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  Preface 

 A great deal has happened since the preface to the fifth edition of  Aerodynamics for Engi-
neers  was written early in 2008. During the spring and early summer of 2008, John Bertin and 

I were busy checking chapter proofs for “The Book” (as he liked to call it). John was at home 

in Houston and teaching at his beloved Rice University (you may have noticed that covers 

of the various editions of  Aerodynamics for Engineers  were usually blue and light gray, the 

colors of Rice University). I was a visiting researcher at the Institute of Aerodynamics and 

Flow Technology at The German Aerospace Center (DLR) in Braunschweig. John had two 

major struggles in his life at the time: he was working through the last stages of the illness that 

would take his wife, Ruth, from him. He had also been diagnosed with pancreatic cancer, and 

was dealing with doctors, treatments, and hospitals. We spoke on the phone often about the 

various challenges he was facing, both with his wife’s and his own health. Through the support 

of his family, as well as his desire to finish the fifth edition, he made it through the summer 

of 2008 in reasonably good shape. Copies of the book were shipped to us in July 2008, and 

he was very glad that we had finished the undertaking we had started so many years earlier.  

 Unfortunately, John’s pancreatic cancer took a turn for the worse in late summer 

of 2008, and he passed away on October 11, 2008. A large number of former co-workers 

from NASA and various universities, as well as his family and friends, attended his funeral 

later that month, and we all knew that a very special person had passed from our ranks.  

 One of the things that John and I talked about during his last months of life was 

his desire for  Aerodynamics for Engineers  to continue to grow and evolve, even if he 

was not around to help with that task. I cannot help but think that he asked me to be 

his co-author for the fifth edition for this purpose. So, in spite of the fact that John is no 

longer with us, his spirit and excitement for learning will continue to live.  

 So, there were many goals for writing the sixth edition of  Aerodynamics for Engi-
neers : (1) to continue the legacy of Professor Bertin; (2) to rewrite many of the sections 

that provide readers with a motivation for studying aerodynamics in a more casual, en-

joyable, and readable manner; (3) to update the technical innovations and advancements 

that have taken place in aerodynamics since the writing of the previous edition; and (4) to 

add aerodynamics concept boxes throughout the book to enhance the interest of readers. 

 To help achieve these goals, I provided readers with new sections, listed under What’s 

New to This Edition on the next page.   In addition, there are numerous new figures contain-

ing updated information, as well as numerous, additional up-to-date references throughout 

the book. Finally, numerous new example problems have been added throughout the book 

to enhance the learning of aerodynamics by the reader, and answers to selected problems 

have been added to help students know when they have done the problems correctly. 

Users of the fifth edition of the book will find that all material included in that edition 

is still included in the sixth edition, with the new material added throughout the book to 

bring a real-world flavor to the concepts being developed. I hope that readers will find the 

inclusion of all of this additional material helpful and informative. 

 Finally, no major revision of a book like  Aerodynamics for Engineers  can take place with-

out the help of many people. I am especially indebted to everyone who aided in collecting new 



materials for the sixth edition. I want to especially thank Preston A. Henne and Robert van’t 

Riet of McDonnell Douglas; Eli Reshotko of Case Western Reserve University; David W. Hall 

of DHC Engineering; Stuart Rogers of NASA Ames Research Center; David McDaniel of the 

University of Alabama, Birmingham; Hans Hornung of Caltech; Andreas Schütte, Thomas 

Streit, and Martin Hepperle of DLR; Patrick Champigny of ONERA; Aaron Byerley of the 

U.S. Air Force Academy; John McMasters of The Boeing Company; and William H. Mason 

of Virginia Tech. In addition, I am very grateful for the excellent suggestions and comments 

made by the reviewers of the sixth edition: Roger L. Simpson of Virginia Tech, Tej R. Gupta 

of Embry-Riddle Aeronautical University, Serhat Hosder of Missouri University of Science 

and Technology, and Lisa Grega of The College of New Jersey. The editorial and production 

staff at Pearson has been outstanding in their support of this new edition: I greatly appreciate 

their efforts. I am also extremely grateful to the many students at the U.S. Air Force Academy 

who have pointed out errors that they found in the previous edition. I hope that everyone 

who reads this book will find it useful and educational. 

The publishers would like to thank Ramesh Kolluru of BMS College of Engineering, 

Bangalore for reviewing the content of the International Edition. 

  WHAT’S NEW TO THIS EDITION? 

    •   Aerodynamics concept boxes added throughout the book to bring real-world ex-

amples and applications to light as new material is being learned  

   •   Chapter objectives to give readers a better understanding of the goal of each chap-

ter and what concepts they should understand after reading through the chapter  

   •   Significant re-writing of material and derivations from previous editions to im-

prove clarity and usefulness  

   •   Extra example problems to improve understanding of how to apply concepts to 

useful applications  

   •   Significant new sections added on the topics of: importance of aerodynamics to 

aircraft performance, a description of the airplane, the irrotational flow condition, 

applications of potential flow theory to aerodynamics, expanded description of 

airfoil geometry and nomenclature, high lift military airfoils, the effect of taper 

ratio on wing efficiency, induced drag estimation, converging-diverging nozzles, 

shock/shock interactions, subsonic compressible transformations, additional com-

pressibility corrections, critical Mach number, drag divergence Mach number, 

base drag, and the distinguishing characteristics of hypersonic flow   

   •   Updated figures and photographs to help readers see concepts from real examples 

and on real aircraft  

   •   Answers to selected problems   

 Enjoy your study of aerodynamics! 

 INSTRUCTORS RESOURCES

Resources to accompany the text are located on the Instructor Resource Center web-

site at  www.pearsoninternationaleditions.com/cummings . If you are in need of a login 

and password for this site, please contact your local Pearson representative. Resources 

include; Instructor Solutions Manual, Matlab files for several example problems and 

lecture slides for most chapters. 

   RUSSELL M. CUMMINGS 

  Larkspur, Colorado        
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    1   WHY STUDY 

AERODYNAMICS? 

     Chapter Objectives 

  •   Learn why aerodynamics is important in determining the performance 
characteristics of airplanes  

  •   Develop a basic understanding of fluid properties such as density, temperature, 
pressure, and viscosity and know how to calculate these properties for a perfect 
gas  

  •   Learn about the atmosphere and why we use a “standard atmosphere” model 
to perform aerodynamic calculations; learn how to perform calculations of fluid 
properties in the atmosphere  

  •   Learn the basic components of an airplane and what they are used for   

  The study of aerodynamics is a challenging and rewarding discipline within aeronautics 

since the ability of an airplane to perform (how high, how fast, and how far an airplane 

will fly, such as the F-15E shown in  Fig.   1.1   ) is determined largely by the aerodynamics 

of the vehicle. However, determining the aerodynamics of a vehicle (finding the lift 

and drag) is one of the most difficult things you will ever do in engineering, requiring 

complex theories, experiments in wind tunnels, and simulations using modern high-

speed computers. Doing any of these things is a challenge, but a challenge well worth 

the effort for those wanting to better understand aircraft flight. 
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  In order to prepare you for the challenge of learning about aerodynamics, we 

will first look at some interesting aspects of aircraft performance, and how we could 

determine if one airplane will outperform another airplane in a dog fight. Hopefully 

this will lead us to the point where we realize that aerodynamics is one of the prime 

characteristics of an airplane, which will determine the performance of the vehicle. 

 Of course, aerodynamics also requires that we understand some basic informa-

tion about fluid dynamics, since physical materials known as fluids are made up of 

both liquids and gasses, and air is a gas. So some basic concepts about fluid properties 

and how we can describe a fluid will also be necessary. Since airplanes fly in the at-

mosphere, we will also develop a standard way to describe the properties of air in the 

atmosphere. And finally, we will discuss some of the basic geometry of an airplane, 

so we will have a common nomenclature for discussing how airplanes fly and for the 

aerodynamics of the various parts of an airplane. All of these pieces of background 

information will help us get started on the path to understanding aerodynamics, which 

is the goal of this  book    .   

      1.1  AERODYNAMICS AND THE ENERGY-
MANEUVERABILITY TECHNIQUE 

 Early in the First World War, fighter pilots (at least those good enough to survive 

their first engagement with the enemy) quickly developed tactics that were to serve 

them throughout the years. German aces, such as Oswald Boelcke and Max Immelman, 

 Figure 1.1         Aerodynamics is required for all components of the 

F-15E in flight, including the wing, fuselage, horizontal and verti-

cal tails, stores, and how they interact with each other (U.S. Air 

Force photo by Staff Sgt. Samuel Rogers).   
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realized that if they initiated combat starting from an altitude that was greater than that 

of their adversary, they could dive upon their foe, trading potential energy (height) for 

kinetic energy (velocity). Using the greater speed of his airplane to close from the rear 

(i.e., from the target aircraft’s “six o’clock position”), the pilot of the attacking aircraft 

could dictate the conditions of the initial phase of the air-to-air combat. Starting from a 

superior altitude and converting potential energy to kinetic energy, the attacker might 

be able to destroy his opponent on the first pass. These tactics were refined, as the 

successful fighter aces gained a better understanding of the nuances of air combat by 

building an empirical database through successful air-to-air battles. A language grew 

up to codify these tactics: “Check your six.” 

 This data base of tactics learned from successful combat provided an empirical 

understanding of factors that are important to aerial combat. Clearly, the sum of the 

potential energy plus the kinetic energy (i.e., the total energy) of the aircraft is one of 

the factors. 

  EXAMPLE 1.1:    The total energy 

 Compare the total energy of a B-52 (shown in  Fig.   1.2a   ) that weighs 450,000 

pounds and that is cruising at a true air speed of 250 knots at an altitude of 

20,000 ft with the total energy of an F-5 (shown in  Fig.   1.2b   ) that weighs 

12,000 pounds and that is cruising at a true air speed of 250 knots at an alti-

tude of 20,000 ft. The equation for the total energy is   

    E =
1

2
mV2 + mgh  (1.1)    

  Solution:     To have consistent units, the units for velocity should be feet per second 

rather than knots. A knot is a nautical mile per hour and is equal to 1.69 ft per 

second, so 250 knots is equal to 422.5 ft/s. The mass is given by the equation: 

    m =
W
g

  (1.2)    

 Figure 1.2         Aircraft used in energy-maneuverability comparison 

(U.S. Air Force photos; B-52H photo by Mike Cassidy).   

        (a) B-52H (b) F-5E
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 Note that the units of mass could be grams, kilograms, lbm, slugs, or    lbf # s2>ft.    
The choice of units often will reflect how mass appears in the application. 

The mass of the “Buff” (i.e., the B-52) is    13,986 lbf # s2>ft    or 13,986 slugs, 

while the mass for the F-5 is    373 slugs.    The total energy for the B-52 is: 

    E =
1

2
 a13,986 

lbf # s2

ft
b a422.5 

ft

s
b2

+ (450,000 lbf)(20,000 ft)   

    E = 1.0248 * 1010 ft # lbf    

 Similarly, the total energy of the F-5 fighter is 

    E =
1

2
 a373 

lbf # s2

ft
b a422.5 

ft

s
b2

+ (12,000 lbf)(20,000 ft)   

    E = 2.7329 * 108 ft # lbf    

 The total energy of the B-52 is 37.5 times the total energy of the F-5. 

Even though the total energy of the B-52 is so very much greater than that for 

the F-5, it just doesn’t seem likely that a B-52 would have a significant advan-

tage in air-to-air combat with an F-5. Notice that the two aircraft are cruising 

at the same flight conditions (velocity/altitude combination). So in this case 

the difference in total energy is in direct proportion to the difference in the 

weights of the two aircraft. Perhaps the specific energy (i.e., the energy per 

unit weight) is a more realistic parameter when trying to predict which aircraft 

would have an edge in air-to-air combat.   

  EXAMPLE 1.2:    The energy height 

 Since the weight specific energy also has units of height, it will be given the 

symbol    He    and is called the energy height. Dividing the terms in equation 

(1.1) by the weight of the aircraft    (W = m g)    

    He =
E
W

=
V2

2 g
+ h  (1.3)    

 Compare the energy height of a B-52 flying at 250 knots at an altitude of 

20,000 ft with that of an F-5 cruising at the same altitude and at the same 

velocity. 

  Solution:     The energy height of the B-52 is 

    He =
1

2
 

a422.5 
ft

s
b2

32.174 
ft

s2

+ 20000 ft   

    He = 22774 ft    

 Since the F-5 is cruising at the same altitude and at the same true air speed as 

the B-52, it has the same energy height (i.e., the same weight specific energy). 
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If we consider only this weight specific energy, the B-52 and the F-5 are 

equivalent. This is obviously an improvement over the factor of 37.5 that 

the “Buff” had over the F-5, when the comparison was made based on the 

total energy. However, the fact that the energy height is the same for these 

two aircraft indicates that further effort is needed to provide a more realistic 

comparison for air-to-air combat.   

 Based on these examples, there must be some additional parameters that are rel-

evant when comparing the one-on-one capabilities of two aircraft in air-to-air combat. 

Captain Oswald Boelcke developed a series of rules based on his combat experience as a 

forty-victory ace by October 19, 1916. Boelcke specified seven rules, or “dicta” [ Werner 

(2005) ]. The first five, which deal with tactics, are 

    1.   Always try to secure an advantageous position before attacking. Climb before and 

during the approach in order to surprise the enemy from above, and dive on him 

swiftly from the rear when the moment to attack is at hand.  

   2.   Try to place yourself between the sun and the enemy. This puts the glare of the 

sun in the enemy’s eyes and makes it difficult to see you and impossible to shoot 

with any accuracy.  

   3.   Do not fire the machine guns until the enemy is within range and you have him 

squarely within your sights.  

   4.   Attack when the enemy least expects it or when he is preoccupied with other duties, 

such as observation, photography, or bombing.  

   5.   Never turn your back and try to run away from an enemy fighter. If you are 

surprised by an attack on your tail, turn and face the enemy with your guns.   

 Although Boelcke’s dicta were to guide fighter pilots for decades to come, they were 

experienced-based empirical rules. The first dictum deals with your total energy, the 

sum of the potential energy plus the kinetic energy. We learned from the first two ex-

ample calculations that predicting the probable victor in one-on-one air-to-air combat 

is not based on energy alone. 

 Note that the fifth dictum deals with maneuverability.  Energy AND Maneuver-
ability!  The governing equations should include maneuverability as well as the specific 

energy. 

 It wasn’t until almost half a century later that a Captain in the U.S. Air Force 

brought the needed complement of talents to bear on the problem [ Coram (2002) ]. 

Captain John R. Boyd was an aggressive and talented fighter pilot who had an insatiable 

intellectual curiosity for understanding the scientific equations that had to be the basis 

of the “Boelcke dicta.” John R. Boyd was driven to understand the physics that was 

the foundation of the tactics that, until that time, had been learned by experience for 

the fighter pilot lucky enough to survive his early air-to-air encounters with an enemy. 

In his role as Director of Academics at the U.S. Air Force Fighter Weapons School, it 

became not only his passion, but his job. 

 Air combat is a dynamic ballet of move and countermove that occurs over a 

continuum of time. Therefore, Boyd postulated that perhaps the time derivatives of 
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the energy height are more relevant than the energy height itself. How fast can we, 

in the target aircraft, with an enemy on our “six.” quickly dump energy and allow 

the foe to pass? Once the enemy has passed, how quickly can we increase our en-

ergy height and take the offensive? John R. Boyd taught these tactics in the Fighter 

Weapons School. Now he became obsessed with the challenge of developing the 

science of fighter tactics. 

   1.1.1  Specific Excess Power 

 If the pilot of the 12,000 lbf F-5 that is flying at a velocity of 250 knots (422.5 ft/s) and at 

an altitude of 20,000 ft is to gain the upper hand in air-to-air combat, his aircraft must 

have sufficient power either to out-accelerate or to outclimb his adversary. Consider the 

case where the F-5 is flying at a constant altitude. If the engine is capable of generating 

more thrust than the drag acting on the aircraft, the acceleration of the aircraft can be 

calculated using Newton’s Law: 

   a  F = m a   

 which for an aircraft accelerating at a constant altitude becomes 

    T - D =
W
g

 
dV
dt

  (1.4)    

 Multiplying both sides of equation (1.4) by  V  and dividing by  W  gives 

    
(T - D)V

W
=

V
g

 
dV
dt

  (1.5)    

 which is the specific excess power,  P s  . 

  EXAMPLE 1.3:    The specific excess power and acceleration 

 The left-hand side of equation (1.5) is excess power per unit weight, or 

specific excess power,    Ps.    Use equation (1.5) to calculate the maximum 

acceleration for a 12,000-lbf F-5 that is flying at 250 knots (422.5 ft/s) at 

20,000 ft. 

  Solution:     Performance charts for an F-5 that is flying at these conditions indicate that 

it is capable of generating 3550 lbf thrust ( T ) with the afterburner lit, while 

the total drag ( D ) acting on the aircraft is 1750 lbf. Thus, the specific excess 

power       is 

   Ps =
(T - D)V

W
=
3(3550 - 1750) lbf4  422.5 ft>s

12000 lbf
= 63.38 ft>s   

 Rearranging equation (1.5) to solve for the acceleration gives 

   
dV
dt

= Ps
g

V
= (63.38 ft>s)

32.174 ft>s2

422.5 ft>s = 4.83 ft>s2      
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   1.1.2  Using Specific Excess Power to Change the 
Energy Height 

 Taking the derivative with respect to time of the two terms in equation (1.3), we obtain: 

    
dHe

dt
=

V
g

 
dV
dt

+
dh
dt

  (1.6)    

 The first term on the right-hand side of equation (1.6) represents the rate of 

change of kinetic energy (per unit weight). It is a function of the rate of change of the 

velocity as seen by the pilot    adV
dt
b .    The significance of the second term is even less 

cosmic. It is the rate of change of the potential energy (per unit weight). Note also that 

   adh
dt
b     is the vertical component of the velocity [i.e., the rate of climb (ROC)] as seen 

by the pilot on his altimeter. Air speed and altitude—these are parameters that fighter 

pilots can take to heart. 

 Combining the logic that led us to equations (1.5) and (1.6) leads us to the conclu-

sion that the specific excess power is equal to the time-rate-of-change of the energy height. 

 So, 

    Ps =
(T - D)V

W
=

dHe

dt
=

V
g

 
dV
dt

+
dh
dt

  (1.7)    

 Given the specific excess power calculated in  Example   1.3   , we could use equation (1.7) 

to calculate the maximum rate-of-climb (for a constant velocity) for the 12,000 lbf F-5 

as it passes through 20,000 ft at 250 knots. 

   
dh
dt

= Ps = 63.38 ft>s = 3802.8 ft>min   

 Clearly, to be able to generate positive values for the terms in equation (1.7), we 

need an aircraft with excess power (i.e., one for which the thrust exceeds the drag). 

Weight is another important factor, since the lighter the aircraft, the greater the benefits 

of the available excess power. 

 “Boyd, as a combat pilot in Korea and as a tactics instructor at Nellis AFB in the 

Nevada desert, observed, analyzed, and assimilated the relative energy states of his 

aircraft and those of his opponent’s during air combat engagements.    c    He also noted 

that, when in a position of advantage, his energy was higher than that of his opponent 

and that he lost that advantage when he allowed his energy to decay to less than that 

of his opponent.” 

 “He knew that, when turning from a steady-state flight condition, the airplane 

under a given power setting would either slow down, lose altitude, or both. The result 

meant he was losing energy (the drag exceeded the thrust available from the engine). 

From these observations, he concluded that maneuvering for position was basically an 

energy problem. Winning required the proper management of energy available at the 

conditions existing at any point during a combat engagement” [ Hillaker (1997) ]. 
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 In the mid-1960s, Boyd had gathered energy-maneuverability data on all of the 

fighter aircraft in the U.S. Air Force inventory and on their adversaries. He sought to 

understand the intricacies of maneuvering flight. What was it about the airplane that 

would limit or prevent him from making it to do what he wanted it to do?  

   1.1.3  John R. Boyd Meet Harry Hillaker 

 The relation between John R. Boyd and Harry Hillaker “dated from an evening in the 

mid-1960s when a General Dynamics (GD) engineer named Harry Hillaker was sitting 

in the Officer’s Club at Eglin AFB, Florida, having an after dinner drink. Hillaker’s host 

introduced him to a tall, blustery pilot named John R. Boyd, who immediately launched 

a frontal attack on GD’s F-111 fighter. Hillaker was annoyed but bantered back” [ Grier 

(2004) ]. Hillaker countered that the F-111 was designated a fighter-bomber. 

 “A few days later, he (Hillaker) received a call—Boyd had been impressed by 

Hillaker’s grasp of aircraft conceptual design and wanted to know if Hillaker was in-

terested in more organized meetings.” 

 “Thus was born a group that others in the Air Force dubbed the ‘fighter mafia.’ Their 

basic belief was that fighters did not need to overwhelm opponents with speed and size. 

Experience in Vietnam against nimble Soviet-built MiGs had convinced them that tech-

nology had not yet turned air-to-air combat into a long-range shoot-out.” [ Grier (2004) ] 

 The fighter mafia knew that a small aircraft could enjoy a high thrust-to-weight 

ratio: small aircraft have less drag. “The original F-16 design had about one-third the 

drag of an F-4 in level flight and one-fifteenth the drag of an F-4 at a high angle-of-

attack” [ Grier (2004) ].  

   1.1.4  The Importance of Aerodynamics to Aircraft 
Performance 

 The importance of the previous discussion is that aircraft performance is largely deter-

mined by the aerodynamic characteristics of the airplane (as well as the mass properties 

and thrust of the airplane). Parameters like lift and drag determine aircraft performance 

such as energy height. Lift and drag also determine more easy-to-understand parameters 

like range, rate of climb, and glide ratio (which is exactly the lift/drag ratio of the airplane). 

Without knowing the aerodynamics of the airplane (as well as the mass properties and 

thrust), we will not be able to determine how well an airplane will perform. This requires 

knowing the flow field around the airplane so that the pressures, shear stress, and heating 

on the surface of the airplane can be determined. That is why the study of aerodynamics 

is an essential stepping stone to gaining a fuller understanding of how an airplane will 

perform, and how to improve that performance to achieve flight requirements.   

   1.2  SOLVING FOR THE AEROTHERMODYNAMIC 
PARAMETERS 

 The fundamental problem facing the aerodynamicist is to predict the aerodynamic 

forces and moments and the heat-transfer rates acting on a vehicle in flight. In order to 

predict these aerodynamic forces and moments with suitable accuracy, it is necessary 
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to be able to describe the pattern of flow around the vehicle. The resultant flow pattern 

depends on the geometry of the vehicle, its orientation with respect to the undisturbed 

free stream, and the altitude and speed at which the vehicle is traveling. In analyzing 

the various flows that an aerodynamicist may encounter, assumptions about the fluid 

properties may be introduced. In some applications, the temperature variations are 

so small that they do not affect the velocity field. In addition, for those applications 

where the temperature variations have a negligible effect on the flow field, it is often 

assumed that the density is essentially constant. However, in analyzing high-speed flows, 

the density variations cannot be neglected. Since density is a function of pressure and 

temperature, it may be expressed in terms of these two parameters. In fact, for a gas 

in thermodynamic equilibrium, any thermodynamic property may be expressed as a 

function of two other independent, thermodynamic properties. Thus, it is possible to 

formulate the governing equations using the enthalpy and the entropy as the flow prop-

erties instead of the pressure and the temperature. 

   1.2.1  Concept of a Fluid 

 From the point of view of fluid mechanics, matter can be in one of two states—either 

solid or fluid. The technical distinction between these two states lies in their response 

to an applied shear, or tangential, stress. A solid can resist a shear stress by a static 

deformation; a fluid cannot. A  fluid  is a substance that deforms continuously under the 

action of shearing forces. An important corollary of this definition is that there can be 

no shear stresses acting on fluid particles if there is no relative motion within the fluid; 

that is, such fluid particles are not deformed. Thus, if the fluid particles are at rest or 

if they are all moving at the same velocity, there are no shear stresses in the fluid. This 

zero shear stress condition is known as the  hydrostatic stress condition . 

 A fluid can be either a liquid or a gas. A liquid is composed of relatively closely 

packed molecules with strong cohesive forces. As a result, a given mass of liquid will 

occupy a definite volume of space. If a liquid is poured into a container, it assumes the 

shape of the container up to the volume it occupies and will form a free surface in a 

gravitational field if unconfined from above. The upper (or free) surface is planar and 

perpendicular to the direction of gravity. Gas molecules are widely spaced with rela-

tively small cohesive forces. Therefore, if a gas is placed in a closed container, it will 

expand until it fills the entire volume of the container. A gas has no definite volume. 

Thus, if it is unconfined, it forms an atmosphere that is essentially hydrostatic.  

   1.2.2  Fluid as a Continuum 

 There are two basic ways to develop equations that describe the motion of a sys-

tem of fluid particles: we can either define the motion of each and every molecule 

or define the average behavior of the molecules within a given elemental volume. 

Our primary concern for problems in this  text     will not be with the motion of in-

dividual molecules, but with the general behavior of the fluid. We are concerned 

with describing the fluid motion in physical spaces that are very large compared to 

molecular dimensions (the size of molecules), so our elemental volume will contain 
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a large number of molecules. The fluid in these problems may be considered to be a 

continuous material whose properties can be determined from a statistical average 

for the particles in the volume: a macroscopic representation. The assumption of a 

continuous fluid is valid when the smallest volume of fluid that is of interest contains 

so many molecules that statistical averages are meaningful. In addition, we will as-

sume that the number of molecules within the volume will remain essentially con-

stant even though there is a continuous flux of molecules through the boundaries. If 

the elemental volume is too large (as large as the vehicle or body being considered), 

there could be a noticeable variation in the fluid properties determined statistically 

at various points in the volume. 

 For example, the number of molecules in a cubic meter of air at room tempera-

ture and at sea-level pressure is approximately    2.5 * 1025.    So, there are    2.5 * 1010    

molecules in a cube 0.01 mm on a side. The mean free path of the molecules (the 

average distance a molecule travels between impacts with other molecules) at sea 

level is    6.6 * 10-8m.    There are sufficient molecules in this volume for the fluid to be 

considered a continuum, and the fluid properties can be determined from statistical 

averages. In contrast, at a very high altitude of 130 km there are only    1.6 * 1017    mol-

ecules in a cube 1 m on a side; the mean free path at this altitude is 10.2 m. Therefore, 

at this altitude the fluid cannot be considered a continuum (this is known as low 

density of rarefied flow). 

 A parameter that is commonly used to identify the onset of low-density effects is 

the Knudsen number, which is the ratio of the mean free path to a characteristic dimen-

sion of the body. Although there is no definitive criterion, the continuum flow model 

starts to break down when the Knudsen number is roughly of the order of 0.1. Because 

rarefied flows describe a fluid that is not a continuum, different equations would have 

to be derived than those for a continuum. This  book     will concentrate, however, on the 

development of equations for flow in a continuum.  

   1.2.3  Fluid Properties 

 By employing the concept of a continuum, we can describe the gross behavior of the 

fluid motion using certain observable, macroscopic properties. Properties used to de-

scribe a general fluid motion include the temperature, the pressure, the density, the 

viscosity, and the speed of sound. 

  Temperature.     We are all familiar with  temperature  in qualitative terms: an ob-

ject feels hot (or cold) to the touch. However, because of the difficulty in quantitatively 

defining the temperature, we typically define situations where there is an equality of 

temperature. Two bodies have equality of temperature when no change in any observ-

able property occurs when they are in thermal contact. Furthermore, two bodies respec-

tively equal in temperature to a third body must be equal in temperature to each other. 

Because of this observation, an arbitrary scale of temperature can be defined in terms 

of a convenient temperature for a standard body (e.g., the freezing point of water).  

  Pressure.     Individual molecules of a fluid continually strike a surface that is 

placed in the fluid because of the random motion of the molecules due to their thermal 
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energy. These collisions occur even though the surface is at rest relative to the fluid. By 

Newton’s second law, a force is exerted on the surface equal to the time rate of change 

of the momentum of the rebounding molecules.  Pressure  is the magnitude of this force 

per unit area of surface and has units of (force)/(length) 2 . Since a fluid that is at rest 

cannot sustain tangential forces, the pressure on the surface must act in the direction 

perpendicular to that surface. Furthermore, the pressure acting at a point in a fluid at 

rest is the same in all directions. 

  Standard atmospheric pressure at sea level  is defined as the pressure that can 

support a column of mercury 760 mm in length when the density of the mercury is 

   13.5951 g>cm3    and the acceleration due to gravity is the standard sea level value. 

The standard atmospheric pressure at sea level in SI (System International) units is 

   1.01325 * 105 N>m2.    In English units, the standard atmospheric pressure at sea level is 

   14.696 lbf>in2    or    2116.22 lbf>ft2.    

 In many aerodynamic applications, we are interested in the difference between the 

absolute value of the local pressure and the atmospheric pressure. Many pressure gages 

indicate the difference between the absolute pressure and the atmospheric pressure 

existing at the gage. This difference, which is referred to as  gage pressure , is illustrated 

in  Fig.   1.3   .      

Positive gage pressure

Atmospheric pressure

Negative gage pressure

Absolute pressure is less than
the atmospheric pressure

Absolute pressure
is greater than

the atmospheric
pressure

Zero pressure

 Figure 1.3         Terms used in pressure measurements.   

 Aerodynamics Concept Box: Consistent Units 

 Performing calculations with the correct units can be one of the most challenging aspects 

of aerodynamics (or any field of engineering for that matter). The fact that aerodynamics 

is often done in both SI and English units can make the challenge even greater. Performing 

calculations in consistent units can greatly reduce the chance of making errors and greatly 

increase the ease of getting results. 
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  Density.     The  density  of a fluid at a point in space is the mass of the fluid per unit 

volume surrounding the point. As is the case when evaluating the other fluid properties, 

the incremental volume must be large compared to molecular dimensions yet very small 

relative to the dimensions of the vehicle whose flow field we seek to analyze. Provided 

that the fluid may be assumed to be a continuum, the density at a point is defined as 

    r = lim
d(vol)S0

d(mass)

d(vol)
  (1.8)    

 where    d    represents a change rather than a differential. The dimensions of density are 

   (mass)>(length)3.    

 In general, the density of a gas is a function of the composition of the gas, its tem-

perature, and its pressure. The relation 

    r(composition, T, p)  (1.9)    

 is known as an  equation of state . For a thermally perfect gas, the equation of state is 

    r =
p

RT
  (1.10)    

 The gas constant  R  has a particular value for each substance. The gas constant for air has 

the value    287.05 N # m>kg # K    in SI units and    53.34 ft # lbf>lbm # �R    or    1716.16 ft2>s2 # �R    

in English units. The temperature in equation (1.10) should be in absolute units. Thus, 

the temperature is either in K or in °R, but never in °C or in °F. The density of air at 

standard day sea level conditions is 1.2250 kg/   m3    or 0.002377 slug/   ft3.    

 Consistent units are the units of length, time, force, and mass that make Newton’s 

second law balance for unit values of each term: 

F = ma

   1 force unit = 1 mass unit * 1 acceleration unit   

 For calculations in the SI system, the consistent units are Newtons (force), kilograms (mass), and 

   m>s2    (acceleration), or in other words: 

   1 Newton = 1 kilogram * 1 m>s2   

 Using these units in calculations will ensure that units cancel correctly. If any other units 

appear in a problem, they should immediately be converted to these consistent units prior 

to performing calculations (grams should be converted to kilograms, centimeters should be 

converted to meters, hours should be converted to seconds, etc.). 

 For calculations in the English system, the consistent units are pounds force (often just 

called pounds), slugs, feet, and seconds: 

   1 lbf (or lb) = 1 slug * 1 ft>s2   

 Any other units appearing in problems are most easily dealt with by converting to these con-

sistent units (pounds mass [lbm] should be converted to slugs, miles should be converted to 

feet, hours should be converted to seconds, etc.). Using consistent units  consistently  will save 

a great deal of pain and suffering while performing calculations! 
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  EXAMPLE 1.4:    Density in SI units 

 Calculate the density of air when the pressure is    1.01325 * 105 N>m2    and the 

temperature is 288.15 K. Since air at this pressure and temperature behaves 

as a perfect gas, we can use equation (1.10). 

  Solution:   

    r =
1.01325 * 105 N>m2

(287.05 N # m>kg # K)(288.15 K)
   

    = 1.2250 kg>m3      

  EXAMPLE 1.5:    Density in English units 

 Calculate the density of air when the pressure is    2116.22 lbf>ft2    and the tem-

perature is 518.67°R. Since air at this pressure and temperature behaves as a 

perfect gas, we can use equation (1.10). Note that throughout the remainder 

of this  book    , air will be assumed to behave as a perfect gas unless specifically 

stated otherwise. 

  Solution:    

   r =
2116.22 

lbf

ft2

a53.34 
ft # lbf

lbm # �Rb(518.67�R)

= 0.07649 
lbm

ft3
  

  Alternatively, 

   r =
2116.22 

lbf

ft2

a1716.16 
ft2

s2 # �Rb(518.67�R)

= 0.002377 
lbf # s2

ft4
   

 The unit    lbf # s2>ft4    is often written as    slugs>ft3,    where slugs are alternative 

units of mass in the English system. One slug is the equivalent of 32.174 lbm.   

 For vehicles that are flying at approximately 100 m/s (330 ft/s), or less, the density 

of the air flowing past the vehicle is assumed constant when obtaining a solution for the 

flow field. Rigorous application of equation (1.10) would require that the pressure and 

the temperature remain constant (or change proportionally) in order for the density 

to remain constant throughout the flow field. We know that the pressure around the 

vehicle is not constant, since the aerodynamic forces and moments in which we are in-

terested are the result of pressure variations associated with the flow pattern. However, 

the assumption of constant density for velocities below 100 m/s is a valid approximation 

because the pressure changes that occur from one point to another in the flow field are 

small relative to the absolute value of the pressure.  
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  Viscosity.     In all real fluids, a shearing deformation is accompanied by a shearing 

stress. The fluids of interest in this  text     are  Newtonian  in nature; that is, the shearing 

stress is proportional to the rate of shearing deformation. The constant of proportional-

ity is called the  coefficient of viscosity ,    m.    Therefore, 

    shear stress = m * transverse gradient of velocity  (1.11)    

 There are many problems of interest for which the effects of viscosity can be neglected. 

In such problems, the magnitude of the coefficient of viscosity of the fluid and of the 

velocity gradients in the flow field are such that their product is negligible relative to 

the inertia of the fluid particles and to the pressure forces acting on them. We will use 

the term  inviscid flow  in these cases to emphasize the fact that it is the character both 

of the flow field and of the fluid that allows us to neglect viscous effects. No real fluid 

has a zero coefficient of viscosity, but there are times when the effects of viscosity are 

negligible. 

 The viscosity of a fluid relates to the transport of momentum in the direction of 

the velocity gradient (but opposite in sense). Therefore, viscosity is a transport property. 

In general, the coefficient of viscosity is a function of the composition of the gas, its 

temperature, and its pressure. The viscosity of air is independent of pressure for tem-

peratures below 3000 K (5400°R). In this temperature range, we could use Sutherland’s 

equation to calculate the coefficient of viscosity: 

    m = C1

T1.5

T + C2

  (1.12)    

 For SI units where temperature,  T , is in units of K and    m    is in units of    kg/s # m    use 

   C1 = 1.458 * 10-6    and    C2 = 110.4   . For English units where temperature,  T , is in units 

of °R and    m    is in units of    lbf # s>ft2   , use    C1 = 2.27 * 10-8    and    C2 = 198.6   . 

  EXAMPLE 1.6:    Viscosity in SI units 

 Calculate the viscosity of air when the temperature is 288.15 K. 

  Solution:    

    m = 1.458 * 10-6 
(288.15)1.5

288.15 + 110.4
   

    = 1.7894 * 10-5 kg>s # m      

  EXAMPLE 1.7:    Viscosity in English units 

 Calculate the viscosity of air when the temperature is 59.0°F. 

  Solution:     First, convert the temperature to the absolute scale for English units, °R, 

   59.0�F + 459.67 = 518.67�R.    
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    m = 2.27 * 10-8 
(518.67)1.5

518.67 + 198.6
   

    = 3.7383 * 10-7lbf # s
ft2

     

 Equations used to calculate the coefficient of viscosity depend on the model 

used to describe the intermolecular forces of the gas molecules, so that it is necessary 

to define the potential energy of the interaction of the colliding molecules.  Svehla 

(1962)  noted that the potential energy for the Sutherland model is described physi-

cally as a rigid, impenetrable sphere, surrounded by an inverse-power attractive force. 

This model is qualitatively correct in that the molecules attract one another when 

they are far apart and exert strong repulsive forces upon one another when they are 

close together. 

  Chapman and Cowling (1960)  note that equation (1.12) closely represents the 

variation of    m    with temperature over a “fairly” wide range of temperatures. They cau-

tion, however, that the success of Sutherland’s equation in representing the variation 

of    m    with temperature for several gases does not establish the validity of Sutherland’s 

molecular model for those gases. “In general it is not adequate to represent the core 

of a molecule as a rigid sphere, or to take molecular attractions into account to a first 

order only. The greater rapidity of the experimental increase of    m    with  T , as compared 

with that for nonattracting rigid spheres, has to be explained as due partly to the ‘soft-

ness’ of the repulsive field at small distances, and partly to attractive forces which have 

more than a first-order effect. The chief value of Sutherland’s formula seems to be as 

a simple interpolation formula over restricted ranges of temperature” [ Chapman and 

Cowling (1960) ]. 

 The Lennard-Jones model for the potential energy of an interaction, which takes 

into account both the softness of the molecules and their mutual attraction at large 

distances, has been used by  Svehla (1962)  to calculate the viscosity and the thermal con-

ductivity of gases at high temperatures. The coefficients of viscosity for air as tabulated 

by Svehla are compared with the values calculated using equation (1.12) in  Table   1.1   . 

These comments are made to emphasize the fact that even the basic fluid properties 

may involve approximate models that have a limited range of applicability.   

  Kinematic Viscosity.     The aerodynamicist may encounter many applications 

where the ratio    m>r    has been replaced by a single parameter. Because this ratio ap-

pears frequently, it has been given a special name, the kinematic viscosity. The symbol 

used to represent the kinematic viscosity is    n   , where: 

    n =
m

r
  (1.13)    

 In this ratio, the force units (or, equivalently, the mass units) cancel. Therefore,    n    has 

the dimensions of (length) 2 /(time) (e.g., square meters per second or square feet per 

second). 
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 TABLE 1.1    Comparison of the Coefficient 
of Viscosity for Air as Tabulated by  Svehla 
(1962)  and as Calculated Using Sutherland’s 
Equation [Equation (1.12)] 

 T 
(K) 

    m * 105

(kg>m # s )*    
    m * 105

(kg>m # s )    †  

 200  1.360  1.329 

 400  2.272  2.285 

 600  2.992  3.016 

 800  3.614  3.624 

 1000  4.171  4.152 

 1200  4.695  4.625 

 1400  5.197  5.057 

 1600  5.670  5.456 

 1800  6.121  5.828 

 2000  6.553  6.179 

 2200  6.970  6.512 

 2400  7.373  6.829 

 2600  7.765  7.132 

 2800  8.145  7.422 

 3000  8.516  7.702 

 3200  8.878  7.973 

 3400  9.232  8.234 

 3600  9.579  8.488 

 3800  9.918  8.734 

 4000  10.252  8.974 

 4200  10.580  9.207 

 4400  10.902  9.435 

 4600  11.219  9.657 

 4800  11.531  9.874 

 5000  11.838  10.087 

   * From  Svehla (1962)    
    †  Calculated using equation (1.12)   

  EXAMPLE 1.8:    Kinematic Viscosity in English units 

 Using the results of Examples 1.5 and 1.7, calculate the kinematic viscosity 

of air when the temperature is 518.67°R and the pressure is    2116.22 lbf>ft2.    
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  Solution:     From  Example   1.5   ,    r = 0.07649 lbm>ft3 = 0.002377 lbf # s2>ft4;    while from 

 Example   1.7   ,    m = 3.7383 * 10-7 lbf # s>ft2.    Therefore, 

    n =
m

r
=

3.7383 * 10-7 
lbf # s

ft2

0.002377 
lbf # s2

ft4

= 1.573 * 10-4 
ft2

s
   

 If we use the alternative units for the density, we must employ the factor    gc,    

which is equal to    32.174 ft # lbm>lbf # s2,    to arrive at the appropriate units. 

    n =
m

r
=

3.7383 * 10-7 
lbf # s

ft2

0.07649 
lbm

ft3

a32.174 
ft # lbm

lbf # s2
b    

    = 1.573 * 10-4 ft2>s       

  Speed of Sound.     The speed at which a disturbance of infinitesimal propor-

tions propagates through a fluid that is at rest is known as the  speed of sound , which is 

designated in this  book     as  a  (the acoustic speed). The speed of sound is established by 

the properties of the fluid. For a perfect gas    a = 1gRT,    where    g    is the ratio of specific 

heats  (see  Chapter   8   )  and  R  is the gas constant. For the range of temperature over which 

air behaves as a perfect gas,    g = 1.4    and the speed of sound is given by 

    a = 20.0471T  (1.14a)    

 where  T  is the temperature in K and the units for the speed of sound are m/s. In Eng-

lish units 

    a = 49.021T  (1.14b)    

 where  T  is the temperature in °R and the units for the speed of sound are ft/s.   

   1.2.4  Pressure Variation in a Static Fluid Medium 

 In order to compute the forces and moments or the heat-transfer rates acting on a vehicle, 

or to determine the flight path (i.e., the trajectory) of the vehicle, we will often need an 

analytic model of the atmosphere instead of using a table, such as  Table   1.2   . To do this, 

we will develop the equations describing the pressure variation in a static fluid medium. 

If fluid particles, when viewed as a continuum, are either all at rest or all moving with the 

same velocity, the fluid is said to be a  static medium . Thus, the term  static fluid properties  

may be applied to situations in which the elements of the fluid are moving, provided that 

there is no relative motion between fluid elements. Since there is no relative motion be-

tween adjacent layers of the fluid, there are no shear forces. So, with no relative motion 

between fluid elements, the viscosity of the fluid is of no concern. For these inviscid flows, 

the only forces acting on the surface of the fluid element are pressure forces.   
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 TABLE 1.2A    U.S. Standard Atmosphere, 1976 SI Units 

  Geometric 
Altitude  (km) 

  Pressure  
   (N>m2)    

  Temperature  
(K) 

  Density  
   (kg>m3    )

  Viscosity  
   (kg>m # s )    

  Speed of 
Sound  (m>s) 

 0  1.0133    E + 05     288.150  1.2250    E + 00     1.7894    E - 05     340.29 

 1  8.9875    E + 04     281.651  1.1117    E + 00     1.7579    E - 05     336.43 

 2  7.9501    E + 04     275.154  1.0066    E + 00     1.7260    E - 05     332.53 

 3  7.0121    E + 04     268.659  9.0926    E - 01     1.6938    E - 05     328.58 

 4  6.1669    E + 04     262.166  8.1934    E - 01     1.6612    E - 05     324.59 

 5  5.4048    E + 04     255.676  7.3643    E - 01     1.7885    E - 05     320.55 

 6  4.7217    E + 04     249.187  6.6012    E - 01     1.5949    E - 05     316.45 

 7  4.1105    E + 04     242.700  5.9002    E - 01     1.5612    E - 05     312.31 

 8  3.5651    E + 04     236.215  5.2578    E - 01     1.5271    E - 05     308.11 

 9  3.0800    E + 04     229.733  4.6707    E - 01     1.4926    E - 05     303.85 

 10  2.6500    E + 04     223.252  4.1351    E - 01     1.4577    E - 05     299.53 

 11  2.2700    E + 04     216.774  3.6481    E - 01     1.4223    E - 05     295.15 

 12  1.9399    E + 04     216.650  3.1193    E - 01     1.4216    E - 05     295.07 

 13  1.6579    E + 04     216.650  2.6660    E - 01     1.4216    E - 05     295.07 

 14  1.4170    E + 04     216.650  2.2786    E - 01     1.4216    E - 05     295.07 

 15  1.2111    E + 04     216.650  1.9475    E - 01     1.4216    E - 05     295.07 

 16  1.0352    E + 04     216.650  1.6647    E - 01     1.4216    E - 05     295.07 

 17  8.8497    E + 03     216.650  1.4230    E - 01     1.4216    E - 05     295.07 

 18  7.5652    E + 03     216.650  1.2165    E - 01     1.4216    E - 05     295.07 

 19  6.4675    E + 03     216.650  1.0400    E - 01     1.4216    E - 05     295.07 

 20  5.5293    E + 03     216.650  8.8911    E - 02     1.4216    E - 05     295.07 

 21  4.7289    E + 03     217.581  7.5715    E - 02     1.4267    E - 05     295.70 

 22  4.0474    E + 03     218.574  6.4510    E - 02     1.4322    E - 05     296.38 

 23  3.4668    E + 03     219.567  5.5006    E - 02     1.4376    E - 05     297.05 

 24  2.9717    E + 03     220.560  4.6938    E - 02     1.4430    E - 05     297.72 

 25  2.5491    E + 03     221.552  4.0084    E - 02     1.4484    E - 05     298.39 

 26  2.1883    E + 03     222.544  3.4257    E - 02     1.4538    E - 05     299.06 

 27  1.8799    E + 03     223.536  2.9298    E - 02     1.4592    E - 05     299.72 

 28  1.6161    E + 03     224.527  2.5076    E - 02     1.4646    E - 05     300.39 

 29  1.3904    E + 03     225.518  2.1478    E - 02     1.4699    E - 05     301.05 

 30  1.1970    E + 03     226.509  1.8411    E - 02     1.4753    E - 05     301.71 
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 TABLE 1.2B    U.S. Standard Atmosphere, 1976 English Units 

  Geometric 
Altitude  (kft) 

  Pressure  
   (lbf>ft2)    

  Temperature  
(° R ) 

  Density  
   (slug>ft3)    

  Viscosity  
   (slug>ft # s)      Speed of 

Sound  ( ft>s ) 
 0  2.1162    E + 03     518.67  2.3769    E - 03     3.7383    E - 07     1116.44 
 2  1.9677    E + 03     511.54  2.2409    E - 03     3.6982    E - 07     1108.76 
 4  1.8277    E + 03     504.41  2.1109    E - 03     3.6579    E - 07     1100.98 
 6  1.6960    E + 03     497.28  1.9869    E - 03     3.6173    E - 07     1093.18 
 8  1.5721    E + 03     490.15  1.8685    E - 03     3.4764    E - 07     1085.33 

 10  1.4556    E + 03     483.02  1.7556    E - 03     3.5353    E - 07     1077.40 

 12  1.3462    E + 03     475.90  1.6479    E - 03     3.4939    E - 07     1069.42 
 14  1.2436    E + 03     468.78  1.5455    E - 03     3.4522    E - 07     1061.38 
 16  1.1473    E + 03     461.66  1.4480    E - 03     3.4102    E - 07     1053.31 
 18  1.0575    E + 03     454.53  1.3553    E - 03     3.3679    E - 07     1045.14 
 20  9.7733    E + 02     447.42  1.2673    E - 03     3.3253    E - 07     1036.94 

 22  8.9459    E + 02     440.30  1.1836    E - 03     3.2825    E - 07     1028.64 
 24  8.2116    E + 02     433.18  1.1044    E - 03     3.2392    E - 07     1020.31 
 26  7.5270    E + 02     426.07  1.0292    E - 03     3.1958    E - 07     1011.88 
 28  6.8896    E + 02     418.95  9.5801    E - 04     3.1519    E - 07     1003.41 
 30  6.2966    E + 02     411.84  8.9070    E - 04     3.1078    E - 07     994.85 

 32  5.7457    E + 02     404.73  8.2704    E - 04     3.0633    E - 07     986.22 
 34  5.2347    E + 02     397.62  7.6695    E - 04     3.0185    E - 07     977.53 
 36  4.7611    E + 02     390.51  7.1029    E - 04     2.9734    E - 07     968.73 
 38  4.3262    E + 02     389.97  6.4640    E - 04     2.9700    E - 07     968.08 
 40  3.9311    E + 02     389.97  5.8728    E - 04     2.9700    E - 07     968.08 

 42  3.5722    E + 02     389.97  5.3366    E - 04     2.9700    E - 07     968.08 
 44  3.2477    E + 02     389.97  4.8494    E - 04     2.9700    E - 07     968.08 
 46  2.9477    E + 02     389.97  4.4068    E - 04     2.9700    E - 07     968.08 
 48  2.6806    E + 02     389.97  4.0046    E - 04     2.9700    E - 07     968.08 
 50  2.4360    E + 02     389.97  3.6393    E - 04     2.9700    E - 07     968.08 

 52  2.2138    E + 02     389.97  3.3072    E - 04     2.9700    E - 07     968.08 
 54  2.0119    E + 02     389.97  3.0056    E - 04     2.9700    E - 07     968.08 
 56  1.8288    E + 02     389.97  2.7315    E - 04     2.9700    E - 07     968.08 
 58  1.6618    E + 02     389.97  2.4824    E - 04     2.9700    E - 07     968.08 
 60  1.5103    E + 02     389.97  2.2561    E - 04     2.9700    E - 07     968.08 

 62  1.3726    E + 02     389.97  2.0505    E - 04     2.9700    E - 07     968.08 
 64  1.2475    E + 02     389.97  1.8637    E - 04     2.9700    E - 07     968.08 
 66  1.1339    E + 02     390.07  1.6934    E - 04     2.9706    E - 07     968.21 
 68  1.0307    E + 02     391.16  1.5351    E - 04     2.9775    E - 07     969.55 
 70  9.3725    E + 01     392.25  1.3920    E - 04     2.9845    E - 07     970.90 

(continues on next page)
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 Take a look at the small fluid element whose center is defined by the coordinates 

 x ,  y ,  z  in  Fig.   1.4   . A first-order Taylor’s series expansion is used to evaluate the pressure 

at each face. The pressure at the back face of the element is    p - (0p>0x)(�x>2),    and 

the pressure at the front face is    p + (0p>0x)(�x>2).    If the fluid is not accelerating, the 

element must be in equilibrium. For equilibrium, the sum of the forces in any direction 

must be zero. Therefore,  

z

Origin of the cell 
in the coordinate

system

x

y

�y

�
�z

�x

 Figure 1.4         Small fluid element used in the derivation of equations 

(1.15) through (1.17).   

  Geometric 
Altitude  (kft) 

  Pressure  
   (lbf>ft2)    

  Temperature  
(° R ) 

  Density  
   (slug>ft3)    

  Viscosity  
   (slug>ft # s)      Speed of 

Sound  ( ft>s ) 
 72  8.5250    E + 01     393.34  1.2626    E - 04     2.9914    E - 07     972.24 
 74  7.7572    E + 01     394.43  1.1456    E - 04     2.9983    E - 07     973.59 
 76  7.0587    E + 01     395.52  1.0397    E - 04     3.0052    E - 07     974.93 
 78  6.4257    E + 01     396.60  9.4387    E - 05     3.0121    E - 07     976.28 
 80  5.8511    E + 01     397.69  8.5711    E - 05     3.0190    E - 07     977.62 

 82  5.3293    E + 01     398.78  7.7855    E - 05     3.0259    E - 07     978.94 
 84  4.8552    E + 01     399.87  7.0739    E - 05     3.0328    E - 07     980.28 
 86  4.4248    E + 01     400.96  6.4290    E - 05     3.0396    E - 07     981.63 
 88  4.0335    E + 01     402.05  5.8446    E - 05     3.0465    E - 07     982.94 
 90  3.6778    E + 01     403.14  5.3147    E - 05     3.0533    E - 07     984.28 

 92  3.3542    E + 01     404.22  4.8344    E - 05     3.0602    E - 07     985.60 
 94  3.0601    E + 01     405.31  4.3985    E - 05     3.0670    E - 07     986.94 
 96  2.7924    E + 01     406.40  4.0029    E - 05     3.0738    E - 07     988.25 
 98  2.5488    E + 01     407.49  3.6440    E - 05     3.0806    E - 07     989.57 

 100  2.3272    E + 01     408.57  3.3182    E - 05     3.0874    E - 07     990.91 

TABLE 1.2B  U.S. Standard Atmosphere, 1976 English Units (continued)
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     - ap +
0p
0x

 
�x
2
b  �y �z + ap -

0p
0x

 
�x
2
b  �y �z = 0  (1.15a)    

     - ap +
0p
0y

 
�y

2
b  �x �z + ap -

0p
0y

 
�y

2
b  �x �z = 0  (1.15b)    

     - ap +
0p
0z

 
�z
2
b  �x �y + ap -

0p
0z

 
�z
2
b  �x �y - rg �x �y �z = 0  (1.15c)    

 Note that the coordinate system has been chosen such that gravity acts in the negative 

 z  direction. Combining terms and dividing by    �x �y �z    gives us 

     
0p
0x

= 0   (1.16a)    

     
0p
0y

= 0   (1.16b)    

     
0p
0z

= -rg  (1.16c)    

 The three equations can be written as one using vector notation as: 

    �p = r f
S

= -rgkn  (1.17)    

 where    f
S

    represents the body force per unit mass and    �    is the gradient operator. For 

the cases of interest in this  book    , the body force is gravity. 

 These equations illustrate two important principles for a nonaccelerating, hydro-

static, or shear-free, flow: (1) There is no pressure variation in the horizontal direction; 

that is, the pressure is constant in a plane perpendicular to the direction of gravity; 

and (2) the vertical pressure variation is proportional to gravity, density, and change 

in depth. Furthermore, as the element shrinks to zero volume (i.e., as    �z S 0   ), it can 

be seen that the pressure is the same on all faces. That is, pressure at a point in a static 

fluid is independent of orientation. 

 Since the pressure varies only with  z , that is, it is not a function of  x  or  y , an ordi-

nary derivative may be used and equation (1.16c) may be written 

    
dp

dz
= -rg  (1.18)    

 Now assume that the air behaves as a perfect gas. The expression for density given 

by equation (1.10) can be substituted into equation (1.18) to give 

    
dp

dz
= -rg = -

pg

RT
  (1.19)    

 In those regions where the temperature can be assumed to constant (an iso-thermal 

region), separating the variables and integrating between two points yields 

   L
dp
p

= ln
p2

p1

= -
g

RT
 Ldz = -

g

RT
(z2 - z1)   
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 where the integration reflects the fact that the temperature has been assumed constant. 

Rearranging yields 

    p2 = p1 exp Jg(z1 - z2)

RT
R   (1.20)    

 The pressure variation described by equation (1.20) is a reasonable approximation of 

that in the atmosphere near the earth’s surface, or in any iso-thermal region. 

 An improved correlation for pressure variation in the earth’s atmosphere can be 

obtained if we account for the temperature variation with altitude (which is known as a 

gradient region). The earth’s mean atmospheric temperature decreases almost linearly 

with  z  up to an altitude of nearly 11,000 m. That is, 

    T = T0 - Bz  (1.21)    

 where    T0    is the sea-level temperature (absolute) and  B  is the lapse rate, both of which 

vary from day to day. The following standard values will be assumed to apply from 0 

to 11,000 m: 

   T0 = 288.15 K    and    B = 0.0065 K>m   

 Substituting equation (1.21) into the relation 

   L
dp
p

= - L
g dz

RT
   

 and integrating, we obtain 

    p = p0a1 -
Bz
T0

bg>RB

  (1.22)    

 The exponent  g/RB , which is dimensionless, is equal to 5.26 for air.  

   1.2.5  The Standard Atmosphere 

 In order to correlate flight-test data with wind-tunnel data acquired at different times 

at different conditions, or to compute flow fields, it is important to have agreed-upon 

standards of atmospheric properties as a function of altitude. Since the earliest days 

of aeronautical research, “standard” atmospheres have been developed based on the 

knowledge of the atmosphere at the time. The one used in this  text     is the 1976 U.S. 

Standard Atmosphere, which represents the mid-latitude values of an “average” day 

for the atmosphere. The atmospheric properties most commonly used in the analysis 

and design of flight vehicles, as taken from the U.S. Standard Atmosphere ( 1976 ), are 

reproduced in  Table   1.2   . These are the properties used in the examples in this  text    . 

 The basis for establishing a standard atmosphere is a defined variation of tem-

perature with altitude. This atmospheric temperature profile is developed from meas-

urements obtained from balloons, from sounding rockets, and from aircraft at a variety 

of locations at various times of the year and represents a mean expression of these 

measurements. A reasonable approximation is that the temperature varies linearly with 

altitude in some regions and is constant in other altitude regions. Given the temperature 
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profile, the hydrostatic equation [equation (1.17)] and the perfect-gas equation of state 

[equation (1.10)] are used to derive the pressure and the density as functions of altitude. 

Viscosity and the speed of sound can be determined as functions of altitude from equa-

tions such as equation (1.12), Sutherland’s equation, and equation (1.14), respectively. 

In reality, variations would exist from one location on earth to another and over the 

seasons at a given location. Nevertheless, a standard atmosphere is a valuable tool that 

provides engineers with a standard when conducting analyses and performance com-

parisons of different aircraft designs.       

 Aerodynamics Concept Box: Atmospheric Layers 

 The atmosphere is made up of alternating temperature layers: first a gradient region, fol-

lowed by an iso-thermal region, etc., as shown below. Each iso-thermal region marks the 

beginning of a new layer of the atmosphere, where each layer is given a name: troposphere, 

stratosphere, mesosphere, etc. For example, the stratosphere begins at approximately 11 

km (36,000 ft) where an iso-thermal region begins. If you look at  Table   1.2   , you will see 
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  EXAMPLE 1.9:    Properties of the standard atmosphere at 10 km 

 Using equations (1.21) and (1.22), calculate the temperature and pressure 

of air at an altitude of 10 km. Compare the tabulated values with those pre-

sented in  Table   1.2   . 

  Solution:     The ambient temperature at 10,000 m is 

   T = T0 - Bz = 288.15 - 0.0065(104) = 223.15 K   

 The tabulated value from  Table   1.2    is 223.252 K. The calculated value for 

the ambient pressure is 

    p = p0a1 -
Bz
T0

bg>RB

   

    = 1.01325 * 105J1 -
0.0065(104)

288.15
R 5.26

   

    = 1.01325 * 105(0.26063) = 2.641 * 104 N>m2   

 The comparable value in  Table   1.2    is    2.650 * 104 N>m2.      

  EXAMPLE 1.10:     Properties of the standard atmosphere in 
English units 

 Develop equations for the pressure and for the density as a function of 

altitude from 0 to 65,000 ft. The analytical model of the atmosphere should 

make use of the hydrostatic equations [i.e., equation (1.18)], for which the 

density is eliminated through the use of the equation of state for a ther-

mally perfect gas. Assume that the temperature of air from 0 to 36,100 ft 

is given by 

   T = 518.67 - 0.003565z   

 and that the temperature from 36,100 to 65,000 ft is constant at 389.97°R. 

  Solution:     From 0 to 36,000 ft, the temperature varies linearly as described in general 

by equation (1.21). Specifically, 

   T = 518.67 - 0.003565z   

that the temperature between 11 km and 20 km is constant. This is followed by a gradient 

 region, which ends at 50 km. The dividing line between the troposphere and the stratosphere is 

called the tropopause, and the dividing line between the stratosphere and the mesosphere 

is called the stratopause. The standard atmosphere values in  Table   1.2    do a very good job of 

showing these atmospheric layers and the regions that make them. 
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 Therefore,    T0 = 518.67�R    and    B = 0.003565�R>ft.    Using English unit terms 

in equation (1.22) gives us 

    p = p0a1 -
Bz
T0

bg>RB

   

    = 2116.22(1.0 - 6.873 * 10-6 z)5.26   

 For a thermally perfect gas, the density is 

   r =
p

RT
=

2116.22(1.0 - 6.873 * 10-6 z)5.26

53.34(518.67 - 0.003565z)
   

 Dividing by    r0,    the value of the density at standard sea-level conditions, 

   r0 =
p0

RT0

=
2116.22

(53.34)(518.67)
   

 we obtain the nondimensionalized density: 

   
r

r0
= (1.0 - 6.873 * 10-6 z)4.26   

 Since the temperature is constant from 36,100 to 65,000 ft, equation (1.20) 

can be used to express the pressure, with the values at 36,100 ft serving as 

the reference values    p1    and    z1:    

   p36,100 = 2116.22(1.0 - 6.873 * 10-6 z)5.26 = 472.19 lbf>ft2   

 Thus, 

   p = 472.9 expJg(36,100 - z)

RT
R    

 In English units, 

   
g

RT
=

32.174 
ft

s2

a53.34 
ft # lbf

lbm # �Rb(389.97�R)

   

 However, to have the correct units, multiply by    11>gc2 ,    so that 

   
g

RT
=

32.174 
ft

s2

a53.34 
ft # lbf

lbm # �Rb(389.97�R)a32.174 
ft # lbm

lbf # s2
b

= 4.8075 * 10-5>ft   

 Thus, 

   
p
p0

= 0.2231 exp(1.7355 - 4.8075 * 10-5 z)   
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 The nondimensionalized density is: 

   
r

r0
=

p
p0

 
T0

T
   

 Since    T = 389.97�R = 0.7519T0,    

   
r

r0
= 0.2967 exp (1.7355 - 4.8075 * 10-5 z)       

   1.3  DESCRIPTION OF AN AIRPLANE 

 Vince Lombardi, the celebrated coach of the Green Bay Packers in the 1960s, used to 

start training camp each year by standing in front of the team, holding up a football, 

and saying: “Gentlemen, this is a football.” Why did he do that? He was trying to make 

a point, every year, that no matter how long you had been doing something, it was 

always good to get back to basics. Besides, no matter how many people in the room 

knew everything he was going to tell them, some people in the room might not know 

what he was about to say, so everyone learned (yet again) what a football looked like. 

 How does this relate to airplanes? Airplanes have become incredibly common-

place in the modern world, with people flying millions of miles over the course of their 

life. But no matter how commonplace airplanes are, there are aspects of airplanes that 

many of us are not aware of. Even an experienced pilot or passenger may not know all 

of the names and definitions for various parts of an airplane, so in the spirit of “getting 

back to basics,” we will spend a little time going over the major parts of an airplane. 

 A typical commercial airliner (often called a “transport”) is shown in  Fig.   1.5   . The 

components have been broken down into three categories: lifting surfaces or devices, con-

trol surfaces, and miscellaneous components. For the category of lifting surfaces, the most 

important component is the wing, which is the surface that produces the majority of lift on 

Leading-edge

devices

Spoilers

Lifting surfaces/devices

Vertical

stabilizer

Horizontal

stabilizer

Ailerons

Rudder
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Flaps

Fuselage
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Nacelle/Pylon

Wing-tip device

Control surfaces Misc.

 Figure 1.5         Major components of a modern commercial airliner.   
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the airplane and allows the airplane to fly. Also on the wing are various subcomponents, 

including the flaps that create additional lift for taking off and landing, spoilers that “spoil” 

the flow of air over the wing by causing flow separation and creating drag (sometimes called 

speed brakes), and leading-edge devices used for creating additional lift at low speeds. Many 

modern wings also have wing-tip devices, which aid in the reduction of induced drag.  

 Other important lifting surfaces are found on many aircraft in the tail section of 

the airplane; the tail section is also referred to as the empennage. Typically, tail sections 

include a horizontal and vertical stabilizer, which keeps the airplane flying with the nose 

in front and the tail section in the back (much as feathers on an arrow). 

 Also included on the wings and empennage are three control surfaces. Since an 

airplane can maneuver in three dimensions, three sets of control surfaces are typically 

required for creating the moments that cause the airplane to roll, pitch, and yaw. These 

surfaces are known as the ailerons (which create roll motions where one wing goes up 

while the other wing goes down), the elevators (which create pitch motions where the 

nose goes up while the tail goes down), and the rudder (which creates yaw motion where 

the nose goes left while the tail goes right). 

 Finally, there are various portions of the airplane that are not there for creating 

aerodynamic lift. These components are there for holding important parts of the airplane 

within protective, drag-reducing coverings. An example is the passenger or cargo section, 

which is known as the fuselage, which accounts for a large percentage of the volume of 

the airplane. Finally, there is the attachment point for the jet engines, where the wing-like 

surface holding the engine to the airplane is called a pylon, and the covering around the 

engine is called a nacelle. 

 While there are many smaller components on a typical airplane, the parts mentioned 

above constitute the most important, and largest, components. Knowing the names and 

purposes of these airplane components is an important part of being an aerodynamicist. 

Understanding how each of these components works, and learning how to estimate the 

lift and drag for each component, can be quite challenging. But having a firm grasp of the 

names and purposes of each component is a good start.  The purpose of the rest of the book 

is to begin to learn about each of these airplane aerodynamic devices and how they work.   

   1.4  SUMMARY 

 Aerodynamics is all about estimating the pressures, shear stresses, heat, lift, drag, and 

moments created by various airplane components. We do this so that we can estimate the 

performance and flying characteristics of airplanes, and hopefully design better airplanes 

than have existed in the past. Achieving this goal will require having basic knowledge 

about fluid properties (e.g., viscosity, density, and speed of sound) that have been pre-

sented in this chapter. The reader should note that it may be necessary under certain 

conditions to use alternative relations for calculating fluid properties. For instance, for 

the relatively high temperatures associated with hypersonic flight, it may be necessary 

to account for real-gas effects (e.g., dissociation). Numerous references present the ther-

modynamic properties and transport properties of gases at high temperatures and pres-

sures [e.g.,  Moeckel and Weston (1958) ,  Hansen (1957) , and  Yos (1963) ] , but in this 

book we will concentrate on speeds and altitudes where this will not be necessary . Also, 

we have looked at how the atmosphere can be modeled in order to perform consistent 
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 calculations for the aerodynamics of airplanes. Finally, we reviewed the major compo-

nents of airplanes so that we can have a consistent language and definitions as we dive 

deeper into aerodynamics. Hopefully the contents of this  first  chapter have wetted your 

appetite and will cause you to learn more about aerodynamics  in the chapters that follow .   

     PROBLEMS 

 Problems 1.1 through 1.5 deal with the Energy-Maneuverability Technique for a T-38A 

that is powered by two J85-GE-5A engines. Presented in  Fig.   P1.1    are the thrust avail-

able and the thrust required for the T-38A that is cruising at 20,000 ft. The thrust 

 available is presented as a function of Mach number for the engines operating at military 

power (“Mil”) or operating with the afterburner (“Max”). With the aircraft cruising at a 

constant altitude (of 20,000 ft), the speed of sound is constant for  Fig.   P1.1    and the Mach 

number    (M = U>a)    could be replaced by the velocity, that is by the true air speed.  

 When the vehicle is cruising at a constant altitude and at a constant attitude, the total 

drag is equal to the thrust required and the lift balances the weight.  As will be discussed in 
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 Chapter   5   , the     total drag is the sum of the induced drag, the parasite drag, and the wave 

drag. Therefore, when the drag (or thrust required) curves are presented for aircraft 

weights of 8,000 lbf, 10,000 lbf, and 12,000 lbf, they reflect the fact that the induced drag 

depends on the lift. But the lift is equal to the weight. Thus, at the lower velocities, where 

the induced drag dominates, the drag is a function of the weight of the aircraft. 

   1.1.    The maximum velocity at which an aircraft can cruise occurs when the thrust available with 

the engines operating with the afterburner lit (“Max”) equals the thrust required, which 

are represented by the bucket shaped curves. What is the maximum cruise velocity that a 

5,000-lbf T-38A can sustain at 26,000 feet? 

   As the vehicle slows down, the drag acting on the vehicle (which is equal to the thrust required to 

cruise at constant velocity and altitude) reaches a minimum    (Dmin).    The lift-to-drag ratio is, there-

fore, a maximum    3(L>D)max4 .    What is the maximum value of the lift-to-drag ratio    3(L>D)max4     
for our 5,000-lbf T-38A cruising at 26,000 ft? What is the velocity at which the vehicle cruises, when 

the lift-to-drag ratio is a maximum? As the vehicle slows to speeds below that for    3(L>D)min4 ,    
which is equal to    3(L>D)max4 ,    it actually requires more thrust (i. e., more power) to fly slower. 

You are operating the aircraft in the region of reverse command. More thrust is required to 

cruise at a slower speed. Eventually, one of two things happens: either the aircraft stalls (which is 

designated by the term “Buffet Limit” in  Fig.   P1.1   ) or the drag acting on the aircraft exceeds the 

thrust available. What is the minimum velocity at which a 5,000-lbf T-38A can cruise at 26,000 ft? 

Is this minimum velocity due to stall or is it due to the lack of sufficient power?   

   1.2.    What are the total energy, the energy height, and the specific excess power, if our 10,000-lbf 

T-38A is using “Mil” thrust to cruise at a Mach number of 0.65 at 20,000 ft?   

   1.3.    What is the maximum acceleration that our 10,000-lbf T-38A can achieve using “Mil” thrust, 

while passing through Mach 0.65 at a constant altitude of 20,000 ft? What is the maximum 

rate-of-climb that our 10,000-lbf T-38A can achieve at a constant velocity (specifically, at a 

Mach number of 0.65), when using “Mil” thrust while climbing through 20,000 ft?   

   1.4.    Compare the values of    (L>D)max    for aircraft weights of 8,000 lbf, 10,000 lbf, and 12,000 lbf, 

when our T-38A aircraft cruises at 20,000 ft. Compare the velocity that is required to cruise 

at    (L>D)max    for each of the three aircraft weights.   

   1.5.    Compare the specific excess power for a 10,000-lbf T-38A cruising at the Mach number 

required for    (L>D)max    while operating at “Mil” thrust with that for the aircraft cruising at 

a Mach number of 0.35 and with that for the aircraft cruising at a Mach number of 0.70.   

   1.6.    Nitrogen is often used in wind tunnels as the test gas substitute for air. Compare the value 

of the kinematic viscosity 

    n =
m

r
  (1.6)    

   for nitrogen at a temperature of 350°F and at a pressure of 150 psia with that for air at the 

same conditions. 

    The constants for Sutherland’s equation to calculate the coefficient of viscosity, that is 

equation 1.12, are: 

   C1 = 2.27 * 10-8 
lbf # s

ft2 # �R0.5
 and C2 = 198.6�R   

   for air. Similarly, 

   C1 = 2.16 * 10-8 
lbf # s

ft2 # �R0.5
 and C2 = 183.6�R   
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   for nitrogen. The gas constant, which is used in the calculation of the density for a thermally 

perfect gas, 

    r =
p

RT
  (1.10)    

   is equal to    53.34 
ft # lbf

lbm # �R    for air and to    55.15 
ft # lbf

lbm # �R    for nitrogen.   

   1.7.    Compare the value of the kinematic viscosity for nitrogen in a wind-tunnel test, where the 

free-stream static pressure is    586 N/m2    and the free-stream static temperature is 54.3 K, 

with the value for air at the same conditions. 

    The constants for Sutherland’s equation to calculate the coefficient of viscosity (i.e., 

equation 1.12) are: 

   C1 = 1.458 * 10-6 
kg

s # m # K0.5
 and C2 = 110.4K   

   for air. Similarly, 

   C1 = 1.39 * 10-6 
kg

s # m # K0.5
 and C2 = 102K   

   for nitrogen. The gas constant, which is used in the calculation of the density for a thermally 

perfect gas, 

    r =
p

RT
  (1.10)    

   is equal to    287.05 
N # m
kg # K    for air and to    297 

N # m
kg # K    for nitrogen. What would be the 

advantage(s) of using nitrogen as the test gas instead of air?   

   1.8.    A gas is compressed from atmospheric pressure to a pressure of 4 atm. Temperature chang-

es from 300K to 400K. Find the density after compression. Assume perfect gas behavior for 

gas with initial density of 1.176 kg/m3.   

   1.9.    The isentropic expansion of perfect air takes place such that p>rg is a constant, where 

g = 1.4 for air. If the pressure decreases to one-third of its original value, what happens to 

the density? If the initial density is 1.176 kg/m3, what is the final density?   

   1.10.    Using the values for the pressure and for the temperature given in  Table   1.2   , calculate the 

density [use the equation for density (1.10) for a thermally perfect gas] and the dynamic 

viscosity [using Sutherland’s equation (1.12a) for dynamic viscosity] at an altitude 15 km.   

   1.11.    Using the dynamic viscosity, density, temperature values for problem 1.10 at an altitude 

15 km, what is the kinematic viscosity at this altitude [use the relation between dynamic 

viscosity and kinematic viscosity from the equation (1.13)] and speed of sound for a ther-

mally perfect gas?   

   1.12.    The pilot announces that you are flying at an altitude of 10 km where stagnation tempera-

ture is measured to be 625 K, find the speed of aircraft. Use Table 1.2 to obtain the values 

for the temperature and speed of the sound.   

   1.13.    The air in Tunnel B is expanded through a convergent/divergent nozzle to the test section, 

where the Mach number is 7, the free-stream static pressure is 586 N>mm2 and the free-

stream temperature is 54.3 K. Using the perfect-gas relations, what are the corresponding 

values for the test-section density, viscosity, and velocity? Note that    U� = M�a� .      
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   1.14.    The conditions in the reservoir (or stagnation chamber) of Aero-thermal Tunnel C 

at the Arnold Engineering Development Center (AEDC) are that the pressure (pt1) is 

170 * 103 N>m2 and the temperature (Tt) is 923.15 K. Using the perfect-gas relations, what 

are the density and the viscosity in the reservoir?   

   1.15.    The air in Tunnel C accelerates through a convergent/divergent nozzle until the Mach 

number is 4 in the test section. The corresponding values for the free-stream pressure and 

the free-stream temperature in the test section are 1100 N>m2 abs. and 219.15 K respec-

tively. What are the corresponding values for the free-stream density, viscosity, and velocity 

in the test section? Note that M� = U� >a� . Using the values for the static pressure given in   

 Table   1.2   , what is the pressure altitude simulated in the wind tunnel by this test condition?   

   1.16.    If you are flying at Mach number 0.8 at a height of 10 km, what is the speed of aircraft in 

m/s, ft/s and knots? Use Table 1.2 to obtain the value of the speed of sound.   

   1.17.    Using equations (1.21) and (1.22), calculate the temperature and pressure of the atmosphere 

at 9000 m. Compare the tabulated values with those presented in  Table   1.2   .   

   1.18.    Using an approach similar to that used in  Example   1.7   , develop metric-unit expressions for 

the pressure, the temperature, and the density of the atmosphere from 11,000 to 20,000 m. 

The temperature is constant and equal to 216.650 K over this range of altitude.   

   1.19.    Using the expressions developed in Problem 1.18, what are the pressure, the density, the 

viscosity, and the speed of sound for the ambient atmospheric air at 18 km? Compare these 

values with the corresponding values tabulated in  Table   1.2   .   

   1.20.    Using the expressions developed in  Example   1.7   , calculate the pressure, the temperature, 

and the density for the ambient atmospheric air at 10,000, 30,000, and 65,000 ft. Compare 

these values with the corresponding values presented in  Table   1.2   .   

 Problems 1.21 and 1.22 deal with standard atmosphere usage. The properties of the standard 

atmosphere are frequently used as the free-stream reference conditions for aircraft performance 

predictions. It is common to refer to the free-stream properties by the altitude in the atmospheric 

model at which those conditions occur. For instance, if the density of the free-stream flow is 

   0.00199 slugs>ft3   , then the density altitude    (hr)    would be 6000 ft. 

   1.21.    One of the design requirements for a multirole jet fighter is that it can survive a maximum 

sustained load factor of 9g at 20,000 ft MSL (mean sea level). What are the atmospheric 

values of the pressure, of the temperature, and of the density, that define the free-stream 

properties that you would use in the calculations that determine if a proposed design can 

meet this requirement?   

   1.22.    An aircraft flying at geometric altitude of 20,000 ft has instrument readings of 

p = 1195.57 lbf>ft2 and T = 475.90�R. 

    (a)   Find the values for the pressure altitude hp the temperature altitude hT and the density 

altitude hr to the nearest 500 ft.  

   (b)   If the aircraft were flying in a standard atmosphere, what would be the relationship 

among hp, hT and hr.     

   1.23.    A U-tube manometer is used to measure the pressure in water pipeline “A”. One side of the 

manometer is connected to the water pipe line and other side is open to atmosphere. If there 

is a difference of 50 cm in the mercury levels in the two tubes, what is the pressure in the pipe 

line ”A” ? Neglect the frictional losses. Take specific gravity is 13.6 and patm = 101325 N>m2.   

   1.24.    A U-tube manometer is used to measure the pressure at the stagnation point of a model 

in a wind tunnel. One side of the manometer goes to an orifice at the stagnation point; the 

other side is open to the atmosphere ( Fig.   P1.24   ). If there is a difference of 3.0 cm in the 

mercury levels in the two tubes, what is the pressure difference in    N>m2.       
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 Figure P1.24        
   1.25.    Consult a reference that contains thermodynamic charts for the properties of air, e.g., 

 Hansen (1957) , and delineate the temperature and pressure ranges for which air behaves: 

    (1)   as a thermally perfect gas, i.e.,    
p

rRT
= 1    and  

   (2)   as a calorically perfect gas, i.e.,    h = cpT,    where    cp    is a constant.     

   1.26.    A fairing for an optically perfect window for an airborne telescope is being tested in a wind tun-

nel. A manometer is connected to two pressure ports, one on the inner side of the window and 

the other port on the outside. The manometer fluid is water. During the testing at the maximum 

design airspeed, the column of water in the tube that is connected to the outside pressure port 

is 40 cm higher that the column of water in the tube that is connected to the inside port. 

    (a)   What is the difference between the pressure that is acting on the inner surface of the 

window relative to the pressure acting on the outer surface of the window?  

   (b)   If the window has a total area of 0.8 m2, what is the total force acting on the window 

due to the pressure difference?      
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    2   FUNDAMENTALS OF FLUID 

MECHANICS 

     Chapter Objectives 

  •   Understand the physical laws that form the basis of the fluid equations of motion  
  •   Learn how to obtain the equations of fluid motion in both derivative and integral 

form  
  •   Be able to apply the equations of motion to calculate properties of fluid flows  
  •   Understand dynamic similarity and how to calculate Mach number and Reynolds 

number  
  •   Understand the various Mach and Reynolds number regimes and their 

distinguishing characteristics   

   As we discussed in  Chapter   1   , to     accurately predict the aerodynamic forces and mo-

ments that act on a vehicle in flight, we will need to be able to describe the pattern of 

flow around the configuration. The resultant flow pattern depends on the geometry of 

the vehicle, the orientation of the vehicle with respect to the undisturbed free-stream 

flow, and the altitude and speed at which the vehicle is traveling. This will require us to 

solve the fundamental equations of fluid dynamics, in one way or another. 
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 The fundamental physical laws used to solve for the fluid motion in a general 

problem are: 

    1.   Conservation of mass (or the continuity equation)  

   2.   Conservation of linear momentum (or Newton’s second law of motion)  

   3.   Conservation of energy (or the first law of thermodynamics)   

 Because the flow patterns are often very complex, it may be necessary to also use 

 experimental investigations, theoretical analysis, and/or computational simulations to 

aid in describing the resultant flow. The theoretical and computational descriptions may 

utilize simplifying approximations in order to obtain any solution at all, depending on 

the complexity of the flow field. The validity of the simplifying approximations for a 

particular application should always be verified experimentally. That is why it is important 

to understand the fundamental laws that govern the fluid motion so that we can relate the 

theoretical solutions obtained using approximate flow models with experimental results, 

which usually involve scale models.   

      2.1  INTRODUCTION TO FLUID DYNAMICS 

 To calculate the aerodynamic forces acting on an airplane, it is necessary to solve the 

equations governing the flow field about the vehicle. The flow-field solution can be 

formulated from the point of view of an observer on the ground or from the point of 

view of the pilot. Provided that the two observers apply the appropriate boundary con-

ditions to the governing equations, both observers will obtain the same values for the 

aerodynamic forces acting on the airplane. 

 To an observer on the ground, the airplane is flying into a mass of air sub-

stantially at rest (assuming there is no wind). The neighboring air particles are ac-

celerated and decelerated by the airplane and the reaction of the particles to the 

acceleration results in a force on the airplane. The motion of a typical air particle is 

shown in  Fig.   2.1   . The particle, which is initially at rest well ahead of the airplane, is 

accelerated by the passing airplane. The description of the flow field in the ground-

observer-fixed coordinate system must represent the time-dependent motion (i.e., 

a nonsteady flow).  

 As viewed by the pilot, the air is flowing past the airplane and moves in re-

sponse to the geometry of the vehicle. If the airplane is flying at constant altitude 

and constant velocity, the terms of the flow-field equations that contain partial de-

rivatives with respect to time are zero in the vehicle-fixed coordinate system. Thus, 

as shown in  Fig.   2.2   , the velocity and the flow properties of the air particles that 

pass through a specific location relative to the vehicle are independent of time. The 

flow field is steady relative to a set of axes fixed to the vehicle (or pilot). Therefore, 

the equations are usually easier to solve in the vehicle (or pilot)-fixed coordinate 

system rather than in the ground-observer-fixed coordinate system. Because of the 

resulting simplification of the mathematics through the Galilean transformation 

from the ground-fixed-reference coordinate system to the vehicle-fixed-reference 

coordinate system, many problems in aerodynamics are formulated as the flow of 

a stream of fluid past a body at rest. Note that the subsequent locations of the air 
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particle that passed through our control volume at time    t0    are included for compari-

son with  Fig.   2.2   .  

 In this  text    , we will use the vehicle (or pilot)-fixed coordinate system. Instead of 

describing the fluid motion around a vehicle flying through the air, we will examine air 

flowing around a fixed vehicle. At points far from the vehicle (i.e., the undisturbed free 

stream), the fluid particles are moving toward the vehicle with the velocity    U�     (see 

 Fig.   2.2   ), which is in reality the speed of the vehicle (see  Fig.   2.1   ). The subscript    �     or 1 

will be used to denote the undisturbed (or free-stream) flow conditions (i.e., those con-

ditions far from the vehicle). Since all the fluid particles in the free stream are moving 

with the same velocity, there is no relative motion between them, and, hence, there are 

no shearing stresses in the free-stream flow. When there is no relative motion between 

the fluid particles, the fluid is termed a  static medium   (as discussed in  Section   1.2.4   ) . 

The values of the static fluid properties (e.g., pressure and temperature) are the same 

for either coordinate system.  

Air
particle

Time t0 � 2�t

Time t0 ��t

Initial time, t0

Ground-fixed reference

Ground-fixed reference

Ground-fixed reference

U�

U�

U�

 Figure 2.1         (Nonsteady) airflow around a wing in the 

ground-fixed coordinate system.   
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   2.2  CONSERVATION OF MASS 

 The conservation of mass is one of the most important and useful equations in fluid 

dynamics. It allows us to determine if a given flow field conserves mass, and is therefore 

physically possible. If mass is not conserved, then we are wasting our time analyzing the 

details of the flow, since it cannot occur physically. 

 First, we will apply the principle of conservation of mass to a small volume of space 

(a control volume) through which the fluid can move freely. It is important to understand 

that the “walls” of the control volume are fictitious and do not interfere with the flow. 

For convenience, we will use a Cartesian coordinate system ( x ,  y ,  z ), as shown in  Fig.   2.3   . 

Furthermore, in the interest of simplicity, we will look at a two-dimensional flow, that 

is, one in which there is no flow along the  z  axis; flow patterns are the same for any  xy  

plane. As indicated in the sketch of  Fig.   2.3   , the component of the fluid velocity in the  x  

direction will be designated by  u , and that in the  y  direction by  v . The net outflow of mass 

through the surface surrounding the volume must be equal to the decrease of mass within 

Time t0 � 2�t

Time t0 ��t

Initial time, t0

Vehicle-fixed reference

Control
volume Fluid particle which passed

through control volume at time t0

U�

U�

U�

 Figure 2.2         (Steady) airflow around a wing in a vehicle-fixed 

 coordinate system.   
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the volume (this is the statement required for mass to be conserved). The mass-flow rate 

through a surface bounding the element is equal to the product of the density, the veloc-

ity component normal to the surface, and the area of that surface (flow out of the volume 

is considered positive). A first-order Taylor’s series expansion is used to evaluate the 

flow properties at the faces of the element, since the properties are a function of position. 

We could use many terms in the series (including second-order and third-order terms), 

but they would vanish when we assumed that the control volume was small. Referring to 

 Fig.   2.3   , the net outflow of mass per unit time per unit depth (into the paper) is  
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 which must equal the rate at which the mass contained within the element decreases: 

   -
0r

0t
 �x �y   

 Equating the two expressions, combining terms, and dividing by    �x �y,    we obtain 

   
0r

0t
+

0

0x
(ru) +

0

0y
(rv) = 0   

 The fact that the size of the control volume,    �x �y,    vanished at this point means that 

our choice of volume was arbitrary (as long as it was larger than a microscopic scale and 

smaller than the scale of the airplane). 

 If the approach had been extended to include flow in the  z  direction, we would 

obtain the general differential form of the continuity equation: 

    
0r

0t
+

0

0x
(ru) +

0

0y
(rv) +

0

0z
(rw) = 0  (2.1)    
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 Figure 2.3         Velocities and densities for the mass-flow balance 

through a fixed volume element in two dimensions.   
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 In vector form, the equation is 

    
0r

0t
+ � # (rV

S

) = 0  (2.2)    

 As has been discussed, the pressure variations that occur in relatively low-speed 

flows are sufficiently small so that the density is essentially constant. For these incom-

pressible flows, the continuity equation simplifies to: 

    
0u
0x

+

0v

0y
+

0w

0z
= 0  (2.3)    

 In vector form, the incompressible continuity equation is: 

    � # V
S

= 0  (2.4)    

 Using appropriate boundary conditions, such as the requirement that there is no 

flow through a solid surface (i.e., the normal component of the velocity is zero at a solid 

surface), we can solve equation (2.4) for the velocity field. By doing this, we obtain a 

detailed picture of the fluid velocity as a function of position throughout the flow field, 

which is one of our goals in aerodynamics. 

  EXAMPLE 2.1:    A basic flow where mass is conserved 

 Determine whether the steady, two-dimensional, incompressible flow given by 

   u = 2x   v = -2y   

 satisfies the conservation of mass. 

  Solution:     The incompressible conservation of mass is given by equation (2.3). Simplifying 

for two-dimensional flow yields: 

   
0u
0x

+

0v

0y
= 0   

 The required derivatives are:    0u>0x = 2    and    0v>0y = -2   . Substituting these 

derivatives into the continuity equation results in: 

   
0u
0x

+

0v

0y
= 2 - 2 = 0   

 Therefore, mass is conserved for this flow field.  We will examine this flow 

field in more detail in  Chapter   3   .    

  EXAMPLE 2.2:    Incompressible boundary layer 

 Consider the case where a steady, incompressible, uniform flow whose 

velocity is    U�     (i.e., a free-stream flow) approaches a flat plate. In the 

viscous region near the surface, which is called the boundary layer  and is 
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discussed at length in  Chapter   4    , the streamwise component of velocity 

is given by 

   u = U� a
y

d
b

1>7

   

 where    d,    the boundary-layer thickness at a given station, is a function of  x . Is 

a horizontal line parallel to the plate and a distance    �    from the plate (where 

   �    is equal to    d    at the downstream station) a streamline? (See  Fig.   2.4   .) 

   Solution:     By continuity for this steady, two-dimensional, incompressible flow, 

   
0u
0x

+

0v

0y
= 0   

 Since    u = U�(y>d)1>7    and    d = d(x)    

   
0v

0y
= -

0u
0x

=
U�

7
 
y1>7

d8>7
 
dd
dx

   

 Integrating with respect to  y  yields 

   v =
U�

8
 
y8>7

d8>7
 
dd
dx

+ C   

 where  C , the constant of integration, can be set equal to zero since    v = 0    

when    y = 0    (i.e., there is no flow through the wall). Thus, when    y = �,    

   ve =
U�

8
a

�

d
b

8>7dd
dx

   

 Since  v  is not equal to zero, there is flow across the horizontal line which is 

   �    above the surface, and this line is not a streamline.   

 If the details of the flow are not of concern, the mass conservation principle can 

be applied directly to the entire region. Integrating equation (2.2) over a fixed finite 

volume in our fluid space (see  Fig.   2.5   ) yields  

   l
vol

0r

0t
d(vol) + l

vol

� # (rV
S

)d(vol) = 0   

Approach
flow

�

Inviscid flow

Flat
plate

Viscous
boundary

layer

u�
y 1/7

d(x)

d

d(x)

U�

U�

 Figure 2.4         Incompressible boundary layer; flow diagram for 

Example 2.2.   
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 The second volume integral can be transformed into a surface integral using Gauss’s 

theorem (also known as the divergence theorem), which relates the volume integral of 

a vector (in this case    rV
S

   ) to the surface integral of the same vector as: 

   l
vol

� # (rV
S

)d(vol) = #
A

nn # rV
S

 dA   

 where    nn  dA    is a vector normal to the surface  dA  which is positive when pointing outward 

from the enclosed volume and which is equal in magnitude to the surface area. The circle 

through the integral sign for the area indicates that the integration is to be performed over 

the entire surface bounding the volume. Since the control volume is fixed in space (and the 

limits of integration are also fixed), the time derivative can be moved outside the integral. 

The resultant equation is the general integral expression for the conservation of mass: 

    
0

0t l
vol

rd(vol) + #
A

rV
S

# nn  dA = 0  (2.5)    

 In words, the time rate of change of the mass within the volume plus the net efflux 

(outflow) of mass through the surface bounding the volume must be zero. 

 The volumetric flux  Q  is the flow rate through a particular surface and is equal to 

   4V
S

# nn  dA    , which we will use in  Chapter   3   .   For a sample problem using the integral 

form of the continuity equation, see  Example   2.4   .  

   2.3  CONSERVATION OF LINEAR MOMENTUM 

 The equation for the conservation of linear momentum is obtained by applying  Newton’s 

second law: the net force acting on a fluid particle is equal to the time rate of change 

of the linear momentum of the fluid particle. As the fluid element moves in space, its 

velocity, density, shape, and volume may change, but its mass is conserved. Thus, using 

a coordinate system that is neither accelerating nor rotating, which is called an  inertial 
coordinate system , we may write 

    F
S

= m 
dV

S

dt
  (2.6)    

Volume � ��� d (vol)

n dA^

 Figure 2.5         Nomenclature for the integral form of the continuity 

equation.   
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 The velocity    V
S

    of a fluid particle is, in general, an explicit function of time  t  as well as of 

its position  x ,  y ,  z . Furthermore, the position coordinates  x ,  y ,  z  of the fluid particle are 

themselves a function of time. Since the time differentiation of equation (2.6) follows 

a given particle in its motion, the derivative is frequently termed the  particle, total , or 

 substantial derivative  of    V
S

   . Since    V
S

(x, y, z, t)    and  x ( t ),  y ( t ), and  z ( t ), 

    
dV

S

dt
=

0V
S

0x
 
dx
dt

+

0 V
S

0y
 
dy

dt
+

0 V
S

0z
 
dz
dt

+

0 V
S

0t
  (2.7)    

 (The reader should note that some authors use  D/Dt  instead of  d/dt  to represent the 

substantial derivative.) However, 

   
dx
dt

= u    
dy

dt
= v    

dz
dt

= w   

 Therefore, the acceleration of a fluid particle is 

    
d V

S

dt
=

0 V
S

0t
+ u

0 V
S

0x
+ v 

0 V
S

0y
+ w 

0 V
S

0z
  (2.8)    

 or 

    
d V

S

dt
=

0 V
S

0t
+ (V

S

# �)V
S

a =  
D V

S

Dt
b   (2.9)    

 Thus, the substantial derivative is the sum of the local, time-dependent changes that 

occur at a point in the flow field and of the changes that occur because the fluid 

particle moves around in space. Problems where the local, time-dependent changes 

are zero, 

   
0 V

S

0t
= 0   

 are known as  steady-state flows . Note that even for a steady-state flow where    0V
S

>0t    
is equal to zero, fluid particles can accelerate due to the unbalanced forces acting on 

them. This is the case for an air particle that accelerates as it moves from the stagnation 

region to the low-pressure region above the airfoil. The convective acceleration of a 

fluid particle as it moves to different points in space is represented by the second term 

in equation (2.9). An unsteady flow is a flow where the velocity varies as a function of 

time at a point in the flow field, not necessarily a flow where velocity varies from one 

point to another. 

 The principal forces with which we are concerned are those that act directly 

on the mass of the fluid element, the  body forces , and those that act on its surface, 

the  pressure forces  and  shear forces . The stress system acting on an element of the 

surface is illustrated in  Fig.   2.6   . The stress components    t    acting on the surface of a 

small cube are assigned subscripts. The first subscript indicates the direction of the 

normal to the surface on which the stress acts and the second indicates the direc-

tion in which the stress acts. Thus,    txy    denotes a stress acting in the  y  direction on 

the surface whose normal points in the  x  direction. Similarly,    txx    denotes a normal 

stress acting on that surface. The stresses are described in terms of a right-hand 
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coordinate system in which the outwardly directed surface normal indicates the 

positive direction.  

 The properties of most fluids have no preferred direction in space, which is called 

an isotropic property. As a result of the isotropic nature of many fluids, 

    txy = tyx    tyz = tzy    tzx = txz  (2.10)    

 as shown in  Schlichting and Gersten (2000) . 

 In general, the various stresses change from point to point. Thus, they produce 

net forces on the fluid particle, which cause it to accelerate. The forces acting on 

each surface are obtained by taking into account the variations of stress with position 

by using the center of the element as a reference point. To simplify the illustration 

of the force balance on the fluid particle, we will again consider a two-dimensional 

flow, as shown in  Fig.   2.7   . The force in the  x  direction (for a unit depth in the  z  di-

rection) is:  

    rfx�x�y + Jtxx +

0

0x
(txx)

�x
2

R �y - Jtxx -

0

0x
(txx)

�x
2

R �y    

    Jtyx +

0

0y
(tyx)

�y

2
R �x -  Jtyx -

0

0y
(tyx)

�y

2
R �x   

    = rfx�x�y +

0

0x
(txx)�x�y +

0

0y
(tyx)�x�y    

 where    fx    is the body force per unit mass in the  x  direction. The body force for the flow 

fields of interest in this  text     is gravity, but other body forces could exist (such as elec-

tromagnetic forces). 

z

x

y

tyy

txy

tzy

tzx
tzz

txz

txx

tyx

tyz

 Figure 2.6         Nomenclature for the normal stresses and the shear 

stresses acting on a fluid element.   
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 Including flow in the  z  direction, the resultant force in the  x  direction is 

    Fx = rfx �x �y �z +

0

0x
(txx) �x �y �z +

0

0y
(tyx) �y �x �z   

    +  
0

0z
(tzx) �z �y �x    

 which, by equation (2.6), is equal to 

   max = r �x �y �z 
du
dt

= r �x �y �zJ 0u
0t

+ (V
S

# �)u R    

 Equating the two and dividing by the volume of the fluid particle    �x �y �z    yields the 

linear momentum equation for the  x  direction: 

    r 
du
dt

= rfx +

0

0x
 txx +

0

0y
 tyx +

0

0z
 tzx  (2.11a)    

 Similarly, we obtain the equation of motion for the  y  direction: 

    r 
dv

dt
= rfy +

0

0x
 txy +

0

0y
 tyy +

0

0z
 tzy  (2.11b)    

 and for the  z  direction: 

    r 
dw

dt
= rfz +

0

0x
 txz +

0

0y
 tyz +

0

0z
 tzz  (2.11c)    

 Next, we need to relate the stresses to the motion of the fluid. For a fluid at rest or for a 

flow for which all the fluid particles are moving at the same velocity, there is no shearing 

�x

�y
fx

fy

x

y

�y
2

(tyy)tyy � �
�y

�x
2

(txx)txx � �
�x

�x
2

(txy)txy � �
�x

�y
2

(tyx)tyx � �
�y

�x
2

(txy)txy � �
�x

�x
2

(txx)txx � �
�x

�y
2

(tyx)tyx � �
�y

�y
2

(tyy)tyy � �
�y

 Figure 2.7         Stresses acting on a two-dimensional element of fluid.   
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stress, and the normal stress is in the nature of a pressure. For fluid particles, the stress 

is related to the rate of strain by a physical law based on the following assumptions: 

    1.   Stress components may be expressed as a linear function of the components of the 

rate of strain. The friction law for the flow of a Newtonian fluid where    t = m(0u>0y)    

is a special case of this linear stress/rate-of-strain relation. The viscosity    m    is more 

precisely called the first viscosity coefficient. In a more rigorous development, we 

should include the second viscosity coefficient    (l),    which would appear in the nor-

mal stress terms. The term involving    l    disappears completely when the flow is in-

compressible, since    � # V
S

= 0    by continuity. For other flows, Stokes’s hypothesis 

   (l = -
2
3m)    is presumed to apply [see  Schlichting and Gersten (2000)  for more de-

tails]. The second viscosity coefficient is of significance in a few specialized prob-

lems, such as the analysis of the structure of a shockwave, where extremely large 

changes in pressure and temperature take place over very short distances.  

   2.   The relations between the stress components and the rate-of-strain components 

must be invariant to a coordinate transformation consisting of either a rotation 

or a mirror reflection of axes, since a physical law cannot depend upon the choice 

of the coordinate system.  

   3.   When all velocity gradients are zero (i.e., the shear stress vanishes), the stress 

components must reduce to the hydrostatic pressure,  p . 

 For a fluid that satisfies all three of these criteria, 

    txx = -p -

2

3
m� # V

S

+ 2m
0u
0x

   

    tyy = -p -

2

3
m� # V

S

+ 2m
0v

0y
   

    tzz = -p -

2

3
m� # V

S

+ 2m
0w

0z
   

    txy = tyx = ma
0u
0y

+

0v

0x
b    

    txz = tzx = ma
0u
0z

+

0v

0x
b    

    tyz = tzy = ma
0v

0z
+

0w

0y
b      

 With the appropriate expressions for the surface stresses substituted into equation 

(2.11), we obtain: 

     r
0u
0t

+ r(V
S

# �)u = rfx -

0p

0x
+ a2m

0u
0x

-

2

3
m� # V

S

b  

  +

0

0y
Jma 0u

0y
+

0v

0x
b R +

0

0z
Jma 0w

0x
+

0u
0z

b R   (2.12a)    
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     r
0v

0t
+ r(V

S

# �)v = rfy +

0

0x
Jma 0u

0y
+

0v

0x
b R     

     -
0p

0y
+

0

0y
a2m

0v

0y
-

2

3
m� # V

S

b    

     +
0

0z
Jma 0w

0y
+

0v

0z
b R   (2.12b)    

     r
0w

0t
+ r(V

S

# �)w = rfz +

0

0x
Jma 0w

0x
+

0u
0z

b R     

     +  
0

0y
Jma 0v

0z
+

0w

0y
b R -

0p

0z
    

     +  
0

0z
a2m

0w

0z
-

2

3
m� # V

S

b   (2.12c)    

 These general, differential equations for the conservation of linear momentum are 

known as the  Navier-Stokes equations . Notice that each term in the equation repre-

sents either a force or acceleration (with the forces being on the right-hand side and 

the acceleration terms being on the left-hand side). Equation (2.12a) has the various 

terms labeled for convenience: local acceleration, convection, body forces, pressure 

forces, and stress forces. Also notice that the viscosity    m    is considered to be dependent 

on the spatial coordinates. This is done since, for a compressible flow, the changes in 

velocity and pressure, together with the heat due to friction, bring about considerable 

temperature variations. The temperature dependence of viscosity in the general case 

should, therefore, be incorporated into the governing equations  [see equation (1.12) for 

example] . Finally, the units of the equation are force per unit volume, since we divided 

through by the volume during the derivation. 

 For a general application, the unknown parameters that appear in the Navier-

Stokes equations are the three velocity components ( u, v,  and  w ), the pressure ( p ), the 

density    (r),    and the viscosity    (m).       As we discussed in  Chapter   1   , for     a fluid of known 

composition that is in equilibrium, the density and the viscosity are unique functions 

of pressure and temperature  [for example using the equation of state and Sutherland’s 

equation, equations (1.10) and (1.12), respectively] . Therefore, we have five primary 

(or primitive) variables for a general flow problem: the three velocity components, the 

pressure, and the temperature. However, at present we have only four equations: the 

continuity equation [equation (2.2)] and the three components of the momentum equa-

tion [equations (2.12a) through (2.12c)]. To solve for a general flow involving all five 

variables, we would need to introduce the energy equation. 

 Since equations (2.12a) through (2.12c) are the general differential equations for 

the conservation of linear momentum, the equations for a static medium can be ob-

tained by neglecting the terms relating to the acceleration of the fluid particles and to 

the viscous forces. Neglecting these terms in equations (2.12a) through (2.12c) and as-

suming that the body force is gravity and that it acts in the  z  direction, the reader would 

obtain equations  (1.16a) through (1.16c)    . 

 The integral form of the momentum equation can be obtained by returning to 

Newton’s law. The sum of the forces acting on a system of fluid particles is equal to 
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the rate of change of momentum of the fluid particles. Therefore, the sum of the body 

forces and of the surface forces equals the time rate of change of momentum within the 

volume plus the net efflux of momentum through the surface bounding the volume, as 

shown in  Fig.   2.5   . In vector form, the Navier-Stokes equations are, 

    F
S

body + F
S

surface =
0

0t l
vol

rV
S

 d(vol) + #
A

V
S

(rV
S

# nn  dA)  (2.13)    

 This equation can also be obtained by integrating equation (2.12) over a volume and 

using Gauss’s Theorem.  

   2.4  APPLICATIONS TO CONSTANT-PROPERTY FLOWS 

 For many flows, temperature variations are sufficiently small that the density and vis-

cosity may be assumed constant throughout the flow field. Such flows will be termed 

 constant-property  flows in this  text    . The terms  low-speed  and/or  incompressible  flows 

will also be used in the description of these flows. A gas flow is considered incompress-

ible if the Mach number is less than 0.3 to 0.5, depending upon the application. For 

these flows, there are only four unknowns: the three velocity components ( u, v,  and  w ) 

and the pressure ( p ). Therefore, we have a system of four independent equations that 

can be solved for the four unknowns: the energy equation is not needed to obtain the 

velocity components and the pressure of a constant-property flow. 

 We will consider two solution methods for constant-property flows, one for which 

the solution will be obtained using differential equations [equations (2.12)] and one for 

which the integral equations are used [equation (2.13)]. Each of these methods is useful 

in different types of applications. 

   2.4.1  Poiseuille Flow 

 Poiseuille flow is one of a class of flows that have parallel streamlines and for which the 

Navier-Stoke equations [equations (2.12)] can be solved analytically. Poiseuille flow is 

the steady, low-speed flow of a viscous fluid in an infinitely long, two-dimensional chan-

nel of height  h  (as shown in  Fig.   2.8   ). Since the flow is low speed, we will assume that 

the viscosity and density are constant. Because the channel is infinitely long, the velocity 

components do not change in the  x  direction. In fluid dynamics, such a flow is called a 

y

x

u( y only)

y � h
2

y ��
h
2

h

 Figure 2.8         Parallel flow between two flat plates.   
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 fully developed flow (see  Fig.   2.9   ) . We will also assume that the body forces are negli-

gible since the flow is horizontal and gravity has very little effect. We want to find the 

velocity profile and the shear-stress distribution for this flow.  

 For a two-dimensional flow,    w K 0    and all the derivatives with respect to  z  are 

zero. The continuity equation [equation (2.3)] for this steady-state, constant-property 

flow becomes: 

   
0u
0x

+

0v

0y
= 0   

 Since the velocity components do not change in the  x  direction,    
0u
0x

= 0    and, hence, 

   
0v

0y
= 0   

 Furthermore, since    v = 0    at both walls (i.e., there is no flow through the walls) and  v  

does not depend on  x  or  z , then    v K 0    everywhere. Therefore, the flow is parallel to 

the  x  axis all along the plate. 

 Since we know that    v K 0    and    w = 0    everywhere, then  u  is a function of  y  only, 

since it does not depend on  x ,  z , or  t . Therefore, all the terms in equations (2.12b) and 

(2.12c) are zero and do not need to be considered further. Now if we expand the ac-

celeration terms of equation (2.12a), we obtain: 

    r
0u
0t

+ r(V
S

# �)u = r
0u
0t

+ r(uin + v jn + wkn) # a
0u
0x

in +

0u
0y

jn +

0u
0z

knb          

    = r
0u
0t

+ ru
0u
0x

+ rv
0u
0y

+ rw
0u
0z

   

 and equation (2.12a) becomes: 

     r
0u
0t

+ ru
0u
0x

+ rv
0u
0y

+ rw
0u
0z

= rfx -

0p

0x
+

0

0x
a2m

0u
0x

-

2

3
m� # V

S

b     

     +  
0

0y
Jma 0u

0y
+

0v

0x
b R +

0

0z
Jma 0u

0z
+

0w

0x
b R   (2.14)    

 Because we are considering low-speed of a simple fluid,    m    is constant throughout the 

flow field. Therefore, we can rewrite the viscous terms of this equation as follows: 

    
0

0x
a2m

0u
0x

-

2

3
m� # V

S

b +

0

0y
Jma 0u

0y
+

0v

0x
b R +

0

0z
Jma 0u

0z
+

0w

0x
b R    

    = m
0

2u

0x2
+ m

0

0x
a

0u
0x

b -

2

3
m

0

0x
(� # V

S

) + m
0

2u

0y2
   

      +m
0

0x
a

0v

0y
b + m

0
2u

0z2
+ m

0

0x
a

0w

0z
b    

    = ma
0

2u

0x2
+

0
2u

0y2
+

0
2u

0z2
b + m

0

0x
a

0u
0x

+

0v

0y
+

0w

0z
b -

2

3
m

0

0x
(� # V

S

)   
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 We can also show that the divergence of the velocity vector is given by: 

   
0u
0x

+

0v

0y
+

0w

0z
= � # V

S

   

 and that    � # V
S

= 0    (since this is a way of writing the continuity equation for a constant 

density flow). We can write the resulting equation as: 

    r
0u
0t

+ ru
0u
0x

+ rv 

0u
0y

+ rw 

0u
0z

= rfx -

0p

0x
+ ma

0
2u

0x2
+

0
2u

0y2
+

0
2u

0z2
b   (2.15)    

 However, we can further simplify equation (2.15) by eliminating terms whose value 

is zero: 

   

r
0u
0t

= 0 because the flow is steady

 ru
0u
0x

= 0 because u = u(y only)

 rv
0u
0y

= 0 because v K 0

rw
0u
0z

= m
0

2u

0x2
= m

0
2u

0z2
= 0 because u = u(y only)

rfx = 0 because body forces are negligible

   

 Neglecting these terms leads us to: 

    0 = -  
0p

0x
+ m

0
2u

0y2
   

    0 = -

0p

0y
   

    0 = -

0p

0z
   

 These three equations require that the pressure is a function of  x  only, but also recall 

that  u  is a function of  y  only. These two statements can be true only if: 

   m
d2u

dy2
=

dp

dx
= constant   

 which is the equation that describes Poiseuille flow. We can solve the equation by in-

tegrating twice to obtain: 

   u =
1

2m
 
dp

dx
y2

+ C1 y + C2   

 To evaluate the constants of integration, we apply the viscous-flow boundary condition 

that the fluid particles at a solid surface move with the same speed as the surface (i.e., 

do not slip relative to the surface). This tells us that 
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    at y = -

h
2
 u = 0   

    at y = +

h
2
 u = 0   

 When we apply these conditions, we find that: 

    C1 = 0    

    C2 = -

1

2m
 
dp

dx
 
h2

4
   

 which results in a velocity profile given by: 

   u = +

1

2m
 
dp

dx
ay2

-

h2

4
b    

 The velocity profile is parabolic, with the maximum velocity occurring at the center of 

the channel, as shown in  Fig.   2.8   . The shear stress distribution is given by: 

   t = m
du
dy

= 2m
1

2m
 
dp

dx
y = y

dp

dx
   

 The lower wall is given by    y = -h>2    and the upper wall is given by    y = +h>2   . So, using 

the above equation, the shear stress at the lower wall is: 

   tl = m
du
dy

= -

h
2

 
dp

dx
   

 and the shear stress at the upper wall is: 

   tu = m
du
dy

= +

h
2

 
dp

dx
   

 Since the pressure must decrease in the  x  direction (i.e.,  dp / dx  must be negative) to have 

a velocity in the direction shown, the shear stress at the lower wall is: 

   tl = +

h
2
`
dp

dx
`    

 and the shear stress at the upper wall is: 

   tu = -

h
2
`
dp

dx
`    

 Since the upper wall shear stress is defined relative to a local wall coordinate system 

(looking at the flow from the top wall rather than the bottom wall), the shear stress 

is actually pointing to the right (which is the positive direction in our flow coordinate 

system). So both the lower and upper walls have a shear stress pointing to the right that 

creates drag. This solution for Poiseuille flow shows that it is possible to obtain useful 

solutions to the equations of motion for a fairly basic flow. There are a number of other 

analytic flow solutions for the governing equations, one of which we will look at now 

(Couette flow) , and another that we will see in  Chapter   4    (Blasius flow) .  
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   2.4.2  Couette Flow 

 Another solution of the same ordinary differential equation that described Poiseuille 

flow can be found for parallel flow between two flat plates, where the lower plate is 

stationary and the upper plate is moving to the right with velocity  U . This flow is easier 

to solve if the coordinate system is moved to the bottom plate, as shown in  Fig. 2.10     , 

and the distance between the two plates is  h . The governing equation for this flow is: 

   m
d2u

dy2
=

dp

dx
= constant   

 which is the same as Poiseuille flow, but the boundary conditions are: 

    at y = 0  u = 0    

    at y = h  u = U   

 After integrating in the same way as was done previously: 

   u =
1

2m
 
dp

dx
y2

+ C1y + C2   

 Evaluating the boundary condition at    y = 0    gives    C2 = 0   . Evaluating the boundary 

condition at    y = h    gives that    C1 = U>h,    and the velocity distribution, as well as the 

nondimensional velocity distribution, becomes (with some algebraic re-arrangement): 

    u = U
y

h
-

h2

2m
 
dp

dx
 
y

h
a1 -

y

h
b = U

y

h
+ UP

y

h
a1 -

y

h
b    

    
u
U

=
y

h
-

h2

2mU
 
dp

dx
 
y

h
a1 -

y

h
b =

y

h
+ P 

y

h
a1 -

y

h
b    

 The solution for the flow is shown in  Fig.   2.10   , where    P = -

h2

2mU
 
dp

dx
    is a dimensionless 

pressure gradient. When    P 7 0,    the pressure gradient is negative (the pressure is de-

creasing in the  x  direction, which is a favorable pressure gradient), and the flow is 

accelerating. When    P 6 0,    the pressure gradient is positive (the pressure is increasing 

in the  x  direction, which is an adverse pressure gradient), and the flow has reversed 

direction (back flow). For    P = 0,    there is no pressure gradient and the flow is simply 

being sheared by the motion of the upper plate in a linear manner.   

y

x

u(y only) and
is the same

at both
stations

21

 Figure 2.9         Fully developed flow between two flat plates.   
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 Figure 2.10         Couette flow between two parallel walls [ Schlichting 

and Gersten (2000) ].   

  EXAMPLE 2.3:    Couette flow analysis 

 Find the shear stress distribution, the volumetric flow rate, the average ve-

locity, and the point of maximum velocity for Couette flow of standard day 

sea-level air as a function of  P , the nondimensional pressure gradient. Evalu-

ate the volumetric flow rate, the average velocity, and the point of maximum 

velocity for    U = 2    m/s,    h = 0.1    m, and    P = 1.    

  Solution:     The velocity profile for Couette flow is given by: 

   
u
U

=
y

h
+ P 

y

h
a1 -

y

h
b    

 and the shear stress distribution is: 

   t = m
du
dy

= m
U
h

+

2mU

h
Pa

1

2
-

y

h
b    

 The volumetric flow rate is given by    Q = LA
V
S

# dA,    and since the

flow is aligned with the  x  direction, the volumetric flow rate per unit depth, 

 d , into the paper is: 

   
Q
d

= L
h

0

JU 
y

h
+ UP 

y

h
a1 -

y

h
b Rdy =

Uh
2

+

Uh
6

P =
Uh
2

a1 +

P
3
b    

 The average velocity is found by dividing the volume flow rate by the area: 

   V =
Q
A

=
dQ>d

hd
=

U
2
a1 +

P
3
b    
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 Finally, the point of maximum velocity is found by taking the deriva-

tive of the velocity variation and setting it equal to zero,    du>dy = 0.    We 

found the derivative previously, so: 

   
du
dy

=
U
h

+

2U
h

Pa
1

2
-

y

h
b = 0   

 which takes places at: 

   y =
h
2

-

mU>h

dp>dx
=

h
2

+

h
2P

=
h
2
a1 +

1

P
b    

 For the given values    Q>d =
4

30
 m2>s, V =

4

3
 m>s =

2

3
U, y = 0.1 m    (look 

at  Fig. 2.10      to see if these results make sense).    

   2.4.3  Integral Equation Application 

 Applying the integral equations to a flow problem can also lead to exact solutions. 

These formulations do not require the integration of an ordinary differential equation, 

but do require the application of the surface and volume integrals to a flow problem. 

 As an example of such an application, we can re-look at the Poiseuille flow prob-

lem from  Section   2.4.1   , but this time we analyze the problem with the integral form of 

the governing equations. Examination of the integral momentum equation (2.13) veri-

fies that a change in pressure must occur to balance the shear forces. We can verify this 

by using equation (2.13) on the control volume shown in  Fig.   2.9   . Since the flow is fully 

developed, the velocity profile at the upstream station (i.e., station 1) is identical to that 

at the downstream station (i.e., station 2). Therefore, the positive momentum efflux at 

station 2 is balanced by the negative momentum influx at station 1: 

   ∂V
S

(rV
S

# nn  dA) = 0   

 Therefore, for this steady flow with negligible body forces: 

   F
S

surface = 0   

 or: 

   p1 h - p2 h - 2t �x = 0   

 where the factor of 2 accounts for the existence of shear forces at the upper and lower 

walls. Finally, as shown in the approach using the differential equation, 

   t = -

p2 - p1

�x
 
h
2
= -

dp

dx
 
h
2

   

 Note, as we discussed previously, that there are subtle implications regarding the signs 

in these terms. For the velocity profile shown, the shear acts to retard the fluid motion 

and the pressure must decrease in the  x  direction (i.e.,    dp>dx 6 0   ). 
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  EXAMPLE 2.4:    Drag on a flat-plate airfoil 

 A steady, uniform    (V
S

= U�  in),    low-speed flow approaches a very thin, 

flat-plate “airfoil” whose length is  c . Because of viscosity, the flow near 

the plate slows, such that velocity measurements at the trailing edge of the 

plate indicate that the  x  component of the velocity (above the plate) var-

ies as: 

   u = U� a
y

d
b

1>7

   

 Below the plate, the velocity is a mirror image of this profile. The pressure 

is uniform over the entire control surface. Neglecting the body forces, what 

is the drag coefficient for this flow if    d = 0.01c?    The drag coefficient is the 

drag per unit span,  d  (unit depth into the page), divided by the product of 

the free-stream dynamic pressure    (1
2r�U2

� )    and the reference area per unit 

span (which is the chord length  c ): 

   Cd =
d

1
2r�U2

�c
   

  Solution:     We can apply the integral form of the momentum equation [i.e., equation 

(2.13)] to this flow. Noting that the momentum equation is a vector equation, 

we can consider the  x  component only, since that is the direction in which 

the drag force acts. Furthermore, since the flow is planar symmetric, only 

the control volume above the plate will be considered (i.e., from    y = 0    to 

   y = d   ). Since the pressure is uniform over the control surface and since the 

body forces are negligible, the only force acting on the fluid in the control 

volume is the retarding force of the plate on the fluid, which is    -d>2.    

 Because the flow is steady, the first term on the right-hand side of 

equation (2.13) is zero. Thus, 

   -
d
2
= ∂ (rV

S

# nn dA)Vx   

 Noting that    Vx K u    and using the values that are shown in  Fig.   2.11   , we can 

find that  

    -
d
2
= L

d

0

3r(U� in) # (- in dy) 4U� + L
c

0

3r(U� in + ve jn) # ( jn dx) 4U�    

     (1)           (2) 

    + L
d

0

erJU� a
y

d
b

1>7

in + v jnR # ( in dy) f  U� a
y

d
b

1>7

   

  (3) 
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 Now we can better understand the meaning of each term describing the 

momentum efflux from each surface of the control volume: 

    1.   Since    nn  dA    is a vector normal to the surface  dA  which is positive when 

pointing outward from the enclosed volume,    nn     is in the    -x    direction and 

 dA  per unit span is equal to  dy.   

   2.   Because viscosity slows the air particles near the plate, line 2 is not a 

streamline, and the velocity vector along this surface is 

   V
S

= U� in + ve jn   

 The volumetric flow rate (per unit depth) across this surface is    1 c
0 vedx,    

which will be represented by the symbol    Q2.     

   3.   Because of viscosity, the velocity vector has a  y  component which is a 

function of  y . However, this  y  component of velocity does not transport 

fluid across the area    in dy.     

   4.   There is no flow across this surface of the control volume since it is at a 

solid wall.   

 Furthermore, because the flow is low speed, the density will be assumed 

constant, and the momentum equation becomes: 

   -
d
2
= -rU2

�d + rU�Q2 +

7

9
rU2

�d   

 To obtain an expression for    Q2,    we can use the integral form of the 

continuity equation, equation (2.5), for the flow of  Fig.   2.11   . 

   ∂rV
S

# nn  dA = L
d

0

3r(U� in) # (- in dy) 4    

  (1) 

   + L
c

0

3r(U� in + ve jn) # ( jn dx) 4 + L
d

0

erJU� a
y

d
b

1>7

in + v jnR # ( in dy) f = 0   

  (2) (3) 

   -rU�d + rL
c

0

vedx + rU� (7
8d) = 0  L

c

0

vedx = Q2 = 1
8U�d   

c

1

2

4

u �
y 1/7

3

U� U�

U�
d

d

 Figure 2.11         Low-speed flow over a thin flat plate; flow diagram 

for Example 2.4.   
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 Now substitute  Q 2   into the momentum equation to obtain: 

    -
d
2
= -rU2

�d +

1

8
rU2

�d +

7

9
rU2

�d    

    d = a2 -

1

4
-

14

9
brU2

�d =
7

36
rU2

�d   

 and the drag coefficient for    d = 0.01c    is: 

   Cd =
d

1
2r�U2

�c
=

7
36rU�

2 (0.01c)

1
2r�U�

2 c
= 0.00389       

   2.5  REYNOLDS NUMBER AND MACH NUMBER 
AS SIMILARITY PARAMETERS 

 Because of the difficulty of obtaining theoretical solutions of the flow field around a 

vehicle, numerous experimental programs have been conducted to directly measure 

the parameters that define the flow field. Some of the objectives of such test programs 

are as follows: 

    1.   To obtain information necessary to develop a flow model that could be used in 

numerical solutions  

   2.   To investigate the effect of various geometric parameters on the flow field (such 

as determining the best location for the engines on a supersonic transport)  

   3.   To verify numerical predictions of the aerodynamic characteristics for a particular 

configuration  

   4.   To directly measure the aerodynamic characteristics of a complete vehicle   

 Usually, either scale models of the complete vehicle or large-scale simulations of 

elements of the vehicle (such as the wing section) have been used in these wind-tunnel 

programs. Furthermore, in many test programs, the free-stream conditions (such as the 

velocity, the static pressure, etc.) for the wind-tunnel tests were not equal to the values 

for the flight condition that was being simulated. 

 The question every aerodynamicist has to ask about wind tunnel testing is “Are the 

results obtained meaningful for the full-scale aircraft configuration of interest?” Part of 

the difficulty in answering that question is the large number of modeling issues for wind 

tunnel testing, having to do with differences between the wind tunnel test environment 

and the actual aircraft being evaluated. The importance of these differences and the im-

pact they can make on wind tunnel data accuracy were discussed at length by  Bushnell 

(2006) . Bushnell created a list of issues for wind tunnel testing that includes (among other 

items): wind tunnel walls and how to correct for their presence; aeroelastic distortion 

differences due to different structure and material for the wind tunnel model; Reynolds 

number scaling that is especially critical for transonic flows, longitudinal vortices, and 

large transitional flow influences; free-stream disturbance fields, especially their influence 

on transition, model mounting influences due to stings, struts, wires, etc.; free-stream gross 
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unsteadiness, which is of special concern for wing buffet; installed propulsion influences, 

or the lack thereof; geometric fidelity since there can be critical differences in results for 

even “minor” differences in the model. Accounting for these differences between wind 

tunnel, flight, or computations can be a major issue in aerodynamics.    

 Aerodynamics Concept Box: Wind Tunnel Validation Studies 

 A classic example of a wind tunnel test that was conducted in order to create data for compar-

isons with computational or theoretical predictions is the ONERA M6 Wing. This semi-span 

wing was tested at transonic speeds in the ONERA S2MA wind tunnel (the wing  installed in 

the wind tunnel is shown below).    

 The wing was tested at several transonic Mach numbers    (M = 0.7, 0.84, 0.88, 0.92)    and 

various angles of attack up to 6 degrees. The Reynolds number was approximately 12 * 106 

based on the mean aerodynamic chord. The wing had a span of 1.1963 m, a mean aerody-

namic chord of 0.64607 m, an aspect ratio of 3.8, a taper ratio of 0.562, and a leading-edge 

sweep of 30.0 degrees. Detailed pressures were measured at six spanwise stations along the 

wing, which provided data (including locations of shock waves) for comparisons with other 

predictions. 

 What if the wind tunnel test were trying to simulate flow over a wing for a full-scale 

airplane, rather than for computational validation purposes? What if the full-scale airplane 

had a cruise velocity and altitude that equated to a Reynolds number of    30 * 106?    Would 

the aerodynamic characteristics of the wing be the same? Understanding the differences will 

require more information about lift, drag, shock waves, flow separation, and boundary layer 

transition , which will come in later chapters . 

       M6 wing in ONERA S2MA wind tunnel 

 [ Schmitt and Charpin (1979); photo courtesy of ONERA ]   

 It is important, then, to determine under what conditions the experimental results 

obtained for one flow are applicable to another flow that is confined by boundaries that 

are geometrically similar (but of different size). To do this, consider the  x -momentum 

equation as applied to the two flows of  Fig.   2.12   . For simplicity, we will limit ourselves 

to constant-property flows, but keep in mind that real flows in real wind tunnels may not 
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be constant. Since the body-force term is usually negligible in aerodynamic problems, 

equation (2.15) can be written  

    r
0u
0t

+ ru
0u
0x

+ rv
0u
0y

+ rw
0u
0z

= -

0p

0x
+ m

0
2u

0x2
+ m

0
2u

0y2
+ m

0
2u

0z2
  (2.16)    

 Now divide each of the thermodynamic properties by the value of that property at a 

point far from the vehicle (i.e., the free-stream value of the property) for each of the 

two flows. So, for the first flow: 

   p*1 =
p

p� , 1

   r*1 =
r

r� , 1
   m*1 =

m

m� , 1
   

 and for the second flow: 

   p*2 =
p

p� , 2

   r*2 =
r

r� , 2
   m*2 =

m

m� , 2
   

 Note that the free-stream values for all three nondimensionalized    (*)    thermodynamic 

properties are unity for both cases. Similarly, we can divide the velocity components by 

the free-stream velocity to obtain for the first flow: 

   u*1 =
u

U� , 1

   v*1 =
v

U� , 1

   w*
1 =

w

U� , 1

   

 and for the second flow: 

   u*2 =
u

U� , 2

   v*2 =
v

U� , 2

   w*
2 =

w

U� , 2

   

 With the velocity components now nondimensionalized, the free-stream boundary con-

ditions are the same for both flows—that is, at points far from the vehicle 

   u*1 = u*2 = 1   and   v*1 = v

*
2 = w

*
1 = w

*
2 = 0   

Free-stream conditions

etc.

Free-stream conditions

etc.

L1

L2

(a)

(b)

U�, 1

p�, 1

U�, 2

p�, 2

 Figure 2.12         Flow around geometrically similar (but different 

size) configurations: (a) first flow; (b) second flow.   
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 A characteristic dimension  L  is used to nondimensionalize the independent variables. 

For example, all lengths can be divided by  L  and all times can be divided by    L/U� ,    

which is a characteristic time. 

   x*1 =
x

L1

   y*1 =
y

L1

   z*1 =
z

L1

   t*1 =
tU� , 1

L1

   

 and 

   x*2 =
x

L2

   y*2 =
y

L2

   z*2 =
z

L2

   t*2 =
tU� , 2

L2

   

 In terms of these dimensionless parameters, the  x -momentum equation (2.16) for 

the first flow becomes: 

    r*1
0u*1
0t*1

+ r*1u
*
1

0u*1
0x*1

+ r*1v
*
1

0u*1
0y*1

+ r*1w
*
1

0u*1
0z*1

    

     = - a
p� , 1

r� , 1U
2
� , 1

b
0p*1
0x*1

+ a
m� , 1

r� , 1U� , 1L1

b  am*1
0

2u*1

0x*
2

1

+ m*1
0

2u*1

0y*
2

1

+ m*1
0

2u*1

0z*
2

1

b   (2.17a)    

 Likewise, for the second flow equation (2.16) becomes: 

     r*2
0u*2
0t*2

+ r*2u
*
2

0u*2
0x*2

+ r*2v
*
2

0u*2
0y*2

+ r*2w
*
2

0u*2
0z*2

    

     = - a
p� , 2

r� , 2U
2
� , 2

b
0p*2
0x*2

+ a
m� , 2

r� , 2U� , 2L2

b  am*2
0

2u*2

0x*
2

2

+ m*2
0

2u*2

0y*
2

2

+ m*2
0

2u*2

0z*
2

2

b   (2.17b)    

 Both the dependent variables and the independent variables have been nondimension-

alized, as indicated by the    *    quantities. The dimensionless  boundary-condition values  

for the dependent variables are the same for the two flows around geometrically similar 

configurations. As a consequence, the solutions of the two problems in terms of the 

dimensionless variables will be identical provided that the differential equations [equa-

tions (2.17a) and (2.17b)] are identical. The differential equations will be identical if the 

parameters in the parentheses have the same values for both problems. In this case, the 

flows are said to be  dynamically similar  as well as geometrically similar. 

 Now we can find the conditions to make the two flows dynamically similar. The 

first similarity parameter from equation (2.17) is: 

    
p�

r�U2
�

  (2.18)    

 Recall that for a perfect gas, the equation of state is 

   p� = r�RT�    

 and the free-stream speed of sound is given by 

   a� = 1gRT�    

 Substituting these relations into equation (2.18) yields 

    
p�

r�U2
�

=
RT�

U2
�

=
a2

�

gU2
�

=
1

gM2
�

  (2.19)    
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 since we define the Mach number to be    M� = U� >a� .    Therefore, the first dimen-

sionless similarity parameter can be interpreted in terms of the free-stream Mach 

number. 

 The inverse of the second similarity parameter is written as: 

    Re� , L =
r�U�L
m�

  (2.20)    

 which is the  Reynolds number , a measure of the ratio of inertia effects to viscous effects. 

So the two flows in  Fig.   2.12    will be dynamically similar if    M1 = M2    and    Re1 = Re2.    

Matching the Mach and Reynolds numbers becomes an important consideration when 

testing scale modes of airfoils, wings, or airplanes in a wind tunnel. 

  As has been discussed in  Chapter   1   , the      free-stream values of the fluid properties, 

such as the static pressure and the static temperature, are a function of altitude. So, once 

the velocity, the altitude, and the characteristic dimension of the vehicle are defined, 

the free-stream Mach number and the free-stream Reynolds number can be calculated 

as a function of velocity and altitude. This has been done in  Fig.   2.13     using the values 
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 Figure 2.13         Reynolds number/Mach number correlations as a 

function of velocity and altitude for U.S. Standard Atmosphere.   
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presented in  Table   1.2    . The free-stream Reynolds number is defined by equation (2.20) 

with the characteristic length  L  (e.g., the chord of the wing or the diameter of the mis-

sile) chosen to be 1.0 m for the correlations shown. The correlations represent altitudes 

up to    30 km (9.84 * 104 ft)    and velocities up to 2500 km/h (1554 mi/h or 1350 knots). 

Note that 1    knot K 1    nautical mile per hour.  

  EXAMPLE 2.5:    Calculating the Mach number 

 An airplane is flying at a velocity of 472 m/s at an altitude of 14 km. What 

Mach number is the airplane flying at? What would the Mach number be if 

the airplane were flying at the same velocity at an altitude of 19 km? 

  Solution:      From  Table   1.2A   ,     the speed of sound at 14 km on a standard day is 295.07 

m/s. So the Mach number of the airplane is: 

   M� =
U�

a�
=

472 m>s

295.07 m>s
� 1.6   

 If the airplane were flying at 19 km, the speed of sound would be the same, 

so the Mach number would be the same. This is because the temperature is 

constant between approximately 11 km and 21 km since this portion of the 

atmosphere is an isothermal layer.   

  EXAMPLE 2.6:    Calculating the Reynolds number 

 An airplane is flying at a Mach number of 2 at an altitude of 40,000 ft. If the 

characteristic length for the aircraft is 14 ft, what is the velocity in miles/hour, 

and what is the Reynolds number for this flight condition? 

  Solution:     The density, the viscosity, and the speed of sound of the free-stream flow at 

40,000 ft can be found in   Table   1.2       . 

    m� = 0.79447mSL = 2.9713 * 10-7lbf # s

ft2
   

    r� = 0.2471rSL = 5.8711 * 10-4
slug

ft3
   

    a� = 968.08 ft>s    

 Since the Mach number is 2.0, 

   U� = M�a� = 2.0a968.08
ft

s
b = 1936.16

ft

s
±

3600
s

h

5280
ft

mi

≤ = 1320.11
mi

h
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 The corresponding Reynolds number is 

    Re� , L =
r�U�L
m�

=
a5.8711 * 10-4lbf # s2

ft4
b a1936.16

ft

s
b(14 ft)

2.9713 * 10-7lbf # s

ft2

   

    = 5.3560 * 107      

 In addition to matching Reynolds and Mach numbers as similarity parameters, 

we need to also consider the various flow regimes that these parameters represent. For 

example, if the Mach number of a particular flow is    M = 0.2,    then it may not be sig-

nificant for the Mach number to exactly match, but rather for the Mach number to fall 

within the same speed regime (for the case of this example, the incompressible speed 

regime). Likewise, if the Reynolds number of a desired flow is    5 * 107,    then it may not 

be necessary to exactly match that Reynolds number, since the flow characteristics of 

boundary layer separation and skin friction may be well matched as long as the Rey-

nolds number is relatively close. 

 While we will learn more about the various Mach and Reynolds regimes as we 

progress through the study of aerodynamics,  Tables   2.1    and    2.2    will give some initial 

concepts that will help you understand the differences. For example, subsonic com-

pressible Mach numbers can be easily related to each other using compressibility cor-

rections. Also, once the Reynolds number gets very high, there may be insignificant 

differences between slightly different values. These are concepts that experienced 

aerodynamicists need to understand, so start trying to absorb the material in these 

two tables.       

 TABLE 2.1    Mach Number Regimes and Characteristics for an Airfoil 

 Mach regime  Mach number range  Characteristics 

 Incompressible 
Subsonic 

    0 6 M 6 � 0.3     Classical low speed 
aerodynamics 

 Compressible 
Subsonic 

    �  0.3 6 M 6 � 0.8      Compressibility effects, 
no shocks 

 Transonic     �  0.8 6 M 6 � 1.6      Normal shocks, shock/
boundary layer 
interactions, etc. 

 Supersonic     �  1.6 6 M 6 � 5.0      Oblique shocks, expansion 
waves, linear characteristics 

 Hypersonic     M 7 � 5.0     Bow shocks, thin shock 
layers, high temperature 
effects, shock/shock 
interactions, low density 
flows, etc. 
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 TABLE 2.2    Reynolds Number Regimes and Characteristics for an Airfoil 

 Reynolds number 
regime  Reynolds number range  Characteristics 

 Creep     0 6 ReL 6 � 102     Viscous effects dominate, drag 
inversely proportional to    ReL    

 Low    ReL    laminar     �  102
6 ReL 6  � 104     Vortex shedding, separation 

bubbles, reduced lift, drag 
proportional to    ReL    

 Laminar     �  104
6 ReL 6  � 105     Separation bubbles, decreased 

skin friction, earlier separation, 
earlier stall 

 Transitional     �  105
6 ReL 6  � 106     Both laminar and turbulent 

boundary layers with 
characteristics of both 

 Turbulent     ReL 7  � 106     Inertial effects dominate, 
increased skin friction, delayed 
separation, delayed stall 

 Aerodynamics Concept Box: An Innovative Approach to Aircraft Testing 

 As we mentioned previously, most aircraft development programs use wind tunnel testing to 

determine aerodynamic characteristics. In modern aircraft development programs, wind tun-

nel testing is supplemented with computational simulations as well. Most of the wind tunnels 

       F/A-18 mounted in NASA Ames 80 ft * 120 ft wind tunnel (photo 

courtesy of NASA)   
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   2.6  CONCEPT OF THE BOUNDARY LAYER 

 For many high-Reynolds-number flows (such as those of interest to the aerodynamicist), 

the flow field may be divided into two regions: (1) a viscous  boundary layer  adjacent 

to the surface of the vehicle and (2) the essentially inviscid flow outside the boundary 

layer. The velocity of the fluid particles increases from a value of zero (in a vehicle-fixed 

coordinate system) at the wall to the value that corresponds to the external “friction-

less” flow outside the boundary layer, whose edge is represented by the solid lines in 

 Fig.   2.14   . Because of the resultant velocity gradients, the shear forces are relatively 

large in the boundary layer. Outside the boundary layer, the velocity gradients become 

so small that the shear stresses acting on a fluid element are negligible. Therefore, the 

effect of the viscous terms may generally be ignored in the solution for the flow field 

external to the boundary layer. To generate a solution for the inviscid portion of the 

flow field, we require that the velocity of the fluid particles at the surface be parallel to 

the surface (but not necessarily of zero magnitude). This represents the physical bound-

ary condition requirement that there is no flow through a solid surface. The analyst may 

approximate the effects of the boundary layer on the inviscid solution by defining the 

geometry of the surface to be that of the actual surface plus a displacement due to the 

presence of the boundary layer. The “effective” inviscid body (the actual configura-

tion plus the displacement thickness) is represented by the shaded area of  Fig.   2.14   . 

The solution of the boundary-layer equations and the subsequent determination of a 

corresponding displacement thickness are dependent on the velocity at the edge of the 

boundary layer (which is, in effect, the velocity at the surface that corresponds to the 

inviscid solution). The process of determining the interaction of the solutions provided 

by the inviscid-flow equations with those for the boundary-layer equations requires a 

thorough understanding of the problem [e.g., refer to  Brune et al. (1974) ].  

available for large aircraft development (such as commercial airliners) are capable of match-

ing the Mach number, but cannot match the Reynolds number due to model size restric-

tions and tunnel operational conditions (pressure and temperature limitations). In order to 

increase the Reynolds number in the wind tunnel, the tunnels would have to increase in size, 

but the power required to run these larger tunnels also goes up with the size of the models. 

 For example, the wind tunnel with the largest test section is the NASA Ames Research 

Center 80 ft * 120 ft low speed wind tunnel, shown below with a full-sized F/A-18 mounted 

on supports for testing. This wind tunnel requires six 40-ft diameter fans to operate, and each 

fan uses an 18,000 horsepower motor. The power requirements for using this wind tunnel are 

very large, and in many cases prohibitive, and the maximum velocity is only about 100 knots.    

 A new option for testing aircraft affordably was put forth by John McMasters of The 

Boeing Company [ McMasters (2007) ]. Using  Fig.   2.12   , we can estimate that a full-size 767 

flying at 12,000 m altitude at    M = 0.95    would have a chord-based Reynolds number of ap-

proximately    36 * 106    (the mean aerodynamic chord of the 767 is approximately 6 m). A 

¼-scale model of the aircraft flying at the same Mach number and lift coefficient but at low 

altitudes would have a Reynolds number of nearly    30 * 106   , which is over 80% of the full-

scale Reynolds number. Since the ¼-scale model could be radio controlled, it would be much 

more affordable than wind tunnel testing while still achieving dynamic similarity for aerody-

namic purposes. 
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 For many problems involving flow past streamlined shapes such as airfoils and 

wings (at low angles of attack), the presence of the boundary layer causes the actual 

pressure distribution to be only negligibly different from the inviscid pressure distribu-

tion. We can consider this statement further by studying the  x  and  y  components of 

equation (2.12) for a two-dimensional incompressible flow. The resultant equations, 

which define the flow in the boundary layer shown in  Fig.   2.14   , are 

   r
0u
0t

+ ru
0u
0x

+ rv
0u
0y

= -

0p

0x
+ m

0
2u

0x2
+ m

0
2u

0y2
   

 and 

   r
0v

0t
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0v

0x
+ rv

0v

0y
= -

0p

0y
+ m

0
2
v

0x2
+ m

0
2
v

0y2
   

 where the  x  coordinate is measured parallel to the airfoil surface and the  y  coordinate 

is measured perpendicular to it. Solving for the pressure gradients gives us: 

y

x

u(x, y)

The boundary
layer thickness

Laminar boundary layer

y

x

u (x, y)

Turbulent boundary layer

•    Relatively thin layer with limited
      mass transfer

•    Relatively low velocity gradient near
     the wall

•    Thicker layer with considerable
     mass transport

•    Higher velocities near the surface

•    Higher skin friction•    Relatively low skin friction

Laminar portion of the boundary layer

Turbulent portion of the boundary layer

�Effective� inviscid body

Effects of viscosity are confined
to the boundary layer

Outside of the boundary layer, the flow may be assumed
to be inviscid

d
d

 Figure 2.14         Viscous boundary layer on an airfoil.   
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 Providing that the boundary layer near the solid surface is thin, the normal component 

of velocity is usually much less than the streamwise component of velocity (i.e.,    v 6 u   ). 

Thus, the terms on the right-hand side of the equation in the second line are typically 

smaller than the corresponding terms in the first line. We can conclude that: 

   
0p

0y
6

0p

0x
   

 As a result, the pressure gradient normal to the surface is typically assumed to be 

negligible: 

   
0p

0y
� 0   

 which is verified by experiments for flow over a flat plate. Since the static pressure vari-

ation across the boundary layer is usually negligible, the pressure distribution around 

the airfoil is essentially that of the inviscid flow (accounting for the displacement effect 

of the boundary layer). 

 The assumption that the static pressure variation across the boundary layer is 

negligible breaks down for turbulent boundary layers at very high Mach numbers. 

 Bushnell et al. (1977)  cites data for which the wall pressure is significantly greater 

than the edge value for turbulent boundary layers where the edge Mach number 

is approximately 20. But in general the inviscid pressure distribution is a good ap-

proximation for an airfoil. The characteristics distinguishing laminar and turbulent 

boundary layers were briefly touched on in  Table   2.2    , and will be further discussed 

in  Chapter   4    . 

 When the combined action of an adverse pressure gradient and the viscous forces 

causes the boundary layer to separate from the vehicle surface (which may occur for 

blunt bodies or for streamlined shapes at high angles of attack), the flow field is very 

sensitive to the Reynolds number. The Reynolds number, therefore, also serves as an 

indicator of how much of the flow can be accurately described by the inviscid-flow equa-

tions. For detailed discussions of the viscous portion of the flow field, you should refer 

 to  Chapter   4    and  to the books by  Schlichting and Gersten (2000) ,  White (2005) ,  Schetz 

and Bowersox (2011) , and/or  Wilcox (1998) .  

   2.7  CONSERVATION OF ENERGY 

 There are many flows that involve sufficient temperature variations so that convective 

heat transfer is important, but for which the constant-property assumption is reason-

able. An example is flow in a heat exchanger. For these flows, the temperature field is 

obtained by solving the energy equation after the velocity field has been determined 

by solving the continuity equation and the momentum equation. This is because, for 
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this case, the continuity equation and the momentum equation are independent of the 

energy equation, but not vice versa. 

 We must also include the energy equation in the solution algorithm for com-

pressible flows. Compressible flows are those in which the pressure and temperature 

variations are sufficiently large that we must account for changes in the other fluid 

properties (e.g., density and viscosity). For compressible flows, the continuity equa-

tion, the momentum equation, and the energy equation must be solved simultaneously. 

Recall the discussion relating to the momentum equations (2.12a) through (2.12c) for 

the number of unknown variables and the number of equations available. We will need 

the energy equation to form a complete set of equations to describe compressible flow. 

In the remainder of this chapter, we will derive the energy equation and discuss its ap-

plication to various flows.  

   2.8  FIRST LAW OF THERMODYNAMICS 

 To develop the energy equation, we will again consider a system of fluid particles. Every-

thing outside the group of particles is called the  surroundings  of the system. The  first law of 
thermodynamics  results from the fundamental experiments of James Joule, who found 

that, for a cyclic process (one in which the initial state and the final state of the fluid are 

identical), the following relation held: 

    Cdq - Cdw = 0  (2.21)    

 Joule showed that the heat transferred from the surroundings to the system, less the 

work done by the system on its surroundings, during a cyclic process is zero. In equation 

(2.21), we have adopted the convention that heat transfer to the system is positive and 

that work done by the system is positive, which accounts for the heat term in equation 

(2.21) being positive and the work term being negative. The use of lower case symbols to 

represent the parameters means that we are considering the magnitude of the parameter 

per unit mass of the fluid, which are usually referred to as  specific  properties. We use 

the symbols    dq    and    dw    to designate that the incremental heat transfer to the system 

and the incremental work done by the system are not exact differentials, but depend on 

the process used in going from state 1 to state 2. In addition,  q  and  w  are not properties 

of the fluid (like density or temperature). Equation (2.21) is true for any and all cyclic 

processes. Therefore, if we apply equation (2.21) to a process that takes place between 

any two states (1 and 2), then we obtain: 

    dq - dw = de = e2 - e1  (2.22)    

 where  e  is the total energy per unit mass of the fluid, or the specific total energy. Note 

that  de  is an exact differential and the energy is, therefore, a property of the fluid. The 

energy is usually divided into three components: (1) kinetic energy, (2) potential energy, 

and (3) all other energy. The internal energy of the fluid is part of the third component. 

In this book, we will be concerned only with kinetic, potential, and internal energies. 

Chemical, nuclear, and other forms of energy are normally not relevant to the study of 

aerodynamics. Since we are normally only concerned with changes in energy rather than 

its absolute value, an arbitrary zero energy (or datum) state can usually be assigned. 
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 In terms of the three energy components discussed above, equation (2.22) 

becomes 

    dq - dw = dke + dpe + due  (2.23)    

 Note that    ue    is the symbol used for specific internal energy (i.e., the internal energy per 

unit mass). 

     Some comments on work:     In mechanics, work is usually defined as the effect 

that is produced by a system on its surroundings when the system moves the surround-

ings in the direction of the force exerted by the system on its surroundings. The magni-

tude of the effect is measured by the product of the displacement times the component 

of the force in the direction of the motion (force times distance). Thermodynamics 

deals with phenomena considerably more complex than covered by this definition from 

mechanics. Thus, we may say that work is done by a system on its surroundings if we 

can postulate a process in which the system passes through the same series of states as 

in the original process, but in which the sole effect on the surroundings is the raising 

of a weight. 

 In an inviscid flow, the only forces acting on a fluid system (providing we neglect 

gravity) are the pressure forces. Consider a small element of the surface  dA  of a fluid 

system, as shown in  Fig.   2.15   . The force acting on  dA  due to the fluid in the system is 

 p dA . If this force displaces the surface a differential distance  ds  in the direction of the 

force, the work done is  p dA ds . Differential displacements are assumed so that the 

process is reversible, which means there are no dissipative factors such as friction and/

or heat transfer. But the product of  dA  times  ds  is just  d (vol), the change in volume of 

the system. Thus, the work per unit mass is  

    dw = +p dv  (2.24a)    

 where  v  is the volume per unit mass (or specific volume), which is the reciprocal of 

the density (   v = 1>r   ). Be very careful not to confuse the symbol  v  with the  y  com-

ponent of velocity! Equivalently, equation (2.24a) can be written between state 1 

and state 2 as: 

    w = + L
2

1

p dv  (2.24b)    

 where the work done by the system on its surroundings [a finite process, as given by 

equation (2.24b)], is positive when  dv  represents an increase in volume.    

p

dA

ds

 Figure 2.15         Incremental work done by the pressure force, which 

acts normal to the surface.   
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   2.9  DERIVATION OF THE ENERGY EQUATION 

 Having discussed the first law and its implications, we are now ready to derive the dif-

ferential form of the energy equation for a viscous, heat-conducting compressible flow. 

Consider the fluid particles shown in  Fig.   2.16   . Writing equation (2.23) in rate form, we 

can describe the energy balance on the particle as it moves along in the flow as:  

    rq
#

- rw
# = r

d
dt

(e) = r
d
dt

(ke) + r
d
dt

(pe) + r
d
dt

(ue)  (2.25)    
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 Figure 2.16         Heat-transfer and flow-work terms for the energy 

equation for a two-dimensional fluid element: (a) work done by 

stresses acting on a two-dimensional element; (b) heat transfer 

to a two-dimensional element.   
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 where the overdot notation denotes differentiation with respect to time. Recall that the 

substantial (or total) derivative is 

   
d
dt

=
0

0t
+ V

S

# �   

 and therefore represents the local, time-dependent changes, as well as those due to 

convection through space. 

 To simplify the illustration of the energy balance on the fluid particle, we will again 

consider a two-dimensional flow, as shown in  Fig.   2.16   . The rate at which work is done by 

the system on its surrounding is equal to the negative of the product of the forces acting 

on a boundary surface times the flow velocity (i.e., the displacement per unit time) at that 

surface. The work done by the body forces is not included in this term, but rather is ac-

counted for in the potential energy term, equation (2.27). Now, using the nomenclature of 

 Fig.   2.16   a, we can evaluate the rate at which work is done by the system (per unit depth): 

   -W
#

=
0

0x
(utxx) �x �y +
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0x
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(utyx) �y�x +
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0y
(vtyy) �y �x   

 Using the constitutive relations for    txx, txy, tyx,    and    tyy    given in  Section   2.3   , and dividing 

by    �x �y,    we obtain 
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  (2.26a)    

 From the linear momentum equations (2.11), multiplied by the velocity in each direc-

tion, we obtain: 
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 We will also need a relation for the heat change, which we obtain from Fourier’s 

law of heat conduction, 

   Q
#

= -knnA # �T   

 We can now evaluate the rate at which heat is added to the system (per unit depth). 

Note that the symbol  T  will be used to denote temperature, the symbol  t , time, and    Q
#

,    

the total heat flux rate. Referring to  Fig.   2.16   b and noting that, if the temperature is 

increasing in the outward direction, heat is added to the particle (which is positive by 

our convention), 
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 Therefore, 
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 Substituting equations (2.26) into equation (2.25), we obtain 
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 From the continuity equation, 
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 we can write the continuity equation in the form: 
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 Also, for a conservative force field, 
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 where  F  is the body-force potential and    �F = -f,     as will be introduced in equation (3.3) . 

 Substituting equations (2.28a and 2.28b) into equation (2.27), we obtain: 

     
0

0x
ak

0T
0x

b +

0

0y
ak

0T
0y

b + 2mJ a 0u
0x

b
2

+ a
0v

0y
b

2 R -

2

3
m(� # V

S

)2     

     +  mJ a 0u
0y

+

0v

0x
b

2 R - r
d(p>r)

dt
+

dp

dt
+ ru

du
dt

+ rv
dv

dt
- rufx - rvfy    

     = ru
du
dt

+ rv
dv

dt
- rufx - rvfy + r

d(ue)

dt
  (2.29)    

 Since the terms    ue    and    p/r    appear as a sum in many flow applications, it is convenient 

to introduce a symbol for this sum. We will introduce the definition: 

    h K ue +

p
r

  (2.30)    

 where  h  is the specific enthalpy. Using equation (2.30) and combining terms, we can 

write equation (2.29) as 
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 This is the energy equation for a general, compressible flow in two dimensions. The 

process can be extended to a three-dimensional flow field to yield 
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 Equation (2.32b) defines the dissipation function    f,    which represents the rate at which 

work is done by the viscous forces per unit volume. 

   2.9.1  Integral Form of the Energy Equation 

 The integral form of the energy equation is 

    Q
#

- W
#
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0t
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S
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 That is, the net rate heat added to the system less the net rate work done by the system is 

equal to the time rate of change of energy within the control volume plus the net efflux 

of energy across the system boundary. Remember that the heat added to the system and 

the work done by the system are positive. Conversely, heat transferred from the system 

or work done on the system is negative by this convention.  

   2.9.2  Energy of the System 

 As we discussed in  Section   2.8   , the energy of the system can take a variety of forms. 

Typically we group energy forms as follows: 

    1.   Kinetic energy (ke):     energy associated with the directed motion of the mass  

   2.   Potential energy (pe):     energy associated with the position of the mass in the 

external field  

   3.   Internal energy    (ue) :        energy associated with the internal fields and the random 

motion of the molecules   

 So, the energy of the system may be written simply as: 

    e = ke + pe + ue  (2.34a)    
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 Now we can further examine the terms that comprise the energy of the system. The 

kinetic energy per unit mass is given by 

    ke =
V2

2
  (2.34b)    

 Note that the change in kinetic energy during a process clearly depends only on the ini-

tial velocity and final velocity of the system of fluid particles. Assuming that the external 

force field is that of gravity, the potential energy per unit mass is given by 

    pe = gz  (2.34c)    

 Note that the change in the potential energy depends only on the initial and final 

 elevations. Finally, the change in internal energy is also a function of the values at the 

endpoints only. 

 Substituting equations (2.34) into equation (2.33), we obtain 
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 You should notice that, while the changes in the energy components are a function of 

the states, the amount of heat transferred and the amount of work done during a process 

are path dependent. That is, the changes depend not only on the initial and final states 

but on the process that takes place between these states. 

 Now we can further consider the term for the rate at which work is done,    W
#

.    

For convenience, the total work rate is divided into flow work rate    (W
#

f),    viscous 

work rate    (W
#

v
),    and shaft work rate    (W

#

s),    which will be discussed in more detail 

below.  

   2.9.3  Flow Work 

 Flow work is the work done by the pressure forces on the surroundings as the fluid 

moves through space. Consider flow through the streamtube shown in  Fig.   2.17   . The 

pressure    p2    acts over the differential area    nn2 dA2    at the right end (i.e., the down-

stream end) of the control volume. Remember that the pressure is a compressive 

force acting on the system of particles. Thus, the force acting on the right end sur-

face is    -p2nn2 dA2.    In moving the surrounding fluid through the distance    V
S

2 �t    for 

the velocity shown in  Fig.   2.17   , the system does work on the surroundings (which is 

positive by our sign convention). Thus, the work done is the dot product of the force 

times the distance:  

     p2nn2 dA2
# V

S

2 �t    

     W
#

f, 2 = p2V
S

2
# nn2 dA2 =

p2

r2
r2V

S

2
# nn2 dA2  (2.36a)    
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 The positive sign is consistent with the assumed directions of  Fig.   2.17    (i.e., the 

velocity and the area vectors are in the same direction). Therefore, the dot product 

is consistent with the convention that work done by the system on the surroundings 

is positive. 

 In a similar manner, we can show that the flow work done on the surrounding fluid 

at the upstream end (station 1) is: 

    W
#

f, 1 = -

p1

r1
r1V

S

1
# nn1 dA1  (2.36b)    

 The negative sign results because the pressure force is compressive (acts on the system 

of particles), and the assumed velocity represents movement of the fluid particles in 

that direction. Therefore, since work is done by the surroundings on the system at the 

upstream end, it is negative by our sign convention.  

   2.9.4  Viscous Work 

 Viscous work is similar to flow work in that it is the result of a force acting on the surface 

bounding the fluid system. In the case of viscous work, however, the pressure is replaced 

by the viscous shear. The rate at which viscous work is done by the system over some 

incremental area of the system surface ( dA ) is 

    W
#

v
= -t # V

S

 dA  (2.36c)     

   2.9.5  Shaft Work 

 Shaft work is defined as any other work done by the system other than the flow work 

and the viscous work. This usually enters or leaves the system through the action of a 

shaft (from which the term originates), which either takes energy out of or puts energy 

into the system. Since a turbine extracts energy from the system, the system does work 

on the surroundings and    W
#

s    is positive. In the case where the “shaft” is a pump, the 

surroundings are doing work on the system and    W
#

s    is negative.  

Station 1
  (upstream)

Station 2
  (downstream)

V2p2

n̂2 dA2

 Figure 2.17         Streamtube for derivation of equation (2.36).   
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   2.9.6  Application of the Integral Form of the 
Energy Equation 

 Based on the preceding definitions, the energy equation can be written as: 

     Q
#

- W
#

v
- W

#

s =
0

0t lra
V2

2
+ gz + uebd(vol)     

      +  ∂ra
V2

2
+ gz + ue +

p
r
bV

S

# nn dA  (2.37)    

 Notice that the flow work, as represented by equation (2.36), has been incorporated 

into the second integral of the right-hand side of equation (2.37). 

 For a steady, adiabatic flow    (Q
#

= 0)    with no shaft work    (W
#

s = 0)    and with no 

viscous work    (W
#

v
= 0),    equation (2.37) can be written as: 

    ∂ra
V2

2
+ gz + hbV

S

# nn dA = 0  (2.38)    

 where the definition for enthalpy has been used. 

  EXAMPLE 2.7:    A flow where the energy equation is Bernoulli’s 
equation 

 Consider the steady, inviscid, one-dimensional flow of water in the curved pipe 

shown in  Fig.   2.18   . If water drains to the atmosphere at station 2 at the rate of 

   0.001p m3>s,    what is the static pressure at station 1? There is no shaft work 

or heat transfer, and there are no perceptible changes in the internal energy. 

   Solution:     We will apply equation (2.37) to the control volume that encloses the fluid in 

the pipe between stations 1 and 2. Applying the conditions and assumptions 

in the problem statement, 

    No heat transfer Q
#

= 0   

    No shaft work W
#

s = 0   

    No viscous work W
#

v
= 0   

    Steady flow 
0

0t
= 0   

 Therefore, 

   ∂ a
V2

2
+ gz + ue +

p
r
brV

S

# nn dA = 0   

 Since the properties for the inviscid, one-dimensional flow are uniform over 

the plane of each station, and since the velocities are perpendicular to the 

cross-sectional area, the integral can readily be evaluated as: 

   a
V2

1

2
+ gz1 + ue1 +

p1

r1
br1V1A1 = a

V2
2

2
+ gz2 + ue2 +

p2

r2
br2V2A2   
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 Due to the conservation of mass,    r1V1A1 = r2V2A2,    and since water is in-

compressible,    r1 = r2 = 1000 kg/m3   . Furthermore, we were told that there 

are no perceptible changes in the internal energy (i.e.,    ue1 = ue2   ), so the 

energy equation becomes: 

   
V2

1

2
+ gz1 +

p1

r
=

V2
2

2
+ gz2 +

p2

r
   

 You should notice that the resultant form of the energy equation for this 

flow is Bernoulli’s equation. 

 Therefore, for an incompressible, steady, nondissipative flow, we have 

a mechanical energy equation that simply equates the flow work with the 

sum of the changes in potential energy and in kinetic energy. 

   V2 =
Q
A2

=
0.001p m3>s

p(0.02 m)2>4
= 10 m>s   

 Since    V1A1 = V2A2    

   V1 =
pD2

2>4

pD2
1>4

V2 = a
D2

D1

b
2

V2 = 0.16(10 m>s) = 1.6 m>s   

 Thus, 

   
(1.6 m>s)2

2
+ (9.8066 m>s2)(0.3 m) +

p1

1000 kg>m3
=

(10 m>s)2

2
+

patm

1000 kg>m3

    p1 = patm + (50 - 1.28 - 2.94) m2>s2(1000 kg>m3)         

    = 4.58 * 104 N>m2, gage        

5 cm

2 cm

(1)

(2)

Drains to
the atmosphere

30 cm

 Figure 2.18         Pipe flow for Example 2.7.   
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   2.10  SUMMARY 

 Both the differential and integral forms of the equations of motion for a compressible, 

viscous flow have been developed in this chapter. Presented were the continuity equa-

tion, equation (2.2) or (2.5); the momentum equation, equation (2.12) or (2.13); and the 

energy equation, equation (2.32) or (2.33). The dependent variables, or unknowns, in 

these equations include pressure, temperature, velocity, density, viscosity, thermal con-

ductivity, internal energy, and enthalpy. For many applications, simplifying assumptions 

can be introduced to eliminate one or more of the dependent variables. For example, 

a common assumption is that the variation in the fluid properties as the fluid moves 

through the flow field is very small when the Mach number is less than 0.3. Therefore, 

assuming that the density, the viscosity, and the thermal conductivity are constant, we 

can eliminate them as variables and still obtain solutions of suitable accuracy.  Examples 

of constant-property flows will be worked out in subsequent chapters.    

     PROBLEMS 

   2.1.    Derive the continuity equation in cylindrical coordinates, starting with the general vector form 

   
0r

0t
+ � # (rV

S

) = 0   

   where 

   � = enr
0

0r
+

enu
r

 
0

0u
+ enz

0

0z
   

   in cylindrical coordinates. Note also that    
0enr

0u
    and    

0enu
0u

    are not zero. 

   
1

r
 
0(rrvr)

0r
+

1

r
 
0(rvu)

0u
+

0(rvz)

0z
= 0     

   2.2.    Which of the following flows are physically possible, that is, satisfy the continuity equation? 

Substitute the expressions for density and for the velocity field into the continuity equation 

to substantiate your answer. 

    (a)   Water, which has a density of    1.0 g>cm3,    is flowing radially outward from a source in a 

plane such that    V
S

= (K>2pr)enr.    Note that    vu = vz = 0.    Note also that, in cylindrical 

coordinates, 

   � = enr
0

0r
+

enu
r

 
0

0u
+ enz

0

0z
    

   (b)   A gas is flowing at relatively low speeds (so that its density may be assumed constant) where 

    u = -

2xyz

(x2
+ y2)2

U�L   

    v =
(x2

- y2)z

(x2
+ y2)2

U�L    

    w =
y

x2
+ y2

U�L    

   Here    U�     and  L  are a reference velocity and a reference length, respectively.     
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   2.3.    Two of the three velocity components for an incompressible flow are: 

   u = x3
+ 3xz  v = y3

+ 3yz   

   What is the general form of the velocity component  w(x,y,z)  that satisfies the continuity 

equation?   

   2.4.    A two-dimensional velocity field is given by 

   u = -

Ky

x2
+ y2
  v = +

Kx

x2
+ y2

   

   where  K  is a constant. Does this velocity field satisfy the continuity equation for incom-

pressible flow? Transform these velocity components into the polar components    vr    and    vu    

in terms of  r  and    u.    What type of flow might this velocity field represent?   

   2.5.    The velocity components for a two-dimensional flow are 

   u =
C(y2

- x2)

(x2
+ y2)2

  v =
- 2Cxy

(x2
+ y2)2

   

   where  C  is a constant. Does this flow satisfy the continuity equation?   

   2.6.    For the two-dimensional flow of incompressible air near the surface of a flat plate, the 

steamwise (or  x ) component of the velocity may be approximated by the relation 

   u = a1

y

1x
- a2

y3

x1.5
   

   Using the continuity equation, what is the velocity component  v  in the  y  direction? Evaluate 

the constant of integration by noting that    v = 0    at    y = 0.      

   2.7.    Consider a one-dimensional steady flow along a streamtube. Differentiate the resultant 

integral continuity equation to show that 

   
dr

r
+

dA
A

+

dV
V

= 0   

   For a low-speed, constant-density flow, what is the relation between the change in area and 

the change in velocity?   

   2.8.    Water flows through a circular pipe, as shown in  Fig.   P2.8   , at a constant volumetric flow 

rate of    0.5 m3>s.    Assuming that the velocities at stations 1, 2, and 3 are uniform across 

the cross section (i.e., the flow is one dimensional), use the integral form of the continu-

ity equation to calculate the velocities,    V1, V2,    and    V3.    The corresponding diameters are 

   d1 = 0.4 m, d2 = 0.2 m,    and    d3 = 0.6 m.       

d3d2d1

 Figure P2.8        
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   2.9.    A long pipe (with a reducer section) is attached to a large tank, as shown in  Fig.   P2.9   . The 

diameter of the tank is 5.0 m; the diameter to the pipe is 20 cm at station 1 and 10 cm at 

station 2. The effects of viscosity are such that the velocity ( u ) may be considered constant 

across the cross section at the surface ( s ) and at station 1, but varies with the radius at sta-

tion 2 such that  

   u = U0a1 -

r2

R2
2

b    

   where    U0    is the velocity at the centerline,    R2    the radius of the pipe at station 2, and  r  the 

radial coordinate. If the density is    0.85 g>cm3    and the mass flow rate is 10 kg/s, what are the 

velocities at  s  and 1, and what is the value of    U0 ?      

1

s

2

 Figure P2.9        

4

21

3

c

x

y H
u � U�

u � U� (y/H)

u � U� (�y/H)

 Figure P2.10        

   A note for Problems 2.10 through 2.13 and 2.27 through 2.31.  The drag force acting on an airfoil 

can be calculated by determining the change in the momentum of the fluid as it flows past the 

airfoil. As part of this exercise, one measures the velocity distribution well upstream of the airfoil 

and well downstream of the airfoil. The integral equations of motion can be applied to either a 

rectangular control volume or a control volume bounded by streamlines.  

   2.10.    Velocity profiles are measured at the upstream end (surface 1) and at the downstream end 

(surface 2) of a rectangular control volume, as shown in  Fig.   P2.10   . If the flow is incompress-

ible, two dimensional, and steady, what is the total volumetric flow rate    (4V
S

# nn  dA)    across 

the horizontal surfaces (surfaces 3 and 4)?    

   2.11.    Velocity profiles are measured at the upstream end (surface 1) and at the downstream 

end (surface 2) of the control volume shown in  Fig.   P2.11   . The flow is incompressible, two 

dimensional, and steady. If surfaces 3 and 4 are streamlines, what is the vertical dimension 

of the upstream station    (HU)?       
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   2.12.    Velocity profiles are measured at the upstream end (surface 1) and at the downstream end 

(surface 2) of a rectangular control volume, as shown in  Fig.   P2.12   . If the flow is incompress-

ible, two dimensional, and steady, what is the total volumetric flow rate    (4V
S

# nn  dA)    across 

the horizontal surfaces (surfaces 3 and 4)?    

1

Streamline

Streamline

c

HD
HU

x
y

3

4

2

u � U�
u � U� (y/HD)

u � U� (y/HD)

 Figure P2.11        

H

x

y

4
2

1

3

c 0.5 cos

1�

u � U�

u � U�

�y
2H

 Figure P2.12        

HD

x

y

c

3

4

1

2

Streamline

Streamline

0.5 cos

1�
HU

u � U�

u � U� 

�y

2HD

 Figure P2.13        

   2.13.    Velocity profiles are measured at the upstream end (surface 1) and at the downstream 

end (surface 2) of the control volume shown in  Fig.   P2.13   . The flow is incompressible, two 

dimensional, and steady. If surfaces 3 and 4 are streamlines, what is the vertical dimension 

of the upstream station    (HU)?       

   2.14.    One cubic meter per second of water enters a rectangular duct as shown in  Fig.   P2.14   . Two 

of the surfaces of the duct are porous. Water is added through the upper surface at a rate 

shown by the parabolic curve, while it leaves through the front face at a rate that decreases 

linearly with the distance from the entrance. The maximum values of both flow rates, shown 

in the sketch, are given in cubic meters per second per unit length along the duct. What is the 

average velocity of water leaving the duct if it is 1.0 m long and has a cross section of    0.1 m2?       



90    Chap. 2 / Fundamentals of Fluid Mechanics

   2.15.    For the conditions of Problem 2.14, determine the position along the duct where the average 

velocity of flow is a minimum. What is the average velocity at this station?   

   2.16.    As shown in  Fig.   P2.16   ,    1.5 m3/s    of water leaves a rectangular duct. Two of the surfaces 

of the duct are porous. Water leaves through the upper surface at a rate shown by the 

parabolic curve, while it enters the front face at a rate that decreases linearly with distance 

from the entrance. The maximum values of both flow rates, shown in the sketch, are given 

in cubic meters per second per unit length along the duct. What is the average velocity of 

the water entering the duct if it is 1.0 m long and has a cross section of    0.1 m2?       

0.5 m3/s/unit length

1.0 m3/s

0.3 m3/s/unit length

 Figure P2.14        

1.5 m3/s

0.3 m3/s/unit length

0.5 m3/s/unit length

 Figure P2.16        

   2.17.    Consider the velocity field 

   V
S

= -

x
2t

in    

   in a compressible flow where    r = r0xt.    Using equation (2.8), what is the total acceleration 

of a particle at (1, 1, 1) at time    t = 10?      

   2.18.    Given the velocity field 

   V
S

= (6 + 2xy + t2) in - (xy2
+ 10t) jn + 25kn   

   what is the acceleration of a particle at (3, 0, 2) at time    t = 1?      

   2.19.    Consider steady two-dimensional flow about a cylinder of radius  R  ( Fig.   P2.19   ). Using cy-

lindrical coordinates, we can express the velocity field for steady, inviscid, incompressible 

flow around the cylinder as  

   V
S

(r, u) = U� a1 -

R2

r2
b  cos u enr - U� a1 +

R2

r2
b  sin u enu   
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   where    U�     is the velocity of the undisturbed stream (and is, therefore, a constant). Derive 

the expression for the acceleration of a fluid particle at the surface of the cylinder (i.e., at 

points where    r = R   ). Use equation (2.8) and the definition that 

   � = enr
0

0r
+

enu
r

 
0

0u
+ enz

0

0z
   

   and 

   V
S

= vrenr + vuenu + vzenz     

   2.20.    Consider the one-dimensional motion of a fluid particle moving on the centerline of the 

converging channel, as shown in  Fig.   P2.20   . The vertical dimension of the channel (and, 

thus, the area per unit depth) varies as  

   2y = 2h - h sina
p

2
 
x
L
b     

   Assume that the flow is steady and incompressible. Use the integral form of the continuity 

equation to describe the velocity along the channel centerline. Also determine the cor-

responding axial acceleration. If  u  at    x = 0    is 2 m/s,  h  is 1 m, and    L = 1    m, calculate the 

acceleration when    x = 0    and when    x = 0.5L.      

r

R

êu êr

u

 Figure P2.19        

x � 0 x �L

2h h
u

Channel centerline

2y � 2h �h  sin
2

x
L
p

 Figure P2.20        
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   2.21.    You are relaxing on an international flight when a terrorist leaps up and tries to take over 

the airplane. The crew refuses the demands of the terrorist and he fires his pistol, shooting 

a small hole in the airplane. Panic strikes the crew and other passengers. But you leap up 

and shout, “Do not worry! I am an engineering student and I know that it will take _______ 

seconds for the cabin pressure to drop from    0.5 * 105 N/m2    to    0.25 * 105 N/m2.   ” Calculate 

how long it will take the cabin pressure to drop. Make the following assumptions: 

    (i)   The air in the cabin behaves as a perfect gas:    rc =
pc

RTc
    where the subscript  c  stands

  for the cabin.    R = 287.05 N # m>kg # K.    Furthermore,    Tc = 22�C    and is constant for 

the whole time.  

   (ii)   The volume of air in the cabin is    71.0 m3.    The bullet hole is 0.75 cm in diameter.  

   (iii)   Air escapes through the bullet hole according to the equation:    m
#

c =

  -0.040415
pc

1Tc
3Ahole4     where    pc    is in    N>m2, Tc    is in  K ,    Ahole    is in    m2,    and    m

#

c    is in kg/s.     

   2.22.    The crew refuses the demands of a terrorist and he fires the pistol, shooting a small hole in 

the airplane. Panic strikes the crew and other passengers. But you leap up and shout, “Do 

not worry! I am an engineering student and I know that it will take _______ seconds for the 

cabin pressure to drop by a factor of two from 50 * 103 N>m2 to 25 * 103 N>m2.” Calculate 

how long it will take the cabin pressure to drop. Make the following assumptions: 

    (i)   The air in the cabin behaves as a perfect gas:    rc =
pc

RTc
    where the subscript  c  stands 

  for the cabin. R = 287.05 N@m>kg@K for air Furthermore, Tc = 300 K and is constant 

for the whole time.  

   (ii)   The volume of air in the cabin is 70 m3. The bullet hole is 1.0 cm. diameter  .  

   (iii)   Air escapes through the bullet hole according to the equation:    m
#

c =

  -0.02307
pc

1Tc
3Ahole4  where       pc    is in    N>m2, Tc    is in  K ,    Ahole    is in    m2    and is in    m

#

c    kg>s.     

   2.23.    Oxygen leaks slowly through a small orifice from an oxygen bottle. The volume of the bot-

tle is 0.1 mm and the diameter of the orifice is 0.1 mm. Assume that the temperature in the 

tank remains constant at 18°C and that the oxygen behaves as a perfect gas. The mass flow 

rate is given by 

   m
#

O2
= -0.6847

pO2

1RO2
TO2

3Ahole4    

   (The units are those of Prob. 2.21.) How long does it take for the pressure in the tank to 

decrease from 10 to 5 MPa?   

   2.24.    Consider steady, low-speed flow of a viscous fluid in an infinitely long, two-dimensional 

channel of height  h  (i.e., the flow is fully developed;  Fig.   P2.24   ). Since this is a low-speed 

flow, we will assume that the viscosity and the density are constant. Assume the body forces 

u � U0

u � 0

y

x

Fully developed
flowh

 Figure P2.24        
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to be negligible. The upper plate (which is at    y = h   ) moves in the  x  direction at the speed 

   V0,    while the lower plate (which is at    y = 0   ) is stationary.  

    (a)   Develop expressions for  u ,  v , and  w  (which satisfy the boundary conditions) as functions 

of    U0, h, m, dp>dx,    and  y .  

   (b)   Write the expression for  dp >  dx  in terms of    m, U0,    and  h , if    u = 0    at    y = h>2.        

   2.25.    Consider steady, laminar, incompressible flow between two parallel plates, as shown in 

 Fig.   P2.25   . The upper plate moves at velocity    U0    to the right and the lower plate is sta-

tionary. The pressure gradient is zero. The lower half of the region between the plates 

(i.e.,    0 … y … h>2   ) is filled with fluid of density    r1    and viscosity    m1,    and the upper half 

   (h>2 … y … h)    is filled with fluid of density    r2    and viscosity    m2.     

    (a)   State the condition that the shear stress must satisfy for    0 6 y 6 h.     

   (b)   State the conditions that must be satisfied by the fluid velocity at the walls and at the 

interface of the two fluids.  

   (c)   Obtain the velocity profile in each of the two regions and sketch the result for    m1 7 m2.     

   (d)   Calculate the shear stress at the lower wall.     

U0

y

x
h/2

h/2
m2, r2

m1, r1

 Figure P2.25        

Rr u(r)

UC.L.

 Figure P2.26        

   2.26.    Consider the fully developed flow in a circular pipe, as shown in  Fig.   P2.26   . The velocity  u  

is a function of the radial coordinate only:  

   u = UC.L.a1 -

r2

R2
b    

   where    UC.L.    is the magnitude of the velocity at the centerline (or axis) of the pipe. Use the 

integral form of the momentum equation [i.e., equation (2.13)] to show how the pressure drop 

per unit length  dp>dx  changes if the radius of the pipe were to be doubled while the mass flux 

through the pipe is held constant at the value    m
#

.    Neglect the weight of the fluid in the control 

volume and assume that the fluid properties are constant.   

   2.27.    Velocity profiles are measured at the upstream end (surface 1) and at the downstream 

end (surface 2) of a rectangular control volume, as shown in  Fig.   P2.27   . If the flow is 

 incompressible, two dimensional, and steady, what is the drag coefficient for the airfoil? 

The vertical dimension  H  is  0.025c  and  

   Cd =
d

1
2r�U2

�c
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   The pressure is    p�     (a constant) over the entire surface of the control volume. (This problem 

is an extension of Problem 2.10.)   

   2.28.    Velocity profiles are measured at the upstream end (surface 1) and at the downstream end 

(surface 2) of the control volume shown in  Fig.   P2.28   . Surfaces 3 and 4 are streamlines. If 

the flow is incompressible, two dimensional, and steady, what is the drag coefficient for the 

airfoil? The vertical dimension    HD    is 0.025c. You will need to calculate the vertical dimen-

sion of the upstream station    (HU).    The pressure is    p�     (a constant) over the entire surface 

of the control volume. (This problem is an extension of Problem 2.11.)    

y

x

4

1 2

3

H � 0.025c

c

u � U�

u � U� (y/H)

u � U� (�y/H)

 Figure P2.27        

Streamline

Streamline

y

x

HD � 0.025c
HU

c

4

3

21

u � U�
u � U� (y/HD)

u � U� (�y/HD)

 Figure P2.28        

   2.29.    Velocity profiles are measured at the upstream end (surface 1) and at the downstream end 

(surface 2) of a rectangular control volume, as shown in  Fig.   P2.29   . If the flow is incom-

pressible, two dimensional, and steady, what is the drag coefficient? The vertical dimension 

   H = 0.025c.    The pressure is    p�     (a constant) over the entire surface of the control volume. 

(This problem is a variation of Problem 2.27.) At the upstream end (surface 1),    V
S

= U� in.    

At the downstream end of the control volume (surface 2),  

    0 … y … H  V
S

=
U�y

H
in + v jn    

    H … y … 2H  V
S

= U� in + v0 jn    

    -H … y … 0  V
S

= -

U�y

H
in - v jn   

    -2H … y … -H  V
S

= U� in - v0 jn    

   where  v(x, y)  and    v0(x)    are  y  components of the velocity, which are not measured.   
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   2.30.    Velocity profiles are measured at the upstream end (surface 1) and at the downstream end 

(surface 2) of a rectangular control volume, as shown in  Fig.   P2.30   . If the flow is incompress-

ible, two dimensional, and steady, what is the drag coefficient for the airfoil? The vertical 

dimension  H  is 0.025c. The pressure is    p�     (a constant) over the entire surface of the control 

volume. (This problem is an extension of Problem 2.12.)    
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   2.31.    Velocity profiles are measured at the upstream end (surface 1) and at the downstream end 

(surface 2) of the control volume shown in  Fig.   P2.31   . Surfaces 3 and 4 are streamlines. If 

the flow is incompressible, two dimensional, and steady, what is the drag coefficient for the 

airfoil? The vertical dimension at the downstream station (station 2) is    HD = 0.025c.    The 

pressure is    p�     (a constant) over the entire surface of the control volume. (This problem is 

an extension of Problem 2.13.)    

   2.32.    What are the free-stream Reynolds number [as given by equation (2.20)] and the free-

stream Mach number [as given by equation (2.19)] for the following flows? 

    (a)   A golf ball, whose characteristic length (i.e., its diameter) is 4.5 cm, moves through the 

standard sea level atmosphere at 60 m/s.  



96    Chap. 2 / Fundamentals of Fluid Mechanics

   (b)   Boeing 747 whose characteristic length is 70.6 m flies at an altitude of 10 km. with a 

speed of 250 m/s.     

   2.33.      (a)    An airplane has a characteristic chord length of 10.4 m. What is the free-stream Rey-

nolds number for the Mach 3 flight at an altitude of 20 km?  

   (b)   What is the characteristic free-stream Reynolds number of an airplane flying 160 mi/h 

in a standard sea-level environment? The characteristic chord length is 4.0 ft.     

   2.34.    To illustrate the point that the two integrals in equation (2.21) are path dependent, consider 

a system consisting of air contained in a piston/cylinder arrangement ( Fig.   P2.34   ). The system 

of air particles is made to undergo two cyclic processes. Note that all properties ( p ,  T ,    r,    etc.) 

return to their original value (i.e., undergo a net change of zero), since the processes are cyclic.  

    (a)   Assume that both cycles are reversible and determine (1)    Adq    and (2)    Adw    for each cycle.  

   (b)   Describe what occurs physically with the piston/cylinder/air configuration during each 

leg of each cycle.  

   (c)   Using the answers to part (a), what is the value of    (Adq - Adw)    for each cycle?  

   (d)   Is the first law satisfied for this system of air particles?     

Air

Process i:

B

C

A

D

v � 1

Process ii:

C

A

pp

v � 1
r r

 Figure P2.34        

   2.35.    In Problem 2.25, the entropy change in going from  A  to  C  directly (i.e., following process ii) is 

   sC - sA   

   Going via  B  (i.e., following process i), the entropy change is 

   sC - sA = (sC - sB) + (sB - sA)   

    (a)   Is the net entropy change    (sC - sA)    the same for both paths?  

   (b)   Processes  AC  and  ABC  were specified to be reversible. What is    sC - sA    if the processes 

are irreversible? Does    sC - sA    depend on the path if the process is irreversible?     

   2.36.    What assumptions were made in deriving equation (2.32)?   

   2.37.    Show that for an adiabatic, inviscid flow, equation (2.32a) can be written as    ds>dt = 0.      

   2.38.    Consider the wing-leading edge of a Cessna 172 flying at 60 m/s through the standard 

 atmosphere at 3 km altitude. Use the Mach number and total temperature relationship 

   
Tt

T�

= 1 +  
g - 1

2
 M2

�    

   For air g = 1.4, M�  is the free stream Mach number, T�  is the free stream temperature 

and Tt is the total temperature. 

   Mach number M�  is defined as 

   M� =
u�

a�
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   where a�  is the speed of sound, which is given as 1gRT� . Find the total temperature and 

compare with the free-stream static temperature for this flow. Is convective heating likely 

to be a problem for this aircraft?   

   2.39.    Consider the wing-leading edge of an SR-71 flying at Mach Number 2.0 at 25 km altitude. 

Using the Mach number and total temperature relationship 

   
Tt

T�

= 1 +  
g - 1

2
 M2

�    

   For air g = 1.4, M�  is the free stream Mach number, T�  is the free stream temperature 

and Tt is the total temperature. 

   Mach number M�  is defined as 

   M� =
u�

a�

   

   where a�  is the speed of sound, which is given as 1gRT� . Find the total temperature and 

compare with the free-stream static temperature for this flow. Is convective heating likely to 

be a problem for this aircraft? Find the total temperature and compare with the free-stream 

static temperature for this flow. Is convective heating likely to be a problem for this aircraft?   

   2.40.    Start with the integral form of the energy equation for a one-dimensional, steady, adiabatic flow: 

   Ht = h +
1
2U2   

   and the equation for the entropy change for a perfect gas: 

   s - st = cp ln
T
Tt

- R ln 
p

pt
   

   and develop the expression relating the local pressure to the stagnation pressure: 

   
p

pt 1
= a1 +

g - 1

2
M2b

-g(g- 1)

   

   Carefully note the assumptions made at each step of the derivation. Under what conditions 

is this valid?    
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    3   DYNAMICS OF AN 

INCOMPRESSIBLE, 

INVISCID FLOW FIELD 

     Chapter Objectives 

  •   Understand what is meant by inviscid flow, and why it is useful in aerodynamics  
  •   Learn how to use Bernoulli’s equation and how static and dynamic pressure relate 

to each other for incompressible flow  
  •   Know the basic process in measuring (and correcting) air speed in an airplane  
  •   Have a physical understanding of circulation and how it relates to aerodynamics  
  •   Learn the assumptions required for potential flow  
  •   Be able to use potential flow functions to analyze the velocities and pressures for 

various flow fields  
  •   Understand how potential flow theory can be applied to an airplane   

  For many applications of aerodynamics (such as preliminary design of aircraft at cruise 

conditions), solutions of the inviscid flow field can provide important information  (see 

 Chapters   2    and    14    for more details) . Furthermore, once the inviscid flow field has been 

defined, it can be used as boundary conditions for a thin, viscous boundary layer adja-

cent to the surface, which gives some additional assessment of viscous effects. For these 

reasons, the inviscid flow field is an important aspect in modern aerodynamics, even 
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though we have experimental and computational capabilities that can give us viscous 

results. Because of this, the analysis of the flow field done in this  text     will make use of 

a two-region flow model (one region in which the viscous forces are negligible, i.e., the 

inviscid region, and one region in which viscous forces cannot be neglected, i.e., the 

viscous boundary layer near the surface). This approach will allow us to gain a great 

deal of understanding of the aerodynamics of an airplane without having to conduct 

expensive or time-consuming experimental or computational projects.   

      3.1  INVISCID FLOWS 

  As we learned in  Chapter   2   , the     shearing stresses for a fluid may be expressed as the 

product of the viscosity    m    times the shearing stress velocity gradient (i.e.,    t = mdu>dy   ). 

There are no real fluids for which the viscosity is zero; however, there are many situ-

ations where the product of the viscosity times the shearing velocity gradient is suffi-

ciently small that the shear-stress terms may be neglected when compared to the other 

terms in the governing equations. We will use the term  inviscid flow  to describe the flow 

in those regions of the flow field where the viscous shear stresses are negligibly small. By 

using the term  inviscid flow  instead of  inviscid fluid , we emphasize that the viscous shear 

stresses are small because the combined product of viscosity and the shearing velocity 

gradients has a small effect on the flow field and not that the fluid viscosity is zero. In 

fact, once the solution for the inviscid flow field is obtained, you may want to solve the 

boundary-layer equations and calculate the skin-friction drag on the configuration , as 

we will learn to do in  Chapters   4    and    5    . 

 In regions of the flow field where the viscous shear stresses are negligibly small 

(i.e., in regions where the flow is  inviscid ),  equation (2.12) becomes  

      r
du
dt

= r
0u
0t

+ r(V
S

# � )u = rfx -

0p

0x
  (3.1a)    

      r
dv

dt
= r

0v

0t
+ r(V

S

# � )v = rfy -

0p

0y
  (3.1b)    

      r
dw

dt
= r

0w

0t
+ r(V

S

# � )w = rfz -

0p

0z
  (3.1c)    

 In vector form, the equation can be written as: 

      
dV
¡

dt
=

0V
¡

0t
+ (V

S

# �)V
S

= f
S

-

1

r
�p  (3.2)    

 No assumption has been made about density up to now, so these equations apply to a 

compressible flow as well as to an incompressible one. These equations, derived in 1755 

by Leonhard Euler, are called the  Euler equations . 

 In this chapter, we will develop the fundamental concepts for describing the flow 

around configurations in a low-speed stream. We will assume that the viscous boundary 

layer is thin and therefore has a negligible influence on the inviscid flow field (the effect 

of violating this assumption will be discussed when we compare theoretical results with 

data; flow separation is one example of a situation that would violate this assumption). 
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Then we will derive equations that will allow us to find the solution for the inviscid por-

tion of the flow field (i.e., the flow outside the boundary layer).  

   3.2  BERNOULLI’S EQUATION 

  As we discussed in  Chapters   1    and    2   , the     density is essentially constant when the gas par-

ticles in the flow field move at relatively low speeds, or when the fluid is a liquid. Typically, 

compressibility effects are negligible when the Mach number is less than    M� � 0.3.    We 

will also only consider body forces that are conservative (such as is the case for gravity), 

which means the force vector can be written as the gradient of a scalar fields as: 

      f
S

= - �F   (3.3)    

 Finally, we will limit ourselves to flows that are steady (or steady state), so that: 

   
0V
h

0t
= 0   

 We can change our equations into a more useful form by using the vector identity: 

   (V
S

# � )V
S

= � a
U2

2
b - V

S

* ( � * V
S

)   

 and then equation (3.2) (for the assumptions made above) becomes: 

      � a
U2

2
b + �F +

1

r
�p - V

S

* ( � * V
S

) = 0  (3.4)    

 In these equations  U  is the scalar magnitude of the velocity, that is    U = � V
S

�     (the sub-

sequent applications leads us to use  U  rather than  V  for the velocity magnitude). 

 We can calculate the change in the magnitude of each of the terms in equation 

(3.4) along an arbitrary path whose length and direction are defined by the vector    ds
h

.    

To do this, we take the dot product of each term in equation (3.4) and the vector    ds
h

.    

The result is: 

      da
U2

2
b + dF +

dp
r

- V
S

* ( � * V
S

) # ds
h

= 0  (3.5)    

 Note that, since    V
S

* ( � * V
S

)    is a vector perpendicular to    V
S

    (since by definition the 

cross product of two vectors is a vector perpendicular to the plane containing those two 

vectors), the last term is zero: (1) for any displacement    ds
h

    if the flow is irrotational (i.e., 

where    � * V
S

= 0   ), or (2) for a displacement along a streamline if the flow is rotational. 

Therefore, for a flow that is: 

    1.   Inviscid,  

   2.   Incompressible,  

   3.   Steady,  

   4.   Irrotational (or, if the flow is rotational, we consider only displacements along a 

streamline), and for which  

   5.   The body forces are conservative,   



Sec. 3.2 / Bernoulli’s Equation    101

 the first integral of Euler’s equation is 

      Lda
U2

2
b + LdF + L

dp
r

= constant  (3.6)    

 Since each term involves an exact differential, equation (3.6) becomes: 

      
U2

2
+ F +

p
r

= constant  (3.7)    

  As we mentioned in  Chapter   2   , the     force potential most often encountered in aerody-

namics is that due to gravity. We will take the  z  axis to be positive when pointing upward 

and normal to the surface of the earth; the force per unit mass due to gravity is directed 

downward and is of magnitude  g . Therefore, referring to equation (3.3), 

   f
S

= -

0F
0z

kn = -gkn   

 so for gravity: 

      F = gz  (3.8)    

 Finally, inserting equation (3.8) into equation (3.7), the momentum equation becomes: 

      
U2

2
+ gz +

p
r

= constant  (3.9)    

 Equation (3.9) is known as  Bernoulli’s equation  , which we previously discussed in 

 Example   2.7    . Bernoulli’s equation shows that, for a flow which is inviscid, incom-

pressible, steady, and irrotational with conservative body forces, the conservation 

of momentum equation reduces to this useful form, which is valid anywhere in the 

flow field. If the flow is rotational, then Bernoulli’s equation is only valid along a 

streamline. 

 Because the density has been assumed constant, it is not necessary to include the 

energy equation in the procedure to solve for the velocity and pressure fields. In fact, 

equation (3.9), which is a form of the momentum equation, can be derived from  equa-

tion (2.37)       which is the integral form of the energy equation.  As indicated in  Example 

  2.7   , there     is an interrelation between the total energy of the flow and the flow work. In 

deriving equation (3.9), we assumed that dissipative mechanisms do not significantly 

affect the flow. As a corollary, Bernoulli’s equation is valid only for flows where there 

is no mechanism for dissipation, such as viscosity. In thermodynamics, the flow process 

would be called  reversible . 

 Notice that, if the acceleration is zero throughout the entire flow field, the pres-

sure variation in a static fluid as given by equation (3.9) is identical to that given by 

equation  (1.17).     This is as it should be, since the five conditions required for Bernoulli’s 

equation are valid for a static fluid. 

 For aerodynamic problems, the changes in potential energy are typically negli-

gible. Neglecting the change in potential energy, equation (3.9) may be simplified as: 

      p +
1
2rU

2 = constant  (3.10)    
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 This equation establishes a direct relation between the static pressure and the ve-

locity. Thus, if either parameter is known, the other can be uniquely determined 

provided that the flow does not violate the assumptions listed above. Bernoulli’s 

equation can be used to relate the flow at various points around the vehicle, includ-

ing: (1) a point far from the vehicle (i.e., the free stream), (2) a point where the 

velocity relative to the vehicle is zero (i.e., a stagnation point), and (3) a general 

point just outside the boundary layer. The nomenclature for these points in the flow 

is illustrated in  Fig.   3.1   .  

  Recall from the discussion associated with  Fig.   2.1    that the     flow around a wing in 

a ground-fixed coordinate system is unsteady. Thus, we cannot apply Bernoulli’s equa-

tion to the flow depicted in  Fig.   3.1   a. However, the flow can be made steady through 

the Gallilean transformation to the vehicle-fixed coordinate system  of  Fig.   2.2    . In the 

vehicle-fixed coordinate system of  Fig.   3.1   b, we can apply Bernoulli’s equation to points 

(1), (2), and (3) as: 

      p� +
1
2r�U2

� = pt = p3 +
1
2r�U2

3  (3.11)    

 Note that at point (2), the static pressure is equal to the total pressure since the 

velocity at this point is zero. The  stagnation  (or total)  pressure , which is the con-

stant of equation (3.10), is the sum of the free-stream static pressure    (p� )    and the 

free-stream  dynamic pressure     (1
2r�  U2

� ),    which is designated by the symbol    q� .    

Remember, however, that this statement is not true if the flow is compressible. 

Bernoulli’s equation is telling us that there is a balance between static and dynamic 

pressure, with their sum always  adding up to the total pressure. If a flow speeds up, 

then the dynamic pressure increases and the static pressure decreases. Conversely, 

if the flow slows down, then the dynamic pressure decreases and the static pressure 

increases. 

(a)

(b)

Undisturbed
air

(1)
(2)

(i.e., a stagnation point)

(3)

75 m/s75 m/s

m/s

m/s
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75(1)      �

100(3)      �

0(2)      �U2

U3

U�

 Figure 3.1         Velocity field around an airfoil: (a) ground-fixed 

 coordinate system; (b) vehicle-fixed coordinate system.   
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  EXAMPLE 3.1:    Calculations made using Bernoulli’s equation 

 The airfoil of  Fig.   3.1   a moves through the air at 75 m/s at an altitude of 2 km. 

The fluid at point 3 moves downstream at 25 m/s relative to the ground-fixed 

coordinate system. What are the values of the static pressure at points (1), 

(2), and (3)? 

  Solution:     To solve this problem, we can superimpose a velocity of 75 m/s to the right so 

that the airfoil is at rest in the transformed coordinate system. In this vehicle-

fixed coordinate system, the fluid “moves” past the airfoil, as shown in  Fig. 

  3.1   b. The velocity at point 3 is 100 m/s relative to the stationary airfoil, and 

the resultant flow is steady.    p�     can be found directly in   Table   1.2        using the 

static pressure for the standard day atmosphere: 

    Point 1: p� = 79,501 N>m2    

  Point 2: pt =    p� +
1
2r�U2

�  

  = 79,501 N>m2
+

1
2(1.0066 kg>m3)(75 m>s)2  

  = 82,332 N>m2  

  Point 3: p3 +
1
2r�U2

3 = p� +
1
2r�U2

�  

  p3 = 82,332 N>m2
-

1
2(1.0066 kg>m3)(100 m>s)2 

  = 77,299 N>m2       

   3.3  USE OF BERNOULLI’S EQUATION 
TO DETERMINE AIRSPEED 

 Equation (3.11) indicates that a Pitot-static probe (as shown in  Fig.   3.2   ) can be used to 

measure a vehicle’s airspeed. The Pitot head has no internal flow velocity, and the pres-

sure in the Pitot tube is equal to the total pressure of the airstream    (pt).    The purpose 

of the static ports is to sense the true static pressure of the free stream    (p�).    When the 

aircraft is operated through a large angle of attack range, the surface pressure may vary 

markedly. As a result, the pressure sensed at the static port may be significantly differ-

ent from the free-stream static pressure, depending on the orientation of the aircraft. 

The total-pressure and the static-pressure lines can be attached to a differential pressure 

gage in order to determine the airspeed using the value of the free-stream density for 

the altitude at which the vehicle is flying:  

   U� =
B

2(pt - p�)

r�
   

 As indicated in  Fig.   3.2   , the measurements of the local static pressure are often 

made using an orifice flush-mounted at the vehicle’s surface. Although the orifice 

opening is located on the surface beneath the viscous boundary layer, the static 

pressure measurement is used to calculate the velocity at the (outside) edge of the 
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boundary layer (i.e., the velocity of the inviscid stream). Nevertheless, the use of 

Bernoulli’s equation (which is valid only for an inviscid, incompressible flow) is ap-

propriate because  (as we discussed in  Chapter   2   )  the analysis of the  y -momentum 

equation reveals that the static pressure is essentially constant across a thin boundary 

layer. As a result, the value of the static pressure measured at the wall is essentially 

equal to the value of the static pressure in the inviscid stream (immediately outside 

the boundary layer). 

 There can be many conditions of flight where the airspeed indicator may not 

reflect the actual velocity of the vehicle relative to the air (one example is the aircraft 

orientation which was mentioned previously). These deviations in the measured velocity 

when compared with the actual velocity are corrected in a series of calculations, each 

defining a new airspeed definition. The definitions for the various terms associated with 

airspeed are as follows: 

    1.   Indicated airspeed (IAS).     Indicated airspeed is equal to the Pitot-static airspeed 

indicator reading as installed in the airplane without correction for airspeed in-

dicator system errors but including the sea-level standard adiabatic compressible 

flow correction. (The latter correction is included in the calibration of the airspeed 

instrument dials.)  

   2.   Calibrated airspeed (CAS).     CAS is the result of correcting IAS for errors of 

the instrument and errors due to position or location of the pitot-static installa-

tion. The instrument error may be small by design of the equipment and is usually 

negligible in equipment that is properly maintained and cared for. The position 

error of the installation must be small in the range of airspeed involving critical 

performance conditions. Position errors are most usually confined to the static 

source in that the actual static pressure sensed at the static port may be different 

from the free airstream static pressure.  

Total
pressure
pt

Static pressure
ports

Pressure indicated by gage is
difference between total and
static pressure, pt � p

�
 � q

�

Pitot with separate
static source

Pitot-static system

pt
p

�

p
�

q
� q

�

 Figure 3.2         Pitot-static probes that can be used to “measure” air 

speed.   
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   3.   Equivalent airspeed (EAS).     Equivalent airspeed is equal to the airspeed in-

dicator reading corrected for position error, instrument error, and for adiabatic 

compressible flow for the particular altitude. The equivalent airspeed (EAS) is the 

flight speed in the standard day sea-level air mass that would produce the same 

free-stream dynamic pressure as flight at the true airspeed at the correct density 

altitude.  

   4.   True airspeed (TAS).     The true airspeed results when the EAS is corrected for 

density altitude. Since the airspeed indicator is calibrated for the dynamic pres-

sures corresponding to air speeds at standard day sea-level conditions, we must 

account for variations in air density away from the standard day values. To relate 

EAS and TAS requires consideration that the EAS coupled with standard day 

sea-level density produces the same dynamic pressure as the TAS coupled with 

the actual air density of the flight condition. From this reasoning, the TAS can be 

calculated from: 

   TAS = EAS
A

rSL

r
   

 where 

    TAS = true airspeed    

    EAS = equivalent airspeed    

    r = actual air density    

    rSL = standard day sea@level air density.   

 The result shows that the EAS is a function of TAS and density altitude.  Table   3.1    

presents the EAS and the dynamic pressure as a function of TAS and altitude. The 

free-stream properties are those of the U.S. Standard Atmosphere ( 1976 ).     

