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Preface to the First Edition

This book focuses on the basic concepts in molecular reaction dynamics, which is the
microscopic atomic-level description of chemical reactions, in contrast to the macro-
scopic phenomenological description known from chemical kinetics. It is a very extensive
field and we have obviously not been able, or even tried, to make a comprehensive
treatment of all contributions to this field. Instead, we limited ourselves to give a
reasonable coherent and systematic presentation of what we find to be central and
important theoretical concepts and developments, which should be useful for students at
the graduate or senior undergraduate level and for researchers who want to enter the field.

The purpose of the book is to bring about a deeper understanding of the atomic
processes involved in chemical reactions and to show how rate constants may be
determined from first principles. For example, we show how the thermally averaged rate
constant k(T), known from chemical kinetics, for a bimolecular gas-phase reaction may
be calculated as proper averages of rate constants for processes that are highly specified
in terms of the quantum states of reactants and products, and how these state-to-state
rate constants can be related to the underlying molecular dynamics. The entire spectrum
of elementary reactions, from isolated gas-phase reactions, such as in molecular-beam
experiments, to condensed-phase reactions, are considered. Although the emphasis
has been on the development of analytical theories and results that describe essential
features in a chemical reaction, we have also included some aspects of computational
and numerical techniques that are used when the simpler analytical results are no longer
accurate enough.

We have tried, without being overly formalistic, to develop the subject in a systematic
manner with attention to basic concepts and clarity of derivations. The reader is assumed
to be familiar with the basic concepts of classical mechanics, quantum mechanics,
and chemical kinetics. In addition, some knowledge of statistical mechanics is required
and, since not all potential readers may have that, we have included an Appendix
that summarizes the most important results of relevance. The book is reasonably
self-contained such that a standard background in mathematics, physics, and physical
chemistry should be sufficient and make it possible for the students to follow and
understand the derivations and developments in the book. A few sections may be a little
more demanding, in particular some of the sections on quantum dynamics and stochastic
dynamics.

Earlier versions of the book have been used in our course on advanced physical
chemistry and we thank the students for many useful comments. We also thank our
colleagues, in particular Dr. Klaus B. Møller for making valuable contributions and
comments.
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The book is divided into three parts. Chapters 2–8 are on gas-phase reactions,
Chapters 9–11 on condensed-phase reactions, and Appendices A–I contain details about
concepts and derivations that were not included in the main body of the text. We have
put a frame around equations that express central results to make it easier for the reader
to navigate among the many equations in the text.

In Chapter 2, we develop the connection between the microscopic description of
isolated bimolecular collisions and the macroscopic rate constant. That is, the reaction
cross-sections that can be measured in molecular-beam experiments are defined and the
relation to k(T) is established. Chapters 3 and 4 continue with the theoretical microscopic
description of isolated bimolecular collisions. Chapter 3 has a description of potential
energy surfaces, that is, the energy landscapes for the nuclear dynamics. Potential energy
surfaces are first discussed on a qualitative level. The more quantitative description of
the energetics of bond breaking and bond making is considered, where this is possible
without extensive numerical calculations, leading to a semi-analytical result in the form
of the London equation. These considerations cannot, of course, replace the extensive
numerical calculations that are required in order to obtain high quality potential energy
surfaces. Chapter 4 is the longest chapter of the book with the focus on the key issue
of the nuclear dynamics of bimolecular reactions. The dynamics is described by the quasi-
classical approach as well as by exact quantum mechanics, with emphasis on the relation
between the dynamics and the reaction cross-sections.

In Chapter 5, attention is directed toward the direct calculation of k(T), that is, a
method that bypasses the detailed state-to-state reaction cross-sections. In this approach
the rate constant is calculated from the reactive flux of population across a dividing
surface on the potential energy surface, an approach that also prepares for subsequent
applications to condensed-phase reaction dynamics. In Chapter 6, we continue with the
direct calculation of k(T) and the whole chapter is devoted to the approximate but very
important approach of transition-state theory. The underlying assumptions of this theory
imply that rate constants can be obtained from a stationary equilibrium flux without any
explicit consideration of the reaction dynamics.

In Chapter 7, we turn to the other basic type of elementary reaction, that is,
unimolecular reactions, and discuss detailed reaction dynamics as well as transition-state
theory for unimolecular reactions. In this chapter, we also touch upon the question of the
atomic-level detection and control of molecular dynamics. In the final chapter dealing with
gas-phase reactions, Chapter 8, we consider unimolecular as well as bimolecular reactions
and summarize the insights obtained concerning the microscopic interpretation of the
Arrhenius parameters, that is, the pre-exponential factor and the activation energy of the
Arrhenius equation.

Chapters 9–11 deal with elementary reactions in condensed phases. Chapter 9 is on
the energetics of solvation and, for bimolecular reactions, the important interplay between
diffusion and chemical reaction. Chapter 10 is on the calculation of reaction rates according
to transition-state theory, including static solvent effects that are taken into account via the
so-called potential-of-mean force. Finally, in Chapter 11, we describe how dynamical
effects of the solvent may influence the rate constant, starting with Kramers theory and
continuing with the more recent Grote–Hynes theory for k(T). Both theories are based
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on a stochastic dynamical description of the influence of the solvent molecules on the
reaction dynamics.

We have added several appendices that give a short introduction to important disci-
plines such as statistical mechanics and stochastic dynamics, as well as developing more
technical aspects like various coordinate transformations. Furthermore, examples and
end-of-chapter problems illustrate the theory and its connection to chemical problems.





Preface to the Second Edition

The first edition of this book was published about ten years ago. The present edition
reflects our efforts to refine and improve clarity of material already in the first edition,
and to elaborate the treatment of various topics. The aim of the book is unchanged with
an emphasis on basic concepts and the development of insights provided by analytical
results.

We have, in particular, included new material/sections concerning: (i) adiabatic
and non-adiabatic electron-nuclear dynamics, (ii) classical two-body models of chem-
ical reactions, for example, the so-called Langevin model for ion-molecule reactions,
(iii) quantum mechanical models for crossing of one-dimensional barriers, and (iv) a
more detailed description of the Born and Onsager models for solvation.

A major rewrite of some sections or whole chapters include Sections 5.1 and 7.5 as well
as Chapters 10 and 11. In addition, there are several small changes spread throughout
the book and new end-of-chapter problems have been added, as well as a new appendix.

Finally, a remark concerning notation. For notational convenience (following many
other textbooks) we have often omitted the integration limits of definite (multidimen-
sional-)integrals when it is understood that integration is over “all space.”
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Introduction

Chemical reactions, the transformation of matter at the atomic level, are distinctive
features of chemistry. They include a series of basic processes from the transfer of
single electrons or protons to the transfer of groups of nuclei and electrons between
molecules, that is, the breaking and formation of chemical bonds. These processes are of
fundamental importance to all aspects of life in the sense that they determine the function
and evolution in chemical and biological systems.

The transformation from reactants to products can be described at either a phe-
nomenological level, as in classical chemical kinetics, or at a detailed molecular level,
as in molecular reaction dynamics.1 The former description is based on experimental
observation and, combined with chemical intuition, rate laws are proposed to enable a
calculation of the rate of the reaction. It does not provide direct insight into the process at
a microscopic molecular level. The aim of molecular reaction dynamics is to provide such
an insight as well as to deduce rate laws and calculate rate constants from basic molecular
properties and dynamics. Dynamics is, in this context, the description of atomic motion
under the influence of a force or, equivalently, a potential.

The main objectives of molecular reaction dynamics may be briefly summarized by
the following points:

• the microscopic foundation of chemical kinetics;

• state-to-state chemistry and chemistry in real time;

• control of chemical reactions at the microscopic level.

Before we go on and discuss these objectives in more detail, it might be appropriate to
consider the relation between molecular reaction dynamics and the science of physical
chemistry. Normally, physical chemistry is divided into four major branches, as sketched
in the figure that follows (each of these areas are based on fundamental axioms). At
the macroscopic level, we have the old disciplines: “thermodynamics” and “kinetics.”
At the microscopic level we have “quantum mechanics,” and the connection between
the two levels is provided by “statistical mechanics.” Molecular reaction dynamics

1 The roots of molecular reaction dynamics go back to a famous paper by H. Eyring and M. Polanyi, Z.Phys.
Chem. B12, 279 (1931).

Theories of Molecular Reaction Dynamics. Second Edition. Niels E. Henriksen and Flemming Y. Hansen, Oxford University
Press 2019. © Niels E. Henriksen and Flemming Y. Hansen. DOI: 10.1093/oso/9780198805014.001.0001
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encompasses (as sketched by the oval) the central branches of physical chemistry, with
the exception of thermodynamics.

Thermodynamics Kinetics

M
ol

ec
ul

ar
 r

ea
ct

io
n 

dy
na

m
ic

s

Quantum mechanics

Interaction between
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Statistical mechanics

A few concepts from classical chemical kinetics should be recalled [1]. Chemical
change is represented by a reaction scheme. For example,

2H2 + O2 → 2H2O

The rate of reaction, R, is the rate of change in the concentration of one of the reactants
or products, such as R = −d[H2]/dt, and the rate law giving the relation between the rate
and the concentrations can be established experimentally.

This reaction scheme represents, apparently, a simple reaction but it does not proceed
as written. That is, the oxidation of hydrogen does not happen in a collision between two
H2 molecules and one O2 molecule. This is also clear when it is remembered that all the
stoichiometric coefficients in such a scheme can be multiplied by an arbitrary constant
without changing the content of the reaction scheme. Thus, most reaction schemes show
merely the overall transformation from reactants to products without specifying the path
taken. The actual path of the reaction involves the formation of intermediate species
and includes several elementary steps. These steps are known as elementary reactions and
together they constitute what is called the reaction mechanism of the reaction. It is a great
challenge in chemical kinetics to discover the reaction mechanism, that is, to unravel
which elementary reactions are involved.

Elementary reactions are reactions that directly express basic chemical events, that is,
the making or breaking of chemical bonds. In the gas phase, there are only two types of
elementary reactions:2

2 The existence of trimolecular reactions is sometimes suggested. For example, H + OH + M → H2O + M,
where M is a third body. However, the reaction probably proceeds by a two-step mechanism,
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• unimolecular reaction (e.g., due to the absorption of electromagnetic radiation);

• bimolecular reaction (due to a collision between two molecules);

and in condensed phases, in addition, a third type:

• bimolecular association/recombination reaction.

The reaction schemes of elementary reactions are to be taken literally. For example, one
of the elementary reactions in the reaction between hydrogen and oxygen is a simple
atom transfer:

H + O2 → OH + O

In this bimolecular reaction the stoichiometric coefficients are equal to one, meaning that
one hydrogen atom collides with one oxygen molecule. Once the reaction mechanism
and all the rate constants for the elementary reactions are known, the reaction rates for
all species are given by a simple set of coupled first-order differential equations. These
equations can be solved quite easily on a computer, and give the concentrations of all
species as a function of time. These results may then be compared with experimen-
tal results.

From this discussion, it follows that: elementary reactions are at the heart of chemistry.
The study of these reactions is the main subject of this book.

The rearrangement of nuclei in an elementary chemical reaction takes place over a
distance of a few ångström (1 ångström = 10−10 m) and within a time of about 10–100
femtoseconds (1 femtosecond = 10−15 s; a femtosecond is to a second what one second
is to 32 million years!), equivalent to atomic speeds of the order of 1 km/s. The challenges
in molecular reaction dynamics are: (i) to understand and follow in real time the detailed
atomic dynamics involved in the elementary processes, (ii) to use this knowledge in the
control of these reactions at the microscopic level, for example, by means of external
laser fields, and (iii) to establish the relation between such microscopic processes and
macroscopic quantities like the rate constants of the elementary processes.

We consider the detailed evolution of isolated elementary reactions3 in the gas phase,
for example,

A + BC(n) −→ AB(m)+ C

At the fundamental level, the course of such a reaction between an atom A and a
diatomic molecule BC is governed by quantum mechanics. Thus, within this theoretical

i.e., (1) H + OH → H2O∗, and (2) H2O∗ + M → H2O + M, where H2O∗ is an energy-rich water molecule
with an energy that exceeds the dissociation limit, and the function of M is to take away the energy. That is, the
reaction actually proceeds via bimolecular collisions.

3 An elementary reaction is defined as a reaction that takes place as written in the reaction scheme. We will
here distinguish between a truly elementary reaction, where the reaction takes place in isolation without any
secondary collisions, and the traditional definition of an elementary reaction, where inelastic collisions among
the molecules in the reaction scheme (or with container walls) can take place.
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framework the reaction dynamics at a given collision energy can be analyzed for reactants
in a given quantum state (denoted by the quantum number n) and one can extract the
transition probability for the formation of products in various quantum states (denoted
by the quantum number m). At this level, we consider the “state-to-state” dynamics of
the reaction.

When we consider elementary reactions, it should be realized that the outcome of a
bimolecular collision can also be non-reactive. Thus,

A + BC(n) −→ BC(m)+ A

and we distinguish between an elastic collision process, if quantum states n and m
are identical, and otherwise, an inelastic collision process. Note that inelastic collisions
correspond to energy transfer between molecules—in the present case, for example, the
transfer of relative translational energy between A and BC to vibrational energy in BC.

The realization of an isolated elementary reaction is experimentally difficult. The
closest realization is achieved under the highly specialized laboratory conditions of an
ultra-high vacuum molecular-beam experiment. Most often collisions between molecules
in the gas phase occur, making it impossible to obtain state-to-state specific information
because of the energy exchange in such collisions. Instead, thermally averaged rate
constants may be obtained. Thus, energy transfer, that is, inelastic collisions among
the reactants, implies that an equilibrium Boltzmann distribution is established for the
collision energies and over the internal quantum states of the reactants. A parameter in
the equilibrium Boltzmann distribution is the macroscopic temperature T . Under such
conditions, the well-known rate constant k(T) of chemical kinetics can be defined and
evaluated based on the underlying detailed dynamics of the reaction.

The macroscopic rate of reaction is, typically, much slower than the rate that can
be inferred from the time it takes to cross the transition states (i.e., all the intermediate
configurations between reactants and products) because the fraction of reactants with
sufficient energy to react is very small at typical temperatures.

Reactions in a condensed phase are never isolated but under strong influence of the
surrounding solvent molecules. The solvent will modify the interaction between the
reactants, and it can act as an energy source or sink. Under such conditions the state-
to-state dynamics described here cannot be studied, and the focus is then turned to the
evaluation of the rate constant k(T) for elementary reactions. The elementary reactions in
a solvent include both unimolecular and bimolecular reactions as in the gas phase and, in
addition, bimolecular association/recombination reactions. That is, an elementary reaction
of the type A + BC → ABC, which can take place because the products may not fly
apart as they do in the gas phase. This happens when the products are not able to escape
from the solvent “cage” and the ABC molecule is stabilized due to energy transfer to the
solvent.4 Note that one sometimes distinguishes between association as an outcome of a
bimolecular reaction and recombination as the inverse of unimolecular fragmentation.

4 Association/recombination can, under special conditions, also take place in the gas phase (in a single
elementary reaction step), e.g., in the form of so-called radiative recombination; see Section 6.5.
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On the experimental side, the chemical dynamics on the state-to-state level is being
studied via molecular-beam and laser techniques [2]. Alternative and complementary
techniques have been developed in order to study the real-time evolution of elementary
reactions [3]. Thus, the time resolution in the observation of chemical reactions has
increased dramatically over the last decades. The “race against time” has recently
reached the ultimate femtosecond resolution with the direct observation of chemical
reactions as they proceed along the reaction path via transition states from reactants
to products. This spectacular achievement was made possible by the development of
femtosecond lasers, that is, laser pulses with a duration as short as a few femtoseconds.
In a typical experiment two laser pulses are used, a “pump pulse” and a “probe pulse.”
The first femtosecond pulse initiates a chemical reaction, say the breaking of a chemical
bond in a unimolecular reaction, and a second time-delayed femtosecond pulse probe
this process. The ultrashort duration of the pump pulse implies that the zero of time is
well defined. The probe pulse is, for example, tuned to be in resonance with a particular
transition in one of the fragments and, when it is fired at a series of time delays relative
to the pump pulse, one can directly observe the formation of the fragment. This type of
real-time chemistry is called femtosecond chemistry (or simply, femtochemistry). Another
interesting aspect of femtosecond chemistry concerns the challenging objective of using
femtosecond lasers to control the outcome of chemical reactions, say to break a particular
bond in a large molecule. This type of control at the molecular level is much more
selective than traditional methods for control where only macroscopic parameters like the
temperature can be varied. In short, femtochemistry is about the detection and control of
transition states, that is, the intermediate short-lived states on the path from reactants to
products.

On the theoretical side, advances have also been made both in methodology and
in concepts. For example, new and powerful techniques for the solution of the time-
dependent Schrödinger equation (see Section 1.1) have been developed. New concepts
for laser control of chemical reactions have been introduced where, for example, one
laser pulse can create a non-stationary nuclear state that can be intercepted or redirected
with a second laser pulse at a precisely timed delay.

The theoretical foundation for reaction dynamics is quantum mechanics and statistical
mechanics. In addition, in the description of nuclear motion, concepts from classical
mechanics play an important role. A few results of molecular quantum mechanics and
statistical mechanics are summarized in Sections 1.1 and 1.2. In the second part of the
book, we will return to concepts and results of particular relevance to condensed-phase
dynamics.

1.1 Nuclear Dynamics: The Schrödinger Equation

The reader is assumed to be familiar with some of the basic concepts of quantum
mechanics. At this point we will therefore just briefly consider a few central concepts,
including the time-dependent Schrödinger equation for nuclear dynamics. This equation
allows us to focus on the nuclear motion associated with a chemical reaction.
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We consider a system of K electrons and N nuclei, interacting through Coulomb
forces. The basic equation of motion in quantum mechanics, the time-dependent
Schrödinger equation, can be written in the form

ih̄
∂�(rlab,Rlab, t)

∂t
= (T̂nuc + Ĥe)�(rlab,Rlab, t) (1.1)

where i is the imaginary unit, h̄ = h/(2π) is the Planck constant divided by 2π , and
the wave function depends on rlab = (r1,r2, . . . ,rK ) and Rlab = (R1,R2, . . . ,RN ), which
denote all electron and nuclear coordinates, respectively, measured relative to a fixed
laboratory coordinate system. The operators are

T̂nuc =
N∑

g=1

P̂2
g

2Mg
(1.2)

which is the kinetic energy operator of the nuclei, where P̂g = −ih̄∇g is the momentum
operator and Mg the mass of the gth nucleus, and Ĥe is the so-called electronic
Hamiltonian including the internuclear repulsion,

Ĥe =
K∑

i=1

p̂2
i

2me
−

N∑

g=1

K∑

i=1

Zge2

4πε0rig
+

K∑

i=1

K∑

j>i

e2

4πε0rij
+

N∑

g=1

N∑

h>g

ZgZhe2

4πε0rgh
(1.3)

where the first term represents the kinetic energy of the electrons, the second term the
attraction between electrons and nuclei, the third term the electron–electron repulsion,
and the last term the internuclear repulsion. More specifically, p̂i = −ih̄∇i is the momen-
tum operator of the ith electron and me its mass, ε0 in the Coulomb terms is the vacuum
permittivity, rig is the distance between electron i and nucleus g, the other distances rij and
rgh have a similar meaning, and Zge is the electric charge of the gth nucleus, where Zg
is the atomic number. The Hamiltonian is written in its non-relativistic form, that is,
spin-orbit terms, and so on are neglected. Note that the electronic Hamiltonian does not
depend on the absolute positions of the nuclei but only on internuclear distances and the
distances between electrons and nuclei.

The translational motion of the particles as a whole (i.e., the center-of-mass motion)
can be separated out. This is done by a change of variables from rlab,Rlab to RCM and
r,R, where RCM gives the position of the center of mass and r,R are internal coordinates
that describe the relative position of the electrons with respect to the nuclei and the
relative position of the nuclei, respectively. This coordinate transformation implies

�(rlab,Rlab, t) = �(RCM, t)�(r,R, t) (1.4)

where �(RCM, t) is the wave function associated with the free translational motion of the
center of mass, and �(r,R, t) describes the internal motion, given by a time-dependent
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Schrödinger equation similar to Eq. (1.1). The kinetic energy operators expressed in the
internal coordinates take, however, a more complicated form than specified here, (see,
e.g., Appendix E).5

Fortunately, a direct solution of Eq. (1.1) is normally not necessary. The electrons
are very light particles whereas the nuclei are, at least, about three orders of magnitude
heavier. From the point of view of the electronic state, the nuclear positions can be
considered as slowly changing external parameters, which means that the electrons
experience a slowly changing potential. To that end, it is convenient to expand the total
wave function for the nuclear and electronic degrees of freedom in the form

�(r,R, t) =
∑

i

χi(R, t)ψi(r;R) (1.5)

where ψi(r;R) is the usual stationary electronic wave function determined as an eigen-
function of the electronic Hamiltonian

Ĥeψi(r;R) = Ei(R)ψi(r;R) (1.6)

In this electronic Schrödinger equation, the nuclei are fixed and the equation has
only a parametric dependence on the nuclear coordinates, as indicated by the “;” in
the electronic wave function, Ei(R) is the corresponding electronic energy (including
internuclear repulsion), which is a function of the nuclear geometry. Equation (1.6) is
solved for different fixed values of the nuclear coordinates such that the wave function
and energy are evaluated over the entire range of relevant R values. χi(R, t) in Eq. (1.5) is
the wave function for the nuclear motion associated with the ith electronic state, and for
fixed values of the nuclear coordinates, it can be considered as an “expansion coefficient”
in an expansion that, in principle, is exact for a complete set of electronic states.

The expansion in Eq. (1.5) is motivated by the anticipation that the electrons expe-
rience a slowly changing potential due to the nuclear motion. To that end, when the
electrons are in a given quantum state (say the electronic ground state) it can be shown
that the quantum number of the electronic state, in the following indicated by the
subscript i, is unchanged as long as the nuclear motion can be considered as being
sufficiently slow. Thus, no transitions among the electronic states will take place under
these conditions. This is the physical basis for the so-called adiabatic approximation, which
can be written in the form,

�adia(r,R, t) = χ(R, t)ψi(r;R) (1.7)

corresponding to a single term in Eq. (1.5), and for notational convenience we have
dropped the subscript on the nuclear wave function.

5 Normally, three approximations are introduced in this context: (i) the center of mass is taken to be identical
to the center of mass of the nuclei; (ii) the kinetic energy operators of the electrons are taken to be identical
to the expression given in Eq. (1.3), which again means that the nuclei are considered to be infinitely heavy
compared to the electrons; and (iii) coupling terms between the kinetic energy operators of the electrons and
nuclei, introduced by the transformation, are neglected.



8 Introduction

The solution to Eq. (1.6) for the electronic energy in, for example, a diatomic molecule
is well known. In this case there is only one internuclear coordinate and the electronic
energy, Ei(R), is consequently represented by a curve as a function of the internuclear
distance. For small displacements around the equilibrium bond length R = R0, the curve
can be represented by a quadratic function. Thus, when we expand to second order
around a minimum at R = R0,

E(R) = E(R0)+
(

∂E
∂R

)

0
(R − R0)+ (1/2)

(
∂2E
∂R2

)

0
(R − R0)

2 + ·· ·

= E(R0)+ (1/2)k(R − R0)
2 + ·· · (1.8)

where the subscript indicates that the derivatives are evaluated at the minimum, and

k =
(

∂2E
∂R2

)

0
(1.9)

is the force constant. However, when we consider chemical reactions, where chemical
bonds are formed and broken, the electronic energy for all internuclear distances is
important. The description of the simultaneous making and breaking of chemical bonds
leads to multidimensional potential energy surfaces that are discussed in Chapter 3.

Substituting Eq. (1.7) into Eq. (1.1), we obtain (see Appendix A)

ih̄
∂χ(R, t)

∂t
= (T̂nuc + Ei(R)+ 〈ψi|T̂nuc|ψi〉0)χ(R, t) (1.10)

where we have used that 〈ψi|∇g|ψi〉 = ∇g〈ψi|ψi〉/2 = 0, when ψi(r;R) is real, and the
electronic wave function is normalized. The subscript on the matrix element implies
that T̂nuc acts only on ψi and the matrix element involves an integration over electron
coordinates.

The term 〈ψi|T̂nuc|ψi〉0 is normally very small compared to the electronic energy,
and may consequently be dropped (the resulting approximation is often referred to as
the Born–Oppenheimer approximation):

ih̄
∂χ(R, t)

∂t
= [T̂nuc + Ei(R)]χ(R, t) (1.11)

Equation (1.11) is the fundamental equation of motion within the adiabatic approxima-
tion. We see that: the nuclei move on a potential energy surface given by the electronic energy.
Thus, the electron-nuclear dynamics has been separated and one must first solve for
the electronic energy, Eq. (1.6), and subsequently solve the time-dependent Schrödinger
equation for the nuclear motion, Eq. (1.11).

The physical implication of the adiabatic approximation is that the electrons remain
in a given electronic eigenstate during the nuclear motion. The electrons follow the
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Fig. 1.1.1 Schematic illustration of the probability density, |χ(R, t)|2, associated with a chemical
reaction, A + BC → AB + C. The contour lines represent the potential energy surface (see Chapter 3),
and the probability density is shown at two times: before the reaction where only reactants are present,
and after the reaction where products as well as reactants are present. The arrows indicate the direction
of motion associated with the relative motion of reactants and products. (Note that, due to the finite
uncertainty in the A–B distance,RAB, there is some uncertainty in the initial relative translational energy
of A + BC.)

nuclei, for example, as a reaction proceeds from reactants to products, such that the
electronic state “deforms” in a continuous way without electronic transitions. From a
more practical point of view, the approximation implies that we can separate the solutions
to the electronic and nuclear motion.

The probability density, |χ(R, t)|2, may be used to calculate the reaction probability.
The probability density associated with the nuclear motion of a chemical reaction is
illustrated in Fig.1.1.1. The reaction probability may be evaluated from P = ∫

R∈Prod
|χ(R, t ∼ ∞)|2dR, where the integration is restricted to configurations representing
the products (Prod), in the example for large B–C distances, RBC. The limit t ∼ ∞
implies that the probability density obtained long after reaction is used in the integral.
In this limit, where the reaction is completed, there is a negligible probability density
in the region where RAB as well as RBC are small. In practice, “long after” is identified as
the time where the reaction probability becomes independent of time and, typically, this
situation is established after a few hundred femtoseconds.

The general time-dependent solutions to Eq. (1.11) are denoted as non-stationary
states. They can be expanded in terms of the eigenstates φn(R) of the Hamiltonian

Ĥ = T̂nuc + Ei(R) (1.12)

with φn(R) given by

Ĥφn(R) = Enφn(R) (1.13)
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where n is a set of quantum numbers that fully specify the eigenstates of the nuclear
Hamiltonian. The general solution can then be written in the form6 (as can be checked
by direct substitution into Eq. (1.11))

χ(R, t) = exp(−iĤ t/h̄)χ(R,0)

= exp(−iĤ t/h̄)
∑

n

cnφn(R)

=
∑

n

cnφn(R)e−iEnt/h̄ (1.14)

Each state in the sum, 	n(R, t) = φn(R)e−iEnt/h̄, is denoted as a stationary state, because
all expectation values 〈	n(t)|Â|	n(t)〉 (e.g., for the operator representing the position)
are independent of time. That is, there is no observable time dependence associated with
a single stationary state. Equation (1.14) shows that the non-stationary time-dependent
solutions can be written as a superposition of the stationary solutions, with coefficients
that are independent of time. The coefficients are determined by the way the system was
prepared at t = 0.

The eigenstates of Ĥ are well known, for non-interacting molecules, say the reactants
A + BC (an atom and a diatomic molecule), giving quantized vibrational and rotational
energy levels. Within the so-called rigid-rotor approximation where couplings between
rotation and vibration are neglected, Eq. (1.12) can for non-interacting molecules be
written in the form

Ĥ0 = Ĥ trans + Ĥvib + Ĥ rot (1.15)

where Ĥ trans represents the free relative motion of A and BC, and Ĥvib and Ĥ rot corre-
spond to the vibration and rotation of BC, respectively. This form of the Hamiltonian,
with a sum of independent terms, implies that the eigenstates take the form

φ0
n(R) = φtrans(Rrel)φ

n
vib(R)φ

J
rot(θ ,φ) (1.16)

where the functions in the product are eigenfunctions corresponding to translation,
vibration, and rotation. The eigenvalues are

E0
n = Etr + En + EJ (1.17)

That is, the total energy is the sum of the energies associated with translation, vibration,
and rotation. The translational energy is continuous (as in classical mechanics).

6 A function of an operator is defined through its (Taylor) power series. The summation sign should really
be understood as a summation over discrete quantum numbers and an integration over continuous labels
corresponding to translational motion.
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E4

E3

E2

E1

E0

Fig. 1.1.2 The energy levels of a one-dimensional harmonic oscillator.The zero-point energy E0 = h̄ω/2,
where for a diatomic molecule ω = √

k/μ, k is the force constant, and μ is the reduced mass.

For a one-dimensional harmonic oscillator, with the potential in Eq. (1.8), the Ham-
iltonian is

Ĥvib = − h̄2

2μ

∂2

∂R2 + (1/2)k(R − R0)
2 (1.18)

where μ is the reduced mass of the two nuclei in BC. This Hamiltonian has the well-
known eigenvalues

En = h̄ω(n + 1/2) , n = 0,1,2, . . . (1.19)

where ω = 2πν = √
k/μ, and ν is identical to the frequency of the corresponding classical

harmonic motion. The vibrational energy levels of the one-dimensional harmonic
oscillator are illustrated in Fig.1.1.2. Note, for example, that the vibrational zero-point
energy changes under isotope substitution since the reduced mass will change. We shall
see, later on, that this purely quantum mechanical effect can change the magnitude of
the macroscopic rate constant k(T).

The rigid-rotor Hamiltonian for a diatomic molecule with the moment of inertia
I = μR2

0 is

Ĥ rot = L̂2

2I
(1.20)
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where L̂ is the angular momentum operator, giving the well-known eigenvalues

EJ = h̄2J(J + 1)/(2I) , J = 0,1,2, . . . (1.21)

with the degeneracy ωJ = 2J + 1.
Typically, the energy spacing between rotational energy levels is much smaller than

the energy spacing between vibrational energy levels that, in turn, is much smaller
than the energy spacing between electronic energy levels:

Erot � Evib � Eelec (1.22)

where the energy spacing is defined as the energy difference between adjacent energy
levels.

It is possible to solve Eq. (1.11) numerically for the nuclear motion associated with
chemical reactions and to calculate the reaction probability including detailed state-
to-state reaction probabilities (see Section 4.2). However, with the present computer
technology such an approach is in practice limited to systems with a small number of
degrees of freedom.

For practical reasons, a quasi-classical approximation to the quantum dynamics
described by Eq. (1.11) is often sought. In the quasi-classical trajectory approach
(discussed in Section 4.1) only one aspect of the quantum nature of the process is
incorporated in the calculation: the initial conditions for the trajectories are sampled in
accord with the quantized vibrational and rotational energy levels of the reactants.

Obviously, purely quantum mechanical effects cannot be described when one replaces
the time evolution by classical mechanics. Thus, the quasi-classical trajectory approach
exhibits, for example, the following deficiencies: (i) zero-point energies are not con-
served properly (they can, e.g., be converted to translational energy) and (ii) quantum
mechanical tunneling cannot be described.

Finally, it should be noted that the motion of the nuclei is not always confined to a
single electronic state (as assumed in Eq. (1.7)). This situation can, for example, occur
when two potential energy surfaces come close together for some nuclear geometry. The
dynamics of such processes are referred to as non-adiabatic. When several electronic
states are in play, Eq. (1.11) must be replaced by a matrix equation with a dimension
given by the number of electronic states (see Section 4.2). The equation contains
coupling terms between the electronic states, implying that the nuclear motion in all
the electronic states is coupled.

1.2 Thermal Equilibrium: The Boltzmann Distribution

Statistical mechanics gives the relation between microscopic information such as quan-
tum mechanical energy levels and macroscopic properties. Some important statistical
mechanical concepts and results are summarized in Appendix B. Here we will briefly
review one central result: the Boltzmann distribution for thermal equilibrium.
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For reactants in complete thermal equilibrium, the probability of finding a BC
molecule in a specific quantum state, n, is given by the Boltzmann distribution (see
Appendix B.1). Thus, in the special case of non-interacting molecules the probability,
pBC(n), of finding a BC molecule in the internal (electronic, vibrational, and rotational)
quantum states with energy En is

pBC(n) = ωn

QBC
exp(−En/kBT) (1.23)

where ωn is the degeneracy of the nth quantum level (i.e., the number of states with the
same energy En) and QBC is the “internal” partition function of the BC molecule where
center-of-mass motion is excluded, given by

QBC =
∑

n

ωn exp(−En/kBT) (1.24)

that is, a weighted sum over all energy levels, where the weights are proportional to the
occupation probabilities of each level.

The distribution depends on the temperature; only the lowest energy level is populated
at T = 0. When the temperature is raised, higher energy levels will also be populated. The
probability of populating high energy levels decreases exponentially with the energy.

The Boltzmann distribution is illustrated in Fig.1.2.1 for the vibrational states of
a one-dimensional harmonic oscillator with the frequency ω = 2πν, where the energy
levels are given by Eq. (1.19), and in Fig.1.2.2 for the rotational states of a linear molecule

E4

E3

E2

E1

E0

pn

Fig. 1.2.1 The Boltzmann distribution for a system with equally spaced energy levels En and identical
degeneracy ωn of all levels (T > 0). This figure gives the population of states at the temperature T for a
harmonic oscillator.
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E5

E0 pJ

Fig. 1.2.2 The Boltzmann distribution for the rotational energy of a linear molecule (T > 0). The
maximum is at Jmax = √

IkBT/h̄ − 1/2 (rounded off to the closest integer).

with the moment of inertia I , where the energy levels are given by Eq. (1.21) with the
degeneracy ωJ = 2J + 1.

EkBT/2

P(E)

Fig. 1.2.3 The Boltzmann distribution for free translational motion. The maximum is at Emax =
kBT/2.

The Boltzmann distribution for free translational motion takes a special form (see
Appendix B.2.1), since the energy is continuous in this case. The probability of finding
a translational energy in the range Etr,Etr + dEtr is given by

P(Etr)dEtr = 2π

(
1

πkBT

)3/2 √
Etr exp(−Etr/kBT)dEtr (1.25)

This function is shown in Fig.1.2.3.
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These distribution functions show that, at a given temperature, many energy levels
will be populated when the energy spacing is small (which is the case for translational
and rotational degrees of freedom), whereas only a few of the lowest energy levels will
have a substantial population when the energy spacing is large (vibrational and electronic
degrees of freedom). Furthermore, it is often found that the degeneracy of the energy
levels is increasing as a function of the energy. The maxima of the distributions will
therefore often be found for energies above the ground-state energy. Thus, for the
translational energy, the maximum is at the energy kBT/2.

