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Preface

This book is aimed at undergraduate students as a second-year and beyond entry
stage to fluid power. There is much material that will also appeal to technicians
regarding the background to fluid power and the operation of components and
systems. Fluid power is often considered a specialist subject but should not be
so given that the same would not be said for electrical power. In fact, there are
many applications for which fluid power control is the only possibility because
of force/torque/power/environmental demands. In the past 20 years, a number of
groups around the world have made significant steps forward in both the under-
standing and the application of theory and control, complementing the R&D activ-
ity undertaken within the manufacturing industry. Details of just one organization
involving many participating fluid power centers around the world are available at
www.fluid.power.net. I embarked on this book ostensibly as a replacement for my
first book, Fluid Power Systems – Modelling, Simulation, Analog and Microcomputer
Control, published by Prentice-Hall in 1989 and now out of print. However, the
result is a much different book and perhaps not surprising, given the developments
in fluid power in the past 20 years. Following many constructive comments by under-
graduate students, friends in industry, and academic friends who still use my first
book for teaching, it was clear that a new book was needed. It was felt that a
new book should integrate far more fundamental background theory with its appli-
cation to real components and systems, but without the book becoming research
orientated; this is the intention. Validation of theory has been significantly aided
by advances in computer modeling of fluid mechanics and system dynamic issues,
together with advances in sensors and instrumentation for experimental validation
of component and systems performance. These aspects are introduced where appro-
priate.

Chapter 1 introduces fluid power, indicating its need, circuit symbols, various
standard circuits, and associated components. Practical examples of fluid power con-
trol are given with the intention of conveying the power-level breadth and applica-
tion breadth of the subject, varying from precision micrometer position control to
primary processing of materials and products. Some common circuit components
are presented with their operating concepts, and a further reading list includes text-
books and related industrial literature.

Chapter 2 introduces fluid physical properties for different applications that
now must seriously begin to consider the use of less mineral-oil content as both

xi



xii Preface

supply and environmental issues begin to dominate many new applications. Fluid
bulk modulus issues are presented in some detail, particularly for flexible-hose
applications for which its reduction can be dramatic. Fluid cleanliness is also intro-
duced, as is the importance of understanding the effects of cavitation conditions on
material erosion. Electrorheological and magnetorheological fluids are now emerg-
ing in fluid power applications following many years of awareness, and this is pre-
sented for a student racing car suspension real-time control application. A further
reading list is included.

Chapter 3 is the first substantial chapter; it discusses the steady-state character-
istics of circuit components. It begins with essentials of fluid flow theory and moves
on to applications involving restrictors, control gaps, and leakage gaps used in com-
ponents. Unique solutions are presented where appropriate, with practical data and
supporting computation fluid dynamics simulations introduced for the first time. A
section on flow-reaction forces is essential and considered in some detail. Devel-
opments in servovalves are also briefly discussed and their characteristics analyzed.
Positive-displacement pumps and motors are discussed with respect to generic losses
and supported by measurements, particularly with respect to efficiency. A section
on servovalve behavior is included, together with other control valves and accu-
mulators commonly used in circuits. Finally, the concept of design of experiments
is introduced to aid experimental testing to determine performance characteristics.
Many worked examples are also included, together with a further reading list.

Chapter 4 is concerned with the steady-state performance of drive systems; it
discusses the interconnection of valves, servovalves, pumps, and motors in a variety
of configurations. The relatively unknown theory of power transfer units for aircraft
applications is discussed and compared with practice in a qualitative sense. This
chapter covers graphical and explicit design approaches to understanding steady-
state behavior. Several worked examples are also included as well as a further read-
ing list.

Chapter 5, the second substantial chapter, is concerned with system dynamics –
that is, time-varying behavior. The philosophy of this chapter is to derive the basic
mass flow and force–torque continuity equations, integrate them into typical com-
ponents and circuits, and then consider solutions to determine the dynamic response
of common components and circuits. Linear differential equations are considered,
together with frequency response and transfer function concepts. The concept of
linearizing equations is introduced to aid analysis when components have nonlinear
pressure–flow characteristics such as servovalves. Transmission-line effects are cov-
ered in some detail with practical validation. State-space analysis is introduced as a
basis for control-theory developments in the next chapter. Finally, an overview of
data-based modeling is considered as a means of growing importance when consid-
ering the determination of a dynamic model with some knowledge of its probable
form. Various methods are introduced, such as the group method of data handling,
artificial neural networks, and time-series modeling, with practical validation. Many
additional worked examples are also included, together with a further reading list.

Chapter 6 is concerned with controlling fluid power systems and therefore
calls on the work of previous chapters. The third substantial chapter, it brings
together basic background theory for closed-loop stability, digital control, closed-
loop response improvement, and feedback control implementation. The concepts
are applied to typical circuits, including the effect of long lines. State feedback is
developed for both analog and digital feedback control and extended to include
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state estimation for state control and linear quadratic control. Again, many exam-
ples and additional worked examples are included. On–off switching of valves is
then considered as an alternative to conventional control techniques because this is
gaining popularity, particularly for high-water-content fluid applications. This part
of the chapter is dominated by the practical aspect, but real application results are
shown. Finally, an introduction to fuzzy-logic and neural network control is added to
whet the appetite for these relatively new approaches for hydraulic systems control.
Developing these aspects further is beyond the scope of this book, although some
practical results are shown to allow the reader to obtain a feel for the approaches
used. Again, a further reading list is included.

Chapter 7 is the final substantial chapter; it consists of just five of the many
advanced studies undertaken by me, colleagues, and undergraduate students who
have worked with me on a range of applications. The idea here is to develop existing
concepts presented in the previous chapters, not to present a collection of research
papers but to show a continuing thread of what usually happens in practice. Hence,
many aspects of each study are not included but may be taken further from the ref-
erences given. The first study is concerned with extending hydrostatic pump slipper
theory to the case in which the slipper has a groove, rotation, and tilt, the last giving
rise to hydrodynamic effects. The second study is concerned with modeling and real
control of a forging press cylinder, including both proportional and switched valve
systems. The third study is concerned with the modeling and control of a real vehi-
cle wheel active suspension and includes model identification, control by computer
simulation, and practical computer control. The fourth study is concerned with the
performance of a commercially used car power-steering unit and, in particular, the
crucial performance of the power-steering valve. The fifth study is concerned with
progress toward intelligent monitoring of pump cylinder pressures using onboard
electronics. These five studies embrace theory and practice with practical data to
show the effectiveness and limitations of the approaches taken.

John Watton
jwatton@fluidpowerconsultants.com

Llandaff, Cardiff, July 2008





1 Introduction, Applications, and Concepts

1.1 The Need for Fluid Power

In applications for which large forces, torques, or both are required, often with a fast
response time, it is inevitable that oil-hydraulic control systems will be called on.
They may be used in environmentally difficult applications because the drive part
can be designed with no electrical components, and often they are the only feasible
means of obtaining the forces required, particularly for linear actuation. A particu-
larly important feature is that they almost always have a more competitive power–
weight ratio when compared with electrically actuated systems, and they are the
inherent choice for mobile machines and plants. Fluid power systems also have the
capability of being able to control several parameters, such as pressure, speed, and
position, to a high degree of accuracy and at high power levels. The latest develop-
ments are now achieving position control to an accuracy expressed in micrometers
and with high-water-content fluids. In practice, there are many exciting challenges
facing the fluid power engineer, who now must preferably have skills in several of
the following topics:

� Materials selection, water-based fluids, higher working pressures
� Fluid mechanics and thermodynamics studies
� Wear and lubrication
� The use of alternative fluids, given the environmental aspects of mineral oil,

together with the extremely important issue of future supplies of mineral oil
� Energy efficiency
� Vibration and noise analysis
� Condition monitoring and fault diagnosis
� Component design, steady-state and dynamic
� Circuit design, steady-state and dynamic
� Machine design and its integrated hydraulics
� Sensor technologies
� Electrical–electromagnetic design
� Computer control techniques
� Signal processing and associated algorithms
� Modern control theory and artificial intelligence

1



2 Introduction, Applications, and Concepts

Hydraulic control applications cover a vast range of industries and power
levels:

� Ore and mineral extraction, mining, and transportation
� Materials primary processing, steel mills, forging presses
� Product forming and shaping from metal and plastic stock
� Wood processing, paper production
� General production-line machines, injection molding
� General testing machines, test beds, four-poster rigs for vehicle testing
� Bridges, canal-barrage locks
� Transport, road vehicles, rail, shipping, aircraft
� Military vehicles, aerospace
� Mobile machines for construction
� Public services, road cleaning, health, maintenance, elevators
� Leisure, theme parks, wave generators, animation, theater stage control

Figure 1.1 shows a photograph of a hot steel strip finishing mill that forms the final
stage of a series of operations involving hydraulic control systems and transforming
iron ore to high-quality steel strips. The strip is then either passed on to customers –
for example, for vehicle body pressing – or for further processing by means of
cold rolling, tinning, or both. Work roll bending (WRB), automatic gauge control
(AGC), and work roll shift (WRS) operations are dominated by hydraulic control
on different stands. Each of the WRB cylinders and the AGC capsules is controlled
by a servovalve–actuator unit, and most of the control systems are reproduced on
all the mill stands.

Also shown in Fig. 1.1 is part of a condition monitoring and fault diagnostic
system developed by members of the author’s research group. Data acquisition
is undertaken using National Instruments hardware and Labview software, and
an expert systems approach significantly aids the fault diagnostic task. The fault
diagnostic system developed automatically analyzes the performance of 28 servo-
valve systems, indicating when their condition is such that they need to be changed
or repaired, thus avoiding mill downtime. The effect of this is to improve cost
effectiveness, increase production, improve safety, and ensure customer supply
on time.

Figure 1.2 shows a high-torque low-speed motor drive from just two of the many
large-scale applications undertaken by Hagglunds, noted for its specialism in this
area, among many others. These two applications indicate the need for hydraulic
drives in bulk-materials handling and in the chemical-processing industry, and with
a level of control sophistication. Other applications for this type of drive include
pulp and paper, mining, rubber, recycling, sugar, conveyors, merchant, dryers, and
evaporators, and many more.

Figure 1.3 illustrates some other fluid power applications – for example, rock
drilling, underground tunneling, component or materials testing with cylinder drives
used to create linear motion.

The mobile machine market relies on fluid power for cleaning, loading, lift-
ing, excavating, quarrying, and so on, and with an impressive array of machines,
many with multifunctional capabilities and advanced control technologies. For
example, Fig. 1.4 shows a machine for cleaning city center buildings, repair
work with machines similar to those used in fruit-picking and horticultural areas.
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4 Introduction, Applications, and Concepts

-

-

Figure 1.2. Bulk-material handling and chemical-processing use of Hagglunds high-torque
low-speed motor drives (www.hagglunds.com).

Figure 1.5 shows machines for quite different market requirements, one a three-
wheeled machine for third-world operations, the other two from a major manufac-
turer and used for excavation and construction applications.

A feature of the low-cost three-wheeled loader is that both the loading boom
and the two front wheel drives are hydraulically operated using load-sensing propor-
tional control-valve technology. The two drive wheels are independently controlled,
allowing the machine to turn a tight circle, almost about its own axis, by virtue of
the free-wheeling pivoted wheel at the rear.

Considering the specifications of the JCB Ltd. range of mobile machines reveals
the innovations in vehicle suspension, power transmission, and fluid power control
necessary to ensure continual improvements in machine efficiency, performance,
safety, and reliability (www.jcb.com).
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-

Figure 1.3. Some further examples of hydraulically controlled machines.

The leisure and entertainment industries are increasingly calling on hydraulic
control systems such as the three-axis motion ride, a simplification of vehicle testing
systems and flight simulators, and the modern interpretation of the fairground Ferris
wheel, shown in Fig. 1.6.

The London Eye has four separate drive units, two on each side of the rim,
each with four drive wheels operating in pairs that grip beams fixed along each side
of the rim’s outer frame. In normal operation, all 16 wheels will run in unison, but
the system has been designed with sufficient capacity to allow individual pairs of
wheels to be retracted, should a problem occur, with no effect on the running speed.
The Eye can be run normally with only 12 wheels in operation and can be safely
evacuated with as few as 8, though turning at a slightly lower speed. The running



Figure 1.4. A multiaxis mobile machine being used for
city center building cleaning.

(a) A low-cost loader co-designed by the author, HR 
Wright, and Compact Loaders Ltd., the UK manufacturer

(b) A JCB UK Ltd. Fastrac tractor 
(www.jcb.com)

(c) A JCB UK Ltd. tracked excavator 
(www.jcb.com)

Figure 1.5. Further examples of mobile machines.
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Figure 1.6. Examples of fluid power for entertainment and leisure purposes.

beam has a high-grip coating, and each pair of wheels is fitted with sensors that
increase the drive pressure automatically should any slippage be detected. It is a
fairly standard system and is considered very reliable. A high level of redundancy
has been built in that should guarantee near-permanent operation. There are two
separate hydraulic supply lines, for example, and each drive unit can be isolated
and run independently. Should all hydraulic pressure be lost, mechanical brakes
have been installed within the hub of each wheel; safety for the passengers and the
operating staff is paramount (www.londoneye.com).

Figure 1.7 shows just one of many applications of cylinder drives in the general
navigation–maritime–marine area. It illustrates bridge-lifting and the integral lock-
gate parallel actuation by means of computer control.

Aerospace also relies on fluid power, not only for testing systems but also for
flight controls, as shown in Fig. 1.8. Moog Inc. is a worldwide designer, manufac-
turer, and integrator of precision-control components and systems. In general, elec-
trohydraulic servovalves are used for primary flight controls, such as aileron, eleva-
tor, and rudder actuation. Secondary flight controls include spoilers and air-brake
actuation. High-lift devices such as leading- and trailing-edge slats use power sup-
plies with hydraulic motor rotary actuation. In addition, hydraulic auxiliary power
units and hydraulic motor control of emergency generators illustrate the crucial
importance of fluid power control in aircraft. The advantageous power–weight ratio,
relatively benign failure modes, and the pedigree of flight reliability experience may
explain why a change to purely electrical power control is many years away, as far
as the author can deduce.
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Figure 1.7. The bridge-lifting system and lock-gate control at the Cardiff Bay Barrage, UK.

1.2 Circuits and Symbols

It is clear from just the few examples shown that fluid power systems can vary sig-
nificantly in both circuit complexity and operating strategy. However, some basic
functional requirements common to all systems are as follows:

� A hydraulic power source – pumps
� A means of distributing the power – steel pipes and flexible hose
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Figure 1.8. Applications in the aerospace industry. Supplied by Moog Inc. (www.moog.com).

� A means of controlling the fluid power – pressure and flow control valves
� A means to provide load actuation – cylinders and motors

Consider a simple circuit, for example, Fig. 1.9, which shows a cylinder and a motor
drive circuit illustrating basic system components. The circuit requires a tank with
its fluid, a pump, a pressure-relief valve (PRV), a directional control valve, and a
cylinder to provide the force to move the load.

Pump (1) draws oil from tank (2), and the pump output line will contain high-
pressure filter (3) to prevent dangerous particles from passing into the system
and causing damage. PRV (4) is required to set the working pressure and also to
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Figure 1.9. Two simple circuits.

Pressure-relief valve Double-acting cylinder Tank supply–return  Filter

Fixed-displacement pump   Variable-displacement pump   Fixed-displacement motor   

Variable-displacement motor   Reversible pump–motor,     Reversible pump–motor,  
  fixed displacement  variable displacement 

Directional control valve       Electrohydraulic servovalve      Cooler with flow line 
Solenoid operation 

  Check valve      Pilot-operated check valve   One-way restrictor valve 

Figure 1.10. Some common fluid power component symbols.
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protect the system from catastrophic failure should the pump output flow not be
required by the load. Operation of directional valve (5), usually by means of an elec-
trical signal, allows fluid to flow in either of two directions, as indicated on the valve
symbol. Actuator (6) will move in the appropriate direction, depending on the input
signal selected. Notice the use of standard, internationally recognized symbols; see
ISO 1219 and ISO 9461. Just a few of the common symbols are shown in Fig. 1.10.

1.3 Pumps and Motors

The starting point for a hydraulic system is its power supply, which is provided by
a positive-displacement pump. For static applications, this is usually driven by an
electric ac induction motor at fixed speed; for mobile applications, it is connected
to the power takeoff point at the diesel engine. There are many types of positive-
displacement pumps that operate on one of three principles – rotary gear, rotary
vane, or piston displacement – and many are reversible in principle to also act as a
motor. Figure 1.11 shows some common types of gear, vane, and piston-pumping
principles of operation.

Gear-type machines tend to be at the lower-cost and lower-power end of the
market, with vane types at the medium power level and piston types at the high

Axial piston  Bent-axis piston

External gear      Internal gear        Gerotor

Vane     Radial piston 

Figure 1.11. Schematics of some common positive-displacement machines.
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Figure 1.12. Mass–power ratios for electrical and hydraulic drives.

power level, and with pressure now being demanded at the 1000-bar level. Whatever
the type selected for the application, one significant feature, as mentioned ear-
lier, is that they almost always have a more competitive weight–power ratio when
compared with electrically actuated systems. Figure 1.12 shows a graph of typical
mass–power ratios for an electrical motor and an axial piston pump, taken from
just two manufacturers’ literature. Also shown is a gear motor for comparison as
an actuator.

Other hydraulic pumps and motors tend to fall within the range of the pump
and motor shown in Fig. 1.12, and dc motors tend to have a better mass–power ratio
than ac motors. However, it is clear that hydraulic machines are superior to electrical
machines by a factor of typically greater than 10. Figure 1.13 shows a 7.5-kW and a
22-kW hydraulic power supply unit, indicating this size and mass difference between
its electric motor and axial piston pump. The 7.5-kW unit shows a small gear pump
connected to the drive motor to act as a make-up pump to the circuit. Notice that the
larger pump is connected to the electric motor drive by a bell housing, the preferred

Figure 1.13. A 7.5-kW and a 22-kW power supply unit with an ac induction motor drive and
a pressure-compensated pump.
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Linear actuator

Swash plate

Tank    Pump pressure Flow 

Pump pressure 

Figure 1.14. Flow off-loading of an axial piston swash-plate pump.

method. It also has rubber mountings between the assembled unit and its locating
frame to minimize vibration transmission.

The pump swash-plate angle of an axial piston machine is set by a hydrome-
chanical mechanism, usually by means of a spring-loaded actuator, when the load
pressure exceeds a set maximum value. The swash plate is brought back toward a
zero angle to significantly reduce the flow rate when it is not required, and the pump
is referred to as a pressure-compensated, or off-loading, pump. This mechanism is
shown schematically in Fig. 1.14.

Figure 1.15 shows a variable swash-plate axial piston pump with an electrohy-
draulic spool valve system used to position the swash-plate actuator by means of
position feedback; therefore, it has the ability to move the swash plate to any angle
within its range. This pump is therefore a true variable-displacement pump.

Figure 1.16 shows a basic control device consisting of a spool valve, force-
generating device, and actuator to control the swash plate of an axial piston pump
to achieve variable-flow control. The force may be generated by a proportional
solenoid or by an electrohydraulic servovalve.

Perhaps one obvious disadvantage of fluid power is the noise level, particularly
from pumps, although there is a continual drive from manufacturers to reduce noise
levels. Some typical measurements for axial piston pumps having a common design
are shown in Fig 1.17.

Flow 

Pump pressure 

Increasing servovalve 
voltage

Figure 1.15. Axial piston pump with position control of the swash plate.
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Spool valve 

Linear actuator 

Swash plate

PT T

Position 
sensor 

Force 
generation 

Figure 1.16. Spool-valve–actuator swash-plate control of a piston pump.

It is important to understand how noise level is measured and the way different
noise sources are added. The sound-pressure level L is defined for airborne noise
(ABN) as follows:

L = 10 log
(

P
Pref

)
dB, (1.1)

where P is the sound-pressure intensity, measured by the sound-level meter by
means of a calibrated integral microphone. The reference pressure Pref used for
ABN analysis corresponds to the minimum audible sound at 1 kHz and an absolute
pressure of 20 µPa, and is designated the 0-dB sound-pressure level. The human ear
is able to detect a sound-pressure level up to 200 Pa, and this factor of 107 gives rise
to a decibel range of 140 dB, the threshold of pain.

Sound-level meters have integrated filters that shape the frequency spectrum of
the noise measured before the mean noise level is calculated. This filter is designed
to represent the frequency response of the human ear and is known as an A weighted
filter. Hence, a measurement obtained from a sound-level meter in this manner is
referred to as a dB(A) measurement. Hearing protection is required, particularly
for daily exposure levels above 85 dB(A). Therefore, if different sound sources are
present, the total sound-pressure intensity must first be determined.

50
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 75  kW
 25  kW
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Noise level 
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Figure 1.17. Typical noise levels for an axial piston pump.
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Example 1.1

A sound-level meter recorded an average background noise level in a machine room
of Lb = 75 dB with the pump switched off. The pump was then switched on, and
the total noise level reading increased to Lt = 80 dB. Determine the pump noise
level Lp:

total sound power, Pt = Pp + Pb, (1.2)

Pt

Pref
= Pp

Pref
+ Pb

Pref
,

10Lt /10 = 10Lp/10 + 10Lb/10. (1.3)

Inserting the measured values gives:

108 = 10Lp/10 + 107.5,

10Lp/10 = 0.684 × 108,

Lp/10 = 7.835 → Lp = 78.4 dB. (1.4)

Example 1.2

The conditions apply as given in Example 1.1, but a second identical pump is to be
added to the hydraulic power supply system in the room. Determine the expected
new overall noise level:

Pt

Pref
= Pp

Pref
+ Pp

Pref
+ Pb

Pref
,

10Lt /10 = 2 × 10Lp/10 + 10Lb/10, (1.5)

10Lt /10 = 2 × 107.84 + 107.5 = 1.684 × 108,

Lt = 82.3 dB.

Therefore, the addition of a second pump, having a noise level of 78.4 dB, has
increased the room noise level from 80 to 82.3 dB.

The measured performance characteristics of a pump–motor are often supplied
by the manufacturer in graphical form and are therefore typical of that type and
size of machine. One way of presenting the performance characteristic is as shown
in Fig. 1.18, which represents an axial piston machine acting as either a pump or a
motor.

It can be seen that the effect of real machine losses means that optimum
efficiency is located around a preferred pressure setting and speed. This opti-
mum condition can be designed to some extent by the manufacturer for a pre-
ferred operating condition. The optimum efficiency condition may also change with
machine size, and it is therefore important to select the correct pump size to match
the required system performance and also to ensure that the best efficiency is
achieved. Note that the conditions for optimum efficiency are not the same when
the machine role is reversed. It certainly occurs at a lower pressure when acting as a
motor.
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Figure 1.18. (a) Performance characteristics of an axial piston machine acting as a pump.
(b) Performance characteristics of an axial piston machine acting as a motor.

1.4 Cylinders

Figure 1.19 shows some features of a cylinder, with many designs available from low-
cost self-build to high-cost low-friction servoactuators for precision control applica-
tions. Figure 1.19 illustrates a single-rod actuator. Double-rod actuators are also
used, particularly for accurate position control applications in which advantages of
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Foot mounting Front flange 

Swivel clevis mounting  Trunnion mounting 

wipersseal

rod sealO ring O ring piston 

Assembly concepts

Figure 1.19. Some features of a cylinder design.

similar gains when both extending and retracting become desirable. Piston rods are
usually produced in standard sizes and are precision grounded to typically 0.03 mm
with a hard chrome deposit of typically 0.25-µm surface finish. Cylinders may be foot
mounted or have swivel clevis–trunnion, or flange end connections. Another impor-
tant feature that may be added is end cushioning, whereby fluid is forced through a
variable restrictor as the piston rod moves toward the end of its stroke. This requires
rod-end modification, as shown conceptually in Fig. 1.20.

1.5 Valves

The circuit diagrams shown in Fig. 1.9 illustrate a pressure-relief valve (PRV) at the
pump outlet. This should preferably be a two-stage valve because of its improved
controllability and stability compared with those of a single-stage PRV. Figure 1.21
shows a schematic of a two-stage PRV. Its main advantage over a single-stage PRV
is that the poppet lift is controlled by a weak spring (actually plus a flow-reaction
force) compared with the stiff second-stage spring that sets the main pressure. Thus,
the main poppet can respond more quickly to flow relief under transient and exces-
sive pressure-increase conditions.

Normal exit flow

Restrictor valve

Figure 1.20. Cylinder end-cushioning concept.
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Ps                    Return 

Alternative PRV setting using 
a proportional solenoid 

For remote (pilot) 
unloading 

Main-stage 
poppet 

x

Ps

Manual main 
spring setting 

Weak second- 
stage spring 

Figure 1.21. A two-stage PRV.

The PRV shown in Fig. 1.22 is a manually set valve similar to that shown in
Fig. 1.21 but with an additional unloading valve that is actually a directional-control
valve. With no voltage applied to the solenoid, the pump flow is diverted through
a valve path back to tank with negligible resistance. This type of PRV with pres-
sure off-loading is invaluable, sometimes absolutely necessary, because it allows a
pump to be switched on without load, thus avoiding start-up problems with power
overloading. Once the pump is run up to speed, the solenoid valve is switched on,
the pump flow path is diverted to the load, and the PRV operates in its normal
mode.

The circuits in Fig. 1.9 also show a solenoid-operated directional valve, which
requires a voltage to be applied to the solenoid at the appropriate end of the direc-
tional valve, usually 12/24 V dc or 110/240 V ac. A directional valve is therefore a
three-state valve, the internal spool that governs the flow paths being moved either
to the far left or to the far right by means of an actuating force provided by the

Manual setting of pressure

Solenoid off-loading valve 

 Ps                Return 

Figure 1.22. A two-stage PRV with an added off-loading stage.
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A T B

(Ps)

Figure 1.23. A directional control valve with solenoid actuation.

activated solenoid at the appropriate end. A directional valve is shown in Fig. 1.23.
This valve is a five-way valve, although the two internal return lines are connected
to a single port to tank. Actuation of the appropriate solenoid rapidly moves the
spool either fully left or fully right, thus connecting either Ps → A with B → T or Ps

→ B with A → T.
There are many porting and spool design combinations. Two common types of

spool land design are overlapped lands and underlapped lands; Fig. 1.24 shows just
the spool land configurations, with both overlap and underlap being exaggerated
for the purpose of explanation. The overlapped spool gives a more positive shutoff
when in the central, or neutral, position, but keep in mind that exactly matched
ports, or critically lapped ports, could give a small leakage at the neutral position.
The underlapped spool clearly places both ports A and B at the same pressure – in
this case, supply pressure. Different porting arrangements are possible, just a few of
the many possible also shown in Fig. 1.24.

In more advanced systems for which precise and fast control of flow is needed,
the directional valve is replaced with a proportional valve, or electrohydraulic servo-
valve, as shown in Fig. 1.25. These valves can vary the flow rate by being able

A B

T Ps T

A B

T Ps T

(a) Overlapped lands (b) Underlapped lands

(c) Some other porting possibilities

Figure 1.24. Spools with overlapped and underlapped lands.



20 Introduction, Applications, and Concepts

i (mA)

Flapper

Nozzle

Feedback
wire

Figure 1.25. An electrohydraulic servovalve connected to a cylinder.

to move the internal spool to precise positions using an internal spool-position-
generating stage, the position being proportional to input voltage. The servovalve
shown is a common type known as a force-feedback type. A small current applied
to the electromagnetic first stage causes the flapper to rotate a very small amount
because its armature is sitting between a pair of permanent magnets. The displace-
ment of the flapper between the pair of nozzles creates a pressure differential that
moves the spool. The feedback wire provides a torque that balances the electromag-
netic torque, and the spool comes to a rest position with its feedback wire virtually
centered; the spool displacement is substantially proportional to the applied current
at a constant-load pressure differential. As with directional valves, there is a variety
of servovalves available that use different techniques to both generate the pressure
differential to move the spool and to generate spool-position feedback.

Directional valves and servovalves have spools that move within a housing, or
bush, but at the same time do not allow a severe leakage flow loss across them.
The spools are machined to a high precision, with servovalves having the severest
requirement for radial clearance, typically 2–4 µm compared with directional-valve
spools with a clearance of typically 2–20 µm. This requirement, together with that
for other internal components within a servovalve, makes them far more expen-
sive than directional valves. For aerospace applications, the cost is further increased
because of more rigorous quality and performance checks.
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X A B

Figure 1.26. A pilot-operated check valve.

Many other control valves exist, again in many forms, such as check valves, flow
control valves, pressure-reducing valves, and counterbalance valves. A schematic of
a pilot-operated check valve is shown in Fig. 1.26. These valves allow free flow in one
direction and blocked flow in the other direction. The pilot-operated check valves
use a pilot pressure to open the valve poppet to allow flow in the normally blocked
direction and can be useful, for example, for flow regeneration or sequencing oper-
ations.

With no pilot pressure applied at X, free flow occurs from A to B and with an
associated small pressure drop set by the initial spring force. This cracking pressure
is of the order of 3–7 bar and is generated by movement of the poppet assembly to
the left. Flow is blocked from B to A because of closure of the poppet assembly that
cannot move to the left. Therefore, with no pilot pressure at X, the unit behaves
like a basic check valve. When a pilot pressure is applied at X, there is enforced
movement of the poppet assembly to the right and flow can then occur from B to
A. The pilot two-poppet assembly improves the decompression effects of the fluid
under pressure.

Consider the lifting system in Fig. 1.27. Without check-valve control, a dan-
gerous condition occurs when the load is demanded to be lowered because it will
collapse rapidly, the runaway condition. When the directional-valve spool is in its

P T

A B

P1

P2

X

CV1

CV2

Figure 1.27. Check-valve (CV) control of a lifting–lowering
circuit.
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Figure 1.28. A counterbalance valve.

neutral condition as shown, then the pressure P2 is governed by the load divided by
the annulus cross-sectional area. This pressure allows the check valve to be shut off;
hence, the load is held and cannot lower. Check-valve CV2 (pilot-operated) closure
is aided by the lower side pressure A being set to tank pressure T by the directional
valve. When lowering is demanded, the directional valve path is P → B and A → T.
The generated pressure P1 is sufficient to pilot CV2, which allows flow to return by
means of the variable-setting flow-control valve in CV1.

Therefore, sudden collapse is avoided, and the lowering speed is set by the flow-
control valve. When lifting is required, the directional-valve path is P → Aand B →
T. The flow-control valve in CV1 is bypassed, and the lifting speed is set by the pump
flow rate. It is possible to configure four check valves such that the flow-control valve
is used for both lifting and lowering.

Other ways of avoiding sudden collapse is to use either a counterbalance valve
or an overcenter valve. Both are essentially a check valve combined with a PRV, the
latter being pilot operated. A counterbalance valve will not open until the preset
pressure is reached, which is typically 1.3 times the load pressure generated. For an
overcenter valve, a pilot signal of typically 50% of the counterbalance-valve setting
is required. Figure 1.28 shows a schematic of a counterbalance valve that is a combi-
nation of a check valve and a PRV. The port connection P is at the cylinder’s lower
point. Therefore, when the directional valve is in its neutral condition and the load
is stationary, the static pressure induced at P, because of the load mass, is insuffi-
cient to open the PRV because it has been set 30% higher than the static pressure.
In addition, the check valve is driven to its shutoff position.

When the directional valve is opened to lower the load, then the annulus pres-
sure builds up and opens the PRV. When the directional valve is reversed to raise
the load, then there is free flow by means of the check valve. Obviously, for lower-
ing, the annulus pressure is set to the PRV pressure and greater than that without
the counterbalance valve. Therefore, the upper, bore, pressure is also higher than
that without the counterbalance valve and more power is needed. This pressure
increase can be reduced if an overcenter valve is used with its pilot pressure signal
taken from the upper, main bore, side of the cylinder. An overcenter valve is shown
in Fig. 1.29.

A relatively low pilot signal is used to move the PRV poppet, thereby setting
the line pressure to tank pressure or a low pressure, as determined by the pressure
drop across the directional valve. Note that if the load attempts to run away, then
the pilot pressure X will drop, thus bringing the counterbalance feature back into
action. This will decelerate the load and is highly desirable. Figure 1.30 shows a
mobile machine left in a suspended condition with no operator control.
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Figure 1.29. An overcenter valve.

Flow-control valves are used to set a desired flow rate that can be maintained
reasonably accurately under variable load pressure conditions. This is achieved by
pressure compensation, as shown in the two forms in Fig. 1.31.

The required flow rate is set by a manual adjuster that controls the opening
of the metering orifice. Flow through the variable orifice produces a pressure drop
P1 − P2, which acts across the spool unit. Any tendency to exceed the flow setting
therefore generates an increased force that moves the spool unit to the left, closing
the metering orifice and resulting in the required reduction in flow rate. These valves
do not achieve the desired constant-flow-rate control until a small pressure drop
across the valve is generated, a typical characteristic being shown as Fig. 1.32.

Flow-rate control can be meter-in or meter-out, as shown in Fig. 1.33. In each
case, the pressures on either side of the actuator and, hence, the directional valve
controlling the system will be different. Note also that meter-in flow control will not
prevent runaway when the actuator is extending.

Cartridge-valve technology is based around screw-in units and has made rapid
advances and can fulfill most industrial applications. A vast range of products is

Figure 1.30. A mobile machine in a suspended condition using a pilot-operated check valve.
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Figure 1.31. A pressure-compensated flow-control valve.

provided by the Sun Hydraulics Corporation (www.sunhydraulics.com). This com-
pany manufacturers hydraulic cartridge valves, load-control valves, counterbalance
valves, pressure-control valves, flow-control valves, solenoid directional-control
valves, sandwich valves, manifold blocks, relief valves, and proportional valves.
Products are now suitable to operate at flows of up to 800 L/min with pressures
up to 350 bar. Cartridge valves are essentially screw-in components assembled in
either an integral manifold block or a customized manifold “valvepak.” Once a cus-
tomer’s hydraulic circuit has been developed, it is incorporated into a single, cus-
tom manifold designed to fit into a defined location. Benefits to customers using
Sun’s valvepak solutions include order simplification, reduced assembly time and
cost, and consolidation of the hydraulic control system. All manifolds can be manu-
factured in either T-6061 aluminum, 210 bar, or 65–45–12 high-strength ductile iron,
350 bar. Sun’s process is different from that of most other custom manifold suppli-
ers, in part because of the extensive use of compound angle drilling. This means
that ports, mounting surfaces and holes, and cartridges can be located just where
they are needed. The true benefit, though, is the generally smaller size with fewer
potential leakage points and construction drillings. Figure 1.34 shows a valvepak
incorporating cartridge valves, directional valves, and so on.

Note the removal of pipe-work required for conventional face-mounted
valve technology and the simplicity of screw-in technology, particularly for
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Figure 1.32. Flow characteristic of a flow-control valve.
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Figure 1.33. Meter-in and meter-out flow control of an actuator.

solenoid-operated valves. Consider one application by the author concerning a
check-valve–flow make-up–pressure-control bridge used in loading circuit to test
a cylinder, as shown in Fig. 1.35. The force loading in each direction is almost equal
and is ≈P2A2 for a low load make-up pressure (often termed boost pressure) and
a working test pressure. Flow continuity is provided by the suitably sized make-up
pump when the test cylinder is retracting. A particular advantage of the use of car-
tridge technology is that the PRV can be rapidly replaced with a flow-control valve
for other tests; the assembly is a compact and convenient test unit that has several
uses.

1.6 Servoactuators

Servovalves generally drive cylinders and motors with just a few application excep-
tions. Therefore, it makes sense to mount the servovalve onto the cylinder or motor
to form what is termed a servoactuator, as shown in Fig. 1.36.

Compact arrangements as shown in Fig. 1.36 minimize fluid volumes between
the servovalve ports and the actuator ports, thus minimizing fluid compressibility
effects; the highest hydraulic undamped natural frequency is obtained. If side loads
are anticipated in linear drive applications, then the cylinder rod may be fitted with
hydrostatic bearings. These are essentially narrow grooves around the rod supplied
with high pressure, typically half the working pressure, to maintain the rod in its
near-central position. This is shown schematically in Fig. 1.37.

Figure 1.34. Cartridge-valve technology
provided by Sun Hydraulics Corpora-
tion (www.sunhydraulics.com).
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Figure 1.35. A check-valve bridge for a cylinder-loading device.

With some units the friction level can reduced, but note that the use of hydro-
static bearings results in an increased power loss.

1.7 Power Packs and Ancillary Components

In practice, many applications use an integral pump–tank–PRV–filter set, known as
a power pack, such as that shown in Fig. 1.38.

Notice in Fig. 1.38(a) that the power pack also includes an oil cooler – in this
case, an air blast unit attached to the power pack. Water coolers are also popular
and usually available at a lower cost for a similar power rating. Figure 1.38(b) has
two different features, one being that the four gear pumps at the rear of the power
pack are submerged in the oil to reduce noise, the other being that two cooling
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Figure 1.36. Servoactuator units utilizing Star Hydraulics servovalves (www.star-hydraulics.
co.uk).

pumps at the front of the power pack actually recirculate the oil from the cooling
unit outside the building.

The design of the tank is an important issue to ensure the correct flow of fluid
though it. Figure 1.39 illustrates some of the important points to consider, bearing

T P P

P

PT P

P
Figure 1.37. Hydrostatic bearing added to a
cylinder rod to counteract side loads (clear-
ances exaggerated).



28 Introduction, Applications, and Concepts

Electric
motor/pump supply

Oil cooler

(a) (b)

Filters and tank

Figure 1.38. Two variations in power-pack design: (a) a commercial power pack and just one
of a type provided by Hagglunds Denison (www.hagglunds.com); (b) a multipump power
pack in use at Cardiff University, School of Engineering.
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Figure 1.39. Some basic requirements for the fluid supply tank.
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Figure 1.40. A high-pressure filter.

in mind that the tank volume should be at least 3–5 times the maximum pump flow
rate. In other words, it should take 3–5 min to empty the tank if a major line failure
occurs. It is also preferable to sit the tank outlet above the pump inlet to ensure a
positive suction head, remembering to calculate the friction pressure drop down the
pump inlet pipe.

Cavitation must be avoided by ensuring a net positive suction head (NPSH)
above the vapor pressure of the fluid being used. It is essential that the fluid used
be properly filtered to remove any unwanted particles that will inevitably be created
over the longer term. It is usual practice to place a high-pressure filter, say 10 µm,
in the pump outlet line with perhaps a low-pressure filter, say 30 µm, in the suction
line at the tank or in the tank return line. Reducing the filter size gives an increased
pressure drop, and the demand for fine filtration below 3 µm can create significant
pressure-drop problems. For example, one application by the writer resulted in one
manufacturer quoting a pressure drop of 25 bar for a 10-µm filter and 75 bar for a
3-µm filter. Figure 1.40 shows a typical high-pressure filter placed in a pump outlet
line.

The lower part of the filter, containing the filter element, is screwed to the upper
part for ease of filter replacement. Fluid filtration is extremely important to avoid
component failures and resulting high-cost downtime, and it follows that regular fil-
ter checks should be made together with checks of the condition of the fluid. Particle
contamination counts should be made regularly, and this may be done either off-line
or on-line. The linear servovalve–actuator circuit shown in Fig. 1.25 has two accu-
mulators fitted into the servovalve manifold block, one at the supply pressure port
to reduce oscillation effects, the other at the tank return to set a minimum pressure.
Accumulators are usually nitrogen gas precharged to match the system pressure
required. They have a variety of functions:

� As an energy storage device to reduce installed power
� Maintaining pressure for a given time during system repetitive operation
� Reduction of pulsations caused by a pump or motor
� Providing vehicle suspension damping and shock absorbing
� Pressure transfer (e.g., between air and oil), known as a transfer barrier
� Accommodating thermal expansion in closed systems
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(a) Vehicle suspension hydraulics (b) Sewage treatment plant (Fawcett Christie Ltd.)

Figure 1.41. Accumulator applications.

Two applications of accumulators are shown in Fig. 1.41, one representing a small-
scale suspension application and the other representing a large-scale sewage treat-
ment plant application. Accumulators can be bladder type, in which the bladder
material depends on the application, commonly nitrile or butyl, diaphragm type,
or piston type, in which the bladder is replaced with a steel piston. The latter are
used where large pressure fluctuations are expected or where the loss of a gas in the
former could lead to a serious failure. Figure 1.42 shows a schematic of the basic
accumulator types.

Accumulators are usually precharged to typically 90% of the minimum pressure
required and are sized by considering the pressure changes expected during the duty
cycle of a circuit. This allows calculation of the change in volume using the gas laws,
isothermal or adiabatic expansion, where appropriate. For details of accumulators
and associated applications, for example, as shown in Fig. 1.41, see Fawcett Christie
Hydraulics Ltd. (www.fch.co.uk).

Considering the interconnection of components, it is crucial that the pressure
capability must be given to steel pipe–flexible hose selection. Pressure drops must be
minimized while appreciating that increasing pipe diameter reduces the maximum
pressure that can be tolerated. From a component vibration point of view, it is better
to have short flexible hoses at the end of a steel line – for example, that couples a
pump to a valve; steel pipe also radiates less noise than flexible hose. Based on a

Bladder-type Piston-type Membrane-type (welded)

Figure 1.42 Schematic of common accumulators.
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Table 1.1. Maximum working pressures for steel pipe

Outside diameter
(mm)

Wall thickness
(mm)

Max working
pressure (bar)

8 1.5 340
16 1.5 170
16 3.0 340
20 2.0 180
25 3.0 220
25 4.0 290

Table 1.2. Maximum working pressures
for two-braid hose

Internal diameter Max working
(mm) pressure (bar)

6.4 400
9.5 330

12.7 275
19.1 215
25.4 160

safety factor of 4, Tables 1.1 and 1.2 show some maximum working pressures that
may be tolerated for some typical steel pipes and flexible hose.

It should be noted that there are many flexible hose designs using different
materials, often nitrile–neoprene, different numbers of braids, and different num-
bers of spirals. A specific hose manufacturer will supply details, but similar designs
from different manufacturers may have different pressure ratings.
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2 An Introduction to Fluid Properties

2.1 Fluid Types

The preferred working fluid for most applications is mineral oil, although in some
applications there is a requirement for a water-based or synthetic fluid, mainly for
reasons of fire hazards and increasingly for environmental considerations. The drive
toward nonmineral oil fluids has seen a renewed attitude to pure water hydraulics
together with the emergence of biodegradable and vegetable-based fluids. Fire-
resistant fluids in use fall under the following classifications:

HFA 5/95 oil-in-water emulsion, typically 5% oil and 95% water
HFB 60/40 water-in-oil emulsion, typically 60% oil and 40% water
HFC 60/40 water-in-glycol emulsion, typically 60% glycol and 40% water
HFD synthetic fluid containing no water
HFE synthetic biodegradable fluid

The use of water-based fluids has implications for component material selection –
for example, the use of stainless steel, plastics, and ceramics. In addition, serious
consideration of fluid properties must also be given, particularly viscosity, which
can be very high at low temperatures in some cases. Fluids are being continually
developed, and the following information is intended to reflect the general trend
and is not considered as definitive because this would require an overview of many
suppliers from many countries around the world – for example, see www.shell.com.

Type HFA 5/95 oil-in-water emulsions are fire-resistant emulsions that exhibit
enhanced stability, lubrication, and antiwear characteristics and have the following
important aspects:

� They have much improved stability toward variations in temperature, pressure,
shear, and bacterial attack.

� The performance limitations become obvious for systems operating well above
70 bar, reliability and efficiency often being sacrificed where fire resistance is of
paramount importance.

� A main concern stems from low fluid viscosity, the critical effect this has on
pump performance, and the relatively poor hydrodynamic lubrication proper-
ties of most conventional fluids. A loss of volumetric efficiency is to be expected
because of the viscosity being similar to that of water, approximately 1 mm2/s

33
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at 40◦C. Internal leakage will depend on the pump type, with axial and radial
piston pumps generally offering the maximum efficiency.

� Standard vane pumps and motors are not usually recommended for use with
high-water-based fluids, although modified designs are capable of operating sat-
isfactorily at system pressures of around 70 bar.

� Difficulties associated with filterability, emulsion instability, and bacterial de-
gradation of these conventional emulsions were not uncommon and contributed
to limiting the growth of high-water-based fluids outside of the serious fire-
hazard situations.

Shell Tellus mineral oils are premium-quality, solvent-refined, high-viscosity-index
fluids generally acknowledged to be the “standard-setter” in the field of industrial
hydraulic and fluid power lubrication and may be used for industrial hydraulic sys-
tems, mobile hydraulic fluid power transmission systems, and marine hydraulic sys-
tems. Key performance features and benefits are as follows:

� Thermal stability in modern hydraulic systems working in extreme conditions of
load and temperature. Tellus oils are highly resistant to degradation and sludge
formation, therefore improving system reliability and cleanliness.

� Oxidation resistant in the presence of air, water, and copper. Turbine oil sta-
bility test (TOST) results show outstanding performance for Tellus oils: low
acidity, low sludge formation, and low copper loss. Therefore, they extend oil
drain interval life and minimize maintenance costs.

� Hydrolytic stability that is due to good chemical stability in the presence of
moisture, which ensures long oil life and reduces the risk of corrosion and
rusting.

� Low friction because Tellus oils possess high-lubrication properties and excel-
lent low-friction characteristics in hydraulic systems operating at low or high
speed. Prevent stick–slip problems in critical applications, enabling very fine
control of machinery.

� Excellent air release and antifoam properties that are due to the careful use
of additives to ensure quick air release without excessive foaming. Quick air
release minimizes cavitation and slows oxidation, maintaining system and fluid
performance.

� Good water-separation properties (demulsibility). They resist the formation of
water-in-oil emulsions and prevent consequent system and pump damage.

� Outstanding antiwear performance because proven antiwear additives are
incorporated to be effective throughout the range of operating conditions,
including low and severe-duty high-load conditions. Outstanding performance
has been achieved in a range of piston and vane pump tests, including the tough
Denison T6C (dry and wet versions) and the demanding Vickers 35VQ25.

� Superior filterability because Tellus oils are suitable for ultrafine filtration, an
essential requirement in today’s hydraulic systems. Unaffected by the usual
products of contamination, such as water and calcium, which are known to cause
blockage of fine filters. Customers can use finer filters, therefore achieving all
the benefits of having cleaner fluids in use.

Typical characteristics for Shell Tellus mineral oils are shown in Table 2.1.



2.1 Fluid Types 35

Table 2.1. Typical physical characteristics of Shell Tellus mineral oils

Shell Tellus oil 22 32 37 46 68
ISO oil type HM HM HM HM HM
Kinematic viscosity
0◦C (cSt) 180 338 440 580 1040
40◦C (cSt) 22 32 37 46 68
100◦C (cSt) (IP 71) 4.3 5.4 5.9 6.7 8.6
Viscosity index (IP 226) 100 99 99 98 97
Density at 15◦C (kg/m3) (IP 365) 0.866 0.875 0.875 0.879 0.886
Flash-point (◦C) (IP 34) 204 209 212 218 223
Pour point (◦C) (IP 15) −30 −30 −30 −30 −24

Note: IP, Institute of Petroleum; HM, Hydraulic Mineral.

HFB-Type – Shell Irus Fluid BLT

These are premium-performance water-in-oil emulsion-type, fire-resistant, hydrau-
lic fluids containing approximately 42% water, by volume. The formulation includes
a unique combination of emulsifiers to provide a homogeneous dispersion of submi-
cron water droplets in a continuous oil phase, whereas other sophisticated additives
enhance their mechanical performance and corrosion inhibition properties. They
may be used in areas where there is a high fire risk – for example, in mines or steel
works. Some important features are as follows:

� The optimum system temperature should be about 40◦C and should never
exceed 65oC (water-in-oil systems generally run about 10◦C cooler than those
lubricated by conventional mineral oils).

� To reduce the possibility of cavitation, inlet systems should avoid negative pres-
sures by having adequate and unrestricted pipelines and by siting the pump to
give a full head. If suction filters are necessary, extreme care must be taken to
avoid undue restrictions, and twice the normal capacity for oil is typical.

� The reservoir should be sealed to prevent evaporation but fitted with a breather,
and any baffles in the reservoir should be so placed as to ensure circulation and
avoid stagnant pockets.

� Systems should also avoid pockets of stagnant fluid, such as ram heads and non-
circulating sections, to ensure good emulsion stability over long periods.

� They will not burn readily when they contact a source of ignition because
the water evaporates, forming a steam blanket that displaces oxygen from the
immediate area and insulates the oil from the ignition source. After the water
evaporates, the residue may burn. In the event of a fluid being sprayed onto a
hot surface or if the fluid cascades onto a hot surface and runs off, the fluid will
not support its own combustion.

� The fire-resistant properties of water-in-oil emulsions are greatly dependent on
the ability of the fluid to hold the water content in an even dispersion over long
periods. Should a slight oil separation occur, the fluid will readily re-emulsify
with agitation. Significant water separation is unacceptable and steps should be
taken to rectify the situation immediately.

� Water content is normally 42% by volume and should be maintained at between
35% and 45%. An accurate measurement of water content can be made by the
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Table 2.2. Typical physical characteristics of a Shell HFB fluid

Irus BLT (White opaque fluid) 68 100
Fluid-type ISO designation HFB HFB
ISO viscosity grade ISO 3448 68 100
Kinematic viscosity (mm2/s) ASTM D 445

at 20◦C 167 239
at 40◦C 70 97
at 55◦C 49 67
at 65◦C 31 42

Density at 15◦C (kg/m3) ISO 12185 934 933
Pour point (◦C) ISO 3016 −30 −27

laboratory test method IP (Institute of Petroleum) 74 (Dean and Stark method).
For an approximate check of water content, the density method is sufficient,
providing that the sample is representative and well shaken.

� Irus BLTs have proved their ability for use in plain bearings, moderately loaded
ball bearings, and roller bearings. The life of heavily loaded ball and roller bear-
ings tends to be reduced when water-containing fluids are used, and the manu-
facturer’s recommendations should be followed. Distinct differences in bearing
life have been found in evaluating various HFB fluids.

Typical characteristics are shown in Table 2.2.
HFD-R type – Shell Irus fluid DR is a triaryl phosphate ester fire-resistant

hydraulic fluid and contains carefully selected additives to give superior oxidation
and hydrolytic stability characteristics. Applications include steel and mining indus-
tries, die-casting machines, billet loaders, electric arc furnaces, forging presses, weld-
ing robots, continuous casting machines, hydraulic presses, and extrusion presses.
Performance features and benefits include good fire resistance, nontoxic under
European Economic Community (EEC) regulations, extended fluid change inter-
vals, pump life similar to life with mineral hydraulic oils, fire resistance maintained
during the life of the fluid, and compatible with most seal materials.

� Irus DR has excellent fire resistance. The fire resistance is inherent and is
not achieved by the use of additives and therefore will not change with time.
Protection is available throughout all parts of the system and the whole time
the fluid is in the system. This is demonstrated in numerous standard tests
designed to simulate its performance in the three most common fire-risk sce-
narios:

(i) Ignitability of a spray or jet of fluid
(ii) Spillage onto a hot surface or molten metal

(iii) Ignitability of the fluid when soaked into an adsorbent material

� Lubrication properties of Irus DR compare favorably with those of an equiva-
lent mineral oil of the same viscosity. This is not surprising in view of the wide
use of phosphate esters as antiwear additives in oil. As a result, in many pumps,
they show a similar performance (bearing life and wear properties) to that of
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mineral oil, although some slight derating may be necessary at very high loads.
Contact with the pump manufacturer is advisable before use.

� Stability of phosphate esters is due to a natural resistance to oxidation and, for
Irus DR, is further enhanced by the inclusion of an antioxidant in its formulation
to give long life at normal temperatures between 60◦C and 80◦C and transient
temperatures up to 150◦C. A property of a phosphate ester fluid is that when it is
contaminated with water, hydrolysis of the phosphate ester can occur, leading
to the formation of strong inorganic acids. These acids can chemically attack
metallic components. Normal, good housekeeping is required for minimizing
water contamination. However, to provide still further protection, Irus DR is
formulated with a hydrolysis stabilizer, a particular feature associated with this
product.

� Viscosity–temperature properties and shear stability have a more marked
change of viscosity with temperature than occurs in conventional mineral
hydraulic oils. At low temperatures, it may be necessary to warm the fluid
slightly prior to switching on the main pumps. A viscosity of 850 cSt is gen-
erally regarded as the reasonable maximum at which a hydraulic pump may be
started, and the viscosity at which Irus fluid DR reaches this value is approx-
imately 6◦C. Because Irus fluid DR contains no thickeners or viscosity index
improvers, the product is shear stable and the pump selection can be made on
the basis of the listed viscosity data.

� Rusting resistance in the presence of water in the fluid has already been noted
as potential concern with regard to hydrolysis. It can also cause rusting and
galvanic attack on metals. Fortunately, this does not occur in the liquid phase
unless free water is present and, as a result of the much higher solubility of water
in phosphate esters than in mineral oils, this is rarely a problem. Rusting that is
due to condensation has occasionally been found above the liquid level in mild
steel tanks. This can easily be overcome by ensuring adequate ventilation.

� Contamination with mineral oils in the presence of up to 0.5% of mineral oil will
not affect the properties of Irus fluid DR, but a greater degree of contamination
will affect its fire-resistant properties. There is no method of reclaiming fluid
affected in this way because mineral oils are incompatible with phosphate ester
fluids. Contamination with mineral oils should be avoided.

� Fluid life and recyclability are possible, and it is common practice to pass the
fluid through an adsorbent solid that removes the acid as it is formed. In this
way, the life of Irus fluid DR (and system components) can be greatly extended.
If it becomes necessary to replace the fluid, reclamation may be possible so that
there is minimum impact on the environment.

� Compatibility with seals such as butyl and viton is acceptable, but further advice
from suppliers of ethylene–propylene is recommended. Paints such as epoxy
resin and common constructional metals are compatible. Aluminum and its
alloys should be hard anodized and not used as bearing surfaces.

� Health and safety guidance from the fluid manufacturer should always be stud-
ied, and users are strongly urged to consider the environment by taking the used
oil to an authorized collection point and not discharging it into drains, soil, or
water.

Typical characteristics are shown in Table 2.3.
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Table 2.3. Typical physical characteristics of a Shell HFD fluid

Irus DR
ISO viscosity grade ISO 3448 46

ISO 6743/4 HFD-R
Kinematic viscosity (mm2/s) ASTM D 445

0◦C 1600
40◦C 43
50◦C 26
100◦C 5.3

Viscosity index ISO 2909 15
Density 15◦C (kg/m3) ISO 12185 1125
Pour point (◦C) ISO 3016 −18

Shell Naturelle HFE fluids are advanced biodegradable hydraulic fluids for use
in power transmission and hydraulic systems working in environmentally sensitive
areas. Synthetic esters blended with specially tailored additive systems provide Shell
Naturelle HF-E fluids with a superior balance of biodegradability, lubrication per-
formance, and compatibility with the environment. Applications are in heavy-duty
systems for construction and earth-moving equipment, machine tool systems, hydro-
static drive gears, general industrial control equipment and hydraulic systems, and
moderately rated gearboxes for which an antiwear hydraulic oil is specified. Perfor-
mance features are as follows:

� Readily biodegradable because of the high potential to be broken down rapidly
and extensively by microorganisms in the environment to ultimately yield car-
bon dioxide and water as end products.

� Excellent viscosity–temperature characteristics with minimum changes of vis-
cosity with variations in operating temperature, giving true “multigrade” char-
acteristics. High shear stability ensures effective lubrication and efficient system
operation.

� Excellent corrosion protection with long-term protection for common construc-
tion materials, including most metals, nonmetals, and seal materials such as
viton and high nitrite. Good oxidation resistance to the formation of acidic
products generated when working at high operating temperatures.

� Optimum wear protection and effective under all operating conditions, includ-
ing low and severe duty situations.

� Compatibility with mineral oils. Shell Naturelle HF-E is miscible with conven-
tional mineral-oil-based hydraulic oils in all proportions. However, to ensure
that biodegradability properties are maintained, the system should be drained
and flushed prior to changeover.

� Owing to the surface wetting properties of Shell Naturelle HF-E, if systems
were previously operated with authorize-based hydraulic oils, deposits formed
in the system during operation may be loosened and deposited in system
filters. The hydraulic filters should therefore initially be checked at regular
intervals.

� Caution is given because Shell Naturelle HF-E is not suitable for use in engines.
During maintenance, care must be taken to use separate, clean containers for
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Table 2.4. Typical physical characteristics of Shell HFE biodegradable fluid

Shell Naturelle HFE15 HFE32 HFE46 HFE68
ISO viscosity grade (ISO 3348) 15 32 46 68
Color Green Green Green Green
Kinematic viscosity

40◦C (cSt) 14.1 31.6 46.1 64.9
100◦C (cSt) 4.2 6.3 9.1 12.1

IP 71
Viscosity index (IP 226) 232 156 182 187
Density at 15◦C (kg/m3) (IP 365) 0.892 0.918 0.919 0.928
Pour point (◦C) (IP 15) −54 −60 −51 −39
Flash-point Cleveland Open Cup

(◦C) (IP 36)
202 236 219 226

filling engine oil and Shell Naturelle HF-E. Precautions should also be taken to
exclude moisture from the fluid, both during storage and in service.

� Seal and paint compatibility with all seal materials and paints normally specified
for use with petroleum mineral oils. Certain plastics and industrial adhesives
may be adversely affected, and advice should be sought from the respective
manufacturers.

� Operating temperatures should not be allowed to exceed 90◦C, and optimum
fluid life will be realized if operating temperatures are maintained at approxi-
mately 55◦C.

� The environment must be protected: take used oil to an authorized collection
point; do not discharge into drains, soil, or water.

Typical characteristics are shown in Table 2.4.

2.2 Fluid Density

A typical variation of density for different Shell fluids previously discussed and at a
temperature of 15◦C is shown in Table 2.5.

Fluid density is comprehensively covered for mineral oil; it is well known that it
increases with pressure and decreases with temperature. For example, Fig. 2.1 shows
such a characteristic for an ISO 32 mineral oil.

Table 2.5. Typical density characteristics of Shell fluids

Fluid Density (kg/m3)

Shell Tellus ISO 32 mineral oil 875

Shell HFB 60% oil, 40% water 933

Shell HFC 60% glycol, 40% water 1084

Shell HFD phosphate ester 1125

Shell Naturelle HFE32 918
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Figure 2.1. Density variation for a Shell Tellus ISO 32 mineral oil.

2.3 Fluid Viscosity

Considering fluid flow across a surface with a varying velocity profile, the fluid
dynamic viscosity is defined by the Newtonian shear-stress equation at a point on
the velocity profile:

          v 
   y 

� = �
dv

dy
. (2.1)

Dynamic viscosity is usually expressed in units of centiPoise, where:

l cP = 10−3 N s/m2. (2.2)

Alternatively, Eq. (2.1) can be expressed as a momentum equation:

� = �

�

d(�v)
dy

. (2.3)

The term �/� = � is called the kinematic viscosity, which is usually expressed in
units of centiStokes, where:

l cSt = 10−6 m2/s. (2.4)

It therefore also follows that if the fluid density � is expressed in kilograms per cubic
meter, and the kinematic viscosity � is expressed in units of centiStokes, then:

�(N s/m2) = 10−6 ��. (2.5)

A comparison of kinematic viscosities for a variety of fluids is shown in Fig. 2.2(a)
and for low operating pressures. A more detailed characteristic for an ISO 32
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Figure 2.2. Typical kinematic viscosities for a range of fluids.

mineral oil is shown in Fig. 2.2(b), illustrating the important effects of both tem-
perature and pressure.

The data shown in Fig. 2.2 make it clear that experimental testing must specify
both the pressure and temperature so that comparisons between related studies may
be compared with at least a minimum of confidence. It is common that computer
dynamic simulations of hydraulic systems usually assume a mean temperature in the
sense that temperature will not vary significantly during the milliseconds-to-seconds
of transient behavior. However, it may be necessary to model the effect of pressure
on viscosity if large fluctuations in pressure are expected, although its effect may
well be of secondary significance.

2.4 Bulk Modulus

Bulk modulus is a measure of the compressibility of a fluid and will be required when
it is desired to calculate oil volume changes for high-pressure, large-volume systems
such as forging presses or natural frequencies generally caused by the interaction of
fluid compressibility and moving mass. Bulk modulus defines the compression of a
fluid usually in one of two ways:

isothermal tangent bulk modulus, �T = −V
(

∂P
∂V

)
T

, (2.6)

isentropic tangent bulk modulus, �s = −V
(

∂P
∂V

)
s
. (2.7)

T and s refer to conditions of constant temperature and entropy, respectively. Isen-
tropic tangent bulk modulus is usually taken from the manufacturer’s data in prac-
tice, and Fig. 2.3 shows the variation for a range of fluids under perfect conditions
with no pressure and dissolved air.

It is clear that mineral oil has the lowest bulk modulus, phosphate esters and
water glycol fluids having a significant increase. Because the velocity of sound prop-
agation in a fluid is given by:

C0 =
√

�0

�
, (2.8)
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Figure 2.3. Variation of bulk modulus with temperature for different fluids.

it follows that C0 increases for phosphate esters and water glycol fluids. This means
that resonant frequencies, because of fluid compressibility–moving mass interaction,
will also be increased and potentially advantageous. The effect of pressure must also
be considered, and Fig. 2.4 shows such a variation in isentropic bulk modulus for a
typical ISO 32 mineral oil. For hydraulic circuit calculations, it is extremely impor-
tant to realize that, in practice, the fluid ideal bulk modulus characteristic shown in
Fig. 2.4 is significantly reduced by:

� inherent dissolved air in solution even with the fluid as supplied by the manu-
facturer,

� entrained air that might, for example, be induced by cavitation or leaks when in
operation,

� pipe or container elasticity effects, particularly when flexible hose is used.

In practice, it is usual to refer to the effective bulk modulus �e, which embraces
all these aspects and must be calculated for each hydraulic system being considered.
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Figure 2.4. A typical ISO 32 mineral oil isentropic tangent bulk modulus characteristic.
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Figure 2.5. The effect of air–oil volume on oil bulk modulus. ISO 32 mineral oil, �0 =
1.6 × 109 N/m2.

The effect of air content may be determined by an approximate analysis assum-
ing the gas law [PVn = constant] for the air volume V within the total fluid volume.
This results in an effective bulk modulus given by:

�e

�0
=

(
P
P0

)n

+ �(
P
P0

)n

+ ��0

nP

. (2.9)

The ideal fluid bulk modulus is �0, P is the working pressure, P0 is atmospheric
pressure, � is the air–fluid volume ratio, and n = 1.0 for isothermal conditions or
n = 1.4 for adiabatic conditions. A set of characteristics is shown in Fig. 2.5.

It would appear that for realistic air–oil volumes at a typical hydraulic pressure
and temperature, the bulk modulus of the oil shown in Fig. 2.5 would be reduced to
a value of typically �0 = 1.4 × 109 N/m2.

Consider next the effect of different connected pipe and/or section volumes as
shown in Fig. 2.6 and subject to a pressure increase P.

Adopting a finite-difference approximation bulk modulus, Eq. (2.6) gives:

� ≈ −V
�P
�V

→ �V = −V
�P
�

. (2.10)

If the total volume of fluid is Vt , then it follows that:

�Vt = −�V1 − �V2 − �V3, (2.11)

Vt
�P
�e

= V1
�P
�e1

+ V2
�P
�e2

+ V3
�P
�e3

,

1
�e

= V1

Vt

1
�e1

+ V2

Vt

1
�e2

+ V3

Vt

1
�e3

=
n sections∑

i=1

Vi

Vt

1
�ei

. (2.12)

V1 βe1                                V2       βe2                                V3    βe3

Figure 2.6. The effect of different volumes on the effective bulk modulus.
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If there are no pipe–container elasticity effects, then, of course, �ei = �0 for each
section and the summation is trivial in that �e = �0. Consider next the effect of such
elasticity effects. It can be deduced from the theory of elasticity that the bulk mod-
ulus for a pipe �c of internal diameter di and external diameter do is given by

1
�c

= 2
E

(
d2

o + d2
i

d2
o − d2

i

+ �

)
, (2.13)

where E is the modulus of elasticity for the pipe–container material and � is Pois-
son’s ratio for the material, typically � = 0.3 and E = 2 × 1011 N/m2 for steel. Note
that for a material wall thickness of t � di ≈ do, then Eq. (2.13) can be approxi-
mated by:

1
�c

≈ d
t E

. (2.14)

Recognizing that the effect of material elasticity is to also create an effective bulk
modulus by adding the effect of the oil and the material in parallel for each section,
we have:

1
�ei

= 1
�ci

+ 1
�0

,

1
�e

=
n sections∑

i=1

Vi

Vt

1
�ei

=
n sections∑

i=1

Vi

Vt

[
1

�ci
+ 1

�0

]
,

1
�e

= 1
�0

+
n sections∑

i=1

Vi

Vt

1
�ci

. (2.15)

Worked Example 2.1

Consider the following line connected to an actuator with an assessed oil bulk
modulus of �0 = 1.4 × 109 N/m2 at the working conditions. Determine the effec-
tive bulk modulus at minimum and maximum actuator positions.

Steel line 2 m long 

internal dia 13 mm 

external dia 16 mm 
             Actuator–steel 

internal dia 44 mm, thickness 10 mm 

minimum length 20 mm 

maximum length 120 mm  

Worked Example 2.1

(i) At minimum actuator position:

line volume, V1 = 2.65 × 10−4 m3;

actuator volume, V2 = 0.30 × 10−4 m3;

total volume, Vt = 2.95 × 10−4 m3;
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1
�c1

= 0.052

109

1
�c2

= 0.036

109 ,

1
�e

= 1
�0

+
n sections∑

i=1

Vi

Vt

1
�ci

1
�e

= 1

1.4 × 109 +
n=2∑
i=1

(
2.65 × 10−4

2.95 × 10−4

)
0.052

109 +
(

0.3 × 10−4

2.95 × 10−4

)
0.036

109

= 0.71

109 + 0.051

109 = 0.76

109 ,

�e = 1.32 × 109 N/m2.

(ii) At maximum actuator position:

line volume, V1 = 2.65 × 10−4 m3;

actuator volume, V2 = 1.82 × 10−4 m3;

total volume, Vt = 4.47 × 10−4 m3;

1
�c1

= 0.052

109

1
�c2

= 0.036

109 ,

1
�e

= 1
�0

+
n sections∑

i=1

Vi

Vt

1
�ci

,

1
�e

= 1

1.4 × 109 +
n=2∑
i=1

(
2.65 × 10−4

4.47 × 10−4

)
0.052

109 +
(

1.82 × 10−4

4.47 × 10−4

)
0.036

109

= 0.71

109 + 0.046

109 = 0.76

109 ,

�e = 1.32 × 109 N/m2.

It can be deduced that the effective bulk modulus does not change significantly
with actuator position and the fluid contribution is reduced by just 6% because of
pipe-wall and cylinder-wall elasticity effects.

Worked Example 2.2

A forging press has four main pressing cylinders 2 m in diameter, and the
pump units to each cylinder deliver 4200 L/min. If the maximum rate of change
of pressure was found to be 50 bar/s, determine the speed of the press given
� = 1.4 × 109 N/m2, actuator volume V = 1.2 m3.

Recalling Eq. (2.10), we have:

� ≈ −V
�P
�V

→ �V = −V
�P
�

. (2.16)
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If pressure changes with time, a compressibility flow rate is generated:

Qc = lim
�t→0

�V
�t

= dV
dt

= − V
�

dP
dt

. (2.17)

The flow rate into the actuator required to service this compressibility flow
rate effect is given by:

Qc = V
�

dP
dt

. (2.18)

Using the system data gives:

Qc = V
�

dP
dt

=
(

1.2

1.4 × 109

)(
50 × 105

1

)
= 42.86 × 10−4 m3/s = 257 L/min.

It can be seen that compressibility flow rates can be very significant for systems
such as this and cannot be neglected when sizing the supply pumps.

Subtracting the compressibility flow rate from the pump flow rate gives the
net flow rate available to move the press, giving:

Qpump = Qc + AU,

(4200 − 257)
10−3

60
= 3.14 × U → U = 21 mm/s.

The effect of fluid compressibility is to reduce the press speed by 6.1% compared
with an incompressible fluid assumption.

The effective bulk modulus of a fluid is significantly different if the steel pipe is
replaced with a flexible hose, and this now needs to be considered. Manufacturers’
data are not readily available, although the effect has been studied and can actually
be determined experimentally by using fast-acting flow meters at either end of the
test hose. Note that a very long hose will introduce transmission line effects, making
the data analysis much more complex. Consider, therefore, the simple arrangement
shown in Fig. 2.7.

The fast-acting flow meters used were the poppet/LVDT (LVDT is a linear
variable-differential transformer) displacement type (parker.com) with a response
characteristic capable of capturing frequency components comfortably up to 250 Hz.
Details are shown in Fig. 2.8.

A mean pressure is set and transient pressure changes are created by a ser-
vovalve at the supply side. A flow restrictor is used at the end of the line, and
conditions are set such that the transient variation of pressure is typically ±10 bar
from the mean. This means that the effect of pressure on bulk modulus during the
test may be neglected. From the flow continuity equation with no moving boundary

Qi Qo

Figure 2.7. Determining effective bulk modulus by dynamic testing.
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U      y
y

Figure 2.8. Details of a fast-acting flow meter for dynamic measurements.

and recalling Eq. (2.18):

Qi − Qo = Qc = V
�

dP
dt

,

(2.19)∫ t

0
(Qi − Qo)dt = V

�
(P2 − P1),

where P1 and P2 are the pressure beginning and end values of the test, the difference
being set to 20 bar. Two examples of the approach will be presented:

� A rigid-steel accumulator-type pressure test vessel with a volume of 4.92 L to
determine the oil bulk modulus

� A flexible hose of a nitrile–two-wire mesh–neoprene design. The hose is 2.23 m
long with an internal diameter of 20.75 mm, giving a volume of 7.54 × 10−4 m3,
with an additional volume of 3.04 × 10−4 m3 that is due to the flow meters and
fittings

A computer-based data-acquisition system was used to acquire the data and then fil-
ter the noise and pump-ripple effects by use of a 14th-order Butterworth filter on all
pressure and flow-rate signals. A cutoff frequency of 20 Hz was set to be just below
the flow-ripple frequency measured at 24 Hz. Typical measured and filtered tran-
sient pressure and flow-rate data are shown in Fig. 2.9 for the rigid-container test.

Integrating the flow-rate data and using Eq. (2.19) then allows determination
of the bulk modulus for a range of mean pressures. Considering the rigid-container
test means that the direct oil bulk modulus �0 may be determined because wall
elasticity effects are negligible. The effective bulk modulus �e is first determined
with the flexible-hose test section. The hose bulk modulus may then be estimated
from Eq. (2.15), assuming an oil bulk modulus determined from the rigid-container
measurement:

1
�hose

= 1
�e

− 1
�0

. (2.20)

The results are shown in Fig. 2.10 for a range of mean pressures and one working
temperature of 50oC, and the test repeatability is better than ±5%. Clearly, the hose
bulk modulus is of the order of 25% that of the mineral oil and can be dominant in
a circuit if the hose volume is significant. It is usually good practice to have a short
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Figure 2.9. Transient test results for a rigid pressure vessel (Watton and Xue, 1994).

hose to minimize vibration transmission from components such as pumps. It is also
good practice for the majority of the line length to be constructed from rigid steel
pipe to minimize noise radiation. A short length of hose at either end of a steel line
should therefore be checked for the possible effect on effective bulk modulus.

Worked Example 2.3

A fluid transmission line consists of three components, hose/steel pipe/hose, as
shown here:

(1) Hose                                (2)  Steel line                                          (3)  Hose  

Worked Example 2.3

Hoses (1) and (3) are the same as described earlier, �hose = 0.5 × 109 N/m2,
volume 0.5 × 10−4 m3.

Steel line (2) and fittings, oil bulk modulus, �0 = 1.6 × 109 N/m2, volume
25 × 10−4 m3.

Wall elasticity effects may be neglected:

1
�e

= 1
�0

+ V1

Vt

1
�c1

+ V2

Vt

1
�c2

+ V3

Vt

1
�c3

,

1
�e

= 1

1.6 × 109 + 0.5 × 10−4

26 × 10−4

1

0.5 × 109 + 25 × 10−4

26 × 10−4

1
∞ + 0.5 × 10−4

26 × 10−4

1

0.5 × 109 ,

1
�e

= 0.625

109 + 0.077

109 = 0.702

109 → �e = 1.42 GN/m2.

Therefore, the use of short isolating flexible hose at either end, each having a
volume of just 2% of the steel pipe volume, has reduced the oil bulk modulus by
11.3%.
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Figure 2.10. Measured bulk modulus of flexible hose, 50oC.

2.5 Fluid Cleanliness

Fluid cleanliness is crucial for hydraulic circuits, and every effort should be made
to ensure effective filtration and a means of regularly checking the fluid condition.
The importance of this becomes apparent when typical clearances of hydraulic flow
paths are considered, as shown in Fig. 2.11.

Filters must be capable of removing particles having dimensions varying from
0.05 to 100 �m. In reality, a lower limit is usually 2–5 �m because of both filter
pressure-drop limitations and a view held by some that lower values remove addi-
tives, resulting in a poorer lubrication characteristic. Some common sources of con-
tamination are:

� Inherent contamination within new components
� Inherent particles in new–replenishing oil
� Particle ingress; for example, through a tank filler–breather

Servovalve 
Popper valve

Directional valve
Piston-pump port plate clearance 

Piston-pump piston to bore 
Vane pump side plate 

Vane pump tip 
Gear pump side plate 

Gear pump tip 
Dynamic seals 

Gears 
Hydrostatic bearings 

Journal  bearings 
Roller bearings 

0.01                         0.1                              1                              10                           1
micrometers 

Figure 2.11. Typical clearances for hydraulic flow paths (data supplied by Star Hydraulics,
UK).
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� Particle ingress through cylinder rod external seals
� Particles introduced during maintenance

The process of contamination wear arises from a number of sources:

� Abrasive wear that is due to particles moving between adjacent moving surfaces
� Erosive wear that is due to particles moving within a high-velocity fluid
� Erosive wear that is due to cavitation, air bubbles being generated within a low-

pressure region, and carried to a high-pressure region, causing bubble implosion
followed by shock waves that can cause rapid material removal

� Water–oil separation for water-based fluids, causing loss of lubricating pro-
perties

� Adhesive wear that is due to metal-to-metal contact; lubrication films are
destroyed when fine clearances are demanded to reduce flow losses

� Corrosive wear that is due to water or chemicals reacting with metallic compo-
nents, particularly for water-based fluids

Considering a mineral oil in its barrel condition, measurements have shown the
number of particles/milliliter of oil greater than 2 �m can be as high as 33,000. This
can rise further to 80,000 for contaminated oil, falling to 10,000 for good filtration
and even down to 80 for clearance-protected filtration but at a higher cost. To aid
particle classification, the ISO 4406 code has evolved in conjunction with automatic
particle counters that can be used in-line or off-line with a number of oil-sampling
techniques.

To quantify a cleanliness requirement in practice, it is then a matter of specify-
ing the required codes at particle sizes of 4 �m, 6 �m, and 14 �m. This is usually
referred to as 4/6/14(C), indicating a certified count. For applications using micro-
scopes for particle counting or counters pre-1999, two sizes of 5 �m and 15 �m are
acceptable, and the classification is usually referred to as −/5/15. Table 2.6 shows
the code. The appropriate 4 �m, 6 �m, and 14 �m ISO 4406 points are:

Code 17 4 �m 640–1300 particles/ml

Code 15 6 �m 160–320 particles/ml

Code 12 14 �m 20–40 particles/ml

In addition to particle-size analysis, it can be equally important to determine the
nature of the particles. This requires more advanced equipment, such as scanning
electron microscopes, image analysis, debris detectors, and ferrographic analysis.
These facilities are usually made available through specialist oil-analysis companies
that undertake planned sampling and analysis followed by a comprehensive report
presentation. The type of particles can give an indication of where the wear is occur-
ring and may lead to a quicker resolution of the problem, often with an effective
reduction in cost and, of course, the consequences of failure.

2.6 Fluid Vapor Pressure and Cavitation

Cavitation isan extremely important phenomenon to avoid in fluid power systems
design because of its often catastrophic damaging effect. Cavitation arises in perhaps
the following main areas:

(i) At pump inlets where a combination of high viscosity (e.g., under low temper-
ature conditions) and/or poor inlet pipe diameter design because of its small
diameter, low head, and long length.
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Table 2.6 ISO 4406 standard for particle count classification

Number of particles/milliliter oil

More than Up to and including Range code

80,000→ 160,000 24
40,000→ 80,000 23
20,000→ 40,000 22
10,000→ 20,000 21
5000→ 10,000 20
2500→ 5000 19
1300→ 2500 18
640→ 1300 4 µm 17
320→ 640 16
160→ 320 6 µm 15
80→ 160 14
40→ 80 13
20→ 40 14 µm 12
10→ 20 11
5→ 10 10
2.5→ 5 9
1.3→ 2.5 8
0.64→ 1.3 7
0.32→ 0.64 6

(ii) A lack of efficient filtration at the pump particularly when high-water-based
fluids are used, in which larger size filters are used compared with mineral oil
applications. These should be located in the high-pressure line and in the return
line to the reservoir after the load valve, or as recommended. Generally, the
volumetric capacity of filters should be such that they are able to pass two–three
times the output of the pump at the operating viscosity.

(iii) The lack of a positive static fluid head at the pump inlet, and a value of at least
0.5 m, obtained from a reservoir located above the level of the pump, is usually
adequate to provide a sufficient suction port pressure.

(iv) As a result of high-velocity jets caused by either badly designed flow paths
within components and/or small control areas such as orifices or spool ports
in control valves.

A graph of vapor-pressure variation with temperatures for water and a typical
mineral oil is shown as Fig. 2.12.

It can be seen that vapor-pressure effects are more problematic for water, the
value for oil being typically 0.06 N/m2 at 40◦C. Over usual working temperatures,
mineral oil has a vapor pressure typically less than 1.0 N/m2. This means that a
pump operating with mineral oil would require a negative suction head equivalent
to about 1 bar to create a cavitation problem. This is possible because of inlet pipe
friction losses if the pipe is incorrectly sized; this problem will be pursued later. A
similar effect is, of course, achieved if a high fluid viscosity occurs, such as at a low
temperature, and particularly for some water-based fluids.

Cavitation can rapidly remove metallic material and has been known to destroy
a component in a matter of minutes; for example, see the effects of cavitation on a
PRV, shown in Fig. 2.13.
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Figure 2.12. Vapor pressure for water and a typical mineral oil.

More detailed information on fluid maintenance and system condition monitor-
ing may be found in Watton (2007).

It might be expected that cavitation erosion rate of wear is dependent on the
material type, its surface hardness characteristic, and the fluid being used. A com-
prehensive study by Urata (1998, 2002) looked at this issue, using a comprehensive
range of material specimens and fluids. A commercially available vibratory horn
is used at a frequency of 19.5 kHz and 30-µm amplitude, the test specimen being
attached to the end of the horn and placed within the working fluid, as shown in
Fig. 2.14.

 Rapid cutting action at the radial ports

Rapid cutting action at the seating area

(a)

(b)

Figure 2.13. Severe damage to a PRV body
that is due to cavitation with a water-based
fluid.
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Figure 2.14. Test setup for creating cavita-
tion erosion.

A cavitation cloud of bubbles is formed at the lower surface of the specimen,
and it is the continual implosion of these bubbles that creates the erosion. Some
highly selected results from the large amount of data presented are shown in
Fig. 2.15 for metallic materials and for different erosion times.

It can be seen from the results that the type of material and its surface hardness
can significantly change the mass loss that is due to cavitation. It does seem from
the data that Silicolloy-A2 had the higher resistance to erosion than other metals,
including a titanium alloy. Also, low-temperature thermal-sprayed ceramics were
easily peeled off by the cavitation attack and were much poorer than common met-
als. It was also found that erosion is less when the fluid is a mineral oil or oil-in-water
emulsion, compared with pure water, as might be expected. It is also interesting to
note that for the 39 different fluids used, water produced the maximum erosion.
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Figure 2.15. Cavitation erosion mass loss of some materials (Urata, 1998, 2002).
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2.7 Electrorheological (ER) Fluids and Magnetorheological (MR) Fluids

ER and MR fluids have been known since the 1940s and are now eventually evolv-
ing, albeit slowly, as possible alternative candidates for some aspects of fluid power.
These fluids exhibit a drastic change in their rheological behavior when exposed to
a magnetic or electric potential across the fluid volume and because of magnetic
particles in suspension within the fluid. The net result may be considered as pro-
ducing a massive increase in viscosity; hence, the potential for torque transmission
and suspension controlled damping and/or active control. This transformation in the
fluid characteristic is due to the initially weak random dipole distributions of mag-
netic particles becoming realigned in a preferred direction, creating a much stronger
dipole moment. ER fluids require high voltages and low current, whereas MR flu-
ids require high currents at low voltage; therefore, MR fluids tend to be preferred.
It does seem that applications show promise at the microactuator level and, there-
fore, MR actuators are not a threat to or even a competitor with traditional fluid
power actuators. A very useful overview of the subject may be found in Agrawal
et al. (2001) and Elliott (2007).

Typical MR fluids contain 20%–40% by volume iron powder suspended in a
carrier medium. The maximum yield stress and the off-state viscosity are both func-
tions of the volume fraction, so a compromise is typically required. Reduced car-
bonyl iron (CI) powder is the most popular choice of iron powder for MR fluids; the
particles have a spherical shape that makes them robust and durable, and the mag-
netic properties are enhanced by the typically high level of chemical purity (99.5%
pure). The carrier fluid chosen is dependent on the application, but common fluids
include petroleum-based oils, silicone oils, mineral oils, and synthetic hydrocarbon
oils. The off-state viscosity of the fluid is largely dependent on the carrier fluid and
typically ranges from 0.01 to 1.0 N s/m2 at a temperature of 40◦C. Maintaining a
well-dispersed mixture is critical to the consistent performance of MR devices. The
suspension of the iron particles in the host solution is achieved through the use of
additives that inhibit settling and agglomeration (Elliott, 2007).

The behavior of an MR fluid is usually characterized by the Bingham shear-
stress model and related to the yield stress � y as follows:

� = G� , � < �y, no flow,

� = �y + 	�̇ , � ≥ �y, flow, (2.21)

where � is the strain, �̇ is the shear rate, and G (N/m2) is the complex modulus.
The magnetic characteristics of a MR fluid show a nonlinear behavior; for exam-
ple, Fig. 2.16 shows the relationship between the yield stress � y and the magnetic-
field strength H together with the relationship between the flux density B and the
magnetic-field strength H.

To be able to utilize the properties of an MR fluid, it must be integrated within a
correctly designed electromagnetic circuit to provide the appropriate magnetic flux
density – for example, if used for a vehicle damper. Hence, design knowledge of
electrical and electromagnetic circuits is required. A cobalt–iron alloy such as Per-
mandur 49 may be used for the magnetic core because it has a very high maximum
flux density and has the advantage that it allows the minimum cross-section to be
used. This results in a more compact and lighter design.
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Figure 2.16. Properties of a Lord Corporation MR fluid (Lord, 2002).

If an MR fluid is to be used within boundaries that move, such as a vehicle
damper, then seal design must also be considered. MR fluids have a poor compati-
bility with some common seal materials, and care has to be taken with seal selection;
for example, the use of special materials (www.gtweed.com).

The result of a detailed design study (Elliott, 2007) produced a new MR damper
design that has been manufactured, and four units fitted to the suspension of a small
racing car designed and built by mechanical engineering undergraduate students at
Cardiff University. The MR damper is shown in Fig. 2.17 and combines an electro-
magnetic circuit and MR fluid integrated within a gas spring unit.

Floating piston bearing Gas reservoir 
static sealand dynamic seal 

Piston-rod 
dynamic seals 

Piston-rod bearing

Top cap static seal Piston-rod to piston-static seal 

Main piston bearing disks 

Coil

Figure 2.17. MR damper unit indicating sealing requirements (Elliott, 2007).
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To determine the damper force–velocity relationship, a swept sine wave test was
used over a range of current inputs. The position input signal consecutively cycled
the damper with 10-mm amplitude from 1 to 8 rad/s (0.159 to 1.273 Hz) in 1-rad/s
steps. This provided a detailed view of the damper performance in the 0–80 mm/s
range. The test was repeated from 0 to 2.0 A applied coil currents in steps of
0.2 A. Figure 2.18 shows the results for an isolated single damper sweep with a peak
velocity of +/− 70 mm/s. The relationship among the force, velocity, stroke, and coil
current can be seen.

1.2 - 2.0A 

1.0A 
0.8A 

0.6A 

0.4A 

0.2A 

0

 0 

0.2A 

0.4A 

0.6A 

0.8A 
1.0A 

1.2 – 2.0A 

Figure 2.18. MR vehicle damping characteristic for different applied currents (Elliott, 2007).
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Figure 2.19. Cardiff Racing CR03 race
vehicle (Elliott, 2007).

The velocity damping was small in comparison with the damping force produced
by the MR–coil current effect, and it is also evident that the velocity damping gra-
dient is not greatly affected by the coil current. It is thought that the slope of the
force–velocity plot at low speeds (less than 20 mm/s) is due to a bypass bleed of

(a) Rear MR dampers and position sensors

(b) Front MR dampers and position sensors

Figure 2.20. Installation of the MR dampers on the Cardiff CR03 race vehicle.
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fluid around the edge of the main piston. Notice also the hysteresis effect that is
always present with this type of MR fluid damping. The damper force properties in
compression are the same as those in rebound, with the obvious exception of the
offset load that is due to the gas precharge used to prevent cavitation (Elliott, 2007).

This MR damper now has a variable-force characteristic that may be adjusted
while the vehicle is in motion using vehicle motion sensors and an onboard com-
puter. This system has been successfully applied, and details may be found in Elliott
(2007). The car and MR dampers are shown in Figs. 2.19 and 2.20.
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3 Steady-State Characteristics of
Circuit Components

3.1 Flow Through Pipes

3.1.1 The Energy Equation

Consider first a flow through a stream tube, as shown in Fig. 3.1.
Assuming ideal steady-state flow with no friction losses and constant density,

it can then be shown that because the total energy must be constant, the energy
equation simplifies to:

P1 + 1
2

�U2
1 + �gh1 = constant = P2 + 1

2
�U2

2 + �gh2, (3.1)

where pressures are absolute. Considering flow through a single pipe, it is unusual in
fluid power to have a single pipe of significant length with a changing cross-sectional
area, and so Eq. (3.1) becomes:

P1 + �gh1 = P2 + �gh2. (3.2)

Usually in high-pressure fluid power systems, the head effect is negligible, apart
from pump inlet conditions, where the possibility of cavitation can exist. Assuming
a steady-state flow rate Q then results in the simple flow-rate continuity equation:

Q = U1 A1 = U2 A2. (3.3)

For example, if a pump inlet is a distance H below the tank supply and the tank is
at atmospheric pressure Po, as shown in Fig. 3.2, then applying the energy equation
gives the pump inlet pressure:

Po + �gH = Pi . (3.4)

It is important that the pump inlet pressure not reach the fluid vapor pressure,
which varies with temperature as discussed in Chapter 2, this being possible if the
pump in Fig. 3.2 is drawing fluid from a tank positioned below its inlet. The inlet
pressure would then be:

Pi = Po − �gH. (3.5)

As will be shown later, this inlet pressure is depressed further in the presence of
real pipe friction because of fluid viscosity effects, and the magnitude of the flow
rate becomes important. This aspect is now considered.
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h1 h2

A1

P1 U1

A2

U2 P2

Figure 3.1. Flow through a stream tube.

3.1.2 Laminar and Turbulent Flow in Pipes; the Effect of Fluid Viscosity

If flow with a uniform velocity enters a pipe, then the effect of viscosity is to create
a boundary layer that builds up from the wall, where the velocity must be zero, until
fully developed flow is established, as shown in Fig. 3.3.

It is well established that as the flow rate is increased, then distinct flow regimes
exist, as first established and published by Osborne Reynolds in 1883 (born in
Ireland in 1842 and died in England in 1905). Initially, the fully developed flow
velocity profile is parabolic, the regime known as laminar flow, and as the flow is
increased, a transition stage occurs, following which the velocity profile adopts a
flatter characteristic. The regime is known as turbulent flow, and the velocity pro-
file has an associated, small, superimposed random turbulence component. This is
shown schematically in Fig. 3.4 for profiles having the same mean velocity.

The mean velocity is closer to the maximum velocity for turbulent flow.
Osborne Reynolds developed the concept of the Reynolds number Re to charac-
terize these different flow regimes and embodied the fact that the pressure drop
down a pipe, �P, varies typically with mean velocity, as shown in Fig. 3.5.

The transition between fully developed laminar flow and fully developed turbu-
lent flow is “fuzzy” in the sense that there is no unique representation or equation
to rigorously define it. However, it is clear that the relationship between pressure
drop and mean velocity, or flow rate, varies from a linear form at low velocities to a
nonlinear form at high velocities. This is more conveniently defined in terms of the
Reynolds number Re.

3.1.3 The Navier–Stokes Equation

When analyzing laminar flow problems, the equations of motion in general x, y, z
coordinates are represented by the general Navier–Stokes equation (after Lois M H

PρgHP io =+
             Po

H
                              Pi

Figure 3.2. Pump inlet pressure.
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Entry length 

Boundary layer 

Boundary layer 

Figure 3.3. Establishment of a velocity profile in a pipe.

Navier, a French engineer, 1785–1836, and George G. Stokes, 1819–1903, a mathe-
matician born in Ireland):

�
DU
Dt

= � F − grad p + �∇2U + �

3
grad(div U),

(3.6)
div U = ∇ · U = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
grad 
 = ∇
 = i

∂


∂x
+ j

∂


∂y
+ k

∂


∂z
,

where D/Dt represents the total differential and constant viscosity is assumed. For
incompressible flow, the final term in (3.6) is zero and the three components are
then given by Kay (1963):
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∂t

+ u
∂u
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+ v
∂u
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+ w
∂u
∂z

)
= � F x − ∂p

∂x
+ �

(
∂2u
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)
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∂y
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)
= � F y − ∂p

∂y
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(
∂2v

∂x2
+ ∂2v
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, (3.7)

�
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∂w
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+ u
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∂x
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∂y
+ w
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= � Fz − ∂p
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(
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+ ∂2w
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)
,

where u, v, w are the fluid velocity components in the x, y, z directions; Fx, Fy, Fz

are the body forces in the x, y, z directions; and p is the pressure. In addition, flow
continuity for incompressible flow gives:

∂�

∂t
+ � div U = 0,

(3.8)
∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= 0.

Considering the most common first two equations (3.7) and (3.8), the Navier–Stokes
equations reduce to the two-dimensional (2D) form for steady-state incompressible
flow with no body forces:

�

(
u

∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+ �

(
∂2u
∂x2

+ ∂2u
∂y2

)
,

(3.9)

�

(
u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ �

(
∂2v

∂x2
+ ∂2v

∂y2

)
.

(a) Low flow rates, laminar flow        (b) High flow rates, turbulent flow

Figure 3.4. Laminar and turbulent velocity profiles for pipe flow.
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Figure 3.5. Pressure-drop variation with mean velocity for flow in a pipe.

For the case in which flow axial symmetry exists, then a cylindrical coordinate trans-
formation gives:
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∂u
∂r

)
= −∂p
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r
∂v

∂r
− v

r2

)
.

