
Crowdsourcing and
Probabilistic Decision-
Making in Software
Engineering:
Emerging Research and
Opportunities

Varun Gupta
University of Beira Interior, Covilha, Portugal

A volume in the Advances in
Systems Analysis, Software
Engineering, and High Performance
Computing (ASASEHPC) Book Series

Published in the United States of America by
IGI Global
Engineering Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2020 by IGI Global. All rights reserved. No part of this publication may be
reproduced, stored or distributed in any form or by any means, electronic or mechanical, including
photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the
names of the products or companies does not indicate a claim of ownership by IGI Global of the
trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material.
The views expressed in this book are those of the authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.

Names: Gupta, Varun, 1987- author.
Title: Crowdsourcing and probabilistic decision-making in software
 engineering : emerging research and opportunities / Varun Gupta, editor.
Description: Hershey, PA : Engineering Science Reference, [2019] | Includes
 bibliographical references.
Identifiers: LCCN 2019005480| ISBN 9781522596592 (h/c) | ISBN 9781522596608
 (s/c) | ISBN 9781522596615 (eISBN)
Subjects: LCSH: Crowdsourcing. | Statistical decision. | Software engineering.
Classification: LCC QA76.9.H84 G87 2019 | DDC 005.1--dc23 LC record available at https://lccn.
loc.gov/2019005480

This book is published in the IGI Global book series Advances in Systems Analysis, Software
Engineering, and High Performance Computing (ASASEHPC) (ISSN: 2327-3453; eISSN: 2327-
3461)

Advances in Systems
Analysis, Software

Engineering, and High
Performance Computing
(ASASEHPC) Book Series

Mission

Vijayan Sugumaran
Oakland University, USA

ISSN:2327-3453
 EISSN:2327-3461

The theory and practice of computing applications and distributed systems has emerged
as one of the key areas of research driving innovations in business, engineering, and
science. The fields of software engineering, systems analysis, and high performance
computing offer a wide range of applications and solutions in solving computational
problems for any modern organization.

The Advances in Systems Analysis, Software Engineering, and High
Performance Computing (ASASEHPC) Book Series brings together research
in the areas of distributed computing, systems and software engineering, high
performance computing, and service science. This collection of publications is
useful for academics, researchers, and practitioners seeking the latest practices and
knowledge in this field.

• Metadata and Semantic Web
• Enterprise Information Systems
• Storage Systems
• Performance Modelling
• Computer System Analysis
• Engineering Environments
• Virtual Data Systems
• Software Engineering
• Computer Graphics
• Human-Computer Interaction

Coverage

IGI Global is currently accepting
manuscripts for publication within this
series. To submit a proposal for a volume in
this series, please contact our Acquisition
Editors at Acquisitions@igi-global.com or
visit: http://www.igi-global.com/publish/.

The Advances in Systems Analysis, Software Engineering, and High Performance Computing (ASASEHPC) Book Series (ISSN 2327-3453) is
published by IGI Global, 701 E. Chocolate Avenue, Hershey, PA 17033-1240, USA, www.igi-global.com. This series is composed of titles available
for purchase individually; each title is edited to be contextually exclusive from any other title within the series. For pricing and ordering information
please visit http://www.igi-global.com/book-series/advances-systems-analysis-software-engineering/73689. Postmaster: Send all address changes to
above address. Copyright © 2020 IGI Global. All rights, including translation in other languages reserved by the publisher. No part of this series may
be reproduced or used in any form or by any means – graphics, electronic, or mechanical, including photocopying, recording, taping, or information and
retrieval systems – without written permission from the publisher, except for non commercial, educational use, including classroom teaching purposes.
The views expressed in this series are those of the authors, but not necessarily of IGI Global.

701 East Chocolate Avenue, Hershey, PA 17033, USA
Tel: 717-533-8845 x100 • Fax: 717-533-8661

E-Mail: cust@igi-global.com • www.igi-global.com

Metrics and Models for Evaluating the Quality and Effectiveness of ERP Software
Geoffrey Muchiri Muketha (Murang’a University of Technology, Kenya) and Elyjoy Muthoni
Micheni (Technical University of Kenya, Kenya)
Engineering Science Reference • © 2020 • 391pp • H/C (ISBN: 9781522576785) • US
$225.00 (our price)

User-Centered Software Development for the Blind and Visually Impaired Emerging
Research and Opportunities
Teresita de Jesús Álvarez Robles (Universidad Veracruzana, Mexico) Francisco Javier Álvarez
Rodríguez (Universidad Autónoma de Aguascalientes, Mexico) and Edgard Benítez-Guerrero
(Universidad Veracruzana, Mexico)
Engineering Science Reference • © 2020 • 173pp • H/C (ISBN: 9781522585398) • US
$195.00 (our price)

Architectures and Frameworks for Developing and Applying Blockchain Technology
Nansi Shi (Logic International Consultants, Singapore)
Engineering Science Reference • © 2019 • 337pp • H/C (ISBN: 9781522592570) • US
$245.00 (our price)

Human Factors in Global Software Engineering
Mobashar Rehman (Universiti Tunku Abdul Rahman, Malaysia) Aamir Amin (Universiti
Tunku Abdul Rahman, Malaysia) Abdul Rehman Gilal (Sukkur IBA University, Pakistan)
and Manzoor Ahmed Hashmani (University Technology PETRONAS, Malaysia)
Engineering Science Reference • © 2019 • 381pp • H/C (ISBN: 9781522594482) • US
$245.00 (our price)

Interdisciplinary Approaches to Information Systems and Software Engineering
Alok Bhushan Mukherjee (North-Eastern Hill University Shillong, India) and Akhouri
Pramod Krishna (Birla Institute of Technology Mesra, India)
Engineering Science Reference • © 2019 • 299pp • H/C (ISBN: 9781522577843) • US
$215.00 (our price)

Titles in this Series
For a list of additional titles in this series, please visit:

https://www.igi-global.com/book-series/advances-systems-analysis-software-engineering/73689

Table of Contents

Foreword...viii

Preface.. x

Acknowledgment.. xiv

Chapter 1
Markov.Decision.Theory-Based.Crowdsourcing.Software.Process.Model............1

Kamalendu Pal, City, University of London, UK

Chapter 2
I-Way:.A.Cloud-Based.Recommendation.System.for.Software.Requirement.
Reusability..23

Chetna Gupta, Jaypee Institute of Information Technology, Noida, India
Surbhi Singhal, Jaypee Institute of Information Technology, Noida,

India
Astha Kumari, Jaypee Institute of Information Technology, Noida, India

Chapter 3
Requirement-Based.Test.Approach.and.Traceability.for.High-Integrity.
Airborne.Embedded.Systems..35

Sudha Srinivasan, Aeronautical Development Agency (ADA), Bangalore,
India

D. S. Chauhan, GLA University Mathura, Mathura, India

Chapter 4
A.Systematic.Literature.Review.on.Risk.Assessment.and.Mitigation.
Approaches.in.Requirement.Engineering...51

Priyanka Chandani, Jaypee Institute of Information Technology, Noida,
India

Chetna Gupta, Jaypee Institute of Information Technology, Noida, India

Chapter 5
Agile.Team.Measurement.to.Review.the.Performance.in.Global.Software.
Development...81

Chamundeswari Arumugam, SSN College of Engineering, India
Srinivasan Vaidyanathan, Cognizant Technology Solutions, India

Chapter 6
Improving.Construction.Management.Through.Advanced.Computing.and.
Decision.Making...94

Varun Gupta, University of Beira Interior, Covilha, Portugal
Aditya Raj Gupta, Amity University, Noida, India
Utkarsh Agrawal, Amity University, Noida, India
Ambika Kumar, Amity University, Noida, India
Rahul Verma, Amity University, Noida, India

Chapter 7
An.Investigation.on.Quality.Perspective.of.Software.Functional.Artifacts........109

Vimaladevi M., Pondicherry Engineering College, Puducherry, India
Zayaraz G., Pondicherry Engineering College, Puducherry, India

Chapter 8
An.Analysis.of.UI/UX.Designing.With.Software.Prototyping.Tools.................134

Shruti Gupta, Amity University, Delhi, India

Chapter 9
Improving.Financial.Estimation.in.Construction.Management.Through.
Advanced.Computing.and.Decision.Making..146

Varun Gupta, University of Beira Interior, Covilha, Portugal
Aditya Raj Gupta, Amity University, Noida, India
Utkarsh Agrawal, Amity University, Noida, India
Ambika Kumar, Amity University, Noida, India
Rahul Verma, Amity University, Noida, India

Chapter 10
Independent.Verification.and.Validation.of.FPGA-Based.Design.for.Airborne.
Electronic.Applications...153

Sudha Srinivasan, Aeronautical Development Agency (ADA), Bangalore,
India

D. S. Chauhan, GLA University, Mathura, India
Rekha R., Aeronautical Development Agency (ADA), Bangalore, India

Related Readings... 167

About the Contributors.. 177

Index... 181

Foreword

If the experience of the last few decades of Software Engineering is anything to go by,
we seem to always be catching up with the innovations taking place in a hyperactive
market, increasing the chances of developing systems that don’t fully take account of
the needs of users, don’t meet legal obligations and end up compromising reliability,
security and maintainability.

Fortunately, the software industry is good at learning as we go. Each innovation
is typically followed by excitement in the market, some unfortunate system failures
due to oversight in the requirements and, most importantly, a realisation that our
Software Engineering methods need to adapt to meet the new demands. Examples of
this learning process include an era where formal methods of software engineering
were developed in the 90’s to meet the need to ensure reliability in safety critical
applications, and more recently, the drive to adopt agile development methods to
increase productivity and reduce risks.

The most recent efforts to improve the software engineering process, which is
the subject of this edited collection, is to utilise crowdsourcing and methods from
machine learning. Although crowdsourcing, which was advocated by Jeff Howe as
a way of achieving “wisdom of the crowd” as far back as 2006, its proposed use
for developing software has been more recent and is growing rapidly. The essence
of crowdsourcing for software development is to utilise a community of external
stakeholders, including potential users, analysts and programmers, to participate in
the development of an application on the premise that all stakeholders will eventually
gain mutual benefits.

This broad view of crowdsourcing and use of machine learning for software
engineering raises many questions, such as:

• How does one use crowdsourcing effectively in the different phases of
software development, from requirements elicitation to testing and then
maintenance and deployment?

• We know from recent history, that new software engineering methodologies
are not universally applicable, so are there specific types of applications
where use of crowdsourcing and use of machine learning is best?

viii

Foreword

This edited collection brings together several studies addressing such questions.
The chapters include systematic reviews of the field, case studies showing the use of
machine learning and crowdsourcing in domains such as construction and aerospace,
and key perspectives from the IT industry.

The chapters in this book will provide valuable insight for both academics pursuing
research in this field and software development companies, who are seeking to improve
their processes by using crowdsourcing or AI methods for software engineering.

Sunil Vadera
University of Salford, UK
July 2019

ix

Preface

AN OVERVIEW

Software Engineering deals with the delivery of high quality software to its users
within time and budgets. The development is done by software development
organization either as bespoke or as mass market product. There are variety of tools
and techniques that software engineers can use to achieve the objectives of high quality
software. Different techniques provides different opportunities of improvements.
Improvement in this area will improve the quality of delivered software that will
impact positively the domains where the software has to function. The evolution of the
software makes the different activities more challenging. The challenges are further
amplified because these days the inputs are taken from crowds as the software will
be used by these crowds only. The various solutions of various problems faced in
development of the software either co-located or distributed for single customer of
for mass markets, must be capable of handling the crowds in efficient manner. This
requires integration of various areas like Artificial Intelligence especially Natural
Language Processing, Big Data, data mining etc to improve the software engineering.
The decision making involved in software development is based on probabilistic
reasoning as the complete process is uncertain and hence the probabilistic decision
models finds its role in overall improvements in crowd based software engineering.

This book provides relevant theoretical frameworks and the latest empirical
research findings in the broad area of software engineering. The research contained in
this book highlights issues, challenges, techniques and practices relevant to software
engineering in general and crowd sourcing in particular. The research addressing
software engineering in general provides researchers the knowledge about constraints
and best practices applicable for crowd soured software engineering.

x

Preface

TARGET AUDIENCE

The research findings contained in this book is ideal for the software engineers who
want to improve the manner the software is developed by increasing the accuracy
of probabilistic reasoning supporting their decision making and getting automation
support. It will also provide them with the latest solution strategies for various
problems faced during development and various best practices through case studies.
This book is ideal for professionals and researchers working in the field of software
engineering for bespoke and mass market developments. Moreover, the book provides
insights and support software engineers and higher management executives with
the latest effective solutions, automation supports and case studies about software
engineering issues, challenges, techniques and practices.

ORGANISATION OF BOOK

This book is organised into ten chapters. Each chapter provides insight into
software engineering related aspects. Chapter 1 analyses the process of software
development at a crowdsourced platform. The work analyses and identifies the phase
wise deliverables in a competitive software development problem. It also proposes
the use of Markov Decision Theory to model the dynamics of the development
processes of a software by using a simulated example. Chapter 2 addresses the
problem of effectively searching and selecting relevant requirements for reuse
meeting stakeholders objectives through knowledge discovery and data mining
techniques maintained over a cloud platform. Knowledge extraction of similar
requirement(s) is performed on data and meta-data stored in central repository
using a novel intersective way method (i-way), which uses intersection results of
two machine learning algorithm namely, K-nearest neighbors (KNN) and Term
frequency–inverse document frequency (TF-IDF). i-way is a 2-level extraction
framework which represents win-win situation by considering intersective results
of two different approaches to ensure that selection is progressing towards desired
requirement for reuse consideration. The validity and effectiveness of results of
proposed framework are evaluated on requirement dataset (Shaukat et al., 2018), which
show that proposed approach can significantly help in reducing effort by selecting
similar requirements of interest for reuse. Chapter 3 proposes a methodology for
achieving requirement traceability and thereby performing requirement based testing
for efficient test and evaluation of aircraft subsystems. This methodology integrates
requirement traceability throughout the software development life cycle along with
requirement based testing for high integrity software systems. The methodology
has been found to be most effective in revealing errors and optimizes testing by

xi

Preface

preventing repetition of test cases across test platforms. This unique contribution has
the potential to revolutionize the research world in software engineering. Chapter 4
undertakes a study to identify and analyze existing risk assessment and management
techniques from a historical perspective that address and study risk management
and perception of risk. The paper present extensive summary of existing literature
on various techniques and approaches related to requirements defects, defect
taxonomy, its classification and its potential impact on software development as
the main contributions of this research work. The primary objective of this study
was to present a systematic literature review of techniques/methods/tools for risk
assessment and management. This research successfully identifies and discovers
existing risk assessment and management techniques, their limitations, taxonomies,
processes and identifies possible improvements for better defect identification and
prevention. Chapter 5 is aimed at studying the key performance indicators of team
members working in an Agile project environment and in an Extreme Programming
software development. Practitioners from six different XP projects were selected
to respond to the survey measuring the performance indicators, namely, escaped
defects, team member’s velocity, deliverables and extra efforts. The chapter presents
a comparative view of Scrum and XP, the two renowned agile methods with their
processes, methodologies, development cycles and artifacts while assessing the base
performance indicators in XP setup. These indicators are key to any Agile project in
a Global Software Development environment. The observed performance indicators
were compared against the Gold Standard industry benchmarks along with best,
average and worst case scenarios. Practitioners from six Agile XP projects were
asked to participate in the survey. Observed results best serve the practitioners to
take necessary course corrections to stay in the best case scenarios of their respective
projects. Chapter 6 proposes an algorithm to make the bidding dynamic by not
only awarding tenders on basis of cost quoted in tenders (biding cost) but also on
contractor ratings. The ratings of contractor is computed using historical performance
of contractor. The paper empirically identifies the factors to rate the contractors.
The historical values associated with the performance rating parameters are then
combined using the “controlled values” which one assumed to standard across the
industry, to yield the overall weighted rating of firms. This rating is then combined
with the bidding cost, thereby making the selection of contractor dynamic. Selected
Contractor is paid bidding cost. The algorithm is executed a hypothetical value
to illustrate the approach. A web application has been developed to execute the
proposed algorithm. Chapter 7 surveys the quality improvement techniques for the
two fundamental artifacts of software product development namely the architecture
design and the source code. The information from top level research databases is
compiled and an overall picture of quality enhancement in current software trends
during the design, development and maintenance phases are presented. This helps

xii

Preface

both the software developers and the quality analysts to gain understanding of the
current state of the art for quality improvement of design and source code and the
usage of various practices. The results indicate the need for more realistic, precise,
automated technique for architectural quality analysis. The complex nature of
the current software products require the system developed to be beyond robust
and resilient and building intelligent software that is anti-fragile, self-adaptive is
favored. Innovative proposals that reduce the cost and time are invited. Chapter 8
presents a tool based on an analysis of different popular prototyping tools in the
industry which will overcome some or all of the major issues faced by application
designers. Author’s describe the prototyping tool’s concept, design, features as well
as how it is suitable for making great user interfaces helping application designers
to design exactly what they want. Chapter 9 proposed an algorithm to provide a
proper way for the contractors to estimate the accurate cost of the project for which
they provides bids. A survey was conducted to gather information about how the
contractors generally estimate the cost of their project, problems they face in this
process, their past experiences, factors they consider when estimating the cost of the
project, etc. This chapter provides an effective solution to the problem of inaccurate
cost estimation. The objective is to enhance the chances of the estimation of the
final cost of the project that contractor believes it will incur, at the time of bidding.
A web application has been developed to execute the proposed algorithm.

Chapter 10 describes the IV&V methodology for Field Programmable Gate
Arrays (FPGA) based Design during the development Life Cycle along with the
Certification Process.

This book contains research articles targeted various areas of software engineering
like requirement management, quality, software testing, software approaches in civil
engineering, agile teams, process models etc. The emergence of crowd sourcing
had further enhanced the challenges that software engineer faced by enhancing
the quantity of inputs for decision makings and forcing him to consider the human
side of crowds (like motivation) to enhance quality of inputs. Crowd sourcing had
beneficial role to play in software engineering as it provides software engineer
the ability to consider the expectation of crowds and this may affect the software
acceptability among them.

Varun Gupta
University of Beira Interior, Covilha, Portugal

xiii

Acknowledgment

ज्ञानशक्तिसमारूढः तत्त्वमालाविभूषितः ।
भुक्तिमुक्तिप्रदाता च तस्मै श्रीगुरवे नमः ॥

First of all, I would like to thank my Gurus Prof. Durg Singh Chauhan, Dr. Kamlesh
Dutta and Prof. Thomas Hanne, whose guidance through out research degrees and
thereafter as an individual researcher, had made it possible to successfully lead &
complete the editorial process of a book effectively.

सर्वार्थसंभवो देहो जनित: पोषितो यत: |
न तयोर्याति निर्वेशं पित्रोर्मत्र्य: शतायुषा ||

Secondly I would like to thank my parents for their continuous support and faith in
me. Its is because of their sacrifices that helped me reach this stage of life.

Third, I would like to take the opportunity to thank the authors who had contributed
their research findings in this book. I thank them for considering this book as the
suitable platform for dissemination of their research work.

Further, I thank the editorial review board members for managing time from their
busy schedules, for undertaking the double blind review process of the submitted
research articles.

I also take this opportunity to thank the IGI publishers and their Book development
Team for all the help & cooperation in making this book a reality.

Last but not the least, I would also like to thank indebted to all whosoever have
contributed in this book.

Varun Gupta
University of Beira Interior, Covilha, Portugal

xiv

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

1

DOI: 10.4018/978-1-5225-9659-2.ch001

ABSTRACT

The word crowdsourcing, a compound contraction of crowd and outsourcing,
was introduced by Jeff Howe in order to define outsourcing to the crowd. It is a
sourcing model in which individuals or organizations obtain goods and services.
These services include ideas and development of software or hardware, or any
other business-task from a large, relatively open and often rapidly-evolving group of
internet users; it divides work between participants to achieve a cumulative result. It
has been used for completing various human intelligence tasks in the past, and this
is an emerging form of outsourcing software development as it has the potential to
significantly reduce the implementation cost. This chapter analyses the process of
software development at a crowdsourced platform. The work analyses and identifies
the phase wise deliverables in a competitive software development problem. It also
proposes the use of Markov decision theory to model the dynamics of the development
processes of a software by using a simulated example.

INTRODUCTION

Crowdsourcing is the Information Technology (IT) mediated engagement of crowds
for the purposes of problem-solving, task completion, idea generation and production
(Howe, 2006; Howe, 2008; Brabham, 2008). The latest breakthroughs in Information
and Communication Technologies (ICT) have ushered a new dawn for researchers to

Markov Decision Theory-
Based Crowdsourcing

Software Process Model
Kamalendu Pal

City, University of London, UK

2

Markov Decision Theory-Based Crowdsourcing Software Process Model

design innovative crowdsourcing systems that can harness Human Intelligence Tasks
(HITs) of online communities. The prime aim of crowdsourcing is to facilitate the
wisdom of crowds. The theory suggests that the average response of many people,
even amateurs, to a question is frequently more accurate than the view of a few
experts. In this respect, a community of individuals with common interests and
facing the same tasks can deliver better products and solutions than experts alone
in the field. Information systems scholars Jean-Fabrice Lebraty and Katia Lobre-
Lebraty confirmed that the “diversity and impudence of the members of a crowd”
is a value addition to crowdsourcing operations (Lebraty & Lobre-Lebraty, 2013).

Therefore, the advantages of crowdsourcing lie mainly in the innovative ideas
and problem-solving capacity that the diverse contributors – which may consist of
experts and interested amateurs – can provide. The crowd can provide expert and
faster solution to an existing problem. Depending on the challenge at hand, the
solution provided may also prove innovative. In this way, crowdsourcing has emerged
as a new labour pool for a variety of tasks, ranging from micro-tasks on Amazon
Mechanical Turk (mTurk) to big innovation contests conducted by Netflix and
Innocentive. Amazon mTurk today dominates the market for crowdsourcing small
task that would be too repetitive and too tedious for an individual to accomplish.
Amazon mTurk established a marketplace where requesters can post tasks and
workers complete them for relatively small amount of money. Image tagging,
document labeling, characterizing data, transcribing spoken languages, or creating
data visualizations, are all tasks that are now routinely being completed online using
the Amazon mTurk marketplace, providing higher speed of completion and lower
price than in-house solutions.

Competitive crowdsourcing is reward based and has been used for variety of
tasks from design of T-Shirts to research and development of pharmaceuticals and
very recently for developing software (Howe, 2008; Lakhani & Lonstein, 2011; Stol
& Fitzgerald, 2014).The mTurk is one of the best-known crowdsourcing platforms
where HITs or microtasks are performed by thousands of workers (Ipeirotis, 2009).

There are different types of crowdsourcing platforms, such as virtual labour
markets (VLMs), tournament crowdsourcing (TC) and open collaboration (OC),
which each have different roles and characteristics (Estelles-Arolas & Gonzalez-
Ladron-de-Guevara, 2012; Prpic, Taeihagh & Melton, 2014). Along with the
growth of crowdsourcing, crowdsourcing platforms are very important to mediate
the transactions. At the same time, IT-mediated platforms improve efficiency and
decrease transaction costs and information asymmetry. However, these platforms
are domain specific.

Crowdsourced Software Engineering derives from crowdsourcing. Using an
open call, it recruits global online labour to work on different types of software
engineering works, such as requirement elicitation, design, coding and testing.

3

Markov Decision Theory-Based Crowdsourcing Software Process Model

This emerging model has been claimed to reduce time-to-market by increasing
parallelism (Lakhani et al., 2010; LaToza et al., 2013; Stol & Fitzgerald, 2014), and
to lower costs and defect rates with flexible development capability (Lakhani et al.,
2010). Crowdsourced Software Engineering is implemented by many successful
crowdsourcing platforms, such as TopCoder, AppStori, uTest, Mob4Hire and
TestFlight. Crowdsourced Software Engineering has also rapidly gained increasing
interest in both industrial and academic communities.

In this chapter only, software development related crowdsourcing business
activities and relevant platforms are considered. Software development is creative and
ever evolving. Organizations use various software development process models and
methodologies for developing software. A software process model (SPM) specifies
the stages in which a project should be divided, order of execution of these stages,
and other constraints and conditions on the execution of these stage (Sommerville,
2017). However, the software development methodology (also known as SDM)
framework did not emerge until the 1960s. The system development life cycle
(SDLC) is the oldest formalized framework for building information systems. The
main idea of the SDLC has been “to pursue the development of information systems
in a very deliberate, structured and methodical way, requiring each stage of the life
cycle – from inception of the idea to delivery of the final system – to be carried out
rigidly and sequentially (Elliott, 2004) within the context of the framework being
applied. The main objective of this framework in the 1960s was to develop large
scale functional business systems in an age of large-scale business conglomerates,
whose information systems activities revolved around heavy data processing and
number crunching routines.

It is worth to explore strategies for successful use of software engineering and
look at the history that forms the basic understanding of good software design and
development practices. The history is important because the basics seem to have been
ignored in many 1990s commercial enterprises seeking to develop large and complex
software systems. In October 1968, a NATO conference on software engineering was
held in Garmisch, Germany (Nauer & Randell, 1969). The conference organizers
coined the phrase ‘software engineering’ as a provocative term to “imply the need
for software manufacture to be based on theoretical foundations and practical
disciplines traditional to engineering”. The highlights of the conference were
discussions related to process: how to produce quality software efficiently, how
to provide customer-oriented service, and how to protect a business investment in
software. Good software engineering was equated with good project management.

As a matter of fact, software engineers aim to use software development models
for building software that meets user requirements and is delivered within the
specified time limit and budget. The objective of software crowdsourcing is to
produce high quality and low-cost software products by harnessing the power of

4

Markov Decision Theory-Based Crowdsourcing Software Process Model

crowd. To meet this objective, the crowd workers who agree to work on the task
are given some financial or social incentives (Hoffmann, 2009). The tasks could
be executed in a collaborative or competitive manner based on the organization
style. Wikipedia and Linux are viewed as well-known collaborative crowdsourcing
examples (Howe, 2008; Doan, 2011). Developing a software through crowdsourcing
blurs the distinction between a user and developer and follows a cocreation principle
(Tsai, Wu, & Huhns, 2014).

With the increasing interest in crowdsourcing software development, it is significant
to analyze the development process methodology used by crowdsourcing platforms.
This chapter analyzes the process of software development at a crowdsourced
platform. The work identifies various artifacts needed at each development phase
and the order of events that occur along with the deliverables of each phase. The
development process is modeled using a Markov Decision Process (MDP) that
provides a mathematical framework for modelling decision making in situations
where outcomes are partly random and partly under the control of the decision-
maker. The reminder of this chapter is organized as follows. Section 2 introduces
the background information of crowdsourcing. Section 3 presents a literature review.
Section 4 describes the application development process of a crowdsourced platform.
Section 5 explains the basis of modelling the process. Section 6 depicts the Markov
Decision Process representation; and finally, Section 7 provides concluding remarks
and future direction this research.

BACKGROUND OF CROWDSOURCING

The term ‘crowdsourcing’ was coined by Jeff Howe in 2006 through an article in
the wired magazine as “the act of a company or institution taking a function once
performed by employees and outsourcing it to an undefined (and generally large)
network of people in the form of an open call” (Howe, 2006). The activities are
executed by people who do not necessarily known each other, and interact with the
company, the ‘requester’, via virtual tools and an internet connection. They become
‘the workers’: they can access tasks, execute them, upload the results and receive
various forms of payment using any web browser. This is a labour market open 24/7,
with a diverse workforce available to perform tasks quickly and cheaply.

A diagrammatic representation of well-established crowdsourcing platform
Amazon’s Mechanical Turk (mTurk) - (www.mturk.com) is shown in Figure 1. In
this diagram, the “requesters” both design and post tasks for the Crowd to work
on. In mTurk, tasks given to the “workers” are called Human Intelligence Tasks”
(HITs). Requesters can test workers before allowing them to accept task and establish
a baseline performance level of prospective workers. Requesters can also accept,

5

Markov Decision Theory-Based Crowdsourcing Software Process Model

or reject, the results submitted by the workers, and this decision impacts on the
worker’s reputation within the mTurk system. Payments for completed tasks can be
redeemed as ‘Amazon.com’ gift certificates or alternatively transferred to a worker’s
bank account. Details of the mTurk interface design, how an API is used to creates
and post HITs and a description of the workers’ characteristics are beyond the scope
of this chapter. With each result submitted by a worker the requester receives an
answer that including various information about how the task was processed. One
element of this data is a unique “workerID” allowing the requester to distinguish
between individual workers. Using this “workerID” it is possible to analyse how
many different HITs each worker completed.

A definitive classification of Crowdsourcing tasks has not yet been established,
however Corney and colleagues (Corney et al., 2010) suggest three possible
categorizations based upon: nature of the task (creation, evaluation and organization
tasks), nature of the crowd (‘expert’, ‘most people’ and ‘vast majority’) and nature
of the payment (voluntary contribution, rewarded at a flat rate and rewarded with
a prize). Similarly, Crowdsourcing practitioners, such as Chaordix (from the
Cambrian House (www.cambrianhouse.com)) describes Crowdsourcing models as
a Contest (i.e. individual submit ideas and the winner is selected by the company,
‘the requester’), a Collaboration (i.e. individuals submit their ideas or results, the
crowd evolves the ideas and picks a winner), and Moderated (i.e. individuals submit
their ideas, the crowd evolves those ideas, a panel – set by ‘the requesters’ select
the finalists and the crowd votes on a winner). In recent decades academics across
many different disciplines have started reporting the use of Internet Crowdsourcing
to support a range of research projects, e.g. social network motivators (Brabham,
2008), relevance of evaluations and queries (Alonso & Mizzaro, 2009; Kostakos,
2009), accuracy in judgment and evaluations (Kittur et al., 2008). Some of relevant
research issues are described in the next section.

Figure 1. Schematic diagram of Amazon’s Mechanical Turk system

6

Markov Decision Theory-Based Crowdsourcing Software Process Model

REVIEW OF LITERATURE

Since the coining of the term crowdsourcing, studies have been carried out on
different aspects of crowdsourcing. Researchers have analyzed the economics of
crowdsourcing contests, proposed models for pricing strategies and done analysis on
earning reward and reputation, in general. Huberman (Huberman, 2009) analyzed data
set from YouTube and demonstrate that the productivity exhibited in crowdsourcing
exhibits a strong positive dependence on attention, measured by the number of
downloads (Huberman, Romero, & Wu, 2008).

The purpose of this literature review section is two-fold: (i) Firstly, to provide a
comprehensive survey of the current research progress on using crowdsourcing to
support software engineering activities. (ii) Secondly, to summarize the challenges
for Crowdsourced Software Engineering and to reveal to what extent these challenges
were addressed by existing work. Since this field is an emerging, fast-expanding area
in software engineering yet to achieve full maturity. The including literature may
directly crowdsource software engineering tasks to the general public, indirectly
reuse existing crowdsourced knowledge, or propose a framework to enable the
realization or improvement of Crowdsourced Software Engineering.

In simplistic sense, the term ‘Crowdsourced Software Engineering’ to denote
the application of crowdsourcing techniques to support software development. It
emphasizes any software engineering activity included, thereby encompassing
activities that do not necessarily yield software in themselves. For example, activities
include project management, requirement elicitation, security augmentation and
software test case generation and refinement. The studies specifying the use of
crowdsourcing for developing software are few in literature. In his work Vukoic M
(Vukoic, 2009) presented a sample crowdsourcing scenario in software development
domain to derive the requirements for delivering a general-purpose crowdsourcing
service in the Cloud (Vukovic, 2009). LaToza and colleagues (LaToza et al., 2014)
developed an approach to decompose programming work into micro tasks for
crowdsourced software development (Latoza, Towne, & Adriano, 2014). In their
work Stol and Fitzgerald (2014) presented an industry case study of crowdsourcing
software development at a multinational corporation and highlighted the challenges
faced (Stol & Fitzgerald, 2014). Zhenghui H. and Wu W. (2014) applied the famous
game theory to model the 2-player algorithm challenges on TopCoder (Hu & Wu,
2014).

Crowdsourced Software Engineering has several potential advantages compared
to traditional software development methods. Crowdsourcing may help software
development organizations integrate elastic, external human resources to reduce
cost from internal employment, and exploit the distributed production model to
speed up the development process.

7

Markov Decision Theory-Based Crowdsourcing Software Process Model

For example, compared to conventional software development, the practice of
TopCoder’s crowdsourced software development was claimed to exhibit the ability to
deliver customer requested software assets with a lower defect rate at lower cost in less
time (Lakhni et al., 2010). TopCoder claimed that their crowdsourced development
could reduce cost by 30% - 80% when compared with in-house development or
outsourcing (Lydon, 2012). Furthermore, in the TopCoder American Online case
study (Lakhani et al., 2010), the defect rate was reported to be 5 to 8 time lower
compared with traditional software development practices.

In another study published in Nature Biotechnology (Lakhani et al., 2013),
Harvard Medical School adopted Crowdsourced Software Engineering to improve
DNA sequence gapped alignment search algorithms. With a development period
of two weeks, the best crowd solution was able to achieve higher accuracy and
three orders of magnitude performance improvement in speed, compared to the US
National Institutes of Health’s MegaBLAST.

The work on competitive crowdsourcing for developing software is in its infancy
and our work analyses the development process model and build a Markov Decision
Process (MDP) representation of the system. MDP has been widely used for
representing sequential decision making and applied to wide range of problems for
obtaining optimal solutions. Researchers in the past have used MDP to find optimal
scheduling policy for a software project (Padberg, 2004); and for the assessment
of the quality of the developed software (Korkmaz, Akman, & Ostrovska, 2014).

CROWDSOURCED PROCESS MODEL

Different crowdsourcing platforms are available for the development of software
applications. Business enterprises like RentACoder, oDesk, Elance, Topcoder, uTest
adopt different approaches for crowdsourcing (Hu & Wu, 2014). This chapter focuses
on the development methodology used by TopCoder. This section presents that how
software is developed through crowdsourcing, and the different phases of development
along with the deliverables of each phase and the sequence of activities followed.

Software Application Development Methodology

TopCoder founded by Jack Hughes is one of the largest competition-based software
development-portal that posts software developed tasks as contests (TopCoder,
2018) (Hu & Wu, 2014). With over 700,000 members it is one of the world’s largest
competitive crowdsourcing community (TopCoder, 2018). It has online community of
digital creators who compete to develop and refine technology, web asserts, extreme
value analytics, and mobile applications for customers (Begel, Bosh, & Storey, 2013).

8

Markov Decision Theory-Based Crowdsourcing Software Process Model

Contests on the TopCoder platform are conducted under three categories: Algorithm
Contests, Client Software Development Contests and Design Contests (Lakhani &
Lonstein, 2011). The algorithm contests are conducted through single round matches
that are posted fortnightly and attract many contestants. This study concerns the client
software development contests that are conducted on this platform. Development
of real-world complex systems is broken into a variety of competitions and the
development proceeds through distinct phases of these competitions. TopCoder
provides mechanisms and infrastructure to manage and facilitate the creation of
problem statements and their solutions. A platform manager is assigned to each
project who closely works with the client to formulate the problem and host it onto
the platform in the form of competitions. The software application development
methodology at the TopCoder platform is shown in the Figure 2.

Phase Specific Deliverables

The application development process progresses in phases. Each phase is executed
through a competition or a series of competitions and the winning entry serves as
an input to the subsequent phases. The client of a crowdsourced platform may use
an existing component from the platform catalogue or request for creation of a new
component. There are six broad phases namely – Conceptualization, Specification,
Architecture, Component Design and Development, Testing and Assembly.

Conceptualization

The competitions under Conceptualization phase are conducted to identify and
document the needs and ideas of the project stakeholders. These competitions can
commence by either running a series of Studio competitions to create graphical
conceptualization artifacts like Storyboards, Wireframes and Prototypes, or a series
of Conceptualization contests to create a Business Requirement Document and
High-Level Use Cases.

After the component design competition is completed, the detailed component
design specifications act an input into Component development competition. During
this competition the component is implemented.

Specification

During the Specification competitions, the application requirements are formulated
in as much detail as necessary in order to accomplish the goals for this application
module. The high-level use cases that are identified during Conceptualization
contests are assigned to modules during System Architecture phase, and during the

9

Markov Decision Theory-Based Crowdsourcing Software Process Model

Specification phase all the individual scenarios that make up those use cases are
broken up in text and graphical form using UML Activity Diagrams.

Architecture

The System Level Architecture competition takes the business requirements and
prototype defined in conceptualization phase as input to define the overall technical
approach that will be employed to meet those requirements. Module-Level Architecture
Phase defines the lower-level technical design of an independent module of a
larger application. This phase is responsible for defining the components and their
interactions that will implement the requirements for the module.

Design and Development

During the component design competition, competitors get an opportunity to
clarify any unclear requirements and define technical details for implementation.
Component design competitions take the component requirements developed during
the architecture phase as input and produce a detailed component design specification.

C: Client; UCD: Use Case Diagram; BRD: Business Requirement Document;
CC: Conceptualization Competition; SC: Specification Competition; SDS: System
Design Specification; ARS: Application Requirement Specification; SL_AC: System
Level Architecture Competition; G-CC: Graphical Conceptualization Competition;
ML-AC: Module Level Architecture Competition; TC: Testing Competition; ML-
AYC: Module Level Assembly Competition

After the component design competition is completed, the detailed component
design specifications act an input into Component development competition. During
this competition the component is implemented.

Figure 2. Software application development methodology

10

Markov Decision Theory-Based Crowdsourcing Software Process Model

Ta
bl

e
1.

 P
ha

se
 W

is
e

D
el

iv
er

ab
le

s

So
ftw

ar
e

D
ev

el
op

m
en

t P
ha

se
In

pu
t

So
ur

ce
R

el
at

ed
 A

rt
ifa

ct
s a

s i
np

ut
R

el
at

ed
 a

rt
ifa

ct
s

to
w

ar
ds

 o
ut

pu
t

D
el

iv
er

ab
le

s

C
on

ce
pt

ua
liz

at
io

n
(C

C
)

C
on

ce
pt

ua
liz

at
io

n
Q

ue
sti

on
na

ire
C

W
ire

fr
am

es
 /

St
or

yb
oa

rd
s

U
C

D
B

R
D

Pr

ot
ot

yp
e

Sy
ste

m
 L

ev
el

 A
rc

hi
te

ct
ur

e
(S

L-
A

C
)

B
R

D

A
ct

iv
ity

 D
ia

gr
am

s
Te

ch
ni

ca
l Q

ue
sti

on
na

ire

C
C

SC

C

St
or

yb
oa

rd
s /

 W
ire

fr
am

es

/ P
ro

to
ty

pe
 T

ec
hn

ic
al

Q

ue
sti

on
na

ire

Se
qu

en
ce

D

ia
gr

am

In
te

rfa
ce

D

ia
gr

am

SD
S

In
te

gr
at

io
n

Pl
an

Sp
ec

ifi
ca

tio
n

(S
C

)

C
on

ce
pt

ua
liz

at
io

n
D

oc
um

en
ts

H

ig
h

le
ve

l U
se

 C
as

es

Sp
ec

ifi
ca

tio
n

Te
m

pl
at

e
C

C
W

ire
fr

am
es

 /
St

or
yb

oa
rd

s /

Pr
ot

ot
yp

es
A

ct
iv

ity
 D

ia
gr

am
A

R
S

Te
sti

ng

(T
C

)
B

R
D

SD

S
C

C

SL
-A

C

A
ct

iv
ity

 D
ia

gr
am

s /

U
se

 C
as

es
 /

Pr
ot

ot
yp

es
Te

st
Sc

rip
ts

Q
A

 P
la

n
A

pp
lic

at
io

n
te

st
su

ite

M
od

ul
e

Le
ve

l
A

rc
hi

te
ct

ur
e

(M
L-

A
C

)

B
R

D

St
or

yb
oa

rd
s /

 W
ire

fr
am

es
 /

Pr
ot

yp
e

A
ct

iv
ity

 D
ia

gr
am

Te

ch
ni

ca
l Q

ue
sti

on
na

ire

C
C

G

-C
C

SC

C

W
ire

fr
am

es
 /

St
or

yb
oa

rd
s /

Pr

ot
ot

yp
es

M
od

ul
e

Se
qu

en
ce

 D
ia

gr
am

s /

M
od

ul
e

In
te

rfa
ce

D

ia
gr

am
s

M
od

ul
e

D
es

ig
n

Sp
ec

ifi
ca

tio
ns

 /
C

om
po

ne
nt

Re

qu
ire

m
en

t S
pe

ci
fic

at
io

ns

Sy
ste

m
 L

ev
el

A

ss
em

bl
y

(S
L-

A
Y

C
)

B
R

D

Sy
ste

m
 L

ev
el

 A
rc

hi
te

ct
ur

e
SC

SL

-A
C

Pr
ot

ot
yp

e
D

ep
lo

ym
en

t
D

oc
um

en
t

A
ss

em
bl

y
So

ur
ce

Pr
ot

yp
e

A
ss

em
bl

y
(P

-A
Y

C
)

A
pp

lic
at

io
n

Sp
ec

ifi
ca

tio
n

D
oc

um
en

ts
C

Pr
ot

ot
yp

e
D

ep
lo

ym
en

t
D

oc
um

en
t

A
ss

em
bl

y
C

od
e

C
om

po
ne

nt
 D

es
ig

n
/

D
ev

el
op

m
en

t
(C

D
D

C
)

C
om

po
ne

nt
 S

pe
ci

fic
at

io
n

SL
-A

C

M
L-

A
C

C
om

po
ne

nt
 D

es
ig

n
Re

qu
ire

m
en

ts
U

ni
t T

es
ts

C
om

po
ne

nt

D
es

ig
n

C
G

C

C
om

po
ne

nt

D
oc

um
en

ta
tio

n

co
nt

in
ue

s o
n

fo
llo

w
in

g
pa

ge

11

Markov Decision Theory-Based Crowdsourcing Software Process Model

So
ftw

ar
e

D
ev

el
op

m
en

t P
ha

se
In

pu
t

So
ur

ce
R

el
at

ed
 A

rt
ifa

ct
s a

s i
np

ut
R

el
at

ed
 a

rt
ifa

ct
s

to
w

ar
ds

 o
ut

pu
t

D
el

iv
er

ab
le

s

M
od

ul
e

Le
ve

l
A

ss
em

bl
y

(M
L-

A
Y

C
)

B
R

D

U
C

D

A
ct

iv
ity

 D
ia

gr
am

Q

A
 P

la
n

A
pp

lic
at

io
n

D
es

ig
n

Sp
ec

ifi
ca

tio
n

C
om

po
ne

nt
 S

eq
ue

nc
e

an
d

D
ep

lo
ym

en
t D

ia
gr

am

C
C

SC

TC

M

L-
A

C

C
us

to
m

 a
nd

 G
en

er
ic

C

om
po

ne
nt

s
D

ep
lo

ym
en

t
D

oc
um

en
t

A
ss

em
bl

y
So

ur
ce

C
er

tif
ic

at
io

n
C

om
pl

et
ed

 A
ss

em
bl

y
Re

qu
ire

m
en

t D
oc

um
en

ts

M
L-

A
Y

S
SC

Te
st

C
as

es
JI

R
A

 Is
su

es
B

ug
 F

ix
es

Ta
bl

e
1.

 C
on

tin
ue

d

12

Markov Decision Theory-Based Crowdsourcing Software Process Model

Testing

Testing competitions provide the mechanism for verifying that the requirements
identified during the initial phases of the project were properly implemented and
that the system performs as expected. The test scenarios developed through these
competitions ensures that the requirements are met end-to-end.

Assembly

The System Assembly competition creates the foundation for the application. This
includes creating the build scripts that will be used throughout the application as
well as incorporating all identified components into the shell that implements the
application’s cross-cutting corners. The Prototype Assembly competition focuses
on the logic and functionality required as part of the front end and converts a
prototype into the presentation-layer shell of the application. This competition is
run after the protype has been approved by the client. Since this competition does
not focus on back-end functionality or architecture, it can be run before or during
the architecture phase.

Module Assembly competition integrates components developed during the
component production process into the shell application built during System
Assembly. The core functionality of the application is put in place and a fully-
functional application is an output of this phase. After the application is assembled,
certification verifies that the application functions correctly. Using the test cases
produced by Testing Competitions, as well as Bug Hunt Competitions, the application
is compared to the requirements for the purpose of Validation. Table 1 shows the
major deliverables from the various phases of the development process.

Activity Sequence

The platform also provides a service called ‘TopCoderDirect’, which is more like a
self-service mode in which there is no intervention of the employees of TopCoder.
In this service, a platform manager acts as a Co-pilot to educate the client on the
working of the platform and the hosting of the competitions is done directly by
the client. A Co-pilot or a Platform Manager who is assigned to a project has the
responsibility of hosting the competitions of each phase and each phase of the
development process follows the sequence of activities as listed in Figure 3.