An elementary reaction is, in classical chemical kinetics, defined under conditions where
energy transfer among the molecules in the reaction scheme or with surrounding solvent
molecules can take place. In this case, we write

A + BC −→ AB + C

for an elementary reaction. We have deleted the quantum numbers associated with the
molecules, and it is understood that the states are populated according to the Boltzmann
distribution. Furthermore, when the reaction takes place, we will normally assume that
the thermal equilibrium among the reactants can be maintained at all times.

Further reading/references

[1] J.I. Steinfeld, J.S. Francisco, and W.L. Hase, Chemical kinetics and dynamics, second edition
(Prentice Hall, 1999).
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[3] A.H. Zewail, Scientific American, Dec. 1990, page 40. A.H. Zewail, J. Phys. Chem. 104, 5660
(2000).

[4] R.D. Levine, Molecular reaction dynamics (Cambridge University Press, 2005).

.....................................................................................................................................

PROBLEMS

1.1 Consider a Hamiltonian that can be written in the form

Ĥ = Ĥ1 + Ĥ2 + ·· ·

where Ĥ1, Ĥ2, · · · refers to different independent sets of coordinates. Assume that
the eigenfunctions and associated eigenvalues are known for each Hamiltonian, that
is Ĥ iψi = Eiψi , for i = 1,2, · · · . Show that

ψ = ψ1ψ2 · · ·



16 Introduction

is an eigenfunction of Ĥ with associated eigenvalue

E = E1 + E2 + ·· ·

This important result was used in connection with Eq. (1.15) and is used several
times throughout the book.

1.2 Show that Eq. (1.14) is a solution to Eq. (1.11).

1.3 Show that the maximum in the Boltzmann distribution for the rotational energy of a
linear molecule is at Jmax = √

IkBT/h̄ − 1/2 (when J is considered as a continuous
variable).

1.4 Consider the Boltzmann distribution for free translational motion, and calculate the
probability of finding translational energies that exceed E = E∗. Compare with the
expression exp[−E∗/(kBT)].

Use the integral: 4√
π

∫ ∞
x u2e−u2

du = 1 − erf(x)+ 2x√
π

e−x2
,

where the error function is defined as: erf(x) = 2√
π

∫ x
0 e−u2

du.

Note that erf(0) = 0, erf(0.5) = 0.5205, erf(1.0) = 0.8427, erf(2.0) = 0.9953,
and erf(∞) = 1.

1.5 Elementary concepts of probability and statistics play an important role in this book.
Thus, these concepts are an integral part of, for example, quantum mechanics
and statistical mechanics. The probability that some continuous variable x lies
between x and x + dx is denoted by P(x)dx. Often we refer to P(x) as the probability
distribution for x (although P(x) strictly speaking is a probability density).

The average value or mean value of a variable x, which can take any value between
−∞ and ∞, is defined by

〈x〉 =
∫ ∞

−∞
xP(x)dx

(a) Calculate the average translational energy using Eq. (1.25).

The variance of x is defined by

σ 2
x = 〈(x − 〈x〉)2〉

where σx is called the standard deviation. It is a measure of the spread of the
distribution about its mean value.

(b) Show that σ 2
x = 〈x2〉 − 〈x〉2, where 〈x2〉 is the average value of x2.

(c) Calculate the standard deviation associated with the Boltzmann distribution for
translational motion, Eq. (1.25).
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In connection with the evaluation of the integrals the Gamma function �(n) is useful.
It is defined as

�(n) =
∫ ∞

0
xn−1 exp(−x)dx, n > 0

with the special values

�(n + 1) = n!, where n = 1,2, . . .,

�(n + 1/2) = 1 · 3 · 5 · · · (2n − 1)

2n

√
π , where n = 1,2, . . ..
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From Microscopic to
Macroscopic Descriptions

Key ideas and results

In this chapter, we consider bimolecular reactions from both a microscopic and
a macroscopic point of view and thereby derive a theoretical expression for the
macroscopic phenomenological rate constant. That is, a relation between molecular
reaction dynamics and chemical kinetics is established.

The outcome of an isolated (microscopic) reactive scattering event can be specified
in terms of an intrinsic fundamental quantity: the reaction cross-section. The cross-
section is an effective area that the reactants present to each other in the scattering
process. It depends on the quantum states of the molecules as well as the relative
speed of the reactants, and it can be calculated from the collision dynamics (to be
described in Chapter 4).

In this chapter, we define the cross-section and derive its relation to the rate
constant. We show the following.

• The macroscopic rate constant is related to the relative speed of the reactants and
the reaction cross-section, and the expression contains a weighted average over
all possible quantum states and velocities of the reactants, and sums and integrals
over all possible quantum states and velocities of the products.

• Specialized to thermal equilibrium, the velocity distributions for the molecules
are the Maxwell–Boltzmann distribution (a special case of the general Boltzmann
distribution law). The expression for the rate constant at temperature T , k(T),
can be reduced to an integral over the relative speed of the reactants. Also, as
a consequence of the time-reversal symmetry of the Schrödinger equation, the
ratio of the rate constants for the forward and the reverse reaction is equal to the
equilibrium constant (detailed balance).

In chemical kinetics, we learn that an elementary bimolecular reaction,

A + B −→ products (2.1)

Theories of Molecular Reaction Dynamics. Second Edition. Niels E. Henriksen and Flemming Y. Hansen, Oxford University
Press 2019. © Niels E. Henriksen and Flemming Y. Hansen. DOI: 10.1093/oso/9780198805014.001.0001
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obeys a second-order rate law, given by

− d[A]
dt

= k[A][B] (2.2)

where k ≡ k(T) is the temperature-dependent bimolecular rate constant. The purpose
of the following chapters (Chapters 2–6) is to obtain an in-depth understanding of this
relation and the factors that determine k(T).

2.1 Cross-Sections and Rate Constants

We begin by establishing the relation between the so-called reaction cross-section σR and
the bimolecular rate constant. Let us consider an elementary gas-phase reaction,

A(i,vA)+ B(j,vB) → C(l,vC)+ D(m,vD) (2.3)

where an A and a B molecule collide,1 and a C and D molecule are formed. The reactant
molecule A is prior to the collision in a given internal quantum state i, which specifies a
set of quantum numbers corresponding to the rotational, vibrational, and electronic state
of the molecule, and moves with velocity vA relative to some laboratory fixed coordinate
system (the velocity is specified by a vector with a given direction and length, |vA|, which
is the speed). Reactant molecule B is likewise in a given internal quantum state j and
moves with velocity vB. The product molecules move with velocities vC and vD, and end
up in internal quantum states as specified by the quantum numbers l and m, respectively.
These conditions are readily specified in a theoretical calculation of the reaction but
difficult to realize in an experiment, because inelastic molecular collisions will upset the
detailed specification of the molecular states. The requirements of an experimental set-
up for the investigation of the chemical reaction in Eq. (2.3) may be summarized in the
following way.

• Establishment and maintenance of two molecular beams, where the molecules move
in a specified direction with a specified speed and are in a specified internal quantum
state.

• Detection of internal quantum states, direction of motion, and speed of product
molecules after the collision.

• Single-collision conditions, that is, there is one and just one collision in the reaction
zone defined as the zone where the beams cross, and no collisions prior to or after
this collision.

1 The word “collision” should not be taken too literally, since molecules are not, say, hard spheres where
it is straightforward to count the “hits.” Thus, a “collision” should really be interpreted as the broader term
“a scattering event.”
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C(l,vc)

A(i)

B( j)

vA

vB

V
dΩ

Fig. 2.1.1 Idealized molecular-beam experiment for the reaction A(i,vA) + B(j,vB) → C(l,vC) +
D(m,vD). The coordinate system is fixed in the laboratory. The reactants move with the relative speed
v = |vA − vB|.

These requirements can be met in a so-called crossed molecular-beam experiment, which
is sketched in Fig. 2.1.1. Here we can generate beams of molecules with well-defined
velocities and it is possible to determine the speed of the product molecules, for example,
vC = |vC|, by the so-called time-of-flight technique. The elimination of multiple scattering
in the reaction zone and collisions in the beams are obtained by doing the experiments
in high vacuum, that is, at very low pressures.

In an experiment, we can monitor the number of product molecules, C or D, emerging
in a space angle d� around the direction �; d� is given by the physical design of the
detector and � by its position (� is conveniently specified by the two polar angles θ

and φ). This is the simplest analysis of a scattering process, where we just count the
number of product molecules independent of their internal state and speed. In a more
advanced analysis, one may use the time-of-flight technique to analyze the speed of
product molecules, and only monitor products with a certain speed, that is, C molecules
with a speed in the range vC,vC + dvC and D molecules with a speed in the range
vD,vD + dvD. A still more advanced detection method also allows for the detection of
the quantum states of the product molecules. This is the ultimate degree of specification
of a scattering experiment.

At sufficiently low pressure (as in the beam experiment) where an A molecule
only collides with one single B molecule in the reaction zone, it will hold that the
number of product molecules is proportional to the number of collisions between A and
B molecules. Clearly, that number depends on the relative speed of the two molecules,
v = |vA − vB|, the time interval dt, and the number of B molecules. Therefore, if we
assume that the number density (number/m3) of B molecules in quantum state j and with
velocity vB is nB(j,vB), and that the flux density of A molecules relative to the B molecules
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is JA(i,v) (number/(m2 s)), then the number of collisions between A and B in the time
interval dt is proportional to nB(j,vB)VJA(i,v)Adt. Here, V is the volume of the reaction
zone (see Fig. 2.1.1), and A the cross-sectional area of the beam of A molecules.

In the experiment sketched in Fig. 2.1.1, we monitor the number of product molecules,
C(l,vC), emerging in the space angle d� around the direction �, with the speed in
the range vC,vC + dvC, and in the internal quantum state specified by l. Further-
more, let us for the moment assume that we can also detect the state of the product
molecule D, m,vD, as specified in Eq. (2.3). The number of product molecules,
dNC(l,vC,vC+dvC)(�,�+ d�, t, t + dt)

∣∣
m,vD

, registered in the detector in the time interval
dt, given that D is in the state m,vD, may therefore be written as (using that the change
in the value of a function, can be written on the form df = (df /dx)dx)

dNC(l,vC,vC+dvC)(�,�+ d�, t, t + dt)
∣∣
m,vD

≡ d3NC(l,vC)(�, t)
dvCd�dt

∣∣∣∣∣
m,vD

dvCd�dt

= P(ij,v|ml,vC,�,vD; t)nB(j,vB)JA(i,v)VAdvCd�dt

(2.4)

where we have introduced the factor P(ij,v|ml,vC,�,vD; t), which is proportional to
the probability that a product molecule is formed and found in the specified state. Note
that on the left-hand side of the vertical bar in the argument list we have written the
quantum numbers and the relative speed that specifies the state of the reactants, whereas
the quantum numbers and velocities on the right-hand side specify the state of the
products. The notation |m,vD implies that the number of C molecules in the specified
state is counted only when D is in the state m,vD.

The complete degree of specification of a scattering experiment is rarely realized in
an actual experiment and, normally, we will just monitor the number of C molecules in
the specified state, irrespective of the quantum state and velocity of D. In order to obtain
that quantity, we integrate over vD and sum over m in Eq. (2.4). Thus,

d3NC(l,vC)(�, t)
dvCd�dt

dvCd�dt = P(ij,v|l,vC,�; t)nB(j,vB)JA(i,v)VAdvCd�dt (2.5)

where P(ij,v|l,vC,�; t)= ∑
m

∫
allvD

P(ij,v|ml,vC,�,vD; t)dvD. By division with VdvC
d�dt, we obtain an expression for the number of product molecules per reaction zone
volume, per space angle, per time unit, and per unit speed, d3nC(l,vC)/(dvCd�dt), where
nC(l,vC) = NC(l,vC)/V is the number density of product molecules in the reaction zone.
We find

d3nC(l,vC)(�, t)
dvCd�dt

= P(ij,v|l,vC,�; t)AnB( j,vB)JA(i,v) (2.6)

The time dependence of the number of particles in the third-order differential and in
the probability can be dropped, since the experiments are typically conducted under
stationary conditions. Thus,
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d3nC(l,vC)(�)

dvCd�dt
= P(ij,v|l,vC,�)AnB(j,vB)JA(i,v)

≡
(

d2σR

dvCd�

)
(ij,v|l,vC,�)nB(j,vB)JA(i,v)

(2.7)

where we have replaced PA by
(

d2σR
dvCd�

)
(ij,v|l,vC,�), which defines the differential

reactive scattering cross-section. It has the dimension of an area per unit speed, per unit
space angle, because P is a probability density, that is, PdvCd� is dimensionless. Since
nB(j,vB), JA(i,v), and d3nC(l)/(dvCd�dt) are intensive properties (i.e., independent of the
size of the system), PA and d2σR/(dvCd�) must therefore also be intensive properties
independent of the beam geometries. The differential cross-section is a function of the
quantum states (ijl), the relative speed v = |vA − vB| of the reactants, and the continuous
velocity of the product, specified by the space angle � and the speed vC. Since it is
an intensive property of the chemical reaction, it is often used to report the results of
scattering experiments. Physically, the cross-section represents an effective area that the
reactants present to each other in connection with a scattering process.

We now need expressions for the relative flux of A molecules with regard to the B
molecules, and the number of B molecules. Let us introduce the following notation that
allows for any distribution of velocities in the molecular beams:

number density of A(i) with velocity in the range vA, vA + dvA: nA(i)fA(i)(vA)dvA

number density of B(j) with velocity in the range vB, vB + dvB: nB(j)fB(j)(vB)dvB

where nA(i) is the number density (number/m3) of A in quantum state i, irrespective
of their velocity, and fA(i)(vA)dvA is the normalized velocity probability distribution of
A(i), that is, the probability of finding an A(i) with velocity in the range from vA to
vA + dvA, and nB(j) is the number density (number/m3) of B molecules in quantum state
j. The product of the incoming flux, JA(i,v), and the number of B molecules may then be
expressed as

JA(i,v)nB(j,vB) = vnA(i)fA(i)(vA)dvA × nB(j)fB(j)(vB)dvB (2.8)

and we obtain from Eq. (2.7) the following expression:

d3nC(l,vC)(�)

dvCd�dt
=

(
d2σR

dvCd�

)
(ij,v|l,vC,�)vnA(i)fA(i)(vA)nB(j)fB(j)(vB)dvAdvB (2.9)

Note that the idealized beam experiment corresponds to “sharp” distributions in
the velocities, which mathematically can be expressed in terms of the so-called delta
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function2 δ(x). For example, if the velocity of all the A molecules is v0
A, we have

fA(i)(vA) = δ(vA − v0
A).

Often we are not interested in the distribution of speeds of the product molecules, so
we may accordingly multiply both sides of the equation by dvC and integrate over the
speed:

d2nC(l)(�)

d�dt
=

(
dσR

d�

)
(ij,v|l,�)vnA(i)fA(i)(vA)nB(j)fB(j)(vB)dvAdvB (2.10)

where
(

dσR
d�

)
= ∫ ∞

0

(
d2σR

dvCd�

)
dvC.

Likewise, if we multiply both sides of the equation by d� and integrate over all �, we
get an expression for the total reaction rate of the state-to-state reaction as specified by
the internal quantum numbers and the relative speed of the reactants:

dnC(l)

dt
= σR(ij,v|l)vfA(i)(vA)fB(j)(vB)dvAdvBnA(i)nB(j) (2.11)

where

σR(ij,v|l) =
∫ 4π

0

(
dσR

d�

)
(ij,v|l,�)d� (2.12)

is the integrated cross-section, often referred to as the total cross-section for the
state-to-state reaction as specified by the internal quantum numbers.3 Since the
cross-section is still resolved with respect to the quantum states, it is also referred to as
a partial cross-section. The various cross-sections are summarized in the following table:

Reaction cross-section Dimension

Differential
(

d2σR

dvCd�

)
(ij,v|l,vC,�) area/(speed×space angle)

Differential
(

dσR

d�

)
(ij,v|l,�) area/(space angle)

Partial σR(ij,v|l) area

Equation (2.11) has the form of a normal rate equation for the isolated bimolecular
reaction given by (compare with Eq. (2.3))

2 The delta function has the property
∫ ∞
−∞ δ(x − x′)f (x)dx = f (x′), where f (x) is an arbitrary function.

Additional properties of the delta function are described, e.g., in many textbooks on quantum mechanics.
3 The 4π indicates that integration is over the full unit sphere, d� = sinθdθdφ, with θ ∈ [0,π] and φ ∈

[0,2π].
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A(i,vA)+ B(j,vB) → C(l)+ D (2.13)

This rate, at the state-to-state level, can be measured provided that all inelastic collisions
are eliminated. Note that the rate constant (with the proper unit for a bimolecular
reaction, volume/time) can be identified as the cross-section times the relative speed
σR(ij,v|l)v.

At this point, let us consider how to interpret the cross-section. Since the partial cross-
section is an intensive property, it is clear from Eqs (2.7) and (2.10) that P is an extensive
variable given by

P(ij,v|l,�) = dσR(ij,v|l,�)/d�

A (2.14)

or, after integration over d�, Ptot = P(ij,v|l) = σR(ij,v|l)/A.
That is, the reaction probability is proportional to the ratio of the reaction cross-

section and the area of the beam (A); see Fig. 2.1.2.

Example 2.1 Molecular-beam studies, some experimental data

Many elementary chemical reactions have been investigated via molecular-beam techniques.
An example is the reaction

F + H2 → HF + H

and its variant with D2 [see D.M. Neumark, A.M. Wodtke, G.N. Robinson, C.C. Hayden,
and Y.T. Lee, J. Chem. Phys. 82, 3045 (1985) and M. Faubel, L. Rusin, S. Schlemmer,
F. Sondermann, U. Tappe, and J.P. Toennies, J. Chem. Phys. 101, 2106 (1994)]. It is found
that the total reaction cross-section increases with collision energy. Differential cross-sections
associated with angular distributions of products were resolved with respect to the different
vibrational states of HF(n). The angular distributions of HF(n) depend on the vibrational state
and were all found to be non-isotropic.

The formation of the stronger HF bond, with a bond dissociation energy that is about
130 kJ/mol higher than for H2, implies a substantial drop in potential energy and hence a
large release of kinetic energy that can be distributed among the translational, vibrational, and
rotational degrees of freedom of the products. At collision energies from 2.9 to 14.2 kJ/mol, it
is found that the HF vibrational distribution is highly inverted, with most of the population in
n = 2 and n = 3.

Another reaction studied via molecular-beam techniques is the (SN2) reaction:

Cl− + CH3Br → ClCH3 + Br−

where the total cross-section as a function of the relative collision energy has been determined
[L.A. Angel and K.M. Ervin, J. Am. Chem. Soc. 125, 1014 (2003)]. A special feature of this
(ion–molecule) reaction is found at low collision energies. Thus, with increasing collision
energies over the range 0.06–0.6 eV, the cross-section declines from 1.3 × 10−16 cm2 to
0.08 × 10−16 cm2.
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σ

Fig. 2.1.2 A beam of molecules incident on a rectangle of area A. The ratio of the total cross-section
(σR(ij,v|l)) to the area of the rectangle (A) is, according to Eq. (2.14), related to the fraction of molecules
that are undergoing reaction.

The total rate of reaction, dnC/dt = −dnA/dt, is obtained from Eq. (2.11) by summing
over all possible quantum states of reactants and products and all possible velocities vA
and vB. We find

− dnA/dt =
∑

ijl

∫

allvA

∫

allvB

vσR(ij,v|l)fA(i)(vA)fB(j)(vB)dvAdvBnA(i)nB(j) (2.15)

where the integration is over the three velocity components of A and B, respectively.
If we now write the number density of A(i) as

nA(i) = nApA(i) (2.16)

where nA is the number density of species A and pA(i) is the probability of finding A in
quantum state i, with a similar expression for the B molecules nB(j) = nBpB(j), a rate
expression equivalent to the well-known phenomenological macroscopic rate expression
is obtained. Thus,

− dnA/dt = kσ nAnB (2.17)

where the rate constant, kσ , is given by
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kσ =
∑

ijl

pA(i)pB(j)

∫

allvA

∫

allvB

vσR(ij,v|l)fA(i)(vA)fB(j)(vB)dvAdvB

≡
∑

ijl

pA(i)pB(j)kσ (ij|l)
(2.18)

This equation relates the bimolecular rate constant to the state-to-state rate constant
kσ (ij|l) and ultimately to vσR(ij,v|l). Note that the rate constant is simply the average
value of vσR(ij,v|l). Thus, in a short-hand notation we have kσ = 〈vσR(ij,v|l)〉. The
average is taken over all the microscopic states including the appropriate probability
distributions, which are the velocity distributions fA(i)(vA) and fB(i)(vB) in the experiment
and the given distributions over the internal quantum states of the reactants.

Outside high vacuum systems we will have an ensemble of molecules that will
exchange energy. Typically, thermal equilibrium will be maintained during chemical
reaction. There are, though, important exceptions such as chemical reactions in flames
and in explosions, as well as reactions that take place at very low pressures.

2.2 Thermal Equilibrium

We now proceed to develop a specific expression for the rate constant for reactants
where the velocity distributions fA(i)(vA) and fB(j)(vB) for the translational motion
are independent of the internal quantum state (i and j) and correspond to thermal
equilibrium.4 Then, according to the kinetic theory of gases or statistical mechanics, see
Appendix B.2.1, Eq. (B.65), the velocity distributions associated with the center-of-mass
motion of molecules are the Maxwell–Boltzmann distribution, a special case of the
general Boltzmann distribution law:

f (vA)dvA = f (vxA,vyA,vzA)dvA

= f (vxA)f (vyA)f (vzA)dvA

=
(

mA

2πkBT

)3/2

exp

{
−mAv2

xA

2kBT

}
exp

{
−mAv2

yA

2kBT

}
exp

{
−mAv2

zA

2kBT

}
dvA

(2.19)

where dvA = dvxAdvyAdvzA, kB is the Boltzmann constant, and a similar expression holds
for molecule B.

4 We assume that the mean-free path is much larger than the molecular dimensions; see Section 9.2. At very
high pressures this “assumption of free flight” is not valid and the overall reaction rate is controlled by the
diffusional motion of the reactants.
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Since the relative speed v appears in the integrand in Eq. (2.18), it will be convenient
to change to the center-of-mass velocity V and the relative velocity v (where v = |v|).
We find

v = vA − vB

V = (mAvA + mBvB)/M
(2.20)

where M = mA + mB. The velocities of A and B expressed in terms of the center-of-mass
velocity and the relative velocity are then given by

vA = V + mB

M
v

vB = V − mA

M
v

(2.21)

Since the Jacobi determinant for this substitution is equal to one, we have

dvAdvB = dVdv (2.22)

In order to simplify the notation, we consider only the x-component (the derivation is
easily generalized to include all three velocity components). The fraction of A molecules
(mass mA) with velocity in the range from vxA to vxA + dvxA, at the temperature T , is

f (vxA)dvxA =
√

mA

2πkBT
exp

{
−mAv2

xA

2kBT

}
dvxA (2.23)

and the corresponding expression for the B molecules (mass mB) is

f (vxB)dvxB =
√

mB

2πkBT
exp

{
−mBv2

xB

2kBT

}
dvxB (2.24)

We need to evaluate the following product:

f (vxA)f (vxB)dvxAdvxB

appearing in Eq. (2.18). This is the probability of finding an A molecule with velocity in
the range from vxA to vxA + dvxA and a B molecule with velocity in the range from vxB
to vxB + dvxB.

We introduce new variables according to Eq. (2.20):

vx = vxA − vxB

Vx = vxAmA/M + vxBmB/M
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where vx and Vx are the x-component of the relative velocity v and the center-of-
mass velocity V , respectively. The following relation is easily established (see also,
Appendix E.1):

mAv2
xA/2 + mBv2

xB/2 = μv2
x/2 + MV 2

x /2

where

μ = mAmB/M (2.25)

is the reduced mass and M is the total mass. The total kinetic energy is, accordingly, equal
to the kinetic energy for the center-of-mass motion plus the kinetic energy of the relative
motion. We now obtain

f (vxA)f (vxB)dvxAdvxB =
√

mAmB

(2πkBT)2 exp
{
− μv2

x

2kBT

}
exp

{
− MV 2

x

2kBT

}
dvxdVx

That is, the Maxwell–Boltzmann distribution for the two molecules can be written
as a product of two terms, where the terms are related to the relative motion and the
center-of-mass motion, respectively. After substitution into Eq. (2.18) we can perform
the integration over the center-of-mass velocity Vx. This gives the factor

√
2πkBT/M

(
∫ ∞
−∞ exp(−ax2)dx = √

π/a) and, from the equation before, we obtain the probability
distribution for the relative velocity, irrespective of the center-of-mass motion.

The probability distribution for the relative velocity in the x-direction is accordingly

f1(vx)dvx =
(

μ

2πkBT

)1/2

exp
{
− μv2

x

2kBT

}
dvx (2.26)

Note that this equation is identical to the Maxwell–Boltzmann velocity distribution of a
single particle with a mass given by the reduced mass.

Due to the simple product form of the Maxwell–Boltzmann distribution, the deriva-
tions given here are easily generalized to the expression for the relative velocity in
three dimensions. Since the integrand in Eq. (2.18) (besides the Maxwell–Boltzmann
distribution) depends only on the relative speed, we can simplify the expression in
Eq. (2.18) further by integrating over the orientation of the relative velocity. This is
done by introducing polar coordinates for the relative velocity. The full three-dimensional
probability distribution for the relative speed is

f3(v)dv = 4π

(
μ

2πkBT

)3/2

v2 exp
{
− μv2

2kBT

}
dv (2.27)

where the speed is v =
√

v2
x + v2

y + v2
z , that is, the length of the velocity vector, and the

factor 4πv2 comes from the integration over the orientation of the velocity.
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It is useful to determine the corresponding energy distribution, that is, the fraction
of molecules with relative kinetic energy in the range from Etr to Etr + dEtr. We
note that the relative kinetic energy is Etr = μv2/2, which implies that dEtr = μvdv or
dv = dEtr/

√
2μEtr. The energy distribution for motion in three dimensions is then

obtained from Eq. (2.27):

f3(Etr)dEtr = 2π

(
1

πkBT

)3/2 √
Etr exp

{
− Etr

kBT

}
dEtr (2.28)

This relation was illustrated in Fig. 1.2.3.
We can now collect the results and obtain an expression for Eq. (2.18) in the case

where the translational motion of the reactants is in thermal equilibrium:

k(T) =
∫ ∞

0
vσR(v)f3(v)dv

=
∫ ∞

0

√
2Etr/μσR(Etr)f3(Etr)dEtr

= 1
kBT

(
8

πμkBT

)1/2 ∫ ∞

0
σR(Etr)Etr exp

{
− Etr

kBT

}
dEtr

(2.29)

where

σR(v) =
∑

ijl

pA(i)pB(j)σR(ij,v|l) (2.30)

We can also write Eq. (2.29) in the form

k(T) =
∑

ijl

pA(i)pB(j)
1

kBT

(
8

πμkBT

)1/2 ∫ ∞

0
σR(ij,Etr|l)Etr exp

{
− Etr

kBT

}
dEtr

≡
∑

ijl

pA(i)pB(j)k(ij|l)(T)

(2.31)

which defines the state-to-state rate constant k(ij|l)(T), that is, the rate constant associated
with reactants and products in the specified quantum states (ij|l) with the translational
motion of the reactants in thermal equilibrium.

For reactants in complete internal thermal equilibrium, pA(i) and pB(j) are Boltzmann
distributions (see Appendix B.1), for example,
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pA(i) = exp(−Ei/kBT)/QA (2.32)

is the probability of finding the molecule A in quantum state i with energy Ei and QA is
the molecular partition function,

QA =
∑

i

exp(−Ei/kBT) (2.33)

where the sum includes all internal states of the molecule.

2.2.1 Principle of detailed balance

An additional important general result for k(T) can be derived in the case of complete
thermal equilibrium, that is, translational as well as complete internal thermal equilib-
rium: the relationship between rate constants for the forward, kf (T), and the reverse,
kr(T), reaction

A + B
kf−→←−
kr

C + D

at complete thermal equilibrium is known as the principle of detailed balance,5 and
given by

kf (T)

kr(T)
=

(
μCD

μAB

)3/2 (
QCQD

QAQB

)

int
exp(−�E0/kBT) ≡ K(T) (2.34)

where μCD and μAB are the reduced masses of the products and the reactants, respec-
tively, �E0 = E0,p − E0,r , E0,p and E0,r are the zero-point energies of the products and
the reactants, respectively, the partition functions refer to the internal (subscript “int” for
internal) motion of the molecules, and K(T) is the equilibrium constant of the reaction.
This relation is very useful for obtaining information about reverse reactions once the
forward rate constants or cross-sections are known. This principle is a consequence of
microscopic reversibility, that is, the time-reversal symmetry of the equation of motion—
the time-dependent Schrödinger equation (or the classical equations of motion). This
result is proved in Appendix C.

5 This relation between rate constants and the equilibrium constant can, of course, also be derived within
classical chemical kinetics using the equilibrium condition dnA/dt = 0.
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Example 2.2 Vibrational relaxation, Boltzmann distribution

This example illustrates several important points.

(i) Inelastic collisions change the internal energy distribution of molecules.

(ii) Inelastic collisions are the physical mechanism behind thermal equilibration, that is, a
Boltzmann distribution is obtained in the long-time limit of vibrational relaxation.

(iii) The relaxation time is inversely proportional to the pressure.

To that end, consider the following inelastic collision:

He + N2(n = 1)
k10−→←−
k01

He + N2(n = 0)

where we assume that N2 can only exist in the two vibrational states indicated above. The
bimolecular rate constant of the forward process is k10, and the rate constant of the reverse
process is k01 (note that the formalism of this chapter also applies to inelastic collisions).

We assume that thermal equilibrium, at the temperature T , has been established in the trans-
lational degrees of freedom. Then, according to the principle of detailed balance (Eq. (C.37)),

k10/k01 = e−(E0−E1)/kBT

where E0 and E1 are the energies associated with the vibrational energy levels. This equation
is similar to Eq. (2.34), except that thermal equilibrium in the vibrational degree of freedom
has not been assumed. The rate constant k10 has been determined at T = 700 K and k10 =
3.0 × 104 liter/(mol s). The initial conditions (t = 0) are [N2(n = 1)] = [N2(n = 1)]0 and [N2
(n = 0)] = 0.

The rate law takes the form

−d[N2(n = 1)]
dt

= k10[He][N2(n = 1)] − k01[He][N2(n = 0)]

= k10[He][N2(n = 1)] − k01[He]([N2(n = 1)]0 − [N2(n = 1)])

= (kf + kr)[N2(n = 1)] − kr[N2(n = 1)]0

where kf = k10[He] and kr = k01[He]. This is an inhomogeneous first-order differential
equation, with the solution

[N2(n = 1)] = [N2(n = 1)]0
(

kr + kf e−(kf +kr)t
)
/(kf + kr)

The concentration in the vibrational ground state is

[N2(n = 0)] = [N2(n = 1)]0 − [N2(n = 1)]

= [N2(n = 1)]0(1 − [N2(n = 1)]/[N2(n = 1)]0)

= [N2(n = 1)]0
(

1 − e−(kf +kr)t
)

kf /(kf + kr)

In the long-time limit, the fraction of molecules in the vibrational ground state becomes
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[N2(n = 0)]∞/[N2(n = 1)]0 = kf

kf + kr

= k10
k10 + k01

= k10/k01
1 + k10/k01

= e−(E0−E1)/kBT

1 + e−(E0−E1)/kBT

According to the Boltzmann distribution, the probability of observing the N2 molecule in the
vibrational ground state is

p0 = e−E0/kBT

Q

= e−E0/kBT

e−E0/kBT + e−E1/kBT

= e−(E0−E1)/kBT

1 + e−(E0−E1)/kBT

that is, identical to the probability derived from the kinetic approach.
We define the vibrational relaxation time, trelax, as the time it takes to reach 90% of the final

concentration in the vibrational ground state. That is,

[N2(n = 0)] = 0.9[N2(n = 0)]∞

= 0.9[N2(n = 1)]0
kf

kf + kr

which implies that 1 − exp(−(kf + kr)trelax) = 0.9, and

trelax = ln10
[He](k10 + k01)

= RT ln10
pHek10(1 + k10/k01)

where the ideal gas equation, pHe = [He]RT , was used in the second line. Thus, this equation
shows that the relaxation time is inversely proportional to the pressure. Now for N2, we have
E0 − E1 = −0.29 eV and trelax = 4.4 × 10−3 s, at pHe = 1 atm. Thus, the vibrational relaxation
is relatively slow, especially at low pressures. Rotational and translation relaxation is much
faster.
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Further reading/references

[1] J.C. Light, J. Ross, and K.E. Shuler, in Kinetic processes in gases and plasmas (Academic Press,
1969), Chapter 8.
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PROBLEMS

2.1 Using Eq. (2.18), what is the expression for the rate constant if all distributions
associated with internal quantum states and velocities of the reactants are “sharp”?
Mathematically, this condition can be expressed in the following way: pA(i) =
δij and pB(j) = δjk, where the so-called Kronecker delta is defined by δmn = 1 if
m = n, and δmn = 0 if m �= n, that is,

∑
m δmngm = gn. For the continuous velocity

we assume that the distributions are peaked at v0
A and v0

B, respectively, that is,
fA(i)(vA) = δ(vA − v0

A) and fB(j)(vB) = δ(vB − v0
B), where the so-called delta function

is defined by δ(r − r′) = δ(x − x′)δ(y − y′)δ(z − z′), where for an arbitrary function
g(x),

∫ ∞
−∞ δ(x − x′)g(x)dx = g(x′), with equivalent expressions in y and z.

2.2 The equilibrium probability distributions for the relative speed and the relative kinetic
energy are frequently used in various one- or two-dimensional models.

(a) When motion is restricted to two dimensions, show that the probability distri-
bution for the relative speed is

f2(v)dv = 2π

(
μ

2πkBT

)
vexp

{
− μv2

2kBT

}
dv

where the speed is v =
√

v2
x + v2

y .