(3.10)

3.1.4 Laminar Flow in a Circular Pipe

To apply the Navier–Stokes equation to incompressible steady-state flow through a
smooth pipe, it is easier to use cylindrical coordinates (see Fig. 3.6). Only the first
equation from (3.10) is required because this includes u velocity elements, whereas
the co-equation includes v velocity elements, which are all zero:

dp
dx

= �

(
d2u

dr2 + 1
r

du
dr

)
= �

r
d
dr

(
r

du
dr

)
. (3.11)

Integrating Eq. (3.11) twice with respect to r gives:

du
dr

= r
2�

dp
dx

+ C1

r
→ u = r2

4�

dp
dx

+ C1 ln(r) + C2; (3.12)

when r = 0, u must be finite so C1 = 0;
when r = r0, then u = 0, giving C2;

u = − 1
4�

dp
dx

(
r2

0 − r2) . (3.13)
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Figure 3.6. Laminar flow in a circular pipe.
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Maximum velocity at the centerline:

umax = r2
0

4�

�p
�

. (3.14)

Given that the pressure gradient:

dp
dx

= − �p
�

, (3.15)

u = 1
4�

�p
�

(
r2 − r2

0

)
. (3.16)

The flow rate:

Q =
∫ r0

0
u 2�rdr = �r4

0

8�

�p
�

, (3.17)

and mean velocity:

umean = Q

�r2
0

= umax

2
. (3.18)

When considering laminar flow problems, it is common to specify the pressure–flow
ratio as the resistance by analogy with electrical circuits in which pressure is analo-
gous to voltage and flow rate is analogous to current. From Eq. (3.17),

�p = RQ → R = 128��

�d4
, (3.19)

where d is the pipe diameter.
This is often referred to as the Hagen–Poiseuille equation (after GHL Hagen, a

German engineer, 1797–1884, and JL Poiseuille, a French physicist, 1799–1869). The
sensitivity of the pipe resistance to its diameter should be noted; hence, the need for
a pipe to be correctly sized when flow rate and fluid viscosity are taken into account.

Worked Example 3.1

Considering flow through a pipe as previously analyzed, derive the basic differ-
ential equation for 2D flow.

dx
dx
dpp +pr

τ

τ

Worked Example 3.1

Consider symmetry about the centerline and equate forces:

�(2�rdx) + �r2 dp
dx

dx = 0 → � = −r
2

dp
dx

.

Add Newton’s law of viscosity and note that as r increases, the velocity decreases:

� = −�
dp
dx

→ �
du
dr

= r
2

dp
dx

.
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3.1.5 The General Pressure-Drop Equation

The Reynolds number is defined as

Re = Umeand
�

, (3.20)

where d is the pipe diameter, Umean is the mean velocity, and � is the fluid kinematic
viscosity. The transition region occurs for typically 2000 < Re < 4000, the lower
value often being used to define the upper limit for laminar flow. For laminar flow, as
previously developed, the pressure-drop–flow-rate equation �P/Q is constant for
a fixed pipe geometry and fluid viscosity as given by the Hagen–Poiseuille equation
(3.19). However, when considering turbulent flow, it should be sensed from Fig. 3.5
that it is not possible to derive a pressure-drop–flow-rate equation in the way that
has been done for fully developed laminar flow.

The main developments were made by means of postulated basic equations with
constants derived from experimental data and evolved from the studies of Prandtl
(Ludwig Prandtl, a German engineer, 1875–1953) and von Kármán (Theodore von
Kármán, a Hungarian engineer, 1881–1963). Prandtl’s mixing-length theory and
the postulation of a 1/7 power law for the velocity distribution, combined with
the Reynolds shear-stress postulation, lead to Umean = 0.82Umax but for a restricted
range of Re. This is therefore of limited use in practice and to overcome this, a gen-
eral equation is used to calculate pressure drop down a pipe by means of the use of
the friction factor 4f:

�p = 4 f
(

1
2

�U2
mean

)(
�

d

)
,

laminar flow 4 f = 64
Re , Re < 2000, (3.21)

turbulent flow 4 f = 0.316
Re1/4 , Re > 3000.

Experimental work for flow in the transition region has led to useful equations such
as the Colebrook–White formula, but it seems to have little use in fluid power. In
addition, much work has been done on the effect of pipe roughness and the appli-
cation of the Moody diagram to represent the full spectrum of Re and pipe condi-
tion or type. Again, pipe roughness tends to be a secondary issue when fluid power
pressure-drop calculations are performed. The standard fluid mechanics textbooks
can be used to further investigate the Moody diagram.

Worked Example 3.2

The inlet pipe to a pump is 20 mm in diameter and 2.5 m long. If the tank, at
atmospheric pressure, is positioned 1 m above the pump inlet and the pump
flow rate is 90 L/min when losses are taken into account, calculate the pump
inlet pressure. Assume a high-water-content fluid having � = 0.001 N s/m2,
� = 103 kg/m3. At what temperature would the pump cavitate?
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The solution to this problem is to consider both the energy equation and the
pressure-drop equation. First, the Re number is calculated:

           

             Po

H = 1 m           20 mm dia     2.5 m long 

                   90 L/min            

Worked Example 3.2

pump inlet conditions Umean =
90 × 10−3

60
� × 0.022

4

= 4.77 m/s,

Re = 1000 × 4.77 × 0.02
0.001

= 95,400.

Hence, the flow is turbulent. From earlier work, it is deduced that

turbulent flow 4 f = 0.316

Re1/4
= 0.316

954001/4
= 0.018,

�p = 4 f
(

1
2

�U2
mean

)(
�

d

)
= 0.018

(
1
2

× 1000 × 4.772
)(

2.5
0.02

)
,

�P = 0.26 × 105 N/m2(0.26 bar).

The absolute inlet pressure at the pump is, therefore:

Pi = Po + �gH − �p = 105 + 0.1 × 105 − 0.26 × 105 N/m2,

Pi = 0.84 × 105 N/m2(0.94 bar).

Considering the data on water vapor pressure given in Chapter 2, it can be seen
that the temperature can increase to a value of around 90◦C – that is, almost to
the boiling point of water before cavitation occurs. The pressure drop that is due
to pipe friction exceeds the pressure-head advantage of the raised tank.

Worked Example 3.3

A 400 MN press used for the forging of aerospace components by virtue of its
size must have the axial piston pumps positioned some distance from the press
and preferably below ground level. In such an application, the line diameter is
77 mm and the line length is 150 m. If the maximum pump flow rate is 4200
L/min per main cylinder and there are four cylinders, calculate the power dissi-
pated during the pressing operation because of flow friction losses alone. Assume
mineral oil having � = 0.025 Ns/m2, � = 860 kg/m3:

Umean =
4200 × 10−3

60
� × 0.0772

4

= 15 m/s, Re = 860 × 15 × 0.077
0.025

= 39,732.
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The flow is turbulent, giving the friction factor as:

turbulent flow 4 f = 0.316

Re1/4
= 0.316

397321/4
= 0.0224,

�P = 4 f
(

1
2

�U2
mean

)(
�

d

)
= 0.0224

(
1
2

× 860 × 152
)(

150
0.077

)
,

�P = 42.2 × 105 N/m2 (42.2 bar).

The power dissipated down the four lines is 4 × 0.07 × (42.2 × 105) = 11.82 ×
105 W. The power dissipated is 1.18 MW.

This very large power loss that is due to pipe viscous friction losses alone
indicates the power supply needed to operate a modern forging press of this size.

3.1.6 Temperature Rise in 3D Flow

For the numerical evaluation of internal flows – for example, flow between a pump
barrel and its port plate – it is important to know the localized temperature because
its value determines the local viscosity more significantly than other fluid properties.
The energy equation is then required in conjunction with the Navier–Stokes equa-
tion. Considering the first law of thermodynamics for a fluid element gives (Kay,
1963):

rate of heat supply by condition + rate of work by surface stresses
= rate of gain of internal energy.

(3.22)

Considering the energy–enthalpy equation and an ideal fluid then gives:

� Jcp
DT
Dt

= Dp
Dt

+ Jk∇2T + �,

(3.23)

∇2T = ∂2T
∂x2

+ ∂2T
∂y2

+ ∂2T
∂z2

,

where T is the temperature, k is the thermal conductivity, J is the mechanical equiv-
alent of heat, and cp is the fluid specific heat at constant pressure. � is the rate of
work done by the stresses in distorting the fluid and is dissipated within the fluid as
heat and is also referred to as the energy dissipation:

� = �




2
(

∂u
∂x

)2

+ 2
(
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∂y

)2

+ 2
(

∂w

∂z

)2

+
(

∂u
∂y

+ ∂v

∂x

)2

+
(

∂v

∂z
+ ∂w

∂y

)2

+
(

∂w

∂x
+ ∂u

∂z

)2

− 2
3

(div u)2
.




(3.24)

For steady-state conditions, then the temperature distribution within the fluid is
given by Laplace’s equations from (3.23) as:

∂2T
∂x2

+ ∂2T
∂y2

+ ∂2T
∂z2

= 0. (3.25)
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Update properties 

Solve the momentum equations

Solve the pressure-corrected (continuity) equation
Update pressure, face mass flow rate 

Solve energy, species, turbulence, and other
scalar equations 

Convergence ? Stop 

Figure 3.7. Flow diagram of the iterative
process (www.ansys.com).

3.1.7 Computational Fluid Dynamics (CFD) Software Packages

CFD numerical analysis packages are now commonly used to model complex flow
patterns within fluid power components and many other aspects of engineering, and
now to a high degree of accuracy for both laminar and turbulent flow conditions.
They are frequently used for both undergraduate projects work and postgraduate
research work. The various notes and results in this book have been extracted from
undergraduate and postgraduate projects undertaken by the author and J Thorpe,
R Worthing, J Speedy, J Rhind-Tutt, and JM Haynes, using the ANSYS FLUENT
software package. This applies governing integral equations for the conservation
of mass, momentum, and other selected scalars such as turbulence to a reference
domain. The domain is divided into discrete control volumes by a computational
grid. The independent variables such as velocity, pressure, and conserved scalars are
found by integration of the governing equations on the individual control volumes
to construct algebraic equations for the dependent variables. Linearization of the
discretized equations and solution of the resultant linear equation system will yield
updated values of the dependent variables. A choice of numerical methods can be
selected, the segregated solver or the coupled solver. Both solvers adopt a similar
discretization process, and the iteration procedure is shown in Fig. 3.7.

GAMBIT was the former preprocessor for this software within which the
geometries of the “reference domain” and “discrete control volumes” are gen-
erated, and it is possible to create 2D and 3D models containing structured and
unstructured meshes. The discrete control volumes are created by splitting up the
geometry using a mesh. Accuracy and stability of the model rely heavily on the
quality of the mesh and there are tools available to measure parameters of mesh
quality: the skewness and aspect ratio of each element can be calculated to evaluate
the quality of the mesh. The former meshing technology within GAMBIT has now
been integrated into ANSYS meshing.

The mesh density in important areas of the model should be increased because
poor resolution in critical areas can dramatically affect the flow characteristics.
Critical areas include shear areas, sudden expansion, and boundary layers. The
FLUENT Users Guide states that no flow passage should be represented by fewer
than five cells. The Users Guide recommends, when turbulent flow is modeled, that
the regions where the mean flow changes dramatically should have a finer mesh
because of the strong interaction between mean flow and turbulence. There are
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two possible types of skewness: size and angle. Skewness calculates the difference
between the size or angle of every cell compared with that of an equilateral cell of
the same volume. The end result is in the form of a ratio between 0 and 1, where 0
is the optimum value for a quality mesh. Cells that have a skewness value nearing
1 can reduce the stability and accuracy of the mesh. Quadrilateral-type meshes will
perform at a greater accuracy when cell vertex angles are close to 90◦ and 60◦ for tri-
angular meshes. If very skewed elements do exist in the mesh, they can be tolerated
if they are located in insignificant flow regions but can be damaging where dramatic
flow changes occur. For 2D modeling, triangular and quadrilateral cell types are
acceptable. For 3D modeling, tetrahedron, hexahedron, prism–wedge, and pyramid
cells are used. Each of the different cell types can be arranged in a structured or
unstructured format; unstructured meshes are used for more complex geometries
because the benefits of using a complicated structured mesh would be lost. When
choosing a mesh type, there are main issues to consider:

� Setup time. If models are of complex geometry, creating a structured mesh with
quadrilateral and hexahedral cells can be very time-consuming and, in some
cases, impossible; therefore, setup time for complex geometries is a major moti-
vation for using unstructured grids with triangular and tetrahedral cells.

� Computational expense. To reduce run time, it is suggested that a triangular–
tetrahedral mesh be used because it requires fewer cells but intelligently pop-
ulated in important flow regions, compared with quadrilateral–hexahedral cells
being forced into regions where it is not necessary.

� Numerical diffusion is a major source of error. Numerical diffusion is a problem
in all practical numerical schemes because numerical diffusion arises from trun-
cation errors that are a consequence of representing the fluid flow equations
in discrete form. Techniques are available to reduce the amount of numerical
diffusion. Aligning the mesh with flow can reduce numerical diffusion; however,
the use of a triangular–tetrahedral-type mesh can never be aligned with the flow.
With the use of a quadrilateral/hexahedral type mesh, it is possible to align flow
and mesh but only for simple geometries such as flow in a long duct.

Turbulent flow is characterized by fluctuating velocities, and these fluctuations
can be of small scale and high frequency. To model these small-scale fluctua-
tions, an extremely dense mesh of impractical computational expense would be
needed. Instead, the governing equations are time averaged to remove the small-
scale changes in the velocity and momentum. This results in a set of equations that
are less resource-consuming to solve. The new equations contain a set of unknown
variables, and turbulence models are needed to determine these variables in terms
of the known quantities. It is difficult to decide which turbulence model best suits
a specific simulation, and it will depend on certain factors such as characteristics
featured in flow, computational resources, and time available for simulation:

� The k–ε turbulence model is used frequently because of its reasonable accu-
racy, and the standard k–ε model is based on the transport equations for turbu-
lent kinetic energy (k) and its dissipation rate (ε). The relative weakness in the
standard k–ε model arises in flows where streamline curvature and swirl effects
exist. This is related to its isotropic description of turbulence through the use of
the turbulent viscosity �t .

� The renormalization group (RNG) model is part of two other variants of
the standard k–ε model and has been used to derive equations from the
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instantaneous Navier–Stokes equations; the resulting transport equations are
similar to those of the standard k–ε model but with different constants and addi-
tional functions.

� When the standard k–ε model is compared with the RNG k–ε model, it is said
that the RNG k–ε model would provide a more accurate solution because of
the further refinement of the transport equations. In defense of the standard
model, the RNG model is not as numerically stable as the standard k–ε model.
The RNG model requires a lot more computational time and space.

� The realizable k–ε model is another variant of the standard k–ε model and
derives from the combination of Boussinesq’s hypothesis and the eddy-viscosity
definition to give the transfer equations. The kinetic energy transfer equation
remains the same; however, the dissipation model is refined and based on a
dynamic equation of the mean-square vorticity fluctuation.

� The Reynolds stress model (RSM) discards the isotropic turbulent-viscosity
hypothesis as used by the k–ε models. Instead, it uses a set of complex Reynolds
stress transport equations derived from the Reynolds-averaged Navier–Stokes
equations. There are now five additional transport equations for 2D applica-
tions and seven for 3D applications. This has a huge effect on computational
time and space, increasing simulation time up to 60% per iteration and adding
the need for further iterations. The RSM has the potential to outperform the
previously discussed models because it accounts for the effects of streamline
curvature, swirl, rotation, and rapid changes in strain energy in a more precise
way. However, the modeling of the pressure-strain and dissipation-rate terms is
particularly challenging.

Figure 3.8 shows a computer-aided design (CAD) drawing of an axial piston pump
that has been modeled by use of CFD analysis and for time-varying operation, and
as part of a research project supervised by the author. The geometry is complex,

a

b

c

d

e

f

Figure 3.8. CAD drawing of part of the
barrel part of an axial piston pump
(Haynes, 2007).
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Deforming
cells

Porous cells

Figure 3.9. CFD pump meshed volumes
(Haynes, 2007).

involving time-varying piston chambers, flow through kidney slots, and flow across
the clearances at each slipper and between body and the rotating barrel.

Also shown is the way in which each kidney port internal pressure is experimen-
tally measured: The pressure transducer signals are fed and retrieved by means of
a slip-ring data-acquisition system. The wiring aspect can be seen passing through
the center of the drive shaft, a connection then being made to the rotary slip-ring
system isolated from the drive shaft. It is difficult to visually present a 3D image
of the meshing because of the large number of cells used, but Fig. 3.9 shows some
information.

Figure 3.10 shows more details of the kidney slot interface mesh and the mesh
at the end of the piston.

The meshing required the use of deforming mesh and porous mesh techniques
to accommodate time-varying volumes and extremely fine leakage clearance vol-
umes compared with those of normal-volume sizes. The geometry was produced
from separate volumes, sharing common faces. This enabled the mesh to move and
deform, replicating the changes in volumes that occur during pump operation. As
the pistons reciprocated, these volumes changed in volume accordingly. Hence, they
were specified as deforming zones. The circular face at each end of these volumes
was specified as a rigid body, but with a motion controlled by a user-defined function
(UDF). The velocity of each piston is dependent on its angular location; hence, each
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Kidney slot interface mesh 

Mesh at the end of the piston 

Figure 3.10. Part of the 3D meshing for an axial piston pump (Haynes, 2007).
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Figure 3.11. A comparison of measured and computed volumetric efficiency.

piston was assigned a UDF representative of this. Dynamic layering was used in
this model to maintain mesh integrity during deformation. This meant that the vol-
umes representing the pistons had to be meshed by a hexahedral meshing scheme.
Volumes to the right of the moving face, depicting the volumes within the hollow
pistons, were specified as rigid. These volumes were assigned a velocity equal to
that of the moving face on the adjacent deforming zone. In addition to the defor-
mation and velocity settings, all volumes representing the pistons were assigned a
rotational boundary condition about the central pump axis. This, combined with the
reciprocating motion of each piston, replicated the pumping dynamics of the pump.
A good comparison between measured volumetric efficiency and CFD-computed
volumetric efficiency was found when a port plate clearance of 12 �m was assumed,
as shown in Fig. 3.11 (Haynes, 2007).

Further examples of CFD modeling are shown where appropriate in this book
and when experimental validation is possible to some degree.

3.2 Restrictors, Control Gaps, and Leakage Gaps

3.2.1 Types

The very nature of fluid power component design means that there are very small
clearances between moving parts, necessary to minimize leakages while maintaining
adequate lubrication, and control areas necessary to either create pressure drops
and/or direct a variable flow rate to different output ports. Hence, there is a need
to determine pressure–flow-rate characteristics of such elements as accurately as
possible, and here lies yet another fluid power issue: the diversity of control-area
shapes and the variation of flow through them means that their pressure–flow-rate
characteristics are not constant. Consider, for example, just a few restrictors shown
in Fig. 3.12.

3.2.2 Orifice-Type Restrictors

The pressure-drop–flow-rate characteristic of such elements is usually derived from
the ideal energy equation and then corrected for losses, usually by means of
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(a) A simple restrictor  (b) Radial circular ports   (c) Radial rectangular ports

(d) A double flapper–nozzle 

(e) A simple pressure-relief valve

(f ) A spool of the servovalve type     (g) An axial piston pump slipper, circular face 

Figure 3.12. Some flow restrictions met in fluid power components.

experimental testing. To illustrate the basic principle, consider a simple orifice in
a pipe as shown in Fig. 3.13. It can be seen that the effect of fluid viscosity and the
orifice geometry is to create both flow recirculation and a reduction in the effec-
tive cross-sectional area at the orifice exit from a0 to ac at the vena contracta. The
pressure at the restriction, Pc, is virtually impossible to measure in real components;
therefore, there is little to be gained by applying the energy equation between the
upstream point and the orifice point, P1 and Pc. However, in reality, the pressure
beyond the orifice changes rapidly to the downstream pressure P2, and this pressure
may be used in the energy equation.

ao ac

P1 P 2Pc

 A 
U1 UcFigure 3.13. Flow through an orifice in a

pipe.
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The ideal energy equation is first derived and then modified to take into account
the vena contracta and recirculation losses:

P1 + 1
2

�U2
1 = P2 + 1

2
�U2

c, (3.26)

Q = U1 A= Ucac = UcCcao, (3.27)

where Cc is the contraction coefficient relating the area at the vena contracta to the
true orifice area. These two equations lead to the solution for the flow rate:

Q = Cdao

√
2(P1 − P2)

�
, (3.28)

discharge coefficient Cd = Cc√
1 −

(
Ccao

A

)2
, (3.29)

where both Cd < 1.0 and Cc < 1.0. Usually, the size of typical orifices and other
restrictors used in fluid power components means that ao � Aand, therefore, Cd ≈
Cc. To take into account the recirculation losses, the discharge coefficient is modified
to a flow coefficient to give the following equation:

Q = Cqao

√
2(P1 − P2)

�
, (3.30)

flow coefficient Cq = CrcCc√
1 −

(
Ccao

A

)2
, (3.31)

where Crc is the recirculation loss coefficient. Determination of the coefficients Crc

and Cc can be done with a CFD package, although there are still some uncertain
issues (e.g., the exact geometry mesh, real upstream and downstream conditions),
and a great deal of effort is also placed on experimental determination. Application
of Eq. (3.30) is therefore relatively easy in practice.

Worked Example 3.4

We may determine a measure of the significance of the ideal orifice equation by
considering the flow through a cross-sectional area, 1 mm2, with a pressure drop
of 100 bar, using a typical mineral oil with � = 860 kg/m3:

ideal flow rate Q = ao

√
2(P1 − P2)

�
= 10−6

√
2 × 107

860
= 0.152 × 10−3 m3/s,

Q = 9.12 L/min.

It is now necessary to look at a few examples to illustrate typical orifice-type
flow coefficients found in practice. In all cases, some way has to be found of plotting
the appropriate flow coefficient as both geometry and flow conditions are changed,
and it makes sense to choose the Reynolds number Re as the reference parameter.
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To do this, it is necessary to define the characteristic dimension in Re because
restrictors are not necessarily circular, as is obvious from the array of restrictors
shown in Fig. 3.12. It is customary to define a hydraulic diameter given by:

Re = Umeandh

�
, where dh = 4 × flow area

flow perimeter
. (3.32)

For a circular orifice this, of course, gives dh = d, the orifice diameter. It should be
noted that the concept of laminar and turbulent flow does not have the same Re
implications as flow through a pipe. Some measured flow coefficients are shown in
Fig. 3.14 for a circular orifice→short tube and for different flow rates and orifice
sizes. These results are averaged from a large data set, experimentally determined,
and the smallest orifice diameter is 2 mm. They show the complicated relationship
between flow rate and geometry and how in practice these must be reasonably deter-
mined so that the correct flow coefficient is used.

At very low flow rates, the flow coefficient collapses whatever the orifice dimen-
sion ratio and a peak occurs as a true orifice geometry is used, typically �/d < 0.5.
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Figure 3.14. Flow coefficient for an orifice→short tube (adapted from Lichtarowicz et al.,
1965).
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For very large Re, the flow coefficient settles to its ultimate value, as shown in
Fig. 3.14(b).

Worked Example 3.5

Determine the Re for the flow through an orifice of cross-sectional area 1 mm2,
with a pressure drop of 100 bar, using a typical mineral oil having � = 860 kg/m3

and � = 0.025 Ns/m2, and an orifice length–diameter = 0.5.
Assume first ideal flow:

ideal flow rate Q = ao

√
2(P1 − P2)

�
= 0.152 × 10−3m3/s,

mean flow rate Umean = 0.152 × 10−3

10−6
= 152 m/s,

dh = d → Re = �Umeandh

�
= (860) × (152) × (1.13 × 10−3)

0.025
= 5909.

Now consider Fig. 3.14 and �/d = 0.5 to give the flow coefficient Cq ≈ 0.71.
Hence, recalculate to give:

Q = 0.71 × (0.152 × 10−3) = 0.108 × 10−3 m3/s (6.48 L/min),
Umean = 108 m/s,

Re = 4198 → from Fig. 3.10, Cq ≈ 0.71, as previously assumed.

So the actual orifice flow rate is actually 6.48 L/min compared with the ideal
value of 9.12 L/min, a significant reduction when the appropriate flow coefficient
is used.

Next, consider a PRV having eight circular radial ports that are simultaneously
uncovered as the valve main spindle rises because of an increase in pressure below
it and in excess of the initial pressure setting. This simplest of port geometries is
shown in Fig. 3.15.

D

h

d

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
h/d

a/am

Figure 3.15. Circular radial port used in a PRV.

The projected cross-sectional area uncovered is given by:

a
am

= �

�
− sin 2�

2�
, cos � = 1 − 2

h
d

, (3.33)

where am is the maximum circular cross-sectional area. Given the large flows gener-
ated by such small openings in fluid power components, as discussed earlier, some
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series approximations can be useful, and the most common ones are as follows:

a
am

≈ 1.7
(

h
d

)1.5

, 5.3% error at
h
d

= 0.15, (3.34)

a
am

≈ 1.7
(

h
d

)1.5 (
1 − 0.3

h
d

)
, 2.2% error at

h
d

= 0.15. (3.35)

The details are as follows:

� port diameter d = 4 mm
� port length � = 12.7 mm, giving �/d = 3.2
� main spindle diameter D = 12.7 mm
� spindle lift before port is opened x0 = 5.5 mm

When considering the calculation of Re, the hydraulic diameter is used as previously
defined:

Re = Umeandh

�
, where dh = 4 × flow area

flow perimeter
= d

(2� − sin 2�)
(2� + sin 2�)

. (3.36)

Measurements are shown in Fig. 3.16 and presented in two ways: one using Re as a
reference, the other using flow rate as a reference. The results are presented for dif-
ferent pressure drops across the port, and it can be seen that a good approximation
over the data range presented would be to assume Cq ≈ 0.55, giving a possible error
of ±8% over the operating range shown.
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Figure 3.16. Variation in the flow coefficient for a circular port.
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Figure 3.17. Flow between parallel plates.

3.2.3 Flow Between Parallel Plates

If flow between infinitely wide parallel plates is considered (see Fig. 3.17) and
therefore has axial symmetry (v = w = 0), then consideration of (3.9) gives:

 0    0   

 0    0   

 0   

 0    0   

,

.

It then follows that:

�
d2u

dy2 = dp
dx

, 0 = −dp
dy

. (3.37)

From the pressure gradient, the pressure does not vary with y and therefore can vary
only with x down the gap. However, u is a function of y only and pressure can only
decrease with x:

dp
dx

= constant, say − �P
�

, (3.38)

where �P is the total pressure drop across the gap of length �. This gives:

�
d2u

dy2 = −�P
�

. (3.39)

Integrating twice and noting that at the centerline du/dy = 0 and at the plate posi-
tion y = 0, h and u = 0 gives:

u = �P
2��

(h − y)y, (3.40)

the centerline velocity umax = h2�P
8��

. (3.41)

If the plate width is w, then the total flow rate Q is:

Q =
∫ h

0
wudy = wh3�P

12��
, (3.42)

umean = Q
wh

= h2�P
12��

= 2
3

umax. (3.43)
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Hence, the velocity profile is parabolic, and note that the flow rate varies with h3. It
can be seen from Eq. (3.42) that the resistance is given by:

�P = RQ → resistance R = 12��

wh3 . (3.44)

Worked Example 3.6

Considering flow between a pair of parallel flat plates as previously analyzed,
derive the basic differential equation for 2D flow.

dy
dy
dττ +

dy dx
dx
dpp +p

y

x
τ

Worked Example 3.6

Consider a fluid volume and unit depth of plate and equate forces:

pdy +
(

� + d�

dy
dy
)

dx =
(

p + dp
dx

dx
)

dy + �dx,

d�

dy
= dp

dx
.

Add Newton’s law of viscosity:

� = �
du
dy

→ �
d2u

dy2 = dp
dx

.

This is as previously determined from the Navier–Stokes equation resulting in
Eq. (3.37).

3.2.4 Flow Between Annular Gaps

Consider first concentric pipes, such as those shown in Fig. 3.18, where the gap width
is h, the outer cylinder radius is r, and h � r . This type of clearance can exist around
pistons or spools, although it is unlikely that the gap will be uniform in practice. It
should be recalled from data in Chapter 2 and from typical flow calculations that
clearances will be typically <20 �m and, hence, considerably smaller than typical
component physical dimensions.

ro

(a) Concentric cylinders (b) Clearance around a piston or spool
∆p, �

Figure 3.18. Flow between concentric cylinders.
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e

ro

ri

Figure 3.19. Flow between asymmetric cylinders.

Recall earlier work on the flow equation between a pair of flat parallel plates:

Q = wh3�P
12��

, where the width w is now 2�ro,

Q = �roh3�P
6��

, resistanceR = 6��

�roh3
. (3.45)

Again, the significance of clearance is noted; doubling the clearance increases the
flow (leakage) by a factor of 8 for the same pressure drop. Next, consider cylinder
asymmetry that will probably exist in practice as shown in Fig. 3.19, the clearances
being exaggerated. The relative displacement is called the eccentricity e and, follow-
ing some trigonometry and approximations that are due to the very small clearances
being considered here, it can be shown that:

Q = �ro(ro − ri )3

6��

(
1 + 3

2
ε2
)

�P, (3.46)

eccentricity ratio ε = e
(ro − ri )

, (3.47)

where � is the length of the assembly.
This is a highly significant finding because if the inner cylinder is just touching

the outer cylinder, the flow rate is increased by a factor of 2.5 times the value with
concentric cylinders, assuming the same pressure drop.

3.2.5 Flow Between an Axial Piston Pump Slipper and
Its Swash Plate

Now consider an axial piston slipper connected to the end of a piston, as shown in
Fig. 3.20. The motion of the piston around the swash plate can result in rotation of
the piston and integral slipper. However, the experience of one manufacturer sug-
gests that for a particular pump, the piston does not rotate as evident from wear at
one point on the rear of the piston, even though there is motion between the piston
and it barrel bore. In addition, assemblies in which the slipper is swaged around a
spherical end, as shown in Fig. 3.20, can result in varying friction forces such that
new slippers may also not rotate. The slipper predominantly acts as a hydrostatic
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Figure 3.20. Consideration of the slipper in an axial piston pump.

bearing. In practice, the angle of the swash plate requires the slipper to also be at
a similar angle that is influenced to a small extent by an additional small variation
in force balance and associated dynamics. However, typically 97% of the force bal-
ance will be hydrostatic, the remainder being hydrodynamically associated with a
very small additional tilt of the slipper. When the true hydrostatic force balance is
computed, the slipper angle must be taken into account.

Consider, therefore, the configuration in which the slipper does not rotate and
the gap is uniform. Also consider the central region of the slipper from where the
pressure varies from a value slightly lower than supply pressure to tank pressure at
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the edge of the slipper. Adapting the equations for flow between parallel plates as
given by Eqs. (3.37) and (3.40) gives:

                                                        Pp 
 y                    r         h 

�
d2u

dy2 = dp
dx

→ �
d2u

dy2 = dp
dr

, (3.48)

u = − 1
2�

dp
dr

y(h − r), (3.49)

Q =
∫ h

0
2�rudy = −�rh3

6�

dp
dr

, (3.50)

−
∫ r

r1

1
r

dr =
∫ p

Pp

�h3dp
6�Q

→ ln
r1

r
= �h3(p − Pp)

6�Q
. (3.51)

Noting that at the edge of the slipper, r = r2 and p = 0, then from Eq. (3.51) we
have:

ln
r2

r1
= �h3 Pp

6�Q
→ resistance R = Pp

Q
= 6�

�h3
ln
(

r2

r1

)
, (3.52)

6�Q
�h3 Pp

= 1

ln
(

r2

r1

) . (3.53)

It then follows that the radial pressure distribution is given by:

p
Pp

= 1 −
ln
(

r
r1

)

ln
(

r2

r1

) . (3.54)

This radial pressure distribution is shown in Fig. 3.21.
The total normal force acting on the slipper is then given by the addition of

the contribution from the central pocket, plus the contribution from the logarithmic
pressure decay from the pocket edge to the slipper edge. Neglecting the very small
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Figure 3.21. Radial pressure distribution for a slipper with a constant-gap width.
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lubricating hole reduction effect, this becomes:

Fh = Pp�r2
1 +

∫ r2

r1
2�r pdr = Pp�r2

1

2 ln
(

r2

r1

)
[(

r2

r1

)2

− 1

]
, (3.55)

Fh

Pp�r2
1

=

[(
r2

r1

)2

− 1

]

2 ln
(

r2

r1

) . (3.56)

Flow-rate equation (3.53) and total force equation (3.56) are shown in Fig. 3.22.
Clearly, increasing the slipper land ratio r2/r1 increases the hydrostatic force

that can be achieved and also reduces the leakage flow rate that is highly sensitive to
the clearance h adopted. It is now possible to consider the design approach to force
balance achievement by equating the piston internal pressure force, Fs = Ps�r2

c , to
the slipper total force given by Eq. (3.56) when the resolved component of hydro-
static force along the piston axial axis is used. Also, it is necessary to consider the
force balance ratio set by the designer and given by:

force balance ratio � = Fh

Fs
and usually set > 1. (3.57)

There is also a negligible flow reaction force; therefore, neglecting the slipper orifice
area gives:

r2

rc
= r2

r1

√√√√√√√√
�Ps

Pp cos �

2 ln
(

r2

r1

)
[(

r2

r1

)2

− 1

] . (3.58)

The swash-plate angle is �. Assuming the case �Ps/Pp cos � ≈ 1, not uncommon
in practice, then Eq. (3.58) may be represented as shown in Fig. 3.23. This shows
that if a particular piston diameter is selected from a pump displacement require-
ment, then increasing the slipper outer radius, effectively increasing r2/rc, must be
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Table 3.1. A comparison of three different piston designs, �Ps/Pp cos � = 1

Piston r2 r1 rc r2/rc

in Fig. 3.24 (mm) (mm) (mm) r2/r1 r2/rc Theory Error (%)

A 8.00 4.76 6.43 1.68 1.25 1.27 1.6
B 12.30 6.76 9.50 1.82 1.29 1.31 1.6
C 15.85 7.93 11.80 2.00 1.34 1.36 1.5

accompanied by a specific slipper radius ratio r2/r1. The solution shown in Fig. 3.23
will be slightly increased by typically less than 3% when the swash-plate angle effect
is included.

Now consider some actual piston–slipper assemblies with a slipper design of
the type being analyzed here and shown in Fig. 3.24. Data for the three pistons are
shown in Table 3.1.

Interestingly, the orifice diameter for each slipper is remarkably similar and
close to 1 mm, this also being true for much bigger slippers analyzed by the author.
These comparisons with the approximation �Ps/Pp cos � ≈ 1 show a very good
correlation with errors less than 1.6%.

Table 3.1 shows that as the piston size increases, so does each ratio r2/rc and
r2/r1. This effect is illustrated in Fig. 3.25.

It is now possible to outline the design approach to determine the operating
characteristics for a hydrostatic slipper by considering the pressure-drop–flow char-
acteristic for the slipper and the force balance characteristic. As also discussed ear-
lier, the well-established orifice equation is used and the flow through the slipper
orifice is equated to the flow across the slipper. Combining this with the force bal-
ance equation then gives:

Cqa0

√
2(Ps − Pp)

�
= �h3 Pp

6� ln
(

r2

r1

) , (3.59)

�Ps

Pp cos �
=

(
r1

rc

)2
[(

r2

r1

)2

− 1

]

2 ln
(

r2

r1

) . (3.60)
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Figure 3.23. Solution for the slipper
outer radius.
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Worked Example 3.7

An axial piston slipper is defined as follows:

Piston diameter rc = 11.4 mm, swash-plate angle of 20◦.
Slipper radii r1 = 8 mm, r2 = 16 mm, slipper orifice diameter ro = 1 mm.
Orifice coefficient of 0.61.
Mineral oil � = 860 kg/m3, � = 0.025 N s/m2.
Ps = 210 bar.
Calculate the slipper gap at the pressure side and the inlet side assuming an

inlet pressure boosted to 5 bar and perfect force ratio balance.

(i) From Eq. (3.60) for perfect balance:

(1)(210)
Pp(0.94)

=

(
8

11.4

)2
[(

16
8

)2

− 1

]

2 ln
(

16
8

) = 1.0657 → Pp = 209.63 bar.

The pressure drop across the orifice is 0.37 bar and the slipper pocket pres-
sure is 209.63 bar. Evaluating flow equation (3.59) gives:

0.61(0.786 × 10−6)

√
2(210 − 209.63) × 105

860
= �h3209.63 × 105

6(0.025) ln
(

16
8

) ,

4.45 × 10−6 = 6.34 × 108 h3 → h = 19.1 × 10−6 m = 19.1 �m.
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The flow rate is Q = 4.45 × 10−6 m3/s (0.27 L/min).
Now check Re for the orifice to ensure that the correct flow coefficient

has been used:

orifice mean velocity u = 4.45 × 10−6

0.786 × 10−6
= 5.66 m/s,

Re = �ud
�

= 860 × 5.66 × 0.001
0.025

= 195.

This means that the selected flow coefficient is probably acceptable from
Fig. 3.14.

(ii) Considering the pump inlet at a pressure of 5 bar now gives:

(1)(5)
Pp(0.94)

=

(
8

11.4

)2
[(

16
8

)2

− 1

]

2 ln
(

16
8

) = 1.0657 → Pp = 4.99 bar.

The pressure drop across the orifice is now only 0.01 bar and the slipper
pocket pressure is 4.99 bar. Evaluating flow equation (3.59) gives:

0.61(0.786 × 10−6)

√
2(0.01) × 105

860
= �h34.99 ×105

6(0.025) ln
(

16
8

) ,

0.73 × 10−6 = 0.15 × 108h3 → h = 36.5 × 10−6 m = 36.5 �m.

The flow rate isQ = 0.73 × 10−6 m3/s (0.044 Ls/min).
Now check Re for the orifice to ensure that the correct flow coefficient

has been used:

orifice mean velocity u = 0.73 × 10−6

0.786 × 10−6
= 0.93 m/s,

Re = �ud
�

= 860 × 0.93 × 0.001
0.025

= 32.

From Fig. 3.14, the flow coefficient should be lower and probably around
0.45. Recalculating then gives:

0.45(0.786 × 10−6)

√
2(0.01) × 105

860
= �h34.99 × 105

6(0.025) ln
(

16
8

) ,

0.54 × 10−6 = 0.15 × 108h3 → h = 33 × 10−6 m = 33 �m.

The flow rate is Q = 0.54 × 10−6 m3/s (0.032 Ls/min).
The recalculation results in just a small reduction in the estimated gap

width with an associated reduction in flow rate. The new Re = 24, and this
gives only a small reduction in the new estimated flow coefficient. What is
clear is that as the piston moves from the high-pressure side to the low-
pressure side, the gap width will significantly increase, although the flow loss
will be significantly reduced.
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Figure 3.26. Flow between the gap of
a ball and socket (gap highly exagger-
ated).

3.2.6 Flow Between a Ball and Socket

Now consider flow through the annular gap between a ball and a socket of the type
used to connect an axial pump–motor slipper to its piston. The slipper is usually
swaged onto the ball but, in some cases, for larger machines, this may not be the case
and the slipper sits free and is held in position by reacting pressures and springs. The
actual clearance may not be uniform around the ball in practice, but this analysis will
assume a uniform clearance. Flow leakage through this type of gap is usually small
compared with the slipper leakage; for this analysis, laminar flow will be assumed.
Therefore, consider Fig. 3.26.

Following the analysis given in Bergada, Kumar, and Watton (2007), the gap
area is given by:

ds =
∫ H

0
2�(ro + r)sin � dr . (3.61)

The flow rate is therefore given by:

dQ =
∫ H

0
u 2�(ro + r)sin � dr , (3.62)

where u is the velocity at the elemental width dr across the gap.
This velocity profile has been defined and used in earlier examples for laminar

flow and, for the geometry of Fig. 3.26, is given by:

u = − 1
�

dP
dz

r
2

(H − r). (3.63)

The flow rate is then given by:

dQ =
∫ H

0
− 1

�

dP
dz

r
2

(H − r)2�(ro + r)sin � dr . (3.64)

Also note that:

dz =
(

ro + H
2

)
d�. (3.65)

The flow rate is then evaluated using Eqs. (3.64) and (3.65) to give:

Q = �P p
�H3

6�
, � = 1

ln
(

tan �2/2
tan �1/2

) . (3.66)
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Figure 3.27. Leakage flow and pressure-
drop characteristics for a ball and socket
joint with a small uniform gap.

The pressure drop around the perimeter is given by:

Pp − P
6�

�H3 Q
= ln

(
tan �/2
tan �1/2

)
. (3.67)

The leakage flow factor � and the nondimensional pressure drop are shown in
Fig. 3.27. The maximum angle tends to be around �2 = 90◦. Increasing this angle
reduces the leakage flow, at a fixed total pressure drop, because of the increased
resistance of the longer flow path. Increasing the inlet angle �1 has a significant
effect on leakage flow as the total angle �2 is reduced. Beyond an inlet angle of
typically �1 = 5◦, the leakage flow increases almost linearly with this angle increase.
The pressure-drop characteristic is not severely nonlinear; the one shown in Fig.
3.27 represents just one design condition, �1 = 20◦ and �2 = 90◦.

3.2.7 Flow Between Nonparallel Plates — Reynolds Equation

This problem is often referred to as a bearing hydrodynamic lubrication problem
and may be studied by means of application of Reynolds equation. Consider a sta-
tionary thrust plate at a small angle relative to the reference boundary that has com-
ponents of steady velocity U and v in the x and y directions, as shown in Fig. 3.28, in
Cartesian coordinates.

Considering a fluid element within the wedge of general height h, then the dif-
ference between the inlet flow and the outlet flow is given by:

�Q = −∂ Qx

∂x
�x − ∂ Qy

∂y
�y. (3.68)
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But, from previous work:

Qx = − h3

12�

∂p
∂x

, Qy = − h3

12�

∂p
∂y

. (3.69)

This leads to:

�Q =
[

∂

∂x

(
h3

12�

∂p
∂x

)
+ ∂

∂y

(
h3

12�

∂p
∂y

)]
�x�y. (3.70)

The flow rate, because of the velocity gradient effect, is given by:

�Q = U
2

∂h
∂x

�x�y + V
2

∂h
∂y

�y�x =
[

U
2

∂h
∂x

+ V
2

∂h
∂y

]
�x�y. (3.71)

For incompressible steady-state flow, the sum of Eqs. (3.70) and (3.71) must equal
zero:

∂

∂x

(
h3

12�

∂p
∂x

)
+ ∂

∂y

(
h3

12�

∂p
∂y

)
+ U

2
∂h
∂x

+ V
2

∂h
∂y

= 0. (3.72)

This is the Reynolds equation of lubrication. If it is assumed that the viscosity does
not change significantly with position and, hence, with pressure, then Eq. (3.72)
becomes:

∂

∂x

(
h3 ∂p

∂x

)
+ ∂

∂y

(
h3 ∂p

∂y

)
+ 6�

(
U

∂h
∂x

+ V
∂h
∂y

)
= 0. (3.73)

Now consider applying the Reynolds equation to a plane wedge bearing with uni-
form viscosity and a bearing height variation in x only; that is, no side leakage in the
y direction, as illustrated in Fig. 3.29.
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xm

x

x

z

h1                  hm             h                         h2

U
θ

Figure 3.29. A plane bearing exhibiting hydrodynamic pressure.
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Figure 3.30. Coordinates with reference to the
bearing.

Considering that the viscosity is assumed constant, there is no side leakage, the
bearing angle is very small such that tan � ≈ �, and the fluid-film thickness varies
only with x, then the Reynolds equation becomes:

∂

∂x

(
h3 ∂p

∂x

)
+ 6�U

∂h
∂x

= 0. (3.74)

Integrating with respect to x and defining h = hm when (∂p/∂x) = 0 and using the
small-angle approximation h ≈ x� and hm ≈ xm� gives:

dp
dx

= −6�U
�2

(
1
x2

− xm

x3

)
. (3.75)

Integrating Eq. (3.75) to determine the pressure distribution and inserting the
boundary conditions that p = p0 at x = a1 and also at x = a2 then gives:

p = 6�U
�2

(
1
x

− xm

2x2 − C1

)
,

xm = 2a1a2

(a1 + a2)
.

(3.76)

Again, using the small-angle approximation h1 ≈ a1� and h2 ≈ a2�, we may evaluate
the constant C1 in Eq. (3.76) to give:

p − p0 = 6�U

(a1 + a2)�2

[
(a1 + a2)

x
− a1a2

x2
− 1
]

. (3.77)

Using Eq. (3.76) then gives the maximum pressure pm:

pm− p0 = 3�U(a1 − a2)2

2(a1 + a2)a1a2�2
. (3.78)

The load supported per unit width F is given by:

F =
∫ a2

a1

(p − p0)dx = 6�U
�2

[
ln

a2

a1
− 2(a2 − a1)

(a1 + a2)

]
. (3.79)

Now transfer the coordinate system to the bearing as shown in Fig. 3.30. The bearing
is now located with respect to its trailing edge, the bearing width being b, and the
relative height because of tilt is given by z = (h2 − h1). The gap height at the bearing
center is h0.

The bearing pressure distribution then becomes:

p − p0(
6�Ub

h2
0

) = z xb(1 − xb)

2(1 + z xb−0.5z)2 xb = xb

b
z = z

h0
. (3.80)



3.2 Restrictors, Control Gaps, and Leakage Gaps 93

h

bUµ6( (pp

2
o

o

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

oh

z

Position xb /b

0.25
0.5
1.0
1.5

Figure 3.31. Hydrodynamic pressure distribution.

This pressure distribution is shown in Fig. 3.31.
The position for maximum pressure is then given by:

xbm

b
= 1

2

(
1 − z

2

)
. (3.81)

It can be seen that this position is always to the left of the bearing centerline and
probably by a very small amount in fluid power applications with low values of z;
for example, a pump slipper. The theory also indicates that when the bearing trailing
edge just touches the moving boundary, then the position for maximum pressure is
at the trailing edge. Considering the mean force per unit length, F, given by Eq.
(3.79), and using the coordinate transformation gives:

F(
6�Ub2

h2
0

) = 1

z2

[
ln
(

2 + z
2 − z

)
− z
]

. (3.82)

The force variation per unit length with geometry is shown in Fig. 3.32. It may be
seen that the change in total force is almost proportional to the change in the geom-
etry ratio z/h0, particularly for small practical values of tilt; essentially, increasing
the tilt gives a proportional increase in total force for a constant h0.

Using a series expansion of the log term in Eq. (3.82) shows that for small values
of z/h0, then the slope of Fig. 3.32 is 1/12. Therefore, the force per unit width of the
bearing becomes:

F ≈ �Ub2z

2h3
o

, z < 0.5ho. (3.83)

This shows that tilt, of course, must exist, but the force generated is more sensitive
to changes in central clearance than tilt is. The flow rate per unit width of bearing is
given by adding the component from the Reynolds equation to the entrained flow
effect that is due to the velocity variation from zero at the bearing to U at the moving
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Figure 3.32. Variation in total force for a tilted plate and a sliding boundary.

boundary. This gives:

Qx = Uh
2

− h3

12�

dp
dx

. (3.84)

Considering the condition when dp/dx = 0 then gives the solution:

Qx(
Uho

2

) = 1 −
(

z
2

)2

. (3.85)

For parallel faces, z = 0, the flow rate is entirely entrained, as expected. The flow
rate is reduced because of zero as the trailing edge just touches the moving bound-
ary, z = 2ho. The hydrodynamic effect on flow rate will probably be small for prac-
tical tilts in fluid power elements.

To account for side leakage in practice, the infinitely long bearing theory devel-
oped may be factored by a suitable constant. Early work showed that a bearing hav-
ing an aspect ratio of 1 required the ideal load generated to be multiplied by a fac-
tor of 0.44 (Freeman, 1962; Kingsbury, 1931). The result of a recent finite-difference
solution provided by a colleague, RWS Snidle, gave a factor varying between 0.42
for z = 0.1 and 0.44 for z = 0.5.

Worked Example 3.8

Consider Worked Example 3.7 concerning a pump slipper and use the following
data:

Piston diameter rc = 11.4 mm.
Slipper radii r1 = 8 mm, r2 = 16 mm.
Slipper orifice diameter ro = 1 mm.
Orifice flow coefficient, 0.61.
Viscosity � = 0.025 N s/m2.
Piston pressure Ps = 210 bar.
Slipper peripheral velocity U = 4.4 m/s.
Force provided at the piston end = 2.14 kN.
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Now consider the case in which the slipper hydrostatic opposing force is
2.04 kN, giving a force balance of 95.3%. The remaining force of 100 N must
be obtained by the slipper tilting and an approximate solution will be pursued.

Assume a slipper square-area approximation and corrected for side leakage.
The square bearing (b × b) has a dimension b =√

�r2 = 28.36 mm.
Also assume from the previous calculation that the clearance at the center

of the slipper remains at ho = 19.1 �m. Then, applying a load factor of 0.43 to
account for side leakage and also including the finite bearing length gives:

F

(0.43)(b)6�U b2

h2
o

= 1

z2

[
ln
(

2 + z
2 − z

)
− z
]

= (100)(19.1 × 10−6)2

(0.43)(28.36 × 10−3)6(0.025)(4.4)(28.36 × 10−3)2 = 0.00556.

This gives a solution for z = (z/ho) = 0.067 → z = 1.28 �m.
This is a small displacement of ±0.64 �m relative to the slipper central gap

of 19.1 �m, giving a very small slipper angle when considering the actual slipper
diameter of 32 mm (or 28.36 mm when considering the square-bearing approxi-
mation).

The direct addition of hydrostatic and hydrodynamic forces is not strictly
correct because the actual flow characteristic has to be solved with both effects
occurring. However, this example does serve to show that extremely small slipper
tilts will probably exist in practice.

3.2.8 Flow Through Spool Valves of the Servovalve Type
and the Use of a CFD Package for Analysis

Now consider flow through servovalve ports as illustrated schematically in Fig. 3.33.
A servovalve is designed to be a proportional control valve; that is, the flow rate
is proportional to the spool displacement at a fixed pressure differential. Hence,
the control ports are rectangular in shape and machined onto the bush as indicated
in Fig. 3.33(c). It can be readily appreciated that for both flow-entry and flow-exit
ports, a high-velocity jet will be created because of the pressure differential across
each port and the very small spool opening, typically x < 0.5 mm.

Further details on servovalve types and their performance are presented later
in this chapter, but whatever the principle of operation, a pressure differential must
be generated by the input control current. This pressure differential is used to move
the spool to its required position; therefore, some form of feedback is required. In
the design shown in Fig. 3.33, this feedback is achieved by the feedback wire that
engages with a slot machined in the spool. The pressure differential is generated by
the double flapper–nozzle amplifier stage by means of a pair of restrictors connected
internally to the supply pressure port.

It is well-established practice that an orifice-type flow equation may be used
to determine the flow characteristic of a servovalve port, provided an appropriate
flow coefficient is selected. The spool diameter is 8 mm, and the distance between
the active spool lands is 14.94 mm. Here, the latest development in CFD pack-
ages becomes invaluable for analyzing these complex flow paths, and a 3D study is
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Figure 3.33. A force-feedback servovalve design.

highlighted. The manufacturer’s 3D drawing must first be translated to a 3D mesh
suitably refined around the port region of interest. In this study, the ANSYS
FLUENT package was used.

For example, Fig. 3.34 shows “slices” taken across the port restriction and axi-
ally along the spool flow path indicating the mesh refinement needed for such prob-
lems. The 3D flow and pressure vectors are difficult to visualize in the absence of
color; hence, only 2D slices give some meaningful information. Spool displacements
from 0.1 mm to 0.5 mm were studied, resulting in 200,000–400,000 grid elements
per port. Flow rate is computed together with mean pressures and shear forces act-
ing on each spool face. Jet velocity “angles” may be derived in a number of ways,
and flow coefficients are computed for different spool displacements and pressure
differentials.

Figure 3.35 shows 2D slices at the inlet port and outlet port for a pressure
drop of 100 bar; that is, a supply pressure of 200 bar for connected ports. The port
openings are 0.5 mm, the maximum for the servovalve they represent. Figure 3.35
shows the different flow regimes that exist for the inlet and outlet ports. The inlet-
port characteristic is dominated by a large recirculation zone, and the return-port
characteristic is dominated by reattachment and an associated small recirculation
zone.
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(a)  A slice taken at the port 

(b) An axial slice along the inlet and spool flow pathy

x

y

xz

z

Figure 3.34. Setting up a 3D mesh for CFD analysis (not to scale)(Watton and Thorpe, 2005).

Very small openings have not been pursued here because of additional com-
plexities of meshing and computation times, but it does seem that:

� the flow coefficients are similar at small openings and fall as the displacement
approaches the closed position

� for increasing displacements, the supply-port flow coefficient is greater than the
return-port flow coefficient
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supply→ A

  tank ←B

Recirculation zones

5 mm

Reattachment and 
recirculation

Figure 3.35. Velocity contour magnitudes, 2D slice, spool opening 0.5 mm Ps = 200 bar, ports
connected, maximum velocity 155 m/s in both cases.

� the maximum variation in flow coefficient is only 0.05 over the range of condi-
tions modeled

� the pressure drop has little effect on each flow coefficient for the supply pres-
sures used

The mass flow rates are calculated from the converged results and the standard
orifice-type flow-rate equation applied. This allows calculation of the flow coeffi-
cients for a range of openings and pressure drops. Some calculations are shown in
Fig. 3.36 for spool openings between 0.1 mm and 0.5 mm.

It is possible to validate the CFD predictions by using the manufacturer’s flow
data. In this study, Star Hydraulics UK provided four new servovalves, and the aver-
age of the four rated characteristics provided by the manufacturer was used. The
rated current produced a maximum spool displacement of 0.5 mm at the rated sup-
ply pressure of 70 bar. One of the flow characteristics is shown in Fig. 3.37.

With the ports connected and assuming equal port openings ao:

Q = Cq1 ao

√
2(Ps − P1)

�
= Cq2 ao

√
2P2

�
, (3.86)

and because P1 = P2, and defining:

Q = Cq ao

√
2Ps

�
(3.87)
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Figure 3.36. Flow coefficients for a servovalve computed with a 3D CFD package.

then the flow coefficient:

Cq = Cq1Cq2√
C2

q1 + C2
q2

. (3.88)

The average CFD data for each port are then used to calculate the “apparent”
flow coefficient Cq with the ports connected, as given by Eq. (3.88). A comparison
with the averaged measured values is shown in Fig. 3.38. The comparison suggests
that the CFD predictions are good, bearing in mind the difficulty in deciding the
correct experimental flow rate at small spool displacements. It can be seen from

Input signal (mA)

Flow (L/min)

40

0

0 30.0

Figure 3.37. Rated flow characteristic of a Star Hydraulics UK servovalve.
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Figure 3.38. Servovalve flow coefficients, CFD and measured (Watton and Thorpe, 2005).

Fig. 3.38 that for small spool displacements, errors in graph interpretation become
more significant as nonlinear effects become more dominant because of servovalve
electrical hysteresis and the precise flow characteristic around the ostensibly closed
condition.

Over the operating conditions studied, the supply-port average Cq1 = 0.83 with
a maximum error of ±3% and the return-port average Cq2 = 0.82 with a maximum
error of ±2%. Therefore, it is reasonable to use a common, and constant, flow coef-
ficient of Cq = 0.83 for design purposes.

3.2.9 Flow Characteristics of a Cone-Seated Poppet Valve

PRV poppets have traditionally had small cone seats because they are reliable from
a leakage point of view and are dynamically more stable. To prevent leakage, the
seats have a flat land, usually referred to as a chamfered land, and with lengths
generally smaller than 2 mm. Such a configuration also helps to minimize permanent
marks on the poppet. For the last 40 years or more, poppet valves have undergone
a very small evolution, and the following study considers the way theory can be
developed to obtain suitable design equations. As chamfered conical seats increase
in length, and the clearance decreases, laminar flow occurs and some of the main
characteristics of such valves then are as follows:

� improved stability
� sharp reduction of the vortex creation at the outlet and very small flow separa-

tion
� less prone to cavitation, resulting in improved reliability
� a linear pressure–flow characteristic, preferable from a control point of view
� the concept of discharge coefficient variation with flow rate does not exist

because the flow is laminar
� the effect of temperature variation on the pressure–flow characteristic for lami-

nar flow is well known and predictable
� flow-reaction-force effects could be negligible
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Figure 3.39. A cone-seated poppet valve.

Following the analysis by Bergada (Bergada and Watton, 2004), using Fig. 3.39
together with the earlier example of flow between parallel plates gives:

u = − 1
�

dp
dx

h
2

(H − h). (3.89)

The flow rate through the restrictor gap will be:

Q =
∫ H

o
u 2�[r2 − h cos(90 − �)]dh. (3.90)

Integration of the flow-rate term then gives:

Q = −�

�

dp
dx

[
r2 H3 1

6
− H4 cos(90 − �)

1
12

]
. (3.91)

The pressure distribution along the seat is then given by:

∫ �

0

dx

r2 H3
1
6

− H4 cos(90 − �)
1
12

=
∫ Pinlet

Pinlet

−�

�

dp
Q

. (3.92)

The boundary conditions are as follows:

r2 = x cos � + r2inlet,

x = 0, r = r2inlet x = �, r = r2outlet,

cos � = r2outlet − r2inlet

�
= r2 − r2inlet

x
. (3.93)

The pressure–flow characteristic may be obtained from (3.92):

Q =
(Pinlet − Poutlet)

�H3cos �

6�

ln


2 cos � + (2r2inlet − H sin �)

�
(2r2inlet − H sin �)

�




. (3.94)
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Figure 3.40. Theoretical pressure decay for a cone-seated poppet valve (Bergada and Watton,
2004).

If the pressure at a general distance x along the seat is given by P, then:

Q =
(Pinlet − P)

�H3cos �

6�

ln




2x cos �

�
+ (2r2inlet − H sin �)

�
(2r2inlet − H sin �)

�




. (3.95)

The pressure distribution may be completely defined along the seat as follows:

P = Pinlet − (Pinlet − Poutlet)

ln




2x cos �

�
+ (2r2inlet − H sin �)

�
(2r2inlet − H sin �)

�




ln


2 cos � + (2r2inlet − H sin �)

�
(2r2inlet − H sin �)

�




. (3.96)

It will be seen that the pressure distribution does not vary linearly with position
along the cone and the distribution also varies with the cone angle. For the type of
seating being considered here, it is usual that H sin � � 2r2inlet and, therefore, the
effect of the poppet clearance H on the pressure distribution is negligible.

Some results for pressure drop, in nondimensional form, are presented in
Fig. 3.40 for a value 2r2inlet/� = 0.2 and for H sin � � 2r2inlet. The outlet pressure is
considered to be at atmospheric conditions. For this fixed clearance and seat length,
increasing the cone angle increases the pressure-distribution magnitude, although
the effect is very small.

To validate the theory, a test rig is considered with a seat length of � = 30 mm, an
inlet diameter of 4 mm, and an angle � = 45◦, as shown in Fig. 3.41. Static pressure
tappings, by means of brass inserts, were positioned in a spiral around the seated
area to enable the pressure decay to be measured with sufficient spatial resolution.
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Figure 3.41. Experimental test rig for the cone-seated poppet valve.

Each tapping was connected to a pressure test gauge point at the top of the poppet
by internal drilled connections.

The poppet position was adjusted by a micrometer gauge thread machined onto
the assembly; such a fine thread actually distorts under pressure, creating an addi-
tional displacement. This is easily measured relative to the fixed base to create a
calibration table, but it does make it difficult to obtain readings for a variable-
pressure test; for example, to determine the pressure–flow-rate characteristic. For
fixed-pressure tests, the clearance can easily be set to a predetermined value. The
maximum thread movement measured was 15 �m for a pressure of 150 bar, although
the distortion does not vary linearly with pressure.

A comparison between theory and measurement for the pressure distribution
is shown in Fig. 3.42 for an angle � = 45◦. The pressure trend predicted is clearly
demonstrated as is the experimental variation met in practice, particularly along the
second half of the poppet face. This is primarily due to machining and mechanical
assembly issues that make it almost impossible to obtain a constant, very small clear-
ance along the seat and at different radial points around the poppet; concentricity
of the poppet and seat cannot be assessed.

In keeping with previous work, the valve resistance Rc becomes, in nondimen-
sional form:

�H3 Rc

6�
=

ln


2 cos � + (2r2inlet − H sin �)

�
(2r2inlet − H sin �)

�




cos �
. (3.97)

Because the term involving the clearance H is negligible in practice, it can be seen
that the valve resistance term on the right-hand side of Eq. (3.97) is essentially
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Figure 3.42. Pressure distribution down a cone-seated poppet face (Bergada and Watton,
2004).

constant for a particular geometry and realistic clearances. Hence, the valve resis-
tance varies as expected in an inverse relationship with the characteristic dimen-
sion H3.

3.2.10 A Double Flapper–Nozzle Device for Pressure-Differential Generation

Now consider a pair of flapper–nozzles in conjunction with a pair of orifices used
to generate a pressure differential by small movements of the flapper positioned
midway between the nozzles, as shown in Fig. 3.43.

The spool area is A and the spool velocity is U. The nozzle diameter is typically
dn = 0.5 mm, the flapper clearance in the midposition typically xnm = 0.03 mm, and

x

Ps Pa Pb        Ps      

spool 

orifice orifice 

nozzle  nozzle 

U

x

   Qa        Qx Qy Qb         

A U    

Figure 3.43. Schematic of a double flapper–nozzle amplifier used to move a spool (not to
scale).
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xnm    xnm

x 

Figure 3.44. Flapper–nozzle schematic.

the orifice diameter typically do = 0.2 mm. It is common for such a device to be used
in servovalves that use force-feedback, the pressure differential generated being
used to move the spool. It will be immediately clear from Fig. 3.43 that at the flapper
midposition, often called the null position, the maximum leakage flow back to tank
will exist, hence producing a small inherent power loss. As the flapper is moved to
the left – in practice, by electromagnetic means – then pressure P1 will increase and
pressure P2 will decrease, thus providing a pressure differential across the spool,
which will then move unless restrained in some way. The flow loss and power
loss will decrease as the flapper position is changed. To analyze the flapper–nozzle
bridge, the conventional restrictor flow equations are appropriate and given by:

Qa = Qx + AU, Qb = Qy − AU; (3.98)

Qa = Cqo ao

√
2(Ps − Pa)

�
, Qb = Cqo ao

√
2(Ps − Pb)

�
; (3.99)

Qx = Cqn anx

√
2Pa

�
, Qy = Cqn any

√
2Pb

�
. (3.100)

To determine the nozzle effective flow area, it is assumed that the peripheral area is
dominant because of the relative dimensions of the nozzle diameter–null clearance
ratio of typically 15. Therefore, considering Fig. 3.44, it follows that:

ao = �d2
o

4
,

anx = �dn(xnm − x),

any = �dn(xnm + x). (3.101)

Considering the condition in which the spool motion is negligible, then the
steady-state performance of the double flapper–nozzle amplifier may be derived
from equating Q1 = Qx and Q2 = Qy. This leads to:

Pa = 1

1 + Z(1 − x)2 , Pb = 1

1 + Z(1 + x)2 ,

Pa = Pa

Ps
, Pb = Pb

Ps
x = x

xnm
,

Z = 16
(

Cqn

Cqo

)2 (dn

do

)2 (xnm

do

)2

. (3.102)
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The pressure differential is then given by:

Pa − Pb = 4Zx

[1 + Z(1 + x)2][1 + Z(1 − x)2]
. (3.103)

At the null condition x = 0 and Pa − Pb = 0; then:

Pa = Pb = 1
(1 + Z)

,

and the null gain
d(Pa − Pb)

dx
= 4Z

(1 + Z)2 . (3.104)

To obtain the maximum sensitivity at null, Eq. (3.104) leads to the maximum
null gain when Z = 1, suggesting that the design should produce null pressures of
Pa = Pb = Ps/2; that is, half supply pressure.

Considering the flow loss and the power loss, it follows that:

Qloss = Wloss = (1 − x)√
1 + Z(1 − x)2

+ (1 + x)√
1 + Z(1 + x)2

, (3.105)

Qloss = Qloss

kn
Wloss = Wloss

Pskn
kn = Cqn �dn xnm

√
2Ps

�
.

The pressure-differential–flapper-displacement characteristic and the power-loss
and flow-loss characteristics are shown in Fig. 3.45 for a range of the design param-
eter Z.

If spool control is achieved with flapper displacements around the null con-
dition, then a value of 0.5 < Z < 2 is satisfactory, the suggested value of Z = 1
being ideal. Increasing Z does decrease the flow and power losses, which are both
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(a) Pressure difference                                    (b) Flow loss and power loss 
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Figure 3.45. Characteristic of a double flapper–nozzle amplifier.
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Figure 3.46. Measured flow coefficients for a double flapper–nozzle amplifier.

maximum at the null condition. The issue of design is therefore centered around the
calculation of the design parameter Z, a value of Z = 1 being typical of that sought
by servovalve manufacturers. From earlier work in this chapter, it is reasonable to
select flow coefficients Cqn ≈ 0.6 for the nozzle and Cqo ≈ 0.8 for the orifice as a
general design guide. For a more accurate analysis, it is necessary to have detailed
flow characteristics for the nozzle pair and the orifice pair, which are matched by the
manufacturer. The orifice diameter tends to vary between 0.15 and 0.4 mm, the noz-
zle diameter between 0.45 and 0.7 mm, the flapper clearance changing little around
0.03 mm. Some results measured by the author are shown in Fig. 3.46 using data
typical of a large selection of servovalves of the force-feedback type.

It should be recalled that typical pressure drops will be around half supply pres-
sure with a minimum therefore being in excess of 35 bar. From Fig. 3.46, it can be
seen that the flow coefficients are reasonably constant at Cqn ≈ 0.62 for the noz-
zle and Cqo ≈ 0.79 for the orifice. The latest developments in sapphire-machining
technology now ensure orifice dimensional consistency, drastic wear reduction, and
batch quality such that diameter variation cannot be measured to any meaningful
significance. A sapphire orifice is shown in Fig. 3.47.

  (a) The sapphire insert

0.22mm 

 (b) Orifice assembly  

Figure 3.47. A sapphire orifice developed by Star Hydraulics Ltd. UK.
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Worked Example 3.9

A flapper–nozzle amplifier is to be designed to have a maximum leakage flow
loss of 0.5 L/min with a supply pressure of 210 bar. Assuming a fluid density of
860 kg/m3 and given a flapper clearance of 0.03 mm, calculate:

(i) the nozzle and orifice diameters, and
(ii) the power loss at null.

Solution for (i). Recall that:

Z = 16
(

Cqn

Cqo

)2 (dn

do

)2 (xnm

do

)2

→ 1.

Select Cqn ≈ 0.6 for each nozzle and Cqo ≈ 0.8 for each orifice as a good starting
point.

At null:

Qloss = Wloss = 2√
1 + Z

= 1.414, Qloss = Qloss

kn
Wloss = Wloss

Pskn
,

kn = Cqn�dnxnm

√
2Ps

�
.

Flow loss at null:

0.5 × 10−3

60
= (1.414)(0.6)�(dn × 10−3)(xnm × 10−3)

√
2(210 × 105)

860
.

This gives dnxnm = 0.014 → dn = 0.47 mm:

16
[

0.6
0.8

]2 (dnxnm)2

d4
o

= 1 16
[

0.6
0.8

]2 (0.014)2

d4
o

= 1 do = 0.2 mm.

Solution for (ii). The null power loss:

We = 1.414Pskn = (210 × 105)(0.5 × 10−3/60),

We = 175 W.

Sometimes servovalve manufacturers include a drain orifice at the flapper–
nozzle region to provide a very small back pressure that tends to reduce flow
instabilities and asymmetric flow effects. The addition of the drain orifice is shown
schematically in Fig. 3.48, the drain flow returning to tank.

x

Qa Qx                          Qy Qb

A U    

Pe
Figure 3.48. Flapper–nozzle amplifier with a drain
orifice.
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It is a reasonable assumption that the drain orifice equation has a similar flow
characteristic as the other orifices and, for the spool at rest, the flow equation may
be written as:

Qe = Qa + Qb = Qx + Qy, (3.106)

Qe = Cqodo

√
2Pe

�
, (3.107)

where Qe is the drain flow and  is the diameter scale factor compared with the
existing orifice pair. The remaining flow equations are then modified to:

Qa = Cqo ao

√
2(Ps − Pa)

�
, Qb = Cqo ao

√
2(Ps − Pb)

�
, (3.108)

Qx = Cqn anx

√
2(Pa − Pe)

�
, Qy = Cqn any

√
2(Pb − Pe)

�
. (3.109)

It is then a simple matter to show that the pressure differential is modified as
follows:

Pa − Pb = 4Zx(1 − Pe)

[1 + Z(1 + xn)2][1 + Z(1 − xn)2]
, Pe = Pe

Ps
. (3.110)

Because the back pressure is of the order of Pe ≈ 1 − 2 bar, then its effect on the
pressure-differential characteristic is negligible.

3.2.11 The Jet Pipe and Deflector-Jet Fluidic Amplifier

Now consider alternative approaches to obtaining a pressure differential compared
with the flapper–nozzle amplifier previously analyzed. The jet pipe amplifier and
deflector-jet principles are shown in Fig. 3.49 and are allied to fluidic amplifier prin-
ciples developed in the 1960s.

The supply pressure pipe pressure Ps produces a jet that divides equally
between the two receivers, for both methods, when the unit is symmetrical. A small
displacement of the pipe or deflector plate results in the flow rate increasing in one
receiver, whereas the other receiver experiences a reduction in flow rate and by the
same amount for an ideal device. Each flow rate is therefore converted to a static
pressure; thus, a net pressure differential is experienced by the spool. To ensure that
spool position is achieved, feedback is needed to control the jet source. This can be
by means of spool-position electrical feedback for the jet pipe or by a feedback wire
connected to the deflector plate. Fluidic devices are also shown in Fig. 3.49. The flu-
idic proportional amplifier, Fig. 3.49(c), uses lower-energy control jets to deflect the
main jet, and the output pressure differential �Po experiences a gain compared with
the control pressure differential applied �Pc. The fluidic jet-deflection device, Fig.
3.49(d), creates a varying output pressure differential �Po as the input jet is moved
laterally. Whatever the approach selected, the pressure-differential–jet-deflection
characteristic will be similar to a flapper–nozzle characteristic although possibly
with an increased flow loss. One important advantage of these devices over flapper–
nozzle devices is the tolerance to larger particles in the fluid; given normal filtration,
they are less liable to blockage.
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Figure 3.49. Schematics of the jet pipe and deflector-jet amplifiers.

To obtain a preliminary feel for the performance of a fluidic jet-deflector stage,
consider the 2D free jet shown in Fig. 3.50.

The free jet issuing from the jet pipe is assumed here to initially have a constant
velocity profile. It will experience an increasing cross-sectional area because of fluid
boundary entrainment, and the pipe exit velocity will remain constant within the
“potential core” of length x0. Beyond this point, a normal distribution type of veloc-
ity profile will occur and the centerline velocity will then continually decrease with
increasing distance. Clearly, the performance of these amplifiers depends on the
distance between the pipe exit and the receivers, this distance significantly affecting
pressure gain and maximum pressure–energy recovery. The velocity profile of a free
jet has been studied in some detail (Abromovich, 1963; Kirshner and Katz, 1975),

ym

        y 

xo

x

wo

z

Figure 3.50. A submerged free jet.
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Table 3.2. Velocity profiles for fully established flow x > x0

Albertson et al. (1950) u = Uo

√
xo

x
exp − �

2

(
xo

wo

)2 ( y
x

)2

Simson (1966) u = Uo

√
xo

x

[
1 −

(
y

ym

)7/4
]2

Approximation to Simson u = Uo

√
xo

x

[
1 − 3

(
y

ym

)2

+ 2
(

y
ym

)3
]

Uo = centerline velocity ym = 1.38wo

(
x
xo

)
, xo ≈ 5.2wo

and Table 3.2 shows some models that have been considered for the region beyond
the potential core.

To analyze the jet-deflection characteristic, consider recovery of the jet energy
in the two downstream receivers (diffusers) and lateral motion z of the supply jet.
In reality, the jet-deflection angle may be neglected. Also assume that each receiver
width is the same as the velocity profile half-width ym. For fully developed jet flow,
then the pressure differential, assuming a blocked load, is given by:

�Po

Ps
=
∫ z

0
u2dy +

∫ 1−z

0
u2dy −

∫ 1

z
u2dy, z = z

ym
, y = y

ym
, u = u

Uo
,

(3.111)
�Po

Ps
= 2 f (z) + f (1 − z) − f (1).

Using the approximation velocity profile from Table 3.2 then gives:

f(z) = xo

x

(
z − 2z3 + z4 + 1.8z5−2z6 + 0.571z7). (3.112)

Placing the receivers at the end of the potential core, x = xo, gives the characteristic
shown in Fig. 3.51. It will be seen that for this receiver placement at the end of
the potential core, then the maximum pressure differential recovered is 2/3 of the

0
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my
z

Figure 3.51. Pressure differential for a jet-deflec-
tion device, x = x0.
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supply pressure. Notice also that a maximum jet deflection of only half the receiver
width may be utilized for a positive-gain characteristic.

For this analysis, each receiver width was set at half the total jet width:

receiver width = ym = 1.38wo

(
x
xo

)
= 1.38wo. (3.113)

Therefore, each receiver width should be greater than the supply nozzle width. It
should be noted that for a practical servovalve application, the supply nozzle may
well be nearer to a short tube design, in which case the exit velocity profile will
probably be parabolic rather than constant velocity. In this situation, the concept of
a potential core may not be valid. However, the velocity profile distribution down-
stream will approach a shape similar to a normal distribution of the type used in
this example. A preliminary study, beyond the scope of this section, has shown that
a detailed 3D CFD model is essential to produce the pressure-differential charac-
teristic of a fluidic amplifier whose total length may well be no greater than 10 mm.
The maximum pressure recovery achieved will probably be low because of amplifier
length constraints.

3.3 Steady-State Flow-Reaction Forces

3.3.1 Basic Concepts

Considering a flow direction change within a control volume, a change of momen-
tum is experienced generally in the x and y directions; hence, a force is required to
cause the momentum change. Hence, the rigid boundary experiences an equal and
opposite force, termed the flow-reaction force. This is given by:

fluid accelerating force =
∫

Aoutlet
� V j VdA−

∫
Ainlet

� V j VdA,

Rigid-body flow-reaction force = −fluid accelerating force. (3.114)

In fluid power component problems, the dominant flow-reaction force is usually
along the main flow direction along the component main axis.

3.3.2 Application to a Simple Poppet Valve

Consider Fig. 3.52, where the poppet movement creates an orifice area a and the
inlet port has a cross-sectional-area A. The initial and relatively low mean velocity
at the inlet has clearly increased in magnitude along the main axis as it leaves the
exit port, which usually has a significantly smaller flow area.

U, Q, Ps

V θ
x

Figure 3.52. Flow through a simple poppet valve.
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The force to cause the fluid acceleration is:

Fx = � QV cos � − � QU

= � Q2cos �

a
− � Q2

A

≈ � Q2cos �

a
. (3.115)

From the orifice equation:

Q = Cqa

√
2Ps

�
. (3.116)

So, combining with Eq. (3.115) gives:

Fx ↑= (2C2
q cos �

)
Psa.

Therefore, the flow-reaction force is:

Fr x ↓= (2C2
q cos �

)
Psa. (3.117)

This acts to oppose the direction of the spool motion. Because for this example the
exit port area is proportional to the port opening – that is, poppet displacement –
it can be deduced that this flow-reaction force has the characteristic of a resisting
spring. Let d be the inlet port diameter; then:

a = �dx,

Fr x ↓=(2�C2
q cos � Psd

)
x = kx, (3.118)

k = equivalent spring stiffness.

The ratio of flow-reaction force–inlet static force is given by:

Fr x

Ps A
= 2�C2

q cos � Psdx

Ps�d2/4
= 8C2

q cos �
( x

d

)
. (3.119)

So, considering reasonable values of Cq = 0.7 and � = 60◦ gives:

Fr x

Ps A
≈ 2

( x
d

)
. (3.120)

For a poppet diameter of 8 mm, a lift of 0.25 mm and a supply pressure of 210 bar
would give a flow rate of 58.4 L/min. The flow reaction resisting force would be
6.25% of the static force on the poppet.

3.3.3 Application to the Main Stage of a Two-Stage Pressure-Relief Valve

Consider the basic concept of a two-stage PRV of the type shown in Fig. 3.53.
The required pressure setting is obtained with the first-stage setting spring that

has a stiffness much greater than the main-stage retaining spring. The first stage
therefore requires a leakage path back to tank. The back pressure Pd is equal to
supply pressure Ps, and the effect of the second-stage spring, and sometimes a small
differential area, is to keep the main-stage poppet closed. When the system pressure
force exceeds the first-stage setting, then the small poppet is displaced and a small
flow is created through the first-stage variable orifice. Because of restrictors a and
b, there is a rapid drop in pressure Pd, the main-stage poppet is displaced, and the
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a         c 

 Q Ps                 Return 

b

Pb
First-stage pressure- 

setting spring 

Second-stage light-    
retaining spring stiffness k, back pressure Pd

x

Alternative proportional solenoid 
control of orifice b 

a c

Figure 3.53. A two-stage PRV.

supply pressure is controlled close to its desired value. Note that the main poppet
has a machined seating face inclined at an angle �. The orifice c is called a damping
orifice and helps to improve the dynamic motion of the main-stage poppet.

Considering the circuit results in the following steady-state equations for force
balance across the main-stage poppet and flow through the main stage, where A is
the main poppet cross-sectional area, the inlet diameter is di, and the poppet flow
area is ao:

(Ps − Pd)A = Fo + kx + �2C2
q cos � Psao, (3.121)

Q = Cqao

√
2Ps

�
, (3.122)

ao = �di x sin �. (3.123)

The factor � is included to take into account the variation of flow-reaction force
from the ideal theoretical value. These equations may be rearranged to give:

(Ps − Pd) = Fo

A
+ Ps

A

√
2Ps

�

(
k

Cq Ps�di sin �
+ �2Cq cos �

)
Q. (3.124)

Hence, plotting (Ps − Pd)/Q then allows the unknown terms to be estimated for
different supply pressures. The method requires the ability to measure the internal
pressure Pd and also requires accurate transducers because the pressure difference
is typically (Ps − Pd) < 5 bar. For the valve tested, the following data apply:

spring stiffness k = 1.76 × 104 N/m fluid density � = 850 kg/m3

main spool diameter di = 22 mm main spool seat angle � = 35◦

For this valve, the spring-resisting term is negligible compared with the flow-
reaction force for realistic pressures, and this means that the method proposed
allows evaluation only of the product �Cq. The results are shown in Fig. 3.54, the
pressure-differential–flow-rate characteristic having only a restricted range of sup-
ply pressures possible because of the large flow rates created for a small value of
(Ps − Pd), the very advantage of this type of PRV.

The point-by-point calculation shows a small variation in �Cq as the flow rate
increases at a fixed pressure. Using the average slopes gives a value of �Cq = 1.75
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Figure 3.54. Measured characteristics of a two-stage PRV (Davies and Watton, 1993).

for a pressure of 30 bar and �Cq = 2.12 for a pressure of 60 bar. What is clear is that
whatever assumption is made for the flow coefficient Cq – for example, Cq = 0.7 –
the value of � is probably 2.5–3. This means that the flow-reaction force is signif-
icantly higher than the value from simple momentum theory. Note also, the main
spool position is controlled by the flow-reaction force, not by the spring force. Eval-
uating the spring precompression from Fig. 3.54(a) gives Fo = 68.4 N and, hence, a
precompression of 3.9 mm.

3.3.4 Application to a Spool Valve

The problem with flow-reaction-force analysis is the correct choice of jet angle and
jet velocity, and this was evident from the results in the previous example. In reality,
the velocity profile across a flow-control port has a nonlinear distribution because
it must be zero at each port boundary. Also, the flow path will be curved, often
with reattachment to an adjacent boundary as illustrated in Fig. 3.35 for a spool-
valve using CFD analysis. Consider, therefore, a spool-valve geometry typical for a
servovalve, as shown in Fig. 3.55.

When the momentum-change theory is applied to evaluate the flow-reaction
force, it is seen that the fluid passing through the inlet port has experienced an
acceleration along the main spool axis. This also occurs at the return port. Because
the annular velocity inside the servovalve, after the inlet port has been passed and
before the return port has been entered, is very much smaller than each port jet
velocity, then its momentum contribution may be neglected.

Ps                    T               T                 Ps

    P1     Q1                       P2   Q2

xFigure 3.55. A servovalve spool.
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The net flow force that is due to fluid acceleration at both ports is given by:

Fx ≈ (� QV cos �)inlet − (� QV cos �)return

→
Fx =

(
� Q2 cos �

a

)
inlet

−
(

� Q2 cos �

a

)
return

. (3.125)

Using the flow equation for each port then gives the equal and opposite flow-
reaction force:

Fx = [2C2
q cos �(Ps − P1)ao

]
inlet

− [2C2
q cos �(P2)ao

]
return

,

Fx = 2C2
qao[cos �(Ps−P1)inlet − cos �(P2)return], (3.126)

where ao is the orifice area and equal for the inlet port and return port. If the jet
angles just happen to be equal, then:

Fx = 2C2
qao cos �[Ps − Pload], (3.127)

where the load pressure differential is defined as Pload = P1 − P2. The flow-reaction
force is clearly at a maximum when the load pressure differential is zero.

Now consider the CFD analysis of flow through a servovalve spool, as outlined
in Subsection 3.2.8, where flow coefficients were assessed. The analysis allows the
flow-reaction force effect to be evaluated by use of the pressure data integrated
around each spool annulus area. Then, by using the flow-reaction force equation
and the previously calculated flow coefficients, we may determine a representative
jet angle. The results, obtained with smoothed data, are shown in Fig. 3.56 for the
inlet port and the return port.

The results show different trends associated with different flow regimes at the
supply port and the return port, as previously discussed. It could be argued that the
variation in jet angle is not significant in both cases, a midrange value being � ≈ 68◦

for the inlet port and � ≈ 67◦ for the return port. These values are close to the von
Mises analytical solution limiting value of � ≈ 69◦.

Now consider using a visual approach in which the angle of the velocity vec-
tor having the greatest magnitude is selected to be representative of the dominant
momentum contribution across the orifice. A vector evaluation software routine
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Figure 3.56. Jet angles computed with flow-reaction theory and CFD data.
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Figure 3.57. Jet angles computed with visual interpretation from a CFD analysis.

was used to do this, and this approximate method produced the results shown in
Fig. 3.57 and shows a different picture compared with Fig. 3.56. The main flow path
into and out of each orifice is set by the four peripheral slots termed “ports” and the
remaining flow path area between the ports are termed “annulus.” Visual interpre-
tation of the jet angle shows the port values to be greater than the annulus values.
However, the use of these angles for flow-reaction-force calculation using simple
momentum-change theory would give misleading results.

This analysis of the two approaches suggests that a visual interpretation
approach should be treated with caution and the maximum jet velocity angle may
not be representative of the average momentum effect assumed in the simple
theory.

3.3.5 Application to a Cone-Seated Poppet Valve

Consider the cone-seated poppet valve previously analyzed for its pressure and flow
characteristic. The poppet is again shown in Fig. 3.58. This apparently simple device
presents an analytical challenge because the velocity through the poppet clearance
changes with distance. In addition, the velocity distribution at the inlet must be
taken into account because it cannot be considered uniform, as developed by JM
Bergada in Bergada and Watton (2004).

r1

r2

r2 outlet 

r2 inlet

u     

Hr1

r

r2

Figure 3.58. Schematic of the cone-seated poppet valve.
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Figure 3.59. Steady-state flow reaction forces for a cone-seated poppet (Bergada and Watton,
2004).

A parabolic velocity distribution is assumed:

uinlet pipe = umax

[
1 −

(
r

r2inlet

)2
]

. (3.128)

Hence, the inlet momentum term is:∫
Ainlet

� Vj VdA=
∫ r2 inlet

0
�u22�rdr = 4

3
��u2

maxr2
2inlet. (3.129)

It then follows that:∫
Aoutlet

� Vj VdA=
∫ H

0
�u2 sin �[r2outlet − h sin �]2�dh

= �2� sin �

120�2

[
K2

1 (Poutlet − Pinlet)
2

K2
3 (�K1 + K2)2

][
H5r2outlet − H6 sin �

2

]
, (3.130)

K1 = H3 cos �

6
,

K2 = H3r2inlet

6
− H4 sin �

12
,

K3 = ln
[

2� cos � + 2r2inlet − H sin �

2r2inlet − H sin �

]
. (3.131)

The net-flow reaction force is then given by subtracting Eq. (3.130) from Eq. (3.129),
and each contribution is shown in Fig. 3.59 for the example poppet with � = 45◦

and an inlet radius of r2inlet = 2 mm. The flow-rate equation previously derived is
first required to determine the appropriate inlet velocity profile maximum velocity
umax. It can be seen from Fig. 3.59(a) that for a small clearance, the high resistance
and, hence, reduced flow rate results in a relatively small net flow-reaction force,
even with a large supply pressure. For a reduced supply pressure, shown in Fig.
3.59(b) but with an increased clearance, the flow rate is increased, which results in
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Figure 3.60. Flapper–nozzle schematic.

an increased net flow-reaction force. In both cases shown, each momentum contri-
bution collapses rapidly as the seat length exceeds typically 3 mm. Hence, for seat
lengths in excess of this value, the flow-reaction force may be neglected in compari-
son with the static inlet force for this poppet valve design. This leads to an important
conclusion that flow-reaction force effects could be minimized if true cone seating is
used for valve poppets.

3.3.6 Application to a Flapper–Nozzle Stage

Consider just the flapper–nozzle stage of the amplifier previously discussed in Sec-
tion 3.2.10 and shown in Fig. 3.60. The forces acting on each side of the flapper may
be written as:

Fx =
(

Pa + 1
2

�U2
x

)
an, (3.132)

Fy =
(

Pb + 1
2

�U2
y

)
an, (3.133)

nozzle csa = an = �d2
n

4
,

Qx = Cqnanx

√
2Pa

�
, anx = �dn(xnm − x),

Qy = Cqnany

√
2Pb

�
, any = �dn(xnm + x),

Ux = Qx

an
, Uy = Qy

an
. (3.134)

Assuming equal flow coefficients for each nozzle, combining these equations gives
the variation in net flapper force with flapper position as follows:

Fx − Fy = an

{
(Pa − Pb) + 16C2

qnx2
nm

d2
n

[
Pa

(
1 − x

xnm

)2

− Pb

(
1 + x

xnm

)2
]}

.

(3.135)

If the flapper–nozzle pair forms part of a pressure-differential-generating bridge
incorporating a pair of orifices, as discussed in Section 3.2.10, then P1 and P2 may
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be expressed in terms of Ps, Z, and x to give:

(F x − Fy)
Psan

= 4x(Z − �)

[1 + Z(1 + xn)2][1 + Z(1 − xn)2]
, (3.136)

Z = 16
(

Cqn

Cqo

)2 (dn

do

)2 (xnm

do

)2

, � = 16C2
qn

(
xnm

dn

)2

.

Considering the equation for pressure differential then gives:

(F x − Fy)
an

=
(

1 − �

Z

)
(Pa − Pb), (3.137)

(Pa − Pb) = 4xZPs

[1 + Z(1 + xn)2][1 + Z(1 − xn)2]
.

Therefore, the flow-reaction force is proportional to the pressure-differential gener-
ated by the flapper–nozzle bridge. This means that for a modern servovalve design,
the flow-reaction force may be considered approximately proportional to flapper
displacement, particularly around the null condition. Because usually � � Z, it can
be deduced that Eq. (3.136) is identical to the pressure-differential equation. It also
means that the maximum flow-reaction force occurs when the flapper is displaced to
its maximum position, giving:

(F x − Fy)max

Psan
= 4(Z − �)

(1 + 4Z)
. (3.138)

This value is typically ≈0.8 for a servovalve. To ensure a reacting – hence, stabiliz-
ing – flow-reaction force, it is necessary that Z > � and gives:

16
(

Cqn

Cqo

)2 (dn

do

)2 (xnm

do

)2

> 16 C2
qn

(
xnm

dn

)2

,

dn

do
>
√

Cqo ≈ 0.9.

(3.139)

This is absolutely guaranteed if the nozzle diameter is greater than the orifice diam-
eter, which is the case in practice. For example, the servovalve previously discussed
has values of dn = 0.47 mm and do = 0.22 mm; hence, a ratio of ≈2.

3.4 Other Forces on Components

3.4.1 Static and Shear-Stress Components

The poppet valve previously analyzed again serves to illustrate the other forces that
must be considered to complete the steady-state force balance. Normally, grav-
itational forces are neglected because component masses are usually small. The
remaining forces are static, flow reaction, and shear forces, illustrated as shown in
Fig. 3.61.

In practice, the shear-stress component will probably be small; for example, in
the previous work discussed on a servovalve spool, the shear-stress component was
found, through CFD analysis, to contribute < 2% of the total axial force.
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Figure 3.61. The various forces acting on a poppet.

3.4.2 Transient Flow-Reaction Forces

Although this chapter is concerned with steady-state characteristics, it is appropri-
ate to include transient effects at this point because they are usually linked with
flow-reaction forces. The transient force arises from the motion of a port opening–
closing poppet or spool that creates a transient flow rate until the new steady-state
conditions have been established. Consider Fig. 3.62.

Considering Newton’s second law of motion and the spool annulus cross-
sectional area as, an approximation to the net force to cause acceleration of a fluid
slug of length � through the valve is given by:

F→ = ��as
dV1

dt
− ��as

dV2

dt
. (3.140)

Hence, the transient flow-reaction force that resists motion is given by:

F← = ��

(
dQ1

dt
− dQ2

dt

)
. (3.141)

      Q1                                                 Q2

as

Figure 3.62. A spool-valve schematic.
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Recalling the general flow equations discussed in Section 3.2.8, and assuming equal
flow coefficients for an orifice area ao that varies linearly with displacement x, we
have:

Q1 = Cqao

√
2(Ps − P1)

�
, Q2 = Cqao

√
2P2

�
.

Letting ao = wx, we have:

F = ��wCq
d
dt


x

√
2(Ps − P1)

�
− x

√
2P2

�


 . (3.142)

The transient net flow-reaction force then becomes a function of spool opening x
and the rate of change of both P1 and P2 with time. This can be done only within a
complete valve and circuit simulation, but often the transient flow-reaction term is
neglected.

3.5 The Electrohydraulic Servovalve

3.5.1 Servovalve Types

Servovalves are the heart of modern fluid power control systems in the sense that
they are the ideal interface between low-power electrical control signals and high-
power pressure or flow output. This means that advanced electrical transducer tech-
nology may be combined with simple-to-advanced control theory, either by a dedi-
cated digital controller or by a purpose-designed microcomputer. Figure 3.63 shows
three examples from the many servovalves that are commercially available.

The term electrohydraulic servovalve has become synonymous with fast-acting
high-precision proportional control valves, but they all have common control
aspects, as follows:

� a power supply port, a tank return port, two load ports
� an electrical input
� an electrical-to-electromagnetic force-generating stage
� spool-valve pressure-differential actuation by means of the force-generating

mechanism
� a mechanical or electrical mechanism for spool-valve positioning
� flow output from supply pressure to port A or port B and flow return from port

B or port A back to tank

A variation on the servovalve theme is shown in Fig. 3.64 that represents a “propor-
tional valve” in which the input electrical signal generates an electromagnetic force
by means of a permanent magnet differential motor, which then directly moves the
spool. Position control is achieved by an electrical position transducer whose signal
is coupled to the integral electronic control circuit.

A particular advantage of this valve is the removal of the first hydraulic stage
met in conventional servovalves and the possibility of a nozzle or orifice blockage
that is due to oil contamination particles is eliminated. However, the response of
the spool to a sudden requirement to move will be less than for a conventional
servovalve, although improvements continue to be made. This may not be a serious
issue in many applications.
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(a) Flapper–nozzle type using a force-feedback wire for spool-position control 

(b) A jet-pipe type using electrical transducer for spool-position control 

Servojet* Pilot Valve

New 24 V Electronics

X T A P B T2 Y

(c) Jet-deflector type with a force-feedback wire for spool-position control 

Figure 3.63. Three types of servovalve manufactured by Moog Controls Ltd.

3.5.2 Servovalve Rating

When selecting a servovalve from a manufacturer’s catalogue, the conventional
approach is to select a suitable size by using the “rated” data provided. To under-
stand this, it is necessary to return to the servovalve flow characteristics that are
now expressed in terms of current input rather than spool displacement. Following
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(b) Valve schematic 

(a) Permanent magnet force motor 

Figure 3.64. A direct-acting proportional control valve, Moog Controls Ltd.

