.

Figure 4.6  Trouble. (Photograph by Sally Snowden. With permission.)

Mg

Mg

mg

mg

Figure 4.5  A comparison of gravity and buoyant forces for boats with and without a weighted 
keel. For both boats, gravity acting at the center of mass is indicated by the arrow pointing down. The 
buoyant force acting on the center of buoyancy is indicated by the arrow pointing up.
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The maximum distance between the center of mass and the center 
of buoyancy is roughly one-quarter the boat’s maximum width (beam). 
So narrow boats produce smaller restoring torques. This agrees with 
the commonsense observation that it is easier to capsize a canoe than 
a raft. The restoring torque is also larger for a flat-bottomed boat than 
one that is curved, and a boat with a lower center of gravity is more 
stable. That means you should not stand up in a canoe. The ultimate in 
watercraft instability can be seen in logrolling contests. Placing a sail 
on a log does not produce comfortable sailing.

For a small sailboat, it is easier to measure the restoring torque than 
it is to calculate. A docked boat can be capsized with a line tied to the 
top of the mast. Pulling the line in a direction perpendicular to the 
mast exerts a torque that is approximately the product of the force and 
the height of the mast. If the angle between the line and the mast is q 
instead of 90°, the applied torque is scaled by sin (q). As the boat types, 
the torque first increases and then decreases as the mast approaches 
horizontal.

4.7 � Staying Upright

When the wind is strong enough to make heeling a serious problem, 
sailors have two choices. They can either decrease the torque produced 
by the sail or increase the restoring torque that keeps the boat upright. 
Even if capsize is avoided, sailboats generally sail poorly when the heel 
angle is large. The sails of a radically heeled boat present a smaller cross 
section to the wind and some of the sail’s lift is directed down into the 
water. This is not a good direction. When the centerboard or keel is 
also tipped, it is less effective in preventing leeway. For example, the 
wake behind the overheeled Annie in Figure 4.10 suggests significant 
leeway.

4.7.1 � Limiting the Sail ’s Torque

Because the sail torque is force times average height, it makes sense 
to decrease both the sail force F and the height. This can be done by 
“reefing” the sail so the bottom portion is tied to the boom. If the bot-
tom 10% of a triangular sail is eliminated, the area will be multiplied 
by (0.9)2, and the center of effort will be moved 10% closer to the 
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boom, leading to a torque reduction of around 25%. If reefing is not 
possible, the sail angle can be adjusted so that it luffs, and the wind 
pushes effectively on only a portion of the sail. If possible, it is best 
to make the top part of the sail luff, since that is the sail section that 
supplies the most torque.

Reefing is not common on small sailboats. However, many sailboat 
classes allow different size jibs that make it possible to tailor sail area 
for the wind.

One could design a sailboat with a short mast and a long boom. 
The decreased sail height would decrease the torque. However, there 
is a price to pay. Short sails are less efficient because the wind can 
more easily slide over the top of a short sail.

A flatter sail can improve sailboat stability and speed in heavy 
winds. As a simple example, consider a case where the apparent wind 
is abeam. For this case, the sail’s drag and lift forces play clearly 
defined roles. The drag FD heels the boat and the lift FL powers the 
boat ahead. Assuming the sail is trimmed to maximize the ratio of lift 
to drag (denoted [L/D](wind)), the lift force is

	 F F L D windL D= ⋅[ ]( )/ 	 (4.11)

A flatter sail produces a larger [L/D] (wind) and a fuller sail increases 
FD. The “best” sail is the choice that maximizes the product so the lift is 
as large as possible.

In heavy winds, too much drag force will capsize the boat. If the 
drag force cannot be made large, the best choice is the flatter sail that 
maximizes the ratio of lift to drag while keeping the drag force in 
check. Similar considerations apply for sailing at other wind angles. 
In some cases, sail trim can adjust sail shape and make the sail flatter 
as the wind increases. However, the adjustments are limited, espe-
cially for high-tech sails with very little stretch. Because different sail 
shapes are best in different winds, sailors have a plausible justification 
for spending even more money on their hobby.

4.7.2 � Increasing the Restoring Torque

Sailors who wish to go fast prefer not to decrease their sail force. Instead, 
attempts to increase restoring torques are the first line of defense in a 
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strong wind. The methods sailors have devised to balance a boat are varied 
and imaginative. Sometimes they are precarious and uncomfortable.

Sitting on the windward edge of the boat, as the catamaran stick 
figure did in Figure 4.2, is good. Placing crew members’ legs under 
straps so they can extend beyond the edge without falling off (hiking), 
as shown in Figure 4.7, is better. Attaching crew members to lines 
connected to the mast, as shown in Figures 4.8 and 4.9, is best. These 
and other mechanical aids allow crew members to move their centers 
of mass beyond the edge of the boat, and thus exert greater torque. 
Sailors in these unusual positions who do not want to go swimming 

Figure 4.7  Strapping the feet down allows a person to move his center of mass beyond the edge 
of the boat. (Photograph from MC class Web page.)
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must respond quickly whenever the wind changes or the helmsman 
makes a mistake.

The Flying Dutchman sailboat shown in Figure  4.8 provides a 
good example of the importance of crew placement. The boat mass is 
165 kg and the beam (maximum width) is 1.7 m. Moderate heel can 
move the center of buoyancy roughly half a meter from the center of 
mass. The torque produced by tipping alone is roughly 800 N/m. The 
center of mass of a Flying Dutchman crew member on a trapeze can 
be 1.8 m from the boat’s center of mass. If the crew member’s mass is 

Figure 4.8  The crew on this Flying Dutchman is supported by a cable attached high on the mast. As 
the wind increases the crew will move out farther. (Photograph by Sally Snowden. With permission.)
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Figure 4.9  The Hobie-17 catamaran can support a large sail and move rapidly because the sailor 
can supply such a large torque. (Photograph by Richard Olson. With permission.)
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80 kg, the torque from the crew member is 1400 N/m. The single crew 
member is much more important for keeping the boat upright than 
the boat itself. If some coordination failure causes this crew member 
to fall into the water, one can expect capsize.

An even larger torque is produced by the sailor in the Hobie-17 shown 
in Figure 4.9. The “wings” on the edge of the boat and the line from the 
mast allow this sailor to fly about 3 m from the center of the boat.

One can also maintain boat balance by moving things other than 
the crew. “Sandbagger” yachts were popular around the 1850s. Extra 
ballast consisting of many bags of sand or stone, each with a mass of 20 
kg or more, was hauled on board. Every time the yacht tacked, the sand 
bags were dragged to the other side of the boat. These were the extreme 
sailboats of the day, and they produced a truly strenuous form of sailing. 
Some of these yachts have been preserved. An exceptional example is the 
centerboard yacht Annie, launched in 1880 and shown in Figure 4.10. 
This was the first boat acquired by the Watercraft Collection at Mystic 
Seaport in Mystic, Connecticut, in 1931. It is rigged and afloat for 
Mystic Seaport Museum visitors to view. The Annie is about 8.8 m 
long, but its sails extend far beyond the ends of the boat. The distance 
from the end of the bowsprit to the end of the boom is about 24 m. The 
sail area is 122 m2, which is more than triple the sail area of a typical 
modern sailboat of comparable length. As it is sailed today, the Annie 
uses water containers instead of sandbags as the moveable ballast.

A high-tech version of a sandbagger allows machines to tilt the 
keel from side to side so the underwater mass can supply the needed 
torque even though the boat remains nearly level. This technology is 
not cheap.

4.8 � Steering and Helm

The third rotation axis of the roll-pitch-yaw trio determines changes 
in the boat’s sailing direction. The rudder steers the boat because it 
exerts a torque, pushing the stern to starboard or port. The rudder’s 
torque is only part of the story because the sail and the hull (including 
keel or centerboard) can also exert steering torques. A simple example, 
illustrated in Figure 4.11, compares two stern views of a boat sailing 
downwind. For both the upright and heeled boat, the center of effort 
of the sail pushing forward is denoted by an X and the center of effort 
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for the hull pulling back is denoted by another X. If the boat is not 
heeled, water’s center of effort is directly below the center of mass. It 
exerts no steering torque. However, the wind’s center of effort is about 
one-third of the way out on the boom, so the torque (sail force times 
one-third of the boom length) is relatively large. To sail straight, the 
rudder must be angled so its torque cancels the sail’s torque. Deflecting 
the rudder increases its drag. In this example, lift from the rudder is 
needed to prevent a turn to port and sailing into the wind. The boat 
has “weather helm.” Its opposite is “lee helm.”

Figure  4.10  Sandbagger Annie (© Mystic Seaport, Photography Collection, Mystic, CT, 
#1949.843. With permission.)
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For this downwind example, the weather helm and associated rud-
der drag can be minimized by heeling the boat to windward. Heeling 
moves the sail’s center of effort closer to a position directly over the 
center of mass, denoted by the small circle in Figure 4.11. Heel also 
shifts the position of the hull’s center of effort so its torque no longer 
vanishes. Although an unreasonably large heel would be needed 
to completely eliminate the weather helm, the reduction shown in 

(a)

(b)

Figure 4.11  Stern view of downwind sailing. The X on the sail marks its center of effort pushing 
forward. The X on the hull is the center of effort (or resistance) pulling back. The unheeled boat in 
(a) has a large weather helm. Heeling the boat in (b) decreases the horizontal distance between the 
X’s and the steering torque.
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Figure 4.11 can produce more rapid sailing. Possible additional advan-
tages of this heel are the higher placement of the sail into a stronger 
wind and a possible decrease in hull drag because of a reduced “wetted 
surface.” These additional advantages are only speculations. There is 
an alternative theoretical advantage in having a sail close to the water 
because it is harder for wind to flow under the sail. Also, hull drag 
depends on much more than just the wetted surface.

Except for downwind sailing, some weather helm is desirable 
because the lift force on the rudder enhances the overall lift-to-drag 
ratio of the boat, as illustrated in Figure 4.12. The arrows show the 
separate forces on the sail, hull (including centerboard), and rudder. 
The sum of the forces and the sum of the torques are both zero, so the 
boat is “balanced” and sailing on a steady course. The boat’s leeway 
has been exaggerated a little in the arrow labeled with U that shows 
the boat velocity. The leeway means that the rudder’s force has a lift 
component even though it is aligned with the boat’s axis. If the rudder 
is released, the boat will turn into the wind because the dotted line 
projected from the sail’s center of effort is aft of the hull’s center of 
effort.

If the boat in Figure 4.12 were to heel significantly, the sail’s cen-
ter of effort would move out (toward the bottom of the page) and its 
dotted projection would move farther aft. This would increase the 
torque and the weather helm. Rudder deflection would be needed to 
counter the effect of heeling, and this would increase the drag. Most 
sailors know that excess weather helm is often caused by excess heel-
ing. However, when it is blowing hard, it is not always easy to sail a 
boat “flat” enough to limit the helm.

U

Figure 4.12  Forces on the sail, hull, and rudder for steady sailing. The sailboat velocity with 
exaggerated leeway is the arrow labeled U.
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The weather helm often becomes too large on a reach. Weather 
helm can be reduced by moving the sail force forward or moving the 
hull force backward. If the centerboard is pivoted, raising it part way 
also moves it aft and decreases the weather helm.

4.9 � Dynamics

4.9.1 � Moment of Inertia

Torques cause rotations in the same sense that forces cause motion. 
Stated in a more fussy way, torques produce angular accelerations 
just as forces cause ordinary accelerations. The rotational analogue of 
Newton’s law 

r rF ma= is

	 τ α= I 	 (4.12)

Here, t is the total torque, I is the moment of inertia, and a is the 
angular acceleration. The moment of inertia I is like a mass. Heavy 
objects are difficult to accelerate, and angular acceleration is reduced 
for objects with large moments of inertia. The moment of inertia of 
a sailboat is roughly the product of its mass multiplied by the square 
of its “average” size. This average depends on the boat’s shape and 
mass distribution.

The equation t = Ia doesn’t tell the whole story because there are 
really three different moments of inertia, one for each type of rotation 
(roll, pitch, and yaw). To find the different moments of inertia, draw 
the rotation axis through the boat’s center of mass. The contribution to 
I from each bit of mass is given by the mass multiplied by the square of 
the distance from the rotation axis. This relationship shows that a long 
thin boat would have a small moment of inertia for roll, and a much 
larger moment of inertia for pitch and yaw. Typically,

	
I roll M B( ) ≈







1
2 2

2

	 (4.13)

	              
I pitch I yaw M L( ) ( )≅ ≈







1
3 2

2

	 (4.14)

Here, B is the beam (or width), L is the length, and M is the mass of 
the boat.
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Different parts of the boat add individually to the moment of 
inertia. For example, the contribution of the mast to I(roll) or I(pitch) 
is roughly one-third its mass multiplied by the square of its height. 
The mast contributes much less to I(yaw) because all of the mast 
is quite close to the vertical rotation axis associated with yaw. The 
position of the crew also makes a small difference. When a crew 
member of mass m moves from the center to the end of the boat, 
the moment of inertial for roll is not changed noticeably, but the 
changes in the other two moments of inertia are approximately

	
∆ ∆I pitch I yaw m L( ) ( )≅ ≈





2

2

	
(4.15)

This change can be significant on lightweight sailboats.
In some classes of sailboats, one often sees crew members sitting close 

together near the center of the boat. The clustering may be an attempt 
to minimize the moment of inertia for pitch. This reduced moment of 
inertia can help a boat sail up and over waves rather than cutting through 
them. This may or may not be a good thing. When a boat is subjected to 
fairly large waves, the rocking of the boat can whip the mast back and 
forth at a significant speed. The resulting sail motion (especially near the 
top) modifies the wind speed and direction relative to the moving sail. 
Sail pressure develops best when the wind is steady, so a rocking motion 
can slow a sailboat. For some sailboats, the advantage of sitting snugly 
side-by-side when sailing upwind may make more difference for wind 
resistance than it does for changes in the moments of inertia.

4.9.2 � Resonance

Whenever a boat tips a little, there is a restoring buoyant force that 
keeps the boat upright. When someone hops on the bow of his boat, 
the front sinks until the extra buoyant force from the bow cancels out 
the additional weight. However, the moment of inertial for pitching 
means that once the motion starts it takes some extra force to stop it. 
The boat will first tip too far, and it can overshoot again when returning 
to equilibrium. Sometimes the bouncing can repeat and last for a few 
seconds. This motion is roughly analogous to that of a pendulum, but a 
pendulum is different because it oscillates back and forth many times 
before it stops. The boat’s oscillation damps out quite quickly because 
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the moving water rapidly absorbs the boat’s energy. Despite the strong 
damping, there is a roughly defined natural resonance frequency for the 
pitching motion of a boat. In principle, there is also a resonance for roll-
ing. The roll resonance is often damped so quickly by the centerboard 
or keel and rudder that it cannot be noticed. The resonant frequencies 
are easier to measure than to calculate. Because water must move out 
of the way as a boat rolls or pitches, the water does more than just stop 
the motion. It also increases the effective moment of inertia.

On rare occasions, the frequency of water waves passing a boat can 
coincide with a boat’s resonant frequency. The waves can feed energy 
into the motion. It is as if someone repeatedly hopped onto the boat 
at just the right times to amplify the pitching or rolling motion. This 
amplification can be annoying, and it slows the boat’s progress. In 
principle, the amplified motion could be suppressed by a change in 
resonant frequency accomplished by moving the crew.

4.9.3 � Instability

As the wind increases, possible instabilities for both upwind and 
downwind sailing multiply. On heavy wind days, sailors (like me) 
continue to discover new ways do things wrong. Only one example 
is described here. Assume a boat is sailing downwind and tilted to 
windward (as in Figure 4.11b) to minimize weather helm.

A wind, wave, or crew action moves the mast toward a vertical 
position, as in Figure 4.11a. Unless the skipper responds quickly, the 
boat will turn to port in response to the new increased weather helm. 
If the boat turns quickly to port, the centerboard will exert a lift force 
(to the left in Figure 4.11). This lift is needed make the boat move 
along its altered direction to port. The torque associated with this lift 
increases the heel to starboard, amplifying the original change and 
endangering the boat’s balance.

This is an example of “positive feedback” where a change in boat ori-
entation is amplified by physical forces. Regardless of its origin, posi-
tive feedback requires quick action or the instability can be disabling.

Sometimes the forces of instability have a simple explanation, but 
more often they are quite complicated and involve a number of differ-
ent effects. Many mechanisms have been proposed to explain the posi-
tive feedback associated with different types of sailing catastrophes. 
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Sometimes waves play an important role. When three complex sys-
tems (the wind, the boat, the water) are coupled, any simple explana-
tion of the positive feedback may well be an oversimplification.

4.10 � Upright Mast

Torques appear in a variety of other forms on a sailboat. The torques 
associated with keeping the mast in place is just one example, but it is 
obviously an important example. The sail forces can be large, so cables 
(typically stainless steel) are used to keep the mast rigid with respect 
to the boat. In the simplest arrangement, three cables are connected 
high on the mast and anchored to the hull. A forestay connects to the 
bow and two shrouds are anchored to the sides some distance behind 
the mast. Failure of any cable produces dismasting.

Consider an MC sailboat like that shown in Figures 4.7 and 4.13 
that is sailing directly downwind in a Fresh Breeze. The sail area is 
12.5 m. The boom is a little more than half a meter above the deck. A 
reasonable estimate of the center of effort (roughly one-third of the 
way up the sail) is 3 m above the deck. Applying Equation 2.6 for the 
downwind force gives F ≅ 250 N. The corresponding torque (force 
times distance) is t ≅ 750 N − m. The shrouds are attached to the deck 
about 1/3 m behind the mast. If each shroud supplies half the torque, 
the force f on each shroud is obtained by equating torques

	
2 1

3
750f ⋅ ≅m N/m 	 (4.16)

This is a large force, f = 1250 N. It is larger than the force on the sail 
for the same reason that forces are magnified by a winch. The shrouds 
are fairly thin cables, so the strength of materials is a concern when 
f is more than 1,000 N. The cables have a diameter of about 1/3 cm. 

Figure 4.13  Dismasted, but not dismayed? (Photograph from MC class Web page.)
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Because they are made from twisted wires, the effective cross section 
is about 8 × 10–6 m2. Thus, the force per unit area on each is

	

f
A

= ×1 5 108
2. N

m
	 (4.17)

Even stainless steel will stretch if the force is strong enough. The frac-
tional length change is

	
∆l
l

f A
Y

=
/ 	 (4.18)

Here, Y is Young’s modulus. For stainless steel, Y ≅ 2 × 1011 N/m2. 
This means a 1/10% stretch would be produced if f/A ≅ 2 × 108 N/m2. 
Thus, the cable stretch should be insignificant. Stainless steel can also 
be permanently stretched, and it can eventually break. The margin 
of safety is not that great. Stainless will plastically stretch at roughly 
triple the estimated shroud force per unit area of 1.5 × 108 N/m2, and 
it can break when the force per unit area is roughly six times this large. 
Nevertheless, theory says the situation shown in Figure 4.13 should 
not have occurred. Theory is sometimes wrong.

4.11 � Personal Torques

When the wind is blowing, torques are as important as forces. 
Sailboats can move fast only when they stay upright. On small boats, 
the sailor supplies much of the compensating torque needed to keep 
a boat balanced.

No modern sailor has gained more fame or won more awards than 
Paul Elvstrom, and much of his fame is due to his mastery of torques. 
Elvstrom invented the techniques and the equipment that make 
“hiking” possible. The sailor in Figure 4.7 can sit out past the edge of 
the boat because of hiking straps, which are an Elvstrom invention. 
The torque is the product of force and distance, so one wants to hike 
out as far as possible. One also needs to maintain this stressful position 
for long periods of time. Elvstrom installed special hiking apparatus 
in his garage and practiced dry-land hiking for hours at a time. Of 
course, Mr. Elvstrom needed additional sailing skills to be named the 
“Danish Sportsman of the Century,” but hiking helped.

73761.indb   102 11/13/09   4:51:41 PM



103

5
See How the 

Mainsail Sets

A sail’s job depends on the relative wind direction. Downwind, 
the wind is perpendicular to the sail’s surface, and the drag force 
pushes the boat along. For upwind sailing, drag is an impedi-
ment, and wind’s glancing blow to the sail produces mostly lift. 
A large lift-to-drag ratio becomes increasingly important when 
sailing more toward the wind.
  Birds and airplanes remain aloft because of large lift-to-
drag ratios, and sailors can gain useful hints about sail trim by 
observing the wings of our flying friends. Since a sail is made of 
a single sheet of sailcloth, it can only roughly approximate the 
more effective airfoil shapes of relatively thick bird and airplane 
wings. Bat wings are thin, but the spectacular maneuverability 
and bug-trapping abilities of bat wings are not of primary inter-
est for most sailors.
  An ideal sail should have an adjustable shape to efficiently 
accomplish its many jobs. Sail flexibility allows some shape 
changes, and alert sailors are perpetually adjusting sail trim to 
improve their speeds. Because the shape alterations of a single 
sail are limited, many sailboats use spinnakers in addition to their 
regular sails. Spinnakers are useful only when the wind is more 
or less astern. Their rounded shapes are ideal for producing the 
downwind drag, and some spinnakers also have significant lift 
so they can be used on a reach where the wind is from the side. 
To further deal with changing wind conditions, some boats use 
jibs of varying shapes and sizes. Sail areas can also be reduced 
by reefing. In principle, the sailor with the largest storehouse of 
sails could sail the fastest. Cost, common sense, and restrictions 
for sailboat classes generally limit the choice of sail materials and 
the number and overall dimensions of sails.
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  Assume one has the insight to determine a “best” sail shape, 
despite all the complications of variable wind. One would hope 
that fastening sailcloth to a mold of this ideal shape would pro-
duce the ideal sail in the same way that a mold is used to pro-
duce ideal shapes for hulls, rudders, keels, and centerboards. 
This construction will usually fail because the cut of a sail alone 
does not determine its shape. The flexibility of sailcloth means 
the shape is changed by the pressures of the wind, and these 
pressures are not considerate enough to make the ideal shape a 
possibility.

5.1 � Spinnaker

A simple downwind spinnaker that is similar to those commonly used 
on small sailboats is both nearly spherical and triangular. One can 
construct one of these spherical triangles as follows:

	 1.	Snuggly attach sailcloth to a giant globe (diameter: several 
meters).

	 2.	Cut the cloth along a path from the North Pole to the Equator 
along the Greenwich (England) meridian.

	 3.	Continue the cut due west along the Equator to longitude 
60° west.

	 4.	Make the third and final cut north through the eastern tip of 
Nova Scotia in Canada, back to the North Pole.

The result is a reasonable approximation to a real spinnaker shape. A 
spinnaker modeled from a section of a giant football or an enormous 
egg might be even more effective and may more closely resemble the 
spinnakers shown in Figure 5.1.

Even though a spinnaker is built to have a roughly spherical shape, 
it can easily be distorted. When the wind dies, sailors are often disap-
pointed to see their spinnakers change from pleasantly bulging effi-
cient sails to drooping, multifolded curtains. Even when a spinnaker 
is filled, it can assume a wide variety of shapes. A reasonable starting 
point for describing sail shapes rests on the approximation of invariant 
Gaussian curvature. To explain this, we digress.
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5.1.1 � Gaussian Curvature

The mathematics underlying the shapes of idealized spinnakers (and 
sails in general) has a distinguished pedigree. When Carl Friedrich 
Gauss (an “A-list” mathematician if there ever was one) proved that 
Gaussian curvature was an isometric invariant in 1828, he was so proud 
of this proof he called it his theorema egregium, which means “remarkable 
theorem.” This theorem is a fundamental concept of differential geom-
etry. The basic idea can be seen in the real-world examples of sails.

A sail is a surface that can take on many shapes. An isometry is a 
special kind of shape change that does not stretch or shear the sail 
material. In other words, sailcloth fibers are not stretched and crossed 
fiber remain perpendicular. For isomeric changes, the size of a square 
piece of sail cannot be increased. Also, the square cannot be changed 
to a rectangle or a parallelogram. This is an idealization, since all sails 
stretch a little.

Figure 5.1  Twin spinnakers. (Photograph by Vicki Woods and Bruce Beckert. With permission.)
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After you eat half a grapefruit, you are left with a shell resem-
bling a half-sphere of radius R. The Gaussian curvature of this shell is 
defined to be K = 1/R2. Imagine this grapefruit shell to be a miniature 
spinnaker. You can isometrically distort this hemispherical grapefruit-
spinnaker by squeezing on opposite edges of the shell. As the bend 
in one direction is increased, the grapefruit shell is flattened in the 
other direction, roughly like the example in Figure 5.2. The distorted 
surface is now characterized by two different bending rates, with two 
different radii, R1 and R2. Since the grapefruit is no longer spherical, 
its Gaussian curvature in the more general case is defined to be

Gauss’s remarkable theorem tells us that the K of the distorted grape-
fruit is exactly the same as the K of the original spherical surface. For 
those who don’t like grapefruit, the same trick works with a baseball 
cap or a yarmulke.

An egg-shaped spinnaker has different values of K at different 
points. The Gaussian curvature of an egg is largest at its pointed end, 
smaller at the rounded end, and smallest at its fattest part between the 
ends. At this fattest part, the two radii that determine K are associated 

	 K R R= 1 1 2/( ) 	 (5.1)

Figure 5.2  An isometric distortion of a section of a spherical shape, with stretching in one direc-
tion and compression in the other.
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with the path around the egg’s belly and the path from end to end. 
Any isometric distortion of an egg-shaped spinnaker must keep the 
local K at each point unchanged.

5.1.2 � Spinnaker Shape Changes

The invariance of Gaussian curvature gives a sailor some hints for how 
to adjust sail shapes. On many boats, the corners of a spinnaker are 
fixed to the mast at the top, to a pole on the windward side of the boat, 
and to a single line to the lee. For this geometry, only three coordi-
nates are adjustable. These are the vertical and horizontal positions of 
the pole and the length of the line. Raising the pole is analogous to 
squeezing the grapefruit in the vertical direction. Invariant Gaussian 
curvature means the increased vertical bending must be compensated 
by a decreased bending in the horizontal direction, so a horizontal sec-
tion of the spinnaker appears “flatter” or less curved. Similarly, pull-
ing the line to stretch the spinnaker along its lower part (the “foot”) 
will straighten the foot but increase bending in the vertical direction 
near the foot. The generalization is clear. When you bend a spinnaker 
(or any sail) in one direction, it becomes flatter in the other direction.

The other sails (mainsail and jib) are much flatter than the spinna-
ker, so their Gaussian curvatures are much smaller. Even so, the iso-
metric invariance of Gaussian curvature can help one to understand 
general sail design and trim.

5.1.3 � Make Your Own Sail

Consider again the insightful sailor who knows exactly what sail shape 
will produce the best sailing. Knowing the sail shape means know-
ing the Gaussian curvature at each point on the sail. This is sufficient 
information to construct the sail.

The geometry of curved surfaces is peculiar in many ways. For exam-
ple, a circle’s circumference is no longer 2p times its radius (assuming 
the radius is measured along the sail surface). For a disk with a small 
radius, the relation between the circumference, the radius, and the 
Gaussian curvature is

	
circumference radius K radius≅ ⋅ −






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6
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(5.2)
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The term that is proportional to K is curvature’s modification of plane 
geometry. In principle, this formula could be used to construct a sail 
with the desired Gaussian curvature at each point. Remove a slit of 
width p(radius)3 K/3 from a circular piece of a sail, pull the crack shut, 
and sew the edges together, as shown in Figure 5.3.

The “doctored” patch has the desired curvature. Sew together a 
patchwork of these pieces, each with its own Gaussian curvature to 
form the sail with the desired shape.

A patchwork of circles is a tedious and expensive way to make a sail. 
It is far simpler to produce curved surfaces by sewing together tapered 
strips of sailcloth, similar to the way tapered map strips are glued to 
the surface of a globe. As one moves a distance d along the strips, the 
width shrinks at a rate determined by the Gaussian curvature.

	
w d w Kd( ) = −





0

21 1
2 	

(5.3)

This sail-making technique is called “broadseaming.” Material within 
the strips has no curvature, but averaged over distances that are large 
compared to the strip width W0, the desired curvature is obtained, as 
shown in Figure 5.4.

5.1.4 � Stress

Stress on a small piece of sail is composed of opposing forces trying to 
pull the sail apart. The opposing forces mean stress is not simply a vec-
tor. It is a tensor, denoted 

t
τ with a double-pointed arrow decoration. 

A vector is specified by a direction and a magnitude. It is commonly 

Figure 5.3  A circle with slit removed becomes a curved surface when reattached.
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displayed as an arrow. A tensor in the two dimensions of the sail 
surface is specified by a direction n̂  and two stress magnitudes, t1 and 
t2, that are parallel and perpendicular to n̂. Examples stress tensors, 
displayed as perpendicular pairs of double-pointed arrows, are shown 
in Figure 5.5.

All the stresses of Figure 5.5 occur in sails. The symmetric stress (a) 
approximates the center region of a spinnaker. The one-dimensional 
stress (b) occurs along the free edges of a sail, with the double-pointed 
arrow parallel to the sail edge. The anisotropic stress of (c) is the general 
case where the forces are larger in one direction. Finally, the compres-
sion stress shown in (d) cannot be supported by sailcloth, but battens 
(rigid support rods placed in the sail) can deal with compression.

Sail stresses are expressed in units of Newtons/meter. The force on 
a piece of sail of width, w, along a stress direction is t1 (or t2) times 
the width, w.

A shear force changes a square piece of cloth into a parallelogram. 
There are no shear forces in a coordinate system oriented along a stress 
tensor axis n̂ . Most sailcloth is good at resisting forces parallel to the 
fiber orientation, but they are less able to resist shear. Thus, it is desir-
able to align the sailcloth fibers along the axes of the stress tensor so 
that shear is not a problem. The isotropic stress shown in Figure 5.5a 
produces no shear in any direction.

Figure 5.4  Tapered strips are needed to make the curved surface of a globe or a spinnaker.

(a) (b) (c) (d)

Figure 5.5  Four different stress tensors. (a) An isotropic stress. (b) Stress in only one direction. (c) 
Anisotropic stress. (d) A compression along one direction and tensile stress in the other direction.
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When sailing downwind, the isotropic spinnaker stress is charac-
terized by single number t that gives the magnitude of the stress in 
any direction. The pressure P and the stress t work against each other. 
The pressure pushes the sail forward, and the stress accompanied by 
bending pulls it back. Because bending is inversely proportional to the 
radius of curvature, the forces are balanced when

	
bending

R R
pressure
stress

P= + = =1 1
1 2 τ 	

(5.4)

The two curvature radii are about the same for a spinnaker with a 
roughly spherical shape, so R R R1 2≅ ≅ . Thus,

	
τ ≅ 1

2
RP

	
(5.5)

In a Fresh Breeze, P ≈ 20 N/m2. A spinnaker radius of curvature is 
on the order of 4 m, so t ≈ 40 N/m. This stress could not even tear a 
piece of paper. Since much of a spinnaker is subject to relatively small 
stresses, spinnaker material can be lighter than ordinary sailcloth. 
Reinforcements are needed near the spinnaker corners where stresses 
are concentrated.

5.2 � Mainsail and Jib

Mainsails and jibs resemble nearly flat triangles. One might assume 
such sails are simple, but sailors see subtle complexities in the trian-
gles that propel their boats. Even the language of sails is complicated. 
Just as some people know many words to describe camel anatomy or 
the different types of snow, sailors have their own vocabulary for the 
parts of a sail, which are labeled in Figure 5.6a.

The sail shape in Figure  5.6 is a simplification. Most sails have 
additional area because the leech is curved. Battens (horizontal plastic 
strips embedded in the sail) allow the sail to extend beyond the line 
between the head and the clew. The extra area is called the “roach.” 
Full-length battens that extend from the luff to the leech, combined 
with high-tech sail materials that stretch very little, can produce a 
large roach and more effective sail shapes.
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Many sailboats use two sails upwind—a mainsail and a jib (some-
times called headsail or genoa if it is big). The luff of the mainsail is 
attached to the mast. The jib’s luff is attached to the forestay, which 
is a cable running from the mast to the bow. The forestay is one of 
three or more cables used to keep the mast upright. The jib and main-
sail each deflect the wind resulting in mutual interaction. The net 
effect of this interaction is not as large as one might expect. There is 
generally little difference in the speeds of two similar sailboats when 
one is rigged with a single sail and the other uses both a mainsail 
and a jib. Of course, the total sail areas must be the same for a fair 
comparison.

If a sailor is unusually imaginative and even more unusually pros-
perous, other sail designs, like the one in Figure 5.7, can be tried.

The nonrigid nature of sailcloth, combined with the mysteries of 
the wind’s pressure variations, make it extremely difficult to analyt-
ically characterize real sail shapes. Sailmaking is an art too subtle 
for me to describe. However, some elementary ideas about sails are 
described here by considering the terribly oversimplified example of 
sails characterized by two approximations.