(b) When motion is restricted to one dimension, show that the energy distribution is

f1(Etr)dEtr = 1√
πEtrkBT

exp
{
− Etr

kBT

}
dEtr

Note that the speed is the length of the velocity vector, that is, v = √
v2

x , and
use that the velocity distribution must be multiplied by 2, when the speed is
considered. When motion is restricted to two dimensions, show that the energy
distribution is

f2(Etr)dEtr = 1
kBT

exp
{
− Etr

kBT

}
dEtr

2.3 (a) For a reaction without an energy threshold, it was found that the total reaction
cross-section could be represented as σR(Etr) = A/

√
Etr, where A is a constant.

Calculate the thermal rate constant k(T) for the reaction.
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In connection with the evaluation of Eq. (2.29), the Gamma function 	(n)

can sometimes be useful. It is defined as

	(n) =
∫ ∞

0
xn−1 exp(−x)dx, n > 0

with the special values

	(n + 1) = n!, where n = 1,2, . . . ,

	(n + 1/2) = 1 · 3 · 5 · · · (2n − 1)

2n

√
π , where n = 1,2, . . . .

(b) For a reaction with an energy threshold, it was found that the total reaction
cross-section could be represented as

σR(Etr) =
{

0 for Etr < E0
f (Etr − E0) for Etr ≥ E0

Show that the thermal rate constant k(T) for the reaction can be written in
the form k(T) = A(T)e−E0/kBT , and specify the connection between A(T) and
f (Etr − E0).

2.4 We consider, in the gas phase, the (SN2) reaction

Cl− + CH3Br → ClCH3 + Br−

Reaction cross-sections have been determined in a molecular-beam experiment
[ J. Am. Chem. Soc. 125, 1014 (2003)]. The total cross-section at the relative
translational energy Etr = 0.06 eV is σR(Etr) = 1.3 × 10−16 cm2.

(a) Calculate the thermally-averaged rate constant k(T) at T = 300 K, under the
assumption that in the relevant energy range determined by the Boltzmann
distribution the cross-section is independent of the relative translational energy.

(b) Assume that the differential reaction cross-section, for small deflection
angles θ , can be described by the equation dσR/d� = AE−1/2

tr θ−3/2, where
d� = sinθdθdφ and A is a constant. What is the ratio between the number
of product molecules in the two angular regions θ ∈ [0.2,0.3] radians and
θ ∈ [0.3,0.366] radians, respectively, when φ ∈ [0.1,0.2] radians? (Use that, at
small deflection angles sinθ ∼ θ .)
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Potential Energy Surfaces

Key ideas and results

A potential energy surface is the electronic energy as a function of the internuclear
coordinates, and it is obtained as a solution to the electronic Schrödinger equation,
Eq. (1.6), for a set of values of the internuclear coordinates. We consider, in particular,
the general topology of such energy surfaces for unimolecular and bimolecular reac-
tions, as well as some approximate analytical solutions to the electronic Schrödinger
equation associated with bond breaking and bond making.

• For direct reactions, a single saddle point is found on the path from reactants to
products. In indirect reactions, wells and one or more saddle points are found
along the reaction path. The electronic energy at the saddle point relative to the
electronic energy of the reactants is the barrier height. The height depends on the
particular reaction. In special cases no barriers exist.

• Barrier heights in bimolecular reactions depend on the approach angle. For
example, in D + H2 → H + HD (and its isotopic variants), the lowest barrier is
found when D attacks along the bond axis of H2, that is, collinearly.

• A barrier that occurs in the entrance channel while the reactants are approaching
each other is denoted as an “early” barrier, whereas a “late” barrier occurs in the
exit channel as the products are separating.

• A simple description of the electronic energy of three interacting hydrogen atoms
is given by the London equation. A significant point is that the energy is not equal
to the sum of H–H pair energies.

• A semi-empirical extension of the London equation—the LEPS method—allows
for a simple but somewhat crude construction of potential energy surfaces.

The electronic Schrödinger equation is, according to Eq. (1.6), given by

Ĥeψi(r;R) = Ei(R)ψi(r;R) (3.1)

Theories of Molecular Reaction Dynamics. Second Edition. Niels E. Henriksen and Flemming Y. Hansen, Oxford University
Press 2019. © Niels E. Henriksen and Flemming Y. Hansen. DOI: 10.1093/oso/9780198805014.001.0001
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where Ĥe is the electronic Hamiltonian, ψi(r;R) is the stationary electronic wave func-
tion, and Ei(R) is the corresponding electronic energy (including internuclear repulsion),
which is a function of the nuclear geometry. The geometry is specified by coordinates
that are denoted by R. Actually, the electronic energy depends only on a subset of the
nuclear coordinates (which we refer to as internuclear coordinates, to be specified next)
since the electronic Hamiltonian in Eq. (3.1) is invariant to overall translation as well as
overall rotation. Note that the electronic energy is also invariant to isotope substitution
since the electronic Hamiltonian is independent of nuclear masses.

In order to generate an electronic potential energy surface, Eq. (3.1) must be solved
at a set of fixed values of the nuclear coordinates R, as indicated by “;” in the electronic
wave function.

First, let us consider what is meant by internuclear coordinates and, in particular,
how many of these coordinates are needed in order to specify the electronic energy.
We consider a collection of N atomic nuclei, which in this context are considered as
point particles. In the following, we will for convenience refer to any collection of nuclei
and electrons as a “molecule.” The atomic nuclei and the electrons may form one
or more stable molecules but this is of no relevance to the following argument. The
internuclear coordinates are defined as coordinates that are invariant to overall translation
and rotation. These coordinates can, for example, be chosen as internuclear distances and
bond angles.

3N coordinates are needed in order to completely specify the position of the nuclei.
Three coordinates are needed in order to specify the position of the center of mass.1

Thus, 3N − 3 coordinates account for the internal degrees of freedom, that is, overall
orientation and internuclear coordinates. The overall orientation can be specified by
two coordinates for a linear molecule, say by the two polar angles (θ ,φ). For a non-
linear molecule three coordinates are needed in order to specify the orientation. These
coordinates are often chosen as the so-called Euler angles. Thus, for a molecule with N
atomic nuclei,

number of internuclear coordinates =
{

3N − 5 for a linear molecule
3N − 6 for a non-linear molecule

(3.2)

Note that in a non-linear molecule, one of the vibrational modes of the linear molecule
has been replaced by a rotational coordinate. As an illustration, let us consider two
examples. For the stable linear triatomic molecule CO2, there are 3 × 3 − 5 = 4 inter-
nuclear coordinates, which corresponds to the vibrational degrees of freedom, namely
the symmetric and antisymmetric stretch and two (degenerate) bending modes (see
Appendix F). For the three atoms in the reaction D + H − H → D − H + H, there are
3 × 3 − 6 = 3 internuclear coordinates. These coordinates can, for example, be chosen
as a D–H distance, the H–H distance, and the D–H–H angle.

1 These three coordinates have in fact already been separated out of Eq. (1.6).
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In this chapter, we will first discuss the general topology of potential energy surfaces
that have been calculated for elementary chemical reactions. Second, we will consider
the solution of the electronic Schrödinger equation with a focus on analytical results and
elementary concepts rather than detailed computational procedures.

3.1 The General Topology of Potential Energy Surfaces

For bimolecular elementary chemical reactions there are, roughly speaking, two general
categories of potential energy surfaces: (i) surfaces with a single potential energy barrier
and no wells along the reaction path, and (ii) surfaces with wells and one or more
barriers along the reaction path. A bimolecular reaction is in the former case denoted as
a direct reaction and in the latter case as an indirect reaction (or complex mode reaction).
Typically, for direct reactions the transformation from reactants to products occurs
within a vibrational period, whereas for indirect reactions the transformation can take
several vibrational periods.

For direct reactions a single saddle point is found on the path from reactants to
products, with potential energy valleys extending in the directions of separate reactants
and products; see Fig.3.1.1.

A saddle point is a stationary point on the multidimensional potential energy surface.
It is a stable point in all dimensions except one, where the second-order derivative of
the potential is negative (see Appendix F). The classical energy threshold Ecl or barrier
height of the reaction corresponds to the electronic energy at the saddle point relative to
the electronic energy of the reactants.

D + H2 HD + H

Fig. 3.1.1 A potential energy surface for a direct bimolecular reaction. The surface corresponds to a
reaction like D + H − H → D − H + H at a fixed approach angle, say in a collinear configuration
specified by the D–H and H–H distances. These distances are measured along the two perpendicular
axes. (Note that in this figure all energies above a fixed cut-off value Emax have been replaced by
Emax.)
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Example 3.1 Data for simple reactions

Highly accurate potential energy surfaces have been calculated for simple direct reactions like
D + H2 → HD + H and F + H2 → HF + H. The lowest classical barrier height for D + H2
(and its isotopic variants) has been calculated to be 40.50 ± 0.50 kJ/mol [1,2]. The lowest
barrier is found at the collinear geometry where all atoms are along the same line. For the
F + H2 reaction, the classical barrier height at the collinear geometry is 7.66 ± 1.0 kJ/mol.
Recent calculations [3] show, however, that the lowest barrier is 6.07 ± 1.0 kJ/mol, which is
found for a bent geometry corresponding to an F–H–H angle of about 119◦. The barrier
heights of these reactions are much smaller than the bond dissociation energy of H2. Thus, the
saddle point is on the path from reactants to products, at a stage where the H–H bond is partly
broken and a new bond is simultaneously being formed.

The energy threshold of a reaction corresponds to the minimum relative translational
energy that must be supplied to the reactants in order to produce products. This energy
threshold will differ from the classical barrier height, even when the reactants are in their
ground states, due to vibrational zero-point energies and quantum mechanical tunneling.
The relation between the energy threshold and the activation energy of chemical kinetics
is discussed in Chapter 8.

Although the entire potential energy surface is important, it is often useful to focus
on particular features. For example, the minimum-energy path or the reaction coordinate,
which corresponds to points on a line through the saddle point along the deepest part
of the two valleys on each side of the saddle point. A chemical reaction that follows
this path will, at all times, experience the lowest possible potential energy. The energy
along the reaction coordinate is shown in Fig.3.1.2 for two cases: first for a case where
the electronic energy of reactants and products is identical, as in Fig.3.1.1, and for an
exothermic reaction like F + H2, where the electronic energy of the products is lower than
the electronic energy of the reactants. This is the definition of an exothermic reaction at
the microscopic level, and the implications for the dynamics are a large release of energy
into translational, vibrational, and rotational degrees of freedom in the products.

As mentioned previously, the barrier height depends on the approach angle, as
illustrated in Fig.3.1.3. Another important feature is the location of the barrier along
the reaction coordinate [4]. An “early” barrier is a barrier that occurs in the entrance
channel while the reactants are approaching each other. In Fig.3.1.4 the potential energy
surface for such a situation is shown as a contour plot, that is, all the points on a contour
line correspond to a fixed value of the energy. The implications for the dynamics are
that translational energy is most effective for passage across the barrier and that the
products will show up with high vibrational excitation. The F + H2 reaction is an example
of a reaction with an early barrier. A “late” barrier is a barrier that occurs in the exit
channel where the products are separating; in Fig.3.1.4 such a barrier exists for the
reverse reaction, that is, AB + C → A + BC. The implications for the dynamics are that
vibrational energy is most effective for passage across the barrier and that the products
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Fig. 3.1.4 Contour plot of a potential energy surface for the reaction A + BC → AB + C. The surface
is shown as a function of the two internuclear distances RAB and RBC at a fixed approach angle. The
barrier (marked with an arrow) occurs in the entrance channel, that is, an “early” barrier.

will show up with low vibrational excitation.2 Note that for a symmetric reaction, as in
Fig.3.1.1, the barrier always occurs at the 45◦ line.

So far, we have considered potential energy surfaces without any (local) minima along
the reaction coordinate. However, wells along the reaction coordinate can occur. For
example, for a bimolecular nucleophilic substitution (SN2) reaction like Cl− + CH3Br →
ClCH3 + Br−, the potential energy has a double-well shape, that is, two minima separated
by a central barrier. The minima for this reaction reflects the stability (an effect that is
also well known within classical electrostatics) of the ion–dipole complexes Cl− · · ·CH3Br
and ClCH3 · · ·Br−. For other indirect (or complex mode) reactions one finds two saddle
points separated by a well on the path from reactants to products. The existence of
a well along the reaction path implies that the collision may be “sticky,” and a long-
lived intermediate complex can be formed before the products show up. Examples of
complex mode reactions are H + O2 → OH + O (with the intermediate HO2), H+ + D2
and KCl + NaBr.

In unimolecular reactions, initially, there is only a single stable molecule. This configu-
ration corresponds to a minimum, that is, a well on a multidimensional potential energy
surface; see Figs 3.1.5 and 3.1.6.

One can again consider two general categories: direct reactions and complex mode
reactions. Saddle points are found for some, but not all unimolecular reactions. Thus,
for the unimolecular dissociation of H2O in its electronic ground state no saddle point
is found (see Figs 3.1.5 and 3.1.6). For an isomerization like HCN → HNC, a saddle
point does exist.

So far, we have focused on surfaces associated with the electronic ground state.
However, sometimes excited electronic states play an important role. This is the case for

2 These conclusions are based on the assumption that there is no interchange of translational and vibrational
energy prior to the crossing of the barrier. The validity of the assumption depends on the exact form of the
potential energy surface as well as on the masses of the particles. In order to get a quick estimate of the mass
effects, a mass-weighted coordinate system can be used, see Appendix E.2.
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H + OHH + OH

H2O

Fig. 3.1.5 A potential energy surface for a direct unimolecular reaction without a saddle point. The
surface corresponds to a reaction like H2O → H + OH for dissociation along a fixed bond angle, where
only two internuclear coordinates are required in order to specify the configuration. (Note that in this
figure all energies above a fixed cut-off value Emax have been replaced by Emax.)
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Fig. 3.1.6 Contour plot of the potential energy surface of Fig.3.1.5.H2O is at its equilibrium bond angle
of 104.5◦ and the inner contours correspond to the lowest energies. The minimum is at an OH distance
of 1.81a0, where 1a0 = 0.529Å.

unimolecular photo-activated reactions, as well as for some bimolecular reactions where
non-adiabatic effects play a role. We return to both cases in subsequent chapters.

The techniques for the solution of the electronic Schrödinger equation are highly
developed. Computer programs that solve this equation and that can locate saddle
points, and so on, are available today and in widespread use.3 These programs can

3 Several commercial quantum chemical programs like “Gaussian” (by Gaussian, Inc., www.gaussian.com)
and “Spartan” (by Wavefunction, Inc., www.wavefun.com) are available for the solution of the electronic
Schrödinger equation.
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run on standard personal computers. When the molecules contain a large number of
electrons it is, however, difficult to obtain a highly accurate potential energy surface.
This is, in part, because the total electronic energy that is obtained from the electronic
Schrödinger equation is very large compared to the small changes in the energy that are
observed for different internuclear configurations. Thus, at the saddle point the energy
is typically of the order of 0.1 to 1 eV 4 higher than the electronic energy of the reactants.
If the energy of the reactants is thousands of eV or more, a highly accurate scheme is,
obviously, required in order to determine an accurate potential energy surface, including
an accurate barrier height.

3.2 Molecular Electronic Energies, Analytical Results

We consider in this section some approximate analytical solutions to the electronic
Schrödinger equation, in order to provide some basic insight into the energetics of the
making and breaking of chemical bonds. Since most of the results are well known from
quantum mechanics/chemistry, we will only present the key points and sometimes omit
detailed proofs.

3.2.1 The variational principle

In order to obtain the potential energy surfaces associated with chemical reactions we,
typically, need the lowest eigenvalue of the electronic Hamiltonian. Unlike systems such
as a harmonic oscillator and the hydrogen atom, most problems in quantum mechanics
cannot be solved exactly. There are, however, approximate methods that can be used to
obtain solutions to almost any degree of accuracy. One such method is the variational
method. This method is based on the variational principle, which says that the ground-
state energy that is calculated using an arbitrary (trial) wave function is always equal to
or greater than the energy associated with the exact ground-state wave function.

The exact ground-state wave function ψ0 and the associated energy E0 satisfy the
Schrödinger equation

Ĥeψ0 = E0ψ0 (3.3)

Thus,

E0 =
∫

ψ�
0Ĥeψ0 dτ∫
ψ�

0ψ0 dτ
(3.4)

where dτ represents the appropriate volume element (note that the denominator is equal
to one if the wave function is normalized). Then, according to the variational principle,
if we substitute any other function for ψ0 in Eq. (3.4) and calculate

4 1 eV = 96.485 kJ/mol.
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Eφ =
∫

φ�Ĥeφ dτ∫
φ�φ dτ

(3.5)

then

Eφ ≥ E0 (3.6)

Thus, if we use a trial function (φ) that depends on some parameters, we can vary these
parameters in order to minimize Eφ , and we will always obtain an energy that is larger
than or equal to (if we happen to obtain the exact ground-state wave function) the exact
ground-state energy.

If we, for example, have a trial function that depends linearly on the variational
parameters (cn), that is,

φ =
N∑

n=1

cnφn (3.7)

then minimization of the energy with respect to cn leads to the following so-called secular
equation associated with the wave function (assuming for simplicity normalized real basis
functions, φn):

∣∣∣∣∣∣∣∣∣∣

H11 − E H12 − ES12 · · · H1N − ES1N

H21 − ES21 H22 − E · · · H2N − ES2N

...
...

...

HN1 − ESN1 HN2 − ESN2 · · · HNN − E

∣∣∣∣∣∣∣∣∣∣

= 0 (3.8)

where

Hij =
∫

φiĤ eφjdτ

Sij =
∫

φiφjdτ

(3.9)

Since Ĥe is Hermitian the matrix is a real symmetric matrix. This N × N determinant
gives an Nth-order polynomial in E. The lowest root is the best approximation to the
ground-state energy within the framework of the trial function in Eq. (3.7).

3.2.2 Chemical bonding in H+
2 and H2

We consider first, at a qualitative level, the chemical bonding in the simplest molecule
H+

2 . This summarizes some important concepts and, at the same time, introduces the
notation to be used later on.
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The electronic Hamiltonian of H+
2 (see Eq. (1.3)) is

Ĥe = − h̄2

2me
∇2 − e2

4πε0rA
− e2

4πε0rB
+ e2

4πε0R
(3.10)

where rA is the distance of the electron from nucleus A, rB is the distance of the electron
from nucleus B, and R is the internuclear separation,5 see Fig.3.2.1.

As a trial function for the wave function (molecular orbital, MO) of the electron,
consider the linear combination

ψ = c11sA + c21sB (3.11)

where ψ ≡ ψ(r;R) with r denoting the three coordinates of the electron, and where
1sA and 1sB denote normalized hydrogenic 1s orbitals centered on nuclei A and B,
respectively,

1sA =
√

1

πa3
0

e−rA/a0

1sB =
√

1

πa3
0

e−rB/a0

(3.12)

R

rBrA

A B

Fig. 3.2.1 Definition of the distances involved in the electronic Hamiltonian of H+
2 .

5 In Section 1.1, we mentioned that this form of the Hamiltonian refers to electronic coordinates specified in
a laboratory fixed coordinate system. For H+

2 , after the proper transformation from laboratory fixed coordinates
to center-of-mass coordinates and internal coordinates of the three-particle system, one will obtain an electronic
Hamiltonian that is very close to the form given in Eq. (3.10). When so-called Jacobi coordinates (to be
introduced in Section 4.1.4) are used as internal coordinates, the coordinates of the electron are measured
relative to the center of mass of the two protons, and the electronic Hamiltonian can be written as in Eq. (3.10),
except that the electron mass me is replaced by μ = me2mp/(me + 2mp) = 9.1069 × 10−31 kg ∼ 0.9997me,
where mp is the proton mass. This small change of effective mass will only introduce a very small change in the
energy. Thus, when we consider the change in the ground-state energy of the free hydrogen atom introduced
by such a change in mass, it will correspond to 0.003 eV, which is indeed a very small change.
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which are functions of the electron-nucleus distances and where a0 is the Bohr radius.
The secular equation, Eq. (3.8), associated with the wave function is

∣∣∣∣
HAA(R)− E(R) HAB(R)− E(R)S(R)

HBA(R)− E(R)S(R) HBB(R)− E(R)

∣∣∣∣ = 0 (3.13)

where

HAA(R) =
∫

dr1sAĤe1sA

HAB(R) =
∫

dr1sAĤe1sB

S(R) =
∫

dr1sA1sB

(3.14)

where dr is the volume element associated with the three coordinates of the electron,
S(R) is the overlap integral, HAA = HBB, and HAB = HBA. Thus,

[HAA(R)− E(R)]2 − [HAB(R)− E(R)S(R)]2 = 0 (3.15)

which implies

E±(R) = HAA(R)± HAB(R)

1 ± S(R)
(3.16)

with the corresponding wave functions

ψ± = 1√
2(1 ± S)

(1sA ± 1sB) (3.17)

The matrix elements can be expressed in the form

HAA(R) = E1 + J ′(R) (3.18)

where E1 is the ground-state energy of the free hydrogen atom, that is,

(
− h̄2

2me
∇2 − e2

4πε0rA

)
1sA = E11sA (3.19)

and

J ′(R) = e2

4πε0R
−

∫
dr[1sA]2 e2

4πε0rB
(3.20)
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where the integral is called a Coulomb integral. The first term in J ′ is the nuclear–nuclear
Coulombic repulsion. Since dr[1sA]2 is the probability of finding the electron in the
volume element dr at the position r around A, the second term can be interpreted as
the charge cloud of the electron around nucleus A interacting with nucleus B via the
Coulomb potential. The off-diagonal matrix element can be written as

HAB(R) = E1S(R)+ K ′(R) (3.21)

where E1 is again the ground-state energy of the free hydrogen atom:

(
− h̄2

2me
∇2 − e2

4πε0rB

)
1sB = E11sB (3.22)

and

K ′(R) = S(R)e2

4πε0R
−

∫
dr1sA

e2

4πε0rA
1sB (3.23)

where the integral is called an exchange integral. This does not lend itself to the same
type of “classical” interpretation as discussed for J ′. K ′ is a strictly quantum mechanical
quantity. Equation (3.16) now takes the form

E±(R) = E1 + J ′(R)± K ′(R)

1 ± S(R)
(3.24)

where the last term gives the energy of H+
2 relative to a separated proton and a hydrogen

atom (E1). All integrals can be evaluated analytically. J ′ is positive while K ′ is negative
with the exception of very small internuclear separations.

The positive value of J ′ in H+
2 implies that the internuclear repulsion is always larger

than the attraction between the electron and a proton, see Eq. (3.20). These integrals
as well as the energies (relative to a separated proton and a hydrogen atom) of the two
states are shown in Fig.3.2.2. The state corresponding to the energy E+ describes a stable
molecule with dissociation energy De = 1.77 eV and equilibrium bond length Re = 1.32
Å (= 2.5 a0) (the experimental values are 2.78 eV and 1.06 Å, respectively). Because the
exchange integral is a strictly quantum mechanical quantity, the existence of the chemical
bond is a quantum mechanical effect.

In the description here, only two atomic orbitals were used in the trial function. The
way to improve the accuracy is to include more atomic orbitals in the trial function,
such as

ψ = c11sA + c22sA + c32pzA + c41sB + c52sB + c62pzB (3.25)
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Fig. 3.2.2 The energies of the bonding (E+) and antibonding (E−) states in a simple molecular orbital
description of H+

2 . The Coulomb (J ′) and exchange (K ′) integrals, including internuclear repulsion, are
also shown. All quantities are shown as a function of the internuclear separation in units of the Bohr
radius.

This method of constructing a molecular orbital (MO) is called the linear combination
of atomic orbitals–molecular orbital (LCAO–MO).

Next we consider the hydrogen molecule. The electronic Hamiltonian of H2 is

Ĥe = − h̄2

2me
(∇2

1 + ∇2
2 )− e2

4πε0r1A
− e2

4πε0r1B

− e2

4πε0r2A
− e2

4πε0r2B
+ e2

4πε0r12
+ e2

4πε0R

(3.26)

where r1A is the distance from electron “1” to nucleus A, r12 is the distance between
electron “1” and “2,” and so on. Electrons are indistinguishable from each other and
cannot really be labeled and the overall electronic wave function, including both space
and spin dependence, must be anti-symmetric (i.e., change sign) under the interchange
of any two electrons:

	(1,2) = −	(2,1) (3.27)

where “1” and “2” here is a shorthand notation for the two electrons.
If the electron–electron repulsion was absent in the Hamiltonian, the wave function

could be represented exactly as a product of independent one-electron wave functions,
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that is, 	(1,2) = φ1(1)φ2(2). Now, working within such a description and taking into
account Eq. (3.27), the wave function can be expressed as a Slater determinant:

ψMO(1,2) = 1√
2!

∣∣∣∣
ψ+α(1) ψ+α(2)

ψ+β(1) ψ+β(2)

∣∣∣∣ (3.28)

where we have included the two possible spin states of the electron (α and β), and
placed the two electrons with opposite spins in the molecular orbital ψ+ of Eq. (3.17).
The (unnormalized) wave function can be written in the form

ψMO(1,2) = [1sA(1)1sB(2)+ 1sB(1)1sA(2)]
1√
2

[α(1)β(2)− α(2)β(1)] + ionic terms

≡ ψ+
VB(1,2)+ ionic terms (3.29)

where the “ionic terms” (excluding spin) are 1sA(1)1sA(2)+ 1sB(1)1sB(2). The energy
corresponding to ψMO can be calculated analytically and explains, qualitatively, chemical
bonding in H2 but, as expected, without complete quantitative agreement with experi-
mental data.

When the ionic terms are neglected, one gets the so-called valence-bond (VB) descrip-
tion. The (unnormalized) valence-bond wave function can also be written in the form

ψ±
VB(1,2) = 1√

2!
∣∣∣∣
1sAα(1) 1sAα(2)

1sBβ(1) 1sBβ(2)

∣∣∣∣∓
1√
2!

∣∣∣∣
1sAβ(1) 1sAβ(2)

1sBα(1) 1sBα(2)

∣∣∣∣ (3.30)

The energy corresponding to this state is given by the Heitler–London equation:

E±(R) = 2E1 + JAB(R)± KAB(R)

1 ± S(R)2 (3.31)

where the last term is the energy of H2 relative to two isolated ground-state hydrogen
atoms, and

JAB(R) =
∫∫

dr1dr21sA(1)1sB(2)

×
(

e2

4πε0R
− e2

4πε0r1B
− e2

4πε0r2A
+ e2

4πε0r12

)
1sA(1)1sB(2)

= e2

4πε0R
−

∫
dr1[1sA(1)]2e2

4πε0r1B

−
∫

dr2[1sB(2)]2e2

4πε0r2A
+

∫∫
dr1dr2[1sA(1)1sB(2)]2e2

4πε0r12
(3.32)
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is a Coulomb integral (similar to Eq. (3.20)) and

KAB(R) =
∫∫

dr1dr21sA(1)1sB(2)

×
(

e2

4πε0R
− e2

4πε0r1A
− e2

4πε0r2B
+ e2

4πε0r12

)
1sB(1)1sA(2)

(3.33)

is an exchange integral (similar to Eq. (3.23)). The integrals can be evaluated analytically.
The two energy levels in the Heitler–London equation correspond to a bonding (E+)
and an antibonding state (E−), similar to the energy expression for H+

2 , Eq. (3.24).
The exchange integral gives the overwhelming contribution to the stability of the
bonding state of H2, giving the dissociation energy De = 3.15 eV and equilibrium bond
length Re = 0.87 Å. When compared to the experimental values 4.75 eV and 0.74 Å,
respectively, it is clear that the quantitative predictions are not too accurate.

There are two ways to improve the accuracy in order to obtain solutions to almost
any degree of accuracy. The first is via the so-called self-consistent field–Hartree–Fock
(SCF–HF) method, which is a method based on the variational principle that gives the
optimal one-electron wave functions of the Slater determinant. Electron correlation is,
however, still neglected (due to the assumed product of one-electron wave functions).
In order to obtain highly accurate results, this approximation must also be eliminated.6

This is done via the so-called configuration interaction (CI) method. The CI method is
again a variational calculation that involves several Slater determinants.

3.2.3 H + H2 → H2 + H, the London equation

The generalization of the Heitler–London equation, Eq. (3.31), to three hydrogen atoms
was also considered in the early days of quantum mechanics (around 1930). This
description contains the essence of the energetics associated with bond breaking and
bond making.

It is straightforward to write down the electronic Hamiltonian of three interacting
hydrogen atoms according to Eq. (1.3). In the London description, a 1s orbital is centered
on each of the three hydrogen atoms denoted by A, B, and C, respectively. This gives
Slater determinants like

ψVB(1,2,3) = 1√
3!

∣∣∣∣∣∣

1sAα(1) 1sAα(2) 1sAα(3)

1sBα(1) 1sBα(2) 1sBα(3)

1sCα(1) 1sCα(2) 1sCα(3)

∣∣∣∣∣∣
(3.34)

where all three electrons have identical spin in this example. There are 23 = 8 such Slater
determinants, corresponding to the two possible spin states of each electron. The London

6 Consider, e.g., the F + H2 reaction: The Hartree–Fock limit for the classical barrier height is about
67 kJ/mol [J. Phys. Chem. 89, 5336 (1985)], that is, almost ten times larger than the exact value!
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equation for the three hydrogen atoms is based on a variational calculation that involves
these eight electronic (spin) configurations. It is a simple example of a CI calculation.
The essential approximations in the derivation are: (i) only one atomic orbital on each
atom (here s orbitals); (ii) overlap integrals between the atomic orbitals are ignored; and
(iii) multiple-exchange integrals, that is, terms arising from permutations of more than
two electrons are neglected in the matrix elements. The ground-state7 energy is given by
the London equation:

E(RAB,RAC,RBC) = 3E1 + JAB + JAC + JBC

−
√

(KAB − KBC)2/2 + (KAB − KAC)2/2 + (KBC − KAC)2/2

(3.35)

where RAB, RAC, and RBC are the internuclear distances, and JAB and KAB are Coulomb
and exchange integrals as defined in Eqs (3.32) and (3.33) that depend on the distance
RAB. The other symbols are defined in an equivalent way.

The London equation reduces to the Heitler–London equation, Eq. (3.31) for S = 0,
if one of the atoms is removed to infinity. For example, if C is removed to infinity,

E → 3E1 + JAB −
√

(1/2)(KAB)2 + (1/2)(KAB)2

= 3E1 + JAB − |KAB|
= 3E1 + JAB + KAB (3.36)

where, in the last line, the fact that the exchange integral is negative has been used.
Thus, as expected, the description is on the same level as the valence-bond description
for H2.

When the Coulombic and exchange integrals J and K for H2 are calculated and
introduced into the London equation, the right general form of the potential energy
surface is obtained. Thus, bond breaking is assisted by bond making, that is, barrier
energies are much less than the bond energy of H2. However, the entrance and exit
valleys do not meet at a single saddle point as in Fig.3.1.1. There is a potential energy
well (basin) corresponding to the symmetrical H–H–H configuration. As mentioned in
Section 3.1, it is known (from highly accurate CI calculations) that such an energy well
does not exist and that the classical barrier height associated with the saddle point is
∼0.4 eV. These problems with the London equation are not highly surprising. We have
seen that the London equation is related to the Heitler–London equation and, as shown
previously, the errors associated with this equation are clearly bigger than the value of
the true barrier height.

7 The associated wave function, including spin functions, is a doublet state corresponding to two paired
electrons and one unpaired electron.
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Although the underlying approximations are too crude to obtain an accurate potential
energy surface, another very important observation can be made when the London
equation is compared to the energy expression for H2: the total energy is not equal to
the sum of pairwise H–H interactions. Thus, E(RAB,RAC,RBC) �= EAB + EAC + EBC,
where EAB corresponds to E+ of Eq. (3.31), and EAC and EBC are given by similar
expressions. The simple summation of pairwise H–H interactions only holds for the
Coulomb integrals!

3.2.4 A semi-empirical method: the LEPS surface

The London–Eyring–Polanyi–Sato (LEPS) method is a semi-empirical method.8 It is
based on the London equation, but the calculated Coulombic and exchange integrals
are replaced by experimental data. That is, some experimental input is used in the
construction of the potential energy surface. The LEPS approach can, partly, be justified
for H + H2 and other reactions involving three atoms, as long as the basic approximations
behind the London equation are reasonable.

The potential energy curve corresponding to the bonding state is often well described
by a Morse potential:

E+(R) = JAB + KAB

∼ De(1 − e−β(R−Re))2 − De

= De(e−2β(R−Re) − 2e−β(R−Re)) (3.37)

where the parameters of the Morse potential are De (the classical dissociation energy),
β, and Re (the equilibrium bond length). These parameters can be extracted from
experimental (spectroscopic) data. In the LEPS method, the potential energy curve
corresponding to the antibonding state is described by a modified Morse potential:

E−(R) = JAB − KAB

∼ (De/2)(e−2β(R−Re) + 2e−β(R−Re)) (3.38)

which contains the same parameters as the Morse potential. We now have two equations
for the two unknowns, that is, JAB and KAB can be determined as a function of the
internuclear distance. For H + H2 all pairs (AB, AC, and BC) are equivalent and the
London equation can be evaluated. For H + H2 a surface free of wells is obtained.

The LEPS method is also used for general triatomic systems. Here, equations that are
equivalent to Eqs (3.37) and (3.38) are written down and solved for the other diatomic
pairs (AC and BC). The LEPS method provides a quick but somewhat crude estimate
of potential energy surfaces.

8 This approach was suggested by H. Eyring and M. Polanyi in Z. Phys. Chem. B12, 279 (1931).
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PROBLEMS

3.1 From the force constants for the bonds C–H (460 N/m), C–C (440 N/m), and C=O
(1300 N/m), calculate the corresponding harmonic frequencies and vibrational
periods in femtoseconds (using classical mechanics).

3.2 Derive an expression for the (quadratic) force constant of a Morse potential

V (r) = De[1 − exp{−a(r − re)}]2

in terms of De and a.

3.3 A Lennard–Jones (12–6) potential

V (r) = 4ε

[( r0

r

)12 −
( r0

r

)6
]

is often used to describe an intermolecular interaction that does not involve the
formation of a covalent bond (e.g., between noble gas atoms).

(a) Determine the internuclear distance at the potential energy minimum.

(b) Using this value, derive an expression for the (quadratic) force constant.

3.4 Assume that the results from a calculation of the electronic energy of an ABC
molecule (at a fixed bond angle) close to the equilibrium bond lengths (r0

AB, r0
BC)

are well represented by the expression

E(rAB, rBC) = (1/2)k1(rAB − r0
AB)2 + (1/2)k2(rBC − r0

BC)2

Make a contour plot of the potential.