Fig. 3.65, the two flow equations representing flow out of the servovalve and flow
back through the servovalve are then given as follows, assuming critically lapped
spool lands and a negligible return (tank) pressure:

Q1 = kf i
√

Ps − P1,

Q2 = kf i
√

P2. (3.143)

A critically lapped spool means that each spool face, or land, just matches each
port edge so that the smallest applied current will open the ports. For the rated
condition test, the two output ports are connected, and therefore equating the two
flow rates in Eq. (3.143) gives:

P1 + P2 = Ps . (3.144)

Hence, the sum of line pressures must equal the supply pressure, and this is a good
experimental test to check that the port flow characteristics are matched. If the con-
nected output ports have a restrictor in the line to create a load pressure differential
Pload, then, by definition:

P1 − P2 = Pload. (3.145)

A      B 
P1 Q1    P2 Q2

PS      Tank 

i
Figure 3.65. Servovalve symbol.
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Figure 3.66. Coil connections to give equivalent effect at 15 mA.

Hence, from these two previous equations, it follows that:

Q1 = Q2 = Q = kf i

√
Ps − Pload

2
. (3.146)

The rated condition test is then specified for a total load pressure drop of 70 bar at
a particular current applied, and called the rated current, where:

total valve pressure drop = (Ps − P1) + (P2 − 0) (3.147)

= Ps − Pload = 70bar. (3.148)

Therefore, from Eq. (3.139), the rated flow rate becomes:

Qrated = kf irated

√
35 bar. (3.149)

Care must be taken in choosing the correct units when applying this equation. The
two coils may be connected in one of three ways – series, parallel, and push–pull –
as shown in Fig. 3.66. The disadvantage of the series connection is that operation
ceases if the coil connection is broken.

Worked Example 3.10

A servovalve is rated at 38 L/min with a rated current of 15 mA applied.
The valve flow constant kf is given by:

Q = kf i
√

35,

38 = kf 15
√

35, kf = 0.428.

So, for example, at a supply pressure of 210 bar with a current of 10 mA and no
load pressure differential, the flow rate will be:

Q = kf i

√
Ps − Pload

2
= 0.428 × 10

√
210 − 0

2
= 43.86 L/min.

3.5.3 Flow Characteristics, Critically Lapped Spool

The characteristic for a critically lapped spool has already been discussed in the pre-
vious subsection, and this characteristic is pursued further here. The flow equation
for a servovalve with a critically lapped spool, and the output ports connected, has
been previously derived:

Q1 = Q2 = Q = kf i

√
Ps − Pload

2
. (3.150)
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The flow characteristic for a positive current is shown in the following example,
noting that for negative currents, the characteristic is reflected about both axes.

Worked Example 3.11

The flow–pressure characteristic of a critically lapped servovalve is shown for a
positive current and with the ports connected by a restrictor valve. The supply
pressure Ps = 100 bar. Determine the flow constant kf.
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(L/min) 

Load pressure (P1 – P2) bar

i = 8 mA 

4 mA 

    2 mA 

0
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Worked Example 3.11

The flow-rate equation is:

Q = kf i

√
Ps − Pload

2
,

so select the part of the characteristic where the load pressure is zero to give
Q = kf i

√
Ps/2:

∂ Q
∂i

= kf

√
Ps

2
≈ 11.2

8
= 1.4, kf = 1.4√

Ps/2
= 1.4√

50
= 0.2.

For both performance and control studies, it is common to define the flow gain
and the pressure gain as follows:

flow gain, Kqi = ∂ Q
∂i

= kf

√
Ps − Pload

2
, (3.151)

pressure gain, Kqp = ∂ Q
∂ Pload

= − kf i

2
√

2(Ps − Pload)
. (3.152)
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Using the original flow equation gives:

flow gain, Kqi = ∂ Q
∂i

= Q
i

, (3.153)

pressure gain, Kqp = ∂ Q
∂ Pload

= − Q
2(Ps − Pload)

. (3.154)

The pressure sensitivity Kpi is defined as the relationship between pressure-
differential and applied current. Recall that:(

∂ Q
∂i

)(
∂i

∂ Pload

)(
∂ Pload

∂ Q

)
= −1,

Kqi
1

Kpi

1
Kqp

= −1,

pressure sensitivity, Kpi = ∂ Pload

∂i
= − Kqi

Kqp
= 2(Ps − Pload)

i
. (3.155)

This suggests that the pressure sensitivity Kpi → ∞ as i → 0. This is not the case
in practice because each ostensibly critically lapped land will have some extremely
small inherent leakage path associated with it. This could be across the perimeter of
a land because of clearance between the spool outer diameter and the spool bush, or
sometimes deliberately introduced by machining a small underlap that is sometimes
specified by the user. Whatever the origin, spool underlap creates damping around
the null position, as will be shown later, and has a stabilizing influence. Therefore,
the pressure-sensitivity measured characteristic is a good test of how accurately the
critical lands and the spool–bushing have been manufactured.

3.5.4 Servovalve with Force Feedback

This type of servovalve is shown in Fig. 3.63(a), and there are several variations
on this design that still retain a feedback wire. Consider the electromagnetic stage,
often called the torque motor, coupled to the flapper and torque wire, as shown in
more detail in Fig. 3.67.

The operation of the torque motor and flapper stage is then as follows:

� The flapper armature has two coils positioned at each end and may be con-
nected in series, parallel, or push–pull. The interaction between the magnetic
field generated along the axis of the coils and the poles of the two permanent
magnets creates a torque and, hence, rotation of the flapper.

� The flapper is secured to the servovalve body by a flexible support called the
flexure tube, and its rotational stiffness is important in the control of the flapper
displacement at the pair of nozzles. The center of rotation of the flapper is not
necessarily at the base of the flexure tube.

� The effect of displacing the flapper to the left is to create a pressure differential
that moves the spool to the right, causing a rotation of the torque wire coupled
to the spool. This creates a feedback torque reacting against the electromagnetic
torque generated, and the flapper rapidly moves to its central position. This is
very close to the flapper rest condition, as a result of the design, with a resulting
displacement of the spool.

� The end of the torque wire has an accurately machined ball attached that is
matched to the slot in the spool.
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(a) Initial condition,
no current applied   

Figure 3.67. The torque motor and flapper–nozzle stage of a force-feedback servovalve (not
to scale and deflections highly exaggerated).

� The maximum spool displacement is typically 0.5 mm at the rated condition. If
the input current is suddenly applied, then the total time for the spool to move
to its required position will be typically 10–50 ms.

The torque generated by the torque motor is proportional to the current applied
but also has to overcome a torque generated by virtue of the fact that rotation of
the armature occurs within a magnetic field. Hence,

generated torque, T = kt i + km�, (3.156)

where � is the rotation of the armature and flapper. For a more detailed study of
this characteristic, see Urata (2004). The resisting torque consists of the flexure tube
torque, the flow-reaction-force effect at the flapper, and the wire torque effect from
its location in the spool slot that has moved a distance xs. This gives:

resisting torque, T = ka� + (Pa − Pb)anr + ky(r + b), (3.157)

where ka is the flexure tube rotational stiffness, an is the nozzle cross-sectional area,
(Pa − Pb) is the pressure differential generated by the flapper–nozzle stage, and
k is the lateral stiffness of the wire evaluated at the spool slot position. The total
deflection of the wire, y, is given by:

y = xs + (r + b)�. (3.158)

The displacement of the flapper at the nozzles is given by:

x = r�. (3.159)

Because flapper operation is designed to be around the central, null, position from
earlier work, the pressure differential generated may be simply written as:

(Pa − Pb) =
(

x
xnm

)
Ps . (3.160)
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Spool displacement is then determined from the force balance across the spool,
which is dominated by the feedback wire force and the spool flow-reaction force:

(Pa − Pb)as = ky + 2C2
qao cos � [Ps − Pload] , (3.161)

where as is the spool end cross-sectional area, the spool orifice area a0 = wxs for
rectangular ports having an area gradient w, Pload = P1 − P2. Combining these equa-
tions then gives the relationship between spool displacement and input current as
follows:

xs = (1 − �)kt i

�
(k + kf r )xnm

r Psas
+ k(r + b)(1 − �)

, (3.162)

� = k(r + b)xnm

r Psas
, (3.163)

� = ka − km + k(r + b)2 + anr2 Ps

xnm
, (3.164)

kf r = 2C2
qw cos �(Ps − Pload). (3.165)

The spool displacement will be proportional to input current provided that the
denominator of Eq. (3.162) is positive. The flow-reaction equivalent stiffness kf r

will probably be much smaller than the wire stiffness k, so that the effect of load
pressure differential Pload may not present a problem. In practice, � � 1 and can
be neglected. Notice also the destabilizing magnetic constant −km, the magnitude
of which can be varied during manufacture, the process known as detuning. In par-
ticular, � can be detuned to a very small value by magnetically increasing km, and
Eq. (3.162) then becomes:

xs ≈ kt i
k(r + b)

. (3.166)

The input electrical torque is balanced by the wire feedback torque because of spool
position, and the flapper will return to its central position between the nozzles.

3.5.5 Servovalve with Spool-Position Electrical Feedback

This type of servovalve can operate without wire force feedback as previously ana-
lyzed, but it is usual to leave this feedback mechanism in place to produce spool
centering if the electrical-position-feedback transducer fails. Also, the use of elec-
trical feedback means that the torque motor stage can be detuned more than usual
and the feedback wire stiffness also reduced. Bearing in mind the previous analysis
for the wire feedback-force case, approximation Eq. (3.166), a block diagram for
position feedback can be constructed as shown in Fig. 3.68.

b)k(r
tk

+

iH

id         +                i xs   

Figure 3.68. Feedback control of a servovalve
spool with force and position feedback.
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The current signal from the position transducer, having a gain of Hi mA/mm, is
subtracted from demand current id and the error current is then used to drive the
torque motor. The relationship between spool displacement and demand current
may then be written as:

xs

id
= 1

k(r + b)
kt

+ Hi

. (3.167)

Therefore, if:

k(r + b)
kt

� Hi ,

then:

xs

id
≈ 1

Hi
. (3.168)

Spool position now depends on only the position transducer gain and, therefore, this
is a desirable design. From Eq. (3.167), this is helped by reducing the wire stiffness k
in addition to applying the electromagnetic detuning process inherent in this design.
Note that this analysis has neglected dynamic behavior, and care must be taken that
the design approach does not destabilize the valve.

3.5.6 Flow Characteristics, Underlapped Spool

Figure 3.69 shows a spool that is symmetrically underlapped; that is, all lands are
machined back by the same very small amount.

The underlap is indicated by u and for a servovalve, it is equivalent to a current
iu, the current needed to just close off the underlap as the spool moves. Considering
the flow equations then gives:

Q1 = kf (iu + i)
√

Ps − P1 − kf (iu−i)
√

P1, (3.169)

Q2 = kf (iu + i)
√

P2 − kf (iu−i)
√

Ps − P2. (3.170)

These equations are valid only within the underlap region −iu < i < iu.

If the ports are connected such that Q1 = Q2 = Q, then the same condition for
pressures occurs as for the critically lapped spool:

P1 + P2 = Ps . (3.171)

So, again defining:

Pload = P1 − P2, (3.172)

                u                 u                               u                u 
      Ps                                 tank                                            Ps

   P1   Q1                                      P2   Q2

Figure 3.69. A servovalve symmetrically underlapped spool (underlap exaggerated).



3.5 The Electrohydraulic Servovalve 131

0

0.5

1

1.5

2

Pload/Ps

2

sP
uifk

Q

i/iu
1

0.75 

0.5 

0.25Figure 3.70. Flow characteristic for a
servovalve underlapped spool.

we may write the general flow equation as:

Q = kf (iu + i)

√
Ps − Pload

2
− kf (iu−i)

√
Ps + Pload

2
. (3.173)

The nondimensional form of this equation is particularly useful and may be written
as:

Q = Q

kf iu

√
Ps

2

= (1 + i)
√

1 − Pload − (1 − i)
√

1 + Pload,

i = i
iu

Pload = Pload

Ps
. (3.174)

This characteristic is shown in Fig. 3.70.
It is now useful to consider the blocked-load test in which the output ports are

blocked, the current is varied within the underlap region, and the pressures P1 and
P2 are measured. From Eqs. (3.169), (3.170), and (3.171), setting each flow to zero
gives:

P1 = (1 + i)
2

2(1 + i
2
)
, P2 = (1 − i)

2

2(1 + i
2
)
, Pload = 2i

(1 + i
2
)
, (3.175)

P1 = P1

Ps
, P2 = P2

Ps
, Pload = Pload

Ps
.

This blocked-load characteristic is shown in Fig. 3.71.
It follows that at the null condition:

dPload

di

∣∣∣∣∣
i=0,Pload=0

= 2 → dPload

di
= 2Ps

iu
. (3.176)

This is the pressure sensitivity Kpi , and its determination from the blocked-load test
and use of Eq. (3.176) allow the underlap to be experimentally determined. The
pressure sensitivity �= ∞ as is the case for a critically lapped spool, and it can be
predetermined to improve system damping, when connected to a real load actuator.
However, it does produce an additional flow loss – hence, a power loss.
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Figure 3.71. Blocked-load characteristic for an underlapped spool.

The leakage flow back to tank can also be measured, albeit probably a very
small value, under blocked-load conditions. This is given by:

Qleak = kf (iu − i)
√

P1 + kf (iu + i)
√

P2. (3.177)

Inserting values for pressure then gives:

Qleak = Qleak

kf iu
√

2Ps
= (1 − i

2
)√

1 + i
2
. (3.178)

This flow leakage loss characteristic is shown in Fig. 3.72.
The maximum flow loss occurs at the spool midposition, and the region of

underlap can be validated experimentally by determining the current at which the
leakage flow approaches zero. For this test, the servovalve flapper–nozzle-stage

0

0.25

0.5

0.75

1

s2Puifk

leakQ

i/iu

Figure 3.72. Leakage characteristic for an underlapped spool.
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leakage flow or jet-pipe-stage leakage flow will be present in the measurement and
will also vary slightly with input current within the underlap region.

Now considering the servovalve flow and pressure gains with the ports con-
nected, it follows from Eq. (3.173) that:

flow gain, Kqi = ∂ Q
∂i

= kf

√
Ps − Pload

2
+ kf

√
Ps + Pload

2
, (3.179)

pressure gain, Kqp = ∂ Q
∂ Pload

= − kf (iu + i)

2
√

2(Ps − Pload)
− kf (iu − i)

2
√

2(Ps − Pload)
. (3.180)

Considering then the null condition gives:

flow gain, Kqi = ∂ Q
∂i

= 2kf

√
Ps

2
, (3.181)

pressure gain, Kqp = ∂ Q
∂ Pload

= − kf iu√
2Ps

. (3.182)

Notice that both the flow gain and pressure gain at the null condition are twice the
values for a critically lapped spool as given by Eqs. (3.151) and (3.152). The flow
gain doubling at null in particular is useful because the conventional rating test will
show this if the spool is underlapped. An actual servovalve measurement is shown
in Fig. 3.73.

The supply pressure chosen was to achieve a reasonable flow-measuring accu-
racy by use of a gear-type flow meter with a range of ±16 L/min. Although the
accuracy of measurement is at its limit when the servovalve current approaches the
underlap region, it will be deduced that this servovalve has an underlap equivalent
to iu ≈ ±0.33 mA.

3.6 Positive-Displacement Pumps and Motors

3.6.1 Flow and Torque Characteristics of Positive-Displacement Machines

A positive-displacement pump or motor has a number of moving elements, such as
the gear, vane, and axial piston types like those shown in Fig. 3.74, that transfer the
fluid from one port to another.

There are other types, such as screw, internal gear, ring gear, and radial piston,
but in all cases they are defined by an important parameter known as the machine
displacement D, which has the units of cubic meters per radian, quite simply the
volume of fluid required per radian of revolution. Therefore, if the machine speed
is � rad/s, then the flow rate is given by:

Q = D� m3/s. (3.183)

For the ideal machine, the input power must equal the output power. Therefore, if
the flow rate is Q m3/s at a pressure of P N/m2 and the torque is T N m at a speed of
� rad/s, then:

fluid power (PQ) = mechanical power (T�),

T = QP
�

= DP N m. (3.184)
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Figure 3.73. Flow characteristic for a servovalve with ports connected, Ps = 100 bar, ISO 32
mineral oil at 40oC.
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(c) Axial piston type 

 (a) External gear type                                               (b) Vane type

Figure 3.74. Some common positive-displacement machines.

In other words, the flow and torque are uniquely defined by the displacement D once
the machine speed and working pressure is known. A pump is usually unidirectional
and draws the fluid from a tank or by means of a boost pump and, in both cases, at
a relatively low pressure compared with that at the delivery port. A motor can be
bidirectional – for example, when driving a mobile machine wheel – and both the
inlet and outlet ports may be pressurized. It then follows from Fig. 3.75 that:

Q1

P1

Q2

P2

ωm

Tm

 (a) Pump                                       (b) Motor 

Q1

P1

ωp

Tp
P2

Figure 3.75. Pump and motor positive-
displacement machines.

pump motor

Q1 = Dp�p, Q2 = Q1 = Dm�m, (3.185)

Tp = Dp(P1 − P2), Tm = Dm(P1 − P2). (3.186)
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Figure 3.76. A typical manufacturer’s performance plot for a pump.

In practice, there are fluid and mechanical losses so the ideal equations must be
modified. A pump output is load pressure, and a motor output is speed and load
torque. Therefore, the ideal flow and torque equations are modified as follows:

pump motor

Q1 = Dp�p − Q1loss, Q1 = Dm�m + Q1loss, (3.187)

Q2 = Dp�p + Q2loss, Q2 = Dm�m − Q2loss,

Tp = Dp(P1 − P2) + Tloss, Tm = Dm(P1 − P2) − Tloss. (3.188)

Flow losses associated with the inlet pressure are different from those associ-
ated with the outlet pressure for reasons of both flow continuity and the different
values of each pressure. For a pump, only the output flow-rate variation under load
is usually required. Each loss term cannot be uniquely defined because of the vari-
ety of different designs and types of machines commercially available. They depend
on speed, clearances, flow-path special designs, seal types, materials, the fluid used,
pressure, and so on, but in practice often show dominating linear relationships apart
from very low-speed cases for motors. This often means that some simple tests can
be performed, given appropriate instrumentation, to determine the dominant loss
terms if data are not supplied by the manufacturer. However, the understanding of
the effect of detailed design changes on losses is quite complex, as indicated from
examples considered in this book. A typical manufacturer’s performance plot for a
pump is shown in Fig. 3.76.

These performance characteristics are particularly useful for determining the
best operating condition for an application. For example, if the drive speed is
1500 rpm and close to a common electric motor drive speed of 1440 rpm, then the
best efficiency is gained by running the pump at a pressure of around 200 bar. How-
ever, significant variations in pressure of ±100 bar around the optimum will reduce
the efficiency only by 1%–2%. Note also that as the drive speed is reduced, the
flow-rate leakage loss is reduced at the same working pressure.
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3.6.2 Geometrical Displacement of a Positive-Displacement Machine

Theoretically, it is possible to determine the displacement of a positive-displacement
machine providing the variation of displacement with position of each displacing
element is known. Consider pumping action, in which volumes decrease with time;
then, the theoretical flow rate Qt is given by:

Qt = −
n∑

i=1

dVi

dt
= −�

n∑
i=1

dVi

d�
,

Qt = Dg�, Dg = −
n∑

i=1

dVi

d�
, (3.189)

where Dg is the theoretical geometrical displacement, n is the number of pumping
elements appropriate, and Vi is the corresponding volume that varies with angular
position.

For a gear pump, Fig. 3.74(a), the displaced volume variation from two counter-
rotating gears may be determined from the varying gear geometry. Note that fluid
is trapped by a gear tooth at the inlet and carried around with it, depositing it to
the outlet. It is not drawn through the central meshing part of the gear combination.
Gear pumps are the simplest, offer the lowest cost of positive-displacement pump
designs, are often manufactured from aluminum, and are ideal as boost pumps that
usually do not require large pressures and/or flow rates. They usually have an even
number of gear teeth, and the mean flow rate will have a superimposed flow ripple
that is due to the repetitive pumping contribution of each tooth. Gear-tooth design
is actually a complex process, with design standards varying from country to coun-
try. To get a feel for some of the basic issues, consider a pair of gears as shown in
Fig. 3.77. The base circle may be considered as the radius whereby the tooth invo-
lute form is achieved by unwinding a taught string wrapped around the base circle
(Mabie and Reinholz, 1987). For a gear pump, each gear is identical and the meshing
point is where the two involute forms just touch, given by point P in Fig. 3.77.

The line through point P and tangent to the two base circles defines the pres-
sure angle � . For further details, see Ivantysyn and Ivantysynova (2002), where it is
shown that by considering the tooth contact displacement interval:

displacement, D = 2b�

(
2r p

n

)2

�

[
n + 1 − �2 cos2 �

12

]
, (3.190)

where b is the gear width and n is the even number of teeth.

The flow ripple ratio is given by:

�Q
Q

= �2 cos2 �

4
(

n + 1 − �2 cos2 �

12

) . (3.191)

Hence, for a typical pressure angle of � = 20◦, the flow ripple becomes:

�Q
Q

= 2.18
[n + 0.27]

. (3.192)

This illustrates that a large flow ripple can be generated by a gear pump, compared
with an axial piston pump, unless a large number of teeth are used. However, the
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Figure 3.77. Meshing involute gears
applicable to a gear pump.

displacement is then reduced so either the speed must be increased or the width of
the gears or pitch radius increased.

A vane pump, Fig. 3.74(b), operation relies on a precise stator geometry design,
and it is this stator, or cam ring, contour variation with angular position that creates
the volume variation with angular position. Figure 3.78 shows a vane pump geom-
etry measured by the author, who obtained it by rotating an accurate electronic-
position transducer within and around the stator using a low-speed electric motor
drive assembly. The motor has a gear box with two outputs, one driving a pivoted
stylus with a ball end touching the cam ring and the other end touching the posi-
tion transducer. The other gear output drives a precision rotary potentiometer to
measure the angle turned during operation.

Consider the pump operation with reference to Figs. 3.74 and 3.78. Fluid is col-
lected at the inlet port by the vane and then carried to the precompression zone. At
this point, the package of fluid is trapped between the current vane and the vane
ahead for a short part of the precompression zone. Because the stator radius is
decreasing with increasing angular rotation, the trapped package of fluid is com-
pressed, ideally, to match the load pressure at the outlet port. This can be achieved
at only one pressure setting, for a fixed pump speed, which is that designed for the
pump. Important aspects of its operation are as follows:

� It will be noted that the outlet-port radius change is significantly higher than
within the precompression zone to give the pump its displacement value and
thus its flow-delivery characteristic. A constant rate of radius change throughout
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Figure 3.78. Measured stator geometry
of a fixed displacement vane pump.

the pumping cycle would give such a high precompression that the pump could
suffer from intolerably–high pressure fluctuations.

� The symmetrical shape of the stator profile ensures that a similar pumping
action is also taking place at the other outlet port.

� A further design feature of this and many other positive-displacement pumps,
particularly axial piston types, is the use of timing grooves at the entrance to
and the exit from the precompression zone. These timing grooves – in this case,
v-slots – are used to aid the transition of pressure between each region. In par-
ticular, it is necessary to ensure that the pressure achieved at the end of pre-
compression is matched to the load pressure as smoothly as possible. The tim-
ing grooves help in this respect but only at the design pressure and speed. At
other operating conditions, any resulting pressure differential across the timing
grooves will cause a flow of fluid in the appropriate direction either into or out
of the precompression zone.

� Each vane undertakes radial motion during its rotation, and this motion within
the slots is a further crucial design issue in terms of both friction and leakage
minimization.
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Figure 3.79. Motion of a piston within an axial piston machine.
� Because the flow-delivery process is one in which vanes repetitively enter and

leave the delivery port, the flow rate must contain a ripple characteristic super-
imposed on the mean flow.

It will be clear from considerations for the gear pump that it is a complex
matter, if not impossible, to develop a generic equation for displacement and ripple
for a balanced vane pump because of the complex design of the stator geometry.
However, experience shows that the vane-pump ripple is lower than the gear-pump
ripple.

Consider now an axial piston pump as shown in Fig. 3.74(c). Each piston has
a slipper assembly that moves tangentially around the swash plate because of the
rotation of the pump barrel. Consider then the position of a piston as it makes one
revolution (Fig. 3.79). The swash plate is at an angle to create a flow rate and, there-
fore, the displaced volume of one piston varies because of its axial motion within
the barrel during one revolution.
This piston instantaneous volume V is given by:

V = Vs
(1 − cos �)

2
. (3.193)

For n pistons, the total swept volume Vt is given by:

Vt

Vs
=

n∑
i=1

1 − cos
[

� + (i − 1)
2�

n

]
2

. (3.194)

Considering Fig. 3.79 for a nine-piston pump, only pistons 1−5 are considered,
with piston 1 just entering the port-plate kidney slot. The total volume variation
with position, given by Eq. (3.194), then depends on the angle at which piston
5 leaves the kidney slot. In this example, it is assumed that piston 5 rotates 20◦

before it is fully closed off from the kidney port. The summation continues until
40◦ of rotation has been reached, at which point the volume variation repeats itself.
Now consider the flow rate generated by the velocity effect from each piston. From
Eqs. (3.189) and (3.194), the total flow rate is given by

Q = Vs�

2
=

n∑
i=1

sin
[

� + (i − 1)
2�

n

]
. (3.195)

Now define a geometrical displacement Dg defined as:

Dg = nVs

2�
= nd2�

8
m3/rad, (3.196)

where d is the piston diameter and � is its stroke.
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Figure 3.80. Total swept volume and flow rate for a 9-piston pump.

Equation (3.195) then becomes:

Q
Dg�

= �

n

n∑
i=1

sin
[

� + (i − 1)
2�

n

]
. (3.197)

The volume change and the flow-rate change with angular position are shown in
Fig. 3.80 for a nine-piston pump.

The total swept-volume variation with angular position is remarkably linear
between peaks and results in:

maximum = (n + 2)
4

, minimum = (n − 2)
4

, mean = n
4
. (3.198)

The total swept volume changes by ±22% about the mean for a nine-piston
machine. Notice also that the flow rate has an inherent ripple that is remarkably
close to a sine wave at a frequency of (n × machine speed) but rectified, even for
the three-piston case. Frequency-spectrum analyses of pump ripple therefore often
show a frequency component of (2n × machine speed) that is due to interpreta-
tion of this rectified sine wave. The peak-to-peak value of the ripple is given by the
following exact solution:

�Q
Dg�

= �

n
tan

�

2n
, n even,

�Q
Dg�

= �

2n
tan

�

4n
, n odd. (3.199)

Table 3.3 shows the ripple variation for different numbers of pistons.
Notice that the pump ripple for an odd number of pistons is the same as if the

odd number were doubled to an even number, and it is for this reason that an axial
piston pump usually has an odd number of pistons. For a nine-piston pump, the
geometric ripple is 1.53% of the mean flow rate.

Table 3.3 Geometric ripple for an axial piston pump

n 3 4 5 6 7 8 9 10
�Q
Dg�

0.14 0.325 0.05 0.14 0.0253 0.078 0.0153 0.05

--------------------
�

--------------------------------------

�
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Figure 3.81. Schematic of an axial piston pump.

3.6.3 Flow Losses for an Axial Piston Machine

An axial piston pump is considered here because it has a variety of flow losses that
are similar in origin to other positive-displacement machines. Figure 3.81 shows a
schematic of an axial piston pump indicating various flow leakage paths that con-
tribute to the total flow loss.

To determine the flow into the pump and out of the pump, it is necessary to
consider suitable flow-control volumes within which the flow-loss terms interact, as
shown in Fig. 3.81(b). Flow continuity may then be applied to each control volume
to determine the output flow-rate and the input flow-rate balance.

The difference between the ideal displaced flow rate and the actual flow rate is
due to the following main issues:

� cross-port leakage Qi
� external leakages across components and to the pump casing Qe
� losses that are due to fluid compression Qc
� timing-groove losses Qt

The pump may have a pressure-boosted inlet to minimize cavitation for large flow
rates, so the inlet line pressure P2 may not be at tank return pressure Pt. Some
pumps have a “floating” port plate to provide the flow path between the external
pipe connection point and the pistons in the rotating barrel. The face of the body
seen by the pistons is kidney-shaped, as indicated in Fig. 3.79, and these inlet and
outlet kidney slots may be cast directly into the pump body or on the floating port
plate. The very nature of an axial piston pump design results in leakages across
faces, lands, and orifices, in addition to other fluid flow effects that are due to com-
pressibility and timing grooves. Therefore, considering Fig. 3.81 gives the following
flow-continuity equations:

outlet, Q1 = Dp� − Qi − Qe1 − Qc1 − Qt1, (3.200)

inlet, Q2 = Dp� − Qi + Qe2 + Qc2 + Qt2. (3.201)
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Figure 3.82. The use of timing grooves.

Considering practical output flow-rate measurements, the overall leakage flow char-
acteristic of an axial piston pump varies in a sufficiently linear way with increasing
pressure, and this suggests that individual leakage terms are dominated by a linear
pressure-drop–flow characteristic. This is assumed here.
Cross-port leakage occurs through the clearance between the rotating barrel inner
face and the opposing face and is given by:

Qi = P1 − P2

Ri
. (3.202)

External losses occur through the clearance between the rotating barrel outer face
and the opposing face. Each piston will also have a very small flow loss across its
perimeter and from the piston chamber to case, and a much more significant flow
loss through the slipper lubricating hole and across the slipper face. These three
elements of flow loss are lumped together as a single term:

Qe1 = P1

Re1
, Qe2 = P2

Re2
. (3.203)

Fluid compressibility losses are due to the fact that each line, for the general case,
is pressurized and results in an effective compressibility flow rate. Considering the
fluid compressibility equation and the ideal displaced flow rate, it is assumed that
this effect may be characterized as:

Qc1 = Dp�

(
P1

�

)
, Qc2 = Dp�

(
P2

�

)
, (3.204)

where � is the fluid effective bulk modulus.

Timing-groove flow losses is the final term being considered here and are connected
with the timing grooves that usually exist at the ends of each kidney port, as shown
in Fig. 3.82. Note that a pump may have only one timing groove.

Each small timing groove has a cross-sectional area that varies from zero at its
apex to a maximum at the entry point of the kidney slot. The piston that is moving
toward its bottom dead center (piston 5 in Fig. 3.82) will then begin to move in
the opposite direction toward its top dead center as its role changes from drawing
fluid in to pushing fluid out. To improve the pressure change from a low inlet value
P2 to full pump pressure P1, the groove is designed to smooth this transition. The
performance of such a timing groove is optimum around a particular design speed
and pressure but rarely achieves its desired effect perfectly; consequently, it creates
a small backflow of fluid. Hence, the pump output flow rate experiences a small
decrease when averaged over one half-cycle. The second timing groove operates on
a similar principle, allowing a smooth transition from full pump pressure P1 to low
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inlet pressure P2; for example, as shown for piston 1 in Fig. 3.82. For the purpose of
this analysis, these flow rates will be treated as losses and assumed to be proportional
to the appropriate pressure:

Qt1 = P1

Rt1
, Qt2 = P2

Rt2
. (3.205)

Considering flow-continuity equations (3.200) and (3.201) then gives:

inlet, Q2 = Dp� − (P1 − P2)
Ri

+ P2

Re2
+ Dp�

(
P2

�

)
+ P2

Rt2
, (3.206)

outlet, Q1 = Dp� − (P1 − P2)
Ri

− P1

Re1
− Dp�

(
P1

�

)
− P1

Rt1
. (3.207)

Collecting common terms then gives:

inlet, Q2 = Dp� − P1

Ri
+ P2

(
Dp�

�
+ 1

Ri
+ 1

Re2
+ 1

Rt2

)
, (3.208)

outlet, Q1 = Dp� − P1

(
Dp�

�
+ 1

Ri
+ 1

Re1
+ 1

Rt1

)
+ P2

Ri
. (3.209)

If the “true” flow losses are lumped together, and it is reasonable to assume
that Re1 = Re2 = Rext and Rt1 = Rt2 = Rtim, then the flow-continuity equations
become:

inlet, Q2 = Dp� − P1

Ri
+ P2

(
1

Re
+ 1

Ri

)
, (3.210)

outlet, Q1 = Dp� − P1

(
1

Re
+ 1

Ri

)
+ P2

Ri
, (3.211)

1
Re

= Dp�

�
+ 1

Rext
+ 1

Rtim
. (3.212)

The evaluation of the various loss parameters depends on the measurements possi-
ble in practice. It is important to note that the difference between the input and the
output flow rate is not the same as the case drain leakage:

Q1  P1

ω
Q2   P2

Qdrain

Q2 − Q1 = P1 + P2

Re
, (3.213)

Qdrain = P1 + P2

Rext
. (3.214)

Not all the components of pump external resistance can be determined from the
measurement of case drain leakage and output flow rate. It is important to be
aware of the changes to the four components of pump resistance as the displace-
ment, speed, or both is changed. During experimental testing, it is also important
to measure the speed of the pump drive because a small change under load could
lead to incorrect deductions regarding flow losses. A measured set of output flow-
rate characteristics from a pump set in the author’s laboratory is shown in Fig. 3.83
for the main in-line axial piston pump and a vane pump used for lower-pressure
circuits. Both pumps are connected to the same electric motor drive running at
1440 rev/min. The inlet line from the overhead supply tank is connected to both
pumps by a large-diameter inlet pipe, and the inlet pressure is negligible.
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Considering that the output flow only is usually measured:

outlet, Q1 = Dp� − P1

(
1
Re

+ 1
Ri

)
+ P2

Ri
,

Q1 = Dp� − P1

Rp
,

1
Rp

=
(

1
Re

+ 1
Ri

)
. (3.215)

These data suggest pump output resistances of Rp ≈ 6 × 1010 N m−2/m3 s−1 for the
axial piston pump and Rp ≈ 10 × 1010 N m−2/m3 s−1 for the smaller vane pump.

Worked Example 3.12

Data for an axial piston pump tested by the author in his laboratory for use with
a 95/5 oil-in-water emulsion for a steel mill continuous-caster unit application
are shown. The inlet is boosted by a centrifugal pump to a pressure of typically
3.5 bar. The output and case drain flow rates are measured.
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Worked Example 3.12

Also shown are the least-squares fits to the data. These indicate a flow rate
of 37.04 L/min when P1 → 0:

outlet, Q1 = Dp� − P1

(
1
Re

+ 1
Ri

)
+ P2

Ri
,

case drain, Qdrain = P1 + P2

Rext
,

1
Re

= Dp�

�
+ 1

Rext
+ 1

Rtim
.
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The measurement accuracy at very low pressures becomes an issue, and it seems
only sensible to use the slope of the case drain characteristic rather than the inter-
cept predicted as P1 → 0. In addition, the drain flow rate shows a weak second-
order effect at low pressures.

Considering the linear part gives:

1
Rext

≈ 0.0714 × 10−3

60 × 105
= 0.119 × 10−10 N m−2/m3 s−1.

Given that the cross-port leakage resistance Ri is usually much greater than the
external resistance Re, then from the load flow characteristic at P1 → 0,

Q1 ≈ Dp� → Dp = 37.04 × 10−3

60 × 150.8
= 4.09 × 10−6m3/rad.

This compares with the computed geometrical displacement given by:

Dg = nd2�

8
= 9 × (0.0127)2(0.0223)

8
= 4.05 × 10−6m3/rad.

The slope of the load flow-rate characteristic is given by:

1
Re

+ 1
Ri

= 0.0759 × 10−3

60 × 105
= 0.127 × 10−10.

Recall that:
1
Re

= Dp�

�
+ 1

Rext
+ 1

Rtim
,

1
Re

+ 1
Ri

= Dp�

�
+ 1

Rext
+ 1

Rtim
+ 1

Ri
.

Assuming a fluid effective bulk modulus � = 1.4 × 109 N/m2 and inserting data
for compressibility resistance and Rext then gives:

Dp�

�
+ 1

Rext
+ 1

Rtim
+ 1

Ri
= 0.127 × 10−10,

0.004 × 10−10 + 0.119 × 10−10 + 1
Rtim

+ 1
Ri

= 0.127 × 10−10,

1
Rtim

+ 1
Ri

= 0.004 × 10−10.

Considering next an axial piston motor, we may directly apply results obtained
for a pump, recalling that in many applications both lines will be pressurized. From
Eqs. (3.210) and (3.211), it follows that:

Q1

P1

Q2

P2

ωm

Tm

Q1 = Dm� + P1

(
1
Re

+ 1
Ri

)
− P2

Ri
, (3.216)

Q2 = Dm� + P1

Ri
− P2

(
1
Re

+ 1
Ri

)
. (3.217)
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Hence, if a constant-speed test can be arranged and the motor driven – for example,
by coupling the motor to a servovalve – then the resistance terms Re and Ri may be
determined with the following derivations from Eqs. (3.216) and (3.217):

Q1−Q2 = (P1 + P2)
Re

, (3.218)

Q1 + Q2

2
= Dm� + (P1 − P2)

(
1
Ri

+ 1
2Re

)
. (3.219)

If the flow-rate difference is constant, then the external resistance Re can be derived
from Eq. (3.218) if the sum of line pressures is constant. With a servovalve control-
ling the motor, this will not be the case because of motor torque losses. However,
tests show that the sum of line pressures is above 90% of the maximum possible,
particularly at increasing pressure differentials and speeds. A set of flow-rate mea-
surements taken on a motor coupled to a servovalve, and undertaken by the author,
is shown in Fig. 3.84.

It is clear from the measured characteristics that the flow difference is suffi-
ciently constant, indicating that it is probably insensitive to line pressures, given
the large changes that occur over the test conditions. The average flow differ-
ence for the complete set of data is 0.47 L/min. Note the limited lower-pressure
differential range that is due to motor torque losses, to be discussed later, but
dominated by stiction–coulomb friction. However, for realistic loads, the sum of
line pressures approaches the maximum possible of 100 bar, the supply pressure
to the servovalve. A typical sum of pressure for calculations can be taken to be
95 bar.

Worked Example 3.13

Considering Fig. 3.84, determine the motor’s resistance values.

(i) To determine Re, it can be seen that the difference between the input flow
rate and the output flow rate is sufficiently constant for a range of pressure
differentials and speeds, allowing Eq. (3.218) to be used:

Q1 − Q2 = (P1 + P2)
Re

.

The flow-rate difference is remarkably constant, ≈0.47 L/min for a range of pres-
sure differentials and speeds. The sum of line pressures is ≈95 bar with sufficient
accuracy, and therefore:

Re = 95 × 105

0.47 × 10−3

60

= 1.21 × 1012 N m−2/m3 s−1.

(ii) To determine Ri, from Eq. (3.219):

Q1 + Q2

2
= Dm� + (P1 − P2)

(
1
Re

+ 1
2Ri

)
.
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Hence, the inverse of the slope of the (mean flow rate)/(pressure differential)
graph gives:(

1
Ri

+ 1
2Re

)
≈ 0.692 × 10−12,(

1
Ri

+ 0.413 × 10−12
)

≈ 0.692 × 10−12 → Ri = 3.58 × 1012 N m−2/m3 s−1.

For this motor, the external leakage resistance is smaller, although not negligible,
than the cross-port leakage resistance, as might be expected primarily because of
slipper leakage.

The motor displacement can be determined from the mean flow equation. By
considering the extrapolated data to the zero-pressure-differential condition, the
mean flow intercepts can be determined and plotted against speed. The results
here give a remarkably linear characteristic. At a speed of 710 rpm, the best
straight-line fit gives a mean flow of 7.5 L/min:

Dm = 7.5 × 10−3

60
(

710 × 2�

60

) = 1.68 × 10−6 m3/rad.

3.6.4 Torque Losses for an Axial Piston Machine

For a pump running at ostensibly a constant speed, the input torque from the drive
must overcome torque losses to provide the output hydraulic torque. From earlier
work in this chapter, it will be recalled that:

Q1

P1

ωp

Tp
P2

Tp = Dp(P1 − P2) + Tloss. (3.220)

The torque loss characteristic depends on the particular type of pump being consid-
ered, although there are some common terms that are due to viscous friction and
stiction–coulomb friction. A torque loss that is due to fluid viscosity arises from the
fact that there are rotating components surrounded by the working fluid, and this
torque loss is assumed to be proportional to pump speed. Stiction friction arises
from the small torque necessary to cause the pump shaft to just turn. This then
falls to the coulomb friction value as the shaft is rotating. Stiction friction obviously
becomes more important for motors around zero speed and will be discussed later.
For a pump at a particular speed and pressure, it is sufficient for this analysis to use
the following general equation:

Tp = Dp (P1 − P2) + Bv�p + Tsc, (3.221)

where Bv is the viscous friction coefficient and Tsc is the stiction–coulomb friction
torque loss function.
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For axial piston machines, the running value of friction is affected by the load
pressure because of the orientation of the pistons and the swash plate, and its mathe-
matical form is not precise. Previous work – for example, Hibi and Ichikawa (1975) –
and other studies suggest that this friction effect can be considered proportional to
the displacement and the pressure differential P1 − P2. Therefore, Eq. (3.221) for
an axial piston pump becomes:

Tp = Dp(P1 − P2) + Bv�p + �Dp(P1 − P2) + Tc,

Tp = (1 + �)Dp(P1 − P2) + Bv�p + Tc. (3.222)

Here, Tc is the coulomb friction running torque. Therefore, it might be expected that
a practical measurement of shaft torque against pressure differential will overesti-
mate the pump displacement, as evident from Eq. (3.222).

Worked Example 3.14

Worked Example 3.12 considered an axial piston pump test using a 95/5 oil-
in-water emulsion. The inlet is boosted by a centrifugal pump to a pressure of
typically 3.5 bar. Now consider the measured torque characteristic.
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Worked Example 3.14

Also shown is the best straight-line fit to the data. Recall the torque equation
(3.222):

Tp = (1 + �)Dp (P1 − P2) + Bv�p + Tc,

Tp = (1 + �)Dp P1 + [Bv�p + Tc − (1 + �)Dp P2]︸ ︷︷ ︸
cannot be separated from this test

.

From the graph, [Bv�p + Tc − (1 + �)Dp P2] ≈ 7.15 N m. From the slope of
Tp/(1 + �)Dp P1,

(1 + �)Dp = 0.415
105

= 4.15 × 10−6 m3/rad.

From torque:

(1 + �)Dp = 4.15 × 10−6 m3/rad.

From flow rate:

Dp = 4.09 × 10−6 m3/rad.
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From piston geometry:

Dg = 4.05 × 10−6 m3/rad.

This suggests that � ≈ 0.02.

Now consider the torque losses for a motor and particularly the most common
axial piston type. The analysis for a pump has to be modified because a motor will
operate at all speeds, including very low speeds around zero. Equation (3.222) now
becomes:

Tm = (1 − �)Dm(P1−P2) − Bv�m − Tsc, (3.223)

where Tsc is now a nonlinear term embracing stiction and coulomb friction. A mea-
sured torque loss [�Dm(P1 − P2) + Bv�m + Tsc] characteristic is shown in Fig. 3.85
for a range of speeds and pressure differentials.

A similar characteristic holds for speeds in the reverse direction. This is the
same motor whose flow characteristics were shown in Fig. 3.84 and analyzed in
Worked Example 3.13. The coulomb friction value is Tc ≈ 1.7 N m and equiva-
lent to a pressure differential of 10 bar because the motor displacement is Dm =
1.68 × 10−6 m3/rad. The stiction value is typically doubled and has an equivalent
pressure differential of Ts ≈ 20 bar. This is often termed the break-out pressure. The
effect of pressure differential is evident, as discussed earlier, together with the vis-
cous friction effect. For this motor, � ≈ 0.05 using the midspeed range and pressure
differentials between 50 and 100 bar. The viscous friction coefficient is given by a
typical value of Bv ≈ 0.02 N m/rad s−1.

For computer-modeling purposes, the stiction–friction characteristic can be
approximated by:

Tsc = Tc + (Ts − Tc)e−N/Nref , (3.224)

where N is the motor speed and Nref is selected to give a sufficiently acceptable
representation of the measured characteristic; for example, 20 rpm in Fig. 3.85. To
complete the calculations, the torque–pressure-differential characteristic is needed
at different motor speeds, Fig. 3.86 being representative of the present motor.

It can be seen that the slope of each of the measured torque characteristics is
less than the ideal value as anticipated, the average least-squares estimate giving a
slope of (1 − �)Dm = 1.6 × 10−6 m3/rad . Assuming the expected no-loss value to be
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Figure 3.85. Torque loss characteristics for an axial piston motor.
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Figure 3.86. Torque characteristics for an axial piston motor.

1.68 × 10−6 m3/rad, then � ≈ 0.05, similar to the value deduced from the flow loss
characteristic in Worked Example 3.13.

3.6.5 Machine Efficiency — Axial Piston Pump

The overall efficiency is the product of volumetric efficiency and mechanical effi-
ciency, and defined as follows:

(i) Volumetric efficiency

	v = output hydraulic flow rate
input mechanically − generated flow rate

,

=
Dp�p − P1

Rp
+ P2

Ri

Dp�p
,

= 1 − P1

Dp�p Rp
+ P2

Dp�p Ri
. (3.225)

Assume that the inlet pressure effect can be neglected and define a leakage pressure-
loss term as follows:

leakage pressure loss, Pq = Dp�p Rp, (3.226)

	v = 1 − P1

Pq
. (3.227)

(ii) Mechanical efficiency

	m = output hydraulic torque
input mechanical torque

,

= Dp(P1 − P2)
(1 + �)Dp(P1 − P2) + Bv�p + Tc

, (3.228)

= 1

(1 + �) + (Bv�p + Tc)
Dp(P1 − P2)

.
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Assume that the inlet pressure effect can be neglected and define a friction pressure-
loss term as follows:

Friction pressure loss, Pf = (Bv�p + Tc)
Dp

, (3.229)

	m = 1

(1 + �) + Pf

P1

. (3.230)

(iii) The overall pump efficiency is then given by:

	pump = 	v	m =
1− P1

Pq

(1 + �) + Pf

P1

,

(1 + �)	pump = P1 − P
2
1

P1 + 1
kp

, (3.231)

P1 = P1

Pq
, kp = (1 + �)Pq

Pf
= (1 + �)D2

p�p Rp

(Bv�p + Tc)
. (3.232)

For large and desirable values of kp, the efficiency curve becomes asymptotic to
the straight line defined by (1 + �)	pump = 1 − P1. Increasing kp is better achieved
by increasing the displacement that is due to the squared effect indicated in
Eq. (3.232).

A plot of pump efficiency variation with load pressure is shown in Fig. 3.87 for
different values of kp and illustrates that maximum efficiency occurs along the line
(1 + �)	pump = 1 − P1.
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Figure 3.87. Total efficiency of an axial piston pump.
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The condition for maximum efficiency is obtained by differentiating Eq. (3.231)
with respect to load pressure, and this gives the solution:

P1 =
√

1 + kp − 1
kp

,

maximum (1 + �)	pump = 1 − 2P1 (3.233)

= (
√

1 + kp − 1)2

kp
.

A feel for the effect of kp on the pressure for maximum efficiency can be obtained
by noting that if kp is large, then a good approximation becomes:

P1 =
√

1 + kp − 1
kp

≈ 1√
kp

,

P1 =
√

Pq Pf

(1 + �)
=
√

�p Rp(Bv�p + Tc)
(1 + �)

. (3.234)

The pressure for maximum efficiency, therefore, will probably not be affected signif-
icantly by increasing the pump displacement, assuming the other loss terms remain
the same. In fact, increasing the displacement also increases kp, making it more
likely that Eq. (3.234) applies, as mentioned earlier.

Worked Example 3.15

Considering Examples 3.12 and 3.14, loss coefficients were established for an
axial piston pump operating with a 95/5 oil-in-water emulsion. These were found
to be as follows:

output resistance, Rp = 7.9 × 1010 N m−2/m3s−1

displacement, Dp = 4.07 × 10−6 m3/rad, pump speed �p = 150.8 rad/s,

friction loss (Bv�p + Tc) = 7.15 N m, friction loss coefficient � = 0.02,

Pq = Dp�p Rp, Pf = (Bv�p + Tc)
Dp

,

kp = (1 + �)Pq

Pf
, 	pump = 1

(1 + �)

(
P1 − P

2
1

)
(

P1 + 1
kp

) .

This results in:

Pq = (4.07 × 10−6)(150.8)(7.9 × 1010) = 485 bar,

Pf = 7.15

4.07 × 10−6
= 15.2 bar,

kp = 1.02 × 485
15.2

= 32.55,

	pump =
0.98

(
P1 − P

2
1

)
(P1 + 0.031)

, P1 = P1 (bar)
485

.
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A comparison between the measure efficiency and the theoretical efficiency is
shown.
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Worked Example 3.15

The maximum efficiency occurs at a pressure given by:

P1 =
√

1 + kp − 1
kp

=
√

1 + 32.55 − 1
32.55

= 0.147,

P1 = 0.147 × 485 = 71.4 bar.

The data scatter suggests that the condition for maximum efficiency probably
matches that predicted with the pump performance model.

3.6.6 Machine Efficiency — Axial Piston Motor

Considering the previous work on an axial piston pump and the parameter defini-
tions, then the equations for the same machine now acting as a motor become as
follows:

(i) Volumetric efficiency

For a motor, there becomes an issue of defining the flow rate because both lines
are usually pressurized. The mean flow rate defined in Eq. (3.219) therefore will be
used for this analysis:

Q1 + Q2

2
= Dm�m + (P1 − P2)

Rm
,

1
Rm

= 1
Ri

+ 1
2Re

, (3.235)

	v = output mechanically − generated flow rate
input hydraulic flow rate

= Dm�m

Dm�m + (P1−P2)
Rm

= 1

1 + (P1−P2)
Dm�mRm

. (3.236)



156 Steady-State Characteristics of Circuit Components

Now define the leakage pressure loss:

Pq = Dm�mRm (3.237)

	v = 1

1 + (P1 − P2)
Pq

. (3.238)

(ii) Mechanical efficiency

	m = output mechanical torque
input hydraulic torque

= (1 − �)Dm(P1 − P2) − (Bv�m + Tc)
Dm(P1 − P2)

= (1 − �) − (Bv�m + Tc)
Dm(P1 − P2)

. (3.239)

Now, again, define a friction pressure loss term:

Pf = (Bv�m + Tc)
Dm

. (3.240)

The mechanical efficiency then becomes:

	m = (1 − �) − Pf

(P1 − P2)
. (3.241)

(iii) The overall motor efficiency is then given by:

	motor = 	v	m =
(1 − �)− Pf

(P1 − P2)

1 + (P1 − P2)
Pq

,

	motor

(1 − �)
=

P� − 1
km

P� + P
2
�

,

P� = (P1−P2)
Pq

km = (1 − �)Pq

Pf
= (1 − �)D2

m�mRm

(Bv�m + Tc)
. (3.242)

For large and desirable values of km, the efficiency curve becomes asymptotic to the
straight line defined by:

	motor

(1 − �)
= 1

(1 + P�)
,

and maximum efficiency occurs along the line:

	motor

(1 − �)
= 1

(1 + 2P�)
. (3.243)

A plot of motor efficiency variation with pressure differential is shown in Fig. 3.88.
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Figure 3.88. Total efficiency of an axial piston motor.

The condition for maximum efficiency is obtained by differentiating (3.242) with
respect to pressure differential, and this gives the solution:

P� =
√

1 + km + 1
km

maximum,
	motor

(1 − �)
= 1

(1 + 2P�)

= (
√

1 + km − 1)2

km
. (3.244)

These equations are similar to those for a pump, and it follows that for real
machine data, the maximum efficiency condition can be approximated by:

P� =
√

1 + km + 1
km

≈ 1√
km

,

P� =
√

Pq Pf

(1 − �)
=
√

�mRm(Bv�m + Tc)
(1 − �)

. (3.245)

An interesting conclusion may be drawn from this analysis for a pump and a motor
if it is assumed that the displacements are equal, friction is dominated by coulomb
friction, and � is negligible. The ratio of pressures at maximum efficiency is then
given by:

P1pump

(P1 − P2)motor
≈
√

km

kp
≈
√

�mRm

�p Rp
=

√√√√√√√�m

�p

(
1 + Ri

Re

)
(

1 + Ri

2Re

) . (3.246)

Therefore, if the speeds are equal, the load pressure for maximum efficiency of a
pump will be higher than the differential pressure for a motor. In practice, the abso-
lute maximum efficiency for a motor can also occur at a lower speed than for the
same machine acting as a pump.
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(a) A single-stage PRV                                       (b) A two-stage PRV 

a

b

d
First stage 
to set the 
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Figure 3.89. Schematics of a PRV.

3.7 Pressure-Relief Valve Pressure–Flow Concepts

The basic principle of a PRV operation is that the system pressure force acts against
a variable resisting force, usually a spring mechanism, until a set force, equivalent
to a set pressure, has been reached. Any pressure increase above this “cracking
pressure” Pc will cause the main poppet to open, allowing flow relief to regulate the
pressure. It is usually assumed that flow across the main poppet follows Bernoulli’s
equation. Figure 3.89 shows the principle of operation of a single-stage PRV and a
two-stage PRV.

The two-stage PRV is discussed in Section 3.3.3, the cracking pressure being set
by the first-stage spring, which is much stiffer than the second-stage spring behind
the poppet. The smallest movement of the first-stage poppet creates a pressure
behind the main poppet at a value between tank pressure and system pressure. This
produces a smaller increase from the cracking pressure during operation than with
the simple single-stage PRV because the system pressure is opposed by the weak
second-stage spring plus the small flow-reaction force. Actually, the flow-reaction
force can be important for this two-stage PRV, as discussed in Section 3.3.3. For
the single-stage PRV, the pressure increase during operation is directly affected by
the stiffness of the single main stiff spring plus the small flow-reaction force. The
pressure–flow characteristic of PRVs can vary in terms of the pressure-drop–flow-
rate characteristic when manufacturers’ data are considered. A good design has a
small pressure increase as flow is passed through it. Because the poppet opening is
usually controlled by a main-stage spring, to a greater or lesser extent, then the char-
acteristic can be generically defined. Once the pressure has exceeded the cracking
pressure Pc, then the net pressure difference creates the poppet opening x. Flow is
assumed to obey Bernoulli’s equation, and the flow area is assumed to be propor-
tional to poppet opening x. The flow rate through the PRV is then given by:

Q = K(P − Pc)
√

P P > Pc. (3.247)

So, increasing the flow area, by increasing K, reduces the valve resistance at the
opening point and at all other operating points. It will be obvious from Eq. (3.247)
that because the flow rate rapidly increases when the pressure is typically no greater
than 20 bar above the cracking pressure, then the square-root effect is only small.
Figure 3.90 shows the characteristic of two different two-stage PRVs.
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Figure 3.90. Flow/pressure characteristics of two different two-stage PRVs.

It can be seen that each characteristic shows a nonlinear effect around the crack-
ing point, but the characteristic becomes remarkably linear over the higher-pressure
range, which is still only a small value above the cracking pressure. Manufacturers’
data for some single-stage PRVs show a near-linear characteristic over the entire
pressure range achievable above the cracking pressure.

The valve resistance just as it opens; that is, when P = Pc, is given by:

Rrv = dP
dQ

∣∣∣∣
P=Pc

= 2
K

√
Pc

. (3.248)

A good feature is that even if the flow characteristic obeys the Bernoulli form given
by Eq. (3.247), then the valve resistance decreases by only 13% as the pressure
increases 10% beyond the cracking pressure. This has some importance when the
dynamics of a circuit containing a PRV is considered.

3.8 Sizing an Accumulator

When considering the calculation of changing gas volumes within an accumulator,
it is usually assumed that slowly changing processes are considered as isothermal,
whereas rapidly changing processes are considered as adiabatic; that is:

PVn = constant,
(3.249)

n = 1 isothermal, n = 1.4 adiabatic.

Actually, n changes with the rate of charging, as shown in Watton and Xue (1995),
and the exponent n can actually exceed 1.4, the tests described sometimes giving
n = 1.6 for the largest volume of 4 L used from the 1 L, 2 L, 4 L set. In addition, the
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Figure 3.91. The variation in gas expo-
nent n (rearranged from Parker Engi-
neers Design Book, Vol. 1, 2001).

exponent n also varies with both the charging time and the pressure level, as shown
in Fig. 3.91.

Consider the problem of deciding an accumulator size if 4 L of oil is to be deliv-
ered when a circuit, operating at 207 bar, discharges to a pressure of 110 bar in 0.8 s.
It is assumed here that the operating pressure is achieved by a slow charging process
such that the ideal isothermal process n = 1 may be assumed. From Fig. 3.91, and
assuming that the discharging process has a mean pressure of 158.5 bar, take n =
1.82. The accumulator bladder volume states are shown in Fig. 3.92.

V1

99 bar 

V2

207 bar 

V3

110 bar 

Precharged                           Set to system pressure                              Rapid discharge 

Slow process 

  PV = const 

Fast process 

PV n = const 

Figure 3.92. The system process of charging and discharging.

(i) Precharge the accumulator to 90% of the lowest pressure used:

P1 = 0.9 × 110 = 99 bar.

(ii) Slow isothermal charging to working pressure:

P1V1 = P2V2,

99V1 = 207V2 → V1 = 2.09V2.

(iii) Fast discharging:

P2V1.82
2 = P3V1.82

3 ,

207V1.82
2 = 110V1.82

3 → V3 = 1.41V2.
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(iv) But the required volume to be discharged is:

V3 − V2 = 4 L,

1.41V2 − V2 = 4 → V2 = 9.76 L,

V1 = 20.5 L.

Select a 21-L accumulator.

3.9 Design of Experiments

Whether or not a computer simulation or experimental testing is undertaken, it
is often useful to determine trends in performance around a particular operating
condition. If a simple linear model, for example, can be determined with suffi-
cient accuracy for changes about the chosen operating condition as a number of
important parameters are varied, then this can lead to a rapid assessment of poten-
tial design improvements. The design of experiments, in the present context, is an
ordered approach to parameter changes such that minimum computation is nec-
essary to determine the functional relationship. It is based on the matrix method
of least squares, which actually can represent either linear or nonlinear functional
relationships.

For example, with n design variables x1, x2, . . . , xn and the design output y, then
a linear combination would be as follows:

y = b0 + b1x1 + b2x2 + · · · + bnxn. (3.250)

Because each combination of design variables leads to one experiment, then there
will be N experiments resulting in the following matrix form:



y1

y2

y3

...
yn


 =




1 x1
1 x1

2 . . . x1
n

1 x2
1 x2

2 . . . x2
n

1 x3
1 x3

2 . . . x3
n

...
...

...
1 xN

1 xN
2 . . . xN

n







b0

b1

b2
...
bn


 (3.251)

In general terms, a times-series is represented in matrix notation as follows:

Y = A�. (3.252)

The least-squares solution for the unknown coefficients � is:

� = (ATA)−1ATY. (3.253)

The error vector e is defined as:

e = Y − A�. (3.254)

The variance �2 is given by:

�2 = eTe/(N − n). (3.255)

(N − n) is referred to as the number of degrees of freedom. The variance of esti-
mates is given by:

V(�) = �2(ATA)−1. (3.256)
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Considerable computational effort can be gained if the design variables are
expressed in nondimensional values and set to specific values of −1, 0, +1 because
the matrix (ATA)−1 can be transformed into diagonal form. However, the number
of experiments is then fixed.

Example

Average noise measurements are made on a pump in which both the pressure and
speed may be varied. Determine a best-estimate linear relationship given the fol-
lowing experimental conditions:

Speed x1 1500 rpm 1000 rpm 500 rpm
Pressure x2 250 bar 200 bar 150 bar

Nondimensionalize with respect to a reference speed of 1000 rpm and a refer-
ence pressure of 200 bar as follows:

x → (x − xref)
(xmax − xmin)/2

. (3.257)

This gives:

−1 0 +1
Speed x1 1500 rpm 1000 rpm 500 rpm
Pressure x2 250 bar 200 bar 150 bar

Then, design the experiments by using all combinations as follows:

A =




x1 x2

1 1 1
1 1 0
1 1 −1
1 0 1
1 0 0
1 0 −1
1 −1 1
1 −1 0
1 −1 −1




. (3.258)

It is then an easy matter to show that:

ATA =

9 0 0

0 6 0
0 0 6


 ; (3.259)

�0 = 1
9

[y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9] ± �/
√

9,

�1 = 1
6

[(y1 + y2 + y3) − (y7 + y8 + y9)] ± �/
√

6, (3.260)

�2 = 1
6

[(y1 + y4 + y7) − (y3 + y6 + y9] ± �/
√

6.
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The nine measured noise data for the nine different parameter combinations given
by Eq. (3.258) are as follows:

Noise level dB(A) Y =




88.6
85.8
84.1
87.2
84.9
82.8
86.2
83.8
81.5




.

Application of Eq. (3.260) then gives:

�0 = 85 ± 0.066,

�1 = 1.17 ± 0.081,

�2 = 2.17 ± 0.081.

The pump noise level is then given by the following linear approximation:

Noise level = 85 + 1.17
(N − 1000)

500
+ 2.17

(P − 200)
50

dB(A).

Clearly, increasing the pressure has a more significant effect on noise level than
increasing speed for this particular machine.
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4 Steady-State Performance of Systems

4.1 Determining the Power Supply Pressure Variation during Operation for
a Pump–PRV–Servovalve Combination: A Graphical Approach

First, consider a pump supply circuit to illustrate some calculation issues that arise
for even this simple circuit, which is shown in Fig. 4.1. The PRV cracking pressure
is set at 150 bar.

The flow–pressure characteristics of each component is shown, where the units
are flow in liters per minute, pressure in bar, and current in milliamperes. The
steady-state flows and the flow-continuity equations are:

Qp = 40 − 0.03P,

Qrv = 0.25(P − 150)
√

P, P > 150 bar,

Qsv = 0.18i
√

P − Pload,

Qp = Qrv + Qsv. (4.1)

The pressure differential across the servovalve output ports is Pload, as required by
the load actuator.

Nonlinear equation (4.1) in pressure P is not difficult to solve numerically, but
an insight into the effect of the circuit interconnection can be gained by a graphical
plot of Eq. (4.1). This is done in Fig. 4.2 for a servovalve load pressure differential
of Pload = 0 and for servovalve currents of 0, 10, and 20 mA.

As the current is increased, the load flow is increased and the supply pres-
sure P would be expected to fall. Figure 4.2 is drawn by plotting Qp and the sum
(Qrv + Qsv). The intersection of the two curves gives the operating pressure P.

For zero servovalve current, the pump flow rate matches the PRV flow rate to
give a pressure of 161 bar.

As the current is increased to 10 mA and then to 20 mA, the pressure falls to
155 bar and then to 105 bar. Note that for a servovalve current of 20 mA, the PRV
is not in operation because its cracking pressure is set at 150 bar. Such a graphi-
cal approach is quick to implement and gives a better visual impact than a purely
mathematical numerical solution.
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Figure 4.1. A power supply subcircuit linking a pump–PRV–servovalve.

4.2 Meter-Out Flow Control of a Cylinder

Figure 4.3 shows the system with the flow-control valve and check valve positioned
such that load runaway is avoided. The lowering speed is set to 0.1 m/s.

The following data apply:

Pump flow rate = 45 L/min, load mass M = 500 kg
Cylinder bore diameter = 76.2 mm → A1 = 4.56 × 10−3 m2

Cylinder rod diameter = 44.3 mm → A2 = 3.20 × 10−3 m2, � = A1/A2 = 1.425
Pressure drop across the directional valve at full pump flow = 8 bar
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Figure 4.2. Graphical solution for the supply pressure.
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A1

P1

A2

P2

Figure 4.3. Meter-out flow control of an actuator
lowering.

Flow-control valve setting requires a 20-bar pressure drop
Pressure drops across the check valve and down the lines may be neglected
Required retracting velocity = 0.1 m/s

(i) Lowering
The flow-controlled flow rates are calculated as:

Qin = A1 U = (4.56 × 10−3)(0.1) = 4.56 × 10−4 m3/s (27.36 L/min),
Qout = A2 U = (3.20 × 10−3)(0.1) = 3.20 × 10−4 m3/s (19.20 L/min).

So, the flow-control valve is set at 19.20 L/min.
It is assumed that the directional-valve pressure drop across any port is pro-

portional to (flow)2. Starting at the tank end of the system, the pressure at the
directional-valve return port is (8)(19.2/45)2 = 1.46 bar.

Because the flow-control valve requires a minimum pressure drop of 20 bar,
the annulus pressure = (1.46 + 20) = P2 = 21.46 bar.

The steady-state force equation is:

P2 A2 = P1 A1 + Mg,

P1 = P2
A2

A1
− Mg

A1
= 21.46

1.425
− 500 × 9.81

(4.56 × 10−3)(105)
(4.2)

= 4.3 bar.

Adding the pressure drop across the directional-valve supply port gives a supply
pressure = (8)(27.36/45)2 + 4.3 = Ps > 7.26 bar. This is a very low pressure that
is due to the load mass effect on the force equation.

(ii) Lifting
The check valve now allows flow-control bypass, as shown in Fig. 4.4.

To determine the system pressures, assume that the PRV is set to a high
value and that all the pump flow is delivered to the actuator. Hence, Qin = 45
L/min and Qout = (45)(1.425) = 64.13 L/min.

The pressure drop across the directional valve is 8 bar at the supply ports
and (8)(64.13/45)2 = 16.25 bar at the return ports. So, P1 = 16.25 bar.
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A1

P1

A2
P2

Figure 4.4. Actuator lifting with flow control bypassed.

The steady-state force equation is:

P2 A2 = P1 A1 + Mg,

P2 = P1
A1

A2
+ Mg

A2
= (16.25)(1.425) + 500 × 9.81

(3.20 × 10−3)(105)

= 38.49 bar. (4.3)

The supply pressure is now determined by adding the pressure drop of 8 bar across
the directional-valve supply port to give Ps > 46.49 bar. This is higher than the
requirement for lowering, so it is deduced that the supply pressure should be set
to a value greater than 46.48 bar.

The lifting speed is (45 × 10−3/60)/(3.20 × 10−3 m2) = 0.23 m/s, a factor of
2.3 times the lowering speed. If the lifting speed is unacceptable, then it will be
necessary to also control the flow in the lifting direction – for example, with a flow-
control valve placed in the other line.

4.3 A Comparison of Counterbalance-Valve and an Overcenter-Valve
Performances to Avoid Load Runaway

Figure 4.5 shows the circuit with the appropriate valve place in the appropriate line
to prevent load runaway. The overcenter valve is piloted by the pressure from the
other line when lowering is attempted.

The system is to perform a pressing operation; data are as follows:

Cylinder bore diameter = 80 mm → A1 = 0.005 m2

Cylinder rod diameter = 60 mm → A2 = 0.0028 m2 � = A1/A2 = 1.79
Load mass equivalent to 5 kN
Press force required = 100 kN
Losses may be neglected for a first-order estimate of pressures

(i) Counterbalance valve

Static pressure when the load is stationary:
P2 = (5000)/(0.0028) = 17.8 bar.
Set counterbalance pressure to (1.3)(17.8) = Pcb = 23 bar.
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P1

A2

P2

(a) Counterbalance valve (b) Overcenter valve

Figure 4.5. Actuator runaway control.

Pressure on full bore to overcome counterbalance = 23/1.79 ≈ 13 bar.
To press, consider the force equation:

P1 A1 + Mg = Pcb A2 + F,

P1 = (F − Mg)
A1

+ Pcb
A2

A1
= (100,000 − 5000)

(0.005)(105)
+ 13 = 203 bar (4.4)

(ii) Overcenter valve

Pilot pressure to open the valve = counterbalance setting/2 = 23/2 = 11.5 bar.
It is assumed that when the overcenter valve is piloted, the annulus pressure

is now zero; during pressing, it is deduced from the preceding that:

P1 = (F − Mg)
A1

+ 0 = (100,000 − 5000)

(0.005)(105)
= 190 bar. (4.5)

It can be seen that the pressure needed is less than when a counterbalance valve
is used. Recall also that in each case, the supply pressure is more than adequate
to operate each valve.

Worked Example 4.1

Consider a lifting cylinder with flow control for both lifting and lowering. This is
achieved with a flow-control valve within a four-check-valve bridge, as shown in
the diagram. Therefore, the lifting and lowering speeds are the same. However,
the pump has to supply a flow rate of 60 L/min when lowering and flow regen-
eration can be used to reduce this flow-rate requirement by recirculating return
flow.
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P2

P1

A1

PsM

Worked Example 4.1

The lifting section is remote from the power supply unit; therefore, the sys-
tem has long flexible hoses between the pump unit and the actuator. This exam-
ple therefore considers pressure losses down each pipe together with directional-
valve and check-valve pressure losses. Data are as follows:

Check-valve flow setting = 30 L/min
A1 = 0.1 m2, A2 = 0.05 m2, load mass M = 20,000 kg
Lines 20 m long, 13 mm diameter
Fluid viscosity � = 0.025 N s/m2

Directional-valve port pressure drop 2 bar at 30 L/min
8 bar at 60 L/min

Check-valve pressure drop 3 bar at 30 L/min
The load velocity in both directions is:

U = 30 × 10−3/60
0.05

= 0.01 m/s.

Lowering

For the inlet line at 60 L/min, the pressure drop is:

�pinletline = 128��

�d4 Q = 128(0.025)(20)

�(0.013)4(105)
10−3 bar = 7.13 bar.

The pressure drop across the directional-valve supply ports is 8 bar:

P1 = Ps − (8 + 7.13) = Ps − 15.13.

For the return line at 30 L/min, the pressure drop is 7.13/2 = 3.57 bar.
The pressure drop across two check valves is 6 bar.
Allow at least 20-bar pressure drop across the flow-control valve.
The pressure drop across the directional-valve return ports is 2 bar:

P2 = 3.57 + 6 + 20 + 2 = 31.57 bar.
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Load force balance

P1 A1 + Mg = P2 A2 → P1 = P2
A2

A1
− Mg

A1
,

Ps − 15.13 = 31.57
2

− 20000(9.81)

0.1(105)
= 15.79 − 19.62 = −3.83 bar,

Ps = 11.3 bar.

So, any sensible supply pressure will allow the load to lower at the set speed.

Lifting

The individual pressure drops are exactly the same as for lowering, the absolute
values now being:

P1 = (7.13 + 8) = 15.13, bar

P2 = Ps − (2 + 6 + 20 + 3.57) = ( Ps − 31.57) bar.

So, the load force equation now becomes:

P1 = P2
A2

A1
− Mg

A1
→ 15.13 = ( Ps − 31.57)

2
− 19.62,

Ps = 101.07 bar.

A supply pressure above this value will create a larger pressure drop across the
flow-control valve and is acceptable.

4.4 Drive Concepts

There are many ways of controlling motors and linear actuators, and Fig. 4.6 illus-
trates conceptually the most common drives using pumps and motors.

If the fluid is passed back to the tank from the motor, rather than being returned
back to the pump, then it is called an open circuit, as shown in Figs. 4.6(a) and 4.6(c).
If fluid is returned back to the pump, then it is known as a closed circuit, shown in
Figs. 4.6(b) and 4.6(d), and can utilize a smaller tank. If machines are used with case
drains, a boost pump is also necessary to make up the flow leakage back to tank; this
will be discussed later. Figure 4.6(e) illustrates a power transfer unit (PTU) used to
transfer fluid from the healthy power supply side to the other failing power sup-
ply side. It requires that two machines be coupled together, and both must able to
operate as either a pump or a motor. The displacements must also be different and,
therefore, the displacement of one machine must be changed to a value depending
on whether it is acting in the pump mode or in the motor mode. When the pres-
sure differential across the PTU is within the friction pressure range, then it will not
rotate and power transfer ceases. Figure 4.7 shows a variety of drives using a servo-
valve to control the fluid direction of flow and may be used with either motors or
cylinders.

Accurate speed and position control can be obtained using a servovalve
with feedback, although motor speed feedback control may also be achieved by



(a) Pump fixed, open-system           (b) Pump fixed, closed-system 

(c) Pump variable, open-system         (d) Pump variable, closed-system 

Power supply                                       Power supply 
   1                                                            2 
      (e) Connected, reversible pump and motor  
                   A Power Transfer Unit 

Figure 4.6. Some different ways of combining pumps and motors.

tacho

                                                                 +         - 
(a) Servovalve, open-loop                    (b) Servovalve, closed-loop 

(c) Testing a servovalve–motor control system using pump loading  
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                                                            +         - 
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Figure 4.7. Motor and cylinder drives using a servovalve.
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Diesel engine—mobile

Speed 

ωm

Torque T
Hydrostatic 
transmission 

Electric motor—fixed

(a)  Application to a vehicle wheel drive 

(b) Hydraulic circuit 

Tm

ωm

Q2             P2 = 5 bar Q2m

250 bar 

Q1           P1 = 200 bar            Q1

Boost pump    
5 bar 

ωp

Tp

p

Figure 4.8. A hydrostatic drive using a variable-displacement pump.

controlling a pump swash plate with an electrically operated actuator. Of course, in
practice, other components are needed to ensure safe operation and system viability,
as will be seen later.

4.5 Pump and Motor Hydraulically Connected: A Hydrostatic Drive

Hydrostatic drives, or hydrostatic transmissions (Fig. 4.8), are used in mobile appli-
cations, thus giving effectively an infinite gear ratio in both directions of motor–
wheel rotation. The wheel motors will be axial piston or radial piston, with some
variations, and it is easy to have separate wheel control if required.

The drive line is at the high pressure of 200 bar, and the return line is boosted
to a low pressure of 5 bar. The protection PRV is set higher than the expected max-
imum working pressure; in this case, 250 bar. Normal operation therefore allows
fluid to circulate from the pump to the motor and then back to the pump inlet, with
boost pump flow added to make up system fluid losses.

The check-valve bridge ensures that this normal flow circulation occurs until
the high pressure exceeds the main PRV setting of 250 bar; for example, because
of stalling of the wheel motor during operation. The high-pressure line is then
connected to the low-pressure line by the PRV that dissipates some energy while
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allowing recirculation of flow back to the inlet of the pump. The whole process is
reversible because of the symmetry of the check-valve bridge.

The pump and motor flow rates are as previously developed in Chapter 3:

Pump Motor

outlet Q1 = Dp�p− P1

Rp
+ P2

Ri
→ inlet Q1 = Dm�m + P1

Rm
− P2

Ri

inlet Q2 = Dp�p− P1

Ri
+ P2

Rp
← outlet Q2 = Dm�m + P1

Ri
− P2

Rm
(4.6)

1
Rp

=
(

1
Re

+ 1
Ri

)
p
,

1
Rm

=
(

1
Re

+ 1
Ri

)
m

,

1
Rep

=
(

Dp�p

�
+ 1

Rext
+ 1

Rtim

)
p

1
Rem

=
(

Dm�m

�
+ 1

Rext
+ 1

Rtim

)
m

.

Equating the pump output flow rate and the motor inlet flow rate then gives:

Pump Motor

Dp�p − P1

Rp
+ P2

Ri
= Dm�m + P1

Rm
− P2

Ri
, (4.7)

Dm�m = Dp�p − P1

(
1

Rp
+ 1

Rm

)
+ 2P2

Ri
.

Considering the torque equations for the pump and the motor gives

Tp = (1 + �) Dp(P1 − P2) + Bv�p + Tscp, (4.8)

Tm = (1 − �) Dm (P1 − P2) − Bv�m − Tscm. (4.9)

Rearrangement of the flow rate and torque equations leads to a complicated set of
functions, but the transmission performance may be evaluated with the following
steps:

Step 1

1
R1

=
(

1
Rp

+ 1
Rm

− 2
Ri

)
,

1
R2

=
(

1
Rp

+ 1
Rm

)
,

�m

�p
=

Dp

Dm
− Tm

�p R2(1 − �)D2
m

−
[

P2

�p R1 Dm
+ Tscm

�p R2(1 − �)D2
m

]
[

1 + Bv

(1 − �)D2
mR2

] . (4.10)

Step 2

P1 = P2 + Tm

(1 − �)Dm
+ Bv�p

(1 − �)Dm

(
�m

�p

)
+ Tscm

(1 − �)Dm
. (4.11)



4.5 Pump and Motor Hydraulically Connected: A Hydrostatic Drive 181

Step 3

Tm

Tp
=

(1 − �)(P1 − P2) − Bv�p

Dm

(
�m

�p

)
− Tscm

Dm

(1 + �)(P1 − P2)
(

Dp

Dm

)
+ Bv�p

Dm
+ Tscp

Dm

. (4.12)

Step 4
The transmission efficiency is given by:

	tran = Tm�m

Tp�p
. (4.13)

The calculation will proceed by first establishing the displacement ratio Dp/Dm and
then varying the load torque Tm. Typical calculations are covered in the following
examples.

Worked Example 4.2: A Hydrostatic Transmission Performance

Assume identical machine designs such that Rp = Rm:

Maximum pump displacement Dp = 4 × 10−6 m3/rad
Pump speed �p = 1440 rpm
Motor displacement Dm = 4 × 10−6 m3/rad
Re = 0.5 × 1012 N m−2/m3 s−1 and dominated by external leakage Rext

Ri = 2 × 1012 N m−2/m3 s−1

Bv = 0.02 N m/rad s−1, � = 0.05, Tscp = Tscm = 6 N m
P2 = 5 bar (boost)

It follows that:

Rp = Rm = 0.4 × 1012 N m−2/m3 s−1,

R1 = 0.25 × 1012 N m−2/m3 s−1, R2 = 0.2 × 1012 N m2/m3 s
−1

,

�m

�p
=

Dp

Dm
− Tm

458
− 0.0164

1.0066
,

P1 = 5 + 2.63Tm + 7.94
(

�m

�p

)
+ 15.79 (bar),

Tm

Tp
=

0.95(P1 − 5) − 7.54
(

�m

�p

)
− 15

1.05(P1 − 5)
(

Dp

Dm

)
+ 7.54 + 15

.
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Worked Example 4.2(a)

To determine the flow make-up needed from the boost pump, consider a
load pressure P1 = 200 bar. This occurs at a motor load torque of 65.6 N m, gives
a motor–pump speed of 0.835, and a transmission efficiency of 60.2%.

Ideal pump flow rate Dp�p = (4 × 10−6)(150.8) = 36.19 L/min
Motor ideal flow rate 0.835 Dp�p = 30.22 L/min

The various flows are shown on the circuit diagram.

Tm

 30.22 
L/min

ωm

35.66 L/min         P2 = 5 bar           30.75 L/min

250 bar 

33.2 L/min   P1 = 200 bar         33.2 L/min

Boost pump    
5 bar 

ωp

  36.19 
L/min 

Tp

Worked Example 4.2(b)

Therefore, the make-up flow necessary from the boost pump is:

Qmake-up = 35.66 − 30.75 = 4.91 L/min.

To create flow through the boost PRV and thus create the boost pressure,
then set the boost pump flow rate greater than this value.
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Worked Example 4.3: A Hydrostatic Drive

Load torque = 200 N m
No-load pump flow = 60 L/min
Pump and motor leakage resistance = 2.5 × 1011 N m−2/m3 s−1

Motor torque loss = 9 + 0.04�m N m
Negligible return pressure

(i) Calculate the motor displacement to give a maximum speed of 200 rpm.
(ii) Determine the line pressure.

200 rpm = 20.95 rad/s
Motor torque equation: Dm P = T + Tlosses

Dm P = 200 + 9 + 0.04�m

Dm P = 210 Nm
∗

Flow continuity between pump and motor: Qpo − P/R = Dm �m + P/R,
10−3 = 20.95Dm + 0.8 × 10−11P∗

Hence, solve∗ for displacement and pressure:

20.95D2
m − 10−3Dm + 1.68 × 10−9 = 0

let y = 106Dm, 0.021y2 − y + 1.68 = 0,
y = 45.9 or 1.74.
y = 45.9 gives Dm = 45.9 × 10−6 m3/rad and P = 45.8 bar.
y = 1.74 gives Dm = 1.74 × 10−6 m3/rad and P = 1207 bar.
So, choose the first solution:

Dm = 45.9 × 10−6 m3/r̄ad, P = 45.8 bar.

4.6 Pump and Motor Shaft Connected: A Power Transfer Unit (PTU)

This approach is used to ensure that pressure is maintained in a circuit in the event of
an unacceptable or unexplained drop in pressure and seems to be particularly sought
in aerospace applications. Another existing healthy circuit is used to supply flow to
the faulty circuit in a manner that attempts to restore the faulty circuit pressure to
the best possible. This, of course, requires that sufficient flow be available from the
appropriate healthy circuit and also a power transfer mechanism. The power trans-
fer approach is shown in Fig. 4.9.

For the purpose of example, in the figure, healthy circuit a provides make-up
flow rate to faulty circuit b via the PTU, the left-hand side of the PTU acting as a
motor and the right-hand side of the PTU acting as a pump. PTU operation can be
either unidirectional or bidirectional. The PTU rotates because the net pressure dif-
ferential across the motor unit is greater than the net pressure differential across the
pump unit. This creates a torque unbalance beyond the friction value when one cir-
cuit pressure changes due to a fault condition. In practice, a variable-displacement
axial piston machine is used together with a bent-axis fixed-displacement piston
machine. The machine acting as a motor must have a displacement greater than
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Load a Load b 

PTU

Figure 4.9. Power transfer using reversible axial piston units.

the machine acting as a pump. Consequently, as the direction of power transfer is
changed, the swash-plate stroke of the variable displacement machine must also be
changed. Consider Figure 4.10.

Power transfer is from left to right because of a pressure drop in supply line 2
relative to supply line 1. Therefore, the machine at the left-hand side is acting as
a motor and the machine at the right-hand side is acting as a pump. Applying the
previously established flow rate and torque equations for a motor and a pump, and
assuming similar loss characteristics for each machine, gives:

PTU flow rates, motor, Q1 = Dm� + P1

Rmp
, (4.14)

pump, Q2 = Dp� − P2

Rmp
, (4.15)

PTU torque, DmP1 − Dp P2 = Bv� + Tsc. (4.16)

Here, the viscous coefficient Bv and the friction torque Tsc is the sum for both
machines. Considering each identical supply pump,

Qp1 = Qpo − P1

Rps
, (4.17)

Qp2 = Qpo − P2

Rps
. (4.18)

Qp1                                                 Qp2

   Power supply a                                   Power supply b 

P1

Q1

P2

Q2
Qrv1 Qrv2

Qa = 0 Qb

Figure 4.10. A PTU in operation.
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Assuming that both identical PRVs are in operation on both power supply sides,
then a linear flow-rate–pressure-drop characteristic may be used to give:

Qrv1 = P1 − Prv

Rv

P1 > Prv, (4.19)

Qrv2 = P2 − Prv

Rv

P2 > Prv, (4.20)

where Rv is the resistance of the PRV. For the purpose of identifying unique fea-
tures of a PTU performance, a suddenly demanded flow rate Qb at side 2 is used
and the load flow rate at side 1 is zero. Therefore, flow continuity on each side from
Fig. 4.10 gives:

Qp1 = Q1 + Qrv1, (4.21)

Qp2 = Qb − Q2 + Qrv2. (4.22)

Inserting the flow equations defined in the previous equations then gives:

P1 = Rt

(
Qpo − Dm� + Prv

Rv

)
, (4.23)

P2 = Rt

(
Qpo + Dp� + Prv

Rv

− Qb

)
, (4.24)

1
Rt

= 1
Rps

+ 1
Rmp

+ 1
Rv

. (4.25)

Also, because it has already been stated that a PTU performs better if the pump
displacement is less than the motor displacement, then let:

Dp = εDm, ε < 1. (4.26)

Combining the torque and flow equations and the displacement ratio equation then
gives:

� = (Prv + 1)(1 − ε) + εQb − Tsc

(1 + ε2 + Bv)
, (4.27)

P1 = P1

Prv

= Rt

Rv

[
(1 − �)

Prv

+ 1
]

, (4.28)

P2 = P2

Prv

= Rt

Rv

[
(1 + ε� − Qb)

Prv

+ 1

]
, (4.29)

Rv

Rt
= Rv

Rps
+ Rv

Rmp
+ 1, � = Dm�

Qpo
Tsc = Tsc

DmRt Qpo
,

Prv = Prv

Rv Qpo
, Qb = Qb

Qpo
, Bv = Bv

Rt D2
m

. (4.30)

The individual pressures are defined with respect to the PRV cracking pressure Prv

so that a check can be made on whether a particular design causes any pressure to
fall below the PRV setting.
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PTU operation ceases when the driving differential pressure is within the fric-
tion dead-band, which is defined as:

P1 − ε P2 = ± Tsc

Prv

. (4.31)

Worked Example 4.4: Characteristics Determination

Consider that both machines have the following data:

PTU machines, Rmp = 1012 N m−2/m3 s−1

Supply pumps, Rps = 1012 N m−2/m3 s−1

PRVs, Rv = 0.25 × 1010 N m−2/m3 s−1

PRV cracking pressure, Prv = 210 bar
Supply pumps no-load flow rate, Qpo = 24 L/min
Fixed-displacement machine displacement, Dm = 4 × 10−6 m3/rad
PTU total friction torque, Tsc = 12 N m
PTU total viscous friction coefficient, Bv = 0.04 N m/rad s−1

1
Rt

= 1
Rps

+ 1
Rmp

+ 1
Rv

= 2 × 10−12 + 400 × 10−12 = 402 × 10−12,

Rt
∼= Rv = 0.25 × 1010 N m−2/m3 s−1.

The PRV resistance is clearly dominant. For no-load flows from each power sup-
ply, the pressure increase across each PRV is given by:

Rv Qpo = (0.25 × 1010)(0.4 × 10−3) = 10 bar.

So, if the PRV cracking pressure is 210 bar, the operating pressure for no-
load is not 220 bar but ≈219 bar when the PTU losses are included:

Tsc

Dm
= 12

4 × 10−6
= 30 bar, Tsc = Tsc

DmRt Qpo
= 30

10
= 3,

Prv = Prv

Rv Qpo
= 210

10
= 21, Bv = Bv

Rt D2
m

= 0.04
(0.25 × 1010)(4 × 10−6)2

= 1.

To fully understand how a PTU operates, it is necessary to consider particular
conditions of speed and pressure and their probable ranges.

The Condition for Zero Speed
From Eq. (4.27), this occurs when the following condition is satisfied:

ε = Prv + 1 − Tsc

Prv + 1 − Qb

. (4.32)

The Condition for Each Pressure to Fall to Its PRV Setting
To understand the pressure behavior, it is noted that because it is probable that
Rt ≈ Rv , then the pressures are given by:

P1

Prv

≈ (1 − �)

Prv

+ 1,
P2

Prv

≈ (1 + ε� − Qb)

Prv

+ 1. (4.33)
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Figure 4.11. Determination of PTU displacement ratio range.

Therefore, the condition for each pressure to fall to the PRV setting is given by:

P1

Prv

= 1 when � = 1.

This gives ε2 + ε(Prv + 1 − Qb) − (Prv − Bv − Tsc) = 0, (4.34)

P2

Prv

= 1 when 1 + ε� = Qb and not possible. (4.35)

The Condition for Equal Pressures
It seems good design sense to aim for equal pressures in each circuit because by
definition, they must then be above the PRV setting. This condition is achieved
when:

P1 = P2 when � = Qb

(1 + ε)
,

ε2(Prv + 1) + ε(Tsc − Qb) + Tsc + Qb(1 + Bv) − Prv − 1 = 0. (4.36)

Considering Worked Example 4.4 data, it was deduced that Tsc = 3, Prv = 21,

Bv = 1. The operating conditions are shown in Fig. 4.11 for various load flows.
From Fig. 4.11, the following points may be observed:

� The displacement ratio range is restricted overall to typically 0.75 < ε < 0.91
but depends on the load flow rate to be supplied.

� For equal-pressure operation, the displacement ratio variation is not highly sig-
nificant as the load flow changes, suggesting in this example that a value of ε ≈
0.85 would be acceptable. Considering the zero-load flow point, it follows from
Eq. (4.32), and recalling that probably Prv � 1, that a good starting design is
met by selecting a displacement difference given by:

Dm − Dp ≈ Tsc

Prv

. (4.37)

This is an interesting result in that it shows that the friction level directly affects the
displacement ratio required, but a change in PRV setting will also require a change
in displacement ratio.
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Figure 4.12. PTU performance for an undesirable load flow Qb = 0.5.

Figure 4.12 shows the effect of changing the displacement ratio for a particular
undesirable load flow of Qb = 0.5. The following points may be observed:

� A displacement ratio beyond 0.88 will not allow the PTU to rotate and power
transfer will not exist.

� As the displacement ratio decreases below 0.88, the pressure differential
increases and the PTU speed increases. The supply pressure P1 continually
decreases and the pressure to be compensated P2 increases as required.

� As the displacement ratio decreases further, the speed rises to its maximum
when the supply pressure P1 reaches the PRV setting and the analysis is then
invalid.

� A lower displacement ratio is therefore better to provide the driving pressure
differential beyond the friction dead-band.

� The PTU speed decreases linearly with increasing displacement ratio.

Consider data from aircraft applications and, in particular, the aerospace-
recommended practice document (SAE ARP1280, Society of Automotive Engi-
neers International, Warrendale, PA, 2007). Table 4.1 shows some of the data
presented.
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Table 4.1. Data taken on PTUs used in different aircraft (SAE, 2007)

Dm Dp Displacement Motor pressure Pump pressure
Aircraft (10−6 m3/s) (10−6 m3/s) ratio ε (bar) (bar)

Unidirectional, fixed displacement
DC-10/ND-11 1.23 1.13 0.92 200 179
757 4.00 3.65 0.91 172 150
Gulfstream 11 1.73 1.57 0.91 207 200
A-300 4.00 3.46 0.87 207 207
767 0.25 0.21 0.84 112 86
727, 747 0.25 0.21 0.84 207 207
737 0.81 0.63 0.78 169 166

Bidirectional, variable displacement
DC-10/MD-11 5.00 4.46–5.50 0.89–1.10 207 193
C-17A 3.15 2.62–3.66 0.83–1.16 275 255
A-320 2.10 1.57–2.62 0.75–1.25 207 200

The displacement ratio can vary from 0.78 ≤ ε ≤ 0.92 for unidirectional opera-
tion with fixed displacements and from 0.75 ≤ ε ≤ 0.89 for bidirectional operation
with variable displacements. The theory presented gives results typical of this range
with 0.75 ≤ ε ≤ 0.88. For bidirectional operation, a swash-plate adjusting control
system is required for changing the displacement ratio of the in-line axial piston
unit, depending on the direction of power transfer (Fig. 4.13).

The displacement ratio would preferably be placed around the neutral position,
or within the friction dead-band, when no PTU action is needed. Hydromechanical
control is usually adopted and integral with the variable displacement unit to change
the swash-plate position in the correct direction, as determined by the appropriate
load condition.

4.7 Servovalve–Motor Open-Loop and Closed-Loop Speed Drives

4.7.1 Open-Loop Control

A servovalve coupled to a motor is a common method of motor speed control in
practice, in which both load pressure and speed change during operation. It is also

Qa = 0 Qb1               0.85 

         M                 P 

Power supply a                                   Power supply b 

Qa Qb = 01                   1.18 

 P                 M 

0.85
mD

pD

0.85
mD

pD

=

=

Figure 4.13. Bidirectional operation of a PTU with displacement control.
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Figure 4.14. A servovalve–motor open-loop drive under test.

a particularly useful approach to determine the motor flow and leakage character-
istics by varying the load and, hence, the motor pressure differential, and main-
taining the motor speed constant. Initial work on pump–motor loss characteristics
has developed essentially by means of extensive experimental work combined with
a pragmatic approach to the forms and mathematical representation of each flow
and torque loss term. Figure 4.14 shows the open-loop circuit and the pump–relief
valve/check-valve bridge–flow make-up load circuit that is able to load the motor in
either direction of rotation.

Both pressure gauges and pressure transducers were used to measure the load
pressures P1 and P2, and gear-type flow meters were used to measure the load flow
rates Q1 and Q2. A torque–speed transducer unit with electronic display was con-
nected between the motor and load pump using a flexible coupling, and load was
applied by switching in the load valve and manually adjusting the variable PRV set-
ting. Thus, loading the pump loads the motor, and the complete performance can be
measured. The advantage of having a load valve with integral solenoid off-loading
is that the dynamic performance can be assessed by rapidly switching the load on
and off at any load pressure setting.