 TABLE 3.1    Dynamic Pressure and EAS as a Function of Altitude and TAS 

 Altitude 

Sea level 
(r = 1.0000rSL)

10,000 m 
(r = 0.3376rSL)

20,000 m 
(r = 0.0726rSL)

  TAS  
(km/h) 

    q�    
(N/m 2 ) 

  EAS  
(km/h) 

  q    �    
(N/m 2 ) 

  EAS  
(km/h) 

  q    �    
(N/m 2 ) 

  EAS  
(km/h) 

 200     1.89 * 103     200     6.38 * 102     116.2     1.37 * 102     53.9 

 400     7.56 * 103     400     2.55 * 103     232.4     5.49 * 102     107.8 

 600     1.70 * 104     600     5.74 * 103     348.6     1.23 * 103     161.6 

 800     3.02 * 104     800     1.02 * 104     464.8     2.20 * 103     215.5 

 1000     4.73 * 104     1000     1.59 * 103     581.0     3.43 * 103     269.4 
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   3.4  THE PRESSURE COEFFICIENT 

 Engineers often use experimental data or theoretical solutions for one flow condition 

to gain insight into the flow field that exists at another flow condition. Wind-tunnel 

data, where scale models are exposed to flow conditions that simulate the design flight 

environment, are used to gain insight to describe the full-scale flow field at other flow 

conditions. Therefore, it is desirable to present (experimental or theoretical) corre-

lations in terms of dimensionless coefficients that depend only on the configuration 

geometry and the angle of attack. One such dimensionless coefficient is the  pressure 
coefficient , which is defined as 

      Cp =
p - p�

1
2r�U2

�

=
p - p�

q�
  (3.12)    

 In flight tests and wind-tunnel tests, pressure orifices, which are located flush mounted 

in the surface, sense the local static pressure at the wall [ p  in equation (3.12)]. These 

experimentally determined static pressures, which are located beneath the viscous 

boundary layer, can be presented as the dimensionless pressure coefficient using equa-

tion (3.12). 

 If we consider those flows for which Bernoulli’s equation applies, we can express 

the pressure coefficient in terms of the nondimensionalized local velocity. Rearranging 

equation (3.11), 

   p3 - p� = 1
2r�U2

�J1 -

U2
3

U2
�

R    

 Treating point 3 as a general point in the flow field, we can write the pressure coef-

ficient as 

      Cp =
p - p�

1
2r�U2

�

= 1 -

U2

U2
�

  (3.13)    

 Now we can evaluate the pressure coefficient at the stagnation point, where the local 

velocity is zero,    Cp = Cp, t = 1.0    for an incompressible flow. Notice that the stagnation-

point value is independent of the free-stream flow conditions or the configuration 

geometry.   The pressure coefficient has values that relate it to free stream pressure and 

velocity (for incompressible flow) according to  Table   3.2   , which is well worth remem-

bering when working with pressure coefficients.  

 TABLE 3.2    Variation of Pressure Coefficient with 
Velocity and Static Pressure 

 Velocity  Static Pressure  Pressure Coefficient 

    U 6 U�        p 7 p�        Cp 7 0    

    U = U�        p = p�        Cp = 0    

    U 7 U�        p 6 p�        Cp 6 0    
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  EXAMPLE 3.2:    Flow in an open test-section wind tunnel 

 Consider flow in a subsonic wind tunnel with an open test section, which is 

a tunnel where the model is located in a section open to the room in which 

the tunnel is located. Thus, as shown in  Fig.   3.3   , the air accelerates from 

a reservoir (or stagnation chamber) where the velocity is essentially zero, 

through a converging nozzle, exhausting into the room (i.e., the test section) 

in a uniform, parallel stream of velocity    U�.    Using a barometer located on 

the wall in the room where the tunnel is located, we know that the baromet-

ric pressure in the room is 29.5 in Hg.  

 The model is a cylinder of infinite span (i.e., the dimension normal to 

the paper is infinite), which is simulated in a wind tunnel by having a cylinder 

that extends beyond the sides of the tunnel (or if the test section has walls, the 

cylinder would extend to the walls). There are two pressure orifices flush with 

the wind-tunnel walls and two orifices flush with the model surface, as shown 

in  Fig.   3.3   . The pressure sensed at orifice 3, which is at the stagnation point of 

the cylindrical model, is    +2.0    in of water, gage. Furthermore, we know that 

the pressure coefficient for point 4 is    -1.2.    

 What is the pressure sensed by orifice 1 in the stagnation chamber? 

What is the pressure sensed by orifice 2, located in the exit plane of the 

wind-tunnel nozzle? What is the free-stream velocity,    U�?    What is the static 

pressure at point 4? What is the velocity of an air particle just outside the 

boundary layer at point 4? 

 In working this example, we will assume that the variation in the static 

pressure across the boundary layer is negligible.  Thus, as will be discussed 

in  Section   4.1   , the   static pressure at the wall is approximately equal to the 

static pressure at the edge of the boundary layer. 

Converging nozzle

Reservoir
(or stagnation chamber)

Tunnel exhausts
to room as a
free jet

section

Test

Open to
room

1

2

4
3

U�

 Figure 3.3         Open test-section wind tunnel used in Example 3.2.   
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  Solution:      As discussed in  Chapter   1   , the     standard atmospheric pressure at sea level is 

defined as that pressure which can support a column of mercury 760 mm high 

(also equal to    2116.22 lbf>ft2   ). Therefore, an equivalency statement may be 

written: 

   760 mm Hg = 29.92 in Hg = 2116.22 lbf>ft2   

 Since the barometric pressure is 29.5 in Hg, the pressure in the room is 

   proom = 29.5 in Hga
2116.22 lbf>ft2>atm

29.92 in Hg>atm
b = 2086.51 lbf>ft2   

 Furthermore, since the nozzle exhausts into the room at subsonic speeds 

and since the streamlines are essentially straight (so that there is no pressure 

variation normal to the streamlines), the pressure in the room is equal to the 

free-stream static pressure for the test section    (p�)    and is equal to the static 

pressure in the exit plane of the nozzle    (p2).    

   proom = p� = p2 = 2086.51 lbf>ft2   

 We will assume that the temperature changes are negligible and, therefore, 

the free-stream density is reduced proportionally from the standard atmos-

phere’s sea-level value: 

   r� = (2086.51 lbf>ft2) a
0.002376 slug>ft3

2116.22 lbf>ft2
b = 0.00234 slug>ft3   

 Since the pressure measurement sensed by orifice 3 is given as a gage 

pressure, it is the difference between the stagnation pressure and the free-

stream pressure, that is, 

    p3 - p� = 2 in H2O, gagea
2116.22 lbf>ft2>atm

407.481 in H2O>atm
b  

  = 10.387 lbf>ft2, gage    

 where 407.481 in    H2O    is the column of water equivalent to 760 mm Hg if 

the density of water is    1.937 slugs>ft3.    But since    p3 = pt,    we can rearrange 

Bernoulli’s equation: 

   p3 - p� = pt - p� = 1
2r�U2

�   

 Equating these expressions and solving for    U�,    

   U� =
B

2(10.387 lbf>ft2)

0.00234 lbf # s2>ft4
= 94.22 ft>s   

 Since    12r�U2
�    is the dynamic pressure, we can rearrange the definition 

for the pressure coefficient to find the static pressure at point 4: 

    p4 = p� + Cp4q� = 2086.51 + (-1.2)(10.387) 

  = 2074.05 lbf>ft2    
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 Since we want to know the velocity of the air particles just outside the 

boundary layer above orifice 4, Bernoulli’s equation is applicable, and we 

can use equation (3.13): 

   
U2

4

U2
�

= 1 - Cp4 = 2.2   

 Therefore,    U4 = 139.75 ft>s.       

   3.5  CIRCULATION 

 One of the most important concepts we will use in describing aerodynamic flow is circu-

lation.  Circulation  is defined as the line integral of the velocity around any closed curve. 

Referring to the closed curve  C  of  Fig.   3.4   , the circulation is given by:  

      -� = CC
V
S

# ds
¡

  (3.14)    

 where    V
S

# ds
¡

    is the scalar product of the velocity vector and the differential vector 

length along the path of integration. As indicated by the circle through the integral sign, 

the integration is carried out for the complete closed path. The path of the integration is 

counterclockwise, so the area enclosed by the curve  C  is always on the left. A negative 

sign is used in equation (3.14) for convenience in the subsequent application to lifting-

surface aerodynamics. 

 Consider the circulation around a small, square element in the  xy  plane, as shown 

in  Fig.   3.5   a. Integrating the velocity components along each of the sides and proceeding 

counterclockwise (i.e., keeping the area on the left of the path),  

   - �� = u �x + av +

0v

0x
�xb  �y - au +

0u
0y

�yb  �x - v �y   

 Simplifying yields 

   - �� = a
0v

0x
-

0u
0y

b  �x �y   

ds

x

y

V

Curve C Integration proceeds
so that enclosed area

remains on left

 Figure 3.4         Concept of circulation.   
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 This procedure can be extended to calculate the circulation around a general curve  C  in 

the  xy  plane, such as that of  Fig.   3.5   b. The result for this general curve in the  xy  plane is 

      -� = CC
(u dx + v dy) = OA

a
0v

0x
-

0u
0y

b  dx dy  (3.15)    

 Equation (3.15) represents  Green’s lemma  for the transformation from a line in-

tegral to a surface integral in two-dimensional space. The transformation from a line 

integral to a surface integral in three-dimensional space is governed by  Stokes’s theorem : 

      CC
V
S

# ds
¡

= OA
( � * V

S

) # nn  dA   (3.16)    

 where    nn  dA    is a vector normal to the surface, positive when pointing outward from the 

enclosed volume, and equal in magnitude to the incremental surface area (see  Fig.   3.6   ). 

Note that equation (3.15) is a planar simplification of the more general vector equa-

tion, which is given in equation (3.16). In words, the integral of the normal component 

of the curl of the velocity vector over any surface  A  is equal to the line integral of the 

tangential component of the velocity around the curve  C  which bounds  A . Stokes’s 

�yv

y

u

(a) (b)

x

y

x

�x

���

v �      �x   
	v
	x

u �      �y   
	u
	y

Curve C

 Figure 3.5         Circulation for elementary closed curves: (a) rectan-

gular element; (b) general curve  C .   

n dA

Curve C

� 
 V

V

^

 Figure 3.6         Nomenclature for Stokes’s theorem.   
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theorem is valid when  A  represents a simply connected region in which    V
S

    is continu-

ously differentiable. (A simply connected region is one where any closed curve can be 

shrunk to a point without leaving the simply connected region.) Thus, equation (3.16) 

is not valid if the area  A  contains regions where the velocity is infinite.         

 Aerodynamics Concept Box: What Does Circulation Mean? 

 Circulation as defined in equation (3.14) can be a little difficult to understand, so we will take 

a short break from the derivation to see if we can develop a physical understanding of circula-

tion. If we look at the integral that defines circulation, we see: 

   -� = CC
V
S

# ds
¡

   

 which is a line integral around a contour C (see below), with a differential length along the con-

tour,    ds
¡

   , a velocity vector on the contour,    V
S

,    and in equation (3.16) there is the area inside C, 

which is A. Remember that the contour is fictitious (it does not really exist in the flow)! 

 So, what is the integral asking us to do? First, there is a scalar (dot) product operation to 

perform,    V
S

# ds
¡

   . A scalar product can be found by    V
S

# ds
¡

= � V
S

� � ds
¡

�cos u   , where    u    is the angle 

between the two vectors. When will the scalar product contribute the most to the integral? Since 

the magnitudes are multiplied by the    cos u   , the maximum contribution occurs when the two 

vectors are aligned (   u = 0   ) and the minimum contribution occurs when the two vectors are per-

pendicular to each other (   u = p>2   ). So, circulation happens when the velocity vector is along 

the path of integration, C, and it doesn’t happen when the velocity vector is perpendicular to C. 

 If we look at the streamlines shown above (which are parallel and to the right as they 

approach the contour but spread out as they leave the contour), there would be very little 

circulation created at the left and right portions of C since the velocity is nearly normal to the 

contour. There would be circulation created at the top and bottom of the contour, however, 

but since the vectors are aligned at the bottom (   u = 0    and    cos u = 1   ), but opposite to each 

other at the top (   u = p    and    cos u = -1   ), it is possible that the top and bottom contributions 

could easily cancel each other out. So, when would there be a non-zero circulation? This can 

only happen if the flow has some net curvature within the contour C. Or, in other words, cir-

culation can only exist if the flow is turned. Therefore, the physical meaning of circulation is 

that there is some net turning of the flow in the region of the contour of integration. This can 

happen in aerodynamics when there is flow over an airfoil at angle of attack or with camber 

(or both) , which we will discuss in greater detail in  Chapter   6    . Another situation when the 

flow is turned is when flaps are deflected , which will be discussed in  Chapters   7    and    13    . 

A C

V
ds
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   3.6  IRROTATIONAL FLOW 

 By using Stokes’s theorem, equation (3.16), we can see that if the curl of    V
S

    (i.e.,    � * V
S

   ) 

is zero at all points in the region bounded by  C , then the line integral of    V
S

# ds
¡

    around 

the closed path is also zero. That is, if: 

      � * V
S

= ∞

in jn kn

0

0x
0

0y
0

0z
u v w

∞ = a
0w

0y
-

0v

0z
b in - a

0w

0x
-

0u
0z

b jn + a
0v

0x
-

0u
0y

bkn = 0  (3.17)    

 and the flow contains no singularities, the flow is said to be  irrotational . The definition 

of circulation and Stokes’s theorem [equations (3.14) and (3.16), respectively] lead us 

to the conclusion that an irrotational flow cannot have any circulation: 

   -� = CC
V
S

# ds
¡

= OA
(� * V

S

) # nndA = 0   

 For this irrotational velocity field, the line integral 

   LV
S

# ds
¡

   

 is independent of path. A necessary and sufficient condition that the integral be inde-

pendent of path is that the curl of    V
S

    is everywhere zero. Therefore, the value of the 

integral only depends on its limits. However, a line integral can be independent of the 

path of integration only if the integrand is an exact differential, such as: 

      V
S

# ds
¡

= df  (3.18)    

 where    df    is an exact differential. Expanding equation (3.18) in Cartesian coordinates 

gives us: 

   u dx + v dy + w dz =
0f

0x
dx +

0f

0y
dy +

0f

0z
dz   

 We have now shown that: 

      V
S

= �f  (3.19)    

 So, a  velocity potential     f(x, y, z)    exists for this flow such that the partial derivative of 

   f    in any direction is the velocity component in that direction. That equation (3.19) is a 

valid representation of the velocity field for an irrotational flow can be seen by noting 

that: 

     � * �f = 5
in jn kn

0

0x
0

0y
0

0z
0f

0x

0f

0y

0f

0z

5 = a
0

0y
 
0f

0z
-

0

0z
 
0f

0y
b in - a

0

0x
 
0f

0z
-

0

0z
 
0f

0x
b jn + a

0

0x
 
0f

0y
-

0

0y
 
0f

0x
bkn = 0  

(3.20)    

i

= 0 for irrotational flow
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 As long as    f    and its first derivatives are continuous, then the derivative order does not 

matter. That is, the curl of any gradient is necessarily zero. That is why an irrotational 

flow is also called a  potential flow .  

   3.7  KELVIN’S THEOREM 

 Having defined the necessary and sufficient condition for the existence of a flow that has 

no circulation, we can examine a theorem first demonstrated by Lord Kelvin in 1869. 

For an inviscid, barotropic flow with conservative body forces, the circulation around a 

closed fluid line remains constant with respect to time. A barotropic flow (sometimes 

called a homogeneous flow) is one in which the density depends only on the pressure, 

   r = r(p)   . 

 The time derivative of the circulation along a closed fluid line (i.e., a fluid line that 

is composed of the same fluid particles) is found from equation (3.14) as: 

      -
d�

dt
=

d
dt
a CC

V
S

# ds
¡

b = CC

dV
¡

dt
# n ds

¡

+ CC
V
S

#
d
dt

( ds
¡

)  (3.21)    

 Euler’s equation, equation (3.2), which is the momentum equation for an inviscid flow, 

is given by: 

   
dV
¡

dt
= f

S

-

1

r
�p   

 Using the constraint that the body forces are conservative (as is true for gravity, the 

body force of most interest in aerodynamics), we have: 

   f
S

= - �F    

 and 

      
dV
¡

dt
= - �F -

1

r
�p  (3.22)    

 where  F  is the body-force potential. Since we are following a particular fluid particle, 

the order of time and space differentiation does not matter, which gives us: 

      
d
dt

( ds
¡

) = da
ds

¡

dt
b = dV

¡

  (3.23)    

 Substituting equations (3.22) and (3.23) into equation (3.21) yields 

      
d
dt CC

V
S

# ds
¡

= - CC
dF - CC

dp
r

+ CC
V
S

# dV
¡

  (3.24)    

 Since the density is a function of the pressure only, all the terms on the right-hand side 

involve exact differentials. The integral of an exact differential around a closed curve 

is zero, so equation (3.24) reduces to: 

      
d
dt
a CC

V
S

# ds
¡

b = 0  (3.25)    
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 Or, as given in the statement of Kelvin’s theorem, the circulation remains constant along 

the closed fluid line for a flow with conservative body forces. 

   3.7.1  Implication of Kelvin’s Theorem 

 If the fluid starts from rest, or if the velocity of the fluid in some region is uniform and 

parallel, the rotation in this region is zero. Kelvin’s theorem leads to the important 

conclusion that the entire flow remains irrotational in the absence of viscous forces 

and of discontinuities provided that the flow is barotropic and the body forces can be 

described by a potential function. 

 In many flow problems (including most of those of interest in aerodynamics), 

the undisturbed, free-stream flow is a uniform parallel flow in which there are no 

shear stresses. Kelvin’s theorem implies that although the fluid particles in the sub-

sequent flow patterns may follow curved paths, the flow remains irrotational except 

in those regions where the dissipative viscous forces are an important factor. This 

concept is important for developing airfoil theory , and will be discussed further in 

 Chapter   6    .   

   3.8  INCOMPRESSIBLE, IRROTATIONAL FLOW AND THE 
VELOCITY POTENTIAL 

 Kelvin’s theorem states that for an inviscid flow having a conservative force field, 

the circulation must be constant around a path that moves so as always to touch the 

same particles and which contains no singularities. Thus, since the free-stream flow is 

 irrotational, a barotropic flow around the vehicle will remain irrotational provided that 

viscous effects are not important. For an irrotational flow, the velocity may be expressed 

in terms of a potential function in two dimensions as: 

      V
S

= uin + v jn = �f =
0f

0x
in +

0f

0y
jn  (3.19)    

 Equating the two vectors yields important relationships between the velocity compo-

nents and the velocity potential:    u = 0f>0x    and    v = 0f>0y   . For relatively low-speed 

flows (i.e., incompressible flows), the continuity equation is 

      � # V
S

= 0  (2.4)    

 Notice that  equation (2.4)   is valid for a three-dimensional flow, as well as a two- 

dimensional flow, but in two dimensions it can be written as: 

   
0u
0x

+

0v

0y
= 0   

 Combining  equations (2.4) and (3.19)    , we find that for an incompressible, irrota-

tional flow, 

      
0u
0x

+

0v

0y
=

0

0x
a

0f

0x
b +

0

0y
a

0f

0y
b =

0
2f

0x2
+

0
2f

0y2
= �2f = 0  (3.26)    
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 Therefore, the governing equation, which is known as  Laplace’s equation , is a linear, 

second-order partial differential equation of the elliptic type. 

   3.8.1  Irrotational Condition 

 Now that we have found that the velocity potential used in the continuity equation for 

incompressible flow yields Laplace’s equation, we will also see what happens when we 

use the velocity potential in the irrotational flow condition. The irrotational flow condi-

tion [equation (3.17)] states that the curl of the velocity vector must be zero. Using the 

definition of the curl operator, vorticity can be calculated and set to zero to obtain the 

irrotational flow condition: 

    � * V
S

= ∞

in jn kn

0

0x
0

0y
0

0z
u v w

∞ = a
0w

0y
-

0v

0z
b in - a

0w

0x
-

0u
0z

b jn + a
0v

0x
-

0u
0y

bkn   

    = jx in + jy jn + jzkn = j
S

= 0    

 where    jx   ,    jy   , and    jz    are the vorticity components and    j
S

    is the vorticity vector. In two 

dimensions, all  z  derivatives and  w  velocities are zero, resulting in a straight-forward 

relationship for irrotational flow: 

   
0v

0x
-

0u
0y

= 0   

 Substituting the velocity potential relations into the irrotational flow condition results in: 

   
0v

0x
-

0u
0y

=
0

0x
a

0f

0y
b -

0

0y
a

0f

0x
b = 0   

 as long as the velocity potential and its first derivatives are continuous functions. Since 

the irrotational condition is identically satisfied by the velocity potential, the velocity po-

tential must represent an irrotational flow, something which will be very important in the 

development of potential flow theory. In fact, the velocity potential was originally defined 

in order to identically satisfy the irrotational flow condition so that Laplace’s equation 

would be the governing equation for two-dimensional, incompressible, irrotational flow.  

   3.8.2  Boundary Conditions 

 Within certain constraints on geometric slope continuity, a bounded, simply connected 

velocity field is uniquely determined by the distribution on the flow boundaries either 

of the normal component of the total velocity    �f # nn     or of the total potential    f.    These 

boundary-value problems are respectively designated Neumann or Dirichlet problems. For 

applications in this  book ,  the Neumann formulation will be used since most practical cases 

involve prescribed normal velocity boundary conditions. Specifically, the flow tangency 

requirement associated with inviscid flow past a solid body is expressed mathematically as 

   �f # nn = 0   

 because the velocity component normal to the surface is zero at a solid surface.            
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 Aerodynamics Concept Box: What Is Vorticity? 

 Just as circulation is a difficult concept to understand, so is the concept of vorticity. If we 

look at the partial derivative terms in the vorticity equation [equation (3.17)], we will start to 

understand the physical meaning of vorticity. If we just consider two-dimensional flow, the 

vorticity is given by 

   j
S

= � * V
S

= a
0v

0x
-

0u
0y

bkn   

 The terms that are important are    0v>0x    and    0u>0y   , which represent the change in velocity acting 

on the edges of a fluid element, as shown below. If there are net changes in velocity in both  x  and 

 y  directions, then the fluid element will typically rotate (physically), which is represented by a 

non-zero term in the vorticity equation (mathematically, as long as we remember the minus sign). 

 In other words, the vorticity,    j   , is directly related to the fluid element rotational velocity—in 

fact, the vorticity turns out to be twice the rotational velocity of the fluid element,    j = 2v   . If 

the flow field does not have any vorticity (which means that the fluid elements are not rotat-

ing), then the flow is called irrotational (shown below). If the flow field does have vorticity, 

then the flow is called rotational. It is very important at this point not to confuse rotation of 

a fluid element with curvature (or turning) of the flow—these are two separate (although 

related) concepts. It is theoretically possible for a turning flow to be irrotational, just as it is 

possible for a flow following a straight path to be rotational. 

y

x

v1

u2

v2

u1

      

Irrotational flow

Rotational flow       
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   3.9  STREAM FUNCTION IN A TWO-DIMENSIONAL, 
INCOMPRESSIBLE FLOW 

 Just as the condition of irrotationality is the necessary and sufficient condition for the 

existence of a velocity potential, so the equation of continuity for an incompressible, 

two-dimensional flow is the necessary and sufficient condition for the existence of a 

stream function. The flow needs to be two dimensional only in the sense that it requires 

only two spatial coordinates to describe the motion. Therefore, stream functions exist 

both for plane flow and for axially symmetric flow. You should keep in mind that 

stream functions can exist for compressible, two-dimensional flows if they are steady, 

although we will not be using stream functions for those purposes. Stream functions 

can also exist for rotational flows, which makes them useful in describing laminar 

boundary layer flows. 

 Examining the continuity equation for an incompressible, two-dimensional flow 

in Cartesian coordinates  [equation (2.4)] , 

   � # V
S

=
0u
0x

+

0v

0y
= 0   

 A stream function,    c,    is defined with velocity components given by: 

      u =
0c

0y
  (3.27a)    

      v = -

0c

0x
  (3.27b)    

 We can easily show that the stream function identically satisfies continuity since: 

   
0u
0x

+

0v

0y
=

0

0x
a

0c

0y
b +

0

0y
a-

0c

0x
b = 0   

 as long as the stream function and its first derivatives are continuous. A corollary to 

this observation is that the existence of a stream function is a necessary condition for a 

physically possible flow (i.e., one that satisfies the continuity equation). 

 Since    c    is a point function where    c = c(x,y)   , the differential of    c    is: 

   dc =
0c

0x
dx +

0c

0y
dy   

 Substituting equation (3.27) into this differential yields: 

      dc = -v dx + u dy  (3.28a)    

 Since a streamline is a curve whose tangent at every point coincides with the direction 

of the velocity vector (or the slope of the curve must equal the local velocity component 

ratio), the definition of a streamline in a two-dimensional flow is 

   
dy

dx
=

v

u
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 therefore, we know that: 

   
dx
u

=
dy

v

   

 Rearranging, we can see that: 

      u dy - v dx = 0  (3.28b)    

 along a streamline. Equating equations (3.28a) and (3.28b), we find that: 

   dc = udy - vdx = 0   

 along a streamline. Therefore, the change in    c    is zero along a streamline or, equiva-

lently,    c    is constant along a streamline. A corollary statement is that lines of constant 

   c    are streamlines of the flow. 

 Referring to  Fig.   3.7   , it is clear that the product    v(-dx)    represents the volumetric 

flow rate per unit depth across  AO  and the product  u dy  represents the volumetric flow 

rate per unit depth across  OB . By continuity, the fluid crossing lines  AO  and  OB  must 

cross the curve  AB . Therefore,    dc    is a measure of the volumetric flow rate per unit 

depth across  AB . A line can be passed through  A  for which    c = cA    (a constant), while 

a line can be passed through  B  for which    c = cB = cA + dc    (a different constant). The 

difference    dc    is the volumetric flow rate (per unit depth) between the two streamlines. 

It follows, then, that the volumetric flow rate (per unit depth) between any two points 

in the flow is the difference between the values of the stream function at the two points of 

interest,    Q = dc   .  

 The fact that the flow is always tangent to a streamline and has no component of 

velocity normal to it has an important consequence. Any streamline in an inviscid flow 

can be replaced by a solid boundary of the same shape without affecting the remainder 

of the flow pattern. We will make good use of this observation in our applications of 

potential flow. 

 The velocity components for a two-dimensional flow in cylindrical coordinates can 

also be calculated using a stream function as: 

      vr =
1

r
 
0c

0u
  vu = -

0c

0r
  (3.29)    
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 Figure 3.7         The significance of the stream function.   
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 If a two-dimensional flow is irrotational, we know: 

      � * V
S

=
0v

0x
-

0u
0y

= 0    

 Then writing the velocity components in terms of the stream function, as defined in 

equation (3.27), we find that: 

      
0v

0x
-

0u
0y

=
0

0x
a-

0c

0x
b -

0

0y
a

0c

0y
b = 0 and �2c = 0  (3.30)    

 Therefore, for an irrotational, two-dimensional, incompressible flow, the stream function 

is also governed by Laplace’s equation. Note, however, that the stream function was physi-

cally possible without being irrotational, so a stream function can represent a rotational or 

irrotational flow. For our developments in the following sections, however, we will assume 

that the flows are irrotational and the stream function must satisfy Laplace’s equation.  

   3.10   RELATION BETWEEN STREAMLINES 
AND EQUIPOTENTIAL LINES 

 If a flow is incompressible, irrotational, and two dimensional, the velocity field may be 

calculated using either a potential function or a stream function. Using the potential 

function, the velocity components in Cartesian coordinates are 

   u =
0f

0x
  v =

0f

0y
   

 For a potential function in two dimensions,    f = f(x,y)   , and the differential is given by: 

   df =
0f

0x
dx +

0f

0y
dy = u dx + v dy   

 Therefore, for lines of constant potential    (df = 0),    which are called equipotential lines: 

      a
dy

dx
b
f= C

= -

u
v

  (3.31)    

 Since a streamline is everywhere tangent to the local velocity, the slope of a 

streamline, which is a line of constant    c,    is 

      a
dy

dx
b
c= C

=
v

u
  (3.32)    

 which we discussed in association with equation (3.28a). 

 Comparing equations (3.31) and (3.32) yields: 

      a
dy

dx
b
f= C

= -

1

(dy>dx)c= C
  (3.33)    

 The slope of an equipotential line is the negative reciprocal of the slope of a streamline. 

Therefore, streamlines    (c = constant)    are everywhere orthogonal (perpendicular) to 
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equipotential lines    (f = constant)   . This observation is not true, however, at stagnation 

points, where the components vanish simultaneously. 

  EXAMPLE 3.3:    Equipotential lines and streamlines for a corner flow 

 Consider the incompressible, irrotational, two-dimensional flow, where the 

stream function is given by: 

   c = 2xy   

    (a)   What is the velocity at    x = 1, y = 1?    At    x = 2, y = 1
2?    Note that both 

points are on the same streamline, since    c = 2    for both points.  

   (b)   Sketch the streamline pattern and discuss the significance of the spac-

ing between the streamlines.  

   (c)   What is the velocity potential for this flow?  

   (d)   Sketch the lines of constant potential. How do the lines of equipotential 

relate to the streamlines?   

  Solution:    
    (a)   The stream function can be used to calculate the velocity components: 

   u =
0c

0y
= 2x  v = -

0c

0x
= -2y   

  This was the same flow discussed in  Example   2.1   .  Now we can find the 

velocity magnitudes using: 

   V
S

= 2x in - 2y jn    

 At    x = 1, y = 1, V
S

= 2 in - 2 jn,    and the magnitude of the velocity is 

   U = � V
S

� = 2(2)2
+ (-2)2 = 18 = 2.8284   

 At    x = 2, y = 1
2, V

S

= 4 in - jn,    and the magnitude of the velocity is 

   U = � V
S

� = 2(4)2
+ (-1)2 = 117 = 4.1231    

   (b)   A sketch of the streamline pattern is presented in  Fig.   3.8   . Results are 

presented only for the first quadrant ( x  positive,  y  positive). Mirror-

image patterns would exist in the other quadrants. Note that the    x = 0    

and the    y = 0    axes represent the    c = 0    “streamline.” These axes, 

therefore, could be thought of as solid surfaces, and the first quadrant 

flow field would represent flow in a 90 degree corner.  

 Since the flow is incompressible and steady, the integral form of 

the continuity equation  (2.5)   indicates that the product of the velocity 

times the distance between the streamlines is a constant. That is, since 

   r = constant,    

   ∂V
S

# nn  dA = 0    
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 Therefore, the distance between the streamlines decreases as the mag-

nitude of the velocity increases.  

   (c)   Since    u = 0f>0x    and    v = 0f>0y,    we can integrate both equations to 

obtain: 

   L
0f

0x
dx = f = Ludx = L2xdx = x2

+ g(y)   

 Likewise: 

   L
0f

0y
dy = f = Ludy = L (-2y)dy = -y2

+ f(x)   

 The functions  f(x)  and  g(y)  appear (rather than constants of integra-

tion) because we are integrating partial derivatives. The potential 

function that satisfies both of these equations, since    g(y) = -y2    and 

   f(x) = x2   , is: 

   f = x2
- y2

+ C   

 where  C  is an arbitrary constant.  

   (d)   The equipotential lines are included in  Fig.   3.8   , where  C , the arbitrary 

constant, has been set equal to zero. The lines of equipotential are 

everywhere perpendicular to the streamlines.      

0
0

2

4

y

2 4 x

� �4
� �1

� 1

� 4

� 4

� 1

� 8

� 0

c
c

c

f

f

f

f

f

 Figure 3.8         Equipotential lines and streamlines for Example 3.3.   
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   3.11  SUPERPOSITION OF FLOWS 

 Laplace’s equation, either equation (3.26) for the potential function or equation (3.30) 

for the stream function, is a linear partial differential equation whose solutions may be 

added together (called superposition) to describe a desired, more complicated flow. 

Superposition is the concept that one solution to Laplace’s equation can be added to 

another solution to create a third solution. The difficulty is in finding solutions that 

might describe realistic flows that will be useful for analysis. 

 In fact, finding solutions to Laplace’s equation is quite easy. Since both terms of the 

equation have second derivatives, constants or functions of  x  or  y  to the first power are 

automatically solutions. For example, we can start with    f = 5x   , then    fx = 0f>0x = 5    

and    fxx = 0
2f>0x2 = 0    (and since there is no function of  y  in this velocity potential, 

   fyy = 0   ). So    f = 5x    is a solution to Laplace’s equation. Likewise,    f = 2y    will also be 

a solution. Due to superposition, therefore,    f = 5x + 2y    will also be a solution. Note 

that any of these velocity potentials could have a constant added, which will not change 

the results at all; that is,    f = 5x + 2y + 3    is also a solution. But we do not just want to 

find solutions to Laplace’s equation, we want to find solutions that represent interesting 

and realistic flow patterns. But before we do that, we will need to define the boundary 

conditions that will apply to our flow fields. 

 There are two main boundary conditions for these flows: (1) the resultant ve-

locity is equal to the free-stream value at points far from the solid surface and (2) 

the component of the velocity normal to a solid surface is zero (i.e., the surface is a 

streamline). There are two ways to solve the equations: either by choosing functions 

and applying the boundary conditions to see what flow is created, or by finding a flow 

of interest and determining the function that would create it (which is known as an 

“inverse” method). There are numerous two-dimensional and axisymmetric solutions 

available through inverse methods. These inverse methods do not begin with a pre-

scribed boundary surface and directly solve for the potential flow, but instead assume a 

set of known singularities in the presence of an onset flow. The total potential function 

(or stream function) for the singularities and the onset flow are then used to determine 

the streamlines, any one of which may be considered to be a “boundary surface.” If the 

resultant boundary surface corresponds to the shape of interest, the desired solution 

has been obtained. The singularities most often used in such approaches, which were 

suggested by Rankine in 1871, include a uniform flow, a source, a sink, a doublet, and 

a vortex. 

 For a constant-density potential flow, the velocity field can be determined 

using only the continuity equation and the condition of irrotationality. Thus, the 

equation of motion is not used, and the velocity may be determined independently 

of the pressure. Once the velocity field has been determined, Bernoulli’s equation 

can be used to calculate the corresponding pressure field. It is important to re-

member that pressures of the component flows cannot be superimposed (or added 

together), since they are nonlinear functions of the velocity. Referring to equation 

(3.10), you can see that the pressure is a quadratic function of the velocity. However, 

velocities may be superimposed (just like velocity potentials or stream functions), 

which greatly aids in developing physical understanding while working with more 

complicated flows.  
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   3.12  ELEMENTARY FLOWS 

 Before we determine our elementary flow functions, we should remember that all func-

tions must be solutions to Laplace’s equation. While we could spend a great deal of time 

deriving many interesting flow types, experience has shown that the four basic elementary 

functions suggested by Rankine are enough to create almost any aerodynamic flow of 

interest through the use of superposition. Therefore, we will concentrate on these four el-

ementary flow functions: uniform flow, source or sink flow, doublet flow, and vortex flow. 

   3.12.1  Uniform Flow 

 The simplest flow is a  uniform stream  moving in a fixed direction at a constant speed. 

For this uniform flow, the streamlines are straight and parallel to each other everywhere 

in the flow field (as shown in  Fig.   3.9   ). Using a cylindrical coordinate system, the poten-

tial function for a uniform flow moving parallel to the  x  axis is:  

      f = U�r cos u + C  (3.34)    

 where    U�    is the velocity of the fluid particles. Using a Cartesian coordinate system, the 

potential function for the uniform stream of  Fig.   3.9    is: 

      f = U�x + C  (3.35a)    

 where we have included an arbitrary constant,  C , in the velocity potential. While there 

can always be such a constant, we will usually leave it out of our flow functions for sim-

plicity. We can see that equation (3.35a) represents a uniform flow in the  x  direction 

by using equation (3.19): 

    u =
0f

0x
= U�         v =

0f

0y
= 0   

 which is a uniform flow in the  x  direction as we intended.

The stream function for a uniform flow in the  x  direction could also be used to 

determine the flow field: 

   c = U�y   

y

r

x

u

U� U�

 Figure 3.9         Streamlines for a uniform flow parallel to the  x  axis.   



124    Chap. 3 / Dynamics of an Incompressible, Inviscid Flow Field

 Recall that a streamline is a line where the stream function is set equal to a constant, so 

setting the stream function for a uniform flow equal to a constant yields: 

   c = U�y = C   

 which gives us the equation    y = C>U� = constant   , which is the equation for straight, 

horizontal lines, with each line being determined by a unique value for  C . These are 

the uniform flow streamlines shown in  Fig.   3.9   . We could also find the velocity com-

ponents from: 

    u =
0c

0y
= U�        v = -

0c

0x
= 0    

 Notice that we could also equate the velocity components for the velocity potential and 

the stream function to obtain: 

    u =
0f

0x
=

0c

0y
        v =

0f

0y
= -

0c

0x
    

 which are the Cauchy-Riemann equations for Cartesian coordinates [ Churchill and 

Brown (1984) ]. 

 For a uniform stream inclined relative to the  x  axis by the angle    a,    the potential 

function is: 

      f = U�(x cos a + y sin a)  (3.35b)    

 We can also show that this function results in the flow we intended by applying equa-

tion (3.19): 

    u =
0f

0x
= U� cos a        v =

0f

0y
= U� sin a    

 which is a uniform flow inclined at an angle    a    to the horizontal.  

   3.12.2  Source or Sink 

 A  source  is defined as a point from which fluid issues and flows radially outward (as 

shown in  Fig.   3.10   ). The continuity equation is satisfied everywhere but at the singular-

ity that exists at the source’s center, since mass is being introduced at this point. The 

potential function for a two-dimensional (planar) source centered at the origin is:  

      f =
K
2p

 ln r  (3.36)    

 where  r  is the radial coordinate from the origin of the source and  K  is the source 

strength. This two-dimensional source is sometimes referred to as a line source, because 

its center extends infinitely far out of, and far into, the page. The resultant velocity field 

in cylindrical coordinates (which is used because the flow follows a radial path from 

the origin) is: 

      V
S

= �f = enr
0f

0r
+

enu
r

 
0f

0u
  (3.37)    
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 since 

   V
S

= enrvr + enuvu   

   vr =
0f

0r
=

K
2pr

        vu =
1

r
 
0f

0u
= 0   

 Note that the resultant velocity only has a radial component, and that this component 

varies inversely with the radial distance from the source. 

 Another related flow function is a sink, which is just a source in reverse; that is, 

fluid flows into a sink along radial streamlines, where fluid flows out of a source. Thus, 

for a sink of strength  K  centered at the origin: 

      f = -

K
2p

 ln r  (3.38a)    

 Note that the dimensions of  K  are    (length)2> (time).    

 The stream function for a source flow is given by: 

      c =
Ku
2p

  (3.38b)    

 which will yield the same velocity components as the velocity potential, since: 

   vr =
1

r
 
0c

0u
=

K
2pr
  vu = -

0c

0r
= 0   

 Notice that we can equate the velocity components from the velocity potential and the 

stream function for cylindrical coordinates to find: 

   vr =
0f

0r
=

1

r
 
0c

0u
  vu =

1

r
 
0f

0u
= -

0c

0r
   

 which are the Cauchy-Riemann equations for cylindrical coordinates. 

Lines of
equipotential

Stream line

 Figure 3.10         Equipotential lines and streamlines for flow from a 

two-dimensional source.   
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  EXAMPLE 3.4:    Flow rate for a two-dimensional source 

 Show that the flow rate passing through a circle of radius  r  is proportional to  K , 

the strength of the two-dimensional source, and is independent of the radius. 

  Solution:    

    m
# = OrV

S

# nn  dA    

    = L
2p

0

ra
K

2pr
br du   

    = Kr       

   3.12.3  Doublet 

 A  doublet  is perhaps the most difficult to understand of our elementary flow functions. 

Interestingly, a doublet (and all of potential flow theory) has an analogous function in 

electro-magnetic theory, where an electric field and a magnetic field were described 

with a similar potential field theory by James Maxwell in the early 1860s. These fields 

are everywhere orthogonal (just like our velocity potential and stream function) and 

can be analyzed using Maxwell’s theory. One of the concepts Maxwell was trying to 

model was a magnet, and he developed the concept of a dipole for his model. A dipole 

is a magnet with the “north” and “south” ends brought very close together. A dipole is 

essentially the same thing as a doublet, which is a source and a sink brought very close 

together, as shown in  Fig.   3.11   .  

 There is one problem with doing this, however. If we add a source and a sink with 

the same strengths and located at the same location, we get: 

   f = +

K
2p

 ln r -

K
2p

 ln r = 0   

 which is no flow field at all. So, in order to create a source and a sink very close to each 

other, we will have to bring them together very carefully and in a very special way. 

Therefore, a doublet is defined as a source and a sink of equal strength which are brought 

together so that the product of their strengths ( K ) and their distance apart ( a ) remains 

constant at a preselected finite value:    lim
aS0

(Ka) = 2pB   , where  B  is the strength of the 

doublet. The line along which the approach is made (the  x  axis in  Fig.   3.11   ) is called the 

 axis of the doublet . The potential for a two-dimensional (line) doublet for which the flow 

proceeds out from the origin in the negative  x  direction (see  Fig.   3.11   ) is: 

      f =
B
r

 cos u  (3.39a)    

 where  B  is the doublet strength. The velocity components for a doublet may be found 

the same way we found them for the source: 

   vr =
0f

0r
= -

B cos u

2pr2
        vu =

1

r
 
0f

0u
= -

B sin u

2pr2
   

source sink

c b
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 The stream function for a doublet is given by: 

      c = -

B
r

 sin u  (3.39b)    

 which will result in the same velocity field as we found from the velocity potential. 

In general, the potential function of a line doublet whose axis is at an angle    a    

relative to the positive  x  axis is 

      f = -

B
r

 cos a cos u  (3.39c)     

   3.12.4  Potential Vortex 

 A  potential vortex  is defined as a singularity about which fluid flows with concentric 

streamlines (as shown in  Fig.   3.12   ). The velocity potential for a vortex centered at the 

origin is 

 
      f = -

�u

2p
  (3.40)    
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 Figure 3.11         Equipotential lines and streamlines for a doublet 

(flow proceeds out from the origin in the negative  x  direction).   
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 where    �    is the strength of the vortex. We have used a minus sign to represent a vortex with 

clockwise circulation. Vortex flow, in many ways, is the “inverse” of source flow. Simply 

interchanging the velocity potential and stream function lines of a source gives the lines 

for a vortex (radial lines and circles become circles and radial lines); compare the velocity 

potential and stream function for these two flows in  Table   3.3    to see this more clearly. 

 Differentiating the potential function, we can find the velocity distribution about 

an isolated vortex to be 

    vr =
0f

0r
= 0    

    vu =
1

r
 
0f

0u
= -

�

2pr
   

Equipotential
lines

Streamline

 Figure 3.12         Equipotential lines and streamlines for a potential 

vortex.   

 TABLE 3.3    Stream Functions and Potential Functions for Elementary Flows 

  Flow      c        f    

 Uniform flow in  x  direction     U�r sin u, U�y        U�r cos u   ,    U�x    

 Uniform flow at angle    a        U�(y cos a - x sin a)        U�(x cos a + y sin a)    

 Source 
    
Ku
2p

        
K

2p
ln r    

 Doublet 
    -

B
r

 sin u        
B
r

 cos u    

 Vortex (with clockwise 
circulation)     

�

2p
ln r        -

�u

2p
    

 90° corner flow  A xy      12A(x2
- y2)    

 Solid-body rotation     12vr2     Does not exist since flow is 
rotational 
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 So, there is no radial velocity component and the circumferential component varies with 

the reciprocal of the radial distance from the vortex. Note that the dimensions of    �    are 

   (length)2>(time).    A potential vortex is also known as a free vortex. 

 The curl of the velocity vector for the potential vortex can be found using the 

definition for the curl of    V
S

    in cylindrical coordinates 

   � * V
S

=
1

r ∞

enr renu enz

0

0r
0

0u

0

0z
vr rvu vz

∞ =
1

r
e a

0vz

0u
-

0rvu

0z
benr - a

0vz

0r
-

0vr

0z
brenu + a

0rvu

0r
-

0vr

0u
benz f    

 which simplifies in two dimensions to: 

   
1

r
a

0(rvu)

0r
-

0vr

0u
b =

1

r
a

0

0r
a-

�

2p
b-

0

0u
(0) b = 0   

 Although the flow is irrotational, we must remember that the velocity is infinite at the 

origin (i.e., when    r = 0   ). In fact, the flow field at the origin is rotational and vorticity 

exists there. 

 We will now calculate the circulation around a closed curve    C1    which encloses 

the origin. We can choose a circle of radius    r1,    as shown in  Fig.   3.13   a. Using equation 

(3.14), the circulation is  

    -�C1
= CC1

V
S

# ds
¡

= L
2p

0

a-

�

2pr1

enub # r1 du enu   

    = L
2p

0

(- )
�

2p
du = -�    

 Recall that Stokes’s theorem, equation (3.16), is not valid if the region contains points 

where the velocity is infinite, which is true for vortex flow at the origin. 

r1
r1

r2

(a) (b)

u � 0
u � 2p

u � 0

u � 2p � e

 Figure 3.13         Paths for the calculation of the circulation for a 

potential vortex: (a) closed curve    C1,    which encloses origin; 

(b) closed curve    C2,    which does not enclose the origin.   
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 However, if we calculate the circulation around a closed curve    C2,    which does not 

enclose the origin, such as that shown in  Fig.   3.13   b, we find that 

   -�C2
= V

S

# ds
¡

= L
2p-e

0

(- )
�

2pr1

r1 du + L
0

2p-e

(- )
�

2pr2

 r2 du   

 or 

   -�C2
= 0   

 Therefore, the circulation around a closed curve not containing the origin is zero. This 

means that circulation requires vorticity to exist, as we found when viewing the circula-

tion definition in equation (3.16). This is a very important concept to remember when 

we start talking about airfoils and wings  in  Chapters   6    and    7    . 

 You may already be familiar with the rotation of a two-dimensional, solid body 

about its axis, such as the rotation of a wheel. For solid-body rotation, 

    vr = 0    

    vu = rv   

 where    v    is the angular velocity. Substituting these velocity components into the defini-

tion of vorticity in cylindrical coordinates in two dimensions: 

   � * V
S

=
1

r
a

0(rvu)

0r
-

0vr

0u
benz   

 we find that 

   � * V
S

= 2venz � 0   

 We see that the velocity field which describes two-dimensional solid-body rotation is 

not irrotational and, therefore, cannot be defined using a potential function. This type 

of vortex is known as a forced vortex.  

   3.12.5  The Vortex Theorems of Helmholtz 

 Vortex lines (or filaments) will have an important role in the study of the flow around 

wings  in  Chapter   7    , so we will present some important theorems about them now. 

Therefore, we will summarize the vortex theorems of Hermann von Helmholtz, who 

was the first person to determine these “rules” for using a vortex filament, which he did 

in 1858. For a barotropic (homogeneous) inviscid flow acted upon by conservative body 

forces, the following statements about vortex filaments are true: 

    1.   The circulation around a given vortex line (i.e., the strength of the vortex filament) 

is constant along its length.  

   2.   A vortex filament cannot end in a fluid. It must form a closed path, end at a bound-

ary, or go to infinity. Examples of these three kinds of behavior are a smoke ring, a 

vortex bound to a two-dimensional airfoil that spans from one wall to the other in 

a wind tunnel  (see  Chapter   6   ) , and the downstream ends of the horseshoe vortices 

representing the loading on a three-dimensional wing  (see  Chapter   7   ) .  
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 Figure 3.14         Ground vortices between engine intake and ground 

for YC-14 research aircraft during static tests [US Air Force 

photo from  Campbell and Chambers (1994) ].   

   3.   No fluid particle can have rotation if it did not originally rotate. Or, equivalently, 

in the absence of rotational external forces, a fluid that is initially irrotational re-

mains irrotational. In general, we can conclude that vortices are preserved as time 

passes. Only through the action of viscosity (or some other dissipative mechanism) 

will they decay or disappear.   

 A vortex created by the rotational motion of a jet engine can be seen in the pho-

tograph of  Fig.   3.14   , which is taken from Campbell and Chambers (1994). The vortex 

can be seen entering the left engine. Because a vortex filament cannot end in a fluid, 

the vortex axis turns sharply and the vortex quickly goes to the ground.                                     

 Aerodynamics Concept Box: A Real Vortex 

 We saw earlier that there were two kinds of theoretical vortices: a potential vortex and a 

forced vortex (due to solid body rotation). The potential vortex creates a circumferential 

velocity component,    vu = -�>2pr   , and creates a velocity distribution as shown below. This 

simulates a free vortex (or irrotational vortex), but has a singularity at the center of the vor-

tex where velocities become infinite. A “real” vortex does have a free vortex outer portion, 

but the inner portion is actually better modeled as a forced vortex (a rotational vortex) where 
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 An example of a real vortex is a tornado (shown below), where the velocities near the core 

can be very high, sometimes in excess of 500 km/hr (depending on the pressure difference in 

the tornado). 

 Airplanes also create a vortex in the vicinity of their wing tips, as shown for a Boeing 

727 below. These vortices also have high rotational velocities, and can be very dangerous 

       Tornado in Central Oklahoma in 1999    (photo courtesy of U.S. 

 National Oceanic and Atmospheric Administration)  

Free vortex

Forced vortex
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   vu = rv   , which is solid body rotation. An actual vortex contains a forced core, with a free 

outer section, which is the combination of the two vortex types. 
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   3.12.6  Summary of Stream Functions and of Potential 
Functions 

  Table   3.3    summarizes the potential functions and the stream functions for the elemen-

tary flows discussed previously. 

  EXAMPLE 3.5:    Flow field formed from uniform flow and a source 

 Find the flow field created by adding together uniform flow and a source 

located at the origin. 

  Solution:     In order to find the flow field created by adding together these two flows, 

simply add the velocity potential or stream function for each flow. Since we 

want to determine the streamlines of the flow, we will use the stream func-

tion in cylindrical coordinates and set the function equal to a constant (since 

lines of constant    c    are streamlines): 

   c = U�r sin u +

Ku
2p

= C   

 The flow will be easier to understand if we find the velocity field, which is 

given by: 

    vr =
1

r
 
0c

0u
= U� cos u +

K
2pr

   

    vu = -

0c

0r
= -U� sin u    

uniform flow
source

c

U

       Wing-tip vortices behind a Boeing 727    (photo courtesy of NASA 

Dryden Flight Research Center)  

to  following aircraft, which is one reason aircraft separation during landing is critical for 

safety. 
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 Notice that the velocity field is also just the superposition of the velocity 

fields for uniform flow and a source, so we could have found these rela-

tions directly from the velocity fields determined previously. The stagnation 

points of the flow can now be found by setting the velocity components 

to zero (a stagnation point is a point in the flow where the fluid has been 

brought to rest without any losses). 

    vr = U� cos u +

K
2pr

= 0   

    vu = -U� sin u = 0   

 From the circumferential velocity component, stagnation points can exist at 

   u = 0,p   . Putting these values into the radial velocity equation and solving 

for  r  gives us a stagnation point located at    (r,u) = (K>2pU�,p)   , or to the 

left of the source at    x = -K>2pU�   . This is because, to the left of the origin, 

the source has a velocity to its left of    K>2pUr   , and the uniform flow has a 

velocity to the right of    U�   , and the two velocity components cancel each 

other at some point. But what happens to the fluid that enters this stagnation 

point both from the left and the right? It cannot just disappear, so to satisfy 

the conservation of mass it must go up and down out of the stagnation point. 

Once the flow leaves the stagnation point, it begins to turn to the right due 

to the contribution of the free-stream velocity. The resulting streamline is 

shown below (these types of graphs are actually quite easy to make on com-

puter algebra or programming systems).    

       Rankine half body   
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 Since any streamline in a potential flow can also simulate a solid surface, 

we can consider the streamline going through the stagnation point as a solid 

surface. This creates a half body with flow around it which is known as a 

Rankine body. We also can see the flow inside the body, but that is not 

typically of interest in aerodynamics. Since we now know the velocity field 

everywhere, we can find the velocities along the surface of the body, and 

from Bernoulli’s equation we could find the pressures there as well.   

  EXAMPLE 3.6:    Flow field formed from uniform flow, a source, and a 
sink 

 Find the flow field created by adding together uniform flow, a source located 

at    x = -a   , and a sink located at    x = +a   . 

  Solution:     If we add uniform flow, a source at    x = -a   , and a sink at    x = +a   , we would 

have the following stream function: 

   c = U�r sin u +

Ku1

2p
-

Ku2

2p
= U�r sin u +

K
2p

(u1 - u2) = C   

 where    u1    and    u2    will have to be determined based on the positions of the 

source and sink. The values for the angles can be determined from their 

position in the figure shown below:    

x

y

Sink

P(x, y)

Source
x � �a x � �a

u2u1

      

   u1 = tan-1a
y

x + a
b u2 = tan-1a

y
x - a

b    

 Once again, the streamlines can be easily drawn using a computer algebra 

or programming system, yielding a flow as shown below. As in  Example 

  3.5   , any streamline can be thought of as a solid surface, and in this case the 

stagnation streamlines form a body in the shape of an oval, which is known 

as a Rankine oval. The width and height of the oval is determined by the 

free-stream velocity and the strengths of the source and sink.    

uniform flow
source sink

c

U U
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 In fact, as long as the source and sink have equal but opposite strengths, 

an infinite number of body shapes can be found from this stream func-

tion. In addition, if more sources and sinks were placed along the  x  axis, 

non-oval shapes would be created, and as long as the total source strength 

was equal and opposite to the total sink strength, the body would close 

at the rear.     

   3.13    ADDING ELEMENTARY FLOWS TO DESCRIBE 
FLOW AROUND A CYLINDER 

   3.13.1  Velocity Field 

 Now we will consider the case where a uniform flow is superimposed on a doublet whose 

axis is parallel to the direction of the uniform flow, and is oriented so that the direction 

of the efflux opposes the uniform flow (as shown in  Fig.   3.15   ). Substituting the velocity 

potential for a uniform flow [equation (3.34)] and that for the doublet [equation (3.39a) 

into the expression for the velocity field [equation (3.37)], we find that:  

   vu =
1

r
 
0f

0u
= -U� sin u -

B

r2
 sin u    

 and 

   vr =
0f

0r
= U� cos u -

B

r2
 cos u   

       Rankine oval   
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 Note that    vr = 0    at every point where    r = 1B>U�    which is a constant. Since the veloc-

ity is always tangent to a streamline, the fact that there is no velocity component    (vr)    

perpendicular to the circle of radius    r = R = 1B>U�    means that the circle may be 

considered as a streamline of the flow field. Replacing  B  by    R2U�    allows us to write the 

velocity components as 

      vu = -U� sin ua1 +

R2

r2
b   (3.41a)    

      vr = U� cos ua1 -

R2

r2
b   (3.41b)    

 The velocity field not only satisfies the surface boundary condition that an inviscid 

flow is tangent to a solid wall, but the velocity at points far from the cylinder is equal 

to the undisturbed free-stream velocity    U�.      Streamlines for the resultant inviscid flow 

field are illustrated in  Fig.   3.16   . The resultant two-dimensional, irrotational (inviscid), 

incompressible flow is that around a cylinder of radius  R  whose axis is perpendicular 

to the free-stream direction.  

r

Streamlines for
a doublet

Streamlines
for a uniform

flow

u

U�

 Figure 3.15         Streamlines for the two elementary flows which, 

when superimposed, describe the flow around a cylinder.   

A B
R

 Figure 3.16         Two-dimensional, inviscid flow around a cylinder 

with zero circulation.   
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 Setting    r = R,    we see that the velocity on the surface of the cylinder is equal to 

      vu = -2U� sin u  (3.42)    

 Of course, as we noticed earlier,    vr = 0    on the surface of the cylinder. Since the solution 

is for the inviscid model of the flow field, it is consistent that the fluid particles next to 

the surface move relative to the surface (i.e., violate the no-slip requirement). When 

   u = 0    or    p    (points  B  and  A , respectively, of  Fig.   3.16   ) the fluid is at rest with respect to 

the cylinder [i.e.,    (vr 

= vu = 0)].    These points are called  stagnation points , as we found 

in Examples 3.5 and 3.6.  

   3.13.2  Pressure Distribution on the Cylinder 

 Because the velocity at the surface of the cylinder is a function of    u,    as seen in equation 

(3.42), the local static pressure will also be a function of    u.    Once the pressure distribu-

tion has been defined, it can be used to determine the forces and the moments act-

ing on the configuration. Using Bernoulli’s equation [equation (3.10)] for    r = r�    and 

   U = vu = -2U� sin u   , we can obtain the expression for the    u@distribution    of the static 

pressure using dimensional parameters: 

       p = p� +
1
2r�(U2

� - U2) = p� +
1
2r�(U2

� - 4U2
�

 sin2 u) 

  = p� +
1
2r�U2

�(1 - 4 sin2 u)   (3.43)    

 Expressing the pressure in terms of the dimensionless pressure coefficient, which is 

presented in equation (3.13), we have: 

      Cp = 1 -

U2

U2
�

= 1 -

4U2
�

 sin2 u

U2
�

= 1 - 4 sin2 u  (3.44)    

 The resulting pressure coefficient variation is shown in  Fig.   3.17    as a function of    u.    Recall 

that, for cylindrical coordinates,    u = 180�    corresponds to the plane of symmetry for the 

windward surface or forebody (i.e., the surface facing the free stream). Starting with 

the undisturbed free-stream flow and following the streamline that “wets” the surface, 

the flow is decelerated from the free-stream velocity to zero velocity at the (windward) 

stagnation point in the plane of symmetry. The flow then accelerates along the surface of 

the cylinder, reaching a maximum velocity equal in magnitude to twice the free-stream 

velocity, which occurs at    u = 90�    and at 270°. From these velocity maxima, the flow tan-

gent to the leeward surface decelerates to a stagnation point at the surface in the leeward 

plane of symmetry (at    u = 0�   ).  

 In spite of the fact that viscosity of air is relatively small, the actual flow field 

around the cylinder is radically different from the inviscid solution described in the previ-

ous paragraphs (as shown in  Figs.   3.17    and    3.18   ). When the air particles in the boundary 

layer, which have already been slowed by the action of viscosity, encounter the rela-

tively large adverse pressure gradient associated with the deceleration of the leeward 

flow for this blunt configuration, boundary-layer separation occurs.  

 Experimental pressure distributions are presented in  Fig.   3.17    for the cases where 

the forebody boundary layer is laminar (a subcritical Reynolds number) and where the 
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forebody boundary layer is turbulent (a supercritical Reynolds number). The sub-

critical pressure-coefficient distribution is essentially unchanged over a wide range of 

Reynolds numbers below the critical Reynolds numbers. Similarly, the supercritical 

pressure-coefficient distribution is independent of Reynolds numbers over a wide range 

of Reynolds numbers above the critical Reynolds number. For the flow upstream of the 

separation location, the boundary layer is thin, and the pressure-coefficient  distribution  

180
�3

�2

�1

0

1

2

270 0 90 180

( )

Theoretical solution, equation (3.44)

Subcritical Reynolds number (1.86 
 105), data of Schlichting (1968)

Supercritical Reynolds number (6.7 
 105), data of Schlichting (1968)

Cr

u

 Figure 3.17         Theoretical pressure distribution around a circular 

cylinder, compared with data for a subcritical Reynolds number 

and that for a supercritical Reynolds number [data from Boundary 

Layer Theory by H.  Schlichting (1968) ].   

(a) Subcritical (c) Supercritical(b) Transitional

 Figure 3.18         Water tunnel visualizations of flow patterns around a 

sphere for three Reynolds number flows: (a) subcritical (b) tran-

sitional, and (c) supercritical (photographs by H. Werlé, courtesy 

of ONERA).   
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is essentially independent of the character of the boundary layer for the cylinder. How-

ever, because the character of the attached boundary layer affects the separation loca-

tion, it affects the pressure in the separated region. If the attached boundary layer is 

turbulent, separation is delayed and the pressure in the separated region is higher and 

closer to the inviscid level. 

 The photograph of the water tunnel patterns for flow around a sphere presented 

in  Fig.   3.18    clearly illustrates the flow separation at subcritical ( Fig.   3.18a   ), transitional 

( Fig.   3.18b   ), and supercritical Reynolds numbers ( Fig.   3.18c   ). Recall that separation occurs 

when the fluid particles in the boundary layer (already slowed by viscosity) encounter an 

adverse pressure gradient that they cannot overcome. However, not all boundary layers 

separate when they encounter an adverse pressure gradient. There is a relation between 

the characteristics of the boundary layer and the magnitude of the adverse pressure gradi-

ent that is required to produce separation. A turbulent boundary layer ( Fig.   3.18c   ), which 

has relatively fast-moving particles near the wall,  remains attached longer than a laminar 

boundary layer ( Figs.   3.18a    and    3.18b   ), which has slower-moving particles near the wall 

for the same value of the edge velocity (boundary layers are discussed in more detail in 

 Chapter   4    ). Therefore, the separation location, the size of the wake, and the surface pres-

sure in the wake region depend on the character of the forebody boundary layer. 

 The experimentally determined separation locations for a circular cylinder as re-

ported by  Achenbach (1968)  are presented as a function of Reynolds number in  Fig.   3.19   . 

 As we discussed in  Chapter   2   , the   Reynolds number is a dimensionless parameter (in 

this case,    Red = r�U�d>m�   ) that relates to the viscous characteristics of the flow. At 

subcritical Reynolds numbers (i.e., less than approximately    3 * 105   ), the boundary layer 

on the windward surface (or forebody) is laminar and separation occurs for    u � 100�,    
that is, 80° from the windward stagnation point. Note that the occurrence of separation 

so alters the flow that separation actually occurs on the windward surface, where the 

inviscid solution, as given by equation (3.44) and presented in  Fig.   3.17   , indicates that 

there still should be a favorable pressure gradient (i.e., one for which the static pressure 

decreases in the streamwise direction). Separation would not occur if the pressure were 

actually decreasing in the streamwise direction. Therefore, the occurrence of separa-

tion alters the pressure distribution on the forebody (windward surface) of the cylinder. 

Above the critical Reynolds number, the forebody boundary layer is turbulent. Due to 

the higher levels of energy for the fluid particles near the surface in a turbulent boundary 

layer, the flow is able to run longer against the adverse pressure gradient. In the critical 

region, Achenbach observed an intermediate “separation bubble” with final separation 

not occurring until    u = 40�    (i.e., 140° from the stagnation point). For    Red 7 1.5 * 106,    

the separation bubble no longer occurs, indicating that the supercritical state of flow 

has been reached. For supercritical Reynolds numbers, separation occurs in the range 

   60� 6 u 6 70�    (you should keep in mind that the critical Reynolds number is sensitive 

both to the turbulence level in the free stream and to the surface roughness).   

   3.13.3  Lift and Drag 

 Our original goal for studying aerodynamics was to determine the forces and moments 

acting on a vehicle moving through the air. The most important forces for creating flight 

are lift and drag, which we will now define and quantify for a cylinder. 
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 The motion of the air particles around the cylinder produces forces that may be 

viewed as a normal (or pressure) component and a tangential (or shear) component. It is 

conventional to resolve the resultant force on the cylinder into a component perpendicu-

lar to the free-stream velocity direction (called the  lift ) and a component parallel to the 

free-stream velocity direction (called the  drag ); the nomenclature is illustrated in  Fig.   3.20   .  

 Since the expressions for the velocity distribution [equation (3.42)] and for the pres-

sure distribution [equations (3.43) or (3.44)] were obtained for an inviscid flow, we will 

consider only the contribution of the pressure to the lift and to the drag (since there is 

no shear predicted by inviscid theory). As shown in  Fig.   3.20   , the lift per unit span of the 

cylinder for the pressure defined in equation (3.43) is: 

      l = - L
2p

0

p sin u Rd u = - L
2p

0

3p� +
1
2r�U2

�(1 - 4 sin2 u) 4sin u Rd u  (3.45)    

 Since the free-stream pressure is a constant, it does not contribute to the lift integral, 

leaving only integrals of the form:    12p

0
sin u d u = 0    and    12p

0
sin3u  d u = 0   , which results in: 

      l = 0  (3.46)    
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 Figure 3.19         Location of the separation points on a circular cylinder 

as a function of the Reynolds number [data from  Achenbach (1968) ].   
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 It is not surprising that there is zero lift per unit span of the cylinder, since the pressure 

distribution is symmetric on the upper and lower surfaces of the cylinder. 

 Instead of using equation (3.43), which is the expression for the static pressure, the 

aerodynamicist more commonly would use equation (3.44), which is the expression for 

the dimensionless pressure coefficient. To do this, note that the net force in any direc-

tion due to a constant pressure acting on a closed surface is zero. As a result, 

      L
2p

0

p� sin u R du = 0  (3.47)    

 Adding equations (3.45) and (3.47) gives: 

   l = - L
2p

0

(p - p�) sin u R du   

 Dividing both sides of this equation by the product    q�2R,    which is (dynamic pressure) *   

(area per unit span in the  x  plane), gives: 

      
l

q�2R
= -

1
2 L

2p

0

Cp sin u du  (3.48)    

 Both sides of equation (3.48) are dimensionless. The expression of the left-hand side is 

known as the  section lift coefficient  for a cylinder: 

      Cl =
l

q�2R
  (3.49)    

 Using equation (3.44) to define    Cp    as a function of    u,    

   Cl = -
1
2 L

2p

0

Cp sin u du = -
1
2 L

2p

0

(1 - 4 sin2 u)sin u du = 0   

 which, of course, is the same result as was obtained by integrating the pressure directly. 
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 Figure 3.20         Forces acting on a cylinder whose axis is perpendicular 

to the free-stream flow.   
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 Referring to  Fig.   3.20    and following a similar procedure, we can calculate the drag 

per unit span for the cylinder in an inviscid flow. Thus, the drag per unit span is 

      d = - L
2p

0

p cos u R du  (3.50)    

 Substituting equation (3.43) for the local pressure, 

   d = - L
2p

0

p sin u Rd u = - L
2p

0

3p� +
1
2r�U2

�(1 - 4 sin2 u) 4cos u Rd u   

 we find that 

      d = 0  (3.51)    

 A drag of zero is an obvious contradiction to our experience, since we all know 

that bodies moving through air experience drag. This unusual result is known as 

 d’Alembert’s paradox , since Jean le Rond d’Alembert first arrived at this result in 

1752. In fact, this result created a rift between the more practical side of fluid dynam-

ics (the experimentalists) and the more theoretical side (the theoreticians). This rift 

would not be repaired until Ludwig Prantdl developed the concept of the boundary 

layer in the early twentieth century, which helped to explain that viscous effects cause 

flow separation. 

 Note that the actual pressure in the separated wake region near the leeward plane 

of symmetry (in the vicinity of    u = 0    in  Fig.   3.17   ) is much less than the theoretical value. 

It is the resultant difference between the high pressure acting near the windward plane 

of symmetry (in the vicinity of    u = 180�,    i.e., the stagnation point) and the relatively 

low pressures acting near the leeward plane of symmetry that produces the large drag 

component. 

 A drag force that represents the streamwise component of the pressure force 

integrated over the entire configuration is termed  pressure  (or  form )  drag . The drag 

force that is obtained by integrating the streamwise component of the shear force 

over the vehicle is termed  skin-friction drag . Note that in the case of real flow past a 

cylinder, the skin-friction drag is small. However, significant form drag results because 

of the action of viscosity, which causes the boundary layer to separate and therefore 

radically alters the pressure field. The pressure near the leeward plane of symmetry 

is higher (and closer to the inviscid values) when the forebody boundary layer is tur-

bulent. Thus, the difference between the pressure acting on the foreward surface and 

that acting on the leeward surface is less in the turbulent case. As a result, the form 

drag for a turbulent boundary layer is markedly less than the corresponding value for 

a laminar (forebody) boundary layer. 

 The  drag coefficient  per unit span for a cylinder is given by: 

      Cd =
d

q�2R
= -

1
2 L

2p

0

Cp cos u du  (3.52)    

 Experimental drag coefficients for a smooth circular cylinder in a low-speed stream 

[ Schlichting (1968) ] are presented as a function of Reynolds number in  Fig.   3.21   . 
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For Reynolds numbers below 300,000 the drag coefficient is essentially constant 

 (approximately 1.2), and independent of Reynolds number. Recall that when we were 

discussing the experimental values of    Cp    presented in  Fig.   3.17   , we noted that the sub-

critical pressure-coefficient distribution is essentially unchanged over a wide range of 

Reynolds number. For blunt bodies, the pressure (or form) drag is the dominant drag 

component. Since the pressure coefficient distribution for a circular cylinder is essen-

tially independent of Reynolds number below the critical Reynolds number, it follows 

that the drag coefficient would be essentially independent of the Reynolds number. 

(For streamlined bodies at small angles of attack, the dominant component of drag 

is skin friction, which is Reynolds-number dependent). Above the critical Reynolds 

number (when the forebody boundary layer is turbulent), the drag coefficient is sig-

nificantly lower. Reviewing the supercritical pressure distribution, we recall that the 

pressure in the separated region is closer to the inviscid level. In a situation where the 

Reynolds number is subcritical, it may be desirable to induce boundary-layer transition 

by roughening the surface. Examples of such transition-promoting roughness elements 

are the dimples on a golf ball or the seams on a baseball. The dimples on a golf ball 

are intended to reduce drag by reducing the form (or pressure) drag with only a slight 

increase in the friction drag.    

   3.14   LIFT AND DRAG COEFFICIENTS AS 
DIMENSIONLESS FLOW-FIELD PARAMETERS 

 Aerodynamic coefficients are typically used so that we can compare an aircraft of a 

certain size with a certain velocity to a scale model of the aircraft flying at a different 

velocity  (see  Section   2.5    for more details) . This led us to the nondimensional similarity 
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 Figure 3.21         Drag coefficient for a smooth circular cylinder as a 

function of the Reynolds number [data from  Boundary Layer 
Theory  by H.  Schlichting (1968) ].   
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parameters of Mach and Reynolds number, but it also leads us to the use of nondimen-

sional force and moment coefficients. 

 The formulas for the section drag coefficient [equation (3.52)] and for the section 

lift coefficient for a cylinder [equation (3.49)] have the same elements. So, we will define 

a  force coefficient  as: 

      CF =
force

1
2r�U2

�  S  
  (3.53)    

 Notice that, for a configuration of infinite span, a force per unit span would be divided 

by the reference area per unit span; the resulting value is called a section coefficient 

[see equations (3.49) and (3.52)]. Ideally, the force coefficient would be independent of 

size and would be a function of configuration geometry and of attitude only. However, 

the effects of viscosity and compressibility cause variations in the force coefficients. These 

 effects can be correlated in terms of parameters such as the Reynolds number and the 

Mach number. Such variations are especially evident in the drag coefficient measure-

ments presented in this chapter. 

 From equation (3.53), we can see that an aerodynamic force is proportional to the 

square of the free-stream velocity, to the free-stream density, to the size of the object, 

and to the force coefficient. An indication of the effect of configuration geometry on 

the total drag and on the drag coefficient is shown in  Figs.   3.22    and    3.23   , which are 

taken from  Talay (1975) . The actual drag for several incompressible, flow condition/

configuration geometry combinations is presented in  Fig.   3.22   . Compare the results for 

configurations (a), (b), and (c), which are configurations having the same width and 

exposed to the same Reynolds number free stream. Streamlining produces dramatic 

reductions in the pressure (or form) drag with only a slight increase in skin-friction drag 

at this Reynolds number. Thus, streamlining reduces the drag coefficient.   
 You should notice that the diameter of the small cylinder is one-tenth that of the 

other configurations. Therefore, in the same free-stream flow as configuration (b), the 

small cylinder operates at a Reynolds number of    104.      Because the size is reduced, the 

drag forces for (d) are an order of magnitude less than for (b). However, over this range 

of Reynolds number, the drag coefficients are essentially equal (as shown in  Fig.   3.21   ). 

Also, the total drag of the small cylinder is equal to that of the much thicker streamlined 

shape. You can readily imagine how much additional drag was produced by the wire 

bracing of a biplane during World War I. 

 When the Reynolds number of the large cylinder is increased to    107    (correspond-

ing to the supercritical flow of  Fig.   3.21   ), the pressure drag is very large. However, the 

drag coefficient for this condition is only 0.6, which is less than the drag coefficient for 

the subcritical flow (b), even though the pressure drag is significantly greater. Note that 

since the cylinder diameter is the same for both (b) and (e), the two order of magnitude 

increase in Reynolds number is accomplished by increasing the free-stream density and 

the free-stream velocity. Therefore, the denominator of equation (3.52) increases more 

than the numerator. As a result, even though the dimensional force is increased, the 

nondimensionalized force coefficient is decreased. 

dynamic
pressure

reference
area

c E
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 There are a variety of sources of interesting aerodynamic data. However,  Fluid 
Dynamic Drag  by  Hoerner (1958)  and  Fluid Dynamic Lift  by  Hoerner and Borst (1975)  

offer the reader unique and entertaining collections of data. In these volumes, you will 

find aerodynamic coefficients for flags, World War II airplanes, and vintage automo-

biles as well as more classical configurations. These books are valuable resources for 

the aerodynamicist. 

Separation point Relative drag force

Skin friction drag component

Pressure drag component

Same total drag

Larger

Separation point

(a) Flat plate broadside to the flow (height � d ), Red � 105

(b) Large cylinder with subcritical flow (diameter  � d ), Red � 105

(c) Streamlined body (thickness  � d ), Red  � 105

(d) Small cylinder with subcritical flow (diameter  � 0.1 d ), Red  � 104

(e) Large cylinder with supercritical flow (diameter  � d ), Red  � 107

Separation point

Separation point

Separation point

 Figure 3.22         Comparison of the drag components for various 

shapes and flows [from  Talay (1975) ].   
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(d) Small cylinder with subcritical flow (diameter  � 0.1d), Red � 104
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 Figure 3.23         Comparison of section drag coefficients for various 

shapes and flows [from  Talay (1975) ].   

  EXAMPLE 3.7:    Forces on a (semi-cylinder) quonset hut 

 You are to design a quonset hut to serve as temporary housing near the 

seashore. The quonset hut may be considered to be a closed (no leaks) 

semicylinder, whose radius is 5 m, mounted on tie-down blocks, as shown 

in  Fig.   3.24   . Neglect viscous effects and assume that the flow field over the 

top of the hut is identical to the flow over the cylinder for    0 … u … p.    When 

calculating the flow over the upper surface of the hut, neglect the presence 
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of the air space under the hut. The air under the hut is at rest and the pres-

sure is equal to the stagnation pressure,    pt.     
 What is the net lift force acting on the quonset hut? The wind speed 

is 50 m/s and the static free-stream properties are those for standard day 

sea-level conditions. 

  Solution:     Since we will assume that the flow over the upper surface of the quonset hut 

is identical to an inviscid flow over a cylinder, the velocity on the surface is 

given by equation (3.42): 

   Uu = vu = -2U� sin u   

 and the pressure is given by equation (3.43): 

   pu = p� +
1
2r�U2

� - 2r�U2
� sin2 u   

 The pressure on the lower surface (under the hut) is 

   pl = pt = p� +
1
2r�U2

�   

 Equation (3.45) and  Fig.   3.20    can be used to calculate the lifting contribution 

of the upper surface but not the lower surface, since it is a “flat plate” rather 

than a circular arc. The lift per unit depth of the quonset hut is 

    l = - L
p

0

pu sin u R du + pt(2R)    

    = -RL
p

0

(p� sin u +
1
2r�U2

� sin u - 2r�U2
� sin3 u) du    

       + p�2R +
1
2r�U2

�2R    

    = +p�R cos u `
p

0

+
1
2r�U2

�R cos u `
p

0

+ 2r�U2
� R(-cos u +

1
3 cos3 u) `

p

0

   

      + p�2R +
1
2r�U2

�2R    

    = 8
3r�U2

�R    

 The lift coefficient is found from: 

   Cl =
l

1
2r�U2

�(2R)
=

8
2r�U2

�R

r�U2
�R

=
8

3
   

U� � 50 m/s Uu � �2U�sinu

Quonset
hut

Air at rest

pu� p
�

 � 0.5p
�

U 2
�

 � 2p
�

U 2
�

 sin2u

pl �pt � p
� 

� 0.5p
�

U 2
�

 

 Figure 3.24         Inviscid flow model for quonset hut of Example 3.5.   
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 Since we have assumed that the flow is inviscid and incompressible, the lift 

coefficient is independent of the Mach number and Reynolds number. 

 The actual lift force is: 

   l =
8

3
 a1.225 

kg

m3
b a50 

m

s
b

2

(5 m) = 40,833 N>m   

 By symmetry, the drag is zero, which reflects the fact that we neglected the 

effects of viscosity.    

   3.15  FLOW AROUND A CYLINDER WITH CIRCULATION 

 We will now take the solution for flow over a cylinder one step further by adding a vor-

tex to the flow field. The power of superposition can be seen in the development, since 

we can simply add the vortex to the previous results for flow over a cylinder. 

   3.15.1  Velocity Field 

 Consider the flow field that results if a vortex with clockwise circulation is superimposed 

on the doublet/uniform-flow combination we just discussed. The resultant velocity po-

tential function is: 

      f = U�r cos u +

B
r

cos u -

�u

2p
  (3.54)    

 which gives velocity components of: 

      vr =
0f

0r
= U�cos u -

B cos u

r2
  (3.55a)    

     vu =
1

r
 
0f

0u
=

1

r
 a-U�r sin u -

B
r

 sin u -

�

2p
b = -U� sin u -

B

r2
 sin u -

�

2pr
  (3.55b)    

 As was true for flow over a cylinder,    vr = 0    at every point where    r = 2B>U�,    which 

is a constant and will be designated as  R  (the radius of the cylinder). Since the veloc-

ity is always tangent to a streamline, the fact that there is no velocity component    (vr)    

perpendicular to the circle of radius  R  means that the circle may be considered as a 

streamline of the flow field. Thus, the resultant potential function also represents flow 

around a cylinder. For this flow, however, the streamline pattern away from the surface 

is not symmetric about the horizontal plane. The velocity at the surface of the cylinder 

is equal to 

     vu = -U� sin u -

B

r2
 sin u -

�

2pr
= -U� sin u -

B

2B>U�
2

 sin u -

�

2pR
= -2U� sin u -

�

2pR

  (3.56)    
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 The resulting irrotational flow about the cylinder is uniquely determined once the 

magnitude of the circulation around the body is specified. Using the definition for the 

pressure coefficient [equation (3.13)], we can obtain: 

       Cp = 1 -

U2

U2
�

= 1 -

1

U2
�

c-2U� sin u -

�

2pR
d

2

  

     = 1 -

1

U2
�

c4U2
�

 sin2 u +

2�U� sin u

pR
+ a

�

2pR
b

2

d   (3.57) 

     = 1 - c4 sin2 u +

2� sin u

pRU�

+ a
�

2pRU�

b
2

d     

 Notice that two of the three terms inside the square brackets are functions of    �   , meaning 

that these terms are due to the addition of the vortex. Also notice that if    � = 0   , equa-

tion (3.57) simplifies to equation (3.44), which is the pressure coefficient for flow over 

a cylinder without circulation. Any differences in our results for the rotating cylinder 

will have to be due to the terms containing the vortex strength, which is again due to 

the linear nature of the solutions.  

   3.15.2  Lift and Drag 

 If the pressure distribution from equation (3.57) is substituted into the expression for 

the drag force per unit span of the cylinder, equation (3.50), we obtain: 

   d = - L
2p

0

p cos u R du = 0   

 This is true since all of the integrals that result are one of the following three types: 

   L
2p

0

sin2 u  cos u du = L
2p

0

sin u cos u du = L
2p

0

cos u du = 0   

 The prediction of zero drag may be generalized to apply to any general, two-dimensional 

body in an irrotational, steady, incompressible flow. In any real two-dimensional flow, 

a drag force does exist. For incompressible flow, drag is due to viscous effects, which 

produce the shear force at the surface and which may also produce significant changes 

in the pressure field (causing form drag) due to flow separation. 

 Integrating the pressure distribution to determine the lift force per unit span for 

the cylinder, equation (3.45), we can obtain: 

      l = - L
2p

0

p sin u R du = r�U��  (3.58)    

 This is true since the integrals that result are one of the following three types: 

   L
2p

0

sin3 u  du = L
2p

0

sin u du = 0        L
2p

0

sin u2du = p   
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 The only non-zero integral is associated with one of the terms containing circulation in 

equation (3.5): 

   Cp = -

2� sin u

pRU�

 or p - p� = a
1

2
 r�U2

�b
-2� sin u

pRU�

   

 and 

   l = - L
2p

0

-r�U��

p
 sin2 u  du = r�U��   

 Therefore, the lift per unit span is directly related to the circulation about the 

cylinder. This result, which is known as the  Kutta-Joukowski theorem , applies to the 

potential flow about closed cylinders of arbitrary cross section. To see this, consider 

the circulating flow field around the closed configuration to be represented by the su-

perposition of a uniform flow and a unique set of sources, sinks, and vortices within 

the body. For a closed body, continuity requires that the sum of the source strengths be 

equal to the sum of the sink strengths. If we look at the flow field from a point far from 

the surface of the body, the distance between the sources and sinks becomes negligible 

and the flow field appears to be that generated by a single doublet with circulation equal 

to the sum of the vortex strengths within the body. Therefore, in the limit, the forces 

acting are independent of the shape of the body and: 

   l = r�U��   

 The locations of the stagnation points (as shown in  Fig.   3.25   ) also depend on the 

circulation. To locate the stagnation points, we need to find where:  
   vr = vu = 0   

 Since    vr = 0    at every point on the cylinder, the stagnation points occur when    vu = 0   : 

   -2U� sin u -

�

2pR
= 0   

 or 

      u = sin-1a-

�

4pRU�

b   (3.59)    

 If    � 6 4pRU�,    there are two stagnation points on the surface of the cylinder which are 

symmetrically located about the  y  axis (see  Fig.   3.25   ). If    � = 4pU�R,    only one stagna-

tion point exists on the cylinder at    u = 270�.    For this magnitude of the circulation, the 

lift per unit span is 

      l = r�U�� = r�U2
�R4p  (3.60)    

 The lift coefficient per unit span of the cylinder is: 

      Cl =
r�U2

�R4p
1
2r�U2

�2R
= 4p  (3.61)    

 The value    4p    represents the maximum lift coefficient that can be generated for a circu-

lating flow around a cylinder unless the circulation is so strong that no stagnation point 
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exists on the body. This result is an important “upper limit” for airfoil aerodynamics , 

which will be important to understand in  Chapter   6    .  

   3.15.3  Applications of Potential Flow to Aerodynamics 

 At this point in our development of potential flow theory, we have only seen a few direct 

applications of our results to practical aerodynamic shapes. In fact, there are a number 

of ways to proceed with potential flow theory in order to obtain flow over practical 

aerodynamic shapes, such as airfoils. These approaches include: conformal mapping, 

panel methods, and thin airfoil theory. We will briefly describe conformal mapping 

here,  show an example of a panel method in the next section , and develop thin airfoil 

theory in  Chapter   6    . 

Stagnating
streamlines

Static pressure for inviscid flow

(c) Static pressure distributions

(a) � � 2pU�R (b) � � 4pU�R

where � � 2pRU�

where � � 4pRU�

�16
180 270 0 90 180

�12

�8

�4

0

2

( )

Cr 

u

 Figure 3.25         Stagnating streamlines and the static pressure distri-

bution for a two-dimensional circulating flow around a cylinder. 

(a)    � = 2pU�R;    (b)    � = 4pU�R.      
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 Traditionally, potential flow theory was used to obtain the flow over airfoil shapes 

using conformal transformations from complex variable theory [ Churchill and Brown 

(1984) ]. In this approach, we take the already completed solutions for flow over the 

cylinder (with or without circulation) and transform that flow into the flow over an 

airfoil. Although the potential flow around a cylinder is not an accurate model, when 

transformed into a streamlined shape like an airfoil it actually works very well. One 

of the more common transformations used is the Joukowski transformation (shown in 

 Fig.   3.26   ), which produces a family of airfoils with interesting and informative results 

about the effects of thickness, camber, and angle of attack on airfoil aerodynamics 

[ Karamcheti (1980) ].  
 Once the airfoil shape is mapped using the transformation function, the flow field 

for the cylinder can be mapped to the airfoil flow. In addition, the pressures acting on 

the cylinder can be mapped, leading to a fairly straightforward method for obtaining 

the lift on the airfoil. Interested readers should refer to  Karamcheti (1980)  for more 

details about conformal transformations since they lend themselves to computational 

solutions which are easily accomplished on personal computers. 

 The other two methods commonly used to find the flow over airfoils are the panel 

method and thin airfoil theory. Both of these methods require the use of the potential 

flow singularities described in this chapter to create airfoils and wings by distributing 

sources, vortices, and doublets to create appropriate flowfields. The panel method is 

a computational method (described in  Section   3.16   ) that simulates the airfoil surface 

O C�C
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z-plane

z-plane
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j

x

m
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�2C
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 Figure 3.26         Conformal transformation of a circle into a  Joukowski 

airfoil [from  Karamcheti (1980) ].   
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with potential flow functions and then determines the velocity and pressure fields due 

to those functions. The panel method has shown itself to be very useful since it is able 

to predict the flow over a variety of shapes, including full aircraft configurations. Thin-

airfoil theory accomplishes the simulation analytically using vortices to represent the 

mean camber line of the airfoil, and therefore the results are limited to thin airfoils.  We 

will derive thin-airfoil theory in detail in  Chapter   6    .   

   3.16   SOURCE DENSITY DISTRIBUTION ON THE BODY 
SURFACE 

 Thus far, we have studied fundamental fluid phenomena, such as the Kutta-Joukowski 

theorem, using the inverse method. Flow fields for other elementary configurations, 

such as axisymmetric shapes in a uniform stream parallel to the axis of symmetry, can 

be represented by a source distribution along the axis of symmetry. An “exact” solu-

tion for the flow around an arbitrary configuration can be approached using a direct 

method in a variety of ways, all of which must finally become numerical and make use of 

a computing machine. The reader is referred to  Hess and Smith (1966)  for an extensive 

review of the problem. 

 Consider a two-dimensional configuration in a uniform stream, such as shown 

in  Fig.   3.27   .  The coordinate system used in this section (i.e.,  x  in the chordwise direc-

tion and  y  in the spanwise direction) will be used in subsequent chapters on wing and 

airfoil aerodynamics.  The configuration is represented by a finite number ( M ) of linear 

segments, or panels. The effect of the  j th panel on the flow field is characterized by a 

distributed source whose strength is uniform over the surface of the panel. Referring to 

equation (3.36), a source distribution on the  j th panel causes an induced velocity whose 

potential at a point ( x, z ) is given by  
      f(x, z) = L

kj dsj

2p
 ln r  (3.62)    

2nd panel

z

Mth panel

jth panel

ith panel

ni

x

Control points

   �  i (  i is negative for this panel)d da

U�

 Figure 3.27         Source density distribution of the body surface.   



Sec. 3.16 / Source Density Distribution on the Body Surface    155

 where    kj    is defined as the volume of fluid discharged per unit area of the panel and the 

integration is carried out over the length of the panel    dsj.    Note also that 

      r = 2(x - xj)
2

+ (z - zj)
2  (3.63)    

 Since the flow is two dimensional, all calculations are for a unit length along the  y  axis, 

or span. 

 Each of the  M  panels can be represented by similar sources. To determine the 

strengths of the various sources    kj,    we need to satisfy the physical requirement that 

the surface must be a streamline. Thus, we require that the sum of the source-induced 

velocities and the free-stream velocity is zero in the direction normal to the surface 

of the panel at the surface of each of the  M  panels. The points at which the requirement 

that the resultant flow is tangent to the surface will be numerically satisfied are called 

the  control points . The control points are chosen to be the midpoints of the panels, as 

shown in  Fig.   3.27   . 

 At the control point of the  i th panel, the velocity potential for the flow resulting 

from the superposition of the  M  source panels and the free-stream flow is 

      f(xi, zi) = U� xi cos a + U� zi sin a + a
M

j = 1

kj

2pL ln rij dsj  (3.64)    

 where    rij    is the distance from the control point of the  i th panel to a point on the  j th panel. 

      rij = 2(xi - xj)
2

+ (zi - zj)
2  (3.65)    

 Note that the source strength    kj    has been taken out of the integral, since it is constant 

over the  j th panel. Each term in the summation represents the contribution of the  j th 

panel (integrated over the length of the panel) to the potential at the control point of 

the  i th panel. 

 The boundary conditions require that the resultant velocity normal to the surface 

be zero at each of the control points. Thus, 

      
0

0ni
 fi(xi, zi) = 0  (3.66)    

 must be satisfied at each and every control point. Care is required in evaluating the 

spatial derivatives of equation (3.64), because the derivatives become singular when 

the contribution of the  i th panel is evaluated. Referring to equation (3.65), we have 

   rij = 0   

 where    j = i.    A rigorous development of the limiting process is given by  Kellogg (1953) . 

Although the details will not be repeated here, the resultant differentiation indicated 

in equation (3.66) yields 

      
ki

2
  +         a

M

j = 1
( j� i)

kj

2pL
0

0ni
 (ln rij)dsj = -U� sin(a - di)  (3.67)    

 where    di    is the slope of the  i th panel relative to the  x  axis. Note that the summation is car-

ried out for all values of  j  except    j = i.    The two terms of the left side of equation (3.67) 



156    Chap. 3 / Dynamics of an Incompressible, Inviscid Flow Field

have a simple interpretation. The first term is the contribution of the source density of 

the  i th panel to the outward normal velocity at the point    (xi, zi),    that is, the control point 

of the  i th panel. The second term represents the contribution of the remainder of the 

boundary surface to the outward normal velocity at the control point of the  i th panel. 

 Evaluating the terms of equation (3.67) for a particular  i th control point yields a 

linear equation in terms of the unknown source strengths    kj    (for    j = 1    to  M , including 

   j = i   ). Evaluating the equation for all values of  i  (i.e., for each of the  M  control points) 

yields a set of  M  simultaneous equations which can be solved for the source strengths. 

Once the panel source strengths have been determined, the velocity can be determined 

at any point in the flow field using equations (3.64) and (3.65). With the velocity known, 

Bernoulli’s equation can be used to calculate the pressure field. 

 Lift can be introduced by including vortex or doublet distributions and by intro-

ducing the Kutta condition , as we will discuss in  Chapters   6    and    7    . 

  EXAMPLE 3.8:    Application of the source density distribution 

 We can apply the surface source density distribution to describe the flow around 

a cylinder in a uniform stream, where the free-stream velocity is    U�.    For simplic-

ity, we will assume the radius of the cylinder is unity. The cylinder is represented 

by eight equal-length linear segments, as shown in  Fig.   3.28   . The panels are ar-

ranged such that panel 1 is perpendicular to the undisturbed stream.  
  Solution:     We can calculate the contribution of the source distribution on panel 2 to the 

normal velocity at the control point of panel 3. A detailed sketch of the two 

panels involved in this sample calculation is presented in  Fig.   3.29   . Referring 

to equation (3.67), we are to evaluate the integral:  
   L

0

0ni
(ln rij)dsj   

x

z

5

6

7

8

4

3

2

1
U�

 Figure 3.28         Representation of flow around a cylinder of unit 

 radius by eight surface source panels.   
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 where    i = 3    and    j = 2.    We will call this integral    I32.    Note that 

       
0

0n3

 (ln r32) =
1

r32

 
0r32

0n3

    

       =
(x3 - x2)

0x3

0n3

+ (z3 - z2)
0z3

0n3

(x3 - x2)2
+ (z3 - z2)2

  (3.68)    

 where    x3 = 0.00    and    z3 = 0.92388    are the coordinates of the control point 

of panel 3. Note also that 

   
0x3

0n3

= 0.00,  
0z3

0n3

= 1.00   

 Furthermore, for the source line represented by panel 2 we know: 

   x2 = -0.92388 + 0.70711s2   

   z2 = +0.38268 + 0.70711s2   

 and the length of the panel is: 

   l2 = 0.76537   

 Combining these expressions, we can obtain: 

   I32 = L
0.76537

0

(0.92388 - 0.38268 - 0.70711s2)ds2

(0.92388 - 0.70711s2)2
+ (0.92388 - 0.38268 - 0.70711s2)2

   

Control point
of panel 3

(x3 � 0.00, z3 � � 0.92388)

x

n3

r32
s2

ds2

z

(� 0.38268, � 0.92388)

(�0.92388, �0.38268)

 Figure 3.29         Detailed sketch for calculation of the contribution 

of the source distribution on panel 2 to the normal velocity at the 

control point of panel 3.   
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 This equation can be rewritten as: 

   I32 = 0.54120 L
0.76537

0

ds2

1.14645 - 2.07195s2 + 1.00002s2
2

   

    -0.70711 L
0.76537

0

s2ds2

1.14645 - 2.07195s2 + 1.00002s2
2

   

 Using the integral tables to evaluate these expressions, we can now obtain: 

   I32 = -0.7071131
2ln(s2

2 - 2.07195s2 + 1.14645) 4 s2 = 0.76537
s2 = 0    

    -0.70711 c tan-1a
2s2 - 2.07195

20.29291
b d

s2 = 0.76537

s2= 0

   

 Therefore: 

   I32 = 0.3528   

 In a similar manner, we could calculate the contributions of source 

panels 1, 4, 5, 6, 7, and 8 to the normal velocity at the control point of panel 

3. Substituting the values of these integrals into equation (3.67), we obtain 

a linear equation of the form: 

      I31k1 + I32k2 + pk3 + I34k4 + I35k5 + I36k6 + I37k7 + I38k8 = 0.00  (3.69)    

 The right-hand side is zero since    a = 0    and    d3 = 0.    

 Repeating the process for all eight control points, we would obtain a 

set of eight linear equations involving the eight unknown source strengths. 

Solving the system of equations, we would find that: 

    k1 = 2pU�(+0.3765)   

    k2 = 2pU�(+0.2662)   

    k3 = 0.00    

    k4 = 2pU�(-0.2662)   

    k5 = 2pU�(-0.3765)   

    k6 = 2pU�(-0.2662)   

    k7 = 0.00    

    k8 = 2pU�(+0.2662)   

 Note there is a symmetrical pattern in the source distribution, as should be 

expected due to the symmetrical flow pattern. Also, 

      aki = 0  (3.70)    

 as must be true since the sum of the strengths of the sources and sinks (nega-

tive sources) must be zero if we are to have a closed configuration.    
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   3.17  INCOMPRESSIBLE, AXISYMMETRIC FLOW 

 The irrotational flows discussed thus far have been planar (two dimensional). That is, 

the flow field that exists in the plane of the paper will exist in any and every plane paral-

lel to the plane of the paper. Although sketches of the flow field defined by equations 

(3.41) through (3.61) depict the flow around a circle of radius  R , in reality they represent 

the flow around a circular cylinder whose axis is perpendicular to the plane of the paper. 

For these flows,    w K 0    and    0>0z K 0.    

 We will now consider another type of “two-dimensional” flow: an axisymmetric 

flow. The coordinate system for axisymmetric flow is illustrated in  Fig.   3.30   . There are 

no circumferential variations in an axisymmetric flow, which means:  
   vu K 0 and 

0

0u
K 0   

 Thus, the incompressible, continuity equation becomes 

   � # V
S

=
0vr

0r
+

vr

r
+

0vz

0z
= 0   

 Notice that  r  and  z  are the independent coordinates (i.e., variables), we can rewrite this 

expression as 

      
0

0r
(rvr) +

0

0z
(rvz) = 0  (3.71)    

 As we discussed before, a stream function can exist for an incompressible, two- 

dimensional flow. The flow need be two dimensional only in the sense that it requires 

only two spatial coordinates to describe the motion. The stream function that identically 

satisfies equation (3.71) is 

   
0c

0z
= rvr and 

0c

0r
= -rvz   

 Therefore, in the coordinate system of  Fig.   3.30   , 

      vr =
1

r
 
0c

0z
 and vz = -

1

r
 
0c

0r
  (3.72)    

 Note that    c = constant    defines a stream surface. 

r

z

u

 Figure 3.30         Coordinate system for an axisymmetric flow.   
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   3.17.1  Flow around a Sphere 

 To describe a steady, inviscid, incompressible flow around a sphere, we will add the 

axisymmetric potential functions for a uniform flow and for a point doublet. We will 

first introduce the necessary relations in spherical coordinates. For a spherical coordi-

nate system, 

      vr =
0f

0r
  vv =

1

r
 
0f

0v
  vu =

1

r sin v
 
0f

0u
  (3.73)    

 for an irrotational flow where    V
S

= �f.    In equation (3.73),    f    represents the potential 

function, and    r, u,    and    v    represent the independent coordinates. By symmetry, 

   vu = 0 and 
0

0u
= 0   

 The velocity potential for an axisymmetric doublet is 

   f = +

B

4pr2
 cos v   

 where the doublet is so oriented that the source is placed upstream and the doublet axis 

is parallel to the uniform flow. The potential function for a uniform flow is 

   f = U�r cos v   

 Thus, the sum of the potential functions is 

      f = U�r cos v +

B

4pr2
cos v  (3.74)    

 The velocity components for this potential function are 

      vr =
0f

r
= U� cos v -

B

2pr3
 cos v  (3.75a)    

 and 

      vv =
1

r
 
0f

0v
= -U� sin v -

B

4pr3
 sin v  (3.75b)    

 As we did when modeling the inviscid flow around a cylinder, we note that 

   vr = 0   

 when 

   r3 =
B

2pU�

= constant = R3   

 Thus, if    B = 2pU�R3,    we can use the potential function described by equation 

(3.74) to describe steady, inviscid, incompressible flow around a sphere of radius  R . 

For this flow, 

      vr = U�a1 -

R3

r3
bcos v  (3.76a)    
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 and 

      vv = -U�a1 +

R3

2r3
b  sin v  (3.76b)    

 On the surface of the sphere (i.e., for    r = R   ), the resultant velocity is given by 

      U = � V
S

� = vv = -
3
2U�sin v  (3.77)    

 The static pressure acting at any point on the sphere can be calculated using equa-

tion (3.77) to represent the local velocity in Bernoulli’s equation: 

      p = p� +
1
2r�U2

� -
1
2r�U2

�(9
4 sin2 v)  (3.78)    

 Rearranging the terms, we obtain the expression for the pressure coefficient for steady, 

inviscid, incompressible flow around a sphere: 

      Cp = 1 -
9
4 sin2 v  (3.79)    

 Compare this expression with equation (3.44) for flow around a cylinder of infinite span 

whose axis is perpendicular to the free-stream flow: 

   Cp = 1 - 4 sin2 u   

 Note that both    u    and    v    represent the angular coordinate relative to the axis, one for 

the two-dimensional flow, the other for axisymmetric flow. Thus, although the con-

figurations have the same cross section in the plane of the paper (a circle) and both are 

described in terms of two coordinates, the flows are significantly different. 

4 � 103
0.1

0.5

1.0

2.0

Measurements for a smooth cylinder (see Fig. 3.21)

Measurements for a smooth sphere

104 105

Red

CD

Cd

106

 Figure 3.31         Drag coefficient for a sphere as a function of the 

Reynolds number [data from  Schlichting ,  Boundary Layer The-
ory  (1968)].   
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 The drag coefficients for a sphere, as reported in  Schlichting (1968) , are presented 

as a function of the Reynolds number in  Fig.   3.31   . The drag coefficient for a sphere is 

defined as  
      CD =

drag

q�(pd2>4)
  (3.80)    

 The Reynolds number dependence of the drag coefficient for a smooth sphere is similar 

to that for a smooth cylinder. Again, a significant reduction in drag occurs as the critical 

Reynolds number is exceeded and the windward boundary layer becomes turbulent.   

   3.18  SUMMARY 

 In most flow fields of interest to the aerodynamicist, there are regions where the prod-

uct of the viscosity times the shearing velocity gradient is sufficiently small that we 

may neglect the shear stress terms in our analysis. The momentum equation for these 

inviscid flows is known as Euler’s equation. From Kelvin’s theorem, we know that a 

flow remains irrotational in the absence of viscous forces and discontinuities provided 

that the flow is barotropic and the body forces are conservative. Potential functions can 

be used to describe the velocity field for such flows. If we assume further that the flow 

is incompressible (i.e., low speed), we can linearly add potential functions to obtain the 

velocity field for complex configurations and use Bernoulli’s equation to determine the 

corresponding pressure distribution. The inviscid flow field solutions form the outer 

(edge) boundary conditions for the thin viscous boundary layer adjacent to the wall. 

 The characteristics of the boundary layer and techniques for analyzing it are described 

in the next chapter.    

     PROBLEMS 

   3.1.    A truck carries an open tank, that is 6 m long, 2 m wide, and 3 m deep. Assuming that the 

driver will not accelerate or decelerate the truck at a rate greater than    2 m>s2,    what is the 

maximum depth to which the tank may be filled so that the water will not be spilled?   

   3.2.    The wind reaches at a speed of 50 m/s in a storm. Calculate the force acting on the window 

of Cross-section area 2 sq.m facing the storm. The window is in a high-rise building, so the 

speed is not reduced due to ground effects. Let the density of the air r = 1.27 kg/m3.   

   3.3.    A Pitot tube is mounted on the nose of an aircraft to measure the pressure. If the aircraft is flying 

at an altitude of 4500 m and the reading of Pitot tube is 60000 N>m2 (abs). What is the airspeed?   

   3.4.    Water fills the circular tank (which is 20.0 ft in diameter) shown in  Fig.   P3.4   . Water 

flows out of a hole which is 1.0 in. in diameter and which is located in the side of the 

tank, 15.0 ft from the top and 15.0 ft from the bottom. Consider the water to be inviscid. 

   rH2O
= 1.940 slug>ft3.     

    (a)   Calculate the static pressure and the velocity at points 1, 2, and 3. For these calculations, 

you can assume that the fluid velocities are negligible at points more than 10.0 ft from 

the opening.  

   (b)   Having calculated    U3    in part (a), what is the velocity    U1?    Was the assumption of part 

(a) valid?     
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   3.5.    Consider a low-speed, steady flow around the thin airfoil shown in  Fig.   P3.5   . We know the 

velocity and altitude at which the vehicle is flying. Thus, we know    p�    (i.e.,    p1   ) and    U�.    We 

have obtained experimental values of the local static pressure at points 2 through 6. At 

which of these points can we use Bernoulli’s equation to determine the local velocity? If 

we cannot, why not?  

   Point 2: at the stagnation point of airfoil  

  Point 3: at a point in the inviscid region just outside the laminar boundary layer  

  Point 4: at a point in the laminar boundary layer  

  Point 5: at a point in the turbulent boundary layer  

  Point 6: at a point in the inviscid region just outside the turbulent boundary layer     

15.0
ft

15.0
ft

20.0 ft
Diameter

Water flows out through
a 1.0 in. diameter hole

Surface

1

2

3

 Figure P3.4        

Edge of boundary
layer

6

2
4

3

5

Point 1
(� �)

 Figure P3.5        

   3.6.    Assume that the airfoil of problem 3.5 is moving at 300 km/h at an altitude of 3 km. The 

experimentally determined pressure coefficients are 

 Point  2  3  4  5  6 

    Cp     1.00     -3.00        -3.00        +0.16        +0.16    

    (a)   What is the Mach number and the Reynolds number for this configuration? Assume 

that the characteristic dimension for the airfoil is 1.5 m.  

   (b)   Calculate the local pressure in    N>m2    and in    lbf> in.2    at all five points. What is the 

percentage change in the pressure relative to the free-stream value? That is, what is 

   (plocal - p�) >p�?    Was it reasonable to assume that the pressure changes are suffi-

ciently small that the density is approximately constant?  
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   (c)   Why are the pressures at points 3 and 4 equal and at points 5 and 6 equal?  

   (d)   At those points where Bernoulli’s equation can be used validly, calculate the local 

velocity.     

   3.7.    A Pitot-static probe is used to determine the airspeed of an airplane that is flying at an 

altitude of 5000 m. If the stagnation pressure is 5.7540 * 104 N>m2 what is the airspeed? 

What is the pressure recorded by a gage that measures the difference between the stagna-

tion pressure and the static pressure (such as that shown in  Fig.   3.2   )? How fast would an 

airplane have to fly at sea level to produce the same reading on this gage?   

   3.8.    The pressure far from an irrotational vortex in the atmosphere is zero gage. If the velocity 

of the air V1 is 20 m/s at a distance r1 = 20 m, then estimate the velocity of the air V2 and 

the pressure P2 at a distance r2 = 1.0 m. Let density of the air r = 1.2 kg/m3.   

   3.9.    A high-rise office building located in a city at sea level is exposed to a wind of 75 km/h. 

What is the static pressure of the airstream away from the influence of the building? What 

is the maximum pressure acting on the building? Pressure measurements indicate that a 

value of    Cp = -4    occurs near the corner of the wall parallel to the wind direction. If the 

internal pressure equals to the free-stream static pressure, what is the total force on the 

pane of glass    1 m * 3 m    located in this region?   

   3.10.    You are working as a flight-test engineer at the Dryden Flight Research Center. During 

the low-speed phase of the test program for the X-37, you know that the plane is flying at 

an altitude of 8 km. The pressure at gage 1 is    1550 N>m2,    gage; the pressure at gage 2 is 

   -3875 N>m2,    gage. 

    (a)   If gage 1 is known to be at the stagnation point, what is the velocity of the airplane? 

What is its Mach number?  

   (b)   What is the free-stream dynamic pressure for this test condition?  

   (c)   What is the velocity of the air at the edge of the boundary layer at the second point 

relative to the airplane? What is the velocity relative to the ground? What is    Cp    for this 

gage?     

   3.11.    Air flows through a converging pipe section, as shown in  Fig.   P3.11   .  Since the centerline 

of the duct is horizontal, the change in potential energy is zero. The Pitot probe at the up-

stream station provides a measure of the total pressure (or stagnation pressure). The down-

stream end of the U-tube provides a measure of the static pressure at the second station. 

Assuming the density of air to be 0.002367 slug/ft3 and neglecting the effects of viscosity, 

compute the volumetric flow rate in ft3/s. The fluid in the manometer is unity weight oil 

(roil = 1.94033 slug/ft3).          

Flow

D2 � 3 in.

D1 � 5 in.

5 in.

 Figure P3.11        
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   3.12.    An in-draft wind tunnel ( Fig.   P3.12   ) takes air from the quiescent atmosphere (outside the 

tunnel) and accelerates it in the converging section, so that the velocity of the air at a point 

in the test section but far from the model is 60 m/s. What is the static pressure at this point? 

What is the pressure at the stagnation point on a model in the test section? Use  Table   1.2    

to obtain the properties of the ambient air, assuming that the conditions are those for the 

standard atmosphere at sea level.    

Quiescent
air

Test section

U

50 m/s

 Figure P3.12        

   3.13.    A venturi meter is a device that is inserted into a pipeline to measure incompressible flow 

rates. As shown in  Fig.   P3.13   , it consists of a convergent section that reduces the diameter 

to between one-half and one-fourth of the pipe diameter. This is followed by a divergent 

section through which the flow is returned to the original diameter. The pressure difference 

between a location just before the venturi and one at the throat of the venturi is used to 

determine the volumetric flow rate ( Q ). Show that  

   Q = Cd c
A2

21 - (A2>A1)2
 
A

2g(p1 - p2)

g
d    

   where    Cd    is the coefficient of discharge, which takes into account the frictional effects and 

is determined experimentally or from handbook tabulations.   

1 2

 Figure P3.13        

   3.14.    You are in charge of the pumping unit used to pressurize a large water tank on a fire truck. 

The fire that you are to extinguish is on the sixth floor of a building, 70 ft higher than the 

truck hose level, as shown in  Fig.   P3.14   .  
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    (a)   What is the minimum pressure in the large tank for the water to reach the fire? Neglect 

pressure losses in the hose.  

   (b)   What is the velocity of the water as it exits the hose? The diameter of the nozzle is 3.0 in. 

What is the flow rate in gallons per minute? Note that 1 gal/min equals 0.002228    ft3>s.        

   3.15.    A free jet of water leaves the tank horizontally, as shown in  Fig.   P3.15   . Assuming that the 

tank is large and the losses are negligible, derive an expression for the distance  X  (from the 

tank to the point where the jet strikes the floor) as a function of  h  and  H ? What is  X , if the 

liquid involved was gasoline for which    s = 0.70?       

Tank

1

Pressure

2

70 ft

3

Fire

 Figure P3.14        

Free

surface

Free jet

H

h

X

 Figure P3.15        

   3.16.      (a)    What conditions are necessary before you can use a stream function to solve for the 

flow field?  

   (b)   What conditions are necessary before you can use a potential function to solve for the 

flow field?  

   (c)   What conditions are necessary before you can apply Bernoulli’s equation to relate two 

points in a flow field?  

   (d)   Under what conditions does the circulation around a closed fluid line remain constant 

with respect to time?     
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   3.17.    What is the circulation around a circle of constant radius    R1    for the velocity field given as 

   V
S

=
�

2pr
 enu     

   3.18.    The velocity field for the fully developed viscous flow  discussed in  Example   2.2     is 

    u = 0  

  v = 0  

  w =
1

m
 
dp

dx
ay -

h
2
b    

   Is the flow rotational or irrotational? Why?   

   3.19.    Find the integral along the path    s
u

    between the points (0, 0) and (1, 2) of the component of 

   V
S

    in the direction of    s
u

    for the following three cases: 

    (a)      s
u

    a straight line.   

   (b)      s
u

    a parabola with vertex at the origin and opening to the right.  

   (c)      s
u

    a portion of the  x  axis and a straight line perpendicular to it.   

    The components of    V
S

    are given by the expressions 

    u = x2
+ y2 

  v = 2xy2      

   3.20.    Consider the velocity field given in Problem 3.12: 

   V
S

= (x2
+ y2) in + 2xy2 jn    

   Is the flow rotational or irrotational? Calculate the circulation around the right triangle 

shown in  Fig.   P3.20   .  
   CV

S

# ds
¡

= ?   

   What is the integral of the component of the curl    V
S

    over the surface of the triangle? 

That is, 

   O ( � * V
S

) # nn  dA
¡

= ?   

   Are the results consistent with Stokes’s theorem?   

(0, 0) (1, 0)

x

y

(1, 2)

 Figure P3.20        
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   3.21.    The absolute value of velocity and the equation of the potential function lines in a two-

dimensional velocity field ( Fig.   P3.21   ) are given by the expressions  

    � V
S

� = 24x2
+ 4y2   

    f = x2
- y2

+ C   

   Evaluate both the left-hand side and the right-hand side of equation (3.16) to demonstrate 

the validity of Stokes’s theorem of this irrotational flow.   

x

y

(2, 1)

Rectangular
area

 Figure P3.21        

   3.22.    Consider the incompressible, irrotational two-dimensional flow where the potential func-

tion is 

   f = K ln2x2
+ y2   

   where  K  is an arbitrary constant. 

    (a)   What is the velocity field for this flow? Verify that the flow is irrotational. What is the 

magnitude and direction of the velocity at (2, 0), at    (12, 12),    and at (0, 2)?  

   (b)   What is the stream function for this flow? Sketch the streamline pattern.  

   (c)   Sketch the lines of constant potential. How do the lines of equipotential relate to the 

streamlines?     

   3.23.    The stream function of a two-dimensional, incompressible flow is given by 

   c =
�

2p
 ln r   

    (a)   Graph the streamlines.  

   (b)   What is the velocity field represented by this stream function? Does the resultant veloc-

ity field satisfy the continuity equation?  

   (c)   Find the circulation about a path enclosing the origin. For the path of integration, use 

a circle of radius 3 with a center at the origin. How does the circulation depend on the 

radius?     

   3.24.    The absolute value of the velocity and the equation of the streamlines in a velocity field are 

given by 

    � V
S

� = 22y2
+ x2

+ 2xy    

    c = y2
+ 2xy = constant   

   Find  u  and  v .   
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   3.25.    The absolute value of the velocity and the equation of the streamlines in a two-dimensional 

velocity field ( Fig.   P3.25   ) are given by the expressions  

    � V
S

� = 25y2
+ x2

+ 4xy   

    c = xy + y2 = C    

   Find the integral over the surface shown of the normal component of curl    V
S

    by two methods.   

x

y

(2, 1)

Area of
interest

 Figure P3.25        

   3.26.    Given an incompressible, steady flow, where the velocity is 

   V
S

= (x2y - xy2) in + a
y3

3
- xy2b jn    

    (a)   Does the velocity field satisfy the continuity equation? Does a stream function exist? 

If a stream function exists, what is it?  

   (b)   Does a potential function exist? If a potential function exists, what is it?  

   (c)   For the region shown in  Fig.   P3.26   , evaluate  

   O ( � * V
S

) # nn  dA
¡

= ?   

 and 

   CV
S

# ds
¡

= ?   

   to demonstrate that Stokes’s theorem is valid.     

x

y

y � x

(1, 1)

n̂ dA is that of the planar triangle

Circulation around the triangle

 Figure P3.26        
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   3.27.    Consider the superposition of a uniform flow and a source of strength  K . If the distance 

from the source to the stagnation point is  R , calculate the strength of the source in terms of 

   U�    and  R . 

    (a)   Determine the equation of the streamline that passes through the stagnation point. Let 

this streamline represent the surface of the configuration of interest.  

   (b)   Noting that 

   vr =
1

r
 
0c

0u
  vu = -

0c

0r
   

 complete the following table for the surface of the configuration. 

    u        
r
R

        
U
U�

        Cp    

  30�       
  45�       
  90�       
 135�       
 150�       
 180�       

   3.28.    A two-dimensional free vortex is located near an infinite plane at a distance  h  above the plane 

( Fig.   P3.28   ). The pressure at infinity is    p�    and the velocity at infinity is    U�    parallel to the plane. 

Find the total force (per unit depth normal to the paper) on the plane if the pressure on the 

underside of the plane is    p�.    The strength of the vortex is    �.    The fluid is incompressible and 

perfect. To what expression does the force simplify if  h  becomes very large?    

Vortex of strength �

hU�

p
�

p
�

 Figure P3.28        

   3.29.    A perfect, incompressible irrotational fluid is flowing past a wall with a sink of strength 

 K  per unit length at the origin ( Fig.   P3.29   ). At infinity the flow is parallel and of uniform 

velocity    U�.    Determine the location of the stagnation point    x0    in terms of    U�    and  K . Find 

the pressure distribution along the wall as a function of  x . Taking the free-stream static 

pressure at infinity to be    p�,    express the pressure coefficient as a function of    x>x0.    Sketch 

the resulting pressure distribution.    

Sink of strength  K
at x � 0

U�

p
�

 Figure P3.29        
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   3.30.    What is the stream function that represents the potential flow about a cylinder whose radius 

is 2 m and which is located in an air stream where the free-stream velocity is 30 m/s? What 

is the change in pressure from the free-stream value to the value at the top of the cylinder 

(i.e., u = 90�)? What is the change in pressure from the free-stream value to that at the 

stagnation point (i.e., u = 180�)? Assume that the free-stream conditions are those of the 

standard atmosphere at sea level.   

   3.31.    Consider the flow formed by a uniform flow superimposed on a doublet whose axis is par-

allel to the direction of the uniform flow and is so oriented that the direction of the efflux 

opposes the uniform flow. This is the flow field of  Section   3.13.1   . Using the stream functions 

for these two elementary flows, show that a circle of radius  R , where 

   R =
A

B
U�

   

   is a streamline in the flow field.   

   3.32.    Consider the flow field that results when a vortex with clockwise circulation is superimposed 

on the doublet/uniform-flow combination discussed in Problem 3.31. This is the flow field 

of  Section   3.15.1   . Using the stream functions for these three elementary flows, show that a 

circle of radius  R , where 

   R =
A

B
U�

   

   is a streamline in the flow field.   

   3.33.    A cylindrical tube with three radially drilled orifices, as shown in  Fig.   P3.33   , can be used as a 

flow-direction indicator. Whenever the pressure on the two side holes is equal, the pressure 

at the center hole is the stagnation pressure. The instrument is called a  direction-finding 
Pitot tube , or a  cylindrical yaw probe .  

    (a)   If the orifices of a direction-finding Pitot tube were to be used to measure the free-

stream static pressure, where would they have to be located if we use our solution for 

flow around a cylinder?  

   (b)   For a direction-finding Pitot tube with orifices located as calculated in part (a), what is 

the sensitivity? Let the sensitivity be defined as the pressure change per unit angular 

change (i.e.,    0p>0u   ).     

 Figure P3.33        

   3.34.    An infinite-span cylinder (two-dimensional) serves as a plug between the two airstreams, 

as shown in  Fig.   P3.34   . Both air flows may be considered to be steady, inviscid, and incom-

pressible. Neglecting the body forces in the air and the weight of the cylinder, in which 

direction does the plug move (i.e., due to the airflow)?    
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   3.35.    Using the data of  Fig.   3.30   , calculate the force and the overturning moment exerted by a 

4 m/s wind on a cylindrical smokestack that has a diameter of 3 m and a height of 50 m. 

Neglect variations in the velocity of the wind over the height of the smokestack. The tem-

perature of the air is 30°C; its pressure is 99 kPa. What is the Reynolds number for this 

flow?   

   3.36.    Calculate the force and the overturning moment exerted by a 20 m/s wind on a cylindrical 

flagpole that has a diameter of 15 cm. and a height of 4.5 m. Neglect variations in the veloc-

ity of the wind over the height of the flagpole. The temperature of the air is 303.15°C; its 

pressure is 99000 N/m2. What is the Reynolds number of this flow?   

   3.37.    A cylinder 0.9 m in diameter is placed in a stream of air at temperature 293.15 K where the 

free-stream velocity is 36 m/s. What is the vortex strength required in order to place the stag-

nation points at u = 30� and u = 150�? If the free-stream pressure is 95000 N/m2, what is the 

pressure at the stagnation points? What will be the velocity and the static pressure at u = 90�? 

at u = 270�? What will be the theoretical value of the lift per span wise meter of the cylinder?   

   3.38.    Consider the flow around the quonset hut shown in  Fig.   P3.38    to be represented by super-

imposing a uniform flow and a doublet. Assume steady, incompressible, potential flow. The 

ground plane is represented by the plane of symmetry and the hut by the upper half of the 

cylinder. The free-stream velocity is 175 km/h; the radius    R0    of the hut is 6 m. The door is 

not well sealed, and the static pressure inside the hut is equal to that on the outer surface 

of the hut, where the door is located.  

    (a)   If the door to the hut is located at ground level (i.e., at the stagnation point), what is 

the net lift acting on the hut? What is the lift coefficient?  

   (b)   Where should the door be located (i.e., at what angle    u0    relative to the ground) so that 

the net force on the hut will vanish?   

   For both parts of the problem, the opening is very small compared to the radius    R0.    Thus, 

the pressure on the door is essentially constant and equal to the value of the angle    u0    at 

which the door is located. Assume that the wall is negligibly thin.   

Air at 100 m/s

P�, u � 1.5 � 105 N/m2

T�, u � 20�C

Air at 10 m/s

6 cm

P�, l � 1.0 � 105 N/m2

T�, l � 20�C

 Figure P3.34        
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   3.39.    Consider an incompressible flow around a semicylinder, as shown in  Fig.   P3.39   . Assume 

that velocity distribution for the windward surface of the cylinder is given by the inviscid 

solution  

   V
S

= -2U� sin u enu   

   Calculate the lift and drag coefficients if the base pressure (i.e., the pressure on the flat, or 

leeward, surface) is equal to the pressure at the separation point,    pcorner.      

Door

U� � 175 km/h
0

R0u

 Figure P3.38        

pcorner

pbase � pcorner

u
U�

 Figure P3.39        

   3.40.    A fully loaded aircraft weighing 900 kN has a wing area of 230m2. If the wing has the char-

acteristics of a NACA 23012 airfoil and during takeoff operates at a 60  angle of attack, 

what is the required takeoff speed at sea level? What is the takeoff speed at an elevation 

of 2000 m? Let CL = 0.79.   

   3.41.    You are to design quonset huts for a military base in the mideast. The design wind speed is 

100 ft/s. The static free-stream properties are those for standard sea-level conditions. The 

quonset hut may be considered to be a closed (no leaks) semicylinder, whose radius is 15 ft, 

mounted on tie-down blocks, as shown in  Example   3.5   . The flow is such that the velocity 

distribution and, thus, the pressure distribution over the top of the hut (the semicircle of 

the sketch) are represented by the potential function 

   f = U� r cos u +

B
r

 cos u   

   When calculating the flow over the hut, neglect the presence of the air space under the 

hut. The air under the hut is at rest and the pressure is equal to stagnation pressure, 

   pt( =  p� +
1
2r�U2

�).    

    (a)   What is the value of  B  for the 15-ft-radius ( R ) quonset hut?  

   (b)   What is the net lift force acting on the quonset hut?  

   (c)   What is the net drag force acting on the quonset hut?     
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   3.42.    Using equation (3.56) to define the surface velocity distribution for inviscid flow around a 

cylinder with circulation, derive the expression for the local static pressure as a function of    u.

     Substitute the pressure distribution into the expression for the lift to verify that equation 

(3.58) gives the lift force per unit span. Using the definition that 

   Cl =
l

q�2R
   

   (where  l  is the lift per unit span), what is the section lift coefficient?   

   3.43.    Combining equations (3.45) and (3.49), it has been shown that the section lift coefficient 

for inviscid flow around a cylinder is 

      Cl = -
1
2 L

2p

0

Cp sin u du  (3.48)    

   Using equation (3.57) to define the pressure coefficient distribution for inviscid flow with 

circulation, calculate the section lift coefficient for this flow.   

   3.44.    There were early attempts in the development of the airplane to use rotating cylinders as 

airfoils. Consider such a cylinder having a diameter of 0.5 m and a length of 5 m. If this 

cylinder is rotated at 200 rpm while the plane moves at a speed of 50 km/h through the air at 

1 km standard atmosphere, estimate the maximum lift that could be developed, disregard-

ing end effects?   

   3.45.    Using the procedures illustrated in  Example   3.6   , calculate the contribution of the source 

distribution on panel 3 to the normal velocity at the control point of panel 4. The configura-

tion geometry is illustrated in  Fig.   3.27   .   

   3.46.    Consider the pressure distribution shown in  Fig.   P3.46    for the windward and leeward sur-

faces of a thick disk whose axis is parallel to the free-stream flow. What is the corresponding 

drag coefficient?    

D

Cp

Cp
av

 � 0.75

Cp��0.40

1.0 0 0 �0.40.5

 Figure P3.46        

   3.47.    Consider an incompressible flow around a hemisphere, as shown in  Fig.   P3.39   . Assume that 

the velocity distribution for the windward surface of the cylinder is given by the inviscid 

solution 

      V = -
3
2U� sin v  (3.77)    

   Calculate the lift and drag coefficients if the base pressure (i.e., the pressure on the flat, or 

leeward surface) is equal to the pressure at the separation point,    pcomer.    How does the drag 

coefficient for a hemisphere compare with that for a hemicylinder (i.e., Problem 3.47.)   
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   3.48.    A hemisphere, as shown in Fig. P3.48, is submerged in an airstream where 

r� = 0.00266 slug>ft3 and U� =  100 ft>s The radius is 1.0 ft. What are the lift and drag 

forces on the hemisphere using the equations developed in Problem 3.47.)   

   3.49.    Consider air flowing past a hemisphere resting on a flat surface, as shown in  Fig.   P3.49   . 

Neglecting the effects of viscosity, if the internal pressure is    pi,    find an expression for the 

pressure force on the hemisphere. At what angular location should a hole be cut in the 

surface of the hemisphere so that the net pressure force will be zero?    

Standard
atmospheric
conditions

D

pi

 Figure P3.49        

   3.50.    A two-dimensional flow field is given by V = 2x3i - 6x2yj. Check whether the flow is ro-

tational or irrotational? If rotational, determine the angular velocity, vorticity, shear strain, 

and dilatency. Also find the circulation about the circle x2
+ y2

- 2ry = 0.   

   3.51.    Derive the stream functions for the elementary flows of  Table   3.3   .   

   3.52.    What condition(s) must prevail in order for a velocity potential to exist? For a stream func-

tion to exist?    
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    4   VISCOUS BOUNDARY 

LAYERS 

     Chapter Objectives 

  •   Develop a basic understanding of boundary layers and their impact on 
aerodynamic flows  

  •   Be able to obtain solutions for basic laminar flows and use the results to estimate 
properties, such as boundary layer thickness, shear stress, and skin friction  

  •   Describe the characteristics of turbulent boundary layers, and how they compare 
to laminar boundary layers  

  •   Understand how drag is impacted by laminar and turbulent boundary layers, 
including friction and separation  

  •   Be able to estimate turbulent boundary layer properties, such as boundary layer 
thickness, shear stress, and skin friction  

  •   Be able to complete a control volume analysis of a boundary layer flow  
  •   Describe why turbulence models are important and how they are used  
  •   Learn how to calculate the heat transfer and heat-transfer rate for a constant-

property flow   

  The equation for the conservation of linear momentum was developed  in  Chapter   2     by 

applying Newton’s law, which states that the net force acting on a fluid particle is equal 

to the time rate of change of the linear momentum of the fluid particle. The principal 
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forces considered were those that act directly on the mass of the fluid element (i.e., 

the body forces) and those that act on the surface (i.e., the pressure forces and shear 

forces). The resulting equations are known as the Navier-Stokes equations. Even today, 

there are no general solutions for the complete Navier-Stokes equations. Nevertheless, 

reasonable approximations can be introduced to describe the motion of a viscous fluid 

if the viscosity is either very large or very small. The latter case is of special interest to 

us, since two important fluids, water and air, have very small viscosities. Not only is the 

viscosity of these fluids very small, but the velocity for many of the practical applications 

relevant to aerodynamics is such that the Reynolds number is very large. 

 Even in the limiting case where the Reynolds number is large, a reasonable approach 

for estimating aerodynamics has to be found that does not require the solution of the Navier-

Stokes equations for specific boundary conditions. One common approach is to divide the 

flow field into two regions: (1) a viscous boundary layer adjacent to the surface of the vehicle 

and (2) the essentially inviscid flow outside the boundary layer. The velocity of the fluid 

particles increases from a value of zero (in a vehicle-fixed coordinate system) at the wall to 

the value that corresponds to the external “frictionless” flow outside the boundary layer. 

Outside the boundary layer, the transverse velocity gradients become so small that the shear 

stresses acting on a fluid element are negligibly small. Thus, the effect of the viscous terms 

may be ignored when solving for the flow field external to the boundary layer. 

 When using the two-region flow model to solve for the flow field, the first step is 

to solve for the inviscid portion of the flow field. The solution for the inviscid portion 

of the flow field must satisfy the boundary conditions: (1) that the velocity of the fluid 

particles far from the body be equal to the free-stream value and (2) that the velocity of 

the fluid particles adjacent to the body be parallel to the “surface.” The second bound-

ary condition represents the physical requirement that there is no flow through a solid 

surface. However, since the flow is inviscid, the velocity component parallel to the sur-

face does not have to be zero. Having solved for the inviscid flow field, the second step is 

to calculate the boundary layer using the inviscid flow as the outer boundary condition. 

 If the boundary layer is relatively thick, it may be necessary to use an iterative process 

for calculating the flow field. To start the second iteration, the inviscid flow field is recal-

culated, replacing the actual configuration by the “effective” configuration, which is deter-

mined by adding the displacement thickness of the boundary layer from the first iteration 

to the surface coordinate of the actual configuration , as shown in  Fig.   2.13    . The boundary 

layer is recalculated using the second-iterate inviscid flow as the boundary condition. As 

discussed in  DeJarnette and Ratcliffe (1996) , the iterative procedure required to converge to 

a solution requires an understanding of each region of the flow field and their interactions. 

  In  Chapter   3   , we generated solutions for the inviscid flow field for a variety of 

configurations.  In this chapter, we will examine the viscous region in detail, assuming 

that the inviscid flow field is already known.   

      4.1  EQUATIONS GOVERNING THE BOUNDARY 
LAYER FOR A STEADY, TWO-DIMENSIONAL, 
INCOMPRESSIBLE FLOW 

 In order to obtain engineering solutions for viscous flow, we will discuss techniques 

for the boundary layer when it is either laminar or turbulent. The transition process 

through which the boundary layer “changes” from a laminar state to a turbulent state is 
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quite complex and depends on many parameters (e.g., surface roughness, surface tem-

perature, pressure gradient, and Mach number). A brief summary of the factors affect-

ing transition is presented later in this chapter, and some straightforward engineering 

approximations for transition will be discussed. For a more detailed discussion of the 

parameters that affect transition, you are encouraged to read  Schlichting and Gersten 

(2000)  and  White (2005) . 

 To simplify the development of the solution techniques, we will consider the flow to 

be steady, two-dimensional, and constant property (or, equivalently, incompressible for a 

gas flow). By restricting ourselves to such flows, we can concentrate on the development 

of the solution techniques themselves. As shown in  Fig.   4.1   , the coordinate system is fixed 

to the surface of the body, where the  x  coordinate is measured in the streamwise direc-

tion along the surface of the configuration. The stagnation point (or the leading edge if 

the configuration is a sharp object) is at    x = 0.    The  y  coordinate is perpendicular to the 

surface. This coordinate system is used throughout the developments in this chapter.  

 Referring to equation  (2.3)    , the differential form of the continuity equation for an 

incompressible flow in two dimensions is: 

      
0u
0x

+

0v

0y
= 0  (4.1)    

 Referring to equation  (2.16)     and neglecting body forces, the  x  component of momentum 

for this steady, two-dimensional flow is: 

      ru
0u
0x

+ rv 
0u
0y

= -

0p

0x
+ m

0
2u

0x2
+ m

0
2u

0y2
  (4.2)    

 Similarly, the  y  component of momentum is: 

      ru
0v

0x
+ rv 

0v

0y
= -

0p

0y
+ m

0
2
v

0x2
+ m

0
2
v

0y2
  (4.3)    

 If the boundary layer is thin and the streamlines are not highly curved, then we will 

assume that    u W v,    which will typically be true as long as we are not too close to the 

stagnation point. This observation allows us to compare each term in equation (4.3) with 

the corresponding term in equation (4.2) and make the following conclusions: 
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 Therefore,  as we discussed in  Chapter   2   ,  we can conclude that: 

   
0p

0x
7

0p

0y
   

(x is measured along the surface)

y

x

 Figure 4.1         Coordinate system for the boundary-layer equations.   
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 The essential information supplied by the  y  component of the momentum equa-

tion is that the static pressure variation in the  y  direction may be neglected for most 

boundary layer flows. This is true whether the boundary layer is laminar, transitional, 

or turbulent. It is not true in wake flows, that is, separated regions in the lee side of 

blunt bodies such as those behind cylinders , which were discussed in  Chapter   3    . The 

assumption that the static pressure variation across a thin boundary layer is negligible 

only breaks down for turbulent boundary layers at very high Mach numbers. The com-

mon assumption for thin boundary layers also may be written as: 

      
0p

0y
� 0  (4.4)    

 which is true since we are not in regions with high streamline curvature. Therefore, the 

local static pressure is a function of  x  only and is determined from the solution of the invis-

cid portion of the flow field. As a result, Euler’s equation for a steady flow with negligible 

body forces,  equation (3.1),  which relates the streamwise pressure gradient to the velocity 

gradient for the inviscid flow, can be used to evaluate the pressure gradient in the viscous 

region as: 

      -
0p

0x
= -

dpe

dx
= reue

due

dx
  (4.5)    

 where the subscript  e  represents the conditions at the edge of the boundary layer, where 

we could know the solution for the inviscid flow field. Substituting equation (4.5) into 

equation (4.2), and noting that    m(0
2u>0x2) 6 m(0

2u>0y2),    we obtain 

      ru
0u
0x

+ rv 
0u
0y

= reue
due

dx
+ m

0
2u

0y2
  (4.6)    

 Now we can examine equations (4.1) and (4.6) together. The assumption that the 

flow is constant property (or incompressible) implies that fluid properties, such as density 

   r    and viscosity    m,    are constants. For low-speed flows of gases, the changes in pressure 

and temperature through the flow field are sufficiently small that the corresponding 

changes in    r    and    m    have a negligible effect on the flow field. By limiting ourselves to 

incompressible flows, it is not necessary to include the energy equation in the formulation 

of our solution. For compressible (or high-speed) flows, the temperature changes in the 

flow field are sufficiently large that the temperature dependence of the viscosity and of 

the density must be included. As a result, the analysis of a compressible boundary layer 

involves the simultaneous solution of the continuity equation, the  x  momentum equation, 

and the energy equation. For a detailed treatment of compressible boundary layers, you 

should consult   Chapter   8   , as well as   Schlichting and Gersten (2000)  and  Dorrance (1962) . 

 When the boundary layer is laminar, the transverse exchange of momentum (i.e., 

the momentum transfer in a direction perpendicular to the principal flow direction) 

takes place on a molecular (or microscopic) scale. As a result of the molecular move-

ment, slower-moving fluid particles from the lower layer (or lamina) of fluid move 

upward, slowing the particles in the upper layer. Conversely, when the faster-moving 

fluid particles from the upper layer migrate downward, they tend to accelerate the fluid 

particles in that layer. This molecular interchange of momentum for a laminar flow is 

depicted in  Fig.   4.2   a.  Therefore, the shear stress at a point in a Newtonian fluid is given 

by the constitutive relations preceding equation (2.12) .  
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 For a turbulent boundary layer, there is a macroscopic transport of fluid particles, 

as shown in  Fig.   4.2   b. In addition to the laminar shear stress described in the preceding 

paragraph, there is an effective  turbulent shear stress  that is due to the transverse trans-

port of momentum and that is very large. Because slower-moving fluid particles near the 

wall are transported far upward, the turbulent boundary layer is relatively thick when 

compared with a laminar boundary layer. Because faster-moving fluid particles (which 

are normally located near the edge of the boundary layer) are transported toward the 

wall, they produce relatively high velocities for the fluid particles near the surface. Thus, 

the shear stress at the wall for a turbulent boundary layer is larger than that for a laminar 

boundary layer. Because the macroscopic transport of fluid introduces large localized 

variations in the flow at any instant, the values of the fluid properties and the velocity 

components are (in general) the sum of the “average” value and a fluctuating component. 

 We could introduce the fluctuating characteristics of turbulent flow at this point 

and treat both laminar and turbulent boundary layers in a unified fashion. For a lami-

nar boundary layer, the fluctuating components of the flow would be zero. However, 

to simplify the discussion, we will first discuss laminar flows and their analysis followed 

by turbulent boundary layers and their analysis.  

   4.2  BOUNDARY CONDITIONS 

 Now that we have simplified the equations for incompressible viscous flow, we can 

consider the boundary conditions that we must apply in order to obtain solutions. Since 

we are considering that portion of the flow field where the viscous forces are important, 

the condition of no slip on the solid boundaries must be satisfied. That is, at    y = 0,    

      u(x, 0) = 0  (4.7a)    

Motion on a
microscopic scale

Motion on a
macroscopic scale

Inviscid flow external
to the boundary layer

Inviscid flow external
to the boundary layer

u(y)

ue

ue

u��u
ud lam

d turb

u(y)

(a) (b)

 Figure 4.2         Momentum-transport models: (a) laminar boundary 

layer; (b) turbulent boundary layer.   
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 At a solid wall, the normal component of velocity must also be zero: 

      v(x, 0) = 0  (4.7b)    

 The velocity boundary conditions for porous walls through which fluid can flow are 

treated in the problems at the end of the chapter. 

 Furthermore, at points far from the wall (i.e., at large values of  y ), we reach the 

edge of the boundary layer where the streamwise component of the velocity equals that 

given by the inviscid solution. In equation form, this can be expressed as: 

      u(x, y large) = ue(x)  (4.8)     

   4.3  INCOMPRESSIBLE, LAMINAR BOUNDARY LAYER 

 In this section, we will analyze the boundary layer in the region from the stagnation 

point (or from the leading edge of a sharp object) to the onset of transition (i.e., that 

“point” at which the boundary layer becomes turbulent). You should realize that, in 

reality, the boundary layer does not go from a laminar state to a turbulent state at a 

point but that the transition process takes place over a finite distance. In fact, the length 

of the transition zone may be as long as the laminar region. Typical velocity profiles 

for the laminar boundary layer are presented in  Fig.   4.3   . The streamwise (or  x ) compo-
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 Figure 4.3         Solutions for the dimensionless streamwise velocity 

for the Falkner-Skan, laminar, similarity flows.   
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nent of velocity is presented as a function of distance from the wall (the  y  coordinate). 

Instead of presenting the dimensional parameter  u , which is a function both of  x  and 

 y , we will use a dimensionless velocity parameter that can be written as a function of a 

single variable. Notice that, at each station, the velocity varies from zero at    y = 0    (i.e., at 

the wall) to    ue    for the inviscid flow outside of the boundary layer. The local velocity at 

the edge of the boundary layer    ue    is a function of  x  only; therefore, a logical dimension-

less velocity parameter is    u>ue.     

 Instead of using the dimensional  y  coordinate, we will use a dimensionless coordi-

nate    h,    which is proportional to    y>d    for these incompressible, laminar boundary layers. 

The boundary-layer thickness    d    at any  x  station depends not only on the magnitude of 

 x  but on the kinematic viscosity, the local velocity at the edge of the boundary layer, 

and the velocity variation from the origin to the point of interest. So, we will introduce 

the following coordinate transformation for    h:    

      h =
uey

12ns
  (4.9a)    

 where    v    is the kinematic viscosity , as defined in  Chapter   1   ,  and where  s  is the trans-

formed  x  coordinate: 

      s = Luedx   (4.9b)    

 Notice that for flow past a flat plate,    ue    is a constant (independent of  x ) and is equal to the 

free-stream velocity upstream of the plate    U�   , which results in equation (4.9a) becoming: 

      h =
uey

12ns
=

uey

12nuex
= y
A

ue

2nx
  (4.10)    

 If you are familiar with the transformations used in more complete treatments of bound-

ary layer theory, you will recognize that this definition for    h    is consistent with that 

commonly used to transform the incompressible laminar boundary layer on a flat plate 

[see  White (2005) ]. The flat-plate solution is the classical Blasius solution. This trans-

formation is also consistent with more general forms used in the analysis of a compress-

ible laminar flow, as is shown in  Dorrance (1962) . By using this definition of  s  as the 

transformed  x  coordinate, we can account for the effect of the variation in    ue    on the 

streamwise growth of the boundary layer. 

 Now we have two equations [equations (4.1) and (4.6)] with two unknowns, the 

velocity components  u  and    v.    Since the flow is two dimensional and the density is con-

stant, the necessary and sufficient conditions for the existence of a stream function are 

satisfied. ( Note : because of viscosity, the boundary-layer flow cannot be considered as 

irrotational; therefore, potential functions cannot be used to describe the flow in the 

boundary layer). We shall define the stream function such that: 

   u = a 0c

0y
b

x
 and n = - a 0c

0x
b

y
   

 By introducing the stream function, the continuity equation (4.1) is automatically satis-

fied  (as we showed in  Chapter   3   ) . Therefore, we only need to solve one equation, the  x  

component of the momentum equation, in terms of one unknown, the stream function. 
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This makes it much more likely that we will be able to find solutions for these boundary 

layer flow fields. 

 Now we can transform our equations from the  x ,  y  coordinate system to the    s, h    

coordinate system. To do this, we use equation (4.9a) and the chain rule to obtain: 

       a 0

0y
b

x
= a 0h

0y
b

x
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 Therefore, the streamwise component of velocity may be written in terms of the stream 

function as: 

      u = a 0c

0y
b

x
=

ue

12ns
a 0c

0h
b

s
  (4.12a)    

 Now introduce a transformed stream function  f , which we define so that: 

      u = uea 0f

0h
b

s
  (4.12b)    

 Comparing equations (4.12a) and (4.12b), we see that: 

      f =
1

12ns
c  (4.13)    

 Similarly, we can develop an expression for the transverse component of velocity by 

using the definition of the stream function, equation (4.11b), and equation (4.13): 
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 In equations (4.12b) and (4.14), we have written the two velocity components, which 

were the unknowns in the original formulation of the problem, in terms of the transformed 

stream function. We can rewrite equation (4.6) using the differentials of the variables in 

the    s, h    coordinate system, equations (4.11a) and (4.11b), where we can obtain terms like: 
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 where the prime    (�)    denotes differentiation with respect to    h.    Using these substitutions, 

the momentum equation becomes: 

      f f � + f � + 31 - (f�)242s
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  As we discussed in  Chapter   3   , by     using a stream function we automatically satisfy 

the continuity equation. Therefore, we have reduced the formulation for this flow to 

one equation with one unknown. 

 For many problems, the parameter    (2s>ue)(due>ds),    which is represented by the 

symbol    b,    is assumed to be constant. The assumption that    b    is a constant implies that the  s  

derivatives of  f  and    f�    are zero. As a result, the transformed stream function and its deriva-

tives are functions of    h    only, and equation (4.15) becomes the ordinary differential equation: 

      ff � + f � + 31 - (f�)24b = 0  (4.16)    

 We have transformed the partial differential equations that describe flow of a two di-

mensional, incompressible fluid, equations (4.1) through (4.3), into a single ordinary 

differential equation, which means we are much more likely to be able to find solutions. 

In addition, because the dimensionless velocity function    f�    is a function of    h    only, the 

velocity profiles at one  s  station are the same as those at another; therefore, the solu-

tions are called  similar solutions . Notice that the Reynolds number does not appear as 

a parameter when the momentum equation is written in the transformed coordinates, 

but it will appear when our solutions are transformed back into the  x ,  y  coordinate 

system. There are no analytical solutions to this third-order ordinary differential equa-

tion, which is known as the  Falkner-Skan equation . Nevertheless, there are a variety of 

well-known numerical techniques available to solve equation (4.16). 

 Now we need to examine the three boundary conditions necessary to solve equa-

tion (4.16). Substituting the definition that: 

   f� =
u
ue

   

 into the boundary conditions given by equations (4.7) and (4.8), the wall boundary 

condition becomes: 

      f�(s, 0) = 0  (4.17a)    

 and far from the wall: 

      f�(s, hlarge) = 1.0  (4.17b)    

 Using equations (4.14) and (4.7), the boundary condition that the transverse velocity 

be zero at the wall becomes: 

      f(s, 0) = 0  (4.17c)    

 Since  f  is the transformed stream function, this third boundary condition states that 

the stream function is constant along the wall (i.e., the surface is a streamline). This is 

consistent with the requirement that    v(x, 0) = 0,    which results because the component 

of velocity normal to a streamline is zero. 

   4.3.1  Numerical Solutions for the Falkner-Skan Problem 

 Numerical solutions of equation (4.16) that satisfy the boundary conditions represented 

by equation (4.17) have been generated for    -0.1988 … b … + 2.0;    the resultant velocity 

profiles are presented in  Fig.   4.3    and  Table   4.1   . Since 

   b =
2s
ue

 
due

ds
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 these solutions represent a variety of inviscid flow fields and, therefore, represent the flow 

around different configurations. Note that when    b = 0, ue = constant,    and the solution is 

for flow past a flat plate (known as the Blasius solution). Negative values of    b    correspond 

to cases where the inviscid flow is decelerating, which corresponds to an adverse pressure 

gradient [i.e.,    (dp>dx) 7 0   ]. Positive values of    b    correspond to an accelerating inviscid 

flow, which results from a favorable pressure gradient [i.e.,    (dp>dx) 6 0]   . 

 As we noted in the discussion of flow around a cylinder  in  Chapter   3    , when the air 

particles in the boundary layer encounter a relatively large adverse pressure gradient, 

boundary-layer separation may occur. Separation results because the fluid particles in 

the viscous layer have been slowed to the point that they cannot overcome the adverse 

pressure gradient. The effect of an adverse pressure gradient is evident in the velocity 

 TABLE 4.1    Numerical Values of the Dimensionless Streamwise 
Velocity    f�(h)    for the Falkner-Skan, Laminar, Similarity Flows 

      b    

    h        -0.1988        -0.180     0.000  0.300  1.000  2.000 

 0.0  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 
 0.1  0.0010  0.0138  0.0470  0.0760  0.1183  0.1588 
 0.2  0.0040  0.0293  0.0939  0.1489  0.2266  0.2979 
 0.3  0.0089  0.0467  0.1408  0.2188  0.3252  0.4185 
 0.4  0.0159  0.0658  0.1876  0.2857  0.4145  0.5219 
 0.5  0.0248  0.0867  0.2342  0.3494  0.4946  0.6096 
 0.6  0.0358  0.1094  0.2806  0.4099  0.5663  0.6834 
 0.7  0.0487  0.1337  0.3265  0.4671  0.6299  0.7450 
 0.8  0.0636  0.1597  0.3720  0.5211  0.6859  0.7959 
 0.9  0.0804  0.1874  0.4167  0.5717  0.7351  0.8377 
 1.0  0.0991  0.2165  0.4606  0.6189  0.7779  0.8717 
 1.2  0.1423  0.2790  0.5452  0.7032  0.8467  0.9214 
 1.4  0.1927  0.3462  0.6244  0.7742  0.8968  0.9531 
 1.6  0.2498  0.4169  0.6967  0.8325  0.9323  0.9727 
 1.8  0.3127  0.4895  0.7611  0.8791  0.9568  0.9845 
 2.0  0.3802  0.5620  0.8167  0.9151  0.9732  0.9915 
 2.2  0.4510  0.6327  0.8633  0.9421  0.9839  0.9955 
 2.4  0.5231  0.6994  0.9011  0.9617  0.9906   
 2.6  0.5946  0.7605  0.9306  0.9755  0.9946   
 2.8  0.6635  0.8145  0.9529  0.9848     
 3.0  0.7277  0.8606  0.9691  0.9909     
 3.2  0.7858  0.8985  0.9804  0.9947     
 3.4  0.8363  0.9285  0.9880       
 3.6  0.8788  0.9514  0.9929       
 3.8  0.9131  0.9681  0.9959       
 4.0  0.9398  0.9798         
 4.2  0.9597  0.9876         
 4.4  0.9740  0.9927         
 4.6  0.9838  0.9959         
 4.8  0.9903           
 5.0  0.9944           
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profiles presented in  Fig.   4.3   . When    b = -0.1988,    not only is the streamwise velocity 

zero at the wall, but the velocity gradient    0u>0y    is also zero at the wall. If the adverse 

pressure gradient were any larger, the laminar boundary layer would separate from the 

surface, and flow reversal would occur.  

 For the accelerating flows (i.e., positive    b   ), the velocity increases rapidly with dis-

tance from the wall, so    0u>0y    at the wall is relatively large. Referring to equation  (1.11)    , 

we would expect that the shear force at the wall would be relatively large. To calculate 

the shear force at the wall, 

      t = am0u
0y
b

y=0

  (4.18)    

 Now we can introduce the transformation presented in equation (4.11a) and find the 

shear as: 

      t =
mu2

e

12vs
f �(0)  (4.19)    

 Because of its use in equation (4.19), we will call    f �    the  transformed shear function . 

Theoretical values of    f �(0)    are presented in  Fig.   4.4    and in  Table   4.2   . Notice that    f �(0)    

is a unique function of    b    for these incompressible, laminar boundary layers; the value 

does not depend on the free-stream conditions, such as velocity or Reynolds number.  

 For laminar flow over a flat plate,    b = 0, f �(0) = 0.4696,    and the shear stress is: 

      t = 0.332
B

rmu3
e

x
  (4.20)    
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 Figure 4.4         Transformed shear function at the wall for laminar 

boundary layers as a function of    b.      

 TABLE 4.2    Theoretical Values of the Transformed Shear Function at 
the Wall for Laminar Boundary Layers as a Function of    b    

    b        -0.1988        -0.180     0.000  0.300  1.000  2.000 
    f �(0)     0.000  0.1286  0.4696  0.7748  1.2326  1.6872 
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 As we noted earlier, for flow past a flat plate the velocity at the edge of the boundary 

layer    (ue)    is equal to the free-stream value    (U�).    We can now express the shear in terms 

of the dimensionless skin-friction coefficient, which is defined as: 

      Cf =
t

1
2r�U2

�

=
0.664

1Rex
  (4.21)    

 where the Reynolds number is 

      Rex =
ruex
m

=
rU�x
m

  (4.22)    

 Substituting the values of    f �(0)    presented in  Fig.   4.4   , we see that the shear is zero 

when    b = -0.1988.    Therefore, this value of    b    corresponds to the onset of separation. 

Conversely, when the inviscid flow is accelerating, the shear is greater than that for a 

zero pressure gradient flow.   

 The transformed stream function ( f  ), the dimensionless streamwise velocity    (f�),    

and the shear function    (f �)    are presented as a function of    h    for a laminar boundary 

layer on a flat plate in  Table   4.3   . Note that as    h    increases (i.e., as  y  increases) the shear 

goes to zero and the function    f�    tends asymptotically to 1.0. 

 TABLE 4.3    Solution for the Laminar Boundary Layer on a 
Flat Plate    (b = 0)    

    h      f      f�        f �    

 0.0  0.0000  0.0000  0.4696 
 0.1  0.0023  0.0470  0.4696 
 0.2  0.0094  0.0939  0.4693 
 0.3  0.0211  0.1408  0.4686 
 0.4  0.0375  0.1876  0.4673 
 0.5  0.0586  0.2342  0.4650 
 0.6  0.0844  0.2806  0.4617 
 0.7  0.1147  0.3265  0.4572 
 0.8  0.1497  0.3720  0.4512 
 0.9  0.1891  0.4167  0.4436 
 1.0  0.2330  0.4606  0.4344 
 1.2  0.3336  0.5452  0.4106 
 1.4  0.4507  0.6244  0.3797 
 1.6  0.5829  0.6967  0.3425 
 1.8  0.7288  0.7610  0.3005 
 2.0  0.8868  0.8167  0.2557 
 2.2  1.0549  0.8633  0.2106 
 2.4  1.2315  0.9010  0.1676 
 2.6  1.4148  0.9306  0.1286 
 2.8  1.6032  0.9529  0.0951 
 3.0  1.7955  0.9691  0.0677 
 3.2  1.9905  0.9804  0.0464 
 3.4  2.1874  0.9880  0.0305 
 3.5  2.2863  0.9907  0.0244 
 4.0  2.7838  0.9978  0.0069 
 4.5  3.2832  0.9994  0.0015 
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 Now we will define the boundary layer thickness    d    as that distance from the wall 

for which    u = 0.99ue.    While this definition is somewhat arbitrary, it is fairly standard and 

useful. We can now find the value of    h    corresponding to the boundary layer thickness as: 

   hd = 3.5   

 which is independent of the specific flow properties of the free stream. Converting this 

value to a physical distance, the corresponding boundary layer thickness    (d)    is: 

   d = yd = hd
A

2nx
ue

   

 or 

      
d

x
=

5.0

1Rex
  (4.23)    

 Notice that the thickness of a laminar boundary layer is proportional to    1x    and is in-

versely proportional to the square root of the Reynolds number. In other words, a high 

Reynolds number flow will have a relatively thin boundary layer. 

 Although the transverse component of velocity at the wall is zero, it is not zero at 

the edge of the boundary layer. Referring to equation (4.14), we can see that at the edge 

of the boundary layer over a flat plate where    he = uey>12ns    and    s = ue x:    

       
ve

ue
= -12ns c a 0h

0s
b

y
a 0f

0h
b

s
+ a 0f

0s
b
h

+ a f

2s
b d  

  = -12ns c- 1

2s
he(f�)e + a fe

2s
b d = -

12ns
2s

 3-he(f�)e + fe4   (4.24) 

  =
A

n

2ue x
3he(f�)e - fe4    

 Using the values given in  Table   4.3   ,    he = 3.5, fe = 2.2863,       f�e = 0.9907,    and the trans-

verse velocity is: 

      
ve

ue
=

0.84

1Rex
  (4.25)    

 This means that at the outer edge there is an upward flow, which is due to the fact that 

the increasing boundary-layer thickness causes the fluid to be displaced from the wall 

as it flows downstream. Also remember that there is no boundary-layer separation for 

this flow past a flat plate, since the streamwise pressure gradient is zero. 

 Since the streamwise component of the velocity in the boundary layer asymptoti-

cally approaches the local free-stream value, the magnitude of    d    is very sensitive to the 

ratio of    u>ue,    which was chosen as the criterion for the edge of the boundary layer [e.g., 

0.99 was the value used to develop equation (4.23)]. A more significant measure of the 

boundary layer is the displacement thickness    d*,    which is the distance by which the exter-

nal streamlines are shifted due to the presence of the boundary layer. Referring to  Fig.   4.5   ,  

   reued* = L
d

0

r(ue - u)dy   

= 0

s
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 Therefore, for any incompressible boundary layer (where    r = constant   ) 

      d* = L
d

0

a1 -

u
ue
bdy  (4.26)    

 Notice that since the integrand is zero for any point beyond    d,    the upper limit for the 

integration does not matter providing it is equal to (or greater than)    d.    Substituting 

the transformation of equation (4.10) for the laminar boundary layer on a flat plate 

yields: 

   d* =
A

2nx
ue

 L
�

0

(1 - f�) dh   

 Using the values presented in  Table   4.3   , we obtain: 

      
d*

x
=
22(he - fe)

2Rex

=
1.72

2Rex

  (4.27)    

 Therefore, for a flat plate at zero incidence in a uniform stream, the displacement thick-

ness    d*    is on the order of one-third the boundary-layer thickness    d   , which is found by 

comparing the values from equations (4.23) and (4.27). 

 The momentum thickness,    u,    for an incompressible boundary layer is given by: 

      u = L
�

0

u
ue
a1 -

u
ue
b  dy  (4.28)    

0.0 0.2 0.4 0.6 0.8 1.0

ye � d
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 Figure 4.5         Velocity profile for a laminar boundary layer on a flat 

plate illustrating the boundary-layer thickness    d    and the displace-

ment thickness    d*.      
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 The momentum thickness represents the height of the free-stream flow which would be 

needed to make up the deficiency in momentum flux within the boundary layer due to 

the shear force at the surface. Following a similar transformation as we performed to 

obtain equation (4.27), the momentum thickness for an incompressible, laminar bound-

ary layer is: 

      
u

x
=

0.664

2Rex

  (4.29)    

 which is approximately 13% of the boundary-layer thickness from equation (4.23) and 

is the same value as the local skin-friction coefficient from equation (4.21). 

 Another convenient formulation for skin-friction on a flat plate is found by in-

tegrating the “local” skin-friction coefficient,    Cf,    found in equation (4.21) to obtain a 

“total” or “average” skin-friction drag coefficient on the flat plate [ White (2005) ]. The 

use of the total skin-friction drag coefficient avoids performing the same integration 

numerous times with different flat-plate lengths accounting for different results. The 

total skin-friction coefficient is defined as: 

      Cf K
Df

q�Swet

  (4.30)    

 where    Df     is the friction drag on the plate and    Swet    is the wetted area of the plate (the 

wetted area is the area of the plate in contact with the fluid—for one side of the plate, 

   Swet = Lb   ). The total skin-friction coefficient for laminar boundary layers becomes: 

       Cf =
1

q�Swet

b L
L

0

t dx =
b

q�Lb L
L

0

Cf(x)q�dx 

  =
1

L L
L

0

0.664

2Rex

 dx = 2Cf(L) =
2u

L
  (4.31)    

 which is just twice the value of the local skin-friction coefficient evaluated at    x = L.    

The total skin-friction coefficient for laminar flow simply becomes: 

      Cf =
1.328

2ReL

  (4.32)    

 where    ReL    is the Reynolds number evaluated at    x = L,    which is the end of the flat plate. 

 Since drag coefficients are normally nondimensionalized by a reference area rather 

than a wetted area  [see equation (3.53)] , the drag coefficient due to skin-friction is ob-

tained from equation (4.30) as: 

      CD K
Df

q�Sref

= Cf 
Swet

Sref

  (4.33)    

 It can be tempting to add together the total skin-friction coefficients for various 

flat plates in order to obtain a total skin-friction drag—this must never be done! Since 

each total skin-friction coefficient is defined with a different wetted area, doing this 

would result in an incorrect result. In other words, 

   Cftotal
� a

N

i=1

Cfi
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 Always convert total skin-friction coefficients into drag coefficients (based on a single refer-

ence area) and then add the drag coefficients to obtain a total skin-friction drag coefficient: 

      CD = a
N

i=1

CDi
  (4.34)    

  EXAMPLE 4.1:   

 A rectangular plate, whose streamwise dimension (or chord  c ) is 0.2 m and 

whose width (or span  b ) is 1.8 m, is mounted in a wind tunnel. The free-

stream velocity is    40 m>s.    The density of the air is    1.2250 kg>m3,    and the 

absolute viscosity is    1.7894 * 10-5 kg>m # s.    Graph the velocity profiles at 

   x = 0.0 m, x = 0.05 m, x = 0.10 m,    and    x = 0.20 m.    Calculate the chord-

wise distribution of the skin-friction coefficient and the displacement thick-

ness. What is the drag coefficient for the plate? 

  Solution:     Since the span (or width) of the plate is 9.0 times the chord (or streamwise 

dimension), we will assume that the flow is two dimensional (i.e., it is in-

dependent of the spanwise coordinate). The maximum value of the local 

Reynolds number, which occurs when    x = c,    is 

   Rec =
(1.225 kg>m3)(40 m>s)(0.2 m)

(1.7894 * 10-5 kg>m # s)
= 5.477 * 105   

 This Reynolds number is close enough to the transition criteria for a flat 

plate that we will assume that the boundary layer is laminar for its entire 

length. Therefore, we will use the relations developed in this section to cal-

culate the required parameters. 

 Noting that 

   y =
A

2nx
ue

 h = 8.546 * 10-41x h   

 we can use the results presented in  Table   4.3    to calculate the velocity pro-

files. The resultant profiles are presented in  Fig.   4.6   . At the leading edge 

of the flat plate (i.e., at    x = 0   ), the velocity is constant (independent of  y ). 

The profiles at the other stations illustrate the growth of the boundary layer 

with distance from the leading edge. Note that the scale of the  y  coordinate 

is greatly expanded relative to that for the  x  coordinate. Even though the 

streamwise velocity at the edge of the boundary layer    (ue)    is the same at 

all stations, the velocity within the boundary layer is a function of  x  and  y . 

However, if the dimensionless velocity    (u>ue)    is presented as a function of 

   h,    the profile is the same at all stations. Specifically, the profile is that for 

   b = 0.0    in  Fig.   4.3   . Since the dimensionless profiles are similar at all  x  sta-

tions, the solutions are termed  similarity solutions .  

 The displacement thickness in meters is: 

   d* =
1.72x

2Rex

= 1.0394 * 10-31x   
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 The chordwise (or streamwise) distribution of the displacement thickness is 

presented in  Fig.   4.6   . These calculations verify the validity of the common 

assumption that the boundary layer is thin. Therefore, the inviscid solution 

obtained neglecting the boundary layer altogether and that obtained for the 

effective geometry (the actual surface plus the displacement thickness) are 

essentially the same. 

 The local skin-friction coefficient is given by: 

   Cf =
0.664

2Rex

=
4.013 * 10-4

1x
   

 Now we can calculate the drag coefficient for the plate. Obviously, the 

pressure contributes nothing to the drag since there is no  dy  dimension for 

an infinitely thin flat plate. Therefore, the drag force acting on the flat plate 

is due only to skin friction. Using general notation, we see that: 

      D = 2b L
c

0

t dx  (4.35)    

 We need integrate only in the  x  direction, since by assuming the flow to be 

two dimensional, we have assumed that there is no spanwise variation in 

the flow. In equation (4.35), the integral, which represents the drag per unit 

width (or span) of the plate, is multiplied by  b  (the span) and by 2 (since 

friction acts on both the top and bottom surfaces of the plate). Substituting 

the expression for the laminar shear forces given in equation (4.20), 

       D = 0.664b2rmu3
e L

c

0

 
dx

1x
 

  = 1.328b2crmu3
e   (4.36)    

 Since the edge velocity    (ue)    is equal to the free-stream velocity    (U�),    the 

drag coefficient for the plate is: 

      CD =
D

q�cb
=

2.656

2Rec

  (4.37)    

 For the present problem,    CD = 3.589 * 10-3.    

�at x� 0.20 m

ue�40 m/s
� at x� 0.05 m
d � 6.7 � 10�4 m

d � 9.5 � 10�4 m

d � 13.5 � 10�4 m

ue �40 m/s

� at x� 0.10 m

ue �40 m/s

y(�103)

2.0

d� � 3.3 � 10�4 m

d� � 4.6�10�4 md� � 2.3 � 10�4 m

�
�
�
�
�
� 1.0
�
�
�
�

U	 at x � 0
u	 � 40 m/s

 Figure 4.6         Velocity profile for the flat-plate laminar boundary 

layer    Rec = 5.477 * 105.      
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 Alternatively, using the total skin-friction coefficient, equation (4.32), 

and computing drag on the top and bottom of the plate, we obtain: 

   CD = Cf 
Swet

Sref
=

1.328

2Rec

 
2cb
cb

=
2.656

25.477 * 105
= 3.589 * 10-3     

  EXAMPLE 4.2:   

 The streamwise velocity component for a laminar boundary layer is some-

times assumed to be roughly approximated by the linear relation 

   u =
y

d
 ue   

 where    d = 1.25 * 10-21x.    Assume that we are trying to approximate 

the flow of air at standard sea-level conditions past a flat plate where 

   ue = 2.337 m>s.    Calculate the streamwise distribution of the displacement 

thickness    (d*),    the velocity at the edge of the boundary layer    (ve),    and the 

skin-friction coefficient    (Cf).    Compare the values obtained assuming a linear 

velocity profile with the more exact solutions presented in this chapter. 

  Solution:      As given in  Table   1.2   , the      standard day atmospheric conditions at sea level are: 

   r� = 1.2250 kg>m3 and m� = 1.7894 * 10-5 kg>s # m   

 So, for constant-property flow past a flat plate, 

   Rex =
r� uex
m�

= 1.60 * 105x   

 Using the definition for the displacement thickness of an incompress-

ible boundary layer, equation (4.26), 

   d* = L
d

0

a1 -

u
ue
b  dy = d L

1

0

 a1 -

u
ue
bda y

d
b    

 Notice that, since we have    u>ue    in terms of    y>d,    we have changed our inde-

pendent variable from  y  to    y>d.    We must also change the upper limit on our 

integral from    d    to 1. Therefore, since: 

   
u
ue

=
y

d
 and d = 1.25 * 10-22x   

 then 

   d* = 1.25 * 10-2 1x L
1

0

a1 -

y

d
bda y

d
b = 0.625 * 10-2 1x   

 for the linear profile. 

 Using the equation for the more exact formulation [equation (4.27)], 

and noting that    Rex = 1.60 * 105x,    we find that 

   d* = 0.430 * 10-21x   
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 Using the continuity equation, we would find that the linear approxi-

mation gives a value for    ve    of: 

   ve =
3.125 * 10-3

1x
 ue   

 Using the more exact formulation of equation (4.25) yields: 

   ve =
0.84

2Rex

 ue =
2.10 * 10-3

1x
 ue   

 Finally, we find that the skin friction for the linear velocity approxima-

tion is given by: 

   t = ma 0u
0y
b

y=0

=
mue

d
   

 Therefore, the skin-friction coefficient is: 

    Cf =
t

1
2r�u2

e

=
2m�

r�ued
=

2

1.60 * 105(1.25 * 10-21x)

 =
1.00 * 10-3

1x
   

 For the more exact formulation, 

   Cf =
0.664

2Rex

=
1.66 * 10-3

1x
   

 Summarizing these calculations provides the following comparison: 

   Linear approximation  More exact solution 

    d*        0.625 * 10 -21x         0.430 * 10 -21x     

    ve        (3.125 * 10 -3ue)>1x         (2.10 * 10 -3ue)>1x     

    Cf        (1.00 * 10 -3)>1x         (1.66 * 10 -3)>1x     

 Comparing the velocity profiles, which are presented in  Fig.   4.7   , the reader 

should be able to use physical reasoning to determine that these relation-

ships are intuitively correct. That is, if you use a linear profile the shear 

would be less than that for the exact solution, where    d*    and    ve    would be 

greater for the linear profile.  
 In this example, we assumed that the boundary-layer thickness    d    was 

   1.25 * 10-21x    which is the value obtained using the more exact formula-

tion [i.e., equation (4.23)]. However, if we had used the integral approach 

to determine the value of    d    for a linear profile, we would have obtained: 

   d =
3.464x

2Rex

= 0.866 * 10-21x   
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 Although this is considerably less than the assumed (more correct) value, the 

values of the other parameters (e.g.,    d*    and    Cf    ) would be in closer agreement 

with those given by the more exact solution.   

 Although the linear profile for the streamwise velocity component is a conven-

ient approximation to use when demonstrating points about the continuity equation or 

about Kelvin’s theorem, it clearly does not provide reasonable values for engineering 

parameters, such as    d*    and    Cf.    A more realistic approximation for the streamwise veloc-

ity component in a laminar boundary layer is given by: 

      
u
ue

=
3

2
 a y

d
b -

1

2
 a y

d
b3

  (4.38)    

  EXAMPLE 4.3:    Calculate the velocity gradient,    B    

 Calculate the velocity gradient parameter    b,    which appears in the Falkner-

Skan form of the momentum equation, equation (4.16), for the NACA 

65-006 airfoil. The coordinates of this airfoil section, which are given in 

 Table   4.4   , are given in terms of the coordinate system used in  Fig.   4.8   . 
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 Figure 4.7         Comparison of velocity profiles for a laminar bound-

ary layer on a flat plate.   
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x�

z�
Note z scale is five times the x scale� �

c

 Figure 4.8         Cross section for symmetric NACA 65-006 airfoil of 

Example 4.3.   

 TABLE 4.4    Pressure Distribution for the NACA 65-006 

    �x(=  x>c )        �z(=  z >c)        Cp    

 0.000  0.0000   1.000 
 0.005  0.0048     -0.044    
 0.025  0.0096     -0.081    
 0.050  0.0131     -0.100    
 0.100  0.0182     -0.120    
 0.150  0.0220     -0.134    
 0.200  0.0248     -0.143    
 0.250  0.0270     -0.149    
 0.300  0.0285     -0.155    
 0.350  0.0295     -0.159    
 0.400  0.0300     -0.163    
 0.450  0.0298     -0.166    
 0.500  0.0290     -0.165    
 0.550  0.0274     -0.145    
 0.600  0.0252     -0.124    
 0.650  0.0225     -0.100    
 0.700  0.0194     -0.073    
 0.750  0.0159     -0.044    
 0.800  0.0123     -0.013    
 0.850  0.0087     +0.019    
 0.900  0.0051     +0.056    
 0.950  0.0020     +0.098    
 1.000  0.0000     +0.142    

   Source:   Abbott and von Doenhoff (1949) .  

Note that the maximum thickness is located relatively far aft in order to 

maintain a favorable pressure gradient, which tends to delay transition. The 

   b    distribution is required as an input to obtain the local similarity solutions 

for a laminar boundary layer.   
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  Solution:     Using the definition for    b    from  Section   4.3.1    and equation (4.9b) gives us 

   b =
2s
ue

 
due

ds
=

2Lue dx

ue
 
due

dx
 
dx
ds

   

 But 

    
dx
ds

=
1

ue

 
ue

U�

= (1 - Cp)0.5   

 Therefore, at any chordwise location for a thin airfoil 

   b =    
1x�

0
(1 - Cp)0.5d�x 

(1 - Cp)1.5
 
dCp

dx�
   

 where    x� = x>c    

  The resultant    b    distribution is presented in  Fig.   4.9   . Note that a 

favorable pressure gradient acts over the first half of the airfoil    (b 7 0).    

For    x� Ú 0.6    the negative values of    b    exceed that required for separation 

of a similar laminar boundary layer. Because of the large streamwise varia-

tions in    b,    the non-similar character of the boundary layer should be taken 

into account when establishing a separation criterion. Nevertheless, these 
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 Figure 4.9         Distribution for NACA 65-606 airfoil (assuming that 

the boundary layer does not separate).   
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calculations indicate that, if the boundary layer were laminar along its 

entire length, it would separate, even for this airfoil at zero degrees angle 

of attack. Boundary-layer separation would result in significant changes in 

the flow field. However, the experimental measurements of the pressure 

distribution indicate that the actual flow field corresponds closely to the inviscid 

flow field. Therefore, boundary-layer separation apparently does not occur at 

zero degrees angle of attack. The reason that separation does not occur is 

as follows: at the relatively high Reynolds numbers associated with air-

plane flight, the boundary layer is turbulent over a considerable portion 

of the airfoil. As discussed previously, a turbulent boundary layer can 

overcome an adverse pressure gradient longer, and separation is not as 

likely to occur.    

 The fact that a turbulent boundary layer can flow without separation into re-

gions of much steeper adverse pressure gradients than can a laminar boundary layer 

is illustrated in  Fig.   4.10   . Incompressible boundary-layer solutions were generated for 

symmetrical Joukowski airfoils at zero degrees angle of attack. The edge velocity and 

therefore the corresponding inviscid pressure distributions are shown in  Fig.   4.10   . At 

the conditions indicated, boundary-layer separation will occur for any Joukowski air-

foil that is thicker than 4.6% if the flow is entirely laminar. However, if the boundary 

layer is turbulent, separation will not occur until a thickness of about 31% has been 

2
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Turbulent
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2ue
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 Figure 4.10         Thickest symmetrical Joukowski airfoils capable of 

supporting fully attached laminar and turbulent flows. The angle 

of attack is    0�,    and the Mach number is 0. For turbulent flow, 

transition is assumed to occur at the velocity peak. The turbulent 

case is calculated for    Rec = 107.    Results for laminar flow are in-

dependent of Reynolds number. Maximum thickness for laminar 

flow is about 4.6%, for turbulent flow, 31%. If displacement-

thickness effects on pressure distribution were included, the tur-

bulent airfoil would increase to about 33%. The change in the 

laminar case would be negligible [from  Cebeci and Smith (1974) ].   
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exceeded. The boundary layer effectively thickens the airfoil, especially near the trail-

ing edge, since    d*    increases with distance. This thickening alleviates the adverse pres-

sure gradients, which in turn permits somewhat thicker sections before separation 

occurs. To ensure that boundary-layer transition occurs and delays or avoids separation 

altogether, you might use vortex generators or other forms of surface roughness, as 

shown in  Fig.   4.11   .     

   4.4  BOUNDARY-LAYER TRANSITION 

 As the boundary layer develops in the streamwise direction, it is subjected to numerous 

disturbances. The disturbances may be due to surface roughness, temperature irregular-

ities, background noise, and so on. For some flows, these disturbances are damped and 

the flow remains laminar. For other flows, the disturbances amplify and the boundary 

layer becomes turbulent. The onset of transition from a laminar boundary layer to a tur-

bulent layer (if it occurs at all) can depend on many parameters, such as the following: 

    1.   Pressure gradient  

   2.   Surface roughness  

   3.   Compressibility effects (usually related to the Mach number)  

 Figure 4.11         Vortex generators, which can be seen in front of the 

ailerons and near the wing leading edge of an A-4, are an ef-

fective, but not necessarily an aerodynamically efficient, way of 

delaying separation (from Ruth Bertin’s collection).   
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   4.   Surface temperature  

   5.   Suction or blowing at the surface  

   6.   Free-stream turbulence     

 Aerodynamics Concept Box: An Amazing Picture of Transition 

 Boundary layer transition is very difficult to see in real life. If you scour through fluid dynam-

ics or aerodynamics textbooks, you might see pictures of laminar boundary layers and turbu-

lent boundary layers, but rarely will you see transition. That is why the picture below is quite 

amazing. Researchers at Caltech [Rasheed et al. (2002)] were studying flow on a cone in hyper-

sonic flow, hoping to see and measure transition under these conditions. On the upper surface 

of the cone, they took a shadowgraph photograph of the smooth surface and found an image 

of laminar flow developing instabilities, and eventually transitioning to fully turbulent flow 

(the flow in the picture below is going from left to right). They were also evaluating the effect 

of surface porosity on transition by placing a porous sheet on the lower surface of the cone, 

which maintained a laminar boundary layer along the entire length of the region being tested.

Notice the boundary layer on the top surface at the far left: it is smooth, steady, and relatively 

thin. This is a laminar boundary layer. Just a few centimeters downstream, however, you can 

start to see small oscillations in the flow near the surface, which are the initial instabilities 

that will eventually grow and cause the boundary layer to transition. Once the oscillations 

reach a fairly large amplitude, you see the start of turbulent flow about 40 cm from the left 

side of the picture. The turbulent eddies start to grow in size, thickening the boundary layer, 

and eventually reaching a fully turbulent state at the right side of the picture. As we will 

discuss later, the transition process actually takes place over a finite length, especially if you 

include the region where the instabilities begin.    

       Shadowgraph showing transition on a cone in hypersonic 

flow; smooth surface on top and porous surface on the 

bottom (courtesy of Hans Hornung of Caltech)   
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 Figure 4.12         Idealized sketch of the transition process on a flat plate 

(based on the sketch from  Viscous Fluid Flow  by F. M. White).   

 Obviously, no single criterion for the onset of transition can be applied to a 

wide variety of flow conditions. However, as a rule of thumb, adverse pressure gradi-

ents, surface roughness, blowing at the surface, and free-stream turbulence promote 

transition, that is, cause it to occur early. Conversely, favorable pressure gradients, 

increased Mach numbers, suction at the surface, and surface cooling delay transition. 

Although the parameters used and the correlation formula for the onset of transi-

tion depend on the details of the application, transition criteria typically incorporate 

a Reynolds number. For incompressible flow past a flat plate, a typical transition 

criterion is 

      Rex, tr = 500,000  (4.39)    

 Therefore, the location for the onset of boundary-layer transition would occur at 

      xtr =
Rex, tr

rue>m  (4.40)    

 Once the critical Reynolds number is exceeded, the flat-plate boundary layer 

would contain regions with the following characteristics as it transitioned from the lami-

nar state to a fully turbulent flow: 

    1.   Stable, laminar flow near the leading edge  

   2.   Unstable flow containing two-dimensional Tollmien-Schlichting (T-S) waves  

   3.   A region where three-dimensional unstable waves and hairpin eddies develop  

   4.   A region where vortex breakdown produces locally high shear  

   5.   Fluctuating, three-dimensional flow due to cascading vortex breakdown  

   6.   A region where turbulent spots form  

   7.   Fully turbulent flow   

 A sketch of the idealized transition process is presented in  Fig.   4.12   .  
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 Stability theory predicts and experiment verifies that the initial instability is in the 

form of two-dimensional T-S waves that travel in the mean flow direction. Even though the 

mean flow is two dimensional, three-dimensional unstable waves and hairpin eddies soon 

develop as the T-S waves begin to show spanwise variations. The experimental verification 

of the transition process is illustrated in the photograph of  Fig.   4.13   . A vibrating ribbon 

perturbs the low-speed flow upstream of the left margin of the photograph. Smoke accumu-

lation in the small recirculation regions associated with the T-S waves can be seen at the left 

edge of the photograph. The sudden appearance of three dimensionality is associated with 

the nonlinear growth region of the laminar instability. In the advanced stages of the transi-

tion process, intense local fluctuations occur at various times and locations in the viscous 

layer. From these local intensities, true turbulence bursts forth and grows into a turbulent 

spot. Downstream of the region where the spots first form, the flow becomes fully turbu-

lent. This shows that transition occurs over a finite length rather than at a single location, 

as equation (4.39) implies. In spite of this, however, aerodynamicists commonly assume 

transition takes place at a single location for ease in making calculations and estimates.  
 Transition-promoting phenomena, such as an adverse pressure gradient and finite 

surface roughness, may short circuit the transition process, eliminating one or more of 

the five transitional regions described previously. When one or more of the transitional 

regions are by-passed, we term the cause (e.g., roughness) a by-pass mechanism. 

 Additional information about laminar flow airfoils will be discussed in  Section 

  6.6   . Also, laminar flow control, an important topic in aerodynamics, will be discussed 

in  Section   13.4.2   .   

U	

 Figure 4.13         Flow visualization of the transition process on a flat 

plate (photograph supplied by A. S. W. Thomas, Lockheed Aero-

nautical Systems Company, Georgia Division).   
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   4.5  INCOMPRESSIBLE, TURBULENT BOUNDARY LAYER 

 Now that we have examined laminar boundary layers and transition, we can look at 

flows where transition has occurred and the boundary layer is fully turbulent. A tur-

bulent flow is one in which irregular fluctuations (mixing or eddying motions) are su-

perimposed on the mean flow. Because of this, the velocity at any point in a turbulent 

boundary layer is a function of time. The fluctuations occur in the direction of the mean 

flow and at right angles to it, and they affect macroscopic “lumps” of fluid, as shown 

in  Fig.   4.2   b. 

 Therefore, even when the inviscid (mean) flow is two dimensional, a turbulent 

boundary layer will be three dimensional because of the three-dimensional character 

of the fluctuations. However, whereas momentum transport occurs on a microscopic 

(or molecular) scale in a laminar boundary layer, it occurs on a macroscopic scale in a 

turbulent boundary layer. Although the velocity fluctuations may be only several per-

cent of the local streamwise values, they have a decisive effect on the overall motion. 

The size of these macroscopic lumps determines the scale of turbulence, which will be 

an important concept to understand when evaluating turbulent boundary layers. 

 The effects caused by the fluctuations are as if the viscosity were increased by 

a factor of 10 or more. As a result, the shear forces at the wall and the skin-friction 

component of the drag are much larger when the boundary layer is turbulent. How-

ever, since a turbulent boundary layer can negotiate an adverse pressure gradient for a 

longer distance, boundary-layer separation may be delayed or even avoided altogether. 

Delaying (or avoiding) the onset of separation reduces the pressure component of the 

drag (i.e., the form drag). For a blunt body or for a slender body at angle of attack, the 

reduction in form drag usually dominates the increase in skin-friction drag.       

  Aerodynamics Concept Box: Turbulence 

 Understanding turbulence is difficult, and predicting turbulent flow behavior is even more 

difficult. Perhaps a fairly simple flow example will help to illustrate this point. The photo-

graph below shows a turbulent boundary layer and provides a good image to describe turbu-

lence. A turbulent flow has several characteristics: 

   •   Chaotic and irregular—fundamentally unsteady and three dimensional  

  •   Enhanced mixing of momentum, heat, and mass  

  •   Large Reynolds numbers  

  •   Three-dimensional vorticity fluctuations   

 Other important features of turbulence are the length and time scales that are found with-

in turbulent flows. The boundary layer is highly unsteady, with flow quantities (such as 

velocity, density, pressure, and temperature) fluctuating at high frequencies. In addition 

to the fluctuations of the flow properties, there are both large- and small-scale structures 

in turbulent flow. 

 The large-scale structures are visible, appearing like waves convecting along with 

the flow, having a length scale on the order of the boundary layer thickness. These are 

normally called eddies, and are in effect “lumps” of fluid that appear to be rolling along 
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 When describing a turbulent flow, it is convenient to express the local velocity 

components as the sum of a mean motion plus a fluctuating, or eddying, motion. For 

example, as illustrated in  Fig.   4.14   , we can characterize the time-varying velocity as:  

      u = u + u�  (4.41)    

u

t

u�

u

 Figure 4.14         Histories of the mean component    (u)    and the fluctuating 

component    (u�)    of the streamwise velocity  u  for a turbulent boundary 

layer.   

      
       Turbulent boundary layer over a flat plate [ Falco (1977) ]   

together in the flow. The large-scale structures are essentially “grabbing” kinetic energy 

from the free-stream flow and dragging it down into the inner layers of the boundary 

layer  (remember, the photo is an instant in time of the unsteady turbulent flow process 

occurring in an otherwise steady flow). The large-scale structures also eject low momen-

tum fluid from the inner layer to the outer layer. This mixing effect significantly alters 

the average velocity profile compared to a laminar boundary layer. Underlying the large-

scale turbulence is an isotropic small-scale turbulence, meaning it is essentially the same 

everywhere within the boundary layer and acts in all directions equally. The small-scale 

turbulence converts the kinetic energy of the large turbulent structures into other forms 

of energy, including friction and heat.    
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 where    u    is the time-averaged value of the  u  component of velocity, and    u�    is the time-

dependent magnitude of the fluctuating component. The time-averaged value at a given 

point in space is calculated as 

      u =
1

�t
 L

t0 + �t

t0

u dt  (4.42)    

 This approach to turbulence decomposition is known as Reynolds averaging. The inte-

gration interval    �t    should be much larger than any significant period of the fluctuation 

velocity    u�    associated with turbulence, but small compared to the characteristic time 

for the flow over the vehicle (the time required for a fluid particle to travel the length 

of the body). As a result, the mean value for a steady flow is independent of time, 

as it should be. The integration interval depends on the physics and geometry of the 

problem. Referring to equation (4.42), we see that    u� = 0,    by definition; the time aver-

age of any fluctuating parameter or its derivative is zero. However, the time average 

of products of fluctuating parameters and their derivatives is not zero. For example, 

   v� = 0, 30(v�) 4 >0x = 0;    but    u�v� � 0.    Of fundamental importance to turbulent motion 

is the way in which the fluctuations    u�, v�,    and    w�    influence the mean motion    u, v,    and    w.    

   4.5.1  Derivation of the Momentum Equation 
for Turbulent Boundary Layer 

 Let us now derive the  x  (or streamwise) momentum equation for a steady, constant-

property, two-dimensional, turbulent boundary layer. Since the density is constant, the 

continuity equation [equation (2.3)] can be decomposed according to equation (4.41) as: 

      
0(u + u�)

x
+

0(v + v�)

y
= 0  (4.43)    

 Expanding the derivative terms yields: 

      
0u
0x

+

0v

0y
+

0u�

0x
+

0v�

0y
= 0  (4.44)    

 Now take the time-averaged value for each of these terms. The first two terms already 

are time-averaged values, so time averaging leaves them unchanged. As we noted when 

discussing equation (4.42), the time-averaged value of a fluctuating component is zero, so, 

   
0u�

0x
=

0v�

0y
= 0   

 Therefore, for a turbulent flow, we learn from the continuity equation that: 

      
0u
0x

+

0v

0y
= 0  (4.45a)    

 and that: 

      
0u�

0x
+

0v�

0y
= 0  (4.45b)    
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 Or in other words, the time-averaged continuity equation (4.45a) has the same form 

as the original continuity equation  (2.3)    , where time-varying terms have been replaced 

with time-averaged terms. 

 Now we can perform the same decomposition for the momentum equation. Sub-

stituting the fluctuating descriptions for the velocity components into the  x  momentum 

equation (4.6), we have 

   r(u + u�)
0(u + u�)

0x
+ r(v + v�) 

0(u + u�)

0y
= reue

due

dx
+ m

0
2(u + u�)

0y2
   

 Expanding each term gives us: 

   ru 
0u
0x

+ rv 
0u
0y

+ ru�
0u
0x

+ rv�
0u�

0y
+ ru�

0u�

0x
+ rv�

0u�

0y
+ ru 

0u�

0x
+ rv 

0u�

0y

= reue 
due

dx
+ m 

0
2u

0y2
+ m 

0
2u�

0y2
   

 Now take the time average of the terms in this equation, remembering that terms which 

contain only one fluctuating parameter vanish, since their time-averaged value is zero. 

However, we must also remember that the time average of terms involving the product 

of fluctuating terms is not zero. Performing these operations gives: 

      ru 
0u
0x

+ rv 
0u
0y

+ ru�
0u�

0x
+ rv�

0u�

0y
= reue 

due

dx
+ m 

0
2u

0y2
  (4.46)    

 Now we can multiply the fluctuating portion of the continuity equation (4.45b) 

by    r(u + u�)    to obtain: 

   ru
0u�

0x
+ ru�

0u�

0x
+ ru

0v�

0y
+ ru�

0v�

0y
= 0   

 Taking the time average of these terms, we find that: 

      ru�
0u�

0x
+ ru�

0v�

0y
= 0   (4.47)    

 Adding equation (4.47) to (4.46) and rearranging the terms gives us: 

      ru
0u
0x

+ rv

0u
0y

= reue
due

dx
+ m

0
2u

0y2
- r

0

0y
(u� v�) - r

0

0x
(u�)2  (4.48)    

 We will neglect the streamwise gradient of the time-averaged value of the square of 

the fluctuating velocity component, that is,   (0>0x)(u�)2     as compared to the transverse 

gradient. Now, the momentum equation becomes: 

      ru
0u
0x

+ rv

0u
0y

= reue
due

dx
+ m

0
2u

0y2
- r

0

0y
(u�v�)  (4.49)    

 We need to further examine the last two terms in equation (4.49): 

      
0

0y
 am0u

0y
- ru�v�b   (4.50)    
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 Recall that the first term is the laminar shear stress. To evaluate the second term, we 

can consider a differential area  dA  such that the normal to  dA  is parallel to the  y  axis, 

and the directions  x  and  z  are in the plane of  dA . The mass of fluid passing through this 

area in time  dt  is given by the product    (rv)(dA)(dt).    The flux of momentum in the  x  

direction is given by the product    (u)(rv)(dA)(dt).    For a constant density flow, the 

time-averaged flux of momentum per unit time is 

   ruv dA = r(uv + u�v�) dA   

 Since the flux of momentum per unit time through an area is equivalent to an equal-and-

opposite force exerted on the area by the surroundings, we can treat the term    -ru�v�    as 

equivalent to a “turbulent” shear stress. This “apparent,” or Reynolds, stress can be added 

to the stresses associated with the mean flow. So, we can now write the shear stress as: 

      txy = ma 0u
0y
b - ru�v�  (4.51)    

 Mathematically, the turbulent inertia terms behave as if the total stress on the system 

were composed of the Newtonian viscous stress plus an apparent turbulent stress. 

 The term    -ru�v�    is the source of considerable difficulties in the analysis of a tur-

bulent boundary layer because its analytical form is not known a priori. It is related not 

only to physical properties of the fluid but also to the local flow conditions (velocity, 

geometry, surface roughness, upstream history, etc.). Furthermore, the magnitude of 

   -ru�v�    depends on the distance from the wall within the boundary layer. Because the 

wall is a streamline, there is no flow through it. Thus,    v    and    v�    go to zero at the wall, 

and the flow for    y 6 0.02d    is basically laminar. 

 The term    -ru�v�    represents the turbulent transport of momentum and is known 

as the  turbulent shear stress  or  Reynolds stress . At points away from the wall,    -ru�v�    
is the dominant term. The determination of the turbulent shear-stress term is the criti-

cal problem in the analysis of turbulent shear flows. However, this new variable can 

be defined only through an understanding of the detailed turbulent structure. These 

terms are related not only to physical fluid properties but also to local flow conditions. 

Since there are no further physical laws available to evaluate these terms, empirically 

based correlations are introduced to model them. There is a hierarchy of techniques 

for  closure  (defining the Reynolds stress terms so that the equations can be solved), 

which have been developed from models of varying degrees of rigor, which are known 

as turbulence models.  

   4.5.2  Approaches to Turbulence Modeling 

 For the flow fields of practical interest in aerodynamics, the boundary layer is usually 

turbulent. As discussed by  Spalart (2000) , current approaches to turbulence mod-

eling include direct numerical simulations (DNS), large-eddy simulations (LES), and 

Reynolds-averaged Navier-Stokes (RANS). The direct numerical simulation approach 

attempts to resolve all scales of turbulence by allowing the full Navier-Stokes equa-

tions to predict turbulence directly. Because DNS must resolve all scales from the larg-

est to the smallest, the grid resolution requirements for numerical simulation are very 
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stringent and increase dramatically with Reynolds number. In fact, you can show that 

the grid requirements (and therefore the computer memory requirements) for three-

dimensional DNS are proportional to    Re9>4,    making DNS computations only currently 

practical for low Reynolds number flows. Large-eddy simulations attempt to model the 

smaller, more homogeneous scales while resolving the larger, energy-containing scales. 

This makes LES grid requirements less stringent than those for DNS. The RANS ap-

proach attempts to solve for the time-averaged flow, such as that described in equation 

(4.49). This means that all scales of turbulence must be modeled. Recently, hybrid ap-

proaches that combine RANS and LES have been proposed in an attempt to combine 

the best features of these two approaches. 

 For the RANS approach, flow quantities of interest are time averaged. When this 

averaging process is applied to the Navier-Stokes equations (such as was done in  Sec-

tion   4.5.1   ), the result is an equation for the mean quantities, with extra term(s) involv-

ing the fluctuating quantities, the Reynolds stress tensor (e.g.,    -ru�v�   ). The Reynolds 

stress tensor takes into account the transfer of momentum by the turbulent fluctuations. 

Many models assume that the Reynolds stress tensor is proportional to the mean strain-

rate tensor [i.e.,    mt(0u>0y)   ]. This is known as the Boussinesq eddy-viscosity approxima-

tion, where    mt    is the unknown turbulent eddy viscosity, and the turbulent eddy viscosity 

is determined using a turbulence model. The development of correlations in terms of 

known parameters is usually termed as the  closure problem . Closure procedures for the 

turbulent eddy viscosity are generally categorized by the number of partial differential 

equations that are solved, with zero-equation, one-equation, and two-equation models 

being the most popular. 

 Zero-equation models use no differential equations and are commonly known 

as algebraic models. Zero-equation models are well adapted to simple, attached flows 

where local turbulence equilibrium exists (i.e., the local production of turbulence is bal-

anced by the local dissipation of turbulence).  Smith (1991)  noted, “For solutions of ex-

ternal flows around full aircraft configurations, algebraic turbulence models remain the 

most popular choice due to their simplicity.” However, he further noted, “In general, 

while algebraic turbulence models are computationally simple, they are more difficult 

for the user to apply. Since algebraic models are accurate for a narrow range of flows, 

different algebraic models must be applied to the different types of turbulent flows in 

a single flow problem. The user must define in advance which model applies to which 

region, or complex logic must be implemented to automate this process    . . . .    Different 

results can be obtained with different implementation of the same turbulence model.” 

 By solving one or more differential equations, the transport of turbulence can 

be included. That is, the effect of flow history on the turbulence can be modeled. One 

example where modeling the flow history of turbulence is crucial is in the calculation 

of turbulent flow over a multi-element airfoil. One equation models are perhaps the 

simplest way to model this effect.  Wilcox (1998) , when discussing the one-equation 

model of  Spalart-Allmaras (1992) , noted that “it is especially attractive for airfoil and 

wing applications, for which it has been calibrated.” As a result, the Spalart-Allmaras 

model, which solves a single partial differential equation for a variable that is related to 

the turbulent kinematic eddy viscosity, is one of the most popular turbulence models. 

 In two-equation models, one transport equation is used for the computation of 

the specific turbulence kinetic energy ( k ) and a second transport equation is used to 
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determine the turbulent length scale (or dissipation length scale). A variety of transport 

equations have been proposed for determining the turbulent length scale, including 

   k@e, k@v,    and    k@e>k@v    models. Again,  Wilcox (1998)  is an excellent resource for detailed 

discussions of these turbulence models. 

  Smith (1991)  notes, “ For a two equation model, the normal Reynolds stress com-

ponents are assumed to be equal, while for algebraic models the normal stresses are en-

tirely neglected. Experimental results show the streamwise Reynolds stress component 

to be two to three times larger than the normal component. For shear flows with only 

gradual variations in the streamwise direction, the Reynolds shear stress is the dominant 

stress term in the momentum equations and the two equation models are reasonably 

accurate. For more complex strain fields, the errors can be significant.” 

  Neumann (1989)  notes, “Turbulence models employed in computational schemes 

to specify the character of turbulent flows are just that    . . .    models, non-physical ways 

of describing the character of the physical situation of turbulence. The models are the 

result of generalizing and applying fundamental experimental observations; they are not 

governed by the physical principles of turbulence and they are not unique.” 

 In evaluating computations for the flow over aircraft at high angles of attack, 

 Smith (1991)  notes that “at higher angles of attack, turbulence modeling becomes more 

of a factor in the accuracy of the solution.” The advantage of the RANS models is that 

they are relatively cheap to compute and can provide accurate solutions to many engi-

neering flows. However, RANS models lack generality. The coefficients in the various 

models are usually determined by matching the computations to simple building-block 

experimental flows [e.g., zero-pressure-gradient (flat-plate) boundary layers]. There-

fore, when deciding which turbulence model to use, the user should take care to ensure 

that the selected turbulence model has been calibrated using measurements from rel-

evant flow fields. Furthermore, the model should have sufficient accuracy and suitable 

numerical efficiency for the intended applications. 

  Spalart et al. (1997)  estimated the cost in terms of the grid size for DNS and 

LES computations of a full-scale aircraft at flight Reynolds numbers. Their conclu-

sion, assuming that the computer speed growth trend continues to hold, was that DNS 

computations would not be feasible for full aircraft at flight Reynolds numbers until 

approximately the year 2080, and that LES computations would not be possible until 

2045. This estimate motivated the formulation of a hybrid turbulence model, Detached-

Eddy Simulation, which combines the advantages of LES and RANS into one model, 

and is usable with today’s computers. The model uses RANS in the boundary layer, 

where RANS performs well with much lower grid requirements than LES. LES is then 

used in separated flow regions where it can resolve large-scale turbulence motion well. 

The success of DES and the various derivative models it has spawned led Salas to state 

that “DES and other RANS-LES hybrids appear to have the greatest promise at this 

time for unsteady separated flows  [Salas (2006)] .”  

   4.5.3  Turbulent Boundary Layer for a Flat Plate 

 Since    ue    is a constant for flow over a flat plate, the pressure gradient term is zero. Even 

with this simplification, there is no exact solution for the turbulent boundary layer. 
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Very near the wall, the viscous shear dominates and creates a laminar sub-layer. Ludwig 

Prandtl deduced that the mean velocity in this region must depend on the wall shear 

stress, the fluid’s physical properties, and the distance  y  from the wall. Therefore,    u    is a 

function of    (tw, r, m, y).    To first order, the velocity profile in this region is linear, that 

is,    u    is proportional to  y  and the shear stress is: 

      t
w
= m

0u
0y

= m
u
y

  (4.52)    

 Now we will define a wall velocity as: 

      u+ =
u
u*

  (4.53a)    

 and the distance from the wall in “wall units” is: 

      y+ =
yu*
n

  (4.53b)    

 where    u*    is called the  wall-friction velocity  and is defined as: 

      u* =
A

t
w

r
  (4.53c)    

 You should notice that    y+     has the form of a Reynolds number. 

 Substituting the definitions for    y+     from equation (4.53a) and    u+     from equation 

(4.53b) into equation (4.52), and recalling that    n = m>r,    we obtain: 

   t
w
= m 

u+u*
(y+

v) >u* = (u+ >y+ )ru*2   

 If we introduce the definition of the wall-friction velocity from equation (4.53c), it is 

clear that: 

      u+ = y+   (4.54)    

 for the laminar sublayer. In the laminar sublayer, the velocities are so small that viscous 

forces dominate and there is no turbulence. The edge of the laminar sublayer corre-

sponds to a    y+     of approximately 5 to 10, as shown in  Fig.   4.15   .  