3.5 Consider the calculation of electronic energies for the simplest bimolecular reaction

H + H2 → (H · · ·H · · ·H)‡ → H2 + H
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using an electronic structure program available to you. First, choose the Hartree–
Fock (HF) method and the (LCAO) basis set denoted by 6-311G��.

(a) Calculate the electronic energy of H2 using “geometry optimization” with a
reasonable initial guess for the H–H distance. Note that the multiplicity of the
electronic state is “singlet.”

(b) Calculate the total electronic energy of the reactants at infinite distance, H +
H2, using the analytical result for the ground-state energy of the free hydrogen
atom.

(c) Calculate the electronic energy at the saddle point, which corresponds to
a linear symmetric configuration, denoted by (H · · ·H · · ·H)‡, with H · · ·H
distances of 0.93 Å. For this problem with three electrons, use the unrestricted
Hartree–Fock (UHF) method and that the multiplicity of the electronic state
is “doublet.” Submit the calculation as “single point energy.” Calculate the
classical barrier height and compare to the exact barrier height reported in
Example 3.1.

(d) With the program available to you, can you improve the agreement?
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Bimolecular Reactions, Dynamics
of Collisions

Key ideas and results

We consider the dynamics of bimolecular collisions within the framework of
(quasi-)classical mechanics and quantum mechanics, and show the following.

• The reaction cross-section σR is related to the reaction probability, which can be
calculated theoretically from the collision dynamics based on classical mechanics.

• Models based on physically reasonable assumptions for the reaction probability
lead to simple analytical expressions for the reaction cross-section σR and the rate
constant k(T).

• As an introduction to reactive scattering, we consider classical two-body scattering
and describe analytically how the deflection angle can be evaluated as a function
of the impact parameter.

• Three-body (and many-body) quasi-classical scattering is formulated and the
numerical evaluation of the reaction probability is described.

• The full quantum mechanical evaluation of the reaction cross-section σR is
described.

The relation between the key quantities (the rate constant k(T), the cross-section σ ,
and the reaction probability P) and various approaches to the description of the
nuclear dynamics are illustrated here.

σ

Models

Quasi-classical mechanics

Quantum mechanics

Pk(T )

Bimolecular reaction

Theories of Molecular Reaction Dynamics. Second Edition. Niels E. Henriksen and Flemming Y. Hansen, Oxford University
Press 2019. © Niels E. Henriksen and Flemming Y. Hansen. DOI: 10.1093/oso/9780198805014.001.0001
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4.1 Quasi-Classical Dynamics

Essential features of the nuclear motion associated with chemical reactions can be
described by classical mechanics. The special features of quantum mechanics cannot,
of course, be properly described but some aspects like quantization can, in part, be taken
into account by a simple procedure that basically amounts to a proper assignment of the
trajectories to quantum states. Thus, the quantized states are naturally connected to a
swarm of trajectories with the common feature of having the same energy. In short, this
is the quasi-classical trajectory approach that has turned out to be quite successful. This
approach is the subject of the present section.

4.1.1 Cross-sections from classical mechanics

A theoretical determination of the rate constant for a chemical reaction requires a
calculation of the reaction cross-section based on the dynamics of the collision process
between the reactant molecules. We shall develop a general relation, based on classical
dynamics, between reaction probabilities that can be extracted from the dynamics of
the collision process and the phenomenological reaction cross-section introduced in
Chapter 2. That is, we give a recipe for how to calculate the reaction cross-section in
accord with the general definition in Eq. (2.7).

We consider again the bimolecular collision process

A(i,vA)+ B( j,vB) → C(l,vC)+ D(m,vD) (4.1)

which is reactive when products C and D are different from reactants A and B, and non-
reactive if they are identical. In the latter case, we distinguish between an elastic collision
process, if quantum states l and m are identical with i and j, and otherwise an inelastic
collision process.

Since the outcome of the collision only depends on the relative motion of the reactant
molecules, we begin with an elimination of the center-of-mass motion of the system.
From classical mechanics it is known that the relative translational motion of two
atoms may be described as the motion of one “pseudo-atom,” with the reduced mass
μ = mAmB/(mA + mB), relative to a fixed center of force (see Appendix E.1). This
result can be generalized to molecules by introducing proper relative coordinates, to be
described in detail in Section 4.1.4.

The internal (vibrational and rotational) motion of molecule A is the same as that of
the pseudo-molecule, while the center of mass of molecule B is at the fixed center of
force. The force from the center of force on the pseudo-molecule is determined as the
force between A and B, with A at the position of the pseudo-molecule and B at the
position of the center of force. The scattering geometry is illustrated in Fig. 4.1.1.
The pseudo-molecule moves with a velocity v = vA − vB relative to the fixed center of
force. We have drawn a line through the force center parallel to v that will be convenient
to use as a reference in the specification of the scattering geometry. In addition to the
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X
b

db

φ

v

Center of force

Fig. 4.1.1 Trajectories corresponding to the relative motion of two molecules. The filled circle represents
the “pseudo-molecule” and the cross the fixed center of force. Two trajectories are shown, for the same
quantum states of the reactants, but with different “phases”of the internal degrees of freedom,as explained
in the text.

internal quantum states of the pseudo-molecule and velocity v, the impact parameter b
and angle φ are used to specify the motion of the molecule.

Several classical trajectories may result from such a collision process, as sketched in
the figure. What makes the manifold of trajectories possible are the internal states i and
j of the colliding molecules. To make that evident, let us first consider a situation where
there are no internal states of the molecules and where the interaction potential only
depends on the distance between the molecules, like for two hard spheres. Then there
will only be one trajectory possible for a given b, φ, v, because the initial conditions
for the deterministic classical equations of motion are completely specified. This will not
be the case when the molecules have internal degrees of freedom, even if the internal
states are completely specified by the appropriate quantum numbers, like i and j in
our case.

In classical mechanics there is no quantization of states, so in order to represent a
quantum state one resorts to an artifice which is often referred to as a quasi-classical
approach (see Section 4.1.4 for an account of the computational details). The quantum
state, like a vibrational or rotational state, has a given energy and we choose the energy of
the classical system to be identical to the quantum energy. This does not, however, fully
specify the coordinates and momenta since there will be an infinite number of choices
that will correspond to a given energy. To explain the meaning of that, let us consider a
diatomic molecule. Classically, the atoms perform at a given energy, an oscillatory motion
corresponding to a vibrating chemical bond. From quantum mechanics, we know that
the molecule may be in one of a discrete set of stationary vibrational quantum states
with certain energies. Within the framework of classical mechanics, the specification of
the quantum state does not, however, inform us about the “phase” of the vibrator (see
Fig. 4.1.2), that is the position q and momentum p, and thereby the potential energy and
kinetic energy of the oscillator, at a given time. In the same manner, the molecule may
be in one of the rotational quantum states with a certain energy, but we do not know the
“phase” of the rotator at a given time, that is, the orientation of the bond.
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p

q
α

Fig. 4.1.2 Harmonic oscillator with the energy E = p2/(2m) + (1/2)kq2 (which is the equation for an
ellipse in the (q,p)-space). In the quasi-classical trajectory approach, E is chosen as one of the quantum
energies, and all points on the ellipse may be chosen as initial conditions in a calculation, that is,
corresponding to all phases α ∈ [0,2π].

Therefore, the trajectory calculations with the same initial states, i, j, b, φ, v, may
lead to different trajectories, as shown in Fig. 4.1.1, when the phases of the internal
degrees of freedom are different. It therefore makes sense to speak about a transition
probability from an initial state to a final state, even in a case where the dynamics is
governed by a deterministic equation, because of the indefiniteness of the phase of the
internal degrees of freedom. In order to determine this probability, we need to make many
trajectory calculations, with the given initial state, for different choices of the phases of
the internal degrees of freedom. We may report the results of the trajectory calculation in
Fig. 4.1.1, by counting the number, dNC(l,vC,vC+dvC)(�,�+ d�), of C molecules in
quantum state l and with the speed vC,vC + dvC in the direction �,�+ d�. This number
may be expressed in terms of the transition probability P, according to

dNC(l,vC,vC+dvC)(�,�+ d�)
∣∣
b,φ ≡ d2NC(l,vC)(�)

dvCd�

∣∣∣∣∣
b,φ

dvCd�

= ItrajP(ij,v,b,φ|l,vC,�)dvCd� (4.2)

Here, Itraj is the total number of trajectories in the calculation corresponding to different
phases of the internal states, and PdvCd� is the fraction of trajectories leading to the
desired result. The |b,φ notation implies that the results refer to the given impact point
b,φ.

Let us now relate this expression to the phenomenological expressions for the beam
experiment in Chapter 2. First, we choose d� and dvC in Eq. (4.2) to be identical
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to the ones in Chapter 2, which are determined by the detector. Then we realize the
fundamental difference between dNC in Eq. (4.2) and dNC in Eq. (2.4). The former
is given for a specific impact point b,φ, whereas the latter is averaged over all impact
points, since they cannot be controlled in an experiment. So to make contact between
experiment and theory, we have to average over all impact points b,φ in Eq. (4.2). Itraj
was the number of trajectories in the simulation and therefore equivalent to the number
of pseudo-molecules A colliding with B molecules in the experiment. Then considering
the scattering geometry in Fig. 4.1.1, it will be natural to express Itraj in terms of a flux
density JA(i,v), the area element bdbdφ associated with the b,φ point, and a time t:

Itraj = JA(i,v)bdbdφ t (4.3)

We now choose JA(i,v) and t to be identical to the values of, respectively, the flux density
and the duration of the experiment. From Eqs (4.2) and (4.3), we have

d2NC(l,vC)(�)

dvCd�

∣∣∣∣∣
b,φ

dvCd� = JA(i,v)t bdbdφ P(ij,v,b,φ|l,vC,�)dvCd� (4.4)

which, after averaging over all impact points, takes the form

d2NC(l,vC)(�)

dvCd�
dvCd� = JA(i,v)t dvCd�

∫ 2π

0

∫ ∞

0
P(ij,v,b,φ|l,vC,�)bdbdφ (4.5)

where we have removed |b,φ on the left-hand side, because we now include all impact
points.

This equation is now compared to Eq. (2.7), which after multiplication by the volume
V of the reaction zone takes the form

d3NC(l,vC)(�)

dvCd�dt
=
(

d2σR

dvCd�

)
(ij,v|l,vC,�)JA(i,v)NB( j,vB) (4.6)

It is important to note that the scattering angle in this equation refers to the angle
between the incident and final directions of vA and vC, respectively, viewed in the fixed
laboratory coordinate system. The scattering in the theoretical analysis is viewed in the
center-of-mass coordinate system and concerns the relative motion of molecules. The
relation between the scattering angles and differential cross-sections in the two coordinate
systems is discussed in Section 4.1.3. In the simulations there is only one scattering
center, so we set NB( j,vB) = 1 in the equation. Then we integrate over time t, in order
to get the same differential number of C molecules on the left-hand sides of Eqs (4.6)
and (4.5). Thus, we multiply both sides of Eq. (4.6) by dt, and integrate over time from
0 to t:
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d2NC(l,vC)(�)

dvCd�
=
(

d2σR

dvCd�

)
(ij,v|l,vC,�)JA(i,v)t (4.7)

where

d2NC(l,vC)(�)

dvCd�
=
∫ ∞

0

d3NC(l,vC)(�)

dvCd�dt
dt

When compared to Eq. (4.5), we get

(
d2σR

dvCd�

)
(ij,v|l,vC,�) =

∫ 2π

0

∫ ∞

0
P(ij,v,b,φ|l,vC,�)bdbdφ (4.8)

When the speed of the product is not resolved, we integrate over vC, and get

(
dσR

d�

)
(ij,v|l,�) =

∫ 2π

0

∫ ∞

0
P(ij,v,b,φ|l,�)bdbdφ (4.9)

where P(ij,v,b,φ|l,�) = ∫∞
0 P(ij,v,b,φ|l,vC,�)dvC. Likewise, when the angular dis-

tribution of the product is not resolved, the relevant cross-section is obtained, after
integration over �, and we get the important relation between the transition (reaction)
probability P, which may be calculated theoretically from the dynamics, and the cross-
section related directly to experiments:

σR(ij,v|l) =
∫ 2π

0

∫ ∞

0
P(ij,v,b,φ|l)bdbdφ (4.10)

where P(ij,v,b,φ|l) = ∫ P(ij,v,b,φ|l,�)d�.

4.1.2 Simple models for chemical reactions

We are now in a position to get a first glimpse into the factors that determine the reaction
cross-section and the rate constant. To that end, we consider in this section some crude
approximations to actual reactive collisions. Simple analytical expressions are obtained
and they provide some insight into the more complex real situations.

It is assumed that the molecules are structureless hard spheres. Thus, A and B
are described by hard-sphere potentials with diameters dA and dB, respectively. The
interaction potential depends accordingly only on the distance between A and B, and

U (r) =
{∞ r ≤ d = (dA + dB)/2

0 r > d
(4.11)
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In addition, assumptions for the reaction probability of the hard spheres—which strictly
speaking cannot react—are introduced. That is, the reaction probability is not calculated
from the actual potentials or dynamics of the collisions but simply postulated based on
physical intuition. Note that the assumption of a spherically symmetric (hard-sphere)
interaction potential implies that the reaction probability P cannot depend on φ (see
Fig. 4.1.1), since there will be a cylindrical symmetry around the direction of the relative
velocity. In addition, the assumption of structureless particles implies that the quantum
numbers that specify the internal excitation cannot be defined within the present model.

4.1.2.1 Model 1, the collision frequency

A collision between A and B will occur if the impact parameter b fulfills the condition
b ≤ d, as seen from Fig. 4.1.3.

The following form for the reaction probability is assumed:

P(b) =
{

1 for b ≤ d
0 for b > d

(4.12)

Thus, it is assumed that a reaction between the two particles occurs with unit probability
when they collide, irrespective of their relative speed. The cross-section can be calculated
from Eq. (4.10):

σR = 2π

∫ ∞

0
P(b)bdb

= 2π

∫ d

0
bdb

= πd2 (4.13)

that is, the cross-section is constant and independent of the relative kinetic energy. It is
obvious that σR has the unit of an area, and the cross-section is the area that the reactants
present to each other in the collision. Then, from Eq. (2.29), we find

d b

v B

A

Fig. 4.1.3 A collision between two hard spheres at the relative velocity v.
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k(T) = πd2
∫ ∞

0
vf3(v)dv

= πd2〈v〉 (4.14)

where

〈v〉 =
(

8kBT
πμ

)1/2

(4.15)

is the average value of the relative speed of A and B. Typical values of 〈v〉 are of the order
of 1000 m/s.

This result has a simple physical interpretation. The collision frequency between two
hard spheres is given by1

ZAB = πd2〈v〉[A][B] (4.16)

that is, the number of collisions between A and B per second and per unit volume. Thus,
the reaction rate predicted by this model is simply the collision frequency.

When compared to experimental data, this model predicts, typically, rate constants
that are too large—by many orders of magnitude. In addition, the predicted tem-
perature dependence is, usually, not in agreement with experimental observations,
where often a dependence in agreement with the Arrhenius equation is found: k(T) =
Aexp(−Ea/kBT).

4.1.2.2 Model 2, the energy threshold

In order to make a more realistic model, a refinement of the assumptions for the reaction
probability is needed. That is, it is not realistic to assume that every collision will lead to
a reaction. First, a reaction will occur only if the relative kinetic energy exceeds a certain
critical value and, second, a head-on collision (b = 0) is more likely to lead to a reaction
than a collision where the two hard spheres barely touch (b ∼ d). These ideas are invoked
in the following model.

It is assumed that for a reaction to occur, the relative kinetic energy Ec along the line
of centers shall exceed a critical value E∗. Thus,

P(Ec) =
{

1 for Ec ≥ E∗
0 for Ec < E∗ (4.17)

1 First, consider one A molecule that moves with the speed v relative to B. The number of collisions with B
molecules within the time �t is: πd2v�t[B], since [B] is the number of moles of B molecules per unit volume
and πd2v�t is the volume within which A will collide with B. It is a broken cylinder, since A changes direction
after each elastic collision with a B molecule. Second, multiply by the number of moles of A molecules, that is
[A]V , average over the distribution of speeds, and Eq. (4.16) is obtained after division by V�t.
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v

vc
d

A

B

θ

Fig. 4.1.4 The relative velocity v and its projection vc along the line of centers; otherwise same as
Fig. 4.1.3.

This condition can be re-expressed as a function of the impact parameter b. From
Fig. 4.1.4, we observe |vc| = |v|cosθ and

Ec/Etr = 1/2μ|vc|2
1/2μ|v|2

= cos2 θ

= 1 − sin2 θ

= 1 − (b/d)2 (4.18)

where b ≤ d. That is, (b/d)2 = 1 − Ec/E tr and when b increases the ratio Ec/Etr decreases.
The smallest value of Ec/Etr that leads to reaction is E∗/Etr. We can now determine the
impact parameters that will lead to a reaction,

(b/d)2 ≤ 1 − E∗/Etr (4.19)

that is, the maximum value of the impact parameter bmax that will lead to a reaction is

bmax = d(1 − E∗/Etr)
1/2 (4.20)

The reaction probability as a function of the impact parameter b takes the form

P(b) =
{

1 for b ≤ bmax
0 for b > bmax

(4.21)
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E* E

πd2

Fig. 4.1.5 Energy dependence of the reaction cross-section in “model 2.”

The calculation of the cross-section is now equivalent to Eq. (4.13), that is,

σR(Etr) = πb2
max

= πd2(1 − E∗/Etr) (4.22)

for Etr ≥ E∗ and 0 otherwise. The reaction cross-section as a function of energy is shown
in Fig. 4.1.5.

The rate constant is evaluated by applying Eq. (2.29):

k(T) =
∫ ∞

0

√
2Etr/μσR(Etr)f3(Etr)dEtr

= 1
kBT

(
8

πμkBT

)1/2 ∫ ∞

E∗
σR(Etr)Etre−Etr/kBT dEtr

= 1
kBT

(
8

πμkBT

)1/2

πd2
∫ ∞

E∗
(Etr − E∗)e−Etr/kBT dEtr

= πd2
(

8kBT
πμ

)1/2

e−E∗/kBT (4.23)

where the last integral is evaluated by partial integration. The temperature dependence
predicted by this model is, typically, in good agreement with experimental observations.
The validity of the expression might be questioned, for example, due to the artificial
hard-sphere assumption. In Section 4.1.3 we show, however, that a similar result can be
obtained without this assumption. However, this expression is not the final answer to the
question of how to calculate the rate of a bimolecular reaction; when the pre-exponential
factor in Eq. (4.23) is compared with experimental data, as in Example 4.1, it is often
found to be 10–100 times too large!
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Example 4.1 Comparison of model and experimental data

We can use Eq. (4.23) to calculate the magnitude of the pre-exponential factor and compare it
to experimental data. Molecular diameters dA (or dB) may, for example, be estimated from
gas viscosity data based on the standard model of the kinetic theory of gases, or from an
analysis of the elastic scattering of molecules (see Section 4.1.3). Some values are given in
Table 4.1 and are typically around 2–3 Å. Table 4.1 also lists a collision frequency; here as the
number of collisions that a single molecule undergoes per second. According to Eq. (4.16), the
number of collisions that a single A molecule undergoes per second with all the B molecules is
Z = πd2√

8kBT/(πμ)NA[B], where Avogadro’s constant has been introduced in order to
convert from moles to numbers. NA[B] = pB/(kBT), R = NAkB, according to the ideal gas
law, and d = (dA + dB)/2 = dB, since A ≡ B in this case. Thus the number of collisions per
second is very large, of the order of ∼ 1010 at 1 atm and 300 K. Table 4.2 compares calculated
(Ath) and experimental2 (Aexp) pre-exponential factors for several reactions. Typically, the
calculated values of the pre-exponential factors are of the order of 1011 dm3 mol−1 s−1.

The physical interpretation of this result is, relatively, simple. The reaction rate
predicted by the model is equal to the collision frequency, Eq. (4.16), times the factor

Table 4.1 Collision parameters. The collision frequency is calculated at
1 atm and 300 K.

Species Molecular diameter, dB/Å Collision frequency, Z/s−1

H2 2.4 1.1 × 1010

CO 3.2 5.3 × 109

O2 3.6 6.3 × 109

F2 3.6 5.8 × 109

CH4 3.8 9.9 × 109

Table 4.2 Comparison of collision model and experimental data. Pre-exponential factors are given in
units of dm3 mol−1 s−1. The experimental data are from J. Chem. Phys. 92, 4811 (1980); J. Phys.
Chem. Ref. Data 15, 1087 (1986); and J. Phys. Chem. A 106, 6060 (2002), respectively. Note that the
third reaction is a bimolecular association reaction. For this reaction, the experimental data are derived
in the high-pressure limit.

Reaction T/K Ea/
(
kJ mol−1) Ath Aexp Aexp/Ath

F + H2 → HF + H 300 3.6 1.5 × 1011 6.0 × 1010 0.4

CO + O2 → CO2 + O 300 200 1.4 × 1011 2.5 × 109 0.018

CH3 + CH3 → C2H6 300 0 2.5 × 1011 1.5 × 1010 0.06

2 A good source of experimental data is the NIST kinetics database: http://kinetics.nist.gov.
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exp(−E∗/kBT). This factor is clearly related to the Boltzmann distribution.3 To that end,
let us evaluate the probability of finding a relative velocity, irrespective of its direction,
corresponding to a free translational energy Etr = (1/2)μv2 that exceeds Etr = E∗ (see
Problem 1.4):

P3(Etr > E∗) =
∫ ∞

E∗
f3(Etr)dEtr

= 1 − erf

[√
E∗

kBT

]
+ 2√

π

√
E∗

kBT
e−E∗/kBT (4.24)

where erf denotes the error function. Thus, this expression is not equal to
exp(−E∗/kBT), although this factor plays a dominating role; see Fig. 4.1.6 (note how
small the probability is for typical energy thresholds, say for E∗ = 20kBT). Actually,
from the first line in Eq. (4.23), we observe that the rate constant will be proportional to
the probability factor of Eq. (4.24), only when the cross-section σR(Etr) is 0 for Etr < E∗
and A/

√
Etr for Etr ≥ E∗, where A is a constant. That is, it is not possible to interpret

Eq. (4.23) as a collision frequency times a probability factor, related to the relevant
Boltzmann distribution for free translational motion in three dimensions.

When we consider the Boltzmann distribution associated with free translational
motion in two dimensions (Problem 2.2) and the associated probability of finding relative
translational energies that exceed E∗, we get
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Fig. 4.1.6 The probabilities P(Etr > E∗), Eq. (4.24) (solid line) and Eq. (4.25) (dashed line), of finding
relative translational energies between reactants that exceed Etr = E∗.

3 The interpretation of the factor exp(−E∗/kBT) is, in many physical chemistry textbooks, somewhat
inaccurate.
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P2(Etr > E∗) =
∫ ∞

E∗
e−Etr/kBT/(kBT)dEtr

= e−E∗/kBT (4.25)

which happens to be identical to the probability factor in Eq. (4.23). Furthermore, this
factor is contained in the expression for the rate constant, whenever there is an energy
threshold in the cross-section (see Problem 2.3).

Thus, we have only a rough identification of the factor exp(−E∗/kBT) with the
probability of finding relative translational energies that exceed E∗. If one ignores
the different density of energy states for free translational motion in two and three
dimensions, one can claim that exp(−E∗/kBT) is the probability of finding relative
translational energies that exceed E∗.

The activation energy Ea is defined from the Arrhenius equation, that is, k(T) =
Aexp(−Ea/kBT), where A is a constant. According to this equation, we can extract the
activation energy from a plot of ln[k(T)] versus 1/T , which implies

Ea = −kB
d lnk(T)

d(1/T)

= kBT2 d lnk(T)

dT
(4.26)

This equation is used as a general definition of the activation energy whether or not A is
actually a constant. From the expression for the rate constant in Eq. (4.23), we get

Ea = kBT2
(

1
2T

+ E∗

kBT2

)

= E∗ + kBT/2 (4.27)

Since typically E∗  kBT/2, the predicted activation energy is in practice independent
of the temperature.

In order to obtain agreement with experimental data, a realistic interaction potential
must be used and it is necessary to calculate the reaction probability from the basic
equations of motion.

4.1.3 Two-body classical scattering

In this section, we consider a detailed description of the collision between two (struc-
tureless) particles that interact via a spherically symmetric potential U (r), where r is the
distance between the particles [1]. Since there are no internal degrees of freedom that may
exchange energy with the translational degrees of freedom, the collision is elastic, that is,
the total kinetic energy of the two particles before and after the collision is conserved
(as mentioned earlier, we can also have elastic collisions when molecules collide, which
implies that no energy is exchanged with internal degrees of freedom). Thus, the present
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section describes the classical dynamics of atomic collisions with the relevant potential
U (r) given by the electronic energy.

The dynamics of the two-particle problem can be separated into center-of-mass
motion and relative motion with the reduced mass μ = mAmB/(mA + mB), of the two
particles (see Appendix E.1). Thus, the relative motion is equivalent to the motion of
a particle with the mass μ in the potential U (r). The kinetic energy of this relative
motion before and after the collision is conserved. The outcome of the elastic collision
is described by the deflection angle of the trajectory, and this is the main quantity to be
determined in the following. The deflection angle, χ , gives the deviation from the incident
straight line trajectory due to attractive and repulsive forces. Thus, χ is the angle between
the final and initial directions of the relative velocity vector for the two particles. The
scattering in the center-of-mass coordinate system is shown in Fig. 4.1.7.

The spherical symmetry of the interaction implies, in particular, that the angular
momentum of the relative motion is conserved. That is, since the angular momentum is
a vector, both magnitude and direction are conserved quantities. The collision process
will, accordingly, take place in the plane spanned by the radius vector and the momentum
vector, a plane that is orthogonal to the angular momentum vector. This implies that only
two coordinates are required in order to describe the relative motion. These coordinates
are chosen as the polar coordinates in the plane (r,θ).

The total energy associated with the relative motion can be written in the form (see
Problem 4.2)

db

rc

b

c





c

X

v0

v

χ

Fig. 4.1.7 Two-body classical scattering in a spherically symmetric potential U (r). The relative
motion of two atoms may be described as the motion of one “pseudo-atom,” with the reduced mass
μ = mAmB/(mA + mB), relative to a fixed center of force (X). Two trajectories are shown; for the first
trajectory, the final and initial relative velocity vector and the associated deflection angle χ are shown.
This trajectory corresponds to the impact point (b,φ = 0), whereas the second trajectory corresponds to
the impact point (b,φ = π). rc,θc are the polar coordinates of the relative motion at the distance of closest
approach rc.
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E = (1/2)μv2 + L2

2μr2 + U (r) (4.28)

where

v = dr/dt

L = μr2dθ/dt
(4.29)

The energy (E) and the magnitude of the angular momentum (L) are constants of
motion and their magnitudes are determined as follows. Long before the collision
(t → −∞) we have r → ∞ and limr→∞ U (r) = 0, and from Eq. (4.28) we obtain
E = (1/2)μv2

0, where v0 is the relative speed prior to the collision. The angular momen-
tum is given by L = r ×μv0 and the magnitude is therefore given by L = μrv0 sinθ ,
where θ is the angle between r and v0. The impact parameter is defined by b = r sinθ , and

L = μv0b

= b
√

2μE (4.30)

Thus, the angular momentum can be expressed in terms of the energy and the impact
parameter.4

We may find the distance of closest approach r = rc between the two particles by
solving the equation dr/dt = 0. From Eqs (4.28), (4.29), and (4.30), we find

(
dr
dt

)2

= 2
μ

(
E − L2

2μr2 − U (r)
)

= 2
μ

(
E − Eb2

r2 − U (r)
)

= 2
μ

(E − Veff(r)) (4.31)

where the effective potential is defined by

Veff(r) ≡ U (r)+ Eb2

r2 = U (r)+ L2

2μr2 (4.32)

and see that if E = Veff(r) has a real-valued positive solution there will be a distance
of closest approach, also referred to as a turning point for the two particles, at the total
energy E. Obviously, such a solution will always exist for potentials with a repulsive part,
as in the present case where the potentials are repulsive at small internuclear distances.

4 Note that from Eqs (4.28) and (4.30) we have the relation (1/2)μv2 = E
(

1 − b2/r2
)

− U (r), which is

equivalent to Eq. (4.18) when U (r) is a hard-sphere potential.
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Fig. 4.1.8 Two-body classical scattering in a spherically symmetric potential. The effective potential
Veff (r), defined in Eq. (4.32), is shown for two different impact parameters, b = 0 where Veff (r) = U (r)
and b > 0, b1,and b2.The upper panel (a) is for a fixed total energy E1,and the lower panel (b) for another
total energy E2. The intersection with Veff (r) gives the distance of closest approach rc.

Turning points may also exist in the attractive part of a potential where U (r) < 0 provided
that b > 0. As illustrated in Fig. 4.1.8 where U (r) is chosen as a Lennard–Jones potential,
see Eq. (4.57), the distance of closest approach depends on the impact parameter b.
When b > 0, a barrier can show up in the effective potential, due to the centrifugal energy.
In Fig. 4.1.8(a), the total energy E1 is below the centrifugal barrier, whereas the total
energy in Fig. 4.1.8(b) is above this barrier.

4.1.3.1 Two-body models of chemical reactions

Before we proceed with a detailed description of two-body dynamics, we elaborate on
the simple models for chemical reactions considered in Section 4.1.2, using the concept
of the effective potential in Eq. (4.32).

First, consider reactions with a permanent potential energy barrier with a maximum
U (r∗) at r = r∗. Assume that the reaction takes place for collisions with E ≥ Veff(r∗) =
U (r∗)+ E(b/r∗)2, that is, for
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b ≤ r∗
√

E − U (r∗)
E

(4.33)

That is,

bmax(E) = r∗
√

E − U (r∗)
E

(4.34)

The reaction probability and the cross-section now takes a form that is equivalent to
Eqs (4.21) and (4.22)

σR(E) = 2π

∫ ∞

0
P(b)bdb

= 2π

∫ bmax

0
bdb

= πb2
max

= π(r∗)2(1 − U (r∗)/E) (4.35)

The expression for k(T) is derived as in Eq. (4.23), with the initial translational energy
Etr being equal to the total energy, E, and

k(T) = π(r∗)2
(

8kBT
πμ

)1/2

e−U (r∗)/kBT (4.36)

which is equivalent to the result in Eq. (4.23), however, without the artificial assumption
of hard-sphere potentials. The average hard-sphere diameter is replaced by the distance
r = r∗ corresponding to the maximum of the static barrier. Note that the criterion for
reaction E ≥ Veff(r∗), means that we have assumed that the point r = r∗ is a point of no
return, that is, reaction will take place when this point is reached.

Second, consider reactions without a static potential energy barrier. That is, reactions
where only the attractive long-range part of the interaction potential plays a role. This
is, for example, the case for many bimolecular radical-radical reactions. The potential is
written in the form −C/rn, where n > 2.

The effective potential is

Veff(r) = U (r)+ L2

2μr2

= − C
rn + Eb2

r2 (4.37)

The first term is attractive whereas the second centrifugal term is repulsive. This gives
rise to a maximum in Veff(r) with respect to r (see also Fig. 4.1.8). The maximum is
determined from dVeff(r)/dr = 0, with the solution



74 Bimolecular Reactions, Dynamics of Collisions

r = r∗ =
(

nC
2Eb2

)1/(n−2)

(4.38)

The barrier height at r = r∗ becomes (the detailed calculations are carried out in
Problem 4.7)

V ∗ = Veff(r∗) = Cn(Eb2)n/(n−2) (4.39)

where Cn = (nC)−n/(n−2)C(n − 2)22/(2−n).
When E ≥ V ∗, the reactants will move inside the barrier and we assume again that

this leads to reaction, that is, r = r∗ is a point of no return for the reaction. At a given total
energy E, the barrier height V ∗ increases as the impact parameter is increased. Thus,
the maximum value of the impact parameter leading to reaction is determined from
E = V ∗ = Cn

(
Eb2

max
)n/(n−2). That is,

bmax = E−1/nC−(n−2)/2n
n

=
(

C
E

)1/n

(n/2)1/2
(

n − 2
2

)−(n−2)/2n

(4.40)

Since E ≥ V ∗ for b ≤ bmax, the reaction probability takes the same form as in Eq. (4.21)
and the reaction cross-section is obtained from Eq. (4.10)

σR = πb2
max = π

(
C
E

)2/n n
2

(
n − 2

2

)−(n−2)/n

(4.41)

Note that the cross-section decrease with the energy for n > 2.
The rate constant k(T) is obtained from Eq. (2.29) where the initial translational

energy Etr is equal to the total energy E. Thus (the detailed calculations are again carried
out in Problem 4.7),

k(T) =
(

8
πμ

)1/2 nπ

2
C2/n

(
n − 2

2

)−(n−2)/n

�([2n − 2]/n)(kBT)1/2−2/n (4.42)

where �(x) is the Gamma function (see Problem 2.3). Note that in the absence of a static
potential energy barrier, the temperature dependence of the rate constant is in all cases
quite weak. The temperature dependence depends on m = 1/2 − 2/n.

Based on these general results, we can consider a particularly useful simple model for
barrierless reactions, the so-called Langevin model for ion-molecule reactions (see also
Problem 4.6). The ion and the molecule are represented as, respectively, a point charge e
and a neutral non-polar molecule with polarizability α. The attractive potential between
such an ion and molecule—at large distances—can be written as −C/rn, an ion-induced-
dipole interaction where n = 4 and C = αe2/(8πε0) with α being the polarizability
volume of the molecule. The cross-section accordingly takes the form
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σR = π

√
αe2

2πε0E
(4.43)

and the thermal rate constant k(T) becomes independent of the temperature.