Chapter 3 considered a critically lapped servovalve and the motor system being
evaluated here and analyzed the steady-state characteristics in detail. The equations
for the servovalve and motor are now brought together:

Q1 = kf i
√

Ps − P1 = Dm� + P1

(
1

Re
+ 1

Ri

)
− P2

Ri
, (4.38)

Q2 = kf i
√

P2 = Dm� + P1

Ri
− P2

(
1

Re
+ 1

Ri

)
, (4.39)

Dm(P1 − P2) = Tm + Tlosses. (4.40)

The losses combine all the pressure, speed, and friction terms previously discussed
for a motor:

Tlosses = �Dm(P1 − P2) + Bv + Tsc. (4.41)

The equations as they stand may only be solved numerically. As discussed in
Chapter 3, the sum of line pressures is close to supply pressure, particularly as the
motor load is increased. Therefore, the use of a mean flow-rate equation based on
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the assumption that P1 + P2 ≈ Ps is sufficiently accurate (Watton, 2006):

(Q1 + Q2)
2

≈ kf i

√
Ps

2

√
1 − (P1 − P2)

Ps
. (4.42)

From Chapter 3, or Eqs. (4.38) and (4.39), the mean flow rate evaluated for the
motor becomes:

(Q1 + Q2)
2

= Dm� + (P1 − P2)
Rm

, (4.43)

1
Rm

= 1
Ri

+ 1
2Re

.

Equating Eqs. (4.42) and (4.43) then gives:

kf i

√
Ps

2

√
1 − (P1 − P2)

Ps
= Dm� + (P1 − P2)

Rm
. (4.44)

Defining the no-load speed �(0) when Pload = P1 − P2 = 0 and using nondimensional
notation then gives the expression for motor speed as:

� =
√

1 − Pload − �Pload,

� = �

�(0)
, �(0) =

kf i

√
Ps

2
Dm

, Pload = (P1 − P2)
Ps

, � = Ps

DmRm�(0)
. (4.45)

This then allows the derivation of other important system properties:

efficiency, 	 = (Pload − Tlosses)

(
1 − �Pload√

1 − Pload

)

)
, (4.46)

power transfer to motor Wm = Pload

√
1 − Pload + ε, (4.47)

Tlosses = Tlosses

Ps Dm
, Wm = Wm

Ps Dm�(0)
, ε = Ps

2Dm�(0)Re
. (4.48)

Consider the following data:

� Shell Tellus ISO 32 mineral oil at 40◦C
� Dm = 1.68 × 10−6 m3/rad, Ps = 100 bar
� Re = 1.28 × 1012 N m−2/m3 s−1, Ri = 4.2 × 1012 N m−2/m3 s−1

� Rm = 1.59 × 1012 N m−2/m3 s−1

� Motor torque losses Tlosses = 0.12 at 234 rpm and 0.18 at 903 rpm

These values barely change with load pressure at the two test conditions. It is
deduced that � = 35.7/N(0), ε = 22.2/N(0), where N(0) is the no-load speed (in
revolutions per minute).

A comparison between the approximate theory and measurements is shown in
Fig. 4.15, from which the usefulness of the approximate theory may be deduced.
The speed behavior and the power-transferred predictions are particularly good,
with the efficiency comparisons improving with increased load pressure differential.
Over the working range of the drive, the theory is sufficient for design purposes.
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Figure 4.15. Open-loop performance of servovalve–motor drive.

4.7.2 Closed-Loop Control

Now consider the closed-loop drive with speed feedback as shown in Fig. 4.16.
The two defining equations now become:

kf i

√
Ps−Pload

2
= Dm� + Pload

Rm
, (4.49)

i = Ga(Vd − Ht �), Pload = P1 − P2. (4.50)
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Figure 4.16. A servovalve–motor closed-loop drive.

Recalling that a reference speed �(o) is defined as the speed when the pressure
difference Pload = 0, then the closed-loop speed may be written as:

�

�(0)
= � = (1 + K)

√
1 − Pload − �Pload

1 + K
√

1 − Pload

,

K = kf Ga Ht

Dm

√
Ps

2
, Pload = P1 − P2

Ps
, � = Ps

DmRm�(0)
. (4.51)

Figure 4.17 shows the theory and experimental comparisons for the system with
speed feedback.

Because of the minimum pressure differential available in practice, the no-load
speed is difficult to assess for each test condition. A reference condition at a com-
mon speed of 500 rpm and a common load pressure of 30 bar has been used in
Fig. 4.17, resulting in slightly different no-load speeds and, hence, slightly differ-
ent values of �. The improved closed-loop characteristic can be clearly seen over
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Figure 4.17. Closed-loop performance of a servovalve–motor drive and a comparison with its
open-loop performance.
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the lower load pressure range; however, at the higher gain of K = 2.6, noticeable yet
small oscillations in pressures occurred, indicating that the condition for closed-loop
instability was being approached. This is a dangerous condition, resulting in piston
slipper bounce on the swash plate and clearly audible.

Efficiency and power transfer to motor may then be derived as:

efficiency, 	 =
(Pload − Tlosses)

(
1 − �Pload

(1 + K)
√

1 − Pload

)
[

1 + �KPload

(K + 1)

] , (4.52)

power transfer to motor, Wm = Pload

(
(1 + K)

√
1 − Pload − �Pload

1 + K
√

1 − Pload

)

+ �P
2
load + ε. (4.53)

The condition for maximum efficiency with respect to the load pressure differential
is given implicitly by:

�2 P
2
load

[√
1 − Pload − K(Pload − Tlosses)

2

]

− �(1 + K)

{
2Pload(1 − Pload) + (Pload − Tlosses)

[
K(1 − Pload)3/2 + 1 − Pload

2

]}

+ (1 + K)2(1 − Pload)3/2 = 0. (4.54)

This cannot be represented in a general graphical way because of the various param-
eters K, Tlosses, � required.

It is sometimes useful to determine the condition to transfer maximum power
to the load with respect to the load pressure differential. This is given, also impli-
citly, by:

� =
[

1 + K
K

][
2K(1 − Pload)3/2 − (3Pload−2)

Pload(5 − 4Pload) − 4KPload(1 − Pload)3/2

]
. (4.55)

For the lossless case, then � = 0 and (4.55) becomes:

Pload = 2
3

+ 2
3

K(1 − Pload)3/2
. (4.56)

For the open-loop case, K = 0, the solution reduces to one that is well known
whereby maximum power is transferred to the motor when the load pressure dif-
ferential is two-thirds the supply pressure. Validation of closed-loop efficiency and
power transfer for specific loss characteristics is shown in Fig. 4.18.

In general, the maximum efficiency and power transfer to the motor both occur
at a higher pressure differential than for the open-loop system. However, the restric-
tion of the theoretical assumptions at a very high pressure differential should be
recalled.
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Figure 4.18. Closed-loop efficiency and power transfer for a servovalve–motor drive.

4.8 Servovalve–Linear Actuator

Consider the basic open-loop system for an actuator with a single rod. The estab-
lished servovalve flow equations, assuming a critically lapped spool, may be used to
generate two flow-continuity equations for the system and for two cases of extend-
ing and retracting.

4.8.1 Extending

See Fig. 4.19 for an illustration of the discussion in this subsection.
Equating flow rates gives:

Q1 = kf i
√

Ps − P1 = A1U. (4.57)

Q2 = kf i
√

P2 = A2U. (4.58)

The force equation is:

P1 A1 − P2 A2 = F. (4.59)
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Figure 4.19. A servovalve-controlled actuator open-loop
system, extending.

The pressures may be then determined by eliminating the velocity from Eqs. (4.57)
and (4.58) and combining with Eq. (4.59) to give:

P1 = Ps + � 2 Pload

(1 + � 3)
, P2 = � Ps − Pload

(1 + � 3)
, (4.60)

Ue = kf i
A2

√
� Ps − Pload

(1 + � 3)
, Pload = F

A2
, � = A1

A2
. (4.61)

It will be deduced that motion stops when F = Ps A1 with P1 = Ps and P2 = 0.

4.8.2 Retracting

See Fig. 4.20 for an illustration of the discussion in this subsection.
Equating flow rates gives:

Q1 = kf i
√

P1 = A1U. (4.62)

Q2 = kf i
√

Ps−P2 = A2U. (4.63)

The force equation is:

P1 A1 − P2 A2 = F. (4.64)
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i

Load force F

Ur

P2 Q2

P1  Q1

Figure 4.20. A servovalve-controlled actuator open-loop
system, retracting.



4.8 Servovalve–Linear Actuator 197

The pressures may be then determined by eliminating the velocity from Eqs. (4.62)
and (4.63) and combining with Eq. (4.64) to give:

P1 = � 2 Ps + � 2 Pload

(1 + � 3)
, P2 = � 3 Ps − Pload

(1 + � 3)
, (4.65)

Ur = kf i
A2

√
Ps + Pload

(1 + � 3)
, Pload = F

A2
, � = A1

A2
. (4.66)

It will be deduced that motion stops when F = −Ps A2, with P2 = Ps and P1 = 0.
This condition, therefore, occurs for the load, acting to cause runaway.

Worked Example 4.5

A servovalve is rated at 38L/min at a rated current of 15 mA and a total valve
pressure drop of 70 bar. The servovalve is coupled to a cylinder that is used to
raise a platform as shown, and the platform mass may be assumed to act at the
platform center. Data are as follows:

platform mass = 2000 kg
actuator bore = 50-mm diameter
actuator rod diameter = 35 mm
supply pressure = 140 bar

      2 m                    2 m 

1.5 m

Worked Example 4.5

Determine the actuator speed when lifting if a servovalve current of 5 mA is
applied when:

(i) the platform is horizontal,
(ii) the platform is just vertical, and also

(iii) estimate the actuation time.
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First determine the servovalve flow constant kf and other data:

Qrated = kf irated

√
70 bar

2
, 38 = kf 15

√
35, kf = 0.428,

A1 = �×502 × 10−6

4
= 1.96 × 10−3 m2,

A2 = �(502 − 352) × 10−6

4
= 1.00 × 10−3 m2, � = A1

A2
= 1.96.

(i) Platform horizontal: F = 2000 g N, Pload = F/A2 = 196.2 bar;

P1 = Ps + � 2 Pload

(1 + � 3)
= 140 + 3.84 × 196.2

8.53
= 104.7 bar,

P2 = � Ps − Pload

(1 + � 3)
= 1.96 × 140 − 196.2

8.53
= 9.2 bar,

Q2 = kf i
√

P2 = 0.428 × 5
√

9.2 = 6.49 L/min,

Ue = Q2

A2
= 6.49 × 10−3

60 × 10−3
= 0.108 m/s.

(ii) Platform vertical: F = 0, Pload = 0;

P1 = Ps

(1 + � 3)
= 140

8.53
= 16.4 bar,

P2 = � Ps

(1 + � 3)
= 1.96 × 140

8.53
= 32.2 bar,

Q2 = kf i
√

P2 = 0.428 × 5
√

32.2 = 12.14 L/min,

Ue = Q2

A2
= 12.14 × 10−3

60 × 10−3
= 0.202 m/s.

The actuator speed has almost doubled as the platform rotates to its vertical
position.

(iii) Actuation time: The total travel of the actuator is 2.53 m; assume a first
approximation to estimate the time for motion by considering a mean speed:

Umean → (0.108 + 0.202)
2

= 0.155 m/s,

t → 2.53
0.155

= 16.32 s.

However, the time will be between limits of 12.52 s and 23.43 s when either the
maximum or minimum speeds are considered.

4.8.3 A Comparison of Extending and Retracting Operations

Selecting an arbitrary area ratio � = 2 allows Fig. 4.21 to be constructed, illustrating
how the pressures vary with load force for both extending and retracting operations.
Both pressures are referenced to supply pressure.
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Figure 4.21. Variation in actuator pressure,
area ratio � = A1/A2 = 2.

It can be seen that both actuator pressures are greater for the retracting case
than for the extending case. The ratio extending velocity divided by retracting veloc-
ity Ue/Ur is shown in Fig. 4.22, from which where it is deduced that the extending
velocity is always greater than the retracting velocity.

An interesting solution occurs for the case when the extending velocity is equal
to the retracting velocity for the same servovalve current. From Eqs. (4.61) and
(4.66), this occurs when:

� Ps − Pload = Ps + Pload,

F = Ps Arod

2
, (4.67)

where Arod = A1 − A2 is the cross-sectional area of the actuator rod.
Therefore, the flow gain of the open-loop system can be made effectively the

same for both directions of motion, thus aiding closed-loop control of a single-rod
actuator by ensuring that Eq. (4.67) is satisfied. Also, the power transfer to the load
is the same in both directions if Eq. (4.67) is satisfied. In addition, the power transfer
increases as the area ratio � > 1 increases for the same servovalve current and sup-
ply pressure. Of course, the power transfer is zero for a double-rod actuator because
equal velocities in both directions at the same servovalve current can be achieved
only for zero-load F = 0.

0

1

2

3

4Ue /Ur

Force ratio F/Ps A2

Figure 4.22. Variation in the velocity ratio
Ue/Ur, area ratio � = A1/A2 = 2.



200 Steady-State Performance of Systems
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Figure 4.23. Closed-loop electrohydraulic position control.

Notice also from Fig. 4.21 that the pressure differential across the actuator can
change sign as the load is increased. Any leakage present across the actuator piston
will therefore also change the direction of action. The condition for P1 > P2 occurs
when:

P1 > P2,

extending,
F

Ps A2
>

(� − 1)
(� 2 + 1)

,

retracting
F

Ps A2
>

� 2(� − 1)
(� 2 + 1)

. (4.68)

Clearly, the load force is highest for the retracting condition.

4.9 Closed-Loop Position Control of an Actuator by a Servovalve
with a Symmetrically Underlapped Spool

Consider a closed-loop position control system for the general case of a single-rod
actuator, as shown in Fig. 4.23.

Recall the flow equations for a symmetrically underlapped spool, as discussed
in Chapter 3 and the load force equation:

Q1 = kf (iu + i)
√

Ps − P1 − kf (iu−i)
√

P1, (4.69)

Q2 = kf (iu + i)
√

P2 − kf (iu−i)
√

Ps − P2, (4.70)

P1 A1 − P2 A2 = F. (4.71)

Under closed-loop position control, Q1 = Q2 = 0; from Eqs. (4.69) and (4.70),
this leads to the conclusion that the sum of pressures must be equal to supply
pressure:

P1 + P2 = 1, (4.72)

P1 = (1 + F )
(1 + �)

, P2 = (� − F )
(1 + �)

, (4.73)



4.9 Closed-Loop Position Control of an Actuator by a Servovalve 201

0

0.25

0.5

0.75

1

Area ratio = 1
Area ratio = 4/3
Area ratio = 2

F/PsA2

i/iu
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ı =
√

1 + F −
√

� − F√
1 + F +

√
� − F

, (4.74)

P1 = P1

Ps
, P2 = P2

Ps
, F = F

Ps A2
, ı = i

iu
= Ga Hy yerror

iu
. (4.75)

It then follows that the position error can be driven to zero from Eq. (4.74), provid-
ing the load force satisfies the condition:

F = (� − 1)
2

→ F = Ps Arod

2
, (4.76)

where Arod = A1−A2 is the actuator rod cross-sectional area. For this optimum load
condition, it then follows that both pressures are equal:

P1 = P2 → Ps

2
. (4.77)

Figure 4.24 shows the current error for different values of area ratio � .
Some conclusions therefore may be drawn as follows:

� The supply pressure may be matched to the load to produce a zero position
error, providing the load is constant and the supply pressure is within an accept-
able range for both servovalve operation and system response.

� Higher loads can be positioned with zero error and will be aided by an increased
area ratio. The sensitivity of steady-state error to variations in load is improved
for increased area ratios.

� It was shown in Chapter 3 that spool underlap provides system damping that is
due to the leakage resistance at the centralized position. The dynamic perfor-
mance therefore may be better designed to some extent.

� At optimum conditions, the pressure differential across the actuator piston will
be close to zero, thus minimizing leakage across the piston.

Now consider a practical example of this position control system with a variable
load force and with supply pressure adaption to maintain zero position error as the
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Figure 4.25. Position control with a variable load force and supply pressure adaption.

load force is changing. The supply pressure adjustment is achieved with a propor-
tional PRV that is controlled electronically. The position control system is assem-
bled within a frame that may be rotated in its vertical plane by a second linear actu-
ator, as shown in Fig. 4.25.

The load variation on position control actuator (1) is generated by second actu-
ator (3), the force is detected by load cell (7), and the voltage signal is fed through a
digital-to-analog converter (DAC) within a microcomputer (6). A simple algorithm
is then written to send a voltage via a DAC to set supply pressure (4) to match the
load. Position transducer (2) provides the feedback signal for servovalve (5). System
data for the position control system are as follows:

tilt variable over a 58◦ angle, load mass = 72 kg, load variable up to F = 599 N
actuator bore 25.4 mm diameter, rod 15.88 mm diameter, area ratio � = 1.64
servoamplifer gain Ga = 58 mA/V
position transducer gain Hp = 0.96 mV/mm, load cell gain 1.9 mV/N

The proportional PRV supply pressure–voltage characteristic and the servo-
valve blocked flow pressure–current characteristic around the closed position are
shown as Fig. 4.26. The computer control signal used to control the PRV was
approximated by:

Ps = 21 − 11.4V + 4.4V2. (4.78)

The servovalve spool was symmetrically underlapped by the servovalve manufac-
turer to a value of 0.3 mm, equivalent to iu = 6 mA. The lifting cylinder was actuated
slowly over a period of 2 s such that system dynamics were negligible and the posi-
tion control system position was recorded with and without supply pressure adap-
tion. Measurements are shown in Fig. 4.27 as the load force is changed from 599 N
to 242 N.

The effect of supply pressure on steady-state error is clear from Fig. 4.27, as
expected. For this system, a servovalve error current of 1 mA is equivalent to a posi-
tion error of 18 mm. This can be reduced, of course, by increasing the servoamplifier
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Figure 4.26. Characteristics of the PRV and the servovalve.

gain Ga, but then the potential for closed-loop stability must be considered under
normal operating conditions for closed-position control.

4.10 Linearization of a Valve-Controlled Motor Open-Loop Drive: Toward
Intelligent Control

Now consider a drive such as a servovalve or proportional-valve motor drive. This
was extensively covered earlier, from which it is clear that the valve’s inherent
square-root flow characteristic causes the speed to reduce with increasing load
torque applied to the motor. However, the use of common programmable elec-
tronic controllers means that this flow characteristic can be easily and significantly
linearized to improved open-loop behavior. By way of a real example, a propor-
tional control valve is considered with an axial piston motor and for unidirectional
speed control only. The system and control concept are shown in Fig. 4.28.

(b) Without Ps adaption 

(c) With Ps adaption 
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   (a)  Load force F  
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Figure 4.27. Steady-state position error of a servovalve-controlled linear actuator with servo-
valve spool underlap (Watton and Al-Baldawi, 1991).
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Figure 4.28. An open-loop motor drive with proportional-valve linearization.

The proportional-valve spool design is unique in that the return line pressure
is held at a very low and constant pressure. The flow-rate characteristic is therefore
defined for this example in terms of the load pressure P.

A Moog programmable servocontrol card was used to modify the applied volt-
age Vd such that the actual voltage V applied to the proportional valve improves the
flow characteristic. A pressure transducer is required for monitoring the load pres-
sure for valve linearization. The flow characteristic of the proportional flow-control
valve was obtained experimentally and found to be of the following form:

Q = (aV − b)
√

Ps − P, (4.79)

where a ≈ 2.48 and b ≈ 2.25 to give Q L/min with a pressure differential (Ps − P)
bar.

It is desirable to linearize this characteristic such that it becomes:

Q = aVd

√
Pref, (4.80)

where Pref is a chosen reference pressure, not necessarily supply pressure Ps. There-
fore, the flow rate is now just proportional to applied voltage Vd.

Rearranging these two equations then gives:

V = Vd

√
Pref

Ps − P
+ b

a
. (4.81)

If the reference pressure is chosen to be the supply pressure, then:

V = Vd

√
1

1 − P/Ps
+ b

a
. (4.82)

The linearization process requires a multiplication factor on Vd that becomes
increasingly large as the load pressure P increases toward supply pressure. There-
fore, in practice, the output voltage will have a saturation limit and linearization
cannot be achieved over the full pressure range. This is not a serious restriction in
practice because the load pressure P should not be designed to be close to supply
pressure. Some measured results are shown in Fig. 4.29 for the minimum load speed
of 515 rpm and a supply pressure of Ps = 100 bar.

The conventional square-root variation in speed is evident for the normal sys-
tem, linearization resulting in a dramatic improvement with increasing load pres-
sure. At the same time, the overall energy efficiency is inherently improved, the
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Figure 4.29. Improving the speed characteristic of an open-loop motor drive by flow-control
valve linearization.

actual values being low because of the low motor speed in this example. In fact, the
system efficiency now continually increases with increasing load pressure.

Further improvements in performance can be made by noting that for this sys-
tem, the maximum efficiency is obtained approximately over a wide operating range
by driving the pressure differential across the proportional valve to typically 20 bar.
As the load pressure changes, this requires the supply pressure to be adjusted to
maintain the constant pressure drop. This can be achieved in practice by using a
proportional PRV. The supply pressure is set by the control voltage Vs and is rel-
atively insensitive to the flow rate through the PRV. A measured characteristic for
the valve used in this example is shown in Fig. 4.30.

It can be seen that, in practice, there is no need to determine the flow rate
through the valve because a single defining characteristic may be used for supply
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Figure 4.30. Measured characteristic of a proportional PRV.
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Figure 4.31. Intelligent control of an open-loop motor drive with flow-control valve lineariza-
tion and supply pressure adaption.

tracking control purposes. The equations used for the pressure differential across
the flow-control valve and the supply pressure are therefore given by:

flow-control valve fixed-pressure drop, Ps − P = 20 bar,

PRV characteristic, Ps = −Pso + ks Vs .
(4.83)

This gives the PRV control signal as follows:

Vs = P + 20 + Pso

ks
, (4.84)

where Pso ≈ −5 bar and ks ≈ 12.2 bar/V. As a consequence of this supply pressure
adaption, the system efficiency is further improved, particularly at low load condi-
tions. The PRV control voltage is easily implemented on the Moog programmable
control card used in this example. The modified open-loop control concept for
steady-state speed control is shown in Fig. 4.31.

Care must be taken to ensure a minimum operating pressure. This example
also has considered only steady-state performance and, in practice, system dynam-
ics must be considered. Dynamic stabilization is considerably improved with sig-
nal filtering together with dynamic pressure feedback compensation. However, this
does reduce the system frequency bandwidth. Note, however, that the system is still
open-loop, and true feedback control by use of measured speed is not used. For fur-
ther details, particularly on the additional dynamic aspects, see Davies and Watton
(1995).

A complete set of measured steady-state characteristics is shown in Fig. 4.32
with both flow-control valve linearization and supply pressure adaption.

The improvement in steady-state performance is clear and obtained by use of
standard industrial components in common use. The improvement in efficiency with
increasing load is highly significant when combined with a speed characteristic with
negligible droop.
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Figure 4.32. Intelligent steady-state control of an open-loop motor drive with flow-control
valve linearization and supply pressure adaption.
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5 System Dynamics

5.1 Introduction

The preceding chapters considered the steady-state behavior of common fluid
power elements and systems. In reality, fluid power systems handle significant mov-
ing masses, and the combination of this with fluid compressibility results in system
dynamics that usually cannot be neglected. In addition, individual components such
as PRVs require a finite time to accommodate flow-rate changes. This also applies,
for example, to a servovalve that again requires a finite time to change its spool
position in response to a change in applied current. The combination of these issues
means that the design of both open-loop and closed-loop control systems must take
into account these dynamic issues. In particular, a closed-loop control system will
almost certainly become unstable as system gains are increased because of such
dynamic effects. Instability can lead to disastrous consequences if severe pressure
oscillations occur. Instability in axial piston motor speed control systems, for exam-
ple, can result in severe repetitive lifting and impact of the pistons on the swash
plate.

Consider the design of a servoactuator that forms one of four to be used to
provide the “road” input to the wheels of a vehicle sitting on a rig commonly called
a “four-poster.” Figure 5.1 shows one of the servoactuators and a block diagram of
the position control system.

Determining the dynamic performance of the position control system only is
relatively straightforward once the important dynamic features have been identi-
fied. The servovalve is manufactured to be critically lapped (four were donated by
Star Hydraulics UK for the vehicle four-poster test rig at Cardiff University). The
servoactuator has an integral position transducer and a PC is used to control each
actuator by means of National Instruments DAQ technology. Data are as follows:

Load mass, 80 kg
Actuator stroke = 100 mm, position transducer gain Hp = 0.1 V/mm
Double-rod actuator bore diameter = 25.4 mm, rod diameter = 19.05 mm

The dynamic performance may be assessed by demanding a sudden change in
position from center position to 5 mm and then back to the center position, as shown
in Fig. 5.2.

209
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                                                                     Position transducer 
(a) Servoactuator                                                        (b) Position control system 

Vd Hp

Ga

servoamplifier 

servovalve 

load cell

Figure 5.1. A servoactuator, one of four forming part of a four-poster vehicle test rig (Cardiff
University School of Engineering).

Some important points emerge from this preliminary analysis:

� The general response is damped for the servoamplifier gain chosen.
� There is a small oscillation around the central position, y = 0, as evident from

the velocity graph.
� The oscillation is not apparently significant from the position graph.
� Maximum transient flow rates may be estimated, thus helping the selection of

the power supply pump.
� The existence of a small servovalve spool underlap and actuator friction will

assist in dampening the small oscillations.
� The oscillations are not attributable to the servovalve but rather to the way it

is used in a feedback-control-system sense. Making the position response faster
will eventually lead to closed-loop instability.

Clearly, an accurate analysis of the system dynamic behavior prior to purchasing
components can be a valuable asset, the two important issues that arise being:

� the validity of the model used
� the technique used for the system analysis
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Figure 5.2. The dynamic response of the position control system.
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volume V 
density ρ
pressure P 

mi

mo
Figure 5.3. Mass flow into and out of a control volume.

What is of crucial importance to fluid power systems dynamic modeling is the effect
of fluid compressibility and moving masses, and these aspects are considered next.

5.2 Mass Flow-Rate Continuity

Consider an arbitrary control volume as shown in Fig. 5.3.
Mass flow continuity then gives:

mi − mo = d
dt

(� V). (5.1)

Then, redefining mass flow rate by considering the appropriate volumetric flow rates
gives:

� Qi − � Qo = �
dV
dt

+ V
d�

dt
. (5.2)

Using the definition of fluid bulk modulus �, together with the equation of state, the
following equations are added:

bulk modulus, � = − dP
dV/V

, (5.3)

equation of state, � V = constant → d�

�
= −dV

V
. (5.4)

Equation (5.2) then becomes:

Qi − Qo = dV
dt

+ V
�

dP
dt

. (5.5)

Equation (5.5) is used to analyze fluid power circuits for nonsteady conditions. Thus,
the difference between the input flow rate Qi and the output flow rate Qo is equal
to the rate of change of the boundary volume, plus an additional flow rate that is
due to fluid compressibility and the existence of a pressure that is varying with time.
For steady-state conditions, the compressibility term is zero, but there could still be
a moving boundary such as a piston moving with a constant velocity.

5.3 Force and Torque Equations for Actuators

Considering a linear actuator and a motor (Fig. 5.4), the applied hydraulic force or
moment has to overcome losses and the load requirement:

linear actuator, P1 A1 − P2 A2 = Flosses + Fload + M
dU
dt

, (5.6)

motor, Dm(P1 − P2) = Tlosses + Tload + J
d�

dt
, (5.7)
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P1

   A1

    P2

A2

U
ω

P1

P2

Figure 5.4. Forces applied to hydraulic actuators.

where M is the load mass, J is the rotary inertia, Fload and Tload are the load con-
stant force and torque, and Dm is the motor displacement. The force and torque
losses have a similar characteristic combining stiction–friction and viscous damping,
as shown in Fig. 5.5, sometimes referred to as the Stribeck curve.

The stiction component of friction is often called the “breakaway” component,
which then falls to a lower Coulomb friction level when motion occurs. For a motor,
this characteristic does depend to some extent on the motor pressure differential,
although the general shape is the same. The viscous friction component is usually
assumed to be proportional to speed. The force equations then become:

linear actuator, P1 A1 − P2 A2 = Fcf + BvU + Fload + M
dU
dt

, (5.8)

motor, Dm(P1 − P2) = Tcf + Bv� + Tload + J
d�

dt
, (5.9)

where Fcf and Tcf are the stiction–Coulomb friction losses and Bv is the viscous fric-
tion loss coefficient.

Worked Example 5.1

A motor is required to accelerate from zero to 500 rpm in 2 s with the following
machine parameters:

Load torque T = 80 N m, Coulomb friction Tcf = 10 N m
Displacement Dm = 6 × 10−6 m3/rad, rotary inertia J = 0.5 kg m2

Viscous coefficient Bv = 0.04 N m/rads−1

Flow losses may be neglected

(i) Calculate the pressure differential required.
(ii) If the motor is driven at a constant speed of 500 rpm, calculate the power and

flow rate needed.

=                                            + 

U or ω

Flosses 
 or 

T losses 

U or ω

Stiction  

Coulomb 
friction

U or ω
(a) Total losses                       (c) Viscous losses (b) Stiction–friction losses      

Figure 5.5. Components of force and torque losses for a linear actuator or motor.
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Solution to (i):

Dm(P1 − P2) = T + (Tf + Bv�) + J
d�

dt
,

6 × 10−6(P1 − P2) = 80 + (10 + 0.04 × 52.37) + 0.5
52.37

2
,

6 × 10−6(P1 − P2) = 80 + 10 + 2.09 + 13.09 = 105.18 N m,

(P1 − P2) = 175 bar.

Solution to (ii):

the maximum torque = 105.18 N m

power = T� = (105.18)(52.37) = 5.51 kW,

Q = Dm� = (6 × 10−6)(52.37)

= 0.314 × 10−3 m3/s,

Q = 18.8 L/min.

5.4 Solving the System Equations, Computer Simulation

A fluid power circuit mathematical model is a collection of nonlinear flow equa-
tions associated with components together with flow continuity and force equations
applicable to components and actuators. The equations must be brought together
in a form suitable for computer simulation by either a dedicated numerical solu-
tion code or a commercial simulation software package. The MATLAB Simulink
package is commonly used for the simulation of any dynamical system and con-
tains a comprehensive library of mathematical functions. The approach requires re-
arrangement of the differential equations such that the highest differential is placed
at the left-hand side of the equation by itself. The process of integration then allows
the block diagram to be completed once all the equations have been included.
For example, consider the simple system shown in Fig. 5.6 to illustrate some basic
principles:

flow continuity, Qi − Qo = dV
dt

+ V
�

dP
dt

, (5.10)

Q = AU + V
�

dP
dt

, (5.11)

force, P A = Mg + BvU + M
dU
dt

, (5.12)

volume,V = V(0) + Ay = A[y(0) + y]. (5.13)

Rearranging Eqs. (5.11), (5.12), and (5.13) then gives:

dP
dt

= �

V
[Q − AU] , (5.14)

P =
∫

dP
dt

dt =
∫

�

V
[Q − AU] dt, (5.15)
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M

V
                     P

A

y, U 

Q

Figure 5.6. A simple circuit for lifting a load mass M.

�

V
= �

V(0)
1[

1 + y
y(0)

] , (5.16)

dU
dt

= 1
M

[PA − Mg − BvU] , (5.17)

U =
∫

dU
dt

dt =
∫

1
M

[PA − Mg − BvU] dt,

y =
∫

Udt . (5.18)

Data are as follows:

Moving mass M = 2000 kg, piston cross-sectional area A= 0.004 m2

Input volume equivalent displacement y(0) = 0.2 m, actuator stroke = 0.8 m
Velocity damping coefficient Bv = 8 × 104 N/ms−1

Input flow rate Q = 24 L/min, fluid bulk modulus � = 1.4 × 109 N/m2

The steady-state velocity will be:

Uss = 24 × 10−3

60 × 0.004
= 0.1 m/s.

The pressure to overcome steady-state viscous friction will be:

(8 × 104)(0.1)
0.004

= 20 × 105 N/m2 = 20 bar.

The pressure to hold the load mass will be:

(2 × 103g)
0.004

= 49.05 × 105 N/m2 = 49.05 bar.

Therefore, the total steady-state pressure will be 69.05 bar. The block diagram is
then constructed as shown in Fig. 5.7. The left-hand side of the block diagram starts
with the input Q, and the diagram is completed by the process of integration from
left to right by means of the flow-continuity equation and the force equation.

Q Q
y

y y

U U U
P

P

Subsystem
Scopes, Plot

Subsystem
Force

Subsystem
Flow Continuity

Subsystem
Input flow

P

Figure 5.7. MATLAB Simulink block diagram using subsystems.
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(a) The flow-continuity equation for pressure               (b) Viewing and plotting 

(c) Force equation for velocity and position 
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Figure 5.8. Subsystems for the lifting circuit simulation.

Each subsystem contains the appropriate mathematical models, inputs, and
plotting facilities, as shown in Fig. 5.8.

It will be deduced from the data using steady-state theory that it will take 8 s
for the load to be raised 0.8 m assuming a constant speed of 0.1 m/s. Even though
dynamics exists at the beginning of the motion, because of the sudden application
of the flow rate, these effects are very fast and have little effect on this total motion
time based on steady-state velocity Uss = Q/A. This is illustrated in Fig. 5.9.

The effect of fluid compressibility is to filter any oscillatory characteristic when
position is observed or measured, and this is typical for linear actuator systems.
This is particularly evident when the oscillatory component period is much lower
than the total motion time. However, when the start-up or shutoff dynamic char-
acteristic is examined in more detail, other interesting features appear, as shown in
Fig. 5.10.

It can be seen that the short initial period of about 0.2 s is highly oscillatory with
the pressure increasing to more than 110 bar compared with the steady-state value
of 69 bar. The speed eventually settles to the steady-state value of 0.1 m/s, as antic-
ipated. It is this importance of dynamic effects that demands analysis to determine
whether or not that short-term unsatisfactory behavior will occur and can prefer-
ably be determined before the system is built and operated. A further advantage of
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Figure 5.9. Position transient response for the lifting circuit.

computer simulation is that damping techniques can be introduced in an attempt to
minimize oscillations.

5.5 Differential Equations, Laplace Transforms, and Transfer Functions

5.5.1 Linear Differential Equations

The system considered in the previous section has one linear differential equation
for force and a nonlinear differential equation for flow-rate continuity, the nonlinear
component being due to the actuator volume change with time. However, the actual
volume change is negligible over the transient part of the operation, typically a 10%
increase. Hence, if this variation in volume is neglected, then the system consists of
two linear first-order differential equations:

flow continuity, Q = AU + V
�

dP
dt

, (5.19)

force, P A= Mg + BvU + M
dU
dt

, (5.20)

volume, V = V(0) + Ay =∼= V(0). (5.21)
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Figure 5.10. Pressure and speed transient response of the lifting circuit at the beginning of
the 8-s motion time.

Equations (5.19) and (5.20) can now be combined to give:

U + V(0)Bv

�A2

dU
dt

+ V(0)M

�A2

d2U

dt2 = Q
A

,

(5.22)

U + 2�

�n

dU
dt

+ 1
�2

n

d2U

dt2 = Uss.

This is a second-order linear differential equation and written in standard second-
order notation, where Uss is the steady-state value of U, � is the damping ratio, and
�n is the undamped natural frequency that would exist if no damping were present.
The complementary component of the solution is given by:

U + 2�

�n

dU
dt

+ 1
�2

n

d2U

dt2 = 0 and try a solution U = Aet :

1 + 2�

�n
 + 1

�2
n

2 = 0 → 2 + 2��n + �2
n = 0, (5.23)

 = −��n ± �n

√
� 2 − 1,

U = A1e−��nt+�n

√
� 2−1t + A2e−��nt−�n

√
� 2−1t .
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Figure 5.11. Step response of a second-order system.

The response therefore contains a decaying exponential term together with a term
that can also decay with time or be oscillatory, depending on the value of � . Equa-
tion (5.23) is called the characteristic equation in control terminology, and it is
assumed that all the coefficients of the polynomial in  are positive. It should be obvi-
ous that for the system response to be stable, in the sense that the output must settle
down to the state demanded, then the roots of the characteristic equation should
have negative real parts. A linear second-order system, therefore, has the following
properties:

oscillatory, underdamped for � < 1,

critically damped for � = 1, (5.24)

over damped for � > 1.

From, Eq. (5.23), the actual damped frequency of oscillation, �d, is given by:

�d = �n

√
1 − � 2. (5.25)

Consider again the second-order linear differential equation:

U + 2�

�n

dU
dt

+ 1
�2

n

d2U

dt2 = Uss,

U + 2�
dU

d(�nt)
+ d2U

d(�nt)2 = 1, where U = U
Uss

.

(5.26)

Some transient step responses are shown in Fig. 5.11 for different values of damping
ratio � .

It is good sense in practice to aim for a damping ratio of 0.7 < � < 1. For the
lifting system in the previous section, it follows that:

�2
n = �A2

V(0)M
,

2�

�n
= V(0)Bv

�A2 ,

�n =
√

�A
My(0)

, � = Bv

2

√
y(0)

�MA
.

(5.27)
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For the example, the initial condition y(0) = 0.2 m and at the end condition
y(0) = 1.0 m. Recalling for this example that M = 2000 kg, Bv = 8 × 104 N/m s−1,
A= 0.004 m2, � = 1.4 × 109 N/m2, then:

when motion suddenly starts when motion suddenly stops
�n = 118.32 rad/s (18.83 Hz), � = 0.17 �n = 52.92 rad/s (8.42 Hz), � = 0.38
�d = 18.56 Hz → period = 0.054 s �d = 7.79 Hz → period = 0.13 s

The period of 0.054 s agrees with the results shown in Fig. 5.10 at the start of motion,
which also illustrates highly oscillatory motion and is explained by the low damping
ratio � = 0.17. Damping can be increased by reducing the actuator cross-sectional
area A, but the undamped natural frequency will be reduced. If the differential
equation is first-order – for example, if moving mass is considered negligible – then:

U + V(0)Bv

�A2

dU
dt

= Q
A

, (5.28)

U + �
dU
dt

= 1, (5.29)

where � is called the time constant. The solution to Eq. (5.29) for a suddenly applied
input (step input) is exponential in form and obtained by direct integration of Eq.
(5.29). Assuming zero initial conditions then gives:

U = 1 − e−t/� . (5.30)

The time constant � may be experimentally determined by measuring the time for
the response to achieve 63.2% of its final value; that is, when U = 0.632 – which, of
course, occurs when t = � .

5.5.2 Nonlinear Differential Equations, the Technique of Linearization
for Small-Signal Analysis

Nonlinear differential equations are common, for example, when a servovalve is
included or any other restrictor-type component is used that has a nonlinear area
variation with displacement. If the ability of linear differential equations to give an
insight into system dynamic behavior is to be utilized, then nonlinear terms must be
changed to linear terms given that this will introduce some limitations. The process
is called linearization or small-signal analysis. The linearized coefficients for a ser-
vovalve were discussed in Chapter 3, and this will be used here again, but in more
detail, as a starting point. Consider the previous simple example but now including
a servovalve as the input control element, as shown in Fig. 5.12.

The flow-continuity equation now becomes:

Q = kf i
√

Ps − P = AU + V
�

dP
dt

. (5.31)

Now consider linearizing this equation to deduce the dynamic performance close to
a particular operating condition. The issue is the servovalve equation, the flow being
a function of two variables: current i and pressure P. If small variations about the
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Figure 5.12. A simple circuit for lifting a load mass M.

steady-state operating point Q(0), U(0), i(0), P(0) are considered, then:

Q(0) + �Q = A[U(0) + �U] + V
�

d[P(0) + �P]
dt

. (5.32)

But, the following is true:

Q(0) = AU(0),
dP(0)

dt
= 0, (5.33)

and, therefore:

�Q = A�U + V
�

d�P
dt

. (5.34)

The small variation in servovalve flow rate about the operating point is obtained
from the Taylor expansion:

�Q = ∂ Q
∂i

∣∣
i(0),P(0) �i + ∂ Q

∂ P

∣∣
i(0),P(0) �P, (5.35)

�Q = ki �i − kp�P. (5.36)

It will be seen that the two partial differential components in Eqs. (5.35) and (5.36)
are the linearized coefficients of the servovalve at the operating point discussed in
Chapter 3 and for this example are given by:

flow gain, ki = ∂ Q
∂i

= kf

√
Ps − P(0) = Q(0)

i(0)
, (5.37)

pressure gain, kp = −∂ Q
∂ P

= kf i(0)

2
√

Ps − P(0)
= Q(0)

2[Ps − P(0)]
. (5.38)

Completing the system model by adding the linearized force equation gives:

force, P A = Mg + BvU + M
dU
dt

, (5.39)

�P A = Bv�U + M
d�U
dt

,

volume, V = V(0) + Ay ∼= V(0). (5.40)

Bringing system equations (5.34), (5.36), and (5.39) together gives:

ki �i − kp�P = A�U + V(0)
�

d�P
dt

, (5.41)

�P A = Bv�U + M
d�U
dt

. (5.42)
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Figure 5.13. Sudden closure of a linear actuator with negli-
gible damping.

The system linearized differential equation then becomes:

�U
(

1 + kp Bv

A2

)
+
[

kpM
A2

+ V(0)Bv

�A2

]
d�U
dt

+ V(0)M

�A2

d2�U

dt2 = ki

A
�i . (5.43)

This is again a second-order, linearized differential equation now relating actuator
speed to servovalve applied current and is strictly applicable only to small variations
about the particular operating point. Rearranging this equation into standard second-
order form then gives:

�U +

[
kpM

A2
+ V(0)Bv

�A2

]
(

1 + kp Bv

A2

) d�U
dt

+
V(0)M

�A2(
1 + kp Bv

A2

) d2�U

dt2 =
ki

A
�i(

1 + kp Bv

A2

) ,

�U + 2�

�n

d�U
dt

+ 1
�2

n

d2�U

dt2 = �Uss.

(5.44)

The damping ratio � , the undamped natural frequency �n, and the damped fre-
quency �d may then be determined by equating terms. It is useful to note that in
practice,

� often the denominator term
kp Bv

A2
� 1 and can be neglected,

� for an operating condition i(0) = 0, then the pressure gain kp = 0 and the flow
gain ki is finite for a critically lapped spool. The left-hand side of differential
equation (5.44) is then identical to that determined for an idealized flow input,
Eq. (5.22); that is, the critically lapped servovalve provides no damping around
the closed condition.

5.5.3 Undamped Natural Frequency of a Linear Actuator

Consider a single-rod actuator, with no damping, and with the flow suddenly cut off,
as shown in Fig. 5.13.

Because the undamped natural frequency is being considered, it is necessary to
consider only load mass (load inertia) in the force equation:

P1 A1 − P2 A2 = M
dU
dt

. (5.45)

Flow continuity on both sides gives:

inlet side, 0 = A1U + V1

�

dP1

dt
, (5.46)

outlet side, 0 = A2U − V2

�

dP2

dt
. (5.47)
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Table 5.1. Condition for minimum undamped natural
frequency

Area ratio � 1.00 1.25 1.50 1.75 2.00 2.25
Length ratio � 0.50 0.53 0.55 0.57 0.59 0.60

← →
Double-rod Single-rod

Differentiating Eq. (5.45) and combining with Eqs. (5.46) and (5.47) gives:

U + M(
A2

1�

V1
+ A2

2�

V2

) d2U

dt2 = 0. (5.48)

It will be deduced that the volumes on either side are effectively two springs in series
having a combined hydraulic stiffness k, given by:

k = A2
1�

V1
+ A2

2�

V2
. (5.49)

The undamped natural frequency is therefore given by:

�n =

√√√√√ A2
1�

V1
+ A2

2�

V2

M
=
√

k
m

. (5.50)

Given that V1 = A1�x and V2 = A2(1 − �)x and also � = A1/A2, then:

�n =
√

�A2

Mx

[
�

�
+ 1

(1 − �)

]
. (5.51)

This clearly has a minimum because it varies from ∞ when � = 0 to ∞ when � = 1.
Differentiating Eq. (5.51) then gives the condition for minimum natural fre-

quency as follows:

�n minimum occurs when � =
√

�

1 + √
�

. (5.52)

Table 5.1 shows this variation with area ratio.
It can be seen that, as expected, a double-rod actuator has its minimum natural

frequency with equal volumes on either side. For a single-rod actuator, it can also be
seen that when the area ratio is increased from 1 to 2, then the position for minimum
natural frequency changes from 0.5 to 0.59, an increase of only 18%.

Worked Example 5.2

A double-rod cylinder has a design stroke of 0.5 m, and its internal diameter
has to be determined. One design requirement is that the undamped natural fre-
quency should be in excess of 100 Hz when the load mass M = 200 kg, the effec-
tive fluid bulk modulus is � = 0.9 GN/m2, and the rod diameter is half the bore
diameter, d = D/2.
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Determine the cylinder bore diameter.
Choosing the midposition for the lowest natural frequency gives:

�2
n = 2�

V
A2

M
→
√

2�

V
A2

M
> 2� × 100 rad/s,

2�

(A× half stroke)
A2

M
> (200�)2 → A>

(200�)2 M × half-stroke
2�

,

A>
(200�)2200(0.25)

2(0.9 × 109)
= 0.011,

�

4

[
D2 −

(
D
2

)2
]

> 0.011 → 3�D2

16
> 0.011,

D > 137 mm.

5.5.4 Laplace Transforms and Transfer Functions

The use of differential equations and linearized differential equations now opens up
a powerful analysis avenue to aid the understanding of the dynamic behavior of fluid
power circuits. This is considerably further aided by the use of Laplace transforms
that change linear differential equations from the time domain to the s domain,
where s is the Laplace operator. The Laplace transform of a time-varying function
f(t) is defined as:

L f (t) = F(s) =
∫ ∞

0
f (t)e−st dt . (5.53)

It is now simply a matter of applying this transform to each element of the differen-
tial equation, and the use of Table 5.2 greatly aids this process.

As an example, consider the previously considered lifting system consisting of
a flow input Q, a fixed volume, and a linear actuator of mass M with the return
connected to the tank, Fig. 5.14. The two equations were developed as follows:

Q = AU + V(0)
�

dP
dt

, (5.54)

P A = Mg + BvU + M
dU
dt

. (5.55)

Now consider taking the Laplace transforms of these two linear differential equa-
tions by using Table 5.2. Also assume that the volume V(0) that does not change

M

V                     P A

y, U 

Q

Figure 5.14. A simple circuit for lifting a load mass M.
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Table 5.2. Some common Laplace transforms

f (t) F(s) f (t) F(s)

1 Unit impulse 1 11 cos �t
s

(s2 + �2)

2 Step h
h
s

12 1 − cos �t
�2

s(s2 + �2)

3 tn n = 1,2,3,–
n!

sn+1
13 e−at sin �t

�

(s + a)2 + �2

4 e−at 1
(s + a)

14 e−at cos �t
(s + a)

(s + a)2 + �2

5 t e−at 1

(s + a)2 15
d
dt

f (t) s F(s) − f (0)

6
1

(n − 1)!
tn−1e−at 1

(s + a)n 16
d2

dt2 f (t) s2 F(s) − s f (0)−df (0)
dt

7
1
a

(1 − e−at )
1

s(s + a)
17 Delay f (t − T) e−sT f (t)

8
1
a2

[at − (1 − e−at )]
1

s2(s + a)
18 Pulse function, magnitude

h
s

(1 − e−sT)
h, duration T

9
1

(b − a)
[e−at − e−bt ],

b �= a

1
(s + a)(s + b)

19 Final-value theorem Lim
t→∞ f (t) = s F(s)]s=0

10 sin �t
�

(s2 + �2)
20 Initial-value theorem Lim

t→0 f (t) = s F(s)]s=∞

significantly over the transient response:

Q(s) = AU(s) + V(0)
�

[s P(s) − P(0)] , (5.56)

P(s)A = Mg + BvU(s) + M [sU(s) − U(0)] . (5.57)

It can be seen that the process of taking Laplace transforms, with the inherent
integration limits, has changed the differential equations to algebraic equations.
This now allows the two first-order equations to be combined in a purely alge-
braic manner, allowing the establishment of transfer functions, a powerful tool for
dynamic analysis and control studies. Combining algebraic equations (5.56) and
(5.57) gives the following system transfer function about a steady-state operating
point:

Input External Initial Conditions
↓ ↓ ↓ ↓ (5.58)

U(s) =
Q(s)

A
− s

V(0)Mg
�A2

+ s
V(0)U(0)

�A2
+ V(0)P(0)

A�

1 + V(0)Bv

�A2
s + V(0)M

�A2
s2

.
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For determining the complete solution, initial conditions U(0) and P(0) are re-
quired. However, if the response to input flow rate Q only is required, then the
transfer function becomes:

U(s) =
Q(s)

A

1 + V(0)Bv

�A2
s + V(0)M

�A2
s2

(5.59)

=
Q(s)

A

1 + 2�

�n
s + s2

�2
n

.

Comparing this transfer function with the original differential equation, it can be
seen that a mechanistic approach is to simply replace the differential operator
(d/dt) → s if the relationship between the output and input only is required. Con-
sidering the earlier brief introduction to the solution of linear differential equations,
(5.23), it can be seen that the denominator of the transfer function is the characteristic
equation when equated to zero; in this case,

1 + 2�

�n
s + s2

�2
n

= 0. (5.60)

It can be seen that this is equivalent to replacing  from the original differential
equation complementary solution with the Laplace operator s.

To determine the load position, velocity is integrated. Recalling the Laplace
transform symbol for integration, 1/s, gives:

y(s) = U(s)
s

=
Q(s)

A

s
(

1 + 2�

�n
s + s2

�2
n

) . (5.61)

The relationship between a system output and a system input gives rise to the com-
mon notation for a transfer function as follows:

output
input

= y(s)
Q(s)

= G(s) = K

s
(

1 + 2�

�n
s + s2

�2
n

) . (5.62)

Transfer functions such as G(s) can be directly inserted into MATLAB Simulink by
standard blocks. This can speed up the simulation assembly process, particularly for
components such as a servovalve whose dynamic performance is often expressed in
transfer function form by the manufacturer; for example, � = 1 and �n = 110 Hz.
Note, however, that such parameters can change as the magnitude of the input cur-
rent to the servovalve changes. This is particularly important if frequency-response
analysis is to be used.

5.6 The Electrical Analogy

Previous work has considered the case in which a line and actuator volume can
be “lumped” together, and the approach is sometimes referred to as a lumped-
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a

U Figure 5.15. A fluid element subject to motion.

parameter analogy. However, in many applications, the lines connecting compo-
nents could be extremely long and, in reality, are more accurately defined by the
wave equations, often referred to as a distributed-parameter analysis. An approx-
imation to the more accurate model of a line can be made with lumped approx-
imations, and the electrical analogy is a useful mechanism for understanding this
approach. Consider linear characteristics and a slug of fluid, cross-sectional area a
and length �, as shown in Fig. 5.15.
Assume the analogy:

pressure P → voltage V,

flow rate Q → current I.

(i) Fluid resistance. The pressure drop �p, along the fluid element for laminar flow,
is given by:

�p = 128 ��

�d4
Q → �V = RI, (5.63)

hydraulic resistance → electrical resistance.

(ii) Fluid compressibility.

�Q = V
�

dP
dt

→ �I = C
dV
dt

, (5.64)

fluid compressibility → electrical capacitance.

(iii) Fluid inertia. The pressure drop that is due to fluid acceleration is given by:

�pa = ��a
dU
dt

,

(5.65)

�p = ��

a
dQ
dt

→ �V = L
dI
dt

,

fluid–mechanical mass → electrical inductance.

It is therefore concluded that for a fluid element, the analogies are given by:

resistance R = 128 ��

�d4
,

inductance L = ��

a
, (5.66)

capacitance C = V
�

.
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Applying this to an actuator, when considering mass and viscous friction effects,
then gives:

linear actuator, P1 A1 − P2 A2 = BvU + M
dU
dt

,

P1� − P2 = Bv

A1 A2
Q + M

A1 A2

dQ
dt

, (5.67)

Q = U A1 � = A1

A2
.

motor, Dm(P1 − P2) = Bv� + J
d�

dt
,

P1 − P2 = Bv

D2
m

Q + J
D2

m

dQ
dt

, (5.68)

Q = Dm�.

It then follows that the electrical analogies for actuators are:

linear actuator: viscous resistance, Rv = Bv

A1 A2
, inductance, L = M

A1 A2
, (5.69)

motor: viscous resistance, Rv = Bv

D2
m

, inductance L = J
D2

m
. (5.70)

When considering whether or not to include line dynamics in a system model, it is
noted that a blocked line with no friction losses will have a traveling-wave frequency
of oscillation given by:

f = Co

2�
, velocity of sound in the fluid, Co =

√
�

�
. (5.71)

If a system is expected to have a frequency component that is comparable with this
frequency, line dynamics must be modeled with some accuracy. One approximation
to the solution to the wave equation, to be discussed later, is to consider a lumped
approximation to the true distributed-parameter solution. The next issue is how to
distribute R, L, C in the line and how many “lumps” should be used. For example,
Fig. 5.16 shows a two-lump approximation using a pair of � networks.

Qa Qb
R/2 L/2

C/4 C/4

R/2 L/2

C/4 C/4 

 Qi

Pi

Px
Po

Qo

Figure 5.16. A line dynamics approximation using lumped � elements for laminar mean flow.
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The set of equations using this approximation, and working from left to right,
may then be written as follows:

Qi − Qa = C
4

dPi

dt
,

Pi − Px = R
2

Qa + L
2

dQa

dt
,

Qa − Qb = C
2

dPx

dt
, (5.72)

Px − Po = R
2

Qb + L
2

dQb

dt
,

Qb − Qo = C
4

dPo

dt
.

These equations can be resolved only when the input and the output pressure–flow
relationships have been included to close the solution. The solution approach, how-
ever, is common to other systems, flow differences are integrated to evaluate pres-
sure, and pressure differences are integrated to evaluate flow rates. Experience has
shown that it is better to rearrange the pressure-drop equations into individual terms
and then integrate to determine the pressure.

If the mean flow rate through a pipe is turbulent, then the lumped analogy may
be used with the “resistance” replaced with the nonlinear pressure-drop equation:

�p = kt Q1.75, kt = 0.24���0.25

d4.75
. (5.73)

Considering the line as a two-lump model then allows the equations previously
described to now be written:

Qi − Qa = C
4

dPi

dt
,

Pi − Px = kt

2
Q1.75

a + L
2

dQa

dt
,

Qa − Qb = C
2

, (5.74)

Px − Po = kt

2
Q1.75

b + L
2

dQb

dt
,

Qb − Qo = C
4

dPo

dt
.

The nonlinear pressure-drop terms will considerably increase damping compared
with the incorrect use of a laminar-flow-type linear characteristic.

Worked Example 5.3

For a line with a load restrictor having a linear pressure–flow characteristic,
determine the transfer function relating the output flow rate to the input flow
rate using a single � lumped approximation for line dynamics. Determine the
undamped natural frequency if the load resistance is negligible.

(i) Construct the system using a termination load resistance RL.
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  R   L

C/2 C/2

 Qi

Pi Po

Qx                                       Qo

RL

Worked Example 5.3

The equations, when Laplace transformed with zero initial conditions, then
become:

time domain s domain

Qi − Qx = C
2

dPi

dt
→ Qi (s) − Qx(s) = sC

2
Pi (s)

Pi − Po = RQx + L
dQx

dt
→ Pi (s) − Po(s) = (R + sL)Qx(s)

Qx − Qo = C
2

dPo

dt
→ Qx(s) − Qo(s) = sC

2
Po(s)

Po = RLQo → Po(s) = RLQo(s)

Rearranging then gives:

Qo(s)
Qi (s)

= 1

1 + s
(

CRL + CR
2

)
+ s2

(
LC
2

+ C2 RRL

4

)
+ s3

LC2 RL

4

.

(ii) If the load resistance is negligible, RL = 0, then:

Qo(s)
Qi (s)

= 1

1 + s
CR
2

+ s2 LC
2

, �n =
√

2
LC

=
√

2Co

�

where Co is the velocity of sound in the pipe and � is the pipe length.

5.7 Frequency Response

Now consider the behavior of a system if a sinusoidal signal is applied to its input;
for example, if a sinusoidal current is applied to a servovalve–motor drive as shown
in Fig. 5.17.

Assuming a linear system, initially the output will fluctuate and then also settle
down to a steady-state sine wave, but with a phase difference and amplitude change
compared with the input. The phase difference and amplitude of the output will
change as the frequency changes. It can be shown by Laplace transform theory that
for steady-state conditions, the amplitude ratio relating the output sinusoid to the
input sinusoid and the phase angle relating the output sinusoid to the input sinusoid
are given by:

amplitude ratio,
N
I

= |G(s)|s= j�, (5.75)

phase angle, 
 = ∠G(s)|s= j�. (5.76)
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i

n

Servovalve/motor 
          G(s) 

Current 
i = I sin (ωt)

Speed 
n = N sin (ωt + φ)

i = I sin (ωt)

t

n = N sin (ωt + φ)

i = I sin (ωt)

t

Figure 5.17. Frequency response of a servovalve–motor drive.

That is, the transfer function is evaluated as a complex vector with real and imagi-
nary parts:

G( j�) = A+ j B, (5.77)

amplitude ratio,
N
I

=
√

A2 + B2, (5.78)

phase angle, 
 = tan−1 B/A. (5.79)

The frequency response can therefore be represented as a single-graph polar plot,
similar to an Argand diagram, or as a logarithmic plot, using two graphs to display
magnitude and phase angle. Polar plots tend not to be used in practice because
the amplitude ratio and phase of a transfer function can convey more information if
plotted separately and in logarithmic coordinates. Such a logarithmic representation
is known as a Bode diagram. The Bode diagram amplitude ratio is converted to
decibels (dB) as follows:

amplitude ratio (dB) = 20 log
N
I

= 20 log|G(s)|s= j�. (5.80)

The amplitude ratio diagram and the phase angle diagram are both plotted against
frequency expressed on a logarithmic basis. When the magnitude is considered, it
will be evident that common transfer functions will have asymptotic approximations
over some parts of the frequency range, and this can help in deciding the probable
form of a transfer function when experimentally measured. Note also that a prod-
uct of transfer functions becomes additive when a Bode diagram amplitude ratio is
considered on a logarithmic basis.

For example, consider a transfer function representing the relationship between
the sinusoidal variation in motor speed and the applied servovalve current, and
given by

n(s)
i(s)

= G(s) = 10
(1 + 0.05s)(1 + 0.01s)

. (5.81)
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0

φ

I

N

ω = 0ω = ∞
Re

Im 

Figure 5.18. Polar plot of a gain and two first-
order transfer functions.

For frequency response, change to the frequency domain by means of the transfor-
mation s = j�:

n( j�)
i( j�)

= G( j�) = 10
(1 + 0.05 j�)(1 + 0.01 j�)

. (5.82)

The amplitude ratio and phase angle are given by:

N
I

= 10√
[1 + (0.05�)2][1 + (0.01�)2]

, (5.83)


 = −tan−1 0.05� − tan−1 0.01�. (5.84)

Therefore, as the frequency is increased from 0 to ∞, the amplitude ratio varies
from 10 to 0 and the phase angle varies from 0 to −180◦. This frequency response
is shown as a polar (vector) plot in Fig. 5.18 as the frequency is increased from zero
toward a high value.

Now consider the frequency response plotted as a Bode diagram. It may be
readily deduced from Eq. (5.81) that the overall transfer function of the servovalve–
motor drive has three individual components – one gain and two individual first-
order transfer functions, as follows:

10,
1

(1 + 0.05s)
,

1
(1 + 0.01s)

. (5.85)

Because the magnitude is converted to decibels, each component is added on a log
scale. The gain becomes 20 log 10 = 20 dB. Each first-order lag function may be
considered in general terms, with a time constant � , as follows:

20 log
1

(1 + s�)
→ 20 log

1
(1 + j��)

, the magnitude being

→ 0 dB at low frequency, (5.86)

→ 20 log
1

��
at high frequency.

Therefore, at high frequency, the slope is −20 dB/decade change in frequency. At a
frequency �� = 1 → � = 1

�
, known as the break frequency, the magnitude is 0 dB.

Therefore, the magnitude of a first-order lag transfer function has a zero gain (in
decibels) from low frequency up to the break frequency and will be asymptotic to
a slope of −20 dB/decade as the frequency is increased. This slope is constructed
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from the break frequency. In the demonstration example, there are two first-order
transfer function components; therefore, there are two break frequencies of 20 rad/s
and 100 rad/s. The magnitude (amplitude ratio) will follow the following asymptotic
shape as the frequency is increased from zero:

� a constant of 20 dB at low frequency up to 20 rad/s,
� a slope of −20 dB/decade from 20 rad/s up to 100 rad/s,
� a slope of −40 dB/decade from 100 rad/s onward.

The Bode diagram is shown in Fig. 5.19.
It will be seen from Fig. 5.19 that the asymptotic approximation is actually a

good first estimate of the gain (amplitude ratio) variation with frequency and has
historically been used extensively to speed up the design process in the absence
of computer technology now in common use. This has shown its value when, for
example, additional compensating circuits are to be considered and the dynamic
performance assessed.

0
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20
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1 10 100 1000

Gain (dB) 

Frequency (rad/s) 
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0

1 10 100 1000Frequency (rad/s) 
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Figure 5.19. Bode diagram for the servovalve–motor drive.
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Figure 5.20. Bode diagram for a second-order transfer function.

Second-order transfer functions are commonly met in fluid power systems and
it is important to understand their properties for both the overdamped case and the
underdamped case. Consider such a transfer function:

G(s) = 1(
1 + 2�

�n
s + s2

�2
n

) ,

G( j�) = 1(
1 − �2

�2
n

+ j
2��

�n

) , (5.87)

|G( j�)| = 1√(
1 − �2

�2
n

)2

+
(

2��

�n

)2
, ∠G( j�) = − tan−1

2��

�n

1 − �2

�2
n

.

Figure 5.20 shows the Bode diagram for this second-order transfer function. This
transfer function has properties that are useful for identifying it by using measured
data:

� When � = �n, then the phase angle is ∠G( j�) = −90◦.
� When � = �n, then the magnitude is |G( j�)| = 1

2�
.



234 System Dynamics

� The peak magnitude occurs when:

� = �n

√
1 − 2� 2, |G( j�)| = 1

2�
√

1 − � 2
. (5.88)

Some practical issues are as follows:

� The frequency-response method described is applicable to linear systems. It
may also be applied to nonlinear systems for small variations about a steady-
state operating point, the transfer function to be verified being deduced by a
linearized analysis.

� The practical measurement of frequency response will become difficult as the
frequency is increased because of the reducing output amplitude, which will also
be masked to some extent by noise.

� It is particularly difficult to obtain practical data for small amplitudes of oscilla-
tion – for example, as required by a linearized analysis – because of both noise
and transducer sensitivity for small fluctuations about the operating point.

Worked Example 5.4

The following Bode diagram has been experimentally determined for an open-
loop servovalve–cylinder drive with the servovalve current as the input and cylin-
der position as the output. Identify the most probable transfer function.

0

20

0.01 0.1 1 10 100 1000

-90
0.01 0.1 1 10 100 1000

Worked Example 5.4

It is seen that:

(i) at low frequency, the magnitude slope is −20 dB/decade,
(ii) at high frequency, the magnitude slope is −60 dB/decade,

(iii) at low frequency, the phase is asymptotic to −90◦, and
(iv) at high frequency, the phase is asymptotic to −270◦
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This suggests a transfer function of the following form:

G(s) ≈ K

s
(

1 + 2� s
�n

+ s2

�2
n

) .

The gain K may be evaluated by considering the low-frequency part of the mag-
nitude plot, say at � = 1 rad/s. The transfer function at such a frequency may be
approximated with sufficient accuracy by:

G(s) ≈ K
s

→ G( j�) = K
j�

.

So, the magnitude is read from the data as −28 dB at � = 1 rad/s:

|G( j�)| = K
�

→ 20 log
K
1

= −28,

K = 0.04.

The second-order transfer function has a peak at � ≈ 100 rad/s, and this has
an associated phase angle of −90◦ from the second-order contribution alone.
Because the damping is low, this frequency must be very near to the undamped
natural frequency �n. At the undamped natural frequency,

G( j�) = K
j�(2�)

→ |G( j�)| = K
�(2�)

.

It can be seen from the data that because the magnitude is −60 dB, then:

20 log
0.04

100(2�)
= −60,

� = 0.2.

This low damping ratio validates the assumption that the undamped natural fre-
quency �n ≈ 100 rad/s, and the deduction of the damping ratio is probably a good
estimate.

5.8 Optimum Transfer Functions, the ITAE Criterion

In many cases in which there are system parameters in a transfer function that can
be varied, it is possible to select the best parameters such that the response to a step
input to the system is at a defined optimum. This is done by solving the step response
and selecting the parameters in the transfer function such that the response satisfies
a particular criterion by minimizing the error in some way between the demand and
the actual output. The most popular error criteria are the integral of error squared
(IES) and the integral of time multiplied by absolute error (ITAE):

                             demand
                       achieved 
error e(t) 

t

IES min
∫ ∞

t=0
e2(t)dt,

(5.89)

ITAE min
∫ ∞

t=0
t |e(t)|dt . (5.90)
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Table 5.3. Some transfer functions based on the
ITAE criterion
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�3
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1
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Figure 5.21. Responses to a unit step input
for a range of transfer functions satisfying
the minimum ITAE.

The solution for the ITAE criterion gives a maximum overshoot of typically less
than 5% in response to a step input for a range of transfer functions. Table 5.3 shows
the required structure for transfer functions up to fifth order and using a standard
transfer function notation with respect to a defining frequency �0.

For example, it will be deduced that the solution for a second-order transfer
function has a damping ratio of � = 0.7. A comparison of transient responses to a
step input is shown in Fig. 5.21 for n = 2, 3, 4, 5.

Worked Example 5.5

Consider Worked Example 5.3, which analyzed a line with a linear terminal resis-
tance, using a single � lumped approximation for line dynamics.

Determine an expression for the load resistance such that the flow-rate trans-
fer function satisfies the appropriate ITAE criterion, recalling that the transfer



5.8 Optimum Transfer Functions, the ITAE Criterion 237

function was developed as:

Qo(s)
Qi (s)

= 1

1 + s
(

CRL + CR
2

)
+ s2

(
LC
2

+ C2 RRL

4

)
+ s3

LC2 RL

4

.

It is seen that the transfer function is third order and, from Table 5.3:

�3
0 = 4

LC 2 RL
,

1.75

�2
0

= LC
2

+ C2 RRL

4
,

2.15
�0

= CRL + CR
2

.

Rearranging gives the equation:

2y2 + y(1 − 3.525X) + 2X = 0,

where y = RL

R
and X = L

CR2 .

The solution is easily obtained from this quadratic equation once X is known. A
graph showing the solution is shown in the figure:

0

2

4

6

8

0 2 4 6 8

R

X

RL

Worked Example 5.5(a)

The graph has a minimum value of X ≈ 1.81 below which the optimum ITAE
criterion cannot be achieved. Also shown is a good approximation given by:

RL

R
= 1.763X − 1 for X > 4.

In fact, for larger values of X, the −1 term is negligible and results in:

RL = 0.07��

��
.
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Thus, the load resistance necessary is independent of the line diameter. However,
a large value of X is associated with the dynamic behavior’s being dominated by
the load resistance. In other words, the line dynamics becomes less significant.
For this example, the achievement of the optimum ITAE response is associated
with very small diameter lines.

For example, consider a 2-mm-diameter line, 4 m long, used for remotely
sampling the fluid. Assume also the following data:

fluid density, � = 860 kg/m3, fluid viscosity � = 0.025 N s/m2

effective bulk modulus � = 1.4 × 109 N/m2

line inductance, L = ��

a
= 1.1 × 109

line capacitance, C = a�

�
= 0.9 × 10−14

line resistance, R = 128��

�d4
= 0.26 × 1012

X = L

CR2 = 1.81

This value of X just happens to be the minimum possible, and the two equal
solutions for the load resistance are:

RL = 1.35R.

Selecting this load resistance gives the following behavior for the flow at the end
of the line, given a step input flow rate of 2 L/min.

0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

2

2.5

Qo
(L/min) 

Time (s)  

Worked Example 5.5(b)

The ITAE criterion is not usually applied to passive systems such as Worked
Example 5.5 and becomes particularly useful when active dynamical components
and systems are to be designed, particularly closed-loop control systems.
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ωFigure 5.22. A servovalve–motor drive.

5.9 Application to a Servovalve–Motor Open-Loop Drive

5.9.1 Forming the Equations

It is instructive to first consider a motor drive because of the likelihood of fluid vol-
ume symmetry on either side. The flow-continuity and torque equations are brought
together, but because motor leakage cannot usually be avoided, the various leak-
ages must be taken into account, as discussed in Chapters 3 and 4. Consider the
basic drive concept shown in Fig 5.22 with a critically lapped servovalve.

Servovalve flow rates:

Q1 = kf i
√

Ps − P1 when i > 0, = kf i
√

P1 when i < 0,

Q2 = kf i
√

P2 when i > 0, = kf i
√

Ps − P2 when i < 0.
(5.91)

Motor flow continuity:

control volume 1, Q1 −
[

(P1 − P2)
Ri

+ P1

Re

]
= Dm� + V1

�

dP1

dt
,

control volume 2,

[
(P1 − P2)

Ri
− P2

Re

]
− Q2 = −Dm� + V2

�

dP2

dt
,

Q1 = Dm� + (P1 − P2)
Ri

+ P1

Re
+ V1

�

dP1

dt
,

Q2 = Dm� + (P1 − P2)
Ri

− P2

Re
− V2

�

dP2

dt
.

(5.92)

Motor torque:

Dm(P1 − P2) = Tcf + Bv� + Tload + J
d�

dt
. (5.93)

5.9.2 An Estimate of Dynamic Behavior by a Linearized Analysis

Linearizing the flow-continuity and torque equations about a steady-state operating
condition gives:

ki1�i − kp1�P1 = Dm�� + �(P1 − P2)
Ri

+ �P1

Re
+ V1(0)

�

d�P1

dt
,

ki2�i + kp2�P2 = Dm�� + �(P1 − P2)
Ri

− �P2

Re
− V2(0)

�

d�P2

dt
, (5.94)

Dm�(P1 − P2) = Bv�� + �Tload + J
d��

dt
. (5.95)
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The linearized coefficients cannot be determined explicitly, but it is possible if the
approximation for flow rates is made as discussed in Chapters 3 and 4 by assuming
that P1 + P2 ≈ Ps. The operating conditions for pressure differential P1(0) − P2(0)
and speed �(0) are then as follows:

kf i(0)

√
Ps − [P1(0) − P2(0)]

2
≈ Dm�(0) + [P1(0) − P2(0)]

Rm
,

1
Rm

= 1
Ri

+ 1
2Re

, (5.96)

[P1(0) − P2(0)] = Tcf(0) + Bv�(0) + Tload(0)
Dm

. (5.97)

If the two flow gains and the two pressure gains are now equal because of the pres-
sure assumptions made, then:

ki �i − kp�P1 = Dm�� + �(P1 − P2)
Ri

+ �P1

Re
+ V1(0)

�

d�P1

dt
,

ki �i + kp�P2 = Dm�� + �(P1 − P2)
Ri

− �P2

Re
− V2(0)

�

d�P2

dt
, (5.98)

Dm�(P1 − P2) = Bv�� + �Tload + J
d��

dt
, (5.99)

flow gain, ki = kf

√
Ps − [P1(0) − P2(0)]

2
, (5.100)

pressure gain, kp = kf i(0)

2
√

2
√

Ps − [P1(0) − P2(0)]
. (5.101)

Taking Laplace transforms and assuming equal volumes on either side then gives
the transfer function:

��(s) =
ki �i(s)

Dm
−
(

1
2R

+ 1
Rm

+ s
C
2

)
�Tload(s)

D2
m

1 + Rv

2R
+ Rv

Rm
+ s

(
L

2R
+ L

Rm
+ CRv

2

)
+ s2 LC

2

,

R = 1
kp

= 2(Ps − [P1(0) − P2(0)])

Dm�(0) + [P1(0) − P2(0)]
Rm

, (5.102)

Rv = Bv

D2
m

, C = V
�

, L = J
D2

m
.

Considering changes in speed with reference to changes in servovalve current then
gives:

��(s) =
ki �i(s)

Dm

1 + Rv

2R
+ Rv

Rm
+ s

(
L

2R
+ L

Rm
+ CRv

2

)
+ s2 LC

2

. (5.103)
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Clearly, this is a second-order open-loop system and will have a damping ratio that
is heavily dependent on the servovalve resistance R. This resistance changes with
steady-state pressure differential because of the steady-state load torque and the
steady-state speed.

Worked Example 5.6

Consider the practical system discussed in Chapters 3 and 4 for three steady-state
speed conditions of 0, 234 rpm, and 903 rpm. Data are as follows:

Shell Tellus ISO 32 mineral oil at 40◦C
Fluid effective bulk modules � = 1.4 × 109 N/m2

Supply pressure Ps = 100 bar
Dm = 1.68 × 10−6 m3/rad
Rm = 1.59 × 1012 N m−2/m3 s−1

Motor torque losses = 2 N m at 234 rpm and 3 N m at 903 rpm
Motor viscous torque loss coefficient Bv = 0.02 N m/rad s−1

Volume on one side V = 9.2 × 10−6 m3

Motor and load inertia J = 0.014 kg m2

Evaluating the various constant terms of the transfer function gives:

Rv = Bv

D2
m

= 0.02

1.682 × 10−12
= 7.09 × 109 N m−2/m3 s−1,

C = V
�

= 9.2 × 10−6

1.4 × 109 = 6.57 × 10−15, L = J
D2

m
= 0.014

1.682 × 10−12
= 5 × 109.

Now consider the three steady-state speed conditions of 0, 234 rpm, and 903 rpm.
An estimate of the most poorly damped case can be made by considering the
limiting zero speed with a zero steady-state pressure differential. This gives, at
zero speed:

R = 2{Ps − [P1(0) − P2(0)]}
Dm�(0) + [P1(0) − P2(0)]

Rm

= ∞ N m−2/m3 s−1,

Rv

2R
= 0,

Rv

Rm
= 0.00446, 1 + Rv

2R
+ Rv

Rm
= 1.0045,

L
2R

= 0 s,
L

Rm
= 0.0031 s,

CRv

2
= 0.23 × 10−4 s,

undamped natural frequency �n = 247 rad s−1, damping ratio � = 0.38.

At 234 rpm = 24.5 rad s−1:

R = 2{Ps − [P1(0) − P2(0)]}
Dm�(0) + [P1(0) − P2(0)]

Rm

= 176.2 × 105

(41.2 × 10−6 + 0.7 × 106)
,

R = 4.2 × 1011 N m−2/m3 s−1 Rv

2R
= 0.00844,

Rv

Rm
= 0.00446,
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L
2R

= 0.006 s,
L

Rm
= 0.0031 s,

CRv

2
= 0.23 × 10−4 s,

undamped natural frequency �n = 247 rad s−1, damping ratio � = 1.12.

At 903 rpm = 94.6 rad s−1:

R = 2{Ps − [P1(0) − P2(0)]}
Dm�(0) + [P1(0) − P2(0)]

Rm

= 164.2 × 105

(158.9 × 10−6 + 1.1 × 106)

R = 1.0 × 1011 N m−2/m3 s−1,
Rv

2R
= 0.0355,

Rv

Rm
= 0.00446,

L
2R

= 0.025 s,
L

Rm
= 0.0031s,

CRv

2
= 0.23 × 10−4 s,

undamped natural frequency �n = 252 rad s−1, damping ratio � = 3.39.

Worked Example 5.6 leads to the following observations:

� Viscous friction effects contribute at very low speeds when servovalve resis-
tance becomes less significant.

� Motor inherent leakage may also be negligible in terms of providing ade-
quate damping.

� Around zero speed, at which viscous and friction damping becomes domi-
nant, the system damping ratio may be very low with the distinct possibility
of damaging oscillation if the motor is suddenly stopped. The motor stiction
characteristic will provide additional damping but oscillations will probably
still occur.

� It can be seen from these two steady-state speed conditions that the small sig-
nal dynamic response about the steady-state conditions considered are heav-
ily damped.

� The damping ratio increases as the motor steady-state speed increases, as is
well known.

Considering transfer function equation (5.103) further, it will be seen that if the
servovalve resistance dominates, then the damping ratio may be written as:

� = L
2R

√
2

LC
and aim for a damping ratio of

√
2

2
,

X = L

CR2 = 1.

(5.104)

Expanding further and considering the no-load condition gives an approximate solu-
tion for motor speed as:

R → 2Ps

Dm �(0)
, �(0) =

√
4V(0)P2

s

J�
. (5.105)

For the current example, this gives a motor speed of 13.7 rad s−1 (130 rpm).
Determining the small-signal transient response about an operating point is dif-

ficult in practice because of both hydraulic noise and speed transducer accuracy and
response over such a small speed change necessary to validate a linearized analysis.

Considering the large-signal response does tend to reveal system characteristics
similar to those of the small-signal response. For the present example, it was shown
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Figure 5.23. Large-signal response of a servovalve–motor open-loop drive.

that the linearized damping ratio around 234 rpm was � = 1.12 and around 903
rpm was � = 3.39. The exact nonlinear simulation result for speed changes between
these two speed values is shown in Fig. 5.23 and is compared with the experimental
measurement for the same speed range.

The large-signal response shows that the system is more heavily damped as the
speed is increased. In general, the damping of a nonlinear hydraulic system response
is greater than predicted by the linearized solution. The measurement was taken
with a torque–speed transducer mounted between the test motor shaft and its load
pump and illustrates some practical realities. The speed sensor uses an optical tech-
nique that has its own dynamic response characteristic. For large speed increases,
the response will be further yet slightly damped and, for rapid speed decreases
with much reduced system damping, the transducer has a limiting speed rate of
change-tracking characteristics. In addition, the transducer is mounted by connect-
ing between the motor and pump shafts with flexible couplings, and this reflects
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an out-of-balance speed effect and motor–pump-ripple effects at motor speed, and
more evident at higher speeds. Given the transducer and mounting limitations, the
measurement shows a good correlation with the simulation result, validating system
dynamics damping predicted by a linearized analysis.

5.9.3 A Comparison of Nonlinear and Linearized Equations Using
the Phase-Plane Method

Phase-plane methods are graphical methods that can handle differential equations
up to second order with the possibility of the inclusion of first-order controllers if
followed by a restricted class of nonlinear element. As such, the phase-plane method
is restricted to a narrow range of dynamical system modeling, but it does have the
advantage of being able to handle a range of nonlinearities without the need to
utilize computer analysis.

The system differential equations are rearranged into a form that is suitable
for the construction of trajectories in the phase plane, the phase plane being a plot
of the time differential of the parameter being studied against the parameter. For
a speed control system, the phase-plane plot would be motor acceleration against
motor speed, and for a position control system, the phase-plane plot would be veloc-
ity against position. The phase-plane plot therefore gives no indication of time,
although it can be computed, but the general shape of the plot gives a good indi-
cation of the type of time response that would exist, and peak magnitudes may be
determined. Consider then the motor open-loop speed control system previously
discussed by means of a linearized analysis. Leakage and friction will be neglected
to understand the basic dynamics when fluid compressibility and load inertia are
dominant. Therefore, it follows that the two differential equations become:

kf i

√
Ps − P�

2
= Dm� + V

�

dP�

dt
, (5.106)

DmP� = J
d�

dt
,

(5.107)
where P� = P1 − P2.

These two equations may then be combined and written in nondimensional form
and nondimensional time as follows:√

1 − X
d�

dt
= � + X

d2�

dt2 ,

� = �

�(0)
, t = t

�
, �(0) = kf i(0)

Dm

√
Ps

2
,

� = V Ps

�Dm�(0)
, X = J��2(0)

V P2
S

.

(5.108)

In this example, the phase plane requires a plot of acceleration versus speed a/�; in
this case, a/�. To aid this graphical approach, an isocline m is defined as the slope
of the phase-plane trajectory and, therefore, it follows that for this example,

d2�

dt2 = da
dt

= da
d�

d�

dt
= ma. (5.109)
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Figure 5.24. Phase-plane isoclines for
m = 0 for an open-loop motor drive.

Consequently, the first of Eq. (5.108) becomes:√
1 − Xa = � + Xma. (5.110)

The linearized form of Eq. (5.108), by means of Eq. (5.109), is given by:

1 − Xa
2

= � + Xma. (5.111)

Therefore, by selecting m, the isocline line of constant slope m may be constructed
with either the exact equation or the linearized equation. Hence, the response
trajectory may be graphically constructed. The particular isocline, m = 0, is use-
ful because this gives the upper limit of acceleration and, from Eqs. (5.110) and
(5.111):

exact solution, a = (1 − �2)
X

, (5.112)

linearized solution a = 2(1 − �)
X

. (5.113)

Equations (5.112) and (5.113) are shown in Fig. 5.24.
It is seen from this plot that the maximum positive acceleration predicted by the

linearized solution is greater than that predicted by the exact solution and for any
steady-state motor speed. Consequently, it is deduced that the linearized solution is
always more oscillatory that the exact solution. A comparison of trajectories is given
in Fig. 5.25 for the dynamic parameter X = 1.

It can be seen from Fig. 5.25 that the linearized approximation still gives a good
feel for the dynamic behavior of the drive and allows an element of predesign before
a more complex computer simulation is pursued.

5.10 Application to a Servovalve–Linear Actuator Open-Loop Drive

5.10.1 Forming the Equations

The equations for the servovalve flow rates, actuator flow rates, fluid compressibil-
ity, load mass, and load force equation may now be combined to characterize the
connected system shown in Fig. 5.26 and in a similar manner as that of the previous
section, in which a motor actuator was used.
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Figure 5.25. Phase-plane plot for a motor open-loop speed drive X = 1.

Considering the critically lapped servovalve equations, with flow continuity on
both sides, and the load force equation then gives the servovalve flow equations:

Q1 = kf i
√

Ps − P1 where i > 0, = kf i
√

P1 where i < 0,

Q2 = kf i
√

P2 where i > 0, = kf i
√

Ps−P2 where i < 0.
(5.114)

When considering the flow-continuity equations for a linear actuator, any small
leakage across the piston is usually neglected. Considering, therefore, the gener-
alized flow-continuity equation gives the actuator flow-continuity equations:

Qi − Qo = dV
dt

+ V
�

dP
dt

, (5.115)

control volume 1, Q1 − 0 = A1U + V1

�

dP1

dt
,

control volume 2, 0 − Q2 = −A2U + V2

�

dP2

dt
, (5.116)

Q1 = A1U + V1

�

dP1

dt
,

Q2 = A2U − V2

�

dP2

dt
.

Q2 P2

Q1 P1

U

Ps

Control volume 2 

Control volume 1

Figure 5.26. A servovalve–linear actuator drive.
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Note that both volumes V1 and V2 change with time because of actuator motion and
also include any initial volumes and connecting line volumes, both lumped together
as V1(0) and V2(0):

V1 = V1(0) + A1 y,

V2 = V2(0) − A2 y.
(5.117)

In reality, the change in volume does not often influence the transient response at
starting and stopping conditions during the transient stage, although the responses
will be different because of the different volumes at each condition. Bringing the
flow equations together – for example, for positive current – gives:

kf i
√

Ps − P1 = A1U + V1

�

dP1

dt
,

. (5.118)
kf i
√

P2 = A2U − V2

�

dP2

dt
.

Actuator force equation:

P1 A1 − P2 A2 = Fcf + BvU + Fload + M
dU
dt

. (5.119)

A simplification made with an average flow rate cannot be done here, as was the
case for a motor drive, because of area asymmetry for the general case. If the areas
are the same, A1 = A2 = A, and because actuator leakage is considered negligible,
then it is clear from Eqs. (5.118) and (5.119) that dynamically, the sum of pressure
is equal to supply pressure for equal volumes, P1 + P2 = Ps .

5.10.2 An Estimate of Dynamic Behavior by a Linearized Analysis

The linearization process in this case is more complicated for the general case
because of the different actuator areas. The servovalve linearized flow equations
combined with the linearized actuator flow equations are written as follows:

�Q1 = ki1�i − kp1�P1 = A1�U + V1(0)
�

d�P1

dt
,

�Q2 = ki2�i + kp2�P2 = A2�U − V2(0)
�

d�P2

dt
.

(5.120)

Considering the steady-state pressures at the steady-state operating condition given
in Chapter 4, the flow and pressure gains are given in Table 5.4.

The linearized force equation becomes:

�P1 A1 − �P2 A2 = Bv�U + �F load + M
d�U
dt

. (5.121)

The flow and torque linearized equations developed are applicable to both extend-
ing and retracting cases, although, of course, the current sign is changed and the
sign of velocity is changed. We then may write the generalized transfer function by
combining Eqs. (5.120) and (5.121) when Laplace transformed:

�U(s) = [ki1 A1n2(s) + ki2 A2n1(s)]�i(s) − n1(s)n2(s)�F(s)
b0 + b1s + b2s2 + b3s3

,
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Table 5.4. Linearized coefficients for a servovalve–linear actuator

Extending Retracting

ki1 = kf
√

Ps�

√
� − F

(1 + � 3)
ki1 = kf

√
Ps�

√
1 + F

(1 + � 3)

ki2 = kf
√

Ps

√
� − F

(1 + � 3)
ki2 = kf

√
Ps

√
1 + F

(1 + � 3)

kp1 = kf i(0)
2�

√
Ps

√
1 + � 3

� − F
kp1 = kf i(0)

2�
√

Ps

√
1 + � 3

1 + F

kp2 = kf i(0)
2
√

Ps

√
1 + � 3

� − F
kp2 = kf i(0)

2
√

Ps

√
1 + � 3

1 + F

F = F
Ps A2

n1(s) =
(

kp1 + s
V1

�

)
, n2(s) =

(
kp2 + s

V2

�

)
,

b0 = A2
1kp2 + A2

2kp1 + Bvkp1kp2, (5.122)

b1 = A2
1

V2

�
+ A2

2
V1

�
+ Bv

(
kp1

V2

�
+ kp2

V1

�

)
+ Mkp1kp2,

b2 = M
(

kp1
V2

�
+ kp2

V1

�

)
+ Bv

V2

�

V1

�
, b3 = M

V2

�

V1

�
.

5.10.3 Transfer Function Simplification for a Double-Rod Actuator

Transfer function equation (5.122) is difficult to graphically represent because of
the many variables. However, for servovalve–actuator systems, it is common and
often dynamically preferable to use a double-rod actuator. In addition, it has been
established that the actuator undamped natural frequency occurs with equal vol-
umes on either side of the actuator. With the assumptions that A1 = A2 = A, V1 =
V2 = V, kp1 = kp2 = kp, and ki1 = ki2 = ki , it follows that:

�U(s) =
ki

A
�i(s)− (1 + sCR)

2A2 R
�F(s)

1 + Rv

2R
+ s

(
L

2R
+ CRv

2

)
+ s2 LC

2

, (5.123)

R = Ps(1 − F)
AUe(0)

, extending, R = Ps(1 + F)
AUr (0)

, retracting,

ki = kf
√

Ps

√
1 − F

2
, extending, ki = kf

√
Ps

√
1 + F

2
, retracting,

F = F
Ps A

, Rv = Bv

A2
, C = V

�
, L = M

A2
. (5.124)

This transfer function is similar to the transfer function developed for the
servovalve–motor drive and given by Eq. (5.102). If viscous effects are negligible,
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then a good design in terms of the damping ratio is the same as that defined earlier
for a servovalve–motor drive:

� = L
2R

√
2

LC
and aim for

√
2

2
; then X = L

CR2 = 1. (5.125)

This gives the solution for the no-load condition as:

R → Ps

AU(0)
, U(0) =

√
V(0)P2

s

J�
. (5.126)

The appropriate speed may be achieved in both directions for the no-load condition.
Note that the definition of servovalve resistance is different from that defined for the
motor actuator.

5.11 Further Considerations of the Nonlinear Flow-Continuity Equations
of a Servovalve Connected to a Motor or a Double-Rod Linear Actuator

Bringing the flow equations together for a motor and a double-rod linear actuator
gives the equations developed earlier and repeated here, with the assumption that
V1 = V2 = V:

Motor:

kf i
√

Ps − P1 = Dm� + (P1 − P2)
Ri

+ P1

Re
+ V

�

dP1

dt
, (5.127)

kf i
√

P2 = Dm� + (P1 − P2)
Ri

− P2

Re
− V

�

dP2

dt
.

Double-rod linear actuator:

kf i

√
Ps − P1 = AU + V

�

dP1

dt
, (5.128)

kf i

√
P2 = AU − V

�

dP2

dt
.

Subtracting the two flow rates then gives the following:

Motor:

kf i
√

Ps − P1 − kf i
√

P2 = (P1 + P2)
Re

+ V
�

d (P1 + P2)
dt

. (5.129)

Double-rod linear actuator:

kf i
√

Ps − P1 − kf i
√

P2 = V
�

d (P1 + P2)
dt

. (5.130)

� If the two servovalve flow rates are postulated to be dynamically equal, then the
left-hand side of both Eqs. (5.129) and (5.130) are zero and can be true only if
dynamically P1 + P2 = Ps .

� If P1 + P2 ≈ Ps is assumed, then the second term on the right-hand sides of
Eqs. (5.129) and (5.130) must also be zero. However, the first term on the right-
hand side is nonzero for a motor because of leakage and exactly zero for the
linear actuator because leakage is usually negligible.
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a        Steel      a 

Px                   Px
b Flexible hose b 

Qa Pa            Pb Qb

V1               V2        

Q1 P1                 P2 Q2

Figure 5.27. Short lines connecting a servovalve to an actuator.

� It is therefore concluded that if the external leakage term is small for a motor,
then it is probably true that dynamically P1 + P2 ≈ Ps for both a motor and a
double-rod linear actuator.

Following the previous discussion, the flow-continuity equations are combined into
a simplified flow-continuity equation as follows:

Motor:

kf i

√
Ps − Pload

2
= Dm� + V

�

dPload

dt
. (5.131)

Double-rod linear actuator:

kf i

√
Ps − Pload

2
= AU + V

�

dPload

dt
; (5.132)

Pload = P1 − P2,
(5.133)

P1 = Ps + Pload

2
, P2 = Ps − Pload

2
.

These similar flow-continuity equations are often used in the analysis of servovalve-
controlled systems. It will be deduced that the dynamic increase in one line pressure
will correspond to an equal dynamic decrease in the other line pressure.

5.12 The Importance of Short Connecting Lines When
the Load Mass Is Small

Consider an example in which the servovalve is connected to the actuator by a pair
of similar lines, each line being a combination of steel pipe and flexible hose. This is
typical of what happens in practice: A short hose is often used to minimize vibration
coupling between components and a steel pipe used to minimize airborne noise.
Details of each line are as shown in Fig. 5.27.

Additional data are as follows:

Fluid density � = 860 kg/m3

Fluid viscosity � = 0.032 N s/m2

Velocity damping Bv = 2 × 104 N/m s−1

�hose = 0.7 × 109 N m−2

�oil = 1.4 × 109 N m−2

Moving mass m = 25 kg
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Cylinder bore diameter = 76.2 mm
Cylinder rod diameter = 38.1 mm
Total stroke = 0.254 mm
Piston initially centralized
Steel lines 0.9 m long, 13-mm diameter
Hose 0.6 m long, 7-mm diameter

The actuator is horizontal, hence no load force Fload, and is not connected to its load
mechanism, hence having its minimum mass m. The cylinder is a high-quality prod-
uct (supplied by Eland Engineering UK) designed for precision control applications
and has low-friction seals. Consequently, the stiction–friction force was found to be
negligible. Calculating the relevant volumes then gives:

A1 = 4.56 × 10−3 m2, A2 = 3.41 × 10−3 m2,

aa = 1.33 × 10−4 m2, ab = 0.38 × 10−4 m2,

V1 = 0.58 × 10−3 m3, V2 = 0.433 × 10−3 m3,

Va = 0.12 × 10−3 m3, Vb = 0.023 × 10−3 m3.