The Gaussian curvature is zero everywhere on the sail.•	
The sail’s surface is subject to a uniform pressure.•	

H
ead

Leech

Luff

Foot
ClewTack

z

x

z = H, x = L

z = xH/L

(a) (b)

Figure 5.6  (a) Parts of a sail. The same nomenclature applies to the jib and even the spinnaker. 
(b) The coordinates used to describe points on the sail’s surface.
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Modifications of sail shapes that come about from Gaussian curva-
ture, nonuniform pressure, and other complications are discussed 
briefly in Section 5.3.

Vanishing Gaussian curvature does not mean the sail surface is flat 
like a board. Instead, each point on the surface must lie on a straight 
line. Simple experiments with a piece of paper cut to the shape of a 
miniature sail show this. No matter how you (gently) bend the paper 
sail, perfectly straight lines traverse the model sail from one edge to 
the other.

Assume a sail has the simple geometry shown in Figure 5.6. It is a 
right triangle, with a luff of height H attached to the mast. The foot 
of length L is attached only at the corner (the clew). The assumptions 
of uniform pressure and vanishing Gaussian curvature mean the sail 
shape is entirely determined by the position of the clew. If the clew 
is stretched out and down as far as possible, the sail will be perfectly 
flat. In practice, this flat shape could be achieved only on calm days. 
A wind bulges the sail to one side and gives it a rounded shape, which 
is a good thing because a perfectly flat sail is never desirable. Sailors 

Figure  5.7  Nonstandard sails on a nonstandard sailboat. (Photograph by Debbie Kennedy. 
With permission.)
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adjust the position of the clew to vary the curvature and shape of a 
sail. To illustrate the flexibility of this flat sail, three examples are 
described. The first example keeps the leech tight but reduces the 
tension on the foot. The second is characterized by a tight foot with 
reduced tension on the leech. The final example is a compromise in 
which both foot and leech tensions are reduced in such a way that the 
sail shape is particularly simple. Calling this last example “Perfect 
Blend” is a value judgment.

5.2.1 � Tight Leech

If the clew is moved slightly toward the mast while the leech is kept 
tight, the sail will be curved and the foot will have the shape of a cir-
cular arc (roughly a parabola). The sail shape is derived by minimizing 
the potential energy of the sail subjected to a uniform pressure.

Since the sail has vanishing Gaussian curvature, every point on the sail 
must lie on one of an array of straight lines that radiates from the head to 
the foot. This geometry gives the sail displacement shown in Figure 5.8. 
Equations describing the sail shapes are given in Section 5.2.4.

5.2.2 � Tight Foot

The Tight Foot sail shape is quite different from the Tight Leech. The 
difference is produced by pulling the clew tightly along the boom and 
allowing it to move up slightly along the leech. Now the parabolic 
shape is along the leech, and the straight lines radiate from the tack 
to the leech. Minimizing the energy gives the sail shape shown in 
Figure 5.9, which resembles the shape in Figure 5.10. The equation 
describing this sail is also given in Section 5.2.4.

5.2.3 � Perfect Blend

A more sensible sail shape is obtained when a moderate force is applied 
along both the foot and leech of the sail. This shape is particularly 
simple because the force on the clew (equivalently, the clew position) 
is chosen to make the straight lines on the sail’s surface vertical and 
parallel to the mast, as is shown in Figure  5.11 and in the sail of 
Figure 5.12, which resembles this shape. The Perfect Blend sail shape 
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is described in more detail in Section 5.2.4 because it is a fairly realis-
tic representation of a practical sail shape.

The Perfect Blend sail is a reasonable model for the shape and 
forces one would expect from a typical sail. Some of its properties are 
discussed here.

The maximum displacement of the Perfect Blend sail does not occur 
at one point. Instead, there is a vertical line of “maximum draft” that is 
about 42% of the distance from the luff to the clew. The sail shapes at the 
foot for large, medium, and small forces applied to the clew are shown 
in Figure 5.13. These shapes have a reasonable resemblance to an airfoil 
that our intuition tells us is a desirable property of an efficient sail.

Figure 5.8  A Tight Leech sail with vanishing Gaussian curvature subjected to a uniform pres-
sure. The maximum sail displacement has been exaggerated to show the shape.
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The maximum displacement, y, and the horizontal clew force, Fx, 
are inversely related. For the Perfect Blend shape,

	

y
L

A P
Fx

(max)
= ⋅2

9 3 	
(5.6)

One can estimate the horizontal clew forces, Fx, for a Thistle sailboat in 
a Fresh Breeze, assuming the total force on the sails is  A P⋅ ≅ 370 N. 

Figure 5.9  The Tight Foot sail with vanishing Gaussian curvature subjected to a uniform pres-
sure. Again, the maximum displacement has been exaggerated.
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If y(max)/L is roughly 10% and if the jib is half as big as the mainsail, 
one obtains

	

F mainsail

F jib

x

x

( )  

( )  

≅

≅

320

160

N

N 	
(5.7)

The mainsail force that holds the clew away from the mast is sup-
plied by fastening the sail to the boom, so sailors do not need to 
keep pulling the sail away from the mast to maintain its shape. 

Figure 5.10  A sail resembling the Tight Foot shape. (Photograph by Sally Snowden. With permission.)
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The force, Fx( jib), must be added to a comparable or larger vertical force 
to maintain leech tension. The resulting total force in a Fresh Breeze 
needed to trim the jib is comparable to the force needed to lift a fairly 
large dog. The forces scale with the sail area, so winches, pulleys, and 
strong arms are sometimes needed for jib trim on larger sailboats.

Figure 5.11  The Perfect Blend sail. The displacement of the sail does not change with height.
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A special and unusual property of the Perfect Blend shape is the 
simplicity of the stress tensor. The results in Section 5.2.4 can be used 
to show that all the stresses are along lines from the clew to the luff. 
There are no transverse stresses, so the stress at every point in the 
sail can be represented as a single arrow with double points (not two 

Figure  5.12  A sail resembling the Perfect Blend shape. (Photograph by Sally Snowden. With 
permission.)
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double-pointed arrows), as shown in Figure 5.5b. The sail stresses are 
illustrated in Figure 5.14.

The magnitude of the stress in the Perfect Blend sail shape is con-
veniently written in polar (r, f) coordinates. Here, r is the distance 
from the clew where the force is applied, and f is the angle above 
horizontal. Thus, the foot of the sail lies on the line corresponding to  
f = 0 and 0 ≤ r ≤ L. In these coordinates, the magnitude of the stress 
radiating from the clew is

	
τ φ

φ
( , )

cos ( )
r F

r
L
Hx= 1 1

3
	

(5.8)

Figure 5.13  The Perfect Blend sail shape along the foot. From top to bottom, y(max)/L is 1/5, 
1/10, and 1/20. The curvature and draft are inversely proportional to the tension. The circles on the 
left represent the masts.

(a) (b)

Figure 5.14  (a) Arrows indicate the direction of stress for the Perfect Blend sail. Crowded arrows 
near the clew (lower right) are indicative of larger stress. (b) The lengths of the arrows are propor-
tional to the magnitude of the stress at a fixed distance from the clew. This shows the stress is 
largest along the leech.
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Some of Equation 5.8 is intuitive. It is reasonable for the stress to be 
proportional to the applied force. The factor of 1/r means the stress is 
concentrated at the clew. In practice, sails are reinforced near the clew 
to withstand this stress and limit sail deformation. The 1/cos3 (f) term 
in Equation 5.8 is more surprising. It means that the stress along the 
foot is typically ten times smaller than the stress along the leech. This 
has important consequences when considering sail strength. For a tra-
ditional woven sail, the strongest fibers (called “fill”) should be paral-
lel to the leech where the stress is largest. The perpendicular fibers 
(walled warp) bend around the fill, so they stretch more easily. For 
high-tech sails, the considerations are similar, but the stress resistance 
may be provided by carbon fibers.

Summing all the force vectors associated with the stress gives the 
total force of the sail on the clew. The result of this summation is 
fairly simple. One finds that the total force for the Perfect Blend sail 
is directed toward a point halfway up the mast. Typically, this means 
the vertical force on the clew is comparable to or larger than the hori-
zontal force. The total force is thus typically 50% larger than the hori-
zontal force. For the example of the Thistle sailboat in a Fresh Breeze, 
the force needed to maintain the Perfect Blend shape for a jib with a 
y(max) about a tenth of L is roughly 250 N.

5.2.4 � Sail Shape Equations

The assumptions of uniform pressure and vanishing Gaussian 
curvature is sufficient to allow one to derive the formulas for the 
sail shapes shown in Figures 5.8, 5.9, and 5.11. Although formu-
las for all three shapes are presented, a sketch of the derivation is 
given only for the Perfect Blend sail.

First, some coordinates are needed, as illustrated in 
Figure  5.6b. The flat sail lies in the x-z plane, which means 
y = 0. The pressure of the wind bulges the sail out a bit in the 
y-direction. The resulting sail shape is specified by the displace-
ment y(x, z) for each point on the sail. The clew is placed at the 
origin of the coordinate system, x = 0, y = 0, and z = 0. The foot 
extends a distance L along the x-axis to the mast whose base 
is at x = L, y = 0, and z = 0. The mast is attached to the sail’s 
luff and extends to the sail height z = H. That means the sail’s
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leech lies on the line z = x . H/L. (The drawing in Figure 5.6b is 
a little unorthodox because x increases from right to left.)

The Tight Leech sail is described by

	
y x z y Hx Lz L x

L H z
( , ) (max) ( )( )

( )
= ⋅ − −

−
4 2

	
(5.9)

Here, y(max) is the maximum displacement that occurs halfway 
along the foot at x = L/2 and z = 0. The ratio y(max)/L character-
izes sail shape. Pulling the clew out enough to make y(max)/L < 10 
gives the sail a “flat” appearance. Moving the clew toward the mast 
makes a “full” or “baggy” sail with a larger value of y(max)/L.

The Tight Foot sail is described by

	
y x z y x L z H

x L z H
( , ) (max) ( )( )

( ) ( )
= ⋅ −

− +
4 1

1
/ /

/ / 	
(5.10)

For this case, the maximum displacement occurs halfway up the 
leech at x = L/2, z = H/2. As with the first example, y(max) is 
determined by the force applied at the clew.

Because the straight lines are vertical, the Perfect Blend sail 
displacement does not depend on z, so  y x z y x( , ) ( )→ , and y(x)  
describes the sail shape for all heights z between the foot and the 
leech directly above it. This simplifies the algebra needed to obtain 
the shape. The Perfect Blend sail shape is also determined by the 
force 

r
F applied to the clew. This force produces a stress tensort

τ ( , )x y  in the sail, which in turn determines the horizontal ten-
sion T(x). (Formally, the stress tensor 

t
τ  described in Section 5.1.4 

has the form of a 2 × 2 matrix and T(x) is the (x, x) component of 
this matrix.) For each x, the tension is uniformly distributed over 
the vertical distance from foot to leech. Multiplying the tension 
T(x) by the sail height at x, which is h(x), gives the x-component of 
the force applied to the clew, Fx. Because h(x) = xH/L, this means

	
T x

x
L
H

Fx( ) = 1
	

(5.11)

The 1/x in this equation means the tension is largest near the 
clew at x = 0, where it is supported by only a small amount of 
sail, and it is smallest at the mast.

73761.indb   121 11/13/09   4:52:06 PM



122 	 Physics of Sailing﻿

5.2.5 � Sail Characterization

A single sail with vanishing Gaussian curvature can assume a variety 
of shapes. The Tight Leech, Tight Foot, and Perfect Blend are just 
three examples. A variety of numbers simplify the characterization at 
sail shapes. These numbers are compared here for the three example 
sails.

The angle q between the boom and the line tangent to the luff is 
the entry angle. Vanishing Gaussian curvature means q is the same at 
every point on the mast for all three example sail shapes.

For the Perfect Blend shape shown in Figure 5.15,

	
θ

π
= 180 3 3 y

L
(max)

	
(5.15)

The pressure P and T(x) work against each other, with P 
increasing the bending and T(x) making the sail flatter. The bal-
ancing of these two effects means

	
bending pressure

tension
P

T x
= =

( )
	 (5.12)

The bending is essentially the second derivative of y(x), so using 
the expression for T(x) gives a differential equation for this 
Perfect Blend shape

	
F
x

L
H

d y
dx

Px
2

2 = − 	 (5.13)

The solution is

	

y x
L

A P
F

x
L

x
Lx
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= ⋅ −
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






1
3

3

	 (5.14)

Here, A . P/3 (one-third of the sail area times the pressure) is 
the same as the y-component of the sail’s force on the clew. This 
shape represented by Equation 5.14 is shown in Figure 5.13 for 
three different values of the applied force Fx.
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For the reasonable case where y(max)/L ≅ 1/10, the entry angle is about 
30°. For the other two example sail shapes, the Tight Leech and the 
Tight Foot, the entry angle is described by a similar expression. The 
coefficient of y(max)/L is slightly different for the three sail shapes. For 
all three sail examples, entry angle is proportional to the maximum draft, 
which means it is inversely proportional to the force applied at the clew.

For each height on the sail, its cross section is a simple curve. Two 
cross sections are shown for the three example sail types. The longer 
curve displays the shape at the foot, and the shorter shows the sail 
shape halfway up the mast. For each curve, the straight line from the 
luff to the leech is the “chord.”

Three numbers are used to describe these curves. The twist angle 
is the angle the chord is rotated as one moves up the sail. The camber 
ratio is the largest draft d divided by the chord length. The position 
of maximum draft is expressed as a fraction of the chord length. For 
the three example sail shapes, these quantities can be calculated for 
any height using Equations 5.9, 5.10, and 5.14, but Figure 5.16 shows 
the basic trend.

5.2.5.1  Twist  The Tight Leech sail has no twist. The Tight Foot sail has 
the most twist, and the Prefect Blend lies between the two extremes.

5.2.5.2  Camber Ratio  The camber ratio of the Tight Leech sail does 
not vary with height. This ratio increases with height for the Tight 
Foot example and decreases with height for the Perfect Blend sail.

5.2.5.3  Maximum Draft Position  The maximum draft position is 
always midway between the luff and the leech for the Tight Leech 
example. For the Perfect Blend sail, the maximum draft at the foot 
is ~42% back at the foot and moves so it is centered near the head. 

θ

Figure 5.15  The entry angle q is between the luff and the horizontal boom. The example shown 
here is the Perfect Blend sail along the foot.
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For the Tight Foot example, the maximum draft is near the luff at the 
bottom of the sail. It also moves to halfway back at the head.

5.2.6 � Applying the Forces

In the crudest of nonnautical terms, “the boat won’t go until someone 
pulls on a rope.” Stated more formally, a sail’s shape and position is 
determined by the magnitude and direction of the applied force. It is 
the sailor’s job to apply the force properly.

5.2.6.1  Sail Shape  Sail trim is relatively simple for the example jib in 
Figure 5.17. The vector showing the sail force is directed toward the 
center of the luff. This is roughly the force direction associated with 
the Perfect Blend sail shape. An equal and opposite “sheet force” must 
be supplied by the sailor pulling on a “ jibsheet.” (It is bad form for 
a sailor to call a rope a “rope.” It’s a “sheet,” a “line,” or a “halyard,” 
depending on its use.) Since the force can be more than a couple of 
hundred Newtons for even a small jib, some of mechanical advantage 
(e.g., a winch) is often needed to properly trim the sail. If the direction 

d

d

Tight Leech

Tight Foot

Perfect Blend

Figure 5.16  Cross sections of the three example sails at the foot and halfway up the mast.
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of the applied force is changed, as indicated by the dotted alternative 
sheet forces, extra tension will be applied to the leech or the foot. This 
will change the sail shape to more closely resemble the Tight Leech 
and Tight Foot examples. In practice, the jib sheet runs through a 
“block” (pulley) on the deck. Moving the block back tightens the foot, 
and moving the block forward tightens the leech.

The force applied to the mainsail is essentially the same, but the 
force is distributed in little pieces, as illustrated in Figure 5.18. The 
clew is attached to the boom, so the sailor is not required to continu-
ally pull out on the mainsail. The position of the clew along the boom 
is adjustable with an “outhaul” that delivers the horizontal component 
of the sail force. [The vertical component of the sail force is also sup-
plied by the boom, and the boom pulls down on the sail because it 
is attached to a mainsheet and a vang.] The boom is free to rotate 
about its fixed pivot point attached to the mast. The force applied to 
the sail is determined by the condition that the sum of the torques 
applied to the boom must vanish. As described in Chapter 4, each 

Sheet Force 
Fo

re
sta

y

Sail force 

Sail Force

Figure 5.17  The force applied to the jib sheet is equal and apposite the force of the sail. The 
dotted lines denote alternative force directions that would change the sail shape.
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torque is the product of a vertical force multiplied by a horizontal dis-
tance. Applying the torque rule to the example shown in Figure 5.18 
means the vertical component of the sail force is roughly 80% of 
the total sheet force plus 30% of the vertical component of the vang 
force. Because the mainsheet makes three trips to the boom, the 
total sheet force is three times the force the sailor must apply to the 
end of the mainsheet.

The boom is subjected to considerable compression as well as bend-
ing forces, so it must be quite strong. The mast force on the boom is 
determined by the condition that the sum of all forces applied to the 
boom must vanish. When the vang tension is very large, some booms 
will bend, as shown in Figure 4.7.

5.2.6.2  Sail Position  This focus on sail shape has ignored the most 
important angle for sailing. The sail must be properly oriented with 
respect to the wind. This means the sail must be trimmed close to the 
center of the boat for upwind sailing, but when sailing downwind or 
on a reach, the boom must be allowed to swing out. Releasing ten-
sion on the mainsheet allows the sail to move out for downwind sail-
ing. This presents a problem because the vertical component of the 
mainsheet force nearly vanishes. Without the vertical force supplied 

Sail Force
Van

g F
orc

e

Sheet Force

Mast Force

Figure 5.18  The forces applied to the boom.
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by the vang, the sail could rise up in heavy winds and become less 
efficient.

Many sailboats have adjustments that can move the mainsheet trim 
points to the edge of the boat. This allows the mainsheet to be more 
nearly vertical. The additional vertical force is especially helpful when 
the wind is strong.

5.3 � Real Sails

Much has been ignored in this characterization of sails. Some obvious 
oversights are

	 1.	The pressure on a sail’s surface is not uniform.
	 2.	Sailcloth stretches.
	 3.	Sails are constructed with nonzero Gaussian curvature.
	 4.	The mast bends on many smaller sailboats.
	 5.	Luff tension can be adjusted.
	 6.	The foot of many sails, especially mainsails, is attached to 

the boom.
	 7.	Battens (solid strips extending to the leech) are placed in 

the sail.

Comments on some of these oversights follow.

5.3.1 � Pressure Variation

On real mainsails, the pressure is typically largest near the mast 
(but not too near the mast), and there is also a smaller viscous force 
from the wind pulling along the sail’s surface. A more realistic 
description of the forces results in modest (but possibly important) 
changes in the calculated sail shapes. The task of predicting and 
controlling sail shape under real sailing conditions is daunting. The 
problem is circular.

	 a.	The air pressure and flow determines the sail shape.
	 b.	The sail shape affects the airflow.
	 c.	But the airflow determines the pressure, so you return to 

Step a without a solution.

An example of nonuniform pressure is considered for the Perfect 
Blend sail shape. When the pressure depends on the position and 
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P → P(x), the generalization of Equation 5.13 is

	 bending x P x∝ ⋅ ( ) 	 (5.16)

Two sail shapes with different pressure distributions are compared in 
Figure 5.19. The draft is exaggerated so the difference in shapes can 
be seen. The slightly wider “uniform pressure” curve for the foot of 
the Perfect Blend sail is the same as Figure 5.13, but with a magnified 
vertical scale. The narrowed “pressure varies” curve is produced by the 
pressure distribution shown by the arrows at the bottom of the figure.

The result shown in Figure 5.19 for the Perfect Blend example is 
fairly general. The nonuniform pressure distribution has a small effect 
on most sail shapes.

5.3.2 � Stretching, Bending, and Other Complications

5.3.2.1  Stretching  Stress applied to a sail can change its shape. When 
a piece of sail is pulled in a direction parallel to its fibers, its length d 
can increase to d + Δd, with the extra length given by

	
∆d
d

stress
thickness Y

≈
⋅

	 (5.17)

An example illustrates the application of this formula. Assume 
one has a long piece of sailcloth that is 5 m long and 1/2 m wide. 

Ex
ag
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ft

Uniform Pressure

Pressure Varies

Figure  5.19  A comparison of sail shapes when the pressure is uniform (wider curve) and 
when the pressure is largest near the center of the sail (narrow curve). The arrows at the bot-
tom indicate the assumed form of the pressure variation. The curves are scaled to coincide at 
maximum draft.
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Two people grab opposite ends of this cloth and pull with oppos-
ing forces of 50 N. The “stress” is this force divided by the sail-
cloth width, so stress = 100 N/m. The stress must be divided by the 
thickness of the sailcloth to obtain the fractional change in length. 
Typically, the thickness is given indirectly in terms of the mass of 
a given area of sailcloth, and it is often expressed in extraordinarily 
obscure units. Assume the sailcloth is a spinnaker made of relatively 
stretchy nylon that is only 3/10 mm thick. The second term in the 
denominator, Y, is Young’s modulus, which quantifies a material’s 
ability to resist stretching. For nylon, y ≅ 3 × 106 N/m. Substituting 
these estimates into Equation 5.17 gives Δd/d ≈ 10%, which means 
the 5 m piece of light spinnaker would stretch half a meter. The 
Fresh Breeze estimate in Section 5.1.4 for the center of the spin-
naker was 40 N/m, so a typical Δd/d  in typical sailing conditions is 
significant, but usually less than 5%.

As one might expect, there is more to stretch than the single for-
mula for Δd/d suggests. Young’s modulus often differs for the two 
different fiber directions in the sailcloth, and there is yet another coef-
ficient for the effect of stretching a sail along the diagonal between 
the fiber directions. Diagonal stretching corresponds to a shear of the 
material. It is easier to shear sailcloth than to stretch it along the fibers. 
These generalizations mean results obtained from Equation 6.17 are 
only first approximations.

Sail stretch is not always a bad thing. A spinnaker’s elasticity can 
improve stability because abrupt motion of the boat can be absorbed 
through stretching rather than transmitted across the sail. Limited 
stretching does little to alter the simple rounded shape of a spinnaker.

Stretch is more troublesome for mainsails and jibs. The stresses 
are much larger for these sails, and the stretching can significantly 
change the shape of these more nearly flat sails. For sailors of modest 
means, mainsails and jibs are typically made from polyester (tradi-
tionally Dupont’s Dacron), which is about one-third as stretchy as 
nylon. Also, mainsails and jibs are quite a bit thicker than spinnakers. 
This results in manageable, but not negligible, stretching. Sailors of 
immodest means can purchase high-tech sails that use aramids (e.g., 
Kevlar) and/or carbon fibers. These materials can be 10 times more 
resistant to stretching than Dacron. As time passes, they are becom-
ing less expensive.
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When a sail is stretched, its shape is deformed. For the Perfect 
Blend sail shape, the largest stress (and stretch) is along the leech, as 
illustrated in Figure 5.14b. The stretched leech will allow the maxi-
mum displacement y(max) to increase. This is especially noticeable 
when a sail is trimmed to be fairly flat. If Δy(max) is the change in 
y(max) caused by sail stretching,

	

∆ ∆y
y

L
y

d
d

(max)
(max) (max)

≈






2

	 (5.18)

Since L/y(max) is on the order of 10, a change in the length of the leech 
of only one part in 1,000 can cause a significant 10% change in the maxi-
mum value of y along the leech. Some of the stretch can be corrected by 
applying additional vertical force to the clew. However, this compensa-
tion has its limitations. When the edge of a sail is stretched, the circum-
ference of a circle drawn on the sail can increase even if its radius remains 
constant. This corresponds (through Equation 5.2) to a decrease in the 
Gaussian curvature, which cannot be restored by altered sail trim. Also, 
since the stretching varies with the wind’s pressure, one cannot satisfac-
torily compensate for this effect in both light and heavy winds.

Over time, some sail stretching becomes permanent. A sail’s shape 
does not last forever. Sailors interested in maximum speed buy new 
sails much more frequently than they buy new boats. Boat stretching 
is less of a problem.

5.3.2.2  Gaussian Curvature  The Tight Leech, Tight Foot, and Perfect 
Blend sail shapes with vanishing Gaussian curvature are only simpli-
fications. Built-in Gaussian curvature significantly modifies previous 
comments. As a very rough approximation, built-in Gaussian curvature 
adds to the draft in the center of the flat sail shapes. A sail’s built-in 
curvature limits the sailor’s ability to flatten a sail. As an extreme 
example, no amount of stress applied to a spinnaker can make it flat.

In many cases, the mainsail is attached along the length of the 
boom, which necessitates significant Gaussian curvature near the 
foot. Otherwise, the sail would resemble the Tight Foot sail shape. 
Extra sailcloth inserted near the foot allows the sail to have a more 
reasonable shape. The extra cloth allows horizontal curvature just a 
short distance above the foot.
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Sail stretch and Gaussian curvature combine to make sail trim much 
more difficult to understand. As an example, assume a sailor pulls down 
harder on the boom. This will straighten the leech. However, if the 
Gaussian curvature is nonzero, the straighter leech means more curva-
ture in the direction perpendicular to the leech. The sail may become 
“cupped” at its back edge, as in the grapefruit spinnaker example of 
Figure 5.2. However, if the additional stress on the leech is sufficient  
stretch the sail and to decrease the Gaussian curvature, the result could 
be a flatter sail instead of a sail with a cupped leech.

5.3.2.3  Bending Masts  The masts on many smaller sailboats are flex-
ible. They can be bent aft either by tension applied to the leech or 
a backstay. Sometimes the boom can also bend, as can be seen in 
Figure  4.7. Mast bending can flatten a sail, provided the sailcloth 
allows the small amount of distortion needed to accommodate the 
shape change. In general, the change in sail shape produced by mast 
bending is not an isometry, so the Gaussian curvature cannot be 
strictly invariant. A high-tech sail with almost no stretch is not com-
patible with a bending mast.

The mast bending effect can be seen by attaching strings to a 
sail that has a “full” center section. This full sail has nonzero 
draft even when the edges of the sail are pulled so tight that they 
are straight. The fullness of the sail is shown in Figure 5.20a by 
strings that run from the clew to the luff. The string curvature 
represents the draft of the sail. The bottom string of length L is 
straight. It runs along the foot from clew to tack. The top string is 
also straight. Its length is L H2 2+ , and it runs along the leech 
from clew to head. The other strings are not straight because they 
are attached to the sail with some draft in the middle. For exam-
ple, the center string runs from the middle of the luff to the clew. 
This string is a little longer than plane geometry requires because 
the sail is bulging out in the middle. If the middle string has 

length ( ) ( )1 22 2+ +ε L H / , the e characterizes the extra length, 
which means the draft in the center of the sail is roughly

	
y

L
(max)

≈ ε 	 (5.19)
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Typically, y(max)/L for the straight mast is less than 0.2. Thus, only 
modest mast bending with d/H ≈ 1% → 5% should be sufficient to 
flatten a sail. Mast bends of this magnitude are common. One’s eye 
is quite sensitive to bending, and a quick visual check of bending can 
easily overestimate its magnitude. The bending d/H is about 2% and 
3% in Figures 5.20b and 5.21.

This draft is present even when the sail is trimmed so tightly that 
the foot and leech are straight.

In principle, y(max) can be reduced to nearly zero by bending 
the mast. The bent mast is shown in Figure 5.20b along with a 
straight line drawn from the sail head to the tack. The bending 
is characterized by the distance d between the mast and the line, 
as indicated by the little arrow in Figure 5.20b. If d ≈ eH, where 
e characterized the extra length of the center string, the strings 
should all be pulled straight. This means the bending needed to 
flatten a sail is roughly

	

d
H

y
L

≈






(max)
2

	 (5.20)

(a) (b)

Figure 5.20  (a) The dotted lines are straight along foot and leech but bent in between because 
the sail has a built-in fullness. (b) Bending the mast eliminates the fullness and straightens all the 
dotted lines.
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Mast bending is a practical method of sail control only if the sail 
can stretch a little. To see this, assume a sail only allows isometric 
deformations. If a bent mast could make the sail perfectly flat, then 
the sail would not fit on the mast when it was straight. You can see 
this by cutting a piece of paper in the shape of a flat sail with a curved 
mast. There is no way you can (gently) bend this paper to make the 
curved mast line straight. A sail that cannot easily accommodate this 
deformation typically develops wrinkles in its attempt to assume an 
unnatural shape.

5.3.2.4  Luff Tension  If a sail could not stretch, no adjustment of the 
distance between head and tack would be possible. When stretching 
is possible, changing the length of the luff also changes the sail shape. 
Additional luff tension is achieved with a “Cunningham.” (Griggs 

Figure 5.21  Mast bending on a Laser sailboat. (Picture by Sally Snowden. With permission.)
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Swift Cunningham II won the America’s Cup in 1958.) The result of 
increasing luff tension depends on the sail design. Because the larg-
est sail stress is generally along the leech, many sails are aligned with 
fibers parallel to the leech. This means the luff is angled with respect 
to the sail fibers, so tension on the luff pulls diagonally on the fibers. 
Sails are easily distorted by diagonal tension. To see this, pull along 
diagonal points of any light piece of cloth. The material stretches eas-
ily along the diagonal, and cloth near the stretch line is pulled in, 
creating wrinkles. An analogous change can happen in a sail. The 
extra material pulled toward the luff can increase the attack angle and 
give the sail a larger displacement y(x, z) near the luff. Sailors often 
say increased luff tension pulls the region of maximum draft forward. 
This is only part of a more complicated shape change that is produced 
by this adjustment. No attempt to present a quantitative description of 
luff tension is presented here because I don’t understand it.

5.4 � What Really Counts

Some aspects of sail trim are much more important than others. An 
ordering of priorities helps to keep things in perspective. They are 
listed here from most to least important.

The sail force is proportional to the sail area. This nearly obvi-•	
ous fact tells most of the story. If a jib fails so that sail area is 
significantly decreased, there are no tricks that can make up 
for the lack of sail area.
A sail works efficiently only if it is properly oriented with •	
respect to the wind. Downwind, the sail orientation is nearly 
obvious. When sailing upwind, sailors pull the sails in so they 
do not luff, but do not pull them in further. On a reach, sail-
ing roughly perpendicular to the wind, the proper sail angle 
is less obvious. It is tempting to pull sails in so they intersect 
more wind. This is a mistake because lift is mysterious and 
does not agree with our intuitive views.
Sail shape also makes a difference, but the sail area and trim •	
angle remain the first priorities. For example, if the boom is 
allowed to rise up when the wind increases, the sail area is 
effectively decreased.
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	 Even fine refinements of shape receive a great deal of atten-
tion because there are no simple rules. There is plenty of room 
for controversy and experiment. Sailors interested in racing 
are usually subjected to strict limitations on the sail area, 
and they quickly learn the proper sail orientation. The most 
important variable left that might give an advantage is the sail 
shape and the adjustments that can perfect this shape.
Surface smoothness makes an even smaller difference. •	
Wind exerts a small tangential force on the sail as it skims 
along the surface. The force, which is related to the viscosity 
of the air (Chapter 6), is generally undesirable. The viscous 
force is probably smaller if the sail is very smooth. Perhaps 
more importantly, the sail pulls back on the wind with a 
force equal to and opposite the viscous force. A rougher sail 
can disturb the airflow pattern and decrease sail efficiency.

In principle, one should be able to deduce proper sail shape and adjust-
ment without ever having to sail. In practice, no theory comes close 
to revealing all the devious complications of sails. When it comes to 
constructing and using sails, only practice makes perfect.

73761.indb   135 11/13/09   4:52:13 PM



73761.indb   136 11/13/09   4:52:13 PM



137

6
Fluid Dynamics

Sailors would like to know everything about the wind and water 
flowing past their boats. But the wind and water are worthy 
opponents of unlimited complexity. In principle, the Navier–
Stokes equation explains all. Its solution could determine the lift 
and drag on any sail and any sailboat. Sadly, solutions cannot be 
found without the aid of a computer named Deep Thought. And 
if answers were provided, they would be difficult to interpret. So 
the Navier–Stokes equation must be augmented with approxi-
mations, experiments, imagination, and experience.
  One might wonder why bother with the insoluble Navier–
Stokes equation. It is presented here partly as a cultural diver-
sion. It also motivates a careful look at two concepts important 
to sailors; viscosity and the Reynolds number. Do not be con-
cerned if you cannot understand and solve the Navier–Stokes 
equation. No one can.

6.1 � Navier–Stokes Equation

Mating Newton’s laws with physical insight gave birth to the Navier–
Stokes equation. One starts with the briefest possible summary of 
classical physics.

For fluids, the acceleration a→ is that of a small region of the fluid 
(air or water). The mass m becomes the fluid density r (mass/volume) 
multiplied by the small volume of fluid. There are two forces; one is 
produced by pressure changes and the other is associated with friction 
or viscosity. The viscous force appears when regions of fluid slide past 
each other.

	 ma Fr r
= 	 (6.1)
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A bare-bones version of the Navier–Stokes equation, written to 
resemble Newton’s laws, is

In this equation, u→ is the fluid velocity at a particular place and time, 
and Du Dtr/  is the acceleration of the fluid. The two terms on the 
right are the pressure and friction forces. The pressure force is written 
as ( −∇

r
p ) because the gradient

r
∇ identifies the direction of increas-

ing pressure. The ∇2 in the viscous term [ ]ρν ∇2 ru  identifies regions 
of fluid that are flowing slower then their averaged surroundings. 
Viscosity drags slower fluid ahead and puts the brakes on fluid flowing 
faster than its surroundings. The “dynamic viscosity” [rz ] determines 
the magnitude of the viscous force.