4.1.3.2 Two-body scattering, the deflection angle, and cross-section

We now return to the more detailed description of two-body collisions. In order to obtain
an expression for the deflection angle, we get from Eq. (4.29)

dθ = L
μr2 dt (4.44)

Integration gives

θ(t) =
∫ t

−∞
L

μr2 dt (4.45)

since θ(t → −∞) = 0. We may eliminate time from Eq. (4.45) and derive an equation
between θ and r by using Eq. (4.31):

dt = −dr
/√

2
μ

(
E − L2

2μr2 − U (r)
)

(4.46)

where the solution with the minus sign in front of the square root is chosen because
r decreases when t increases. Equation (4.46) is now introduced into Eq. (4.45), and
we get

θ(r) = −
∫ r

∞
L/(μr̃2)√

2
(
E − L2/(2μr̃2)− U (r̃)

)
/μ

dr̃

= −b
∫ r

∞
1

r̃2
√

1 − b2/r̃2 − U (r̃)/E
dr̃ (4.47)

where Eq. (4.30) was used in the last line.
As shown previously (see also Fig. 4.1.8), for potentials with a repulsive part, a

closest approach distance r = rc will exist, and this distance corresponds, according to
the expression (4.47), to an angle θ = θc (see Fig. 4.1.7). When the collision is over, we
have t → ∞ and r → ∞. It is easily verified that the same angle, θc, is found if we had
started the integration in Eq. (4.45) from this limit.5 Thus, the trajectory is symmetric
around a line at θ = θc. A (straight) trajectory that is not deflected corresponds to θ = π .
The deflection angle is, accordingly, defined as

5 The limits in Eq. (4.45) are now from ∞ to t. The minus sign in Eq. (4.46) is changed to plus and the
limits for the integration in r̃ are the same as in Eq. (4.47). Thus, the absolute value of the angles is the same.
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χ(E,b) = π − 2θc

= π − 2b
∫ ∞

rc

1

r2
√

1 − b2/r2 − U (r)/E
dr

(4.48)

This expression shows that, in general, the deflection angle depends on both the impact
parameter and the total energy, which is equal to the relative kinetic energy prior to the
collision.

Let us derive a relation between the deflection angle and the scattering cross-section.
From the definition of the cross-section, Eq. (4.6), specialized to classical elastic two-
body scattering with one scattering center, we get

d2NA(�)

d�dt
d� =

(
dσR

d�

)
(v|�)JA(v)d� (4.49)

for the number of A particles emerging, per unit time, in the space angle d� around
the direction �. The experimentally observed deflection angle is the angle between
the final and the incident directions of the scattered particles in a laboratory fixed
coordinate system. The deflection angle determined here is viewed in the center-of-
mass (c.m.) coordinate system and refers to the relative motion as shown in Fig. 4.1.7.
The relation between the scattering angles and differential cross-sections in the center-
of-mass coordinate system and in the fixed laboratory coordinate system is discussed,
shortly, in the following subsection.

As seen from Fig. 4.1.7, a trajectory that starts in the area element bdbdφ will end up
in the solid angle d�c.m. with scattering angles between �c.m. and �c.m. + d�c.m., where
d�c.m. = sinχdχdφ. The number of scattered particles, per unit time, is accordingly also
identical to the product of the flux density and the area element bdbdφ:

JA(v)bdbdφ =
(

dσR

d�

)

c.m.
(v|�)JA(v) sinχdχdφ (4.50)

Specializing further to scattering in a spherically symmetric potential, the cross-section
will be independent of the angle φ, and

bdb =
(

dσR

d�

)

c.m.
(χ ,E)sinχdχ (4.51)

where we have replaced the relative speed v with the equivalent total relative energy E of
the collision. The differential scattering cross-section for the elastic scattering is then

(
dσ

d�

)

c.m.
(χ ,E) = b

|dχ/db|sinχ
(4.52)
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where absolute signs are introduced because the cross-section must always be positive
while b and χ can vary in opposite directions. Note that only one impact parameter b
contributes to this differential cross-section, and that b can be expressed in terms of χ

and E via Eq. (4.48).
Let us consider a few examples. We begin with a hard-sphere potential

U (r) =
{∞ for r ≤ d

0 for r > d
(4.53)

For b ≤ d, the closest approach distance is rc = d, and for r > d we have U (r) = 0,
that is,6

χ(E,b) = π − 2b
∫ ∞

d

1

r2
√

1 − b2/r2
dr

= π − 2b[(1/b)cos−1(b/r)]r→∞
r=d

= π − 2[cos−1(0)− cos−1(b/d)]

= 2cos−1(b/d) (4.54)

Note that for a head-on collision χ(b = 0) = π , that is, in this case the outcome is a
backward scattering, whereas for b = d the deflection angle is χ(b = d) = 0. Furthermore,
the result is always independent of the energy. The inverse cosine is defined only for b ≤ d.
However, if b > d the closest approach distance is rc = b, and when d is replaced by b in
Eq. (4.54), we get χ(b > d) = 0 as expected. This relation is illustrated in Fig. 4.1.9.

The differential scattering cross-section takes (after a little algebra) the form

(
dσ

d�

)

c.m.
(χ ,E) = d2/4 (4.55)

That is, the scattering is isotropic, that is, it is independent of the deflection angle (which
is, in general, not the case for more realistic potentials). The total cross-section takes the
form

σ =
∫ (

dσ

d�

)
(χ ,E)d�

= (d2/4)

∫ π

0
2π sinχdχ

= πd2 (4.56)

a result that we also encountered in Eq. (4.13). The cross-section is an effective area
of the target in the scattering process; see Fig. 2.1.2. This result confirms our intuition
concerning scattering of hard spheres.

6 Note that d[cos−1 u(x)]/dx = −1/[
√

1 − u2]du(x)/dx, where cos−1(x) ≡ arccos(x).
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Fig. 4.1.9 The deflection angle χ (in radians) as a function of the impact parameter b, for the collision
between two hard spheres with the average diameter d.

As an example of a more realistic potential, we consider the Lennard–Jones potential

U (r) = 4ε

[( r0

r

)12 −
( r0

r

)6
]

(4.57)

This potential has an attractive part as well as a repulsive part. The minimum is at
rm = 21/6r0 where U (rm) = −ε. Equation (4.48) may also be evaluated analytically in
this case, but here we will only present a short outline of the results. When b is small
the deflection function is very similar to that for hard-sphere collisions, that is, χ → π .
When b is large the deflection function is again very similar to the hard-sphere result,
that is χ → 0 corresponding to no scattering. This limit is reached more rapidly when
the relative energy E/ε is large. In the intermediate region of b values, a new type
of behavior is observed due to the attractive part of the potential. Thus, at selected
energies one can, for example, find trajectories corresponding to orbiting. As illustrated in
Fig. 4.1.8, we have identified a turning point as the point where E = Veff(r), since this
implies that dr/dt = 0. If this point happens to be close to the top of the barrier of the
effective potential, where dVeff(r)/dr = 0, the motion away from the turning point will be
very slow, and in the meantime the associated angular motion might have gone through
angles larger than 2π .
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The differential cross-section depends, in general, on the energy, E, as well as the
angle, χ . Two types of singularities can show up in the classical expression for the
differential cross-section, Eq. (4.52). The first type of singularity occurs when sinχ = 0,
that is, for χ = 0 and χ = π , provided b/|dχ/db| is finite at these angles. This singularity
arises due to the vanishing space angle d� at these two deflection angles. The second type
of singularity occurs if dχ/db = 0, that is, at an extremum in the deflection function.
The two types of singularities are referred to as glory scattering and rainbow scattering,
respectively (named in analogy to corresponding phenomena in optics).

4.1.3.3 Scattering angles and differential cross-section in various frames

We have considered the deflection of the trajectory in the center-of-mass coordinate
system. The deflection angle χ is the angle between the final and initial directions of the
relative (velocity) vector between the two particles. Experimental observations normally
take place in a coordinate system that is fixed in the laboratory, and the scattering angle 


measured here is the angle between the final and the incident directions of the scattered
particle. These two angles would be the same only if the second particle had an infinite
mass. Thus, we need a relation between the angles in the two coordinate systems in order
to be able to compare calculations with experiments.

The relation between the deflection angles in the two coordinate systems is derived
below, in the special case where the target atom is at rest before the collision. This case
represents of course not the typical situation in a crossed molecular-beam experiment.
However, it greatly simplifies the relation and the derivation displays the essence of the
problem. The general case is considered in Appendix D.

Particle A is the incident particle and B the target. The position of particle A in the
laboratory coordinate system rA can be expressed in terms of the position of particle A
in the center-of-mass coordinate system r′

A, and the position of the center-of-mass in the
laboratory coordinate system R:

rA = R + r′
A (4.58)

and the corresponding relation for the velocities is

vA = V + v′
A (4.59)

which is obtained from Eq. (4.58) by differentiation with respect to time. Note that a
velocity vector is tangent to the path specified by the position vectors.

The center-of-mass velocity V is a constant of motion, that is,

V = (mAvA + mBvB)/M = (mAv0
A + mBv0

B)/M = (mA/M)v0
A (4.60)

where v0
A and v0

B are the start velocities before the scattering event, and v0
B = 0 since B

is assumed to be at rest before the collision. We choose the laboratory coordinate system
such that V is parallel to the x-axis. The scattering angle 
 in the laboratory coordinate
system, that is, the angle between vA and v0

A, is then as illustrated in Fig. 4.1.10.
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Fig. 4.1.10 The relation in Eq. (4.59) after the scattering has been completed. The laboratory coordinate
system (LAB) is chosen such that V is parallel to the x-axis and the deflection angles 
 and χ with respect
to this system and the center-of-mass coordinate system (CM), respectively, are defined.

From Eq. (4.60) and the definition of the relative velocity

v = vA − vB (4.61)

we get vA = V + (mB/M)v, and from Eq. (4.59)

v′
A = (mB/M)v (4.62)

that is, v′
A and the relative velocity v have the same direction. Before the scattering event

v0 = v0
A − v0

B = v0
A, which was parallel to V and the x-axis. Thus, V , v0

A, and v0 are
collinear. The scattering angle χ , that is, the angle between v and v0, is then as illustrated
in Fig. 4.1.10.

We consider Eq. (4.59) after the scattering has been completed. The angles of vA
and v′

A with respect to the x-axis are now the scattering angles defined previously. The
components of the two velocities along the y-axis are

vA sin
 = v′
A sinχ (4.63)

and along the x-axis

vA cos
 = v′
A cosχ + V (4.64)

The ratio between these two relations gives

tan
 = sinχ

cosχ + (V/v′
A)

(4.65)

Now the magnitude of the center-of-mass velocity is, according to Eq. (4.60), V =
(mAvA + mBvB)/M = (mA/M)v0

A = (mA/M)v0, where v0
A is the initial speed of particle

A. The magnitude of the velocity of A with respect to the center-of-mass system is
obtained from Eq. (4.62), v′

A = (mB/M)v = (mB/M)v0, since the relative speed v is
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constant for an elastic collision. Thus, the relation between the scattering angles in the
two frames is

tan
 = sinχ

cosχ + (mA/mB)
(4.66)

This relation is illustrated in Fig. 4.1.11, where the impact parameter has been introduced
via Eq. (4.54). The impact parameter cannot, of course, be precisely controlled for
objects of atomic size. When mB → ∞, corresponding to a stationary target, we observe
that the two angles coincide.

The differential cross-section dσ/d� is not invariant when we change the description
from one coordinate system to another. Clearly, due to the relation in Eq. (4.66), a
change in χ will not lead to the same change in 
 and the space angle d�c.m. = sinχdχdφ

is not identical to the space angle d� = sin
d
dφ in the laboratory frame. Thus,

(
dσ

d�

)
=
(

dσ

d�

)

c.m.

∣∣∣∣
d�c.m.

d�

∣∣∣∣ (4.67)

where dσ/d� is the cross-section associated with experimental observations, and the
absolute value is taken in the last factor because the differential cross-sections are positive,
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Fig. 4.1.11 The deflection angle 
 (in radians) of the scattered particle in a laboratory fixed coordinate
system. The angle is given as a function of the impact parameter b, for the collision between two hard
spheres A and B with the average diameter d. Particle B is initially at rest, and the five curves correspond
to the mass ratios (mA/mB) 0, 0.5, 1, 1.5, and 2. The ◦ at b = 0 and mA/mB = 1 indicates that the
deflection angle is undefined in this case, since vA = 0, that is, A is at rest after the collision.
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and an increment in χ will not always give rise to an increment in 
. It can now be shown
that (see Appendix D)

(
dσ

d�

)
=
(

dσ

d�

)

c.m.

(
1 +

(
mA
mB

)2 + 2
(

mA
mB

)
cosχ

)3/2

∣∣∣1 +
(

mA
mB

)
cosχ

∣∣∣
(4.68)

This result is valid for elastic scattering in a spherically symmetric potential under the
assumption that the target is at rest prior to the collision.

The relations discussed here can be generalized to elastic, inelastic, and reactive
scattering of two molecules for any initial conditions. A detailed discussion of these results
is presented in Appendix D.

4.1.4 Many-body classical scattering

The two-body dynamics described in the preceding section has been useful in introduc-
ing a number of important concepts, and we have obtained valuable insights concerning
the angular distribution of scattered particles. However, there is obviously no way to
faithfully describe a chemical reaction in terms of only two interacting particles; at least
three particles are required. Unfortunately, the three-body problem is one for which no
analytic solution is known. Accordingly, we must use numerical analysis and computers
to solve this problem.7

4.1.4.1 Different formulations of Newton’s equation of motion

There exist three different formulations of Newton’s equation of motion [1]. They all
lead to exactly the same motions of the particles in the system but one form may be more
convenient to use than another, dependent on both the system and properties studied. It
will therefore be useful to summarize the three forms very briefly and without proof, so
they will be familiar on an operational basis.

First, there is the well-known vectorial form

m
d2r
dt2 = F (4.69)

which is based on an evaluation of the force F in the system.
A quite different formulation is based on the evaluation of the scalar kinetic energy

and potential energy functions. This is the so-called Lagrangian formulation that is based
on a variational principle by d’Alembert and Lagrange. From expressions for the kinetic
energy Tkin and potential energy Vpot, the Lagrange function L(q, q̇) is introduced as

7 The first classical trajectory—computed by hand—for the reaction H + H2 → H2 + H can be found in
J. Chem. Phys. 4, 170 (1936).
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L(q, q̇) = Tkin(q, q̇)− Vpot(q) (4.70)

where q is a set of coordinates and q̇ ≡ dq/dt is a set of velocities. When Cartesian
coordinates are used, the kinetic energy is given by the well-known expression Tkin(q̇) =∑

i(1/2)miq̇2
i . If, for example, polar coordinates are used the kinetic energy can also be

a function of the coordinates. The equation of motion for each coordinate can be shown
to be given by

d
dt

(
∂L
∂ q̇i

)
=
(

∂L
∂qi

)
i = 1,3N (4.71)

where N is the number of particles.
In the third formulation, the so-called Hamiltonian formulation, the velocities q̇i in the

Lagrangian form are replaced by the so-called generalized momenta pi via a Legendre
transformation. The generalized momentum pi , conjugate to the coordinate qi , is defined as

pi =
(

∂L
∂ q̇i

)
(4.72)

When Cartesian coordinates are used, the generalized momenta in Eq. (4.72) are equal
to the well-known expression pi = miq̇i . If, for example, polar coordinates are used, the
momenta can take a form that is not equal to mass times velocity. For the systems we
shall treat, the kinetic energy can always be written in the form Tkin(q, q̇) =∑i ai(q)q̇2

i ,
where ai are coefficients that can depend on the coordinates. The Legendre transform
of the Lagrange function L is the Hamilton function H

H(p,q) = Tkin(q,p)+ Vpot(q) (4.73)

which is seen to be the total energy of the system. Note that in the Hamiltonian
formulation the kinetic energy is a function of the generalized momenta p and not the
velocities q̇ as in the Lagrange formulation. Equation (4.72) is used to substitute the
velocities in the expression for the kinetic energy by the momenta. Then the equations
of motion for p and q are

ṗi = −
(

∂H
∂qi

)

q̇i =
(

∂H
∂pi

) (4.74)

These equations are called Hamilton’s equations of motion. It is easy to show that these
various forms of Newton’s equation of motion are equivalent.

The Hamiltonian formulation plays an important role in connection with quantum
mechanics. The Hamilton operator of quantum mechanics Ĥ is constructed from the
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Hamilton function of classical mechanics H by replacing the momenta by operators. If
Cartesian coordinates are used, these operators are given by p̂i = −ih̄∂/∂qi .

4.1.4.2 Quasi-classical trajectory calculations

A determination of the rate constant for a given chemical reaction involves, as has been
described previously, the following three steps.

(i) Determination of the reaction probability PR(ij,v,b,φ|l), as will be described in
this section.

(ii) Determination of the reaction cross-section σR(ij,v|l) from the reaction proba-
bility PR(ij,v,b,φ|l) using Eq. (4.10).

(iii) Determination of the rate constant from the reaction cross-section σR(ij,v|l).
Equation (2.29) is used if the translational motion of the molecules is thermalized
(the internal motions may or may not be thermalized), or more generally the
rate constant is determined via Eq. (2.18), where thermal equilibration in the
translational motion is not assumed.

In this section, we shall consider how the solution of the classical equations of motion
for more than two atoms may be used to find reaction probabilities and cross-sections
for chemical reactions. Although the treatment is based on classical mechanics, it is
termed quasi-classical because quantization of vibrational and rotational energy levels
is accounted for.

Thus, the initial conditions are sampled in accord with the quantized energy levels of
the reactants, and when the scattering is over, the vibrational and rotational quantum
numbers of the products are assigned by binning product states possessing suitable
ranges of internal energies into groups according to the known quantized vibrational
and rotational energies of the products.

Let us, before we describe how the reaction probability is determined in a simulation,
show and discuss the results of such a calculation on the simple reaction H + H2 →
H2 + H, where the potential energy surface is well known. In Fig. 4.1.12 the total reaction
cross-section is shown as a function of the total energy Etot for different initial vibrational
states n = 0,1,2. The initial rotational quantum state of H2 is in all cases the J = 0
state, that is, the molecule is not rotating before the reaction. The energies En,J=0 of the
molecule in vibrational state n and rotational state J = 0 are indicated by arrows. The total
reaction cross-section σR(ij,v) is determined from the reaction probability PR(ij,v,b,φ)

for the reaction no matter the state of the product. We see that the relative kinetic energy
necessary for a reaction, that is, the energy difference between the energy at which σR > 0
and En,J=0, decreases when n increases. Also, we notice how the reaction cross-section
rises more steeply for larger n. This means that the reactivity of the H2 molecule increases
when the molecule is vibrationally excited.8

8 Note that the energy dependence of the reaction cross-section predicted by the model in Section 4.1.2
(Fig. 4.1.5) is in rough agreement with the quasi-classical calculations.
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En,J=0 levels of H2 are indicated by arrows. [Adapted from Barg et al., J. Chem. Phys. 74,1017 (1981).]
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Fig. 4.1.13 Reaction cross-sections for the reaction H + H2(n,J = 0) → H2(n′, all J ′) + H as functions
of translational energy for (a) n = 0, (b) n = 1, and (c) n = 2: ◦n′ = 0, •n′ = 1, �n′ = 2. [Adapted from
Barg et al., J. Chem. Phys. 74, 1017 (1981).]

Figure 4.1.13(a–c) shows partial cross-sections for reactions with the reactant
molecules in vibrational quantum states n = 0,1,2 and rotational quantum state J = 0
and products in vibrational states n′ = 0,1,2, respectively, and any rotational quantum
state. Note that the abscissa axis in this plot is the translational energy and not the total
energy as in Fig. 4.1.12. The translational energy is found in the latter plot by subtracting
the internal energy En,J=0 from the total energy. If that is done, we may compare the two
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Fig. 4.1.14 Reaction cross-sections or transition probabilities for the reaction H + H2(n,J = 0) →
H2(all n′,J ′) + H as a function of J ′ for (a) n = 0, Etrans = 0.428 eV, (b) n = 1, Etrans = 0.25 eV, and
(c) n = 2, Etrans = 0.25 eV. [Adapted from Barg et al., J. Chem. Phys. 74, 1017 (1981).]

figures and find that the partial cross-sections add up to the total cross-section, as they
should, at a given translational energy.

Figure 4.1.14 shows another example of the calculation of partial cross-sections for
product molecules in specified rotational quantum states J ′ and any vibrational quantum
state.

Finally, Fig. 4.1.15 shows the differential cross-section dσR/dθ , which gives the angu-
lar distribution of product molecules independently of their quantum state. The differen-
tial cross-section shows a peak for backward scattering (θ = 1800) with the distributions
becoming broader as n increases from 0 to 2.

Tests of quasi-classical calculations against full quantum dynamics have shown
surprisingly good agreement [2]. Several so-called semi-classical methods have been
developed in order to obtain even better agreement. These approximations to quantum
dynamics cover a range of more ingenious hybrids of classical and quantum mechanics.
These methods are also interesting from the point of view of providing deeper insights
into the nature of quantum dynamics.

Let us then go on and describe how the quasi-classical calculations leading to these
results are done. We begin with the Hamiltonian for a system of N atoms:

H(p,r) = Tkin(p)+ E(r) =
N∑

i=1

p2
i

2mi
+ E(r1, . . . ,rN ) (4.75)

and assume that there is only one potential energy surface E(r1, . . . ,rN ), which is
supposed to be known. ri is the position vector of atom i in the laboratory fixed Cartesian
coordinate system and pi the momentum of atom i.

For simplicity, let us consider a reaction

A + BC(n,J) → AB + C (4.76)
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Fig. 4.1.15 Differential reaction cross-sections for the reaction H + H2(n,J = 0) → H2 + H at Etrans =
0.48 eV: •n = 0,×n = 1,�n = 2. [Adapted from Barg et al., J. Chem. Phys. 74, 1017 (1981).]

where only three atoms A, B, and C are involved, that is, N = 3, and the BC molecule
is in a well-defined vibrational and rotational quantum state, denoted by the quantum
numbers n,J. All important features in the classical treatment of the dynamics will be
displayed in this simple example and it will be obvious how to extend the procedure to
any number of atoms.

In a collision process, it is the relative position of the atoms that matters, not the
absolute positions, when external fields are excluded, and the potential energy E will
depend on the distances between atoms rather than on the absolute positions. It will
therefore be natural to change from absolute Cartesian position coordinates to a set that
describes the overall motion of the system (e.g., the center-of-mass motion for the entire
system) and the relative motions of the atoms in a laboratory fixed coordinate system.
This can be done in many ways as described in Appendix E, but often the so-called Jacobi
coordinates are chosen in reactive scattering calculations because they are convenient to
use. The details about their definition are described in Appendix E. The salient feature of
these coordinates is that the kinetic energy remains diagonal in the momenta conjugated
to the Jacobi coordinates, as it is when absolute position coordinates are used.

Following the procedure in Appendix E.1, we start by choosing the distance between
the two atoms in molecule BC as the first distance vector. Then, the distance between
A and the center of mass of molecule BC is chosen as the second distance vector, and
finally the center-of-mass position vector of all three atoms is chosen as the third position
vector; see Fig. 4.1.16.
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A

B

C

Fig. 4.1.16 Schematic illustration of Jacobi coordinates. The Cartesian coordinates of the BC distance
vector are (Q1,Q2,Q3), and the coordinates of the distance vector from A to the center of mass of BC are
(Q4,Q5,Q6).

This may be written in matrix form as

⎛

⎝
Q1
Q4
Q7

⎞

⎠=
⎛

⎝
0 −1 1
1 − mB

mB+mC
− mC

mB+mCmA
mA+mB+mC

mB
mA+mB+mC

mC
mA+mB+mC

⎞

⎠

⎛

⎝
rA,x
rB,x
rC,x

⎞

⎠ (4.77)

Q1, Q4, and Q7 are the x-components of the Jacobi coordinates and similar equations
may be written for the y-components Q2, Q5, and Q8 and the z-components Q3, Q6,
and Q9 by choosing, respectively, the y- and z-components of the Cartesian position
vectors arranged in the column vector on the right-hand side of the equation. We see
from Appendix E.1 that α1 and α2 have both been set equal to one. Having defined
the (3 × 3) A matrix in Eq. (4.77), we see from Eq. (E.4) that the relation between the
absolute Cartesian momenta pi and the momenta Pi conjugated to the Jacobi coordinates
is given by the transposed A matrix:

⎛

⎝
pA,x
pB,x
pC,x

⎞

⎠=
⎛

⎜⎝
0 1 mA

mA+mB+mC−1 − mB
mB+mC

mB
mA+mB+mC

1 − mC
mB+mC

mC
mA+mB+mC

⎞

⎟⎠

⎛

⎝
P1
P4
P7

⎞

⎠ (4.78)

and equivalently for the y- and z-components. With coordinates Qi and conjugated
momenta Pi , we see from Appendix E.1 that the Hamiltonian may be written

H = 1
2μBC

3∑

i=1

P2
i + 1

2μA,BC

6∑

i=4

P2
i + 1

2M

9∑

i=7

P2
i + E(Q1, . . . ,Q6) (4.79)

where

1
μBC

= 1
mB

+ 1
mC

1
μA,BC

= 1
mA

+ 1
mB + mC

M = mA + mB + mC

(4.80)
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The argument list in the potential energy E includes only the relative coordinates, since
an external field is absent. The equations of motion are then, according to Eqs (4.74)
and (4.79), given by

Q̇i = Pi

μBC
(i = 1,2,3)

Q̇i = Pi

μA,BC
(i = 4,5,6)

Q̇i = Pi

M
(i = 7,8,9)

Ṗi = − ∂E
∂Qi

(i = 1,2,3,4,5,6)

Ṗi = 0 (i = 7,8,9)

(4.81)

There are 6N or 18 coupled first-order differential equations. The six differential
equations associated with the center of mass (i = 7,8,9) are, however, trivial. They
correspond to free motion; thus Qi(t) = Qi(t0)+ (Pi(t0)/M)t and Pi(t) = Pi(t0). The
remaining twelve differential equations may be integrated using some numerical inte-
gration algorithm such as, for example, a Runge–Kutta scheme. However, before we can
integrate the equations and determine the coordinates and momenta as a function of time,
often referred to as the classical trajectory, we need to choose values for all coordinates
and momenta at some initial time t0.

A schematic illustration of a classical trajectory associated with a chemical reaction
is shown in Fig. 4.1.17. A detailed description of the choice of initial coordinates
and momenta as well as the analysis of the trajectory results is given in the following
subsections.

4.1.4.3 Initial coordinates and momenta

We are free to choose any initial condition for the center-of-mass motion, since it is of no
importance for the reaction. We therefore choose to set Pi(t0) = Qi(t0) = 0 for i = 7,8,9.

A + BC

AB + C

RAB

RBC

0.5
1

1.5
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3 0.5
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3

Fig. 4.1.17 Schematic illustration of a classical trajectory (dotted line) superimposed on the potential
energy surface for the reaction A + BC → AB + C. Note the vibrational energy in BC, and that this
particular trajectory leads to chemical reaction.
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Fig. 4.1.18 Initial conditions for the A + BC collision.

The equations of motion for the center of mass then show that Pi(t) = Pi(t0) = 0 and
Qi(t) = Qi(t0) = 0 at all times t, that is, no center-of-mass motion.

The major problem in implementing classical trajectories is that the typical experi-
ment samples a wide distribution of initial conditions. Since each trajectory is run for a
specified set of initial coordinates and momenta, a large number of trajectories must be
run with a wide range of initial conditions in order to simulate a particular experimental
situation. An efficient choice of initial conditions is essential to getting useful information
from trajectory calculations.

Here we will set up a trajectory calculation that is designed to simulate a molecular-
beam experiment, where the velocity of A relative to the center of mass of BC is well
defined. Also, we assume that the BC molecule is in a well-defined vibrational and
rotational quantum state, denoted by the quantum numbers n,J.

In addition, we need to specify the parameters ρ,b,θ ,φ,η, and ξ , as defined in
Fig. 4.1.18. In the following, we describe how the initial values of the coordinates and
momenta are chosen given these parameters.

First, we consider the coordinates and momenta associated with the relative motion
between A and BC, that is, (Q0

4,Q0
5,Q0

6) and (P0
4 ,P0

5 ,P0
6).

• The y–z plane in Fig. 4.1.18 is defined by the position of A, the center-of-mass posi-
tion of BC, and the velocity v of A relative to BC with v being parallel to the z-axis.
The origin of the coordinate system is put at the center-of-mass position of BC.
This leads to the following initial values of selected coordinates and momenta:

◦ Q0
4 = 0: no x-component since we are in the y–z plane;

◦ P0
4 = 0: no x-component since we are in the y–z plane;
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◦ Q0
5 = b: y-coordinate of distance vector between A and the center of mass of BC;

b is the impact parameter;

◦ P0
5 = 0: no motion in the y-direction since v is parallel to the z-axis;

◦ Q0
6 = −√ρ2 − b2: z-coordinate of A with BC at the origin;

◦ P0
6 = μA,BC v: z-component of momentum of A with respect to BC.

• ρ is chosen large enough such that the interaction energy between A and BC is
negligible.

Second, we consider the coordinates and momenta associated with the motion of BC,
that is, (Q0

1,Q0
2,Q0

3) and (P0
1 ,P0

2 ,P0
3).

The phase-space curve for a one-dimensional harmonic oscillator with a given energy
Evib is an ellipse; see Fig. 4.1.2, and for an anharmonic oscillator it is a distorted ellipse.
The turning points for the oscillator q− and q+ may be determined as the solutions for

q (=
√

Q2
1 + Q2

2 + Q2
3) to

Evib = VBC(q) (4.82)

where the total energy of the oscillator is equated to the potential energy VBC of B–C.
For a Morse potential, for example,

VMorse(q) = De[1 − exp(−a(q − qeq))]2 = VBC (4.83)

it is easy to solve the equation for q.

• We find the turning points

q− = qeq − 1
a

ln

[
1 +

√
Evib

De

]

q+ = qeq − 1
a

ln

[
1 −

√
Evib

De

] (4.84)

qeq is the equilibrium distance between the two atoms. Alternatively, one may determine
the turning points numerically. The vibrational energy is one of the quantized energy
levels of the Morse potential, Evib = En, where

En = h̄ω[(n + 1/2)− xe(n + 1/2)2] (n = 0,1, . . .) (4.85)

with ω =√2Dea2/μBC and xe =
√

a2h̄2/(8DeμBC). To set up the initial conditions for the
BC molecule, we begin by choosing a random number ξ between 0 and 1. If this number
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is smaller than 0.5, we start out with the oscillator in the turning point q−, otherwise in
the turning point q+.

The kinetic energy of the oscillator at the turning points is zero, so the kinetic energy
of the molecule will be rotational energy alone. With the molecule in a rotational state
with quantum number J, the kinetic energy may be written as

P2
rot

2μBC
= h̄2J( j + 1)

2μBCq2±
(J = 0,1, . . .) (4.86)

The expression on the right-hand side of the equation is the quantum expression for the
rotational energy of a diatomic rotor in quantum state J and with the moment of inertia
μBCq2±.

• The magnitude of the rotational momentum Prot is then

Prot = h̄
q±

√
J( j + 1) ≡ jr

q±
(4.87)

• The spherical angles θ and φ give the orientation of the B–C chemical bond of
length q±, leading to the following Cartesian coordinates:

Q′′
1 = q± sinθ cosφ

Q′′
2 = q± sinθ sinφ

Q′′
3 = q± cosθ

(4.88)

• The η angle gives the angle of rotation of the J vector around the BC bond. The
Cartesian components of the rotational momentum vector are given by the three
Eulerian angles θ ,φ, and η as

P′′
1 = jr

q±
[sinφ cosη − cosθ cosφ sinη]

P′′
2 = − jr

q±
[cosφ cosη + cosθ sinφ sinη]

P′′
3 = jr

q±
sinθ sinη

(4.89)

• To determine the initial phase of the oscillator, that is, the vibrational momentum
and coordinate, we need to know the time τ for one oscillation. For a harmonic
oscillator τ = 1/ν, where ν is the frequency. In general, τ is determined numerically
by an integration of the equation of motion for the one-dimensional non-rotating
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(J = 0) vibrator. We start out with the oscillator in one of the turning points,
q− or q+, where the momentum is zero and integrate the equations of motion for the
oscillator (i = 1,2,3 and J = 0) until the initial state is recovered. The elapsed time
is the time for one oscillation. The equations of motion for the rotating BC molecule
(i = 1,2,3) are then integrated for a time ξτ with P′′

1 , P′′
2 , and P′′

3 as initial momenta
and Q′′

1, Q′′
2, and Q′′

3 as initial coordinates; the resulting values of the momenta and
coordinates at time ξτ are taken as the initial values (P0

1 ,P0
2 ,P0

3) and (Q0
1,Q0

2,Q0
3)

for the integration of the entire set of equations in Eq. (4.81).

4.1.4.4 Sampling of initial conditions

In an experiment, the parameters θ ,φ,η,ξ , and b used previously to specify the initial
coordinates and momenta cannot be controlled. The observed result therefore represents
an average over the various parameters. Assume, for a moment, that the impact parameter
b is under experimental control, and consider the probability of reaction PR(b;v,n,J)

with the molecule in the (n,J) quantum state, relative speed v, and impact parameter b.
The experimental value of the reaction probability is an average over the parameters
θ ,φ,η, and ξ . Since all orientations of the BC molecule, as given by the space angle
d� = sinθdθdφ, and all angles η between 0 and 2π are equally probable, like all values
of ξ between 0 and 1, the average may be written as

〈PR(b;v,n,J)〉 = 1
2(2π)2

∫ π

θ=0

∫ 2π

φ=0

∫ 2π

η=0

∫ 1

ξ=0
PR(b,θ ,φ,η,ξ ;v,n,J)sinθdθdφdηdξ

(4.90)

where the factor in front of the integrals contains the normalization constant (4π)
for the space angle sinθdθdφ, the normalization constant 2π for the η angle, and the
normalization constant 1 for the ξ variable.