 In 1930, Theodore von Kármán deduced that, in the outer region of a turbulent 

boundary layer, the mean velocity    u    is reduced below the free-stream value    (ue).    This 

reduction takes place in a manner that is independent of the viscosity, but is dependent 

on the wall shear stress and the distance  y  over which the effect has diffused. Therefore, 

the velocity defect    (ue - u)    for the outer region is a function of    (t
w

, r, y, d).    For the 

outer region, the velocity-defect law is given by 

      
ue - u

u*
= ga y

d
b   (4.55)    

 The outer region of a turbulent boundary layer contains 80 to 90% of the boundary-

layer thickness    d,    although in  Fig.   4.15    it is shown in wall units for    y+

7 200.    

 In 1933, Prandtl deduced that the mean velocity in the inner region must depend 

on the wall shear stress, the fluid physical properties, and the distance  y  from the wall. 
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Therefore,    u    is a function of    (t
w

, r, m, y).    Specifically, the velocity variation is assumed 

to have the form: 

      
u
u*

= f c a y

d
b a du*

n
b d   (4.56)    

 for the inner region. 

 Since the velocities of the inner and outer regions must match at their interface, 

equations (4.55) and (4.56) are equated as: 

   
u
u*

= f c a y

d
b a du*

n
b d = ue

u*
- ga y

d
b    

 As a result, the velocity in the inner region is given by 

      
u
u*

=
1

k
 ln 

yu*

d
+ B  (4.57a)    

 or, in terms of    u+ , y+ ,    the equation can be written as 

      u+ =
1

k
 ln y+

+ B  (4.57b)    

 This velocity correlation is valid only in regions where the laminar shear stress can be 

neglected in comparison with the turbulent stress. Thus, the flow in this region (i.e., 

   70 6 y+

6 400   ) is fully turbulent. 

 The velocity in the outer region is given by 

      
ue - u

u*
= -

1

k
 ln 

y

d
+ A  (4.58)    
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 Figure 4.15         Turbulent boundary layer illustrating wall-layer 

nomenclature.   
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 where    k A,    and  B  are dimensionless parameters. For incompressible flow past a flat 

plate, 

    k � 0.40 or 0.41

 A � 2.35

 B � 5.0 to 5.5    

 The resultant velocity profile is presented in  Fig.   4.15   , where all of the various layers 

and their velocity profiles are shown in wall units. 

 The computation of the turbulent skin-friction drag for realistic aerodynamic ap-

plications presents considerable challenges to the analyst, both because of grid genera-

tion considerations and because of the need to develop turbulence models of suitable 

accuracy for the complex flow-field phenomena that may occur (e.g., viscous/inviscid 

interactions). In order to accurately determine velocity gradients near the wall, the 

computational grid should include points in the laminar sublayer. Referring to  Fig. 

  4.15   , the computational grid should, therefore, contain points at a    y+     of 5 or less, which 

is typically very close to the wall. While there are many turbulence models of suitable 

engineering accuracy available in the literature, you should calibrate the particular 

model to be used against a relevant data base to ensure that the model provides results 

of suitable accuracy for the applications of interest.   

   4.6  EDDY VISCOSITY AND MIXING LENGTH CONCEPTS 

 In the late nineteenth century, Joseph Boussinesq introduced the concept of eddy viscos-

ity to model the Reynolds shear stress. Boussinesq assumed that the Reynolds stresses 

act like the laminar shear stresses and are proportional to the transverse gradient of 

the mean streamwise velocity component. The coefficient of proportionality is called 

the  eddy viscosity     nt = mt>r,    and the Reynolds stresses were assumed to take the form: 

      -ru�v� = rnta 0u
0y
b   (4.59)    

 Having introduced the concept of eddy viscosity, equation (4.51) for the total shear 

stress may now be written as: 

      t = tl + tt = rn
0u
0y

+ rnt
0u
0y

= r(n + nt)
0u
0y

  (4.60)    

 Like the kinematic viscosity    n, nt    has the units of    (length)2/time.    However, whereas    n    is 

a property of the fluid and is defined once the pressure and the temperature are known, 

   nt    is a function of the flow field (including such factors as surface roughness, pressure 

gradients, etc.). The use of eddy viscosity also allows you to use the laminar equations 

and obtain turbulent results simply by replacing    n    by    n + nt    and then defining    nt    with 

a turbulence model. 

 In an attempt to obtain a more generally applicable relation, Prandtl proposed the 

mixing length concept, whereby the shear stress could be found from: 

      -ru�v� = rl 2 ` 0u
0y
` 0u
0y

  (4.61)    
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 where  l  is the mixing length, which is the distance traveled by lumps of fluid moving up 

and down within the boundary layer, as shown in  Fig.   4.2   . Equating the expressions for 

the Reynolds stress, given by equations (4.59) and (4.61), we can now write a relation 

between the eddy viscosity and the mixing length: 

      nt = l2 ` 0u
0y
`   (4.62)    

 From this point on, we will only use the time-averaged (or mean-flow) properties in 

our formulation, since the Reynolds stresses can be replaced by using equation (4.60). 

Therefore, we will drop the overbar notation in the subsequent analysis. 

 The distributions of    nt    and  l  across the boundary layer are typically obtained from 

experimental data. Because the eddy viscosity and the mixing length concepts are based 

on local equilibrium concepts, they provide only rough approximations to the actual flow 

and often lack generality. However, the eddy viscosity concept is relatively simple to use 

and provides reasonable values of the shear stress for many engineering applications. 

 A general conclusion that we can draw from the experimental evidence is that 

the turbulent boundary layer should be treated as a composite layer consisting of an 

inner region and an outer region, as shown in  Fig.   4.15   . For the inner region, the mixing 

length can be found from: 

      li = ky[(1 - exp(-y>A)]  (4.63)    

 where    k = 0.41    (as discussed in  Section   4.5.3   ) and  A , the van Driest damping param-

eter, is given by: 

      A =
26n

Nu*
  (4.64a)    

 where    u*    is the wall friction velocity as defined by equation (4.53c).  N  is found from: 

      N = (1 - 11.8p+ )0.5  (4.64b)    

 and 

      p+ =
nue

(u*)3
 
due

dx
  (4.64c)    

 The eddy viscosity for the inner region can be found from equation (4.62) as: 

      (nt)i = (ky)2 [1 - exp(-y>A)]2 ` 0u
0y
`   (4.65)    

 For the outer region, the eddy viscosity is given as: 

      (nt)o = aued*  (4.66)    

 where    d*    is the displacement thickness as defined by equation (4.26), and    a    is found from: 

       a =
0.02604

1 + �
  (4.67a)    

       � = 0.55 [1 - exp (-0.2431z1 - 0.298z1)]  (4.67b)    
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 and 

      z1 =
Reu

425
- 1  (4.67c)    

    Reu    is the Reynolds number based on momentum thickness,    Reu = ueu>n    and the mo-

mentum thickness is defined in equation (4.28). 

 The  y  coordinate of the interface between the inner region and the outer region is 

determined by the requirement that the  y  distribution of the eddy viscosity be continu-

ous. Therefore, the inner region expression [equation (4.65)] is used to calculate the 

eddy viscosity until its value becomes equal to that given by the outer region expression 

[equation (4.66)]. The  y  coordinate is the interface value,    yc,    which is where the two 

expressions for the eddy viscosity are equal [i.e., when    (nt)i = (nt)o   ]. For    y Ú yc,    the 

eddy viscosity is calculated using the outer region expression [equation (4.66)]. 

 Recall that the transition process occurs over a finite length; the boundary layer does 

not instantaneously change from a laminar state to a fully turbulent profile. For most prac-

tical boundary-layer calculations, it is necessary to calculate the boundary layer along its 

entire length. That is, for a given pressure distribution (inviscid flow field) and for a given 

transition criterion, the boundary-layer calculation is started at the leading edge or at the 

forward stagnation point of the body (where the boundary layer is laminar) and proceeds 

downstream through the transitional flow into the fully turbulent region. To treat the 

boundary layer in the transition zone, the expressions for the eddy viscosity are multiplied 

by an intermittency factor,    gtr.    The expression for the intermittency factor is given by: 

      gtr = 1 - exp c-G(x - xtr) L
x

xtr

dx
ue
d   (4.68a)    

 where    xtr    is the  x  coordinate for the onset of transition and  G  is given by: 

      G = 8.35 * 10-4au3
e

n2
b (Rex, tr)

-1.34  (4.68b)    

 The intermittency factor varies from 0 (in the laminar region and at the onset of transi-

tion) to 1 (at the end of the transition zone and for fully turbulent flow). Therefore, in 

the transition zone: 

      (nt)i = (ky)2 [1 - exp(-y>A)]2 ` 0u
0y
` gtr  (4.69a)    

 and 

      (nt)o = aued
*gtr  (4.69b)    

 Solutions have been obtained using these equations to describe the laminar, transitional, 

and turbulent boundary layer for flow past a flat plate, with the results presented in 

 Fig.   4.16   .      

   4.7  INTEGRAL EQUATIONS FOR A FLAT-PLATE 
BOUNDARY LAYER 

 The eddy viscosity concept or one of the higher-order methods is used in developing 

turbulent boundary-layer solutions using the differential equations of motion. Although 

approaches using the differential equations are most common in computational fluid 
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            Figure 4.16         Sample of computed boundary layer for incom-

pressible flow past a flat plate,    ue = 114.1 ft>s, Te = 542�R,

Pe = 2101.5 psf, T
w
= 540�R:    (a) skin-friction distribution; (b) 

turbulent viscosity/thermodynamic viscosity ratio.   
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dynamics, the integral approach can also be used to obtain approximate solutions for a 

turbulent boundary layer. Following a suggestion by Prandtl, the turbulent velocity profile 

can be represented by a power-law approximation, which yields useful and practical results. 

 We will use the mean-flow properties in the integral form of the equations of 

motion to develop engineering correlations for the skin-friction coefficient and the 

boundary-layer thickness for an incompressible, turbulent boundary layer on a flat 

plate. Since we will use only the time-averaged (or mean-flow) properties in this section, 

we will drop the overbar notation (as mentioned previously). 

 Consider the control volume shown in  Fig.   4.17    for the boundary layer development 

along a flat plate. Notice that the free-stream velocity of the flow approaching the plate 

   (U�)    and the velocity of the flow outside of the boundary layer adjacent to the plate    (ue)    

are equal and are used interchangeably. The wall is the inner boundary of the control 

volume. A streamline outside the boundary layer is the outer boundary; any streamline 

that is outside the boundary layer (and, therefore, has zero shear force acting across it) will 

do. Because the viscous action retards the flow near the surface, the outer boundary is 

not parallel to the wall and must be accounted for. Therefore, the streamline is a distance 

   Y0    away from the wall at the initial station and is a distance  Y  away from the wall at the 

downstream station, with    Y 7 Y0.    Since    V
S

# nndA = 0    for both boundary streamlines, 

the continuity equation (2.5) only has to take into account the inflow and outflow as:  

      L
Y

0

u(y)dy - ueY0 = 0  (4.70)    

 But we also know that: 

       L
Y

0

u( y)dy = L
Y

0

3ue + (u - ue) 4dy 

  = ueY + L
Y

0

(u - ue) dy   (4.71)    

 Combining equations (4.70) and (4.71) and introducing the definition for the displace-

ment thickness from equation (4.26): 

   d* = L
d

0

a1 -

u
ue
bdy   

Y

Y0

x

y

u(y)

Streamline outside the boundary layer

Control volume
(dashed line represents
the boundary)

L

u � U	
(a constant)

u � U	

 Figure 4.17         Control volume used to analyze the boundary layer 

on a flat plate.   
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 we find that: 

      Y - Y0 = d*  (4.72)    

 We have now derived the expected result that the outer streamline is deflected by the 

transverse distance    d*.    In developing this relation, we have used both    d    and  Y  as the 

upper limit for the integration. Since the integrand in equation (4.71) goes to zero for 

   y Ú d,    the integral is independent of the upper limit of integration, provided that it is 

at, or beyond, the edge of the boundary layer. This verifies that we could have chosen 

any streamline outside the boundary layer for our analysis. 

 Similarly, application of the integral form of the momentum equation  (2.13)      yields: 

   -d = L
Y

0

u(ru dy) - L
Y0

0

ue(rue dy)   

 where  d  designates the drag per unit span. Now we can evaluate the drag as: 

      d = ru2
eY0 - L

Y

0

(ru2 dy)  (4.73)    

 Using equation (4.70), we find that: 

   d = rue L
Y

0

u dy - L
Y

0

ru2 dy   

 This equation can be rewritten in terms of the section drag coefficient as 

       Cd =
d

1
2r�U2

�L
 

  =
2

L
aL

Y

0

u
ue

 dy - L
Y

0

u2

u2
e

 dyb   (4.74)    

 Recall that the momentum thickness for an incompressible flow, equation (4.28), 

can be written as: 

      u = L
d

0

u
ue

 a1 -

u
ue
b  dy  (4.28)    

 Notice that the result is also independent of the upper limit of integration provided that 

the upper limit is equal to or greater than the boundary-layer thickness. Therefore, the 

drag coefficient (for one side of a flat plate of length  L ) is: 

      Cd =
2u

L
  (4.75)    

 The equations developed in this section are valid for incompressible flow past a 

flat plate whether the boundary layer is laminar or turbulent. The value of the integral 

technique is that it requires only a “reasonable” approximation for the velocity profile 

[i.e.,  u(y) ] in order to achieve “fairly accurate” drag predictions, because the integration 

often averages out positive and negative deviations in the assumed velocity function. 

This makes the results of the next section especially useful in engineering applications, 

especially for conceptual aircraft design. 
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   4.7.1  Application of the Integral Equations of Motion 
to a Turbulent, Flat-Plate Boundary Layer 

 Now that we have the integral equations we can apply them to develop correlations for 

a turbulent boundary layer on a flat plate. As we discussed earlier, an analytical form 

for the turbulent shear is not known a priori; therefore, we need some experimental in-

formation. Experimental measurements have shown that the time-averaged velocity for 

a turbulent boundary layer on a flat plate may be represented by the 1/7th power law: 

      
u
ue

= a y

d
b1>7

  (4.76)    

 when the local Reynolds number    Rex    is in the range    5 * 105    to    1 * 107.    However, no-

tice that there is a problem with this profile, since the velocity gradient is: 

   
0u
0y

=
ue

7
 

1

d1>7 
1

y6>7   

 which goes to infinity at the wall. So, although the correlation given in equation (4.76) 

provides a reasonable representation of the actual velocity profile, we need another 

piece of experimental data: a correlation for the shear acting at the wall. Blasius found 

that the skin-friction coefficient for a turbulent boundary layer on a flat plate where the 

local Reynolds number is in the range    5 * 105    to    1 * 107    is given by: 

      Cf =
t

1
2ru2

e

= 0.0456a v

ued
b0.25

  (4.77)    

 Now we can differentiate the drag coefficient from equation (4.74), recalling that 

   Cd =
1

L LCf dx,    so    Cf = L
d
dx

(Cd):    

      Cf = -2
d
dx
cd L

1

0

u
ue

 a u
ue

- 1bda y

d
b d   (4.78)    

 We can now find the boundary layer thickness by substituting equations (4.76) and 

(4.77) into equation (4.78) to obtain: 

   0.0456a v

ued
b0.25

= -2 
d
dx

 edL
1

0

c a y

d
b2>7

- a y

d
b1>7 dda y

d
b f    

 which eventually becomes: 

   d0.25dd = 0.2345a n
ue
b0.25

dx   

 If we assume that the boundary-layer thickness is zero when    x = 0,    we find that 

   d = 0.3747a n
ue
b0.2

(x)0.8   

 By rearranging, we can find the various thicknesses of a turbulent boundary layer on 

a flat plate since  Schlichting and Gersten (2000)  showed that    d* = d>(1 + n) = d>8    
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and    u = nd> 3(1 + n)(2 + n)4 = 7d>72,    where    1>n = 1>7    is the exponent in equa-

tion (4.76): 

      
d

x
=

0.3747

(Rex)0.2
  

d*

x
=

0.0468

(Rex)0.2
  

u

x
=

0.0364

(Rex)0.2
  (4.79)    

 Comparing the turbulent correlation given by equation (4.79) with the laminar 

correlation given by equation (4.23), we see that a turbulent boundary layer grows at a 

faster rate than a laminar boundary layer subject to the same conditions. Furthermore, 

at a given  x  station, a turbulent boundary layer is thicker than a laminar boundary layer 

for the same free-stream conditions. 

 Substituting the boundary layer thickness from equation (4.79) into equation 

(4.77) yields: 

      Cf =
0.0583

(Rex)0.2
  (4.80)    

 As with the laminar skin-friction coefficient found in Sec. 4.3.1, a total skin-friction 

coefficient can be found for turbulent flow by integrating equation (4.80) over the length 

of a flat plate: 

       Cf =
1

L L
L

0

Cf (x)dx =
1

L L
L

0

0.0583

(Rex)0.2
 dx 

  Cf =
0.074

(ReL)0.2
  (4.81)    

 This formula, known as the Prandtl formula, is an exact theoretical representation of the 

turbulent skin-friction drag based on the velocity profile of equation (4.76). However, 

when compared with experimental data, equation (4.81) is found to be only    {25%    accu-

rate. A number of other turbulent skin-friction coefficient relations have been developed, 

some of which are considerably more accurate than the Prandtl formula [ White (2005) ]: 

 Prandtl-Schlichting: 

      Cf K
0.455

(log10 ReL)2.58
 {3% accurate  (4.82)    

 Karman-Schoenherr: 

      
1

2Cf

K 4.13 log10 (ReL Cf) {2% accurate  (4.83)    

 Schultz-Grunow: 

      Cf K
0.427

(log10 ReL - 0.407)2.64
 
{7% accurate  (4.84)    

 While the Karman-Schoenherr relation is the most accurate of these formulations, it 

requires an iterative solution method to obtain a result, since the drag coefficient is not 

explicitly represented. Therefore, the most accurate relation which is also straightfor-

ward to use is the Prandtl-Schlichting relation, which should usually be used instead of 

the Prandtl theoretical relation, equation (4.81). 
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 The calculation of the skin-friction drag for a flat plate with transition theoretically 

would require using the local skin-friction coefficients, equation (4.21) for the laminar 

portion of the flow and equation (4.80) for the turbulent part of the flow. Taking care to 

only integrate each relation over the laminar and turbulent lengths, respectively, gives us: 

      CD =
1

L
e L

xtr

0

Cflam
 dx +  L

L

x tr

Cfturb
 dx f   (4.85)    

 Another approach is to use the total skin-friction coefficients, which are equation 

(4.32) for the laminar portion of the flow and equation (4.82) for the turbulent part of 

the flow. Care must be taken, however, when using the total skin-friction coefficients, 

since they already represent the integrated skin friction over the entire plate from    x = 0    

to    x = L.    In order to properly simulate a flat plate with transitional flow present, the 

process shown in  Fig.   4.18    should be used. Since you want to simulate the plate with 

both laminar and turbulent boundary layers present, you start by evaluating the entire 

plate assuming that the boundary layer is turbulent along the entire length of the plate. 

Since the distance from the leading edge of the plate to the transition location should 

be evaluated with laminar flow, that portion of the plate must be evaluated with both 

the turbulent-flow skin-friction relation and the laminar-flow skin-friction relation by 

subtracting the turbulent-flow drag from the total plate turbulent results and adding the 

laminar-flow portion. In equation form, this would be:  

      CD = Cfturb

Lb
Sref

- Cfturb

xtrb

Sref

+ Cflam

xtrb

Sref

  (4.86)    

 A more straightforward approach to model transitional flow is to use a correction 

to the Prandtl-Schlichting turbulent skin-friction relation in equation (4.82) [ Dommasch 

et al. (1967) ]: 

      Cf K
0.455

(log10 ReL)2.58
-

A
ReL

  (4.87)    

 where the correction term reduces the skin friction since laminar boundary layers pro-

duce less skin friction than turbulent boundary layers. The experimentally determined 

Turbulent
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TurbulentLaminar Laminar

L

xtr
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b

U	

 Figure 4.18         Calculation of skin-friction drag coefficient using 

total skin-friction coefficients.   
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constant,  A , varies depending on the transition Reynolds number, as shown in  Table   4.5   . 

The value    A = 1700    represents the laminar correction for a transition Reynolds number 

of    Rex, tr = 500,000.    You can see from this formulation that if the Reynolds number at 

the end of the plate is very high, then the laminar correction term plays a fairly insignifi-

cant role in the total skin-friction drag on the plate. A good rule of thumb is to assume 

that if transition takes place at less than 10% of the length of the plate, then the laminar 

correction usually can be ignored, since it is relatively small.  
  Fig.   4.19    shows how the total skin-friction coefficient varies from the laminar 

value in equation (4.32), through transition, and finally to the fully turbulent value, in 

equation (4.82).  

 TABLE 4.5    Empirical Relations for 
Transition Correction [ Schlichting 
and Gersten (2000) ] 

    Rex , tr     A 

   300,000  1050 
   500,000  1700 
 1,000,000  3300 
 3,000,000  8700 
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 Figure 4.19         Variation of total skin-friction coefficient with Rey-

nolds number for a smooth, flat plate  .   
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  EXAMPLE 4.4:    Computing the velocity profiles at the “transition point” 

 Air at standard day sea-level atmospheric pressure and    5�C    flows at 200 

km/h across a flat plate. Compare the velocity distribution for a laminar 

boundary layer and for a turbulent boundary layer at the transition point, 

assuming that the transition process is completed instantaneously at that 

location. 

  Solution:     For air at atmospheric pressure and    5�C,    

    r� =
1.01325 * 105 N>m2

(287.05 N # m>kg # K)(278.15 K)
= 1.2691 kg>m3

 m� = 1.458 * 10-6
(278.15)1.5

278.15 + 110.4
= 1.7404 * 10-5 kg>s # m   

 and 

   U� =
(200 km>h)(1000 m>km)

3600 s>h = 55.556 m>s   

 We will assume that the transition Reynolds number for this incom-

pressible flow past a flat plate is 500,000. Therefore, transition takes place at: 

   xtr =
Rex, tr

rue>m = 0.12344 m   

 The thickness of a laminar boundary layer at this point is 

   dlam =
5.0x

2Rex

= 8.729 * 10-4 m   

 For comparison, we will calculate the thickness of the turbulent boundary 

layer at this point for this Reynolds number, assuming that the boundary layer 

is turbulent all the way from the leading edge: 

   dturb =
0.3747x

(Rex)0.2
= 3.353 * 10-3 m   

 which is 3.8 times thicker than the laminar boundary layer. 

 In reality, the flow is continuous at the transition location and the 

boundary-layer thickness does not change instantaneously. Furthermore, 

since we are at the transition location, it is not realistic to use the assumption 

that the boundary layer is turbulent all the way from the leading edge. (This 

assumption would be reasonable far downstream of the transition location 

so that    x W xtr.   ) Nevertheless, the object of these calculations is to illus-

trate the characteristics of the turbulent boundary layer relative to a laminar 

boundary layer at the same conditions. 

 The resultant velocity profiles are compared in  Table   4.6    and  Fig.   4.20   . 

Note that the streamwise velocity component  u  increases much more rapidly 

with  y  near the wall for the turbulent boundary layer. Therefore, the shear at 

the wall is greater for the turbulent boundary layer even though this layer is 

much thicker than the laminar boundary layer for the same conditions at a 
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given  x  station. The macroscopic transport of fluid in the  y  direction causes 

both increased shear and increased thickness of the boundary layer.      

   4.7.2  Integral Solutions for a Turbulent Boundary Layer 
with a Pressure Gradient 

 If we apply the integral equations of motion to a flow with a velocity gradient external 

to the boundary layer, we obtain: 

      
du
dx

+ (2 + H)
u

ue
 
due

dx
=

Cf

2
  (4.88)    
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 Figure 4.20         Velocity profiles for Example 4.4.   

 TABLE 4.6    Velocity Profiles for Example 4.4 

 y (m)     ulam(m>s)        uturb(m>s )    

 0.00000   0.00   0.00 
 0.00017  17.78  36.21 
 0.00034  33.33  39.98 
 0.00067  52.50  44.14 
 0.00101  Inviscid flow  46.78 
 0.00134    48.74 
 0.00168    50.32 
 0.00201    51.64 
 0.00235    52.79 
 0.00268    53.81 
 0.00302    54.71 
 0.00335    55.56 
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 where    u,    the momentum thickness, was defined in equation (4.28).  H , the momentum 

shape factor, is defined as: 

      H =
d*

u
  (4.89)    

 where    d*,    the displacement thickness, is defined in equation (4.26). The shape factor 

has been shown to be a useful way to estimate when a turbulent boundary layer will 

separate. If you recall from the 1/7th power law velocity distribution for a turbulent 

boundary layer (see  Section   4.7.1   ), the displacement thickness and momentum thick-

ness could be related to the boundary layer thickness by    d* = d>8    and    u = 7d>72,    which 

means the shape factor for this boundary layer is    H = (d>8) > (7d>72) � 1.3    (or the 

displacement thickness is approximately 30% larger than the momentum thickness). 

 Kroo (2007)  has shown that a fairly reliable value of the shape factor for predicting 

separation is approximately 2.2, which means the displacement thickness has grown to 

over twice the size of the momentum thickness. Another method for predicting turbu-

lent boundary layer separation was developed by  Stratford (1959) . 

 Equation (4.88) contains three unknown parameters,    u, H,    and    Cf     for a given exter-

nal velocity distribution. For a turbulent boundary layer, these parameters are interrelated 

in a complex way.  Head (1969)  assumed that the rate of entertainment is given by: 

      
d
dx

 (ueuH1) = ueF   (4.90)    

 where    H1    is defined as: 

      H1 =
d - d*

u
  (4.91)    

 Head also assumed that    H1    is a function of the shape factor  H , that is,    H1 = G(H).    

Correlations of several sets of experimental data that were developed by  Cebeci and 

Bradshaw (1979)  yielded: 

      F = 0.0306(H1 - 3.0) -0.6169  (4.92)    

 and 

      G = e0.8234(H - 1.1) -1.287
+ 3.3 for H … 1.6

1.5501(H - 0.6778) -3.064
+ 3.3 for H Ú 1.6

  (4.93)    

 Equations (4.90) through (4.93) provide a relationship between    u    and  H . A rela-

tion between    Cf, u,    and  H  is needed to complete our system of equations. A curvefit 

formula given in  White (2005)  shows that: 

      Cf =
0.3e-1.33H

(log Reu)(1.74 +0.31H)
  (4.94)    

 where    Reu    is the Reynolds number based on the momentum thickness: 

      Reu =
rueu

m
  (4.95)    
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 We can numerically solve this system of equations for a given inviscid flow field. 

To start the calculations at some initial streamwise station, such as the transition 

location, values for two of the three parameters,    u, H,    and    Cf,    must be specified at 

this station. The third parameter is then calculated using equation (4.94). Using this 

method, the shape factor  H  can be used as a criterion for separation. Although it is 

not possible to define an exact value of  H  corresponding to the separation, the value 

of  H  for separation is usually in the range 1.8 to 2.8.   

   4.8  THERMAL BOUNDARY LAYER FOR CONSTANT-
PROPERTY FLOWS 

 As we discussed earlier, there are many constant-property flows for which we are inter-

ested in calculating the convective heat transfer. Thus, the temperature variations in the 

flow field are sufficiently large that there is heat transfer to or from a body in the flow 

but are small enough that the corresponding variations in density and viscosity can be 

neglected. We will look at one such flow, the thermal boundary layer for a steady, low-

speed flow past a flat plate. We will consider flows where the boundary layer is laminar. 

The solution for the velocity field for this flow has been described earlier in this chapter; 

see equations (4.6) through (4.27). 

 We will now solve the energy equation (2.32), in order to determine the temperature 

distribution. For a low-speed, constant-property, laminar boundary layer, the viscous dis-

sipation is negligible (i.e.,    f = 0   ). For flow past a flat plate,    dp>dt = 0.    Therefore, for a 

calorically perfect gas,  which will be defined in  Chapter   8    , equation  (2.32)     becomes: 

      rucp
0T
0x

+ rvcp
0T
0y

= k
0

2T

0y2
  (4.96)    

 Notice that we have already neglected    k(0
2T>0x2)    since it is small compared to 

   k(0
2T>0y2).    We made a similar assumption about the corresponding velocity gradients 

when working with the momentum equation, equation (4.6). 

 Now we can change the dependent variable from  T  to the dimensionless param-

eter    u,    where: 

   u =
T - T

w

Te - T
w

   

 Note that    u = 0    at the wall (i.e., at    y = 0   ), and    u = 1    at the edge of the thermal bound-

ary layer. Using    u    as the dependent variable, the energy equation becomes: 

      ru
0u

0x
+ rv

0u

0y
=

k
cp

 
0

2u

0y2
  (4.97)    

 Since the pressure is constant along the flat plate, the velocity at the edge of the 

boundary layer    (ue)    is constant, and the momentum equation becomes: 

      ru
0u
0x

+ rv

0u
0y

= m
0

2u

0y2
  (4.98)    

 Now we can replace  u  in the derivatives by the dimensionless parameter,    u*,    where 

   u* =
u
ue
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 So equation (4.98) becomes: 

      ru
0u*
0x

+ rv

0u*
0y

= m
0

2u*

0y2
  (4.99)    

 Notice that    u* = 0    at the wall (i.e., at    y = 0   ), and    u* = 1    at the edge of the velocity 

boundary layer. 

 If we compare equations (4.97) and (4.98), we can see that the equations are iden-

tical if    k>cp = m.    Furthermore, the boundary conditions are identical:    u = 0    and    u* = 0    

at the wall, and    u = 1    and    u* = 1    at the edge of the boundary layer. Therefore, if: 

   
mcp

k
= 1   

 the velocity and the thermal boundary layers are identical. This ratio is called the 

Prandtl number (Pr) in honor of the German scientist, Ludwig Prandtl: 

      Pr =
mcp

k
  (4.100)    

 The Prandtl number is an important dimensionless parameter for problems involving 

convective heat transfer where there is both fluid motion and heat conduction. Typi-

cally, however, the Prandtl number for air is less than    Pr = 1,    with the value typically 

being around    Pr = 0.7.    This means that the thermal boundary layer thickness,    dT,    for air 

is usually larger than the velocity boundary layer,    d,    since the ratio of the two layers 

is    dT>d � 1>2Pr    [ Schlichting and Gersten (2000) ]. 

   4.8.1  Reynolds Analogy 

 The shear stress at the wall for a boundary layer is defined as: 

   t = am0u
0y
b

y=0

   

 Therefore, we can find the skin-friction coefficient for a flat plate using    u* = u>ue    and 

assuming that    ue = constant:    

      Cf =
t

1
2ru2

e

=
2m

rue
 
0u*
0y

  (4.101)    

 The rate at which heat is transferred to the surface    (q
#

)    is defined as 

      q
# = ak

0T
0y
b

y=0

  (4.102)    

 The Stanton number (designated by the symbols St or    Ch   ), which is a dimensionless 

heat-transfer coefficient, is defined as: 

      St K Ch =
q
#

ruecp(Te - T
w

)
  (4.103)    
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 Combining these last two expressions with the definition of the dimensionless tempera-

ture,    u = (T(y) - T
w

) > (Te - T
w

),    we can show that the Stanton number is: 

      St =
k

0T
0y

ruecp(Te - T
w

)
=

k
ruecp

c 0T>0y

(Te - T
w

)
d = k

ruecp
 
0u

0y
  (4.104)    

 Relating the Stanton number, as given by equation (4.104), to the skin-friction 

coefficient, as defined by equation (4.101), we can obtain the ratio: 

      
Cf

St
=

2mcp

k
 
0u*>0y

0u>0y
  (4.105)    

 Notice that if    mcp>k K Pr = 1,    then the thermal boundary layer and the velocity bound-

ary layer are the same: 

   
0u*
0y

=
0u

0y
   

 Therefore, if the Prandtl number is 1: 

      St =
Cf

2
  (4.106)    

 This relation between the heat-transfer coefficient and the skin-friction coefficient is known 

as the Reynolds analogy. This means that if we have a dependable method for estimating 

the local skin-friction coefficient, then we can also find the local heat-transfer coefficient. 

  EXAMPLE 4.5:    Calculating the thermal properties of air 

 The thermal conductivity of air can be calculated using the relation 

      k = 4.76 * 10-6 T1.5

T + 112
 cal>cm # s # K  (4.107)    

 over the range of temperatures below those for which oxygen dissociates, 

which is approximately 2000 K at atmospheric pressure. What is the Prandtl 

number for air at    15�C (288.15 K)?    

  Solution:      Using the results from  Example   1.3   , the     viscosity is    1.7894 * 10-5 kg>s # m.    

The specific heat is    1004.7 J>kg # K.    Using the equation to calculate the ther-

mal conductivity: 

   k = 4.76 * 10-6
(288.15)1.5

400.15
= 5.819 * 10-5 cal>cm # s # K   

 Noting that there are 4.187 J/cal, the thermal conductivity is: 

   k = 2.436 * 10-2 J>m # s # K   

 Therefore, the Prandtl number is: 

   Pr =
mcp

k
=

(1.7894 * 10-5 kg>s # m)(1004.7 J>kg # K)

2.436 * 10-2 J>m # s # K
= 0.738   
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 As we previously discussed, the Prandtl number for air is essentially constant 

(approximately 0.7) over a wide range of flow conditions.    

   4.8.2  Thermal Boundary Layer for    Pr 3 1    

 To solve for the temperature distribution for the laminar, flat-plate boundary layer, we 

can introduce the transformation of equation (4.10): 

   h = y
A

ue

2nx
   

 Using the transformed stream function  f , as defined by equation (4.13), equation (4.85) 

becomes: 

      u � + (Pr)fu� = 0  (4.108a)    

 where    the �    denotes differentiation with respect to    h.    But we have already obtained the 

solution for the stream function. Referring to equation (4.16) for a flat plate (i.e.,    b = 0   ), 

we have: 

      f = -

f �

f �
  (4.108b)    

 Combining equations (4.108a) and (4.108b) and rearranging, we can obtain: 

   
u �

u�
= (Pr)

f �

f �
   

 Integrating this relation twice yields: 

      u = C L
h

0

(f �)Prdh + u0  (4.109)    

 where  C  and    u0    are constants of integration. They can be evaluated by applying the 

boundary conditions (1) at    h = 0, u = 0,    and (2) for    h S large, u = 1.    

      u =
T - T

w

Te - T
w

= 1 -

1�

h
(f �)Prdh

1�

h
(f �)Prdh

  (4.110)    

 The rate at which heat is transferred to the wall    (q
#

)    can be calculated using 

   q
# = ak

0T
0y
b

y=0

= k(Te - T
w

)
0h

0y
 a 0u

0h
b
h=0

   

 Using the values of Pohlhausen, we find that: 

   a 0u

0h
b
h=0

= 0.4696(Pr)0.333   

 Combining these two relations, the rate at which heat is transferred from a laminar 

boundary layer to the wall is given by the relation 

      q
# = 0.332k(Te - T

w
)(Pr)0.333

A

ue

nx
  (4.111)    
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 The heat transfer can be expressed in terms of the Stanton number using equation 

(4.103) as: 

   St = 0.332
k
mcpA

m

rue x
 (Pr)0.333   

 Using the definitions for the Reynolds number and Prandtl number, the Stanton number 

for laminar flow over a flat plate becomes: 

      St =
0.332

(Pr)0.667(Rex)0.5
  (4.112)    

 Another popular dimensionless heat-transfer parameter is the Nusselt number. 

The Nusselt number is defined as: 

      Nux =
hx
k

  (4.113a)    

 In this equation,  h  is the local heat-transfer coefficient, which is defined as: 

      h =
q
#

Te - T
w

  (4.113b)    

 Combining this definition with equation (4.111) and (4.113a) gives us: 

      Nux = 0.332(Rex)0.5(Pr)0.333  (4.114)    

 By dividing the expression for the Stanton number, equation (4.112), by that for the 

skin-friction coefficient, equation (4.21), we obtain 

      St =
Cf

2(Pr)0.667
  (4.115)    

 Because of the similarity between this equation and equation (4.106), we will call this 

the  modified Reynolds analogy.  

  EXAMPLE 4.6:    Calculating the heat-transfer rate for a turbulent 
boundary layer on a flat plate 

 Using the modified Reynolds analogy, develop relations for the dimensionless 

heat-transfer parameters, St and    Nux    for a turbulent flat-plate boundary layer. 

  Solution:     Referring to the discussion of turbulent boundary layers, we recall that the 

local skin-friction coefficient is: 

      Cf =
0.0583

(Rex)0.2
  (4.80)    

 Now, using equation (4.115) for the modified Reynolds analogy, we can ap-

proximate the Stanton number as: 

      St =
0.0292

(Rex)0.2(Pr)0.667
  (4.116)    
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 Comparing equations (4.112) and (4.114), we see that the    Nux    is given as: 

   Nux = (St)(Pr)(Rex)   

 Therefore, the Nusselt number for turbulent flow past a flat plate can be 

approximated as: 

      Nux = 0.0292(Rex)0.8(Pr)0.333  (4.117)      

  EXAMPLE 4.7:    Calculating the heat transfer 

 The radiator systems on many of the early racing aircraft were flush mount-

ed on the external surface of the airplane. We will assume that the local 

heat-transfer rate can be estimated using the flat-plate relations. What is the 

local heating rate for    x = 3.0 m    when the airplane is flying at 468 km/h at an 

altitude of 3 km? The surface temperature is 330 K. 

  Solution:      Use  Table   1.2        to find the free-stream flow properties: 

    p� = 7.012 * 104 N>m2   T� = 268.659 K

 r� = 0.9092 kg>m3  m� = 1.6938 * 10-5 kg>s # m   

 Since we have assumed that the flow corresponds to that for a flat plate, 

these values are also the local properties at the edge of the boundary layer 

at    x = 3.0 m,    and we can find the velocity as: 

   ue = U� = 468 km>h = 130 m>s   

 To determine whether the boundary layer is laminar or turbulent, we 

will calculate the local Reynolds number: 

   Rex =
reuex
me

=
(0.9092 kg>m3)(130 m>s)(3.0 m)

1.6938 * 10-5 kg>s # m
= 2.093 * 107   

 This is well above the transition value. In fact, if the transition Reynolds 

number is assumed to be 500,000, transition would occur at the point: 

   xtr =
500,000

(reue) >me
= 0.072 m   

 from the leading edge, which is an extremely short distance. Therefore, the 

calculation of the heating will be based on the assumption that the boundary 

layer is turbulent over the entire length of the flat plate. 

 Combining equations (4.113a) and (4.113b), 

   q
# =

Nuxk(Te - T
w

)

x
   

 where the    Nux    is given by equation (4.117). Therefore, 

   q
# =

0.0292(Rex)0.8(Pr)0.333k(Te - T
w

)

x
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 To calculate the thermal conductivity for air, we will use the relation from 

 Example   4.5   : 

    k = 4.76 * 10-6 T1.5

T + 112
= 5.506 * 10-5 cal>cm # s # K

 = 2.306 * 10-2 J>m # s # K    

 Since    1 W = 1 J>s,    

   k = 2.306 * 10-2 W>m # K   

 Furthermore, the Prandtl number is: 

   Pr =
mcp

k
= 0.738   

 Therefore, 

    q
# =

(0.0292)(2.093 * 107)0.8(0.738)0.333(2.306 * 10-2 W>m # K)(268.659 - 330) K

3.0 m

 = -8.944 * 103 W>m2 = -8.944 kW>m2    

 The minus sign indicates that heat is transferred from the surface to the air 

flowing past the aircraft. This is as it should be, since the surface is hotter 

than the adjacent air. Furthermore, since the problem discusses a radiator, 

proper performance would produce cooling. Since there are 1.341 hp/kW, 

the heat-transfer rate is equivalent to    1.114 hp>ft2.        

   4.9  SUMMARY 

 In this chapter, we have developed techniques by which we can obtain solutions for a 

thin, viscous boundary layer near the surface. Techniques have been developed both 

for a laminar and for a turbulent boundary layer using both integral and differential 

approaches. We now have reviewed the basic concepts of fluid mechanics  in  Chap-

ters   1    through    4     and are ready to apply them specifically to aerodynamic problems.   

     PROBLEMS 

   4.1.    A very thin, “flat-plate” wing of a model airplane moves through the air at standard sea-

level conditions at a velocity of 10 m/s. The dimensions of the plate are such that its chord 

(stream wise dimension) is 0.25 m and its span (length perpendicular to the flow direction) 

is 4 m. What is the Reynolds number at the trailing edge (x = 0.25 m)? Assume that the 

boundary layer is laminar in answering the remaining questions. What are the boundary-

layer thickness and the displacement thickness at the trailing edge? What are the local 

shear at the wall and the skin-friction coefficient at x = 0.25 m. Calculate the total drag 

on the wing (both sides). Prepare a graph of ux as a function of y, where ux designates the 

x component of velocity relative to a point on the ground, at x = 0.25.         

   4.2.    Assume that the inviscid external flow over a configuration is given by 

   ue = Ax2   
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   Thus, the stagnation point occurs at the leading edge of the configuration (i.e., at x = 0). 

Obtain the expression for b. Using Fig. 4.4 and assuming that the boundary layer is laminar, 

determine the value of f �(0), that is, the value of the shear function at the wall. What is the 

relation between the shear at a given value of x for this flow and that for a flat plate?   

   4.3.    Consider two-dimensional, incompressible flow over a cylinder. For ease of use with the 

nomenclature of the current chapter, we will assume that the windward plane of symmetry 

(i.e., the stagnation point) is u = 0 and that u increases in the stream wise direction. Thus, 

   ue = 2U� sin u and x = Ru   

   Determine the values of b at u = 10� at  u = 60� and at  u = 85�   .

   4.4.    Assume that the wall is porous so that there can be flow through the wall; that is, 

   v(x, 0) = v
w

� 0.    Using equation (4.14), show that 

   
v

w

ue
= -

f(0)

22Rex

   

   in order to have similarity solutions; that is,    (0f>0s)h = 0    for steady, incompressible flow 

past a flat plate.   

   4.5.    We plan to use suction through a porous wall as a means of boundary-layer control. Using 

the equation developed in Problem 4.4, determine f(0) if v
w
= -0.002ue for steady flow 

past a flat plate where ue = 3m>s at standard sea-level conditions. What are the remaining 

two boundary conditions?   

   4.6.    Transpiration (or injecting gas through a porous wall into the boundary layer) is to be used 

to reduce the skin-friction drag for steady, laminar flow past a flat plate. Using the equation 

developed in Problem 4.4, determine v
w

 if f(0) = -0.5. The inviscid velocity (ue) is 25 ft/s 

with standard atmospheric conditions.   

   4.7.    When we derived the integral equations for a flat-plate boundary layer, the outer boundary 

of our control volume was a streamline outside the boundary layer (see  Fig.   4.17   ). Let us now 

apply the integral equations to a rectangular control volume to calculate the sectional drag coef-

ficient for incompressible flow past a flat plate of length L. Thus, as shown in  Fig.   P4.7   , the outer 

boundary is a line parallel to the wall and outside the boundary layer at all x stations. Owing 

to the growth of the boundary layer, fluid flows through the upper boundary with a velocity    ve    

which is a function of x. How does the resultant expression compare with equation (4.70)?    

Rectangular control
volume

ve(x)

Y u(y)

L

u � ue � U� (a constant)U � U�

 Figure P4.7        

   4.8.    Use the integral momentum analysis and the assumed velocity profile for a laminar bound-

ary layer: 

   
u
ue

=
3

2
 ay

d
b -

1

2
 ay

d
b3

   

   where    d    is the boundary-layer thickness, to describe the incompressible flow past a flat 

plate. For this profile, compute: (a)    (d>x)1Rex   , (b)    (d*>x)1Rex   , (c)    (ve>ue)1Rex,    
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(d)    Cf1Rex,    and (e)    Cd1Rex.    Compare these values with those presented in the  text    , 

which were obtained using the more exact differential technique [e.g.,    (d>x)1Rex = 5.0   ]. 

Prepare a graph comparing this approximate velocity profile and that given in  Table   4.3   . 

For the differential solution, use    h = 3.5    to define    d    when calculating    y>d.      

   4.9.    Use the integral momentum analysis and a linear velocity profile for a laminar boundary layer 

   
u
ue

=
y

d
   

   where    d    is the boundary layer thickness. If the viscous flow is incompressible, calculate 

   (d>x)1Rex (d*>x)1Rex,    and    Cf1Rex.    Compare these values with those presented in the 

chapter that were obtained using the more exact differential technique [e.g.,    (d>x)1Rex = 5.0   ].   

   4.10.    Let us represent the wing of an airplane by a flat plate. The airplane is flying at standard 

sea-level conditions at 100 mph. The dimensions of the wing are chord 5 ft. and span 30 ft. 

What is the total friction drag acting on the wing? What is the drag coefficient?   

   4.11.    A flat plate at zero angle of attack is mounted in a wind tunnel where 

    p� = 1.01325 * 105 N>m2   U� = 100 m>s
 m� = 1.7894 * 10- 5 kg>m # s   p� = 1.2250 kg>m3   

   A Pitot probe is to be used to determine the velocity profile at a station 1.0 m from the 

leading edge ( Fig.   P4.11   ).  

    (a)   Using a transition criterion that    Rex, tr = 500, 000,    where does transition occur?  

   (b)   Use equation (4.79) to calculate the thickness of the turbulent boundary layer at a point 

1.00 m from the leading edge.  

   (c)   If the streamwise velocity varies as the    17 th    power law [i.e.,    u>ue = (y>d)1>7   ], calculate 

the pressure you should expect to measure with the Pitot probe    pt(y)    as a function of 

 y . Present the predicted values as 

    (1)   The difference between that sensed by the Pitot probe and that sensed by the static 

port in the wall [i.e.,  y  versus    pt(y) - pstatic   ]  

   (2)   The pressure coefficient 

   y versus Cp(y) =
pt(y) - p�

1
2 r� U2

�

   

 Note that for part (c) we can use Bernoulli’s equation to relate the static pressure and 

the velocity on the streamline just ahead of the probe and the stagnation pressure 

sensed by the probe. Even though this is in the boundary layer, we can use Bernoulli’s 

equation, since we relate properties on a streamline and since we calculate these prop-

erties at “point.” Thus, the flow slows down isentropically to zero velocity over a very 

short distance at the mouth of the probe.    

   (d)   Is the flow described by this velocity function rotational or irrotational?     

x � 1.00 m

u(y)

ue � U� � 100 m/s

Static port

Pitot probed

 Figure P4.11        
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   4.12.    Air at atmospheric pressure and    100�C    flows at    100 km>h    across a flat plate. Compare the 

streamwise velocity as a function of  y  for a laminar boundary layer and for a turbulent 

boundary layer at the transition point, assuming that the transition process is completed 

instantaneously at that location. Use  Table   4.3    to define the laminar profile and the one-

seventh power law to describe the turbulent profile.   

   4.13.    A thin symmetric airfoil section is mounted at zero angle of attack in a low-speed wind tunnel. 

A Pitot probe is used to determine the velocity profile in the viscous region downstream of the 

airfoil, as shown in  Fig.   P4.13   . The resultant velocity distribution in the region    -w … z … +  w     

   u(z) = U� -

U�

2
 cos

pz
2w

   

   If we apply the integral form of the momentum equation  [equation (2.13)]     to the flow between 

the two streamlines bounding this wake, we can calculate the drag force acting on the airfoil 

section. The integral continuity equation  [equation (2.5)]     can be used to relate the spacing 

between the streamlines in the undisturbed flow (2 h ) to their spacing (2w) at the  x  location 

where the Pitot profile was obtained. If    w = 0.009c,    what is the section drag coefficient    Cd?      

c

Streamlines

Viscous wake

�w

�w

z

h
x

2 2w
cosu � U� �
pzU�

U�

 Figure P4.13        

   4.14.    For the wing dimensions and flow properties of Problem 4.1, find the total skin-friction 

coefficient and the total drag on the wing (both sides) using the method of equation (4.86) 

and the Prandtl-Schlichting turbulent skin-friction relation. Perform the estimation again 

using the approximate method of equation (4.87). Comment on the difference between the 

two approaches and the accuracy of the approximate method.   

   4.15.    Assume the flow over the flat plate of Problem 4.11 is at U� = 100 m>s (all other condi-

tions are the same). Find the total skin friction drag of the flat plate (both sides) using the 

Prandtl-Schlichting relation (initially assume that the flow is completely turbulent along 

the length of the plate). Now find the skin friction drag for the plate using the approximate 

formula of equation (4.87) which takes into account transition effects. How accurate was 

the initial assumption of fully turbulent flow?   

   4.16.    Derive equation (4.86) to find the total drag coefficient for the flat plate shown in  Fig.   4.18   . 

Convert the resulting relation into a drag relation for the flat plate and simplify the results.   

   4.17.    Using equation (4.95), calculate the thermal conductivity of air at 1500 K. What is the 

Prandtl number of perfect air at this temperature?   

   4.18.    The boundary conditions that were used in developing the equation for the laminar thermal 

boundary layer were that the temperature is known at the two limits (1)    u = 0    at    h = 0    

and (2)    u = 1    at    h S large.    What would be the temperature distribution if the boundary 

conditions were (1) an adiabatic wall (i.e.,    u� = 0    at    h = 0   ), and (2)    u = 1    at    h S large?    

 Hint : From equation (4.97), 

   u� = C(f �)Pr     
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   4.19.    Represent the wing of an airplane by a flat plate. The airplane is flying at standard sea-level 

conditions at 150 mi>h. The dimensions of the wing are chord = 5 ft and span = 30 ft What 

is the total heat transferred to the wing if the temperature of the wing is 50°F?   

   4.20.    A wind tunnel has a 1@m2, 6-m-long test section in which air at standard sea-level conditions 

moves at 50 m>s. It is planned to let the walls diverge slightly (slant outward) to compensate 

for the growth in boundary-layer displacement thickness, and thus maintain a constant area 

for the inviscid flow. This allows the free-stream velocity to remain constant. At what angle 

should the walls diverge to maintain a constant velocity between x = 0.5 m and x = 5 m?    
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    5   CHARACTERISTIC 

PARAMETERS FOR 

AIRFOIL AND WING 

AERODYNAMICS 

     Chapter Objectives 

  •   Understand the basic geometric parameters that define airfoil and wing shapes  
  •   Know the basic aerodynamic forces and moments and be able to define their 

nondimensional coefficients for airfoils and wings  
  •   Have a general understanding of the impact of airfoil geometry on the resulting 

aerodynamics, including the effects of camber and thickness  
  •   Know how flow around a wing is different from flow around an airfoil and be able 

to estimate the impact of wing geometry on lift and drag  
  •   Know the contributing factors to airplane drag and be able to estimate the zero-

lift drag coefficient of an airplane   

  Modern aircraft wings are complex shapes which are required to fulfill multiple, often 

competing, requirements, as is the case for the C-17 shown in  Fig.   5.1   . Besides providing 

lift during cruise for the C-17, the wing must also be able to greatly increase its lift for 

landing slowly on short, unimproved runways. In addition, the wing aids in drag reduc-

tion through the use of wing-tip devices and allows the airplane to fly at higher sub-

sonic Mach numbers through the use of supercritical airfoil sections. Finally, the wing 

requires a complex and lightweight structure, with the ability to integrate and control 
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the propulsion system, and since fuel is stored in the wing, all of this is done with an eye 

on maximizing the internal volume. Defining the airfoil sections and wing planform 

(shape), while keeping all of the other diverse requirements in mind, is a difficult and 

challenging task. Hopefully you will learn enough in this chapter to begin to understand 

how to analyze and design such a complex system.    

      5.1  CHARACTERIZATION OF AERODYNAMIC FORCES 
AND MOMENTS 

   5.1.1  General Comments 

 The motion of air around the vehicle produces pressure and velocity variations 

through the flow field. Although viscosity is a fluid property and acts throughout the 

flow field, the viscous forces acting on the vehicle depend on the velocity gradients 

near the surface as well as the viscosity itself. The normal (pressure) forces and the 

tangential (shear) forces which act on the surface due to the motion of air around the 

vehicle are shown in  Fig.   5.2   . The pressures and the shear forces can be integrated 

over the surface on which they act in order to yield the resultant aerodynamic force 

( R ), which acts at the center of pressure (cp) of the vehicle, as shown in  Fig.   5.3   .   

 For convenience, the total force vector is usually resolved into components. Body-

oriented force components are used when the application is primarily concerned with 

 Figure 5.1         The wing of the C-17 (which includes supercritical airfoil 

sections, leading-edge devices, blown flaps, and wing-tip devices) 

represents the complexity of a modern airplane wing system (U.S. 

Air Force photo by Tech Sgt. Keith Brown).   
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the vehicle response (e.g., the aerodynamics or the structural dynamics). We will first 

consider the forces and moments in the plane of symmetry (i.e., the pitch plane). For 

the pitch-plane forces depicted in  Fig.   5.3   , the body-oriented components are the axial 

force, which is the force parallel to the vehicle axis ( A ), and the normal force, which is 

the force perpendicular to the vehicle axis ( N ). 

 For applications such as trajectory analysis, the resultant force is divided into com-

ponents taken relative to the velocity vector (i.e., the flight path). Therefore, for these 

applications the resultant force is divided into a component parallel to the flight path 

(parallel to    U�    ), which is the drag ( D ), and a component perpendicular to the flight path 

(perpendicular to    U�    ), which is the lift ( L ), as shown in  Fig.   5.3   . The body forces can be 

related to the wind-axis forces through resolving components of the resultant vector as: 

    L = N cos a - A sin a

 D = N sin a + A cos a   

 As the airplane moves through the earth’s atmosphere, its motion is determined by 

its weight, the thrust produced by the engine, and the aerodynamic forces acting on the 

vehicle. Consider the case of steady, level, unaccelerated flight (abbreviated as SLUF) 

in the horizontal plane. This condition requires: (1) that the sum of the forces along the 

flight path is zero, and (2) that the sum of the forces perpendicular to the flight path is 

zero. For now we will only consider cases where the angles are small (e.g., the component 

of the thrust parallel to the free-stream velocity vector is only slightly less than the thrust 

itself). Summing the forces along the flight path (parallel to the  free-stream velocity), the 

equilibrium condition requires that the thrust must equal the drag acting on the airplane. 

Summing the forces perpendicular to the flight path leads to the conclusion that the 

weight of the aircraft is balanced by the lift. In equation form, this is:    L = W    and    T = D.    

Thrust

cp cgA

D

R
N

L

Weight

a

a

U�

 Figure 5.3         Nomenclature for aerodynamic forces in the pitch 

plane.   

Shear force

Shear force

Shear force

Pressure
force

Pressure force

Pressure force

 Figure 5.2         Normal (or pressure) and 

tangential (or shear) forces on an air-

foil surface.   
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 Consider the case where the lift generated by the wing/body configuration acts 

ahead of the center of gravity, as shown in  Fig.   5.4   . Because the lift force generated by 

the wing/body configuration,    LWB,    acts ahead of the center of gravity, it will produce a 

nose-up (positive) pitch moment about the center of gravity (cg). The aircraft is said to 

be trimmed when the sum of the moments about the cg is zero:  

   a  Mcg = 0   

 Therefore, a force from a control surface located aft of the cg (e.g., a tail surface) is needed 

to produce a nose-down (negative) pitch moment about the cg which could balance the 

moment produced by the wing/body lift. The tail-generated lift force,    LT,    is indicated in  Fig. 

  5.4   . The orientation of the tail surface which produces the lift force depicted in  Fig.   5.4    also 

produces a drag force, which is known as the trim drag. Typically, the trim drag may vary 

from 0.5% to 5% of the total cruise drag for the airplane. You should remember that the 

trim drag is associated with the lift generated to trim the vehicle, but does not include 

the tail profile drag (which is included in the total drag of the aircraft at zero lift conditions). 

 In addition to the force components which act in the pitch plane (i.e., the lift, which 

acts upward perpendicular to the undisturbed free-stream velocity, and the drag, 

which acts in the same direction as the free-stream velocity), there is a side force,  Y . 

The side force is the component of force in a direction perpendicular to the geometric 

plane containing the lift and drag. The side force is positive when acting toward the 

starboard wing (i.e., the pilot’s right). 

 As we noted earlier, the resulting aerodynamic force usually will not typically act 

through the origin of the airplane’s axis system (i.e., the center of gravity,  cg ). The moment 

due to the resultant force acting at a distance from the  cg  may be divided into three com-

ponents, referring to the airplane’s reference axes, as shown in  Fig.   5.5   . The three moment 

components are the pitch moment, the roll moment, and the yaw moment.  

    •   Pitch moment, M.      The moment about the lateral axis (the  y  axis of the airplane-

fixed coordinate system) is the pitch moment. The pitch moment is the result of 

the lift and the drag forces acting on the vehicle at a point other than the  cg . A 

positive pitch moment is in the nose-up direction.  

   •   Roll moment, +.      The moment about the longitudinal axis of the airplane (the  x  

axis) is the roll moment. A roll moment is often created by a differential lift on one 

wing when compared to the other, generated by some type of aileron or spoiler. A 

positive roll moment causes the right, or starboard, wingtip to move downward.  

W

LWB
LT

 Figure 5.4         Moment balance to trim an aircraft.   
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   •   Yaw moment, 1.      The moment about the vertical axis of the airplane (the  z  axis) is 

the yaw moment. A positive yaw moment tends to rotate the nose to the pilot’s right.   

 Generally an aerodynamicist would have to define all three forces ( L ,  D , and  Y ) and all 

three moments (�,  M , and �) for an aircraft throughout the flight envelope (at every 

combination of altitude, Mach number, and Reynolds number).  However, in the follow-

ing chapters we will concentrate on the longitudinal forces and moments,  L ,  D , and  M .   

   5.1.2  Parameters That Govern Aerodynamic Forces 

 The magnitude of the forces and of the moments that act on an airplane depend on the 

combined effects of many different variables. Personal observations of the aerodynamic 

forces acting on an arm extended from a car window or on a ball in flight demonstrate the 

effect of velocity and of configuration. Pilot manuals advise that a longer length of runway 

is required if the ambient temperature is relatively high or if the airport elevation is high 

(i.e., the ambient density is relatively low). Also, airplanes flying at supersonic speeds 

have very different characteristics than when flying at subsonic speeds. The parameters 

that govern the magnitude of aerodynamic forces and moments include the following: 

    •   Configuration geometry  

   •   Angle of attack (i.e., vehicle attitude in the pitch plane relative to the flight direction)  

   •   Vehicle size or model scale  

   •   Free-stream velocity  

   •   Density of the undisturbed air  

   •   Reynolds number (as it relates to viscous effects)  

   •   Mach number (as it relates to compressibility effects)   

y
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z

Lateral
axis
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pitch

moment
M
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roll

moment
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Vertical
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N

Center
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gravity

Longitudinal
axis

 Figure 5.5         Reference axes of the airplane and the corresponding 

aerodynamic moments.   
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 The calculation of the aerodynamic forces and moments acting on a vehicle often 

requires that the engineer be able to relate data obtained at other flow conditions to 

the conditions of interest. Therefore, the aerodynamicist often uses data from the wind 

tunnel, where scale models are exposed to flow conditions that simulate the design 

environment or data from flight tests at other flow conditions. So that we can correlate 

the data for various free-stream conditions and configuration scales, the measurements 

are usually presented in dimensionless form. Ideally, once in dimensionless form, the 

results would be independent of all but the first two parameters listed, configuration 

geometry and angle of attack. In practice, flow phenomena such as boundary-layer 

separation, shock-wave/boundary-layer interactions, and compressibility effects limit 

the range of flow conditions over which the dimensionless force and moment coeffi-

cients remain constant. For these cases, parameters such as the Reynolds number and 

the Mach number appear in the correlations for the force and moment coefficients.   

   5.2  AIRFOIL GEOMETRY PARAMETERS 

 If a horizontal wing is cut by a vertical plane parallel to the centerline of the vehicle, the 

resultant section is called the  airfoil section . The generated lift and stall characteristics 

of the wing depend strongly on the geometry of the airfoil sections that make up the 

wing. Geometric parameters that have an important effect on the aerodynamic charac-

teristics of an airfoil section include (1) the leading-edge radius, (2) the mean camber 

line, (3) the maximum thickness and the thickness distribution of the profile, and (4) 

the trailing-edge angle. The effect of these geometric parameters, which are illustrated 

in  Fig.   5.6   , will be discussed after an introduction to airfoil-section nomenclature. Some 

of the basic parameters used to describe the airfoil geometry are:  

    •   Leading edge—the forward most point on the airfoil (typically placed at the origin 

for convenience)  

z

x

x-location
of maximum

thickness

x � 0
(Leading edge)

x � c
(Trailing edge)

x-location of
maximum camber Chord line

Chord

Leading-edge
radius

Maximum thickness

Maximum camber
Mean camber line

 Figure 5.6         Airfoil-section geometry and its nomenclature.   
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   •   Trailing edge—the aft most point on the airfoil (typically placed on the  x  axis for 

convenience)  

   •   Chord line—a straight line between the leading and trailing edges (the  x  axis for 

our convention)  

   •   Mean camber line—a line midway between the upper and lower surfaces at each 

chordwise position  

   •   Maximum camber—the largest value of the distance between the mean camber 

line and the chord line, which quantifies the camber of an airfoil  

   •   Maximum thickness—the largest value of the distance between the upper and 

lower surfaces, which quantifies the thickness of the airfoil

 • Leading-edge radius—the radius of a circle that fits the leading-edge curvature   

 These geometric parameters are used to determine certain aerodynamic characteristics 

of an airfoil, as we will discuss in the next sections. 

   5.2.1  Airfoil-Section Nomenclature 

 Airfoils play an integral role in determining the aerodynamics of wings. Having a basic 

understanding of how they work and how to estimate their lift, drag, and pitch moment is 

critical to aerodynamics. Early researchers realized this as the first airfoils were being de-

signed (even the Wright brothers tested various basic airfoil shapes for their flyer). Once 

airplanes became practical, the National Advisory Committee for Aeronautics (N.A.C.A., 

which will be written NACA from now on) began to systematically test airfoils in increas-

ingly complex families of shapes. Many of these groundbreaking wind-tunnel experiments 

were conducted by a group of researchers, and were summarized in the famous airfoil 

book  Theory of Wing Sections  by  Abbott and von Doenhoff (1949) . 

  Abbott and von Doenhoff (1949)  summarized the work on airfoil development 

this way: 

  The gradual development of wing theory tended to isolate the wing-section prob-

lems from the effects of planform and led to a more systematic experimental ap-

proach. The tests made at Göttingen during World War I contributed much to the 

development of modern types of wing sections. Up to about World War II, most 

wing sections in common use were derived from more or less direct extensions of 

the work at Göttingen. During this period, many families of wing sections were 

tested in the laboratories of various countries, but the work of the NACA was 

outstanding. The NACA investigations were further systematized by separation 

of the effects of camber and thickness distribution, and the experimental work was 

performed at higher Reynolds number than were generally obtained elsewhere.  

 As a result, the geometry of many airfoil sections is uniquely defined by the 

NACA designation for the airfoil. There are a variety of NACA airfoil classifications, 

including NACA four-digit wing sections, NACA five-digit wing sections, and NACA 

six-series wing sections, among others. As an example, consider the NACA four-digit 

wing sections, which are designate as: 

   NACA XYZZ   
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 The first integer, X, indicates the maximum value of the mean camber-line ordinate (see 

 Fig.   5.6   ) in percent of chord. The second integer, Y, indicates the distance from the lead-

ing edge to the maximum camber location in tenths of chord. The last two integers, ZZ, 

indicate the maximum section thickness in percent of chord. Therefore, the NACA 0010 

is a symmetric airfoil section whose maximum thickness is 10% of the chord (the two 

leading “0” digits indicate that there is no camber, so the airfoil is symmetric about the 

 x  axis). The NACA 4412 airfoil section is a 12% thick airfoil which has a 4% maximum 

camber located at 4/10ths (40%) of the chord. 

 A series of “standard” modifications to the airfoils were designated by the 

NACA using a suffix consisting of a dash followed by two digits. These modifica-

tions consist essentially of: (1) changes of the leading-edge radius from the normal 

value, and (2) changes of the position of maximum thickness from the normal position 

(which is at 0.3 c ). 

 After the NACA four-digit airfoils were tested and the results were tabulated, a 

second set of wind-tunnel tests was planned with the more advanced NACA five-digit 

airfoils. The NACA five-digit airfoil family allowed for camber and thickness levels 

that were not represented as integers, and therefore advanced the level of detail from 

the NACA four-digit tests. The NACA six-series airfoils were, in general, designed to 

maximize the amount of laminar flow on the section, and were not designed purely as a 

geometric family. Other series of airfoil sections were tested by the NACA, and details 

for them may also be found in  Abbott and von Doenhoff (1949) . 

 Because of more recent improvements in design methodology, and because of 

the broad use of sophisticated numerical codes, there are many airfoil sections being 

developed that are not described by the standard NACA geometry nomenclature [see 

the University of Illinois Airfoil Data Site,  Selig (2012) , for example].  

   5.2.2  Leading-Edge Radius and Chord Line 

 The  chord line , as discussed earlier, is defined as the straight line connecting the leading 

and trailing edges. The leading edge of airfoils used in subsonic applications is rounded, 

with a radius that is on the order of 1% of the chord length. The leading-edge radius of 

the airfoil section is the radius of a circle centered on a line tangent to the leading-edge 

camber connecting tangency points of the upper and the lower surfaces with the lead-

ing edge. The center of the leading-edge radius is located so that the cambered section 

projects slightly forward of the leading-edge point. The magnitude of the leading-edge 

NACA 0010-64

The second integer of the
modification indicates the
location of the maximum
thickness in tenths of
chord.

The first integer indicates
the relative magnitude of
the leading-edge radius
(normal leading-edge
radius is “6”; sharp
leading edge is “0”).

� �
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radius has a significant effect on the stall (or boundary-layer separation) characteristics 

of the airfoil section. Specifically, if the leading-edge radius is too small, the flow will 

have a tendency to separate near the leading edge, causing fairly abrupt stall charac-

teristics for the airfoil. 

 The geometric angle of attack is the angle between the chord line and the direction 

of the undisturbed, “free stream” flow. For many airplanes the chord lines of the airfoil 

sections are inclined relative to the vehicle axis, which is called  incidence . Incidence is 

used to create lift while the airplane is on the runway, which decreases take-off distance, 

among other benefits.  

   5.2.3  Mean Camber Line 

 The locus of the points midway between the upper surface and the lower surface, as meas-

ured perpendicular to the chord line, defines the  mean camber line . The shape of the mean 

camber line is very important in determining the aerodynamic characteristics of an airfoil sec-

tion.  As we will see in the theoretical solutions and in the experimental data that will be pre-

sented in  Chapter   6   , cambered      airfoils in a subsonic flow generate lift even when the section 

angle of attack is zero. Therefore, an effect of camber is a change in the zero-lift angle of 

attack,    a0l.    While symmetric airfoil sections have zero lift at zero degrees angle of attack, zero 

lift occurs for sections with positive camber when they are at negative angles of attack. 

 Furthermore, camber has a beneficial effect on the maximum value of the section 

lift coefficient,    Clmax
.    If the maximum lift coefficient is high, the stall speed will be low, 

all other factors being the same. You should notice, however, that the high thickness 

and camber necessary for high maximum values of the section lift coefficient produce 

low critical Mach numbers  (as we will discuss in  Chapter   9   )  and high twisting moments 

at high speeds. We always need to consider the trade-offs in selecting a design value for 

a particular parameter in aerodynamics.  

   5.2.4  Maximum Thickness and Thickness Distribution 

 The maximum thickness and the thickness distribution strongly influence the aerodynamic 

characteristics of the airfoil section as well. The maximum local velocity to which a fluid 

particle accelerates as it flows around an airfoil section increases as the maximum thickness 

increases  (see the discussion associated with  Fig.   4.10   ) . Therefore, the minimum pressure 

value is smallest for the thickest airfoil. As a result, the adverse pressure gradient associated 

with the deceleration of the flow from the location of this pressure minimum to the trailing 

edge is greatest for the thickest airfoil. As the adverse pressure gradient becomes larger, 

the boundary layer becomes thicker (and is more likely to separate producing relatively 

large values for the form drag). Because of this, the beneficial effects of increasing the 

maximum thickness are limited. 

 Consider the maximum section lift coefficients for several different thickness-ratio 

airfoils presented in this table. The values are taken from experimental data presented 

in  Abbott and von Doenhoff (1949) . The data show that a low-speed airfoil has an 

optimum thickness for maximizing the lift of the airfoil. In the case of the data shown 

below, the optimum thickness to maximize    Clmax
    is approximately 12%.    
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 For a very thin airfoil section (which has a relatively small leading-edge radius), boundary-

layer separation occurs early, not far from the leading edge of the upper (leeward) surface. 

As a result, the maximum section lift coefficient for a very thin airfoil section is relatively 

small. The maximum section lift coefficient increases as the thickness ratio increases from 

8% of the chord to 12% of the chord. The separation phenomenon described in the previ-

ous paragraph causes the maximum section-lift coefficients for the relatively thick airfoil 

sections (i.e., those with a thickness ratio of 18% of the chord and of 24% of the chord) 

to be less than those for medium thickness airfoil sections. 

 The thickness distribution for an airfoil affects the pressure distribution and the 

character of the boundary layer. As the location of the maximum thickness moves 

aft, the velocity gradient (and hence the pressure gradient) in the mid-chord region 

decreases. The resultant favorable pressure gradient in the mid-chord region promotes 

boundary-layer stability and increases the possibility that the boundary layer remains 

laminar. Laminar boundary layers produce less skin-friction drag than turbulent bound-

ary layers but are also more likely to separate under the influence of an adverse pressure 

gradient. This will be discussed in more detail later in this chapter , as well as in  Section 

  6.6    . In addition, the thicker airfoils benefit more from the use of high lift devices but 

have a lower critical Mach number , which will be discussed in  Chapter   9    .  

   5.2.5  Trailing-Edge Angle 

 The trailing-edge angle affects the location of the aerodynamic center (which will be 

defined later in this chapter). The aerodynamic center of thin airfoil sections in a sub-

sonic stream is theoretically located at the quarter-chord    (c>4),    but can vary depending 

on the geometry of the airfoil.         

 Aerodynamics Concept Box: Airfoil Characteristics 

 In general, subsonic airfoils have a number of important characteristics, as discussed in  Eppler 

(1990) . First of all, increasing the angle of attack generally gives higher upper surface velocities 

when compared with the lower surface velocities, as can be seen for the NACA 2412 airfoil 

below. You can see that    �V    (the difference between the velocity on the upper and lower sur-

faces at one chordwise location) is higher near the leading edge, and decreases to very small 

values near the trailing edge. Since the lift of the airfoil is proportional to the difference in 

 Airfoil Section     Clmax
    

 NACA 2408  1.5 
 NACA 2410  1.65 

 NACA 2412  1.7 

 NACA 2415  1.63 

 NACA 2418  1.48 

 NACA 2424  1.3 
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   5.3  WING-GEOMETRY PARAMETERS 

 A wing is a three-dimensional shape made up of two-dimensional airfoil sections. By 

placing the airfoil sections in various spanwise combinations, wings, horizontal tails, 

vertical tails, canards, and/or other lifting surfaces are formed. When the parameters 

that characterize the wing planform are introduced, attention must be directed to the 

existence of flow components in the spanwise direction (three-dimensional flow). In 

other words, airfoil section properties deal with flow in two dimensions, while wing 

planform properties relate to the resultant flow in three dimensions. 

 Several terms are typically used to fully describe the planform (or projected shape) 

of a wing. The terms that are pertinent to defining the aerodynamic characteristics of a 

wing are illustrated in  Fig.   5.7   , and include:  
    •   The  wing area ,  S , is simply the planform area (or projected area) of the wing. Although 

a portion of the area may be covered by a fuselage or nacelles, the pressure carryover 

on these surfaces allows legitimate consideration of the entire planform area.  

velocity    l � 1 c
0

�Vdx, �V    is a very important parameter for determining how well an airfoil 

works. The peak in velocity near the leading edge is known as the “suction peak,” which creates 

an adverse pressure gradient immediately downstream of the suction peak. 

NACA 2412

Upper surface

Angle of attack � 0�

Lower surface

0.5
x/c

v/V

0
0

0.5

1

1.5

1

NACA 2412

Upper surface

Angle of attack � 6�

Lower surface

0.5
x/c

v/V

0
0

0.5

1

1.5

1

       NACA 2412 airfoil surface velocity distributions [from Eppler (1990)]   

 Boundary-layer separation is strongly affected by the pressure gradient,    dp>dx    (a favorable 

pressure gradient means    dp>dx 6 0    and    dV>dx 7 0    and an adverse pressure gradient means 

   dp>dx 7 0    and    dV>dx 6 0   ). A strong adverse pressure gradient usually occurs near the trailing 

edge of the airfoil due to the stagnation point that exists there, so flow typically first experiences 

separation in this region. A milder adverse pressure gradient usually exists over the upper surface 

of the airfoil, but if the suction peak is too large due to the leading-edge curvature, the adverse 

pressure gradient that follows can cause separation to take place here, which is undesirable. In 

general, thicker airfoils have higher maximum velocities and stronger adverse pressure gradients, 

which means they will not attain the same levels of lift as somewhat thinner airfoils. 
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   •   The  wing span ,  b , is the straight-line distance measured from wing tip to wing tip.  

   •   The  average chord ,    c,    is determined so that the product of the span and the average 

chord is the wing area    (b * c = S).     

   •   The  aspect ratio ,  AR , is the ratio of the span and the average chord. 

   For a general wing, the aspect ratio is defined as: 

   AR =
b2

S
   

   For a rectangular wing, the aspect ratio is simply: 

   AR =
b
c

   

   The aspect ratio is a fineness ratio of the wing and is useful in determining aero-

dynamic characteristics and structural weight. Typical aspect ratios vary from 35 

for a high-performance sailplane to 2 for a supersonic jet fighter.  

   •   The  root chord ,    cr,    is the chord at the wing centerline, and the  tip chord ,    ct,    is the 

chord at the wing tip.  

   •   Considering the wing planform to have straight lines for the leading and trailing 

edges (half the wing will have the shape of a trapezoid), the  taper ratio ,    l,    is the 

ratio of the tip chord to the root chord: 

   l =
ct

cr
   

b

b b

b

ct

cr
ctc

cr
c
4 line

c
4 line

c
4 line

c
4 line

Swept wing

Rectangular wing Unswept trapezoidal wing

Delta wing

c
4� @

�LE

c
4

� @

 Figure 5.7         Geometric characteristics of the wing planform.   
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   The taper ratio affects the lift distribution and the structural weight of the wing. 

A rectangular wing has a taper ratio of 1.0, while a pointed tip delta wing has a 

taper ratio of 0.0.  

   •   The  sweep angle ,    �,    is usually measured as the angle between the line of 25% 

chord and a perpendicular to the root chord. Sweep angles of the leading edge or 

of the trailing edge are also used often, since they are of interest for many applica-

tions. The sweep of a wing causes definite changes in the maximum lift, in the stall 

characteristics, and in the effects of compressibility.  

   •   The  mean aerodynamic chord ,  mac , is used together with  S  to nondimensionalize 

the pitch moment. Therefore, the mean aerodynamic chord represents another 

average chord which, when multiplied by the product of the average section mo-

ment coefficient, the dynamic pressure, and the wing area, gives the moment for 

the entire wing. The  mac  is also used to estimate the Reynolds number of the wing 

for skin-friction calculations. The mean aerodynamic chord is defined by: 

   mac =
1

S L
+b>2

-b>2
[c(y)]2dy    

   •   The  dihedral angle  is the angle between a horizontal plane containing the root 

chord and a plane midway between the upper and lower surfaces of the wing. If 

the wing lies below the horizontal plane, it is termed as the  anhedral angle . The 

dihedral angle affects the lateral stability characteristics of the airplane.  

   •    Geometric twist  defines the situation where the chord lines for the spanwise 

distribution of airfoil sections do not all lie in the same plane. Therefore, there 

is a spanwise variation in the geometric angle of incidence for the sections. The 

chord of the root section of the wing shown in the sketch of  Fig.   5.8    is inclined 

   4�    relative to the vehicle axis, which is known as the  incidence angle . The chord 

of the tip section, however, is parallel to the longitudinal axis of the vehicle. 

In this case, where the incidence of the airfoil sections relative to the vehicle 

axis decreases toward the tip, the wing has “wash out.” The wings of numerous 

subsonic aircraft have wash out to control the spanwise lift distribution and, 

hence, the boundary-layer separation (i.e., stall) characteristics. If the angle of 

incidence increases toward the tip, the wing has “wash in.” The incidence angle 

is especially important for take-off characteristics (like runway length required 

for take-off).    
 The airfoil section distribution, the aspect ratio, the taper ratio, the twist, and 

the sweep of a planform are the principal factors that determine the aerodynamic 

characteristics of a wing and have an important bearing on its stall properties. In ad-

dition, dihedral and incidence are important factors for aircraft stability and take-off 

performance, respectively. These same quantities also have a definite influence on 

the structural weight and stiffness of a wing, the amount of fuel the aircraft can carry, 

the propulsion system integration, and access to the aircraft on the ground, which 

shows why aerodynamic design is a complex, multi-disciplinary field (see the discus-

sion of  Fig.   5.1    for example). Values of these parameters for a variety of aircraft 

have been taken from  Jane’s All the World’s Aircraft  [ Taylor (1973 ,  1966 ,  1984 ) and 
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 Jackson (2011) ], and are summarized in  Table   5.1   . Data are presented for four-place 

single-engine aircraft, commercial jetliners and transports, and high-speed military 

aircraft. Note how the values of these parameters vary from one group of aircraft 

to another. 

 The data presented in  Table   5.1    indicate that similar designs result for similar 

applications, regardless of the national origin of the specific design. For example, the 

aspect ratio for the four-seat, single-engine civil aviation designs is approximately 7, 

whereas the aspect ratio for the supersonic military aircraft is between 1.7 and 3.8. In 

fact, as noted in  Stuart (1978) , which was a case study in aircraft design for the Northrop 

F-5, “the selection of wing aspect ratio represents an interplay between a large value for 

low drag-due-to-lift and a small value for reduced wing weight.”  
 There are other trends exhibited in parameters relating to aircraft performance. 

Notice the grouping by generic classes of aircraft for the correlation between the power-

to-weight ratio and the wing loading that is presented in  Fig.   5.9   . There is a tendency for 

airplanes to get larger, heavier, and more complex with technological improvements. 

The trend toward larger, heavier aircraft is evident in this figure. Note that a fully loaded 

B-17G Flying Fortess, a heavy bomber of World War II, weighed 29,700 kg (65,500 lb) 

with a wing span of 31.62 m (103.75 ft), whereas the F-15, a modern fighter aircraft, has 

a maximum takeoff weight of 30,845 kg (68,000 lb) with a wing span of 13.05 m (42.81 

ft). However, the successful human-powered aircraft fall in the lower left corner of 

 Fig.   5.9   , with wing loadings (the ratio of take-off gross weight to wing area) less than 

   1 lbf>ft2.    It is in this same region that Lockheed’s solar high-altitude powered platform 

(Solar HAPP) operates.  

Chord of root section

Chord of tip section

Parallel to the vehicle longitudinal axis

y � 0

y � �(b /2)

c /4
(unswept)

Vehicle
longitudinal axis

 Figure 5.8         Unswept, tapered wing with geometric twist (wash 

out).   
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  EXAMPLE 5.1:    Aspect ratio of a delta wing 

 Develop an expression for the aspect ratio of a delta wing in terms of the 

leading-edge sweep angle    (�LE).    

  Solution:     Referring to the sketch of the delta wing in  Fig.   5.7   , the wing area is 

   S =
bcr

2
   

 and the    tan �LE    is given by 

   tan �LE =
cr

(b>2)
   

 Solving this second expression for    cr    and substituting it into the expression 

for the wing area, we obtain: 

   S =
b2

4
tan �LE   

 Substituting this expression for the wing area into the expression for the 

aspect ratio gives: 

      AR =
b2

S
=

4

tan �LE

  (5.1)      
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 Figure 5.9         Historical ranges of power loading and wing loading 

[ from Hall (1985) ].   
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  EXAMPLE 5.2:    Calculate the wing-geometry parameters for the 
Space Shuttle Orbiter 

 To calculate the wing-geometry parameters for the Space Shuttle  Orbiter , 

the complex shape of the actual wing is replaced by a swept, trapezoidal 

wing, as shown in  Fig.   5.10   . For the reference wing of the  Orbiter , the root 

chord    cr    is 57.44 ft, the tip chord    ct    is 11.48 ft, and the span  b  is 78.056 ft. 

Using these values which define the reference wing, calculate (a) the wing 

area  S , (b) the aspect ratio  AR , (c) the taper ratio    l,    and (d) the mean aero-

dynamic chord  mac . 

   Solution:    
    (a)   The area for the trapezoidal reference wing is: 

   S = a ct + cr

2
bb

2
2 = 2690 ft2    

   (b)   The aspect ratio for this swept, trapezoidal wing is: 

   AR =
b2

S
=

(78.056 ft)2

2690 ft2
= 2.265    

   (c)   The taper ratio is found from: 

   l =
ct

cr
=

11.48 ft

57.44 ft
= 0.20    

b � 78.056 ft
ct � 11.48 ft
cr � 57.44 ft

Wing glove

Reference
wing area

b

ct

cr

 Figure 5.10         Sketch of Space Shuttle  Orbiter  geometry for 

Example 5.2.   



254    Chap. 5 / Characteristic Parameters for Airfoil and Wing Aerodynamics

   (d)   To calculate the mean aerodynamic chord, we will first need an ex-

pression for the chord as a function of the distance from the plane of 

symmetry [i.e.,  c ( y )]. The required expression is: 

   c(y) = cr +

11.48 - 57.44

39.028
 y = 57.44 - 1.1776y     

 Substituting this expression for the chord as a function of y into the equation 

for the mean aerodynamic chord yields: 

   mac =
2

S L
b>2

0

[c(y)]2dy =
2

2690 L
39.028

0

(57.44 - 1.1776y)2dy   

 Integrating this expression, we obtain: 

   mac = 39.57 ft      

   5.4  AERODYNAMIC FORCE AND MOMENT 
COEFFICIENTS 

 Aerodynamicists have long used force and moment coefficients to describe the aerody-

namics of airplanes. Coefficients are nondimensional values which represent the forces 

and moments without including the effects of altitude (density), velocity, and size.  As we 

discussed in  Section   3.14   , however    , not all flow characteristics can be taken into account 

when nondimensionalizing forces and moments. That is why certain flight characteris-

tics (such as drag) are still functions of Reynolds number and Mach number, even when 

considered in coefficient form. 

   5.4.1  Lift Coefficient 

 We will now develop the equation for the normal force coefficient to illustrate the physical 

significance of a dimensionless force coefficient. We choose the normal (or  z ) component 

of the resultant force since it is relatively simple to calculate and it has the same relation 

to the pressure and the shear forces as does the lift. For a relatively thin airfoil section 

at a relatively low angle of attack, it is clear from  Fig.   5.2    that the lift (and similarly the 

normal force) results primarily from the action of the pressure forces. The shear forces act 

primarily in the chordwise direction (i.e., contribute primarily to the drag). Therefore, to 

calculate the force in the  z  direction, we only need to consider the pressure contribution, 

which is illustrated in  Fig.   5.11   . The pressure force acting on a differential area of the 

vehicle surface is    dF = p ds dy,    as shown in  Fig.   5.12   . The elemental surface area is the 

product of  ds , the wetted length of the element in the plane of the cross section, times  dy , 

the element’s length in the direction perpendicular to the plane of the cross section (or 

spanwise direction). Since the pressure force acts normal to the surface, the force compo-

nent in the  z  direction is the product of the pressure times the projected planform area:   
      dFz = p dx dy  (5.2)    
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 Integrating the pressure over the entire wing surface (including the upper and the lower 

surfaces) results in the net force in the  z  direction given by: 

      Fz = ∂p dx dy  (5.3)    

 Notice that the resultant force in any direction due to a constant pressure over a closed 

surface is zero. Therefore, the force in the  z  direction due to a uniform pressure,    p� ,    

acting over the entire wing area is zero, or: 

      ∂p�dx dy = 0  (5.4)    

 Combining equations (5.3) and (5.4), the resultant force component is: 

      Fz = ∂  (p - p�)dx dy  (5.5)    

 To nondimensionalize the factors on the right-hand side of equation (5.5), divide 

by the product    q�cb,    which has the units of force, and represents the characteristic flow 

and geometry parameters for the wing. 

   
Fz

q�cb
= ∂

p - p�

q�
da x

c
bda y

b
b    

z

x

ds dy

y

p

 Figure 5.12         Pressure acting on an elemental surface area.   

z

x

 Figure 5.11         Pressure distribution for a lifting airfoil section.   
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 Since the pressure coefficient was defined  in equation (3.13)  as    Cp = (p - p�) >q�,    and 

the product  cb  represents the planform area  S  of the rectangular wing of  Fig.   5.12   , we 

can write the integral as: 

      
Fz

q�S
= ∂Cpda x

c
bda y

b
b   (5.6)    

 When the boundary layer is thin, the pressure distribution around the airfoil is essentially 

that of an inviscid flow , as we discussed in  Chapter   3    . Therefore, the pressure distribution 

is independent of Reynolds number and does not depend on whether the boundary layer 

is laminar or turbulent. When the boundary layer is thin, the pressure coefficient at a 

particular location on the surface given by the dimensionless coordinates    (x>c, y>b)    is in-

dependent of vehicle scale and of the flow conditions. Over the range of flow conditions 

for which the pressure coefficient is a unique function of the dimensionless coordinates 

   (x>c, y>b),    the value of the integral in equation (5.6) depends only on the configuration 

geometry and on the angle of attack, rather than all of the variables discussed in  Section 

  5.1.2   . Therefore, the resulting dimensionless force parameter, or force coefficient (in this 

case, the normal force coefficient), is independent of model scale and of flow conditions. 

A similar analysis can be used to calculate the lift coefficient, which is defined as: 

      CL =
L

q�S
  (5.7)    

 Data are presented in  Fig.   5.13    for a NACA 23012 airfoil which were obtained 

from a wind-tunnel model that spanned from one tunnel wall to the other in order to 

represent a wing of infinite span. The lift acting on a wing of infinite span does not vary 

in the  y  direction. For this two-dimensional flow, we are interested in determining the 

lift acting on a unit width of the wing [i.e., the lift per unit span ( l )]. Therefore, the lift 

measurements are presented in terms of the section lift coefficient    Cl.    The section lift 

coefficient is the lift per unit span ( l ) divided by the product of the dynamic pressure 

times the planform area per unit span, which is the chord length ( c ):  

      Cl =
l

q�c
  (5.8)    

 The data from  Abbott and von Doenhoff (1949)  were obtained in a wind tunnel that 

could be operated at pressures up to 10 atm. As a result, the Reynolds number ranged 

from    3 * 106    to    9 * 106    at Mach numbers less than 0.17. In addition to the meas-

urements obtained with a smooth model, data are presented for a model that had 

 “standard” surface roughness applied near the leading edge. Additional comments will 

be made about surface roughness later in this chapter. 

 The experimental section lift coefficient is independent of Reynolds number and 

is a linear function of the angle of attack from approximately    -10�    to    +10�.    The slope 

of this linear portion of the curve is called the  two-dimensional lift-curve slope . Using 

the experimental data for this airfoil, we can find that: 

   
dCl

da
= Cla = a0 = 0.104 per degree   
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  Equations that we will develop in  Chapter   6    show that the     theoretical value for the two-

dimensional lift-curve slope is    2p    per radian (0.1097 per degree). 

 Since the NACA 23012 airfoil section is cambered (the maximum camber is ap-

proximately 2% of the chord length), lift is generated at zero degrees angle of attack. In 

fact, zero lift is obtained at    -1.2�,    which is designated    a0l    or the section angle of  attack 

for zero lift. The variation of the lift coefficient with angle of attack in the linear region 

is given by: 

      Cl = Cla(a - a0l)  (5.9)    

 which is the equation for a straight line (the slope is    Cla    and the  x  intercept is    a0l   ). As the 

angle of attack is increased above    10�,    the section lift coefficient continues to increase 

�1.6
�20 �10 0 10 20

�0.2 �0.8

0.0

0.8

1.6

2.4

Section angle of attack, deg

Cmc/4
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Rec
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6.0 � 106

8.8 � 106 (smooth model)

6.0 � 106 (standard roughness)
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Moment
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0.0

 Figure 5.13         Section lift coefficient and section moment coeffi-

cient (with respect to  c /4) for an NACA 23012 airfoil [data from 

 Abbott and von Doenhoff (1949) ].   
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(but is no longer linear with angle of attack) until a maximum value,    Clmax
,    is reached. 

Referring to  Fig.   5.13   ,    Clmax
    is 1.79 and occurs at an angle of attack of    18�,    which is called 

the stall angle of attack. Partly because of this relatively high value of    Clmax
    the NACA 23012 

section has been used on many aircraft (e.g., the Beechcraft Bonanza from  Table   5.1    and 

the Brewster Buffalo). 

 At angles of attack in excess of    10�,    the section lift coefficients exhibit a Reynolds-

number dependence.  Recall from  Chapter   4    that the     adverse pressure gradient (which 

the air particles encounter as they move toward the trailing edge of the upper surface) 

increases as the angle of attack increases. At these higher angles of attack, the air 

particles which have been slowed by the viscous forces cannot overcome the relatively 

large adverse pressure gradient, and the boundary layer separates. The separation 

location depends on the character (laminar or turbulent) of the boundary layer and its 

thickness, and therefore on the Reynolds number, which is why the stall characteristics 

vary with Reynolds number. As we will discuss later, boundary-layer separation has a 

profound effect on the drag acting on the airfoil. 

 The study of airfoil lift as a function of incidence has shown that, in many 

instances, the presence of a separation bubble near the leading edge of the airfoil 

results in laminar section stall. Experimental data on two-dimensional “peaky” 

airfoil sections indicate that    Clmax
    as limited by laminar stall, is strongly dependent 

on the leading-edge shape and on the Reynolds number. If the laminar boundary 

layer, which develops near the leading edge of the upper surface of the airfoil, is 

subjected to a relatively high adverse pressure gradient, it will separate because the 

relatively low kinetic energy level of the air particles near the wall is insufficient to 

surmount the “pressure hill” of the adverse pressure gradient. The separated shear 

layer that is formed may curve back onto the surface within a very short distance. 

This is known as  short bubble separation . The separated viscous layer near the pres-

sure peak may not reattach to the surface at all, or it may reattach within 0.3 chord 

length or more downstream. This extended separation region is known as  long 
bubble separation . Once the flow reattaches after a bubble separation, it often has 

transitioned to a turbulent boundary layer and the original laminar characteristics 

of the airfoil are lost.  More details about separation bubbles will be discussed in 

 Section   6.6   .  

 The separation bubble may not appear at all on relatively thick, strongly cam-

bered profiles operating at high Reynolds numbers. The reason for this is that the 

Reynolds number is then large enough for a natural transition to a turbulent bound-

ary layer to occur upstream of the strong pressure rise. The relatively high kinetic 

energy of the air particles in a turbulent boundary layer permits them to climb the 

“pressure hill,” and boundary-layer separation occurs only a short distance upstream 

of the trailing edge (trailing-edge stall). The separation point moves upstream con-

tinuously with increasing angle of attack, and the lift does not drop abruptly after 

   Clmax
    but decreases gradually. Hopefully you can see that the stall characteristics of an 

airfoil can be very different at different Reynolds numbers, with leading-edge separa-

tion taking place at low Reynolds numbers (or for a very small leading-edge radius) 

and trailing-edge separation taking place at higher Reynolds numbers (or for a rela-

tively large leading-edge radius). 
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  EXAMPLE 5.3:    Calculate the lift per unit span on a NACA 23012 
airfoil section 

 Consider tests of an unswept wing that spans the wind tunnel and whose 

airfoil section is NACA 23012. Since the wing model spans the test section, 

we will assume that the flow is two dimensional. The chord of the model is 

1.3 m. The test section conditions simulate a density altitude of 3 km. The 

velocity in the test section is 360 km/h. 

 What is the lift per unit span (in N/m) that you would expect to meas-

ure when the angle of attack is    4�?    What would be the corresponding section 

lift coefficient? 

  Solution:     First, we need to calculate the section lift coefficient. We will assume that 

the lift is a linear function of the angle of attack and that it is independent 

of the Reynolds number (i.e., the viscous effects are negligible) at these test 

conditions. These are reasonable assumptions as can be seen by referring 

to  Fig.   5.13   . Therefore, the section lift coefficient from equation (5.9) is: 

   Cl = Cla(a - a0l)   

 Using the values presented in the discussion associated with  Fig.   5.13   , 

   Cl = (0.1041>deg)(4.0�
- (-1.2� ) ) = 0.541   

 At an angle of attack of    4�,    the experimental values of the section lift coefficient 

for an NACA 23012 airfoil section range from 0.50 to 0.57, as shown in  Fig.   5.13   . 

 To calculate the corresponding lift force per unit span, we rearrange 

equation (5.8) to obtain 

   l = Clq�c   

 To calculate the dynamic pressure    (q�),    we need the velocity in m/s and the 

density in    kg>m3    in order for the units to be consistent: 

   U� = 360 
km

h
 
1000 m

km
 

h

3600 s
= 100 

m

s
   

 Given the density altitude is 3 km , we can refer to  Appendix   B    to find that : 

   r = 0.9093 kg>m3   

 ( Note:  The fact that we are given the density altitude as 3 km does not pro-

vide specific information either about the temperature or pressure.) 

 So now the lift per unit span is: 

    l = (0.541) c 1
2
a0.9093 

kg

m3
b a100 

m

s
b2 d (1.3 m)

 l = (0.541) c4546.5 

N

m2
d (1.3 m) = 3197.6 

N

m
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   5.4.2  Moment Coefficient 

 The moment created by the aerodynamic forces acting on a wing (or airfoil) is deter-

mined about a particular reference axis (also called the moment reference center). The 

reference axis could be the leading edge, the quarter-chord location, the aerodynamic 

center, and so on.  The significance of these reference axes in relation to the coefficients 

for thin airfoils will be discussed in  Chapter   6    . 

 The procedure used to nondimensionalize the moments created by the aerody-

namic forces is similar to that used to nondimensionalize the lift. To demonstrate this 

nondimensionalization, the pitch moment about the leading edge due to the pressures 

acting on the surface will first be calculated (refer again to  Fig.   5.12   ). The contribution 

of the chordwise component of the pressure force and of the skin-friction force to the 

pitch moment is small and is neglected. Therefore, the pitch moment about the leading 

edge due to the pressure force acting on the surface element whose area is  ds  times  dy  

and which is located at a distance  x  from the leading edge is: 

      dM0 = pdxdy   x  (5.10)    

 where  dx dy  is the projected area. Integrating over the entire wing surface, the net pitch 

moment is given by 

      M0 = ∂px dx dy  (5.11)    

 As we saw before, when a uniform pressure acts on any closed surface, the resultant 

pitch moment due to this constant pressure is zero, so: 

      ∂  p� x dx dy = 0

 

  (5.12)    

 Combining equations (5.11) and (5.12), the resulting pitch moment about the leading edge is: 

      M0 =  ∂ (p - p�)x dx dy  (5.13)    

 To nondimensionalize the factors on the right-hand side of equation (5.13), divide 

by    q�c2b,    which has the units of force times length: 

   
M0

q�c2b
=  ∂

p - p�

q�
 
x
c

da x
c
bda y

b
b    

 Since the product of  cb  represents the planform area of the rectangular wing  S , we can 

write the previous equation as: 

      
M0

q�Sc
= ∂Cp

x
c

da x
c
bda y

b
b   (5.14)    

 Now, the dimensionless moment coefficient is defined as: 

      CM0
=

M0

q�Sc
  (5.15)    

s

Lever 
Arm

r

Force
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 Figure 5.14         Section drag coefficient and section moment 

 coefficient (with respect to the ac) for a NACA 23012 airfoil 

[data from  Abbott and von Doenhoff (1949) ].   

 Since the derivation of equation (5.15) was for the rectangular wing of  Fig.   5.12   , the 

chord  c  is used. However, as noted previously in this chapter, the mean aerodynamic 

chord is used together with  S  to nondimensionalize the pitch moment for a general wing. 

 The section moment coefficient is used to represent the dimensionless moment 

per unit span    (m0):    

      Cm0
=

m0

q�cc
  (5.16)    

 since the surface area per unit span is the chord length  c . In general, the section pitch 

moment coefficient depends on the camber and on the thickness ratio. Section pitch mo-

ment coefficients for a NACA 23012 airfoil section with respect to the quarter chord and 

with respect to the aerodynamic center are presented in  Figs.   5.13    and    5.14   ,  respectively. 

The  aerodynamic center  is that point about which the section moment coefficient is in-

dependent of the angle of attack. Therefore, the aerodynamic center is that point along 

the chord where all changes in lift effectively take place. Since the moment about the 
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 aerodynamic center is the product of a force (the lift that acts at the center of pressure) 

and a lever arm (the distance from the aerodynamic center to the center of pressure), 

the center of pressure must move toward the aerodynamic center as the lift increases. 

The quarter-chord location is significant, since it is the theoretical aerodynamic center 

for incompressible flow about a two-dimensional airfoil  (we will prove this in  Chapter   6   ) .  

 Notice in  Figs.   5.13    and    5.14    that the pitch moment coefficient is independent of 

the Reynolds number (for those angles of attack where the lift coefficient is independ-

ent of the Reynolds number), since the pressure coefficient depends only on the dimen-

sionless space coordinates    (x>c, y>b)    [see equation (5.14)]. One of the nice features of 

the NACA 23012 airfoil section is a relatively high    Clmax
    with only a small    Cmac

.    

 The characteristic length (or moment arm) for the roll moment and yaw moment 

is the wing span  b  (instead of the chord), since the span is the characteristic length in 

the lateral direction. Therefore, the roll moment coefficient is: 

      C� =
�

q�Sb
  (5.17)    

 and the yaw moment coefficient is: 

      C� =
�

q�Sb
  (5.18)     

   5.4.3  Drag Coefficient 

 The drag force on a wing is due in part to skin friction and in part to the integrated ef-

fect of pressure. If    t
u

    denotes the tangential shear stress at a point on the body surface, 

 p  the static pressure, and    nn     the outward-facing normal to the element of surface  dS , the 

drag can be formally expressed as 

      D = ∂ t
u

# en�dS - ∂pnn # en�dS  (5.19)    

 where    en�    is a unit vector parallel to the free stream and the integration takes place over 

the entire wetted surface. The first integral represents the friction component and the 

second integral represents the pressure drag. 

 The most straightforward approach to calculating the pressure drag is to perform 

the numerical integration indicated by the second term in equation (5.19). This ap-

proach is known as the near-field method of drag computation. Unfortunately, this 

can be a relatively inaccurate procedure for streamlined configurations at small angles 

of attack. The inaccuracy results because the pressure drag integral is the difference 

between the integration on forward-facing and rearward-facing surface elements, this 

difference being a second-order (and therefore small) quantity for slender bodies. Fur-

thermore, the reader should realize that subtle differences between the computed pres-

sure distribution and the actual pressure distribution can have a significant effect on the 

validity of the drag estimates, depending where the differences occur. If the pressure 

difference is near the middle of the aerodynamic configuration, where the local slope 

is roughly parallel to the free-stream direction, it will have a relatively small effect on 

the validity of the estimated drag. However, if the pressure difference is near the front 

or aft end of the configuration (for instance, at the nose or on a nozzle boattail), even 
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a small  difference between the computed pressure and the actual pressure can have a 

significant effect on the accuracy of the predicted drag. 

  In  Chapter   3    we learned that zero     drag results for irrotational, steady, incompress-

ible flow past a two-dimensional body. For an airfoil section (i.e., a two-dimensional 

geometry) which is at a relatively low angle of attack so that the boundary layer is thin 

and does not separate, the pressure distribution is essentially that for an inviscid flow. 

Therefore, skin friction is a major component of the chordwise force per unit span    (fx).    

Referring to  Figs.   5.2    and    5.11   ,    sfx    can be approximated as: 

      sfx � Ct dx  (5.20)    

 where    sfx    is the chordwise force per unit span due to skin friction. Dividing both sides 

of equation (5.20) by the product    q�c    gives us an expression for the dimensionless force 

coefficient: 

      
sfx

q�c
�  CCf da x

c
b   (5.21)    

 where    Cf,    the skin-friction coefficient , was defined in equation (4.21) as : 

      Cf =
t

1
2r�U2

�

  (5.22)    

  As we stated in the general discussion of the boundary-layer characteristics in  Chapter   4    

(see  Fig.   4.19   ), skin     friction for a turbulent boundary layer is much greater than that for 

a laminar boundary layer for given flow conditions.  Equations for calculating the skin-

friction coefficient were developed in  Chapter   4   . However, we     can introduce the correla-

tions for the skin-friction coefficient for incompressible flow past a flat plate to gain insight 

into the force coefficient of equation (5.21). Of course, the results for a flat plate only 

approximate those for an airfoil, but they will help us understand the basic nature of what 

is happening. The potential function given by equation  (3.35a)     shows that the velocity at 

the edge of the boundary layer and, therefore, the local static pressure, is constant along 

the plate. Such is not the case for an airfoil section, for which the flow accelerates from 

a forward stagnation point to a maximum velocity, then decelerates to the trailing edge. 

Nevertheless, the analysis will provide useful insights into the section drag coefficient, 

      Cd =
d

q�c
  (5.23)    

 for an airfoil at relatively low angles of attack. 

  Referring to  Chapter   4   , when     the boundary layer is laminar the local skin friction 

coefficient is: 

      Cf =
0.664

(Rex)0.5
  (5.24)    

 and for a turbulent boundary layer: 

      Cf =
0.0583

(Rex)0.2
  (5.25)    



264    Chap. 5 / Characteristic Parameters for Airfoil and Wing Aerodynamics

 For equations (5.24) and (5.25), the local Reynolds number is defined as: 

      Rex =
r�U� x
m�

  (5.26)    

 Also,  as was shown in  Chapter   4   ,  total skin-friction coefficients can be defined and used 

as well. The total skin-friction coefficient for laminar flow is given by: 

      Cf =
1.328

2ReL

  (5.27)    

 and the total skin-friction coefficient for turbulent flow is 

      Cf =
0.074

(ReL)0.2
  (5.28)    

 which is the Prandtl formulation, although the Prandtl-Schlichting formulation was 

shown to be more accurate: 

      Cf K
0.455

(log10ReL)2.58
  (5.29)    

 These total skin-friction coefficients use the length-based Reynolds number given by: 

      ReL =
r�U�L
m�

  (5.30)    

 where  L  is the length of a flat plate. 

  EXAMPLE 5.4:    Calculate the local skin friction 

 Calculate the local skin friction at a point 0.5 m from the leading edge of a 

flat-plate airfoil flying at 60 m/s at an altitude of 6 km. 

  Solution:     Refer to   Table   1.2        to obtain the static properties of undisturbed air at 

6 km: 

    r� = 0.6601 kg>m3

 m� = 1.5949 * 10-5 kg>s # m   

 Now, using equation (5.26), 

    Rex =
(0.6601 kg>m3)(60 m>s)(0.5 m)

1.5949 * 10-5 kg>s # m

 = 1.242 * 106    

 If the boundary layer is laminar, 

    Cf =
0.664

(Rex)0.5
= 5.959 * 10-4

 t = Cf (
1
2r�U2

�) = 0.708 N>m2   
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 and if the boundary layer is turbulent, 

    Cf =
0.0583

(Rex)0.2
= 3.522 * 10-3

 t = Cf (
1
2r�U2

�) = 4.185 N>m2   

 Notice that the local shear stress for the turbulent boundary layer is nearly 

six times larger than that for the laminar boundary layer.   

  As we discussed in the text of  Chapter   2    and in the homework problems of  Chap-

ters   2    and    4   , the     integral form of the momentum equation can be used to determine the 

drag acting on an airfoil section. This approach is known as the far-field method of drag 

determination. Wing-section profile-drag measurements have been made for the Boeing 

727 in flight using the Boeing Airborne Traversing Probe, examples of which are pre-

sented in  Fig.   5.15   . The probe consists of four main components: (1) flow sensors, (2) a 

rotating arm, (3) the drive unit, and (4) the mounting base. As reported by  Bowes (1974) ,  

  The measured minimum section profile drag at    M = .73    was about 15 percent 

higher than predicted from wind-tunnel test data for a smooth airfoil. The wind-

tunnel data used in this correlation were also from wake surveys on the 727 wing. 

The data were adjusted to fully turbulent flow and extrapolated to flight Reynolds 

numbers. This quite sizeable difference between the measured and extrapolated 

values of    Cd, min    has been attributed to surface roughness and excrescences on the 

airplane wing, although the 15-percent increase in wing-section profile drag is larger 

than traditionally allotted in airplane drag estimates. The wing section where this 

Wake Survey
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Area-Momentum Survey
Mounting

Flow sensor

Drive unit
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Array
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Arm

 Figure 5.15         Airborne traversing probe concept and configura-

tions [from  Bowes (1974) ].   
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survey was performed was inspected and had numerous steps and bumps due to 

control devices and manufacturing tolerances which would account for this local 

level of excrescence drag. This is not representative of the entire wing surface.   

   5.4.4  Boundary-Layer Transition 

  We talked about transition in  Chapter   4   , but now     we need to find a practical way to make 

engineering estimations for the impact of transition on aerodynamic forces, especially 

drag. It is obvious that the force coefficient of equation (5.21) depends on the Reynolds 

number. The Reynolds number not only affects the magnitude of    Cf,    but it is also used as 

an indicator of whether the boundary layer is laminar or turbulent. Since the calculation 

of the force coefficient requires integration of    Cf     over the chord length, we must know at 

what point, if any, the boundary layer becomes turbulent (i.e., where transition occurs). 

 Near the forward stagnation point on an airfoil, or on a wing, or near the lead-

ing edge of a flat plate, the boundary layer is initially laminar. As the flow proceeds 

downstream, the boundary layer thickens and the viscous forces continue to dissipate 

the energy of the airstream. Disturbances to the flow in the growing viscous layer may 

be caused by surface roughness, a temperature variation in the surface, pressure pulses, 

and so on. If the Reynolds number is low, the disturbances will be damped by viscos-

ity and the boundary layer will remain laminar, but at higher Reynolds numbers the 

disturbances may grow. In such cases, the boundary layer may become unstable and, 

eventually, turbulent (i.e., transition will occur). The details of the transition process are 

quite complex and depend on many parameters , as we discussed in  Chapter   4    . 

 The engineer who must develop a transition criterion for design purposes usually 

uses the Reynolds number. For instance, if the surface of a flat plate is smooth and if 

the external airstream has no turbulence, transition often is assumed to “occur” at a 

Reynolds number    (Rex)    of approximately 500,000. However, experience has shown 

that the Reynolds number at which the disturbances will grow and the length over which 

the transition process takes place depends on the magnitude of the free-stream distur-

bances and on the flow field. Specifically, the criterion that low-speed transition takes 

place at a Reynolds number of 500,000 was based on wind-tunnel tests with fairly high 

levels of free-stream turbulence. That is, the air approaching the flat plate had relatively 

large fluctuations in velocity, sometimes on the order of 2% to 3% of the free-stream 

velocity. More recent experiments with low levels of free-stream disturbances have 

shown that the transition Reynolds number can be much higher than this [Eli Reshotko, 

personal communication (2012)]. Experiments in the Schubauer-Skramstad wind tunnel 

(1948) had a transition Reynolds number of 2,800,000 with free-stream turbulence levels 

less than 0.07%. That wind tunnel, however, was limited by acoustic disturbances. The 

Klebanoff tunnel at Arizona State University measured transition Reynolds numbers 

of 3,400,000 according to  Saric (1992) . There are wind tunnels in Japan, Russia, and 

Sweden which have measured transition Reynolds numbers above 3,000,000.  Estimating 

the impact of transition Reynolds number on skin friction can be achieved fairly easily 

by using the appropriate transition correction in  Table   4.5    with the total skin-friction 

relation in equation (4.87).  A quick examination of the impact of varying the transition 

location should be conducted to ensure that a particular result is not highly dependent 

on an incorrect assumption about transition. 
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 In order to have a fuller understanding of transition, we will briefly consider the 

effects of surface roughness, surface temperature, pressure gradients in inviscid flow, 

and local Mach number on transition. 

    •   Surface roughness.      Since transition is the amplification of disturbances to the 

flow, the presence of surface roughness significantly promotes transition (i.e., 

causes transition to occur at relatively low Reynolds numbers).  

   •   Surface temperature.      The boundary-layer thickness decreases as the surface tem-

perature is decreased; cooling the surface usually delays transition. However, for 

supersonic flows, there is a complex relationship between boundary-layer transi-

tion and surface cooling.  

   •   Pressure gradient.      A favorable pressure gradient (i.e., the static pressure decreases 

in the streamwise direction or, equivalently, the inviscid flow is accelerating) delays 

transition. Conversely, an adverse pressure gradient promotes transition.  

   •   Mach number.      The transition Reynolds number is usually higher (sometimes 

significantly higher) when the flow is compressible (i.e., as the Mach number is 

increased).  See  Section   12.8    for more details.    

 Stability theory [e.g., see  Mack (1984) ] can be an important tool that provides 

insights into the importance of individual parameters without introducing spurious ef-

fects that might be due to flow disturbances peculiar to a test facility (e.g., “noise” in 

a wind tunnel). For a more detailed discussion of transition, you should refer to good 

reference sources for boundary-layer theory [e.g.,  Schlichting (1979) ]. 

 If the skin friction is the dominant component of the drag, transition should be de-

layed as long as possible to obtain a low-drag section. To delay transition on a low-speed 

airfoil section, the point of maximum thickness could be moved aft so that the boundary 

layer is subjected to a favorable pressure gradient over a longer run. Consider the NACA 

0009 section and the NACA 66–009 section; both are symmetric, having a maximum thick-

ness of 0.09 c . The maximum thickness for the NACA 66–009 section is at 0.45 c , while that 

for the NACA 0009 section is at 0.3 c  (see  Fig.   5.16   ). As a result, the minimum pressure 

coefficient occurs at    x = 0.6c    for the NACA 66–009 and a favorable pressure gradient 

acts to stabilize the boundary layer up to this point. For the NACA 0009, the minimum 

pressure occurs near    x = 0.1c,    which promotes early transition. The lower local veloci-

ties near the leading edge and the extended region of favorable pressure gradient cause 

transition to be farther aft on the NACA 66–009. Since the drag for a streamlined airfoil at 

low angles of attack is primarily due to skin friction, use of equation (5.21) would indicate 

that the drag is lower for the NACA 66–009. This is verified by the data from  Abbott and 

von Doenhoff (1949)  which are reproduced in  Fig.   5.17   . The subsequent reduction in the 

friction drag due to laminar flow creates a  drag bucket  for the NACA 66–009 section (the 

term “drag bucket” comes from the narrow region of drag reduction for the laminar airfoil 

near zero lift). Note that the section drag curve varies only slightly with    Cl    for moderate 

excursions in angle of attack, since the skin-friction coefficient varies little with angle of 

attack. At the very high Reynolds numbers that occur at some flight conditions, it is dif-

ficult to maintain a long run of a laminar boundary layer, especially if surface roughnesses 

develop during the flight operations. However, a  laminar-flow section , such as the NACA 

66–009, offers additional benefits. Comparing the cross sections presented in  Fig.   5.16   , the 
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 Figure 5.16         Comparison of geometries and resultant pressure 

distributions for a “standard” airfoil section (NACA 0009) and 

for a laminar airfoil section (NACA 66–009): (a) comparison of 

cross section for an NACA 0009 airfoil with that for an NACA 

66–009 airfoil; (b) static pressure distribution.   

cross section of the NACA 66–009 airfoil provides more flexibility for carrying fuel and 

for accommodating the load-carrying structure, which are important multidisciplinary 

aspects of wing design, as discussed at the beginning of the chapter.   

 For larger angles of attack, the section drag coefficient depends both on Reynolds 

number and on angle of attack. As the angle of attack and the section lift coefficient in-

crease, the minimum pressure coefficient also decreases, and the adverse pressure gradi-

ent that results as the flow decelerates toward the trailing edge increases. When the air 

particles in the boundary layer, already slowed by viscous action, encounter the relatively 

strong adverse pressure gradient, the boundary layer thickens and separates. Because the 

thickening boundary layer and its separation from the surface cause the pressure distribu-

tion to be significantly different from the inviscid model at the higher angles of attack, 

form drag dominates. Notice that at the higher angles of attack (where form drag is impor-

tant), the drag coefficient for the NACA 66–009 is greater than that for the NACA 0009, 

as shown in  Fig.   5.17   . The preceding description points to the great challenge of airfoil 

design: in order to obtain lift, there must be an increased pressure difference between the 
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upper and lower surfaces of the airfoil. The lower upper surface pressures, however, can 

easily lead to flow separation, which decreases lift and increases drag. 

 When the viscous effects are secondary, we see that the lift coefficient and the mo-

ment coefficient depend only on the vehicle geometry and angle of attack for low-speed 

flows. However, the drag coefficient exhibits a Reynolds number dependence both at 

the low angles of attack, where the boundary layer is thin (and the transition location is 

important), and at high angles of attack, where extensive regions of separated flow exist. 

 The section drag coefficient for a NACA 23012 airfoil is presented as a function 

of the section lift coefficient in  Fig.   5.14   . The data illustrate the dependence on Rey-

nolds number and on angle of attack, which has already been discussed. Notice that the 

measurements, which are taken from  Abbott and von Doenhoff (1949) , include data for 

a  standard roughness , which will be discussed next.  

   5.4.5  Effect of Surface Roughness on the Aerodynamic 
Forces 

  As discussed in  Chapter   2   , the     Reynolds number is an important parameter when com-

paring the viscous character of two fields. If we want to reproduce the Reynolds number 

for a flight test condition in the wind tunnel, then 

      ar�U�c
m�

b
wt

= ar�U�c
m�

b
ft

  (5.31)    

 where the subscripts wt and ft designate wind-tunnel and flight conditions, respectively. 

In many low-speed wind tunnels, the free-stream values for density and for viscosity are 

roughly equal to the atmospheric values. Therefore, 

      (U�c)wt � (U�c)ft  (5.32)    
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 Figure 5.17         Section drag coefficients for NACA 0009 airfoil and 

for NACA 66–009 airfoil,    Rec = 6 * 106.    [data from  Abbott and 

von Doenhoff (1949) ].   
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 If the wind-tunnel model is 0.2 scale, the wind-tunnel value for the free-stream veloc-

ity would have to be five times the flight value. As a result, the tunnel flow would be 

transonic or supersonic, which obviously would not be a reasonable simulation since the 

Mach number would be significantly different. Therefore, since the maximum Reynolds 

number for this “equal density” subsonic wind-tunnel simulation is much less than the 

flight value, controlled surface roughness is often added to the model to “fix” boundary-

layer transition at the location at which it would occur naturally in flight, or at a known 

location that would allow for adjustment to flight Reynolds numbers. 

  Abbott and von Doenhoff (1949)  present data on the effect of surface condi-

tion on the aerodynamic forces. “The standard leading-edge roughness selected by the 

NACA for 24-in chord models consisted of 0.011-in carborundum grains applied to the 

surface of the model at the leading edge over a surface length of 0.08 c  measured from 

the leading edge on both surfaces. The grains were thinly spread to cover 5 to 10% of 

the area. This standard roughness is considerably more severe than that caused by the 

usual manufacturing irregularities or deterioration in service, but it is considerably less 

severe than that likely to be encountered in service as a result of accumulation of ice, 

mud, or damage in military combat.” The data for the NACA 23012 airfoil ( Fig.   5.13   ) 

indicate that the angle of zero lift and the lift-curve slope are practically unaffected by 

the standard leading-edge roughness. However, the maximum lift coefficient is affected 

by surface roughness. This is further illustrated by the data presented in  Fig.   5.18   .  

 When there is no appreciable separation of the flow, the drag on the airfoil is caused 

primarily by skin friction. Thus, the value of the drag coefficient depends on the relative 

extent of the laminar boundary layer. A sharp increase in the drag coefficient results when 

transition is suddenly shifted forward. If the wing surface is sufficiently rough to cause tran-

sition near the wing leading edge, large increases in drag are observed, as is evident in the 

data of  Fig.   5.14    for the NACA 23012 airfoil section. In other test results presented in  Ab-

bott and von Doenhoff (1949) , the location of the roughness strip was systematically varied. 

The minimum drag increased progressively with forward movement of the roughness strip. 

 Scaling effects between model simulations and flight applications (as they relate 

to the viscous parameters) are especially important when the flow field includes an 

interaction between a shock wave and the boundary layer. The transonic flow field for 

an airfoil may include a shock-induced separation, a subsequent reattachment to the 

airfoil surface, and another boundary-layer separation near the trailing edge. According 

to  Pearcey et al. (1968) , the prime requirements for correct simulation of these transonic 

shock/boundary-layer interactions include that the boundary layer is turbulent at the 

point of interaction and that the thickness of the turbulent boundary layer for the model 

flow is not so large in relation to the full-scale flow that a rear separation would occur 

in the simulation that would not occur in the full-scale flow. 

  Braslow et al. (1966)  provide some general guidelines for the use of grit-type boundary-

layer transition trips. Whereas it is possible to fix boundary-layer transition far forward on 

wind-tunnel models at subsonic speeds using grit-type transition trips having little or no 

grit drag, the roughness configurations that are required to fix transition in a supersonic 

flow often cause grit drag. Fixing transition on wind-tunnel models becomes increasingly 

difficult as the Mach number is increased. Since roughness heights several times larger than 

the boundary-layer thickness can be required to fix transition in a hypersonic flow, the 

required roughness often produces undesirable distortions of the flow.  Sterret et al. (1966)  
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provide some general guidelines for the use of boundary-layer trips for hypersonic flows. 

Data are presented to illustrate problems that can arise from poor trip designs. 

 The comments regarding the effects of surface roughness were presented for two rea-

sons. (1) The reader should note that, since it is impossible to match the Reynolds number 

in many scale-model simulations, surface roughness (in the form of boundary-layer trips) is 

often used to fix transition and therefore the relative extent of the laminar boundary layer. 

(2) When surface roughness is used, considerable care should be taken to properly size and 

locate the roughness elements in order to properly simulate the desired flow. 

 The previous discussion has focused on the effects of roughness elements that 

have been intentionally placed on the surface to fix artificially the location of transition. 

As discussed, the use of boundary-layer trips is intended to compensate for the inability 

to simulate the Reynolds number in ground-test facilities. However, surface roughness 

produced by environmental “contamination” may have a significant (and unexpected) 

effect on the transition location. As noted by  van Dam and Holmes (1986) , loss of 

laminar flow can be caused by surface contamination such as insect debris, ice crystals, 

moisture due to mist or rain, surface damage, and “innocent” modifications such as the 

addition of a spanwise paint stripe. 
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 Figure 5.18         Effect of roughness near the leading edge on the 

maximum section lift for the NACA, 63(420)-422 airfoil [data 

from  Abbott and von Doenhoff (1949) ].   
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 As noted by  van Dam and Holmes (1986) , “The surface roughness caused by such 

contamination can lead to early transition near the leading edge. A turbulent bound-

ary layer which originates near the leading edge of an airfoil, substantially ahead of the 

point of minimum pressure, will produce a thicker boundary layer at the onset of the 

pressure recovery as compared to the conditions produced by a turbulent boundary 

layer which originates further downstream. With sufficiently steep pressure gradients 

in the recovery region, a change in the turbulent boundary layer conditions    . . .    can lead 

to premature turbulent separation    . . . ,    thus affecting the aerodynamic characteristics 

and the effectiveness of trailing-edge control surfaces.    . . .    Also, forward movement of 

transition location and turbulent separation produce a large increase in section drag.”        

       Upper surface infrared thermography pictures of a UCAV con-

figuration. Left: clean leading edge. Right: with carborundum 

grit trip [Schütte and Cummings (2011)].   

 Aerodynamics Concept Box: Boundary-layer Transition Effects 
on Wind-Tunnel Testing 

 One of the biggest issues facing researchers conducting wind-tunnel tests on aircraft ge-

ometries is transition. Not knowing where transition takes place during a test means a long 

list of questions will exist about the test, including: was the boundary layer laminar or turbu-

lent?; was transition at the front of the model or halfway back, or did it happen at all?; what 

impact did transition have on the results (lift, drag, separation, etc.)? To avoid these questions, 

especially if the results will be used for numerical prediction comparisons, wind-tunnel engi-

neers typically force transition to take place at a known location by using some sort of surface 

roughness. The pictures below show such a test on a generic UCAV geometry, and the impact 

of transition was examined at the very beginning of the test [ Schütte and Cummings (2011) ]. 

 Because the precise knowledge of the flow conditions is of paramount importance for tests 

which are used for computational validation, the wind-tunnel entry was begun with boundary 

layer transition observations using infrared thermography. In case the model surface and the 

passing air have different temperatures, the transition line can be observed with an infrared 
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   5.4.6  Method for Predicting Aircraft Parasite Drag 

 As you can imagine, total aircraft parasite drag is a complex combination of aircraft con-

figuration, skin friction, pressure distribution, interference among aircraft components, 

and flight conditions, among other things. Accurately predicting parasite drag would 

seem an almost impossible task, especially compared with predicting lift. To make the 

situation even more challenging, there are a variety of terms associated with drag, all of 

which add confusion about drag and predicting drag. Some of the common terms used 

to describe drag are [ McCormick (1979) ]: 

    •    Induced  (or  vortex )  drag —drag due to the trailing vortex system  

   •    Skin-friction drag —due to viscous stress acting on the surface of the body  

   •    Form  (or  pressure )  drag —due to the integrated pressure acting on the body, 

caused by flow separation  

   •    Interference drag —due to the proximity of two (or more) bodies (e.g., wing and 

fuselage)  

   •    Trim drag —due to aerodynamic forces required to trim the airplane about the 

center of gravity  

   •    Profile drag —the sum of skin-friction and pressure drag for an airfoil section  

   •    Parasite drag —the sum of skin-friction and pressure drag for an aircraft  

   •    Base drag —the pressure drag due to a blunt base or afterbody  

   •    Wave drag —due to shock wave energy losses   

 In spite of these complexities, numerous straightforward estimation methods exist for 

predicting the parasite drag of aircraft, most of which use a combination of theoretical 

and empirical (called semi-empirical) approaches. 

 While the building block methods for predicting skin-friction drag have been 

presented in  Sections 4.7.1 and     5.4.3, there are a variety of methods for applying skin-

friction prediction methods to determine total aircraft drag. Every aerodynamics group 

at each aircraft manufacturer has different methods for estimating subsonic aircraft 

drag. The basic approaches, however, are probably quite similar: 

    1.   Estimate an equivalent flat-plate skin-friction coefficient for each component of 

the aircraft (wing, fuselage, stabilizers, etc.)  

   2.   Correct the skin-friction coefficient for surface roughness  

   3.   Apply a form factor correction to each component’s skin-friction coefficient to 

take into account supervelocities (velocities greater than free stream around the 

camera of suitable sensitivity because of the different heat transfer properties of laminar 

and turbulent boundary layers. The picture on the left shows the UCAV in the tunnel with 

a smooth leading-edge surface. The dashed line shows the transition front along the wing 

leading edge, which is quite irregular  (as we discussed in  Section   4.4   ) . When a strip of carbo-

rundum grit was added to the leading edge, the thermography showed the boundary layer to 

be fully turbulent, answering many of the questions that could be raised later. Knowing the 

location of transition is essential for good wind-tunnel testing. 
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component) as well as pressure drag due to flow separation to obtain a parasite-

drag coefficient  

   4.   Convert each corrected skin-friction coefficient into an aircraft drag coefficient 

for that component  

   5.   Sum all aircraft parasite-drag coefficients to obtain a total aircraft drag coef-

ficient   

 Of course, this approach does not take into account a variety of sources of aircraft drag, 

including: 

    •   Interference drag (the drag of one component because it is in the vicinity of an-

other component, like a wing attached to a fuselage)  

   •   Excrescence drag (the drag due to various small drag-producing protuberances, 

including rivets, bolts, wires, etc.)  

   •   Engine installation drag  

   •   Drag due to control surface gaps  

   •   Drag due to fuselage upsweep  

   •   Landing gear drag   

 The total aircraft drag coefficient is defined as: 

      CD K
D

q�Sref

  (5.33)    

 where    Sref    is usually the wing planform area for an airplane. When the airplane drag 

coefficient is defined in this way, the term “drag count” refers to a drag coefficient of 

   CD = 0.0001    (e.g., a drag coefficient of    CD = 0.0100    would be 100 drag counts); many 

aerodynamicists refer to drag counts rather than the drag coefficient. 

 The following approach to determining subsonic aircraft parasite drag is due to 

 Shevell (1989)  and also is presented in  Schaufele (2000) . This approach assumes that 

each component of the aircraft contributes to the total drag without interfering with each 

other. While this is not true, the approach provides a good starting point for the estima-

tion of drag. The zero-lift drag coefficient for subsonic flow is obtained by: 

      CD0
= a

N

i=1

Ki Cfi 
Sweti

Sref

  (5.34)    

 where  N  is the total number of aircraft components making up the aircraft (wing, 

fuselage, stabilizers, nacelles, pylons, etc.),    Ki    is the form factor for each component, 

   Cfi
    is the total skin-friction coefficient for each component,    Sweti

    is the wetted area of 

each component, and    Sref    is the aircraft reference area (there is only one reference 

area for the entire aircraft, which is usually the wing planform area). 

 Most aircraft components fall into one of two geometric categories: (1) wing-like 

shapes and (2) body-like shapes. Because of this, there are two basic ways to find the 

equivalent flat-plate skin-friction coefficient for the various aircraft components. 

  Wing Method.     A wing with a trapezoidal planform (as shown in  Fig.   5.19   ) can 

be defined by a root chord    cr,    a tip chord    ct,    a leading-edge sweep    �,    and a semi-

span    b>2.    The difficulty comes in applying the flat-plate skin-friction analysis to a wing 
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with variable chord lengths along the span. Since the total skin-friction coefficient is a 

 function of the Reynolds number at the “end of the plate”, each spanwise station would 

have a different Reynolds number, and hence, a different total skin-friction coefficient.  

 It would be possible to perform a double integration along the chord and span of the 

wing to obtain a total skin-friction coefficient for the wing; however, an easier approach is 

to find an equivalent rectangular flat plate using the mean aerodynamic chord (mac) of the 

wing as the appropriate flat-plate length. The mean aerodynamic chord, defined in  Section 

  5.3   , can be calculated using the following formulation which is valid for a trapezoidal wing: 

      mac =
2

3
acr + ct -

cr ct

cr + ct
b =

2

3
 cral

2
+ l + 1

l + 1
b   (5.35)    

 where    l = ct>cr    is the taper ratio of the wing. The mean aerodynamic chord can then 

be used to define a “mean” Reynolds number for the wing: 

      ReL =
r�U�mac

m�
  (5.36)    

 It is important to remember that if a portion of the “theoretical” wing is submerged in 

the fuselage of the aircraft, then that portion of the wing should not be included in the 

calculation—the mean aerodynamic chord should be calculated using the root chord at 

the side of the fuselage! 

 Now the total skin-friction coefficient for the wing can be found using the Prandtl-

Schlichting formula, including the correction for laminar flow (assuming transition takes 

place at    Rex, tr = 500,000   ) , from equation (4.87) : 

      Cf =
0.455

(log10ReL)2.58
-

1700

ReL
  (5.37)    

 Before proceeding any farther, the skin-friction coefficient should be corrected for 

surface roughness and imperfections. Various approaches exist for making this correction, 

some of which include small imperfections in the wing surface, such as rivets, seams, and 

gaps. In general, there is no straightforward method for correcting for surface roughness, 

so an empirical correction is often used, based on the actual flight test data of aircraft 

compared with the drag prediction using the approach outlined in this section. Most sub-

sonic aircraft have a 6% to 9% increase in drag due to surface roughness, rivets, etc. [ Kroo 

(2003) ]. However, Kroo reports that, “carefully built laminar flow, composite aircraft may 

achieve a lower drag associated with roughness, perhaps as low as 2 to 3%.” 
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 Figure 5.19         Geometry of a wing with a trapezoidal planform.   
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 The key factor in correcting for surface roughness is the relative height of the im-

perfections in the surface compared with the size of the laminar (or viscous) sublayer of 

the boundary layer  (see  Fig.   4.15    for details about the laminar sublayer) . The laminar sub-

layer usually is contained within a distance from the wall of    y+ � 10,    so if the equivalent 

“sand” grain roughness of the surface is contained within the laminar sublayer, than the 

surface is aerodynamically “smooth.” As the sand grain roughness,  k , increases in size, 

the skin friction will increase accordingly, as shown in  Fig.   5.20   , and eventually remains 

at a constant value with increasing Reynolds number. Since the thickness of the laminar 

sublayer actually decreases with Reynolds number, the impact of surface roughness is 

increased at higher Reynolds numbers, since the roughness will emerge from the sublayer 

and begin to impact the characteristics of the turbulent boundary layer, as discussed in 

 Hoerner (1965) . Notice that as the relative grain size increases, the skin-friction coefficient 

can deviate from the smooth turbulent value by factors as high as 300%. Keeping aerody-

namic surfaces as smooth as possible is essential to reducing skin-friction drag! Equivalent 

sand grain roughness for different surfaces varies from approximately    k = 0.06 * 10-3    

in. for a polished metal surface, to    k = 2 * 10-3    in. for mass production spray paint, and 

to    k = 6 * 10-3    in. for galvanized metal [ Blake (1998) ].  

 Now that the skin-friction coefficient has been found (including a roughness cor-

rection), the form factor for the wing can be found from  Fig.   5.21   . This figure is based 

on empirical information and shows the correction to the skin-friction coefficient to take 

into account supervelocities (flow acceleration over the wing which alters the boundary 

layer properties which are assumed to be based on free-stream levels) and pressure drag 

due to flow separation. Thicker wings have higher form factors and hence higher drag, 

while thinner wings have lower form factors and lower drag. An increase in wing sweep 

also tends to reduce the form factor and the drag coefficient.  
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 Figure 5.20         Effect of surface roughness on skin-friction drag [roughness 

curves from  Gollos (1953) ].   
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 Finally, the wetted area of the wing can be calculated using the following relation-

ship from  Kroo (2003) : 

      Swet � 2.0(1 + 0.2t>c)Sexposed  (5.38)    

 where    Sexposed    is the portion of the wing planform that is not buried within the fuselage. 

The thickness factor in the previous equation takes into account the slight increase in 

flat-plate area due to the fact that the wing thickness increases the arc length of the wing 

chord. The exposed area is doubled to take into account the top and bottom of the wing. 

 The wing parasite-drag coefficient now can be calculated from equation (5.34) as: 

      CD0
= KCf Swet>Sref  (5.34)     

  Fuselage Method.     Since the fuselage has a single length (as shown in  Fig.   5.22   ), 

the calculation of the skin-friction coefficient is simpler than for a wing. First, find the 
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 Figure 5.21         Wing form factor as a function of wing thickness 

ratio and quarter-chord sweep angle [from  Shevell (1989) ].   
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Reynolds number at the end of the fuselage as:  

      ReL =
r�U�L
m�

  (5.30)    

 and calculate the total skin-friction coefficient using equation (5.37). The skin-friction 

coefficient also can be corrected for surface roughness using the same approximation 

as discussed for the wing. 

 The fuselage form factor is a function of the fineness ratio of the body, which is de-

fined as the length of the fuselage divided by the maximum diameter of the fuselage,    L>D    

(not to be confused with the lift-to-drag ratio). The form factor can be found in  Fig.   5.23    
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 Figure 5.22         Geometry of a fuselage with circular cross sections.   
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 Figure 5.23         Body form factor as a function of fuselage fineness 

ratio [from  Shevell (1989) ].   
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and shows that the more long and slender the fuselage, the smaller the form factor, and the 

smaller the drag coefficient increment due to separation. Conversely, a short, bluff body 

would have a high form factor due to large amounts of supervelocities and flow separation, 

and hence a higher drag coefficient.  

 The total wetted area of the fuselage can be calculated as: 

      Swet � Swetnose
+ Swetbody

+ Swettail
  (5.39)    

 where the wetted areas can be found assuming that the various portions of the fu-

selage can be approximated as cones, cylinders, and conical sections [from  Kroo 

(2003) ]: 

       Swetnose
= 0.75pDLnose 

  Swetbody
= pDLbody   (5.40) 

  Swettail
= 0.72pDLtail    

 These formulas do not double the exposed area of the fuselage, since air only flows over 

one side of the fuselage (namely, hopefully, the outside of the fuselage!).  

  Total Aircraft Parasite Drag.     Now that the drag coefficient for the wing and 

fuselage have been calculated, the remaining components of the aircraft must be in-

cluded, as shown in  Fig.   5.24   . Most of the remaining components can be approximated 

Wings/Stabilizers

Fuselage

Pylon

Nacelle

 Figure 5.24         Aircraft showing the major components that contrib-

ute to drag (U.S. Air Force photo by Staff Sgt Aaron Allmon).   
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as either wing-like surfaces or fuselage-like surfaces, using the same methods as have 

been described previously. For example:  

    •    Vertical  and  horizontal stabilizers —use wing method  

   •    Engine pylons —use wing method  

   •    Engines nacelles —use fuselage method  

   •    Blade antenna —use wing method   

 This approach can be continued for the vast majority of the aircraft. Now the total air-

craft zero-lift drag coefficient can be found by using equation (5.34) as: 

   CD0
= a

N

i=1

KiCfi 
Sweti

Sref

   

 The remaining drag components are due to smaller affects, such as excrescence drag, 

base drag, and interference drag. Some of these drag components would be extremely 

difficult (and time consuming) to calculate. In spite of this, semi-empirical and empirical 

methods for estimating the drag of rivets, bolts, flap gaps, and other small protuberances 

can be found in Hoerner’s book on drag [ Hoerner (1965) ]. It is probably more expedient 

to use an empirical correction for the remainder of the drag, which is often done at aircraft 

manufacturers based on historical data from previous aircraft [ Shevell (1989) ]. 

  EXAMPLE 5.5:    Estimate the subsonic parasite-drag coefficient 

 This example will show how the subsonic parasite-drag coefficient for the 

F-16 can be estimated at a specific altitude. It is important to note that, unlike 

other aerodynamic coefficients, the subsonic drag coefficient is a function of 

altitude and Mach number, since the Reynolds number over the surfaces of 

the aircraft will vary with altitude and Mach. This example will assume that the 

aircraft is flying at an altitude of 30,000 ft and has a Mach number of 0.4 (to 

match available flight test data). The theoretical wing area of the F-16 is 

   300 ft2,    which will serve as the reference area for the aircraft:    Sref = 300 ft2.    

  Solution:     The first task is to estimate the wetted area of the various surfaces of the 

aircraft. A good estimate of these areas has been completed in  Brandt et al. 

(2004)  and is reproduced here in  Fig.   5.25    and  Tables   5.2    and    5.3   . The aircraft 

 TABLE 5.2    F-16 Wing-Like Surface Wetted Area Estimations [data from 
Brandt et al. (2004)] 

 Surface  Span, ft     cr,    ft     ct,    ft   t/c      Swet, ft
2    

 Wing (1 and 2)  12  14  3.5  0.04  419.4 

 Horizontal tail (3 and 4)  6  7.8  2  0.04  117.5 

 Strake (5 and 6)  2  9.6  0  0.06  38.6 

 Inboard vertical tail (7)  1.4  12.5  6  0.10  26.3 

 Outboard vertical tail (8)  7  8  3  0.06  77.3 

 Dorsal fins (9 and 10)*  1.5  5  3  0.03  23.9 

   *not shown in  Fig.   5.25      
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is approximated with a series of wing-like and fuselage-like shapes, as shown 

in  Fig.   5.25   . The wetted area for these simplified geometric surfaces is ap-

proximated using equations (5.38) and (5.40).    

 This simplified approximation yields a total wetted area of    1418 ft2,    

which is very close to the actual wetted area of the F-16, which is    1495 ft2    

Surface #5
Cylinder #1

Cylinder #2Cone #1

Half Cone #1

Half Cone #2
Surface #6

Surface #2

Surface #7

Surface #8

Surface #4

Surface #3

Half Cylinder #3

Half Cylinder #2

Half Cylinder #1

Half Cylinder #4

Surface #1

 Figure 5.25         F-16 geometry approximated by simple shapes [from 

 Brandt et al. (2004) ].    

 TABLE 5.3    F-16 Fuselage-Like Surface Wetted Area Estimations [data from Brandt et al. (2004)] 

 Surface  Length, ft   Height,  ft   Width,  ft     Swet , ft2      Net     Swet , ft2    

 Fuselage (cylinder 1)  39  2.5  5  551.3  551.3 

 Nose (cone 1)  6  2.5  5  42.4  42.4 

 Boattail (cylinder 2)  4  6  6  62.8  62.8 

 Side (half cylinder 1 and 2)  24  0.8  1  67.9  29.5 

 Canopy (half cylinder 3)  5  2  2  15.7  5.7 

 Engine (half cylinder 4)  30  2.5  5  180  32.1 

 Canopy front (half cone 1)  2  2  2  3.1  1.1 

 Canopy rear (half cone 2)  4  2  2  6.3  2.3 



282    Chap. 5 / Characteristic Parameters for Airfoil and Wing Aerodynamics

[ Brandt et al. (2004) ]. Now that these wetted areas have been obtained, the 

parasite-drag coefficient for each surface can be estimated. 

  Wing.     First, estimate the mean aerodynamic chord of the wing as: 

   mac =
2

3
 acr + ct -

cr ct

cr + ct
b =

2

3
 a14 ft + 3.5 ft -

(14 ft)(3.5 ft)

(14 + 3.5) ft
b = 9.800 ft   

 and use the mac to calculate the Reynolds number for the equivalent rec-

tangular wing as 

   ReL =
r�U�mac

m�
=

(0.000891 slug>ft3)(397.92 ft>s)(9.800 ft)

3.107 * 10-7 lb - s/ft2
= 11.18 * 106   

 Finally, the total skin-friction coefficient for the wing is calculated as: 

    Cf =
0.455

(log10 ReL)2.58
-

1700

ReL
=

0.455

(log10 11.18 * 106)2.58
-

1700

11.18 * 106

 = 0.00280    

 Assume for the sake of this example that the wing is aerodynamically 

smooth, so no roughness correction will be applied. However, a form factor 

correction should be performed. From  Fig.   5.21    for a leading-edge sweep of 

   40�    and a thickness ratio of 0.04,    K = 1.06    and the parasite drag coefficient is: 

   CD0
=

KCf Swet

Sref

=
(1.06)(0.00280)(419.4 ft2)

300 ft2
= 0.00415   

 The other wing-like components of the F-16 have had similar analysis 

performed, resulting in the zero-lift drag predictions presented in  Table   5.4   .  

  Fuselage. 

    L = Lnose + Lfuselage + Lboattail = 6 + 39 + 4 = 49.0 ft

 ReL =
(0.000891 slug>ft3)(397.92 ft>s)(49.0 ft)

3.107 * 10-7 lb - s>ft2
= 55.91 * 106

 Cf =
0.455

(log10 55.91 * 106)2.58
-

1700

55.91 * 106
= 0.00228    

 TABLE 5.4    F-16 Wing-Like Surface Zero-Lift Drag Estimations 

 Surface   mac, ft      ReL(*10 -6)        Cf      K      CD0
    

 Wing (1 and 2)  9.800  11.18  0.00280  1.06  0.00415 

 Horizontal tail (3 and 4)  5.472  6.568  0.00296  1.06  0.00123 
 Strake (5 and 6)  6.400  7.303  0.00293  1.04  0.00039 
 Inboard vertical tail (7)  9.631  10.99  0.00280  1.04  0.00026 
 Outboard vertical tail (8)  5.879  6.708  0.00295  1.08  0.00082 
 Dorsal Fins (9 and 10)  4.083  4.660  0.00304  1.04  0.00025 
  Total           0.00710 
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 From  Fig.   5.23   , for a fineness ratio of    L>D = 49.0 ft>[0.5*(2.5 + 5.0)ft] =  

13.067, K = 1.05    (requires some extrapolation from the graph) and the para-

site drag coefficient is: 

   CD0
=

KCf Swet

Sref

=
(1.05)(0.00228)(656.5 ft2)

300 ft2
= 0.00524     

 The other fuselage-like components of the F-16 have had similar analysis per-

formed, resulting in the zero-lift drag predictions presented in  Table   5.5   . 

 The total aircraft zero-lift drag coefficient (assuming aerodynamically 

smooth surfaces) is: 

   CD0
= CD0(Wings) + CD0(Fuselages) = 0.00710 + 0.00590 = 0.01300   

 Since the total wetted area estimate from this analysis was 5.4% lower 

than the actual wetted area of the F-16 (something which could be improved 

with a better representation of the aircraft surfaces, such as from a CAD 

geometry), it would be reasonable to increase the zero-lift drag value by 

5.4% to take into account the simplicity of the geometry model. This would 

result in a zero-lift drag coefficient of    CD0
= 0.01370.    

 Again, this result assumes that the surfaces are aerodynamically smooth, 

that there are no drag increments due to excrescence or base drag, and that 

there is no interference among the various components of the aircraft. If we 

assume that the other components of drag account for an additional 10%, then 

our final estimate for the zero-lift drag coefficient would be    CD0
= 0.0151;    a 

15% increase over    CD0
= 0.0137    would increase the estimate to    CD0

= 0.0158.    

Initial flight test data for the F-16 showed that the subsonic zero-lift drag coef-

ficient varied between    CD0
= 0.0160    and    CD0

= 0.0190    after correcting for 

engine effects and the presence of missiles in the flight test data [ Webb et al. 

(1977) ]. These results should be considered quite good for a fairly straightfor-

ward method that can be used easily on a spreadsheet.       

   5.5  WINGS OF FINITE SPAN 

 At this point, we need to determine the aerodynamics of a wing (a three-dimensional 

shape) based on our knowledge of airfoils (a two-dimensional shape). Unfortunately, 

there are a number of non-two-dimensional aspects of the flow around wings which 

 TABLE 5.5    F-16 Fuselage-Like Surface Zero-Lift Drag Estimations 

 Surface  Length, ft     ReL(*10 -6)        Cf      K      CD0
    

    Fuselage + nose + boattail     49.0  55.91  0.00228  1.05  0.00524 

 Side (half cylinder 1 and 2)  24.0  27.39  0.00251  1.01  0.00025 

 Canopy    (front + center + rear)     11.0  12.55  0.00276  1.25  0.00011 

 Engine (half cylinder 4)  30.0  34.23  0.00244  1.15  0.00030 
  Total           0.00590 
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lead to different aerodynamic characteristics than airfoil aerodynamics. For a wing of 

finite span that is generating lift, the pressure differential between the lower surface 

and the upper surface causes a spanwise flow.  As we will discuss in  Chapter   7   , the      

spanwise variation of lift for the resultant three-dimensional flow field produces a 

corresponding distribution of streamwise vortices. These streamwise vortices in turn 

create a downwash, which has the effect of “tilting” the undisturbed air, reducing the 

effective angle of attack. In other words, the airfoils making up the wing are not flying 

at the angle of attack that the wing seems to be flying at. As a result of the induced 

downwash velocity, the lift generated by the airfoil section of a finite-span wing which 

is at the geometric angle of attack    a    is less than that for the same airfoil section of an 

infinite-span airfoil configuration at the same angle of attack. Furthermore, the trailing 

vortex system produces an additional component of drag, known as the  vortex drag  

(or the  induced drag ). 

   5.5.1  Lift 

 The typical lift curve for a three-dimensional wing composed of a given airfoil section 

is compared in  Fig.   5.26    with that for a two-dimensional airfoil having the same airfoil 

section. Notice that the lift-curve slope for the three-dimensional wing (which is repre-

sented by the symbol    CLa
   ) is considerably less than the lift-curve slope for an unswept, 

two-dimensional airfoil (which is represented by the symbol    Cla   ). Recall that a lift-curve 

slope of approximately 0.1097 per degree is typical for an unswept two-dimensional air-

foil, as discussed in  Section   5.4.1   .  As we will find out in  Chapter   7   , the      lift-curve slope 

for an ideal three-dimensional unswept wing    (CLa
)    is:  

      CLa
= a =

Cla

1 +

Cla

pAR

=
a0

1 +

a0

pAR

  (5.41)    
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 Figure 5.26         Comparison of the lift-curve slope of a two-

dimensional airfoil with that for a finite-span wing.   
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  Aerodynamics Concept Box: The Design of the C-17 Wing 

 While the C-17 wing was designed using state-of-the-art aerodynamic prediction tools avail-

able at the time (the wing was designed in the early 1980s), there were numerous constraints 

on the design for non-aerodynamic reasons. This is true of almost any aerodynamic design, as 

       C-17 with wing flaps and leading-edge devices extended and 

winglets visible (U.S. Air Force photo by Abner Guzman)   

 where  a  is the lift-curve slope of the wing and    a0    is the lift-curve slope of the airfoil 

(typically    a0 = 2p>rad   ), and the units for the lift-curve slope is 1/rad. In order to find 

the lift-curve slope in units of 1/deg, either convert the 1/rad result from equation (5.41) 

or use the formulation    a =
a0

1 + 57.3a0>pAR
    and input the airfoil lift-curve slopes in 

units of 1/deg. Notice that the wing lift-curve slope approaches the airfoil lift-curve 

slope,    CLa
S Cla,    as the aspect ratio increases,    AR S � .    In other words, a low-speed 

wing is most efficient with high aspect ratios. Typically, however, wings are limited in 

aspect ratio by structural constraints. You can see from  Table   5.1    that four-place sin-

gle engine aircraft, which fly at relatively low speeds, have aspect ratios in the range 

   6.3 6 AR 6 7.6,    which is a very small variation. Commercial jetliners and transports 

have slightly higher aspect ratios,    6.9 6 AR 6 8.9,    even though they fly at high subsonic 

speeds. In contrast, high-speed aircraft, which fly supersonically, have very low aspect 

ratios,    1.7 6 AR 6 4.0    , for reasons we will discuss in  Chapter   11    .       
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we discussed at the beginning of the chapter. Sometimes the constraints are defined by the 

“customer” or regulations (in the case of the C-17 the customer was the U.S. Air Force, 

but for commercial aircraft the customer is the airlines, as constrained by governmental 

regulations), and sometimes they are determined as part of the design process. Taking a 

look at some of the design issues related to the wing of the C-17 will help you understand 

these difficulties. 

 The C-17 wing was constrained in wing span because the U.S. Air Force did not 

want the C-17 to have a longer span than the C-141 (due to limitations of aircraft parking 

space on tarmacs; commercial airliners have a similar constraint due to the size of gates 

at most airports). Once the span limit was defined and the wing area requirements were 

determined by the  C Lmax   performance at low speeds with the externally blown flap (EBF) 

technology (the landing  C Lmax   with externally blown flaps was approximately 4.0), then the 

aspect ratio was determined to be 7.2 (a value which falls in the low end of the range for 

commercial jetliners and transports, as can be seen in  Table   5.1   ). The maximum lift coef-

ficient for an EBF system could have been higher if high-extension Fowler flaps had been 

used, but in order to save on weight, cost, and maintenance a hinged flap was used (similar 

to the flaps on the DC-9 and DC-10). The  C Lmax   of the flaps without EBF was approxi-

mately 2.8 with 43 degrees of flap setting, but this level of maximum lift coefficient would 

not have allowed the C-17 to take off and land within the required runway length of less 

than 3000 feet [ Van’t Riet (1989) ].      

 Other constraints on the aerodynamic design included the requirement that winglets 

could only be used above the wing so that service trucks would not be able to hit any parts 

of the winglet while driving under the wing. This led to the winglet design as shown above 

and in  Fig.   5.1   , but limited the type and efficiency of wing-tip devices that could be used 

 (see  Fig.   13.27    for examples of other wing-tip devices) . Also, at the time the wing was 

being designed, inverse transonic potential flow numerical predictions (computer codes 

that find the geometry for a given pressure distribution) were limited to two-dimensional 

airfoils; three-dimensional transonic predictions could only be done for a specified geom-

etry (a “direct” approach). The C-17 uses aft-loaded supercritical airfoils to reduce wave 

drag at high subsonic Mach numbers (which increases the critical Mach number , as we 

will discuss in  Chapter   11    ). Most of the airfoil sections were designed in two dimensions 

using the inverse approach, and then the three-dimensional wing was computationally as-

sembled and analyzed using the “direct” potential flow approach. Iterations of the wing 

geometry (especially the inboard sections) were done to obtain swept isobars of pressure, 

but there was a constraint on the curvature allowed for the wing sections [Pres Henne, 

personal communication (2012)]. During manufacturing, the wing skins were “draped” by 

performing machining while the sheets were flat (not pre-shaped by shot peening or form-

ing) which greatly reduced the manufacturing cost of the wing. However, the draped wings 

had a spanwise radius of curvature limit of 5000 inches, which meant that not all possible 

shapes could be manufactured with this method. Therefore, if the numerical predictions 

led to wing with a low local radius of curvature, the design was limited by the manufactur-

ing process. 

 Add into these requirements the integration of propulsion, fuel, electrical, and hydrau-

lic systems, and you have quite a delicate balancing act. If all of this seems complicated . . . . 

it is! Designing a modern airplane is a complex balancing act between many constraints, and 

finding a wing that can attain all requirements necessarily means that the wing will not be 

fully optimized for aerodynamics purposes.  
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  EXAMPLE 5.6:    An F-16C in steady, level, unaccelerated flight   

 The pilot of an F-16 wants to maintain a constant altitude of 30,000 ft flying at 

idle power. Remember from the discussion at the start of the chapter, for flight 

in a horizontal plane (i.e., constant altitude), where the angles are small, the 

lift must balance the weight of the aircraft, which is 23,750 pounds. Therefore, 

as the vehicle slows down, the pilot must increase the angle of attack of the 

aircraft in order to increase the lift coefficient to compensate for the decreas-

ing velocity (and dynamic pressure). Use the lift curves for the F-16 aircraft, 

which were provided by the  General Dynamics Staff (1976)  and are presented 

in  Fig.   5.27    for several Mach numbers. Assume that the lift curve for    M = 0.2    

is typical of that for incompressible flow, which for the purposes of this prob-

lem will be Mach numbers of 0.35, or less. Prepare a graph of the angle of 

attack as a function of the air speed in knots (nautical miles per hour) as the 

aircraft decelerates from a Mach number of 1.2 until it reaches its minimum 

flight speed. The minimum flight speed (i.e., the stall speed) is the velocity at 

which the vehicle must fly at its limit angle of attack in order to generate suf-

ficient lift to balance the aircraft’s weight. The wing reference area  S  is    300 ft2.     

  Solution:     We can first calculate the lower limit for the speed range specified, that is  

the stall velocity. Since the aircraft is flying in a horizontal plane (constant 

altitude), the lift is equal to the weight, and: 

      W = L = CLq�S = CL(1
2r�U2

�)S  (5.42a)    
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 Figure 5.27         Trimmed lift coefficient as a function of the 

angle of attack for the F-16C.    dHT    is deflection of the hori-

zontal tail [provided by the  General Dynamics Staff (1976) ].   
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 In order to compensate for the low dynamic pressure that occurs when flying 

at the stall speed    (Ustall),    the lift coefficient must be the maximum attainable 

value,    CLmax
   . Therefore: 

   W = L = CLmax
q�S = CLmax

(1
2r�U2

stall)S   

 Solving for    Ustall:    

   Ustall =
A

2W
r�CLmax

S
   

 Referring to  Fig.   5.27   , the maximum value of the lift coefficient (assuming 

it occurs at an incompressible flow condition) is 1.57, which corresponds to 

the stall angle of attack.  From  Table   1.2b   , the      free-stream density at 30,000 ft 

is 0.0008907    slugs>ft3,    or 0.0008907 lbf    s2>ft4,    and: 

    Ustall =
A

2(23750 lbf)

(0.0008907 lbf s2>ft4)(1.57)(300 ft2)

 Ustall = 336.5 ft>s = 199.2 knots    

 Therefore, the minimum velocity at which the weight of the F-16 is balanced 

by the lift at 30,000 ft is 199.2 knots with the aircraft at an angle of attack of 

   27.5�.    The corresponding Mach number is: 

   Mstall =
Ustall

a
=

336.5 ft>s
994.85 ft>s = 0.338   

 To calculate the lift coefficient as a function of Mach number from    M� = 1.2    

down to the stall value for the Mach number, we need to find the lift coefficient: 

      CL =
2W

r�(M�a�)2S
  (5.42b)    

 and the velocity in knots is given by: 

   U� = M�a�(ft>s)a 0.59209 knots

ft>s b    

 where    U�    has units of knots if    a�    has units of ft/s. The values obtained using 

these equations and using the lift curves presented in  Fig.   5.27    to determine 

the angle of attack required to produce the required lift coefficient at a given 

Mach number are presented in the following table.    

    M�   
(—) 

    CL   
(—) 

    a   
   (�)    

    U�   
(ft/s) 

    U�   
(knots) 

 1.2  0.125  1.9  1193.82  706.8 
 0.9  0.222  2.4  895.37  530.1 
 0.8  0.281  3.5  795.88  471.2 
 0.6  0.499  6.2  596.91  353.4 
 0.338  1.57  27.5  336.50  199.2 
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 The correlation between the angle of attack and the velocity (in knots), as 

determined in this example and as presented in the table, is presented in  Fig. 

  5.28   . Notice how rapidly the angle of attack increases toward the stall angle 

attack in order to generate a lift coefficient sufficient to maintain the altitude 

as the speed of the F-16 decreases toward the stall velocity. The angle of 

attack varies much more slowly with velocity at transonic Mach numbers.     

   5.5.2  Drag 

 As noted at the start of this section, the three-dimensional flow past a finite-span wing 

produces an additional component of drag associated with the trailing vortex system. 

This drag component is proportional to the square of the lift coefficient. In fact, a gen-

eral expression for the drag acting on a finite-span wing (for which the flow is three 

dimensional) or on a complete aircraft is given by: 

      CD = CD, min + k�C2
L + k�(CL - CL, min)2  (5.43)    

 In equation (5.43),    k�    is a coefficient for the inviscid drag due to lift (which is also known 

as the induced drag or as the vortex drag). Similarly,    k�    is a coefficient for the viscous drag 

due to lift (which includes the skin-friction drag and the pressure drag associated with the 

viscous-induced changes to the pressure distribution, such as those due to separation). 
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 Figure 5.28         Correlation between the angle of attack 

and the velocity to maintain an F-16C in steady, level, 

unaccelerated flight.   
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 Data for a subsonic drag polar are presented in  Fig.   5.29    for the F-106A/B aircraft 

at a Mach number of 0.9. Equation (5.43) correlates these data (the solid line in the 

figure), which are taken from  Piszkin et al. (1961) . Note that the minimum drag occurs 

when    CL    is approximately 0.07, so    CL, min    is approximately 0.07. Also,    CD, min � 0.012,    

which is only slightly lower than    CD0
.     

 Expanding the terms in equation (5.43), we obtain: 

       CD = (k� + k�)C2
L - (2k�CL, min)CL 

  + (CD, min + k�C2
L, min)   (5.44)    

 We can rewrite equation (5.44) in the form: 

      CD = k1C
2
L + k2CL + CD0

  (5.45)    

 where: 

    k1 = k� + k�

 k2 = -2k�CL, min   

 and 

   CD0
= CD, min + k�C2

L, min   

 Referring to equation (5.45),    CD0
    is the drag coefficient when the lift is zero, which 

is also known as the parasite drag coefficient. As noted when discussing  Fig.   5.29   ,    CL, min    

is relatively small, and    k2    is often neglected. In such cases, we could also assume: 

   CD0
� CD, min   

 which was also noted in  Fig.   5.29   . Incorporating these observations into equation (5.45), 

we can rewrite the drag coefficient as: 

      CD = CD0
+ kC2

L  (5.46)    

0.0
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Flight-test data
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 Figure 5.29         Flight data for a drag polar for F-106A/B aircraft at 

a Mach number of 0.9 [taken from  Piszkin et al. (1961) ].   
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 You should note that    k1    has been replaced by  k  since there is only one constant left. 

How we account for both the inviscid and the viscous contributions to the lift-related 

drag will be discussed shortly [(see equation (5.48)]. 

 We can also introduce an additional term to account for the contributions of the 

compressibility effects to the drag,    �CDM
   . So we finally obtain the expression for the 

total drag coefficient acting on an airplane: 

      CD = CD0
+ kC2

L + �CDM
  (5.47)    

 which is valid for our assumptions of    CL, min � 0, k2 � 0,    and    CD, min � CD0
.    In the 

case where these assumptions are not true, you may need to return to equation (5.45) 

for modeling drag. 

 Thus, the total drag for an airplane may be written as the sum of: (1) parasite drag, 

which is independent of the lift coefficient and therefore exists when the configuration 

generates zero lift    (CD0
 or �CDp

),    (2) the drag associated with lift    (kC2
L),    and (3) the 

compressibility-related effects that are correlated in terms of the Mach number and are 

known as wave drag    ( �CDM
).    

 Although the relative importance of the different drag sources depends on the 

aircraft type and the mission to be flown, approximate breakdowns (by category) for 

large, subsonic transports are presented in  Figs.   5.30    and    5.31   . According to  Thomas 

(1985) , the greatest contribution arises from turbulent skin-friction drag. The next most 

significant contribution arises from lift-induced drag, which, when added to skin-friction 

drag, accounts for about 85 %  of the total drag of a typical transport aircraft (see  Fig. 

  5.30   ). Thomas cited the pressure drag due to open separation in the afterbody and 

other regions, interference effects between aerodynamic components, wave drag due 

to the compressibility effect at near-sonic flight conditions, and miscellaneous effects, 

such as roughness effects and leakage, as constituting the remaining 15 %  (as discussed 

in  Section   5.4.6   ).   

Afterbody

Interference
Wave

Miscellaneous
Roughness

Skin
friction

Lift-induced
drag

 Figure 5.30         Contributions of different drag sources for a typical 

transport aircraft [from  Thomas (1985) ].   



292    Chap. 5 / Characteristic Parameters for Airfoil and Wing Aerodynamics

 Using a slightly different division of the drag-contribution sources,  Bowes (1974)  

presented the lift/drag polar which is reproduced in  Fig.   5.31   . The majority of the lift-

related drag is the vortex drag for an elliptic load distribution at subcritical speeds (i.e., 

the entire flow is subsonic). Bowes notes that a good wing design should approach an 

elliptic loading at the design condition , which we will discuss further in  Chapter   7    . 

    •   Zero-lift drag.      Skin friction and form drag components can be calculated for 

the wing, tail, fuselage, nacelles, and so on, as discussed in  Section   5.4.6   . When 

evaluating the zero-lift drag, you should consider interactions (interference), such 

as how the growth of the boundary layer on the fuselage reduces the boundary-

layer velocities on the wing-root surface, or how the pressure field around the wing 

changes the flow around the fuselage. Because of the interaction, the wing-root 

boundary layer is more easily separated in the presence of an adverse pressure 

gradient. Since the upper wing surface has the more critical pressure gradients, 

a low wing position on a circular fuselage would be sensitive to this interaction. 

Adequate filleting and control of the local pressure gradients can minimize the 

interference effects. Many other interference effects could be considered, but as 

we said previously, these are typically established from historical trends. 

CD0
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kCL
2 �CDM

Friction
Pressure
Interference
Roughness

Elliptic
load
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Wave
Shock
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Non-
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 Figure 5.31         Lift/drag polar for a large, subsonic transport [from 

 Bowes (1974) ; the original version of this material was first 

published by the Advisory Group for Aerospace Research and 

Development, North Atlantic Treaty Organization (AGARD, 

NATO) in Lecture Series 67, May 1974].   
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    A representative value of    CD0
    for a complete airplane might be 0.020, of 

which the wings may account for 50 % , the fuselage and the nacelles 40 % , and 

the tail 10 % . Since the wing constitutes such a large fraction of the drag, reduc-

ing the wing area would reduce    CD0
    if all other factors are unchanged. Although 

other factors must be considered, the reasoning implies that an optimum airplane 

configuration would have a minimum wing surface area and, therefore, highest 

practical wing loading    (W>S).     

   •   Drag due to lift.      The drag due to lift may be represented as: 

      kC2
L =

C2
L

peAR
  (5.48)    

   where  e  is the airplane efficiency factor (also known as the Oswald efficiency 

factor). Typical values of the airplane efficiency factor range from 0.6 to 0.95 , 

and are lower than the span efficiency factor we will discuss in  Chapter   7    . At 

high lift coefficients (near    CLmax
   ),  e  should be changed to account for increased 

form drag. The deviation of the actual airplane drag from the quadratic cor-

relation, where  e  is a constant, is significant for airplanes with low aspect ratios 

and sweepback.  

   •   Wave drag.      Another important drag factor to consider is the effect of compress-

ibility. When the free-stream Mach number is sufficiently large so that regions of 

supersonic flow exist in the flow field (e.g., free-stream Mach numbers of approxi-

mately 0.7, or greater), compressibility-related effects produce an additional drag 

component, known as wave drag. The correlation of equation (5.47) includes wave 

drag (i.e., the compressibility effects) as the third term,    �CDM
.    The aerodynamic 

characteristics of the F-16, which will be incorporated into  Example   5.7   , illustrate 

how the drag coefficient increases rapidly with Mach number in the transonic 

region.  As we will discuss in  Chapter   9   , a     designer can delay and/or reduce the 

compressibility drag rise by using low aspect ratio wings, by sweeping the wings, 

by using thin airfoils, and/or by using the area rule. This helps to explain why the 

aircraft in  Table   5.1    which fly at compressible Mach numbers have lower aspect 

ratios and thinner airfoils.    

   5.5.3  Lift/Drag Ratio 

 The type of configuration an airplane has, as well as the application of an airplane, is 

closely related to the lift/drag ratio. Many important items of airplane performance 

are obtained in flight at    (L/D)max.    Performance conditions that occur at    (L/D)max    

include: 

    •   Maximum range of propeller-driven airplanes  

   •   Maximum climb angle for jet-powered airplanes  

   •   Maximum power-off glide ratio (for jet-powered or for propeller-driven airplanes)  

   •   Maximum endurance for jet-powered airplanes.   
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  EXAMPLE 5.7:    Compute the drag components for an F-16 in steady, 
level, unaccelerated flight 

 The pilot of an F-16 wants to maintain steady, level (i.e., in a constant alti-

tude, horizontal plane) unaccelerated flight. Recall from the discussion at 

the start of this chapter, for flight in a horizontal plane, where the angles are 

small, the lift must balance the weight and the thrust supplied by the engine 

must be sufficient to balance the total drag acting on the aircraft. For this 

exercise, we will assume that the total drag coefficient for this aircraft is 

given by equation (5.46): 

   CD = CD0
+ kC2

L   

 Consider the following aerodynamic characteristics for the F-16:    

 Type of airplane     (L/D)max    

 High-performance sailplane  25–40 
 Commercial transport  12–20 
 Supersonic fighter   4–12 
 Hypersonic vehicles   1–4 

    M�   
( — ) 

    CD0
   

( — ) 
  k  

( — ) 

 0.10  0.0208  0.1168 
 0.84  0.0208  0.1168 
 1.05  0.0527  0.1667 
 1.50  0.0479  0.3285 
 1.80  0.0465  0.4211 

 Notice that, since we are using equation (5.46) to represent the drag polar, 

the tabulated values of    CD0
    include both the profile drag and the com-

pressibility effects. Therefore, the values of    CD0
    presented in the preced-

ing table include the two components of the drag not related to the lift. 

If we used equation (5.47), the table would include individual values for 

the profile drag [the first term in equation (5.47)] and for the compress-

ibility effects [the third term in equation (5.47)]. The parasite drag can 

be calculated as: 

   Dp = CD0
(1

2r�U2
�)S   

 The induced drag can be calculated as: 

   Di = CDi
(1

2r�U2
�)S   

 Representative values of the maximum lift/drag ratios for subsonic flight speeds 

are as follows:    
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 where the induced-drag coefficient is given by: 

   CDi
= kC2

L   

 In order for the aircraft to maintain steady, level, unaccelerated flight, 

the lift must balance the weight, as represented by equation (5.42a). There-

fore, we can solve equation (5.42b) for the lift coefficient as a function of the 

Mach number. Referring to equation (5.46), the total drag is the sum of the 

parasite drag and the induced drag. Additional aerodynamic characteristics 

for the F-16 are: 

    Aspect ratio (AR) = 3.0

 Wing (reference) area(S) = 300 ft2

 Airplane efficiency factor(e) = 0.9084   

 Consider an F-16 that weighs 23,750 pounds in steady, level, unaccelerated 

flight at an altitude of 20,000 ft (standard day atmospheric conditions). Cal-

culate the parasite drag, the induced drag, the total drag, and the lift-to-drag 

ratio as a function of Mach number in Mach-number increments of 0.1. Use 

linear fits of the tabulated values to obtain values of    CD0
    and of  k  at Mach 

numbers other than those presented in the table. 

  Solution:     The first step is to use straight lines to generate values of    CD0
    and of  k  in 

Mach-number increments of 0.1. The results are presented in the first three 

columns of the accompanying table. Note, as mentioned in the problem 

statement, the values of    CD0
    for Mach numbers greater than 0.84 include 

a significant contribution of the wave drag    �CDM
    to the components of 

drag not related to the lift. The inclusion of the wave drag causes the drag 

coefficient    CD0
    to peak at a transonic Mach number of 1.05. Note also that 

the value of  k  for a Mach number of 0.10 is consistent with equation (5.48). 

That is, 

   k =
1

peAR
=

1

p(0.9084)(3)
= 0.1168   

 The other tabulated values of  k  incorporate the effects of compressibility. 

 The free-stream density    (0.001267 slugs>ft3)    and the free-stream speed 

of sound (1036.94 ft/s) for standard atmospheric conditions at 20,000 ft are 

taken from   Table   1.2b       . 

 The computed values of the parasite drag, of the induced drag, and of 

the total drag are presented in the table and in  Fig.   5.32   . Notice that when 

the total drag is a minimum (which occurs at a Mach number of approxi-

mately 0.52), the parasite drag is equal to the induced drag, which is also the 

velocity for    (L>D)max.     

 Since the lift is equal to the weight, the lift-to-drag ratio is given by: 

      
L
D

=
Weight

Total Drag
=

CL

CD0
+ CDi

  (5.49)    
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 The computed values for the lift-to-drag ratio are presented in the table and 

in  Fig.   5.33   . Since the weight of the aircraft is fixed, the maximum value of 

the lift-to-drag ratio occurs when the total drag is a minimum. The fact that 

the induced drag and the parasite drag are equal at this condition is an un-

derlying principle to the solution of Problem 5.3, and an important concept 

for aircraft performance.          
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 Figure 5.32         Drag components for an F-16C flying in steady, 
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     PROBLEMS 

   5.1.    For the delta wing of the F-106, the reference area (S) is 50 m2 and the leading-edge sweep 

angle is 45°. What are the corresponding values of the aspect ratio and of the wing span?   

   5.2.    In Example 5.1, an expression for the aspect ratio of a delta wing was developed in terms of 

the leading-edge sweep angle (�LE). For this problem, develop an expression for the aspect 

ratio in terms of the sweep angle of the quarter chord (�c > 4).   

   5.3.    Using equation (5.46) and treating    CD0
    and  k  as constants, show that the lift coefficient for 

maximum lift/drag ratio and the maximum lift/drag ratio for an incompressible flow are 

given by 

    CL(L>D)max =
B

CD0

k

 aL
D
b

max

=
1

22kCD0

     

   5.4.    A Cessna 172 is cruising at 10,000 ft on a standard day (r� = 0.001756 slug>ft3) at 80 mi/h. 

If the airplane weighs 1500 lb, what CL is required to maintain level flight?   

   5.5.    Assume that the lift coefficient is a linear function for its operating range. Assume further 

that the wing has a positive camber so that its zero-lift angle of attack    (a0L)    is negative, 

and that the slope of the straight-line portion of the    CL    versus    a    curve is    CL, a.      Using the 

results of Problem 5.3, derive an expression for    a(L>D)max.      

   5.6.    Using the results of Problem 5.3, what is the drag coefficient    (CD)    when the lift-to-drag 

ratio is a maximum? That is, what is    CD(L>D)max?      

   5.7.    Consider a flat plate at zero angle of attack in a uniform flow where    U� = 35 m>s    in the 

standard sea-level atmosphere ( Fig.   P5.7   ). Assume that    Rex, tr = 500,000    defines the tran-

sition point. Determine the section drag coefficient,    Cd.    Neglect plate edge effects (i.e., 

assume two-dimensional flow). What error would be incurred if it is assumed that the 

boundary layer is turbulent along the entire length of the plate?    

x

c � 1.5 m

U� � 35 m/s

 Figure P5.7        

   5.8.    An airplane that weighs 50,000 N and has a wing area of    21.5 m2    is landing at an airport. 

    (a)   Graph    CL    as a function of the true airspeed over the airspeed range 300 to 180 km/h, 

if the airport is at sea level.  

   (b)   Repeat the problem for an airport that is at an altitude of 1600 m. For the purposes of 

this problem, assume that the airplane is in steady, level flight to calculate the required 

lift coefficients.     

   5.9.    The lift/drag ratio of a sailplane is 60. The sailplane has a wing area of 10.0 m2 and weighs 

3150 N. What is CD when the aircraft is in steady level flight at 340 km/h at an altitude 

of 1.0 km? 

 Problems (5.10) through (5.13) make use of pressure measurements taken from  Pinkerton (1936)  

for NACA 4412 airfoil section. The measurements were taken from the centerplane of a rec-

tangular planform wing, having a span of 30 inches and a chord of 5 inches. The test conditions 
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included an average pressure (standard atmospheres): 21; average Reynolds number: 3,100,000. 

 Pinkerton (1936)  spent considerable effort defining the reliability of the pressure measurements. 

“In order to have true section characteristics (two-dimensional) for comparison with theoreti-

cal calculations, a determination must be made of the effective angle of attack, i.e., the angle 

that the chord of the model makes with the direction of the flow in the region of the midspan of 

the model.” Thus, the experimentally determined pressure distributions, which are presented in 

 Table   5.6   , are presented both for the physical angle of attack    (a)    and the effective angle of at-

tack    (aeff).    However, “The determination of the effective angle of attack of the midspan section 

entails certain assumptions that are subject to considerable uncertainty.” Nevertheless, the data 

allow us to develop some interesting graphs.   

   5.10.    Pressure distribution measurements from  Pinkerton (1936)  are presented in  Table   5.6    for 

the midspan section of a 76.2 cm by 12.7 cm model which had a NACA 4412 airfoil section. 

Graph    Cp    as a function of    x>c    for these three angles of attack. Comment on the movement 

of the stagnation point. Comment on changes in the magnitude of the adverse pressure 

gradient toward the trailing edge of the upper surface. How does this relate to possible 

boundary-layer separation (or stall)?   

   5.11.    Re-arrange equation  (3.13)     and obtain, 

   
U

U�

= 11 - Cp   

   to calculate the maximum value of the local velocity at the edge of the boundary layer both 

on the upper surface and on the lower surface for all three angles of attack. If these veloci-

ties are representative of the changes with angle of attack, how does the circulation (or lift) 

change with the angle of attack?    

 TABLE 5.6     Experimental Pressure Distributions for an NACA 4412 Airfoil 
[ Abbott and von Doenhoff (1949) ]. a  

 Orifice location       

 x-Station 
(percent 

c from the 
leading edge) 

 z-Ordinate 
(percent c 

above chord) 

 Values of the pressure coefficient,    Cp    

    a = -4� 
(aeff = -4�)    

    a = +2� 
(aeff = 1.2�)    

    a = +16�    
   (aeff = 13.5�)    

 100.00  0  0.204  0.181  0.010 
 97.92     -0.10     0.178  0.164  0.121 
 94.86     -0.16     0.151  0.154  0.179 
 89.90     -0.22     0.128  0.152  0.231 
 84.94     -0.28     0.082  0.148  0.257 
 74.92     -0.52     0.068  0.136  0.322 
 64.94     -0.84     0.028  0.120  0.374 
 54.48     -1.24        -0.024     0.100  0.414 
 49.98     -1.44        -0.053     0.091  0.426 
 44.90     -1.64        -0.075     0.088  0.459 
 39.98     -1.86        -0.105     0.071  0.485 
 34.90     -2.10        -0.146     0.066  0.516 
 29.96     -2.30        -0.190     0.048  0.551 
 24.90     -2.54        -0.266     0.025  0.589 

(continued)
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 Orifice location       

 x-Station 
(percent 

c from the 
leading edge) 

 z-Ordinate 
(percent c 

above chord) 

 Values of the pressure coefficient,    Cp    

    a = -4� 
(aeff = -4�)    

    a = +2� 
(aeff = 1.2�)    

    a = +16�    
   (aeff = 13.5�)    

 19.98     -2.76        -0.365        -0.011     0.627 
 14.94     -2.90        -0.502        -0.053     0.713 
 9.96     -2.86        -0.716        -0.111     0.818 
 7.38     -2.72        -0.867        -0.131     0.896 
 4.94     -2.46        -1.106        -0.150     0.980 
 2.92     -2.06        -1.380        -0.098     0.993 
 1.66     -1.60        -1.709     0.028  0.791 
 0.92     -1.20        -1.812     0.254  0.264 
 0.36     -0.70        -1.559     0.639     -1.379    
 0  0     -0.296     0.989     -3.648    
 0  0.68  0.681  0.854     -6.230    
 0.44  1.56  0.994  0.336     -5.961    
 0.94  2.16  0.939  0.055     -5.210    
 1.70  2.78  0.782     -0.148        -4.478    
 2.94  3.64  0.559     -0.336        -3.765    
 4.90  4.68  0.333     -0.485        -3.190    
 7.50  5.74  0.139     -0.568        -2.709    
 9.96  6.56  0.017     -0.623        -2.440    

 12.58  7.34     -0.091        -0.676        -2.240    
 14.92  7.88     -0.152        -0.700        -2.149    
 17.44  8.40     -0.210        -0.721        -1.952    
 19.96  8.80     -0.262        -0.740        -1.841    
 22.44  9.16     -0.322        -0.769        -1.758    
 24.92  9.52     -0.322        -0.746        -1.640    
 27.44  9.62     -0.355        -0.742        -1.535    
 29.88  9.76     -0.364        -0.722        -1.438    
 34.95  9.90     -0.381        -0.693        -1.269    
 39.90  9.84     -0.370        -0.635        -1.099    
 44.80  9.64     -0.371        -0.609        -0.961    
 49.92  9.22     -0.329        -0.525        -0.786    
 54.92  8.76     -0.303        -0.471        -0.649    
 59.94  8.16     -0.298        -0.438        -0.551    
 64.90  7.54     -0.264        -0.378        -0.414    
 69.86  6.76     -0.225        -0.319        -0.316    
 74.90  5.88     -0.183        -0.252        -0.212    
 79.92  4.92     -0.144        -0.191        -0.147    
 84.88  3.88     -0.091        -0.116        -0.082    
 89.88  2.74     -0.019        -0.026        -0.043    
 94.90  1.48     -0.069        -0.076        -0.016    
 98.00  0.68  0.139     -0.143        -0.004    

   aSource :  Pinkerton (1936) .  

TABLE 5.6   (Continued)
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   5.12.    Using the small-angle approximations for the local surface inclinations, integrate the ex-

perimental chordwise pressure distributions of  Table   5.6    to obtain values of the section lift 

coefficient for    a = -4� and a = +2�.    Assuming that the section lift coefficient is a linear 

function of    a    (in this range of    a   ), calculate 

   Cla =
dCl

da
   

   Does the section lift coefficient calculated using the pressure measurements for an angle of 

attack of    16�    fall on the line? If not, why not?   

   5.13.    Using the small-angle approximations for the local surface inclinations, integrate the experi-

mental chordwise pressure distributions of  Table   5.6    to obtain values of the section pitching 

moment coefficient relative to the quarter chord for each of the three angles of attack. Thus, 

in equation dM0 = p dx dy x, x is replaced by (x - 0.25c). Recall that a positive pitching 

moment is in the nose-up direction.   

   5.14.    If one seeks to maintain steady, level unaccelerated flight (SLUF), the thrust supplied by 

the aircraft’s engine must balance the total drag acting on the aircraft. Thus, the total drag 

acting on the aircraft is equal to the thrust required from the power plant. As calculated 

in Example 5.7, the total drag of an F-16 flying at a constant altitude of 10,000 ft exhibits 

a minimum total drag at a Mach number of 0.52. If one wishes to fly at speeds above a 

Mach number of 0.52, the pilot must advance the throttle to obtain more thrust from the 

engine. Similarly, if one wishes to fly at speeds below a Mach number of 0.52, the pilot must 

initially retard the throttle to begin slowing down and then advance the throttle to obtain 

more thrust from the engine than would be required to cruise at a Mach number of 0.52 in 

order to sustain the new, slower velocity. This Mach number range is the region known as 

“reverse command.” If the engine of the F-16 generates 5,000 pounds of thrust when fly-

ing at 10,000 ft, what is the maximum Mach number at which the F-16 can sustain SLUF? 

Use the results of the table and of the figures in Example 5.7. What is the minimum Mach 

number at which the F-16 can sustain SLUF at 10,000 ft, based on an available thrust of 

5,000 pounds? If the maximum lift coefficient is 1.57 (see Fig. 5.26), at what Mach number 

will the aircraft stall? Use the lift coefficients presented in the table of Example 5.7.   

   5.15.    Consider a MiG-29 in steady, level, unaccelerated flight (SLUF) at an altitude of 30,000 ft 

(standard atmospheric conditions). Calculate the parasite drag, the induced drag, the total 

drag, and the lift-to-drag ratio as a function of the Mach number in Mach-number incre-

ments of 0.1, from a Mach number of 0.1 to a Mach number of 1.8. For the MiG-29, assume 

the following:    

 Mach No. 
(—) 

    CD0
    

(—) 
  k 

(—) 

 0.1000  0.0207  0.1279 
 0.8500  0.0207  0.1279 
 1.0700  0.0472  0.1773 
 1.5000  0.0425  0.3317 
 1.8000  0.0408  0.4240 

   Other parameters for the MiG-29 include    S = 409 ft2; b = 37.3 ft;    and    e = 0.75.    The weight 

of the aircraft is 31,000 pounds.   

   5.16.    Consider the Eurofighter 2000 in steady, level, unaccelerated flight (SLUF) at an altitude 

of 5 km (standard atmospheric conditions). Calculate the parasite drag, the induced drag, 
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the total drag, and the lift-to-drag ratio as a function of the Mach number in Mach-number 

increments of 0.1, from a Mach number of 0.1 to a Mach number of 1.8. For the Eurofighter 

2000, assume the following:    

 Mach 
No. (—) 

    CD0
    

(—) 
 k

(—) 

 0.1000  0.0131  0.1725 
 0.8600  0.0131  0.1725 
 1.1100  0.0321  0.2292 
 1.5000  0.0289  0.3515 
 1.8000  0.0277  0.4417 

   Other parameters for the Eurofighter 2000 include    S = 50 m2; b = 10.5 m;    and    e = 0.84.    

The weight of the aircraft is 17,500 kg.   

   5.17.    A finless missile is flying at sea-level at 225 mph. Estimate the parasite drag (excluding base 

drag) on the missile. The body has a length of 10.0 ft. and a diameter of 1.2 ft. The reference 

area for the missile is given by Sref = pd2>4 (the cross-sectional area of the missile). Explain 

why you would not need to correct your results for laminar flow.   

   5.18.    A flying wing has a planform area of    3700 ft2,    a root chord at the airplane centerline of 

34 ft, an overall taper ratio of 0.275, and a span of 170 ft. The average weighted airfoil 

thickness ratio is 10.2% and the wing has    36�    of sweepback at the 25% chordline. The air-

plane is cruising at a pressure altitude of 17,000 ft on a standard day with a wing loading of 

   105 lb>ft2.    The cruise Mach number is 0.23. Determine the following: 

    (a)   skin-friction drag coefficient (assume a spray-painted surface)  

   (b)   pressure drag coefficient  

   (c)   induced drag coefficient  

   (d)   total drag coefficient  

   (e)   total drag in pounds      
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    6   INCOMPRESSIBLE FLOWS 

AROUND AIRFOILS OF 

INFINITE SPAN 

     Chapter Objectives 

  •   Understand and be able to use the physical and mathematical concepts of 
circulation and lift  

  •   Be able to explain how potential flow theory is used to model flow for airfoils  
  •   Understand the physical meaning and use of the Kutta condition  
  •   Be able to estimate the lift and moment acting on an airfoil using thin-airfoil theory  
  •   Understand the usefulness and limitations of thin-airfoil theory  
  •   Know ways potential flow theory can be used to model airfoils other than thin-

airfoil theory  
  •   Be able to explain why laminar flow airfoils have different geometries than airfoils 

used at higher Reynolds numbers  
  •   Have a basic understanding of high-lift systems on aircraft, and how they create 

lift depending on where they are placed on a wing   

   Now that we have a     basic understanding of airfoil and wing aerodynamics, we need 

to develop models and theories that will help us predict the lift, drag, and moment 

for these aerodynamic shapes. The theories will be based on potential flow concepts 

 from   Chapter   3    , and as with all theories, there will be assumptions and simplifications. 



Sec. 6.1 / General Comments    305

 However, we will compare the predictions from the theories with experimental data to 

see how limiting the assumptions were. In general, we will find airfoil aerodynamics can 

be fairly well predicted with theoretical models.   

      6.1  GENERAL COMMENTS 

 Theoretical relations that describe an inviscid, low-speed flow around a thin airfoil will 

be developed in this chapter. To obtain the appropriate governing equations, we will 

assume that the airfoil extends to infinity in both directions from the plane of symmetry 

(i.e., the airfoil is a wing of infinite aspect ratio). Therefore, the flow field around the 

airfoil is the same for any cross section perpendicular to the wing span and the flow is 

two dimensional. 

  As we discussed in  Chapter   5   , the     term  airfoil  will be used for the two-dimensional 

flow field that exists when identical airfoil sections are placed side by side so that the 

spanwise dimension of the resultant configuration is infinite. But the term  airfoil  will 

also be used when a finite-span model with identical cross sections spans a wind tunnel 

from wall-to-wall and is perpendicular to the free-stream flow. In this situation, neglect-

ing interactions with the tunnel-wall boundary layer, the flow around the model does 

not vary in the spanwise direction. For many applications  (as we will see in  Chapter   7   ) , 

these two-dimensional airfoil flow fields will be applied to a slice of a three-dimensional 

wing flow field. That is, they approximate the flow per unit width (or per unit span) 

around the airfoil sections that make up a finite-span wing.  Also, as we mentioned in 

 Chapter   5   , the     term  wing  will be used when the configuration has a finite span. 

 The flow around a two-dimensional airfoil can be idealized by superimposing 

a translational flow past the airfoil section (the free-stream flow), a distortion of the 

stream that is due to the airfoil thickness, and a circulatory flow that is related to the 

lifting characteristics of the airfoil. Since it is a two-dimensional configuration, an airfoil 

in an incompressible free stream experiences no drag force, if we neglect the effects of 

viscosity , as explained in  Section   3.15.2    . However,  as discussed in  Chapters   4    and    5   ,  the 

viscous forces produce a velocity gradient near the surface of the airfoil and, hence, 

drag due to skin friction. Furthermore, the presence of the viscous flow near the surface 

modifies the inviscid flow field and may produce a significant drag force due to the inte-

grated effect of the pressure field (i.e., form drag). To generate high lift, we must either 

place the airfoil at high angles of attack or employ leading-edge and/or trailing-edge 

devices. Either way, the interaction between large pressure gradients and the viscous 

boundary layer produces a complex, Reynolds-number–dependent flow field. 

 The analytical values of aerodynamic parameters for incompressible flow around 

thin airfoils will be calculated in  Sections   6.3    through    6.5    using classical formulations 

from the early twentieth century. Although these formulations have long since been 

replaced by more rigorous numerical models  (see  Chapter   14   ) , they do provide valu-

able information about the aerodynamic characteristics for airfoils in incompressible air 

streams. The comparison of the analytical values of the aerodynamic parameters with 

the corresponding experimental values will indicate the limits of the applicability of the 

analytical models. The desired characteristics and the resultant flow fields for high-lift 

airfoil sections will be discussed in  Sections   6.6    through    6.8   .  
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   6.2  CIRCULATION AND THE GENERATION OF LIFT 

 For a lifting airfoil, the pressure on the lower surface of the airfoil is, on the average, 

greater than the pressure on the upper surface. Bernoulli’s equation for steady, incom-

pressible flow leads to the conclusion that the velocity over the upper surface is, on the 

average, greater than the velocity past the lower surface. Therefore, the flow around the 

airfoil can be represented by the combination of a translational flow from left to right and 

a circulating flow in a clockwise direction, as shown in  Fig.   6.1   . This flow model assumes 

that the airfoil is sufficiently thin so that thickness effects may be neglected (thickness 

effects can be treated using the source panel technique , as we discussed in  Chapter   3    ).  

 If the fluid is initially at rest, the line integral of the velocity around any curve com-

pletely surrounding the airfoil is zero, because the velocity is zero for all fluid particles. 

Therefore, the circulation around the contour in  Fig.   6.2   a is zero. According to Kelvin’s 

theorem for a frictionless flow  (see  Section   3.7   ) , the circulation around this line of fluid 

particles remains zero if the fluid is suddenly given a uniform velocity with respect to 

the airfoil (which is called an “impulsive” start). Therefore, in  Figs.   6.2   b and c, the 

circulation around the contour which encloses the lifting airfoil and which contains the 

same fluid particles as the contour of  Fig.   6.2   a should still be zero. However, circulation 

is necessary to produce lift. Therefore, as explained in the following paragraphs, the 

circulation around each of the component curves of  Figs.   6.2   b and c is not zero but equal 

in magnitude and opposite in sign to the circulation around the other component curve.  

   6.2.1  Starting Vortex 

 When an airfoil is accelerated from rest, the circulation around it and, therefore, the lift 

are not produced instantaneously. At the instant of starting, the flow is a potential flow 

without circulation, and the streamlines are as shown in  Figs.   6.3   a, with a stagnation 

point occurring on the rear upper surface. At the sharp trailing edge, the air is required 

to change direction suddenly. However, because of viscosity, the large velocity gradients 

produce large viscous forces, and the air is unable to flow around the sharp trailing edge. 

Instead, a surface of discontinuity emanating from the sharp trailing edge is rolled up into 

a vortex, which is called the  starting vortex . The stagnation point moves toward the trailing 

edge as the circulation around the airfoil and, therefore, the lift  increase progressively. 

The circulation around the airfoil increases in intensity until the flows from the upper 

surface and the lower surface join smoothly at the trailing edge, as shown in  Fig.   6.3   b. So, 

the generation of circulation around the wing and the resultant lift are  necessarily accom-

panied by a starting vortex, which results because of the effect of viscosity.  

 Figure 6.1         Flow around the 

lifting airfoil section, as repre-

sented by two elementary flows.   
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 A contour which encloses both the airfoil and the starting vortex and which always 

contains the same fluid particles is shown in  Fig.   6.2   . The total circulation around this 

line remains zero, since the circulation around the airfoil is equal in strength but op-

posite in direction to that of the starting vortex. Therefore, the existence of circulation 

is not in contradiction to Kelvin’s theorem. Referring to  Fig.   6.2   , the line integral of the 

tangential component of the velocity around the curve that encloses area    A1    must be 

equal and opposite to the corresponding integral for area    A2.    

 If either the free-stream velocity or the angle of attack of the airfoil is increased, 

another vortex is shed which has the same direction as the starting vortex. However, if 

the velocity or the angle of attack is decreased, a vortex is shed which has the opposite 

direction of rotation relative to the initial vortex. 

 A simple experiment that can be used to visualize the starting vortex requires only 

a pan of water and a small, thin board. Place the board upright in the water so that it 

cuts the surface. If the board is accelerated suddenly at moderate incidence, the  starting 

V .ds � 0

V .ds � 0

V .ds � 0

(a)

Starting
vortex

(b)

A1 A2

(c)

A1 A2

U�

U�

 Figure 6.2         Circulation around a fluid line containing the airfoil 

remains zero: (a) fluid at rest; (b) fluid at time  t ; (c) fluid at time 

   t + �t.      



308    Chap. 6 / Incompressible Flows Around Airfoils of Infinite Span

vortex will be seen leaving the trailing edge of the “airfoil.” If the board is stopped sud-

denly, another vortex of equal strength but of opposite rotation is generated.   

   6.3  GENERAL THIN-AIRFOIL THEORY 

 It may seem strange that we will model the viscous flow around an airfoil with an inviscid 

theory, but potential flow theory coupled with some essential viscous observations can 

produce very good predictions of airfoil aerodynamics. In fact, one of the most important 

viscous concepts is that a fluid flowing over a surface will tend to stay attached to the sur-

face unless a “large enough” adverse pressure gradient is present. This viscous observa-

tion is mimicked quite well by the potential flow result that solid surfaces are streamlines 

and flow stays attached unless forced to separate. So while the inviscid assumptions will 

lead to shortcomings for airfoil theory, it will also produce very good results. 

 The essential assumptions of thin-airfoil theory are: (1) that the lifting character-

istics of an airfoil below stall are negligibly affected by the presence of the boundary 

layer, (2) that the airfoil is operating at a small angle of attack, and (3) that the resultant 

of the pressure forces (magnitude, direction, and line of action) is only slightly influ-

enced by the airfoil thickness, since the maximum mean camber is small and the ratio 

of maximum thickness to chord is small. 

 Notice that we assume there is sufficient viscosity to produce the circulation that 

results in the flow depicted in  Fig.   6.3   b. However, we neglect the effect of viscosity as 

it relates to the boundary layer. The boundary layer is assumed to be thin and, there-

fore, does not significantly alter the static pressures from the values that correspond 

to those for the inviscid flow model. Furthermore, the boundary layer does not cause 

the flow to separate when it encounters an adverse pressure gradient. Typically, airfoil 

sections have a maximum thickness of approximately 12% of the chord and a maximum 

mean camber of approximately 2% of the chord. For thin-airfoil theory, the airfoil will 

be represented by its mean camber line in order to calculate the section aerodynamic 

characteristics, which means we will be neglecting the effects of thickness. 

 A velocity difference across the infinitely thin profile which represents the air-

foil section is required to produce the lift-generating pressure difference. This results 

 directly from the concept of circulation  in  Chapter   3    , which stated that unless there is a 

local curvature to the flow there cannot be circulation and lift. The only way for the flow 

to turn is for the fluid above the airfoil to travel faster than the fluid below the airfoil. 

A vortex sheet coincident with the mean camber line produces a velocity distribution 

that exhibits the required velocity jump (which is the difference in velocity between the 

(a) (b)

 Figure 6.3         Streamlines around the airfoil section: (a) zero 

 circulation, stagnation point on the rear upper surface; (b) full 

circulation, stagnation point on the trailing edge.   



Sec. 6.3 / General Thin-Airfoil Theory    309

upper and lower surfaces of the mean camber line). Therefore, the desired flow will be 

obtained by superimposing on a uniform flow a field induced by an infinite series of 

line vortices of infinitesimal strength which are located along the camber line, as shown 

in  Fig.   6.4   . The total circulation is the sum of the circulations of the vortex filaments  

      � = L
c

0

g(s) ds  (6.1)    

 where    g(s)    is the distribution of vorticity (or vortex strength) for the line vortices. The 

length of an arbitrary element of the camber line is  ds  and positive circulation is in the 

clockwise direction. 

 The velocity field around the sheet is the sum of the free-stream velocity and the 

velocity induced by all the vortex filaments that make up the vortex sheet since potential 

flow satisfies Laplace’s equation  (see  Chapter   3   ) . For the vortex sheet to be a streamline 

of the flow, it is necessary that the resultant velocity be tangent to the mean camber line at 

each point (the mean camber line is a streamline). Therefore, the sum of the components 

normal to the surface for these two velocities must be zero. In addition, the condition 

that the flows from the upper surface and the lower surface join smoothly at the trailing 

edge (i.e., the Kutta condition) requires that    g = 0    at the trailing edge. Ideally (i.e., for an 

inviscid potential flow), the circulation that forms places the rear stagnation point exactly 

on the sharp trailing edge. When the effects of friction are included, there is a reduction 

in circulation relative to the value determined for an “inviscid flow.” Therefore, the Kutta 

condition places a constraint on the vorticity distribution that is consistent with the effects 

of the boundary layer—in other words, the Kutta condition is a viscous boundary condition 

based on physical observation which we will use with our inviscid theoretical development. 

 The portion of the vortex sheet designated  ds  in  Fig.   6.5    produces a velocity at 

point  P  which is perpendicular to the line whose length is  r  and which joins the element 

 ds  and the point  P . The induced velocity component normal to the camber line at  P  due 

to the vortex element  ds  is:  

   dVs, n = -
g ds cos d3

2pr
   

 where the negative sign results because the circulation induces a clockwise velocity and 

the normal to the upper surface is positive outward, and the magnitude is determined 

z

x

Leading
edge

Trailing
edge

c

ds

djU� j

 Figure 6.4         Representation of the mean camber line by a vortex 

sheet whose filaments are of variable strength    g(s).      
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by the velocity field created by a vortex  (see  Chapter   3   ) . To calculate the resultant 

vortex-induced velocity at a particular point  P , we must integrate over all the vortex 

filaments from the leading edge to the trailing edge. The chordwise location of the 

point of interest  P  will be designated in terms of its  x  coordinate. The chordwise loca-

tion of a given element of vortex sheet  ds  will be given in terms of its    j    coordinate. 

Therefore, to calculate the cumulative effect of all the vortex elements, it is necessary 

to integrate over the    j    coordinate from the leading edge    (j = 0)    to the trailing edge 

   (j = c).    Noting that 

   cos d2 =
x - j

r
 and ds =

dj
cos d1

   

 the resultant vortex-induced velocity at any point  P  (which has the chordwise location  x ) 

is given by: 

      Vs, n(x) = -
1

2pL
c

0

 
g(j) cos d2 cos d3 dj

(x - j) cos d1

  (6.2)    

 Likewise, the component of the free-stream velocity normal to the mean camber 

line at  P  is given by: 

   U� , n(x) = U�  sin(a - dP)   

 where    a    is the angle of attack and    dP    is the slope of the camber line at the point of 

interest  P : 

   dP = tan-1 
dz
dx

   

 where  z ( x ) is the function that describes the mean camber line. As a result, 

      U� , n(x) = U�  sinaa - tan-1 
dz
dx

b   (6.3)    

 Since the sum of the velocity components normal to the surface must be 

zero at all points along the vortex sheet, the velocity induced by the vortex sheet 

z

x

c

r

dVs

x
dj

ds

Normal to the surface

Point P

a
U�

j

d1

d2

d3

 Figure 6.5         Thin-airfoil geometry parameters.   
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 (equation 6.2) must be equal and opposite to the component due to the free-stream 

flow (equation 6.3). 