The setup activity is undertaken before the competition is posted and on an average
is of 02 days duration. Once the competition is posted, the registration time duration
of around two days is given to the competitors to register for the competition. The
competitors after registering for the event work on developing their solution for

13

Markov Decision Theory-Based Crowdsourcing Software Process Model

around one to five days. The competitors may ask queries or discuss their problems
in the forum, before submitting the solution. After the submission phase closes, quick
screening of the submitted solutions is done as per the minimum quality standards
set by the platform to decide eligible entries to the review phase. A panel of three
members then reviews each solution that has passed the screening on a scorecard.
The process takes around a day and after its completion, the competitors get an
opportunity to appeal for anything they believe to be an error in scoring. The time
duration for making an appeal is around a day. After the appeal process is completed,
the final score of each submission is calculated and a winner is declared based on
the highest score submission. The winner then may address any issues that were
identified during the review process and after the final fixes and review the winning
contestant is required to support a contest by answering forum questions for that
contest.

Advantages

The competition-based development model used by TopCoder has successfully
created software for the use of individuals and organizations. Some of the benefits
of the competition-based development model to a project in an organization are as
listed below:

• The time and cost needed to hire, train and fire people are lowered.
• The cost of networking, communication and infrastructure is reduced.
• The participants possess diverse skills and experience there by creating

innovative solutions.

Figure 3. Activity sequence

14

Markov Decision Theory-Based Crowdsourcing Software Process Model

• The individual’s interest and choice of working on a problem increases the
chances of submitting solutions as per the deadline.

• The solutions to the problems are not depend on individuals.
• The intensive review process ensures the selection of the best and quality

work as a winning solution.
• Winning solution is rewarded with a fixed pre-decided amount only if the

solution meets the specifications and is delivered on time there by reducing
cost of development.

There are numerous benefits that crowd workers realize to be active participants
in the competition-based development model. Individuals are keen to participate
a competitor either to spend quality time on the internet for fun or to earn extra
income. The social and financial incentives gained by competitors are often a driving
factor for continuous participation in the competitions at a crowdsourced platform.
The flexibility of working as per their convenience and having no requirement of
reporting to their bosses is an attraction for many.

System Modelling

It is important to model the behavior of the system to demonstrate progression and
evaluate performance. Markov Decision Process (MDP) is a useful technique to
abstract the model of dynamics of the development process (16). This section
formalizes the software development process as an MDP which represents a way
of modelling a system, through states and transition. An MDP is a discrete time
stochastic control process, formally presented by a tuple of four objects (S, A, Pai,
Rai) (19). S is the state space; s S∈ is the current state of the system. A is the
action space, where a Ai ∈ is the action taken based on the current state.
P s sai

(,)′ is the probability that action ai in state s at time t will lead to state
′s at time t + 1. Rai is the immediate reward obtained on performance action ai .

Software development process occurs in phases and a phase ends when the
deliverables of that phase have been produced and this characteristic of the phase
allows us to use a discrete-time, MDP as a mathematical model. This chapter presents
the software development process that has been adopted as a sequential decision
problem in which the set of actions, rewards, cost, and transition probabilities depend
only on the current state of the system and the current action being performed. In a
crowdsourced software development methodology, a platform manager works with
the client to formulate a project road map for building the software. The development
then progresses in phases from conceptualization contests in order to finalize BRD,
to conducting a series of specification contests to finalize ARS and developing

15

Markov Decision Theory-Based Crowdsourcing Software Process Model

application’s wireframes and storyboards, to conducting architecture contests for
final SDS and for creation of new components through design and development
competitions towards assembly competitions, generation of QA plan through testing
competitions and eventually deployment. In this chapter the development process
is built in a way that different states and an action results in the transition from one
state to another.

States

The state of a system is a parameter, that describes the system. The state of software
project changes at the end of each phase. The state consists of four parts:

1. A status vector (V)
2. An accomplishment vector (Va)
3. A progress vector (P)
4. A countdown variable (C)

The status vector has an entity for each component that defines the status of the
component. As the development progresses the project moves from initialization
towards completion. There are many artifacts, intermediate deliverables and
components that are developed as the project progresses. The status of these
components can have any of the following values:

• ND; Not Developed
• TD: To be Developed
• UQ: Under Qualification
• AD: Almost Developed
• SD: Successfully Developed
• CD: Cancelled Development

The set of all possible status values would be {ND, TD, UD, UQ, AD, SD, CD}.
The ND state is the initial state of the component. The TD state is a state when the
development has not yet started but is in pipeline/ The UD state is the state in which
the component is being developed. The UQ is the under-qualification state of the
component where qualification is termed as the criteria for deciding the component
to qualify for the acceptance. The AD state is a state when the development is almost
completed but needs final fixes before completion. The SD state is termed as the
completion of the component. CD state represent a cancelled development status
of the component.

16

Markov Decision Theory-Based Crowdsourcing Software Process Model

The status vector of a project defines the status of project components:

V = (v1, v2, v3, …. vZ, … vN)

where vz represents the status of the zth project component at the end of the current
phase and N is the total number of project components. For example, the vector
(TD, UQ, SD) can be considered a valid status vector for a project having three
components.

The accomplishment vector Va is the contestant ID who is a wining contestant
and has successfully accomplished the task of developing a component. It has a
value of 0 if no contestant is a winning contestant for successful development of
the component so far. For example, the vector (1, 3, 0) can be considered a valid
assignment vector for a project having three components. The progress vector P
defines the time that has been spent working on a component in a phase. If the work
is completed on the component and it has been successfully developed the value
of P would be infinity. If the competition has been set up and no submissions have
been received, then the value would be 0.

Every project has a deadline and the platform manager in consultation with
the client establishes an estimated development time for a project. The countdown
variable c is the time left for the completion of the project as per the predetermined
development time.

Actions

An action defines what is done with the project deliverable at a given development
phase. Actions may depend on the current state and phase of development. On
performing a particular action, the state is changed to a new state. The new state
of the component depends on what action is performed. The possible actions that
can be performed based on the activity sequence as discussed in previous section
are as stated below:

1. Reuse existing component (a1)
2. Setting-up Competition

a. Reviewing Requirements to setup (a2)
b. Establishing Project Goals (a3)
c. Identifying Important Processes (a4)
d. Contest Posting (a5)
e. Cancelling Contest (a6)

3. Registration and Submission
a. Member registration for Competition (a7)

17

Markov Decision Theory-Based Crowdsourcing Software Process Model

b. Forum Discussion (a8)
c. Submission of solution by registered competitors (a9)
d. Submission Closed (a10)
e. Screening of the submission (a11)
f. Cancelling Contest (a6)

4. Reviewing
a. Reviewing of screened submissions (a12)
b. Evaluating scorecard (a13)
c. Addressing appeals (a14)
d. Selecting Winner (a15)
e. Final Fixes and Reviews (a16)
f. Winning Contestant Support (a17)
g. 4. g. Cancelling Contest (a6)

A = {a1, a2, a3, … a17}

Transition Probabilities

The transition probability, Pai (s, s’) represents the probability of a system to move
from one state, s to another s’ under a stated action ai. The next state is not determined
alone by the stochastic nature of selected dynamics, it occurs with some probability.
We have assumed the transition probability from a Not Developed (ND) state to
Successfully Developed (SD) state directly, on choosing to reuse a component from
the existing catalogue of the platform and not entering the development phases.
We have assumed the probabilities based on the statistical data as published in
the literature. According to the case study (7), 60 percent of the times a reusable
component is selected from the existing catalogue. It is assumed that the remaining
40 percent of the times the development progress through competitions, 90 percent
of the times the progression is smooth and 10 percent of the times, the progression
encounter issues to cancel and roll back competitions.

Immediate Reward

Moving from one state to another on taking a particular action ai, results in getting
an immediate reward Rai. The reward can be positive or negative number from a
set of real numbers R. In the present model, it has been assumed that moving from
one state to another represents progression and an immediate stationary reward
of positive 5 units is attained uniformly for all states when progression is towards
completion. Any cancelling action undertaken during the development of a component
at any state, results in a negative reward of 5 units, as it depicts cost incurred and

18

Markov Decision Theory-Based Crowdsourcing Software Process Model

penalty. Since development is a time-based process, it is to be noted that the impact
of cancelling contest during a latest stage of development results in more loss as
compared to the early states.

MDP REPRESENTATION AND RESULTS

An MDP model is given in Figure 3. The circle represents the state of the component
at a given time t in the system. The edges represent the chosen action that causes the
state to be changed and depicts admissible transition. The probability of a system
to move to new resultant state (s’) at time (t + 1) after a stated action is taken is
depicted along with the edges. The representation of various states is as follows:
State 0: ND; State 1: TD; State 2: UD; State 3: CD; State 4: UQ; State 5: AD; State
6: SD. The Transition probability Maximum and the Immediate Reward Matrix are
given at Table 2 and Table 3 respectively.

Table 2. Transition probability matrix

To From State 0 State 1 State 2 State 3 State 4 State 5 State 6

State 0 0.0 0.4 0.0 0.0 0.0 0.0 0.6

State 1 0.0 0.0 0.9 0.1 0.0 0.0 0.0

State 2 0.0 0.0 0.0 0.1 0.9 0.0 0.0

State 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

State 4 0.0 0.0 0.0 0.1 0.0 0.9 0.0

State 5 0.0 0.0 0.0 0.0 0.0 0.0 1.0

State 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 3. Transition probability matrix

To From State 0 State 1 State 2 State 3 State 4 State 5 State 6

State 0 5

State 1 5 -5

State 2 -10 5

State 3

State 4 -15 5

State 5 5

State 6

19

Markov Decision Theory-Based Crowdsourcing Software Process Model

CONCLUSION AND FUTURE WORK

IT enterprises these days are keen on crowdsourcing the tasks to their internal
employees for optimal utilization of their resources. In times to come we may see a
total change in the way software is being developed. Rather than hiring people for
specific tasks and creating a workforce, or crowdsourcing to their own employees,
organizations might switch to this peer production mode of getting software developed
through genera crowd. There being limited studies on the development process models
for developing software, the presented work provides an insight into the various
phase, deliverables and integration strategies resulting into a final product. This
chapter modeled the development process as a Markov Decision Process and present
different states a component can be in, probably actions and their resulting states.

In the long term, the methods presented here could also be used for building up
databases of ‘solutions and decisions’ that machine intelligence requires. In other
words, an Internet crowd could be used for the generation “cases”, by exposing
them to decision-making situations the system will encounter. Once analyzed and
amalgamated, these could be stored and embedded into the system’s knowledge
bases, from which they can be pulled and put into action when necessary. In this way
the crowd, a “knowledge network”, becomes the solution provider. The proposed
model would enable to depict and monitor the progress of development of software
through a crowdsourced platform. The extension of the work would be a stochastic
simulation of the proposed model is to estimate the optimal scheduling strategies
for developing software through a crowdsourced platform.

Figure 4. MDP representation of the model

20

Markov Decision Theory-Based Crowdsourcing Software Process Model

REFERENCES

Alonso, O., & Mizzaro, S. (2009). Relevance criteria for e-commerce: a
Crowdsourcing-based experimental analysis. Proceedings of the 32nd International
ACM SIGIR Conference on Research and Development in Information Retrieval,
760-761. 10.1145/1571941.1572115

Begel, A., Bosh, J., & Storey, M. A. (2013). Social Networking Meets Software
Development: Perspectives from GitHub. Software, 30(1), 52–66. doi:10.1109/
MS.2013.13

Brabham, D. C. (2008). Crowdsourcing as a model for problem solving an introduction
and cases. Convergence, 14(1), 75–90. doi:10.1177/1354856507084420

Brabham, D. C. (2008a). Moving the crowd at iStockphoto: The composition of
the crowd and motivations for participation in a Crowdsourcing application. First
Monday, 13(6). doi:10.5210/fm.v13i6.2159

Corney, J. R., Torres-Sanchez, C., Jagadeesan, A., Prasanna, R., & William, C.
(2010). Outsourcing labour to the cloud. International Journal of Innovation and
Sustainable Development, 4(4), 294–313. doi:10.1504/IJISD.2009.033083

Doan, A., Ramakrishnan, R., & Halevy, A. Y. (2011). Crowdsourcing
systems on the World-Wide Web. Communications of the ACM, 54(4), 86.
doi:10.1145/1924421.1924442

Elliott, G. (2004). Global Business Information Technology: an integrated system
approach. Person Education Limited.

Estelles-Arolas, E., & Gonzalez-Lodron-De-Guevara, F. (2012). Towards an
integrated crowdsourcing definition. Journal of Information Science, 38(2), 189–200.
doi:10.1177/0165551512437638

Hoffmann, L. (2009). Crowd Control. Communications of the ACM, 52(3), 16–17.
doi:10.1145/1467247.1467254

Howe, J. (2006). The rise of crowdsourcing. Wired Magazine.

Hu, Z., & Wu, W. (2014). A Game Theoretic Model of Software Crowdsourcing.
In Proceedings of Service Oriented System Engineering (pp. 446–453). SOSE.
doi:10.1109/SOSE.2014.79

Huberman, B. A., Romero, D. M., & Wu, F. (2009). Crowdsourcing – Attention and
Productivity. Information Science, 35(6), 758–765. doi:10.1177/0165551509346786

21

Markov Decision Theory-Based Crowdsourcing Software Process Model

Ipeirotis, P. G. (2009). Analyzing the Amazon Mechanical Turk Marketplace. ACM
XRDS.

Kitur, A., Chi, E. H., & Suh, B. (2008). Crowdsourcing user studies with mechanical
turk. In Proceeding of the Twenty-sixth Annual SIGCHI Conference on Human
Factors in Computer Systems. ACM. 10.1145/1357054.1357127

Korkmaz, O., Akman, I., & Ostrovska, S. (2014). Assessing Software Quality Using
the Markov Decision Processes. Human Factors and Ergonomics in Manufacturing
& Service Industries, 24(1), 86–104. doi:10.1002/hfm.20355

Kostakos, V. (2009). Is the crowd’s wisdom biased? A quantitative analysis of three
online communities. International Symposium on Social Intelligence and Networking
(SIN09), Vancouver, Canada. 10.1109/CSE.2009.491

Lakhani, K. R., Boudreau, K. J., Loh, P. R., Backstrom, L., Baldwin, C., Lonstein, E.,
... Guinan, E. C. (2013). Prize-based contests can provide solutions to computational
biology problems. Nature Biotechnology, 31(2), 108–111. doi:10.1038/nbt.2495
PMID:23392504

Lakhani, K. R., Garvin, D. A., & Lonstein, E. (2010). TopCoder(A): Developing
software through crowdsourcing. Harvard Business School Case.

Lakhani, K. R. & Lonstein, E. (2011). TopCoder(A): Developing Software through
Crowdsourcing (TN). Harvard Business Teaching note, 611-671, March 2011.

Latoza, T. D., Ben Towne, W., Adriano, C. M., & Van Der Hock, A. (2014).
Microtask Programming: Building Software with a Crowd. User Interface Software
and Technology Symposium, 43-54. 10.1145/2642918.2647349

Lebraty, J., & Lobre-Lebraty, K. (2013). Crowdsourcing: one Step Beyond. London:
John Wiley & Sons. doi:10.1002/9781118760765

Lydon, M. (2012). Topcoder overview. Retrieved from http://www.nasa.gov/pdf/
651447main.TopCder_Mike_D1_830am.pdf

Nauer, P., & Randell, B. (1969). Conference on Software Engineering. NATO
Scientific Affairs Division.

Padberg, F. (2004). Linking software process modelling with Markov decision theory.
Proceedings of the 28th Annual International Computer Software and Application
Conference, COMPSAC 2004, 2, 152-155.

Prpic, J., Taeihagh, A., & Melton, J. (2014). Experiments on Crowdsourcing, Policy
Assessment. In Proceeding of IPP 2014. Oxford Internet Institute.

http://www.nasa.gov/pdf/651447main.TopCder_Mike_D1_830am.pdf
http://www.nasa.gov/pdf/651447main.TopCder_Mike_D1_830am.pdf

22

Markov Decision Theory-Based Crowdsourcing Software Process Model

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Academic Press.

Sommerville, I. (2017). Software Engineering. Person Education Limited.

Stol, K., & Fitzgerald, B. (2014). Two’s Company, Three’s a Crowd: A Case Study
of Crowdsourcing Software Development. Proceedings of ICSE, 2014, 187–198.

Stol, K., & Fitzgerald, B. (2014). Researching Crowdsourcing Software Development:
Perspectives and Concerns. Proceedings of CSI-SE, 7-10. 10.1145/2593728.2593731

TopCoder. (2018). Available: http://www.topcder.com

Tsai, W. T., Wu, W., & Huhns, M. N. (2014). Cloud-Based Software Crowdsourcing.
Internet Computing, 18(3), 78–83. doi:10.1109/MIC.2014.46

Vukovic, M. (2009). Crowdsourcing for Enterprises Maja Vukovi. Proceedings of
Congess on Services-I, 686-692.

KEY TERMS AND DEFINITIONS-

Crowdsourcing: Crowdsourcing is the Information Technology mediated
engagement of crowds for the purposes of problem-solving, task completion, idea
generation, and production.

Crowdsourcing Software Engineering: Crowdsourcing software engineering
derives from crowdsourcing. Using an open call, it recruits global online labour
to work on different types of software engineering works, such as requirement
elicitation, design, coding and testing.

Human Intelligence Tasks: In crowdsourcing business model, employers post
jobs known as Human Intelligence Tasks (HITs), such as identifying specific content
in an image or video.

Markov Decision Theory: In practice, decision is often made without a precise
knowledge of their impact on future behaviour of systems under consideration.
The field of Markov Decision Theory has developed a versatile approach to study
and optimize the behaviour of random processes by taking appropriate actions that
influence future evolution.

Software Process Model: In software engineering, a software process model
is the mechanism of dividing software development work into distinct phases to
improve design, product management, and project management. It is also known as
a software development life cycle. The methodology may include the pre-definition
of specific deliverables and artifacts that are created and completed by a project
team to develop or maintain an application.

http://www.topcder.com

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

23

DOI: 10.4018/978-1-5225-9659-2.ch002

ABSTRACT

This study addresses the problem of effectively searching and selecting relevant
requirements for reuse meeting stakeholders’ objectives through knowledge discovery
and data mining techniques maintained over a cloud platform. Knowledge extraction
of similar requirement(s) is performed on data and meta-data stored in central
repository using a novel intersective way method (i-way), which uses intersection
results of two machine learning algorithm namely, K-nearest neighbors (KNN) and
term frequency-inverse document frequency (TF-IDF). I-way is a two-level extraction
framework which represents win-win situation by considering intersective results
of two different approaches to ensure that selection is progressing towards desired
requirement for reuse consideration. The validity and effectiveness of results of
proposed framework are evaluated on requirement dataset, which show that proposed
approach can significantly help in reducing effort by selecting similar requirements
of interest for reuse.

I-Way:
A Cloud-Based Recommendation System

for Software Requirement Reusability

Chetna Gupta
Jaypee Institute of Information Technology, Noida, India

Surbhi Singhal
Jaypee Institute of Information Technology, Noida, India

Astha Kumari
Jaypee Institute of Information Technology, Noida, India

24

I-Way

INTRODUCTION

Requirements reuse is a deliberate methodology which provides organizations
with the novel ability to share a requirement crosswise over projects without
absorbing unnecessary duplication of artifacts, thereby reducing development
cost and accelerating time to market delivery. In last few years researchers and IT
practitioners have attracted towards the concept of requirement reusability with
the objective to decide on a set/subset of ready to use requirements (“as-is” or with
some modifications). Though requirement reusability supports resource optimization
during development and helps in reduction of errors but it is a challenging task that
requires careful decision making and planning to provide desired functionality to
the user. An early start preferably during requirement elicitation in this direction
is most beneficial form of software reuse to save cost, time and accelerate time
to market delivery. Decision on which requirement to reuse and to what extend
depends upon the project context and situation at hand. Existence of a particular
requirement does not guarantee that it is reusable in its present form. In the light of
reusability, requirements are tuned to specific needs in order to increase their value
to the customer and adaptability for the project at hand. Software developers should
not only focus on the context in which an existing requirement can be used rather
they should analyze other aspects of a requirement like, dependency between two or
more requirements, related requirements that go well with the chosen one and might
be reused along in order to add more value to the system, use cases, tests, attributes
and hierarchy. In other words, a well written (at the right level of abstraction and
scope) requirement should only be considered for reuse as comparison to generic
requirements which might not save cost and time of software developers due to
non availability of complete description of a requirement. Though it has received
little attention (Kotonya & Sommerville, 1997; Lamsweerde, 2000), reusing early
software products and processes can impact the life cycle from two basic points of
view: improving the requirements engineering process (Cybulski, 1998; Sutcliffe
et al., 1998), and supporting the development with reuse (Bellinzona et al., 1993;
Bellinzona et al., 1992) process. Several tools and approaches for example, (Chou et
al., 1996; Mannion et al., 1999; Mobasher & Cleland-Huang, 2009; Pacheco et al.,
2017; Bakar et al., 2015; Schmitt & Liggesmeyer, 2015; Paydar & Kahani, 2015)
etc. have been proposed in the literature to support requirement reuse as part of their
functionality which can assist in finding a better set of software requirements according
to a set of goals and constraints. Majority of them uses structuring and matching of
requirements as a method. Other approaches use requirement specifications with
similar behaviour or reuse, based on the assumption that specifications that exhibit
similar behaviour are appropriate for reuse for the system which is under development.

25

I-Way

Motivated by above observation, this paper proposes a multi-criteria requirement
reusability tool which first elicits stakeholder preference value to understand the
interest of project stakeholder. This further assists developers to select relevant
requirements from shared requirement repository and design solution to meet
stakeholder value with minimum cost and budget. This shared resource in fact is a
repository from where similar requirements matching criteria are retrieved, modified
to tune it according to the need of the current project that is subsequently stored
back into repository. A cloud support with web application is provided to assists
developers in selecting a requirement in an optimized way using K-nearest neighbors
(KNN) and term frequency–inverse document frequency (TF-IDF) from requirement
repository to assist large scale software project development. Requirement repository
here refers to the collection of requirements which supports requirement selection
procedure by considering three main parts of a requirement namely, data, metadata
and their inter relationships. The whole process is divided into two levels: goal
base (representing data part of requirement) and deep analysis base (representing
metadata and relationship part of requirement) which stores details pertaining to their
probable effort, risk and correlation among requirements. This 2-level extraction
framework represents win-win situation by considering intersective results of two
different machine learning approaches to ensure that selection is progressing towards
desired requirement for reuse consideration.

The entire paper is organized as follows: A discussion on related work is presented
in section 2. Detailed explanation of the proposed approach, tool support, result
observation and research questions is discussed in section 3 and 4 respectively. The
concluding remark follows in section 5.

Literature Review

The identification and timely reuse of requirements could potentially reduce
development costs, shorten time-to-market, improve quality, and increase product
competitiveness. (Chou et al., 1996) proposed an objective of behavior-based
classification and retrieval technique for object-oriented specification reuse. Reusable
requirements are identified using semantic similarity. The basis of their study was
that specifications with similar behavior can be considered for reuse. In this study,
data was collected using document examination and degree of reuse was the variable
to be measured. (Woo & Robinson, 2002) have proposed an approach which relies
on semantics of UML diagrams. Dataset was constructed using CASE tools. The
variable measured was degree of reuse which gave a positive result. The whole
approach was illustrated with the tool called SCENASST (SCENarioASSisTant),
which uses machine learning techniques. Similar work is proposed by (Paydar &
Kahani, 2015) uses UML diagrams to support reusability by measuring the similarity

26

I-Way

of UML-based use-cases through metric. (Benitti & da Silva, 2013) uses catalog of
patterns and the traceability between requirements to support requirement reusability.
Questionnaires were collected to construct dataset. Requirement management and
degree of reuse were the measured variables which gave satisfactory result. Results
were observed using both qualitative and quantitative analysis. (Moon et al., 2005)
proposed an approach in which requirements are observed as core assets and they
suggested a process model having four stages to develop and generate reusable
requirements. Dataset was made by examining the documents. SPL suitability and
degree of reuse variables were measured which gave positive result. (Eriksson et
al., 2009) proposes a model called PLUSS which uses feature models to support
requirement reuse. In their study, document examination is used to create dataset.
Acceptability, degree of reuse, and SPL suitability variables were measured. It
consisted of multiple data collections in order to address the research questions.
(Maiden & Sutcliffe, 1992) proposed an approach which uses three step method
to develop and reuse requirements for reuse. They collected data by examining the
documents. Degree of reuse and development effort variables were measured. They
discussed a case tool, Ira, to implement and describe the proposed approach. (Mannion
et al., 1999) proposed an approach to reuse requirements based on application of
families which uses requirements set, a domain model and discriminates to identify
requirements for reuse. Data was collected by examining various documents. SPL
suitability was the only variable to be measured. This study extends MARM model
and uses TRAM tool to analyze results. (Pacheco et al., 2017) proposed an approach
called Requirements reuse model for Software Requirements Catalog (RRMSRC)
which is capable of supporting requirements reuse activities based on the IEE Std.
830- 1998 for maximizing the effectiveness of reuse by matching requirements to
identify reusable requirements. This approach uses requirements catalog to support
the requirements reuse (Pacheco et al., 2015). (Goldin & Berry, 2015) recommend
a reuse procedure dependent on ‘project families’ that structure the requirements
utilizing one of a kind naming. The examination portrays the experience from
several contextual analyses of projects that have used reuse of requirements. A model
presented by Schmitt and Liggesmeyer (Schmit & Liggesmeyer, 2015) structures
the requirements for reuse under security requirements area only. These structures
can enable reuse in different contexts. (Bakar et al., 2015) extracts high-frequency
words from requirements through text mining to support the reuse of requirements.
The examination portrays the strategy to build up the artefacts for reuse but the
proposed approach yet does not exhibit how these newly extracted features will be
reused. Many researchers have used Ivarsson and Gorschek’s rubric (Ivarsson &
Gorschek, 2011) and have provided various refinements to it for supporting reuse
(Munir et al., 2014; Ali et al., 2014; Munir et al., 2016; Elberzhager et al., 2012).

27

I-Way

S. Lim and A. Finkelstein (Lim et al., 2012) proposed StakeRare approach that
uses social network analysis and collaborative filtering to identify and prioritize
requirements in large software projects. Stakeholders are asked to rank initial
requirements and new set of requirements are recommended using collaborative
filtering approach. On similar lines two more approaches mentioned in (Castro-Herrera
e al., 2008) and (Mobasher & Cleland-Huang, 2009) recommend requirements to
stakeholders using collaborative filtering. The basis of recommendation is related
to identifying stakeholders, generating requirements and providing support for
decision making tasks. (Maalej & Thuremella, 2009) proposed a research agenda for
recommendation systems in requirements engineering. They visualized potential uses
of recommendation systems which included recommendation of quality measures,
templates to use, past rationale decisions, vocabulary to use, requirements from
previous systems, experts in domain for solving particular issues, status of activities
and priority.

PROPOSED APPROACH

This study aims to identify and recommend requirements that are most similar to
the initial, top ranked set of stakeholder’s requirements. The proposed approach
mines requirement description of data, meta data and their relationships from shared
repository and uses text mining, k-Nearest- Neighbour and cosine similarity with Tf-
Idf algorithms to recommend a new context specific requirement. The recommended
requirements are analyzed for consideration of reusability which can relatively save
cost and time of software developers.

Elicitation of Stakeholder’s Priority

The process starts with assisting stakeholders in elicitation of their initial interest
using a tool support to interleaves human activities using a multi criteria decision
analysis method, TOPSIS (Hwang & Yoon, 1981) to obtain ideal preferences ranking
on following five prime criteria’s: business value importance, urgency, market
influence, ease of use and volatility. Figure1 provides a snapshot of initial ordering
generated for an example set of 10 requirements as stakeholders initial ordering for
a web based project providing farming assistance to farmers. This model enhances
business communication and facilitates direct communication between farmer-to-
supplier and farmer-to-farmer. A total of 10 requirements selected as an independent
module to carry out this work. These initial preferences will help software developers
in deciding which among the set of requirements will be selected first as input for
identifying similar requirements for reusability.

28

I-Way

Matching and Selection Process

This requirement recommendation process is initiated using a tool support where
top 3 ranked requirements obtained from stakeholder’s are entered along with
their priority preference values (refer figure 2). Knowledge extraction of similar
requirement(s) matching stakeholder interest is performed on data and meta-data
stored in central repository maintained over a hybrid cloud. From this requirement
repository requirements similar matching requirements criteria are retrieved, modified
to tune it according to the need of the current project and are subsequently stored
in repository for future use. A hybrid cloud deployment model is used as a main
database and is shared by various organizations supporting the concept of reusability.
The involvement of organizations will help increasing the requirement gathering
coverage domain for better reusability. Hybrid cloud allows one to extend either
the capacity of a cloud service, by aggregation, integration or customization with
another cloud service (Mell & Grance, 2011) for providing data security through
public and private cloud services. This study uses heroku cloud platform (Heroku).

Stakeholder’s enter initial product requirements along with ranking of importance
for each. The whole process of matching is divided into two levels: goal base
(representing data part of requirement) which stores details pertaining to domain and
functionality of each requirement expressed as requirement tuple and deep analysis
base (representing metadata and relationship part of requirement) which stores
details pertaining to their probable effort, risk and correlation among requirements.
Staged information extraction and matching will build the confidence of progression

Figure 1. Snapshot of elicited of stakeholder’s initial priority rankings

29

I-Way

towards desirable requirements for reuse. Proposed intersective way (i-way) method,
uses intersection of results of two machine learning algorithm namely, K-nearest
neighbours (KNN) and term frequency–inverse document frequency (TF-IDF). i-way
is a 2-level extraction framework which represents win-win situation by considering
intersective results of two different approaches to ensure that selection is progressing
towards desired requirement for reuse consideration. Firstly, it utilizes a content based
recommender, based on kNN algorithm to generate recommendations. Secondly, it
utilizes cosine similarity scores method to find most similar requirement from the
initial input. This recommendation tool supports searching, selecting, modify and
update operations.

Validation and Results Observation

To perform validation and observe promising results, we have applied proposed
approach on a sample case study similar to dataset (Shaukat et al., 2014) so that
matching requirements of interest can be selected for reuse. Figure 3, 4 and 5
represents the results obtained for recommendation.

A positive integer k (number of recommendations) is specified along with
the initial requirement of the project. We select the k entries in our dataset which
are closest to our initial requirement. We make these predictions just-in-time by
calculating the similarity between an input sample and each training instance. In

Figure 2. Snapshot to enter top 3 ranked requirements obtained from stakeholder’s.

Figure 3. Recommendations with KNN

30

I-Way

each training instance, a distance is calculated between a particular requirement
with each requirement in our dataset. Then we sort all the distances and extract the
k nearest neighbours. It provides faster and more accurate recommendations to the
stakeholders as a result of straight forward application of similarity based on the
distance for the purpose of classification.

For cosine similarity based recommendation (Figure 4) we start by creating a
dictionary of words (i.e. bag of words) present in the whole document space. We
ignore commonly occurring words also called as stop words as these words will
not help in choosing the relevant words. Given the dictionary of all such terms T =
{t1, t2, . . ., tn}, each requirement in dataset, ri is represented as a vector of terms,
vi = (ri,1, ri,2, . . ., ri,n) where ri,j is a term weight representing the number of
occurrences of term tj in requirement ri. These term weights are then transformed
using a standard term-frequency, inverse document frequency (tf-idf) approach
such that, tf -idf(ri,j) = ri,j • log2(D/drj) where D represents the total number of
requirements, and drj represents the number of requirements containing term tj .
Finally, the transformed vector (with tf-idf weights) is normalized to a unit vector
resulting in the vector Vi = (Ri,1, Ri,2, . . ., Ri,n). Cosine similarity is a measure of
similarity between two nonzero vectors. How closely two sentences are related are
based on the angle their respective vector makes. So if two vectors make an angle
0 degree, then cosine value would be 1, which would mean that the sentences are
closely related to each other. Similarity scores for all requirements in dataset is then
sorted and top n requirements are displayed where n can be 1<=n<=D. Taking the
intersections of recommendation of both the algorithms will be the requirements
which will be highly recommended to the stakeholders (Figure 5).

Hence it can be concluded that the proposed approach can help in effective
requirement gathering and can save cost, time, effort and communication problems
involved in requirement gathering.

Figure 4. Recommendations with Cosine Similarity

Figure 5. Final Recommendations using i-way

31

I-Way

CONCLUSION

This paper presents a novel i-way approach for mining and recommending project
specific requirements for reusability. To achieve this, this paper has introduced an
intersective algorithm (i-way), which gives recommendations by using intersection
of two algorithms KNN and Tf-Idf Cosine Similarity. Recommendations are made
after gathering (explicitly or implicitly), analyzing user or the details of the project
and processing the details of all the projects with the algorithms to recommend the
requirements more accurately. Moreover, we have also introduced a new Ranking
feature which helps to understand the need of the user in a better way and give more
accurate recommendations.

REFERENCES

Ali, N. B., Petersen, K., & Wohlin, C. (2014). A systematic literature review on the
industrial use of software process simulation. Journal of Systems and Software, 97,
65–85. doi:10.1016/j.jss.2014.06.059

Bakar, N. H., Kasirun, Z. M., & Salleh, N. (2015). Terms Extractions: An
Approach for Requirements Reuse. In 2nd International Conference on Information
Science and Security (ICISS) (pp. 1-4). Seoul, South Korea: IEEE. 10.1109/
ICISSEC.2015.7371034

Bellinzona, R., Fugini, M. G., & de Mey, V. (1993). Reuse of specifications and
designs in a development information system. In Information System Development
Process (pp. 79–96). Amsterdam: North-Holland. doi:10.1016/B978-0-444-81594-
1.50011-8

Bellinzona, R., Fugini, M. G., & Pernici, B. (1992). An environment for specification
reuse. Technical Report POLIMIUDUNIV.92.E.2.9E.8.4. ITHACA.

Benitti, F. B. V., & da Silva, R. C. (2013). Evaluation of a systematic approach to
requirements reuse. Journal of Universal Computer Science, 19(2), 254–280.

Castro-Herrera, C., Duan, C., Cleland-Huang, J., & Mobasher, B. (2008). Using
data mining and recommender systems to facilitate large-scale, open, and inclusive
requirements elicitation processes. In 16th IEEE International Requirements
Engineering Conference. Catalunya, Spain: IEEE. 10.1109/RE.2008.47

32

I-Way

Chou, S. C., Chen, J. Y., & Chung, C. G. (1996). A behaviour based classification
and retrieval technique for object-oriented software reuse. Proceedings of the Journal
of Software Practice and Experience, 26(7), 815–832. doi:10.1002/(SICI)1097-
024X(199607)26:7<815::AID-SPE32>3.0.CO;2-#

Cybulski, J. L. (1998). Patterns in software requirements reuse. Technical report,
Department of Information Systems. University of Melbourne.

Elberzhager, F., Rosbach, A., Münch, J., & Eschbach, R. (2012). Reducing test effort:
A systematic mapping study on existing approaches. Information and Software
Technology, 54(10), 1092–1106. doi:10.1016/j.infsof.2012.04.007

Eriksson, M., Börstler, J., & Borg, K. (2009). Managing requirements specifications
for product lines - An approach and industry case study. Journal of Systems and
Software, 82(3), 435–447. doi:10.1016/j.jss.2008.07.046

Goldin, L., & Berry, D. M. (2015). Reuse of requirements reduced time to market
at one industrial shop: A case study. Requirements Engineering, 20(1), 23–44.
doi:10.100700766-013-0182-7

Heroku platform, https://www.heroku.com/

Hwang, C. L., & Yoon, K. P. (1981). Multiple attributes decision making methods
and applications. Berlin: Springer-Verlag. doi:10.1007/978-3-642-48318-9

Ivarsson, M., & Gorschek, T. (2011). A method for evaluating rigor and industrial
relevance of technology evaluations. Empirical Software Engineering, 16(3),
365–395. doi:10.100710664-010-9146-4

Kotonya, G., & Sommerville, I. (1997). Requeriments Engineering: Processes
Techniques. Wiley.

Lamsweerde, A. V. (2000). Requirements engineering in the year 00: A research
perspective. In Proceedings of 22nd International Conference on Software
Engineering (pp. 5-19). Limerich: ACM Press. 10.1145/337180.337184

Lim, S., & Finkelstein, A. (2012). Using social networks and collaborative filtering
for large-scale requirement elicitation. IEEE Transactions on Software Engineering,
38(3), 707–735. doi:10.1109/TSE.2011.36

Maalej, W., & Thuremella, A. (2009). Towards a Research Agenda for
Recommendation Systems in Requirements Engineering. In Second International
Workshop on Managing Requirements Knowledge (MaRK’09). Atlanta, GA: IEEE.
10.1109/MARK.2009.12

https://www.heroku.com/

33

I-Way

Maiden, N., & Sutcliffe, A. (1992). Exploiting reusable specifications through
anology. Proceedings of Magazine-. Communications of the ACM, 35(4), 55–64.
doi:10.1145/129852.129857

Mannion, M., Kaindl, H. J., Wheaton, & Keepence, B. (1999). Reusing single
system requirements from Application family requirements. In Proceedings of the
21st international conference on software engineering (pp. 453-462). Los Angeles,
CA: Academic Press.

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. Academic
Press.

Mobasher, B., & Cleland-Huang, J. (2009). Recommender systems in requirements
engineering. In Second International Workshop. Chicago: DePaul University.

Moon, M., Yeom, K., & Chae, H. S. (2005). An approach to developing domain
requirements as a core asset based on commonality and variability analysis in
Software Engineering. IEEE Transactions on Software Engineering, 31(7), 551–569.
doi:10.1109/TSE.2005.76

Munir, H., Moayyed, M., & Petersen, K. (2014). Considering rigor and relevance
when evaluating test driven development: A systematic review. Information and
Software Technology, 56(4), 375–394. doi:10.1016/j.infsof.2014.01.002

Munir, H., Wnuk, K., & Runeson, P. (2016). Open innovation in software engineering:
A systematic mapping study. Empirical Software Engineering, 21(2), 684–723.
doi:10.100710664-015-9380-x

Pacheco, C., Garcia, I., Calvo-Manzano, J. A., & Arcilla, M. (2017). Reusing
functional software requirements in small-sized software enterprises: A model
oriented to the catalog of requirements. Requirements Engineering, 22(2), 275–287.
doi:10.100700766-015-0243-1

Pacheco, C. L., Garcia, I. A., Calvo Manzano, J. A., & Arcilla, M. (2015). A
proposed model for reuse of software requirements in requirements catalog. Journal
of Software: Evolution and Process, 27(1), 1–21. doi:10.3156/jsoft.27.1_1

Paydar, S., & Kahani, M. (2015). A semantic web enabled approach to reuse functional
requirements models in web engineering. Automated Software Engineering, 22(2),
241–288. doi:10.100710515-014-0144-4

Schmitt, C., & Liggesmeyer, P. (2015). A Model for Structuring and Reusing
Security Requirements Sources and Security Requirements. In REFSQ Workshops,
Vancouver, Canada.

34

I-Way

Shaukat, Z., Naseem, R., & Zubair, M. (2018). Software Requirement Risk Prediction
Dataset. Retrieved from https://zenodo.org/record/1209601#.XJsL_JgzaM-

Sutcliffe, A., Maiden, N., Minocha, S., & Manuel, D. (1998). Supporting scenario-
based requirements engineering. IEEE Transactions on Software Engineering,
24(12), 1072–1088. doi:10.1109/32.738340

Woo, H. G., & Robinson, W. N. (2002). Reuse of scenario specifications using
an automated relational learner a lightweight approach. In Proceedings of Joint
International Conference on Requirements Engineering. Essen, Germany: IEEE.
10.1109/ICRE.2002.1048520

https://zenodo.org/record/1209601#.XJsL_JgzaM-

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

35

DOI: 10.4018/978-1-5225-9659-2.ch003

ABSTRACT

One of the biggest challenges in the development of airborne embedded systems is
to ensure that the aircraft subsystem meets all its user specifications and ascertain
that no important functionality is missing which leads to development of an incorrect
product. This chapter proposes a methodology for achieving requirement traceability
and thereby performing requirement-based testing for efficient test and evaluation of
aircraft subsystems. This methodology integrates requirement traceability throughout
the software development life cycle along with requirement-based testing for high-
integrity software systems. The methodology has been found to be most effective in
revealing errors and optimizes testing by preventing repetition of test cases across
test platforms. This unique contribution has the potential to revolutionize the research
world in software engineering.

Requirement-Based Test
Approach and Traceability
for High-Integrity Airborne

Embedded Systems
Sudha Srinivasan

Aeronautical Development Agency (ADA), Bangalore, India

D. S. Chauhan
GLA University Mathura, Mathura, India

36

Requirement-Based Test Approach and Traceability for High-Integrity Systems

INTRODUCTION

A well-defined software development process is essential for realization of highly
reliable and safe software with cost and utilization benefits during the entire life cycle.

The software used in airborne embedded systems runs to several million lines of
code and complete testing of this humongous software is a significant challenge. The
process essential for certifying this airborne embedded software involves a number
of software lifecycle documents where requirement traceability is essential for the
entire cycle starting from capturing of system requirements to testing.

Research has shown that requirement traceability is an important contributing
factor to software project failures and budget overruns. Requirements traceability
refers to the ability to describe and follow the life of a requirement, in both forward and
backward direction (i.e., from its origins, through its development and specification,
to its subsequent deployment and use, and through periods of on-going refinement
and iteration in any of these phases) (Gotel & Finkelstein, 1994).

Traceability makes it easy to determine what requirements, design, code, and
test cases need to be updated to fulfil a change request made during the software
project’s development and maintenance phase and also to analyze the impact of a
requirement change. Traceability links among the software development life cycle
artefacts brings out how a software system was implemented to accommodate its
requirements.

Many standards have been adopted in aircraft subsystems for software development
like U.S.Department of Defense (DoD) standard 2167A (U.S. Department of Defense,
1988) which mandates requirement traceability.

In the conventional approach to testing, the traceability of requirements to test
cases is carried out only during system testing which occurs late in the development
life cycle and the resulting observations lead to large amount of rework. Thus making
testing the costliest method of finding bugs.

Also, during the development of complex high integrity airborne embedded
systems, there is frequent change in requirements leading to rework in design, code
and testing leading to large project delays and cost implications.

Requirement based testing is a solution to these problems identified and is the
suggested approach that focuses on integrating requirements with testing throughout
the software development life cycle and avoids repetition of test cases across life
cycle phases.

The strategy of requirement based testing is emphasized in the DO-178B guideline
adopted by the aerospace industry.

In this paper, we first elaborate the observed problems in the current approach of
requirement traceability and software system testing and then propose a methodology
to address the challenges. The methodology optimizes software testing which

37

Requirement-Based Test Approach and Traceability for High-Integrity Systems

addresses major issues of validating the necessary and sufficient set of test cases
from requirements to ensure that the design and code fully meet those requirements.
This approach saves time and cost by avoiding repetition of tests across platforms.

This paper integrates requirement traceability throughout the software development
lifecycle along with the requirement based testing for high integrity software systems.

BACKGROUND

B. Ramesh, T. Powers, C. Stubbs and M. Edwards 1995, presented a case study that
suggested implementing traceability into the organization’s systems development
methodology as “an important concept in improving the process of systems engineering
activity and overall project quality.” The paper details a case study focussed on the
use of requirement traceability starting from the system requirements down to the
computer software unit (CSU) level. Once the project reaches the testing phase, this
traceability is used to prove that the system meets the stated requirements (Ramesh,
Powers, Stubbs, & Edwards, 1995).

Jane Cleland-Huang, 2006 addressed the problems and challenges of requirement
traceability along with the traditional and automated methods. The open question
on what kind of traceability is used to achieve the desired results in a cost effective
way is addressed (Cleland-Huang, 2006).

PredragSkoković and MarijaRakić-Skoković, 2010 have described the requirement
based test methodology as a 12 step process for verifying the code against test
cases. The paper discusses the introduction of requirement based testing before the
implementation phase (Predrag, Skokovic, & Rakic-Skokovis, 2010).

Muhammad Shahid, Suhaimi Ibrahim, and MohdNaz’riMahrin, (2011) evaluated
eleven requirements management and traceability tools and compared some of
their features including tools category, different functionalities of tools and their
empirical evidence. The paper has listed requirement management tools as well as
pure traceability tools (Shahid, Ibrahim, & Mahrin, 2011).

Soo Min Ooi, Raymond Lim and Chee Cheng Lim, 2014 proposed an integrated
solution, which links requirement development and management tool with test
management system to achieve end -to-end traceability. This approach focuses on
establishment of traceability from requirements to test coverage (Ooi, Lim, & Lim,
2014).

John Lee and Jon Friedman 2013 have described how cause effect graphs can be
applied in simulink models to achieve requirement model coverage in their paper
on requirement modelling and automated requirement based test generation.[10]

38

Requirement-Based Test Approach and Traceability for High-Integrity Systems

There has been significant work in the area of requirement traceability and the
concept of requirement based testing as described in the above papers which form
the base for this paper.

However, the approach described in this paper proposes the following aspects
that are not covered in any of the above papers:

• Bottom Up approach to testing: Commence testing at system integration level
rather than CSU level.

• Achieve traceability from software high level and low level requirements to
system integration test cases.

• Avoid repetition of test cases across test platforms namely CSU level tests
and System integration level tests.

• Achieve 100% functional and a large percentage of structural coverage during
system integration testing.

• Minimize the effort of module / CSU level testing that is a cumbersome
process.

• Accomplish Cost effective testing for airborne embedded systems that has a
high rate of new/changing requirements.