We do not know the integrand, except that it is either 0 when no reaction occurred or
1 when the reaction took place, so we cannot formally perform the integration. Instead,
we use the so-called Monte Carlo method to evaluate the integral (Appendix J). The idea
is that we should try to convert the integrand

1
2

1
2π

1
2π

PR sinθ dθ dφ dηdξ ≡ PRfθ fφ fηfξ dθ dφ dηdξ

= PRdθ ′ dφ′ dη′ dξ ′ (4.91)

to a form such that the integral, like in Eq. ( J.2), may be determined as the average
value of the integrand evaluated at uniformly distributed values of the primed variables
between 0 and 1.
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In Eq. (4.91) we see that if we set

fθ = sinθ

2

fφ = 1
2π

fη = 1
2π

fξ = 1

(4.92)

then all the f functions represent a normalized probability density in the respective
variables as seen by integration over the respective intervals as given in Eq. (4.90). They
therefore play the role of the normalized probability function w(x) in Eq. ( J.7), and the
primed quantities play the role of the u variable in Eq. ( J.7), that is,

dθ ′ = sinθ

2
dθ

dφ′ = 1
2π

dφ

dη′ = 1
2π

dη

dξ ′ = dξ

(4.93)

Since the reaction probability PR in the integral is given as a function of the original
variables, and not of the primed variables, we need to express the old variables in terms
of the primed variables. This is achieved by an integration of the relations in Eq. (4.93):

θ ′ = −1
2

cosθ + constθ = −1
2

cosθ + 1
2

φ′ = 1
2π

φ + constφ = 1
2π

φ

η′ = 1
2π

η + constη = 1
2π

η

ξ ′ = ξ + constξ = ξ

(4.94)

The integration constants, constα, are chosen such that all the primed variables vary
between 0 and 1, as may be seen from the second relation in each of the lines in Eq. (4.94).
The relations are easily inverted and we find

θ = arccos(1 − 2θ ′)
φ = 2πφ′

η = 2πη′

ξ = ξ ′

(4.95)
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The integrand in Eq. (4.90) is now multiplied and divided by the probability functions
f , following the procedure given in Eq. ( J.8), and we find

〈PR(b;v,n,J)〉

= 1
2(2π)2

∫ π

θ=0

∫ 2π

φ=0

∫ 2π

η=0

∫ 1

ξ=0
PR(b,θ ,φ,η,ξ ;v,n,J)

× (sinθ/2)(1/(2π))(1/(2π))

(sinθ/2)(1/(2π))(1/(2π))
sinθ dθ dφ dηdξ

= 1
2(2π)2

∫ 1

θ ′=0

∫ 1

φ′=0

∫ 1

η′=0

∫ 1

ξ ′=0
PR(b,θ(θ ′),φ(φ′),η(η′),ξ(ξ ′);v,n,J)

× (sinθ/2)(1/(2π))(1/(2π))

(sinθ/2)(1/(2π))(1/(2π))
2dθ ′ 2π dφ′ 2π dη′ dξ ′

=
∫ 1

θ ′=0

∫ 1

φ′=0

∫ 1

η′=0

∫ 1

ξ=0
PR(b,θ(θ ′),φ(φ′),η(η′),ξ(ξ ′);v,n,J)dθ ′ dφ′ dη′ dξ ′

= 1
N

N∑

i=1

PR(b,θ(θ ′
i ),φ(φ′

i),η(η′
i),ξ(ξ ′

i );v,n,J)

= NR(b;v,n,J)

N(b;v,n,J)
(4.96)

We have used Eq. (4.95) to introduce the primed variables and emphasized that the
unprimed variables are functions of the primed variables, as indicated in the argument
list to the reaction probability PR. The primed variables are now chosen at random from a
uniform distribution of numbers between 0 and 1, and used to determine the value of the
unprimed variables using Eq. (4.95), whereupon a trajectory calculation is performed.
This may either lead to the desired reaction, in which case PR = 1, or not, in which case
PR = 0. If we therefore run N trajectories and NR trajectories lead to the desired result,
then the reaction probability is simply the ratio between these numbers as given in the
equation.

4.1.4.5 Analysis of the trajectory results

There are usually several possible outcomes of a reaction between two reactants:

A + BC(n,J) −→

⎧
⎪⎪⎨

⎪⎪⎩

AB + C
AC + B
A + B + C
A + BC

(4.97)

For example, in addition to the formation of molecule AB, we may also get a molecule
AC, three separated atoms, or no reaction at all. Each possibility is usually referred to
as a channel for the reaction. At the end of each trajectory, it will therefore be necessary
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to decide whether the particular trajectory ended up in the relevant channel, here the
formation of AB; see Fig. 4.1.17. This will be the case if the distance between C and
AB increases monotonically with time and the AB distance is confined and oscillating in
time.

The Jacobi coordinates used for the propagation of the system are not convenient for
such an analysis, since they were based on reactants A and BC and therefore include
the BC distance and the A–BC distance rather than the AB and AB–C distances. It is
therefore convenient to replace the coordinates in Eq. (4.77),

⎛

⎝
Q1
Q4
Q7

⎞

⎠=
⎛

⎜⎝
0 −1 1
1 − mB

mB+mC
− mC

mB+mC
mA

mA+mB+mC

mB
mA+mB+mC

mC
mA+mB+mC

⎞

⎟⎠

⎛

⎝
rA,x
rB,x
rC,x

⎞

⎠ (4.98)

by the following Jacobi coordinates:

⎛

⎝
Q′

1
Q′

4
Q′

7

⎞

⎠=
⎛

⎜⎝
1 −1 0

− mA
mA+mB

− mB
mA+mB

1
mA

mA+mB+mC

mB
mA+mB+mC

mC
mA+mB+mC

⎞

⎟⎠

⎛

⎝
rA,x
rB,x
rC,x

⎞

⎠ (4.99)

To find the relation between the two sets of coordinates Qi and Q′
i , we invert Eq. (4.98)

which gives

⎛

⎝
rA,x
rB,x
rC,x

⎞

⎠=
⎛

⎜⎝
0 mB+mC

mA+mB+mC
1

− mC
mB+mC

− mA
mA+mB+mC

1
mB

mB+mC
− mA

mA+mB+mC
1

⎞

⎟⎠

⎛

⎝
Q1
Q4
Q7

⎞

⎠ (4.100)

and introduce that result in Eq. (4.99) and find

⎛

⎝
Q′

1
Q′

4
Q′

7

⎞

⎠=
⎛

⎜⎝

mC
mB+mC

1 0
mB(mA+mB+mC)

(mA+mB)(mB+mC)
− mA

mA+mB
0

0 0 1

⎞

⎟⎠

⎛

⎝
Q1
Q4
Q7

⎞

⎠ (4.101)

Similar equations may be obtained for the y-components and z-components of the Jacobi
coordinates. Let us denote the (3 × 3) matrix in Eq. (4.101) by B; then we may write the
transformations in shorthand as

Q′ = BQ

P′ = [BT ]−1P
(4.102)

The integration of the equations of motion is done in the (P,Q) coordinates and at
any time we may apply the transformations in Eq. (4.102) and determine the Jacobi
coordinates for the product states.
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Now, according to Eq. (4.96) we may determine the reaction probability 〈PR〉 simply
as the fraction of trajectories leading to the desired reaction, that is,

〈PR(b;v,n,J)〉 → NR(b;v,n,J)

N(b;v,n,J)
for N(b;v,n,J) → ∞ (4.103)

where NR is the number of trajectories leading to the desired reaction, and N is the total
number of trajectories. It is usually necessary to run several thousands of trajectories to
achieve reliable results with little statistical noise.

In experiments one cannot control the impact parameter b and determine 〈PR(b;v,
n,J)〉, but rather determine the cross-section that is related to the reaction probability,
see Eq. (4.10). Since 〈PR(b;v,n,J)〉 is independent of the angle φ, defined in Fig. 4.1.1,
we obtain

σR(v,n,J) = 2π

∫ ∞

0
〈PR(b;v,n,J)〉bdb (4.104)

This implies that we also have to average over the impact parameter b in our simulation.
As before, this is done by the Monte Carlo method (Appendix J). We have that

fb = b (4.105)

and accordingly

db′ = 2b
b2

max
(4.106)

where bmax is chosen so large that the reaction probability is zero. Equation (4.106) is
integrated and, with the integration constant set to zero, we find

b = bmax
√

b′ (4.107)

so

σR(v,n,J) = 2π

∫ ∞

0

〈PR(b,v,n,J)〉
2b/b2

max

2b
b2

max
bdb

= 2π

∫ 1

0

〈PR(b(b′),v,n,J)〉
2b/b2

max
bdb′

= πb2
max

∫ 1

0
〈PR(b(b′),v,n,J)〉db′

= π b2
max

NR(v,n,J)

N(v,n,J)
(4.108)
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where N is the total number of trajectories and NR the number of trajectories leading to
the reaction considered.

Sometimes it will also be of interest to know the distribution over rotational and
vibrational states in the products. We therefore need to determine the rotational and
vibrational states of the product molecule. It is only meaningful to speak about a specific
rotational and vibrational state if the coupling between the two modes is weak, so
the rotational and vibrational energies are reasonably constant. The assignment of the
quantum state for AB is based on the coordinates Q′

i and momenta P′
i , for i = 1,2,3, and

is done in much the same way as when we set up the initial state of the BC molecule.
The turning points q′± are identified by monitoring the length of the AB bond, that is,√

Q′2
1 + Q′2

2 + Q′2
3 . At a turning point, all kinetic energy will be rotational energy such that

3∑

i=1

P′2
i = h̄2J( j + 1)

1

q′2±
(4.109)

We solve for J and round the result to an integer to give the rotational quantum number.
The vibrational energy is given by

Evib = VAB(q′±) (4.110)

and we use the Bohr–Sommerfeld semi-classical prescription (equivalent to the semi-
classical WKB approximation) for quantization of phase space for a diatomic non-
rotating molecule to determine the vibrational quantum number n:

(n + 1/2)h = 2
∫ q′+

q′−
pdq

= 2
∫ q′+

q′−

√
2μAB [Evib − VAB(q)]dq (4.111)

where the result is rounded to an integer value of n.
The extension of the trajectory calculations to a system with any number of atoms

is straightforward except for the quantization of the vibrational and rotational states of
the molecules. For a molecule with three different principal moments of inertia, there
does not exist a simple analytical expression for the quantized rotational energy. This is
only the case for molecules with some symmetry like a spherical top molecule, where all
moments of inertia are identical, and a symmetric top, where two moments of inertia are
identical and different from the third. For the vibrational modes, we may use a normal
coordinate analysis to determine the normal modes (see Appendix F) and quantize those
as for a one-dimensional oscillator.

Finally, when the cross-section (Eq. (4.108)) is known, we can use Eq. (2.29) to
obtain the rate constant k(T). Thus, we must average over the relative speed and the
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quantum numbers of BC, that is, (v,n,J), using the Boltzmann distribution. Alternatively,
we could obtain k(T) using a somewhat more direct approach. We can run trajectories
in principle for all initial states and determine the final result as a weighted average of
the results for given initial states with the Boltzmann factor as the weight factor for
the given molecular state. In practice, that limits the number of initial states we need
to consider since the high energy states occur with a very small probability depending
on the temperature.

4.2 Quantum Dynamics

After having discussed the approximate quasi-classical dynamics, we return (see Section
1.1) now to exact quantum dynamics.9 The Schrödinger equation for motion of the
atomic nuclei is given by Eq. (1.11):

ih̄
∂χ(R, t)

∂t
= Ĥχ(R, t)

= (T̂nuc + Ei(R))χ(R, t) (4.112)

where T̂nuc is the operator for the kinetic energy of the nuclei, Ei(R) is the electronic
energy, that is, the potential energy surface, and χ(R, t) the wave function as a function
of all the nuclear coordinates R. The time-dependent Schrödinger equation is a first-
order differential equation in time (like Hamilton’s equation of motion), and the time
evolution is given once the initial state is specified. Assume that the initial state is given
by χ(R, t0), then

χ(R, t) = Û (t − t0)χ(R, t0) (4.113)

where the propagator Û (t − t0) is given by

Û (t − t0) = exp(−iĤ(t − t0)/h̄)

≡ 1 − iĤ(t − t0)/h̄ − Ĥ2(t − t0)2/2h̄2 + ·· · (4.114)

that is, the exponential of an operator is defined by its (formal) Taylor expansion.
Equation (4.113) is seen to be a solution by direct substitution into Eq. (4.112). The
propagator propagates the wave function from time t0 to time t. When the wave function
is fairly localized in position (and momentum) space, the designation “wave packet” is
often used for the wave function.

We recall some basic results of quantum dynamics [3]. The state of the system
and the time evolution can be expressed in a generalized (Dirac) notation, which is

9 In order to fully appreciate the content of this section, a good background in quantum mechanics is
required; see also Appendix G.
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often very convenient. The state at time t is specified by |χ(t)〉 with the representations
χ(R, t) = 〈R|χ(t)〉 and χ(P, t) = 〈P|χ(t)〉 in coordinate and momentum space, respec-
tively. Probability is a concept that is inherent in quantum mechanics. |〈R|χ(t)〉|2 is
the probability density in coordinate space, and |〈P|χ(t)〉|2 is the probability density in
momentum space. The time evolution (in the Schrödinger picture) can be expressed as

|χ(t)〉 = Û (t − t0)|χ(t0)〉 (4.115)

From this equation and the unitarity of the time-evolution operator,

〈χ(t)|χ(t)〉 = 〈χ(t0)|Û (t − t0)†Û (t − t0)|χ(t0)〉 = 〈χ(t0)|χ(t0)〉 (4.116)

Since, for example, 〈χ(t)|χ(t)〉 = ∫ 〈χ(t)|R〉〈R|χ(t)〉dR, the interpretation of this result
is that we have a global conservation of probability density.

The Schrödinger equation also leads to a continuity equation that can be interpreted as
a local conservation of probability density (here for a single particle with the Hamiltonian
Ĥ = −h̄2/(2m)∇2 + V ):

∂P
∂t

= −∇ · j (4.117)

where P = χ(R, t)�χ(R, t) = |χ(R, t)|2 is the probability density, and the probability
current density or flux density, that is, the probability current per unit time per unit area,
is given by

j = h̄
2im

(χ�∇χ − χ∇χ�) = h̄
m

Im(χ�∇χ) = Re
(
χ�P̂χ

)
/m (4.118)

where the momentum operator is P̂ = −ih̄∇. An alternative form of this continuity
equation can be obtained by integration over a volume V , and application of Gauss’
theorem, which implies that the change in probability within the volume is equal to the
flux (in or out) of a surface SV that encloses the entire volume:

d
dt

∫

V
P(R, t)dR = −

∫

V
∇ · j dR = −

∫

SV

j · dS (4.119)

Another consequence of the Schrödinger equation is that the time evolution of the
expectation value of a physical observable, represented by an operator Â (with no explicit
time dependence), is given by

d
dt

〈Â〉 = i
h̄
〈[Ĥ , Â]〉 (4.120)
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where 〈Â〉 = 〈χ(t)|Â|χ(t)〉. Constants of motion commute with the Hamiltonian, that
is, [Ĥ , Â] = 0. Examples of such constants of motion are the total energy and the total
angular momentum.

As an application of Eq. (4.120), consider (a result known as Ehrenfest’s theorem)
the time evolution of the expectation values of, respectively, position R = xî + yĵ + zk̂
and momentum P̂ = −ih̄∇ = −ih̄[(∂/∂x)î + (∂/∂y)ĵ + (∂/∂z)k̂]:

d
dt

〈R〉 = 〈P̂〉
m

=
〈

∂Ĥ

∂P̂

〉

d
dt

〈P̂〉 = −〈∇V 〉 = −〈∇Ĥ〉
(4.121)

These equations have a close resemblance to Hamilton’s equations of classical mechanics,
Eq. (4.74). An identity is, however, only obtained for potentials with terms of no more
than second order (note, e.g., that 〈x2〉 �= 〈x〉2). One simple application is to the dynamics
of a free particle (e.g., the motion of the center of mass). The expectation values behave
like in classical mechanics—the expectation value of the momentum is constant as is
the associated momentum uncertainty. That is, except for the inherent momentum
uncertainty of the initial state, the free particle behaves as in classical mechanics.

Unlike classical mechanics, a precise simultaneous specification of position and
momentum is not possible. Thus, any valid state will at all times obey the Heisenberg
uncertainty relation

�x�p ≥ h̄/2 (4.122)

where �x =√〈x2〉 − 〈x〉2 and similar for �p are the well-known standard deviations for
the observables. Note that �x�p will be time dependent.

At this point we will, briefly, describe some of the fundamental qualitative differences
between a quantum mechanical and a classical mechanical description. First of all,
a trajectory R(t) is replaced by a wave packet, which implies that a deterministic
description is replaced by a probabilistic description. |χ(R, t)|2 is a probability density,
giving the probability of observing the nuclei at the position R at time t. In connection
with the description of a chemical reaction, say (n and m again denote all the required
vibrational and rotational quantum numbers)

A + BC(n) −→

⎧
⎪⎪⎨

⎪⎪⎩

AB(m)+ C
AC(m)+ B
A + B + C
A + BC(m)

(4.123)

χ(R, t0) is chosen such that it represents the reactants at a given total energy. After
propagation of this initial state until the scattering (collision) is completed, one will
observe the following non-classical features.
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• At a given total energy several product channels will be populated with some
probability, whereas a classical trajectory is deterministic and will always show up in
one particular channel, depending on the initial conditions. Consider, for example,
a situation where the energy is above the threshold energy for the first reaction
(AB(m)+ C). In this case the wave packet will, typically, split up into two parts; see
Fig. 1.1.1. One part will be reflected at the barrier corresponding to no reaction
(A + BC(m)) whereas the other part will pass the barrier and form products.

• Wave functions can penetrate potentials and even “tunnel” through barriers. It
is well known that wave functions can penetrate into barriers, corresponding
to regions of configuration space that are not accessible according to classical
mechanics. Consider, for example, the well-known one-dimensional harmonic
oscillator. The eigenstates of the harmonic oscillator show this feature. Thus, the
wave functions are non-zero beyond the classical turning points. If barriers on
the potential energy surface are not too broad, say the barrier around a saddle
point, then the wave function can penetrate through the barrier corresponding to
tunneling (see Section 6.4.1).

• Zero-point energies are conserved during propagation. Zero-point energies are
present in any bound potential; the harmonic oscillator is again a simple example.
The quasi-classical approach described in the previous section takes the energy
quantization of the reactants (including zero-point energies) into account. How-
ever, when quantum dynamics is replaced by classical dynamics proper energy
quantization is lost during the collision process. Thus, products can, for example,
show up with vibrational energies below the quantum mechanical zero-point
energy.

Before we go into the more detailed description of the reaction dynamics of bimolecular
reactions, we will describe an important finding that may have practical applications in
the future. In Section 3.1, we discussed potential energy surfaces with “early” and “late”
barriers and the proposition that translational and vibrational energy might not be equally
effective in promoting reaction. Thus, at a given total energy, see Eq. (1.17), one will
sometimes find that not all combinations (partitionings) of translational and vibrational
energy are equally effective. Such effects have been observed for bimolecular gas-phase
reactions as well as gas-surface reactions [4,5] and is termed mode-selective chemistry.
The dynamical reasons for mode-selective chemistry are related to dynamical constraints
that do not allow for a complete interchange of the two forms of energy prior to
reaction.10

10 In the following chapters, we will consider an approach to the calculation of rate constants—transition-
state theory—that do not take into account such details of the reaction dynamics. The theory will be based on
the basic axioms of statistical mechanics where all partitionings of the total energy are equally likely, and it is
assumed that all these partitionings are equally effective in promoting reaction.
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Example 4.2 Controlling the chemical nature of products

The vibrational motion of polyatomic molecules encompasses all nuclei in the molecule and,
as long as the displacement from the equilibrium configuration is sufficiently small, it can be
broken down into the so-called normal-mode vibrations (see Appendix F). In special cases
these vibrations take a particular simple form. Consider, for example, a partially deuterated
water molecule HOD. In this molecule, the H–OD and HO–D stretching motions are largely
independent and the normal modes are, essentially, equivalent to the local bond-stretching
modes. To that end, consider the following reaction that has been studied experimentally [6,7]
as well as theoretically [8]:

H2 + OD
↗

H + HOD
↘

HD + OH

It is observed that excitation of the stretching vibrations in HOD enhances the rate more than
the increase, resulting from an equivalent amount of relative translational energy. In addition,
the branching ratio between the two product channels can be controlled by appropriate
vibrational pre-excitation of HOD. Thus, it is found that after excitation of the H–OD stretch
with one or more vibrational quanta, the reaction produces almost exclusively H2 + OD,
whereas after excitation of the HO–D stretch, only the HD + OH products are formed.

We mention, in addition, that complete and highly accurate ab initio11 theoretical
solutions for a number of simple atom–diatom reactions like H + HD → H2 + D have
been obtained. Recently, the quantum dynamics of the four-atom reaction H2 + OH →
H2O + H and its reverse has also been reported [9,10]. The general features of these
results at the level of k(T) will typically agree fairly well with the quasi-classical approach,
provided the temperature is sufficiently high so that quantum mechanical tunneling is
negligible.

4.2.1 Gaussian wave packet dynamics

In this section, we describe wave packet dynamics within a (time-dependent) local
harmonic approximation to the potential, since this enables us to write down relatively
simple expressions for the time evolution of the wave packet. This provides a valuable
insight into quantum dynamics and the approximation may be used, for example, to
study inelastic collisions and direct photodissociation (see Section 7.2.2). We consider

11 That is, only fundamental constants of nature (Planck’s constant, elementary charge, and electronic and
nuclear masses) have been used as input in the calculation.



104 Bimolecular Reactions, Dynamics of Collisions

only one-dimensional motion but the formalism can be generalized to n-dimensional
(non-separable) systems [11].

Consider a (complex-valued) Gaussian wave packet of the form

G(x, t) = 〈x|G(t)〉 = exp
[
iαt(x − xt)

2/h̄ + ipt(x − xt)/h̄ + iγt/h̄
]

(4.124)

where xt and pt are the expectation values of position and momentum, respectively:

xt = 〈G(t)|x|G(t)〉
pt = 〈G(t)|p̂|G(t)〉 (4.125)

and αt and γt are complex numbers; αt is related to the variance in position and
momentum:

(�x)2
t = h̄/[4Im(αt)]

(�p)2
t = h̄|αt|2/Im(αt)

(4.126)

That is,

(�x)t(�p)t = h̄/2
√

Re(αt)2 + Im(αt)2/Im(αt) ≥ h̄/2 (4.127)

in agreement with the general Heisenberg uncertainty relation, Eq. (4.122). From
this relation we observe, for example, that a well-defined momentum implies a large
uncertainty in position, that is, a broad wave packet in position space.

We consider now the dynamics of the Gaussian wave packet within the framework
of a time-dependent local harmonic approximation (LHA) to the exact potential V (x)

around xt:

VLHA(x, t) = V (xt)+ V (1)(xt)(x − xt)+ (1/2)V (2)(xt)(x − xt)
2 (4.128)

where V (n)(xt) is the nth derivative of V (x) evaluated at x = xt. The Gaussian wave packet
is a solution to the Schrödinger equation at all times provided the parameters evolve in
time as specified in Eqs. (4.129) to (4.132): xt and pt evolve according to Hamilton’s
equations,

dxt/dt = pt/m

dpt/dt = −V (1)(xt)
(4.129)

(in accordance with Ehrenfest’s theorem), the time evolution of αt is given by

dαt/dt = −2α2
t /m − V (2)(xt)/2 (4.130)



Quantum Dynamics 105

the imaginary part of γt accounts for the normalization,

iγt/h̄ = iRe(γt)/h̄ + ln
(

π h̄
2Im(αt)

)−1/4

(4.131)

and the real part of γt implies that the wave packet acquires a phase (the classical action),

Re(γt) =
∫ t

0
L(xt,pt)dt =

∫ t

0
(p2

t /(2m)− V (xt))dt (4.132)

Thus, the full quantum dynamics of the Gaussian is described by a small number of
parameters with a close correspondence to classical mechanics.

The probability density associated with the Gaussian takes the form

|G(x, t)|2 = (2π(�x)2
t )

−1/2 exp
[
− (x − xt)

2

2(�x)2
t

]
(4.133)

and is shown in Fig. 4.2.1.
The flux density Eq. (4.118) takes the form

jx = [2Re(αt)(x − xt)/m + pt/m]|G(x, t)|2 (4.134)

It depends on the position; at the center x = xt, it is simply the speed times the probability
density, jx = [pt/m](2π(�x)2

t )
−1/2. Note that the dimension of the flux density for one-

dimensional motion is speed times an inverse distance, that is, inverse time (for three-
dimensional motion, the dimension of j is speed/volume).

The LHA is exact for potentials that contain, at most, quadratic terms but obviously
an approximation for anharmonic potentials. Thus, a single Gaussian wave packet within
a local harmonic approximation can, for example, not tunnel or bifurcate, that is, there
will be no simultaneously reflected and transmitted part in scattering off barriers.
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Fig. 4.2.1 The probability density associated with the Gaussian wave packet.The most probable position
is at x = xt, which also coincides with the expectation (average) value of the time-dependent position. The
width is related to the time-dependent uncertainty (�x)t , that is, the standard deviation of the position.
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When the LHA is invalid, the Gaussian wave packet will not keep its simple analytical
form. One must then solve Eq. (4.112) numerically. To that end, various methods have
been developed [12,13].

4.2.1.1 Momentum-space representation

It is instructive to consider the momentum-space representation of the Gaussian wave
packet. In this representation, the states are projected onto the eigenstates of the
momentum operator, that is, P̂|p〉 = p|p〉, which in the coordinate representation takes
the form (see also Eq. (G.22))

〈x|P̂|p〉 = (h̄/i)∂/∂x〈x|p〉 = p〈x|p〉 (4.135)

with the solution

〈x|p〉 = (2π h̄)−1/2eipx/h̄ (4.136)

These states cannot be normalized in the traditional way, but the normalization constant
is fixed using a generalized orthonormality that can be expressed via a well-known
representation of the delta function:

〈p′|p〉 =
∫ ∞

−∞
〈p′|x〉〈x|p〉dx = 1

2π h̄

∫ ∞

−∞
ei(p−p′)x/h̄dx = δ(p − p′) (4.137)

using the completeness of the position eigenstates
∫∞
−∞ |x〉〈x|dx = 1. This way of nor-

malizing is referred to as “delta-function normalization on the momentum scale.” The
momentum-space representation of the Gaussian can now be written as

G(p, t) =
∫ ∞

−∞
dx 〈p|x〉〈x|G〉

= (2π h̄)−1/2
∫ ∞

−∞
dxe−ipx/h̄G(x, t)

= (−i2αt)
−1/2 exp

[
−i(p − pt)

2/(4h̄αt)− ixtp/h̄ + iγt/h̄
]

(4.138)

with the associated probability density in momentum space

|G(p, t)|2 = (2π(�p)2
t )

−1/2 exp
[
− (p − pt)

2

2(�p)2
t

]
(4.139)

which is centered around the mean momentum pt.
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4.2.2 Elements of quantum scattering theory

After these general results and remarks concerning quantum dynamics, we turn now to
the more detailed description of the scattering of particles, including reactive scattering.

As an introduction, it is useful to recall the well-known simple one-dimensional
description of scattering off a potential barrier V (x). Assume, for simplicity, that
lim[V (x)] = 0 for x → ±∞. A particle, described, say, by a Gaussian wave packet
Eq. (4.124), is moving from the left toward the potential barrier with a constant mean
momentum p0, as long as the particle does not feel the potential. When the wave packet
hits the barrier, it breaks into two packets ψR(x, t) and ψT(x, t) (see also Fig. 1.1.1),
corresponding to a reflected and a transmitted part. The reflection and transmission
probabilities are R = ∫ |ψR(x, t)|2dx and T = ∫ |ψT(x, t)|2dx, for t → ∞, respectively, and
R + T = 1. In general, these probabilities will depend on the exact form of the wave
packets, but if the (Gaussian) wave packet was localized sharply in momentum space
(corresponding to a broad wave packet in position space) R and T depend only on the
mean momentum p0.

Alternatively, it turns out that these probabilities can be extracted from stationary
scattering states, that is, eigenfunctions of the Hamiltonian with energy E0 = p2

0/(2m),
and the asymptotic behavior

ψp0(x) −→
{ (

eip0x/h̄ + Be−ip0x/h̄
)
/
√

2π h̄ x → −∞
Ceip0x/h̄/

√
2π h̄ x → ∞ (4.140)

Note that these states are eigenfunctions corresponding to a free particle, and strictly
speaking not physically acceptable, since they are not square integrable. Again, they
have been normalized using delta-function normalization on the momentum scale, see
Eq. (4.137). Nevertheless, the reflection and transmission probabilities for a wave packet
that is localized sharply in momentum space are related to the different parts of the
stationary state in Eq. (4.140), and given by R = |B|2 and T = |C|2.

Even if E0 > Vmax, R can differ from 0, that is, the particle can be reflected. Likewise,
if E0 < Vmax, T can differ from 0; that is, the particle can tunnel. If the potential barrier
is replaced by a repulsive potential then R = 1, corresponding to total reflection.

We continue with the full description in three-dimensional space and consider first,
as an introduction to reactive scattering, elastic two-body scattering and then generalize
to reactive (three-body) scattering [14].

4.2.2.1 Elastic two-body scattering

We consider in this section the collision between two (structureless) particles, that is, the
quantum version of Section 4.1.3. This discussion provides the essence of the quantum
mechanical description of scattering.

The aim is to establish the relation between the observable cross-sections and the
collision dynamics. We denote the scattering state in the interaction region at t = 0
by |χ〉 and write the Hamiltonian in the form Ĥc.m. + Ĥ rel, that is, the Hamiltonians
associated with the center-of-mass motion and the relative motion (see Appendix E.1).
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The propagator can be written in the form Û (t) = exp(−iĤc.m.t/h̄)exp(−iĤ relt/h̄),
and |χ(t)〉 = Û (t)|χ〉 describes the time-dependent scattering state at any time, that is
〈R|χ(t)〉 is the associated wave packet.

Since Ĥ rel = Ĥ0
rel + E(R), and the interaction potential vanishes at large internuclear

separations, it is a reasonable conjecture (as can be proved formally) that

Û (t)|χ〉 t→−∞−→ Û0(t)|χin〉 (4.141)

Û (t)|χ〉 t→+∞−→ Û0(t)|χout〉 (4.142)

where Û0(t) is the propagator associated with the asymptotic free relative motion, Ĥ0
rel.

That is,

|χ〉 = �̂+|χin〉 = �̂−|χout〉 (4.143)

where the Møller operators are defined by

�̂± = lim
t→∓∞Û†(t)Û0(t) (4.144)

Note that the center-of-mass motion drops out in these operators and in the following
it is understood that the Hamiltonians refer to the relative motion; the subscript “rel”
will consequently be dropped. Thus, according to Eq. (4.143), the relation between the
scattering state at t = 0 and the asymptotic scattering states can be illustrated in the
following way:

|χin〉 �̂+−→ |χ〉 �̂−←− |χout〉 (4.145)

Equation (4.143) also implies

|χout〉 = �̂
†
−|χ〉 = �̂

†
−�̂+|χin〉 = Ŝ|χin〉 (4.146)

where Ŝ is the scattering operator, defined by

Ŝ = �̂
†
−�̂+ = lim

t→+∞ lim
t′→−∞

eiĤ0t/h̄e−iĤ(t−t′)/h̄e−iĤ0t′/h̄ (4.147)

or for t′ = −t, Ŝ = limt→+∞ eiĤ0t/h̄e−i2Ĥt/h̄eiĤ0t/h̄. The scattering probability for |χin〉 =
|φ〉 and |χout〉 = |χ〉 can be expressed as

P(χ ← φ) = |〈χ |�̂†
−�̂+|φ〉|2 = |〈χ |Ŝ|φ〉|2 (4.148)
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This probability cannot, however, be measured in practice, since the precise form of the
|φ〉 states cannot be controlled in an experiment.

Before we return to the relevant average over the |φ〉 states, we elaborate a little on
the dynamics. Since the potential is spherically symmetric it is natural to consider the
Hamiltonian in polar coordinates. Thus, the nuclear Hamiltonian for the relative motion
takes the well-known form

Ĥ = Ĥ0 + E(R) = − h̄2

2μ

(
∂2

∂R2 + 2
R

∂

∂R
− L̂2

h̄2R2

)
+ E(R) (4.149)

where μ is the reduced mass, R the internuclear distance, L̂ the relative angular
momentum operator, and E(R) the electronic energy. Rotational invariance implies
[Ĥ , L̂] = 0, and according to Eq. (4.120) the angular momentum associated with the
relative motion is a constant of motion. We consider the dynamics of a state with a definite
angular momentum, and write the radial part of the wave function in the form ul(R, t)/R.
We note that

Ĥ
[

ul(R, t)
R

Ylm(θ ,φ)

]
= Ylm(θ ,φ)

R
Ĥ(l)ul(R, t) (4.150)

where Ylm are the spherical harmonics eigenstates associated with the angular momen-
tum and Ĥ(l) is equivalent to a one-dimensional Hamiltonian given by

Ĥ(l) = − h̄2

2μ

∂2

∂R2 + Vl(R) (4.151)

with the effective potential

Vl(R) = E(R)+ h̄2l(l + 1)

2μR2 (4.152)

where the angular momentum quantum number l = 0,1, . . .. Note the close correspon-
dence to the equivalent classical expression in Eq. (4.32). Using Eq. (4.150), the time
evolution of a state that is in a stationary rotational state can then be written in the form

e−iĤ t/h̄
[

ul(R, t)
R

Ylm(θ ,φ)

]
= Ylm(θ ,φ)

R
e−iĤ(l)t/h̄ul(R, t) (4.153)

Thus, the radial motion takes place in the effective one-dimensional potential, Vl(R).
We return now to the connection between the S-matrix elements in Eq. (4.148) and

the measurable cross-section. To that end, the scattering probability must be averaged
over the relevant |φ〉 states, which all are assumed to be sharply centered around the
momentum p = p0.
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Thus, the relative motion of the molecules (atoms) is described by a series of wave
packets that differ by a random lateral displacement vector b (with the polar coordinates
b,φ) corresponding to different impact points perpendicular to the momentum p0. As
shown in Appendix G, such a displacement of |φ〉 can be generated by the operator
exp(−ib · P̂/h̄), where P̂ is the momentum operator with eigenstates |p〉 and associated
eigenvalues p, that is,

P̂|p〉 = p|p〉 (4.154)

|p〉 is also an eigenstate of the Hamiltonian of the asymptotic free relative motion, that is,

Ĥ0|p〉 = Ep|p〉 (4.155)

with Ep = p2/2μ and p = |p|. In the momentum-space representation, the displacement
takes the form

χin(p) = φb(p) = e−ib·p/h̄φ(p) (4.156)

The scattered state corresponding to |χin〉 is |χout〉 = Ŝ|χin〉, and in the momentum-
space representation

χout(p) =
∫

dp′〈p|Ŝ|p′〉χin(p′) (4.157)

Energy conservation implies that the energy of the two states |p〉 and |p′〉 must be
identical, that is, Ep = Ep′ . Indeed, more formally, it can be shown that [Ĥ0, Ŝ] = 0, which
implies that 〈p|Ŝ|p′〉(Ep − Ep′) = 0 and 〈p|Ŝ|p′〉 contains the delta function δ(Ep − Ep′) =
μδ(p − p′)/p.