      
1

2p
 L

c

0

 
g(j) cos d2 cos d3 dj

(x - j) cos d1

= U�  sinaa - tan-1 
dz
dx

b   (6.4)    

 The vorticity distribution    g(j)    that satisfies this integral equation makes the vortex 

sheet (and, therefore, the mean camber line) a streamline of the flow. The desired vor-

ticity distribution must also satisfy the Kutta condition that    g(c) = 0.    

 Within the assumptions of thin-airfoil theory, the angles    d1, d2, d3,    and    a    are small. 

Using the approximate trigonometric relations for small angles, equation (6.4) becomes 

      
1

2p
 L

c

0

 
g(j)dj

x - j
= U� aa -

dz
dx

b   (6.5)    

 This is the fundamental equation of thin airfoil theory, which is simply the boundary 

condition requiring that no flow crosses the mean camber line. We will solve this rela-

tion for two cases of interest: symmetric airfoils and cambered airfoils.  

   6.4  THIN, FLAT-PLATE AIRFOIL (SYMMETRIC AIRFOIL) 

 First we will solve the fundamental equation of thin airfoil theory, equation (6.5), for 

the case of a symmetric airfoil. For this case, the mean camber line is coincident with the 

chord line, and the geometry is just a thin flat plate. For subsonic flow past a flat plate even 

at small angles of attack, a region of dead air (or stalled flow) will exist over the upper 

surface. For the actual airfoil, the rounded nose allows the flow to accelerate from the 

stagnation point onto the upper surface without separation. Of course, when the angle 

of attack is sufficiently large (the value depends on the cross-section geometry), stall will 

occur for the actual profile. The approximate theoretical solution for a thin airfoil with 

two sharp edges represents an irrotational flow with finite velocity at the trailing edge but 

with infinite velocity at the leading edge. Because it does not account for the thickness 

distribution nor for the viscous effects, the approximate solution does not describe the 

chordwise variation of the flow around the actual airfoil. However, as will be discussed, 

the theoretical values of the lift coefficient (obtained by integrating the circulation dis-

tribution along the airfoil) are in reasonable agreement with the experimental values. 

 For the camber line of the symmetric airfoil,    dz>dx    is everywhere zero, and equa-

tion (6.5) becomes: 

      
1

2p
 L

c

0

g(j)

x - j
 dj = U�a  (6.6)    

 It is convenient for the purposes of integration to introduce the coordinate transformation: 

      j =
c
2

 (1 - cos u) and dj =
c
2

 sin u du  (6.7)    

 Similarly, the  x  coordinate transforms to    u0    using: 

   x =
c
2

 (1 - cos u0)   
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 The corresponding limits of integration become: 

   j = 0 at u = 0 and j = c at u = p   

 and equation (6.6) becomes: 

      
1

2pL
p

0

g(u)c
2 sin u du

c
2(1 - cos u0) - c

2(1 - cos u)
=

1

2pL
p

0

g(u)sin u du

(cos u - cos u0)
= U�a  (6.8)    

 The required vorticity distribution,    g(u),    must not only satisfy this integral equation, 

but must also satisfy the Kutta condition, namely that    g(p) = 0.    The solution requires 

performing an integral of an unknown function,    g(u),    to determine a known result,    U�a.    

This is very different than the type of integration typical in Calculus, where you usually 

integrate known functions to find unknown results (e.g.,    11

0
x dx = 1

2   ).  However, using 

the concept of the anti-derivative we can obtain: 

      g(u) = 2aU�

1 + cos u

sin u
  (6.9)    

 This is a valid solution, as can be seen by substituting the expression for    g(u)    given by 

equation (6.9) into equation (6.8). The resulting equation, 

   
aU�

p
 L

p

0

(1 + cos u) du

cos u - cos u0

= U�a   

 can be reduced to an identity using the relation: 

      L
p

0

cos nu du
cos u - cos u0

=
p sin nu0

sin u0

  (6.10)    

 where  n  assumes only integer values. Using l’Hospital’s rule, we can show that the ex-

pression for    g(u)    also satisfies the Kutta condition, since: 

   g(p) = 2aU�

1 + cos p

sin p
=

0

0
   

 which is undefined. So, taking the derivative of the numerator and denominator yields: 

   g(p) = 2aU�

-sin p

cos p
= 0   

 which is the Kutta condition. 

 Now that we have determined that the Kutta condition is satisfied, we can find the 

total circulation around the airfoil as    � = 1 c
0
g(j)dj = 1p0 g(u)du.    The Kutta- Joukowski 

theorem for steady flow about a two-dimensional body of any cross  section shows that 

the force per unit span is equal to    r�  U�  �    and acts perpendicular to    U� .    Therefore, for 

two-dimensional inviscid flow, an airfoil has no drag  (remember d’Alembert’s paradox in 

 Chapter   3   )  but experiences a lift per unit span equal to the product of the free-stream den-

sity, the free-stream velocity, and the total circulation. The lift per unit span is therefore: 

      l = L
c

0

r�U�g(j) dj  (6.11)    
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 Using the circulation distribution of equation (6.9) and the coordinate transformation 

of equation (6.7), the lift per unit span is 

    l = r�U2
�  ac L

p

0

(1 + cos u) du   

       l = pr�U2
�  ac   (6.12)    

 To determine the section lift coefficient of the airfoil, notice that the reference area per 

unit span is the chord, and the section lift coefficient is: 

      Cl =
l

1
2 r�U2

�c
=
pr�U2

�ac
1
2 r�U2

�c
= 2pa  (6.13)    

 where    a    is the angle of attack in radians. If we take the derivative of the lift co-

efficient with respect to the angle of attack, we can find the lift-curve slope as 

   Cla = 2p 1/rad = 0.1097 1/deg    , which is the value we discussed in  Chapter   5    . There-

fore, thin-airfoil theory yields a section lift coefficient for a symmetric airfoil that is 

directly proportional to the geometric angle of attack. The geometric angle of attack 

is the angle between the free-stream velocity and the chord line of the airfoil. The 

theoretical relation is independent of the airfoil thickness. However, because the 

airfoil thickness distribution and the boundary layer affect the flow field, the actual 

two-dimensional lift curve slope will typically be less than    2p    per radian  (see the 

discussion in  Section   5.4.1   ) . In fact, most airfoils have a lift-curve slope very close to 

   2p    per radian. 

 It may seem strange that the net force for an inviscid flow past a symmetric airfoil 

is perpendicular to the free-stream flow rather than perpendicular to the airfoil (i.e., 

the resultant force has only a lift component and not both a lift and a drag component). 

 As we saw in  Section   3.15.2   , the     prediction of zero drag for potential flow applications 

may be generalized to any general, two-dimensional body in an irrotational, steady, 

incompressible flow. Consider an incompressible, inviscid flow about a symmetric air-

foil at a small angle of attack. There is a stagnation point on the lower surface of the 

airfoil just downstream of the leading edge. From this stagnation point, flow accelerates 

around the leading edge to the upper surface. Referring to the first paragraph in this 

section, the approximate theoretical solution for a thin, symmetric airfoil with two sharp 

edges yields an infinite velocity at the leading edge. The high velocities for flow over 

the leading edge result in low pressures in this region, producing a component of force 

along the leading edge, known as the  leading-edge suction force , which exactly cancels 

the streamwise component of the pressure distribution acting on the rest of the airfoil, 

resulting in zero drag. 

 As noted by  Carlson and Mack (1980) , “Linearized theory places no bounds 

on the magnitude of the peak suction pressure, which, therefore, can become much 

greater than practically realizable values.” However, “limitations imposed by practically 

 realizable pressures may have a relatively insignificant effect on the normal force but 

could, at the same time, severely limit the attainment of the thrust force.” 

 The pressure distribution also produces a pitch moment about the leading edge 

(per unit span), which can be found by multiplying the lift in equation (6.11) by a mo-

ment arm,    j,    to obtain: 
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      m0 = - L
c

0

r�U�g(j)j dj  (6.14)    

 The lift-generating circulation of an element    dj    produces an upward force that acts a 

distance    j    downstream of the leading edge. The lift force, therefore, produces a nose-

down pitching moment about the leading edge. Therefore, a negative sign is used in 

equation (6.14) because nose-up pitch moments are considered positive. Again, using 

the coordinate transformation [equation (6.7)] and the circulation distribution [equation 

(6.9)], the pitch moment (per unit span) about the leading edge is: 

       m0 = -
1

2
 r�U2

�ac2

L
p

0

(1 - cos2 u) du 

  = -
p

4
 r�U2

�ac2   (6.15)    

 The section moment coefficient is defined as: 

      Cm0
=

m0

1
2 r�U2

�cc
  (6.16)    

 Notice that the reference area per unit span for the airfoil is the chord and the reference 

length for the pitch moment is also the chord. So, for the symmetric airfoil: 

      Cm0
= -
p

2
a = -

Cl

4
  (6.17)    

 The pitch moment coefficient transferred to    c>4    is    Cmc>4
= 0,    or in other words the 

quarter chord is the aerodynamic center. 

 The center of pressure    xcp    is the  x  coordinate where the resultant lift force could 

be placed to produce the pitch moment    m0.    Equating the moment about the leading 

edge [equation (6.15)] to the product of the lift [equation (6.12)] and the center of pres-

sure gives us: 

   -
p

4
r�U2

�ac2 = -pr�U2
�acxcp   

 Solving for    xcp,    we obtain: 

      xcp =
c
4

  (6.18)    

 which is also the quarter chord of the airfoil. The result is independent of the angle of 

attack and is therefore independent of the section lift coefficient. As with the lift-curve 

slope, the center of pressure of airfoils with thickness typically is somewhat different 

than    c>4,    but the quarter chord is a good assumption for the center of pressure location. 

The center of pressure being at the quarter chord implies that the distribution of pres-

sure on the airfoil  (see  Fig.   5.10   )  is not symmetric between the leading edge and trailing 

edge, but rather the pressure difference is higher near the leading edge. In other words, 

more lift is produced near the leading edge of the airfoil than near the trailing edge  (see 

the airfoil concept box in  Chapter   5    to understand why) . 
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  EXAMPLE 6.1:    Theoretical aerodynamic coefficients for a symmetric airfoil   

 The theoretical aerodynamic coefficients calculated using the thin-airfoil re-

lations are compared with the data of  Abbott and von Doenhoff (1949)  in 

 Fig.   6.6   . Data are presented for two different airfoil sections. One, the NACA 

0009 airfoil, has a maximum thickness which is 9 %  of the chord and is located 

at    x = 0.3c.    The theoretical lift coefficient calculated using equation (6.13) is 

in excellent agreement with the data for the NACA 0009 airfoil up to an angle 

of attack of    12�.    At higher angles of attack, the viscous effects significantly 

alter the flow field and hence the experimental lift coefficients. That is why the 

theoretical values would not be expected to agree with the data at high angles 

of attack in the stall region. Since the theory presumes that viscous effects are 

small, it is valid only for angles of attack below stall. According to thin-airfoil 

theory, the moment about the quarter chord is zero. The measured moments 

for the NACA 0009 are also in excellent agreement with thin-airfoil theory 

prior to stall. The correlation between the theoretical values and the experi-

mental values is not as good for the NACA 0012-64 airfoil section, although 
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 Figure 6.6         Comparison of the aerodynamic coefficients calcu-

lated using thin-airfoil theory for symmetric airfoils: (a) NACA 

0009 wing section; (b) NACA 0012-64 wing section [data from 

 Abbott and von Doenhoff (1949) ].   
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the theory is very close to the data. The difference in the correlation between 

theory and data for these two airfoil sections is attributed to viscous effects 

since the maximum thickness of the NACA 0012-64 is greater and located 

farther aft. Therefore, the adverse pressure gradients that cause separation of 

the viscous boundary layer and thereby alter the flow field would be greater 

for the NACA 0012-64 airfoil. In both cases, thin-airfoil theory does a very 

good job of predicting the lift and moment coefficients of the airfoils.    

   6.5  THIN, CAMBERED AIRFOIL 

 The method of determining the aerodynamic characteristics for a cambered airfoil is 

similar to that followed for the symmetric airfoil. A vorticity distribution,    g(u),    is sought 

which satisfies both the condition that the mean camber line is a streamline [equa-

tion (6.5)] and the Kutta condition. However, because of camber, the actual computa-

tions are more involved. Again, we will use the coordinate transformation: 

      j =
c
2

(1 - cos u)  (6.7)    

 and the fundamental equation of thin-airfoil theory, equation (6.5), becomes: 

      
1

2pL
p

0

g(u) sin u du

cos u - cos u0

= U� aa -
dz
dx

b   (6.19)    

 Notice that the expression is only different from equation (6.8) by the inclusion of the dz>dx 

term. Recall that this integral equation expresses the requirement that the resultant velocity 

for the inviscid flow is parallel to the mean camber line (which represents the airfoil). The 

vorticity distribution    g(u)    that satisfies the integral equation makes the vortex sheet (which 

is coincident with the mean camber line) a streamline of the flow. However, when we solved 

the symmetric airfoil case, equation (6.8), we were solving an integral of an unknown func-

tion,    g(u),    to find a known  constant ,    U�a.    In the case of a cambered airfoil, we are solving 

the integral of an unknown function to find a known  function ,    U� (a - dz>dx).    This is 

a much more difficult integration to perform and will require the use of Fourier analysis. 

   6.5.1  Vorticity Distribution 

 The desired vorticity distribution, which satisfies equation (6.19) and the Kutta condi-

tion, may be represented by a series involving: 

    •   A term of the form for the vorticity distribution for a symmetric airfoil from 

 equation (6.9), 

   2U�A0

1 + cos u

sin u
    

   •   A Fourier sine series whose terms automatically satisfy the Kutta condition, 

   2U� a
�

n=1

An sin nu   
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 The coefficients    An    of the Fourier series depend on the shape of the mean camber line. 

Putting these two requirements together gives us: 

      g(u) = 2U� aA0 
1 + cos u

sin u
+ a

�

n=1

 An sin nub   (6.20)      

 Since each term is zero when    u = p,    the Kutta condition is satisfied [i.e.,    g(p) = 0   ]. 

 Substituting the vorticity distribution [equation (6.20)] into equation (6.19) yields 

      
1

p
 L

p

0

A0(1 + cos u) du

cos u - cos u0

+
1

p
 L

p

0
a
�

n=1

An sin nu sin u du

cos u - cos u0

= a -
dz
dx

  (6.21)    

 This integral equation can be used to evaluate the coefficients    A0, A1, A2, c, An    in 

terms of the angle of attack and the mean camber-line slope, which is known for a given 

airfoil section. The first integral on the left-hand side of equation (6.21) can be readily 

evaluated using equation (6.10). To evaluate the series of integrals represented by the 

second term, we must use equation (6.10) and the trigonometric identity: 

   (sin nu)(sin u) =
1

2
3cos5(n - 1)u6  -cos5(n + 1)u64    

 Using this approach, equation (6.21) becomes: 

      
dz
dx

= a - A0 + a
�

n=1

An cos nu  (6.22)    

 which applies to any chordwise station. Since we are evaluating both    dz>dx    and    cos nu0    

at the general point    u0    (i.e.,  x ), we have dropped the subscript 0 from equation (6.22) 

and from all subsequent equations. Therefore, the coefficients    A0, A1, A2, c, An    must 

satisfy equation (6.22) if equation (6.20) is to represent the vorticity distribution which 

satisfies the condition that the mean camber line is a streamline. Since the geometry of 

the mean camber line would be known for the airfoil of interest, the slope is a known 

function of    u,    so we can determine the values of the coefficients. 

 To evaluate    A0,    notice that: 

   L
p

0

An cos nu du = 0   

 for any value of  n.  Therefore, by algebraic manipulation of equation (6.22) we can find: 

      A0 = a -
1

pL
p

0

dz
dx

 du  (6.23)    

 Multiplying both sides of equation (6.22) by    cos mu,    where  m  is an unspecified integer, 

and integrating from 0 to    p,    we obtain: 

   L
p

0

dz
dx

 cos mu du = L
p

0

1a - A02cos mu du + L
p

0
a
�

n=1

An cos nu cosmu du   

 The first term on the right-hand side is zero for any value of  m  since    a - A0 = a0l    is a 

known constant .  Also notice that: 

   L
p

0

An cos nu cos mu du = 0  when n � m   
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 but 

   L
p

0

An cos nu cos mu du =
p

2
An  when n = m   

 Therefore, 

      An =
2

p
 L

p

0

dz
dx

 cos nu du  (6.24)    

 Using equations (6.23) and (6.24) to define the coefficients, equation (6.20) can be used 

to evaluate the vorticity distribution for a cambered airfoil in terms of the geometric 

angle of attack and the shape of the mean camber line. Notice that, for a symmetric air-

foil,    A0 = a, A1 = A2 =
g

= An = 0,    and the vorticity distribution for a symmetric 

airfoil, as we found using equation (6.20), is: 

   g(u) = 2aU�

1 + cos u

sin u
   

 which is identical to equation (6.9). Therefore, the general expression for the cambered 

airfoil includes the symmetric airfoil as a special case. Now that we know the vorticity 

distribution for the airfoil, we can find the aerodynamic coefficients.  

   6.5.2  Aerodynamic Coefficients for a Cambered Airfoil 

 The lift and the moment coefficients for a cambered airfoil are found using the same 

approach as for the symmetric airfoil. The section lift coefficient is given by 

   Cl =
l

1
2 r�U2

�c
= L

c

0

r�U�g(j) dj   

 Using the coordinate transformation [equation (6.7)] and the expression for    g    [equa-

tion (6.20)], we obtain: 

   Cl = 2 c L
p

0

A0(1 + cos u) du + L
p

0
a
�

n=1

An sin nu sin u du d    

 Notice that    1p0 An sin nu sin u du = 0    for any value of  n  other than unity. Therefore, 

after integration we obtain: 

       Cl = 2paA0 +
A1

2
b = 2p ca -

1

pL
p

0

dz
dx

 du +
1

pL
p

0

dz
dx

 cos u du d  

  = 2p ca +
1

pL
p

0

dz
dx

(cos u - 1)du d = 2p(a - a0l)   (6.25)    

 From these derivations, we can quickly see two important things. First, we now have a 

way to find    a0l    by comparing terms in the previous equation: 

   Cl = 2p ca +
1

pL
p

0

dz
dx

(cos u - 1)du d = 2p(a - a0l)   
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 so 

   a0l = -
1

pL
p

0

dz
dx

(cos u - 1) du   

 Second, the slope of the lift curve is: 

   Cla =
0Cl

0a
= 2p 1/rad   

 which was the same result that we found for the symmetric airfoil. In other words, ac-

cording to thin-airfoil theory, the lift-curve slope is always the same,    2p 1/rad.    So how 

did adding camber impact the lift of the airfoil? The camber did not change the slope of 

the lift curve, but it did change the intercept,    a0l,    which means at a given angle of attack 

a cambered airfoil will produce more lift than a symmetric airfoil. 

 The section moment coefficient for the pitching moment about the leading edge 

is given by 

   Cm0
= - 1 c

0
r�U�g(j)j dj

1
2r�U2

�c2
   

 Again, using the coordinate transformation and the vorticity distribution, we can inte-

grate and obtain: 

      Cm0
= -
p

2
aA0 + A1 -

A2

2
b   (6.26)    

 In other words, in spite of the fact that    g(u)    in equation (6.20) is represented by an in-

finite series, the lift and pitch moment coefficients are only functions of    A0, A1,  and A2.    

 The center of pressure relative to the leading edge is again found by dividing the 

moment about the leading edge (per unit span) by the lift per unit span. 

   xcp = -
m0

l
   

 The negative sign is used since a positive lift force with a positive moment arm    xcp    results 

in a nose-down, or negative moment, as shown in the sketch of  Fig.   6.7   . Therefore, the 

center of pressure is:  

   xcp =
c
4
a

2A0 + 2A1 - A2

2A0 + A1

b    

m0

l

xcp

xcp � �
m0

l

 Figure 6.7         Center of pressure for a thin, cambered airfoil.   
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 Noting that    Cl = p(2A0 + A1),    the expression for the center of pressure simplifies to: 

      xcp =
c
4
c1 +

p

Cl
(A1 - A2) d   (6.27)    

 So, for the cambered airfoil, the position of the center of pressure depends on the lift 

coefficient and therefore the angle of attack. The line of action for the lift, as well as 

the magnitude, must be specified for each angle of attack. 

 If the pitch moment per unit span produced by the pressure distribution is referred 

to a point    c>4    downstream of the leading edge (i.e., the quarter chord), then the  moment 

is given by: 

   mc>4 = L
c>4

0

r�U�g(j) a
c
4

- jb  dj - L
c

c>4
r�U�g(j) aj -

c
4
b  dj   

 Again, the signs are chosen so that a nose-up moment is positive. Rearranging the rela-

tion above gives us: 

   mc>4 =
c
4 L

c

0

r�U�g(j) dj - L
c

0

r�U�g(j)j dj   

 The first integral on the right-hand side of this equation represents the lift per unit 

span, while the second integral represents the moment per unit span about the leading 

edge. Therefore, 

      mc>4 =
c
4

l + m0  (6.28)    

 The section moment coefficient about the quarter-chord point is given by: 

      Cmc>4
=

Cl

4
+ Cm0

=
p

4
(A2 - A1)  (6.29)    

 Since    A1    and    A2    depend on the camber only, the section moment coefficient about the 

quarter-chord point is independent of the angle of attack. The point about which the 

section moment coefficient is independent of the angle of attack is called the  aerody-
namic center of the section . Therefore, according to the theoretical relations for a thin-

airfoil section, the aerodynamic center is at the quarter-chord. This is true for cambered 

airfoils as well as symmetric airfoils, since the results for symmetric airfoils are just a 

special case of equation (6.29). The primary difference in the pitch moment for a cam-

bered airfoil is that    Cmc>4
    will be negative, and for a symmetric airfoil    Cmc>4

= 0    (camber 

creates a nose-down pitch moment). 

 In order for the section pitch moment to remain constant as the angle of attack is 

increased, the product of the moment arm (relative to the aerodynamic center) and    Cl    

must remain constant. This means that the moment arm (relative to the aerodynamic 

center) decreases as the lift increases. This is evident in the expression for the center 

of pressure, which is given in equation (6.27). Alternatively, the aerodynamic center is 

the point at which all changes in lift effectively take place. Because of these factors, the 

center of gravity of an airplane is usually located near the aerodynamic center. 
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 If we include the effects of viscosity on the flow around the airfoil, the lift due 

to angle of attack would not necessarily be concentrated at the exact quarter-chord 

point. However, for angles of attack below the onset of stall, the actual location of the 

aerodynamic center for the various sections is usually between the 23% chord point and 

the 27% chord point. Therefore, the moment coefficient about the aerodynamic center, 

which is given the symbol    Cmac
,    is also given by equation (6.29). If equation (6.24) is used 

to define    A1    and    A2,    then    Cmac
    becomes: 

      Cmac
=

1

2 L
p

0

dz
dx

(cos 2u - cos u) du  (6.30)    

 As we discussed when comparing theory with data in the preceding section, the    Cmac
    is 

zero for a symmetric airfoil. 

  EXAMPLE 6.2:    Theoretical aerodynamic coefficients for a cambered airfoil 

 The relations developed in this section will now be used to calculate the 

aerodynamic coefficients for a representative cambered airfoil section. The 

airfoil section selected for use in this sample problem is the NACA 2412 air-

foil. As discussed in  Abbott and Doenhoff (1949)  the first digit defines the 

maximum camber in percent of chord, the second digit defines the location 

of the maximum camber in tenths of chord, and the last two digits represent 

the thickness ratio (i.e., the maximum thickness in percent of chord). The 

equation for the mean camber line is defined in terms of the maximum cam-

ber and its location, which for this airfoil is 0.4 c . Forward of the maximum 

camber position    (0 … x>c … 0.4),    the equation of the mean camber line is 

   a
z
c
b

fore

= 0.125 c0.8a
x
c
b - a

x
c
b

2

d    

 and aft of the maximum camber position    (0.4 … x>c … 1.0),    

   a
z
c
b

aft

= 0.0555 c0.2 + 0.8a
x
c
b - a

x
c
b

2

d    

  Solution:     To calculate the section lift coefficient and the section moment coefficient, 

it is only necessary to evaluate the coefficients    A0, A1,    and    A2.    To evaluate 

these coefficients, we need to integrate the slope of the mean camber line. 

Therefore, the slope of the mean camber line will be expressed in terms of 

the    u    coordinate, which is given in equation (6.7). Forward of the maximum 

camber location the slope is given by: 

   a
dz
dx

b
fore

= 0.1 - 0.25 
x
c
= 0.125 cos u - 0.025   

 Aft of the maximum camber location, the slope is given by 

   a
dz
dx

b
aft

= 0.0444 - 0.1110 
x
c
= 0.0555 cos u - 0.0111   
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 Since the maximum camber location serves as a limit for the integrals, it is 

necessary to convert the  x  coordinate, which is 0.4 c,  to the corresponding    u    

coordinate. To do this, we use the transformation given by equation (6.7): 

   
c
2

(1 - cos u) = 0.4c   

 The resulting location of the maximum camber is    u = 78.463� = 1.3694    rad. 

 Referring to equations (6.23) and (6.24), the necessary coefficients are: 

    A0 = a -
1

p
c L

1.3694

0

10.125 cos u - 0.0252  du + L
p

1.3694

10.0555 cos u - 0.01112  du d

 = a - 0.004517

 A1 =
2

p
c L

1.3694

0

(0.125 cos2 u - 0.025 cos u) du

 + L
p

1.3694

(0.0555 cos2 u - 0.0111 cos u) du4

 = 0.08146

 A2 =
2

p
c  L

1.3694

0

(0.125 cos u cos 2u - 0.025 cos 2u) du

 + L
p

1.3694

(0.0555 cos u cos 2u - 0.0111 cos 2u) du4

 = 0.01387    

 The section lift coefficient can now be found from equation (6.25): 

   Cl = 2paA0 +
A1

2
b = 2pa + 0.2297   

 Solving for the angle of attack for zero lift, we obtain: 

   a0l = -
0.2297

2p
 rad = -2.095�   

 According to thin-airfoil theory, the aerodynamic center is at the 

 quarter-chord location. So, the section moment coefficient about the quar-

ter chord is equal to that about the aerodynamic center. The two coefficients 

are given by 

   Cmac
= Cmc>4

=
p

4
(A2 - A1) = -0.05309     

 The theoretical values of the section lift coefficient and of the section moment co-

efficients are compared with the measured values from  Abbott and Doenhoff (1949)  in 

 Figs.   6.8    and    6.9   , respectively. Since the theoretical coefficients do not depend on the airfoil 
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section thickness, they will be compared with data from  Abbott and Doenhoff (1949)  for a 

NACA 2418 airfoil as well as for a NACA 2412 airfoil. For both airfoil sections, the maxi-

mum camber is 2% of the chord length and is located at    x = 0.4c.    The maximum thickness 

is 12% of chord for the NACA 2412 airfoil section and is 18% of the chord for the NACA 

2418 airfoil section. While an 18% thick airfoil is not considered “thin,” it will be informa-

tive to see how well thin-airfoil theory does at predicting the aerodynamics of this airfoil.   

 The correlation between the theoretical and the experimental values of lift coef-

ficient is satisfactory for both airfoils ( Fig.   6.8   ) until the angle of attack becomes so large 

that viscous phenomena significantly affect the flow field. The theoretical value for the 

zero lift angle of attack agrees very well with the measured values for the two airfoils. 

The theoretical value of    Cla    is    2p    per radian. Based on the measured lift coefficients 

for angles of attack for    0�    to    10�,    the experimental value of    Cl, a    is approximately 6.0 per 

radian for the NACA 2412 airfoil and approximately 5.9 per radian for the NACA 2418 

airfoil, which are 4.5% and 6.1% below    2p,    respectively. 

 The experimental values of the moment coefficient referred to the aerodynamic 

center (approximately    -0.045    for the NACA 2412 airfoil and    -0.050    for the NACA 

2418 airfoil) compare favorably with the theoretical value of    -0.053,    as shown in  Fig.   6.9   . 

The correlation between the experimental values of the moment coefficient referred 

to the quarter chord, which vary with the angle of attack, and the theoretical value is 
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 Figure 6.8         Comparison of the aerodynamic coefficients calcu-

lated using thin airfoil theory for cambered airfoils: (a) NACA 

2412 wing section; (b) NACA 2418 wing section [data from 

  Abbott and von Doenhoff (1949) ].   
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not as good (see  Fig.   6.8   ). Note also that the experimentally determined location of 

the aerodynamic center for these two airfoils is between    0.239c    and    0.247c.    As we saw 

previously, the location is normally between    0.23c    and    0.27c    for a real fluid flow, as 

compared with the value of    c>4    calculated using thin-airfoil theory. 

 Although the thickness ratio of the airfoil section does not enter into the theory, 

except as an implied limit to its applicability, the data of  Figs.   6.8    and    6.9    show thickness-

related variations. Notice that the maximum value of the experimental lift coefficient 

is consistently greater for the NACA 2412 airfoil and that it occurs at a higher angle 

of attack. Also notice that as the angle of attack increases beyond the maximum lift 

value, the measured lift coefficients decrease more sharply for the NACA 2412. So, the 

thickness ratio influences the interaction between the adverse pressure gradient and 

the viscous boundary layer , as we discussed in  Chapter   4    . The interaction, in turn, af-

fects the aerodynamic coefficients.    Clmax
    is presented as a function of the thickness ratio 

for the NACA 24XX series airfoils in  Fig.   6.10   . The data of  Abbott and von Doenhoff 

(1949)  and the results of  McCormick (1967)  are presented. McCormick notes that below 

a thickness ratio of approximately 12%,    Clmax
    decreases rapidly with decreasing thick-

ness. Above a thickness ratio of 12%, the variation in    Clmax
    is less pronounced, but also 
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 Figure 6.9         Comparison of the theoretical and the experimental 

section moment coefficient (about the aerodynamic center) for 

two cambered airfoils: (a) NACA 2412 wing section; (b) NACA 

2418 wing section [data from  Abbott and von Doenhoff (1949) ].   
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decreases. Therefore, an airfoil of approximately 12% thickness obtains a maximum 

value of    Clmax
    in low-speed flow.  

 The correlations presented in  Figs.   6.6    and    6.8    indicate that, at low angles of attack, 

the theoretical lift coefficients based on thin-airfoil theory are in good agreement with the 

measured values from  Abbott and von Doenhoff (1949) . However, to compute the airfoil 

lift and pitching moment coefficients for various configurations exposed to a wide range of 

flow environments, especially if knowledge of the maximum section lift coefficient    Clmax
    is 

important, it is necessary to include the effects of the boundary layer and of the separated 

wake. Using repeated application of a panel method  (see  Chapters   3    and    7   )  to solve for the 

separated wake displacement surface,  Henderson (1978)  discussed the relative importance 

of separation effects, which are illustrated in  Fig.   6.11   . The lift coefficient calculated using 

potential flow analysis with no attempt to account for the affects either of the boundary 

layer or of separation is compared with wind-tunnel data in  Fig.   6.11   a. At low angles of 

attack where the boundary layer is thin and there is little, if any, separation, potential flow 

analysis of the surface alone is a fair approximation to the data; as the angle of attack is 

increased, the correlation degrades, due to the increased importance of viscous effects.  

  Henderson (1978)  notes, “Rarely will the boundary layers be thin enough that 

potential flow analysis of the bare geometry will be sufficiently accurate.” By  including 

the effect of the boundary layer but not the separated wake in the computational flow 

model, the agreement between the theoretical lift coefficients and the wind-tunnel 

 values is good at low angles of attack, as shown in  Fig.   6.11   b. When the angle of attack 
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 Figure 6.10         Effect of the thickness ratio on the maximum lift 

coefficient, NACA 24XX series airfoil sections.   
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 Figure 6.11         Relative importance 

of separation effects: (a) analysis 

of geometry alone; (b) analysis 

with boundary layer modeled; (c) 

analysis with boundary layer and 

separated wake modeled [from 

 Henderson (1978) ].   

is increased and separation becomes important, the predicted and the measured lift 

 coefficients again begin to diverge. 

 Separation effects must be modeled in order to predict the maximum lift coefficient. 

As shown in  Fig.   6.11   c, when we account for the boundary layer and the separated wake, 

there is good agreement between theoretical values and experimental values through    Clmax
.    

This will be the case for any gradually separating section, such as the GAW-1, used in the 

example of  Fig.   6.11   , but will not always give such good results for all airfoils.   
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   6.6  LAMINAR-FLOW AIRFOILS 

 Airplane designers have long sought the drag reduction that would be attained if the 

boundary layer over an airfoil were largely laminar rather than turbulent  (see  Section   5.4.4    

for details about boundary-layer transition and its impact on drag) .  Aerodynamicists 

since the 1930s have developed airfoils that could reduce drag by maintaining laminar 

flow, culminating in the NACA developing laminar-flow airfoils for use on full-scale 

aircraft, which are the 6-series airfoils  discussed in  Section   5.2.1     [ Jacobs (1939) ]. Compar-

ing  equations (4.25) and (4.81)     shows that there is a fairly significant reduction in skin-

friction drag (at reasonably high Reynolds numbers) if the boundary layers are laminar 

rather than turbulent. The Blasius laminar skin-friction relation is: 

      Cf =
1.328

2ReL

  (4.25)    

 And the Prandtl turbulent skin-friction relation is: 

      Cf =
0.074

(ReL)0.2
  (4.81)    

 Early attempts at designing laminar-flow airfoils centered around modifications to 

the airfoil geometry that would maintain a favorable pressure gradient over a majority 

of the airfoil surface, as shown in  Fig.   6.12   . This was accomplished primarily by moving 

the maximum thickness location of the airfoil further aft, preferably to the mid-chord 

or beyond, as is evidenced by the    NACA 631@412    airfoil, and even more pronounced 

for the    NACA 661@212    airfoil, especially when compared with the NACA 23012 airfoil.  

 An entire series of these airfoils were designed and tested, and many of the result-

ing shapes can be found in  Theory of Wing Sections  by  Abbott and von Doenhoff (1949)  

as the 6-digit airfoil series. These airfoil sections long have been used on general avia-

tion aircraft, including airplanes like the Piper Archer. In the wind tunnel, these airfoils 

initially showed very promising drag reduction at cruise angles of attack, as shown in 

NACA 23012

NACA 661-212

NACA 631-412

 Figure 6.12         Shapes of two NACA laminar-flow airfoil sections 

compared with the NACA 23012 airfoil section [from  Loftin (1985) ].   
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 Fig.   6.13   . The “bucket” in the drag curve for the laminar-flow airfoil occurs at angles of 

attack that normally might be required for cruise, and show a potential drag reduction 

of up to 25% over the conventional airfoil. Notice, however, that when the wind-tunnel 

model had typical surface roughness, the flow transitioned to turbulent, and the laminar 

flow benefits were greatly reduced, even eliminated.  

 The P-51 was the first production aircraft to utilize these laminar flow airfoils 

in an attempt to improve range by increasing the wing size and fuel volume for the 

same amount of drag as a turbulent-flow airfoil (see  Fig.   6.14   ). Unfortunately, laminar-

flow airfoils do not function properly if the boundary layer transitions to turbulent, 

which can happen easily if the wing surface is not smooth. Keeping an airfoil smooth 

is something that is relatively easy to achieve with wind-tunnel models but rarely takes 

place with production aircraft due to the use of rivets and bolts, as well as the dents 

that may take place around the leading edge (or even from insects that become stuck 

to the leading edge of the wing). “As a consequence, the use of NACA laminar-flow 

airfoil sections has never resulted in any significant reduction in drag as a result of the 

achievement of laminar flow” [ Loftin (1985) ]. This has led to a variety of flow-control 

devices being used to actively maintain laminar flow, but most of these devices require 

additional power sources (such as boundary-layer suction or blowing , as discussed in 

 Section   13.4.2    ), which usually does not make them practical as a drag-reduction concept.  
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 Figure 6.13         Drag characteristics of NACA laminar flow and con-

ventional airfoils sections with both smooth and rough leading 

edges [from  Loftin (1985) ].   
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 The relatively high Reynolds numbers of full-scale aircraft flying at common 

flight altitudes made the realization of lower drag using laminar flow impractical, but 

new applications have revived interest in laminar flow airfoils, including micro UAVs 

 [ Grasmeyer and Keennon (2001) ] and high-altitude aircraft (see both concepts in 

 Fig.   6.15   ). These aircraft have vastly different configurations, ranging from very low 

aspect-ratio “flying discs” to very high aspect-ratio aircraft. The difference in design 

is dictated by the difference in application, with the micro UAV flying at such low 

 Reynolds numbers that typical design thinking about aspect ratio no longer holds. 

 Heavier aircraft often have higher aspect ratios, because induced drag is so much larger 

than skin-friction drag at higher Reynolds numbers. As the size of the vehicle decreases 

(and as weight and Reynolds number also decreases), aspect ratio no longer is the 

dominant factor in creating drag—skin-friction drag becomes more important, hence 

the low aspect-ratio design common for micro UAVs [ Drela et al. (2003) ]. The high-

altitude aircraft (such as Helios shown in  Fig.   6.15   ) also fly at low Reynolds numbers but 

require fairly heavy weights in order to carry the solar panels and batteries required for 

 propulsion—the high aspect-ratio aircraft once again becomes more efficient.  

 The most important fluid dynamic characteristic for the design of laminar airfoils 

are laminar separation bubbles and transition. Laminar flow separates easier than 

 Figure 6.14         Restored NACA P-51 with laminar flow airfoil 

 sections [courtesy of NASA Dryden Flight Research Center].   

 Figure 6.15         Candidate laminar-flow airfoil aircraft: Black Widow Micro 

UAV (left) and Helios high-altitude solar-powered aircraft (right) [Black 

Widow from  Grasmeyer and Keennon (2001), courtesy of AeroVironment, 

Inc.;  Helios courtesy of NASA Dryden Flight Research Center].   
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 turbulent flow and often leads to separation bubbles, as shown in  Fig.   6.16   . These sepa-

rated flow regions reattach, but the boundary layer usually transitions to turbulent through 

the separation process, leading to higher drag due to the bubble and turbulent flow after 

the bubble. Methods to overcome the laminar separation bubble include the tailoring 

of the airfoil geometry ahead of the bubble formation to control the adverse pressure 

gradient, or by using transition trips. While transition trips do increase the skin-friction 

drag, if used properly they also can lead to a net reduction in drag due to the elimination 

of the separation bubble [ Gopalarathnam et al. (2001) ].  

 The fact that the uses for laminar airfoils vary a great deal (ranging from UAVs to 

gliders and to high-altitude aircraft) means that there is no single optimum airfoil: each 

application requires a different wing and airfoil design in order to optimize performance 

[ Torres and Mueller (2004) ]. This led many researchers to begin wind-tunnel testing 

laminar-flow airfoils so that designers could choose optimum airfoil sections depend-

ing on their requirements [ Selig et al. (1989 and 2001) ]. A good overview of the type of 

airfoils that work for various uses is presented by  Selig (2003) , including wind turbines, 

airfoils with low pitching moments, high-lift airfoils, and radio-controlled sailplanes 

(candidate airfoils are shown in  Fig.   6.17   ). Another approach is to use various numerical 

prediction methods which have been developed over the years, including Eppler’s code 

 Figure 6.16         Laminar separation bubble on an airfoil shown by 

surface oil flow where separation and reattachment are visible 

[from  Selig (2003) ].   

SA7038

SA7037

SA7036

SA7035

 Figure 6.17         Candidate airfoils for 

radio controlled sailplanes [from 

 Selig (2003) ].   
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[ Eppler and Somers (1980) ,  Eppler (1990) ], XFOIL [ Drela (1989) ], and inverse design 

methods such as PROFOIL [ Selig and Maughmer (1992) ] and its applications [ Jepson 

and Gopalarathnam (2004) ]. These codes partially rely on semi-empirical or theoretical 

methods for predicting laminar separation bubbles, transition, and separation, and have 

been found to produce reasonable results for typical airfoils.   

   6.7  HIGH-LIFT AIRFOIL SECTIONS 

 Since stall occurs on airfoils at relatively low angles of attack (between 10 and 20 degrees 

depending on the airfoil geometry and Reynolds number), it would be convenient if there 

was another way to increase lift without increasing the angle of attack. As noted by  Smith 

(1975) , “The problem of obtaining high lift is that of developing the lift in the presence of 

boundary layers—getting all the lift possible without causing separation. Provided that 

boundary-layer control is not used, our only means of obtaining higher lift is to  modify 

the geometry of the airfoil. For a one-piece airfoil, there are several possible means 

for  improvement—changed leading-edge radius, a flap, changed camber, a nose flap, a 

 variable-camber leading edge, and changes in detail shape of a pressure distribution.” 

 So, if more lift is to be generated, the circulation around the airfoil section must be 

increased, or, equivalently, the velocity over the upper surface must be increased relative 

to the velocity over the lower surface. However, once the effect of the boundary layer is 

included, the Kutta condition at the trailing edge requires that the upper-surface and the 

lower-surface velocities assume a value slightly less than the free-stream velocity. Hence, 

when the higher velocities over the upper surface of the airfoil are produced in order to 

get more lift, larger adverse pressure gradients are required to decelerate the flow from 

the maximum velocity to the trailing-edge velocity. Again, referring to  Smith (1975) , 

“The process of deceleration is critical, for if it is too severe, separation develops. The 

science of developing high lift, therefore, has two components: (1) analysis of the bound-

ary layer, prediction of separation, and determination of the kinds of flows that are most 

favorable with respect to separation; and (2) analysis of the inviscid flow about a given 

shape with the purpose of finding shapes that put the least stress on a boundary layer.” 

  Stratford (1959)  has developed a formula for predicting the point of separation 

in an arbitrary decelerating flow. The resultant Stratford pressure distribution, which 

recovers a given pressure distribution in the shortest distance, has been used in the work 

of  Liebeck (1973) . To develop a class of high-lift airfoil sections, Liebeck used a veloc-

ity distribution that satisfied “three criteria: (1) the boundary layer does not separate; 

(2) the corresponding airfoil shape is practical and realistic; and (3) maximum possible 

   Cl    is obtained.” The optimized form of the airfoil velocity distribution is markedly dif-

ferent than that for a typical airfoil section (which is shown in  Fig.   6.18   ). The velocity 

 distribution is presented as a function of  s,  the distance along the airfoil surface, where 

 s  begins at the lower-surface trailing edge and proceeds clockwise around the airfoil 

surface to the upper-surface trailing edge. In the  s -coordinate system, the velocities 

are negative on the lower surface and positive on the upper surface. The “optimum” 

velocity distribution, modified to obtain a realistic airfoil, is presented in  Fig.   6.19   . The 

lower-surface velocity is as low as possible in the interest of obtaining the maximum lift 

and increases continuously from the leading-edge stagnation point to the trailing-edge 

velocity. The upper-surface acceleration region is shaped to provide good off-design 
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performance. A short boundary-layer transition ramp (the region where the flow de-

celerates, since an adverse pressure gradient promotes transition) is used to ease the 

boundary layer’s introduction to the severe initial Stratford gradient.   

 Once the desired airfoil velocity distribution has been defined, there are two op-

tions available for calculating the potential flow. One method uses conformal mapping 

of the flow to a unit circle domain to generate the airfoil , as was discussed in  Chapter   3     

[e.g.,  Eppler and Somers (1980)   and Liebeck (1976) ]. A second approach uses the panel 

method for the airfoil analysis , which was also shown in  Chapter   3   , with an extended 

discussion in  Chapter   7     [e.g.,  Stevens et al. (1971) ].  Olson et al. (1978)  note that, in the 

potential flow analysis, the airfoil section is represented by a closed polygon of planar 
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panels connecting the input coordinate pairs. The boundary condition for the inviscid 

flow—that there be no flow through the airfoil surface—is applied at each of the panel 

centers. An additional equation, used to close the system, specifies that the upper- and 

lower-surface velocities have a common limit at the trailing edge (i.e., the Kutta condi-

tion). The effect of  boundary-layer displacement is simulated by piecewise linear source 

distributions on the panels describing the airfoil contour. Instead of modifying the air-

foil geometry by an appropriate displacement thickness to account for the boundary 

layer, the boundary condition is modified by introducing surface transpiration.  Miranda 

(1984)  notes, “The latter approach is more satisfactory because the surface geometry 

and the computational grid are not affected by the boundary layer. This means that, 

for panel methods, the aerodynamic influence coefficients and, for finite difference 

methods, the computational grid do not have to be recomputed at each iteration.” The 

boundary condition on the surface panels requires that the velocity normal to the sur-

face equals the strength of the known source distribution. 

 Liebeck has developed airfoil sections which, although they “do not appear to 

be very useful” [the quotes are from  Liebeck (1973) ], develop an  l / d  of 600 (typical 

low-speed airfoils have lift-to-drag ratios of approximately 100). The airfoil section, 

theoretical pressure distribution, the experimental lift curve and drag polar, and the 

experimental pressure distributions for a more practical, high-lift section are presented 

in  Figs.   6.20    through    6.22   . The pressure distributions indicate that the flow remains 
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 Figure 6.20         Theoretical pressure distribution for high-lift, single-

element airfoil,    Rec = 3 * 106, tmax = 0.125c, Cl = 1.35    [from 

 Liebeck (1973) ].   
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attached all the way to the trailing edge. The flow remains completely attached until 

the stalling angle is reached, at which point the entire recovery region separates instan-

taneously. Reducing the angle of attack less than    0.5�    results in an instantaneous and 

complete reattachment, indicating a total lack of hysteresis effect on stall recovery.      

 Improvements of a less spectacular nature have been obtained for airfoil sec-

tions being developed by NASA for light airplanes. One such airfoil section is the 

General Aviation (Whitcomb) number 1 airfoil, GA(W)-1, which is 17 %  thick with 

a blunt nose and a cusped lower surface near the trailing edge. The geometry of the 

GA(W)-1 section is similar to that of the supercritical airfoil , which will be discussed 

in  Chapter   9    . Experimentally determined lift coefficients, drag coefficients, and pitch 

moment coefficients, which are taken from  McGhee and Beasley (1973) , are presented 

in  Fig.   6.23   . Included for comparison are the corresponding correlations for the NACA 

   652@415    and the NACA    653@418    airfoil sections. Both the GA(W)-1 and the NACA 
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 Figure 6.21         Experimental lift coefficient curve, drag polar, and 

pitch coefficient curve for a high-lift, single-element airfoil, 

   Rec = 3 * 106    [from  Liebeck (1973) ].   
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   653@418    airfoils have the same design lift coefficient (0.40), and both have roughly the 

same mean thickness distribution in the region of the structural box (typical aircraft 

have a leading-edge spar at about 0.15 c  and a trailing edge spar at around 0.60 c ). How-

ever, the experimental value of the maximum section lift coefficient for the GA(W)-1 

was approximately 30 %  greater than for the NACA 65 series airfoil for a Reynolds 

number of    6 * 106.    Since the section drag coefficient remains approximately constant 

to higher lift coefficients for the GA(W)-1, significant increases in the lift/drag ratio 

are obtained. At a lift coefficient of 0.90, the lift/drag ratio for the GA(W)-1 was ap-

proximately 70, which is 50 %  greater than that for the NACA    653@418    section. This is 

of particular importance from a safety standpoint for light general aviation airplanes, 

where large values of section lift/drag ratio at high lift coefficients result in improved 

climb performance.            
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 Figure 6.22         Comparison of the theoretical potential-flow and the 

experimental pressure distribution of a high-lift, single-element 

airfoil,    Rec = 3 * 106    [from  Liebeck (1973) ].   
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 Aerodynamics Concept Box: How to Create High Lift 

 According to thin airfoil theory, the way to increase lift is to change    a0l    by adding camber to 

the airfoil. The development of the theory for cambered airfoils in  Section   6.5.2    showed that 

the zero-lift angle of attack is defined by: 

   a0l = -
1

pL
p

0

dz
dx

(cos u - 1) du   

 Examining the integral we see that camber changes,  dz>dx , are multiplied by the term 

   (cos u - 1).    Recall that    u = 0    corresponds to the leading edge of the airfoil and    u = p    cor-

responds to the trailing edge of the airfoil. So changes in camber at the leading edge are 

multiplied by    (cos(0) - 1) = 0.    In other words, there is no contribution to the integral at 

   u = 0,    no matter how large  dz>dx  happens to be. Of course, there would be a small contribu-

tion to the integral at points near the leading edge, but camber changes in this region would 

still have very small impact on changing    a0l.    Now we can look at changing the camber at the 

trailing edge:  dz>dx  at the trailing edge is multiplied by    (cos(p) - 1) = -2.    In other words, 

camber changes at the trailing edge have a large impact on    a0l.    So, thin airfoil theory, which is 

an inviscid theory, tells us to create more lift by increasing camber in the region of the trailing 

edge of the airfoil. That is why aircraft have large high-lift devices along the trailing edge of 

the wing, as seen below for the Boeing 747 triple-slotted flap system. 

 The picture also shows that there are devices along the leading edge of the wing, which 

seems to be in contradiction to the results of thin airfoil theory. Remember, though, that thin 

airfoil theory is an inviscid theory. We will find out that leading edge high-lift devices, like 

those seen on the 747 above, are viscous flow control devices: they are placed along the lead-

ing edge in order to control flow separation and delay stall, which will be discussed in the next 

section  and in  Chapter   13    . Remember from our earlier discussions about airfoils—creating 

lift also makes flow separation more likely, so we must always be mindful of the delicate bal-

ance between lift and flow separation. 

       Triple-slotted flap and Krueger flap systems on the Boeing 747 

[public domain photo by Adrian Arpingstone]   
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 Figure 6.23a         Aerodynamic coefficients for a NASA GA(W)-1 

airfoil, for a NACA    652@415    airfoil, and for a NACA    653@418    

airfoil;    M� = 0.20, Rec = 6 * 106:    (a) lift coefficient and pitch 

moment coefficient curves; (b) drag polars [data from  McGhee 

and Beasley (1973) ].   

   6.8  MULTIELEMENT AIRFOIL SECTIONS FOR GENERATING HIGH LIFT 

 Since single element airfoils that produce high lift, as discussed in the previous section, 

require unusual shaping, it is more common to use multi-element airfoil sections to 

produce higher levels of lift. As noted by  Meredith (1993) , “High-lift systems are used 

on commercial jet transports to provide adequate low-speed performance in terms of 

take-off and landing field lengths, approach speed, and community noise. The impor-

tance of the high-lift system is illustrated by the following trade factors derived for a 

generic large twin engine transport: 



338    Chap. 6 / Incompressible Flows Around Airfoils of Infinite Span

    •   A 0.10 increase in lift coefficient at constant angle of attack is equivalent to reducing 

the approach attitude by about one degree. For a given aft body-to-ground clearance 

angle, the landing gear may be shortened resulting in a weight savings of 1400 lb.    

   •   A 1.5 %  increase in the maximum lift coefficient is equivalent to a 6600 lb increase 

in payload at a fixed approach speed.  

   •   A 1 %  increase in take-off  L/D  is equivalent to a 2800 lb increase in payload or a 

150 nm increase in range.   

 While necessary, high-lift systems increase the airplane weight, cost, and com-

plexity significantly. Therefore, the goal of the high-lift system designer is to design a 

high-lift system which minimizes these penalties while providing the required airplane 

take-off and landing performance.” 

  Jasper et al. (1993)  noted, “Traditionally (and for the foreseeable future) high-

lift systems incorporate multi-element geometries in which a number of highly-loaded 

elements interact in close proximity to each other.”  Fig.   6.24    shows a sketch depicting 

the cross section of a typical configuration incorporating four elements: a leading-edge 

slat, the main-element airfoil, a flap vane, and trailing-edge flap.  Jasper et al. (1993)  

continued, “Such configurations generate very complex flowfields containing regions of 

separated flow, vortical flow, and confluent boundary layers. Laminar, turbulent, tran-

sitional, and re-laminarizing boundary layers may exist. Although high lift systems are 

typically deployed at low freestream Mach numbers, they still exhibit compressibility 

effects due to the large pressure gradients generated   c.    It should be noted that many 

of the flowfield phenomena (e.g., separation, transition, turbulence, etc.) are areas of 
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 Figure 6.23b (continued)       
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intense research in the computational community and are not yet fully amenable to 

computational analysis.”  

 As noted by  Yip et al. (1993) , “Two-dimensional multi-element flow issues include 

the following: 

    •   compressibility effects including shock/boundary-layer interaction on the slat;  

   •   laminar separation-induced transition along the upper surfaces;  

   •   confluent turbulent boundary layer(s)—the merging and interacting of wakes from 

upstream elements with the boundary layers of downstream elements;  

   •   cove separation and reattachment; and  

   •   massive flow separation on the wing/flap upper surfaces.”   

 The cove is the region vacated by the flap system when it deploys, as seen in  Fig.   6.24   . 

 The complex flowfields for high-lift multielement airfoils are very sensitive to 

Reynolds number-related phenomena and to Mach number-related phenomena. As 

we mentioned in the previous paragraph, many of the relevant flow-field issues (e.g., 

separation, transition, and turbulence) are difficult to model numerically, and also pose 

challenges to simulate in wind tunnels. 

 The airfoil configuration that is chosen based on cruise requirements determines a 

lot of important parameters for the high-lift devices, such as the chord and the thickness 

distribution. Only the type of the high-lift devices, the shape, the spanwise extensions, 

and the settings can be chosen by the designer of the high-lift system. Even then, the 

designer is limited by several constraints. As noted by  Flaig and Hilbig (1993) , “Usually 

the chordwise extension of the high-lift devices is limited by the location of the front 

spar and rear spar respectively, which can not be changed due to considerations of wing 

stiffness (twist, bending) and internal fuel volume.” These constraints are depicted in 

the sketches of  Fig.   6.25   , where F/S depicts the front spar and R/S depicts the rear spar.  

  Flaig and Hilbig (1993)  note further, “Especially the required fuel capacity for a 

long-range aircraft can be of particular significance in the wing sizing. Moreover, the 

inner wing flap chord of a typical low set wing aircraft is limited by the required storage 

space for the retracted main undercarriage. 
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 Figure 6.24         Sketch of the cross section of a typical high-lift mul-

tielement airfoil section [from  Jasper et al. (1993) ].   
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 After the chordwise extension of the leading edge and trailing edge devices has 

been fixed, the next design item is the optimization of their shapes. 

 The typical leading-edge devices of today’s transport aircraft are slats and Krueger 

flaps. In the case of a slat, the profile of upper and lower surface is defined by the cruise 

wing nose shape. Therefore, only the shape of the slat inner side and the nose of the 

fixed-wing can be optimized. 

 A Krueger flap with a folded nose or flexible shape, as an example, generally of-

fers greater design freedom to achieve an ideal upper surface shape, and thus gains a 

little in  L/D  and    CLmax.    But, trade-off studies carried out in the past for A320 and A340 

have shown that this advantage for the Krueger flap is compromised by a more complex 

and heavier support structure than required for a slat.” 

 The required maximum lift capability for the landing configuration determines 

the complexity of the high-lift system. In particular, the number of slots (or elements) 

of  trailing-edge devices has a significant effect on    CLmax
   . The degrading effect of wing 

sweep on the maximum lift coefficient necessitates an increase in the complexity of the 

high-lift system. 

 The general trend of the maximum lift efficiency is presented as a function of 

the system complexity in  Fig.   6.26   , which is taken from  Flaig and Hilbig (1993) . Note 

that the maximum value for the coefficient of lift for unpowered high-lift systems is 

approximately 3 (on an aircraft with typical    25�    wing sweep). Powered high-lift systems 

with additional active boundary-layer control may achieve maximum values of the lift 

coefficient up to 7, as shown on the right side of  Fig.   6.26   .  

 The problem of computing the aerodynamic characteristics of multielement air-

foils can be subdivided into the following broad topical areas, each requiring models 

for the computer program [ Stevens et al. (1971) ]: 

    •   Geometry definition  

   •   Solution for the inviscid, potential flow  

   •   Solution for the conventional boundary layer  
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 Figure 6.25         General constraints on the design of high-lift multi-

element airfoil sections [from  Flaig and Hilbig (1993) ].   
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   •   Solution for the viscous wakes and slot-flow characteristics  

   •   Combined inviscid/viscous solution   

  Stevens et al. (1971)  note that the geometric modeling of the complete airfoil, 

including slots, slats, vanes, and flaps, requires a highly flexible indexing system to en-

sure that conventional arrangements of these components can be readily adapted to the 

code. This level of detailed geometric modeling is also difficult in subscale wind-tunnel 

testing, where the component parts would be too small to adequately manufacture 

(depending on the size of the wind tunnel and the model). 

 To compute the inviscid, potential flow,  Stevens et al. (1971)  and  Olson et al. (1978)  

use distributed vortex singularities as the fundamental solution to the Laplace equation. 

 Olson et al. (1978)  note that viscous calculations can be separated into three types of 

flows: conventional boundary layers, turbulent wakes, and confluent boundary layers (i.e., 

wakes merging with conventional boundary layers), which are illustrated in  Fig.   6.27   . To 

obtain a complete viscous calculation, the conventional boundary layers on the upper and 

lower surfaces of the main airfoil are first analyzed. These calculations provide the initial 

conditions to start the turbulent-wake analysis at the trailing edge of the principal airfoil. 

The calculations proceed downstream until the wake merges with the outer edge of the 

boundary layer on the upper surface of the flap, as shown in  Fig.   6.28   . The wake from the 

principal airfoil and the boundary layer of the flap combine into a single viscous layer at this 

point, a so-called confluent boundary layer. The calculation procedure continues stepwise 

downstream to the flap trailing edge. At the flap trailing edge, this confluent boundary-

layer solution merges with the boundary layer from the lower surface of the flap. The 

calculation then continues downstream into the wake along a potential-flow streamline.   

 Although the techniques used to calculate the viscous effects differ from those 

described in the preceding paragraph, the importance of including the viscous effects 

is illustrated in  Fig.   6.29   . Using repeated application of a panel method to solve for the 
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 Figure 6.26         The maximum lift coefficient as a function of the 

complexity of the high-lift system [from  Flaig and Hilbig (1993) ].   
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 Figure 6.27         Theoretical flow models for the various viscous 

 regions [from  Olson et al. (1978) ].   
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 Figure 6.28         Flow model for merging of the wake from the princi-

pal airfoil with the boundary layer on the flap to form the conflu-

ent boundary layer on the upper surface of the flap [from  Olson 

et al. (1978) ].   
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separated wake displacement surface,  Henderson (1978)  found a significant effect on 

the pressure distributions both on the principal airfoil and the flap for the GA(W)-1 

airfoil for which    a    was    12.5�    and the flap angle was    40�.    Although a separation wake 

occurred for both models, the agreement between the calculated pressures and the 

experimental values was quite good.  

 As aircraft become more and more complex, and as computational and experi-

mental tools improve, the high-lift design process has matured a great deal. As was 

stated earlier, including viscous effects in high-lift design is important, but even with 

modern computer systems a high-lift design still may require a combination of viscous 

and inviscid numerical predictions. The Boeing 777 high-lift system was designed with 

various codes at different phases of the design process: a three-dimensional lifting sur-

face code was used during preliminary design, two-dimensional viscous-inviscid coupled 

codes were used to design the multielement airfoil sections, and three-dimensional 

panel codes were used to evaluate flow interactions. Navier-Stokes and Euler codes 

were not used during the design process, according  to Brune and McMasters (1990)  

and  Nield (1995) . This approach allowed for a reduction in wind-tunnel testing and 
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 resulted in a double-slotted flap that was more efficient than the triple-slotted flaps 

used on previous Boeing aircraft. 

 In fact, as the design process for high-lift systems has matured, the systems have 

become less complex, more affordable, more dependable, and more efficient.  Fig.   6.30    

shows how high-lift airfoils designed by both Boeing/Douglas and Airbus have im-

proved since the 1960s. The improvement has been brought about by the increased use 

of numerical predictions, including the addition of Navier-Stokes and Euler methods 

to the predictions of high-lift airfoils  [Rogers et al. (2001)  and  van Dam (2002) ]. The 

evolution has been from triple-slotted flaps (such as on the Boeing 737), to double-

slotted flaps (such as on the Boeing 777), and now to single-slotted flaps (such as on the 

Airbus A380 and Boeing 787). However, numerical predictions still require further im-

provement, including the addition of unsteady effects and improved turbulence models, 

before high-lift design will be as evolved as one might hope [ Rumsey and Ying (2002)  

and  Cummings et al. (2004) ].  Additional details about various high-lift systems used in 

aircraft design may be found in  Section   13.1   .  Many of these concepts have found their 

way onto various aircraft, but some of the concepts remain to be applied.   

   6.9  HIGH-LIFT MILITARY AIRFOILS 

 Military aircraft, especially fighters, have to be highly agile and maneuverable. Over the 

past decades, this requirement has led to the addition of strakes (also called  leading-edge 

extensions), as well as various leading-edge devices.  Fig.   6.31    shows the F-18 HARV 

(High Angle of Attack Research Vehicle) flying at    a = 30�    with smoke visualizing the 

leading-edge extension vortex and tufts aiding in the visualization of the near-surface 

flow patterns. Notice that the leading-edge flaps are extended significantly in addition 

to a mild extension of the trailing-edge flaps. These high-lift devices are automatically 

controlled by the flight control computer, so the pilot does not have to be concerned 

DC10-10
DC8-70

1957 1967 1977 1987 1997

727/100

727/200
737/100

737/200
747/100

747/200

747/300

747/SP
737/300 737/400

737/500

747/400

707/200 DC8-63

DC9-40

A340

Tendency Boeing/Douglas

Tendency Airbus

A320
A330 A319

A321

A310

A300B1
A300B4

777767

707/100

DC9-10 DC10-40 MD80 MD11

757/100

A300/600

 Figure 6.30         Design evolution of high-lift trailing edge systems 

[from  Reckzeh (2003) ].   
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with high-lift settings during flight. The smoke shows vortex breakdown just prior to the 

wing, and the outboard section of the wing is stalled, as shown by the tufts.  

 As noted by  Kern (1996) , “There are two major geometric differences that dis-

tinguish modern high performance multi-role strike/fighter military airfoils from com-

mercial configurations: (1) leading-edge shape and (2) airfoil thickness. Integration of 

stealth requirements typically dictates sharp leading edges and transonic and supersonic 

efficiency dictates thin airfoils on the order of 5 to 8% chord   c.    The Navy also depends 

on low-speed high-lift aerodynamics, since it enables high performance multi-role strike 

aircraft to operate from a carrier deck.” To obtain high lift at low speeds, the advanced 

fighter wing sections are configured with a plain leading-edge flap and a slotted trailing-

edge flap. The schematic diagram presented in  Fig.   6.32    indicates some of the features of 

the complex flow field. The sharp leading edge causes the flow to separate, resulting in a 

shear layer that convects either above or below the airfoil surface. Depending on the angle 

of attack, the shear layer may or may not reattach to the surface of the airfoil. The flow 

field also contains cove flow, slot flow, merging shear layers, main element wake mixing, 

and trailing-edge flap separation.  

  Hobbs et al. (1996)  presented the results of an experimental investigation using 

a 5.75% thick airfoil, which has a 14.07% chord plain leading-edge (L.E.) flap, a single 

slotted 30% chord trailing-edge (T.E.) flap, and a 8.78% chord shroud. Reproduced in 

 Fig.   6.33    are the experimentally determined lift coefficients for the airfoil with    dn    (the 

leading-edge flap deflection angle) equal to    34�,    with    df     (the trailing-edge flap deflec-

tion angle) equal to    35�,    and with    ds    (the shroud deflection angle) equal to    22.94�.    This 

configuration provides the aircraft with the maximum lift required for catapult and 

approach configurations. Because of the leading-edge flow separation bubble, the lift 

curve displays no “linear” dependence on the angle of attack. The maximum lift coef-

ficient of approximately 2.2 occurs at an angle of attack of    2�.    The airfoil then gradually 

stalls, until total separation occurs at an angle of attack of    10�,    with a rapid decrease in 

 Figure 6.31         F-18 HARV at    a = 30�    with smoke and tuft visu-

alization (courtesy of NASA Dryden Flight Research Center).   
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the section lift coefficient. As noted by  Kern (1996) , “This behavior seems less surpris-

ing when considering split-flap NACA 6% thick airfoils which all stall around    a = 4�.   ”  

 Because the flow field includes trailing viscous wakes, confluent boundary layers, 

separated flows, and different transition regions, the Reynolds number is an important 

parameter in modeling the resultant flow field. The maximum values of the measured 

lift coefficients are presented as a function of the Reynolds number in  Fig.   6.34   . The 

data, which were obtained at a Mach number of 0.2, indicate that the maximum lift 

coefficient is essentially constant for Reynolds numbers above    9 * 106.    These results 

(for a two-dimensional flow) suggest that airfoils should be tested at a Reynolds number 

of    9 * 106,    or more, in order to simulate maximum lift performance at full-scale flight 

conditions. Conversely, testing at a Reynolds number of    9 * 106    is sufficient to simulate 

full-scale maximum lift performance for this flow.   
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 Figure 6.32         Sketch of the flow field for a military airfoil in a 

high-lift configuration [a composite developed from information 

presented in  Kern (1996)  and  Hobbs et al. (1996) ].   
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 Figure 6.33         Total and component lift curves, 

   dn = 34�, df = 35�, ds = 22.94�    [from  Hobbs 

et al. (1996) ].   
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  6.10 SUMMARY 

 We have seen that potential flow theory, as applied in thin-airfoil theory, can accurately 

model the flow around real airfoils within the limitations of the theory. Specifically, 

thin-airfoil theory does a very good job predicting the lift and pitch moment coefficients 

for relatively thin airfoils until viscous effects become important at higher angles of at-

tack. Thin-airfoil theory also leads us to adding high-lift devices to airfoils in order to 

increase lift without increasing the angle of attack. Thin-airfoil theory also gives us a 

practical feeling for how airfoils behave, which is perhaps as valuable as the quantitative 

predictions it provides.   

     PROBLEMS 

   6.1.    Using the identity given in equation (6.10), show that the vorticity distribution 

   g(u) = 2aU�

1 + cos u

sin u
   

   satisfies the condition that flow is parallel to the surface [i.e., equation (6.8)]. Show that the 

Kutta condition is satisfied. Sketch the    2g>U�     distribution as a function of  x/c  for a section 

lift coefficient of 0.5. What is the physical significance of    2g>U�?    What angle of attack is 

required for a symmetric airfoil to develop a section lift coefficient of 0.5? 

 Using the vorticity distribution, calculate the section pitching moment about a point 

0.75 chord from the leading edge. Verify your answer, using the fact that the center of pres-

sure    (xcp)    is at the quarter chord for all angles of attack and the definition for lift.   

   6.2.    Calculate    Cl    and    Cmc>4
    for a NACA 0009 airfoil that has a plain flap whose length is    0.2c    

and which is deflected    25�.    When the geometric angle of attack is    4�,    what is the section lift 

coefficient? Where is the center of pressure?   

   6.3.    The mean camber line of an airfoil is formed by a segment of a circular arc (having a 

constant radius of curvature). The maximum mean camber (which occurs at midchord) is 

equal to  kc,  where  k  is a constant and  c  is a chord length. Develop an expression for the    g    

distribution in terms of the free-stream velocity    U�     and the angle of attack    a.    Since  kc  is 

small, you can neglect the higher-order terms in  kc  in order to simplify the mathematics. 

What is the angle of attack for zero lift    (a0l)    for this airfoil section? What is the section 

moment coefficient about the aerodynamic center    (Cmac
)?      

   6.4.    The numbering system for wing sections of the NACA five-digit series is based on a com-

bination of theoretical aerodynamic characteristics and geometric characteristics. The first 

integer indicates the amount of camber in terms of the relative magnitude of the design 

lift coefficient; the design lift coefficient in tenths is three halves of the first integer. The 

second and third integers together indicate the distance from the leading edge to the loca-

tion of the maximum camber; this distance in percent of the chord is one-half the number 

represented by these integers. The last two integers indicate the section thickness in percent 

of the chord. The NACA 23012 wing section thus has a design lift coefficient of 0.3, has its 

maximum camber at 15% of the chord, and has a maximum thickness of 0.12 c.  The equation 

for the mean camber line is 

   
z
c
= 2.6595 c a

x
c
b

3

- 0.6075a
x
c
b

2

+ 0.11471a
x
c
b d    
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   for the region    0.0c … x … 0.2025c    and 

   
z
c
= 0.022083a1 -

x
c
b    

   for the region    0.2025c … x … 1.000c.    

 Calculate the    A0, A1, and A2    for this airfoil section. What is the section lift coeffi-

cient,    Cl ?    What is the angle of attack for zero lift,    a0l?    What angle of attack is required to 

develop the design lift coefficient of 0.3? Calculate the section moment coefficient about 

the theoretical aerodynamic center. Compare your theoretical values with the experimental 

values in  Fig.   P6.4    that are reproduced from the work of  Abbott and von Doenhoff (1949) . 

When the geometric angle of attack is    3�,    what is the section lift coefficient? What is the 

 x>c  location of the center of pressure?    

   6.5.    Look at the three airfoil geometries shown in  Fig.   6.12   . Discuss the geometric modifications 

to the laminar flow airfoils that make them distinct from the typical airfoil (NACA 23012). 

Include in your description airfoil geometric parameters such as camber, thickness, location 

of maximum camber, location of maximum thickness, leading-edge radius, and trailing edge 

shape. Why were these modifications successful in creating a laminar flow airfoil?   

   6.6.    What is a laminar separation bubble? What impact does it have on airfoil aerodynamics? What 

airfoil design features could be changed to eliminate (or largely reduce) the separation bubble?   

   6.7.    What has enabled the evolution of commercial aircraft high-lift systems from triple-slotted 

to double- or even single-slotted geometries (see  Fig.   6.30   )? What are the advantages of 

these changes to aircraft design?    

0.0
�0.2

0.0

0.2

0.2 0.4 0.6 0.8 1.0

z
c

x
c

�32 �1.6 �0.8 0.0 0.8 1.6

�1.6

�0.8

0.8

0.0

�0.4

�0.1

�0.2

�0.3

0.0

�0.4

�0.5

0.000

0.008

0.016

0.024

�0.2

�0.1

�0.3

Cmac

Cmc /4

Cl Cd

1.6

2.4

NACA 23012 Airfoil Section
Data from Abbott and von Doenhoff (1949)
Rec: 3.0 � 106 6.0 � 106 8.8 � 106

�16 0
Section lift coefficient, Cl

16 32
Section angle of attack, a

 Figure P6.4        



References    349

  REFERENCES 

 Abbott IH, von Doenhoff AE. 1949.  Theory of Wing Sections . New York: Dover 

 Brune GW, McMasters JH. 1990. Computational aerodynamics applied to high-lift systems. 

In  Computational Aerodynamics , Ed. Henne PA. Washington, DC: AIAA 

 Carlson HW, Mack RJ. 1980. Studies of leading-edge thrust phenomena.  J. Aircraft  17:890–897 

 Cummings RM, Morton SA, Forsythe JR. 2004.  Detached-eddy simulation of slat and flap 
aerodynamics for a high-lift wing . Presented at AIAA Aerosp. Sci. Meet., 42 nd , AIAA 

Pap. 2004–1233, Reno, NV 

 Drela M. 1989. XFOIL: An analysis and design system for low Reynolds number airfoils. 

In  Low Reynolds Number Aerodynamics , Ed. Mueller TJ. New York: Springer-Verlag 

 Drela M, Protz JM, Epstein AH. 2003.  The role of size in the future of aeronautics .  Presented 

at Intl. Air and Space Symp., AIAA Pap. 2003–2902, Dayton, OH 

 Eppler R, Somers DM. 1980. A computer program for the design and analysis of low-speed 

airfoils.  NASA Tech. Mem. 80210  

 Eppler R. 1990.  Airfoil Design and Data . New York: Springer-Verlag 

 Flaig A, Hilbig R. 1993. High-lift design for large civil aircraft. In  High-Lift System 
 Aerodynamics, AGARD CP 515  

 Gopalarathnam A, Broughton BA, McGranahan BD, Selig MS. 2001.  Design of low 
 Reynolds number airfoils with trips . Presented at Appl. Aerodyn. Conf., 19 th , AIAA 

Pap. 2001–2463, Anaheim, CA 

 Grasmeyer JM, Keennon MT. 2001.  Development of the Black Widow micro air vehicle . 

Presented at AIAA Aerosp. Sci. Meet., 39 th , AIAA Pap. 2001–0127, Reno, NV 

 Henderson ML. 1978.  A solution to the 2-D separated wake modeling problem and its use 
to predict     CLmax     of arbitrary airfoil sections . Presented at AIAA Aerosp. Sci. Meet., 16 th , 

AIAA Pap. 78–156, Huntsville, AL 

 Hobbs CR, Spaid FW, Ely WL, Goodman WL. 1996.  High lift research program for a 
fighter-type, multi-element airfoil at high Reynolds numbers . Presented at AIAA Aerosp. 

Sci. Meet., 34 th , AIAA Pap. 96–0057, Reno, NV 

 Jacobs EN. 1939. Preliminary report on laminar-flow airfoils and new methods adopted for 

airfoil and boundary-layer investigation.  NACA WR L–345  

 Jasper DW, Agrawal S, Robinson BA. 1993. Navier-Stokes calculations on multi-element 

airfoils using a chimera-based solver. In  High-Lift System Aerodynamics, AGARD CP 515  

 Jepson JK, Gopalarathnam A. 2004.  Inverse design of adaptive airfoils with aircraft
performance consideration . Presented at AIAA Aerosp. Sci. Meet., 42 nd , AIAA 

Pap. 2004–0028, Reno, NV 

 Kern S. 1996.  Evaluation of turbulence models for high lift military airfoil flowfields . 

 Presented at AIAA Aerosp. Sci. Meet., 34 th , AIAA Pap. 96–0057, Reno, NV 

 Liebeck RH. 1973. A class of airfoils designed for high lift in incompressible flows. 

 J.  Aircraft  10:610–617 

 Liebeck RH. 1976. On  the design of subsonic airfoils for high lift . Presented at Fluid and 

Plasma Dyn. Conf., 9 th , AIAA Pap. 76–406, San Diego, CA 

 Loftin LK. 1985. Quest for performance: the evolution of modern aircraft.  NASA SP-468  

 McCormick BW. 1967.  Aerodynamics of V/STOL Flight . New York: Academic Press 

 McGhee RJ, Beasley WD. 1973. Low-speed aerodynamic characteristics of a 17-percent-

thick section designed for general aviation applications.  NASA Tech. Note D-7428  



350    Chap. 6 / Incompressible Flows Around Airfoils of Infinite Span

 Meredith PT. 1993. Viscous phenomena affecting high-lift systems and suggestions for 

future CFD development. In  High-Lift System Aerodynamics, AGARD CP 515  

 Miranda LR. 1984. Application of computational aerodynamics to airplane design. 

 J.  Aircraft  21:355–369 

 Nield BN. 1995. An overview of the Boeing 777 high lift aerodynamic design.  The Aeronaut. 
J . 99:361–371 

 Olson LE, James WD, McGowan PR. 1978.  Theoretical and experimental study of the 
drag of multielement airfoils . Presented at Fluid and Plasma Dyn. Conf., 11 th , AIAA 

Pap. 78–1223, Seattle, WA 

 Reckzeh D. 2003. Aerodynamic design of the high-lift wing for a megaliner aircraft.  Aerosp. 
Sci. Tech . 7:107–119 

 Rogers SE, Roth K, Cao HV, Slotnick JP, Whitlock M, Nash SM, Baker D. 2001. 

 Computation of viscous flow for a Boeing 777 aircraft in landing configuration.  J. Aircraft  
38: 1060–1068 

 Rumsey CL, Ying SX. 2002. Prediction of high lift: review of present CFD capability.  Progr. 
Aerosp. Sci . 38:145–180 

 Selig MS, Donovan JF, Fraser DB. 1989.  Airfoils at Low Speeds . Virginia Beach, VA: HA 

Stokely 

 Selig MS, Maughmer MD. 1992. A multi-point inverse airfoil design method based on 

conformal mapping.  AIAA J . 30:1162–1170 

 Selig MS, Gopalaratham A, Giguére P, Lyon CA. 2001. Systematic airfoil design studies 

at low Reynolds number. In  Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle 
Applications , Ed. Mueller TJ. New York: AIAA, pp. 143–167 

 Selig MS. 2003. Low Reynolds number airfoil design. In  Low Reynolds Number  Aerodynamics 
of Aircraft , VKI Lecture Series 

 Smith AMO. 1975. High-lift aerodynamics . J. Aircraft  12:501–530 

 Stevens WA, Goradia SH, Braden JA. 1971. Mathematical model for two-dimensional 

multi-component airfoils in viscous flow.  NASA CR 1843  

 Stratford BS. 1959. The prediction of separation of the turbulent boundary layer.  J. Fluid 
Mech . 5:1–16 

 Torres GE, Mueller TJ. 2004. Low-aspect ratio wing aerodynamics at low Reynolds 

number.  AIAA J . 42:865–873 

 van Dam CP. 2002. The aerodynamic design of multi-element high-lift systems for transport 

airplanes.  Progr. Aerosp. Sci . 38:101–144 

 Yip LP, Vijgen PMHW, Hardin JD, van Dam CP. 1993. In-flight pressure distributions 

and skin-friction measurements on a subsonic transport high-lift wing section. In  High-Lift 
System Aerodynamics, AGARD CP 515     



351

    7   INCOMPRESSIBLE 

FLOW ABOUT WINGS 

OF FINITE SPAN 

     Chapter Objectives 

  •   Understand the difference between airfoils and wings and know the physical 
processes that cause those differences  

  •   Be able to describe the impact of wing-tip vortices on the flow around the airfoil 
sections that make up a wing  

  •   Understand the concepts behind Lifting-Line theory and be able to use the results 
to predict the lift and induced drag of a wing  

  •   Understand the basic approach and usefulness of panel methods and vortex 
lattice methods  

  •   Understand how delta wing aerodynamics differ from traditional wing aerodynamics, 
and be able to compute the aerodynamic forces acting on a delta wing  

  •   Be able to explain why some tactical aircraft use leading-edge extensions 
(strakes) and how they work  

  •   Describe the asymmetric flow patterns that can take place around an aircraft flying 
at high angles of attack, and know the physical processes that cause the flow   

  Understanding how a wing works and being able to predict the lift, drag, and pitch 

moment of a wing are important concepts in aerodynamics.  While we have fairly thor-

oughly discussed the basic concepts for airfoil aerodynamics, making     a useful wing out 
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of airfoil sections is not a straight-forward task. The goal of this chapter is to give you 

enough physical understanding and theoretical tools to be able to start the process of 

designing a useful wing.   

      7.1  GENERAL COMMENTS 

  We have already discussed the aerodynamic characteristics for subsonic flow about an 

unswept  airfoil  in  Chapters   5    and    6   .  Since the span of an  airfoil  is infinite, the flow is 

identical for each spanwise station (i.e., the flow is two dimensional). The lift produced 

by the pressure differences between the lower surface and the upper surface of the 

airfoil section, and therefore the circulation (integrated along the chord length of the 

section), does not vary along the span. 

 Since incompressible flow passes pressure information in all directions equally, 

pressure variations can be sensed between the upper and lower surfaces of a wing. The 

low-pressure region over the wing causes fluid from the high-pressure region below the 

wing to flow around the wing tip, creating a vortex in the region of the wing tip. As a 

consequence of the tendency of the pressures acting on the top surface near the tip of 

the wing to equalize with those on the bottom surface, the lift force per unit span de-

creases toward the wing tips. A sketch of a representative aerodynamic load distribution 

is presented in  Fig.   7.1   . As indicated in  Fig.   7.1   a, there is a chordwise variation in the 

pressure differential between the lower surface and the upper surface. The resultant lift 

force acting on a section (i.e., a unit span) is obtained by integrating the pressure distri-

bution over the chord length.  A procedure that can be used to determine the sectional 

lift coefficient has already been discussed in  Chapter   6   .   

 As indicated in the sketch of  Fig.   7.1   b, there is a spanwise variation in the lift force. 

As a result of the spanwise pressure variation, the air on the upper surface flows inboard 

toward the root. Similarly, on the lower surface, air will tend to flow outward toward the 

wing tips. The resultant flow around a wing of finite span is three dimensional, having 

both chordwise and spanwise velocity components. Where the flows from the upper 

surface and the lower surface join at the trailing edge, the difference in spanwise velocity 

components will cause the air to roll up into a number of streamwise vortices, distrib-

uted along the span. These small vortices roll up into two large vortices just inboard of 

the wing tips (as shown in  Fig.   7.2   ). The formation of a wing-tip vortex is illustrated in 

the sketch of  Fig.   7.2c    and in the filaments of smoke in the photograph taken in the U.S. 

Air Force Academy’s Smoke Tunnel ( Fig.   7.2d   ). Very high velocities and low pressures 

exist at the core of the wing-tip vortices. In many instances, water vapor condenses as 

the air is drawn into the low-pressure flow field of the tip vortices. Condensation clearly 

defines the tip vortices (just inboard of the wing tips) of the Shuttle Orbiter  Columbia  

on approach to a landing at Kennedy Space Center (see  Fig.   7.3   ), where the vortices are 

very evident due to the high water vapor content of the air at this geographic location. 

 The alleviation of the impact of wing-tip vortices through the use of wing-tip devices 

will be discussed in  Section   13.4.3   .    

 In order to model the flow of air around the wing mathematically, we customar-

ily assume: (1) that the vortex wake, which is of finite thickness, may be replaced by 

an infinitesimally thin surface of discontinuity, designated the trailing vortex sheet, 
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 Figure 7.1         Aerodynamic load distribution for a rectangular wing in 

subsonic airstream: (a) differential pressure distribution along the 

chord for several spanwise stations; (b) spanwise lift distribution.   

and (2) that the trailing vortex sheet remains flat as it extends downstream from the 

wing.  Spreiter and Sacks (1951)  note that “it has been firmly established that these 

assumptions are sufficiently valid for the prediction of the forces and moments on 

finite-span wings.” 

 An important difference in the three-dimensional flow field around a wing (as 

compared with the two-dimensional flow around an airfoil) is the spanwise variation 

in lift. Since the lift force acting on the wing section at a given spanwise location is 

related to the strength of the circulation, there is also a corresponding spanwise vari-

ation in circulation, such that the circulation at the wing tip is zero (since the lift at 

the wing tip is zero). Procedures that can be used to determine the vortex-strength 

distribution produced by the flow field around a three-dimensional lifting wing will 

be discussed next.  
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 Figure 7.2         Generation of the trailing vortices due to the spanwise 

load distribution: (a) view from bottom; (b) view from trailing 

edge; (c) formation of the tip vortex; (d) smoke-flow pattern show-

ing tip vortex (photograph courtesy U.S. Air Force Academy).   
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   7.2  VORTEX SYSTEM 

 We want to find a model of the flow for the vortex system produced by a lifting wing. A 

suitable distribution of vortices would represent the physical wing in every way except that 

of thickness. This mathematical description was first accomplished by Ludwig Prandtl in 

Germany and Frederick Lanchester in England in the early years of the twentieth century. 

While the approaches of these researchers were quite different, it is customary today to 

follow the model of Prandtl. In Prandtl’s approach, the vortex system consists of: 

    •   the bound vortex system  

   •   the trailing vortex system  

   •   the “starting” vortex   

  We saw in  Chapter   6    that the     “starting” vortex is associated with a change in circulation 

and would, therefore, relate to changes in lift that might occur as the wing begins moving 

or as the angle of attack changes during flight. 

 The representation of the wing by a bound vortex system is not to be interpreted 

as a rigorous flow model. However, the idea allows a relation to be established between: 

    •   the physical load distribution for the wing (which depends on the wing geometry 

and on the aerodynamic characteristics of the wing sections)  

   •   the trailing vortex system   

 This relation then allows us to quantify the impact of the trailing vortex system on the 

lift and drag of the wing, which will show us how much different the wing airfoil sections 

behave compared with the infinite-span airfoil sections.  

 Figure 7.3         Condensation marks the wing-tip vortices of the 

Space Shuttle Orbiter  Columbia  (photo courtesy NASA).   
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   7.3  LIFTING-LINE THEORY FOR UNSWEPT WINGS 

 We are interested in developing a model that can be used to estimate the aerodynamic 

characteristics of a wing which is unswept (or is only slightly swept) and which has an 

aspect ratio of 4.0 or greater. The spanwise variation in lift,  l ( y ), is similar to that de-

picted in  Fig.   7.1   b.  Prandtl and Tietjens (1957)  hypothesized that each airfoil section 

of the wing acts as though it is an isolated two-dimensional section, provided that the 

spanwise flow is not too great. Therefore, each section of the finite-span wing generates 

a section lift equivalent to that acting on a similar section of an infinite-span wing having 

the same section circulation. We will assume that the lift acting on an incremental span-

wise element of the wing is related to the local circulation through the Kutta-Joukowski 

theorem  (see  Section   3.15.2   ) . That is, 

      l(y) = r�U��(y)  (7.1)    

  Orloff (1980)  showed that the spanwise lift distribution could be obtained from flow 

field velocity surveys made behind an airfoil section of the wing only and related to the 

circulation around a loop containing that airfoil section. The velocity surveys employed 

the integral form of the momentum equation  in a manner similar to that used to esti-

mate the drag in Problems 2.10 through 2.13 and Problems 2.27 through 2.31 . 

 In Prandtl’s approach, the spanwise lift distribution is represented by a system of 

vortex filaments, the axis of which is normal to the plane of symmetry and which passes 

through the aerodynamic center of the lifting surface, as shown in  Fig.   7.4   . Since the theo-

retical relations  developed in  Chapter   6     for inviscid flow past a thin airfoil showed that 

the aerodynamic center is at the quarter chord, we will place the bound-vortex  system at 

the quarter-chord line. The strength of the bound-vortex system at any spanwise location 

   �(y)    is proportional to the local lift acting at that location  l ( y ). However , as discussed in 

 Section   3.12.4    , the vortex theorems of Helmholtz state that a vortex filament has constant 

strength along its length. Therefore, we will model the lifting character of the wing by a 

large number of vortex filaments (i.e., a large bundle of infinitesimal-strength filaments) 

that lie along the quarter chord of the wing. This is the bound-vortex system, which repre-

sents the spanwise loading distribution, as shown in  Fig.   7.4    (a), and is known as the  lifting 
line . At any spanwise location  y , the sum of the strengths of all of the vortex filaments in 

the bundle at that station is    �(y).    When the lift changes at some spanwise location [i.e., 

   �l(y)   ], the total strength of the bound-vortex system changes proportionally [i.e.,    ��(y)

   ]. But Helmholtz also stated that vortex filaments cannot end in the fluid. Therefore, 

the change    ��(y)    is represented in our model by having some of the filaments from 

our bundle of filaments turn 90° and continue in the streamwise direction (i.e., in the  x  

direction). The strength of the trailing vortex at any  y  location is equal to the change in 

the strength of the bound-vortex system. The strength of the vortex filaments continu-

ing in the bound-vortex system depends on the spanwise variation in lift and, therefore, 

depends upon geometric parameters such as the wing planform, the airfoil sections that 

make up the wing, the geometric twist of the wing, etc. Therefore, as shown in  Fig.   7.4   a, 

if the strength of the vortex filaments in the bundle making up the bound-vortex system 

change by the amount    ��   , a trailing vortex of strength    ��    must be shed in the  x  direction.

The vortex filaments that make up the bound-vortex system do not end in the fluid 

when the lift changes, but turn backward at each end to form a pair of vortices in the 



Sec. 7.3 / Lifting-Line Theory for Unswept Wings    357

trailing-vortex system. For steady flight conditions, the  starting  vortex is left far behind, 

so that the trailing-vortex pair effectively stretches to infinity. The three-sided vortex, 

which is termed a  horseshoe vortex , is presented in  Fig.   7.4   a. For practical purposes, the 

system consists of the bound-vortex system and the related system of trailing vortices. 

Also included in  Fig.   7.4   a is a sketch of a symmetrical lift distribution (the variation is 

the same on each half of the wing), which the vortex system represents.     

 A number of vortices are made visible by using a smoke generation system for the 

flow over a Boeing 747 wing shown in  Fig.   7.4   b. Flow from the wing tip region and two 

other locations can be seen leaving the trailing edge on each wing and then rolling up 

into two counter-rotating vortice (one for each wing). This shows why it is important to 

include shed vorticity from along the entire span when creating a mathematical model of a 

wing. These streamwise vorticity filaments correspond to the trailing vortices shed by the 

spanwise variation in vorticity across the wing that is depicted in the schematic of  Fig.   7.4   a. 

 Conventional Prandtl lifting-line theory (PLLT) provides reasonable estimates of 

the lift and induced drag until boundary-layer effects become important (when flow sepa-

ration takes place). Therefore, there will be reasonable agreement between the calcula-

tions and the experimental values for a single lifting surface having no sweep, no dihedral, 

and an aspect ratio of 4.0 or greater, operating at relatively low angles of attack. Of course, 

the skin-friction component of drag will not be represented in the PLLT calculations at 

any angle of attack, but could be added separately  using the methods of  Section   5.4.6    . 

 Because improvements continue to be made in calculation procedures [e.g.,  Ras-

mussen and Smith (1999)  and  Phillips and Snyder (2000) ] and in ways of accounting for 

the nonlinear behavior of the aerodynamic coefficients [e.g.,  Anderson et al. (1980) ], 

lifting-line theory is still widely used today. 

Bound vortex
system which

represents the spanwise
loading distribution

�(y)

� ���

�0

y axis

y axis

z axis

x axis

b
2

�s(or     )

b
2

�s(or     )

Trailing
vortex of

strength ��
(parallel to

the free-stream)

 Figure 7.4         (a) Schematic trailing-vortex system.   
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   7.3.1  Trailing Vortices and Downwash 

 A consequence of the vortex theorems of Helmholtz is that a bound-vortex system does 

not change strength between two sections unless a vortex filament equal in strength to 

the change joins or leaves the vortex bundle (see  Fig.   7.4   a). If    �(y)    denotes the strength 

of the circulation along the  y  axis (the spanwise coordinate), a semi-infinite vortex of 

strength    ��    trails from the segment    �y,    as shown in  Fig.   7.5   . The strength of the trail-

ing vortex is given by: 

   �� =
d�

dy
 �y    

 We will assume that each spanwise strip of the wing    ( �y)    behaves as if the flow were 

locally two dimensional, which is why the model cannot be applied to cases with large 

amounts of spanwise flow. To calculate the influence of a trailing vortex filament lo-

cated at  y , consider the semi-infinite vortex line, parallel to the  x  axis (which is parallel 

to the free-stream flow) and extending downstream to infinity from the line through 

the aerodynamic center of the wing (i.e., the  y  axis). The vortex at  y  induces a velocity 

at a general point    y1    on the aerodynamic centerline which is  one-half the velocity that 

would be induced by an infinitely long vortex filament of the same strength: 

 Figure 7.4          (Continued) (b) Streamwise vorticity shedding along 

the trailing edge of a Boeing 747 rolling up into wing-tip vortices 

(courtesy of NASA Dryden Flight Research Center).   
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   dwy1 =
1

2
 c+ d�

dy
 dy 

1

2p(y - y1)
d    

 The positive sign results because, when both    (y - y1)    and    d�>dy    are negative, the trail-

ing vortex at  y  induces an upward component of velocity, as shown in  Fig.   7.5   , which is 

in the positive  z  direction. 

 To calculate the resultant induced velocity at any point    y1    due to the cumulative 

effect of all the trailing vortices, the preceding expression is integrated with respect to 

 y  from the left wing tip    (-s)    to the right wing tip    (+s):    

      wy1 = +

1

4pL
+s

-s
 
d�>dy
y - y1

 dy  (7.2)    

 where  s  is the wing semi-span (   s = b>2   ). The resultant induced velocity at    y1    is, in gen-

eral, in a downward direction (i.e., negative, since the majority of filaments are rotating 

in that direction) and is called the  downwash . As shown in the sketch of  Fig.   7.6   , the 

downwash angle is 

      e = tan-1a-

wy1

U�

b � -

wy1

U�

  (7.3)     

 where the small angle assumption has been made (   tanu � u   ). The downwash velocity 

component has the effect of “tilting” the undisturbed air, so the effective angle of attack 

of the airfoil at the aerodynamic center (i.e., the quarter chord, as shown in  Fig.   7.6   ) is: 

      ae = a - e  (7.4)    

 The significance of this reduction in the effective angle of attack, as we will see shortly, 

is that the airfoil section produces less left and has a new component of drag. Notice that 

if the wing has a geometric twist, both the angle of attack    (a)    and the downwash angle 

y axis y axis

z axis
x axis

y � �s

y � �s

y � y1

�y

Velocity induced
at y1 by the

trailing vortex
at y

Semiinfinite trailing vortex

of strength        �yd�
dy

d�
dy

y
(        is negative in this region for the

�-distribution of Fig. 7.4)

 Figure 7.5         Geometry for the calculation of the induced velocity 

at    y = y1.      
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   (e)    would be a function of the spanwise position. Since the direction of the resultant 

velocity at the aerodynamic center is inclined downward relative to the direction of the 

undisturbed free-stream air, the effective lift of the section of interest is inclined aft by the 

same amount. Therefore, the effective lift on the wing has a component of force parallel 

to the undisturbed free-stream air (as shown in  Fig.   7.6   ), which is defined as a drag force. 

This drag force is a consequence of the lift developed by a finite wing and is termed  vor-
tex drag  (or the  induced drag  or the  drag-due-to-lift ). For subsonic flow past a finite-span 

wing, in addition to the skin-friction drag and the form (or pressure) drag, there is a drag 

component due to lift. As a result of the induced downwash velocity, the lift generated 

by a finite-span wing composed of a given airfoil section, which is at the geometric angle 

of attack    ae   , is less than that for an infinite-span airfoil composed of the same airfoil sec-

tion and which is at the same angle of attack     a   , as was shown in  Fig.   5.25    . Therefore, at a 

given    a,    the three-dimensional flow over a finite-span wing generates less lift than the two-

dimensional flow over an infinite-span airfoil; we will quantify the change in lift shortly. 

 Based on the Kutta-Joukowski theorem  from  Section   3.15.2    , the lift on an elemen-

tal airfoil section of the wing is: 

      l(y) = r�U��(y)  (7.1)    

 while the vortex drag is just a component of the lift. The drag is given using the small 

angle assumption and    l(y)tan(-w(y)>U� ) � - l(y)w(y)>U�     as: 

      d
v
(y) = -r�w(y)�(y)  (7.5)    

 The minus sign results because a downward (or negative) value of  w  produces a positive 

drag force. Integrating over the entire span of the wing, the total lift is given by 

Chord line

The resultant
velocity for airfoil section

Dv, induced drag

Lift Effective lift,
acts normal to the

effective flow direction

�w

Chord line of the airfoil

Effective flow direction

Undisturbed free-stream direction

Undisturbed
free-stream

direction
(direction of U�)

a
ae

e

e U�

 Figure 7.6         Induced flow.   
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      L = L
+s

-s
 r�U��(y) dy  (7.6)    

 and the total vortex drag is given by: 

      D
v
= - L

+s

-s
r�w(y)�(y) dy  (7.7)    

 Notice that for the two-dimensional airfoil (i.e., a wing of infinite span), the circula-

tion strength    �    is constant across the span (i.e., it is independent of  y ) and the induced 

downwash velocity is zero at all points since there are no trailing vortices. Therefore, 

   D
v
= 0    for a two-dimensional airfoil  as we discussed in  Chapter   6    . As a consequence 

of the trailing vortex system, the aerodynamic characteristics are modified significantly 

from those of a two-dimensional airfoil of the same section, which we will now quantify.  

   7.3.2  Case of Elliptic Spanwise Circulation Distribution 

 An especially simple circulation distribution, which also has significant practical impli-

cations, is given by the elliptic circulation distribution (as shown in  Fig.   7.7   ): 

      �(y) = �0
B

1 - a y
s
b2

  (7.8)     

 Since the lift is a function only of the free-stream density, the free-stream velocity, and 

the circulation (   L = r�U��   ), an elliptic distribution of circulation also produces an 

elliptic distribution of lift. However, to calculate the section lift coefficient, the section 

lift force is divided by the product of    q�     and the local chord length at the section of 

interest. Therefore, only when the wing has a rectangular planform (and  c  is constant) 

is the spanwise section lift coefficient distribution    (Cl)    elliptic when the spanwise lift 

distribution is elliptic. 

 For the elliptic spanwise circulation distribution of equation (7.8), the induced 

downwash velocity is found from equation (7.2): 

   wy1 = +

1

4pL
+s

-s
 
d�>dy
y - y1

 dy = -

�0

4ps L
+s

-s
 

y

2s2
- y2(y - y1)

 dy   

 which can be rewritten as 

   wy1 = -

�0

4ps
 c L

+s

-s

(y - y1) dy

2s2
- y2(y - y1)

+ L
+s

-s
 

y1 dy

2s2
- y2(y - y1)

d    
 Now we can integrate this expression to obtain: 

      wy1 = -

�0

4ps
 (p + y1I)  (7.9)    

 where 

   I = L
+s

-s

dy

2s2
- y2(y - y1)
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 Since the elliptic loading is symmetric about the pitch plane of the vehicle (i.e.,    y = 0   ), the 

velocity induced at a point    y1 = +a    should be equal to the velocity at a point    y1 = -a.    

Referring to equation (7.9), this can only be true if    I = 0.    Therefore, for the elliptic 

circulation distribution the downwash is: 

      wy1 = w(y) = -

�0

4s
  (7.10)    

 which is the very interesting result that the induced velocity is independent of the span-

wise position on the wing. 

 The total lift for the wing is given by the Kutta-Joukowski theorem as: 

   L = L
+s

-s
r�U��0

B
1 - a y

s
b2

 dy   

 The lift equation can be made easier to integrate by using the coordinate transformation: 

   y = -s cos f         dy = s sin f df   

 where the left wing tip corresponds to    f = 0    and the right wing tip corresponds to 

   f = p   , resulting in: 

   L = L
p

0

r�U��0
B

1 - a-s cos f

s
b2

s sin f df = L
p

0

r�U��021 - cos2 f s sin f df   

cr

�0

b

�(y) �  �0      1  �          
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Downwash velocity (wy)  � �       (a constant)
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�0––

 Figure 7.7         Elliptic-circulation distribution and the resultant 

downwash velocity.   
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 This expression can now be integrated to find: 

      L = r�U��0 s 
p

2
=
p

4
 br�U��0  (7.11)    

 and the lift coefficient for the wing is: 

      CL =
L

1
2 r�U2

�S
=
pb�0

2U�S
  (7.12)    

 From this equation, we can find the mid-span circulation as: 

      �0 =
2CLU�S

pb
  (7.13)    

 From equation (7.10), we can also find the downwash angle since: 

   e = -

w

U�

= +

�0

4U�s
=

�0

4U�  b2
   

 Combining the previous two equations shows that the downwash angle is: 

      e =
�0

4U�  b2
=

2CLU�S

4U�  b2 pb
=

CL

pAR
  (7.14)    

 since the aspect ratio is defined as    AR = b2>S   . Notice that the downwash angle is con-

stant along the span of the wing for the elliptic lift distribution. 

 Similarly, we can calculate the total vortex (or induced) drag for the wing. 

   D
v
= L

+s

-s

r��0

4s
 �0
B

1 - a y
s
b2

 dy   

 Introducing the coordinate transformation again, we obtain: 

    D
v
=
r��2

0

4s L
p

0

21 - cos2f s sin f df   

       =
p

8
 r��2

0   (7.15)    

 and the drag coefficient for the induced component is 

      CDv
=

D
v

1
2 r�U2

�S
=
p�2

0

4U2
�S

  (7.16)    

 Using the relation for    �0    from equation (7.13), the vortex drag coefficient becomes: 

   CDv
=

p

4U2
�S

 a 2CLU�S

pb
b2

   

 or 

   CDv
=

C2
L

p
 a S

b2
b    
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 Again using the definition of the aspect ratio, the vortex drag coefficient becomes: 

      CDv
=

C2
L

pAR
  (7.17)    

 We again see that the induced drag is zero for a two-dimensional airfoil (i.e., a wing with 

an aspect ratio of infinity), since the effect of the vortices is diminished as the aspect 

ratio goes to infinity. Note also that the trailing vortex drag for an inviscid flow around 

a wing is not zero but is proportional to    C2
L.    

 The induced drag coefficient given by equation (7.17) and the measurements for 

a wing whose aspect ratio is 5 are compared in  Fig.   7.8   . The experimental values of the 

induced drag coefficient, which were presented by  Schlichting and Truckenbrodt (1969) , 

closely follow the theoretical values up to an angle of attack of 20°. The relatively constant 

difference between the measured values and the theoretical values is due to the influence 

of skin friction, which was not included in the development of equation (7.17). Therefore, 

 as noted in  Chapter   5   ,  the drag coefficient for an incompressible flow is typically written as: 

      CD = CD0
+ kC2

L  (7.18)     

 where    CD0
    is the drag coefficient at zero lift and    kC2

L    is the lift-dependent drag coef-

ficient. The lift-dependent drag coefficient includes that part of the viscous drag and of 

the form drag, which results as the angle of attack changes from    a0l.    

 These relations describing the influence of the aspect ratio on the lift and the drag 

have been verified experimentally by Prandtl and Betz. If we compare the drag polars 

for two wings which have aspect ratios of    AR1    and    AR2   , respectively, then for a given 

value of the lift coefficient, 

      CD,2 = CD,1 +

C2
L

p
 a 1

AR2

-

1

AR1

b   (7.19)    

 where    CD0,1
    has been assumed to be equal to    CD0,2

   . The data from  Prandtl (1921)  for a 

series of rectangular wings are reproduced in  Fig.   7.9   . The experimentally determined 

drag polars are presented in  Fig.   7.9   a. Equation (7.19) has been used to convert the drag 

polars for the different aspect ratio wings to the equivalent drag polar for a wing whose 

aspect ratio is 5 (i.e.,    AR2 = 5   ). These converted drag polars, which are presented in 

 Fig.   7.9b   , collapse quite well to a single curve. Therefore, the correlation of the meas-

urements confirms the validity of equation (7.19).   

 We can also determine the effect of the aspect ratio on the correlation between 

the lift coefficient and the geometric angle of attack. To calculate the geometric angle 

of attack    a2    required to generate a particular lift coefficient for a wing of    AR2    if a wing 

with an aspect ratio of    AR1    generates the same lift coefficient at    a1,    we use the equation 

      a2 = a1 +

CL

p
 a 1

AR2

-

1

AR1

b   (7.20)    

 Experimentally determined lift coefficients [from  Prandtl (1921) ] are presented in 

 Fig.   7.10   . The data presented in  Fig.   7.10   a are for the same rectangular wings of  Fig.   7.9   . 

The results of converting the coefficient-of-lift measurements using equation (7.20) in 
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terms of a wing whose aspect ratio is 5 (i.e.,    AR2 = 5   ) are presented in  Fig.   7.10b   . Again, 

the converted curves collapse into a single correlation. So, the validity of equation (7.20) 

is experimentally verified.   

  EXAMPLE 7.1:     Lift and vortex drag coefficients for a wing with an 
elliptic lift distribution 

 The Cessna 172 aircraft has  a wing geometry described in  Table   5.1   ,  a wing 

area of 174 ft 2 , and a gross weight of 2450 pounds. If the airplane is flying 

at 100 miles per hour on a standard day at sea level, find the lift and vortex 

drag coefficients assuming the wing has an elliptic lift distribution and all of 

the lift is generated by the wing. 

  Solution:     The velocity of the airplane is given in miles per hour and needs to be con-

verted to feet per second in order to use consistent units. 

   U� = (100 mile/h)(5280 ft/mile) > (3600 s/h) = 146.7 ft/s   

�0.4
0.00 0.08 0.16 0.24

0.0

0.4

0.8

1.2

CD

CL

NACA 2412 section

Theoretical induced drag, equation (7.17)

Rec � 2.7 � 106, data of Schlichting
and Truckenbrodt (1969)

CDv

 Figure 7.8         Experimental drag polar for a wing with an aspect 

ratio of 5 compared with the theoretical induced drag.   
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 The lift coefficient is found assuming the aircraft is flying in SLUF conditions 

where  L  =  W . The lift coefficient can then be found from: 

   CL =
L

1
2 r�U2

�S
=

W
1
2 r�U2

�S
=

2450 lb
1
2(0.002377 slug/ft3)(146.7 ft/s)2(174 ft2)

= 0.551   

  From  Table   5.1    the     aspect ratio of the Cessna 172 is given as 7.32. Using 

equation (7.17) the vortex drag coefficient for an elliptic lift distribution is: 

   CDv
=

C2
L

pAR
=

(0.551)2

7.32p
= 0.0132      
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 Figure 7.9         Effect of the aspect ratio on the drag polar for rectan-

gular wings ( AR  from 1 to 7): (a) measured drag polars.    
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 Figure 7.9          (b) drag polars converted to    AR = 5.      

   7.3.3  Technique for General Spanwise 
Circulation Distribution 

 Consider a spanwise circulation distribution that can be represented by a Fourier sine 

series consisting of  N  terms: 

      �(f) = 4sU�  a
N

1

An sin nf  (7.21)    
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 Figure 7.10         Effect of aspect ratio on the lift coefficient for rec-

tangular wings ( AR  from 1 to 7): (a) measured lift coefficients.    

 As was done previously, the physical spanwise coordinate ( y ) has been replaced by the 

   f    coordinate: 

   
y
s
= -cos f   

 A sketch of one such Fourier series is presented in  Fig.   7.11   . Since the spanwise lift distribu-

tion represented by the circulation of  Fig.   7.11    is symmetrical, only the odd terms remain.  

 The section lift force [i.e., the lift acting on that spanwise section for which the cir-

culation is    �(f)   ] is found by applying the Kutta-Joukowski theorem to equation (7.21): 

      l(f) = r�U��(f) = 4r�  U2
�s a

N

1

An sin nf   (7.22)    

 To evaluate the coefficients    A1, A2, A3, c, AN,    it is necessary to determine the circu-

lation at  N  spanwise locations. Once this is done, the  N -resultant linear equations can 

be solved for the    An    coefficients. Typically, the series is truncated to a finite series and 
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 Figure 7.10          (b) Lift correlations converted to    AR = 5.      

the coefficients in the finite series are evaluated by requiring the lifting-line equation 

to be satisfied at a number of spanwise locations equal to the number of terms in the 

series. This method, known as the collocation method, will be developed in this section. 

 Recall that the section lift coefficient is defined as 

   Cl(f) =
lift per unit span

1
2 r�U2

�c
   

 Using the local circulation to determine the local lift per unit span, we obtain 

      Cl(f) =
r�U��(f)

1
2 r�U2

�c
=

2�(f)

U�c
  (7.23)    

 It is also possible to evaluate the section lift coefficient by using the linear correlation 

between the lift and the angle of attack for the equivalent two-dimensional flow. Refer-

ring to  Fig.   7.12    for the nomenclature, we obtain: 

      Cl = adCl

da
b

0

(ae - a0l)  (7.24)     
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 We now have two expressions for calculating the section lift coefficient at a particular 

spanwise location    f.      We can set the expression in equation (7.23) equal to that in equa-

tion (7.24) to form an important equation for lifting-line theory. 

 Let the equivalent lift-curve slope    (dCl>da)0    be designated by the symbol    a0.    

Notice that since    ae = a - e,    equations (7.23) and (7.24) can be combined to yield 

the relation: 

      
2�(f)

c(f)a0

= U� 3a(f) - a0l(f)4 - U�e(f)  (7.25)    

 For the present analysis, five parameters in equation (7.25) may depend on the spanwise 

location    f    (or, equivalently,  y ) at which we will evaluate the terms. The five param-

eters are: (1)    �,    the local circulation; (2)    e,    the downwash angle, which depends on the 

circulation distribution; (3)  c , the chord length, which varies with    f    for a tapered wing 

planform; (4)    a,    the local geometric angle of attack, which varies with    f    when the wing 

is twisted (i.e., geometric twist , which is illustrated in  Fig.   5.7    ); and (5)    a0l,    the zero 

lift angle of attack, which varies with    f    when the airfoil section varies in the spanwise 

direction (which is known as  aerodynamic twist ). Using equation (7.3), we can find the 

induced angle of attack in terms of the downwash velocity as: 

   U�e = -w = -

1

4pL
+s

-s
 
d�>dy
y - y1

 dy   

� ��
n=1

5

An sin n f (odd terms only)

A1 sin f

A3 sin 3f

A5 sin 5f

�

0 �sy � �s

2
f � 0

p
p

 Figure 7.11         Symmetric spanwise lift 

distribution as represented by a sine 

series.   
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 Using the Fourier series representation for    �    and the coordinate transformation, we 

obtain: 

    -w = U�e = U�
anAn sin nf

sin f
   

    e = -

w

U�

= anAn sin nf

sin f
   

 Equation (7.25) can now be rewritten using the above relation: 

   
2�

ca0

= U� (a - a0l) - U�
anAn sin nf

sin f
   

 Since    � = 4sU� g  An sin nf,    the equation becomes: 

   
8s
ca0

a  An sin nf = (a - a0l) -
anAn sin nf

sin f
   

 Defining    m = ca0>8s,    the resultant governing equation is: 

      m(a - a0l)sin f = aAn sin nf(mn + sin f)  (7.26)    
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 Figure 7.12         Nomenclature for wing/airfoil lift.   
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 which is known as the  monoplane equation . If we consider only symmetrical loading 

distributions, only the odd terms of the series need to be considered. That is, as shown 

in the sketch of  Fig.   7.11   , 

   �(f) = 4sU�(A1 sin f + A3 sin 3f + A5 sin 5f +
g

)    

   7.3.4  Lift on the Wing 

 The lift on the wing can now be found using equation (7.22): 

   L = L
+s

-s
r�U��(y) dy = L

p

0

r�U�s�(f)sin f df   

 Using the Fourier series for    �(f)    we find that: 

   L = 4r�U2
�s2

L
p

0
aAn sin nf sin f df   

 Noting that    sin A sin B = 1
2 cos(A - B) -

1
2 cos(A + B),    the integration yields 

   L = 4r�U2
�s2eA1 c f

2
+

sin 2f

4
d ` p

0

+ a
N

3

1

2
 An c sin(n - 1)f

n - 1
-

sin(n + 1)f

n + 1
d ` p

0

f    

 The summation represented by the second term on the right-hand side of the equation 

is zero, since each of the terms is zero for    n � 1.    Therefore, the integral expression for 

the lift becomes: 

   L = (4s2) 11
2 r�U2

� 2A1p = CL11
2 r�U2

� 2 (S)   

 and the wing lift coefficient is: 

      CL = A1 p AR  (7.27)    

 You can see that the lift depends only on the magnitude of the first coefficient, no mat-

ter how many terms may be present in the series describing the distribution.  

   7.3.5  Vortex-Induced Drag 

 Now that we have found the lift coefficient for the wing, the vortex-induced drag can 

also be found using equation (7.5). 

    D
v
= - L

+s

-s
r�w� dy    

    = r� L
p

0

 
U� anAn sin nf

sin f
 4sU� aAn sin nfs sinf df   

    = 4r�s2U2
� L

p

0
anAn sin nfaAn sin nf df    

-w dy�
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 The integral can be evaluated as: 

   L
p

0
anAn sin nfaAn sin nf df =

p

2 anA2
n   

 So, the coefficient for the vortex-induced drag is: 

      CDv
= p # ARa  nA2

n  (7.28)    

 Since    A1 = CL> (p # AR),    we can re-write equation (7.28) as: 

   CDv
=

C2
L

p # AR anaAn

A1

b2

   

 where only the odd terms in the series are considered for a symmetric lift distribution 

(   n = 1, 3, 5,    …). 

   CDv
=

C2
L

p # AR
 c1 + a 3A2

3

A2
1

+

5A2
5

A2
1

+

7A2
7

A2
1

+
g
bd    

 or 

      CDv
=

C2
L

pAR
 (1 + d) =

C2
L

peAR
  (7.29)    

 where  e  is the span efficiency factor of the wing and    e = 1> (1 + d)   . Typical values for 

the span efficiency factor range between 0.6 and 0.95, with  e  = 1 being the value for an 

elliptic lift distribution. In general, values of the span efficiency factor should be as close 

to  e  = 1 as possible to improve the aerodynamic efficiency of the wing. The induced 

drag factor    d    is given by: 

   d =
3A2

3

A2
1

+

5A2
5

A2
1

+

7A2
7

A2
1

+
g

   

 Since    d Ú 0,    the induced drag is minimum when    d = 0 (e = 1)   . In this case, the only 

term in the series representing the circulation distribution is the first term: 

   �(f) = 4sU�  A1 sin f   

 which is the elliptic distribution, as we discussed in  Section   7.3.2   . 

 The effect of the taper ratio on the spanwise variation of the lift coefficient is il-

lustrated in  Fig.   7.13   . Theoretical solutions are presented for untwisted wings having 

taper ratios from 0 to 1. The wings, which were composed of NACA 2412 airfoil sec-

tions, all had an aspect ratio of 7.28. Again, the local lift coefficient has been divided by 

the overall lift coefficient for the wings according to: 

   
Cl(f)

CL
=

2(1 + l)

pA1

 
cr

c(f)
 a 5A2n -1 sin3(2n - 1)f46     

 The values of the local (or section) lift coefficient near the tip of the highly tapered 

wings are significantly greater than the overall lift coefficient for that planform. As 

discussed earlier, this result is important relative to the separation (or stall) of the 

boundary layer for a particular planform when it is operating at a relatively high angle 

of attack, since a highly loaded tip will stall first, placing any ailerons in the unsteady 

flow field downstream of the stall region. 
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 Lifting-line theory can also predict the change in the wing lift-curve slope , 

as we mentioned in  Chapter   5    . Specifically, since each airfoil section is “seeing” 

an effective angle of attack which is less than the geometric angle of attack (see 

 Fig.   7.12   ), the lift of the wing is reduced. Specifically the geometric angle of attack 

is given by    a = ae + e   , and from equation (7.19) the downwash angle for an elliptic 

lift distribution is    e = CL>pAR   , then the geometric angle of attack for an elliptic lift 

distribution is: 

   a = ae +

CL

pAR
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 Figure 7.13         Effect of taper ratio on the spanwise variation of the 

lift coefficient for an untwisted wing.   
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 Taking the derivative of this equation with respect to the lift coefficient gives us 

[ Glauert (1948 )]: 

   
1

a
=

1

a0

+

1

pAR
   

 which can be re-arranged to obtain: 

   a = CLa =
a0

1 +

a0

pAR

=
Cla

1 +

Cla

pAR

   

  which is equation (5.41) . This is the lift-curve slope for a wing with an elliptic lift 

 distribution, which can be extended to a general lift distribution in a similar fashion to 

the induced drag in equation (7.29) by the addition of a lift-curve slope parameter,    t   : 

      a =
a0

1 +

a0

pAR
 (1 + t)

  (7.30)    

 The slope parameter can be obtained from the Fourier coefficients in a similar fashion to 

   d   , but it is common to show the parameter graphically.  Fig.   7.14   a shows the induced drag 

parameter,    d   , for planar wings with non-elliptic lift distributions as a function of taper 

ratio and aspect ratio, and  Fig.   7.14   b shows the slope parameter,    t    [ Bridges (2005) ]. 

Notice that both parameters have high values at low taper ratios (pointed wing tips) 

as well as fairly high values at high taper ratios (rectangular wings). Each parameter is 

minimized (and the impact of the wing on induced drag and lift-curve slope reduction 

is minimized) when the taper ratio is    l � 0.3 - 0.4   . A trapezoidal wing with this taper 

ratio approximates an elliptic planform shape and gives the best results for lift and drag.   

 Once the local lift coefficient reaches the stall angle of attack of the airfoil section, 

the local airfoil will be stalled, creating a region of flow separation in that vicinity. As 

the angle of attack is further increased, stall patterns will form on the wing, depend-

ing on the local lift coefficient variation along the span. Sketches of stall patterns are 

 presented in  Fig.   7.15   . The desirable stall pattern for a wing is a stall which begins at the 

root sections so that the ailerons remain effective at high angles of attack. The spanwise 

load distribution for a rectangular wing indicates stall will begin at the root and proceed 

outward, which is a favorable stall pattern. The spanwise load distribution for a wing 

with a moderate taper ratio    (l = 0.4)    approximates that of an elliptical wing (i.e., the 

local lift coefficient is roughly constant across the span). As a result, all sections will 

reach stall at essentially the same angle of attack.  

 Tapering of the wing also reduces the wing-root bending moments, since the 

inboard portion of the wing carries more of the wing’s lift than the tip. Furthermore, 

the longer wing-root chord makes it possible to increase the actual thickness of the 

wing while maintaining a low thickness ratio, which is needed if the airplane is to 

operate at high speeds also. While taper reduces the actual loads carried outboard, 

the lift coefficients near the tip are higher than those near the root for a tapered wing. 

Therefore, there is a strong tendency to stall near (or at) the tip for highly tapered 

(or pointed) wings. 
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 Figure 7.14         Effect of aspect ratio and taper ratio on: (a) induced 

drag parameter and (b) lift-curve slope parameter. Airfoil lift-

curve slope is assumed to be    2p>rad    [from  Bridges (2005) ].   
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 In order to prevent the stall pattern from beginning in the region of the ailerons, 

the wing may be given a geometric twist, or washout, to decrease the local angles of 

attack at the tip  (see examples in  Table   5.1   ) . The addition of leading-edge slots or slats 

toward the tip increases the stall angle of attack and is useful in avoiding tip stall and 

the loss of aileron effectiveness. 

  EXAMPLE 7.2:    Use the monoplane equation to compute the 
aerodynamic coefficients for a wing 

 The monoplane equation [i.e., equation (7.26)] will be used to compute 

the aerodynamic coefficients of a wing for which aerodynamic data are 

available. The geometry of the wing to be studied is illustrated in  Fig.   7.16   . 

The wing, which is unswept at the quarter chord, is composed of NACA 

65–210 airfoil sections. Referring to the data of  Abbott and von Doenhoff 

(1949) , the zero-lift angle of attack    (a0l)    for this airfoil is approximately 

   -1.2�    across the span. Since the wing is untwisted, the geometric angle of 

(a)

(b)

(c)

 Figure 7.15         Typical stall patterns: (a) rectangular wing,    l = 1.0;    

(b) moderately tapered wing,    l = 0.4;    (c) pointed wing,    l = 0.0.      
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attack is the same at all spanwise positions. The aspect ratio ( AR ) of the full 

wing is 9.00, and the taper ratio    l    (   ct>cr   ) is 0.40. Since the wing planform 

is trapezoidal, 

   S = 1
2 (cr + ct)b = 1

2 cr(1 + l)b    

 and 

   AR =
2b

cr + ct
   

 Therefore, the parameter    m    in equation (7.26) becomes: 

   m =
ca0

4b
=

ca0

2(AR) # cr(1 + l)
   

 where  c  is the local chord,  c(y).  

  Solution:     Since the terms are to be evaluated at spanwise stations for    0 … f … p>2    

[i.e.,    -s … y … 0    (which corresponds to the port wing or left side of the 

wing)], 

    m =
a0

2(1 + l)AR
 31 + (l - 1) cos f4    

       = 0.24933(1 - 0.6 cos f)   (7.31)    

 where the equivalent lift-curve slope (i.e., for a two-dimensional flow over 

the airfoil section    a0   ) has been assumed to be equal to    2p    1/rad. It might be 

interesting to know that numerical solutions for lift and vortex-drag coef-

ficients were essentially the same for this geometry whether the series rep-

resenting the spanwise circulation distribution included 4 terms or 10 terms. 

Therefore, to help the reader perform the required calculations more easily, 

a four-term series will be used to represent the spanwise loading. Equation 

(7.26) becomes: 

   m(a - a0l) sin f = A1 sin f(m + sin f) + A3 sin 3f(3m + sin f)   

      +A5 sin 5f(5m + sin f) + A7 sin 7f(7m + sin f)  (7.32)    
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(0.726 m)

7.500 ft (2.286 m)

	LE � 2.72


	TE � 8.13


c
4

line
0.953 ft

(0.290 m)

 Figure 7.16         Planform for an unswept wing,    AR = 9.00, l = 0.40,    

airfoil section NACA 65–210.   
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 Since there are four coefficients (i.e.,    A1, A3, A5,    and    A7   ) to be evaluated, 

equation (7.32) must be evaluated at four spanwise locations. The resultant 

values for the factors are summarized in  Table   7.1   . Notice that since we are 

considering the left side of the wing, the  y  coordinate is negative.  

 For a geometric angle of attack of 4°, equation (7.32) becomes: 

   0.00386 = 0.18897A1 + 0.66154A3 + 0.86686A5 + 0.44411A7   

 for    f = 22.5�    (i.e.,    y = -0.92388s   ). For the other stations, the equation 

becomes: 

   0.00921 = 0.60150A1 + 0.80451A3 - 1.00752A5 - 1.21053A7   

   0.01611 = 1.03101A1 - 0.57407A3 - 0.72109A5 + 2.09577A7   

   0.02263 = 1.24933A1 - 1.74799A3 + 2.24665A5 - 2.74531A7   

 which is four equations in four unknowns. The solution of this system of 

linear equations yields: 

    A1 = 1.6459 * 10-2    

    A3 = 7.3218 * 10-5    

    A5 = 8.5787 * 10-4    

    A7 = -9.6964 * 10-5   

 Using equation (7.27), the lift coefficient for an angle of attack of 4° is: 

   CL = A1 p AR = 0.4654   

 The theoretically determined lift coefficients are compared in  Fig.   7.17    

with data for this wing. In addition to the geometric characteristics already 

described, the wing has a dihedral angle of 3°, which we are not modeling. 

The measurements reported by  Sivells (1947)  were obtained at a Reynolds 

number of approximately    4.4 * 106    and a Mach number of approximately 

0.17, and our theory assumes inviscid, incompressible flow. In spite of these 

differences, the agreement between the theoretical values and the experi-

mental values is very good.  

 The spanwise distribution for the local lift coefficient of this wing is 

presented in  Fig.   7.18   . As noted by  Sivells (1947) , the variation of the section 

 TABLE 7.1    Values of the Factors for Equation (7.32) 

        -
y

s
              

  Station      f        (� cos f)        sin f        sin 3f        sin 5f        sin 7f        m    

 1  22.5°  0.92388  0.38268   0.92388   0.92388   0.38268  0.11112 
 2  45.0°  0.70711  0.70711   0.70711     �0.70711        �0.70711     0.14355 
 3  67.5°  0.38268  0.92388     �0.38268        �0.38268     0.92388  0.19208 
 4  90.0°  0.00000  1.00000     �1.00000     1.00000     �1.00000     0.24933 
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lift coefficient can be used to determine the spanwise position of initial stall. 

The local lift coefficient is given by: 

   Cl =
r�U��
1
2 r�U2

�c
    

 where  c  is the local chord at a given location along the span,  c(y) . For the 

trapezoidal wing under consideration is: 

      Cl(f) = 2AR(1 + l)
cr

c(f) a 5A2n -1 sin3(2n - 1)f46   (7.33)    

 The theoretical value of the induced drag coefficient for an angle of 

attack of 4°, as determined using equation (7.29), is: 

    CDv
=

C2
L

pAR
 a1 +

3A2
3

A2
1

+

5A2
5

A2
1

+

7A2
7

A2
1

b =
C2

L

pAR
 (1 + d)   

    = 0.00766(1.0136) = 0.00776    

 and    d = 0.0136   . The theoretically determined induced drag coefficients are 

compared in  Fig.   7.19    with the measured drag coefficients for this wing. 
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 Figure 7.17         Comparison of the theoretical and the experimental 

lift coefficients for an unswept wing in a subsonic stream (wing 

is that of  Fig.   7.16   ).   
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As we noted earlier, the theoretical relations developed in this chapter do 

not include the effects of skin friction. The relatively constant difference 

between the measured values and the theoretical values is due to the influ-

ence of skin friction.    
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 Figure 7.18         Spanwise distribution of the local lift coefficient, 

   AR = 9, l = 0.4,    untwisted wing composed of NACA 65–210 

airfoil sections.   

  EXAMPLE 7.3:     Use the induced drag factor and lift-curve slope 
parameter to compute the aerodynamic coefficients 
for a wing 

 Using the same wing as shown in  Example   7.2   , in conjunction with the in-

duced drag factor and slope parameter graphs in  Fig.   7.14   , we can evaluate 

the effectiveness of a “short-cut” method for estimating wing aerodynamics. 

  Solution:     Equation (7.30) gives the lift-curve slope for a wing in terms of the slope param-

eter,    t   . If we assume that the airfoil lift-curve slope is    2p 1>rad   , and find the 

slope parameter from  Fig.   7.14   b as    t � 0.06   , then the wing lift-curve slope is: 

   CLa = a =
a0

1 +

a0

pAR
 (1 + t)

=
2p 1>rad

1 +

2p

9p
 (1.06)

= 5.085 1>rad = 0.0888 1>deg   
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 and the lift curve is defined by: 

   CL = a(a - a0l) = (0.0888 1>deg)(a + 1.2�)   

 which gives essentially the same results as those shown in  Fig.   7.17   . For an 

angle of attack of 4°,    CL = 0.4618   , which compare very well with the value 

from  Example   7.2.    

 The vortex drag coefficient can also be found using equation (7.29) 

and  Fig.   7.14   b, which gives a value for the induced drag factor of    d � 0.015   : 

   CDv
=

C2
L

pAR
 (1 + d) =

0.46182

9p
 (1 + 0.015) = 0.00766   

 which is also very close to the value from  Example   7.2   . The obvious benefit 

of the approach from this example is the relative speed of obtaining results 

compared with the monoplane equation approach of  Example   7.2   . However, 

the results come with a level of inaccuracy, since the values of the induced 

drag factor and slope parameter have to be read from a graph, and the values 

from the graph are for a parametric set of wings with a trapezoidal planform 

and an airfoil lift-curve slope of    2p 1/rad   . However, if used for conceptual 

design studies where trends are often the most important result, this ap-

proach supplies reasonable results very quickly.    
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 Figure 7.19         Comparison of the 

theoretical induced drag coef-

ficients and the measured drag 

coefficients for an unswept wing 

in a subsonic stream (wing is that 

of  Fig.   7.16   ).   
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   7.3.6  Some Final Comments on Lifting-Line Theory 

 With continuing improvements, lifting-line theory is still used to provide rapid estimates 

of the spanwise load distributions and certain aerodynamic coefficients for unswept, or 

slightly swept, wings. In the Fourier series analysis of  Rasmussen and Smith (1999) , the 

planform and the twist distributions for general wing configurations are represented 

explicitly. The spanwise circulation distribution    �(y)    is obtained explicitly in terms of 

the Fourier coefficients for the chord distribution and the twist distribution. 

 The method of  Rasmussen and Smith (1999)  was used to solve for the aerodynamic 

coefficients for the wing of  Example   7.2   . The induced drag factor    d,    as taken from  Ras-

mussen and Smith (1999) , is reproduced in  Fig.   7.20   . The values of the induced drag fac-

tor are presented as a function of the number of terms in the Fourier series. The values of 

   d    are compared with the values computed using the collocation method of  Example   7.2   . 

The two methods produce values which are very close, when six, seven, or eight terms are 

used in the Fourier series.  Rasmussen and Smith (1999)  claim, “The method converges 

faster and is more accurate for the same level of truncation than collocation methods.”  

 The  lifting-line theory  of  Phillips and Snyder (2000)  is in reality the vortex-lattice meth-

od applied using only a single lattice element in the chordwise direction for each spanwise 

subdivision of the wing. So, the method is very much like that used in  Example   7.2   , except 

that many more panels are used to provide better resolution of the spanwise loading. 

 Incorporating empirical information into the modeling, we can extend the range 

of  applicability  of lifting-line theory.  Anderson et al. (1980)  noted that “certain leading-

edge modifications can favorably tailor the high-lift characteristics of wings for light, 

single-engine general aviation airplanes so as to inhibit the onset of stall/spins. Since 
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 Figure 7.20         Convergence properties of induced drag factor    d    for 

tapered wing,    l = 0.4    [from  Rasmussen and Smith (1999) ].   
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more than 30% of all general aviation accidents are caused by stall/spins, such modi-

fications are clearly of practical importance. A modification of current interest is an 

abrupt extension and change in shape of the leading edge along a portion of the wing 

span—a so called ‘drooped’ leading edge.” The concept is shown in  Fig.   7.21   , where 

you can see that the chord is extended approximately 10% over a portion of the wing. 

 Anderson et al. (1980)  continue: “The net aerodynamic effect of this modification is a 

smoothing of the normally abrupt drop in lift coefficient    CL    at stall, and the generation 

of a relatively large value of    CL    at very high post-stall angles of attack . . . As a result, 

an airplane with a properly designed drooped leading edge has increased resistance 

toward stalls/spins.”  

 The post-stall behavior was modeled by introducing the experimentally deter-

mined values of the lift-curve slope in place of    a0    [ Anderson et al. (1980) ]; you should 

re-read the discussion leading up to equations (7.25) and (7.26). The authors noted 

that the greatest compromise in using lifting-line theory into the stall angle-of-attack 
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 Figure 7.21         Drooped leading-edge characteristic [from 

 Anderson et al. (1980) ].   
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range and beyond is the use of data for the  two-dimensional flow around an airfoil . The 

actual flow for this configuration is a complex, three-dimensional flow with separation. 

Nevertheless, with the use of experimental values for the lift-curve slope of the airfoil 

section, lifting-line theory generates reasonable estimates for    CL,    when compared with 

experimental data, as shown in  Fig.   7.22   .    

   7.4  PANEL METHODS 

 Although lifting-line theory [i.e., the monoplane equation, equation (7.26)] provides 

a reasonable estimate of the lift and of the induced drag for an unswept, thin wing of 

relatively high aspect ratio in a subsonic free stream flow, an improved flow model is 

needed to calculate the lifting flow field about a highly swept wing or a delta wing. Panel 

methods, among other approaches, have been developed to compute the flow about a 

thin wing which is operating at a small angle of attack so that the resultant flow may be 

assumed to be steady, inviscid, irrotational, and incompressible. 

 The basic concept of panel methods is illustrated in  Fig.   7.23   . The configuration is 

modeled by a large number of elementary quadrilateral panels lying either on the actual 

aircraft surface, or on some mean surface (such as the mean camber line), or a combination 

of both. For each elementary panel, one or more types of singularity distributions (such as 

sources, vortices, and doublets) are attached. These singularities are determined by speci-

fying some functional variation across the panel (e.g., constant,  linear, quadratic), whose 

actual value is set by corresponding strength parameters (source strength, vortex strength, 

etc.). These strength parameters are determined by solving for appropriate boundary condi-

tion equations, and once the singularity strengths have been determined, the velocity field 

and the pressure field can be computed  using the same methods we developed in  Chapter   3    .  
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 Figure 7.22         Lift coefficient versus angle of attack for a drooped 

leading-edge wing; comparison between experiment and numerical 

results [from  Anderson et al. (1980) ].   
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   7.4.1  Boundary Conditions 

 As we just mentioned, the boundary conditions for the flow field determine the singular-

ity strengths for a panel method. This requires some basic background knowledge about 

boundary-value problems in mathematics.  Johnson (1980)  noted that, as a general rule, 

a boundary-value problem associated with Laplace’s equation [equation (3.26)]    is well 

posed if either    f    or    (0f>0n)    is specified at every point of the surface of the configuration 

which is being analyzed or designed (where    f    is the solution variable for the problem of 

interest, typically the velocity potential for fluid problems). Johnson (1980) also notes, 

“Fluid flow boundary conditions associated with Laplace’s equation are generally of analy-

sis or design type. Analysis conditions are employed on portions of the boundary where 

the geometry is considered fixed, and resultant pressures are desired. The permeability of 

the fixed geometry is known; hence, analysis conditions are of the Neumann type (speci-

fication of normal velocity). Design boundary conditions are used wherever a geometry 

perturbation is allowed for the purpose of achieving a specific pressure distribution. Here a 

perturbation to an existing tangential velocity vector field is made; hence, design conditions 

are fundamentally of the Dirichlet type (specification of potential). The design problem in 

addition involves such aspects as stream surface lofting (i.e., integration of streamlines pass-

ing through a given curve), and the relationship between a velocity field and its potential.” 

 Neumann boundary conditions (specification of    0f>0n    at every point on the 

surface) arise naturally in the analysis of fixed configurations bounded by surfaces of 

known permeability (which is the amount of fluid allowed to flow through a surface). 

If the surface of the configuration is impermeable (as is the case for almost every ap-

plication discussed in aerodynamics), the normal component of the resultant velocity 

must be zero at every point of the surface (   0f>0n = 0   ). Once a solution for    f    has been 

found for the boundary-value problem, the pressure coefficient at each point on the 

surface of the impermeable boundary can be computed using the incompressible pres-

sure coefficient from equation  (3.13)    : 

      Cp = 1 -

U2
t

U2
�

  (7.34)    

Doublet or vortex
simulation of wake Control point for application

of boundary condition

Doublet or
vortex

Typical surface panel whose
effect on the flow can

be represented by

Source

 Figure 7.23         Representation of an airplane flowfield by panel (or 

singularity) methods.   
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 You should note that the tangential velocity at the “surface” of a configuration in an in-

viscid flow is represented by the symbols  U  and    Ut    in equation  (3.13)     and equation (7.34), 

respectively. 

  Johnson (1980)  noted further that Dirichlet boundary conditions (specification of 

   f   ) arise in connection with the inverse problem (i.e., that of solving for a specified pres-

sure distribution on the surface of the configuration by varying the shape of the surface). 

The specification of    f    guarantees a predetermined tangential velocity vector field and, 

therefore, a predetermined pressure coefficient distribution, as related through equation 

(7.34). However, the achievement of a desired pressure distribution on the surface is not 

physically significant without restrictions on the flux through the surface. To achieve 

both a specified pressure distribution and a normal flow distribution on the surface, the 

position of the surface must, in general, be perturbed, so that the surface will be a stream 

surface of the flow field. The total design problem is thus composed of two problems. The 

first is to find a perturbation potential for the surface that yields the desired distribution 

for the pressure coefficient and the second is to update the surface geometry so that it 

is a stream surface of the resultant flow.  Johnson (1980)  concluded, “The two problems 

are coupled and, in general, an iterative procedure is required for solution.”  

   7.4.2  Solution Methods 

 The first step in a panel method is to divide the boundary surface into a number of 

panels. A finite set of control points (equal in number to the number of singularity pa-

rameters) is selected at which the boundary conditions are imposed. The construction 

of each network requires developments in three areas: (1) the definition of the surface 

geometry, (2) the definition of the singularity strengths, and (3) the selection of the 

control points and the specification of the boundary conditions. 

 Numerous computer codes using panel-method techniques have been developed 

since the 1960s [e.g.,  Hess and Smith (1962)  or  Bristow and Grose (1978) ], the vari-

ations depending mainly on the choice of type and form of singularity distribution, 

the geometric layout of the elementary panels, and the type of boundary condition 

imposed. The choice of these parameters and their combinations is not a trivial matter. 

Although many different combinations are in principle mathematically equivalent, their 

numerical implementation may yield significantly different results from the point of 

view of numerical stability, computational economy, accuracy, and overall code robust-

ness.  Bristow and Grose (1978)  note that there is an important equivalence between 

surface doublet distributions and vorticity distributions; a surface doublet distribution 

can be replaced by an equivalent surface vortex distribution. However, the theoretical 

equivalency between vorticity distributions and doublet distributions does not imply 

equivalent simplicity in a numerical formulation. 

 For each control point (and there is one control point per panel), the velocities 

induced at that control point by the singularities associated with each of the other 

panels of the configuration are summed, resulting in a set of linear algebraic equations 

that express the exact boundary condition of flow tangency on the surface. For many 

applications, the aerodynamic coefficients computed using panel methods are reason-

ably accurate.  Bristow and Grose (1978)  discuss some problems with the source panel 

class of methods when used on thin, highly loaded surfaces such as the aft portion of a 
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supercritical airfoil. In such cases, source strengths with strong gradients can degrade 

the local velocity calculations. 

  Margason et al. (1985)  compare computed aerodynamic coefficients using one 

vortex lattice method (VLM, which will be discussed in the next section), one source 

panel method, two low-order surface potential distributions, and two high-order surface 

potential distributions. The computed values of    CL    are presented as a function of    a    for 

a 45° swept-back and a 45° swept-forward wing in  Figs.   7.24a    and    b   , respectively. The 

five surface panel methods consistently overpredict the experimental data with little 

difference between the lift coefficients predicted by the various surface panel methods. 

As  Margason et al. (1985)  note, “The VLM predicts the experimental data very well, 

due to the fact that vortex lattice methods neglect both thickness and viscosity effects. 

For most cases, the effect of viscosity offsets the effect of thickness, fortuitously yielding 

good agreement between the VLM and experiment.”     
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 Figure 7.24         Comparison of the lift coefficient as a function 

of angle of attack: (a)    �c>4 = 45�,    NACA 64A010 section, 

   AR = 3.0, l = 0.5,    aft swept wing [from  Margason et al. (1985) ].    
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   7.5  VORTEX LATTICE METHOD 

 The vortex lattice method is the simplest of the methods reviewed by  Margason et al. 

(1985) . The VLM represents the wing as a surface on which a grid of horseshoe vortices 

(from lifting-line theory) is superimposed. The velocities induced by each horseshoe 

vortex at a specified control point are calculated using the Biot-Savart law. A summa-

tion is performed for all control points on the wing to produce a set of linear algebraic 

equations for the horseshoe vortex strengths that satisfy the boundary condition of no 

flow through the wing. The vortex strengths are related to the wing circulation and the 

pressure differential between the upper and lower wing surfaces. The pressure differ-

entials are integrated to yield the total forces and moments. 

 In our approach to solving the governing equation, the continuous distribution 

of bound vorticity over the wing surface is approximated by a finite number of discrete 

horseshoe vortices, as shown in  Fig.   7.25   . The individual horseshoe vortices are placed 

in trapezoidal panels (also called  finite elements  or  lattices ). This procedure for obtaining 

a numerical solution to the flow is termed the vortex lattice method.  
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Vortex lattice method
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Surface potential distributions

a, deg

 Figure 7.24         (b)    �c>4 = -45�,    NACA 64A112 section,    AR = 3.55, 

l = 0.5,    forward swept wing [from  Margason et al. (1985) ].   
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 The bound vortex typically coincides with the quarter-chord line of the panel 

(or element) and is, therefore, aligned with the local sweepback angle. In a rigorous 

theoretical analysis, the vortex lattice panels are located on the mean camber surface 

of the wing and, when the trailing vortices leave the wing, they follow a curved path. 

However, for many engineering applications, suitable accuracy can be obtained using 

linearized theory in which straight-line trailing vortices extend downstream to infin-

ity. In the linearized approach, the trailing vortices are aligned either parallel to the 

free stream or parallel to the vehicle axis. Both orientations provide similar accuracy 

within the assumptions of linearized theory. We will assume that the trailing vortices 

are parallel to the axis of the vehicle, as shown in  Fig.   7.26   . This orientation of the trail-

ing vortices is chosen because the computation of the influences of the various vortices 

(which we will call the  influence coefficients ) is simpler. Furthermore, these geometric 

coefficients do not change as the angle of attack is changed. Application of the boundary 

condition that the flow is tangent to the wing surface at “the” control point of each of 

Free-stream flow

Typical panel

Bound vortex

Trailing vortices
Control point

x

z

f, The dihedral angle

y
	LE

g

 Figure 7.25         Coordinate system, elemental panels, and horseshoe 

vortices for a typical wing planform in the vortex lattice method.   
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the 2 N  panels (i.e., there is no flow through the surface) provides a set of simultaneous 

equations in terms of the unknown vortex circulation strengths. The control point of 

each panel is centered spanwise on the three-quarter-chord line midway between the 

trailing-vortex legs.  

 An indication of why the three-quarter-chord location is used as the control point 

may be seen by referring to  Fig.   7.27   . A vortex filament whose strength    �    represents 

the lifting character of the section is placed at the quarter-chord location. The filament 

induces a velocity, 

   U =
�

2pr
    

 at the point  c , the control point which is a distance  r  from the vortex filament. If the flow 

is to be parallel to the surface at the control point, the incidence of the surface relative 

to the free stream is given by: 

   a � sin a =
U

U�

=
�

2prU�

   

x

y

z

c/4
3c/4

Filled circles represent the
control points

a

U�

 Figure 7.26         Distributed horseshoe vortices representing the lift-

ing flow field over a swept wing.   
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a U� sin a
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 Figure 7.27         Planar airfoil section indicating location of control 

point where flow is parallel to the surface.   
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 But,  as we discussed for equations (6.11) and (6.12),  

   l = 1
2 r�U2

�  c2pa = r�U��   

 Combining the preceding relations gives us: 

   pr�U2
�c 

�

2prU�

= r�U��   

 and solving for  r  yields: 

   r =
c
2

   

 Therefore, we see that the control point is at the three-quarter-chord location for this 

two-dimensional geometry. The use of the chordwise slope at the 0.75-chord location 

to define the effective incidence of a panel in a finite-span wing has long been in use 

[e.g.,  Falkner (1943)  and  Kalman et al. (1971) ]. 

 Consider the flow over the swept wing that is shown in  Fig.   7.26   . Notice that the 

bound-vortex filaments for the port (or left-hand) wing are not parallel to the bound-

vortex filaments for the starboard (or right-hand) wing. Thus, for a lifting swept wing, 

the bound-vortex system on one side of the wing produces downwash on the other 

side of the wing. This downwash reduces the net lift and increases the total induced 

drag produced by the flow over the finite-span wing. The downwash resulting from 

the bound-vortex system is greatest near the center of the wing, while the downwash 

resulting from the trailing-vortex system is greatest near the wing tips. So, for a swept 

wing the lift is reduced both near the center and near the tips of the wing. This will be 

evident in the spanwise lift distribution presented for the wing of  Example   7.4   . 

   7.5.1  Velocity Induced by a General Horseshoe Vortex 

 The velocity induced by a vortex filament of strength    �n    and a length of  dl  is given by 

the  Biot-Savart law  [see  Robinson and Laurmann (1956) ]: 

      dV
S

=
�n( dl

S

* rS )

4pr3
  (7.35)    

 Referring to the sketch of  Fig.   7.28   , the magnitude of the induced velocity is: 

      dV =
�n sin u dl

4pr2
  (7.36)     

 Since we are interested in the flow field induced by a horseshoe vortex which consists 

of three straight segments, we can use equation (7.35) to calculate the effect of each 

segment separately. Let  AB  be such a segment, with the vorticity vector directed from 

 A  to  B . Let  C  be a point in space whose normal distance from the line  AB  is    rp.      We can 

integrate between  A  and  B  to find the magnitude of the induced velocity: 

      V =
�n

4prp
 L

u2

u1

 sin u du =
�n

4prp
(cos u1 - cos u2)  (7.37)    
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 Notice that, if the vortex filament extends to infinity in both directions, then    u1 = 0    

and    u2 = p   , and 

   V =
�n

2prp
   

  which is the result used in  Chapter   6    for the infinite-span airfoils.  Let    r
>

0, r
>

1,    and    r
>

2    des-

ignate the vectors    AB
¡

, AC
¡

,    and    BC
¡

,    respectively, as shown in  Fig.   7.28   . Then 

   rp =
� r
>

1 * r
>

2 �
r0

  cos u1 =
r
>

0
# r
>

1

r0 r1

  cos u2 =
r
>

0
# r
>

2

r0 r2

   

 In these equations, if a vector quantity (such as    r
>

0   ) is written without a superscript 

arrow, the symbol represents the magnitude of the parameter. Thus,    r0    is the magnitude 

of the vector    r
>

0.    Also note that    � r
>

1 * r
>

2 �     represents the magnitude of the vector cross 

product. Substituting these expressions into equation (7.37) and noting that the direc-

tion of the induced velocity is given by the unit vector: 

   
r
>

1 * r
>

2

� r
>

1 * r
>

2 �
   

 yields 

      V
>

=
�n

4p
 

r
>

1 * r
>

2

� r
>

1 * r
>

2 �2
c r>0 #  a r

>

1

r1

-

r
>

2

r2

b d   (7.38)    

 This is the basic expression for the calculation of the induced velocity by the horseshoe 

vortices in the VLM. It can be used regardless of the assumed orientation of the vortices. 

 We will now use equation (7.38) to calculate the velocity that is induced at a gen-

eral point in space ( x ,  y ,  z ) by the horseshoe vortex shown in  Fig.   7.29   . The horseshoe 

vortex may be assumed to represent a typical wing panel (e.g., the  n th panel) in  Fig.   7.25   . 

Segment  AB  represents the bound vortex portion of the horseshoe system and coincides 

with the quarter-chord line of the panel element and the trailing vortices are parallel to 

the  x  axis. The resultant induced velocity vector will be calculated by considering the 

influence of each of the elements.  

r1

u1

u2

u

r2

r0

A

B

r

rp

C

dl

Vorticity
vector

 Figure 7.28         Nomenclature for calculating the velocity induced 

by a finite-length vortex segment.   
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 For the bound vortex, segment    AB
>

,   

    r
>

0 = AB
>

= (x2n - x1n) in + (y2n - y1n) jn + (z2n - z1n)kn   

    rn1 = (x - x1n) in + (y - y1n) jn + (z - z1n)kn    

    rn2 = (x - x2n) in + (y - y2n) jn + (z - z2n)kn     

 Now, we will use equation (7.38) to calculate the velocity induced at some point  C ( x ,  y ,  z ) 

by the vortex filament  AB  (shown in  Figs.   7.29    and    7.30   ), 

      V
>

AB =
�n

4p
5Fac1AB6 5Fac2AB6   (7.39a)    

 where 

     5Fac1AB6 =
r
>

1 * r
>

2

� r
>

1 * r
>

2 �2
   

    = 53(y - y1n)(z - z2n) - (y - y2n)(z - z1n)4 in    

    -  3(x - x1n)(z - z2n) - (x - x2n)(z - z1n)4 jn    

    +  3(x - x1n)(y - y2n) - (x - x2n)(y - y1n)4kn6>    
    53(y - y1n)(z - z2n) - (y - y2n)(z - z1n)42    

    +  3(x - x1n)(z - z2n) - (x - x2n)(z - z1n)42    

    +  3(x - x1n)(y - y2n) - (x - x2n)(y - y1n)426     

 and 

     5Fac2AB6 = ar
>

0
#
r
>

1

r1

- r
>

0
#
r
>

2

r2

b    

    = 53(x2n - x1n)(x - x1n) + (y2n - y1n)(y - y1n) + (z2n - z1n)(z - z1n)4>    
    2(x - x1n)2

+ (y - y1n)2
+ (z - z1n)2    

z

x

y
Bound vortex

A(x1n, y1n, z1n)
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 Figure 7.29         “Typical” horseshoe vortex.   
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    -  3(x2n - x1n)(x - x2n) + (y2n - y1n)(y - y2n) + (z2n - z1n)(z - z2n)4>    
 2{(x - x2n)2

+ (y - y2n)2
+ (z - z2n)26  

 To calculate the velocity induced by the filament that extends from  A  to    � ,    we will 

first calculate the velocity induced by the collinear, finite-length filament that extends 

from  A  to  D . Since    r
>

0    is in the direction of the vorticity vector, 

    r
>

0 = DA
>

= (x1n - x3n) in    

    r
>

1 = (x - x3n) in + (y - y1n) jn + (z - z1n)kn   

    r
>

2 = (x - x1n) in + (y - y1n) jn + (z - z1n)kn   

 as shown in  Fig.   7.30   . So, the induced velocity is: 

   VAD

>

=
�n

4p
5Fac1AD6 5Fac2AD6     

 where 

   5Fac1AD6 =
(z - z1n) jn + (y1n - y)kn

3 (z - z1n)2
+ (y1n - y)24 (x3n - x1n)

   

 and 

   5Fac2AD6 = (x3n - x1n) e x3n - x

2(x - x3n)2
+ (y - y1n)2

+ (z - z1n)2
   

   +  
x - x1n

2(x - x1n)2
+ (y - y1n)2

+ (z - z1n)2
f    

 Letting    x3    go to    � ,    the first term of    5Fac2AD6     goes to 1.0. Therefore, the velocity in-

duced by the vortex filament which extends from  A  to    �     in a positive direction parallel 

to the  x  axis is given by: 

   VA�

>

=
�n

4p
e (z - z1n) jn + (y1n - y)kn

3(z - z1n)2
+ (y1n - y)24 f    

      c1.0 +

x - x1n

2(x - x1n)2
+ (y - y1n)2

+ (z - z1n)2
d   (7.39b)    
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 Figure 7.30         Vector elements for the calculation of the induced 

velocities.   
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 Similarly, the velocity induced by the vortex filament that extends from  B  to    �     in 

a positive direction parallel to the  x  axis is given by: 

   VB�

>

= -

�n

4p
e (z - z2n) jn + (y2n - y)kn

3(z - z2n)2
+ (y2n - y)24 f    

      c1.0 +

x - x2n

2(x - x2n)2
+ (y - y2n)2

+ (z - z2n)2
d   (7.39c)    

 The total velocity induced at some point ( x ,  y ,  z ) by the horseshoe vortex repre-

senting one of the surface elements (i.e., that for the  n th panel) is the sum of the com-

ponents given in equation (7.39). Let the point ( x ,  y ,  z ) be the control point of the  m th 

panel, which we will designate by the coordinates    (xm, ym, zm).    The velocity induced 

at the  m th control point by the vortex representing the  n th panel will be designated as 

   Vm, n

>

.    Examining equation (7.39), we see that 

      Vm, n

>

= Cm, n

>

 �n  (7.40)    

 where the influence coefficient    Cm, n

>

    depends on the geometry of the  n th horseshoe 

vortex and its distance from the control point of the  m th panel. Since the governing 

equation is linear, the velocities induced by the 2 N  vortices are added together to obtain 

an expression for the total induced velocity at the  m th control point: 

      Vm

>

= a
2N

n=1

Cm, n

>

 �n  (7.41)    

 We will have 2 N  of these equations, one for each of the control points.  

   7.5.2  Application of the Boundary Conditions 

 It will be possible to determine the resultant induced velocity at any point in space if 

the strengths of the 2 N  horseshoe vortices are known. However, their strengths are not 

known a priori. To compute the strengths of the vortices,    �n   , which represent the lifting 

flow field of the wing, we use the boundary condition that the surface is a streamline. 

That is, the resultant flow is tangent to the wing at each and every control point (which 

is located at the midspan of the three-quarter-chord line of each elemental panel). If 

the flow is tangent to the wing, the component of the induced velocity normal to the 

wing at the control point balances the normal component of the free-stream velocity. 

To evaluate the induced velocity components, we must introduce at this point our 

convention that the trailing vortices are parallel to the vehicle axis [i.e., the  x  axis for 

equation (7.39) is the vehicle axis]. Referring to  Fig.   7.31   , the tangency requirement 

yields the relation 

    -um sin d cos f - vm cos d sin f + wm cos f cos d         +  U� sin(a - d) cos f = 0  (7.42)     

 where    f    is the dihedral angle, as shown in  Fig.   7.25   , and    d    is the slope of the mean cam-

ber line at the control point, which is given by 

   d = tan-1adz
dx
b

m
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 For wings where the slope of the mean camber line is small and which are at small angles 

of attack, equation (7.42) can be replaced by the approximation: 

      wm - vm tan f + U� ca - adz
dx
b

m
d = 0  (7.43)    

 This approximation is consistent with the assumptions of linearized theory. The un-

known circulation strengths    (�n)    required to satisfy these tangent flow boundary condi-

tions are determined by solving the system of simultaneous equations represented by 

equation (7.41). The solution involves the inversion of a matrix.  

   7.5.3  Relations for a Planar Wing 

 Relations for the VLM where the trailing vortices are parallel to the  x  axis are given 

in equations (7.39) through (7.43), and can be solved to determine the lifting flow 

for a twisted wing with dihedral. We will apply these equations to a relatively simple 

 geometry, a planar wing (i.e., one that lies in the  xy  plane), so that we can learn the 

significance of the various operations using a geometry which we can readily visualize. 
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 Figure 7.31         Nomencla-

ture for the tangency 

requirement: (a) normal 

to element of the mean 

camber surface; (b) sec-

tion  AA ; (c) section  BB .   
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For a planar wing,    z1n = z2n = 0    for all the bound vortices. Furthermore,    zm = 0    for 

all the control points. So, for our planar wing, 

    VAB

>

=
�n

4p
 

kn

(xm - x1n)(ym - y2n) - (xm - x2n)(ym - y1n)
   

    c (x2n - x1n)(xm - x1n) + (y2n - y1n)(ym - y1n)

2(xm - x1n)2
+ (ym - y1n)2

   

       -  
(x2n - x1n)(xm - x2n) + (y2n - y1n)(ym - y2n)

2(xm - x2n)2
+ (ym - y2n)2

d   (7.44a)    

       VA�

>

=
�n

4p
 

kn

y1n - ym
c1 +

xm - x1n

2(xm - x1n)2
+ (ym - y1n)2

d   (7.44b)    

       VA�

>

=
�n

4p
 

kn

y2n - ym
c1 +

xm - x2n

2(xm - x2n)2
+ (ym - y2n)2

d   (7.44c)    

 Notice that for a planar wing, all three components of the vortex representing the  n th 

panel induce a velocity at the control point of the  m th panel which is in the  z  direction 

(i.e., a downwash). Therefore, we can simplify equation (7.44) by combining the com-

ponents into one expression: 

    wm, n =
�n

4p
e 1

(xm - x1n)(ym - y2n) - (xm - x2n)(ym - y1n)
   

    c (x2n - x1n)(xm - x1n) + (y2n - y1n)(ym - y1n)

2(xm - x1n)2
+ (ym - y1n)2

   

    -  
(x2n - x1n)(xm - x2n) + (y2n - y1n)(ym - y2n)

2(xm - x2n)2
+ (ym - y2n)2

d    

    +  
1

y1n - ym
c1 +

xm - x1n

2(xm - x1n)2
+ (ym - y1n)2

d    

       -  
1

y2n - ym
c1 +

xm - x2n

2(xm - x2n)2
+ (ym - y2n)2

d f   (7.45)    

 Summing the contributions of all the vortices to the downwash at the control point of 

the  m th panel, we obtain: 

      wm = a
2N

n=1

wm, n   (7.46)    

 Now we can apply the tangency requirement defined by equations (7.42) and 

(7.43). Since we are considering a planar wing in this section,    (dz>dx)m = 0    everywhere 

and    f = 0.      The component of the free-stream velocity perpendicular to the wing is 

   U� sin a    at any point on the wing. So, the resultant flow will be tangent to the wing if the 

total vortex-induced downwash at the control point of the  m th panel, which is calculated 

using equation (7.46) balances the normal component of the free-stream velocity: 

      wm + U� sin a = 0  (7.47)    
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 For small angles of attack    sin a � a    in radians, and: 

      wm = -U� a  (7.48)    

 In  Example   7.4,    we will solve for the aerodynamic coefficients for a wing that has a 

relatively simple planform and an uncambered section. The vortex lattice method will be 

applied using only a single lattice element in the chordwise direction for each spanwise sub-

division of the wing. Applying the boundary condition that there is no flow through the wing 

at only one point in the chordwise direction is reasonable for this flat-plate wing. However, 

it would not be adequate for a wing with cambered sections or a wing with deflected flaps. 

  EXAMPLE 7.4:    Use the vortex lattice method (VLM) to calculate 
the aerodynamic coefficients for a swept wing 

 We will use the relations developed in this section to calculate the lift coef-

ficient for a swept wing. So that the calculation procedures can be easily 

followed, we will consider a wing that has a relatively simple geometry (i.e., 

that illustrated in  Fig.   7.32   ). The wing has an aspect ratio of 5, a taper ratio of 

unity (i.e.,    cr = ct   ), and an uncambered section (i.e., it is a flat plate). Since 

the taper ratio is unity, the leading edge, the quarter-chord line, the three-

quarter-chord line, and the trailing edge all have the same sweep, 45°. Since 

   AR = 5 =
b2

S
    

 and since for an untapered wing: 

   S = bc   

 we can find the span to be    b = 5c.    Using this relation, it is possible to calcu-

late all of the necessary coordinates in terms of the parameter  b . Therefore, 

the solution does not require that we know the physical dimensions of the 

configuration, just the planform of the wing. 

  Solution:     The flow field under consideration is symmetric with respect to the    y = 0    plane 

( xz  plane) since there is no yaw. The lift force acting at a point on the starboard 

wing    (+y)    is equal to that at the corresponding point on the port wing    (-y).    

Because of symmetry, we need only to solve for the strengths of the vortices 

of the starboard wing. Furthermore, we need to apply the tangency condition 

[i.e., equation (7.48)] only at the control points of the starboard wing. However, 

we must remember to include the contributions of the horseshoe vortices of 

the port wing to the velocities induced at these control points (of the starboard 

wing). So, for this planar symmetric flow, equation (7.46) becomes: 

   wm = a
N

n=1

wm, ns + a
N

n=1

wm, np    

 where the symbols  s  and  p  represent the starboard and port wings, respectively. 

 The planform of the starboard wing is divided into four panels, with 

each panel extending from the leading edge to the trailing edge. By limiting 
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ourselves to only four spanwise panels, we can calculate the strength of the 

horseshoe vortices using only a calculator or desktop computer. Therefore, we 

can more easily see how the terms are to be evaluated. As before, the bound 

portion of each horseshoe vortex coincides with the quarter-chord line of its 

panel and the trailing vortices are in the plane of the wing, parallel to the  x  axis. 

The control points are designated by the solid symbols in  Fig.   7.32   . Recall that 

   (xm, ym, 0)    are the coordinates of a given control point and that    (x1n, y1n, 0)    

and    (x2n, y2n, 0)    are the coordinates of the “ends” of the bound-vortex fila-

ment  AB . The coordinates for a    4 * 1    lattice (four spanwise divisions and one 

chordwise division) for the starboard (right) wing are summarized in  Table   7.2   . 

 Using equation (7.45) to calculate the downwash velocity at the CP of 

panel 1 (of the starboard wing) induced by the horseshoe vortex of panel 1 

of the starboard wing, 

    w1,1s =
�1

4p
e 1.0

(0.1625b)(-0.0625b) - (0.0375b)(0.0625b)
   

    c (0.1250b)(0.1625b) + (0.1250b)(0.0625b)

2(0.1625b)2
+ (0.0625b)2

   

Free-stream
flow

y

0.2b

CP1

CP2

CP3

CP4

0.2b

�LE � 45�

Quarter-chord
line and

bound vortex

0.125b

0.500b

x  Figure 7.32         Four-panel 

representation of a swept 

planar wing, taper ratio of 

unity,    AR = 5, � = 45�.      
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    -  
(0.1250b)(0.0375b) + (0.1250b)(-0.0625b)

2(0.0375b)2
+ (-0.0625b)2

d    

    +  
1.0

-0.0625b
c1.0 +

0.1625b

2(0.1625b)2
+ (0.0625b)2

d    

    -  
1.0

0.0625b
c1.0 +

0.0375b

2(0.0375b)2
+ (-0.0625b)2

d f    

    =
�1

4pb
(-16.3533 - 30.9335 - 24.2319)     

 TABLE 7.2    Coordinates of the Bound Vortices and of the Control Points 
of the  Starboard (Right) Wing 

  Panel      xm        ym        x1n        y1n        x2n        y2n    

 1  0.2125 b   0.0625 b   0.0500 b   0.0000 b   0.1750 b   0.1250 b  
 2  0.3375 b   0.1875 b   0.1750 b   0.1250 b   0.3000 b   0.2500 b  
 3  0.4625 b   0.3125 b   0.3000 b   0.2500 b   0.4250 b   0.3750 b  
 4  0.5875 b   0.4375 b   0.4250 b   0.3750 b   0.5500 b   0.5000 b  

 Notice that, as you might expect, each of the vortex elements induces a 

negative (downward) component of velocity at the control point. You should 

visualize the flow induced by each segment of the horseshoe vortex to verify 

that a negative value for each of the components is intuitively correct. In 

addition, the velocity induced by the vortex trailing from  A  to    �     is greatest 

in magnitude. Adding the components together, we find: 

   w1,1s =
�1

4pb
(-71.5187)   

 The downwash velocity at the CP of panel 1 (of the starboard wing) 

induced by the horseshoe vortex of panel 1 of the port wing is: 

    w1,1p =
�1

4p
e 1.0

(0.0375b)(0.0625b) - (0.1625b)(0.1875b)
   

    c (-0.1250b)(0.0375b) + (0.1250b)(0.1875b)

2(0.0375b)2
+ (0.1875b)2

   

    -  
(-0.1250b)(0.1625b) + (0.1250b)(0.0625b)

2(0.1625b)2
+ (0.0625b)2

d    

    +  
1.0

-0.1875b
c1.0 +

0.0375b

2(0.0375b)2
+ (0.1875b)2

d    

    -  
1.0

-0.0625b
c1.0 +

0.1625b

2(0.1625b)2
+ (0.0625b)2

d f    
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    =
�1

4pb
3-6.0392 - 6.3793 + 30.93354    

    =
�1

4pb
(18.5150)    

 Similarly, using equation (7.45) to calculate the downwash velocity at 

the CP of panel 2 induced by the horseshoe vortex of panel 4 of the starboard 

wing, we obtain 

    w2,4s =
�4

4p
 e 1.0

(-0.0875b)(-0.3125b) - (-0.2125b)(-0.1875b)
   

    c (0.1250b)(-0.0875b) + (0.1250b)(-0.1875b)

2(-0.0875b)2
+ (-0.1875b)2

   

    -  
(0.1250b)(-0.2125b) + (0.1250b)(-0.3125b)

2(-0.2125b)2
+ (-0.3125b)2

d    

    +  
1.0

0.1875b
c1.0 +

-0.0875b

2(-0.0875b)2
+ (-0.1875b)2

d    

    -  
1.0

0.3125b
c1.0 +

-0.2125b

2(-0.2125b)2
+ (-0.3125b)2

d f    

    =
�4

4pb
[-0.60167 + 3.07795 - 1.400614    

    =
�4

4pb
(1.0757)    

 Again, you should visualize the flow induced by each segment to verify that the 

signs and the relative magnitudes of the components are individually correct. 

 Evaluating all of the various components (or influence coefficients), 

we find that at control point 1 the downwash is: 

    w1 =
1

4pb
3(-71.5187�1 + 11.2933�2 + 1.0757�3 + 0.3775�4)s   

    +  (+18.5150�1 + 2.0504�2 + 0.5887�3 + 0.2659�4)p4    
 At CP 2, 

    w2 =
1

4pb
3(+20.2174�1 - 71.5187�2 + 11.2933�3 + 1.0757�4)s   

    +  (+3.6144�1 + 1.1742�2 + 0.4903�3 + 0.2503�4)p4    
 At CP 3, 

    w3 =
1

4pb
3(+3.8792�1 + 20.2174�2 - 71.5187�3 + 11.2933�4)s   

    +  (+1.5480�1 + 0.7227�2 + 0.3776�3 + 0.2179�4)p4    
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 At CP 4, 

    w4 =
1

4pb
3(+1.6334�1 + 3.8792�2 + 20.2174�3 - 71.5187�4)s   

    +  (+0.8609�1 + 0.4834�2 + 0.2895�3 + 0.1836�4)p   

 Since the wing is planar with no dihedral, the no-flow-through condition of 

equation (7.48) requires that: 

   w1 = w2 = w3 = w4 = -U�a   

 Therefore: 

    -53.0037�1 + 13.3437�2 + 1.6644�3 + 0.6434�4 = -4pbU�a    

    +23.8318�1 - 70.3445�2 + 11.7836�3 + 1.3260�4 = -4pbU�a   

    +5.4272�1 + 20.9401�2 - 71.1411�3 + 11.5112�4 = -4pbU�a   

    +2.4943�1 + 4.3626�2 + 20.5069�3 - 71.3351�4 = -4pbU�a    

 which is four equations in four unknowns. Solving for    �1, �2, �3,    and    �4,    we 

find that: 

       �1 = +0.0273(4pbU�a)  (7.49a)    

       �2 = +0.0287(4pbU�a)  (7.49b)    

       �3 = +0.0286(4pbU�a)  (7.49c)    

       �4 = +0.0250(4pbU�a)  (7.49d)    

 Having determined the strength of each of the vortices by satisfying 

the boundary conditions that the flow is tangent to the surface at each of 

the control points, the lift of the wing may be calculated. For wings that 

have no dihedral over any portion of the wing, all the lift is generated by the 

free-stream velocity crossing the spanwise vortex filament, since there are 

no sidewash or backwash velocities. Furthermore, since the panels extend 

from the leading edge to the trailing edge, the lift acting on the  n th panel is: 

      ln = r�U��n  (7.50)    

 which is also the lift per unit span. Since the flow is symmetric, the total lift 

for the wing is: 

      L = 2 L
b>2

0

r�U��(y) dy  (7.51a)    

 or, in terms of the finite-element panels, 

      L = 2r�U� a
4

n=1

�n �yn  (7.51b)    

 Since    �yn = 0.1250b    for each panel, 

    L = 2r�U�4pbU�a(0.0273 + 0.0287 + 0.0286 + 0.0250)0.1250b   

    = r�U2
�b2pa(0.1096)    
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 To calculate the lift coefficient, recall that    S = bc    and    b = 5c    for this 

wing, therefore: 

   CL =
L

q�S
= 1.096pa   

 Furthermore, 

   CLa =
dCL

da
= 3.443 per radian = 0.0601 per degree   

 Comparing this value of    CLa    with that for an unswept wing (such as the re-

sults presented in  Fig.   7.17   , it is apparent that an effect of sweepback is the 

reduction in the lift-curve slope. 

 The theoretical lift curve generated using the VLM is compared in 

 Fig.   7.33    with experimental results reported by  Weber and Brebner (1958) . 

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

CL

Data from Weber and Brebner (1958)

Inviscid solution using VLM for 4 � 1 lattice

a, deg

 Figure 7.33         Comparison of the theoretical and the experimental 

lift coefficients for the swept wing of  Fig.   7.32    in a subsonic stream.   
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The experimentally determined values of the lift coefficient are for a wing of 

constant chord and of constant section, which was swept 45° and which had 

an aspect ratio of 5. The theoretical lift coefficients are in good agreement 

with the experimental values.    

 Since the lift per unit span is given by equation (7.50), the section lift coefficient for the 

 n th panel is: 

      Cl(nth) =
ln

1
2r�U2

�cav

=
2�

U�cav

  (7.52)    

 When the panels extend from the leading edge to the trailing edge, such as is the case 

for the    4 * 1    lattice shown in  Fig.   7.32   , the value of    �    given in equation (7.49) is used in 

equation (7.52). When there are a number of discrete panels in the chordwise direction, 

such as the    10 * 4    lattice shown in  Fig.   7.25    you should sum (from the leading edge 

to the trailing edge) the values of    �    for those bound-vortex filaments at the spanwise 

location (i.e., in the chordwise strip) of interest. For a chordwise row: 

      
Clc
cav

= a
Jmax

j=1

a l
q�cav

b
j
  (7.53)    

 where    cav    is the average chord (and is equal to    S>b   ),  c  is the local chord, and  j  is the 

index for an elemental panel in the chordwise row. The total lift coefficient is obtained 

by integrating the lift over the span: 

      CL = L
1

0

 
Clc
cav

 da 2y

b
b   (7.54)    

 The spanwise variation in the section lift coefficient is presented in  Fig.   7.34   . The 

theoretical distribution is compared with the experimentally determined spanwise load 

distribution for an angle of attack of 4.2°, which was presented by  Weber and Brebner 

(1958) . The increased loading of the outer wing sections promotes premature boundary-

layer separation at that location. This unfavorable behavior is amplified by the fact that 

the spanwise velocity component causes the already decelerated fluid particles in the 

boundary layer to move toward the wing tips. This transverse flow results in a large 

increase in the boundary-layer thickness near the wing tips. Therefore, at large angles 

of attack, premature flow separation may occur on the suction side of the wing near 

the tip. If significant tip stall occurs on the swept wing, there is a loss of effectiveness of 

the control surfaces and a forward shift in the wing center of pressure that creates an 

unstable, nose-up increase in the pitch moment.  

 Boundary-layer fences are often used to break up the spanwise flow on swept 

wings. The spanwise distribution of the local lift coefficient [taken from  Schlichting 

(1960) ] without and with a boundary-layer fence is presented in  Fig.   7.35   . The essential 

effect of the boundary-layer fence does not so much consist in the prevention of the 

transverse flow but, much more important, in that the fence divides each wing into an 

inner and an outer portion. Both transverse flow and boundary-layer separation may 

be present, but to a reduced extent. Boundary-layer fences are evident on the swept 

wings of the Trident shown in  Fig.   7.36.      
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 Once we have obtained the solution for the section lift coefficient (i.e., that for a 

chordwise strip of the wing), the induced drag coefficient may be calculated using the 

relation given by  Multhopp (1950) , which is just the component of the local lift in the 

airplane drag direction: 

      CDv
=

1

S L
+b>2

-b>2
 Cl cai dy  (7.55)    

 where    ai,    which is the induced incidence, is given by 

      ai = -

1

8pL
+b>2

-b>2
Clc

(y - h)2
 dh  (7.56)    

 For a symmetrical loading, equation (7.56) may be written 

      ai = -

1

8pL
b>2

0

c Clc

(y - h)2
+

Clc

(y + h)2
ddh  (7.57)    
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 Figure 7.34         Comparison of the theoretical and the experimental 

spanwise lift distribution for the wing of  Fig.   7.32   .   
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 Figure 7.36         Trident illustrating boundary-layer fences on the 

wing (courtesy of BAE Systems).   
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 Figure 7.35         Effect of a boundary-layer fence on the spanwise 

distribution of the local lift coefficient: (a) without fence; (b) with 

fence [data from  Schlichting (1960) ].   
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 Following the approach of  Kalman et al. (1970) , we can consider the  m th chordwise 

strip, which has a semiwidth of    em    and whose centerline is located at    h = ym.      Now 

we can approximate the spanwise lift distribution across the strip by a parabolic 

function: 

      a Clc

CLc
b

m
= amh

2
+ bmh + cm  (7.58)    

 To solve for the coefficients    am, bm,    and    cm,    note that: 

    ym +1 = ym + (em + em +1)   

    ym -1 = ym - (em + em -1)   

 Thus, 

    cm = a Clc

CLc
b

m
- amh

2
m - bmhm    

    am =
1

dmidmo(dmi + dmo)
edmia Clc

CLc
b

m +1

- (dmi + dmo) a Clc

CLc
b

m
+ dmoa Clc

CLc
b

m -1

f    

 and 

    bm =
1

dmidmo(dmi + dmo)
edmo(2hm - dmo) c a Clc

CLc
b

m
- a Clc

CLc
b

m -1

d    

    -  dmi(2hm - dmi) c a Clc

CLc
b

m +1

- a Clc

CLc
b

m
d f    

 where 

   dmi = em + em -1   

 and 

   dmo = em + em +1   

 For a symmetric load distribution, we let: 

   a Clc

CLc
b

m -1

= aCl c

CLc
b

m
   

 and 

   em -1 = em   

 at the root. Similarly, we let 

   a Clc

CLc
b

m +1

= 0   

 and 

   em +1 = 0   
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 at the tip. Substituting these expressions into equations (7.57) and (7.58), we then obtain 

the numerical form for the induced incidence: 

    
ai(y)

CLc
= -

1

4pa
N

m=1

e y2(ym + em)am + y2bm + (ym + em)cm

y2
- (ym + em)2

    

    -  
y2(ym - em)am + y2bm + (ym - em)cm

y2
- (ym - em)2

   

    +  
1

2
yamlog c (y - em)2

- y2
m

(y + em)2
- y2

m
d 2    

       +  
1

4
 bmlog c y2

- (ym + em)2

y2
- (ym - em)2

d 2 + 2emam f   (7.59)    

 We then assume that the product    Clcai    also has a parabolic variation across the strip. 

      c a Clc

CLc
b a ai

CLc
b d

n
= any2

+ bny + cn  (7.60)    

 The coefficients    an, bn,    and    cn    can be obtained using an approach identical to that 

 employed to find    am, bm,    and    cm.    The numerical form of equation (7.55) is then a gen-

eralization of Simpson’s rule: 

      
CDv

C2
L

=
4

AR a
N

n=1

ene c y2
n + a 1

3
be2

n dan + ynbn + cn f   (7.61)    

 The lift developed along the chordwise bound vortices in a chordwise row of 

horseshoe vortices varies from the leading edge to the trailing edge of the wing because 

of the longitudinal variation of both the sidewash velocity and the local value of the 

vortex strength for planforms that have a nonzero dihedral angle. For techniques to 

compute the lift, the pitch moment, and the roll moment for more general wings, the 

reader is referred to  Margason and Lamar (1971) . 

 Numerous investigators have studied methods for improving the convergence 

and the rigor of the VLM. Therefore, there is an ever-expanding body of relevant 

literature with which you should be familiar before attempting to analyze complex 

flow fields. Furthermore, as noted in the introduction to this section, VLM is only one 

(and, indeed, a relatively simple one) of the methods used to compute aerodynamic 

coefficients.            

 Aerodynamics Concept Box: Birds Flying in Formation 

 Have you ever wondered why birds fly in formation (as shown in the photograph below)? 

Migratory birds, such as geese, spend many days flying from their summer to winter homes in 

the fall (and vice versa in the spring) and need incredible amounts of energy for the trip. We 

can use lifting-line theory to help us understand the benefits of flying in a formation during 

these migratory flights. 
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 We can look at just two birds flying in formation as an example, and we will not even have to 

perform detailed calculations to understand the benefit. Model each bird flying in formation 

with a single lifting line as shown below. (Note that the horseshoe vortex systems have been 

staggered slightly for clarity). We will also assume that each wing has the same span and each 

bird has the same weight (and therefore the same vortex circulation). 

       Migrating birds flying in formation   

Trailing vortex pair 1

Bound vortex 1

�

� �

Trailing vortex pair 2

Bound vortex 2

�

� �
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   7.6  FACTORS AFFECTING DRAG DUE-TO-LIFT AT 
SUBSONIC SPEEDS 

 The term representing the lift-dependent drag coefficient in equation (7.17) includes those 

parts of the viscous drag and of the form drag, which result when the angle of attack 

changes from    aol.    For the present analysis, the “effective leading-edge suction” (s) will be 

used to characterize the drag-due-to-lift. For 100 %  suction, the drag-due-to-lift coefficient 

is the potential flow induced vortex drag, which is represented by the symbol    CDv
.    For an 

elliptically loaded wing, this value would be    C2
L> (pAR)    as given in equation (7.17). Zero 

percent suction corresponds to the condition where the resultant force vector is normal to 

the chord line, as a result of extensive separation at the wing leading edge. 

 Aircraft designed to fly efficiently at supersonic speeds often employ thin, highly 

swept wings. Values of the leading-edge suction reported by  Henderson (1966)  are re-

produced in  Fig.   7.37   . The data presented in  Fig.   7.37    were obtained at the lift  coefficient 

 Since we already know what a trailing vortex system does to the wing that creates it (creates 

downwash and reduces lift while creating induced drag), we will concentrate on the incre-

mental impact of each bird on the other. Consider what the horseshoe vortex system for Bird 1 

does to the flow on the wing for Bird 2: the left trailing vortex from Bird 1 will create down-

wash on the wing of Bird 2, but that vortex filament is farther away than the others, so this 

impact is small; the right trailing vortex from Bird 1 will create upwash on the wing of Bird 2, 

which actually improves the aerodynamics of the wing (in fact the right trailing vortex essen-

tially negates the left trailing vortex of Bird 2); the bound vortex of Bird 1 will also increase 

the downwash on the wing of Bird 2, but this filament is quite short and also fairly far away. 

The net impact is that there probably is a net reduction of downwash on Bird 2, which will 

increase the lift and reduce the induced drag of Bird 2. If you perform a similar analysis for 

the impact of Bird 2 on Bird 1, you will find that the leading bird also is aided, which means 

both birds benefit from flying in formation. 
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 Figure 7.37         The variation of the effective leading-edge suc-

tion (s) as (a) a function of the Reynolds number and (b) of the 

 leading-edge sweep angle for a wing with a sharp leading edge, 

   CL,opt    and    M 6 0.30    [from  Henderson (1966) ].   
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for which    (L>D)    is a maximum, designated    CL,opt.    Values of  s  are presented as a func-

tion of the free-stream Reynolds number based on the chord length for a wing with an 

aspect ratio of 1.4 and whose sharp leading edge is swept 67° in  Fig.   7.37   a. The values 

of  s  vary only slightly with Reynolds number. Therefore, the suction parameter can be 

presented as a function of the leading-edge sweep angle (independent of the Reynolds 

number). Values of  s  are presented in  Fig.   7.37   b as a function of the leading-edge sweep 

angle for several sharp-edge wings. Even for relatively low values for the sweep angle, 

suction values no higher than about 50 %  were obtained.  

 Several features that can increase the effective leading-edge suction can be in-

corporated into a wing design. The effect of two of the features (leading-edge flaps 

and wing warp) is illustrated in  Fig.   7.38   . Values of  s  are presented as a function of 

the  Reynolds number for a wing swept 74° for    CL,opt.    The data [again taken from 

  Henderson (1966) ] show that both leading-edge flaps and wing warp significantly in-

crease the values of the effective leading-edge suction relative to those for a symmetri-

cal, sharp leading-edge wing.  

 A third feature that can be used to improve the effective leading-edge suction is 

the wing leading-edge radius. Data originally presented by  Henderson (1966)  are repro-

duced in  Fig.   7.39   . Values of  s  are presented as a function of the Reynolds number for 

a wing with an aspect ratio of 2.0 and whose leading edge is swept 67°. Again, the wing 

with a sharp leading edge generates relatively low values of  s , which are essentially in-

dependent of the Reynolds number. The values of s for the wing with a rounded leading 
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 Figure 7.38         The effect of leading-edge flaps and wing warp on 

the effective leading-edge suction (s) for    CL,opt M 6 0.30    [from 

 Henderson (1966) ].   
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edge    (rLE = 0.0058c)    exhibit large increases in  s  as the Reynolds number increases. As 

noted by  Henderson (1966) , the increase in the effective leading-edge suction due to the 

leading-edge radius accounts for    2>3    of the increase in    (L>D)max    from 8 to 12. A reduc-

tion in the skin-friction drag accounts for the remaining    1>3    of the increase in    (L>D)max.     

 The total trim drag has two components: (1) the drag directly associated with the 

tail, and (2) an increment in drag on the wing due to the change in the wing lift coefficient 

required to offset the tail load. A very important consideration when you study trim drag 

is the wing efficiency, represented here by the subsonic drag-due-to-lift parameter as 

shown in  Fig.   7.40   .  McKinney and Dollyhigh (1971)  state, “The full leading-edge  suction 

Rec (�10�6) Rec (�10�6)

Leading edge

0

s

1 1 2 4 10 202 4 10 20
0 0

4

8

12

50

100
0.58

0.58

0

rLE,%c

rLE,%c

� Constant
�CD, i

�C2
L

�LE � 67�

AR � 2.0.10c

(L
/D

) m
ax

 Figure 7.39         The effect of the leading-edge shape,    CL,opt M 6 0.30    

[from  Henderson (1966) ].   
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line and the zero leading-edge suction line are shown for reference. The variation of 

leading-edge suction with Reynolds number and wing geometry is discussed in a paper 

by  Henderson (1966) . The cross-hatched area indicates a typical range of values of the 

drag-due-to-lift parameter for current aircraft, including the use of both fixed camber and 

twist or wing flaps for maneuvering. At low lift coefficients    (CL � 0.30)    typical of 1-g 

flight, drag-due-to-lift values approaching those corresponding to full leading-edge suc-

tion are generally obtained. At the high lift coefficient    (CL � 1.0)    which corresponds to 

the maneuvering case   c,    the drag-due-to-lift typically approaches the zero leading-edge 

suction line even when current maneuver flap concepts are considered. The need for 

improving drag-due-to-lift characteristics of wings at the high-lift coefficients by means 

such as wing warp, improved maneuver devices, and so forth, is recognized.”   

   7.7  DELTA WINGS 

 As we discussed previously, a major aerodynamic consideration in wing design is the pre-

diction and the control of flow separation. However, as the sweep angle is increased and 

the section thickness is decreased in order to avoid undesirable compressibility effects, 

it becomes increasingly more difficult to prevent boundary-layer separation. Although 

many techniques have been discussed to alleviate these problems, it is often necessary to 

employ complicated variable-geometry devices in order to satisfy a wide range of conflict-

ing design requirements which result due to the flow-field variations for the flight enve-

lope of high-speed aircraft. Beginning with the delta-wing design of Alexander  Lippisch 

in Germany during World War II, supersonic aircraft designs have often used thin, highly 

swept wings of low aspect ratio to minimize the wave drag at supersonic cruise condi-

tions. It is interesting to note that during the design of the world’s first operational jet 

fighter, the Me 262, the outer panels of the wing were swept to resolve difficulties arising 

when increasingly heavier turbojets caused the center of gravity to move. Therefore, the 

introduction of sweepback in this case did not reflect an attempt to reduce the effects of 

compressibility [ Voight (1976) ]. This historical note is included here to remind the reader 

that many parameters enter into the design of an airplane; aerodynamics is only one of 

them. The final configuration will always reflect design priorities and trade-offs. 

 At subsonic speeds, delta-wing planforms have aerodynamic characteristics which 

are substantially different from those of the relatively straight, high-aspect-ratio wings 

designed for subsonic flight. Because they operate at relatively high angles of attack, 

the boundary layer on the lower surface flows outward and separates as it goes over the 

leading edge, forming a free shear layer. The shear layer curves upward and inboard, 

eventually rolling up into a core of high vorticity, as shown in  Fig.   7.41   . There is an ap-

preciable axial component of motion and the fluid spirals around and along the axis. 

A spanwise outflow is induced on the upper surface, beneath the coiled vortex sheet, 

and the flow separates again as it approaches the leading edge [ Stanbrook and Squire 

(1964) ], creating a secondary vortex under the primary vortex. The size and the strength 

of the coiled vortex sheets increase with increasing incidence and they become a domi-

nant feature of the flow, which remains steady throughout the range of practical flight 

attitudes of the wing. The formation of these vortices creates lift (due to low pressure 

in the vortex core) and is responsible for the nonlinear aerodynamic characteristics that 

exist over the angle-of-attack range [ Hummel (2004) ].  
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 Figure 7.41         (a) Vortex core that develops for flow over a delta 

wing. (b) Water vapor condenses due to the pressure drop 

 revealing the vortex core for a F-16 (US Air Force photo by Staff 

Sgt. Larry E. Reid Jr.) (c) Trajectory of the leading-edge vortex 

[from  Visbal (1995) ]. (d) Inclination angle of the vortex trajec-

tory [from  Visbal (1995) ].   
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 The leading-edge suction analogy developed by  Polhamus (1971a,   b)  can be used 

to calculate the lift and the drag-due-to-lift characteristics which arise when the separated 

flow around sharp-edge delta wings reattaches on the upper surface; the correlations apply 

to thin wings having neither camber nor twist. Furthermore, the method is applicable to 

wings for which the leading edges are of sufficient sharpness that separation is fixed at the 

leading edge. Since the vortex flow induces reattachment, and since the Kutta condition 

must be satisfied at the trailing edge, the total lift coefficient consists of a potential-flow 

term and a vortex-lift term. The total lift coefficient can be represented by the sum 

      CL = Kp sin a cos2 a + K
v
 sin2 a cos a  (7.62)    

 The constant    Kp    is simply the normal-force slope calculated using the potential-flow 

lift-curve slope. The constant    K
v
    can be estimated from the potential flow leading-edge 

suction calculations. Using the nomenclature for arrow-, delta-, and diamond-planform 

wings illustrated in  Fig.   7.42   ,    Kp    and    K
v
    are presented as a function of the planform 

parameters in  Figs.   7.43    and    7.44   , respectively.    
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 Values of the lift coefficient calculated using equation (7.62) are compared in  Fig.   7.45    

with experimental values for uncambered delta wings that have sharp leading edges. Data 

are presented for wings of aspect ratio from 1.0 [ Peckham (1958) ] to 2.0 [ Bartlett and Vidal 

(1955) ]. Since the analytical method is based on an analogy with potential-flow leading-

edge suction, which requires that flow reattaches on the upper surface inboard of the 

vortex, the correlation between theory and data breaks down as flow reattachment fails 

to occur. The lift coefficients calculated using equation (7.62) for    AR = 1.0    and 1.5 are in 

good agreement with the measured values up to angles of attack in excess of 20°. However, 

for a delta wing with an aspect ratio of 2.0, significant deviations between the calculated 

values and the experimental values exist for angles of attack above 15°.  

 If the leading edges of the wing are rounded, separation occurs well inboard on the 

wing’s upper surface. The result is that, outboard of the loci of the separation points, the 

flow pattern is essentially that of potential flow and the peak negative pressures at 

the section extremity are preserved. However, as noted by  Peckham (1958) , increasing 

the thickness causes a reduction in net lift. The combined effect of the thickness ratio 

and of the shape of the leading edges is illustrated in the experimental lift coefficients 
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 Figure 7.44         Variation of vortex-lift constant with planform pa-
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presented in  Fig.   7.46   , which are taken from  Bartlett and Vidal (1955) . The lift coef-

ficients are less for the thicker wings, which also have rounded leading edges.  

 The lift coefficients for a series of delta wings are presented as a function of the 

angle of attack in  Fig.   7.47   . The lift-curve slope,    dCL>da,    becomes progressively smaller 

as the aspect ratio decreases. However, for all but the smallest aspect ratio wing, the 

maximum value of the lift coefficient and the angle of attack at which it occurs increase 

as the aspect ratio decreases.  

 For a thin flat-plate model, the resultant force acts normal to the surface. There-

fore, the induced drag    �CD    for a flat-plate wing would be: 

      �CD = CD - CD0
= CL tan a  (7.63)    

 Using equation (7.62) to evaluate    CL,    we obtain: 

      CD = CD0
+ Kp sin2 a cos a + K

v
 sin3 a  (7.64)    

 Experimental values of the drag coefficient from  Bartlett and Vidal (1955)  are compared 

with the correlation of equation (7.63) in  Fig.   7.48   . The experimental drag  coefficient 
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 Figure 7.45         Comparison of the calculated and the experimental 

lift coefficients for thin, flat delta wings with sharp leading edges.   
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increases with angle of attack (as shown in  Fig.   7.48   ); the correlation is best for the 

higher values of the lift coefficient.  

 The flow field over a delta wing is such that the resultant pressure distribution 

produces a large nose-down (negative) pitching moment about the apex, as illustrated 

by the experimental values from  Bartlett and Vidal (1955)  presented in  Fig.   7.49   . The 

magnitude of the negative pitching moment increases as the angle of attack is increased. 

The resultant aerodynamic coefficients present a problem relating to the low-speed 

performance of a delta-wing aircraft which is designed to cruise at supersonic speeds, 

since the location of the aerodynamic center for subsonic flows differs from that for 

supersonic flows. At low speeds (and, therefore, at relatively low values of dynamic 

pressure), delta wings must be operated at relatively high angles of attack in order to 

generate sufficient lift, since:  

   L = 1
2r�U2

�SCL   

 However, if the wing is at an angle of attack that is high enough to produce the desired 

   CL,    a large nose-down pitch moment results. Therefore, the basic delta  configuration is 
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 Figure 7.46         Effect of the leading-edge shape on the measured 

lift coefficient for thin, flat delta wings for which    AR = 1.5,

Rec = 6 * 106    [data from  Bartlett and Vidal (1955) ].   
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   AR = 1.5, Rec = 6 * 106    [data from  Bartlett and Vidal (1955) ].   
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ratios;    t = 0.12c, Rec � 7 * 105    [data from  Schlichting and 

 Truckenbrodt (1969) ].   

420



Sec. 7.7 / Delta Wings    421

often augmented by a lifting surface in the nose region (called a canard), which provides 

a nose-up trimming moment. The canards may be fixed, such as those shown in  Fig.   7.50    

on North American’s XB-70 Valkyrie, or retractable, such as those on the Dassault 

Mirage. An alternative design approach, which is used on the Space Shuttle  Orbiter , 

uses a reflexed wing trailing edge (i.e., negative camber) to provide the required trim-

ming moment.        

 Figure 7.50         North American XB-70 illustrating the use of  canards (photo courtesy 

of NASA).   
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 Figure 7.49         Moment coef-

ficient (about the apex) for 

thin, flat delta wings for which 

   AR = 1.5, Rec = 6 * 106    

[data from   Bartlett and 

Vidal (1955) ].   
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 Aerodynamics Concept Box: The X-31 Highly Maneuverable Aircraft 

 The X-31 was a joint German/U.S. flight test program in the 1990s created to determine 

enhanced fighter maneuverability through the use of advanced control systems, including 

thrust vector control. The flight test program, conducted at NASA’s Dryden Flight Research 

Center, provided valuable information for engineers to be able to design the next generation 

of highly maneuverable fighters. 

 The X-31 had canards, wing control surfaces, and aft-mounted strakes. The canards 

were mounted just behind the nose and on a higher level than the wing. The canards could 

either be free to rotate with the local flow or moved by the flight control system to control 

the aircraft at high angles of attack. The strakes supplied a nose-down pitch moment to aid in 

aircraft control at high angles of attack. 

 Because of the highly maneuverable characteristics of the X-31, the airplane was able to perform 

a variety of unusual maneuvers, including the Herbst Maneuver, which was a 180� turn which 

took place after the aircraft was already stalled, showing the ability of the multi-mode flight 

control system to maneuver the aircraft. The demonstration of maneuverability displayed by the 

X-31 represented an important advancement in aircraft aerodynamics and controllability. 

       The X-31 performing a maneuver (courtesy of NASA Dryden 

Flight Research Center)   

 As noted by  Gloss and Washburn (1978) , “the proper use of canard surfaces on a maneu-

vering aircraft can offer several attractive features such as potentially higher trimmed-

lift capability, improved pitching moment characteristics, and reduced trimmed drag. 

In addition, the geometric characteristics of close-coupled canard configurations offer 

a potential for improved longitudinal progression of cross-sectional area which could 
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result in reduced wave drag at low supersonic speeds and placement of the horizontal 

control surfaces out of the high wing downwash and jet exhaust.” These benefits are 

primarily associated with the additional lift developed by the canard and with the ben-

eficial interaction between the canard flow field and that of the wing. These benefits 

may be accompanied by a longitudinal instability (or pitch up) at the higher angles of 

attack because of the vortex lift developed on the forward canards. 

 The location of vortices on a delta wing was described by  Visbal (1995) . For 

delta wings which are highly swept, the primary separation location is at the sharp 

 leading-edge. The flow separation begins at relatively low angles of attack, and creates 

a shear layer which develops into a pair of counter-rotating primary vortices, as shown 

in  Fig.   7.41   a. The primary vortices have low pressure at their high velocity core, which 

creates lift to very high angles of attack when compared with wings with low wing sweep. 

The primary vortex follows a path which is essentially straight with a vortex sweep angle 

   �core    which varies only slightly with angle of attack, as shown in  Fig.   7.41   c. The vortex 

sweep angle is only slightly greater than the wing leading-edge angle,    �LE.      The angle of 

the vortex path relative to the wing surface    aCore   , which is shown in  Fig.   7.41   d, increases 

linearly with angle of attack, until the vortex reaches the trailing edge when the vortex 

starts to deflect up toward the free stream. 

  Visbal (1995)  also noted: 

  The leading-edge vortices above a delta wing at high angle of attack experience 

a dramatic form of flow disruption termed “vortex breakdown” or “vortex burst-

ing.” This phenomenon is characterized by reverse axial flow and swelling of the 

vortex core, and is accompanied by marked flow fluctuations downstream. Vortex 

breakdown poses severe limitations on the performance of agile aircraft due to 

its sudden effects on the aerodynamic forces and moments and their impact on 

stability and control. For maneuvering delta wings, the onset of vortex develop-

ment with its inherent long time scales results in dynamic hysteresis and lags in the 

vortex development and aerodynamic loads. In addition, the coherent fluctuations 

within the breakdown region can promote a structural response in aircraft surfaces 

immersed in the vortex path. An important example is that of “tail buffet” in 

twin-tailed aircraft where the fluid/structure interaction may result in significant 

reduction of the service life of structural components.  

 In a related comment,  Visbal (1995)  notes, “As the leading-edge sweep and angle 

of attack increase, the interaction between the counterrotating leading-edge vortices 

increases and may lead to flow asymmetry. This phenomenon becomes more severe 

when vortex breakdown is present given the sudden onset and sensitivity and the ac-

companying swelling of the vortex core.” 

 As noted in the previous paragraphs and as depicted in  Fig.   7.41   , the flow over 

a delta wing with sharp leading edges is dominated by vortices inboard of the leading 

edge. The pressure on the wing’s leeward surface beneath these vortices is very low and 

contributes significantly to the lift. When the aircraft is at moderate to high angles of at-

tack, the axes of the vortices move away from the leeward surface of the wing. With the 

vortex core away from the surface, the vortex breaks down, or bursts, at some distance 

from the leading edge. Vortex breakdown, or bursting, is depicted in the water-tunnel 
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flow of  Fig.   7.53   . Note that the diameter of the vortex increases suddenly when bursting, 

or breakdown, occurs. When vortex breakdown occurs, there are large reductions in the 

peak velocities both in the transverse and in the axial directions. 

 As the angle of attack increases, the vortex breakdown location moves forward, 

ahead of the trailing edge toward the apex. The forward movement of the location of vortex 

breakdown and the attendant increase in the pressure on the leeward surface of the wing 

beneath the vortices are characteristic of the stall of a delta wing. The location of vortex 

breakdown during the unsteady pitch-up motion is downstream of its steady-state location, 

resulting in a lift overshoot. The magnitude of the lift overshoot depends on the leading-

edge sweep angle. Defining the positive attributes of a delta wing,  Herbst (1980)  noted, 

  There is a considerable basic aerodynamic potential in terms of lift to drag im-

provements in delta wings. Theoretical tools are available now to refine the wing 

planform, profile, and twist distribution. In particular, the leading edge suction can 

be improved considerably by means of proper leading edge profile, thus improving 

drag due to lift, the weakness of any highly swept wing    c.    With the help of an 

electronic digital control system, properly designed with modern aerodynamic tools 

and suitably equipped with a canard control surface, a delta wing could be designed 

to maintain its classically good supersonic performance without sacrificing cruise 

and subsonic performance compared to a more conventional trapezoidal wing.   

   7.8  LEADING-EDGE EXTENSIONS 

 The designs of lightweight fighters that can cruise supersonically and maneuver transoni-

cally employ additional, highly swept areas ahead of the main wing. These forward areas 

are called strakes, gloves, fillets, apex regions, and leading-edge extensions (the name 

used depends on the shape of the modification and the manufacturer of the device). The 

strake/wing combinations are also known by different names (e.g., ogee and double delta). 