CURRENT METHODS FOR REQUIREMENT
TRACEABILITY AND TESTING PROCESS

The software artefacts generated during the software development life cycle
for airborne high integrity software systems includes the System/Subsystem
Specifications (SSS) which bifurcates the hardware and software requirements of
the system, Software Requirement Specifications (SRS), Software Design Document
(SDD), Source Code, Software Test Description & Report (STDR) for module level
testing and Software Test Description & Report (STDR) for Software System Testing.
The DOD-STD-2167A (Whalen, Rajan, Heimdahal, & Miller, 2006) is one of the
standards followed for software development and testing.

Traceability is achieved manually and documented in all the artefacts by providing
unique numbering for requirements in SSS & SRS, design functions in SDD, Block
of lines in source code and test cases in STDR.

In airborne software systems the strategy of testing includes the Module level
testing for achieving structural coverage followed by the software system testing
for achieving functional coverage. Test planning tasks encompass different types of
testing—module level test, software integration test, and software system test. The
planning activities result in documentation for each test type consisting of Software
test plan and Software test description & report documents.

39

Requirement-Based Test Approach and Traceability for High-Integrity Systems

Figure 1 shows the traceability to be manually shown across the software life
cycle artifacts and the sequence of testing activities to be carried out across the
software development life cycle.

The testing process followed currently involves module level testing that verifies
a module’s logic, computations, functionality, and error handling. Further, the
software integration test activity is performed to examine how modules interface and
interact with each other. Tool is used which instruments the code that is executed
on the simulator.

For module level testing and Software integration testing, IBM Rational Test Real
Time has been used to test on simulator. A typical global coverage graph obtained
using the tool is shown in figure 2.

Figure 1. Traceability and Testing

Figure 2. Coverage Graph

40

Requirement-Based Test Approach and Traceability for High-Integrity Systems

In module level testing, the logic of individual subprograms, subroutines or
procedures in the code is analysed by providing a driver for supplying the test data,
monitoring the execution and capturing the results. Here, structural coverage of
software is ensured in terms of coverage like statement coverage, decision coverage etc.

Code coverage analysis finds the lines of code not exercised by a set of test cases
thus creating additional test cases to increase coverage and determining a quantitative
measure of code coverage, which is an important measure of quality.

However, it is difficult to write good unit tests and for large complex software,
entire process is cumbersome and time consuming.

Once module level testing is completed, software system level testing is carried
out on the target hardware. It is critical to ensure that the interfaces are correct, and
that the resulting software meets the requirements.

The Software system level testing examines what the program accomplishes,
without regard to how it works internally and compares the program behaviour
against a requirements specification.

Test cases are prepared for each requirement stated in the SRS and executed on
the target hardware in order to achieve 100% functional coverage. Testing is carried
out on the target using an integrated test facility comprising of all the hardware
interfaces to the unit under test.

In a nutshell, the current method includes traceability being achieved manually
which is time consuming and cumbersome. The testing process involves repetition
of tests during structural and functional testing thereby increasing effort and time.
Figure 3 shows the testing approach and sequence in module level testing and system
level testing processes. The two testing processes are independent of one another
thereby resulting in repetition of tests across platforms.

RESEARCH CHALLENGES

Requirement traceability in aircraft subsystems is an important aspect to comply
with. This traceability as described in section 3 of this paper, is shown by manually
mapping the requirements in the SSS to requirements in SRS, requirements in the
SRS to the functions/modules in the design document (SDD), functions/modules in
(SDD) to source code, lines in code to the module level test cases in the STDR and
lastly the requirements in SSS and SRS to the test cases in the STDR of Software
system testing. There is a high possibility of erroneous mappings due the manual
nature of achieving requirement traceability of the software artefacts which is one
of the challenges.

41

Requirement-Based Test Approach and Traceability for High-Integrity Systems

The module level testing of one sample sub system of the weapon management
system of the aircraft comprising of approximately 40,000 lines of code involved
execution of 600 module level test cases on the host system for achieving structural
code coverage without considering the functional aspects.

The structural code coverage of 100% for Modified Condition Decision Coverage
(MCDC) was achieved during host testing using RTRT test tool. In MC/DC analysis,
a boolean decision consists of multiple boolean conditions such that every condition
shall be evaluated to true and false and it is required that this switch changes the
outcome of the final decision. Further, this code was again subjected to software
system testing against the requirements without considering the internal code structure
and 1250 test cases were executed on the target environment. Here, the functional
coverage of requirements was achieved. There was no link between the above two
activities resulting in a significant repetition of test cases in the two phases of testing
thereby increasing the effort, cost and time. Testing thoroughly within the given
time schedule is another challenging aspect. In order to address these challenges, the
philosophy of requirement based test approach with traceability is being proposed.

Figure 3. Current Test Approach

42

Requirement-Based Test Approach and Traceability for High-Integrity Systems

Requirements-based tests are function tests. This process addresses two major
issues: first, verify that all requirements are testable and second, design a necessary
and sufficient set of test cases from those requirements (Whalen et al, 2006).

PROPOSED METHODOLOGY

This paper describes a tool based methodology evolved for the upstream and
downstream tracing of requirements throughout the software life cycle so that
traceability is established. This also proves to be very important for impact analysis
during the maintenance phase of the aircraft subsystem. Once the traceability is
established, requirement based testing is carried out by using the LDRA tool that
provides automation which can be effectively used to reduce effort, time and cost.

Following traceability activities have been carried out:
Requirements in the SSS is traced to requirements in SRS, high level requirements

in SRS is traced to low level requirements in the design document (SDD), low level
requirements in the design document (SDD) are traced to the functions/modules in
code, low level requirements in the design document (SDD) are finally traced to
the test cases in the STDR of Software system testing. Further, the upstream tracing
has also been carried out back to the source requirements.

Automation of bi-directional requirement traceability has been achieved by using
the LDRA test tool whose capabilities include traceability and test management.
Regular Expressions are written to extract the unique Identifier that can be used to
establish traceability across life cycle documents. The regular expression library
was used to check if a string matches a specified pattern as a whole, and search
within a string for a substring atching as a specified pattern. The proposed approach
is depicted in the following figure 4:

Figure 4. Proposed Approach

43

Requirement-Based Test Approach and Traceability for High-Integrity Systems

The detailed workflow for this methodology is as follows:

a) Ensure Unique Numbering in all life cycle artifacts

Most of the requirements/documentation for aircraft subsystems have been
written using Microsoft Word where the style of the unique identifiers is used to
trace across documents.

A style is a set of formatting characteristics that you can apply to text in your
document to quickly change their appearance. When you apply a style, you apply
a whole group of formats in one simple task. Some examples of style are Normal,
Heading 1, Heading 2 etc. The software life cycle artifacts of the aircraft subsystems
namely SSS, SRS, SDD and STDR are all documented using MS Word. All the
documents need to be uniquely numbered. Thus, for the artifacts documented using
MS Word, unique numbering with a predefined style is ensured.

In code, words like “Implements”, “Covers” is prefixed with a unique number
and added as comment in the appropriate segment of the code.

For example: /* Implements PI-5012

b) Regular Expressions

The requirements are imported from MS word using regular expressions.To
capture the requirements, we use regular expressions which could depend on the
style of the text. As shown below we can see the pattern captured under group1.

Regular Expression used → ^Heading 2\t.*(SSS_PIB_PI-\d\d\d\d)
Text inside the bracket marks the group that acts as the capturing element for the

regular expression. Tracing is performed with a text starting from Heading followed
by a space, a digit (2 here), and tab character followed by any number of characters
containing the Group.

Figure 5 shows the unique numbering of requirements captured using regular
expressions.

c) Mapping of software life cycle artifacts

The mapping of high level requirements with low level requirements (design)
and further the mapping of low level requirements with source code procedures
is carried out. The traceability between Source Code and low-level requirements
enables verification of the absence of undocumented Source Code and verification
of the complete implementation of low-level requirements.

44

Requirement-Based Test Approach and Traceability for High-Integrity Systems

These mapped requirements are subsequently made available to the tester for the
creation of test cases for achieving functional coverage. The results of this workflow
is then be mapped back to the requirements sources.

d) Impact Analysis

As requirements are traced to design and then to code and later to test cases, it is
possible to estimate the project completion status based on how many requirements
have been traced to artifacts created later in the development cycle. This information
can be used to estimate the schedule for a project during development and can be
used to assess risk and the impact.

The impact analysis report is generated in graphical form as shown in figure 6
using the tool.

Figure 5. Unique Numbering of requirements

Figure 6. Impact Analysis Report

45

Requirement-Based Test Approach and Traceability for High-Integrity Systems

e) Requirement Based Testing on target

Once the requirement traceability is obtained, the requirements are assigned to
test engineers by project manager using the tool in order to carry out requirement
based testing.

Now, Requirement based testing (RBT) focuses on the compliance of the software
with the requirements and structural coverage focuses on testing the source code
structurally to ensure that there is no unnecessary code in the implementation.

For RBT, the most important criteria is to analyse and ensure that every functional
requirement of the system as specified in the SSS is well documented in the SRS
(High level requirements) and SDD (Low level requirements) . Further, the test cases
in the STDR should be traceable to these high level as well as low level requirements.
The test cases are designed for covering each of the low level requirements which
also ensures that code structures meeting the low level requirements are covered.

The tool is integrated with the test setup used for system integration testing .This
tool based methodology not only covers the requirements tested for functionality
but also indicates the code structure that is covered during this testing by providing
structural coverage statistics.

This way we largely reduce the labour intensive process of writing module level
test cases thereby achieving both structural as well as functional coverage with a
common set of test cases thus reducing time and cost.

The instrumented code is executed on the target and the results are analysed.
Figure 7 shows the partial coverage achieved by carrying out the system integration
testing on target.

RBT is carried out, on the target by integrating with the test tool. Hence, test
coverage analysis provides both structural coverage as well as requirement based
test coverage.

Figure 7. Partial Coverage

46

Requirement-Based Test Approach and Traceability for High-Integrity Systems

f) Achieving Complete Structural Coverage

After carrying out the System Integration Testing on target, coverage results
are analysed. If the software functionality is covered and yet there is presence of
uncovered code, then this needs to be first analysed to determine and reason out
whether the requirements are inadequate, test cases are inadequate or dead code is
present.

If software requirements are inadequate, then SRS is updated and associated
test cases are designed and executed on the target. If there is missing coverage of
requirements, test cases are modified to provide the missing coverage, Dead code,
if present is to be removed.

There exists one more reason for achieving reduced coverage especially at the
RBT carried out during System Integration Testing of airborne embedded systems.
This could be due to the limitation of the system integration test facility. Upgrading
the test facility software/hardware in order to overcome this limitation may not be
practically possible.

This is when module level/CSU level tests are carried out by adding test cases
to cater to the required structural coverage. Figure 8 shows the Complete coverage
achieved by carrying out the tool based structural coverage.

The additional test cases required to achieve the above coverage results is shown
below in figure 9. These test cases could not be executed on the target during system
integration testing due to the limitation of the aircraft level system integration test
facility. As seen, the module level testing effort on host has been largely reduced
in order to execute only a small number of test cases required to achieve complete
structural coverage. This has in turn reduced the time and cost.

Figure 8. Complete Coverage

47

Requirement-Based Test Approach and Traceability for High-Integrity Systems

g) Achieving End to End Traceability

Once the requirement based testing on target is completed, the traceability across
the software development life cycle is viewed and reported, the traceability from
the SSS to requirements in SRS, high level requirements in the SRS to the low
level requirements in the design document (SDD) and further SDD to source code
as shown in figure 10. The traceability of low level requirements to test cases is
shown in figure 11. The figures clearly depict the end to end traceability achieved
from requirements to test cases. Requirement traceability across the development
and testing process is a measure of software quality and is achieved using this
methodology. The test coverage metrics is integrated with the requirements thereby
improving the effort and test efficiency.

Figure 9. Additional Test Cases

Figure 10. Traceability across life cycle artifacts

48

Requirement-Based Test Approach and Traceability for High-Integrity Systems

FUTURE RESEARCH DIRECTIONS

Future work in this area can be Model centric approach for Requirement handover
from system to software, mapping of system models to software models and model
based test case design.

The model based system engineering uses models as an integral part of the technical
baseline and formalizes the system development from concept phase to operations
thus enabling analysis of system design before it is built. The integration of Model
based system engineering with model based software engineering and requirement
based testing of the models is the future challenge that will have an increased ability
to manage system complexity. This involves the migration from document centric to
model centric, from system models to software models, and requirement based testing
of the models followed by auto code generation which will also require integration
of multiple system engineering and software engineering tools to achieve complete
end to end traceability of system and software life cycle artifacts.

CONCLUSION

The proposed methodology of requirement based test with traceability is found to
be efficient especially for high integrity airborne software systems owing to the
frequent change in requirements and minimal certification time.

The methodology currently followed for airborne embedded systems involves
carrying out of module level testing as well as system integration testing which may
result in achieving 100% coverage after a cumbersome process of testing across
multiple platforms .

Figure 11. Traceability of low level requirements to Test Cases

49

Requirement-Based Test Approach and Traceability for High-Integrity Systems

Compared to the current methodology, the proposed approach in this paper has
been found to effectively reduce development cost, effort and time and also facilitates
early detection and correction of errors.

It is observed that the number of test cases executed in order to achieve 100%
structural and functional coverage reduces by 50%. Also, as described in the paper
there is no repetition of test cases across platforms in the proposed methodology.
The proposed methodology is highly recommended and can be effectively followed
for airborne embedded systems.

REFERENCES

Cleland-Huang, J. (2006). Just Enough Requirements Traceability. In Proceedings
of the 30th Annual International Computer Software and Applications Conference
(COMPSAC’06). Chicago, IL: IEEE. 10.1109/COMPSAC.2006.57

Gotel, O., & Finkelstein, C. W. (1994). An Analysis of the Requirements Traceability
Problem. In Proceedings of First International Conference on Requirements
Engineering (p94-121). Colorado Springs, CO: IEEE. 10.1109/ICRE.1994.292398

Lee & Friedman. (2013). Requirements Modeling and Automated Requirements-Based
Test Generation. Paper presented at SAE 2013 AeroTech Congress & Exhibition,
Montreal, Canada.

Ooi, S. M., Lim, R., & Lim, C. C. (2014). An Integrated System for End-To-
End Traceability and Requirements Test Coverage. In Proceedings of IEEE 5th
International Conference on Software Engineering and Service Science. Beijing,
China: IEEE. 10.1109/ICSESS.2014.6933511

Predrag, S., & Marija, R.-S. (2010). Requirements-Based Testing Process in Practice.
International Journal of Industrial Engineering and Management, 1(4), 155–161.

Ramesh, B., Powers, T., Stubbs, C., & Edwards, M. (1995). Implementing
Requirements Traceability: A Case Study, In Proceedings of IEEE International
Symposium on Requirements Engineering (RE’95). York, UK: IEEE. 10.1109/
ISRE.1995.512549

RTCA-DO-178B. (1992). Software Considerations in Airborne Systems and
Equipment Certification. RTCA SC-167 / EUROCAE WG-12.USA:RTCA.

Shahid, Ibrahim, & Mahrin. (2011). An Evaluation of Requirements Management
and Traceability Tool. International Journal of Computer, Electrical, Automation,
Control and Information Engineering, 5(6).

50

Requirement-Based Test Approach and Traceability for High-Integrity Systems

U.S. Department of Defense. (1988). Defense systems software development,
DODSTD- 2167A, Military standard. US DOD.

Whalen, M., Rajan, A., Heimdahl, M., & Miller, S. (2006). Coverage metrics for
requirements-based testing. In Proceedings of International Symposium on Software
Testing and Analysis, ISSTA (p 25–36). Portland, ME: ISSTA.

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

51

DOI: 10.4018/978-1-5225-9659-2.ch004

ABSTRACT

Risk assessment and management practice is an organized way to identify, analyze,
and assess the impacts of risks and mitigate them when they arise. Risk can occur in
any phase of software development and is a significant step for better supervision of
threats. The purpose of this study is to identify and analyze existing risk assessment
and management techniques from a historical perspective that address and study
risk management and perception of risk. The chapter presents extensive summary
of existing literature on various techniques and approaches related to requirements
defects, defect taxonomy, its classification, and its potential impact on software
development as the main contributions of this research work. The primary objective
of this study was to present a systematic literature review of techniques/methods/
tools for risk assessment and management. This research successfully identifies and
discovers existing risk assessment and management techniques, their limitations,
taxonomies, processes, and identifies possible improvements for better defect
identification and prevention.

A Systematic Literature
Review on Risk Assessment
and Mitigation Approaches
in Requirement Engineering

Priyanka Chandani
Jaypee Institute of Information Technology, Noida, India

Chetna Gupta
Jaypee Institute of Information Technology, Noida, India

52

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

BACKGROUND, MOTIVATION AND INTRODUCTION

The software industry is going through a revolution at a rapid pace where both
business and technology domains are evolving very fast. This time-to-deliver market
puts pressure on software development teams to deliver quality software well in time
which establishes the need for performing rigorous risk analysis (Arshad, 2007).
Studies have shown that inappropriate and misleading requirement gathering is the
most expensive and are one of the fundamental drivers of project failures (Glass,
1998). As reported by (Pohl & Rupp, 2010), 60% of project venture disappointments
fall into requirements engineering phase and generally aren’t found until late in
development life cycle or when the project has gone live (Boehm, 1981). The same
facts are supported by (Lindquist, 2005) which conclude that “poor requirements
management can be attributed to 71% of software projects that fail; greater than
bad technology missed deadlines, and change management issues”. Therefore,
one of the significant challenges in requirements engineering is to have legible
requirements, which are free from unknowns and failures. Any failures during RE
phase have an adverse impact on the overall development process (Hall, Beecham
& Rainer, 2002) as it acts as a roadmap for calculating schedule and cost of the
system under development.

Risk assessment and management is a sub disciple of software engineering
which in an organized way identifies, analyze and assess the impacts of risks and
mitigate them when they arise. Risk can occur in any phase of software lifecycle
due to the scope of an assortment of potential problems that can emerge in different
levels of software development. To have confidence in fulfilling product roadmap
and complete release based on their timeline, the risk has to be eliminated as early
as possible (Rabia & Muhammad, 2013). It is one of the overlooked aspects in
requirements engineering (Stern & Arias, 2011) and is generally considered as a
potential problem that can negatively affect the projects. However, risk can also have
a positive effect in terms of opportunities. As per guide to the Project Management
Body of Knowledge (PMBOK), “project risk is an uncertain event or condition,
that, if occurs, has a positive or a negative effect on a project objective” (2017).
Conventional risk management process as exercised by a larger part of project
managers tend to focus on risk by spending considerable effort on identifying
and managing threats, ignoring positive side of risk (Hillson, 2002). According to
(McConnell, 1997), risk management requires 5% of the aggregate project budget to
get a 50– 70% possibility of staying away from time to avoid overrun. Researchers
in the past have proposed a considerable amount of risk identification, analysis, and
management models, for better supervision of threats (Guiling & Xiaojuan, 2011).

53

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

This chapter aims to provide a critical review of the studies conducted by
researchers in the past focusing mainly in the area of software risk assessment at
requirement engineering phase of SDLC. The scope of the survey is to find out
assessment tools and methods there are available, what results they produce and
risk management process as a whole. The research community will be able to use
this literature study as a starting point for further research.

The chapter is structured as follows: first, the details about the systematic review
process are given and discussed. The studies related to risk management models are
briefly discussed along with the current practices of risk assessment and mapping of
the models on different life cycle stages to give a complete view on risk management.
Finally, the current state of the art is summarized followed by the conclusion.

RESEARCH METHOD

This study has been undertaken as a complete literature review based on the work
done by various researchers in the risk assessment and management field. In this
case, the goal of the review is to assess the literature available on the subject of
discussion. Steps in this complete literature review method involve the selection of
sources and search process as depicted below in Figure 1:

Source Selection

The following resources were explored to mine relevant data resources to conduct
this review work: IEEE Xplore, ACM Digital Library, ScienceDirect, Web of
Science, Springer, Google Scholar, and other databases. In addition to search results
returned by popular databases, an intensive manual search on title, abstract and
index term was conducted to accumulate research work of different dimensions for
analysis. For in-depth analysis, reference lists of shortlisted papers were inspected
for additional relevant papers.

Search Process

More analysis was necessary to streamline these studies to relevant ones. First, the
title of each study and their contents were briefly studied. Hence, all the papers that
do not address the topic of discussion were excluded from the relevant studies list.
Also, only studies are written and published in the english language from journals,
conference proceedings, workshops, symposiums, book chapters, and relevant
technical articles were considered for inclusion in the list of relevant studies. The
duplicate and ambiguous papers are removed from the list. Specifically, we performed

54

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

a complete literature review for risk assessment and management on articles published
since 1986. Table 1 shows the inclusion and exclusion criteria for selecting primary
studies and filtering out the publications that match the exclusion criteria:

Final scrutiny of the papers was done based on the abstract and conclusion of
the papers. A total of 134 studies were selected for this research. Among them, 61
papers were published in journals, 39 papers appeared in conference proceedings,
3 papers came from workshops, 2 papers were extracted from symposiums, 10
papers were from book chapters, and 9 papers were technical reports and 8 papers
in others category. The respective percentages of the selected studies are represented
in Figure 2 while the number of papers by year of publication is shown in Figure 3.

Figure 1. Complete Literature Review Process

Table 1. Inclusion and exclusion criteria

Inclusion Criteria Exclusion Criteria

All the papers published in the English language Language is other than English

Papers that focus on risk assessment for improving
requirements in particular

Studies whose findings are unclear and
ambiguous

Paper having different types of proposals: Models,
framework, techniques, tools, etc Papers that are duplicate

Papers published from the year 1986 Paper focusing on risk assessment but not
software engineering oriented.

55

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

Research Questions

Following research questions are addressed in this study:

RQ1: What are the existing approaches used for risk assessment and management?
RQ2: What are the descriptions and limitations of existing risk assessment and

management techniques?
RQ3: What are various dimensional scales of risk assessment factors each technique

exhibit?
RQ4: What are different risk factors and perspectives adopted by stakeholders and

developer for risk assessment and mitigation?
RQ5: What are various risk factors related to requirement schedule for risk assessment

and management?

Figure 2. Paper Distribution

Figure 3. Number of papers by year of publication

56

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

RQ6: Which risk management model fits the best for which phase of software
lifecycle?

STUDIES RELATED TO RISK ASSESSMENT
AND MANAGEMENT (RQ1 AND RQ2)

The demand for software solutions and high customer requirements creates stiff
competition in the software development market. It would propel software companies
to manage risks effectively and efficiently helping to improve the success-to-failure
ratio (Wanderley et al., 2015). Analysis on the research in the last three decades
shows that an attempt has been made to manage risk factors by using various
methods, approaches, process and models for incrementing the success rate and
decrementing failure in software development activities (Janjua, Jaafar & Lai, 2016).
Risk assessment and management practices provide a structured and coherent way
to assess and manage risk (Noraini & Bokolo, 2015). Various approaches in the past
have focused on assessing risks in all phases of software life cycle, by integrating
risk management practices at every juncture. However, several attempts have
been made where risk assessment is integrated in the initial phase of the software
development, which benefits the software project by handling risk at the early stage
(Bhukya, Pabboju, 2018; Cornford et al., 2006). A set of studies have used structured
and methodical models for risk assessment in which analytical hierarchy process,
UML, decision trees, goal-oriented techniques, fuzzy entropy, risk metrics, machine
learning and bayesian belief network were used (Hsieh, Hsu & Lin, 2016; Ghane,
2017; Meng, 2017; Zhi et al., 2017; Kamila & Sutikno, 2016; Cailliau & Lamsweerde,
2015; Anthony, 2015; Amber, Shawoo & Begum, 2012; Li & Liu, 2009; Kumar &
Yadav, 2015). They culminate that the reduction in software risk is primarily due to
effective risk management practices. Most of the risk management practices divide
risk management into basic processes which start with identification of risk, further
on to analysis, followed by mitigation and monitoring of risk (Guiling & Xiaojuan,
2011; Kumar, Sagar & Sudheer, 2010). Major studies perform risk analysis both
qualitative and quantitatively which assesses risk based on probability and impact.
Contrary, some models analyze risk related to software projects only. Some studies
also work on project time delays which too is an indirect impact from software risk
(Genuchten, 1991; Swede & Vliet, 1994). However, risk management is also dealt
through research work in special cases like requirement engineering, risk-based
QA and project risk dependencies (Amber, Shawoo & Begum, 2012; Lobato, Neto
& Machado, 2012; Gallardo, 2012; Veenendaal, 2011). This section answers RQ1
and RQ2 and presents descriptions of existing risk assessment practices proposed
till date in Table 2 followed by the limitations.

57

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

Ta
bl

e
2.

 R
is

k
As

se
ss

m
en

t M
et

ho
ds

S.
 N

o
M

et
ho

d
D

es
cr

ip
tio

n

1
BO

EH
M

 (B
oe

hm
,

19
91

)

•
It

hi
gh

lig
ht

s t
he

 c
on

ce
pt

 o
f “

ris
k

ex
po

su
re

”
w

hi
ch

 is
 a

 re
la

tio
ns

hi
p

be
tw

ee
n

th
e

ch
an

ce
s o

f o
cc

ur
re

nc
e

of
 a

n
un

ex
pe

ct
ed

 e
ve

nt
 a

nd
 th

e
lo

ss

as
 a

 re
su

lt.

•
To

p
te

n
ris

k
id

en
tif

ic
at

io
n

ch
ec

kl
ist

 is
 id

en
tif

ie
d

an
d

th
e

de
ci

si
on

 tr
ee

 m
et

ho
d

us
ed

 to
 a

sc
er

ta
in

 ri
sk

 it
em

s.
•

Th
e

ris
k

m
an

ag
em

en
t a

pp
ro

ac
h

ha
s t

w
o

ste
ps

, e
ac

h
su

bd
iv

id
ed

 in
to

 th
re

e
ste

ps
. R

is
k

as
se

ss
m

en
t,

th
e

pr
em

ie
r s

te
p

in
vo

lv
es

 ri
sk

id

en
tif

ic
at

io
n,

 a
na

ly
si

s,
an

d
pr

io
rit

iz
at

io
n.

 T
he

 se
co

nd
 st

ep
 is

 ri
sk

 c
on

tro
l w

hi
ch

 in
vo

lv
es

 m
an

ag
em

en
t p

la
nn

in
g,

 re
so

lu
tio

n,
 a

nd
 m

on
ito

rin
g

of
 th

e
ris

k.
 T

hi
s m

od
el

 is
 a

pp
lic

ab
le

 in
 a

ll
ph

as
es

 o
f s

of
tw

ar
e

de
ve

lo
pm

en
t.

2
SE

I-
SR

E
(C

ar
r e

t
al

.,
19

93
)

•
SE

I-
SR

E
(S

of
tw

ar
e

En
gi

ne
er

in
g

In
sti

tu
te

 -S
of

tw
ar

e
R

is
k

Ev
al

ua
tio

n)
 w

as
 d

ev
el

op
ed

 b
y

th
e

So
ftw

ar
e

En
gi

ne
er

in
g

In
sti

tu
te

. T
hi

s m
et

ho
d

is

ve
ry

 e
ff

ic
ie

nt
 a

nd
 is

 m
ai

nl
y

us
ed

 in
 d

ef
en

se
 IT

 p
ro

je
ct

s.
•

Pr
oj

ec
t m

an
ag

er
 e

xp
ec

ta
tio

ns
 a

re
 m

an
ag

ed
 b

y
pr

ep
ar

in
g

hi
gh

-le
ve

l s
tra

te
gi

c
pl

an
s f

or
 m

iti
ga

tin
g

ris
k

as
 a

 te
m

pl
at

e.
 T

hi
s p

ar
ad

ig
m

 sh
ow

s a

se
t o

f f
un

ct
io

ns
: i

de
nt

ify
, a

na
ly

ze
, p

la
n,

 tr
ac

k,
 c

on
tro

l,
an

d
co

m
m

un
ic

at
e.

 T
hi

s i
s a

 c
on

tin
uo

us
 a

ct
iv

ity
, w

hi
ch

 g
oe

s t
hr

ou
gh

ou
t t

he
 li

fe
cy

cl
e

of

a
pr

oj
ec

t.

3
R

IS
K

IT
 (K

on
tio

 &

B
as

ili
, 1

99
7)

•
Th

is
 m

et
ho

d
de

fin
es

 ri
sk

s m
or

e
pr

ec
is

el
y

an
d

fo
rm

al
ly

 a
nd

 p
ro

vi
de

s s
up

po
rt

fo
r m

ul
tip

le
 st

ak
eh

ol
de

rs
 b

y
co

ns
id

er
in

g
th

e
de

fin
iti

on
 o

f
ite

m
s w

hi
ch

 in
flu

en
ce

 th
e

pr
oj

ec
t l

ik
e

go
al

s,
ob

je
ct

iv
es

, a
nd

 d
riv

er
s a

ll
of

 w
hi

ch
 a

re
 e

xp
lic

itl
y

m
en

tio
ne

d.

•
It

m
od

el
s d

iff
er

en
t a

sp
ec

ts
 o

f r
is

ks
 q

ua
lit

at
iv

el
y

an
d

pr
io

rit
iz

es
 ri

sk
 u

si
ng

 ra
tio

 a
nd

 o
rd

in
al

 sc
al

es
.

•
Th

is
 m

od
el

 is
 fl

ex
ib

le
 a

nd
 c

an
 b

e
ap

pl
ie

d
to

 m
an

y
do

m
ai

ns
 a

pa
rt

fro
m

 o
f s

of
tw

ar
e

de
ve

lo
pm

en
t.

4
SE

RU
M

 (G
re

er
,

19
97

)

•
So

ftw
ar

e
En

gi
ne

er
in

g
R

is
k:

 U
nd

er
st

an
di

ng
 a

nd
 M

an
ag

em
en

t (
SE

RU
M

) l
oo

ks
 a

t b
ot

h
ex

pl
ic

it
an

d
im

pl
ic

it
ris

k
m

ak
in

g
th

e
ris

k
m

an
ag

em
en

t e
as

ie
r a

nd
 h

an
dl

in
g

th
em

 m
or

e
ad

eq
ua

te
ly

.
•

It
is

 u
se

d
in

 so
ftw

ar
e

re
le

as
ed

 in
 v

er
si

on
s a

nd
 c

on
si

de
rs

 th
e

ris
k

in
 th

e
cu

rr
en

t s
ys

te
m

 a
s w

el
l a

s i
n

pr
op

os
ed

 sy
ste

m
.

•
Fe

ed
ba

ck
 o

f s
im

ila
r k

in
d

of
 p

ro
je

ct
s d

oe
s n

ot
 a

cc
ou

nt
 fo

r i
n

SE
RU

M
.

5
SE

R
IM

 (K
ar

ol
ak

,
19

95
)

•
So

ftw
ar

e
En

gi
ne

er
in

g
R

is
k

In
de

x
M

an
ag

em
en

t m
od

el
 fo

llo
w

s “
Ju

st
in

 T
im

e”
 st

ra
te

gy
, i

t h
el

ps
 to

 a
ss

es
s r

is
k

fa
ct

or
s f

ro
m

 v
ar

io
us

 a
na

ly
tic

al

pe
rs

pe
ct

iv
es

 a
nd

 d
ev

el
op

s a
ct

io
n

pl
an

s t
o

ris
k

m
an

ag
em

en
t b

ef
or

e
th

ey
 c

om
e

liv
e.

•

Th
is

 m
et

ho
d

de
fin

es
 p

rio
r a

nd
 u

rg
en

t r
is

k
ar

ea
s,

de
ve

lo
ps

 p
ro

ac
tiv

e
pl

an
s f

or
 ri

sk
 m

iti
ga

tio
n

•
Te

n
ris

k
fa

ct
or

s a
re

 id
en

tif
ie

d
w

hi
ch

 a
re

 a
ss

es
se

d
qu

an
tit

at
iv

el
y,

 b
y

th
e

pr
oj

ec
t m

an
ag

er
 a

s l
ow

er
 th

e
sc

or
e

th
e

ris
ki

er
 p

ro
je

ct
s.

6
SR

A
M

 (F
oo

 &

M
ur

ug
an

an
th

am
,

20
00

)

•
Th

is
 m

od
el

 c
on

si
de

rs
 th

e
ni

ne
 ri

sk
 e

le
m

en
ts

 th
at

 a
re

 th
e

co
m

pl
ex

ity
 o

f s
of

tw
ar

e,
 p

ro
je

ct
 st

af
f,

ta
rg

et
ed

 re
lia

bi
lit

y,
 p

ro
du

ct
 re

qu
ire

m
en

t,
a

m
et

ho
d

of
 e

sti
m

at
io

n,
 M

on
ito

rin
g

pr
ac

tic
e,

 th
e

pr
oc

es
s o

f d
ev

el
op

m
en

t,
us

ab
ili

ty
 o

f s
of

tw
ar

e/
to

ol
s.

•
Th

is
 m

od
el

 is
 q

ue
sti

on
na

ire
 b

as
ed

 a
nd

 p
ro

vi
de

s a
 q

ua
nt

ita
tiv

e
as

se
ss

m
en

t o
f r

is
k

w
ith

 g
oo

d
ac

cu
ra

cy
.

co
nt

in
ue

s o
n

fo
llo

w
in

g
pa

ge

58

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

S.
 N

o
M

et
ho

d
D

es
cr

ip
tio

n

7

PR
O

R
IS

K

(S
ue

bk
un

a
&

R

am
in

gw
on

g,

20
11

)

•
Pr

oj
ec

t O
rie

nt
ed

 R
is

k
M

an
ag

em
en

t M
od

el
 is

 a
 d

ec
is

io
n

su
pp

or
t t

oo
l t

ha
t w

or
ks

 o
n

lin
ki

ng
 p

ro
je

ct
 m

an
ag

em
en

t a
nd

 ri
sk

 m
an

ag
em

en
t i

n
a

so
ftw

ar
e

pr
oj

ec
t.

•
It

is
 a

 p
ra

ct
ic

al
 a

pp
ro

ac
h,

 w
hi

ch
 c

an
 b

e
ea

si
ly

 u
nd

er
sto

od
 a

nd
 e

ff
ic

ie
nt

ly
 a

pp
lie

d
in

 a
ny

 so
ftw

ar
e

pr
oj

ec
ts

. T
hr

ee
 im

po
rta

nt
 e

le
m

en
ts

 a
re

ris

k
m

an
ag

em
en

t,
pr

oj
ec

t m
an

ag
em

en
t,

an
d

ris
k

da
ta

ba
se

 w
hi

ch
 is

 u
se

d
to

 m
an

ag
e

ris
k

co
nt

ro
l i

nf
or

m
at

io
n.

8
SR

A
EM

 (G
up

ta
 &

Sa

di
q,

 2
00

8)

•
In

 S
R

A
EM

 (S
of

tw
ar

e
ris

k
as

se
ss

m
en

t a
nd

 e
sti

m
at

io
n

m
od

el
) e

sti
m

at
io

n
of

 ri
sk

 is
 d

on
e

us
in

g
so

ftw
ar

e
m

et
ric

 a
nd

 ri
sk

 e
xp

os
ur

e
ba

se
d

on

M
is

si
on

 C
rit

ic
al

 R
eq

ui
re

m
en

ts
 S

ta
bi

lit
y

R
is

k
M

et
ric

s (
M

C
R

SR
M

)
•

Th
is

 m
od

el
 sh

ow
s c

um
ul

at
iv

e
an

d
ph

as
e-

w
is

e
ris

k
an

d
ha

nd
le

s t
he

 is
su

es
 re

la
te

d
to

 re
qu

ire
m

en
t a

na
ly

si
s.

9
SR

A
EP

 (S
ad

iq
 e

t
al

.,
20

10
)

•
SR

A
EP

 (S
of

tw
ar

e
R

is
k

A
ss

es
sm

en
t a

nd
 E

va
lu

at
io

n
Pr

oc
es

s)
 is

 a
 m

od
el

-b
as

ed
 a

pp
ro

ac
h

w
hi

ch
 u

se
s S

of
tw

ar
e

Fa
ul

t T
re

e
(S

FT
) f

or

id
en

tif
yi

ng
 a

 ri
sk

•

Is
su

es
 a

t t
he

 re
qu

ire
m

en
ts

 p
ha

se
 a

re
 h

an
dl

ed
 in

 th
is

 m
od

el
.

10
SP

R
M

Q
 (M

of
le

h
&

 Z
ah

ar
y,

 2
01

1)

•
SP

R
M

Q
 (S

of
tw

ar
e

Pr
od

uc
t R

is
k

M
an

ag
em

en
t b

as
ed

 o
n

Q
ua

lit
y

at
tri

bu
te

s a
nd

 o
pe

ra
tio

na
l l

ife
cy

cl
e)

 m
an

ag
es

 so
ftw

ar
e

pr
od

uc
t r

is
k.

•

It
ha

s f
ou

r p
ro

ce
ss

es
: I

de
nt

ifi
ca

tio
n

of
 ri

sk
 fa

ct
or

s u
si

ng
 b

ra
in

sto
rm

in
g

te
ch

ni
qu

e;
 a

na
ly

ze
 ri

sk
 p

ro
ba

bi
lit

ie
s u

si
ng

 p
ro

ba
bi

lit
y/

im
pa

ct

ap
pr

oa
ch

; r
is

k
m

iti
ga

tio
n

us
in

g
av

oi
da

nc
e,

 m
in

im
iz

at
io

n,
 a

nd
 c

on
tin

ge
nc

y
str

at
eg

y,
 a

nd
 ri

sk
 m

on
ito

rin
g.

11
So

ft
R

is
k

(K
es

hl
af

&

 H
as

hi
m

, 2
00

0)

•
K

es
hl

af
 a

nd
 H

as
hi

m
 d

ev
el

op
ed

 a
 p

ro
to

ty
pi

ng
 to

ol
 c

al
le

d
So

ft
R

is
k

fo
r m

an
ag

in
g

so
ftw

ar
e

ris
ks

.
•

Th
is

 m
od

el
 fo

cu
se

s o
n

ris
k

do
cu

m
en

ta
tio

n
an

d
co

nc
en

tra
te

s o
n

to
p

ris
ks

, i
t s

av
es

 d
ev

el
op

er
s t

im
e

an
d

ef
fo

rt
by

 re
du

ci
ng

 so
ftw

ar
e

ris
ks

 to
 a

gr

ea
t e

xt
en

t.

12
A

gl
e

et
 a

l.
(2

00
3)

•
A

gl
e

et
 a

l.
pr

op
os

es
 e

ffe
ct

iv
e

ha
nd

lin
g

of
 ri

sk
 a

nd
 h

an
dl

in
g

te
am

 st
ru

ct
ur

e
by

 k
no

w
le

dg
e

bu
ild

in
g

an
d

ef
fe

ct
iv

e
co

m
m

un
ic

at
io

n.

•
Th

is
 a

pp
ro

ac
h

ca
n

on
ly

 b
e

us
ed

 in
 a

 m
ul

ti-
te

am
 e

nv
iro

nm
en

t.

13
H

oo
da

t a
nd

R

as
hi

di
 (2

00
9)

•
Th

is
 p

ap
er

 p
re

se
nt

s r
el

at
io

ns
 b

et
w

ee
n

cl
as

si
fie

d
ris

k
us

in
g

ris
k

tre
e

str
uc

tu
re

.
•

R
is

k
an

al
ys

is
 a

nd
 a

ss
es

sm
en

t i
s d

on
e

by
 P

ro
ba

bi
lis

tic
 c

al
cu

la
tio

ns
 a

nd
 h

el
ps

 in
 th

e
qu

al
ita

tiv
e

an
d

qu
an

tit
at

iv
e

es
tim

at
io

n
of

 ri
sk

.

14
R

IM
A

M
 (S

ha
hz

ad

&
 A

l-M
ud

im
ig

h,

20
10

)

•
R

is
k

Id
en

tif
ic

at
io

n,
 M

iti
ga

tio
n

an
d

A
vo

id
an

ce
 M

od
el

 (R
IM

A
M

) h
ig

hl
ig

ht
 th

e
str

at
eg

ie
s f

or
 ri

sk
 id

en
tif

ic
at

io
n,

 m
an

ag
em

en
t,

an
d

av
oi

da
nc

e
of

 ri
sk

 fa
ct

or
s.

•
Th

is
 m

od
el

 is
 u

se
d

to
 c

he
ck

 v
ar

io
us

 ri
sk

 fa
ct

or
s d

ue
 to

 a
n

im
m

at
ur

e
re

qu
ire

m
en

t,
de

liv
er

y
de

ad
lin

e,
 e

tc
. I

t i
s e

as
ily

 im
pl

em
en

te
d

w
ith

m

in
im

um
 c

os
t a

nd
 c

an
 b

e
cu

sto
m

iz
ed

 w
.r.

t t
he

 e
nv

iro
nm

en
t

15
TR

M
 (H

ig
ue

ra
 e

t
al

.,
19

94
)

•
Te

am
 R

is
k

M
an

ag
em

en
t f

oc
us

es
 o

n
cu

sto
m

er
-s

up
pl

ie
r r

is
k

m
an

ag
em

en
t a

ct
iv

iti
es

.
•

TR
M

 e
st

ab
lis

he
s a

 se
t o

f p
ro

ce
ss

es
 in

cl
ud

in
g

m
et

ho
ds

 a
nd

 to
ol

s t
ha

t e
na

bl
e

a
re

la
tio

ns
hi

p
be

tw
ee

n
th

e
cu

sto
m

er
 a

nd
 su

pp
lie

r t
o

w
or

k
se

am
le

ss
ly

.

co
nt

in
ue

s o
n

fo
llo

w
in

g
pa

ge

Ta
bl

e
2.

 C
on

tin
ue

d

59

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

S.
 N

o
M

et
ho

d
D

es
cr

ip
tio

n

16
A

R
M

O
R

 (L
u

et

al
.,

19
95

)

•
A

na
ly

ze
r f

or
 R

ed
uc

in
g

M
od

ul
e

O
pe

ra
tio

na
l R

is
k

(A
R

M
O

R
) i

s a
 to

ol
 fo

r s
of

tw
ar

e
ris

k
an

al
ys

is
. I

t i
de

nt
ifi

es
 th

e
op

er
at

io
na

l r
is

ks
 o

f a
ll

th
e

so
ftw

ar
e

pr
og

ra
m

 m
od

ul
es

.
•

It
ca

n
m

ea
su

re
 so

ftw
ar

e
pr

og
ra

m
s r

is
ks

, i
de

nt
ify

 th
e

or
ig

in
 o

f r
is

ks
 a

nd
 e

va
lu

at
e

ho
w

 to
 re

du
ce

 th
ei

r r
is

k
le

ve
ls

17
R

A
T

(S
ha

rif
 &

Ro

za
n,

 2
01

0)

•
R

A
T

(R
is

k
A

na
ly

si
s T

oo
l)

is
 u

se
d

to
 d

o
a

hy
br

id
 a

ss
es

sm
en

t o
f r

is
ks

•

It
is

 a
n

ex
pe

rt
sy

ste
m

 w
he

re
 th

e
pr

oj
ec

t m
an

ag
er

 c
an

 a
ss

es
s,

m
on

ito
rs

, a
nd

 g
iv

es
 p

re
lim

in
ar

y
so

lu
tio

ns
 a

ut
om

at
ic

al
ly

 b
as

ed
 o

n
th

e
pr

oj
ec

t
pl

an
.

18
ER

M
 (S

ne
ki

r &

W
al

ke
r,

20
07

)

•
En

te
rp

ris
e

R
is

k
M

an
ag

em
en

t (
ER

M
) h

el
ps

 in
 id

en
tif

yi
ng

 a
nd

 m
in

im
iz

e
th

e
ris

k
th

at
 c

ou
ld

 c
au

se
 a

n
or

ga
ni

za
tio

n
to

 fa
il

to
 m

ee
t i

ts

str
at

eg
ie

s a
nd

 o
bj

ec
tiv

es
.

•
It

in
cl

ud
es

 ri
sk

 a
ss

oc
ia

te
d

w
ith

 a
cc

id
en

ta
l l

os
se

s a
nd

 a
ls

o
fin

an
ci

al
, s

tra
te

gi
c,

 o
pe

ra
tio

na
l,

an
d

ot
he

r r
is

ks

19
R

M
M

 (H
ill

so
n,

19

97
)

•
R

M
M

 (R
is

k
M

at
ur

ity
 M

od
el

) p
ro

vi
de

s t
he

 b
en

ch
m

ar
k

fo
r a

n
or

ga
ni

za
tio

n
to

 c
he

ck
 it

s m
at

ur
ity

 o
f h

an
dl

in
g

ris
ks

 in
 p

ro
je

ct
s

•
N

aï
ve

, N
ov

ic
e,

 N
or

m
al

iz
ed

, a
nd

 N
at

ur
al

 a
re

 th
e

fo
ur

 le
ve

ls
 o

f m
at

ur
ity

 w
hi

ch
 a

re
 m

ap
pe

d
to

 a
ttr

ib
ut

es
 c

ul
tu

re
, p

ro
ce

ss
, e

xp
er

ie
nc

e
an

d
ap

pl
ic

at
io

n

20
A

m
be

r e
t a

l.
(2

01
2)

•
A

 m
od

el
 is

 p
ro

po
se

d
fo

r m
od

el
in

g
an

d
re

as
on

in
g

th
e

ris
k

at
 th

e
re

qu
ire

m
en

ts
 a

na
ly

si
s p

ha
se

 a
nd

 is
 b

as
ed

 o
n

U
M

L
or

ie
nt

ed
 a

pp
ro

ac
h

•
Th

e
us

e
ca

se
 sc

en
ar

io
s a

re
 h

an
dl

ed
 u

si
ng

 M
cC

ab
e’

s c
yc

lo
m

at
ic

 c
om

pl
ex

ity
 p

ro
ce

ss
. I

t h
el

ps
 in

 fi
nd

in
g

hi
gh

-r
is

k
fu

nc
tio

na
l r

eq
ui

re
m

en
ts

.