The scattering probability into the solid angle element d� about the direction of the
final momentum p is

P(d� ← φb) = d�

∫ ∞

0
p2dp|χout(p)|2 (4.158)

Since we have scattering from wave packets uniformly distributed over b, the total
scattering probability into the solid angle element d� is

∫
dbP(d� ← φb). If this number

is multiplied by the (relative) flux density of molecules in the beam, we get the flux of
molecules that show up in d�. Thus the cross-section is simply

dσ

d�
d� =

∫
dbP(d� ← φb) (4.159)

Note the similarity with the expression derived within the quasi-classical approach,
Eq. (4.10).
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When Eq. (4.158) is inserted into Eq. (4.159), we have

dσ

d�
=
∫

db
∫ ∞

0
p2dp|χout(p)|2 (4.160)

where |χout(p)|2 = χout(p)�χout(p); here χout(p) is given by another integral as specified
by Eqs (4.156) and (4.157), and χout(p)� is given by a similar integral (with integration
variable p′′). It is possible to simplify and evaluate the integrals, although it looks a bit
cumbersome. First, the integral over db can be evaluated leading to a delta function using
the result

∫∞
−∞ exp[ik(x − x′)]dk = 2πδ(x − x′). Second, the integral over dp′′ (associated

with χout(p)�) can be evaluated using the delta function associated with the S-matrix
elements, and finally the integral in Eq. (4.160) over dp is evaluated, giving

dσ

d�
= (2π h̄μ)2

∫
dp′ p′

p′‖
|〈p|Ŝ|p′〉φ(p′)|2 (4.161)

where p′‖ is the component of p′ along p0. So far, we have not used the assumption that

φ(p′) is sharply centered around p′ = p0. We can then replace (p′/p′‖)〈p|Ŝ|p′〉 by its value
at p′ = p0, and take it outside the integral, that is,

(
dσ

d�

)
(p0|p) = (2π h̄μ)2|〈p|Ŝ|p0〉|2 (4.162)

This result is often written in a slightly different form. The scattering operator can
obviously be written as Ŝ = Î + (Ŝ − Î), where the identity operator Î corresponds to
scattering in the absence of all interactions; that is, p = p0. The second term (Ŝ − Î)
corresponds to actual scattering. For p �= p0, the scattering amplitude, f , is introduced by
the relation |〈p|(Ŝ − Î)|p0〉|2 = |f (p0|p)|2/(2π h̄μ)2. Thus, for p �= p0 the right-hand side
in Eq. (4.162) is simply the squared scattering amplitude, |f (p0|p)|2.

In order to evaluate the matrix element in Eq. (4.162), 〈p|Ŝ|p0〉, we must calculate
three-dimensional integrals. In the following we show, however, that the matrix element
can be reduced to a sum over one-dimensional S-matrix elements. This is obtained via
an expansion of the momentum eigenstates 〈R|p〉 in a basis where we can use that the
angular momentum of the relative motion is conserved.

The eigenstates associated with the asymptotic free relative motion, the so-called
plane waves, 〈R|p〉 = (2π h̄)−3/2 exp(ip · R/h̄) (with delta-function normalization on the
momentum scale), can be expanded in terms of the common eigenstates of Ĥ0(l), L̂2,
and L̂z, that is,

〈R|Elm〉 = il

√
2μ

πk
jl(kR)

R
Ylm(θ ,φ) (4.163)
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where il is a phase factor and the constant
√

2μ/(πk) comes from the delta-function
normalization of the function jl(kR), that is specified below. The polar coordinates of R
are (R,θ ,φ), E = p2/2μ, k = p/h̄, and jl(kR) is a Riccati–Bessel function that satisfies the
free radial Schrödinger equation, that is, an eigenfunction of Eq. (4.151) with E(R) = 0,

Ĥ0(l) = − h̄2

2μ

∂2

∂R2 + h̄2l(l + 1)

2μR2 (4.164)

The asymptotic form of the Riccati–Bessel function is

jl(kR)
R→∞−→ sin(kR − lπ/2)

= 1
2i

(
ei(kR−lπ/2) − e−i(kR−lπ/2)

)
(4.165)

The well-known expansion is

eip·R/h̄ = (2π h̄)3/2〈R|p〉 = 4π

k

∞∑

l=0

l∑

m=−l

il jl(kR)

R
Y �

lm(k̂)Ylm(θ ,φ) (4.166)

where k = p/h̄ and the unit vector k̂ specify, respectively, the magnitude and direction of
the relative momentum p = kk̂h̄. The expansion in Eq. (4.166) shows that a state with a
well-defined momentum p can be decomposed into a superposition of states, each having
a well-defined angular momentum. The expansion can be formally written in the form

〈R|p〉 =
∑

l

∑

m

〈R|Elm〉〈Elm|p〉 (4.167)

and by comparison with Eqs (4.163) and (4.166), we get

〈Elm|p〉 = Y �
lm(k̂)/

√
μk (4.168)

The desired S-matrix element in Eq. (4.162) can now be written in the form

〈p|Ŝ|p0〉 =
∑

ll′

∑

mm′
〈p|El ′m′〉〈El ′m′|Ŝ|Elm〉〈Elm|p0〉

= 1
μk

∑

ll′

∑

mm′
Yl′m′(k̂)〈El ′m′|Ŝ|Elm〉Y �

lm(k̂0) (4.169)

We have omitted an integral over the energy, E, since the S-matrix is diagonal in energy.
The scattering operator Ŝ is given by Eq. (4.147) and for a spherically symmetric
potential E(R), using Eq. (4.153) and the orthonormality of the spherical harmonics
〈Ylm|Yl′m′ 〉 = δll′δmm′ , we get
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〈El ′m′|Ŝ|Elm〉 = δll′δmm′sl(k) (4.170)

where the S-matrix element, sl(k), in the one-dimensional motion of the radial coordinate
is given by

sl(k) = 2μ

πk
lim

t→+∞ lim
t′→−∞

∫
dRjl(kR)e−iĤ(l)[t−t′]/h̄jl(kR) (4.171)

Now

l∑

m=−l

Ylm(k̂)Y �
lm(k̂0) = 2l + 1

4π
Pl(cosχ) (4.172)

where Pl(cosχ) is the Legendre polynomial and χ is the angle between k̂0 and k̂. That
is, Eq. (4.162) takes the form

(
dσ

d�

)
(E,χ) =

∣∣∣∣∣
1
2k

∞∑

l=0

(2l + 1)Pl(cosχ)sl(k)

∣∣∣∣∣

2

(4.173)

where E = (h̄k)2/2μ. This is the quantum version of the classical Eq. (4.52).
Equation (4.173) displays clearly how the cross-section is determined from the

scattering dynamics in the radial coordinate via the time evolution of the initial state and a
subsequent projection onto the final state. The angular momentum L = √

l(l + 1)h̄ ∼ lh̄
is according to Eq. (4.30) in the classical description related to the impact parameter,
that is, L = μv0b. Thus, the sum can be interpreted as the contribution of all impact
parameters. In the classical description only one impact parameter contributed to the
differential cross-section. For a hard-sphere potential, it can be shown that dσ/d� = d2

at low energies, which is four times the classical result in Eq. (4.55).
The differential cross-section refers, as in the classical description, to the scattering angle

in the center-of-mass coordinate system. In order to relate to experimentally observed
differential cross-sections, one has to transform to the appropriate scattering angle.
This transformation takes the same form as discussed previously, essentially, because
the expectation value of the center-of-mass velocity V is conserved just as in classical
mechanics.

The total cross-section is obtained by integration over d�:

σ(E) =
∫

dσ

d�
d� = π

k2

∞∑

l=0

(2l + 1) |sl(k)|2 (4.174)
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using

∫
d�Pl(cosχ)Pl′(cosχ) = 4π

2l + 1
δll′ (4.175)

4.2.2.2 Reactive scattering

We consider now, briefly, the generalization to three-body scattering that is required in
order to describe chemical reactions, that is,

A + BC(n) −→

⎧
⎪⎪⎨

⎪⎪⎩

AB(m)+ C
AC(m)+ B
A + B + C
A + BC(m)

(4.176)

The different groupings of the atoms are referred to as arrangement channels (or simply
channels); we label the reactant channel by α, whereas the different product channels
are labeled by β = 1,2, . . .. The part of the Hamiltonian that is effective long before the
scattering is the channel Hamiltonian Ĥα, which is the part of the total Hamiltonian that
is left when A and BC are so far apart that the interaction between A and BC vanishes.
For a scattering state Û (t)|χ〉 that originates in channel α,

Û (t)|χ〉 t→−∞−→ Ûα(t)|χin〉 (4.177)

where Ûα(t) = exp(−iĤαt/h̄) is the propagator associated with the channel Hamiltonian.
This result can be rewritten as

|χ〉 = �̂α+|χin〉 = lim
t→−∞eiĤt/h̄e−iĤα t/h̄|χin〉 (4.178)

where �̂α+ is the channel Møller operator. The wave function associated with the A +
BC(n) channel can be written in the form

〈R,r|χin〉 = χ(R)φn
BC(r) (4.179)

where χ is associated with the motion of A relative to BC and φn
BC is the nth (bound)

state of BC. A natural choice of coordinates is again, as in the classical description,
Jacobi coordinates (see Fig. 4.1.16 and Appendix E.1). The eigenstates of the channel
Hamiltonian Ĥα are

〈R,r|n,p,α〉 = (2π h̄)−3/2 exp(ip · R/h̄)φn
BC(r) (4.180)

with the energy E = Etr + En, that is, the sum of the relative translational energy and the
quantized internal (vibrational/rotational) energy of BC. Note that we did consider such
states in Eq. (1.16).
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Long after the scattering several arrangement channels can be populated, with channel
Hamiltonians Ĥβ (β = 1,2, . . .), and

Û (t)|χ〉 t→+∞−→ Û1(t)|χ1
out〉 + Û2(t)|χ2

out〉 + · · · (4.181)

or

|χ〉 = �̂1−|χ1
out〉 + �̂2−|χ2

out〉 + · · · (4.182)

The scattering probability for |χin〉 = |n,α〉 and |χout〉 = |m,β〉 can be expressed as

P(m,β ← n,α) = |〈m,β|�̂β†
− �̂α+|n,α〉|2 = |〈m,β|Ŝαβ |n,α〉|2 (4.183)

The connection between these S-matrix elements and the measurable cross-sections is
worked out by arguments that are similar to the two-body case (see Eqs (4.159) and
(4.162)). To that end, the scattering probability must be averaged over the relevant initial
states (corresponding to different impact points) and these states will be assumed to be
sharply centered around the momentum p = p0.

The expression for the total reaction cross-section, say for A + BC(n) −→ AB(m)+ C,
is similar to Eq. (4.174), and takes the form

σR(n,E|m) = π

k2
n

∑

J

(2J + 1)|SJ
nm(E)|2 (4.184)

where kn = √
2μ(E − En)/h̄ and the state-to-state reaction probability, at the total energy

E and total angular momentum J, is given by

|SJ
nm(E)|2 = |〈φm|Û (t − t0)|φn〉|2 (4.185)

Here, φn and φm are the initial and final states, that is, eigenstates of the channel
Hamiltonians (Ĥα and Ĥβ , respectively) as specified in Eq. (4.180), and t0 and t are
the initial and final times, chosen such that they correspond to pre- and post-collision
times, that is, t0 → −∞ and t → ∞.

Equation (4.184) displays clearly how the cross-section is determined from the
scattering dynamics via the time evolution of the initial channel state Û (t − t0)|φn〉 and
a subsequent projection onto the final channel state. In practice, the plane wave of the
initial state in Eq. (4.180) can be replaced by a Gaussian wave packet, as illustrated in
Fig. 1.1.1. When this wave packet is sufficiently broad, it will be localized sharply in
momentum space.
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4.2.3 Non-adiabatic dynamics

So far, we have considered the dynamics of chemical reactions within the adiabatic
approximation. The motion of the atomic nuclei is, however, not always confined to a
single electronic state as assumed in Eq. (1.7). This situation can, for example, occur
when two potential energy surfaces come close together for some nuclear geometry.
The dynamics of such processes are referred to as non-adiabatic. This is a purely non-
classical phenomenon [15]. Examples of reactions that involve non-adiabatic transitions
are charge-transfer reactions, that is, reactions in which charge is transferred between
reactants.

When several electronic states are in play, Eq. (1.11) is replaced by a matrix equation
with a dimension given by the number of electronic states. For example, in the space of
two electronic states, Eq. (1.7) is replaced by

�(r,R, t) = χ1(R, t)ψ1(r;R)+ χ2(R, t)ψ2(r;R) (4.186)

where r,R denote all electron and nuclear coordinates, respectively. Substitution into the
Schrödinger equation, Eq. (1.1) (using orthonormality of electronic states) then gives
(see Appendix A)

ih̄
∂

∂t

[
χ1(R, t)
χ2(R, t)

]
=
[

Ĥ1 Ĉ12

Ĉ21 Ĥ2

][
χ1(R, t)
χ2(R, t)

]
(4.187)

where

Ĥ i = T̂nuc + Ei(R)+ 〈ψi|T̂nuc|ψi〉 (4.188)

and the coupling terms between the electronic states Ĉij are given by

Ĉij = 〈ψi|T̂nuc|ψj〉 −
N∑

g=1

h̄2

Mg
〈ψi|∇g|ψj〉 · ∇g (4.189)

where integration in the matrix elements is over electronic coordinates. The coupling
terms imply that the nuclear motion in all the electronic states is coupled. Note that these
coupling terms between the electronic states take the form of differential operators. The
matrix elements 〈ψi|∇g|ψj〉 associated with the non-diagonal coupling operators can be
rewritten into a form that provides physical insight into the magnitude of these elements.
Thus (see Appendix A),

〈ψi|∇g|ψj〉 = 〈ψi|(∇gĤ e)|ψj〉
Ej(R)− Ei(R)

for i �= j (4.190)

That is, the matrix element associated with the coupling of electronic states is small,
provided that the energy difference, Ej(R)− Ei(R), between electronic potential energy
surfaces is sufficiently large.
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Equation (4.187) would take a simpler form if the coupling terms were simple (scalar)
potentials. It turns out that such a form of the equation can be obtained if one changes to
an alternative representation of the electronic states, the so-called diabatic representation.
In this representation, the electronic wave functions are written in the form ψi(r;R0),
that is, the internuclear coordinates are now fixed at some point. Thus, transformation
from the adiabatic representation, where coupling terms between the electronic states
are differential operators, to the diabatic representation leads to coupling terms that are
(scalar) potentials. The diagonal elements take the form T̂nuc + Ui(R), where Ui(R) are
the diabatic potentials. A closer analysis of the transformation between the adiabatic and
the diabatic representations shows that the adiabatic potentials (electronic energies) E1
and E2 are obtained by diagonalization of the diabatic potential energy matrix, with the
diagonal elements U1, U2 and off-diagonal elements V12, V21 = V12, that is,

E1,2 = (U1 + U2)/2 ± (1/2)

√
(U1 − U2)2 + 4V 2

12 (4.191)

Various numerical (exact) methods have been developed in order to solve Eq. (4.187)
or the equivalent equation in the diabatic representation.

Next, we consider the so-called Landau–Zener model that provides insight into non-
adiabatic dynamics. The Landau–Zener model concerns the transition probability
between two one-dimensional linear intersecting diabatic potentials

U1(R) = β1(R − Rc)+ U

U2(R) = β2(R − Rc)+ U
(4.192)

where, say, β1 < 0 and β2 > 0. A constant coupling V12 is assumed between these states.
Then after substitution of Eq. (4.192) into Eq. (4.191),

E1,2 = U + (β1 + β2)(R − Rc)/2 ± V12

√
1 + ε2 (4.193)

where ε2 = (β1 − β2)
2(R − Rc)

2/(4V 2
12). For R = Rc, that is, at the crossing of the

diabatic curves, E1 − E2 = 2V12. For R close to Rc, that is, ε small, we have that√
1 + ε2 = 1 + ε2/2 + ·· · . The adiabatic potentials are then quadratic expressions in R

in the neighborhood of the crossing R = Rc. The potentials and the associated adiabatic
potentials corresponding to this so-called avoided crossing are illustrated in Fig. 4.2.2.

In the Landau–Zener model, dynamics is described by a single trajectory which
due to the constant force undergoes an accelerated motion in the crossing region. The
probability of a transition from diabatic state 1 to state 2 is denoted by P12, which is also
the probability of remaining in the lower adiabatic state, and the transition probability
from the lower to the upper adiabatic state is then Pnonadia. = 1 − P12, which is given by
[16,17]

Pnonadia.(p̃0/m) = exp(−2πγ/h̄) (4.194)
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Fig. 4.2.2 Potential energy diagram for the Landau–Zener model. Adiabatic potentials (solid lines) and
diabatic potentials (dashed lines), with β1 < 0 and β2 > 0. The arrow illustrates the dynamics on the
lower adiabatic (ground-state) potential.

where

γ = |V12|2
|β2 − β1|p̃0/m

(4.195)

β1, β2 are the derivatives of the two diabatic potentials, and p̃0/m is the speed at the
crossing. Note that the probability of staying in the lower adiabatic potential is high when
the motion is slow and/or the distance between the two adiabatic potentials is large.

Strictly speaking, the Landau–Zener model is only applicable to the dynamics of the
single degree of freedom of a diatomic molecule. In two dimensions, the crossing of the
diabatic states will not take place in a single point but along a line, a so-called crossing seam.
In this case one can, for example, find corresponding adiabatic potentials that intersect
in a single point; the form of the potentials in the vicinity of this point is referred to as a
conical intersection.

Finally, it is also possible to extend the quasi-classical trajectory approach (Sec-
tion 4.1) to non-adiabatic dynamics. This is the so-called trajectory surface hopping
approach [18,19]. In this approach, nuclei are assumed to move classically on a single
adiabatic potential energy surface until a point of large non-adiabatic coupling is reached.
At such a point, the trajectory is split into two branches, with appropriate probability
factors attached to each branch. The Landau–Zener formula, Eq. (4.194), can be used to
estimate the probability. The velocity is, however, now a multidimensional vector but it is
a reasonable assumption that only the velocity component perpendicular to the crossing
seam of the diabatic surfaces is effective in coupling the states. The trajectory continues
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on the new surface, and if the potential energies of the two adiabatic surfaces differ at the
crossing of the diabatic surfaces, a velocity correction is introduced in order to conserve
energy.
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PROBLEMS

4.1 A simple expression for the rate constant is given in Eq. (4.23).

(a) Evaluate exp(−E∗/kBT) and k(T) for T = 1000 K, 1500 K, and 2000 K, for
a system where μ = 10 g/mol, d = 0.1 nm, and E∗ = 100 kJ/mol.

(b) Plot the three values of k(T) on an Arrhenius plot. Is this plot linear?

4.2 Consider the two-dimensional motion of a particle in a central force field. The
Lagrange function in Cartesian coordinates is

L = T − U (r)

= m(ẋ2 + ẏ2)/2 − U (r)

where r =√x2 + y2.
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(a) Introduce polar coordinates (r,θ) and show that the kinetic energy can be
written in the form

T = m
2

(
dr
dt

)2

+ (mr2dθ/dt)2

2mr2

(b) Replace the velocities by the generalized momenta, pr and pθ , conjugate to r
and θ , respectively, and write down the Hamilton function.

(c) Write down Hamilton’s equations of motion and show that the generalized
momentum conjugate to θ is conserved, that is, dpθ /dt = 0.

4.3 In connection with Fig. 4.1.8, it was stated that the intersection between the total
energy and Veff(r) gives the distance of closest approach rc. We consider the hard-
sphere potential in Eq. (4.53).

(a) Sketch the effective potential Veff(r).

(b) Show that rc = b for b > d, and rc = d for b ≤ d.

4.4 For a hard-sphere potential, the deflection angle χ is given by Eq. (4.54). Evaluate
the differential cross-section using Eq. (4.52).

4.5 For the case of the classical scattering of two particles with a repulsive Coulomb
potential given by U (r) = +B/r, the deflection angle is given by

χ(E,b) = 2cosec−1

[
1 +

(
2bE
B

)2
]1/2

Show that the differential cross-section is given by

(
dσ

d�

)
(χ ,E) =

(
B

4E

)2

cosec4(χ/2)

This result is that used by Rutherford in his original α-scattering experiments.
Note that cosec(x) = 1/sin(x), cosec−1(x) is the inverse function, and

dcosec−1[u(x)]/dx = −(|u|
√

u2 − 1)−1du/dx

4.6 We consider the so-called Langevin model for ion–molecule reactions. An ion and a
neutral non-polar molecule interact—at large distances—through an ion-induced-
dipole potential

U (r) = −1
2

αe2

4πε0r4

where α is the polarizability volume of the neutral non-polar molecule.
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The collision is described as a two-body elastic scattering in the spherically
symmetric potential U (r) given here. The potential barrier for the reaction is taken
as the barrier in the effective potential, which is U (r) plus the centrifugal energy
L2/(2μr2) (see Problem 4.2), where L is the angular momentum and μ is the
reduced mass. Note that L2/(2μr2) = E(b/r)2, since the total energy is E = μv2

0/2
and L = μv0b, where b is the impact parameter.

(a) Sketch the effective potential and find the position r∗ of the barrier.

(b) Find the value of the barrier height.

It is assumed that the reaction probability P = 1 for kinetic energies larger than
or equal to the barrier in the effective potential and P = 0 for energies below the
barrier.

(c) Find, at the energy E, the maximum value of the impact parameter bmax that
can lead to reaction, express the reaction probability in terms of the impact
parameter, and find an expression for the reaction cross-section σR.

(d) For the ion–molecule reaction

N+ + H2 → NH+ + H

calculate the cross-sections for the reaction when α = 0.79Å
3

for H2 and
at kinetic energies of 30kJ/mol, 100kJ/mol, and 300kJ/mol. Experimental
determinations of the cross-sections at those impact energies have given the
results 30Å

2
, 15Å

2
, and 10Å

2
, respectively. Compare these values with the

calculations.

4.7 We consider a chemical reaction that is dominated by the long-range part of
the interaction potential between the reactants. The effective potential for the
R-coordinate, the distance between the reactants, is

Veff(R) = − C
Rn + L2

2μR2

where L is the orbital angular momentum and μ the reduced mass, and n > 2.
Assume that the reaction probability Pr = 1 for kinetic energies larger than or equal
to the barrier in the effective potential.

(a) Find an expression for the reaction cross-section σR.

(b) From the cross-section, determine the rate constant k(T). In the integration
use the definition of the Gamma function given in Problem 2.3.

(c) Discuss the temperature dependence of the rate constant as a function of n in
the range from n = 3 to n = 8.

4.8 We consider a collision between two atoms. A chemical bond between the atoms
can be formed, during the collision, via an electromagnetically induced transition
to a bound electronic state. This process is called photo-association.
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The collision is described here by classical dynamics, and we assume that the
motion takes place in a spherically symmetric potential U (r). It is well known that
the relative motion of the atoms is equivalent to the motion of a particle with the
reduced mass μ, in an effective one-dimensional potential given by

Veff(r) = U (r)+ L2/(2μr2) = U (r)+ E(b/r)2

where E is the total energy (corresponding to the relative kinetic energy prior to
the collision) and b is the impact parameter of the collision.

The transition to the bound state is assumed to take place at a certain distance
r = r∗ with the associated photon energy hν∗. The probability of the process is
assumed to take the form

Phν∗(E) =
{

0 for E < Veff(r∗)
1 for E ≥ Veff(r∗)

(a) Find bmax(E), that is, the highest value of b where the process can take place.
Determine the reaction cross-section σR(E).

(b) Determine an expression for the rate constant k(T).

4.9 Show that Hamilton’s equations of motion

dqi/dt = ∂H/∂pi

dpi/dt = −∂H/∂qi

with H(qi ,pi) =∑i(p
2
i /2μi)+ V (q1, . . . ,qN ) are equivalent to Newton’s law

μid2qi/dt2 = −∂V/∂qi

Show also that the total energy is conserved, that is, dH/dt = 0.

4.10 Consider a bimolecular collision

A + BC −→

between an atom A and a diatomic molecule BC in a collinear model, that is, all
atoms are assumed to move along the same line. Assume that the potential energy
surface can be expressed by

E(r,R) = Dexp[−β(R − εr)] + (1/2)k(r − r0)
2

where r and R are Jacobi coordinates (the bond length of BC and the distance from
A to the center of mass of BC, respectively) and D, β, ε, k, and r0 are constants.
The kinetic energy can be written as T = P2

R/(2μR)+ P2
r /(2μr), where PR and Pr

are the momenta conjugate to R and r, and μR and μr are reduced masses.
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(a) Write down Hamilton’s equation of motion.

(b) Describe the motion in the two coordinates for R → ∞.

4.11 Consider the stationary scattering state in Eq. (4.140). Show that the transmission
probability T = |C|2 is equal to the transmitted flux density divided by the
incoming flux density.
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Rate Constants, Reactive Flux

Key ideas and results

In this chapter, we consider a direct approach to the calculation of k(T) that
bypasses the detailed state-to-state reaction cross-sections. The method is based on
the calculation of the reactive flux across a dividing surface on the potential energy
surface. The results are:

• an approximate result based on the calculation of the classical one-way flux from
reactants to products, neglecting possible recrossings of the dividing surface;

• an exact classical expression including recrossings of the dividing surface;

• an exact quantum mechanical expression.

In the previous chapter, we have discussed the reaction dynamics of bimolecular
collisions and its relation to the most detailed experimental quantities, the cross-sections
obtained in molecular-beam experiments, as well as the relation to the well-known
rate constants, measured in traditional bulk experiments. Indeed, in most chemical
applications one needs only the rate constant—which represents a tremendous reduction
in the detailed state-to-state information.

An important recent theoretical development is the “direct” approaches to calculating
rate constants. These approaches express the rate constant in terms of a so-called flux
operator and bypass the necessity for calculating the complete state-to-state reaction
probabilities or cross-sections prior to the evaluation of the rate constant [1–3]. This is
the theme of this chapter.

First, let us combine some key results from the previous chapters. For a reaction
written in the form A + BC(n) → AB(m)+ C, we have, according to Eq. (2.29),

k(T) = 1
kBT

(
8

πμkBT

)1/2 ∑

n

∑

m

∫ ∞

0
pBC(n)σR(n,E|m)Etre−Etr/kBT dEtr (5.1)

and from Eq. (4.184),

Theories of Molecular Reaction Dynamics. Second Edition. Niels E. Henriksen and Flemming Y. Hansen, Oxford University
Press 2019. © Niels E. Henriksen and Flemming Y. Hansen. DOI: 10.1093/oso/9780198805014.001.0001
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σR(n,E|m) = π

k2
n

∑

J

(2J + 1)|SJ
nm(E)|2

= π h̄2

2μ

1
Etr

∑

J

(2J + 1)|SJ
nm(E)|2 (5.2)

where kn = √
2μ(E − En)/h̄ = √

2μEtr/h̄, since the total energy E = Etr + En; that is, the
sum of the relative translational energy and the internal (vibrational/rotational) energy
of BC.

We insert Eq. (5.2) into Eq. (5.1), and note that the factors in front of the integral are
related to the partition function associated with the relative translational motion of the
reactants, see Eq. (B.14):

π h̄2

2μ

1
kBT

(
8

πμkBT

)1/2

= 1
h

1
Qtrans/V

(5.3)

and use pBC(n) = exp(−En/kBT)/QBC to get

k(T) = 1
h

1
(Qtrans/V )QBC

∑

n

∫ ∞

0
e−En/kBT

∑

m

∑

J

(2J + 1)|SJ
nm(E)|2e−Etr/kBT dEtr

(5.4)
The two exponentials in the integrand are combined and we change the integration
variable from the translational energy Etr to the total energy E:

k(T) = 1
h

1
(Qtrans/V )QBC

∑

n

∫ ∞

En

∑

m

∑

J

(2J + 1)|SJ
nm(E)|2e−E/kBT dE (5.5)

The transition probabilities |SJ
nm(E)|2 = |SJ

nm(Etr + En)|2 = 0 for E = En, that is, when
there is no translational energy. We introduce the Heaviside (unit) step function θ(ξ) by
the definition

θ(ξ) =
{

1 for ξ > 0
0 for ξ < 0

(5.6)

and when |SJ
nm(E)|2 is replaced by θ(E − En)|SJ

nm(E)|2 the lower integration limit En can
be replaced by 0.

Thus, we have the following exact expression for the rate constant:1

1 Approximate expressions for the rate constant can also be derived (as in Section 4.1.2). Thus, the so-called
transition-state theory, to be described in Chapter 6, can be derived based on an approximation to the total
reaction probability

∑
m |SJ

nm(E)|2; see Section 6.3.
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k(T) = kBT
h

1
(Qtrans/V )QBC

∫ ∞

0
Pcum(E)e−E/kBT d(E/kBT) (5.7)

where

Pcum(E) =
∑

J

(2J + 1)
∑

n

∑

m

θ(E − En)|SJ
nm(E)|2 (5.8)

is the so-called cumulative reaction probability. This expression shows how the rate
constant depends on the state-to-state reaction probabilities. Note that, at a given total
energy, E, the summation over n contains a finite number of terms, since the internal
energy of the reactant En must be smaller than the total energy. Similarly, the summation
over m contains a finite number of terms, since Em ≤ E where Em is the internal energy
of the product.

There is another more direct way of calculating the rate constant k(T), that is, it is
possible to bypass the calculation of the complete state-to-state reaction probabilities,
|SJ

nm(E)|2, or cross-sections prior to the evaluation of the rate constant. The formulation
is based on the concept of reactive flux. We start with a version of this formulation based
on classical dynamics and in Section 5.2 we continue with the quantum mechanical
version. It will become apparent in Section 5.1 that the classical version is valid not only
in the gas phase, but in any phase, so the foundation for condensed-phase applications
will also be provided.

5.1 Classical Dynamics

The multidimensional configuration space for a system in which a chemical reaction
takes place, as exemplified in Eq. (5.9), may be divided into regions for the reactants and
products as sketched in Fig.5.1.1. Consider, for example, the reaction

A + BC −→
{

AB + C (p1)

AC + B (p2)
(5.9)

It illustrates that the reaction may lead to several products, pj. In the region representing
the reactants, region r, the B–C distance will stay close to the equilibrium distance
between the two atoms as the system evolves in time, while the distance to A may have
all values as well as the momenta. In the region of product p1, the distance between
A and B will stay close to the equilibrium distance between the two atoms, while there
are no constraints on the other variables. For product p2, the A–C distance will stay close
to the equilibrium distance, and so on.

For reactants consisting of n atoms, the dimension of the configuration space is 3n;
n = 3 in the example in Eq. (5.9) so the dimension of the configuration space is 9. The
various regions in configuration space may be separated by surfaces as shown in the
figure. We consider surfaces that completely separate reactants from products, that is,
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p3
p2

p1
t1 p4

r

S(p1,r)

Fig. 5.1.1 Configuration space showing the regions for reactants (r) and products (pj). t1 is an example
of a trajectory that leads to the formation of products p1. S(p1, r) is part of the dividing surface between
r and p1, where the system points have an outward velocity from the reactant region.

surfaces that are located such that it is impossible to move from the reactant region to
the product region, on the potential energy surface, without crossing that surface. Such
a surface is referred to as a dividing surface. The location of such surfaces is not uniquely
given, as we will discuss in the following.

Suppose now a system follows the trajectory t1 in Fig.5.1.1; it takes the system across
the surface between r and p1, which implies that a chemical reaction has taken place in
the system. The reaction rate can then be calculated as the number of such trajectories
passing the dividing surface.

In Fig.5.1.2 we have made a sketch with a few examples of trajectories to illustrate
how the position of the dividing surface may influence the results. With the surface placed
at S1, trajectory t1 crosses the dividing surface once and leads to a reaction. Trajectory
t2 crosses one time but does not lead to a reaction since it recrosses once and moves
back into the region of the reactants. Trajectory t3 crosses two times from the reactant
to the product side and leads to a reaction. Trajectory t4 crosses two times again from
the reactant to the product side, but it does not lead to reaction since it recrosses twice.
Trajectory t5 does not cross the dividing surface and therefore does not lead to a reaction.

That is, if we denote using F(T) the number of crossings at temperature T per second
and per unit volume from r to p, that is, from left to right in the figure (i.e., the flux), and
the reaction rate at the same temperature is R(T), then we will always have that

R(T) ≤ F(T) (5.10)

which is known as Wigner’s variational theorem. It states that the number of crossings will
always be equal to or larger than the reaction rate because some trajectories will cross and
recross the dividing surface a multiple number of times. Some of these trajectories that
are recrossing the dividing surface will lead to reaction whereas others will be non-reactive.
Thus, when a trajectory crosses an even number of times it leads to no reaction, and when
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S1
t1

t2

S2

t3

t4

t5

Fig. 5.1.2 Examples of trajectories tj in configuration space. There are six crossings from the left to the
right of surface S1,whereas there only are two crossings to the right of surface S2.The position of the latter
surface will therefore give a better estimate of the reaction rate according to Wigner’s variational theorem.

a trajectory crosses the dividing surface an odd number of times it leads to reaction.
Therefore, by varying the position of the surface separating reactants and products, we
should search for a position that leads to the smallest number of crossings from r to p.
That number would then be the best estimate of the reaction rate. With the surface placed
at S1, we see that F(T) = 6; when placed at S2 it is equal to 2, the “true value” for the
rate. In order words, if we can find a dividing surface with no recrossings, then the flux
will coincide with the reaction rate.

5.1.1 Flow of system points in phase space

We have seen that a classical system is represented in phase space by a point, and that an
ensemble of macroscopically identical systems will therefore be represented by a cloud
of points. The distribution of system points is determined by the constraints we have
imposed on the system, for example, constant number of atoms, constant volume, and
constant energy (NVE-ensemble) or constant number of atoms, constant volume, and
constant temperature (NVT-ensemble).

This cloud of system points is very dense, since we consider a large number of systems,
and we can therefore define a number density ρ(p,q, t) such that the number of systems
in the ensemble whose phase-space points are in the volume element dpdq about (p,q)
at time t is ρ(p,q, t)dpdq. Clearly, we must have that

∫
· · ·

∫
ρ(p,q, t)dpdq = A (5.11)
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where the integration is over the whole phase space and A is the total number of
systems in the ensemble. The explicit time dependence in the density implies that non-
equilibrium ensembles are included.

We consider an ensemble of systems with just one set of reactant molecules with n
atoms in each system. Thus, q=(q1, . . . ,q3n), p=(p1, . . . ,p3n), and dpdq=�3n

i=1 (dpi dqi),
where (p,q) can be any sets of coordinates and their conjugate momenta. We assume that
all interactions are known. As time evolves, each point will trace out a trajectory that will
be independent of the trajectories of the other systems, since they represent isolated
systems with no coupling between them. Since the Hamilton equations of motion,
Eq. (4.74), determine the trajectory of each system point in phase space, they must also
determine the density ρ(p,q, t) at any time t if the dependence of ρ on p and q is known
at some initial time t0. The equation for the density is the Liouville equation of motion
that is derived in Eq. (5.19).