The acceleration term in the Navier–Stokes equation is complicated 
because it is an acceleration that follows the moving fluid. That means

	
Du
dt

u
t

u u
r r

r r r= + ⋅∇( )∂
∂ 	

(6.3)

The first term on the right of Equation 6.3 is the acceleration at a 
fixed point. The second term is essential because fluid can be acceler-
ated even if the velocity at one place does not change. For example, if 
fluid is forced through a narrow channel as is shown in Figure 6.11, it 
must speed up as it enters the channel. The acceleration is proportional 
to both the speed at which the fluid enters the constriction and how 
quickly the speed changes with position. Because u→ appears twice in 
this second term, the Navier–Stokes equation is nonlinear and (gener-
ally) insolvable.

A sailor’s major concern is the fluid flow and its acceleration, not 
the forces. Writing Newton’s laws as r r

a F m= /  suggests an equivalent 
Navier–Stokes equation, obtained by dividing by the density r.

	

Du
Dt

p u
r r r= − ∇ + ∇1 2

ρ
ζ

	
(6.4)

The “kinematic viscosity” z on the right of Equation 6.4 differs from 
the dynamic viscosity through the division by the fluid density r. The 

	
ρ ρζDu

Dt
p u

r r r= −∇ + ∇[ ] 2

	
(6.2)
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dynamic viscosity [rz] determines the viscous force on surfaces but 
the kinematic viscosity z is the fundamental fluid property that deter-
mines the flow.

The Navier–Stokes equation is incomplete without two further 
conditions. The first is the “no-slip condition” or the “sticky-surface 
condition.” This requires the fluid velocity to vanish at surfaces, such 
as boat hulls and sails. The sticky surface condition leads to consider-
able confusion. If the fluid velocity vanishes at surfaces, why does it 
make any difference if surfaces are smooth? This is a surprisingly dif-
ficult question because it relates to the properties of boundary layers 
that are discussed in Section 6.4.

The second condition is the conservation of fluid. This condition is 
helpful because the chore of solving the Navier–Stokes equation for 
both the pressure p and the velocity u→ may appear to be hopeless. 
In practice, fluid conservation allows one to obtain the pressure 
“for free.”

6.2 � Viscosity

Fluid viscosity ([r z ] or z ) appears in the two anchors of fluid mechan-
ics, the Navier–Stokes equation and the Reynolds number described 
in Section 6.3. One cannot explain lift, drag, damping, turbulence, 
boundary layers, or a host of other fluid phenomena without invoking 
viscosity. Viscosity has a precise definition that allows one to calculate 
viscous forces for some especially simple geometries. First, it is impor-
tant to distinguish the different types of forces and their names.

6.2.1 � Viscosity and Pressure, Lift and Drag

Pressure is directed perpendicular to a surface, and the viscous force 
is parallel to the surface. You can recognize the difference by placing 
your hand out the window of a speeding car. Aligned for minimum 
drag, the sideways pull you feel on the back of your hand is the viscous 
force. Tilt your hand for maximum drag and the push on your palm 
derives from pressure.

Both pressure and viscosity can produce lift and drag, as is illus-
trated in Figure  6.1. For sailors, the wind’s drag is parallel to the 
apparent wind direction V

→
 and the water’s drag is antiparallel to 
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the boat velocity U
→

. The fluid flow arrow in Figure 6.1 indicates the 
direction of fluid motion (either V

→
 or –U

→
) before it is deflected by the 

surface.
Ideally, lift and drag on any object could be calculated. One only 

needs to know the shape of the object, the fluid flow vector –U
→

 or V
→

, 
the fluid density r and its kinematic viscosity z. For each point on the 
object, the pressure and viscous forces are added to give the total force. 
This is usually an impossible task because the Navier–Stokes equation 
cannot be solved. However, the situation is not hopeless. Carefully 
chosen approximations give reasonable results.

6.2.2 � Viscosity Defined

Newton was the first to quantitatively describe viscosity. Fluids char-
acterized by Newton’s viscosity equation are called “Newtonian.” Air 
and water are Newtonian fluids. Ketchup and blood are not.

In principle, one can measure a fluid’s viscosity using two flat plates 
of area A that are separated by a small distance, d. A fluid is placed 
between them and one plate slides slowly past the other with a speed, 
U. The “no-slip” condition of the Navier–Stokes equation means fluid 
in contact with either plate moves with the plate. The fluid between 
the two plates is sheared, so the horizontal speed depends on the ver-
tical position, as shown in Figure 6.2.

Fluid viscosity resists the shearing with a force F(viscous). For 
Newtonian fluids, this force is proportional to the product of the top 
plate speed U and the area A of the plates. The force is also inversely 

Fluid
Flow

Pressure

Viscous
D

L

L

Surface Total

Figure 6.1  The force on a surface has a pressure component perpendicular to the surface and a 
viscous component parallel to the surface. Each of these forces has both lift and drag components 
that are perpendicular and parallel to the fluid flow. The total force is the vector sum of viscous and 
pressure contributions. The fluid flow vector denotes the flow a long distance from the surface.
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proportional to the separation between the plates, d. The proportion-
ality constant that determines the magnitude of this viscous force is 
the same dynamic viscosity [rz] that appears in the Navier–Stokes 
Equation 6.2. Thus,

Honey is much more viscous than water, and sailboats would hardly 
move in a lake of molasses. Air and water are the fluids of interest to 
sailors. At room temperature, their dynamic viscosities are

	
[ ]( )

,
ρζ water ≅ 1

1 000
Ns
m2

	
(6.6)

and

	
[ ]( ) [ ]( )ρζ ρζair water= 3

100 	
(6.7)

As an example, if one square meter of smooth glass were placed on a 
wet smooth table so that the glass and table were separated by only 
1 mm of water, the glass could be moved at 1/10 m/s with a force of 
only 1/10 N. This is roughly the force needed to lift 10 g (about two 
nickels). Since water’s viscosity appears to be small, perhaps it can be 
ignored. This would be a mistake. Even when it is small, viscosity 
plays a key role in determining fluid flow.

It is no surprise that air has a dynamic viscosity that is about 
30  times smaller than the dynamic viscosity of water. It is hard to 
notice the forces on surfaces moving past one another when they are 
separated by only a thin layer of air.

	
F viscous U A

d
( ) [ ]= ⋅ρζ

	
(6.5)

Figure 6.2  The arrows illustrate the velocity distribution of a sheared fluid. This pattern resem-
bles the flow in a laminar boundary layer.
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6.2.2.1  The Centerboard Problem First Attempt  One would think that 
the next logical step would be to apply the definition of the viscous 
force to a situation important for sailors. However, as this example 
shows, it is more difficult to assess the viscous force for real systems 
than Equation 6.5 suggests.

Assume a boat is sailing directly downwind, so the fluid flow is 
parallel to a thin centerboard’s surface, as sketched in Figure 6.3. For 
downwind sailing, a very thin centerboard has an insignificant pres-
sure drag. The area on the front edge of the centerboard is so small 
that pressure has almost nothing to push against. But there is still a 
force on the centerboard because viscosity causes the centerboard to 
“feel” the tangential flow of the nearby water. Water touching the 
sides of the centerboard sticks to the centerboard, and this drags addi-
tional water with it. Small boat sailors know viscous drag is signifi-
cant. Unless they are just out to enjoy the day, smart sailors raise their 
centerboards whenever they sail with the wind.

The obvious starting point for a calculation of the centerboard’s 
drag is the definition of the viscous force, F(viscous) = [rz ]UA/d. The 
problem with applying Equation 6.5 is the d in the denominator. 
Without the other plane, what should one use for the separation d ? 
The short answer is, “d is the thickness of the boundary layer.” Outside 
the boundary layer, the water is nearly oblivious to the centerboard’s 
motion. Because there is no obvious way to determine the bound-
ary layer thickness, the calculation of F(viscous) must be temporarily 
abandoned. This basic centerboard problem will be considered three 
more times. The second attempt uses Reynolds number scaling, the 
third attempt is based on laminar boundary layer approximations, and 
the final attempt considers the effect of boundary layer turbulence. 
All the attempts fail to give an unambiguous result for this seemingly 
simple viscous force problem. Fluids are complicated.

d?

d?

Figure 6.3  Water flows past a thin centerboard. The viscous force on the sides of the centerboard 
depends on the thickness d of the boundary layer.
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6.2.3 � Viscosity Physics

Viscosity can transmit force from one plate to another, as described 
by Equation 6.5. It does this by transferring the motion to molecules 
near the plates that in turn pass them on from molecule to molecule. 
In water, the molecules that push on each other are near neighbors. 
If the water molecules can pass by each other while exhibiting a rela-
tively small force, the viscosity is small. When the water is cold, the 
molecules tend to be stuck in their positions, and this allows them to 
push harder on each other. Thus, the viscosity of relatively sticky cold 
water at 10°C is 60% larger than the viscosity of warm water at 30°C. 
Since hot water is more “watery” than cold water, one could argue that 
a sailboat should be faster when sailing in warmer water. However, 
as will become apparent, forces are not simply proportional to the 
viscosity, so the difference between sailing in hot and cold water may 
be hard to notice.

Air is not just a thin version of water. Air’s dynamic viscosity [rz ]
(air) is more mysterious because it does not change, even when most 
of it is removed from a container. James Clerk Maxwell was the first 
person to explain why “less air” could be just as viscous as “more air.”

Maxwell unified electricity and magnetism. He also unified theory 
and experiment in his 1860s study of gas viscosity. His theoretical 
results on viscosity were surprising, so he performed an experiment 
to validate his ideas. Disks were suspended from a thin wire so they 
could easily rotate. The illustration in Figure 6.4 is a simplification 
of Maxwell’s experiment. The rotating disks were placed adjacent to 
fixed disks so the viscosity of the air separating the disks could damp 
the rotation. The system was placed in an airtight container and nearly 
all the air was pumped out. Removing most of the air did not change 
the damping rate. The logical, if curious, implication of this experi-
ment is that the dynamic viscosity of air does not depend on its den-
sity, which is exactly what Maxwell had predicted.

Maxwell’s explanation looked at the microscopic origin of viscos-
ity. The force is transmitted between the two disks by air molecules. 
The transmitted force is proportional to the molecular density and the 
ease with which the molecules can carry their motion from disk to 
disk. The molecules can move further when the air density is reduced 
because the chance of an intermolecular collision is smaller. For a 
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dilute gas like air, the longer path length exactly cancels the higher 
density, resulting in a density-independent viscosity.

Maxwell’s viscosity theory gives some insight into viscous forces 
when flows are turbulent and the fluid swirls about in complex paths. 
In a viscosity experiment, this random motion rapidly carries fluid 
from one plate to the other. The more effective transmission of motion 
from plate to plate is equivalent to a much larger viscosity. Thus, tur-
bulent flow can be crudely characterized as a fluid with a greatly 
enhanced viscosity. The enhanced viscosity of turbulence generally 
(but not always) means more drag and less speed, so sailors often wish 
to minimize turbulence.

6.2.4 � Viscosity, Energy, and Dissipation

Friction warms your hands when you rub them together. Viscosity 
does essentially the same thing, transferring a fluid’s kinetic energy 
into heat. Just as an object sliding on a floor slows down at a rate 
proportional to the friction coefficient, fluid passing a fixed surface 
comes to a halt at a rate proportional to the viscosity. This can be seen 
in an experiment as simple as stirring coffee. If it weren’t for viscosity, 
stirred coffee would keep moving forever. In practice the coffee slows 
by roughly a factor of three in a “decay time,” t.

Pump

Figure 6.4  The rotating oscillations of the upper disk supported by a thin wire are damped by the 
viscous coupling to the fixed disk. The damping persists even when most of the air is removed.
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The kinematic viscosity is the fundamental quantity that character-
izes fluid motion, so it determines the slowing rate and the decay time. 
The kinematic viscosities of water and air near room temperature are

	
ζ( )water ≅ −10 6 m

s
2

	
(6.8)

and

	 ζ ζ( ) ( )air water= 15 	 (6.9)

Air’s surprisingly large kinematic viscosity is a consequence of its low den-
sity, which is 800 times smaller than water’s density. Air’s density decreases 
with temperature, so its kinematic viscosity increases with temperature.

An estimate of the coffee cup “decay time” t can be obtained by 
noting that the units of the kinematic viscosity are z = m2/s. Since 
the decay time should decrease as the viscosity increases, a reasonable 
guess for the decay time is

	
τ

ζ
≈ K

water
( )

( )
distance 2

	
(6.10)

Because a squared distance has been placed in the numerator of 
Equation 6.10, a comparison of units shows that K is dimensionless. 
Using the radius of the coffee (≅ 3 cm) as the only available distance 
yields a decay time t ≈ K . 1,000 s for the coffee stirring. Complex 
swirls in stirred coffee die out quickly. But if you watch carefully, 
a very slow circular motion can persist for about 15 s. This suggests 
K ≈ [1/100 → 1/10]. (It is easier to see the slow decay by shaking a 
little black pepper into a swirling glass of water.)

Because the kinematic viscosity of air is 15 times that of water, the 
air circulation of an empty coffee cup should die out 15 times faster. 
To do this silly experiment, you need to put a top on the cup full of air 
after it is stirred, the deceleration is visible only if there is some dust 
suspended in the air.

Viscosity also damps surface water waves, which are described in 
Chapter 8. An accurate calculation gives a similar expression for the 
wave lifetime

	
τ

π
λ

ζ
=







1
8 2

2

( )water 	
(6.11)
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Here, l is the wavelength of the water wave. The coefficient 1/(8p 2) 
≅ 1/79 is consistent with the rough estimate that the constant K is 
considerably less than unity.

A more complicated example of viscous damping applies to the 
turbulent motion of the wind, described in Chapter 9. The sun’s 
uneven heating and the earth’s rotation are constantly supplying 
kinetic energy to our atmosphere’s circulation. Eventually, most of 
this energy must be turned to heat through the mechanism of vis-
cosity. The shortest times, t, and resulting quickest dissipation are 
associated with the smallest distance. This means the conversion of 
kinetic energy to heat occurs through the shortest-range fluctuations 
of the wind speed. These shortest distances are on the order of mil-
limeters, and the corresponding shortest times are on the order of 
milliseconds. Although we cannot notice it, wind variations extend 
to a nearly microscopic scale.

6.3 � Reynolds Number

At this point, one should be convinced that even rough estimates of 
fluid forces are difficult to obtain. Any trick that could simplify these 
difficult problems would surely be appreciated. The Reynolds number 
is the most important labor-saving trick of fluid mechanics.

Suppose one wanted to know the fluid drag on a variety of spheres—
big ones and little ones. Assume one was also curious about the drag 
on these spheres for a range of fluid speeds, U. The drag phenomenol-
ogy from Chapter 2, produced the formula

	
F C A UD

D= ⋅ ⋅
2

2ρ
	

(2.6)

This appears to give the answer, provided drag coefficient CD is known. 
Unfortunately, fluids are not simple. The drag coefficient is not really 
a constant. It can change with the fluid speed (U or V), the area A, 
and the fluid density r. But a sphere is a sphere, so one expects some 
simplification. That is exactly right, and the Reynolds number tells 
one how to save time and money.

There are (at least) two ways to derive the Reynolds number: the 
careful method and the tricky method. The careful method shows that 
the Navier–Stokes equation is unchanged when various quantities are 
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properly scaled. The careful method takes longer, so the tricky method 
is presented here.

6.3.1 � Reynolds Number Defined

The trick used to derive the Reynolds number is based on units and 
the formula for the drag. It is a generalization of the well-known rule 
that forbids a comparison of apples and oranges. Assume a fluid with 
density r moves past a sphere of diameter L at a speed U. The cross-
sectional area of the sphere is A = r (L/2)2. Using this formula for the 
area, the formula for drag from Equation 2.6 becomes

	
F C L UD D=







1
2 2

2
2ρπ
	

(6.12)

Consider the units in Equation 6.12.

	 1.	The drag force FD: kilograms times meters divided by sec-
onds squared.

	 2.	The fluid density r: kilograms per cubic meter.
	 3.	The fluid speed U: meters per second.
	 4.	The sphere’s diameter L: meters.
	 5.	The kinematic viscosity z: meters squared per second.

A comparison of the units shows that the drag coefficient CD in 
Equation 6.12 must have no units at all. It is a “dimensionless” num-
ber. The drag coefficient can depend on all the physical quantities, 
but they must be combined in such a way as to be dimensionless. The 
only dimensionless quantity one can construct from r, U, L, z is the 
Reynolds number

Even though the drag coefficient may not be constant, it can depend 
only on the Reynolds number:

	 C C RD D→ ( ) 	 (6.14)

	
R U L= ⋅

ζ 	
(6.13)
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Now, one can compare the drag on the big and little spheres shown 
in Figure 6.5. The sphere with twice the diameter is moving at half 
the speed, so the two spheres have the same Reynolds number. They 
also have the same drag because the doubled velocity increases the 
drag by a factor of four, but half the diameter decreases the area by a 
compensating factor of four.

The Reynolds number is not restricted to spheres, and it is not 
restricted to drag. It characterizes flow around any object. For example, 
one can use the Reynolds number to compare the lift and drag on a vari-
ety of centerboards (big ones and little ones) over a wide range of fluid 
speeds. The Reynolds number also allows a comparison of the lift and 
drag on objects in two different fluids—air and water, for example.

For objects other than a sphere, L must be changed from the 
sphere diameter to more general length that characterizes the size of 
the object. Without spherical symmetry, CD and CL also depend on 
the direction of fluid flow. However, no matter how complicated the 
shape of an object, its drag and lift coefficients can only depend on the 
Reynolds number.

The Reynolds number invariance means scale models can be used to 
determine CL and CD on systems where direct measurement would be dif-
ficult. Results obtained from a half-sized model of a sail or a centerboard 
can be trusted, provided the fluid speed is doubled so R is unchanged.

It is unfortunate that the Reynolds number scaling cannot be 
applied to boats that float on the water. Doubling the speed while 
halving the length keeps the Reynolds number the same, but the wake 

U

2UL

2L

Figure 6.5  The big sphere of diameter L and speed U has the same Reynolds number (and the 
same drag) as the smaller sphere with diameter L and speed 2U.
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produced by a 10-m boat traveling at 5 m/s is very different from the 
wake produced by a 5-m boat traveling at 10 m/s.

6.3.1.1  The Centerboard Problem: Second Attempt  Return to the problem 
of the viscous force on the thin centerboard. Assume the centerboard 
extends to a depth, L, in the water and assume its width is L/2. That 
means its surface area (counting both sides) is A = L2. The drag can 
then be written as

	
F viscous C R water L UD( ) ( ) ( )= ⋅1

2
2 2ρ

	
(6.15)

This isn’t really an answer because the drag coefficient CD is an 
unknown function of the Reynolds number R = U . L/z.

The following guess is another example of plausible but incorrect 
physics. It highlights the deceptive nature of fluid mechanics.

Guess: It seems reasonable to assume the viscous force should be 
proportional to the viscosity. The linear dependence of F(viscous) on vis-
cosity can only be achieved by making the drag coefficient proportional 
to the viscosity. This is accomplished only if CD = 2K/R, where K is a 
constant and R is the Reynolds number. Using this guess gives

	 F viscous wrong L U( : ) ∝ ⋅ ⋅ζ 	 (6.16)

The Reynolds number scaling means one can obtain a viscous force 
that is proportional to the viscosity only if one abandons the require-
ment that the force is proportional to the surface area and the square 
of the velocity. For sailboats, the forces are generally proportional to 
surface areas and squared velocities. So this is another failed attempt 
to solve the centerboard problem.

The centerboard problem is just one example of the peculiar nature 
of fluid forces. The conditions apply to drag or lift, pressure of viscous 
forces, hulls, or sails. For example, because the downwind force on 
a sail is F = C(R)AV 2/2, any one of the following three statements 
implies the other two.

	 1.	The force on a sail is proportional to the sail area, A.
	 2.	The force on a sail is proportional to the square of the appar-

ent wind speed, V.
	 3.	The force on a sail is independent of the viscosity.
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These statements are all equivalent because they all imply a constant 
drag coefficient. One generally expects the lift and drag forces on an 
object to be proportional to the surface area of that object. The condi-
tion that F A∝ means the force must be proportional to the square of 
the velocity and independent of the viscosity.

This appears to be a real dilemma for the viscous force on the cen-
terboard. How can there be a viscous force that is independent of the 
viscosity? What would happen to this force when the viscosity van-
ishes? Fluids are tricky.

6.4 � Boundary Layers

A fluid “feels” the viscous force from a surface primarily within the 
boundary layer. Outside this layer, the fluid is nearly oblivious to the 
viscous surface force.

Boundary layers come in two forms: “complicated” and “very 
complicated.” The complicated boundary layers are laminar and 
are attached to the surface (sail, centerboard, rudder, hull, etc.). 
They become very complicated when turbulence develops and/or 
the layer separates from the surface. “Laminar” means all regions 
in the layer flow in about the same direction. If separation does 
not occur, this flow is parallel to the surface. “Turbulent” means 
the velocity within the boundary layer has a large random com-
ponent. In a turbulent boundary layer, fluid can flow toward and 
away from the surface. To add complexity, separation and turbu-
lence are intertwined.

An oversimplified discussion of the laminar boundary layer will be 
followed by even more flimsy discussions of turbulence and separation.

6.4.1 � Laminar Boundary Layer

A simple laminar boundary layer is a transition region. Fluid sticks to 
the surface on the inside of the boundary layer and changes smoothly to 
nearly viscous-free motion at the outside. The fluid flow in the layer is 
similar to the shear flow shown in Figures 6.2 and 6.3, with flow van-
ishing at the surface. The flow speed is roughly U or V at its outer edge.

The laminar boundary layer is initially very thin, but it thickens as 
the fluid moves along a surface. If d is the boundary layer thickness, 
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and t is the time the fluid has traveled along the surface, one can 
roughly estimate the time-dependent boundary layer thickness d(t).

For simplicity, consider a flat surface parallel to the fluid flow 
r

U  
like the centerboard in Figure 6.3. The fluid near the surface can 
be treated as a set of ultra-thin sublayers parallel to the surface, 
each with a tiny thickness d. Only the first sublayer touches the 
surface, so initially (small t) viscous forces affect only the motion 
of this first sublayer. As the first sublayer slows, it drags the second 
sublayer, slowing its motion as well. This process repeats to sublay-
ers 3, 4, … , n. The boundary layer consists of all n sublayers, so its 
thickness is d = nd. The fluid speed changes smoothly from zero 
at the surface to nearly U at the outermost sublayer n. That means 
the speed differences between adjacent sublayers is approximately 
U/n. The surface interacts only with the innermost sublayer, so the 
force on the surface is proportional to the speed of the first sub-
layer, which is also roughly U/n. Since d = nd, a proportionality is

	
Friction force U

d
∝

	
(6.17)

The rate at which the boundary layer grows is proportional to the 
friction force on the surface, so

	

Change in
Change in

Growth Rated
t

U
d

≈ ∝
	

(6.18)

The square root function d t K t( ) ≈ is a solution to this equa-
tion. As shown in Figure 6.6, it grows rapidly when d and t are 
small. Later, it grows more slowly.

A quantitative estimate of d(t) is obtained by examining the 
units of the constant K. After passing by a surface for a time t, the 
only dimensionally correct expression involving the physically rel-
evant V, r, t, and z that scales with the square root of the time is

	 d t≈ ζ 	 (6.19)

This means a diffusion-like mechanism determines the bound-
ary layer growth, with the kinematic viscosity z playing the role 
of the diffusion constant.
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An example illustrates the filmy thinness of a typical laminar 
boundary layer. The kinematic viscosity of water is ζ = −10 6 2m /s. For a 
centerboard with a horizontal span L = 0.5 m and the boat speed V = 
5 m/s, the laminar boundary laminar layer at the back edge of the cen-
terboard should be about 1/3 mm. The boundary layer is even thinner 
near the front. The same Equation 6.19 for d(t) applies to the growth of 
the boundary layer on a sail. Air’s kinematic viscosity is 15 times that 
of water and a typical sail span is 5 m, instead of half a meter. Thus, 
the laminar boundary layer would be closer to 3 mm at the back edge 
of a sail. However, as is shown in Chapter 9, the wind is turbulent, so 
the relevance of a laminar boundary layer calculation for sails is ques-
tionable. Actually, there are many sailing conditions where the water is 
also turbulent, so all these results should be approached with caution.

6.4.1.1  The Centerboard Problem: Third Attempt  An approximate expres-
sion for the thickness of a laminar boundary layer allows another 
attempt to find the viscous force on the centerboard. The first attempt 
was aborted because the viscous force depends on the unknown inter-
plane distance, d. Now that we have an estimate, it is reasonable to 
approximate d by the boundary layer thickness.

Combining F viscous U A d( ) [ ]= ⋅ρζ / from Equation 6.5, d t≅ ζ  
from Equation 6.19 and t L U≅ / [distance is speed times time] gives

	
F viscous AU

L
( ) /≅ 2 3 2ρ ζ

	
(6.20)
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Figure 6.6  The boundary layer thickness d increases as the square root of the distance along a 
surface. The different scales (millimeters versus meters) emphasize the small size of the boundary 
layer.
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The factor 2 appears because the boundary layer is thinner toward the 
front of the centerboard.

This result is consistent with the requirement that the drag coef-
ficient depends only on the Reynolds number. For this result,

	
C

R LUD = =4 4 ζ

In this attempt to solve the centerboard problem, the force is propor-
tional to the square root of the kinematic viscosity instead of being just 
proportional to the viscosity (as was the case in the second attempt). 
The square root appears because a larger viscosity leads to a thicker 
boundary layer, and these effects partially cancel.

This third attempt is still not satisfactory. For water, r = 1,000 k/m3  
and z = 10–6 m2/s. Using these values,

	
F viscous K AU

L
( )

/
=

3 2

	
(6.21)

The constant is K ≅ 2 3N-s /m3/2 . For a boat similar to a Thistle, the 
area of a centerboard (both sides) is a little less than a square meter 
and the horizontal length of the centerboard is also less than a meter. 
Using these values, the force (in Newtons) is roughly twice the three-
halves power of the boat speed (in meters per second). For the Fresh 
Breeze, U ≅ 5 m/s, and this gives a force of roughly 20 N. This esti-
mate is probably too small, but it is in the right ballpark.

This third attempt to find the force on the centerboard presents other 
problems. The Reynolds number scaling means the force is not propor-
tional to the square of the boat speed, and it is not proportional to the 
surface area of the centerboard. Also, because the force is proportional 
to A L/ , it appears that a shallow centerboard with a large horizontal 
span would produce less drag than a deeper centerboard. In practice, the 
centerboard on the left of Figure 6.7 would probably have less drag.

There is still some missing physics. The problem lies in the insta-
bility of laminar boundary layers. They generally turn into turbulent 
boundary layers. Turbulence in boundary layers increases the viscous 
force because fluid motion can be rapidly transmitted to and away 
from surfaces.
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6.4.2 � Turbulence Basics

Turbulence and separation put an end to the life of the simple lami-
nar boundary layer. The transition to turbulence is very important for 
sailing, so we should really understand it. But there is a problem. The 
word “turbulent” is almost a synonym for “incomprehensible.”

Turbulence is characterized by unpredictable random and disorderly 
flow. It is everywhere. It can be seen when a rising column of smoke 
changes from orderly to complex. It can be seen when the stream from 
a faucet breaks into disorderly droplets. Our atmosphere is turbulent, 
and this turbulence helps provide reasonable temperatures and relatively 
clean air. Without turbulence, life as we know it would be impossible.

The tiny size of the boundary layers surrounding a sailboat makes 
their observation difficult. If one is willing to ignore a lot of details, our 
atmosphere is a giant-sized turbulent boundary layer. We live in this 
atmospheric boundary layer, so it should be much easier to observe. 
Chapter 9 presents some measurements and a theory of the turbulent 
wind near the earth’s surface. All sailors know that wind is chaotic and 
unpredictable, so it should be no surprise the fluid motion in the thin 
turbulent boundary layers rubbing on sailboats is equally confusing.

A good theory of turbulence should predict its onset. Since no good 
theory is at hand, we rely on the Reynolds number as a rough criterion. 

L

L

Figure 6.7  Two similar sailboats with differently shaped centerboards. A laminar boundary layer 
would produce less drag on the centerboard on the right. The centerboard on the left is actually 
preferred.
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A “big” R on the order of a million or more implies turbulence. A 
“small” R less than 100 means fluid flow is dominated by viscosity. 
Between big and small R lies a transition region. In this midrange, 
fluid behavior can be quite variable and surface smoothness can make 
a significant difference. An example is the comparison in Section 7.3 
of the drag on a smooth sphere and a golf ball.

Although there are exceptions, one generally expects turbulence 
to appear at a threshold Reynolds number R ≈ → ×10 5 105 6. This 
wide range for R is not carelessness. Streamlined objects need a much 
larger R to develop turbulence. Combining the definition R U L= ⋅ /ζ  
with ζ( )water = −10 6 m /s2 and the turbulence threshold gives an esti-
mate of the length L required for turbulence.

        
L water

U
( ; in meters)

in meters
≈ →







1
10

5 1
( //second) 	

(6.22)

Because the kinematic viscosity of air is 15 times that of water,

	
L air

V
( ; in meters)

in meters/se
≈ →







3
2

75 1
ccond( ) 	

(6.23)

For a Fresh Breeze where U V≅ ≅ 5 m/s , this estimate suggests that 
boat hulls should excite turbulent motion. When winds are very light, 
a small U can make L(water) comparable to or even larger than a boat 
length. Then turbulence is not a problem. This makes sense. When a 
sailboat is barely moving, one does not envision a significant turbulent 
contribution to drag. The estimate of L(air) means turbulence should 
be less likely for the wind on sails. Since wind is generally turbulent 
before it hits the sails, this estimate does not carry much significance.

One can also estimate Reynolds numbers for different parts of a 
sailboat. The Reynolds numbers for a centerboard, rudder, or jib (with 
smaller values for L) are smaller than the corresponding numbers for the 
entire boat. If one calculates the Reynolds number for the front third 
of a centerboard, one may (properly) conclude that turbulence develops 
only after the water has flowed past a surface for some distance.

A famous example of complex behavior in the transition range is the 
significant decrease in the drag coefficient of a sphere for a Reynolds 
number R ≈ 105. This change in CD, which is called the “drag crisis,” 
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is caused by a fairly abrupt change in the fluid flow pattern when tur-
bulence starts to dominate the fluid motion.

The drag crisis is far from universal because the shape of an object 
has a significant influence on the fluid flow. There is no drag crisis for 
downwind sailing because the wind behind the sail is always turbu-
lent. The drag coefficient is very sensitive to even a small amount of 
initial turbulence, so it is difficult to measure accurately. The curve in 
Figure 6.8 is an average of different measurements.

6.4.3 � Turbulent Boundary Layer

Because turbulence requires a fairly large Reynolds number, boundary 
layers are usually born laminar and grow up to be turbulent. As the 
fluid moves a distance L along the surface, the “local” Reynolds num-
ber increases to a value where turbulence cannot be avoided. When 
the laminar motion becomes turbulent, fluid near the surface swirls 
about, moving back and forth within the boundary layer. Fluid from 
the outer edge of the boundary layer with speed U can make frequent 
visits to the surface. The increased communication between the sur-
face and the outer regions of the boundary layer means the surface is 
subjected to larger friction forces. It can be approximated by an effec-
tive turbulent viscosity that is much larger than the real kinematic 
viscosity z, as mentioned in Section 6.2.3.
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Figure 6.8  The variation of the sphere’s drag coefficient  for a range of Reynolds numbers shows 
a drag crisis. An object with a different shape can have a much different drag, and it may not exhibit 
a drag crisis.
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For a laminar boundary layer, Equations 6.19 and 6.20 show that 
boundary layer thickness and surface drag are both proportional to the 
square root of the kinematic viscosity z. If turbulence can be character-
ized by a greatly enhanced z, then perhaps the laminar results can be 
adopted with just one change; a much larger viscosity. This simple mag-
nification of viscosity when turbulence occurs is sketched in Figure 6.9. 
It is observed that both the boundary layer thickness and the viscous 
force increase by up to an order of magnitude when the boundary layer 
becomes turbulent. Streamlined designs and smooth surfaces that retard 
the development of turbulence are clearly desirable. Once turbulence is 
initiated, it grows rapidly. Sometimes this means that a single rough point 
on an otherwise smooth surface could start turbulence “before its time.”

The approximation that says a turbulent boundary layer is just a 
laminar boundary layer with a greatly enhanced viscosity is a gross 
oversimplification. The velocity profile of the turbulent boundary layer 
is different from that of the laminar layer. Fluid speeds in a laminar 
boundary layer increase roughly linearly with distance from the sur-
face, as suggested by Figure 6.2. The velocity increase in a turbulent 
boundary layer probably looks more like the idealized altitude depen-
dence of wind speeds in our turbulent atmosphere. This logarithmic 
dependence is discussed in Section 9.3 and is sketched in Figure 9.6.