21
Pa

nd
ey

 e
t.a

l
(2

01
1)

•
A

 fr
am

ew
or

k
is

 p
ro

po
se

d
th

at
 in

co
rp

or
at

e
se

cu
rit

y
re

qu
ire

m
en

t a
nd

 ri
sk

 m
an

ag
em

en
t t

ec
hn

iq
ue

. I
t h

el
ps

 in
 im

pr
ov

in
g

th
e

ite
ra

tiv
e

se
cu

rit
y

en
gi

ne
er

in
g

ac
tiv

ity
 a

t t
he

 in
iti

al
 p

ha
se

 o
f s

of
tw

ar
e

de
ve

lo
pm

en
t

22
Va

n
Ve

en
en

da
al

(2

01
1)

•
PR

IS
M

A
 (P

ro
du

ct
 R

is
k

M
an

ag
em

en
t)

is
 a

n
ap

pr
oa

ch
 fo

r h
ig

hl
ig

ht
in

g
th

e
pa

rts
 h

av
in

g
th

e
m

ax
im

um
 b

us
in

es
s a

nd
 te

ch
ni

ca
l r

is
k

an
d

su
pp

or
t r

is
k-

ba
se

d
te

sti
ng

.
•

Th
is

 a
pp

ro
ac

h
ca

n
be

 u
se

d
at

 e
ac

h
le

ve
l o

f t
es

tin
g,

 a
nd

 v
al

id
 a

cr
os

s o
rg

an
iz

at
io

n
an

d
pr

oj
ec

t l
ev

el
. I

t i
m

pr
ov

es
 th

e
ef

fe
ct

iv
en

es
s a

nd

ef
fic

ie
nc

y
of

 th
e

de
fe

ct
 d

et
ec

tio
n

pr
oc

es
s a

nd
 is

 e
as

y
to

 u
se

.

23
N

an
cy

 R
. M

ea
d

(2
01

2)

•
H

el
ps

 in
 d

et
er

m
in

in
g

se
cu

rit
y

re
qu

ire
m

en
ts

 e
ng

in
ee

rin
g

pr
oc

es
s u

si
ng

 S
ec

ur
ity

 Q
ua

lit
y

Re
qu

ire
m

en
ts

 E
ng

in
ee

rin
g

(S
Q

U
A

R
E)

 m
et

ho
d

•
Th

e
SQ

U
A

R
E

m
et

ho
d

ha
s n

in
e

ste
ps

 to
 c

at
eg

or
iz

es
 a

nd
 p

rio
rit

iz
es

 se
cu

rit
y

re
qu

ire
m

en
ts

•

It
ca

n
be

 u
se

d
fo

r a
ny

 la
rg

e-
sc

al
e

de
si

gn
 p

ro
je

ct
.

24
G

SR
M

 (I
sl

am
 &

H

ou
m

b,
 2

01
0)

•
Is

la
m

 a
nd

 H
ou

m
b

pr
op

os
ed

 a
 g

oa
l-d

riv
en

 so
ftw

ar
e

de
ve

lo
pm

en
t r

is
k

m
an

ag
em

en
t m

od
el

 (G
SR

M
).

Te
ch

ni
ca

l a
s w

el
l a

s n
on

-te
ch

ni
ca

l
de

ve
lo

pm
en

t c
om

po
ne

nt
s a

re
 ta

ke
n

in
to

 c
on

si
de

ra
tio

n.

•
It

ef
fe

ct
iv

el
y

id
en

tif
ie

s a
nd

 sh
ow

ca
se

s t
he

 p
ro

je
ct

 g
oa

ls
, r

is
k

fa
ct

or
s a

nd
 c

on
tro

l a
ct

io
ns

 fo
r m

iti
ga

tin
g

ris
ks

 a
nd

 is
 a

dv
an

ta
ge

ou
s a

t t
he

in

iti
al

 p
ha

se
s o

f t
he

 d
ev

el
op

m
en

t.

co
nt

in
ue

s o
n

fo
llo

w
in

g
pa

ge

Ta
bl

e
2.

 C
on

tin
ue

d

60

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

S.
 N

o
M

et
ho

d
D

es
cr

ip
tio

n

25
K

w
an

 a
nd

 L
eu

ng

(2
01

1)

•
Th

is
 w

or
k

ha
nd

le
s r

is
k

de
pe

nd
en

cy
 is

su
es

 b
y

in
tro

du
ci

ng
 a

 m
an

ag
em

en
t m

et
ho

do
lo

gy

•
It

de
ta

ils
 tw

o
se

ts
 o

f r
is

k
re

sp
on

se
 st

ra
te

gi
es

 fo
r p

os
te

rio
r r

is
ks

 a
nd

 o
th

er
 fo

r r
is

k
de

pe
nd

en
ci

es
. T

he
 c

om
m

un
ic

at
io

n
be

tw
ee

n
pr

oj
ec

ts
 c

an

be
 im

pr
ov

ed
 w

ith
 th

is
 a

pp
ro

ac
h.

26
N

ol
an

 e
t a

l.(
20

11
)

•
Th

is
 p

ap
er

 sh
ow

s t
he

 u
se

 o
f r

eq
ui

re
m

en
t u

nc
er

ta
in

ty
 a

na
ly

si
s t

ec
hn

iq
ue

. T
hi

s t
ec

hn
iq

ue
 w

as
 u

se
d

fo
r R

ol
ls

-R
oy

ce
 tr

ad
iti

on
al

 so
ftw

ar
e

de
ve

lo
pm

en
t a

nd
 e

xp
la

in
s h

ow
 it

 o
pe

ra
te

s r
eg

ar
di

ng
 a

 so
ftw

ar
e

pr
od

uc
t l

in
e

•
Th

e
an

al
ys

is
 te

ch
ni

qu
e

re
du

ce
s S

cr
ap

 &
 R

ew
or

k
on

 a
 tr

ad
iti

on
al

 p
ro

je
ct

 fr
om

 a
n

av
er

ag
e

of
 5

0%
 to

 b
el

ow
 5

%
.

27
Lo

ba
to

 e
t

al
.(2

01
2)

•
Th

e
pu

rp
os

e
is

 to
 id

en
tif

y
SP

L
(S

of
tw

ar
e

Pr
od

uc
t L

in
es

) r
is

ks
 w

hi
le

 p
ro

je
ct

 sc
op

in
g

an
d

re
qu

ire
m

en
t d

is
ci

pl
in

es
 a

re
 in

 p
ro

gr
es

s f
or

 a
 b

et
te

r
un

de
rs

ta
nd

in
g

of
 ri

sk
 m

an
ag

em
en

t.
•

B
en

ef
its

 o
f a

pp
ly

in
g

SP
L

ar
e

ge
ne

ra
lly

 re
la

te
d

to
 b

us
in

es
s o

bj
ec

tiv
es

 a
nd

 v
ar

io
us

 o
rg

an
iz

at
io

na
l i

ss
ue

s.

28
IR

M
A

S
(K

ho
o

et

al
.,

20
07

)

•
Th

is
 e

ffo
rt

sh
ow

s a
 q

ui
ck

 ri
sk

 m
ap

pi
ng

 a
nd

 a
ss

es
sm

en
t s

ys
te

m
 (I

R
M

A
S)

 to
 su

pp
or

t r
is

k
m

an
ag

em
en

t f
or

 m
ul

ti-
si

te
 p

ro
je

ct
s.

Th
e

sy
ste

m

fo
llo

w
s t

he
 st

an
da

rd
 ri

sk
 m

an
ag

em
en

t f
ra

m
ew

or
k

(A
S/

N
ZS

 4
36

0,
 1

99
9)

.
•

It
is

 e
xt

en
de

d
to

 su
pp

or
t r

is
k

tra
ck

in
g,

 re
po

rti
ng

 a
nd

 ri
sk

 m
an

ag
em

en
t i

n
ot

he
r a

pp
lic

at
io

ns
 a

ls
o.

29
R

IS
IC

A
R

E
(C

os
ta

et

 a
l.,

 2
00

7)
•

R
IS

IC
A

R
E

to
ol

 w
as

 p
la

nn
ed

 a
nd

 im
pl

em
en

te
d

to
 c

al
cu

la
te

 p
ro

je
ct

 ri
sk

•

Fi
ve

 m
od

ul
es

 a
re

: P
ro

je
ct

 c
ha

ra
ct

er
ist

ic
s,

qu
es

tio
nn

ai
re

, p
ro

je
ct

 p
or

tfo
lio

, r
is

k
le

ve
l,

an
d

si
m

ul
at

io
n

30
Ro

pp
on

en
 (2

00
0)

•
Th

is
 p

ap
er

 p
re

se
nt

s a
 su

rv
ey

 c
ov

er
in

g
m

or
e

th
an

 8
0

pr
oj

ec
t m

an
ag

er
s (

1,
10

0
pr

oj
ec

ts
),

it
sh

ow
s h

ow
 d

et
ai

le
d

kn
ow

-h
ow

 o
f e

nv
iro

nm
en

ta
l

co
nt

ex
t a

nd
 c

ur
re

nt
 m

an
ag

er
ia

l p
ra

ct
ic

es
 c

an
 b

e
in

te
gr

at
ed

 w
ith

 ri
sk

 m
an

ag
em

en
t c

on
si

de
ra

tio
ns

 fo
r m

an
ag

in
g

so
ftw

ar
e

ris
ks

 in
 a

n
op

tim
um

m

an
ne

r.

31
D

ey
 a

nd
 O

gu
nl

an
a

(2
00

7)
•

A
 ri

sk
 m

an
ag

em
en

t f
ra

m
ew

or
k

is
 p

ro
po

se
d

fro
m

 a
 d

ev
el

op
er

 p
er

sp
ec

tiv
e

fo
r s

of
tw

ar
e

de
ve

lo
pm

en
t p

ro
je

ct
s a

nd
 is

 u
se

r-f
rie

nd
ly

 a
nd

 si
m

pl
e

•
It

us
es

 a
 q

ua
lit

at
iv

e/
qu

an
tit

at
iv

e
te

ch
ni

qu
e

w
ith

 th
e

st
ak

eh
ol

de
r’s

 in
vo

lv
em

en
t i

n
th

e
id

en
tif

ic
at

io
n,

 a
na

ly
si

s,
an

d
re

sp
on

se
 to

 ri
sk

Ta
bl

e
2.

 C
on

tin
ue

d

61

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

RESULTS AND DISCUSSION

This section presents and discusses the findings of this study. The detailed description
of the finding is presented by answering selected research questions.

Limitations of Existing Approaches (RQ2)

Many existing approaches have various limitations that are generally not addressed
by practitioners. Here some of the main limitations of existing approaches are
highlighted.

Many approaches address a limited number of goals, such as schedule and cost.
There can be other important goals that can affect the success of the project and should
be taken care of such as compatibility with other domain/systems, the reputation of
the company, etc. Very few approaches support communication among stakeholders.
It is known that risk perceptions can be influenced by various external factors, as
the subjective element cannot be eliminated from the analysis of risk. Hence, it is
essential to include a decision-making element in the risk assessment, to ensure its
effectiveness it is essential to involve stakeholders in the decision-making.

Most risk frameworks only consider risk, which has a negative impact on the
system. However, there are risks, which can have a positive impact on the system
as opportunities, which are generally ignored by these approaches. Hence, it is
required to cater to negative risk while enhancing the opportunities. The traditional
risk-assessment techniques do not necessarily provide an easy guide of all potential
risk to consider at a component/environment level. That is why systematic literature
review is required on risk assessment tailored to the situations faced.

Dimensional Scales of Risk Assessment Techniques (RQ3)

Seven major dimensional scales of risk assessment practices have been identified
as shown in Figure 4.

Williams et al. (1999), Foo and Murganantham (2000), Mc- Connell (1996) and
Carr et al. (1993) proposed questionnaire-based risk assessment methods. Mc- Connell
(1996) approach also covered coding issues and a list of schedule risk factors in
their approach. Carr et al. (1993) introduced SEI risk taxonomy having three major
groups: development environment, program constraints, and product engineering.
This taxonomy has a hierarchical structure with 194 open questions from the software
development risk perspective. Konito (2001) monitored brainstorming sessions
and considered them useful for risk identification. Brainstorming session requires
interaction among several project stakeholders to identify the risk in the project,
it involves extensive human involvement. This technique has certain advantages

62

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

like improving the interaction, getting the response and concerned actions fast,
etc. However, there are few limitations like non-availability of stakeholders when
required, dependency on participant’s expertise. Hyatt and Rosenberg (1996) used
software metrics for risk assessment in the project where specific quality attributes
and goals were defined. As an output metrics were defined which relates to software
development practices. Gupta and Sadiq (2008) also used software metrics which
identifies set of risk from each phase of software development and finds total
cumulative risk. Sadiq et al. (2010) used SRAEP (Software Risk Assessment
and Evaluation Process) which is based on fault tree method. Boehm (1991) used
quantitative/qualitative assessment of risk in software projects. This model uses a
decision tree for risk event classification based on their dependence. Uzzafer (2011)
proposed a risk assessment model for generating cost estimates when integrated with
models for cost estimation. This model focuses on the classification of risk events
of software projects qualitatively. Fairley (1994) used attributes where congenial
risk events like size, time, etc. to recognize the statistical dependence of the risk
events. Keshlaf and Hashim (2000) worked on a generic tool for software risk
management named SoftRisk. This model focuses on technical, cost, and schedule
risks and is based on SERIM (Software Engineering risk model). However, they
fail to deal with issues of requirement complexity. Sadiq et al. (2010) introduced
a tool esrc Tool based on SRAEM model. It uses the function point approach and
helps in estimating the risk and cost of the software.

Probabilistic decision-making techniques like Artificial Neural Networks (ANN)
are also used to identify risk in software development. It is a machine learning
technique which is helpful in solving problems which has unclear definition and
not understood. Kutlubayet al. (2006) introduced a method using machine-learning
methods for identifying software defects. Salvatore et al. (2007) did substantial work
by improving the existing risk management models through equating the historical
risk data of similar projects risks that were found with every framework through

Figure 4. Risk assessment dimensional scales

63

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

direct integration with stakeholders. Another study by Goonawardeneet al. (2010)
where the use of neural and fuzzy systems is examined over various disparate areas
like forecasting of project success, the decision on year-end appraisal or flavor on
job recruiting. Fenton and Neil (1999) have proposed a model using Bayesian Belief
Networks and shown that models using Bayesian Belief Networks are advantageous
over the classical approaches. Fuzzy logic technique from many other forms is used
to assess risks in new software projects. Li et al. (2009), proposed a model for expert
assessment based on the fuzzy linguistic multiple attribute decision making. In this
model risk assessment is done by prioritizing the risk based on a set of linguistic terms
and on criteria which have been predefined for risk assessment. An approach using
Fuzzy Inference system (Iranmanesh et al., 2009) uses Schmidt risk factors. Ekananta
et al. (2013), introduced a Fuzzy expert-COCOMO model which integrates risk
assessment with effort estimation. There are several researches where combinations
of approaches are used like Deursen, and Kuipers (2003) introduced a method that
has questionnaires integrated with software metrics. Hu et al. (2007) proposed a
model using techniques like support vector machine (SVM), Neural Network (NN),
and genetic algorithm approaches which are used for project risk assessment. The
model is tested on data from questions answered, and SVM is seen to be better than
NN. Then NN model is improved with a genetic algorithm to show better results.

Risk Factors and Perspectives Adopted by Developer and
Stakeholders for Risk Assessment and Mitigation (RQ4)

Software Engineering Institute (SEI) (Stern & Arias, 2011; Carr et al., 1993; Tianyin,
2011) lists following risk factors listed in Table 3, which are associated with every
software development because software development project holds unique and
surprising elements of uncertainty.

In addition to the above factors, some commonly encountered factors are in direct
control of project managers and have a substantial impact on the success of the
project. This chapter provides a broad classification and discussion of these factors
as discussed by various researchers in their work, as stakeholder perspective risk
which is presented and discussed in Table 4.

Risk Factors Related to Requirement Schedule (RQ5)

In continuation of the discussion above there are risk factors related to requirement
schedule, which have a severe impact. Table 5 presents and discusses all these factors.

64

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

Table 3. Potential SEI Risk factors (Developers perspective)

1
Incorrect Resources estimation: In case resourcing is not done correctly, the correct skills do not exist for
finishing the work, the work items are assigned but do not get completed, it can get the managers jittery and
completing the project shall be risky.

2
User/Customer uncertainty: The stakeholder consensus and presence is required for fetching details on the
project work, the requirements are fetched, understanding validated, application output validated through
users and customers without which objective cannot be met.

3
Ambiguous requirements: Unclear requirements, which either mean something else or are wrong, can
cause loss of functionality to the application. The development team is not implementing against the correct
objective and risky for delivery.

4
Improper design risk: If a design decision that is hard to change later gets put in the project, it shall
be risky on delivery the product. The improper design can happen due to any reason associated with the
project.

5
Development system and risk with development system: The tools used for development if not available
or wrongly assigned can work towards the development team not starting to fulfill the correct objective, the
risk is enormous on the completion.

6
Inadequate management process: The top management or project managers must support the execution of
the project, disinterest in proceedings, manual processes, etc. can be significant risks due to which project
completion can be an issue.

7 Improper work environment: The corporate culture or environments the team uses to implement should
be proper and mimic environments which users want to visualize, an improper environment can cause a risk.

Table 4. Stakeholder Perspective Risk

S.
No

Stakeholder Risk
Perspective Description

1 Lack of top
management support

• Keil et al. (1998) found that if senior management lacks the commitment, it can
end up being a disruptive risk
• The top management attention and support is required throughout the project
implementation. The management team has to prioritize the responsibilities and
identify software projects as a top priority (Leitheiser, 1986; Barki & Hartwick,
1989; Gioia, 1996; Nah et al., 2001).

2 Corporate culture not
supportive

• Corporate culture should be correctly placed, any unknown agenda can hamper
delivery progress when ideas change based on will and not policy
• This results in collaterally damaging the management support, as the objectives
are not met (Baccarini et al., 2004; Leitheiser, 1986; Engming &Hsieh, 1994;
Irani & Love, 2001).

3 Inadequate user
involvement

• As per many researchers, it is one of the top ten causes of software failure
• Client involvement and management is required in managing scope and
objective, lack of which causes issues in budget and schedule (Keil et al.,1998;
Zhou et al., 2008; Addison & Vallabh, 2002; Smith et al., 2006)

4
Lack of client
responsibility and
ownership

• Keil et al. (1998) identified this as a fundamental risk
• User or client involvement in the software project helps in making a better
product. When things go wrong, and the users are not involved, the project
managers of the software project are generally blamed for the lack of client
responsibility (Mursu et al., 1999).

5
Friction between
clients and
contractors

• Opposing ideas between vendors and software contractors cause operational
problems and can have an adverse effect on the work which is another reason for
the cause of friction (Jones, 1993).

65

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

Table 5. Requirement and Schedule Risk

S. No Requirement and
Schedule Risk Description

1 Miscommunication of
requirements

• Missing clarity or miscommunication is one of the causes due to
which requirements are not understood correctly. It causes an original
set of requirements and other information being wrong or wrongly
understood (Iacovou & Nakatsu, 2008)

2 Unclear scope/objectives

• Different stakeholders have different objectives as explained by
Boehm (1989)
• These differences drive a clash in the understanding of the scope
resulting in unclear and hazy requirements understanding. Ambiguous
requirement specifications are more likely to create problems related to
project budget and schedule (Boehm, 1989; Shull, 2000)

3 Changing requirements

• The stakeholders often modify the requirements based on business
values and user’s need. However, frozen requirements do enable
the completion of the project on time, but they would not be able to
accommodate changes.
• It has been shown that continuous changes in the requirements
enviably lead to affect the schedule (Keil, 1998; Mursu et al., 2009;
Jones,1993; King, 1994)

4 Improper change
management

• Improper change management often hurts the stability of the
application and increases cost in operations/support, which becomes a
significant cause for software failure (Smith, 2006; Rasmussen et al.,
2006; Han & Huang, 2007; Keil et al., 2002).

5 Unrealistic schedule and
budget

• Sometimes the planning for the project is not done diligently, and
the project does not reach completion due to either a very rigorous
schedule or lower budget.
• A fixed schedule might lead to work completion pressures which
can have risk on the timely schedule or project results output (Boehm,
1989; King, 1994; Turner, 1999; Hamid et al., 1999).

6 Misunderstanding of
requirements

• If the requirement is not understood clearly, it can take multiple
cycles of clarification from stakeholders resulting in a delay of the
software project. It is one of the significant risks in software projects
which affects the project (Keil, 1998; Field, 1997; Schmidt et al., 2001;
Addison & Vallabh, 2002; Mursu et al., 2009).

7 Unrealistic expectations

• Keil et al. (1998) pointed out that if the user expectations are
incorrect or unrealistic, the project cannot be planned and completed.
• Sometimes, internally wrong expectations are set through top
management that causes even further issues in the team.

8 Gold plating
• The developers can add features to make system attractive and
application sustainable but sometimes increases the cost and make
users unhappy (Boehm, 1989; Cunningham, 1999).

9 Inaccurate estimation of
schedule or cost

• A wrong estimate can be detrimental for the project. If the estimate
were wrong, it would follow with the wrong budget and resulting delay
in release. Both under-estimating and overestimating leads to multiple
issues with the projects (Galorath, 2006; Masticola, 2007).

66

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

Mapping of Various Risk Assessment and Management
Models with Software Lifecycle Phases (RQ6)

It can be observed that risk(s) in software projects can happen in any of phase of
SDLC. Therefore, it is essential to map models/strategies with different phases of
SLDC, in order to analyze which risk management model fits the best for which
phase of the software lifecycle. Table 6 outlines this mapping.

Table 6. Risk models mapping with phases of SDLC (Roy, Dasgupta & Chaki, 2016)

S.
No Methods/ Models Purpose Risk considered SDLC Phases

1 BOEHM (1991) Risk Identification, analysis,
Prioritization, control

Generic risks (a risk that is
a potential threat to every
software project) and project-
specific risks

Requirement analysis
and planning

2 SoftRisk (Keshlaf
& Hashim, 2000)

Risk identification, assessment,
monitoring Requirement and

planning phase,
maintenance phase3 ARMOR (Lu et

al., 1995) Risk Identification, analysis All program module risks

4

PRORISK
(Suebkuna &
Ramingwong,
2011)

Risk assessment, risk control Software related Generic risks
Requirement phase,
coding phase,
maintenance phase

5 RMM (Hillson,
1997) Risk assessment Organizational risks

Not followed

6 ERM (Snekir &
Walker, 2007) Risk identification, assessment Generic risks and project-

specific risks

7 RAT (Sharif &
Rozan, 2010)

Risk assessment, treatment and
monitoring

Projects risks of Small and
medium software

8 TRM (Higuera et
al., 1994) Risk analysis, mitigation Team risks

9 Agle et al. (2003) Risk handling Risk related to team structure

10 SEI-SRE (Carr et
al., 1993)

Risk Evaluation: Detection,
specification, assessment,
consolidation, mitigation

Product risks, Process risks

Requirement phase,
coding phase, testing
phase, maintenance
phase

11
SRAM (Foo &
Muruganantham,
2000)

Risk assessment, prioritization Development risk
Requirement analysis

12 Armestrong
(2008) Risk identification Economic risk, business risk

13 RISKIT (Kontio
& Basili, 1997)

Risk identification, analysis,
monitoring, prioritize as per
probability and impact

Generic risk, project risk,
technical risk, schedule risk,
business risk

Requirement phase,
application, and
maintenance phase

14 Hoodat and
Rashidi (2009) Risk measurement

Project risk, product risk,
schedule risk, cost risk, quality
risk, business risk

Planning phase, testing
and debugging phase,
application phase.

continues on following page

67

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

SUMMARY OF CURRENT STATE OF ART

This section summarizes the current state of the art in practice for risk management:

• A few frameworks are available which follow similar kind of process to
manage the risks in the software projects. Many researchers have emphasized
to initiate risk management early in the software project lifecycle but
how to integrate still has credible questions. Some work considering risk
management has been done in software design (Verdon & McGraw, 2004)
though on analysis a change of design or re-elicitation of requirements can
have an adverse effect on the project and other work is done in requirement
engineering (Borland, 2005; Boness et al., 2008). The real risk management
tasks happen at the forefront of the project helping to curtail problems.

• The most prevalent practice in software risk management has significant
impetus on schedule and budget. Nowadays, new goals have gained
importance such as stakeholder consensus, market delighter, integration, etc.
The new goals need to be focused on for viewing the risks in requirements
from a holistic software development perspective.

• Risk Management in the software industry is still naive; many frameworks have
been developed for performing software risk management activities (Karolak,
1995; Boehm, 1991; Karolak, 1995; Kontio, 2001). The implementation of
the risk management activities is still not applied and practiced (Ropponen,

S.
No Methods/ Models Purpose Risk considered SDLC Phases

15 SERIM (Karolak,
1995) Risk assessment, risk ranking

Technical risk, cost risk,
schedule risk, organizational
risk, application risk

Requirement analysis
and planning phase

16
RIMAM (Shahzad
& Al-Mudimigh,
2010)

Risk identification, management,
avoidance schedule risk and cost risk

17 SRAEM (Gupta
& Sadiq, 2008) Risk estimation

technical risk, organization
risk, environmental risk

18 SRAEP (Sadiq et
al., 2010)

Risk assessment, prioritization

19 SERUM (Greer,
1997)

Implicit and explicit risk
management

Generic risk, risk related to
planning, development risk

20 SPRMQ (Mofleh
& Zahary, 2011)

risk factor identification, risk
probability computation, effects
on product quality, risk mitigation
and monitoring

Product risks

21 Danny (2013) Risk mitigation Operational risk Application phase

Table 6. Continued

68

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

1999; Pfleeger, 2000) The project managers know about the risks and its
effects but the effort concentrates on minimizing the cost and time in the
project, and that is why risk management does not hold a high priority.

• Several taxonomies are available for categorizing requirement defects, they
help in effectively managing defect detection and prevention (Alshazly et
al., 2014; Beizer, 1990; Chillarege et al., 1992; Grady, 1992; Margarido,
Faria, Vidal & Vieira, 2011; Walia & Carver, 2009; Hayes, 2003). In the
past, there have been few methods and defect taxonomies used on validation
of requirements (Ackerman, Buchwald & Lewski,1989; Sommerville, 2004;
Laitenberger, Atkinson, Schlich & Emam, 2000; Felderer & Beer, 2013,
2015). However, they are used in the later part of the software lifecycle and
not really on requirement validation (Felderer & Beer, 2013, 2015) and only
little has been done in that direction. Hence, there is a need to focus and put
more onus on relating requirements to defect taxonomy to find the risk in
them.

• The traditional/old risk management practice is followed by a majority of
project managers that tends to concentrate really on the potential negative
risk or issues by spending considerable effort on identifying and managing
threats, ignoring the positive side of risk (Hillson, 2002). More focus is
needed on enhancing and exploring the opportunities in the project as well.

CONCLUSION

The primary objective of this study was to present a systematic literature review
of techniques/methods/tools for risk assessment and management. This research
identifies and discovers existing risk assessment and management techniques,
their limitations, taxonomies, and processes. The goal of this study was to discover
potential problems and identify possible improvements for better defect identification
and prevention. It can be concluded that there is a need to focus on the effect of
executing every single requirement from the viewpoint of risk it can pose to the
system under development. It is essential to identify and analyze various requirement
defects before a decision of inclusion of a requirement is taken. These defect
prevention techniques or models are necessary and essential in order to be sure that
all business requirements are captured correctly (with clear vision and scope), and
only the correct requirements which focus on delivering value to the customer are
selected by taking a right decision using risk estimation. This research will help
the research community to improve software quality by developing more effective
tools and methods.

69

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

REFERENCES

Ackerman, A. F., Buchwald, L. S., & Lewski, F. H. (1989). Software Inspections: An
Effective Verification Process. IEEE Software, 6(3), 31–36. doi:10.1109/52.28121

Addison, T., & Vallabh, S. (2002). Controlling software project risks: An empirical
study of methods used by experienced project managers. In Proceedings of SAICSIT.
Port Elizabeth, South Africa: ACM.

Alge, B. J., Witheoff, C., & Klein, H. J. (2003). When does the Medium matter?
Knowledge building experiences and opportunities in decision-making teams.
Organizational Behavior and Human Decision Processes, 91(1), 26–37. doi:10.1016/
S0749-5978(02)00524-1

Alshazly, A. A., Elfatatry, A. M., & Abougabal, M. S. (2014). Detecting defects
in software requirements specification. Alexandria Engineering Journal, 53(3),
513–527. doi:10.1016/j.aej.2014.06.001

Amber, S., Shawoo, N., & Begum, S. (2012). Determination of Risk During
Requirement Engineering Process. International Journal of Emerging Trends in
Computing and Information Sciences, 3(3), 358–364.

Anthony, B., Noraini, C. P., Nor, R. N. H., & Jusoh, Y. Y. (2015). A risk assessment
model for collaborative support in software management. 9th Malaysian Software
Engineering Conference (MySEC), 217-223. 10.1109/MySEC.2015.7475224

Armestrong, R., & Adens, G. (2008). Managing Software Project Risks. TASSC
Technical Paper.

Arshad, N. R., Mohamed, A., & Matnor, Z. (2007). Risk factors in software
development projects. In Proceedings of the 6th WSEAS international conference on
software engineering, parallel and distributed systems. Corfu Island, Greece: ACM.

Avdoshin, S. M., & Pesotskaya, E. Y. (2011). Software risk management. Proceedings
of 7th Central and Eastern European Software Engineering Conference, 1-6.

Baccarini, D., Salm, G., & Love, P. E. D. (2004). Management of risks in information
technology projects. Industrial Management & Data Systems, 10(4), 286–295.
doi:10.1108/02635570410530702

Barki, H., & Hartwick, J. (1989). Rethinking the concept of user involvement.
Management Information Systems Quarterly, 13(1), 53–63. doi:10.2307/248700

Beizer, B. (1990). Software testing techniques (2nded.). New York, NY: Van
Nostrand Reinhold.

70

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

Bhukya, S. N., & Pabboju, S. (2018). Software engineering: Risk features in
requirement engineering. Cluster Computing, 1–13.

Boehm, B. (1981). Software Engineering Economics. Prentice- Hall.

Boehm, B. W. (1989). Organizational Climate and Culture. Jossey-Bass.

Boehm, B. W. (1991). Software Risk Management: Principles and Practices. IEEE
Software, 8(1), 32–41. doi:10.1109/52.62930

Boness, K., Finkelstein, A., & Harrison, R. (2008). A lightweight technique for
assessing risks in requirements analysis. IET Software, 2(1), 46–57. doi:10.1049/
iet-sen:20070068

Borland. (2005). Mitigating risk with effective requirements engineering. Technical
report, White paper.

Cailliau, A., & Lamsweerde, A. (2015). Handling knowledge uncertainty in risk-
based requirements engineering. IEEE 23rd International Requirements Engineering
Conference (RE), 106-115.

Carr, M., Konda, S., Monarch, I., Ulrich, C., & Walker, C. (1993). Taxonomy based
risk identification. Technical report. Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University. doi:10.21236/ADA266992

Chillarege, R., Bhandari, I. S., Chaar, J. K., Halliday, M. J., Moebus, D. S., Ray,
B. K., & Wong, M. Y. (1992). Orthogonal Defect Classification-A Concept for
In-Process Measurements. IEEE Transactions on Software Engineering, 18(11),
943–956. doi:10.1109/32.177364

Cornford, S. L., Feather, M. S., Heron, V. A., & Jenkins, J. S. (2006). Fusing quantitative
requirements analysis with model-based systems engineering. Proceedings of the
14th IEEE international requirements engineering conference, 279–284. 10.1109/
RE.2006.24

Costa, H. R., Barros, M. D. O., & Travassos, G. H. (2007). Evaluating software
project portfolio risks. Journal of Systems and Software, 80(1), 16–31. doi:10.1016/j.
jss.2006.03.038

Cunningham, M. (1999). It’s all about the business. Inform (Silver Spring, Md.),
13(3), 83.

Danny, L. (2013). Reducing Operational Risk by improving production software
quality. Software Risk Reduction Rev, 13, 1–15.

71

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

Deursen, T., & Kuipers, A. V. (2003). Source-Based Software Risk Assessment.
In Proceedings of the International Conference on Software Maintenance. Los
Alamitos, CA: IEEE Computer Society.

Dey, P. K., Kinch, J., & Ogunlana, S. O. (2007). Managing risk in software development
projects: A case study. Industrial Management & Data Systems, 107(2), 284–303.
doi:10.1108/02635570710723859

Ekananta, M., Capretz, L. F., & Ho, D. (2013). Software Project Risk Assessment
and Effort Contingency Model based on COCOMO Cost Factors. Journal of
Computations and Modeling, 3(1), 113–132.

Engming, L., & Hsieh, C. T. (1994). Seven deadly risk factors of software development
projects. Journal of Systems Management, 36(6), 38–42.

Fairley, R. (1994). Risk Management for Software Projects. IEEE Software, 11(3),
57–67. doi:10.1109/52.281716

Felderer, M., & Beer, A. (2013). Using Defect Taxonomies for Requirements
Validation in Industrial Projects. In Proceedings of the 21st IEEE International
Requirements Engineering Conference(RE). Rio de Janeiro, Brasil: IEEE. 10.1109/
RE.2013.6636733

Felderer, M., & Beer, A. (2015). Using Defect Taxonomies for Testing Requirements.
IEEE Software, 32(3), 94–101. doi:10.1109/MS.2014.56

Fenton, N., & Neil, M. (1999). A Critique of Software Defect Prediction Models.
IEEE Transactions on Software Engineering, 25(5), 675–689. doi:10.1109/32.815326

Field, T. (1997). When BAD things Happen to GOOD projects. CIO (Framingham,
Mass.), 55–62.

Foo, S. W., & Muruganantham, A. (2000). Software risk assessment model.
Proceedings of the 2000 IEEE International Conference on Management of Innovation
and Technology, 2, 536-544.

Gallardo, E. (2012). Using Configuration Management and Product Line Software
Paradigms to Support the Experimentation Process in Software Engineering.
Proceedings of International Conference on Research Challenges in Information
Science RCIS-2012, 1-6. 10.1109/RCIS.2012.6240454

Galorath, D. D., & Evans, M. W. (2006). Software Sizing Estimation and Risk
Management. Auerbach Publications. doi:10.1201/9781420013122.ch10

72

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

Genuchten, M. V. (1991). Why is software late? An empirical study of reasons for
delay in software development. IEEE Transactions on Software Engineering, 17(6),
582–590. doi:10.1109/32.87283

Ghane, K. (2017). Quantitative planning and risk management of Agile Software
Development. In IEEE Technology & Engineering Management Conference (pp.
109–112). Santa Clara, CA: TEMSCON.

Gioia, J. (1996). Twelve Reasons Why Programs Fail. PM Network, 10(11), 16–19.

Glass, R. L. (1998). Software Runaways: Monumental Software Disasters. Upper
Saddle River, NJ: Prentice-Hall, Inc.

Goonawardene, N., Subashini, S., Boralessa, N., & Premaratne, L. (2010). A Neural
Network Based Model for Project Risk and Talent Management. In International
Symposium on Neural Networks (vol. 6064, pp. 532-539). Springer. 10.1007/978-
3-642-13318-3_66

Grady, R. B. (1992). Practical Software Metrics for Project Management and Process
Improvement. Upper Saddle River, NJ: Prentice-Hall.

Greer, D. (1997). SERUM - Software Engineering Risk: Understanding and
Management. Journal of Project and Business Risk Management, 1(4), 373–388.

Guiling, L., & Xiaojuan, Z. (2011). Research on the risk management of IT project.
Proceedings of International conf. on E-Business and E -Government (ICEE), 1-4.

Gupta, D., & Sadiq, M. (2008). Software Risk Assessment and Estimation Model.
In International Conference on Computer Science and International Technology.
IEEE Computer Society.

Hall, T., Beecham, S., & Rainer, A. (2002). Requirements problems in twelve software
companies: An empirical analysis. IEEE Software, 149(5), 153–160. doi:10.1049/
ip-sen:20020694

Hamid, A., Sengupta, T. K., & Swett, C. (1999). The Impact of Goals on Software
Project Management: An Experimental Investigation. Management Information
Systems Quarterly, 23(4), 531–555. doi:10.2307/249488

Han, W. M., & Huang, S. J. (2007). An empirical analysis of risk components and
performance on software projects. Journal of Systems and Software, 80(1), 42–50.
doi:10.1016/j.jss.2006.04.030

73

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

Hayes, J. H. (2003). Building a Requirement Fault Taxonomy: Experiences from
a NASA Verification and Validation Research Project. In Proceedings of the
14thInternational Symposium on Software Reliability Engineering (ISSRE’03).
Denver, CO: IEEE Computer Society.

Higuera, R. P., Gluch, D. P., Dorofee, A. J., & Murphy, R. L. (1994). An introduction
to team risk management. Software Engineering Institute. CMU/SEI-94-SR-001.

Hillson, D. A. (1997). Towards Risk Maturity Model. International Journal of
Project and Business Risk Management, 1(1), 35–45.

Hillson, D. A. (2002). Extending the risk process to manage opportunities.
International Journal of Project Management, 20(3), 235–240. doi:10.1016/S0263-
7863(01)00074-6

Hoodat, H., & Rashidi, H. (2009). Classification and Analysis of Risks in Software
Engineering. World Academy of Science. Engineering and Technology WASET,
3(8), 446–452.

Hsieh, M. Y., Hsu, Y. C., & Lin, C. T. (2016). Risk assessment in new software
development projects at the front end: A fuzzy logic approach. Journal of Ambient
Intelligence and Humanized Computing. doi:0.100712652-016-0372-5

Hu, Y., Huang, J., Chen, J., Liu, M., & Xie, K. (2007). Software project risk
management modelling with neural network and support vector machine approaches.
In Third International Conference on Natural Computation. Washington, DC: IEEE
Computer Society.

Hyatt, L., & Rosenberg, L. (1996). A Software Quality Model Metrics for Risk
Assessment. European Space Agency Software Assurance Symposium.

Iacovou, C. L., & Nakatsu, R. (2008). A risk profile of offshore-outsourced development
projects. Communications of the ACM, 51(6), 89–94. doi:10.1145/1349026.1349044

IEEE. (1998). IEEE Standard for Software Reviews, IEEE Std 1028– 1997. IEEE.

Irani, Z., & Love, P. E. D. (2001). The propagation of technology management
taxonomies for evaluating information systems. Journal of Management Information
Systems, 17(3), 161–177.

Iranmanesh, S. H., Khodadadi, B., & Taheri, S. (2009). Risk Assessment of Software
Projects Using Fuzzy Inference System. International Conference on Computers
and Industrial Engineering, 1149-1154. 10.1109/ICCIE.2009.5223859

74

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

Islam, S., & Houmb, S. H. (2010). Integrating Risk Management Activities into
Requirements Engineering. Fourth IEEE International Conference on Research
Challenges in Information Science RCIS-2010, 299-310. 10.1109/RCIS.2010.5507389

Janjua, U., Jaafar, J., & Lai, F. (2016). Expert’s opinions on software project effective
risk management. Proceedings of 3rd International Conference on Computer and
Information Sciences (ICCOINS), 471-476. 10.1109/ICCOINS.2016.7783261

Jones, C. (1993). Assessment and Control of Software Risks. Englewood Cliffs, NJ:
Prentice-Hall.

Kamila, A. R., & Sutikno, S. (2016). Analysis of cause and effect relationship risk
using fishbone diagram in SDLC SPASI v. 4.0 business process. In International
Conference on Information Technology Systems and Innovation (ICITSI). Bandung:
IEEE.

Karolak, D. W. (1995). Software Engineering Risk Management. IEEE Computer
Society. Los Alamitos, CA: Wiley.

Keil, M., Cule, P., Lyytinen, K., & Schmidt, R. (1998). A framework for
identifying software project risks. Communications of the ACM, 41(11), 76–83.
doi:10.1145/287831.287843

Keil, M., Tiwana, A., & Bush, A. (2002). Reconciling user and project manager
perceptions of IT project risk: A Delphi study. Information Systems Journal, 12(2),
103–119. doi:10.1046/j.1365-2575.2002.00121.x

Keshlaf, A. A., & Hashim, K. (2000). A Model and Prototype Tool to Manage
Software Risks. In Proceedings of the 1st Asia-Pacific Conference on Quality
Software (AP AQS’00). Washington, DC: IEEE.

Khoo, Y. B., Zhou, M., Kayis, B., Savci, S., Ahmed, A., Kusumo, R., & Rispler, A.
(2007). IRMAS-development of a risk management tool for collaborative multi-
site, multi-partner new product development projects. Journal of Manufacturing
Technology Management, 18(4), 387–414. doi:10.1108/17410380710743770

King, J. (1994). Sketchy plans, politics stall software development. Computerworld,
29(24), 81.

Kontio, J. (2001). Software Engineering Risk Management: A Method, Improvement
Framework and Empirical Evaluation (Ph.D. thesis). Helsinki University of
Technology.

Kontio, J., & Basili, V. R. (1997). Empirical Evaluation of a Risk Management
Method. SEI Conference on Risk Management, Atlantic City, NJ.

75

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

Krasner, H. (1998). Looking over the legal edge of unsuccessful software projects.
Cutter IT Journal, 11(3), 11–22.

Kumar, C., & Yadav, D. (2015). A Probabilistic Software Risk Assessment and
Estimation Model for Software Projects. Procedia Computer Science, 54, 353–361.
doi:10.1016/j.procs.2015.06.041

Kumar, N. S., Vinay, S. A., & Sudheer, Y. (2010). Software Risk Management- An
Integrated Approach. Global Journal of Computer Science and Technology, 10(15),
53–57.

Kutlubay, O., Bener, A., & Ceylan, E. (2006). Software Defect Identification Using
Machine Learning Techniques. Proceedings of Conference on Software Engineering
and Advanced Applications (EUROMICRO-SEAA 2006).

Kwan, T. W., & Leung, H. K. N. (2011). A Risk Management Methodology for
Project Risk Dependencies. IEEE Transactions on Software Engineering, 37(5),
635–648. doi:10.1109/TSE.2010.108

Laitenberger, O., Atkinson, C., Schlich, M., & El Emam, K. (2000). An experimental
comparison of reading techniques for defect detection in UML design documents.
Journal of Systems and Software, 53(2), 183–204. doi:10.1016/S0164-1212(00)00052-
2

Leitheiser, R. L., & Wetherbe, J. C. (1986). Service Support Levels: An Organized
Approach to End-User Computing. Management Information Systems Quarterly,
10(4), 336–350.

Li, X., & Liu, Q. (2009). Requirement Risk Assessment Focused-on Stakeholder Risk
Analysis. Proceedings of 33rd Annual IEEE International Computer Software and
Applications Conference, COMPSAC ’09, 1, 640-641. 10.1109/COMPSAC.2009.199

Li, Y., & Li, N. (2009). Software project risk assessment based on fuzzy linguistic
multiple attribute decision making. IEEE International Conference on Grey Systems
and Intelligent Services, 1163-1166. 10.1109/GSIS.2009.5408087

Lindquist, C. (2005). Required: Fixing the requirements mess; The requirements
process, literally, deciding what should be included in the software, is destroying
projects in ways that aren’t evident until its too late. Some CIOs are stepping in to
rewrite the rules. CIO (Framingham, Mass.), 19(4), 53–60.

Lobato, L. L. (2012). Risk Management in Software Product Lines: An Industrial
Case Study. Proceedings of International Conference on Software and System
Process ICSSP, 180-189. 10.1109/ICSSP.2012.6225963

76

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

Lobato, L. L., Neto, P. A., & Machado, I. (2012). A Study on Risk Management for
Software Engineering. Proceedings of 16th International Conference on Evaluation
and Assessment in Software Engineering, 47-51. 10.1049/ic.2012.0006

Lu, M. R., Yu, J. S., Keramidas, E., & Dalal, S. R. (1995). ARMOR: analyzer for
reducing module operational risk. Twenty-Fifth International Symposium on Fault-
Tolerant Computing. Digest of Papers, 137-142. 10.1109/FTCS.1995.466989

Margarido, I. L., Faria, J. P., Vidal, R. M., & Vieira, M. (2011). Classification
of defect types in requirements specifications: Literature review, proposal, and
assessment. Paper Presented at 6th Iberian Conference on Information Systems and
Technologies (CISTI), Chaves, Portugal.