Total volume on side 1, Vt1 = 0.72 × 10−4 m3

Total volume on side 2, Vt2 = 0.56 × 10−4 m3

From Section 5.5, the undamped natural frequency, neglecting line dynamics and
damping, is given by:

�n =

√√√√√ A2
1�e1

Vt1
+ A2

2�e2

Vt2

m
= 1544 rad/s (246 Hz). (5.134)

The measured frequency is assessed as 120 Hz, almost half that calculated assum-
ing line dynamics could be neglected. To get a feel for line dynamics, consider
inertia effects. This is conveniently done by comparing the inductance for each
side. Assuming an estimate for load inductance by combining both A1 and A2 then
gives:

Line a, La = ��a

aa
= 5.83 × 106,

Line b, Lb = ��b

ab
= 13.41 × 106, (5.135)

Load, L = m
A1 A2

= 1.61 × 106.

It would therefore seem that for the cylinder with minimum mass, the lines are more
dominant than the load in terms of the pressure difference to cause acceleration.
In fact, the mass m would have to be increased by a factor of 4 if Eq. (5.134) is
appropriate. One way of defining a new mass is to add all the inductances together
and evaluate an equivalent inductance Leq and, hence, an equivalent load mass meq.
This is not theoretically correct from a modeling point of view, but it does give a feel
for the effect:

meq

A1 A2
= m

A1 A2
+ ��a

aa
+ ��b

ab
,

(5.136)

meq = m + A1 A2��a

aa
+ A1 A2��b

ab
.
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This gives meq = 349.2 kg, an increase by a factor of 14 and not the factor of 4
required. The conclusion is that line dynamics are significant in this example and
must be included in more detail than considering additive inductance effects only; a
good dynamic model of each line is required.

As a starting point, consider therefore a simple lumped approximation, as dis-
cussed in Section 5.6, in which a single � network is assumed for each steel line and
each flexible hose. The servovalve dynamic response is represented by its manu-
facturer’s recommended second-order transfer function with an undamped natural
frequency �ns = 140 Hz and a damping ratio � s = 1. Note that this has no effect
on the system’s natural frequency. Servovalve spool-position dynamics are repre-
sented symbolically by a suitable differential equation transformation to current as
follows:

i + 2� s

�ns

di
dt

+ 1
�2

n

d2i

dt2 = id,

Q1 = kf i
√

Ps − P1, Q2 = kf i
√

P2 i > 0,

(5.137)

where id is the input current.

Line-in Line-out

Q1 − Qa = Ca

2
dP1

dt
A2U − Qb =

(
Cb

2
+ C2

)
dPb

dt

P1 − Px = Ra Qa + La
dQa

dt
Pb − Px = RbQb + Lb

dQb

dt

Qa − Qb = (Ca + Cb)
2

dPx

dt
Qb − Qa = (Ca + Cb)

2
dPx

dt

Px − Pa = RbQb + Lb
dQb

dt
Px − P2 = Ra Qa + La

dQa

dt

Qb − A1U =
(

Cb

2
+ C1

)
dPa

dt
Qa − Q2 = Ca

2
dP2

dt

(5.138)

The pressure at each steel–hose junction is Px, the internal flow through each steel
line is Qa, and the internal flow through each hose is Qb:

load force, Pa A1 − Pb A2 = Fcf + BvU + Fload + M
dU
dt

, (5.139)

Fcf + Fload ≈ 0.

Computed and measured results for the cylinder extending are shown in Fig. 5.28.
The effect of even a simple model for line dynamics is clear from Fig. 5.28

because the natural frequency has now been reduced from 246 Hz without lines
to 127 Hz with short lines and close to the measured frequency of 120 Hz. This fre-
quency reduction is dominated by line inertia effects because line volumes are small
compared with the actuator volumes, and line resistance is small compared with the
servovalve at steady-state conditions. The initial condition for the measured case,
with the actuator initially at rest, has pressures of Pa = 52.5 bar and Pb = 70 bar as a
result of retracting the actuator to its midposition prior to the extending test. These
pressures match those predicted by the steady-state theory discussed in Chapter 4.
The ratio of pressures at the initial condition is 1.33; the area ratio A1/A2. During
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Figure 5.28. The response of a servovalve–cylinder open-loop drive, unloaded and with short
lines.

constant-speed motion when extending, the speed U = 0.016 m/s, the pressure then
will settle to values of Pa = 30 bar and Pb = 40 bar.

It is therefore concluded that short lines must be considered, particularly if
small-diameter sections are used, when the system dynamics is analyzed under low
load conditions.

5.13 A Single-Stage PRV with Directional Damping

5.13.1 Introduction

Consider the single-stage valve shown schematically in Fig. 5.29. Damper unit a is
preloaded by the main spring b, which is used to set the system pressure, and the
spring–damper assembly rests on top of valve spindle c. During operation, the spin-
dle rests in a position to maintain the system pressure required, the surplus flow
passing through radial circular exit ports d.
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(b) Experimental test setup

(a) PRV schematic (c) Flow-porting region

Qp          Qload

              Qv

PRV 

        h 

xxo

Qexit

a

b

c

d

e
f

g

h

In

out

Relief valve
Qv

Figure 5.29. A single-stage PRV with directional damping (manufactured by The Oilgear
Company, USA).

A basic single-stage configuration would generally be dynamically undesirable
because of the relatively low viscous damping that would naturally occur in prac-
tice between the moving parts. The manufacturer has neatly overcome this problem
by introducing directional damping at damper element a. Directional damping is
achieved by spring pad e, which is restrained in the upward direction by damper
body g, but may move downward against weak restraining spring f. Hence, if the
valve assembly moves upward (which is defined as positive), fluid behind the damper
unit is allowed to pass through the holes in g because they will be opened by move-
ment of spring pad e. This creates a negligible pressure drop across the damper unit
and offers minimum resistance to motion. However, when the damper unit moves
downward, the spring pad now closes the flow path through the damper unit, which
means that fluid trapped between the damper and the top of the spindle is com-
pressed. A small radial clearance (typically 0.12 mm) exists between the damper unit
and the valve main body, and this allows the compressed fluid to flow behind the
damper unit. Consequently, a damping force is generated in the negative-velocity
direction and can be controlled to some extent at the manufacturing stage.

The significant advantage of this relief-valve design is that it will open rapidly in
response to load flow-rate changes and will consequently maintain system pressure
with minimum fluctuation. In practice, this result in an extremely stable valve that
has widespread applications, particularly in high-flow-rate systems.
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Figure 5.30. Measured pressure–flow data for the PRV damper.

5.13.2 Forming the Equations, Transient Response

Control-Volume Flow Continuity

Qp − Qload = Qv + V
�

dP
dt

. (5.140)

PRV Flow
Assuming small displacements of the spindle allows the exposed flow area to be
expressed by the following approximation:

Qv = 1.7Cqarad

(
h
d

)1.5
√

2P
�

+ as
dx
dt

. (5.141)

Force Balance at the Spindle
Equating the hydraulic force to the spring force, viscous damper force, flow-reaction
force, and acceleration force gives:

Pas = F(0) + kxx + B∗ dx
dt

+ 3.4 cos 69◦ Cqarad P
(

h
d

)1.5

+ m
d2x

dt2 ,

(5.142)
B∗ = B+ for

dx
dt

> 0, and B− for
dx
dt

< 0.

The total cross-sectional area of the radial holes when fully opened by the spin-
dle is arad and the main spindle cross-sectional area is as. A crucial aspect of the
PRV design is the damping coefficient for negative-velocity B−. Therefore, consider
Fig. 5.30.

Consider the equation for annular laminar flow resistance (Chapter 3):

Ra = 6��

�roh3
= 6(0.028)(0.0025)

�(0.0268)(0.000123)
,

Ra = 2.89 × 109 N m−2/m3 s−1.

The damper diameter D = 53.8 mm, its width � = 6.5 mm, and its clearance
h ≈ 0.12 mm. The outer edge has a crown design with only typically 2.5 mm at the
center causing the flow restriction, and the application of the pressure-drop equation
for a uniform annular gap is not strictly applicable. However, it is useful to apply the
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pressure-drop equation developed in Chapter 3 to get a feel for the resistance of the
annular gap.

The measured resistance from the inverse slope of Fig. 5.30 gives a value of
Ra = 2.33 × 109 N m−2/m3 s−1 and close to that estimated from laminar flow theory.

When the damper has negative velocity, it compresses the fluid between the
damper and the spindle bush, and the process of velocity damping is actually a
dynamic process. The pressure buildup is due to the combination of annular gap
restriction and fluid compressibility, leading to the following equation for the force
generation Fd:

Fd + CRa
dFd

dt
= Raa2

d
dx
dt

,

(5.143)

C = Vd

�
,

where ad is the damper cross-sectional area. Inserting data Vd = 3.2 × 10−5 m3,
� = 1.4 × 109 N/m2, shows that the time constant CRa = 74 �s and, hence, the tran-
sient force may be neglected. The negative-velocity damping coefficient is given
by B− = Raa2

d = 1.2 × 104 N/m s−1. In the computer simulation, a value of B− =
1.4 × 104N/m s−1 was used.

Other data applicable to the PRV are as follows:

Spindle area as = 0.635 × 10−4 m2 (9-mm diameter)
Flow coefficient Cq = 0.55 (see Chapter 3)
Radial ports diameter d = 4 mm
Radial ports total area arad = 0.76 × 10−4 m3 (six ports)
Main spring stiffness kx = 34.3 × 103 N/m
Spring preload F(0) = 408.3 N
Damper coefficient B+ = 0.05× 104 N/m s−1

Damper coefficient B− = 1.4 × 104 N/m s−1

Enclosed length x0 = 6.1 mm
Spindle mass m = 0.33 kg
Test volume V = 2.3 × 10−3 m3

Fluid density � = 860 kg/m3

Fluid bulk modulus � = 1.4 × 109 N/m2

A comparison between measurement and simulation is shown in Fig. 5.31.
The PRV is tested by use of a load servovalve with the load lines connected,

and is rapidly switched on and off to create a load-resistive path that is dynami-
cally much faster than the PRV–fluid volume combination being tested. In reality,
when measurements are compared with theory, the servovalve dynamics do have a
slight effect and should be included. For this study, the manufacturer’s data indi-
cate a second-order lag transfer function Gsv(s) with a damping ratio � ≈ 1 and an
undamped natural frequency fn ≈ 100 Hz:

(Qp−Qload)(s) = ki i(s)(
1 + 2�

�n
s + s2

�2
n

) . (5.144)

The test condition is that the initial pressure is P(0) = 96.5 bar with the PRV inop-
erative and the spindle in a position to just open the exit ports; that is, x = 6.1 mm.
The pump flow, 15 L/min, and initially passing through the servovalve is then rapidly
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Figure 5.31. The transient response of a single-stage PRV with directional damping.

switched to the PRV by switching the servovalve current to zero. These conditions
then result in the pressure’s increasing to P(0) = 100 bar, with a valve lift h(0) =
0.325 mm.

5.13.3 Frequency Response from a Linearized Transfer Function Analysis

The comparison between measurement and simulation is encouraging in the sense
that the predicted trend and damped frequency are similar. It is therefore useful
to next consider the linearized transfer function because this will give an indication
of which PRV properties are dominant. The linearized equations, when Laplace
transformed neglecting initial conditions, are:

�Qv(s) = kq�h(s) + �P(s)
Rv

+ assh(s) + sC�P(s), (5.145)

kq = 1.5Qv(0)
h(0)

, Rv = 2P(0)
Qv(0)

, C = V
�

, (5.146)

�P(s)as = kx�h(s) + B∗s�h(s) + kf �h(s) + kr arad�P(s) + ms2�h(s), (5.147)

kf =
arad P(0)

√
h(0)

d
d

, kr = 0.67
(

h(0)
d

)1.5

. (5.148)
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Combining these equations then gives the transfer function:

�P(s) = Rv[�Qp − �Qload](s)[kx + kf + B∗s + ms2]

[Rv(as − kr arad)(kq + ass) + (1 + sCRv)(kx + kf + B∗s + ms2]
. (5.149)

The first condition to be satisfied is that all coefficients in the denominator of the
transfer function should be positive; that is:

as − kr arad > 0 → 1 − 0.67
(

h(0)
d

)1.5 arad

as
> 0. (5.150)

This is satisfied and, for the valve being considered, the second term may be
neglected. Also, by considering the total linearized spring stiffness, we have:

Rvkq(as − kr arad) + kx + kf ≈ Rvkqas + kx + kf
(5.151)

= 3P(0)as

h(0)
+ kx + arad P(0)

d

(
h(0)

d

)0.5

= 5.91 × 106 + 0.034 × 106 + 0.054 × 106.

It can be seen that the first term in Eq. (5.151) significantly dominates, and the trans-
fer is then simplified to:

�P(s)
K[�Qp − �Qload](s)

= [1 + a1s + a2s2]
[1 + b1s + b2s2 + b3s3]

(5.152)

K = (kx + kf )h(0)
1.5as Qv(0)

, a1 = B∗

(kx + kf )
, a2 = m

(kx + kf )
, (5.153)

b1 = ash(0)
1.5Qv(0)

+ B∗h(0)
3P(0)as

+ (kx + kf )Ch(0)
1.5as Qv(0)

,

b2 = mh(0)
3P(0)as

+ CB∗h(0)
1.5as Qv(0)

, b3 = mCh(0)
1.5as Qv(0)

. (5.154)

This transfer function can be evaluated once a decision on an appropriate value for
the nonlinear velocity damping coefficient B∗ has been made. It seems reasonable
to plot the transfer function using only the average of the two velocity damping
coefficients, B∗ = 0.73 × 104 N/m s−1.

The experimental data were obtained by applying a test signal to the servovalve
and measuring the pressure response. A two-channel transfer function analyzer was
used that generated a pseudorandom binary sequence signal (prbs) output to excite
the servovalve, the pressure transducer signal being then used to determine the
transfer function by the cross-spectrum-analysis technique. A comparison between
the linearized transfer function and the measurement is shown in Fig. 5.32.

The theoretical transfer function should be modified by adding the servovalve
transfer function as described earlier. It is evident from the data that this will make
only a minor modification to the theoretical transfer function. However, it is clear
that the linearized transfer function does indicate a good general trend with the
experimental data, given the highly nonlinear aspect of the unique velocity damping
unit.
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Figure 5.32. A comparison of computed and measured transfer functions for a single-stage
PRV with directional damping.

5.14 Servovalve Dynamics

Considering the design of a servovalve – for example, of the force-feedback type
shown in Fig. 5.33, will make it clear what components contribute toward the overall
dynamic performance.

The use of a current-feedback servoamplifier means that the current-buildup
characteristic is extremely fast when compared with other elements of the servo-
valve. For example, Fig. 5.34 shows some measured characteristics.

Current-buildup dynamics

Armature and flexure-tube
dynamics 

Flapper–nozzle dynamics 

Resistance bridge dynamics 

Spool dynamics 
Pa Pb

Applied current  id

Ps            T         T           Ps

P1   Q1              P2  Q2

Figure 5.33. Contributions to a servovalve dynamic behavior.
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Figure 5.34. Current buildup for a servovalve.

If the current is derived from a direct-voltage source, then the current buildup
will be relatively sluggish, as shown in Fig. 5.34(a); although, of course, the servo-
valve will still be functional. With a servoamplifier current drive, as shown in Fig.
5.34(b), the natural frequency �nc is of the order of 1 kHz.

A feeling for the complexity of the remaining dynamic characteristic can be
obtained by considering some aspects of each internal element. The following anal-
ysis is therefore intended only as an indication of the way forward, and a particular
servovalve will have its unique set of defining equations.

First-Stage, Armature, and Flapper–Nozzle
Considering the steady-state servovalve first-stage and flapper–nozzle stage theory
and the notation developed previously in Chapter 3, the current-buildup and the
dynamic torque equations will be of the following types:

i + 2�

�n

di
dt

+ 1
�nc

d2i

dt2 = id, (5.155)

kt i = (ka −km)� + (Pa − Pb)anr +k[xs + (r +b)�](r + b)+ Bv

d�

dt
+ J

d2�

dt2 . (5.156)

Here, the flapper viscous velocity rotational damping torque, coefficient Bv , and
rotational acceleration torque, inertia J, have been added to the steady-state torque
balance. The spool displacement is xs. The applied current is id.

Flapper–Nozzle and Resistance Bridge Flow Characteristic
Considering flow continuity on each side gives:

Cqoao

√
2(Ps − Pa)

�
− Cqnanx

√
2Pa

�
= +as

dxs

dt
+ Va

�

dPa

dt
,

(5.157)

Cqoao

√
2(Ps − Pb)

�
− Cqnany

√
2Pb

�
= −as

dxs

dt
+ Vb

�

dPb

dt
,

anx = �dn(xnm − x), any = �dn(xnm + x), x = r�, (5.158)

where Va and Vb are the internal, small volumes on either side of and within the
resistance bridge. The flapper displacement at the nozzle is x, and its maximum dis-
placement is xnm. The flapper rotation � and displacement x are obtained from the
previous torque balance equation and the spool displacement xs and is obtained
from the spool force balance equation.
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Force Balance at the Spool
The static force balance, including the flow-reaction force, is now modified to
include the dynamic flow-reaction force, the spool viscous damping, and acceler-
ation effects:

(Pa − Pb)as = k[xs + (r + b)�] + 2C2
qwxs cos �[Ps−Pload],

+ ��

(
dQ1

dt
− dQ2

dt

)
+ Bs

dxs

dt
+ m

d2xs

dt2 , (5.159)

Q1 = Cqwxs

√
2(Ps − P1)

�
, Q2 = Cqwxs

√
2P2

�
,

(5.160)
Pload = P1 − P2.

Here, the spool viscous velocity rotational damping force, coefficient Bs, and accel-
eration force, mass m, have been added to the steady-state torque balance. For
a direct-drive servovalve, the spool-force equation requires a knowledge of the
solenoid force variation with applied current and position.

Clearly, the defining equations are nonlinear, and the solution also requires the
load specification so that the load pressure differential P1 − P2 can be derived. Con-
sidering the equations presented, it will be seen that a servovalve dynamic perfor-
mance depends on not only electrical–electromagnetic–geometry parameters but
also on the load it is supplying P1 − P2 and, hence, the load flow rate, the supply
pressure Ps, and the magnitude of the input current.

In practice, the dynamic characteristic is often specified by the manufacturer
as a frequency-response diagram and is intended to indicate a typical performance
range. The frequency response is obtained experimentally and usually with the
output ports connected; that is, for the no-load condition. It therefore represents
the best performance that can be expected for that particular servovalve. Fig-
ure 5.35 shows a typical frequency-response diagram for a servovalve with force
feedback. Note, however, that the frequency response could be significantly worse
than that shown or even better for high-performance servovalves at a higher cost.
The dynamic performance also depends on the servovalve type and is usually
slightly worse for proportional valves of the same flow rating but with integrated
electrical feedback. In essence, a servovalve is probably available to meet a particu-
lar system dynamics requirement.

For the example shown in Fig. 5.35, the small-signal frequency response may be
represented by a second-order transfer function approximation with an undamped
natural frequency of �n ≈ 170 Hz and a damping ratio � ≈ 0.8. This will be valid
certainly up to a frequency equal to the undamped natural frequency. For the entire
frequency range measured, 500 Hz, a third-order transfer function will have to be
fitted to the data.

5.15 An Open-Loop Servovalve–Motor Drive with Line Dynamics
Modeled by Lumped Approximations

Servovalve, Dynamics Included, Underlapped Spool
Consider Fig. 5.36. Because this example considers the open-loop behavior, the fol-
lowing approximation for the spool-flow characteristic is sufficient to account for
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Figure 5.35. A servovalve measured frequency response, 38 L/min rated flow rate.

the flow gain change away from the zero-current condition:

Q1 = kf (0.071 + 0.212i)
√

Ps − P1, i > 1.5 mA,

Q2 = kf (0.071 + 0.212i)
√

P2, i > 1.5 mA.
(5.161)

Q2      Qout

P2 Pout

Q1                                         Qin

P1                                         Pin

Ps
ω

i

Figure 5.36. A servovalve–motor open-loop
drive with interconnecting lines.
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Lines, Laminar Mean Flow, Two π Lump Approximations per Line, Negligible
Motor Internal Volume
For both lines, the internal pressure node at the center of each line is Px with flow
rate Qa into it and Qb after it:

Line 1 Line 2

Q1 − Qa = C
4

dP1

dt
Qout − Qa = C

4
dPout

dt

P1 − Px = R
2

Qa + L
2

dQa

dt
Pout − Px = R

2
Qa + L

2
dQa

dt

Qa − Qb = C
2

dPx

dt
Qa − Qb = C

2
dPx

dt

Px − Pin = R
2

Qb + L
2

dQb

dt
Px − P2 = R

2
Qb + L

2
dQb

dt

Qb − Qin = C
4

dPin

dt
Qb − Q2 = C

4
dP2

dt

(5.162)

If the motor has a significant volume on either side, then the capacitance at the end
of line 1 and at the beginning of line 2 must be increased to include the extra volume
to give:

C
4

= line volume/4
�

→ line volume/4 + motor volume
�

. (5.163)

Motor Flow and Torque Equations
Flow rates:

Qin = Dm� + (Pin − Pout)
Ri

+ Pin

Re
, (5.164)

Qout = Dm� + (Pin − Pout)
Ri

− Pout

Re
. (5.165)

Torque:

Dm(P1 − P2) = Tload + Tcf + Bv� + J
d�

dt
. (5.166)

For this study, there is no load torque applied, Tload = 0, and the stiction–friction
characteristic has a stiction equivalent pressure of 24 bar and a Coulomb friction
equivalent pressure of 12 bar, the latter becoming constant for servovalve currents
beyond 2mA. This friction characteristic is therefore important for motor speeds
around zero. Further data are as follows:

Servovalve flow constant kf = 5.27 × 10−8 (current mA)
Both lines 13 mm diameter, 4.63 m long
Mineral oil density � = 860 kg/m3, viscosity � = 0.033 N s/m2

Motor leakage dominated by external losses, Re = 3 × 1012 N m−2/m3 s−1

Motor displacement Dm = 2.61 × 10−6 m3/rad
Motor and load inertia J = 0.0069 kg m2, viscous coefficient Bv = 0.01 N m/

rad s−1

Fluid bulk modulus � = 1.4 × 109 N m−2/m3 s−1

Velocity of sound in the fluid Co = 1276 m/s
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Line delay T = �/Co = 3.63 ms
For one line, C = 4.39 × 10−13 m3/N m−2, L = 3 × 107 kg/m4, R = 2.18 ×

108 N m−2/m3 s−1.

The servovalve dynamics are represented by a second-order transfer function
with an undamped natural frequency of �ns = 110 Hz and a damping ratio � = 1,
obtained from experimental work.

A comparison between computer simulation and measurement of pressures at
the motor and motor speed is shown in Fig. 5.37. The line effect is theoretically evi-
dent from motor pressures but is heavily filtered experimentally. Trend comparisons
are good, the results suggesting that the dynamics are actually dominated by the
motor rather than by the lines. However, the small pure delay time �/Co = 3.63 ms
is evident both experimentally and theoretically.
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Figure 5.37. The transient response of a motor coupled to a servovalve by long lines and a
comparison with a lumped-parameter approximation.
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Considering the results and the low-frequency oscillation remote from the line
frequency, it is of interest to determine approximate system damping and natural
frequency from a linearized analysis at the steady-state operating point. Considering
also the previous example on the linearized transfer function for line volume effects
only, and neglecting viscous damping effects, then gives:

��(s) ≈
ki �i(s)

Dm

1 + s
(

L
2R

+ L
Rm

)
+ s2

LC
2

, (5.167)

where L now represents motor inductance J/D2
m, not line inductance, and R rep-

resents the servovalve resistance at the steady-state condition, not line resistance.
Inserting the data, �(0) = 55.9 rad/s and P1(0) − P2(0) = 14.4 bar gives R = 1.17 ×
1011 N m−2/m3 s−1. This results in the transfer function damping ratio � = 0.15 and
a damped frequency of oscillation of 10.6 Hz. The simulation and measured results
both indicate a similar highly oscillatory behavior with the measurement showing a
damped frequency just slightly in excess of 10 Hz.

5.16 Transmission Line Dynamics

5.16.1 Introduction

Earlier in this chapter, lumped system components were discussed and, in partic-
ular, an interconnecting line between components was considered to be a combi-
nation of resistive, inductive, and capacitive elements. Of course, transmission line
dynamics are always present in hydraulic systems, but the frequencies of interest
are often so high for a good system design that pressure ripples, for example, may
appear as only a very small-amplitude oscillation on the large-scale dynamic varia-
tion. An approximate guide to determining the significance of the transmission line
frequency was established earlier by simply considering the time for a pressure wave
to propagate at the speed of sound, Co, down the line and back again to produce the
frequency:

f = Co

2�
, (5.168)

where � is the length of the line. Considering the previous analyses on a servovalve–
cylinder and a servovalve–motor, it was found that line dynamics had different influ-
ences, depending on not only the line length but also on the servovalve resistance
and actuator dynamic characteristics. Considering the appropriate servovalve resis-
tance R, the average capacitance of both sides C, and the load inductance L, then
the ratio of mechanical time constant L/R divided by the fluid time constant CR
gives the following characteristics for the two examples.

Servovalve–Cylinder with Short Lines and Significant Actuator Volumes

X = L

CR2 = 1.61 × 106

(0.49 × 10−13)(1.56 × 1011)2 = 0.00135.
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Z ∆x

Y ∆x

Q Q + ∂Q

       ∂Q
P P + ∂P

∆x

Figure 5.38. Element of a fluid transmission line.

Servovalve–Motor with Long Lines and Negligible Actuator Volumes

X = L

CR2 = 109

(4.4 × 10−13)(1.2 × 1011)2 = 0.16.

The study in Section 5.13 showed that the lines had only a secondary effect on the
open-loop transient response. A useful rule of thumb seems to be that transmission-
line effects probably need to be taken into account when X � 1.

The analysis of transmission lines is often referred to as distributed-parameter
analysis because the fluid momentum, state, and mass flow state continuity equa-
tion must be applied to an infinitesimal length of line and then “integrated” to pro-
duce the required solution when boundary conditions are included. The approach is
therefore to consider a small length of line �x, as shown in Fig. 5.38.

The transmission-line element is uniquely defined by two components referred
to as the series impedance per unit length Z and the shunt admittance per unit length
Y. The change in pressure and volumetric flow rate along the element, assuming
laminar flow, is then given by:

∂ P
∂x

= −ZQ,
∂ Q
∂x

= −YP. (5.169)

These two equations are then combined to form the wave equation:

∂2 P
∂x2

= ZYP, or
∂2 Q
∂x2

= ZYQ. (5.170)

The solution of the wave equation may then be obtained by use of the boundary
conditions:

x = 0, P = P1, and Q = Q1;

x = �, P = P2, and Q = Q2.
(5.171)

The solution to the wave equation is then:

P = (P1 + Zc Q1)e−�x

2
+ (P1 − Zc Q1)e+�x

2
,

(5.172)

Q = (Q1 + P1/Zc)e−�x

2
+ (Q1 − P1/Zc)e+�x

2
,
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where the parameters Zc and � are defined as:

characteristic impedance Zc =
√

Z
Y

, (5.173)

propagation factor � =
√

ZY. (5.174)

A specific solution using Eq. (5.172) depends on the model chosen to determine the
characteristic impedance Zc and the propagation factor �. However, the first terms
in Eq. (5.172) suggest a contribution from the forward-traveling wave, whereas the
second terms suggest a contribution from the backward or reflected wave. Clearly,
the pressure and flow variation down a line will change, depending on the character-
istic impedance Zc and propagation factor �. If, for example, the input impedance
is chosen to be equal to the characteristic impedance, then:

if
P1

Q1
= Zinput = Zc,

(5.175)
P = P1e−�x, Q = Q1e−�x.

The pressure distribution down the line therefore monotonically decreases with dis-
tance x and there are no high- or low-pressure points. This would not be the case for
any other input impedance.

Development of the basic transmission-line approach to fluid systems really
developed from about 1950, resulting in the foundation on which further stud-
ies were based. Initially, work was carried out on pneumatic and water systems,
and a variety of analytical techniques in both the frequency domain and the time
domain have been used. The frequency domain is perhaps the easiest to han-
dle, particularly for the case in which complicated average friction or distributed
friction series impedance Z and shunt admittance Y models are used. For time-
domain analysis, perhaps the most efficient method uses modal approximations to
the transmission-line equations. For both frequency-domain and time-domain stud-
ies, the transmission-line equations are therefore best handled when they are in
hyperbolic form. By rearranging Eq. (5.172), the conditions at the end of the line
may be expressed in terms of the conditions at the inlet to the line:

[
P2

Q2

]
=

 cosh � � −Zc sinh ��

− sinh ��

Zc
cosh ��


[ P1

Q1

]
. (5.176)

To apply the developed solutions to a hydraulic control circuit, it is now necessary
to consider the three forms for series impedance Z and shunt admittance Y; that is,
lossless line model, average friction model, and distributed friction model.

5.16.2 Lossless Line Model for Z and Y

Recalling the definitions of pressure drop and compressibility flow, per unit length,
gives:

dP = R′dQ + L′ dQ
dt

, (5.177)

dQ = C ′ dP
dt

. (5.178)
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So, recalling Laplace transforms then gives the following terms for the general
case:

series impedance, Z = dP(s)
dQ(s)

= R′ + sL′, (5.179)

shunt admittance, Y = dQ(s)
dP(s)

= sC′, (5.180)

where s is the Laplace operator symbolic of differentiation. The per-unit-length
parameters are given by:

R′ = R
�

= 128�

�d4
, L′ = L

�
= �

a
, C′ = C

�
= a

�
, (5.181)

where a is the line cross-sectional area and d is its diameter. Hence, for a lossless
line, R′ = 0, and consequently the characteristic impedance and propagation factor
are in their simplest form and become:

characteristic impedance, Zc = Zca =
√

Z
Y

=
√

L′

C′ =
√

��

a2
, (5.182)

propagation factor, �ca =
√

ZY = s
√

L′C′ = s
Co

, (5.183)

Co =
√

�

�
= velocity of sound in the fluid. (5.184)

The solution for pressure and flow rate at the end of the line is then obtained from
Eq. (5.172) to give:

P2 = (P1 + Zca Q1)e−sT

2
+ (P1 − Zca Q1)e+sT

2
,

Q2 = (Q1 + P1/Zca)e−sT

2
+ (Q1 − P1/Zca)e+sT

2
, (5.185)

T = �

Co
(s).

The first terms in Eq. (5.185) contain a pure delay for a forward-propagating wave,
e−sT , and the second terms contains a pure delay for a backward-propagating wave,
esT . This means that the lossless line can easily be modeled as a series of pure delays
and therefore used, given its limitations, for time-domain simulation of a system.
The form of the equations used depends on the system being considered, particu-
larly whether or not actuator volumes are significant. This is illustrated in Fig. 5.39
for a servovalve–motor with insignificant motor volumes and a servovalve–cylinder
with significant cylinder volumes.
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(b) A servovalve–cylinder open-loop drive actuator with significant actuator volumes

Q2 Qout

P2 Pout

 Q1 Qin

P1 Pin

U

Ps

(a) A servovalve–motor open-loop drive with negligible motor volumes 
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Figure 5.39. Modeling systems with lossless transmission line models.

Consider therefore the servovalve–motor drive, Fig. 5.39(a), and also studied in Sec-
tion 5.13 with lumped-parameter models used for each line. Further data are as
follows:

Motor leakage dominated by external losses Re = 3 × 1012 N m−2/m3 s−1

Motor displacement Dm = 2.61 × 10−6 m3/rad
Motor and load inertia J = 0.0069 kg m2
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Motor viscous coefficient Bv = 0.01 N m/rad s−1

The stiction–friction characteristic has a stiction equivalent pressure of 24 bar
The Coulomb friction equivalent pressure is 12 bar and constant for |i | > 2 mA
For this study, there is no load torque applied, Tload = 0
Lines d = 13 mm, � = 4.63 m
Line cross-sectional area a = 1.33 × 10−4 m2

Mineral oil density � = 860 kg/m3, viscosity � = 0.033 N s/m2

Fluid bulk modulus � = 1.4 × 109 N m−2/m3 s−1

Velocity of sound in the fluid Co = 1276 m/s
Line delay T = �/Co = 3.63 ms
For one line, C = 4.39 × 10−13 m3/N m−2, L = 3 × 107 kg/m4, R = 2.18 ×

108 N m−2/m3 s−1

Characteristic impedance Zca =
√

��

a2
= 0.83 × 1010 N m−2/m3 s−1

Servovalve flow constant kf = 5.27 × 10−8 (current mA)

The servovalve dynamics are represented by a second-order transfer function with
an undamped natural frequency of �ns = 110 Hz and a damping ratio � = 1, and
obtained from experimental measurements.

A comparison between a computer simulation, using MATLAB Simulink, and
practical measurement is shown in Fig. 5.40. Because each line identifying mathe-
matical equations contains no integration blocks, it is important to set the correct
initial conditions on each pure delay block. The simulation results are similar to
those shown in Fig. 5.37 using lumped-parameter � approximations for each line,
but slightly more oscillatory, as might be expected with line resistance neglected for
the lossless line model.

5.16.3 Average and Distributed Line Friction Models for Z and Y

For laminar flow, the reintroduction of line friction gives rise to two approaches to
determine the series impedance, one based on the lossless line case with friction
added, the other based on a more complex solution including heat transfer effects:

(i) Average friction:

series impedance, Z = R′ + sL′, (5.186)

shunt admittance, Y = sC′, (5.187)

characteristic impedance, Zc =
√

Z
Y

=
√

R′ + sL′

sC′ , (5.188)

propagation factor, � =
√

ZY =
√

(R′ + sL′)sC′. (5.189)

(ii) Distributed friction:

series impedance, Z = sL′

1 − 2J 1( j
√

sr2/v)

j
√

sr2/vJ0( j
√

sr2/v)

, (5.190)

shunt admittance, Y = sC′, (5.191)
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Figure 5.40. The transient response of a motor coupled to a servovalve by long lines and a
comparison with a lossless line approximation.

where J0 is the Bessel function of the first kind of zero order and J1 is the Bessel
function of the first kind of first order. The shunt admittance is unchanged but not
if a gas is considered.

The series impedances for average and distributed frictions for a fluid are there-
fore complex functions and cannot be expressed in a usable explicit form for simula-
tion purposes by using software packages such as MATLAB Simulink. However, it
is possible to numerically evaluate the propagation factor for average friction in the
frequency domain. Various approximations to these functions have understandingly
been considered over many years, with transfer function approximations perhaps
offering the best way forward for simulation purposes.

5.16.4 Frequency-Domain Analysis

Letting s = j� allows evaluation of the various transmission-line functions for the
three cases of zero friction, average friction, and distributed friction. Table 5.5 gives
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Table 5.5. Transmission line functions for various models

Velocity of sound

Lossless
C
Co

= 1

Average friction
C
Co

= 1[
1
2

(
1 + 64

F4

)1/2

+ 1
2

]1/2

Distributed friction
C
Co

= 1

Re
(

�

�ca

) Re
(

�

�ca

)
= real component of

�

�ca

Propagation factor and series impedance

Lossless
�

�ca
= Zc

Zca
= 1

Average friction
�

�ca
= Zc

Zca
=
[

1 − j
8

F2

]1/2

Distributed friction
�

�ca
= Zc

Zca
= 1[

1 − 2J 1( j3/2 F)

j3/2 F J 0( j3/2 F)

]1/2

Co =
√

�

�
, Zca =

√
��

a2
, �ca = j�

Co
, F =

√
�r2

�

the expressions for the variation of the velocity of sound propagation Co and the
propagation factor � with frequency.

The average friction and distributed friction models in the frequency domain
are shown in Figs. 5.41 and 5.42.

The distributed friction theory predicts a lower wave propagation velocity, and
the propagation factor and series impedance show increased magnitudes as the fre-
quency is increased.

As an example of frequency-domain analysis, consider a simple test set up
with a servovalve to generate a sinusoidal input flow rate to a line that has a
restrictor termination, as shown in Fig. 5.43. This is, of course, a nonlinear sys-
tem and, therefore, a transfer function analysis is applicable only for small-signal
variations about a steady-state operating point. From the transmission line matrix
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100011

Distributed friction
Average friction

v/2rω
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C

Figure 5.41. Wave propagation velocity.
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Figure 5.42. Propagation factor and series impedance �/�ca = Z/Zca.

equation (5.176), the relationship between the line inlet conditions and outlet con-
ditions may be expressed in a linearized form as follows:

[
�P2

�Q2

]
=

 cosh �� −Zc sinh ��

− sinh ��

Zc
cosh ��


[ �P1

�Q1

]
. (5.192)

Assuming that the load restrictor is purely resistive and higher-frequency inductive
effects can be neglected for a preliminary analysis, the load linearized equation is
written as:

�P2 = RL�Q2. (5.193)

Rearranging these two equations then gives the following linearized transfer func-
tion relating the two pressures:

�P2( j�)
�P1( j�)

= 1

cosh �� + Zc

RL
sinh ��

. (5.194)

P1 P2

i = io + I sin 

2-channel transfer function analyzer 

ωt

Figure 5.43. Frequency-response testing of a long line with a restrictor termination.
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Pressure transducers are positioned at the ends of the line, a variable-frequency
current about a mean is applied to the servovalve, and the frequency response is
measured with a two-channel frequency-response analyzer. Data for the system are
as follows:

Line length 6 m, 8.5-mm diameter, mean flow rate = 3.5 L/min
Dynamic viscosity � = 0.033 N s/m2, density � = 860 kg/m3

Bulk modulus � = 1.4 × 109 N/m2, Co = 1276 m/s
Load orifice linearized resistance RL = 1.08 × 1010 N m−2/m3 s−1

Line resistance R = 1.54 × 109 N m−2/m3 s−1

Line characteristic impedance Zca = 1.93 × 1010 N m−2/m3 s−1

If the simplest, lossless line case is first considered, then Eq. (5.194) becomes

�P2( j�)
�P1( j�)

= 1

cos
��

Co
+ j

Zca

RL
sin

��

Co

. (5.195)

The pressure at the end of the line will therefore not experience any change with
frequency if the load is matched to the line characteristic impedance, RL = Zca . It is
evident that, in general, the magnitude ratio has repeated maximum and minimum
magnitudes given by:

Maximum when sin
��

Co
= 0 → ��

Co
= 0,�,2�, . . . ,

∣∣∣∣�P2( j�)
�P1( j�)

∣∣∣∣ = 1, phase angle = 0◦. (5.196)

For this example, the frequencies at the maximum magnitude of 0 dB are:

f = 106 Hz, 213 Hz, 319 Hz, . . . ,

Minimum when cos
��

Co
= 0 → ��

Co
= �

2
,
3�

2
,
5�

2
, . . . ,

∣∣∣∣�P2( j�)
�P1( j�)

∣∣∣∣ = RL

Zca
, phase angle = −90◦. (5.197)

For this example, the frequencies at a minimum magnitude of −5.04 dB are:

f = 53 Hz, 160 Hz, 266 Hz, . . . . (5.198)

Line friction in practical hydraulic lines has only a small effect on these frequencies,
and a comparison between measurement and theory made with the average friction
model for the present example is shown in Fig. 5.44.

The experimental approach is restricted to a frequency upper limit of around
500 Hz when signals become difficult to generate by the servovalve and also to
record and analyze by the transfer function analyzer. Note that the average fric-
tion solution is little different to the lossless line solution, and comparisons with
measurement are reasonable up to a frequency of 200 Hz. For higher frequencies,
the distributed friction model should be considered, particularly for noise analysis.

Any transmission line analysis should also take into account the fact that for
long lines the temperature will drop along the line and, in the experience of the
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Figure 5.44. Transfer function P2/P1 for an orifice-terminated line.

author, can be up to 10◦C. This is difficult to accommodate analytically using the
theory presented apart from the lumping-by-length approach, in which viscosity
changes with temperature, and can be included for each lump. Of course, the use
of other numerical analysis techniques makes it possible to include temperature
effects, but these methods are difficult to embrace within a general systems anal-
ysis block diagram approach.

5.16.5 Servovalve-Reflected Linearized Coefficients

Now consider the case in which the lines between the servovalve and the actuator
may introduce a significant dynamic effect, and consider Fig. 5.45. It is now useful to
express the servovalve linearized flow equations in terms of the pressures and flow
rates at the actuator rather than pressures and flow rates at the servovalve. By use of
the servovalve linearized coefficients and the transmission line equations developed
earlier, it follows that:

�Q1 = ki �i − kp1�P1 → �Qa(s) = 1
R1(s)

ki �i(s) − R2(s)
R1(s)

kp�Pa(s),
(5.199)

�Q2 = ki �i + kp�P2 → �Qb(s) = 1
R1(s)

ki �i(s) + R2(s)
R1(s)

kp�Pb(s).
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P1  Q1                            Pa  Qa

                                                                                     Actuator 

P2  Q2                             Pb  Qb

Figure 5.45. Servovalve connected to long
lines.

The original servovalve linearized static equations have now been reflected into
their dynamic equivalents at the load. The functions R1(s) and R2(s) are given by:

R1(s) = cosh �� + kp Zc sinh ��,
(5.200)

R2(s) = cosh �� + 1
kpZc

sinh ��.

The linearized coefficients are selected appropriately for each line. For the inlet line,
then ki = ki1 and kp = kp1. For the return line, then ki = ki2 and kp = kp2.

Worked Example 5.7

Determine the linearized transfer function relating motor speed to servovalve
current for a servovalve–motor open-loop drive with equal-length transmission
lines and assuming that motor load inertia exists and leakages may be neg-
lected.

P1                                  Pa

Q1                                 Qa

P2                                  Pb

Q2                                 Qb

ωm

i
Worked Example 5.7(a)

The transmission line equations are expressed in linearized form for the two

lines: [
�Pa

�Qa

]
=

 cosh �� −Zc sinh ��

− sinh ��

Zc
cosh ��


[ �P1

�Q1

]
,

[
�P2

�Q2

]
=

 cosh �� −Zc sinh ��

− sinh ��

Zc
cosh ��


[ �Pb

�Qb

]
.
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Reflected linearized coefficients are:

�Q1 = 1
R1(s)

ki �i − R2(s)
R1(s)

kp�Pa,

�Q2 = 1
R1(s)

ki �i + R2(s)
R1(s)

kp�Pb.

Motor leakages are neglected; hence:

�Qa = �Qb = Dm��m.

The load is defined as inertia only so that:

�Pa − �Pb = J
Dm

d��m

dt
.

Combining the various equations developed then gives the required transfer
function:

Dm��m(s)
ki �i(s)

= 1

cosh �� + kp Zc sinh �� + sLmkp

2

(
cosh �� + 1

kp Zc
sinh ��

) .

The first observation is that if the servovalve linearized resistance is matched to
the line characteristic impedance, 1/kp = R = Zc, then:

Dm��m(s)
ki �i(s)

= 1(
1 + sLm

2R

)
(cosh �� + sinh ��)

.

This can be achieved only when frequency effects on Zc are neglected. The lines
are then dynamically isolated from the servovalve–motor interaction between
resistance and load inertia. In fact, the magnitude ratio is not affected by line
dynamics if a lossless model is used, although a monotonically decreasing phase
exists because of the line delay effect:

magnitude = 1√
1 +

(
�Lm

2R

)2
, phase = −tan−1 �Lm

2R
− ��

Co
.

A feel for resonant frequencies can be gained to a good accuracy by considering
the lossless line case:

Dm��m( j�)
ki �i( j�)

= 1(
cos

��

Co
−�Lm

2Zca
sin

��

Co

)
+ j

Zca

R

(
sin

��

Co
+ �Lm

2Zca
cos

��

Co

) .

A B

Assume the following parameters:

Lm

2Zca
= 0.002 s,

�

Co
= 0.005 s,

Zca

R
= 2.
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The transfer function frequency response may then be constructed.
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Worked Example 5.7(b)

The peaks occur when B = 0:

tan
��

Co
= −�Lm

2Zca
, magnitude = cos

��

Co
.

In this example, the peaks occur at frequencies of 76 Hz, 165 Hz, and 258 Hz.

5.16.6 Modeling Systems with Nonlossless Transmission Lines,
the Modal Analysis Method

The problem here is that a method is required that allows the distributed fric-
tion hyperbolic functions to be integrated within a block diagram approach such
as MATLAB Simulink. Hydraulic transmission lines have received a great deal of
attention with regard to the understanding and prediction of dynamic signal trans-
missions in a range of applications with air, water, and oil as the working fluid.
With respect to oil-hydraulic transmission lines, consideration has been given to
both frequency-domain and time-domain analysis with a variety of approximations
and interpretations of the fundamental distributed-parameter equations. Analysis
of typical fluid lines is perhaps most easily achieved in the frequency domain with
the usual limitations of small-signal linearization techniques. This has been proved
to be highly effective in problems involving pressure-ripple propagation, the eval-
uation of component impedance, and the allied topic of vibration and noise emis-
sion. When large signal fluctuations in pressure and flow rate are experienced, as
in conventional hydraulic control systems, together with inherent nonlinear effects,
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time-domain analysis is inevitably required. A number of approaches are possible
such as transmission line modeling (TLM), the method of characteristics, modal
analysis, and finite-element techniques.

The TLM technique fundamentally utilizes the lossless, dispersionless transmis-
sion line model and requires detailed consideration of other dynamic components
within the system and the mathematical linking to the appropriate transmission line
termination equations. Such lines that can be characterized by a transmission delay
also allow component models to be decoupled for the current numerical time step,
enabling a parallel solution technique to be utilized.

The method of characteristics utilizes forward-traveling and backward-traveling
wave fronts developed from consideration of the transmission line total differential
equation and resulting in two finite-difference equations that may be integrated into
a system numerical analysis routine. This method again requires boundary condi-
tions for linked components to be expressed in finite-difference form, and the sim-
plest of circuits requires careful thought and some skill in producing a soluble set of
equations. The numerical solution technique is also significantly complicated if the
distributed friction transmission line model is to be considered, and the feel of the
hydraulic system as a set of real components is rapidly lost.

The technique of modal analysis offers a promising way forward in that the var-
ious transmission line transfer functions are developed by frequency-response anal-
ysis to produce appropriate first-order and second-order modal approximations, the
combination of modes being determined by the accuracy of solution required. The
method may be integrated into a modern fluid power simulation package in block
diagram form in a relatively easy manner and in a form that is in keeping with con-
ventional simulation techniques. It was proposed that the finite-element technique
may alleviate some of the computational problems, such as numerical instability and
variable time steps, and the resulting equations are expressed in state-space form.
Solutions were obtained for a blocked line, the mathematical modeling requiring
consideration of the range of undamped natural frequencies in advance. Results for
the lossless line case have been compared with a further theoretical solution using
the method of characteristics.

In addition to these various approaches outlined, many approximation tech-
niques have been used to simplify the transmission line equations into a usable form
for computer simulation. The various methods have advantages and disadvantages,
but the solution technique in most cases is based on distributed-parameter theory
with its restriction to laminar flow and uniform fluid properties. In reality, this is
unlikely to be the case for lines with large pressure and flow-rate fluctuations and
with significant temperature variations between the input and the output of the line.

A method was developed using the modal analysis technique as the foundation
theory to establish the form of a set of discrete equations relating pressures and
flow rates at both ends of the line. The unknown coefficients of each time-domain
equation may then be determined for the practical line by use of measured tran-
sient pressure and flow-rate data with the least-squares estimation technique; this is
referred to as data-based modeling. The modal analysis approach has become pop-
ular because it uses modal approximations to the hyperbolic functions defined in
the distributed-parameter analysis. The number of modes used is decided by the
user; often, four modes are adequate, and the form of the system block diagram
determines which hyperbolic functions are to be used. As an example of a practical
situation, consider a pair of lines coupled to a component, as shown in Fig. 5.46.
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Q2                               Qb       

P2                               Pb

Q1                                 Qa                   

P1                                   Pa

Component Figure 5.46. A system with a pair of long lines.

Considering Example 5.7, the transmission line matrix equation was manipu-
lated to produce the appropriate pressures and flow rates for both lines to gener-
ate the required solution. In terms of a block diagram approach, the way forward
becomes obvious when it is recalled that the integration of flow-rate differences is
used to generate pressure. Reworking the transmission line equations then gives:

inlet line, P1 = Zc cosh ��

sinh��

[
Q1 − Qa

cosh ��

]
,

Pa = Zc cosh ��

sinh ��

[
Q1

cosh ��
− Qa

]
,

(5.201)

outlet line, Pb = Zc cosh ��

sinh ��

[
Qb − Q2

cosh ��

]
,

P2 = Zc cosh ��

sinh ��

[
Qb

cosh ��
− Q2

]
.

The modal analysis technique now requires the two hyperbolic functions in Eq.
(5.201) to be replaced with a series of rational polynomial approximations to the
distributed-parameter solution. These approximations were extensively developed
(Hsue and Hullender, 1983) for a range of hyperbolic function combinations. In this
study, the first function required for n modes is:

1
cosh ��

= T1(s) =
n∑

i=1

ai s + bi

s2 + 2� i �ni s + �2
ni

, s = sr2

�
. (5.202)

The constants for each mode are shown in Table 5.6, and each mode is defined by
its root index given by:

i = (2i − 1)
2Dn

where the dissipation number Dn = v�

Cor2
. (5.203)

Once the number of modes n has been decided, then each bi in the summation given
in Eq. (5.202) must be multiplied by a suitable gain K such that in the steady-state
condition:

K
n∑

i=1

bi

�2
ni

= 1. (5.204)

The functions are defined as (−1)i+1(1 − 2i)ai , and (−1)i+1(1 − 2i)ai and there-
fore the sign of each modal transfer function alternates in the pattern + − + − as
the mode number i is incremented. It is therefore common sense to choose an even
number of modes, n = 2, 4, 6, and so on. The second function required for n modes
is:

Zc cosh ��

sinh ��
= Zca

Dns
+

n∑
i=1

ai s + bi

s2 + 2� i �ni s + �2
ni

. (5.205)
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Table 5.6. Modal constants for
1

cosh ��
(Hsue and Hullender, 1983)

i �ni �i (−1)i+1(1 − 2i)ai (−1)i+1(1 − 2i)bi

0.1 0.2670 10.832 −6.7404 × 10−4 −9.0758 × 10−2

0.2 0.5340 5.4172 −2.6952 × 10−3 −3.6306 × 10−1

0.4 1.0681 2.7113 −1.0765 × 10−2 −1.4528
0.6 1.6023 1.8106 −2.4165 × 10−2 −3.2707
0.8 2.1369 1.3611 −4.2817 × 10−2 −5.8194
1.0 2.6718 1.0921 −6.6615 × 10−2 −9.1026
1.4 3.7432 0.7862 −1.2908 × 10−1 −17.891
2.00 5.3553 0.5593 −2.5710 × 10−1 −36.725
3.00 8.0609 0.3868 −5.4497 × 10−1 −83.734
4.00 10.796 0.3036 −8.9161 × 10−1 −151.34
5.00 13.566 0.2554 −1.2545 −240.78

10.0 27.887 0.1613 −2.4968 −1037.6
15.0 42.640 0.1262 −3.0243 −2419.6
20.0 57.558 0.1061 −3.4562 −4388.6
25.0 72.570 0.0930 −3.8496 −6952.0
30.0 87.647 0.0836 −4.2000 −10113
35.0 102.77 0.0764 −4.5144 −15875
40.0 117.94 0.0707 −4.8011 −18238
45.0 133.14 0.0661 −5.0651 −23204
50.0 148.36 0.0622 −5.3101 −28774
55.0 163.60 0.0589 −5.5387 −34950
60.0 178.86 0.0560 −5.7528 −41731
70.0 209.43 0.0513 −6.1438 −57113
80.0 240.05 0.0475 −6.4932 −74925
90.0 270.71 0.0444 −6.8079 −95171

100 301.41 0.0418 −7.0929 −1.1785 × 105

150 455.23 0.0330 −8.1857 −2.6786 × 105

200 609.42 0.0278 −8.8940 −4.7895 × 105

250 763.82 0.0243 −9.3460 −7.5117 × 105

300 918.36 0.0217 −9.6132 −1.0846 × 106

350 1073.0 0.0197 −9.7418 −1.4791 × 106

400 1227.7 0.0180 −9.7642 −1.9348 × 106

450 1382.4 0.0166 −9.7046 −2.4515 × 106

500 1537.2 0.0155 −9.5817 −3.0294 × 106

550 1692.0 0.0145 −9.4101 −3.6683 × 106

600 1846.8 0.0136 −9.2018 −4.3683 × 106

650 2001.6 0.0129 −8.9662 −5.1293 × 106

700 2156.4 0.0122 −8.7111 −5.9513 × 106

800 2466.1 0.0110 −8.1668 −7.7783 × 106

900 2775.7 0.0100 −7.6061 −9.8490 × 106

1000 3085.4 0.0092 −7.0529 −1.2164 × 107

This approximation is rewritten in the following form for simulation purposes:

Zc cosh ��

sinh ��
= Zca

Dns


1 +

n∑
i=1

Dnai

Zca
s2 + Dnbi

Zca
s

s2 + 2� i �ni s + �2
ni


 . (5.206)
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The final integration to obtain pressure is therefore done when all the modes have
been added together, including the unity gain. Simplifying the nondimensional
Laplace operator s = sr2/� then gives:

Zca

Dns
= 1

sC
, (5.207)

where C = (line volume/�). Transfer function Eq. (5.206) is then modified to the
following form:

Zc cosh ��

sinh ��
= T2(s)

sC
; where T2(s) =


1 +

n∑
i=1

Dnai

Zca
s2 + Dnbi

Zca
s

s2 + 2� i �ni s + �2
ni


 , (5.208)

where, in this case, the root index is:

i = i
Dn

. (5.209)

The block diagram operation given by Eq. (5.208) is equivalent to obtaining pres-
sure by integration of flow-rate differences when used with transmission line equa-
tion (5.201). The modal constants Dnai/Zca and Dnbi/Zca may be read directly from
Table 5.7.

5.16.7 Modal Analysis Applied to a Servovalve–Motor
Open-Loop Drive

Again consider this system that was analyzed experimentally and analytically by a
lumped-parameter analysis in Section 5.13 and with the lossless-line theory earlier
in this section. The collection of equations is shown in Fig. 5.47.

Q2  Qout

P2 Pout

Q1                                         Q in

P1 P in

Ps

i

ω

Pout =
T2(s)
sC

[Qout − T1(s)Q2],

P2 =
T2(s)
sC

[T1(s)Qout − Q2],

Q2 = kfi P2, Qout ≈ Dmω −        ,
Pout

Rm

P1 =
T2(s)
sC

[Q1 − T1(s)Qin ],

Pin =
T2(s)
sC

[T1(s)Q1 − Qin],

Q1 = kfi   Ps − P1,    Qin  ≈ Dmω +       .
 Pin

Rm

Dm (Pin − Pout) 
= Tload + Tcf  + Bvω + sJω,

Figure 5.47. A servovalve–motor open-loop drive with long lines.
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Table 5.7. Modal constants for
Zc cosh ��

sinh ��
(Hsue and Hullender, 1983)

i �ni � i Dnai /Zca Dnbi /Zca

0.10 0.2670 10.832 2.0000 11.567
0.20 0.5340 5.4172 2.0000 11.567
0.40 1.0681 2.7113 2.0005 11.569
0.60 1.6023 1.8106 2.0011 11.573
0.80 2.1369 1.3611 2.0019 11.578
1.00 2.6718 1.0921 2.0030 11.584
1.40 3.7432 0.7862 2.0058 11.603
2.00 5.3553 0.5593 2.0114 11.645
3.00 8.0609 0.3866 2.0242 11.765
4.00 10.796 0.3036 2.0394 11.967
5.00 13.566 0.2554 2.0550 12.267

10.0 27.887 0.1613 2.0957 14.935
15.0 42.640 0.1262 2.0904 17.737
20.0 57.558 0.1061 2.0808 19.996
25.0 72.570 0.0930 2.0736 21.941
30.0 87.647 0.0836 2.0680 23.698
35.0 102.77 0.0764 2.0634 25.313
40.0 117.94 0.0707 2.0596 26.815
45.0 133.14 0.0661 2.0564 28.223
50.0 148.36 0.0622 2.0536 29.552
55.0 163.60 0.0589 2.0511 30.813
60.0 178.86 0.0560 2.0490 32.017
70.0 209.43 0.0513 2.0454 34.275
80.0 240.05 0.0475 2.0424 36.369
90.0 270.71 0.0444 2.0399 38.327

100 301.41 0.0418 2.0377 40.172
150 455.23 0.0330 2.0303 48.150
200 609.42 0.0278 2.0257 54.724
250 763.82 0.0243 2.0224 60.376
300 918.36 0.0217 2.0200 65.354
350 1073.0 0.0197 2.0180 69.807
400 1227.7 0.0180 2.0164 73.831
450 1382.4 0.0166 2.0150 77.496
500 1537.2 0.0155 2.0138 80.850
550 1692.0 0.0145 2.0128 83.933
600 1846.8 0.0136 2.0119 86.776
650 2001.6 0.0129 2.0111 89.402
700 2156.4 0.0122 2.0103 91.834
800 2466.1 0.0110 2.0090 96.182
900 2775.7 0.0100 2.0080 99.937
1000 3085.4 0.0092 2.0071 103.19

For solution continuity, the system data are repeated here as follows:

Motor leakage dominated by external losses Re = 3 × 1012 N m−2/m3 s−1

Motor displacement Dm = 2.61 × 10−6 m3/rad
Motor and load inertia J = 0.0069 kg m2

Motor viscous coefficient Bv = 0.01 N m/rad s−1
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The stiction–friction characteristic has a stiction equivalent pressure of 24 bar
The Coulomb friction equivalent pressure is 12 bar and constant for |i | > 2 mA
For this study, there is no load torque applied, Tload = 0
Lines d = 13 mm, � = 4.63 m
Line cross sectional area a = 1.33 × 10−4 m2

Mineral oil density � = 860 kg/m3, viscosity � = 0.033 N s/m2

Fluid bulk modulus � = 1.4 × 109 N m−2/m3 s−1

Velocity of sound in the fluid Co = 1276 m/s
Line delay T = �/Co = 3.63 ms

For one line, C = 4.39 × 10−13 m3/N m−2, L = 3 × 107 kg/m4, R = 2.18 × 108 N m−2/
m3 s−1:

r2

�
= 1.1, Dn = ��

Cor2
= 0.0033. (5.210)

The servovalve flow constant kf = 5.27 × 10−8 (current mA). The servovalve
dynamics are represented by a second-order transfer function with an undamped
natural frequency of �ns = 110 Hz and a damping ratio � = 1 and are obtained from
experimental measurements.

The modal constants are then evaluated for T1(s) and T2(s) as follows:

1
cosh ��

= T1(s) =
n∑

i=1

bi

�2
ni

(
air2

bi �
s + 1

)
(

r4

�2�2
ni

s2 + 2r2�i

��ni
s + 1

) , (5.211)

i = 303(i − 1/2), (5.212)

Zc cosh ��

sinh ��
= T2(s)

sC
,

T2(s) = 1 +
n∑

i=1

1

�2
ni

(
Dnair4

Zca�2
s2 + Dnbir2

Zca�
s
)

(
r4

�2�2
ni

s2 + 2� i r
2

�ni �
s + 1

) , (5.213)

i = 303 i. (5.214)

Again, this model was simulated using MATLAB Simulink, and a comparison
between simulation and measurements is shown in Fig. 5.48. The simulated pres-
sures and speed are slightly better than those obtained with lossless line theory,
shown in Fig. 5.40, in terms of peak values. However, the higher modal frequen-
cies are evident analytically on the pressures but not on the speed. Note from
Tables 5.8 and 5.9 that the fourth-mode true undamped natural frequency is 479 Hz
in both cases, and high for a hydraulic control system. Adding more modes therefore
takes the undamped natural frequencies much higher and well beyond the operating
dynamic range of the system, particularly if closed-loop control is added.
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Figure 5.48. The transient response of a motor coupled to a servovalve by long lines and a
comparison with a modal analysis approximation.

5.17 The State-Space Method for Linear Systems Modeling

5.17.1 Modeling Principles

The state-space approach is essentially a matrix analysis technique whereby an nth-
order system set of linear differential equations is broken down into n first-order lin-
ear differential equations. It is therefore a generalized approach and is ideally suited
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Table 5.8. Modal constants for
1

cosh ��

i i �ni � i ai bi bi /�ni
2

1 152 464 0.0327 8.23 2.81 × 105 1.305
2 455 1407 0.0165 −3.23 −8.3 × 105 −0.419
3 758 2351 0.0114 1.67 14.2 × 105 0.257
4 1061 3295 0.0087 −0.95 −19.6 × 105 −0.181

0.962

i ai r2/bi � r4/�2�ni
2 2r2� i/��ni corrected bi /�ni

2

1 3.220 × 10−5 0.562 × 10−5 1.550 × 10−4 1.357
2 0.428 × 10−5 0.061 × 10−5 0.258 × 10−4 −0.436
3 0.129 × 10−5 0.022 × 10−5 0.107 × 10−4 0.267
4 0.053 × 10−5 0.011 × 10−5 0.058 × 10−4 −0.188

to computer analysis and system design. The approach may be extended to multi-
variable systems and is a first step toward the application of modern control theory
and feedback–adaptive control. To illustrate the approach, consider a servovalve–
motor open-loop system. The linear differential equation relating motor speed �

to servovalve input current i, and including fluid compressibility and load inertia, is
given for example purposes by:

1
�2

n

d2�

dt2 + 2�

�n

d�

dt
+ � = Ki. (5.215)

Now define the two state variables working from right to left:

x1 = � = speed,
(5.216)

x2 = dx1

dt
= d�

dt
= angular acceleration.

And, from the original differential equation:

x1 + 2�

�n
x2 + 1

�2
n

dx2

dt
= Ki. (5.217)

Table 5.9. Modal constants for
Zca cosh ��

sinh ��

i i �ni � i Dnai /Zca Dnbi /Zca

1 303 927 0.0215 2.02 66
2 606 1878 0.0135 2.01 87
3 909 2822 0.0099 2.01 100
4 1212 3300 0.0074 2.00 110

i Dnair4/Zca�2 Dnbir2/Zca� r4/�2�ni
2 2� i r2/�ni � 1/�ni

2

1 2.444 72.6 1.408 × 10−6 5.102 × 10−5 1.164 × 10−6

2 2.432 95.7 0.343 × 10−6 1.581 × 10−5 0.284 × 10−6

3 2.432 110 0.152 × 10−6 0.772 × 10−5 0.126 × 10−6

4 2.420 121 0.111 × 10−6 0.493 × 10−5 0.009 × 10−6



5.17 The State-Space Method for Linear Systems Modeling 287

The second-order differential equation has now been broken down into two first-
order differential equations, as follows:

dx1

dt
= x2, (5.218)

dx2

dt
= �2

n

(
Ki − 2�

�n
x2 − x1

)
, (5.219)




dx1

dt
dx2

dt


 =


 0 1

−�2
n −2��n




 x1

x2


+ �2

nKi. (5.220)

Using the “overdot” notation to represent differentiation, for both convenience and
historical correctness, then the matrix form is written in the following general state-
space notation:

ẋ = Ax + Bu, (5.221)

where u is the system input; in this case, the servovalve current i. Taking Laplace
transforms then gives:

sx(s) − x(0) = Ax(s) + Bu(s),

x(s) = [s I − A]−1[x(0) + Bu(s)];

x(s) = [s I − A]−1 Bu(s) + [s I − A]−1x(0)
↓ ↓

response to the input response to the initial conditions.

(5.222)

For control systems studies, the main concerns are the response to the input and
closed-loop stability. For linear systems, the conditions for instability of a closed-
loop control system do not depend on the system initial conditions. Hence, for con-
ventional transfer function analysis, the first part of Eq. (5.222) is appropriate. Both
parts of Eq. (5.222) may be used if the complete transient response is required.
However, it will be seen that both parts require the evaluation of [s I − A]−1, and
this inverse may be evaluated as follows:

[s I − A]−1 = adjoint [s I − A]
determinant [s I − A]

. (5.223)

The denominator of Eq. (5.223), that is, the determinant of [sI − A], is therefore the
system characteristic equation when equated to zero:

characteristic equation det [s I − A] = 0,
(5.224)

and often written as |s I − A| = 0.

This is an important equation in control because, as previously discussed, the roots
of the characteristic equation must contain negative real parts if the response is to be
stable. This is a necessary but insufficient requirement, as will be further discussed
in Chapter 6.

For the example being used here, it will be seen that:

[s I − A] =
[

s 0
0 s

]
−
[

0 1
−�2

n −2��n

]
=
[

s −1
�2

n (s + 2��n)

]
. (5.225)
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The characteristic equation is the determinant of [s I − A], resulting in:

s(s + 2��n) + �2
n = 0,

s2 + 2��ns + �2
n = 0.

(5.226)

This, of course, could have been easily deduced directly from the left-hand side of
the original differential equation (5.215) when Laplace transformed.

Worked Example 5.8

A second-order system is defined by the following state-space equation:[
ẋ1

ẋ2

]
=
[

0 1
−2 −3

] [
x1

x2

]
+
[

0
1

]
u,

with initial conditions
[

x1(0)
x2(0)

]
=
[

0
0

]
.

If the input is a unit step u = 1, determine the transient response for x1 and x2.

The state-space solution is x(s) = [s I − A]−1[Bu(s) + x(0)].

The Laplace transform u(s) of the unit step input u from Table 5.2 is (1/s):

[s I − A] =
[

s 0
0 s

]
−
[

0 1
−2 −3

]
=
[

s −1
2 (s + 3)

]
,

[s I − A]−1 = adjoint
determinant

= 1
[s(s + 3) + 2]

[
(s + 3) 1
−2 s

]
,

x(s) = 1
[s(s + 3) + 2]

[
(s + 3) 1
−2 s

]

 0

1
s


+

[
0
0

] ,

x(s) =
[

x1 (s)
x2 (s)

]
= 1

(s + 2)(s + 1)


 1

s
1


 ,

x1(s) = 1
s(s + 1)(s + 2)

→ 1
2s

− 1
(s + 1)

+ 1
2(s + 2)

,

x2(s) = 1
(s + 1)(s + 2)

→ 1
(s + 1)

− 1
(s + 2)

.

Taking inverse Laplace transforms then gives the solution:

x1(t) = 1
2

− e−t + e−2t

2
,

x2(t) = e−t − e−2t .

Note the steady-state conditions as t → ∞; then x1 → 0.5 and x2 → 0.
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U

           Q2 P2

          Q1 P1

Ps

Figure 5.49. A servovalve–linear actuator drive.

In practice, the state-space approach is used to formulate the system model directly
from the individual equations, thereby avoiding any further mathematical pro-
cessing.

EXAMPLE 5.1. Consider the servovalve–linear actuator open-loop system previously
analyzed in Section 5.10 and shown in Fig. 5.49.
The linearized equations were shown to be:

�Q1 = ki1�i − kp1�P1 = A1�U + V1(0)
�

d�P1

dt
, (5.227)

�Q2 = ki2�i + kp2�P2 = A2�U − V2(0)
�

d�P2

dt
, (5.228)

�P1 A1 − �P2 A2 = Bv�U + �F load + M
d�U
dt

. (5.229)

Now define the state variables as follows, recalling that speed is the “output”
required:

x1 = �U, x2 = �P1, x3 = �P2. (5.230)

The three system equations then become:

ki1�i − kp1x2 = A1x1 + V1(0)
�

ẋ2, (5.231)

ki2�i + kp2x3 = A2x1 − V2(0)
�

ẋ3, (5.232)

x2 A1 − x3 A2 = Bvx1 + �F load + Mẋ1. (5.233)

Three first-order linear differential equations have now been established for this
third-order system. Rewriting these equations in state-space notation then gives:
 ẋ1

ẋ2

ẋ3


 =


 −Bv/M A1/M −A2/M

−A1/C1 −1/R1C1 0
A2C2 0 −1/R2C2




 x1

x2

x3


+


−�F load/M

ki1�i/C1
−ki2�i/C2


 , (5.234)

where C1 = V1(0)/�, C2 = V2(0)/�, R1 = 1/kp1, R2 = 1/kp2;

[s I − A] =

 (s + Bv/M) −A1/M A2/M

A1/C1 (s + 1/R1C1) 0
−A2C2 0 (s + 1/R2C2)


 . (5.235)
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V
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Tire stiffness  k t

M

Figure 5.50. A vehicle active-suspension concept.

The system characteristic equation is then obtained by equating the determinant
|s I − A| = 0 to give:

(s + Bv/M)(s + 1/R1C1)(s + 1/R2C2) + A2
1(s + 1/R2C2)/MC1

+ A2
2(s + 1/R1C1)/MC2 = 0.

(5.236)

In this example, the characteristic equation is obtained with probably less effort than
with conventional manipulation of the Laplace transformed equations, a process
prone to manipulation errors. This third-order characteristic equation will always
have roots with negative real parts; that is, the open-loop speed response is inher-
ently dynamically stable.

EXAMPLE 5.2. Consider an active-suspension open-loop system shown in Fig. 5.50.
The modeling and control of a practical 1/4 car test rig is discussed in more

detail in Chapter 7, where it is deduced that the system model is either idealized or
quite complicated. For the purpose of this introductory example, it is sufficient to
realize that under closed-loop control, the steady-state servovalve current is zero.
If actuator piston leakage resistance Ri exists, the fluid capacitance C on both sides
are equal and the time constant CRi is sufficiently small to be negligible; then, the
highly simplified equations are reduced to:

force generated, F = Bi Gaki V − Bi

(
dx
dt

− dy
dt

)
, (5.237)

force generated, F = M
d2x

dt2 , (5.238)

tire force, with mass neglected, F = kt (u − y). (5.239)

Thus, the piston leakage acts like a viscous damper with a damping coefficient given
by Bi = RiA2 N/m s−1, where A is the double-rod actuator annulus cross-sectional
area. The servovalve flow coefficient ki is assumed to be the mean value of the
extending condition and the retracting condition, as discussed earlier.

Now define the state variables:

x1 = x, x2 = ẋ1, x3 = y. (5.240)
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Rearranging the system equations then gives:
 ẋ1

ẋ2

ẋ3


 =




0 1 0

0 0 −kt/M

0 1 −kt/Ri A2




 x1

x2

x3


+




0

kt/M

kt/Ri A2


 u +


 0

0
−Gaki


V,

ẋ = Ax + Bu + GV.

(5.241)

The system characteristic equation is then obtained by equating det |s I − A| = 0 to
give: ∣∣∣∣∣∣∣

s −1 0
0 s kt/M

0 −1 (s + kt/Ri A2)

∣∣∣∣∣∣∣ = 0,

s2 + s
kt

Ri A2
+ kt

M
= 0.

(5.242)

It is then deduced that the system modeled has the following second-order
properties:

undamped natural frequency, �n =
√

kt

M
, (5.243)

damping ratio, � =
√

kt M
2Ri A2

. (5.244)

In other words, the simple active-suspension open-loop system has the dynamic
characteristics of a mass–spring–viscous damper equivalent system. However,
damping relies on piston seal leakage for this simple model and is not a realistic
option in practice for an active suspension with the normal viscous damper unit
removed. Note that to complete the active control, a feedback link is required that
relates the servovalve voltage V to the chosen state variable transducer signals. This
is pursued as a further example in Chapter 6.

5.17.2 Some Further Aspects of the Time-Domain Solution

It will be recalled that the solution to the state-space equation is given as:

ẋ = Ax + Bu,

e−At [ẋ − Ax] = e−At Bu,

d
dt

[e−At x(t)] = e−At Bu(t).

Integrating both sides between the limits of 0 and t gives:

e−At x(t) − x(0) =
∫ t

0
e−A� Bu(�)d� ,

(5.245)

x(t) = eAt x(0) + eAt
∫ t

0
e−A� Bu(�)d� .

The right-hand term is known as the convolution integral and Eq. (5.237) finally
becomes:

x(t) = L−1x(s) = eAt x(0) +
∫ t

0
eA(t−�) Bu(�)d� , (5.246)
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where:

eAt = L−1[s I − A]−1 (5.247)

and often has the symbol �(t).

Worked Example 5.9

From Worked Example 5.8, it was shown that:

[s I − A]−1 =




(s + 3)
(s + 1)(s + 2)

1
(s + 1)(s + 2)

− 2
(s + 1)(s + 2)

s
(s + 1)(s + 2)


 ,

�(t) = eAt = L−1[s I − A]−1 =
[

(2e−t − e−2t ) (e−t − e−2t )
(−2e−t + 2e−2t ) (−e−t + 2e−2t )

]
.

The time response is then given by:

x(t) = L−1x(s) = eAt x(0) + ∫ t
0 eA(t−�) Bu(�)d� ,

x(t) =
[

(2e−t − e−2t ) (e−t − e−2t )

(−2e−t + 2e−2t ) (−e−t + 2e−2t )

][
0

0

]
,

+ ∫ t
0

[
[2e−(t−�) − e−2(t−�)] [e−(t−�) − e−2(t−�)]
[ − 2e−(t−�) + 2e−2(t−�)] [−e−(t−�) + 2e−2(t−�)]

][
0
1

]
d� ,

x(t) = ∫ t
0

[
[e−(t−�) − e−2(t−�)]

[−e−(t−�) + 2e−2(t−�)]

]
d� ,

x(t) =

 e−(t−�) − e−2(t−�)

2
−e−(t−�) + e−2(t−�)




t

o

=


(

1 − 1
2

)
−
(

e−t − e−2t

2

)
(−1 + 1) − (−e−t + e−2t )


 ,

[
x1(t)
x2(t)

]
=

 1

2
− e−t + e−2t

2
e−t − e−2t


 .

This is as shown in Worked Example 5.8.

5.17.3 The Transfer Function Concept in State Space

Recall the solution to the state-space equation:

x(s) = [s I − A]−1 Bu(s) + [s I − A]−1x(0). (5.248)

The output of concern is usually just one of the state variables, and this is handled
by defining the system output as:

y(s) = Cx(s), (5.249)
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where C is a row vector having the dimension of the system order. Consider just
the relationship between the output y(s) and the input x(s) then from these two
equations:

y(s) = C[s I − A]−1 Bu(s). (5.250)

The system transfer function G(s), in matrix notation, is then:

G(s) = C[s I − A]−1 B. (5.251)

Worked Example 5.10

Considering Worked Examples 5.8 and 5.9, it was shown that:

[s I − A]−1 =




(s + 3)
(s + 1)(s + 2)

1
(s + 1)(s + 2)

− 2
(s + 1)(s + 2)

s
(s + 1)(s + 2)


 , B =

[
0
1

]
.

If the output of the system is the state variable x1, then:

C = [ 1 0 ],

G(s) = C[s I − A]−1 B = [1 0
]



(s + 3)
(s + 1)(s + 2)

1
(s + 1)(s + 2)

− 2
(s + 1)(s + 2)

s
(s + 1)(s + 2)



[

0
1

]
,

G(s) = 1
(s+1)(s+2) .

5.18 Data-Based Dynamic Modeling

5.18.1 Introduction

In many situations, it is not possible to specify an adequate mathematical model for
a number of reasons:

� A subcomponent may simply not be sufficiently understood from a dynamic
viewpoint.

� A subcomponent may be highly nonlinear and difficult to express mathemati-
cally.

� Performance data from the manufacturer may simply not be available.

What is usually attainable is a measurement of the input–output characteristic;
for example, current into a servovalve and output position of a linear actuator. In
practice, a sensible estimate of the overall dynamic behavior may be deduced from
previous experience, and this allows a dynamic model of the system to be estimated,
providing the appropriate operating bounds of the system are experimentally cov-
ered. The dynamic model estimated will then be applicable only for other oper-
ating conditions that fall within the test boundary, although in practice a modest
encroachment beyond the test boundary can sometimes be tolerated.



294 System Dynamics

From a testing viewpoint, one important issue is the determination of the type of
dynamic input signal that should be applied. Considering a servovalve–linear actua-
tor, the application of a step input, with varying magnitudes or a varying frequency
input with varying magnitudes, may not be sufficient because of the nonlinear flow
characteristic of the servovalve. Hence, a deterministic method of determining the
dynamic model may be limited in its use. This can be overcome to some extent by
use of artificial neural networks (ANNs), although this approach also needs some
thought regarding the probable dynamic model.

Dynamic test data are clearly needed, and these will be acquired by a data-
acquisition system linked to a computer. These data-acquisition boards can be rel-
atively low cost, yet sufficiently accurate – for example, 8-bit resolution (1 in 256
or better than 0.4%) – having two input channels and sometimes an output drive
channel. More expensive boards may have, for example, 12 input channels with a
host of other advanced features and at least 12-bit resolution (1 in 4096 or better
than 0.025%). The acquired test signals will inevitably be noisy, and some prefilter-
ing may be required before analytical processing to determine the dynamic model.
If this is necessary, then a filtering frequency minimum must be selected that does
not fall within the dynamic range expected. This almost always presents a restriction
resulting in the removal of some noise but probably not sufficient from a visual view-
point. An additional problem occurs when motors form part of the system because
the multiple-piston effect results in an inherent superimposed oscillation on the
measured signals, and the frequency, of course, is proportional to the rotational
speed; as the motor speed changes in a transient test, then so does the superimposed
oscillation.

5.18.2 Time-Series Modeling

This method requires an estimate of the input–output relationship in a sampled data
form. If the input is u and the output is y, then this will be of the general form:

y(t) = a1 y(t − T) + a2 y(t − 2T) + · · · + bou(t) + b1u(t − T) + · · ·+, (5.252)

where T is the sampling interval. Various terms of this time-series could be tried,
or the time-series could be derived from a typical transfer function that could be
expected from experience that is then transformed into a time-series by a linear
approximation for the delay function z−1 = e−sT . Two common transformations are
the backward-difference approximation and the more accurate bilinear approxima-
tion, which are both obtained by taking just the first two terms of the Taylor expan-
sion for the appropriate exponential function.

backward difference Bilinear

z−1 = e−sT ≈ 1 − sT z−1 = e−sT = e−sT/2

esT/2
≈ 1 − sT

1 + sT
(5.253)

s ≈ 1 − z−1

T
s ≈ 2

T
(1 − z−1)
(1 + z−1)

For example, a system with an expected first-order time response could be devel-
oped into a times series, with a sampling interval T, by an appropriate transforma-
tion, as follows.
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Using the backward-difference approximation gives:

y(s)
u(s)

= 1
(1 + s�)

→ y(z−1)

u(z−1)
= 1

1 + �

T
(1 − z−1)

,

y(z−1) =
�

t(
1 + �

T

)z−1 y(z−1) + 1(
1 + �

T

)u(z−1), (5.254)

y(t) = a1 y(t − T) + bou(t).

Using the bilinear approximation gives:

y(s)
u(s)

= 1
(1 + s�)

→ y(z−1)

u(z−1)
= 1

1 + 2�

T
(1 − z−1)
(1 + z−1)

,

y(z−1) = −

(
1 − 2�

t

)
(

1 + 2�

T

)z−1 y(z−1)+ 1(
1 + 2�

T

)u(z−1)+ 1(
1 + 2�

T

)z−1u(z−1), (5.255)

y(t) = a1 y(t − T) + bou(t) + b1u(t − T).

The input u and output y are now in measured sampled data form, which for corre-
sponding sample times may be expressed in matrix form for the bilinear approxima-
tion example: 



y(1)
y(2)
y(3)

...
y(n)




=




y(0) u(1) u(0)
y(1) u(2) u(1)
y(2) u(3) u(2)

...
...

y(n − 1) u(n) u(n − 1)




 a1

bo

b1


 . (5.256)

In general terms, a time-series is represented in matrix notation as follows:

Y = A�. (5.257)

The least-squares solution for the unknown coefficients is:

� = (AT A)−1 ATY. (5.258)

The error vector e is defined as:

e = Y − A�. (5.259)

The variance �2 is given by:

�2= eTe/(N − n). (5.260)

(N − n) is referred to as the number of degrees of freedom. The variance of esti-
mates is given by:

V(�) = �2(AT A)−1
. (5.261)
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5.18.3 The Group Method of Data Handling (GMDH) Algorithm

Recall the previous section in which a transfer function was evaluated in the z
domain such that a time-series could then be generated. The resulting time-series,
Eq. (5.252), is repeated here:

y(t) = a1 y(t − T) + a2 y(t − 2T) + · · · + b0u(t) + b1u(t − T) + · · · + . (5.262)

In general GMDH terminology,

y = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6, (5.263)

where wi are now called the weights – that is, the unknown coefficients – and xi are
the measured states. To determine the current output, previous samples of output
together with the current sample and previous samples of input are added in a lin-
ear combination once the coefficients have been determined from the least-squares
training process.

The GMDH starting point, and particularly useful for nonlinear systems, is to
consider polynomial relationships between combinations of samples. For example,
Eq. (5.263) could be modified to:

y = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6
(5.264)+w7x2

1 + w8x2
2 + w9x2

3 + w10x2
4 + w11x2

5 + w12x2
6 .

Products of all the measured states could also be used and, clearly, a large combina-
tion of parameters could be chosen. It does not seem that there is a rule for which
combinations should be chosen, and experience is inevitably required in practice.
The unknown parameters are calculated with the matrix method of least squares, as
used in the time-series analysis.

The process of performing calculations and transmitting information has a simi-
larity with ANN concepts, by means of a series of connected neurons. However, the
GMDH approach is based on a principle postulated by Ivakhnenko, a Ukrainian
cyberneticist who realized that highly structured models were inadequate for com-
plex time-domain processes (Ivakhnenko, 1971). The concept of neurons is a useful
precursor to ANNs and will be used in the GMDH training approach. Some impor-
tant issues of the GMDH approach are as follows:

� All states considered of importance must be used.
� The approach usually considers pairs or triplets of inputs.
� A hidden layer is used to perform the specified activation function that is a

polynomial function of a suitable order operating on the inputs.
� The polynomial function coefficients are evaluated with the least-squares

method applied to the sampled data string.
� The number of neurons in the hidden layer increases significantly as the number

of parameter combinations is increased; for example, from pairs to triplets.
� If the number of neurons becomes too large, then a limit may have to be set.

This is particularly true if a second hidden layer is considered necessary.
� The rms error between the test data and the computed data is then calculated.
� If the error is not acceptable, then another hidden layer may be added.
� The process is repeated for all pairs or triplets of inputs.
� The training process is stopped when a suitable rms error has been achieved.



5.18 Data-Based Dynamic Modeling 297
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Figure 5.51. Schematic of the human neuron
concept (for more information, see Cichocki and
Unbehauen, 1993).

� All connections are removed other than the output neuron route that has been
selected as having the lowest rms error.

� The selection of the fittest will simplify the training topology and possibly
remove some of the assumed input states.

5.18.4 Artificial Neural Networks

An ANN is a collection of neurons coupled together and capable of mapping input
data to output data for the fluid power component or system in a similar way to the
GMDH mapping approach. However, each neuron calculation is nonlinear and the
overall computation concept is quite different and has evolved from a consideration
of the possible way that the human brain treats information by means of its billions
of human neurons. From neurophysiology, it is estimated that the human brain con-
tains a complex interconnection net of 1010–1011 neurons or nerve cells. There are
typically 103–104 dendrites (inputs) per neuron and these dendrites connect the neu-
ron to other neurons. They either receive inputs from other neurons via specialized
contacts called synapses or connect other dendrites to the synaptic outputs. The
synapses are specialized contacts on a neuron that are the termination points for the
axons from other neurons. They are capable of changing a dendrite’s local potential
in a positive or negative direction. Because of their function, the synapses can be
either excitatory or inhibitory in accordance with the ability to strengthen or damp
the neuron excitation. A simplified schematic of a biological neuron is shown in Fig.
5.51.

Information storage in a neuron is thought to be concentrated at the synaptic
connections or, more precisely, in the pattern of these connections and strengths
(weights) of the synaptic connections. Human synapses are of a complex chemical
nature, whereas synapses in nervous systems of primitive animals, such as insects,
are predominantly based on electrical signal transmission.

According to the simplified model of the neuron, the cell body (soma) receives
inputs from other neurons through adjustable or adaptive synaptic connections to
the dendrites. The output signal (consisting of nerve impulses) from a cell is trans-
mitted along a branching axon to the synapses of other neurons. When a neuron is
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Figure 5.52. The artificial neuron.

excited, it produces nerve impulses (a train of pulses) that are transmitted along an
axon to the synaptic connections of other neurons. The output pulse rate depends
on both the strength of the input signals and the strengths, or weights, of the corre-
sponding synaptic connections. The maximum firing rate is proposed as 1000 pulses
per second. The input signals at the excitatory synapses increase the pulse rate,
whereas the input signals at the inhibitory synapses reduce the pulse rate or even
block the output signal.

The artificial neuron concept is shown in Fig. 5.52 and brings together the inputs
xi, the weights wi , the summation, and the activation function F(a):

F(a) = w0 + w1x1 + w2x2 + · · · + wnxn. (5.265)

Although the neuron’s response function is in general nonlinear, neurophys-
iologists have discovered that for many biological neurons, a linear summation
approximation is appropriate. Therefore, the neuron’s output is proportional, in
some range, to a linear combination of the neuron’s input signal values. This intro-
duces the concept of a neuron “firing” when only particular conditions of informa-
tion occur at the input, and the mechanism that determines how much information
is fired is called the activation function.

A suitable topology of neurons is selected, usually by iteration because there
is no prescriptive way of guaranteeing what the topology should be for a particular
application. However, there are some common construction rules, as illustrated in
Fig. 5.53, that have two inputs (e.g., the servovalve current and load pressure differ-
ential), and one output (e.g., the servovalve flow rate). This ANN has one hidden
layer, and it is common to have (2n + 1) neurons in the first hidden layer, where n
is the number of inputs. In some cases, an ANN may contain more hidden layers to
map the input–output relationship with sufficient accuracy.

If a network has two hidden layers, then the second hidden layer should have a
smaller number of neurons than the first hidden layer; for example, two if needed
for the problem of Fig. 5.53.

The next issue is the selection of a suitable activation function F(a). This must
be compatible with the numerical algorithm used to calculate the weights from the
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Figure 5.53. A neural network construction
to predict servovalve flow with known input
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training input–output data. It usually has a smooth characteristic that is analytically
differentiable, and the unipolar and bipolar exponential functions of the type shown
in Fig. 5.54 are quite common and often called sigmoid activation functions.
The derivative of each activation function is given by:

Bipolar Unipolar

F(a) = 1 − e−2a

1 + e−2a
F(a) = 1

1 + e−2a

dF(a)
da

= 1 − F2(a)
dF(a)

da
= 2F(a)[1 − F(a)]

(5.266)

A common training method is the backpropagation method. Each column of the
input data matrix is used to calculate each output of the network. Each weight is
then modified by considering the (sum of error2) and the backpropagation algo-
rithm is used to reduce the error. This is repeated with new data until a satisfactory
convergence has been achieved. In its simplest form, consider the output error func-
tion E:

E = 1
2

∑
e2, e = d − y, (5.267)

where d is the desired output and y is the actual output. The change of a weight at
the output layer is then considered to be proportional to the change of E with the
weight value and is given by:

�wi = −	
∂ E
∂wi

= 	[e]
dF
da

xi , (5.268)

where 0 < 	 < 1 is known as the learning rate.

(a) Unipolar                                       

+1 +1 

 (b) Bipolar

Figure 5.54. Sigmoid activation functions.
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All these terms can be determined once the activation function and its cor-
responding differential have been selected. The sigmoid activation functions in
Fig. 5.54 are therefore convenient because their derivatives may be expressed in
terms of the actual value at that point. Equation (5.268) is valid at the output layer,
but the local error cannot be evaluated for the hidden layers. Therefore, the local
error for a hidden layer is evaluated with the knowledge of the local error at the
output layer; hence, the term backpropagation. The delta method is applied as
follows:

�wi j = 	[e]F(a),

eoutput
j = ydesired

j − yactual
j , (5.269)

ehidden
i = dFhidden

i (a)
da

n∑
j=1

wi j e
output
j .

Momentum, 0 < � < 1, is usually added to speed the convergence process:

�wi j = 	[e]F(a) + ��w
previous
i j . (5.270)

A large number of training sets and corresponding iterations are usually needed to
obtain convergence, often because small values of learning rate and momentum are
needed. In addition, values may have to be changed during the iteration process to
aid convergence.

5.18.5 A Comparison of Time-Series, GMDH, and ANN Modeling
of a Second-Order Dynamic System

An example, undertaken by colleague Y. Xue at Cardiff University during 1994, is
now considered whereby the dynamics of a closed-loop position control system is to
be modeled with the assumption that the system is probably second order. There-
fore, consider the system in Fig. 5.55 where the input–output data are sampled every
T seconds.

The training input data must be selected to cover the dynamic range over which
the model is to be used, and Fig. 5.56 shows the input data for this example. The out-
put data follow from the second-order transfer function output. The transfer func-
tion selected has an undamped natural frequency �n = 20 Hz and a damping ratio
� = 0.5.

To arrive at an appropriate discrete model, the bilinear transformation is used:

s → 2
T

(1 − z−1)
(1 + z−1)

. (5.271)

Substituting Eq. (5.271) into the transfer function shown in Fig. 5.55 gives:

y(z)
u(z)

= bo + b1z−1 + b2z−2

1 − a1z−1 − a2z−2
. (5.272)
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Figure 5.56. Input training data for the position control system.

The discrete time model is then determined by considering the transformation of
Eq. (5.272) into the time domain as follows:

y(t) = a1 y(t − T) + a2 y(t − 2T) + bou(t) + b1u(t − T) + b2u(t − 2T). (5.273)

Beginning with the time-series model results in the following coefficients using the
least-squares analysis outlined earlier:

a1 = 1.716, bo = 2.239 × 10−2,

a2 = −7.722e × 10−1, b1 = 3.420 × 10−2,

b2 = −6.844 × 10−4.

(5.274)

A check on the accuracy of the coefficients can be made by noting from z transform
theory that the steady-state gain of the transfer function is determined from the
final-value theorem when considered in the z domain:

y(z)
u(z)

∣∣∣∣
steady state

= b0 + b1z−1 + b2z−2

1 − a1z−1 − a2z−2

∣∣∣∣
z=1

= 1,

(5.275)
b0 + b1 + b2

1 − a1 − a2
= 0.995 ≈ 1.

Converting the z domain model back to the s domain using the computed coef-
ficients gives �n = 20.13 Hz and � = 0.517 compared with the actual undamped
natural frequency �n = 20 Hz and damping ratio � = 0.5.

Now considering the GMDH algorithm, the equation selected is as follows:

y =
4∑
1

wi xi +
4∑
1

gi x2
i +

4∑
1

hi x3
i +

3∑
i=1

4∑
j=i+1

wi j xi x j + C. (5.276)

The training network and the trained network are shown in Fig. 5.57, with z−1 rep-
resenting one sample delay.

Considering that here there are n = 5 inputs and r = 4 parameters for function
Eq. (5.276), then the number of combinations is given by:

Cn
r = n!

(n − r)!r !
= 5!

1!4!
= 5. (5.277)

Hence, there are five output neurons for the training topology. From the least-
squares analysis of all the input–output data, the rms errors for the output layer
were calculated to be 0.0120, 0.0160, 0.0381, 0.194, and 0.198. Therefore, the first
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Figure 5.57. GMDH training network and trained network for the second-order system.

output neuron was selected as having the lowest and acceptable rms error, and only
the connections from this output neuron are retained. This resulted in four inputs
only from the original five selected, as shown in the trained network in Fig. 5.57.

Finally, consider the ANN approach for this example. It is now postulated that
the ANN should emulate the discrete time equation as a nonlinear recurrent map-
ping as follows:

y(t) = f [y(t − T), y(t − 2T), u(t), u(t − T), u(t − 2T)]. (5.278)

So, the inputs used for training this recurrent network are y(t − T), y(t − 2T), u(t),
u(t − T), and u(t − 2T), as used in the GMDH algorithm, and the training net-
work and the trained network for prediction are shown in Fig. 5.58. Of course, this
approach retains all the inputs originally selected.

Two hidden layers were necessary for this apparently straightforward system,
with five neurons in the first hidden layer and three neurons in the second hidden
layer, and determined by consideration of many different topologies. This exam-
ple showed a rapid drop in rms error during the early stages, the learning rate and
momentum being set to 0.01. It can be fruitful if convergence is checked and the
momentum adjusted during the training process. The training results for the three
approaches discussed are shown in Fig. 5.59.

Training requires a large amount of training data and iterations to approach a
reasonable convergence, and the convergence profile is shown in Fig. 5.60.