6.4.4 � Boundary Layer Separation

“Separation” really means “early separation.” When a fluid flows past 
a surface, the boundary layer must eventually leave the surface. Early 
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Figure 6.9  The turbulent boundary develops as fluid moves along a surface. The boundary layer 
thickness and the viscous force are increased by turbulence.
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separation means the boundary layer departs before it gets to the back 
edge. When a fluid separates from a centerboard or sail before it gets 
to the stern end, fluid is sucked in from both sides of the separation 
point. That means surface fluid that is behind a separation point will 
be pulled forward. Gross examples of separation are readily observed. 
People who ride in convertibles may notice that the wind is blowing 
their hair forward (if they still have hair). This seems like the wrong 
direction. You may notice that motorcyclist’s shirts are blow up and 
forward. This may seem wrong, too (and sometimes in bad taste), but 
you can’t argue with observation. The passenger’s head in the convert-
ible and the motorcyclist’s back are both behind the separation point.

Separation can also be observed on sails when sailing upwind. If a 
piece of light material is attached to the leech (back edge) of a sail, it 
indicates an average local wind. When this wind indicator is blown 
forward to the sail’s leeward side, it means the separation point on 
the sail has moved to a point forward, as is sketched in Figure 6.10. 
Sailors often feel that this separation should not occur. Even though 
this seems to be a sensible rule for upwind sailing, it is frequently vio-
lated with apparently little penalty.

Finally, there is the interaction between turbulence and separa-
tion. Ordinarily, turbulence and separation both increase drag. But 
turbulence increases the thickness of the boundary layer and thicker 
boundary layers are more firmly attached to a surface. I have no 
simple explanation of the “sticky” turbulent boundary layer, but it is 

Wind

Figure 6.10  Wind flow at the top leaves the back edge of the sail. At the bottom separation 
occurs on the lee side. The wind paths shown are a sketch and are not the result of any calculation 
or measurement.
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confirmed by experiments and numerical simulations. Even though 
the mechanism is difficult to understand, turbulence can inhibit 
separation and decrease drag. This is the explanation of the “drag cri-
sis” shown in Figure 6.8.

6.4.4.1  The Centerboard Problem: Final Attempt  The turbulence and 
separation that characterize most real boundary layers make a quanti-
tative calculation of the centerboard drag nearly impossible. The final 
conclusion is far from a solid result. The drag is probably significantly 
larger than the 20-N estimate obtained using a laminar boundary 
layer. The effective viscosity of turbulence is not necessarily propor-
tional to the viscosity of the fluid, so it is hard to say how the drag 
varies with the viscosity of the water, the speed of the boat, or the 
surface area of the centerboard.

In short, after all this work, I have essentially given up the quest 
for a simple physical answer for the viscous drag on the centerboard. 
Experts in the techniques of numerical fluid dynamics can obtain rea-
sonable results.

6.4.4.2  Problems Harder than the Centerboard Problem  If one were 
capable of finding both pressure and viscous forces, one could 
extend a drag calculation to a keel instead of a centerboard. A keel, 
typically shaped like an elongated egg, is subject to both pressure 
drag and friction drag. The pressure on the front of the keel is larger 
than pressure on the back. Also, water moving past the edges of the 
keel exerts a viscous drag. Summing the two gives the total drag.

6.5 � Euler Equation

The Euler equation ignores viscosity. This nonviscous idealization 
of the Navier–Stokes equation allows one to “prove” some impor-
tant relations. These include fundamental concepts named after 
d’Alembert, (Daniel) Bernoulli, and Kutta–Joukowski (the latter is 
two people). These are both useful and confusing tools for explaining 
lift and drag.

The utility of the Euler equation is surprising, considering the 
essential role of viscosity. A key to applied fluid mechanics is a selec-
tive use of the Euler equation. Although it fails near surfaces where 
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viscosity is important, it is very useful far from surfaces and wakes 
(e.g., wind shadows). A clever merging of the Euler equation with the 
Navier–Stokes equation can yield accurate results.

Removing the troublesome viscosity term from the Navier–Stokes 
equation gives the Euler equation.

Here, as previously, u→ is the fluid velocity and Du dtr/  is the accelera-
tion. The fluid density is r, and p is its pressure. The local velocity u→ 
near a surface can be quite different from the distant velocity U

→
 or V

→
, 

which is either the velocity of the boat through the water or the veloc-
ity of the wind with respect to the sail.

Since viscosity is absent, the Euler equation also abandons the no-
slip boundary condition. Surfaces are no longer sticky, and the idealized 
nonviscous fluid can slide unimpeded along a surface. In the absence 
of viscosity, the forces on a surface (sail or hull) are supplied only by the 
pressure, and this force is always perpendicular to the surface.

Concepts that follow from the Euler equation are briefly described here. 
The results clearly show that viscosity cannot be completely ignored.

6.5.1 � d’Alembert’s Paradox

This paradox is disconcerting because it says there should be no lift and no 
drag. If true, it would also mean no sailing. A simple version of the para-
dox follows from the symmetry of the Euler equation for the restricted 
steady-state case where the velocity does not vary in time (∂ ∂ru t/ = 0). 
Using Equation 6.3, Du Dt u ur r r r/ → ⋅∇( ) in the steady state. Since the 
acceleration term is now proportional to the squared velocity, a reversal 
of u→(r→), so u→(r→) →  –u→(r→) changes nothing. This means the pressure is 
also unchanged when the velocity is reversed. The same pressure means 
the same drag force. Physically, we know drag must be reversed when 
V
→

 is reversed. These contradictory statements can be resolved if the drag 
is zero because the only vector that is the same when it is reversed is the 
zero vector. A generalization of this paradox says that both lift and drag 
should vanish. That’s the essence of the paradox, but there is an unusual 

	

Du
Dt

p
r r

= − ∇1
ρ 	

(6.24)
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complication for fluid motion confined to two dimensions. Despite com-
plications, d’Alembert’s paradox spectacularly demonstrates the danger 
of ignoring viscosity.

6.5.2 � Bernoulli’s Equation

The famous Bernoulli’s equation

says the kinetic energy density plus the pressure of a fluid is a constant. 
This equation can only be derived from the Euler equation, where 
viscosity is ignored. External forces like gravity are also ignored in 
Equation 6.25. As before, u is the fluid speed, r is its density, and p 
is the pressure.

One can roughly justify Bernoulli’s equation through the example of 
a fluid flowing through a tube, as shown in Figure 6.11. If the tube has 
a constricted section, the fluid must speed up to make it through the 
constriction. An analogy is road repair. As cars approach a construc-
tion zone where the freeway narrows from two lanes to one lane, traffic 
crawls along. But once cars have entered the single lane, drivers stomp 
on the gas and accelerate to twice their former speeds. A fluid entering 
the tube constriction experiences a similar acceleration. A pressure dif-
ference supplies the force that drives the fluid ahead. The pressure is used 
up, resulting in a lower pressure in the region where the speed is larger.

Bernoulli’s equation applies for either direction of fluid flow, so the 
pressure change should be the same for fluid flowing into or out of a 
constricted region. An attempt to test Bernoulli’s equation by blowing 
through a constricted tube mounted with pressure gauges often yields 
disappointing results. The pressure variations are only approximately 
described by Bernoulli’s equation because viscosity has been ignored.

	
1
2

2ρu p+ = constant
	

(6.25)

Flow
High Pressure Low Pressure

Figure 6.11  Bernoulli’s equation says pressure should be larger when the fluid velocity is smaller, 
and the result applies for either direction of fluid flow.
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In many situations, Bernoulli’s equation is a reasonable approxi-
mation. It is frequently used to explain lift, most notably on air-
plane wings. Carburetors, aspirators, birds, bats, and curve balls are 
explained in part by Bernoulli’s equation. In all these examples, one 
associates reduced pressure with faster fluid motion.

The logic behind lift is confusing. It appears that Bernoulli’s 
equation can explain lift. The argument is that the air on the top 
of a wing or the leeward side of a sail is moving faster than the air 
on the bottom of the wing or the windward face of the sail. But 
Bernoulli’s equation and d’Alembert’s no-drag and no-lift paradox 
are both derived from the Euler equation. How can the Euler equa-
tion deny lift and also produce an equation for its calculation? The 
Kutta–Joukowski theorem relating circulation and lift does little to 
resolve the paradox.

6.5.3 � Circulation

Cyclones and whirlpools are intuitive examples of circulation, but flu-
ids with circulation do not always travel in circles. Circulation has a 
formal definition in terms of an imaginary insect. This insect quickly 
flies a closed path through the air (or water). Along the path, this bug 
may experience headwinds and tailwinds, and this will influence the 
time needed to make the trip. The total net tailwind the bug expe-
riences when executing a counterclockwise closed path is called the 
“circulation” Γ of the path. Formally, it is defined as

	
Γ( )path u dr

path
= ⋅∫ r r

	
(6.26)

Fluid motion is “irrotational” if the circulation around every path is 
zero. The shear motion shown in Figure 6.12 is rotational because a 
bug’s counterclockwise flight path would meet more wind resistance 
than a clockwise path.

Fluid circulation is caused by a twisting or shearing action. In 
fluids, this shear can only be produced by viscosity. Since viscosity 
is eliminated from Euler’s equation, one can prove that circulation 
should not change in time. In particular, Euler’s equation says irrota-
tional motion should remain irrotational forever.
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6.5.4 � Kutta–Joukowski Theorem

The Kutta–Joukowski theorem relates lift to circulation. The result is 
consistent with Bernoulli’s equation. In upwind sailing, the wind moves 
faster on the leeward side of a sail and slower on the windward side. 
Bernoulli’s equation then implies there will be a pressure difference 
between the two sides, and this difference produces the lift. Circulation 
also describes the lift. If the wind speed is different on the two sides of 
the sail, the bug flying around the sail will experience net headwind or 
tailwind. This means there is circulation around the sail. One can use 
Bernoulli’s equation to express the lift in terms of the circulation

	 lift around sail V≈ ρ Γ (   ) 	 (6.27)

Again, this makes one stop and wonder. If there is circulation there 
should be lift, but d’Alembert says there is no lift. Hence, the circu-
lation around a sail should vanish if viscosity were really zero. The 
circulation vanishes because the Euler equation says an irrotational 
fluid should remain irrotational forever.

6.5.5 � Lift’s Many Explanations

There is a more intuitive and basic explanation of lift that is inde-
pendent of any assumptions about viscosity. The sail experiences lift 
because the sail deflects the wind. Equal and opposite forces mean 
that if the sail pushes on the wind in one direction, the wind pushes 
the sail the other way. This explanation, which relies only on the rule 
of equal and opposite forces, is surely correct.

Figure 6.12  In this shear flow, traveling the counterclockwise circle will take longer, so the 
circulation is clockwise.
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The several explanations of lift are closely related, as illustrated in 
Figure 6.13. If a sail deflects the wind, a large circle drawn around the 
sail will show circulation because the deflected u→ downwind is partially 
aligned with a large circle used to calculate circulation. The nonzero cir-
culation means the Kutta–Joukowski theorem also describes the lift.

The circulation around the big circle and the inner loop will be 
identical if the fluid between them is irrotational. Euler’s equation 
certainly suggests that the flow between the inner circle and outer 
loop should be irrotational. If there is circulation on the inner loop, 
the wind must be moving faster on the leeward (bottom) side of the 
sail. This is consistent with the lift predicted by Bernoulli’s equation.

How is this consistent with d’Alembert’s paradox? The simple 
answer is that the Euler equation requires the circulation around the 
sail to vanish. Then there is no lift, no circulation, and no sailing. One 
must rely on viscosity to play its role in establishing circulation, and 
this can only be understood through the Navier–Stokes equation. The 
dynamics that establish circulation are complex, involving the genera-
tion of whirlpools (vortices) and downwind flows called “wakes.”

Intuition can only take one so far in understanding how viscos-
ity produces circulation and lift. Fred, the clever sailor, covers the 
windward side of his sail with sandpaper. This slows the air on that 
side. Bernoulli’s equation says the slower velocity would increase the 

Wind

Fast

Slow
Wind

Deflected 

Figure 6.13  Lift occurs when a sail deflects the wind. The deflected wind implies circulation and 
a slower velocity on the upper side of the sail. All of these are associated with lift.
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pressure. Kutta–Joukowski says there should be more circulation. 
These mean more lift. Fred is not that clever. Covering one side of 
your sail with sandpaper won’t help.

6.5.6 � Two Dimensions

Two-dimensional systems are only idealizations, but they provide 
insight and a basis for approximations. Two-dimensional drawings 
of three-dimensional systems, like Figure 6.13, hide many problems 
because real circulation has three-dimensional structure.

The two-dimensional world provides an escape from the no-lift 
part of d’Alembert’s paradox, but the no-drag conclusion is left intact. 
The lack of lift is related to vanishing circulation, but in two dimen-
sions the core of the circulation can be stuffed inside the sail (or cen-
terboard). Circulation around any loop that does not contain the sail 
vanishes, so the fluid is irrotational even though circulation around 
the sail means there is lift. This doesn’t work in three dimensions.

A famous and soluble example of lift in two dimensions is illus-
trated in Figure 6.14. Both flows are solutions to the Euler equation, 
and both velocities u→ approach the constant value U

→
 at a large dis-

tance. However, the fluid flows up and over the circle on the left and 
does the opposite for the other circle. The opposite circulations around 
the circles means the lift force FL is “up” on the left and “down” on the 
right. The lines around the circles represent fluid paths, but no arrows 
are drawn because the same lift (and vanishing drag) is obtained for 
fluid flowing either left to right or right to left.

The existence of two fluid flows and two different lifts for the same 
object and the same U

→
 is not physically satisfying. Nonunique solutions 

FL

FL

Figure 6.14  Two-dimensional flows around a circle. The lines indicate fluid paths that can be 
either left to right or right to left. For the Euler equation, there is no drag but lift is “up” on the left 
circle and “down” on the right circle.
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are another perplexing aspect of the Euler equation. The ambiguity is 
eliminated by viscosity. In the real world, one can use viscosity to 
control the circulation around these circles. The sticky-surface bound-
ary condition of the Navier–Stokes equation means a rotating circle 
would produce lift by making the fluid follow the motion of the sur-
face. However, the fluid flow would exhibit only a rough similarity to 
the flows shown in Figure 6.14. Boats using rotating cylinders have 
been constructed that successfully harness the wind’s power by drag-
ging the fluid around in the right direction. Curve balls use roughly 
the same idea.

The possibility of obtaining lift of either sign is not limited to 
circles. It applies to two-dimensional sails and centerboards in the 
absence of viscosity. The sensible arguments that attributed lift to 
the sail shape in Figure 6.13 would fail if one could ignore viscosity 
and the sail were two dimensional. In a two-dimensional nonviscous 
world, there would be no drag on the sail. That is only mildly disturb-
ing. It is more disturbing that the lift force could be in the sensible 
direction (down) or it could be reversed, because the Euler equation 
cannot distinguish the direction of the fluid flow. Our intuition tells 
us that the lift should be reversed if the flow is reversed, but the Euler 
equation doesn’t notice. Viscosity again comes to the rescue. For a 
streamlined shape like a sail (or a centerboard), viscosity and common 
sense demand that the disturbed air wake (wind shadow) lie on the 
downwind side of a sail. With this condition, reasonable solutions to 
the Euler equation are obtained. A famous but complicated calcula-
tion for a perfectly flat surface in the two-dimensional world gives the 
lift coefficient as

	 CL ≅ π θsin( )2 	 (6.28)

Since sin(2q) is proportional to the angle of attack for small q, this 
is a key result. It is needed to explain why sails and centerboards can 
produce large lift-to-drag ratios, and the result was incorporated in 
the phenomenology of Equation 3.10. As described in Section 3.3.3, 
an extension of Newton’s impact theory fails to produce this result.

The two-dimensional examples suggest a way to construct sails 
(and centerboards) with very large lift-to-drag ratios. Just make the 
sails much taller than they are wide, so they are almost two dimen-
sional. Almost two-dimensional sails could almost be described by 
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two-dimensional fluid mechanics. Then, if viscosity is ignored, lift 
without drag is almost possible. Gliders and albatrosses are made with 
very long narrow wings for this purpose. Flat end-plates are attached to 
some airplane wings. These plates force the air to act two-dimensionally 
because flow around the ends is discouraged. For sailors, there are 
practical limitations to very tall sails and centerboards. Capsize is an 
obvious concern for a sailboat with a very tall mast.

6.6 � Why Are Fluids So Complicated?

Almost every seemingly simple fluid mechanics question turns out 
to be impossibly difficult. Simple questions reveal ambiguities, para-
doxes, and contradictions. Two perplexing but practical examples 
were considered here. They are the viscous force on the thin center-
board and the characterization of lift.

Attempts to find a simple expression for the viscous drag on the cen-
terboard were discouraging. The first attempt was abandoned because 
the viscosity formula only applied for thinly separated surfaces, not 
for a single surface. The second attempt gave a force proportional to 
viscosity. But the Reynolds number means a force proportional to the 
viscosity cannot be proportional to the centerboard area. This is not 
satisfactory. The third attempt, based on laminar boundary layers, 
suggested that centerboards should have unreasonable shapes. The 
final attempt admitted that there is no easy answer because turbulent 
boundary layers are so complicated.

Lift is even more difficult than drag. To simplify, one is moti-
vated to consider the Euler equation that eliminates the viscous term 
from the Navier–Stokes equation. A judicious application of the Euler 
equation leads to important principles, like the Bernoulli equation, 
that can be used to evaluate lift. However, there are troublesome para-
doxes that frustrate attempts to really understand lift.

Not all of fluid mechanics is discouragingly difficult or ambiguous. 
There is one solid result whose rigor and precision can be trusted. That 
is the Reynolds number scaling. However, for sailors even this result 
is of limited use because the Reynolds number cannot be applied to 
surface waves and wakes.
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7
Surfaces

Racing sailors are often obsessed with producing the smoothest 
possible hulls, centerboards or keels, and rudders. Sails should 
be smooth, too. It seems sensible to assume a smoother surface 
would be subjected to a smaller viscous force. How smooth is a 
typical sailboat hull? Is this smooth enough? Is a smooth surface 
always the best, and if so why? These smoothness questions are 
trickier than one might think. Some curiosities make one think 
twice about surfaces.
  A familiarity with small distances is needed to judge rough-
ness. A micrometer, μm or 10–6 meters, is an appropriate distance 
to consider. Fluid mechanics suggests that 10 μm is “smooth 
enough,” but many sailors would not be happy with this rough-
ness. Ten micrometers is about one-seventh the thickness of a 
human hair or one-fifth the thickness of a standard piece of cel-
lophane tape. This is on the borderline of visibility. Sometimes 
roughness can be felt even if it can’t be seen. Under ideal con-
ditions a human finger is amazingly sensitive and can detect a 
surface bump not much more than 1 μm high.
  There is a difference between a smooth surface and a shiny 
surface. The wavelength of visible light is about (1/2) μm, and 
any structure on this small distance scale determines whether 
the surface is dull or shiny. Although a mirror-like shine is 
not important, visible bumps and scratches on sailboat sur-
faces are likely suspects for the instigation of turbulence and 
increased drag.

7.1 � An Example

The hulls of many popular sailboats have an outer polyester resin 
coating called “gelcoat.” There are many variations of gelcoat. One 
example, polyethylene terephthalate, is shown in the Figure 7.1. The 
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hexagon is populated by carbon atoms. The little subscript “n” means 
this unit is repeated many times because it is a polymer.

Roughness measurements of two gelcoat surface pieces removed 
from a Flying Scot sailboat are shown in Figures 7.2 through 7.5. 
The perspective views look like mountain ranges because the verti-
cal scale is 15 times magnified compared to distances on the surface. 
Actually, all dimensions in Figures 7.2–7.5 are tiny. The scanned 
areas are only 10 μm squares. The magnified vertical scales are in 
nanometers. One nanometer is one-thousandth of a micrometer. 
This means the highest peaks and valleys are about (1/2) μm high.

C

O

O

C

O

O
H2
C CH2

n

Figure 7.1  An example gelcoat polymer use to make a smooth sailboat surface.
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Figure 7.2  The two-dimensional profile of a small piece of sailboat surface. The boat is old and 
the surface was untreated. The measured area is a square 10 μm by 10 μm. Since the vertical scale 
is in nanometers, it is magnified by about a factor of 15 compared to the horizontal scale. (Thanks 
to CheHwi Chong, Robert Geer, and Stephen Olson for these measurements.)
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The two roughness profiles shown in the Figures 7.2 and 7.3 dif-
fer from the profiles of Figure 7.4 and 7.5 because the samples were 
prepared differently. The first pair of figures shows the measured 
roughness of an untreated surface. Since this Flying Scot sailboat was 
25 years old, stored outside, and never polished or waxed, these figures 
represent the roughness of thoroughly weathered gelcoat. This second 
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Figure 7.3  A cross-sectional cut obtained from Figure 7.2.
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Figure 7.4  A surface characterization from the same boat but for a carefully sanded surface.
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piece, taken from the same sailboat, was subjected to a vigorous sand-
ing regimen, ending with the finest grit sandpaper available (#2000 
from an auto body shop). The mean particle diameter in #2000-grit 
sandpaper is about 5 μm.

One conclusion is clear. It is possible to make an old gelcoat sur-
face smoother. The improvement is about a factor of 2, but the effort 
was considerable. Even with machinery, it would take a lot of work 
to make an entire sailboat surface smooth on the scale of #2000-grit 
sandpaper. Also, some gelcoats have a surface layer impervious to 
water that is better left intact. The character as well as the magnitude 
of the roughness is a little different on the sanded surface.

A second conclusion will be clear to some sailors. Smoothing the 
gelcoat is not worth the effort. Even the untreated and weathered sur-
face is very smooth. To other sailors, a perfectly smooth surface is the 
Holy Grail of sailing, and no surface is smooth enough. It does not 
pay to argue with Holy Grail seekers.

These surface profiles were obtained using an “atomic force micro-
scope.” This reveals features too small to be seen optically. To obtain 
the profile, a tiny needle approached the surface until an atom was 
“felt.” Then the position of the probe was recorded. This was done on 
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Figure 7.5  A cross-sectional cut from Figure 7.4.
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a square of 512 × 512 points, scanning like a TV scans its picture. The 
resulting 262,144 data points were used to generate each of the two-
dimensional profiles. The one-dimensional curves are central cross 
sections of the two-dimensional data.

No data were obtained for a surface with wax or other applied coating. 
It seems unlikely that wax would make the surface smoother. Although 
wax may feel slippery because its molecules interact very weakly with 
the molecules in your finger, this is not relevant for sailboat perfor-
mance unless the wax keeps small particles from sticking to the hull.

7.2 � Inadequate Theory

It is surprising that even basic questions about surface drag do not 
have simple answers. Sailors ask particularly difficult questions. 
They want to know the tiny difference between the small drag on 
a pretty smooth surface and the (possibly) smaller drag on a very 
smooth surface. Although one can certainly detect the increased 
drag of a very rough surface, experimental or theoretical compari-
sons of the tiny differences for nearly perfect surfaces are very dif-
ficult. The sticky-surface boundary condition of the Navier–Stokes 
equation means that even a perfectly smooth surface presents signif-
icant viscous drag. It is not clear if additional drag due to roughness 
will be proportional to the roughness. The term “hydrodynamically 
smooth” is sometimes used to suggest that roughness has no effect 
if is it below some minimum level. The comments that follow are a 
summary of commonly held beliefs. In my opinion, they should be 
approached skeptically.

In the forward sections of a boat, roughness can instigate turbu-
lence. This is generally bad because turbulence increases the viscous 
force. A large Reynolds number is the primary signpost of turbulence. 
A very smooth fluid flow combined with a smooth surface can significantly 
forestall the onset of turbulence. But the wind’s flow is surely random 
and in most cases the water is turbulent as well. The importance of a 
very smooth surface is not clear when the incident fluid flow is tur-
bulent. The golf ball example presented in Section 7.3.1 suggests that 
a large amount of roughness can decrease the critical Reynolds num-
ber for the onset of turbulence by a factor of 5. However, golf balls 
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are rapidly propelled through the air while sails must deal with the 
unsteady wind. Thus, the comparison is suspect.

After turbulence is triggered, roughness can still make a differ-
ence. A turbulent boundary layer has a “viscous sublayer” next to the 
surface. Arguments that are less than crystal clear say that surface 
roughness within the viscous sublayer should have no effect. Roughness 
extending beyond this sublayer extends into the swirling motion of 
the turbulence and can increase drag. So the problem boils down to 
estimating the thickness of the viscous sublayer.

As a crude estimate, assume the turbulence has developed and 
assume the thickness of the viscous sublayer d does not vary signifi-
cantly with position. If this is the case, d can depend only on a fluid 
speed, the viscosity z, and the fluid density. In the sublayer, the rel-
evant fluid speed is not the speed V at a large distance, but vs, which is 
a fluid speed in the boundary layer close to the surface. This boundary 
layer speed is a small fraction of V. The only dimensionally correct 
expression for the viscous sublayer thickness that depends on the sig-
nificant physical quantities is

	
δ ζ ζ≈ =v Vs

( )10 to 100
	

(7.1)

If the roughness height is less than d, the surface is said to be “hydro-
dynamically smooth” and efforts to make a smoother surface may not 
be worth the effort. The Fresh Breeze boat speed of 5 m/s gives d ≈ 10 
μm for the hull. This is 10 times the roughness of either of the exam-
ple pieces of Flying Scot gelcoat shown in Figures 7.2 through 7.5.

Air’s kinematic viscosity is 15 times larger than water’s, so a com-
parable criterion for hydrodynamic smoothness of a sail is d ≈ 0.1 → 
0.2 mm. Sails with seams are generally not this smooth, so a new 
smooth sail should present a little less viscous drag than an old wrin-
kled sail. If a sail has wrinkles, this could make a difference even 
though the wind is turbulent.

7.3 � Curiosities

A smooth surface is not always the best surface. Some examples of 
this unorthodox view are worth thinking about.
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Figure 7.6  Which ball goes further? (Photograph by David Liguori. With permission.)

Figure 7.7  For a range of speeds, the dimpled golf ball travels further than its smooth cousin. 
This figure is a sketch, not the result of a calculation.

73761.indb   175 11/13/09   4:52:41 PM



176 	 Physics of Sailing﻿

7.3.1 � Golf Balls

Dimpled golf balls travel farther than smooth golf balls. Has some-
thing been missed? Would a sailboat go faster if little holes were drilled 
into its rudder? It seems unlikely that golfers discovered something 
unknown to sailors, because sailors are smarter than golfers.

The physical justification of the golf ball dimples is related to the 
complicated drag crisis mentioned in Section 6.4.2. When a sphere 
moves rapidly through a fluid, its boundary layer becomes turbulent 
and more robust. When this happens, the boundary layer does a bet-
ter job of staying attached to the sphere. The separation point moves 
downwind, which decreases the size of the low-pressure turbulent 
region behind the sphere. The drag on the golf ball (shown at right 
in Figure 7.6) is reduced because the separation point moves down-
wind, as is sketched for the upper sphere in Figure 7.7. The resulting 
decrease in drag is the “drag crisis” that occurs at a Reynolds number 
greater than 2 × 105, as is shown in Figure 7.8. A smooth golf ball is 
too slow to take advantage of this drag crisis. A solidly hit golf ball’s 
initial velocity is around 60 m/s. The diameter of a golf ball is 4.3 cm. 
This means the Reynolds number is

	 R( ) .golf ≈ ×1 7 105
	 (7.2)
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Figure 7.8  The dotted curve shows the decrease in the drag coefficient for a golf ball at interme-
diate Reynolds numbers. The dark curve is the drag coefficient of a smooth sphere. Both curves are 
inexact and represent an average of reported data.
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Placing 330 to 500 dimples on the ball causes the turbulence and the 
drag crisis to develop at a speed normally achieved by a tee shot, as 
shown by the dotted line in Figure 7.8. Golf ball drag is reduced by the 
dimples for speeds between 18 m/s and 80 m/s. However, for speeds 
slower than 18 m/s or faster than 80 m/s, the dimples increase the 
drag. There is still considerable mystery behind this phenomenon. For 
example, a golf ball with pimples does not fly as far as a golf ball with 
dimples.

A similar drag crisis occurs for cylindrical shapes, so one might try 
the same trick for a mast, ignoring the obvious complications of the 
attached sail. However, the advantage of putting golf ball dimples 
on a mast is questionable at best. Wind speeds would often be too 
small. Then the dimples would increase the drag. Placing dimples on 
a centerboard is not a good idea. The drag crisis is clearly evident for a 
sphere and a cylinder, but not for many other shapes.

7.3.2 � Swimming Speeds

The maximum human swimming speed is about 2 m/s. Dolphins, 
sharks, and swordfish are examples of sea animals that can swim faster 
than 10 m/s. For these predators, success depends on speed. Despite 
their common dependence on speed for survival, these animals have 
evolved alternative paths to fast swimming.

Young swordfish have scales. However, the swordfish sheds its 
scales as an adult. This suggests smoother is faster, but dolphins and 
sharks have different speed tricks.

Half a century ago, M. O. Kramer concluded that dolphins do not 
consume enough food to swim as fast as they do for as long as they 
do. This curious bit of science reminds one of August Magnan’s con-
clusion from 20 years earlier that bumblebees can’t fly. There may be 
as many explanations of dolphin speed as there are dolphins. Some 
example suggestions are listed here:

Dolphins have a smooth skin that is soft and pliable, and this •	
suppresses turbulence.
The dolphin’s outer layer can flake off every two hours. The •	
flakes may break up vortex motion.
Associated with the flaking is the expelling of ethylene oxide, •	
and a thin gas layer should decrease the effective viscosity.
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Some dolphin skins have furrows that are reported to change •	
the vortex motion to reduce the drag.
The dolphin has skin folds called “dermal ridges” running •	
parallel to the dolphin body. Motion of these ridges is sup-
posed to suppress eddies.
The bottle-nosed dolphin has quasi-periodic ridges running •	
around the body, not along it. These may reduce the effects of 
vortex filaments.

All these ideas are untested. It is hard to measure a dolphin’s speed. 
Even if you can get a speed estimate, you can’t ask the dolphin if he/she 
was really trying his/her best, and you can’t tell the dolphins to turn 
off their ethylene oxide to see whether that makes a difference. When 
data are scarce, theories abound. There are stories that the Japanese 
(who else?) will construct robot dolphins to test these theories.

Sharks approach the speed problem in a different way. Shark 
scales, called denticles, are tiny (less than 1 mm across) and made of 
tooth-like material. They stick up from the surface. Most sharks feel 
smooth when stroked from head to tail, but they feel like sandpa-
per when stroked in the other direction. (Please stroke your shark 
carefully.) The individual denticles on fast-moving sharks are very 
smooth on their leading edges. Farther back, the denticle crown 
has ridges with depths on the order of half the width. Theories that 
explain why these denticles could improve speed are not easy to 
understand.

7.3.3 � Shark Imitations

Although sharks are not considered clever, they appear to have invented 
a reduced drag surface that is worthy of imitation. Microgrooves, or 
riblets, are a rough analogy to the shark’s denticles. They consist of 
parallel ridges and valleys. Like the shark’s denticles, they reduce the 
viscous force parallel to the grooves. The riblets are typically V-shaped 
notches smaller than 1/10 mm across. The riblet drag reduction is 
reported to be as large as 5% to 8%. If this were true, it would be a 
big difference.

Dennis Connor and the Stars and Stripes won the 1987 America’s 
Cup with riblets taped onto the hull. Shortly thereafter, riblets were 
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made illegal on all racing sailboat classes. In practice, riblets on sail-
boats are expensive and difficult to maintain.

Riblets have also been used in rowing competitions, and they have 
been built into the swimsuits of competitive swimmers. Learjets were 
some of the first commercial airplanes to use riblets. Details of mili-
tary aircraft surfaces are not advertised.

7.4 � When Is It Smooth Enough?

Sailors only interested in enjoying a day on the water need not worry 
about surface smoothness. Any standard gelcoat or painted surface 
will not significantly increase the total drag. The drag differences pro-
duced by wrinkles in a sail are similarly small.

Racing sailors often have a much less relaxed attitude toward the 
surfaces of their hulls and sails. Sailboat races that are kilometers 
long are often won by margins measured in meters. This suggests 
changes in surface drag of one part per thousand are significant for 
the most competitive sailors. There is a problem measuring even 
simple quantities to one part in a thousand. An example is the 
length of your sailboat. Try measuring it to a (1/10)% accuracy. 
Since there are no simple experimental tests to compare tiny dif-
ferences in surface drag, confusion and contradictions are nearly 
guaranteed.

It is probably not possible to make a sailboat surface resembling 
dolphin’s skin, and the riblet imitation of sharks is illegal. Rather than 
imitating marine animals, most sailors set aside the possibility that a 
smooth surface is not always the fastest surface. They settle for mak-
ing their sailboat hulls as smooth as possible. The vague arguments 
about the definition of a hydrodynamically smooth surface means 
sailors have no unambiguous definition of a surface that is smooth 
enough.