  Lamar and Frink (1982)  note that the mutual benefits derived from strake/wing 

configurations 

  include for the wing: (1) minimal interference at or below the cruise angle of at-

tack, (2) energizing of the upper surface boundary layer with the resulting flow 

reattachment on the outer wing panel at moderate to high angle of attack due to 

the strake vortex, and (3) reduced area required for maneuver lift. Benefits for 

the strake are (1) upwash from the main wing strengthens the strake vortex and 

(2) the need for only a small area (hence wetted area and comparatively light-

weight structure) to generate its significant contribution to the total lift, because 

the strake provides large amounts of vortex lift. It should be mentioned that these 

vortex-induced benefits are realized when the strake vortex is stable and main-

taining a well-organized vortex system over the wing. Once the angle of attack 

becomes sufficiently large that strake-vortex breakdown progresses ahead of the 

wing trailing edge, these favorable effects deteriorate significantly.  

 A method for estimating the aerodynamic forces and moments for strake/wing/

body configurations estimates the vortex flow effects with the suction analogy and the 
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basic potential flow effects with the vortex lattice method [ Lamar and Gloss (1975) ]. 

As noted by  Lamar and Frink (1982)  and illustrated in  Fig.   7.51   , “at low angle of    a,    

it was concluded that the configuration had attached flow away from the leading and 

side edges, and downstream from the component tips, vortical flow existed. However, 

at the higher values of    a,    the strake vortex becomes much larger and tends to displace 

the wing-vortex-flow system off the wing, so that this system can no longer cause flow 

reattachment to occur on the wing. This lack of reattachment causes a large portion of 

theoretically available aerodynamic effects to be effectively lost to the configuration.”  

 The two theoretical solutions along with a potential flow solution are compared 

with data [as taken from  Lamar and Frink (1982) ] in  Fig.   7.52   . The    CL    data are better 

estimated by the    high@a    theory. However, there may be an angle-of-attack range below 

the    a    for    CL max 
    for which the    CL    data are underpredicted. This is most likely associated 

with the exclusion of any vortex lift from the wing in the    high@a    theory.  

 A flow visualization photograph of the vortices shed from the sharp leading edges 

of slender wings and wing leading-edge extensions (LEXs) or wing-body strakes at high 

angles of attack is presented in  Fig.   7.53   ; the data were obtained in the Northrop Water 

Tunnel. Although the Reynolds number was relatively low, the separation point does 

not vary with Reynolds number, provided that flow separation occurs from a sharp 

leading edge.  Erickson (1982)  concluded that “the water tunnel provides a good repre-

sentation of the wake shed from a wing.”  

 Notice that in the caption of  Fig.   7.53    it is stated that the Reynolds number is 

   104    for this test in a water tunnel. The comparisons of the vortex burst locations on 

the F/A-18 from experiments that spanned the range from 1/48-scale models in water 

tunnels to actual flight tests of the full-scale aircraft are discussed in  Komerath et al. 
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 Figure 7.51         Theoretical vortex model for strake/wing configura-

tion [from  Lamar and Frink (1982) ].   
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(1992) . While it may seem odd that a water tunnel operating at very low Reynolds 

numbers could accurately represent the flow around a fighter aircraft like the F/A-18, 

the comparison between scaled water tunnel tests and flight tests shows remarkable 

agreement. The good comparison is due to the fact that the leading-edge extension on 

the F/A-18 has a sharp leading edge, which forces primary separation to take place at 
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 Figure 7.52         Predicted and measured    CL,tot    and    CM    for strake/

wing configuration at    M� = 0.2    [from  Lamar and Frink (1982) ].   
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 Figure 7.53         Flow visualization of a LEX vortex on a Subscale 

Advanced Fighter Model;    a = 32�,       Re = 104    from the North-

rop Water Tunnel [from Erickson (1982), courtesy of Northrop 

Grumman Corporation].   
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the leading edge. Therefore, the primary vortex location and strength are comparable 

between the water tunnel and flight tests.  Erickson et al. (1989)  show some differences 

for data at different Reynolds and Mach numbers, which shows the impacts of “surface 

roughness, freestream turbulence, tunnel wall effects, and model support interference 

must be considered in each study.”   

 The flow field computed for an F-18C at an angle of attack of 32° is presented in 

 Fig.   7.54    [ Wurtzler and Tomaro (1999) ]. The free-stream Mach number for this flow 

is 0.25 and the free-stream Reynolds number (based on the model length) is    15 * 106.    

The solution was generated using the turbulence model of  Spalart and Allmaras (1992)  

in the    Cobalt60    code [ Strang et al. (1999) ]. Notice that the computation of a turbulent 

separated flow is one of the greatest challenges to the computational fluid dynamicist, 

nevertheless, the solution exhibits several interesting phenomena.  

 The surface marking a constant-entropy contour is highlighted in  Fig.   7.54   , so that 

you can visualize the vortex core. Notice that vortex breakdown, or bursting, occurs at 

an  x  coordinate between the engine inlet and the leading edge of the vertical tail. Also 

included in  Fig.   7.54    are two streamlines of the flow that are affected by the vortex. Near 

the leading edge of the wing the streamlines form spirals as they are entrained by the 

vortex. Once the vortex breaks down, the streamlines exhibit chaotic behavior. Despite 

the differences in the flow conditions and in the geometry, the flow fields of  Figs.   7.53    

and of    7.54    are qualitatively similar. 

 As noted in  Stuart (1978) , the original T-38 wing planform did not include 

a  leading-edge extension (LEX) at the wing root. The effects of the LEX in terms of 

 Figure 7.54         Flow-field computations for an F-18C at an angle of attack of 

32°,    M� = 0.25, ReL = 15 * 106    [provided by  Wurtzler and Tomaro (1999) ].   
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 maximum trimmed angle of attack and trimmed    CL max    are illustrated in  Fig.   7.55   . The F-5E 

LEX with an area increase of 4.4 %  of the wing reference area provides a    CL max    increment 

of 38 %  of the no-LEX value. Northrop studies suggest a practical LEX upper size limit 

for any given configuration, and the F-5E LEX is close to this value. The higher trimmed 

angle of attack capability increases air combat effectiveness. The higher drag associated 

with the higher angle of attack is very useful in producing overshoots of the attacking 

aircraft.  Although strakes (or leading-edge extensions) produce significant increases in 

the maximum angle of attack and in the maximum lift coefficient, the load distribution 

may concurrently produce large nose-up (positive) pitch moments at high angles of attack.   

   7.9  ASYMMETRIC LOADS ON THE FUSELAGE AT HIGH 
ANGLES OF ATTACK 

  Ericsson and Reding (1986)  noted that it has long been recognized that asymmetric 

vortex shedding can occur on bodies of revolution at high angles of attack. Large asym-

metric loads can be induced on the body itself, even at zero sideslip. They note that 

experimental results have shown that the vortex-induced side force can be as high as, 

or exceed, the normal force. 

 As a slender body of revolution is pitched through the angle-of-attack range from 

0 to 90°, there are four distinct flow patterns that reflect the diminishing influence of the 

axial flow component. Sketches of these four flow patterns are presented in  Fig.   7.56   . At 

low angles of attack    (0� 6 a 6 aSV),    the axial-flow component dominates and the flow is 
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mum angle of attack and the maximum lift for the F-5 family 

of aircraft: (a) configurations; (b) maximum angle of attack; (c) 

maximum lift [from  Stuart (1978) ].   
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attached, although the cross-flow effects will generate a thick viscous layer on the leeside. 

For these vortex-free flows, the normal force is approximately linear with angle of attack, 

and the side force is zero. At intermediate angles of attack    (aSV … a 6 aAV)    [i.e., the 

angle of attack is equal to or greater than the minimum for the formation of symmetric 

vortices    aSV    but less than that for the formation of asymmetric vortices    (aAV)   ], the cross 

flow separates and generates a symmetric pair of vortices. The normal force increases 

nonlinearly in response to the added  vortex lift , but there continues to be no side force.  

   7.9.1  Asymmetric Vortex Shedding 

 In the angle-of-attack range where vortex shedding is asymmetric    (aAV … a 6 aUV),    

as shown in third flow pattern shown in  Fig.   7.56   , the axial flow component is still 

 sufficient to produce steady vortices. However, the vortex pattern is asymmetric, produc-

ing a side force and a yawing moment, even at zero sideslip. As observed by  Cobleigh 

No vortices
(attached flow)

Symmetric vortices

Asymmetric vortices

Vortex wake

a�aSV

aSV�a�aAV

aAV�a�aUV

a�aUV

 Figure 7.56         Effect of angle of attack on the leeside flowfield 

[from  Ericsson and Reding (1986) ].   
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(1994) and shown in  Fig.   7.57    , “This side force is the result of surface pressure imbal-

ances around the forebody of the aircraft caused by an asymmetric forebody boundary 

layer and vortex system. In this scenario, the boundary layer on each side of the forebody 

separates at different locations . . . at separation, corresponding vortex sheets are gener-

ated which roll up into an asymmetrically positioned vortex pair. The forces on the 

forebody are generated primarily by the boundary layer and to a lesser extent by the 

vortices, depending on their proximity to the forebody surface.”  Fig.   7.57    shows an asym-

metrical vortex pattern, “where the lower, more inboard vortex corresponds to a bound-

ary layer which separates later and, conversely, the higher, more outboard vortex 

corresponds to the boundary layer which separated earlier. The suction generated by the 

more persistent boundary layer and the closer vortex combine to create a net force in 

their direction. Since the center of gravity of the aircraft is well aft of the forebody, a 

sizeable yawing moment asymmetry develops” [ Cobliegh (1994) ].    

 There are a variety of techniques that can be used to modify the asymmetric vortex 

pattern, including physical surfaces (e.g., strakes) and boundary-layer control (e.g., blowing 

Lower, inboard vortex
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Higher, outboard
vortex results in

later vortex
breakdown

Later separation
corresponds to

lower, inboard vortex
Earlier separation

corresponds to
higher, outboard vortex

Resulting force

Section AA

AA

Vortex breakdown

 Figure 7.57         Sketch of asymmetric vortices shed from aircraft 

forebody for    aAV … a 6 aUV    [from  Cobleigh (1994) ].   
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or suction at the surface). The yawing moment asymmetry for an X-31 during slow decel-

erations (essentially 1g) to high AOA (angle of attack) conditions, as taken from  Cobleigh 

(1994) , is reproduced in  Fig.   7.58   . For the basic aircraft, the asymmetric forces started to 

build up, beginning at an angle of attack of 48° reaching a peak value of    Cn0
    (the yawing 

moment coefficient at zero sideslip) of    -0.063    at an angle of attack of approximately 57°. 

The asymmetric forces decreased rapidly with alpha, becoming relatively small by an angle 

of attack of 66°. In an attempt to reduce these asymmetries, transition grit strips were in-

stalled on both sides of the forebody (FB) and along the sides of the nose boom (NB). The 

data indicated that the side forces actually increased when grit strips were used. Although 

the largest asymmetry began to build at the same angle of attack as for the basic aircraft 

(an AOA of 48°), the peak asymmetry increased to    Cn0
    of    -0.078.    For the aircraft with 

these transition strips, the largest asymmetry occurred in the alpha range from 58° to 61°. 

The use of a strake along with blunting of the nose tip delayed the initiation of the yawing 

moment asymmetry up to an AOA of 55° (refer to  Fig.   7.58   ). The peak asymmetric yaw-

ing moment coefficient    Cn0
    of    -0.040    occurred at an angle of attack of 60°, after which 

the asymmetric yawing moment coefficient decreased. As evident in the data presented in 

 Fig.   7.58   , the use of both a strake and boundary-layer transition strips produced significant 

yawing moments which persisted over a broad angle-of-attack range.  

 In summary,  Cobleigh (1994)  reported, 

  Several aerodynamic modifications were made to the X-31 forebody with the goal 

of minimizing the asymmetry. A method for determining the yawing moment asym-

metry from flight data was developed and an analysis of the various configuration 

changes completed. The baseline aircraft were found to have significant asym-

metries above 45° angle of attack with the largest asymmetry typically occurring 

around 60° angle of attack. Applying symmetrical boundary-layer transition strips 

along the forebody sides increased the magnitude of the asymmetry and widened 

the angle-of-attack range over which the largest asymmetry acted. Installing longi-

tudinal forebody strakes and rounding the sharp nose of the aircraft caused the yaw-

ing moment asymmetry magnitude to be reduced. The transition strips and strakes 

made the asymmetry characteristic of the aircraft more repeatable than the clean 

forebody configuration. Although no geometric differences between the aircraft 

were known, ship 2 consistently had larger yawing moment asymmetries than ship 1.  
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 Figure 7.58         Variation of yawing moment asymmetry with angle 

of attack for an X-31 for a 1-g maneuver [from  Cobleigh (1994) ].   
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 For axisymmetric bodies with wings or fins, the interaction with the asymmetric 

vortex pattern can produce rolling moments. Typically, the effectiveness of the vertical 

tail and rudder to control the yawing moment falls off as the angle of attack increases, 

because the vertical tail lies in the wake of the wing and of the fuselage. 

  Ericsson and Reding (1986)  note that “the seriousness of the problem is illustrated 

by the wind-tunnel test results for the F-111, which show the vortex-induced yawing 

moment to exceed, by an order of magnitude, the available control capability through 

full rudder deflection. The problem can be cured by use of nose strakes or other types 

of body reshaping that cause the forebody vortices to be shed symmetrically.” 

 An article by  Dornheim (1994)  stated: 

  The X-31’s main problem is directional instability from asymmetric nose vortices 

around 60 deg. AOA, which caused an unintended departure in flight test. At 

that 165 knots condition, the yaw moment from the vortices was estimated to be 

2.5 times more powerful than the thrust vectoring, and as powerful as the rudder 

itself would be at 10 deg. AOA. A subtle reshaping of the nose and adding vortex 

control strakes has tamed the vortices, and the X-31 should be able to fly at least 

300 knots, where the 6g structural limit comes into play, before the remaining 

vortices can overpower the thrust vectoring at high AOA.   

   7.9.2  Wakelike Flows 

 Finally, at very high angles of attack    (aUV … a 6 90�)    the axial-flow component has 

less and less influence, so that the vortex shedding becomes unsteady, starting on the aft 

body and progressing toward the nose with increasing angle of attack. In this angle-of-

attack range, the leeside flow resembles the wake of a two-dimensional cylinder normal 

to the flow. The mean side force decreases toward zero in this angle-of-attack range.   

   7.10  FLOW FIELDS FOR AIRCRAFT AT HIGH ANGLES OF ATTACK 

 As noted by  Mendenhall and Perkins (1996) , “Many modern high-performance fighter 

aircraft have mission requirements which necessitate rapid maneuvers at high angles of 

attack and large angular rotation rates. Under these flow conditions, the vehicle may 

operate in a flow regime in which the aerodynamic characteristics are dominated by 

unsteady nonlinear effects induced by flow separation, vortex shedding, and vortex lag 

effects ( Fig.   7.59   ). During extreme multiple-axis maneuvering conditions, the dynamic 

and time-dependent effects of these nonlinear flow characteristics contribute signifi-

cantly to the behavior and maneuvering capability of aircraft.”  

 Mendenhall and Perkins continue, “The presence of the vortex wake introduces 

memory into the flow problem, and the nonlinear forces and moments on the vehicle de-

pend on the time history of the motion and the wake development. For example, vorticity 

shed from the nose of the vehicle will pass downstream to influence the loads on the wing 

and tail surfaces. The vortex-induced loads depend on the motion of the vehicle and the vor-

tex wake during the time it takes the vorticity to be transported from the nose to the tail.” 

 The vortices associated with flow over highly swept wings (such as delta wings), with 

the flow over leading-edge extensions (LEXs) and with the flow over the nose  region at 



Sec. 7.10 / Flow Fields for Aircraft at High Angles of Attack    433

high angles of attack, have been discussed individually in the previous sections of this 

chapter. Numerical predictions [e.g.,  Cummings et al. (1992) ] and in-flight flow-field meas-

urements [e.g.,  Del Frate and Zuniga (1990) ] have been presented for a modified F-18 

aircraft called the high-alpha research vehicle (HARV). The HARV was a single-place 

F-18 aircraft built by McDonnell Douglas and Northrop Aircraft and was powered by two 

General Electric F404-GE-400 turbofan engines with afterburners. The aircraft featured 

a mid-wing with leading- and trailing-edge flaps. Leading-edge extensions extend from 

the wing roots to just forward of the windscreen. A sketch illustrating the location of the 

forebody vortex core, of the LEX vortex, and of the LEX/forebody vortex interaction, as 

taken from  Del Frate and Zuniga (1990) , is reproduced in  Fig.   7.60   . The pattern is for an 

angle of attack of 38.7° and for zero sideslip. As noted by  Del Frate and Zuniga (1990) , 

“These vortex cores are generated at moderate to high angles of attack by the shape 

of the forebody and the sharp leading edge of each LEX. The LEX vortex cores are 

tightly wound and extend downstream until experiencing vortex core breakdown. Visible 

evidence of the vortex core breakdown is a stagnation of flow in the core with a sudden 

expansion in the core diameter. Similarly, the forebody vortex cores extend downstream 

until they interact with the LEX vortices. This interaction results in the forebody vortex 

cores being pulled beneath the LEX vortices and then redirected outboard.”  

 Lessons learned from comparisons between ground-based tests and flight meas-

urements for the high-angle-of-attack programs on the F-18 High Alpha Research Ve-

hicle (HARV), the X-29 forward-swept wing aircraft, and the X-31 enhanced fighter 

maneuverability aircraft were presented by  Fisher et al. (1998) : 

  On all three vehicles, Reynolds number effects were evident on the forebodies at 

high angles of attack. The correlation between flight and wind-tunnel forebody 

pressure distribution for the F-18 HARV were improved by using twin longitu-

dinal grit strips on the forebody of the wind-tunnel model. Pressure distributions 

obtained on the X-29 wind-tunnel model at flight Reynolds numbers showed ex-

cellent correlation with the flight data up to    a = 50�,    Above    a = 50�   , the  pressure 

Nose vortex

Vertical tail vortex

Horizontal tail vortex

Wing trailing vortex

Strake vortex

 Figure 7.59         Vortex wakes near a maneuvering fighter [from 

 Mendenhall and Perkins (1996) ].   
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distributions for both flight and wind tunnel became asymmetric and showed 

poorer agreement, possibly because of the different surface finish of the model 

and aircraft. The detrimental effect of a very sharp nose apex was demonstrated 

on the X-31 aircraft. Grit strips on the forebody of the X-31 reduced the random-

ness but increased the magnitude of the asymmetry. Nose strakes were required to 

reduce the forebody yawing moment asymmetries and the grit strips on the flight 

test noseboom improved the aircraft handling qualities.   

   7.11  UNMANNED AIR VEHICLE WINGS 

  As was mentioned in  Chapter   6   , unmanned     air vehicles (UAV) of various sizes have led 

to a revolution in airfoil and wing designs in recent years. The tried and true methods 

for designing wings often can fall short when applied to either very large or very small 

aircraft, as Reynolds number effects change the basic characteristics of the aerodynam-

ics of these vehicles. In an attempt to classify these vehicles and their resulting aero-

dynamics,  Wood (2002)  devised four definitions for the size of unmanned air vehicles 

(see  Table   7.3    and  Fig.   7.61   ). These definitions are used to classify vehicles with similar 

aerodynamic and technical issues involved in their design.   

  As was discussed in  Chapter   6    for laminar-flow airfoils, as     the size of the vehicle 

decreases (and as weight and Reynolds number also decrease), aspect ratio no longer is 

the dominant factor in creating drag (see  Fig.   7.62   )—skin-friction drag becomes more 

important, hence the low aspect-ratio designs common for micro UAVs [ Drela et al. 

(2003) ]. The high-altitude aircraft also fly at low Reynolds numbers but require fairly 

high weights in order to carry the solar panels and batteries required for propulsion; 

the high-aspect ratio aircraft once again becomes more efficient. In fact,  Drela et al. 

(2003)  found that for each aspect ratio examined there was an aircraft size (weight) 

that would maximize the range: “this is because, as the aspect ratio increases, the wing 

is proportionately heavier for a large vehicle than for a smaller vehicle, while at small 

 TABLE 7.3    Classification of UAVs [ Wood (2002) ] 

  UAV Type    Weight  (lbs)   Wing Span (ft)  

 Micro     	1        	2    
 Meso  1 to 2,000  2 to 30 
 Macro  2,000 to 10,000  30 to 150 
 Mega     
10,000        
150    

LEX / forebody
vortex interaction

Forebody vortex core

LEX vortex
 Figure 7.60         Wingtip view of fore-

body vortex system [from  Del Frate 

and Zuniga (1990) ].   
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 Figure 7.62         The influence of wing aspect ratio on aircraft range 

as a function of mass (all other factors kept constant) [from  Drela 

et al. (2003) ].   

size, drag is more important so that the increasing friction drag with aspect ratio offsets 

the reduction in induced drag” [ Drela et al. (2003) ]. This is related to the well known 

square-cube law of aircraft design. The weight of the wing varies with the cube of the 

wing span while the area of the wing varies with the square of the wing span [see for 
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example,  McMasters (1998) ]. This is one of the reasons these wings have such largely 

different design characteristics. Couple the square-cube law with the various amounts 

of laminar and turbulent flow the wing can experience, and the resulting wings can be 

quite unusual when compared with typical aircraft, as shown in  Fig.   7.63   .    

   7.12  SUMMARY 

 The shape of the wing is a dominant parameter in determining the performance and 

handling characteristics of an airplane. The planform of a wing is defined by the aspect 

ratio, sweep, and taper ratio. At subsonic speeds, the lift-dependent drag can be reduced 

by increasing the aspect ratio. A high-aspect-ratio wing produces a high-lift-curve slope, 

which is useful for takeoff and landing but has a weight penalty since, for a given wing 

area, more massive root sections are needed to handle the higher bending moments. 

Furthermore, a swept wing has a greater structural span than a straight wing of the 

same area and aspect ratio. Thus, the use of sweepback may also lead to a growth in 

wing weight. As a result, the choice of aspect ratio requires a trade study in which the 

designer may chose to emphasize one criterion at the expense of another  (see the dis-

cussion relating to transport aircraft in  Chapter   13   ) . 

 Tapering the wing reduces the wing-root bending moments, since the inboard portion 

of the wing carries more of the wing’s lift than the portion near the tip. While taper reduces 

the actual loads carried by the outboard sections, the wing-tip sections are subjected to 

higher lift coefficients and tend to stall first (see  Fig.   7.15   ). Therefore, progressively reduc-

ing the incidence of the local section through the use of geometric twist from the root to 

the tip (i.e., washout) may be used either to reduce local loading or to prevent tip stalling.   

     PROBLEMS 

   7.1.    Consider an airplane that weighs 13,500 N and cruises in level flight at 250 km/h at an alti-

tude of 2000 m. The wing has a surface area of 15.0 m2 and an aspect ratio of 5.8. Assume 

that the lift coefficient is a linear function of the angle of attack and that �0l = -1.0� If the 

load distribution is elliptic, calculate the value of the circulation in the plane of symmetry 

13.87
9.25

A
A

24

Balance
housing

Section A-A

Q

10.52

5.87
40�

40�

23�

80�

1.00

 Figure 7.63         Unusual UAV con-

figuration [from  Hammons and 

Thompson (2006) ].   



Problems    437

(�0), the downwash velocity (wy1), the induced-drag coefficient (CDv
) the geometric angle 

of attack (�), and the effective angle of attack (�e).   

   7.2.    Consider the case where the spanwise circulation distribution for a wing is parabolic, 

   �(y) = �0a1 -

y

s
b    

   If the total lift generated by the wing with the linear circulation distribution is to be equal to 

the total lift generated by a wing with an elliptic circulation distribution, what is the relation 

between the �0 values for the two distributions? What is the relation between the induced 

downwash velocities at the plane of symmetry for the two configurations?   

   7.3.    When a GA(W)-1 airfoil section (i.e., a wing of infinite span) is at an angle of attack of 5°, 

the lift coefficient is 0.5. Using equation (7.20), calculate the angle of attack at which a wing 

whose aspect ratio is 6.5 would have to operate to generate the same lift coefficient. What 

would the angle of attack have to be to generate this lift coefficient for a wing whose aspect 

ratio is 5.0?   

   7.4.    Consider a planar wing (i.e., no geometric twist) which has a NACA 0012 section and an 

aspect ratio of 7.0. Following  Example   7.2   , use a four-term series to represent the load 

distribution. Compare the lift coefficient, the induced drag coefficient, and the spanwise 

lift distribution for taper ratios of  (a)  0.4,  (b)  0.5,  (c)  0.6, and  (d)  1.0.   

   7.5.    Consider an airplane that weighs 10,000 N and cruises in level flight at 185 km/h at an alti-

tude of 3.0 km. The wing has a surface area of    16.3 m2,    an aspect ratio of 7.52, and a taper 

ratio of 0.69. Assume that the lift coefficient is a linear function of the angle of attack and 

the airfoil section is a NACA 2412  (see  Chapter   6    for the characteristics of this section) . 

The incidence of the root section is    +1.5�;    the incidence of the tip section is    -1.5�.    Thus, 

there is a geometric twist of    -3�    (washout). Following  Example   7.1   , use a four-term series 

to represent the load distribution and calculate 

    (a)   The lift coefficient    (CL)     

   (b)   The spanwise load distribution    (Cl(y) >CL)     

   (c)   The induced drag coefficient    (CDv
)     

   (d)   The geometric angle of attack ( a )     

   7.6.    Use equation (7.38) to calculate the velocity induced at some point  C(x ,  y ,  z)  by the vortex 

filament  AB  (shown in  Fig.   7.30   ); that is, derive equation (7.39a).   

   7.7.    Use equation (7.38) to calculate the velocity induced at some point  C(x ,  y ,   0 )  by the vortex 

filament  AB  in a planar wing; that is, derive equation (7.44a).   

   7.8.    Calculate the downwash velocity at the CP of panel 1 induced by the horseshoe vortex of 

panel 4 of the starboard wing for the flow configuration of Example 7.2.   

   7.9.    Following the VLM approach used in  Example   7.4   , calculate the lift coefficient for a swept 

wing. The wing has an aspect ratio of 8, a taper ratio of unity (i.e.,    cr = ct   ), and an uncam-

bered section (i.e., it is a flat plate). Since the taper ratio is unity, the leading edge, the 

quarter-chord line, the three-quarter chord line, and the trailing edge all have the same 

sweep, 45°. How does the lift coefficient for this aspect ratio (8) compare with that for an 

aspect ratio of 5 (i.e., that computed in  Example   7.4   )? Is this consistent with our knowledge 

of the effect of aspect ratio (e.g.,  Fig.   7.10   )?   

   7.10.    Following the VLM approach used in  Example   7.4   , calculate the lift coefficient for a swept 

wing. The wing has an aspect ratio of 5, a taper ratio of 0.5 (i.e.,    ct = 0.5 cr   ), an uncambered 

section, and the quarter chord is swept 45°. Since the taper ratio is not unity, the leading 

edge, the quarter-chord line, the three-quarter-chord line, and the trailing edge have dif-

ferent sweep angles. This should be taken into account when defining the coordinates of 

the horseshoe vortices and the control points.   
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   7.11.    Following the VLM approach used in  Example   7.4   , calculate the lift coefficient for the for-

ward swept wing of  Fig.   7.24   b. The quarter chord is swept forward 45°, the aspect ratio is 3.55, 

and the taper ratio 0.5. The airfoil section (perpendicular to the quarter chord) is a NACA 

64A112. For this airfoil section    ao2 = -0.94�    and    Cl,a = 6.09    per radian. For purposes of ap-

plying the no-flow boundary condition at the control points, assume that the wing is planar. 

Prepare a graph of the lift coefficient. How does this compare with that of  Fig.   7.24   ?   

   7.12.    Following the VLM approach used in  Example   7.4   , calculate the lift coefficient for a delta 

wing whose aspect ratio is 1.5. What is the sweep angle of the leading edge? The fact that 

the quarter-chord and the three-quarter-chord lines have different sweeps should be taken 

into account when defining the coordinates of the horseshoe vortices and the control points. 

How do the calculated values for the lift coefficient compare with the experimental values 

presented in  Fig.   7.45   ?   

   7.13.    Use equation (7.61) to calculate the lift coefficient as a function of the angle of attack for a 

flat delta wing with sharp leading edges. The delta wing has an aspect ratio of 1.0. Compare 

the solution with the data of Fig. 7.44.   

   7.14.    Use equation (7.62) to calculate the induced drag for a flat delta wing with sharp leading edges. 

The delta wing has an aspect ratio of 1.0. Compare the solution with the data of Fig. 7.47.   

   7.15.    Assume that the wing area of an airplane is proportional to the square of the wing span and 

the volume, and thus the weight, is proportional to the cube of the wing span (this is the 

square-cube law). Find the wing loading of the aircraft as a function of wing span, b. Using 

these relationships explain why very large aircraft (like the Boeing 747 or the Airbus 380) 

have to fly with very large wing loadings. If you wanted to re-design an existing aircraft 

that weighed 82,000 lbs with a wing span of 65 ft, what wing span would you need to add an 

additional 20% to the weight?    
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    8   DYNAMICS OF A 

COMPRESSIBLE FLOW FIELD 

     Chapter Objectives 

  •   Understand the basic thermodynamic concepts that form the basis of high-speed 
flow theory  

  •   Develop a basic physical understanding of the second law of thermodynamics  
  •   Be able to use the isentropic flow relationships in analyzing the properties of a 

flow field  
  •   Develop the ability to analyze flow in a stream tube, and understand how a 

converging-diverging nozzle works  
  •   Be able to analyze flow fields using shock and expansion calculation methods  
  •   Be able to calculate the local skin-friction coefficient for a compressible boundary 

layer  
  •   Understand the cause and effect of shock/boundary layer and shock/shock 

interactions  
  •   Determine how flight vehicles are tested in wind tunnels, and understand why it is 

difficult to fully model full-scale flight characteristics   

   So far we have studied the aerodynamic forces for incompressible (constant density) 

flows past an airplane.  At low flight Mach numbers (e.g., below a free-stream Mach 

number    M�     of approximately 0.3), Bernoulli’s equation  [equation (3.10)]     provides the 
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relation between the pressure distribution about an aircraft and the local velocity chang-

es of the air as it flows around the various components of the vehicle. However, as the 

flight Mach number increases, changes in the local air density also affect the magnitude 

of the local static pressure. This leads to discrepancies between the actual aerodynamic 

forces and those predicted by incompressible flow theory. For our purposes, the Mach 

number is the parameter that determines the extent to which compressibility effects are 

important. The purpose of this chapter is to introduce those aspects of compressible flows 

(i.e., flows in which the density is not constant) that have applications to aerodynamics. 

 Throughout this chapter, air will be assumed to behave as a thermally perfect gas 

(i.e., the gas obeys the equation of state): 

      p = rRT  (1.10)    

 We will assume that the gas is also calorically perfect; that is, the specific heats,    cp    and    cv,    

of the gas are constant. These specific heats are discussed further in the next section. The 

term  perfect gas  will be used to describe a gas that is both thermally and calorically per-

fect. At extremely high Mach numbers, however, the specific heats may not be constant, 

leading to difficulties with the perfect gas assumption  (see  Chapter   12    for more details) . 

 Even though we turn our attention in this  and in the subsequent chapters     to com-

pressible flows, we may still divide the flow around the vehicle into: (1) the boundary 

layer near the surface, where the effects of viscosity and heat conduction are important, 

and (2) the external flow, where the effects of viscosity and heat conduction can be 

neglected.  As has been true in previous chapters, the     inviscid flow field is conservative.   

      8.1  THERMODYNAMIC CONCEPTS 

  Having reviewed the fundamentals of thermodynamics in  Chapter   2    and having derived 

the energy equation there, we     will now turn our attention to the related aerodynamic 

concepts. 

   8.1.1  Specific Heats 

 For simplicity (and without loss of generality), we will consider a system in which there 

are no changes in the kinetic and the potential energies. For these types of systems, 

equations  (2.23) and (2.24a)     become: 

      dq - p dv = due  (8.1)    

  As an extension of our discussion of fluid properties in  Chapter   1   , we should remember 

that,     for any simple substance, the specific internal energy is a function of any other 

two independent fluid properties. Therefore, the internal energy can be represented as 

   ue = ue(v, T).      Then, by the chain rule of differentiation, 

      due = a
0ue

0T
b

v

dT + a
0ue

0v

b
T
dv  (8.2)    

 where the subscript is used to designate which variable is constant during the partial 

differentiation process. 
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 From the principles of thermodynamics, we may show for a thermally perfect gas 

(one obeying the perfect gas law), 

   a
0ue

0v

b
T
= 0   

 which is equivalent to saying that the internal energy of a perfect gas does not depend 

on the specific volume or, equivalently, the density, and therefore depends on the tem-

perature alone. Using this observation, equation (8.2) becomes: 

      due = a
0ue

0T
b

v

dT = c
v
 dT  (8.3)    

 In equation (8.3), we have introduced the definition that: 

   c
v
K a

0ue

0T
b

v

   

 which is the  specific heat at constant volume . Now we can evaluate the change in the 

internal energy for a process as: 

      �ue = ue 2 - ue 1 = L
2

1

c
v
 dT   (8.4)    

 Experimental evidence indicates that for most gases,    c
v
    is constant over a wide range of 

conditions. Specifically, for air below a temperature of approximately 850 K and over a 

wide range of pressure,    c
v
    can be treated as a constant; the value for air is: 

   c
v
= 717.6

N # m

kg # K
aor 

J

kg # K
b = 0.1717

Btu

lbm # �R
= 4299

ft # lbf

slug # �R
   

 The assumption that    c
v
    is constant is contained within the more general assumption that 

the gas is a perfect gas. So, for a perfect gas: 

      �ue = c
v
 �T  (8.5)    

 Since    c
v
    and  T  are both properties of the fluid, and since the change in a property 

between any two given states is independent of the process used in going between the 

two states, equation (8.5) is valid even if the process is not one of constant volume. 

Therefore, equation (8.5) is valid for any simple substance undergoing any process 

where    c
v
    can be treated as a constant. 

 Substituting equation (8.3) into equation (8.1), we can see that    c
v
    is only directly 

related to the heat transfer if the process is one in which the volume remains constant 

(i.e.,    dv = 0   ). However, the name “specific heat” can be misleading. Physically,    c
v
    is 

the proportionality constant between the amount of heat transferred to a substance and 

the temperature rise in the substance held at constant volume. 

 In analyzing many flow problems, the terms    ue    and  pv  appear as a sum, and so it 

is convenient to define a symbol for this sum: 

      h K ue + pv K ue +

p
r

  (8.6)    
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 where  h  is called the  specific enthalpy . Substituting the differential form of equation 

(8.6) into equation (8.1) and collecting terms yields: 

      dq + v dp = dh  (8.7)    

 which is the first law of thermodynamics expressed in terms of the enthalpy rather than 

the internal energy. 

 Since any property of a simple substance can be written as a function of any two 

other properties, we can also write the enthalpy as a function of pressure and temperature: 

      h = h(p, T)  (8.8)    

 Again, using the chain rule: 

      dh = a
0h
0p

b
T
dp + a

0h
0T

b
p
dT  (8.9)    

 From the definition of enthalpy in equation (8.8), we can show that  h  is also a function 

of temperature only for a thermally perfect gas, since both    ue    and    p>r    are functions of 

the temperature only. So, 

   a
0h
0p

b
T
= 0   

 and equation (8.9) becomes: 

      dh = a
0h
0T

b
p
dT = cp dT  (8.10)    

 Here we have introduced the definition: 

      cp K a
0h
0T

b
p
  (8.11)    

 which is the  specific heat at constant pressure . In general,    cp    depends on the composition 

of the substance and its pressure and temperature. We can show that: 

      �h = h2 - h1 = L
2

1

cp dT   (8.12)    

 Experimental evidence indicates that for most gases    cp    is essentially independent 

of temperature and of pressure over a wide range of conditions. Again, provided that 

the temperature extremes in a flow field are not too widely separated,    cp    can be treated 

as a constant so that 

      �h = cp �T  (8.13)    

 For air below a temperature of approximately 850 K, the value of    cp    is: 

   cp = 1005 
N # m

kg
aor 

J

kg # K
b = 0.2404 

Btu

lbm # �R
= 6019

ft # lbf

slug # �R
   

 An argument parallel to that used for    c
v
    shows that equation (8.13) is valid for any 

simple substance undergoing any process where    cp    can be treated as a constant. Again, 
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we note that the term  specific heat  is somewhat misleading, since    cp    is only directly 

related to the heat transfer if the process is isobaric.  

   8.1.2  Additional Important Relations 

 A gas which is thermally and calorically perfect is one that obeys equations     (1.10) , (8.5), 

and (8.13). In such a case, there is a simple relation between    cp, c
v
   , and  R . From the 

definitions of    cp    and  h , the perfect-gas law, and the knowledge that  h  depends upon  T  

alone, we can write: 

      cp K a
0h
0T

b
p
=

dh
dT

=
due

dT
+

d
dT

 a
p
r
b = c

v
+ R  (8.14)    

 or    R = cp - c
v
   . We can now introduce the definition for the ratio of specific heats: 

      g K
cp

c
v

  (8.15)    

 For the most simple molecular model, the kinetic theory of gases shows that: 

   g =
n + 2

n
   

 where  n  is the number of degrees of freedom for the molecule. So, for a monatomic gas, 

such as helium,    n = 3    and    g = 1.667.    For a diatomic gas, such as nitrogen, oxygen, or 

air,    n = 5    and    g = 1.400.    Extremely complex molecules, such as Freon or tetrafluor-

omethane, have large values of  n  and values of    g    which approach unity. In many treat-

ments of air at high temperature and high pressure, approximate values of    g    (e.g., 1.1 

to 1.2) are used to approximate “real-gas” effects. 

 Combining equations (8.14) and (8.15), we can write: 

      cp =
gR

g - 1
  and  c

v
=

R
g - 1

  (8.16)    

 which can be very useful when manipulating thermodynamics relations.  

   8.1.3  Second Law of Thermodynamics and Reversibility 

 The first law of thermodynamics does not place any constraints regarding what types of 

processes are physically possible and what types are not, providing that equation  (2.22)      

is satisfied. However, we know from experience and observation that not all processes 

permitted by the first law actually occur in nature. For instance, when you rub sandpaper 

across a table, both the sandpaper and the table experience a rise in temperature. The 

first law is satisfied because the work done on the system by the sander’s arm, which is 

part of the surroundings and which is, therefore, negative work for equation  (2.23)    , is 

manifested as an increase in the internal energy of the system, which consists of the sand-

paper and the table. Therefore, the temperatures of the sandpaper and the table increase. 

However, we do not expect that we can somehow reverse the process and extract all the 

work back from the system and have the internal energy (and thus the temperature) 
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 decrease back to its original value, even though the first law would be satisfied. If this 

could occur, we would say the process was reversible, because the system and its sur-

roundings would be restored to their original states. 

 The possibility of devising a reversible process, such as the type outlined previously, 

cannot be settled by a theoretical proof. Experience shows that a truly reversible proc-

ess has never been devised; this empirical observation is embodied in the  second law of 
thermodynamics . For our purposes, an irreversible process is one that involves viscous 

(friction) effects, shock waves, or heat transfer through a finite temperature gradient. 

Therefore, in regions outside boundary layers, viscous wakes, and planar shock waves, 

we can treat the flow as reversible. Notice that the flow behind a curved shock wave can 

be treated as reversible only along a streamline, which we will see later in this chapter. 

 The second law of thermodynamics provides a way to quantitatively determine 

the degree of reversibility (or irreversibility) of a process. Since the effects of irrevers-

ibility are dissipative and represent a loss of available energy (e.g., the kinetic energy 

of an aircraft wake, which is converted to internal energy by viscous stresses, is directly 

related to the aircraft’s drag), the reversible process provides an ideal standard for 

comparison to real processes. Therefore, the second law is a valuable tool available to 

the aerodynamicist, since it gives limits to various processes. 

 There are several logically equivalent statements of the second law. In the remainder 

of this  text    , we will usually be considering adiabatic processes, processes in which there is 

no heat transfer. This is not a restrictive assumption, since heat transfer in aerodynamic 

problems usually occurs only in the boundary layer and has a negligible effect on the flow in 

the inviscid region. The most convenient statement of the second law, for our purposes, is: 

      ds Ú 0  (8.17)    

 for an adiabatic process. Therefore, when a system is isolated from all heat exchange with its 

surroundings,  s , the entropy of the system either remains the same (if the process is revers-

ible) or increases (if it is irreversible). It is not possible for a process to occur if the entropy 

of the system and its surroundings decreases. Just as the first law leads to the definition of 

internal energy as a property, the second law leads to the definition of entropy as a property. 

 The entropy change for a reversible process can be written as: 

   dq = T ds   

 For a reversible process in which the only work done is that done at the moving bound-

ary of the system, 

      T ds = due + p dv  (8.18)    

 However, once we have written this equation, we see that it involves only changes in 

properties and does not involve any path-dependent functions. We conclude, therefore, 

that this equation is valid for all processes, both reversible and irreversible, and that it 

applies to the substance undergoing a change of state as the result of flow across the 

boundary of an open system (i.e., a control volume), as well as to the substance compris-

ing a closed system (i.e., a control mass). 

 For a perfect gas, we can rewrite equation (8.18) as 

   ds = c
v
 
dT
T

+ R 
dv

v
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 This equation can be integrated to give 

      s2 - s1 = c
v
 lne c a

v2

v1

b
g-1

d
T2

T1

f   (8.19a)    

 Applying the equation of state for a perfect gas to the two states (states 1 and 2) yields: 

   
v2

v1

=
r1

r2
=

p1

p2

 
T2

T1

   

 and equation (8.19a) can be written as: 

      s2 - s1 = R lne c a
T2

T1

b
g>(g-1)

d
p1

p2

f   (8.19b)    

 Equivalently, we can write equation (8.19a) as: 

      s2 - s1 = c
v
 lne c a

r1

r2
b
g

d
p2

p1

f   (8.19c)    

 Using the various forms of equation (8.19), we can calculate the entropy change in terms 

of the properties of the end states [in terms of the specific volume and temperature 

using equation (8.19a), pressure and temperature using equation (8.19b), or density and 

pressure using equation (8.19c)]. 

 In many compressible flow problems, the flow external to the boundary layer 

undergoes processes that are isentropic (i.e., adiabatic and reversible). If the entropy 

is constant at each step of the process, it follows from equation (8.19) that  p ,    r,    and  T  

are interrelated since    s2 - s1 = 0   . The following equations describe these important 

relations for isentropic flow: 

       
p

rg
= constant  (8.20a)    

       
Tg>(g-1)

p
= constant  (8.20b)    

 and   

       Tv

(g-1) = constant  (8.20c)    

 which we will use a great deal in our descriptions of high-speed flow.   

 Aerodynamics Concept Box: Original Statements of the Second Law 

 The concept of entropy can be very confusing to most people, especially when it gets lost in 

mathematics and thermodynamic relations. Perhaps you will agree with an early thermody-

namicist, William Gibbs, who said in 1873, “Any method involving the notion of entropy, the 

very existence of which depends on the second law of thermodynamics, will doubtless seem 

to many far-fetched, and may repel beginners as obscure and difficult of comprehension.” 

The second law, however, was not originally based on such grandiouse concepts or equations, 
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   8.1.4  Speed of Sound 

 From experience, we know that the speed of sound in air is finite. To be specific, the 

 speed of sound  is defined as the rate at which infinitesimal disturbances are propagated 

from their source into an undisturbed medium. These disturbances can be thought of 

as small pressure pulses generated at a point and propagated in all directions. We will 

learn later that finite disturbances such as shock waves propagate at a greater speed 

than that of sound waves. 

 Consider a motionless point source of disturbance in quiescent, homogeneous 

air (as shown in  Fig.   8.1   a). Small disturbances generated at the point move outward 

from the point in a spherically symmetric pattern. The distance between wave fronts is 

determined by the frequency of the disturbance. Since the disturbances are small, they 

leave the air behind them in essentially the same state it was before they arrived. The 

radius of a given wave front is given by: 

      r = at  (8.21)     

 where  a  is the speed of propagation (the speed of sound or the acoustic speed) of the 

wave front and  t  is the time since the particular disturbance was generated. 

 Now, suppose that the point source begins moving from right to left at a constant 

speed  U  which is less than the speed of sound  a ; the wave-front pattern will now appear 

as shown in  Fig.   8.1   b. A stationary observer ahead of the source will detect an increase 

in frequency of the sound, while an observer behind the source will note a decrease in 

but instead it was based on some fairly straightforward observations by scientists like Carnot, 

Clausius, and Kelvin. Here is what they observed: 

   Carnot observation (made by Sadi Carnot in 1824): The natural tendency of the heat is 

to flow from high temperature reservoir to low temperature reservoir.  

  Clausius statement (made by Rudolph Clausius in 1850; Clausius was later to introduce 

the concept of entropy): No process is possible whose sole result is the transfer of heat 

from a body of lower temperature to a body of higher temperature.  

  Kelvin statement (made by William Thompson, Lord Kelvin in 1851; also called the 

Kelvin-Planck statement): No process is possible in which the sole result is the absorp-

tion of heat from a reservoir and its complete conversion into work.   

 Carnot’s theorem: All irreversible heat engines between two heat reservoirs are less 

efficient than a Carnot engine operating between the same reservoirs. All reversible 

heat engines between two heat reservoirs are equally efficient with a Carnot engine 

operating between the same reservoirs. 

 These observations eventually led to our use of entropy and the second law of thermodynam-

ics, which states that for an isolated system, 

   �s Ú 0   

 All of our equations and relationships are simply a way of putting these observations into equa-

tion form so that we can calculate entropy changes and determine if a process is possible. 
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frequency (which is known as the Doppler effect). Still, however, each wave front is 

separate from its neighbors. 

 If the speed of the source reaches the speed of sound (   U = a   ) in the undisturbed 

medium, the situation will appear as shown in  Fig.   8.1   c. We notice that the individual 

wave fronts are still separate, except at the point where they coalesce at the position 

of the source. 

 A further increase in source speed, such that    U 7 a,    leads to the situation depicted 

in  Fig.   8.1   d. The wave fronts now form a conical envelope, which is known as the  Mach 
cone , within which the disturbances can be detected. Outside of this “zone of action” 

is the “zone of silence,” where the pressure pulses have not arrived and an observer 

cannot sense the source. 

 We see that there is a fundamental difference between subsonic    (U 6 a)    and 

supersonic    (U 7 a)    flow. In subsonic flow, the effect of a disturbance propagates 

upstream of its location, and the upstream flow is “warned” of the approach of the 

disturbance. In supersonic flow, however, no such “warning” is possible. Stating it an-

other way, disturbances cannot propagate upstream in a supersonic flow relative to a 

source-fixed observer. This fundamental difference between the two types of flow has 

significant consequences on the flow field about an aircraft and its design. 

(a)

(c) (d)

(b)

Zone of silence
"Mach cone"
Zone of action

Mach cone

Zone of
silence

Zone of
action

a�t

U� t

a� t
U� t �     )

1
M(Note: sin   �

m

m

 Figure 8.1         Wave pattern generated by pulsating disturbance of 

infinitesimal strength: (a) disturbance is stationary    (U = 0);    

(b) disturbance moves to the left at subsonic speed    (U 6 a);    

(c) disturbance moves to the left at sonic speed    (U = a);    (d) dis-

turbance moves to the left at supersonic speed    (U 7 a).      
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 We can see that the half-angle of the Mach cone dividing the zone of silence from 

the zone of action is given by: 

      sin m =
1

M
  (8.22)    

 where 

   M K
U
a

   

 is the Mach number, first defined by Ernst Mach in 1877. At    M = 1    (i.e., when    U = a   ), 

   m = 90�    and as    M S � ,       m S 0.    

 To determine the speed of sound  a , look at the wave front in  Fig.   8.1   a propagat-

ing into still air. A small portion of the curved wave front can be treated as planar. To 

an observer attached to the wave, the situation appears as shown in  Fig.   8.2   , where a 

control volume is also shown attached to the wave. The boundaries of the volume are 

selected so that the flow is normal to faces parallel to the wave and tangent to the other 

faces. We make the key assumption (based on experimental observation) that since the 

strength of the disturbance is infinitesimal, a fluid particle passing through the wave 

undergoes a process that is both reversible and adiabatic (i.e., isentropic).  

 The integral forms of the continuity and the momentum equations for a one-

dimensional, steady, inviscid flow, equations  (2.5) and (2.13)    , respectively, applied to 

the control volume of  Fig.   8.2    give: 

       ra dA = (r + dr)(a + dU) dA  (8.23)    

       p dA - (p + dp) dA = 3(a + dU) - a4ra dA   (8.24)    

 Simplifying equation (8.24), dividing equations (8.23) and (8.24) by  dA , and combining 

the two relations give: 

      dp = a2 dr  (8.25)    

 However, since the process we are considering is isentropic, 

      a2 = a
0p

0r
b

s
  (8.26)    

Ambient air
Air after wave

has passed
a
p

a�dU

p � dp
r � drr

 Figure 8.2         Control volume used to determine the speed of sound. 

(A velocity of equal magnitude and of opposite direction has 

been superimposed on a wave of  Fig.   8.1   a so that the sound wave 

is stationary in this figure.)   
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 where we have indicated that the derivative is taken with entropy fixed, as originally 

assumed. 

 For a perfect gas undergoing an isentropic process, equation (8.20a) gives 

   p = crg   

 where  c  is a constant. Therefore we can write, 

      a2 = a
0p

0r
b

s
= gcrg-1 =

gp
r

  (8.27)    

 Using the equation of state for a perfect gas, the speed of sound becomes: 

      a =
A

gp
r

= 2gRT  (8.28)    

 which is the commonly used relation for the acoustic speed, showing that it is only a 

function of the fluid and the temperature. Be very careful to only use temperatures in 

equation (8.28) which are absolute ( K  or    �R   ).   

   8.2  ADIABATIC FLOW IN A VARIABLE-AREA STREAMTUBE 

 For purposes of derivation, consider the one-dimensional flow of a perfect gas through 

a variable-area streamtube (as shown in  Fig.   8.3   ). We will apply the integral form of 

the energy equation  [i.e., equation (2.35)]  for steady, one-dimensional flow with no 

change in potential energy. We will also assume that there is no heat transfer through 

the surface of the control volume (i.e.,    Q
#

= 0   ) and that only flow work (pressure-

volume work) is done  (as discussed in  Section   2.9.3   ) . Work is done on the system by 

the pressure forces acting at station 1 (which is negative), and work is done by the 

system at station 2 (which is positive). Therefore, the energy equation applied to the 

control volume gives: 

    +p1U1A1 - p2U2A2 = - aue1r1U1A1 +

U2
1

2
r1U1A1b     

    +  aue 2r2U2A2 +

U2
 2

2
r2U2A2b     

Streamlines

n̂1 dA1

n̂2 dA2

p1

p2

U2

U1

Properties are
uniform over

a station

1

2

1

2

r

r

 Figure 8.3         One-dimensional flow in a streamtube.   
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 Rearranging and noting that    r1U1A1 = r2U2A2    by continuity, and using the definition 

for the enthalpy (   h K ue + pv   ), we obtain: 

      Ht = h1 +

U2
1

2
= h2 +

U2
 2

2
  (8.29)    

 where    Ht    is the total enthalpy. As is usually the case in aerodynamics problems, changes 

in potential energy have been neglected. The assumption of one-dimensional flow is 

valid provided that the streamtube cross-sectional area varies smoothly and gradually 

in comparison to the axial distance along the streamtube. 

 For a perfect gas, equation (8.29), in conjunction with equation (8.13), becomes: 

      cpT1 +

U2
1

2
= cpT2 +

U2
2

2
  (8.30)    

 or 

      T1 +

U2
1

2cp
= T2 +

U2
2

2cp
  (8.31)    

 which is the conservation of energy for the flow of  Fig.   8.3   . By definition, the  stagnation 
temperature     Tt    is the temperature reached when the fluid is brought to rest adiabatically. 

The total temperature from equation (8.31) can be thought of as the sum of the static 

temperature and the dynamic temperature: 

      Tt = T +

U2

2cp
= Tstatic + Tdynamic = constant  (8.32)    

 Since the locations of stations 1 and 2 are arbitrary, 

      Tt1 = Tt2  (8.33)    

 That is, the stagnation temperature is a constant for the adiabatic flow of a perfect gas and 

will be designated simply as    Tt.    Notice that, whereas it is generally true that the stagnation 

enthalpy is constant for an adiabatic flow, as indicated by equation (8.29), the stagnation 

temperature is constant only when    cp    is constant (i.e., the gas behaves as a perfect gas). 

 For any one-dimensional adiabatic flow, equation (8.32) coupled with equation 

(8.16) can be rewritten as: 

      
Tt

T
= 1 +

U2

23gR> (g - 1)4T
= 1 +

g - 1

2
M2  (8.34)    

 which is the total temperature ratio for the isentropic flow of a perfect gas. Notice that 

we have used the perfect-gas relations that    cp = gR> (g - 1)    and that    a2 = gRT.    

 It is interesting to note that when the flow is isentropic, Euler’s equation, equa-

tion  (3.2)    , for one-dimensional, steady flow (i.e., the inviscid-flow momentum equation) 

gives the same result as the energy equation for an adiabatic flow. To see this, we can 

write  equation (3.2)     for steady, one-dimensional, inviscid flow: 

      ru 
du
ds

= -

dp

ds
  (8.35a)    

       L
dp
r

 + Lu du = 0   (8.35b)    
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 Notice that for a one-dimensional flow    u = U.    For an isentropic process (which is of 

course adiabatic), 

   p = crg   

 Differentiating, substituting the result into equation (8.35b), and integrating, we obtain 

   
g

g - 1
 crg-1

+

U2

2
= constant   

 Therefore, 

   
1

g - 1
 
gp
r

+

U2

2
= constant   

 Using the perfect-gas equation of state, we obtain 

   h +

U2

2
= constant   

 which is equation (8.29). 

  EXAMPLE 8.1:    An indraft, supersonic wind tunnel 

 We are designing a supersonic wind tunnel using a large vacuum pump to 

draw air from the ambient atmosphere into our tunnel, as shown in  Fig.   8.4   . 

The air is continuously accelerated as it flows through a convergent/diver-

gent nozzle so that flow in the test section is supersonic. If the ambient air is 

at the standard sea-level conditions, what is the maximum velocity that we 

can attain in the test section?  

  Solution:     To calculate this maximum velocity, all we need is the energy equation for 

a steady, one-dimensional, adiabatic flow. Using equation (8.29), we have 

   h1 +
1
2U2

1 = h2 +
1
2U2

2   

 Since the ambient air (i.e., that which serves as the tunnel’s “stagnation 

chamber” or “reservoir”) is at rest,    U1 = 0.    The maximum velocity in the 

test section occurs when    h2 = 0    (i.e., when the flow expands until the static 

temperature in the test section is zero). 

Ambient air
at standard

sea-level
conditions serves

as tunnel
reservoir "Sonic throat"

To vacuum system

Test section

21

 Figure 8.4         Indraft, supersonic wind tunnel.   
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   (1004.7)288.15 J>kg =
U2

2

2
   

   U2 = 760.9 m>s   

 Of course, we realize that this limit is physically unattainable, since the water 

vapor in the air would liquefy first. However, it does represent an upper limit 

for conceptual considerations.   

  EXAMPLE 8.2:    A simple model for the Shuttle Orbiter flow field 

 During a nominal reentry trajectory, the Space Shuttle Orbiter flies at 

3964 ft/s at an altitude of 100,000 ft. The corresponding conditions at the stag-

nation point (point 2 in  Fig.   8.5   ) are    p2 = 490.2 lbf>ft2    and    T2 = 1716.0�R.    

The static pressures for two nearby locations (points 3 and 4 of  Fig.   8.5   ) are 

   p3 = 259.0 lbf>ft2    and    p4 = 147.1 lbf>ft2.    All three points are outside the 

boundary layer. What are the local static temperature, the local velocity, and 

the local Mach number at points 3 and 4?  

  Solution:     At these conditions, the air can be assumed to behave approximately as a 

perfect gas. Furthermore, since all three points are outside the boundary 

layer and downstream of the bow shock wave, we will assume that the flow 

expands isentropically from point 2 to point 3 and then to point 4. (Note that 

because the shock wave is curved, the entropy will vary through the shock 

layer.  For a further discussion of the rotational flow downstream of a curved 

shock wave, refer to  Chapter   12   .  Thus, validity of the assumption that the 

expansion is isentropic should be verified for a given application.) 

2

3

Bow shock wave

4

Mt� 4

Boundary
layer

 Figure 8.5         Shuttle flow field for  Example   8.2   .   
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 For an isentropic process, we can use equation (8.20b) to relate the 

temperature ratio to the pressure ratio between two points: 

   T3 = T2a
p3

p2

b
(g-1)>g

= (1716.0)(0.83337) = 1430.1�R   

 Similarly, 

   T4 = (1716.0)(0.70899) = 1216.6�R   

 Using the energy equation for the adiabatic flow of a perfect gas [i.e., equa-

tion (8.31)], and noting that    U2 = 0,    since point 2 is a stagnation point, 

    U3 = 32cr(T2 - T3)40.5    

    = c2a0.2404
Btu

Ibm # �R
b a32.174

ft # Ibm

Ibf # s2
b a778.2

ft # Ibf

Btu
b (285.9�R) d

0.5

   

    = 1855.2 ft>s    

 Similarly, 

   U4 = 2451.9 ft>s   

 Using equation  (1.14b)     for the speed of sound in English units, 

   M3 =
U3

a3

=
1855.2

49.02(1430.1)0.5
= 1.001   

   M4 =
U4

a4

=
2451.9

49.02(1216.6)0.5
= 1.434   

 So, the flow accelerates from the stagnation conditions at point 2 to sonic 

conditions at point 3, and becomes supersonic at point 4.    

   8.3  ISENTROPIC FLOW IN A VARIABLE-AREA STREAMTUBE 

 It is particularly useful to study the isentropic flow of a perfect gas in a variable-area 

streamtube, since it reveals many of the general characteristics of compressible flow. In 

addition, the assumption of constant entropy is not too restrictive, since the flow outside 

the boundary layer is essentially isentropic except while crossing linear shock waves or 

downstream of curved shock waves. 

 Using equations (8.20) and (8.34), we can write the total property ratios for pres-

sure and density as: 

      
pt1

p
= a1 +

g - 1

2
M2b

g>(g-1)

  (8.36)    

      
rt1

r
= a1 +

g - 1

2
M2b

1>(g-1)

  (8.37)    

 where    pt1    and    rt1    are the  stagnation pressure  and the  stagnation density , respectively. 

(Note: the terms  total ,  stagnation , and  reservoir  all mean the same thing.) Applying these 
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equations between two streamwise stations shows that if    Tt    is constant and the flow is 

isentropic, the stagnation pressure    pt1    is a constant. The equation of state then requires 

that    rt1    also is constant. 

 To get a feeling for the deviation between the pressure values calculated assuming 

incompressible flow and those calculated using the compressible flow relations, we can 

expand equation (8.36) in powers of    M2:    

      
pt1

p
= 1 +

g

2
M2

+ O(M4) +
g

  (8.38)    

 Since the flow is essentially incompressible when the Mach number is relatively low, we 

can neglect higher order terms. Retaining only terms of order    M2    yields 

      
pt1

p
= 1 +

g

2
M2  (8.39)    

 which for a perfect gas becomes 

      
pt1

p
= 1 +

g

2
 

U2

gRT
= 1 +

U2

2p>r
  (8.40)    

 Rearranging, we find the total pressure as: 

      pt1 = p +

rU2

2
  (8.41)    

 Therefore, for low Mach numbers the general relation given by equation (8.36) reverts to 

Bernoulli’s equation for incompressible flow. The static pressures predicted by equation 

(8.36) are compared with those of equation (8.41) in terms of percent error as a function of 

Mach number in  Fig.   8.6   . An error of less than 1% results when Bernoulli’s equation is used 

if the local Mach number is less than or equal to 0.5 in air, and an error of less than 0.15% 

is found for Mach numbers less than 0.3. However, for Mach numbers greater than 0.5, the 

total pressure cannot be treated as the sum of the static pressure and the dynamic pressure.  

 In deriving equations (8.34), (8.36), and (8.37), the respective stagnation proper-

ties have been used as references to nondimensionalize the static properties. Since the 

continuity equation for the one-dimensional steady flow requires that    rUA    be a con-

stant, the area becomes infinitely large as the velocity goes to zero. We can choose the 

area where the flow is sonic (i.e.,    M = 1   ) as the reference area to relate to the stream-

tube area at a given station. Designating the sonic conditions by a    (*)    superscript, the 

continuity equation yields 

      
A*
A

=
rU

r*U*
=

rt11r>rt122gRTt2T>Tt M

rt1(r*>rt1)2gRTt2T*>Tt

  (8.42)    

 since    M* = 1.    Noting that    r*>rt1    and    T*>Tt    are to be evaluated at    M = M* = 1,    

      
A*
A

= M c
2

g + 1
a1 +

g - 1

2
M2b d

-(g+1)>2(g-1)

  (8.43)    

 Given the area,  A , and the Mach number,  M , at any station, we could compute an    A*    for 

that station from equation (8.43).    A*    is the area the streamtube would have to be if the 
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flow were accelerated or decelerated to    M = 1    isentropically. Equation (8.43) is espe-

cially useful in streamtube flows that are isentropic, and therefore where    A*    is a constant. 

 In order to aid in the solution of isentropic flow problems, the temperature ratio 

[equation (8.34)], the pressure ratio [equation (8.36)], the density ratio [equation (8.37)], 

and the area ratio [equation (8.43)] are presented as a function of the Mach number in 

 Table   8.1   . A more complete tabulation of these data is given in  Ames Research Center 

Staff (1953) . The results of  Table   8.1    are summarized in  Fig.   8.7   .  

 In order to determine the mass-flow rate in the streamtube, we need to find 

   m
#

= rUA   : 

    m
#

= rUA = rt1a
r

rt1
bM2gRTt

A

T
Tt

A    

       
m
#

A
=
A

g

R
 

pt1

2Tt

 
M

51 + 3(g - 1) >24M26 (g+1)>2(g-1)
  (8.44)    
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 Figure 8.6         Effect of compressibility on the theoretical value for 

the pressure ratio.   
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 TABLE 8.1    Correlations for a One-Dimensional, Isentropic Flow of Perfect Air    (g = 1.4)   

  M      
A
A*

        
p

pt1
        

r

rt1
        

T
Tt

        
A
A*

 
p

pt1
    

 0     �      1.00000  1.00000  1.00000     �     
 0.05  11.592  0.99825  0.99875  0.99950  11.571 
 0.10  5.8218  0.99303  0.99502  0.99800  5.7812 
 0.15  3.9103  0.98441  0.98884  0.99552  3.8493 
 0.20  2.9635  0.97250  0.98027  0.99206  2.8820 
 0.25  2.4027  0.95745  0.96942  0.98765  2.3005 
 0.30  2.0351  0.93947  0.95638  0.98232  1.9119 
 0.35  1.7780  0.91877  0.94128  0.97608  1.6336 
 0.40  1.5901  0.89562  0.92428  0.96899  1.4241 
 0.45  1.4487  0.87027  0.90552  0.96108  1.2607 
 0.50  1.3398  0.84302  0.88517  0.95238  1.12951 
 0.55  1.2550  0.81416  0.86342  0.94295  1.02174 
 0.60  1.1882  0.78400  0.84045  0.93284  0.93155 
 0.65  1.1356  0.75283  0.81644  0.92208  0.85493 
 0.70  1.09437  0.72092  0.79158  0.91075  0.78896 
 0.75  1.06242  0.68857  0.76603  0.89888  0.73155 
 0.80  1.03823  0.65602  0.74000  0.88652  0.68110 
 0.85  1.02067  0.62351  0.71361  0.87374  0.63640 
 0.90  1.00886  0.59126  0.68704  0.86058  0.59650 
 0.95  1.00214  0.55946  0.66044  0.84710  0.56066 
 1.00  1.00000  0.52828  0.63394  0.83333  0.52828 
 1.05  1.00202  0.49787  0.60765  0.81933  0.49888 
 1.10  1.00793  0.46835  0.58169  0.80515  0.47206 
 1.15  1.01746  0.43983  0.55616  0.79083  0.44751 
 1.20  1.03044  0.41238  0.53114  0.77640  0.42493 
 1.25  1.04676  0.38606  0.50670  0.76190  0.40411 
 1.30  1.06631  0.36092  0.48291  0.74738  0.38484 
 1.35  1.08904  0.33697  0.45980  0.73287  0.36697 
 1.40  1.1149  0.31424  0.43742  0.71839  0.35036 
 1.45  1.1440  0.29272  0.41581  0.70397  0.33486 
 1.50  1.1762  0.27240  0.39498  0.68965  0.32039 
 1.55  1.2115  0.25326  0.37496  0.67545  0.30685 
 1.60  1.2502  0.23527  0.35573  0.66138  0.29414 
 1.65  1.2922  0.21839  0.33731  0.64746  0.28221 
 1.70  1.3376  0.20259  0.31969  0.63372  0.27099 
 1.75  1.3865  0.18782  0.30287  0.62016  0.26042 
 1.80  1.4390  0.17404  0.28682  0.60680  0.25044 
 1.85  1.4952  0.16120  0.27153  0.59365  0.24102 
 1.90  1.5555  0.14924  0.25699  0.58072  0.23211 
 1.95  1.6193  0.13813  0.24317  0.56802  0.22367 
 2.00   1.6875  0.12780  0.23005  0.55556  0.21567 
 2.05  1.7600  0.11823  0.21760  0.54333  0.20808 
 2.10  1.8369  0.10935  0.20580  0.53135  0.20087 
 2.15  1.9185  0.10113  0.19463  0.51962  0.19403 
 2.20  2.0050  0.09352  0.18405  0.50813  0.18751 
 2.25  2.0964  0.08648  0.17404  0.49689  0.18130 
 2.30  2.1931  0.07997  0.16458  0.48591  0.17539 

(continued on next page)
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  M      
A
A*

        
p

pt1
        

r

rt1
        

T
Tt

        
A
A*

 
p

pt1
    

 2.35  2.2953  0.07396  0.15564  0.47517  0.16975 
 2.40  2.4031  0.06840  0.14720  0.46468  0.16437 
 2.45  2.5168  0.06327  0.13922  0.45444  0.15923 
 2.50  2.6367  0.05853  0.13169  0.44444  0.15432 
 2.55  2.7630  0.05415  0.12458  0.43469  0.14963 
 2.60  2.8960  0.05012  0.11787  0.42517  0.14513 
 2.65  3.0359  0.04639  0.11154  0.41589  0.14083 
 2.70  3.1830  0.04295  0.10557  0.40684  0.13671 
 2.75  3.3376  0.03977  0.09994  0.39801  0.13276 
 2.80  3.5001  0.03685  0.09462  0.38941  0.12897 
 2.85  3.6707  0.03415  0.08962  0.38102  0.12534 
 2.90  3.8498  0.03165  0.08489  0.37286  0.12185 
 2.95  4.0376  0.02935  0.08043  0.36490  0.11850 
 3.00  4.2346  0.02722  0.07623  0.35714  0.11527 
 3.50  6.7896  0.01311  0.04523  0.28986  0.08902 
 4.00  10.719  0.00658  0.02766  0.23810  0.07059 
 4.50  16.562  0.00346  0.01745  0.19802  0.05723 
 5.00  25.000     189(10)-5     0.01134  0.16667  0.04725 
 6.00  53.189     633(10)-6     0.00519  0.12195  0.03368 
 7.00  104.143     242(10)-6     0.00261  0.09259  0.02516 
 8.00  190.109     102(10)-6     0.00141  0.07246  0.01947 
 9.00  327.189     474(10)-7     0.000815  0.05814  0.01550 

 10.00  535.938     236(10)-7     0.000495  0.04762  0.01263 
    �         �      0  0  0  0 

TABLE 8.1  continued

 Therefore, the mass-flow rate is proportional to the stagnation pressure and in-

versely proportional to the square root of the stagnation temperature. To find the condi-

tion of maximum flow per unit area, we could compute the derivative of    (m
#

>A)    as given 

by equation (8.44) with respect to Mach number and set the derivative equal to zero. At 

this condition, we would find that    M = 1,    so setting    M = 1    in equation (8.44) yields: 

      a
m
#

A
b

max

=
m
#

A*
=
B

g

R
a

2

g + 1
b

(g+1)>(g-1) pt1

2Tt

  (8.45)    

 The maximum flow rate per unit area occurs where the cross-sectional area is a mini-

mum (designated    A*   ), and where the Mach number is one. Therefore, the maximum 

flow rate per unit area occurs at the sonic throat when the flow is choked. The word 

 choked  is used to describe this condition because the mass flow rate is maximized—no 

additional mass can go through the throat per unit time.  

  Fig.   8.7    shows that for each value of    A*>A,    there are two values of  M : one sub-

sonic, the other supersonic. Therefore, from  Fig.   8.7    we see that, while all static proper-

ties of the fluid monotonically decrease with Mach number, the area ratio does not. We 

conclude that to accelerate a subsonic flow to supersonic speeds, the streamtube must 

first converge in an isentropic process until sonic conditions are reached (which is called 

a throat).  The flow then accelerates in a diverging  streamtube to achieve supersonic 
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Mach numbers. Just because a streamtube is convergent/divergent, it does not neces-

sarily follow that the flow is sonic at the narrowest cross section (or throat). The actual 

flow depends on the pressure distribution as well as the geometry of the streamtube. 

However, if the Mach number is to be unity anywhere in the streamtube, it must be 

unity at the throat. 

 For certain calculations (e.g., finding the true airspeed from Mach number and 

stagnation pressure) the ratio    12rU2>pt1    is useful. 

      

1
2rU2

pt1
=

1
2(p>RT)(g>g)U2

pt1
=

1

2
 
gp
pt1

 
U2

gRT
=

gM2

2
 

p
pt1

  (8.46)    

 and, 

      

1
2rU2

pt1
=

gM2

2
a1 +

g - 1

2
M2b

-g>(g-1)

  (8.47)    

 The ratio of the local speed of sound to the speed of sound at the stagnation conditions is 

      
a
at

=
B

gRT

gRTt
= a

T
Tt

b
0.5

= a1 +

g - 1

2
M2b

-0.5

  (8.48)    

   Note : The nomenclature used here anticipates the discussion of shock waves. Since 

the stagnation pressure varies across a shock wave, the subscript  t 1 has been used to 

designate stagnation properties evaluated upstream of a shock wave (which correspond 

to the free-stream values in a flow with a single shock wave). Since the stagnation tem-

perature is constant across a shock wave (for perfect-gas flows), it is designated by the 

simple subscript  t .   
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 Figure 8.7         Property variations as functions of Mach number for 

isentropic flow for    g = 1.4.      
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   8.4  CONVERGING-DIVERGING NOZZLES 

 Perhaps the most important application of variable area streamtube results is for a con-

verging-diverging nozzle (also called a Laval nozzle). Finding meaningful relationships 

for the nozzle requires taking another look at the conservation of mass and momentum 

for a variable area streamtube. The conservation of mass for a steady, one-dimensional 

flow between two points in a streamtube, using equation  (2.5)    , is: 

   - Or1U1dA1 + Or2U2dA2 = 0   

 Since the flow properties are constant at each station, we find the well-known result: 

   r1U1A1 = r2U2A2 = rUA = constant   

 Differentiating this yields: 

   (dr)UA + r(dU)A + rU(dA) = 0   

 and now dividing by    rUA    we have: 

      
dr
r

+

dU
U

+

dA
A

= 0  (8.49)    

 Now take a look at Euler’s equation for an irrotational flow with no body forces , from 

equation (3.5) : 

   da
U2

2
b +

dp
r

= 0   

 which may be rewritten as: 

   UdU +

dp
r

= 0   

 We can alter Euler’s equation using equation (8.26) as: 

   UdU = -

dp
r

= -

dp

dr
 
dr
r

= -a2
dr
r

   

 and now solving for    dr>r   : 

   
dr
r

= -

UdU

a2
= -

U2dU

Ua2
= -M2 dU

U
   

 Now substitute this relationship into equation (8.49) to obtain: 

   -M2dU
U

+

dU
U

+

dA
A

= (1 - M2)
dU
U

+

dA
A

= 0   

 After some algebraic manipulation, we obtain: 

      
dU
U

=
-dA>A

(1 - M2)
  (8.50)    
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 This is the area-velocity relationship for a streamtube. This relationship shows us how 

area and velocity relate to each other at different Mach numbers; there are several 

interesting cases shown in  Table   8.2   .  

 In other words, in a converging section with subsonic flow the velocity will in-

crease, and at a throat (assuming the conditions are right) there can be sonic flow, and 

then in a diverging section the velocity will increase to supersonic speeds. This is a 

very powerful, and at times confusing, result. Under the proper conditions, it could be 

possible to accelerate flow to supersonic conditions in a converging-diverging nozzle, 

assuming the flow reaches    M = 1    at the throat. 

 The ability to attain supersonic flow in a converging-diverging nozzle is deter-

mined by the pressure ratio,    p>pt   , between the pressure at the exit of the nozzle (termed 

the back pressure) and the total pressure upstream of the nozzle. In  Fig.   8.8,    the various 

 TABLE 8.2    Area-velocity Relationship for Different Mach Number Regimes 

  M    dA    dU   Description 

  M  = 0  7 0  6 0  Incompressible    U1A1 = U2A2    
    0 6 M 6 1     7 0  6 0  Subsonic compressible 
    M 7 1     6 0  6 0  Supersonic; density decreases faster than velocity increases 
    M = 1     0  Finite  Throat 
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 Figure 8.8         Effect of pressure ratio on flow in a converging- 

diverging nozzle [from  Liepmann and Roshko (1957) ].   



Sec. 8.4 / Converging-Diverging Nozzles    463

possible flow fields for the nozzle are shown in terms of the pressure ratio. Curves  a  and 

 b  represent two fully subsonic cases where the nozzle is behaving as a Venturri tube 

 (accelerating the flow in the converging section and decelerating the flow in the diverg-

ing section). The back pressure for these two cases determines how much the flow is ac-

celerated at the throat, although the Mach number is always    M 6 1,    even at the throat.  

 Curve  c  is also subsonic throughout, with the exception of the throat where the flow just 

reaches    M = 1.    From  Table   8.1    for    M = 1, p>pt = 0.528,    which is shown on the figure.       

 Aerodynamics Concept Box: How Jet Engines Can Reach Supersonic Speeds 

 The thrust of a jet engine is created by increasing the momentum of the air coming into the 

inlet (according to Newton’s second law, if the momentum of a flow increases there must be 

a net force acting in the opposite direction, such as for a fire hose nozzle). The greater the 

increase in momentum between the inlet and exhaust planes of the engine, the more thrust 

is produced. What if you could find a way to increase the velocity of air exiting the jet engine 

to supersonic speeds? According to the results we just saw for a converging-diverging (C-V) 

nozzle, if we placed one of these nozzles at the exhaust of the engine, then it will be possible 

to obtain supersonic exit velocities if the appropriate pressure ratio between the nozzle’s inlet 

and exit is provided. All supersonic fighters have jet engines with C-V nozzles, as seen below 

for a jet engine being tested in a static test cell at Arnold Engineering Development Center. 

Once the supersonic exit velocity is obtained, the engine can produce significant amounts of 

thrust for the cost of including a C-V nozzle in the design of the engine. Of course, the engine 

is also limited in mass flow rate since the throat is choked, which is why most C-V nozzles on 

fighters have variable areas both at the throat and nozzle exit plane. When the afterburner 

is engaged the throat and exit plane areas enlarge to allow increased mass flow. All of this 

increase in thrust comes with the cost, weight, and complexity of the C-V nozzle. The F100-

PW-229 turbojet engine shown below can achieve over 17,000 pounds of thrust, which can be 

increased to 29,000 pounds with the use of an afterburner. 

       A Pratt & Whitney F100-PW-229 undergoing static test-

ing (courtesy of the Arnold Engineering Development 

Center, U.S. Air Force)   



464    Chap. 8 / Dynamics of a Compressible Flow Field

 There is another branch for the flow which reaches    M = 1    in the throat, which 

occurs if the back pressure is reduced even further (Curve  j ). In this case, the flow ac-

celerates to    M = 1    and then continues to accelerate due to the nature of supersonic 

flow in a diverging section (see  Table   8.2   ). If the back pressure is at a value lower than 

 c  but higher than  j , then the flow starts to accelerate through the diverging section, but 

shocks form and raise the pressure up to the back pressure level. In the case of Curve 

d, a normal shock forms in the nozzle, increasing the pressure and decelerating the flow 

to subsonic levels (see branch  s  to  d�  to  d , where  s  to  d�  represents the shock). If the 

back pressure is further reduced, the normal shock reaches the exit (Curve  f  ), and when 

the back pressure is reduced even more, a shock diamond is formed outside the nozzle 

in order to obtain the correct back pressure (Curves  g  and  h ). This is known as an under-

expanded nozzle since the ideal back pressure for the nozzle is represented by Curve  j , 
so flows represented by Curves  d ,  f ,  g , and  h  have not expanded enough. If the back 

pressure is lower than the design case (Curve  k ), a series of expansion waves form to 

reduce the pressure to the actual back pressure; this is known as an over-expanded noz-

zle. Either over- or under-expanded nozzles are less efficient than the isentropic nozzle 

(Curve  j ), and will produce less thrust and possibly more drag.  

   8.5   CHARACTERISTIC EQUATIONS AND  
PRANDTL-MEYER FLOWS 

 Consider a two-dimensional flow around a slender airfoil shape. The deflection of the 

streamlines as flow encounters the airfoil is sufficiently small that shock waves are not 

generated. Therefore, the flow may be considered as isentropic (excluding the boundary 

layer, of course). For the development of the equations for a more general flow, refer 

to  Hayes and Probstein (1966) . For the present type of flow, the equations of motion in 

a natural (or streamline) coordinate system, as shown in  Fig.   8.9   , are:  

s

n

z

x

h-characteristic

j-characteristic

�

m

m

u

 Figure 8.9         Supersonic flow around an airfoil in natural (stream-

line) coordinates.   
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 continuity equation 

      
0(rU)

0s
+ rU

0u

0n
= 0  (8.51)    

  s -momentum equation 

      rU
0U
0s

+

0p

0s
= 0  (8.52)    

  n -momentum equation 

      rU2 0u

0s
+

0p

0n
= 0  (8.53)    

 Since the flow is isentropic, the energy equation provides no unique information and 

is, therefore, not used. However, since the flow is isentropic, the change in pressure 

with respect to the change in density is equal to the square of the speed of sound, from 

equation (8.25): 

      
0p

0r
= a2  (8.54)    

 and the continuity equation becomes: 

      
0p

0s
 
M2

- 1

rU2
+

0u

0n
= 0  (8.55)    

 Combining equations (8.53) and (8.55) and introducing the concept of the directional 

derivative [e.g.,  Wayland (1957) ], we obtain: 

      
0p

0j
+

rU2

2M2
- 1

 
0u

0j
= 0  (8.56a)    

 along the line having the direction 

   
dn
ds

= tan m =
1

2M2
- 1

   

 (i.e., the left-running characteristic    j    of  Fig.   8.9   ). A  characteristic  is a line which exists 

only in supersonic flows. Characteristics should not be confused with finite-strength 

waves, such as shock waves. The    j    characteristic is inclined to the local streamline by 

the angle    m,    which is the Mach angle, 

   m = sin-1a
1

M
b    

 The    j    characteristics correspond to the left-running Mach waves, which are so called 

because to an observer looking downstream, the Mach wave appears to be going down-

stream in a leftward direction. Equivalently,  

      
0p

0h
-

rU2

2M2
- 1

 
0u

0h
= 0  (8.56b)    
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 along the line whose direction is given by: 

   
dn
ds

= tan(-m)   

 (i.e., the right-running characteristic    h    of  Fig.   8.9   ). Equations (8.56a) and (8.56b) pro-

vide a relation between the local static pressure and the local flow inclination. 

 Euler’s equation for a steady, inviscid flow , which can be derived by neglecting the 

viscous terms and the body forces in the momentum equation (3.1),  states that 

   dp = -rU dU   

 For the left-running characteristic, equation (8.56a) becomes: 

      
dU
U

=
du

2M2
- 1

  (8.57)    

 But from the adiabatic-flow relations for a perfect gas, 

      a
U
at
b

2

= M2a1 +

g - 1

2
M2b

-1

  (8.58)    

 where    at    is the speed of sound at the stagnation conditions. Differentiating equation 

(8.58) and substituting the result into equation (8.57) yields 

      du =
2M2

- 1 dM2

2M251 + 3(g - 1) >24M26
  (8.59)    

 Integration of equation (8.59) yields the relation, which is valid for a left-running char-

acteristic: 

   u = n + constant of integration   

 where    v    is a function of the Mach number called the  Prandtl-Meyer function , which is 

given by: 

      n =
A

g + 1

g - 1
 arctan 

A

g - 1

g + 1
 (M2

- 1) - arctan2M2
- 1  (8.60)    

 Tabulations of the  Prandtl-Meyer function     (n),    the corresponding Mach number, and 

the corresponding Mach angle    (m)    are presented in  Table   8.3   . You should notice that 

the Prandtl-Meyer function is an angle with units of degrees in  Table   8.3   . 

 So, along a left-running characteristic, 

      n - u = R  (8.61a)    

 which is a constant. Similarly, along a right-running characteristic, 

      n + u = Q  (8.61b)    

 which is another constant. The use of equations (8.61a) and (8.61b) is simplified if 

the slope of the vehicle surface is such that we only need to consider the waves of a 

single family (i.e., all the waves are either left-running waves or right-running waves). 

To make the application clear, we will work through a sample problem. 
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 TABLE 8.3    Mach Number and Mach Angle as a Function of Prandtl-Meyer Angle 

    n     (deg)    M      m     (deg)      n     (deg)    M      m     (deg)  

 0.0  1.000  90.000  25.0  1.950  30.847 
 0.5  1.051  72.099  25.5  1.968  30.536 
 1.0  1.082  67.574  26.0  1.986  30.229 
 1.5  1.108  64.451  26.5  2.004  29.928 
 2.0  1.133  61.997  27.0  2.023  29.632 
 2.5  1.155  59.950  27.5  2.041  29.340 
 3.0  1.177  58.180  28.0  2.059  29.052 
 3.5  1.198  56.614  28.5  2.078  28.769 
 4.0  1.218  55.205  29.0  2.096  28.491 
 4.5  1.237  53.920  29.5  2.115  28.216 
 5.0  1.256  52.738  30.0  2.134  27.945 
 5.5  1.275  51.642  30.5  2.153  27.678 
 6.0  1.294  50.619  31.0  2.172  27.415 
 6.5  1.312  49.658  31.5  2.191  27.155 
 7.0  1.330  48.753  32.0  2.210  26.899 
 7.5  1.348  47.896  32.5  2.230  26.646 
 8.0  1.366  47.082  33.0  2.249  26.397 
 8.5  1.383  46.306  33.5  2.269  26.151 
 9.0  1.400  45.566  34.0  2.289  25.908 
 9.5  1.418  44.857  34.5  2.309  25.668 

 10.0  1.435  44.177  35.0  2.329  25.430 
 10.5  1.452  43.523  35.5  2.349  25.196 
 11.0  1.469  42.894  36.0  2.369  24.965 
 11.5  1.486  42.287  36.5  2.390  24.736 
 12.0  1.503  41.701  37.0  2.410  24.510 
 12.5  1.520  41.134  37.5  2.431  24.287 
 13.0  1.537  40.585  38.0  2.452  24.066 
 13.5  1.554  40.053  38.5  2.473  23.847 
 14.0  1.571  39.537  39.0  2.495  23.631 
 14.5  1.588  39.035  39.5  2.516  23.418 
 15.0  1.605  38.547  40.0  2.538  23.206 
 15.5  1.622  38.073  40.5  2.560  22.997 
 16.0  1.639  37.611  41.0  2.582  22.790 
 16.5  1.655  37.160  41.5  2.604  22.585 
 17.0  1.672  36.721  42.0  2.626  22.382 
 17.5  1.689  36.293  42.5  2.649  22.182 
 18.0  1.706  35.874  43.0  2.671  21.983 
 18.5  1.724  35.465  43.5  2.694  21.786 
 19.0  1.741  35.065  44.0  2.718  21.591 
 19.5  1.758  34.673  44.5  2.741  21.398 
 20.0  1.775  34.290  45.0  2.764  21.207 
 20.5  1.792  33.915  45.5  2.788  21.017 
 21.0  1.810  33.548  46.0  2.812  20.830 
 21.5  1.827  33.188  46.5  2.836  20.644 
 22.0  1.844  32.834  47.0  2.861  20.459 
 22.5  1.862  32.488  47.5  2.886  20.277 
 23.0  1.879  32.148  48.0  2.910  20.096 
 23.5  1.897  31.814  48.5  2.936  19.916 
 24.0  1.915  31.486  49.0  2.961  19.738 
 24.5  1.932  31.164  49.5  2.987  15.561 

(continued on next page)
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    n     (deg)    M      m     (deg)      n     (deg)    M      m     (deg)  

 50.0  3.013  19.386  76.5  4.955  11.642 
 50.5  3.039  19.213  77.0  5.009  11.517 
 51.0  3.065  19.041  77.5  5.063  11.392 
 51.5  3.092  18.870  78.0  5.118  11.268 
 52.0  3.119  18.701  78.5  5.175  11.145 
 52.5  3.146  18.532  79.0  5.231  11.022 
 53.0  3.174  18.366  79.5  5.289  10.899 
 53.5  3.202  18.200  80.0  5.348  10.777 
 54.0  3.230  18.036  80.5  5.408  10.656 
 54.5  3.258  17.873  81.0  5.470  10.535 
 55.0  3.287  17.711  81.5  5.532  10.414 
 55.5  3.316  17.551  82.0  5.596  10.294 
 56.0  3.346  17.391  82.5  5.661  10.175 
 56.5  3.375  17.233  83.0  5.727  10.056 
 57.0  3.406  17.076  83.5  5.795  9.937 
 57.5  3.436  16.920  84.0  5.864  9.819 
 58.0  3.467  16.765  84.5  5.935  9.701 
 58.5  3.498  16.611  85.0  6.006  9.584 
 59.0  3.530  16.458  85.5  6.080  9.467 
 59.5  3.562  16.306  86.0  6.155  9.350 
 60.0  3.594  16.155  86.5  6.232  9.234 
 60.5  3.627  16.006  87.0  6.310  9.119 
 61.0  3.660  15.856  87.5  6.390  9.003 
 61.5  3.694  15.708  88.0  6.472  8.888 
 62.0  3.728  15.561  88.5  6.556  8.774 
 62.5  3.762  15.415  89.0  6.642  8.660 
 63.0  3.797  15.270  89.5  6.729  8.546 
 63.5  3.832  15.126  90.0  6.819  8.433 
 64.0  3.868  14.983  90.5  6.911  8.320 
 64.5  3.904  14.840  91.0  7.005  8.207 
 65.0  3.941  14.698  91.5  7.102  8.095 
 65.5  3.979  14.557  92.0  7.201  7.983 
 66.0  4.016  14.417  92.5  7.302  7.871 
 66.5  4.055  14.278  93.0  7.406  7.760 
 67.0  4.094  14.140  93.5  7.513  7.649 
 67.5  4.133  14.002  94.0  7.623  7.538 
 68.0  4.173  13.865  94.5  7.735  7.428 
 68.5  4.214  13.729  95.0  7.851  7.318 
 69.0  4.255  13.593  95.5  7.970  7.208 
 69.5  4.297  13.459  96.0  8.092  7.099 
 70.0  4.339  13.325  96.5  8.218  6.989 
 70.5  4.382  13.191  97.0  8.347  6.881 
 71.0  4.426  13.059  97.5  8.480  6.772 
 71.5  4.470  12.927  98.0  8.618  6.664 
 72.0  4.515  12.795  98.5  8.759  6.556 
 72.5  4.561  12.665  99.0  8.905  6.448 
 73.0  4.608  12.535  99.5  9.055  6.340 
 73.5  4.655  12.406  100.0  9.210  6.233 
 74.0  4.703  12.277  100.5  9.371  6.126 
 74.5  4.752  12.149  101.0  9.536  6.019 
 75.0  4.801  12.021  101.5  9.708  5.913 
 75.5  4.852  11.894  102.0  9.885  5.806 
 76.0  4.903  11.768       

TABLE 8.3  continued
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  EXAMPLE 8.3:    Use Prandtl-Meyer relations to calculate the 
aerodynamic coefficients for a thin airfoil 

 Consider the infinitesimally thin airfoil which has the shape of a parabola: 

   x2 = -

c2

zmax

(z - zmax)   

 where    zmax = 0.10c,    moving through the air at    M� = 2.059.    The leading-

edge slope of the airfoil is parallel to the free stream. The thin airfoil will be 

represented by five linear segments, as shown in  Fig.   8.10   . For each segment 

   �x    will be 0.2 c . Therefore, the slopes of these segments are as follows:  

 Segment   a    b    c    d    e  

    u        -1.145�        -3.607�        -5.740�        -8.048�        -10.370�    

  Solution:     For the free-stream flow, using  Tables   8.1    and    8.3   , we can find: 

   n� = 28.000�   
p�

pt1
= 0.11653  u� = 0�   

 Since the turning angles are small, we will assume that both the acceleration of 

the flow over the upper surface and the deceleration of the flow over the lower 

surface are isentropic processes. Notice that the expansion waves on the upper 
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 Figure 8.10         Mach waves for supersonic flow past a thin airfoil: 

(a) airfoil section; (b) wave pattern.   
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surface diverge as the flow accelerates, but the compression waves of the lower 

surface coalesce. Since the flow is isentropic, we can use equations (8.61a) and 

(8.61b). Furthermore, the stagnation pressure is constant throughout the flow 

field and equal to    pt1    (which is the value for the free-stream flow). 

 In going from the free-stream (region    �     in  Fig.   8.10   ) to the first segment 

on the upper surface (region  ua ), we move along a right-running characteristic 

to cross the left-running Mach wave shown in the figure. Therefore, 

   n + u = Q   

 or 

   dn = -du   

 so 

    nua = n� - (uua - u�)    

    = 28.000� - (-1.145�) = 29.145�   

 and using  Table   8.3    we can find: 

   Mua = 2.1018   

 Using  Table   8.1    for isentropic flow,    pua>pt1 = 0.1091.    

 Similarly, in going from the free stream to the first segment on the 

lower surface (region  la ), we move along a left-running characteristic to cross 

the right-running Mach wave shown in the figure. Therefore, 

   n - u = R   

 or 

   dn = du   

 so 

    nla = n� + (ula - u�)    

    = 28.000� + (-1.145�) = 26.855�   

 and using  Table   8.3    we can find that: 

   Mla = 2.0173   

 and the pressure can be found in  Table   8.1    as    pla>pt1 = 0.1244.    

 A summary of the results for all of the segments follows:  

    Upper surface     Lower surface  

 Segment 
    nu        Mu        

ru

rt1
        nl        Ml        

rl

rt1
    

  a   29.145�  2.1018  0.1091  26.855�  2.0173  0.1244 
  b   31.607�  2.1952  0.0942  24.393�  1.9286  0.1428 
  c   33.740�  2.2784  0.0827  22.260�  1.8534  0.1604 
  d   36.048�  2.3713  0.0715  19.952�  1.7733  0.1813 
  e   38.370�  2.4679  0.0615  17.630�  1.6940  0.2045 
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 Notice that the Mach number in Region  ua  is higher than the Mach 

number in Region  la , and the pressure in Region  ua  is lower than the pres-

sure in Region  la . This means there is lift being produced on Segment  a . 

The same observation can be applied to all segments to show that a net lift 

is being produced by the airfoil. 

 We can now calculate the lift coefficient and the drag coefficient for 

the airfoil. Note that we have not been given the free-stream pressure (or, 

equivalently, the altitude at which the airfoil is flying) or the chord length of 

the airfoil. But that is not critical, since we seek the force coefficients, which 

are nondimensionalized by the dynamic pressure and the airfoil chord length: 

   Cl =
l

1
2r�U2

�c
   

 Referring to equation (8.46), we can show that for a perfect gas the dynamic 

pressure becomes: 

      q� =
1

2
r�U2

� =
g

2
 p�M2

�  (8.62)    

 So the lift coefficient can be rewritten as: 

      Cl =
l

(g>2)p�M2
�c

  (8.63)    

 Referring again to  Fig.   8.10   , the incremental lift force acting on any 

segment (i.e., the  i th segment) is: 

   dli = (pli - pui) dsi cos ui = (pli - pui) dxi   

 Similarly, the incremental drag force for any segment is 

   ddi = (pli - pui) dsi sin ui = (pli - pui) dxi tan ui   

 The incremental lift and drag components for each segment are summarized 

below.  

 Segment     
pli

p�

        
pui

p�

        
dli
p�

        
ddi

p�

    

  a   1.070  0.939  0.0262 c   0.000524 c  
  b   1.226  0.810  0.0832 c   0.004992 c  
  c   1.380  0.710  0.1340 c   0.01340 c  
  d   1.559  0.614  0.1890 c   0.0264 c  
  e   1.759  0.529   0.2460 c     0.0443 c   
 Sum      0.6784 c   0.0896 c  

 Finally, we can sum the incremental components to obtain: 

    Cl =
a  dli

(g>2)p�M2
� c

=
0.6784c

0.7(4.24)c
= 0.2286   

    Cd = a  ddi

(g>2)p�M2
�c

=
0.0896c

0.7(4.24)c
= 0.0302    
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 and the lift-to-drag ratio of the airfoil is: 

   
l
d

=
Cl

Cd
= 7.57   

 Notice that this is a very low lift-to-drag ratio for a two-dimensional airfoil. 

For comparison, low-speed airfoils have lift-to-drag ratios of around 100, 

meaning that supersonic airfoils are much less efficient than subsonic airfoils.       

 Aerodynamics Concept Box: Re-writing Dynamic Pressure 
in Terms of Mach Number 

 It is common in low-speed aerodynamics to write the dynamic pressure as: 

   q =
1

2
 rU2   

 However, when we start working with high-speed aerodynamics, the dynamic pressure would 

be much easier to work with if it were written in terms of Mach number (since most speeds 

are given in terms of Mach number instead of velocity). The dynamic pressure can easily be 

re-written in terms of Mach number by using a few straight-forward relations. Namely, for a 

perfect gas: 

   p = rRT  and  a2 = gRT    

 These relations coupled with the definition of the Mach number,    M K U>a   , will give us the 

appropriate relation: 

   q = 1
2 rU2 = 1

2 a
p

RT
bM2a2 = 1

2 a
p

RT
bM2gRT    

 With a little algebra, the relation becomes: 

   q =
g

2
 pM2   

 This relation is also convenient to use for the dynamic pressure in high-speed flow, and leads 

to a pressure coefficient relation given by: 

   Cp K
p - p�

q�

=
p - p�
g

2 p�M2
�

=
2

gM2
�

a
p

p�

- 1b    

 This relationship becomes convenient for converting pressure coefficients into pressure ra-

tios, and vice versa. 

   8.6  SHOCK WAVES 

 The formation of a shock wave occurs when a supersonic flow decelerates in response 

to a sharp increase in pressure or when a supersonic flow encounters a sudden, com-

pressive change in direction. For flow conditions where the gas is a continuum, the 

shock wave is a narrow region (on the order of several molecular mean free paths thick, 

   �6 * 10-6 cm   ) across which there is an almost instantaneous change in the values of the 
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flow parameters. Because of the large streamwise variations in velocity, pressure, and 

temperature, viscous and heat-conduction effects are important within the shock wave. 

The difference between a shock wave and a Mach wave should be kept in mind. A  Mach 
wave  represents a surface across which some derivatives of the flow variables (such as 

the thermodynamic properties of the fluid and the flow velocity) may be discontinuous 

while the variables themselves are continuous. A  shock wave  represents a surface across 

which the thermodynamic properties and the flow velocity are essentially discontinuous. 

Therefore, the characteristic curves, or Mach lines, are patching lines for continuous 

flows, whereas shock waves are patching lines for discontinuous flows. 

 Consider the curved shock wave illustrated in  Fig.   8.11   . The flow upstream of the 

shock wave, which is stationary in the body-fixed coordinate system, is supersonic. At 

the plane of symmetry, the shock wave is normal (or perpendicular) to the free-stream 

flow, and the flow downstream of the shock wave is subsonic. Away from the plane of 

symmetry, the shock wave is oblique and the downstream flow is often supersonic. The 

velocity and the thermodynamic properties upstream of the shock wave are designated 

by the subscript 1. Notice that while the subscript 1 designates the free-stream    (�)    

properties for flows such as those in  Fig.   8.11   , it designates the local flow properties 

just upstream of the shock wave when it occurs in the midchord region of a transonic 

airfoil  (see  Chapter   9   ) . The downstream values are designated by the subscript 2. We 

will analyze oblique shock waves by writing the continuity, the momentum, and the en-

ergy equations for the flow through the control volume shown in  Fig.   8.12   . For a steady 

flow, the integral equations of motion  from  Chapter   2     yield the following relations for 

the flow across an oblique segment of the shock wave:  

 Continuity: 

      r1u1 = r2u2  (8.64)    

Oblique portion
of the shock

wave

Normal portion of
the shock wave

U2

U2

u1

v2u2

v1

u � 90

U1(�U�)

U1(�U�)

u

d

 Figure 8.11         Curved shock wave illustrating nomenclature for 

normal shock wave and for oblique shock wave.   
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 Normal component of momentum: 

      p1 + r1u
2
1 = p2 + r2u

2
2  (8.65)    

 Tangential component of momentum: 

      r1u1v1 = r2u2v2  (8.66)    

 Energy: 

      h1 +
1
2(u2

1 + v

2
1) = h2 +

1
2(u2

2 + v

2
2)  (8.67)    

 In addition to describing the flow across an oblique shock wave such as shown in 

 Fig.   8.12   , these relations can be used to describe the flow across a normal shock wave, 

or that portion of a curved shock wave which is perpendicular to the free stream, by 

letting    v1 = v2 = 0.     

 Equation (8.65) can be used to calculate the maximum value of the pressure coef-

ficient in the hypersonic limit as    M1 S � .    In this case, the flow is essentially stagnated 

   (u2 � 0)    behind a normal shock wave, and equation (8.65) becomes: 

      p2 - p1 � r1u
2
1  (8.68)    

 As a result, 

      Cpmax
=

p2 - p1

1
2r1U

2
1

� 2  (8.69)    

 Notice that at the stagnation point of a vehicle in a hypersonic stream,    Cp    approaches 2.0. 

The value of    Cp    at the stagnation point of a vehicle in a supersonic stream is a function 

of the free-stream Mach number and is greater than 1.0. Recall that it is 1.0 for a low-

speed free stream independent of the velocity, provided that the flow is incompressible. 

 Comparing equation (8.64) with equation (8.66), we find that for the oblique shock 

wave, 

      v1 = v2  (8.70)    

 That is, the tangential component of the velocity is constant across the shock wave 

and we need not consider equation (8.66) further. Now the energy equation becomes: 

      h1 +
1
2u2

1 = h2 +
1
2u2

2  (8.71)    

Surface of
control volume

Shock
wave Surface of

control volume

U2

u2
U1	a v2

v1
u1�U1 sin u

u
d

 Figure 8.12         Control volume for analysis of flow through an 

 oblique shock wave.   
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 There are four unknowns    (p2, r2, u2, h2)    in the three equations (8.64), (8.65), and (8.71). 

We need to introduce an equation of state as the fourth equation. For hypervelocity flows 

where the shock waves are strong enough to cause dissociation or ionization, we can solve 

these equations numerically using the equation of state in tabular or in graphical form 

[e.g.,  Moeckel and Weston (1958) ]. However, for a perfect-gas flow [from equation  (1.10)    ]: 

   p = rRT   

 and 

   h = cpT     

A comparison of the properties downstream of a normal shock wave using the charts for 

air in thermodynamic equilibrium with those computed using the perfect-gas model 

for air is presented in  Chapter   12   .  

 Notice that equations (8.64), (8.65), and (8.71) involve only the component of 

velocity normal to the shock wave: 

      u1 = U1 sin u  (8.72)    

 So, the property changes across an oblique shock wave are the same as those across 

a normal shock wave when they are written in terms of the upstream Mach number 

component perpendicular to the shock; the tangential component of the velocity is un-

changed. This is the  sweepback principle , that the oblique flow is reduced to the normal 

flow by a uniform translation of the axes (i.e., a Galilean transformation). Note that the 

tangential component of the Mach number does change, since the temperature (and 

therefore the speed of sound) changes across the shock wave. 

 Since the flow through the shock wave is adiabatic, the entropy must increase as 

the flow passes through the shock wave. Therefore, the flow must decelerate (i.e., the 

pressure must increase) as it passes through the shock wave. We can now obtain the 

relation between the shock-wave    (u)    and the deflection angle    (d)   : 

      cot d = tan u c
(g + 1)M2

1

2(M2
1 sin2 u - 1)

- 1 d   (8.73)    

 From equation (8.73) we see that the deflection angle is zero for two shock-wave 

angles: (1) the flow is not deflected when    u = m,    since the Mach wave results from an 

infinitesimal disturbance (i.e., a zero-strength shock wave), and (2) the flow is not de-

flected when it passes through a normal shock wave (i.e., when    u = 90�   ). 

 Solutions to equation (8.73) are presented in graphical form in  Fig.   8.13   a. Notice 

that for a given deflection angle    d,    there are two possible values for the shock-wave 

angle    u.    The larger of the two values of    u    is for a  strong  shock wave, while the smaller 

value is for a  weak  shock wave. In practice, the weak shock wave typically occurs in 

external aerodynamic flows. However, the strong shock wave occurs if the downstream 

pressure is sufficiently high. The high downstream pressure associated with the strong 

shock wave may occur in flows in wind tunnels, engine inlets, or other ducts.        

 If the deflection angle exceeds the maximum value for an attached weak shock to 

be generated, a strong, detached shock wave will occur. For instance, a flat-plate airfoil 

can be inclined 34° to a Mach 3.0 stream and still generate a weak shock wave. This is 

the maximum deflection angle for a weak shock wave to occur at this Mach number. 
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If the airfoil were to be inclined at 35° to the Mach 3.0 stream, a strong curved shock 

wave (known as a  bow shock ) would occur with a complex subsonic/supersonic flow 

downstream of the shock wave. 

 Once the shock-wave angle    u    has been found for the given values of    M1    and    d,    the 

other downstream properties can be found using the following relations: 

       
p2

p1

=
2gM2

1 sin2 u - (g - 1)

g + 1
  (8.74)    

       
r2

r1
=

(g + 1)M2
1 sin2 u

(g - 1)M2
1 sin2 u + 2

  (8.75)    

       
T2

T1

=
32gM2

1 sin2 u - (g - 1)4 3(g - 1)M2
1 sin2 u + 24

(g + 1)2M2
1 sin2 u

  (8.76)    

    M2
2 =

(g - 1)M2
1 sin2 u + 2

32gM2
1 sin2 u - (g - 1)4  sin2(u - d)
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 Figure 8.13         Variation of shock-wave parameters with wedge flow- 

deflection angle for various upstream Mach numbers,    g = 1.4:    (a) shock-

wave angle.    
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pt2

pt1
= e-�s>R   (8.77)    

       = c
(g + 1)M2

1 sin2 u

(g - 1)M2
1 sin2 u + 2

d
g>(g-1)

c
g + 1

2gM2
1 sin2 u - (g - 1)

d
1>(g-1)

  (8.78)    

 and 

       Cp =
p2 - p1

q1

=
4(M2

1 sin2 u - 1)

(g + 1)M2
1

  (8.79)    

 A summary of results for flow across normal and oblique shock waves is presented 

in  Table   8.4   . Notice that all of the static properties increase across normal or oblique 

shocks (the increase in pressure leads to the notion that a shock “compresses” the flow). 

The Mach number always decreases across a shock, to subsonic values for a normal 

shock, and to lower supersonic or subsonic values across an oblique shock. Since shocks 

are not isentropic, the total pressure decreases, but the total temperature is constant 

since shocks are adiabatic. The major difference between normal and oblique shocks is 

 how much  the properties change across the shock wave, not  how  the properties change.  

0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

10 20 30 40 50

Weak shock wave

Streamline

Shock wave

Strong shock wave
Sonic limit (M2 � 1)

M2
M1

p1
p2

P
re

ss
u

re
 c

o
e
ff

ic
ie

n
t,

p 2
�

p 1
q 1 M1�2.2

2.0

2.6
3.0

3.2 3.6
4.0

6 8 20
4.5

1.8

1.9

1.7
1.6

1.5
1.45

1.40

1.35
1.30

1.25

1.20

1.15
1.10

Deflection angle, d, degrees

d

�

 Figure 8.13         continued (b) pressure coefficient.   
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 The pressure coefficient is presented in  Fig.   8.13   b as a function of    d    and    M1.    Equa-

tion (8.79) is consistent with equation (8.69) for a normal shock since    g S 1    as    M1 S �     

due to the dissociation of molecules in the air at high Mach numbers. The values for 

many of these ratios are presented for a normal shock wave in  Table   8.5    and in  Fig.   8.14   . 

The values for the pressure ratios, the density ratios, and the temperature ratios for an 
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 Figure 8.13         continued (c) downstream Mach number.   

 TABLE 8.4    Flow Property Changes across Weak Shock Waves 

 Normal shock  Oblique shock 

    p2 7 p1        p2 7 p1    
    r2 7 r1        r2 7 r1    
    T2 7 T1        T2 7 T1    
    M2 6 1        M2 6 M1    
    pt,2 6 pt,1        pt,2 6 pt,1    
    Tt,2 = Tt,1        Tt,2 = Tt,1    
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 TABLE 8.5    Correlation of Flow Properties across a Normal Shock Wave as a Function of 
the Upstream Mach Number for Air,    g = 1.4    

    M1        M2        
p2

p1
        

r2

r1
        

T2

T1
        

pt2

pt1
    

 1.00  1.00000  1.00000  1.00000  1.00000  1.00000 
 1.05  0.95312  1.1196  1.08398  1.03284  0.99987 
 1.10  0.91177  1.2450  1.1691  1.06494  0.99892 
 1.15  0.87502  1.3762  1.2550  1.09657  0.99669 
 1.20  0.84217  1.5133  1.3416  1.1280  0.99280 
 1.25  0.81264  1.6562  1.4286  1.1594  0.98706 
 1.30  0.78596  1.8050  1.5157  1.1909  0.97935 
 1.35  0.76175  1.9596  1.6027  1.2226  0.96972 
 1.40  0.73971  2.1200  1.6896  1.2547  0.95819 
 1.45  0.71956  2.2862  1.7761  1.2872  0.94483 
 1.50  0.70109  2.4583  1.8621  1.3202  0.92978 
 1.55  0.68410  2.6363  1.9473  1.3538  0.91319 
 1.60  0.66844  2.8201  2.0317  1.3880  0.89520 
 1.65  0.65396  3.0096  2.1152  1.4228  0.87598 
 1.70  0.64055  3.2050  2.1977  1.4583  0.85573 
 1.75  0.62809  3.4062  2.2781  1.4946  0.83456 
 1.80  0.61650  3.6133  2.3592  1.5316  0.81268 
 1.85  0.60570  3.8262  2.4381  1.5694  0.79021 
 1.90  0.59562  4.0450  2.5157  1.6079  0.76735 
 1.95  0.58618  4.2696  2.5919  1.6473  0.74418 
 2.00  0.57735  4.5000  2.6666  1.6875  0.72088 
 2.05  0.56907  4.7363  2.7400  1.7286  0.69752 
 2.10  0.56128  4.9784  2.8119  1.7704  0.67422 
 2.15  0.55395  5.2262  2.8823  1.8132  0.65105 
 2.20  0.54706  5.4800  2.9512  1.8569  0.62812 
 2.25  0.54055  5.7396  3.0186  1.9014  0.60554 
 2.30  0.53441  6.0050  3.0846  1.9468  0.58331 
 2.35  0.52861  6.2762  3.1490  1.9931  0.56148 
 2.40  0.52312  6.5533  3.2119  2.0403  0.54015 
 2.45  0.51792  6.8362  3.2733  2.0885  0.51932 
 2.50  0.51299  7.1250  3.3333  2.1375  0.49902 
 2.55  0.50831  7.4196  3.3918  2.1875  0.47927 
 2.60  0.50387  7.7200  3.4489  2.2383  0.46012 
 2.65  0.49965  8.0262  3.5047  2.2901  0.44155 
 2.70  0.49563  8.3383  3.5590  2.3429  0.42359 
 2.75  0.49181  8.6562  3.6119  2.3966  0.40622 
 2.80  0.48817  8.9800  3.6635  2.4512  0.38946 
 2.85  0.48470  9.3096  3.7139  2.5067  0.37330 
 2.90  0.48138  9.6450  3.7629  2.5632  0.35773 
 2.95  0.47821  9.986  3.8106  2.6206  0.34275 
 3.00  0.47519  10.333  3.8571  2.6790  0.32834 
 3.50  0.45115  14.125  4.2608  3.3150  0.21295 
 4.00  0.43496  18.500  4.5714  4.0469  0.13876 
 4.50  0.42355  23.458  4.8119  4.8761  0.09170 
 5.00  0.41523  29.000  5.0000  5.8000  0.06172 
 6.00  0.40416  41.833  5.2683  7.941  0.02965 
 7.00  0.39736  57.000  5.4444  10.469  0.01535 
 8.00  0.39289  74.500  5.5652  13.387  0.00849 
 9.00  0.38980  94.333  5.6512  16.693  0.00496 

 10.00  0.38757  116.50  5.7413  20.388  0.00304 
    �      0.37796     �      6.000     �      0 
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oblique shock wave can be read from  Table   8.5    provided that    M1 sin u    is used instead 

of    M1    in the first column. Note that since it is the tangential component of the velocity 

which is unchanged and not the tangential component of the Mach number, we cannot 

use  Table   8.5    to calculate the downstream Mach number. The downstream Mach number 

is presented in  Fig.   8.13   c as a function of the deflection angle and of the upstream Mach 

number. An alternative procedure to calculate the Mach number behind the shock wave 

would be to convert the value of    M2    in  Table   8.5    (which is the normal component of 

the Mach number) to the normal component of velocity, using    T2    to calculate the local 

speed of sound. Then, we can calculate the total velocity downstream of the shock wave:   

   U2 = 2u2
2 + v

2
2   

 from which we can calculate the downstream Mach number. 

 For supersonic flow past a cone at zero angle of attack, the shock-wave angle    uc    

depends on the upstream Mach number    M1    and the cone half-angle    dc.    Whereas all 

properties are constant downstream of the weak, oblique shock wave generated when 

supersonic flow encounters a wedge, this is not the case for the conical shock wave. In 

the conical shock wave case, properties are constant along rays (identified by angle    v   ) 

emanating from the vertex of the cone, as shown in the sketch of  Fig.   8.15   . Therefore, 

the static pressure varies with distance back from the shock along a line parallel to the 

cone axis. The shock-wave angle, the pressure coefficient:  

   Cp =
pc - p1

q1

   

 (where    pc    is the static pressure along the surface of the cone), and the Mach number of 

the inviscid flow at the surface of the cone    Mc    are presented in  Fig.   8.16    as a function of 

the cone semivertex angle    dc    and the free-stream Mach number    M1.                   
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 Figure 8.14         Property variations 

across a normal shock wave.   
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 Figure 8.16         Variations of shock-wave parameters with cone 

 semivertex angle for various upstream Mach numbers,    g = 1.4:    

(a) shock-wave angle.   
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  EXAMPLE 8.4    Supersonic flow past a sharp cone at zero degrees 
angle-of-attack 

 Consider the cone whose semivertex angle is 10° exposed to a Mach 2 free 

stream, as shown in  Fig.   8.15   . Find the pressure immediately behind the 

shock and on the surface of the cone. 

  Solution:     Using  Fig.   8.16   a, the shock-wave angle is 31°. The pressure just downstream 

of the shock wave is given by equation (8.74) as 

    
p2

p1

=
2(1.4)(4)(0.5150)2

- 0.4

2.4
= 1.07   
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 Figure 8.16         continued (b) pressure coefficient.    
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    p2 = 1.07p1 = 1.07p�    

 The pressure increases across the shock layer (i.e., moving parallel to the 

cone axis), reaching a value of    1.29p1    (or    1.29p�   ) at the surface of the cone, 

as can be calculated using  Fig.   8.16   b. Included for comparison is the pressure 

downstream of the weak, oblique shock for a wedge with the same turning 

angle. Notice that the shock-wave angle    u
w

    and the pressure in the shock 

layer    p
w

    are greater for the wedge. The difference is due to axisymmetric 

effects, which allow the flow to spread around the cone (a three-dimensional 

pressure relief) and which does not occur in the case of the wedge.    

   8.7  VISCOUS BOUNDARY LAYER 

  In our analysis of boundary layers in  Chapter   4   , we considered     mostly flows for which 

the density is constant. The correlations for the skin-friction coefficient which were 

 developed for these low-speed flows were a function of the Reynolds number only. 

However, as the free-stream Mach number approaches the transonic regime, shock 

waves occur at various positions on the configuration , as we will discuss in  Chapter   9    . 
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The presence of the boundary layer and the resultant shock-wave/boundary-layer in-

teraction can radically alter the flow field. Furthermore, when the free-stream Mach 

number exceeds two, the work of compression and of viscous energy dissipation 

 produces considerable increases in the static temperature in the boundary layer. Be-

cause the temperature-dependent properties, such as the density and the viscosity, are 

no longer constant, our solution technique must include the energy equation as well as 

the continuity and momentum equations.          

 Aerodynamics Concept Box: Schlieren Flow Visualization 

 A Schlieren photography system “relies on the fact that light rays are bent whenever they 

encounter changes in density of a fluid. Schlieren systems are used to visualize the flow away 

from the surface of an object.” The Schlieren system shown below uses two optical-quality 

concave mirrors, one on each side of the test section. A mercury vapor lamp or a spark gap 

system (or even a high intensity light-emitting diode) is used as a bright source of light. The 

light is passed through a slit which is placed such that the reflected light from the mirror 

forms parallel rays that pass through the test section. On the other side of the tunnel, the par-

allel rays are collected by another mirror and focused to a point at the knife edge. The rays 

continue on to a recording device like a video camera. 

 When parallel rays of light encounter a density gradient, the light is refracted (or bent). 

Since a shock wave is a discontinuous change in density, parallel rays of light passing through 

the shock wave are bent (see the dashed line in the figure). The bent ray of light misses the 

focal point, and is blocked by the knife edge. The shock waves are now visible as dark regions 

on the picture, which allows us to visualize the shock wave patterns. A unique Schlieren 

photograph of a T-38 flying in the atmosphere is shown below, where the shocks, expansions 

waves, and wake of the aircraft are clearly visible. More information about Schlieren systems 

is available in  Settles (2001) . 

Test Section
(Downstream View)

Model

Mirror

Knife edge

Recording device

Image
(Side View)

Shock wave
Density change

Light source

Slit

Mirror

       Layout of a Schlieren system  
 (from NASA Glenn Research Center)  
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 Because the density gradients in the compressible boundary layer affect a parallel 

beam of light passing through a wind-tunnel test section, we can photographically record 

the boundary layer. A shadowgraph of the flow field for a cone    (dc = 12�)    in a super-

sonic, Mach 11.5 stream is presented in  Fig.   8.17   . Boundary-layer transition is in process 

approximately one-quarter of the way along the portion of the conical generator which 

       T-38 at Mach 1.1 and 13,700 ft altitude  
 (courtesy of NASA Dryden Flight Research Center)  

Laminar boundary layer

Turbulent boundary layerShock wave

 Figure 8.17         Hypersonic flow past a slender cone:    M� = 11.5;    

   Re�,L = 4.28 * 106; dc = 12�    (courtesy of Vought Archives).   
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appears in the photograph. Upstream (nearer the apex), the laminar boundary layer is 

thin and “smooth.” Downstream (toward the base of the cone), the vortical character 

of the turbulent boundary layer is evident. Of course,  as we discussed in  Chapter   4   ,  

transition does not take place at a single point, but rather along a finite distance of the 

cone. You should also notice that the shock-wave angle is approximately 14.6°. The 

theoretical value, as calculated using  Fig.   8.16   a, is 14.3°. That a slightly larger angle is 

observed experimentally is due in part to the displacement effect of the boundary layer.  

 In addition to the calculations of the aerodynamic forces and moments, the aero-

dynamicist must address the problem of heat transfer. In the following sections, we will 

briefly discuss: 

    •   The effects of compressibility  

   •   Shock/wave/boundary-layer interactions (also called viscous/inviscid interactions)  

   •   Shock/shock interactions   

   8.7.1  Effects of Compressibility 

 As we previously saw, considerable variations in the static temperature occur in the super-

sonic flow field around a body. We can calculate the maximum temperature that occurs 

in the flow of a perfect gas by using the energy equation for an adiabatic flow [i.e., equa-

tion (8.34)]. This maximum temperature, which is the  stagnation temperature , is given by: 

   Tt = T
�
a1 +

g - 1

2
 M2

�b    

 For example, we can calculate the stagnation temperature for a flow past a vehicle 

flying at a Mach number of 4.84 and at an altitude of 20 km.  Referring to  Table   1.2   ,  

   T�    is 216.65 K. Also, since    a�    is 295.069 m/s,    U�    is 1428 m/s (or 5141 km/h). The total 

temperature for this flow is: 

   Tt = 216.6531 + 0.2(4.84)24 = 1231.7 K = Tte   

 which is the stagnation temperature of the air outside of the boundary layer (at locations 

where the effects of heat transfer are negligible). For this flow we see that the temperature 

of the air at the stagnation point is sufficiently high that we could not use an aluminum 

structure. We have calculated the stagnation temperature, which exists only where the 

flow is at rest relative to the vehicle and where there is no heat transferred from the fluid. 

However, because heat is transferred from the boundary layer of these flows, the static 

temperature does not reach this value anywhere else on the surface of the cone (known 

as the  recovery temperature ). A numerical solution for the static temperature distribution 

across a laminar boundary layer on a flat-plate wing exposed to this flow is presented in 

 Fig.   8.18   . Although the maximum value of the static temperature is well below the stagna-

tion temperature, it is greater than either the temperature at the wall or at the edge of the 

boundary layer. Therefore, a designer of vehicles that fly at supersonic speeds must consid-

er problems related to convective heat transfer (i.e., the heat transfer due to fluid motion).  

 The correlation between convective heat transfer and the shear forces acting at 

the wall, which is known as  Reynolds analogy   and was discussed in  Chapter   4    , is clearly 

illustrated in  Fig.   8.19   . The streaks in the oil-flow pattern obtained in a wind tunnel 
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 Figure 8.18         Static temperature distribution across a compress-

ible, laminar boundary layer;    Me = 4.84;       T
w
= 0.095 Tte.      

 Figure 8.19         Comparison between the oil flow pattern (indicating 

skin friction) obtained in the wind tunnel and the char patterns 

on a recovered  Apollo  spacecraft (courtesy of NASA).   
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show that the regions of high shear correspond to the regions of high heating, which 

is indicated by the char patterns on the recovered spacecraft. For further information 

about convective heat transfer, the reader is referred  to  Chapter   4    and  to texts such as 

 Kays (1966)  and  Chapman (1974) .  

 For high-speed flow past a flat plate, the skin-friction coefficient depends on the 

local Reynolds number, the Mach number of the inviscid flow, and the temperature 

ratio,    T
w
>Te   : 

      Cf = Cf aRex, Me, 
T

w

Te
b   (8.80)    

  Spalding and Chi (1964)  developed a calculation procedure based on the assumption 

that there is a unique relation between    FcCf     and    RexFRe,    where    Cf     is the skin-friction 

coefficient,    Rex    is the local Reynolds number,    RexFRe    is an equivalent incompressible 

Reynolds number, and    Fc    and    FRe    are correlation parameters which depend only on 

the Mach number and on the temperature ratio.    Fc    and    FRe    are presented as functions 

of    Me    and of    T
w
>Te    in  Tables   8.6    and    8.7   , respectively. Therefore, given the flow condi-

tions and the surface temperature, we can calculate    Fc    and    FRe.    Then we can calculate 

the product    FReRex    and find the corresponding value of    FcCf     in  Table   8.8   . Since    Fc    is 

known, we can solve for    Cf .       

 The ratio of the experimental skin-friction coefficient to the incompressible value 

at the same Reynolds number [as taken from  Stalmach (1958) ] is presented in  Fig.   8.20    

as a function of the Mach number. The experimental skin-friction coefficients are 

for adiabatic flows; that is, the surface temperature was such that there was no heat 

 TABLE 8.6    Values of    Fc    as a Function of    Me    and    T
w
>Te    

      Me    

    
T

w

Te
      0.0    1.0    2.0    3.0    4.0    5.0    6.0  

 0.05  0.3743  0.4036  0.4884  0.6222  0.7999  1.0184  1.2759 
 0.10  0.4331  0.4625  0.5477  0.6829  0.8628  1.0842  1.3451 
 0.20  0.5236  0.5530  0.6388  0.7756  0.9584  1.1836  1.4491 
 0.30  0.5989  0.6283  0.7145  0.8523  1.0370  1.2649  1.5337 
 0.40  0.6662  0.6957  0.7821  0.9208  1.1069  1.3370  1.6083 
 0.50  0.7286  0.7580  0.8446  0.9839  1.1713  1.4031  1.6767 
 0.60  0.7873  0.8168  0.9036  1.0434  1.2318  1.4651  1.7405 
 0.80  0.8972  0.9267  1.0137  1.1544  1.3445  1.5802  1.8589 
 1.00  1.0000  1.0295  1.1167  1.2581  1.4494  1.6871  1.9684 
 2.00  1.4571  1.4867  1.5744  1.7176  1.9130  2.1572  2.4472 
 3.00  1.8660  1.8956  1.9836  2.1278  2.3254  2.5733  2.8687 
 4.00  2.2500  2.2796  2.3678  2.5126  2.7117  2.9621  3.2611 
 5.00  2.6180  2.6477  2.7359  2.8812  3.0813  3.3336  3.6355 
 6.00  2.9747  3.0044  3.0927  3.2384  3.4393  3.6930  3.9971 
 8.00  3.6642  3.6938  3.7823  3.9284  4.1305  4.3863  4.6937 

 10.00  4.3311  4.3608  4.4493  4.5958  4.7986  5.0559  5.3657 

   Source:  Spalding and Chi (1964).  
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 transferred from the fluid to the wall. The experimental values are compared with those 

given by the Spalding-Chi correlation. Another well-used compressible skin-friction 

relation was developed by  Van Driest (1956)  which should also be investigated for 

high-speed estimation purposes.  

  EXAMPLE 8.5:    Skin-friction coefficient for a supersonic, turbulent 
boundary layer 

 What is the skin-friction coefficient for a turbulent boundary layer on a flat 

plate, when    Me = 2.5,       Rex = 6.142 * 106,    and    T
w
= 3.0Te?    

 TABLE 8.7    Values of    FRe    as a Function of    Me    and    T
w
>Te    

      Me    

    
T

w

Te
      0.0    1.0    2.0    3.0    4.0    5.0    6.0  

 0.05  221.0540  232.6437  256.5708  278.2309  292.7413  300.8139  304.3061 
 0.10  68.9263  73.0824  82.3611  91.2557  97.6992  101.7158  103.9093 
 0.20  20.4777  22.0029  25.4203  28.9242  31.6618  33.5409  34.7210 
 0.30  9.8486  10.6532  12.5022  14.4793  16.0970  17.2649  18.0465 
 0.40  5.7938  6.2960  7.4742  8.7703  9.8686  10.6889  11.2618 
 0.50  3.8127  4.1588  4.9812  5.9072  6.7120  7.3304  7.7745 
 0.60  2.6969  2.9499  3.5588  4.2576  4.8783  5.3658  5.7246 
 0.80  1.5487  1.7015  2.0759  2.5183  2.9247  3.2556  3.5076 
 1.00  1.0000  1.1023  1.3562  1.6631  1.9526  2.1946  2.3840 
 2.00  0.2471  0.2748  0.3463  0.4385  0.5326  0.6178  0.6903 
 3.00  0.1061  0.1185  0.1512  0.1947  0.2410  0.2849  0.3239 
 4.00  0.0576  0.0645  0.0829  0.1079  0.1352  0.1620  0.1865 
 5.00  0.0356  0.0400  0.0516  0.0677  0.0856  0.1036  0.1204 
 6.00  0.0240  0.0269  0.0349  0.0460  0.0586  0.0715  0.0834 
 8.00  0.0127  0.0143  0.0187  0.0248  0.0320  0.0394  0.0466 

 10.00  0.0078  0.0087  0.0114  0.0153  0.0198  0.0246  0.0294 

 TABLE 8.8    Values of    FcCf    as a Function of    FReRex    

    FcCf        FReRex        FcCf        FReRex    

 0.0010     5.758 * 1010     0.0055     8.697 * 104    
 0.0015     4.610 * 108     0.0060     5.679 * 104    
 0.0020     4.651 * 107     0.0065     3.901 * 104    
 0.0025     9.340 * 106     0.0070     2.796 * 104    
 0.0030     2.778 * 106     0.0075     2.078 * 104    
 0.0035     1.062 * 106     0.0080     1.592 * 104    
 0.0040     4.828 * 105     0.0085     1.251 * 104    
 0.0045     2.492 * 105     0.0090     1.006 * 104    
 0.0050     1.417 * 105        

   Source:   Spalding and Chi (1964) .  
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  Solution:     For these calculations, 

   Fc = 2.056 (see Table 8.6)   

 and 

   FRe = 0.1729 (see Table 8.7)   

 Therefore, 

   RexFRe = 1.062 * 106   

 Using  Table   8.8   , we obtain 

   FcCf = 0.0035   

 so that 

   Cf = 1.70 * 10-3       

   8.8  SHOCK-WAVE/BOUNDARY-LAYER INTERACTIONS 

 Severe problems of locally high heating or premature boundary-layer separation may 

result due to viscous/inviscid interactions (which is another name for shock/boundary 

layer interactions) which occur during flight at supersonic Mach numbers. The shock 

wave generated by a deflected flap will interact with the upstream boundary layer, which 

will generally cause the upstream boundary layer to separate with locally high heating 

rates occurring when the flow reattaches. The extent of the separation, which can cause 

a loss of control effectiveness, depends on the character of the upstream boundary-layer. 

Other viscous interaction problems can occur when the shock waves generated by the 

forebody and other external components impinge on downstream surfaces of the vehicle. 

Again, locally severe heating rates or boundary-layer separation may occur. 
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 Figure 8.20         Ratio of the compressible, turbulent experimental 

skin-friction coefficient to the incompressible value at the same 

Reynolds number as a function of Mach number.   
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 The basic features of the interaction between a shock wave and a laminar bound-

ary layer for a two-dimensional flow are shown in  Fig.   8.21   a. The pressure rise induced 

by the shock wave is propagated upstream through the subsonic portion of the boundary 

layer. Recall that pressure disturbances can affect the upstream flow only if the flow is 

subsonic. As a result, the boundary-layer thickness increases and the momentum de-

creases. The thickening boundary layer deflects the external stream and creates a series 

of compression waves to form a    l@like    shock structure. If the shock-induced adverse-

pressure-gradient is great enough, the skin friction will be reduced to zero and the 

boundary layer will separate. The subsequent behavior of the flow is a strong function 

of the geometry. For a flat plate, the flow reattaches at some distance downstream. In 

the case of a convex body, such as an airfoil, the flow may or may not reattach, depend-

ing upon the body geometry, the characteristics of the boundary layer, and the strength 

of the shock wave.  

 If the flow reattaches, a Prandtl-Meyer expansion fan results as the flow turns back 

toward the surface. As the flow reattaches and turns parallel to the plate, a second shock 

wave (termed the  reattachment shock ) is formed. Immediately downstream of reattach-

ment, the boundary-layer thickness reaches a minimum. It is in this region where the 

maximum heating rates occur. 
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 Figure 8.21         Flow field for shock-wave boundary-layer interaction: 

(a) laminar boundary-layer; (b) turbulent boundary-layer.   
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 In the case of a shock interaction with a turbulent boundary-layer ( Fig.   8.21   b), the 

length of the interaction is considerably shorter than the interaction length for a lam-

inar boundary layer. This results because the air particles near the wall of a turbulent 

 boundary-layer have greater momentum than do those near the wall in a laminar boundary-

layer and can therefore overcome a greater adverse pressure gradient. Furthermore, since 

the subsonic portion of a turbulent boundary layer is relatively thin, the region through 

which the shock-induced pressure rise can propagate upstream is limited. As a result, a 

much greater pressure rise is required to cause a turbulent boundary layer to separate. 

 Pressure distributions typical of the shock-wave/boundary-layer interactions 

are presented in  Fig.   8.21    for a laminar boundary layer and for a turbulent one. As we 

might expect from the preceding description of the shock interaction, the pressure rise 

is spread over a much longer distance when the boundary layer is laminar.  

   8.9  SHOCK/SHOCK INTERACTIONS 

 Perhaps the least understood (historically) area of shock waves is how they interact with 

each other. There are many situations on aerospace vehicles where shocks coming from 

different parts of the vehicle can intersect other shocks (such as a nose shock intersect-

ing a wing shock) or can intersect solid surfaces. How we analyze these intersections is 

a challenging and important area of aerodynamics. 

  Edney (1968)  was the first person to classify different shock interactions. He came 

up with six basic interactions types, which are shown in  Fig.   8.22   . Edney’s classification 

types depends on the angle between an impinging shock wave and another shock 

(shown as a bow shock in front of a hemispherical nose in  Fig.   8.22   ). For larger inter-

section angles, Edney classified Type I through Type III cases, and for shallower 

 intersection angles there are Type IV through Type VI cases. The location of the 
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Sonic point
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 Figure 8.22         Approximate relation of the shock/shock geometry 

and the type of interference pattern [from  Edney (1968) ].   
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 impingement point relative to the sonic regions is also important to the results. Each of 

the cases represents a unique type of shock interaction, with its own features that dis-

tinguish it from the other types. Specifically, Edney’s classification system includes:  

    •   Type I: shock impingement  

   •   Type II: shock impingement (but at a different angle, creating a different resulting 

flow field)  

   •   Type III: shear layer attachment  

   •   Type IV: supersonic jet impingement  

   •   Type V: shock impingement  

   •   Type VI: expansion wave impingement   

 While we will not go into detail about all of the shock/shock interaction types, we 

will look at two very important cases: Type I and Type IV. Type I shock interactions are 

perhaps the most common, since they often take place in engine inlets, as represented 

by the geometry in  Fig.   8.23   . Two oblique shocks, perhaps created by wedged surfaces at 

slightly different angles, intersect and alter each other, creating at least six different flow 

regions (assuming at least one of the shocks reflects off a wall). In order to analyze these 

six regions, basic concepts from gas dynamics are used, along with some knowledge about 

the flow field. Region 1 is the free-stream region, whose properties we would know (Mach 

number, pressure, temperature, flow direction, etc.). We will also assume that the wedge 

angles are known for the upper and lower wedges, which means oblique shock analysis 

or tables can be used to find the properties in Regions 2 and 3. Finding the properties in 

Regions 4 and 5, however, is not as straight forward since we need to know what happened 

to the two shock waves after they intersected (these shock waves are called the transmit-

ted waves). The resulting shock-wave angles are crucial for our analysis, but they cannot 

be found without knowing a basic concept: the flows in Regions 4 and 5 have to be parallel 

and have the same pressure, but do not necessarily have to have the same Mach number. 
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 Figure 8.23         Type I shock/shock interaction flow pattern.   
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This fact is represented in  Fig.   8.23    by the slip line, which is a line across which the Mach 

number can change discontinuously. Of course, in fluid dynamics a slip line is also a line 

along which a shear layer will form, but for our analysis we will assume that the flows in 

Regions 3 and 4 do not create a shear layer (based on our inviscid flow assumption). The 

properties in Regions 4 and 5 must be obtained in a way to make our observation true, 

which means that a “trial and error” approach is required to find the properties in this 

region. By assuming the angles of the transmitted shock waves, flow properties in Regions 

4 and 5 will be obtained, but in general they will not be parallel or have the same pressure. 

Once the initial results are obtained, the shock angles can be altered to improve the result, 

and the process is repeated until the desired results are obtained.  

 A similar process takes place to determine the result for Region 6, which involves 

a shock wave reflecting from a solid surface. Once the properties in Region 4 are deter-

mined, a reflected shock angle has to be found that will turn the flow parallel to the wall. 

Once this shock angle is found, then the properties in Region 6 can be determined using 

oblique shock relations or tables. Of special interest about the wall reflection is what 

happens very close to the wall, where the shock comes into contact with the boundary 

layer (our analysis has been inviscid, but we will look at this interaction from a viscous 

perspective). Instead of cleanly reflecting from the wall, the shock actually interacts 

with the boundary layer (as discussed in  Section   8.8   ) and forms a normal shock near 

the surface, and a curved reflected shock away from the surface. Analyzing this viscous 

flow field is quite difficult, so we will be content with our inviscid analysis. 

  EXAMPLE 8.6:    Estimating properties for a Type I shock/shock interaction 

 A Type I shock/shock interaction is shown in  Fig.   8.23   . The free-stream 

conditions for the flow are    M1 = 6.0    and    p1 = 10-3 atm   . The geometry for 

the inlet is such that    d12 = 15�    and    d13 = 5�   . Find the pressure and Mach 

number in Regions 2, 3, 4, and 6. 

  Solution:     The calculations for the impinging shock waves may be accomplished using 

 Fig.   8.13   , so the flows in Regions 2 and 3 are relatively straightforward to 

determine. Since the ramp in front of Region 2 is at 15° and the ramp in front 

of Region 3 is 5°, we may look up the pressure coefficient and Mach number 

for Regions 2 and 3 directly: 

   M2 = 4.00  Cp2 = 0.200  M3 = 5.32  Cp3 = 0.043   

 Using our relationship for pressure coefficient in terms of pressure ratio: 

   Cp =
2

gM2
1

a
p
p1

- 1b    

 we can find that: 

   
p2

p1

= 6.04  p2 = 6.04 * 10-3 atm  
p3

p1

= 2.08  p3 = 2.08 * 10-3 atm   

 Remember that the pressures in Regions 4 and 5 must be equal, which deter-

mines the shock strengths for the transmitted shocks. Since the two shocks will 
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be of different strengths, that means the other properties in Regions 4 and 5 

(like velocity and temperature) will be different. The slip line that forms be-

tween the two regions will in reality by a shear layer, but our inviscid analysis 

will allow for a discontinuity of velocity along this line. Finding the properties in 

Regions 4 and 5 requires an iterative process. Typically the process is done by 

assuming the flow direction in Regions 4 and 5 (we can call this    uf    , where    uf = 0    

is aligned with the free-stream direction), calculating the change in the flow 

angles, and using  Fig.   8.13    to find the flow in Regions 4 and 5. This process is 

then repeated until we find the transmitted shock strengths that give    p4 = p5   . 

Therefore, for our previously found Mach numbers in Regions 2 and 3, 

    M2 = 4.00  p2 = 6.04 * 10-3 atm  uf,4 = -15�   

    M3 = 5.32  p3 = 2.08 * 10-3 atm  uf,5 = +5�    

 which assumes the flow in both regions has turned back to the free-stream 

direction. Iterating on    uf     to the nearest tenth of a degree yields: 

    uf,4 = uf,5 = -9.7�  d24 = 5.3�  d35 = 14.7�   

    p4 = p5 = 0.0103 atm  M4 = 3.60    

 Since the flow in Region 4 is inclined down at -9.7° and the wedge is inclined 

at -15°, and since the flow in Region 6 must be parallel to the surface, then 

the shock wave between Regions 4 and 6 must turn the flow 5.3°. Using 

 Fig.   8.13    we can find: 

   M6 = 3.33  Cp6 =
p6 - p4

1
2gp4M

2
4

= 0.062  
p6

p4

= 1.56  p6 = 0.0161 atm      

 The Edney Type IV shock interaction is perhaps the most complex, and poten-

tially damaging, interaction (see  Fig.   8.24   ). The Type IV interaction takes place when 
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a shock intersects the bow shock within the sonic region. While some of the initial de-

tails about the interaction are similar to other shock interactions, the Type IV interac-

tion has a unique flow pattern. In this case, instead of a simple slip line originating at 

the intersection point, a supersonic jet is produced. According to  Edney (1968) , “This 

is the most important of the various types of interference and the one that leads to the 

very high peak heatings.” Calculating the complete flow field for a Type IV interaction 

is quite complicated, but a description from  Edney (1968)  will help to understand the 

complexity of the flow. “It is simple to calculate the initial velocities    U2    and    U3   , Mach 

numbers    M2    and    M3   , and pressures    p2    and    p3    on either side of the shear layer, and the 

flow deflection angle at the impingement point. . . . we see how the flow is divided into a 

subsonic and supersonic part at the impingement point, being subsonic above the impinge-

ment point and supersonic below. Depending on    M2    and the angle the shear layer makes 

with the model surface, the shear layer may attach to the surface of the model without 

being deflected. This occurs when    M2    is sufficiently large, or the attachment angle suffi-

ciently small, for the supersonic part of the flow to be turned downward through an at-

tached oblique shock at the [surface]” [ Edney (1968) ]. The end result of this flow 

complexity is that a high temperature supersonic jet impinges on the surface of the vehi-

cle, creating extremely high heating rates, and possibly leading to catastrophic results.   

   8.10   THE ROLE OF EXPERIMENTS FOR GENERATING 
INFORMATION DEFINING THE FLOW FIELD 

 The tools that are available to the designers of high-speed aerospace vehicles include ana-

lytical methods, numerical methods, experimental programs using ground-testing facili-

ties, and experimental programs using flight-test programs. Most of the material defining 

the role of experiments in generating information defining the flow field has been taken 

from an article in the  Annual Review of Fluid Mechanics  [ Bertin and Cummings (2006) ]. 

   8.10.1  Ground-Based Tests 

 Despite the remarkable advances in hardware and software for computational fluid 

dynamics (CFD) tools, when two critical “return-to-flight” (RTF) concerns were identi-

fied in the aerothermodynamic environment of the Space Shuttle, very extensive wind-

tunnel programs were conducted. One RTF concern dealt with the heating in the bipod 

region during launch. The second concern was related to the aerodynamics forces and 

moments during reentry. Wind-tunnel tests provided the majority of the aerothermal 

information required by the RTF advisory teams. CFD solutions were used primarily to 

generate numerical values for use in comparisons with the experimental measurements. 

 Since there is no single ground-based facility capable of duplicating the entire 

high-speed flight environment, different facilities are used to address various aspects 

of the design problems associated with supersonic flight. Most of the measurements 

that are used during the design process to define the aerothermodynamic environment 

(i.e., the aerodynamic forces and moments, the surface pressure distribution, and the 

heat-transfer distribution) are obtained in: 

    •   Conventional wind tunnels  

   •   Shock-heated wind tunnels  
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   •   Shock tubes  

   •   Arc-heated test facilities  

   •   Ballistic, free-flight ranges   

 The parameters that can be simulated in ground-based test facilities include: 

    •   Free-stream Mach number  

   •   Free-stream Reynolds number (and its influence on the character of the boundary 

layer)  

   •   Free-stream velocity  

   •   Pressure altitude  

   •   Total enthalpy of the flow  

   •   Density ratio across the shock wave  

   •   Test gas  

   •   Wall-to-total temperature ratio  

   •   Thermochemistry of the flow field   

 Notice that some of the parameters are interrelated (e.g., the free-stream velocity, the 

total enthalpy of the flow, the free-stream Mach number, and the wall-to-total tempera-

ture ratio). However, it is very difficult to match all of these parameters in ground-based 

facilities. The critical heating to the bipod region of the Shuttle Orbiter occurs in the 

Mach number range from 3.5 to 4.0—just prior to staging at approximately 30,480 m 

(100,000 ft). Because the total temperature for Mach 4 flow at 30,480 m (100,000 ft) is 

approximately 950 K (1710°R), we can simultaneously simulate the free-stream veloc-

ity, the total enthalpy of the flow, the free-stream Mach number, and the free-stream 

Reynolds number in conventional wind-tunnel facilities. Two facilities in which one can 

match these four parameters are the Supersonic Aerothermal Tunnel C at the Arnold 

Engineering Development Center (AEDC) [ Anderson and Matthews (1993) ] and the 

LENS II facility at the Calspan-University at Buffalo Research Center (CUBRC) [ Hold-

en et al. (1995) ]. 

 You should also notice that during a specific run of a wind-tunnel test program, 

the model temperature usually starts out at room temperature. The temperature 

measurements that are used to determine the heat-transfer rates to the model usu-

ally are made early during the test run. Therefore, the temperature of model surfaces 

remains relatively cool during the data-recording portion of the run. On the other hand, 

the relatively long exposure to the high-temperature flight environment causes the sur-

face of the vehicle to become very hot. As a result, the wall-to-total-temperature ratio 

in ground-based tests is usually well below the flight value. To match the flight value of 

the wall-to-total-temperature ratio, the total temperature of the tunnel flow is reduced 

below the flight value. Even for this relatively benign flow, we cannot match the flight 

values of all of the flow-field parameters. 

 In addition to the nine flow-field related parameters that were identified earlier in 

this section, several additional factors must be considered when developing a test plan. 

The additional factors include: 

    •   Model scale  

   •   Test time  
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   •   Types of data available  

   •   Flow quality (including uniformity, noise, cleanliness, and steadiness)   

  Trimmer et al. (1986)  noted, “Aerodynamic modeling is the art of partial simula-

tion.” The test engineer must decide which parameters are critical to accomplishing the 

objectives of the test program. In fact, during the development of a particular vehicle, 

the designers most likely will utilize many different facilities with the run schedule, the 

model, the instrumentation, and the test conditions for each program tailored to answer 

specific questions. As stated by  Matthews et al. (1985) , “A precisely defined test objective 

coupled with comprehensive pretest planning are essential for a successful test program.” 

 In spite of these shortcomings, however, there are many reasons for conducting 

ground-based test programs. Some objectives include the following: 

   Objective 1.     Obtain data to define the aerodynamic forces and moments, sur-

face pressures, and/or the heat-transfer distributions for complete 

configurations whose complex flow fields resist computational 

modeling.  

  Objective 2.     Use partial configurations to obtain data defining local-flow phe-

nomena, such as the inlet flow field for hypersonic air-breathing 

engines or the shock/boundary-layer interactions associated with 

deflected control surfaces (a body flap).  

  Objective 3.     Obtain detailed flow-field data to be used in developing numerical 

models for use in a computational algorithm (code validation).  

  Objective 4.     Obtain measurements of parameters, such as the heat transfer 

and the drag, to be used in comparison with computed flow-field 

solutions over a range of configuration geometries and of flow 

conditions (code calibration).  

  Objective 5.     Obtain data that can be used to develop empirical correlations 

for phenomena that resist analytical and/or numerical modeling, 

such as boundary-layer transition and turbulence modeling.  

  Objective 6.     Certify the performance of air-breathing engines.   

 Even today, extensive ground-based test programs are conducted during the design 

process in order to define the aerothermodynamic environment for the entire vehicle. 

When the access to space study that was conducted by NASA in the early 1990s recom-

mended the development of a fully reusable launch vehicle (RLV) [ Bekey et al. (2001) ], 

NASA joined an industry-led technology-development effort for the X-33/RLV. As part 

of the industry/government partnership, personnel and facilities at the NASA Langley 

Research Center were assigned the task of providing information regarding the aero-

dynamic forces and moments, the surface heating, and the criteria for boundary-layer 

transition to Lockheed Martin in support of X-33 development and design. 

 A special section in the September–October 2001 issue of the  Journal of Spacecraft 
and Rockets  presented five archival journal articles, documenting the results from this 

cooperative effort. Two articles presented information relating to Objective (1), “Ob-

tain data to define the aerodynamic forces and moments, surface pressures, and/or the 

heat-transfer distributions for complete configurations whose complex flow fields resist 
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computational modeling.” They are the articles by  Horvath et al. (2001)  and  Murphy et 

al. (2001) . Two articles presented information relating to Objective (4), “Obtain meas-

urements of parameters, such as the heat transfer and the drag, to be used in comparison 

with computed flow-field solutions over a range of configuration geometries and of flow 

conditions (code calibration).” They are the articles by  Hollis et al. (2001a)  and  Hollis 

et al. (2001b) . One article [ Berry et al. (2001a) ] related to Objective (5), “Obtain data 

that can be used to develop empirical correlations for phenomena that resist analytical 

and/or numerical modeling, such as boundary-layer transition and turbulence modeling.” 

 In 1996 NASA initiated the Hyper-X program as part of an initiative to mature the 

technologies associated with hypersonic air-breathing propulsion. “The primary goals of 

the Hyper-X program are to demonstrate and validate the technologies, the experimen-

tal techniques, and the computational methods and tools required to design and develop 

hypersonic aircraft with airframe-integrated, dual-mode scramjet propulsion systems” 

[  Engelund (2001) ]. Although hypersonic air-breathing propulsion systems have been stud-

ied in the laboratory environment for over 40 years, a complete airframe-integrated vehicle 

configuration had never been flight tested. Again, personnel and facilities at the NASA 

Langley Research Center were used to define the aerodynamic and surface heating envi-

ronments, including information relating to the boundary-layer transition criteria, as part 

of the design, the development, the construction, and the flight-test program for the X-43. 

 A special section in the November–December 2001 issue of the  Journal of Space-
craft and Rockets  presented seven archival journal articles summarizing the results from 

this program. Two articles presented information relating to Objective (1); they are the 

articles by  Engelund et al. (2001)  and  Holland et al. (2001) . One article presented infor-

mation relating to Objective (4); that was the article by  Cockrell et al. (2001) . Finally, 

one article [ Berry et al. (2001b) ] related to Objective (5). 

 As described by  Woods et al. (2001) , the Hyper-X Research Vehicle (also called 

HXRV or free flyer) required a booster to deliver the vehicle to the engine test points. 

The test conditions for the first flight included    M� = 7 and q� = 47,879 N>m2    (1000 

psf) at an altitude of approximately 28,956 m (95,000 ft). The Hyper-X Launch Ve-

hicle (HXLV) stack was initially carried aloft under the wing of a B-52. The HXLV 

was dropped, the Pegasus vehicle ignited, and the stack accelerated to the desired test 

Mach number. When the stack reached the desired test conditions and attitude, a stage-

separation sequence of events separated the free flyer from the booster. The free-flying 

research vehicle then followed a preprogrammed trajectory. Although occurring in less 

than 500 ms, stage separation was critical to reaching the engine test point and was es-

sential to the success of the mission. 

  Buning et al. (2001)  reported that: “Even following the AEDC test, several aer-

odynamic issues remained in fully understanding the dynamics of the stage separation 

maneuver. This understanding was complicated by the unsteady nature of the event, the 

number of degrees of freedom associated with the booster, research vehicle, and control 

surfaces; and limits in the amount of wind-tunnel data available. These issues were in three 

basic areas: unsteady effects, aerodynamic database extrapolation, and differences between 

wind-tunnel and flight conditions.” Viscous and inviscid CFD techniques were used to 

quantify unsteady effects, to examine the cause and the extent of interference between 

the booster and the research vehicle, and to identify differences between the wind tunnel 

and the flight environments.  
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   8.10.2  Flight Tests 

 One of the most important things to know about flight tests is that they are very expen-

sive. Flight tests take a long time to plan and to execute successfully. Furthermore, it 

is difficult to obtain quality data at well-defined test conditions. Flight tests will never 

replace ground-based tests or CFD in the design process. Nevertheless, flight tests are 

critical to our understanding of the hypersonic aerothermodynamic environment, since 

they provide data which cannot be obtained elsewhere. 

 There are a variety of reasons for conducting flight tests. Four of these reasons 

were described by  Buck et al. (1963) : 

    •   To demonstrate interactive technologies and to identify unanticipated problems.  

   •   To form a catalyst (or a focus) for technology.  

   •   To gain knowledge not only from the flights but also from the process of development.  

   •   To demonstrate technology in flight so that it is credible for larger-scale applications.   

  Neumann (1988)  added three additional reasons: 

    •   To verify ground-test data and/or to understand the bridge between ground-test 

simulations and actual flight.  

   •   To validate the overall performance of the system.  

   •   To generate information not available on the ground.   

  Williamson (1992)  noted: “Due to the large investment in flight testing, it is then 

desirable to make as many measurements as possible during the flight to help verify pre-

dictions or explain any modeling inaccuracies. The instrumentation should measure as 

directly as possible the things that have been predicted. This is often not possible and it 

is often necessary to infer predictions from related but not direct measurements.”  Neu-

mann (1989)  stated: “Heat transfer is a quantity which cannot be directly measured: It 

is interpreted within the context of a thermal model rather than measured.” Therefore, 

we must be able to develop a numerical model that describes the relation between the 

measured temperature and the sensor’s design, in order to obtain a reasonably accurate 

value of the experimentally determined heat transfer. However, we must also develop 

a numerical model depicting how the heat-transfer sensor responds from its location in 

the vehicle. Serious problems can occur when the heat sensor is not properly integrated 

into the flight structure such that minimal thermal distortion is produced. 

  Williamson (1992)  notes that, “Measurements fall into three groups. These include 

atmospheric properties measurements, offboard vehicle related sensor measurements, 

and onboard vehicle related measurements telemetered to the ground or stored on tape 

and retrieved post-flight.” 

 There are two types of flight-test programs: (1) Research and Development 

(R&D) programs and (2) flights of prototype or operational vehicles. R&D programs 

are focused on technical issues which drive the design of the vehicle and its flight opera-

tions.  Iliff and Shafer (1992)  noted that: “In the 1960’s, several programs successfully 

generated aerothermodynamic flight data to improve the understanding and interpre-

tation of theoretical and ground test results. The ASSET and PRIME programs were 

flown in the early 1960’s and provided aerothermodynamic flight data for ablative and 
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metallic thermal protection (TPS) concepts.” Project Fire provided calorimeter heating 

measurements on a large-scale blunt body entering the earth’s atmosphere at an initial 

velocity 11.35 km/s (37.24 kft/s). As discussed by  Cornette (1966) , the forebody of the 

“Apollo-like” reentry capsule was constructed of three beryllium calorimeter shields, 

which were alternated with phenolic-asbestos heat shields. This multiple-layer arrange-

ment provided three distinct time periods when measurements defining the aerother-

modynamic environment could be obtained. The FIRE program provided flight data 

that was used to understand radiative heat-transfer that become important for flight 

through the earth’s atmosphere and when returning from lunar and from planetary 

missions [ Ried et al. (1972)  and  Sutton (1985) ]. 

 Flight-test data have been obtained on prototype vehicles [e.g., the flights of the 

unmanned Apollo Command Modules (017 and 020) as discussed in  Lee and Goodrich 

(1972) ] and on operational vehicles [e.g., the Space Shuttle Orbiter,  Throckmorton 

(1995) ].  Throckmorton (1993)  noted that the concept of using the Shuttle Orbiter as 

a flight research vehicle as an adjunct to its normal operational mission was a topic of 

discussion within the research community throughout the 1970s. Aerothermodynamic 

parameters based on flight-test data obtained from thermocouples embedded in the Space 

Shuttle Thermal Protection System (TPS) were used to expand the flight envelope for 

the Orbiter. As noted by  Hodge and Audley (1983) , “Requirements for the technique 

include an analytical model for the simulation of the heat transfer to a point on the TPS, 

flight test maneuvers which cause the thermocouples imbedded near the surface of the 

TPS to respond sufficiently above the noise levels, and a parameter estimation program to 

reduce flight thermocouple data.    c   The data reduction program correlates heating with 

the variables such as angle of attack, sideslip, control surface deflection, and Reynolds 

number. This technique could also be used for wind tunnel data reduction.” 

 The interactions between impinging shock waves and the bow shock wave can 

produce locally severe heat-transfer rates.  Edney (1968)  identified six different shock/

shock interactions patterns. The positive deflection of the Orbiter body flap creates 

a shock wave which interacts with the boundary layer on the Orbiter. The adverse pres-

sure gradient produced by the shock wave causes the boundary layer to thicken and (in 

many cases) to separate. The upstream extent of the interaction-produced perturba-

tions depends on the size of the subsonic portion of the approach boundary layer and 

on the strength of the shock wave produced by the turning of the flow. Therefore, as 

noted by  Bertin (1994) , the parameters that influence the extent of an interaction are: 

(1) whether the approach boundary layer is laminar or turbulent, (2) the Mach number 

of the approach flow, (3) the Reynolds number of the approach flow, (4) the surface 

temperature, (5) the deflection angle of the ramp, and (6) the chemical state of the gas. 

 Bertin et al. (1996)  and  Fujii et al. (2001)  investigated the perturbed flow fields due to 

deflected control surfaces using the experimental values of the heat transfer measured 

during hypersonic flight. The HYFLEX vehicle [ Fujii et al. (2001) ] was a small-scale 

R&D vehicle whose length was 4.40 m (14.44 ft). A two-stage launcher provided an 

initial altitude of 107 km (351 kft) at a velocity of 3.88 km/s (12.73 kft/s). 

 Despite the oft-mentioned problems with developing boundary-layer transition 

correlations using flight-test measurements, there are numerous flight-test programs 

where boundary-layer transition was a major focus of the data gathering efforts.  Weston 

and Fitzkee (1963)  noted that observed boundary-layer transition Reynolds numbers on 
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the Mercury capsule “agree well with Reynolds numbers obtained for wake transition 

behind spheres flown in a hypervelocity gun facility.” Also flown in the 1960s was the 

Reentry F vehicle which provided hypersonic boundary-layer transition and is still used 

today. The Reentry F flight provided boundary-layer transition data at Mach numbers 

up to 20 and altitudes down to 24.38 km (80.00 kft) [ Wright and Zoby (1977) ]. 

  EXAMPLE 8.7    Wind-tunnel simulation of supersonic missile flow fields 

 Assume that you are given the task of determining the aerodynamic forces 

and moments acting on a slender missile which flies at a Mach number of 

3.5 at an altitude of 27,432 m (90,000 ft). Aerodynamic coefficients for the 

missile, which is 20.0 cm (7.874 in) in diameter and 10 diameters long, are 

required for angles of attack from 0° to 55°. The decision is made to obtain 

experimental values of the required coefficients in the Vought High-Speed 

Wind Tunnel (in Dallas, Texas). Upstream of the model shock system, the 

flow in the wind tunnel is isentropic and air, at these conditions, behaves as 

a perfect gas. Therefore, the relations developed in this section can be used 

to calculate the wind-tunnel test conditions. 

  Solution:    

    1.   Flight conditions.      Using the properties for a standard atmosphere  (such 

as were presented in  Chapter   1   ) , the relevant parameters for the flight 

condition include: 

    U� = 1050 m>s  

  p� = 1.7379 * 10-2pSL = 1760.9 N>m2 

  T� = 224 K  

  Re�,d =
r�U�d
m�

= 3.936 * 105  

  M� = 3.5     

   2.   Wind-tunnel conditions.      Information about the operational character-

istics of the Vought High-Speed Wind Tunnel is contained in the tun-

nel handbook [ Arnold (1968) ]. To ensure that the model is not so large 

that its presence alters the flow in the tunnel (i.e., the model dimensions 

are within the allowable blockage area), the diameter of the wind-tunnel 

model,    dwt,    will be 4.183 cm (1.6468 in.).   

  Based on the discussion in  Chapter   2   , the     Mach number and the Reynolds 

number are two parameters which we should try to simulate in the wind 

tunnel. The free-stream unit Reynolds number    (U�>n�)    is presented as a 

function of the free-stream Mach number and of the stagnation pressure 

for a stagnation temperature of 311 K (100°F) in  Fig.   8.25    [which is from 

 Arnold (1968)  and has been left in English units]. You can use the equations 

of this section to verify the value for the unit Reynolds number given the 

conditions in the stagnation chamber and the free-stream Mach number. 
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In order to match the flight Reynolds number of    3.936 * 105    in the wind 

tunnel, 

   a
U�

n�
b

wt

=
3.936 * 105

dwt

= 2.868 * 106>ft    

 But as indicated in  Fig.   8.20   , the lowest unit Reynolds number possible in this 

tunnel at    M� = 3.5    is approximately    9.0 * 106>ft.    Therefore, if the model is 

4.183 cm in diameter, the lowest possible tunnel value of    Re�,d    is    1.235 * 106,    

which is greater than the flight value. This is much different than the typical 

subsonic flow, where  (as discussed in  Chapter   5   )  the maximum wind-tunnel 

Reynolds number is usually much less than the flight value. To obtain the 
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 appropriate Reynolds number for the current supersonic flow, we can choose 

to use a smaller model. Using a model that is 1.333 cm in diameter would yield 

a Reynolds number of    3.936 * 105    (as desired). If this model is too small, 

we cannot establish a tunnel condition which matches both the flight Mach 

number and the Reynolds number. In this case, you might choose to simu-

late the Mach number exactly rather than seek a compromise Mach-number/

Reynolds-number test condition, since the pressure coefficients and the shock 

interaction phenomena on the control surfaces are Mach-number-dependent 

in this range of free-stream Mach number. 

 The conditions in the stagnation chamber of the tunnel are    Tt = 311 K    

(560°R) and    pt1 = 5.516 * 105 N>m2    (80 psia). So, using either equations 

(8.34) and (8.36) or the values presented in  Table   8.1   , we can find that 

   T� = 90.18    K (162.32°R) and    p� = 7.231 * 103 N>m2    (1.049 psia). The cold 

free-stream temperature is typical of supersonic tunnels (e.g., most high-

speed wind tunnels operate at temperatures near liquefaction of oxygen). 

Therefore, the free-stream speed of sound is relatively low and, even though 

the free-stream Mach number is 3.5, the velocity in the test section    U�    is only 

665 m/s (2185 ft/s). In summary, the relevant parameters for the wind-tunnel 

conditions include: 

    U� = 665 m>s    

    p� = 7.231 * 103 N>m2    

    T� = 90.18 K    

    Re�,d = 3.936 * 105 if d = 1.333 cm or 1.235 * 106 if d = 4.183 cm   

    M� = 3.5    

 Because of the significant differences in the dimensional values of the flow 

parameters (such as    U�,  p�    and    T�   ), we must again nondimensionalize the 

parameters so that correlations of wind-tunnel measurements can be related 

to the theoretical solutions or to the design flight conditions.     

   8.11   COMMENTS ABOUT THE SCALING/CORRECTION PROCESS(ES) 
FOR RELATIVELY CLEAN CRUISE CONFIGURATIONS 

 In an article for the  Annual Review of Fluid Mechanics ,  Bushnell (2006)  noted that, 

“a survey of 12 commercial transport aircraft, constructed by three major American 

manufacturers over a 20-year period showed that you are just as likely to estimate too 

high a drag as too low a drag. Six of the twelve (scaling) ‘predictions’ were low, four 

predictions were high, and two were right on. The drag predictions were as much as 22% 

low and 10% high.” Citing the work of other researchers,  Bushnell (2006)  noted that 

similar values/discrepancies were obtained for airbreathing missiles. “As the experience 

from the various applications discussed herein indicates, ‘surprise’ occurs far too often 

and flow complexity can seriously degrade the ‘scaled predictions’. Typical correction 

 levels    c   include 6% wall interference,    -5%    Reynolds number,    +2%    roughness, and 

   -4%    sting and aeroelastic distortion effects. Total correction(s) from just these issues/
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concerns/effects are the order of    +12%.    On the other hand, the Viking aeroshell drag 

observed during Martian entry agreed within some 2% of the scaled ground results, 

admittedly for a very bluff body with a fairly well characterized flow field.”  

   8.12  SUMMARY 

 Compressibility adds additional challenges to the aerodynamicist, in some ways lead-

ing to concepts and theories that are difficult to learn and understand. Adding the 

energy equation and first/second laws of thermodynamics to the equation set results in 

flow behavior that seems counter-intuitive. But those equations yield straightforward 

theories which apply throughout the Mach number continuum, and which inform the 

aerodynamicist about how Mach number changes will impact the forces and moments 

acting on an aircraft. Embracing the challenge of compressible aerodynamics will lead 

to greater understanding of all Mach regimes, including incompressible aerodynamics, 

as flow concepts become unified, integrated, and understandable.   

     PROBLEMS 

   8.1.    The test section of the wind tunnel of Example 8.6 has a square cross section that is 

1.5m * 1.5m. 

    (a)   What is the mass-flow rate of air through the test section for the flow conditions of the 

example (i.e., M� = 3.0, p� = 7.0 * 103 and T� = 90K)?  

   (b)   What is the volume flow rate of air through the test section?     

   8.2.    A practical limit for the stagnation temperature of a continuously operating supersonic 

wind tunnel is 990 K. With this value for the stagnation (or total) temperature, prepare a 

graph of the static free-stream temperature as a function of the test-section Mach number. 

The fluid in the free stream undergoes an isentropic expansion. The static temperature 

should not be allowed to drop below 60 K, since at low pressure oxygen begins to liquefy at 

this temperature. With this as a lower bound for temperature, what is the maximum Mach 

number for the facility? Assume that the air behaves as a perfect gas with g = 1.4.   

   8.3.    Tunnel B at the Arnold Engineering Development Center (AEDC) in Tennessee is often 

used for determining the flow field and/or the heating rate distributions. The Mach number 

in the test section is 8. If the stagnation temperature is 700 K and the stagnation pressure 

can be varied from 5.90 * 106 to 4.90 * 106 what is the range of Reynolds number that 

can be obtained in this facility? Assume that the characteristic dimension is 0.75 m, which 

could be the length of a hypersonic waverider model.   

   8.4.    Given the flow conditions discussed in Problem 8.3, 

    (a)   What is the (range of the) static temperature in the test section? If there is only one 

value of the static temperature, state why. To what range of altitude  (as given in 

 Table   1.2   )  if any, do these temperatures correspond?  

   (b)   What is the (range of the) velocity in the test section? Does it depend on the pressure?  

   (c)   What is the range of static pressure in the test section? To what range of altitude  (as 

given in  Table   1.2   )  do these pressures correspond?     

   8.5.    A convergent-only nozzle, which exhausts into a large tank, is used as a transonic wind 

tunnel ( Fig.   P8.5   ). Assuming that the air behaves as a perfect gas, answer the following.  

    (a)   If the pressure in the tank is atmospheric (i.e., 1.01325 * 105 N>m2), what should the 

stagnation pressure in the nozzle reservoir be so that the Mach number of the exhaust 

flow is 0.95?  
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   (b)   If the stagnation temperature is 70°C, what is the static temperature in the test stream?  

   (c)   A transonic airfoil with a 15-cm chord is located in the test stream. What is Rec for the 

airfoil? 

   Rec =
r�U�c

m�

    

   (d)   What is the pressure coefficient Cp at the stagnation point of the airfoil?     

   8.6.    A small hole exists in the body of an airplane and serves as a convergent nozzle, as shown 

in  Fig.   P8.6   . The air in the cabin is at 0.50 * 105 N>m2. Assume that the cabin volume is 

sufficiently large that the cabin serves essentially as a stagnation chamber and that the 

conditions in the cabin remain constant for a period of time, independent of the conditions 

outside the airplane. Furthermore, assume that the flow in the nozzle is isentropic. Sketch 

the pressure distribution and calculate the static pressure in the nozzle exit plane when the 

airplane is at the following altitudes: (a) 7 km, (b) 9 km, (c) 11 km, and (d) 15 km.     

 Since the air expands isentropically from constant reservoir conditions, the back 

pressure (i.e., the pressure outside the airplane), pb, is an important parameter. For the 

standard atmosphere: 

Atmospheric pressure

Large tank

Nozzle
reservoir

M � 0.80pt1 � ?

Tt � 40�C

 Figure P8.5        

Air outside the
airplane

Nozzle exit plane

Cabin

pc, Tc

 Figure P8.6         Sketch for Prob-

lems 8.6 and 8.7   
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    (a)      pb = 0.41105 * 105 = 0.82209pt1     

   (b)      pb = 0.30799 * 105 = 0.61598pt1     

   (c)      pb = 0.22699 * 105 = 0.45398pt1     

   (d)      pb = 0.12111 * 105 = 0.24222pt1      

   Where    pt1 = pc = 0.5 * 105 N>m2.      

   8.7.    If the temperature in the cabin is 37°C and the exit diameter is 0.90 cm, what is the mass 

flow rate through the hole of Problem 8.6 when the altitude is 9 km? 15 km?   

   8.8.    Consider the flow of air through the convergent-divergent nozzle shown in  Fig.   P8.8   . 

The conditions in the stagnation chamber are    pt1 = 100 psia    and    Tt = 200�F.    The cross- 

sectional area of the test section is 2.035 times the throat area. The pressure in the test sec-

tion can be varied by controlling the valve to the vacuum tank. Assuming isentropic flow 

in the nozzle, calculate the static pressure, static temperature, Mach number, and velocity 

in the test section for the following back pressures.  

    (a)      pb = 100.000 psia     

   (b)      pb = 97.250 psia     

   (c)      pb = 93.947 psia     

   (d)      pb = 9.117 psia        

   8.9.    Consider the flow of air through the convergent-divergent nozzle shown in  Fig.   P8.9   . 

The conditions in the stagnation chamber are    pt1 = 100 psia    and    Tt = 200�F.    The cross- 

sectional area of the test section is 2.035 times the throat area. Thus far we have repeated 
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 Figure P8.6          (continued) Solution for Problem 8.6 (i) pressure distribution: 

(ii) pressure ratios.   
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 Figure P8.8         Isentropic flow in a convergent-divergent nozzle.   
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 Figure P8.9         Flow in a convergent-divergent nozzle with a shock 

wave in the divergent section (dashed lines are from Fig. P8.7)   
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the  conditions of Problem 8.8. Calculate the static pressure, static temperature, Mach 

number, and velocity in the test section for the following back pressures:  

    (a)      pb = 51.38 psia     

   (b)      pb = 75.86 psia        

   8.10.    Air flows through the insulated variable-area stream tube such that it may be considered 

one dimensional and steady. At one end of the stream tube, and M1 = 4.0 At the other 

end of the stream tube, pt2 = 2110 psfa, A1 = 6.0 ft2, p2 = 2100 psfa, Tt2 = 500°R and 

A2 = 6.0 ft2 What is the flow direction; that is, is the flow from (1) to (2) or from (2) to (1)?   

   8.11.    A pitot tube in a supersonic stream produces a curved shock wave standing in front of the 

nose part, as shown in  Fig.   P8.11   . Assume that the probe is at zero angle of attack and that 

the shock wave is normal in the vicinity of the nose. The probe is designed to sense the 

stagnation pressure behind a normal shock (pt2) and the static pressure behind a normal 

shock (p2) Derive the relation between pt2 and (p2) in terms of M� by using normal shock 

relation.    

M� �1

r
t2

r
2

 Figure P8.11        

   8.12.    Consider the flow in a streamtube as it crosses a normal shock wave ( Fig.   P8.12   ).  

    (a)   Determine the ratio    A*
 2>A*

 1.     

   (b)   What are the limits of    A*
 2>A*

 1    as    M1 S 1    and as    M1 S �?     

   (c)   What is the significance of    A*
 1?    of    A*

 2??        

M1 � 1

(1) (2)

 Figure P8.12        

d� 30�

Wall
orifice

Surface
pressure
orifice

u-tube manometer

M�� 3.5

�h, cm Hg

t1 � 6.0 � 105 N/m2p

 Figure P8.13        

   8.13.    You are to measure the surface pressure on simple models in a supersonic wind tunnel. The 

air flows from right to left. To evaluate the experimental accuracy, it is necessary to obtain 

theoretical pressures for comparison with the data. If a 30° wedge is to be placed in a Mach 

3.5 stream ( Fig.   P8.13   ), calculate  

    (a)   The surface pressure in    N>m2     

   (b)   The pressure difference (in cm Hg) between the columns of mercury in  U -tube ma-

nometer between the pressure experienced by the surface orifice and the wall orifice 

(which is used to measure the static pressure in the test section)  

   (c)   The dynamic pressure of the free-stream flow   
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   Other measurements are that the pressure in the reservoir is    6.0 * 105 N>m2    and the baro-

metric pressure is 75.2 cm Hg.   

   8.14.    It is desired to turn a uniform stream of air compressively by 10°. The upstream Mach 

number is 3. 

    (a)   Determine the final Mach number and net change in entropy, if the turning is accom-

plished by (1) a single 10° sharp turn, (2) two successive 5° sharp turns, or (3) an infinite 

number of infinitesimal turns.  

   (b)   What do you conclude from the results in part (a)?  

   (c)   In light of the results in part (b), can we make any conclusions as to whether it is better 

to make  expansive  turns gradually or abruptly, when the flow is supersonic?     

   8.15.    A flat-plate airfoil, whose length is  c , is in a Mach 2.0 stream at an angle of attack of 10° 

( Fig.   P8.15   ).  

    (a)   Use the oblique shock-wave relations to calculate the static pressure in region (2) in 

terms of the free-stream value    p1.     

   (b)   Use the Prandtl-Meyer relations to calculate the static pressure in region (3) in terms 

of    p1.     

   (c)   Calculate    Cl,       Cd,    and    Cm0.5c    (the pitching moment about the midchord). Do these coef-

ficients depend on the free-stream pressure (i.e., the altitude)?     

(1)

(3)

(2)

Expansion fan

Plate of length c

Shock
wave

a� 10�

M1� 2.0

 Figure P8.15        

r � 1.0 m

M�� 2.80

l

dc � 8�

 Figure P8.16        

(3)

(5)

(2) (4)

M1 � 2.5

p1 � 5.0 � 103 N/m2 

du� 10�

dl � 5�

(1)

 Figure P8.17        

   8.16.    A conical spike whose half-angle (dc) is 8° is located in the inlet of a turbojet engine ( Fig. 

  P8.16   ). The engine is operating in a M� = 2.80 stream such that the angle of attack of the 

spike is zero. If the radius of the engine inlet is 1.5 m, determine l, the length of the spike 

extension, such that the conical shock just grazes the lip of the nacelle.    

   8.17.    Consider the two-dimensional inlet for a turbojet engine. The upper surface deflects the 

flow 10°, and the lower surface deflects the flow 5° ( Fig.   P8.17   ). The free-stream Mach 

number is 2.5 (i.e.,    M1 = 2.5   ) and the pressure    p1    is    5.0 * 103 N>m2.    Calculate the static 
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pressure, the Mach number, and the flow direction in regions (2), (3), (4), and (5). Note 

that since regions (4) and (5) are divided by a fluid/fluid interface, 

   p4 = p5 and u4 = u5    

   That is, the static pressure in region (4) is equal to that in region (5), and the flow direction 

in region (4) is equal to that in region (5).   

   8.18.    A single wedge airfoil is located on the centerline of the test section of a Mach 2.0 wind 

tunnel ( Fig.   P8.18   ). The airfoil, which has a half-angle    d    of 5°, is at zero angle of attack. 

When the weak, oblique shock wave generated at the leading edge of the airfoil encounters 

the wall, it is reflected so that the flow in region (3) is parallel to the tunnel wall. If the 

test section is 30.0 cm high, what is the maximum chord length ( c ) of the airfoil so that it is 

not struck by the reflected shock wave? Neglect the effects of shock-wave/boundary-layer 

interactions at the wall.       

(2) (3)

30.0 cm

A

A

M1 � 2

Section AA  Figure P8.18        

   8.19.    An airplane flies 500 mi/h at an altitude of 30,000 ft where the temperature is -750 and 

the ambient pressure is 470 psfa. What is the temperature and the pressure of the air (out-

side the boundary layer) at the nose (stagnation point) of the airplane? What is the Mach 

number for the airplane?   

   8.20.    A three-dimensional bow shock wave is generated by the Shuttle Orbiter during entry. 

However, there is a region where the shock wave is essentially normal to the free-stream 

flow, as illustrated in Fig. 8.10. The velocity of the Shuttle is 7.50 km/s at an altitude of 

70.0 km. The free-stream temperature and the static pressure at this altitude are 300.15 K 

and 2.00 N/m2 respectively. Use the normal shock relations to calculate the values of the 

following parameters downstream of the normal shock wave: 

    p2:  static pressure    

    pt2:  stagnation pressure    

    T2:  Static temperature    

    Tt2:  stagnation temperature   

    M2:  Mach number    

   What is the pressure coefficient at the stagnation point; that is, 

   Cp,t2 =
pt2 - p�

q�

= ?   

   Use the perfect-gas relations and assume that g = 1.4 The perfect-gas assumption is valid 

for the free-stream flow. However, it is not a good assumption for calculating the flow across 

the shock wave. Therefore, many of the perfect-gas theoretical values for the shock-flow 

properties will not even be close to the actual values.    See  Chapter   12    for further discussions 

of this problem.    
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   8.21.    Consider the hypersonic flow past the cone shown in  Fig.   8.17   . The cone semivertex angle 

   (dc)    is 12°. The free-stream flow is defined by 

    M� = 11.5    

    Tt = 1970 K    

    p� = 1070 N>m2   

   Assume that the flow is inviscid, except for the shock wave itself (i.e., neglect the boundary 

layer on the cone). Assume further that the gas obeys the perfect-gas laws with    g = 1.4.    Using 

 Fig.   8.16   b, calculate the static pressure at the surface of the cone    (pc).    Using  Fig.   8.16   c, calcu-

late the Mach number at the surface of the cone    (Mc),    which is, in practice, the Mach number 

at the edge of the boundary layer. Calculate the stagnation pressure of the flow downstream of 

the shock wave. Calculate the Reynolds number at a point 10.0 cm from the apex of the cone.   

   8.22.    Repeat Problem 8.21 for a planar symmetric wedge that deflects the flow 12° (i.e.,    d = 12�    
in  Fig.   8.13   ).   

   8.23.    An explosion generates a shock wave that moves through the atmosphere at 1000 m/s. The 

atmospheric conditions ahead of the shock wave are those of the standard sea-level atmos-

phere. What are the static pressure, static temperature, and velocity of the air behind the 

shock wave?    

Moving

Ground Ground

(a) (b)

shock
wave

Fixed

shock
wave

Us � 1000 m/s
U2

p2

T2

p1

T1

U1 � 1000 m/s

uds
Standard

sea-level
atmosphere

 Figure P8.23         Blast wave for Problem 8.23 (a) traveling blast 

wave; (b) transformed steady flow.   
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    9   COMPRESSIBLE, 

SUBSONIC FLOWS 

AND TRANSONIC FLOWS 

     Chapter Objectives 

  •   Know the impact of compressibility on the derivation of equations that govern 
subsonic compressible and transonic flows  

  •   Be able to transform incompressible experimental data or geometry to subsonic 
compressible Mach numbers  

  •   Know the definition of transonic flow and be able to explain the flow 
characteristics that distinguish this flow regime  

  •   Be able to estimate the critical and drag-divergence Mach numbers  
  •   Understand the impact of wing sweep on airplane aerodynamics  
  •   Have a conceptual understanding how supercritical airfoils work  
  •   Be able to explain how the transonic area rule minimizes wave drag   

  Flow-field solutions were generated for a variety of configurations using the assumption 

that the density was constant throughout the flow field  in  Chapters   3    through    7    .  As we 

discussed relative to  Fig.   8.6   , an     error of less than 1 %  results when the incompressible-

flow Bernoulli equation is used to calculate the local pressure provided that the local 

Mach number is less than or equal to 0.5 in air. Therefore, if the flight speed is small 
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compared with the speed of sound, the changes in pressure which are generated by the 

vehicle motion are small relative to the free-stream static pressure, and the influence 

of compressibility can be neglected. 

 Streamlines converge as the incompressible flow accelerates past the midsection of 

an airfoil, as shown in  Fig.   9.1   . The widening of the streamtubes near the nose and the 

contraction of the streamtubes in the regions of increased velocity lead to a progressive 

reduction in the curvature of the streamlines. As a result, there is a rapid attenuation 

of the flow disturbance with distance from the airfoil for the compressible flow case.  

 As the flight speed is increased, the flow may no longer be considered as incom-

pressible. Even though the flow could be subsonic everywhere, the density decreases as 

the pressure decreases (or, equivalently, as the velocity increases). The variable-density 

flow requires a relatively high velocity and diverging streamlines in order to get the mass 

flow past the midsection of the airfoil. The expansion of the minimum cross section of 

the streamtubes forces the streamlines outward so that they conform more nearly to the 

curvature of the airfoil surface, as shown in  Fig.   9.1   . Therefore, the disturbance caused 

by the airfoil extends vertically to a greater distance. 

 Increasing the flight speed further, we reach the  critical Mach number , the name 

given to the lowest (subsonic) free-stream Mach number for which the maximum value 

of the local velocity first becomes sonic. Above the critical Mach number, the flow field 

contains regions of locally subsonic and locally supersonic velocities in juxtaposition. 

Such mixed subsonic/supersonic flow fields are termed  transonic flows .   

      9.1  COMPRESSIBLE, SUBSONIC FLOW 

 For completely subsonic flows, a compressible flow retains a basic similarity to an in-

compressible flow, as shown in  Fig.   9.1   . In particular, the compressible flow can be 

considered to be an irrotational potential motion in many cases, just like we did for 

incompressible flow. In addition to the absence of significant viscous forces, the exist-

ence of potential motion for a compressible flow depends on the existence of a unique 

relation between the pressure and the density. In an inviscid flow, the fluid elements are 

accelerated entirely by the action of the pressure gradient. Therefore, if the density is 

a function of the pressure only, the direction of the pressure gradient will coincide with 

that of the density gradient at all points. The force on each element will then be aligned 

with the center of gravity of the fluid element, and the pressure forces will introduce no 

rotation; the flow is irrotational. 

Compressible fluid

Incompressible fluid

 Figure 9.1         Comparison of streamlines for an incompressible flow 

past an airfoil with those for a subsonic, compressible flow.   
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   9.1.1  Linearized Theory for Compressible, Subsonic Flow 
About a Thin Wing at Relatively Small Angles of Attack 

 The continuity equation for steady, three-dimensional flow is obtained from equation  (2.1)    : 

      
0(ru)

0x
+

0(rv)

0y
+

0(rw)

0z
= 0  (9.1)    

 In the inviscid region of the flow field (i.e., outside the thin boundary layer), the com-

ponents of the momentum equation may be written as: 

       u
0u
0x

+ v

0u
0y

+ w

0u
0z

= -

1

r
 
0p

0x
  (9.2a)    

       u
0v

0x
+ v

0v

0y
+ w
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0z
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1
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0p
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  (9.2b)    

       u
0w

0x
+ v

0w

0y
+ w

0w

0z
= -

1

r
 
0p

0z
  (9.2c)    

 The square of the speed of sound is defined as the change in pressure with respect to 

the change in density for an isentropic process , from equation (8.26) : 

   a2 = a
0p

0r
b

s
   

 However, since the flow we are studying actually is isentropic, this may be written in 

terms of the actual pressure and density changes which result due to the fluid motion: 

      a
0p

0r
b = a2  (9.3)    

 Combining equations (9.1) through (9.3) and noting that the flow is irrotational, we obtain: 

   a1 -

u2

a2
b

0u
0x

+ a1 -

v

2

a2
b

0v

0y
+ a1 -

w

2

a2
b

0w

0z
- 2

uv

a2
 
0u
0y

   

      - 2
vw

a2
 
0v

0z
- 2

wu

a2
 
0w

0x
= 0  (9.4a)    

 If we introduce a velocity potential , as we did in  Chapter   3   ,  such that    u = 0f>0x, 

v = 0f>0y, and w = 0f>0z   , equation (9.4a) becomes: 

     a1 -

f2
x

a2
bfxx + a1 -

f2
y

a2
bfyy + a1 -

f2
z

a2
bfzz 

 - 2
fxfy

a2
fxy - 2

fyfz

a2
fyz - 2

fzfx

a2
fzx = 0  (9.4b)    

 which is the  full potential equation  (also called the  velocity potential equation) . In the 

form of equation (9.4b), it is easy to see that the full potential equation is highly non-

linear, which makes it very difficult to solve analytically. This equation was also difficult 

to solve numerically in the early days of computer simulations, which is why further 
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 simplifications to the equation were required in order to obtain analytic solutions or to 

be solvable numerically. 

 A useful simplification of equation (9.4) can be made for the case of a slender body 

moving in the  x  direction at the velocity    U� .    As shown in  Fig.   9.2   , the magnitude and the 

direction of the local velocity are changed only slightly from the free-stream velocity. 

Therefore, the resultant velocity at any point can be represented as the vector sum of the 

free-stream velocity (a constant) together with the perturbation velocities,    u�, v�,    and    w�   : 

    u = U� + u�   

    v = v�    

    w = w�     

 Since the perturbation velocities are considered to be small in magnitude when com-

pared with the free-stream velocity (   u�, v�, w� V  U�    ), equation (9.4a) becomes: 

      a1 -

u2

a2
b

0u
0x

+

0v

0y
+

0w

0z
= 0  (9.5)    

 where    u>a    is essentially equal to the local Mach number. This simplification, however, 

is only true if the flow is not transonic (   M � 1   ) or hypersonic (   M 7 5   ). Equation (9.5) 

can be simplified further if we recall that the local speed of sound can be determined 

using the energy equation for adiabatic flow: 

      
a2

a2
�

= 1 -

g - 1

2
a

u2
+ v

2
+ w

2

U2
�

- 1bM2
�  (9.6)    

 Since only small perturbations are considered, the binomial theorem can be used to 

generate the relation: 

      
a2

�

a2
= 1 +

g - 1

2
M2

�a2
u�

U�
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u�2
+ v�2

+ w�2

U2
�

b   (9.7)    

 To simplify equation (9.5), notice that: 
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�
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�
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  (9.8)    

 Substituting equation (9.7) into equation (9.8) and neglecting the higher-order terms 

yields the expression 

      1 -

u2

a2
= 1 - M2

� c1 +

2u�

U�

a1 +

g - 1

2
 M2

� b d   (9.9)    

U�

Resultant local velocity

v � v�

u � U� � u�

 Figure 9.2         Velocity compo-

nents for subsonic, compress-

ible flow past a thin airfoil at a 

small angle of attack.   
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 Using equation (9.9), equation (9.5) can now be rewritten as: 

   (1 - M2
� )

0u
0x

+

0v

0y
+

0w

0z
= M2

� a1 +

g - 1

2
M2

� b
2u�

U�

 
0u
0x

   

 This equation can be rewritten in terms of the perturbation velocities as: 

      (1 - M2
� ) 

0u�

0x
+

0v�

0y
+

0w�

0z
=

2

U�

a1 +

g - 1

2
 M2

� bM2
�u� 

0u�

0x
  (9.10)    

 Furthermore, the term on the right-hand side often can be neglected, as it is of second order 

in the perturbation velocity components. This is only true if the flow is not transonic, since 

at Mach numbers close to    M = 1,    the first term in the equation could be of the same order 

as the term on the right-hand side. As a result, we now obtain the linearized equation: 

      (1 - M2
� )

0u�

0x
+

0v�

0y
+

0w�

0z
= 0  (9.11)    

 Since the flow is everywhere isentropic, it is also irrotational. The condition of irrota-

tionality allows us to introduce a velocity potential    f�    which is a point function with 

continuous derivatives. Let    f�    be the potential function for the perturbation velocities: 

      u� =
0f�

0x
  v� =

0f�

0y
  w� =

0f�

0z
  (9.12)    

 The resultant expression is obtained by substituting the relations in equation (9.12) into 

equation (9.11), which applies to a completely subsonic, compressible flow, and is the 

linearized velocity potential equation: 

      (1 - M2
� )f�xx + f�yy + f�zz = 0  (9.13)    

 which is also known as the Prandtl-Glauert equation. Comparing this equation to the full 

potential equation (velocity potential equation), equation (9.4b), you see that the lineariza-

tion process has taken a highly non-linear equation and changed it into a linear equation. 

An equation of this type has a much better chance of being solved analytically. However, 

from an historical perspective, researchers interested in subsonic compressible flows did 

not solve this equation directly. Rather, they saw the similarity between this equation and 

Laplace’s equation,  equation (3.26)    . The similarity led them to find a way to transform the 

linearized velocity potential equation into Laplace’s equation, and once the appropriate 

transformation was found, it would be possible to take incompressible aerodynamics re-

sults and transform them into compressible aerodynamics results. This was done in several 

ways, the two most common being Ackeret’s transformation and Göthert’s transformation.  

   9.1.2  The Göthert Transformation 

 By using a simple coordinate transformation, equation (9.13) can be reduced to 

 Laplace’s equation, which we used to describe incompressible, irrotational flows. If the 

“affine” transformation 

      x� =
x

21 - M2
�

  (9.14a)    
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      y� = y  (9.14b)    

      z� = z  (9.14c)    

 is introduced, equation (9.13) becomes 

      fx�x� + fy�y� + fz�z� = 0  (9.15)    

 Therefore, if the potential field for incompressible flow past a given configuration 

is known, a corresponding solution for the linearized compressible flow can be readily 

obtained using this transformation. The potential distribution for an incompressible 

flow and the corresponding “foreshortened” distribution (which satisfies the compress-

ible flow equation) are compared in  Fig.   9.3    at points having the same value of    f.    

 Although the calculation of a compressible flow field from a known incompressible flow 

is relatively straightforward, care must be taken in the determination of the boundary 

conditions satisfied by the compressible flow field.  

 Referring to equation (9.14), we see that the transformation in effect changes the 

ratio of the  x  dimension to the  y  and  z  dimensions. Although the spanwise dimensions 

are unaltered, the transformed chordwise dimension is changed. Therefore, although 

the airfoil section of the corresponding wings remains geometrically similar, the aspect 

ratios for the wings differ. The compressible flow over a wing of aspect ratio  AR  at 

the Mach number    M�     is related to the incompressible flow over a wing of aspect ratio 

 AR    21 - M2
� .    This is illustrated in the sketch of  Fig.   9.4   . A study of the changes in a 

completely subsonic flow field around a given wing as the Mach number is increased 

corresponds to an investigation of the incompressible flow around a series of wings of 

progressively reduced aspect ratio.  

 Using the linearized approximation, the pressure coefficient for the compressible 

flow is given by 

      Cp = -

2u�

U�

= -

2

U�

 
0f�

0x
  (9.16a)    

 which is related to the pressure coefficient for the corresponding incompressible flow 

   (C�p)    through the correlation 

      Cp =
C�p

21 - M2
�

  (9.16b)    

x

(a) (b)

�x�
x

1�M�
2

 Figure 9.3         Distribution of points 

having equal values of    f    in the 

linearized transformation for sub-

sonic, compressible flow: (a) com-

pressible flow; (b) corresponding 

incompressible flow.   
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 The effect of compressibility on the flow past an airfoil system is to increase the hori-

zontal perturbation velocities over the airfoil surface by the factor    1>21 - M2
� .    The 

correlation is known as the  Prandtl - Glauert formula . 

 We can calculate the lift by integrating the pressure distribution over the airfoil 

surface from the leading edge to the trailing edge. Based on equation (9.16b), we find 

that the section lift and moment coefficients for a compressible subsonic flow also ex-

ceed the corresponding value for an incompressible flow by a factor of    1>21 - M2
� :    

   Cl =
C�l

21 - M2
�

  Cm =
C�m

21 - M2
�

   

 The resultant variation for the lift-curve slope with Mach number is presented for a 

two-dimensional unswept airfoil in  Fig.   9.5   .  
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 Figure 9.4         Wings for flows related by the linearized transforma-

tion: (a) wing for compressible flow; (b) corresponding wing for 

incompressible flow.   

0

2

4

6

8

10

12

0.0 0.2 0.4 0.6 0.8 1.0

Mach number

dCl

da

 Figure 9.5         Variation of lift-curve slope with Mach number using 

Prandtl-Glauert formula.   
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 Furthermore, based on the pressure correlation of equation (9.16b), the position 

of the resultant aerodynamic force for a compressible, subsonic flow is the same as that 

for an incompressible flow. This, of course, is true provided that there are no shock 

waves. Thus, in the absence of shock waves, the drag acting on an airfoil in an inviscid, 

compressible, subsonic flow is the same as the drag acting on an airfoil in an inviscid, 

incompressible flow. That is, the section drag is zero. 

 Although the Prandtl-Glauert relation provides a simple method for calculating 

the flow around an airfoil,  Jones and Cohen (1960)  warn that the method generally un-

derestimates the effect of compressibility on the magnitude of disturbances for airfoils 

of  finite thickness. As the free-stream Mach number approaches a value of unity, the 

quantity    1>21 - M2
�     approaches infinity, causing various perturbation parameters 

to approach infinity. Hence, the Prandtl-Glauert formula begins to show increasing 

departures from reality as the Mach number approaches a value of unity. The relative 

inaccuracy at a particular Mach number depends on parameters such as the section 

thickness and the angle of attack.  

   9.1.3  Additional Compressibility Corrections 

 When comparing the Prandtl-Glauert correction to compressible experimental data for 

two-dimensional shapes, the theory typically underpredicts the actual results. Because 

of this, there are two other commonly used compressibility corrections: the  Karmen-
Tsien rule  and  Laitone’s rule . Both of these corrections are based on the Prandtl-Glauert 

correction, but proceed with different assumptions to derive the improved results. If we 

rewrite the Prandtl-Glauert correction, which is based on linear theory, with the defini-

tion that    b = 21 - M2
�    , we obtain: 

   Cp =
C�p

b
   

 where    C�p    is the incompressible pressure coefficient. The first improvement was ac-

complished by taking into account some aspects of non-linearity and was done by  von 

Karman (1941)  and  Tsien (1939) ; it is known as the Karman-Tsien rule: 

      Cp =
C�p

b +

M2
�

1 + b
 
C�p

2

  (9.17)    

 Another improved correction by  Laitone (1951)  was derived by assuming the free-stream 

Mach number is replaced by the local Mach number; it is known as Laitone’s rule: 

      Cp =
C�p

b +

M2
�

b
a1 +

g - 1

2
M2

� b
C�p

2

  (9.18)    

 While these corrections work well for two-dimensional shapes such as airfoils, they do 

not work as well for three-dimensional slender bodies.  Lees (1946)  showed that the 

appropriate compressibility correction for slender bodies is: 
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      Cp =
C�p

(1 - M2
� )3>2

  (9.19)    

 which is a significant departure from the two-dimensional corrections.  

   9.1.4  The Motivation for Determining the Critical Mach Number   

 A test flight of the YP-38 took place in September 1940. Major Signa Gilkey peeled off 

into a steep dive starting at 35,000 ft. “As he headed down and the airspeed built up, 

the airplane began to shake, mildly at first and then more violently. Even worse, the 

airplane wanted to nose down further and increase the severity of the dive. The control 

column was shaking and the control forces had become heavy, and it was impossible 

to pull the column back to counteract the nose-down tendency. The airplane was out 

of control” [ Foss and Blay (1987) ]. Major Gilkey elected to stay with the plane and 

recovered at 7000 ft. “Major Gilkey had become the first pilot to encounter a new, un-

charted high-speed flight regime. He had attained air speeds where new aerodynamic 

phenomena known as compressibility effects were created” [ Foss and Blay (1987) ]. 

 In seeking ways to control the aircraft experiencing these compressibility effects, 

the designers turned to the references of the time.  Foss and Blay (1987)  note, “In hind-

sight, it is interesting to note that no one was anticipating the nose down pitching moment 

tendencies, which were hinted at in the section on pitching moment data. And of course, 

there were no data to suggest that hinge moments would become unmanageable.” 

 Using a P-38 model in the high-speed wind tunnel of the Ames Research Center, 

model drag-rise characteristics were measured for the first time. The wind-tunnel cor-

relations, as taken from  Foss and Blay (1987) , are reproduced in  Fig.   9.6   . Pressure data 

and flow visualization clearly revealed the shock-stall conditions and helped confirm 

the flight-test findings.   

   9.1.5  Critical Mach Number 

 The critical Mach number is defined as the Mach number where sonic flow first appears 

in a flow field. In order to estimate the critical Mach number, we will first need to find 

the pressure coefficient at this point, which is called the critical pressure coefficient. The 

pressure coefficient at any point in a flow can be written as: 

      Cp =
2

gM2
�

a
p

p�
- 1b =

2

gM2
�

a
p
pt

 
pt

p�
- 1b   (9.20)    

 We will assume the flow between the free stream and any point in the flow has constant 

total pressure (which means the point is not in a boundary layer or behind a shock). 

Using isentropic relations for the pressure in terms of the total pressure from equation 

 (8.36)     we can write this as: 

   Cp =
2

gM2
�

± ±

1 +

g - 1

2
 M2

�
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2
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g
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 If the flow at the point in the field has reached a Mach number of    M = 1,    we can write 

the critical pressure coefficient as: 

      Cp,crit =
2

gM2
�

± ±

1 +

g - 1

2
 M2

�

1 +

g - 1

2

≤

g

g - 1

- 1≤   (9.21)    

 This relationship is simply an isentropic relation for the pressure coefficient, and has 

nothing to do with airfoil or wing geometry: in other words, this equation is always true 

for any isentropic flow. 

 We can create a fairly straightforward method for estimating the critical Mach 

number by using the critical pressure coefficient with our compressibility correction 

rules. This can be done analytically, but the method is easiest to use graphically, as 

shown in  Fig.   9.7   . The critical pressure coefficient variation from equation (9.21) is 

graphed for Mach numbers between 0.2 and 1. Then the minimum incompressible 
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 pressure coefficient,    C�p    is obtained from a prediction or experimental data, and cor-

rected for compressibility using one of the compressibility corrections (the Prandtl-

Glauert rule in the case of  Fig.   9.7   ). Where the two curves intersect is the location of 

the critical Mach number, since this represents the pressure at the minimum pressure 

location of the airfoil when    M = 1,    which is the definition of the critical Mach number.  

 The problem with using the various compressibility corrections for thin airfoils 

with low values of the minimum pressure coefficient is that the spread of critical Mach 

number estimates can be quite large, as shown in  Fig.   9.8   . This is why it is important to 

gain some confidence in using the various correction rules, which typically show that the 

 “correct” answer may be between the Karman-Tsien and Laitone results.   
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   9.1.6  Drag Divergence Mach Number 

 While the critical Mach number,    Mcrit,    is the gateway to the transonic speed regime, 

nothing earth shattering actually happens at Mcrit. Since the flow is only sonic at one 

point on the airfoil, there are no shocks, no changes in drag coefficient, and no loss of 

lift taking place. But all of these things will happen at a Mach number just slightly higher 

than the critical Mach number, which is known as the drag divergence Mach number, 

   Mdd.    If you look at the zero-lift drag coefficient for the F-4C aircraft in  Fig.   9.9    from 

 Heffley and Jewel (1972) , you see that the drag coefficient is constant over the subsonic 

speed regime, with a critical Mach number of approximately    M = 0.90,    but then rises 

a) F-4C which was flown at 35,000 ft in level acceleration; W = 38,924 lb 

with 4 AIM-7 missiles (US Air Force photo)
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 Figure 9.9         F-4C zero-lift drag coefficient.   
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steeply above approximately    M = 0.92.    Our method for determining the critical Mach 

number might accurately predict    M = 0.90,    but would not tell us that the drag would 

actually start to rise at    M = 0.92.              