Z Z

ZZ

Z Z

ZZ

u(k)

y(k)

yn(k)

u(k)

yn(k)

(a) Training network                                 (b) Trained, predicting network 

Figure 5.58. Recurrent ANN topology for a second-order system.
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Figure 5.59. Three data-based models of a second-order system.

Observing the three results of Fig. 5.59 suggests little difference between each
approach. The rms errors are 0.011 for the time-series approach, 0.012 for the
GMDH approach, and 0.023 for the ANN approach. However, the time-series
approach is less time-consuming and good for a linear system. The GMDH method
requires that many functions be tried, but there is a tendency for the trained model
to require fewer inputs than originally assumed. The ANN method is very time-
consuming and requires a more complex topology than would be imagined for a
linear second-order system. It does seem from this work and other work that the
GMDH approach offers more promise than the ANN approach, particularly for
nonlinear systems.
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Figure 5.60. The rms error convergence with increasing iteration number.

5.18.6 Time-Series Modeling of a Position Control System

Consider a closed-loop double-rod cylinder position control system with a horizon-
tally moving mass. Such a system has a reasonably linear transient response charac-
teristic such as that shown in Fig. 5.61 for a demanded change of 10 mm. The position
transducer signal is sampled at a frequency of 100 Hz for a sample length of 0.5 s,
and it will be seen from Fig. 5.60 that it has a noise component, probably because of
pump-ripple effects. However, the transient response is clearly overdamped, and
it will be assumed that a first-order dynamic approximation is adequate. A first
approach is to assume that the response shown to a step input is first order and
therefore given by:

y = yd(1 − e−t/� ). (5.279)

Evaluating the time constant � when t = 63% of the steady-state value gives a
value of � ≈ 0.1 s. Alternatively, rearranging Eq. (5.238) gives:

−ln
(

1 − y
yd

)
= t

�
. (5.280)
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Figure 5.61. Determining the dynamic characteristic of a closed-loop servovalve–actuator
position control system.
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Figure 5.62. Modified plot of the servocylinder position response.

Clearly, the slope relating the right-hand side of Eq. (5.280) to time is 1/� . These
rearranged data are plotted in Fig. 5.62 for yd = 10 mm.

The best straight line, by means of a least-squares analysis, through all the data
is also shown, and the slope is calculated to be 4.7/0.5 = 9.4, giving � = 0.106 s. Note
the data corruption as time increases and the transient response is approaching the
steady-state condition with little change, and this is typical of a fluid power system
measurement.

Consider now a time-series analysis; in this example, the differential equation
equivalent of Eq. (5.279) is:

y + �
dy
dt

= yd. (5.281)

Considering the simplest backward-difference transformation then gives:

y(t) = �1 y(t − T) + �2 yd(t),

�1 = �/T
(1 + �/T)

, �2 = 1
(1 + �/T)

. (5.282)

Equation (5.282) may then be written in the following matrix form for N data points
and n unknown coefficients:



y(2)

y(3)

y(4)
...

y(N)




=




y(1) yd(2)

y(2) yd(3)

y(3) yd(4)
...

...
y(N − 1) yd(N)



[

�1

�2

]
. (5.283)

In matrix form:

Y = A�. (5.284)
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For the current example, the first 49 sampled data points for the column vector y(t)
are measured and selected as follows:

y(t) =

[0 1.101 1.832 2.445 3.259 4.077 4.568
4.899 5.434 6.060 6.410 6.557 6.884 7.376
7.651 7.682 7.853 8.244 8.484 8.451 8.503
8.810 9.040 8.981 8.943 9.176 9.407 9.350
9.245 9.409 9.644 9.608 9.458 9.556 9.791
9.789 9.614 9.647 9.876 9.916 9.732 9.705
9.918 10.002 9.827 9.745 9.932 10.057 9.904]T

.

(5.285)

For all the samples taken, the demand value is constant at yd(t) = 10 mm. Therefore,
N = 48 data points are then used to satisfy y(t) and y(t − T) in Eq. (5.283), and the
n = 2 unknown coefficients are evaluated by the MATLAB command window. This
gives:

� =
[

0.9030
0.0966

]
, �2 = 0.02,

V(�) = 0.02
[

0.0031 −0.0024
−0.0024 0.0021

]
→ � =

[
0.9030 ± 0.0079
0.0966 ± 0.0065

]
. (5.286)

The accuracy of �1 is better than that of �2, although both are acceptable. Evaluating
each coefficient then gives:

�1 = �/T
(1 + �/T)

= 0.9030, �2 = 1
(1 + �/T)

= 0.0966 (5.287)

� = 0.093 s, � = 0.094 s.

These values of the time constant � are close, although smaller, to the value of
0.106 s calculated earlier. Had Fig. 5.62 first been considered more closely, then it
might have been more sensible to choose the first 25 data points. Repeating the anal-
ysis gives �1 = 0.9026 and �2 = 0.0965, barely different from using 48 data points.

5.18.7 Time-Series Modeling for Fault Diagnosis

A similar approach, using a least-squares analysis, may be used for fault diagnostic
purposes by considering a time-series analysis on a suitable signal, a deteriorating
condition sometimes leading to changes in the signal dynamic shape. In this case,
consider the pressure ripple at the output of an axial piston pump.

Chapter 3 discussed the flow source, in which it was shown that the piston-
pumping effect produced an ideal flow ripple that is remarkably close to a rectified
sine wave at the pumping frequency. This ideal flow source will be considered the
sampled “input.” If it is assumed for this application that the load impedance does
not change, then the pressure ripple is related to the ideal flow source ripple by its
impedance transfer function. This transfer function is likely to be of the following
form:

p(s)
q(s)

= R(1 + c1s + c2s2)
(1 + d1s + d2s2 + d3s3)

, (5.288)
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where R is the low-frequency pump resistance. This transfer function is transformed
into the time domain again by a finite-difference representation. The backward-
difference transformation, as used in the previous examples, may be used to achieve
this, and Eq. (5.288) becomes:

s → (1 − z−1)
T

,

p(z)
q(z)

= b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2 + a3z−3
, (5.289)

(1 + a1z−1 + a2z−2 + a3z−3)p(z) = (b0 + b1z−1 + b2z−2)q(z).

In the time domain, this becomes:

p(t) = b0q(t) + b1q(t − T) + b2q(t − 2T)
(5.290)

− a1 p(t − T) − a2 p(t − 2T) − a3 p(t − 3T).

This means that when the data are acquired, then the least-squares method requires
knowledge of the previous two samples for flow ripple and the previous three sam-
ples for pressure ripple. The amplitude of the assumed sine wave acting over the
measured time interval is not important if changes from only a reference are sought.
In addition, the phase shift between pressure ripple and flow source ripple is not
important for the same reason and also because it is constant between comparable
samples. In this example, a flow source ripple amplitude of unity is used and the
flow source ripple and measured pressure ripple are divided into N = 25 samples.
The number of unknown � coefficients to be determined is n = 6 and the matrix
form used is as follows:




p(3)
p(4)
p(5)

...
p(n)


 =




q(3) q(2) q(1) p(2) p(1) p(0)
q(4) q(3) q(2) p(3) p(2) p(1)
q(5) q(4) q(3) p(4) p(3) p(2)

...
...

...
...

...
...

q(n) q(n − 1) q(n − 2) p(n − 1) p(n − 2) p(n − 3)







b0

b1

b2

a1

a2

a3


 .

(5.291)

Data used are as follows:

NEW CONDITION

p(N) = [0.00 0.88 1.75 2.50 2.95 3.08 3.10 3.08 3.00
2.93 2.88 2.88 2.88 2.88 2.90 2.90 2.88 2.85
2.78 2.68 2.58 2.48 1.80 0.88 0.00]T

.

WORN CONDITION

p(N) = [0.00 0.88 1.75 2.50 3.30 3.60 3.55 3.30 3.05
2.70 2.63 2.85 3.00 3.03 3.00 2.90 2.88 2.85
2.78 2.68 2.58 2.48 1.80 0.88 0.00]T

.
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Table 5.10. Time-series coefficients for pump ripple

Coefficient New condition Worn condition

b0 14.811 −24.540
b1 −28.395 49.850
b2 14.311 −25.170
a1 1.834 1.758
a2 −1.123 −1.000
a3 0.140 0.072
�2 0.0141 0.028

For all conditions, the assumed ideal flow source sinusoidal ripple is:

q(N) = [0.00 0.131 0.259 0.383 0.500 0.609 0.707 0.793 0.866
0.924 0.966 0.991 1.000 0.991 0.966 0.924 0.866 0.793
0.707 0.609 0.500 0.383 0.259 0.131 0.000]T

.

(5.292)

Table 5.10 shows the computed coefficients and variances for these test conditions
and with N − n = 16 degrees of freedom (DOF). The determination of a changing
condition is then decided by observation of the change in coefficients. The domi-
nant effects are the changes in the b coefficients, all of which significantly change in
magnitude and sign as the fault develops.

One restriction of any diagnostic approach is that several different faults may
affect pump ripple, and it is a difficult task to identify which particular fault is
responsible for coefficient changes. In practice, known single-fault conditions and
multiple-fault conditions greatly help the fault identification process. Figure 5.63
shows two pressure ripples measured in the new condition and in a condition in
which a fault is suspected of changing the ripple shape. Also shown are the ripples
predicted by least-squares analysis.

            (a) New condition                                           (b) Worn condition 
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Figure 5.63. Pressure ripple at the outlet of an axial piston pump.
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Figure 5.64. The transient pressure response between a pump and servovalve supply pressure
port for step demand changes in supply pressure using a proportional PRV.

The signal reconstruction is acceptable although, of course, it can be determined
only with knowledge of the three previous pressure samples, as indicated by time-
series equation (5.290).

5.18.8 Time-Series Modeling of a Proportional PRV

Now consider an electrically controlled proportional relief valve located at a pump
outlet. The analysis is again based on measured data as the PRV is demanded to
change pressure levels; in this case, between values of 53 and 100 bar. The inten-
tion is to develop a transfer function that can be used in the simulation of a sys-
tem in which pump supply pressure is varied to track a varying load torque on a
motor, thus improving system performance; such a PRV was discussed in Chapter
1. The dynamics of pressure change, following a sudden change in the applied volt-
age, would not be expected to be significantly fast because of the combination of
the sluggish electromagnetic first stage and the dynamics of spool motion within
the valve. The pressure transient response will also vary if the connecting volume
between the pump and its load servovalve, in this example, is changed. Figure 5.64
shows the practical system with a load servovalve together with a measured pressure
response to step changes in demand voltage.

With a pragmatic view to system dynamic behavior, experience suggests that
an approximate transfer function would be third order, and this is feasible from
Fig. 5.64. There appears to be a dominant first-order component together with an
oscillatory second-order component, and this is assumed in the following analysis.
The relationship between pressure and applied voltage is therefore assumed to be
of the following form:

P(s)
V(s)

= G

(s + a)(s2 + 2bs + b2 + c2)
. (5.293)
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It is now necessary to make the suitable transformation from the s domain to the
z domain. In this example, the technique of matched transforms is used rather than
the backward-difference substitution used in the previous example. This now gives:

(s + a) → (1 − z−1e−aT), (5.294)

(s2 + 2bs + b2 + c2) → (1 − z−1e−bTcos cT + z−2e−2bT); (5.295)

z transforms are discussed in more detail in Chapter 6. Substituting these transforms
into Eq. (5.293) then gives:

P(z)
V(z)

= b0

(1 − a1z−1−a2z−2−a3z−3)
,

a1 = 2e−bTcos cT + e−aT, (5.296)

a2 = −(e−2bT + 2e−aTe−bTcos cT),

a3 = e−aTe−2bT.

The time-domain equation then becomes:

P(t) = a1 P(t − T) + a2 P(t − 2T) + a3 P(t − 3T) + b0V(t). (5.297)

By use of the method of least squares as before, a sampling frequency of 500 Hz
was selected to give a sampling period of T = 2 ms. A very good convergence of
parameters was achieved with only 25 samples, in which the variation in transient
data is usable. The result is:

a1 = 2.7113, a2 = −2.6278, a3 = 0.9071, b0 = 0.1061. (5.298)

From Eq. (5.296), it can be shown that:

x3−a1x2−a2x − a3= 0, x = e−aT. (5.299)

Hence, it follows that:

a = 25.12, b = 11.82, c = 225.5. (5.300)

Rearranging transfer function Eq. (5.293) into the more usual standard form gives:

P(s)
V(s)

= K

(s + 1/�)(s2 + 2��ns + �2
n)

. (5.301)

From Eq. (5.294) and (5.295), then:

� ≈ 1/a = 0.04 s,

undamped natural frequency, �n =
√

b2 + c2 = 225.8 rad/s, (5.302)

damping ratio, ��n = b → � = 0.052.
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Figure 5.65. Reconstructed transient response of a proportional PRV using data-based mod-
eling of the measured response.

The waveform reconstructed with transfer function Eq. (5.301) by computer simu-
lation is shown in Fig. 5.65 with the addition of a measured pure delay of 0.01 s and
for step changes in demand pressure at 0 and 0.5 s.

Comparing this with the measured data, Fig. 5.64, indicates a sufficiently accu-
rate model for design purposes.

5.18.9 GMDH Modeling of a Nitrogen-Filled Accumulator

Consider identifying the dynamic behavior of a nitrogen-filled accumulator. Gas
dynamics is analytically challenging because it is well known that the index of
expansion–compression varies with the rate of change of pressure. A data-based
approach to modeling therefore offers an attractive way forward for inclusion in
circuit-analysis problems. A pressure-fluctuation source is connected to the accu-
mulator, a pressure transducer is used to measure the pressure fluctuation, and a
fast-acting flow meter is placed at the entrance to the accumulator, as shown in
Fig. 5.66. The excellent Parker Hannifin fast-acting flow meter has a response time
quoted as better than 4 ms, and several applications by the author have been suc-
cessful in identifying frequencies of the order of 250 Hz. For this application, the
flow meter response is more than adequate, as will be deduced from the transient
data shown later. A 1-L hydracushion accumulator was tested and data were sam-
pled at a frequency of 500 Hz and used directly to train the GMDH network.

i

Pressure transducer 
          Flow meter 

Accumulator 
under test

Figure 5.66. Measuring the dynamic behavior
of an accumulator.
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Figure 5.67. Transient pressure used for training.

A three-parameter function was used to train each neuron in a single hidden
layer, the combination being every (1 flow rate xi + 2 pressures xj and xk). The
three-parameter function chosen is as follows:

y = [w0xi + w1xj + w2xk] + [w3x2
i + w4x2

j + w5x2
k]

+ [w6xi xj + w7xi xk + w8xj xk] + [w9xi xj xk + w10].
(5.303)

Hence, 11 weights have to be estimated by the matrix least-squares method. The
load servovalve is controlled with a series of step on–off current signals to provide
the training data shown in Fig. 5.67.

The dynamic states selected were 2 previous samples of flow rate and 10 previ-
ous samples of pressure plus the current pressure; that is, 13 inputs. The large num-
ber of pressure samples is necessary to cover at least 5 s of testing because of the
sluggish charging and discharging behavior of the accumulator. The large number
of pressure states necessary resulted in a hidden layer of 110 neurons; in this study,
5985 data points were used for training. The training network topology is shown in
Fig. 5.68 and indicates just a few of the 110 neuron connections.
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Figure 5.68. GMDH topology for training.



5.18 Data-Based Dynamic Modeling 313

P(t) 

Q(t) 

z

z

Figure 5.69. GMDH trained network.

When the least-squares calculation has been done on each of the hidden neu-
rons, then the neuron with the lowest rms error is selected, the rest being discarded.
For this example, this resulted in just two pressures and one flow-rate input for the
trained network, as shown by the highly reduced topology shown in Fig. 5.69.

The states required for training and subsequent prediction are therefore
Q(t − T), P(t − 9T), P(t), and the calculated weights are:

w0 = 1, w3 = 6.81 × 10−3, w6 = −9.71 × 10−2, w9 = −9.84 × 10−8,

w1 = 6.48 × 10−2, w4 = 7.12 × 10−4, w7 = 9.69 × 10−2, w10 = −4.75 × 10−2,

w2 = −6.40 × 10−2, w5 = −3.02 × 10−4, w8 = −4.13 × 10−4. (5.304)

The flow rates measured and identified by this trained GMDH network are shown in
Fig. 5.70 for similar, although not the same, pressure transients as used for training.
This is often called unseen data network validation.

It is interesting to see from the trained network that only the ninth previous
pressure sample is retained, a total time of 9T = 0.45 s, and this reflects on the first-
order-type pressure response of the pressure training data. It is important to test the
trained network for other transient pressure conditions to verify the validity of the
GMDH model. Figure 5.71 shows some predicted and measured flow rates for cyclic
variations in system pressure. Note that the pressure levels are different from those
used for the original pressure training data.

The GMDH approach can be a powerful aid to system modeling and is easily
integrated within a simulation package. Perhaps one drawback is the selection of a
suitable polynomial, and there does not seem to be a structured approach to this
task.

Flow rate (L/min)

–Identified   – Measured

0 2 4 6 8 10 0 2 4
t (s)t (s)

6 8 10

– Identified   – Measured

Flow rate (L/min)

Figure 5.70. Flow rates predicted from pressure data using only a GMDH network (Watton
and Xue, 1995).
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Figure 5.71. Flow rates predicted and measured by pressure data only and for different test
conditions, GMDH network (Watton and Xue, 1995).

5.19 Some Comments on the Effect of Coulomb Friction

The three types of friction – speed, stiction, and Coulomb – were introduced in
Section 5.3. Removing the speed term that is due to viscosity leaves only the com-
bined stiction–friction term that is difficult to determine at very low speeds. It is well
known that the initial stiction value at zero speed rapidly falls to its Coulomb value,
which is usually considered constant with speed, but changes in sign as the speed
changes sign. The total friction effect can be measured with pressure transducers
placed in each line, or a torque meter for a motor, and then slowly increasing the
control valve signal to just create motion. A few carefully controlled tests usually
give a good picture of the overall friction effect. Some results for a motor and a
cylinder, undertaken by the author, are shown in Fig. 5.72.

600 

500 

400 

300 

200 

100 

   0 
        0        0.05       0.10        0.15       0.20       0.25       0.30 
                                                   Speed  (m/s) 

C
yl

in
de

r 
fr

ic
ti

on
 f

or
ce

 (
N

)

 0           200          400          600          800         1000 
                                         Speed  (rpm) 

 5 

 4 

 3 

 2 

 1 

 0      

P1 2 (bar) 
100

50 

≈0

M
ot

or
 to

rq
ue

 lo
ss

  (
N

 m
)

Figure 5.72. Some measured total friction loss characteristics for a motor and a cyclinder.
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Clearly, the total friction loss for an axial piston motor is a complicated function
of pressure differential and speed. However, in both cases, the stiction, Coulomb
friction, and speed components are evident. In addition, there will be a stiction–
Coulomb friction contribution from load bearings, sliding surfaces, or both. Tradi-
tionally, the Coulomb friction effect on transient behavior has been explained in
terms of an equivalent second-order system load such as a mass–spring–damper
system, and often a phase-plane analysis is used to describe the transient charac-
teristic in terms of a plot of velocity against displacement. An alternative approach
to understanding system dynamics is to assume that Coulomb friction is the domi-
nant term and then to represent its nonlinear characteristic by an equivalent linear
viscous damper characteristic:

Fc sign(U) ≈ BvU. (5.305)

The damping coefficient Bv is determined by considering the energy absorbed per
cycle for the two friction models, assuming that the motion is lightly damped, and
may be considered as a sine wave y = yo sin(�nt) at the undamped natural frequency
�n and with an amplitude yo. Equating the energy absorbed gives:

4
∫ yo

0
Fcdy = 4

∫ yo

0
Bv

dy
dt

dy,

4Fc yo = �Bv y2
o�n, (5.306)

Bv = 4Fc

��n yo
.

Therefore, the linear damping coefficient B depends also on the amplitude of the
oscillation assumed, the Coulomb friction level, and the undamped natural fre-
quency of oscillation. However, the analysis is valid only for highly oscillatory con-
ditions, and the use of an equivalent linear viscous damper is often of limited appli-
cation in practice, particularly for closed-loop systems under stable control.

Consider therefore a simplified open-loop system example whereby the force F
generated by a linear actuator is immediately available as required for moving the
load that has a mass m, Coulomb friction Fc, and a resisting spring of stiffness k.
This system for hydraulic opening and closing of a valve poppet to control the flow
of fuel is shown in Fig. 5.73.

The equation of motion is given by:

F = ky + Fc sign
(

dy
dt

)
+ m

d2 y

dt2 . (5.307)

Coulomb friction only has been used as the dominant component of friction, and an
explicit solution would not be possible in the presence of a small stiction component
around zero velocity. Rearranging Eq. (5.307) into a nondimensional form for the
poppet-open requirement then gives:

1 = y + � sign(U) + dU
d(�nt)

,

y = y
yd

, U = U
�nyd

, yd = F
k

, � = Fc

kyd
�n =

√
k
m

.

(5.308)
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Figure 5.73. Open-loop control of a valve poppet by
hydraulic actuation.

This second-order differential equation may then be integrated and placed into
phase-plane form to give:

{
y − [1 − � sign(U)]

}2 + U
2 = R

2
. (5.309)

This represents a set of circles centered at y = (1 − �), U = 0 for positive velocities
and at y = (1 + �), U = 0 for negative velocities. The appropriate radius R is set by
the initial condition and subsequent crossings of the zero-velocity axis. Results for
switch-open with a small value of � = 0.04 are shown in Fig. 5.74, and with a zero
initial position condition.

The effect of Coulomb friction damping is to produce a linear decay in position
response and with a possible steady-state error depending on the value of �. The
position dead-band is given by (1 + �) < y < (1 + �). The transient response decay
is different from the exponential decay characteristic evident when viscous damping
is dominant. Considering an equivalent viscous damper as given by Eq. (5.306), and
assuming that yo = yd/2 as the mean value, it is an easy matter to show that the
damping ratio � for the approximate second-order system is given by:

� = 4�

�
. (5.310)

For the example used, this gives � = 0.051. A comparison with the exact position
response and the approximate second-order system position response is shown in
Fig. 5.75.

An important feature of Coulomb friction damping is, therefore, that it does
not change the undamped natural frequency.

From this simple example, it is understandable that it is expected that Coulomb
friction damping will produce a linear decay characteristic for position response in a
practical control system. However, for fluid power control circuits, such an assump-
tion cannot be made because fluid compressibility cannot usually be neglected and
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Figure 5.74. Transient response and phase-
plane plot for the valve poppet control exam-
ple.

the actuator dynamics cannot be isolated from the load. In addition, the system
equations are nonlinear. The resulting linearized differential equation for position
control is inevitably third order, as indicated earlier, and Chapter 6 illustrates the
practical reality for a more realistic example.
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Figure 5.75. A comparison of transient responses.
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6.1 Introduction to Basic Concepts, the Hydromechanical Actuator

The interconnection of components to form a closed-loop control system introduces
new features, primarily the consideration of steady-state error and the speed of con-
trol. Steady-state error is a function of component design, such as the existence of
a servovalve spool underlap, and the speed of control is a function of the way con-
trol is dynamically achieved combined with the dynamic characteristics of the sys-
tem. It has been shown in Chapter 5 that fluid compressibility and load mass–inertia
play the dominant part when characterizing system dynamics, and these aspects can-
not be neglected when the dynamic stability of a closed-loop system is considered.
Increasing system gain – for example, by increasing a servovalve servoamplifier
current gain in a closed-loop servovalve–actuator position controller – will even-
tually lead to closed-loop instability. This will result in severe oscillations that could
rapidly lead to component damage.

The hydromechanical actuator is one of the simplest forms of closed-loop con-
trol with applications reaching back to the very earliest days of industrial manufac-
turing using cast-iron components and low-pressure water as the working fluid. It
incorporates a spool valve and an actuator – for example as shown in Fig. 6.1.

It will be seen that as the handle is moved to the right, the spool valve opens,
allowing pressurized fluid to move the actuator in the same direction as the han-
dle movement. In its basic form, it therefore acts in a manner similar to that of a
servovalve–actuator system. The body of the actuator dynamically follows the posi-
tion of the handle until the error sensed by the spool eventually becomes zero; the
servocontrol is often referred to as a “follow-up controller.” Figure 6.1 shows an
application in which the body is connected to the lever of a pump swash plate, thus
allowing the pump displacement to be manually adjusted, which is particularly use-
ful where a servovalve is not feasible, such as low-cost marine applications. Given
that the absolute movement of the handle is x, the absolute movement of the body
is y, and the absolute movement of the spool is z, then the spool relative opening,
or error, e = z − y. The spool-valve ports are assumed to have a linear area varia-
tion with displacement, similar to a servovalve spool, and the flow rates through the
spool valve are defined as follows:

Q1 = kf e
√

Ps − P1, Q2 = kf e
√

P2. (6.1)
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Figure 6.1. A hydromechanical actuator.

It will be assumed that:

� The load force F on the actuator is negligible.
� Viscous friction exists.
� The actuator is double rod A1 = A2 = A.
� The moving mass is M.
� Fluid compressibility exists.
� The actuator is centralized, having its lowest undamped natural frequency.

Linearizing these equations and incorporating the open-loop dynamic analysis dis-
cussed in Chapter 5 then gives the following transfer function for actuator velocity:

�U(s) =
ki

A
�e(s)

1 + Rv

2R
+ s

(
L

2R
+ CRv

2

)
+ s2 LC

2

, (6.2)

R = Ps

AUe(0)
, ki = kf

√
Ps

2
, Rv = Bv

A2
, C = V

�
, L = M

A2
. (6.3)

Under closed-loop position control, the steady-state velocity U(0) = 0 and there-
fore R = ∞. This introduces the conclusion that a critically lapped spool does not
contribute to system damping under closed-loop position control.

Considering also the mechanical linkage for small rotations gives:

(z − y)
b

= e
b

= (x − y)
(a + b)

,

(6.4)
e = (x − y),  = b

(a + b)
.
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Figure 6.2. Block diagram for the hydromechanical position actuator.

The transfer function relating actuator position to spool error is then given by inte-
grating velocity transfer function (6.2) to give:

�y(s) =
 ki

A
�e(s)

s
(

1 + s
CRv

2
+ s2 LC

2

) . (6.5)

This transfer function is referred to as the open-loop transfer function. Combining
Eq. (6.4) and open-loop transfer function Eq. (6.5) then allows the concept of the
block diagram with negative feedback to be developed as shown in Fig. 6.2.

When block diagrams are considered for closed-loop control systems, a com-
mon unifying notation is used, as shown in Fig. 6.3.

In general, there will be a feedback transfer function H(s) that may well contain
dynamic components. The forward transfer function G(s) contains the hydraulic
system dynamics and any other element; for example, a compensating network or
spool dynamics that have been neglected so far. The block diagram terminology is
as follows:

the open-loop transfer function, OLTF = G(s)H(s); (6.6)

the closed-loop transfer function, CLTF
y(s)
yd(s)

= G(s)
1 + G(s)H(s)

. (6.7)

For the hydromechanical actuator, the CLTF is:

�y(s)
�x(s)

=
 ki

A

s3
LC
2

+ s2 CRy

2
+ s +  ki

A

. (6.8)

The CLTF is therefore third order and the closed-loop transient response to any
input demand depends on the roots of its denominator. For example, if the input is
a demanded step change in position, then the response can be sluggish, oscillatory,
or even unstable as the gain term ki/A is increased. The potential for instability
can occur only for a linear system of third order or higher for fluid power control
systems met in practice.

G(s)

H(s)

yd
+ y

Figure 6.3. Standard block diagram notation
for a feedback control system.
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Worked Example 6.1

Determine the conditions that satisfy the optimum closed-loop ITAE criterion
for the hydromechanical position actuator.

Write the two transfer functions as follows:

�y(s)
�x(s)

= 1

LCs3

2K
+ CRvs2

2K
+ s

K
+ 1

, K = ki

A
.

Seek the ITAE form:

�y(s)
�x(s)

→ 1

s3

�3
o

+ 1.75s2

�2
o

+ 2.15s
�o

+ 1

.

Equating coefficients gives:

2.15
�o

= 1
K

,
1.75
�2

o
= CRv

2K
,

1
�3

o
= LC

2K
.

Rearranging then gives the solution:

K = ki

A
= 0.266

Rv

L
,

L

CR2
v

= 0.35,

giving �o = 0.571
Rv

L
.

6.2 Stability of Closed-Loop Linear Systems

6.2.1 Nyquist’s Stability Criterion

For closed-loop systems that are third-order or above, it is possible for the system
to be unstable if parameters, such as system gain, are not within a specific range of
values. In hydraulic systems, it is unusual to have unstable open-loop components,
and therefore all the coefficients in the open-loop transfer function will have positive
coefficients. Recall the closed-loop transfer function:

CLTF = G(s)
1 + G(s)H(s)

. (6.9)

In general, G(s)H(s) may contain polynomials of s in both the numerator N(s) and
denominator D(s). It then follows that:

1 + G(s)H(s) = 1 + N(s)
D(s)

= D(s) + N(s)
D(s)

,

(6.10)

1 + G(s)H(s) = (s − z1)(s − z2) . . . (s − zm)
(s − p1)(s − p2) . . . (s − pn)

.

Definitions are as follows:

� zi are the zeros and pi are the poles of 1 + G(s)H(s) and can be real, complex,
or a combination of both.
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r = Re jθ

R = ∞

Figure 6.4. A suitable closed path for s.

� The zeros are the roots of the numerator polynomial.
� The poles are the roots of the denominator polynomial.
� Note that the poles of G(s)H(s) are also the poles of 1 + G(s)H(s).
� Stability depends on the properties 1 + G(s)H(s).

Considering the transient response of the closed-loop system, its dynamic charac-
teristic is determined by the roots of 1 + G(s)H(s), the denominator of Eq. (6.9), or
the zeros of 1 + G(s)H(s), which should not contain positive real parts. Now con-
sider what happens to a plot of 1 + G(s)H(s) as s varies through its infinite range of
values around a closed path, embracing the entire right-hand half of the s plane as
shown in Fig. 6.4.

It can be shown that:

N = Z − P. (6.11)

N is the net number of encirclements of 1 + G(s)H(s) about the origin, Z is the
number of zeros of 1 + G(s)H(s) within the closed path chosen, and P is the num-
ber of poles of 1 + G(s)H(s) within the closed path chosen. The Nyquist stability
criterion can then be stated as follows:

If a closed path for s encloses the right-hand half of the s plane and 1 +
G(s)H(s) makes a net clockwise encirclement of the origin, then there is an
excess of zero over poles. Because these lie in the right-hand half of the s plane,
then the system must be unstable.

The procedure is as follows:

� The poles of 1 + G(s)H(s) are also the poles of G(s)H(s) and are usually readily
observed from the OLTF. Hence, P is readily deduced.

� Select s to follow a path that encloses the right-hand half of the s plane. This is
ensured by choosing the entire imaginary axis and an infinite semicircle. Select-
ing the clockwise path for s shown in Fig. 6.4 results in three parts:

(i) s = j�, � = 0 → ∞;

(ii) s = Rj�, R = ∞;

(iii) s = − j�, � = −∞ → 0.

(6.12)

Part (iii) is the reflection of Part (i), and Part (ii) usually reduces G(s)H(s) to a
single point at the origin because of the infinite radius of the semicircle path for s.

� It is necessary to plot only G(s)H(s). The number of encirclements of the −1
point is now determined to give N. From Eq. (6.12), it follows that:

Z = N + P. (6.13)
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(s + 0.5)(s + 1)(s + 2)

21yd      +                                                                            y

Figure 6.5. A position control system.

� If Z is positive, then there is an excess of zeros over poles, and the closed-loop
system is unstable.

In hydraulic control systems, P is usually zero and, therefore, it is necessary to
ensure only that G( j�)H( j�), the conventional frequency response, does not encir-
cle the −1 point at least once. The roots of the characteristic equation are obtained
simply from:

characteristic equation, 1 + G(s)H(s) = 0, (6.14)

or, alternatively, G(s)H(s) = −1. (6.15)

To illustrate these principles, consider the following closed-loop position control
system shown in Fig. 6.5.

The system OLTF is:

G(s)H(s) = 21
(s + 0.5)(s + 1)(s + 2)

. (6.16)

It is immediately deduced that the three poles of 1 + G(s)H(s) are the three poles
of G(s)H(s) and are determined directly from Eq. (6.16) as pi = −0.5,−1,−2, and
therefore there are no poles of G(s)H(s) with positive real parts, P = 0. Figure 6.6
shows the Nyquist plot as s travels around its closed path shown in Fig. 6.4. G(s)H(s)
collapses to a single point at the origin as s traverses the semicircle of infinite radius.
It can be seen that there are two encirclements of the −1 point and, therefore:

Z = N − P,

Z = 2 − 0 = 2.
(6.17)

0

5

10

15

Re 

Im

s = +jω

  s on the infinite semicircle 

                                         ω = 0 Figure 6.6. Nyquist plot for the OLTF as
s travels around the right-hand half of the
s plane in a clockwise direction.
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Therefore, there are two zeros that lie in the right-hand half of the s plane. They must
have positive real parts and, therefore, the closed-loop system is unstable. Consid-
ering characteristic equation (6.14) gives:

1 + G(s)H(s) = 0,

s3 + 3.5s2 + 3.5s + 22 = 0,
(6.18)

(s + 4)(s2 − 0.5s + 5.5) = 0,

s = −4, +0.25 + j2.33, +0.25 − j2.33.

The two complex zeros with positive real parts are evident in Eq. (6.18).
Two roots of Eq. (6.18) clearly have positive real parts, validating that the

closed-loop system is unstable. It would seem, therefore, that it is necessary to plot
only the frequency response G( j�)H( j�) and then ensure for stability that it does
not cross the real axis beyond the −1 point. However, this can be misleading in the
general sense if the OLTF contains poles with positive real parts.

Worked Example 6.2

Consider the following OLTF:

G(s)H(s) = 2
(s − 0.5)(s + 1)(s + 2)

.

Determine whether the closed-loop system will be stable.
Clearly, P = 1. Plot G(s)H(s) as s traverses around the right-hand half of

the s plane. For s on the positive imaginary axis s = j�, then:

G( j�)H( j�) = 2
( j� − 0.5)( j� + 1)( j� + 2)

,

G( j�)H( j�) = 2
[ − (1 + 2.5�2) − j(0.5� − �3)

(0.25 + �2)(1 + �2)(4 + �2)
.

0

0.1

0.2

Re 

Im

Worked Example 6.2.

P = 1 and N = −1 because there is one encirclement of the −1 point but in an
anticlockwise direction. Hence, it follows that:

N = Z − P,

Z = N + P,

Z = −1 + 1 = 0.



330 Control Systems

There are no zeros with positive real parts; the closed-loop system is stable. This
can be validated by considering the characteristic equation:

1 + G(s)H(s) = 0,

(s + 2.46)(s2 + 0.04s + 0.412) = 0.

Clearly, there cannot be any roots with positive real parts, and the closed-loop
system is stable even though the open loop is apparently unstable because of its
pole with a positive real part. This example also shows that just a plot of the
OLTF frequency response G( j�)H( j�) would not have revealed closed-loop
instability in the sense of its crossing the real axis beyond the −1 point.

6.2.2 Root Locus Method

The main problem in practice is the determination of the roots of a high-order
polynomial representing the characteristic equation 1 + G(s)H(s) = 0. There is a
graphical approach known as the root locus plot that has received a comprehensive
treatment prior to the availability of standard graphics and mathematical analysis
software packages. The root locus method combines a number of rules to aid graph-
ical construction of G(s)H(s) and can be pursued through standard control theory
textbooks.

For example, if the earlier example is considered but now with a variable system
gain, then the OLTF becomes:

G(s)H(s) = K
(s + 0.5)(s + 1)(s + 2)

. (6.19)

It was shown earlier that the closed-loop system was unstable with K = 21. The
characteristic equation now becomes for a general gain K:

1 + G(s)H(s) = 0,

(s + 0.5)(s + 1)(s + 2) + K = 0, (6.20)

s3 + 3.5s2 + 3.5s + 1 + K = 0.

To determine the value of the gain K to cause closed-loop instability, simply vary
K and determine the roots of Eq. (6.20). Notice that when K = 0, the zeros of the
characteristic equation are the poles of the OLTF: −0.5, −1, −2. The root locus
diagram is shown in Fig. 6.7 and indicates instability when K = 11.25.

The following points arise:

� The number of loci is equal to the order of the OLTF, three in this example.
� As the gain K is increased from K = 0, then all the roots move away from the

three real poles of the OLTF. One root increases in the negative real direction.
The two other roots move toward a breakaway point that may be determined
from:

dK
ds

= 0. (6.21)
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Figure 6.7. Root locus plot for the roots of (s + 0.5)(s + 1)(s + 2) + K = 0.

In this example:

K = −(s3 + 3.5s2 + 3.5s + 1),
dK
ds

= −(3s2 + 7s + 3.5) = 0,

s = −0.726, K = 0.0789,

s = −1.608, K = −0.264. (6.22)

Clearly, the appropriate solution is s = −0.726 when K = 0.0789.

� To determine the asymptotes of the root loci, the angle condition must be satis-
fied as s → ∞. It is then noted that for this condition:

1 + G(s)H(s) = 0 → G(s)H(s) = −1,

∠G(s)H(s) = ±180◦(2k + 1), k = 0, 1, 2, . . . , (6.23)

asymptote angle = ±180◦(2k + 1)
r

,

where r is the excess of poles over zeros in G(s)H(s).

� For asymptotes extending to infinity, they intersect the real axis at the value:

s = 1
r

(
n∑

i=1

pi −
m∑

i=1

zi

)
, (6.24)

where n are the poles and m are the zeros of G(s)H(s).

For the current example,

G(s)H(s) = K
(s + 0.5)(s + 1)(s + 2)

→ r = 3,

angle of asymptotes = ±60◦(2k + 1).
(6.25)
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The angles are therefore +60◦, −60◦, 180◦, and −180◦ and are repeated. Thus, there
are three asymptotes, one being the negative real axis. The asymptotes intersect the
real axis at the point:

s = 1
r

(
n∑

i=1

pi −
m∑

i=1

zi

)
= 1

3
[(−0.5 − 1 − 2) − (0)] = − 1.17. (6.26)

� As the gain is increased, two roots occur in conjugate pairs until the right-hand
half of the s plane is reached.

6.2.3 Routh Stability Criterion

An alternative approach is to use the Routh array method that determines how many
roots of the characteristic equation have positive real parts and is particularly useful
when the order of the system is high. It may also be used to determine limits of
system parameters to ensure closed-loop stability and is therefore a powerful design
tool. It is not strictly necessary to know how many exist because just one will render
the closed-loop unstable. It also follows that the numerical value of any root having
a real part is also not necessary. To apply the Routh array method, the characteristic
equation is set down in a specific order, as follows:

1 + G(s)H(s)

bnsn + bn−1sn−1 + bn−2sn−2 + · · · + b3s3 + b2s2 + b1s + b0. (6.27)

Write the first two rows of the Routh array:

odd-order row 1 bn bn−2 bn−4 . . . 0,

even-order row 2 bn−1 bn−3 bn−5 . . . 0. (6.28)

Now arrange new rows, one at a time, using the pair of rows above the new row
being constructed. Each new row utilizes the first element of the row immediately
above, known as the pivotal element, and a multiplication sequence is undertaken.
Rows are added until the last row, m, contains all zeros.

row
1 bn bn−2 bn−4 . . . 0
2 bn−1 bn−3 bn−5 . . . 0
3 c1 c2 c3 . . . 0
4 d1 d2 d3 . . . 0
. . . . . . . 0
. . . . . . .

. . . . . . . 0
m 0 0 . . . . 0

c1 = bn−1bn−2 − bn−3bn

bn−1
, c2 = bn−1bn−4 − bn−5bn

bn−1
, . . . ;

d1 = c1bn−3 − c2bn−1

c1
, d2 = c1bn−5 − c3bn−1

c1
, . . . , etc. (6.29)
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The Routh stability criterion states that:

� For a stable closed-loop system, there should be no sign changes of all the ele-
ments of the first column of the array.

� Furthermore, the number of sign changes is equal to the number of zeros of the
characteristic equation with positive real parts.

� Because the first elements in the first two rows should normally be positive, then
it is just necessary that to ensure closed-loop stability all the coefficients in the
first column of the array should also be positive.

So, for the present example, the characteristic equation is:

s3 + 3.5s2 + 3.5s + 1 + K = 0. (6.30)

Construct the Routh array beginning with the first two rows:

row
1 1 3.5 0
2 3.5 (1 + K) 0

3
11.25 − K

3.5
0 0

4 (1 + K) 0 0
5 0 0 0

(6.31)

To ensure closed-loop stability, it is necessary that all the signs of the first column
be positive. Noting that the gain K is inherently positive, then the condition for
stability requires, from row 3, that K < 11.25, as deduced from the previous root
locus analysis. The auxiliary equation is obtained from the row above that which
contains the first possible row of zeros; that is, row 3 in Eq. (6.32) when K = 11.25.
This may be used to determine the frequency of oscillation at the point of instability.
In this example:

Auxiliary equation 3.5s2 + (1 + K) = 0,

3.5s2 + 12.25 = 0, (6.32)

s = ± j1.87,

that is, a frequency of oscillation of 1.87 rad/s as also deduced from the previous
root locus analysis.

A much simpler method to determine the condition for closed-loop instability
for practically realizable systems is to note that:

1 + G(s)H(s) = Re + jIm = 0. (6.33)

So, Re = 0 and Im = 0 with s = j�.
For the present example, this condition results in:

1 + G( j�)H( j�) = 0,

[K + 1 − 3.5�2] + j[3.5� − �3] = 0. (6.34)

The imaginary part is zero when �2 = 3.5 rad/s, giving a frequency of oscillation � =
1.87rad/s. The real part is zero when K = 3.5�2 − 1 giving K = 11.25, as previously
determined from the root locus plot calculations.
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BuAxx +=

D

C

H(s)

r(s)
u(s) x(s) +

 

   + 

+
y(s)

Figure 6.8. A closed-loop system in state-space notation.

For the general third-order characteristic equation:

b3s3 + b2s2 + b1s + b0 = 0. (6.35)

� The closed-loop system should be stable, providing:

b1b2 > b0b3. (6.36)

� At the point of instability:

� =
√

b1

b3
, b1b2 = b0b3. (6.37)

6.2.4 The State-Space Approach

Chapter 5 introduced the state-space modeling concept for linear systems, in which
it was shown that the open-loop system may be described in the following general
form:

ẋ = Ax + Bu. (6.38)

Having the open-loop solution in Laplace transform notation then gives:

x(s) = [s I − A]−1[x(0) + Bu(s)]. (6.39)

A feedback control system is now developed in which the state feedback gains are
embodied in the row vector H(s). In addition, it is common in state-space analysis
to write the output of the closed-loop system in the general form:

y(s) = Cx(s) + Du(s). (6.40)

In hydraulic control systems in which a mechanical output is being considered, the
output does not contain elements of the input signal u(s) and therefore D = 0. How-
ever, if the output of the system is, for example, a chemical or combustion process,
then Eq. (6.40) may well apply. Figure 6.8 shows the diagram for the closed-loop
system.

The closed-loop state-space equation and solution now become:

ẋ = (A− BH)x + Br , (6.41)

x(s) = [s I − A+ BH]−1[x(0) + Br(s)]. (6.42)
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Therefore, the characteristic equation for the closed-loop system is now given by:

characteristic equation → det [s I − A+ BH] = 0. (6.43)

Worked Example 6.3

The dynamics of an open-loop position control system are defined in the follow-
ing state-space form:

 ẋ1

ẋ2

ẋ3


 =


0 1 0

0 0 1
0 −1 −2




 x1

x2

x3


 =


 0

0
K


V,

where V is the servovalve input voltage, x1 is position, x2 is velocity, and x3 is
acceleration of the load. All the states are used for feedback control. Determine
the condition(s) such that closed-loop stability is ensured.

Define the three feedback gains as kp for position, ku for velocity, and kp for
acceleration:

s I − A+ BH =

 s 0 0

0 s 0
0 0 s


−


0 1 0

0 0 1
0 −1 −2


+


 0

0
K


[kp ku ka

]
,

s I − A+ BH =

 s −1 0

0 s −1
Kkp (1 + Kku) (s + 2 + Kka)


 .

The characteristic equation is then given by:

s[s(s + 2 + Kka) + (1 + Kku)] + 1[0 + Kkp] = 0,

s3 + s2(2 + Kka) + s(1 + Kku) + Kkp = 0.

Considering Routh’s method for this third-order system, it is then necessary that
for stability:

(2 + Kka)(1 + Kku) > Kkp.

Therefore, the sensors for position, speed, and acceleration must be chosen with
the correct individual gains as given in the preceding equation.

6.2.5 Servovalve–Motor Closed-Loop Speed Control

It was established in the previous chapters that hydraulic elements of a control sys-
tem have inherent nonlinear characteristics. To aid design and, to some extent,
computer-simulation-aided design, it has been shown that a small-signal, or lin-
earized, analysis can provide valuable information on system dynamics. From a
closed-loop stability point of view, it is argued that if the system is predicted as being
unstable for small perturbations about an operating condition, then it is probably
unstable in general about that operating condition. Thus, a linearized analysis of
servovalve-controlled systems is inevitably used to get a feel for the conditions that
must be satisfied to ensure closed-loop stability. The closed-loop system is shown in
Fig. 6.9.



336 Control Systems

tacho    
ω

                        T load

Q2 P2

Q1 P1

Ps

Ht

Ga

  i       
              servoamplifier gain 
                     mA/V                                                                 tacho gain 

Vd

Figure 6.9. A servovalve–motor closed-loop system.

Consider the linearized OLTF that was developed in Chapter 5 and includes
motor leakage, fluid compressibility, and load inertia. The open-loop linearized
transfer function is as follows:

��(s) =
ki �i(s)

Dm
−
(

1
2R

+ 1
Rm

+ s
C
2

)
�Tload(s)

D2
m

1 + Rv

2R
+ Rv

Rm
+ s

(
L

2R
+ L

Rm
+ CRv

2

)
+ s2 LC

2

, (6.44)

ki = kf

√
Ps − Pload

2
, R = 1

kp
= 2(Ps − Pload)

Dm�(0) + Pload

Rm

,

(6.45)

Rv = Bv

D2
m

, C = V(0)
�

, L = J
D2

m
.

Considering the response of motor speed to input current then gives:

��(s) =
ki �i(s)

Dm

1 + Rv

2R
+ Rv

Rm
+ s

(
L

2R
+ L

Rm
+ CRv

2

)
+ s2 LC

2

. (6.46)

The control system block diagram is shown in Fig. 6.10, neglecting load torque vari-
ations.

2
LC2s)2

vCR

mR
L

2R
Ls(

mR
vR

2R
vR1

mD
ik

++++++
Ga

Ht

+ δω(s)
δVd(s)

δi(s)

Figure 6.10. Closed-loop block diagram for a servovalve–motor drive.
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This closed-loop system as modeled here cannot be unstable because the OLTF
is second order. However, the addition of servovalve dynamics in practice will create
conditions for instability; for example, if the servoamplifier gain is increased.

The OLTF is given by:

G(s)H(s) =
Ga Ht ki

Dm

1 + Rv

2R
+ Rv

Rm
+ s

(
L

2R
+ L

Rm
+ CRv

2

)
+ s2 LC

2

. (6.47)

The CLTF is given by:

Ht �(s)
Vd(s)

= K

1 + Rv

2R
+ Rv

Rm
+ K + s

(
L

2R
+ L

Rm
+ CRv

2

)
+ s2 LC

2

,

open-loop system gain K = Ga Ht ki

Dm
. (6.48)

The CLTF given as Eq. (6.48) can be placed in optimum second-order form, � ≈ 0.7,
once each term in the transfer function has been evaluated:

Ht �(s)
Vd(s)

= KCL

1 + 2�s
�n

+ s2

�2
n

, KCL = K(
1 + Rv

2R
+ Rv

Rm
+ K

) ,

2�

�n
=

(
L

2R
+ L

Rm
+ CRv

2

)
(

1 + Rv

2R
+ Rv

Rm
+ K

) , �2
n =

2
(

1 + Rv

2R
+ Rv

Rm
+ K

)
LC

. (6.49)

Worked Example 6.4

Consider the open-loop control system studied in Section 5.9. Determine the
closed-loop response characteristic.

Considering open-loop steady-state speeds of 0 rpm, 234 rpm, and 903 rpm,
it was shown that for the three cases:

1 + Rv

2R
+ Rv

Rm

∼= 1 to within an accuracy of better than 4%

speed
L

2R
+ L

Rm
+ CRv

2

0 rpm 0.0031
234 rpm 0.0091
903 rpm 0.0281

2
LC

= 6.1 × 104.
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The CLTF parameters are now simplified to:

Ht �(s)
Vd(s)

= KCL

1 + 2� s
�n

+ s2

�2
n

, KCL ≈ K
(1 + K)

, �2
n = 6.1 × 104(1 + K)

speed
2�

�n
�

0 rpm
0.0031

(1 + K)
0.383√
1 + K

234 rpm
0.0091

(1 + K)
1.124√
1 + K

903 rpm
0.0281

(1 + K)
3.470√
1 + K

The gain K may now be selected to give the desired closed-loop damping, the
input voltage being changed to produce the appropriate steady-state speed appli-
cable:

Speed � K �n rad/s

0 rpm 0.383 max 0 min 247 min
234 rpm 0.700 1.58 397
903 rpm 0.700 23.57 1224

Note the improved steady-state speed characteristic discussed in Section 4.7. The
motor–load pump has a significant speed ripple, which is evident from the open-
loop transient measurement shown in Section 5.9. Gains of K > 2.6 were not
achievable in practice because servovalve and tachometer dynamics, not included
in the design, become important at higher gains.

The corrupting influence of a large motor–pump speed ripple under closed-
loop control meant that it was not possible to record transient behavior around
a steady-state condition. Large-signal response measurements were also practi-
cally very difficult to obtain with clarity because, as deduced from the preceding
discussion, the damping ratio is very small at lower speeds, even with a gain of
K = 1.3; this particular system and its loading do not work well under closed-loop
control.

6.2.6 Servovalve–Linear Actuator Position Control

The closed-loop system is shown in Fig. 6.11. The open-loop linearized transfer func-
tion for speed was developed in Chapter 5 for the general single-rod case. For posi-
tion control, the steady-state linearized pressure coefficients kp1 and kp2 are zero
for a critically lapped servovalve; that is, a critically lapped servovalve provides no
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Figure 6.11. A servovalve–linear actuator position controller.

damping at the steady-state rest position. The general transfer function may then be
rearranged to give:

�y(s) =

�kf
√

Ps

A2
�i(s) − sC1

A2
2(ε + � 2)

�F(s)

s
[

1 + C1 Rv

(ε + � 2)
s + LC1

(ε + � 2)
s2
] ,

� =
√

� − F
1 + � 3

when extending,

√
1 + F
1 + � 3

when retracting; (6.50)

ε = V1(0)
V2(0)

, � = A1

A2
, C1 = V1(0)

�
, Rv = Bv

A2
2

, L = M

A2
2

.

Note that damping here is provided solely by viscous friction. The control system
block diagram is shown in Fig. 6.12, neglecting load-force variations.

++ 2s
LC1

s
C1Rv

1s

A2

Ps

Ga

Hy

+ δi(s)δVd(s)
δy(s)

Figure 6.12. Closed-loop block diagram for a servocylinder drive.
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The OLTF is therefore given by:

G(s)H(s) =
Ga Hy�kf

√
Ps

A2

s
[

1 + C1 Rv

(ε + � 2)
s + LC1

(ε + � 2)
s2
] . (6.51)

The ratio of open-loop gains is given by:

gain extending
gain retracting

=
√

� − F

1 + F
. (6.52)

The extending gain is greater than the retracting gain when:

gain extending > gain retracting when F <
(� − 1)

2
. (6.53)

The CLTF is given by:

�y(s)
�Vd(s)

=
Ga Hy�kf

√
Ps

A2

LC1

(ε + � 2)
s3 + C1 Rv

(ε + � 2)
s2 + s + Ga Hy�kf

√
Ps

A2

. (6.54)

It will be deduced that the response to a step demand change in position results in a
zero steady-state position error for an ideal critically lapped servovalve controller.
However, the system is third-order, and closed-loop instability is possible if incorrect
gains are chosen. The characteristic equation for this third-order position control
system is then given by:

LC1

(ε + � 2)
s3 + C1 Rv

(ε + � 2)
s2 + s + Ga Hy�kf

√
Ps

A2
= 0. (6.55)

Using the Routh criterion, the closed-loop is stable, providing:

Bv A2

Ga Hykf
√

Ps
> �, (6.56)

� =
√

� − F
1 + � 3

when extending,

√
1 + F
1 + � 3

when retracting. (6.57)

The boundaries for both extending and retracting cases are shown in Fig. 6.13 as the
load force and area ratio are changed.

Assuming a fixed area A2, these results show that the following:

� When extending, the stability limit is determined at minimum load force.
� When retracting, the stability limit is determined at maximum load force.
� The largest setting from the left-hand side of Eq. (6.56) occurs for a double-rod

actuator when � = 1.
� The system should be designed for the largest load and for retracting condi-

tions.
� The speed of position response will usually be different in the two directions.
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Figure 6.13. Stability boundaries for a single-rod servoactuator position control system.

Consider, therefore, the application that was introduced Chapter 5 and reproduced
here as Fig. 6.14. The actuator is double rod, and the actual position response will
be compared with the linearized transfer function prediction.

In practice, the servoactuator is controlled by computer and its associated data-
acquisition card. Data for this example are as follows:

Load mass, M = 80 kg; double-rod actuator cross-sectional area, A= 2.22 ×
10−4 m2

Viscous damping effective coefficient, Bv = 4800 N/m s−1

For the actuator in midposition, V1(0) = V2(0) = V(0) = 1.2 × 10−5 m3

Servovalve flow constant, kf = 2.26 × 10−8; supply pressure, Ps = 210 bar
ISO 32 mineral oil bulk modulus, � = 1.4 × 109 N/m2

Servoamplifier gain, Ga = 1 mA/V; position transducer gain, Hy = 100 V/m

The servovalve linearized flow gain was shown previously to depend on the fac-
tor � that varies with the direction of motion and the load. For position control,
the linearized transfer function must be evaluated at one of these conditions and,
clearly, both are not possible unless the load force is zero. An approximation is

(a) Servoactuator               (b) Position control system 

Vd

F

Hy

Ga

servoamplifier 

servovalve 

load cell

Figure 6.14. A servoactuator, one of four forming part of a four-poster vehicle test rig
(Cardiff University, School of Engineering).
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Figure 6.15. A comparison of step responses for position control of a servoactuator.

therefore made with the average value given by:

� ≈
√

1 − F +
√

1 + F

2
√

2
, F = F

Ps A
. (6.58)

Given that F/Ps A= 0.17, then � ≈ 1/
√

2 and is little different than for the no-load
condition. The linearized OLTF from Eq. (6.51) becomes:

G(s)H(s) =
HyGakf

√
Ps/2

A

s
(

1 + CRv

2
s + LC

2
s2
) . (6.59)

Placing this transfer function because of standard second-order notation then gives:

G(s)H(s) = KHy

s
(

1 + 2�

�n
s + s2

�2
n

) .

(6.60)

K = Gakf
√

Ps/2
A

,
2�

�n
= CRv

2
, �2

n = 2
LC

.

The characteristic equation is therefore:

s3

�2
n

+ 2� s2

�n
+ s + KHy = 0. (6.61)

Closed-loop stability is therefore ensured, providing:

K = KHy

�n
< 2� . (6.62)

Substituting the system data then gives the open-loop undamped natural frequency
�n = 379 rad/s (60.3 Hz), the damping ratio � = 0.079, and the forward gain K
= 0.33 ms−1/V. It then follows that K = 0.087, 2� = 0.158, and from Eq. (6.62)
closed-loop stability is predicted. A comparison between the actual system response
and that predicted from the approximate linearized transfer function is shown in
Fig. 6.15.

It can be seen that the linearized solution predicts the general position trend
with time, but there is a superimposed oscillation that does not appear to exist on
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Figure 6.16. A servovalve–motor closed-loop system with long lines.

the actual response. Note, however, that the linearized solution neglects servovalve
dynamics. The linearized transfer function approach is therefore conservative in the
sense that it tends to overestimate the gain for closed-loop stability; this is a virtue
from a design point of view.

6.2.7 The Effect of Long Lines on Closed-Loop Stability,
Speed Control of a Motor

Consider a closed-loop motor speed control system. The relationship between
motor speed and servovalve current was developed in Chapter 5 for a motor with
no losses. The closed-loop system is shown in Fig. 6.16.

Now considering leakage and torque losses and using the servovalve reflected
linearized coefficients discussed in Chapter 5.16.5 to embrace line dynamics gives
servovalve and lines:

�Qa(s) = 1
R1(s)

ki �i(s) − R2(s)
R1(s)

kp�Pa(s),

(6.63)

�Qb(s) = 1
R1(s)

ki �i(s) + R2(s)
R1(s)

kp�Pb(s),

line functions:

R1(s) = cosh �� + kp Zc sinh ��,
(6.64)

R2(s) = cosh �� + 1
kpZc

sinh ��.

Considering motor leakage and viscous friction then also gives motor flow conti-
nuity:

�Qa = Dm�� + (�Pa − �Pb)
Ri

+ �Pa

Re
,

(6.65)

�Qb = Dm�� + (�Pa − �Pb)
Ri

− �Pb

Re
,
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Motor torque:

Dm(�Pa − �Pb) = Bv�� + J
d��

dt
. (6.66)

Collecting these equations together then gives the following OLTF:

G(s)H(s) = K

R1(s) + (Rv + sLm)
[

R1(s)
Rm

+ R2(s)
2R

] ,

(6.67)
1

Rm
= 1

Ri
+ 1

2Re
, R = 1

kp
, Lm = J

D2
m

, K = Ga Ht ki

Dm
.

The closed-loop characteristic equation then becomes:

R1(s) + (Rv + sLm)
[

R1(s)
Rm

+ R2(s)
2R

]
+ K = 0. (6.68)

This cannot be solved explicitly, but an approximate solution can be obtained by
assuming that each line resistance is negligible compared with servovalve and motor
resistance. Recall that for a lossless line:

cosh �� → cos
��

Co
, sinh �� → j sin

��

Co
, Zc → Zca = �Co

a
. (6.69)

Then, the characteristic equation solution is obtained by equating the real and imag-
inary parts to zero, which then gives:

frequency, tan � = −��,

� = ��

Co
, � =

(
Lm

2L

)(
1 + 2R

Rm

)
(

1 + Rv

Rm
+ RRv

2Z2
ca

) ,

gain, K = �

(
Lm

2L

)(
1 + 2Z2

ca

RRm

)
sin � −

(
1 + Rv

Rm
+ Rv

2R

)
cos �, (6.70)

where L is the line total inductance L = ��/a. It can be seen that the solution for
frequency embraces all the system resistances and is shown in Fig. 6.17 for a value
of � = 1.

0

2

4

0 1.57 3.14 4.71

θ = ω�/Co

tanθ

θα α = 1

Figure 6.17. Instability condition for closed-loop motor
control, no losses.
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Figure 6.18. A servovalve–linear actuator position controller with long lines.

It is clear that the closed-loop frequency of oscillation lies between the bound-
aries defined by:

�

2
<

��

Co
< �. (6.71)

A value of ��/Co → �/2 is approached for a relatively low line inductance and a
value of ��/Co → � is approached for a relatively high value of line inductance.
Given a typical value of Co = 1276 m/s for mineral oil, then the frequency of oscilla-
tion will be typically 319/� < f Hz < 638/�. Care has to be taken in this interpretation
of this frequency if short lines lengths are such that the frequency response of the
servovalve then becomes important.

It may also be deduced from Worked Example 5.7 that the frequency-condition
for closed-loop instability represents the resonant frequency range on the open-loop
frequency-response magnitude diagram if losses are neglected.

6.2.8 The Effect of Long Lines on Closed-Loop Stability, Position Control
of a Linear Actuator

Because a critically lapped servovalve is being considered, then from earlier work,
it has been established that the pressure coefficients are zero at the steady-state
position. Consider therefore Fig. 6.18 and the established system equations.

The following conditions apply for this analysis:

� zero position error, the servovalve steady-state current is zero, kp1 = kp2 = 0
� actuator volumes are not neglected as in the case for a load motor
� actuator friction Bv provides only system damping

The simplified equations then become servovalve and lines:

�Qa(s) = ki1

cosh ��
�i(s) − tanh ��

Zc
�Pa(s),

(6.72)
�Qb(s) = ki2

cosh ��
�i(s) + tanh ��

Zc
�Pb(s),
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actuator flow continuity:

�Qa = A1�U + V1(0)
�

d �Pa

dt
,

(6.73)

�Qb = A2�U− V2(0)
�

d �Pb

dt
,

load force equation:

�Pa A1 − �Pb A2 = Bv�U + M
d �U

dt
. (6.74)

The OLTF then becomes:

G(s)H(s) =
Ga Hy

A2G3(s)
[�ki1G1(s) + ki2G2(s)]

s [� 2G2(s) + G1(s) + (Rv + sLm)G1(s)G2(s)]
,

G1(s) = tanh ��

Zc
+ sC1, G2(s) = tanh ��

Zc
+ sC2, G3(s) = cosh ��,

C1 = V1(0)
�

, C2 = V2(0)
�

. (6.75)

This transfer function is difficult to interpret in general terms from a stability point of
view. Some progress can be made if it is assumed that the volumes on either side of
the actuator are equal such that C1 = C2 = C. This would be exact for a double-rod
actuator, � = 1, with the piston at the central position. The OLTF then becomes:

G(s)H(s) = K�

s
[

cosh �� + (Rv + sLm)(sinh �� + sCZc cosh ��)
(� 2 + 1)Zc

] ,

K = Ga Hykf
√

Ps

A2
, Rv = Bv

A2
2

, Lm = M

A2
2

, (6.76)

� =
√

� − F
(1 + � 3)

extending, � =
√

1 + F
(1 + � 3)

retracting.

The closed-loop characteristic equation is given by:

s
[

(� 2 + 1) cosh �� + Rv sinh ��

Zc

]
+ s2

[
Lm sinh ��

Zc
+ CRv cosh ��

]

+ s3 LmC cosh �� + (� 2 + 1)K� = 0. (6.77)
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Figure 6.19. Instability condition for closed-loop
cylinder position control.

A good feel for the conditions for instability can be obtained by considering the
lines to be lossless, and the transmission line functions are again simplified to:

cosh �� → cos
��

Co
, sinh �� → j sin

��

Co
, Zc → Zca = �Co

a
. (6.78)

Then, the characteristic equation solution is again obtained by equating the real and
imaginary parts to zero, which then gives:

frequency, �2�1�2 cos � + � sin ��1 − (� 2 + 1) cos � = 0,

gain, K� = �2�2�3 cos �

(� 2 + 1)
+ � sin ��3

(� 2 + 1)
,

(6.79)

� =
√

� − F
1 + � 3

, extending, � =
√

1 + F
1 + � 3

, retracting

�1 = Lm

L
, �2 = V(0)

Vline
, �3 = Rv

L
,

where L is the line inductance, V(0) is the volume on each side of the actuator, and
Vline is the volume of one line.

For this system model, there is no solution for gain if the viscous damping Bv is
neglected. The frequency solution may be written as:

tan � = (�2 + 1)
� �1

− ��2. (6.80)

A graphical representation of Eq. (6.80) is shown in Fig. 6.19.
It will be seen that whatever value of � , �2 and �1 chosen, then the frequency

will always satisfy:

0 <
��

Co
<

�

2
. (6.81)

Given a typical value of Co = 1276 m/s for mineral oil, then the frequency of oscil-
lation will be typically f Hz < 319/�. Again, care has to be taken when interpreting
this frequency if short line lengths are such that the frequency response of the servo-
valve then becomes important.
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Worked Example 6.5

Consider a practical example undertaken by the author for a position control
system with the following data:

ISO 32 mineral oil @ 50◦C, density � = 860 kg/m3, bulk modulus � = 1.4 ×
109 N/m2, servovalve supply pressure Ps = 100 bar

Lines � =10.73 m long, 7-mm internal diameter
Actuator bore, 50.8-mm diameter, rod 28.58-mm diameter, stroke 254-mm
Load mass M = 156 kg
Position transducer gain, Hy = 41.3 V/m
F = F/Ps A2 = 0.11
extending � = 0.57, retracting � = 0.53, average 0.55
Line a = 0.385 × 10−4 m2, A1 = 0.00203 m2, A2 = 0.00139 m2, area ratio � =

1.46
Line inductance, L = ��/a = 2.4 × 108 kg/m4

Co = √
�/� = 1276 m/s

Load inductance, Lm = M/A2
2 = 0.8 × 108 kg/m4

Actuator equal volumes on either side, V(0) = 0.21 × 10−3 m3

Single line volume, Vline = 0.413 × 10−3 m3

�1 = Lm/L = 0.333, �2 = V(0)/Vline = 0.508

At the point of instability, using Eq. (6.79) gives:

�2�1�2 cos � + � sin ��1 − (� 2 + 1) cos � = 0,

0.169�2cos � + 0.333� sin � − 3.13 cos � = 0.

The solution is � = ��/Co = 1.4. Further calculations and comparisons are then
as shown in the following list:

predicted frequency of oscillation � = 1.4, f = 26.5 Hz;
neglecting actuator volumes �2 = 0, � = 1.42, f = 26.9 Hz;
measured value, f = 23.8 Hz.

Therefore, the predicted frequency of oscillation is within 11.3% of the mea-
sured value. Neglecting actuator volumes produced a prediction accuracy of
13%. The actual frequency of oscillation justified neglecting servovalve dynam-
ics in this example. Assuming a mean value of � = 0.55 with a negligible loss in
accuracy between extending and retracting conditions, then the gain at the point
of instability is given by:

gain K� = �2�2�3 cos �

(� 2 + 1)
+ � sin ��3

(� 2 + 1)
,

Ga Hykf
√

Ps

A2
= 1.27Rv

L
.

The gain prediction at the point of instability was inconclusive because of the
difficulty in determining an accurate estimate of the low actuator viscous fric-
tion coefficient Bv . Some closed-loop position and velocity responses to a step
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position demand are shown in the following figure and illustrates that the servo-
amplifier gain Ga ≈ 40 mA/V at the point of instability.
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Position step responses for a cylinder drive with long lines 

Worked Example 6.5

6.2.9 The Effect of Coulomb Friction Damping on the Response and
Stability of a Servovalve–Linear Actuator Position Control System

Now consider the case in which actuator and load damping is dominated by
Coulomb friction. This was introduced in Chapter 5, in which it was shown that
for a simple and idealized open-loop example, the position response had a linear
decay characteristic. The system diagram is shown in Fig. 6.20.

For a conventional servovalve–linear actuator position control system, the non-
linear flow characteristic of the servovalve must be considered when Coulomb fric-
tion is present. However, a realistic simplification can be made for a double-rod
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Figure 6.20. A servovalve–linear actuator position controller.

actuator as outlined in Chapter 5, in which it was shown that in the absence of piston
seal leakage, the sum of line pressures is dynamically constant and equal to supply
pressure. Hence, the system equations are given by:

kf i

√
Ps − Pload

2
= AU + V

�

dPload

dt
,

Pload A= Fc sign(U) + M
d2 y

dt2 , (6.82)

i = Ga(Vd − Hpy) Pload = P1 − P2.

The system equations may then be placed in nondimensional form to significantly
simplify the choice of parameters, as follows:

(1 − y)
√

1 − Pload = U + dPload

dt/�
,

Pload = � sign(U) + X
dU

dt/�
,

dy
dt/�

= YU,

y = y
yd

, U = U
Uref

, Pload = Pload

Ps
, Uref = Qref

A
,

X = L

CR2 , Y = V
Vdisp

Ps

�
, L = M

A2
, C = V

�
, R = Ps

Qref
,

yd = Vd

Hp
, � = Fc

Ps A
, � = CR, Qref = kf Ga Vd

√
Ps

2
.

(6.83)

V is the actuator volume, and initially equal on each side, and Vdisp is the demanded
volume change during position control; for example, 10% of the half-stroke. In prac-
tice for servoactuator applications, it is likely that the dynamic parameter X will be
small, possibly around the unity value. In this situation, the closed-loop position
response will be dominated by the actuator integrator characteristic combined with
the servovalve flow gain. This means that the transient response to a step input will
look like a first-order response with perhaps a small superimposed oscillation that
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Figure 6.21. Transient response and
phase-plane plot for the servoactuator
position control system X = 0.5, Y =
0.15, � = 0.05.

is due to fluid compressibility, load inertia, and damping effects. The time constant
of the dominant first-order response is � = Vdisp/Qref. In such a case, it is difficult
to assess whether viscous, Coulomb, or a combination of both frictions exists from
practical dynamic tests. Servovalve dynamics will usually reduce this superimposed
oscillation because of system dynamics.

For example, consider the solution of Eq. (6.83) for X = 0.5 and Y = 0.15. The
value of Y is assessed from a demanded displaced volume of 1/10 of the actuator
volume on each side, with the piston initially centralized. Therefore, the change in
volume on the transient behavior is negligible over the transient period. A typical
servopressure of 210 bar is assumed with an effective fluid bulk modulus of 14,000
bar. A friction factor of � = 0.05 has also been selected that would result in a pres-
sure difference of 10.5 bar because of Coulomb friction. Figure 6.21 shows the simu-
lation result. It will be seen from system equation (6.83) that in the absence of leak-
age, there will not be a steady-state position error that is due to Coulomb friction.

Different values of the system parameters X, Y, and � produce different tran-
sient responses and phase-plane plots. For a transient response similar to that shown
in Fig. 6.21, the velocity is positive dominant. The effect of Coulomb friction on
closed-loop position control in practice is quite different from that traditionally used
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Figure 6.22. Stability boundary for the
position control example with Coulomb
friction damping, Y = 0.15.

to explain its effect by use of a simple mass–spring–damper system. At the condi-
tion for closed-loop instability, severe oscillation in pressure differential will usually
occur rather than severe oscillations in position. Considering the transient behavior
shown in Fig. 6.21, it is unwise to rely on a linearized analysis to understand the
effect of Coulomb friction in a position control system. The stability boundary vari-
ation with friction level is not predicted with sufficient accuracy with a linearized
analysis. When the closed-loop response is dominated by the integration character-
istic of the actuator, the amplitude of the position oscillation at the point of insta-
bility is small compared with the steady-state demanded position; the oscillation
amplitude is not half the step change demanded. Therefore, the use of an equiva-
lent linear viscous damping coefficient Bv , as outlined in Section 5.19, is difficult to
interpret because of the requirement that the amplitude of oscillation yo must be
specified; it varies with the choice of � and X. In addition, the frequency of oscilla-
tion �n varies with � and X. For the example being used here, Fig. 6.22 shows the
stability boundary as the friction level is increased and determined from the exact
simulation.

The stability boundary is given by:

X = 23� + 115�2. (6.84)

Considering the definition of the dynamic parameter X then, for a fixed friction
level, instability caused by an increase in X would occur by:

� increasing mass M
� increasing the servoamplifier gain Ga
� decreasing the servovalve supply pressure Ps
� increasing the servovalve rated flow (increasing kf )

6.3 Digital Control

6.3.1 Introduction

Digital control is usually concerned with using a microcomputer or equivalent sys-
tem to control a hydraulic system and with some sort of sampling of the parameter
to be controlled followed by a decision-making process and then control actuation.
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Figure 6.23. Elements of a digital control system.

In a perfect world, the digital control process would not appear any different from
conventional analog control, and the ever-increasing processing speed of micropro-
cessors might suggest that this should be the case. However, issues of bandwidth and
noise mean that, in reality, the process of digital control is not an idealized process,
and this section introduces some basic concepts of digital control theory. Consider
therefore the basic control system shown in Fig. 6.23; in this example, a cylinder
position control system, with the digital processing unit placed in the error part of
the closed-loop control system.

It is assumed in Fig. 6.23 that the position sensor is an analog device and, there-
fore, its voltage must be converted into a form that can be processed by the com-
puter. Once the control decision with its associated computations has then been
carried out, the signal to be sent to the servovalve must be converted to an analog
voltage that is passed to the servoamplifier.

In practice, the digital controller can be a data-acquisition card plugged into the
back of a PC with analog-to-digital converters (ADCs), digital-to-analog converters
(DACs), logic gates, and so forth, and with a range of sampling speeds and bit accu-
racy. The actual sampling frequency of an ADC can be set by the user and can be
many kilohertz. The actual sampling frequency, when computations are complete
together with DAC, is usually between 500 Hz and 2 kHz for hydraulic systems
and with 12-bit data resolution. A commercial programming and software library
may then be added to produce a flexible input–control decision–output control tool.
Alternatively, a dedicated unit may be available from the servovalve manufacturer,
usually having two channels and with dedicated programming code and compre-
hensive software functions. This is less flexible than the former but it is designed
for industrial applications while still containing all the main programming functions
needed to significantly improve and often optimize closed-loop performance in the
most complicated of process requirements. Figure 6.24 shows both an industrial two-
channel servocontroller and a data-acquisition card.

6.3.2 The Process of Sampling

Consider a continuous signal f (t) that is sampled by an ideal sampler to produce
f ∗(t), as shown in Fig. 6.25.

The continuous signal is sampled every T seconds; the sampling interval, and
the time required for acquiring the signal, is shown but in reality is considered neg-
ligible in comparison with the sampling interval. The output of the ideal sampler
therefore may be represented by the input multiplied by the sampling process; in
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Figure 6.24. An industrial controller and a data-acquisition card.
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Figure 6.25. Sampling of a continuous signal.
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Figure 6.26. The practical approach to sampling with
zero-order hold.

this instance, the unit impulse (Dirac delta function). Each contribution from pre-
vious samples is included by choosing the appropriate delay period, which will be a
multiple of the sampling period, as follows:

f ∗(t) = f (0)�(t) + f (T)�(t − T) + f (2T)�(t − 2T) + f (3T)�(t − 3T) + · · ·+,

f ∗(t) =
∞∑

n=0

f (nT)�(t − nT), (6.85)

where �(t − nT) is the unit impulse at t = nT.
The Laplace transform of the sampled signal is therefore:

F∗(s) = f (0) + f (T)e−sT + f (2T)e−2sT + f (3T)e−3sT + · · ·+,

F∗(s) =
∞∑

n=0

f (nT)e−nsT
. (6.86)

The Laplace transform of a sampled signal is therefore an infinite series. Now, to use
the sampled information, it must be reconstructed in some practical manner other
than the idealized form. The most common form of signal reconstruction is referred
to as a zero-order hold (ZOH), whereby the sampled signal is simply held constant
over the whole of the sampling period T. This is shown in Fig. 6.26.

Recalling the Laplace transform for a step function held constant for T seconds
then allows Eq. (6.86) to be modified as follows:

F(s) = f (0)
(1 − e−sT)

s
+ f (T)

(e−sT − e−2sT)
s

+ f (2T)
(e−2sT − e−3sT)

s
+ · · · +,

= (1 − e−sT)
s

[
f (0) + f (T)e−sT + f (2T)e−2sT]+ · · · +,

= (1 − e−sT)
s

F∗(s). (6.87)

Therefore, zero-order hold sampling may be considered to have a transfer function
Go(s) in conjunction with the ideal sampler and given by:

Go(s) = (1 − e−sT)
s

. (6.88)

Therefore, to analyze a control system with digital control, it is now only necessary
to determine the Laplace transform of common signals and functions, and this is
greatly helped by the use of z-transform theory.
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Figure 6.27. Ideal sampling of a unit step function.

6.3.3 The z Transform

This is simply defined as:

z = esT. (6.89)

Consequently, the z transform of an ideally sampled signal, from Eq. (6.86), is given
by:

F(z) = ZF∗(s) =
∞∑

n=0

f (nT)z−n
. (6.90)

EXAMPLE 1: A UNIT STEP FUNCTION. Consider ideal sampling of the unit step function
as shown in Fig. 6.27:

F(z) =
∞∑

n=0

f (nT)z−n =
∞∑

n=0

(1)z−n
,

(6.91)
= 1 + 1

z
+ 1

z2
+ 1

z3
+ · · · + = z

(z − 1)
.

EXAMPLE 2: AN EXPONENTIALLY DECAYING SIGNAL. Consider ideal sampling of the
unit step function as shown in Fig. 6.28:

F(z) =
∞∑

n=0

f (nT)z−n =
∞∑

n=0

(e−anT)z−n
,

(6.92)

= 1 +
(

eaT

z

)
+
(

eaT

z

)2

+
(

eaT

z

)3

+ · · · + = z
(z − e−aT)

.

Some common z transforms are shown in Table 6.1.

6.3.4 Closed-Loop Analysis with Zero-Order-Hold Sampling

Consider a cylinder position control system as shown in Fig. 6.29 together with the
block diagram. The digital processor is sampling the error signal with no modifica-
tion to it, but it is a ZOH sampler.

1

f (t) 

0         T        2T      3T        t

Figure 6.28. Ideal sampling of an exponentially decaying function.
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Table 6.1. Some common z transforms

f (t) F(s) F(z)

1 Unit step
1
s

z
(z − 1)

2 t
1
s2

Tz

(z − 1)2

3 t2/2
1
s3

T2z(z + 1)

2(z − 1)3

4 e−at 1
(s + a)

z

(z − e−aT)

5 (1 − e−at )
a

s(s + a)
z(1 − e−aT)

(z − 1)(z − e−aT)

6 t − (1 − e−aT)
a

a
s2(s + a)

Tz

(z − 1)2 − z(1 − e−aT)

a(z − 1)(z − e−aT)

7 e−at sin bt
b

(s + a)2 + b2

ze−aTsin bT

(z2 − 2ze−aTcos bT + e−2aT)

8 e−at cos bt
(s + a)

(s + a)2 + b2

z2 − ze−aTcos bT

(z2 − 2ze−aTcos bT + e−2aT)

9 Final-value theorem lim
t→∞ f (t) = (z − 1)F(z)]z=1

10 Initial-value theorem lim
t→0

f (t) = F(z)]z=∞

The CLTF in the z domain is obtained in the usual way:

y(z)
Vd(z)

= ZGo(s)G(s)

1 + ZGo(s)GH(s)
. (6.93)

Control 
decision DAC

Servovalve  
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Position 
sensor ADC

Demand   + Position 
y

Microcomputer unit

H(s)

Demand   + 

      Vd           

      Vd           

Position 
yGo(s)

ZOH             Hydraulic system 

Feedback element

G(s)

Figure 6.29. A digital position control system with ZOH dynamics included.
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Figure 6.30. A digital position control system with ZOH dynamics included.

It will be recalled that the ZOH has a transfer function Go = (1 − e−sT)
s

and this is
easily handled once it is recognized that:

ZGo(s)G(s) = (1 − z−1)ZG(s)
s

, (6.94)

ZGo(s)GH(s) = (1 − z−1)ZGH(s)
s

. (6.95)

Consider the position control system shown in Fig. 6.30 with a sampling frequency
of 200 Hz, giving T = 5 ms. The computer is simply a data-transfer device with a
ZOH sampler:

ZGo(s)G(s) = (1 − z−1)Z 100
s2(1 + 0.02s)

, (6.96)

ZGo(s)GH(s) = (1 − z−1)Z 100
s2(1 + 0.02s)

. (6.97)

From the z transform, Table 6.1 Entry 6, and noting that a = 50 and aT = 0.25, then
Eq. (6.97) becomes:

ZGo(s)GH(s) = (0.058z + 0.0526)
(z − 1)(z − 0.779)

. (6.98)

Notice that a single pole s, shown in block diagram Fig. 6.28, in the OLTF is mapped
to (z − 1) in the z domain. The CLTF is given by:

10y(z)
Vd(z)

= y(z)
yd(z)

= (0.058z + 0.0526)

(z2 − 1.721z + 0.832)
. (6.99)

The remaining issue is now how to determine the closed-loop transient response for
a particular applied input, and there are three ways of doing this:

(i) Apply the input z transform and find the inverse using z-transform Table 6.1.
(ii) Apply the input z transform and use long division to find the inverse.

(iii) Use a recursive algorithm, applying the input step by step.

This will now be done for the example using a unit step input signal:

yd(s) = 1
s

→ yd(z) = z
(z − 1)

. (6.100)

(i) Transient response method 1, apply the input and use z-transform Table 6.1:

y(z)
yd(z)

= (0.058z + 0.0526)

(z2 − 1.721z + 0.832)
,
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y(z) = z(0.058z + 0.0526)

(z − 1)(z2 − 1.721z + 0.832)
. (6.101)

Using partial fraction expansion gives:

y(z) = z
(z − 1)

− (z2 − 0.779z)

(z2 − 1.721z + 0.832)
,

= z
(z − 1)

− (z2 − 0.86z)

(z2 − 1.721z + 0.832)
− 0.081z

(z2 − 1.721z + 0.832)
. (6.102)

Using Table 6.1, Entries 1, 7, and 8, then gives the inverse:

y(t) = 1 − e−at (cos bt + 0.268 sin bt), (6.103)

where a = 18.4, b = 67.54 rad/s, and Eq. (6.103) should be evaluated every T =
0.005 s. This gives the following sequence:

y(t) = 0.058z−1 + 0.211z−2 + 0.426z−3 + 0.668z−4 + · · · + . (6.104)

The values shown are valid at only the appropriate sampling interval.
(ii) Transient response method 2, apply the input and use long division.

Recall the transfer function with the step input applied:

y(z) = z(0.058z + 0.0526)

(z − 1)(z2 − 1.721z + 0.832)
. (6.105)

Now, from long division:

0.058z−1 + 0.21z−2 + 0.423z−3, . . . ,

(z3 − 2.721z2 + 2.553z − 0.832)
)

0.058z2 + 0.0526z

0.058z2 − 0.1578z + 0.1481 − 0.0483z−1,

0.2104z − 0.1481 + 0.0483z−1.

(6.106)

(iii) Transient response method 3, recursive algorithm applying the input at each step.
Recall the transfer function without the step input applied:

y(z)
yd(z)

= (0.058z + 0.0526)

(z2 − 1.721z + 0.832)
. (6.107)

Now rearrange this by dividing the numerator and denominator by the highest
power of z in the denominator and rearrange:

y(z)
yd(z)

= (0.058z−1 + 0.0526z−2)

(1 − 1.721z−1 + 0.832z−2)
,

(1 − 1.721z−1 + 0.832z−2)y(z) = (0.058z−1 + 0.0526z−2)yd(z),

y(z) = (1.721z−1 − 0.832z−2)y(z) + (0.058z−1 + 0.0526z−2)yd(z). (6.108)
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for a unit step input.

This means that the current sampled value of y may be computed from previous
samples of y and yd. The calculation proceeds as follows:

y(z) = (1.721z−1 − 0.832z−2)y(z) + (0.058z−1 + 0.0526z−2)yd(z),

y(1) = 0 − 0 + 0.058 + 0 = 0.058,

y(2) = 1.721(0.058) − 0 + 0.058 + 0.0526 = 0.211,

y(3) = 1.721(0.211) − 0.832(0.058) + 0.111 = 0.426,

y(4) = 1.721(0.426) − 0.832(0.211) + 0.111 = 0.668. (6.109)

This method is perhaps the better of the three methods and is also useful in that a
nonlinear, sampled input may be considered. The closed-loop behavior is, of course,
easily achieved by computer simulation, and the result is shown in Fig. 6.31 and
matches the earlier calculations.

It will be seen that the effect of ZOH sampling alone is to make the position
response more oscillatory. In addition, it will also be noticed that the ZOH sampling
effect is not evident at the output because of the filtering effect of the hydraulic
system dynamics. The output of the ZOH, shown as u, illustrates the importance of
the sampling interval selection T such that the system natural frequency is captured
with sufficient accuracy.

6.3.5 Closed-Loop Stability

The determination of the condition for closed-loop instability in the z plane is again
concerned with the evaluation of the closed-loop system characteristic equation,
which in this case is given by:

1 + ZGo(s)GH(s) = 0. (6.110)

This cannot be handled in the same way as previously done for a linear system using
s domain theory. It will be recalled that the condition for instability in the s plane
occurs when the roots of the characteristic equation just lie on the imaginary axis of
the s plane. Considering the z plane equivalence gives:

s = j�,
(6.111)

z = esT = e j�T = cos �T + j sin �T.
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Figure 6.32. Stability boundaries for roots of the closed-loop characteristic equation.

Therefore, the magnitude of z is unity; that is, Eq. (6.111) defines a unit circle in the
z plane. A comparison between the conditions for instability in the s and z planes is
shown in Fig. 6.32.

Alternatively, when Eq. (6.110) is expressed in z notation, it can be trans-
formed into s notation by making a suitable linear approximation for z = e sT. The
reasoning is that if the approximation is sufficiently accurate, then the characteristic
equation in the approximate s domain can be treated by conventional s plane theory
previously discussed. The issue then is one of selecting a suitable approximation for
z = esT, and the most common approach is to use a bilinear approximation. This
considers just the first two terms of the Taylor series expansion to the following
approximation:

z = esT = esT/2

e−sT/2
≈ 1 + sT/2

1 − sT/2
. (6.112)

Because s is only an approximation to its true value, then it is given another symbol
that is defined as w′ ≈ s and, therefore:

z = 1 + w′T/2
1 − w′T/2

. (6.113)

It is then an easy matter to show that the substitution of z = e j�T gives:

w′ = j
2
T

tan
�T
2

. (6.114)

When this is compared with s = j�, it can be seen that w′ has exactly the same
phase of +90◦ but a magnitude that is a function of both frequency and sampling
interval. However, it follows from Eq. (6.114) that:∣∣w′∣∣→ � when

�T
2

� 1. (6.115)

Given that the sampling frequency fs = 1/T and the system frequency f = �/2�,
then the inequality in Eq. (6.115) is satisfied when:

f � fs

�
. (6.116)

The importance of this background work is that the bilinear transformation is
a good representation from z to s because the phase is always correct and the
magnitude will be sufficiently accurate if the correct sampling frequency is selected.
Therefore, when the characteristic equation in z is developed, then the bilinear
approximation may be used to convert it to a polynomial in s. Furthermore, if the
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Routh criterion is used, then the factor T/2 in Eq. (6.113) becomes redundant and
it is simpler to use a modified approximation as follows:

z = 1 + w′T/2
1 − w′T/2

→ 1 + w

1 − w
. (6.117)

Worked Example 6.6

Consider the previous control system but with the hydraulic gain of 10 now a
variable gain K. Note that without the ZOH, the closed-loop system is second-
order and cannot be unstable. The figure shows the block diagram again.

ZOH
s(1 + 0.02s)

K

10

Demand   + 

      Vd            

Position 
y

ue

Worked Example 6.6.

A digital position control system with ZOH dynamics included:

OLTF ZGo(s)GH(s) = K(0.0058z + 0.00526)
(z − 1)(z − 0.779)

.

The characteristic equation then becomes:

z2 − z(1.779 − 0.0058K) + 0.00526K + 0.779 = 0.

The roots may now be evaluated as K is varied until a unity-magnitude root
occurs, the root then just lying on the unit circle. In this example:

K ≈ 42.1 with z = 0.767 ± j0.641

Now use the bilinear transformation to give:

z2 − z(1.779 − 0.0058K) + 0.00526K + 0.779 = 0,

z = 1 + w

1 − w
,

w2(0.011K) + w(0.442 − 0.0105K) + (3.558 − 0.00054K) = 0.

Now apply the Routh array method, treating the polynomial in w as though it is
a polynomial in s. However, in this case, because the polynomial is quadratic, it
is necessary only that all coefficients be positive for a stable closed-loop system.
There are two conditions for this given by (0.442 − 0.0105K) > 0 → K < 42.1
and (3.558 − 0.00054K) > 0 → K < 6589. Clearly, as K is increased, then insta-
bility occurs when K = 42.1.

6.4 Improving the Closed-Loop Response

6.4.1 Servovalve Spool Underlap for Actuator Position Control, a Linearized
Transfer Function Approach

Consider position control of an actuator shown in Fig. 6.33.
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Figure 6.33. An underlapped servovalve–linear actuator position controller.

The steady-state flow characteristic was discussed in Section 3.5, the two flow
equations within the underlap region of a symmetrically underlapped servovalve
being given by:

Q1 = kf (iu + i)
√

Ps − P1 − kf (iu − i)
√

P1, (6.118)

Q2 = kf (iu + i)
√

P2 − kf (iu − i)
√

Ps − P2. (6.119)

Section 4.9 also showed that a single-rod actuator under closed-loop control with
a load force can result in a steady-state position error that can be removed for a
unique load force–supply pressure relationship.

Earlier in Section 6.2, position control was considered for a critically lapped
servovalve spool in which it was evident that the servovalve provides no damping at
the zero steady-state error condition. In general, this is not the case with an under-
lapped spool, and the effect of underlap will be pursued by means of a linearized
analysis for small variations around the steady-state condition.

To aid understanding of underlap damping, the following reasonable restric-
tions will be set:

� It will be assumed that the supply pressure and rod cross-sectional area are
matched to the load force to give zero position error at the steady-state con-
dition:

F = Ps Arod

2
where Arod = A1 − A2. (6.120)

� The volumes on either side of the actuator are equal because of connecting
volumes, V1(0) = V2(0) = V(0).

� Dynamics are dominated by load mass, fluid compressibility, and viscous fric-
tion.

The linearized equations may then be written:

�Q1 = ki1�i − kp1�P1 = A1�U + V1(0)
�

d�P1

dt
, (6.121)

�Q2 = ki2�i + kp2�P2 = A2�U − V2(0)
�

d�P2

dt
, (6.122)

�P1 A1 − �P2 A2 = Bv�U + �F load + M
d�U
dt

. (6.123)
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Figure 6.34. Closed-loop block diagram for a servocylinder drive.

Given load force condition equation (6.120), then within the underlap region and
for zero steady-state error:

ki1 = ki2 = ki = kf

√
2Ps, (6.124)

kp1 = kp2 = kp = kf iu

√
2
Ps

. (6.125)

The transfer function relating actuator speed to servovalve current and load force is
then given by:

�U(s) =

(� + 1)ki

(� 2 + 1)A2

�i(s) − (1 + sCRu)

Ru(� 2 + 1)A2
2

�F load(s)


1 + Rv

(� 2 + 1)Ru

+ s

(
CRv + L

Ru

)
(� 2 + 1)

+ s2 LC

(� 2 + 1)




,

(6.126)

Ru = 1
kp

, Rv = Bv

A2
2

, C = V(0)
�

, L = M

A2
2

.

The significant damping is to be provided by underlapping the servovalve spool,
viscous friction effects being negligible in comparison. The block diagram then
becomes as shown in Fig. 6.34, in the absence of load force changes.

The OLTF may then be written:

G(s)H(s) =

(� + 1)Ga Hyki

(� 2 + 1)A2

s

[
1 + +s

L

(� 2 + 1)Ru

+ s2 LC

(� 2 + 1)

] . (6.127)

The closed-loop characteristic equation then becomes:

s3 LC

(� 2 + 1)
+ s2 L

(� 2 + 1)Ru

+ s + (� + 1)Ga Hyki

(� 2 + 1)A2

= 0. (6.128)

Applying the Routh array method, it is deduced that the closed-loop system will be
stable, providing:

iu > Ga
Ps(� + 1)

�(� 2 + 1)
Hy

V(0)
A2

. (6.129)
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Given that V(0)/A2 has the unit of length � and a measure of half-stroke, then
Ga Hy� represents the current generated. A working rule of thumb for stability is
therefore:

iu > is
Ps

�
, (6.130)

where is is approximately the current developed at half-stroke and is less than the
servovalve rating. It is common to start the design approach with a gain approxi-
mately a factor of 4 less than that at the condition for instability. Using the ITAE
criterion to match characteristic equation (6.128) gives a factor of 3.76 using the
assumptions leading to Eq. (6.130). Therefore, it follows that the closed-loop design
should consider the following starting point:

iu ≈ 4i s
Ps

�
,

(� + 1)Ga Hyki

(� 2 + 1)A2

≈ 0.3
CRu

. (6.131)

6.4.2 Phase Compensation, Gain and Phase Margins

When the system damping is low, then simply changing the open-loop gain will not
result in a preferred dynamic behavior; for example, the transient response to a
demanded step change in position. One way of improving the dynamic behavior is to
use a phase-compensating network, often an electrical phase advance network in the
servovalve electrical drive circuit. It will be recalled that the condition for instability
for a linear system occurs, in fluid power reality, when:

G(s)H(s) = −1. (6.132)

Therefore, considering the frequency domain, the plot of the OLTF G( j�)H( j�)
will have unity magnitude, |G( j�)H( j�)| = 1, at a phase angle ∠G( j�)H( j�) =
−180◦ at the point of instability. The function of a phase lead network is therefore
to shape the OLTF around the −1 point such that when the magnitude is unity,
the phase angle is greater then −180◦. Another way of stating this is that when the
phase angle is −180◦, then the magnitude is less than unity. The phase margin and
gain margin are defined in Fig. 6.35. Needless to say, the greater the gain–phase
margin, the more stable the system will be.