In my opinion, attempts to achieve overall smoothness to better 
than a 1 μm scale is a waste of time. But larger scale surface imper-
fections can sometimes be very important. A small amount of ice on 
the front edge of an airplane wing can produce catastrophic results, 
probably because the ice induces turbulence. It is likely that the vari-
ous nicks and dents that appear on almost all sailboat surfaces can 
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also instigate turbulence. Controlled experiments show that the onset 
of turbulence can be delayed if two conditions are met. First, the 
initial flow should not be turbulent and, second, the surfaces should 
not have the nicks and dents. Sailors cannot control the initial tur-
bulence, but eliminating the noticeable imperfections in a sailboat’s 
surface could still make a difference. So after a collision, try to do a 
careful repair.
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8
Waves and Wakes

There is no point in pretending that water waves are simple 
enough to be boring. Water waves exhibit a refreshing variety 
of properties. They are dispersive, which means different wave 
lengths travel at different speeds. Their polarization is neither 
longitudinal nor transverse because the water travels in circu-
lar paths. Even the underlying forces that drive water waves are 
complicated because both gravity and surface tension determine 
wave frequencies and speeds. Viscosity plays a role, too, and 
viscous damping is important for shorter waves. Waves can be 
generated in a variety of ways, and when the wind is the driv-
ing mechanism, the situation is particularly confusing. Finally, 
waves are nonlinear, which means large amplitude waves are 
much more difficult to describe than gentler waves. A derivation 
of many of these wave properties is tedious, so an overview of 
results that sailors may find interesting is accompanied only by 
sketchy descriptions of how the results come about.

8.1 � Wave Shape

The analogue of the “spherical cow approximation” for water waves 
is the sine wave. Sine waves have the smooth periodic shape shown 
in Figure 8.1a, with the up and down undulations continuing to the 
left and right without end. Water waves that are generated by light 
breezes resemble sine waves.

Waves generated by even moderate winds develop higher and more 
pointed peaks than sine waves and their troughs become relatively 
flat. In strong winds, the waves become unstable and “white caps” 
appear at the wave crest. The highest wave that does not yet produce 
white caps was first theoretically described by Stokes. It is shown in 
Figure 8.1b. The peak-to-trough height H of this tallest Stokes wave is 
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only one seventh the wave length l. (The wave length is the distance 
from one peak to the next.) The slope of a Stokes wave at its peak is 
30° above horizontal. If the wind dies, the waves can last for quite a 
while, but the sharply pointed Stokes waves change fairly quickly to 
the sinusoidal shape.

It may seem surprising that a single water wave is never nearly 
as high as it is long. One must remember that the water’s surface is 
typically covered with a complicated mix of many waves with dif-
ferent wave lengths propagating in different directions. The sum of 
these waves can occasionally produce anomalously high and steep 
waves. Also, sailors may exaggerate wave heights because they can be 
frightening.

The wind-generated waves a sailor experiences never resemble the 
waves of Figure 8.1. The example in Figure 8.2 shows that it is often 
hard to recognize either the sine wave or the Stokes wave in the real 
world.

In addition to their height H and wavelength l, waves are charac-
terized by their frequency f and (phase) speed vp. They are related by

Equation 8.1 is fairly intuitive. The length of a wave l (in meters) 
multiplied by the number of up and down oscillations in one second, 
f, gives the wave speed in meters per second.

Most of the formulas that follow are strictly valid only for the 
simple small-height sine waves shown in Figure 8.1a. However, they 
represent reasonable approximations for all water waves, including the 
peaked Stokes wave of Figure 8.1b.

	 v fp = λ 	 (8.1)

(a)

(b)

Figure 8.1  (a) The idealized sine wave shape of a low amplitude water wave. (b) The shape of a 
larger amplitude wave just before it becomes unstable to white cap formation.
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8.2 � Water Motion

When a sine wave moves across a body of water, it does not carry the 
water with it. Instead the water sloshes up and down and back and 
forth. The path of a drop of water near the surface moves in a circle 
whose diameter is the wave height, as shown in Figure 8.3. The speed, 
u, of the water drop is always smaller than the wave speed

	
u H v p= π

λ 	
(8.2)

Equation 8.2 follows, because the water must travel a circle of circum-
ference, pH, in the same time it takes the wave to move one wavelength, 
l. At the peak of the wave, the water moves with the wave, but the 
water backs up in the troughs. Between crest and trough, the water and 
the wave are moving up or down. The complicated mix of horizontal 

Figure 8.2  Real waves. (Photograph by Sally Snowden. With permission.)

Figure 8.3  The water at the surface of a wave travels in circles. The velocity at each point is indi-
cated by the smaller arrows. The speed of the wave itself is larger, as indicated by the large arrow.
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and vertical motion is a consequence of water’s incompressibility. When 
water is falling, nearby water must move away horizontally to make 
room. Later, water is “sucked in” to a region where the surface is rising.

For waves longer than a boat length, sailors can take advantage of the 
wave structure when sailing downwind. Just follow two simple rules.

	 1.	Stay on the front slope of the wave, near the top. That way the 
sailing is both downhill and downstream.

	 2.	Never sail in the wave troughs. Climbing out of a trough 
involves sailing uphill and against the flow.

Of course, these rules are impossible to follow. Nonetheless, athletic 
sailors on small boats can significantly improve their speeds by a clever 
management of the boat position on waves.

The circular motion of the water is largely confined to the surface. 
The speed with which the water moves at a depth d decreases expo-
nentially as

	
Speed d≈ −







exp 2π
λ 	

(8.3)

In other words, at a depth of l/(2p), the motion is decreased by almost 
a factor of 3. For sailboats, more than most boats, this wave motion 
can be disturbing. Under typical wave conditions, a centerboard or keel 
often extends to water depths where the wave motion is insignificant. 
Thus, a wave coming from the side pushes the boat back and forth, 
but the centerboard is anchored in still water. The result is a torque 
that tips the boat from side to side, and this torque flops the sail back 
and forth. This is a good reason to raise the centerboard when sailing 
sideways to the wind. Of course, leeway and weather helm must also 
be considered when adjusting the centerboard depth.

The circular motion of the water in a wave is an idealization valid 
only for very shallow waves. For realistic situations, there is also a 
drift of the water in the direction the wave moves, but this drift veloc-
ity is always very small compared to the wave’s phase velocity. To a 
reasonable approximation

	
v drift H v p( ) =







2
2

2
π

λ 	
(8.4)
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Since the wave height, H, is always less than a seventh of the wave 
length l, applying this formula suggests a drift velocity that is never 
more than a tenth of the wave velocity. Langmuir in 1938 found a 
surface current in the water that was about 2% of the wind speed. 
Some of this motion was no doubt caused by the wind dragging the 
water, and not just the v(drift) of Equation 8.4. Many more detailed 
studies of drift have followed Langmuir’s early observations, but they 
are less entertaining.

8.3 � Gravity Waves

Gravity is the driving force of waves when the wavelength is greater 
than a few centimeters. Gravity pulls water from the peaks into the 
valleys, but the water’s momentum carries it too far down, so it gets 
pushed up again.

8.3.1 � Wave Frequency

The back and forth motion of water being pulled down by gravity and 
pushed up by buoyancy is characterized by a wave frequency

	
f g

=
2πλ 	

(8.5)

Here g ≅ 9.8 m/s2 is the acceleration of gravity. Equation 8.5 can be 
partially justified by simple arguments. One might expect the fre-
quency to depend on all the wave properties: wavelength, l; height, H; 
the water density, r; and the acceleration of gravity, g. However, the 
mass density, r, cannot affect the frequency for essentially the same 
reason that all objects fall at the same speed regardless of their mass. 
Since the frequency formula applies to waves with arbitrarily small 
height, H should not be in the formula. The only combination of the 
remaining quantities, g (in meter/second2) and l (in meters), which 
yields the unit of frequency (inverse seconds) is the square root of g/l. 
There is a sneaky way to derive the 1 2/ π  in Equation 8.5. It is based 
on the observation that a drop of water balanced on a wave would be 
accelerated down the slope of wave the same way a skier accelerates 
downhill. But this drop of water is part of the wave, so the acceleration 
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should be the same as the acceleration of the water in the wave. This 
observation leads to Equation 8.5 with the appropriate constants.

8.3.2 � Wave Speed

Combining Equation 8.1 for wave speed with Equation 8.5 for the 
frequency shows that the wave speed is proportional to the square root 
of the wavelength.

	
v g

p =
2π

λ
	

(8.6)

For a “typical” medium-sized wave with l = 1 m 

	
v wavep ( )1 5

4
m m

s
≅

	
(8.7)

In wind conditions where waves of this size are observed, sailboat 
speeds are often faster than (5/4) m/s.

Waves can be much longer and move much faster in the ocean. 
Storms can generate wavelengths of 300 m or more. Using Equation 8.6 
again yields

	
v wavep ( )300 22m m

s
≅

	
(8.8)

This speed is slightly faster than the record for the world’s swiftest 
racehorse. Normal sailboats do not travel as fast.

You can sit on the shore of the ocean and calculate the speed and 
the wave length of the “rollers” running up on the shore, using noth-
ing more than a watch. The wave period, T, which is the inverse of 
the frequency, f, is the time interval between successive waves crash-
ing up on the beach. Equation 8.5 gives the wavelength, l, in terms 
of 1/f = T. Then Equation 8.1 shows that dividing the wavelength by 
the period, T, gives the phase speed, which yields in Equation 8.9 a 
practical way to calculate the wave speed and length.

	

v g T T

g T T

p = ≅ ×

= ≅ ×

2
1 56

2
1 562 2

π

λ
π

.

.

m
s

m
s

2

2 	

(8.9)
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The period-dependence of the wave speed and wavelength is illus-
trated in Figure 8.4.

An example illustrates this method of characterizing waves. If 
waves arrive every 15 s, Equation 8.9 or Figure 8.4 informs you that 
the wave length and speed were l = 350 m and vp = 23 m/s. One 
should be careful when estimating a period. In practice, waves are not 
perfectly periodic, and they are not all the same size, as can be seen 
in Figures 8.2 and 8.6. If the period you observe is half a minute or 
longer, you are probably only counting every other wave. If not, the 
waves were generated by a really violent storm.

The velocity and wavelength obtained from Equation 8.9 are valid 
only when the wave is in deep water. As waves enter shallow water, 
their period is unchanged, but they move more slowly, their wave-
length shrinks, their height increases, and they can bend around 
corners. When the water depth becomes less than the wavelength, 
Equation 8.6 is changed. The wavelength is replaced by 2p times 
the depth of the water. This means the speed is determined by the 
water depth instead of the wavelength, and all waves travel at about 
the same speed. Tsunamis generated by earthquakes are examples of 
shallow-water waves even in a deep ocean because their wavelengths 
are measured in kilometers. Because these waves travel at a constant 
speed, they do not spread out with time. This makes them much more 
dangerous when they approach a shore.
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Figure 8.4  Straight line: The speed of a water wave as a function of the wave period, T. Parabola: 
The wave length of the water wave as function of the wave period, T.
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8.4 � Capillary Waves

Surface tension replaces gravity as the dominant driving force for 
waves with wavelengths l significantly less than 1.7 cm (100 cm = 
1 m). The surface tension s  characterizes the force needed to stretch 
the water’s surface. The stretching is larger for shorter wavelengths, 
so the wave speed of these “capillary waves” increases as the wave-
length shrinks, which is the opposite of gravity waves. The form of 
the phase velocity can again be qualitatively justified just by looking 
at the units.

	
v p = 2 1πσ

ρ λ 	
(8.10)

The mass density of freshwater is r = 1,000 kg/m3 and the air–water 
surface tension is s ≅ 0.073 N/m at 20 °C. Thus, the phase speed of a 
capillary wave with a 1½ cm wave length is

	
v p ( ) .1 2 0 3/ cm m

s
≅

	
(8.11)

When sailors see these short wavelength, capillary waves riding on 
the top of longer gravity waves, they know it is very windy. It takes a 
lot of wind to sustain these short waves because they dissipate their 
energy quite quickly.

At intermediate wavelengths, both gravity and surface tension con-
tribute to the wave velocity. The combination of forces means water 
waves have a minimum speed of 0.22 m/s when the wavelength is 
1.7 cm.

8.5 � Damping

Waves don’t last forever. They slowly die as their energy is trans-
formed into heat. As described in Section 7.3.4, the kinematic vis-
cosity z is the friction-like term of fluid mechanics that produces 
dissipation. The height of a sine wave decreases exponentially with 
time, so H t∝ −exp( )/τ . That means t is the time needed for the wave 
amplitude to decrease by nearly a factor of three. The decay time is 
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always a squared distance divided by the kinematic viscosity. For the 
water wave,

	
τ λ

π ζ
=

2

28
1

	
(8.12)

Here ζ ≅ −10 6 m /s2
 is the kinematic viscosity of water. The 1/(8p2) in 

Equation 8.12 is left as an exercise for the truly ambitious sailor.
In practical units, the water wave damping time of Equation 8.12 is

	
τ λ≅ ×







5
4 1

2

s
cm 	

(8.13)

Thus a 1 cm wave lives only about 5/4 s, and a shorter wave would have 
an even shorter lifetime.

For longer wavelength gravity waves, the viscous damping is much 
less important. A 1 m wave has a lifetime of hours. However, the damp-
ing time of Equation 8.12 applies only to the sine waves with small 
height. Energy dissipation is much more aggressive when the wave 
height H becomes large. It can be clearly seen when waves develop 
white caps.

A sailor looking for fresh wind keeps wave lifetimes in mind. It is 
the shorter waves that are an indication of wind. Long waves with-
out little ripples on the top can be remnants of a wind long gone. 
The physics behind seeing the wind through wave observations is 
described in Chapter 10.

8.6 � Wind and Waves

A simple but old-fashioned idea describes how the power of wind is 
fed into waves. Once a wave is created it produces a small barrier to 
the wind. Wind blowing over the water pushes on the wave in the 
same way it pushes on a sail. As with the sail, the force is roughly pro-
portional to the square of the difference between the wind speed, W, 
and the wave speed, vp. Thus, waves can gain energy from the wind as 
long as the wind is moving faster than the waves. When you observe 
a sequence of waves with a period T = 15 s and use Equation 8.9 to 
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deduce a wave speed of 23 m/s, you can be sure the wind speed that 
generated these waves was at least 23 m/s.

The power delivered to a wave is proportional to the force on the 
wave multiplied by the wave speed (just as with sails), yielding

	 Power W v vp p∝ −( )2
	 (8.14)

The wave speed that maximizes the power in Equation 8.14 is

	
v Wp ≈ 1

3 	
(8.15)

Typical sailboats move downwind with half the wind speed, so one 
expects that sailboats can overtake freshly formed waves. This is the 
typical situation that occurs on relatively small bodies of water and 
light winds.

When the wind is moderate or strong, it can supply an abundance 
of energy to the waves of many wavelengths. Although waves with 
one-third the wind speed may be most quickly created, very short 
waves will appear because the wind has enough energy to overcome 
the damping. Longer waves whose speeds approach the speed of the 
wind can also be energized. Eventually, the faster waves with longer 
wavelengths will dominate the water landscape because they can have 
greater height. Thus, on large bodies of water, the speed of the domi-
nant waves is comparable to (but always less than) the speed of the 
wind that created them.

8.6.1 � Flat Water

Very light winds make no waves at all. The surface of the water is like 
glass. Sailors take this as a sign to drink beer and watch TV (or pick 
your own leisure activity). Two effects inhibit wave formation in the 
lightest winds. One is the minimum wave speed of about 0.22 m/s. 
This slowest possible speed occurs because waves are driven by both 
gravity and surface tension. Since wind can push a wave only if it is 
moving faster than a wave, W must be greater than 0.22 m/s before 
a wave could start. This explanation mostly misses the mark. The 
waves produced in the lightest breezes usually have wavelengths 
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of several centimeters, significantly larger than the 1.7  cm of the 
slowest wave. Using Equation 8.13 shows that a 1.7 cm wave has a 
lifetime t of only about 3.6 s. Light winds are not capable of refresh-
ing the wave energy in such a short time. On the other hand, the 
lifetime of a 6-cm wave is three-quarters of a minute. This is a much 
more easily sustained wavelength. The wind speed W must be at 
least the 0.3 m/s, and probably double this, to produce the 6-cm 
waves. The wind speeds near the water’s surface are smaller than 
the wind speeds at the sail, so waves typically appear on water only 
when W ≈ 1 m/s.

The variation of wind speed with altitude is quite variable. 
Sometimes when the water is colder than the air above, the wind is 
nearly stratified. In such cases, the water surface can indicate calm 
conditions even when there is significant wind at sail level.

The mechanism by which waves first appear on perfectly flat water 
surface is mysterious. One might ask how the wind transfers energy 
to the waves if there is no wave to push against. Part of the answer 
lies in the turbulent nature of wind. The atmosphere is characterized 
by fluctuations in both pressure and velocity, and the pressure fluctua-
tions that push the water surface up and down can start wave motion 
even on a flat surface. In special cases, one can see a boat sailing over 
flat water with wind ripples following behind. This may be due to the 
boat’s wake stirring up the water so the wind has something to “grab 
onto.” It could also be caused by the sail deflecting a wind at mast 
height down to the water’s surface.

8.6.2 � Fetch

Waves are not instantaneously generated. They gradually build up 
amplitude as they plow downwind. The simplest assumption is that 
the wave energy per unit area increases at a constant rate. That is,

	
Wave Energy

Area
Fetch 

∝
	

(8.16)

Here “fetch” is the distance to the point where the wave generation 
starts, often a shore that is directly to windward. The wave energy 
is proportional to the square of its amplitude. That means the wave 
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height should be proportional to the square root of the fetch. This 
simple argument is consistent with the phenomenological expression 
derived mostly from observations

	
H W Fetch

g
≈ 1

200 	
(8.17)

In Equation 8.17, the number 1/200 is pretty vague and has no sound 
theoretical justification. Also this formula applies only over distances 
where the waves are growing. Because waves cannot move faster 
than the wind and wave heights cannot exceed about one-seventh of 
a wavelength, the wave growth eventually stops. Assuming average 
wave speeds equal one-third the wind speed, W, gives a crude esti-
mate of the distance over which waves will continue to grow

	
Fetch W(max) ≈ 50 2s

m

2

	
(8.18)

Thus in a Fresh Breeze with W = 10 m/s, the waves continue to grow 
for about 5 km. For a Gentle Breeze with W = 5 m/s, wave heights 
will continue to grow for only about 1.25 km, and in light air the 
waves do not go far at all before they are at maximum height. For lon-
ger waves whose speeds are closer to the wind speed, the maximum 
fetch would be larger.

The formulas relating fetch, wave height, and maximum fetch are 
crude phenomenology. The coefficients above are roughly reason-
able for smaller bodies of water where most recreational sailing is 
done. Different coefficients would better fit the data for ocean waves. 
The wind generates a broad spectrum of wave heights and wave-
lengths, and the average wavelength and wave speed also increase 
with fetch.

Waves make a significant difference in sailboat speed. Sometimes 
they can help downwind sailing. Waves are always a hindrance for 
sailing against the wind. By sailing closer to a windward shore and 
thereby decreasing the fetch and wave height, a sailor can improve 
upwind sailing speed, provided the wind is not also diminished near 
the shore. However, since the wave height varies with the square root 
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of the fetch, one must sail four times closer to the shore in order to 
decrease the wave height by a factor of 2.

8.6.3 � Wind and Wave Energies

Anyone who has experienced the buffeting of the ocean surf knows 
that waves carry a great deal of energy. The energy per unit area of the 
water’s surface is

	
Wave Energy

Area
water gH  ( )= 1

8
2ρ

	
(8.19)

Equation 8.19 is obtained from the observation that force times dis-
tance is energy. A term rgH is the weight of a tub of water with a 
depth H and an area of one square meter. The extra H is associated 
with the distance the water is lifted. With the appropriate factors of 2, 
this energy is double the amount of work needed to produce a sinusoi-
dal trough-crest structure. The total energy is twice this work energy 
because waves have an additional kinetic energy (energy of motion) 
that is equal to their potential energy.

Wind also carries considerable energy, but it is naturally expressed 
as energy per unit volume instead of the energy per unit area that 
characterizes the waves

	
Wind Energy

Volume
air W  ( )= 1

2
2ρ

	
(8.20)

These energies can be compared if one considers only the wind energy 
up to some standard height, D. Because r(water) ≅ 800 r (air), the 
wave energy is quite large. Some rough approximations are needed. 
Assume the wave speed is half the wind speed, so vp = W/2. This deter-
mines the wavelength l in terms of the wind speed via Equation 8.6. 
Assume the wave height is one-seventh the wavelength, as is the case 
for a Stokes wave. Using these approximations gives

	

Wave Energy
Wind Energy up to D

K W
D

 
       

≈
2

	
(8.21)

Here, K ≈ 1 s2m.
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With Equation 8.21 one can compare the wave energy with the 
wind energy up to the top of a mast by taking D = 10 m. In a Fresh 
Breeze with W = 10 m/s, the waves have 10 times as much energy as 
the wind below 10 m. At this wind speed, waves have as much energy 
as the wind up to 100 m. If one wishes to harness nature’s power to 
obtain “green” energy, it appears that one could gain as much energy 
from the waves as the wind. Unfortunately, the occasional violent 
storm at sea makes plans to harness the energy of waves a very chal-
lenging engineering problem.

8.7 � Wave Packets and Group Velocity

Real waves do not oscillate forever and they do not extend as far as 
the eye can see. Additional curiosities of waves can be seen when their 
finite extent is considered. A “wave packet” is a simplified version of 
a wave confined to a fairly small region of the water’s surface. An 
example is shown in Figure 8.5.

The wave packet moves, but at a different speed than the individual 
waves peaks. The wave packet speed is called “group velocity” and is 
denoted vg. For gravity waves more than a few centimeters long, the 
group velocity is only half the phase speed (also called phase velocity).

	
v vg p= 1

2 	
(8.22)

Anyone subjected to the wake from a speeding power boat is familiar 
with the difference between the phase and group velocities. The wake 
often appears as a sequence of a few big waves. Watching the peaks of 
these waves reveals a relatively high speed. It would appear that the 
annoying wake will pass quickly. Sadly, it takes a surprisingly long 
time before the bouncing and rocking stops. Individual waves seem 
to magically appear at the back end of the wave packet, speed to the 
front and then disappear. This happens again and again, resulting in 
a group velocity that is only half the phase velocity. The two-to-one 

Figure 8.5  A wave packet. This group of waves moves half as fast as the individual peaks.
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ratio of phase velocity to group velocity is the key to understanding the 
V-shape of the wake that follows behind a boat. (See Section 8.9.)

A wave packet will slowly spread out and individual wave heights 
in the packet will become smaller. Wave heights decrease because of 
the speed difference between the long and short wavelengths that 
compose a wave packet. Roughly speaking, after a wave packet has 
traveled a distance d, the wave height is

	

H d H
d
w

( ) ≈
+ ( )

0

41 	 (8.23)

Here, H0 is the initial height of the wave packet, and w is the initial 
width of the wave packet. This formula suggests a wave packet will 
travel 12 times its original width for the amplitude to decrease by a 
factor of 2, but it must travel 60 times its original width before the 
amplitude is decreased by a factor of 4.

When the initial wave packet can be described by a large initial width 
w, the denominator of Equation 8.23 stays small for a long time. Waves 
generated by a storm many kilometers across can be roughly described by 
a large w. Waves from such a storm can travel long distances before they 
become harmless. On the other hand, when large waves are produced in 
a small area, the smaller w means their large height quickly decreases.

There are many reasons why Equation 8.23 is only a rough esti-
mate. Details of the original wave packet shape, the definition of wave 
packet width, and nonlinear corrections for high waves will all influ-
ence the decay of a wave packet. The group velocity of tsunamis and other 
shallow-water waves is the same as the phase velocity. That means the 
wave does not spread out and Equation 8.23 does not apply. Tsunamis 
can travel very large distances while maintaining their height.

For capillary waves, the group velocity is 50% larger than the phase 
velocity. This is the opposite of gravity waves. Individual wavelets can’t 
keep up, and they disappear at the back end of the wave packet.

8.8 � An Example

Real-world waves, such as those shown in Figure 8.2, are not sim-
ple. They can be viewed as a continuous onslaught of wave packets 
or a mixture of waves with many frequencies. They are only roughly 
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periodic. This is illustrated in the wave heights measured 50 km off 
the coast of Monterrey, California, that are shown in Figure 8.5.

Measurements were made four times a second, which is not rapid 
enough to see the fine features of wavelets that move on top of the 
longer length waves. One can see that the waves over this 5-min 
period are only roughly periodic. A simple counting would suggest 
about 40 waves in 300 s. This corresponds to a period T = 7.5 s, or a 
frequency of 0.133 Hz. (One Hertz is one cycle per second.) Using 
Equation 8.9 or Figure 8.4 tells one that waves with a 7.5-s period 
have a speed of 11.7 m/s, so the wind that produced this wave pattern 
was blowing at least 11.7 m/s.

The wind speed was measured at the same place and time that the 
waves were observed. The result is shown in Figure 9.1. Although the 
wind speed is variable, it never approaches 11.7 m/s. The apparent con-
tradiction comes about because the waves were produced in the past by 
a stronger wind. Waves last a long time, but the wind can die quickly.

The waves shown in Figure 8.6 can be viewed as a superposition of 
many perfectly periodic waves. The transformation of Figure 8.6 into its 
frequency components (via a Fourier series) gives additional information 
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Figure 8.6  Five minutes of wave heights in the Pacific Ocean measured four times per second.
(Thanks to Scott Miller for wave and wind data.)
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about the wave structure. The energy (or squared Fourier amplitude) 
stored in each frequency is shown in Figure 8.7. This figure shows that 
the maximum wave energy does correspond to a frequency of about 
0.133 Hz. However, the wave spectrum is spread out, and there appears 
to be a second peak at half the 0.133 Hz frequency. One could argue 
that these lower frequencies correspond to waves with twice the period 
and thus, through Equation 8.9, double the velocity of 11.7 m/s. This is 
doubtful. Nonlinear effects could lead to an alternating of big and small 
waves and this effect is not described by the simple theory. However, it 
is safe to say that the peak at 0.133 Hz is real, and the waves shown in 
Figure 8.5 were generated by a wind speed that was at least 11.7 m/s.

8.9 � Wakes

If you quickly move your finger across the water’s surface, the wave 
pattern that follows your finger is a tiny version of a wake. It is essen-
tially the same wake produced by a duck, a sailboat, or the Queen 
Mary. All wakes have three pieces in common a center portion that 
follows directly behind the boat and two side arms making a V shape. 
There may be smaller waves between the center and side wakes. 
Outside the V there is no wake.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Frequency (Hz)

En
er

gy

Figure 8.7  The frequency distribution of the energy of the wave pattern shown in Figure 8.6.
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Because it has this sharp outer boundary, a wake is like the “light 
cone” of special relativity. One boat can feel the wake of another boat 
only if it lies within the V of the other boat’s wake. From relativity, 
we know that if something happens at position x = 0 and time t = 0, it 
can cause something else to happen at another position x′ and a later 
time t′ only if light traveling from the first event arrives in time to 
cause the second event, which means |x′| ≤ ct′. Here c is the speed of 
light. Graphing this relation between x′ and t′, gives the characteristic 
V of the light cone that resembles the V of the wake. A comparison 
is shown in Figure 8.8. A fundamental concept of relativity is the 
constancy of the speed of light and the angle of the light cone. The 
light cone has the same shape no matter how fast an observer moves. 
Wakes have a vaguely analogous nifty property. No matter how fast 
a boat is moving, the angle of its V is the same. Albert Einstein loved 
sailing. Who knows the true source of his inspiration?

8.9.1 � Properties

A summary of wake properties and geometry are presented here. A 
derivation of the results, which is an annoying geometry and trigo-
nometry exercise, is postponed to Section 8.9.3.

8.9.1.1  Center Wake  The waves in the center wake move with the 
boat, so they have a phase velocity vp(center) equal to the boat speed U. 
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Figure 8.8  The wake’s V shape and special relativity’s light cone.
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Using Equation 8.6 for a wave’s phase velocity,

	
v center g center Up ( ) ( )

= =
λ

π2 	
(8.25)

Here, l(center) is the wavelength of the central wake. Equivalently,

	
λ π( )center

g
U= 2 2

	
(8.26)

That means you can determine the speed of a boat by observing 
the separations between wave crests in the wake that follows along 
behind. A Fresh Breeze boat speed U = 5 m/s means l(center) ≅ 16 m. 
Doubling the speed produces a wake four times as long, so the cen-
ter wake wavelength is an accurate way to characterize boat speed. 
Streamlined objects, such a ducks, canoes, and some sailboats pro-
duce only a faint central wake.

8.9.1.2  Side Wakes  Boats of any size moving at any speed greater than 
about 1 m/s produce a side wake with universal properties. The tri-
angle shown in Figure 8.9 characterizes the common geometry of all 
wakes.

A B

C

a

b

c

(a) (b)

Figure 8.9  (a) The basic wake triangle, with sides A, B, and C shown on one side and the corre-
sponding opposite angles a, b, and c shown on the other side. (b) The lines representing wave peaks 
of the central and the two side wakes. The side wake peaks are parallel to the line C shown at left.
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Individual wave crests in the side wakes do not have the same phase 
speed as the boat. The phase velocity of each wave is equal to the com-
ponent of the boat’s speed parallel to the wave motion. That means

	
v side U a Up ( ) sin( )= = 2

3 	
(8.29)

The relation between phase velocity and period (Equation 8.9) means 
one can deduce the speed of a boat from the period T of the side wake 
it produces.

	
U g T T= =3

2 2
1 91

π
. m

s2
	

(8.30)

Thus, if a wake bounces a stationary observer up and down once every 
6 s, the boat that made that wake was moving fairly fast; U = 11.5 m/s. 
This relation is valid whenever the boat producing the wake is moving 
in a straight line at a constant speed.

The viscous damping of most wakes is negligible because the wave 
lengths are typically on the order of 1 m or longer. Wakes eventually 

Side A of the triangle lies on one of the V-lines of the wake. Side 
B follows directly behind the boat. Side C is parallel to the indi-
vidual wave crests that make up the wake. The relative lengths 
of the triangle sides are

	

A

B

C

=

=

=

6

3

1 	 (8.27)
The corresponding angles a, b, c opposite these sides are

	

sin( ) ; .

( ) .

c c

b c

a

= ≅

= − ≅

=

1
3

19 5

1
2

90 35 25

180

0

0 0

0

or

−− − ≅b c 125 250. 	 (8.28)

Also, sin( ) , sin( )a b= =2 3 1 3/ / .
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die out because they form a wave packet. That means dispersion (wave 
spreading) rather than damping is the mechanism that decreases the 
height of the wake waves. The approximate wave height H(d) after it 
has traveled a distance d is given by Equation 8.24, repeated here.

	

H d H
d
w

( ) ≈

+






0

1
4 	

(8.24)

As before, w is the original size of the wake train. As with other wave 
packets, the fairly rapid initial decrease in height becomes quite slow as 
the wake widens. Energy conservation means the width of the wake (and 
the number of waves in the wake) increases with time. After some time 
a wake changes from a few very high waves to many gentler waves.

Sometimes wakes appear to last forever, and a sailboat may find 
itself riding a powerboat’s wake that never seems to stop. This may 
not be an illusion. The simple theory described here is based on the 
assumption of gentle low-height waves. Some wakes, being quite 
steep, may exhibit “solitary wave” characteristics. Idealized solitary 
waves have shapes that do not decay. Instead, they propagate intact—
essentially forever. The suggestion that wakes can be solitary waves has 
met considerable and justifiable skepticism. Despite this, it is possible 
that nonlinear effects may extend a wake’s lifetime.

8.9.2 � Wake Energy and Hull Speed

The power delivered to a wake means extra force is needed to keep the 
boat moving. Heavy sailboat wakes become the major drag at higher 
speeds. The “hull speed” is essentially the maximum speed of a heavy sail-
boat in any reasonable wind. It is traditionally determined by postulating 
that wake resistance overwhelms all other forces when a wake wavelength 
becomes comparable to the boat length. Using Equation 8.6, that means

	
Hull Speed g Length≈

2π 	
(8.31)

This suggests that a boat 8 m long would have trouble traveling faster 
than 3.5 m/s. In practice, this limit is too restrictive and the hull speed 
estimate of Equation 8.31 is often multiplied by a number somewhat 
larger than unity.
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It is impossible to design a wake-free boat, but lighter sailboats 
that can skim over the water (plane) produce much shallower wakes. 
Sailboats that plane are not subjected to the hull speed limit.

Although the hull speed limitation is one of the most familiar nau-
tical concepts, a simple explanation is illusive. Computer calculations 
and sophisticated tank tests allow professionals to understand and pre-
dict wakes, but nonprofessionals appreciate simple explanations. Two 
traditional, complementary, and unsatisfying models are used to justify 
the hull speed formula. They are the “two wakes merge to one” picture 
and the “sailing uphill” picture. They are followed by a nontraditional 
scaling model that I find more satisfying.