 Because of the importance of the drag rise to cruising aircraft, the drag divergence 

Mach number is actually more important than the critical Mach number. There are no 

reliable analytic methods for predicting the drag divergence Mach number, although 

practically every aircraft manufacturer has some “rule of thumb” for estimating the 

value. These methods are typically based on historical trends, but over the years each 

company developed its own approach, and had its own method. For example, some es-

timates of the drag divergence Mach number are based on a percentage increase above 

   Mcrit,    perhaps somewhere between 2% and 4% higher. Other methods are based on 

the slope of the drag coefficient curve with respect to Mach number,    dCD>dM� ,    since 

the drag divergence Mach number will have a higher slope value than the critical Mach 

number. But not everyone uses the same value of the slope (some use 0.03, some 0.05, 

and others 0.10). Of course all of these methods will give slightly different values for 

   Mdd,    but not as different as it may seem at first. An empirically based formula for esti-

mating    Mdd    is found in  Shevell (1988)  which is based on a slope of    dCD>dM� = 0.05   : 

      Mdd = Mcrit31.02 + 0.08(1 - cos�)4   (9.22)    

 You can see that the result is approximately 2% above the critical Mach number, with 

an additional adjustment for the sweep of the wing,    �    (unswept wings having higher 

values of drag divergence Mach number and swept wings having lower values). When 

this equation is applied to the F-4C shown in  Fig.   9.9   , assuming that the critical Mach 

number is 0.90 and the wing sweep is 40°, the drag divergence Mach number is estimated 

as    Mdd = 0.935,    which compares well with the results in  Fig.   9.9   .   

   9.2  TRANSONIC FLOW PAST UNSWEPT AIRFOILS 

 The section lift coefficient measurements presented in  Farren (1956)  as a function of 

Mach number are reproduced in  Fig.   9.10   . The data indicate that the flow is essentially 

unchanged up to approximately one-third of the speed of sound. The variations in the sec-

tion lift coefficient with Mach number indicate complex changes in the flow field through 

the transonic speed range. You should notice the section lift coefficient at five particular 

Mach numbers (identified by the letters  a  through  e ). Significant differences exist between 

the flow fields at these five Mach numbers. To illustrate the essential changes in the flow, 

line drawings made from Schlieren photographs are reproduced in  Fig.   9.11   .   

    (a)   When the free-stream Mach number is 0.75, the flow past the upper surface decel-

erates from local flow velocities which are supersonic without a shock wave. The 

section lift coefficient is approximately 60 %  greater than the low-speed values at 

the same angles of attack.  

   (b)   At    M� = 0.81,    the section lift coefficient reaches its maximum value, which is 

approximately twice the low-speed value. As indicated in  Figs.   9.11   b and    9.12   a, 

flow is supersonic over the first 70 %  of the surface, terminating in a shock wave. 

The flow on the lower surface is subsonic everywhere. Because the viscous flow 

separates at the foot of the shock wave, the wake is appreciably wider than for (a).  
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   (c)   At    M� = 0.89,    flow is supersonic over nearly the entire lower surface and decel-

eration to subsonic speed occurs through a shock wave at the trailing edge. As a 

result, the lower surface pressures are lower at    M� = 0.89    than at    M� = 0.81.    

Flow on the upper surface is not greatly different than that for  Fig.   9.11   b. As a 

result, the lift is drastically reduced. Separation at the foot of the upper surface 

shock wave is more conspicuous and the turbulent wake is wide. The shock wave 

at the trailing edge of the lower surface effectively isolates the upper surface from 

the lower surface. As a result, the pressure on the upper surface near the trailing 

edge is greater than that on the lower surface. The corresponding pressure and 

local Mach number distributions are presented in  Fig.   9.12   b.   

   (d)   When the free-stream Mach number is 0.98, the shock waves both for the upper 

surface and for the lower surface have reached the trailing edge. The local Mach 

number is supersonic for most of the airfoil (both upper and lower surfaces).  
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 Figure 9.11         Flow field around an airfoil in transonic streams 

based on schlieren photographs: (a) Mach number    M� = 0.75;    

(b) Mach number    M� = 0.81;    (c) Mach number    M� = 0.89;    

(d) Mach number    M� = 0.98;    (e) Mach number    M� = 1.4    [from 

 Farren (1956) ].   
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 Figure 9.10         Section lift coefficient as a 

function of Mach number to illustrate 

the effect of compressibility [from 

  Farren (1956) ]. Refer to  Fig.   9.11    for 

the flow fields corresponding to the 

lettered points on this graph.   
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   (e)   When the free-stream flow is supersonic, a bow shock wave (i.e., the detached 

shock wave in front of the leading edge) is generated. The flow around the airfoil 

is supersonic everywhere except very near the rounded nose. The shock waves at 

the trailing edge remain, but they have become weaker.   

 Eventually the shock wave becomes attached and the flow field is entirely supersonic. 

 The data presented in  Figs.   9.10    through    9.12    illustrate the effect of Mach number 

for a given airfoil section at a particular angle of attack. Parameters such as  thickness 
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 Figure 9.12         Pressure distribu-

tion and local Mach number 

 distribution for transonic flows 

around an airfoil: (a) Flow at 

the trailing edge is subsonic, 

   M� = 0.81;    (b) flow at the lower 

surface trailing edge is supersonic, 

   M� = 0.89    [from  Farren (1956) ].   
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ratio, camber, and nose radius also influence the magnitude of the compressibility 

effects. Transonic flows are very sensitive to the contour of the body surface, since 

changes in the surface slope affect the location of the shock wave and, therefore, the 

inviscid flow field as well as the downstream boundary layer. 

 Furthermore,  as was discussed in  Chapter   8   ,  the shock-wave/boundary-layer in-

teraction and the possible development of separation downstream of the shock wave 

are sensitive to the character of the boundary layer, to its thickness, and to its velocity 

profile at the interaction location. Since a turbulent boundary layer can negotiate higher 

adverse pressure gradients than a laminar boundary layer, the shock-wave/boundary-

layer interaction is smaller for a turbulent boundary layer. Therefore, it is important 

to consider the Reynolds number when simulating a flow in the wind tunnel. A large 

Reynolds number difference between the desired flow and its simulation may produce 

significant differences in shock-wave location and the resultant flow field. The use of 

artificial trips to force transition to occur at a specified point  (as discussed in  Chapter   5   )  

may be unsatisfactory for transonic flows, since the shock-wave location as well as the 

extent of flow separation can become a function of the artificial tripping. 

 The    Cobalt60    code [ Strang et al. (1999) ] has been used to compute the flow field 

around a NACA 0012 airfoil section at an angle of attack of 3°. The turbulence model of 

 Spalart and Allmaras (1992)  was used to represent the viscous boundary layer near the 

surface of the airfoil. Contours of constant Mach number, as computed by  Forsythe and 

Blake (2000)  for a free-stream Mach number of 0.8 at a free-stream Reynolds number 

(based on the chord length) of    3.0 * 106,    are presented in  Fig.   9.13   . The Mach 1 con-

tours for the upper surface and for the lower surface are highlighted in white. Notice 

that the relatively large area of supersonic flow on the upper surface is terminated by 

a shock wave at the downstream (or right-hand) side of the region of supersonic flow. 

The shock wave is evident in the sudden increase in pressure evident both in the ex-

perimental and in the computed pressure distributions for this airfoil, which are taken 

from  Forsythe et al. (2000)  and reproduced in  Fig.   9.14   . The flow conditions for the 

experimental data, which are taken from  Harris (1981) , include a free-stream Mach 

number of 0.799, a Reynolds number of    9.0 * 106,    and an angle of attack of 2.86°. The 

sudden increase in pressure due to the shock wave occurs on the upper surface at mid-

chord. The adverse pressure gradient associated with the shock-wave/boundary-layer 

interaction causes the boundary layer to separate from the aft-end surface of the airfoil. 

This is evident in the (darkened region) Mach number contours presented in  Fig.   9.13   .   

 The section lift coefficient for this two-dimensional flow [ Forsythe and Blake 

(2000) ] is presented as a function of the free-stream Mach number in  Fig.   9.15   . You 

should notice the similarity between the Mach-number dependence of the computed 

section lift coefficient, as presented in  Fig.   9.15   , and that for the measurements pre-

sented by  Farren (1956) , which are reproduced in  Fig.   9.10   .  

 The computed flow field for transonic flow over a NACA 0012 airfoil that was 

presented in  Fig.   9.13    depicts regions (both above and below the airfoil) where the flow 

has accelerated to supersonic values. Since the pressure is decreasing, the acceleration 

of the flow is often termed an expansion. During the isentropic expansion of the flow, 

there is a corresponding decrease in the temperature. 

 If the airplane is flying through an airstream where the relative humidity is high, 

the local temperature of the expanding flow can decrease below the dew point. Water 

vapor will condense and become visible. Further downstream, as the flow decelerates 
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 Figure 9.14         Pressure distributions for a NACA 0012 in a Mach 0.8 

stream at    a = 3�.      

 Figure 9.13         Constant-density contours for a NACA 0012 airfoil in a Mach 

0.8 stream at    a = 3�    [provided by  Forsythe and Blake (2000) ].   
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(perhaps as it passes through a shock wave that terminates the locally supersonic flow), 

the pressure and the temperature increase. As the local temperature rises above the 

dew point, the condensed particles evaporate (or vaporize) and are no longer visible. 

Therefore, when an airplane is flying at transonic speeds in a relatively humid atmos-

phere, the relatively large accelerations (expansions) and decelerations (compressions) 

yield a condensation pattern, such as that for the B-1B, which is presented in  Fig.   9.16   a.     

 The Schlieren technique, which allows us to see shock waves in a wind-tunnel 

test, is based on density gradients in the flow field that bend light rays passing through 

the flow. Under certain circumstances, these density gradients allow us to “see” the 

shock waves for an airplane in flight, as shown for the transonic flight of an F-111 in 

 Fig.   9.16   b. 

 The experimentally determined lift coefficients for an untwisted rectangular wing 

whose aspect ratio is 2.75 and whose airfoil section is a NACA 65A005 (a symmetric 

profile for which    t = 0.05c   ) are presented in  Fig.   9.17    as a function of angle of attack. 

The corresponding drag polars are presented in  Fig.   9.18   . These data from  Stahl and 

Mackrodt (1965)  were obtained at Reynolds numbers between    1.0 * 106    and    1.8 * 106.    

The lift-curve slope is seen to be a function of the free-stream Mach number. Further-

more, the linear relation between the lift coefficient and the angle of attack remains 

valid to higher angles of attack for supersonic flows.   
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 Figure 9.15         Section lift coefficient for a NACA 0012 airfoil as a 

function of the free-stream Mach number [provided by  Forsythe 

and Blake (2000) ].   
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 Figure 9.16         (a) Condensation and evaporation of the water 

vapor delineates regions where the flow has expanded for a B-1B 

in transonic flight (US Air Force photo). (b) F-111 flying at tran-

sonic speeds with shock waves clearly visible (courtesy of R. C. 

Maydew and S. McAlees of the Sandia National Laboratories).   

(a)

        

(b)
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  Bushnell (2004)  noted: 

  Shock waves are usually detrimental, requiring mitigation. The volume and lift-

engendered drag associated with shock waves is additive to the usual friction 

and vortex drag-due-to-lift, comprising one-third of total aircraft drag in the su-

personic cruise case, even for the well-designed configuration. The reason for 

the decades-long Mach .8ish cruise-speed plateau associated with conventional 

long-haul transport aircraft (requiring over ten hours of flight time transpacific) is 

avoidance of the major drag increases due to strong shock formation on the upper 

wing surfaces at higher speeds. Shock wave drag is also a major reason there are 

no economically viable supersonic transports yet extant. Due to wave drag, the 

aerodynamic efficiency of a supersonic transport (SST) is the order of one-half 

or less of a conventional (subsonic) transport. Usual SST designs require a fuel 

fraction approaching 60%, including reserves. A 1% overall drag reduction for 

these designs translates to a 5 to 10% increase in payload.         

 Aerodynamics Concept Box: What Does “Non-Linear Flow” Mean? 

 Mathematically, the full potential equation, equation (9.4b), is non-linear. This equation is 

valid in the transonic speed regime, and when it is linearized it is only valid for subsonic or 

supersonic speeds. Why? Because the flow is “non linear” in the transonic regime. What does 

that mean? It means the flow has the following features: shock-boundary layer interactions, 

mixed subsonic/supersonic flow, and is usually highly unsteady. 

 What is happening here? At a height well above the airfoil, the normal shock bifurcates or 

separates into two parts. The front leg of the bifurcated system inclines down into the bound-

ary layer at about 50° angle [Sheldon (1967)]. Since an oblique shock increases the pres-

sure, this starts to thicken the boundary layer, eventually leading to flow separation. Flow 

       Shock pattern over a transonic airfoil [from  Liepmann 

(1946)]    
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   9.3  WAVE DRAG REDUCTION BY DESIGN 

 Since the appearance of shock waves on vehicles typically has such a large negative im-

pact on aircraft performance, it is usually necessary to make design changes in order to 

reduce the drag rise. There are a variety of ways to accomplish this, and aircraft often take 

advantage of multiple methods to reduce the increased drag due to shock waves. This is 

typically accomplished by the use of supercritical airfoils, wing sweep, and the area rule. 

   9.3.1  Airfoil Contour Wave Drag Approaches 

 Three features which contribute to the location of the shock wave and, therefore, to the 

pressure distribution are: 

    •   The flow in the supersonic region ahead of the shock wave  

   •   The pressure rise across the shock wave itself (which involves considerations of 

the interaction with the boundary layer)  

   •   The subsonic flow downstream of the shock wave (which involves considerations 

of the boundary-layer development between the shock wave and the trailing edge 

and of the flow in the near wake) [Holder (1964)]   

 If the trailing-edge pressure changes as a result of flow separation from the upper sur-

face, the lower surface flow must adjust itself to produce a similar change in pressure 

(since the pressure near the trailing edge must be approximately equal for the two 

surfaces, unless the flow is locally supersonic at the trailing edge). The conditions for 

divergence of the trailing-edge pressure correspond to those for a rapid drop in the lift 

coefficient and to the onset of certain unsteady flow phenomena, such as buffeting.  

   9.3.2  Supercritical Airfoil Sections 

 The Mach-number/lift-coefficient flight envelopes of modern jet aircraft operating at tran-

sonic speeds are limited by the compressibility drag rise and by the buffeting phenomenon. 

Airfoil section designs which alleviate or delay the onset of the drag rise and buffeting can 

contribute to higher maximum speeds (transport applications) or better lift performance 

(fighter applications). Using intuitive reasoning and substantiating experiment,  Whitcomb 

and Clark (1965)  noted that R. T. Whitcomb and his coworkers have developed a “super-

critical” airfoil shape which delays the subsonic drag rise. The principal differences between 

the transonic flow field for a conventional airfoil and that for a supercritical airfoil are il-

lustrated by the data presented in  Fig.   9.19   . At supercritical Mach numbers, a broad region 

of locally supersonic flow extends vertically from both airfoils, as indicated by the pressure 

coefficients above the sonic value and by the shaded areas of the flow fields in  Fig.   9.19   . 

The region of locally supersonic flow usually terminates in a shock wave, which results 

 separation occurs and turns the flow away from the airfoil, which causes the creation of 

another oblique shock. As the normal shock interacts with the separated flow region, it is 

curved  (as we discussed in  Chapter   8   ) . This flow, with all of the interactions we can see taking 

place, is also unsteady. This is a picture of non-linear aerodynamics. 
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in increased drag. The much flatter shape of the upper surface of the supercritical airfoil 

causes the shock wave to occur downstream and therefore reduces its strength. Therefore, 

the pressure rise across the shock wave is reduced with a corresponding reduction in drag. 

However, the diminished curvature of the upper surface also results in a reduction of the lift 

carried by the midchord region of the airfoil section. To compensate for the loss in lift from 

the midchord region, additional lift must be generated from the region of the airfoil behind 

the shock wave, particularly on the lower surface. The increase of lift in this area is achieved 

by substantial positive camber and incidence of the aft region of the airfoil, especially of the 

lower surface. The increased lift generated by the concave surface near the trailing edge 

of the lower surface is evident in the experimental pressure distributions presented in  Fig. 

  9.20   . The midchord region of the lower surface should be designed to maintain subcritical 

flow over the range of operating conditions. If not, when the pressure rise associated with 

a shock wave is superimposed on the pressure rise caused by the cusp, separation of the 

lower-surface boundary layer would occur. To minimize the surface curvatures (and, there-

fore, the induced velocities) in the midchord regions of the upper and the lower surfaces, 

the leading-edge radius is relatively large. Supercritical airfoils are now used on essentially 

all commercial transports and military aircraft that fly at high subsonic speeds.     

   9.4  SWEPT WINGS AT TRANSONIC SPEEDS 

 In the late 1930s, two aerodynamicists who had been taught by Prandtl—Adolf Busemann 

and Albert Betz—discovered that drag at transonic and supersonic speeds could be re-

duced by sweeping back the wings; see  Miller and Sawers (1970)  for more details. At the 

Strong shock waveSupersonic flow

Separated boundary
layer

Upper surface

Lower surface

(a)

Cp, sonic

Cp

�

�

(b)

Cp

�

�

Weak shock
wave

x
c

x
c

 Figure 9.19         Comparison of transonic flow over a NACA 

64A series airfoil with that over a “supercritical” airfoil sec-

tion: (a) NACA 64A series,    M = 0.72;    (b) supercritical airfoil, 

   M = 0.80    [from  Ayers (1972) ].   
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Volta conference in Rome in 1935, in his paper on high-speed flight, Busemann showed 

that sweepback would reduce drag at supersonic speeds. Betz, in 1939, was the first per-

son to draw attention to the significant reduction in transonic drag which comes when the 

wing is swept back enough to avoid the formation of shock waves which occurs when 

the flow over the wing is locally supersonic. The basic principle is that the component of 

the main flow parallel to the wing leading edge is not perturbed by the wing, so the critical 

conditions are reached only when the component of the free-stream velocity normal to 

the leading edge has been locally accelerated at some point on the wing to the local sonic 

speed. This simple principle is obviously only true (if at all) on an infinite span wing of 

constant section. Nevertheless, the initial suggestion of Betz led to wind-tunnel tests which 

substantiated the essence of the theory. The results of the wind-tunnel measurements 

performed at Göttingen in 1939 by H. Ludwieg [as presented in  Schlichting (1960) ] are 

reproduced in  Fig.   9.21   . These data show that the effects of the shock waves that occur 

on the wing at high subsonic speeds are delayed to higher Mach numbers by sweepback.  

 The experimentally determined lift coefficients and drag polars for a delta wing 

whose aspect ratio is 2.31 and whose airfoil section is NACA 65A005 (a symmetric 

profile for which    t = 0.05c   ) are presented in  Fig.   9.22   . These data from  Stahl and 

 Mackrodt (1965)  were obtained at Reynolds numbers between    1.0 * 106    and    1.8 * 106.    
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 Figure 9.20         Experimentally determined pressure distribu-

tion for a supercritical airfoil section,    M� = 0.80,       Cl = 0.54,    

   Rec = 3.0 * 106    (flagged symbols are for the lower surface) 

[data from  Hurley et al. (1975) ].   



Sec. 9.4 / Swept Wings at Transonic Speeds    539

At  subsonic speeds, the lift-coefficient/angle-of-attack correlation for the delta wing is 

markedly different than that for a rectangular wing;  in addition to the data presented 

in  Figs.   9.17    and    9.22   , you should consult  Chapter   7    for more details    . Even in subsonic 

free streams, the lift is a linear function of the angle of attack up to relatively high incli-

nation angles. However, over the angle-of-attack range for which the lift coefficient is 

a linear function of the angle of attack, the lift-curve slope    (dCL   >   da)    is greater for the 

rectangular wing for all the free-stream Mach numbers considered.     

 We could use a variable-geometry (or swing-wing) design to obtain a suitable com-

bination of low-speed and high-speed characteristics. In the highly swept, low-aspect-

ratio configuration, the variable-geometry wing provides low wave drag and eliminates 

the need for wing fold in the case of naval aircraft. At the opposite end of the sweep 

range, swept wings obtain efficient subsonic cruise and loiter and good maneuverability 

at lower speeds. Negative factors in a swing-wing design are complexity, a loss of inter-

nal fuel capacity, and the considerable weight of the hinge/pivot structure. A variable-

geometry design, the Rockwell International B-1, is presented in  Fig.   9.23   .  

   9.4.1  Wing–Body Interactions and the “Area Rule” 

 The chordwise pressure distribution on a plane, finite-span, swept-back wing varies 

across the span such that the maximum local velocity is reached much farther aft at 

the root and farther forward at the tip compared to the basic infinite-wing distribution 
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 Figure 9.21         Comparison of the transonic drag polar for an unswept 

wing with that for a swept wing [data from  Schlichting (1960) ].   
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[ Rogers and Hall (1960) ]. These distortions at the root and at the tip determine the flow 

pattern. On a swept wing with a square-cut tip, a shock wave first occurs near the tip, 

as shown in  Fig.   9.24   . This “initial tip shock” is relatively short in extent. As the Mach 

number is increased, a rear shock is developed which dominates the flow. Because of 

the variation of the component of velocity normal to the wing leading edge, streamlines 

over the wing surface will tend to be curved. However, the flow at the wing root is con-

strained to follow the fuselage. Therefore, for a straight fuselage, a set of compression 

waves originate in the wing-root region to turn the flow parallel to the fuselage. As shown 

in  Fig.   9.24   , the compression waves propagate across the wing span and ultimately may 

coalesce near the tip to form the rear shock.  

 The interaction between the central fuselage and the swept wing has a signifi-

cant effect on the transonic flow over the wing. In the early 1950s,  Küchemann (1957)  

recognized that a properly shaped waist-like indentation on the fuselage could be de-

signed to produce a velocity distribution on the wing near the root similar to that on the 
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 Figure 9.22         Effect of Mach number on the aerodynamic char-

acteristics of a delta wing;    AR = 2.31,       �LE = 60�:    (a) lift- 

coefficient/angle-of-attack correlation [data from  Stahl and 

Mackrodt (1965) ].    
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 corresponding infinite-span wing. Küchemann noted that, “the critical Mach number 

can be raised and the drag reduced in the transonic and the supersonic type of flow, the 

wing behaving in some respects like a thinner wing.”  Whitcomb (1956)  found that the 

zero-lift drag rise is due primarily to shock waves. Furthermore, the shock-wave forma-

tions about relatively complex swept-wing/body combinations at zero lift near the speed 

of sound are similar to those which occur for a body of revolution with the same axial 

development of cross-sectional area normal to the airstream. Whitcomb concluded that, 

“near the speed of sound, the zero-lift drag rise of a low-aspect-ratio thin-wing/body 

combination is primarily dependent on the axial development of the cross-sectional 

areas normal to the air stream.” Therefore, the drag-rise increments near the speed of 

sound are less for fuselage/wing configurations which have a more gradual change in 

the cross-sectional area (including the fuselage and the wing) with axial position (as 

well as a reduction in the relative magnitude of the maximum area). Whitcomb noted 

that it would be expected that indenting the body of a wing-body combination, so that 

the combination has nearly the same axial distribution of cross-sectional area as the 

original body alone, would result in a large reduction in the transonic drag rise. Design 
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 Figure 9.22         (continued) (b) drag polar.   
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applications of this “theory,” which is often known as  Whitcomb’s area rule  for transonic 

configurations, are illustrated in  Fig.   9.25   .  

 An example of the application of the area rule is the F-102. Early flight tests 

revealed that the YF-102, the prototype for the F-102, had serious deficiencies in per-

formance (specifically, it could not reach supersonic speeds, a major deficiency for a 
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 Figure 9.23         Variable geometry (swing-wing) aircraft, the Rock-

well International B-1: (a) three-view sketches illustrating the 

variable-geometry wing; (b) low-speed configuration (US Air 

Force photo by Staff Sgt. Bennie J. Davis III).   
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supersonic fighter). A redesign effort included the first application of Whitcomb’s area 

rule to reduce the transonic drag. The modified YF-102A (see  Fig.   9.25   b) achieved 

supersonic flight satisfactorily, providing the U.S. Air Force with its first operational 

delta-wing design [see  Taylor (1969) ]. 

 The relation between the distribution of the cross-sectional area and the transonic 

drag rise had a significant effect on the design of the Convair B-58, the Air Force’s first 

supersonic bomber. Free-flight, rocket-powered models of the original Convair design, 

designated MX-1626, were tested at the Wallops Island Flight Test Range (an NACA 

facility). The peak drag coefficient at Mach 1.02 was almost twice as high as had been pre-

dicted, and the model did not achieve supersonic speeds. An evaluation of the longitudinal 

cross-sectional area distribution in accordance with the area rule of R. T. Whitcomb, along 

with data obtained in the Helium Gun Facility at Wallops on a body of revolution having 

the same longitudinal distribution of the cross-sectional area as the MX-1626, provided an 

explanation of the unexpectedly high drag. A sketch of the planform of the MX-1626, the 

longitudinal distribution of the cross-sectional area, and the drag coefficient for the equiva-

lent axisymmetric configuration as a function of the Mach number are shown in  Fig.   9.26   . 

Notice how the wing, the wheel fairings, and the nacelles all add area to the fuselage and the 

weapons/fuel pod, creating a large total cross-sectional area. Furthermore, the placement 

of these components results in large longitudinal variations in the total cross-sectional area.  

 To reflect changes in the design requirements due to the unavailability of the origi-

nally planned large jet engines, and to changes in the function of the pod, the Air Force 

changed the Project Number from MX-1626 to MX-1964. R. N. Hopko, R. O. Piland, 

and J. R. Hall set out to design a vehicle which met the general requirements of the new 

MX-1964 yet reduced the transonic drag rise. The design, designated PARD  Area-Rule 
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 Figure 9.24         Formation of rear shock from compression waves 

associated with flow near the root [from  Rogers and Hall (1960) ].   
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 Figure 9.25         Application of the area 

rule to the axial distribution of the 

cross-sectional area: (a) area rule 

applied to the design of a near-sonic 

transport; (b) sketch of the Convair 

F-102A [from  Goodmanson and 

Gratzer (1973) ].   

Design in  Fig.   9.26   , included a 3 %  thick, 60° delta wing, modified by a 10° forward swept 

trailing edge. The diamond-shaped wing provides a more gradual variation in the cross-

sectional area distribution. To this wing, they added four separate nacelles, staggered 

in the chordwise direction, and made the fuselage a body of revolution. The resultant 

planform for the PARD Area-Rule Design, the longitudinal cross-sectional area dis-

tribution, and the measured drag coefficient for the equivalent body of revolution as a 

function of the Mach number are reproduced in  Fig.   9.26   b. 
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 Based on these data, Convair evaluated four alternative designs. Data for the 

configuration which had the lowest drag rise of the four Convair configurations are 

presented in  Fig.   9.26   c. Notice that the configuration, designated the Redesigned MX-

1964, had both a smooth progression of cross-sectional area and the minimum value of 

the maximum cross-sectional area. 

 While touring the Air Force Museum at the Wright-Patterson Air Force Base, 

H.  Hillaker (1994)  noted, “The area-rule requirements of the B-58 required that the in-

board and outboard nacelles be staggered—the inlet face of the outboard nacelle began 

on the same plane as the exhaust face of the inboard nacelle. We previously had siamese 

nacelles (engines side-by-side as in a B-52 nacelle) which was lighter in weight but the 

higher drag more than offset the lower weight.” The resulting aircraft configuration is 

illustrated in the photograph of  Fig.   9.27   .  

 Applications of the area rule in the design of the F-5 are illustrated in  Figs.   9.28    

through    9.30   . The benefit due to area ruling, considering a straight-sided fuselage as a base, 

is a large decrease in drag at transonic speeds. As a result, there is a corresponding increase 

in transonic acceleration, which is very important to this fighter’s design. This is true, ac-

cording to  Stuart (1978)  and  Bradley (1982) , because the major and decisive portions of 

air-to-air combat take place at altitudes below 30,000 ft and at speeds from Mach 0.5 to 1.0.  

 Area ruling was also applied to the tip-tank design for the F-5A/B aircraft. Initial 

prototype flight and wind-tunnel tests indicated that transonic buffet and longitudinal 

instabilities existed with the originally proposed wingtip tank. Continued development 
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revolution for supersonic bomber models [from  Shortal (1978) ].   
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tests in the transonic wind tunnel proved that an area ruling concept (as shown in 

 Fig.   9.29   ) could be used to essentially eliminate the pitch instabilities in the Mach 0.90 

to 0.95 region. A cruise drag benefit also existed because of the improvement in wing-tip 

airflow characteristics. A slight instability which remained in the wind-tunnel data and 

was thought to be Reynolds number dependent was never found during the flight tests. 

The photograph of an F-5 (see  Fig.   9.30   ) illustrates these applications of the area rule.   

Mach no.
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Drag

 Figure 9.28         Reduction in the transonic drag rise due to the 

 application of area rule to the F-5 fuselage [from  Stuart (1978) ].   

 Figure 9.27         Photograph of B-58 (US Air Force photo).   
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 By carefully designing the wing and the tail configurations, we can obtain a smooth 

variation of the cross-sectional area even without adjusting the fuselage cross section. 

Such is the case for the swept-wing cruise missile which is presented in  Fig.   9.31   . The 

cross-sectional area distribution for this configuration is relatively smooth and sym-

metric about the midbody station, as shown in  Fig.   9.32   . This result is due, in part, to 

the high sweep angles for the wing and for the tail. As might be expected, this shape 

is conducive to low transonic drag and the drag-divergence Mach number is relatively 

high (i.e., approximately 0.95). Furthermore, the configuration could be trimmed with 

zero control deflection near the lift coefficient required for the maximum lift-to-drag 

ratio at a Mach number of 0.95.    

 Figure 9.30         Illustration of the application of the area rule to the 

tip tanks of the F-5 (from the collection of John Bertin).   

Final

Original

�CDCRUISE
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 Figure 9.29         Application of area rule to the design of the tip tank 

for the F-5A/B aircraft [from  Stuart (1978) ].   
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   9.4.2  Second-Order Area-Rule Considerations 

 Optimization of the wing/body/nacelle configuration plays a critical role in the design of 

business jets. Unlike previous business jets developed for cruising speeds near a Mach 

number of 0.7, new aircraft are designed to cruise at speeds at or above Mach 0.8. Added 

to the requirement of more speed is the desire for significant increases in range. To meet 

these requirements, the designs employ wings with more sweep and carefully designed 

cross sections that minimize the onset of the compressibility drag. Furthermore, these 

high-speed wings must be compatible with typical business jet configurations that have 

engines mounted on the fuselage near the wing trailing edge. As noted by  Gallman et al. 

(1996) , “These requirements create an aerodynamic design problem that benefits from 

modern computational fluid dynamics (CFD) and aerodynamic shape optimization   c.    

Full potential analysis of the wing-body-nacelle configuration provided an accurate as-

sessment of the influence of the fuselage mounted engines on wing pressures.”  Gallman 

et al. (1996) used codes similar to those discussed (briefly) in  Chapter   14   .  

 The area rule is essentially a linear-theory concept for zero lift.  Whitcomb (1976)  

noted that, “to achieve the most satisfactory drag characteristics at lifting conditions 

the fuselage shape had to be modified from that defined by the simple application of 

the area rule as previously described to account for the nonlinearity of the flow at such 

conditions. For lifting conditions at near sonic speeds there is a substantial local region 

of supercritical flow above the wing surface which results in local expansions of the 

streamtube areas. In the basic considerations of the area rule concept, this expansion is 

equivalent to an increase in the physical thickness of the wing. To compensate for this 
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 Figure 9.31         Details of a model of a swept-wing cruise missile. 

Linear dimensions are in centimeters (inches) [from  Spearman 

and Collins (1972) ].   
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effect the fuselage indentation required to eliminate the far-field effects of the wing 

must be increased.” The additional correction to the cross-sectional areas required for 

a transonic transport, as taken from  Whitcomb (1976) , is illustrated in  Fig.   9.33   . “The 

fuselage indentation based on this corrected cross-sectional area distribution resulted 

in a significant (0.02) delay in the drag rise Mach number compared with that for the 

indentation based on the zero lift distribution” [Whitcomb (1956)].  

 However, as noted by  Ayers (1972) , the fuselage cross-sectional area needed for 

storing landing gear and aircraft subsystems and for accommodating passenger seating 

and headroom, conflicts with the area-rule requirements in some cases. 

  Carlsen (1995)  noted: “The sonic area rule is a far field method of predicting 

and understanding the wave drag due to shock losses. It is based on the idea of perfect 

pressure disturbance communication between the wing, or other external features, and 

the fuselage. It proposes that a body of revolution with the same axial development of 

cross-sectional area will have a wave drag that is similar to the original configuration.” 
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 Figure 9.32         Area distribution and various aerodynamic param-

eters for a swept-wing cruise missile [from  Spearman and Collins 

(1972) ].   
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  Carlsen (1995)  noted that the communication between the flow on the wing and 

the flow on the fuselage changes in the transonic regime because of the mixed super-

sonic and subsonic flow: “In transonic flow, dissipation of disturbances occurs in the 

subsonic regions and the stream-tube areas are no longer invariant. As a result of this 

dissipation, it is erroneous to subtract the total wing volume from the fuselage. Part of 

the pressure changes created by the indentations in the fuselage is dissipated before it 

reaches the wing by passing through embedded subsonic regions. To account for the 

majority of this dissipation, the new transonic method applies a weighting function to 

the sonic area rule that modifies the volume removed from the fuselage. Only the 

 volume that will relieve the flow on the wing should be removed. This minimizes the volume 

removed from the fuselage and still maintains the drag rise delay.” 

  Carlsen (1995)  recommended the use of weighting functions that would be applied 

“during the integration of the area of the wing that is intersected by a given Mach 1 plane. 

Area at the wingtip is given less value than the area near the wing root. The weighted 

wing area is then subtracted from the fuselage area that is intersected by this same Mach 

plane. The procedure is repeated at a series of locations along the fuselage axis, resulting 

in a net volume removal from the fuselage.” 

  Carlsen (1995)  concludes that the proposed use of a weighting function adjusts for 

the effects of mixed flows, that is the communication between the flow over the fuse-

lage and that over its external parts that accounts for the dissipation due to embedded 

subsonic regions. The dissipating effect of the subsonic regions in the transonic regime 

significantly influences the approach to area ruling. Drag-rise delays that match the 

traditional sonic-area-rule can be obtained by modifying the aircraft to only 60% of 

what traditional sonic-area-rule prescribes.  

   9.4.3  Forward Swept Wing 

 The aerodynamic effects (e.g., increased critical Mach number, decreased lift curve 

slope, etc.) resulting from wing sweepback are also present for forward swept wings 
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 Figure 9.33         Second-order area rule considerations [from 

  Whitcomb (1976) ].   
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(FSW) as well. However, there are some comparative advantages to a FSW in relation 

to an aft swept wing (ASW), which will be discussed in this section. 

 Historically, the use of FSW in aircraft designs was, with minor exceptions, pre-

cluded by the relatively low (in comparison with ASW) Mach numbers at which they 

experience aeroelastic flutter and divergence when they are constructed of conventional 

aircraft materials such as metals. The reasons for this will be discussed later, but, as an 

example,  Diederich and Budiansky (1948)  show that uniform FSWs with sweep angles 

from    -20    to    -60�    exhibit decreases as high as 78% in aeroelastic divergence dynamic 

pressures in comparison to straight wings. To eliminate this problem using conventional 

materials requires a prohibitive structural weight penalty. Until recently the FSW, along 

with some of its desirable characteristics, has been excluded from the aircraft designer’s 

stable of design options. However, recent advances in the development of composite 

materials for aircraft structures have permitted the design and fabrication of aeroelasti-

cally tailored wings which substantially eliminate the divergence problem. 

 A swept wing constructed of conventional materials twists under load. An ASW 

twists down at the tips as the lift increases while the FSW twists up. In the former case, 

the tips tend to unload, while in the latter case they tend to load the structure further. 

Therefore, the FSW constructed of conventional materials has a much lower speed for 

structural divergence which occurs when the elastic restoring forces can no longer over-

come the aerodynamic forces causing the deformation. The twisting behavior occurs 

because the axis of section centers of pressure along the span of an ASW is behind the 

structural axis of the wing in typical designs, while just the opposite is true for the FSW 

[ Uhuad et al. (1983) ]. The structural axis can be thought of as the locus of points along 

the wing where a load produces only wing bending with no twist. 

 The solution to this problem for the FSW is to design an aeroelastically tailored 

wing using composite materials arranged in unidirectional layers or plies which lie at 

selected angles relative to one another. By careful design and fabrication, the wing can 

be made to deform under loading so that the divergence problem just described can be 

delayed to a much higher Mach number. This permits the designer to capitalize on some 

of the advantages of FSWs compared to ASWs without paying an exorbitant weight 

penalty. Incidentally, aeroelastic tailoring is not limited to FSWs, but can be applied to 

straight and aft swept wings as well [ Brown et al. (1980) ]. 

 The relative advantages of the FSW over the ASW are, of course, a function of the 

aircraft mission and fall into aerodynamic and other categories. Excellent overall discus-

sions of these FSW characteristics are given in  Whitford (1987)  and in  Krone (1980) . We 

restrict our discussion here to aerodynamic advantages of the FSW. Key aerodynamic 

advantages of the FSW fall into two categories: reduced drag and enhanced maneuver-

ability at transonic Mach numbers and high angles-of-attack. 

 Modern aircraft designs rely on wing sweep and supercritical airfoil sections to 

delay adverse compressibility effects and reduce their severity when they do occur. 

Good design practices force the shock on the upper surface of the wing to occur as close 

to the trailing edge as possible and to be as weak as possible (see  Section   9.2   ). Typi-

cal shock locations for a supercritical wing occur in the vicinity of the 70% chord line 

along the span. As noted by  Whitford (1987) , this results in a more highly swept shock 

for an FSW compared to an ASW with the same leading-edge sweep angle, wing area, 

and taper ratio. The more highly swept shock, of course, results in a lower wave drag 
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penalty.  Furthermore, for designs with the same shock sweep angle, the FSW requires 

less leading-edge sweep, which results in a higher lift-curve slope than the comparable 

ASW and a reduction in induced drag at subsonic conditions. And although the lower 

leading-edge sweep will result in higher wave drag at supersonic conditions, drag due 

to shock-induced separation has been found to be less. So, as we noticed earlier, care-

ful attention to the aircraft mission will determine the design solution to be adopted in 

each case.  Whitford (1987)  also points out that an FSW with the same planform area, 

shock sweep, and span as an ASW has its aerodynamic center closer to the wing root 

and hence experiences a lower wing root bending moment. Conversely, an FSW can 

be designed with a higher aspect ratio than a comparable ASW and produce the same 

bending moment at the wing root. The higher aspect ratio in turn produces lower in-

duced drag. 

 Flow over an ASW has a component along the span and toward the tips which 

results in a thicker boundary layer in the tip region than would otherwise exist. This, 

coupled with the more highly loaded tips of the ASW, can lead to tip stall, with the stall 

region moving inward toward the root as the stall progresses. This phenomenon can 

result in loss of aileron control effectiveness at high angles-of-attack with a consequent 

loss of maneuverability. An additional and undesirable offshoot of this phenomenon is 

an overall pitch-up tendency since the loss of lift typically occurs aft of the aircraft center 

of gravity. For the FSW the spanwise flow component is toward the wing root leading to 

root stall first. Therefore, aileron effectiveness is preserved up to higher angles-of-attack 

with a consequent improvement in maneuverability. However, the FSW with root stall 

still suffers the pitch-up tendency since the loss of lift is once again typically aft of the 

aircraft center of gravity. 

 To further investigate and validate these and other potential advantages of the 

FSW relative to the ASW, the Defense Advanced Research Projects Agency (DARPA), 

NASA, and the U.S. Air Force funded the design and fabrication of the X-29. This 

aircraft, produced by Grumman, was an experimental flight-test vehicle designed to 

explore a variety of advanced technologies, including FSW and close-coupled canards. 

The primary objective of the X-29 program is to give designers confidence in the FSW 

approach and to validate the advantages of FSW and other technologies for use in future 

aircraft designs [ Putnam (1984) ]. 

 The X-29 configuration, illustrated in the three view sketches of  Fig.   9.34   , has 

several distinctive design features. These include a three-surface longitudinal control 

design, consisting of an all-movable close-coupled canard with large deflection capabil-

ity, symmetric deflection of wing flaperons, and deflectable aft-fuselage strake flaps. 

Roll control is provided by differential flaperon deflection (or, equivalently, aileron 

deflection). A conventional rudder provides directional control. The X-29 has a long 

slender forebody, similar to the F-5 design, which produces strong vortical flow in the 

stall/poststall region.  

 Using data obtained in free-flight wind-tunnel tests at NASA Langley Research 

Center,  Croom et al. (1988)  studied the low-speed, high-angle-of-attack flight dynamics 

of the X-29 configuration. As noted by  Croom et al. (1988) , “The most dominant charac-

teristic of the configuration is the extreme level of inherent static pitch instability (   -0.35    

static margin). Clearly, the basic airframe is unflyable without stability  augmentation. 

However, the all-movable canard and strake flap control surfaces provide significant 
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control authority throughout the trim angle-of-attack range   c.    Moreover, the large control 

moments in conjunction with the relatively low pitch inertia, associated with the rela-

tively lightweight design indicate the potential for a high level of pitch agility, which is 

very desirable for fighter aircraft.” 

 A major benefit arising from the use of forward-swept wings at high angles of at-

tack is the favorable progression of the stall pattern. Flow separation progresses from 

the wing-root region outboard, resulting in the retention of aileron control power be-

yond the stall angle of attack. Therefore, significant roll control moments persist to very 

high angles of attack, and lateral control should be comparatively good throughout the 

trim angle-of-attack range. 

 As noted by  Croom et al. (1988) , “The data show good levels of static directional 

stability below 20-deg. angle of attack. However, as the angle of attack is increased 

above 25-deg., the directional stability degrades significantly, resulting in unstable to 

neutrally stable values for trim canard incidences. The reduction in stability is due to 

the vertical tail becoming immersed in the low energy wake of the wing. However, at 

poststall angles of attack, the directional stability is re-established. Past studies have 

shown that under sideslip conditions, the flat elliptical cross-section forebody generates 

an asymmetric vortex system that produces a suction force on the windward side of the 

forebody resulting in yawing moments into the sideslip (i.e., stabilizing).”   

   9.5  TRANSONIC AIRCRAFT 

 Transonic aircraft are among the most common aircraft produced worldwide. These 

include commercial transports of all sizes (from regional jet liners to super-size aircraft 

like the Boeing 747 and Airbus A380). In addition, cargo aircraft such as the C-17, as 

well as business jets, fly at transonic speeds.  Ayers (1972 ) notes that “wind-tunnel stud-

ies have indicated that combining the supercritical airfoil, the area rule, and wing sweep 

can push the cruising speed of subsonic aircraft very near Mach 1.0.” 

 The full potential equation, equation (9.4b), is currently the most common 

starting point for designing transonic wings and full configurations, even though the 
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 Figure 9.34         Three-view sketch of full-scale X-29 configuration.   
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 Navier-Stokes equations are now solvable for this class of problem. The reason is that 

the full potential equation can be coupled with multi-disciplinary design optimization 

(MDO) methods to design the configuration in conjunction with other important design 

features, such as structures, flight performance, and engine integration. 
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 Currently, computer programs such as TranAir, jointly developed by NASA and Boeing, 

are routinely used to perform such complex designs using MDO methods, resulting in im-

proved performance capabilities for modern aircraft flying at high subsonic Mach numbers.          

 Aerodynamics Concept Box: Full Aircraft Analysis Using 
Navier-Stokes Flow Solvers 

 While still relatively expensive, it is possible to perform full aircraft numerical simulations 

using Navier-Stokes solvers. Certainly aircraft manufacturers would not use this approach 

for large numbers of production runs (cruise condition design capability), but for important, 

specific cases (like the Boeing 777 high-lift geometry shown as a computational grid below) 

this approach can be quite valuable. The half-body grid below for the 777 from  Rogers et al. 

(2001)  shows the leading- and trailing-edge high-lift devices deployed, which occurs during 

take-off and landing of the aircraft. In spite of the fact that the free-stream velocities are 

relatively low, the gaps between the flaps and main wing elements can create compressibility 

effects, which is why Navier-Stokes simulations may be important for this viscous-dominated 

flow field. 

       Computational grid for Boeing 777 aircraft from  Rogers et al. 

(2001)    
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 Prior to using these highly complex MDO methods, however, designers had to 

use the more restrictive equations using the perturbation velocity potential. These re-

strictions were due to the computer speed and memory limitations of the time. These 

original solutions were often performed on a variety of transonic equations using newly 

developed computer-oriented numerical techniques, such as the transonic equation by 

 Newman and Allison (1971) : 

      (1 - M2
� )fxx + fyy + fzz = Kfx fxx  (9.23)    

 Comparing equation (9.23) with equation (9.10), we find that, for the particular assump-

tions made during the development of equation (9.10), 

   K =
2
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g - 1

2
 M2

� bM2
�    

 In the transonic Mach number range, this term cannot be neglected as it was at lower 

speeds due to the highly non-linear nature of transonic flow. 

 One of the problems with solving the transonic small disturbance velocity po-

tential equations was the mixed nature of the partial differential equation. Notice that 

equations like equation (9.10) contain a term    (1 - M2
� ),    which changes sign as the 

flow changes from subsonic to supersonic. This means that the equation changes type 

from elliptic to hyperbolic, and different numerical methods are required in order to 

 The figure below shows the region between the engine nacelle and fuselage, with the leading-

edge flap extended. Notice the region of separated flow in the wing/fuselage junction region. 

Designing to minimize flow separation is an important job for an aerodynamicist. 

       Mach number and particle traces at    a = 16    in vicinity of Krueger 

flap with addition of nacelle chine from  Rogers et al. (2001)    
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solve the equation depending on the local flow conditions, as discussed in  Murman and 

Cole (1971) . 

  Bailey and Ballhaus (1975)  used a relaxation procedure to solve the transonic 

small-disturbance equation: 

      (1 - M2
� )fxx + fyy + fzz = a

g + 1

2
 Mn

�  f2
xb

x
  (9.24)    

 The parameter  n  reflects the nonuniqueness of the equation and, quoting  Bailey and 

Ballhaus (1975) , “can be adjusted to better approximate the exact sonic pressure coeffi-

cient.” A finite-difference equation is derived by applying the divergence theorem to the 

integral of equation (9.24) over an elemental, rectangular, computation volume (or cell). 

The boundary conditions for the wing include the Kutta condition, which requires that 

the pressure, which is proportional to    fx,    be continuous at the trailing edge. This fixes 

the section circulation, which is equal to the difference in potential at the section trail-

ing edge linearly extrapolated from points above and below. The solution of the differ-

ence equation is obtained by a relaxation scheme with the iterations viewed as steps in 

pseudo-time. The combination of new and old values in the difference operators is cho-

sen so that the related time-dependent equation represents a properly posed problem 

whose steady-state solution approaches that of the steady-state equation. The calculated 

and the experimental pressure distributions for a swept-wing/fuselage configuration at 

   M� = 0.93    and    a = 0�    are compared in  Fig.   9.35   . The wing has an aspect ratio of 4 and 

a taper ratio of 0.6. The quarter chord of the wing is swept 45° and the streamwise air-

foil section is a NACA 65A006. The computed results were obtained using a Cartesian 

grid ( x ,  y ,  z ) of    91 * 59 * 27    for the wing as well as for the fuselage. The experimental 

data were obtained at    Rec = 2.0 * 106.    As we saw earlier in this chapter, the maxi-

mum velocity is reached farther aft for the stations near the root and moves toward the 

leading edge at stations nearer the tip. The agreement with experiment on the fuselage 

centerline and the two inboard panels is good. In the computed results, the wing-root 

shock propagates laterally to    2y>b = 0.60,    but the experimental shock dissipates before 

reaching that point. Thus, there is a discrepancy between the experimental values and 

the theoretical predictions. This deficiency results for wings with moderate-to-large 

sweep angles.  Ballhaus et al. (1976)  note that a modified small- disturbance equation, 

containing cross-flow terms which have been previously neglected, would be a suitable 

approximation to the full potential equation over a wide range of sweep angles. Thus, 

a small-disturbance differential equation which could be used to describe the resultant 

three-dimensional flow is  

   (1 - M2
� )fxx + fyy + fzz - (g + 1)Mn

�  fx fxx    

      = 2M2
�  fy fxy + (g - 1)M2

�  fx fyy +

g + 1

2
 M2

�  f2
x fxx  (9.25)    

 Note that the terms on the left-hand side of this equation are those of equa-

tion (9.24) and those on the right-hand side are the additional terms of the modified 

small-disturbance formulation.  Boppe (1978)  notes that the cross-flow terms,    fy fxy    

and    fx fyy,    provide the ability to define shock waves which are swept considerably rela-

tive to the free-stream flow. Boppe recommends that the higher-order term,    f2
x fxx,    be 

included to provide an improved approximation to the full potential equation at the 
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critical velocity.  Ballhaus et al. (1976)  note that the use of an improved form of the 

governing equation alone does not guarantee that the shock waves will be properly 

represented. The finite-difference scheme must also adequately describe the physics 

of the problem. 

 Flow-field solutions for complex airplane configurations flying at transonic speeds 

can be computed using numerical programs that solve the Euler or Navier-Stokes equa-

tions.  The Euler and Navier-Stokes equations for three-dimensional flows are presented 

in  Appendix   A   .  An example of a complex configuration with control surface deflec-

tions is shown in  Fig.   9.36    [from  Morton et al. (2011) ]. Notice that both the all-moving 
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 Figure 9.35         Comparison of computed and experimental pressure 

coefficients    Cp    for swept-wing/fuselage configuration,    M� = 0.93;    

   a = 0�,       �c > 4 = 45�,       AR = 4, l = 0.6,    NACA 65A006 streamwise 

section [from  Bailey and Ballhaus (1975) ].   

    
 Figure 9.36         Examples of all-moving (left) and continuous- surface 

(right) control surface deflection meshes for simulation of the 

F-16 using a Navier-Stokes flow solver [ Morton et al. (2011) ].   
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 horizontal tail and the flap deflection require specialized grid generation concepts, mak-

ing the creation of a viscous grid a very challenging part of performing computational 

simulations.  Miranda (1984)  notes that the problem of grid generation is a crucial one 

for the practical application of numerical flow simulation. Both methods of solution, 

singularity and field, require the construction of complex computational grids: mesh-

surface grids for singularity methods and spatial grids for field methods.   

   9.6  SUMMARY 

 Transonic flows are inherently nonlinear and highly three dimensional for wing-body 

combinations. The nonlinear inviscid flow and the resultant shock waves present a 

considerable challenge to the analyst. Strong shock-wave/boundary-layer interactions 

cause rapid increases in drag and can lead to buffeting. Shock-induced boundary-layer 

separation can also limit the lift coefficient. However, experimental investigations have 

provided considerable insights into desirable design practices for transonic configura-

tions. Furthermore, three-dimensional transonic flow computational techniques have 

been developed and greatly impact transonic aircraft design.   

     PROBLEMS 

   9.1.    Derive the expression for stagnation pressure for steady, one-dimensional, Isentropic flow 

of a perfect gas.      

   9.2.    A rectangular wing having an aspect ratio of 4.0 is flying at M� = 0.90 at 12 km. A NACA 

0006 airfoil section is used at all spanwise stations. What is the airfoil section and the aspect 

ratio for the equivalent wing in an incompressible flow?   

   9.3.    When discussing Whitcomb’s area rule, it was noted that, for lifting conditions, there is a 

substantial local region of supercritical flow above the wing surface which results in local 

expansions of the streamtube areas. Consider flow past a two-dimensional airfoil in a stream 

where M� = 0.90 Calculate the distance between two streamlines, dye at a point where the 

local inviscid Mach number, Me, is 1.50 in terms of the distance between these two streamlines 

in the undisturbed flow, dy� , Use the integral form of the continuity equation  [equation (2.5)] , 

   dye =
r�U�

reUe
 dy�   

   Assume an isentropic expansion of a perfect gas.    
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    10    TWO-DIMENSIONAL, 

SUPERSONIC FLOWS 

AROUND THIN AIRFOILS 

     Chapter Objectives 

  •   Understand why supersonic airfoils have low lift-to-drag ratios compared to 
subsonic airfoils  

  •   Have a basic understanding of the flow around supersonic airfoils and the shock/
expansion wave patterns that develop  

  •   Be able to apply all three theories to the prediction of supersonic airfoils: linear 
theory, second-order theory, and shock-expansion theory  

  •   Know the limitations and capabilities of all three supersonic airfoil theories   

   Now that we have discussed subsonic and transonic airfoil concepts, we will turn our at-

tention to supersonic airfoils.     We will find that supersonic airfoils behave very differently 

than subsonic airfoils, which has a significant impact on the design of high-speed aircraft. 

 The equations that describe inviscid supersonic flows around thin airfoils at low 

angles of attack will be developed in this chapter. The airfoil is assumed to extend to 

infinity in both directions from the plane of symmetry (i.e., it is a wing of infinite aspect 

ratio). Therefore, the flow field is the same for any cross-section perpendicular to the 

wing and the flow is two dimensional. However, even though the relations developed 
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in this chapter neglect the effects of viscosity, there will be a significant drag force on a 

two-dimensional airfoil in a supersonic stream. This drag component is known as  wave 
drag , and we will see that wave drag can exist even without shock waves. 

  In  Chapter   8   , we derived the  Prandtl-Meyer relations    to describe the isentro-

pic flow that results when a supersonic flow undergoes an expansive or a compressive 

change in direction which is sufficiently small that shock waves do not occur.  In   Example 

  8.3   , the     Prandtl-Meyer relations  were     used to calculate the aerodynamic coefficients for 

supersonic flow past a thin airfoil. When relatively large compressive changes in the flow 

direction occur, it is necessary to use the relations describing the non-isentropic flow 

through an oblique shock wave, as we will see, when the compressive changes in direc-

tion are only a few degrees, the pressure increase calculated using the Prandtl-Meyer 

relations is essentially equal to that calculated using the oblique shock-wave relations. 

Provided that the assumptions made in the derivations of these techniques are valid, 

they can be combined to solve for the two-dimensional flow about an airfoil if the shock 

wave at the leading edge is attached and planar. When the leading-edge shock wave is 

planar, the flow downstream of the shock wave(s) is isentropic. Therefore, the isentropic 

relations  developed in  Chapter   8     can be used to describe the subsequent acceleration 

of the flow around the airfoil. 

 Experience has shown that the leading edge and the trailing edge of supersonic 

airfoils should be sharp (or only slightly rounded) and relatively thin. If the leading edge 

is not sharp, the leading-edge shock wave will be detached and relatively strong, causing 

large wave drag. We will consider, therefore, profiles of the general cross section shown 

in  Fig.   10.1   . For these thin airfoils at relatively small angles of attack, we can apply the 

method of small perturbations to obtain theoretical approximations to the aerodynamic 

characteristics of the two-dimensional airfoils. By “thin” airfoil, we mean that the thick-

ness, camber, and angle of attack of the section are such that the local flow direction at 

the airfoil surface deviates only slightly from the free-stream direction.  

 As we proceed through our study of supersonic airfoils, we will first look at the 

Ackeret, or linearized, theory for thin airfoils and then higher-order theories.  The coef-

ficients calculated using the linearized and higher-order theories will be compared with 

the values calculated using the techniques of  Chapter   8   .    

z

x

Cp � 0

Cp � 0

Cp � 0

Cp � 0

a

U�

 Figure 10.1         General features for linearized supersonic flow past 

a thin airfoil.   
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      10.1  LINEAR THEORY 

 The basic assumption of linear theory is that pressure waves generated by thin sections 

are sufficiently weak that they can be treated as Mach waves. Under this assumption, the 

flow is isentropic everywhere.  The pressure and velocity changes for a small expansive 

change in flow direction (an acceleration) have already been derived in  Chapter   8    [i.e., 

equation (8.57)].  We will define the free-stream flow direction to be given by    u� = 0.    

For small changes in    u,    we can use Euler’s equation and equation  (8.55)     to calculate 

the change in pressure: 

      p - p� = -r�U� (U - U� )  (10.1a)    

      
U� - U

U�

=
u

2M2
� - 1

  (10.1b)    

 We will define the angle    u    so that we obtain the correct sign for the pressure 

coefficient both for left-running characteristics and for right-running characteristics. 

Combining these relations yields 

      Cp =
p - p�

1
2r�U2

�

=
2u

2M2
� - 1

  (10.1c)    

 which can be used to calculate the pressure on the airfoil surface, since    u    is known at 

every point on the airfoil surface. 

 A positive pressure coefficient is associated with a compressive change in flow 

direction relative to the free-stream flow. If the flow is turned toward the upstream 

Mach waves, the local pressure coefficient is positive (compression) and is greatest 

where the local inclination is greatest. So, for the double-convex-arc airfoil section 

shown in  Fig.   10.1   , the pressure is greatest at the leading edge, being greater on the 

lower surface when the airfoil is at a positive angle of attack. Flow accelerates con-

tinuously from the leading edge to the trailing edge for both the lower surface and the 

upper surface. The pressure coefficient is zero (i.e., the local static pressure is equal 

to the free-stream value) at those points where the local surface is parallel to the free 

stream. Downstream, the pressure coefficient is negative, which corresponds to an 

expansive change in flow direction. 

 The pressure coefficients calculated using the linearized approximation and 

 Busemann’s second-order approximation (to be discussed in the next section) are com-

pared in  Fig.   10.2    with the exact values of Prandtl-Meyer theory for expansive turns and 

of oblique shock-wave theory for compressive turns. For small deflections, linear theory 

provides values suitable for engineering calculations.  

 Since the slope of the surface of the airfoil section measured with respect to the 

free-stream direction is small, we can set it equal to its tangent. Referring to  Fig.   10.3   , 

we can write 

       uu =
dzu

dx
- a   (10.2a)    

       ul = -

dzl

dx
+ a  (10.2b)     
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 Figure 10.2         Theoretical pressure coefficients as a function of 

the deflection angle (relative to the stream) for various two- 

dimensional theories.   
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 Figure 10.3         Detailed sketch of an airfoil section.   
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 The lift, the drag, and the moment coefficients for the section can now be determined 

using equations (10.1c) and (10.2). 

   10.1.1  Lift 

 Referring to  Fig.   10.4   , we see that the incremental lift force (per unit span) acting on 

the chordwise segment  ABCD  of the airfoil section is 

      dl = pl dsl cos ul - pu dsu cos uu  (10.3)     

 Employing the usual thin-airfoil assumptions (small angles and    ds � dx   ), equation 

(10.3) can be written as 

      dl � (pl - pu)dx  (10.4)    

 In coefficient form, we have 

      dCl � (Cpl - Cpu)da
x
c
b   (10.5)    

 Using equations (10.1c) and (10.2), equation (10.5) becomes 

      dCl =
2

2M2
� - 1

a2a -

dzl

dx
-

dzu

dx
bda

x
c
b   (10.6)    

 where, without loss of generality, we have assumed that positive values both for    uu    and 

   ul    represent compressive changes in the flow direction from the free-stream flow. 

 We can calculate the total lift of the section by integrating equation (10.6) from 

   x>c = 0 to x>c = 1.    Notice that since    zu = zl = 0    at both the leading edge and the 

trailing edges, the lower surface integral becomes: 

      L
1

0

dzl

dx
da

x
c
b = 0  (10.7a)    

 and the upper surface integral is: 

      L
1

0

dzu

dx
da

x
c
b = 0  (10.7b)    
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 Figure 10.4         Thin-airfoil geometry for determining    Cl, Cd, and Cmx0
.      
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 Therefore, 

      Cl =
4a

2M2
� - 1

  (10.8)    

 We see that, in the linear approximation for supersonic flow past a thin airfoil, the lift 

coefficient is independent of the camber and of the thickness distribution. Furthermore, 

the angle of attack for zero lift is zero. The lift-curve slope is seen to be only a function 

of the free-stream Mach number, since 

      
dCl

da
=

4

2M2
� - 1

  (10.9)    

 Examining equation (10.9), we see that for    M� g 1.185,    the lift-curve slope is less than 

the theoretical value for incompressible flow past a thin airfoil, which is    2p    per radian. 

These results are in stark contrast to what we learned about subsonic airfoils, where 

camber and thickness were important for the creation of lift.  

   10.1.2  Drag 

 The incremental drag force due to the inviscid flow acting on the arbitrary chordwise 

element  ABCD  of  Fig.   10.4    is 

      dd = pl dsl sin ul + pu dsu sin uu  (10.10)    

 Again, using the assumptions common to small deflection angles, equation (10.10) becomes 

      dd = pl ul dx + pu uu dx  (10.11)    

 In coefficient form, we obtain: 

      dCd = (Cpl ul + Cpu uu)da
x
c
b +

2

gM2
�

(ul + uu)da
x
c
b   (10.12)    

 Using equation (10.1c) for compressive turns and equation (10.2) to approximate 

the angles, equation (10.12) yields 

   dCd =
2

2M2
� - 1

c2a2
+ a

dzu

dx
b

2

+ a
dzl

dx
b

2

dda
x
c
b    

      + c
-4a

2M2
� - 1

 a
dzl

dx
+

dzu

dx
b +

2

gM2
�

 a
dzu

dx
-

dzl

dx
b dda

x
c
b   (10.13)    

 Using equation (10.7), we find that the integration of equation (10.13) yields 

      Cd =
4a2

2M2
� - 1

+

2

2M2
� - 1 L

1

0

c a
dzu

dx
b

2

+ a
dzl

dx
b

2

dda
x
c
b   (10.14)    

 Note that for the small-angle assumptions commonly used in analyzing flow past a thin 

airfoil, 

   
dzu

dx
= tan su � su   
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 Therefore, 

      
1

c L
c

0

a
dzu

dx
b

2

 dx = s2
u  (10.15a)    

 Similarly, we can write 

      
1

c L
c

0

a
dzl

dx
b

2

 dx = s2
l   (10.15b)    

 We can use these relations to replace the integrals of equation (10.14) by the aver-

age values that they represent. So, the section-drag coefficient for this frictionless flow 

model is 

      Cd =
d

q�  c
=

4a2

2M2
� - 1

+

2

2M2
� - 1

 1s2
u + s2

l 2   (10.16)    

 You should notice that the drag is not zero even though the airfoil has an infinite 

span and the viscous forces have been neglected. This drag component, which is 

not present in subsonic flows, is known as  wave drag . Also notice that, as this small 

perturbation solution shows, it is not necessary that shock waves be present for wave 

drag to exist.  Such was also the case in  Example   8.3   , which examined the shock-free 

flow past an infinitesimally thin, parabolic arc airfoil.  Finally, the drag of the airfoil 

is a function of all angle changes, whether they are due to angle of attack, camber, 

or thickness. Comparing equation (10.16) with equation (10.8) shows that supersonic 

airfoils create lift with angle of attack alone, but create drag due to angle of attack, 

camber, and thickness (within the limitations of linear theory). Therefore, for aero-

dynamic efficiency to be maximized, camber and thickness should be minimized for 

supersonic airfoils. 

 We should now examine the nature of the terms in equation (10.16). Since the lift 

is directly proportional to the angle of attack and is independent of the section thick-

ness, the first term is called the  wave drag due to lift  or the  induced wave drag  and is 

independent of the shape of the airfoil section. The second term is often referred to as 

the  wave drag due to thickness  and depends only on the shape of the section. Equation 

(10.16) also indicates that, for a given configuration, the wave-drag coefficient decreases 

with increasing Mach number. If we were to account for the effects of viscosity, we 

could write: 

      Cd = Cd, due to lift + Cd, thickness + Cd, friction  (10.17a)    

 where 

      Cd, due to lift =
4a2

2M2
� - 1

= aCl  (10.17b)    

 and 

      Cd, thickness =
2

2M2
� - 1

 (s2
u + s2

l )  (10.17c)    

 You should also notice that    Cd, thickness    is the    Cd0
    of previous chapters.  
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   10.1.3  Pitch Moment 

 We will now use linear theory to obtain an expression for the pitch moment coefficient. 

Referring to  Fig.   10.4   , the incremental moment (taken as positive for nose up relative 

to the free stream) about the arbitrary point    x0    on the chord is 

      dmx0 = (pu - pl)(x - x0)dx  (10.18)    

 where we have incorporated the same small-angle assumptions and have neglected the 

contributions of the chordwise components of    pu    and    pl    to the pitch moment. 

 In coefficient form, we have 

      dCmx0
= (Cpu - Cpl) 

x - x0

c
 d a

x
c
b   (10.19)    

 Substituting equation (10.1c) into equation (10.19), we obtain: 

      dCmx0
=

2

2M2
� - 1

(uu - ul) 
x - x0

c
 d a

x
c
b   (10.20)    

 Substituting equation (10.2) into equation (10.20) and integrating along the chord gives 

      Cmx0
=

-4a

2M2
� - 1

a
1

2
-

x0

c
b +

2

2M2
� - 1 L

1

0

a
dzu

dx
+

dzl

dx
b  

x - x0

c
 d a

x
c
b   (10.21)    

 Note that the average of the upper surface coordinate    zu    and the lower surface 

coordinate    zl    defines the mean camber coordinate    zc,    

   12(zu + zl) = zc   

 We can then write equation (10.21) as: 

      Cmx0
=

-4a

2M2
� - 1

a
1

2
-

x0

c
b +

4

2M2
� - 1 L

1

0

dzc

dx
 

 x - x0

c
 d a

x
c
b   (10.22)    

 where we have assumed that    zu = zl    both at the leading edge and at the trailing edge. 

  As discussed in  Section   5.4.2   , the     aerodynamic center is that point about which the 

pitch moment coefficient is independent of the angle of attack. It may also be consid-

ered to be that point along the chord at which all changes in lift effectively take place. 

Therefore, equation (10.22) shows that the aerodynamic center is at the midchord for a 

thin airfoil in a supersonic flow. This is in contrast to the thin airfoil in an incompress-

ible flow where the aerodynamic center is at the quarter chord. To summarize, camber 

and thickness may be helpful to tune    Cm0
    of the airfoil, even though earlier we saw that 

camber and thickness do not contribute to lift, but do increase the drag. The overall 

result is that camber and thickness should be used minimally for supersonic airfoils. 

  EXAMPLE 10.1:     Use linear theory to calculate the lift coefficient, 
the wave-drag coefficient, and the pitch moment 
coefficient 

 We will now use linear theory to calculate the lift coefficient, wave-drag coef-

ficient, and pitch moment coefficient for the airfoil section whose  geometry 
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is illustrated in Fig 10.5. For purposes of discussion, the flow field has been 

divided into numbered regions, which correspond to each of the facets of the 

double-wedge airfoil, as shown. In each region, the flow properties are such 

that the static pressure and the Mach number are constant, although they differ 

from region to region. We seek the lift coefficient, the drag coefficient, and the 

pitch moment coefficient per unit span of the airfoil given the free-stream flow 

conditions, the angle of attack, and the geometry of the airfoil neglecting the 

effect of the viscous boundary layer. The only forces acting on the airfoil are 

the pressure forces. Therefore, once we have determined the static pressure in 

each region, we can then integrate to find the resultant forces and moments. 

  Solution:     We can now evaluate the various geometric parameters required for the 

linearized theory: 

    zu(x) = e
x tan 10�   for 0 … x …

c
2

(c - x) tan 10�   for c2 … x … c
   

    zl(x) = e
-x tan 10� for 0 … x …

c
2

- (c - x) tan 10� for c2 … x … c
   

 Furthermore, 

   s2
l = L

1

0

s2
l  da

x
c
b = d2

w
   

 and 

   s2
u = L

1

0

s2
u da

x
c
b = d2

w
   

 We can use equation (10.8) to calculate the section lift coefficient for a 10° 

angle of attack at    M� = 2.0:    

   Cl =
4(10p>180)

222
- 1

= 0.4031   

 Similarly, the drag coefficient can be calculated using equation (10.16): 

   Cd =
4(10p>180)2

222
- 1

+

2

222
- 1

 c a
10

57.296
b

2

+ a
10

57.296
b

2

d    

 Therefore, 

   Cd = 0.1407   

 The lift/drag ratio is 

   
l
d

=
Cl

Cd
=

0.4031

0.1407
= 2.865   

 Notice that in order to clearly illustrate the calculation procedures, this airfoil 

section is much thicker (i.e.,    t = 0.176c   ) than typical supersonic airfoil sections 

for which    t � 0.05c     (see  Table   5.1   ) . The result is a relatively low lift/drag ratio. 
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 Similarly, equation (10.22) for the pitch moment coefficient gives 

   Cmx0
=

-4a

2M2
� - 1

 a
1

2
-

x0

c
b    

 since the mean-camber coordinate    xc    is everywhere zero. At the midchord, 

we have 

   Cmc>2
= 0   

 This is not a surprising result, since equation (10.22) indicates that the mo-

ment about the aerodynamic center of a symmetric (zero camber) thin airfoil 

in supersonic flow vanishes.           

 Aerodynamics Concept Box: The F-104 Airfoil 

 The F-104 was a supersonic interceptor designed in the late 1950s and flown beginning in the 

1960s by a number of countries. The wing had an aspect ratio of 2.45 and an airfoil which was 

only 3.34% thick. The airfoil section was a modified bi-convex (bi-convex upper surface and 

essentially flat lower surface) with sharp leading and trailing edges. 

(a) Changes in airfoil sections.

Chord

P-51 (1940’s)

F-86 (1950’s)Thickness

F-104 (1960’s)

(b) F-104G airplane.

Very thin wings

        F-104 airfoil and wing geometry from Talay (1975)    
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   10.2  SECOND-ORDER THEORY (BUSEMANN’S THEORY) 

 Equation (10.1c) can actually be viewed as the first term in a Taylor series expansion 

of    	p    in powers of    u.     Busemann and Walchner (1933)  showed that a more accurate 

expression for the pressure change resulted if the    u2    term were retained in the expan-

sion. His result [given in  Edmondson et al. (1945) ] in terms of the pressure coefficient is 

      Cp =
2u

2M2
� - 1

+ c
(g + 1)M4

� - 4M2
� + 4

2(M2
� - 1)2

d u2  (10.23a)    

 or 

      Cp = C1 u + C2 u2  (10.23b)    

 Again,    u    is positive for a compression turn and negative for an expansion turn. 

We note that the    u2    term in equation (10.23) is always a positive contribution (in other 

words, the second-order theory will always predict a higher pressure than linear theory). 

 Table   10.1    gives    C1    and    C2    for various Mach numbers in air. 

 It is important to note that since the pressure waves are treated as Mach waves, the 

turning angles must be small. These assumptions imply that the flow is isentropic every-

where. Therefore, equations (10.5), (10.12), and (10.19), along with equation (10.23), can 

still be used to find    Cl, Cd, and Cmx0
.     Figure   10.2    shows that Busemann’s theory agrees 

even more closely with the results obtained from oblique shock and Prandtl-Meyer ex-

pansion theory than does linear theory, for a relatively minor amount of additional effort. 

  EXAMPLE 10.2:     Use Busemann’s theory to calculate the lift 
coefficient, the wave-drag coefficient, and the pitch 
moment coefficient 

 We will calculate the pressure coefficient on each panel of the airfoil in  Ex-

ample   10.1    using Busemann’s theory, equation (10.23).  

  Solution:     Since panel 1 is parallel to the free stream,    Cp1 = 0    as before. For panel 2, 

    Cp2 =
2(-20p>180)

222
- 1

+

(1.4 + 1)(2)4
- 4(2)2

+ 4

2(22
- 1)2

 a
20p

180
b

2

 = -0.4031 + 0.1787

 = -0.2244    

 As noted, the airfoil in this sample problem is relatively thick, and therefore 

the turning angles are quite large. As a result, the differences between  linear 

 Most supersonic airplanes have airfoil sections which are a compromise between subsonic and 

supersonic characteristics, since the airplanes have to fly in both speed regimes. In the case of the 

F-104, the designers used an airfoil which had good supersonic capabilities, but rather poor sub-

sonic characteristics (since the design objectives required Mach 2.0 flight). This meant the F-104 

required large blown flaps for landing, in addition to a drag chute. In spite of this, the approach 

speed of the airplane was nearly 200 knots, and the landing distance was quite large. Fighters 

designed in the 1970s (like the F-16 or F-15) used subsonic airfoil sections (although they were 

quite thin) to give improved subsonic characteristics, at the cost of supersonic performance. 
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 TABLE 10.1    Coefficients    C1    and    C2    for the 
Busemann Theory for Perfect Air,    g = 1.4    

    M
q

        C1        C2    

 1.10  4.364  30.316 
 1.12  3.965  21.313 
 1.14  3.654  15.904 
 1.16  3.402  12.404 
 1.18  3.193  10.013 
 1.20  3.015  8.307 
 1.22  2.862  7.050 
 1.24  2.728  6.096 
 1.26  2.609  5.356 
 1.28  2.503  4.771 
 1.30  2.408  4.300 
 1.32  2.321  3.916 
 1.34  2.242  3.599 
 1.36  2.170  3.333 
 1.38  2.103  3.109 
 1.40  2.041  2.919 
 1.42  1.984  2.755 
 1.44  1.930  2.614 
 1.46  1.880  2.491 
 1.48  1.833  2.383 
 1.50  1.789  2.288 
 1.52  1.747  2.204 
 1.54  1.708  2.129 
 1.56  1.670  2.063 
 1.58  1.635  2.003 
 1.60  1.601  1.949 
 1.70  1.455  1.748 
 1.80  1.336  1.618 
 1.90  1.238  1.529 
 2.00  1.155  1.467 
 2.50  0.873  1.320 
 3.00  0.707  1.269 
 3.50  0.596  1.248 
 4.00  0.516  1.232 
 5.00  0.408  1.219 

 10.0  0.201  1.204 
    q     0  1.200 

theory and higher-order approximations are significant but not un-

expected. For panel 3, 

    Cp3 = 0.4031 + 0.1787   

    = 0.5818    

 For panel 4, 

   Cp4 = 0   
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 since the flow along surface 4 is parallel to the free stream. 

 Having determined the pressures acting on the individual facets of 

the double-wedge airfoil, we can now determine the section lift coefficient: 

      Cl =
ap cos u( c

2 cos d
w

)

(g>2)p�M2
�c

  (10.24a)    

 where    d
w

    is the half-angle of the double-wedge configuration. We can use 

the fact that the net force in any direction due to a constant pressure acting 

on a closed surface is zero to obtain: 

      Cl =
1

2 cos d
w


Cp cos u  (10.24b)    

 where the signs assigned to the    Cp    terms account for the direction of the 

force. So, 

    Cl =
1

2 cos 10�
(-Cp2 cos 20� + Cp3 cos 20�)   

    = 0.3846    

 Similarly, we can calculate the section wave-drag coefficient: 

      Cd =

p sin u(0.5c>cos d

w
)

(g>2)p�  M2
�  c

  (10.25a)    

 or 

      Cd =
1

 2 cos d
w


Cp sin u  (10.25b)    

 Applying this relation to the airfoil section of Fig 10.5, the section wave-drag 

coefficient for    a = 10�    is 

    Cd =
1

2 cos 10�
(Cp3 sin 20� - Cp2 sin 20�)   

    = 0.1400    

 We can now calculate the moment coefficient with respect to the 

 midchord of the airfoil section (i.e., relative to    x = 0.5c   ). As we have seen, 

the theoretical solutions for linearized flow show that the midchord point 

is the aerodynamic center for a thin airfoil in a supersonic flow. Since the 

pressure is constant on each of the facets of the double-wedge airfoil of 

 Fig.   10.5    (i.e., in each numbered region), the force acting on a given facet 

will be normal to the surface and will act at the midpoint of the panel. So, 

   Cmc>2
=

mc>2

1
2 r�U2

�c2
= (-p1 + p2 + p3 - p4)

c2>8
1
2r�U2

�c2
   

      + (p1 - p2 - p3 + p4)
(c2>8) tan2 d

w

1
2r�U2

�c2
  (10.26)    
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  Recall that a nose-up pitch moment is considered positive. Also notice that 

we have accounted for terms proportional to    tan2 d
w

.    Since the pitch moment 

due to a uniform pressure acting on any closed surface is zero, equation 

(10.26) can be written as 

   Cmc>2
= (-Cp1 + Cp2 + Cp3 - Cp4)

1

8
   

      +  (Cp1 - Cp2 - Cp3 + Cp4)
tan2 d

w

8
  (10.27)    

  You are referred to equations (5.11) through (5.15) for a review of the tech-

nique.  Finally we obtain, 

   Cmc>2
= 0.04329   

 Notice that in this case the aerodynamic center is not at the midchord, but 

is only a small distance away.                          

1

2

4

3

Left-running
Mach wave

Shock
wave

Expansion
fan

Expansion
fan

a � 10�

M� � 2.0

ma

mtd
mld

mtb

mlb

uw � 53.5�

dw � 10�

dw � 10�

 Figure 10.5         Wave pattern for a double-wedge airfoil in a Mach 

2 stream.   

 Aerodynamics Concept Box: Busemann’s Supersonic “Biplane” Airfoil System 

 In the 1930s, Adolf Busemann proposed using two supersonic airfoils adjacent to each other 

to take advantage of shock wave reflection properties and produce a “biplane” which would 
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minimize wave drag [ Busemann (1935) , shown below]. If the airfoil were designed with the 

proper airfoil and distance between the sections, for a given free stream Mach number, 

Busemann showed that the wave drag could be eliminated. This unique result is based on 

the concept of shock wave reflection and cancellation , which we discussed in  Chapter   8    . 

Specifically, figure (a) below shows a typical shock wave reflection from a straight wall. 

Busemann realized that if the wall changed direction at a point of intersection, as shown in 

figure (b), the shock wave and expansion wave would cancel each other out.  Liepmann and 

Roshko (1957)  described it this way: “Part of the expansion wave at the shoulder cancels 

the compression wave from the leading edge of the opposite plane and produces the sym-

metrical pressure distribution shown in the figure. The wave drag is zero.” However, when 

the biplane flies at an off-design Mach number, as shown in figure (c), some of the benefits 

are lost. 

 This concept primarily was only an interesting idea in text books over the years, but 

has found a renewal of interest recently. With the improved ability of CFD simulations, 

 Kusunose et al. (2011)  performed a numerical study of the concept and applied it to a generic 

supersonic airplane. The predictions showed that the pressure coefficient on the inside of the 

biplane wing is constant, something that Busemann had noticed. This configuration achieved 

airplane lift-to-drag ratios of over 20 at very low angles of attack, a very good result for a 

supersonic aircraft. 

M1

p1

p1 p1

(a)

(b) (c)

Wave reflection

Wave-cancellation

Busemann biplane

Pressure distribution
on inside surface

Off-design

Busemann biplane

       Busemann biplane concept from  Liepmann and Roshko (1957) .   
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   10.3  SHOCK-EXPANSION TECHNIQUE 

 The techniques discussed so far assume that compressive changes in the flow direc-

tion are sufficiently small that the inviscid flow is completely isentropic. In reality, a 

shock wave is formed as the supersonic flow encounters the two-dimensional double-

wedge airfoil of the previous example problems. Since the shock wave is attached to 

the leading edge and is planar, the downstream flow is isentropic (in other words, the 

flow is isentropic everywhere except across the shock). Therefore, the oblique shock 

wave and isentropic Prandtl-Meyer relations  developed in  Chapter   8     can be used to 

describe the flow around the airfoil. We will use this “shock-expansion” technique, 

first described by  Ackeret (1925) , to calculate the flow field around the airfoil shown 

in  Fig.   10.5   . 

  EXAMPLE 10.3     Use the shock-expansion theory to calculate the lift 
coefficient, the wave-drag coefficient, and the pitch 
moment coefficient. 

 For purposes of discussion, the flow field has been divided into numbered 

regions that correspond to each of the facets of the double-wedge airfoil, 

as shown in  Fig.   10.5   . As was true for the approximate theories, the flow 

properties in each region, such as the static pressure and the Mach number, 

are constant, although they differ from region to region. We will calculate 

the section lift coefficient, the section drag coefficient, and the section pitch 

moment coefficient for the inviscid flow, starting with the free-stream region 

and working downstream. 

  Solution:     Since the surface of region 1 is parallel to the free stream, the flow does not 

turn in going from the free-stream conditions    (�)    to region 1. Therefore, 

the properties in region 1 are the same as in the free stream. The pressure 

coefficient on the airfoil surface bounding region 1 is zero, and: 

   M1 = 2.0 n1 = 26.380� u1 = 0� Cp1 = 0.0   

 Furthermore, since the flow is not decelerated in going to region 1, a Mach 

wave (and not a shock wave) is shown as generated at the leading edge 

of the upper surface. Since the Mach wave is of infinitesimal strength, it 

has no effect on the flow. However, for completeness, let us calculate the 

angle between the Mach wave and the free-stream direction. The Mach 

angle is: 

   ma = sin-1 
1

M�

= 30�   

 Since the surface of the airfoil in region 2 “turns away” from the flow in 

region 1, the flow accelerates isentropically in going from region 1 to region 

2. To cross the left-running Mach waves dividing region 1 from region 2, we 

move along right-running characteristics. Therefore, 

   dn = -du   
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 Since the flow direction in region 2 is: 

   u2 = -20�   

 the Prantdl-Meyer function in region 2,    n2   , is: 

   n2 = n1 - 	u = 46.380�   

 Therefore, 

   M2 = 2.83   

 To calculate the pressure coefficient for region 2,  we can use the rela-

tionship we developed for the pressure coefficient in  Chapter   8   :  

   Cp2 =
p2 - p�

1
2 r�U2

�

=
p2 - p�
g

2 p�M2
�

=
2

gM2
�

a
p2

p�
- 1b    

 Since the flow over the upper surface of the airfoil is isentropic, 

   pt� = pt1 = pt2   

 Therefore, 

   Cp2 =
2

gM2
�

a
p2

pt2
 

pt

p�
- 1b    

  Using  Table   8.1   , or equation (8.36)    , to calculate the pressure ratios given the 

values for    M�    and for    M2,    we find: 

   Cp2 =
2

1.4(4)
a

0.0352

0.1278
- 1b = -0.2588   

 The fluid particles passing from the free stream to region 3 are turned by the 

shock wave through an angle of 20°. The shock wave decelerates the flow 

and the pressure in region 3 is relatively high. To calculate the pressure coef-

ficient for region 3, we must determine the pressure increase across the shock 

wave. Since we know that    M� = 2.0    and    u = 20�,    we can use   Fig.   8.12   b     to 

find the value of    Cp3 = 0.66   . As an alternative procedure, we can use   Fig. 

  8.12        to find the shock-wave angle,    u
w

,    which is equal to    u
w
= 53.5�.    There-

fore,  as discussed in  Section   8.5   ,  we can use    M�  sin u     (instead of    M�    ), which 

is 1.608, and the correlations of   Table   8.3        to calculate the pressure increase 

across the oblique shock wave as: 

   
p3

p�
= 2.848   

 and the pressure coefficient in region 3 is: 

   Cp3 =
2

1.4(4)
(2.848 - 1) = 0.66   

 Using   Fig.   8.12   c    , we now can find that    M3 = 1.20.    
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 Having determined the flow in region 3, 

   M3 = 1.20 n3 = 3.558� u3 = -20�   

 we can determine the flow in region 4 using the Prandtl-Meyer relations.

The flow crosses the right-running Mach waves dividing regions 3 and 4 on 

left-running characteristics, therefore: 

   dn = du   

 Since    u4 = 0�, du = +20�    and 

   n4 = 23.558�   

 so 

   M4 = 1.90   

 Notice that because of the dissipative effect of the shock wave, the Mach 

number in region 4 (whose surface is parallel to the free stream) is less than 

the free-stream Mach number. 

 Whereas the flow from region 3 to region 4 is isentropic, and 

   pt3 = pt4   

 the presence of the shock wave causes 

   pt3 6 pt�    

 To calculate the pressure coefficient in region 4, we need to relate the flow 

properties back to the free-stream values as: 

   Cp4 =
2

gM2
�

a
p4

p�
- 1b =

2

gM2
�

a
p4

p3

 
p3

p�
- 1b    

 where the pressure ratio is: 

   
p4

p3

=
p4

pt4
 
pt3

p3

   

 which can be determined since both    M3    and    M4    are known. The ratio    p3>p�     

has already been found to be 2.848. Therefore, 

   Cp4 =
2

1.4(4)
 c

0.1492

0.4124
 (2.848) - 1 d = 0.0108   

 We can calculate the section lift coefficient using equation (10.24). 

    Cl =
1

2 cos 10�
(-Cp1 - Cp2 cos 20� + Cp3 cos 20� + Cp4)   

    = 0.4438    
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 Similarly, using equation (10.25) to calculate the section wave-drag 

 coefficient, 

    Cd =
1

2 cos 10�
 (Cp3 sin 20� - Cp2 sin 20�)   

    = 0.1595    

 The lift-to-drag ratio for the airfoil in our example is: 

   
l
d

= 2.782   

 which is quite small for an airfoil lift-to-drag ratio when compared with 

subsonic airfoils.

In some cases, it is of interest to locate the leading and trailing Mach 

waves of the Prandtl-Meyer expansion fans at  b  and  d . Using the sub-

scripts  l  and  t  to indicate leading and trailing Mach waves, respectively, 

we have 

    mlb = sin-1 
1

M1

= 30�    

    mtb = sin-1 
1

M2

= 20.7�   

    mld = sin-1 
1

M3

= 56.4�   

    mtd = sin-1 
1

M4

= 31.8�   

 Each Mach angle is shown in  Fig.   10.5   . 

 To calculate the pitch moment about the midchord point, we substitute 

the values we have found for the pressure coefficients into equation (10.27) 

and get:       

   Cmc>2
= 0.04728        

 Aerodynamics Concept Box: How Supersonic Airfoils Produce 
Lift Compared to Subsonic Airfoils 

 Look more closely at the results of  Example   10.3   . If we show the pressures acting on the four 

surfaces of the airfoil, we see something very interesting (the arrows on the figure below rep-

resenting the pressure have been drawn to scale to clarify the concept). Lift is produced by 

having higher pressure on the bottom of an airfoil than the top, so we can see where the lift is 
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being produced from the figure below. Both surfaces 1 and 4 contribute very little to the lift 

of the airfoil (since their respective pressures are close to or at the free-stream level). Surface 

2 has relatively low pressure, so some lift is being produced on the back half of the airfoil, 

but very little. The majority of the lift is being produced by the high pressure acting on the 

bottom surface of the front of the airfoil—the air compressed by the shock wave is pushing 

the airfoil up! 

 How is this different than how lift is produced on a subsonic airfoil? The pressure vari-

ation around a subsonic airfoil (e.g., the Eppler E64 airfoil at 2° angle of attack shown 

below) shows that lift is primarily generated from the upper surface, with the majority of 

that lift coming from the leading-edge region. This is because subsonic airfoils create lift 

by  accelerating flow around the leading edge, which increases the velocity and decreases 

the pressure. 

 This also explains why supersonic airfoils have such low lift-to-drag ratios (less than 10, 

 compared to subsonic airfoils which are around 100). Not only do supersonic airfoils have 

more drag due to wave drag, they have much less lift due to the lift-producing mechanism we 

see here. 

p
�

p2 � 0.275

p
�

p1 � 1.000

p
�

p3 � 2.848

p
�

p4 � 1.030

Å � 10�

M� � 2.0

      

Low pressure

High pressure

E 64

       Eppler E64 airfoil pressure distribution (from Martin 

 Hepperle)   
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  Example   10.3    illustrates how to calculate the aerodynamic coefficients using the 

 shock-expansion technique . This approach is exact provided the relevant assumptions 

are satisfied. A disadvantage of the technique is that it is essentially a numerical method 

which does not give a closed-form solution for evaluating airfoil performance param-

eters, such as the section lift and drag coefficients. However, if the results obtained by 

the method were applied to a variety of airfoils, we would observe that the most efficient 

airfoil sections for supersonic flow are thin with little camber and sharp leading edges 

 (you should look at  Table   5.1    to see that these features are used on the high-speed air-

craft) . Otherwise, wave drag becomes prohibitive. 

 We have used a variety of techniques to calculate the inviscid flow field and the 

section aerodynamic coefficients for the double-wedge airfoil at an angle of attack of 

10° in an airstream where    M� = 2.0.    The various theoretical values are compared in 

 Table   10.2   . Although the airfoil section considered in these sample problems is much 

thicker than those actually used on supersonic airplanes, there is reasonable agree-

ment between the aerodynamic coefficients calculated using the various techniques. 

 Therefore, the errors in the local pressure coefficients tend to compensate for each 

other when the aerodynamic coefficients are calculated. 

 The theoretical values of the section aerodynamic coefficients as calculated 

using these three techniques are compared in  Fig.   10.6    along with experimental values 

taken from  Pope (1958) . The airfoil is reasonably thin, and the theoretical values for 

the section lift coefficient and for the section wave-drag coefficient are in reasonable 

agreement with the data. The experimental values of the section moment coefficient 

exhibit the angle-of-attack dependence of the shock-expansion theory, but they dif-

fer in magnitude. Notice that, for the airfoil shown in  Fig.   10.6   ,    Cl    is negative at zero 

angle of attack. This is markedly different from the subsonic result, where the section 

lift coefficient is positive for a cambered airfoil at zero angle of attack. This is another 

example illustrating that you should not apply intuitive ideas from subsonic flow to 

supersonic flows.    

 TABLE 10.2    Comparison of the Aerodynamic Parameters for the 
Two-Dimensional Airfoil Section of  Fig.   10.5   ,    M

q
 = 2.0, a = 10�    

   Linearized
(Ackeret)
Theory 

 Second-order
(Busemann)

Theory 

 Shock-
expansion 
Technique 

    Cp1     0.0000  0.0000  0.0000 
    Cp2        -0.4031        -0.2244        -0.2588    
    Cp3        +0.4031        +0.5818        +0.660    
    Cp4     0.0000  0.0000     +0.0108    
    Cl     0.4031  0.3846  0.4438 
    Cd     0.1407  0.1400  0.1595 
    Cm0.5c

     0.0000  0.04329  0.04728 
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   10.4  SUMMARY 

 Supersonic airfoils behave very differently than subsonic airfoils. Perhaps that is the most 

important thing to learn in this chapter. The shock and expansion waves that form 

around airfoils at supersonic speeds create drag and a pressure distribution that 

leads to airfoils with very low lift-to-drag ratios when compared with subsonic airfoils. 

While all of the prediction methods discussed in this chapter assume inviscid flow, the 

shock-expansion technique leads to the most dependable answers. However, linear 

theory and Busemann’s second-order theory can give quite good answers within the 

limits of their assumptions, and typically take much less time than the shock-expansion 

technique. Analyzing supersonic airfoils shows the unusual pressure distribution caused 

by the shocks and expansion waves, and gives the aerodynamicist a large challenge when 

designing aircraft that fly at both subsonic and supersonic speeds.   

     PROBLEMS 

   10.1.    Consider supersonic flow past the thin airfoil shown in  Fig.   P10.1   . The airfoil is symmetric 

about the chord line. Use linearized theory to develop expressions for the lift coefficient, 

the drag coefficient, and the pitching-moment coefficient about the midchord. The result-

ant expressions should include the free-stream Mach number, the constants a1 and a2, and 
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Linear theory
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as taken from Pope (1958)

�4 0 4 8 �0.02 �0.04
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M� � 2.13

a(�)

 Figure 10.6         Comparison of the experimental and the theoreti-

cal values of    Cl, Cd,    and    Cm0.5c
    for supersonic flow past an airfoil.   
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the thickness ratio t>c(K t). Show that, for a fixed thickness ratio, the wave drag due to 

thickness is a minimum when a1 = a2 = 0.4.       

 c

a1c a2c

t

 Figure P10.1           

   10.2.    Consider the infinitesimally thin airfoil which has the shape of a parabola: 

   x2 = -

c2

zmax

(z - zmax)   

   The leading edge of the profile is tangent to the direction of the oncoming airstream.  This 

is the airfoil of  Example   8.3   .  Use linearized theory for the following: 

    (a)   Find the expressions for the lift coefficient, the drag coefficient, the lift/drag ratio, 

and the pitching-moment coefficient about the leading edge. The resultant expressions 

should include the free-stream Mach number and the parameter,    zmax>c.     

   (b)   Graph the pressure coefficient distribution as a function of  x > c  for the upper surface and 

for the lower surface. The calculations are for    M� = 2.059    and    zmax = 0.1c.    Compare 

the pressure distributions for linearized theory with those of   Example   8.3       .  

   (c)   Compare the lift coefficient and the drag coefficient calculated using linearized theory 

for    M� = 2.059    and for    zmax = 0.1c    with those calculated in   Example   8.3       .     

   10.3.    Consider the double-wedge profile airfoil shown in  Fig.   P10.3   . If the thickness ratio is 

0.08 and the free-stream Mach number is 3.0 at an altitude of 22 km, use linearized theory 

to compute the lift coefficient, the drag coefficient, the lift/drag ratio, and the moment 

coefficient about the leading edge. Make these calculations for angles of attack of 3.2° 

and 5.6°. 

 M1 � 2.0

(3)

(2)

(5)

(4)

a

 Figure P10.3          

   10.4.    Repeat Problem 10.3 using second-order (Busemann) theory.   

   10.5.    Repeat Problem 10.3 using the shock-expansion technique. What is the maximum angle of 

attack at which this airfoil can be placed and still generate a weak shock wave?   

   10.6.    Calculate the lift coefficient, the drag coefficient, and the coefficient for the moment about 

the leading edge for the airfoil of Problem 10.3 and for the same angles of attack, if the flow 

were incompressible subsonic.   

   10.7.    Verify the theoretical correlations presented in  Fig.   10.6   . Note that for this airfoil section, 

   t =
t
c
= 0.063   

   Furthermore, the free-stream Mach number is 2.13.   
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   10.8.    For linearized theory, it was shown [i.e., equation (10.17c)] that the section drag coefficient 

due to thickness is 

   Cd, thickness =
2

2M2
 1 - 1

(s2
u + s2

l )   

   If    t    is the thickness ratio, show that 

   Cd, thickness =
4t2

2M2
 1 - 1

   

   for a symmetric, double-wedge airfoil section and that 

   Cd, thickness =
5.33t2

2M2
 1 - 1

   

   for a biconvex airfoil section.  In doing this problem, we are verifying the values for    K1    given 

in  Table   11.1   .    

   10.9.    Consider the symmetric, diamond-shaped airfoil section ( Fig.   P10.9   ; as shown in the sketch, 

all four facets have the same value of    d
w

   ) exposed to a Mach 2.20 stream in a wind tunnel. 

For the wind tunnel,    pt1 = 125 psia and Tt = 600 �R.    The airfoil is such that the maximum 

thickness  t  equals to 0.07c. The angle of attack is 6°. 

 
c
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5

t

M1 � 2.20

xa

dw dw

dw dw

 Figure P10.9         

    (a)   Using the shock-wave relations where applicable and the isentropic expansion relations 

(Prandtl-Meyer) where applicable, calculate the pressures in regions 2 through 5.  

   (b)   Using the linear-theory relations, calculate the pressures in regions 2 through 5.  

   (c)   Calculate    CA, CN, Cd,    and    Cm0.5c
    for this configuration.    CA    is the axial force coefficient 

for the force along the axis (i.e., parallel to the chordline of the airfoil) and    CN    is normal 

force coefficient (i.e., normal to the chordline of the airfoil).     

   10.10.    Consider the “cambered,” diamond-shaped airfoil exposed to a Mach 2.00 stream in a wind 

tunnel ( Fig.   P10.10   ). For the wind tunnel,    pt1 = 125 psia and Tt = 650 �R.    The airfoil is such 

that    d2 = 8�, d3 = 2�;    the maximum thickness  t  equals to 0.07 c  and is located at    x = 0.40c.    

The angle of attack is 10°. 

 0.4 c 0.6 c

2

3

4

5

t

M1 � 2.00

x
a d3

d2

 Figure P10.10         



References    585

    (a)   Using the shock-wave relations where applicable and the isentropic expansion relations 

(Prandtl-Meyer) where applicable, calculate the pressures in regions 2 through 5.  

   (b)   Using the linear-theory relations, calculate the pressures in regions 2 through 5.  

   (c)   Calculate    CA, CN, Cl, Cd,    and    Cm0.5c
    for this configuration.    CA    is the axial force coefficient 

for the force along the axis (i.e., parallel to the chordline of the airfoil) and    CN    is the 

normal force coefficient (i.e., normal to the chordline of the airfoil).     

   10.11.    Consider the two-dimensional airfoil having a section which is a biconvex profile, that is, 

   R(x) = 2t 
x
L
a1 -

x
L
b    

   The model is placed in a supersonic wind tunnel, where the free-stream Mach number in the 

tunnel test section is 2.2;    pt1 = 125 lbf/in2    and    Tt = 600�R.    The airfoil is such that the maxi-

mum thickness ( t ) equals 0.07 L  and it occurs at the mid-chord. The angle of attack is 6°. 

 Using the shock/Prandtl-Meyer expansion technique to model the flowfield for the 

biconvex airfoil section, calculate the pressure distributions both for the windward (bot-

tom) and for the leeward (top) sides. Present the results in a single graph that compares the 

pressure distribution for the windward side with that for the leeward side.   

   10.12.    Consider the two-dimensional airfoil having a section which is a biconvex profile, that is, 

   R(x) = 2t
x
L
a1 -

x
L
b    

   The model is placed in a supersonic wind tunnel, where the free-stream Mach number in 

the tunnel test section is 2.2;    pt1 = 125 lbf/in2    and    Tt = 600�R.    The airfoil is such that the 

maximum thickness ( t ) equals 0.07 L  and it occurs at the mid chord. The angle of attack is 6°. 

 Using the linearized theory relations to model the flowfield for the biconvex airfoil 

section, calculate the pressure distributions both for the windward (bottom) and for the 

leeward (top) sides. Present the results in a single graph that compares the pressure distri-

bution for the windward side with that for the leeward side.   

   10.13.    Consider the two-dimensional airfoil having a section which is a biconvex profile, that is, 

   R(x) = 2t
x
L
a1 -

x
L
b    

   The model is placed in a supersonic wind tunnel, where the free-stream Mach number in 

the tunnel test section is 2.2;    pt1 = 125 lbf/in2    and    Tt = 600�R.    The airfoil is such that the 

maximum thickness ( t ) equals 0.07 L  and it occurs at the mid chord. 

 Calculate    Cd    (the section drag coefficient) for the bi-convex airfoil section over an 

angle of attack range from 0° to 10°. Use the linearized theory relations to determine the 

pressure distribution that is required to calculate the form drag. Also, calculate    Cd    for the 

symmetric diamond-shaped airfoil section (see Problem 10.9). 

 Prepare a graph comparing the section drag coefficient    (Cd)    for the bi-convex airfoil 

for the angle of attack range from 0° to 10° with that for the symmetric, diamond-shaped 

airfoil section. The shock/Prandtl-Meyer technique is to be used to calculate the pressure dis-

tribution for both airfoil sections. What is the effect of airfoil cross-section on the form drag?    
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    11    SUPERSONIC FLOWS 

OVER WINGS 

AND AIRPLANE 

CONFIGURATIONS 

     Chapter Objectives 

  •   Understand the physical concepts that apply to supersonic wing aerodynamics  
  •   Know the difference between a subsonic and supersonic leading edge and how 

that impacts the airfoils used for the wing  
  •   Know the difference between subsonic and supersonic drag due to lift  
  •   Be able to apply the conical flow method to a wing and analyze the 

aerodynamics of the wing using airfoil theory  
  •   Understand the basic concepts used in numerically simulating supersonic wings  
  •   Be able to explain how supersonic airplanes make a compromise between 

subsonic and supersonic aerodynamic performance  
  •   Have a basic understanding of the design considerations for supersonic aircraft  
  •   Be able to apply slender body theory to a fuselage shape, and understand the 

purpose of a boattail for reducing base drag   

  The density variations associated with the flow over an aircraft in supersonic flight sig-

nificantly affect the aerodynamic design considerations relative to those for subsonic 

flight.  As noted in  Chapter   10   , the     inviscid pressure distribution results in a drag com-

ponent, known as wave drag, even if we assume the flow to be isentropic (i.e., neglects 

the effects of shock waves). Wave drag represents a significant fraction of the total drag 
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in supersonic flows and is related to the bluntness of the configuration.  As illustrated in 

 Table   5.1   , the     wing sections for supersonic aircraft tend to have a relatively small thick-

ness ratio, and the wing planform has a relatively small aspect ratio. 

 Techniques by which the aerodynamic forces and moments can be computed can be 

classed as either panel (or singularity) methods or field (or computational fluid dynamic) 

methods. For panel methods, the configuration is modeled by a large number of quadri-

lateral panels, approximating the aircraft surface. One or more types of singularity distri-

butions (e.g., sources) are assigned to each elementary panel to simulate the effect that 

panel has on the flow field. A variety of panel methods have been developed, such as, that 

described in  Cenko et al. (1981) , which can be used to generate solutions for compressible 

flow. Panel methods yield good results for slender bodies at small angles of attack. Fur-

thermore, linearized-theory concepts also allow us to separate the drag-due-to-lift into two 

fundamental components: (1) the vortex drag associated with the spanwise distribution of 

the lifting force and the resultant downwash behind the wing, and (2) the wave-drag-due-

to-lift, which arises only for supersonic flow, associated with the longitudinal distribution 

of the lift and the resultant disturbance waves propagating into the surrounding air. 

 However, as the design lift coefficient is increased, methods based on linear-theory 

approximations no longer provide an adequate simulation of the complex flow fields. 

At high-lift conditions, the flow becomes extremely nonlinear, requiring the use of 

higher-order prediction techniques which take into account the various nonlinear flow 

phenomena in determining the configuration aerodynamics. The high-lift flow regime 

can be modeled using a fully three-dimensional, inviscid, attached-flow computational 

approach which employs the full-potential equation  [equation (9.4b)] . 

 Field methods include a wide variety of assumptions about the flow models. 

  Walkley and Smith (1987)  describe a technique which uses a finite-difference formula-

tion based on the characteristics theory of signal propagation to solve the conservative 

form of the full potential equation, including flows with embedded shock waves and 

subsonic flows. Additional rigor is obtained (at the cost of additional computational 

time and expense) if you solve the Euler equation [e.g.,  Allen and Townsend (1986) ]. 

Solution techniques employing the Euler equations allow us to incorporate entropy 

terms that are neglected in the full potential model. For relatively slender vehicles at 

small angles of attack (so that the flow is attached and the boundary layer is thin), we 

can expect reasonable accuracy for the pressure distributions and force coefficients if 

we solve the flow field using the Euler equations. To obtain suitable accuracy when 

computing the flow fields for higher angles of attack or for configurations where viscous/

inviscid interactions are important, it is necessary to model the viscous effects and their 

interdependence on the inviscid flow. For such applications, Navier-Stokes formulations 

are needed [e.g.,  Schiff and Steger (1979)  and  Forsythe et al. (2002) ]. 

 It is beyond the scope of this  text     to treat all the methods available to calculate the 

forces and moments acting on supersonic vehicles. Furthermore, even computer codes 

that are based on the Navier-Stokes equations employ simplifying assumptions in the solu-

tion algorithm. Therefore, in reviewing techniques for predicting wing leading-edge vortex 

flows at supersonic speeds,  Wood and Miller (1985)  note that, based on their comparisons 

between computed flows and experimental data, (at least) one Euler code was not well 

suited for the analysis of wings with separated flow at high lift and low supersonic speeds. 

Instead, a code based on a linearized-theory method that was modified to account for 

both nonlinear attached-flow effects (lower surface) and nonlinear separated flow (upper 
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surface) [ Carlson and Mack (1980) ] provided the best correlation with the experimen-

tally measured vortex strength, vortex position, and total lifting characteristics. So, it is 

important to develop an understanding of the general features of supersonic flows and 

their analysis before blindly using an analytic, semi-empirical, or computational approach. 

 In this chapter, we will consider steady, supersonic, irrotational flow about wings of 

finite aspect ratio. The objective is to determine the influence of geometric parameters 

on the lift, the drag, and the pitch moment for supersonic flows past finite wings.  In  Chap-

ter   10,    we evaluated the effect of the section geometry for flows that could be treated as 

two dimensional (i.e., wings of infinite aspect ratio).  Three-dimensional effects will be 

included since the wings are of finite span. However, we will continue to concentrate on 

configurations that can be handled by small disturbance (linear) theories. 

 After a discussion of the general characteristics of flow about supersonic wings, 

we will proceed to a development of the governing equation and boundary conditions 

for the supersonic wing problem. Then we will outline the consequences (particularly as 

they pertain to determining drag) of linearity on the equation and the boundary condi-

tions, and proceed to discuss two solution methods: the conical-flow and the singularity-

distribution methods. Example problems are worked using the latter method. We close 

the chapter with discussions of aerodynamic interaction effects among aircraft com-

ponents in supersonic flight and of some design considerations for supersonic aircraft.   

      11.1  GENERAL REMARKS ABOUT LIFT AND DRAG 

 A typical lift/drag polar for a supersonic airplane is presented in  Fig.   11.1   . At supersonic 

speeds, aircraft drag is composed of:  

    •   Skin-friction drag  

   •   Wave-drag-due-to-thickness (or volume), also known as the zero-lift wave drag  

   •   Drag-due-to-lift   

 Therefore, 

      CD = CD,friction + CD,thickness + CD,due@to@lift  (11.1)    

 As noted earlier in this chapter, the drag-due-to-lift is itself composed of the vortex drag 

and of the wave-drag-due-to-lift. Experimental evidence indicates that equation (11.1) 

can be written     using the approximation introduced in  Chapter   5    from equation (5.46) , 

      CD = CD0
+ kC2

L  (11.2)    

 where    CD0
    the zero-lift drag coefficient, is composed of the sum of    CD,friction    and 

   CD,thickness   . For supersonic flows,  k  (the drag-due-to-lift factor) is a strong function of the 

Mach number.  For an illustration of the relationship between  k  and the Mach number, 

you should look at  Example   5.7    and Problems 5.15 and 5.16.  

 The skin-friction drag results from the presence of the viscous boundary layer near the 

surface of the vehicle  (see  Chapters   4    and    8   ) . Reference temperature methods can be used in 

the calculation of skin-friction coefficients for compressible flows  (as we discussed in  Chap-

ter   12   ) . As noted in  Middleton and Lundry (1980) , the zero-lift wave drag can be calculated 

using either far-field methods (i.e., the supersonic area rule) or near-field methods (i.e., the 

integration of the surface pressure distribution). The far-field method offers advantages for 
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fuselage optimization according to area-rule concepts. The near-field method is used as an 

analysis tool for applications where the detailed pressure distributions are of interest. The 

drag-due-to-lift (which includes the trim drag) is computed from lifting-analysis programs. 

As noted in  Middleton et al. (1980) , the wing-design and the lift-analysis programs are sepa-

rate lifting-surface methods which solve the direct or the inverse problem of: 

    •   Design—to define the wing-camber-surface shape required to produce a selected 

lifting-pressure distribution. The wing-design program includes methods for defin-

ing an optimum pressure distribution.  

   •   Lift analysis—to define the lifting pressure distribution acting on a given wing-

camber-surface shape and to calculate the associated force coefficients.   

 For efficient flight at a lift coefficient which maximizes the lift-to-drag ratio, the drag-

due-to-lift is about one half of the total drag, as noted in  Carlson and Mann (1992) .  
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 Figure 11.1         Drag buildup using superposition method of drag 

analysis [from  Middleton and Lundry (1980) ].   
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   11.2  GENERAL REMARKS ABOUT SUPERSONIC WINGS 

 The unique characteristics of supersonic flow lead to some interesting conclusions 

about wings in a supersonic stream. For example, take a look at the rectangular wing of 

 Fig.   11.2   . The pressure at a given point    P(x, y)    on the wing is influenced only by pres-

sure disturbances generated at points within the upstream Mach cone (determined by 

   m = sin-1 1>M�   ) emanating from  P.  As a result, the wing tips affect the flow only in 

the regions  BAC  and  DEF . The remainder of the wing ( ACDF ) is not influenced by 

the tips and can be treated using the two-dimensional theory  developed in  Chapter   10    .  
 In the case of an arbitrary planform (as shown in  Fig.   11.3   ), we have the following 

definitions:  

    •   A supersonic (subsonic) leading edge is that portion of the wing leading edge where 

the component of the free-stream velocity normal to the edge is supersonic (subsonic).  

   •   A supersonic (subsonic) trailing edge is that portion of the wing trailing edge where 

the component of the free-stream velocity normal to the edge is supersonic (subsonic).   
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 Figure 11.2         Rectangular wing in a supersonic stream.    
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 Figure 11.3         Wing of arbitrary planform in a supersonic stream.    
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 In  Fig.   11.3   ,  AD  and  BC  are supersonic leading and trailing edges, respectively.  AE  

and  DF  are subsonic leading edges, and  EB  and  FC  are subsonic trailing edges. Note that the 

points,  A ,  D ,  B , and  C  are the points of tangency of the free-stream Mach cone with the lead-

ing and trailing edges. The delta wing of  Fig.   11.4    has supersonic leading and trailing edges, 

while the arrow wing of  Fig.   11.5    has a subsonic leading edge and a supersonic trailing edge.   
 Points on the upper surface within two-dimensional regions that are bounded by 

supersonic leading edges have flows that are independent of lower surface flow and vice 

versa, for points on the lower surface. Therefore, in many cases, portions of supersonic 

wings can be treated by the two-dimensional theory  of  Chapter   10    . From the perspective 

of wing design, supersonic leading edges lead to using supersonic airfoil profiles which 

have sharp leading edges and are relatively thin with little or no camber. An example 

of an airplane designed this way is the F-104. 

 The conclusion  drawn in  Chapter   10    —that good aerodynamic efficiency in super-

sonic flight depends on thin-airfoil sections with sharp leading and trailing edges—carries 

over to finite aspect ratio wings. We also find that the benefits of sweepback  (as discussed 

in  Chapter   9   )  in decreasing wave drag are also present in the supersonic regime. 

 Points on the upper surface within regions bounded by subsonic leading edges 

have flows that are not independent of the lower surface flow.  In these cases, the wings 

should be treated with subsonic theories from  Chapters   7    and    9   .  From the perspective of 

design, subsonic leading edges lead to using subsonic airfoil profiles which have rounded 

leading edges and are relatively thicker, with some camber for improved low-speed 

performance. An example of an airplane designed this way is the F-15. 

 An experimental investigation was conducted to determine the aerodynamic 

characteristics of a potential high-speed civil transport [ Hernandez et al. (1993) ]. As 

noted by Hernandez, “The inboard wing panel has a leading-edge sweep of    79�,    which 

produces a subsonic normal Mach number at the Mach 3.0 cruise condition. Because 

of the subsonic leading-edge normal Mach number, relatively blunt leading-edges were 

possible without a substantial zero-lift wave drag penalty.”  

M� � 1

m

 Figure 11.4         Delta wing with supersonic 

leading and trailing edges.    

M� � 1

m

m

 Figure 11.5         Arrow wing with a subsonic 

leading edge and a supersonic trailing edge.   
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   11.3  GOVERNING EQUATION AND BOUNDARY CONDITIONS 

  In  Chapter   9   , we derived the small perturbation (or linear velocity potential) equation 

(9.13).  Although the derivation was for the subsonic case, the assumptions made in  that 

derivation     are satisfied by thin wings in supersonic flow as well. 

 In mathematical form, the assumptions made in deriving  equation (9.13)     are 
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(11.3)    

 We can observe from equation (11.3) that these assumptions are satisfied for thin wings 

in supersonic flow provided the free-stream Mach number    (M�)    is not too close to one 

(transonic regime), nor too great (hypersonic regime). Practically speaking, this restricts 

supersonic linear theory to the range    1.2 … M� … 5.    

 Rewriting equation  (9.13)     in standard form (to have a positive factor for the    fxx    

term) yields 

      (M2
� - 1)fxx - fyy - fzz = 0  (11.4)    

 where    f    is the perturbation potential. This is a linear, second-order partial differen-

tial equation of the hyperbolic type, whereas equation  (9.13)     is of the elliptic type 

(when    M� 6 1   ).  This fundamental mathematical difference between the equations 

governing subsonic and supersonic small perturbation flow has already been dis-

cussed in  Chapter   8   .      There, we saw that a     small disturbance in a subsonic stream 

 affects the flow upstream and downstream of the disturbance, whereas in a super-

sonic flow the influence of the disturbance is present only in the “zone of action” 

defined by the Mach cone emanating in the downstream direction from the distur-

bance. These behaviors are characteristic of the solutions to elliptic and hyperbolic 

equations, respectively. 

 The boundary condition imposed on an inviscid flow is that the flow must be tan-

gent to the surface at all points on the wing. Mathematically, we have: 

      a
w�

U� + u�
b

surface

=
dzs

dx
  (11.5)    

 which is the same as the condition imposed on the flow in the subsonic case , as shown 

in the equation immediately following equation (7.41), where the surface is given by 

   zs = zs(x, y).     

 Consistent with the definition of the perturbation potential, equation (11.5) 

 becomes 

      a
fz

U� + fx
b

surface

=
dzs

dx
  (11.6)    
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 Applying the assumption that the flow perturbations are small, we have 

      (fz)z=0 = U�

dzs

dx
  (11.7)    

 as the flow tangency boundary condition, since    U� + u� � U�    and the surface cor-

responds to    zs � 0.    An additional condition that must be applied at a subsonic trailing 

edge is the  Kutta condition , which is: 

      Cpute
= Cplte  (11.8)    

 where the subscripts    ute    and    lte    stand for upper and lower wing surface at the trailing 

edge, respectively. Physically, the condition represented by equation (11.8) means that 

the local lift at a subsonic trailing edge is zero.  

   11.4  CONSEQUENCES OF LINEARITY 

  In  Chapter   10    we saw that the effects of angle of attack, camber, and thickness distri-

bution were additive; refer to equations (10.8), (10.14), and (10.22).  In general, a wing 

can also be analyzed using three components (as shown in  Fig.   11.6   ): (a) a flat plate of 

the same planform at the same angle of attack, (b) a thin plate with the same planform 

and camber at zero angle of attack, and (c) a wing of the same planform and thickness 

distribution but with zero camber and zero angle of attack. The perturbation potential 

for each of these components can be determined separately and added together to get 

the combined potential describing the flow about the actual wing.  
 Therefore, the linear nature of the governing equation and the boundary condi-

tions allows us to break the general wing problem into parts, solve each part by some 

appropriate method, and linearly combine the results to arrive at the final aerodynamic 

description. The ability to treat thin wings in this manner greatly simplifies what would 

otherwise be very difficult problems.  

(a)

�

�

�

(b)

(c)

(d)

M� a

 Figure 11.6         Effects of angle of attack, cam-

ber, and thickness are additive in linear theo-

ry: (a) angle of attack; (b) camber distribution; 

(c) thickness distribution; (d) resultant wing.    
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   11.5  SOLUTION METHODS 

  We learned in  Chapter   9    that subsonic, compressible flows could be treated by  applying 

an affine transformation [equation (9.14)] to equation (9.13) and the boundary condi-

tions. This resulted in an equivalent incompressible flow problem [equation (9.15)], 

which could be handled by the methods of  Chapters   6    and    7    for two- and three- 

dimensional flows, respectively. However, no affine transformation exists which can 

be used to transform [equation (11.4)] into [equation (9.15)].  

 We will discuss two solution methods for equation (11.4). The first, the conical-

flow method, was first proposed by  Busemann (1947)  and was used extensively before 

the advent of high-speed digital computers. The second, the singularity-distribution 

method, has been known for some time [ Lomax et al. (1951) ,  Shapiro (1954) , and  Ferri 

(1949) ] but was not generally exploited until the high-speed digital computer was com-

monly available. The  latter method is particularly suited to solution using comput-

ers and is more easily applied to general configurations than the former. Therefore, 

it is more widely used today. However, the solutions generated using the conical-flow 

method (where applicable) serve as straightforward comparison checks for solutions 

using the computerized singularity-distribution method.  

   11.6  CONICAL-FLOW METHOD 

 A conical flow exists when flow properties, such as the velocity, the static pressure, and 

the static temperature, are invariant along rays (e.g.,  PA  in  Fig.   11.7   ) emanating from a 

point (e.g., point  P  at the wing tip), as shown by  Busemann (1947) . If  equation (11.4) is 

transformed from the  x ,  y ,  z  coordinate system to a conical coordinate system [as was done 

in  Snow (1948) ], the resulting equation has only two independent  variables, since proper-

ties are invariant along rays from the apex of the cone. A further transformation [ Shapiro 

(1954) ] results in Laplace’s equation in two independent variables, which is amenable to 

solution by well-known methods (complex variable theory, Fourier series, etc.).  
 Since the conical-flow technique is not generally applicable and is not as adapt-

able to computers, we will not go through the mathematical details of its development. 

P

A

x

y

Region
influenced by

wing tip

Region where flow
is two dimensional

m

 Figure 11.7         In a conical flow, prop-

erties are invariant along rays ema-

nating from a point.    
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However, we will present some results that are applicable to simple wing shapes. The 

interested reader is referred to  Shapiro (1954) ,  Ferri (1949) ,  Carafoli (1956) , and  Jones 

and Cohen (1957) , for in-depth presentations of conical flow theory and its applications. 

Regions of various wings that can be treated using conical-flow theory are illustrated 

in  Fig.   11.8   .  

   11.6.1  Rectangular Wings 

  Bonney (1947)  has shown that the lift inside the Mach cone at the tip of a rectangular 

wing is one-half the lift of a two-dimensional flow region of equal area. This is illustrated 

in the pressure distribution for an isolated rectangular wing tip, which is presented in 

 Fig.   11.9   . The curve of  Fig.   11.9    represents the equation  

   
�p

�p2-d
=

Cp

Cp,2-d
=

2

p
 sin-1

A

tan m�

tan m
   

 The analysis can be extended to the interaction of the two tip flows when their respec-

tive Mach cones intersect (or overlap) on the wing surface. The case where the entire trailing 

(a)

(c)

(b)

(d)

Shaded regions: can be analyzed with conical theory
Unshaded regions: can be analyzed with two-dimensional theory

M�

M�

 Figure 11.8         Examples of regions that can be treated with  conical 

theory: (a) rectangular wing; (b) delta wing; (c) swept swing; 

(d) “double” delta wing.    
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edge of the wing is in the overlap region of the tip Mach cones is illustrated in  Fig.   11.10   . The 

pressure distribution in the region of overlap (when    1 … b # AR … 2   ) is determined by add-

ing the pressures due to each tip and subtracting from them the two-dimensional pressure 

field determined by Busemann’s second-order equation  (10.23) . Note that    b2 = M2
� - 1.     

 The extent of the overlap region is determined by the parameter    b # AR.    Three 

cases are shown in  Fig.   11.11   . Conical-flow theory is not applicable in the regions indi-

cated in the figure. Such cases will occur when    b # AR 6 1.     
 The key assumptions used in this development are as follows: 

    •   Secondary tip effects originating at the point of maximum thickness of a double-

wedge airfoil are neglected.  

   •   Tip effects extend to the limits of the Mach cone defined by the free-stream Mach 

number    M�    and not to the Mach cone defined by the local Mach number.  

   •   Flow separation does not occur.  

   •   Linear theory applies.   

c

b

0.0
0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

tan m�
tan m

p� p�

p2�d � p�

m

m�

 Figure 11.9         Pressure distribution at the tip of a rectangular wing 

(   p = actual    pressure due to tip loss,    p2-d = corresponding    two- 

dimensional pressure) [from  Bonney (1947) ].   
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 Figure 11.10         Effect of a subsonic wing tip on the pressure distribu-

tion for a rectangular wing for which    b # AR = 1.      

Two-dimensional theory applies

Conical theory applies

Neither two-dimensional
nor conical theory applies

(a) (b)

(c)

M�

M�

M�

 Figure 11.11         Regions where conical flow applies for rectangular 

wings: (a)    b # AR 7 2:    no overlap; (b)    1 … b # AR … 2:    overlap 

along the trailing edge; (c)    b # AR 6 1:    overlap extends beyond 

the wing tips.    

 A summary of the results from  Bonney (1947)  for the case of nonoverlapping tip 

effects is given in  Table   11.1   . Conclusions to be drawn from this analysis are as follows: 

    •   A decrease in the aspect ratio for a given supersonic Mach number and airfoil sec-

tion results in decreases in the coefficients for the drag-due-to-lift, the lift, and the 
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  Aerodynamics Concept Box: Example of an Aircraft with 
True Supersonic Wings and Airfoils 

 Most aircraft that have to fly at both subsonic and supersonic speeds have wing plan-

forms and airfoil sections which are compromises between the requirements of the two 
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M� � 1.53
Rec� 0.75 � 106

 Figure 11.12         Comparison of linear theory results with experimen-

tal data for a rectangular wing [data from  Nielsen et al. (1948) ].   

pitching moment. Note that the behavior of the drag-due-to-lift here is in direct 

contrast to its behavior in subsonic flow. The center of pressure will move forward 

with a decrease in aspect ratio.  

   •   When the thickness ratio is increased, the coefficients of lift and of drag-due-to-

lift for finite-span wings increase slightly, but the moment coefficient about the 

leading edge decreases. Furthermore, the center of pressure moves forward both 

for airfoils and for wings as the thickness ratio is increased.  

   •   Airfoils having the same cross-sectional area will have the same center of pressure 

location.  

   •   The thickness drag will vary with the square of the thickness ratio for a given 

cross-sectional shape.  

   •   Airfoils of symmetrical cross section with a maximum thickness at the midchord 

point will have the least drag for a given thickness ratio.   

 A comparison of conical flow predictions with data obtained from  Nielsen et al. (1948)  

is given in  Fig.   11.12    for a double-wedge airfoil for the conditions shown in the figure.        



Sec. 11.6 / Conical-Flow Method    601

   11.6.2  Swept Wings 

 If the wing leading edge is swept aft of the Mach cone originating at the apex of the 

wing as shown in  Fig.   11.13   , the disturbances propagate along the Mach lines “warning” 

the approaching flow of the presence of the wing. As we saw earlier, a leading edge 

that is swept within the Mach cone is referred to as a subsonic leading edge and the 

flow approaching the wing is similar to subsonic flow, even though the flight speed is 

supersonic.  When the leading edge is subsonic, the wing can be treated by the methods 

of  Chapters   7    and    9   .  Furthermore, for sufficiently swept leading edges, the wing leading 

edge can be rounded similar to those used for subsonic speeds.  
 There are penalties associated with sweepback (some of which show up at sub-

sonic speeds) including reduction of the lift-curve slope, increased drag-due-to-lift, tip 

speed regimes. However, one class of aircraft does not have to make that compromise: 

supersonic tactical missiles. Shown below is an Advanced Medium-Range Air-to-Air 

Missile (AMRAAM) being fired from an F-16; AMRAAM flies supersonically almost 

all of the time. 

 Because of the supersonic nature of the missile, the wings and tails have delta or 

clipped delta wing planforms with symmetric double wedge and modified double wedge air-

foils. These are the airfoils with the lowest wave drag for a given thickness according to linear 

theory. The airfoil thickness is only compromised by the structural requirements for attach-

ment to the missile fuselage. Seeing a pure supersonic aerodynamic design is unusual, but not 

unheard of!      

       F-16 firing an AMRAAM missile  

 (U.S. Air Force photo by Staff Sgt. Eric T. Sheller)  
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stalling, and reduced effectiveness of high-lift devices. There are structural considera-

tions also. A swept wing has a greater structural span than a straight wing having the 

same area and aspect ratio. Sweepback introduces additional (possibly severe) torsion 

because the applied loads on the wing act aft of the wing root. 

 Consider the flow depicted in  Fig.   11.14   , where the leading and trailing edges 

of the wing are supersonic. The tips and center portion of a swept wing can be 

treated with conical-flow theory while the remaining portion of the wing can be ana-

lyzed by the two-dimensional techniques  of  Chapter   10    , if an appropriate coordinate 

transformation is made. Refer to  Fig.   11.15   , where a segment of an infinitely long 

sweptback wing with sweepback angle    �    and angle of attack    a    are presented. In this 

case, the free-stream Mach number can be broken into the three components. The 

component tangent to the leading edge is unaffected by the presence of the wing (if 

we neglect viscous effects). Therefore, we may consider the equivalent free-stream 

Mach number    M�e
    normal to the leading edge. This will be the flow as seen by an 

Section a-a

Cp

x
a

a
Subsonic leading edge

Subsonic trailing edge

m

 Figure 11.13         Pressure distribution over the wing chord for a section of a 

swept wing with subsonic leading and trailing edges.    

Shaded regions: conical flow theory applies
Unshaded regions: two-dimensional flow theory applies

M�

 Figure 11.14         Regions of conical flow and of two-dimensional flow for a 

swept wing.    
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observer moving spanwise at the tangential Mach number    M� sin � cos a.    Notice that 

the airfoil section exposed to    M�e
    will be that taken in a plane normal to the leading 

edge, and the flow at    M�e
    about this section can be treated with the two-dimensional 

theory  of  Chapter   10    .   
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 Figure 11.15         Nomenclature for flow around a sweptback wing of 

infinite aspect ratio: (a) view in plane of wing; (b) view in plane 

parallel to direction of flight; (c) view in plane normal to the lead-

ing edge [from  Shapiro (1954) ].   
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 Referring to the geometry presented in  Fig.   11.15   , we can see that 

   M�e
= 3(M� sin a)2 + (M� cos a cos �)240.5   

 or 

      M�e
= M�(1 - sin2 � cos2 a)0.5  (11.9)    

 Also, 

      ae = tan-1 M� sin a

M� cos a cos �
= tan-1 tan a

cos �
  (11.10)    

      te =
t

c cos �
=

t

cos �
  (11.11)    

 where    t K t>c    is the thickness ratio. 

 Now, the total lift per unit span is not changed by the spanwise motion of the 

observer; and only    M�e
    generates pressure forces necessary to create lift, so the section 

lift coefficient is: 

   Cl =
l

(g>2)p�M2
�c

   

 and 

      Cle =
l

(g>2)p�M2
�e

c cos �(1>cos �)
  (11.12)    

 Similarly, ignoring viscous effects and noting that the wave drag is normal to the 

leading edge, 

      Cde =
l

(g>2)p�M2
�e

c cos �(1>cos �)
  (11.13)    

 while 

      Cd =
d cos �

(g>2)p�M2
�e

c
  (11.14)    

 where    d cos �    is the drag component in the free-stream direction. 

 Combining equations (11.9) and (11.12), we get 

      Cl = Clea
M�e

M�

b
2

= Cle(1 - sin2 � cos2 a)  (11.15)    

 For the drag, we combine equations (11.9), (11.13), and (11.14) to get 

      Cd = Cde cos �a
M�e

M�

b
2

= Cde cos �(1 - sin2 � cos2 a)  (11.16)    

 The results just derived are true in general. If we restrict ourselves to the assump-

tions of the linear (Ackeret) theory,  which was discussed in  Chapter   10   ,  then 
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       Cle =
4ae

2M2
� e

- 1
  (11.17)    

       Cde =
4

2M2
� e

- 1
 aa2

e +
s2

ue + s2
le

2
b   (11.18)

      These results are identical to those obtained in  Chapter   10    for infinite aspect ratio wings 

with leading edges normal to the free-stream flow direction, as shown in equations (10.8) 

and (10.16).  

 The results of  Ivey and Bowen (1947)  for flow about sweptback airfoils with dou-

ble-wedge profiles are presented in  Fig.   11.16   . Notice that significant improvement in 

performance can be realized with sweep. The results in  Fig.   11.16    are based on the exact 

relations [i.e., equations (11.15) and (11.16)], the shock-expansion theory (not linear 

theory), and the assumption that the skin friction drag coefficient per unit span is 0.006.      

   11.6.3  Delta and Arrow Wings 

  Puckett and Stewart (1947)  used a combination of a source-distribution and conical-flow 

theory to investigate the flow about delta- and arrow-shaped planforms, as shown in 

 Fig.   11.17   . Cases studied included subsonic and/or supersonic leading and trailing edges 

with double-wedge airfoil sections.  Stewart (1946)  and  Puckett (1946)  used conical-flow 

theory to investigate the flow about simple delta planforms.  
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 Figure 11.16         Theoretical effect of sweepback for double-wedge 

section airfoils with supersonic leading edges: (a) lift-to-drag ratio 

for    M� = 1.5;    (b) lift-to-drag ratio for    M� = 2.0;        



606    Chap. 11 / Supersonic Flows Over Wings and Airplane Configurations

 Two significant conclusions about delta and arrow planforms that can be drawn 

from these studies are as follows: 

    •   For wings where the sweepback of both leading and trailing edges is relatively 

small, the strong drag peak at Mach 1 (characteristic of two-dimensional wings) 

is replaced by a weaker peak at a higher Mach number, corresponding to coinci-

dence of the Mach wave with the leading edge.  
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 Figure 11.16          (Continued)       (c) lift-to-drag ratio for    M� = 4.0;    

(d) lift-curve slope [from  Ivey and Bowen (1947) ].   
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 Figure 11.17         Delta- and arrow-wing planforms with double-wedge 

sections: (a) delta planform; (b) arrow planform.    
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 TABLE 11.2    Comparison of Aerodynamic Coefficients for Rectangular, Delta, 
and Arrow Wing Planforms for    M� = 1.50    

 Wing Planform  Rectangular  Delta a    Arrow  a  

    � = 70�        � = 70�        � = 70�    
    b = 0.2        b = 0.2    

    b cot � = 0.4        b cot � = 0.4    
    AR = 1        a = 0        a = 0.25    

    
b

4
 
dCL

da
     0.554    0.591 

    
dCL

da
     1.98  1.94  2.11 

 Relative area,  S   1.00  1.018  0.938 
  Relative root chord, l   1.00  1.69  1.26 
  Root thickness ratio ,    t     0.10  0.059  0.080 
    CD,thickness     0.0119  0.0048  0.0070 
    CD,friction     0.0060  0.0060  0.0060 
    CD0     0.0179  0.0108  0.0130 

    a
CL

CD
b

max
     5.25  8.6  9.3 

  a See  Fig.   11.17    for a definition of  a  and  b.  
  Source :  Puckett and Stewart (1947) . 

   •   Delta and arrow wings with subsonic leading edges can have lift curve slopes 

   1dCL>da2     approaching the two-dimensional value    14>b2 ,     as shown in equation 

(10.9),  with much lower values of    CD>t
2    than those characteristic of two-dimensional 

wings of the same thickness.   

 A theoretical comparison of a rectangular, delta, and arrow wing is given in 

 Table   11.2   . As noted in  Wright et al. (1978)  and shown in  Fig.   11.18   , “One of the  prominent 

advantages of the arrow wing is in the area of induced drag . . . where the planform with 

k 
�

�
C

D

C
L

 2

Supersonic
leading edge

Subsonic
leading edge

Delta

Arrow

Leading-edge sweep, �

 Figure 11.18         Comparison of 

induced drag for delta- and 

arrow-wing planforms.     Note : 
   �CD = �CD0    [from  Wright et al. 

(1978) ].    
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a trailing edge cut out or notch ratio is shown to have lower induced drag. The second 

advantage of the arrow wing is its ability to retain a subsonic round leading edge at an 

aspect ratio that is of the same level as that of the lesser swept supersonic leading edge 

delta. The advantages of the subsonic leading edge are a lower wave drag at cruise and a 

high    L>D    for subsonic flight operations due to increased leading edge suction.”     

   11.7  SINGULARITY-DISTRIBUTION METHOD 

 The second method that can be used to solve equation (11.4) is the singularity- distribution 

method. Detailed treatment of the mathematical aspects of the theory and applica-

tions to various wing planforms are presented in  Lomax et al. (1951) ,  Shapiro (1954) , 

 Jones and Cohen (1957) , and  Carlson and Miller (1974) . For simple planforms, the 

 singularity-distribution method can provide exact analytical closed-form solutions to three- 

dimensional wing problems [see  Shapiro (1954) ,  Jones and Cohen (1957) , and   Puckett and 

Stewart (1947) ]. However, the method is quite adaptable for use with computers to solve 

for flow about complex shapes, and this is where it is most extensively applied. 

  In  Chapter   3    we learned that the     governing equation [i.e., equation  (3.26)    ] for 

incompressible, irrotational flow is linear even without the assumption of small distur-

bances. This allowed us to combine elementary solutions (i.e., source, sink, doublet, 

vortex, etc.) of the governing equation to generate solutions for incompressible flows 

about shapes of aerodynamic interest. In supersonic flow, where the small disturbance 

assumption is necessary to linearize the governing equation [e.g., equation (11.4)], there 

are analogs to the simple solutions for the incompressible case. Owing to a mathemati-

cal similarity to their incompressible counterparts, the supersonic solutions are quite 

naturally referred to as supersonic sources, sinks, doublets, and vortices. However, the 

physical relationship to their subsonic counterparts is not quite so direct and will not 

be developed fully here. 

 The supersonic source (recall that a sink is simply a negative source), the doublet, 

and the horseshoe vortex potentials given by  Lomax et al. (1951)  are as follows: 

       Source: fs = -
Q
rc

  (11.19a)    

       Doublet: fd = +
Qzb2

r3
c

  (11.19b)    

 where the axis of the doublet is in the positive  z  direction. 

      Vortex: f
v
= -

Qznc

rc
  (11.19c)    

 In equation (11.19),  Q  is the strength of the singularity and 

    rc = 5(x - x1)2 - b23(y - y1)2 + z2460.5

 b2 = M2
� - 1

 nc =
x - x1

(y - y1)2 + z2
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 We can verify by direct substitution that equations (11.19a) through (11.19c) satisfy 

equation (11.4). Notice that the point    (x1, y1, z1)    is the location of the singularity. Since 

the wing is in the    z = 0    plane,    z1 = 0    for every singularity for this approximation. This 

is because the wing is replaced by a distribution of singularities in the plane of the wing. 

The hyperbolic radius,    rc,    is seen to be imaginary outside the Mach cone extending 

downstream from the location of the singularity in each instance. Therefore, the influ-

ence of the singularity is only present in the zone of action downstream of the point 

   (x1, y1, 0).    

 Modern numerical techniques and computers can be used to model a wing or body 

by replacing it with singularities at discrete points. These singularities are combined lin-

early to create a flow pattern similar to that about the actual body. The strengths of the 

singularities are determined so that the boundary condition requiring that the flow be 

tangent to the body’s surface is satisfied at selected points. For configurations with sharp 

trailing edges, it is also necessary to satisfy the Kutta condition at those sharp trailing 

edges which are subsonic. Once the singularity distribution is determined, the potential 

at a given point is obtained by summing the contributions of all the singularities to the 

potential at that point, and the velocity and pressure distributions can be found using 

equations  (9.12) and (9.16a)    . 

 Four types of problems that can be treated by the singularity-distribution method 

[see  Lomax et al. (1951) ] are as follows: 

  Two nonlifting cases: 

   1.   Given the thickness distribution and the planform shape, find the pressure distri-

bution on the wing.  

   2.   Given the pressure distribution on a wing of symmetrical section, find the wing 

shape (i.e., find the thickness distribution and the planform).   

  Two lifting cases: 

   3.   Given the pressure distribution on a lifting surface (zero thickness), find the slope 

at each point of the surface.  

   4.   Given a lifting surface, find the pressure distribution on it. Here, it is neces-

sary to impose the Kutta condition for subsonic trailing edges when they are 

present.   

 Cases 1 and 3 are called “direct” problems because they involve integrations with 

known integrands. Cases 2 and 4 are “indirect” or “inverse” problems, since the unknown 

to be found appears inside the integral sign. Therefore, the solution of inverse problems 

involves the inversion of an integral equation. 

 One might expect that cases 1 and 4 would be the only ones of practical interest, 

however, this is not the case. Many times, a designer wishes to specify a given loading 

distribution (e.g., either for structural or for stability analyses) and solve for the wing 

shape which will give that prescribed loading distribution. Therefore, you may encoun-

ter any one of the four cases in aircraft design work. A variation of cases 2 and 3 is to 

specify the potential on a surface instead of the pressure distribution. Cases 1 and 2 

are most conveniently solved using source or doublet distributions, while cases 3 and 4 are 

most often treated using vortex distributions. 
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   11.7.1   Find the Pressure Distribution Given the 
Configuration 

 Consider a distribution of supersonic sources in the  xy  plane. The contribution to the 

potential at any point    P(x, y, z)    due to an infinitesimal source at    P�(x1, y1, 0)    in the 

plane is, from equation (11.19a), 

      df(x, y, z) = -
C(x1, y1) dx1 dy1

2(x - x1)2 - b23(y - y1)2 + z24
  (11.20)    

 where    C(x1, y1)    is the source strength per unit area. Consistent with the linearity as-

sumption, the flow tangency condition [equation (11.7)] gives the vertical ( z  direction) 

velocity component in the  xy  plane as 

      w�(x, y, 0) = c
0f(x, y, z)

z
d

z=0

= U�

dzs(x, y)

dx
  (11.21)    

 Taking the derivative with respect to  z  of equation (11.20) gives 

      
03df(x, y, z)4

0z
= dw�(x, y, z) = -

C(x1, y1)b2z dx1 dy1

5(x - x1)2 - b23(y - y1)2 + z2461.5
  (11.22)    

 Notice that    x1    and    y1    are treated as constants. Taking the limit of equation (11.22) as 

   z S 0,    we get    dw�(x, y, 0) = 0,    except very near the point    (x1, y1)    where the limit is in-

determinant (i.e., of the form    0>0   ). We conclude that the vertical velocity at a point in the 

 xy  plane is due only to the source at that point and to no other sources. In other words, a 

source induces a vertical velocity at its location and nowhere else. A source does, however, 

contribute to    u�    and    v�    (i.e., the  x  and  y  components of the perturbation velocity) at other 

locations. We still must determine the contribution of the source at the point    (x1, y1)    to 

the vertical velocity at    P�(x1, y1, 0).     Puckett (1946)  shows that the latter contribution is 

      dw�(x1,  y1, 0) = pC(x1, y1)  (11.23a)    

 However, since this is the entire contribution, 

      w�(x1, y1, 0) = dw�(x1, y1, 0) = pC(x1, y1)  (11.23b)    

 Using equation (11.21), we see that 

      C(x1, y1) =
U�

p
c
dzs(x1, y1)

dx1

d K
U�l(x1, y1)

p
  (11.23c)    

 where    l    is the local slope of the wing section. Therefore, we obtain the important result 

that the source distribution strength at a point is proportional to the local surface slope 

at the point. 

 Substituting equation (11.23c) into equation (11.20) and integrating gives 

      f(x, y, z) = -
U�

p OS

l(x1, y1) dx1 dy1

3(x - x1)2 - b2(y - y1)240.5
  (11.24)    

 where  S  is the region in the  xy  plane within the upstream Mach cone with apex at    P(x, y).    

Once the potential is known, the pressure distribution follows from  equation (9.16); that is,      
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      Cp = -
2(0f>0x)

U�

  (9.16a)    

 Since source distributions are used where the airfoil section is symmetric (see the pre-

ceding cases 1 and 2), the pressure distribution determined by equations (11.24) and 

 (9.16)     is the same on the upper and lower surfaces. Because linear theory requires that 

the deflection angles are small, the wave-drag coefficient at zero lift is 

      CDw
= 2 OSu

Cpu(x, y)lu(x, y) dx dy  (11.25)    

 where  S  is the surface of the wing and the subscript  u  indicates the upper surface. The 

formula contains the factor 2 to include the contribution of the lower surface since the 

section is symmetric. 

  EXAMPLE 11.1:     Determine the pressure distribution for the single-
wedge delta wing 

 We will determine the pressure distribution for the simple wing shape shown 

in  Fig.   11.19   , which is at zero degrees angle of attack. This is a single-wedge 

delta with subsonic leading edges. The leading edge is swept by the angle 

   �LE   , although this wing is not very practical because of its blunt trailing edge. 

A

C

D

B

E

P(x, y)

x1

y1

Mach cone
from P

a

a

Section a-a

�LE

M�

m

m

 Figure 11.19         Nomenclature and geometry for single-wedge delta 

wing of  Example   11.1   .   
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However, neglecting the effects of the presence of the boundary layer, the 

effects of the trailing edge are not propagated upstream in the supersonic 

flow. So, to obtain the flow about a wing with a sharp trailing edge, we can 

add (actually subtract) the solutions for the flow around two delta wings 

of constant slope such that the desired airfoil section can be obtained. This 

additive process is illustrated in  Fig.   11.20   . The simple case considered here 

can be used as a building block to construct more complex flow fields about 

wings of more practical shape [see  Shapiro (1954)  and  Stewart (1946) ].  

   Solution:     Consider the point    P(x, y)    in  Fig.   11.19   . The flow conditions at  P  are a result 

of the combined influences of all the sources within the upstream Mach cone 

from  P . From symmetry, the vertical velocity perturbation vanishes ahead 

B D

A

C

E

A

x

Section A-A

c

C�

�1

�2

bc

G

D

D�t

B

z

y

Section A-A

F

F �

E, C
x

l1 � l2

2l1

l2

M�

M�

 Figure 11.20         Geometry for a delta-wing planform with a double-

wedge section [from  Shapiro (1954) ].   
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of the wing, and the source distribution simulating the wing extends only to 

the leading edges. Thus, the source distribution which affects  P  is contained 

entirely in the region  ABPD . 

 The potential at  P  is given by equation (11.24): 

   f(x, y, 0) = -
l

p
U� O

ABPD

dx1 dy1

3(x - x1)2 - b2(y - y1)
240.5

   

 where we have moved    l    outside the integral sign, since it is a constant in 

this example. 

To carry out the integration, it is convenient to break  ABPD  into three 

separate areas, thus: 

    f(x, y, 0) = -
l

p
U�e O

ADE

dx1 dy1

3(x - x1)2 - b2(y - y1)240.5

 + O
AEPC

dx1 dy1

3(x - x1)2 - b2(y - y1)240.5
 

 + O
CPB

dx1 dy1

3(x - x1)2 - b2(y - y1)240.5
 f    

 To define the limits of integration, we note the following relationships 

from geometry: 

    Along AD: x1 = -y1 tan �LE

 Along ACB: x1 = +y1 tan �LE

 Along BP: x1 = x - b(y1 - y)

 Along DEP: x1 = x + b(y1 - y)   

 Finally, the coordinates of points  B  and  D  are 

   B c
(x + by) tan �LE

tan �LE + b
, 

x + by

tan �LE + b
d

D c
(x - by) tan �LE

tan �LE + b
, 

- (x - by)

tan �LE + b
d    

 Therefore, we have 

    f(x, y, 0) =
l

p
U� c L

0

- (x - by)

tan �LE + b

 dy1L
x+b(y1-y)

-y1 tan �LE

dx1

3(x - x1)2 - b2(y - y1)240.5

  +  L
y

0

dy1 L
x+b(y1-y)

y1 tan �LE

dx1

3(x - x1)2 - b2(y - y1)240.5

  + L
(x + by)

tan �LE + b

y
 dy1 L

x-b(y1-y)

y1 tan �LE

 
dx1

3(x - x1)2 - b2(y - y1)240.5
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 Figure 11.21         Theoretical 

solutions for a delta wing: 

(a) pressure distribution for 

a single-wedge delta wing at 

   a = 0;    (b) thickness drag of a 

double-wedge delta wing with 

a supersonic leading edge and 

a supersonic line of maxi-

mum thickness [from  Puckett 

(1946) ].   



 We can use standard integral tables and relationships involving inverse 

hyperbolic functions [i.e., see  Hodgman (1977) ] to show that the result of this in-

tegration and subsequent differentiation with respect to  x  is [see  Puckett (1946) ] 

    u�(x, y, 0) = +
0f
0x

= -
l

p
U�

2

b3(tan2 �LE>b
2) - 140.5

 cosh-1e a
tan �LE

b
b c

1 - (by>x)2

1 - (y2 tan2 �LE) >x2
d

0.5

f    

 By equation  (9.16a)    , the pressure distribution on the wing is 

   Cp(x, y, 0) = -
2u�

U�

   

 Notice that    Cp    is invariant along rays    (y>x = constant)    from the apex of the 

wing. Therefore, as we might suspect from the geometry, this is a conical flow. 

 The wave-drag coefficient can be determined using equation (11.25). 

 Fig.   11.21    presents pressure distributions and wave drag for various configu-

rations of single- and double-wedge delta wings (see  Figs.   11.19    and    11.20   ).       
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 Figure 11.21     ( continued) 

(c) thickness drag of a 

double-wedge delta wing 

with a subsonic line of 

maximum thickness.       
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  EXAMPLE 11.2:     Prepare graphs of the pressure distribution for a 
single-wedge delta wing 

 Consider a single-wedge delta wing with a leading-edge sweep angle of    60�,    
flying at a Mach number of 2.2. The wing has a thickness-to-chord ratio 

in the plane of symmetry of 0.04. Thus, referring to  Fig.   11.21   a, the sur-

face slope    l    is 0.02. Prepare graphs of    Cp    as a function    (x - xLE) >c(y)    

for the four planes shown in the sketch of  Fig.   11.22    (i.e., at stations 

   y = 0.125b; y = 0.250b; y = 0.375b;    and    y = 0.450b   ). 

   Solution:     We should first locate the Mach wave originating at the apex of the delta wing: 

   m = sin-1 
1

M�

=
1

2.2
= 27.04�   

 As shown in the sketch of  Fig.   11.23   , the Mach wave is downstream of 

the wing leading edge. Therefore, the wing has a supersonic leading edge. In 

the shaded region representing that portion of the wing between the leading 

edge and the Mach wave, the pressure must be constant and the same as that 

for a two-dimensional oblique airfoil. In this region,  

      Cp = -
2u�

U�

=
2l

b21 - n2
=

2l

2b2 - tan2 �LE

  (11.26)    

M � 2.2

t � 0.04cr

y � 0.450b

y � 0.375b

y � 0.250b

y � 0.125b

�LE

x

l � 0.02

cr

Cross section in the plane of symmetry

y

 Figure 11.22         Sketch for  Example   11.2   .   
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x

y

M� � 2.2

Mach waves

s � 1

s � n

s � 0

�LE � 60�

m � 27.04�

 Figure 11.23         Mach waves and lines of constant s for   Example   11.2   .   

 The nomenclature used in equation (11.26) is consistent with that used 

in  Figs.   11.21   a and    11.23   , so: 

   b = 2M2
� - 1 = 1.9596   

 and 

   n =
tan �LE

b
= 0.88388   

 The expression given in equation (11.26) can be rearranged to the format 

used in  Fig.   11.21   a, so that 

   
Cpb

l
=

2

21 - n2
= 4.276   

 You should compare this numerical value with the graphical information 

presented in  Fig.   11.21   a. In the region between the wing leading edge and 

the Mach wave, the pressure coefficient itself is equal to 

   Cp = 0.0436   

 We can use the expression developed by  Puckett (1946)  to determine 

the pressure at points on the wing that lie between the Mach wave and 

the plane of symmetry, when the wing leading edge is supersonic. The points 

are located in terms of the coordinate  s , where 

   s = (tan �LE)
y
x
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 Therefore,    s = 0    corresponds to the plane of symmetry,    s = 1    corresponds 

to the wing leading edge, and    s = n    corresponds to the Mach wave. The 

pressure coefficient in this region is given by 

      Cp =
4l

bp21 - n2
Reale

p

2
- sin-1 

B

n2 - s2

1 - s2
f   (11.27)    

 Graphs of the pressure distributions for the four stations of interest are 

presented in  Fig.   11.24   . Note that the Mach wave intersects the wing trailing 

edge at    y = 0.442b.    As a result, the plane    y = 0.450b    lies entirely within 

the shaded region. So, the pressure coefficient in the    y = 0.450b    plane is 

independent of  x  and equal to 0.0436.     

   11.7.2  Numerical Method for Calculating the Pressure 
Distribution Given the Configuration 

  Carlson and Miller (1974)  presented a numerical application of the vortex distribution 

method which is applicable to thin wings of arbitrary profile and of arbitrary planform. 

In accordance with the concepts of linearized theory, the wing is assumed to have neg-

ligible thickness and is assumed to lie approximately in the    z = 0    plane. We will now 

discuss the application of their method to determine the lifting pressure coefficient at 

the field point ( x ,  y ). 

 The equation governing the differential pressure coefficient    ( �Cp = Cpl - Cpu)    is 

     �Cp(x, y) = -
4

b
 
0zc(x, y)

0y
+

1

pO
s

R(x - x1, y - y1)�Cp(x1, y1)dby1 dx1  (11.28)    

y � 0.450b

x � xLE
c(y)

y � 0.375b

y � 0.250b

y � 0.125b

y � 0.000

0.05
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0.05

0.00

Cp

0.05

0.00

Cp

0.05

Cp

0.00

Cr

 Figure 11.24         Pressure distributions for  Example   11.2   .   
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 where 

   R(x - x1, y - y1) K
x - x1

b2(y - y1)23(x - x1)2 - b2(y - y1)240.5
   

 and    zc(x, y)    is the  z  coordinate of the camber line. The function  R  may be thought of 

as an influence function relating the local loading at the point    (x1, y1)    to its influence 

on the flow field. 

 The integral in equation (11.28) represents the influence of a continuous distribu-

tion of horseshoe vortices originating from wing elements with vanishingly small chords 

and spans. The region of integration,  S , originating at the field point ( x ,  y ), is shown in 

 Fig.   11.25   . The integral gives the appearance of being improper and divergent because 

of the singularity at    y1 = y    within the region of integration. However, the integral can 

be treated according to the concept of the generalization of the Cauchy principal value 

[see  Lomax et al. (1951) ], as indicated by the double-dash marks on the integral signs.  
 In order to replace the indicated integration in equation (11.28) with an algebraic 

summation, it is first necessary to replace the Cartesian coordinate system shown in 

 Fig.   11.26   a with the grid system shown in  Fig.   11.26   b. The region of integration, origi-

nally bound by the wing leading edge and the Mach lines, now consists of a set of grid 

elements approximating that region shown by the shaded area of  Fig.   11.26   b. Inclusion 

of partial as well as full grid elements provides a better definition of the wing leading 

edge and tends to reduce any irregularities that may arise in local surface slopes for 

elements in the vicinity of the leading edge.  
 Therefore, we will determine the lifting pressure distribution numerically using a 

system of grid elements similar to those shown in  Fig.   11.26   b. Notice that, in practice, 

many more elements would be used. The numbers  L  and  N  identify the spaces in the 

grid which replace the integration element    dx1 dby1 L*    and    N*    identify the element as-

sociated with, and immediately in front of, the field point    (x, by).    Note that    L* = x    and 

   N* = by,    and  x  and    by    take on only integer values. The region of integration, originally 

M� � 1

P(x, y)

S

m

m

 Figure 11.25          S  is the region of integration for the supersonic 

 vortex lattice method.    
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 Figure 11.26         Coordinate systems for the linearized, supersonic 

vortex lattice method: (a) Cartesian coordinate system; (b) grid 

system used in numerical solution.    
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bounded by the leading edge and the forecone Mach lines from    (x, by),    is now approxi-

mated by the grid elements within the Mach forecone emanating from    (x, by).    Note that 

in the    (x, by)    coordinate system, the Mach cone half-angle is always 45�. 
 The summation approximation to equation (11.28) then becomes 

     �Cp1L*, N*2 = -
4

b
 
0zc(L*, N*)

0x

+
1

pa
Nmax

Nmin

  a
L*- �N*-N�

L
LE

 R(L* - L, N* - N)A(L, N)B(L, N)C(L, N)�Cp(L, N)  (11.29)    

 where    R    is the average value of  R  within an element and is given by 

     R(L* - L, N* - N) =
3(L* - L + 0.5)2 - (N* - N - 0.5)240.5

(L* - L + 0.5)(N* - N - 0.5)

 -
3(L* - L + 0.5)2 - (N* - N + 0.5)240.5

(L* - L + 0.5)(N* - N + 0.5)
  (11.30)    

 A graphical representation of this factor is presented in  Fig.   11.27   . You should 

notice the relatively small variations of the factor in the  x  (or  L ) direction contrasted 

with the larger variations in the  y  (or  N ) direction. For a given    L* - L    set of elements, 

the spanwise summation of the    R    values is found to be zero, due to the single negative 

value at    N* - N = 0    balancing all the others. At    L* - L = 0,    where there is only one 

element in the spanwise summation, the    R    value of that element is zero. This fact ensures 

that an element will have no influence on itself. Furthermore, the fact that the spanwise 

summation of the    R    values is found to be zero ensures that the complete wing will produce 

a flow field which consists of equal amounts of upwash and of downwash and, therefore, 

introduces no net vertical displacements of the medium through which it is moving.  
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 Figure 11.27         Numerical representation of the influence factor    R    

(the    R    function).   
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 The limits on  L  in the summation of equation (11.29) are those of the wing lead-

ing edge (i.e.,    LLE = 1 + 3xLE4 ,    where    3xLE4     designates the whole-number part of the 

quantity) and of the Mach forecone at the selected  N  value. The vertical lines are used 

in    � N* - N �     to designate the absolute value of the enclosed quantity. 

 The factor  A ( L ,  N ) is a weighting factor which allows consideration of partial ele-

ments in the summation process and permits a better definition of the wing leading-edge 

shape. The factor  A ( L ,  N ) takes on values from 0 to 1, as given by 

    A(L, N) = 0  L - xLE … 0

 A(L, N) = L - xLE    0 6 L - xLE 6 1

 A(L, N) = 1  L - xLE Ú 1    

 The factor  B ( L ,  N ) is a weighting factor for the wing trailing-edge shape, which 

also takes on values from 0 to 1, as given by 

    B(L, N) = 0   L - xTE Ú 1

 B(L, N) = 1 - (L - xTE)    0 6 L - xTE 6 1

 B(L, N) = 1  L - xTE … 0    

 The factor  C ( L ,  N ) is a weighting factor for elements at the wing tip, which takes 

on values either of 0.5 or of 1.0, as given by 

    C(L, N) = 0.5    N = Nmax

 C(L, N) = 1  N � Nmax   

 The differential, or lifting, pressure coefficient at a field point    �Cp(L*, N*)    can be de-

termined for a wing of arbitrary surface shape provided the calculations are  carried out 

in the proper sequence. The order of calculating    �Cp(L*, N*)    is from the apex rearward 

(i.e., increasing values of    L*   ). If this sequence is followed, at no time will there be an un-

known    �Cp(L, N)    in the summation in equation (11.29), since the pressure coefficients 

for all of the points within the Mach fore cone originating at the field point    (L*, N*)    

will have been already computed. Note that an element has no influence on itself since 

   R10, 02 = 0    from equation (11.30). So,    �Cp(L = L*, N = N*)    is not required in the 

summation term of equation (11.29). Also, notice that equation (11.29) is the summa-

tion to approximate what was originally an integral equation [see  Lomax et al. (1951) ] 

and thus already accounts for the flow tangency boundary condition, equation (11.21). 

This condition is satisfied exactly only at control points located at the midspan of the 

trailing edge of each grid element (see  Fig.   11.28   b).  
 The    �Cp(L*, N*)    given by equation (11.29) is defined at the trailing edge of the 

   (L*, N*)    element. To eliminate large oscillations in the pressure coefficient which can 

occur with this numerical technique, a smoothing operation is required. The procedure, 

taken directly from  Carlson and Miller (1974) , is as follows: 

    •   Calculate and retain, temporarily, the preliminary    �Cp    values for a given row, 

with    L* = constant.    Designate this as    �Cp, a(L*, N*).     

   •   Calculate and retain, temporarily,    �Cp    values for the following row with 

   L* = constant + 1,    by using the    �Cp, a    values obtained in the previous step for 

contributions from the row with    L* = constant.    Designate this as    �Cp, b(L*, N*).     
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   •   Calculate a final    �Cp    value from a fairing of integrated preliminary    �Cp    results.   

 For leading-edge elements, defined as    L* - xLE(N*) … 1,    

     �Cp(L*, N*) =
1

2
c1 +

A(L*, N*)

1 + A(L*, N*)
d  �Cp,a(L*, N*)

 +  
1

2
c

A(L*, N*)

1 + A(L*, N*)
d  �Cp,b(L*, N*)  (11.31)    

 For all other elements, defined as    L* - xLE(N*) 7 1,    

      �Cp(L*, N*) = 3
4�Cp, a(L*, N*) + 1

4 �Cp, b(L*, N*)  (11.32)    

 where 

   A(L*, N*) = A(L, N)   

 The nomenclature    A(L*, N*)    is used here to be consistent with that of  Carlson and 

Miller (1974) . Note: there is an error in  Carlson and Miller (1974)  for equation (11.31); 

the formulation given here is correct [see  Carlson and Mack (1978) ]. 

  EXAMPLE 11.3:     Calculate the pressure distribution for a flat-plate 
delta wing planform 

 To illustrate the method, let us show how to calculate manually the 

pressure distribution at    M� = 1.5    for the flat-plate (zero-camber) 

delta planform of  Fig.   11.28   a for the subsonic leading edge case where 

   b cot �LE = 0.6.    We will use the grid element set shown in  Fig.   11.28   a in 

order to keep the number of manual calculations within bounds. In an 

actual application, of course, we would use a much larger number of ele-

ments. Note that in  Fig.   11.28   a we use some partial elements along the 

leading and the trailing edges. Since    �Cp    is treated as a constant over a 

given element, partial  elements affect only the reference area used when 

integrating the pressures to calculate the lift coefficient, the drag-due-to-

lift coefficient, etc.   

Solution:     For this case, the wing is assumed to have negligible thickness and is as-

sumed to lie approximately in the    z = 0    plane. The wing streamwise slope 

   30zc(x, y) >0x4     is a constant for the flat plate at incidence and is equal to the 

negative of the tangent of the wing angle of attack 

   
0zc(x, y)

x
=

dzc

dx
= -tan a � -a   

 since, even here, we are still restricting ourselves to linear theory, which 

implies that all changes in flow direction about the free-stream direction 

are small. 

 For this case, where the free-stream Mach number is 1.5: 

   b K 2M2
� - 1 = 1.118    
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 Therefore, the leading-edge sweepback angle corresponding to 

   b cot �LE = 0.6     is    61.78�.    Thus, when the transformation is made from the 

( x ,  y ) to the    (x, by)    plane, the angle that the leading edge makes with the    by    

axis is    59.04�.    This is shown in  Fig.   11.28   a along with the grid system. 

 The equation of the wing leading and trailing edges in the    (x, by)    

 system is 

   xLE =
b � y �
0.6
  xTE =

Nmax

b cot �LE

= 6.6667   

 Note that the value of    xTE    is defined by selection of a maximum  N  

value,    Nmax.    For the purposes of this example, we arbitrarily select    Nmax = 4.     

The wing is then scaled to give a semispan of    Nmax.    This ensures that the 

weighting factor    C(L, N) = 0.5    for    N = Nmax     is appropriate. This is impor-

tant for streamwise tips of nonzero chord. Using this and the relationships 

defining  A ( L ,  N ),  B ( L ,  N ), and  C ( L ,  N ), we have the following: 

7

2

0 1 2 3

(a)

x, x1

N
* , N

4 5 6 7

3
L*, L

1 4 5 6 7

6

5

4

3

2

1

0

�1

�2

�3

�4

�5

�6

�7

7

6

5

4

3

2

1

0

�1

�2

�3

�4

�5

�6

�7

7

2

0 1 2 3

(b)

x, x1

N
* , N

4 5 6 7

3
L*, L

1 4 5 6 7

6

5

4

3

2

1

0

�1

�2

�3

�4

�5

�6

�7

7

6

5

4

3

2

1

0

�1

�2

�3

�4

�5

�6

�7

b
y,

 b
y 1

b
y,

 b
y 1

 Figure 11.28         Grid element geometry for the supersonic vortex 

latice method: (a) general pattern; (b) region of integration for 

element (3, 1) of  Example   11.3   .   
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  B ( L ,  N ): 

    B(7, N) = 0.6667

 B(L, N) = 1   for all other grid elements    

  C ( L ,  N ): 

    C(7, {4) = 0.5

 C(L,  N) = 1   for all other grid elements    

 We now proceed to calculate values of    �Cp    for several grid elements 

to show the technique. We begin at the apex with element (1, 0). 

  Element (1, 0). 

 For this element,    L* = 1, N* = 0,    and there are no other elements which 

contribute to the differential pressure coefficient at this element. Therefore, 

   �Cp, a(1, 0) =
4a

b
   

 To determine    �Cp(1, 0),    we must calculate a preliminary value 

   �Cp,b (1, 0).    This involves consideration of the element at (2, 0). The only 

element contributing to the pressure differential at (2, 0) is the one at (1, 0). 

Thus, 

     �Cp,b(1, 0) =
4a

b
+

1

p
 e

3(2 - 1 + 0.5)2 - (0 - 0 - 0.5)240.5

(2 - 1 + 0.5)(0 - 0 - 0.5)
 

  -
3(2 - 1 + 0.5)2 - (0 - 0 + 0.5)240.5

(2 - 1 + 0.5)(0 - 0 + 0.5)
f

4a

b
    

 or 

   �Cp,b(1, 0) =
4a

b
(1 - 1.2004) = -0.8016

a

b
   

 Therefore, 

   �Cp11, 02 =
1

2
a1 +

1

1 + 1
b

4a

b
+

1

2
a

1

1 + 1
b(-0.8016) 

a

b
   

  L  
  N  

  1    2    3    4    5    6    7  

  0  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000 
    {1     0.0000  0.3333  1.0000  1.0000  1.0000  1.0000  1.0000 
    {2     0.0000  0.0000  0.0000  0.6667  1.0000  1.0000  1.0000 
    {3     0.0000  0.0000  0.0000  0.0000  0.0000  1.0000  1.0000 
    {4     0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.3333 

A(L, N)
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 or 

   �Cp(1, 0) = 2.7996 
a

b
    

  Element (2, 0). 

 For this element,    L* = 2, N* = 0,    and the only element that contributes to 

the differential pressure coefficient at this element is the one at (1, 0). Thus, 

   �Cp,a(2, 0) = 4
a

b
+

1

p
e
3(2 - 1 + 0.5)2 - (0 - 0 - 0.5)240.5

(2 - 1 + 0.5)(0 - 0 + 0.5)

 -
3(2 - 1 + 0.5)2 - (0 - 0 + 0.5)240.5

(2 - 1 + 0.5)(0 - 0 + 0.5)
f2.7996 

a

b
   

 or 

   �Cp,a(2, 0) = 0.6393 
a

b
   

 To determine    �Cp(2, 0),    we must calculate a preliminary value 

   �Cp, b (2, 0).    This involves consideration of the element at (3, 0). But we 

note that elements at (1, 0), (2, 0), (2, 1), and    (2, -1)    contribute to the dif-

ferential pressure at (3, 0). Thus, we must go ahead and find    �Cp,a(2, 1)    and 

   �Cp,a(2, -1).    These, of course, are equal from symmetry. 

 The only element influencing the element at (2, 1) is the one at (1, 0). Thus, 

    �Cp,a(2, 1) =
4a

b
+

1

p
e
3(2 - 1 + 0.5)2 - (1 - 0 - 0.5)240.5

(2 - 1 + 0.5)(1 - 0 - 0.5)

 -
3(2 - 1 + 0.5)2 - (1 - 0 + 0.5)240.5

(2 - 1 + 0.5)(1 - 0 + 0.5)
f2.7996 

a

b
   

 or 

   �Cp,a(2, 1) = 5.6804 
a

b
= �Cp,a(2, -1)   

 Therefore, 

    �Cp,b(2, 0) =
4a

b
+

1

p
e
3(3 - 1 + 0.5)2 - (0 - 0 - 0.5)240.5

(3 - 1 + 0.5)(0 - 0 - 0.5)

 -
3(3 - 1 + 0.5)2 - (0 - 0 + 0.5)240.5

(3 - 1 + 0.5)(0 - 0 + 0.5)
f2.7996 

a

b

 +  
1

p
e
3(3 - 2 + 0.5)2 - (0 - 0 - 0.5)240.5

(3 - 2 + 0.5)(0 - 0 - 0.5)

 -
3(3 - 2 + 0.5)2 - (0 - 0 + 0.5)240.5

(3 - 2 + 0.5)(0 - 0 + 0.5)
f0.6393 

a

b
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 +  
2

p
e
3(3 - 2 + 0.5)2 - (0 - 1 - 0.5)240.5

(3 - 2 + 0.5)(0 - 1 - 0.5)

 -
3(3 - 2 + 0.5)2 - (0 - 1 + 0.5)240.5

(3 - 2 + 0.5)(0 - 1 + 0.5)
f (0.3333)(5.6804)

a

b
   

 where the factor of 2 in front of the last bracketed term accounts for the fact 

that elements (2, 1) and    (2, -1)    have an equal influence on element (3, 0). 

 Thus, 

   �Cp,b(2, 0) = 2.0128 
a

b
   

 Finally, 

   �Cp(2, 0) =
3

4
(0.6393) 

a

b
+

1

4
(2.0128)

a

b
   

 or 

   �Cp(2, 0) = 0.9827 
a

b
    

  Element (2, 1). 

 For this element,    L* = 2, N* = 1,    and the only element that contributes to 

the differential pressure coefficient at this element is the one at (1, 0). As 

shown previously, 

    �Cp,a(2, 1) =
4a

b
+

1

p
e
3(2 - 1 + 0.5)2 - (1 - 0 - 0.5)240.5

(2 - 1 + 0.5)(1 - 0 - 0.5)

 -
3(2 - 1 + 0.5)2 - (1 - 0 + 0.5)240.5

(2 - 1 + 0.5)(1 - 0 + 0.5)
f2.7996 

a

b
   

 or 

   �Cp,a(2, 1) = 5.6804 
a

b
   

 To determine    �Cp(2, 1),    we must calculate a preliminary value 

   �Cp,b(2, 1).    This involves consideration of the element at (3, 1). We should 

note, however, that elements at (1, 0), (2, 0), and (2, 1) contribute to the dif-

ferential pressure at (3, 1), so: 

    �Cp,b(2, 1) =
4a

b
+

1

p
e
3(3 - 1 + 0.5)2 - (1 - 0 - 0.5)240.5

(3 - 1 + 0.5)(1 - 0 - 0.5)

 -
3(3 - 1 + 0.5)2 - (1 - 0 + 0.5)240.5

(3 - 1 + 0.5)(1 - 0 + 0.5)
f2.7996

a

b

 +  
1

p
e
3(3 - 2 + 0.5)2 - (1 - 0 - 0.5)240.5

(3 - 2 + 0.5)(1 - 0 - 0.5)
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 -
3(3 - 2 + 0.5)2 - (1 - 0 + 0.5)240.5

(3 - 2 + 0.5)(1 - 0 + 0.5)
f0.6393

a

b

 +  
1

p
e
3(3 - 2 + 0.5)2 - (1 - 1 - 0.5)240.5

(3 - 2 + 0.5)(1 - 1 - 0.5)

 -
3(3 - 2 + 0.5)2 - (1 - 1 + 0.5)240.5

(3 - 2 + 0.5)(1 - 1 + 0.5)
f (0.3333)(5.6804)

a

b
   

 or 

   �Cp,b(2, 1) = 3.3820 
a

b
   

 Notice that we use preliminary (i.e.,    �Cp,a   ) values for the    �Cp   ’s of influencing 

elements in the same “ L ” row as the field-point element under consideration. 

We have used    �Cp,a(2, 0) = 0.6393    instead of    �Cp(2, 0) = 0.9827    as the 

factor of the second major bracketed term in the preceding equation. As an 

alternative procedure, we could have used    �Cp    instead of    �Cp,a    but we have 

chosen to be consistent with the method of  Carlson and Miller (1974) . For 

 influencing elements not in the same “ L ” row as the field-point element, we use 

the final (i.e., averaged    �Cp    values) as given by equations (11.31) and (11.32). 

 Finally, 

    �Cp(2, 1) =
1

2
 a1 +

0.3333

1 + 0.3333
b5.6804 

a

b

   +  
1

2
 a

0.3333

1 + 0.3333
b3.3820 

a

b
   

 or 

   �Cp(2, 1) = 3.9730 
a

b
= �Cp(2, -1)   

 from symmetry. 

 We have now calculated the differential pressure coefficients for ele-

ments (1, 0), (2, 0), and    (2, {1).    We can continue in this manner and de-

termine    �Cp    for the remaining elements. Typical numerical results for this 

case at three chordwise stations are presented in  Fig.   11.29   . The number of 

grid elements used in  Fig.   11.29    is approximately 2000.     

 Lifting-pressure distributions for a flat-plate delta wing    (b cot �LE = 1.20)    as 

computed by  Middleton and Carlson (1965)  are reproduced in  Fig.   11.30   . Agreement 

between the numerical and analytical solutions is quite good, although the numerical 

solution does not exhibit the sharp break at the Mach line that is characteristic of the 

analytical solution. The unevenness of the pressure coefficients observed in the subsonic 

leading-edge case does not occur because of the reduced effect of the averaging tech-

niques with the less severe variations in the pressure near the leading edge.  Fig.   11.31    
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shows a comparison of the numerical results with those of exact linear theory for flat 

delta planforms such as the one used in  Example   11.3   .   
 Notice that the numerical method is also applicable to wings of arbitrary camber 

and planform (e.g., supersonic or subsonic leading and/or trailing edges, etc.). To ac-

commodate non-zero camber, we only need to specify    0zc(x, y)>0x    in equation (11.29). 

A companion numerical method, also described in  Carlson and Miller (1974) , provides 

a means for the design of a camber surface corresponding to a specified loading distri-

bution or to an optimum combination of loading distributions. 
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 Figure 11.29         Numerical results for a flat-plate delta planform 

   1b cot �LE = 0.62     [from  Carlson and Miller (1974) ].   



630    Chap. 11 / Supersonic Flows Over Wings and Airplane Configurations
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 Figure 11.30         Lifting-pressure distributions for a flat-plate delta 

wing with a supersonic leading edge.    Nmax = 50    [from  Middleton 

and Carlson (1965) ].   
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 Figure 11.31         Comparison of linear theory with vortex lattice 

 results for a delta wing [from  Carlson and Miller (1974) ].   
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 Once the lifting pressure coefficients,    �Cp,    have been determined for all the 

 elements, it is possible to compute the aerodynamic coefficients for the wing. The lift 

coefficient for symmetric loads may be obtained from the following summation over 

all the elements: 

       CL =
2

bS
 a
N*=Nmax

N*=0

  a
L*=LTE

L*=LLE

 c
3

4
�Cp(L*, N*)  

  +  
1

4
 �Cp(L* + 1, N*) dA(L*, N*)B(L*, N*)C(L*, N*)  (11.33)    

 The pitch moment coefficient about    x = 0    is 

       CM =
2

bSc
 a
N*=Nmax

N*=0

  a
L*=LTE

L*=LLE

 (L*) c
3

4
�Cp(L*, N*)

     +  
1

4
 �Cp(L* + 1, N*) 4A(L*, N*)B(L*, N*)C(L*, N*)  (11.34)    

 The drag coefficient may be expressed as 

      CD = -
2

bS a
N*=Nmax

N*=0

  a
L*=LTE

L*=LLE

 c
3

4
 �Cp(L*, N*) +

1

4
 �Cp(L* + 1, N*) d

 c
3

4
 
0zc(L*, N*)

x
+

1

4
 
0zc(L* + 1, N*)

x
dA(L*, N*)B(L*, N*)C(L*, N*)  (11.35)    

 This relationship does not consider any contribution of the theoretical leading-edge-

suction force or of any separated flow effects associated with its exclusion and accounts 

only for the inclination of the normal force to the relative wind. 

 The leading-edge field-point-element weighting factor takes on values from 0 to 

1.5, and are defined as follows: 

    A(L*, N*) = 0  (L* - xLE … 0)

 A(L*, N*) = L* - xLE + 0.5    (0 6 L* - xLE 6 1)

 A(L*, N*) = 1  (L* - xLE Ú 1)    

 The trailing-edge field-point-element weighting factor also takes on values from 0 to 1.5. 

    B(L*, N*) = 0  (L* - xTE Ú 0)

 B(L*, N*) = 0.5 - (L* - xTE)    (0 7 L* - xTE - 1)

 B(L*, N*) = 1  (L* - xTE … -1)    

 The centerline or wingtip grid element weighting factor is defined as 

    C(L*, N*) = 0.5    (N* = 0)

 C(L*, N*) = 1  (0 6 N* 6 Nmax)

 C(L*, N*) = 0.5  (N* = Nmax)    
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 The wing area used in the expressions for the aerodynamic coefficients may be 

computed using the summation   

      S =
2

b
  a
N*=Nmax

N*=0

  a
L*=1+ 3xTE4

L*=1+ 3xLE4

A(L*, N*)B(L*, N*)C(L*, N*)  (11.36)      

   11.7.3  Numerical Method for the Determination of 
Camber Distribution 

 Equation (11.28) can be rearranged 

       
0zc(x, y)

0x
= -
b

4
 �Cp(x, y)

  +
b

4pOR(x - x1, y - y1)�Cp(x1, y1)dby1 dx1  (11.37)    

 Equation (11.37) can be used to determine the wing surface shape necessary to support 

a specified lift distribution. 

 When discussing the numerical representation of the influence factor    R,    as pre-

sented in  Fig.   11.27   ,  Middleton and Lundry (1980)  commented, “The physical signifi-

cance of this    R    variation is that (for positive lift), all elements directly ahead of the field 

point element contribute only downwash and all other elements contribute upwash. An 

element at the leading edge near the wing tip of a subsonic leading-edge wing, therefore, 

sees a concentrated upwash field. It is this upwash field that makes the subsonic leading 

edge twisted and cambered wing attractive from the standpoint of drag-due-to-lift, since 

a local element may be inclined forward to produce both lift and thrust.” 

 So, significantly better wing performance can be achieved through the generation 

of leading-edge thrust. This thrust occurs when the leading edge is subsonic (i.e., when 

the product    b cot �LE    is less than one) and is caused by the flow around the leading edge 

from a stagnation point on the windward, lower surface. In the case of a cambered wing, 

the thrust contributes both to the axial force and to the normal force. 

  Carlson and Mann (1992)  recommend a suction parameter for rating the aerody-

namic performance of various wing designs. The suction parameter is defined by the 

parameter    Ss:    

      Ss =
CL tan(CL>CLa) - (CD - CD0)

CL tan(CL>CLa) - C2
L>pAR

  (11.38)    

 The term in the numerator    (CD - CD0)    equals    �CD,    the drag coefficient due-to-

lift. The factor    CLa    in equation (11.38) represents the theoretical lift-curve slope at 

   a = 0�.    Limits for the suction parameter can be evaluated using the sketches of the drag 

polar presented in  Fig.   11.32   . The lower bound for the suction parameter (i.e.,    Ss = 0   ) 

 corresponds to the upper drag polar, where    CD = CD0 + CL tan(CL>CLa).    The drag 

coefficient for this limit is that for a flat wing with no leading-edge thrust and no vortex 

forces. The upper bound for the suction parameter (i.e.,    Ss = 1   ) corresponds to the 

lower drag polar, where    CD = CD0 + C2
L>(pAR).    The drag coefficient for this limit 

is the drag for a wing with an elliptical span-load distribution (a uniform downwash) 
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and the full amount of any leading-edge thrust that might be required. This limit is a 

carryover from subsonic flows, where the limit is reasonably achievable. There is no 

contribution representing the supersonic wave-drag-due-to-lift. In practice, the presence 

of wave-drag-due-to-lift at supersonic speeds prevents a close approach to this value. 

However, the simplicity of the expression and its repeatability make it a logical choice 

for use in the suction parameter.  
 Experience has shown that the maximum suction parameters actually achieved 

were lower than those predicted by linearized theory. Furthermore, the required surface 

for given design conditions was less severe (smaller departures from a flat surface) than 

that given by the linearized-theory design methods.  Carlson and Mann (1992)  suggest 

a design method which employs two empirical factors:    KD    (a design lift-coefficient fac-

tor) and    Ks    (a suction parameter factor). The design factor    KD,    which is presented in 

 Fig.   11.33   a, provides a design lift coefficient for use in the theoretical wing design to 

replace the actual operational, or cruise, lift coefficient. Thus, for the selected design 

Mach number, the design lift-coefficient factor is taken from  Fig.   11.33   a and used to 

define the design lift coefficient as:  

      CL,des = KDCL,cruise  (11.39)    

 The design lift coefficient is used in the computer code definition of the lifting 

surface and of the theoretical performance, including    (Ss,max)th.    Next, the appropriate 

value of    Ks    is taken from  Fig.   11.33   b, so that one can estimate the magnitude of the 

suction parameter that can actually be achieved: 

      Ss,cruise = Ks(Ss,max)th  (11.40)    

CD � CD0 � CL
2/(pAR)

Ss � 1

Ss � 0
CD � CD0 � CL tan

CL

CLa

CL

CD

 Figure 11.32         The relation between the suction parameter    (Ss)    and 

the drag polar [from  Carlson and Mann (1992) ].   
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 As noted by  Carlson and Mann (1992) , the code value of    (Ss,max)th    for    CL,des    is used in 

this expression even though    CL,des    differs from    CL,cruise.    This approximation is accept-

able, since for a wing-design family of various    CL,des    values, there is very little change 

in the value of    Ss,max.    

 The drag coefficient at the cruise lift coefficient can be estimated using the expression 

      CD,cruise = CD0 +
(CL,cruise)2

pAR

 + (1 - Ss,cruise) cCL,cruise tana
CL,cruise

CLa
b -

(CL,cruise)2

pAR
d   (11.41)    

  Mann and Carlson (1994)  described a process for designing a supersonic wing for 

given cruise conditions using  Fig.   11.33   : 

    •   select the cruise lift coefficient and Mach number.  

   •   Use  Fig.   11.33   a to obtain the    KD    factor and equation (11.39) to calculate    CL,des.     

   •   Use a linearized theory computer code to compute the optimum performance sur-

face at    CL,des    and to obtain the variation of theoretical suction parameter with    CL.     

   •   This is the wing surface that will give maximum performance at the cruise conditions.  

   •   Estimate the wing performance using  Fig.   11.33   b to obtain a value for the suction 

parameter factor    Ks.    [Note that    Ss,max,theory    is the maximum suction parameter for 

a wing designed for a lift coefficient equal to    CL,cruise    (not designed for    CL,des   )].  

   •   Use Equation (11.40) to obtain an estimate of    Ss,cruise.      
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 Figure 11.33         Empirical method factors 

used to select the optimum design lift co-

efficients and to predict achievable suc-

tion parameters [from  Carlson and Mann 

(1992) ].   
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 The drag coefficient at the cruise lift coefficient can be estimated by use of equa-

tion (11.41).   

   11.8  DESIGN CONSIDERATIONS FOR SUPERSONIC AIRCRAFT 

 We have seen that theory predicts highly swept wings (such that the leading edge is 

subsonic) have the potential for very favorable drag characteristics at supersonic flight 

speeds. However, experiment has shown that many of the theoretical aerodynamic 

benefits of leading-edge sweepback are not attained in practice because of separation 

of the flow over the upper surface of the wing. Elimination of separated flow can only 

be achieved in design by a careful blending of the effects of leading- and trailing-edge 

sweepback angles, leading-edge nose radius, camber, twist, body shape, wing/body junc-

tion aerodynamics, and wing planform shape and thickness distribution. Theory does 

not give all the answers here, and various empirical design criteria have been developed 

to aid in accounting for all of these design variables. 

  Squire and Stanbrook (1964)  and  Kulfan and Sigalla (1978)  have studied the types 

of flow around highly swept edges. Sketches of the main types of flow on highly swept 

wings, as taken from their work, are presented in  Fig.   11.34   . Based on these investiga-

tions, we could classify the types of separation as:  

    •   Leading-edge separation due to high suction pressures  

   •   Separation due to spanwise flow  

   •   Inboard shock separation  

   •   Trailing-edge shock separation   

 In our analysis of swept wings, we found that the effective angle of attack of the wing 

was given by equation (11.10) as 

   ae = tan-1 tan a

cos �
   

 for small angles. Thus, for highly swept wings with subsonic leading edges, separation 

can occur quite readily even for small values of wing angle of attack; this is particularly 

true if the leading edge is sharp. The observed flow from the leading edge is very simi-

lar to that for the delta wing in subsonic flow  (see  Chapter   7   ) . The coiled vortices that 

form at the leading edges affect the flow below the wing as well, since the leading edge 

is subsonic, and therefore the top and bottom surfaces can “communicate.” 

  The phenomenon of spanwise flow on a swept wing has also been discussed in 

 Chapter   7   .  Spanwise flow results in a thickening of the boundary layer near the wing 

tips, and a thick boundary layer will separate more readily than a thin one exposed to 

the same adverse pressure gradient. 

 Inboard shock separation is primarily a function of the geometry of the wing/body 

junction near the leading edge of the wing. The upper surface flow in this region is to-

ward the body, and therefore a shock is formed to turn the stream tangent to the body. 

The strength of the shock is, of course, dependent on the turning angle. If the shock is 

strong enough, the resulting pressure rise will separate the boundary layer. 
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 Trailing-edge shock separation can occur if the wing trailing edge is supersonic (as 

is the case for delta wings, for example). A shock wave near the trailing edge is required to 

adjust the upper surface pressure back to the free-stream value. Again, if the required 

shock strength is too great, it will induce separation of the boundary layer. 

 The design criteria have been developed to eliminate separation are given in 

  Kulfan and Sigalla (1978)  and can be summarized as follows: 

    •   Leading-edge separation.      Reject designs where the theoretical suction pressure 

exceeds 70% of vacuum pressure.  
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 Figure 11.34         Main types of flow on highly swept wings [from 

 Squire and Stanbrook (1964)  and  Kulfan and Sigalla (1978) ].   
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   •   Separation due to spanwise flow.      Use thin wing tips. ( Note : An additional tech-

nique is “washout” or a lower section incidence at the wing tips relative to the 

incidence angles of inboard sections.)  

   •   Inboard shock separation.      Use body contouring to keep the pressure rise across 

the inboard shock wave to less than 50%.  

   •   Trailing-edge shock separation.      Keep the pressure ratio across the trailing-edge 

shock below    1 + 0.3M2
1,    where    M1    is the local Mach number ahead of the shock. 

For swept trailing edges, use the local normal Mach number    1MN1 = M1 cos �TE2     

in the preceding equation.   

 Application of these criteria does not guarantee that the flow will not separate, 

however, and wind-tunnel tests of proposed designs must be undertaken. This is par-

ticularly true for military or sport aircraft designed for maneuvering at high load factors. 

  Carlson and Mack (1980)  note that there are compensatory errors in linear-

ized theory and the failure to account for nonlinearities may introduce little error in 

 prediction of lift and drag. However, significant errors in the prediction of the pitching 

moment are common, especially for wings that depart from a delta planform. Addition-

ally, for wings with twist and camber, appreciable errors in the prediction of drag due 

to the surface distortion (camber drag) often occur. In particular, linearized-theory 

methods do not indicate the proper camber surface for drag minimization (a function 

of the design lift coefficient). The method of  Carlson and Mack (1980) , which includes 

the estimation of nonlinearities associated with leading-edge thrust and the detached 

leading-edge vortex flow, provides improved prediction over linearized theory, as il-

lustrated by the correlations reproduced in  Fig.   11.35   .  You should refer to  Section   13.3    

for more information on the design of tactical aircraft.    

   11.9   SOME COMMENTS ABOUT THE DESIGN OF THE 
SST AND OF THE HSCT 

   11.9.1  The Supersonic Transport (SST), the Concorde 

 In an excellent review of the aerodynamic design of the Supersonic Transport, 

 Wilde and Cormery (1970)  reviewed the general design features of the Concorde. 

“From the beginning, Concorde was conceived to achieve the following overall 

objectives: 

    •   the required level of performance on the long range North Atlantic mission, 

which requires the achievement of good lift/drag ratios at subsonic and supersonic 

 conditions,  

   •   good takeoff and landing characteristics, making full use of the very powerful 

ground effect,  

   •   good flying qualities throughout the speed range by purely aerodynamic means, 

using artificial stability augmentation only to improve the crew workload, and  

   •   operation without stall or buffet up to lift coefficients above those required for 

airworthiness demonstration purposes.”   
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 To achieve these objectives, it was understood “that: 

    •   the wing, fuselage, and nacelles are aerodynamically interdependent,  

   •   the aerodynamic design of the wing must be integrated with the requirements of 

the structures, systems and production engineers,  

   •   no single speed can be taken as the design speed; supersonic design is very 

 important but subsonic and transonic requirements must also be given proper 

attention, and  

   •   design for good performance cannot be separated from design for good handling 

qualities.”   
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 Figure 11.35         Comparison of the predicted and the measured forces 

and moments for    72.65�    swept leading-edge arrow wing;    M� = 2.6;    

design value of    CL = 0.12    [from  Carlson and Mack (1980) ].   
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 Area ruling of the fuselage was seriously considered in the project stages but was re-

jected on the basis of increased production costs. 

  Wilde and Cormery (1970)  noted that “the performance in supersonic cruise is 

very important, of course, but about 40% of all fuel uplifted for a trans-Atlantic flight 

will either be used in subsonic flight conditions or is provisioned in reserves for possible 

extension of subsonic flight in diversion or holding.” 

 Finally, considerable effort was expended reviewing the consequences of introduc-

ing changes to an existing design. For instance, “reducing the leading edge droop over 

the whole span would improve the supersonic drag, worsen the subsonic and transonic 

drag and increase the lift curve slope. It is to be noted that increase in lift curve slope is 

favourable, particularly at low speed since it permits either reduced takeoff and landing 

speeds at fixed attitude or reduced attitudes at given speeds.” 

 “Inevitably the nacelles have forward facing surfaces which produce supersonic 

drag but this drag is offset to some extent by the induced interference pressures on the 

undersurface of the wing which produce lift.”  

   11.9.2  The High-Speed Civil Transport (HSCT) 

 As noted in a Boeing study [ Staff of Boeing Commercial Airplanes (1989) ], the aero-

dynamic tasks in the design of the High-Speed Civil Transport “included: 

    •   Aerodynamic design integration of the study configurations.  

   •   Integration of compatible high-lift system for each concept.  

   •   Evaluation of the aerodynamic characteristics of all concepts to provide neces-

sary resizing data for the airplane performance calculations. These included both 

flaps-up cruise configuration analyses as well as flaps-down takeoff and landing 

evaluation.   

 The aerodynamic design of the study configurations included optimized camber/

twist distributions and area-ruled fuselages. The wing spanwise thickness distributions 

and airfoil shapes were constrained by structural depth requirements.” 

 As the aircraft flight speed increases, careful integration of the propulsion system 

into the airframe design becomes increasingly important. Therefore, as noted in NASA 

Contractor Report 4233 and in NASA Contractor Report 4234, “Nacelle shape, size, 

location, and operating conditions all influence the nacelle interference with other con-

figuration components. The dominant interference effect is between the nacelles and 

the wing. To arrive at an acceptable nacelle design requires a balance between the iso-

lated drag of the nacelle and the interference drag induced by the nacelle. The nacelles 

of each of the study configurations were placed below the wing and aft to (1) provide 

the inlet with a uniform flow field throughout the angle of attack range, (2) take ad-

vantage of the precompression caused by the wing shock, and (3) achieve favorable 

aerodynamic interference.” 

 As noted in the NASA Contractor Reports, “Environmental acceptability is a key 

element of any HSCT program. If not properly accounted for in the HSCT design, en-

vironmental limitations could substantially reduce use of the vehicle and, in the most 

extreme of circumstance, prohibit vehicle operations altogether. The primary area of 
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environmental impact identified in the study were engine emissions effects, community 

noise, and sonic boom.    . . .    A viable HSCT must be designed so that the engine emissions 

have no significant impact on the Earth’s ozone layer.    . . .    Operation out of conventional 

airports was determined to be a requirement for achieving adequate HSCT utilization. 

Accordingly, a viable HSCT must produce noise levels no higher than its subsonic com-

petition.    . . .    The airplanes under study have been evaluated with subsonic flight profiles 

over land, which results in adverse economic and market impact. Thus, there is an impetus 

to explore low-boom designs that allow some form of overland supersonic operations.”  

   11.9.3  Reducing the Sonic Boom 

 As noted in the previous section, a viable High Speed Civil Transport (HSCT) must pro-

duce noise levels no higher than its subsonic competition. “The problem is not building 

an aircraft capable of Mach 1+ speeds, but designing one that can fly over land without 

generating a sonic boom—and then getting the FAA and other international aviation 

regulatory agencies to certify it for such flights,” as noted by  Wilson (2007) . 

 Gulfstream Aerospace moved closer to resolving that design issue by testing a de-

sign concept that involved attaching a telescoping spike to the nose of an F-15B fighter 

jet. Note that the ultimate goal is to break up the typical shock-wave that creates a sonic 

boom into a series of smaller waves that do not. 

 Quiet Spike was another step in the ability to use technology to make a quiet su-

personic business jet. The application of a telescoping spike to reduce the sonic boom 

would require that we demonstrate the ability to make a quiet supersonic business jet, to 

show that it could be incorporated into a telescoping structure, to put it on the front of 

an airplane, and show that the telescoping spike would reduce the noise.  Wilson (2007)  

further notes: “Without a spike you could design an aircraft that is quieter than what is 

flying today, but not quiet enough to change the regulations [to make] supersonic flight 

over land unrestricted.” 

 As noted by  Croft (2004) , “The noise problem with today’s supersonic aircraft 

is caused by an N-wave pressure change that occurs as shock waves move past the 

observer. When an aircraft like the Concorde flies at supersonic speeds, conical shocks 

form at the front and rear of the aircraft and at every discontinuity in the flow along 

the way (for example, at the engine inlets, wing leading edges, and antennas) because 

the plane is moving faster than the air can move out of the way.” 

 “At a certain distance from the aircraft, the individual shocks coalesce into two 

stable conical shocks, one at the front of the plane and one at the tail. The effect on the 

listener is a double boom as each wave passes.” 

 “According to [Peter] Coen [of NASA Langley], shock waves with greater than 

ambient pressure tend to move faster and collect at the nose, while those with lower than 

ambient pressure lag to the back. On the ground, the pressure distribution as the waves 

pass looks like an ‘N’: As the nose shock passes, the pressure spikes above the ambient 

pressure, ramps down below ambient, then snaps back to ambient as the tail shock passes.” 

 The Defense Advanced Research Projects Agency (DARPA) funded a Shaped 

Sonic Boom Demonstration (SSBD) Program to determine if sonic booms could be sub-

stantially reduced by incorporating specialized aircraft shaping techniques.  Pawlowski 

et al. (2005)  wrote: “Although mitigation of the sonic boom via specialized shaping 
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techniques was theorized decades ago, until now, this theory had never been tested with 

a flight vehicle subjected to flight conditions in a real atmosphere.” 

 As shown in  Fig.   11.36   , that was presented by  Pawlowski et al. (2005) : “Pressure 

measurements obtained on the ground and in the air confirmed that the specific modifica-

tions made to a Northrop Grumman F-5E aircraft not only changed the shape of the shock 

wave signature emanating from the aircraft, but also produced a ‘flat-top’ signature whose 

shape persisted, as predicted, as the pressure waves propagated through the atmosphere to 

the ground.”  Kandil et al. (2005)  noted: “The modification was made primarily to the nose 

of the aircraft forward of the cockpit and engine inlets and was designed to propagate a 

‘flat top’ pressure signature (sonic boom) to the ground. This signature, as the name 

indicates, has a flat pressure distribution downstream of the initial shock (see the sketch 

in  Fig.   11.36   ). Signatures of this type are desired since they yield weaker initial shocks rela-

tive to the N-wave signature normally produced by current supersonic aircraft.”   

   11.9.4  Classifying High-Speed Aircraft Designs 

 One approach to classifying aircraft designs in relation to their speed regime is using the 

ratio of semispan    (b>2)    to length of the aircraft ( l ) as a measure of  configuration slen-
derness . You should look in  Küchemann (1978)  for more about the reasoning behind the 

use of this parameter.  Harris (1992)  presented this parameter for  configuration slender-
ness  as a function of the maximum cruise Mach number: “Subsonic aircraft, exemplified 

by the Boeing 747, McDonnell-Douglas MD-11, and Airbus A300, tend to optimize at 

high values of semispan-to-length ratio because of their high-aspect-ratio wings. The 

distinction between supersonic and hypersonic designs is taken as the  dividing line 

where the semispan-to-length ratio is equal to the tangent of the Mach angle.” From 
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for the F-5E [from  Pawlowski et al. (2005), courtesy of Northrop 

Grumman Corporation ].   
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the definition of the Mach angle in equation  (8.22)    , you can verify that the expression 

for the tangent of the Mach angle is: 

   tan m = c
1

2M2
� - 1

d    

  Harris (1992)  continued (see  Fig.   11.36   ), “Therefore, for the supersonic designs that 

may have subsonic leading edges, we can maintain relatively weak shock waves.    . . .    

Long-range subsonic aircraft are essentially designed to achieve the highest cruise 

Mach number that can be attained and still avoid the adverse effects of shock waves.” 

 “Supersonic aircraft, in order to achieve long-range capability, can be designed 

to minimize shock losses by keeping the configuration slender, that is, a low value of 

semispan-to-length ratio . . . the short-range supersonic U.S. fighters, which are not 

designed for efficient cruise performance, fall in the semispan-to-length ratio range 

of about 0.25–0.35 in contrast to the lower values approaching 0.2 for the Concorde, 

 Tu-144, XB-70, and SR-71 long-range supersonic cruise designs.” 

 Flow-field solutions were generated using the    Cobalt60    code for an SR-71 con-

figuration at an angle of attack of    5�    [ Tomaro and Wurtzler (1999) ]. Interestingly 

enough, when the vehicle is at    5�    angle of attack, the axis of the cone in each of the 

engine inlets is aligned with the free-stream velocity vector, so the shock wave gener-

ated by the cone is symmetric with the engine flow path. Shock-wave patterns for these 

computed flow fields are presented in  Fig.   11.38    for free-stream Mach numbers of 1.5, 

3.2, and 3.8. According to the correlations presented in  Fig.   11.37   , a Mach number 
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of 3.8 is  approximately the highest cruise Mach number for the SR-71. Referring to 

 Fig.   11.38   c, the reader can see that, at this Mach number, the limiting portion of the 

bow-shock wave as it merges with the shock wave generated by the engine structure 

is tangent to the wing tips. Therefore, the flow field computed using the full Navier-

Stokes equations gives results that are consistent with the correlation presented in 

(a)

(b)

(c)

 Figure 11.38         Shock-wave patterns generated by    Cobalt60    com-

putations for an SR-71 at    5�    angle of attack with (a)    M� = 1.5,    

(b)    M� = 3.2,    and (c)    M� = 3.8    [from  Tomaro and Wurtzler 

(1999) ].   
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 Fig.   11.38   . That is, the tangent of the bow-shock wave angle is approximately equal to 

the semispan-to-length ratio.     