Masticola, S. P. (2007). A simple estimate of the cost of software project failures
and the breakeven effectiveness of project risk management. In Proceedings of
the First International Workshop on the Economics of Software and Computation.
IEEE. 10.1109/ESC.2007.1

McConnell, S. (1996). Rapid Development, Taming wild software schedules.
Microsoft Press.

McConnell, S. (1997). Software Project Survival Guide: How to Be Sure Your First
Important Project Isn’t Your Last. Redmond, WA: Microsoft Press.

Mead, N. R. (2012). Measuring The Software Security Requirements Engineering
Process. Proceedings of 36th International Conference on Computer Software and
Application Workshops, 583-588. 10.1109/COMPSACW.2012.107

Meng, Y. (2017). Study on software project risk assessment based on fuzzy analytic
hierarchy process. IEEE 3rd Information Technology and Mechatronics Engineering
Conference (ITOEC), 853-857.

Mofleh, H. M., & Zahary, A. (2011). A Framework for Software Product Risk
Management Based on Quality Attributes and Operational Life Cycle (SPRMQ).
12th International Arab Conference on Information Technology ACIT’2011, Riyadh,
Saudi Arabia.

Mursu, A., Soriyan, H. A., Korpela, M., & Olufokunbi, K. C. (1999). Toward
Successful ISD in Developing Countries: First Results from a Nigerian Risk Study
Using the Delphi Method. Proceedings of the 22nd Information Systems Research
Seminar in Scandinavia.

77

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

Nah, F., Lau, J., & Kuang, J. (2001). Critical factors for successful implementation
of enterprise systems. Business Process Management Journal, 7(3), 285–296.
doi:10.1108/14637150110392782

Nolan, A. J., Abrahão, S., Clements, P. C., & Pickard, A. (2011). Requirements
Uncertainty in a Software Product Line. In Proceedings of 15th International Software
Product Line Conference. Munich, Germany: IEEE. 10.1109/SPLC.2011.13

Noraini, C. P., & Bokolo, A. J. (2015). A Review on Decision Making of Risk
Mitigation for Software Management. Journal of Theoretical and Applied Information
Technology, 76, 333–341.

Pandey, D., Suman, U., & Ramani, A. K. (2011). Security Requirement Engineering
Issues in Risk Management. International Journal of Computers and Applications,
17(5), 11–14. doi:10.5120/2218-2827

Pfleeger, S. L. (2000). Risky business: What we have yet to learn about risk
management. Journal of Systems and Software, 53(3), 265–273. doi:10.1016/
S0164-1212(00)00017-0

Pohl, K., & Rupp, C. (2010). Basiswissen Requirements Engineering (2nd ed.).
Heidelberg, Germany: Dpunkt Verlag. doi:10.1007/978-3-642-12578-2

Project Management Institute. (2017). A guide to the project management body of
knowledge (PMBOK ® guide) (6th ed.). Author.

Rabia, H., & Muhammad, A. (2013). Critical success factors assessment in Software
Projects. Science and Information Conference, London, UK.

Rasmussen, M., Orlov, L. M., & Bright, S. (2006). Taking Control Of IT Risk Defining
A Comprehensive IT Risk Management Strategy. Forrester Research.

Ropponen, J. (1999). Risk assessment and management practices in software
development. In L. P. Willcocks & S. Lester (Eds.), Beyond the IT Productivity
Paradox (pp. 247–266). Chichester, UK: John Wiley & Sons.

Ropponen, J., & Lyytinen, K. (2000). Component of Software Development Risk:
How to address them? A project manager survey. IEEE Transactions on Software
Engineering, 26(2), 98–112. doi:10.1109/32.841112

Roy, B., Dasgupta, R., & Chaki, N. (2016). A Study on Software Risk Management
Strategies and Mapping with SDLC. In R. Chaki, A. Cortesi, K. Saeed, & N. Chaki
(Eds.), Advanced Computing and Systems for Security. Advances in Intelligent Systems
and Computing, 396. New Delhi: Springer. doi:10.1007/978-81-322-2653-6_9

78

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

Sadiq, M., Rahman, A., Ahmad, S., Asim, M., & Ahmad, J. (2010). esrcTool: A
Tool to Estimate the Software Risk and Cost. IEEE second International Conference
on Computer Research and development, 886-890.

Sadiq, M., Rahmani, M. K. I., Ahmad, M. W., & Jung, S. (2010). Software risk
assessment and evaluation process (SRAEP) using model-based approach. In
International Conference on Networking and Information Technology (ICNIT).
Manila: IEEE. 10.1109/ICNIT.2010.5508535

Sarci, S. A., Cantone, G., & Basili, V. R. (2007). A Statistical Neural Network
Framework for Risk Management Process - From the Proposal to its Preliminary
Validation for Efficiency. Proceedings of the Second International Conference on
Software and Data Technologies.

Schmidt, R., Lyytinen, K., Keil, M., & Cule, P. (2001). Identifying software project
risks: An international Delphi study. Journal of Management Information Systems,
17(4), 5–36. doi:10.1080/07421222.2001.11045662

Shahzad, B., & Al-Mudimigh, A. S. (2010). Risk Identification, Mitigation and
Avoidance Model for Handling Software Risk. In Proceedings of the 2010 2nd
International Conference on Computational Intelligence, Communication Systems
and Networks. Liverpool, UK: ACM.

Sharif, A. M., & Rozan, M. Z. A. (2010). Design and Implementation of Project
Time Management Risk Assessment Tool for SME Projects using Oracle Application
Express. World Academy of Science, Engineering and Technology, 65, 1221–1226.

Shull, F., Rus, I., & Basili, V. (2000). How perspective-based reading can improve
requirements inspections. Computer, 33(7), 73–79. doi:10.1109/2.869376

Smith, D., Eastcroft, M., Mahmood, N., & Rode, H. (2006). Risk factors affecting
software projects in South Africa. South African Journal of Business Management,
37(2), 55–65.

Snekir, W. G., & Walker, P. L. (2007). Enterprise Risk Management: Tools and
Techniques for effective implementation. Institute of Management Accounts, 1-31.

Sommerville, I. (2004). Software Engineering (7th ed.). Pearson Addison Wesley.

Stern, R., & Arias, J. C. (2011). Review of Risk Management Methods. Business
Intelligence Journal, 4(1), 59–78.

79

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

Suebkuna, B., & Ramingwong, S. (2011). Towards a complete project-oriented
risk management model: A refinement of PRORISK. In Eighth International Joint
Conference on Computer Science and Software engineering (JCSSE). IEEE. 10.1109/
JCSSE.2011.5930146

Swede, V. V., & Vliet, J. V. (1994). Consistent development: results of a first
empirical study on the relation between project scenario and success. In G. Wijers,
S. Brinkkemper, & T. Wasserman (Eds.), Lecture Notes in Computer Science: Vol.
811. Advanced Information Systems Engineering, CAiSE 1994. Berlin: Springer.

Tianyin, P. (2011). Development of software project risk management model review.
Proceedings of International conference on Artificial Intelligence, Management
Science and Electronic Commerce, 2979-2982. 10.1109/AIMSEC.2011.6011139

Turner, J. R. (1999). Project Management: A profession based on knowledge or
faith. International Journal of Project Management, 17(6), 329–342.

Uzzafer, M. (2011). A Novel Risk Assessment Model for Software Projects.
International Conference on Computer and Management (CAMAN), 1-5. 10.1109/
CAMAN.2011.5778729

Veenendaal, E. V. (2011). Practical Risk-Based Testing - Product Risk Management:
The PRISMA Method. EuroSTAR-2011, 1-24.

Verdon, D., & McGraw, G. (2004). Risk analysis in software design. IEEE Security
and Privacy, 2(4), 79–84. doi:10.1109/MSP.2004.55

Walia, G. S., & Carver, J. C. (2009). A systematic literature review to identify and
classify software requirement errors. Information and Software Technology, 51(7),
1087–1109. doi:10.1016/j.infsof.2009.01.004

Wanderley, M. Jr, Menezes, J. Jr, Gusmão, C., & Lima, F. (2015). Proposal of
Risk Management Metrics for Multiple Project Software Development. Procedia
Computer Science, 64, 1001–1009. doi:10.1016/j.procs.2015.08.619

Williams, R. C., Pandelios, G. J., & Behrens, S. G. (1999). Software Risk Evaluation
(SRE) Method description (Version-2.0). Technical report CMU/SEI-99-TR-029.

Zhi, H., Zhang, G., Liu, Y., & Shen, Y. (2017). A novel risk assessment model on
software system combining modified fuzzy entropy-weight and AHP. IEEE 8th
Conference on Software Engineering and Service Science, 451-454.

80

A Systematic Literature Review on Risk Assessment and Mitigation Approaches

Zhou, L., Vasconcelos, A., & Nunes, M. (2008). Supporting decision making
in risk management through an evidence-based information systems project
risk checklist. Information Management & Computer Security, 16(2), 166–186.
doi:10.1108/09685220810879636

ADDITIONAL READING

Bannerman, P. (2008). Risk and risk management in software projects: A reassessment.
Journal of Systems and Software, 81(12), 2118–2133. doi:10.1016/j.jss.2008.03.059

Boehm, B., & Basili, V. (2001). Software Defect Reduction Top 10 List. IEEE
Computer, 34(1), 135–137. doi:10.1109/2.962984

CHAOS Report 2015. 2015.

Hamill, M., & Katerina, G. P. (2009). Common Trends in Software Fault and Failure
Data. IEEE Transactions on Software Engineering, 35(4), 484–496. doi:10.1109/
TSE.2009.3

IEEE Computer Society Professional Practices Committee. (2014). Guide to the
Software Engineering Body of Knowledge (SWEBOK® Guide). Version 3.0. IEEE.

Marasco, J. (2007). “What Is the Cost of a Requirement Error? Stickyminds. Available
at: https://www.stickyminds.com/article/what-cost-requirement-error

Pressman, R. S. (2014). Software Engineering: A Practitioner’s Approach (8th ed.).

Spacey, J. (2016). 9 Examples of Positive Risk, 2016. Available at: https://business.
simplicable.com/business/new/9-examples-of-positive-risk

https://www.stickyminds.com/article/what-cost-requirement-error
https://business.simplicable.com/business/new/9-examples-of-positive-risk
https://business.simplicable.com/business/new/9-examples-of-positive-risk

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

81

DOI: 10.4018/978-1-5225-9659-2.ch005

ABSTRACT

This chapter is aimed at studying the key performance indicators of team members
working in an agile project environment and in an extreme programming software
development. Practitioners from six different XP projects were selected to respond
to the survey measuring the performance indicators, namely, escaped defects,
team member’s velocity, deliverables, and extra efforts. The chapter presents a
comparative view of Scrum and XP, the two renowned agile methods with their
processes, methodologies, development cycles, and artifacts, while assessing the
base performance indicators in XP setup. These indicators are key to any agile
project in a global software development environment. The observed performance
indicators were compared against the gold standard industry benchmarks along
with best, average, and worst-case scenarios. Practitioners from six agile XP
projects were asked to participate in the survey. Observed results best serve the
practitioners to take necessary course corrections to stay in the best-case scenarios
of their respective projects.

Agile Team Measurement to
Review the Performance in

Global Software Development
Chamundeswari Arumugam

SSN College of Engineering, India

Srinivasan Vaidyanathan
Cognizant Technology Solutions, India

82

Agile Team Measurement to Review the Performance in Global Software Development

INTRODUCTION

The software organization has completely moved on to Global Software
Development(GSD) (Chamundeswari, Srinivasan & Harini, 2018) as its tends to
improve the productivity, in spite of the risk they undergo in terms of the practitioners,
environment, culture, etc. Organization gives more priorities to these mainly for
cost reduction. Practitioners also on their part has many risk to undergo to take up
assignment in this GSD, but in spite of it they take up the assignment because of
the money, relocation, etc. This software development practice undergo four stages
(Pressman, 2005), such as forming, stroming, norming and performing. Stage by stage
the project progresses as a team for the product delivery. Due to agile approach the
project team members can also progress in their skills to produce the best in them.

Though agile practices are many, taking the widely used aspect into concern,
scrum and extreme programming is concentrated in this work. Agile, a Scrum
process model (Bertrand, 2018) follow sprints or iteration to deliver a product. As
the iteration flows it enables the customer to update their feedback and gets linked
to next iteration delivery. Thus the incremental delivery for each iteration or sprint
is achieved by this model. The team members co-operate to deliver the product in
sprint as the project progress. Scrum has many key role members to execute a project
development. It includes product owner, scrum master and team members. Each
member has a role and task to be get committed on based on onsite or offshore project.

Extreme Programming (XP) is another agile framework that is widely used to
produce high quality software by ensuring ease of development and quality of life
for the team. XP is suitable when software requirements change dynamically, new
technology is involved in a definitive timeline projects, team needs to be collocated
for extended development, the selected technology lends itself for automated tests.
It revolves around simplicity, communication, respect, courage and feedback. From
a communication perspective, XP stresses on face to face communication through
collocated teams. Simplicity involves keeping the design, coding simple so as to
maintain easier support and revisions. Courage denotes bold decisions to doing
what is right in the face of fear. Respect means demanding respect among the team
members to freely give and accept feedback. In the feedback principle, teams identify
areas of improvements and implement best practices.

The focus of the proposed work is inclined to analyze the key performance
measure team members working in an Agile project environment in a Global
Software Development(GSD)environment. Vital parameters that are important for
the practitioners in various projects were chosen to survey the analyzes. Software
production divisions follow many methodologies for GSD. Some organization follow
scrum 100% while other follow extreme programming. Still it is open to follow any

83

Agile Team Measurement to Review the Performance in Global Software Development

approach as far as the organization has the culture and practices deployed for ease of
the productivity. Now, in this chapter, the two popular agile approaches scrum and
extreme programming is taken up for discussion in the context of GSD practitioners.
In this work, influencing parameters taken up to measure team member performance
in XP is discussed.

BACKGROUND

Diane et al. (2012) proved agile model increases co-ordination effectiveness. Meghann
et al. (2012) worked on decision making principles in agile software development.
Emily et al. (2013) investigated the team performance using the team factors. Fabian
et al. (2014) suggested few factors to improve the developer’s performance. Mikko
et al. (2014) identified five communication wastes in global agile projects and how
to mitigate them to increase development. Srikrishnan et al. (2014) highlighted the
risk culture and practice in agile software development. Ashay et al. (2014) worked
on the virtual team member contribution towards global projects. Georgieos et al.
(2015) observation states agile improves employee and customer satisfaction.

Paul et al. (2015) concentrated on various aspects beyond technical skill sets for
the project team members and listed 53 attributes to assess their performance. Rafael
et al. (2016) proposed guidelines to improve development strategy for developing
quality product using virtual team members. Serhat et al (2016) proposed eleven
influencing factors and dependency among the factors with respect to global project
team members. Ricardo et al. (2016) used stochastic automata networks (SAN) to
study the coordination in distributed project for a specific project configuration.
Rafael (2016) analysed the agile software development practices and observed
that it makes a positive effect. Torgeir et al. (2014) assessed the co-located team
performance that follows agile practices for development.

David et al. (2016) assessed the traditional and targeted scrum and confirmed
that targeted scrum has no remarkable change in top and worst performing teams.
Yngve et al. (2016) assessed and observed that agile development has only minimal
variation with respect to traditional software team. Daniel et al. (2017) performed
a survey and analyzed the unhappiness of the software developer. Suggested and
recommended the means to improve the fall condition. Itanaua et al. (2017) identified
psychological factors with team members in agile method and concluded that trust
has more significant impact among team members. Lucas et al. (2017) proved the
fact that group maturity in team agility has influence towards the contribution of
product. Leo at al. (2016) remarked industry has high use of agile methodologies
and also its factors has influence in software development.

84

Agile Team Measurement to Review the Performance in Global Software Development

Christof et. al. (2017) discusses the five agile framework and its adaption in
industry for delivery. Dinesh (2018) explored the agile values and mentioned that
the productivity increases by adapting this practice. Sadath et al. (2018) applied
extreme programming in student projects to improve the learning capability,
knowledge and skill of the students. Ramlall et al. (2018) studied the influence of
personality traits of programmers when working from same and remote locations in
Extreme programming. The literature survey reveals that many researchers have done
performance measures on agile practices. But in this research work, the performance
measures of two agile practices that is followed in the industry is explored and one
of the measures is discussed in detail.

OVERVIEW

Agile methodology (2016) has many methods to adapt for software development.
Notably Scrum, Extreme programming are the two different types of methods taken
up in this work for performance measurement. Agile methodology, scrum in GSD
projects has scrum master, product owner, and team members to play a vital role
in development (2018). Product owner may be a business analyst or customer who
is responsible for product backlog, while scrum master organizes sprint meeting

Table 1. Literature survey comparison

Year References Comparison parameter Number of authors
(referred)

2012 [17]

Agile practices 6
2016 [22][15][9]

2017 [6]

2018 [10]

2014 [18][28] Risk 2

2000 [3]

Team Performance 18

2012 [17][7]

2013 [11]

2014 [1][12]

2015 [13][19]

2016 [21][27][25][29][9][30]

2017 [8][14][16]

2018 [23]

2015 [13] Customer satisfaction 1

85

Agile Team Measurement to Review the Performance in Global Software Development

and responsible for sprint backlog. Product backlog has all feature information and
sprint backlog has details about user stories and the delivery plan of various units
in sprint. Team members split the tasks, in various sprint or iteration. Scrum block
diagram is represented in Fig 1. It is expected that all team members complete the
task without affecting business. But in normal scenario things may change.

Extreme programming (XP) is a well-known agile software development
methodology created by Kent Beck (2000). XP is used for software development in
various organization to produce high quality software with quality life for development
team. XP is practiced because it follows five values, such as communication, simplicity,
feedback, courage, and respect. Coding, testing, listening and designing are the four
basic activities (SelectBS, n.d.) in this agile method. Customer or business analyst,
who is a part of the team will jointly work with the developers. User stories of the
customer requirements are delivered in short cycles of iteration and the stakeholder

Figure 1. Scrum process

Figure 2. XP process - collocated environment

86

Agile Team Measurement to Review the Performance in Global Software Development

communicate their feedback to the developer for changes. To improve quality code,
refactoring feature is enabled in testing. Extreme programming block diagram is
represented in Fig 2.

Scrum and XP are quite aligned but there are some delicate differences between
them (Differences, n.d.). Scrum work is in sprints, that last for 2 to 4 weeks. Whereas
XP work in iterations that last for 1 to weeks. While Scrum product backlog items
are packaged and committed into a Sprint, changes are not entertained throughout
the sprint cycle, XP allows for changes in its iterations. If the work on a specific
features hasn’t started, a new feature can be substituted into its iteration in swap of
the other feature. In XP, customer determines the order of the work to be executed,
whereas SCRUM product owner determines order of priority in SCRUM and the
team gets the flexibility of working in a sequence according to the project resources
and code constraints. XP advocates engineering practices while SCRUM doesn’t
prescribe any. Simple design, Pair programming, test-driven development, refactoring
and automated testing are some of the practices XP mandates. SCRUM doesn’t
mandate such practices rather let the team figure them out on their own. Figure 3.
represents the differences between scrum and XP.

Agile Metrics

The success factor in GSD projects depends on the productive team members. Adapting
XP practice and measuring the team members to study the progress of success rate in
the organization is really challengeable. Already the KPI for agile scrum practice to
measure the team member performance was defined (Chamundeswari, Sriraghav, &
Baskaran, 2017) and here this measurement is compared with XP practice to study
the resultant outcome of the two agile practices. The productive team members are
the building blocks of the organization and the Key Performance Indicator (KPI)
to measure them is discussed in Equation 1 to 4.

Escaped defects, a metrics to track the defects in the delivered product. It is
essential to measure this metrics to apply the corrective steps at the early stage. The
metric function F1, is stated in Equation 1.

Figure 3. Difference between Scrum and XP

87

Agile Team Measurement to Review the Performance in Global Software Development

Equation 1: Escaped defectsiteration#i(F1) =

No. of escaped defects in an iteration by a team member

Totaal no. of escaped defects in an iteration

An iteration has many user stories, and each user stories has many tasks to which
team members get committed in an iteration. Generally, each iteration may span to
1 to 2 weeks. The metric function F2, is stated in Equation 2.

Equation 2: Team member velocityiteration#i(F2) =

No. of task completed by a team member in an iteration

Totall no. of committed tasks in an iteration

Deliverables metrics, measures actual hours taken by a team member in an
iteration to complete a task from the total planned hours. The metric function F3,
is stated is Equation 3.

Equation 3: Deliverablesiteration#i(F3) =

Actual hrs spent to complete committed task in an iterationn

Total planned hrs to complete committed task in an iterattion

Extra effort spent by a member to develop defect free complete his task is an
important metrics to measure the total effort spent to deliver a defect free product.
The metrics function F4, is given in Equation 4.

Equation 4: Extra Effortsprint#i (F4) =

Extra hrs worked to fix bugs in an iteration by a team membber

Actual hrs spent to complete committed task in an iteraation + Extra hours

RESULTS AND DISCUSSION

Four defined metrics in Section 4 are assessed by framing seven questions to extract
the response from practitioners, following the context given in this work. Table 2.
represents the questions framed to extract the answers for the metrics defined in
Section “Agile Metrics”. Judgmental or purposive sampling was done in identifying

88

Agile Team Measurement to Review the Performance in Global Software Development

the projects for participation in the survey. The practitioners were chosen from 6
different IT companies who executed Agile XP projects. Anonymity of data was
ensured prior to analyzing and interpreting the results.

Seven survey questions were framed for the four metrics defined. Survey
questionnaire was circulated to the identified practitioners, practicing the agile
extreme programming for their projects in their respective organizations. Metrics
data along with industry bench mark (Chamundswari et al., 2018), best, average,
and worst case is represented in Table 3.

It is identified that the 5 project metrics out of 6 projects is measurable and only
one project data, project 3 is not correct. Project 1, 2, 4, 5 and 6 were measurable.
The graph was plotted with collected data and represented in Fig. 4. From the graph,
it is observed that the P1 and P2 has some worst case scenario and need focus on
the software practitioners who are involved in development.

Table 2. Survey questions for defined metrics.

Metrics Survey questions

F1 • How many defects likely occur in your task per iteration ?
• How many defects likely occur by all team members in a project per iteration ?

F2 • Quantify the tasks committed in a project per iteration.
• Quantify the tasks you complete in an iteration.

F3 • What is the actual hours taken to complete your committed task in an iteration?
• What is the planned hours to complete committed task in an iteration?

F4 • Did you took extra hours to fix bugs in your committed task in an iteration ?

- • Feedback about the survey.

Table 3. Metrics data

Metrics Project 1
(P1)

Project 2
(P2)

Project 3
(P3)

Project 4
(P4)

Project 5
(P5)

Project 6
(P6)

F1 0.1(best case) 0.2(avg case) 0.3(avg case) 0(best case) 0.3(avg case) 0.25(best
case)

F2 0.1(worst
case)

0.375(worst
case)

0.3(worst
case) 1 (best case) 1 (best case) 1(best

case)

F3 1(best case) 1.2(best case) 10 0.8(avg
case) 1(best case) 1(best

case)

F4 0.16(best
case)

0.05(best
case) 0.25(avg case) 0(best case) 0(best case) 0(best

case)

89

Agile Team Measurement to Review the Performance in Global Software Development

FUTURE RESEARCH DIRECTIONS

As a future extension, with a larger sample base, AI based clustering and prediction
algorithms can be leveraged in grouping the inputs and predicting the output
respectively based on historical data patterns. Future researchers can assume and
study the effect of additional performance indicators for empirical analysis from
both Scrum and XP perspectives to verify the consistency of results. Also, the
study can be repeated with projects of varying degrees of complexity and observe
results. Finally the study can also be repeated for varying scopes of the projects
and technological implementations, may it be legacy, new or digital technologies.

CONCLUSION

This chapter has taken a plunge into the set of base performance indicators to
measure the team performance and act upon the right signals on a XP project.
Practitioners from six Agile XP projects in IT industry participated in the survey.
From the preliminary data analysis, Project 3’s data weren’t measurable and hence
was discarded. Other set of projects’ data were subjected to detailed analysis and
it was concluded that:

• The performance metric “Team Member Velocity” needed focus for the
practitioners of Projects 1 and 2. They need to implement substantial changes
to the committed total number of tasks in an iteration and the number of
tasks completed by the team members in that iteration. That will help them

Figure 4. Metrics data representation

90

Agile Team Measurement to Review the Performance in Global Software Development

to improve from worst case to the best case scenario to stay aligned with
industry benchmarks.

• The performance metric “Escaped Defects” needed focus for the practitioners
of Projects 2 and 5. They need to implement moderate changes to the escaped
total number of defects in an iteration and the number of escaped defects by the
team members in that iteration. That will help them to improve from average
case to the best case scenario to stay aligned with industry benchmarks.

• The performance meric “Deliverables” needed focus for the practitioner
of Project 4. The practitioner needs to implement moderate changes to the
planned total number of hours to complete committed tasks in an iteration
and the actual number of hours spent by the team members in that iteration.
That will help to improve from average case to the best case scenario to stay
aligned with industry benchmarks.

Observed results best serve the practitioners to take necessary course corrections
to stay in the best case scenarios of their respective projects. The study also proves
the point that while Scrum and XP are two different agile methodologies, the base
performance indicators to measure the project and team members productivity are
applicable to both.

REFERENCES

Ashay, S., & Johanna, B. (2014). Factors affecting team performance in globally
distributed setting. Proceedings of the 52nd ACM conference on Computers and
people research, 25-33.

Beck, K. (2000). Extreme Programming Explained: Embrace Change. Reading,
MA: Addison Wesley Longman, Inc.

Bertrand, M. (2018). Making Sense of Agile Methods. IEEE Software, 91–94.

Chamundeswari, A., Srinivasan, V., & Harini, K. (2018). Global Software
Development: Key Performance Measures of Team in a SCRUM based Agile
Environment. In 19th International Conference on Computational Science and
Applications, Proceedings published in Springer LNCS. Monash University.

Chamundeswari, A., Sriraghav, K., & Baskaran, K. (2017). Global Software
Development:A design framework to measure the risk of the global practitioners.
In ACM International Conference on Computer and Communication Technology.
Motilal Nehru National Institute of Technology.

91

Agile Team Measurement to Review the Performance in Global Software Development

Christof, E., & Maria, P. (2017). Scaling Agile. IEEE Software, 98–103.

Daniel, G., Fabian, F., Xiaofeng, W., & Pekka, A. (2017). Consequences of unhappiness
while developing software. Proceedings of the 2nd International Workshop on
Emotion Awareness in Software Engineering, 42-47.

David, P. H., & Arvin, A. (2016). Targeted Scrum: Applying Mission Command to
Agile Software Development. IEEE Transactions on Software Engineering, 42(5),
476–489. doi:10.1109/TSE.2015.2489654

Diane, E. S., Sid, L. H., Beverley, H., & Sebastian, L. (2012). Coordination in
co-located agile software development projects. Journal of Systems and Software,
85(6), 1222–1238. doi:10.1016/j.jss.2012.02.017

Differences Between Scrum And Extreme Programming. (n.d.). Retrieved from
https://www.mountaingoatsoftware.com/blog/differences-between-scrum-and-
extreme-programming

Dinesh, B. (2018). Agile values or plan-driven aspects: Which factor contributes
more toward the success of data warehousing, business intelligence, and analytics
project development? Journal of Systems and Software, 146, 249–262. doi:10.1016/j.
jss.2018.09.081

Emily, W., Ariadi, N., Joost, V., & Aske, P. (2013). Towards high performance
software teamwork. Proceedings of the 17th International Conference on Evaluation
and Assessment in Software Engineering, 212-215.

Fabian, F., Marko, I., Petri, K., Jürgen, M., Virpi, R., & Pekka, A. (2014). How do
software developers experience team performance in lean and agile environments?
Proceedings of the 18th International Conference on Evaluation and Assessment
in Software Engineering.

Georgios, P. (2015). Moving from traditional to agile software development
methodologies also on large, distributed projects. Procedia: Social and Behavioral
Sciences, 175, 455–463. doi:10.1016/j.sbspro.2015.01.1223

Itanauã, F. B., Marcela, P. O., Priscila, B. S. R., Tancicleide, C. S. G., & Fabio, Q. B.
D. S. (2017). Towards understanding the relationships between interdependence and
trust in software development: a qualitative research. 10th International Workshop
on Cooperative and Human Aspects of Software Engineering, 66-69.

Leo, R. V., & Charles, W. B. (2016). Choice of Software Development Methodologies
Do Organizational, Project, and Team Characteristics Matter? IEEE Software, 86–94.

https://www.mountaingoatsoftware.com/blog/differences-between-scrum-and-extreme-programming
https://www.mountaingoatsoftware.com/blog/differences-between-scrum-and-extreme-programming

92

Agile Team Measurement to Review the Performance in Global Software Development

Lucas, G., Richard, T., & Robert, F. (2017). Group development and group maturity
when building agile teams: A qualitative and quantitative investigation at eight
large companies. Journal of Systems and Software, 124, 104–119. doi:10.1016/j.
jss.2016.11.024

Meghann, D., Kieran, C., & Ken, P. (2012). Obstacles to decision making in Agile
software development teams. Journal of Systems and Software, 85(6), 1239–1254.
doi:10.1016/j.jss.2012.01.058

Mikko, K., & Frank, M. (2014). Waste identification as the means for improving
communication in globally distributed agile software development. Journal of
Systems and Software, 95, 122–140. doi:10.1016/j.jss.2014.03.080

Paul, L., Andrew, J. K., & Jiamin, Z. (2015). What makes a great software engineer?
37th International Conference on Software Engineering, 700-710.

Pressman, R. (2005). Software Engineering: A Practitioner’s Approach. McGraw-Hill.

Rafael, P., Casper, L., Evelyn, T., & Jeffrey, C. C. (2016). Trends in Agile Perspectives
from the Practitioners. IEEE Software, 20–22.

Rafael, P., Marcelo, P., & Sabrina, M. (2016). Virtual Team Configurations that
Promote Better Product Quality. Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement.

Ramlall, P., & Chuttur, M. Y. (2018). An Experimental Study to Investigate Personality
Traits on Pair Programming Efficiency in Extreme Programming. 5th International
Conference on Industrial Engineering and Applications, 95 - 99.

Ricardo, B., Darja, Š., & Lars-Ola, D. (2016). Experiences from Measuring Learning
and Performance in Large-Scale Distributed Software Development. Proceedings of
the 10th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement.

Ricardo, M.C., Paulo, F., Lucelene, L., Afonso, S., Alan R. S., & Thais, W. (2016).
Stochastic Performance Analysis of Global Software Development Teams. ACM
Transactions on Software Engineering and Methodology, 25(3), 26:1-26:32.

Sadath, L., Karim, K., & Gill, S. (2018). Extreme programming implementation
in academia for software engineering sustainability. International Conference
on Advances in Science and Engineering Technology, 1-6. 10.1109/
ICASET.2018.8376925

Serhat, S., Ramazan, K., & Bulent, S. (2016). Factors Affecting Multinational Team
Performance. Procedia: Social and Behavioral Sciences, 25(3), 60–69.

93

Agile Team Measurement to Review the Performance in Global Software Development

Srikrishnan, S., Marath, B., & Pramod, K. V. (2014). Case study on risk management
practice in large offshore-outsourced Agile software projects. IET Software, 8(6),
245–257. doi:10.1049/iet-sen.2013.0190

Torgeir, D., Tor, E. F., Tore, D., Børge, H., & Yngve, L. (2016). Team Performance
in Software Development Research Results versus Agile Principles. IEEE Software,
106–110.

What Is Extreme Programming? (XP). (n.d.). Retrieved from http://www.selectbs.
com/process-maturity/what-is-extreme-programming

Yngve, L., Dag, I. K. S., Torgeir, D., Gunnar, R. B., & Tore, D. (2016). Teamwork
quality and project success in software development: A survey of agile development
teams. Journal of Systems and Software, 122, 274–286. doi:10.1016/j.jss.2016.09.028

ADDITIONAL READING

Saru, D., Deepak, K., & Singh, V. B. (2018). Success and Failure Factors that
Impact on Project Implementation Using Agile Software Development Methodology.
Software Engineering. Springer AISC., 731, 647–654.

94

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

DOI: 10.4018/978-1-5225-9659-2.ch006

ABSTRACT

This chapter proposes an algorithm to make the bidding dynamic by not only awarding
tenders on basis of cost quoted in tenders (biding cost) but also on contractor ratings.
The ratings of contractors are computed using historical performance of contractor.
The chapter empirically identifies the factors to rate the contractors. The historical
values associated with the performance rating parameters are then combined using
the “controlled values” which one assumed to standard across the industry, to yield
the overall weighted rating of firms. This rating is then combined with the bidding
cost, thereby making the selection of contractor dynamic. The selected contractor
is paid bidding cost. The algorithm is executed a hypothetical value to illustrate the
approach. A web-based tool had been proposed to automate the process of making
the bidding dynamic.

Improving Construction
Management Through
Advanced Computing
and Decision Making

Varun Gupta
University of Beira Interior, Covilha,

Portugal

Aditya Raj Gupta
Amity University, Noida, India

Utkarsh Agrawal
Amity University, Noida, India

Ambika Kumar
Amity University, Noida, India

Rahul Verma
Amity University, Noida, India

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 95

Improving Construction Management Through Advanced Computing and Decision Making

INTRODUCTION

There are several civil contractors in the market who competes for a tender. Usually,
the contractor who puts up the lowest cost bid gets the tender. But this sometimes
reduces the quality of the product in favor of cost reduction. So, there is a need for a
more refined process so that the best contractor can be selected, offering economical
cost services for the project without compromising with the quality. Therefore, an
optimal method is required that makes the selection of contractor not only on the basis
of given cost but also on his past performance. Past performance calculation will be
a dynamic & continuous process and is computed by employing historical values of
various parameters, as identified empirically in this paper. This performance is the
representation of the rating of the contractor, which is used to normalize bid cost
to yield priority among competing contractors. The parameters used for rating the
contractor varies from firm to firm. However, the various parameters are reported
in (Xie, Lin, Yang, & Gao, 2008; Watt, Kavis & Willey, 2010; Hassaan, Fors &
Sheata, 2013; Ibadoy, 2015; Arujo, Alencar & Mota, 2018) and could be used with
the algorithm proposed in the chapter.

Proposed Algorithm

The proposed algorithm will give the ranking of a contractor. This ranking will help
in reducing the cost of the project and selects the contractor whose history of work
is also good i.e. has all the values that are required to complete a particular project.
The parameters range with different values are set by the company that puts the
project. Also, these parameters are known in the industry.

A suitable contractor would be selected on the basis of lowest bid value and
highest ranking i.e. Priority of a contractor = Rating/ Bidding Cost. There are two
new terms introduced, the contractor cost which is the cost given by a contractor to
win the bidding and control points which are the standard values known across the
industry but unknown to a contractor. Control values are given to select the right
contractor on the basis of his historical values. The rating is generated by taking
various primary and secondary parameters whose values are dependent on historical
records of a contractor.

In the calculation of rating, density is calculated for each parameter with the
help of historical values. Density is the total number of points in a control rectangle
upon the total area of the control rectangle. The steps to calculate the density for
each parameter are:

1. Create a graph, Parameter (Y – axis) - Time (X- axis)
2. Plot historical values of a firm on graph.

96

Improving Construction Management Through Advanced Computing and Decision Making

3. Draw control rectangle on the basis of the coordinates which are fixed values
for the selection of a contractor.

4. Calculate the density.
5. Calculate priority using formulae (1).

Priority = Rating / Bidding Cost (1)

In order to calculate the overall rating, densities of individual parameters are
multiplied to the weights of each parameter. Weights are given to indicate the
importance if a parameter. Primary parameter would have higher weight value as
compared to the second parameter.

Rating = W1(D1) +W2(D2)+……..+Wn(Dn), (2)

where W is the weight and D is the density of each parameter.

Hypothetical Example

It is assumed that “n” number of contractor can fill tender for a project and “n” number
of contractors are eligible for bidding. Suppose, in a bid, there are three contractors
A, B and C. Out of which C has taken no project before, so its rating would not be
possible to determine. Since C too is eligible to participate in the bidding, C can
undertake a joint project with any other high ranking contractor. This will increase
C’s chances of getting selected as a contractor. Also there are five parameters, each
with different historical points are considered, as given below (Table 1).

In this, the X and Y axis are taken from range 0 to 9, for the sake of uniform
calculations of all parameters and the coordinates for the control rectangle are provided
by the firm. It is also assumed that all the contractor give the same amount for the
completion of the project. Now to determine the best contractor for the project,
rating becomes a crucial factor.

Table 1. Historical points

Weight Total No. of Points
for A

Total No. of Points
for B

Total No. of Points
for C

Parameter E 5 12 4 7

Parameter F 4 7 5 5

Parameter G 3 6 5 8

Parameter H 2 5 5 11

Parameter I 1 3 7 4

97

Improving Construction Management Through Advanced Computing and Decision Making

When these three contractors bid against each other, the density of each parameter
is calculated and that is multiplied with the weight of each parameter and it’s shown
that the second contractor wins the bidding as his rating is higher than the rest.

Since this is a dynamic and continuous process, the rating is always affected by
the completion of each project. This is done by another factor, a credit system that
is valid, which will automatically add the values of different parameters at the end.

Company A

Density= No of points in control graph/ Area of Control Graph
Density= 12/11.85=1.012
Density= No of points in control graph/ Area of Control Graph Density=7/6.71=1.0432
Density= No of points in control graph/ Area of Control Graph Density=6/5.6=1.0714
Density= No of points in control graph/ Area of Control Graph Density=5 /6=0.8333
Density= No of points in control graph/ Area of Control Graph Density=3/1=3

Figure 1. Density of Parameter E for Company A

98

Improving Construction Management Through Advanced Computing and Decision Making

Figure 2. Density of Parameter F for Company A

Figure 3. Density of Parameter G for Company A

99

Improving Construction Management Through Advanced Computing and Decision Making

Figure 4. Density of Parameter H for Company A

Figure 5. Density of Parameter I for Company A

100

Improving Construction Management Through Advanced Computing and Decision Making

Company B

Density= No of points in control graph/ Area of Control Graph Density=4/1.87=2.139
Density= No of points in control graph / Area of Control Graph Density=5/2.8=1.7857
Density= No of points in control graph/ Area of Control Graph Density=5/5.6=0.899
Density= No of points in control graph/ Area of Control Graph Density=5/8.4=0.5952
Density= No of points in control graph/ Area of Control Graph Density=7/5.54=1.26

Company C

Density= No of points in control graph/ Area of Control Graph Density=7/6.12=1.143
Density= No of points in control graph/ Area of Control Graph Density=5/1.69=2.958
Density= No of points in control graph/ Area of Control Graph Density=8/5.92=1.351
Density= No of points in control graph/ Area of Control Graph Density =11/6.3=1.7460
Density= No of points in control graph/ Area of Control Graph.
Density =4/3.12=1.282

Figure 6. Density of Parameter E for Company B

101

Improving Construction Management Through Advanced Computing and Decision Making

Figure 7. Density of Parameter F for Company B

Figure 8. Density of Parameter G for Company B

102

Improving Construction Management Through Advanced Computing and Decision Making

Figure 9. Density of Parameter H for Company B

Figure 10. Density of Parameter I for Company B

103

Improving Construction Management Through Advanced Computing and Decision Making

Figure 11. Density of Parameter E for Company C

Figure 12.Density of Parameter F for Company C

104

Improving Construction Management Through Advanced Computing and Decision Making

Figure 13. Density of Parameter G for Company C

Figure 14. Density of Parameter H for Company C

105

Improving Construction Management Through Advanced Computing and Decision Making

Calculations

Ratings

Company A- 1.012*5+1.0432*4+1.0714*3+0.8333*2+3*1=17.1136
Company B- 2.139*5+1.7857*4+0.899*3+0.5952*2+1.26*1=22.9852
Company C- 1.143*5+2.958*4+1.351*3+1.7460*2+1.282*1=26.374

Priority

Bidding cost of A=150
Bidding cost of B=180
Bidding cost of C=230
Priority(A)=17.1136/150=0.1140
Priority(B)=22.9852/180=0.12769
Priority(B)=26.3740/230=0.11466

Result is that, the priority of B is highest among the three so B is the winner here.

Figure 15. Density of Parameter I for Company C

106

Improving Construction Management Through Advanced Computing and Decision Making

Tool Support

A web application has been developed to execute the proposed algorithm. The web
application screen shots are given in Figures 16 ,17 and 18.

Figure 16 shows that the software takes the financial value of the contractor as
an initial parameter for assigning the rating of the firm. Figure 17 shows that the
software takes the values of previous three works of the contractor and adds them to
rating based on timeline and reviews in certificate. Figure 18 shows that the software
takes the values of on going three works of the contractor and further adds to the
rating of the contractor. However every single work is taken as single entity and can
be optional for various tenders as well. These parameters are generic parameters
that affects the ratings of the contractor.

CONCLUSION AND FUTURE WORK

The proposed algorithm makes the bidding dynamic by not only awarding tenders
on basis of cost quoted in tenders (biding cost) but also on contractor ratings. The
ratings of contractor is computed using historical performance of contractor. It
could be concluded that the algorithm needs to be enough scalable to work as per
the parameters defining rating of the contractor. Further, tt is also to be noted that
in order to select the contractor, the control points would be given by the company
that has the project to ensure the fair selection of a contractor. The selection must
be therefore based on objective judgments. Validation of the proposed structure is
kept as future work.

Figure 16. Financial parameter as ratting factor.

107

Improving Construction Management Through Advanced Computing and Decision Making

There are many features that can be added to the web application developed so
that the application can be a standalone application for all the process of e tendering
and the selection of the bidder. The current algorithms can be further more refined
in order to make the algorithm work more efficiently.

Figure 17. Previous projects values as rating factors.

Figure 18. Values of ongoing projects as rating parameters.

108

Improving Construction Management Through Advanced Computing and Decision Making

REFERENCES

Araújo, M. C. B., Alencar, L. H., & Mota, C. M. (2018, December). Decision
Criteria for Contractor Selection in Construction Industry: A Literature Review. In
2018 IEEE International Conference on Industrial Engineering and Engineering
Management (IEEM) (pp. 637-640). IEEE. 10.1109/IEEM.2018.8607809

Hassaan, H. S., Fors, M. N., & Shehata, M. S. (2013, December). Fuzzy decision
model for construction contractor’s selection in Egypt: Tender phase. In 2013 IEEE
International Conference on Industrial Engineering and Engineering Management
(pp. 420-426). IEEE. 10.1109/IEEM.2013.6962446

Ibadov, N. (2015). Contractor selection for construction project, with the use of
fuzzy preference relation. Procedia Engineering, 111, 317–323. doi:10.1016/j.
proeng.2015.07.095

Watt, D. J., Kayis, B., & Willey, K. (2010). The relative importance of tender evaluation
and contractor selection criteria. International Journal of Project Management,
28(1), 51–60. doi:10.1016/j.ijproman.2009.04.003

Xie, X. M., Lin, J. Y., Yang, G., & Gao, J. (2008, October). Research on Contractor
Selection of Telecommunication Project. In 2008 4th International Conference on
Wireless Communications, Networking and Mobile Computing (pp. 1-7). IEEE.
10.1109/WiCom.2008.2464

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

109

DOI: 10.4018/978-1-5225-9659-2.ch007

ABSTRACT

Software engineering process and practices paramount the crisis of cost, quality,
and schedule constraints in developing software products. This chapter surveys
the quality improvement techniques for the two fundamental artifacts of software
product development, namely the architecture design and the source code. The
information from top level research databases are compiled and an overall picture
of quality enhancement in current software trends during the design, development,
and maintenance phases are presented. This helps both the software developers and
the quality analysts to gain understanding of the current state of the art for quality
improvement of design and source code and the usage of various practices. The results
indicate the need for more realistic, precise, automated technique for architectural
quality analysis. The complex nature of the current software products requires the
system developed to be beyond robust and resilient and building intelligent software
that is anti-fragile and self-adaptive is favored. Innovative proposals that reduce
the cost and time are invited.

An Investigation on Quality
Perspective of Software

Functional Artifacts
Vimaladevi M.

Pondicherry Engineering College, Puducherry, India

Zayaraz G.
Pondicherry Engineering College, Puducherry, India

110

An Investigation on Quality Perspective of Software Functional Artifacts

INTRODUCTION

Software Engineering has emerged legitimately in developing high quality software
products right from its inception. The discipline of Software Engineering evolved
over the past 70 years shaping its key activities providing a framework to the
stakeholders to structure, plan, develop and control the software development
process. The origin of software engineering dates back to 1950s, where the initial
crisis was productivity and now it has evolved to quality. Software quality assessment
and improvement is a vast area of research and many techniques and processes are
proposed for quality improvement in various stages of the software life cycle. Any
quality assurance technique strives to achieve zero errors post release. In spite of all
these constant and effective techniques, there are still some failures in the software
that makes the software difficult to survive. Irrespective of the type of software and
the technology used in development, all software products face the challenges in
incorporating high quality within the cost and time constraints. There are multiple
definitions of Quality such as conformance to requirements, satisfying customer
needs, achieving zero defects, etc. Software applications are becoming more complex
day by day and it is difficult to maintain code quality that make the Quality-Cost
balance a challenging task.