One electrical circuit that will provide phase lead is shown in Fig. 6.36. Con-
sidering impedances, it is a simple matter to show that the voltage ratio is given
by:

V2(s)
V1(s)

= �(1 + s�)
(1 + �s�)

, � = R1

R1 + R2
, � = CR2. (6.133)

This transfer function has a low-frequency attenuation of � that can be removed by
the inclusion of a series gain 1/�. When this is done, the phase lead network then
becomes:

Gc(s) = (1 + s�)
(1 + �s�)

. (6.134)



366 Control Systems

Phase margin

Unit circle

Gain margin = 1/a 
             a 

G( jω)H( jω)

(a) Nyquist plot 

Im

Re

Mag
(dB) 

   0

0 

Phase
(deg)      

Gain margin 

Phase margin 

Log ω

Log ω

(b) Bode diagram 

|G( jω)H( jω)| 

∠G( jω)H( jω)

Figure 6.35. Gain and phase margins in the frequency domain.

This transfer function is plotted in the frequency domain and in Bode diagram form,
s = j�, as shown in Fig. 6.37.

It will be seen that for any selected value of �, then a maximum phase lead
occurs and is defined by the following properties:

∠Gc( j�) = sin−1 (1 − �)
(1 + �)

, |Gc( j�)| = 1√
�

, �� = 1√
�

. (6.135)

Graphs representing this condition are shown in Fig. 6.38.
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Figure 6.36. An electrical phase lead circuit.
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Figure 6.37. Frequency response plot for a phase lead circuit.
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Worked Example 6.7

The block diagram of a position control system is shown.

)(1

)s(1

+
+

s(1 + 0.02s)(1 + 0.005s)

100

1 V/mm

Demand +

Vd (Volts)

Position
y (mm)e u

Phase lead

Worked Example 6.7a.

The closed-loop response is highly oscillatory and undesirable, as will be
deduced from the Bode diagram of the OLTF shown.
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OLTF Bode diagram for the position control system
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Worked Example 6.7b.

The 0-db frequency is approximately at a frequency of 61 rad/s and the −180◦

phase occurs at a frequency of approximately 100 rad/s. The gain margin is there-
fore approximately 8 dB, and the phase margin is approximately 22◦, and too
small. The objective is therefore to design the phase lead network to improve the
closed-loop response by increasing the phase margin. It therefore seems sensible
to select a maximum phase lead at a frequency of � = 100 rad/s, hence defining
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the phase margin providing the modified magnitude is 0 dB. The steps therefore
are as follows:

Step 1. At � = 100 rad/s, the magnitude is ≈ −8dB:

select |Gc( j�)| = 1√
�

= +8 dB

to give a = 0.16.
Step 2.

�� = 1√
�

to give � = 0.025, ∠Gc( j�) = sin−1 (1 − �)
(1 + �)

,

to give a maximum phase lead of 46.4◦ and, hence, a phase margin of 46.4◦.
Step 3.

Gc(s) = (1 + 0.025s)
(1 + 0.004s)

.

The modified OLTF Bode diagram is shown as follows:
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0
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OLTF Bode diagram for the position control system with
phase lead compensation  

Worked Example 6.7c.



370 Control Systems

The phase margin has clearly been increased from 22◦ to 46◦ as designed. A
comparison of the step responses for a demanded position change of 10 mm is
shown in the following figure:
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Worked Example 6.7d.

The improvement is clear, but the phase lead network has to either be con-
structed as an electrical circuit or created as a computer algorithm. The latter
issue will be considered later in this chapter.

PID, proportional + integral + derivative, control is another technique for
improving the closed-loop response, again by placing the PID network in the error
loop as shown in Fig. 6.39.

The derivative term may be used to improve damping, and the integral term
is used to remove steady-state error. Integral control is not required for actuator
position control because of the existing and inherent integrator provided by the
motor or linear actuator. It might be considered appropriate to use PID control for
motor speed, although the integral term will not remove speed drop that is due
to the effect of load pressure on the servovalve characteristic and leakage. The
author has found it difficult to implement PI control for motor speed because of
the restrictions on integrator time constant �i that can be selected and the error sig-
nal noise that is due to motor speed ripple and its varying frequency change with
speed.

sτi
sτd

1
1 ++

H(s)

Demand   +                               G(s) 

PID controller

Output u e 

Figure 6.39. PID control for a hydraulic system.
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Figure 6.40. Bode diagram for a dynamic pressure transfer function.

6.4.3 Dynamic Pressure Feedback

Given that poorly designed closed-loop systems result in severe pressure oscilla-
tions, it makes sense to consider some form of pressure feedback in applications
other than those that actually desire pressure control. Using load pressure feedback
directly is of limited use for damping because this will result in a constant steady-
state signal that is due to the finite load force. One way of avoiding this is to use
dynamic pressure feedback such that only higher-frequency oscillations are used for
damping. A suitable transfer function is given by:

Gp(s) = s�

(1 + s�)
. (6.136)

The Bode diagram for this transfer function is shown in Fig. 6.40.
This transfer function provides phase lead, and it will be seen that only

the higher-frequency signals are unaffected by the transfer function, the lower-
frequency signals being highly attenuated. This type of network was originally con-
ceived as a hydromechanical device (Guillon, 1969) but now can easily be generated
by a simple computer algorithm.

Consider therefore the example that introduced Chapter 5 and reproduced here
as Fig. 6.41.

Dynamic pressure feedback is added by taking the pressure differential from the
servovalve mounting manifold, multiplying by a gain Hp, and then passing the signal
through the dynamic pressure transfer function generated by a software algorithm.
In this study:

Gp(s) = Hp
s�

(1 + s�)
. (6.137)



372 Control Systems

(a) Servoactuator          (b) Addition of dynamic pressure feedback 

Vd
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Ga 

servoamplifier 

servovalve 

load cell

Gp(s) 
P1 – P2

Figure 6.41. A servoactuator, one of four forming part of a four-poster vehicle test rig
(Cardiff University, School of Engineering).

The use of a linearized transfer function block diagram may give some insight into
dynamic pressure feedback design. Following earlier work in Section 6.2, a modified
block diagram may be constructed to include dynamic pressure feedback, as shown
in Fig. 6.42, neglecting servovalve dynamics.

Consider therefore the actual system as it exists with the addition of dynamic
pressure feedback. From Fig. 6.42, the OLTF is given by:

G(s)H(s) =
HyGakf

√
Ps/2

A

s
(

1 + CRv

2
s + LC

2
s2
)
(

1 + s� + A� Hp Rv

Hy
s2 + A� HpL

Hy
s3
)

(1 + s�)
.

(6.138)

++ 2s
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s
1

A (Rv + sL)Gp(s)+

+

Figure 6.42. Closed-loop block diagram for a servocylinder position drive with dynamic pres-
sure compensation.
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Figure 6.43. The dynamic response of the position control system with dynamic pressure
feedback.

It may be seen from Eq. (6.138) that the dynamic pressure network results in the
OLTF being multiplied by a modified phase lead network that includes the dynamic
pressure network, given by:

Gc(s) =

(
1 + s� + A� Hp Rv

Hy
s2 + A� HpL

Hy
s3
)

(1 + s�)
. (6.139)

At high frequencies, this modified network will produce a phase lead of 180◦, but
the magnitude will also be modified.

The most appropriate way to design the dynamic pressure network is to first
consider the pressure oscillations recorded without compensation. Measurements
of pressure difference oscillations, shown later in Fig. 6.43, for the original system
shows a frequency of oscillation of approximately 60 Hz → 377 rad/s and close to
the open-loop undamped natural frequency �n. A dynamic pressure filter circuit
designed for this cutoff frequency would have a time constant of at most � = 1/377
= 2.65 ms. Therefore, choose an actual cutoff time constant less than this to ensure
that the 60 Hz oscillations is attenuated for example � = 1 ms.

Now the compensator circuit gain Hp must be selected. The Routh array tech-
nique could be used, with limited accuracy, once the closed-loop characteristic
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equation has been established. From OLTF equation (6.138), and neglecting
servovalve dynamics, this gives:

b4s4 + b3s3 + b2s2 + b1s + b0 = 0, (6.140)

b4 = LC�

2
,

b3 = LC
2

+ CRv�

2
+ K ALHp�

Hy
,

b2 = CRv

2
+ � + K ARv Hp�

Hy
,

b1 = 1 + K� ,

b0 = K = HyGakf

A

√
Ps

2
,

Rv = Bv/A2, C = V(0)/�, L = M/A2.

The condition for closed-loop stability is difficult to visualize in general terms; for
example, purposes the data previously stated are used, recalling that � has already
been preselected as 0.001 s. This gives:

b4 = 7 × 10−9, b3 = 10−6(7.42 + 1.19Hp),

b2 = 10−3(1 + 0.071Hp), b1 = 1.033 b0 = 33.
(6.141)

Note that here the pressure gain Hp is expressed in millivolts per bar. The fourth-
order characteristic equation indicates a stable closed-loop system, providing:

(i) b2b3 − b1b4 > 0; (ii) b2b3 − b1b4 >
b0b2

3

b1
. (6.142)

Satisfying the second criterion of Eq. (6.142) gives Hp > 1.4 mV/bar. For this exam-
ple, a wide range of gains are possible, and a selected gain of Hp = 10 mV/bar is used
to illustrate the effect of dynamic pressure compensation, as shown in Fig. 6.43.

Comparing the compensated system pressure response with the uncompensated
system pressure response shows the reduction of the undesirable pressure oscilla-
tions, particularly when lowering, together with no significant change on the posi-
tion response. In addition, high-pressure peaks that occur at each position demand
change have been reduced by 30 bar when lifting and 40 bar when lowering. Note
that increasing Hp significantly higher, with a view to reducing peak values even
more, will result in instability that is due to servovalve dynamic effects not consid-
ered in the analysis.

6.4.4 State Feedback

Now consider the use of all the output states to improve the dynamic behavior of
a circuit. For example, if servoactuator position control is being considered, then
the use of additional velocity and acceleration feedback would constitute state feed-
back. This is illustrated in Fig. 6.44.

The feedback signal is:

Vf = ky y + kuU + ka
du
dt

. (6.143)
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Hydraulic system 
           G(s) 

Feedback gains 
H

Vd (s) Ve(s) +

 a      U     y Figure 6.44. State feedback control of a
servoactuator.

In Laplace transform notation, the feedback transfer function is determined from:

Vf (s) = (Ky + Kus + Kas2)y(s),

H(s) = (Ky + Kus + Kas2). (6.144)

The problem now is to determine the appropriate state feedback gains in the (1 × n)
feedback vector H, preferably those that optimize the dynamic response. In the
current example, these gains are ky, ku, and ka , although the position sensor gain ky

is usually known in advance.
Note that up to this point, it is assumed that actuator velocity and acceleration

can be measured; that is, sensors are available. This may not be the case if angular
acceleration is required for a motor drive. If sensors are not available or not feasible
for the application – for example, because of difficult environmental conditions –
then additional states beyond position may be computed with a suitable algorithm.

Selection of the closed-loop poles is always a difficult issue, an ideal solution
being to make them match the poles of the appropriate ITAE form.

Worked Example 6.8

A servoactuator position control system with full output-state feedback has an
OLTF given by:

G(s)H(s) = K(Hy + Hus + Has2)

s
(

1 + 2�

�n
s + s2

�2
n

) .

Determine the feedback gains if the closed-loop poles must satisfy the appropri-
ate ITAE criterion.

The characteristic equation is given by 1 + G(s)H(s) = 0 and becomes:

s3

KHy�2
n

+ s2

KHy

(
2�

�n
+ KHa

)
+ s

KHy
(1 + KHu) + 1 = 0.

The third-order ITAE appropriate criterion is:

s3

�3
o

+ 1.75s2

�2
o

+ 2.15s
�o

+ 1 = 0,

Let K = KHy

�n
;

then equating coefficients gives:

�o = �nK
1/3

,
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Ha = 1.75K
1/3 − 2�

K�n
, K > 1.49� 3,

Hu = 2.15K
2/3 − 1

K
, K > 0.317.

Hence, gain selection is possible for only a specific range of K that is set by the
OLTF parameters and the position feedback transducer gain. In practice, the low
damping ratio for a linear actuator in good condition, and with a significant load
mass, will mean that the design requirement is probably K > 0.317.

In more complex systems, the state-space techniques can be used formulate the
state gains in a more generalized way. It will be recalled from Chapter 5 that linear
differential equations may be written in state-space notation, which for hydraulic
control systems with u as the input and x as the output states is adequately expressed
as follows:

system ẋ = Ax + Bu, (6.145)

output y = Cx. (6.146)

Considering just the relationship between the output y(s) and the input x(s), from
these two equations, following Laplace transformation:

y(s) = C[s I − A]−1[x(0) + Bu(s)], (6.147)

where x(0) is the vector of initial conditions. If all the output states are available for
measurement, position, velocity, and acceleration, then a closed-loop system may
be designed to often produce an optimum response characteristic by using all the n
states in feedback. The feedback signal is given by:

r f = Hx, H = [k1 k2 . . . kn], (6.148)

where H is the (1 × n) feedback vector. The block diagram is shown in Fig. 6.45.
It is then an easy matter to show that the closed-loop state solution in the s

domain is given by:

x(s) = [s I − A+ BH]−1[x(0) + Br(s)]. (6.149)

Closed-loop stability therefore depends on the roots of the characteristic equation
and obtained from the determinant:

characteristic equation = |s I − A+ BH| = 0. (6.150)

Before state feedback design is pursued, it is important at this stage to consider the
controllability of a system. A system of order n is completely state controllable if
the rank of the n × n controllability matrix U is equal to n; that is:

rank of U = [B AB A2 B . . . An−1 B] = n. (6.151)

BuAxx += C

H

r   +         u                               x                y 

   
  rf

Figure 6.45. Closed-loop control using state
feedback.
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U is called the controllability matrix. The rank of a matrix is defined as follows:

A matrix A has rank m if there exists an m × m submatrix R

whose determinant �= 0 and the determinant of every other r × r submatrix

is 0, where r ≥ m + 1. (6.152)

For example, a system is defined:[
ẋ1

ẋ2

]
=
[

1 1
0 −1

] [
x1

x2

]
+
[

1
0

]
u, (6.153)

B =
[

1
0

]
, AB =

[
1 1
0 −1

] [
1
0

]
=
[

1
0

]
,

U = [ B AB
] =

[
1 1
0 0

]
.

(6.154)

The two determinants of U are:

R1 R2

1 0
. (6.155)

Therefore, the rank of U is 1 �= n = 2 so the system is not state controllable. This will
be obvious once the system block diagram construction is attempted; it is not possi-
ble to link the state variable x2 into the block diagram. In hydraulic control systems,
it is most unlikely that the system of interest is not state controllable, although there
will inevitably be stability constraints on the feedback gains possible.

The design problem is to choose stable roots, the closed-loop poles, such that
the closed loop has the desired characteristic, and this may be readily determined if
the system is defined in control canonical form as follows:

A=




0 1 0.. 0
0 0 1.. 0
...

...
... 1

−a0 −a1 . . . −an−1


 , BH =




0 0 0.. 0
0 0 0.. 0
...

...
...

...
K1 K2 . . . Kn


 . (6.156)

The desired closed-loop poles are defined in the usual way:

�c(s) = sn + �n−1sn−1 + · · · + �1s + �0 = 0. (6.157)

The solution for the required feedback gains is then given by:

Ki+1 = �i − ai , i = 0 → n. (6.158)

If the system is not defined in control canonical form, then Ackermann’s formula
may be applied to give the solution:

H = [0 0 . . . 1]U−1�c(A),

U = [B AB A2 B . . . An−1 B], (6.159)

�c(A) = An + �n−1 An−1 + · · · + �1 A+ �0 I,

where �c(A) is the matrix form of the desired closed-loop poles and U is the control-
lability matrix previously defined. Consider the simple dynamic model of a vehicle
active suspension discussed in Section 5.15, and now select a control scheme as indi-
cated in Fig. 6.46.



378 Control Systems

V

u

x

y

k1

k2dt

dx

k1

−
−

−

Figure 6.46. A vehicle active suspension control
concept.

The control law is selected as:

V = −k1x − k2
dx
dt

− k1u. (6.160)

Using the defined state-space notation then gives:

V = −k1x1 − k2x2 − k1u. (6.161)

The dynamic model of the system was previously defined as:
 ẋ1

ẋ2

ẋ3


 =


0 1 0

0 0 −kt/M
0 1 −kt/Ri A2




 x1

x2

x3


+


 0

kt/M
kt/Ri A2


u +


 0

0
−Gaki


V, (6.162)

ẋ = Ax + Bu + GV,

where the state variable x3 = y. Inserting control law equation (6.161) then gives:
 ẋ1

ẋ2

ẋ3


 =


 0 1 0

0 0 −kt/M
Gaki k1 (1 + Gaki k2) −kt/Ri A2




 x1

x2

x3


+


 0

kt/M
kt/Ri A2 + Gaki k1


 u,

ẋ = Acx + Bcu. (6.163)

Note that Eq. (6.163) includes feedback; that is, it is the closed-loop state-space
description. The closed-loop characteristic equation then becomes:

|s I − Ac| =
∣∣∣∣∣∣

s −1 0
0 s kt/M

−Gaki k1 −(1 + Gaki k2) (s + kt/Ri A2)

∣∣∣∣∣∣ = 0, (6.164)

s3 + s2kt/Ri A2 + s(1 + Gaki k2)kt/M + Gaki k1kt/M = 0. (6.165)

This third-order system is therefore stable, providing:

k2

Ri A2
>

k1

kt
− 1

Gaki Ri A2
. (6.166)

Stability is absolutely guaranteed if:

k2 >
k1 Ri A2

kt
. (6.167)
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+ 

Figure 6.47. Sliding-mode control of a posi-
tion control system.

This requirement relies on actuator piston seal leakage and is not desirable because
leakage will change with wear during the operational lifetime. However, this is the
outcome of using a simple system dynamic model, although it does give an insight
into possible control problems when more detailed hydraulic characteristics are con-
sidered. This is pursued in more detail in Chapter 7 for a real active suspension on
a 1/4 car test rig.

Another state feedback technique that has received attention is sliding-mode
control. A switching characteristic is used on the error signal in an attempt to drive
the closed-loop system response shaped by the state feedback dynamic character-
istic. The basic concept is shown in Fig. 6.47 for actuator position control using a
linearized transfer function for the servoactuator.

Because the relay switches about the zero voltage point, the error can be
approximated as follows:

Ve(s) = Vd(s) − (k1 + k2s + k3s2)y(s) ≈ 0,
(6.168)

y(s)
Vd(s)

≈ 1
(k1 + k2s + k3s2)

.

The sliding-mode transfer function dynamics defined by Eq. (6.168) should normally
be slower than the actual system dynamics defined by OLTF without state feed-
back. Sliding-mode control can be considered as an attempt to place the transient
response on a sliding plane defined by:

Vd = k1x1 + k2x2 + k3x3, (6.169)

where the state variables are defined as x1, displacement; x2, velocity; and x3,
acceleration, in the usual canonical state-space form. Hence, sliding-mode control
attempts to drive the output response onto the sliding plane and then toward the
steady-state condition, as shown in Fig. 6.48.

x1

 x2

 x3

B = Vd/k1

AFigure 6.48. Sliding-mode control of a third-order position control
system.
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(a) Servoactuator (b) Sliding plane position control system

Vd +

Ga

servoamplifier

servovalve

load cell

car force
F

Relay

k1 + k2s + k3s2

Figure 6.49. A servoactuator, one of four forming part of a four-poster vehicle test rig
(Cardiff University, School of Engineering).

Some main points that arise are as follows:

� The initial trajectory is defined from the origin, the initial condition in this exam-
ple, until it reaches the sliding plane at point A. The control then attempts to
drive the remaining trajectory along the plane to the steady-state condition at
point B.

� The initial position error creates the +1 control voltage from the relay and the
position response is initially governed by the open-loop dynamics, which will be
dominated by the integral term. Consequently, if the open-loop dynamics are
fast, then the sliding plane will be rapidly reached with an approximate linear
variation of position with time until the relay switches to its −1 control voltage.

� The phase-plane dynamics then come into play, and the subsequent motion
depends on the overall system design.

� The main problem with this type of control as it stands is that the relay is con-
tinually switching at the desired steady-state condition. This can be reduced by
the addition of a dead-band in the relay, but this will result in a steady-state
position error.

� An important point is therefore that the response may be much faster than
the conventional closed-loop position control system because of the very first
switched condition that has no connection with the sliding plane.

� A design may be readily deduced from linearized transfer function theory, but
the design may be unstable when implemented into the real system that is
nonlinear, may have different dynamics when extending and retracting, and
has additional dynamics possibly not taken into account such as servovalve
dynamics.

Consider the servoactuator system previously discussed in Sections 6.2 and 6.4,
and again shown here as Fig. 6.49.

The design proceeds as follows:

� The open-loop transfer function was shown previously to have a second-order
component with an undamped natural frequency of �n = 379 rad/s and a damp-
ing ratio � = 0.079.
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Figure 6.50. Quasi-sliding-mode control of a
position control system.

� Consequently, design sliding plane transfer function equation (6.168) to have
an undamped natural frequency of �s = 190 rad/s and a damping ratio �s = 0.7,
although many variations on these data will be acceptable.

� Therefore, given that the position transducer gain k1 = 100 V/m, the velocity
and accelerometer gains self-select from Eq. (6.168) to give k2 = 0.74 V/ms−1

and k3 = 0.0028 V/ms−2.
� Select a dead-band, in this example ±0.05 V, which represents a possible posi-

tion error band of ±0.5 mm. Other values will affect the transient response, and
the value chosen depends on what is considered acceptable.

� The transient response is acceptable, much faster than the original closed-loop
response for reasons previously described, but unacceptable switching could not
be removed.

� However, when the feedback law and relay were applied to the actual system,
then the response was unstable and could not be stabilized by varying parame-
ters about the design values. The reason for this is postulated as the inability of
the linearized analysis, which excluded servovalve dynamics, to provide a good
design basis for the real system.

One way of overcoming this apparent failure of sliding-mode control is to replace
the relay with a cubic switching function, as shown in Fig. 6.50.

This is referred to as quasi-sliding-mode control because the error is driven
to zero across a nonlinear plane, the cubic switching function having a zero slope
at the origin, which aids closed-loop stability. By selecting a high gain within the
cubic switching function, together with a ±1 saturation component, the effect is
similar to relay switching control but without the need for a dead-band and, of
course, the removal of continual switching of the relay. The function finally selected
was:

Vu = (8Ve)3, −1 < Vu < 1. (6.170)

Consequently, the saturation point is reached when the error voltage is ±0.125 V
and representing a position of ±1.25 mm before the cubic function begins to operate.
A good response characteristic can be seen from Fig. 6.51, although a steady-state
position error does exist, typically 0.02 mm.

Worked Example 6.9

A servoactuator position control system is considered with servovalve dynamics
to be significant but with a simplified actuator transfer function because of a low
load moving mass. The servovalve has spool position feedback, and this feedback
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Figure 6.51. A comparison of position feedback and modified sliding-mode control with a
cubic–saturation error control law.

voltage is also to be used as a control state variable in addition to load velocity
and position. Determine the feedback controller gains k1, k2, and k3.

10

  Servoamp                   Servovalve spool Actuator and load      
                              

State controller 

0.05s)(1

50

+

Vd  +       e 

mA/V 

u               
x

(mm) 1

0.01s)(1

0.01

+

position

s

y

Worked Example 6.9(a).

Define the state variables: x1 = y, x2 = u, and x3 = x. From the block diagram:

(i) ẋ1 = x2,

(ii)
u
x

= 50
(1 + 0.05s)

→ ẋ2 = −20x2 + 1000x1,

(iii)
x
e

= 0.1
(1 + 0.01s)

→ ẋ3 = −100x3 + 10e.

The state equations are then placed in matrix notation:
 ẋ1

ẋ2

ẋ3


 =


0 1 0

0 −20 1000
0 0 −100




 x1

x2

x3


+


 0

0
10


 e,

ẋ = Ax + Be.

This description in not in control canonical form, but Ackermann’s formula may
be used to determine the vector of feedback gains. The controllability matrix is
given by:

U = [B AB A2 B] =

 0 0 104

0 104 −12 × 105

10 −103 105


 .
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The rank of U is 3 and therefore the system is state controllable. The inverse is:

U−1 =

0.2 0.01 1

0.012 0.0001 0
0.0001 0 0


 .

The matrix equivalent of the characteristic equation is given by:

�c(A) = A3 + �2 A2 + �1 A+ �0 I.

Choosing the third-order ITAE criterion and selecting �o = 100 rad/s gives:

�c(s) = s3 + 1.75�os2 + 2.15�2
o + �3

o

= s3 + 1.75 × 102s2 + 2.15 × 104s + 106;

�2 �1 �0

�c(A) = 104


100 1.84 5.5

0 63.2 1290
0 0 −40


 .

The state feedback gain vector is then given by:

H = [001]U−1�c(A) = [100 1.84 5.5].

load position transducer gain, k1 = 100 V/m
load velocity transducer gain, k2 = 1.84 V/m s−1

spool position transducer gain, k3 = 5.5 V/m s−2

The transient response is shown with and without servovalve spool feedback.
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Worked Example 6.9(b).
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(a) Servoactuator                           (b) Addition of digital dynamic pressure feedback 
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Figure 6.52. A servoactuator, one of four forming part of a four-poster vehicle test rig
(Cardiff University, School of Engineering).

6.5 Feedback Controller Implementation

6.5.1 Analog-to-Digital Implementation

The direct use of analog signals is still common, but the trend is clearly toward digi-
tal control simply because of the relatively low cost of using microcomputers, com-
bined with the programming and system upgrading facility. Once a control strategy
is decided on, the digital implementation must be given some thought. The discrete
algorithm to be used can, of course, be tested by computer simulation, but often the
first step is to use linear systems theory to determine the approximate form of the
control law. Consider, for example, the servoactuator system that was analyzed in
some detail earlier in this chapter. Consider also the use of dynamic pressure
feedback to improve the closed-loop response. The system is shown again in
Fig. 6.52.

If Vf is the voltage to be generated by the pressure differential (P1 − P2), then
it was shown that the transfer function to be computed is given by:

Vf

P1 − P2
= Hp

s�

(1 + s�)
. (6.171)

This transfer function can be converted into its discrete equivalence; for example,
using either the backward-difference or bilinear z transforms.

(i) Backward difference transformation:

s = (1 − z−1)
T

→ Vf (z)
(P1 − P2)(z)

= Hp

�

T
[1 − z−1][

1 + �

T
− �

T
z−1
] ,

(6.172)

Vf (t) = �/T
(1 + �/T)

Vf (t − T) + Hp
�/T

(1 + �/T)
[(P1 − P2)(t) − (P1 − P2)(t − T)].
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Figure 6.53. The dynamic response of the position feedback control system with a digital
algorithm for dynamic pressure feedback.

Hence, the previous samples of output voltage and pressure difference must be
stored at each step.

(ii) Bilinear transformation:

s = 2
T

(1 − z−1)
(1 + z−1)

→ Vf (z)
(P1 − P2)(z)

= Hp

2�

T
(1 − z−1)[

1 + 2�

T
+
(

1 − 2�

T

)
z−1
] ,

(6.173)

Vf (t) = (2�/T − 1)
(1 + 2�/T)

Vf (t − T) + Hp
2�/T

(1 + 2�/T)
[(P1 − P2)(t) − (P1 − P2)(t − T)].

Again, just the previous samples of output voltage and pressure difference must be
stored at each step. Recalling that Hp = 10−7 V/N m−2 and � = 1 ms was chosen by
analog design, then selecting a sampling period T = 1 ms gives:

backward difference transformation:

Vf (z)
(P1 − P2)(z)

= Hp
(1 − z−1)
(2 − z−1)

,

bilinear transformation:

Vf (z)
(P1 − P2)(z)

= Hp
(2 − 2z−1)
(3 − z−1)

. (6.174)

Both controllers give almost identical results, with the position and pressure differ-
ential responses being little different from the case with an analog controller. The
performance using the backward-difference transformation is shown in Fig. 6.53.

Comparing the results with the previous response by use of an analog dynamic
pressure feedback circuit shows little difference, with just a small increase in the
peak pressure differentials. The digital control performance would, of course, dete-
riorate if the sampling period was increased.

6.5.2 Generalized Digital Filters

Now consider the application of two digital filters placed in the forward loop and
the feedback loop, as shown in Fig. 6.54, and specifically for servoactuator position
control for the purpose of example.
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Figure 6.54. Generalized digital filters within a servoactuator position control system.

The two filters are easy to implement because they are in the following form:

u
Ve

= 1

F(z−1)
, F(z−1) = f0 + f1z−1 + f2z−2 + · · · +,

Ve(t) = f0u(t) + f1u(t − T) + f2u(t − 2T) + · · · +, (6.175)
Vf

y
= H(z−1) H(z−1) = h0 + h1z−1 + h2z−2 + · · · +,

Vf (t) = h0 y(t) + h1 y(t − T) + h2 y(t − 2T) + · · · + . (6.176)

Therefore, it is now a matter of selecting the order of each filter transfer function.
Bearing in mind that position control is being considered here, the servoactuator
transfer function, using ZOH theory, will usually be of the following form:

G(z) = K
(z − 1)(a0 + a1z + a2z2 + · · ·+)

. (6.177)

Consequently, the CLTF becomes:

y
Vd

= K

(z − 1)(a0 + a1z + a2z2 + · · ·+)F(z−1) + KH(z−1)
. (6.178)

Applying a step demand in position and then the final-value theorem requires that
in the steady-state condition, H(z−1)|z =1 = 1; that is:

h0 + h1 + h2 + · · ·+ = 1. (6.179)

The f and h coefficients are then determined by specifying the required closed-loop
poles in the z plane.

EXAMPLE 1. Consider, for example a servoactuator with an initially estimated trans-
fer function given by:

G(s) = 10
s(1 + 0.02s)

. (6.180)

The feedback position transducer gain Hp = 10 V/m. Using ZOH theory and with a
sampling interval of T = 5 ms, the z transform of Eq. (6.180) becomes:

G(z) = (0.0058z + 0.00526)
(z − 1)(z − 0.779)

. (6.181)

Consequently, the CLTF becomes:

10y
Vd

= 10(0.0058z + 0.00526)

F(z−1)(z − 1)(z − 0.779) + 10H(z−1)(0.0058z + 0.00526)
. (6.182)
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Select the digital filters as follows:

F(z−1) = f 0 + f1z−1, (6.183)

H(z−1) = h0 + h1z−1. (6.184)

For this particular control system, the two filters may be further considered by use
of the bilinear transformation to convert each digital design to an equivalent analog
design. It is then easy to show that each filter is realizable and stable, providing:

h0 > 0.5, f0 > f1. (6.185)

This is intended to be an approximate guide rather than a rigorous analysis, although
the results do corroborate these simple design conclusions.
Closed-loop characteristic equation (6.182) then becomes:

F(z−1)(z − 1)(z − 0.779) + 10H(z−1)(0.0058z + 0.00526) = 0,

z3 + a2z2 + a1z + a0 = 0,
(6.186)

a0 = (0.779 f 1 + 0.0526h1)
f0

,

a1 = (0.779 f 0 − 1.779 f 1 + 0.0526h0 + 0.058h1)
f0

,

a2 = ( − 1.779 f 0 + f1 + 0.058h0)
f0

.

Now select sensible closed-loop poles; for example, three equal real poles z = zr.
This would produce the following characteristic equations:

(z − zr )(z − zr )(z − zr ) = 0,
(6.187)

z3 − 3zr z2 + 3z2
r z − z3

r = 0.

Comparing coefficients of Eqs. (6.187) and (6.186) then gives the solution for the
filter coefficients:


z3

r 0.779 0 0.0526

(0.779 − 3z2
r ) −1.779 0.0526 0.058

( − 1.779 + 3zr ) 1 0.058 0
0 0 1 1






f0

f1

h0

h1


 =




0
0
0
1


 . (6.188)

For example, selecting zr = 0.4 gives:

f0 = 0.512, f1 = 0.109, f0 > f1,

h0 = 3.235, h1 = −2.235, h0 > 0.5.
(6.189)

The step response to a 100 mm demand change is shown in Fig. 6.55. This figure
compares the original system with analog position feedback and the approach using
two digital filters. The response is much improved and faster than if the gain of the
original system, with analog position control, were reduced to improve the position
overshoot.

EXAMPLE 2. Now consider an actual servovalve–linear actuator system similar to that
of Example 1 by using a horizontally placed, low-friction-seal actuator having a bore
diameter of 50.8 mm and a rod diameter of 28.58 mm. This arrangement means that
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Figure 6.55. The position response of a servoactuator without and with digital filters.

load-force effects on the position extending and retracting response do not exist.
However, extending and retracting responses will still be different because of the
actuator’s having a single rod.

� The transfer function was determined with the frequency-response method dis-
cussed in Chapter 5.

� A two-channel commercial frequency-response analyzer was used, the fre-
quency response being automatically computed by applying a prbs signal and
using the cross-correlation method.

� The system was tested under closed-loop control with a position transducer hav-
ing a gain of 41.3 V/m, and the open-loop transfer function was measured.

� Results obtained with frequency response are rather limited as the frequency is
increased because of the problem of obtaining reliable data.

� Results are shown in Fig. 6.56, where it will be seen that the frequency range is
restricted to about 80 Hz.

� The amplitude is arbitrary because it is based on the instrument reference volt-
age of 1 V.

The OLTF first-estimate is given by:

G(s)H(s) ≈ K
s(1 + s�)

. (6.190)

The time constant � is determined by the frequency at which the phase angle has a
value of −135◦; that is, −90◦ from the integrator and −45◦ from the first-order lag
function. This is determined as 22.7 Hz, giving a time constant � ≈ 7 ms. The OLTF
model is therefore valid up to a frequency of about 40 Hz for design purposes.

The servovalve has a small underlap equivalent to ±0.27 mA, in fact, similar
to that shown in Fig. 3.73. It is therefore appropriate to consider its flow gain at
the closed position. Also, because the flow gains are different during motion, it is
interesting to compare them with the closed-position gain. The calculations are as
follows:

theoretical extending open loop, K = 6.27 s−1,

theoretical underlap steady state, K = 11.65 s−1,

theoretical retracting open loop, K = 5.23 s−1,

dynamically measured, K = 9.33 s−1.

(6.191)
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Figure 6.56. Measured open-loop frequency response and comparison with a first-estimate
model (Watton, 1990).

In fact, the dynamically measured gain was found to be K = 9.33 s−1, and this fitted
the extending condition slightly better than it did the retracting condition. From
exactly the same procedure as the previous example, the digital filters were designed
in this example with a large sampling interval of 22 ms because of the early design
of the 6502 real-time processor used at the time, with 12-bit data conversion. As in
Example 1, equal closed-loop poles were selected, each having a value of zr = 0.4.
This gives:

f0 = 0.908, f1 = −0.394, f0 > f1,

h0 = 1.766, h1 = 0.766, h0 > 0.5.
(6.192)

A comparison of measured and predicted results is given in Fig. 6.57.

0.5 s

6.3 mm

Theory with digital filters 

                         Measured 
-----------------  Original system 

Figure 6.57. Actuator position control using digital filters (Watton, 1990).
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It will be seen that the design approach has been successful, even with a large
sampling period, the effect of gain change with direction being clearly seen from
the measured results. It is an easy matter to change the gain K in real time, and
appropriate to the direction of travel, if required.

Further analysis of Example 2 shows that the effect of using digital filters may
not be significantly better than increasing the system gain in the original system.
However, the approach is useful for the situation in Example 1, in which reducing
the gain to avoid position overshoot may produce an unacceptably slow transient
response.

6.5.3 State Estimation, Observers, and Reduced-Order Observers

The previous studies considered a variety of state feedback techniques. For full state
feedback, all the states are measured with an appropriate transducer. Therefore, the
question now arises concerning the control of a hydraulic system if all the states are
not measured either because it is impracticable or the instrumentation is too costly.
This discussion is restricted to position control systems, for which it is assumed that
position only is measured. Therefore, the other states – namely, velocity and accel-
eration – have to be estimated with an “observer” or “state estimator.”

This technique relies on having a suitable model of the system that is then capa-
ble of adequately computing the appropriate states using measured data from the
system. A linearized state-space model of the system serves this purpose. Consider
therefore determining the observer state vector, now defined as x̂, using only the
error signal u and the output signal y = Cx, where x is the position. The observer
state equation may then be written:

˙̂x = Ax̂ + Bu + L(y − ŷ). (6.193)

Also recall the system state equations:

ẋ = Ax + Bu,

y = Cx.
(6.194)

The error equation relating the difference between the actual state and the observer
state then becomes:

ė = (ẋ − ˙̂x) = A(x − x̂) − LC(x − x̂). (6.195)

Therefore, if the error dynamics are to rapidly decay to zero as required by the con-
trol system, this can be achieved by selecting a suitable error characteristic equa-
tion. Equation (6.195) must include only error terms, and this is achieved simply as
follows:

ė = (A− LC)e, (6.196)

It is then just a matter of choosing the poles of the error transfer function; that is,
the zeros of the following characteristic equation:

�e(s) = |s I − A+ LC| = 0. (6.197)

Note that observer equation (6.193) now becomes:

˙̂x = (A− LC)x̂ + Ly + Bu. (6.198)
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Figure 6.58. Observer-based actuator position control.

The characteristic equation of the observer is therefore the same as the characteris-
tic equation of the error. The unknown vector L may be determined with the second
Ackermann’s formula:

L = �e(A)V−1




0
0
...
1


 , V =




C
C A
C A2

...
C An−1


 , (6.199)

where V is known as the observability matrix. The observer poles are chosen to
produce a much faster response than those of the closed-loop system and typically a
factor of 4 greater than those of �c(A). Considering further Eq. (6.198) then gives:

˙̂x = Ax̂ + LC(x − x̂) + Bu. (6.200)

The state estimation and control philosophy is shown in Fig. 6.58.
The next stage is then to consider the more realistic situation in which the posi-

tion is actually measured with a transducer and just the velocity and acceleration
need to be estimated. This is referred to as a reduced-order observer; to achieve this,
it is necessary to partition the appropriate state equation into two parts, one relating
to the measured state xm and the other relating to the estimated states x̂:

 ẋm

. . .
˙̂x


 =


 A1 . R1

. . .

A2 . R2




 xm

. . .

x̂


+


 B1

. . .

B2


 u. (6.201)

Substituting into full-order estimator equation (6.198) then gives:

˙̂x = (R2 − LR1)�x + (A2 − LA1)y + (B2 − LB1)u + Lẏ. (6.202)

It will be seen that the reduced-order equation contains the output derivative ẏ and
is not desirable for implementation because of signal noise. Therefore, a co-state
equation is defined, resulting in the following usable reduced-order observer:

˙̂z = (R2 − LR1)�x + (A2 − LA1)y + (B2 − LB1)u, (6.203)

x̂ = ẑ + Ly. (6.204)

Because the full observer is typically reduced by one state, then one integration is
removed from the control algorithm. The error equation and the observer equation
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Figure 6.59. Reduced-order observer-based actuator position control.

both have the same characteristic equation, which is given by:

�e(s) = |s I − R2 + LR1| = 0. (6.205)

The reduced-order vector is again determined by Ackermann’s formula:

L = �e(R2)V−1




0
0
...
1


 , V =




R1

R1 R2

R1 R2
2

.

R1 Rn−1
2


 . (6.206)

The state estimation and control philosophy is shown in Fig. 6.59.
Consider the servoactuator position control system previously analyzed with a

variety of feedback methods. In this example, the linearized state-space model of
the nonlinear system will be used and with a constant gain for both extension and
retraction. The system is again shown in Fig. 6.60.

The servoactuator has a linearized transfer function given by:

y
u

= K

s
(

1 + 2� s
�n

+ s2

�2
n

) , (6.207)

where � = 0.079, �n = 379 rad/s, K = 0.33, and the feedback position transducer
has a gain ky = 100 V/m. A reduced-order observer will now be developed for the
general case given by Eq. (6.207) and then applied to the servoactuator. The state-
space formulation of Eq. (6.207) is in control canonical form, as follows:

 ẋ1

ẋ2

ẋ3


 =


0 1 1

0 0 1
0 −�2

n −2��n




 x1

x2

x3


+


 0

0
K�2

n


u,

x1 = position y, x2 = velocity ẋ1, x3 = acceleration ẋ2.

(6.208)
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Figure 6.60. A servoactuator, one of four forming part of a four-poster vehicle test rig
(Cardiff University, School of Engineering).

The hydraulic system state equation is then partitioned as previously discussed:
 ẋ1

. . .
˙̂x


 =


 A1 . R1

. . .

A2 . R2




 x1

. . .

x̂


+


 B1

. . .

B2


u,

A1 = 0, A2 =
[

0
0

]
, R1 = [ 1 0

]
, R2 =

[
0 1
−�2

n −2��n

]
,

B1 = 0, B2 =
[

0
K�2

n

]
.

(6.209)

The estimator characteristic equation is chosen in this example to have two equal
real roots given by:

�e(s) = (s + �)2 = (s + 2�s + �2) = 0.

Evaluating the estimator L from Eq. (6.206) then gives:

�e(R2) = R2
2 + 2�R2 + �2 I V =

[
R1

R1 R2

]
= I,

L =
[

2�

4� 2�2
n − 4���n + �2

]
.

(6.210)

The reduced-order observer equations then become:

�̇z2 = −2�x̂2 + x̂3,

˙̂z3 = [−�2
n(1 + 4� 2) + 4���n − �2

]
x̂2 − 2��nx̂3 + K�2

nu,

x̂2 = ẑ2 + 2�x1,

x̂3 = ẑ3 + [4� 2�2
n − 4���n + �2

]
x1.

(6.211)

For the particular example with � = 0.079, �n = 379 rad/s, K = 0.33, and the feed-
back position transducer gain ky = 100 V/m, then the estimated states are compared
with the actual states in Fig. 6.61.
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Figure 6.61. Speed and acceleration estimation for a position control system and based on a
reduced-order observer using a linearized system model.

The two equal roots of the characteristic equation were selected to be � = 1000
rad/s. It can be seen that the dynamic characteristic is extremely well reproduced
and particularly pleasing, given that an average gain was used and the state-space
model neglects servovalve dynamic effects. The speed state is barely different from
the actual state when overlayed, and the estimated acceleration differs only in that
its magnitude is greater than the actual state. The estimated speed and acceleration
may be used as extra feedback control signals in conjunction with selected gains.
However, any predesign approach rarely produces “exact” gains, and it is common
in practice to fine-tune the settings about nominal values.

6.5.4 Linear Quadratic (LQ) Optimal State Control

It is preferable that the dynamic response of a hydraulic control system be optimum
in some sense. This may be just the avoidance of overshoot in position or more com-
plex such as also minimizing the energy consumed over a specified duty cycle. Some
related issues have already been used such as the use of the ITAE criterion and
the IES criterion for designing closed-loop performance. The ITAE criterion has
already been used on a number of design problems, and the IES criterion is now pur-
sued further. For example, it may be desirable to minimize an index of performance
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J defined by a term similar to an energy function as follows for a two-parameter
problem:

minimize J =
∫ ∞

0

(
�1x2

1 + �2x2
2

)
dt. (6.212)

Using standard state-space notation:

minimize J =
∫ ∞

0
xT Q x dt,

xT = [ x1 x2 ], Q =
[

�1 0
0 �2

]
, x =

[
x1

x2

]
.

(6.213)

It also may be required to restrict the control vector in a similar way; therefore,
Eq. (6.213) is modified to:

minimize J =
∫ ∞

0
[xT Qx + uT Ru ]dt . (6.214)

The structure of R will be similar to that for Q.
Quadratic forms are used because they have an engineering sense and also

because it is well known that the system is asymptotically stable at the origin if Q
and R are positive definite. Positive definiteness of a quadratic function is based on
Lyapunov’s second method. Let

V(x) = xT Px. (6.215)

V(x) may be tested for positive definiteness by applying Sylvester’s criterion, which
states that the necessary and sufficient conditions are that all the successive principle
minors of P must be positive:

p11 > 0,

∣∣∣∣ p11 p12

p21 p22

∣∣∣∣ > 0, etc. (6.216)

For example:

V(x) = 4x2
1 + 2x1x2 + 2x2

2 = [ x1 x2 ]
[

4 1
1 2

] [
x1

x2

]
,

p11 = 4 > 0,

∣∣∣∣ p11 p12

p21 p22

∣∣∣∣ =
∣∣∣∣4 1
1 2

∣∣∣∣ = 7 > 0.

(6.217)

Therefore, V(x) is positive-definite. Considering Lyapunov’s second method of sta-
bility in its basic form here, it is clear that if the total energy of a system (a
positive-definite function) continually decreases with time, then an equilibrium state
is achieved. Hence, the derivative of the total energy is negative definite.
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Figure 6.62. State trajectories and Lyapunov
function.

Therefore, consider that if the function V(x, t):

� has continuous partial derivatives,
� V(x, t) is positive definite, and
� V̇(x, t) is negative definite [or −V̇(x, t) is positive definite],

then the equilibrium state at the origin is uniformly asymptotically stable.
An advantage of the method is that it can be applied to nonlinear systems.

Consider the following examples:

ẋ1 = x2 − 0.2x1
(
x2

1 + x2
2

)
,

(6.218)
ẋ2 = −x1 − 0.2x2

(
x2

1 + x2
2

)
.

The transient response of this system is shown in Fig. 6.62, with initial conditions
x1(0) = 1, x2(0) = −1.

It can be seen that both state trajectories decay to the equilibrium condition at
the origin. Also shown is the Lyapunov function defined for this example as:

V(x, t) = x2
1 + x2

2 . (6.219)

This Lyapunov function is positive definite, which also may be deduced from Fig.
6.62 because it is continually decreasing along the time trajectory and toward a sta-
ble origin. The derivative of the Lyapunov function is:

V̇(x, t) = 2x1 ẋ1 + 2x2 ẋ2. (6.220)

Inserting Eq. (6.218) gives:

−V̇(x, t) = 0.4
(
x2

1 + x2
2

)2
. (6.221)

This is also positive definite, and the equilibrium state at the origin is uniformly
asymptotically stable. When these concepts are collected, it is clear that there is
a connection between quadratic forms and control system stability. Consider there-
fore a linear system defined in the usual state-space notation together with a suitable
Lyapunov function:

ẋ = Ax, V(x, t) = xT Px, (6.222)
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where P must be positive definite. The derivative of the Lyapunov function is then
given by:

V̇(x, t) = xT[AT P + P A]x. (6.223)

Now this derivative must be negative definite for asymptotic stability and therefore
it must be of the following form:

V̇(x, t) = −xT Qx. (6.224)

Equating Eqs. (6.223) and (6.224) then gives:

AT P + P A+ Q = 0. (6.225)

In practice, it is sufficient to choose Q = I, the identity matrix to determine whether
or not P is positive definite. The solution technique is now explained with an exam-
ple of a second-order system given by:[

ẋ1

ẋ2

]
=
[

0 2
−1 −2

] [
x1

x2

]
. (6.226)

Using Laplace transform theory, it is easy to show that the characteristic equation
of this system is given by:

|s I − A| = s2 + 2s + 2. (6.227)

The system is therefore stable with an undamped natural frequency of �n = 1.414
rad/s and a damping ratio of � = 0.707. Equation (6.225) gives:[

0 −1
2 −2

] [
a b
b c

]
+
[

a b
b c

] [
0 2

−1 −2

]
= −

[
1 0
0 1

]
,

a = 7/8, b = 1/2, c = 3/4,

P =
[

7/8 1/2
1/2 3/4

]
.

(6.228)

Note that P is symmetric. Also, the minors are 7/8 and 13/32; therefore V(x, t) is
positive definite. Now determine the Lyapunov function and its derivative:

V(x, t) = xT Px = [ x1 x2
] [ 7/8 1/2

1/2 3/4

] [
x1

x2

]
= 7

8
x2

1 + x1x2 + 3
4

x2
2 ,

(6.229)
V̇(x, t) = − (x2

1 + x2
2

)
.

Both V(x, t) and −V̇(x, t) are positive definite and validate a stable system as ini-
tially determined from Eq. (6.227).

Now consider state feedback, neglecting the system reference input, and a
quadratic index of performance as follows:

ẋ = Ax + Bu, u = −Hx.

Minimize:

J =
∫ ∞

0
[xT Qx + uT Ru ]dt,

J =
∫ ∞

0
xT[Q + HT RH ]xdt .

(6.230)
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Figure 6.63. A system with optimal state feedback.

From Lyapunov it is necessary that:

xT[Q + HT RH]x = − d
dt

[xT Px], (6.231)

J =
∫ ∞

0
− d

dt
[xT Px]dt = −xT(∞)Px(∞) + xT(0)Px(0),

J = xT(0)Px(0).
(6.232)

From Eq. (6.231) this is true, providing that:

xT[Q + HT RH]x = −ẋT Px − xT Pẋ

and because ẋ = [A− BH]x,

[A− BH]T P + P[A− BH] = −[Q + HT RH].

(6.233)

Now it can be shown that the transformation R = TTT leads to the solution for the
feedback gain matrix:

H = R−1 BT P, (6.234)

where the positive-definite matrix P must now satisfy:

AT P + P A+ Q = PBR−1 BT P. (6.235)

This is known as the reduced matrix Ricatti equation. With the right-hand side of
Eq. (6.235) removed, it then reduces to that shown as Eq. (6.225). The problem in
practice, assuming a state-space representation is even adequate, is determination
of the P matrix. For example, the active suspension LQ control (LQC) problem
discussed in more detail in Chapter 7 requires the determination of 15 constants. To
get a feel for the solution approach to this optimal control technique, consider the
second-order system shown in Fig. 6.63.

The state variable x2 is actuator speed, the state variable x1 is load position, and
the state formulation is: [

ẋ1

ẋ2

]
=
[

0 1
0 −1

] [
x1

x2

]
+
[

0
1

]
u.

A B
(6.236)

The function to be minimized is:

J =
∫ ∞

0
[xT Qx + uT Ru]dt, Q =

[
1 0
0 2

]
, R = 1. (6.237)

This is equivalent to minimizing x2
1 + 2x2

2, which may be considered as a mea-
sure of load energy, together with u2, which is a measure of the control energy.
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Figure 6.64. Performance index for the position con-
trol system example.

Solving Eq. (6.235) and determining Eq. (6.234) gives:

P =
[

1 1
1

√
5 − 1

]
, H = [1

√
5 − 1

]
. (6.238)

Clearly, P is positive definite. The gains calculated give an overdamped transient
response, and the index of performance J is shown in Fig. 6.64 for the correct
value of k1 = 1 and different values of k2. The initial conditions are x1(0) = 1 and
x2(0) = 0.

It can be seen from Fig. 6.64 that the minimum occurs when k2 = 1.24 as pre-
dicted, although the variation in J around the optimum condition does not signifi-
cantly vary for typically 0.5 < k2 < 2. The position response is overdamped for the
optimum condition. Choosing a lower value of k2 = 0.5 gives a more desirable small
overshoot in position response compared with the optimum condition as shown in
Fig. 6.65. The performance index J has increased from 2.24 to 2.42.

6.6 On–Off Switching of Directional Valves

This approach is well established but is now having a new lease on life for high-
water-content fluid applications for which directional valve technology is preferable
from both a reliability and a cost point of view. There are two common approaches
to using switched-valve technology:

� integral pairs of valves using pulse-width modulation (PWM)
� binary-sequenced flow valves

0 2 4 6 8 10

0

0.5

1

     x1

              x2

 u 

Time (s) 

Figure 6.65. Transient response of the position con-
trol system with LQC.
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Figure 6.66. On–off switching of valve pairs using PWM for cylinder position control.

Reliability here refers to the fact that spools that are either open or closed are less
prone to wear when a high-water-content fluid is used, although it must be realized
that any valve that requires continual on–off switching by means of solenoids will
also have reliability issues, particularly for high-flow-rate valves.

6.6.1 PWM Control

This method usually requires four single-acting valves to determine the actuator
direction and a PWM drive with its frequency of operation that can be adjusted to
the optimum frequency for the system. In addition, a means must be included that
selects which pair of valves should be operated and also provides a dead-band such
that continual switching does not occur about the reference condition. The approach
for linear actuator position control is shown as Fig. 6.66.

The solenoid valves are usually switched with 12-V or 24-V dc signals, and each
solenoid can draw up to typically 1–2 A of current for the larger sizes needed for
larger flow rates. In the applications built by the author, two PWM drivers were
used, one providing the “on” signal to the appropriate pair of valves, the other pro-
viding the complementary “off” signal to the other pair of valves. Each PWM unit
must therefore be designed to supply the current needed by two valves, and the
pulse width must be capable of being controlled by the position error signal. Con-
sider Fig. 6.66:

� Valves A and B are paired to create the supply pressure and tank return to
extend the actuator.

� Valves C and D are paired to create the supply pressure and tank return to
retract the actuator.

� An appropriate PWM frequency is established by testing.
� The ratio between the “on” time and “off” time is proportional to the position

error.
� When one pair of valves is being used, the other pair is switched off.
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Time  (s)   

Figure 6.67. Transient flow characteristic for a solenoid valve controlled by a PWM 24-V dc
signal.

Each valve has a first-order response characteristic with a time constant of about
14 ms when operated by the 24-V dc solenoid. The transient flow behavior is shown
in Fig. 6.67 for a pulse frequency of 4 Hz and two different pulse-width ratios of 10%
and 60% of the signal period of 0.25 s. The flow rate is measured with a flow meter
that has a much faster response characteristic than the valve under test.

Figure 6.68 shows the mean flow-rate variation with pulse-width ratio and for
different frequencies for one of the four valves used in this example.

This valve is restricted in the frequency range of operation, although there is
certainly a minimum pulse-width ratio below which flow will not be generated. This
is useful in that it can be considered as an inherent dead-band and is particularly
noticeable for pulse frequencies above 4 Hz. The lack of linearity as the frequency is
increased does not present a problem for position control, although for frequencies
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Figure 6.68. Mean flow-rate characteristic of an “off-the-shelf” commercial solenoid valve
with PWM switching.
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Figure 6.69. Closed-loop control of a linear actu-
ator using PWM switching of four solenoid
valves.

above 16 Hz, the valve does tend to behave like an on–off controller with a large
dead-band.

Now consider closed-loop position control. The position error creates a propor-
tional voltage that changes the pulse width of the appropriate pair of valves, and
within the microcomputer program. A typical transient response to a square-wave
demand is shown in Fig. 6.69. The system is set such that movement to the desired
position is at almost constant velocity, limited by the flow gain of the valve unit.
As is expected from the previous comments, the positional accuracy deteriorates as
the PWM frequency is increased beyond 8 Hz. The results of many tests also show
that positional accuracy is slightly improved if approached from the lower-velocity
retracting part of the cycle. An accuracy of better than ±0.4 mm is achieved with
the system, which may be adequate for large power control applications for which
precision control is not critical. Note, however, that the use of an industrial servo-
valve, of the force-feedback type, for closed-loop control did not drastically change
the performance, as shown in Fig. 6.70. This conventional analog control system is
slightly faster acting, but the positional accuracy is governed by spool underlap and
the system threshold characteristic.

Next consider replacing the linear actuator with an axial piston motor, as shown
in Fig. 6.71.

The open-loop characteristic is determined by varying the pulse-width differ-
ence between input and output valve signals and recording the motor rotation for
different pulse frequencies. The measurements are shown in Fig. 6.72.

At any desired operating frequency, there exists a maximum motor rotation
available over one cycle, and this upper limit was set arbitrarily at 327◦ with a
pulse-width ratio of 80% at a frequency of 2 Hz. Actually, the maximum rotation
per cycle decreases linearly with a pulse period down to a period of typically 0.1 s
(10 Hz), where there is no response to valve-switching signals.

This effective system-saturation characteristic is useful in practice because it
ensures that for large demanded position changes, the maximum rotation per pulse
is utilized. Proportional control therefore exists only when the position error falls on
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control of the same actuator used in Fig. 6.69
(Watton, 1989).

   T                    Ps                                Ps T

VV VV

θ

Microcomputer
and PWM controller  

D                      A                          C                      B

Figure 6.71. On–off switching of valve pairs using PWM for motor position control (Pierce,
Coughlin, and Watton, 1985).
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Figure 6.72. Open-loop characteristic of the motor drive.
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Figure 6.73. Closed-loop position response
for a demand position of 360◦ and at a fixed
pulse frequency of 4.1 Hz.

the appropriate curve of Fig. 6.72, and an equation for each curve has to be deter-
mined. Appropriate equations up to cubic form are used in the computer control
algorithm, particularly for the small rotation portion of the curve at which small
pulse-width changes give large changes in motor rotation. For example, considering
a pulse frequency of 4.1 Hz gives:

%pulse width = 0.00004�3 + 0.00053�2 + 0.2635� + 2.85, 0 < � ≤ 60◦,

%pulse width = 15 + 0.583(� − 60◦), 60◦ < � ≤ 155◦. (6.239)

A typical performance is shown in Fig. 6.73 for a pulse frequency of 4.1 Hz.
A disadvantage in the control concept is the fact that the pulse widths are being

continually changed as the system error is reduced. Once the computer begins to
calculate the desired pulse width, it should be theoretically possible to make the
final step in one pulse. This is an interesting point to be pursued and does suggest
that it may be undesirable to have too rapid a sampling rate because one sample per
pulse may be adequate. A further development to be pursued is the use of frequency
control at a fixed pulse width, or perhaps a mixture of pulse width and frequency
control. The open-loop and two closed-loop responses are compared in Fig. 6.74,
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Time (s) 
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(degrees) 
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8.4 Hz 
4.1 Hz 

Figure 6.74. A comparison of the open-loop response and the closed-loop response at differ-
ent pulse frequencies (Pierce, Coughlin, and Watton, 1985).
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Figure 6.75. On–off switching of valve
pairs using PWM for position control.

from which, as expected, it can be seen that as the pulse frequency is increased then
the closed-loop response is improved.

6.6.2 Valves Sized in a Binary Flow Sequence

An alternative approach to using PWM switching is to use an array of on–off
solenoid valves, the array being rated similar to a binary sequence. For example,
four valves having flow rates of 1, 2, 4, and 8 L/min would suffice to provide a flow
rate from 0 to 15 L/min in steps of 1 L/min, as shown in Fig. 6.75.

Figure 6.75 shows just one of several approaches possible. Because an indi-
vidual valve flow rate is not high, then fast-response solenoid valves may be used.
All the valves are switched off when the desired position is reached, and they can
be designed to be of the poppet type and therefore more suitable for high-water-
content fluids. This quasi-linear flow-gain characteristic may well be suited for many
industrial applications, and some surprising levels of position accuracy have been
obtained. It is not too critical that an exact binary sequence be obtained but, in prac-
tice, the chosen ratios may, reasonably designed by fine-tuning with control orifices
at each valve.

Consider the approach by Linjama and Vilenius (2005) and for the system con-
figuration shown in Fig. 6.76. Each solenoid valve has a 30-ms delay and a first-order
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Figure 6.76. Hydraulic circuit diagram for digital control (Linjama and Vilenius, 2005).

time constant of 2 ms at a maximum rate of 200 L/min. The largest valve has a capac-
ity of 19 L/min, and the others follow approximately a binary series. The system
studied is an energy-efficient motion control of a digital joint actuator typical of a
medium-sized mobile machine boom. A particular feature of the control approach is
that a cost-control-function-based solution is used for on-line minimization of power
losses.

Figure 6.77 shows a comparison of measured results and computer-simulated
results indicating a good design simulation foundation for developing other control
schemes and systems.

The future response is calculated by the selected system model, and valve con-
trols are selected by minimizing the cost function. The steady-state velocity and
pressures can be solved from a known equation if the load force and supply and
tank pressures of the system are known. The system has 220 ≈ 106 different states,
which makes the real-time calculation of all combinations impossible. Therefore,
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Figure 6.77. Measured and simulated responses when the second smallest valves are opened
and closed (Linjama and Vilenius, 2005).

the reduced search space is defined by analyzing flow balance of both actuator
chambers separately. The steady-state velocity and pressures are then solved for
elements of the reduced search space by using Newton–Raphson iterations. Finally,
the cost-function values are calculated for each steady-state solution, and the best
valve combination is selected. This process is repeated at each sampling instant. It
is important to note that the approach allows control of all four flow paths simulta-
neously. The inputs of the controller are target velocity and pressures, measured or
estimated supply and tank pressures, and measured or estimated load force. Further
details are given in references (e.g., Linjama and Vilenius, 2005), but this application
does show how digitally switched valves may be used with developing on-line com-
putational techniques to compete with servovalve systems. It is reported that the
approach resulted in a 36% reduction in power losses compared with a traditional
proportional valve.

6.7 An Introduction to Fuzzy Logic and Neural Network Control

This chapter is not intended to cover the more advanced aspects of control theory,
but it is appropriate to make the reader aware of developing techniques that have
been applied to fluid power circuits and generically labeled as intelligent control
systems. The term is misleading in the sense that “intelligence” is preselected by the
design engineer to mainly accommodate nonlinear dynamic behavior and, to some
extent, handle changes in some system characteristics that reflect a change in the
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Figure 6.78. Adaptive control using a reference dynamic model.

dynamic behavior. If system parameters change, then an ideal control system will
ensure that the dynamic control behavior remains ostensibly the same. In reality,
this is not perfectly possible, but intelligent control aims to move toward this goal.

For example, adaptive control systems use controllers that are continually
updated by a suitable algorithm that attempts to establish the current system dynam-
ics and then change control laws to compensate for any change. One way of doing
this is to use model reference control in which the actual system output is compared
with the output from the reference dynamic mathematical model having the same
input as the real system, as shown by the position control system in Fig. 6.78.

An alternative approach is to use a system identification procedure; for exam-
ple, using the least-squares method, followed by control-law adaption. A continu-
ously operating approach utilizes the recursive least-squares method, whereby the
estimated coefficients of the hydraulic system model are continually updated. This
approach is shown in Fig. 6.79.

Stability of these types of approach is a problem when handling large changes
from the response expected because the mathematical model used in both methods
may not then be valid. Other approaches therefore attempt to handle changes in
system behavior in a more pragmatic way rather than a mathematical way.

Fuzzy-logic control is rule-based and utilizes the experience of practical systems
design in the sense of emulating what a human controller would probably do in the
presence of a particular control behavior change. For example, if a position con-
trol system had a small error, then a small correction would be made; if the error
were large, then a large correction would be made. In addition, the human opera-
tor might also take into account the speed of response and make a correction in a
slightly different way. However, precise values of error and speed cannot usually be
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Figure 6.79. Adaptive control using system identification.
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Figure 6.80. Structure of a fuzzy-logic controller.

determined and the data will have “fuzzy” boundaries that merge with one another.
The elements of such a knowledge-based approach are then as shown in Fig. 6.80.

The structure shown in Fig. 6.80 is usually embodied within the error loop of
the electrohydraulic control system, and there are no rigid design procedures for
deciding the control logic other than the principle of common sense. If a position
control system is considered, and the position error and velocity are to be used,
then it must be recalled that because computer control is being implemented with
sampled data, then the velocity may be easily calculated. It is not necessary to divide
successive samples by the sampling interval to determine velocity because just the
sample differences will suffice. Note, however, that in practice the position error
signal may be noisy and any error changes computed will be subject to a degree of
uncertainty.

Therefore, this fuzzy-logic control approach utilizes the error e and the change
in error ce. In essence, this fuzzy logic approach is really a knowledge-based propor-
tional + derivative (P + D) approach. For example, consider just five states of c and
ce as follows:

negative large, NL
negative small, NS
zero, Z
positive small, PS
positive large, PL

More states may be added to improve control performance. The fuzzy sets for
both e and ce will then appear as shown in Fig. 6.81.

The fuzzy sets of control values u will also have a similar topology to that shown
in Fig. 6.81 and may also be visualized as shown in Table 6.2.

  NL         NS            Z           PS          PL

Range of measured c and ce 

Membership   function 

µ

Figure 6.81. Fuzzy sets for both error e and change in error ce.
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Table 6.2 Rule base for the control action u
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To refine the output control signal, the center-of-area (COA) method may be
used to determine the center of the fuzzy distribution array. Design strategies are
then left to the individual; single-rod actuator area asymmetry may be accommo-
dated as well as severe geometrical changes in load during motion. The result
of applying fuzzy-logic control to a cylinder position control system is shown in
Fig. 6.82 with 11 fuzzy sets for e and 9 fuzzy sets for ce. Data used are as follows:

Diameter of piston, 32 mm
Diameter of piston rod, 20 mm
Stroke, 1000 mm
Inertia load, 140–300 kg; load force, 400 N
Nominal flow of servovalve, 57 L/min
Natural frequency of servovalve, 350 rad/s
Damping factor of servovalve, 0.8

Figure 6.82. Step responses of the position control system with fuzzy-logic control, provided
by T. Virvalo and also available in Virvalo and Koskinen (1992).
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Figure 6.83. Adaptive motor speed con-
trol system incorporating an ANN
(Nishiumi and Watton, 1997).

Hysteresis and threshold of servovalve, 0.5%
Resolution of feedback transducer, 0.0024 mm
DAC, 12 bits
Supply pressure, 70 bar

The application of ANNs has received some attention because they have
the potential to continually update system dynamics or model nonlinear models.
Updated models or model reference techniques may then also be used for con-
trol applications. In the approach adopted by Nishiumi and Watton (1997), for a
servovalve–motor drive system, a combination of deterministic and heuristic tech-
niques were used to adapt to changes in speed demand, load torque, and supply
pressure, eventually attempting to maintain the reference model dynamics. The
steady-state behavior and open-loop system dynamics have been discussed at some
length in earlier chapters, and it was shown that a servovalve-controlled motor has
a highly nonlinear speed–load pressure characteristic. The objective is to adapt the
system by means of an ANN:

� using variable flow gain compensation in the forward path
� using variable accelerometer gain in the feedback path
� then also using an appropriate input–output reference model

The approach taken is shown in Fig. 6.83.
Data for this system are as follows:

Servovalve flow constant, kf = 1.98 × 10−8

Motor displacement, Dm = 5.75 × 10−6 m3/rad
Motor external leakage resistance, Re = 0.22 × 1012 N m−2/m3 s−1

Motor internal leakage resistance, Ri = 0.37 × 1012 N m−2/m3 s−1

Motor and load inertia, Jm = 0.021 kg m2

Motor Coulomb friction, Tf = 1.55 N m
Motor viscous friction coefficient, Bv = 0.078 N m/rad s−1

Lines equal volumes, V = 1.85 × 10−4 m3

Fluid effective bulk modulus, � = 1.4 × 109 N m−2
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Figure 6.84. ANN topology selected for accelerometer dynamics.

A crucial aspect of the approach is the choice of an appropriate ANN topology,
and foundation work has shown that acceleration feedback emulation is possible.
Excellent results have been obtained for the case when the ANN is trained to track
a predetermined variable gain accelerometer model (Nishiumi and Watton, 1997).
The current approach is possible only by using an accurate computer simulation,
the ANN being trained using appropriate simulation data. The ANN topology is
then transferred to a C language program and incorporated into a real-time digital
control scheme using a microcomputer with an ADC/DAC control card. Following
analysis of the open-loop system, with experimental validation, the system steady-
state constants and second-order transfer function were accurately determined. The
accelerometer feedback transfer function is:

G(s) = Kv s. (6.240)

From consideration of the system characteristics, it can be shown that the variable
gain is given by:

Kv = a0 − a1�. (6.241)

This characteristic may be compensated in the ANN by utilizing the function 1/Kv .
The variable flow gain of the servovalve–motor is given by:

K�= a2 + a3 Ps . (6.242)

The supply pressure is not measured, but the pressures P1 and P2 are measured
because they are required as inputs to the ANN. However, recalling the steady-
state theory, it can be shown for most servovalve–motor systems that the sum of
line pressures is slightly below supply pressure and remarkably constant for most
working speeds. For this study, the supply pressure is calculated from:

Ps ≈ 1.1(P1 + P2) (6.243)

and is valid for speeds greater than 2 rad/s. To compensate for the variable flow
gain, the function 1/K� is continually computed and added to the forward path of
the control loop. It was found that it was sufficiently accurate to train an ANN using
pressure differential and speed. In addition, a recurrent network is needed to accom-
modate dynamic conditions, and just the current sampled state plus the previously
sampled state of both parameters was found to be satisfactory for motor speeds
up to 40 rad/s. Many topologies were considered, and the one selected is shown in
Fig. 6.84.
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Figure 6.85. A comparison of open-loop and ANN closed-loop control (Nishiumi and
Watton, 1997).

It can be seen that the topology has eight neurons in the first hidden layer
and four neurons in the second hidden layer. The ANN was trained using sim-
ulation data for various changes in demand speed, load torque, and supply pres-
sure using motor acceleration as the desired goal u. Some results for motor speed,
in response to continual step changes in demand speed, are shown in Fig. 6.85
for the open-loop system and the system with ANN feedback emulating a variable
gain accelerometer.

It can be seen that the open-loop system is oscillatory, the overshoot increas-
ing as the steady-state speed is lowered as expected. ANN acceleration feed-
back does not include gain compensation and therefore both responses shown in
Fig. 6.85 result in a speed error from that desired. The closed-loop results were
obtained using a sampling interval of 2 ms. However, the effect of ANN accelera-
tion feedback is to significantly reduce the speed overshoot.

Now consider adapting the ANN using a model reference closed-loop desired
performance. A first-order closed-loop model is chosen with a time of 15 ms. This
was then implemented using the bilinear approximation to give:

�r (k) = 0.0625�d(k) + 0.0625�d(k − 1) + 0.875�r (k − 1). (6.244)

Adaption was achieved by on-line adjustment of all neuron weights using a simpli-
fied approach to weight change selection and given by:

�w j (k) = 	[�(k) − �r (k)]y j (k) + m� j (k − 1), (6.245)
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Figure 6.86. The effect of model reference adaptive control using on-line ANN weights adap-
tion (Nishiumi and Watton, 1997).

where 	 is the learning rate selected as 	 = 0.005, m is the momentum selected as
m = 0.01, and yj(k) is the signal from the hidden layer neuron j at iteration k. A
typical result may be compared with Fig. 6.85 and is given in Fig. 6.86.

Gain compensation is included in the model reference control approach, and it
can be seen that the overall approach quickly reduces the speed overshoot while
virtually eliminating steady-state speed droop. Further results in Nishiumi and
Watton (1997) show that the approach also adapts to large changes in supply pres-
sure and load torque, the latter being applied by motor shaft friction. This is par-
ticularly encouraging because it indicates robustness to new conditions not met
when initially training the ANN. However, longer adaption times were needed for
such large changes. In addition, it was shown that the system could be successfully
adapted for sinusoidal demand signals, again indicating robustness to conditions not
used when training the initial ANN.

6.8 Servovalve Dither for Improving Position Accuracy

In practice, a servoactuator has a variety of nonlinear characteristics that affect the
accuracy of closed-loop position control. These characteristics are dominated by:

� servovalve hysteresis due to first-stage electromagnetic effects
� servovalve underlap/overlap
� servovalve spool friction
� resolution of the position sensor
� actuator friction

Servovalve hysteresis and/or spool lap effects are usually evident from the data
supplied by the manufacturer and will be significantly smaller than the rated current,
as evident from Fig. 3.37. Spool underlap is usually evident by a doubling of the flow
gain at the null conditions and Fig. 6.87 illustrates only the hysteresis characteristic.
It may be quoted with respect to the servovalve current rating; for example, <±3%,
with a threshold of <0.5% without dither, moving to almost 0% with dither.

Dither is no more than the addition of a high-frequency signal, usually built
into the servoamplifier, with an amplitude that can be as high as 20% of the rated
current and a frequency that is set to suit the servoactuator. For example, consider
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Figure 6.87. Servovalve hysteresis characteristic, not to
scale.

a linear actuator closed-loop drive tested by the author and having system data as
follows:

� a position transducer gain Hp = 40 V/m
� a servoamplifier gain Ga = 10 mA/V
� a demanded change in position by applying a triangular waveform having a very

low frequency such that system dynamics have a negligible effect on the position
measurement

� a dither signal having a frequency of 150 Hz and an amplitude that is the same
as the triangular waveform; in this example, an amplitude of 0.185 mA

Three cycles are shown in Fig. 6.88 with and without the dither signal. It is clear
that dither may significantly improve positional accuracy if this is required and can-
not be achieved by changing the closed-loop steady-state gain.

demand

(mV)

position (mm) position (mm) 

demand

(mV)

(a) Without dither (b) With dither

Figure 6.88. The effect of a dither signal on the position accuracy of a closed-loop servo-
actuator.
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7 Some Case Studies

7.1 Introduction

These studies represent a variety of mathematical and simulation solutions for a
range of components and systems and also include much experimental testing with
some novel measurement techniques and practical limitations. They are intended
to bring together the various aspects of fluid power theory introduced in earlier
chapters, but in a more comprehensive manner usually required for more complex
systems studies involving the integration of components and control concepts.

7.2 Performance of an Axial Piston Pump Tilted Slipper with Grooves

7.2.1 Introduction

This study was undertaken by Bergada, Haynes, and Watton with experimental
work in the author’s Fluid Power Laboratory at Cardiff University as part of a com-
prehensive study on losses within an axial piston pump. It was concerned with a new
analytical method based on the Reynolds equation of lubrication, with experimen-
tal validation, to evaluate the leakage and pressure distribution for an axial piston
pump slipper, taking into account the effect of grooves.

The analytical work was developed by JM Bergada (UPC, Terrassa, Spain) with
experimental work undertaken by JM Bergada and JM Haynes. Additional CFD
analysis and test-rig design was undertaken by JM Haynes and J Watton. Further
CFD results by R Worthing and J Watton are also presented in this overview.

The equations consider slipper spin and tilt and are extended to be used for
a slipper with any number of grooves. Test rigs have been designed and used to
check experimentally the applicability of the theoretical equations, and comparisons
between theoretical and experimental results show a good agreement. The new the-
ory can predict slipper leakage and pressure inside the groove with a high level of
accuracy, especially at the very low slipper tilts that exist in practice.

The effect of tangential velocity on groove pressure and slipper leakage is then
studied experimentally and by CFD simulation, showing that as the rotational speed
increases, there is a small decrease in leakage and a small increase in the average
pressure inside the groove.
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Figure 7.1. Piston–slipper assembly and slipper.

The main piston and slipper assembly that originated this study is shown in
Fig. 7.1. This is one of nine pistons from a pump with a maximum volumetric dis-
placement of 0.031 dm3/rev. It will be seen that the slipper design uses two full lands
(Bergada, Haynes, and Watton 2008).

7.2.2 Flow and Pressure Distribution, Mathematical Analysis

Considering Fig. 7.1, the following assumptions are then made:

� Flow will be considered laminar.
� The slipper-plate clearance is not uniform; the slipper is tilted.
� The fluid is hydraulic mineral oil ISO 32.
� Steady conditions are considered.
� Slipper rotation is taken into account.
� Flow is considered to be radial.
� Slipper pocket, groove, and slipper lands are flat.
� The only relative movement between slipper and swash plate is slipper rotation.

The Reynolds equation applicable to this study and its solution developed by JM
Bergada are as follows (Bergada and Watton, 2002, 2005, 2008):

∂

∂r

(
rh3 ∂p

∂r

)
= 6 � � r

∂h
∂�

. (7.1)

The film thickness in the clearance is given by:

h = h0 + � rm cos �. (7.2)

The average radius between land ends is used, and the film thickness is:

∂h
∂�

= −� rm sin �. (7.3)
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The first integration of differential equation (7.1) will then give:

∂p
∂r

= −3 � � � rm sin � r

(h0 + � rm cos �)3 + k1

r(h0 + � rm cos �)3
. (7.4)

The second integration gives:

p = −3 � � � rm sin � r2

2(h0 + � rm cos �)3
+ k1

(h0 + � rm cos �)3 ln(r) + k2. (7.5)

The slipper leakage through a generic radius will be:

Qleakage =
∫ 2�

0

∫ h

0
u r dy d�. (7.6)

Assuming Poiseulle flow, the velocity distribution is given by:

u = 1
�

dp
dr

y
2

(y − h). (7.7)

Then, the leakage flow is given by:

Qleakage =
∫ 2�

0

∫ h

0

1
�

dp
dr

y
2

(y − h) r dy d�. (7.8)

Substituting the pressure distribution versus radius, Eq. (7.4), into Eq. (7.8) and
after some integration and rearrangement gives:

Qleakage =
∫ 2�

0
− 1

12 �
(−3 � � � rm sin � r2 + k1) d�. (7.9)

Now a second integration cannot be normally done at this stage because the
unknown constant k1 depends on the angular position �. However, assuming that
the flow and pressure distribution in the slipper pocket and groove behave in the
same way as in a conventional land, then Eqs. (7.5) and (7.9) can be applied to each
slipper land to give:

Slipper pocket: r0 < r <r1,

p1 = − 3���rm1 sin �r2

2(h01 + �rm1 cos �)3 + k1

(h01 + �rm1 cos �)3 ln r + k2, (7.10)

Qleakage1 =
∫ 2�

0
− 1

12�
(−3���rm1 sin �r2 + k1)d�, (7.11)

rm1 = (r1 + r0)/2. (7.12)

First land: r1 < r < r2,

p2 = − 3���rm2 sin �r2

2(h02 + �rm2 cos �)3 + k3

(h02 + �rm2 cos �)3 ln r + k4, (7.13)

Qleakage2 =
∫ 2�

0
− 1

12�
(−3���rm2 sin �r2 + k3)d�, (7.14)

rm2 = (r2 + r1)/2. (7.15)

Slipper groove: r2 < r < r3,

p3 = − 3���rm3 sin �r2

2(h03 + �rm3 cos �)3 + k5

(h03 + �rm3 cos �)3 ln r + k6, (7.16)
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Qleakage3 =
∫ 2�

0
− 1

12�
(−3���rm3 sin �r2 + k5)d�, (7.17)

rm3 = (r3 + r2)/2. (7.18)

Second land: r3 < r < r4,

p4 = − 3���rm4 sin �r2

2(h04 + �rm4 cos �)3 + k7

(h04 + �rm4 cos �)3 ln r + k8, (7.19)

Qleakage4 =
∫ 2�

0
− 1

12�
(−3���rm4 sin �r2 + k7)d�, (7.20)

rm4 = (r4 + r3)/2. (7.21)

The boundary conditions necessary to determine the constants are:

r = r0, p1 = pinlet,

r = r1, p1 = p2, Qleakage1 = Qleakage2,

r = r2, p2 = p3, Qleakage2 = Qleakage3, (7.22)

r = r3, p3 = p4, Qleakage3 = Qleakage4,

r = r4, p4 = poutlet.

For the slipper under study with just one groove, following substantial intermediate
substitutions and manipulation, the pressure distribution is given by:

k1 = ptank − pinlet − (1.5��� sin �)�1 − (3��� sin �)�2

H
,

�1 = rm1(r2
0 − r2

1 )

(h01 + �rm1 cos �)3 + rm2(r2
1 − r2

2 )

(h02 + �rm2 cos �)3 ,

+ rm3(r2
2 − r2

3 )

(h03 + �rm3 cos �)3 + rm4(r2
3 − r2

4 )

(h04 + �rm4 cos �)3 ,

�2 = r2
1 (rm2 − rm1)ln (r2/r1)

(h02 + �rm2 cos �)3 +
[
r2

1 (rm2 − rm1) + r2
2 (rm3 − rm2)

]
ln (r3/r2)

(h03 + �rm3 cos �)3 ,

+
[
r2

1 (rm2 − rm1) + r2
2 (rm3 − rm2) + r2

3 (rm4 − rm3)
]

ln (r4/r3)

(h04 + �rm4 cos �)3 ,

H = ln (r1/r0)

(h01 + �rm1 cos �)3 + ln (r2/r1)

(h02 + �rm2 cos �)3 ,

(7.23)

+ ln (r3/r2)

(h03 + �rm3 cos �)3 + ln (r4/r3)

(h04 + �rm4 cos �)3 ,

p1 − pinlet = k1ln (r/r0) + 3���rm1 sin �
(
r2

0 − r2
)
/2

(h01 + �rm1 cos �)3 , (7.24)
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p2 − pinlet = k1

[
ln (r1/r0)

(h01 + �rm1 cos �)3 + ln (r/r1)

(h02 + �rm2 cos �)3

]
,

+ 1.5��� sin �

[
rm1(r2

0 − r2
1 )

(h01 + �rm1 cos �)3 + rm2(r2
1 − r2)

(h02 + �rm2 cos �)3

]
, (7.25)

+ 3��� sin �r2
1 (rm2−rm1)

(h02 + �rm2 cos �)3 ln (r/r1) ,

p3 − pinlet = k1

[
ln (r1/r0)

(h01 + �rm1 cos �)3 + ln (r2/r1)

(h02 + �rm2 cos �)3 + ln (r/r2)

(h03 + �rm3 cos �)3

]
,

+ 1.5��� sin �




rm1(r2
0 − r2

1 )

(h01 + �rm1 cos �)3 + rm2(r2
1 − r2

2 )

(h02 + �rm2 cos �)3

+ rm3(r2
2 − r2)

(h03 + �rm3 cos �)3


 , (7.26)

+ 3��� sin �




r2
1 (rm2−rm1)

(h02 + �rm2 cos �)3 ln (r2/r1)

+ r2
1 (rm2−rm1) + r2

2 (rm3−rm2)

(h03 + �rm3 cos �)3 ln (r/r2)
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p4 − pinlet = k1




ln (r1/r0)

(h01 + �rm1 cos �)3 + ln (r2/r1)

(h02 + �rm2 cos �)3

+ ln (r3/r2)

(h03 + �rm3 cos �)3 + ln (r/r3)

(h04 + �rm4 cos �)3
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+ 1.5��� sin �




rm1(r2
0 − r2

1 )

(h01 + �rm1 cos �)3 + rm2(r2
1 − r2

2 )

(h02 + �rm2 cos �)3

+ rm3(r2
2 − r2

3 )

(h03 + �rm3 cos �)3 + rm4(r2
3 − r2)

(h04 + �rm4 cos �)3
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+ 3��� sin �




r2
1 (rm2−rm1)

(h02 + �rm2 cos �)3 ln (r2/r1)

+ r2
1 (rm2−rm1) + r2

2 (rm3−rm2)

(h03 + �rm3 cos �)3 ln (r3/r2)

+ r2
1 (rm2−rm1) + r2

2 (rm3−rm2) + r2
2 (rm4−rm3)

(h04 + �rm4 cos �)3 ln (r/r3)




.

(7.27)

These equations indicate the added complexity when just one groove is added com-
pared with the no-groove classical solution derived in Chapter 3 and with slipper
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Figure 7.2. Uniform clearance condition with a single groove.

tilt. The equation for the leakage flow is found from:

Qleakage = −
∫ 2�

0

k1

12�
d�. (7.28)

Because of the complexity of the integral, Eq. (7.28) must be integrated numerically
to determine the leakage.

7.2.3 Simplification for the Nontilted Case, No-Rotation Condition

Before pursuing the effect of tilt in more detail, it is worth considering the implica-
tion of a groove addition for the slipper in its nontilted condition – a condition close
to reality, as will be shown later. The previously developed equations are much
simplified, particularly with no rotation, and have been discussed in Bergada and
Watton (2002, 2005, 2008). For the nontilted condition, consider the simplified nota-
tion shown in Fig. 7.2.

Neglecting the inlet orifice area effect, the equations for the total force and
leakage flow then become:

Fgroove = P p�r2
1

[
(r2

2 − r2
1 )

r2
1

+
(

h0

hg

)3 (r2
3 − r2

2 )

r2
1

+ (r2
4 − r2

3 )

r2
1

]

2

[
ln
(

r2

r1

)
+
(

h0

hg

)3

ln
(

r3

r2

)
+ ln

(
r4

r3

)] , (7.29)

Qgroove = �h3
0 P p

6�

1[
ln
(

r2

r1

)
+
(

h0

hg

)3

ln
(

r3

r2

)
+ ln

(
r4

r3

)] . (7.30)

It will be recalled from Chapter 3 that the equations for the slipper without a
groove are given by:

Fno groove = P p�r2
1

[
(r2

4 − r2
1 )

r2
1

]

2 ln
(

r4

r1

) , (7.31)

Qno groove = �h3
0 p p

6�

1

ln
(

r4

r1

) . (7.32)
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Figure 7.3. Change in force and leakage flow with a groove added (following work by Bergada
JM, Watton J, Haynes JM up to 2008).

The change in force and leakage flow can then be expressed as a percentage of the
no-groove case once a slipper geometry has been selected, and defined as follows:

% change = 100
(Fgroove − Fno groove)

Fno groove
and 100

(Qgroove − Qno groove)

Qno groove
. (7.33)

These percentages of changes are then independent of P p�r2
1 and �h0 p p/6�. The

slipper being discussed in this example has the following geometry:

Orifice radius, r1 = 1 mm
Inner land inside radius, r2 = 10.15 mm
Inner land outside radius, r3 = 14.7 mm
Groove width = 1 mm, depth = 0.8 mm
Outside radius, r4 = 20.5 mm

The result is shown in Fig. 7.3 for groove positions typically between 0.25 and
0.75 of the land width and for a constant clearance h0 = 21 �m. Note from Eqs. (7.29)
to (7.32) that the clearance has only a small effect on the percentage of change (7.33)
because of the relatively large groove depth. ISO 32 mineral oil is assumed with
� = 0.032 N s/m2.

It can be seen that the use of a groove allows a small degree of design freedom
in placing the groove to achieve the desired piston–slipper force balance and typi-
cally between +5% and −5% of the no-groove slipper force. However, this is at the
expense of an increase in leakage flow, whatever the position chosen for the groove
placement. The leakage flow increase is typically 10% and borne out by 3D CFD
simulation, including groove-flow effects.

7.2.4 Experimental Method

To experimentally validate the equations developed, two test rigs were built: the
first shown in Fig. 7.4 to hold a commercial piston–slipper unit of the type shown in
Fig. 7.1. This first test rig was designed to measure the pressure distribution across
the slipper and for a constant clearance.

Slipper data are as follows:

Orifice radius, r1 = 0.5 mm
Inner land inside radius, r2 = 5 mm
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Figure 7.4. Test rig to measure the leakage and pressure distribution.

Inner land outside radius, r3 = 7.4 mm
Groove width = 0.4 mm
Outside radius, r4 = 10.2 mm
h01 = h02 + 0.65 mm and h03 = h02 + 0.4 mm

A micrometer-gauge thread was machined on the adjuster, allowing known
clearances to be set; but, before the results are compared with theory, it is essen-
tial to determine the actual clearance as pressure is applied. This is due to the small
yet significant compression between the adjusting housing and the housing support
fine thread adjuster, the net result being that the actual clearance increases with
applied pressure. The thread compression was measured with a precision position
transducer mounted to the bed plate holding the test unit, and it was found that the
compression increased to 4 �m as the pressure increased to 160 bar. The accuracy
of the displacement transducer used to measure the relative displacement between
the adjusting housing and the housing support was determined as ±0.25 �m.

Pressure tappings in the base unit then allowed the pressure distribution to be
measured across one axis of the slipper, using calibrated test Bourdon gauges, and
including the groove. A typical set of leakages is shown in Fig. 7.5 and a typical set
of pressure distributions is shown in Fig. 7.6.

The leakage flow comparisons of Fig. 7.5 are good and support the developed
theory. The comparisons for pressure, Fig. 7.6, use pressure tappings created by
drilling ostensibly 0.3-mm-diameter holes in the base, and the pressure drop over
this distance is 12 bar at an inlet pressure of 160 bar. The exact location of the pres-
sure tappings with respect to the slipper cannot be precisely measured for the assem-
bled test unit. In addition, any variation in the set clearance or any induced tilt during
testing cannot be determined. It is proposed for this test rig that the experimen-
tal error for pressure measurement be ±6 bar at the highest inlet pressure used of
160 bar. Figure 7.6 shows that the comparison between theory and measurement is
good for the inner land but, with experimental measurements, lower than predicted
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Figure 7.5. A comparison of measured and computed leakages (following work by Bergada
JM, Watton J, Haynes JM up to 2008).

for the outer land, particularly at the highest pressure. A displacement error of
0.3 mm for the pressure tapping position in this region would explain the difference.

The second test rig is shown in Fig. 7.7 (Haynes, 2007). The test-rig slipper
dimensions for the second slipper are as follows:

Orifice radius, r1 = 1 mm
Inner land inside radius, r2 = 10.15 mm
Inner land outside radius, r3 = 14.7 mm
Groove width = 1 mm
Outside radius, r4 = 20.5 mm
When � = 0, then h01 = h02 + 1.4 mm and h03 = h02 + 0.8 mm

This second test rig allows rotation of the swash plate to simulate tangential velocity
effects while allowing slipper tilt to be set. Three position sensors having a measure-
ment accuracy of better than 0.25 �m are attached to the slipper at 120◦ intervals.
These sensors require a nonferrous measuring face for optimum performance, the
swash-plate assembly is manufactured from aluminum, and the slipper assembly is
manufactured from stainless steel. The slipper is held in position by four screws, and
the required slipper tilt orientation is achieved by adjusting four additional position-
ing screws. Four holes, 0.5-mm diameter and at every 90◦, were drilled at the center
of the slipper groove, allowing measurement of the pressure inside the groove at its
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Figure 7.6. Pressure distribution across the slipper (following work by Bergada JM, Watton
J, Haynes JM up to 2008).
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Figure 7.7. Test rig with variable-speed swash-plate drive (Haynes, 2007).

four cardinal positions. In this presentation, variable-speed tests are performed with
a single central clearance of 15 �m and for a single tilt of 0.035◦. A set of swash-plate
turning speeds are studied in the range 0–1350 rpm, the maximum turning speed cor-
responding to a tangential velocity on the slipper main axis of 13 m/s. It is important
to realize that the exact clearance between the slipper and swash plate may need
further consideration, depending on the quality of the surface finish on each face.

Figure 7.8 shows some typical surface measurements. The surface roughness of
both the slipper and rotating disk were measured with a Talysurf machine (Taylor-
Hobson Ltd., UK).

The measurements across the land of the slipper were 4 mm in length and
40 mm long across the swash plate, reflecting the diameter of the slipper contact
area. The average Ra values from a series of tests were found to be 0.4 �m for the
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(c) Details of the double-bearing design 

Drive 

Test slipper 

Figure 7.7. (Continued)

stainless steel slipper and 0.56 �m for the aluminum disk. This suggests that the
measured clearance should be increased by typically 1 �m to reflect the combined
surface finish effect.

In addition, it is impossible to manufacture such a test rig with alignment–
distortion errors, part of which may develop during operation because of disk run-
out. Although the manufacturing was to an extremely high standard, it was observed
during dynamic experiments that both slipper–plate mean clearance and run-out
amplitude change with operating conditions. A knowledge of the true clearance is
essential for this type of testing because of the (clearance)3 effect on leakage flow
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Figure 7.8. Measured surface characteristics of the slipper and swash plate.

rate, particularly at small clearances. A disk running with a sinusoidal run-out dis-
placement superimposed on a mean clearance gives the appearance of a mean clear-
ance increase when leakage mean flow rate is considered over one cycle.