   11.10  SLENDER BODY THEORY 

 Significant effort has been made in previous sections of this chapter to describe the 

aerodynamics of wings in supersonic flow. While wings are certainly the most important 

supersonic lifting devices, a considerable portion of supersonic lift also can come from 

the fuselage. Significant work has been done over the years to develop supersonic body 

theories [see  Liepmann and Roshko (1957)  for a summary]; and much of the develop-

ment involves the method of small perturbations [ van Dyke (1975) ]. A brief review of 

the assumptions and resulting equations is presented here. 

 The starting point for slender body theory is the linearized potential equa-

tion  (9.13) : 

   (1 - M2
�)fxx + fyy + fzz = 0   

 or in cylindrical coordinates: 

   (1 - M2
�)fxx + frr +

fr

r
+

1

r2
fuu = 0   

 While the formal derivation of the slender body theory concept is quite elaborate [see 

 Ward (1955)  for details], the concept is fairly straightforward and follows the con-

cepts for supersonic linear-airfoil theory. For a long, slender body of revolution (see 

 Fig.   11.39   ), the variation of velocity in the  x  direction can be assumed to be small com-

pared with the velocity variations in the  y  or  z  directions.  

      fxx 6 6  fyy, fzz  (11.42)    

 This simplification applied to equation  (9.13)     leads to a rather amazing result 

      fyy + fzz = 0  (11.43)    

 which is Laplace’s equation in the crossflow plane of the slender body (as shown in 

 Fig.   11.40   ).  
 So the solution for slender bodies reduces to solving Laplace’s equation in the 

 y–z  (crossflow) plane successively for each crossflow plane from the front to the rear of 

the body. This usually is accomplished by placing a distribution of sources or doublets 

along the axis of revolution to form the body shape and then performing inner and outer 

expansions of the flow-field to find the velocity and pressure fields around the body 

[ Karamcheti (1980) ]. The resulting pressure distribution on the body surface at zero 
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 Figure 11.39         Long, slender body of revolution   
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angle of attack is presented by  Liepmann and Roshko (1957)  based on the derivation 

of  van Dyke (1951) , using the perturbation methods described in van Dyke (1975), as: 

     Cp(x) =
S�(x)

p
lna

2

R(x)2M2
� - 1

b +
1

p

d
dx L

x

0

S�(j) ln (x - j)dj - a
dR(x)

dx
b

2

  (11.44)    

 where  R(x)  is the cross-sectional radius distribution of the body and  S(x)  is the cross-

sectional area distribution of the body. The influence of the source at    x = j    is integrated 

up to    x = j    so that only upstream affects are included. The pressure distribution can be 

integrated along the length of the body,  L , in order to determine the drag coefficient 

(excluding the drag on the base of the configuration) as 

      CD =
1

S(L)
 L

L

0

Cp
dS(x)

dx
 dx  (11.45)    

 to obtain the zero-lift wave-drag coefficient    [CD K D>q�S(L)]:    

      CD0
= -

1

2pS(L)
 L

L

0 L
L

0

S�(j)S�(x)ln �x - j � dj dx  (11.46)    

 If the original formulation had retained the angle of attack of the slender body, 

the lift-and-drag-coefficient would have been found to be (for small angles of attack): 

      CD = CD0
+ a2  CN = 2a  CL � 2a  (11.47)    

 which are very straightforward relationships that show a linear variation of lift with 

angle of attack and a squared relationship for the drag variation. As with subsonic 

flow, drag increases faster than lift with angle of attack, even though the drag is being 

produced by wave drag in this case. An improved formulation for the normal force 

coefficient of a slender body has been obtained as [ Pitts et al. (1959) ]: 

      CN = sin(2a)cos(a>2) + 2L>2R(L)sin2 a  (11.48)    

M� sin a

fyy � fzz � 0 
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 Figure 11.40         Crossflow plane for a slender body of revolution.    
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 which gives a nonlinear variation for the normal force as a function of angle-of-attack. 

For body shapes given by a simple power series,    R(x) = exa,    a variety of body shapes 

can be obtained by choosing the factor    e    and varying the coefficient  a  (in this case 

   e = 0.1    and    a = 0.7, 1.0,    and 1.5) to obtain pressure-coefficient variations ( Fig.   11.41   ) 

and wave-drag coefficients ( Fig.   11.42   ).    

   11.11  BASE DRAG 

 Base flows are commonly encountered in supersonic aerodynamics. This kind of flow 

is commonly found behind objects, such as missiles, rockets, and projectiles. The low 

pressure found behind the base causes base drag which can be a sizable portion of the 

total drag of these vehicles [ Forsythe et al. (2002) ]. 

 An axisymmetric base flow depicted with pressure contours and streamlines is 

shown in  Fig.   11.43   . The large turning angle behind the base causes separation and the 

formation of a region of reverse flow (known as the recirculation region or the separa-

tion bubble). The size of the recirculation region determines the turning angle of the 

flow coming off the back of the base, and therefore the strength of the expansion waves. 

A smaller recirculation region causes the flow to turn sharply, leading to a stronger 
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 Figure 11.41         Pressure coefficients for various power series body 

shapes (body shape in solid line, pressure coefficient in dashed line).    
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 expansion wave, and lower pressures behind the base. Therefore, small separated re-

gions cause larger base drag than large regions.  
 Directly behind the base, in the recirculation region, the reverse flow can be seen. 

The point along the axis of symmetry where the streamwise velocity is zero is considered 

to be the shear layer reattachment point. As the shear layer reattaches, the flow is forced 

to turn along the axis of symmetry, causing the formation of a reattachment shock. For 

high Reynolds numbers, the incoming boundary layer and the flow behind the base will 

be turbulent, leading to highly unsteady flow behind the base. 

  Murthy and Osborn (1976)  provide an excellent overview of the base flow prob-

lem, including a collection of semi-empirical approaches to model base pressure and 

base drag, while  Dutton et al. (1995)  provide a good overview on the progress in com-

puting high-speed separated base flows. Some of the difficulties and complicating fac-

tors in modeling the base flow problem, outlined by  Forsythe et al. (2002) , are: 

    •   the upstream effects of the presence of a corner in various Mach number flows at 

different Reynolds numbers  

   •   the effects of separation, compression, expansion, and/or shock formation in the 

vicinity of the corner  

   •   the influence of the expansion wave at the base corner on the initial turbulence 

structure of the shear layer, and the impact of that shear layer on the formation 

of the recirculating flow region  

   •   the shear layer exists under highly compressible conditions (i.e., at high convective 

Mach numbers), which alters the turbulence structure  

   •   the shear layer encounters a strong adverse pressure gradient at reattachment  

   •   the strong streamline curvature at the reattachment point  

   •   the enclosed recirculating region imposes a highly energetic and nonuniform up-

stream velocity at the inner edge of the shear layer  

Expansion waves

Separation bubble

Reattachment shock

 Figure 11.43         Flow field in a supersonic base region [from  Forsythe 

et al. (2002) ].   
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   •   the structure and shape of the recirculating zone  

   •   the effects of the configuration (e.g., diameter, boattail, fins)   

 Taken in total, these flow features yield a complex flow field that is considerably challeng-

ing to model analytically or numerically. 

 In spite of these challenges, a straightforward relation for base drag has been 

developed which assumes that the fuselage has a circular cross section and there is no 

interferance from fins or boattails [from  Fleeman (2006) ]: 

   CDbase
=

0.25

M�

   

 but accurate prediction of base drag should be given a high priority in aerodynamic design.     

  Aerodynamics Concept Box: What Is a Boattail? 

 Many supersonic aircraft (airplanes and missiles) have a boattail near their base, as shown 

below for the AMRAAM missile. Boattails are added to the base region to reduce base drag, 

especially on aircraft where the jet from the propulsion system exits the vehicle at the base. 

 Boattails are geometric devices that reduce the base drag of an aircraft in multiple ways. 

First, and perhaps most obvious, is a boattail reduces the area of the base, so any pressure acting 

on the base creates less drag. Second, a boattail starts to turn the flow toward the centerline of 

the vehicle, decreasing the size of the recirculation bubble and reducing the impact of the base 

       AMRAAM being loaded onto an F-15  

 (U.S. Air Force photo by Senior Airman Laura Turner)  
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   11.12  AERODYNAMIC INTERACTION 

 Owing to the complexity of flow fields about most flight vehicles, aerodynamicists 

often develop theories for the flows about components of such vehicles. However, 

the designer is faced with the fact that aerodynamic loads on an entire aircraft are 

not simply the sum of the loads on the individual components; the difference is com-

monly referred to as  aerodynamic interaction . Wind-tunnel experiments, flight tests, 

and physical reasoning have shown that interaction loads can be a significant contri-

bution to the total loading on an aircraft. It was not until advancements in computing 

became generally available that systematic treatment of the loads on rather arbitrary 

shapes was even feasible. Theories are still being developed to account for the effects 

of three-dimensional separated flows about arbitrary shapes. Thus, this is a rapidly 

changing area of aerodynamic theory. Significant progress has been made, however, 

and our purpose here is to give a brief account of the physical reasoning associated with 

the effects of aerodynamic interaction in supersonic flight, and to describe methods of 

determining these effects. 

 A simple rectangular wing is mounted on an ogive cylinder with circular cross sec-

tion, as shown in  Fig.   11.44   . Two interaction effects are present: the effect of the wing 

on the body and the effect of the body on the wing. In supersonic flight, the suction 

pressure on the upper surface of the wing and the relatively higher pressure on the lower 

surface will be confined to the regions bounded by the Mach waves from the leading 

�Cp

�Cp

M�

 Figure 11.44         Wing-on-body interaction showing regions of 

 positive and negative    Cp    [adapted from  Hilton (1951 )].   

region on drag. Like all aerodynamic devices, however, boattails come with a cost. By including a 

boattail a new surface with a rearward projected area is created. When the flow expands around 

the boattail, the surface of the boattail will create an additional drag. This drag, however, is offset 

by the reduction in drag due to the previously mentioned positive effects of the boattail. Boattails, 

therefore, have an optimal angle, above which the boattail may cause an increase in drag, and 

below which the base area has not been reduced as much as might otherwise be possible.    
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and trailing edges of the wing, as shown. This pressure differential will carry over onto 

the body and generate a net lift and wave-drag force on it. Thus, we have an example 

of the effect of the wing on the body.  
 Conversely, the effect of the body at angle of attack will be to produce an upwash 

about the sides of the body (see  Fig.   11.45   ) which will increase the effective angle of 

attack of the wing. Provided that the resulting angle of attack will not cause the flow 

to separate on the upper wing surface (i.e., provided that the wing does not stall), the 

result will be greater wing lift in accordance with equation  (10.8)    .  
  Hilton (1951)  notes that the combined effects of the wing and body for the 

case shown in  Fig.   11.46    are such that the wings produce the full lift to be expected 

from two-dimensional theory without tip effects. Taking into account tip effects and 

ignoring interactions, one would expect a wing lift of only three-fourths of this value. 

Thus, by introducing the body interaction effect, a full 25% increase in wing lift is 

experienced.  
 Other interaction effects can also be present (e.g., wing/tail, body/tail, etc.). Some 

simplifications arise in supersonic flow due to the fact that disturbances cannot propagate 

upstream. Thus, while one may want to consider the effects of the wings on the tail, 

the effects of the tail on the wings can usually be neglected unless they are very close 

to one another. 

 Many treatments of interacting flows rely on the small disturbance theory gov-

erned by equation (11.4). The flow tangency boundary condition at surfaces and the 

Kutta condition at sharp trailing edges are involved in determining solutions. Prob-

lems are solved by distributing a series of singularities (e.g., sources, sinks, doublets, 

vortices) to simulate the vehicle in a uniform supersonic stream. The strength of these 

singularities is determined so as to satisfy the boundary conditions at discrete selected 

locations on the vehicle. In the method of  Carmichael and Woodward (1966) , wing 

Bow shock

Stream tube showing local flow direction

M�

 Figure 11.45         Body-on-wing interaction showing upwash-over-wing 

effect due to the body at angle of attack [adapted from  Hilton (1951) ].   
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camber and incidence are simulated by vortex distributions, while thickness is simu-

lated by source and sink distributions. Thickness, camber, and incidence of the body 

are represented by line sources and doublets along the axis of the body. The effect of 

the interaction of the wing on the body is represented by a distribution of vortices on 

a cylinder whose radius is related to the average radius of the body, while the body-

on-wing interaction is represented by a distribution of vortices on the wing camber 

surface [see  Woodward (1968) ]. 

 An integrated supersonic design and analysis system is presented by  Middleton 

and Lundry (1980) . The analysis program can be used to predict the lifting pressure 

calculations for a wing camber surface at a selected angle of attack. It can also be used 

to calculate lifting pressure distributions and force coefficients for complete configu-

rations over a range of angles of attack. The program described by Middleton and 

Lundry (1980) carries two solutions along: one for the configuration at its input angle 

of attack and the other an incremental solution per degree angle of attack (called the 

flat-wing solution). The interference terms associated with the two solutions acting on 

the other surface shape are also calculated. The summation of these effects into the 

drag polar and the other force coefficients is performed by superposition. Calculation 

of the complete configuration lifting pressure solution can involve any or all of the 

following tasks: 

    •   Determine the isolated fuselage upwash field.  

   •   Determine the nacelle pressure field acting on the wing.  

   •   Compute the pressure field due to asymmetrical fuselage volume.  

   •   Generate a wing/canard solution in the presence of the fuselage upwash field.  

   •   Calculate the effects of the wing pressure field acting on the nacelles.  

   •   Determine the fuselage lift distribution in the presence of the wing downwash 

field.  

c

c

c

M� � 1.4

 Figure 11.46         Configuration giving increased wing lift [from  Hilton 

(1951) ].   
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   •   Obtain the horizontal tail solution in the presence of the fuselage and wing flow 

fields.  

   •   Generate a solution for the complete configuration by superposition of the 

 elemental solutions.   

 If you are interested in pursuing the subject of aerodynamic interactions, research 

surveys appear occassionally for the relevant phenomena and solution techniques [e.g., 

 Tomaro and Wurtzler (1999) ]; these reviews should be thoroughly read for current 

information on the topic.  

   11.13   AERODYNAMIC ANALYSIS FOR COMPLETE 
CONFIGURATIONS IN A SUPERSONIC FREE 
STREAM 

 There is a hierarchy of prediction/computational techniques that can be used to 

estimate the aerodynamic forces and moments for suitably complex configurations 

in a supersonic stream. Techniques based on linear theory have been described at 

length in this chapter.  Techniques based on impact methods, on solutions of the 

Euler equations, and on solutions of the Navier-Stokes equations are discussed in 

 Chapters   12    and    14   .  

 Three-view oil-flow photographs of the Space Shuttle Orbiter are presented in 

 Fig.   11.47    for  

    M� = 1.25

 a = 10�    

      dE,L = -18.8�    (the left elevon is deflected upward, and the oil-flow pattern indi-

cates a shock wave at the lower right of  Fig.   11.47   c, just below the OMS pod)  

     dE,R = +14.4�    [the right elevon is deflected downward and the surface oil flows 

through the space between the OMS pod and the right elevon ( Fig.   11.47   a)]  

     dSB = -87.2�    and    dR = -25�    [the speed brake is open    87.2�    and deflected    25�    
to serve as a rudder, creating a relatively strong shock wave with an attendant 

 viscous/inviscid interaction on one side of the vertical tail ( Fig.   11.47   a) but not 

on the other ( Fig.   11.47   c)]  

     dBF = 23.7�    (the body flap is deflected    23.7�   )   

 Also evident in these flow visualization photographs are free-shear layer separations 

and feather patterns associated with reattaching vortical flows. Because the complex 

nature of the flow field made it impossible to develop realistic flow models for numeri-

cal solutions, a total of 493 wind-tunnel tests using 52,993 hours were used in phase 

C/D of the Space Shuttle design development program in order to develop an aerody-

namic data base [ Whitnah and Hillje (1984) ]. However, because wind-tunnel flows are 

also simulations (limited in model scale, high-temperature effects, etc.), wind-tunnel 

measurements should be correlated with the corresponding computed values based on 

solution techniques employing adequate flow models before extrapolating to flight.  
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   11.14  SUMMARY 

 Three-dimensional supersonic flow is much less complicated to predict than three-

dimensional subsonic flow, but three-dimensional affects still take place and must 

be accounted for. Wing-tip affects, interference affects, and base drag are all chal-

lenging aspects of supersonic aerodynamics which must be considered when analyzing 

dE,R � �14.4�

dE,L � �18.8� dBF � �23.7�

dSB � 87.2�

dR � �25�

(a)

(b)

(c)

 Figure 11.47         Oil flow patterns for Space Shuttle  Orbiter  at 

   M� = 1.25    and    a = 10�:    (a) view of right side; (b) top view; 

(c) view of left side (courtesy of NASA Johnson Space Center).   
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high-speed aircraft. Fairly straightforward methods exist to estimate all aspects of 

supersonic aerodynamics, but they must be used with an experienced eye toward de-

tails, and should be based on knowledge of previous supersonic aircraft which used 

the same approaches. Supersonic aerodynamics is interesting, yet challenging, and 

should be approached with a healthy respect for the theories and approaches of those 

that came before us.   

     PROBLEMS 

   11.1.    Consider a flat-plate, rectangular wing. Derive the expressions for the lift coefficient, for 

the drag coefficient, for the coefficient of the moment about the leading edge, and for the 

location of the center of pressure given in  Table   11.1   . Assume that    b # AR 7 2    so that the 

Mach cones emanating from the tip do not overlap.   

   11.2.    Verify the statement given in  Table   11.1    that    A�,    which is defined as airfoil cross-

sectional area divided by the square of chord, is equal to    t>2    for a double-wedge airfoil 

section.   

   11.3.    Consider a wing with a rectangular planform, whose aspect ratio is 5.0 and whose section 

is that shown in   Fig.   10.5       . Use Bonney’s results in  Table   11.1    to determine CL and CD for 

this wing for the flow conditions shown in   Fig.   10.5       .   

   11.4.      (a)   Using the relations given in  Table   11.1   , develop expressions for the lift coefficient as 

a function of a [i.e.,    CL(a)   ] and for the drag coefficient [i.e.,    CD(CL)   ] for the wing of 

  Figs.   9.14    and    9.15       . The wing has a rectangular planform with an aspect ratio of 2.75. 

Develop the relations for    M� = 1.50.    Assume that the airfoil section is biconvex with 

a maximum thickness ratio of 0.05.  

   (b)   Compare the theoretical values with the experimental values presented in   Figs.   9.14    

and    9.15       . What value of    CD, friction    (at    M� = 1.50   ) will cause your theoretical results to 

agree most closely with the data in the figures?     

   11.5.    Consider the wing of the Northrop F-5E  (see  Table   5.1   ) . If the airplane is flying at a Mach 

number of 1.32, will the quarter-chord line of the wing be in a supersonic or a subsonic 

condition relative to the free-stream flow? What must M� be for the quarter-chord line to 

be in a sonic condition?   

   11.6.    Derive the equation of the leading-edge sweep angle    �LE    as a function of    M�    for a sonic 

leading edge. Prepare a graph of the results. Assume small-angle approximations for    a.      

   11.7.    Show that the section lift coefficient for a swept airfoil with a supersonic leading edge is 

given by 

   Cl =
4 cos �

2M2
� cos � - 1

 a   

   The thickness ratio and the angle of attack of the airfoil are sufficiently small that the small-

angle approximations may be used.   

   11.8.    Discuss the limits of validity of the result derived in Problem 11.7.   

   11.9.    Using a Taylor’s series expansion about    z = 0,    derive equation (11.7) from equation (11.6).   

   11.10.    Consider the flat-plate rectangular wing of Problem 11.1. Assume that there is a plain 

flap along the entire trailing edge with hinge line at    xf = fx,    where    0 … f … 1.    Derive a 

formula for    CL    as a function of the flap deflection angle    df     (see  Fig.   P11.10   ). Assume that 

   b # AR 7 2.       
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   11.11.    Derive the relation between the aspect ratio of a delta wing and the free-stream Mach 

number    M�    if the leading edge is to be sonic.   

   11.12.    Show that equation (11.30) follows from 

   R(x - x1, y - y1) K
x - x1

b2(y - y1)23(x - x1)2 - b2(y - y1)240.5
   

   The variation of  R  with  x  may be assumed to be small.   

   11.13.    Show that subtracting the single wedge FGF� from the single wedge BFF� yields the rela-

tions in the double wedge BDED�(see  Fig.   11.20   ). Thus, show that the source strength in 

region DCD� will be 

   U� = -
C(x,y)

l2

   

   where C = C1 + C2 and C1 is the source strength due to BFF� and C2 is the source (sink) 

strength due to FGF�.   

   11.14.    Determine    �Cp(3, 0)    for the flow described in  Example   11.3   .   

   11.15.    Determine    �Cp(3, {1)    for the flow described in  Example   11.3   .   

   11.16.    Consider a flat-plate (zero-camber) delta planform in a M� = 1.2 stream. The leading-edge 

sweepback angle (�LE) is 40°. Is the leading edge subsonic or supersonic? What is the value 

of cot �LE for this flow?   

   11.17.    For the configuration described in Problem 11.16 and with    Nmax = 8,    determine    �Cp(3, 0).      

   11.18.    For the configuration described in Problem 11.16 and with    Nmax = 8,    determine 

   �Cp(3, {1).      

   11.19.    Develop the expression for    dR>dx    as a function of    x>L    for the slender, axially-symmetric 

body-of-revolution, which has a profile section of 

   R(x) = 2t
x
L
a1 -

x
L
b    

   Develop the expression for the pressure coefficient as a function of  x>L .   

   11.20.    Develop the expression for the pressure coefficient for a two-dimensional airfoil section 

that has the same bi-convex profile as was specified in Problem 11.19, that is, 

   R(x) = 2t
x
L
a1 -

x
L
b    

c

b

fc

M� � 1

a

d1

 Figure P11.10        
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   Prepare a graph comparing the pressure distribution for the axially-symmetric body-of-

revolution with the pressure distribution for the two-dimensional airfoil section that has 

the same biconvex profile.   

   11.21.    Test is to be conducted in an indraft wind tunnel. An indraft wind tunnel takes air from 

the room in which the tunnel is located. The air then accelerates through a convergent-

divergent nozzle to the free-stream conditions in the test section. The free-stream Mach 

number in the test section is 5.0. The “atmospheric” conditions in the room form the stag-

nation conditions for the tunnel:    pt1 = 15 lbf> in2    and    Tt = 540�R.    Calculate the L>D ratio 

for the two-dimensional airfoil section as a function of the angle of attack from    0�    to    10�.       
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    12   HYPERSONIC FLOWS 

     Chapter Objectives 

  •   Be able to describe the five characteristics that distinguish hypersonic flow from 
supersonic flow  

  •   Understand the use and limitations of the Newtonian and modified Newtonian 
flow models  

  •   Be able to determine the flow characteristics in the region of the stagnation point 
of a hypersonic vehicle  

  •   Be able to find the lift, drag, and pitch moment for simple geometries at 
hypersonic speeds  

  •   Understand the importance of heating at hypersonic speeds and be able to 
estimate heating rates on blunt bodies  

  •   Have a basic understanding of boundary-layer transition at hypersonic speeds, 
and know why it is difficult to estimate   

  The most common question asked about hypersonic flow is “Why is it different than 

supersonic flow?” That is a good question! If supersonic flow is the regime where the 

flow is everywhere supersonic, then it would seem like flying at higher Mach numbers 

would not fundamentally change the nature of the flow. In fact, however, there are at 



660    Chap. 12 / Hypersonic Flows

least five characteristics of hypersonic flow that are different than supersonic flow, or 

where supersonic flow theories break down. The differentiating characteristics, outlined 

in  Anderson (2006) , are: 

    •   thin shock layers  

   •   entropy layers  

   •   viscous-inviscid interactions  

   •   high-temperature effects and extreme heat transfer  

   •   low-density flows   

 Understanding each of these effects will require learning about additional concepts 

and devising new ways to simulate these flows. As an example, we will discuss the first 

distinguishing characteristics, thin shock layers, as an example of why hypersonic flow 

is a unique flight regime. 

 A vehicle flying through the atmosphere at hypersonic speeds generates a shock 

layer (the region between the bow shock wave and the vehicle surface) in which the 

pressure, the temperature, and/or the density may change by two orders of magnitude, 

and more. Because the kinetic energy associated with hypersonic flight is converted into 

high temperatures within the shock layer, the flow-field trade studies conducted during 

the vehicle design include consideration both of the heat-transfer environment and of 

the aerodynamic forces and moments. Therefore, aerodynamicists often speak of the 

aerothermodynamic environment of a hypersonic vehicle.   

    By definition, 

      M� =
U�

a�
� 1  (12.1)    

 which is the basic assumption for all hypersonic flow theories. Unfortunately, it is not 

possible to define hypersonic flow in terms of Mach number. The internal thermody-

namic energy of the free-stream fluid particles is small compared with the kinetic energy 

of the free stream for hypersonic flows. In flight applications, this results because the 

velocity of the fluid particles is relatively large. The limiting case, where    M�    approaches 

infinity because the free-stream velocity approaches infinity while the free-stream ther-

modynamic state remains fixed, produces extremely high temperatures in the shock 

layer. The high temperatures associated with hypersonic flight cannot be accommo-

dated in most ground test facilities. Therefore, in wind-tunnel applications, hypersonic 

Mach numbers are achieved through relatively low speeds of sound; that is, for the wind 

tunnel    M�    approaches infinity because the speed of sound (the temperature) goes to 

“zero” while the free-stream velocity is held fixed. As a result, the fluid temperatures 

remain below the levels that would damage the wind tunnel and the model. 

 Another assumption common to hypersonic flow is that 

      e =
r�

r2
� 1  (12.2)    

 which is known as the small-density-ratio assumption. This assumption relates primarily 

to the properties of the gas downstream of the shock wave. Recall that, for a perfect gas, 

      e =
g - 1

g + 1
  (12.3)    
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 for a normal shock wave as    M� S � .    So,    e = 1
6    for perfect air. Notice that typical hy-

personic wind tunnels operate at conditions where the test gas can be approximated by 

the perfect-gas relations. However, during the reentry of the Apollo Command Module, 

the density ratio approached    120.    

 For slender configurations, such as sharp cones and wedges, the strong shock as-

sumption is: 

      M� sin ub � 1  (12.4)    

 which is mixed in nature, since it relates both to the flow and to the configuration. 

The concept termed the “Mach number independence principle” depends on this 

assumption. 

 Typical trajectories of various aircraft/spacecraft and the regions of different phys-

ical and chemical processes in the shock layer near such vehicles are shown in  Fig.   12.1   , 

which is from  Hirschel (1991) . Unlike the aerodynamic and heat-transfer characteristics 

of conventional aircraft, these problems are characterized for reentry (or for ascending) 

trajectories by a wide range of Reynolds numbers, extremely high Mach numbers, and 

high temperatures immediately behind the bow shock wave (up to several tens of thou-

sands of degrees before the temperature associated with thermochemical equilibrium 

is reached). For that portion of the reentry trajectory at altitudes above the continuum 

flow regime, the stagnation pressure behind the shock wave varies from    10 -4    to    10-3    

atmospheres [ Tirsky (1993) ]. Finding theoretical or semi-empirical models that are ap-

propriate for these trajectories is quite challenging.  
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 Figure 12.1         Typical trajectories of various spacecraft [from  

Bertin and Cummings (2006) ].   
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   12.1  THE FIVE DISTINGUISHING CHARACTERISTICS 

   12.1.1  Thin Shock Layers 

 The shock layer is the region between the shock and the surface of the body. For su-

personic Mach numbers the shock layer is quite large, as shown in  Fig.   12.2   a, where the 

shock is    33.5�    from the wedge surface for a Mach number of 2.0. As the Mach number 

increases, the shock is swept further aft (the shock angle is smaller), so the shock layer 

becomes thinner.  If we assume that the wedge tables in  Chapter   8    correctly predict flow 

at Mach 20, then   Fig.   12.2   b shows the position of the shock relative to the surface: the 

shock is only    5�    above the surface. This means that the shock gets closer and closer to 

a surface as the Mach number increases.  

 In addition to the shock sweeping further aft, high-speed boundary layers have 

an interesting relationship between the boundary layer thickness and Mach number: 

   d �
M2

�

1Re
   

 While higher Reynolds numbers yield thinner boundary layers  (as we learned in  Chap-

ter   4   ) , higher Mach numbers yield thicker boundary layers (and notice that the Mach 

number is squared in the boundary-layer thickness relation). This means that hyper-

sonic boundary layers, which often occur at high altitudes and Mach numbers, but at 

low Reynolds numbers, are relatively thick. Couple the fact that the boundary layers 

are thick with the observation that the shock layers are thin, and you can see why hy-

personic flows might be different than supersonic flows. Specifically, thick boundary 

layers can interact with thin shock layers and increase the skin friction and heating on 

the surface of the vehicle. 

 While we were deriving oblique shock theory we assumed that the flow was invis-

cid. While all flows have some viscous effects, this assumption led to very good results 

because the viscous effects (skin friction) could be de-coupled from the inviscid ef-

fects (the impact of the shock). In hypersonic flow, this de-coupling is not necessarily 

appropriate, leading to inaccuracies in applying supersonic theory (such as wedge or 

cone tables or charts) to hypersonic flow. Limitations on the use of supersonic wedge 

and cone theory for hypersonic applications were determined by  Lees (1951  and  1953) , 

which were based on a hypersonic similarity parameter. These limitations primarily 

related the slenderness of the geometry and the Mach number of application, and found 

a wide range of applicability for many hypersonic vehicles, even at angle of attack.  

M � 2.0

(a) M � 2.0

d� 20�

u� 53.5�

M � 20.0

(b) M � 20.0

d� 20�

u� 25�

 Figure 12.2         Comparison of shock wave angles for a    20�    wedge at 

different Mach numbers.   
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   12.1.2  Entropy Layers 

 Supersonic flow theory , as developed in  Chapter   8   ,  assumed that the flow was isentro-

pic everywhere except across a shock wave. This was a powerful assumption, since it 

allowed us to use isentropic relations to calculate flow properties in isentropic regions, 

and then use normal shock relations to determine the change in properties across the 

shocks. Implicit to this assumption is the fact that the shock waves had to be straight 

(or nearly straight). In hypersonic flow, however, bow shocks typically form in front of 

vehicles which are highly curved, as shown in  Fig.   12.3   . Along the curved portion of the 

shock wave, entropy changes vary at each location since the local shock angle is differ-

ent. This means that there are different levels of entropy behind each location along 

the shock, so the flow field is not isentropic.   

   12.1.3  Viscous-Inviscid Interactions 

  Shock-boundary layer and shock-shock interactions were discussed in  Sections   8.8    and 

   8.9   , so you should review those sections for details on viscous-inviscid interactions. 

However, an     example of how  those interactions     can easily take place on hypersonic 

vehicles will help in our understanding of why these interactions are so important. 

 During reentry, the Space Shuttle orbiter travels through a variety of angle of 

attack and Mach number ranges. At extremely high altitudes, the bow shock from 

the nose of the Orbiter (see  Fig.   12.4   ) is swept back sharply. When the bow shock 

reaches the region of the Orbiter wing, it can interact with the shock wave in front 

of the wing leading edge. This shock-shock interaction may be classified as an Edney 

Type IV interaction  (see  Section   8.9   ) , which produces severe heating in the region 

immediately behind the interaction region. In fact, during the reentry of Space Shuttle 

Columbia in 2003, a shock-shock interaction took place directly in front of where a 

piece of foam had impacted Columbia during launch, which led to the destruction of 

the vehicle. According to  Bertin and Cummings (2006) , “Post-flight analysis reported 

Constant entropy
flow

Variable
entropy

“Straight” shock
wave

Curved bow
shock

M1

RN

 Figure 12.3         Variation of entropy on a blunt body at high speeds 

[from  Bertin (1994) ].   
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by the   Columbia Accident Investigation Board (2003)  indicated that the impact of 

the piece of foam produced a breech in the TPS (thermal protection system) . . . 

a relatively small breech of the TPS provided a path for the hot gases in the entry 

aerothermodynamics environment to reach the interior of the left wing, creating the 

ever-expanding damage pattern that ultimately led to the demise of OV-102 (the 

Columbia) during mission STS-107.”   

   12.1.4  High Temperature Effects 

 Chemically reacting flows take place when the flow-field temperature reaches levels 

that cause the molecules in the atmosphere to start reacting and changing their state. 

For example, at temperatures greater than 800 K molecular vibration occurs. For tem-

peratures above 2000 K diatomic oxygen dissociates (   O2    becomes O), and above 4000 K 

oxygen dissociation is complete and diatomic nitrogen dissociates and forms nitric oxide 

(NO), which may ionize. At temperatures above 9000 K nitrogen dissociation is com-

plete and oxygen and nitrogen atoms ionize [ Anderson (2006) ]. So, what is the impact 

of these observations? Quite simply, most of our basic assumptions about perfect gas-

ses being in equilibrium with a constant ratio of specific heats are invalid! This means 

that traditional analysis of heating on hypersonic vehicles can be in error. For example, 

uncertainties in pre-flight heating estimates for the Shuttle Orbiter based on empirical 

correlations complemented by analytical solutions are shown in  Fig.   12.5   . Notice that 

while the heating estimates for the nose were quite good, the wing leading-edge rates 

were highly inaccurate, and the predictions at other locations around the vehicle were 

mediocre at best.   

 Figure 12.4         Interactions between the bow shock wave and the 

wing leading-edge shock wave for the Space Shuttle Orbiter 

[from  Bertin (1994) ].   
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   12.1.5  Low-Density Flows 

 The peak heat-transfer rates of a vehicle entering the atmosphere typically occur at 

altitudes where the air behaves as a continuum [ Bertin and Cummings (2006) ]. Never-

theless, anomalously high temperatures already were being measured on the clevis and 

the spar during the fatal reentry of Columbia on mission STS-107 at altitudes of approxi-

mately 91,441 m (300,000 ft). The density of the air in this altitude range is relatively 

low and the mean-free path (the distance between collisions of air particles) is relatively 

high. The ratio of the mean-free path to the characteristic length of the vehicle is known 

as the Knudsen number,    Kn = l>L.    Since most aerodynamic theories assume that the 

flow is a continuum (e.g.,    l � 10 -7 ft    at low altitudes and    Kn � 0   ), at altitudes above 

340,000 ft the mean-free path is greater than 1 ft (and    Kn S 1   ). 

 Under these conditions, the Navier-Stokes equations are not valid, and flow field 

solutions should be obtained using the Boltzmann equation. Typically, however, semi-

empirical relations are used to simulate low-density flow. An alternative technique 

known as Direct Simulation Monte Carlo (DSMC) was proposed by Bird in 1973 [see 

 Bird (1978)  for more details], which is essentially a numerical technique for approximat-

ing the Boltzmann equation.            
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 Figure 12.5         Uncertainties in pre-flight heating estimates for the 

Shuttle Orbiter [from  Bertin (1994) ].   

 Aerodynamics Concept Box: A High-Speed “Gotcha” during the X-15 
Program 

 Near the end of the X-15 program in the 1960s, it was decided to test a dummy ramjet engine 

on the X-15 at hypersonic Mach numbers. In order to alleviate the high heating rates, the 

X-15 was painted with an ablative coating, which burns away during the flight but protects 

the aircraft surface material from over-heating. The X-15A-2, with ablative coating, external 

tanks, and the dummy ramjet engine attached to the lower rear pylon is shown below shortly 

after launch from a B-52. 
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 The pilot on October 3, 1967, was Pete Knight, a veteran of the X-15 program. After launch 

from the B-52, the X-15 accelerated and climbed, eventually recording a Mach number of 6.7. 

During approach for landing, a NASA chase plane announced that something had fallen from 

the X-15, and after landing engineers found significant damage to the X-15, but especially to 

the area around the lower rear pylon . . . and the dummy ramjet was missing! In fact, the lower 

pylon was severely damaged, with large burned-through regions near the front of the pylon. 

What had happened? High-speed flight had just given the engineers a “gotcha”, where they 

learned something they had not really known before. At Mach 6.7, the bow shock from the 

front of the vehicle had intersected the bow shock in front of the dummy ramjet in a Type IV 

shock-shock interaction, creating a supersonic high-temperature jet which burned away the 

ramjet and severely damaged the pylon. This would not be the last time such a problem took 

place, but engineers were now warned about the dangers of shock-shock interactions. 

       X-15A-2 after release from a B-52    (courtesy of NASA Dryden Flight 

Research Center)  

       X-15A-2 after landing: notice charring on lower pylon and speed 

brake on vertical tail    (courtesy of NASA Dryden Flight Research 

Center)  
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   12.2  NEWTONIAN FLOW MODEL 

 As the free-stream Mach number approaches infinity and the hypersonic independ-

ence principle applies to the flow, the shock layer becomes very thin. As a result, we 

can assume that the speed and direction of the gas particles in the free stream remain 

unchanged until they strike the solid surface exposed to the flow. For this flow model 

(termed Newtonian flow theory since it is similar in character to one described by New-

ton in the seventeenth century), the normal component of momentum of the impinging 

fluid particle is wiped out, while the tangential component of momentum is conserved. 

Therefore, using the nomenclature of  Fig.   12.6    we can write the integral form of the 

momentum equation for a constant-area streamtube normal to the surface,  

      p� + r�(U�, n)2 = p� + r�(U� sin ub)2 = ps  (12.5)    

 Rearranging so that the local pressure is written in terms of the pressure coefficient 

gives 

      Cp =
ps - p�

1
2r�U2

�

= 2 sin2 ub = 2 cos2 f  (12.6)    

 The pressure coefficient, as defined in equation (12.6), is known as the Newtonian value, 

where the 2 represents the pressure coefficient at the stagnation point (which is desig-

nated    Cp, t2   ), since    ub = 90�    at the Newtonian stagnation point. You should notice that 

no small angle assumption was made during the derivation of Newtonian flow theory, 

so it can be applied to a stagnation point on a blunt body. Also, Newtonian flow theory 

assumes that free-stream pressure,    Cp = 0,    acts on all surfaces that are not directly 

impacted by the free-stream flow (called “shadow” surfaces). 

 The Newtonian flow model and the various theories for thin shock layers related 

to the Newtonian approximation are based on the small-density-ratio assumption. The 

small-density-ratio requirement for Newtonian theory also places implicit restrictions 

on the body shape in order that the shock layer be thin. The range of applicability for 

Newtonian theory, as defined by  Marconi et al. (1976) , is reproduced in  Fig.   12.7   . Small 

perturbation theory yields accurate results only for the flow over slender bodies at small 

angles of attack in a low supersonic Mach number stream. However, Newtonian theory 

Thin shock layer (e � 1); conditions
         in the shock layer are designated by the subscript s

ub, Local body slope

Surface

Shock wave

U�, tU�, n

U�M�� 1

f ub

 Figure 12.6         Nomenclature for Newtonian flow model.   
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provides useful results when the Mach number is large and/or the flow deflection angle 

is large. This is equivalent to the strong shock assumption  

   M� sin ub � 1   

 Consider the pressure coefficients presented in  Fig.   12.8   . Theoretical values 

of    Cp     (taken from  Chapter   8   )  are presented as a function of    M�    for a cone whose 

semivertex angle is    15�    and for a    15�    wedge. Notice that, as    M� S � ,    the pressure 

coefficients become independent of the Mach number (the Mach number independ-

ence principle). The shock layer is thinner for the cone, and the limiting value of 

   Cp    is approached at a lower Mach number. Also presented is the Newtonian pres-

sure coefficient (which is independent of the Mach number). As    M� S � ,    all three 

techniques yield roughly the same value for    Cp.    Therefore, at hypersonic speeds the 

pressure coefficient for these simple shapes depends primarily on the flow deflec-

tion angle.  
 The Mach number independence principle was derived for inviscid flow, as dis-

cussed in  Oswatitsch (1956) . Since pressure forces are much larger than the viscous 

forces for blunt bodies or for slender bodies at relatively large angles of attack when 

the Reynolds number exceeds    105,    we would expect the Mach number independence 

principle to hold at these conditions. 
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 Figure 12.7         Regions of applicability of inviscid flow theories for 

the surface pressure on a sharp cone [from  Marconi et al. (1976) ].   
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  EXAMPLE 12.1:   Comparing predictions using Newtonian flow theory 
with experimental data 

 A hemisphere was tested in the U.S. Air Force Academy Trisonic Wind 

Tunnel at Mach 4.38 at zero degrees angle of attack. The measured pres-

sure coefficient at    ub = 0 �, 90 �    was    Cp = 0.0237, 1.818,    respectively. Using 

Newtonian flow theory, estimate the pressure coefficient at the stagnation 

point and at the top of the hemisphere and comment on the accuracy of the 

predictions. 

  Solution:     Newtonian flow theory determines the pressure coefficient solely based on the 

local slope of the surface. From equation (12.6), the pressure coefficient is: 

   Cp = 2sin2 ub   

 The local surface slopes,    ub,    for the top of the hemisphere and the stagnation 

point are    0�    and    90�,    respectively. Therefore, Newtonian flow theory predicts 

the pressure coefficient for these two locations to be    Cp = 0.0, 2.0.    These 

values compare fairly well with the experimental data, although Newtonian 

flow theory overpredicts the stagnation point pressure coefficient by ap-

proximately 10%.    
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 Figure 12.8         Pressure coefficient for the flow of perfect air past a 

wedge and a cone; deflection angle is    15�.      
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   12.3  STAGNATION REGION FLOW-FIELD PROPERTIES 

 The nomenclature for the flow near the stagnation point of a vehicle in a hypersonic 

stream is illustrated in  Fig.   12.9   . The free-stream flow (designated by the subscript    �     

or 1) passes through the normal portion of the shock wave reaching state 2 and then 

decelerates isentropically to state  t 2, which constitutes the edge condition for the ther-

mal boundary layer at the stagnation point. The streamline from the shock wave to 

the stagnation point may be curved for nonaxisymmetric flow fields. The pressure and 

the heating rate at the stagnation point are useful reference values for characterizing 

hypersonic flows.  
 The relations for steady, one-dimensional, inviscid, adiabatic flow in a constant-

area streamtube were used to compute the conditions across a normal shock wave: 

       r1U1 = r2U2   (12.7)    

       p1 + r1U
2
1 = p2 + r2U

2
2   (12.8)    

       h1 + 1
2U2

1 = h2 + 1
2U2

2 = Ht  (12.9)    

 where    Ht    is the total (or stagnation) enthalpy of the flow. 

 If we assume that the gas is thermally perfect, 

      p = rRT  (12.10)    

 and calorically perfect, 

      h = cpT  (12.11)    

M1 � 1

t2

tw

2

1
or
�

 Figure 12.9         Nomenclature for the stagnation region: 1 or    � ,    free-

stream conditions; 2, conditions immediately downstream of the 

shock wave;  t 2, conditions at the stagnation point (downstream 

of the normal portion of the shock wave) but outside the bound-

ary layer;    tw,    conditions at the wall at the downstream stagnation 

point.   
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 the ratio of the values of flow properties across the shock wave can be written as a 

unique function of    M1    (or    M�,    the free-stream Mach number) and    g    (the ratio of specific 

heats).  Referring to  Chapter   8   , the      relations are: 

       
p2

p1

=
2gM2

1 - (g - 1)

g + 1
  (12.12)    

       
r2

r1
=

U1

U2

=
(g + 1)M2

1

(g - 1)M2
1 + 2

  (12.13)    

       
T2

T1

=
32gM2

1 - (g - 1) 4  3 (g - 1)M2
1 + 24

(g + 1)2M2
1

  (12.14)    

 If we also assume that the flow decelerates isentropically from the conditions at point 

2 (immediately downstream of the normal portion of the shock wave) to the stagnation 

point outside of the thermal boundary layer (point  t 2), 

       
pt2

p1

= J (g + 1)M2
1

2
R g>(g-1)J g + 1

2gM2
1 - (g - 1)

R 1>(g-1)

  (12.15)    

       
Tt2

T1

=
Tt1

T1

= 1 +
g - 1

2
 M2

1   (12.16)    

 Notice that, while it is generally true that the stagnation enthalpy is constant across 

a normal shock wave for an adiabatic flow [see equation (12.9)], the stagnation 

temperature is constant across a normal shock wave only for the adiabatic flow of 

a perfect gas [see equation (12.16)]. Also notice that for a perfect gas (i.e., one that 

is thermally perfect and calorically perfect), the ratio of the downstream value to 

the free-stream value for the flow properties (across a normal shock wave) can be 

written as a function of    g    and    M1(=  M�)    only. Thus, the perfect-gas values for the 

ratios defined by equations (12.12) through (12.16) do not depend specifically on 

the altitude. 

 In reality, for hypersonic flight, the gas molecules that pass through the bow 

shock wave are excited to higher vibrational and chemical energy modes. This low-

ers the specific-heat ratio of the gas below the free-stream value if it is assumed that 

equilibrium exists and that dissociation is not driven to completion. A large amount 

of the energy that would have gone into increasing the static temperature behind the 

bow shock wave for a perfect gas is used instead to excite the vibrational energy levels 

or to dissociate the gas molecules. As additional energy is absorbed by the gas mol-

ecules entering the shock layer, the conservation laws and the thermophysics dictate 

certain changes in the forebody flow. The static temperature, the speed of sound, 

and the velocity in the shock layer are less for the equilibrium, real-gas flow than for 

a perfect-gas flow. The real-gas value of the static pressure is slightly larger than the 

perfect-gas value. The density is increased considerably, and, as a result, the shock 

layer thickness is reduced. 

 Equations (12.7) through (12.9) are not restricted to the perfect-gas assump-

tion and can be applied to a high-temperature, hypersonic flow. We will use the  U.S. 

Standard Atmosphere (1976)  to define the free-stream properties (i.e.,    p1, r1,    and 

   h1,    at 150,000 ft). Since there are four unknowns in equations (12.7) through (12.9) 



672    Chap. 12 / Hypersonic Flows

(i.e.,    p2, r2, h2,    and    U2   ), but only three equations, additional relations are needed to 

obtain a solution. The graphs of  Moeckel and Weston (1958)  (see  Fig.   12.10   ) were used 

in tabular form to define:  
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 Figure 12.10         Thermodynamic properties of air in chemical 

equilibrium [from  Moeckel and Weston (1958) ].   
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 We can now calculate the flow downstream of a normal shock wave when    M1 = 14    at an 

altitude of 150,000 ft. Using the more generally applicable expression equation (12.9), 

   Ht1 = h1 + 1
2U2

1 = Ht2 = Ht = 4636.77 Btu>lbm   

 Assuming that the air remains in thermodynamic equilibrium as it crosses the shock 

wave,    pt2    is 0.3386 atm    (716.57 lb>ft2)    and    Tt2    is    8969.6�R,    as represented by the    �     in 

 Fig.   12.10   . Using the perfect-gas relations of equations (12.12) through (12.16),    pt2    is 

0.3256 atm    (689.12 lb>ft2)    and    Tt2    is    19,325�R.    

 The perfect-gas values and the equilibrium air values for    Tt2>T1, pt2>p1,    and    Cp, t2    

(the pressure coefficient at the stagnation point) are presented as a function of the 

free-stream Mach number for an altitude of 150,000 ft in  Figs.   12.11   ,    12.12   , and    12.13   , 

respectively. The comments made earlier regarding the qualitative differences between 

the perfect-gas values and those for equilibrium air (e.g., “The real-gas value of the 

static pressure is slightly larger than the perfect-gas value”) are illustrated in  Figs.   12.12    

and    12.13   .    
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 Figure 12.11         Temperature at the stagnation point (at the edge of 

the boundary layer) of a sphere    (RN = 0.3048 m)    at an altitude 

of 45,721 m.   
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 The ratio of    Tt2>T1    is presented in  Fig.   12.11   . As noted earlier, the energy absorbed 

by the dissociation process causes the real-gas equilibrium temperature to be markedly 

lower than the perfect-gas value. The specific heat correlations that were presented by 

 Hansen (1957)  as a function of pressure and of temperature can be used to identify con-

ditions where the dissociation of oxygen and of nitrogen affect the properties. Hansen 

notes that, at all pressures, the dissociation of oxygen is essentially complete before the 

dissociation of nitrogen begins. Based on Hansen’s correlations, the oxygen dissocia-

tion reaction begins near Mach 7 and the nitrogen reaction begins near Mach 18 for the 

equilibrium air model at 150,000 ft. 

 The    pt2>p1    ratio and the stagnation-point pressure coefficient are presented in 

 Figs.   12.12    and    12.13   , respectively. As noted earlier, the real-gas value of the static 

pressure is slightly greater than the perfect-gas value. Note that, at    M1 = 4,    the stagna-

tion pressure coefficient    Cp, t2    is approximately 1.8 for both perfect air and for air in 

thermodynamic equilibrium. At    M1 = 24, Cp, t2    is 1.932 for the equilibrium air model 

as compared with 1.838 for perfect air and 2 for Newtonian flow. 

 From the preceding discussion, it should be clear that the changes in a fluid prop-

erty across a normal shock wave are a function of    M1    and    g    only for a perfect gas [see 

equation (12.12)], that is, 

   
p2

p1

= f(M1, g)   

Air in thermodynamic equilibrium

Perfect air

1000

500

pt2 /p1

200

100

50

20

10
0 4 8 12

M1

16 20 24

 Figure 12.12         Pressure at the stagnation point of a sphere 

   (RN = 0.3048 m)    at an altitude of 45,721 m.   
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 However, for a reacting gas in chemical equilibrium, three free-stream parameters are 

necessary to obtain the ratios of properties across a normal shock wave (the free-stream 

velocity and two thermodynamic properties), 

   
p2

p1

= f(U1, p1, T1)    

   12.4  MODIFIED NEWTONIAN FLOW 

 It is evident in the computed values for the pressure coefficient at the stagnation point 

presented in  Fig.   12.13    that even when    M1 = 24, Cp, t2    is 1.838 for perfect air and is 

1.932 for air in thermodynamic equilibrium. Therefore, as noted by  Lees (1955) , it 

would be more appropriate to compare the ratio    Cp>Cp, max    with    sin2 ub    (or, equiva-

lently,    cos2 f   ). Such a comparison is presented in  Fig.   12.14    using data for hemispheri-

cally capped cylinders. Even though the data of  Fig.   12.14    are for free-stream Mach 

numbers from 1.97 to 4.76, the    sin2 ub    relation represents the data quite adequately 
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 Figure 12.13         Pressure coefficient at the stagnation point of a 

sphere    (RN = 0.3048 m)    at an altitude of 45,721 m.   
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 Figure 12.14         Correlation between    Cp>Cp, max    ratio and local 

body slope [from  Isaacson and Jones (1968) ].   

for this blunt configuration. Therefore, an alternative representation of the pressure 

coefficient for hypersonic flow is  
      Cp = Cp, t2 sin2 ub = Cp, t2 cos2 f  (12.17)    

 which will be termed modified Newtonian flow theory.    Cp, t2    can be obtained from ex-

perimental values or by using the Rayleigh pitot formula:       

   
pt2

p1

=
pt2

pt1
  

pt1

p1

  Cp, t2 =
2

gM2
1

a
pt2

p1

- 1b       

Table 8.3 Table 8.1

U U
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 Aerodynamics Concept Box: How Well Does Newtonian Flow Theory 
Really Work? 

 Newtonian and modified Newtonian flow theories seem so simple, but we often doubt that 

they can be very accurate. In order to test their applicability, a hemisphere model was instru-

mented with pressure ports and run in the U.S. Air Force Academy Trisonic Wind Tunnel. 

The model was run at    M = 4.38,    and a Schlieren photograph of the model in the tunnel is 

shown below. Notice the bow shock that has formed in front of the model (dark region) and 

the expansion region as the flow goes around the hemisphere (light region). 

      

 Pressures were measured at 10 tap locations on the hemisphere, ranging from the stagnation point 

to a position at the top of the model. A comparison of Newtonian and modified Newtonian flow 

theory predictions with the measured data is shown below. Notice that the Newtonian theory 

overpredicts the pressures due to the use of the coefficient 2.0, while the modified Newtonian 

prediction, which uses a coefficient of 1.8, matches the experimental data extremely well. 
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  EXAMPLE 12.2:   Derive an expression for the drag coefficient of a 
sphere 

 Neglecting the effects of skin friction and using the modified Newtonian flow 

model to describe the pressure distribution, derive an expression for the drag 

coefficient for a sphere. 

  Solution:     Because the sphere is a blunt configuration, the pressure forces are the prin-

cipal component of the drag force at high Reynolds numbers. Therefore, 

using the coordinate system shown in  Fig.   12.15   , the drag on the sphere due 

to the pressure is  
   D = Lp32py(ds) 4  sin ub = Lp2py dy   

 where the incremental surface area on which the pressure acts is    32py(ds) 4 ;    

refer to the shaded region on the forebody in  Fig.   12.15   .  As discussed in 

 Chapter   5   , the      net resultant force in any direction due to a constant pressure 

acting over a closed surface is zero. So, the pressure coefficient can be used 

in our expression for the drag: 

      D = q� LCp2py dy  (12.18)    

 Using modified Newtonian theory to define the pressure, as given by equa-

tion (12.17), with the coordinates shown in  Fig.   12.15   , 

      Cp = Cp, t2 sin2 ub = Cp, t2a
dy

ds
b

2

= Cp, t2 
(y�)2

1 + (y�)2
  (12.19)    

Shadow region

y

x

p

R

Cp � 0

M1 � 1

ub

 Figure 12.15         Sketch for calculating the modified Newtonian 

pressure drag on a sphere,  Example   12.2   .   
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 where    y� = dy>dx.    Combining equations (12.18) and (12.19), the expression 

for the drag becomes 

      D = q�Cp, t2 L
R

0

(y�)2

1 + (y�)2
 2py y� dx  (12.20)    

 The limits of the integration are    0 … x … R,    since, according to the New-

tonian flow model, the pressure coefficient on the leeward side (i.e., the 

crosshatched region of the sphere in  Fig.   12.15   ) is zero. 

 For the sphere, 

   y = (2xR - x2)0.5   

 and 

   
dy

dx
=

R - x

(2xR - x2)0.5
   

 Substituting these expressions into equation (12.20), 

   D = 2pq� Cp, t2L
R

0

J R - x

(2xR - x2)0.5
R 3

1 +
(R - x)2

2xR - x2

(2xR - x2)0.5 dx   

 Simplifying and integrating yields 

    D =
2pq�Cp, t2

R2
 JR3x -

3

2
x2R2 + x3R -

x4

4
RR

0

 =
Cp, t2

2
 q�pR2    

 and the drag coefficient becomes, 

      CD =
D

q�pR2
=

Cp, t2

2
  (12.21)      

 We will consider the case where the modified Newtonian flow model is applied 

in a similar manner to calculate the pressure drag on a right circular cylinder whose 

axis is perpendicular to the free-stream flow. Although the pressure distribution is 

that given by equation (12.19) and the cross section is a circle, as shown in  Fig.   12.15   , 

the flow around the cylinder is two dimensional, whereas the flow around a sphere is 

axisymmetric. As a result, the section pressure drag coefficient (per unit span) for the 

cylinder is 

      Cd, p = 2
3Cp, t2  (12.22)    
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 The values of section pressure drag coefficient calculated using equation (12.22) 

are compared in  Fig.   12.16    with data that were presented in  Koppenwallner (1969) . 

Despite the simplifications inherent in this technique to calculate the theoretical drag 

coefficient, the agreement between the data and the theoretical values is outstanding. 

Notice also that the pressure drag for the blunt, right circular cylinder reaches its hy-

personic limiting value by    M� = 4.     
 Data presented by  Koppenwallner (1969)  indicate a significant increase in the 

total drag coefficient for a right circular cylinder occurs due to the friction drag when 

the Knudsen number (which is the ratio of the length of the molecular mean free path 

to a characteristic dimension of the flow field) is greater than 0.01; the data presented 

by Koppenwallner are reproduced in  Fig.   12.17   . Using the Reynolds number based on 

the flow conditions behind a normal shock wave as the characteristic parameter,  
   Re2 =

r2U2d
m2

   

 the friction drag for    Re2 7 10    is given by 

      Cd, f =
5.3

(Re2)1.18
  (12.23)    

 The data presented in  Figs.   12.16    and    12.17    illustrate the significance of high-altitude 

effects on the aerodynamic coefficients. 

 The modified Newtonian flow model can be used to obtain a quick, engineering 

estimate of the pressure distribution. Consider the axisymmetric configuration shown 

, , , Data reproduced from Koppenwallner (1969)

Modified Newtonian theory

2

Cd, p

1

0 0.2 0.5 1.0 2 5 10 20

M�

M�

 Figure 12.16         Pressure drag of a right circular cylinder as a func-

tion of Mach number [from  Koppenwallner (1969) ].   
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in  Fig.   12.18   , where    nn     is a unit vector that is normal to the surface element  dA  and is 

positive in the inward direction,    u    is the local surface inclination, and    b    is the angular 

position of a point on the surface of the body. The angle    h,    the angle between the velocity 

vector    V
S

�    and the inward normal    nn ,    is given by  

,, , , Data reproduced from Koppenwallner (1969)

Total drag, Cd

Friction drag, Cd, f

Pressure drag, Cd, p

2.5

2.0

1.5

1.0
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Kn (� l�/d)

0.1 1.0

Cd

 Figure 12.17         Contribution of the total drag due to friction drag 

and to pressure drag [from  Koppenwallner (1969) ].   
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 Figure 12.18         Coordinate system nomenclature for axisymmetric 

configurations: (a) side view; (b) front view.   
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      cos h =
V
S

� #  nn
� V
S

� � � nn �
  (12.24)    

 where 

      V
S

� = U� cos a in - U� sin a jn   (12.25)    

 and 

      nn = in sin u - jn cos u cos b - kn cos u sin b  (12.26)    

 Based on these relations, 

      cos h = cos a sin u + sin a cos u cos b  (12.27)    

 so that the pressure coefficient is 

      Cp = Cp, t2 cos2 h  (12.28)    

 In the Newtonian (or the modified Newtonian) model, the free-stream flow does not 

impinge on those portions of the body surface which are inclined away from the free-

stream direction and which may, therefore, be thought of as lying in the “shadow of the 

free stream.” This is illustrated in  Fig.   12.19   . For the modified Newtonian flow model, 

   Cp = 0    in the shaded region of  Fig.   12.19   .  

  EXAMPLE 12.3:   Determine the aerodynamic coefficients for a sharp 
cone 

 Consider hypersonic flow past a sharp cone where    -uc … a … uc,    as shown 

in  Fig.   12.20   . Neglecting the effects of skin friction and using the modified 

Newtonian flow model to describe the pressure distribution, derive expres-

sions for the lift coefficient, the drag coefficient, and the pitch moment 

coefficient.  

Shadow region
where Cp � 0

y

x

U�

a

uN

 Figure 12.19         Region where    Cp = 0,    that is, that portion of the 

body which lies in the “shadow of the free stream.”   
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  Solution:     For simplicity, let us first calculate the forces in a body-fixed coordinate sys-

tem. As shown in  Fig.   12.21   , the forces in the body-fixed coordinate system 

are  A , the force along the axis of the body, and  N , the force normal to the 

body axis. Once  A  and  N  have been calculated, the lift and the drag can be 

calculated since:  
      L = N cos a - A sin a  (12.29)    

 and 

      D = N sin a + A cos a  (12.30)    

 Applying equations (12.24) through (12.28) specifically for the sharp 

cone flow depicted in  Fig.   12.20   , 

      Cp = Cp, t2(cos a sin uc + sin a cos uc cos b)2  (12.31)    

 since the deflection angle is the cone semivertex angle,    uc,    which is a constant. 

 The axial force coefficient is found by integrating the pressure force 

over the entire (closed) surface of the cone: 

      CA =
1

(1
2r�U2

�)(pR2
b) #

S

(p - p�)(nn  dS) #  in   (12.32)    

 Recall that, since we are integrating over a closed surface, the net force in any 

direction due to a constant pressure acting on that closed surface is zero, so 

y

x

ds

dx

xL

Rb

Cp,base � 0

M�

a

uc

 Figure 12.20         Nomenclature for hypersonic flow past a sharp cone.   
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 Figure 12.21         Resolving the forces acting on a vehicle.   
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subtracting    p�,    as is done in equation (12.32), does not affect the value of the 

axial force. A differential element for the surface of the cone ( dS ) is: 

      dS = r db ds = (x tan uc) db 
dx

cos uc
  (12.33)    

 Combining equations (12.31) through (12.33) with equation (12.26) 

and noting that    Cp, base = 0,    the limits of integration are    0 … b … p    (if we 

multiply by 2) and    0 … x … xL,    the axial force coefficient is: 

    CA =
2Cp, t2

pR2
b

 L
xL

0

JL
p

0

(cos2 a sin2 uc + 2sin a cos a sin uc cos uc cos b

 + sin2 a cos2 uc cos2 b)(x tan uc) db 
dx

cos uc
 sin ucR    

 Integrating first over    b    yields 

   CA =
2Cp, t2

pR2
b L

x
L

0

acos2 a sin2 ucp + sin2 a cos2 uc 
p

2
b  tan2 uc x dx   

 Integrating with respect to  x  gives us 

   CA =
2Cp, t2

R2
b

(cos2 a sin2 uc +
1

2
 sin2 a cos2 uc) tan2 uc 

x2
L

2
   

 Since    Rb = xL tan uc    

      CA = Cp, t23sin2 uc + 1
2sin2 a(1 - 3 sin2 uc) 4   (12.34)    

 We will calculate the normal force coefficient due to the pressures act-

ing over the closed surface of the cone. Since the normal force is positive in 

the negative  y  direction, 

      CN =
1

(1
2r�U2

�)(pR2
b) #

S

(p - p�)(nn  dS) #  (- jn)  (12.35)    

 Combining equations (12.26), (12.31), (12.33), and (12.35) and using the 

limits of integration,    0 … b … p    and    0 … x … xL    (as discussed previously), 

we have: 

    CN =
2Cp, t2

pR2
b

 L
xL

0

JL
p

0

(cos2 a sin2 uc + 2sin a cos a sin uc cos uc cos b

 + sin2 a cos2 uc cos2 b)(x tan uc) db 
dx

cos uc
 (cos uc cos b) R    

 Integrating first with respect to    b    gives us: 

   CN =
2Cp, t2

pR2
b

 L
x

L

0

a2sin a cos a sin uc cos uc
p

2
b tan ucx dx   

 Integrating with respect to  x  yields: 

   CN =
2Cp, t2

R2
b

 (sin a cos a sin uc cos uc)tan uc
x2

L

2
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 so that 

      CN =
Cp, t2

2
 sin 2a cos2 uc  (12.36)    

 Referring to equation (12.29), the lift coefficient is 

   CL = CN cos a - CA sin a   

 Using the coefficients presented in equations (12.34) and (12.36), we have 

      CL = Cp, t2 sin a 3cos2 a cos2 uc - sin2 uc - 1
2 sin2 a(1 - 3 sin2 uc) 4   (12.37)    

 Correspondingly, 

      CD = Cp, t2 cos a3sin2 a cos2 uc + sin2 uc + 1
2 sin2 a(1 - 3 sin2 uc) 4   (12.38)    

 To calculate the pitch moment, notice that the moment due to the 

incremental pressure force acting at a radial distance    r
S

    from the origin is 

   dM
¡

= r
S

* dF
¡

= r
S

* pnn  dS   

 Also notice that the incremental moment    dM
¡

    is a vector, which can be writ-

ten in terms of its components: 

      dM
¡

= d� in + d� jn + dM kn  (12.39)    

 In equation (12.39), � is the roll moment (which is positive when causing 

the right wing to move down), � is the yaw moment (which is positive when 

causing the nose to move to the right), and  M  is the pitch moment (which is 

positive when causing a nose-up rotation). 

 If we want to take the moments about the apex of the cone, the mo-

ment arm is 

      r
S

= x in + x tan uc cos b jn + x tan uc sin bkn  (12.40)    

 Now, examine the    rn * nn     term of the moment expression: 

   r
S

* nn = †

in jn kn

x x tan uc cos b x tan uc sin b

sin uc -cos uc cos b -cos uc sin b

†    

 and we can obtain, 

       r
S

* nn = in304 + jn3x sin b(tan uc sin uc + cos uc) 4  

  -  kn3x cos b(tan uc sin uc + cos uc) 4   (12.41)    

 The first term (i.e., the contribution to the roll moment) is always zero, since, 

in the absence of viscous forces, the only forces are the pressure forces that 

act normal to the surface and therefore act through the axis of symmetry 

for a body of revolution. The negative sign for the    kn    term (i.e., the pitch 

moment) results because a pressure force acting in the first and fourth quad-

rants    (p>2 Ú b Ú -p>2)    produces a nose-down (negative) pitch moment. 
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For this example we are interested in the pitch moment about the apex, 

which is considered positive when nose up, 

      M0 = #
S

r
S

* (p - p�)nn  dS #  kn  (12.42)    

 Taking the resultant cross product of the moment arm from the apex    ( r
S

)    

and the inward-directed unit normal to the surface area    nn     with the dot prod-

uct with    kn,    we obtain: 

   ( r
S

* nn ) #  kn = -x cos uc cos b - x sin uc tan uc cos b   

 Therefore, the pitch moment coefficient is: 

       CM0
=

-2

pR2
bRb L

xL

0

JL
p

0

Cpx tan uc db 
dx

cos uc
 (x cos uc cos b 

  + x sin uc tan uc cos b) R   (12.43)    

 We can simplify this expression if we focus on the terms containing the cone-

half-angle    (uc),    so that 

   tan uc

1

cos uc
(cos uc + sin uc tan uc) = tan uc(1 + tan2 uc) =

tan uc

cos2 uc
   

 Substituting the modified-Newtonian-flow expression for the pressure coef-

ficient and integrating with respect to    b    yields 

   CM0
= -

2Cp, t2

pR2
bRb

 
tan uc

cos2 uc L
xL

0

x2(sin u cos a sin uc cos ucp) dx   

 Integrating with respect to  x  and using the fact that    Rb = xL tan uc,    we obtain 

      CM0
= -

Cp, t2 sin 2a

3 tan uc
  (12.44)    

 Although the resultant moment is produced by the integration of the 

distributed aerodynamic forces over the vehicle surface, it can be repre-

sented as composed of two components—one effectively due to the normal-

force component and the other due to the axial-force component. Using this 

concept, we can isolate the two terms of equation (12.43): 

   CM0
= -

2

pR2
bRb L

xL

0

a L
p

0

Cpx tan uc db 
dx

cos uc
x cos uc cos bb

          -
2

pR2
bb L

xL

0

a L
p

0

Cpx tan uc db
dx

cos uc
x sin uc tan uc cos bb    

 Writing the total pitch moment as the sum of the two components, we have 

      CM0
= CM0, N

+ CM0, A
  (12.45)    
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 where 

      CM0, N
= -

2 tan uc

pR2
bRb L

xL

0

a L
p

0

Cp cos b dbbx2 dx  (12.46)    

 and 

      CM0, A
= -

2 tan3 uc

pR2
bRb L

xL

0

a L
p

0

Cp cos b dbbx2 dx  (12.47)    

 Substituting the modified Newtonian-flow expression for the pressure coef-

ficient yields 

    CM0, N
= -

2 tan ucCp, t2

pR2
bRb L

x
L

0

JL
p

0

(cos2a  sin2 uc cos b

 + 2 sin a cos a sin uc cos uc cos2 b + sin2a  cos2 uc cos3 b) R    

 Integrating gives us 

    CM0, N
= -

Cp, t2 sin 2a

R2
bRb

 tan uc sin uc cos uc
x3

L

3

 CM0, N
= -

Cp, t2 sin 2a cos2 uc

3
 
xL

Rb
   

 Using equation (12.36) for the expression for    CN,    we can rewrite 

      CM0, N
= CNa-

2

3
 
xL

Rb
b   (12.48)    

 Similarly, 

   CM0, A
=

-2 tan3 ucCp, t2

pR2
bRb L

xL

0

JL
p

0

(cos2a  sin2 uc cos b

 + 2 sin a cos a sin uc cos uc cos2 b + sin2a  cos2 uc cos3 bRx2 dx   

 Integrating yields 

   CM0, A
= -

Cp, t2 sin 2a sin2 uc

3
 
xL

Rb
   

 Using equation (12.34) for the expression for    CA,    we can rewrite this as: 

      CM0, A
= CA

-sin 2a sin2 uc

33sin2 uc + 0.5 sin2 a(1 - 3 sin2 uc) 4
 
xL

Rb
  (12.49)    

 Following this division of the pitch moment into components, we can 

represent it as an effective net force acting at a “center of pressure,” as  

shown in  Fig.   12.22   . The pitch moment may be represented by  

      M0 = M0, N + M0, A = -xcpN - ycpA  (12.50)    
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 The two terms represent the effects of the normal force and of the axial 

force, respectively. In terms of the coefficients, we can write this as: 

      CM0
=

M0

q�SRb
= -CN 

xcp

Rb
- CA 

ycp

Rb
  (12.51)    

 Comparing the formulations presented in equations (12.48), (12.49), and 

(12.51), we find that 

      xcp =
2

3
 xL  (12.52)    

 and 

      ycp =
sin 2a sin2 ucxL

33sin2 uc + 0.5 sin2 a(1 - 3 sin2 uc) 4
  (12.53)    

 If the vehicle is to be statically stable, the center of pressure should be 

located such that the aerodynamic forces produce a restoring moment when 

the configuration is perturbed from its “stable orientation.” Therefore, if the 

vehicle pitches up (i.e.,    a    increases), the net pitch moment should be nega-

tive (causing a nose-down moment), which decreases    a.    

 The parameter 

      S.M. =
xcp - xcg

xL
  (12.54)    

 is the static margin, which must be positive for uncontrolled vehicles. For 

high-performance, hypersonic vehicles, the static margin is usually 3% to 

5% of the length of the vehicle. Note, however, as illustrated in  Fig.   12.22   , 

both the axial force and the normal force contribute to the pitch moment. 

Therefore, it is possible that the vehicle is statically stable when    xcp = xcg,    

if    ycp    is below    ycg    (as is the case in the sketch of  Fig.   12.22   ). In this case, the 

axial force will produce the required restoring moment.   

  EXAMPLE 12.4:    What is the total drag acting on a sharp cone? 

 We neglected the viscous forces and the base pressure in estimating the forces 

acting on the sharp cone of  Example   12.3   . Consider a sharp cone    (uc = 10�)    ex-

posed to the Mach 8 flow of Tunnel B at the Arnold Engineering  Development 

N

x

A

y xcp

ycp

cg

cp Figure 12.22         Aerodynamic 

forces acting at the center 

of pressure as effectively 

producing the aerodynamic 

pitching moment.   
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Center (AEDC), as shown in  Fig.   12.23   . For this problem, the subscript  t 1 

designates the flow conditions in the nozzle reservoir, the subscript 1 desig-

nates those in the test section, the subscript  e  designates those at the edge 

of the boundary layer of the sharp cone (and which are constant along the 

entire length of the cone), and the subscript    w    designates conditions at the 

wall of the cone. If    Tt1 = 1350�R, pt1 = 850 psia, T
w
= 600�R,    and    a = 0�,    

develop expressions for the forebody pressure coefficient    (Cp, e),    the base 

pressure coefficient    (Cp, b),    and the skin friction. What is the total drag act-

ing on the vehicle?  
  Solution:     We can use   Figs.   8.15   b and c     to obtain values for the pressure coeffi-

cient and for the Mach number of the inviscid flow at the edge of the 

boundary layer for a 10�-half-angle cone in a Mach 8 stream. Inherent 

in this use of these figures is the assumption that the boundary layer is 

thin and that there are no significant viscous/inviscid interactions which 

perturb the pressure field. Therefore,    Me = 6    and    Cp, e = 0.07.    Since 

   q1 = 1
2r1U

2
1 = (g>2)p1M

2
1,    

   pe = p1a1 +
g

2
 M2

1Cp, eb    

 We can use   Table   8.1        to calculate the free-stream static pressure    (p1)    

in the Mach 8 flow of the wind-tunnel test section: 

   p1 =
p1

pt1
 pt1 = (102 * 10 -6)(850) = 0.867 psia   

 Therefore, 

   pe = 0.0867[1.0 + (0.7)(64)(0.07)] = 0.3586 psia   

 Since    Me = 6,    we can use   Table   8.1        and the fact that the edge flow is 

that for an adiabatic flow of a perfect gas, so that    Tt1 = Tte,    and: 

   Te =
Te

Tte
Tte = (0.12195)(1350) = 164.63�R   

pt1�850 psia

Tt1�1350� R
M1�8

Cp,e

Cp,b

Rb�3.0 in.l

uc�10�

t

 Figure 12.23         Sharp cone mounted in Tunnel B of AEDC.   
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 To aid in our decision as to whether the boundary layer is laminar or 

turbulent, we will calculate the Reynolds number for the flow at the bound-

ary-layer edge: 

   Rel =
reUel
me

= J re

RTe
R 3Me1gRTe4 J Te + 198.6

2.27 * 10 -8T 1.5
e
R l   

 where, as shown in  Fig.   12.23   ,  l  is the wetted distance along a conical genera-

tor. Therefore, 

    Rel = a0.0001828 
lbf # s2

ft4
b a3773.80 

ft

s
b a7.575 * 106 ft2

lbf # s b l

 = 5.226 * 106 l    

 Based on the wetted length of a conical ray    (lc = 17.276 in.),    

   Relc = 7.523 * 106   

 You should notice that, although hypersonic boundary layers are very stable, 

boundary-layer transition could occur for this flow, probably within the first 

one-half of the cone length. So, we can use the correlation presented in  Fig. 

  12.24    to determine the base pressure as:  
   
pb

pe
= 0.02   
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 Figure 12.24         Base pressure ratio as a function of the local Mach 

number for turbulent flow [from  Cassanto (1973) ].   
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 so that    pb = 0.00717 psi.    

 Notice that since    pb = 0.02pe,    

    Cp, b =
pb - p1

q1

= a
pb

p1

- 1b
2

gM2
1

 = a
pb

pe
 
pe

p1

- 1b
2

gM2
1

= -0.0205   

 Recall that the assumption for Newtonian flow is    Cp, b = 0.0,    which is very 

close to the calculated result. 

 To calculate the skin-friction contribution, we will use the Reynolds 

analogy  (see  Chapter   4   ) . For supersonic flow past a sharp cone, the heat-

transfer rate (or, equivalently, the Stanton number) can be calculated using 

the relatively simple approximation obtained through the Eckert reference 

temperature approach [ Eckert (1955) ]. In this approach, the heat-transfer 

rates are calculated using the incompressible relations  [e.g., equation (4.103)]  

with the temperature-related parameters evaluated at Eckert’s reference 

temperature    (T*).    According to  Eckert (1955) , 

   T* = 0.5(Te + T
w

) + 0.22r(Tte - Te)   

 where  r  is the recovery factor. For turbulent flow, the recovery factor is    1
3 Pr,    

which is equal to 0.888 for    Pr = 0.70    and: 

    T* = 0.5(164.63 + 600) + 0.22(0.888)(1350 - 164.63)

 = 613.89�R    

 Therefore, 

    Re*l = J pe

RT*
R 3Ue4 J T* + 198.6

2.27 * 10 -8T*1.5
R l

 = a0.00004901
lbf # s2

ft4
b a3773.80 

ft

s
b a2.353 * 106 ft2

lbf # s b l

 = 4.353 * 105l    

 So, using Reynolds’ analogy, we have 

   Cf =
0.0583

(Re*l )0.2
=

0.004344

l0.2
   

 and 

   t = Cf a
g

2
peM

2
eb =

0.03926

l0.2
 
lbf

in.2
   

 To calculate the total drag, we add the surface pressure and shear stress 

components, and also add in the base pressure: 

   D = Lpe2pr dl sin uc + Ltw2pr dl cos uc - pbpR2
b   
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 Noting that    pe    is constant along the length of the conical generator, 

   dl sin uc = dr,    and 

   r = l sin uc   

 Noting that    pe    is constant along the length of the conical generator, 

   dl sin uc = dr,    and    r = l sin uc,    

    D = pepR2
b + 0.03926(2p)(cos uc sin uc) L

lc

0

l0.8dl - pbpR2
b

 = (0.3586)(9p) + (0.04218)
l1.8
c

1.8
- (0.00717)(9p)

 = 10.139 + 3.956 - 0.203 = 13.892 lbf      

 Various researchers have developed numerical techniques using the two-layer ap-

proach, that is, one in which an inviscid solution is first computed providing the flow 

conditions (e.g., the static pressure and the entropy) at the edge of the boundary layer. 

Having defined the pressure and the entropy distribution, the remaining flow proper-

ties can be calculated and the inviscid streamlines generated.  Brandon and DeJarnette 

(1977)  and  Riley et al. (1990)  have generated numerical solutions of Euler’s equation 

complemented by streamline tracing techniques to define the inviscid properties and the 

inviscid streamlines for various blunt configurations. Once the boundary conditions are 

known, solutions of the boundary layer will provide the temperature, the velocity, and 

the gas-component distributions adjacent to the surface from which we can determine 

the convective heat-transfer rate and the skin friction. Techniques of various rigor can be 

used to generate distributions for the convective heat-transfer rate and the skin friction. 

 Zoby et al. (1981)  have computed the laminar heat-transfer distributions for the Shuttle 

 Orbiter  using an incompressible Blasius relation (a similarity transformation) with com-

pressibility effects accounted for by Eckert’s reference-enthalpy method.  Bertin and Cline 

(1980)  developed a nonsimilarity boundary-layer code to generate solutions for laminar, 

transitional, and turbulent boundary layers. Although these two techniques are very dif-

ferent, they produced very similar computations of the Shuttle’s reentry environment.  

  12.5  HIGH    L/D    HYPERSONIC CONFIGURATIONS—
WAVERIDERS 

 Atmospheric reentry , as shown in  Fig.   12.1   ,  requires significant deceleration, but using 

ballistic trajectories creates negative g’s which are extreme.  Nonweiler (1959)  concluded 

that “The most effective method of alleviating the deceleration is by the introduction of 

lift, which also serves to decrease the peak heating rate, though the total heat absorbed 

is usually greater.” To achieve high  L/D  (lift/drag), Nonweiler proposed all-wing designs 

of a delta planform, such that the shock wave is attached to the leading edges at the 

design Mach number and at the design angle of attack. Therefore, the wing appears to 

ride on its shock wave, and the vehicle is known as a “waverider.” Shapes of the wing 

undersurface of a delta amenable to treatment by exact shock-wave theory, as proposed 

by Nonweiler are reproduced in  Fig.   12.25   .  
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 Experimental studies of Nonweiler’s waverider configurations indicated lower 

aerodynamic performance (i.e., lower lift-to-drag ratio) than was predicted. The experi-

mentally observed deficiencies in the aerodynamic performance of the caret waveriders 

have been attributed to their large wetted area and the corresponding relatively high 

skin-friction drag. 

  Squire (1976b)  studied the conditions for which the flow on the upper surface of a 

wing was independent of that on the lower surface of the wing. If the Mach number normal 

to the leading edge , which is defined in equation (11.9),  is sufficiently high, and the inci-

dence normal to the leading edge , which is defined in equation (11.10),  is not too great, the 

flow near the leading edge is similar to that over an infinitely swept wing. That is, the shock 

wave below the wing is attached to the wing leading edges and there is a Prandtl-Meyer 

expansion around the edges, producing a region of uniform suction on the upper surface. 

This is designated as region C in  Fig.   12.26   , which is taken from  Squire (1976a) . As the 

Mach number normal to the leading edge decreases or as the angle of attack normal to the 

leading edge increases, the shock wave detaches from the windward surface. This is desig-

nated region B in  Fig.   12.26   . Once the shock wave detaches from the compression surface 

of a thin wing, flows on the two surfaces are no longer independent. For these conditions, 

the pressure near the leading edge of the compression surface is relatively high, so that 

there is a strong outflow around the leading edge on to the upper surface. However, since 

Surface
streamlines

(a) W-delta
(Nonweiler)

(b) Caret
(Nonweiler)

A

A A�

A�

Shocks

A

A A�

A�

Single plane
shock

 Figure 12.25         Shapes of all-wing delta planforms amenable to treat-

ment by exact shock-wave theory, as proposed by  Nonweiler (1959) .   
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the detached shock wave (of region B) is close to the leading edge, the crossflow reaches 

sonic speed as it accelerates around the leading edge. So, the shape of the upper surface 

does not influence the flow on the lower surface. For region A, the conditions are such that 

the shock wave is well detached from the windward surface. For such conditions, the flows 

on the upper and on the lower surfaces are no longer independent. The flow on the suction 

surface is sensitive to changes in the shape of the windward (lower) surface.  
  Anderson et al. (1990)  describe the way a waverider configuration works, as 

shown in  Fig.   12.27   :  
    •   a waverider is a high-speed vehicle designed to have an  attached  shock wavealong 

the leading edge of the configuration, as shown in  Fig.   12.27   a  

   •   “the vehicle appears to be riding on top of its shock wave, hence the term wa-

verider. This is in contrast to a more conventional hypersonic vehicle, where the 

shock wave is usually detached from the leading edge.” (as sketched in  Fig.   12.27   b) 

[ Anderson et al. (1990) ]  

Cross section of
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 Figure 12.26         Types of flow on thin delta wings at supersonic 

speeds [from  Squire (1976a) ].   



Sec. 12.5 / High L/D Hypersonic Configurations—Waveriders    695

   •   the advantage of a waverider configuration, as shown in  Fig.   12.27   a, where “the 

high pressure behind the shock wave under the vehicle does not ‘leak’ around the 

leading edge to the top surface; the flowfield over the bottom surface is contained, 

and the high pressure is preserved” [ Anderson et al. (1990) ]  

   •   for the vehicle shown in  Fig.   12.27   b, pressure information can be passed between 

the lower and upper surfaces, so pressure leaks around the leading edges and 

reduce the pressure acting on the lower surface, which also reduced the lift. This 

is shown in  Fig.   12.28   , where the lift curves ( L  versus    a   ) are sketched for the two 

vehicles shown in  Fig.   12.27   .    
  Anderson et al. (1990)  note further that “when waveriders are optimized for maximum 

L/D, the previous studies have demonstrated that the driving parameter that alters the 

L/D ratio is the skin friction drag.” 

 The design of a hypersonic waverider configuration employs a variety of compu-

tational methods. One basic design methodology, which was first developed for coni-

cal flow fields, is illustrated in  Fig.   12.29   . A capture flow tube (whose streamlines are 

parallel to the axis of the shock-generating cone) intersects the conical shock wave. The 

leading edge of the waverider is the intersection of the capture flow tube and the conical 

shock wave. The shape of the waverider leading edge is dependent on the shape of the 

capture flow tube, the shock angle, and the distance from the capture flow tube to the 

conical shock-wave centerline. The lower surface is defined by tracing streamlines from 

the leading edge to the desired base location of the waverider.  Eggers and Radespiel 

(1993)  state, “An obvious choice for the upper surface of hypersonic waveriders is the 

undisturbed Flow Capture Tube used to define the leading edge of the configuration. 

(a) Waverider

Shock wave

Shock attached along
the leading edge

(b) Generic vehicle

Detached shock

V�

 Figure 12.27         Comparison of a waverider with a generic hyper-

sonic configuration [from   Anderson et al. (1990) ].   
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This results in zero pressure coefficient along the upper surface and the aerodynamic 

behavior is completely governed by the lower surface. However, with a more careful 

consideration of typical waverider missions, a designer would like to have more options 

at his disposal for several reasons. Firstly, variations of the flow state along the upper 

surface will result in a redistribution of the vehicle’s volume which is useful to assist 

integration of fuels, systems, and payload. A careful use of flow expansion along the 

upper surface may also enhance  L / D  at the design point. Finally, flow expansion in the 

rear part of a waverider will decrease the base drag of vehicles in the subsonic, transonic, 

and supersonic part of the vehicle’s trajectory.” The process described in this paragraph 

can be used to derive a waverider from any axisymmetric flow field.  

Conical shock

Shock
generating

cone

 Flow capture
tube

 Figure 12.29         Derivation of waverider configurations from a coni-

cal flow field.   
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 Figure 12.28         Curves of lift and    (L>D)    versus angle of attack: 

comparison between a waverider and a generic vehicle [from 

 Anderson et al. (1990) ].   
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 To achieve realistic estimates of the  L/D  ratio, the effect of skin-friction drag, 

which represents a relatively large fraction of the total drag, must be included in de-

riving the waverider configuration.  Bowcutt et al. (1987)  have developed a numerical 

procedure for optimizing cone-derived waveriders, which includes the effect of skin 

friction. 

 The results of an experimental investigation which was conducted to determine 

the aerodynamic characteristics of waverider configurations are reported in  Bauer et al. 

(1990) . The Mach 4 waverider configuration, which was determined using the conical 

flow field process described previously (including both the pressure drag and the fric-

tion drag in the optimization procedure), is depicted in  Fig.   12.30   . A second wind-tunnel 

model was built with a flat top, but having the same planform and cross-sectional area 

distribution. Data were also obtained with the two configurations inverted in the Uni-

tary Plan Wind Tunnel (UPWT) at NASA Langley Research Center at a Mach number 

of 4 and at a unit Reynolds number of    2 * 106    per foot. To ensure that the boundary 

layer on the model was fully turbulent, grit particles (with a particle diameter of 0.0215 in.) 

were applied 4.0 in. aft of the leading edge to promote the onset of transition at the 

desired location on the model.  
  Bauer et al. (1990)  note, “The Mach 4 waverider is seen to have the most lifting 

potential followed by the flat-bottom configurations, which exhibit a 7% reduction in 

   CLa.    The Mach 4 waverider has 15% higher    CLa    than when inverted.” 

 The experimentally determined drag coefficients, as determined for    (L>D)max    

and presented in  Bauer et al. (1990) , are reproduced in  Fig.   12.31   . The grit drag was 

found to be only a very small part of the total drag. Since the base drag was found to be 

25% to 30% of the total drag, a significant effort was made to measure the base drag 

accurately. The estimates of the skin friction drag,    CD, f,    were made using the reference 

temperature method. The skin-friction drag, which is roughly 25% of the total forebody 

drag, was found to be slightly lower for the flat-top/flat-bottom configurations than for 

24 
 24 


Mach 4 flat-bottom
configuration

Mach 4 inverted waverider

Mach 4 waverider Mach 4 flat-top configuration

30 
 30 


 Figure 12.30         Waverider configurations tested in the Langley 

Unitary Plan Wind Tunnel (UPWT) [from  Bowcutt et al. (1987) ].   
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the waverider, because the flat-top configuration has a smaller wetted area. The wetted 

surface area for the flat-top configuration was    897.6 in.2,    while that for the waverider 

was    915.2 in.2    The zero-lift pressure drag    (CD0)p    was determined by subtracting the 

estimated value of    CD, f     from the measured value of    CD0.    The value of    (CD0)p,    thus de-

termined for the flat-top/flat-bottomed configurations, was 13% lower than that for the 

waverider. This is the main reason why    (L>D)max    is higher for the flat-top/flat-bottom 

configurations than for the waverider, as will be discussed for  Fig.   12.32   .   
 The aerodynamic characteristics at    (L>D)max,    as experimentally determined 

for the four configurations and as computed using the design code, are reproduced in 
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 Figure 12.31         Breakdown of drag components at maximum    L>D    

conditions,    M� = 4, Re�>ft = 2 * 106.    [from  Bauer et al. (1990) ].   
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 Figure 12.32         Aerodynamic characteristics at maximum    L>D    con-

ditions,    M� = 4, Re�>ft = 2 * 106    [from  Bauer et al. (1990) ].   



Sec. 12.5 / High L/D Hypersonic Configurations—Waveriders    699

 Fig.   12.32   . Base drag and grit drag have been removed from the values presented 

in  Fig.   12.32   . The values both of    CL    and of    CD    when    (L>D)    is a maximum were found 

to be higher than the design values for all four configurations. However, none of the 

four configurations achieved a value of    (L>D)max    equal to that predicted using the 

design code. The experimental value of    (L>D)max    for the Mach 4 waverider was 13% 

lower than that predicted using the design code.    (L>D)max    was 5% higher for the 

flat-top configuration than for the waverider. However,  Bauer et al. (1990)  noted that 

“the waverider has higher    L>D    values than the flat-top configuration for    CL 7 0.16.   ” 

Furthermore, Bauer et al. conclude, “These measured performance deficiencies may 

be attributed to the slight shock detachment that was observed at the design Mach 

number and angle of attack.” 

 Not only is the aerodynamic performance of a waverider sensitive to viscous ef-

fects, but so is the heat transfer. Waveriders, by design, have sharp leading edges so that 

the bow shock wave is attached. However, for flight Mach numbers above 5, heat trans-

fer to the leading edge can result in surface temperatures exceeding the limits of most 

structural materials. As will be discussed in the next section, “Aerodynamic Heating,” 

the heat flux to the leading edge can be reduced by increasing the radius of the leading 

edge. However, while increasing the leading-edge radius can alleviate heating concerns, 

there is a corresponding increase in drag and, hence, a reduction in    L>D.     Eggers and 

Radespiel (1993)  note, “Defining the thickness of the leading edge to be about 10/5000 

[of the vehicle’s length] due to model manufacture requirements one obtains significant 

detachment of the bow shock and corresponding wave drag. Moreover, the shock is no 

longer confined to the lower surface which reduces the overall lift. Consequently, the 

inviscid    L>D    reduces by about 25% for this large amount of bluntness.” Therefore, the 

specification of the leading-edge radius for an aerodynamically efficient waverider that 

is to operate at Mach numbers in excess of 5 leads to the need for compromise. The 

leading-edge radius should be sufficiently large to limit the heat flux, yet be as small as 

possible to minimize the leading-edge drag. 

 As noted by  Haney and Beaulieu (1994) , “However, a waverider by itself doesn’t 

necessarily make a good hypersonic aircraft. To do that attention needs to be paid to 

volumetric efficiency, stability and control, and airframe-engine integration.”  Cervisi 

and Grantz (1994)  note, “The forebody compression surface sets up the flow environ-

ment for the remainder of the vehicle. It constitutes a large fraction of the vehicle 

drag and provides airflow to the engine inlet. However, once a particular forebody is 

selected, the available design space for the rest of the vehicle becomes very constrained 

due to the highly integrated nature of hypersonic flight.” Thus, the designer must con-

sider the relation between the forebody compression surface and the boundary-layer 

transition front, fuselage lift and drag, the inlet capture area, etc. 

 The sketch presented in  Fig.   12.33    illustrates how the inlet capture area can 

be quickly estimated from a conically derived forebody. For two-dimensional or ax-

isymmetric inlets, the bow-shock-wave location defines the mass flow as a function 

of inlet width. For shock-on-lip designs (i.e., designs for which the bow shock wave 

intersects the cowl lip), this condition corresponds to the design point. Since increas-

ing the capture area also increases the engine size and weight, finding the proper bal-

ance between the capture area and the nonflowpath drag is a goal for the forebody 

configuration.         
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 Figure 12.33         Compression surface derived from a conical flow 

field [from  Cervisi and Grantz (1994) ].   

 Aerodynamics Concept Box: Hypersonic Scramjet Success 

 Scramjets are typically viewed as a necessary propulsion system for hypersonic cruise ve-

hicles. The problem is the difficulty in designing a system that can start and sustain com-

bustion at hypersonic speeds. This has been described by some as lighting a match in a 

hurricane and keeping it lit! Until recently there was very limited experimental data for 

working scramjets. 

 That changed when the X-51A Waverider made the longest supersonic combustion 

ramjet-powered hypersonic flight in 2010. The X-51’s scramjet engine burned for more than 

200 seconds and accelerated the vehicle to Mach 5. “We are ecstatic to have accomplished 

most of our test points on the X-51A’s very first hypersonic mission,” said Charlie Brink, a 

X-51A program manager with the Air Force Research Laboratory. “We equate this leap in 
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   12.6  AERODYNAMIC HEATING 

 As noted in the introduction to this chapter, the kinetic energy associated with hyper-

sonic flight is converted to high temperatures within the shock layer. As a result, heat 

transfer is a very important factor in the design of hypersonic vehicles. Sharp leading 

edges would experience such extremely large heating rates in hypersonic flight that they 

would quickly melt or ablate (depending on the material used). Therefore, if a low-drag 

configuration is desired, the design would probably involve a slender cone with a spheri-

cally blunted nose. For a manned reentry craft, where the time of flight can be long and 

the dissipation of kinetic energy at relatively high altitude is desirable, the resultant 

high-drag configurations may be an airplane-like Space Shuttle that flies at high angles 

of attack or a blunt, spherical segment such as the Apollo Command Module. 

 The expression for the modified-Newtonian-flow pressure coefficient [equation 

(12.17)] can be rearranged to give 

      
ps

pt2
= sin2 ub +

p�

pt2
 cos2 ub = cos2 f +

p�

pt2
 sin2 f  (12.55)    

engine technology as equivalent to the post-World War II jump from propeller-driven air-

craft to jet engines.” 

 The X-51 was launched from a B-52 at 50,000 ft over Point Mugu Naval Air Warfare 

Center. Four seconds later, a solid rocket booster accelerated the X-51 to about Mach 4.8 

before it was jettisoned. “This first flight was the culmination of a six-year effort by a small, 

but very talented AFRL, DARPA and industry development team,” Mr. Brink said. “Now 

we will go back and really scrutinize our data. No test is perfect, and I’m sure we will find 

anomalies that we will need to address before the next flight. But anyone will tell you that we 

learn just as much, if not more, when we encounter a glitch.” Mr. Brink said he believes the 

X-51A program will provide knowledge required to develop the game changing technologies 

needed for future access to space and hypersonic weapon applications. 

       A B-52 carries an X-51A Waverider prior to the scramjet’s first 

 hypersonic flight test    (U.S. Air Force photo)  

 Quotes are from USAF press release, “X-51 Waverider makes historic hypersonic flight,” May 26, 2010. 
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 We will apply equation (12.55) to the relatively simple flow depicted in  Fig.   12.34   . As the 

boundary layer grows in the streamwise direction, air is entrained from the inviscid por-

tion of the shock layer. Therefore, when determining the fluid properties at the edge of 

the boundary layer, we must determine the entropy of the streamline at the boundary-

layer edge. Notice that the streamlines near the axis of symmetry of a blunt-body flow, 

such as those depicted in  Fig.   12.34   , have passed through that portion of the bow shock 

wave which is nearly perpendicular to the free-stream flow. As a result, we can assume 

that all the air particles at the edge of the boundary layer have essentially the same en-

tropy. Therefore, the entropy at the edge of the boundary layer and, as a result,    pt2    are 

the same at all streamwise stations. The local flow properties are the same as if the air 

had passed through a normal shock (NS) wave and had undergone an isentropic expan-

sion (IE) to the local pressure (designated an NS/IE process). For such an isentropic 

expansion, the ratio of    ps>pt2    can then be used to define the remaining flow conditions 

(for an equilibrium flow). Note that, if the flow expands isentropically to a point where 

the local static pressure    (ps)    is approximately    0.5pt2,    the flow is essentially sonic for all 

values of    g.    Solving equation (12.55), we find that    ps � 0.5pt2    when    ub = 45�    (i.e., the 

sonic points occur when the local body slope is    45�   ).  

Boundary layer

Shock layer

(A)

(A)

N.S.

RN

Se�St2

Se�St2

f

M� � 1

ub

 Figure 12.34         Sketch of the normal shock/isentropic expansion flow 

model for hypersonic flow over a blunt body. The air at the edge 

of the boundary layer at point A has passed through the (nearly) 

normal part of the shock wave. Thus, the entropy of the air particles 

at the edge of the boundary layer    (Se)    is essentially equal to    St2    at 

all stations. In essence, the air has passed through the normal part 

of the shock wave (NS) and has undergone an isentropic expansion 

(IE) to the local pressures.   
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 The modified Newtonian pressures for the zero-angle-of-attack Apollo Com-

mand Module are compared in  Fig.   12.35    with data obtained in Tunnel C at AEDC 

that were presented by  Bertin (1966) . The experimental pressures measured in Tun-

nel C at a nominal free-stream Mach number of 10 and at a Reynolds number of 

   Re�, D = 1.1 * 106    have been divided by the calculated value of the stagnation pres-

sure behind a normal shock wave    (pt2).    For reference, a sketch of the Apollo Com-

mand Module is presented in  Fig.   12.36   . Notice that an    S>Rb    ratio of 0.965 defines the 

tangency point of the spherical heat shield and the toroidal surface, while an    S>Rb    

ratio of 1.082 corresponds to the maximum body radius. Because the windward heat 

shield of the Apollo Command Module is a truncated spherical cap, the actual sonic 

points, which occur near the tangency point of the spherical heat shield and the toroidal 

surface, are inboard of the locations that they would occupy for a full spherical cap. 

As a result, the entire flow field in the subsonic portion of the shock layer is modified, 

and the streamwise velocity gradients are relatively large in order to produce sonic 

flow at the “corners” of the Command Module. Therefore, significant differences exist 

between the modified Newtonian pressures and the measured values as the flow ap-

proaches the edge of the spherical heat shield. Because the velocity gradient at the 

stagnation point of a hemispherical segment is increased above the value for a full 

hemisphere, the stagnation point heating rate will also be increased. Investigations of 

the stagnation region velocity gradients as a function of    Rb>RN    have been reported by 

 Stoney (1958)  and by  Inouye et al. (1968) .   
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 Figure 12.35         Comparison of the modified Newtonian pressures 

and the experimental pressures for the Apollo Command Module 

at    a = 0�    [from  Bertin (1966) ].   
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   12.6.1  Similarity Solutions for Heat Transfer 

 The magnitude of the heat transfer from a compressible boundary layer composed of 

dissociating gases can be approximated by 

      � q#
w

� = ak 
0T
0y

b
w

+ argDihi 
0Ci

0y
b

w

  (12.56)    

 where the heat is transported by conduction and by diffusion [see  Dorrance (1962) ]. 

We will assume that the flow has a Lewis number approximately equal to unity, the hot 

gas layer is in chemical equilibrium, and the surface temperature is much less than the 

external stream temperature. The Lewis number is the non-dimensional ratio of the ther-

mal diffusivity to the mass diffusivity. For these assumptions, the magnitude of the heat 

transferred to the wall is 

      � q#
w

� = a
k
cp

 
0h
0y

b
w

  (12.57)    

 There are many situations where a coordinate transformation can be used to reduce 

the governing partial differential equations for a laminar boundary layer to ordinary 

differential equations [see  Dorrance (1962) ].  Fay and Riddell (1958)  note, “As is usual 

in boundary-layer problems, one first seeks solutions of restricted form which permit 

reducing exactly the partial differential equations to ordinary differential form. An eas-

ily recognizable case is that of the stagnation point flow, where, because of symmetry, 

all the dependent variables are chosen to be functions of  y  alone, except  u  which must 

be taken proportional to  x  times a function of  y . This also appears to be the  only case  

for which the exact ordinary differential equations may be obtained regardless of the 

recombination rate.” 
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 Figure 12.36         Clean (no protuberances) Apollo Command Module. 

Dimensions in meters (inches).   
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 Using the similarity transformations suggested by  Fay and Riddell (1958) , we obtain 

      h(x1, y1) =
r

w
uer

k

12S L
y1

0

r

r
w

dy  (12.58)    

 and 

      S(x1) = L
x1

0

r
w
m

w
uer

2kdx  (12.59)    

 where  r  is the cross-section radius of the body of revolution and  k  denotes whether 

the flow is axisymmetric    (k = 1)    (e.g., a sphere) or two dimensional    (k = 0)    (e.g., a 

cylinder whose axis is perpendicular to the free stream). Limiting approximations are 

used to describe the flow in the vicinity of the stagnation point, for example, 
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 Therefore, at the stagnation point, 
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 and 

      h �
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R 0.5

Lr dy  (12.61)    

 Notice that using equation (12.61) as the expression for the transformed  y  coordinate, 

together with the definition for the heat transfer as given by equation (12.57), we find 

that (given the same flow condition), 

      (q
#
t, ref)axisym = 12(q

#
t, ref)2@dim  (12.62)    

 (i.e., the stagnation-point heat-transfer rate for a sphere is the    12    times that for a cylinder). 

 The stagnation-point heat-transfer rate for a laminar boundary layer of a spherical 

cap may be written as 

      q
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 For a Lewis number of 1,  Fay and Riddell (1958)  found that 
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  (12.64)    

 for velocities between    5800 ft>s (1768 m>s)    and    22,800 ft>s (6959 m>s)    and at altitudes 

between 25,000 ft (7620 m) and 120,000 ft (36,576 m). 

 We now can use Euler’s equation to evaluate the velocity gradient at the stagna-

tion point: 
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 Using the modified Newtonian flow pressure distribution [i.e., equation (12.55)] to 

evaluate the pressure gradient at the stagnation point, we obtain: 

      a
dpe

dx
b

t2
= -2pt2 cos f sin f 

df

dx
+ 2p� cos f sin f 

df

dx
  (12.66)    

 Since    sin f � f = x>RN, cos f � 1,    and    df>dx = 1>RN,    we find that 
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 Combining the expressions given by equations (12.63) through (12.67), we obtain 

the equilibrium correlation of  Fay and Riddell (1958) : 
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 Figure 12.37         Heat-transfer rate at the stagnation point of a 

sphere    (RN = 0.3048 m)    at an attitude of 45,721 m.   
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 This relation can be used either for wind-tunnel flows or for flight conditions.  Detra 

et al. (1957)  have also developed a correlation: 

      q
#
t, ref =

17,600

(RN)0.5
a
r�

rS.L.
b

0.5

a
U�
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b
3.15

  (12.69)    

 In equation (12.69),    RN    is the nose radius in feet,    rS.L.    is the sea-level density,    Uc.o.    is 

the velocity for a circular orbit, and    q
#
t, ref    is the stagnation point heat-transfer rate in 

   Btu>ft2 # s.    

 The heat-transfer rate at the stagnation point of a 1-ft (0.3048-m) sphere flying at 

150,000 ft (45,721 m) has been calculated using equation (12.68) for both the perfect-air 

model and the equilibrium-air model and using equation (12.69). The computed values 

are presented in  Fig.   12.37    as a function of    M�.    Above    M� = 14,    the perfect-gas model 

no longer provides realistic values of    q
#
t, ref.       

   12.7   A HYPERSONIC CRUISER FOR THE TWENTY-FIRST 
CENTURY? 

  Harris (1992)  considered the flight-block time for global-range fraction for several 

cruise Mach numbers. A vehicle cruising at Mach 10 would have global range in three 

hours flight-block time. Therefore, he concluded that Mach numbers greater than about 

10 to 15 provide an insignificant improvement in flight-block time both for civil and for 

military aircraft. 

  Hunt and Rausch (1998)  noted that, for hypersonic airplanes carrying a given pay-

load at a given cruise Mach number, range is a good figure of merit. This figure of merit 

is impacted by the fuel selection. Calculations indicate that Mach 8 is approximately 

the cruise speed limit for which a dual mode ramjet/scramjet engine can be cooled with 

state-of-the-art cooling techniques, when endothermic hydrocarbon fuels are used. On 

the other hand, liquid hydrogen has a much greater cooling capacity. Furthermore, 

hydrogen-fueled vehicles have considerably more range than hydrocarbon-fueled vehi-

cles flying at the same Mach number. In addition, the range of hydrogen-fueled vehicles 

maximizes at about a Mach number of 10, which is beyond the maximum flight Mach 

number associated with the cooling limits for endothermic hydrocarbon fuels. 

 Therefore, for hypersonic airplanes the constraints on cooling the engine limit 

endothermic-hydrocarbon-fueled vehicles to Mach numbers of approximately 8 or less. 

Airplanes that cruise at Mach numbers of 8 or greater will be hydrogen fueled. How-

ever, hydrogen-fueled systems can be designed for vehicles that cruise at Mach numbers 

below 8. The shape of the vehicle and the systems that constitute it will be very different 

for endothermic-hydrocarbon-fueled vehicles than for the hydrogen-fueled vehicles. 

Because of the dramatic differences in the fuel density and in the planform required to 

generate the required loading, the fuel type will greatly impact the design of the vehicle. 

 Other than fuel, the greatest impact on the system architectures will come from 

issues relating to airframe/propulsion-system integration. The entire lower surface of 

the vehicle is considered to be a boundary for the flowpath for airbreathing-propulsion 

system. The forebody serves as an external precompression surface for the engine inlet 

and the aftbody serves as a high expansion-ratio nozzle. Since the propulsion system 
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must take the vehicle from takeoff roll to cruise Mach number and back, the engine 

flowpath may contain a single duct, two ducts, or other concepts. The propulsion system 

may include auxiliary rocket components. 

 Configuration development studies for a global-reach, Mach 10 dual-fuel design have 

considered a variety of concepts.  Bogar et al. (1996a)  considered two classes of vehicles: a 

waverider and a lifting body. “When pressure forces alone are considered, the waverider 

enjoys a considerable advantage. However, as addition effects are added, this advantage 

erodes. Due to its larger wetted area, the waverider has higher viscous drag. And while 

the lifting body derives a benefit from trim effects, the waverider suffers a penalty because 

of the much larger forebody pitching moments which need to be balanced by the control 

surfaces.”  Bogar et al. (1996a)  conclude, “At Mach 10 cruise conditions, lifting bodies and 

waveriders provide comparable performance. Reshaping the vehicle to improve volumetric 

efficiency and provide moderate increases in fineness improves mission performance.” 

  Bogar et al. (1996b)  explored concepts for a Mach 10 vehicle capable of global-

reach missions, which could reach a target 8500 nautical miles (nmi) away in less than 90 

minutes after takeoff. A sketch of the concept, which is approximately 200 ft in length 

and has a reference area of approximately 10,000 sq ft, is presented in  Fig.   12.38   . The 

vehicle has a takeoff gross weight of approximately 500,000 pounds. A dual-fuel concept 

(i.e., one that uses both hydrogen and endothermic hydrocarbons) was preferred for 

the return mission due to its capability for in-flight refueling on the return leg. The all-

hydrogen vehicle was superior on the one-way mission due to its higher specific impulse 

   (Isp).    The buildup of the components for the minimum drag for the baseline lifting body 

is presented in  Fig.   12.39   . The major components are pressure/wave drag, viscous drag, 
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 Figure 12.38         Mach 10 dual-fuel lifting-body cruise configuration 

[from  Bogar et al. (1996b) ].   
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leading-edge drag, and base drag. At cruise speed, the pressure drag is responsible for 

78 %  of the total drag, while the viscous drag accounts for 15 %  of the total drag (notice 

the relatively high transonic-drag rise). Therefore, although the vehicle is designed to 

cruise at Mach 10, its shape is significantly affected by the transonic portion of the flight.   

 To help develop the technology base for the airbreathing-propulsion systems for hy-

personic vehicles, NASA has initiated the Hyper-X Program. As discussed by  McClinton 

et al. (1998) , “The goal of the Hyper-X Program is to demonstrate and validate the tech-

nology, the experimental techniques, and computational methods and tools for design and 

performance prediction of hypersonic aircraft with airframe-integrated hydrogen-fueled, 

dual-mode combustion scramjet propulsion systems. Accomplishing this goal requires flight 

demonstration of and data from a hydrogen-fueled scramjet powered hypersonic aircraft.” 

  McClinton et al. (1998)  further state, “The Hyper-X Program concentrates on 

three main objectives required to significantly advance the Mach 5 to 10 scramjet tech-

nology leading to practical hypersonic flight: 

    1.   vehicle design and flight test risk reduction—i.e., preflight analytical and experi-

mental verification of the predicted aerodynamic, propulsive, structural, and inte-

grated air-vehicle system performance and operability of the Hyper-X Research 

Vehicle (HXRV),  

   2.   flight validation of design methods, and  

   3.   methods enhancements—i.e., continued development of the advanced tools re-

quired to refine scramjet-powered vehicle designs.   
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 Figure 12.39         Minimum drag buildup for baseline vehicle [from 

 Bogar et al. (1996b) ].   
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 “These objectives include experimental, analytical and numerical (CFD) activities 

applied to design the research vehicle and scramjet engine; wind tunnel verification of 

the vehicle aerodynamic, propulsion, and propulsion-airframe integration, perform-

ance and operability, vehicle aerodynamic database and thermal loads development; 

thermal-structural design; boundary layer transition analysis and control; flight control 

law development; and flight simulation model development. Included in the above is 

HXLV boost, stage separation and all other critical flight phases.”  

   12.8   IMPORTANCE OF INTERRELATING CFD, GROUND-TEST 
DATA, AND FLIGHT-TEST DATA 

  Woods et al. (1983)  note that preflight predictions based on the aerodynamics in the Aero-

dynamics Design Data Book (ADDB) indicated that a    7.5�    deflection of the body flap 

would be required to trim the Space Shuttle  Orbiter  for the center of gravity and for the 

vehicle configuration of STS-1. In reality, the body flap had to deflect to much larger values 

   (dBF � 16�)    to maintain trim at the proper angle of attack    (a = 40�).    Comparisons of 

equilibrium-air calculations and perfect-gas calculations indicate that at least part of this 

so-called “hypersonic anomaly” is due to real-gas effects at very high Mach numbers. At 

Mach 8, the flight data and the ADDB values agreed, as reported by  Woods et al. (1983) . 

 Consider the flow depicted in the sketch of  Fig.   12.40   . For perfect air 

   (g = 1.4), r2 = 6r1    across the normal portion of the shock wave, whereas    r2 = 15r1    for 

air in thermodynamic equilibrium    (g = 1.14).    Therefore, for the equilibrium-air model 

the shock layer is thinner and the inclination of the bow shock wave relative to the free 
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lies closer to the body
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 Figure 12.40         Hypersonic flow past an inclined spherically blunted 

cone comparing perfect-gas and equilibrium-air pressures.   
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stream is less than that for the perfect-air model. Tangent-cone theory (which assumes 

the local pressure is given by the pressure on a cone with the same local slope ; see  Fig. 

  8.15    ) applied to the afterbody region shows a decrease in pressure with decreasing gamma. 

Using this simplistic flow model, we would expect the equilibrium-air pressures on the aft 

end of the vehicle to be less than those for perfect air. Computations of the flow field over 

simplified Orbiter geometries as reported by  Woods et al. (1983)  and by  Maus et al. (1984)  

indicate that this is the case. The calculations of Maus et al. are reproduced in  Fig.   12.41   .   
  Maus et al. (1984)  further note that the stagnation pressure increases with de-

creasing gamma. Therefore, as presented in  Fig.   12.12   , the equilibrium-air value for 

the stagnation pressure is greater than that for perfect air. This, too, is reflected in the 

nose region pressures presented in the more rigorous solutions of  Woods et al. (1983)  

and  Maus et al. (1984) . 

 The differences between the equilibrium-air pressure distribution and the perfect-

air pressure distribution may appear to be relatively small. Indeed, there is little differ-

ence in the normal force coefficients for the equilibrium-air model and for the perfect-air 

model. However, because the equilibrium-air (real-gas) values are higher at the nose 

and lower at the tail, the real-gas effects tend to drive    CM    more positive. The pitching 

moments for the Space Shuttle  Orbiter  at    M� = 23    presented by  Maus et al. (1984)  are 

reproduced in  Fig.   12.42   . Therefore, detailed studies incorporating wind-tunnel data, 

flight-test data, and CFD solutions, as reported by  Woods et al. (1983)  and by  Maus 

et al. (1984) , provide insight into understanding a sophisticated aerodynamic problem.  
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 Figure 12.41         Comparison of perfect-gas and equilibrium-air cal-

culations of the windward pitch-plane pressure distribution for 

the Space Shuttle  Orbiter  at    a = 30�    [from  Maus et al. (1984) ].   
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 Interest in hypersonic technology regularly waxes and wanes. Two books have 

been written to preserve this technology, one for the aerothermodynamic environment 

by  Bertin (1994)  and one for airbreathing propulsion systems [ Heiser and Pratt (1994) ] 

of vehicles which fly at hypersonic speeds.  

   12.9  BOUNDARY-LAYER-TRANSITION METHODOLOGY 

 Laminar-to-turbulent boundary-layer transition in high-speed boundary layers is critical 

to the prediction and control of heat transfer, skin friction, and other boundary-layer 

properties.  Bertin (1994)  noted that the mechanisms leading to transition are still poorly 

understood.  The Defense Science Board (1992)  found that boundary-layer transition 

was one of the two technical areas which needed further development before a demon-

strator version of the National Aerospace Plane (NASP) could be justified. 

  Schneider (2004)  notes that there are: “two major ways in which transition ap-

pears to be relevant for capsule flows. The first is transition on the blunt face, which 

can have a significant effect on heating, depending on ballistic coefficient, angle of 

attack, geometry, roughness, and so on. The second is the effect of transition on the 

shear layer that separates from the rim of the blunt face. This shear layer may be 

important, if it may reattach to the afterbody, or otherwise affect the aerodynamic 

stability or the aerothermodynamic heating.  Sinha et al. (2004)  shows that transition 

in the wake can have a significant effect on base heating. Transition may or may not 

occur in the shear layer in a significant way, again depending on the configuration 

and trajectory.” 

  Schneider (2004)  continued: “For the designer, one issue is whether transition has 

a significant effect on the thermal-protection system mass via increased heating. The 
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 Figure 12.42         Comparison of perfect-gas and equilibrium-air cal-

culations of the pitching moment for Space Shuttle  Orbiter  at 

   M� = 23    [from  Maus et al. (1984) ].   
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other issue is the effect on lift-to-drag ratio through changes in the afterbody flow that 

affect moments and the trim angle of attack.” 

 The high-heating rates of a turbulent boundary layer are illustrated in  Fig.   12.43   , 

which presents computations and measurements of the surface heat transfer during the 

Reentry F flight test.  Reda (1979)  noted that the ballistic RV of the Reentry F was a 3.96-m 

(13-ft) beryllium cone that reentered at a peak Mach number of about 20 and a total 

enthalpy of about    18 MJ>kg (7753 Btu>lbm).     Schneider (1999)  summarized that the cone 

half-angle was    5�;    the angle-of-attack was near zero; and the graphite nosetip had an ini-

tial radius of 0.25 cm (0.1 in.). The individual measurements, which are represented by 

the symbols, are compared with the heat-transfer rates that were computed using a var-

iable-entropy boundary-layer code that included equilibrium chemistry. To provide the 

best agreement between the experimental heat-transfer rates and the numerical values, 

the computed boundary layer was assumed to transition instantaneously at an    x>L 0.625,    

where  x  is the axial distance from the apex of the cone and  L  is the length of the cone. 

With the transition location for the computed boundary layer positioned to match the 

location based on the experimentally determined heat-transfer distribution, agreement 

was good both for the laminar and for the turbulent regions. Hamilton, who performed 

the computations, said that typical accuracies are 20% to 25% for the turbulent boundary 

layer and 15% to 20% for the laminar boundary layer.  Schneider (2004)  noted: “Present 

empirical correlations for the onset and the extent of transition are uncertain by a factor 

of three or more. Thus, our computational capabilities for laminar and turbulent heating 

in attached flows are fairly good, the uncertainty in prediction of the overall heating is 

now often dominated by the uncertainty in predicting the location of transition.”  
  Schneider (2004)  reported, “A 1988 review by the Defense Science Board 

 [ Defense Science Board (1988) ] found that   c    estimates [of the point of transition] 

range from 20 to 80% along the body    c    The assumption made for the point of 
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in computation to match
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 Figure 12.43         Heating-rate distribution along cone for reentry F.   
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transition can affect the vehicle gross takeoff weight by a factor of two or more.” 

This point is illustrated in  Fig.   12.44   , which is taken from  Whitehead (1989) . A fully 

laminar boundary layer reduces the drag by approximately 6% for the baseline design 

of a single-stage-to-orbit National Aerospace Plane (NASP), while a fully turbulent 

boundary layer increases the drag by about 8%. For the baseline configuration, with 

substantial laminar flow on the forebody, the reduced drag and lower heating can result 

in a 60% to 70% increase in payload over the all-turbulent boundary-layer condition, 

as noted by  Whitehead (1989) .  
 Consider transition of the boundary layer of a sharp cone at zero angle-of-attack 

(AOA) in a supersonic/hypersonic stream. Despite the relative simplicity of the flow 

field,  Schneider (2004)  notes that the experimentally determined transition locations 

“in air at perfect-gas conditions are affected by cone half-angle, Mach number, tun-

nel size and noise, stagnation temperature, surface temperature distribution, surface 

roughness, and any blowing or ablation, as well as measurement technique. Sharp-cone, 

smooth-wall instability growth does not scale with Mach number, Reynolds number, 

and    T
w
>Tt,    even under perfect-gas conditions [ Kimmel and Poggie (2000) ]. The mean 

boundary-layer profiles and their instability and transition depend on the absolute tem-

perature; this is because the viscosity and heat-transfer coefficients depend on absolute 

temperature and do not scale. AOA effects are difficult to rule out, except by systematic 

azimuthal comparisons that are all too rare.” 
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  Bertin and Cummings (2003)  note, 

  The difficulty in developing criteria for predicting boundary-layer transition is com-

plicated by the fact that the location of the onset of boundary-layer transition is very 

sensitive to the measurement technique used. The experimentally-determined heat-

transfer rates increase above the laminar values at the upstream end of the boundary-

layer transition process, i.e., at the onset of transitional flow. A schlieren photograph 

of the hypersonic flow field reveals vortices in the boundary layer associated with the 

various steps in the breakdown, i.e., in the transition of the boundary layer. However, 

for a flow as simple as a hypersonic flow over a slender, sharp cone, the boundary-

layer transition location determined using the heat-transfer distribution along a coni-

cal generator is very different than that determined using a schlieren photograph.  

 Even if every researcher were to define and to measure transition in the same way, 

the scatter of transition data as a function of the Mach number still would be consider-

able. However, researchers employ a wide range of techniques in a wide variety of test 

simulations, which results in considerable scatter in transition correlations. This is il-

lustrated in  Fig.   12.45   , which was originally presented by  Beckwith and Bertram (1972) . 
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This presentation of data makes it difficult to imagine a single relationship that could 

correlate all of the data. Making matters worse is the fact that transition rarely occurs 

along a line. Turbulent zones spread and merge in the longitudinal direction, which 

further complicates the development of correlations for boundary-layer transition.   

   12.10  SUMMARY 

 Hypersonic flow is distinguished from supersonic flow by five characteristics: thin shock 

layers, entropy layers, viscous-inviscid interactions, high-temperature effects, and low 

density flows. These characteristics make this flow regime significantly different from 

supersonic aerodynamics, leading to theories and approaches which are unique from 

supersonic theories. Understanding how hypersonic vehicles differ from supersonic ve-

hicles, such as the importance and impact of boundary layer transition, is crucial for the 

successful design and analysis of hypersonic flight.   

     PROBLEMS 

   12.1.    Consider a hypersonic vehicle flying through the earth’s atmosphere at    10,000 ft>s    at an altitude 

of 200,000 ft. At 200,000 ft,    p� = 0.4715 lbf>ft2, r� = 6.119 * 10 -7 slug>ft3, T� = 449�R,    

and    h� = 2.703 * 106 ft # lbf>slug.    Using the thermodynamic properties of equilibrium air 

presented in  Fig.   12.10   , what are the static pressure    (p2),    the static temperature    (T2),    the 

enthalpy    (h2),    and the static density    (r2)    downstream of a normal shock wave? For com-

parison, use the normal-shock relations for perfect air , as given in  Chapter   8   ,  to calculate 

   p2, T2, h2,    and    r2.      

   12.2.    Consider a hypersonic vehicle reentering the earth’s atmosphere at 20,000 ft/s at an altitude 

of 200,000 ft. Repeat Problem 12.1, that is, calculate    p2, r2, T2,    and    h2    assuming that the air 

 (a)  is in thermodynamic equilibrium and  (b)  behaves as a perfect gas.   

   12.3.    Consider a hypersonic vehicle reentering the earth’s atmosphere at    26,400 ft>s    at an altitude 

of 200,000 ft. Repeat Problem 12.1, that is, calculate    p2, r2, T2,    and    h2    assuming that the air 

 (a)  is in thermodynamic equilibrium and  (b)  behaves as a perfect gas.   

   12.4.    If the free-stream Mach number is 5, calculate the pressure coefficient on the surface of a 

wedge, whose deflection angle is 40°, using the correlations of Fig. 8.12b and using Newto-

nian theory. How does the altitude influence the resultant values of Cp?         

   12.5.    If the free-stream Mach number is 9, calculate the pressure coefficient on the surface of 

a sharp cone, whose deflection angle is 40°, using the correlations of   Fig.   8.16   b     and using 

Newtonian theory.   

   12.6.    In equation (12.22), it was stated without proof that the section drag coefficient (per unit 

span) for modified Newtonian pressures acting on a right circular cylinder is: Cd,p = 2
3Cp,t2 

Prove that Cd,p = 10
3 Cp,t2 is correct for 5 spans.   

   12.7.    Consider the sharp cone in a hypersonic stream, which was the subject of  Example   12.3   . If 

   M� = 10    and    uc = 10�,    prepare a graph of    CD    as a function of    a    for    -10� … a … 10�.      

   12.8.    Consider the sharp cone in a hypersonic stream, which was the subject of  Example   12.3   . If 

   M� = 10    and    uc = 10�,    prepare a graph of    CL    as a function of    a    for    -10� … a … 10�.      

   12.9.    Consider the sharp cone in a hypersonic stream, which was the subject of  Example   12.3   . If 

   M� = 10    and    uc = 10�,    prepare a graph of    L>D    as a function of    a    for    -10� … a … 10�.      
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   12.10.    Consider the sharp cone in a hypersonic stream, which was the subject of  Example   12.3   . If 

   M� = 10    and    uc = 10�,    prepare a graph of    CM    as a function of    a    for    -10� … a … 10�.    Is 

the configuration statically stable if    xcg = 0.6xL?      

   12.11.    A configuration that would generate lift at low angles of attack is a half-cone model, such 

as shown in  Fig.   P12.11   . Neglecting the effects of skin friction and assuming the pressure 

is that of the Newtonian flow model, develop an expression for the lift-to-drag ratio as a 

function of    uc    for    0 … a … uc.       

xL

Rb

M� fc

 Figure P12.11        

1

2

3

dBF � a � 20�

M�

a � 10�

 Figure P12.15        

   12.12.    Develop expressions for    ycp    and    xcp    for the flow described in Problem 12.11.   

   12.13.    Using the Newtonian flow model to describe the pressure field and neglecting the effects 

of viscosity, what is the drag coefficient on the    uc = 10�    sharp cone of  Example   12.4   ? What 

would the drag coefficient be if you used the modified Newtonian flow model?   

   12.14.    Following the procedure developed in  Example   12.4   , develop expressions for the forebody 

pressure coefficient    (Cp, e),    the base pressure coefficient    (Cp, b),    and the skin friction, if 

   uc = 20�    for the sharp cone exposed to the Mach 8 flow of Tunnel B.   

   12.15.    We will model the flow on the windward surface of a reentry vehicle and its body flap by 

the double wedge configuration shown in  Fig.   P12.15   . The lower surface of the fuselage is 

inclined    10�(a = 10�)    to the free-stream flow, producing the supersonic flow in region 2. 

A body flap is deflected    10�(so that a + dBF = 20�).     
    (a)   Calculate the pressure coefficient for regions 2 and 3 using the Newtonian flow model 

for    M1 = 2, 4, 6, 8, 10,    and 20.  

   (b)   Using the correlations of   Fig.   8.13       , calculate the pressure coefficients for regions 2 and 

3 for    M1 = 2,4, 6, 8, 10,    and 20. The flow remains supersonic throughout the flow field 

for these deflection angles. Note that to go from region 2 to 3 using the charts of   Fig. 

  8.13       , treat region 2 as an equivalent free-stream flow (“1”); then region 3 corresponds 

to region 2. Note, however, that    Cp3 = (p3 - p1) >q1,    that is, the reference conditions 

are those of the free stream.      
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    13    AERODYNAMIC DESIGN 

CONSIDERATIONS 

     Chapter Objectives 

  •   Understand that aerodynamic design decisions are rarely made without 
considering multidisciplinary design factors  

  •   Have a good idea of how to increase lift on an airplane, and how to modify an 
airplane in order to achieve aerodynamic improvements  

  •   Learn about drag reduction and how important reducing drag is to aircraft 
development programs  

  •   Study aircraft from the past and see how aerodynamic considerations were 
included in the design   

   In the previous chapters we have discussed techniques for obtaining flow-field solutions 

when the free-stream Mach number is either low subsonic, high subsonic, transonic, 

supersonic, or hypersonic.  Many airplanes must perform satisfactorily over a wide speed 

range , which may include more than one speed regime (e.g., subsonic and transonic)    . 

Therefore, the thin, low-aspect ratio wings designed to minimize drag during super-

sonic cruise must deliver sufficient lift at low speeds to avoid unacceptably high land-

ing speeds and/or landing field length. When these moderate aspect ratio, thin, swept 

wings operate at high angles of attack during high subsonic Mach number maneuvers, 

their performance is significantly degraded because of shock-induced boundary-layer 
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separation and, at high angles of attack, because of leading-edge separation and wing 

stall. Furthermore, because of possible fuel shortages and sharp fuel price increases, 

the wings of a high-speed transport may be optimized for minimum fuel consumption 

instead of for maximum productivity. In this chapter, we consider design parameters 

that improve the aircraft’s performance over a wide range of speed.   

      13.1  HIGH-LIFT CONFIGURATIONS 

 Consider the case where the aerodynamic lifting forces acting on an airplane are equal 

to its weight (steady, level, unaccelerated flight, which is typically called SLUF): 

      W = L = 1
2r�U2

� SCL  (13.1)    

 To support the weight of the airplane at relatively low speeds, we could either increase 

the surface area over which the lift forces act or increase the lift coefficient of the lifting 

surface. Airplanes accomplish this in different ways, most commonly by increasing the 

lift coefficient, but in many civil transports also by increasing the wing area. We will 

look at each approach individually. 

   13.1.1  Increasing the Area 

 During the early years of aviation, the relatively crude state of the art in structural analysis 

limited the surface area that could be obtained with a single wing. Thus, as discussed in 

 Cowley and Levy (1918) , “In the attempt to increase the wing area in order to obtain the 

greatest lift out of an airfoil it was found that there was a point beyond which it was not 

advantageous to proceed. This stage was reached when the extra weight of construction 

involved in an increase in wing area was just sufficient to counterbalance the increase in 

lift. The method of using aerofoils in biplanes is desirable in the first place from the fact 

that, with a smaller loss in the necessary weight of construction, extra wing area may thus 

be obtained.” Therefore, although some of the combatants used monoplanes at the start of 

World War I [e.g., the Morane-Saulnier type N (France) and the Fokker series of  E-type 

fighters (E for Eindecker; Germany)], most of the planes in service at the end of the war 

were biplanes [e.g., the SE5a (United Kingdom), the Fokker D-VII (Germany), and the 

SPAD XIII (France)] to carry the increased weight of the engine and of the payload. 

 Although the serious design of biplanes continued until the late 1930s, with the Fiat 

C.R. 42 (Italy) making its maiden flight in 1939, the improved performance of monoplane 

designs brought them to the front, primarily due to significant improvements in light 

weight materials and structures. Various methods of changing the wing geometry in flight 

were proposed in the 1920s and 1930s. Based on a concept proposed by test pilot V. V. 

Shevchenko, Soviet designer V. V. Nikitin developed a fighter that could translate from 

a biplane to a monoplane, or vice versa, at the will of the pilot [ Air International (1975) ]. 

In the design of Nikitin (known as the  IS -2), the inboard sections of the lower wing were 

hinged at their roots, folding upward into recesses in the fuselage sides. The sections 

outboard of the main undercarriage attachment points also were articulated and, rising 

vertically and inward, occupied recesses in the upper wing. Therefore, a single airplane 

combined the desirable short-field and low-speed characteristics of a lightly-loaded bi-

plane with the higher performance offered by a highly loaded monoplane. 
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 The variable-area concepts included the telescoping wing, an example of which 

is illustrated in  Fig.   13.1   , which shows the MAK-10, built in France to the design of an 

expatriate Russian, Ivan Makhonine. The wing outer panel telescoped into the inner 

panel to reduce span and wing area for high-speed flight and could be extended for 

economic cruise and landing.  

 Trailing-edge flaps, such as the Fowler flap, which extend beyond the normal 

wing-surface area when deployed, are modern examples of design features that increase 

the wing area for landing (aerodynamic data for these flaps are discussed  in the section 

on multielement airfoils in  Chapter   6    and  later in this chapter). The increase in the 

 effective wing area offered by typical multielement, high-lift configurations is illustrated 

in  Fig.   13.2   . The area increases available from using a plain (or aileron) type flap, a 

circular motion flap similar to that used on the Boeing 707, and the extended Fowler 

flap used on the Boeing 737 are compared in  Fig.   13.3   . The large increase in area for 

the 737-type flap is the sum of: (1) the aft motion of the entire flap, (2) the aft motion 

of the main flap from the fore flap, (3) the motion of the auxiliary (aft) flap, and (4) the 

movement of the leading-edge devices. Notice that the wing can increase in area by over 

30% when all of the high-lift devices are fully deployed.    

   13.1.2  Increasing the Lift Coefficient 

 The progress in developing equivalent straight-wing, nonpropulsive high-lift systems is 

illustrated in  Fig.   13.4   . Note the relatively high values obtained by experimental aircraft 

such as the L-19 of Mississippi State University and the MA4 of Cambridge University. 

Both of these aircraft use distributed suction on the wing so that the flow stays attached 

and approximates that for inviscid flow.  

 A companion figure from the work of  Cleveland (1970)  has been included for the 

interested reader. The parasite drag coefficient, which includes interference drag but 

 Figure 13.1         Makhonine MAK-10 variable-geometry (telescoping 

wing) aircraft [from  Air International (1975) ].   
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does not include induced or compressibility drag, is presented for several airplanes in 

 Fig.   13.5   .  

 The Chance-Vought F-8H Crusader offers an interesting design approach for ob-

taining a sufficiently high lift coefficient for low-speed flight while maintaining good 

visibility for the pilot during landing on the restricted space of an aircraft carrier deck. 

As shown in  Fig.   13.6   , the entire wing could be pivoted about its rear spar to increase its 

incidence by    7�    during takeoff and landing. Therefore, while the wing is at a relatively 

high incidence angle, the fuselage is nearly horizontal and the pilot has excellent vis-

ibility over the nose of the aircraft. Furthermore, when the wing is raised, the protruding 

center section also serves as a large speed brake.   

(a)

(c)

(b)

 Figure 13.2         Multielement, high-lift configurations: (a) Fowler 

flap; (b) double-slotted flap; (c) leading-edge slat, Krueger 

 leading-edge flap, spoiler, and triple-slotted flaps (representa-

tive of Boeing 727 wing section); (d) Fowler flaps on the HS 748 

(courtesy of BAE Systems).   
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   13.1.3  Flap Systems 

  Olason and Norton (1966)  note that “if a clean flaps-up wing did not stall, a flap sys-

tem would not be needed, except perhaps to reduce nose-up attitude (more correctly, 

angle of attack) in low-speed flight.” So, a basic goal of the flap system design is to 

attain the highest possible  L > D  ratio at the highest possible lift coefficient, as illus-

trated in  Fig.   13.7   . A flap system can do this by: (1) increasing the effective wing area, 

(2) increasing the camber of the airfoil section (thereby increasing the lift produced at 

a given angle of attack), (3) providing leading-edge camber to help prevent leading-

edge stall, and (4) including slots which affect the boundary layer and its separation 

characteristics.  

 Significant increases in the lift coefficient (and in the drag coefficient) can be ob-

tained by increasing the camber of the airfoil section. The effect of deploying a split flap, 

which is essentially a plate deflected from the lower surface of the airfoil, is illustrated 
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in the pressure distributions of  Fig.   13.8   . Deployment of the split flap not only causes 

an increase in the pressure acting on the lower surface upstream of the flap but also 

causes a pressure reduction on the upper surface of the airfoil. Therefore, the deploy-

ment of the split flap produces a marked increase in the circulation around the section 

and, therefore, increases the lift. The relatively low pressure in the separated region 

 Figure 13.6         Chance-Vought F-8H Crusader showing incidence 

for the wing during landing (U.S. Navy photo by PH2. P. Staley)   
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 Figure 13.7         Effect of flap deployment on the aerodynamic forces.   



728    Chap. 13 / Aerodynamic Design Considerations

in the wake downstream of the deployed plate causes the drag to be relatively high. 

The effect is so pronounced that it affects the pressure at the trailing edge of the upper 

surface (as shown in  Fig.   13.8   ). The relatively high drag may not be a disadvantage if 

the application requires relatively steep landing approaches over obstacles or higher 

power from the engine during approach in order to minimize engine acceleration time 

in the event of a wave-off. The effect of the flap deflection angle on the lift coefficient 

for a split flap is presented in  Fig.   13.9   . Data are presented both for a plain flap and 

for a split flap; both flaps were    0.2c    in length. The split flap produces a slightly greater 

increase in    Cl,max    than does the plain flap.

Simple hinge systems such as on a plain flap, even though sealed, can have signifi-

cant adverse effects on the separation point and the lift and drag of the wing. The adverse 

effect of the break at the hinge line is indicated in data presented in  Stevens et al. (1971) . 

Pressure distributions are compared in this reference for a plain flap, which is    0.25c    in 

length and is deflected    25�,    and for a variable camber flap whose centerline is a circular 

arc having a final slope of    25�.    Although separation occurs for both flaps, it occurs nearer 

1

2

Flap nested

Flap deployed

1

0

�1

�2

�3

Cp

�4

�5

�6
0.0 0.5 1.0

x
c

1

2

 Figure 13.8         Pressure distribution for an airfoil with a split flap 

[data from  Schlichting and Truckenbrodt (1969) ].   



Sec. 13.1 / High-Lift Configurations    729

the trailing edge for the variable camber shape, which, “turns out to be better only because 

of its drastic reduction in the suction peak” [the quotes are from  Stevens et al. (1971) ].    

   13.1.4  Multi-element Airfoils 

  As we discussed in  Chapter   6   , the     location of separation has a significant effect on the 

lift, drag, and moment acting on an airfoil section. It has long been recognized that gaps 

between the main section and the leading edge of the flap (called slotted flaps) can 

cause a significant increase in    Clmax
    over that for a split flap or a plain flap. Furthermore, 

the drag for the slotted flap configurations is reduced. Sketches of airfoil sections with 

leading-edge slats or with slotted flaps are presented in  Fig.   13.2   . 

  Smith (1975)  notes that the air through the slot cannot really be called high-energy 

air, since all the air outside the boundary layer has the same total pressure. Smith 

states, “There appear to be five primary effects of gaps, and here we speak of properly 

designed aerodynamic slots. 
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 Figure 13.9         Effect of flap angle on the sectional lift coefficient 

for a NACA 23012 airfoil section,    Rec = 6 * 105    [data from 

 Schlichting and Truckenbrodt (1969) ].   
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    •   Slat effect.      In the vicinity of the leading edge of a downstream element, the 

velocities due to circulation on a forward element (e.g., a slat) run counter to 

the velocities on the downstream element and so reduce pressure peaks on the 

downstream element.    

   •   Circulation effect.       In turn, the downstream element causes the trailing edge of 

the adjacent upstream element to be in a region of high velocity that is inclined 

to the mean line at the rear of the forward element. Such flow inclination induces 

considerably greater circulation on the forward element.  

   •   Dumping effect.      Because the trailing edge of a forward element is in a region of 

velocity appreciably higher than free stream, the boundary layer ‘dumps’ at a high 

velocity. The higher discharge velocity relieves the pressure rise impressed on the 

boundary layer, thus alleviating separation problems or permitting increased lift.  

   •   Off-the-surface pressure recovery.      The boundary layer from forward elements is 

dumped at velocities appreciably higher than free stream. The final deceleration to 

free-stream velocity is done in an efficient manner. The deceleration of the wake 

occurs out of contact with a wall. Such a method is more effective than the best 

possible deceleration in contact with a wall.  

   •   Fresh-boundary-layer effect.      Each new element starts out with a fresh bound-

ary layer at its leading edge. Thin boundary layers can withstand stronger adverse 

gradients than thick ones.”   

 Since the viscous boundary layer is a dominant factor in determining the aero-

dynamic performance of a high-lift multi-element airfoil, inviscid theory is not suf-

ficient for overall design requirements. Typical theoretical methods iteratively couple 

 potential-flow solutions with boundary-layer solutions, and eventually the use of 

 Navier-Stokes solutions. The potential-flow methods used to determine the velocity at 

specified locations on the surface of the airfoil usually employ singularity-distribution 

methods.  As discussed in  Chapters   3    and    6   , singularity-distribution     methods, which have 

been widely used since the advent of computers large enough to solve the large systems 

of simultaneous equations, can handle arbitrarily shaped airfoils at “any” orientation 

relative to the free stream (the word “any” is in quotes since there are limits to the valid-

ity of the numerical simulation of the actual flow). For singularity-distribution methods, 

 either source, sink, or vortex singularities are distributed on the surface of the airfoil 

and integral equations formulated to determine the resultant velocity induced at a point 

by the singularities. The airfoil surface is divided into  N  segments with the boundary 

condition that the inviscid flow is tangent to the surface at the control point of each and 

every segment. The integral equations can be approximated by a corresponding system 

of    N - 1    simultaneous equations. By satisfying the Kutta condition at the trailing edge 

of the airfoil, the  N th equation can be formulated and then the singularity strengths 

determined with a matrix-inversion technique. As noted previously, the Kutta condition 

which is usually employed is that the velocities at the upper and lower surface trailing 

edge be tangent to the surface and equal in magnitude. The various investigators use 

diverse combinations of integral and finite-difference techniques to generate solutions 

to the laminar, the transitional, and the turbulent boundary layers. You should read 

 the discussion in  Chapter   6    for more details, or  to one of the numerous analyses of 
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 multi-element airfoil problems [e.g.,  Stevens et al. (1971) ,  Morgan (1975) ,  Olsen and 

Dvorak (1976) , and  Air International (1993) ]. 

 The lift coefficients for a GA(W)-1 airfoil with a Fowler-type, single-slotted flap 

which are taken from  Wentz and Seetharam (1974)  are presented as a function of angle 

of attack in  Fig.   13.10   . Notice the large increases in    Cl,max    which are obtained with the 

slotted Fowler flap. As shown in the sketch of the airfoil section, the deflected flap 

segment is moved aft along a set of tracks that increases the chord and the effective 

wing area. Therefore, the Fowler flap is characterized by large increases in    Cl,max    with 

minimum changes in drag. The ability of numerical techniques to predict the pressure 

distribution is illustrated in  Fig.   13.11   . Data are presented for the GA(W)-1 airfoil at 

an angle of attack of    5�,    with a flap deflection of    30�.      
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 Figure 13.10         Experimental lift coefficient for a GA(W)-1 airfoil 

with a slotted Fowler flap [from  Wentz and Seetharam (1974) ].   
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 In this section, we have seen how the use of mechanical changes in camber can be 

used to increase the lift generated by airfoils and wings, independent of the change in 

angle of attack. Typically, you could expect maximum values of    CL    of 2.5 to 3.5 using 

mechanical systems on wings of commercial and military transports. In addition to the 

obvious mechanical complexity (e.g., tracks, brackets, and actuators) and weight, me-

chanical systems are limited aerodynamically in the maximum lift they can generate. 

One limitation, the Kutta condition, essentially fixes airfoil circulation (and the lift) to 

the value where the free-system flow leaves the airfoil at the trailing edge. A second 

limitation, viscous effects, usually reduces the attainable lift to less than that value, be-

cause the flow separates from the highly curved flap upper surface before the trailing 

edge is reached. Slotted flaps, of course, reduce the effects of separation. Nevertheless, 
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 Figure 13.11         Comparison of the theoretical and the experimental 

pressure distribution for a GA(W)-1 airfoil with a slotted flap, 

   a = 5�, df = 30�    [from  Wentz and Seetharam (1974) ].   
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concepts employing jet-engine bleed gases are often used to generate increased lift , as 

we saw for the C-17 in  Chapter   5    .  

   13.1.5  Power-Augmented Lift 

 An additional factor to consider in the comparison of flap types is the aerodynamic mo-

ment created by deployment of the flap. Positive camber produces a nose-down pitch 

moment, which is especially large when applied well aft on the chord, and  produces 

twisting loads on the structure. The pitch moments must be controlled with the 

 horizontal tail, which produced trim drag. Unfortunately, the flap types which produce 

the greatest increase in    Cl,max    usually produce the largest moments. Therefore, as shown 

in the sketches of the MiG 21s presented in  Fig.   13.12   , the Fowler flap with its extended 

guides and fairing plates is replaced by blown flaps for some applications. Separation 

from the surface of the flap is delayed by discharging fluid from the interior of the main 

airfoil section. The fluid injected tangentially to the surface imparts additional energy 

to the fluid particles in the boundary layer so that the boundary layer remains attached 

due to the Coanda effect (the tendency of a fluid to remain attached to a solid surface).  

 The internally blown flap is compared with two other techniques which use engine 

power to achieve very high lift in  Fig.   13.13   . The corresponding drag polars [as taken 

from  Goodmanson and Gratzer (1973) ] are included. The externally blown flap (EBF) 

spreads and turns the jet exhaust directed at the trailing-edge flap. A portion of the flow 

emerging through the flap slots maintains attachment of the boundary layer over the 

flap’s upper surface. The upper-surface-blowing (USB) concept resembles the exter-

nally blown flaps. However, the data indicate “better performance than the externally 

blown flap if the air-turning process is executed properly. Also, the path of the engine 

exhaust permits a certain amount of acoustic shielding by the wing, and consequently a 

significant reduction in noise.” The quote is from  Goodmanson and Gratzer (1973)  from 

The Boeing Company, which designed the YC-14 AMST (Advanced Medium STOL 

Transport) which is an aircraft that employed USB.  

(a) (b)

 Figure 13.12         Fowler-type flaps used on early series MiG 21s 

and the blown flaps used on later series: (a) Fowler-type flaps 

employed on the MiG-21 PF; (b) blown flaps employed on the 

MiG-21 MF [from  Air International (1974) ].   
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 Using suction to remove the decelerated fluid particles from the boundary layer 

before they separate from the surface in the presence of the adverse pressure gradient 

is another means of increasing the maximum lift. The “new” boundary layer which is 

formed downstream of the suction slot can overcome a relatively large adverse pressure 

gradient without separating. Flight data obtained in the late 1930s at the Aerodynamische 

Versuchsanstalt at Göttingen are reproduced in  Fig.   13.14   . The data  demonstrate that the 

application of suction through a slit between the wing and the flap can prevent separation. 

Since the flaps can operate at relatively large deflection angles, and the airfoil can operate 

at relatively high angles of attack without separation, large increases in lift can be ob-

tained. The maximum lift coefficients for the airplanes equipped with suction are almost 

twice that for the Fieseler Storch (Fi 156), a famous short takeoff and landing (STOL) 

airplane of the World War II period, which is shown in  Fig.   13.15   . The entire trailing edge 

of the Storch wing was hinged; the outer portions acting as statically balanced and slotted 

ailerons, and the inner portions as slotted camber-changing flaps. A fixed slot occupied 

the entire leading edge. Initial flight tests showed the speed range of the Fieseler Storch 
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to be 51 to    174 km/h (32 to 108 mi/h)    and that the landing run in a    13 km/h (8 mi/h)    wind 

using brakes is 16 m. You should refer to  Green (1970)  for more details.     

   13.2  CIRCULATION CONTROL WING 

 As discussed by  Englar (1987) , the circulation control wing (CCW) concept avoids the 

problems of mechanical and blown flaps by replacing the sharp trailing edge with a fixed 

nondeflecting, round or near-round surface, such as shown in  Fig.   13.16   . The tangential 

blowing jet remains attached to the curved surface by creating a balance between the 
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 Figure 13.14         Lift of three STOL airplanes for full landing flap 

deflection (power off). AF1 and AF2 are boundary layer control 

airplanes of the Aerodynamische Versuchsanstalt. Fi 156 is the 

Fieseler Storch [data from  Schlichting (1960) ].   
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 Figure 13.15         Fieseler Storch, Fi 156, showing fixed leading-edge slots 

and hinged trailing edge (courtesy of David Schultz Photography).   
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 Figure 13.16         Basic principles of circulation control aerodynamics 

[from  Englar (1987) ].   

subambient pressure and the centrifugal force, known as the Coanda  effect. Therefore, 

as shown in  Fig.   13.16   , at low values for the blowing momentum coefficient, it serves 

as a boundary-layer control (BLC) device to entrain the flow field and prevent it from 

separating. Once the flow is returned to the inviscid condition, the jet continues to 

turn around the trailing edge. The jet entrains and deflects the flow field, providing 
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 pneumatic deflection of the streamlines (equivalent to camber) and resulting in super-

circulation lift. In the circulation control region (CC), very high lift can be generated 

since the jet turning is not limited by a sharp trailing edge. As shown in  Fig.   13.17   , 

relatively high lift coefficients can be generated for two-dimensional CCW airfoils with 

much less blowing than that typical of mechanical blown flaps.    

   13.3   DESIGN CONSIDERATIONS FOR TACTICAL 
MILITARY AIRCRAFT  *    

 As noted by  Bradley (1981) , the designer of a tactical military aircraft is faced with a 

multitude of design points throughout the subsonic/supersonic flow regimes plus many 

off-design constraints. The design goals for a tactical weapons system may include ef-

ficient cruise at both subsonic and supersonic Mach numbers, superior maneuverability 

at both subsonic and supersonic Mach numbers, and rapid acceleration. 

  Bradley (1981) , referring to the results shown in  Figs.   13.18    and    13.19   , states, 

“The multiple design point requirement turns out to be the major driver for the de-

signer of fighter aircraft. The aerodynamic requirements for each of the design points 

often present conflicting requirements. For example, the need for rapid acceleration 

to supersonic flight and efficient supersonic cruise calls for thin wing sections with 

relatively high sweep and with camber that is designed to trim out the moments re-

sulting from aft ac movement at supersonic flight. However, these requirements are 

contrary to those requirements for efficient transonic maneuver, where the designer 

would prefer to have thicker wing sections designed with camber for high    CL    operation 

and a high- aspect-ratio planform to provide a good transonic drag polar. Designers 

are thus faced with a situation of compromise. These conflicting requirements suggest 
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 *  Quotations and data presented in this section are reproduced by permission from General Dynamics 

Corporation. 
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the  obvious solution of variable geometry, that is, variable sweep wing and/or variable 

camber. Although this is a satisfactory aerodynamic solution, in many cases the result-

ant weight increases to a configuration can be prohibitive.”   

  Bradley (1981)  shows typical performance results corresponding to requirements 

for a specific mission in  Fig.   13.18   : “The low Mach end of the spectrum throughout the 

   CL    range is typical of takeoff and landing for the configuration. The subsonic cruise and 

supersonic cruise portions are noted in the moderate lift range. Acceleration to high 

Supersonic maneuver Supersonic cruise 

FLOW
 DOMINANT 

  SEPARATED 

0.0
0.0

1.0 2.0

1.6

0.8

M

Takeoff and
landing

CL

MDD

Instantaneous maneuver

Sustained
maneuver

Drag rise

Design points

Sonic L.E.

Subsonic cruise   Acceleration 

ATTACHED FLOW DOMINANT

MIXED

SEPARATED AND ATTACHED FLOW

 Figure 13.19         General flow regimes encountered for fighters 

[from  Bradley (1981) ].   
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supersonic speeds occurs at the low lift coefficients. Sustained maneuver takes place 

in the    CL    range of less than one for most fighter configurations. Above this lift coeffi-

cient, the aircraft is in the instantaneous maneuver regime. Drag rise occurs, depending 

on the wing geometry, in the range of 0.8 to 1.2 Mach.” 

 Referring to  Fig.   13.19   ,  Bradley (1981)  states, “At the cruise and acceleration points, 

the aircraft designer is dealing primarily with attached flow, and his design objective is 

to maintain attached flow for maximum efficiency. At the higher    CL>s,    corresponding to 

instantaneous maneuver, separated flow becomes the dominant feature. Current designs 

take advantage of the separated flow by forming vortex flows in this range. Intermediate 

   CL>s,    corresponding to sustained maneuver are usually a mixture of separated and at-

tached flow. Consequently, if the aircraft is designed with camber to minimize separation 

in the maneuver regime, the configuration will have camber drag and may have lower 

surface separation, which increases drag at the low    CL>s,    needed for acceleration.” 

 “Thus, the aircraft design is a compromise to achieve an optimal flow efficiency 

considering the numerous design points associated with the mission objectives. It is 

easily seen that the transonic flow problems that must be addressed in fighter design 

are driven to a very large extent by the constraints imposed at the other design points—

supersonic and subsonic.” 

  Bradley (1981)  notes that “supersonic design enjoys relatively precise computa-

tion and optimization thanks to wide applicability of linearized theory.” Furthermore, 

Bradley states that “the design of efficient transonic configurations may proceed from 

two conceptual schools of logic. One acknowledges that the optimum low-drag flow 

must accelerate rapidly over the airfoil to supercritical flow and decelerate in a nearly 

isentropic manner, avoiding strong shocks and/or steep gradients that can lead to signifi-

cant regions of separation. This approach sets attached flow or near fully attached flow 

as an intuitive design goal and is typically used for aircraft that permit strong emphasis 

to be placed on transonic cruise or sustained maneuver design points.”  The design of 

airfoils for transonic cruise applications was discussed extensively in  Chapter   9   .  

  Bradley (1981)  continues, “The second school of thought recognizes the inevi-

tability of significant flow separations at design conditions and adopts a philosophy of 

controlling certain regions of separation through vortex flows to complement other 

regions of attached supercritical flow. This approach is appropriate for configurations 

constrained by multiple design points that emphasize added supersonic requirements. 

Current tactical fighters that rely on high wing loadings for transonic performance are 

good examples. The F-16 and F-18 employ a combination of controlled vortex flow and 

variable camber to achieve maneuverability.” 

 Even though a designer has worked carefully to design a wing for attached flow, 

the flow fields associated with sustained and instantaneous maneuvers involve predomi-

nantly separated flows. The manner in which the flow separates and how the separation 

develops over the configuration will strongly affect the vehicle’s drag and its control-

lability at the higher    CL>s.    Aircraft, such as the F-16 and the F-18, employ strakes or 

leading-edge extension devices to provide a controlled separated flow. Controlled vortex 

flow can then be integrated with variable camber devices on the wing surface to provide 

satisfactory high-lift, stability and control, and buffet characteristics. The  resulting flow 

field is a complex one, combining attached flows over portions of the wing with the 

vortex flow from the strake. 
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 The F-16 forebody strake vortex system is clearly visible as it interacts with the 

wing flow field in  Fig.   13.20   . Forebody strakes and canards have similar aerodynamic 

effects—both good and bad. For example, the F-16 forebody strake design required 

extensive integration with the wing variable leading edge flap system and empennage 

to achieve significant aerodynamic improvements. The aerodynamic improvements 

achieved with the forebody strake/variable leading edge flap combination are illus-

trated in  Fig.   13.21    for the YF-16 aircraft. The dashed curve depicts the lift curve and 

 Figure 13.20         Strake vortex system on an F-16 (U.S. Air Force 

photo by Josh Plueger).   
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drag polar for the wing without the strake and variable leading edge flaps. The strake 

with no leading-edge flap significantly improves the static aerodynamic characteristics. 

Further improvement is seen with the variable leading-edge flap in combination with 

the strake configuration.   

  Bradley (1981)  states: “We should not pass from the separated flow wing design 

discussion without mentioning a new concept of controlled vortex flow for designing 

military aircraft having emphasis on supersonic configurations. Wing planforms for 

supersonic cruise have higher leading edge sweep and generally lower aspect ratios; 

these planforms develop vortex flows at relatively low angle of attack. As a result, the 

transonic drag characteristics are lacking in the maneuver regime since drag polars 

generally reflect very little leading edge suction recovery. Recently, wings of this type 

have been designed to take advantage of the separated vortex flows rather than to try 

to maintain attached flow to higher    CL    values.”  

   13.4  DRAG REDUCTION 

 Possible fuel shortages combined with sharp price increases and the requirements of 

high performance over a wide-speed range emphasize the need for reducing the drag 

on a vehicle and, therefore, improving the aerodynamic efficiency. In fact, almost all 

aircraft development programs require drag reduction efforts at some point during the 

life of the program. Of the various possible drag reduction concepts, we will discuss: 

    •   Variable-twist, variable-camber wings  

   •   Laminar-flow control (LFC)  

   •   Wingtip devices  

   •   Wing planform   

   13.4.1  Variable-Twist, Variable-Camber Wings 

 Survivability and mission effectiveness of a supersonic-cruise military aircraft requires 

relatively high lift/drag ratios while retaining adequate maneuverability. The perform-

ance of a moderate-aspect-ratio, thin swept wing is significantly degraded at high lift 

coefficients at high subsonic Mach numbers because of shock-induced boundary-layer 

separation and, at higher angles of attack, because of leading-edge separation and wing 

stall. The resulting degradation in handling qualities significantly reduces the combat 

effectiveness of such airplanes. There are several techniques to counter leading-edge 

stall, including leading-edge flaps, slats, and boundary-layer control by suction or by 

blowing. These techniques, along with trailing-edge flaps, have been used effectively 

to increase the maximum usable lift coefficient for low-speed landing and for higher 

subsonic speeds. 

 Low-thickness-ratio wings incorporating variable camber and twist appear to offer 

higher performance for fighters with a fixed-wing planform [ Meyer and Fields (1978) ], 

since the camber can be reduced or reflexed for the supersonic mission and increased 

to provide the high lift coefficients required for transonic and subsonic maneuverability. 

 A test program was conducted to determine the effect of variable-twist, variable-

camber on the aerodynamic characteristics of a low-thickness-ratio wing [ Ferris (1977)].  
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The basic wing was planar with a NACA 65A005 airfoil at the root and a NACA 65A004 

airfoil at the tip (i.e., there was no camber and no twist). Section camber was varied using 

four leading-edge segments and four trailing-edge segments, all with spanwise hinge lines. 

Variable twist was achieved since the leading-edge (or trailing-edge) segments were paral-

lel and were swept more than the leading edge (or trailing edge). Camber and twist could 

be applied to the wing as shown in  Fig.   13.22   . Deploying the trailing-edge segments near 

the root creates a cambered section whose effective chord is at an increased incidence. 

Similarly, deploying the leading-edge segments near the wing tip creates a cambered 

section whose local incidence is decreased. Therefore, the modified wing could have an 

effective twist of approximately    8�    washout. As noted in  Ferris (1977) , use of leading-

edge camber lowers the drag substantially for lift coefficients up to 0.4. Furthermore, use 

of leading-edge camber significantly increases the maximum lift/drag ratio over a Mach 

number range of 0.6 to 0.9. At the higher lift coefficients    ( Ú0.5),    the combination of twist 

and camber achieved using both leading-edge segments and trailing-edge segments was 

effective in reducing the drag. Trailing-edge camber causes very large increments in    CL    

with substantial negative shifts in the pitch moment coefficients.        

Local incidence
is decreased

Leading-edge
segments

Trailing-edge
segments

Mean camber line

Chord line

Local incidence
is increased

Mean camber line

 Figure 13.22         Use of leading-edge segments and trailing-edge seg-

ments to produce camber and twist on a basic planar wing.   

 Aerodynamics Concept Box: Active Aeroelastic Wing 

 The Active Aeroelastic Wing project at NASA Dryden Flight Research Center was a two-

phase flight research program that investigated the potential of aerodynamically twisting 

flexible wings to improve roll maneuverability of high-performance aircraft at transonic and 
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 The effectiveness of leading-edge segments and trailing-edge segments in increas-

ing the lift coefficient and in reducing the drag coefficient at these relatively high lift 

coefficients is illustrated in the data presented in  Fig.   13.23   . As a result, the maximum 

lift/drag ratio for this particular configuration at    M� = 0.80    is 18, and it occurs when 

   CL = 0.4.      

supersonic speeds. Traditional control surfaces such as ailerons and leading-edge flaps are 

used as active trim tabs to aerodynamically induce the twist. From flight test and simulation 

data, the program developed structural modeling techniques and tools to help  design lighter, 

more flexible high aspect-ratio wings for future high-performance aircraft, which could trans-

late to more economical operation or greater payload capability. 

 The program used a modified F/A-18A Hornet as its testbed aircraft, with wings that 

had similar flexibility compared with the original pre-production F-18 wing. Other aircraft 

modifications included a new actuator to operate the outboard portion of a divided leading 

edge flap over a greater range and rate, and a research flight control system to host the ae-

roelastic wing control laws. 

 The upper wing surfaces of the Active Aeroelastic Wing F/A-18 test aircraft were covered 

with accelerometers and other sensors during ground vibration tests. An electro- mechanical 

shaker device (cylinder at the lower right of the picture) generated vibrations into the air-

frame during the tests, which helped engineers determine if aerodynamically induced 

 vibrations were controlled or suppressed during flight. The tests were the last major ground 

tests prior to the initiation of research flights. 

 Information from NASA Dryden Flight Research Center fact sheet for the AAW program. 

       NASA F-18 Active Aeroelastic Wing ground testing  

 (photo courtesy of NASA Dryden Flight Research Center)  
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   13.4.2  Laminar-Flow Control 

  In previous chapters, we have seen that the     skin-friction component of the drag is mark-

edly higher when the boundary layer is turbulent. Therefore, in an effort to reduce skin 

friction, which is a major part of the airplane’s “parasitic” drag, attempts have been made 

to maintain laminar flow over substantial portions of the aircraft’s surface.  Attempts at 

delaying transition by appropriately shaping the airfoil section geometry were discussed 

in  Chapter   5   .  However, a natural boundary layer cannot withstand even very small distur-

bances at the higher Reynolds numbers, making transition difficult to avoid.  Theoretical 

solutions reveal that removing the innermost part of the boundary layer using even very 

small amounts of suction substantially increases the stability of a laminar boundary layer. 

Maintaining a laminar profile by suction is termed  laminar-flow control  (LFC). 

 The aerodynamic analysis of a LFC surface is typically divided into three parts: 

(1) the prediction of the inviscid flow field, (2) the calculation of the natural devel-

opment of the boundary layer, and (3) the suction system analysis. In this approach 

(which may in reality require an iterative procedure), the first step is to determine the 

pressure and the velocity distribution of the inviscid flow at the edge of the boundary 

layer. The second step is to calculate the three-dimensional boundary layer, including 
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 Figure 13.23         Effect of twist and camber on the longitudinal aer-

odynamic characteristics    M� = 0.80, Rec = 7.4 * 106:    (a) lift-

to-drag ratio and the drag polar; (b) pitch moment and lift 

coefficients [from  Ferris (1977) ].   
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both the velocity profiles and the integral thicknesses. It might be noted that because 

of cross flow, the boundary layer on a swept wing may be more unstable than that on 

an unswept wing. Finally, the suction required to stabilize the boundary layer must be 

calculated and the suction system designed. 

 In 1960, two WB-66 aircraft were adapted to a    30�    swept wing with an aspect ratio 

of 7 and a thickness ratio of approximately 10 % . The modified aircraft were designated 

X-21A. A suction system consisting of turbocompressor units removed boundary-layer 

air from the wing through many narrowly spaced LFC suction slots. With suction-inflow 

velocities varying from    0.0001U�    in regions of negligible pressure gradient to    0.0010U�    

near the wing leading edge, full-chord laminar flows were obtained up to a maximum 

Reynolds number of    45.7 * 106    [ Kosin (1965) ]. It was concluded that laminar-flow 

control significantly reduced the wake drag on the wing. 

 Using the propulsion, structural, flight controls and system technologies predicted 

for 1985,  Jobe et al. (1978)  predicted fuel savings from 27% to 30 %  by applying LFC to 

the design of large subsonic military transports. Jobe et al. assumed that the LFC system 

used in their design would maintain a laminar boundary layer to    0.70c,    even though full-

chord laminarization of a wing with trailing-edge controls is technically feasible. The opti-

mum wing planform for the minimum-fuel airplane has the highest aspect ratio, the lowest 

thickness-chord ratio, and a quarter-chord sweep of about    12�.    The cruise Mach number 

for this aircraft design is 0.78. As noted in  Table   13.1   , their sensitivity analysis showed 

that a high aspect ratio is the most important parameter for minimizing fuel consumption, 

wing thickness is of secondary importance, and sweep is relatively unimportant. However, 

since productivity varies linearly with the cruise speed, a maximum productivity airplane 

requires a relatively high sweep, a maximum aspect ratio, and a low thickness ratio for the 

section. The resultant aircraft cruises at a Mach number of 0.85. The sensitivity analysis 

of  Jobe et al. (1978)  indicates that a low thickness ratio is most important to the design 

of the wing for a maximum productivity airplane, followed by aspect ratio and sweep.         

 TABLE 13.1    Desirable Laminar-Flow Control Wing Planform Characteristics 

   Wing Design Parameter 

 
Figure of Merit 

 Aspect
Ratio 

 Thickness
Ratio 

 
Sweep 

 Performance       
  Minimum fuel  High  Low  NMC a  
  Minimum takeoff gross weight  High  NMC  Low 

     Maximum
maximum payload

takeoff gross weight
     High  Low  NMC 

 Ease of laminarization       
  Low chord Reynolds number  High  NMC  NMC 
  Low unit Reynolds number  NMC  NMC  NMC 
  Minimize cross flow  NMC  Low  Low 
  Minimize leading-edge contamination  High  Low  Low 

   a NMC, not a major consideration.  
  Source :  Jobe et al. (1978) . 
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 Aerodynamics Concept Box: The F-16XL and Supersonic 
Laminar Flow Control 

 Two advanced fighter aircraft, designated the F-16XL, were designed by General Dynamics 

and flight tested at NASA Dryden Flight Research Center in the 1990s. The second aircraft 

was designed to test laminar flow control at supersonic speeds, and is shown below with the 

laminar flow “glove” on the port wing. 

 The research conducted involved a delta-winged F-16XL modified with a “glove” made of 

titanium. The glove contained more than 10 million holes and had a suction system attached 

to the lower surface which was composed of tubes, valves, and a compressor. During research 

flights, the suction systems pulled a small part of the boundary layer of air through the glove’s 

porous surface to create laminar (or smooth) air flow. Researchers believe that laminar flow 

conditions can reduce aerodynamic drag (friction) and contribute to reduced operating costs 

by improving fuel consumption and lowering aircraft weight. The project flew the F-16XL-2 

45 times between October 1995 and November 1996, obtaining significant amounts of valu-

able flight research data. 

 Information from NASA Dryden Flight Research Center fact sheet on the F-16XL program. 

       F-16XL with laminar flow glove on port wing  

 (photo courtesy of NASA Dryden Flight Research Center)  
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   13.4.3  Wingtip Devices 

  As discussed in  Chapter   7   , one     of the ways of decreasing the induced drag is by increas-

ing the aspect ratio. Although increased wing span provides improved lift/drag ratios, 

the higher bending moments at the wing root create the need for a stronger wing struc-

ture. Furthermore, there are problems in maneuvering and parking once on the ground. 

As noted by  Thomas (1985) , using large-aspect-ratio wings will reduce the induced drag 

because the tip vortices will be further separated, reducing the strength of the average 

induced flow between them. However, as Thomas points out, as the aspect ratio is in-

creased for the same chord, there is a weight penalty that may offset the drag reduction. 

So, as noted in  Thomas (1985) , “optimal wing aspect ratio for a transport aircraft var-

ies from 7.5 for minimum acquisition cost, to 9.8 for minimum gross weight, to 12.0 for 

minimum direct operating cost, and to 15.2 for minimum fuel. At present aspect ratios 

as large as 15.2 are not structurally feasible but the importance of aspect ratio is clear.” 

 A possible means of reducing the drag is by the use of fixed winglets. As illustrated 

in  Fig.   13.24   , winglets were used on the Gates Learjet Model 28/29, the Longhorn. The 

drag polars at    M� = 0.7    and at    M� = 0.8    for the M28/29 are compared with those for 

the M25D/F in  Fig.   13.25   . As can be seen in these data, the greatest improvement is 

at the lower Mach number. However, this is of no concern for this design application, 

since the normal cruise speed and long-range cruise speed of this airplane are always 

less than    M� = 0.8.      

 To generate an optimum winglet for a particular flight condition, we must calcu-

late the flow field for the complex wing. The subsonic aerodynamic load distributions 

for a lifting surface with winglets can be calculated using the vortex lattice method  dis-

cussed in  Chapter   7    . The theoretical lift-curve slopes for a swept wing with end plates 

which were calculated using a distribution of vortices, such as illustrated in  Fig.   13.26   , 

were in good agreement with experimentally determined data [see  Blackwell (1969) ]. 

 Figure 13.24         Gates Learjet Model 28/29, the Longhorn, illustrating 

use of winglets (Image provided courtesy of Bombardier Inc.).   
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 Figure 13.25         Comparison of the drag polars for the Gates  Learjet 

M28/29 with those for the M25D/F (unpublished data provided 

by Gates Learjet Corp).   
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 Figure 13.26         Distribution of vortices which can be used to cal-

culate the aerodynamic load distribution for a combination of 

lifting surfaces [from  Blackwell (1969) ].   
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The lifting-surface geometry shown in the sketch indicates that the technique can be 

used to calculate the aerodynamic load distribution for lifting surfaces involving a non-

planar wing, a wing with end plates, and/or a wing and empennage.  

 For best performance, the proper design of winglets includes the following 

 [ Thomas (1985) ]: 

    •   For supercritical performance, the winglet should be tapered and swept aft. It 

should be mounted behind the region of lowest pressure of the main wing to 

minimize interference effects.  

   •   Smooth fillets should be used between the wing tip and the winglet or smaller drag 

reduction benefits might result.  

   •   Some toe-out of the winglet is needed due to the inflow angles at the wing tip. This 

is also desirable, since it reduces the likelihood of winglet stall during sideslip.  

   •   Although the drag reduction increases with winglet span, the decrease is less than 

linear. Therefore, the optimal winglet height involves a trade-off between im-

proved aerodynamics and the increased moments due to longer moment arms.   

 Various additional wing-tip devices, as shown in  Fig.   13.27   , have been used in 

recent years in an attempt to reduce drag, especially on aircraft that fly long distances 

in cruise configuration where the drag reduction would have an appreciable impact 

on the range and fuel efficiency of the aircraft. Some of the wing-tip concepts that 

have been used include winglets, blended winglets, split winglets, raked wing-tips, and 

spiroids [ McLean (2005) ]. Greater insight into winglet design can be found from the 

1) 767-400 Raked tip

4) C-17 Canted winglet

7) Spiroid

2) Blended winglet

5) MD-11 style up/down winglet

8) Tip feathers

3) 747-400 Canted winglet

6) MD-12 style up/down winglet

9) A310 Tip fence

 Figure 13.27         An assortment of wing-tip device configurations 

[adapted from McLean (2005)].   
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results obtained by a European Union Project M-DAW (The Modeling and Design of 

Modern Winglets) [see Streit et al. (2004) and Mann (2006)]. In this project, which was 

headed by Airbus, numerical analysis, design, and wind tunnel evaluation of winglets 

with different shapes was considered at low and transonic speed conditions.  

  Whitcomb (1976)  was one of the first to fully realize the benefit of wing-tip devices 

(such as winglets) and to realize that while the goal of using a winglet was to reduce 

induced drag, there were several offsetting impacts that needed to be optimized in order 

to make any given wing-tip device worthwhile. Specifically, wing-tip devices have the 

positive impact of reducing induced drag at takeoff and during cruise, but they also add 

to profile drag of the wing by increasing the planform area and adding junctions to the 

wing-tip [ McLean (2005) ]. In addition, the weight and structural requirements of the 

wing also are changed by the addition of a wing-tip device. As with any aerodynamic 

concept, there are positive and negative aspects to the design feature. 

Another important consideration is the flexibility of the wing. Since transport air-

craft wings are highly flexible, large structural deformations can occur depending on 

the flight condition. Therefore, to have a realistic assessment of winglet designs, designs 

should not be restricted to cruise conditions with a rigid wing shape. A fluid-structure 

coupling should be performed in order to compute the performance and structural loading 

(fatigue of a metal wing) at cruise conditions, as well as at ultimate structure loadings for 

deformed shapes (i.e. gusts, pull out of a dive, etc.). Winglet designs considering a flexible 

wing at different flight conditions have been conducted by Streit et al. (2008), as repre-

sented in  Fig.   13.28   . Trends are shown for both cruise conditions and for a load factor of 

n � 2.5g, where wrbm is the wing root bending moment, an important structural param-

eter. According to Streit et al. (2008), “The deformed shapes lead to a decrease in wrbm 

and an increase in drag in comparison to the rigid shapes. This means that for each device 

the deformed shapes show a displaced aerodynamic benefit optimum at the 4% wrbm 

constraint.” The 4% wrbm constraint was chosen as a reasonable limitation in structural 

load capability for the study, and the results showed that including structural deformation 

actually was crucial for determining the overall benefits of the wing tip devices.   
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 Figure 13.28         Winglet drag reduction as 

a function of wing root bending moment 

increase for rigid and deformed shapes; 

wrbm = wing root bending moment [adapted 

from Streit et al. (2008)].   
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   13.4.4  Wing Planform 

 Since the induced drag of an airplane is determined by the total shed vorticity from the 

wing (not just the wing-tip shape), some researchers have chosen to modify the wing-

planform shape as another method for reducing induced drag. One of the more interesting 

approaches along these lines is the lunate or crescent wing, which mimics wing shapes 

often found in nature (see  Fig.   13.29   ). Some of these shapes were found to reduce induced 

drag (or increase the span-efficiency factor) by as much as 8% in wind tunnel tests [ van 

Dam et al. (1991) ] and computational simulations [ van Dam (1987) ]. Other numerical 

simulations did not find the drag savings to be quite that high, showing drag reduction 

closer to 1% in some cases [ Smith and Kroo (1993) ].  Van Dam (1987)  hypothesized that 

the decrease in drag was due to favorable interactions of the rolled-up wake of the wing.  

 Results such as these have led to an evolution of wing design in recent years, 

although the extreme crescent shapes have not been used on commercial aircraft (prob-

ably due to manufacturing limitations and costs). Wing-tip devices, such as the raked 

wing-tip used on the Boeing 767–400, originally were done as a wing-tip extension rather 
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span efficiency factors [from  van Dam (1987) ].   
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than as a planform modification. However, the geometric impact of araked or blended 

winglet is to make the planform more “crescent-like,” and when that is coupled with 

wing sweep, the use of trailing-edge extensions (referred to as “Yehudis”), and highly 

flexible structures, the advanced wing design for aircraft like the Boeing 787 or the 

Airbus A350 (see  Fig.   13.30   ) are certainly similar to earlier “lunate” shapes.    

   13.5   DEVELOPMENT OF AN AIRFRAME MODIFICATION TO IMPROVE 
THE MISSION EFFECTIVENESS OF AN EXISTING AIRPLANE 

   13.5.1  The EA-6B 

 The EA-6B is a four-place, subsonic, twin-jet, electronic countermeasures airplane de-

signed for land and carrier-based operations. As noted in  Hanley (1987) , the EA-6B 

airplane was difficult to handle when the pilot attempted to maneuver the aircraft at low 

airspeeds (approximately 250 KIAS). These problems relate to the fact that, through the 

evolution of the design, the airplane had grown to a gross weight above 54,000 lb. To 

compound the problem further, both the lateral and directional moments become un-

stable near the stall angle of attack (approximately    16�   ). These characteristics contribute 

to the sharp roll-off and directional nose slice that is inherent in the EA-6B at stall. 

 As noted by  Gato and Masiello (1987) , the EA-6B Prowler is 10,000 lb heavier than 

the A-6 Intruder. In addition to additional ECM equipment and structural weight, the 

EA-6B was provided with more powerful engines. However, in the cruise configuration, 

there were no aerodynamic changes to account for the extra weight. Since the two air-

craft have the same maximum lift capability (when maneuvering at low speeds and/or 

high altitude), the heavier EA-6B flies much closer to the stall angle of attack than its 

predecessor, the A-6. This is illustrated in  Fig.   13.31   , “where the lift coefficient required 

 Figure 13.30         The Boeing 787 with a blended raked wing-tip.   
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to execute a banked 2 g , 60 degree banked turn at 250 knots and the angle of attack mar-

gin to stall are indicated for an A-6, a current production EA-6B, and a future ADVCAP 

EA-6B at representative landing weights. This is a typical maneuver for these aircraft, 

always performed while decelerating prior to entering the landing  pattern and initiating 

landing gear, slat, and flap extension. Incidentally, the stall for these aircraft is defined 

by loss of lateral control and subsequent roll-off. Further penetration of the stall results 

in a directional departure which may develop into a spin” [ Gato and Masiello (1987) ].  

 In order to diagnose the flow mechanism contributing to the directional instability 

near stall, flow visualization studies were conducted [ Jordan et al. (1987) ]. Results from 

these studies showed that a pair of vortices are generated at the fuselage-wing junctures. 

These vortices trail behind the wing, close to the fuselage and below the tail at low angles 

of attack ( Fig.   13.32   a). As angle of attack is increased, wing downwash maintains the vor-

tex system at the same relative location—that is, low with respect to the vertical tail. At 

stall angles of attack, flow separation on the wing and consequent downwash breakdown 

cause the vortices to rise to the level of the vertical tail ( Fig.   13.32   b). In sideslip, the vortex 
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 Figure 13.31         EA-6B/A-6 cruise configuration lift [from  Gato and 

Masiello (1987) ].   



754    Chap. 13 / Aerodynamic Design Considerations

generated on the windward side of the airplane drifts leeward such that, as angle of at-

tack is increased through stall, the vertical tail becomes immersed in the windward vortex 

flow field ( Fig.   13.32   c). Because of the rotational sense of the vortex system, the bottom 

portion of the vertical tail first becomes immersed in a region of proverse (stabilizing) 

sidewash—the top portion of the windward vortex. As angle of attack is increased and the 

vortex system rises further, the vertical tail becomes immersed in the lower portion of the 

windward vortex where a condition of adverse (destabilizing) sidewash exists. Clearly, 

the abrupt changes in sidewash that occur as the windward vortex traverses the span of 

the vertical tail have a direct impact on directional stability. In fact, it is this phenomenon 

that causes the directional instability the airplane configuration experiences near stall.  

 To eliminate these dangers and to provide the EA-6B with electronics growth 

capability, the Navy undertook a comprehensive Maneuvering Improvement Program. 

The ground rules imposed by the Navy were that no major changes were allowed to 

the main wing or airframe structure. The project involved personnel from the Navy, 

 Grumman Aircraft Systems Division, and NASA Langley Research Center. The results 

of the various tasks are described in  Gato and Masiello (1987) ,  Hanley (1987) ,  Jordan 

et al. (1987) ,  Sewall et al. (1987) , and  Waggener and Allison (1987) . 

 Based on these re-design efforts, including an integrated mix of computational 

and experimental investigations, an aerodynamic upgrade package was proposed for 

(b) Downwash breakdown at stall allows vortices to rise

(c) In sideslip, windward wing vortex creates adverse/destabilizing flow field

(a) Low a, vortices below tail

 Figure 13.32         Directional destabilizing vortex system [from 

  Jordan et al. (1987) ].   
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the EA-6B Prowler, as shown in  Fig.   13.33   . The upgrade package includes the follow-

ing features:  

    •   Drooped inboard leading edges (add-on to inboard slat elements)  

   •   Wing-glove strakes  

   •   A fin extension  

   •   Wing-tip speed-brake/ailerons   

 The combined effect of fin extension, strakes, and drooped inboard leading edges 

on directional stability is illustrated in  Fig.   13.34   . The unstable directional characteristic 

was shifted to higher angles of attack, by a total of    6�.    The level of directional stability at 

low angles of attack was also significantly increased as a result of the additional vertical 

tail area. In fact, the fin extension was sized to provide the EA-6B with the same low 

angle of attack directional stability as the A-6, thereby compensating for the destabiliz-

ing effect of the longer fuselage.  

 Besides improving the lateral-directional stability, the strakes and the drooped in-

board leading edges increased the maximum lift and the stall angle of attack, as shown in 

 Figs.   13.35    and    13.36   . This combination of aerodynamic modifications/devices provides sig-

nificant improvements in the maximum lift coefficient. As shown in  Fig.   13.35   , the  increase 

in cruise configuration maximum usable lift is 22 %  at low Mach numbers and 30 %  at higher 

Mach numbers. Consequently, the aerodynamically upgraded EA-6B has essentially the 

same stall/maneuver margins of the lighter A-6. Improved lateral-directional stability and 

positive lateral control beyond stall allow full use of this increment in maximum lift.    

Drooped inboard LE

Fin extension

Recontoured TE (flap)

Speed-brake/aileron

Recontoured LE (slat)

Wing-glove strake

 Figure 13.33         Proposed aerodynamics upgrade package for the 

EA-6B Prowler [from  Gato and Masiello (1987) ].   
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   13.5.2  The Evolution of the F-16 

 As stated by  Bradley (1981) , “The design of tactical military aircraft presents quite 

a challenge to the aerodynamicist because of the vast spectrum of operational 

 requirements  encompassed by today’s military scenario. The designer is faced with a 

multitude of design points throughout the subsonic-supersonic flow regimes plus many 

off-design  constraints that call for imaginative approaches and compromises. Transonic 

design objectives are often made more difficult by restraints imposed on by subsonic 

and  supersonic requirements. For example, wings designed for efficient transonic cruise 

and maneuver must also have the capability to accelerate rapidly to supersonic speeds 

and exhibit  efficient performance in that regime.” 

 Bradley continues, “The design problem is further complicated by the fact that 

the weapon systems of today are required to fill multiple roles. For example, an aircraft 

designed to fill the basic air superiority role is often used for air-to-ground support, strike 

penetration, or intercept missions. Thus, carriage and delivery of ordnance and carriage 
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 Figure 13.36         Combined effect of recontoured leading and trail-

ing edges, strakes, and drooped inboard leading edges on cruise 

configuration lift [from  Gato and Masiello (1987) ].   
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of external fuel present additional key considerations for the aerodynamicist. The result-

ing aircraft flowfield environment encompasses a complex mixture of interacting flows.” 

 “For example, the need for rapid acceleration to supersonic flight and efficient 

supersonic cruise calls for thin wing sections with relatively high sweep and with camber 

that is designed to trim out the aft ac movement at supersonic flight. However, these re-

quirements are contrary to those requirements for efficient transonic maneuver, where 

the designer would prefer to have thicker wing sections designed with camber for high 

   CL    operation and a high-aspect-ratio planform to provide a good transonic drag polar.” 

  Harry Hillaker (1997) , who was the Chief Project Engineer on the YF-16 and Vice 

President and Deputy Program Director of the F-16XL Program, discussed early studies that 

provided the technology base from which the YF-16 design was developed  (see the discussion 

on Hillaker in  Chapter   1   ) . Examination of results from air-to-air combat over Southeast Asia/

Vietnam revealed that aircraft in the U.S. inventory had only marginal success over their op-

ponents. From 1965 to 1968, engineers at General Dynamics in Fort Worth examined the data 

from the Southeast Asian conflict to determine what parameters provided an edge in air-to-air 

combat. Wing loadings, thrust loadings, control issues, g-tolerances for the pilot, and empty-

weight fraction were identified as key parameters in air-to-air combat. Since these studies 

were focused on technology, there were no associated configuration designs done at the time. 

 In 1997 Hillaker continued, “From 1969–1971, an extensive wind-tunnel program was 

conducted in which data were obtained on a wide variety of configurations over a range of 

free-stream test conditions and angles of attack.” As shown in the sketches of  Fig.   13.37   , 

Configuration Evolution
�  Preliminary configuration definition
�  Experimental data (wind tunnel) based
�  78 combinations of variables

�Wing planform

�Airfoil section�fixed and variable

�Wing-body relationship

�Inlet location and type

�Single vs. twin vertical tail

�Forebody strakes

 Figure 13.37         Configuration evolution for the F-16.   
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configuration variables included wing planforms, airfoil  sections, wing-body relation-

ships, inlet locations, horizontal and vertical tail configurations, and forebody strakes. 

 Buckner et al. (1974)  reported, “The 1969–1970 period produced technology studies in 

four areas very important to air combat maneuvering fighter design:  

    •   Project Tailormate (1969, 1970)—an experimental study of a wide variety of inlet 

types and locations on typical fighter designs with the goal of maintaining low dis-

tortion and high-pressure recovery over wide ranges of angle of attack and sideslip. 

The YF-16 inlet location is largely a result of the experience gained in this work.  

   •   Wing mounted Roll Control Devices for Transonic, High-Light (sic) Conditions 

(1969)—a study of a variety of leading- and trailing-edge devices for roll control 

in the combat Mach number and high-angle-of-attack range.  

   •   Aerodynamic Contouring of a Wing-Body Design for an Advanced Air-Superiority 

Fighter (1970)—an add-on to the roll-control study, which produced analytical in-

formation on a blended wing-body design. This experience was helpful in the later 

development of the YF-16 overall planform and blended cross-section concept.  

   •   Buffet Studies (1969–1970)—a series of efforts producing new knowledge and 

methodology on the phenomenon of increased buffet with increasing angle of 

attack. The methodology, in turn, allowed the YF-16 to be designed for buffet 

intensity to be mild enough to permit tracking at essentially any angle of attack 

the pilot can command in the combat arena.   

 The above studies produced knowledge that was brought to bear on the configuration 

studies, specifically for the development of a lightweight low-cost fighter, accomplished 

in 1970 and 1971.” 

 The lightweight, low-cost fighter configuration studies intensified when a new 

set of guidelines were defined for application to combat scenarios in Europe.  Hillaker 

(1997)  noted, “These mission rules included a 525 nautical mile (nm) radius, four turns 

at 0.9M at 30,000 feet, accelerate from 0.8M to 1.6M, three turns at 1.2M at 30,000 feet, 

and pull a four- g -sustained turn at 0.8M at 40,000 feet. Furthermore, the aircraft had to 

demonstrate operability both for the U.S. Air Force and its NATO allies.” 

 As noted by  Buckner et al. (1974) : “The YF-16 really got its start, then, as a result 

of the ‘in-house’ studies initiated in late 1970 in response to the new mission rules    . . .    

Major emphasis was placed on achieving flight and configuration characteristics that 

would contribute directly to the air-to-air kill potential in the combat arena—specifically 

maximizing maneuver/energy potential and eliminating aerodynamic anomalies up to 

the maneuver angle-of-attack limits.”  Buckner and Webb (1974)  reported,  “Examples 

of the ‘design to cost’ in the case of the YF-16 aerodynamic features are (1) a single 

engine, eliminating the complex question of what to do between the nozzles, (2) an 

 empennage/nozzle integrated design, devoid of adverse interference, (3) a single vertical 

tail tucked in safely between the forebody vortices, (4) a simple underslung, open-nosed 

inlet with no complex moving parts, (5) a thin-wing airfoil with only slight camber, 

minimizing the question of Reynolds number effects on transonic shock locations, and 

(6) simple trailing-edge ailerons. All of these features reduced the cost through vir-

tual elimination of design changes in the refinement stage after contract go-ahead and 

through simplification of the task required to fully define the vehicle aerodynamics.” In 
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1972, aerodynamic data were obtained over a wide range of Mach number, Reynolds 

number, and angle of attack. The ranges of these variables, as taken from  Buckner and 

Webb (1974) , are reproduced in  Fig.   13.38   .  

  Buckner et al. (1974)  reported that “from these data it is obvious that the taper 

ratio    (l)    should be as low as practical, consistent with reasonable tip-chord structural 

thickness and early tip-stall configurations. The final selection was a taper ratio of 0.227. 

The start combat weight is lowest at a wing aspect ratio of 3.0, the final selected value, 

and is relatively independent of wing sweep in the range of 35 to 40 degrees. The greater 

wing sweep is beneficial to the supersonic performance, giving reduced acceleration 

time and increased turn rate. Some penalty in aircraft size is noted as the wing sweep 

is increased to 45 degrees, and the higher-sweep wings are more prone to have a aileron 

reversal because of aeroelastic effects. As a result, wind tunnel tests were limited to 

sweep angles between 35 and 45 degrees. Perturbation of wing thickness ratio t>c indi-

cates a lighter weight airplane results with a thicker wing, but supersonic maneuverability 

improves with thinner wings. The desire to achieve a balance in subsonic and supersonic 

maneuver capability dictated selection of the thinnest practical wing as thin a wing as 

practical    (t>c = 0.04),    consistent with flutter and aileron reversal considerations.” 

  Bradley (1981)  notes: “The tactical military aircraft design problem is made 

more difficult by the supersonic acceleration requirement. The wings must be as thin 

as structurally feasible to reduce drag, but fixed camber suitable for optimum transonic 

maneuver is not practical because of supersonic camber drag. An obvious solution 

is a smoothly varying wing camber design. However, structural and actuation system 

weights prove to be prohibitive for thin wings. Simple leading edge and trailing edge 
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flaps often prove to be the most practical compromise for high-performance, multiple 

design point configurations.” 

 “The extreme possibilities are apparent. One may design a wing with optimized 

transonic maneuver camber and twist and attempt to decamber the wing with simple 

flaps for supersonic flight. On the other hand, one may design the wing with no cam-

ber or with a mild supersonic camber and attempt to obtain transonic maneuver with 

simple flaps.” 

 Even though the designer has worked carefully to design a wing for attached flow 

and to optimize its performance, there are points in the sustained and instantaneous 

maneuver regimes where the flow field contains extensive regions of separated flow. 

The manner in which the flow separates will strongly affect the vehicle’s drag and its 

controllability at the higher values of the lift coefficient. For many designs, strakes or 

leading-edge extension devices are used to provide a controlled separated flow. Con-

trolled vortex flow can then be integrated with the variable camber devices on the wing 

surface to provide satisfactory high-lift, stability and control, and buffet characteristics. 

The resulting flowfield is a complex one, combining attached flows over portions of the 

wing with the vortex flow from the strake, as shown in  Fig.   13.20   . 

 One of the questions addressed by the designers of the Lightweight Fighter was 

single vertical tail versus twin-tailed configurations (see  Fig.   13.37   ). NASA data avail-

able at the time indicated advantages of the twin-tailed configurations. However, as 

noted by  Hillaker (1997) , the NASA data were limited to angles of attack of    15�    or less. 

 Buckner et al. (1974)  noted, “To the dismay of the design team, however, the direc-

tional stability characteristics of the twin-vertical-tailed 401F-0 configuration were not 

as expected. In fact, a severe loss of directional stability occurred at moderate-to-high 

angles of attack.    . . .    Analysis of oil flow visualization photographs led to the belief that 

forebody flow separations and the interaction of the resulting vortices with the wing and 

vertical tail flow fields were major causes of the stability problem.” 

 Modifications were made to delay forebody separation to higher angles of attack. 

 Buckner et al. (1974)  reported, “It was more difficult to make the twin-tail configura-

tions satisfactory compared to the single vertical tail configurations (in addition, some 

combinations of angle of attack and sideslip produced visible buffeting of the twin tails). 

Beneficial effects on the directionally stability derivatives were noted when relatively 

small highly swept ‘vortex generators’ (strakes) were located on the maximum half-

breadth of the forebody.” 

 “At this point, NASA Langley Research Center aerodynamicists were consulted 

and they suggested that the lift of the wide forebody could be increased by sharpen-

ing the leading edge to strengthen the vortices rather than weaken them as our earlier 

attempts had done. The point was that forebody separation is inevitable at very high 

angle of attack; therefore, the lift advantages offered by sharp leading edges should be 

exploited. This also would allow the forebody vortices to dominate and stabilize the 

high-angle-of-attack flow field over the entire aircraft, improving, even, the flow over 

the outboard wing panels.” 

 Once the YF-16 was in the flight-test program with the YF-17, it was no longer 

called the Lightweight Fighter. It was called the Air Combat Fighter (ACF). Orders 

for the ACF, the F-16, came in 1975. The first operational units were formed in 1978. 

In the late 1970s, production versions of the F-16 were quickly modified to add a full 
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radar capability, to add hard points to accommodate the ability to handle air-to-ground 

capability, and to increase the combat radius to 725 nautical miles; the aircraft had be-

come the Multi-Role Fighter (MRF).  

   13.5.3  External Carriage of Stores 

 Starting in the 1950s, the air-to-ground role was often performed by military aircraft 

carrying the ordnance externally. In a photo provided by  Bracken (2000) , an F-105D is 

shown on a mission during the Vietnam War. The F-105D ( Fig.   13.39   ) carries externally 

two 500-pound bombs (one outboard on each wing), two 450-gallon fuel tanks (one on 

each wing), and six 750-pound bombs (clustered near the centerline of the aircraft).  

  Whitford (1991)  reported large improvements in the load-carrying ability from 

the designs of the 1950s to more recent designs. As shown in  Fig.   13.40   , the Hawk 200 

is able to lift an external load equal to 85% of its empty weight.  

  Bradley (1981)  notes, “Perhaps the greatest irony for the tactical aircraft designer 

results from the fact that an aircraft designed to be the ultimate in aerodynamic effi-

ciency throughout a performance spectrum is often used as a ‘truck’ to deliver arma-

ments. Aircraft that are designed in a clean configuration are often used operationally 

to carry an assortment of pylons, racks, missiles, fuel tanks, bombs, designator seeker 

pods, launchers, dispensers, and antennaes that are attached to the configuration at any 

conceivable location.” 

 Although the F-16 was originally conceived as a lightweight fighter  (see  Fig. 

  7.41   ) , it has assumed a multirole capability to meet the demands of widely differing 

operational requirements, including air superiority, air intercept, battlefield support, 

 precision-strike/interdiction, defense suppression, maritime interdiction, (airborne) 

forward air controller, and reconnaissance. Weapons that could be carried by the F-16 

in the 1990s are presented in  Fig.   13.41   , which was described by  M. J. Nipper (1996) . 

The figure, which illustrates the certified stores capability, clearly exhibits the F-16’s 

versatility of weapons carriage. New weapons are being constantly developed that will 

be certified on the F-16 over the years.  

 According to  Bradley (1981) , who is referring to the results in  Fig.   13.42   , “The 

carriage drag of the stores is often of the same order of magnitude as the total minimum 

drag of the aircraft itself. For example, the minimum drag of the F-16 aircraft is com-

pared . . . with and without the air-to-ground weapons load. It is readily seen that the 

store drags themselves present as large a problem to the aircraft designer as the drag of 

the clean configuration. Store carriage on modern technical aircraft is extremely impor-

tant, particularly as one approaches the transonic regime, where the interference effect 

of the stores and pylons are highest and most detrimental to performance.”  

  Bradley (1981)  continues, “Not only must external stores be carried efficiently 

by tactical aircraft, but they must release cleanly and follow a predictable trajectory 

through the vehicle’s flowfield. The store trajectory is governed by the highly unsteady 

forces and moments acting on the store produced by the nonuniform flowfield about 

the configuration and the aerodynamic characteristics and motions of the store itself. 

The problem is complicated by realistic combat requirements for jettison or launch at 

maneuver conditions and multiple release conditions where the weapons must not ‘fly’ 

into one another.” 
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 Military aircraft of the future will have added emphasis on store carriage and 

release early in the design process. Some possible concepts for weapons carriage are 

contrasted in  Table   13.2   . 

  Bradley (1981)  presented wind-tunnel measurements that compared the drag for 

conformal carriage versus conventional installations of MK-82 bombs. As shown in 

 Fig.   13.43   , conformal carriage permits 14MK-82 bombs to be carried at substantially less 

drag than a 12 MK-82 pylon/multiple bomb rack mounting.  Bradley (1981)  notes, “Sig-

nificant benefits for the conformal carriage approach, in addition to increased range, are 

realized: increased number of weapons and carriage flexibility; increased penetration 

speed; higher maneuver limits; and improved supersonic persistence. Lateral directional 

stability is actually improved with the weapons on.”   

  Hillaker (1997)  noted that in 1974 General Dynamics embarked on a Supersonic 

Cruise and Maneuver Program (SCAMP) to develop a supersonic cruise derivative of 

the F-16. The “supercruiser” concept envisioned optimization at supersonic cruise lift 

conditions so that sustained cruise speeds on dry power (non-afterburner power) could 

be achieved in the Mach 1.2 to 1.3 speed range. Trade-offs to the aerodynamics required 

for supersonic cruise, subsonic cruise, and maneuvering flight were explored. The goal 

was to arrive at a design that would offer at least a 50% increase in the supersonic lift-

to-drag ratio ( L > D ) that would retain a high subsonic  L > D  ratio and that would provide 

the level of maneuverability of a fighter. 

  Hillaker (1997)  noted that, by 1977 to 1978, it was clear that the F-16 was to serve 

both the air-to-air mission and the air-to-ground mission (with the air-to-ground mission 

dominating). Therefore, engineers sought to develop a design that was a straightforward 

modification of the F-16. The approach was to build on the technology developed for 

the original SCAMP configuration adding a maneuver requirement to the supersonic 

cruise capability. From 1974 to 1982, the SCAMP/F-16XL configurations underwent 

significant refinements. The configuration evolution, as taken from a paper by  Hillaker 
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[taken from  Whitford (1991) ].   
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(1982) , is reproduced in  Fig.   13.44   .  Hillaker (1982)  reported, “The planform require-

ments included a forebody blend (strake area) for high angle-of-attack stability, an 

inboard trailing-edge extension for pitching moment improvement, and fixed wing tips 

with ailerons and leading-edge device to enhance the flow over the aileron at high angles 

of attack. The combination of ailerons and a leading-edge device (flaps for flow control, 

not lift) was developed to resolve the mechanical and structural complexities of the all-

movable wing tip on the previous configuration. All-movable wing tips provided high 

roll rates and adverse yaw for resistance to yaw divergence at high angles of attack. The 

aileron-leading-edge device combination provided the same aerodynamic advantages 
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 Figure 13.42         Stores drag effect [from  Bradley (1981) ].   

 TABLE 13.2    Weapon Carriage Concepts    

 Store Carriage
Concepts 

 
Advantages 

 
Disadvantages 

 1.  Wing pylon
carriage 

 Most flexible carriage
mode—large payloads,
inefficient store shapes 

 High drag
High radar
cross section 

 2.  Internal 
carriage 

 Low drag  Limited weapon
flexibility 

   Low radar
cross section 

 Increased fuselage
volume 

 3.  Semisub-
merged
carriage 

 Low drag  “Holes” must be
covered up after
weapons drop 

   Low radar
cross section 

  

     Severely restricted
payload flexibility 

 4.  Conformal
carriage 

 Most flexible of low
drag carriage concepts 

 Size restrained 

Source: Bradley (1981).
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 Figure 13.43         Drag comparison—conformal vs. conventional 

 carriage [from  Bradley (1981) ].   
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 Figure 13.44         F-16XL configuration evolution [from  Hillaker 

(1982) ].   

and simplified wing structure, reduced weight, increased fuel volume, and allowed tip 

missile carriage.”    