The study reported in this work will lay a foundation of quality needs and various
strategies available that the stakeholders may select to build high quality software
products considering the design architectures and the source code. It is mandatory
to evaluate a software quality and the quality assessment has to be performed in
parallel with the software development. Every industry is now computerized and
is used in critical areas where quality becomes a key factor to ensure successful
business and human safety. Software is becoming more and more complex and it is
mandatory to select, apply and evaluate relevant techniques and processes to keep
the risks low. Evaluation has to be done in order to understand a software product.
Understanding involves testing of software whether it is easy to use, hard to modify,
can be integrated with other programs, etc.

There exists a vast set of literature that discuss about software quality. They focus
on a specific phase of a software development or adhere to certain techniques and
tools. This work in contrast to the existing literature reviews; the quality aspects
taking the two major artifacts of the software development are studied. They are
the Architectural Design and the Source Code. All the Software Engineering
principles, process models, quality frameworks, testing tools and techniques are
aimed in fulfilling the user requirements and thus achieved desired quality. Even
though the software development process generates different artifacts at different
phases, all that is used to increase the quality of the developed source code. The
quality of the source code is directly related to the design choices made during the

111

An Investigation on Quality Perspective of Software Functional Artifacts

analysis and the design phase. Hence, in contrast to the existing literature focusing
of a particular phase or an artifact, this work discusses the quality improvement
methods available for evaluating the design documents and the source code of an
Object Oriented Software System.

Any software irrespective of the type, size, and technology goes through a series
of phases as described in the life cycle models. There are five basic phases for the
software development process. They are Planning & Analysis, Design, Development,
Testing and Maintenance. The planning and analysis phase is involved in studying
the scope of the project, understanding the requirements, planning the deliverables,
cost estimates, etc. The design phase builds the architecture of the project and the
development phase is where the actual product is coded and built. The testing
phases assess the software for bugs next to which the software progresses to the
maintenance phase. During maintenance, the software is maintained and upgraded
from time to time for any changes. The quality activity of the software starts at the
very early stages of planning where the deliverables and the quality control activities
are finalized. Every artifact produced during the software development goes through
a quality check process.

Testing is viewed as the phase where the quality of the software is drastically
improved. There are different types and techniques available for executing the testing
process. One of the major overhead in software development is cost of testing and
bug fixing and this cost increases exponentially in later phases. The software bug
cost of United States economy has increased from $59.5 billion to $1.1 trillion from
2002 to 2016. This increase in cost is due to the loss in revenue due to the software
being unusable, payments to developers for bug fixing, loss in shareholder value,
etc. Also, there are some indirect financial costs arising due to the problem of brand
reputation and customer loyalty. The bug fixing process even interferes with other
developments and enhancements for new functionality addition that ultimately
affect the project schedule. From the report of National Institute of Standards and
Technology (NIST), the increase in the bug fix follows the trend as shown in Table
1 (National Institute of Standards and Technology, 2002). Here, X is the normalized
unit of cost and can be expressed in terms of person-hours.

The most effective way to keep the development cost down is the minimization
and the introduction of defects. In order to achieve this, care need to be taken to
assess and improve design quality. Also, quality has be considered prime factor
right from the requirements and analysis phase and not be emphasized only during
testing and maintenance phases. Hence, the software developed should incorporate
some mechanism to develop and improve quality along with fulfilling the functional
needs of the software. This chapter discusses about the characteristic the software
should possess, which is not documented in the requirements specification. The
following sections introduce the key concepts of quality models, quality attributes,

112

An Investigation on Quality Perspective of Software Functional Artifacts

software architecture, software architecture analysis techniques, characteristics of
source code desired, and the techniques to improve the quality of the developed
source code using refactoring. Notable works from major databases such as IEEE,
Elsevier, Springer, and Association for Computing Machinery (ACM) are referenced.

SOFTWARE QUALITY REQUIREMENTS

The definition of software quality provided by IEEE (IEEE, 1991) is mentioned below.
Software quality is:

1. The degree to which a system, component, or process meets specified
requirements.

2. The degree to which a system, component, or process meets customer or user
needs or expectations.

The quality definition is stated in simple terms but the process to achieve bulletin
it is slightly tricky, demanding the usage of quality processes and techniques. Multiple
works have been published by the research community striving to achieve this
stated quality. Software Quality Models are proposed to understand and evaluate the
quality needs of software against a set of general or specific criteria. Popular quality
models include Boehm, McCall, FURPS, Dromey (Al-Badareen, Selamat, Jabar,
Din, & Turaev, 2011; Miguel, Mauricio, & Rodríguez, 2014) and ISO/IEC 9126
(ISO/IEC TR 9126-2, 2003) replaced by ISO/IEC 25010:2011 (ISO/IEC, 2011).
These models define the quality of software on the basis of a set of credentials or
measurements for certain quality characteristics called the quality attributes. Some
of the important quality attributes are defined below.

Table 1. Cost of Bug Fixing

Phase Cost estimate

Design 1X

Implementation 5 X

Integration Testing 10 X

Customer Beta Testing 15 X

Post Product Release 30 X

113

An Investigation on Quality Perspective of Software Functional Artifacts

• Maintainability is the ease with which the product can be maintained.
Maintenance includes situations like correcting the software for bugs,
updating for new requirements, and cope with the changes environment.

• Reliability refers to the failure free operation of software for a specified period
of time in a specified environment.

• Flexibility refers to that attribute of the software that can adapt to external
changes and how it responds to uncertainty.

• Testability attribute refers to the degree to which a software component
supports testing. This makes uncovering the bugs easier.

• Portability measures how easily the same software can be used in a different
environment with minimal changes.

• Usability refers to how efficiently and effectively the software can be used by
the human community.

• Efficiency refers to the performance of the software utilizing minimal
resources and maximizing the output.

• Reusability refers to the reuse of existing software artifacts in various formats.
This is helpful to overcome the software crisis in a cost-effective manner.

The Architectural Design Quality

The Bass, Clements, and Kazman definition of architecture (Bass, Clements, &
Kazman 2013) is stated as:

“The software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them. Architecture is
concerned with the public side of interfaces; private details of elements—details
having to do solely with internal implementation—are not architectural.”

During the design phase, the quality analysis is done from the architecture
diagrams. This artifact consists of primarily the Class Diagrams for predicting the
quality. The Unified Modeling Language (UML) is a standard modeling language
used by the software engineering community to represent, visualize, construct and
document the software artifacts. UML provides a set of diagrams to represent the
architecture of the product under construction. Class diagrams are central component
of design which is a pictorial representation of the relationships and the dependencies
available in the software source code. During the design phase, class diagrams are
developed by grouping similar objects that are identified from the requirements of
the software. In most of the projects, especially during the initial design phases, the
Class diagrams developed lack complete information due to some ambiguity that

114

An Investigation on Quality Perspective of Software Functional Artifacts

may exist in the requirements specifications and also as a result of complex nature
of the objects. These vagueness and incompleteness has to be resolved in the later
phases during the course of the software development. Hence, there is a need to do
an initial assessment of the software quality such as maintainability and reliability
with the initial Class diagrams generated even in the presence of such vagueness.
A fuzzy UML representation can be used to overcome such ambiguities. Zhou et
al. (2009), explain the fuzzy UML logistics that model the real world uncertain,
vague and fuzzy information using a semi-formed Fuzzy UML. Fuzzy Classes,
fuzzy generalization, fuzzy associations and fuzzy aggregations are illustrated. Ma,
Zhang, and Yan (2011), introduces different levels of fuzziness in UML based on
the fuzzy sets and possibility distribution theory and extends UML to Fuzzy UML
data model. A formal mapping of this fuzzy UML to fuzzy relational database
scheme is proposed. The fuzzy UML classes and the relationships such as Fuzzy
Generalization Fuzzy Aggregation Fuzzy Association Fuzzy Dependency discussed
are used to overcome the uncertainty that exists during the early design of the object
oriented software.

Another important factor in quality assessment using software architecture is the
choice of representational model of the architecture. There are various techniques that
are available for the quality evaluation depending upon the choice of the representation
model selected. Some of the modeling types available in the literature include
DTMC (Discrete Time Markov Chain), CTMC (Continuous Time Markov Chain),
SMP (Semi-Markov Process), Poisson Process, CDG (Component Dependency
Graphs), Stochastic Petri Nets, Bayesian Networks and Complex Networks. These
representational models assessed by the research community are discussed below.

Wang, Pan, and Chen (2006), discusses a method to estimate the reliability of
a software using the architectural information of the Software and the Reliability
models for decision making and quality control of the software. The white-box based
models are used for decision making in the early phases of the software, whereas
a black-box based model can be used in the later phases. This work considers the
use a white-box based model extended to utilize the architectural styles and the
heterogeneous behavior of the software systems. The model chosen for representation
of the software architecture is a Discrete-Time Markov Chain (DTMC) Model. A
Markov model is a finite state machine with probabilities for each transition, and a
transition probability to the next state will depend on the current state only. For a
discrete-time Markov model, the transitions occur only at discrete intervals of time
or at discrete events, and the transition probabilities follow a discrete distribution.

In (Sharma & Trivedi, 2006), the authors propose architecture based unified
hierarchical model for Reliability, Performance, Security, Cache behavior prediction
in the same model. This approach facilitates the identification of various bottlenecks
for Component based software. This work uses Discrete Time Markov Chains as

115

An Investigation on Quality Perspective of Software Functional Artifacts

the underlying model for analysis. The work done in (Gokhale & Trivedi, 2006)
proposes a unifying framework for state-based models for architecture-based software
reliability prediction. The models used are discrete time Markov chain (DTMC), or
a continuous time Markov chain (CTMC). They discuss the input required and the
estimate to be made from different artifacts. Palviainen, Evesti, and Ovaska (2011),
address software reliability evaluation during the design and implementation phases.
The authors contribute by integrating the component-level reliability evaluation
activities and the system-level reliability prediction activity to support the incremental
and iterative development. Also a tool chain was developed to support the usage of
reliability evaluation approach.

Chong and Lee (2015) proposes an approach to represent an object-oriented
software system using a weighted complex network in order to capture its structural
characteristics, with respect to its maintainability and reliability analysis. The
software architecture is transformed into a weighted complex network that assigns
weights based on the complexity of relationships and classes from UML class
diagrams calculated from CK metrics. Graph theory metrics (such as in-degree, out-
degree, average weighted degree, average shortest path of nodes, average clustering
coefficient, and betweenness centrality) are applied onto the transformed network
to evaluate the software system for maintainability and reliability measures. Chun
Shan et al. (2019) apply the concept of weighted complex network to study the
structural features of the software, to predict its quality parameters such as reliability
and security. The network is constructed from the UML diagrams of the source
code. They use measures such as degree of the node, entropy measures, degree of
inheritance, and the degree of ripple.

Ontology based software architecture knowledge representation are widely
studied as a tool for architecture documentation, knowledge retrieval and analysis
techniques. Graaf et al. (2014) discuss the techniques for constructing ontology for
software architecture that suits the needs of different users. To empower ATAM,
authors in (Erfanian & Aliee, 2008) propose Attribute-Based Architectural styles
(ABAS) using ontology for reusability of architectural knowledge. Ovaska et al.
(2010) proposes quality aware software architecting approach and a supporting tool
chain that enables the systematic development of high quality software by merging
benefits of knowledge modeling and management, and model driven architecture
design enhanced with domain-specific quality attributes.

The analysis of software architecture can be broadly classified as qualitative
and quantitative methods. Qualitative techniques make use of questionnaires,
checklists and scenarios for evaluation; whereas the quantitative techniques rely on
metrics, prototypes, simulations, etc. Scenario based methods and software metrics
are popular among these evaluation methods. Some of these methods are SAAM,
ATAM, CBAM, ALMA, and FAAM. The processes followed in these methods are

116

An Investigation on Quality Perspective of Software Functional Artifacts

detailed in (Dobrica, L., & Niemela, E., 2002; Zhu, Aurum, Gorton et al., 2005).
Each of these methods assesses different quality factors including modifiability,
extensibility, interoperability, etc. The key metrics/tools considered in these methods
are scenarios, time, cost, various tables and figures. These methods rarely make use
of mathematical models for quality evaluation. Each one has its own strengths and
weaknesses. A general analysis of these models show that these require detailed
knowledge of the underlying architecture, no clear metrics for quality prediction,
consumes considerable efforts in carrying out the process by conducting meeting
with various stakeholders, and preparation of certain artifacts that aid in the quality
evaluation process.

Software Metrics are used to quantitatively measure these quality parameters and
to assess the quality of the overall software system. Software Metric Suites provide
various metrics that can be measured at different levels of the software such as design
level, or code level for the quality assessment. There are three famous metric suites
available in the literature for the Object Oriented Software Systems. They are the
Chidamber and Kemerer (CK) metrics, Abreu’s Metrics for Object-Oriented Design
(MOOD), and Bansiya and Davis’ Quality Metrics for Object-Oriented Design
(QMOOD). These metrics are detailed in the literature in Chidamber & Kemerer,
1994; Abreu & Melo, 1996; and Bansiya & Davis, 2002. Olague et al., (2007) provide
a validation of the three metrics suites in identifying the fault proneness of a class.
They concluded that CK and QMOOD provide similar models in detecting the error-
prone classes and MOOD metric suite is not good with such error predictors. The
authors in (Radjenovic, Hericko, Torkar, & Zivkovi, 2013) studied the applicability
of metrics to fault prediction based on context properties. They found that the CK
metrics are popularly used in object oriented systems. These metrics perform better
compared to the existing traditional and complexity measures. The three metric
suites of CK, MOOD and Martin are compared for package level metrics such as
size, complexity and cohesion by Elish, Al-Yafei, and Al-Mulhem (2011). In their
work, the authors concluded Martin suite performs better for pre-release and post-
release faults. Misra et al. (2018) provides a suite of cognitive complexity metrics
for object orientation systems. Using these, an insight on the maintainability and
reliability can be arrived. The proposal is validate both theoretically and empirically.

The summary of the key processes and the concepts involved in architectural
quality analysis is given in Table 2. Even though the evaluation process consumes
considerable efforts, the benefits are worth noting. They are listed below:

• Prioritized Statement of conflicting Quality Attribute Requirements – the
evaluation process puts stakeholders at various levels in one room. This help
the analysts and the developers to resolve the conflicts and ambiguity and
arriving at a prioritized set of requirements.

117

An Investigation on Quality Perspective of Software Functional Artifacts

• Mapping of Approaches to Quality Attributes – a detailed understanding of
the quality requirements assist the developers to select the best approaches to
achieve the desired quality.

• Risks and Non-risks – risk management is a crucial activity in any software
development. Risks are highly uncertain and the architecture evaluation
process helps to reduce project risks to certain extent.

• Puts Stakeholders in the Same Room – it is highly recommended to
communicate and resolve the conflicting requirements and the open discussion
of the requirements help to understand the system better which facilitates the
success of the project according to the market demands and customer needs.

• Improves the Quality of Architectural Documentation – the evaluation
process is directly involved in improving the quality of the architecture by
selecting more appropriate design choices.

• Uncovers Opportunities for Cross-Project Reuse – this is possible due to
the communication of experts in different areas and knowledge on multiple
projects facilitates reuse across organizational level.

• Results in Improved Architecture Practices – the good and bad practices are
shared across projects and helps in the maturity level of the organization.

THE SOURCE CODE QUALITY

During the development phase, the source code of the product is written from the
base lined design documents. The implementation of the software follows an iterative
method in Agile development methodology. This section presents the results from the
literature for the search of desired characteristics to be possessed by the source code.
These characteristics build a quality product that is reliable, secure, and maintainable
and other such quality attributes discussed in the earlier sections. The software
quality models insist on the development of reliable and robust software products.
Software Reliability refers to the probability of failure-free operation of the software
for a specified period of time under specified environment. Fault prevention, fault
removal, fault tolerances are three methods to achieve reliable software. The current
practices of software reliability measurement can be divided into four categories.
They are Product metrics, Project management metrics, Process metrics, Fault and
failure metrics. Software Reliability Models are used for the software reliability
analysis. The authors in (Yacoub, Cukic, & Ammar, 2004) propose a scenario
based reliability analysis for component-based software. A Component-Dependency
Graph is constructed and the reliability algorithm is run to predict the variations
and uncertainties in individual components.

118

An Investigation on Quality Perspective of Software Functional Artifacts

S. Martínez-Fernández et al. (2019) propose a software analysis tool, which
integrates the quality models that improves the quality in addition to static code
analysis. The deployment of the tool is done by four companies and the paper discusses
the challenges and the lessons in developing such as code quality improvement tool.
M Azeem Akbar et al. (2017) propose a new AZ-Model for Software Development
Life Cycle. This model has three phases, namely the customer involvement phase,
development phase and the release phase. Time boxing and strong project management
are introduced as key concepts in the model. A survey was conducted for the proposed
model to identify its suitability and the results reveal the model is effective.

Robustness refers to the ability of the software to cope with errors that may occur
during the execution and continue its operation. Resiliency refers to the capability

Table 2. Highlights of Architectural Design Study

Architectural Quality Processes

Literature Reference Discussion

Modeling Choices

Zhou et al. (2009)
Zhang, and Yan (2011) Fuzzy UML

Wang, Pan, and Chen (2006)
Sharma and Trivedi (2006)
Gokhale and Trivedi (2006)

DTMC/CTMC

Chong and Lee (2015)
Chun Shan et al. (2019) Complex Networks

Graaf et al. (2014)
Erfanian and Aliee (2008) Ontology

Quality Attributes

Wang, Pan, and Chen (2006)
Sharma and Trivedi (2006)
Palviainen, Evesti, and Ovaska (2011)
Chong and Lee (2015)

Reliability

Chong and Lee (2015) Maintainability

Sharma and Trivedi (2006)
Chun Shan et al. (2019) Security

Metrics Suites

Chidamber and Kemerer (1994)
Olague et al., (2007)
Radjenovic, Hericko, Torkar, and Zivkovi (2013)

CK metrics

Abreu and Melo (1996)
Olague et al. (2007) MOOD

Bansiya and Davis (2002)
Olague et al. (2007) QMOOD

119

An Investigation on Quality Perspective of Software Functional Artifacts

of the software to recover from such erroneous conditions while continuing to be
functional. Fault injection is a testing method widely used to test the robustness and
resiliency of the software, which involves introducing faults to test the execution
path of the source code. It is an important stress testing mechanism in building a
robust software product. Winter, Sarbu, Suri, and Murphy (2011), uses Software-
implemented fault injection (SWIFI) approach for evaluating the robustness of
software components. The authors in (Maxion & Olszewski, 1998) studied the
improvement of robustness for exception failures though dependability cases. These
dependability cases use the structural characteristics of the software components in
improving the error handling mechanism. Shahrokni and Feldt (2013) performed
a systematic review on software robustness on Commercial Off The Shelf (COTS)
products and concluded that more robustness research is required on real world
projects and must be insisted during requirements engineering itself. In (Huang,
Peled, Schewe, & Wang, 2016), a game theoretic approach is proposed in order to
validate the resilience of a software system against k dense errors. The authors have
designed a two-player concurrent game model with the application of alternating-
time µ-calculus (AMC) with an extension. The analysis has been modeled as a model
checking problem for the software to be resilient to utmost k dense errors. Camara
et al., (2017) propose a method for validating resilience in self-adaptive systems
based on probabilistic model checking. Raja and Tretter (2012) define and validate
a measure of project viability, which has the dimensions of vigor, resilience, and
organization. They define a viability index combining the three dimensions and
demonstrate this index is robust in measuring the project survivability.

In the more recent software trends, in addition to being robust and resilient, the
software is required to be Antifragile. Antifragility is the negative of fragility. An
antifragile system gets better by exposure to disorder, shock or uncertainties. An
antifragile system is able to evolve its identity by learning from the disorder and by
improving itself. Antifragility is the concept developed by Professor Nassim Nicolas
Taleb in 2012 (Taleb, 2012). This concept has been applied in various fields such as
biology, physics, and Computer science. “Antifragile Software Manifesto” (Russoa
& Ciancarinia, 2016) is a proposal, which is still in the phases of infantry, invites
proposals from the research community to incorporate antifragility in the system
design process. It lists various principles that need to be practiced to build systems
that improve from the input from the environment and making it antifragile. Taleb
in his book (Taleb, 2012) describes the concepts of antifragility, its properties, the
non-predictive view of the world and various mathematical techniques to detect
antifragility. Anti-Fragility can also be proposed as an Anti-Ageing solution to
software systems. Fragile, Robust and Antifragile are defined as a triad in explaining
the desirable properties of software. A fragile is one which is easily breakable to any

120

An Investigation on Quality Perspective of Software Functional Artifacts

disturbance. A robust system resists and withstands such shocks to some extent, but
it remains the same. Antifragility is beyond resilience or robustness.

There are only a few literatures that describe the concepts of antifragility and
building the same in the software development processes. Attila and Svetinovic
(2013) describe the process of identifying fragile components from the requirements
specification. A case study of crowdsourcing is taken and its requirements specification
is analyzed for five signs of fragility. Finally eight fragility-related requirements are
arrived for the chosen case study. This work identifies only the requirements that cause
the software system to be fragile. But, no measures are posed to build antifragility
into the software. Thus there is a need for a method to develop an antifragile system
with the existing framework of Object Oriented System development. The author
in (Russoa & Ciancarinia, 2017) discusses the effectiveness of antifragile software
compared to traditional approaches. Here, antifragility in software architecture is
suggested by using fine grained architectures. Antifragility mainly addresses the
protection of the software systems from the Black Swans. Black swam theory is a
metaphor that describes an event that comes as a surprise. These events have a major
impact on the system and often hard to predict (Taleb, 2008). An antifragile system
has characteristics of being immune against these types of outliers.

SOFTWARE REFACTORING FOR QUALITY IMPROVEMENT

Software evolves during its lifetime and the major cause for the evolution is the
change in the operating environment or the functionality upgrade required due
to advancements in hardware and other technologies. This change impacts the
reliability and the flexibility of the software system. The frequency of this software
evolution is more in the current software trends. Code Refactoring is an important
maintenance activity of any software that restorers the quality level of the software
to acceptable limit.

Refactoring, as defined by Martin Fowler and kent Beck (Fowler at al., 1999) is:

“A change made to the internal structure of software to make it easier to understand
and cheaper to modify without changing its observable behavior. It is a disciplined
way to clean up code that minimizes the chances of introducing bugs.”

Software refactoring aims to improve the internal structure of the source code
without affecting its external behavior and is carried out considering the quality
goals on the priority list during the maintenance of any software. Refactoring is
concerned with the improvement in the non-functional attributes of software, making
the code readable, less complex and improving its maintainability and extensibility.

121

An Investigation on Quality Perspective of Software Functional Artifacts

Refactoring and quality attributes go hand-in-hand, meaning that the effectiveness
of refactoring is quantified using some selected and prioritized quality attributes.
Quality factors are the indicators of the goodness of a design or code of a software
product. Famous well established quality factors are Abstraction, Inheritance,
Coupling and Cohesion. The Technical Debt (TD) is another quality factor that is
prevalent in the recent times in the software quality analysis. The description of
these quality factors are given in Table 2.

TD is a metaphor that denotes the efforts that are required to perform the pending
changes that need to be done in the software (Kruchten, Nord, Ozkaya, & Visser,
2012). These pending changes exist as the result of choosing an easy solution instead
of a more appropriate one, which would rather take more time to implement. This
decision may be made due to a number of factors such as meeting of deadline,
insufficient requirements, lack of technical knowledge, etc. This incurred TD has to
be repaid in later point of time with interest. Hence, with time, it is difficult to add
or modify functionalities due to the structure of the software becoming cumbersome.
The technical debt is repaid by using Software Refactoring and is an important,
inevitable and effective technique in ensuring the quality of the software. The
authors in (Behutiye, Rodríguez, Oivo, & Tosun, 2017), discusses the literature on
analyzing the TD in agile development environment. It discusses the strategies for
management of TD from the architectural perspective. Ramasubbu and Kermerer
(2017) in their work discuss a framework for management of Technical Debt in the
Software quality management processes. The framework is proposed as a three step
process, which consists of tracking the TD, performing a cost-benefit analysis for
identifying the implications of the TD, and controlling the TD by applying changes
to the architectural and the module levels. The framework is applied to three real
time projects in different organizations and the outcome is validated. By applying the

Table 3. Quality Factors for Refactoring

Quality Parameters Description

Abstraction A measure that denotes how easy the system can be extended by suppressing
more complex details in the levels below.

Inheritance A measure of structural reuse that enables the new objects to inherit the
properties of existing objects.

Coupling A measure of interdependence between software modules and the strength of
relationship between the classes.

Cohesion A measure of strength of relationship between the elements inside a module in
which they belong

Technical Debt
A metaphor that represents the extra development efforts that are required to
change the code that has been implemented in easy way in short run instead of
applying the best solution. TD paid at a later point incurs interest.

122

An Investigation on Quality Perspective of Software Functional Artifacts

proposal, the organizations were able to achieve economic gains. In (MacCormack
& Daniel, 2016), the authors address the concept of architectural debts, by analyzing
the relationship between the architecture and the maintenance costs by assessing
the coupling among different components of the system.

Vassallo et al. (2019) conducted an exploration of 200 open source software for
the process of refactoring. They concluded that the source code is refactored less
frequently to improve the understanding of the code. The process of refactoring is
done on the stable version of the software by the owners of the code. Ying et al.
(2017), propose a refactoring algorithm that refactors at the system level based on
high cohesion and low coupling. The algorithm merges and splits related classes and
regroups the entities. The refactoring suggestions are provided based on the benefits
the can bring to the code and the comparative results show better performance. An
empirical evaluation of the process of refactoring on internal and external quality
attributes was done by Dallal and Abdin (2017). The results show that different
refactoring activities have negative impact on other quality parameter. Hence, they
concluded that refactoring always do not better result with respect to the overall
quality of the system.

Optimization problems are class of decision problems where, there exists a set
of feasible solution out of which a favorable solution, called the optimal solution is
to be identified. This optimal solution is arrived at by maximizing or minimizing
certain criteria, which is termed as the objective function. There can be multiple
criteria with a combination of maximization or minimization functions. These
classes of problems are termed as Multi-Objective optimization problems. Heuristic
algorithms are designed to solve a problem more efficiently than the traditional
methods, where approximate solutions are sufficient to yield better results compared
to the exact solutions, which are otherwise computationally expensive. In Search-
Based Software Engineering (SBSE), majority of the problems are solved preferably
with meta-heuristics, since deterministic methods are not suitable to these kinds of
real world problems. These meta-heuristics generate a set of candidate solutions
and evaluate against the given criteria and return the optimal solution when the
stopping criterion is reached. Hill climbing, Simulated Annealing, population based
techniques such as Evolutionary Algorithms (EA) and Genetic Algorithms (GA)
are the popular of these methods. Many bio-inspired algorithms are also popular
like Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Ant Colony
Optimization (ACO) to name a few. The problem of software refactoring can be
formulated as Multi-Objective Optimization problem. The use of optimization
techniques is proved to yield better results with respect to various quality constraints
called the fitness functions. There can be multiple such quality constraints in which
the applied algorithm is expected to produce better results. While formulating such
a problem, the search space consists of the refactoring locations of the software

123

An Investigation on Quality Perspective of Software Functional Artifacts

code, upon which the optimization techniques are applied to arrive at a strategy for
refactoring for improving multiple quality constraints.

Over the past few years, the application of Search Based Software Engineering
in the problem of Software Refactoring has produced many notable research works.
One of which is the work done my Mohan et al. (2016), where the authors use a
combination of automated refactoring tools, metaheuristic techniques and software
metrics to manage the technical debt. Here, multiple quality attributes are used
to access the effectiveness of their proposed method. O’Keeffe and O’Cinnéide
(2008a) discusses about the use of automated software refactoring in order to
reduce the maintenance cost. A tool CODe-Imp has been developed and the results
are studied by using QMOOD metrics applied for sample Java projects. Simulated
annealing searches were found to be effective in the experiment. In (M. O’Keeffe
& O’Cinnéide, 2008b), the authors applied different techniques for Search-Based
Software Engineering such as, simulated annealing, genetic algorithms and multiple
ascent hill-climbing. The tool CODe-Imp has been employed to study the quality
model of the refactorings applied on five input programs. They have concluded that
multiple-ascent hill climbing outperform other compared algorithms. Koc et al.
(2012), studied the performance of automated refactoring modelled as combinatorial
optimization problem. Here, 20 different refactoring actions are applied and the
performance is studied by combination of 24 object-oriented software metrics. A
tool called A-CMA was developed that applies the refactoring actions on the sample
Java programs input and comparing the refactoring with random, steepest descent,
multiple first descent, multiple steepest descent, simulated annealing and artificial
bee colony algorithms.

In the paper (Ghannem, El Boussaidi, & Kessentini, 2014), the authors consider
the refactoring mechanism as a combinatorial optimization problem and refactor
from examples. The models are evaluated based on a set of structural metrics. Here,
genetic algorithm is applied on open source projects and the effectiveness of the
approach is evaluated based on precision and recall metrics. In (Mkaouer et al.,
2015a), the authors formulated the problem of software refactoring as a multiple
objective problem and applied NSGA-III algorithm with eight distinct objectives.
They studied the findings comparing to several other many-objective techniques
and used one industrial project and seven open source systems. To remove code-
smells, in (Ouni, Kessentini, Bechikh, & Sahraoui, 2015), refactoring operations are
used to improve the design of the software by prioritizing the refactoring options.
A chemical reaction optimization is used which is shown to provide better results
compared to other existing techniques.

Mkaouer et al. (2015b) propose a many-objective NSGA-III algorithm to improve
the automation of software re-modularization. The algorithm aims at finding the
optimal re-modularization solutions considering multiple objectives such as improving

124

An Investigation on Quality Perspective of Software Functional Artifacts

the structure of packages, minimizing the number of changes, preserving semantics
coherence, and the reuse of the history of changes. The approach has been evaluated
using four different open-source systems and one automotive industry project and the
results are validated using quantitative and qualitative methods. Wang, Pan, Jiang,
and Yuan (2015) performed a study that uses a bipartite network to represent classes
and a new bipartite modularity metric is introduced to quantify the modularity of
a software system. The authors proposed an approach for identifying the methods
that should be moved between classes. In (Mkaouer et al., 2016), the authors applied
NSGA-II for the software refactoring problem for trade-off between three objectives
to maximize, namely the quality improvements, severity and importance of refactoring

Table 4. Highlights of Source Code Quality Improvement Study

Source code Quality Processes

Literature Reference Discussion

Desired Source Code Property

Yacoub, Cukic, and Ammar (2004) Reliability

Winter, Sarbu, Suri, and Murphy (2011)
Maxion and Olszewski (1998)
Shahrokni and Feldt (2013)

Robustness

Huang, Peled, Schewe, and Wang (2016)
Camara et al. (2017)
Raja and Tretter (2012)

Resilience

Taleb (2012)
Russoa and Ciancarinia (2016)
Russoa and Ciancarinia (2017)

Antifragility

Quality Attributes & Refactoring

Ying et al. (2017) Coupling & Cohesion

Kruchten, Nord, Ozkaya, and Visser (2012)
Behutiye, Rodríguez, Oivo, and Tosun (2017)
Ramasubbu and Kermerer (2017)
Mohan et al. (2016)

Technical Debt

Meta-heuristics & Refactoring

Mohan et al. (2016) A-CMA tool

O’Keeffe and O’Cinnéide (2008a) CODe-Imp tool

M. O’Keeffe and O’Cinnéide (2008b) Simulated Annealing

Koc et al. (2012) Artificial Bee Colony

Ghannem, El Boussaidi, and Kessentini (2014) Genetic Algorithm

Mkaouer et al. (2015a)
Mkaouer et al. (2015b) NSGA-III

Ouni, Kessentini, Bechikh, and Sahraoui (2015) Chemical reaction optimization

125

An Investigation on Quality Perspective of Software Functional Artifacts

opportunities. The authors in (Ouni et al., 2016), propose a multi-objective search-
based approach for automating the refactoring recommendation by optimizing
multiple criteria such as minimizing the number of design defects, minimizing
code changes required, preserving design semantics, maximizing the consistency
with the previously code changes. An industrial validation of the technique has
been performed and arrived at successful results. Varghese, Raimond and Lovesum
(2019) proposed an approach for software re-modularization using an extended Ant
Colony Optimization technique for easily maintenance and quality improvement of
the system. The performance of their proposed method is validated using Turbo
Modularization Quality parameter, applied to similar algorithms such as Genetic
Algorithm, Hill Climbing and Interactive Genetic Algorithms. The discussion on
the approaches on improving source code quality by developmental requirements
and the refactoring process is given in Table 4.

CONCLUSION

The objective of this study is to gather the quality enhancement techniques available
for the architecture design and the desirable characteristics of source code of the
software product. These two artifacts are chosen since these are the fundamental
outputs that decide the success of the project. All other phases and processes are
involved in quality improvisation of these two artifacts including the testing phase.
A detailed study on the architectural level quality analysis is done. From the study
it is noted that the architectural quality analysis should start from the initial design
phases itself to predict the quality factors and take necessary actions for improvising
the same. Depending on the nature of the product, a suitable architectural model can
be selected and the quality analysis can be initiated. Scenario based architectural
analysis techniques are popular. But these techniques require experienced analysts
and various stakeholders to be present during the quality analysis process. These
techniques suffer from the drawbacks in terms of time and expertise. Hence, a more
realistic, precise, automated technique for architectural quality analysis needs to be
developed.

From the development perspective, the source code is desired to possess the
properties of reliability, robustness, and resilience. Anti-fragility is defined beyond
robustness and resiliency. Changes to the process of software development are
invited to take the source to the next step of being antifragile. Self-adaptive and
self-repairing systems are more desirable in the current software trends. Hence, more
research is required in these areas of software development. Quality improvement
cannot be completed without the process of Software Refactoring. Irrespective of
the measures taken during the development of software in earlier phases, like the

126

An Investigation on Quality Perspective of Software Functional Artifacts

analysis, design, development and testing, there always exists a scope for quality
improvement during maintenance. Technical debt is an important factor that needs
to be maintained low and refactoring process is effective in achieving this task.
Other quality factors such as abstraction, inheritance, and coupling can be used as
good indicators to achieve improvement in quality during refactoring. Search-based
techniques are applied in software refactoring to arrive at an optimal strategy for
source code refactoring. Other innovative and automated techniques can be explored
to provide better and faster improvement in quality during refactoring. Hence, this
study concludes there are many future research directions are available in quality
improvement that are worth exploring.

REFERENCES

Abreu, F. B., & Melo, W. (1996). Evaluating the Impact of Object Oriented Design
on Software Quality. Proc. Third Int’l Software Metrics Symp., 90-99. 10.1109/
METRIC.1996.492446

Akbar, M. A. (2017). Improving the quality of software development process by
introducing a new methodology - AZ-Model. IEEE Access: Practical Innovations,
Open Solutions. doi:10.1109/ACCESS.2017.2787981

Al-Badareen, A. B., Selamat, M. H., Jabar, M. A., Din, J., & Turaev, S. (2011).
Software Quality Models: A Comparative Study. ICSECS 2011, 179, 46–55.

Attila, P. T., & Svetinovic, D. (2013). Identifying Signs of Systems Fragility: A
Crowdsourcing Requirements Case Study. Proceedings of the IEEE IEEM.

Bansiya, J., & Davis, C. (2002). A Hierarchical Model for Object Oriented Design
Quality Assessment. IEEE Transactions on Software Engineering, 28(1), 4-17.

Bass, L., Clements, P., & Kazman, R. (2013). Software Architecture in Practice.
SEI Series in Software Engineering (3rd ed.). Pearson Education, Inc.

Behutiye, W., Rodríguez, P., Oivo, M., & Tosun, A. (2017). Analyzing the concept
of technical debt in the context of agile software development: A systematic
literature review. Information and Software Technology, 82, 139–158. doi:10.1016/j.
infsof.2016.10.004

Camara, J., Lemos, R., Laranjeiro, R., Ventura, R., & Vieira, M. (2017). Robustness-
Driven Resilience Evaluation of Self-Adaptive Software Systems. IEEE Transactions
on Dependable and Secure Computing, 14–1.

127

An Investigation on Quality Perspective of Software Functional Artifacts

Chidamber, S., & Kemerer, C. (1994). A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6), 476–493. doi:10.1109/32.295895

Chong, C. Y., & Lee, S. P. (2015). Analyzing maintainability and reliability of
object-oriented software using weighted complex network. The Journal of Systems
and Software, Elsevier, 110, 28–53. doi:10.1016/j.jss.2015.08.014

Dallal, J. A., & Abdin, A. (2017). Empirical Evaluation of the Impact of Object-
Oriented Code Refactoring on Quality Attributes: A Systematic Literature Review.
IEEE Transactions on Software Engineering. doi:10.1109/TSE.2017.2658573

Das, S., Dewanji, A., & Chakraborty, A. (2016). Software Reliability Modeling With
Periodic Debugging Schedule. IEEE Transactions on Reliability, 65(3), 1449–1456.
doi:10.1109/TR.2016.2570572

Dobrica, L., & Niemela, E. (2002). A survey on software architecture analysis
methods. IEEE Transactions on Software Engineering, 28(7), 638-653.

Elish, M. O., Al-Yafei, A. H., & Al-Mulhem, M. (2011). Empirical comparison
of three metrics suites for fault prediction in packages of object-oriented systems:
A case study of Eclipse. Advances in Engineering Software, 42(10), 852–859.
doi:10.1016/j.advengsoft.2011.06.001

Erfanian, A., & Aliee, F. S. (2008). An Ontology-Driven Software Architecture
Evaluation Method. SHARK’08. Leipzig, Germany: ACM.

Fernández, M. S. (2019). Continuously Assessing and Improving Software Quality
With Software Analytics Tools: A Case Study. IEEE Access: Practical Innovations,
Open Solutions, 7.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional.

Ghannem, A., El Boussaidi, G., & Kessentini, M. (2014). Model refactoring using
examples: a search-based approach. J. Softw. Evolution. Process, 26(7), 692–713.

Gokhale, S. S., & Trivedi, K. S. (2006). Analytical Models for Architecture-Based
Software Reliability Prediction: A Unification Framework. IEEE Transactions on
Reliability, 55–4.

Graaf, K. A., Liang, P., Tang, A., Hage, W. R. V., & Vliet, H.V. (2014). An exploratory
study on ontology engineering for software architecture documentation. Computers
in Industry, 65(7), 1053-1064.

128

An Investigation on Quality Perspective of Software Functional Artifacts

Huang, C. H., Peled, D. A., Schewe, S., & Wang, F. (2016). A Game-Theoretic
Foundation for the Maximum Software Resilience against Dense Errors. IEEE
Transactions on Software Engineering, 42–47.

IEEE. (1991). IEEE Std 610.12-1990 – IEEE Standard Glossary of Software
Engineering Terminology. New York: IEEE Software Engineering Standards
Collection.

ISO/IEC. (2011). ISO/IEC 25010:2011: Systems and software engineering - Systems
and software Quality Requirements and Evaluation (SQuaRE) - System and software
quality models. International Organization for Standardization.

ISO/IEC TR 9126-2. (2003). Software Engineering - Product Quality - Part 2:
External Metrics. International Organization for Standardization.

Koc, E., Ersoy, N., Andac, A., Camlidere, Z. S., Cereci, I., & Kilic, H. (2012).
An empirical study about search-based refactoring using alternative multiple and
population-based search techniques. In E. Gelenbe, R. Lent, & G. Sakellari (Eds.),
Comput. Inf. Sci. II (pp. 59–66). London: Springer.

Kruchten, P., Nord, R. L., Ozkaya, I., & Visser, J. (2012). Technical Debt in Software
Development: from Metaphor to Theory. ACM SIGSOFT Software Engineering
Notes, 37(5), 36.

Ma, Z. M., Zhang, F., & Yan, L. (2011). Fuzzy information modeling in UML class
diagram and relational database models. Applied Soft Computing, Elsevier, 11(6),
4236–4245. doi:10.1016/j.asoc.2011.03.020

MacCormack, A., & Daniel, J. S. (2016). Technical debt and system architecture:
The impact of coupling on defect-related activity. Journal of Systems and Software,
120, 170–182. doi:10.1016/j.jss.2016.06.007

Maxion, R. A., & Olszewski, R. T. (1998). Improving Software Robustness with
Dependability Cases. In The Twenty-Eighth International Symposium on Fault-
Tolerant Computing. IEEE Computer Society Press. 10.1109/FTCS.1998.689485

Miguel, P. J., Mauricio, D., & Rodríguez, G. (2014). A Review of Software Quality
Models for the Evaluation of Software Products. International Journal of Software
Engineering and Its Applications, 5-6, 31. doi:10.5121/ijsea.2014.5603

Misra, S., Adewumi, A., Fernandez, L. S., & Damasevicius, R. (2018). A Suite of
Object Oriented Cognitive Complexity Metrics. IEEE Access: Practical Innovations,
Open Solutions, 6, 8782–8796. doi:10.1109/ACCESS.2018.2791344

129

An Investigation on Quality Perspective of Software Functional Artifacts

Mkaouer, M. W., Kessentini, M., Bechikh, S., O’Cinnéide, M., & Deb, K. (2015a).
On the use of many quality attributes for software refactoring: A many-objective
search-based software engineering approach. Empirical Software Engineering, 1–43.

Mkaouer, M. W., Kessentini, M., O’Cinnéide, M., Hayash, S., & Deb, K. (2016). A
robust multi-objective approach to balance severity and importance of refactoring
opportunities. Empirical Software Engineering, 1–43.

Mkaouer, W., Kessentini, M., Kontchou, P., Deb, K., Bechikh, S., & Ouni, A. (2015b).
Many-Objective Software Remodularization Using NSGA-III. Trans. Softw. Eng.
Methodol., 24(3), 1–45.

Mohan, M. (2016). Technical debt reduction using search based automated refactoring.
The Journal of Systems and Software. Doi:10.1016/j.jss.2016.05.019

National Institute of Standards and Technology. (2002). The Economic Impacts of
Inadequate Infrastructure for Software Testing. Author.

O’Keeffe, M., & O’Cinnéide, M. (2008a). Search-based refactoring for software
maintenance. J. Syst. Softw., 81(4), 502–516.

O’Keeffe, M. & O’Cinnéide, M. (2008b). Search-based refactoring: an empirical
study. J. Softw. Maint. Evolut.: Res. Pract., 20(5), 345–364.

Olague, H. M., Etzkorn, L. H., Gholston, S., & Quattlebaum, S. (2007). Empirical
Validation of Three Software Metrics Suites to Predict Fault-Proneness of Object-
Oriented Classes Developed Using Highly Iterative or Agile Software Development
Processes. IEEE Transactions on Software Engineering, 33(6), 402 – 419.

Ouni, A., Kessentini, M., Bechikh, S., & Sahraoui, H. (2015). Prioritizing code-
smells correction tasks using chemical reaction optimization. Softw. Qual. J., 23(2),
323–361.

Ouni, A., Kessentini, M., Sahraoui, H., Inoue, K., & Deb, K. (2016). Multi-criteria
code refactoring using search-based software engineering: An industrial case study.
ACM Trans. Softw. Eng. Methodol., 25(3), 1–53.

Ovaska, E., Evesti, A., Henttonen, K., Palviainen, M., & Aho, P. (2010). Knowledge
based quality-driven architecture design and evaluation. Information and Software
Technology, 52(6), 577-601.

Palviainen, M., Evesti, A., & Ovaska, E. (2011). The reliability estimation, prediction
and measuring of component-based software. The Journal of Systems and Software,
Elsevier, 84(6), 1054–1070. doi:10.1016/j.jss.2011.01.048

130

An Investigation on Quality Perspective of Software Functional Artifacts

Radjenovic, D., Hericko, M., Torkar, R., & Zivkovi, A. (2013). Software Fault
Prediction Metrics: A Systematic Literature Review. Information and Software
Technology, 55(8), 1397–1418. doi:10.1016/j.infsof.2013.02.009

Raja, U., & Tretter, M. J. (2012). Defining and Evaluating a Measure of Open Source
Project Survivability. IEEE Transactions on Software Engineering, 38–1.

Ramasubbu, N., & Kemerer, C. F. (2017). Integrating Technical Debt Management
and Software Quality Management Processes: A Normative Framework and Field
Tests. IEEE Transactions on Software Engineering. doi:10.1109/TSE.2017.2774832

Russoa, D., & Ciancarinia, P. (2016). A Proposal for an Antifragile Software Manifesto.
Procedia Computer Science, 83, 982–987. doi:10.1016/j.procs.2016.04.196

Russoa, D., & Ciancarinia, P. (2017). Towards Antifragile Software Architectures. 4th
International Workshop on Computational Antifragility and Antifragile Engineering,
ANTIFRAGILE 2017.

Shahrokni, A., & Feldt, R. (2013). A systematic review of software robustness.
Information and Software Technology, 55(1), 1–17. doi:10.1016/j.infsof.2012.06.002

Shan, C., Mei, S., Hu, C., Liu, L., & Mao, L. (2019). Software structure characteristic
measurement method based on weighted network. Computer Networks, 152, 178–185.
doi:10.1016/j.comnet.2019.01.037

Sharma, V.S., & Trivedi, K. S. (2006). Quantifying software performance, reliability
and security: An architecture-based approach. The Journal of Systems and Software,
Elsevier.