8.9.2.1  Two Wakes Merge to One  For large boats, one can often see two 
wakes generated; one is produced by the bow pushing water up and 
to the side. A second wake appears at the stern as water is suddenly 
allowed to uplift. At hull speed, these wakes are supposed to merge to 
give an especially large wake that requires an especially large power 
to maintain. However, the effect is not spectacular. When two wakes 
of height H are independent, the energy is proportional to 2H2. (The 
factor of 2 is from the two wakes.) If the two wakes combine to make 
a single wake of height 2H, the energy is proportional to (2H)2 = 4H 2, 
so the energy is only doubled. When a boat speed is increased past the 
point where the wave amplitudes add, the simplest argument would 
say the wake drag should return to lower values.

8.9.2.2  Sailing Uphill  A sailboat rides on its own wake. At high speed, 
the wake’s wavelength becomes comparable to the boat length. The 
water piles up at the bow and leaves a hole at the stern. The boat is 
constantly trying to climb out of the hole. However, at even higher 
speed, the wake wavelength becomes longer than twice the boat length. 
When this happens riding up the broader hill should become easier.

These arguments suggest that hull speed is more like a sound barrier, 
which could be overcome. Heavy boats never overcome this barrier.

8.9.2.3  Scaling Model  An alternative model of wakes is described 
here. Although this model does not explain why hull speed should 
scale with the square root of the boat length, it does show how wake 
drag can increase very rapidly with boat speed.
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The basic assumption is that the wake produced by a duck is essen-
tially the same as the wake of the Queen Mary. Only the distance 
scale is changed. This assumption allows a comparison of the wake 
force at different speeds. One can compare the wake of a boat moving 
at two different speeds. From this, one can obtain ratios of the wake 
energies. The energy ratio gives a power ratio. Since power is force 
times speed, this gives the force ratio.

Consider two boats, traveling at different speeds, U(fast) and 
U(slow). Assume the wavelength of the faster boat’s wake is 
twice that of the slower boat. The relation between wavelength 
and speed (Equation 8.6) means U fast U slow( ) ( )= ⋅2 . Let 
E(fast) and E(slow) be the total energies contained in the 
wakes of these two boats up to a distance equal to N wave-
lengths behind the boat. Because the two wake patterns are 
assumed to be scale models of each other,

	

E fast
E slow

H fast
H slow

( )
( )

( )
( )

=






4
2

	
(8.32)

The factor four appears because the N wavelengths of the faster boat 
wake is twice as long and twice as wide as the corresponding wake 
section of the slower boat. The quantities H in this expression can 
be taken as the height of the largest wake wave. The squared ratio 
of these heights appears because wave energies are proportional to 
the square of the wave height (Equation 8.19). Assuming the same 
scaling applies to the wave height, H(fast)/H(slow) = 2 means

	

E fast
E slow

( )
( )

= 16
	

(8.33)

The power needed to produce a wake is the wake energy divided 
by the times it takes to generate the wake. The faster boat takes a 
time that is greater by 2 because the time is obtained from the 
doubled distance divided by a speed that is larger by 2.

	

Power fast
Power slow

( )
( )

= 16
2 	

(8.34)
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The total drag force is then the sum of the conventional drag, which 
is proportional to the square of the speed, and a wake contribution 
proportional to the sixth power of the speed.

	
F C U BUD D= +1

2
2 6( )

	
(8.36)

A graph of the variation of drag force with speed is shown in Figure 8.10. 
Because the coefficient B in Equation 8.36 is not determined by a 
scaling argument, the scales on Figure 8.10 are undetermined.

Since power is force time velocity, and the velocity ratio is 2, 
the ratio of drag forces is obtained by dividing by another 2

	

F fast
F slow

D

D

( )
( )

= 8

This means increasing the speed by 2 (a 41% speed change) 
increases the wake drag force by a factor of 8.

The speed ratio does not have to be 2 for the scaling approach 
to apply. Since 8 2 6= ( ) , the scaling really says the wake drag 
force should be proportional to the sixth power of the speed.

	 F wake UD ( ) ∝ 6
	 (8.35)

A force proportional to the sixth power of the speed is negligible 
at low speed but it becomes overwhelming at high speed.
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Figure 8.10  The drag force without wake is proportional to the square of the boat speed. The 
scaling model adds a drag proportional to the sixth power of the speed.
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With this model of wake drag, the hull speed corresponds to the 
speed at which the BU 6 term cannot be overcome by any reasonable 
wind. However, the boat speed limit is not really sharp. A cal-
culation of the downwind boat speed as a function of the wind 
speed is shown in Figure 8.11. This result is a generalization of the 
downwind boat speed obtained in Section 2.3.2. The water’s drag 
including the wake is set equal to the wind force. For simplicity, 
the downwind speed factor S0 was taken to be unity. The straight 
line in Figure 8.11 ignores the wake and reproduces the results of 
Chapter 2.

The U 6 form of wake drag is not appropriate for lighter boats. As 
their speed increases they partially lift from the water. This produces 
a smaller wake so the scaling argument does not apply.

Dolphins know that wake generation produces a large drag force at 
high speeds. Being mammals, they must breathe air. Being fast swim-
mers, they do not want to generate a wake. To accomplish these conflict-
ing desires, they swim underwater. When they must surface to breathe, 
they come up only briefly and sometimes leave the water entirely.

8.9.3 � Wake Properties Derived

Intuitively, one would think a wake would narrow as boat speed 
increases. This is not the case. The following explains why the wake 
angle c shown in Figure 8.9 is always given by sin(c) = 1/3.

Two geometric constraints on the wake establish its properties. The 
first requires that the wake (as a whole) moves with the boat. The 
second requires that individual wave peaks also move with the boat. 
These two requirements are illustrated in Figure 8.12
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Figure 8.11  An estimate of downwind boat speed as a function of wind speed. The linear depen-
dence of boat speed on wind speed changes to the lower curve when wake drag is added.
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In one unit of time, the boat moves south a distance U. The wake 
must keep up. In the direction perpendicular to the outer edge of 
the wake, the distance moved is U sin(c), not U. The wake moves 
at the group velocity in the direction perpendicular to the indi-
vidual wave peaks, which make and angle b with the wake’s outer 
edge. So the outer edge moves a distance vgcos(b). Equating 
these two measures of the wake’s motion and using the relation 
between group and phase speed (vg = vp/2 from Equation 8.22) 
gives

	
1
2

v b U cp cos( ) sin( )=
	

(8.37)

In this same unit of time, an individual wave in the wake moves 
a distance vp. The boat moves with this wave, partly by sliding 
sideways and partly by moving in the same direction. One can 
equate the wave’s phase speed to the component of the boat’s 
velocity that is parallel to the motion of the individual wave. 
This gives

	 v U ap = sin( ) 	 (8.38)
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Figure 8.12  The wake as a whole and the individual wake peaks must keep up with the boat.
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The universal wake shape is determined by the upper limit on the 
sine of the wake angle.

	
sin( )c = 1

3 	
(8.43)

This famous result for the outer edge of the wake was first obtained by 
Lord Kelvin in 1887. The original derivation is quite complicated. Once 
c is determined, the other wake properties follow relatively easily.

The wake is strongest at its outer edge because many values of b give 
almost the same value of c when sin(c) ≅ 1/3. At its maximum angle, 
many different mini-waves add to make the whole. This effect is a 
little like throwing a ball straight up into the air. The ball spends an 
especially long time near the top of its path because its speed vanishes 
at the maximum height.

The next part is the trigonometry. Combining Equations 8.37 
and 8.38 allows one to eliminate the speeds.

	 sin( )cos( ) sin( )a b c= 2 	 (8.39)

The sum of the three interior angles of a triangle is p radians. 
Thus,

	 sin( ) sin( ) sin( )a b c b c= − − = +π 	 (8.40)

so

	 sin( )cos( ) sin( )b c b c+ = 2 	 (8.41)

The obscure trigonometric identity 2sin(b + c) cos(b) = sin(2b + c) 
+ sin(c) means Equation 8.41 can also be written as

	 sin( ) sin( )2 3b c c+ = 	 (8.42)

This result does not yet solve the problem. It appears that the 
angle c can be anything, depending on the value of b. However, 
there is a trick. The largest possible value of c corresponds to 
the outer edge of the V-shape of the wake. Since sin(2b + c) 
can never be greater than unity, one obtains an the upper limit 
on c.
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8.10 � The Importance of Waves

The formal characterization of waves by frequency, wavelength, and 
height almost belittles their significance. Ocean waves can be enor-
mous and a real danger to safety. Faced with a wave of prodigious 
height, the sailor will probably not waste time calculating the wave’s 
energy—even though it would be interesting to know. On smaller 
bodies of water, dingy sailors may not have to deal with a wave “as big 
as a house.” But even on small lakes, there are plenty of submerging 
bows and curious wave-assisted capsizes on windy days.

Boat designs cannot ignore waves. Waves influence the stability 
and speed of sailboats, and sailboats on a beat must constantly cut 
through waves. There is a reason most sailboats are pointed at the 
front end. Much of the stress on hull structure comes from the inces-
sant pounding of the waves. Without waves, sailboats construction 
would be quite different. The boats could be light and agile if they did 
not have to withstand repeated buffeting.

The wakes produced by sailboats are also more than a curiosity. 
An efficiently designed boat must not produce a large wake. This is 
a serious design problem since scale models of boats cannot prop-
erly replicate wake effects. Since wake drag can become dominant at 
moderate to high speeds, hull designs with hydrofoils or other options 
which help the boat lift from the water are a key to high-speed sailing. 
A boat that moves well in still water but is jerked about by moderate 
waves is not acceptable. A boat that moves well in light winds but 
produces a large wake at high speed is not acceptable.

But waves are not all bad. Sometimes a sailboat can surf on a wave 
and achieve remarkable speed. Sailors “see” the wind by the waves it 
produces. Sailboat strategy would lose one of its most important tools 
if waves did not tell the story of the wind.

Every day of sailing offers the sailor a different set of waves. 
Sometimes they are intimidating and sometimes they are useful. 
Waves are never boring.
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9
Wind

Three vaguely defined and overlapping effects determine the 
wind. They are turbulence, weather, and geography. Roughly 
speaking, turbulence rules wind variations over relatively short 
times and distances, while weather determines average winds. 
Even more roughly speaking, weather can be predicted and tur-
bulence cannot. Geographical features like shorelines and hills 
modify the winds produced by weather and turbulence.

9.1 � Two Examples

The best way to grasp the confusing nature of the wind is to look at real 
examples. The first example is the “steady wind” shown in Figure 9.1. 
This wind was measured simultaneously with the water-wave mea-
surements shown in Figure 8.6. The wind velocity was recorded four 
times a second, at a height of 9 m above sea level, at a fixed point in 
the Pacific Ocean. The average wind speed of about 7.5 m/s is the 
“weather” part of the steady wind. The roughly ±1 m/s fluctuations 
about this average are the turbulence

The second example is the “gusty breeze” shown in Figure 9.2. This 
wind is shown for a much longer time, about 7.5 h. The gusty breeze 
data comprise more than 100,000 wind speed measurements taken four 
times a second. The data are so compressed that fine details appear only 
as a blur. Because the gusty breeze was measured 10 m above land, it is 
more characteristic of sailing conditions on small bodies of water where 
land effects typically produce more variation. The slight decrease in the 
gusty breeze over the period of a day and the significant decrease in 
fluctuations toward the end of the day are associated with weather. The 
fluctuations on the shortest time scale are turbulence. It is hard to say if 
other features in Figure 9.2 represent predictable structure (weather) or 
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Figure 9.2  The horizontal wind speed of the “gusty breeze” measured four times a second for 7.5 h.
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Figure 9.1  The horizontal wind speed of the “steady wind” recorded four times a second over 
the Pacific Ocean.
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only randomness (turbulence). Some may see periodicity in this wind 
pattern and others may not.

The quarter-second wind velocity data were obtained by measuring 
the speed of sound pulses sent between closely placed sources and recep-
tors. Sound travels faster when it is moving with the wind, so if one care-
fully measures the time it takes for a sound pulse to pass from a source 
to a receptor, one obtains the wind speed in that direction. To gain a 
full picture of the wind speed and direction, three differently aligned 
source-receptor pairs were used. The data in Figures 9.1 and 9.2 are the 
horizontal part of the wind speed. Even though this technology shows 
wind variations on an unusually short time scale, the measurements 
are still too infrequent to reveal the quickest fluctuations produced by 
the wind’s turbulence. In a Fresh Breeze, wind fluctuations occur over 
times that are much less than a second, perhaps milliseconds.

9.2 � Turbulence

Turbulence is hard to define and harder to quantify, but it is easy to 
recognize. Turbulence is unpredictable, almost by definition. It pro-
duces the ever-present minute-by-minute and second-by-second wind 
variations that make sailors’ lives so interesting. It is wind’s nature to 
be always changing, never reproducing and never typical. For sailors, 
this means “set it and forget it” is never a correct way to sail. Efficient 
sailing requires endless vigilance and constant adjustment. Sailors 
sometimes find turbulence frustrating, but it has its romantic aspects. 
Turbulence makes the stars twinkle.

9.2.1 � Details of the Gusty Breeze

Turbulence is especially noticeable in the gusty breeze example shown in 
Figure 9.2. The turbulence associated with the steady wind of  Figure 9.1 
is similar in character, but less dramatic. In Figures 9.3, 9.4, and 9.5, 
the first 34 min of the gusty breeze have been expanded. These figures 
show how the wind direction varies, how even an averaged wind speed 
varies, and how the wind blows vertically as well as horizontally.

Fluctuations in wind direction always accompany fluctuations in 
wind speed. The wind speed and direction are compared for the first 
half hour of the gusty breeze in Figure 9.3.
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The negative angle spikes in Figure 9.3 are numerical anomalies 
that should be ignored. They occur because the wind direction is not 
defined when it vanishes.

An attempt to make sense of turbulent wind is frustrating. For 
example, a periodicity seems to be poking through the noise in 
Figure 9.3. But if one examines the next half hour of the data shown 
in Figure 9.2, this particular hint of periodicity is gone. If there is a 
correlation between wind speed and direction, Figure 9.3 does not 
make it obvious.
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Figure 9.3  The first 34 min of the gusty breeze (shown in Figure 9.2). Both wind speed and direc-
tion fluctuate. The angle spikes associated with vanishing wind should be ignored.
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Humans have an ability to see patterns and periodicities in situa-
tions where none exists. Gambling casinos and astrologers are fond of 
these people. Even though statistical evidence for a periodic wind is 
meager, many expert sailors claim to discover periodicity and other 
complex patterns in the wind. Because these experts do well in sailing 
races, it is probably best not to argue with experience.

There is little theoretical reason to expect wind to be periodic, 
but periodicity is not absolutely impossible. For example, a “Karman 
street” is a periodic precursor of fully developed turbulence in which 
vortices (whirlpools) of opposing circulation are produced. Karman 
streets are really a characteristic of essentially two-dimensional fluid 
flow. Observations of Karman streets in the atmosphere have been 
reported when stratified wind flows through mountain passes. There 
may be other special situations that produce periodic oscillations, but 
such situations should be very rare.

One can observe periodicity in many phenomena that involve 
the fluid flow of either the wind or the water. However, this is often 
the result of a coupling of the fluid motion to a mechanical system. 
Without this interaction, the turbulent fluid would probably not 
appear to be periodic. For example, one can sometimes feel a periodic 
oscillation by briskly dragging the handle of a canoe paddle though 
the water. The periodic sound vibrations associated with speaking, 
singing, and snoring are produced by a coupling of air’s motion and 
our vocal cords. Sometimes high-speed sailboats make a humming 
sound. These oscillations may be associated with a “shedding” of vor-
tices with alternate circulations, but in most cases, the mechanical 
coupling is a key to the periodicity.

Sailors are not quick enough to deal with quarter-second wind 
variations. Also, the quarter-second fluctuations take place on dis-
tance scales shorter than the length of a sailboat, so sailors at the 
bow and stern experience different winds on the shortest time scales. 
Sailors should respond to wind variations that last on the order of a 
minute. An average of the measurements of Figure 9.3 eliminating 
the rapid fluctuations is shown in Figure 9.4. A similar smoothing 
occurs when the angle is averaged.

Most sailors are unaware of the vertical part of the wind velocity. 
This up–down motion is unavoidable. A fast wind often climbs over 
or dives under a region of slow air that lies in its path. This means the 
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wind blows at an angle f above or below the horizontal. The observed 
variation of this angle for the same half hour of gusty breeze shown 
in Figures  9.3 and 9.4 is shown in Figure  9.5. It is surprising that 
this angle can exceed 45°, which means the vertical part of the wind 
is occasionally stronger than the horizontal part. However, the rapid 
oscillations about zero mean the time-averaged vertical component of 
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Figure 9.4  A smoothing of the gusty breeze speeds from Figure 9.3.
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Figure 9.5  The angle above or below horizontal at 10 m above the surface for the gusty breeze.
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the wind is nearly zero. At an altitude of 10 m, the up–down part of 
the wind must be short-lived because it has to stop before it reaches 
the surface. At the height of a couple of meters where a typical sailboat 
crew sits, the vertical wind is less significant. Higher up, where eagles 
fly, the vertical wind is even more important and longer lasting.

The data of Figures  9.1–9.5 show only the time variation of the 
wind. The spatial variation of the wind is another aspect of turbulence 
that is equally important for sailors. Unfortunately, graphs of the spa-
tial dependence of the wind are not available, since this would require 
an enormous number of wind detectors.

Even though no precise measures exist, the spatial nonuniformity 
of wind is apparent to sailors. They can see wind variations on the 
surface of the water. These wind variations generally travel downwind 
with roughly the average wind speed. Thus, the wind of the future 
tends to be the wind to windward. Since downwind sailing is typically 
only half the wind speed, the wind of the future for downwind sailing 
is best judged by looking behind the boat. When sailing downwind, 
you usually cannot catch the wind that lies ahead. Although wind 
fluctuations often follow the average wind for a while, they are still 
transitory. Turbulence is not simply the steady drifting of wind pat-
terns across the water’s surface. Sailors are often disappointed when 
an approaching puff of wind suddenly disappears. They are surprised 
when a wind gust appears without warning.

9.2.2 � Turbulence Theory

Turbulence results from the instability of fluids with high Reynolds 
numbers. The Reynolds number R = W . L/z is a product of character-
istic velocity and distance divided by the (kinematic) viscosity, z. For 
air, S ≅ 1.5 × 10−5 m2/s, typical wind speeds are meters per second and 
the distance (the height of the turbulent atmosphere) is hundreds of 
meters or more. Except in a virtual calm, this means the atmosphere’s 
Reynolds number greatly exceeds one million, which clearly signals 
turbulent instability.

One needs more than a Reynolds number to describe atmospheric 
turbulence. Different weather conditions can alter the nature and 
extent of the added turbulence. For example, when warm air lies 
below cold air, the atmosphere is vigorously mixed because the less 
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dense warm air tries to rise. The opposite case of warm air overrid-
ing cold air produces relative stability against vertical mixing. Since 
turbulence is driven by instability, its extent is strongly influenced by 
temperature profiles.

The backbone of turbulence theory was elegantly developed by 
Kolmogorov (and others), presented in 1941, refined over the years, 
and finally withdrawn (in part) in the 1960s. Despite the remarkable 
success of this theory in a wide range of applications, Kolmogorov 
concluded that the intermittent character of turbulence makes it even 
more complicated than the theory outlined here.

Some of Kolmogorov’s ideas are related to the “Richardson Cascade” 
(1929), nicely summarized by his rhyme:

Big whirls have little whirls which feed on their velocity.
Little whirls have lesser whirls, and so on to viscosity…

Curiously, the Richardson cascade was really Ezekiel’s idea.

The wheels had the sparkling appearance of chrysolite, and all four 
of them looked the same: they were constructed as though one wheel 
were within another. They could move in any of the four directions they 
faced, with veering as they moved.

Today, Ezekiel’s wheels and Richardson’s whirls are called “eddies.”
Less poetically,

	 1.	Kinetic energy in the form of large-scale motion is supplied to 
the atmosphere through the sun’s heat and the earth’s rotation.

	 2.	This energy eventually dissipates through viscous heating.
	 3.	The heating can only take place through motion on a very 

small distance scale.
	 4.	The character of turbulence is largely determined by the way the 

energy flows from the large-scale to the small-scale motion.

Energy is dissipated by a “bucket brigade” transferring energy density 
from the largest scale down to the smallest scale where viscosity can 
do its work, changing the kinetic energy to heat. But the buckets don’t 
contain water. They are filled with energy density. And the energy flows 
not from place to place, but from eddy to eddy, each of a smaller size. 
Crudely, an eddy is a circulating motion with a characteristic size l. 
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The transfer of energy to smaller eddies does not take place through 
energy diffusion. Instead, a large eddy breaks up into smaller eddies, 
and this process is repeated many times over. It is a bit like Mickey 
Mouse as the Sorcerer’s Apprentice, where the bucket-carrying brooms 
appear to subdivide without end.

The kinetic energy density in the atmosphere has units Joules/
kilogram. The rate at which the energy density flows to smaller 
scales is called e. It has the units of energy density per second, or 
a velocity cubed divided by a distance.

Consider first the energy density flow e from the largest 
eddies. This number should depend on the largest eddy size l, 
the average extra wind speed Δu, and the fluid density r. There 
are no other relevant physical variables. The only expression one 
can construct from these variables that has the right units is

	
ε ≈ ≈J

Kg s
= m

s

2

3

3( )∆u
l

	 (9.1)

Solving for the eddy velocity gives

	 ∆u l≈ ( ) /ε 1 3 	 (9.2)

The same idea applies to the smaller eddies in the bucket bri-
gade. To avoid energy pile-up, energy density must flow through 
these at the same rate, so they are characterized by the same e. 
(In a bucket brigade, everyone must work at the same speed.) 
The analogous dimensional argument applies as before, except 
the characteristic length is now the size of the smaller eddy. Thus, 
the eddy velocity on the scale of l is

	 δ ελλu ≈ ( ) /1 3
	 (9.3)

The wind-speed measurements shown in Figures 9.1–9.6 were 
taken at a fixed point, but the wind was moving past at an aver-
age wind speed, W. Thus, measuring after a time interval t is 
almost the same as measuring at different points separated by a 
distance l = tW, so the time-dependence of wind fluctuations 
are described roughly by

	 δ τ ετu W( ) ( ) /≈ 1 3
	 (9.4)
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With this physical picture, the reason the wind speed and direction 
varies on all time scales makes some sense. The atmosphere is using the 
only available mechanism to change its kinetic energy into heat. There 
is a shortest time scale for which the theory applies. For times much 
less than the quarter-second intervals shown in the Figures 9.1–9.5, 
the velocity will vary more smoothly. This smoother motion appears 
when distance scales are so short that the viscosity becomes dominant 
and motion of air resembles the flow of honey.

9.3 � Wind up High

The wind at the top of a mast is stronger than the wind on the deck 
of the boat. That means all the previous observations relating the 
true wind 

r
W , the apparent wind 

r
V , and the boat velocity 

r
U  are only 

approximate because the height was ignored. The wind–altitude story 
is based on an elegant theory. The results of that theory and its deri-
vation are summarized here. Unfortunately, the real world of sailing 
does not live up to the assumptions of the elegant theory, so all the 
conclusions are subject to exceptions and revisions.

9.3.1 � Results

Let’s start with the theory’s weak point. There is a poorly defined 
minimum height z1 at which one can assume the wind is essentially 
zero. Experiments and some intuitive physical arguments show that 
z1 is generally quite small. It increases slowly with wind speed and 

Equation 9.4 quantifies the observation that the wind is always 
fluctuating. If you measure the wind at t = 0, and measure it 
again at t =  t, the two wind speeds will be different and that 
difference will typically be proportional to the cube root of the 
time difference. The cube root function increases very rapidly for 
short times. This produces the jagged appearance of the winds 
shown in Figures 9.1–9.5. A more quantitative comparison and 
validation of the theory is obtained from an examination of the 
frequency dependence of the energy stored in the wind. The the-
ory predicts wind fluctuations of all frequencies, with a gradual 
decrease as frequency increases. This conclusion has been veri-
fied in a number of experiments.
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surface roughness (including wave height). A reasonable guess for a 
Fresh Breeze over water is z1 = 1/10 cm.

Once a guess for z1 is made, one only needs to plug in the wind 
speed at 10 m above the surface W(10 m) and the wind speed at all 
other heights W(z) are give by the theory. Example results are

	

W W

W W
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(9.5)

There is a rule used to generate these numbers. Every time the height 
is decreased by a factor of 10, the wind speed decreases by a fixed 
amount until finally at z1 the wind speed is zero. For the example of 
Equation 9.1, one-quarter of the wind speed must be subtracted for 
each division by 10. If z1 is chosen to be 1 cm instead of 0.1 cm, the 
wind-speed variation per decade would be 33% of W(10 m) instead of 
25% of W(10 m). For both choices, the wind profile is determined by 
the condition that the wind vanishes at z1. More formally, this model 
says the wind speed varies with the log (logarithm) of the height. This 
model fails at very low height where z ≅ z1.

For most sailboats, the ratio of mast height to the distance of the 
boom from the water is less than 10 to 1. Since z1 is quite small, this 
means the difference between the wind at the bottom and top of the 
sail should generally be less than 25%. This result applies to big and 
small sailboats alike, and is illustrated in Figure 9.6, which shows the 
wind variation described by Equation 9.5.

The above assertions about wind speed must be approached with 
caution. The result is based on the assumption that air of uniform tem-
perature is moving over a fairly flat surface of the same temperature. 
If cold air moves over warm water, the system is less stable. Denser air 
above will fall, resulting in increased mixing, which will reduce the 
change in wind speed with height. When the air is warmer than the 
water, the atmosphere is more stable. The flow will be effectively lay-
ered, and wind speed variations with height can be quite a bit larger. 
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The stratification of wind in one case and the increased mixing in the 
other are sketched in Figure 9.7. The different temperature profiles 
are important for sailors. In spring, when the water is cold and the air 
is warm, an increased wind speed aloft should be apparent. The daily 
variations in the relative temperature of the air and the water means 
the wind’s altitude profile can vary by the hour.

One can argue that a “twist” in a sail shape can take advantage of 
the variation of wind speed with height. Since the altitude dependence 
of wind speed is so uncertain, this justification of twist should also 
be approached with caution. It seems likely that some twist is desir-
able even if the wind speed were independent of height. The “Tight 
Leech” example sail of Section 5.2.1 has no twist, but it is probably 
not the most efficient sail, even for a perfectly uniform wind.

9.3.2 � Theory

The theoretical background of the height dependence of the wind 
bears some similarities to the general theory of turbulence described 
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Figure 9.7  The variation of temperature with height can increase or decrease the mixing of 
high- and low-altitude winds.
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Figure 9.6  The idealized dependence of wind speed with height. Atmospheric conditions can 
significantly alter this result.
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in Section 9.2.2. As with turbulence theory, Kolmogorov made 
important contributions.

Take an arbitrary height above the surface, say 10 m. Air above 
10 m is moving faster than air below 10 m (on average). Because air 
motion is turbulent some of the more rapidly moving air above the 
10 m surface will spill into the lower levels. However, in a steady 
state the wind speed should not increase in time. The average wind 
speed stays constant because another surface at 9 m is spilling 
motion into even lower levels. Ultimately, the motion and energy 
feeds down to the surface where it is absorbed. In the same sense 
that everyone in a bucket brigade has to work at the same speed, 
the rate at which wind speed is fed to lower levels cannot depend 
on the height z. A quantitative measure of this transfer of wind to 
lower levels is called v2

*. Assume extra wind speed flows through an 
area, Area, for a time t into a volume, Vol. Then the mean speed in 
that volume will increase by an amount ΔW given by

	 Vol W v Area t⋅ = ⋅ ⋅( ) *∆ 2
	 (9.6)

It follows that v* has the units of a velocity.
The variation of the mean wind speed with height is essen-

tially determined by v* and z because there are no other relevant 
physical quantities. The change in speed with height dW(z)/dz 
must be written in terms of these quantities, and it must have 
the units of speed divided by distance. There is only one combi-
nation of v* and z that can accomplish this. An examination of 
units alone requires that

	
dW z

dz
bv

z
( )

*= 1
	

(9.7)

where b is an unknown dimensionless constant.
This last equation is the justification for the assertion that the 

speed depends on the log of the height because the log of z is 
the only function whose derivative is proportional to 1/z. If the 
speed depends on the log of z, its description must follow the 
prescription of Equation  9.5. There is little point in filling in 
the final steps needed to determine z1 because it depends on the 
unknown constant b.
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9.4 � Weather

9.4.1 � Predictions and Guesses

Weather forecasts are inexact, especially for wind prediction, but they 
do allow sailors to make educated guesses. Alert sailors can also look 
at the sky and make intelligent judgments. It takes a keen eye and a 
lot of experience to relate cloud formations to wind developments. 
Sometimes cloud movement or “cloud streets” predict the wind direc-
tion, but sometimes they don’t. Sometimes approaching clouds mean 
more wind, but sometimes less.

Electronic media update local weather conditions on a minute-
by-minute schedule. This has largely supplanted the old-fashioned 
methods of weather prediction. Most sailors forget to consult their 
barometers before heading out to sea.

Everyone has heard the saying;

“Red sky at night, sailor’s delight.
Red sky in the morning, sailors take warning”

But few sailors get up early to check the sky color. 
Some poetic lore is true more often than not.

“Winds of the daytime wrestle and fight
Longer and stronger than those of the night”

But there are exceptions.

“If it rises at night
It will fall at daylight.”

The basic point is just a reiteration of what everyone knows. You can’t 
rely on the weather. Despite this, the simplest aspects of weather 
described here are worth keeping in mind.

A key to the results obtained above was the argument that the 
only physical quantities that can determine dW(z)/dz are v* and z. 
This assumption fails as soon as additional variables are introduced. 
So temperature differences invalidate the theory and one must rely 
on experiments and more qualitative arguments. There are additional 
problems, not mentioned here, which make one a little uneasy with 
the logarithmic dependence of wind speed on height.
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9.4.2 � High-Pressure Systems

The sun heats the atmosphere unevenly. Heated air rises and leaves low 
pressure behind. Low pressure in the Northern Hemisphere produces 
counterclockwise circulation. Falling cold air produces a high-pressure 
region and clockwise circulation in the Northern Hemisphere. The 
first descriptions of the rotational motion are sometimes attributed 
to Heinrich Wilhelm Dove (1803–1879), but some aspects of wind 
circulation may have been understood by Aristotle’s school.

The circular motion of high- and low-pressure systems is caused 
by Earth’s rotation. It is easiest to visualize the circulation at the 
North Pole, even though this is not a preferred sailing venue. If there 
is a high-pressure region at the North Pole, the winds initially fan 
out in all directions. At the North Pole, “all directions” are south. 
From the viewpoint of an observer fixed on the North Star, the air is 
pushed out along straight lines, and the Earth is rotating in a coun-
terclockwise direction underneath the wind. From the viewpoint of 
someone standing on Earth, the Earth is static but the air is spiraling 
out in a clockwise direction. Both are right because perceived motion 
depends on the observer’s coordinates. These two views are compared 
in Figure 9.8. The curvature of the path in an Earth-based system can 
be described in terms of a “Coriolis force,” which is really a pseudo-
force. This force is proportional to the wind speed.

The clockwise spiral of wind from the North Pole is a simple exam-
ple of a more general result. The earth’s rotation means straight line 
motion in the Northern Hemisphere appears to turn to the right. This 
conclusion applies for winds traveling north, east, south, or west. They 
all turn to the right, which is the reason all high-pressure systems (in 
the Northern Hemisphere) produce clockwise circulation.

Rotating Earth View Fixed Earth View

Figure 9.8  If wind travels a straight line when viewed in an absolutely fixed coordinate system at 
left, the same wind will appear to bend clockwise in coordinates fixed to the Earth at right.
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In practice, the circular motion associated with a high-pressure 
system grows to dominate the radial motion. High-altitude winds in 
a high-pressure system are nearly aligned with the curves that show 
constant pressure. More rapid variations of pressure produce higher 
winds. The typical high-pressure systems of interest to sailors are 
many kilometers across, and they last for days. During their lifetime 
these pressure systems are dragged along the Earth’s surface by the 
winds of the upper atmosphere.

Viscosity and interactions with the ground or water slow the near-
surface winds. As shown in Figure 9.6, the wind vanishes at the sur-
face. The slowest wind very near the surface does not care about the 
earth’s rotation because the Coriolis force vanishes at zero velocity. 
The motion of the near-surface air is radial because it is simply pushed 
out by the pressure. The winds of interest to sailors are an interme-
diate case, being neither the purely circular high-altitude winds nor 
purely radial surface creep.