 The benefits of the F-16XL configuration include 40% to 85% lower drag with the 

integrated weapons carriage, 50% better supersonic lift-to-drag ratio with no subsonic 

penalty, 17% lower wave drag with drag with 83% more internal fuel, and increased lift 

with expanded maneuver angle of attack. 

 The first two demonstrator aircraft (modified from two F-16A aircraft) took to 

the air at Carswell Air Force Base in Fort Worth, Texas, on July 3, 1982, and were used 

by NASA for flight research.   
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 TABLE 13.3    Summary of Main Design Features Required to Achieve a Variety of  Operational 
 Requirements    

 Operational Requirements  Primary Design Features 

  Short take-off   High afterburning    (A>B)    thrust/weight    (T>W)    ratio, high flap lift, 
low wing loading    (W>S),    thrust vectoring 

  Economical transit/loiter   Low throttled specific fuel consumption (sfc), high cruise 
lift-to-drag    (L>D)    ratio 

 High penetration speed  High dry thrust/weight    (T>W)    ratio, low store drag, good ride 
quality 

 High combat agility  High dry thrust/weight    (T>W)    ratio, high control power, good lift-
to-drag    (L>D)    ratio at high  g , high usable lift, thrust  vectoring 

 High combat persistence  Low combat specific fuel consumption (sfc), good lift-to-drag 
   (L>D)    ratio at high  g , versatility of weapon carriage 

 High combat mobility  High afterburning    (A>B)    thrust/weight    (T>W)    ratio, low drag at all 
Mach numbers 

 High survivability  Stealth (to give first shoot/first kill), threat awareness and 
countermeasures, robustness/redundancy 

 Short landing  High flap lift, low wing loading    (W>S),    flareless, good  retardation 

Source: Whitford (1991).

   13.5.4  Additional Comments 

 The ability to modify a design to accommodate the increased weights allows an aircraft 

to satisfy added missions, handle more ordnance, be fitted with more powerful engines, 

and so on. The Supermarine Spitfire, a single-engine pursuit aircraft of World War II, 

grew by the weight of 32 airline passengers and their luggage during its evolution from 

1936 through 1946. 

 The examples discussed in this section illustrate the philosophy represented by the 

comment made by  Montulli (1986) : “When establishing airplane performance require-

ments, allow for potential changes in operational requirements. Do not allow a point 

design.”  Table   13.3   , which is taken from  Whitford (1991) , identifies the main design 

features that allow a military aircraft to achieve a variety of operational requirements.   

   13.6   CONSIDERATIONS FOR WING/CANARD, 
WING/TAIL, AND TAILLESS CONFIGURATIONS 

 The relative merits of wing/canard, wing/tail, and tailless configurations for high- 

performance aircraft have been the subject of numerous investigations over the years. 

The use of canards usually allows for a shorter fuselage, which results in less skin-friction 

drag, and a more optimum cross-sectional area distribution, which results in less wave 

drag. However, although aft-tail configurations need a longer fuselage, they usually have 

smaller wing area, which also results in lower skin-friction drag and in lower wave drag. 

 The stall progression for a forward swept wing (FSW) is compared with that for an 

aft swept wing (ASW) in  Fig.   13.45   , which is taken from  Weeks (1986) . As depicted in 

 Fig.   13.45   a, the stall pattern for a forward swept wing proceeds from the root to the tip, as 
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opposed to the normal behavior for aft swept wings, in which the stall pattern starts at the 

tip and proceeds inboard toward the root.  See the discussion in  Section   7.3.5   .  Both cases 

would result in pitch-up tendencies. Weeks continued by referring to the results shown 

in  Fig.   13.45   b by placing a full authority canard ahead of the wing root region, the FSW 

configuration avoids pitch-up and achieves delayed stall providing full utilization of the in-

board, large lift contributing portions of the wing to high angles-of-attack. Lateral control 

can then be maintained with simple (light weight) tip region located ailerons. By further 

integrating negative subsonic stall margin and nearly neutral supersonic margin, positive 

lift to trim can be maintained over the entire envelope. Then, by further  introduction of 

variable camber and three-surface control, airframe drag can be minimized.  

Simpler, more effective,
lateral control

(a) Reverse stall progression delays
 FSW tip stall

(b) Adding a close-coupled canard
 delays root stall

• Inhibits inboard separation
• Synergistic with forward
 swept wing

 Figure 13.45         Stall-progression patterns for a forward swept 

wing (FSW) as compared with those for an aft swept wing [from 

 Weeks (1986) ].   
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 In 1982 and 1983, General Dynamics and NASA Langley Research Center con-

ducted a wind-tunnel test program to generate a data base needed for a more general 

understanding of the aerodynamic performance comparisons between a wing/canard 

configuration, a wing/tail configuration, and a tailless configuration. Data were obtained 

for two sets of configurations: one employed a    60�    leading-edge-sweep delta wing and the 

other employed a    44�    leading-edge-sweep trapezoidal wing. Data for the    44�    leading-

edge-sweep trapezoidal wing, as presented in  Nicholas et al. (1984) , will be reproduced 

here. A description of the models is presented in  Fig.   13.46   . The leading and trailing-edge 

flaps were optimally scheduled to minimize the drag for the wing/canard configuration 

and for the wing/tail configuration. For the tailless configuration, the subsonic data were 

insufficient to define the trimmed polars. At supersonic speeds, trailing-edge flap deflec-

tions were governed by the trim requirements rather than by drag optimization.  

 Referring to the data presented in  Fig.   13.47   ,  Nicholas et al. (1984)  noted, “At sub-

sonic speeds, large negative static margins are required to achieve small polar benefits 

for the wing-canard as compared to the wing-tail. The wing-tail drag is optimized with 

subsonic static margins in the range of    -10    to    -15%c.    This nominal level of instability is 

considered achievable because of satisfactory high-angle-of-attack stability and control 

characteristics observed on the transonic fighter model. Furthermore, the drag penalties 

for slightly increased stability on the wing-tail are not severe. The wing-canard subsonic 

Theoretical wing Control surface
(canard or tail)

S � 0.18 ft2

c � 3.691 in
AR � 1.1167
�� 51.7� 
l � 0.2
Airfoil � biconvex
t/croot � 0.06
t/ctip � 0.04

S � 1.11109 ft2

c � 9.176 in
AR � 2.5
� � 44�
l � 0.2
Airfoil � 64AOXX
t/croot � 0.06
t/ctip � 0.04

 Figure 13.46         Description of models for wing/canard, wing/tail, 

and tailless configurations comparisons [from  Nicholas et al. 

(1984) ].   
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drag polar appears to be approaching optimum with a subsonic static margin of    -25%c,    

and increased stability is accompanied by severe drag penalties. The risk associated 

with an aircraft designed for this level of instability is significant, and the potential drag 

benefits appear to be small. It is also apparent that the subsonic polar shapes of both 

the canard and tailless arrangements are far more sensitive to subsonic static margin 

variations than those of the wing-tail.”  

  Nicholas et al. (1984) , referring to the data in  Fig.   13.48   , continued, “At su-

personic speeds, static margin sensitivity is roughly similar for the canard, tail, and 

tailless arrangements. Here, the optimization comparison between canard and tail 

is somewhat reversed, with the subsonic static margin being optimum at    -15%c    to 

   -20%c    for the wing-canard versus approaching optimum at    -25%c    for the wing-tail. 

The reason for this reversal is associated with aerodynamic center (defined with all 

surfaces fixed at zero deflection) travel from subsonic to supersonic speeds, which is 

greater for the wing-tail than for the wing-canard. . . . This happens because the frac-

tion of the total lift carried by the tail increases significantly as the wing downwash 

field decreases from subsonic to supersonic speeds. However, because of its forward 

location, the canard experiences relatively little variation in the fraction of total lift 

that it carries between subsonic and supersonic speeds. Therefore, for a fixed level of 

subsonic stability, the wing-body is more stable at supersonic speeds for the wing-tail 

than it is for the wing-canard. It is this supersonic wing-body stability that determines 

canard or tail trim requirements. Both the wing-canard and the wing-tail optimize 

with approximately 12% of the total lift carried in the control surface, as shown for 

Mach 1.6 in  Fig.   13.49   . This optimum control-surface/wing lift ratio is achieved with 
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 Figure 13.47         Summary of trimmed drag comparison of canard, 

tail, and tailless arrangements with the    44�    sweep trapezoidal 

wing [from  Nicholas et al. (1984) ].   
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 Figure 13.48         Variation of aerodynamic center with Mach 

number for canard, tail, and tailless arrangements with the    44�    
sweep trapezoidal wing [from  Nicholas et al. (1984) ].   
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 Figure 13.49         Effect of control surface lift on trimmed supersonic 

drag for canard and tail arrangements with the    44�    sweep trap-

ezoidal wing [from  Nicholas et al. (1984) ].   
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a subsonic static margin of nominally    -21%c    for the wing-canard versus    -27%c    for 

the wing-tail. The net result is that, at supersonic speeds, the wing-canard provides 

a small drag advantage over the wing-tail with a reasonable level of subsonic static 

margin (i.e.,    -10    to    -15%c   ).”   

 Both for wing-canard and wing-tail configurations, the optimum polars are 

achieved by carrying a very small fraction of the total lift in the control surface. 

 From the results of their studies,  Nicholas et al. (1984)  reached the following 

conclusions: 

    •   For highly efficient, variable-camber wings, large negative stability levels are re-

quired to achieve small subsonic polar shape benefits for wing-canard arrange-

ments, as compared to wing-tail arrangements. However, these large negative 

stability levels are accompanied by reduced maximum lift for canard arrangements 

along with potential stability and control problems at high angles of attack. The 

need for large negative stability levels with a wing-canard diminishes as the main 

wing efficiency is decreased.  

   •   Subsonic polars for canard and tailless arrangements are more sensitive to sub-

sonic static margin than those of wing-tail arrangements.  

   •   At supersonic speeds, the canard arrangements show some advantage because 

their polar shapes optimize at higher subsonic stability levels than wing-tail or 

tailless arrangements.  

   •   The minimum drag and weight advantages of tailless delta arrangements can over-

come polar shape deficiency to provide a TOGW advantage for typical advanced 

fighter mission/performance requirements.  

   •   Static margin limit is a critical issue in control surface (canard, tail, tailless) selection.    

   13.7  COMMENTS ON THE F-15 DESIGN 

 A planform view of an F-15 in flight is presented in the photograph of  Fig.   13.50   . We will 

discuss two features evident in the photograph: (1) the notch or “snag” in the leading 

edge of the stabilator and (2) the clipped tip of the wing. The following information on 

these two features was provided by  Peters et al. (2001) :  

 “The notch, or snag, in the leading edge of the F-15 stabilator solved a flutter-

margin issue. Moving the inboard leading-edge aft moved the center of pressure aft and 

also removed mass from the leading edge. This allowed the F-15 stabilator to meet an 

800 KCAS (Knot Calibrated Air Speed)    +15%    margin requirement. The snag design 

was one of several options that were investigated for improving the flutter margin of 

the empennage. The other options (structural beef-up, mass balance, tip pods, etc.) 

introduced more weight and/or had aero performance penalties.” 

 “During the 80% flight-loads testing of the F-15, it was discovered that the maxi-

mum bending moment was 3% to 4% higher than the estimates based on the wind-

tunnel results. To reduce the bending moments, the wing tips were cut off on the spot 

and were replaced with raked tips made out of mahogany. The mahogany wing tips flew 

until ship number 4 was retired many years later. With the modified wing tips in place, 

the flight-loads testing was completed successfully.”  
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   13.8  THE DESIGN OF THE F-22 

 The F-22 design is the result of more than 20 years of work to build an Advanced Tacti-

cal Fighter (ATF). As noted by  Hehs (1998a)  “the term  advanced tactical fighter  and its 

abbreviation ATF, however, appeared in a general operational requirements document 

issued to contractors . . . in 1972.” However, 1981 is usually cited as the beginning of the 

ATF program. The basic challenge of the ATF design was to pack stealth, supercruise, 

highly integrated avionics, and agility into an airplane with an operating range that bet-

tered the F-15, the aircraft it was to replace. 

  Skow (1992)  noted, “Whereas there is universal agreement that agility in air com-

bat is valuable, many other aircraft attributes such as acceleration, speed, maneuver-

ability, and payload/range performance have a value also. Each of these attributes has 

a value and a cost.” 

  Mullin (1992)  reported, “The configuration design evolution was primarily driven 

by the requirement to obtain excellent subsonic and supersonic aerodynamics and low 

observability. With the requirement for internal weapons carriage and all mission fuel 

internal (except for the ferry mission), the design challenge was formidable.” All con-

figurations were premised on the availability of the following technologies: 

    •   External aircraft geometry 

   •   Low observable  

  •   Low supersonic drag  

  •   Unrestricted maneuverability    

   •   Propulsion 

   •   Low observable supersonic inlet  

  •   Low observable augmenter/thrust vectoring nozzle    

 Figure 13.50         Plan view of F-15 (U.S. Air Force photo by Josh 

Plueger).   
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   •   Avionics 

   •   Common modules  

  •   Liquid cooling for reliability  

  •   Low observable apertures (radar, infrared, communications/navigation, elec-

tronics warfare)    

   •   Other subsystems and equipment 

   •   Low observable air data systems  

  •   Low observable canopy     

 Unlike stealth and supercruise, high maneuverability is more often used as a defen-

sive tactic rather than an offensive one. As reported by  Hehs (1998a) ,  “Maneuverability 

was quantified in the 1960s by John R. Boyd in his energy- maneuverability theory. 

Boyd’s ideas were used on the F-15, but the F-16 was the first airplane to be designed 

specifically to emphasize the principles established by his theory. The most common 

measures of merit for energy maneuverability are sustained  g  capability (the ability 

to turn hard without losing airspeed and altitude); instantaneous  g  (the ability to turn 

the nose without regard to the effect on speed); and specific excess power (a measure 

of an aircraft’s potential to climb, accelerate, or turn at any flight condition). Another 

parameter of interest is transonic acceleration time (for example, the time needed to 

go from Mach 0.8 to Mach 1.2). Comparing these characteristics for two fighters shows 

which one should have the tactical advantage in a maneuvering engagement.” 

  Skow (1992)  noted, “In an aggressive engagement against a highly maneuverable 

adversary, maximum load factor or maximum lift maneuvering may be required for 

survivability. The high values of turn rate that are achieved at these maximum condi-

tions come at the expense of energy. Since maximum rate maneuvering bleeds energy 

rapidly, it can only be continued for short durations. When the pilot decides to terminate 

a maximum rate maneuver that has caused his airspeed to be bled to a low value, he 

needs to accelerate quickly.    . . .    Two factors influence the ability of the aircraft to ac-

celerate rapidly: thrust minus drag and gravity.    . . .    For a high thrust/weight fighter, the 

rate at which thrust increases after a movement of the throttle can have an important 

effect on the energy addition achieved during a short acceleration. However, the rate 

at which drag is reduced can have a substantially greater effect.” 

  Hehs (1998b)  wrote that Dick Hardy (the ATF Program Director for Boeing) 

said, “One problem we typically face when trying to stuff everything inside an airplane 

is that everything wants to be at the center of gravity.    . . .    The weapons want to be at 

the center of gravity so that when they drop, the airplane doesn’t change its stability 

modes.    . . .    The fuel volume wants to be at the center of gravity, so the center of gravity 

doesn’t shift as the fuel tanks empty. Having the center of gravity move as fuel burns 

reduces stability and control.” 

  Mullin (1992)  wrote, “Although they are really inseparable, we faced two major 

areas of issues during the ATF Dem/Val program: 

    1.   System engineering issues, based on performance requirements versus flyaway 

cost and weight. Many initial ‘requirements’ which seemed to be no problem 

turned out to be major drivers of weight and/or cost, and, as a result, were sub-

stantially changed by the Air Force, based on our trade study data.  
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   2.   Design engineering issues, based on conflicting requirements, such as supersonic 

drag versus internal fuel and weapons load, supersonic and subsonic maneuverabil-

ity, installed propulsion performance versus low observability, and many others.”   

 Lockheed, Boeing, and General Dynamics teamed to develop a demonstration/

validation (dem/val) design phase for the ATF. From 1986 to 1989 the team accumulated 

20,000 hours in the wind tunnel. The resultant external configuration of the F-22 is shown 

in  Fig.   13.51   . Notice that the modified diamond wing has a reference area of 840 sq ft with 

62	1


44	6


42�

16	5


 Figure 13.51         External configuration of the F-22 [taken from 

 Mullin (1992) ].   
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a wing span of 44.6 ft (compatible with existing aircraft shelters), and an aspect ratio of 

2.37. The F-22 has constant chord full leading-edge flaps, ailerons, and flaperons.   

   13.9  THE DESIGN OF THE F-35 

 The F-35 design is the product of the Joint Strike Fighter (JSF) program and repre-

sents one of the most ambitious military aircraft designs pursued in many years. The 

program is also the largest aerospace defense program in history. The resulting aircraft 

(now named the Lightning II) has to accomplish diverse missions, while at the same 

time being affordable. In fact, in spite of numerous difficult design requirements, the 

primary goal of the program is affordability. The F-35 was designed to fulfill the fol-

lowing roles: 

    •   A strike fighter to complement the F/A-18E/F for the U.S. Navy (designated CV 

for Carrier Variant).  

   •   A multirole aircraft to replace the F-16 and A-10 and to complement the F-22 for 

the U.S. Air Force (designated CTOL for Conventional Take-Off and Landing).  

   •   A strike fighter with short-takeoff and vertical landing capability to replace the 

AV-8B and F/A-18 for the U.S. Marines and the Harriers of the U.K. Royal Navy 

(designated STOVL for Short Take-Off and Vertical Landing).   

 Designing a single airframe that can accomplish all of these missions while also being 

affordable is a necessarily difficult task. The approach taken by Lockheed Martin is 

to manufacture a single airframe with differing systems for the CTOL, STOVL, and 

CV versions (the CV version also has a larger wing). This has proven to be a cost-

effective approach. 

 In addition to the multirole and low-cost nature of the aircraft, there were numer-

ous other technical requirements that have to be fulfilled by the F-35, including [ Hehs 

(1998a ,  b) ]: 

    •   Overall performance similar to the F-16 and F-18  

   •   Low observable  

   •   Electronic countermeasures  

   •   Advanced avionics, including adverse-weather precision targeting  

   •   Increased range with internal fuel and weapons storage  

   •   State-of-the-art “health” management for maintainability   

 The design of the F-35 involved significant use of computational fluid dynamics 

(CFD) for developing the overall configuration and for the addition of unique features 

to the aircraft. The CFD analysis was used to design and improve the outer shape 

of the fuselage to maximize internal fuel-storage volume, design the vertical-tail cant 

and rotation, and incorporate the diverterless supersonic inlet [ Wooden and Azevedo 

(2006) ]. Of special interest, the diverterless supersonic inlet [ Hehs (2000) ] replaces 

the boundary-layer diverter present for most inlets and also provides the compression 

necessary for operating the engine at supersonic speeds (see  Fig.   13.52   ). This feature 

reduces drag and also is favorable for low observability.  
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 Extensive wind-tunnel testing of all variants of the F-35 has been performed at a 

number of wind tunnels in both the U.S. and U.K., especially the U.S. Air Force wind 

tunnels at the Arnold Engineering Development Center (AEDC). The AEDC tests were 

performed using an integrated test and evaluation approach that takes advantage of the 

rapid growth in CFD capabilities over the past 20 years. “As computational power has 

increased, so has the capability of computational analysis to contribute to aircraft design” 

[ Skelley et al. (2007) ]. Specifically, a typical full-aircraft CFD simulation from 1988 could 

be represented by simulating the F-15E with an Euler equation calculation on a grid with 

approximately 1 million grid points and requiring a turnaround time of four weeks (grid 

generation, solution, and post-processing time). Skelley stated in 2007 that their current 

CFD capability has given them a nearly four order of magnitude improvement over the 

1988 capability. They could now simulate the JSF with the Navier-Stokes equations on a 

grid with 25 million grid points and a turnaround time of two weeks. This rapid increase 

in CFD capability led to full integration of the ground testing and computational analysis 

throughout the design phase of the F-35, including the analysis of inlet performance, 

carriage loads of stores, store separation, and free-flight data. 

 The STOVL variant of the F-35 (shown in  Fig.   13.53   ) uses a unique lift system dur-

ing take-offs and landings. The Harrier aircraft uses direct lift by rotating the jet exhaust 

downward and creating vertical thrust, while the F-35 uses a combination of direct lift 

and a unique lift fan system. The Pratt & Whitney 119-611 engine is used to create three 

very different lift and control devices: (a) the core nozzle with a swivel duct at the end 

of the aircraft provides direct lift, (b) a drive shaft and gearbox from the engine rotates 

a lift fan located directly behind the cockpit, and (c) bleed air from the engine is used 

for roll control with roll posts and ducts on the wing of the aircraft [ Hehs (2001) ].  

 Specifically, the lift system operates in the following way: “The conversion from 

CTOL to STOVL begins when the pilot pulls back on the thrust vector lever. Doors 

open above and below the lift fan. Doors behind the lift fan intake open for an auxiliary 

engine intake. The engine nozzle twists and vectors downward. The clutch engages and 

transfers energy from the spinning shaft via the gearbox to the lift fan. Control valves 

open to divert bypass air from the engine to the roll posts. All of these various changes 

occur in seconds in precise, computer-controlled order” [  Hehs (2001) ]. While this ap-

proach may seem unnecessarily complex, the goal of this lifting approach is multifold, 

 Figure 13.52         The JSF diverterless 

supersonic inlet (photo courtesy of 

Lockheed Martin).   
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including the avoidance of ingesting hot gasses into the engine intake (which can cause 

the engine damage or failure), avoiding hot-exhaust damage to runway surfaces, and 

aiding the aircraft in accomplishing the difficult task of landing vertically.  Hehs (2001)  

notes: “The lift fan approach was chosen for its many attributes. It extracts power from 

the engine, thus reducing exhaust temperatures from the engine by about 200 degrees 

compared to exhaust temperatures of direct-lift systems. It significantly reduces exhaust 

velocity as well. Engine exhaust air combines with low-temperature and low-velocity air 

from the lift fan to produce a more benign ground environment. Cool exhaust air from 

the fan prevents hotter [engine] exhaust from being reingested into the intakes. Hot gas 

reingestion, a common problem on legacy Harrier-type approaches, causes compressor 

stalls, and other severe engine performance degradations. Most importantly, the lift fan 

system was chosen because it does not detract from the up-and-away performance of 

the JSF 119-611 engine.” This approach was verified with significant wind-tunnel testing 

and flight testing, including defining the transition capabilities of the F-35 as it changes 

from horizontal to vertical flight [ Buchholz (2002) ]. 

 Lockheed Martin, Northrop Grumman, and BAE Systems teamed to develop the 

F-35 during the concept development phase (CDP) from 1997 through 2001 and the sys-

tem development and demonstration (SDD) period starting in 2001. Wind-tunnel test-

ing during CDP included 3500 hours at AEDC, as well as significant wind-tunnel testing 

of the STOVL variant at BAE Systems, NASA Ames, NASA Langley, and DNW, the 

German-Dutch wind tunnels [ Buchholz (2002) ]. The first flight of the F-35 took place 

in 2006, and flight testing is ongoing, with the first delivery scheduled for 2009. Ap-

proximately 23 aircraft will be built and tested during SDD [ Hehs (2007) ] as the flight 

envelope is expanded, including testing of the STOVL capabilities of the aircraft.  

 Figure 13.53         The Lockheed Martin X-35B approaching landing 

in STOVL configuration [from  Buccholz (2002) ; photo courtesy 

of Lockheed Martin].   
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   13.10  SUMMARY 

 Aerodynamic design is a challenging and exciting field, made even more interesting by 

the systems-based requirements that every airplane has. One of my favorite things to tell 

would-be aircraft designers (whether they are students or practicing engineers) is that 

“everything affects everything else.” Whether you are trying to increase the maximum 

lift coefficient, or reduce drag, there are impacts of the aerodynamic choices on all other 

areas of the design, including the aircraft performance, structures, propulsion system, and 

controls (to name only a few) [ McMasters and Kroo (1998) ]. Always remember that your 

design choices will impact other groups within the design process, and seek to find solutions 

that maximize not just aerodynamic efficiencies, but the overall performance of the aircraft.   

     PROBLEMS 

   13.1.    Discuss the variation of    CL    as a low-speed aircraft consumes fuel during a constant altitude, 

constant airspeed cruise. What is the variation of    a?      

   13.2.    Based on the results of Problem 5.3, discuss ways to increase (L>D)max. 

  13.3.   Discuss the desirability of using laminar flow airfoils on 

    (a)   an acrobatic aircraft  

   (b)   a commercial transport     

   13.4.    Discuss the desirability of adding winglets to 

    (a)   a transport aircraft that operates for long periods in cruise flight  

   (b)   a stunt or aerobatic-type airplane     

   13.5.    You are a “spy” who has taken a position near one of the runways of an important military 

air base of your opponent. You plan to observe the enemy aircraft as they fly over and use 

the projected view of the aircraft and the trailing vortices to determine the capabilities of 

the aircraft. 

 Consider the planform views of the airplanes presented in  Figs.   P13.4(a)    through 

   P13.4(b)   . For each of the six planforms, predict the corresponding value of the “design” 

Mach number. Also, what is the aspect ratio of the wing and the approximate value of 

   (L>D)max?    You get extra credit if you can identify the aircraft by its name and the company 

that originally built it.                 

M�      ___________________ 

 AR ___________________ 

    (L>D)max      ______________   

 Figure P13.4(a)            

M�      ___________________ 

 AR ___________________ 

    (L>D)max      ______________   

 Figure P13.4(b)            
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   13.6.    A T-41 (Cessna 172) is cruising at an airspeed of 75 knots at an altitude of 16,000 ft. Let us 

treat the airfoil cross-section as a flat-plat at zero angle-of-attack. The wing plan form is 

essentially unswept and rectangular with a span of 35 ft and a chord of 6 ft. 
 In order to obtain “very approximate” estimates of the location of boundary-layer 

transition, we need a transition criteria and a method for calculating the values of the re-

quired parameters. We will assume that the local Reynolds number is obtained by using 

the free-stream values in place of the parameters at the edge of the boundary layer (which 

is true for an x-coordinate): 

   Rex =
r�U�x

m�

   

   If the boundary-layer transition Reynolds number is 500,000, 

   xtr =
Rextr
m�

r�U�

=
500,000 m�

r�U�

   

M�      ___________________ 

 AR ___________________ 

    (L>D)max      ______________   

 Figure P13.4(c)            

M�      __________________ 

 AR ___________________ 

    (L>D)max      ______________   

 Figure P13.4(e)            

M�      ___________________ 

 AR ___________________ 

    (L>D)max      ______________   

 Figure P13.4(d)            

           M�      __________________ 

 AR ___________________ 

    (L>D)max      ______________   

 Figure P13.4(f) 
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   Does the boundary layer for the T-41 remain laminar for the entire airfoil section. If it does 

not remain laminar, where does boundary-layer transition occur?    
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    14    TOOLS FOR DEFINING 

THE AERODYNAMIC 

ENVIRONMENT 

     Chapter Objectives 

  •   Learn about the primary ways to determine the aerodynamics of a vehicle  
  •   Understand the value and limitations of semi-empirical methods  
  •   Be able to determine which levels of computational aerodynamic tools are 

appropriate for determining various aerodynamic characteristics (e.g., stall, cruise 
drag, cruise lift)  

  •   Know the advantages of ground-based experimental testing, as well as the 
limitations and inaccuracies  

  •   Learn about the positive and negative aspects of flight testing   

  Aircraft designers have a wide variety of tools available to them for understanding the 

aerodynamics of a vehicle. We will divide the tools into two categories: 

    •   Analytical tools, which include exact analytical solutions, empirical-based concep-

tual design codes, and computational fluid dynamics (CFD) codes  

   •   Experimental programs, which employ either ground-based test facilities (e.g., 

wind tunnels) or flight tests   
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 Most aircraft designers use both analytical tools and experimental programs to define 

the configurations that could meet their mission requirements (range, payload, costs, 

maintainability, etc.). The division between the usage of analytical tools and experimen-

tal programs depends on the organization’s history of design practices (i.e., experience), 

on the facilities (computational and experimental) available to the designers, and on 

the personnel resources of the organization. 

  Kafyeke and Mavriplis (1997)  noted: “The approach to aircraft design has tra-

ditionally been based on wind tunnel testing with flight testing being used for final 

validation. CFD emerged in the late 1960s. Its role in aircraft design increased steadily 

as speed and memory of computers increased. Today CFD is a principal aerodynamic 

technology along with wind tunnel testing and flight testing. State-of-the-art capabilities 

in each of these technologies are needed to achieve superior performance with reduced 

risk and low cost.” This last sentence recommending that state-of-the-art capabilities 

are needed in each of these three areas to achieve superior performance (with reduced 

risk and low cost) is a key to the designers’ success. 

 The assumptions that we can make for a steady, low-speed flow of a viscous fluid 

in an infinitely long, two-dimensional channel of height  h,  or in an infinitely long circular 

pipe, allow us to obtain exact solutions to the simplified governing equations.  Examples of 

these flows, which are called Poiseuille flow, Couette flow, etc., appear in  Chapter   2   .     Such 

applications provide us with important practice in developing the governing equations, 

in specifying the boundary conditions, and in solving viscous flow problems. However, 

they have limited practical use for aircraft design applications. 

 Rapid advances in computer hardware and in computer software have enabled 

designers to use relatively sophisticated CFD codes to generate flow-field solutions for 

realistic aerodynamic configurations. However, CFD is not purely theoretical analysis. 

CFD changes the fundamental nature of the analysis from calculus to arithmetic and 

from the continuum domain to the discrete domain so that the problem of interest can 

be solved using a computer. The existing mathematical theory for numerical solutions 

of nonlinear partial differential equations is continually being improved. The computa-

tional fluid dynamicist often relies on the mathematical analysis of simpler, linearized 

formulations, and on heuristic reasoning, physical intuition, data from experimental 

programs, and trial-and-error procedures. Furthermore, the numerical algorithms that 

are chosen depend heavily on the dominant physics of the specific application. 

 Therefore, even the most rigorous CFD codes employ models and approximations 

both for physical properties and for fluid dynamic processes (such as turbulence). The 

approximations range from the model used to generate numerical values for the abso-

lute viscosity as a function of pressure and temperature to the numerical algorithm used 

to model the turbulent boundary layer. It is important to keep in mind that turbulence 

models are not universal. One turbulence model may provide reasonable values for the 

engineering parameters for a particular class of flows, but not work well for another type 

of flow.  See  Chapter   4    for a brief discussion of turbulence models.  

 As noted by  Shang (1995) : “As an analog, the ground testing facilities can easily 

measure the global aerodynamic force and moment exerted by the flow field on the 

tested model. Once a scaled model is installed in the test section, the data-generating 

process is the most efficient among all simulation techniques. Therefore, for a large class 

of design problems, the ground testing method is preferred over others. However, like 
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CFD, experimental simulation does not necessarily reproduce accurate results in flight. 

The inherent limitation is derived from the principle of dynamic similarity—the scaling 

rule. Even if a perfect match to flight conditions is reached in dimensionless similarity 

parameters of Mach, Reynolds, and Eckert numbers, the small-scale model still may 

not describe the fine-scale surface features. If the flow fields under study are strongly 

influenced by fine-scale turbulence and laminar-turbulent transition, the accuracy of 

simulations to flow physics is uncertain.” 

 Although testing in ground-based facilities can deliver prodigious amounts of 

quality data, the ability to extrapolate the information obtained to the flight environ-

ment may be affected by shortcomings in the simulation of the flow. Data obtained in 

ground-based test facilities may be affected by model scale. As a result, we may fail to 

match critical simulation parameters (e.g., the Reynolds number). Only a full-scale ve-

hicle flying at the desired velocity, the desired altitude, and the desired attitude (i.e., its 

orientation with respect to the free-stream velocity vector) provides information about 

the aerodynamic parameters in the true environment. However, flight-test experiments 

present considerable challenges to define the free-stream conditions with suitable ac-

curacy (especially for high-altitude flights at hypersonic speeds). Furthermore, because 

of their size, their weight, and their fragile nature, many of the types of instrumentation 

available to the wind-tunnel-test engineer are not available to the flight-test engineer.   

      14.1  COMPUTATIONAL TOOLS 

 There are a wide variety of analytical/computational tools that incorporate flow models 

of varying degrees of rigor available to the aircraft designer. Some readers of this  text      

will participate in the development of their organization’s CFD codes; a large fraction 

of the readers will have had no role in the development of the CFD codes that they 

use. Often multiple organizations participate for several years in the development of a 

single code. Whether you are developing your own code or using a code that was de-

veloped elsewhere, it is important that you understand (1) the grid scheme that is used 

to represent the body and the grid scheme that is used in the solution of the flow field; 

(2) the numerical algorithms used to obtain the flow-field solution; and (3) the models 

used to represent fluid mechanic phenomena, thermochemical phenomena, and flow 

properties. In this section, we will discuss these analytical/computational tools in their 

increasing order of sophistication. 

   14.1.1  Semiempirical Methods 

 There are a large number of codes that employ semiempirical, data-based methods 

that are used for preliminary design purposes. An example of a semiempirical code, 

which uses a combination of theoretical methods with nonlinear corrections for the 

body and an extensive experimental database for wing and tail fin loads, is the MISL3 

code, developed by  Lesieutre et al. (1989) . As  Mendenhall et al. (1990)  discuss, “The 

data base inherently includes viscous and compressibility effects as well as fin-body gap 

effects.    . . .    Mutual interference between control surfaces is also considered in the data 

base.” The MISL3 code is limited to applications of Mach 5 or less. 
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 There is a variety of conceptual design codes for predicting the aerothermodynamic 

environment for configurations in hypersonic flows (i.e., Mach numbers of approximately 

5 or greater). One such code is the Supersonic/Hypersonic Arbitrary Body Program  

(S/HABP) [ Gentry et al. (1973) ]. In the first step, the vehicle geometry is divided into 

flat elemental panels. Frequently used techniques for computing the inviscid pressure 

acting on a panel employ one of the many simple techniques based on impact or on ex-

pansion methods. Once the pressure distribution has been determined, boundary-layer 

correlations are used to estimate the skin friction and the heat transfer acting at the 

vehicle surface. The local pressures and the local skin-friction forces can be integrated 

to compute estimates of the resultant forces and moments acting on the vehicle. These 

types of methods have been widely used over the years on a variety of aircraft programs.  

   14.1.2  Surface Panel Methods for Inviscid Flows 

 As the level of complexity of the flow increases, more detailed information is needed. 

Therefore, numerical codes using panel surface methods, or surface singularity meth-

ods, have been under development since the 1960s. These panel surface methods use 

the linearized/potential flow equations  we discussed in  Chapter   3    .  Panel surface method 

codes for subsonic flows are discussed in  Chapter   7    and for supersonic flows are dis-

cussed in  Chapter   11   .  

 For subsonic flows, vortex lattice methods (VLMs) combine the basic building 

blocks of the constant source panel and the vortex lattice methods, representing thick-

ness effects with source panels and lift effects with vortex panels  (see  Chapter   7   ) . Every 

panel has some form of source singularity imposed upon it, whether it is a lifting or 

nonlifting component. Lifting components have vortex singularities imposed upon them 

or interior to them. There are an infinite number of combinations of vortex singular-

ity variations that will provide lift and satisfy the boundary conditions. Therefore, a 

numerical technique must be developed to generate a unique solution. This is done by 

prescribing an assumed chordwise variation and spanwise variation of vortex strength, 

then solving both for the source strengths and for the vortex strengths, subject to the 

Kutta condition. The particular variation of the vortex singularity chosen impacts the 

resulting magnitudes of the source strengths. An improper choice can lead to large 

source gradients and inaccuracies in the solution. 

 For each of the control points in the lattice, the velocities induced at that control 

point by each of the panels of the configuration are summed, resulting in a set of linear 

algebraic equations which express the exact boundary condition of flow tangency on the 

surface. The local velocities are then used to compute the static pressure acting on each 

of the panels. These pressures are then integrated to obtain the forces and the moments. 

 The PAN AIR code was developed to model both subsonic and supersonic linear 

potential flows about arbitrary configurations [ Towne et al. (1983) ]. The Prandtl-Glauert 

equations  [the reader should refer to equation (9.13)]  represent inviscid, compressible, 

subsonic/supersonic, irrotational, isentropic, small perturbation flows. PAN AIR uses a 

linear source distribution and a quadratic doublet distribution on each panel to reduce 

the number of panels needed to attain a given accuracy. The flexibility of the PAN AIR 

code provides the user with a great deal of freedom and capability in modeling linear 

potential flow problems. 
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  Everson et al. (1987)  noted that “panel methods have long been able to handle 

complex configurations and boundary conditions, but they are limited to linear flows.” 

Thus, TRANAIR was developed to solve the full potential equation about arbitrary 

configurations. The key to the ability to handle complex configurations is the use of 

a rectangular grid rather than a surface fitted grid. Therefore, the grid is defined by a 

hybrid method employing both  surface panels  and a grid containing points away from 

the surface where solutions to the flow field parameters are generated. 

 Since the VLM, the PAN AIR code, and the TRANAIR code all are inviscid 

codes, they do not model the boundary layer. So, these codes do not provide estimates 

for the skin-friction component of the drag coefficient. Furthermore, they do not model 

the shock-wave/boundary-layer interactions that produce the separation-induced-drag 

component of the drag coefficient at transonic speeds. However, these codes provide 

reasonable estimates of the wave drag for supersonic flows. The lift and pitch moment 

coefficients generated using these codes are best for low angles of attack (i.e., cruise 

applications). Furthermore, because only a surface discretization scheme is required, 

very complex configurations can be modeled in which the panel density is adjustable to 

the desired accuracy. Therefore, since the computational intensity for panel methods is 

very low, the cost of computing the lift and pitch moment is relatively inexpensive for 

those conditions where these methods are applicable.  

   14.1.3  Euler Codes for Inviscid Flow Fields 

 Neglecting the viscous terms in the Navier-Stokes equations  (see  Appendix   A   )  pro-

vides the analyst with the Euler equations to model the flow field. Since the Euler 

equations neglect all viscous terms, the solutions cannot be used to compute either the 

shear forces or the heat transfer to the surface of the vehicle. However, they can pro-

vide solutions for the unsteady, inviscid flow field over the configuration in either sub-

sonic, transonic, or supersonic streams. Therefore, Euler codes can be used to compute 

engineering estimates of the lift and pitch moment. In comparison with panel methods, 

one of the difficulties of numerically solving the Euler equations involves generating a 

body-fitted, discrete grid about the configuration geometry (i.e., a grid that is curved 

to follow the contours of the body). The job of creating a surface definition for a com-

plicated three-dimensional geometry that is needed for panel methods is much easier 

than the generation of a body-fitted grid that is needed for an Euler-based code. 

 Rapid developments of grid-generation tools support the growing use of Euler codes. 

Therefore, Euler codes are available to even the smallest design groups due to the ever-

improving capabilities of computational hardware and software. Since the costs for use 

continue to decrease, more and more organizations are using Euler codes to generate the 

lift and pitch moment for those applications where these aerodynamic coefficients were 

formerly computed using the surface panel methods described in the previous paragraphs.  

   14.1.4  Two-Layer Flow Models 

 If we want to estimate the shear forces and the heat transfer to the surface of the vehicle, 

we can use computations based on a two-layer flow model.  As noted in the prologue for 

 Chapter   4   , for     many high Reynolds number flows, the flow field may be divided into 
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two regions: (1) a viscous boundary layer adjacent to the surface and (2) the essentially 

inviscid flow outside of the boundary layer. Therefore, in the two-layer flow model, 

the Euler technique or a panel method can be used to generate the inviscid portion of 

the flow field and, therefore, the boundary conditions at the outer edge of the bound-

ary layer. The two velocity boundary conditions at the wall are defined by the no-slip 

condition    (u = 0)    and by the assumption that either there is no flow through the wall 

   (v = 0)    or a transpiration boundary condition. The temperature boundary condition at 

the wall that is required for high-speed flows is either that the wall temperature    (TW)    is 

given (isothermal) or that there is no heat transfer to the wall [i.e., the adiabatic-wall as-

sumption    (0T>0y = 0)   ]. A solution for the boundary layer is computed subject to these 

boundary conditions and the transition/turbulence models. An iterative procedure is 

used to compute the flow field using the two-layer model. To start the second iteration, 

the inviscid flow field is recalculated, replacing the actual configuration by the  effective 
configuration . The effective configuration is determined by adding the displacement 

thickness of the boundary layer as computed during the first iteration to the surface 

coordinate of the actual configuration. The boundary layer is recalculated using the 

second-iterate inviscid flow field as the boundary condition. 

 Two-layer flow models can be used for applications where the viscous boundary 

layer near the surface is thin and does not significantly alter the inviscid-region flow 

field. Therefore, this procedure would not apply to flow fields for which there are shock-

wave/boundary-layer interactions or significant regions of separated flow. So, the two-

layer method would not be the proper tool to generate solutions for a transonic flow, 

where shock-wave/boundary-layer interactions cause the boundary layer to separate 

or for flows where the vehicle is at large angles of attack, so that there are extensive 

regions of separated flow.  

   14.1.5  Computational Techniques That Treat the Entire 
Flow Field in a Unified Fashion 

 Because of the limitations described in the previous paragraphs, the ultimate computa-

tional tool treats the entire flow field (both the viscous regions and the inviscid regions) 

in a unified fashion. Starting with the Navier-Stokes equations  (see  Appendix   A   ) , we 

can develop a code that treats the entire flow field in a unified fashion. Li (1989) stated, 

“The CFD code development and application may follow seven steps: 

    1.   Select the physical processes to be considered.  

   2.   Decide upon the mathematical and topographical models.  

   3.   Build body geometry and space grid.  

   4.   Develop a numerical solution method.  

   5.   Incorporate the above into a computer code.  

   6.   Calibrate and validate the code against benchmark data.  

   7.   Predict aerodynamic coefficients, flow properties, and aeroheatings.”   

 Every code that is used to compute the flow field requires a definition of the 

geometric characteristics of the vehicle and a grid scheme to identify points or volumes 

within the flow field. There are a number of techniques that have been developed for 
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generating the computational grids that are required in the finite-difference, the finite-

volume, and the finite-element solutions of the equations for arbitrary regions. 

 Grids may be structured or unstructured, and there are no a priori requirements 

on how grids are to be oriented. However, in some cases, the manner in which the flow-

modeling information is formulated may influence the grid structure. For instance, since 

turbulence models are often formulated in terms of the distance normal to the surface, the 

grid schemes utilized for these turbulent boundary-layer models employ surface-oriented 

coordinates, where one of the coordinate axes is locally perpendicular to the body surface. 

 The use of adaptive grid techniques is a grid-generation strategy that can be used 

both with structured and unstructured grids. Adaptive grid techniques might be applied 

to portions of the flow field where accurate numerical solutions require the resolution 

of events within extremely small distances. Often such resolution requirements lead to 

the use of very fine grids and lengthy computations.  Aftosmis and Baron (1989)  state, 

“Adaptive grid embedding provides a promising alternative to more traditional clus-

tering techniques. This method locally refines the computational mesh by sub-dividing 

existing computational cells based on information from developing solutions. By re-

sponding to the resolution demands of chemical relaxation, viscous transport, or other 

features, adaptation provides additional mesh refinement only where actually required 

by the developing solution.” Grid-clustering strategies also provide a valuable tool, 

when shock-capturing formulations are employed. 

 A variety of assumptions and simplifications may be introduced into the compu-

tational models that are used to treat the flow field in a unified fashion. For instance, 

as noted by  Deiwert et al. (1988) , when there is no flow reversal and when the inviscid 

portion of the flow field is supersonic in the streamwise direction, the Navier-Stokes 

equations can be simplified by neglecting the streamwise viscous terms. By neglecting 

the unsteady terms and the streamwise viscous derivative terms in the full Navier-Stokes 

equations, we can obtain the  parabolized  Navier-Stokes (PNS) equations. These are 

reasonable assumptions for large Reynolds number flows over bodies which do not ex-

perience severe geometric variations in the streamwise direction. Therefore, a practical 

limitation for the PNS method is that there is no streamwise separation, but crossflow 

separation is allowed. These PNS equations are used to compute the shock-layer flow 

field for certain high-Mach-number flows. If we assume that the viscous, streamwise 

derivatives are small compared with the viscous, normal, and circumferential deriva-

tives, a tremendous reduction in computing time and in storage requirements is possible 

over that required for the time-dependent approaches. Since the equations are parabolic 

in the streamwise direction, a spatial marching-type numerical-solution technique can 

be used. A PNS code requires a starting solution to generate the initial conditions on 

a surface where the inviscid portion of the flow is supersonic.  Mendenhall et al. (1990)  

used an Euler code to generate the starting conditions for the region of the flow field 

modeled by the PNS formulation.  

   14.1.6  Integrating the Diverse Computational Tools 

 The aerodynamic design of the Pegasus TM  launch vehicle was based on proven tech-

niques developed during the design of existing vehicles. No wind-tunnel tests were in-

cluded in the program. However, readily available computational codes were used for all 
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aerodynamic analyses. As shown in  Fig.   14.1   , all levels of codes, ranging in complexity 

from empirical data-based methods to three-dimensional Navier-Stokes codes, were used 

in the program to develop the aerodynamic design of the Pegasus TM  [ Mendenhall et al. 

(1990) ]. A PNS code was used to predict fuselage pressure distributions; an axisymmetric 

Navier-Stokes code was used to explore the possibility of rocket-plume-induced separa-

tion near the tail control surfaces; and a three-dimensional code was used to compute 

the complete flow field for critical conditions to check details of the flow, which may 

have been missed by the simpler methods. The CFD results were used to compute the 

aerodynamic heating environment in the design of the thermal protection system.  
 However, this approach did not prove to be completely adequate. The initial  launches 

were successful, and it appeared that the accuracy of the aerodynamic analysis was accept-

able for this unmanned vehicle. However, after a subsequent launch failure, a dispute arose 

over whether the aerodynamics had been adequately predicted, or whether the control 

system was too sensitive to imperfections in the aerodynamic model (the problem was 

determined to be in the lateral-directional aerodynamic characteristic of the vehicle, some-

thing which the methods of the day predicted to be slightly stable, while the actual vehicle 

turned out to be slightly unstable). Understanding the uncertainties in the analysis required 

careful evaluation since no prediction is exact.   
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 Figure 14.1         Aerodynamic analysis flight envelope; CFD tools 

used for    a>M�    space for the Pegasus TM  [from  Mendenhall et al. 

(1990) ].   
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   14.2   ESTABLISHING THE CREDIBILITY OF CFD 
SIMULATIONS 

  Neumann (1988)  notes, “The codes are NOT an end in themselves.   c    They represent 

engineering tools; tools that require engineering to use and critical appraisal to under-

stand. Hypersonics must be dominated by an increased understanding of fluid mechanic 

reality and an appreciation between reality and the modeling of that reality. CFD repre-

sents the framework for that modeling study and experiments represent the technique for 

introducing physical reality into the modeling process. Finally, classical analytical theory 

and the trend information produced by theory gives us the direction with which to assem-

ble the point data from these numerical solutions in an efficient and meaningful way.” 

  Shang (1995)  notes: “Poor numerical approximations to physical phenomena can 

result from solving over-simplified governing equations. Common mistakes have been 

made in using Euler equations to investigate viscous dominated flows, and employ-

ing the thin-layer approximation to Navier-Stokes equations for flowfield containing 

catastrophic separation. Under these circumstances, no meaningful quantification of 

errors for the numerical procedure can be achieved. The physically correct value and 

the implementation of initial and/or boundary conditions are another major source of 

error in numerical procedures in which the appropriate placement and type of bound-

ary/initial conditions have a determining effect on numerical accuracy.” 

 As suggested by  Barber (1996) , we will “focus on the issues of accuracy and 

achieving reduced variability (robustness), wherein a range of physical processes and a 

variety of desired outcomes can occur. Most organizations seek to achieve this goal by 

performing validation or certification studies. When the end-user is a research group, 

the metrics for evaluating the accuracy of the code (the desired outcomes) are typically 

fundamental flow variables (streamlines, velocity profiles, etc.). However, when the 

end-user is a member of a design team, the metrics are more performance oriented, e.g. 

lift and drag coefficients, system efficiency, etc. The central basis of the validation proc-

ess is benchmarking, whereby a limited number of numerical predictions are made and 

compared to experimental data. Even though one successfully performs such calcula-

tions, the choice of cases frequently is not appropriate for minimizing the risk of faulty 

data for a given design process. Significant risks can be introduced by, for example, 

poorly defined design requirements. This can occur from a failure to choose the test 

cases (validation/calibration) from an operational or end-user perspective, but instead 

choosing them from a research perspective.” 

  Bradley (1988)  defined the concepts of  code validation  and  code calibration  as 

follows. 

  “CFD code validation implies detailed surface and flow field comparisons with 

experimental data to verify the code’s ability to accurately model the critical phys-

ics of the flow. Validation can occur only when the accuracy and limitations of the 

experimental data are known and thoroughly understood and when the accuracy 

and limitations of the code’s numerical algorithms, grid-density effects, and physi-

cal basis are equally known and understood over a range of specified parameters. 

 CFD code calibration implies the comparison of CFD code results with experi-

mental data for realistic geometries that are similar to the ones of design interest, 



794    Chap. 14 / Tools for Defining the Aerodynamic Environment

made in order to provide a measure of the code’s ability to predict specific param-

eters that are of importance to the design objectives without necessarily verifying 

that all the features of the flow are correctly modeled.”  

 To the two definitions for  validation  and  calibration ,  Barber (1996)  and  Rizzi and 

Vos (1996)  add the terms  verification  and  certification . Verification establishes the abil-

ity of a computer code to generate numerical solutions for the specific set of governing 

equations and boundary conditions. Through the verification process, the accuracy of the 

solution and the sensitivity of the results to parameters appearing in the numerical for-

mulation are established through purely numerical experiments. These numerical experi-

ments include both grid-refinement studies and comparison with solutions to problems 

that have exact analytical solutions. 

 Certification relates to programming issues (e.g., logic checks, programming style, 

documentation, and quality assurance issues). Therefore, certification test cases are run 

before a new version of the code is released in order to be certain that no new errors 

have been introduced into the previously certified version. 

  Rizzi and Vos (1996)  note that the code developers are responsible for building a 

credible code and verifying and certifying that code. Experts with a strong background 

in developing numerical models to represent physical processes carry out the tasks of 

validating and of calibrating the code. The code is then passed on to the users, who are 

experts neither in code development nor in numerical modeling. 

  Cosner (1995)  suggests that “a range of test cases is analyzed which illustrates the 

various outcomes which can be expected across the design range of interest. Also, a set 

of standard practices usually are defined, to be used throughout the validation study. 

The skill level of the user should be representative of the engineering (user) environ-

ment. Therefore, it is preferable that this validation should be performed by representa-

tive engineers from the user community, not by the experts in the code or technology 

which is being tested.” 

  Cosner (1995)  also notes, “Computational Fluid Dynamics technology, as a basis 

for design decisions, is rapidly gaining acceptance in the aerospace industry. The pace 

of acceptance is set by the advancing confidence of design team leaders that reliance 

on CFD can improve the quality of their end product, and reduce the schedule, costs 

and risks in developing that product.”  Barber (1996)  concluded, “Risk reduction to an 

engineering design team is rooted in (sic) a determination to deliver  reliable  engineering 

data having a specified level of  accuracy , in a specified  time , and for a specified  cost .” 

  Bradley (1995)  has said, “Engineers have always been able to use less than perfect 

tools coupled with experiences and calibration to known physical quantities to provide 

design guidance. Calibration and validation should not be confused. Calibration pro-

vides an error band or correction factor to enhance the ability of a particular code to 

predict specific parameters that are important to the design objectives for a particular 

design without verifying that all other features of the flow are modeled accurately. For 

example, one might calibrate a code’s ability to predict shock location and lift and mo-

ment on a wing without any assurance that the flowfield off the surface and the wake 

behind the wing are properly modeled. Or one may calibrate a code’s ability to compute 

the gross pressure loss through a supersonic inlet-duct combination without concern for 

the distortion distribution at the compressor face. Although the use of calibrated CFD 
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solutions is dangerous because of the subtle viscous interactions that are extremely 

sensitive to geometry and flowfield, skilled engineers can often obtain useful design 

information and guidance from relatively immature codes.”  

   14.3  GROUND-BASED TEST PROGRAMS 

 A large fraction of the relevant experimental information about flow fields of interest 

to the aerodynamicist is obtained in ground-based test facilities. Since complete simula-

tions of the flow field are seldom obtained in a ground-based facility, the first and most 

important step in planning a ground-based test program is establishing the test objec-

tives. As stated by  Matthews et al. (1985) , “A precisely defined test objective coupled 

with comprehensive pretest planning are essential for a successful test program.” 

 There are many reasons for conducting ground-based test programs. The test 

objectives include the following: 

    •   Obtain data defining the aerodynamic forces and moments and/or heat-transfer 

distributions (especially for complete configurations whose complex flow fields 

resist computational modeling).  

   •   Use partial configurations to obtain data defining local flow phenomena, such as 

shock-wave/boundary-layer interactions, using a fin or a wing mounted on a plane 

surface.  

   •   Determine the effects of specific design features on the overall aerodynamic coef-

ficients of the vehicle (e.g., the drag increment due to protuberances of the full-

scale aircraft).  

   •   Certify airbreathing engines in ground-based test programs.  

   •   Obtain detailed flow-field data to be used in developing flow models for use in a 

computational algorithm (i.e., tests to obtain code-validation data).  

   •   Obtain measurements of parameters, such as the heat transfer or the total drag, to be 

used in comparison with computed flow field solutions over a range of configuration 

geometries and of flow conditions (i.e., tests to obtain code-calibration data).   

  As noted in  Chapter   13   ,  Lockheed, Boeing, and General Dynamics used 20,000 

hours in the wind tunnel during the demonstration/validation design phase for the Ad-

vanced Technology Fighter. Therefore, even for a relatively recent design activity, con-

siderable resources were spent on wind-tunnel programs to achieve the first objective 

in the preceding list. 

  Niewald and Parker (2000)  noted that the drag increment due to the protuberances 

on the full-scale aircraft is significant and must be included during the database develop-

ment phase. “An extensive effort was made to identify and estimate the drag of all pro-

tuberance items. The design process included continuous tracking of all outer moldline 

protuberances to facilitate trade studies. There were 94 types of protuberances, resulting 

in a total of 386 individual protuberance items. The items included external fasteners of 

various types, which numbered 88,340, and skin panel gaps totaling 2,180 ft in length. 

Outer moldline surveys of production F/A-18C aircraft were used to determine the per-

centage of gaps that would be forward or aft facing. The large model scale permitted test-

ing of the most significant protuberance items (see  Fig.   14.2   ). Seventy-one percent of the 
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F/A-18E protuberance drag was based on wind-tunnel test data.” When using  Fig.   14.2   , 

the reader should note that  one drag count  corresponds to a drag coefficient of 0.0001.  
  Niewald and Parker (2000)  concluded, “Development of a credible preflight data-

base for accurate aircraft predictions requires commitment and resources. The success of 

the F/A-18E/F wind-tunnel program was a direct result of both of these. The commitment 

was made at the outset to develop and implement test techniques that would properly 

account for each item impacting aircraft performance either by wind-tunnel testing or by 

estimation. Adequate resources allowed the development of high-fidelity models, use of 

large, interference-free wind-tunnels, comprehensive test programs, and integration of 

CFD methods to ensure first-time quality test results. Front loading the project resources 

to the wind-tunnel program were beneficial to the subsequent performance flight test 

program. The excellent agreement between wind-tunnel and flight results allowed the 

performance flight evaluation plan to be reduced by 60 flights and eliminated aircraft 

development flight testing for drag reduction as a result of optimistic predictions.” 

 The planner of a ground-based test program should consider the following 

parameters: 

    •   the free-stream Mach number,  

   •   the free-stream Reynolds number (and its influence on the character of the bound-

ary layer),  

   •   the free-stream velocity,  

   •   the pressure altitude,  

   •   the wall-to-total temperature ratio,  

   •   the total enthalpy of the flow,  
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   •   the density ratio across the shock wave,  

   •   the test gas, and  

   •   the thermochemistry of the flow field.   

 You should realize that some of these nine parameters are important only for hyper-

sonic flows (e.g., the density ratio across the shock wave, the test gas, and the thermo-

chemistry of the flow field). 

 Notice that some parameters are interrelated (e.g., the free-stream velocity, the 

free-stream Mach number, and the free-stream Reynolds number).  For example, you 

should review the discussion relating to skin friction in  Chapter   5   .  Most often, the 

boundary layer is turbulent over the majority of the aircraft in flight. However, wind-

tunnel models are usually of relatively small scale. In such cases, the Reynolds number 

is relatively low for conventional wind tunnels and the boundary layer may be laminar 

or transitional. This may not be critical if the objective of the test is to generate lift and/

or pitch moment data at low angles of attack. However, for determining the onset of 

stall or for estimating drag, simulation of the Reynolds number is much more important. 

  Laster et al. (1998)  note: “Experience has shown that lift and pitching moments 

are usually not too sensitive to Reynolds number up to the onset of buffet; but, buf-

fet boundary, maximum lift, drag, and drag rise are usually very sensitive to Reynolds 

number. Therefore, the aircraft developer is faced with accounting for Reynolds number 

effects with these parameters as best he/she can. The usual practice is to use a combina-

tion of test techniques and empirical corrections. Because of little sensitivity of lift and 

pitching moment to Reynolds number below buffet onset, in most cases, the engineer 

has been able to directly use low Reynolds number wind tunnel measurements of lift 

and pitching moment in his/her design without having to resort to Reynolds number 

corrections. However, this is not necessarily true for wings with high aft loading. Test 

technique plays an important role in the determination of drag from wind tunnel data. 

Because the boundary layer is mostly turbulent in flight, experience has shown that forc-

ing the model boundary layer to be turbulent in the wind tunnel makes the task easier 

in accounting for Reynolds number effects.” 

  Laster et al. (1998)  continue, “For accurate calculation of the forces (especially 

drag), the location of transition of the model boundary layer from laminar to turbulent 

must be accurately predicted, measured, or fixed. Otherwise, in the case of transonic flow, 

the shock/boundary-layer interaction cannot be properly modeled. For transition fixing, 

the prediction of the untripped transition location is important to assure that the bound-

ary-layer trips are placed ahead of the location where transition occurs ‘naturally’ in the 

test facility. The transition location is dependent on the pressure gradient, surface rough-

ness, turbulence and/or noise, and instabilities associated with the three-dimensionality of 

the flow. Therefore, the location of transition is both model- and flow-field dependent.” 

 Complete simulations of the flow field are rarely obtained in any one ground-based 

facility. In a statement attributed to Potter,  Trimmer et al. (1986)  noted: “Aerodynamic 

modeling is the art of partial simulation.” Thus, one must decide which parameters are 

critical to accomplishing the objectives of the test program. In fact, during the develop-

ment of a particular vehicle, the designers will most likely utilize many different facilities 

with the run schedule, the model, the instrumentation, and the test conditions for each 

program tailored to answer specific questions.        
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 Aerodynamics Concept Box: High-speed Testing on a Train Track 

 The U.S. Air Force 846th Test Squadron operates the Holloman High Speed Test Track 

(HHSTT) which simulates selected portions of the flight environment under accurately pro-

grammed and instrumented conditions. This is accomplished by using a 50,788 ft test track, 

coupled with high-speed sleds containing various rocket propulsion systems to accelerate the 

sleds. This capability fills the gap between laboratory investigations and full-scale flight tests. 

 The 846th Test Suadron upgraded its capability under the “Hypersonic Upgrade 

Program” and set a world record in 2003, as shown below. The program provides increased 

velocity capabilities as well as a four-fold improvement in the dynamic environment of sled 

tests. This improvement not only allows faster test velocities, but also provides a higher fidel-

ity payload capability. 

 The world record rocket sled test on the HHSTT obtained a velocity of 9465 ft per sec-

ond or 6453 mph … over Mach 9! The test validated the program that significantly increased 

the capabilities at the HHSTT to meet a variety of hypersonic test needs. The test included 

 improvements in rocket sled design, rail alignment, rocket propulsion, and modeling and simu-

lation. The HHSTT is the only ground test facility capable of achieving the speed/payload com-

binations necessary to simulate full-scale vehicles in flight. A Super Roadrunner (SRR) rocket 

motor, developed specifically for the program, powered each of the last two stages. The SRR 

motor produces 228,000-pounds of thrust for 1.4 seconds and only weighs 1100 pounds. The 

maximum acceleration of the sled was 157-g’s or 157 times the force exerted by gravity. When 

the payload impacted the target, it had 363 megajoules of energy or the energy of a car impact-

ing a brick wall at 2020 mph. 

 From USAF 846 th  Test Squadrom fact sheet. 

       Shocks visible on high-speed test article at Holloman High-Speed Test 

Track (U.S. Air Force photo)   

   14.4  FLIGHT-TEST PROGRAMS 

  Neumann (1986)  suggests a variety of reasons for conducting flight tests. To the four 

reasons suggested by  Draper et al. (1983) , which are: 

    •   to demonstrate interactive technologies and to identify unanticipated problems,  

   •   to form a catalyst (or a focus) for technology,  

   •   to gain knowledge not only from the flights but also from the process of develop-

ment, and  

   •   to demonstrate technology in flight so that it is credible for larger-scale applications.   

 Neumann added three reasons of his own: 

    •   to verify ground-test data and/or to understand the bridge between ground-test 

simulations and actual flight,  
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   •   to validate the overall performance of the system, and  

   •   to generate information not available on the ground.   

  Saltzman and Ayers (1982)  wrote, “Although aircraft designers must depend heav-

ily upon model data and theory, their confidence in each should occasionally be bolstered 

by a flight demonstration to evaluate whether ground-based tools can indeed simulate 

real-world aerodynamic phenomena. Over the years as the increments of improvement 

in performance have become smaller and aircraft development costs have risen, casual 

model-to-flight drag comparisons have sometimes given way to very comprehensive corre-

lation efforts involving even more precise sensors, the careful control of variables, and great 

attention to detail on behalf of both tunnel experimenters and their flight counterparts.” 

 Lift and drag characteristics for the F/A-18E have been determined throughout the 

flight envelope via in-flight thrust determination techniques, as reported by  Niewald and 

Parker (1999) . Three maneuver types were employed during the flight-test program to 

establish the aerodynamic database: steady-state maneuvers, quasi-steady-state maneu-

vers, and dynamic maneuvers. Steady-state maneuvers (e.g., cruise at constant Mach 

number and constant altitude) yield the most accurate data but require a large amount 

of flight time and airspace. It takes one minute of stabilization and three minutes of 

data-acquisition time to define one point on the drag polar using cruise. Quasi-steady 

maneuvers, such as constant-Mach-number climbs, provide more points for the drag 

polar definition. However, uncertainty is increased relative to steady-state maneuvers. 

Dynamic maneuvers, such as the pitch up/pitch down maneuvers, also known as the 

roller coaster, allow the estimation of aerodynamic characteristics covering a range of 

angle of attack that cannot be achieved through steady-state maneuvers or quasi-steady-

state maneuvers. However, highly accurate instrumentation and data synchronization are 

required to reduce the potentially large data scatter that may result. As a result of the dif-

ficulties with dynamic maneuvers, they were not used in the F/A-18E flight-test program.  

   14.5   INTEGRATION OF EXPERIMENTAL AND COMPUTATIONAL 
TOOLS: THE AERODYNAMIC DESIGN PHILOSOPHY 

 The vehicle design integration process should integrate experimental data obtained 

from ground-based facilities with computed flow-field solutions and with data from 

flight tests to define the aerodynamic parameters and the heating environments (the 

combination of aerodynamic parameters and the heating environments is termed the 

 aerothermodynamic environments ) to which the vehicle is subjected during its mission. 

 At the time of this writing, flight tests are relatively expensive. One test point in 

a store separation flight-test program might cost $1M. Therefore, an extensive flight-

test program of store separation and deployment might cost $50M. One Research and 

Development flight test to develop the technology base for a Mach 10 vehicle might 

cost $50M itself. Sophisticated wind-tunnel programs for a high-performance vehicle 

may cost $250K to $900K for the model and for the tunnel occupancy costs. To run a 

code is relatively cheap, say $50K to generate solutions for a number of flow conditions. 

And this is the cost once the code has been developed. Furthermore, as has been noted, 

it might take several years to develop the code to the point where it will deliver the 

desired computations. In addition, generating grids for the vehicle surface and for the 

flow field may take months. The grid generation process is a key element in generating 
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suitable numerical solutions, when using Euler codes or Navier-Stokes codes. Thus, a 

very crude order of magnitude estimate for the costs might be as follows: 

    •   a flight-test program is two orders-of-magnitude more expensive than a wind-

tunnel program, while  

   •   a wind-tunnel-test program is an order-of-magnitude more expensive than a CFD 

program.   

 You should be cautioned that these numbers are very approximate and highly depend-

ent on the types of testing being used. 

  Mullin (1992)  noted, “The aeronautical technology changes over 87-years have 

been enormous; almost beyond description, but the most important factor in successful 

aeronautical engineering has not changed: making technical decisions based on analysis, 

test data, and good engineering judgement. Then and now, the paramount obligation of 

aeronautical engineers is to make critical technical decisions. The increasingly dominant 

role of digital computers in aircraft design and analysis has tended to confuse some of 

our engineering colleagues, but the truth of the matter is inescapable.” 

 All of the tools available to the aircraft designer, whether analytical/computa-

tional or experimental, require that he or she bring judgment born of experience to the 

application of these tools in the design process.  Good judgment comes from experience; 
experience comes from bad judgment.   

   14.6  SUMMARY 

 Aerodynamicists have many “tools” available for predicting and understanding how 

airplanes will fly. In addition to the analytical approaches discussed throughout this 

book, there are also computational tools and experimental methods. The advent of high 

speed computers has made CFD of ever-increasing importance in aerodynamics, and 

the various ground and flight test capabilities continue to be essential for aerodynamic 

design. Understanding and being able to use the various “tools” is essential to being a 

good aerodynamicist.   
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     A   THE EQUATIONS OF 

MOTION WRITTEN IN 

CONSERVATION FORM 

 In the main text the basic equations of motion were developed and were used in the 

nonconservative form, e.g., the momentum equation (equation (2.12)] and the energy 

equation (equation (2.32)]. However, the reader who pursues advanced applications 

of fluid mechanics often encounters the basic equations in conservation form for use 

in computational fluid dynamics. The conservation form of the basic equations is used 

for the following reasons (among others). First, it is easier to derive a noniterative, 

second-order, implicit algorithm if the nonlinear equations are in conservation form. 

Second, when shock waves and shear layers are expected in the flow field, it is essential 

that conservative difference approximations be used if one uses a “shock-capturing” 

method (Ref. A.1).  Shock capturing  is defined as ignoring the presence of embedded 

discontinuities in the sense that they are not treated as internal boundaries in the 

difference algorithm. 

 Let us establish the following nomenclature for the general form of the equations 

of motion in conservation form: 

      
0U
0t

+
0(Ei - Ev)

0x
+

0(Fi - Fv)

0y
+

0(Gi - Gv)

0z
= 0  (A.1)    

 where the subscript  i  denotes the terms that are included in the equations of motion for 

an inviscid flow and the subscript  v  denotes the terms that are unique to the equations 

of motion when the viscous and heat-transfer effects are included. 
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 Recall that the continuity equation (2.1) is 

      
0r
0t

+
0(ru)

0x
+

0(rv)

0y
+

0(rw)

0z
= 0  (A.2)    

 Note that this equation is already in conservation form. It is valid for an inviscid flow 

as well as a viscous flow. Therefore, comparing equations (A.1) and (A.2), we obtain 

      U = r  Ei = ru  Fi = rv  Gi = rw   (A.3a)–(A.3d)    

       Ev = Fv = Gv = 0   (A.3e)–(A.3g)    

 Consider the  x  component of the momentum equation, as given by equation 

(2.11a). Assuming that the body forces are negligible, as is commonly done for gas flows, 

      r 
0u
0t

+ ru 
0u
0x

+ rv 
0u
0y

+ rw 
0u
0z

= -
0p
0x

+
0(t=xx)

0x
+

0(tyx)

0y
+

0(tzx)

0z
  (A.4)    

 To obtain equation (A.4), we have divided the expression for the normal shear stress 

   txx,    as defined in  Chapter   2   , into the sum of the pressure  p  which is present in the equa-

tions for an inviscid flow and a term relating to the viscous flow    t=xx.    This is done to 

satisfy more easily the format of equation (A.1). Thus, 

   t=xx = -
2

3
m� # VS + 2m

0u
0x

   

 The definitions for    tyx    and    tzx    remain as defined in  Chapter   2   . If we multiply the conti-

nuity equation (A.2) by  u , we obtain 

      u 
0r
0t

+ u 
0(ru)

0x
+ u 

0(rv)

0y
+ u 

0(rw)

0z
= 0  (A.5)    

 Adding equations (A.4) and (A.5) and rearranging, we obtain 

       
0(ru)

0t
+

0
0x
3 (p + ru2) - (t=xx) 4  

  +
0
0y
3 (ruv) - (tyx) 4 +

0
0z
3 (ruw) - (tzx) 4 = 0  (A.6)    

 Comparing equation (A.6) to the general form of the equations of motion in conserva-

tion form, equation (A.1), it is clear that 

      U = ru  Ei = p + ru2  Fi = ruv  Gi = ruw  (A.7a)–(A.7d)    

      Ev = t=xx  Fv = tyx  Gv = tzx  (A.7e)–(A.7g)    

 Similar manipulations of the  y  momentum will yield 

      U = rv  Ei = rvu  Fi = p + rv2  Gi = rvw  (A.8a)–(A.8d)    

      Ev = txy  Fv = t=yy  Gv = tzy  (A.8e)–(A.8g)    

 where 

   t=yy = -
2

3
 m� # VS + 2m 

0v
0y
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 Similarly, the  z -momentum equation can be written in conservation form, if 

      U = rw  Ei = rwu  Fi = rwv  Gi = p + rw2  (A.9a)–(A.9d)    

      Ev = txz  Fv = tyz  Gv = t=zz  (A.9e)–(A.9g)    

 where 

   t=zz = -
2

3
 m� # VS + 2m 

0w
0z

   

 The energy equation (2.25) is 

      rq
# - rw# = r 

d
dt

 (ke) + r 
d
dt

 (pe) + r 
d
dt

 (ue)  (2.25)    

 Neglecting the changes in potential energy and using the definitions for    rq
#
    and    rw

#
,    we 

obtain 

       
0
0x

 ak 
0T
0x
b +

0
0y

 ak 
0T
0y
b +

0
0z

 ak 
0T
0z
b  

  -
0
0x

 (up) +
0
0x

 (ut=xx) +
0
0x

 (vtxy) +
0
0x

 (wtxz)  

  +
0
0y

 (utyx) -
0
0y

 (vp) +
0
0y

 (vt=yy) +
0
0y

 (wtyz)  

  +
0
0z

 (utzx) +
0
0z

 (vtzy) -
0
0z

 (wp) +
0
0z

 (wt=zz) 

  = r 
det

dt
= r 

0et

0t
+ ru 

0et

0x
+ rv 

0et

0y
+ rw 

0et

0z
  (A.10)    

 where    et,    the specific total energy of the flow (neglecting the potential energy), is 

given by 

      et = ue + 1
2(u2 + v2 + w2)  (A.11)    

 The continuity equation multiplied by    et    is 

      et 
0r
0t

+ et 
0(ru)

0x
+ et 

0(rv)

0y
+ et 

0(rw)

0z
= 0  (A.12)    

 Adding equations (A.10) and (A.12) and rearranging, we obtain 

       
0
0t

(ret) +
0
0x
3 (ret + p)u - (ut=xx + vtxy + wtxz + q

#
x) 4  

  +
0
0y
3 (ret + p)v - (utyx + vt=yy + wtyz + q

#
y) 4  

  +
0
0z
3 (ret + p)w - (utzx + vtzy + wt=zz + q

#
z) 4   (A.13)    
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 Equation (A.13) is the energy equation in the conservation form. Comparing equation 

(A.13) to the general form, equation (A.1), it is clear that 

       U = ret  Ei = (ret + p)u  Fi = (ret + p)v 

  Gi = (ret + p)w   (A.14a)–(A.14d)    

       Ev = ut=xx + vtxy + wtxz + q
#
x   (A.14e)    

       Fv = utyx + vt=yy + wtyz + q
#
y   (A.14f)    

       Gv = utzx + vtzy + wt=zz + q
#
z   (A.14g)    

 When the fundamental equations governing the unsteady flow of gas, without body 

forces or external heat addition, are written in conservation form [i.e., equation 

(A.1)], the terms    U, Ei, Ev, Fi, Fv, Gi,    and    Gv    can be represented by the following 

vectors. 

    U = E
r

ru
rv
rw
ret

U    

 Ei = E
ru

p + ru2

ruv
ruw

(ret + p)u

U   Ev = E
0

t=xx

txy

txz

(ut=xx + vtxy + wtxz + q
#
x)

U

 Fi = E
rv
rvu

p + rv2

rvw
(ret + p)v

U   Fv = E
0

tyx

t=yy

tyz

(utyx + vt=yy + wtyz + q
#
y)

U

 Gi = E
rw
rwu
rwv

p + rw2

(ret + p)w

U   Gv = E
0

tzx

tzy

t=zz

(utzx + vtzy + wt=zz + q
#
z)

U    

 The successive lines of these vectors are the continuity equation, the  x -momentum equa-

tion, the  y -momentum equation, the  z -momentum equation, and the energy equation. 

Note that considering only  U  and the inviscid terms (   Ei, Fi,    and    Gi   ) of lines 2 through 4 

yields Euler’s equations in conservation form. 



806    Appendix A / The Equations of Motion Written in Conservation Form

 Repeating the information of  Chapter   2    (with the modifications noted previously), 

    t=xx = 2m
0u
0x

-
2

3
m� # VS

 t=yy = 2m
0v
0y

-
2

3
m� # VS

 t=zz = 2m
0w
0z

-
2

3
m� # VS

 txy = tyx = ma 0u
0y

+
0v
0x
b

 txz = tzx = ma 0u
0z

+
0w
0x
b

 tyz = tzy = ma 0v
0z

+
0w
0y
b

 q
#
x = k

0T
0x
  q

#
y = k

0T
0y
  q

#
z = k

0T
0z

   

 Similar procedures can be followed to develop the conservative form of the 

governing equations for flow in cylindrical coordinates. 

    
0U
0t

+
0(Fi - Fv)

0z
+

0(Gi - Gv)

0r
+

0(Hi - Hv)

0u
+ (Ri - Rv) = 0

 U = E
r

rvz

rvr

rvu
ret

U  

 Fi = E
rvz

p + rvz
2

rvz  vr

rvz  vu
(ret + p)vz

U   Fv = E
0

tzz

tzr

tzu

(vz  tzz + vr tzr + vu tzu + q
#
z)

U

 Gi = E
rvr

rvr vz

p + rvr
2

rvr vu
(ret + p)vr

U   Gv = E
0

trz

trr

tru

(vz  trz + vr trr + vu tru + q
#
r)

U
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 Hi =
1

r
 E

rvu
rvu vz

rvu vr

p + rvu2

(ret + p)vu

U   Hv =
1

r
 E

0

tuz

tur

tuu

(vz  tzu + vr tru + vu tuu + q
#
u)

U    

       Ri =
1

r
 E

rvr

rvr vz

rvr
2 - rvu2

2rvr vu
(ret + p)vr

U   Rv =
1

r
 E

0

trz

trr - tuu
2tru

(vz  tzr + vr trr + vu tur + q
#
r)

U   (A.15)    

 where 

    trr = 2m 
0vr

0r
-

2

3
 m� # VS

 tuu = 2m¢ 1

r
 
0vu
0u

+
vr

r
≤ -

2

3
 m� # VS

 tzz = 2m 
0vz

0z
-

2

3
 m� # VS

 tuz = tzu = m¢ 1

r
 
0vz

0u
+

0vu
0z

≤
 tur = tru = m¢ 0vu

0r
-

vu
r

+
1

r
 
0vr

0u
≤

 tzr = trz = m¢ 0vr

0z
+

0vz

0r
≤

 qz = k 
0T
0z
  qr = k 

0T
0r
  qu =

k
r

 
0T
0u
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     B   A COLLECTION OF OFTEN 

USED TABLES                         

 TABLE 1.2A    U.S. Standard Atmosphere, 1976 SI Units 

  Geometric 
Altitude  (km) 

  Pressure  
   (N>m2)    

  Temperature  
(K) 

  Density  
   (kg>m3    )

  Viscosity  
   (kg>m # s )    

  Speed of 
Sound  (m>s) 

 0  1.0133    E + 05     288.150  1.2250    E + 00     1.7894    E - 05     340.29 

 1  8.9875    E + 04     281.651  1.1117    E + 00     1.7579    E - 05     336.43 

 2  7.9501    E + 04     275.154  1.0066    E + 00     1.7260    E - 05     332.53 

 3  7.0121    E + 04     268.659  9.0926    E - 01     1.6938    E - 05     328.58 

 4  6.1669    E + 04     262.166  8.1934    E - 01     1.6612    E - 05     324.59 

 5  5.4048    E + 04     255.676  7.3643    E - 01     1.7885    E - 05     320.55 

 6  4.7217    E + 04     249.187  6.6012    E - 01     1.5949    E - 05     316.45 

 7  4.1105    E + 04     242.700  5.9002    E - 01     1.5612    E - 05     312.31 

 8  3.5651    E + 04     236.215  5.2578    E - 01     1.5271    E - 05     308.11 

 9  3.0800    E + 04     229.733  4.6707    E - 01     1.4926    E - 05     303.85 

 10  2.6500    E + 04     223.252  4.1351    E - 01     1.4577    E - 05     299.53 

 11  2.2700    E + 04     216.774  3.6481    E - 01     1.4223    E - 05     295.15 

 12  1.9399    E + 04     216.650  3.1193    E - 01     1.4216    E - 05     295.07 

(continued on next page) 
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  Geometric 
Altitude  (km) 

  Pressure  
   (N>m2)    

  Temperature  
(K) 

  Density  
   (kg>m3    )

  Viscosity  
   (kg>m # s )    

  Speed of 
Sound  (m>s) 

 13  1.6579    E + 04     216.650  2.6660    E - 01     1.4216    E - 05     295.07 

 14  1.4170    E + 04     216.650  2.2786    E - 01     1.4216    E - 05     295.07 

 15  1.2111    E + 04     216.650  1.9475    E - 01     1.4216    E - 05     295.07 

 16  1.0352    E + 04     216.650  1.6647    E - 01     1.4216    E - 05     295.07 

 17  8.8497    E + 03     216.650  1.4230    E - 01     1.4216    E - 05     295.07 

 18  7.5652    E + 03     216.650  1.2165    E - 01     1.4216    E - 05     295.07 

 19  6.4675    E + 03     216.650  1.0400    E - 01     1.4216    E - 05     295.07 

 20  5.5293    E + 03     216.650  8.8911    E - 02     1.4216    E - 05     295.07 

 21  4.7289    E + 03     217.581  7.5715    E - 02     1.4267    E - 05     295.70 

 22  4.0474    E + 03     218.574  6.4510    E - 02     1.4322    E - 05     296.38 

 23  3.4668    E + 03     219.567  5.5006    E - 02     1.4376    E - 05     297.05 

 24  2.9717    E + 03     220.560  4.6938    E - 02     1.4430    E - 05     297.72 

 25  2.5491    E + 03     221.552  4.0084    E - 02     1.4484    E - 05     298.39 

 26  2.1883    E + 03     222.544  3.4257    E - 02     1.4538    E - 05     299.06 

 27  1.8799    E + 03     223.536  2.9298    E - 02     1.4592    E - 05     299.72 

 28  1.6161    E + 03     224.527  2.5076    E - 02     1.4646    E - 05     300.39 

 29  1.3904    E + 03     225.518  2.1478    E - 02     1.4699    E - 05     301.05 

 30  1.1970    E + 03     226.509  1.8411    E - 02     1.4753    E - 05     301.71 

TABLE 1.2A  (Continued)

(continued on next page) 

 TABLE 1.2B    U.S. Standard Atmosphere, 1976 English Units 

  Geometric 
Altitude  (kft) 

  Pressure  
   (lbf>ft2)    

  Temperature  
(° R ) 

  Density  
   (s lug>ft3)    

  Viscosity  
   (s lug>ft # s )    

  Speed of 
Sound  ( ft>s ) 

 0  2.1162    E + 03     518.67  2.3769    E - 03     3.7383    E - 07     1116.44 
 2  1.9677    E + 03     511.54  2.2409    E - 03     3.6982    E - 07     1108.76 
 4  1.8277    E + 03     504.41  2.1109    E - 03     3.6579    E - 07     1100.98 
 6  1.6960    E + 03     497.28  1.9869    E - 03     3.6173    E - 07     1093.18 
 8  1.5721    E + 03     490.15  1.8685    E - 03     3.4764    E - 07     1085.33 

 10  1.4556    E + 03     483.02  1.7556    E - 03     3.5353    E - 07     1077.40 

 12  1.3462    E + 03     475.90  1.6479    E - 03     3.4939    E - 07     1069.42 
 14  1.2436    E + 03     468.78  1.5455    E - 03     3.4522    E - 07     1061.38 
 16  1.1473    E + 03     461.66  1.4480    E - 03     3.4102    E - 07     1053.31 
 18  1.0575    E + 03     454.53  1.3553    E - 03     3.3679    E - 07     1045.14 
 20  9.7733    E + 02     447.42  1.2673    E - 03     3.3253    E - 07     1036.94 
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  Geometric 
Altitude  (kft) 

  Pressure  
   (lbf>ft2)    

  Temperature  
(° R ) 

  Density  
   (s lug>ft3)    

  Viscosity  
   (s lug>ft # s )    

  Speed of 
Sound  ( ft>s ) 

 22  8.9459    E + 02     440.30  1.1836    E - 03     3.2825    E - 07     1028.64 
 24  8.2116    E + 02     433.18  1.1044    E - 03     3.2392    E - 07     1020.31 
 26  7.5270    E + 02     426.07  1.0292    E - 03     3.1958    E - 07     1011.88 
 28  6.8896    E + 02     418.95  9.5801    E - 04     3.1519    E - 07     1003.41 
 30  6.2966    E + 02     411.84  8.9070    E - 04     3.1078    E - 07     994.85 

 32  5.7457    E + 02     404.73  8.2704    E - 04     3.0633    E - 07     986.22 
 34  5.2347    E + 02     397.62  7.6695    E - 04     3.0185    E - 07     977.53 
 36  4.7611    E + 02     390.51  7.1029    E - 04     2.9734    E - 07     968.73 
 38  4.3262    E + 02     389.97  6.4640    E - 04     2.9700    E - 07     968.08 
 40  3.9311    E + 02     389.97  5.8728    E - 04     2.9700    E - 07     968.08 

 42  3.5722    E + 02     389.97  5.3366    E - 04     2.9700    E - 07     968.08 
 44  3.2477    E + 02     389.97  4.8494    E - 04     2.9700    E - 07     968.08 
 46  2.9477    E + 02     389.97  4.4068    E - 04     2.9700    E - 07     968.08 
 48  2.6806    E + 02     389.97  4.0046    E - 04     2.9700    E - 07     968.08 
 50  2.4360    E + 02     389.97  3.6393    E - 04     2.9700    E - 07     968.08 

 52  2.2138    E + 02     389.97  3.3072    E - 04     2.9700    E - 07     968.08 
 54  2.0119    E + 02     389.97  3.0056    E - 04     2.9700    E - 07     968.08 
 56  1.8288    E + 02     389.97  2.7315    E - 04     2.9700    E - 07     968.08 
 58  1.6618    E + 02     389.97  2.4824    E - 04     2.9700    E - 07     968.08 
 60  1.5103    E + 02     389.97  2.2561    E - 04     2.9700    E - 07     968.08 

 62  1.3726    E + 02     389.97  2.0505    E - 04     2.9700    E - 07     968.08 
 64  1.2475    E + 02     389.97  1.8637    E - 04     2.9700    E - 07     968.08 
 66  1.1339    E + 02     390.07  1.6934    E - 04     2.9706    E - 07     968.21 
 68  1.0307    E + 02     391.16  1.5351    E - 04     2.9775    E - 07     969.55 
 70  9.3725    E + 01     392.25  1.3920    E - 04     2.9845    E - 07     970.90 

 72  8.5250    E + 01     393.34  1.2626    E - 04     2.9914    E - 07     972.24 
 74  7.7572    E + 01     394.43  1.1456    E - 04     2.9983    E - 07     973.59 
 76  7.0587    E + 01     395.52  1.0397    E - 04     3.0052    E - 07     974.93 
 78  6.4257    E + 01     396.60  9.4387    E - 05     3.0121    E - 07     976.28 
 80  5.8511    E + 01     397.69  8.5711    E - 05     3.0190    E - 07     977.62 

 82  5.3293    E + 01     398.78  7.7855    E - 05     3.0259    E - 07     978.94 
 84  4.8552    E + 01     399.87  7.0739    E - 05     3.0328    E - 07     980.28 
 86  4.4248    E + 01     400.96  6.4290    E - 05     3.0396    E - 07     981.63 
 88  4.0335    E + 01     402.05  5.8446    E - 05     3.0465    E - 07     982.94 
 90  3.6778    E + 01     403.14  5.3147    E - 05     3.0533    E - 07     984.28 

 92  3.3542    E + 01     404.22  4.8344    E - 05     3.0602    E - 07     985.60 
 94  3.0601    E + 01     405.31  4.3985    E - 05     3.0670    E - 07     986.94 
 96  2.7924    E + 01     406.40  4.0029    E - 05     3.0738    E - 07     988.25 
 98  2.5488    E + 01     407.49  3.6440    E - 05     3.0806    E - 07     989.57 

 100  2.3272    E + 01     408.57  3.3182    E - 05     3.0874    E - 07     990.91 

TABLE 1.2B  (Continued)
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 TABLE 8.1    Correlations for a One-Dimensional, Isentropic Flow of Perfect Air    (g = 1.4)    

 M     
A
A*

        
p

pt1
        

r

rt1
        

T
Tt

        
A
A*

 
p

pt1
    

 0  /  1.00000  1.00000  1.00000  / 
 0.05  11.592  0.99825  0.99875  0.99950  11.571 
 0.10  5.8218  0.99303  0.99502  0.99800  5.7812 
 0.15  3.9103  0.98441  0.98884  0.99552  3.8493 
 0.20  2.9635  0.97250  0.98027  0.99206  2.8820 
 0.25  2.4027  0.95745  0.96942  0.98765  2.3005 
 0.30  2.0351  0.93947  0.95638  0.98232  1.9119 
 0.35  1.7780  0.91877  0.94128  0.97608  1.6336 
 0.40  1.5901  0.89562  0.92428  0.96899  1.4241 
 0.45  1.4487  0.87027  0.90552  0.96108  1.2607 
 0.50  1.3398  0.84302  0.88517  0.95238  1.12951 
 0.55  1.2550  0.81416  0.86342  0.94295  1.02174 
 0.60  1.1882  0.78400  0.84045  0.93284  0.93155 
 0.65  1.1356  0.75283  0.81644  0.92208  0.85493 
 0.70  1.09437  0.72092  0.79158  0.91075  0.78896 
 0.75  1.06242  0.68857  0.76603  0.89888  0.73155 
 0.80  1.03823  0.65602  0.74000  0.88652  0.68110 
 0.85  1.02067  0.62351  0.71361  0.87374  0.63640 
 0.90  1.00886  0.59126  0.68704  0.86058  0.59650 
 0.95  1.00214  0.55946  0.66044  0.84710  0.56066 
 1.00  1.00000  0.52828  0.63394  0.83333  0.52828 
 1.05  1.00202  0.49787  0.60765  0.81933  0.49888 
 1.10  1.00793  0.46835  0.58169  0.80515  0.47206 
 1.15  1.01746  0.43983  0.55616  0.79083  0.44751 
 1.20  1.03044  0.41238  0.53114  0.77640  0.42493 
 1.25  1.04676  0.38606  0.50670  0.76190  0.40411 
 1.30  1.06631  0.36092  0.48291  0.74738  0.38484 
 1.35  1.08904  0.33697  0.45980  0.73287  0.36697 
 1.40  1.1149  0.31424  0.43742  0.71839  0.35036 
 1.45  1.1440  0.29272  0.41581  0.70397  0.33486 
 1.50  1.1762  0.27240  0.39498  0.68965  0.32039 
 1.55  1.2115  0.25326  0.37496  0.67545  0.30685 
 1.60  1.2502  0.23527  0.35573  0.66138  0.29414 
 1.65  1.2922  0.21839  0.33731  0.64746  0.28221 
 1.70  1.3376  0.20259  0.31969  0.63372  0.27099 
 1.75  1.3865  0.18782  0.30287  0.62016  0.26042 
 1.80  1.4390  0.17404  0.28682  0.60680  0.25044 
 1.85  1.4952  0.16120  0.27153  0.59365  0.24102 
 1.90  1.5555  0.14924  0.25699  0.58072  0.23211 
 1.95  1.6193  0.13813  0.24317  0.56802  0.22367 
 2.00  1.6875  0.12780  0.23005  0.55556  0.21567 
 2.05  1.7600  0.11823  0.21760  0.54333  0.20808 
 2.10  1.8369  0.10935  0.20580  0.53135  0.20087 
 2.15  1.9185  0.10113  0.19463  0.51962  0.19403 
 2.20  2.0050  0.09352  0.18405  0.50813  0.18751 

(continued on next page) 
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 M     
A
A*

        
p

pt1
        

r

rt1
        

T
Tt

        
A
A*

 
p

pt1
    

 2.25  2.0964  0.08648  0.17404  0.49689  0.18130 
 2.30  2.1931  0.07997  0.16458  0.48591  0.17539 
 2.35  2.2953  0.07396  0.15564  0.47517  0.16975 
 2.40  2.4031  0.06840  0.14720  0.46468  0.16437 
 2.45  2.5168  0.06327  0.13922  0.45444  0.15923 
 2.50  2.6367  0.05853  0.13169  0.44444  0.15432 
 2.55  2.7630  0.05415  0.12458  0.43469  0.14963 
 2.60  2.8960  0.05012  0.11787  0.42517  0.14513 
 2.65  3.0359  0.04639  0.11154  0.41589  0.14083 
 2.70  3.1830  0.04295  0.10557  0.40684  0.13671 
 2.75  3.3376  0.03977  0.09994  0.39801  0.13276 
 2.80  3.5001  0.03685  0.09462  0.38941  0.12897 
 2.85  3.6707  0.03415  0.08962  0.38102  0.12534 
 2.90  3.8498  0.03165  0.08489  0.37286  0.12185 
 2.95  4.0376  0.02935  0.08043  0.36490  0.11850 
 3.00  4.2346  0.02722  0.07623  0.35714  0.11527 
 3.50  6.7896  0.01311  0.04523  0.28986  0.08902 
 4.00  10.719  0.00658  0.02766  0.23810  0.07059 
 4.50  16.562  0.00346  0.01745  0.19802  0.05723 
 5.00  25.000     189(10)-5     0.01134  0.16667  0.04725 
 6.00  53.189     633(10)-6     0.00519  0.12195  0.03368 
 7.00  104.143     242(10)-6     0.00261  0.09259  0.02516 
 8.00  190.109     102(10)-6     0.00141  0.07246  0.01947 
 9.00  327.189     474(10)-7     0.000815  0.05814  0.01550 

 10.00  535.938     236(10)-7     0.000495  0.04762  0.01263 

    �         �      0  0  0  0 

TABLE 8.1  (Continued)

 TABLE 8.2    Mach Number and Mach Angle as a Function of Prandt-Meyer Angle 

    n    (deg)   M      m    (deg)     n    (deg)  M     m    (deg) 

 0.0  1.000  90.000  7.5  1.348  47.896 
 0.5  1.051  72.099  8.0  1.366  47.082 
 1.0  1.082  67.574  8.5  1.383  46.306 
 1.5  1.108  64.451  9.0  1.400  45.566 
 2.0  1.133  61.997  9.5  1.418  44.857 
 2.5  1.155  59.950  10.0  1.435  44.177 
 3.0  1.177  58.180  10.5  1.452  43.523 
 3.5  1.198  56.614  11.0  1.469  42.894 
 4.0  1.218  55.205  11.5  1.486  42.287 
 4.5  1.237  53.920  12.0  1.503  41.701 
 5.0  1.256  52.738  12.5  1.520  41.134 
 5.5  1.275  51.642  13.0  1.537  40.585 
 6.0  1.294  50.619  13.5  1.554  40.053 
 6.5  1.312  49.658  14.0  1.571  39.537 
 7.0  1.330  48.753  14.5  1.588  39.035 

(continued on next page) 
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(continued on next page) 

TABLE 8.2  (Continued)

    n    (deg)   M      m    (deg)     n    (deg)  M     m    (deg) 

 15.0  1.605  38.547  40.0  2.538  23.206 
 15.5  1.622  38.073  40.5  2.560  22.997 
 16.0  1.639  37.611  41.0  2.582  22.790 
 16.5  1.655  37.160  41.5  2.604  22.585 
 17.0  1.672  36.721  42.0  2.626  22.382 
 17.5  1.689  36.293  42.5  2.649  22.182 
 18.0  1.706  35.874  43.0  2.671  21.983 
 18.5  1.724  35.465  43.5  2.694  21.786 
 19.0  1.741  35.065  44.0  2.718  21.591 
 19.5  1.758  34.673  44.5  2.741  21.398 
 20.0  1.775  34.290  45.0  2.764  21.207 
 20.5  1.792  33.915  45.5  2.788  21.017 
 21.0  1.810  33.548  46.0  2.812  20.830 
 21.5  1.827  33.188  46.5  2.836  20.644 
 22.0  1.844  32.834  47.0  2.861  20.459 
 22.5  1.862  32.488  47.5  2.886  20.277 
 23.0  1.879  32.148  48.0  2.910  20.096 
 23.5  1.897  31.814  48.5  2.936  19.916 
 24.0  1.915  31.486  49.0  2.961  19.738 
 24.5  1.932  31.164  49.5  2.987  15.561 
 25.0  1.950  30.847  50.0  3.013  19.386 
 25.5  1.968  30.536  50.5  3.039  19.213 
 26.0  1.986  30.229  51.0  3.065  19.041 
 26.5  2.004  29.928  51.5  3.092  18.870 
 27.0  2.023  29.632  52.0  3.119  18.701 
 27.5  2.041  29.340  52.5  3.146  18.532 
 28.0  2.059  29.052  53.0  3.174  18.366 
 28.5  2.078  28.769  53.5  3.202  18.200 
 29.0  2.096  28.491  54.0  3.230  18.036 
 29.5  2.115  28.216  54.5  3.258  17.873 
 30.0  2.134  27.945  55.0  3.287  17.711 
 30.5  2.153  27.678  55.5  3.316  17.551 
 31.0  2.172  27.415  56.0  3.346  17.391 
 31.5  2.191  27.155  56.5  3.375  17.233 
 32.0  2.210  26.899  57.0  3.406  17.076 
 32.5  2.230  26.646  57.5  3.436  16.920 
 33.0  2.249  26.397  58.0  3.467  16.765 
 33.5  2.269  26.151  58.5  3.498  16.611 
 34.0  2.289  25.908  59.0  3.530  16.458 
 34.5  2.309  25.668  59.5  3.562  16.306 
 35.0  2.329  25.430  60.0  3.594  16.155 
 35.5  2.349  25.196  60.5  3.627  16.006 
 36.0  2.369  24.965  61.0  3.660  15.856 
 36.5  2.390  24.736  61.5  3.694  15.708 
 37.0  2.410  24.510  62.0  3.728  15.561 
 37.5  2.431  24.287  62.5  3.762  15.415 
 38.0  2.452  24.066  63.0  3.797  15.270 
 38.5  2.473  23.847  63.5  3.832  15.126 
 39.0  2.495  23.631  64.0  3.868  14.983 
 39.5  2.516  23.418  64.5  3.904  14.840 
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    n    (deg)   M      m    (deg)     n    (deg)  M     m    (deg) 

 65.0  3.941  14.698  85.5  6.080  9.467 
 65.5  3.979  14.557  86.0  6.155  9.350 
 66.0  4.016  14.417  86.5  6.232  9.234 
 66.5  4.055  14.278  87.0  6.310  9.119 
 67.0  4.094  14.140  87.5  6.390  9.003 
 67.5  4.133  14.002  88.0  6.472  8.888 
 68.0  4.173  13.865  88.5  6.556  8.774 
 68.5  4.214  13.729  89.0  6.642  8.660 
 69.0  4.255  13.593  89.5  6.729  8.546 
 69.5  4.297  13.459  90.0  6.819  8.433 
 70.0  4.339  13.325  90.5  6.911  8.320 
 70.5  4.382  13.191  91.0  7.005  8.207 
 71.0  4.426  13.059  91.5  7.102  8.095 
 71.5  4.470  12.927  92.0  7.201  7.983 
 72.0  4.515  12.795  92.5  7.302  7.871 
 72.5  4.561  12.665  93.0  7.406  7.760 
 73.0  4.608  12.535  93.5  7.513  7.649 
 73.5  4.655  12.406  94.0  7.623  7.538 
 74.0  4.703  12.277  94.5  7.735  7.428 
 74.5  4.752  12.149  94.5  5.935  9.701 
 75.0  4.801  12.021  95.0  7.851  7.318 
 75.5  4.852  11.894  95.5  7.970  7.208 
 76.0  4.903  11.768  96.0  8.092  7.099 
 76.5  4.955  11.642  96.5  8.218  6.989 
 77.0  5.009  11.517  97.0  8.347  6.881 
 77.5  5.063  11.392  97.5  8.480  6.772 
 78.0  5.118  11.268  98.0  8.618  6.664 
 78.5  5.175  11.145  98.5  8.759  6.556 
 79.0  5.231  11.022  99.0  8.905  6.448 
 79.5  5.289  10.899  99.5  9.055  6.340 
 80.0  5.348  10.777  100.0  9.210  6.233 
 80.5  5.408  10.656  100.5  9.371  6.126 
 81.0  5.470  10.535  101.0  9.536  6.019 
 81.5  5.532  10.414  101.5  9.708  5.913 
 82.0  5.596  10.294  102.0  9.885  5.806 
 82.5  5.661  10.175       
 83.0  5.727  10.056       
 83.5  5.795   9.937       
 84.0  5.864   9.819       
 84.5  5.935   9.701       
 85.0  6.006   9.584       

TABLE 8.2  (Continued)

 TABLE 8.3    Correlation of Flow Properties Across a Normal Shock Wave as a Function 
of the Upstream Mach Number for Air,    g = 1.4    

    M1        M2        
p2

p2
        

r2

r1
        

T2

T1
        

pt2

pt1
    

 1.00  1.00000  1.00000  1.00000  1.00000  1.00000 
 1.05  0.95312  1.1196  1.08398  1.03284  0.99987 
 1.10  0.91177  1.2450  1.1691  1.06494  0.99892 

(continued on next page) 
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TABLE 8.3  (Continued)

    M1        M2        
p2

p2
        

r2

r1
        

T2

T1
        

pt2

pt1
    

 1.15  0.87502  1.3762  1.2550  1.09657  0.99669 
 1.20  0.84217  1.5133  1.3416  1.1280  0.99280 
 1.25  0.81264  1.6562  1.4286  1.1594  0.98706 
 1.30  0.78596  1.8050  1.5157  1.1909  0.97935 
 1.35  0.76175  1.9596  1.6027  1.2226  0.96972 
 1.40  0.73971  2.1200  1.6896  1.2547  0.95819 
 1.45  0.71956  2.2862  1.7761  1.2872  0.94483 
 1.50  0.70109  2.4583  1.8621  1.3202  0.92978 
 1.55  0.68410  2.6363  1.9473  1.3538  0.91319 
 1.60  0.66844  2.8201  2.0317  1.3880  0.89520 
 1.65  0.65396  3.0096  2.1152  1.4228  0.87598 
 1.70  0.64055  3.2050  2.1977  1.4583  0.85573 
 1.75  0.62809  3.4062  2.2781  1.4946  0.83456 
 1.80  0.61650  3.6133  2.3592  1.5316  0.81268 
 1.85  0.60570  3.8262  2.4381  1.5694  0.79021 
 1.90  0.59562  4.0450  2.5157  1.6079  0.76735 
 1.95  0.58618  4.2696  2.5919  1.6473  0.74418 
 2.00  0.57735  4.5000  2.6666  1.6875  0.72088 
 2.05  0.56907  4.7363  2.7400  1.7286  0.69752 
 2.10  0.56128  4.9784  2.8119  1.7704  0.67422 
 2.15  0.55395  5.2262  2.8823  1.8132  0.65105 
 2.20  0.54706  5.4800  2.9512  1.8569  0.62812 
 2.25  0.54055  5.7396  3.0186  1.9014  0.60554 
 2.30  0.53441  6.0050  3.0846  1.9468  0.58331 
 2.35  0.52861  6.2762  3.1490  1.9931  0.56148 
 2.40  0.52312  6.5533  3.2119  2.0403  0.54015 
 2.45  0.51792  6.8362  3.2733  2.0885  0.51932 
 2.50  0.51299  7.1250  3.3333  2.1375  0.49902 
 2.55  0.50831  7.4196  3.3918  2.1875  0.47927 
 2.60  0.50387  7.7200  3.4489  2.2383  0.46012 
 2.65  0.49965  8.0262  3.5047  2.2901  0.44155 
 2.70  0.49563  8.3383  3.5590  2.3429  0.42359 
 2.75  0.49181  8.6562  3.6119  2.3966  0.40622 
 2.80  0.48817  8.9800  3.6635  2.4512  0.38946 
 2.85  0.48470  9.3096  3.7139  2.5067  0.37330 
 2.90  0.48138  9.6450  3.7629  2.5632  0.35773 
 2.95  0.47821  9.986  3.8106  2.6206  0.34275 
 3.00  0.47519  10.333  3.8571  2.6790  0.32834 
 3.50  0.45115  14.125  4.2608  3.3150  0.21295 
 4.00  0.43496  18.500  4.5714  4.0469  0.13876 
 4.50  0.42355  23.458  4.8119  4.8761  0.09170 
 5.00  0.41523  29.000  5.0000  5.8000  0.06172 
 6.00  0.40416  41.833  5.2683  7.941  0.02965 
 7.00  0.39736  57.000  5.4444  10.469  0.01535 
 8.00  0.39289  74.500  5.5652  13.387  0.00849 
 9.00  0.38980  94.333  5.6512  16.693  0.00496 

 10.00  0.38757  116.50  5.1743  20.388  0.00304 

    �      0.37796     �      6.000     �      0 



816

   CHAPTER 1  

   1.1            V = 1087.771 ft>s,       (L>D)max = 5.88                 

   1.2      E = 270.60 * 106 ft - lbf,       He = 27,060 ft,       Ps = 101.1 ft>s     

   1.3      amax = 4.26 ft2>s,       (dh>dt)max = 6,066 ft>min     

   1.6      nN2
= 3.33563 * 10 -5 ft2>s,       nair = 3.33995 * 10 -5 ft2>s     

   1.8      r2 = 3.528 kg>m3     

   1.9      r2 = 0.536 kg>m3     

   1.10      r = 0.195 kg>m3,       m = 1.4216 * 10-5 kg>m - s     

   1.11      q = 7.29 * 10-5 m2>s,       a = 295.07 m>s     

   1.12      u = 898.59 m>s            

   1.13      r� = 0.03760 kg>m3, m� = 3.542 * 10-6 kg>s # m, U� = 1034 m>s                   

   1.14      r = 0.6415 kg>m3,       m = 3.9567 * 10-5 kg>m - s     

   1.16      u = 239.53 m>s = 786.06 ft>s = 465.42 knots     

   1.17            P = 0.30397 PSL     

   1.19      p = 0.07397 pSL,       r = 0.1205 kg>m3,       m = 1.422 * 10 -5 kg>s # m,       a = 295.1 m>s     

   1.21      p� = 973.27 lbf>ft2, r� = 0.001267 slug>ft3, m� = 3.3268 * 10-7 lbf - s>ft2,                      
   T� = 447.42�R, a� = 1036.94 ft>s     

   1.22          hp = 15 kft, hT = 12 kft, hr = 15.5 kft                     
   1.23      pA = 165.747 * 103 N>m2     

   1.24      p = 3999.7N>m2, gage     

   1.26          �p = 53329 N>m2,             F = 42,663 N.        

     ANSWERS TO SELECTED 

PROBLEMS 
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   CHAPTER 2  

   2.2   continuity is satisfi ed  

   2.4      vr = 0,       vu = K>r     

   2.5   continuity is satisfi ed  

   2.6      v =
a1y2

4x1.5
-

3a2y4

8x2.5
     

   2.8      V1 = 3.979 m>s,       V2 = 15.915 m>s,       V3 = 1.768 m>s     

   2.9      U0 = 299.586 cm>s     

   2.10      Q = U�H     

   2.11      HU = HD>2     

   2.12      Q = 2U�H>p     

   2.13      HU = 0.6817 HD     

   2.14      Voutend
= 0.087 m>s     

   2.17      a
S

=
3x

4t2
in     

   2.21      t = 1.55 hours     

   2.23      t = 31 days     

   2.26      adp

dx
b

2

=
1

16
 adp

dx
b

1

     

   2.27      Cd = 0.0167     

   2.30      Cd = 0.01933     

   2.32     a:      Re = 1.848 * 105,       M = 0.176;        b:      Re = 5 * 108,       M = 0.834       

   2.38      Tt = 270.45 K     

   2.39      Tt = 398.8 K      

   CHAPTER 3  

   3.1      h = 2.388m     

   3.6   a:    M = 0.254,       Re = 6.71 * 106;    

b:     p2 = 7.328 * 104 N>m2 = 10.63psi,       p3 = p4 = 6.065 * 104 N>m2 = 8.797psi,     
   p5 = p6 = 7.063 * 104 N>m2 = 10.24psi;    

  c:    dp>dy = 0    in boundary layer;

  d:    U2 = 0.00,       U2 = 166.66 m>s,       U2 = 76.38 m>s     

   3.7      If the airplane were fl ying at sea level where the density (r) is 1.2250 kg>m3; Airspeed = 205.74 km>h                 

   3.10      U� = 76.78 m>s,       q� = 1500 N>m2,       Ue = 143.65 m>s,       Urel = 66.87 m>s,       Cp = -2.5     

   3.11      The volumetric fl ow rate Q = U2A2 = 7.3386 ft3>s     

   3.12      Pts = 77,689.12 N>m2, Pt = Patm = 79,501 N>m2     

   3.14      p1 = 2121.6 lbf>ft2,       U2 = 67.1 ft>s,       Q2 = 3.294 ft3>s     

   3.17      Circulation = -�     

   3.18   The fl ow is rotational because of the effect of viscosity.  

   3.19   a: 17>3, b: 83>15, c: 17>3  

   3.20   rotational,    � = 0,       � = 0     

   3.22   a:     V
S

=
Kx

x2 + y2
in +

Ky

x2 + y2
jn,    irrotational, at (2,0)    � V

S
� = K>2,       u = 0�;    at    (22, 22) � V

S
� = K>2,    

   u = 45�;    at (0,2)    � V
S

� = K>2,       u = 90�.    
  b:    c = Ku.    
  c: streamlines are perpendicular to lines of constant velocity potential.  

   3.24      u = y + x,       v = -y     
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   3.25      -4     

   3.26   a: continuity is satisfi ed,    c =
x2y2

2
-

xy3

3
+ C;    

  b: fl ow is irrotational so no velocity potential exists; c:    -1>12     

   3.28      l = r�U�� -
r��2

4ph
,    as    h S � l = r�U��     

   3.30      P - P� = -1.654 * 103 N>m2     

   3.32      c = U� sin uar -
R2

r
b +

�

2p
 ln r     

   3.33      {  30�    from stagnation point,    
dp

du
= -3.464q�     

   3.34      pu = 1.23 * 105 N>m2,       pl = 9.98 * 104 N>m2,    cylinder will move down  

   3.35      D = 436.9 N,       M = 1.092 * 104 N - m,       Re = 7.34 * 105     

   3.37            P = 83290 N>m2,       Vu=90� = -36 m>s,       Vu=270� = 180 m>s     

   3.39      Cl = 0,       Cd = 8>3     

   3.41      B = 2.25 * 104 ft3>s,       l = 952 lbf,       d = 0     

   3.43      Cl =
�

RU�

     

   3.44      L = 110.64 N     

   3.46      CD = 1.15     

   3.47      CL = 0,       CD = 1.6875     

   3.48      D = 251.92     

   3.49      v = 60�     
   3.51      c = Ku>2p      

   CHAPTER 4  

   4.1      d = 3.0215 * 10-3 m,       d* = 1.0394 * 10-3 m,       Cf = 1.605 * 10-3,       t = 0.0983 N>m2,       D = 0.4915 N     

   4.2      b = 1.32, f � = 1.3781, 
tb=1.32

tb=0

=
5.11 A1.5x3

u1.5
�

     

   4.3      b = 1.0, 0.992, 0.667, 0.162 for u = 0�, 10�, 65�, 85� respectively.            

   4.5      f(x = 0) = 1.3201x     

   4.6      vw =
2.22 * 10-2

1x
ft>s     

   4.8      
d

x
2Rex = 4.6409,       

d*

x
2Rex = 1.7403,       

ve

ue
2Rex = 0.8702,       Cf2Rex = 0.64643,       Cf2Rex = 1.2929     

   4.10      D = 46.608 lbf,       Cd = 0.01216     

   4.13      Cd = 0.00696     

   4.14   Blasius/Prandtl-Schlichting:    CD = 0.003872,       D = 1.334 N;    equation (4.87):    CD = 0.003536,    

   D = 1.218 N     

   4.15      D>b = 19.48 N>m using the Prandtl - Schlichting relation, D>b = 18.014 N>m using the 

approximate formula     

   4.17      K = 1.7154 * 10-4 cal>cm # s # k,       Pr = 0.7349     

   4.19      Q = 11.83 Btu>s     

   4.20      u = 0.08971�      

   CHAPTER 5  

   5.1      AR = 4,       b = 14.14 m     

   5.2      AR = 1>tanc>4     
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   5.4      CL = 0.70798     

   5.7      Cd = 0.006173,    15% over-prediction  

   5.9      CD = 0.001058     

   5.13      a = -4, Cm0.25c = 0.3387; a = +2, Cm0.25c = 0.0864; a = +16, Cm0.25c = 0.0538. Only the AVD 

measurement at a = -4� is close            

   5.17      D = 29.58 lbf      

   5.18      Cf = 0.00288,       CD0
= 0.00674,       CDi = 0.2715,       CD = 0.2782      

   CHAPTER 6  

   6.1   Kutta condition is satisfi ed,    a = 4.56�,       m3c>4 = pr� U2
� ac2>2     

   6.2      A0 = aeff + 0.4381,       A1 = 0.22591,       A2 = -0.13974,       Cl = 6.18831 a + 1.50184,       Cmc>4 = -0.27857     

   6.3      Cl = 2pa + 4pk,       Cmac
= -pk     

   6.4      A0 = a - 0.02866,       A1 = 0.09550,       A2 = 0.07915,       Cl = 2pa + 10.11992,       Cmc>4 = -0.01285      

   CHAPTER 7  

   7.1      �0 = 2.06 m2>s,       wy1 = -1.412 m>s,       CDv = 0.00242,       �e = 9.877�,       � = 11.027�     
   7.2      (wy1)p> (wy1)e = 1     

   7.3      �2 = 6.4�, 6.82�    for    AR2 = 6.5, 5.0,    respectively  

   7.8      w1, 1s = -71.5187 �1>4pb     

   7.9      CL = 1.1576pa     

   7.10      CL = 1.1385pa     

   7.11      CL = 0.97401p(a + 0.0164)     

   7.12      CL = 0.57111pa     

   7.13      a 0� 5� 10� 15�
  CL 0.000 0.154 0.377 0.601     

   7.14      �CD = 0.0, 0.0135, 0.066, 0.161    for    a = 0�, 5�, 10�, 15�,    respectively   

   CHAPTER 8  

   8.1      m
# = 342.75.0 kg>s,       Q = 1226.17 m3>s     

   8.2      M� = 8.803     

   8.3      Re� = 1.0454 * 106 to 0.864 * 106     

   8.4      T� = 50.722 K,    U� = 1142.17 m>s and is independent of pressure, p� = 499.8 N>m2     

   8.5      pt = 1.81112 * 105 N>m2,       T� = 290.55 K,       Re = 3.002178 * 106,       Cp = 1.24643     

   8.7      m
#

9 = 6.54174 * 10-3 kg>s,       m
#

15 = 8.84558 * 10-3 kg>s     

   8.8   For 97.250  psia :    p = 93.947 psia,       T = 647.94�R,       M = 0.30,       U = 374.3 ft>s,    for 93.947  psia : 

   p = 9.117 psia,       T = 332.69�R,       M = 2.23,       U = 1993.88 ft>s,    for 9.117  psia :    p = 97.250 psia,    

   T = 654.36�R,       M = 0.20,       U = 250.79 ft>s     

   8.9   For 51.38  psia :    p = 51.38 psia,       T = 626.65�R,       M = 0.5432,       U = 666.52 ft>s     

   8.10   The fl ow must be from 2 to 1  

   8.11   apt2

p2

b = a

B

7.2 M2
�

(7 M2
� - 1)

  

   8.13      p = 5.2274 * 104 N>m2,       �h = 33.30 cm Hg,       q = 6.745 * 104 N>m2     

   8.14   For a single ramp:    M2 = 2.5,       �s>R = 0.0388;    for two 5 degree ramps:    M2 = 2.519,    

   �s>R = 0.0104;    for infi nite:    M2 = 2.527,       �s>R = 0.0     

   8.15      p2 = 1.70 p1,       p3 = 0.5479 p1,       Cl = 0.4052,       Cd = 0.0715,       Cmc>2 = 0.0     

   8.16      L = 3.712 m     

   8.17   Region 2:    p = 6.395 * 103 N>m2,       M = 2.272,       u = 5�;    Region 3:    p = 9.345 * 103 N>m2,    

   M = 2.075,       u = -10�;    Regions 4 and 5:    p = 2.50p1,       M = 1.886,       u = -5.2�     
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   8.18      cmax = 39.7 cm     

   8.19      pt = 698 lbf>ft2,       Tt = 429.24�R,       M = 0.762     

   8.20      P2 = 1122.84 N>m2,       1142.14 N>m2, 28, 376.15 k,             Tt = 28521 K,       M = .14437      

   CHAPTER 9  

   9.1   pt1 = p� +
r�U2

�

2
        

   9.2   NACA 0003 airfoil section,    AR� = 1.744     

   9.3      dye = 1.1657 dy�      

   CHAPTER 10  

   10.2      Cl =
4

2M2
� - 1

 
zmax

c
,       Cd =

1

2M2
� - 1

 a4a2 +
2

3
 azmax

c
b2b ,       Cm =

1

2M2
� - 1

 a-2a -
2

3
 
zmax

c
b      

   10.3   For    a = 3.2�:       Cl = 0.0789,       Cd = 0.0138 Cl>Cd = 5.717,       Cm = -0.039     

   10.4   For    a = 5�:       Cl = 0.20041,       Cd = 0.02124 Cl>Cd = 9.44,       Cm = -0.09565     

   10.5   For    a = 5�:       Cl = 0.20026,       Cd = 0.02129 Cl>Cd = 9.41,       Cm = -0.09566     

   10.6   For    a = 10�:       Cl = 1.095,       Cd = 0.0,       Cm = -0.274     

   10.9      CA = 0.0096,       CN = 0.192,       Cl = 0.19,       Cd = 0.03,       Cmc>2 = 0.008     

   10.12      Cpu
= 1.02130.14(1 - 2x) - 0.10474 ,       Cpl

= 1.02130.14(1 - 2x) + 0.10474       

   CHAPTER 11  

   11.3      CL = 0.2438,       CD = 0.6242 + CD, friction     

   11.4      CL = 0.05315a,       CD = CLa + 0.0270     

   11.5      M = 1.179     

   11.16       cot �LE = 2.68     

   11.20      Cp = 4a t
L
b  

1 - 2(x>L)

2M2
� - 1

      

   CHAPTER 12  

   12.4      Cp = 0.6427     

   12.11      L>D = 2> (p tan uc)    for    a = 0�     
   12.12      xcp = 2xL>3      

   CHAPTER 13  

   13.1      a = a0l +
W

q�SCLa

     

   13.5      xtr = 0.93 ft        



  Ackeret’s transformation,  519   

  Active Aeroelastic Wing project,  742 – 743   

  Adiabatic flow,  451 – 453  

 equation for supersonic wind tunnel, 

 453 – 454  

 one-dimensional,  452 – 453   

  Adiabatic-flow relations for a perfect 

gas,  466   

  Aerodynamic coefficients,  144  

 induced drag factor and lift-curve slope 

parameter for,  381 – 382  

 monoplane equation for,  377 – 381   

  Aerodynamic design philosophy,  799 – 800   

  Aerodynamic forces acting on an 

airplane,  44   

  Aerodynamic forces and moments, 

characterization of 

 aircraft parasite drag,  273 – 280  

 boundary-layer transition,  266 – 269  

 drag coefficient,  262 – 264  

 effects of compressibility,  486 – 489  

 general comments,  237 – 240  

 lift coefficient,  254 – 258  

 local skin friction,  264 – 265  

 long bubble separation,  258  

 Mach number, effects of,  267  

 moment coefficient,  260 – 262  

 parameters governing,  240 – 241  

 pressure force acting on vehicle 

surface,  254 – 255  

 pressure gradient, effects of,  267  

 resultant force component,  255  

 Reynolds number,  255 ,  258 ,  266  

 shock/shock interactions,  492 – 494  

 shock-wave boundary-layer 

interaction,  490 – 492  

 short bubble separation,  258  

 surface roughness, effects of,  267 , 

 269 – 272  

 surface temperature, effects of,  267  

 two-dimensional lift-curve slope,  255   

  Aerodynamic interaction,  649 – 652   

  Aerodynamics 

 and aircraft performance,  18  

 energy-maneuverability technique,  12 – 16  

 fluid dynamics,  19 – 36  

 Hillaker–Boyd meeting,  18  

 need to study,  11 – 12  

 specific excess power,  16 – 18   

  Aerodynamic twist,  370   

  Aft swept wings (ASW),  551 – 552 ,  768   

  Ailerons,  37   

  Airbus A 380 ,  553   

  Air combat, Boelcke’s rules,  15   

  Aircraft performance,  18   

  Aircraft testing, approach to,  72 – 73   

  Airfoil 

 aerodynamic center of thin,  245  

 in aerodynamics,  245 – 246  

 boundary-layer separation,  245  

 center of leading-edge radius,  243  

 characteristics,  245 – 246  

 chord line,  243 – 244  

 contour wave drag approaches,  536  

 F- 104 ,  570 – 571  

 GA(W)- 1 ,  731 – 732  

 geometric angle of attack,  244  

 geometry parameters,  241 – 246  

 leading-edge radius,  243 – 244  

 Mach number for,  71  

 maximum lift coefficient,  244  

 maximum thickness,  244 – 245  

 mean camber line,  244  

 mid-chord region,  245  

 NACA geometry nomenclature,  242 – 243  

 optimum thickness,  244  

 Reynolds number for,  72  

 supercritical,  536 – 537  

 supersonic,  580 ,  600 – 601  

 supersonic flow around,  464  

 thickness distribution,  244 – 245  

 trailing-edge angle,  245  

 transonic flow across unswept,  527 – 535  

 viscous boundary layer,  74   

  Airfoil, finite-span model 

 cambered,  316 – 326  

 circulation,  306 – 308  

 flow around a two-dimensional,  305  

 high-lift,  331 – 337  

 laminar-flow,  327 – 331  

 lift,  306 – 308  

 in military aircrafts,  344 – 346  

 multi-element sections,  337 – 344  

 starting vortex,  306 – 308  

 symmetric,  311 – 316  

 thin-airfoil theory,  308 – 311   

  Airplane, description of,  36 – 37   

  Airplane efficiency factor,  293   

  Angles of attack 

 delta wings,  419  

 flow fields for aircraft at high,  432 – 434  

 fuselage at high,  428 – 432   

  Anhedral angle,  248   

  Arrow wings,  605 – 608   

  Aspect ratio,  247  

 of a delta wing,  252   

  ASSET program,  500   

  Asymmetric loads on fuselage,  428 – 432   

  Asymmetric vortex shedding,  429 – 432   

  Average chord,  247   

  Axial force,  238   

  Axisymmetric flow,  159 – 162   

 

 B-52 aircraft 

 energy height,  14 – 15  

 total energy, calculation of,  14   

  Barotropic flow,  113 – 114   

  Base drag,  273 ,  646 – 648   

  Bernoulli’s equation,  84 – 85 ,  106 ,  138 , 

 161 ,  441  

 calculations using,  103  

 calibrated airspeed (CAS),  104  

 to determine airspeed,  103 – 105  

 equivalent airspeed (EAS),  105  

 Euler’s equation,  101  

 free-stream dynamic pressure,  102  

 free-stream static pressure,  102  

 indicated airspeed (IAS),  104  

 for inviscid flows,  100 – 105  

 stagnation (or total) pressure,  102  

 true airspeed (TAS),  105   

  Biot-Savart law,  389 ,  392   

  Boattail,  648 – 649   

  Body-force potential,  113   

  Boeing  747 ,  723   

  Boeing  757 ,  553   

  Boelcke, Oswald,  12 ,  15   

  Boundary layer 

 shock wave interaction,  490 – 492 ,  501   

  Boundary-layer fences,  405  

 effect of,  407   

  Boundary-layer transition,  266 – 269  

 adverse pressure gradient,  202  

 in aerodynamics,  200  

 effects on wind-tunnel testing,  272 – 273  

 finite surface roughness,  202  

 idealized transition process,  201  

 for a NACA 23012 airfoil,  269  

 for NACA 0009 section,  267 ,  269  

 for NACA 66–009 section,  267 – 269  

 parameters for,  199 – 200  

 Reynolds number,  201  

 and stability theory,  202  

 two-dimensional T-S waves, form of,  202   

  Boundary-layer transition methodology 

for hypersonic flows,  712 – 716   

  Boyd, John R.,  15   

  Bubble separation,  258   

  Busemann’s second-order equation,  597 ,  599   

  Busemann’s theory for supersonic flows, 

 571  

 “biplane” airfoil system,  574 – 576  

 lift coefficient,  571 – 574  

 pitch moment coefficient,  571 – 574  

 wave-drag coefficient,  571 – 574   

     Index 
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  Cambered airfoil, finite-span model, 

 316 – 326  

 aerodynamic coefficients,  318 – 321  

 coordinate transformation,  316  

 effect of boundary layer separation,  326  

 lift coefficients,  323  

 maximum thickness,  323  

 moment coefficient,  323  

 section lift coefficient,  318  

 theoretical aerodynamic coefficients, 

 321 – 322  

 thickness ratio,  324  

 vorticity distribution,  316 – 318  

 zero lift angle of attack,  323 ,  327   

  Canards,  421   

  Cauchy-Riemann equations,  124  

 for cylindrical coordinates,  125   

  Chance-Vought F-8H Crusader,  724   

  Characteristic, defined,  465   

  Circulation 

 aerodynamics perspective,  111  

 around a closed curve,  129  

 defined,  109  

 for elementary closed curves,  110  

 flow around a cylinder with,  149 – 154  

 for a potential vortex,  129   

  Circulation control wing (CCW) concept, 

 735 – 737   

  Closed fluid line,  113   

  Closure problem,  208   

  Coanda effect,  733   

  Coefficient of viscosity,  24 – 25   

  Collocation method,  369   

  Commercial airliner, components of 

modern,  36   

  Compressibility corrections,  522 – 523   

  Compressible flow,  76  

 adiabatic,  451 – 453  

 boundary-layer interactions,  490 – 492  

 characteristics,  464 – 467  

 continuity equation,  465  

 for converging–diverging nozzle,  461 – 464  

 isentropic flow,  455 – 461 ,  465  

 n -momentum equation,  465  

 scaling/correction processes,  504 – 505  

 shock/shock interactions,  492 – 494  

 shock-wave boundary-layer 

interaction,  490 – 492  

 shock waves,  472 – 482  

 s -momentum equation,  465  

 streamtubes of variable-area,  451 – 461  

 tests for flow fields,  496 – 502  

 thermodynamic concepts,  442 – 451  

 viscous boundary layer,  483 – 489   

  Computational fluid dynamics (CFD), 

 548 ,  786 – 787  

 and aerodynamic design philosophy, 

 799 – 800  

 credibility,  793 – 795  

 Euler codes for,  789  

 flow fields for,  790 – 791  

 integration of data,  791 – 792  

 semiempirical methods for,  787 – 788  

 surface panel methods for,  788 – 789  

 two-layer flow models,  789 – 790   

  Concorde,  637 – 639   

  Configuration slenderness,  641   

  Conical-flow technique,  595 – 608  

 arrow wings,  605 – 608  

 delta wings,  605 – 608  

 rectangular wings,  596 – 600  

 supersonic flow transition,

  595 – 606  

 swept wings,  601 – 605   

  Conservative form of governing 

equations,  802 – 807   

  Constant-property flows,  56 – 62 ,  66   

  Control points,  155   

  Convair B- 58 ,  543   

  Converging–diverging nozzle 

 area-velocity relationship, at different 

Mach numbers,  462  

 compressible flow for,  461 – 464  

 effect of pressure ratio on,  462  

 Prandtl-Meyer,  464 – 471  

 supersonic conditions,  462 – 463  

 as a Venturri tube,  463   

  Conversation of mass,  46 – 50   

  Couette flow,  60 – 62  

 boundary conditions,  60  

 shear stress distribution,  61  

 between two parallel walls,  60 – 61  

 velocity profile for,  61  

 volumetric flow rate,  61   

  Critical Mach number,  516 ,  523 – 525   

  Critical pressure coefficient,  523 – 525   

  Curvefit formula,  224   

  C-17 wings, design of,  285 – 286   

  

D’Alembert’s paradox,  143   

  Deflection angle,  475   

  Delta wings,  414 – 424  

 aerodynamic coefficients,  419  

 angles of attack,  419  

 canard configurations,  421 – 422  

 coiled vortex sheets, effect of,  414  

 conical-flow technique,  605 – 608  

 drag coefficient,  418 – 420  

 leading-edge vortices,  423  

 lift and the drag-due-to-lift 

characteristics,  416  

 lift coefficients,  417 – 418 ,  420  

 lift-curve slope,  418  

 location of vortices,  423  

 moment coefficient,  421  

 normal-force slope,  416  

 positive attributes of,  424  

 potential-flow lift constant with 

planform parameters,  416  

 separation points,  417  

 spanwise outflow,  414  

 at subsonic speeds,  414  

 with supersonic leading and trailing 

edges,  592  

 total lift coefficient,  416  

 vortex breakdown and,  423 – 424  

 vortex-lift constant with planform 

parameters,  417  

 vortex trajectory,  414 – 415   

  Design of aircraft 

 camber-changing flaps,  733 – 734  

 circulation control wing (CCW) 

concept,  735 – 737  

 circulation effect,  733  

 drag reduction concepts,  741 – 752  

 dumping effect,  733  

 EA-6B,  752 – 757  

 F- 15 ,  773  

 F- 16 ,  757 – 762 ,  765  

 F- 22 ,  774 – 777  

 F- 35 ,  777 – 780  

 F-105D,  762 – 763  

 features required for operational 

requirements,  768  

 flap systems,  726 – 729  

 fresh-boundary-layer effect,  733  

 high-lift configurations,  722 – 735  

 Kutta condition,  730 ,  732  

 laminar-flow control (LFC),  744 – 745  

 lift coefficient, increase in,  723 – 726  

 multi-element airfoils,  339 – 341 , 

 729 – 733  

 off-the-surface pressure recovery 

effect,  733  

 pitch moments,  733  

 power-augmented lift,  733 – 735  

 SCAMP/F-16XL configurations,  764  

 slat effect,  733  

 for tactical military operations,  737 – 741  

 trailing-edge flaps,  723  

 upper-surface-blowing (USB) concept, 

 733  

 variable-area concepts,  723  

 variable-twist, variable-camber wings, 

 741 – 744  

 weapon carriage concepts,  762 – 767  

 wing area, increase in,  722 – 723  

 wing/canard, wing/tail, and tailless 

configurations,  768 – 773  

 winglets,  747 – 750  

 wing planform,  751 – 752  

 wingtip devices,  747 – 750   

  Diatomic gas,  445   

  Dihedral angle,  248   

  Dimensionless pressure coefficient,  138   

  Direct Simulation Monte Carlo (DSMC), 

 665   

  Displacement thickness,  213   

  Doppler effect,  449   

  Doublet flows,  126 – 127  

 axis of,  126  

 equipotential lines and streamlines 

for,  127  



Index    823

 stream function for,  127  

 two-dimensional (line),  126  

 velocity components for,  126  

 velocity potential for an axisymmetric, 

 160   

  Downwash velocity,  358 – 361  

 downwash angle,  359 ,  363   

  Drag 

 acting on sharp cone,  688 – 692  

 aircraft parasite,  273 – 280  

 for an F-16 in steady, level, 

unacclerated flight,  294 – 296  

 base,  273  

 due-to-lift at subsonic speeds,  411 – 414  

 for F/A-18E,  799  

 for finite-span wing,  289 – 293  

 on a flat-plate airfoil,  63 – 65  

 force per unit span of cylinder,  150  

 form (or pressure),  273  

 induced,  273  

 interference,  273  

 parasite,  273  

 per unit span,  143  

 pressure (or form),  143  

 profile,  273  

 skin-friction,  143 ,  273  

 sources of aircraft,  274  

 at transonic and supersonic speeds, 

 537 – 538  

 trim,  273  

 wave,  273   

  Drag bucket,  267   

  Drag coefficient,  65  

 for an incompressible flow,  364  

 flat-plate boundary layer,  217  

 induced,  363 – 364  

 for a NACA 23012 airfoil,  269  

 per unit span for a cylinder,  143  

 for a smooth sphere,  162  

 for a sphere,  162  

 of a sphere,  678 – 679  

 for various shapes and flows,  147  

 vortex,  363 – 364   

  Drag divergence Mach number,  526 – 527   

  Drag-divergence Mach number,  547   

  Drag force 

 induced downwash velocity,  360   

  ‘Drooped’ leading edge,  384   

  Dynamic pressure,  63 ,  102 ,  471   

  

Earth’s mean atmospheric temperature,  32   

  Eddy viscosity,  212 – 214  

 for boundary layer,  214  

 for the inner region,  213  

 use of,  212   

  Elementary flow functions,  123 – 136   

  Elevators,  37   

  Elliptic circulation distribution,  361 – 365   

  Elliptic lift distribution,  365 – 366   

  Energy equations for fluid dynamics, 

 78 – 85  

 application of the integral form of,  84  

 Bernoulli’s equation,  84 – 85  

 flow work,  82 – 83  

 integral form of,  81  

 internal energy (ue),  81  

 kinetic energy (ke),  81  

 potential energy (pe),  81  

 shaft work,  83  

 viscous work,  83   

  Energy height,  14 – 16   

  Energy-maneuverability technique,  12 – 16   

  Entropy change for a reversible process, 

 446 – 447   

  Equation of state,  22   

  Equipotential lines for inviscid flows, 

 119 – 121   

  Equivalent airspeed (EAS),  105  

 as a function of altitude,  105   

  Euler’s equation,  99 ,  101 ,  113 ,  452 ,  563  

 for an irrotational flow with no body 

forces,  461   

  Falkner-Skan equation,  184   

  F-5 fighter 

 applications of area rule,  545 – 546  

 specific excess power, calculation of,  16  

 total energy, calculation of,  14   

  Fighter pilots,  12   

  FIRE program,  501   

  Flat-plate boundary layer, integral 

equations for a 

 application,  218 – 221  

 drag coefficient,  217  

 for incompressible flow,  215  

 Karman-Schoenherr relation,  219  

 momentum thickness for an 

incompressible flow,  217  

 Prandtl-Schlichting relation,  219  

 Reynolds number,  201  

 Schultz-Grunow relation,  219  

 streamlines,  217   

  Flight-test programs,  500 – 502 ,  798 – 799   

  Flow fields 

 scaling/correction processes,  504 – 505  

 tests for,  496 – 502  

 wind-tunnel simulation of supersonic 

missile,  502 – 504   

  Flow separation,  140   

  Fluid dynamics,  19 – 36  

 around geometrically similar 

configurations,  67  

 Bernoulli’s equation,  84 – 85  

 compressible flows,  76  

 constant-property flows,  56 – 66  

 conversation of mass,  46 – 50  

 Couette flow,  60 – 62  

 dimensionless boundary-condition 

values,  68  

 energy equations for,  78 – 85  

 fluid, definition,  19  

 fluid as continuum,  19 – 20  

 free-stream boundary conditions,  67 – 68  

 fully developed flow,  57  

 integral equations to a flow problem, 

 62  

 linear momentum, conservation of, 

 50 – 56  

 Mach number (M) for,  69 – 73  

 Poiseuille flow,  56 – 60  

 principles for a nonaccelerating, 

hydrostatic, or shear-free, flow,  31  

 Reynolds number (Re) for,  69 – 73  

 thermodynamics, first law of,  76 – 77  

 types of fluid,  19   

  Fluid properties 

 density,  22 – 23  

 hydrostatic stress condition,  19  

 kinematic viscosity,  25 – 27  

 pressure,  20 – 21  

 speed of sound,  27 ,  33  

 standard atmospheric pressure at sea 

level,  21 ,  28 – 30 ,  32 – 36  

 static medium,  27 – 32 ,  45  

 temperature,  20  

 viscosity,  24 – 27   

  Force coefficient,  145   

  Forced vortex (rotational vortex), 

 130 – 131   

  Forward swept wing (FSW),  768   

  Forward swept wings (FSW),  550 – 553   

  Fowler flap,  723 ,  731   

  Free-stream flow,  155  

 dynamic pressure,  102  

 Mach number,  69 ,  293 ,  522  

 Reynolds number,  69 – 70  

 speed of sound,  68  

 static pressure,  102  

 velocity,  67   

  Free vortex (irrotational vortex),  

129 ,  131   

  Full potential equation,  517   

  Fully developed flow,  57   

  Fuselage,  37  

 asymmetric loads on,  428 – 432  

 at high angles of attack,  428 – 432  

 method for subsonic aircraft drag, 

 277 – 279  

 and transonic flow,  550   

  F-16XL aircraft,  746   

 

 Gage pressure,  21   

  Galilean transformation,  45 ,  475   

  Gates Learjet Model 28/ 29 ,  747   

  Geometric twist,  248 – 249   

  Göthert’s transformation,  519 – 522   

  Gradient operator,  31   

  Green’s lemma,  110   

  Ground-based test programs, 

 795 – 797   

  Ground-based tests,  496 – 499   

  Ground-fixed coordinate system,  45   

  Gulfstream Aerospace,  640   
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  Heat-transfer coefficient,  227 ,  229   

  Heat-transfer rate,  230 – 231  

 in terms of Stanton number,  229  

 for a turbulent boundary layer,  219 – 230   

  High-lift airfoil, finite-span model, 

 331 – 337  

 Boeing  787 ,  343  

 boundary condition,  333  

 chord distribution,  339 – 340  

 development of,  336  

 flap system,  336  

 Krueger flap,  340  

 Kutta condition,  331  

 lift coefficients,  334 – 335  

 Mach numbers,  338  

 maximum lift efficiency,  340  

 in military aircrafts,  344 – 346  

 multi-element sections,  337 – 344  

 NACA GA(W)-1 series,  335 ,  337  

 point of separation, formula for,  331  

 pressure distributions,  333 – 334  

 science,  331  

 thickness distribution,  339 – 340  

 trailing edge systems,  344  

 two-dimensional multi-element flow 

issues,  339  

 upper-surface acceleration region, 

shape of,  331 – 332  

 velocity distribution,  331 – 332   

  High-speed aircraft designs,  641 – 644   

  High-speed civil transport (HSCT), 

 639 – 640   

  Holloman High Speed Test Track 

(HHSTT),  798   

  Horseshoe vortex,  357   

  Hydrostatic stress condition,  19   

  HYFLEX vehicle,  501   

  Hypersonic cruiser,  707 – 710   

  Hypersonic flows 

 aerodynamic heating,  701 – 707  

 basic assumption,  660  

 boundary-layer transition methodology 

for,  712 – 716  

 characteristics,  660  

 computational fluid dynamic (CFD) 

data,  710 – 712  

 entropy layers,  663  

 flight-test data for,  710 – 712  

 ground-test data for,  710 – 712  

 high temperature effects,  664  

 lift/drag, high configurations for, 

 692 – 700  

 low-density flows,  665  

 modified Newtonian flow,  675 – 692  

 Newtonian flow model for,  667 – 670  

 shock layers,  662  

 slender configurations,  661  

 small-density-ratio assumption,  660  

 stagnation-region flow-field properties, 

 670 – 675  

 trajectories for Reynolds numbers,  661  

 viscous-inviscid interactions,  663 – 664  

 waveriders,  692 – 700   

  Hyper-X Launch Vehicle (HXLV) stack, 

 499   

  Hyper-X program,  499   

  Immelman, Max,  12   

  Incompressible, two dimensional flow 

 in Cartesian coordinates,  117  

 stream function (c),  117 – 119 ,  159   

  Incompressible flow, wings of finite span 

 aerodynamic load distribution,  353  

 delta wings,  414 – 424  

 factors affecting drag due-to-lift at 

subsonic speeds,  411 – 414  

 flow fields at high angles of attack, 

 432 – 434  

 formation of a wing-tip vortex,  354  

 fuselage at high angles of attack, 

 428 – 432  

 general comments,  352 – 354  

 leading-edge extensions,  424 – 428  

 lifting-line theory for unswept wings, 

 356 – 385  

 panel methods, estimation using, 

 385 – 389  

 spanwise lift distribution,  353 – 354  

 streamwise vortices,  352  

 three-dimensional flow field around a 

wing,  353  

 unmanned air vehicles (UAV), 

 434 – 436  

 vortex lattice methods, estimation 

using,  389 – 411  

 vortex system,  355 – 356   

  Induced drag,  273   

  Integral equations to a flow problem,  62   

  Integral form of continuity equation, 

 64 – 65   

  Integral form of the energy equation,  81   

  Interference drag,  273   

  Intermittency factor,  214   

  Inviscid flows,  24 ,  99 – 100  

 across symmetric airfoil,  313  

 around cylinders,  138 – 140  

 axisymmetric,  159 – 162  

 Bernoulli’s equation for,  100 – 105  

 boundary conditions,  115  

 circulation,  109 – 111  

 doublet,  126 – 127  

 elementary flow functions,  123 – 136  

 equipotential lines for,  119 – 121  

 Euler equations for,  99  

 Euler’s equation for a steady,  466  

 incompressible,  159 – 162  

 irrotational,  112 – 113 ,  115  

 Kelvin’s theorem for,  113 – 114  

 lift,  140 – 149  

 momentum equation,  452  

 momentum equation for,  113  

 multielement airfoils,  341  

 potential vortex,  127 – 130  

 pressure coefficient for,  106 – 109  

 source density distribution,  154 – 158  

 source or sink,  124 – 125  

 stream function,  117 – 119 ,  128  

 superposition of,  122  

 two-dimensional flows,  117 – 119  

 uniform,  123 – 124  

 velocity field,  136 – 138  

 vortex theorems,  130 – 131   

  Irrotational flow,  112 – 113  

 appropriate transformation,  519 – 520  

 condition,  115  

 line integral,  112  

 with no body forces, Euler’s equation,  461  

 velocity,  114  

 velocity field,  112  

 velocity potential,  112  

 velocity potential relations,  115   

  Isentropic flow 

 across a shock wave,  460  

 choked flow,  459  

 mass-flow rate,  457  

 one-dimensional steady,  456 ,  458 – 459 , 

 811 – 812  

 relations for low Mach numbers,  456 ,  460  

 stagnation density,  455  

 stagnation pressure,  455 – 456  

 streamtubes of variable-area,  451 – 461

   

  Jane’s All the World’s Aircraft,  248   

  Jet engines, supersonic conditions for,  463   

  Joint Strike Fighter (JSF) Program, 

 777 – 779   

  Karman-Tsien rule,  522   

  Kelvin’s theorem,  113 – 114  

 implications of,  114   

  Kelvin’s theorem for a frictionless flow, 

 306 – 307   

  Kinematic viscosity,  25 ,  212  

 in English units,  26 – 27   

  Kinetic energy, rate of change of,  17   

  Kinetic theory of gases,  445   

  Knudsen number,  680   

  Krueger flap,  340   

  Kutta condition,  730 ,  732   

  Kutta-Joukowski theorem,  151   

  Kutta- Joukowski theorem for steady 

flow,  312 ,  356 ,  360 ,  362 ,  368   

  

Laitone’s rule,  522   

  Laminar boundary layer, incompressible 

 Blasius solution,  182 ,  185  

 boundary conditions,  183  

 boundary-layer separation,  188  

 boundary layer thickness,  188  

 dimensionless coordinate,  182 – 183  

 dimensionless skin-friction coefficient, 

 187  

 drag coefficient,  190  

 Falkner-Skan equation,  183 – 191  
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 on a flat plate,  189  

 momentum thickness for,  189 – 190  

 Reynolds number,  187 ,  190  

 shock wave, interaction with,  491  

 skin-friction drag coefficient for,  190 – 191  

 stream function,  182  

 transformed shear function,  186 – 187  

 velocity profiles,  181   

  Laminar-flow airfoil, finite-span model, 

 327 – 331  

 Blasius laminar skin-friction relation, 

 327  

 drag characteristics,  328  

 fluid dynamic characteristics,  329 – 330  

 for micro UAVs,  329  

 NACA developed,  327 – 329  

 P-51 aircraft,  328 – 329  

 Prandtl turbulent skin-friction relation, 

 327  

 for radio-controlled sailplanes,  330  

 Reynolds numbers,  329  

 uses,  330  

 in wind tunnel,  327  

 and wind-tunnel testing,  330   

  Laminar-flow section,  267   

  Laplace’s equation,  115 ,  122 ,  519   

  Leading-edge extensions (LEXs), 

 424 – 428  

 for F-18C,  427  

 for F-5E,  428  

 impact on maximum angle of attack 

and maximum lift,  428  

 Reynolds number,  425 – 426   

  Leading-edge suction force,  313 ,  416  

 Reynolds number,  412 – 414  

 at supersonic speeds,  411 – 412   

  Lennard-Jones model for the potential 

energy,  25   

  L’Hospital’s rule,  312   

  Lift,  156  

 coefficient per unit span of cylinder, 

 151  

 for F/A-18E,  799  

 force per unit span of cylinder,  150  

 per unit span of cylinder for pressure, 

 141  

 per unit span on NACA 23012 airfoil 

section,  259   

  Lift coefficient 

 aerodynamic forces and moments, 

 254 – 258  

 NACA 2422 airfoil,  324  

 NACA 23012 airfoil section,  257  

 for thin-airfoil theory,  324 – 325   

  Lift/drag ratio,  293 – 297 ,  726 – 729   

  Lifting-line theory for unswept wings, 

 356 – 385  

 aspect ratio, effect of,  364  

 birds fly in formation,  409 – 411  

 bound-vortex system at any spanwise 

location,  356  

 comments,  383 – 385  

 coordinate transformation,  362  

 downwash angle,  363  

 downwash velocity,  358 – 361  

 drag coefficient for induced 

component,  363  

 ‘drooped’ leading edge,  384  

 effective angle of attack,  359 – 360  

 effective lift of section of interest,  360  

 elliptic circulation distribution,  361 – 365  

 horseshoe vortex,  357  

 induced drag coefficient,  363 – 364  

 Kutta-Joukowski theorem,  356  

 lift coefficient for wing,  363  

 lifting line, defined,  356  

 lift on wing,  372  

 method of Rasmussen and Smith,  383  

 Prandtl lifting-line theory (PLLT),  357  

 spanwise circulation distribution, 

 367 – 372  

 spanwise lift distribution,  356  

 starting vortex,  357  

 streamwise vorticity filaments,  357  

 total vortex (or induced) drag for 

wing,  363  

 trailing-vortex system,  356 – 357  

 trailing vortices,  358 – 361  

 vortex drag,  360 – 361  

 vortex drag coefficient,  363 – 364  

 vortex-induced drag,  372 – 377   

  Linear theory,  604 ,  652  

 basic assumption,  563  

 change in pressure,  563  

 drag force,  566 – 567  

 lift coefficient,  568 – 570  

 lift force,  565 – 566  

 pitch moment,  568  

 pitch moment coefficient,  568 – 570  

 pressure coefficients,  563 – 564  

 pressure on airfoil surface,  563  

 wave-drag coefficient,  568 – 570   

  Lombardi, Vince,  36   

  Long bubble separation,  258   

  Mach cone,  449 – 450 ,  621   

  Mach forecone,  621 – 622   

  Mach number independence principle,  661   

  Mach-number/lift-coefficient flight,  536   

  Mach number (M),  441 ,  502 – 503 ,  812 – 815  

 area-velocity relationship,  462  

 calculation,  70  

 critical,  523 – 525  

 drag divergence,  526 – 527  

 dynamic pressure in terms of,  472  

 for fluids,  69 – 73 ,  100  

 regimes and characteristics for an 

airfoil,  71  

 shock waves,  478 – 480  

 for static pressure variation across the 

boundary layer,  75  

 subsonic leading-edge normal,  592  

 at supercritical,  536  

 in wind-tunnel facilities,  497   

  Mach wave,  473   

  Maxwell’s theory,  126   

  Mean aerodynamic chord (mac),  248   

  Mean camber line,  244   

  Military aircraft,  344 – 346   

  Mixing length concept,  212 – 214   

  MK-82 bombs,  764   

  Modified Reynolds analogy,  229   

  Momentum efflux,  64   

  Momentum influx, integral,  62   

  Momentum shape factor,  224   

  Monatomic gas,  445   

  Monoplane equation,  372  

 for aerodynamic coefficients for a 

wing,  377 – 381   

  Multielement airfoils, aerodynamic 

characteristics of,  340 – 341 , 

 729 – 733  

 chord distribution,  339 – 340  

 confluent boundary layer,  341  

 flow models,  342  

 inviscid, potential flow,  341  

 maximum lift efficiency,  340  

 Navier-Stokes and Euler codes,  343 – 344  

 thickness distribution,  339 – 340  

 two-dimensional multi-element flow 

issues,  339  

 viscous effects,  341 – 342   

  Multi-Role Fighter (MRF),  762   

  MX-1626,  543   

  Nacelle,  37   

  NASA flight testing centres,  498 – 499   

  National Aerospace Plane (NASP),  712 ,  714   

  Navier-Stoke equations,  56   

  Navier-Stoke flow solver,  554 – 555   

  Navier-Stokes equations,  208 ,  588 ,  652 , 

 665 ,  791   

  Newtonian flow model for hypersonic 

flows,  667 – 670  

 modified,  675 – 692   

  Newton’s Law,  16   

  Non-linear flow,  535 – 536   

  Northrop Grumman F-5E aircraft,  641   

  Nusselt number 

 defined,  229   

  Nusselt number for turbulent flow,  220   

  Open test-section wind tunnel, flow in an, 

 107 – 109   

  Oswald efficiency factor, see Airplane 

efficiency factor  

  Over-expanded nozzle,  264   

  

Panel methods for swept wings,  385 – 389  

 aerodynamic coefficients,  387 – 388  

 basic concept,  385  

 boundary conditions,  386 – 387  

 computer codes used,  387  
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 Dirichlet boundary conditions,  386 – 387  

 equivalency between vorticity 

distributions and doublet 

distributions,  387  

 incompressible pressure coefficient,  386  

 Neumann boundary conditions,  386  

 set of control points,  387  

 strength parameters,  385   

  Parabolized Navier-Stokes (PNS) 

equations,  791   

  Parasite drag,  273   

  Parasite drag coefficient,  723 ,  726   

  PARD Area-Rule Design,  544   

  Pegasus™,  791   

  Perfect gas,  22 ,  69 ,  442 ,  451 ,  660   

  Pitch moment coefficient,  631 ,  686  

 Busemann’s theory for supersonic 

flows,  571 – 574  

 linear theory,  568 – 570  

 shock-expansion technique for 

supersonic flows,  576 – 579  

 symmetric airfoil, finite-span model, 

 314   

  Pohlhausen values,  228   

  Poiseuille flow,  56 – 60  

 shear stress distribution,  59   

  Potential flow, see Irrotational flow  

  Potential flow theory,  152 – 154   

  Potential vortex,  127 – 131  

 circulation for a,  129  

 equipotential lines and streamlines 

for,  128   

  Prandtl formula,  219   

  Prandtl–Glauert correction,  522 – 523 ,  525   

  Prandtl–Glauert equation,  519   

  Prandtl–Glauert formula,  521 – 522   

  Prandtl lifting-line theory (PLLT),  357   

  Prandtl–Meyer expansion fan,  491   

  Prandtl–Meyer function,  466   

  Prandtl–Meyer relations,  562  

 in aerodynamic coefficients for a thin 

airfoil,  469 – 471  

 Mach number and Mach angle as a 

function of,  467 – 468   

  Prandtl number,  227 ,  229   

  Prandtl-Schlichting turbulent skin-friction 

relation,  220   

  Pressure coefficient,  106 – 109  

 in an open test-section wind tunnel, 

 107 – 109  

 at the stagnation point,  106  

 variations,  106   

  Pressure distribution 

 for a flat-plate delta wing planform, 

 623 – 628  

 high-lift airfoil, finite-span model, 

 333 – 334  

 singularity-distribution method,  618 – 632  

 for a swept-wing/fuselage 

configuration,  556 – 557   

  Pressure (or form) drag,  143   

  PRIME program,  500   

  Profile drag,  273   

  Pylon,  37   

  

Quiet Spike,  640   

  Quonset hut,  147 – 149   

  

Rate of climb (ROC),  17   

  Ratio of specific heats,  445   

  Rayleigh pitot formula,  676   

  Real vortex,  131 – 133   

  Reattachment shock,  491   

  Recovery temperature,  486   

  Reentry F flight,  502   

  Reusable launch vehicle (RLV),  498   

  Reynolds analogy,  486   

  Reynolds’ analogy,  691   

  Reynolds averaging,  205   

  Reynolds number,  502 – 503  

 unmanned air vehicles (UAV),  434  

 in wind-tunnel facilities,  497   

  Reynolds number for fluids,  69 – 73 ,  75 , 

 138 – 140 ,  145  

 based on momentum thickness,  214  

 based on the momentum thickness,  224  

 boundary-layer equations,  73 – 75  

 calculation,  70 – 71  

 drag coefficient,  144  

 of drag coefficient for a smooth sphere, 

 162  

 flow regions,  73  

 inviscid flows,  140  

 regimes and characteristics for an 

airfoil,  72   

  Reynolds stress, 213, see Turbulent shear 

stress  

  Reynolds stress tensor,  208   

  Root chord,  247   

  Rudder,  37   

  Schlieren photography system,  484 – 485   

  Section coefficient,  145   

  Section lift coefficient,  369  

 for a cylinder,  142   

  Separation bubble,  140 ,  258   

  Shaft work,  83   

  Shaped Sonic Boom Demonstration 

(SSBD) Program,  640   

  Sharp cone 

 aerodynamic coefficients for,  682 – 688  

 drag acting on,  688 – 692   

  Shear stress,  24  

 at wall for a boundary layer,  226   

  Shock capturing,  802   

  Shock-expansion technique for supersonic 

flows,  576 – 582  

 lift coefficient,  576 – 579  

 pitch moment coefficient,  576 – 579  

 wave-drag coefficient,  576 – 579   

  Shock/shock interactions,  492 – 494  

 type I,  494 – 495  

 type IV,  495 – 496   

  Shock waves,  472 – 482  

 angle,  480  

 bow,  476  

 curved,  473  

 difference between normal and 

oblique,  477 – 478  

 downstream properties,  476  

 energy,  474  

 features influencing,  536  

 flow across a normal,  474  

 flow downstream of,  473  

 flow upstream of,  473  

 formation of,  472  

 interactions between impinging and 

bow,  501  

 Mach number,  478 – 480  

 normal component of momentum,  474  

 oblique,  473 – 475  

 pressure coefficient,  479 – 480  

 properties,  473  

 relation with deflection angle,  475 – 476  

 semivertex angle,  481  

 strong,  475  

 sweepback principle,  475  

 tangential component of momentum,  474  

 transonic aircraft,  556  

 upstream Mach number,  479 – 480  

 vs Mach wave,  473  

 weak,  475 ,  479   

  Short bubble separation,  258   

  Short takeoff and landing (STOL) 

airplane,  734   

  Similar solutions,  184   

  Simpson’s rule,  409   

  Singularity-distribution method,  608 – 635  

 camber distribution,  632 – 635  

 centerline or wingtip grid element 

weighting factor,  631 – 632  

 design lift-coefficient factor,  633  

 drag coefficient at cruise lift coefficient, 

 634  

 leading-edge field-point-element 

weighting factor,  631  

 lifting pressure distribution,  619 – 621  

 pressure distribution,  618 – 632  

 suction parameter,  632  

 supersonic wing for given cruise 

conditions,  634 – 635  

 trailing-edge field-point-element 

weighting factor,  631   

  Skin-friction coefficient,  227 ,  229  

 experimental,  488 – 489  

 for a flat plate,  226  

 for a turbulent boundary layer,  489 – 490   

  Skin-friction drag,  143   

  Slender body theory for aircraft design, 

 644 – 646   

  Sonic boom, reduction strategy for, 

 640 – 641   

Panel methods for swept wings (continued)
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  Source density distribution,  154 – 158  

 application of,  156 – 158   

  Source or sink flow,  124 – 125  

 flow field,  133 – 136  

 two-dimensional (planar),  124   

  Space Shuttle Orbiter,  421 ,  454 – 455 , 

 652 – 653 ,  692   

  Space Shuttle Thermal Protection System 

(TPS),  501   

  Spalding-Chi correlation,  489   

  Spanwise circulation distribution for 

unswept wings,  356 ,  358 ,  367 – 372  

 equivalent lift-curve slope,  370  

 induced angle of attack, equation for, 

 370 – 372  

 local lift per unit span,  369  

 N -resultant linear equations,  368  

 parameters in equation,  370   

  Spanwise flow on swept wing,  405 ,  635   

  Specific enthalpy,  444   

  Specific excess power,  16 – 18  

 and accerelation,  16  

 application to change energy height, 

 17 – 18   

  Specific heat 

 at constant pressure,  444  

 at constant volume,  443   

  Specific internal energy,  442   

  Speed brakes,  37   

  Speed of sound,  27 ,  33 ,  448 – 451 ,  517   

  Stability theory,  202 ,  267   

  Stagnation points,  138   

  Stagnation temperature,  452 ,  486   

  Standard atmosphere 

 atmospheric layers in,  33  

 defined,  32  

 in English units,  34 – 36  

 U.S.,  28 – 30 ,  808 – 810   

  Standard atmospheric pressure at sea 

level,  21   

  Stanton number,  229  

 definition,  226 – 227  

 for laminar flow over a flat plate,  229   

  Starting vortex,  357   

  Static fluid medium,  27 – 32 ,  45   

  Static pressure,  138   

  Steady, two-dimensional, incompressible 

flow,  177 – 180   

  Stokes’s theorem,  110 – 112 ,  129   

  Strake/wing configurations 

 benefits,  424  

 vortex model for,  424 – 425   

  Stream function,  117 – 119 ,  128  

 for an incompressible, two dimensional 

flow,  117 – 119 ,  159  

 for doublet flows,  127  

 for elementary flows,  128  

 significance of,  118  

 for a uniform flow,  123  

 velocity components for a two-

dimensional flow,  118 – 119   

  Streamlines 

 boundary layer on a flat plate,  217  

 and equipotential lines,  119 – 121  

 in a two-dimensional flow,  117 – 118  

 for a uniform flow,  124   

  Subsonic aircraft drag, approaches to 

determining 

 basic,  273 – 274  

 fuselage method,  277 – 279  

 sources of aircraft drag,  274  

 total,  279 – 280  

 wing method,  274 – 277  

 zero-lift drag coefficient,  274 ,  280   

  Subsonic drag-due-to-lift parameter,  413   

  Subsonic flow,  449   

  Subsonic flow, compressible,  516 – 527  

 corrections,  522 – 523  

 critical Mach number,  523 – 525  

 drag divergence Mach number,  526 – 527  

 Göthert’s transformation,  519 – 522  

 lift-curve slope with Mach number,  521  

 linearized theory for,  517 – 519  

 pressure coefficient for,  520   

  Superposition of inviscid flows,  122  

 boundary conditions,  122   

  Supersonic aircraft, design considerations, 

 635 – 637  

 inboard shock separation,  635 ,  637  

 leading-edge shock,  636  

 trailing-edge shock separation,  636 – 637   

  Supersonic airfoils,  562   

  Supersonic Cruise and Maneuver 

Program (SCAMP),  764   

  Supersonic flow 

 aircraft, example,  600 – 601  

 arrow wings,  592  

 boundary conditions,  593 – 594  

 comments,  589 – 590  

 conical-flow technique,  595 – 608  

 delta wings,  592  

 governing equations,  593 – 594  

 leading edge,  591  

 lift/drag polar for,  589  

 linear nature, impact of,  594  

 perturbation potential,  593 – 594  

 singularity-distribution method for, 

 608 – 635  

 skin-friction drag,  589  

 solution methods for equation,  595  

 trailing edge,  591  

 wing of arbitrary planform in,  591   

  Supersonic flow,  449 ,  528 – 529 ,  562  

 stagnation point of a vehicle in,  474  

 at zero angle of attack,  481 – 483   

  Supersonic Mach number,  598   

  Supersonic transport (SST),  535 ,  637 – 639   

  Sutherland’s equation,  24 – 25 ,  33   

  Sweep angle,  248   

  Sweepback principle,  475   

  Swept wings 

 aft (ASW),  551 – 552  

 area rule,  539 – 547  

 conical-flow technique,  601 – 605  

 forward,  550 – 553  

 second-order area-rule considerations, 

 548 – 550  

 supersonic flow over,  537 – 553  

 at transonic speeds,  537 – 553  

 weighting functions and,  550  

 wing–body interactions,  539 – 547  

 X-29 configuration,  552 – 553   

  Symmetric airfoil, finite-span model 

 coordinate transformation,  311 – 313  

 Kutta condition,  312  

 leading-edge suction force,  313  

 lift-generating circulation of an 

element,  314  

 pitch moment coefficient,  314  

 quarter chord,  314  

 section lift coefficient,  313  

 section moment coefficient,  314  

 theoretical aerodynamic coefficients, 

 315 – 316   

 

 Taper ratio,  247 – 248   

  Taylor’s series expansion,  30   

  Thermal conductivity of air,  227 – 228   

  Thermodynamics 

 adiabatic process,  446  

 entropy,  446 – 447  

 first law of,  444  

 isentropic process,  447 ,  450  

 perfect-gas law,  443 ,  445 ,  451  

 reversibility,  445 – 447  

 second law of,  445 – 448  

 specific heats,  442 – 445  

 speed of sound,  448 – 451   

  Thin-airfoil theory,  308 – 311   

  Time-rate-of-change of the energy height, 

see specific excess power  

  Tip chord,  247   

  Total energy, calculation of,  13 – 14  

 of B-52 aircraft,  14  

 of F-5 fighter,  14   

  Trailing vortex system,  411   

  TranAir program,  554   

  Transformed stream function,  228   

  Transition-promoting phenomena,  202   

  Transonic aircraft,  553 – 558  

 boundary conditions for wing,  556  

 Euler and Navier-Stokes equations 

for three-dimensional flows,  557 , 

 802 – 807  

 flow-field solutions,  557  

 multi-disciplinary design optimization 

(MDO) methods,  554 – 555  

 pressure distributions for a swept-wing/

fuselage configuration,  556 – 557  

 problem of grid generation,  558  

 shock waves,  556  

 sweep angles,  556  

 transonic equations,  555   
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  Transonic flow,  527 – 535  

 for a B-1B,  533  

 lift coefficients for Schlieren technique, 

 532  

 for Mach numbers differences,

  517 – 530 ,  534  

 over a NACA 0012 airfoil,  530 – 532  

 for Reynolds number differences,  530  

 Schlieren photographs, findings from, 

 527 – 529  

 section lift coefficient,  530  

 shock wave at the trailing edge,  528  

 shock-wave/boundarylayer interaction, 

 530  

 unswept airfoils, past,  527 – 535   

  Transonic flows,  516   

  Transonic speeds 

 aft swept wings (ASW),  551 – 552  

 forward swept wings (FSW),  550 – 553  

 fuselage changes and,  550  

 second-order area-rule considerations, 

 548 – 550  

 Whitcomb’s area rule,  542 – 543  

 wing–body interactions,  539 – 547   

  Trim drag,  273   

  True airspeed (TAS),  105   

  Turbulent boundary layer, incompressible 

 in aerodynamics,  203 – 204  

 algebraic turbulence models,  208  

 and boundary-layer separation,  203  

 direct numerical simulations (DNS) 

model,  207 – 209  

 for a flat plate,  209 – 212  

 large-eddy simulations (LES) model, 

 207 – 209  

 momentum equation for,  205 – 207  

 RANS-LES hybrid model,  209  

 Reynolds-averaged Navier-Stokes 

(RANS) model,  207 – 209  

 Reynolds averaging,  205  

 Reynolds shear stress,  209  

 skin-friction drag,  203  

 Spalart-Allmaras model,  208  

 time-averaged flux of momentum per 

unit time,  207  

 time-averaged value of velocity,  205  

 time-varying velocity,  204  

 turbulence kinetic energy (k),  208  

 turbulent inertia,  207  

 turbulent modeling, approaches,  207 – 209  

 turbulent shear stress,  207  

 turbulent skin-friction drag,  212  

 zero-equation models,  208   

  Turbulent shear stress,  180 ,  207   

  Two-dimensional flows,  117 – 119   

  Two-dimensional source flow,  124  

 equipotential lines and streamlines for,  125  

 flow rate for,  126   

  Under-expanded nozzle,  264   

  Uniform flows,  123 – 124  

 Cartesian coordinate system,  123  

 flow field formed from,  133 – 136  

 stream function (c),  123  

 streamlines,  124  

 velocity potential,  136   

  Unmanned air vehicles (UAV), wings of, 

 434 – 436   

  Upper-surface-blowing (USB) concept,  733   

  U.S. standard atmosphere,  28 – 30 ,  808 – 810   

  

Van Driest damping parameter,  213   

  Vehicle-fixed coordinate system,  46   

  Velocity 

 boundary conditions,  115  

 rate of change of,  17  

 wall-friction,  210   

  Velocity-defect law,  210   

  Velocity field 

 constant-density potential flow,  122  

 irrotational flow,  112   

  Velocity potential 

 for an axisymmetric doublet flows,  160  

 relation with irrotational flow,  115  

 for a vortex,  127   

  Velocity potential equation,  517   

  Viscous boundary layers 

 boundary conditions for,  180 – 181  

 boundary-layer transition,  199 – 202  

 eddy viscosity,  212 – 214  

 flat plates (walls),  214 – 225  

 heat-transfer rate,  229 – 231  

 incompressible flows,  181 – 199  

 laminar boundary layer,  181 – 199  

 mixing length concept,  212 – 214  

 modified Reynolds analogy,  229  

 Reynolds analogy,  226 – 227  

 steady, two-dimensional, 

incompressible flow,  177 – 180  

 thermal boundary layer,  225 – 231  

 turbulent flow, incompressible,  203 – 212   

  Viscous work,  83   

  Volume of space, concept of,  19   

  Vortex filaments, statements about,  130 – 131   

  Vortex lattice method (VLM) for 

incompressible flow,  388 – 399  

 for aerodynamic coefficients for a 

swept wing,  399 – 405  

 airplane drag direction,  406  

 application of,  399  

 boundary conditions,  396 – 397  

 control points,  391 – 392  

 downwash velocity,  392  

 induced incidence, numerical form 

for,  409  

 influence coefficients,  390  

 magnitude of induced velocity,  392  

 relations for planar wings,  397 – 399  

 section lift coefficient for panel,  405  

 spanwise lift distribution,  408  

 symmetric load distribution,  408  

 tangency requirement,  398  

 velocity induced by a vortex filament, 

 392 – 396  

 vortex circulation strengths,  391   

  Vortex system, incompressible flow, 

wings of finite span 

 load distribution and, relation,  355  

 Prandtl’s approach,  355 – 356  

 trailing vortex system, impact of,  355   

  Vortex theorems,  130 – 131   

  Vortex theorems of Helmholtz,  358   

  Vorticity,  116 – 117  

 in cylindrical coordinates in two 

dimensions,  130    

 Wakelike flows, axial-flow component 

of,  432   

  Wall-friction velocity,  210 ,  213   

  Wave drag,  273 ,  535 ,  587 ,  604  

 reduction by design,  536 – 537   

  Whitcomb’s area rule,  542 – 543   

  Wind tunnel testing,  65 – 66  

 high-speed drag variations in,  524   

  Wing area,  246   

  Wing-geometry parameters,  236 – 252  

 anhedral angle,  248  

 aspect ratio,  247  

 average chord,  247  

 Boeing Airborne Traversing Probe, 

 265 – 266  

 dihedral angle,  248  

 geometric twist,  248 – 249  

 incidence angle,  248  

 mean aerodynamic chord (mac),  248  

 root chord,  247  

 for the Space Shuttle Orbiter,  253 – 254  

 sweep angle,  248  

 taper ratio,  247 – 248  

 tip chord,  247  

 wing area,  246  

 wing span,  247   

  Wings of finite span 

 of C- 17 ,  285 – 286  

 drag,  289 – 293  

 drag due to lift,  293  

 of F-16C,  287 – 289  

 lift-curve slope,  284 – 285  

 lift/drag ratio,  293 – 294  

 wave drag,  293  

 zero-lift drag,  292 – 293   

  Wing span,  247     

X-51A Waverider,  700 – 701   

  X-31 highly maneuverable aircraft,  422   

  X-15 program,  665 – 666   

  

YC-14 AMST (Advanced Medium STOL 

Transport),  733   

  Zero-lift angle of attack,  336 ,  714   

  Zero-lift drag coefficient,  526   

  Zero-pressure-gradient (flat-plate) 

boundary layers,  209     
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and Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey;   p.  287 ,  Fig. 
  5.27   ,  F-16 Air Combat Fighter. General Dynamics Report F-16-060, 1979;  p.  290 ,  Fig.   5.29   ,  Analysis and comparison of 
Air Force fl ight test performance data with predicted and generalized fl ight test performance data for the F-106A and 
B airplanes, 1961;  pp.  299 – 300 ,  Table   5.6   ,  Pinkerton, Robert M. Calculated and measured pressure distributions over 
the midspan section of the NACA 4412 airfoil;  p.  315 ,  Fig.   6.6   ,  Source: Data from Theory of Wing Sections;  p.  323 ,  Fig. 
  6.8   ,  Source: Data from Theory of Wing Sections;  p.  324 ,  Fig.   6.9   ,  Source: Data from Theory of Wing Sections;  p.  325 , 
 Fig.   6.10   ,  Source: Data from Theory of Wing Sections;  p.  330 ,  Fig.   6.17   ,  Based on Low Reynolds number airfoil 
design. In Low Reynolds Number Aerodynamics of Aircraft, VKI Lecture Series;  p.  331 ,  High-lift aerodynamics. J. 
Aircraft, VOL. 12, NO. 6. A. M. O. Smith. McDonnell Douglas Corporation, Long Beach, Calif;  pp.  331 ,  333 ,   Data from A 
class of airfoils designed for high lift in incompressible fl ows. J. Aircraft 10;  p.  332 ,  Fig.   6.18   ,  Data from A class of airfoils 
designed for high lift in incompressible fl ows. J. Aircraft 10;  p.  332 ,  Fig.   6.19   ,  Data from A class of airfoils designed for 
high lift in incompressible fl ows. J. Aircraft 10;  p.  333 ,  Fig.   6.20   ,  Data from A class of airfoils designed for high lift in 
incompressible fl ows. J. Aircraft 10;  p.  334 ,  Fig.   6.21   ,  Data from A class of airfoils designed for high lift in incom-
pressible fl ows. J. Aircraft 10;  p.  335 ,  Fig.   6.22   ,  Data from A class of airfoils designed for high lift in incompressible 
fl ows. J. Aircraft 10;  pp.  337 – 338 ,  Fig.   6.23   ,  Source: Data from Low-speed aerodynamic characteristics of a 7-percent 
thick section designed for general aviation applications. NASA Tech. Note D-7428;  p.  339 ,  Fig.   6.24   ,  Based on Navier-
Stokes calculations on multi- element airfoils using a chimera-based solver. In High-Lift System Aerodynamics, 
AGARD CP 515;  pp.  339 – 340 ,   Data from High-lift design for large civil aircraft. In High-Lift System Aerodynamics, 
AGARD CP 515;  p.  340 ,  Fig.   6.25   ,  Data from Flaig A, Hilbig R. 1993. High-lift design for large civil aircraft. In High-
Lift System Aerodynamics, AGARD CP 515;  p.  341 ,  Fig.   6.26   ,  Data from High-lift design for large civil aircraft. In 
High-Lift System Aerodynamics, AGARD CP 515;  p.  342 ,  Fig.   6.27   ,  Based on Theoretical and experimental study of the 
drag of multielement airfoils. Presented at Fluid and Plasma Dyn. Conf., 11th, AIAA;  p.  342 ,  Fig.   6.28   ,  Based on Theo-
retical and experimental study of the drag of multielement airfoils. Presented at Fluid and Plasma Dyn. Conf., 11th, AIAA;  
p.  343 ,  Fig.   6.29   ,  Based on A solution to the 2-D separated wake modeling problem and its use to predict of arbitrary 
airfoil sections. Presented at AIAA Aerospace Science Meeting;  p.  344 ,  Fig.   6.30   ,  Based on Rechkzeh, D. 2003, Aero-
dynamic design of the high-lift wing for a megaliner aircraft. Aerosp. Sci. Tech, 7:107–119;  p.  346 ,  Fig.   6.32   ,  Source: Data 
from Evaluation of turbulence models for high lift military airfoil fl owfi elds and High lift research program for a fi ghter-
type, multielement airfoil at high Reynolds numbers, both papers presented at AIAA Aerosp. Sci. Meet, 34th, AIAA 
Pap. 96–0057;  p.  346 ,  Fig.   6.33   ,  Data from High lift research program for a fi ghter-type, multi-element airfoil at high 
Reynolds numbers. Presented at AIAA Aerosp. Sci. Meet., 34th, AIAA Paper 96–0057;  p.  383 ,  Fig.   7.20   ,  Data from 
Lifting-line theory for arbitrarily shaped wings. J. Aircraft 36;  pp.  383 – 384 ,  Data from Numerical lifting line theory 
applied to drooped leading-edge wings below and above stall. J. Aircraft 17;  p.  384 ,  Fig.   7.21   ,  Data from Numerical 
lifting line theory applied to drooped leading-edge wings below and above stall. J. Aircraft 17;  p.  385 ,  Fig.   7.22   ,  Data 
from Numerical lifting line theory applied to drooped leading-edge wings below and above stall. J. Aircraft 17;  p.  388 , 
 Fig.   7.24   ,  Based on Subsonic panel methods––a comparison of several production codes. Presented at AIAA Aerosp. 
Sci. Meet., 23rd, AIAA Pap. 85-0280;  p.  406 ,  Fig.   7.34   ,  Source: Data from Low-speed tests on 45-deg swept-back wings, 
part I: pressure measurements on wings of aspect ratio 5. ARC R&M 2882;  p.  407 ,  Fig.   7.35   ,  Data from Some develop-
ments in boundary layer research in the past thirty years. J. Roy. Aeron. Soc. 64;  p.  415 ,  Fig.   7.41   c, d,  Data from Compu-
tational and physical aspects of vortex breakdown on delta wings. Presented at AIAA Aerosp. Sci. Meet., 33rd, AIAA 
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Pap. 95 -0585;  p.  416 ,  Fig.   7.43   ,  Data from Predictions of vortex-lift characteristics by a leading-edge suction analogy. J. 
Aircraft 8;  p.  417 ,  Fig.   7.44   ,  Data from Predictions of vortex-lift characteristics by a leading-edge suction analogy. J. 
Aircraft 8;  p.  419 ,  Fig.   7.46   ,  Source: Data from Experimental investigations of infl uence of edge shape on the aerody-
namic characteristics of low aspect ratio wings at low speeds. J.Aeron. Sci. 22;  p.  420 ,  Fig.   7.47   ,  Source: Data from Aero-
dynamik des Flugzeuges;  p.  420 ,  Fig.   7.48   ,  Source: Data from Experimental investigations of infl uence of edge shape on 
the aerodynamic characteristics of low aspect ratio wings at low speeds. J. Aeron. Sci. 22;  p.  421 ,  Fig.   7.49   ,  Source: Data 
from Experimental investigations of infl uence of edge shape on the aerodynamic characteristics of low aspect ratio 
wings at low speeds. J.Aeron. Sci. 22;  p.  423 ,   Computational and physical aspects of vortex breakdown on delta wings. 
Presented at AIAA Aerosp. Sci. Meet., 33rd, AIAA Pap. 95-0585;  pp.  424 – 425 ,   Aerodynamic features of designed 
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from Aerodynamic features of designed strake-wing confi gurations. J. Aircraft 19;  p.  426 ,  Fig.   7.52   ,  Data from Aerody-
namic features of designed strake-wing confi gurations. J. Aircraft 19;  p.  426 ,  Fig.   7.53   ,  Erickson GE. 1982. Vortex fl ow 
correlation. Presented at Congr. Intl. Coun. Aeron. Sci., 13th, ICAS Pap. 82–6.61, Seattle, WA;  p.  427 ,  Fig.   7.54   ,  Wurtzler 
KE, Tomaro RF. 1999;  p.  428 ,  Fig.   7.55   ,  Data from Northrop F-5 Case Study in Aircraft Design Washington, DC: 
AIAA;  p.  429 ,  Fig.   7.56   ,  Data from Asymmetric vortex shedding from bodies of revolution. AIAA;  p.  430 ,  Fig.   7.57   ,  
Data from High-angle-of-attack yawing moment asymmetry of the X-31 aircraft from fl ight test. Presented at Appl. Aero-
dyn. Conf., 12th, AIAA Pap. 94-1803;  pp.  430 – 431 ,  High-angle-of-attack yawing moment asymmetry of the X-31 aircraft 
from fl ight test. Presented at Appl. Aerodyn. Conf., 12th, AIAA Pap. 94-1803;  p.  431 ,  Fig.   7.58   ,  Data from High-angle-
of-attack yawing moment asymmetry of the X-31 aircraft from fl ight test. Presented at Appl. Aerodyn. Conf., 12th, 
AIAA Pap. 94-1803;  p.  431 ,  Cobleigh BR. 1994. High-angle-of-attack yawing moment asymmetry of the X-31 aircraft 
from fl ight test. Presented at Appl. Aerodyn. Conf., 12th, AIAA Pap. 94–1803, Colorado Springs, CO;  p.  432 ,   Data from 
Asymmetric vortex shedding from bodies of revolution. AIAA;  p.  432 ,   Data from Predicted aerodynamic characteris-
tics of maneuvering aircraft. Presented at Appl. Aerodyn. Conf., 14th, AIAA Pap. 96-2433;  p.  433 ,  Fig.   7.59   ,  Data from 
Predicted aerodynamic characteristics of maneuvering aircraft. Presented at Appl. Aerodyn. Conf., 14th, AIAA Pap. 
96-2433; pp. 433–434, X-31 Project Description;  p.  434 ,  Fig.   7.60   ,  Data from In-fl ight fl ow fi eld analysis on the NASA 
F-18 high alpha research vehicle with comparison to the ground facility data. Presented at AIAA Aerosp. Sci. Meet., 
28th, AIAA Pap. 90-0231;  pp.  433 – 434 ,   In-fl ight fl ow fi eld analysis on the NASA F-18 high alpha research vehicle with 
comparison to the ground facility data. Presented at AIAA Aerosp. Sci. Meet., 28th, AIAA Pap. 90-0231;  p.  434 ,  Table 
  7.3   ,  Data from A discussion of aerodynamic control effectors for unmanned air vehicles. Presented at Tech. Conf.Work-
shop Unmanned Aerosp. Veh., 1st, AIAA Pap. 2002-3494;  p.  435 ,  Fig.   7.61   ,  Data from A discussion of aerodynamic 
control effectors for unmanned air vehicles. Presented at Tech. Conf.Workshop Unmanned Aerosp. Veh., 1st, AIAA 
Pap. 2002 -3494;  p.  435 ,  Fig.   7.62   ,  Data from The role of size in the future of aeronautics. Presented at Intl. Air Space 
Symp., AIAA Pap. 2003-2902;  p.  436 ,  Fig.   7.63   ,  Data from A numerical investigation of novel planforms for micro 
UAVs. Presented at AIAA Aerosp. Sci. Meet., 44th, AIAA Pap. 2006-1265;  p.  488 ,  Table   8.6   ,  Data from The drag of a 
compressible turbulent boundary layer on a smooth plate with and without heat transfer. J. Fluid Mech. 18;  p.  489 ,  Table 
  8.8   ,  Data from The drag of a compressible turbulent boundary layer on a smooth plate with and without heat transfer. J. 
Fluid Mech. 18;  p.  496 ,   Source: Data from Bertin and Cummings, Annual Review of Fluid Mechanics;  p.  498 ,   Ameri-
can Institute of Aeronautics and Astronautics;  p.  498 ,   Special section in the September–October 2001 issue of the 
Journal of Spacecraft and Rockets;  p.  500 ,   Source: Data from Aerodynamic and performance analyses of a superor-
bital re-entry vehicle. In Dynamics of Manned Lifting Planetary Entry, New York: John Wiley;  p.  500 ,   Source: Data 
from Missions and requirements.AGARD Report 761, Special Course on Aerothermodynamics of Hypersonic 
Vehicles, Neuilly sur Seine, France;  p.  503 ,  Fig.   8.25   ,  Data from High Speed Wind Tunnel Handbook. Vought Aero-
nautics Division AER-EIR-13552-B;  p.  523 ,   Data from propellers to jets in fi ghter aircraft design. Lockheed Horizons 
23;  p.  524 ,  Fig.   9.6   ,  Data from propellers to jets in fi ghter aircraft design. Lockheed Horizons 23;  p.  528 ,  Fig.   9.10   ,  Data 
from The aerodynamic art. J. Roy. Aero. Soc. 60;  p.  528 ,  Fig.   9.11   ,  Data from The aerodynamic art. J. Roy. Aero. Soc. 
60;  p.  529 ,  Fig.   9.12   ,  Data from The aerodynamic art. J. Roy. Aero. Soc. 60;  p.  531 ,  Fig.   9.13   ,  Forsythe, J R; Blake DC. 
2000. Private Transmittal;  p.  531 ,  Fig.   9.14   ,  Dreikomponentenmessungen bis zu grossen anstellwinkeln an fuenf trag-
fl uegeln mit verschieden umrissformen in unterschall und ueberschallstroemung. Z.Flugwissensch. 13:447-453;  p.  532 , 
 Fig.   9.15   ,  Dreikomponentenmessungen bis zu grossen anstellwinkeln an fuenf tragfl uegeln mit verschieden umrissfor-
men in unterschall und ueberschallstroemung. Z.Flugwissensch. 13:447-453;  p.  535 ,   Shock wave drag reduction. Annual 
Review of Fluid Mechanics 36:814-96;  p.  536 ,   Source: Data from The transonic fl ow past two-dimensional aerofoils. J. 
Roy. Aero. Soc. 68;  p.  537 ,  Fig.   9.19   ,  Data from Supercritical aerodynamics: worthwhile over a range of speeds. Astro-
naut. Aeronaut. 10(8);  p.  539 ,  Fig.   9.21   ,  Source: Data from Some developments in boundary layer research in the past 
thirty years. J. Roy. Aero. Soc. 64;  p.  543 ,  Fig.   9.24   ,  Data from An introduction to the fl ow about plane swept-back wings 
at transonic speeds. J. Roy. Aero. Soc. 64;  p.  544 ,  Fig.   9.25   ,  Data from Recent advances in aerodynamics for transport 
aircraft. Aeronaut. Astronaut;  pp.  546 – 547 ,  Fig.   9.28    and    9.29   ,  Data from Northrop F-5 Case Study in Aircraft Design.
Washington, DC:AIAA;  p.  548 ,  Fig.   9.31   ,  Source: Courtesy of NASA;  p.  557 ,  Fig.   9.36   ,  Morton SA, Eymann TA, 
McDaniel DR, Sear DR, Tillman B, Tuckey TR. 2011. Rigid and maneuvering results with control surface and 6DoF 
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motion for Kestrel v2. Presented at AIAA Aersosp. Sci. Meet., 49th, AIAA Paper 2011-1106, Orlando, FL, Jan. 
2011;  p.  597 ,  Fig.   11.9   ,  Data from Characteristics of rectangular wings at supersonic speeds. J. Aeron. Sci. 14;  p.  599 , 
 Table   11.1   ,  Source: Data from Characteristics of rectangular wings at supersonic speeds. J. Aeron. Sci. 14; 
p.  600 ,  Fig.   11.12   , Source: Data from Investigation of wing characteristics at a Mach number of 1.53, III: unswept 
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and Thermodynamics of Compressible Fluid Flow. New York: The Ronald Press;  pp.  607 – 608 ,   Data from Arrow wings 
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  11.2   ,  Aerodynamic performance of delta wings at supersonic speeds. J. Aeron. Sci. 14. Journal of the Aeronautical Soci-
ety, AIAA;  p.  607 ,  Fig.   11.18   ,  Data from Arrow wings for supersonic cruise aircraft. Presented at Aerosp. Sci. Meet., 
18th, AIAA Pap. 78–0151, Huntsville, AL;  p.  612 ,  Fig.   11.20   ,  Source: The Dynamics and Thermodynamics of Compress-
ible Fluid Flow. New York: The Ronald Press;  pp.  614–615 ,  Fig.   11.21   ,  Data from Aerodynamic performance of delta 
wings at supersonic speeds. J. Aeron. Sci. 14;  p.  636 ,  Fig.   11.34   ,  Source: Data from Possible types of fl ow at swept leading 
edges. Aeronaut.Quart. 15:72–82 and Real fl ow limitations in supersonic airplane design. Presented at Aerosp. Sci. 
Meet., 16th, AIAA Pap. 78–0147, Huntsville, AL;  pp.  637 – 639 ,   Used with the permission of the Canadian Aeronautics 
and Space Institute;  p.  641 ,  Fig.   11.36   ,  Origins and overview of the shaped sonic boom demonstration program. Pre-
sented at Aerosp. Sci. Meet., 43rd, AIAA Pap. 2005–0005, Reno, NV;  pp.  641 ,  642 ,   Data from Harris RV. 1992. On the 
threshold—the outlook for supersonic and hypersonic aircraft. J. Aircraft 29;  p.  642 ,  Fig.   11.37   ,  Data from Harris RV. 
1992. On the threshold—the outlook for supersonic and hypersonic aircraft. J. Aircraft 29; p.  643 ,  Fig.   11.38   , Tomaro RF, 
Wurtzler KE. 1999. High speed confi guration aerodynamics: SR-71 to SMV. Presented at Appl. Aerodyn. Conf., 17th, 
AIAA Pap. 99–3204, Norfolk, VA;  p.  661 ,  Fig.   12.1   ,  Annual Review of Fluid Mechanics by Bertin article, William Rees. 
Reproduced with permission of Annual Reviews in the format Republish in a book via Copyright Clearance Cen-
ter; pp.  663 – 664 , Annual Review of Fluid Mechanics by Bertin article, William Rees. Reproduced with permission of 
Annual Reviews in the format Republish in a book via Copyright Clearance Center;  p.  664 ,  Fig.   12.4   ,  Bertin JJ. 1994. 
Hypersonic Aerothermodynamics. Washington, DC: AIAA;  p.  665 ,  Fig.   12.5   ,  Bertin JJ. 1994. Hypersonic Aerothermo-
dynamics. Washington, DC: AIAA;  p.  672 ,  Fig.   12.10   ,  Data from Composition and thermodynamic properties of air in 
chemical equilibrium. NACA Tech. Note 4265;  p.  690 ,  Fig.   12.24   ,  Data from A base pressure experiment for determin-
ing the atmospheric profi le of the planets. J. Spacecr. Rockets 10;  p.  693 ,  Fig.   12.25   ,  Based on Aerodynamic problems of 
manned space vehicles. J. Roy. Aeronaut. Soc. 63;  p.  694 ,  Fig.   12.26    ,  Based on Squire LC. 1976a. Flow regimes over delta 
wings at supersonic and hypersonic speeds. Aeronaut. Quart. 27;  p.  695 ,   Several families of viscous optimized waverid-
ers – a review of waverider research at the University of Maryland. Presented at International Hypersonic Waverider 
Symposium, 1st, College Park, MD;  p.  695–696 ,  Fig.   12.27   , and  Fig.   12.28   ,  Based on Several families of viscous opti-
mized waveriders – a review of waverider research at the University of Maryland. Presented at International Hypersonic 
Waverider Symposium, 1st, College Park, MD;  pp.  695 – 696 ,   Design of waveriders. Presented at Space Course on Low 
Earth Orbit Transportation, 2nd, Munich, Germany;  p.  697 ,  Fig.   12.30   ,  Based on Viscous optimized hypersonic waverid-
ers. Presented at Aerosp. Sci. Meet., 25th, AIAA Pap. 87–0272, Reno, NV;  p.  698 ,  Fig.   12.31    and  Fig.   12.32   ,  Source: 
Data from Preliminary assessment of a Mach 4 and a Mach 6 waverider. Presented at International Hypersonic 
Waverider Symposium, 1st, College Park, MD;  p.  700 ,  Fig.   12.33   ,  Based on Effi cient hypersonic accelerators derived 
from analytically defi ned fl owfi elds. Presented at Aerosp. Sci;  pp.  709 – 710 ,   Wind tunnel testing, fl ight scaling, and fl ight 
validation with Hyper-X. Presented at Advanced Measurement and Ground Test. Conf., 20th, AIAA Pap. 98–2866, 
Albuquerque, NM;  pp.  708 – 709 ,  Fig.   12.38    and Fig.    12.39   ,  Based on Dual-fuel lifting body confi guration development. 
Presented at Intern. Space Planes and Hypersonic Systems and Techn. Conf., AIAA Pap. 96–4592, Norfolk, 
VA;  pp.  710 – 711 ,  Fig.   12.40    and Fig.    12.41   ,  Data from Hypersonic Mach number and real gas effects on Space Shuttle 
Orbiter aerodynamics. J. Space. Rockets 21;  pp.  712 ,  713 ,  714 ,  Flight data for boundary-layer transition at hypersonic 
and supersonic speeds. J. Spacecr. Rockets 36. American Institute of Aeronautics and Astronautics;  p.  715 ,   Fifty years 
of hypersonic, where we’ve been, where we’re going. Progr. Aerosp. Sci. 39;  p.  723 ,  Fig.   13.1   ,  Based on The annals of the 
polymorph, a short history of V-G. Air International 8(3);  p.  725 ,  Fig.   13.3   ,  Data from Aerodynamic design philosophy 
of the Boeing 737. J. Aircraft 3;  pp.  725 – 726 ,  Fig.   13.4   ,    13.5   ,  Data from Size effects in conventional aircraft design. J. 
Aircraft 7;  pp.  728 – 729 ,  Fig.   13.8    and  Fig.   13.9   ,  Source: Data from Aerodynamik des Flugzeuges. Berlin: Springer Ver-
lag; pp.  729 – 730 ,  Smith A.M.O. 1975. High-lift aerodynamics. J. Aircraft 12:501–530.  p.  733 ,  Fig.   13.12   ,  Based on Two 
decades of the ‘Twenty-One’. Air Enthusiast International 6(5);  p.  733 ,   Recent advances in aerodynamics for transport 
aircraft. Aeronaut. Astronaut. 11(12); p.  734 ,  Fig.   13.13   , Based on Recent advances in aerodynamics for transport air-
craft. Aeronaut. Astronaut. 11(12);  p.  735 ,  Fig.   13.14   ,  Source: Data from Some developments in boundary layer research 
in the past thirty years. J. Roy. Aeronaut. Soc. 64(590);   pp.  736 – 737 ,  Fig.   13.16    and Fig.    13.17   ,  Based on Circulation 
control technology for powered-lift STOL aircraft. Lockheed Horizons 24;  pp.  738 ,  740 ,  766 ,  767 ,  Figs.   13.18   ,   13.19   ,   13.21   , 
   13.42    and    13.43   ,  Source: Practical aerodynamic problems—military aircraft. Transonic Aerodynamics, by D. Nixon. Essay 
by R.G. Bradley. Transonic Perspective Symposium, Moffett Field, CA, Feb. 18-20, 1981. American Institute of Aeronau-
tics and Astronautics; p.  745 ,  Table   13.1   , Application of laminar fl ow control to large subsonic military transport air-
planes. Presented at Aerosp. Sci. Meet., 16th, AIAA Pap. 78–0095, Huntsville, AL;  p.  748 ,  Fig.   13.25   ,  Source: Data 
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from Gates Learjet, unpublished data;  p.  749 ,   Aircraft drag reduction technology. AGARD Report 723;  p.  751 ,  Fig. 
  13.29   ,  Data from Induced-drag characteristics of crescent-moon-shaped wings. J. Aircraft 24;  pp.  752 – 753 ,   Data 
from Innovative aerodynamics: the sensible way of restoring the growth capability of the EA-6B Prowler. Presented at 
Appl. Aerodynamics Conf., 5th, AIAA Pap. 87–2362, Monterey, CA;  pp.  753 ,  755 – 757 ,  Figs.   13.31   ,    13.33   –   13.36   ,  Data from 
Innovative aerodynamics: the sensible way of restoring the growth capability of the EA-6B Prowler. Presented at Appl. 
Aerodynamics Conf., 5th, AIAA Pap. 87–2362, Monterey, CA;  pp.  753 – 754 ,   High-angle-of-attack stability and control 
improvements for the EA-6B Prowler. Presented at Appl. Aerodynamcis Conf. American Institute of Aeronautics and 
Astronautics;  p.  754 ,  Fig.   13.32   ,  Based on High-angle-of-attack stability and control improvements for the EA-6B 
Prowler. Presented at Appl. Aerodynamcis Conf., 5th;  pp.  759 – 761 ,   Aerodynamic design evolution of the YF-16. Pre-
sented at Aircraft Design, Flight Test, and Operations Meet., 6th, AIAA Pap. 74–935, Los Angeles, CA;  p.  760 ,  Fig. 
  13.38   ,  Based on Aerodynamic design evolution of the YF-16. Presented at Aircraft Design, Flight Test, and Operations 
Meet., 6th, AIAA Pap. 74–935, Los Angeles, CA;  p.  764 ,  Fig.   13.40   ,  Based on Four decades of transonic fi ghter design. 
J. Aircraft 28;  p.  766 ,  Table   13.2   ,  Source: Practical aerodynamic problems—military aircraft. Transonic Aerodynamics, 
by D. Nixon. Essay by R.G. Bradley. Transonic Perspective Symposium, Moffett Field, CA, Feb. 18-20, 1981. American 
Institute of Aeronautics and Astronautics;  p.  767 ,  Fig.   13.44   ,  A supersonic cruise fi ghter evolution. Paper 14, H.L. Hill-
aker F-16XL Flight Test Program Overview, AIAA-83-2730;  p.  768 ,  Table   13.3   ,  Based on Four decades of transonic 
fi ghter design. J. Aircraft 28;  p.  769 ,   Data from Advanced technology integration for tomorrow’s fi ghter aircraft. Pre-
sented at the Aircraft Systems, Design, and Tech. Meet., AIAA Pap. 86–2613, Dayton, OH;  p.  769 ,  Fig.   13.45   ,  Data from 
Advanced technology integration for tomorrow’s fi ghter aircraft. Presented at the Aircraft Systems, Design, and Tech. 
Meet., AIAA Pap. 86–2613, Dayton, OH;  pp.  770 – 771 ,  Figs.   13.46   –   13.49   ,  Data from An evaluation of wing-canard, tail-
canard, and tailless arrangements for advanced fi ghter applications. Presented at Congress of the Intern. Council of the 
Aeronaut. Sci., ICAS Pap. 84–2.7.3, Tolouse, France;  pp.  770 – 773 ,   An evaluation of wing-canard, tail-canard, and tail-
less arrangements for advanced fi ghter applications. Presented at Congress of the Intern. Council of the Aeronaut. Sci., 
ICAS Pap. 84–2.7.3, Tolouse, France;  p.  774 ,   F-22 design evolution. Code One Magazine 13(2); F-22 design evolution, 
part II. Code One Magazine 13(4), 1998. Lockheed Martin;  pp.  774 ,  775 ,  776 ,  The evolution of the F-22 Advanced Tac-
tical Fighter. Presented at Aircraft Design Systems Meet., AIAA Pap. 92–4188, Hilton Head Island, SC; pp. 775, 777,  
F-22 design evolution. Code One Magazine 13(2); F-22 design evolution, part II. Code One Magazine 13(4), 1998. 
Lockheed Martin;  p.  776 ,  Fig.   13.51   ,  Based on The evolution of the F-22 Advanced Tactical Fighter. Presented at Air-
craft Design Systems Meet., AIAA Pap. 92–4188, Hilton Head Island, SC;  pp.  778 ,  779 ,   Going vertical—X-35B fl ight 
testing. Code One Magazine 16(3), 2001. Lockheed Martin;  p.  792 ,  Fig.   14.1   ,  Data from Aerodynamic design of Pegasus 
TM, concept to fl ight with CFD. In Missile Aerodynamics, AGARD Conf. Proc. No. 493, Symposium of the Fluid 
Dynamics Panel, Friedrichshafen, Germany;  pp.  795 – 796 ,   Wind-tunnel techniques to successfully predict F/A-18E in-
fl ight lift and drag. J. Aircraft 37. American Institute of Aeronautics and Astronautics;  p.  796 ,  Fig.   14.2   ,  Data from Wind-
tunnel techniques to successfully predict F/A-18E in-fl ight lift and drag. J. Aircraft 37;  p.  797 ,   Reynolds number scaling 
at transonic speeds. Presented at Advanced Measurement and Ground Testing Tech. Conf., 20th, AIAA Pap. 98–2878, 
Albuquerque, NM;  p.  800 ,   The evolution of the F-22 Advanced Tactical Fighter. Presented at Aircraft Design Systems 
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