Taleb, N. N. (2008). The black swan: the impact of the highly improbable (2nd ed.).
London: Penguin.

Taleb, N. N. (2012). Antifragile: Things That Gain From Disorder (1st ed.). New
York: Random House, Inc.

Varghese, B. G. R., Raimond, K., & Lovesum, J. (2019). A Novel Approach for
Automatic Remodularization of Software Systems using Extended Ant Colony
Optimization Algorithm. Information and Software Technology, 114, 107–120.
doi:10.1016/j.infsof.2019.06.002

Vassallo, C., Grano, G., Palomba, F., Gall, H. C., & Bacchelli, A. (2019). A large-
scale empirical exploration on refactoring activities in open source software projects.
Science of Computer Programming, 180, 1–15. doi:10.1016/j.scico.2019.05.002

131

An Investigation on Quality Perspective of Software Functional Artifacts

Wang, M., Pan, W., Jiang, B., & Yuan, C. (2015). CLEAR: class level soft- ware
refactoring using evolutionary algorithms. J. Intell. Syst., 24(1), 85–97.

Wang, W. L., Pan, D., & Chen, M. H. (2006). Architecture-based software reliability
modeling. Journal of Systems and Software, 79(1), 132–146. doi:10.1016/j.
jss.2005.09.004

Winter, S., Sarbu, C., Suri, N., & Murphy, B. (2011). The impact of fault models on
software robustness evaluations. Proc. Intl. Conf. on Software Engineering, 51–60.
10.1145/1985793.1985801

Yacoub, S., Cukic, B., & Ammar, H. H. (2004). A Scenario-Based Reliability Analysis
Approach for Component-Based Software. IEEE Transactions on Reliability, 53–54.

Ying, W., Hai, Y., Zhi-Liang, Z., Wei, Z., & Yu-Li, Z. (2017). Automatic Software
Refactoring via Weighted Clustering in Method-level Networks. IEEE Transactions
on Software Engineering. doi:10.1109/TSE.2017.2679752

Zhou, B., Lu, J., Wang, Z., Zhang, Y., & Miao, Z. (2009). Formalizing Fuzzy UML
Class Diagrams with Fuzzy Description Logics. Third International Symposium on
Intelligent Information Technology Application. 10.1109/IITA.2009.97

Zhu, L., Aurum, A., Gorton, I., & Jeffery, R. (2005). Tradeoff and Sensitivity Analysis
in Software Architecture Evaluation Using Analytic Hierarchy Process. Software
Quality Journal, 13(4), 357–375. doi:10.100711219-005-4251-0

ADDITIONAL READING

Allspaw, J. (2012). Fault injection in production. Communications of the ACM,
55(10), 48–52. doi:10.1145/2347736.2347751

Basiri, A., Behnam, N., Rooij, D., Hochstein, L., Kosewski, L., Reynolds, J., &
Rosenthal, C. (2016). Chaos engineering. IEEE Computer, 33(3), 35–41.

Bavota, G. (2010). Playing with Refactoring: Identifying Extract Class Opportunities
through Game Theory. 26th IEEE International Conference on Software Maintenance.
10.1109/ICSM.2010.5609739

Cartwright, M., & Shepperd, M. (2000). An Empirical Investigation of an Object-
Oriented Software System. IEEE Transactions on Software Engineering, 26–28.

132

An Investigation on Quality Perspective of Software Functional Artifacts

Kazman, R., Bass, L., Klein, M., Lattanze, T., & Northrop, L. (2005). A Basis for
Analyzing Software Architecture Analysis Methods. Software Quality Journal,
13(4), 329–355. doi:10.100711219-005-4250-1

Koru, A. G., Zhang, D., El Emam, K., & Liu, H. (2009). An Investigation into
the Functional Form of the Size-Defect Relationship for Software Modules. IEEE
Transactions on Software Engineering, 35 - 2, pp. 293-304.

Kumar, K., & Prabhakar, T. V. (2009). Quality Attribute Game: A Game Theory
Based Technique for Software Architecture Design. Proceeding of the 2nd annual
conference on India software engineering conference, ACM, pp. 133–134: Pune, India.

Monperrus, M. (2017). Principles of Antifragile Software. Programming ’17 ACM:
Brussels, Belgium.

Pan, W. (2011). Applying Complex Network Theory to Software Structure Analysis.
International Journal of Computer, Electrical, Automation, Control and Information
Engineering, 5 - 12.

Yadav, H. B., & Yadav, D. K. (2015). A fuzzy logic based approach for phase-
wise software defects prediction using software metrics. Information and Software
Technology, 63, 44–57. doi:10.1016/j.infsof.2015.03.001

KEY TERMS AND DEFINITIONS

Code Smells: The locations in source code where modifications can be made to
improve the overall quality. These locations need not contain a bug but, improvement
may prevent the bug in near future.

Fault Injection: It is a testing mechanism in which a fault is deliberated introduced
in order to test the error handling functionality of the software to ensure its robustness.

Multi-Objective Optimization: Optimization problems arrive at a solution that
best satisfies a goal. Multiple such goals need to be simultaneously satisfied for the
class of Multi-Objective Optimization problems.

Non-Functional Requirement: The quality requirements that needs to be
incorporated in order to achieve customer satisfaction. They are usually not specified
as a part of requirements specification, but are essential for success of project.

Scenario-Based Evaluation: A method of assessment, where the software
components are checked against a sequence of operation of the functional requirements.

Software Ageing: The degradation in the performance or failure of operation
of the software due to continuously running and depleting the operating system

133

An Investigation on Quality Perspective of Software Functional Artifacts

resources. Software Rejuvenation is a proactive method proposed as a solution for
ageing software.

Software Structural Characteristics: Structural characteristics represent the
blue print of software components and their relationships and hierarchy to satisfy the
design goals. The position of critical components and their connection are important
in achieving the quality requirements.

134

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

DOI: 10.4018/978-1-5225-9659-2.ch008

ABSTRACT

In an age where everyone is carrying a smart phone, it is of utmost importance to
make efficient use of the upcoming technologies. This indicates the rise in number
of applications being created for mobile devices. As a result, mobile user interface
designing has become a significant part of application designing. There has been
an increasing number of devices today providing powerful graphics capabilities
helping users to deal with huge amount of information. However, the prototyping
tools currently being used in the industry are lacking features and are not addressing
some of the prime issues like user friendliness, functionalities, representation, and
enforcement. This chapter presents a tool based on an analysis of different popular
prototyping tools in the industry which will overcome some or all of the major issues
faced by application designers. The authors describe the prototyping tool’s concept,
design, features, as well as how it is suitable for making great user interfaces helping
application designers to design exactly what they want.

INTRODUCTION

User interface designing focuses on firstly identifying the needs of the users and
then creating an interface with functionalities which implements these user needs
ensuring ease of access (Oppermann, 2002; Sharp, 2003; Wood, 1997). Thus, we
see that mobile interaction design is a challenging procedure as the success or

An Analysis of UI/UX
Designing With Software

Prototyping Tools
Shruti Gupta

Amity University, Delhi, India

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 135

An Analysis of UI/UX Designing With Software Prototyping Tools

failure of any application hinges on its ease of accessibility and understand ability
(Myers, Hudson, & Pausch, 2000; Hix & Hartson, 1993). Due to cultural and
literary differences, the usage of application varies and depends on demographics
(Marcus & Gould, 2000). This clearly indicates the need of creating a prototype of
software’s or applications which will address the above issues. So what purpose do
the prototypes have?

A prototype is created or developed to improve the efficiency of critical software
developmental processes of planning and execution (Isreal & Lee, 2001). Pedro
Szekely says that in order to develop complex applications, prototyping is an important
stage which involves building a small scale version to reduce cost and risks involved
(Szekely, 1994). It consists of some or all features of the software. The benefits from
early prototyping are immense (Snyder, 2003). As said by Sidney L. Smith and Jane
N. Mosier that designing of interfaces are time-consuming and costly but are very
critical for the performance of the application (Smith & Mosier, 1986). The users can
then use the prototype model of the software and give their feedback. The developers
will gain a better understanding of what the requirements of the end users are and
also if any modifications are needed (Hackos & Redish, 1998). This establishes good
relations between users and developers which is ideal for any software project (Baumer,
Bischofberger, Lichter & Zullighoven, 1996; Floyd, 1984).

Some designers in the beginning often create rough sketches of the screen layouts.
Initially major design issues should be addressed rather than focussing on design
details like color and alignment (Landay & Meyers, 1994). Since the end users are
the ones who will be using our software, so ensuring a delightful experience for them
is what is required and prototype definitely solves this purpose to a great extent.
It is extremely important to meet the needs of the users (Nielson, 1993). Another
important aspect is “Expectation Setting” which implies setting the expectations of
our end users really high and this solely depends on how well our prototype speaks
for us (Meyers & Rosson, 1992).

To understand how much importance UI/UX designing play, let’s take an example
of two very famous ecommerce applications, Flipkart and Amazon. They provide
similar services and features but their usage varies a lot depending on their user
interface designing. There can be a user who is comfortable with Flipkart but not
with Amazon clearly indicating the importance of one’s experience of using the
application.

This leads us to a very important point. What is the one thing that the developers
must always keep in mind while creating an application? Create a simple application
and simple here implies that as soon as a user opens the software, he knows what to
do. It sounds easy but it definitely isn’t. The biggest challenge here is to think from
the perspective of the user and not the developer. This again indicates the need for
a prototype (Wilson &b Rosenberg, 1988).

136

An Analysis of UI/UX Designing With Software Prototyping Tools

This paper addresses the analysis of various application’s interfaces in order to
understand various concepts.The first three sections describe the various prototyping
tools and their key features. The fourth section gives an overview of the analysis of
these prototyping tools. The fifth section shows illustrative examples and the sixth
will describe the prototype we have made by analysing all the aspects of interface
designing including the functionalities of different graphic designing softwares like
Adobe Photoshop, Adobe Illustrator along with interactive applications like Fluid
UI and Wire Flow. This will enable the developers to design interactive interfaces
with ease (Floyd, 2003).

DESIGNING USING ADOBE ILLUSTRATOR

Illustrator is superior in many ways in user interface creation and vector artwork.
Although it is more time taking, but the interfaces created in this tool are exactly
the same as the designer wants and are of very high quality. However, if there are
any files or images which are imported in an illustrator project, dependencies are
created. Thus, moving these files will lead to dependency errors in the project.
The following are some of the reasons why one should use Adobe illustrator as a
prototyping tool.

Reasons:

a) Object Based Workflow: Since Illustrator is the free form of object-based
process, so every object can be selected and manipulated independently reducing
the effort of clicking on the object’s layer to select it or having to place the
object in a separate layer. Using Illustrator, a lot of time can be saved while
creating the project because of the ability to select objects directly.

b) Artboard: Adobe Illustrator enables one to create multi-page documents
thereby reducing the number of files. Illustrator offers another benefit which is
saving the computer’s memory storage along with time as the already existing
elements can be reused for different artboards eliminating the need to look for
and open other files to do this.

c) Guides: Guides are very useful when aligning objects and shapes. They appear
as lines in the workspace which help designers to quickly create layouts of
their design. Also, we can convert guides into vector objects to help us with
our design.

d) Pixel Precision: Pixel perfect designs can be made using Illustrator with a
lot of settings and functions. In the beginning of any project, the size of the
layout has to be mentioned with various other options to help designers make
layouts exactly as they want.

137

An Analysis of UI/UX Designing With Software Prototyping Tools

e) Gradient Fill: Any object or shape can be filled using gradient fills. The type
of gradient as well as various colors can be mentioned which can be controlled
with the help of a Gradient Annotator.

DESIGNING USING ADOBE PHOTOSHOP

Adobe Photoshop is an excellent tool in creating interfaces as it overcome some
of the major issues faced in illustrator. There are no dependency issues and the
layouts can be made very quickly. It is a great tool for making high quality images
of layouts but there is no feature of wire-framing which is a major drawback in the
tool. The following are some of the features of Photoshop which illustrates why
one should use it.

a) Move Tool: The move tool allows you to move objects. You can select layers
with it, so if each of your objects is on a separate layer, this tool will move
those objects just by clicking on them and dragging.

b) Measure Tool: Let’s you measure length, width, angle and location of areas
in your image. If you scan something in a little crookedly, use this tool to
measure the angle and then use “rotate canvas” to correct the rotation by the
exact amount.

c) Magnetic Lasso: For shapes that contrast with the background, this tool
will snap to the edge when making a selection. Double click on the magnetic
lasso icon to open the dialog box. You can set the strength of the “magnet” by
entering values in the dialog box.

DESIGNING USING FLUID UI

Fluid UI is a browser-based wire-framing and prototyping tool developed by Fluid
Software and used to design mobile touch interfaces. It provides the following –

a) Built in Libraries: Choose from 16+ libraries or upload your own images
from Photoshop or the web. Create and save your own design patterns for later
re-use.

b) Gestures and Transitions: Add taps, swipes and other gestures, then link
them together and select your animations to recreate an authentic mobile, web
or desktop experience.

138

An Analysis of UI/UX Designing With Software Prototyping Tools

c) Collaboration and Feedback: Share mockups with clients, users and
stakeholders. Get crucial feedback and iterate your designs long before writing
a single line of code.

d) Flexible Archiving: Archive all of your projects and control who has access
to them. Clone entire projects to manage and maintain different versions.

Fluid UI is an ideal software that definitely makes one’s life easier. It is very
easy to use. Anyone who doesn’t have coding knowledge can also design interfaces
with ease using Fluid UI

ANALYSIS

User interface designing can be done by any of the prototyping tool mentioned above.
However, it is very necessary to identify the advantages and disadvantages of each
with respect to certain parameters. The following two tables describe the parameters
and analysis of the different prototyping tools that we are using to analyse.

Table 1 shows the different parameters we are taken to analyse the different tools
as per the requirement of the user. While designing the prototype these different
parameters will help to select best selector. These parameters are used to find out
differences between the different prototyping tools and for creating a difference table.

Table 1. Parameters

Parameters Description

EventHandling It is the receipt of an event at some event handler from an event producer and
subsequent processes.

Widget Behavior It is an element of a graphical user interface that displays information or provides a
specific way for a user to interact.

Transitions Swipe, tap or double tap, slide features.

Navigation
Flowchart Building connected multi-screen prototypes.

Dynamic Data Information that is asynchronously changed as further updates to the information
become available.

Create Shapes Features for creating shapes.

Drag and Drop User able to drag and drop widgets, labels, layouts etc.

Predesigned
Templates Availability of dummy templates.

139

An Analysis of UI/UX Designing With Software Prototyping Tools

In table 2 we analysis these different parameters on the basis of two methods ie
plan, interactivity and features .Than we are going to compare these methods and
parameters on the basis of different tools Adobe Photoshop, Adobe Illustrator and
fluid UI. As we seen in table 2 shows the analysis of different prototyping tools on
the basis of certain parameters.

ILLUSTRATIVE EXAMPLE

As per the framework of the tools different demos are created to show the difference
between these tools.

To design the login layout best of the tool feature are used. In drawer layout one
of the issue is inbuilt libraries the font is same. We cannot increase and decrease
the font issue while working.

Description of the Table 3 and Table 4 as follows:-
In figure (a) in table 3 and 4, the layout was made with Fluid UI (Free Version).

The shapes were made using drag and drop feature with built in libraries. The text
font could not be changed. Images along with icons could not be added. Wire framing
was made for each click on the layout to different screens.

In figure (b) in table 3 and 4, the layout was made using Adobe Illustrator with all
possible customizations. Icons and Images could be added with varying sizes. Wire
framing was not possible in Illustrator. In figure (c) in table 3 and 4, the layout was
made with Adobe Photoshop with all possible customizations similar to Illustrator.

Table 2. Difference table

Parameters Adobe
Photoshop

Adobe
Illustrator Fluid UI

Free Plan Plan Yes Yes Yes

Event Handling

Interactivity

No No Yes, Mobile

Transitions No No Yes

Widget Behavior No No Yes

Navigation Flowchart No No Yes

Dynamic Data No No No

Scripting No No No

Create Shapes

Features

Yes Yes No

Drag and Drop Yes Yes Yes

Predesigned Templates No Yes Yes

140

An Analysis of UI/UX Designing With Software Prototyping Tools

PROPOSED PROTOTYPE

The proposed prototype aims at supporting a set of features to enhance the design
process of a mobile application and help designers to create interfaces rapidly and
efficiently (Smith, 1995). The prototype is made for android platform and is available
at Google Playstore. Some of the features are mentioned below:

a) Sign and Registration along with Facebook Signup: The user can have an
account where he can save all his projects containing the user interfaces for
various applications. All these projects are saved in the application as well in
the server. The user just has to sync if he logs in from another mobile. Facebook
login makes it more simple for the user to sign up and start using the features
of the prototype. The projects can also be shared in any platform.

b) Google Analytics: This feature can allow developer of the prototype to know
all the interactions made by the users with the prototype. It is a real time
application which can also let us know how many users are currently using the

Figure 1. Drawer Layouts.

Figure 2. Login layouts

141

An Analysis of UI/UX Designing With Software Prototyping Tools

application ad know their interaction. This can help the developer to identify
user patterns and identify crashes and exceptions.

c) GCM Push Notification: This feature allows the developer to send information
or banner advertisements through notifications to the users of the prototype.

d) Workspace: A series of features to enhance the development of user interfaces
which includes shapes, color, Brush, adding text, eraser and many more. Along
with creation of user interfaces, user can link one interface to another interface
enabling wire framing in the prototype.

e) Save in any Format: The images made in the prototype can be saved in
different format like jpeg, png or any other. The default format is jpeg.

f) Create Layout of any Dimensions (Pixels): When the user creates a project,
he can mention the dimensions of the user interfaces he wishes to make for.
This can help designers to make objects with respect to the size of the interface.

g) Material Design: The prototype is made with updated features of android
platform and material design supporting new themes, widgets and libraries
providing a new style of the application for better interactivity.

Fig 1 shows the process of login in the application. The user can either sign in
manually or using Facebook. In both cases, the user will be registered in our server
and can proceed to the home screen.

Fig 2 shows the process of creation of a layout. In the home screen, user will be
able to see all his projects. User can create a project and enter details like layout
dimensions, name and description. After this, user can start creating layouts using
all the tools available in the application and save accordingly.

In table 5 Figure (a) shows the sign up screen. User can create his account by
registering hi name or through Facebook. This will allow users to maintain their
projects in phone as well as on cloud. Figure (b) is the workspace where user can
create a user interface. Figure (c) shows the editing tools for the user to edit interfaces.

Figure 3. Login process

142

An Analysis of UI/UX Designing With Software Prototyping Tools

RESULT AND CONCLUSION

With this Book chapter, Authors have developed a deep understanding regarding how
important user interface can be for any field. The user experience is the deciding
factor for the success or failure of a particular software. As a result, we have created
a prototyping tool that will help the developers create interactive interfaces.

After deeply studying the various existing tools that already exist, authorrs
come to the conclusion that if the features of all these tools can be combined and a
new software can be created, then the lives of the developers will be so much more
easy. The graphic designers today spend a lot of time on designing the layouts and
deciding how the app should look like. Using the tool that I have created, they can
experiment a lot easily and designing wont be a problem at all.

Figure 4. Interface creation process

Figure 5. Layouts of the prototype

143

An Analysis of UI/UX Designing With Software Prototyping Tools

FUTURE ENHANCEMENT

The future of this field is immense as everything today is technology driven.
Technology has become an integral part of each individual’s life. So this project
can be expanded further and taken to different dimensions where a lot more features
can be added in this prototyping tool.

REFERENCES

Appiah, S., Benites, P., Chang, R., & Geleg, T. (2018). UI/UX Proposal for the
Montgomery County Department of Health and Human Services. PALS.

Bäumer, D., Bischofberger, W. R., Lichter, H., & Züllighoven, H. (1996, May). User
interface prototyping—concepts, tools, and experience. In Proceedings of the 18th
international conference on Software engineering (pp. 532-541). IEEE Computer
Society. 10.1109/ICSE.1996.493447

Bernal-Cárdenas, C., Moran, K., Tufano, M., Liu, Z., Nan, L., Shi, Z., & Poshyvanyk,
D. (2019, May). Guigle: a GUI search engine for Android apps. In Proceedings of the
41st International Conference on Software Engineering: Companion Proceedings
(pp. 71-74). IEEE Press.

Chen, S., Fan, L., Chen, C., Su, T., Li, W., Liu, Y., & Xu, L. (2019, May). Storydroid:
Automated generation of storyboard for Android apps. In Proceedings of the 41st
International Conference on Software Engineering (pp. 596-607). IEEE Press.

de Lima Salgado, A., Rodrigues, S. S., & Fortes, R. P. M. (2016, September).
Evolving Heuristic Evaluation for multiple contexts and audiences: Perspectives
from a mapping study. In Proceedings of the 34th ACM International Conference
on the Design of Communication (p. 19). ACM. 10.1145/2987592.2987617

De Sá, M., & Carriço, L. (2009, September). A mobile tool for in-situ prototyping. In
Proceedings of the 11th International Conference on Human-Computer Interaction
with Mobile Devices and Services (p. 20). ACM.

Floyd, C. (1984). A systematic look at prototyping. In Approaches to prototyping
(pp. 1–18). Berlin: Springer. doi:10.1007/978-3-642-69796-8_1

Floyd, C. (1984). A systematic look at prototyping. In Approaches to prototyping
(pp. 1–18). Berlin: Springer. doi:10.1007/978-3-642-69796-8_1

Hackos, J. T., & Redish, J. (1998). User and task analysis for interface design.
Academic Press.

144

An Analysis of UI/UX Designing With Software Prototyping Tools

Hix, D., & Hartson, H. R. (1993). Developing user interfaces: ensuring usability
through product & process. John Wiley & Sons, Inc.

Ismirle, J. (2018, August). Using Experience Maps to Consider Individual Stories.
In Proceedings of the 36th ACM International Conference on the Design of
Communication (p. 18). ACM. 10.1145/3233756.3233954

Isreal, J. B., & Lee, M. D. (2001). U.S. Patent No. 6,330,007. Washington, DC: U.S.
Patent and Trademark Office.

Jitnupong, B., & Jirachiefpattana, W. (2018). Information system user interface
design in software services organization: a small-clan case study. In MATEC Web of
Conferences (Vol. 164, p. 01006). EDP Sciences. 10.1051/matecconf/201816401006

Landay, J. A., & Myers, B. A. (1994). Interactive sketching for the early stages of
user interface design (No. CMU-CS-94-176). Carnegie-Mellon Univ Pittsburgh PA
Dept of Computer Science. doi:10.21236/ADA285339

Liu, T. F., Craft, M., Situ, J., Yumer, E., Mech, R., & Kumar, R. (2018, October).
Learning design semantics for mobile apps. In The 31st Annual ACM Symposium
on User Interface Software and Technology (pp. 569-579). ACM.

Marcus, A., & Gould, E. W. (2000). Crosscurrents: cultural dimensions and global
Web user-interface design. Interactions, 7(4), 32-46.

Mirsch, T., Lehrer, C., & Jung, R. (2018). Making Digital Nudging Applicable: The
Digital Nudge Design Method. Academic Press.

Moran, K., Bernal-Cárdenas, C., Curcio, M., Bonett, R., & Poshyvanyk, D. (2018).
Machine learning-based prototyping of graphical user interfaces for mobile apps.
arXiv preprint arXiv:1802.02312

Moran, K., Li, B., Bernal-Cárdenas, C., Jelf, D., & Poshyvanyk, D. (2018, May).
Automated reporting of GUI design violations for mobile apps. In Proceedings of
the 40th International Conference on Software Engineering (pp. 165-175). ACM.
10.1145/3180155.3180246

Moran, K., Li, B., Bernal-Cárdenas, C., Jelf, D., & Poshyvanyk, D. (2018, May).
Automated reporting of GUI design violations for mobile apps. In Proceedings of
the 40th International Conference on Software Engineering (pp. 165-175). ACM.
10.1145/3180155.3180246

Myers, B., Hudson, S. E., & Pausch, R. (2000). Past, present, and future of user
interface software tools. ACM Transactions on Computer-Human Interaction, 7(1),
3–28.

145

An Analysis of UI/UX Designing With Software Prototyping Tools

Myers, B. A., & Rosson, M. B. (1992, June). Survey on user interface programming.
In Proceedings of the SIGCHI conference on Human factors in computing systems
(pp. 195-202). ACM. 10.1145/142750.142789

Nielsen, J. (1993). Iterative user-interface design. Computer, 26(11), 32–41.
doi:10.1109/2.241424

Oppermann, R. (2002). User-interface design. In Handbook on information
technologies for education and training (pp. 233–248). Berlin: Springer.
doi:10.1007/978-3-662-07682-8_15

Sharp, H. (2003). Interaction design. John Wiley & Sons.

Smith, S. L., & Mosier, J. N. (1986). Guidelines for designing user interface software
(No. MTR-10090). Bedford, MA: Mitre Corporation. doi:10.21236/ADA177198

Smith, W. R. (1995, October). Using a prototype-based language for user interface:
The Newton project’s experience. In OOPSLA (Vol. 95, pp. 61-72). Academic Press.

Snyder, C. (2003). Paper prototyping: The fast and easy way to design and refine
user interfaces. Morgan Kaufmann.

Szekely, P. (1994, May). User interface prototyping: Tools and techniques. In Workshop
on Software Engineering and Human-Computer Interaction (pp. 76-92). Springer.

Wilson, J., & Rosenberg, D. (1988). Rapid prototyping for user interface design.
In Handbook of human-computer interaction (pp. 859–875). North-Holland.
doi:10.1016/B978-0-444-70536-5.50044-0

Wood, L. E. (1997). User interface design: Bridging the gap from user requirements
to design. CRC Press.

146

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9

DOI: 10.4018/978-1-5225-9659-2.ch009

ABSTRACT

The firm or the government invites bids against the tender whenever it requires third
party to provide services to it like undertaking construction projects, delivery of
material, etc. Interested parties gives their bid prices in sealed envelopes and the
lowest bid rate wins the contract. However, contractor, in order to win the contract,
may not estimate the cost of the project accurately as the estimation of factors
contributing to the costs may be based on educated guesswork according to the
past experiences. This increases the chances of the final cost of the project to go up
in the end, which is to be borne by contractor. Hence, accurate and effective cost
estimation is required. This chapter proposed an algorithm to provide a proper way
for the contractors to estimate the accurate cost of the project for which they provide
bids. This chapter provides an effective solution to the problem of inaccurate cost
estimation. The algorithms are automated using a web-based tool.

Improving Financial Estimation
in Construction Management

Through Advanced Computing
and Decision Making

Varun Gupta
University of Beira Interior, Covilha,

Portugal

Aditya Raj Gupta
Amity University, Noida, India

Utkarsh Agrawal
Amity University, Noida, India

Ambika Kumar
Amity University, Noida, India

Rahul Verma
Amity University, Noida, India

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 147

Improving Financial Estimation in Construction Management

INTRODUCTION

When an tender for undertaking activity related to projects are released, inviting
bids, there are many contractors that would like to bid for it. The contractor must be
technically and financially stable to compete for the specific project. Usually, the one
with the lowest bid wins the tender. The cost specified by contractor is sometimes
based educated guess work, which leads to cost overruns during the course of project
development. This educated guess work comes from the past experiences of the
company and similar projects done. Not accurately identifying the elements of the
cost and risks leads to the higher final cost of the project than what was estimated
earlier. Accurate cost estimation and completing the project within estimated cost
leads to higher success (Aziz, Memon, Rahman, Latif & Nagapan, 2012). It had
been reported that the on average the cost overrun in projects is 5–10% of project
cost (Azis et al, 2012). It had also been identified that the cost and time over run is
approximately 5–10% of contract duration and price of project (Rahman, Memon,
Nagapan, Latif, & Azis, 2012).

An accurate and effective cost estimation is required to avoid the mismatch
between estimated cost and actual costs. Further, the bids obtained by the firm (that
invited it) provides it an opportunity to further lower the project cost and increase
quality of work by awarding contract as subcontracts to contractors, on basis of
lower elements of cost specified in bids. There are various factors that are taken into
account while doing the cost estimation of a project like - the cost of the labor, cost
of machinery, land cost, and type of project, resources, etc, which varies from project
to project and firm to firm. To illustrate the working of the proposed algorithms,
the cost factors used are generic across many contractors. These contractors was
interviewed by authors to identify generic parameters that make up the cost. The
different factors affecting time and cost of the project is reported in (Potty, Irdus
& Ramanathan, 2001). However, to consider multiple cost factors, the algorithm is
well adoptable to accommodate the extra variables.

This chapter proposed two algorithms, first; to lower the cost of projects by
awarding subcontracts and second; to have effective and accurate cost estimation of
the project, which can help the contractors in their endeavor of effective construction
management. The first algorithm does not employ any expert judgment except that
contractor may use expert judgment for cost estimation. Second algorithm may
employ expert judgment and historical values to update the estimated weights. The
partial application of expert judgment helps to incorporate the domain expertise
of experts and consider the variability issues and overconfidence issues related to
expert judgment as reported in (Azis et al, 2012).

148

Improving Financial Estimation in Construction Management

Proposed Algorithm

Algorithm 1 (Minimizing Project Cost)

This algorithm computes the project cost on the basis of the addition of minimum
factors comprising the project cost. Thus the tender is not awarded to single contractor
on basis of the lowest price but sub contracts are given on basis of lowest values
quoted per factor. Input factors of just factors are the one that a contractor takes into
account for the estimation of the project cost. This chapter considers four hypothetical
factors as the basis of the algorithm development.

For the ease of the implementation, it is assumed that there are four input factors
that greatly affect the cost of the project namely F1, F2, F3, and F4. The government
will ask the contractors to give the cost of all the individual four factors. From the
data given, the government has to select the best contractor for the projects depending
upon these factors that affect the cost. For this algorithm would provide government,
the analysis for the cost of all the factors given by the contractors. Depending upon
the analysis it selects the contractors that could provide the lowest value for the
factors F1, F2, F3, and F4. When the cost of all these factors would be added the
overall cost of the project will go down. So to give the minimum value of all the
factors, the researchers considered the following:

• The duration of the project is of D days,
F1 value is calculated on per day basis, cost per day R1
F2 value is calculated on per day basis, cost per day R2
F3 value is calculated on per piece basis, cost per piece R3
F4 value is calculated on per month basis, cost per month R4

Now when all the contractors quote their price for each of the factors then the
minimum of all is taken. These minimum values are then multiplied with their units
and duration D.

Total cost of Factor (F1) (Cf(i)) = Minimum (Quotes of all the contractor for F1)
* R1 * D

Total project cost = Σ Cf(i), for I = 1 to 4.

Similarly, the total cost of all the other factors can be calculated. Hence the
government would be benefited by this algorithm and contracts would be given not
for the entire project but only on the factor basis.

149

Improving Financial Estimation in Construction Management

Algorithm 2

The second algorithm is given to:

(a) determine the factor whose cost is calculated incorrectly and is causing the
difference in the predicted and the final cost of the project. This is based on
actual data.

(b) make a better estimation for the factors by indicating the amount of variation
in the predicted and final cost. This may employ expert judgment for updation
of the calculated weights.

This method uses various weights as a variable assigned to the four assumed
factors F1, F2, F3, and F4. These variation weights will show negative and positive
value depending upon the difference between the predicted and final cost.

The positive or negative values of the variable weights given on the basis of the
following:-

• If Predicted Rate, P < Actual Rate, A
 ◦ Then negative value will be given to the weight.

• If Predicted Rate, P = Actual Rate, A
 ◦ Then positive value will be given to the weight.

• If Predicted Rate, P > Actual Rate, A up to a defined range.
 ◦ Then positive value will be given to the weight.

• If Predicted Rate, P >> Actual Rate, A beyond the defined range.
 ◦ Then negative value will be given to the weight.

This method can help by indicating (a) if a factor is incorrectly predicted, (b) how
much is the variation between the weights for a factor F1 when multiple values of
various weights are taken over the time. The variation weights calculated are added
up to the previous weight value for the final estimation.

The range of the various weights is taken from 1 to positive (n) for positive
variation, and from -1 to negative (n) for negative variation. So greater the variation,
lower will be the value of the weight according to the range and vice versa.

EXAMPLE (ALGORITHM 1)

Consider the following project constraints. Consider that three companies namely A,
B and C decides to bid for a contract using four factors of project cost. The values per
factor for each company and total cost calculated by each company are given below.

150

Improving Financial Estimation in Construction Management

T: Duration of the project(in days), assume to be 1, for the sake of simplicity.
N: Number of units of some material, which is assumed to be 1, for the sake of

simplicity.
F1: Cost Factor 1 / per day.
F2: Cost Factor 2 / per day.
F3: Cost Factor 3 / per day.
F4: Cost Factor 4 / per unit.

Company A

F1: Rs. 1/per day.
F2: Rs. 1/per day.
F3: Rs. 3/ per day.
F4: Rs. 1/per unit.

Company B

F1: Rs. 2/per day.
F2: Rs. 2/per day.
F3: Rs. 1/ per day.
F4: Rs. 2/per unit.

Company C

F1: Rs. 3/per day.
F2: Rs. 3/per day.
F3: Rs. 2/ per day.
F4: Rs. 3/per unit.
Total Cost = 1 + 1 + 1 + 1 = 4. (Recall T and N are assumed to be 1)

Thus government has to pay cost of Rs 4 only as compared to RS 6 to contractor
company A (Company A has lowest bid compared to others). Using suitable data,
algorithm 2 could also executed.

TOOL SUPPORT

A web application has been developed to execute the proposed algorithms. The
web application can be used by the contractor to submit their bid for any project
which is invited by government or any other firm. The web application also gives

151

Improving Financial Estimation in Construction Management

the option to the government/firm to select the different contractor for the different
activities to be performed in the single project, for example labor services or
machinery deployment etc. The application was names as E-Tendrz. The working
of the application is shown below with the help of the screenshot.

Figure 1 shows the lowest bids of all factors of all contractors, thereby resulting
in reduction in project cost to government and hence profit to them.

CONCLUSION

This chapter suggest an cost estimation algorithms that will help the construction
company to predict the cost of the project close to the actual cost and for the firm
inviting tenders to lower the cost at which tender is awarded. Tender is awarded at
low cost because now it is not awarded to single contractor on basis of the lowest
price but sub contracts are given on basis of lowest values quoted per factor. This
algorithms with the ability to consider the ratings of the contractor will give a system
the ability to increase the accuracy of the predicted cost of a project, help bring the
overall cost of the project down effectively and select a contractor which has a history
of completing the project in given time, budget and with good quality. Therefore,
this innovative system can improve the current practices followed throughout the
industry in a simple and efficient way. The evaluation of algorithm 2 on live data
set, is kept as future work.

Figure 1. Lowest values of cost factors

152

Improving Financial Estimation in Construction Management

REFERENCES

Azis, A. A. A., Memon, A. H., Rahman, I. A., Latif, Q. B. A. I., & Nagapan, S. (2012,
September). Cost management of large construction projects in South Malaysia. In
2012 IEEE Symposium on Business, Engineering and Industrial Applications (pp.
625-629). IEEE. 10.1109/ISBEIA.2012.6422964

Faria, P., & Miranda, E. (2012, October). Expert Judgment in Software Estimation
During the Bid Phase of a Project--An Exploratory Survey. In 2012 Joint Conference
of the 22nd International Workshop on Software Measurement and the 2012 Seventh
International Conference on Software Process and Product Measurement (pp. 126-
131). IEEE. 10.1109/IWSM-MENSURA.2012.27

Potty, N. S., Irdus, A. B., & Ramanathan, C. T. (2011, September). Case study
and survey on time and cost overrun of multiple D&B projects. In 2011 National
Postgraduate Conference (pp. 1-6). IEEE. 10.1109/NatPC.2011.6136364

Rahman, I. A., Memon, A. H., Nagapan, S., Latif, Q. B. A. I., & Azis, A. A. A. (2012,
December). Time and cost performance of costruction projects in southern and cenrtal
regions of Penisular Malaysia. In 2012 IEEE Colloquium on Humanities, Science
and Engineering (CHUSER) (pp. 52-57). IEEE. 10.1109/CHUSER.2012.6504280

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

153

DOI: 10.4018/978-1-5225-9659-2.ch010

ABSTRACT

Field programmable gate arrays (FPGAs) are finding increasing number of
applications in high integrity safety critical systems of aerospace and defence industry.
Though FPGA design goes through various development processes, it is widely
observed that the critical errors are observed in the final stages of development,
thereby impacting time and cost. The risk of failure in complex embedded systems
is overcome by using the independent verification and validation (IV&V) technique.
Independent verification and validation (IV&V) of FPGA-based design is essential
for evaluating the correctness, quality, and safety of the airborne embedded systems
throughout the development life cycle and provides early detection and identification
of risk elements. The process of IV&V and its planning needs to be initiated early in
the development life cycle. This chapter describes the IV&V methodology for FPGA-
based design during the development life cycle along with the certification process.

Independent Verification
and Validation of FPGA-

Based Design for Airborne
Electronic Applications

Sudha Srinivasan
Aeronautical Development Agency (ADA), Bangalore, India

D. S. Chauhan
GLA University, Mathura, India

Rekha R.
Aeronautical Development Agency (ADA), Bangalore, India

154

Independent Verification and Validation of FPGA-Based Design

INTRODUCTION

Complex custom micro-coded components are becoming increasingly popular for
use in high integrity safety critical systems. These complex custom micro-coded
components include Application Specific Integrated Circuits (ASIC), Programmable
Logic Devices (PLD), Field Programmable Gate Arrays (FPGA), or similar electronic
components used in the design of aircraft systems. The extensive use of these
Complex custom micro-coded components results in development and certification
challenges. Hence, it’s necessary to overcome these challenges to ensure that the
potential for design errors is addressed in a more consistent and verifiable manner
during both the development and certification phases.

Field Programmable Gate Arrays (FPGAs) are becoming more popular for
use within high integrity and safety critical systems. FPGAs contain millions of
programmable logic cells, which can be configured for a wide variety of tasks, and
offer many benefits over traditional micro-processors, such as efficient parallel
processing and very predictable performance.

FPGAs are configured using a Hardware Description Language (HDL), such
as the VHDL (VHSIC Very High Speed Integrated Circuit Hardware Description
Language), Verilog and System C to describe the required logic. This is converted
into a configuration file which is loaded onto the FPGA device. DO-254 (RTCA/
DO-254, 2000) guideline provides design assurance guidance for the development of
airborne electronic hardware such that it shall safely performs its intended function,
in its specified environments. However, DO-254 guideline is applicable to Line
Replacement units, Circuit Board Assemblies, Custom micro-coded components,
such as Application Specific Integrated Circuits (ASICs) and Programmable Logic
Devices (PLD) and does not explicitly bring out the IV&V of development life cycle
of FPGA based design.

This paper brings out the IV&V activities to be carried out during the FPGA
development life cycle starting from planning phase to certification.

BACKGROUND

From references, (RTCA/DO-254, 2000) describes Design Assurance Guidance for
Airborne Electronics Hardware for Line Replacement Units (LRUs), Circuit Board
Assemblies, ASICs, PLDs, Integrated technology components such as hybrids
and multichip modules and COTS components. (DoT FAA, 2015) focuses on the
verification process and verification tools used for airborne electronic hardware
(AEH) devices such as Field Programmable Gate Array (FPGAs), programmable
logic devices (PLD) and application specific integrated circuits (ASICs).

155

Independent Verification and Validation of FPGA-Based Design

Dagan (2011) Gives the practical use of FPGAs and IP in DO-254 compliant
systems and defines COTS devices as components, integrated circuits, or subsystems
that are developed by a supplier for multiple customers, whose design and configuration
are controlled by the specification from the suppliers or industry, (RTCA DO-254
CAST-33, 2014) is a CAST paper for airborne COTS IP used in PLD and ASICs
and is an acceptable means of compliance for Programmable Logic Devices (PLDs)
and Application Specific Integrated Circuits (ASICs) implementing a third party
Commercial Off-The-Shelf (COTS) Intellectual Properties (IP).

Paul and Anthony (2009) focuses on selecting the Ideal FPGA vendor for Military
programs, Keithan (2008) is an advisory circular released by FAA and describes
the design assurance for complex custom micro-coded components with hardware
design assurance levels. Tasiran and Keutzer (2001) is a whitepaper focusing the
verification process and verification tools for airborne electronic hardware (AEH).
Liu and Jou (2001) describes the Advanced Verification Methods for Safety-Critical
Airborne Electronic Hardware. (CYIENT, 2015) focuses on coverage metrics for
Functional and Code coverage. Ref(j)elaborates on verifying the correctness of the
initial Register Transfer Language(RTL) descriptions written in hardware description
language(HDL) and the six different types of coverage metrics i.e. Statement, Block,
decision, path, event and FSM. Discusses the key technical challenges involved in
V&V of FPGA in the Aerospace and Defence Industry and highlights on how a
global partnership can help optimize FPGA development by driving innovation,
optimizing cost, and providing access to resources in emerging markets like India.

None of the above papers have addressed the life cycle activities for performing
a thorough Independent Verification and Validation of FPGA based systems for
airborne applications leading to certification for flight. Section 3 presents a brief
detail of FPGA Development Life Cycle. Section 4 gives the IV&V methods and
techniques for FPGA. It lists the IV&V activities to be carried out for the FPGA
development life cycle that includes planning phase, requirement phase, detailed
design phase, implementation phase and certification phase.

FPGA DEVELOPMENT LIFE CYCLE

The FPGA development life cycle is equally applicable to the development of new
systems or equipment and modifications to existing systems or equipment. The
FPGA design life cycle processes may be iterative, that is entered, re-entered and
modified due to incremental development and feedback between the processes.

The Figure: 1 shows phases of the entire FPGA development life cycle processes:

156

Independent Verification and Validation of FPGA-Based Design

Planning Phase

The purpose of the FPGA planning phase is to define the means of producing
FPGA Design which will satisfy the functional requirements. Effective planning
is required to produce good FPGA Design. Checklist for entire Life Cycle is to be
prepared along with the IV&V team and Certification Agency during the planning
phase. To initiate planning phase FPGA Top Level Requirement Specifications,
Interface Requirement Specifications and System Safety Assessment Results are
mandatory. Planning documents namely Plan for FPGA Aspects for Certification,
FPGA Design Plan, FPGA Configuration Management Plan and FPGA Verification
Plan are generated for each sub-system / project.

Figure 1. Phases of FPGA Development Life Cycle

157

Independent Verification and Validation of FPGA-Based Design

FPGA Requirement Phase

The FPGA requirements capture process identifies and records the hardware item
requirements for FPGA design implementation and its working under safety critical
regions. This includes those derived requirements imposed by the FPGA architecture,
choice of technology, the basic and optional functionality, environmental, and
performance requirements as well as the requirements imposed by the system safety
assessment. This process may be iterative since additional requirements may become
known during design.

FPGA Requirement Phase is initiated once System Functional Architecture
Document, Plan for FPGA Aspects for Certification, FPGA Design Plan, FPGA
Configuration Management Plan and FPGA Verification Plan are prepared.

During this phase, FPGA Detailed Requirement Specification, External Interface
Document, FPGA Test Plan and Requirement Traceability Matrix is prepared. The
system requirements allocated to the FPGA shall be documented. These may include
identifying requirements, such as functionality and performance, and architectural
considerations, Built-In-Test, testability and maintenance considerations, power
and physical characteristics and documented in FPGA Detailed Requirement
Specification. It shall identify and record the external interface requirements in
External Interface Document. This includes those requirements imposed by the
IP architecture, IP controllability and configuration, environmental, safety and
performance requirements.

Traceability from FPGA Detailed Requirement Specification to FPGA test plan
shall be documented in Requirement Traceability Matrix. FPGA Test Plan shall
include all requirements from FPGA Detailed Requirement Specifications to be tested.

FPGA Detailed Design Phase

FPGA design is the intermediate and essential activity between requirements and
implementation. The complexity and criticality of the FPGA is to be assessed and
appropriate design methodology has to be chosen. A conceptual design phase becomes
essential for very complex systems where various implementation options are to be
explored to determine the optimum and maintainable design. The detailed design
phase extends the FPGA architecture defined in the conceptual design.

Planning phase outputs such as Plan for FPGA Aspects of Certification and
FPGA Design Plan along with requirement phase output artifacts are required to
commence FPGA detailed Design Phase. FPGA Design Data document is prepared
that includes Conceptual design data, Reliability, maintenance and test features,
preliminary FPGA safety assessment data, Design Constraints and Hardware/
Software Interface Data.

158

Independent Verification and Validation of FPGA-Based Design

VHDL has been used for in the project. However, since all the features of
VHDL cannot be used for safety critical systems development, it is essential that a
safe subset of the language should be used. In this regard, IV&V formulated a safe
subset of coding rules for development of airborne safety critical systems based on
Mentor Graphics, ALDEC and STARC coding standards. The following rationales
were implemented for programming using VHDL. The developed code was found
efficient and error free.

R1: Design should not have Clock Domain Crossing (CDC). Meta-stability is a
serious problem in safety-critical designs, which frequently causes chips to
exhibit intermittent failures. These failures generally go undetected during
simulation (which tests a chip’s logic functions) and static timing analysis
(which tests for timing within a single clock domain).

R2: Design should not have set up, hold time violations and clock skew. This can
be run at various phases in the design process like translate, map, Place &
Route. Static Timing Analysis (STA) gives the information about setup and
hold time violations and clock skew.