Two idealized high-pressure systems are shown in Figure 9.9. Each 
side of the figure is an oversimplified weather map. The letters “H” 
identify the center of high-pressure systems. The circles surround-
ing the H are curves of constant pressure. As one moves out from 
the center in any direction the pressure smoothly decreases. The 
single arrows on the constant pressure curves indicate the clockwise 
circulation. This circular motion along the constant pressure curves 
occurs only at altitudes much higher than sailboat masts. The double-
pointed arrows denote the wind at a height of a few meters. This is the 

HH

Night Day

Figure 9.9  The “Night” and “Day” views of an idealized high pressure system. The simple arrows 
are the high altitude wind. The doubled arrows are the wind at lower altitude.
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partially radial and partially circular motion of interest to sailors. One 
is supposed to notice that “night” differs from “day” in Figure 9.9. The 
night wind is slower and less circular. The sun’s heating and mixing of 
atmospheric levels is responsible for the difference between night and 
day. At night, the surface is often cool. This produces a stratified wind 
flow, as is shown on the left of Figure 9.7. The stratification means the 
high-altitude wind is cut off from the surface. The day curve assumes 
the surface is relatively warm. This produces mixing so both the direc-
tion and magnitude of the upper atmosphere’s motion is more thor-
oughly mixed with the surface wind.

If weather were really this simple, one could predict the wind. The 
wind should be light in the morning and increase later in the day when 
the high-altitude wind is stirred down to the surface. In addition, the 
wind direction should rotate in a clockwise direction as the sun heats 
the surface (in the Northern Hemisphere). Weather is seldom that 
simple. However, on the average, this makes sense. For example, mea-
surements of wind averaged over an entire year in Oklahoma City, 
Oklahoma, showed that the wind at 4 p.m. was about 11 m/s, but 
after sunset, the wind dropped to about 6 m/s. The 365-d averaging 
is the key to this result, since any one day could show very different 
results. A comparison of the wind up high and near the surface (again 
in Oklahoma City) showed very small direction difference during the 
day, but a large difference at night. This observation is consistent with 
the Figure 9.9.

9.4.3 � Low Pressure and Complications

Low-pressure systems are not simply high-pressure systems run in 
reverse. If there is low pressure at the North Pole (an unlikely occur-
rence), air would be pulled in from all directions. Again, it turns to the 
right so air initially headed for the Pole ends up traveling east instead 
of north. Viewed from above, the circulation is counterclockwise. The 
circular motion means the air fails to arrive at the center (the North 
Pole) where the pressure is lowest. The pressure difference and the wind 
deflection fight against each other. Because the pressure difference is 
not easily relieved, the pressures and wind speeds can be greater.

There is a second way that geometry maintains low-pressure sys-
tems. When something moves in a circle, it tries to fly out from its 
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circular path. This can be described in terms of the “centrifugal force,” 
which is another pseudo-force. Thus, the air circling a low-pressure 
region has an additional reason resist the attraction of low pressure. 
A hurricane is an extreme example of a low-pressure system getting 
out of control. Of course, there is much more to that story.

The air at the center of a low-pressure system rises up and cools, 
while the center of a high has falling and warming air. Since cold air can 
hold less water, one expects clouds and precipitations from low pressure. 
High pressure with falling and warming air produces clear weather.

For a person (or penguin) standing at the South Pole, the winds 
turn to the left instead of to the right. At the equator, winds turn 
neither left nor right. At latitude 45° north, the magnitude of the 
turning is multiplied by sin 45° = 1 2/ . One can understand this by 
interpreting Earth’s rotation as a vector 

r
ω pointing toward the North 

Star. The magnitude of 
r
ω  is the rotation rate and its direction is the 

rotation axis. At the North Pole,
r
ω is straight up. At the South Pole, 

it is straight down. At an arbitrary latitude q, w sin(q) is the part of
r
ω  that is aimed up. This is the part that is important for rotation. The 
part of

r
ω that is parallel to the surface is not important.

Low-pressure air rises because its lower density is attracted less by 
gravity. Warm air is less dense than cold and the natural tendency of 
warm air to rise and cold air to fall is familiar to anyone living in a 
drafty house. For our atmosphere, the expansion of air modifies this 
result, so there is more to the mixing than is indicated in Figure 9.7. 
Often warmer air at the surface does not rise because it is not warm 
enough. When air rises, its pressure decreases, it expands, and this 
expansion means the air is doing work on its surrounding. The energy 
needed to do the work is taken from the air’s heat energy, so expand-
ing air cools. Air will rise 1 m only if it remains warmer than the air 
1 m above it after it has cooled.

There is a complication within this complication. When air cools, it 
can hold less water. If the water condenses, the temperature change is 
not the same. Just as it takes heat to boil water, heat is given off when 
water condenses. The condensation contributes to a vertical instability 
of the air that is sometimes sufficient to generate storms.

Water condensation is also important when warm and cold air masses 
meet. In this confrontation, the warm air is pushed above the more 
dense cold air. Rising (and cooling) warm air often has the potential 
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to produce water condensation and rain. The shape of the warm–cold 
interface sketched in Figure 9.10 depends on the relative motion the 
two air masses.

9.4.4 � Geography

Shores and hills can guide the wind, changing its magnitude and 
direction. Sometimes the effect is pretty obvious. A large hill directly 
to windward will shield sailboats and decrease the wind. In many 
other cases, the influence of geography is not as predictable as one 
might hope. Sometimes shorelines appear to channel the wind so it 
moves more parallel to a shore, but other times the wind appears to be 
diverted away from a shore. Despite this ambiguity, skilled sailors can 
often use shorelines and other geographical features to advantage by 
picking the appropriate course.

A “sea breeze” often develops near the boundary between land and 
water. The sea breeze is driven by a difference between the temperature 
of the land and the water. On a sunny day, the land heats more rapidly 
because the absorption of solar energy takes place in a thin layer. For 
water, the sunlight’s energy is distributed though several meters of 
nearly transparent water. In addition, water has a very high heat capac-
ity, so a lot of heat is needed to change the water temperature. The air 
over heated land is warmed by the land. Warm air is less dense so it 
rises, and the denser air over the water falls and moves in to replace 
it. The result is a circulation similar to that shown in Figure  9.11. 
Sea breezes can extend kilometers, so the sailboat in Figure 9.11 is not 
drawn to scale. When the sun goes down, the land cools more rapidly, 
and the sea breeze disappears.

The Earth’s rotation affects sea breezes like any other wind. Thus, 
the wind direction is rotated to the right. The extent of the rotation 

Cool
Warm

Figure 9.10  Warm air rises over cold air because its density is lower. As the rising warm air 
cools, it can bring rain.
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is limited by the geometry of the thermal instability, which generates 
the sea breeze in the first place.

See breezes can be quite reliable. Other connections between 
weather and geography can be much more hit-and-miss.

9.5 � Apologies

Nearly everything said here about wind and weather is a gross simpli-
fication. Wind’s turbulence can vary enormously, so the results shown 
in the first five figures cannot be called “typical.” The theory of tur-
bulence presented here is not the last word even for well-controlled 
situations. For the real outdoor world of weather, there are so many 
exceptions to the simple ideas that the theory only samples a small 
bit of reality. Similar reservations apply to the theory of the altitude 
dependence of the wind. The neglected variation in temperature dis-
tribution means that the curve in Figure 9.6 can grossly overestimate 
or underestimate the steepness of the wind profile. The oversimplifi-
cations of the weather comments are obvious. There has never been 
a high-pressure system as round and symmetric as the one shown in 
Figure 9.9.

In principle, wind and weather in general can be described by basic 
physics. In practice, the number of quantities determining the weather 
can be overwhelming, even though they are essentially for accuracy. 
I apologize for skipping so much and for violating Einstein’s famous 
rule: “Make everything as simple as possible, but not simpler.”

Hot Land Cold Water

Figure 9.11  A hot land surface heats the air above it, causing it to rise. The air will fall over a 
cooler water surface. The resulting circulation is a sea breeze. The sailboat is not drawn to scale.
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10
Strategy

A stock market analogy illustrates the Sailor’s Dilemma. A 
steady east wind is like an uneventful stock market. Steady east 
winds and uneventful markets are both rare. The market falls 
(“goes south”). Its analogy is a wind shift to the south. Should 
you buy or sell? If you are sailing to the east, should you sail 
on starboard (northeast) or port (southeast)? In both cases, the 
answer depends on the nature of the change. If the lower stock 
price and the south wind are random events, you should buy 
stock and sail northeast, being confident that the market will 
return to normal and wind will return to the east. But if the 
market’s fall is the beginning of a trend, and the south wind is 
the beginning of a permanent shift, the correct strategy is com-
pletely different. Sell your stock and sail to the southeast when 
you expect more of the same. This analogy explains why all good 
sailors are rich.
  The Sailor’s Dilemma is illustrated in Figure 10.1. If the wind 
returns to the original east direction, the sailor at top right will 
be ahead. If the shift to the south increases, the sailor at bottom 
left will be in the lead.

10.1 � Directions

Geometry and directions are important for all aspects of sailing. 
Sailors should always be aware of the wind direction and its relation 
to the orientation of the boat. This relative orientation is so important 
that different names are given different sailing directions. Downwind 
sailing is called a “run.” The wind is from behind the boat, or at least 
close to behind the boat. A “jibe” occurs when the sail switches from 
one side of the boat to the other while sailing downwind. A boat is 
on starboard tack when its sail is on the port side, and vice versa. 
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Starboard is the right hand side of the boat when facing the bow. It 
remains the starboard side even if you turn around and face stern. It 
remains the starboard side even if your boat is going backward. When 
the wind is coming from roughly the side it is called a “reach.” Sailing 
upwind is a “beat.” A boat that is sailing as close to upwind as is prac-
tical is “close hauled.” Switching between starboard and port and tack 
on a beat is a “tack.”

10.1.1 � Ideal Sailing Direction

The sailor in a race and the sailor eager to make it home for dinner 
are faced with the same basic question. Which is the best direction to 
sail? One direction may lead to a shorter path and another direction 
may produce greater speed, so the choice is not obvious. The “ideal 
sailing direction” is the best direction to sail for a minimum trip time. 
If the angle between the Ideal Sailing Direction and the source of the 
true wind is w, then U(w) is the speed determined by the sailboat’s 
speed diagram described in Chapter 3. The geometry that character-
izes the ideal sailing strategy repeatedly uses the notation and speed 
diagrams described in Chapter 3.

For strategy considerations, the speed U(w) is more useful than 
the speed ratio U(w)/W. Speed diagrams U(w) show the increased 
boat speed produced by stronger winds. The speed diagrams can be 
changed into distance diagrams. Multiplying a speed by a time ΔT 
gives the distance traveled in that time.

?

Figure 10.1  At left are the upwind sailing directions in an east wind. At center, a wind shift to 
the south changes the sailing directions. At right above is the sailing direction if the wind direction 
returns to the east. Below is the sailing direction if the wind shifts further to the south.
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10.1.2 � Preferred Direction

If a sailor could instantaneously move his or her boat by one boat 
length in any direction, the direction that would save the most time 
is the “Preferred Direction.” It plays a fundamental role in the formal 
description of the ideal sailing strategy. It is parallel to a vector p→. As 
is shown in the following figures, the Preferred Direction often differs 
from the Ideal Sailing Direction. Sometimes the Preferred Direction 
is as simple as the direction to the final destination. This would be 
the case for a reach in a steady wind. When the destination is close to 
upwind, the Preferred Direction is often directly to windward. When 
a racing sailboat is near a finish line, the Preferred Direction is in the 
direction of the finish line. In other cases, the Preferred Direction 
is quite difficult to determine. The most successful sailor may be the 
sailor who can best discern the Preferred Direction. In other words, 
you can’t sail well unless you know where you want to go.

10.1.3 � Relation between the Ideal Sailing Direction 
and the Preferred Direction

Given a speed diagram and a Preferred Direction, geometry deter-
mines the Ideal Sailing Direction. To find the Ideal Sailing Direction, 
draw a line perpendicular to the Preferred Direction (and also perpen-
dicular to the vector p→). Move the line so it just touches the outer edge 
of the speed diagram. The boat should sail to the point of contact, as 
shown in Figure 10.2.

In general, whenever two sailboats are sailing near each other (but 
not stealing each other’s wind), the advantaged boat has progressed 

p

Figure 10.2  The speed diagram touches a line perpendicular to the Preferred Direction. The Ideal 
Sailing Direction is toward the contact point.
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farther in the Preferred Direction. That means being “ahead” in the 
traditional sense is not always best. This confusing geometry makes 
sailing a lousy spectator sport for NASCAR aficionados. Despite 
appearances to the contrary, the boat at the upper left in Figure 10.3 is 
not in the lead. The speed diagram at the right shows that it is a dead 
heat because all six boats have made equal progress in the Preferred 
Direction. Similarly, the iceboat at left in Figure  10.4 is not being 
given an unfair advantage. All the iceboats are equally advanced in 
the Preferred Direction.

In special cases, there are two Ideal Sailing Directions. This hap-
pens when the line perpendicular to the Preferred Direction touches 

p

Figure 10.3  Six boats racing toward the southwest have made identical progress in the pre-
ferred direction, so no boat is in the lead.

Figure 10.4  Iceboats lined up for a “running start.” (Photograph by Stéphane Caron. With 
permission.)
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the speed diagram at two places. An upwind example is shown in 
Figure  10.5. For this case, the two Ideal Sailing Directions corre-
spond to sailing “close hauled.” These are the two sailing directions 
that make the most rapid progress to windward. For close-hauled 
sailing, the angle between the true wind and the sailing direction 
is usually around 45°. Sailing at a smaller wind angle is “pinching.” 
Pinching is never the best way to make progress.

10.2 � Constant Preferred Direction

Sailing strategy is simpler when the Preferred Direction is fixed.

10.2.1 � Condition for a Constant Preferred Direction

Assume the Preferred Direction is directly north. Then the 
Preferred Direction will not change if the wind does not vary in 
the east–west direction.

This means the Preferred Direction will remain north if

	 a.	The wind is constant.
	 b.	The wind depends on time but not position.
	 c.	The wind varies only in the north–south direction.

Of course, there is nothing special about north in this characteriza-
tion of a constant Preferred Direction.

A formal justification of the conditions for a constant Preferred 
Direction is part of Equation 10.6. The condition makes some intui-
tive sense. If wind isn’t any different “over there,” meaning to the east 

p

Figure 10.5  When the Preferred Direction is directly to windward, there are two close-hauled 
Ideal Sailing Directions.
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or the west (and you want to go north), there is no reason to change 
the Preferred Direction.

Once the Preferred Direction is obtained, the Ideal Sailing Direction 
is determined by geometry. Examples of a fixed Preferred Direction 
are considered first. Situations where the Preferred Direction can 
change are described in Section 10.3.

10.2.2 � Finish Line

Although it is usually difficult to determine the Preferred Direction, 
there are some special “easy” cases. One example occurs in a sailboat 
race very near a finish line. The Preferred Direction is toward the fin-
ish line. This is the direction a boat would like to be translated because 
the boat nearest the finish line is clearly ahead. The construction for 
this case is shown in the Figure 10.6. The Ideal Sailing Direction is 
not directed to the nearest point on the finish line because boat speed 
is increased by sailing at larger wind angle, w. Even if the finish line 
is at the end of a beat to windward, the sailor in the position shown 
in Figure 10.6 should not sail close hauled because the finish line is 
not perpendicular to the wind direction. This is not the only example 
where sailing close hauled on a beat is not the best strategy.

10.2.3 � Upwind in a Constant Wind

An unchanging wind is very unlikely, but it is sometimes a useful 
approximation. If one wishes to sail upwind in an unchanging wind, 
the Preferred Direction is fixed and pointed directly to windward. 

p

Figure 10.6  At the end of a race, the Preferred Direction  points to the nearest point on the finish 
line. The Ideal Sailing Direction is the quickest path to the finish (the dotted line), but not the close-
hauled direction or the shortest distance to the finish line.
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This is the only Preferred Direction that allows the boat to sail on both 
starboard and port tack, as is shown in Figure 10.5. For this special 
case, the path to windward is not unique. Neglecting the time needed 
to tack, any combination of starboard and port tacks that brings the 
boat to the final goal takes an equal time. Two example paths are 
shown in Figure 10.7. No matter which zigzag path is taken, the Ideal 
Sailing Direction is close hauled on the steady wind beat. The beat 
strategy can be much more complicated when the wind is not steady.

10.2.4 � Downwind in a Constant Wind

Another simple example is sailing downwind in an unchanging wind. 
For this case, the choice of path depends on the speed of the sail-
boat. For slow boats with a downwind speed ratio, S0 < 1, the single 
straight line path is most efficient. For faster boats with S0 > 1, a 
zigzag path analogous to upwind tacking is faster. The example in 
Figure 10.8 compares the correct strategy for two boats with very 
different speeds. The fast boat has the speed diagram constructed in 
Chapter 3 for S0 = 3/2. The slow boat is characterized by S0 = 2/3.

Boat speeds are not really proportional to the wind speed. Often 
the ratio U(w)/W decreases when the wind increases because waves, 

Figure 10.7  Two example paths to windward that take equal time in a steady wind.
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wakes, and overpowered sails do not allow the boat to maintain a 
speed proportional to the wind speed. This was shown in Figure 2.10 
for real sailboats. Thus, for some sailboats, S0 > 1 when the wind is 
light, but S0 < 1 when it is blowing hard. When this is the case, it 
makes sense to jibe downwind when the wind is light and take a 
straight line course in a heavy wind.

Spinnakers increase downwind boat speed (assuming my favorite 
trick of dropping one in the water is avoided). This changes the shape 
of the downwind part of the speed diagram, but it does not change 
the basic ideas. This may mean a sailboat should tack downwind only 
when its spinnaker is deployed.

Downwind sailing for the boat with S0 = 1 whose speed diagram is 
shown in Figure 10.6 (and other figures) is a special case. Because the 
downwind progress of an S0 = 1 sailboat is constant for a fairly wide 
range of wind angles, the sailor is free to choose a variety of paths 
with essentially no time penalty. As is sometimes observed in sailboat 
races, a fleet of boats sailing downwind will fan out over a fairly large 
area and converge again at a downwind mark. If the wind is steady, 

p

p

Figure 10.8  The faster boat should jibe downwind. The slow boat should take the boring path 
and aim directly to its goal.
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arrival times at the mark make it apparent that no path was particu-
larly advantaged. Although the perfectly “flat bottom” of the S0 = 1 
speed diagram is an idealization, it is a reasonable approximation for 
many sailboats.

10.2.5 � Upwind in a Changing Wind

The next two examples describe the slightly more complicated case 
where the Preferred Direction is either north or south and the wind 
varies from north to south, or it varies with time. The windward 
example is shown in Figure 10.9. A sailboat’s path is accompanied 
by its speed diagram at three different positions. The fixed Preferred 
Direction tells the sailor what path to take and when to tack from port 
to starboard as the wind evolves toward the east.

In the example shown in Figure 10.9, the sailor should constantly 
maximize speed to the north, which is not the same as maximiz-
ing speed to windward (sailing close hauled) because windward is not 

p

p

p

Figure 10.9  The Preferred Direction remains north even if the wind changes in time (or from 
north to south). The Ideal Sailing Direction and the correct time to change from port to starboard tack 
are determined by the changing wind direction.
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always north. When the wind has an east or west component, this 
sailor should trim sails less tightly and aim a little away from the 
wind. Close-hauled sailing is appropriate only when the Preferred 
Direction is directly to windward.

Even in real-life sailing where sailors have better things to worry 
about than the abstract Preferred Direction, this result has a practical 
application. Sailors should pick the tack favored by the wind shift. In 
addition, in a favorable shift, they should sail at a little larger angle to 
the wind than close hauled.

In practice, one often does not know the Preferred Direction, and 
one must rely on a best guess. If one expects only random fluctuations 
about an average north wind, assume the Preferred Direction on the 
beat to windward is due north. It’s a good guess if you have no other 
knowledge of the wind.

10.2.6 � Downwind in a Changing Wind

A similar strategy applies for downwind sailing, as is illustrated in 
Figure  10.10. The sailor picks a course for maximum speed to the 
south, not maximum downwind speed. The advantage of jibing down-
wind is less significant for a slower sailboat whose course should be 
more directly downwind.

10.3 � Variable Preferred Direction

The Preferred Direction is usually not constant because east–west wind 
variations are common when traveling north or south. The examples of 
Section 10.2 are seldom an adequate description of real sailing. For the 
more general case, deducing the least-time sailing path is much more 
difficult. The side trip through tree rings illustrates one of the ideas 
which will be generalized to the case of a fleet of identical sailboats.

10.3.1 � Rings

When a tree is sawed off cleanly, one can see a sequence of rings, 
one for each year of growth. Counting the rings gives the age of the 
tree, with the inner ring being the sapling. Good and bad years mean 
the tree rings are separated by different thicknesses. The environment 
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may allow different sides of a tree to grow at different rates. This dis-
torts the rings so they are sometimes far from circular, as is the case 
for the tree section shown in Figure 10.11.

Tree rings are easy to see. It takes some imagination to visual-
ize sailboat rings. If a large number of sailboats were to sail in every 
direction from a central point, a short time later these boats would 
form a ring around the starting point. Tree trunks have a natural way 
of highlighting 1-year intervals to mark their age. For sailboats, one 
could (in principle) take a sequence of aerial photographs of the boats, 
and label each photo by the elapsed time T. A superposition of these 
photos taken at regular intervals would resemble a tree-ring pattern. 
Large ring separations represent high speed, and narrowly spaced 
rings are an indication of calm winds. Since winds can be different in 
different places, the rings could be strangely distorted. If sailboat rings 

p

p

p

Figure 10.10  When the Preferred Direction is constant but the wind direction changes, the boat 
should jibe.
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had the shape of the tree rings in Figure 10.10, one would conclude 
that the wind was blowing harder in the east. The smaller separations 
of rings toward the outside are analogous to a dying wind.

10.3.2 � Sailboat Ring Growth

The sailboat rings are clearly defined only if the sailboats generating 
the rings are identical and only if each sailboat travels as efficiently as 
possible toward the next ring. When this condition is met, the sailors 
automatically generate their own rings. They also generate the Preferred 
Direction and the Ideal Sailing Direction. This is illustrated by the 
enlargement of a small piece of a hypothetical sailboat ring structure 
in Figure 10.12. In the expansion, two adjacent ring segments, cor-
responding to times T and T + ΔT, are the dotted lines. Three speed 
diagrams are placed on the inner ring. The speed diagrams are scaled 
by the small time interval ΔT so they show the possible positions that 
the three boats could reach in time ΔT. The end boats are sailing effi-
ciently to the outer ring, but the boat in the middle is aimed the wrong 
way. Because it fails to heed the prescription for the Ideal Sailing 
Direction, it will lag behind the others. Figure 10.12 shows that the 
Preferred Direction must be perpendicular to the ring.

Figure 10.11  Tree rings. (Photograph © H. D. Grissino. With permission.)
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The construction in Figure 10.12 assumed all three sailboats were 
sailing in the same wind. This spatial uniformity means the Preferred 
Direction parallel to p→ does not change as time evolves. (The outer 
ring has the same orientation as the inner ring.) Even if the wind 
changes with time, the Preferred Direction will stay the same. The 
Ideal Sailing Direction may vary, but the Preferred Direction remains 
constant. This observation restates the Condition for Fixed Preferred 
Direction, which was given at the beginning of Section 10.2.

10.3.3 � Wind Speed Varies with Position

An example of ring evolution in a nonuniform wind is shown in 
Figure 10.13. This example starts with the ring at time T and repeats 
the time increment, generating ring segments at times T + ΔT and 
T + 2ΔT. The speed diagram shape shown at right is used to generate 
sailboat positions at different times, but there is an important modifi-
cation of this speed diagram at different points on the ring. The wind 
to the northwest is stronger. Thus, the speed diagrams increase in 
size toward the upper left of Figure 10.13. This rotates everything. 
The lines that form the rings, the Preferred Direction and the Ideal 
Sailing Direction all rotate in the clockwise direction toward the east. 
The rotation of these orientations is not intuitive. One would think 
that a sailor would turn toward the increasing wind in the northwest, 
not away from it.

Rings

p

Figure 10.12  A set of nested sailboat rings and an expanded view of one section. The expan-
sion shows how subsequent rings are generated and how the Preferred Direction is determined. The 
center boat has failed to aim in the Ideal Sailing Direction.
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The turning of a sailboat away from a stronger wind makes sense 
only if one considers the entire path from start to finish. Assume a 
sailor wants to sail due east in a north wind. The sailor knows that 
the wind is stronger in the north and calmer in the south. For this 
case, it makes sense to follow the path shown in the Figure 10.14. 
By initially heading far to the north of the destination, this path 
takes advantage of the stronger wind. The curvature toward the 
south is required when one picks the correct initial heading. A 
sailor failing to notice the strong wind to the north is doomed to 
fall behind. Turning to the north later will help, but it is not the 
least-time path.

p

p

Figure 10.13  A larger wind to the northwest means larger speed diagrams on the upper left. This 
produces a clockwise rotation of the Preferred Direction and the Ideal Sailing Direction.

More Wind
(Favorable Current)

Less Wind
(Unfavorable Current)

Figure 10.14  The fastest path is not a straight line when the wind is stronger to the north. By 
starting in the correct direction, the sailor is constantly turning toward the south, which is away 
from the stronger wind.
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10.3.4 � Wind Direction Varies with Position

This least intuitive example is illustrated in Figure 10.15 where boats 
are initially sailing to windward in a north wind. Then the wind shifts 
to the west, but the shift is not uniform. The figure shows the shift is 
largest for the boat on the right. The changing wind direction rotates 
the speed diagrams. This rotation also changes the Preferred Direction 
and the Ideal Sailing Directions. As with previous examples, the Ideal 
Sailing Direction no longer corresponds to close hauled. The Preferred 
Direction and the speed diagram again determine the proper tack.

10.4 � Current

Sailing is hard enough when the water is standing still. Sailing on a 
river or in tides significantly increases the complexity and sometimes 
the frustration. Sailboats do not go in the direction at which they are 
aimed, at least not with respect to anchored objects. Sailors can be 
surprised by how easy it is to misjudge their paths.

In principle, someone on the shore of a swiftly moving river could 
observe the day to be perfectly calm and still see sailboats moving 
briskly over the water. This apparent inconsistency lies in the choice 
of coordinate systems. Sailboats are propelled by the difference 
between the air and water velocities. A speed diagram is naturally 
defined in a coordinate system that moves with the water. When the 
true wind, W

→

, apparent wind, V
→

, and boat velocity, U
→

, are all defined 
relative to the moving water, there is nothing special about the speed 
diagram. However, for an observer on land, the velocity of the cur-
rent adds to the sailboat velocity. The speed diagram is moved so that 

Wind Wind Wind
p

Figure 10.15  Changes in wind direction can also change the Preferred Direction and the Ideal 
Sailing Directions.
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it is no longer centered at the origin. Sailors usually want to make 
progress with respect to the land, so adding the current to velocities 
is crucial.

The fairly extreme example of Figure 10.16 illustrates the effects of 
a current. In this example, the wind with respect to the land is from 
the northwest at 5 m/s and the water is flowing northeast at 5 m/s. 
Combining these velocities gives a wind velocity W = 7.07 m/s from 
the north (with respect to the water). The two views of the wind are 
labeled “Land Wind” and “Water Wind” (Figure 10.16). The dotted 
speed diagram represents the speed diagram that would be obtained 
if the current were to disappear. The larger speed diagram shows boat 
speeds in the enhanced (and rotated) Water Wind. The speed diagram 
position has also been shifted because the current was added to the 
boat speeds. With the current added, the speed diagram represents 
speeds seen by a land-based observer.

For this example, an attempt to sail south would yield no progress. 
It would save effort to just throw in an anchor because the northward 
component of the current cancels the largest possible value of the sail-
boat’s southward motion. At the other extreme, if the sailor wishes 
to sail northeast, the ground-based speed is quite large. The sailor 
benefits from both the current and the enhanced wind.

  No Current Speed Diagram

Speed Diagram with Current

Curre
nt

Land
Wind

Water
Wind

U

Land Velocity

Figure 10.16  A current changes the size, orientation and position of a speed diagram from the 
form it would have if there were no current.
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There are two ways to view the example sailboat added to Figure 10.16. 
Observing only the water, sailors on this boat think they are travel-
ing due east in a north wind. The boat speed U (with respect to the 
water) is determined by the speed diagram of the Water Wind. With 
respect to land, this boat is traveling east–northeast and its speed has 
been increased by the current. For this example, the boat’s speed with 
respect to the land is double the wind speed observed on the land.

The effects of currents must be incorporated into the construction 
of the sailboat ring structure. If the current is constant, or depends 
only on time, the Preferred Direction remains constant. But if the 
current varies with position, the Preferred Direction will again be 
rotated. Just as sailors should pick paths with curvatures away from 
stronger winds, they should pick paths with curvatures away from 
favorable currents, as illustrated in Figure 10.14.

10.5 � Least-Time Path

Although Christopher Columbus had a basic understanding of trade 
winds, he obviously lacked knowledge of the western Atlantic prior to 
1492. If he had access to modern data on the prevailing winds and cur-
rents, he could have chosen an alternate route to the Bahamas (prob-
ably San Salvador). New World discovery would have taken less than 
the two months needed for the first trip. Faster sailboats would have 
helped too. The Santa Maria was particularly unwieldy and slow.

What if Columbus were omniscient, capable of predicting the 
winds (and currents, waves, sea monsters, edge of the earth, etc.) 
anywhere at any time? What route would he have chosen, and how 
quickly could he have crossed the Atlantic?

The answer is simple in principle. Columbus should pick the cor-
rect initial Preferred Direction. Then, at each point along his path, he 
could use the geometric constructions described in the above figures 
to adjust the Preferred Direction along the route. Executed properly, 
this approach leads to a minimum time path to the New World. In 
practice, this procedure is not practical because the initial Preferred 
Direction is unknown and a wrong initial guess leads a sailor to the 
wrong place.

There is a more practical, but tedious, method for an all-knowing 
sailor to find the least-time path. It is a multistep process. First, 
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generate the ring structure using an array of speed diagrams and the 
constructions illustrated in Figures 10.12, 10.13, and 10.15. The speed 
diagram at each position must have the size and orientation represent-
ing the wind at the appropriate place and time. A hypothetical ring 
structure that could be constructed this way is shown in Figure 10.17, 
with the starting point labeled “A” and the end point labeled “B.” 
Eventually, a ring will pass through B. (The position B would have 
been a challenge for Columbus.)

The second step in generating the least-time path requires working 
backward in time. Use the speed diagram that just touches the outer 
ring at B to find the final Ideal Sailing Direction at B. Trace this 
direction back to the next ring and repeat the process. Further repeti-
tions eventually take one to the starting point A. The path determined 
by this method takes the least time.

The path shown in the Figure 10.17 represents more of a cartoon 
than a realistic construction. One should calculate the paths at much 
more closely spaced rings so the wind direction varies only slightly 
from ring to ring.

Although it is clearly impossible to construct rings when explor-
ing unknown territory, there are cases where rings could be of use. 
For long-distance sailing, modern technology can provide reasonable 
estimates of future winds. This is the information needed to construct 
the rings. A ring diagram construction based on an educated guess 
could be a useful, but fallible guide.

Rings

A

B

Figure 10.17  Given a ring structure and the wind velocity at each ring, one can (in principle) 
deduce the shortest time path from start, A, to finish, B.
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10.6 � Light Analogy

There is a relation between sailing strategy and the propagation of light. 
It is based on Fermat’s principle. Fermat was the first European to guess 
(correctly), in about 1662, that light takes the path of least time. Since 
sailors often want to find the path of least time, Fermat’s principle can 
be translated into sailing language and can sometimes provide useful 
guides for sailing. The construction of the sailboat rings has another 
ancient predecessor in the study of light, where it is called Huygens’s 
principle. The principles of Huygens’s and Fermat’s are equivalent.

In simple cases, the light-sailing analogy provides correct but obvious 
results. Light travels through a vacuum in a straight line. When the wind is 
uniform, least-time sailing paths are straight lines (or a sequence of straight 
line segments when sailing to windward). Light’s path is bent when it 
passes through glass because it is slowed by the glass. A calm region slows 
a sailboat. Just as light will bend its path to spend less time in the glass, an 
alert sailor will pick a bent path in order to spend less time in the calm. The 
prism example in Figure 10.18 could be either the path of light through 
glass or the path of a sailboat avoiding a prism-shaped calm region.

Least-time sailing paths are more complicated than light paths 
because one cannot ignore the extra structure in the sailboat’s speed 
diagram. The speed of light is usually independent of its direction of 
propagation, which means the speed diagram for light is normally 
a circle (actually a sphere). Only the size of the circle changes when 
light passes from air to glass or water. The light-sailing analogy is 
more robust for light propagating through anisotropic materials. In 
some crystals, the speed of light depends on the direction it is moving. 
In these crystals, the propagation of can also be represented by a speed 
diagram called a directrix that has an elliptical shape. Another special 

Figure 10.18  Light bends its path to spend less time in the glass prism where its moves more 
slowly. A sailboat would follow a similar path if the prism represented a region of reduced wind.
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aspect of sailing is the time-dependence of the wind’s velocity. Light 
travels its path so quickly that very little is likely to happen between 
the time light starts and ends its flight. Only in unusual situations 
must one consider a time-dependent light speed.