The test conditions considered should be put into context with those that would
probably exist for the test slipper when used in a real pump application – for exam-
ple with the following conditions:

� a pressure distribution across the slipper that is approximated by an equivalent
logarithmic decay passing through the center of the groove

� a pocket pressure marginally different from the pump pressure
� a swash-plate angle of 20◦
� a maximum pump pressure of 350 bar
� an ISO 32 mineral oil with a viscosity � = 0.032 N s/m2

The maximum hydrostatic force generated on this slipper is then 23 kN. The force
balance across the slipper and piston is determined by the pump manufacturer, per-
fect force balance occurring for a piston diameter of 28.9 mm. If an additional hydro-
dynamic force is required, then this will not be greater than typically 5% of the
hydrostatic force and is based on well-established design knowledge. There is no
explicit theory for determining the hydrodynamic lift for a circular slipper, but a
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Figure 7.9. A comparison of experimental and computed leakages, expressed as a percentage
of the nontilted slipper case (Bergada, Haynes, Watton, 2008).

good approximation can be made by using “equivalent” square plain bearing theory
with side leakage effects taken into account, as discussed in Chapter 3. It is further
assumed that:

� a square plain bearing of equivalent area, 36.3 mm × 36.3 mm, applies,
� the bearing central clearance h0 = 10 �m,
� a side leakage compensating factor of 0.44 applies, and
� a tangential velocity of 13 m/s still applies.

The bearing tilt is then calculated to be equivalent to a 0.26-�m increase from the
trailing edge to the leading edge. This gives a square bearing tilt angle of 0.00041◦

and therefore smaller by a factor of 12.2 compared with the minimum nonzero value
of 0.005◦ that was set in the tests. Even if all the slipper lift force was created by
hydrodynamic effects, a condition that would not normally occur with a nonblocked
slipper orifice, the tilt angle would still be only 0.0079◦.

7.2.5 Some Results with Slipper Tilt Included and for No Rotation

When leakage is represented as a percentage of the nontilted slipper, it is found
that for a given central clearance, all the different curves can be brought together.
Figure 7.9 presents the trend curve for all the central clearances studied, which are
compared with the theoretical predictions.

It can be seen that a good agreement is found, especially at the very low tilts that
exist in practice. From these results, it can be stated that leakage percentage increase
versus a nontilted slipper is mostly independent of the inlet pressure. Nevertheless,
it has been found experimentally that as the inlet pressure increases, the percentage
of increase in the trend line curve tends to slightly increase beyond the theoretical
predictions.

It must be stated at this point that it is extremely difficult to obtain consis-
tent leakage measurements in fluid power components such as a slipper because
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Figure 7.10. Groove pressure variation with tilt for different piston pressures, 10-�m central
clearance (Bergada, Haynes, Watton, 2008).

of unknown local temperature changes and the sensitivity that is due to the well-
known (clearance)3 effect. Results presented here represent the average of many
hours of repeated testing and are good indicators of a practical trend.

The equations presented are capable of predicting the pressure at all points
below the slipper, and Fig. 7.10 shows just one set of results for a central clearance
of 10 �m.

Because of the consideration of radial flow, the theoretical pressure differential
inside the slipper groove is slightly higher than what has been found experimentally.
In fact, the experiments have revealed that the pressure inside the groove is mostly
constant for the set of tilts and central clearances studied. Theoretically, the pressure
inside the groove decreases for a tilted slipper as the slipper clearance increases, and
it can be said that the minimum theoretical pressure is the most likely to appear in
reality. A well-designed groove geometry allows flow from the theoretical groove
high-pressure points to move almost instantaneously toward the groove theoretical
low-pressure points, thus equalizing the pressure within the groove. It can then be
concluded that for the groove studied, a rate of momentum exchange exists between
fluid particles at the top of the groove.

7.2.6 The Effect of Tilt and Rotation, Measurement, and CFD Simulation

Finally, consider the effect of swash-plate rotation on slipper behavior. The swash
plate was able to be turned at different rotational speeds between 0 and 1350 rpm.
This is opposite to the real pump method of operation using a fixed swash plate,
but the effect is the same. A tilt of 0.035◦ is studied here, and the clearance, when
corrected for surface finish and disk run-out, is 21 �m. Recalling previous work in
this section, it should be noted that the tilt being considered to highlight changes in
performance is much greater than will probably exist in practice. It is not possible
to obtain an explicit solution for the flow through the slipper with tilt and rotation,
and the use of a CFD simulation is invaluable to gain a further insight into the flow
and pressure distribution. Figure 7.11 shows the grid at the centerline defined along
the XX axis of Fig. 7.1 and for only a small part of the groove section.
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10 µm

Figure 7.11. CFD grid at the centerline of the slipper and at part of the groove (analyzed by
Worthing and Watton at Cardiff University in 2008).

The theory presented earlier, and for no slipper tilt, is compared with the 3D
CFD prediction as shown in Fig. 7.12, the two sets of results being indistinguishable
from each other.

The CFD result for the complete pressure distribution across the same XX axis
with tilt only is shown in Fig. 7.13. The tilt of 0.035◦ is equivalent to a gap of 33.5 �m
at the leading edge and 8.5 �m at the trailing edge. It can be seen from Fig. 7.13 that
at zero speed, there is a slight decrease in the groove pressure with a slight distortion
of the pressure profile across the two lands in the XX plane.

As the turning speed is increased, the groove pressure significantly increases,
and Fig. 7.14 shows the pressure profile for a turning speed of 125 rad/s (1195 rpm).
It can be seen that there is now a more noticeable pressure drop around the groove,
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Figure 7.12. A comparison of 3D CFD simulation and theory, no tilt, central clearance 21
�m, 150 bar (analyzed by Worthing and Watton at Cardiff University in 2008).
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Figure 7.13. Pressure distribution across the XX axis using CFD simulation, central clear-
ance 21 �m, 150 bar, tilt 0.035◦, zero speed. (analyzed by Worthing and Watton at Cardiff
University in 2008).

the leading-edge pressure distribution shape has barely changed, and the trailing-
edge pressure distribution shape is significantly changed because of the hydro-
dynamic effect of tilt. The 2D slice through the fluid shows that the pressure peaks
on the two faces toward the trailing edge are actually focused around a very small
area; but, clearly, a net moment at the slipper is created with an increase in total
force generated.

This first study shows what might be intuitively expected:

� An increased turning speed increases the groove mean pressure in the presence
of a significant slipper tilt.

� A small moment exists across the slipper in a direction to reduce tilt in the
presence of a significant slipper tilt and for practical tilts.

� The leakage flow reduction and the groove mean pressure increase will proba-
bly be negligible for practical slipper tilts.

Determining the leakage flow rate experimentally is straightforward, as deduced
from earlier work on the slipper with no tilt, but the mean clearance and run-out
amplitude vary with speed and pressure. CFD results suggest that leakage flow
barely changes with increasing speed, assuming a fixed clearance. Experimental
data, following many repeatable tests and with an unadjusted clearance over the
range of the tests, are shown in Fig. 7.15 for a clearance set at 15 �m. Results for a
tilted slipper and a nontilted slipper are compared.

The tilt angle is 0.03◦, much larger than will exist in practice to emphasize the
effect, and results in a slipper leading-edge height of 25.7 �m and a trailing-edge
height of 4.3 �m. The mean clearance does vary slightly with speed and pressure
because of run-out amplitude effects. These variations, of course, become more sig-
nificant at lower nominal clearance settings. From Fig. 7.15, it can be seen that leak-
ages slightly increase with tilt for a given pressure. The effect of turning speed is
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Figure 7.14. Pressure distribution across the XX axis using CFD simulation, central clearance
21 �m, 150 bar, tilt 0.035◦ 125 rad/s (analyzed by Worthing and Watton at Cardiff University
in 2008).

negligible for low pressures, but leakage flow slightly increases at the highest pres-
sure when tilt is present.

These results show the importance of accurate measurements of localized
temperature and clearance when interpreting experimental data. Considering the
inverse (clearance)3 effect on leakage flow, combined with the entrained flow that
is due to tangential velocity, the very small changes expected from theoretical con-
siderations might be masked by small geometrical distortions in practice because
of both pressure effects and run-out. The general conclusion, supported by further
work not reported here, is that speed and tilt have only a small effect on slipper
leakage for the particular slipper configuration considered with a single groove.
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7.3 Modeling a Forge Valve and Its Application to Press Cylinder Control

7.3.1 Introduction

Further details of this work may be found in Watton and Nelson (1993). Figure
7.16 shows the control system of the type used in some forging-press applications,
whereby main cylinder motion is created by using the flow bypass valve to control
flow out of the main line between pump and cylinder.

With the flow bypass valve (also termed a forge valve) closed, the cylinder
extends with the return relief setting the back pressure. At the same time, the accu-
mulator is charged to assist retracting motion of the main cylinder when the flow
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Figure 7.16. Press control circuit.
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Figure 7.17. Flow bypass valve test system and a schematic of the flow bypass valve with
follow-up positioning of the main poppet.

bypass valve is opened. In this way, the cylinder may be “bounced” during the forg-
ing cycle. To achieve better control of the press cylinder, closed-loop position con-
trol is desirable, and this study considers the influence of flow bypass valve design
on the closed-loop dynamic performance. In addition, the servovalve used is com-
pared with a pair of digitally switched PWM solenoid valves. The flow bypass valve
used is shown in Fig. 7.17 with the PWM-controlled solenoid valves in position. Posi-
tioning of the main poppet is achieved by closed-loop position control of the con-
trol cylinder spindle using an integral transducer coupled to the spindle. Movement
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(a) Cone seated (b) V notch

Qb Qb
xp xp

xo xv
Figure 7.18. Cone-seated and V-notch poppet
designs.

of the control spindle from its normally closed position allows the back pressure
Pr to collapse to atmospheric pressure conditions, resulting in rapid motion of the
main poppet. Precise flow across the main poppet therefore can be achieved by
this follower-type characteristic. Position control of the small-size control cylinder
spindle is achieved normally with an electrohydraulic servovalve; but, in this study,
PWM switching of a pair of fast-acting valves is also compared.

7.3.2 Developing the Component Equations

Flow Bypass Valve Poppet Design
Two poppet designs are considered, the original cone-seated design and an alterna-
tive design proposed and referred to as a V-notch design. The flow-rate paths are
quite different for each poppet design, as may be deduced from the poppet schemat-
ics shown in Fig. 7.18.

Detailed flow measurements are required for each poppet design to establish
equations required for computer analysis. During operation of the flow bypass valve,
a pilot control flow is needed; dynamic simulation results presented later show that a
small constant displacement occurs between the control spindle and poppet because
of the appropriate force balance requirement. Hence, any flow measurements made
with either poppet in situ will include a combination of leakage flow, true port flow,
and pilot control flow. A series of measurements is therefore required with and
without pilot control flow.

For the original cone-seat design, the poppet must be displaced by an amount
x0 before the valve is finally open. During this preopening phase, the small radial
clearance between the poppet and the bush provides a laminar-flow-type leakage
path initially of constant axial length followed by a decreasing length until the port
is finally open. For the V-notch design, the poppet is machined such that there is no
region of overlap. Hence, any poppet movement will result in port opening, thus cre-
ating the appropriate flow-control area. The design for the V notch is such that any
initial laminar-flow-type leakage should be much less than the original cone-seated
design and negligible when compared with the flow rate across the main control
port.

A comparison of the steady-state flow characteristics is shown in Fig. 7.19 for
the flow bypass valve in its operating mode.
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Figure 7.19. Flow characteristics for the two main poppet seat designs.

The displacement of the control spindle is obtained from a position transducer
fitted to the top of the valve, with the flow rate being obtained from a positive-
displacement flow meter. The results for the cone-seated poppet at small displace-
ments show a combination of leakage and pilot control flow in which the laminar
leakage contribution increases as the poppet lifts and theoretically falls to zero as
the region of overlap is passed. As the poppet lifts farther, the port flow becomes
dominant, the flow characteristic eventually having the expected Bernoulli form.
The results for the V-notch poppet appear to be superior to the original cone-seated
design because the nonlinearity at poppet displacements up to typically 2 mm is sig-
nificantly improved because of the anticipated drop in leakage flow. From a feed-
back control point of view, the minimization of nonlinearities is desirable, and the
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comparisons at first sight suggest that the V-notch design would be the preferred
choice.

Detailed dynamic simulation results show that the steady-state constant dis-
placement between control spindle and poppet occur so rapidly in relation to typ-
ical closed-loop response times that the steady-state flow characteristics presented
in Fig. 7.19 may be used for simulation purposes.

Main Poppet Flow Characteristic, Cone-Seated Design:

Qb = (k0 + k1x2
p

)
P0.775

i , 0.25 mm ≤ xp ≤ 1.66 mm,

Qb = Cq Ab

√
2Pi

�
, xp > 1.66 mm, (7.34)

Ab = 2�

[
ri − tan �

2
(xp − xo)

]
(xp − xo) sin �, xp > xo.

Main Poppet Flow Characteristic, V-Notch Design:

Qb = Cq Ab

√
2Pi

�
,

Ab = 4ri


xp sin−1

(
xp

xv

)
+ xr



√

1 −
(

xp

xv

)2

− 1




 . (7.35)

Determination of the pilot flow rate requires detailed modeling of the poppet
design, including the pressure drops down each small-diameter line together with
the poppet side leakage and the choke flow characteristic. This may be done with
reference to the notation shown in Fig. 7.17, and the various equations used are
listed as follows.

Pilot Flow Rates:

Qg = (Pi − Pc)
Rfg

, Qh = Pe

Rf h
, Q� = pr

Rf �

,

Qg = Cq�r2
c

√
2(Pc − Pr )

�
, Qh = Cq2�rs(xs − xp)

√
2(Pr − Pc)

�
. (7.36)

The solution for Pe is then readily determined to give:

Pe = D2
k R2

f h

2

(√
1 + 4Pr

D2
k R2

f h

− 1

)
,

Dk = Cq Ah

√
2
�

, Ah = 2�rs(xs − xp). (7.37)

The Flow Back to Tank:
Qo = Q� + Qh + Qb. (7.38)

Because the flow bypass valve operates in a dynamic mode in practice, the steady-
state flow characteristics previously derived must be combined with the appropriate
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dynamic characteristics. It is therefore necessary to consider the relevant flow-
continuity and force equations.

Force Balance for the Main Poppet:

Pi Abn − Pr Ar = Fb − Fs + Bv

dx p

dt
+ Mp

d2xp

dt2 ,

lower face, Fb = 2Cq cos � Ab(Pi − Po), (7.39)

upper face, Fs = 2Cq cos 69Ah(Pr − Pe),

Abn = �[ri − (xp − xo) tan �]2.

Flow Continuity at the Main Poppet Upper Face:

Qg − Qh − Q� = −Ar
dx p

dt
+ As

dxs

dt
+ Vr

�e

dPr

dt
, (7.40)

Control Spindle Motion Approximation
The motion of the control spindle is determined by making a number of realistic
assumptions regarding the dominant dynamic components. Because of the small
cylinder volumes and mass in comparison with other components, it is realistic to
neglect compressibility and inertia effects. The industrial servovalve used has a well-
defined flow characteristic, the manufacturer’s data being confirmed by experimen-
tal testing:

dxs

dt
≈ kf i

A2

√
Ps − �xs − Pk − Pf

(1 + �)3 ,
dxs

dt
> 0,

dxs

dt
≈ kf i

A2

√
Ps + �xs + Pk + Pf

(1 + �)3 ,
dxs

dt
< 0, (7.41)

� = A1

A2
, � = ks

A2
, Pk = Fk

A2
, Pf = Fs

A2
,

where ks is the weak retaining spring stiffness, Fk is the precompression force
exerted by the spring, and Fs is the flow-reaction force. Equation (7.41) does assume
that servovalve dynamics also may be neglected such that the application of the
servocurrent i causes instantaneous and proportional positioning of the spool. This
has been found again to be sufficiently accurate in terms of significant modeling
trends. The manufacturer’s data suggest a second-order transfer function approx-
imation for this servovalve, having a damping ratio of typically unity and an
undamped natural frequency of typically 140 Hz. This characteristic may be easily
added to the theory presented, if required.

7.3.3 Developing the System Equations

Additional components now to be considered are:

� pumps
� relief valves
� check valves
� press cylinder and accumulator
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The pressure–flow characteristics of the pumps, relief valve, and check valves were
obtained from the test rig by use of positive displacement and turbine flow meters
positioned in the appropriate lines. All the components tested had linear pressure–
flow characteristics apart from the pilot relief valve attached to the servovalve sup-
ply line. Consideration of the complete set of flow data then leads to the following
equations:

vane pump, Qv = Qvo − Ps

Rv

,

axial piston pump, Qp = Qpo − Pi

Rp
,

two-stage PRV, Q1 = (Pi − Pvr )
R1

, Pi > pvr ,

single-stage PRV, Q2 = (Po − Pvr )
R2

, Po > Pvr , (7.42)

check valves, Qch = Pi − (Po + Pvc)
Rc

, Pi > Po + Pvc,

pilot relief valve, Q3 = (Ps − 0.53Pvr )

k3
√

Pvr
, Ps < 0.53Pvr ,

Q3 = (Ps − Pvr )
R3

, Ps ≥ 0.53Pvr .

The unusual flow characteristic of the pilot relief valve is due to the poppet seat
design, and it should be noted that the valve does not normally operate at low
flow rates in practice. Measured steady-state characteristics for the relief valves and
check valve are given in Watton and Nelson (1993). Dynamics of each valve may be
added as a second-order effect refinement and taken from either the manufacturer
or in-house tests (Watton, 1988, 1989).

Flow Continuity:

Qp − Q1 − Qi = Ac
dxc

dt
+ Vi

�

dPi

dt
,

(7.43)

Q2 + Qa − Qch = Ao
dxc

dt
− Vi

�

dPo

dt
,

where transmission line dynamics have been neglected together with actuator leak-
age. Also, the check-valve flow rate Qch will exist only if transient pressure differen-
tial conditions allow the check valve to open. In normal operation, the check valve
should always remain closed. The existence of check-valve flow rate will require
knowledge of the vane pump circuit dynamics, the appropriate equation being:

Qv − Qch − Q3 − Qsv = Vr

�

dPs

dt
. (7.44)

Load Cylinder Force Equation:

Pi Ai − Po Ao = F� + Ba
dxc

dt
+ Fe + Ff sign

(
dxc

dt

)
+ M�

d2xc

dt2 . (7.45)
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In this model, F� is the vertically acting load force including the piston and rod mass
effect, Ba is the viscous damping coefficient, Fe is an end-stop spring stiffness contri-
bution, Ff is the sign-of-velocity-dependent stiction–friction characteristic, and M� is
the total load mass including fluid volume effects. The viscous damping coefficient
is varied as the cylinder enters the cushioned end zone of its stroke and the end-stop
force Fe is assumed to have a linear spring characteristic with a very high stiffness
when the rod becomes fully extended or retracted.

These variable characteristics are simply adjusted in the simulation to give a
realistic performance at the fully extended or retracted position. Under normal posi-
tion control, these conditions should not occur. A variety of stiction–Coloumb fric-
tion characteristics were introduced into the simulation using typical manufacturer’s
data. However, the effect on closed-loop position control was found to be insignifi-
cant, and this aspect of modeling was not considered further.

Accumulator
The accumulator used had a 4-UK-gal capacity and was of the precharged rubber-
bag type with a spring-loaded poppet valve to prevent bag distortion when discharg-
ing. Such an accumulator tends to be modeled under the assumption that the com-
pressibility of the fluid used is negligible in comparison with that for the gas. Also, a
polytropic exponent in the expansion equation is assumed to vary between 1.0 and
1.4, depending on the assumption of an isothermal process or an adiabatic process.
However, as discussed earlier, in real dynamic systems, the exponent may be higher
than 1.4, and for this study the following equations were used:

PVn = Ac, n = 1.55. (7.46)

The constant Ac is determined from the precharge pressure Pao and the initial
gas volume Va. It is assumed that the flexible bag may be considered as a zero-
mass and frictionless piston and that the oil and gas pressures are dynamically equal.
Hence, also assuming a rigid flask and neck gives:

Vg =
(

Ac

Pa

)1/n

, Vf = Va − Vg,

(7.47)

Qa = Cq Aa

√
2 |Po − Pa|

�
sign(Po − Pa).

This analysis ignores the effect of the spring-loaded poppet valve at the accumula-
tor inlet because its inclusion was found to be insignificant. The weak spring used
allows the valve to rapidly open, thus allowing the fixed orifice to dominate the flow
characteristic throughout the compression and decompression cycle. For pressures
greater than the precharge pressure Pao, the accumulator pressure is determined
from the flow-continuity equation as follows:

Qa = Vf

�

dPa

dt
,

(7.48)
Va

�
= Vf

�o
+ Vg

�g
, �g = (Pa + 105)

�g
.
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Figure 7.20. A comparison of transient responses for the main actuator and using a V-notch
main poppet design.

7.3.4 System Dynamics for Closed-Loop Control

For closed-loop press control, position feedback from the main cylinder is obvi-
ously used together with closed-loop control of the control spindle position. The
set of equations were modeled with Xanalog simulation software, a powerful icon-
based tool at the time that has been further developed. Step demand changes of
5 mm were used at a frequency of 2 Hz, and results are shown in Figs. 7.20 and
7.21. It can be seen that the main actuator displacements are similar within typically
±0.25 mm.

From the results, there is a slightly greater overshoot in practice than predicted
by theory. This is probably caused by fine-detail modeling effects of system dynam-
ics in the valves and accumulator. Actuator oscillation settles down more rapidly
in practice than the theory predicts; this is caused by higher damping effects in the
real system than are allowed for in the model. This is a common problem in fluid
power system modeling and is likely to be due to assumptions made about the pop-
pet damping characteristics, coupled with secondary resistance effects. On the actu-
ator return stroke, the model shows two distinct regions, where actuator velocity is
initially fast and then where it decreases after a short time. Although the experi-
mental work shows a similar characteristic, it is much less pronounced. The initial
movement is thought to be largely attributable to the effect of the accumulator dis-
charging; after it has fully discharged, the actuator is moved solely by the flow rate
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Figure 7.21. A comparison of control spindle transient responses using a V-notch main pop-
pet design.

produced by the pilot system vane pump. It is therefore likely that the accumulator
discharge characteristic is slightly different from that modeled.

What is most interesting, although not shown, is that changing the main-
stage poppet from cone-seated to V-notch resulted in indistinguishable differences
between both the measured and simulation results. This is pursued in more detail in
Watton and Nelson (1993). Because the two main-stage poppet designs were devel-
oped from radically different concepts, the similarity in performance between the
two designs is surprising, particularly when the steady-state flow characteristics are
considered. Also noticeable is that the poppet seems to be slightly open at all times,
unlike the simulation prediction. Secondary fluid inertia effects may cause the pop-
pet to open and close more slowly than predicted. The fact that the valve does not
close is important because it is clear from both experimental and modeling results
that the flow-bypass-valve flow characteristic, around the closed position, is not par-
ticularly important when operating under dynamic conditions. It does explain why
the cylinder closed-loop position response is not significantly affected by the change
in bypass-valve poppet design.
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Figure 7.22. PWM switching concept for flow-bypass spindle position control.

7.3.5 The Use of PWM Control of a Pair of Fast-Acting Solenoid Valves

The servovalve controlling the bypass-valve control spindle is now replaced with a
pair of fast-acting three-port, two-position solenoid valves, as shown in Fig. 7.22 and
on the test equipment in Fig. 7.17.

The solenoid valves have switch-on and switch-off times of typically 5 ms and
2 ms, as reported by the manufacturer. They have a rated flow rate of 3 L/min at
a pressure of 70 bar and are adequate for this particular application. A drive fre-
quency of 50 Hz was used, and a series of tests was necessary to optimize the per-
formance. Figure 7.23 shows some results.

The cylinder transient response is optimized by using the original servovalve
and the result obtained using digital valves with 0.5-mm diameter chokes in each
line. The latter is not optimized in the sense that choke diameter could be refined to
improve the response. The PWM control approach used the same drive electronics
used in Chapter 6.6.1 with pulse width set by the position error. It is worth noting
that:

� Without chokes, the position response had noticeable yet acceptable noise con-
tribution; there was no overshoot but there was undershoot.

� With a choke on the return line only, the noise effect was still present, and
the overshoot and undershoot were the same as shown in Fig. 7.23, which has
chokes in both lines.

7.4 The Modeling and Control of a Vehicle Active Suspension

7.4.1 Introduction

A car suspension incorporating a previously used Lotus UK active actuator and a
TVR UK suspension–wheel unit is studied both experimentally and analytically.
An emphasis is placed on hydraulic modeling using a series of transfer functions
linking the hydraulic and suspension components. This is significantly aided by use
of a Moog programmable Servocontroller (PSC) for nonlinear control implemen-
tation. The system equations are developed using linear state-space theory, and a
suitable form is proposed for further design studies. It is shown that the hydraulic
components significantly contribute to the system dynamics and, hence, cannot be
neglected when control schemes are formulated. In particular, the significance of
hydraulic bulk modulus on dynamic performance is evaluated, and the importance
of accurately determining all components of velocity-type damping is highlighted.
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Figure 7.23. A comparison of servovalve and PWM valve control.

Fully active electrohydraulic control of the suspension is then considered using
both pole assignment (PA) and LQC techniques to design the state feedback gains
with a view to achieving an optimum body acceleration characteristic, based on
a validated linearized mathematical model. Computer simulation of the complete
system suggests that the LQC design approach gives the better performance char-
acteristic. The PSC is implemented to include features such as gain scheduling and
state gain switching to achieve improved control. It is shown that although body
displacement compensation is naturally achieved for road input changes, the global
optimum design for acceleration transmissibility could not be achieved because of
practical limitations caused by the predicted low transducer gain between wheel and
body. A further feature of the programmable controller approach was the ability to
change state feedback gains during operation. This was found to be necessary to
move the suspension from its initial rest position to its operating position. However,
an improved performance in body acceleration amplitude control was still possible
compared with the optimum passive suspension theoretical predictions.
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Figure 7.24. Details of the 1/4 car test rig.

Consider the 1/4 car active suspension system shown in Fig. 7.24. Both road and
active actuator are controlled using Moog electrohydraulic servovalves and Moog
M2000 PSCs operating with 2-ms sampling intervals. The suspension and wheel unit
is linked at an angle � to the plane of movement of the body mass, which is con-
strained to move vertically by means of linear bearings. A load cell is positioned
between the actuator body and car-body pivot point, and LVDT position transduc-
ers together with velocity transducers are appropriately placed to measure road,
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Figure 7.25. Dynamic model with no active control.

wheel, and body motion. Further details regarding this work by the principal inves-
tigators may be found in Watton, Holford, and Surawattanawan (2001, 2004).

Data were collected by a high-speed parallel-channel data-acquisition card sys-
tem to enable further analysis to be undertaken using the MATLAB simulation and
signal-processing environment. A vast amount of experimental testing was carried
out using both frequency responses, by means of a transfer function analyzer with
pseudobinary random signal excitation, and transient analysis, by means of the step
response method. General trends in frequency response were clearly identified, but
the Bode diagrams were not sufficiently accurate for comparison purposes beyond
a frequency of typically 15 Hz and inadequate to use for parameter identification.
Modeling concepts are presented by means of the transfer function approach, in
keeping with most of the background literature, and experimental parameter iden-
tification and validation were achieved using step response testing.

7.4.2 Determining the Open-Loop Fluid Power Model

To obtain a feel for the dynamic behavior, Fig. 7.25 illustrates the dynamic linear
model for the hypothetical situation with the actuator fixed in its central position
and with no active control. This is not possible to achieve in practice because of
cross-line leakage, which results in the car-body mass moving to its rest position,
but serves to illustrate the frequency domain of interest. Therefore, the servovalve
spool is assumed to be centered in the absence of an input signal.

The vehicle body mass M = 240 kg and the wheel–tire mass m = 40 kg. Actu-
ator and lines create an oil stiffness contribution ko together with velocity damping
generated by oil viscosity effects and also a suspension mechanical friction compo-
nent to a lesser extent. Oil stiffness is defined with the actuator in its central posi-
tion and equal length lines and, hence, with equal oil volumes on either side. Note
that low-cost synthetic flexible hoses were used to couple the actuator and the ser-
vovalve; hence, it was known that a low effective bulk modulus would exist. The
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viscous damping coefficient is Bv, and the cross-line leakage also may be considered
to be equivalent to velocity damping Bo in series with oil stiffness ko. The wheel tire
has a stiffness kt and an assumed velocity damping Bt. Related work resulted in the
following data:

� Effective bulk modulus, �e = 0.22 × 109 N/m2

� Cross-line leakage resistance, Ri = 9.8 × 1010 N m−2/m3 s−1

� Oil stiffness, ko = (2�eA2/V) = 3.73 × 105 N/m
� Tire stiffness, kt = 2.8 × 105 N/m
� Actuator viscous damping coefficient, Bv = 300 N/ms−1

� Tire damping coefficient, Bt = 4000 N/ms−1

� Cross-line damping coefficient, Bo = RiA2 = 5930 N/ms−1

Cross-line leakage damping is the most significant, followed by tire damping and
the much lower pure viscous damping. Oil stiffness, even when corrected for actu-
ator angle, is as significant as the tire stiffness. To obtain the equivalent linearized
dynamic open-loop transfer functions for the system, it is first necessary to consider
the servovalve flow equations. It will be recalled from previous chapters that at zero
steady-state current, the servovalve flow gains are:

extending, kf

√
Ps − PL

2
, retracting, kf

√
Ps + PL

2
, PL = Mg

A
. (7.49)

For this study, the gain ratio is then given by:

gain retracting
gain extending

=
√

Ps + PL

Ps − PL
= 1.69. (7.50)

A particular advantage of using a PSC is that the control loop forward gain
may be modified by a real-time algorithm, depending on whether the actuator is
extending or retracting. In this study, the forward gain was increased by a factor of
1.3 when extending and decreased by a factor of 1.3 when retracting.

Considering the equations using state-space notation for derivatives, then the
actuator flow-rate equations including compressibility and cross-line leakage may
be written.

Q1 = Q2 = ki i, (7.51)

Q1 = A(żb − żw) + V
�e

Ṗ1 + (P1 − P2)
Ri

, (7.52)

Q2 = A(żb − żw) − V
�e

Ṗ2 + (P1 − P2)
Ri

. (7.53)

The actuator hydraulic force is given by:

F = A(P1 − P2). (7.54)

The suspension equations of motion are:

Mz̈b = F cos � − Bv (żb − żw) , (7.55)

mz̈w = −F cos � + Bv (żb − żw) + kt (zr − zw) + Bt (żr − żw) . (7.56)
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Therefore, taking Laplace transforms and neglecting initial conditions allows the
force transfer function to be written:

F = ki A(
sV
2�e

+ 1
Ri

) i − s A2(
sV
2�e

+ 1
Ri

) (zb − zw) . (7.57)

For the locked actuator condition with no active feedback, i = 0:

F = − s A2(
sV
2�e

+ 1
Ri

) (zb − zw.) (7.58)

The transfer function relating road input zr to car-body displacement zb is:

zb

zr
= b0 + b1s + b2s2 + b3s3

a0 + a1s + a2s2 + a3s3 + a4s4 + a5s5
. (7.59)

These coefficients are obtained from:

a0 = 4kt

Ri

(
A2cos � + Bv

Ri

)
,

a1 = 2A2 cos �

(
kt V
�e

+ 2Bt

Ri

)
+ 4Bv

Ri

(
kt V
�e

+ Bt

Ri

)
+ 4kt M

R2
i

,

a2 = 4m
Ri

(
A2cos � + Bv

Ri

)
+ BvV

�e

(
4Bt

Ri
+ kt V

�e

)
,

+ 4M
Ri

(
A2cos � + Bv

Ri
+ kt V

�e
+ Bt

Ri

)
+ 2A2 Bt V cos �

�e
,

a3 = 4m
Ri

(
BvV
�e

+ M
Ri

)
+ MV

�e

(
4Bv

Ri
+ 2Bt

Ri
+ 2A2cos � + kt V

�e
+ 2Bt

Ri

)
,

+ Bt BvV2

�2
e

+ 2A2mV cos �

�e
,

a4 = V
�e

(
4mM

Ri
+ BvmV

�e
+ Bv MV

�e
+ Bt MV

�e

)
,

a5 = mMV2

�2
e

,

b0 = 4kt

Ri

(
Bv

Ri
+ A2 cos �

)
,

b1 = 4Bv

Ri

(
Bt

Ri
+ kt V

�e

)
+ 2A2 cos �

(
kt V
�e

+ 2Bt

Ri

)
,

b2 = 4Bt BvV
Ri �e

+ 2A2 Bt V cos �

�e
+ Bvkt V2

�2
e

, b3 = Bt BvV2

�2
e

, (7.60)
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Figure 7.26. Magnitude response of the vehicle body with no active control.

where for this study the coefficients are:

a0 = 6.51 × 10−13, a1 = 4.82 × 10−14, a2 = 2.10 × 10−15,

a3 = 3.48 × 10−17, a4 = 2.37 × 10−19, a5 = 1.01 × 10−21,

b0 = 6.51 × 10−13, b1 = 2.02 × 10−14,

b2 = 1.64 × 10−16, b3 = 1.26 × 10−19.

(7.61)

Figure 7.26 shows the response magnitude of only the body, for a road input distur-
bance, and illustrates the two fundamental resonant frequencies of 3.9 and 20.2 Hz
in the absence of cross-line leakage at the actuator.

These frequencies may be easily verified from the previous transfer function,
which produces the following undamped characteristic equation:

1 +
(

M + m
kt

+ M
ko cos �

)
s2 + Mm

kt ko cos �
s4 = 0. (7.62)

It can be seen from Eq. (7.62) that the oil stiffness must be corrected for the actuator
angle.

For an infinitely stiff actuator, the single natural frequency would be 5 Hz; for an
infinitely stiff tire, the single natural frequency would be 5.9 Hz. Hence, for this sys-
tem, it is not a simple matter to couple stiffnesses and masses to define convenient
“body” or “wheel” modes of oscillation. However, it is clear that the two natural
frequencies are isolated by distinct body and wheel mass effects. Figure 7.26 shows
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Figure 7.27. Block diagram for the single-DOF test.

that, in reality, the experimentally determined effects of actuator damping Bv and
tire damping Bt are evident, illustrating amplitude attenuation throughout the fre-
quency range of interest. When cross-line leakage is introduced, and using the value
experimentally identified from dynamic tests, the amplitude response is further and
significantly changed.

7.4.3 Actuator Dynamic Stiffness

Consider again Eq. (7.58), which is reproduced here:

F = − s A2(
sV
2�e

+ 1
Ri

) (zb − zw) . (7.63)

It can be seen that there are two frequency regimes, as follows:

low frequency, F → B0(żb − żw), a cross-line viscous damper; (7.64)

high frequency, F → ko(zb − zw), a hydraulic spring. (7.65)

This high-pass, phase-advance filter characteristic that is due to cross-line leakage is
useful for damping lower-frequency components, and inserting data into Eq. (7.63)
gives a break frequency of 10 Hz. Therefore, its damping effect will be of value
for frequencies below this break frequency, which in this example has a fortuitous
influence on the body mode of vibration.

7.4.4 The Introduction of Feedback, the One-Degree-of-Freedom (1 DOF)
Test to Identify Actuator Viscous Damping Bv and Leakage Resistance Ri

To determine the actuator viscous damping Bv and leakage resistance Ri , it is nec-
essary to introduce feedback control of the servovalve, as shown in Fig. 7.27.

The simplest approach is to use position control of the actuator relative to
the wheel with no ground motion. The programmable controller was used with an
LVDT position transducer linked between the wheel axle and the body. For the
expected frequency of oscillation of the vehicle body, the dynamics of the servo-
valve may be neglected. Assuming the position transducer gain F 1, an additional
data-acquisition gain N, the feedback gain F 2, the forward gain R, a D/A and ser-
voamplifier gain G, then the system equations become:

2ki Ai = 2A2żb + V
�e

Ḟ + 2
Ri

F, (7.66)
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Figure 7.28. Typical single-DOF transient responses.

Mz̈b = F cos � − Bv żb, (7.67)

i = GR(zbref − zbf ), (7.68)

zbf = F1 F2 Nzb. (7.69)

Therefore, the closed-loop transfer function relating zbf to zbref (the voltage equiva-
lent of zbf) is given by:

zbf

zbref
= a0

a0 + a1s + a2s2 + a3s3
. (7.70)

The coefficients are given by:

a0 = 2AF1 F2 Gki NRcos �, a1 =
(

2Bv

Ri
+ 2A2 cos �

)
,

a2 =
(

2M
Ri

+ BvV
�e

)
, a3 = MV

�e
,

a0 = 2.30 × 10−6, a1 = 1.14 × 10−7,

a2 = 5.00 × 10−9, a3 = 7.78 × 10−11.

(7.71)

A comparison between simulation and experiment is shown in Fig. 7.28 with gain
scheduling being implemented in both cases. Demand changes of ±5 mm are illus-
trated and similar comparisons have been validated for a range of inputs.

The coefficients of this third-order transfer function were identified using stan-
dard software tools within the MATLAB environment, the prediction error method
producing the most stable approach from those available in the library. Experimen-
tal data, using step changes in demand for both extending and retracting, were
obtained at a sampling frequency of 500 Hz, and the resulting discrete transfer
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Figure 7.29. Block diagram of the 2-DOF test.

function was transformed to continuous time using the bilinear transformation.
This then allowed explicit determination of the unknown parameters, calculated
to be:

actuator viscous damping coefficient, Bv = 300 N/m s−1;

actuator leakage coefficient, Ri = 9.8 × 1010 Nm−2/m3 s−1.
(7.72)

In addition, parameter identification from the 1-DOF test may be used to validate
the servovalve flow gain. The identified value was found to be the mean of the
extending and retracting gains and within 1% of the value obtained from the servo-
valve no-load steady-state flow test.

7.4.5 The Introduction of Feedback, the Two-Degree-of-Freedom (2 DOF)
Test to Identify Tire Viscous Damping Bt and Validate Tire Stiffness kt

To determine the tire damping coefficient Bt and validate tire stiffness kt, the road
input zr is used with servovalve control having a zero reference input but with nega-
tive feedback from the measured position (zb − zw) for identification purposes only.
Figure 7.29 shows the general block diagram, and for this system the equations
are:

2ki Ai = 2A2 (żb − żw) + V
�e

Ḟ + 2
Ri

F, (7.73)

Mz̈b = F cos � − Bv (żb − żw) , (7.74)

mz̈w = −F cos � + Bv (żb − żw) + kt (zr − zw) + Bt (żr − żw) , (7.75)

i = GP [0 − NF1 F2 (zb − zw)] . (7.76)

The transfer function relating road input zr to car-body displacement zb is:

zb

zr
= b0 + b1s + b2s2 + b3s3 + b4s4

a0 + a1s + a2s2 + a3s3 + a4s4 + a5s5 + a6s6
. (7.77)
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The transfer function coefficients are given by:

a0 = 4AGki NPF1 F2kt cos �

Ri
,

a1 = 2AGki NP
(

F1 F2kt Vcos �

�e
+ 2Bt F1 F2 cos �

Ri

)
+ 4kt

Ri

(
A2 cos � + Bv

Ri

)
,

a2 = 2AGki NP
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2F1 F2mcos �

Ri
+ Bt F1 F2V cos �

�e
+ 2F1 F2 M cos �

Ri

)
,
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�e
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Ri

)
+ 4Bv
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(
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�e
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b4 = Bt BvV2

�2
e

. (7.78)

Comparisons between experiment and model prediction for the 2-DOF test, for step
demand changes in road position, are shown in Fig. 7.30. Only two parameters need
to be identified from this test: the tire stiffness kt and the tire damping Bv . These
parameters were then varied to give the best fit between experimental step response
data and transfer function equation (7.77), which resulted in the following:
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a0 = 2.80 × 10−11, a1 = 1.50 × 10−12, a2 = 8.25 × 10−14,

a3 = 2.55 × 10−15, a4 = 3.48 × 10−17, a5 = 2.37 × 10−19,

a6 = 1.01 × 10−21, b0 = 2.80 × 10−11, b1 = 1.50 × 10−12,

b2 = 2.65 × 10−14, b3 = 1.64 × 10−16, b4 = 1.26 × 10−19,

tire stiffness, Bt = 2.8 × 105 N/m,

tire velocity damping coefficient, Bt = 4000 N/m s−1. (7.79)
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Figure 7.30. 2-DOF model validation for a road displacement of ±10 mm.

The tire stiffness identified from dynamic testing is a very accurate validation of
the value that may easily be calculated from a compressive test using a laboratory
materials testing machine. This test was done with the tire compressed with diame-
tral displacements up to 40 mm. This produced a linear force–displacement char-
acteristic with a small amount of hysteresis. The stiffness measured from this test
is doubled to validate the dynamic test in which the tire is in its normal mode of
compression between the hub and the road. This static test gave a value of kt = 2.8
× 105 N/m, the same as the dynamic test and both for a tire preload pressure of
2.04 bar.

It is important that the road input hydraulic response is correctly modeled to
allow comparisons to be made between experiment and theory, although a detailed
mathematical knowledge of this separate position control loop is not necessary. A
second programmable controller was used to close the position control loop, and it
was deduced that a simple first-order transfer function, with a time constant of 0.06s,
was a sufficiently accurate representation of the dynamic behavior over all the test
conditions used. Again, additional tests were used to validate the model for other
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input conditions. Generally, the results are good; usually, the simulation predictions
are a little more lightly damped than the experimental data.

7.4.6 A State-Space Model for the Active Suspension

The state variables are defined as follows:

x1 = żb, x2 = żw, x3 = F,

x4 = zb − zw, x5 = zw − zr ,
(7.80)

x = state vector =




żb

żw

F
zb − zw

zw − zr


 . (7.81)

The open-loop equations may then be written in the following state-space format:

ẋ = Ax + Be + Gdżr , (7.82)

A=




− Bv

M
Bv

M
cos �

M
0 0

Bv

m
− (Bv + Bt )
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−cos �
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0 −kt
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−2�e A2

V
2�e A2

V
− 2�e

VRi
0 0

1 −1 0 0 0

0 1 0 0 0




, (7.83)

B =




0
0

2ki AGP�e

V
0
0


 , (7.84)

Gd =




0
Bt

m
0
0

−1


 . (7.85)

The control signal is e and żr is the disturbance signal (i.e., velocity of road distur-
bance). For full state feedback, and considering the implementation of the Moog
PSC, the control signal is given by:

e = −Kx,

e = −NK1 K2x,

e = −N [I1 I2żb + J1 J2żw + H1 H2 F + F1 F2(zb − zw) + L1L2(zw − zr )] ,

(7.86)
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where:
K = 1 × 5 state feedback gain vector,
N = A/D gain,
K1 = state feedback gain vector for the controller,

K1 = [ I1 J1 H1 F1 L1
]

(7.87)

K2 = transducer gain matrix




I2 0 0 0 0
0 J2 0 0 0
0 0 H2 0 0
0 0 0 F2 0
0 0 0 0 L2


 . (7.88)

Validation of the state-space model is indicated by Figs. 7.31 and 7.32, which show
measured and computed state variable responses for a step input to the servovalve
controlling the road input system. The results represent nonoptimized gains that
were selected to give a stable behavior, with only feedback zb − zw being used.

A range of input conditions from ±5 to ±15 mm were validated and indi-
cate comparisons similar to those selected. The results show excellent directional
symmetry because of gain scheduling for both measured and simulated data, the
simulation results indicating a small but detectable lower damping characteristic
than that of the measured performance. The measured wheel-hub velocity shows
excessive damping compared with that of the predicted response, although the
unusual characteristic around the peak velocity is validated by the simulation. The
wire potentiometer–tachogenerator used to measure velocity also contributes to the
measured overdamping, and it would appear that the measured results are not reli-
able at speeds below 0.05 m/s.

7.4.7 Closed-Loop Control Design by Computer Simulation

Closed-loop control is based around the Moog M2000 PSC. Two separate units were
used, with each unit capable of controlling two servovalves. Key features of the PSC
are as follows:

� The engineering user interface is a text-based programming language specifi-
cally designed for the configuration and programming of the PSC. The software
is installed in each of the supervisory PCs and runs automatically when the com-
puters are switched on.

� Programs are created off-line using ASCII code called a “log file.” When a pro-
gram is loaded, it is automatically compiled (alerting the user of any errors) and
transferred to the PSC by the RS232 serial link.

� The program continues to run until either the computer is switched off or
another program is loaded.

� While the PSC is running a program, the operator is presented with a screen
displaying key system parameters. The screen is split into two with a maximum
of 16 parameters displayed on the left-hand side, which can be modified, and up
to a further 16 parameters on the right-hand side for real-time monitoring.

Note that since this work was undertaken, the PSC has been updated to the
M3000 PSC, with a faster sampling time. Figure 7.33 shows the control concept.
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Figure 7.31. Validation of the state variables for a road step change of +10 mm → −10 mm.
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Figure 7.32. Validation of the state variables for a road step change of −10 mm → +10 mm.



464 Some Case Studies

Monitor

M2000-1 
controller

M2000-2 
controller

Load cell 

m

zb

zr

zw

rz

wz

wz

wz

rzwz

wzbz

F

bz

bz

bz

−

−

M

Figure 7.33. Schematic of the control concept.

Two design methods are considered, PA and LQC, and initially through com-
puter simulation. This was done to minimize the possibility of control-loop instabil-
ity of the test rig by random selection of individual transducer gains. A diagram of
the modeling and state control approach is shown in Fig. 7.34.

One novel feature of the PSC approach is the ability to gain schedule the servo-
valve control signal in real time using existing algorithm features. This effectively
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Figure 7.34. The closed-loop control concept.
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compensates for the effect of servovalve flow gain change, depending on whether
the active actuator is extending or retracting, as discussed earlier in this section. This
effect is significant and the implementation of gain scheduling has two advantages:

� The transient response in either direction may be matched within the con-
straints of the practical limitation, principally because of dynamic pressure dif-
ferential change effects.

� The linearized dynamic model may be used with more confidence because it
assumes constant servovalve flow gains in each direction.

Considering the state-space equations derived in the previous sections com-
bined with the measured data then gives:

A =




−1.25 1.25 3.7 × 10−3 0 0
7.5 −1.08 × 102 −2.22 × 10−2 0 −7 × 103

−3.73 × 105 3.73 × 105 −63 0 0
1 −1 0 0 0
0 1 0 0 0,


, B =




0
0

186
0
0


 .

(7.89)

The controllability matrix U is given by:

U = [B AB A2 B A3 B A4 B]. (7.90)

It will be deduced that because the rank of U is 5, then the system is state control-
lable.

Closed-Loop Design Using Pole Assignment
The characteristic equation for the open-loop model is given by:

|s I − A| = a0 + a1s + a2s2 + a3s3 + a4s4 + a5s5. (7.91)

The desired closed-loop characteristic equation is given by:

�0 + �1s + �2s2 + �3s3 + �4s4 + �5s5. (7.92)

Therefore, the solution for the feedback signal is given by:

e = −Kx,

K = [(�0 − a0) (�1 − a1) (�2 − a2) (�3 − a3) (�4 − a4)]T−1
,

T = UW,

W =




a1 a2 a3 a4 1
a2 a3 a4 1 0
a3 a4 1 0 0
a4 1 0 0 0
1 0 0 0 0


 .

(7.93)
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For the present study:

W =




1.02 × 107 5.96 × 105 3.27 × 104 1.72 × 102 1
5.96 × 105 2.37 × 104 1.72 × 102 1 0
3.27 × 104 1.72 × 102 1 0 0
1.72 × 102 1 0 0 0

1 0 0 0 0


 ,

T =




7.55 × 10−10 4.82 × 103 68.8 0.688 0
−9.22 × 10−9 1.58 × 10−11 4.69 × 10−13 −4.13 0
−1.24 × 10−5 1.62 × 106 1.32 × 106 2.02 × 104 186

4.82 × 103 68.8 4.82 0 0
1.58 × 10−11 4.69 × 10−13 −4.13 0 0


 .

(7.94)

To start the design process, two dominant poles were selected to have values of
−7.45 ± j6.37, giving an approximated second-order transfer function an undamped
natural frequency of 1.56 Hz and a damping ratio of 0.76. The three remaining poles
were placed at equal values of −75. This condition actually minimizes body acceler-
ation, as will be shown later. The solution is:

K = [−756 2500 0.359 8250 91,000
]
. (7.95)

From Eqs. (7.87) and (7.88):

K1 = N−1 KK2,

K2 =




5 0 0 0 0
0 5 0 0 0
0 0 66.7 × 10−6 0 0
0 0 0 57.2 0
0 0 0 0 18.2


 ,

K1 = [−0.0944 0.313 3.37 0.09 3.13].

(7.96)

Consider Now Closed-Loop Design Using LQC
Considering earlier work in Chapter 6, a performance index is selected as
follows:

J =
∫ ∞

0
(yT Qy + eTRe) dt,

(7.97)

Q =

q1 0 0

0 q1 0
0 0 q1


 .

The output is given by:

y = Cx,

C =

0 0 1 0 0

0 0 0 1 0
0 0 0 0 1


 .

(7.98)

Recalling that e = −Kx, the performance index then becomes:

J =
∫ ∞

0
(xTCT QCx + xT KT RKx) dt. (7.99)
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Minimizing the performance index then results in the solution of the matrix Ricatti
equation given by:

AT P + P A+ CT QC − PT BR−1 BT P = 0. (7.100)

For this application, P contains 15 constants and the feedback gains are then given
by:

K = R−1 BT P,

K1 = N−1 KK−1
2 .

(7.101)

The difficult aspect of this approach is the selection of the four weighting param-
eters, R, q1, q2, q3. Recalling previously published work (Surawattanawan, 2000;
Thomson, 1976), the global minimum point determination is not affected by the
choice of R, which is then selected to have a value R = l. Because q2 and q3 vary
with the square of the measured variables (zb – zw) and (zw − zr), it is proposed that
the ratio q1/q2 is also specified as a square law evaluated with each maximum dis-
placement – in this study, 25 and 6.6 mm. This gives q1/q2 = 13.5, and the problem
is reduced to selecting just q1 and q2. If the design is initiated by selecting q1 = 43.7
and q2 = 2 × 106, then it follows that:

K = [−420 1690 6.25 1410 −8100],

K1 = [−0.053 0.211 58.5 0.015 −0.278].
(7.102)

Following the establishment of ostensibly workable control laws using both PA and
LQC methods, the active control performance may be further evaluated by means
of computer modeling; in this study, within the MATLAB Simulink environment.
In practice, this means a large number of simulations, selected as 150 for this study,
as the following parameters are varied:

� the undamped natural frequency and damping ratio for PA control
� the weighting factors q1 and q2 for LQC

A random road input model was used, and the rms values of the appropriate
system variable were used to compare results. An integrator with a gain of 0.223
was used to represent the transfer function relating the road-input displacement to
Gaussian white noise representing the road-input velocity. The gain represents the
situation in which a vehicle runs at a relatively high speed of 150 km/h on a rela-
tively rough road surface, and a simulation time of 40 s was used for all simulations.
Therefore, the average level of the road input displacement changes with time and is
considered to be representative of a real road surface. For completeness, it is useful
to also compare the purely passive suspension, and this is done by assuming typical,
yet hypothetical for this study, suspension stiffnesses in the range ks = 20–118 kN/m.
A suspension damping rate is implied by assuming the equivalent damping ratio
of the resulting second-order transfer function for the suspension mode of vibra-
tion. Hence, a complete plot of body rms acceleration may be obtained, and the
results for the three control schemes are shown in Fig. 7.35. For all the simulation
results shown, the maximum rms values are (zw − zb)max = 25 mm and (zr – zw)max =
6.8 mm.

It can be seen that LQC gives the lowest value of rms acceleration, but this will
be at the expense of an increased suspension displacement.
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Figure 7.35. A comparison of strategies for a road random input profile.

7.4.8 Experimental Validation of the Preferred LQC System

Both optimum PA and LQ control designs result in extremely low feedback gains
for the body-to-wheel (zw − zb in practice) displacement transducer, as evident from
the calculations shown in Eqs. (7.96) and (7.102). The design is also limited to the
midposition of the active actuator because this is the condition on which the open-
loop hydraulic linearized model is based.



7.4 The Modeling and Control of a Vehicle Active Suspension 469

-4

-3

-2

-1

0

1

2

3

4

0 1 2 3 4 5
  Time (s)

B
od

y 
ac

ce
le

ra
ti

on
  (m

/s
2  ) q1 = 2 × 10-4                                q1 = 1 

Figure 7.36. The effect of state feedback gain changes for no-optimal conditions developed
from LQC theory.

However, when the system is shut down, the active actuator naturally moves
to its fully retracted position because of the body mass combined with hydraulic
leakage. These combined aspects mean that for the preferred closed-loop operating
condition, the initial servovalve current is insufficient to move the body from its rest
position to the operating midposition following subsequent start-up of the system.
Fortunately, a further novel feature of the Moog PSC is the ability to switch gains in
real time, thus allowing different settings to be used for both rest and operating con-
ditions. Before this gain switching is done, it is preferable to consider its implication
from a theoretical point of view.

Consider Fig. 7.35(c) and the trajectory containing the optimum condition as
indicated by the path A–B–C. None of these conditions allowed initial positioning
of the suspension for the reason previously stated, and it was concluded that the the-
oretical optimum given by q1 = 44 and q2 = 2 × 106 could not be implemented. Mov-
ing to the left-hand side of the mapping reduces the suspension stroke displacement;
for example, selecting q2 = 3 × 109 reduces the maximum stroke displacement by
1/3. Moving down the trajectory via similar points A–B–C as before means that the
dominant closed-loop poles move off the negative real axis in the s plane such that
the natural frequencies vary between 2.9 and 0.88 Hz with a damping ratio change
from 0.65 to 0.72. Thus, it can be seen that increasing the penalty function for zw − zb

causes a degradation in the acceleration isolation performance. However, under
this new trajectory, it was found possible to move the active actuator to its mid-
position after control is initiated, although points A → B were only experimentally
feasible.

Comparisons between theory and experiment were then made by selecting
q2 = 3 × 109 with an initial value of q1 = 2 × 10−4 to determine the gain settings.
With the system now operating with the active actuator in its midposition, and for
a sinusoidal road input, the new gains were calculated using q1 = 1, the maximum
feasible, and then switched. An accelerometer was attached to the body, and the
effect of the gain change at a frequency of 5 Hz is shown in Fig. 7.36.

It is clear from Fig. 7.36 that the gain switch is stable and significantly reduces
the vibration amplitude. A comparison between simulation and measurement is
shown as Fig. 7.37 for q1 = 2 × 10−4 and q1 = 1.

The LQ design approach was found to be better than the PA approach because
it effectively shifts the dominant natural frequency to a lower value. This leads to
a “softer” control approach and allows the damping rate to be increased to near
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Figure 7.37. Body acceleration for LQC control at a frequency of 5 Hz.

its critical value. It was found possible to reduce the acceleration amplitude by
about 30% of the passive suspension case. The LQ approach has a greater flex-
ibility because it allows different weights to be assigned to each measured state.
It was found that a great deal of experience was needed to select the LQ design
weights and, following many analytical solutions to the matrix Ricatti equation, a
global minimum point could be theoretically established. This resulted in a very low
suspension position gain to the extent that the suspension could not be moved from
its rest position to its operating midposition. It is concluded that:

� The complex system mathematical model, because of the inclusion of practical
hydraulic characteristics, means that only suboptimal solutions are possible;

� the theoretical design approaches considered were considerably aided by the
ability to gain schedule the servovalve gain in practice, allowing a linearized
theory to be more applicable to the open-loop nonlinear equations; and

� the programming facility of the PSC was also particularly useful in selecting dif-
ferent state feedback gains to allow the suspension to be moved to its operating
position.

7.5 The Performance of a Car Hydraulic Power-Steering System

7.5.1 Introduction

This study was undertaken principally by colleague Y Xue with support from
TRW Steering Systems UK, which provided the commercially available power-
steering unit and its design details, some of which are confidential (Xue and Watton,
2005).
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Power-assisted steering (PAS) systems are force–torque amplification equip-
ment installed in vehicles with the obvious aim to reduce drivers’ steering maneuver-
ing efforts. PAS has now become a necessary requirement on most domestic vehi-
cles and particularly on large vehicles. Good power steering reduces driver fatigue
and enables the car to be rapidly maneuvered out of difficulties. There are mainly
three types of PAS systems in land and water vehicle applications; that is, hydraulic,
electric–hydraulic, and electric power-steering systems. Hydraulic PAS systems use
an engine accessory belt to drive a pump, which delivers fluid to operate a piston
in the power-steering rack cylinder. If the steering wheel is being turned, a pres-
sure difference is built up between the two chambers of the rack cylinder, assisting
the driver’s maneuvering. This is achieved by the mechanism of a pinion–control-
valve assembly in which a small steering torque is applied at the steering wheel by
the driver. The pump pressure increases when steering is operated, and internal
mechanical feedback ensures that the pump pressure returns to normal, which is
typically 1–2 bar. The advantage of a hydraulic PAS is its large power amplification
of steering power, whereas energy and space consumption together with mainte-
nance are some disadvantages.

New types of power steering of electrohydraulic and direct electric systems are
becoming attractive for car makers and some customers. In electric–hydraulic PAS
systems, the hydraulic pump is driven by an electric motor, and pump speed is reg-
ulated by an electric controller to vary pump pressure and flow, providing steering
effort tailored for different driving situations. The pump can be run at low speeds
or shut off to provide energy savings during straight-ahead driving. Direct electrical
PAS uses an electric motor to drive the steering rack directly by a gear mechanism,
no pump or fluid is needed, and the power-steering function is therefore indepen-
dent of engine speed, resulting in energy savings. Microprocessors can be incorpo-
rated to control steering dynamics and driver effort by considering the vehicle speed
and turning rate. Electrohydraulic and direct electrical power steering are develop-
ing trends, and conventional hydraulic power steering is not losing its requirement
in many applications because of its advantage of large power amplification. Mod-
ern steering units use a faceted spool approach whereby flats, or facets, are placed
at strategic parts of the spool to improve the steering characteristic. Commercial
units require component design to be executed to extremely fine tolerances that
significantly influence the dynamic behavior. This project makes a unique contribu-
tion because the few research publications available do not discuss detailed mod-
els of hydraulic PAS nonlinear steady-state characteristics together with dynamics,
including the effect of nonlinear friction.

7.5.2 Experimental Setup and Operation

The laboratory setup is shown in Fig. 7.38. The road load against steering action is
achieved using two pneumatic cylinders at each end of the rack, with an adjustable
airflow restrictor in the link tube between the two chambers of the cylinders.
Although the pneumatic loading built is not exactly the same as the road load, it
has little effect on the model identification being presented here. In the test rig,
a torque transducer and an angular displacement transducer were installed at the
steering column. The angular displacement transducer was designed using two pul-
leys, one fitted with the steering column and the other with a potentiometer. Pres-
sures at the hydraulic delivery–return lines at the steering rack are measured by two
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Figure 7.38. Test circuit for the analysis of a power-steering unit (Xue and Watton, 2005).

pressure transducers. The steering system output, the rack linear displacement, was
measured by a LVDT transducer. The oil was supplied by a constant-displacement
vane pump, which was driven by an electric motor with variable speed control. The
outlet pressure of the pump was also measured. All data measured by the transduc-
ers were captured by a digital signal processor (DSP) installed in a computer.

7.5.3 Steady-State Characteristics of the Steering Valve

The system operation can be observed from the mechanism of power assistance,
Fig. 7.39, and shown for a nonfaceted control edge valve.

The control valve consists of three main components: a torsion bar, an inner
element, and a sleeve. Slots are made on the inner surface of the sleeve to act as
control edges, which operate in conjunction with the control edges made on the
outer surface of the inner element. This directs the flow from the pump to the rack
cylinder chambers and to the reservoir. The top of the torsion bar is directly fitted
with the steering column and the top of the inner element, the bottom of which is
free. Thus, the top of the torsion bar and the inner element obey the steering-wheel
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Figure 7.39. Steering valve and the control mechanism, nonfaceted control edge valve.

movements. The lower end of the torsion bar is fitted with the pinion rod, and the
valve sleeve is tightly keyed to the pinion as well; therefore, the torsion bar lower
end and the valve sleeve faithfully obey any rotary motion made by the pinion. The
control edges on the inner element and on the sleeve are in neutral position until
the torsion bar is twisted.

Oil is supplied to the control valve from the pump, and when there is no steer-
ing, the oil is allowed to pass through paths in the valve and return to the reservoir
with very low pressure generated. The shaft and sleeve are designed symmetrically
with six oil paths to and from the cylinder, only two paths being shown in Fig. 7.39.
If a torque is applied to the steering column, the torsion bar will twist; a relative
movement will take place between the inner element and the sleeve. The oil’s nor-
mal return path will be restricted to a smaller orifice in the valve; therefore, the
oil’s delivery path pressure will increase and return line pressure decrease. Thus, a
pressure difference will be built up between the steering rack cylinder chambers.
This pressure difference will drive the rack to move in the desired direction, realiz-
ing power-assisted steering. The angular displacement difference between the inner
element and sleeve decreases with the rack moving, and the valve will return to the
neutral condition and pressure will drop back to the initially very small value. The
power-steering unit shown in Fig. 7.39 may be represented by the flow circuit path
shown in Fig. 7.40.

To obtain a feel for the steady-state characteristic, it is assumed that the cylinder
piston is fixed in position. It then follows that:

p1 =
ps

(
t1
t12

)2

1 +
(

t1
t12

)2 , p2 =
ps

(
t2
t22

)2

1 +
(

t2
t22

)2 , (7.103)
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Figure 7.40. Hydraulic circuit schematic.

where t is the orifice width and subscripts are the orifices shown in Figs. 7.39 and 7.40.
The pump outlet pressure is Ps and can be determined from the valve-flow equations
and the pump characteristic. According to the nonfacet control edge design in Fig.
7.39, changes of t1, t2, t11, and t22 against angular relative movement of the shaft and
sleeve can be determined, and the steady-state characteristic is shown in Fig. 7.41.

With relative twist increasing, the orifices t1 and t22 will increase and t12 and
t2 decrease; thus, the pressure P1 will increase and P2 will decrease. These changes
result in the pressure difference P1 − P2 increasing with steering-wheel relative rota-
tion, and the pump pressure Ps always increases with steering in either direction.

For a good steering feeling, the pressure difference curve is expected to have
a smaller gradient around zero-degree displacement for safe maneuvering, and a
larger gradient elsewhere for effective torque assistance. However, too large a gradi-
ent may also result in losing control, and the gradient needs to be carefully designed
to accommodate the driver’s demand. The control edge of a two-facet valve used in
this study is shown in Fig. 7.42 together with its pressure characteristic. The facets
are designed to achieve the desired steering feeling.

Prior to the facet engaging, the orifice area is simply the distance from the slot
edge in the sleeve to the outer facet edge of the inner element, multiplied by the
respective width. After the outer facet is engaged, the orifice area can be found
by calculating the gap between the valve sleeve and the inner element, normal to
the facet, and multiplying this distance by the facet width. The effects of facets on
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the pressure difference and pump pressure are shown in the consequent steady-
state characteristic. The small–large–small gradient profile in practice enhances the
steering feeling and the driver’s confidence in maneuvering for the required power
assistance and reduced risk in operation.

7.5.4 Dynamic Behavior of the Power-Steering Unit

The dynamics modeling carried out is concerned with oil compressibility, combined
friction forces at the cylinder piston and between the shaft and sleeve, inertia of
the moving parts, and the pneumatic loading dynamics. The flows to and from the
cylinder considering rack displacement and fluid compressibility are as follows:

Q11 = A
dx
dt

+ V1

�

dP1

dt
,

(7.104)

Q21 = A
dx
dt

− V2

�

dP2

dt
,

where A is the piston working area, x is the rack displacement, � is the fluid bulk
modulus, and V1 and V2 are the volumes in the cylinder working chambers, which
are varying during steering. Considering the torque applied to the pinion and valve
sleeve gives:

J
rp

d2x

dt2 = Kb�� − fmrp − Tf − Tr , (7.105)



476 Some Case Studies

If �i is the input steering angle at the steering wheel given by the driver,
then �� = �i − �, where � is the angle of twist at the pinion that is due to the
displacement of the rack. Kb is the torsion bar stiffness, fm is the meshing force
between the pinion and rack, and rp is the pinion radius. Tf is the torque induced by
the friction at the sleeve, and Tr is the torque applied to the pinion by means of the
sleeve and inner element, which is induced by the combined flow-reaction forces at
the orifices. J is the moment of inertia of the pinion and valve sleeve with the fittings.
The flow-reaction force on a moving part caused by velocity vector changes due to
an orifice can be approximated as:

fr = 2Cqa��P cos �, (7.106)

where �P is the pressure drop across the orifice, a is the orifice area, and � is the jet
angle at the vena contracta. Considering the control valve, the flow-reaction forces
applied to the sleeve are at orifices “12” and “22,” as follows:

fr12 = 2Cq Kat12� P12 cos �,
(7.107)

fr22 = 2Cq Kat22� P22 cos �.

The flow-reaction forces applied to the inner element are as follows:

fr1 = 2Cq Kat1�(Ps − P1) cos �,
(7.108)

fr2 = 2Cq Kat2�(Ps − P1) cos �.

The overall effect of these forces in Eqs. (7.107) and (7.108) is against the sleeve to
follow the steering movement. These forces contribute to the flow-reaction torque
Tr in Eq. (7.105) as follows:

Tr = ( fr2 − fr1 + f22 − f11)ri , (7.109)

where ri is the radius of the inner element. The dynamics at the rack cylinder is:

M
d2x

dt2 = (Pa − Pb)A+ fm − FL − Fr , (7.110)

where Pa and Pb are gauge pressures in the rack cylinder; FL = (PLb−PLa)AL is
the load; PLb and PLa are the loading cylinder absolute pressures; AL is the load-
ing cylinder bore; and Ff is the combined friction force in the control valve, rack
cylinder, and the load cylinders. Ff is nonlinear because of the inherent existence of
stiction, Coulomb friction, and viscous effect. The friction model used in simulation
is then:

Ff




C
(

dx
dt

− e
)2

+ d,
dx
dt

≤ e,

Bv

(
dx
dt

+ e
)

,
dx
dt

> e

, (7.111)

where Bv is the viscous coefficient and C, d, and e are coefficients assessed from
experimental measurements on the actual equipment. The manufacturer was able
to estimate only the static friction component. However, as indicted by Eq. (7.111),
the friction was found to be highly nonlinear. In the modeling of a nonfacet power-
steering valve, it was found that the flow coefficient varies with the valve rotation
while around a mean value. The flow coefficient Cq at the valve orifice affects the
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simulation, and its value at the valve neutral position can be determined using the
pump model and the valve flow equations. Consider the initial condition in which
the valve and the sleeve are neutral to each other; then, the following equations
apply:

t1 = t2 = t12 = t22,

Qp = Q0 − Ps

Rp
= 2Cq Kat1

√
Ps

�
, (7.112)

where Rp is the pump leakage resistance, which can be determined by experiment.
Thus, the flow coefficient at the valve neutral position can be determined using mea-
sured data such as:

Cq =
Q0 − Ps

Rp

2Kat1

√
Ps

�

. (7.113)

The linear movement of the pneumatic loading system follows the steering-rack
responses. The pressure changes in the load cylinder are assumed to obey the gas
law, and a model is given as follows:

dma

dt
= 1

RTp
(PLa V̇La + ṖLa VLa),

dmb

dt
= 1

RTp
(PLbV̇Lb + ṖLbVLb),

dmb

dt
= CdCmap pLa/

√
Tp,

(7.114)
dmb

dt
= −dma

dt
,

dVLa

dt
= −AL

dx
dt

,

dVLb

dt
= AL

dx
dt

,

where R is the universal gas constant, Tp is the absolute temperature, ap is the
restrictor orifice area, ṁa and ṁb are the mass flow rates, Cd is the gas discharge
coefficient, Cm is the mass flow parameter, VLa and VLb are the cylinder chamber
volumes, and AL is the net cross-sectional area of the piston.

The numerical simulation can be described by a flow chart, Fig. 7.43, in which
the core point is to find the actual twist angle of the torsion bar at each iteration.
Thus, the orifice sizes can be determined that are needed in the next iteration in
processing the dynamic equations of the pinion, rack, and loading system. States
of the system are needed in the models of flow-reaction forces, friction force, and
pump characteristics. The solution routine was programmed in C code.

7.5.5 Results

The steering-wheel input was applied over a rotation of 360◦, and the actual mea-
sured input was also used in the numerical simulation. Results are shown in Fig. 7.44,
and it can be seen that the angular steering response follows the input displacement
given at the steering column.
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Figure 7.43. Computer numerical simula-
tion flow chart.

The predicted variation in control orifice length t12 is shown in Fig. 7.45. The trends
of pressures at the pump outlet and in the rack cylinder are in line with measured
data and errors can be clearly observed. The effect of nonlinear combined friction
is evident regarding a peak pressure at the beginning of the response at each pres-
sure. This peak pressure happens because the rack does not move until the pres-
sure differential across the cylinder can produce a sufficient force to overcome the
combined inherent static friction force, which exists between the inner element and
valve sleeve and at the hydraulic and pneumatic cylinders. When the rack is starting
to move, the friction reduces and the pressure drops. After the initial pressure peak,
the pressure keeps increasing until the demanded steering angle profile is reflecting
negative acceleration. The changes of pressure at the pump outlet and the driving
chamber are of the same sign, whereas the exhaust chamber pressure is in the oppo-
site direction.

The profiles of changes of pump pressure Ps and driving line pressure P1 com-
pare well between simulation and experiment. However, little changes can be seen
in the return line pressure P2, although its changes in simulation can be observed.
This may be due to the effect of line pressure drop, which was not considered in
the simulation. Either the valve is in the neutral or the nonneutral condition, and
all the oil returns to the reservoir via the same line. If the pump flow rate changes
little at different working conditions and return line resistance is not negligible, the
return line pressure P2 at the valve will not be zero but will have little change in the
steering process.

7.6 Onboard Electronics (OBE) for Measurement and
Intelligent Monitoring

The electrohydraulic control valve is clearly one application on which OBE has
made an impact; for example, integral sensors for spool position measurement. In
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Figure 7.44. Steering angle and pressures under power-steering action.

addition, the use of integrated pressure sensors and communication bus systems
allows valves to be used in various control modes and to communicate with other
components in the system to optimize performance. The addition of OBE also has
the bonus of being able to provide condition monitoring and fault diagnostic infor-
mation. For example, the awareness of pump deterioration within a manufacturing
system can have a significant impact on:

� pump performance awareness and assessment,
� reduced repair time and costs,
� plant operational knowledge,
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Figure 7.45. Variation in control orifice length t12 during power steering.

� maintaining product quality,
� minimizing revenue loss,
� a maintenance cost saving,
� improved plant life, efficiency, and safety assurance,
� reduced personnel risk, and
� maintaining customer relationship

As sensor technology costs are reduced, then fluid power components will
inevitably integrate both sensing and wireless signal transmission techniques within
a monitoring and control environment. This means that onboard information can
be transmitted to external devices and would be significantly enhanced if electrical
power could also be onboard-generated. The concept, applied to a pump, is illus-
trated in Fig. 7.46 and will add significant design and diagnostic power for this appli-
cation to piston pumps and motors, as shown in Fig. 7.47.

The onboard processor calls for the pressure transient to be measured for one
piston, and diagnostics are then performed on the data recorded. In a nine-piston
pump, for example, the remaining eight pistons may be used to charge the processor
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Figure 7.46. An intelligent sensor array for pump performance assessment.
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Figure 7.47. OBE for pump design and diagnostics.

card by reversing the role of the pressure transducer from sensing to charging. This is
sometimes called power harvesting. Alternatively, all sensors may be used to charge
the electronics until sufficient power is available to obtain the necessary pressure
transient from the selected piston. Each piston condition could be simply displayed
on a three-level indicator attached to the pump, and detailed transient pressure
information may be stored for postprocessing and so on. Clearly, this approach
is too advanced for probably most industrial applications at the time of writing
this book, notwithstanding the high instrumentation cost compared with the pump
cost. More advanced OBE systems therefore will need to develop new low-cost
approaches.

This preliminary study is concerned with developing a technique to measure
all piston pressures within an axial piston pump and using OBE.For the first level
of appraisal, just three of the nine piston chambers were considered. Measur-
ing individual kidney-port pressures is relatively easy; for example, by using well-
established slip-ring technology as indicated briefly in Section 3.1. The actual system
used in the author’s laboratory is shown in Fig. 7.48.

Miniature piezoelectric pressure transducers were used and were capable of
recording the actual ripple content of the signal by selection of the appropriate time
constant of the high-impedance electronic circuit. The new design developed in the
author’s laboratory moves toward the intelligent array concept previously discussed.
Specific feature are as follows:

� Each pressure is monitored by an integrated and flexible electronics card that is
mounted around the pump barrel.

� The controlling microprocessor is able to select the piston to be monitored.
� Power is fed directly to the electronic card through the pump body by a single

bus embedded on the barrel perimeter.
� A wireless RF transmission unit on the board is used to transmit the pressure

transient to an outside receiver–PC system.

The approach is shown in Fig. 7.49, again for only three pressure-measuring
channels and now using much lower-cost strain gauge pressure transducers.

Pressure transducers with a constant current source were used with associated
amplifiers. A 10-bit ADC was selected with a microcontroller with external RAM
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(a) Pressure transducer positioning and connection via the drive shaft

Pressure transducers

(b) Front plate in place with slip ring 

3 Slip rings

Figure 7.48. Slip-ring assembly for measurement of cylinder pressures.

to control the whole operation of the circuit while having enough storage space for
sampled data and the radio link. The receiver module consisted of a radio receiver,
microcontroller, and a TTL-to-RS232 converter. To aid the development, process-
task-orientated modules were designed and built. These modules, when connected
together, allow each individual module to be tested in isolation from the others.
The microcontroller module is based around a high-performance RISC CPU, incor-
porating 22 input–output lines (each capable of sinking or sourcing 25 mA), three
timer modules (two 16-bit and one 8-bit), synchronous serial port, and a universal
synchronous asynchronous receiver transmitter, all in a small 28-pin SDIP package.
The microcontroller was set up to operate at 20 MHz to ensure a good response for
the task in hand. Two microcontroller circuits are used within the system as a whole,
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Figure 7.49. Intelligent sensor array prototype for three pressure-sensing channels.

one in the transmitter unit and one in the receiver unit. Both use the same module
configuration just described but with different software control.

The ADC and RAM module is a single module incorporating two circuits. The
first circuit, the ADC circuit, uses a 12-bit serial ADC. This circuit is capable of
operating with a clock speed of 200 kHz, giving a sampling rate of 12.5 kHz. The
unit operates from a 5-V supply and utilizes a 2.7-V reference, giving a 2.7-V voltage
range. Only 10 bits of data are used in this application because the microcontroller
ignores the first two least-significant bits. When operating with the microcontroller
module, a maximum sampling rate of approximately 4 kHz was achieved. The sec-
ond circuit on this module is the static RAM chip. This device is a serial device
offering 2048 bits of memory, which in our case offers the ability to store more than
200 10-bit samples. The serial communications protocol used by this device is the
I2C bus, which when used connected to the microcontroller gives a read–write rate
of more than 6 kHz.

The TTL-to-RS232 converter module converts the 5-V logic system used by
the microcontroller to the RS232 standard 12-V rail system. The limiting factor on
the baud rate used with this module is the oscillator crystal used with the micro-
controller. The crystal used was a 20-MHz crystal and this placed a baud rate limit
on the microcontroller circuit of 38,400 bps. The chip set used in this module was
a transceiver chip. The radio transmitter and receiver pair used in this design oper-
ates on the 433.92-MHz band and is capable of digital data rates of 128 kbps but
significantly reduced in practice because of the design and coding techniques used.
A signal transmitting aerial is placed around the inside of the casing but, in practice,
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it was found unnecessary to connect the receiver to it up to typically 2 m away from
the pump. A measurement is shown in Fig. 7.50.

All three measured pressure transients had the same waveform for this rela-
tively new pump, and some issues that arise are as follows:

� Problems with noise at high pressures need to be overcome, with alternative
ways required for powering the electronics.

� Notice that the ripple frequency within the kidney port is 9 × pump speed for
this nine-piston pump; this pressure amplitude is greater than expected. Each
half-cycle of the pump barrel illustrates 4.5 cycles of pressure fluctuation.

� Also notice the slight increase in inlet pressure, which requires further investi-
gation.

Next-generation pressure arrays will allow pressure sensors, particularly piezo-
electric type and not interrogated, to reverse their role and to be used as charging
elements. The OBE system will then be completely autonomous, self-powering, and
have the ability to be externally controlled. It also may be possible to use internally
generated information to optimize the operating characteristic of the pump in real
time by means of the control valve adjusting circuits for pump displacement and/or
operating pressure; the concept of intelligent control will eventually arrive.
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equivalent viscous damper, 315, 352
servovalve/actuator closed-loop stability, 352
servovalve/actuator response and stability, 349

Critically lapped spool, 124, 324
Cross-line leakage, vehicle active suspension,

451

Damped frequency of oscillation, 218
Damping ratio, 217, 221
Data acquisition, 2, 294

card, 353
slip-ring method for an axial piston pump, 72
vehicle active suspension control, 451

Data-based dynamic modelling, 293
Artificial Neural Networks, 297
Group Method of Data Handling, 296
least-squares solution, 295
network validation, 313
time-series, 294, 301
topology selection, 298, 312

Deflector-jet amplifier, 109
Design of experiments, general approach, 161
Design of experiments, noise analysis of a pump,

162
Differential equations, 216
Digital control, 352

closed-loop characteristic equation, 360
closed-loop s and z plane stability concept, 361
closed-loop stability, 360
closed-loop transient response evaluation,

method, 358
closed-loop transient response evaluation,

method 2, 359
closed-loop transient response evaluation,

method 3, 359
closed-loop transient response, 358
closed-loop, the effect of sampling frequency,

360
servoactuator drive, 353

Digital filters, a generalized approach, 385
Distributed parameters, 226, 266
Drive concepts, 177
Dynamic pressure feedback, 371

transfer function, phase lead, 371
digital implementation, 384
hydromechanical, 371
proportional valve/motor drive, 203
servoactuator characteristic equation, 374
servoactuator closed-loop stability, 374
servoactuator open-loop network, 373
servoactuator open-loop transfer function, 372

Electrical analogy, 225
Electrohydraulic servovalves, 19, 122
Electromagnetic circuits with MR fluids, 54
Electrorheological (ER) and Magnetorheological

(MR) fluids, 54
Energy equation, 61



Index 491

Energy-efficient control using pulse width
modulation, 406

Entrained flow between surfaces, 93
Equilibrium state for stability, 396
Expert systems, 2

Feedback controller implementation, 384
Filters, for fluids, 29, 49
Flapper/nozzle amplifier, 95, 104
Flapper/nozzle dynamics, 260
Flow between axial piston ball and socket,

89
axial piston pump slipper, 82
between nonparallel plates, 90
between parallel plates, 80, 101
bypass valve for forging applications, 438
coefficient, orifice restrictor, 76
coefficient, vehicle power-steering valve,

476
coefficients, orifice and short tubes, 77
contraction coefficient, orifice restrictor,

76
discharge coefficient, orifice restrictor, 76
flapper/nozzle amplifier, 105
measurement, 133
meter, 46, 190, 401
through annular gaps, 81, 255
through concentric pipes, 81
through spool valves, 95

Flow reaction forces, steady-state, 112
cone-seated poppet, 117
flapper/nozzle amplifier, 119
poppet valve, 112
servovalve, 115
transient, 121
two-stage PRV, 113

Flow recirculation, loss coefficient, orifice
restrictor, 75, 76

Flow vena contracta, orifice restrictor, 75
Fluid types, 33

air content, 43
biodegradable, 38
cavitation, 29, 52, 66
cleanliness, 49
compressibility effects, 25, 41, 226
cooler, 26
density, 39
effective bulk modulus, 43
filter size, 29
fire resistance, 33, 399
mineral oil, 34
particle contamination, 29, 50
tank design, 27
vapor pressure, at pump inlet, 50, 61
viscosity, 40

Fluidic amplifier, 109
Force components on surfaces, static and shear

stress, 120
Forge-valve modelling, 438, 443, 444
Forge valve, application to cylinder position

control, 438

Frequency control, pulse width modulation
control, 400

Frequency response, 229
Analyzer, 274, 388
amplitude ratio, 229
asymptotes, 232
break frequency, 231
logarithmic plot, 230
open-loop transfer function, 329
phase angle, 229
polar plot, 230

Fuzzy logic control, 407
applied to servoactuator control, 410
states and sets of control values, 409

Gain and Phase margins, 365
Gain compensation in Artificial Neural Network

control, 414
Gain scheduling, 449, 456, 461, 464, 469
Gear pump, 137
GMDH algorithm, 296, 301, 311

Hydraulic diameter, circular port, 79
Hydraulic diameter, orifice restrictor, 77
Hydraulic stiffness, 222, 455
Hydrodynamic forces, slipper, 83
Hydrodynamic lubrication, 90
Hydromechanical actuator, 13, 323

open-loop position transfer function, 325
open-loop velocity transfer function, 324

Hydrostatic bearing, 25, 27, 83
Hydrostatic transmission, 179
Hysteresis, 58, 100, 415

IES criterion, optimum transfer functions, 235,
394

Impedance of pump output, 306
Improving closed-loop response, 362
Index of performance, 394
Inertia of a fluid, 226
Input/output model reference in ANN control,

411, 413
Instability of closed-loop systems, 326, 365
Instability of third-order systems, 325, 334
Intelligent control, 407
ISO standards ISO1219 and ISO9461, 11
ISO4406 particle classification Code, 50
ITAE criterion, 235, 394

Jet pipe amplifier, 109

Laplace transforms, 216, 223
Laplace transform of a sampled signal, 355
Laplace transforms, table of common functions,

224
Leakage gaps in components and restrictors,

74
Linear differential equations, 216
Linear Quadratic (LQ) control, 394, 466
Linearization of equations, 219, 247
Linearized coefficients, 220, 275
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Linearized state space models, 390
Lyapunov’s second method, 395

Mass flow rate continuity, 211
MATLAB Simulink simulation software, 213
Meter-out control, counterbalance valve,

over-center valve, 174, 175
Modal analysis for lines, rational polynomial

approximations, 278
Model reference control, 408
Motor flow and dynamic torque equations, 239,

263
MR fluid damper for a vehicle, 55

Negative definiteness for total energy derivative,
395

NPSH for a pump, 29
Neurons, data-based dynamic modelling, 296,

297
Noise, 13, 162, 242
Nonlinear differential equations, 219
Nyquist’s stability criterion, 326

Observability matrix, 391
Observers and reduced observers, 390
Onboard electronics, 478
Optimum efficiency, 15
Optimum transfer functions, 235

Parameter identification, vehicle active
suspension control, 451

Performance index, 394, 465
Permanent magnet motor, 122
Phase compensation, 365
Phase lead, electrical circuit, 365
Phase plane analysis, 244, 316, 349
Pipe flow, 61

resistance, 65
general pressure drop equation, 66
Hagen-Poiseulle equation, 65
laminar and turbulent conditions, 62, 64
Moody diagram, 66
roughness, 66
turbulent flow, 63, 228

Poppet seats, cone-seat and V notch type for a
forge valve, 440

Poppet valves in pulse width modulation control,
405

Position/velocity sensor, wire type, 461
Positive definiteness of a quadratic function, 395
positive displacement machines, 11, 135
Power loss reduction using pulse width

modulation control, 407
Power packs and ancillary components, 26
Power steering, 470
Power Transfer Unit, pump and motor, 177, 183

condition for equal pressures, 187
condition for zero speed, 186
pressures to reach PRV setting, 186

Power-to-weight ratio, 7, 12
prbs signal, 258, 388

Pressure gains, 240, 247, 345
Pressure ripple, time-series modelling, 306
Principle minors for positive definiteness, 395
Programmable servo control card, 204, 353, 448
Proportional + Integral + Derivative (PID)

control, 370
Proportional control valve technology, 4, 203

Pressure Relief Valve, 18, 202
solenoids, 13, 18, 19
valve/motor drive, intelligent control, 203
valves, 17, 122

Pressure Relief Valve protection, hydrostatic
transmission, 179

cracking pressure, 158
flow characteristic, 158
single-stage with directional damping, 253
single-stage and two-stage valves, 158
total spring stiffness, 258
with circular ports, 78, 253

Pulse Width Modulation (PWM) control, 399,
400, 402, 404

Pumps and motors, 11, 133
axial piston machine flow, 140
break-out pressure, 151
closed-circuit, 177
displacement, 133
flow and torque, 133
flows, hydrostatic transmission, 180
fluid and mechanical losses, 136
gear pump displacement, 137
geometrical displacement, 137, 140
measured performance, 15
open circuit, 177
precompression zone, 138, 143
theoretical flow, 137
torque losses, 148, 151
torques, hydrostatic transmission, 180
vane pump displacement, 138

Pumps, positive displacement type, 11
gear, vane, axial piston, 133
optimum efficiency, 136
performance characteristic, 136
pressure-compensated or off-loading, 13
pump/PRV/servovalve pressure determination,

171
variable swash-plate axial piston, 13

PWM control, forge valve for press cylinder
control, 439, 448

Quadratic performance index in state-space,
395

reattachment, servovalve ports, 96, 115
Recursive least-squares method, 408
Reduced order observers, 390

observer characteristic equation in state-space,
392

co-state equation in state-space, 391
state-space, Ackermann’s formula, 392

Reliability of valve spools in switching controls,
400
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Resistance of a fluid, 226
axial piston motor, 146
axial piston pump slipper, 84
concentric pipes, 82
cone-seated poppet, 103
parallel plates, 81
Pressure Relief Valve flow, 159
servovalve flow, 241

Reynolds equation, 90
Reynolds equation, axial piston pump grooved

slipper application, 422
Reynolds number, 62, 66, 76
Ricatti equation, vehicle active suspension, 467
Ricatti reduced matrix equation, 398
Root locus method, 330
Routh array, 332
Routh array, auxiliary equation, 333
Routh’s stability criterion, 332, 333
Run-away, servovalve/actuator, open-loop, 174,

197
Run-out, swashplate tests, 431

Sampling a signal, 353
Second-order notation, 217, 221, 233, 241

system, state-space Ricatti solution, 398
system, ANN and GMDH modelling, 300
transfer function, optimum, 337

Servoactuators, 25, 209
characteristic equation, 342
closed-loop control, 341
closed-loop stability criterion, 342
control, reduced-order observers, 392
digital control, dynamic pressure feedback, 384
digital filter control, 385, 387
open-loop transfer function measurement, 388
open-loop transfer function, 342
sliding mode control, 380

Servoamplifier, 210, 259
Servovalve types and their characteristics, 122

apparent flow coefficient, 99
coils, 125
data-based dynamic modelling, 298
de-tuning, 129
drain orifice, 108
dynamic response, 252, 256, 259, 261, 264
first stage, 260
flexure tube, 127
for sinusoidal flow generation, 272
force feedback, 127
ports connected, 98, 124
ports, 95
ports, CFD analysis, 116
ports, jet angle, 115
rating, 123
sapphire orifices, 107
spool flow, critically lapped, 124, 125
spool position electrical feedback, 122, 129, 130
spool, critically lapped, flow gain, 126
spool, critically lapped, pressure gain, 126
spool, critically lapped, pressure sensitivity, 127
spool, underlapped, 19, 130, 202, 362, 388

spool, underlapped, blocked load, 131
spool, underlapped, flow gain, 133
spool, underlapped, ports connected, 130
spool, underlapped, pressure gain, 133
spool torque feedback wire, 127, 128
total load pressure drop, 125
spool force balance dynamics, 261
spool, overlapped lands, 19

Servovalve/actuator drive, 195, 245
closed-loop characteristic equation, spool

underlap, 364
closed-loop ITAE criterion, spool underlap,

365
closed-loop, underlapped spool, position error,

200
closed-loop, underlapped spool, variable load,

201
dither, 414
double-rod actuator or motor dynamics, 249
double-rod actuator transfer function, 247
gain ratio, 340, 452
linearized characteristic equation, 340
linearized closed-loop transfer function, 340
linearized equations, spool underlap, 363
linearized open-loop transfer function, 339
open-loop, extending and retracting, 195, 198
open-loop, matched velocity, 199
open-loop, piston leakage avoidance, 200
Routh’s criterion, 340
steady-state position error, 340

Servovalve/actuator, the effect of long lines, 345
closed-loop characteristic equation, 346
conditions for closed-loop instability, 347
open-loop transfer function, 346
short transmission lines with low load mass, 250

Servovalve/motor/actuator, 177
Servovalve/motor, open-loop and closed-loop

drives, 178
closed-loop control, 192
closed-loop drive efficiency, 194
closed-loop drive maximum efficiency, 194
closed-loop drive maximum power transfer,

194
closed-loop instability, 194
linearized transfer function, 239, 265, 336

Servovalve/motor with long lines, open-loop
transfer function, 343

closed-loop characteristic equation, 344
lossless lines approximation, 344
servovalve linearized coefficients, 343

Side leakage from ideal bearings, 94, 433
Sliding-mode control, 379

cubic switching function, 381
quasi-sliding mode, 381
sliding plane, 379

Sound-level meters, 14
Sound-pressure intensity, 14
Sound-pressure level, 14
Speed sensor dynamics, optical, 243
Stability of closed-loop systems, 326, 333
State estimation, 390
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State feedback, 374
closed-loop stability, 376
ITAE criterion matching, 375
vehicle active suspension, 449

State-space analysis, 285, 334
characteristic equation, 287
convolution integral, 291
servovalve/actuator, 289
servovalve/motor, 286
time domain solution, 291
transfer function concepts, 292
notation, 287
state variables, 286, 289
state variables, vehicle active suspension, 460

Steady-state error, integral control, 370
Steady-state error, sliding-mode control, 381
Steady-state operating point, 220, 240, 252
Steel pipe and hose selection, 30
Stiction/friction, 151, 212, 263, 314, 349

Stribeck curve for damping, 212
vehicle power steering, 476

Submerged free jet, 2D, 110
Surface finish, axial piston pump

slipper/swashplate tests, 430
Sylvester’s theorem for positive definiteness, 395
System identification, 161, 293, 408

Taylor series expansion, 220, 294
Time constant, 219, 231, 401
Time-series modelling for fault diagnosis, 306
Time-series modelling of a position control

system, 304
Time-series modelling of a proportional PRV, 309
Tire viscous damping and stiffness, vehicle active

suspension, 457, 459
Torque/speed transducer, 190, 471
Transducer accuracy, 242
Transfer function analyzer, 258, 273
Transfer function for a proportional PRV, 309
Transfer functions, 216, 223, 230, 247, 257
Transmission-line dynamics, 227, 265

average friction and distributed friction models,
270

characteristic impedance, 267
data-based modelling, 279
frequency response, 271
hyperbolic form, 267
lossless model, 267
lumping method, � networks, 227, 252, 263
method of characteristics, 279
modal analysis, 278
propagation factor, 267, 272
series impedance, 266
servovalve reflected linearized coefficients, 275
servovalve/motor and actuator drive, 269
shunt admittance, 266
temperature drop, 274
TLM method, 279
velocity of sound propagation, 41, 272

Undamped natural frequency, 217, 221

Valves, 17
and motor, pulse width modulation control,

402
binary-sequenced flow control, 399, 405
cartridge technology, 23
check pilot-operated, 21
check, 21
counterbalance, 22
directional, 18
flow control, meter-in, meter-out, 23, 172
on/off switching control, 399
over-center, 22
pressure relief with off-loading, 18
pressure relief, 17

Vane pump cam ring, 138
Variable accelerometer gain in ANN control,

411
Variable flow gain compensation in ANN control,

411
Vehicle active suspension, 290, 378, 398, 448

closed-loop control computer simulation, 461,
467

experimental validation, 468
fundamental frequency modes, 454
Linear Quadratic Control method, 449, 464
minimum rms acceleration, 467
open-loop model, 451
pole assignment method, 449, 464
road input response characteristic, 459
undamped characteristic equation, 454

Vehicle power steering, 470
dynamic behavior, 475
experimental tests, 477
steady-state characteristics, 472

Velocity of sound in a fluid, 41, 272
Vibration transmission, 13, 30, 250
Viscous damping, 212

Wave equations, 226, 266
Wave propagation frequency, 227
Weights, data-based dynamic modelling, 296

z transform, 356
bilinear approximation, 361, 387
matched transforms, 310
digital control with dynamic pressure feedback,

384
Final Value Theorem, 386
matched transforms, 310
modified bilinear approximation for stability,

362
table of common functions, 357

Zero-order hold signal reconstruction,
355

in closed-loop systems, 356
transfer function, 355

Zeros and poles of a transfer function, 326
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