R3: Design should not have unsafe synthesis. Safe Synthesis is checked to ensure
that a proper net list is created by the synthesis tool. If this is violated in some
cases the pre-synthesis RTL simulations will not match the post synthesis gate
level simulations.

R4: Design reviews and code comprehension should not be cumbersome. The
design reviews and code comprehension should be source level transparent,
verifiable, maintainable and readable and include those attributes that facilitates
the understanding of the software by project personnel. Code should have a
formal syntax.

An example of coding rule with rationale is given below

RULE: Do not use flip-flop output as a clock.

Rule Description

Do not use a flip-flop output as a clock or input to itself - avoid internally generated
clocks as much as possible unless they are isolated properly.

Rationale: R1, R2&R3

159

Independent Verification and Validation of FPGA-Based Design

Example Showing Violation of the Rule

In the VHDL Code given below, the output of the first flip-flop ‘dout’ is used as
a clock to the next flip-flop. The following code in figure 2and figure 3 shows the
VHDL Code rule and RTL schematic violation.

VHDL code for the violation:
VHDL code following Coding Rule:

Figure 2. VHDL Code with Code Rule violation

Figure 3. RTL Schematic for the violation

160

Independent Verification and Validation of FPGA-Based Design

The VHDL source code for ‘the output of the first flip-flop ‘dout’ to the next
flip-flop input’ being implemented as shown in figure 4 and figure 5. The clock is
simultaneously given to both the flip flops.

Output artifacts of FPGA Detailed Design Phase shall include FPGA Design
Data, RTL, Netlist (Synthesis and Simulation), Testbenches, Simulation Result and
Code Quality Check Report.

Figure 4. VHDL Code with Coding Rule compliance

Figure 5. RTL Schematic for the coding rule compliance

161

Independent Verification and Validation of FPGA-Based Design

FPGA Implementation Phase

Implementation phase consists of integration of all individual designs into a single
entity, mapping to the FPGA resources and Place & Route and generating the
Bitstream. The designer can use any standard design debug tools or signal generators,
logic analyzers, device programmers.

Implementation Phase requires FPGA Design data, Netlist, Simulation Result
and Testbenches. FPGA implementation process shall use the detailed design data
to produce the Bitstream, Simulation Result report, Timing analysis Report, Test
Report, FPGA Accomplishment Summary and FPGA Configuration Index.

IV&V METHODS AND TECHNIQUES FOR FPGA

IV&V is a system engineering process employing rigorous methodologies for
evaluating the correctness, quality and safety of the airborne embedded systems
throughout the software development life cycle. It is required for the early detection
and identification of risk elements. The program is then able to take actions to
mitigate these risks early in the life cycle. Independent Verification and validation
of FPGA based design is an ongoing process, where the intensity of V&V process
that is applied is based on the design assurance levels (DAL) as specified in the
DO-254. The IV&V methods and Techniques needs to be enforced for FPGA in
each FPGA development life cycle phase. In each phase, the design team shall
formally release the output artifacts after carrying out their internal verification
and Validation. IV&V shall independently prepare observations after thoroughly
analyzing all output artifacts of that phase. IV&V may also prepare interim reports
during the phase to bring concerns to the attention of management.

The figure 6 shows the information interchange between development phases of
FPGA and IV&V Activities for FPGA development life cycle.

IV&V of Planning Phase

The purpose of the planning phase is to define the means of designing FPGA which
will satisfy the system requirements. Effective planning is a determining factor
in designing FPGA. The planning documents namely Plan for FPGA Aspects of
Certification, FPGA Design Plan, FPGA Configuration Management Plan, FPGA
Verification Plan, are verified for each subsystem/project

162

Independent Verification and Validation of FPGA-Based Design

IV&V of Requirement Phase

FPGA development processes produce one or more levels of FPGA requirements.
High level requirements are produced directly through analysis of system requirements
and system architecture.

These high level requirements are further developed during the FPGA design
process, thus producing one or more successive, lower levels of requirements.
Low level requirements are FPGA requirements from which design can be directly
implemented without further information.

Derived requirements are requirements that are not directly traceable to the higher
level of requirements. High level requirements may include derived requirements,
and low level requirements also may include derived requirements. As a part of the
IV&V activity in the requirements phase, the correctness of the allocation of system
requirements to software is checked along with the correctness, completeness, non-
ambiguity, testability and traceability of the requirements

IV&V of Detailed Design Phase

This shall be conducted after the completion of FPGA detailed design by the designers.
FPGA Design Data shall be verified to ensure that it includes High level description,
all major components, Top level functional description, Design Constraints, etc.
IV&V shall verify FPGA Design Data, RTL, Netlist (Synthesis and Simulation),
Testbenches, Simulation Result, Code Quality Check Report.

The important activities carried out by IV&V during detailed design phase includes:

Figure 6. FPGA Development Life Cycle Activities

163

Independent Verification and Validation of FPGA-Based Design

a. Manual walk through of VHDL source code.
b. Verification of Traceability report.
c. Ensuring compliance to IV&V recommended coding rules.
d. Functional Simulation to validate the timing requirements and input and output

signals.
e. Timing Simulations to validate the FPGAs.

IV&V shall also perform the following activities in the detailed design phase.

Code Coverage Analysis

Code coverage analysis is one of the advanced verification approaches used to
comply with the elemental analysis stated in DO-254 that requires all the elements
in a design to be verified. The identified elements for coverage in the HDL code
are branches, instructions, statements, conditions and toggle. IV&V shall ensure
complete code coverage by including additional test cases in the existing testbenches.

Figure 7 shows the snapshot of Code coverage report of the sample project.

Verification through Waveform generation

The FPGA module designs are compiled & verified using Questa Prime tool.
The sample project of FPGA based system VHDL source code is simulated and
synthesized, and then the design results are verified as shown in figure 8. The
waveform thus generated is analyzed for standard delay, delta delay and transport
delays and wave log file (wlf) is generated that provides precise in-simulation and
post-simulation debugging.

Figure 7. Code Coverage Report

164

Independent Verification and Validation of FPGA-Based Design

IV & V of Implementation Phase

This shall be conducted after the completion of FPGA Implementation phase by
the designers. IV&V shall verify Simulation Result report, Timing analysis Report,
Test Report, FPGA Accomplishment Summary and FPGA Configuration Index.

Once the bitstream is ported to the target, IV&V shall carry out the following
activities:

a. Verify IO pin toggle coverage using Testbenches
b. Verify the FPGA Post PnR level (Timing Analysis)
c. Carry out target level testing
d. Ensure that test cases covers all functionalities of FPGA
e. Ensure that test cases are traceable to requirements

CERTIFICATION PROCESS

IV&V shall Participate in Target Testing for FPGA and verify the test cases mentioned
in the Acceptance Test Procedure and ensure that each test case is unique and covers
all functionality of FPGA and all activities listed in IV&V checklist are covered.
IV&V Team constituted by program management carries out the FPGA certification
activities. This involves determining whether the FPGA development complies with
the Plan for FPGA aspects of certification. Certification is accomplished by reviewing
the FPGA Accomplishment Summary and evidence of compliance.

Figure 8. Generation of waveform from Netlist and Testbenches

165

Independent Verification and Validation of FPGA-Based Design

CONCLUSION

Though FPGA based development is becoming increasingly popular, the problems
in FPGA development life cycle are mitigated by following important processes like:

a. Preparation and Release of Planning Documents
b. Requirement specifications with details of Functionality added or deleted or

updated during development.
c. Traceability matrix across documents
d. Configuration Management

This paper describes the Independent Verification and Validation of FPGA-based
Design for airborne electronic applications.

The Independent Verification and Validation of various phases of FPGA
development life cycle like Planning, Requirement, Detailed design and
Implementation phases are used to prove the FPGA design before integrating with
the target. After successful acceptance test and certification, IV&V provides the
required confidence in the FPGA based design to be used in airborne application.

The design, development, verification, validation and certification process
described in this paper for FPGA-based systems is being successfully used in the
Indian defence projects.

ACKNOWLEDGMENT

Much of the work reported in this paper was carried out by the principle author.
The author wishes to acknowledge and thank the comments and assistance of Mr.
Kulbhushan Bhaiji Patariya and Ms. Dhanaselvi D for their valuable contribution.

REFERENCES

CYIENT. (2015). Verification and Validation of Field Programmable Gate Arrays
in the Aerospace and Defence industry (White paper). CYIENT.

Dagan, W. (2011). Practical Use of FPGA and IP in DO-254 Compliant Systems.
Xilinx Inc. Retrieved September 8, 2011, from https://www.xilinx.com/support/
documentation/white_papers/wp403_DO254_IP_Use.pdf

DoT FAA. (2015). Advanced Verification Methods for Safety-Critical Airborne
Electronic Hardware (DOT/FAA/TC-14/41). FAA.

https://www.xilinx.com/support/documentation/white_papers/wp403_DO254_IP_Use.pdf
https://www.xilinx.com/support/documentation/white_papers/wp403_DO254_IP_Use.pdf

166

Independent Verification and Validation of FPGA-Based Design

Keithan, J. P. (2008). The Use of Advanced Verification Methods to Address DO-
254 Design Assurance. In Proceedings of IEEE Aerospace Conference. Big Sky,
MT: IEEE. 10.1109/AERO.2008.4526684

Liu, C. N., & Jou, J. Y. (2001). Efficient coverage analysis metric for HDL design
validation. Proceedings of IEE Proceedings - Computers and Digital Technique,
148(1), 1-6. 10.1049/ip-cdt:20010203

Paul & Stone. (2009). Understanding DO-254 Compliance for the verification of
airborne digital hardware. Synopsys Inc. Retrieved December 2016 from https://pdfs.
semanticscholar.org/f531/310a09377f0e4cb3565eb1ce49fb877a5043.pdf

RTCA DO-254 CAST-33. (2014). Design Assurance Guidance for Airborne
Electronic Hardware, for COTS Intellectual Property Used in Programmable Logic
Devices and Application Specific Integrated Circuits. RTCA.

RTCA/DO-254. (2000). Design Assurance Guidance for Airborne Electronic
Hardware. RTCA.

Tasiran, S., & Keutzer, K. (2001). Coverage metrics for functional validation of
hardware designs. In Proceedings of IEEE Design & Test of Computers (Vol. 18,
pp. 36 – 45). Los Alamitos, CA: IEEE. 10.1109/54.936247

KEY TERMS AND DEFINITIONS

DO-254: Is a design assurance guideline for airborne electronics hardware that
ensures the safe operation of complex electronics hardware to perform its intended
function.

FPGA: Field programmable gate arrays consists of configurable logic blocks
(CLB) that can be programmed, input output interface, and configurable interconnect
that connects these blocks.

IV&V: Independent verification and validation is the set of verification and
validation activities performed by an agency not under the control of the organizational
unit that is developing the software.

VHDL: VHSIC, very high-speed integrated circuit hardware description language,
is a programming language for hardware description language.

https://pdfs.semanticscholar.org/f531/310a09377f0e4cb3565eb1ce49fb877a5043.pdf
https://pdfs.semanticscholar.org/f531/310a09377f0e4cb3565eb1ce49fb877a5043.pdf

Related Readings

To continue IGI Global’s long-standing tradition of advancing innovation through
emerging research, please find below a compiled list of recommended IGI Global
book chapters and journal articles in the areas of crowdsourcing, software engineering,
and probabilistic decision-making. These related readings will provide additional
information and guidance to further enrich your knowledge and assist you with
your own research.

Abramek, E. (2019). Maturity Profiles of Organizations for Social Media. In R. Lenart-
Gansiniec (Ed.), Crowdsourcing and Knowledge Management in Contemporary
Business Environments (pp. 134–145). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-4200-1.ch007

Abu Talib, M. (2018). Towards Sustainable Development Through Open Source
Software in the Arab World. In M. Khosrow-Pour, D.B.A. (Ed.), Optimizing
Contemporary Application and Processes in Open Source Software (pp. 222-242).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-5314-4.ch009

Adesola, A. P., & Olla, G. O. (2018). Unlocking the Unlimited Potentials of Koha
OSS/ILS for Library House-Keeping Functions: A Global View. In M. Khosrow-
Pour, D.B.A. (Ed.), Optimizing Contemporary Application and Processes in Open
Source Software (pp. 124-163). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-
5314-4.ch006

Akber, A., Rizvi, S. S., Khan, M. W., Uddin, V., Hashmani, M. A., & Ahmad, J.
(2019). Dimensions of Robust Security Testing in Global Software Engineering:
A Systematic Review. In M. Rehman, A. Amin, A. Gilal, & M. Hashmani (Eds.),
Human Factors in Global Software Engineering (pp. 252–272). Hershey, PA: IGI
Global. doi:10.4018/978-1-5225-9448-2.ch010

167

Related Readings

Amrollahi, A., & Ahmadi, M. H. (2019). What Motivates the Crowd?: A
Literature Review on Motivations for Crowdsourcing. In R. Lenart-Gansiniec
(Ed.), Crowdsourcing and Knowledge Management in Contemporary Business
Environments (pp. 103–133). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-
4200-1.ch006

Anchitaalagammai, J. V., Samayadurai, K., Murali, S., Padmadevi, S., & Shantha
Lakshmi Revathy, J. (2019). Best Practices: Adopting Security Into the Software
Development Process for IoT Applications. In D. Mala (Ed.), Integrating the Internet
of Things Into Software Engineering Practices (pp. 146–159). Hershey, PA: IGI
Global. doi:10.4018/978-1-5225-7790-4.ch007

Bhavsar, S. A., Pandit, B. Y., & Modi, K. J. (2019). Social Internet of Things. In D.
Mala (Ed.), Integrating the Internet of Things Into Software Engineering Practices
(pp. 199–218). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-7790-4.ch010

Biswas, A., & De, A. K. (2019). Multi-Objective Stochastic Programming in Fuzzy
Environments (pp. 1–420). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-8301-1

Callaghan, C. W. (2017). The Probabilistic Innovation Field of Scientific Enquiry.
International Journal of Sociotechnology and Knowledge Development, 9(2), 56–72.
doi:10.4018/IJSKD.2017040104

Chhabra, D., & Sharma, I. (2018). Role of Attacker Capabilities in Risk Estimation
and Mitigation. In R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing the Role of
Risk Mitigation and Monitoring in Software Development (pp. 244–255). Hershey,
PA: IGI Global. doi:10.4018/978-1-5225-6029-6.ch015

Chitra, P., & Abirami, S. (2019). Smart Pollution Alert System Using Machine
Learning. In D. Mala (Ed.), Integrating the Internet of Things Into Software
Engineering Practices (pp. 219–235). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-7790-4.ch011

Dorsey, M. D., & Raisinghani, M. S. (2019). IT Governance or IT Outsourcing:
Is There a Clear Winner? In A. Mukherjee & A. Krishna (Eds.), Interdisciplinary
Approaches to Information Systems and Software Engineering (pp. 19–32). Hershey,
PA: IGI Global. doi:10.4018/978-1-5225-7784-3.ch002

Dua, R., Sharma, S., & Kumar, R. (2018). Risk Management Metrics. In R. Kumar,
A. Tayal, & S. Kapil (Eds.), Analyzing the Role of Risk Mitigation and Monitoring
in Software Development (pp. 21–33). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-6029-6.ch002

168

Related Readings

Dua, R., Sharma, S., & Sharma, A. (2018). Software Vulnerability Management:
How Intelligence Helps in Mitigating Software Vulnerabilities. In R. Kumar, A.
Tayal, & S. Kapil (Eds.), Analyzing the Role of Risk Mitigation and Monitoring in
Software Development (pp. 34–45). Hershey, PA: IGI Global. doi:10.4018/978-1-
5225-6029-6.ch003

Fatema, K., Syeed, M. M., & Hammouda, I. (2018). Demography of Open Source
Software Prediction Models and Techniques. In M. Khosrow-Pour, D.B.A. (Ed.),
Optimizing Contemporary Application and Processes in Open Source Software (pp.
24-56). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-5314-4.ch002

Ghafele, R., & Gibert, B. (2018). Open Growth: The Economic Impact of Open
Source Software in the USA. In M. Khosrow-Pour, D.B.A. (Ed.), Optimizing
Contemporary Application and Processes in Open Source Software (pp. 164-197).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-5314-4.ch007

Gilal, A. R., Tunio, M. Z., Waqas, A., Almomani, M. A., Khan, S., & Gilal, R.
(2019). Task Assignment and Personality: Crowdsourcing Software Development.
In M. Rehman, A. Amin, A. Gilal, & M. Hashmani (Eds.), Human Factors in Global
Software Engineering (pp. 1–19). Hershey, PA: IGI Global. doi:10.4018/978-1-
5225-9448-2.ch001

Gopikrishnan, S., & Priakanth, P. (2019). Web-Based IoT Application Development.
In D. Mala (Ed.), Integrating the Internet of Things Into Software Engineering
Practices (pp. 62–86). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-7790-4.
ch004

Guendouz, M., Amine, A., & Hamou, R. M. (2018). Open Source Projects
Recommendation on GitHub. In M. Khosrow-Pour, D.B.A. (Ed.), Optimizing
Contemporary Application and Processes in Open Source Software (pp. 86-101).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-5314-4.ch004

Hashmani, M. A., Zaffar, M., & Ejaz, R. (2019). Scenario Based Test Case Generation
Using Activity Diagram and Action Semantics. In M. Rehman, A. Amin, A. Gilal, &
M. Hashmani (Eds.), Human Factors in Global Software Engineering (pp. 297–321).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-9448-2.ch012

Jagannathan, J., & Anitha Elavarasi, S. (2019). Current Trends: Machine Learning
and AI in IoT. In D. Mala (Ed.), Integrating the Internet of Things Into Software
Engineering Practices (pp. 181–198). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-7790-4.ch009

169

Related Readings

Jasmine, K. S. (2019). A New Process Model for IoT-Based Software Engineering. In
D. Mala (Ed.), Integrating the Internet of Things Into Software Engineering Practices
(pp. 1–13). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-7790-4.ch001

Juma, M. F., Fue, K. G., Barakabitze, A. A., Nicodemus, N., Magesa, M. M., Kilima,
F. T., & Sanga, C. A. (2017). Understanding Crowdsourcing of Agricultural Market
Information in a Pilot Study: Promises, Problems and Possibilities (3Ps). International
Journal of Technology Diffusion, 8(4), 1–16. doi:10.4018/IJTD.2017100101

Karthick, G. S., & Pankajavalli, P. B. (2019). Internet of Things Testing Framework,
Automation, Challenges, Solutions and Practices: A Connected Approach for IoT
Applications. In D. Mala (Ed.), Integrating the Internet of Things Into Software
Engineering Practices (pp. 87–124). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-7790-4.ch005

Kashyap, R. (2019). Big Data and Global Software Engineering. In M. Rehman,
A. Amin, A. Gilal, & M. Hashmani (Eds.), Human Factors in Global Software
Engineering (pp. 131–163). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-
9448-2.ch006

Kashyap, R. (2019). Systematic Model for Decision Support System. In A. Mukherjee
& A. Krishna (Eds.), Interdisciplinary Approaches to Information Systems and
Software Engineering (pp. 62–98). Hershey, PA: IGI Global. doi:10.4018/978-1-
5225-7784-3.ch004

Kaur, J., & Kaur, R. (2018). Estimating Risks Related to Extended Enterprise
Systems (EES). In R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing the Role of
Risk Mitigation and Monitoring in Software Development (pp. 118–135). Hershey,
PA: IGI Global. doi:10.4018/978-1-5225-6029-6.ch008

Kaur, Y., & Singh, S. (2018). Risk Mitigation Planning, Implementation, and Progress
Monitoring: Risk Mitigation. In R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing
the Role of Risk Mitigation and Monitoring in Software Development (pp. 1–20).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-6029-6.ch001

Kavitha, S., Anchitaalagammai, J. V., Nirmala, S., & Murali, S. (2019). Current
Trends in Integrating the Internet of Things Into Software Engineering Practices. In
D. Mala (Ed.), Integrating the Internet of Things Into Software Engineering Practices
(pp. 14–35). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-7790-4.ch002

Köse, U. (2018). Optimization Scenarios for Open Source Software Used in
E-Learning Activities. In M. Khosrow-Pour, D.B.A. (Ed.), Optimizing Contemporary
Application and Processes in Open Source Software (pp. 102-123). Hershey, PA:
IGI Global. doi:10.4018/978-1-5225-5314-4.ch005

170

Related Readings

Kumar, A., Singh, A. K., Awasthi, N., & Singh, V. (2019). Natural Hazard: Tropical
Cyclone – Evaluation of HE and IMSRA Over CS KYANT. In A. Mukherjee & A.
Krishna (Eds.), Interdisciplinary Approaches to Information Systems and Software
Engineering (pp. 124–141). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-
7784-3.ch006

Kumar, N., Singh, S. K., Reddy, G. P., & Naitam, R. K. (2019). Developing Logistic
Regression Models to Identify Salt-Affected Soils Using Optical Remote Sensing.
In A. Mukherjee & A. Krishna (Eds.), Interdisciplinary Approaches to Information
Systems and Software Engineering (pp. 233–256). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-7784-3.ch010

Kumar, U., Kumar, N., Mishra, V. N., & Jena, R. K. (2019). Soil Quality Assessment
Using Analytic Hierarchy Process (AHP): A Case Study. In A. Mukherjee & A.
Krishna (Eds.), Interdisciplinary Approaches to Information Systems and Software
Engineering (pp. 1–18). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-7784-
3.ch001

Lal, S., Sardana, N., & Sureka, A. (2018). Logging Analysis and Prediction in Open
Source Java Project. In M. Khosrow-Pour, D.B.A. (Ed.), Optimizing Contemporary
Application and Processes in Open Source Software (pp. 57-85). Hershey, PA: IGI
Global. doi:10.4018/978-1-5225-5314-4.ch003

Latif, A. M., Khan, K. M., & Duc, A. N. (2019). Software Cost Estimation and
Capability Maturity Model in Context of Global Software Engineering. In M.
Rehman, A. Amin, A. Gilal, & M. Hashmani (Eds.), Human Factors in Global
Software Engineering (pp. 273–296). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-9448-2.ch011

Lenart-Gansiniec, R. A. (2019). Crowdsourcing as an Example of Public Management
Fashion. In R. Lenart-Gansiniec (Ed.), Crowdsourcing and Knowledge Management
in Contemporary Business Environments (pp. 1–19). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-4200-1.ch001

Lukyanenko, R., & Parsons, J. (2018). Beyond Micro-Tasks: Research Opportunities
in Observational Crowdsourcing. Journal of Database Management, 29(1), 1–22.
doi:10.4018/JDM.2018010101

Mala, D. (2019). IoT Functional Testing Using UML Use Case Diagrams: IoT
in Testing. In D. Mala (Ed.), Integrating the Internet of Things Into Software
Engineering Practices (pp. 125–145). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-7790-4.ch006

171

Related Readings

Mansoor, M., Khan, M. W., Rizvi, S. S., Hashmani, M. A., & Zubair, M. (2019).
Adaptation of Modern Agile Practices in Global Software Engineering. In M.
Rehman, A. Amin, A. Gilal, & M. Hashmani (Eds.), Human Factors in Global
Software Engineering (pp. 164–187). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-9448-2.ch007

Memon, M. S. (2019). Techniques and Trends Towards Various Dimensions of
Robust Security Testing in Global Software Engineering. In M. Rehman, A. Amin,
A. Gilal, & M. Hashmani (Eds.), Human Factors in Global Software Engineering
(pp. 219–251). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-9448-2.ch009

Mookherjee, A., Mulay, P., Joshi, R., Prajapati, P. S., Johari, S., & Prajapati, S. S.
(2019). Sentilyser: Embedding Voice Markers in Homeopathy Treatments. In A.
Mukherjee & A. Krishna (Eds.), Interdisciplinary Approaches to Information Systems
and Software Engineering (pp. 181–206). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-7784-3.ch008

Mukherjee, S., Bhattacharjee, A. K., & Deyasi, A. (2019). Project Teamwork
Assessment and Success Rate Prediction Through Meta-Heuristic Algorithms. In A.
Mukherjee & A. Krishna (Eds.), Interdisciplinary Approaches to Information Systems
and Software Engineering (pp. 33–61). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-7784-3.ch003

Nandy, A. (2019). Identification of Tectonic Activity and Fault Mechanism From
Morphological Signatures. In A. Mukherjee & A. Krishna (Eds.), Interdisciplinary
Approaches to Information Systems and Software Engineering (pp. 99–123). Hershey,
PA: IGI Global. doi:10.4018/978-1-5225-7784-3.ch005

Omar, M., Rejab, M. M., & Ahmad, M. (2019). The Effect of Team Work Quality
on Team Performance in Global Software Engineering. In M. Rehman, A. Amin,
A. Gilal, & M. Hashmani (Eds.), Human Factors in Global Software Engineering
(pp. 322–331). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-9448-2.ch013

Onuchowska, A., & de Vreede, G. (2017). Disruption and Deception in
Crowdsourcing. International Journal of e-Collaboration, 13(4), 23–41. doi:10.4018/
IJeC.2017100102

Papadopoulou, C., & Giaoutzi, M. (2017). Crowdsourcing and Living Labs in Support
of Smart Cities’ Development. International Journal of E-Planning Research, 6(2),
22–38. doi:10.4018/IJEPR.2017040102

172

Related Readings

Patnaik, K. S., & Snigdh, I. (2019). Modelling and Designing of IoT Systems Using
UML Diagrams: An Introduction. In D. Mala (Ed.), Integrating the Internet of
Things Into Software Engineering Practices (pp. 36–61). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-7790-4.ch003

Pawar, L., Kumar, R., & Sharma, A. (2018). Risks Analysis and Mitigation Technique
in EDA Sector: VLSI Supply Chain. In R. Kumar, A. Tayal, & S. Kapil (Eds.),
Analyzing the Role of Risk Mitigation and Monitoring in Software Development
(pp. 256–265). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-6029-6.ch016

Persaud, A., & O’Brien, S. (2017). Quality and Acceptance of Crowdsourced
Translation of Web Content. International Journal of Technology and Human
Interaction, 13(1), 100–115. doi:10.4018/IJTHI.2017010106

Phung, V. D., & Hawryszkiewycz, I. (2019). Knowledge Sharing and Innovative
Work Behavior: An Extension of Social Cognitive Theory. In R. Lenart-Gansiniec
(Ed.), Crowdsourcing and Knowledge Management in Contemporary Business
Environments (pp. 71–102). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-
4200-1.ch005

Pohulak-Żołędowska, E. (2019). Crowdsourcing in Innovation Activity of
Enterprises on an Example of Pharmaceutical Industry. In R. Lenart-Gansiniec
(Ed.), Crowdsourcing and Knowledge Management in Contemporary Business
Environments (pp. 58–70). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-
4200-1.ch004

Pramanik, P. K., Pal, S., Pareek, G., Dutta, S., & Choudhury, P. (2019). Crowd
Computing: The Computing Revolution. In R. Lenart-Gansiniec (Ed.), Crowdsourcing
and Knowledge Management in Contemporary Business Environments (pp. 166–198).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-4200-1.ch009

Priakanth, P., & Gopikrishnan, S. (2019). Machine Learning Techniques for Internet
of Things. In D. Mala (Ed.), Integrating the Internet of Things Into Software
Engineering Practices (pp. 160–180). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-7790-4.ch008

Priyadarshi, A. (2019). Segmentation of Different Tissues of Brain From MR
Image. In A. Mukherjee & A. Krishna (Eds.), Interdisciplinary Approaches to
Information Systems and Software Engineering (pp. 142–180). Hershey, PA: IGI
Global. doi:10.4018/978-1-5225-7784-3.ch007

173

Related Readings

Rath, M. (2019). Intelligent Information System for Academic Institutions: Using
Big Data Analytic Approach. In A. Mukherjee & A. Krishna (Eds.), Interdisciplinary
Approaches to Information Systems and Software Engineering (pp. 207–232).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-7784-3.ch009

Realyvásquez, A., Maldonado-Macías, A. A., & Hernández-Escobedo, G. (2019).
Software Development for Ergonomic Compatibility Assessment of Advanced
Manufacturing Technology. In M. Rehman, A. Amin, A. Gilal, & M. Hashmani
(Eds.), Human Factors in Global Software Engineering (pp. 50–83). Hershey, PA:
IGI Global. doi:10.4018/978-1-5225-9448-2.ch003

Saini, M., & Chahal, K. K. (2018). A Systematic Review of Attributes and Techniques
for Open Source Software Evolution Analysis. In M. Khosrow-Pour, D.B.A. (Ed.),
Optimizing Contemporary Application and Processes in Open Source Software (pp.
1-23). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-5314-4.ch001

Sanga, C. A., Lyimo, N. N., Fue, K. G., Telemala, J. P., Kilima, F., & Kipanyula,
M. J. (2019). Piloting Crowdsourcing Platform for Monitoring and Evaluation of
Projects: Harnessing Massive Open Online Deliberation (MOOD). In R. Lenart-
Gansiniec (Ed.), Crowdsourcing and Knowledge Management in Contemporary
Business Environments (pp. 199–217). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-4200-1.ch010

Sedkaoui, S. (2019). Data Analytics Supporting Knowledge Acquisition. In R. Lenart-
Gansiniec (Ed.), Crowdsourcing and Knowledge Management in Contemporary
Business Environments (pp. 146–165). Hershey, PA: IGI Global. doi:10.4018/978-
1-5225-4200-1.ch008

Sen, K., & Ghosh, K. (2018). Designing Effective Crowdsourcing Systems for the
Healthcare Industry. International Journal of Public Health Management and Ethics,
3(2), 57–62. doi:10.4018/IJPHME.2018070104

Sen, K., & Ghosh, K. (2018). Incorporating Global Medical Knowledge to Solve
Healthcare Problems: A Framework for a Crowdsourcing System. International
Journal of Healthcare Information Systems and Informatics, 13(1), 1–14. doi:10.4018/
IJHISI.2018010101

Sharma, A., Pal, V., Ojha, N., & Bajaj, R. (2018). Risks Assessment in Designing
Phase: Its Impacts and Issues. In R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing
the Role of Risk Mitigation and Monitoring in Software Development (pp. 46–60).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-6029-6.ch004

174

Related Readings

Sharma, A., Pawar, L., & Kaur, M. (2018). Development and Enhancing of Software
and Programming Products by Client Information Administration in Market. In
R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing the Role of Risk Mitigation and
Monitoring in Software Development (pp. 150–187). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-6029-6.ch010

Sharma, A. P., & Sharma, S. (2018). Risk Management in Web Development. In
R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing the Role of Risk Mitigation and
Monitoring in Software Development (pp. 188–203). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-6029-6.ch011

Sharma, I., & Chhabra, D. (2018). Meta-Heuristic Approach for Software Project
Risk Schedule Analysis. In R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing the
Role of Risk Mitigation and Monitoring in Software Development (pp. 136–149).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-6029-6.ch009

Sharma, S., & Dua, R. (2018). Gamification: An Effectual Learning Application for
SE. In R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing the Role of Risk Mitigation
and Monitoring in Software Development (pp. 219–233). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-6029-6.ch013

Shilohu Rao, N. J. P., Chaudhary, R. S., & Goswami, D. (2019). Knowledge
Management System for Governance: Transformational Approach Creating
Knowledge as Product for Governance. In R. Lenart-Gansiniec (Ed.), Crowdsourcing
and Knowledge Management in Contemporary Business Environments (pp. 20–38).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-4200-1.ch002

Sidhu, A. K., & Sehra, S. K. (2018). Use of Software Metrics to Improve the Quality
of Software Projects Using Regression Testing. In R. Kumar, A. Tayal, & S. Kapil
(Eds.), Analyzing the Role of Risk Mitigation and Monitoring in Software Development
(pp. 204–218). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-6029-6.ch012

Srao, B. K., Rai, H. S., & Mann, K. S. (2018). Why India Should Make It Compulsory
to Go for BIM. In R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing the Role of Risk
Mitigation and Monitoring in Software Development (pp. 266–277). Hershey, PA:
IGI Global. doi:10.4018/978-1-5225-6029-6.ch017

Srivastava, R. (2018). An Analysis on Risk Management and Risk in the Software
Projects. In R. Kumar, A. Tayal, & S. Kapil (Eds.), Analyzing the Role of Risk
Mitigation and Monitoring in Software Development (pp. 83–99). Hershey, PA: IGI
Global. doi:10.4018/978-1-5225-6029-6.ch006

175

Related Readings

Srivastava, R., Verma, S. K., & Thukral, V. (2018). A New Approach for Reinforcement
of Project DEMATEL-FMCDM-TODIM Fuzzy Approach. In R. Kumar, A. Tayal,
& S. Kapil (Eds.), Analyzing the Role of Risk Mitigation and Monitoring in Software
Development (pp. 234–243). Hershey, PA: IGI Global. doi:10.4018/978-1-5225-
6029-6.ch014

Tolu, H. (2018). Strategy of Good Software Governance: FLOSS in the State of
Turkey. In M. Khosrow-Pour, D.B.A. (Ed.), Optimizing Contemporary Application
and Processes in Open Source Software (pp. 198-221). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-5314-4.ch008

Trad, A. (2019). The Business Transformation Framework and Enterprise Architecture
Framework for Managers in Business Innovation: Knowledge Management in Global
Software Engineering (KMGSE). In M. Rehman, A. Amin, A. Gilal, & M. Hashmani
(Eds.), Human Factors in Global Software Engineering (pp. 20–49). Hershey, PA:
IGI Global. doi:10.4018/978-1-5225-9448-2.ch002

Vasanthapriyan, S. (2019). Knowledge Management Initiatives in Agile Software
Development: A Literature Review. In M. Rehman, A. Amin, A. Gilal, & M.
Hashmani (Eds.), Human Factors in Global Software Engineering (pp. 109–130).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-9448-2.ch005

Vasanthapriyan, S. (2019). Knowledge Sharing Initiatives in Software Companies: A
Mapping Study. In M. Rehman, A. Amin, A. Gilal, & M. Hashmani (Eds.), Human
Factors in Global Software Engineering (pp. 84–108). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-9448-2.ch004

Vasanthapriyan, S. (2019). Study of Employee Innovative Behavior in Sri Lankan
Software Companies. In M. Rehman, A. Amin, A. Gilal, & M. Hashmani (Eds.),
Human Factors in Global Software Engineering (pp. 188–218). Hershey, PA: IGI
Global. doi:10.4018/978-1-5225-9448-2.ch008

Zaei, M. E. (2019). Knowledge Management in the Non-Governmental Organizations
Context. In R. Lenart-Gansiniec (Ed.), Crowdsourcing and Knowledge Management
in Contemporary Business Environments (pp. 39–57). Hershey, PA: IGI Global.
doi:10.4018/978-1-5225-4200-1.ch003

Ziouvelou, X., & McGroarty, F. (2018). A Business Model Framework for Crowd-
Driven IoT Ecosystems. International Journal of Social Ecology and Sustainable
Development, 9(3), 14–33. doi:10.4018/IJSESD.2018070102

Zykov, S. V., Gromoff, A., & Kazantsev, N. S. (2019). Software Engineering for
Enterprise System Agility: Emerging Research and Opportunities (pp. 1–218).
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-5589-6

176

About the Contributors

Varun Gupta received his Ph.D & Master of Technology (By Research) in
Computer Science & Engineering from Uttarakhand Technical University and
Bachelor of Technology (Hon’s) from Himachal Pradesh University respectively.
Dr. Varun Gupta is working with Universidade da Beira Interior, Portugal. He is
also Honorary Research Fellow of the University of Salford, Manchester, United
Kingdom. He is Associate Editor of IEEE Access (Published by IEEE, SCIE Indexed
with 4.098 impact factor), Associate Editor of International Journal of Computer
Aided Engineering & Technology (Published by Inderscience Publishers, Scopus
indexed), Associate Editor of IEEE Software Blog, Associate editor of Journal of
Cases on Information Technology (JCIT) (Published by IGI Global and Indexed by
Emerging Sources Citation Index (ESCI) & SCOPUS) and former Editorial Team
Member of British Journal of Educational Technology (BJET) (Published by Wiley
publishers, SCIE Indexed with 2.729 impact factor). He had been Guest Editor of
many special issues published/ongoing with leading International Journals and Edi-
tor of many edited books to be published by IGI Global and Taylor & Francis (CRC
Press). He had organised many special session with Scopus Indexed International
Conferences world wide, proceedings of which were published by Springer, IEEE,
Elsevier etc. He is serving as reviewer of IEEE Transactions on Emerging Topics
in Computational Intelligence. He had guided One Doctoral (Ph.D.), Four Masters
(M.Tech) and 52 Bachelor (B.Tech.) Projects in interdisciplinary areas. His area of
interest is Evolutionary Software Engineering (focusing on Requirement manage-
ment, Global developments, Software Testing) for multinational firms and Start-ups.

* * *

177

About the Contributors

Utkarsh Agrawal completed his B. Tech. in Computer Science from Amity
University in Noida, Uttar Pradesh, India.

Priyanka Chandani is a Research Scholar at Jaypee Institute of Information
Technology, India. She is currently pursuing her Ph.D from the same. She also
holds a Masters of Technology and a Bachelor of Technology degree in Information
Technology. She has also worked in Infosys Technologies and TechMahindra. Her
research interest includes Software Quality, Software Testing and Requirements
Engineering.

D. S. Chauhan is the Vice Chancellor of GLA University Mathura, President
AIU, New Delhi, India.

Dhanaselvi D. is a Project Engineer (IV&V) with Aeronautical Development
Agency, Bangalore, Ministry of Defence, Government of India.

Zayaraz Godandapani is currently working as Professor in the Department of
Computer Science and Engineering, Pondicherry Engineering College. His areas of
interests include Software Engineering and Information Security. He completed his
B.Tech., M.Tech. and PhD in computer Science and engineering from Pondicherry
University. He has 28 years of teaching experience at all levels namely industry,
diploma, under graduate, post graduate and research. He has officiated as Head
of MCA department and currently is the Associate Dean (Student Affairs). To his
credit he has published more than hundred research papers in reputed International
Journals and Conferences. He has authored a book titled Quantitative Evaluation
of Software Architectures sold by leading book sellers. He has been the advisory
member, and reviewer for several International Conferences. He has been the
Guest editor of Inderscience special issue journal on software engineering. Under
his guidance, 7 Scholars have successfully completed their PhD and 4 students are
pursuing their PhD.

Chetna Gupta is Associate Professor at Jaypee Institute of Information Tech-
nology, Noida, India. She holds Ph.D, Masters of Technology and a Bachelor of
Engineering degree in Computer Science and Engineering. Her area of research is
software engineering - requirement engineering, software testing, software project
management and data mining, with emphasis on software testing, software re-us-
ability and analysis. Her research to date has involved program analysis to compute
and provide the kinds of analysis information about a program, such as data-flow,
change impact sets, classification of data using software engineering concepts and
data mining, predicting software components for reuse - needed for software engi-
neering tasks for estimating impact analysis, regression testing.

178

About the Contributors

Shruti Gupta is working as Assistant Professor in Amity University in the dept
of Computer science and Engineering. My interest is to provide the best result to
serve the mankind and by taking care of environment.

Astha Kumari is a Final year B.Tech student of Department of CSE/IT at Jaypee
Institute of Information Technology.

Vimaladevi M is currently a research scholar in the Department of Computer Sci-
ence and Engineering, Pondicherry Engineering College. She completed her B.Tech.
and M.Tech. in Computer Science and Engineering from Pondicherry University.
She has 13 years of work experience in both industry and academics. She had been
working as Project Lead in L&T Infotech for Hitachi client. She had executed various
projects and involved in all the phases of software life cycle including planning and
estimation, design, development and testing. She is experienced in executing projects
in various process models like Waterfall, V-model and Agile. She was involved in the
quality analysis and assessment of the software, client communication and received
customer appreciation. Her areas of interest include software Engineering, Project
Estimation and Project management and Process Models.

Kamalendu Pal is with the Department of Computer Science, School of Math-
ematics, Computer Science and Engineering, City, University London. Kamalendu
received his BSc (Hons) degree in Physics from Calcutta University, India, Post-
graduate Diploma in Computer Science from Pune, India; MSc degree in Software
Systems Technology from Sheffield University, Postgraduate Diploma in Artificial
Intelligence from Kingston University, MPhil degree in Computer Science from Uni-
versity College London, and MBA degree from University of Hull, United Kingdom.
He has published dozens of research papers in international journals and conferences.
His research interests include knowledge-based systems, decision support systems,
computer integrated design, software engineering, and service-oriented computing.
He is a member of the British Computer Society, the Institution of Engineering and
Technology, and the IEEE Computer Society.

Rekha R. is a scientist and Technology Director (IV&V) with Aeronautical
Development Agency, Bangalore, Ministry of Defence, Government of India.

Surbhi Singhal is a Final year B.Tech student of Department of CSE/IT at
Jaypee Institute of Information Technology.

179

About the Contributors

Sudha Srinivasan is a scientist with Aeronautical Development Agency, Banga-
lore, Ministry of Defence, Government of India. She has over 20 years of experience
in the field of software engineering.

Srinivasan Vaidyanathan has been an accomplished and results-driven de-
livery director in IT industry and has over 24 years of progressive, managerial
and leadership experience in high visibility and multifaceted roles in IT majors,
Cognizant and Capgemini. He had led large-scale software deliveries for several
flagship customers that cut across industrial sectors. He has demonstrated success
of delivery management, business development, Resource Planning, Financials, HR
and Quality Management in his professional domain. He has hands-on experience
in leading Knowledge Management at various capacities of his corporate tenure. He
has proven abilities to implement standards, procedures, and processes that improve
software delivery quality. He has a PhD in Management and his PhD thesis is in the
area of Knowledge Sharing and Creation through Social Media. He has published
book chapters and research papers in reputed journals and publications.

180

Index

A
Airborne Embedded Systems 35-36, 38,

46, 48-49, 153, 161
aircraft subsystems 35-36, 40, 43
Anti-fragility 109, 119, 125

C
Cloud computing 23, 33
Code Smells 132
Computing and Decision Making 94, 146
Construction Management 94, 146-147
Crowdsourcing 1-7, 19-22, 120, 126
Crowdsourcing Software Engineering 22

D
data mining 23, 31
Decision Making 4, 7, 24, 27, 32, 63, 75,

77, 80, 83, 92, 94, 114, 146
DO-254 154-155, 161, 163, 165-166

E
Extreme programming 81-86, 88, 90-93

F
Fault Injection 119, 131-132
Field Programmable Gate Arrays (FPGA)

153-154
Financial Estimation 146

G
global software development 81-82, 90, 92

H
Human Computer Interaction 134
Human Intelligence Tasks 1-2, 4, 22

I
Impact Analysis 42, 44

K
knowledge extraction 23, 28

M
machine learning 23, 25, 29, 56, 62, 75
Markov Decision Theory 1, 21-22
module level testing 35, 38-41, 46, 48
Multi-Objective Optimization 122, 132

N
Non-Functional Requirement 132

P
practitioners 5, 24, 61, 81-83, 87-90, 92

181

Index

Q
Quality Attributes 62, 76, 109, 111-112,

115, 117, 121-123, 127, 129

R
Refactoring 86, 109, 112, 121-131
regular expressions 42-43
requirement based testing 35-38, 42, 45,

47-48
requirement engineering 51, 53, 56, 67,

69-70, 77
requirement reuse 23-24, 26
Risk Assessment 52-57, 61-63, 66, 68-69,

71-73, 75-79
Risk Management 51-53, 56, 62, 66-80,

93, 117

S
Scenario-Based Evaluation 132
Search Based Software Engineering 123
Software Ageing 132
Software Architecture Evaluation 127, 131

Software Development 1, 3-4, 6-8, 14,
20, 22, 35-39, 47, 50-52, 56, 61-63,
67, 69, 71-74, 77, 79, 81-85, 90-93,
110-111, 114, 117-118, 120, 125-126,
128-129, 161

Software Metrics 62-63, 72, 115-116, 123,
126, 129, 132

Software Process Model 1, 3, 22
Software Process Modelling 21
Software Prototyping 134
Software Resilience 128
Software Structural Characteristics 133
software system testing 36, 38, 40-42
structural coverage 38, 40, 45-46

T
test planning 35, 38

U
User Interface Designing 134-135, 138

182

	Title Page
	Copyright Page
	Book Series
	Table of Contents
	Foreword
	Preface
	Acknowledgment
	Chapter 1: Markov Decision Theory-Based Crowdsourcing Software Process Model
	Chapter 2: I-Way
	Chapter 3: Requirement-Based Test Approach and Traceability for High-Integrity Airborne Embedded Systems
	Chapter 4: A Systematic Literature Review on Risk Assessment and Mitigation Approaches in Requirement Engineering
	Chapter 5: Agile Team Measurement to Review the Performance in Global Software Development
	Chapter 6: Improving Construction Management Through Advanced Computing and Decision Making
	Chapter 7: An Investigation on Quality Perspective of Software Functional Artifacts
	Chapter 8: An Analysis of UI/UX Designing With Software Prototyping Tools
	Chapter 9: Improving Financial Estimation in Construction Management Through Advanced Computing and Decision Making
	Chapter 10: Independent Verification and Validation of FPGA-Based Design for Airborne Electronic Applications
	Related Readings
	About the Contributors
	Index