10.7 � Mathematical Approach

The mathematical approach to least-time paths is not a practical guide 
for sailors, but it does yield significant general results. First, it shows that 
there is a formal solution to the least-time sailing problem. In particular, 
Equation 10.6 describes how the Preferred Direction changes in time. 
The criterion for a constant Preferred Direction (used in Section 2.2) is 
just one consequence of Equation 10.6. Second, the formal solution is 
expressed by essentially the same mathematical structure that evolved 
to be the formal backbone of both classical and quantum physics.

It is sensible to ask if one needs to construct entire sailboat rings in 
order to generate paths of minimum time. After all, the constructions 
of Figures 10.12, 10.13, and 10.15 show that the Preferred Direction 
and Ideal Sailing Direction are determined by the wind in the vicin-
ity of the sailboat and not by conditions on distant parts of the rings. 
Indeed, the path of light and the fastest path of a sailboat can both 
be described in terms of the local environment. A description of how 
this works looks more algebraic and less geometric. A derivation of 
the results follows from the work of Sir William Rowan Hamilton. 
Hamilton’s mathematical theories of optics and mechanics were 
developed in the first part of the nineteenth century.

The sailboat rings cover the sailing surface. Any boat position 
r→ can be labeled with the minimum time needed to reach that 
point, called T(r→). The rings correspond to points r→ on which 
T(r→) is constant. Each ring is labeled by a different time, T. A 
vector in the Preferred Direction is defined by

	
r r r rp r T r( ) ( )= ∇ 	 (10.1)

The operator 
r
∇  produces a vector in the direction T varies most 

rapidly, which is always perpendicular to lines on which T(r→) is 
constant.
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The magnitude of p→ is the rate at which the time changes.

	

r
p change in T

change in x
≅

	
(10.2)

Here the change in x is in the Preferred Direction. For a given 
p→, the Ideal Sailing Velocity at the point r→ and time t is U

→
* 

(r→, t). Since a speed is U ≈ (change in x)/(change in T), it looks 
like p→ is essentially the inverse of U *. This guess is close to the 
right answer. It is a little more complicated because p→ and U

→
* 

are vectors. The correct expression, which is a key for the for-
mal description of sailing strategy is

	
r r
p U⋅ =* 1 	 (10.3)

The dot between the two vectors means their relative direction 
is important. If q is the angle between p→ and U

→
*, an alternative 

expression of this key formula is |p→ | |U
→

*| cos(q) = 1, where the 
bars || denote the length of a vector.

The formula p→ . U
→

* = 1 holds more information than one 
might expect:

	 1.	For a fixed p→ the generalization p→ . U
→

* = 1 for any U
→

, not 
just U

→
* describes a straight line in velocity, U

→

, space.
	 2.	This line is perpendicular to the preferred direction p→.
	 3.	The line is tangent to the speed diagram.
	 4.	The Ideal Sailing Velocity U

→
* is the speed diagram veloc-

ity that touches the line.
	 5.	The time dependence of the Preferred Direction is 

obtained from a differentiation of p→ . U
→

* = 1.

The following is only a rough sketch of the mathematics that ulti-
mately dictates the time dependence of the Preferred Direction. 
It is not a careful derivation that can be followed easily.

The time derivative of p→ . U
→

* vanishes because this quantity is 
always unity. Applying the product rule means

	
dp
dt

U p dU
dt

r r r
⋅ + ⋅ =*

*
0

	
(10.4)
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10.8 � Predicting the Wind

The exact least-time sailing path can be constructed only with exact 
prior knowledge of the wind. This is impossible. Since a guess based 
on inaccurate knowledge is better than no plan at all, sailors make 
guesses. Their divinations rest in part on weather updates, past expe-
rience, and trial runs on a racecourse. Some sailors claim to feel the 
wind and impending weather changes on their skin. When all else 
fails, holding a moistened finger to the air may actually work. Stories 

The time derivative of U
→

* needs some explanation. This Ideal 
Sailing Velocity depends on the position of the boat r→ and the 
function T(r→), but r→ depends on the time t. Thus, using the chain 
rule for differentiation,

	
r r r r r

r r r
p dU

dt
p U dr

dt T
p U T⋅ = ∇ ⋅ ⋅ + ∂

∂
⋅ ∇ ⋅

*
* *( ) ( )( ) ddr

dt

r
	 (10.5)

Here, the derivatives
r
∇ and ∂/∂T apply only to the arguments of 

U *. Using
r r
p T= ∇ and U * = dr→ /dt, means all terms in the above 

equation contain U
→

*, which can be eliminated. This action yields 
the final result.

	
dp
dt

p U r t p
t

p U r t
r r r r r r r r= −∇ ⋅ − ∂

∂
⋅( ( , )) ( ( , ))* *

	
(10.6)

This final equation contains the important conclusions. It is the 
formal demonstration that the Preferred Direction does not 
change if the wind varies only in a direction perpendicular to 
the preferred direction. The two terms on the right-hand side of 
Equation 10.6 have different physical consequences. The term 
on the right is proportional to p→. That means it contributes only 
to changes in the magnitude of p→ and the Preferred Direction 
is unchanged. The term with the 

r
∇  can change the Preferred 

Direction. However, when the wind varies in the direction of 
p→, the Preferred Direction is unchanged.

Examples with a constant Preferred Direction are shown in 
Figures  10.7–10.10. A construction that produced a constant 
Preferred Direction is shown in Figure 10.12. Constructions that 
change the Preferred Direction are illustrated in Figures 10.13 
and 10.15.
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that sailors can judge the distant wind direction by the orientation 
of cows (or whatever) on the shore should be regarded skeptically. 
Observations of clouds, other sailboats, and smokestacks are more 
useful than calculations based on cow alignment. When it comes to 
predicting the wind, any trick that’s legal is fair. If your uncle’s arthri-
tis acts up just before a wind shift to the east, take him on board.

10.8.1 � Water’s Color

Many clues about wind come from observations of the water. 
Windblown water looks different because the wind produces waves 
and the waves change the reflected light. To a reasonable approxima-
tion, water looks blue because it reflects a blue sky.

There is actually more to water’s color than just the blue sky. Not 
all water is the same. Its clarity and the nature of suspended impuri-
ties can change its appearance. Even water without impurities absorbs 
some light, and it absorbs more red than blue because red light is used 
up pushing the hydrogen atoms of the H2O molecules back and forth. 
This means only the blue survives deep below the surface. Whether 
or not this blue is apparent at the surface depends on impurities scat-
tering the blue light. The impurities and life-forms suspended in the 
water can have their own color, which also changes what we see.

The sun is the ultimate source of the light, but it takes different 
paths to our eyes. Light from the sun or the sky can be reflected from 
the water’s surface, scattered from water beneath the surface, or even 
scattered from the ground beneath the water.

A sailor scans the distant water surface in order to predict the wind. 
At long distances, reflection from the surface rather than water’s intrinsic 
color dominates what is seen. Even at distances so great that individual 
waves cannot be distinguished, wind still makes the water look different.

10.8.2 � Light Reflection and Polarization

Sailors receive an array of visual clues that help them to “see the 
wind” on the water’s surface. Optics explains how we see things and 
provides hints as to why some sailors always seem to know what the 
wind is about to do. Even though they may not know it, sailors use 
optics every time they look at the water. The basic optical principles so 
important to sailors are described here.
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A light wave is like a water wave. It is characterized by its wave-
length, frequency, and amplitude (half-height). Light is unlike a 
water wave because it has two polarizations, and these polarizations 
are important for sailing. Other differences between light and water 
waves are obvious. In air, light’s velocity is essentially a constant (the 
speed of light). The wavelength of light is so short, and its frequency 
and speed are so large that the wave nature of light is not readily 
apparent.

A sailor experiences water waves through the buoyant force exerted 
on the sailboat. The boat bobs up and down in response to the waves. 
An electron (or any other charge) experiences a light wave through an 
analogous force. Light’s electric field is the invisible hand that pushes 
charges up and down (or back and forth). We see objects when the 
light focused on our retinas interacts with charges which start an elec-
trochemical signal that moves along our optic nerves.

The sky is blue because sunlight scatters from molecules in the 
air. The scattering mechanism also has a water–wave analogy. When 
a wave makes a boat bob up and down, the bobbing boat produces 
it own waves that radiate out in all directions. Similarly, when light 
pushes an electron back and forth, the electron produces its own little 
wave that becomes the scattered light. The more rapidly the electron 
accelerates, the more it radiates. Since blue light has the highest vis-
ible frequency (roughly twice the frequency of red light) atoms in 
our atmosphere scatter mostly blue light. On a clear day, the sky high 
above is a much deeper and darker blue than the sky near the hori-
zon because there is less air directly above to scatter light into your 
eyes. Near the horizon the sky has a whitish tinge because there are 
enough atoms to scatter all colors. (There are also issues of atmo-
spheric contaminants at low altitude.) The geometric constructions 
in Figures 10.22–10.24 help to show why the bluer and darker light 
high in the sky makes wind-blown water look dark blue. The effect 
suggested by these figures is only part of the story. The reflectivity of 
water and its relation to polarization increases the effect. The appar-
ent brightness and color of water can be properly characterized only 
with the help of some additional information about light’s polariza-
tion and water’s reflectivity.

Light is transversely polarized, which means charges are not pushed 
toward or away from a light source. Instead, the electric field produces 
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a sideways acceleration. Since “sideways” can be in either of two direc-
tions, a light beam has two possible polarizations. Light moving north 
is horizontally polarized if its electric field points east and west. It is 
vertically polarized when the electric field is up and down. Most light 
sources are “unpolarized” because they produce an equal mixture of 
both polarizations. When the mixture is unequal, the light is partially 
polarized. Reflected light is usually partially polarized because the 
light produced by an accelerated charge is polarized in the direction 
of the charge’s motion.

An idealized picture of how reflection produces polarization is 
shown in Figure 10.19. Light from a sun directly overhead has equal 
portions of both horizontal polarizations. Because the electrons are 

Figure 10.19  Light coming straight down from the sun accelerates electrons that emit horizon-
tally polarized light parallel to their accelerations.
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pushed horizontally by either polarization, the waves they generate 
are horizontally polarized.

Figure  10.19 is an idealization, and skylight is never completely 
polarized. When the sun is in the south, the sky near the horizon 
to the south and north is horizontally polarized, but the sky to the 
east and west is polarized at an angle. Clouds are nearly unpolar-
ized. Light we see from clouds is typically scattered many times, and 
the complicated geometry of multiple scattering dilutes the polariza-
tion. Also, scattering from the surface of water drops is only partially 
polarized.

Sunlight is often too bright for comfort, so sailors wear sun-
glasses. The horizontally scattered light that was idealized in 
Figure 10.19 is generally more annoying than the vertically polar-
ized light, so polarized sunglasses eliminate essentially all the hori-
zontal polarization.

The sunglasses shown in Figure 10.20 suck the energy out of the 
horizontally polarized waves by incorporating materials that allow 
the electrons (or other charges) to move only horizontally. As a hori-
zontally polarized light wave works to push these charges back and 
forth, it loses essentially all its energy. Sunglasses have additional 
absorbers that reduce the transmission of the vertically polarized 
light. Typical sunglasses transmit only about one-fifth of the total 
light energy.

Figure 10.20  Polarized sunglasses transmit almost none of the horizontally polarized light. 
Light’s wavelength in this sketch is 50,000 times larger than in reality.
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Polarized sunglasses can often enhance contrasts. Because light 
from clouds is less polarized, they stand out from a horizontally polar-
ized blue sky when viewed through sunglasses.

When light hits water, some of it is reflected from the surface, 
which is why you know the water is there. The fraction of reflected 
light depends on its angle between the light ray and the water surface. 
The reflected fraction also depends on the polarization.

The polarization effects make sunglasses doubly effective. The 
dominant polarization of skylight and the dominant scattering from 
water’s surface are both horizontally polarized, and thus eliminated 
for the sailor wearing polarized sunglasses.

More important, the angular contrast is greater for vertically polar-
ized light. Figure 10.21 shows that the horizontally polarized reflec-
tion at 5° is triple the reflection at 20°. For vertical polarization, the 
corresponding ratio is much larger, about 10 to 1.
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Figure 10.21  The fraction of light reflected from a flat water surface depends on the glancing 
angle and the polarization. Light just skimming the surface is completely reflected, but most light 
hitting the surface at larger angles goes into the water.
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10.8.3 � Scanning the Horizon for Wind

Sailors are typically interested in the wind many meters distant. Thus, 
they are looking nearly horizontally at the water’s surface. If calm 
weather produces flat water, the glancing angle will be very small. The 
reflection of both polarizations will be nearly 100%, and the water is 
like a mirror. Figure 10.22 illustrates the light from just above the 
horizon bouncing into a sailor’s eye. Since the angle of incidence is 
equal to angle of reflection, light from up high is not reflected into the 
sailor’s eyes. The sailor sees the reflection of light near the horizon, 
which is whiter and brighter than the sky up high.

The water’s surface is seldom perfectly flat because even light 
winds can stir up some waves. The waves tip the water’s surface so 
the light from a variety of azimuths is reflected into the sailor’s eyes. 
The glancing angles are larger, and the tipped surface reflects light 
from higher angles (on average) where the sky is darker and bluer. 
Also, according to Figure 10.21, the reflection coefficient is smaller 
for the larger glancing angles. These effects combine to make the 
wavy water surface appear darker than the flat surface. Sunglasses 
enhance the effect by admitting only the relatively weakly scattered 
vertical polarization.

After a wind has died, long waves can last a long time, so reflec-
tions shown in Figure 10.23 do not necessarily mean wind is pres-
ent. Sailors can distinguish actively produced waves with sharp peaks 
from smoother waves that are remnant of an earlier wind. The peak 
of a Stokes wave, shown in Figure 10.24, is tilted 30°above horizon-
tal. Glancing angles as large as 30° are approaching the 38° angle, 
at which reflection coefficient for vertical polarization vanishes, so 
surfaces tilted at steep angles appear quite dark through polarized 
sunglasses.

Figure 10.22  When there are no waves, the glasslike water surface reflects essentially all the 
incident light coming just above the horizon.
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The real job of seeing the wind is more complicated than 
Figures 10.22–10.24 would indicate. Patterns are much more diffi-
cult to see on cloudy days because the sky is more uniform and the 
polarization is reduced. If it is not cloudy and the sun is low in the sky, 
wave peaks in the direction of the sun can produce a glitter pattern of 
reflected sunlight instead of dark areas.

If waves were just sine waves, or modified sine waves with sharp peaks, 
they would have a one-dimensional structure and Figures 10.22–10.24 
would be reasonable representations of light scattering. Real waves are 
never so simple. As described in Chapter 8, they have ragged shapes 
that vary both along the direction of motion and perpendicular to this 
direction. The water surface is really covered with a superposition of 
many waves with different shapes, wavelengths, and orientations. This 
characteristic modifies the scattering pattern and makes identification 
of wind anything but cut and dry.

Figure 10.24  Sharply peaked waves are a clear indication of wind. They reflect light at the larg-
est angles. A larger portion of light is transmitted into the water at the larger incident angle, and 
light from up high is often darker and bluer than horizon light.

Figure 10.23  Smooth waves reflect light from higher up. The larger angles mean less light is 
reflected.

73761.indb   257 11/13/09   4:53:35 PM



258 	 Physics of Sailing﻿

A quiz accompanies Figure 10.25. The Flying Scot is not moving 
because (A) no wind, (B) no sails, (C) lazy paddlers, (D) bagpipes 
aimed the wrong way.

Of course, the answer is “all of the above.”

10.8.4 � Which Direction Is the Wind Blowing?

Some (not many) sailors combine remarkable vision with intuitive 
mental computers that can detect wind direction at relatively large 
distances. Only overly simple examples where wind direction can be 
visually detected are described here.

Figure 10.25  An example of waves with no wind. Without sharp peaks, these waves are an 
indication of a wind long gone or waves produced by other watercraft. (Photograph by Hunter Currin. 
With permission.)
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Unlikely Scenario #1

The sky is clear, the sun is directly overhead, and the wind is blowing from 
the south. A sailor looking south (or north) will see darkened water because 
of the waves. However, looking east or west, the sailor has a side view of 
the waves. Waves viewed from the side produce much smaller scattering 
angles, so the water looks brighter. Thus, scanning the water, a sailor could, 
in principle, determine the wind orientation at fairly large distances.

The difficulty with this wind-direction-detection scheme lies in the 
details. The darker water associated with the windward direction is not 
sharply delineated, which makes small changes in wind direction very dif-
ficult to see. More important, the sun is seldom directly overhead. The 
water’s appearance and its variation with direction depends on both the 
position of the sun and the direction of the wind. Some sailors can sepa-
rate a variety of signals and discern the small distinctions associated with 
changes in the wind direction.

Unlikely Scenario #2

The sky is clear. The sun is in the south at around q = 45° above the horizon. 
The wind is also from the south, strong enough to produce small waves. 
Looking to the south, the sailor sees the glitter pattern as the waves tilted at 
around 22° reflect the sun directly into the sailor’s eyes. If the wind is directly 
from the south, the glitter will be centered directly below the sun, but if the 
wind direction and the resulting wave fronts are deflected from south by an 
angle y, the peak in the glitter pattern is deflected in that same direction by 
an angle f. If y (the angle between the wind direction and the direction to 
the sun) is small, then f (the shift in the position of the sun’s glitter) is

	 φ ψ θ≅ −( )1 cos 	 (10.7)

Equation 10.7 means the observed angle f is always smaller than the 
wind-shift angle y, so one must look carefully to see the wind direction. In 
practice, f is made even smaller by ware sharpe variations.

Unlikely Scenarios #1 and #2 are related. In each case, the largest scat-
tering angles are produced by waves directly to windward. In Scenario #1, 
the windward direction appears darker because light is scattered from the 
dark blue sky. In Scenario #2, the water appears much different because 
of scattering from the sun. 

10.8.5 � Which Way Was the Wind Blowing?

Langmuir streaks (also called windrows) retain a memory of the wind 
direction. Comparing the streak orientation with the current wind 
direction can tell a sailor which way the wind has shifted.

The streaks appear as lines of bubbles, foam, or floating plants 
that are aligned (roughly) with the wind direction, as shown in 
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Figure 10.26. They occur in moderate winds of 5 to 10 m/s. Irving 
Langmuir was the first to propose an explanation of these streaks 
when he noticed them on a 1938 ocean voyage to Europe.

He realized that there is a secondary circulation of the water that 
draws floating materials into the streaks. The primary motion of the 
surface water is the circular motion associated with the waves. If the 
wind is from the north, the secondary motion is a slow and steady drift, 
either to the east or the west. When an east drift meets a west drift, 
the water subsides, leaving floating material at the point of subsidence. 
Looking at a cross section of the water end on, the secondary motion is a 
series of counterrotating cells that form tubes along the direction of the 
wind, shown schematically in Figure 10.27. Descriptions of the physics 
behind Langmuir streaks are difficult to understand. The mechanisms 
are complex and may not yet have a satisfactory explanation.

The “Einstein tea leaves paradox” has a superficial resemblance to 
Langmuir streaks. It is much simpler, and the two phenomena share 
enough common features to make one wonder about the similarity of the 
physics. Albert Einstein reportedly first explained to Erwin Schrödinger’s 
wife why tea leaves migrate to the center of the cup when tea is stirred.

The circular motion of stirred tea produces a centripetal force that 
pushes the tea toward the edge of the cup. But viscosity slows the 

Figure 10.26  Langmuir streaks.
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motion at the edge and bottom of the cup. The slowed tea feels less 
centripetal force so it is replaced by more rapidly moving tea coming out 
from the center. The slowed tea is pushed out of the way to the bottom 
and then to the center. This leads to the secondary circulation shown in 
Figure 10.28. Tea leaves are pulled along with the secondary motion to 
the center of the cup. Being heavier than water, they fail to follow the 
upward part of the secondary circuit. Instead, they cluster at the bottom 
center of the cup. The little island of tea leaves left in the cup center is 
(very roughly) a one-dimensional Langmuir streak, or “Langmuir dot.”

10.9 � Real Sailing

This section started with the Sailor’s Dilemma, based on our inability 
to predict the future. The solution to this dilemma seems impossibly 

Figure 10.28  Drawing of the tea leaves paradox from A. Einstein in Die Naturwissenchaften 
26, 223 (1926).

Wind

Surface

Bub
ble

s
Figure 10.27  An idealized view of the secondary water motion that produces the Langmuir 
streaks. Bubbles or other floating material are trapped between tubes where the water subsides.
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difficult. First, the sailor must be able to predict the wind at all points 
along the sailing path. Then the sailor should perform a sequence of 
complicated geometric constructions to find the right path.

In principle, the light reflected from the water’s surface should give 
the sailor the foresight needed to predict the wind. The connection 
between water’s appearance and the wind is explained by the physics 
of optics, but few sailors would have the time to review optics every 
time they look at the water. Also, no one has the vision necessary to 
perform this job with precision.

Although the Sailor’s Dilemma has not been solved in any practical 
way, its investigation has produced some observations that sailors find 
useful. Among these are:

	 a.	The boat in the lead is the boat that has made the most prog-
ress in the Preferred Direction, not the boat that appears to be 
ahead.

	 b.	When sailing to windward in a randomly fluctuating wind, 
the Preferred Direction is toward the average wind. One 
should sail on the “favored tack” that makes the most rapid 
progress in the Preferred Direction, and one should sail 
close hauled only when the Preferred Direction is exactly 
to windward.

	 c.	Downwind sailing in a fluctuating wind requires a similar 
strategy, and a sailor may need to jibe in order to make the 
most rapid progress downwind.

	 d.	Wind variations often change the Preferred Direction. This 
requires a sailor to sail on curved paths even though a straight 
line minimizes the distance.

	 e.	When wind patterns are predictable, one can use a sailboat’s 
speed diagram and the predicted wind to plan ahead and 
propose a least-time path.

	 f.	Wind always surprises. Patterns on the water are an important 
clue to the wind. The physics of wind–water interactions explains 
why polarized sunglasses can help to predict the wind.

Physics principles were used to arrive at these guidelines. But sailors 
quickly learn these ideas (and much more) from experience even if 
they don’t care about physics.
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11
Finally

The first time I took my wife sailing, we capsized. My son and his best 
friend suffered the same fate when I took them on their first sailboat 
race. Other examples of my incompetence on the water are best left 
unreported. One would think that someone with a job of explaining 
physics could find the secret of good sailing. So far, a familiarity with 
technical trivia has not produced a champion sailor, and time is not 
on my side.

I have found that sailing physics provides me with clever explana-
tions of why I sailed so badly. Knowledge has at least one use. A better 
understanding provides better excuses.

One often reads tips on how to sail faster in the form of a story with 
a happy ending. The famous sailor explains how some clever strategy 
produced a stunning victory. My stories have a different ending. On 
occasion, an insight based on physics has actually helped, but my inat-
tention and clumsy boat-handling usually erase any temporary advan-
tage. If the vicarious thrill derived from the stories of winning sailors 
is wearing thin on you, perhaps a view from the wrong end of the fleet 
can be refreshing.

The intrinsic joys of sailing keep sailors returning to their boats 
year after year, even though most of us never get things really right. 
We may race against each other, but usually in informal and friendly 
settings. We do not sail for fame or fortune, and we do not have a 
fortune to spend on sailing.

I share the concern of others that the joy of sailing is being over-
whelmed by a fixation with expensive technology that is making sail-
ing nearly professional and virtually unaffordable. This is not a call to 
bring back wooden ships, canvas sails, and brass fittings. It is just an 
uneasy feeling shared by many aging sailors that more expensive is not 
always better. Sailing cannot remain a wholesome hobby if its image 
becomes even more elitist.
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The Yachts by William Carlos Williams ends, disturbingly, as follows:

beaten, desolate, reaching from the dead to be taken up
they cry out, failing, failing! their cries rising
in waves skill as the skillful yachts pass over.

It is hard to interpret this poem as a compliment of sailors or sailing. 
Those of us fortunate enough to sail should remember that we really 
are fortunate, even if we sail the smallest sailboat with the oldest 
sails. Less fortunate people in need of help deserve as much attention 
as our yachts.
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Sailing Glossary

Angle of attack:  The angle between the flow of the water and the 
orientation of a hull, keel, or centerboard. Sometimes this 
angle is also applied to wind flow past sails.

Apparent wind:  The wind velocity as measured on a moving sail-
boat. Denoted V

→

.
Batten:  A plastic strip placed in a sail.
Beat:  A sailboat is on a beat (or beating) when traveling toward the 

wind.
Bernoulli equation:  Relates pressure to the fluid speed. This equa-

tion is a favorite for explaining lift.
Boat speed:  The velocity of a sailboat with respect to the water. 

Denoted U
→

.
Boom:  Horizontal bar connecting the lower corners of a sail. The sail 

is largely controlled through positioning of the boom.
Boundary layer: A layer of fluid produced by the slowing of motion 

near a surface. Laminar boundary layer: flow smooth and 
nearly parallel. Turbulent boundary layer: flow uneven and 
chaotic.

Bow:  See stern.
Broadseam:  Sewing together tapered pieces of sailcloth to produce 

Gaussian curvature.
Of  buoyancy:  average position of all the buoyant force.

Camber ratio:  If a horizontal line is drawn from luff to leech, the 
maximum displacement of the sail from this line divided by 
the length of the line.

Center:  Of mass: average position of all the mass.
Centerboard:  Narrow underwater flat surface that minimizes 

leeway.
Clew:  The back corner of a sail.
Close hauled:  Sailing to maximize the component of a boat’s velocity 

to windward.
Cloud streets:  Lines of cloud formations aligned parallel to the wind 

up high. The surface wind direction may be different.
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Coriolis force:  The effective side force on wind associated with the 
Earth’s rotation.

Cunningham:  A device used to stretch the luff of a sail.
Density:  The mass divided by the volume. Denoted r.
Draft:  The sideways displacement of a sail that gives it a curved 

shape.
Of  effort:  average position of a force on a sail or hull.

Euler equation:  A description of fluid flow that neglects viscosity.
Fetch:  The distance wind blows over open water.
Forestay:  A cable that keeps the mast from falling backward.
Fluid forces:  Drag: parallel to the fluid flow.

Lift:  perpendicular to the fluid flow.
Pressure:  perpendicular to the surface.
Viscous:  parallel to the surface.

Foot:  The lower edge of a sail.
Gaussian curvature:  An invariant measure of sail fullness.
Head:  The top of a sail.
Heel:  Tilting a boat to the side.
Iceboat:  A sailboat used on very cold water.
Jib:  The sail in front of the mainsail. Not all sailboats have a jib.
Jibe:  Changing between port tack and starboard tack by sailing past 

directly downwind.
Keel:  A centerboard with a weight at the bottom. Keels are often 

fixed in position.
Leech:  The back edge of a sail.
Lee helm:  The tendency of a boat to turn away from the wind. 

Opposite of weather helm.
Leeway:  Sideways motion of a sailboat produced by the wind.
Luff:  Front region of a sail.
Mainsail:  The largest sail attached to the mast.
Mast:  The vertical pole which holds up the sails.
Moment of inertia:  The mass time the square of the average size 

of an object. A large moment of inertia makes rotation more 
sluggish.

Navier–Stokes equation:  The fundamental description of fluids like 
air and water.

Outhaul:  A line used to pull the mainsail out on the boom.
Pinch:  Sailing so close to windward that progress is slowed.
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Pitch:  Tipping a boat forward or backward.
Port:  The right-hand side of the boat when facing the stern.
Port tack:  Sailing with the wind coming from the port side.
Reach:  Sailing so the true wind is roughly from the side.
Reef:  Reducing sail area by attaching the bottom section to the 

boom.
Reynolds number:  A dimensionless number denoted R, which char-

acterizes fluid flow. Viscosity dominates for small R and large 
R indicates turbulence.

Rudder:  A flat surface attached to the stern with a variable orienta-
tion used to steer the boat.

Sea breeze:  An onshore wind produced by uneven heating of land 
and water.

Sheet:  A line (rope) used to control the sail position. The sheet is 
not a sail. “Hoist up the top sheet and spanker” is not proper 
nautical terminology.

Shroud:  A cable that keeps the mast from falling over sideways.
Speed diagram:  A polar graph of a sailboat speed as a function of the 

true wind angle. They are sometimes called “polar diagrams” 
or just “polars.”

Starboard:  The right-hand side of the boat when facing the bow.
Starboard tack:  Sailing with the wind coming from the starboard 

side.
Stern:  The end of the boat opposite the bow.
Stress:  Opposing forces applied to a piece of sail divided by the width 

of the piece.
Tack (action):  Changing between port tack and starboard tack by 

sailing past directly to windward.
Tack (of a sail):  The front lower corner of a sail.
Torque:  The product of force times distance, which produces rota-

tional motion. Denoted t.
True wind:  The wind velocity as measured with respect to the 

water. Denoted W
→

.
Turbulence:  Uneven and unpredictable fluid motion with fluctua-

tions on many time scales.
Twist:  A measure of the change of sail orientation with height.
Vang:  A device used to hold the boom down.
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Viscosity:  Dynamic: determines a fluid’s viscous force on a surface. 
Kinematic: determines the viscous damping of fluid motion.

VMG:  An acronym avoided here.
Wake:  Nautical: the surface waves produced by a rapidly moving 

boat.
Fluids: the disturbance of flow behind an object moving through 

a fluid.
Wave speed: Phase; the speed of an individual wave crest.

Group: the speed of an isolated group of waves.
Weather helm:  The tendency of a boat to turn toward the wind.
Yaw:  Change in direction.
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calculation, 20–23
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156–157
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Centerboard problem, 142, 
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D

d’Alembert’s paradox, 160–161
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Diagram, speed
comparison of speeds, 71–72
lift-to-drag ratio comparisons, 

73
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Direction of wind, 258–259
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speed, 177
Dove, Heinrich Wilhelm, 223
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Archimedes principle, 22–23
downwind speed ratio, 20
speed ratio calculation, 20–23
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Newton’s impact theory, 
14–16

quadratic approximation, 
13–14

refinements, 17–19
speed, 11–12
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speed limit, 36–37
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wind shadow, 23–27
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Downwind in constant wind, 

235–237
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limit, 36–37
ratio, 20
ratio calculation, 20–23

Downwind wind shadow, 23–27
Draft, 34, 114, 119, 123–124, 128, 

130–132, 134, 266
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resonance, 99–100
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Early Formative Olmec period, 7
Easter Island, 5–7
Effort, center of, 80
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Einstein, Albert, 2
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Energy dissipation, 144–146
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Kutta-Joukowski theorem, 163
lift, 163–165
lift’s many explanations, 

163–165
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European clipper, 9
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Fetch, 191–193, 266
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Flat water, waves, 190–191
Fluid dynamics, 137–167
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boundary layer separation, 

157–159
centerboard problem, 

152–154, 159
laminar boundary layer, 

150–154

turbulence, 154–156
turbulent boundary layer, 

152–154, 156–157, 159
drag, 139–140
Euler equation, 159–167

Bernoulli’s equation, 161–162
circulation, 162–163
d’Alembert’s paradox, 

160–161
dimensions, 165–167
Kutta-Joukowski theorem, 

163
lift, 163–165
lift’s many explanations, 
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lift, 139–140
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Reynolds number, 146–150

centerboard problem, 149–150
defined, 147–150

viscosity, 139–146
centerboard problem, 142
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The Flying Dutchman, 92–93
The Flying Scot, 258
Forces, 13–19, 28–32

Newton’s impact theory, 14–16
quadratic approximation, 13–14
refinements, 17–19

Forestay, 5, 101, 111, 125, 266
Frequency, waves, 185–186

G

Gaussian curvature, 104–108, 
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130–131, 265–266

Gelcoat, 169–174, 179
variations of, 169–173

Geography, weather, 227–228
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Gilgamesh, 5
Giza, Great Pyramid of, 4
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Gravity waves, 185–187
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speed, 186–187
wave frequency, 185–186
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Gusty breeze, 209–215
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Lift-to-drag, 45, 49, 51, 62, 69, 
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Mainsail, 110–127
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force application, 124–127

sail position, 126–127
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123–124
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shape equations, 120–122
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tight foot, 113
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Mathematical approach, 248–250
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Polyethylene terephthalate, 169–170
Polynesia, 5–7
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Power delivered to wave, 190
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Pressure variation, sail, 127–128
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156, 173, 215
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growth, 240–241
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bending masts, 131–133
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jib, 110–127
Luff tension, 133–134
mainsail, 110–127
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force application, 124–127
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123–124
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position, 126–127
shape, 124–126
shape equations, 120–122
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107

stress, 108–110
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torque, limiting, 89–90
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Sail trim, 103–135
Sailing Alone Around the 

World, 1
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stock market analogy, 229
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Sandbagger yachts, 94–95
Santa Maria, 245
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Sea breeze, 227–228, 267. See also 
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scales, 178
speed of, 178

Sheet, 103, 124–126, 267
Shroud, 101–102, 267
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Sine waves, 181–183, 188
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Speed, 11–12

calculations, 34–35
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Stars and Stripes, 178
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dynamics, 98–101
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moment of inertia, 98–99
resonance, 99–100

helm, 94–98
increasing, restoring torque, 

90–94
sail torque, limiting, 89–90
steering, 94–98
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theory, 215–218
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centerboard drag, 53–56
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