Let us determine the change in ρ with time at a given position (p,q) in phase space.
We surround the point with a small volume element �, sufficiently small to make the
value of ρ(p,q, t) the same at all points in the volume element, and sufficiently large
to contain enough system points so that ρ is well defined and not dominated by large
fluctuations. Then the change in the number of system points per second in � is equal
to the net flow of system points across the bounding surface S(�) of �, that is,

∂

∂t

∫

�

ρ(p,q, t)dpdq = −
∫

S(�)

ρ(p,q, t)V · nds (5.12)

The left-hand side expresses the local rate of change in the number of system points in
�, V on the right-hand side is the velocity of system points at the surface and given by

V = {q̇1, . . . , q̇3n, ṗ1, . . . , ṗ3n} (5.13)

and n is, by convention, the outward unit normal vector to the surface element ds,
pointing away from the volume enclosed by S(�). Thus, the right-hand side expresses the
flow of system points with a velocity component perpendicular to the bounding surface
S(�). The minus sign is included since, with n pointing outward, V · n > 0 when system
points flow out of the volume and therefore cause a decrease in the number of system
points in the volume enclosed by S(�).

It is inconvenient to have a volume and a surface integral in the same equation, so we
convert the surface integral to a volume integral using Gauss’s theorem:

∫

S(�)

ρ V · nds =
∫

�

∇ · (ρV )dpdq (5.14)

where the divergence operator is defined as

∇ =
{

∂

∂q1
, . . . ,

∂

∂q3n
,

∂

∂p1
, . . . ,

∂

∂p3n

}
(5.15)
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Introduction of Eq. (5.14) into Eq. (5.12) then gives

∫

�

[
∂ρ

∂t
+ ∇ · (ρV )

]
dpdq = 0 (5.16)

and since this expression should be valid at any point of phase space, we must have that
the integrand is zero, that is,

∂ρ

∂t
+ ∇ · (ρV ) = 0 (5.17)

This is a continuity equation in phase space for the number density of system points.
When this equation is written out,

∂ρ

∂t
+

3n∑

i=1

[
∂(ρq̇i)

∂qi
+ ∂(ρṗi)

∂pi

]
= 0 (5.18)

and the equations for q̇i and ṗi from the Hamilton equations of motion are introduced,
we get

∂ρ

∂t
+

3n∑

i=1

[
∂ρ

∂qi

∂H
∂pi

− ∂ρ

∂pi

∂H
∂qi

]
= 0 (5.19)

which is Liouville’s equation. The terms in the square bracket are referred to as the Poisson
bracket. This is a fundamental equation in classical statistical mechanics.

Since ρ(p,q, t) is a function of p, q, and t we may write the total differential of ρ as

dρ

dt
= ∂ρ

∂t
+

3n∑

i=1

[
∂ρ

∂qi
q̇i + ∂ρ

∂pi
ṗi

]

= ∂ρ

∂t
+

3n∑

i=1

[
∂ρ

∂qi

∂H
∂pi

− ∂ρ

∂pi

∂H
∂qi

]
= 0 (5.20)

according to Hamilton’s equations of motion and Eq. (5.19). It shows that there is no
change in the density of a volume element that follows the flow of system points, just
like the flow of an incompressible fluid. That is, the flow of system points in phase space
is analogous to the flow of molecules in an incompressible fluid. Since the Hamilton
equations of motion are first-order differential equations, two trajectories will be identical
at all times if they have a common point at just one time. That is, two different trajectories
will never cross.
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5.1.1.1 Rates and rate constants

We consider in the following an equilibrium ensemble where there is no explicit time
dependence in the density, that is, ∂ρ/∂t = 0. Chemical reactions are typically a rare
event and perturbations of the equilibrium distribution are very small and consequently
neglected in the following. Equilibrium is according to the Liouville equation equivalent
to a vanishing Poisson bracket. This occurs for any density that is a function of the
Hamiltonian, ρ[H(p,q)], which includes the Boltzmann distribution.

The flow of system points is given by the continuity equation in Eq. (5.17). We
consider a volume �(r) in phase space corresponding to the reactants r, see Fig.5.1.1.
Integration of Eq. (5.17), for ∂ρ/∂t = 0, over the entire volume gives the expression

∂Nr

∂t
= −

∫

�(r)
∇ · (ρ V )dpdq = 0 (5.21)

where

Nr =
∫

�(r)
ρ(p,q)dpdq (5.22)

is the number of system points in �(r), that is, the number of systems in the ensemble
belonging to the reactant space. The integral in Eq. (5.21) may be converted to a surface
integral using Gauss’s theorem, Eq. (5.14), and we find

∫

S(�(r))
ρ V · nds = 0 (5.23)

where n is the outward unit vector normal to ds and S(�(r)) is the surface bounding
�(r). This equation merely states that equilibrium implies that the net steady-state flux
through a closed surface is zero.

Now we want to connect to the discussion of reaction rate and dividing surfaces. We
consider again the two dividing surfaces S1 and S2 in Fig.5.1.2. We can connect these
surfaces far away from the part of configuration space where a reaction takes place. No
fluxes will go through these connecting surfaces. Using this result for a closed surface,
the net flux in the reactive direction through S1 must be equal to the net flux in the
reactive direction through S2, where the flux in the direction from the reactants r to the
product pj is

Rpj,r =
∫

S(pj,r)
ρ V · nds, V · n > 0 (5.24)

where S(pj, r) is that part of the dividing surface between r and pj on which V · n > 0.
Thus, Rpj,r is the rate by which system points pass the surface in the outward direction
[4]. The quantity ρ V · n is referred to as a flux density, that is, it is the number of system
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points crossing a unit surface element per unit time. Likewise, the integral in Eq. (5.24) is
referred to as the (one-way) flux, that is, the number of system points crossing the surface
per unit time. According to Wigner’s theorem, the best estimate of the reaction rate is
obtained for the dividing surface corresponding to the smallest number of recrossings.
In practice, the dividing surfaces are often chosen as a (hyper-)plane.

It is convenient to have an expression for the rate Rpj,r in terms of the coordinates
(p,q) of the system. For that, let the partial surface S(pj, r) be defined by the equations

S(q1, . . . ,q3n) = 0, V · n > 0 (5.25)

The first relation is the equation for the surface separating regions r and pj with a
configuration space of n atoms and the second relation specifies which part of that surface
we are considering, namely the one with an outward flow of system points.

Before continuing with an evaluation of the surface integral in Eq. (5.24), let us briefly
consider the evaluation of such an integral in ordinary three-dimensional configuration
space. Figure 5.1.3 illustrates a surface F in ordinary three-dimensional Cartesian space.
Let it be given by the equation

F(x,y,z) = 0 (5.26)

where F is a known function of x,y,z, and let us determine the integral

I =
∫

F
A · ndf (5.27)

z A

n

df

F

R

y

x

dxdy

Fig. 5.1.3 Surface F in three-dimensional space.
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where A(x,y,z) is some vector quantity at the surface and n the unit vector normal to the
differential area element df . Let the projection of F on the x–y plane be R. The projection
of the differential area element df on the x–y plane is then dxdy. The angle between the
plane of the differential surface area df and the x–y plane is the same as the angle between
the normal n to df and the z-axis (with unit vector k). Then the projected area may also
be written as df n · k, so

df = dxdy
|n · k| (5.28)

where we have taken the absolute value of the dot product that may be positive or negative
and because dx, dy, and df are all positive. This expression for df may now be introduced
into Eq. (5.27) and the integral evaluated as a double integral over x and y with n given
as ∇F/|∇F |, that is, df = dxdy|∇F |/|∂F/∂z|. We use the equation defining the surface
to eliminate z from the expressions, to make them functions of x,y only.

This result is easily transferred to the multidimensional phase space. The unit vector,
normal to the differential surface element ds, is given by

n =
( ∇S

|∇S|
)

S=0
(5.29)

This is introduced into Eq. (5.24) and we find

Rpj,r =
∫

S(pj,r)
ρ (V · ∇S) |∇S|−1 ds (5.30)

We then project the surface element ds on the (p1, . . . ,p3n,q1, . . . ,q3n−1) coordinate plane.
Then, by analogy to Eq. (5.28), we have

ds = �3n
i=1 dpi �

3n−1
j=1 dqj

|∇S|
|∂S/∂q3n| (5.31)

and

Rpj,r =
∫

S(pj,r)
ρ

V · ∇S
|∂S/∂q3n| �3n

i=1 dpi �
3n−1
j=1 dqj (5.32)

The dot product in the numerator may be written, using Eqs (5.13) and (5.15) and
Hamilton’s equation of motion, as follows:

V · ∇S =
3n∑

i=1

[
∂H
∂pi

∂S
∂qi

− ∂H
∂qi

∂S
∂pi

]
=

3n∑

i=1

∂H
∂pi

∂S
∂qi

= Vn,S |∇S| (5.33)
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where the second equality holds because the surface in Eq. (5.25) is only specified in
terms of position coordinates and not momenta, and where Vn,S ≡ V · n is the system
point velocity perpendicular to the dividing surface S.

Equation (5.33) shows how Vn,S ≡ V · n can be evaluated and when this equation is
introduced into Eq. (5.32), we may finally write Eq. (5.24) in the form

Rpj,r =
∫

S(pj,r)
ρ Vn,S

|∇S|
|∂S/∂q1| �3n

i=1 dpi �
3n
j=2dqj (5.34)

where, for notational convenience, q3n has been replaced by q1 corresponding to a
different choice of projection of the surface element with integration over all coordinates
orthogonal to q1. The expression shows that the rate is determined by the component
of the system point velocity that is perpendicular to the chosen surface S, an intuitively
reasonable result. The velocity is multiplied by a probability density function ρ and a
geometric factor |∇S|/|∂S/∂q1|, and the integrand is integrated over all momenta and
coordinates q2, . . . ,q3n, where q1 is chosen such that |∂S/∂q1| �= 0.

Now in order to obtain an expression for a rate constant, we note that out of Nr
systems in the reactant space, Rpj,r systems enter per unit time the pj product region
of configuration space. This implies that the probability for having only pj product
molecules in the reaction is given by Rpj,r/Nr . This probability is valid for any set of
reactant molecules because it is assumed that there are no interactions between different
groups of reactant molecules; the total rate of formation of product molecules is found
as the product of the probability of forming product molecules and the number of
combinations of reactant molecules, in a unimolecular reaction NA and in a bimolecular
reaction NANB, where NA and NB are the number of molecules that reacts. Then we
have a relation for the rate by which product molecules are formed

dNpj/dt = (Rpj,r/Nr)NA (5.35)

for a unimolecular reaction and

dNpj/dt = (Rpj,r/Nr)NANB (5.36)

for a bimolecular reaction. The ordinary rate equation is written as d[Npj]/dt =
kpj,r[NA][NB] or dNpj/dt = kpj,rNANB/V for a bimolecular reaction, where V is the
volume of the reaction chamber, and d[Npj]/dt = kpj,r[NA] or dNpj/dt = kpj,rNA for a
unimolecular reaction. By comparing the two equations for dNpj/dt, we find the following
expression for the rate constant

kpj,r = Rpj,rV ν−1

Nr
(5.37)
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where ν = 2 for a bimolecular reaction and ν = 1 for a unimolecular reaction. Note that
in the ordinary rate equations, the empirical rate constants kpj,r are independent of the
number of molecules in the system, which is equivalent to the assumption that each
reactant (pair) reacts independently of the other reactants in the system.

Before we can determine a rate constant, we must know the density ρ on the surface
S(pj, r). In principle, we may choose any distribution function, but usually it is assumed
that all degrees of freedom are equilibrated and that the density is given by the stationary
Boltzmann distribution (see Appendix B.2), that is,

ρ(p,q) = ρ0 exp(−H(p,q)/kBT) (5.38)

where ρ0 is given such that Eq. (5.22) is satisfied

Nr = ρ0

∫

�(r)
exp(−H(p,q)/kBT)dpdq (5.39)

This leads to an equilibrium rate constant, sometimes referred to as the canonical rate
constant. Combining Eqs (5.34), (5.37), (5.38), and (5.39), and noting that both Rpj,r
and Nr can be factorized into identical contributions for each pair of reactants, we obtain
the following expression for the rate constant:

k(T) = Z−1(T)

∫

S(pj,r)
Vn,S exp(−H(p,q)/kBT)

|∇S|
|∂S/∂q1| �3n

i=1dpi �
3n
j=2dqj (5.40)

where

Z(T) = V 1−ν

∫

�(r)
exp(−H(p,q)/kBT)�3n

i=1dpidqi (5.41)

and the integrals are over the phase space of the n atoms of the reactant(s). Again,
ν = 2 for a bimolecular reaction and ν = 1 for a unimolecular reaction. The last integral
is the classical partition function for the reactant(s) when divided by h3n, that is,
Qr(T) = Z(T)V ν−1/h3n, where h is Planck’s constant (see Appendix B.2).

The optimal choice of the dividing surface S(pj, r) is, according to Wigner’s theorem,
the surface that gives the smallest rate constant k(T). In principle, it can be determined
by a variational calculation of k(T) with respect to the surface such that δk(T) = 0.

5.1.1.2 Specific dividing surfaces

The dividing surface between reactants and products is specified in configuration space.
Let us, as an example, choose an orthogonal set of coordinates and a surface S(pj, r)
perpendicular to a reaction coordinate q1, that is,

S(q) = q1 − a = 0 (5.42)
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where q1 < a and q1 > a corresponds to reactants and products, respectively (q1 will
typically be a normal-mode coordinate in the saddle-point region of the potential energy
surface, as described in subsequent chapters of this book). We then pull out the kinetic
energy for motion along q1 from the total energy; it is given by p2

1/(2μ1), where μ1
is the reduced mass associated with motion in coordinate q1 and p1 is the momentum
conjugated to q1. Then the total energy E may be written as

H(p,q) = E = p2
1

2μ1
+ ES(p2, . . . ,p3n,q1, . . . ,q3n) (5.43)

where, for q1 = a, ES is the energy associated with motion on the surface.
The geometric factor in Eq. (5.40) is seen to be equal to one with this choice of

dividing surface, and the velocity normal to the surface is

Vn,S ≡ V · n = q̇1 = p1/μ1 (5.44)

This is introduced into Eq. (5.40) and we may write

k(T) = Z−1(T)

∫∫
(p1/μ1)θ(p1/μ1)δ(q1 − a)exp(−H(p,q)/kBT)�3n

j=1dpj dqj (5.45)

where δ(x) is a delta function that ensures that the integration is over the dividing surface
only, and the Heaviside (unit) step function θ(ξ) defined by

θ(ξ) =
{

1 for ξ > 0
0 for ξ < 0

(5.46)

ensures that only contributions from reactive trajectories that start on the reactant side
and end on the product side are included. Note that integration in this expression is over
all phase-space coordinates from −∞ to +∞. After Eq. (5.43) is introduced, integration
over p1 gives

∫ ∞

−∞
(p1/μ1)θ(p1/μ1)exp[−p2

1/(2μ1kBT)]dp1 = kBT (5.47)

and we find

k(T) = kBT
Z(T)

∫

S(pj,r)
exp(−ES/kBT)�3n

j=2 dpj dqj (5.48)

The integral divided by h3n−1 is seen to be identical to a partition function QS
restricted to the surface S(pj, r), as opposed to an ordinary partition function where the
integration extends over all space.Likewise, the partition function Qr for the reactants is
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Qr(T) = Z(T)V ν−1/h3n. The expression for the bimolecular rate constant may therefore
be written in terms of the partition functions as

k(T) = kBT
h

QS

(Qr/V )
(5.49)

It is important to notice that these partition functions can describe a collection of
interacting molecules, that is, they need not be partition functions associated with isolated
molecules in the gas phase; that is, molecular partition functions. Since the partition
functions are dimensionless, it is easily seen that the expression has the proper unit for a
bimolecular rate constant.

Thus, under the assumption that motion from reactants to products can be associated
with a single coordinate (orthogonal to the dividing surface) and evaluated as a one-
way flux toward the product side, the expressions in Eqs (5.45) and (5.49) give the
(classical) rate constant. This result is equivalent to a fully classical version of what is
known as conventional transition-state theory, to be discussed in detail in subsequent
chapters.

Let us illustrate the calculation of the rate constant in more detail with a simple
example. We consider a reaction between an atom C and a diatomic molecule AB with
the formation of one product AC + B that is, the reaction

AB + C → AC + B (5.50)

and see how the formulation developed here may be used in that case. It will be straight-
forward to extend the derivations to more complicated reactions between molecules.

The rate constant for the reaction is given by the expression in Eq. (5.40), which in a
center-of-mass coordinate system has the form

k(T) = Z−1(T)

∫

S(pj,r)
Vn,S exp(−H(p,q)/kBT)

|∇S|
|∂S/∂q1| �6

i=1dpi �
6
j=2dqj (5.51)

where Z(T) from Eq. (5.41) is given by

Z(T) = V −1
∫

�(r)
exp(−H(p,q)/kBT)�6

i=1dpidqi (5.52)

qi and pi are the conjugated position and momenta coordinates, Vn,S is the velocity in
phase space normal to the dividing surface between reactants and products, and the
factor |∇S|/|∂S/∂q1| is a geometric factor that relates the surface element ds to the
coordinates qi and pi ; coordinate q1 is chosen such that the denominator in the geometric
factor is different from zero. H(p,q) is the energy of the atoms in the center-of-mass
coordinate system; that is, for the relative motion of the atoms.

We have already seen that a convenient set of coordinates for the relative motion
of the atoms is given by the so-called Jacobi coordinates in which the kinetic energy is
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diagonal with no cross terms between different momenta. A systematic way of deriving
these coordinates is given in Appendix E.1, and applied to this system we get

rAB = rB − rA

rC,AB = rC −
(

mA

mA + mB
rA + mB

mA + mB
rB

)
(5.53)

where the reduced masses associated with the motion in these coordinates are μAB =
mAmB/(mA + mB) and μC,AB = mC(mA + mB)/(mA + mB + mC), respectively.

The total energy in the center-of-mass coordinate system is then (Appendix E.1)

H = p2
AB

2μAB
+ p2

C,AB

2μC,AB
+ Epot(rAB,rC,AB)

= p2
AB

2μAB
+ p2

C,AB

2μC,AB
+ Epot(rAB, rC,AB,ξ) (5.54)

where rAB = |rAB|, and similar for rC,AB. In the last equation we have expressed the
potential energy in terms of the magnitude of the distances and the angle ξ between
the distance vectors. For a given angle, the potential energy surface may look like that
sketched in Fig.5.1.4.

The next step is to make a reasonable choice of the surface separating reactants from
products. It is clear that it should be near the saddle point, if such a point exists. We
choose the dividing surface as shown in Fig.5.1.4, that is

i

j

^

^

q2 =

q
1
 =

rAB

r C
,A

B

S

*

Fig. 5.1.4 Potential energy surface for the reaction in Eq.(5.50) as a function of the distance rC,AB and
rAB for a fixed angle between the two distance vectors. î and ĵ are unit normal vectors and the notation
q1 = rC,AB = |rC,AB| and q2 = rAB = |rAB| is introduced for notational convenience. The ∗ marks the
position of the saddle point of the potential energy surface and S is a dividing surface separating reactants
and products.
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S(q) = q2 − q1 ≡ rAB − rC,AB = 0 (5.55)

That is, ∇S = (∂S/∂q2)î + (∂S/∂q1)ĵ = î − ĵ, |∇S| = √
2, and n = ∇S/|∇S| = (î − ĵ)/

√
2.

This unit normal vector points from the reactant to the product space. The velocity
normal to the surface is then

Vn,S ≡ V · n = (q̇2 î + q̇1 ĵ) · n = (q̇2 − q̇1)/
√

2 (5.56)

Note that Vn,S ≥ 0 implies that −∞ < q̇1 ≤ 0 and 0 ≤ q̇2 < ∞. The expression for the
rate constant, Eq. (5.51), takes now the form

k(T) = Z−1(T)

∫

S(pj,r)
(q̇2 − q̇1) exp(−H(p,q)/kBT)�6

i=1dpi �
6
j=2dqj (5.57)

Since the potential energy depends only on the distances, it will be convenient to
switch to spherical coordinates. The spherical coordinates associated with rAB are rAB,
θAB, and φAB, and similar for rC,AB, that is, rC,AB, θC,AB, and φC,AB. The kinetic energy
of a particle of mass m is, in spherical coordinates, given by the standard expression

Ekin = (1/2)mṙ2 + (1/2)mr2θ̇2 + (1/2)mr2 sin2(θ)φ̇2 (5.58)

From this and the definition of the conjugated momenta

pi =
(

∂L
∂ q̇i

)
=

(
∂Ekin

∂ q̇i

)
(5.59)

the energy of the system in the center-of-mass coordinate system may be written

H = p2
rAB

2μAB
+ p2

θAB

2μABr2
AB

+ p2
φAB

2μABr2
AB sin2(θAB)

+ p2
rC,AB

2μC,AB
+ p2

θC,AB

2μC,ABr2
C,AB

+ p2
φC,AB

2μC,ABr2
C,AB sin2(θC,AB)

+ Epot(rAB, rC,AB,ξ)

(5.60)

Now q̇1 = ṙC,AB = prC,AB/μC,AB ≡ p1/μ1 and q̇2 = ṙAB = prAB/μAB ≡ p2/μ2. The
expression for the rate constant Eq. (5.57) is then

k(T) = Z−1(T)

[∫∫
(p2/μ2)δ(q1 − q2)exp(−H(p,q)/kBT)�6

j=1dpj dqj

−
∫∫

(p1/μ1)δ(q1 − q2)exp(−H(p,q)/kBT)�6
j=1dpj dqj

]
(5.61)
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where integration over the momentum p2 = prAB in the first integral is in the range
0 ≤ p2 < ∞, p1 = prC,AB in the second integral is in the range −∞ < p1 ≤ 0, and the
delta function δ(q1 − q2) restricts the integration to the dividing surface.

With the spherical coordinates, the volume elements in the integrals may be written

�6
j=1dpjdqj = dprAB dpθAB dpφAB dprC,AB dpθC,AB dpφC,AB

× drAB dθAB dφAB drC,AB dθC,AB dφC,AB
(5.62)

since we have used conjugated momenta and coordinates (see Appendix F.3). The angle
ξ is the angle between the rC,AB and rAB distance vectors. The potential energy is
therefore independent of the azimuthal angles φ and if we, for example, orient the vector
rC,AB along the z-axis, then we may identify the angle ξ with the polar angle θAB. We
may now integrate over all variables that do not enter in the potential energy, and results
are compiled in Table 5.1 for both the “surface” and “volume” integrals.

When combined with what is left in the integrals, we find the following results

Z(T) = 4π(2πμABkB T)3/2 (2πμC,ABkBT)3/2

×
∫ ∞

0
drAB r2

AB exp(−Epot(rAB)/kBT)
(5.63)

where we note that the volume integral extends over the reactant space in phase space,
where the potential energy only depends on rAB as shown in Eq. (5.63), since atom C is
supposed to be far away from molecule AB, and the final expression for the rate constant
becomes

k(T) = Z−1(T)[
√

2πμABkBT + √
2πμC,ABkBT]8π2kBT(2πμABkBT)(2πμC,ABkBT)

×
∫ π

0
dθAB

∫ ∞

0
drAB r4

AB sin(θAB) exp(−Epot(rAB, rAB,θAB)/kBT)

(5.64)
From the expression in Eq. (5.64) we may now calculate the rate constant by evaluating
the relatively simple integrals in the expression by, for example, a Monte Carlo sampling
(see Appendix J).

5.1.2 An exact classical expression for the rate constant

The approach described will, in general, not give the exact rate constant, since it is based
on a quite arbitrary choice of the dividing surface; we do not know if the choice is valid
according to the Wigner theorem, namely that the rate constant is at a minimum with
respect to variations in the choice of dividing surface. A variational determination of
the rate constant with respect to the position of the dividing surface is usually not done
directly.

Instead, classical trajectory simulations are performed to determine the fraction of
trajectories crossing the dividing surface that actually contribute to the formation of
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Table 5.1 The integrals over variables that do not enter in the potential energy.

Integration Surface integral Volume integral
over

prAB kBT
√

2πμABkBT

Range: (0,∞) (−∞,∞)

prC,AB
√

2πμC,ABkBT
√

2πμC,ABkBT

Range: (−∞,∞) (−∞,∞)

pθAB
√

2πμABkBT rAB
√

2πμABkBT rAB

Range: (−∞,∞) (−∞,∞)

pθC,AB
√

2πμC,ABkBT rC,AB
√

2πμC,ABkBT rC,AB

Range: (−∞,∞) (−∞,∞)

pφAB
√

2πμABkBT rAB sin(θAB)
√

2πμABkBT rAB sin(θAB)

Range: (−∞,∞) (−∞,∞)

pφC,AB
√

2πμC,ABkBT rC,AB sin(θC,AB)
√

2πμC,ABkBT rC,AB sin(θC,AB)

Range: (−∞,∞) (−∞,∞)

φAB 2π 2π

Range: (0,2π) (0,2π)

φC,AB 2π 2π

Range: (0,2π) (0,2π)

θC,AB 2 2

Range: (0,π) (0,π)

rC,AB Potential energy integration r3
C,AB/3 = V/(4π)

Range: – V

θAB Potential energy integration 2

Range: – (0,π)

product molecules [5,6]. If the surface is the optimal one corresponding to a minimum
value for the rate constant, all trajectories crossing the dividing surface from the reactant
side to the product side will lead to the formation of products. If not, a certain fraction
of the trajectories crossing the dividing surface will turn around, recross the surface, and
therefore not make a contribution to the formation of products.
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It would be inefficient to start trajectories at some place in the reactant part of phase
space, since many of the trajectories would never approach the region of phase space
where the dividing surface is located, but would move around in the reactant part of
phase space. Instead, all trajectories start at the dividing surface. The initial position of each
trajectory is chosen from a Boltzmann distribution proportional to exp(−Epot/kBT) at
the given temperature T , see Eq. (5.64). The initial momentum for p1 is chosen from a
distribution proportional to exp[−p2

C,AB/(2μC,ABkBT)] for −∞ < p < 0, while the other
initial momenta are chosen from equivalent distributions but with the momenta in the
range −∞ < p < ∞. A small range around the dividing surface is defined arbitrarily as
the “transition region,” beyond which we will be in the region of reactants and products,
respectively.

If a trajectory makes it to the product side, as sketched in Fig.5.1.2, then it is also
propagated backward in time from the initial position to check if it originated on the
reactant side. If so, the trajectory is marked as successful. In all other cases, that is, the
trajectories do not make it to the product side, or if so, do not originate on the reactant
side, then they are registered as unsuccessful. The fraction κ of the total number of
trajectories that are marked successful is now used to rectify the rate constant for not
being calculated with the optimal choice of the dividing surface, and the final result is
reported as

kexact(T) = κ k(T) (5.65)

κ is often referred to as a transmission coefficient.
The determination of the exact rate constant as given consists of two steps: (i) a

determination of the surface integral in Eq. (5.40), and (ii) a determination of the factor κ

in Eq. (5.65) that makes up for the fact that the chosen surface may not be the one leading
to a minimum value of the rate constant as required by Wigner’s theorem. In addition, a
determination of the partition function for the reactants is, of course, required.

An alternative formulation [3] of the expression for the rate constant that combines
steps (i) and (ii) is possible, and therefore results in an expression for the rate constant
that is independent of the chosen surface, as long as it does not exclude significant
parts of the reactant phase space. The expression also forms a convenient basis for
developing a quantum version of the theory. We begin with the reformulation of the
classical expression and continue with the quantum expression in the following section.

From the basic expression for the rate, Eq. (5.24), using Eqs (5.37), (5.38), and (5.22),
we see that the rate constant k(T) in Eq. (5.40) may also be written in the form

k(T) = Z−1(T)

∫

S(pj,r)
Vn,S exp(−H(p,q)/kBT)ds (5.66)

with Vn,S ≡ V · n, that is, a canonically averaged flux of system points across some
dividing surface S that separates reactants from products in the direction from the
reactant side of the surface to the product side. In Section 5.1.1 we showed one way
of determining the surface integral. Here, we consider an alternative way that also allows
us to combine steps (i) and (ii) in one expression.
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Now suppose, like before, that the dividing surface is given by the equation

S(q) = 0 (5.67)

in the coordinates q of the system. The surface integral in Eq. (5.66) may be expressed
as a volume integral if we include a delta function δ(S(q)) in the integrand such that we
only get contributions when the coordinates satisfy Eq. (5.67). To that end, we use the
following relation for the delta function of a multidimensional function

∫
f (x)δ(g[x])dx =

∫
f (x)/|∇g|ds (5.68)

where the n-dimensional integral on the left side is converted into an (n − 1)-dimensional
integral on the surface where g(x) = 0. In order to introduce such a delta function, we
note that the derivative of the Heaviside (unit) step function, given by Eq. (5.46), is the
delta function, that is,

dθ(ξ)

dξ
= δ(ξ) (5.69)

In addition to the delta function, we also need the stationary flux of system points across
the surface. Both of these may be introduced by defining the “flux” function F(p,q) given
in terms of the Heaviside step function as

F(p,q) ≡ d
dt

θ(S[q(t)] − 0)

= δ(S[q(t)] − 0)
dS(q(t))

dt
= δ(S[q(t)] − 0)

3n∑

i=1

(
∂S(q(t))

∂qi

)
q̇i

= δ(S[q(t)] − 0)∇S · q̇ = δ(S[q(t)] − 0)Vn,S|∇S| (5.70)

In the last line of the equation we have used bold phase notation to emphasize that the
sum in the second line of the equation is equivalent to a dot product of the gradient vector
and the velocity of system points across the surface, see also Eq. (5.33). Thus, F(p,q)

describes the flux across the dividing surface of system points starting at (p,q). Note
that |∇S| = 1 for a hyper-plane, chosen so that it is orthogonal to one of the coordinate
axes. Now combining Eqs (5.66), (5.68), and (5.70), we get the desired expression

k(T) = Z−1(T)

∫

S(pj,r)
Vn,S exp(−H(p,q)/kBT)ds

= Z−1(T)

∫
δ(S[q(t)] − 0)Vn,S|∇S| exp(−H(p,q)/kBT)dpdq

= Z−1(T)

∫
F(p,q) exp(−H(p,q)/kBT)dpdq (5.71)
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In order to emphasize the dependence on initial conditions of the classical trajectories,
we write in the following F(p0,q0) and H(p0,q0) noting that the Hamiltonian is constant
along a trajectory.

We also need a function that shows whether a given trajectory, starting on the reactant
side of the dividing surface, ends up at the product side at time t → ∞ and thereby
contributes to the formation of products. The Heaviside step function in Eq. (5.46) may
also be used to specify whether the phase-space point of a system is at the dividing surface
(S(q(t)) = 0), on the product side (say S(q(t)) > 0), or on the reactant side (S(q(t)) < 0).
We then define the function P(p0,q0) according to

P(p0,q0) ≡ lim
t→∞θ(S[q(t)]) (5.72)

where the initial condition for q(t) is written as (p0,q0) = (p(0),q(0)) in order to simplify
the notation. This function will be equal to one if products have been formed because
the coordinates will then be on the “positive side” of the dividing surface, otherwise it
will be zero. So, let us consider a set of initial coordinates (p0,q0) somewhere in the
reactant space; then the contribution of this trajectory to the formation of products may
be written as

F(p0,q0)P(p0,q0) (5.73)

We see that if the coordinates q(t) never have values such that S(q(t)) = 0, then
F(p0,q0) = 0 and the trajectory will not contribute to the formation of product. If the
trajectory has passed the dividing surface then F(p0,q0) = Vn,S �= 0, and if the trajectory
is still on the product side at t → ∞ then P(p0,q0) = 1, and the trajectory makes a
contribution to the product formation. If the trajectory has recrossed the dividing surface
and ends up on the reactant side, then P(p0,q0) = 0 and there will be no contribution
to the product formation from that trajectory, although it originally crossed the dividing
surface from the reactant to the product side.

We then need to consider a canonical weighted average of the contributions in
Eq. (5.73) of all trajectories starting on the reactant side, and crossing the dividing surface
in the direction from the reactant side to the product side. Thus, after introduction of
P(p0,q0), Eq. (5.71) takes the form

kexact(T) = V ν−1

Qr h3n

∫

�(r)
dp0dq0 F(p0,q0)P(p0,q0)exp(−H(p0,q0)/kBT) (5.74)

where ν = 2 for a bimolecular reaction (and ν = 1 for a unimolecular reaction). Note that
the integration over the momentum variable perpendicular to the surface is only from 0
to ∞, that is, in the direction from the reactant side to the product side of the dividing
surface consistent with the V · n > 0 condition in Eq. (5.24).

From the relations in Eqs (5.72) and (5.70) we see that the P(p0,q0) function may
also be expressed in terms of the flux function F(p,q), that is, we may write P(p0,q0) as
the following time integral:
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P(p0,q0) =
∫ ∞

0
dt

d
dt

θ(S[q(t)])

=
∫ ∞

0
dt F(p(t),q(t)) (5.75)

In the first line we have used θ(S[q(0)]) to be always zero since all trajectories start on the
reactant side and, in the second line, the time dependence of the flux function has been
written explicitly in order to emphasize that we need to follow the dynamics. Inserting
into Eq. (5.74) and interchanging the order of the phase space and time integrals gives

kexact(T) = V ν−1

h3n

∫ ∞

0
dt〈[F(p0,q0)][F(p(t),q(t))]〉

≡ V ν−1

h3n

∫ ∞

0
dt CF (t)

(5.76)

where CF (t) is the canonical average of the flux time-correlation function, except for the
fact that we only integrate the momentum perpendicular to the dividing surface from
zero to ∞, that is,

CF (t) = 〈[F(p0,q0)][F(p(t),q(t))]〉
= 1

Qr

∫

�(r)
dp0dq0F(p0,q0)F(p(t),q(t))exp(−H(p0,q0)/kBT) (5.77)

We see that the rate constant may be determined as the time integral of the canonical
averaged flux autocorrelation function for the flux across the dividing surface between
reactants and products. It is also clear that we only need to calculate the flux correlation
function for trajectories starting on the dividing surface, for otherwise F(p0,q0) = 0 and
there will be no contributions to the correlation function.

The observation that the rate constant may be expressed in terms of an auto-time-
correlation function of the flux, averaged over an equilibrium ensemble, has a parallel
in statistical mechanics. There it is shown, within the frame of linear response theory,
that any transport coefficients, like diffusion constants, viscosities, conductivities, and so
on, may also be expressed in terms of auto-time-correlation functions of proper chosen
quantities, averaged over an equilibrium ensemble.

Finally, it is instructive to consider the exact expression under some simplifying
assumptions. Let the dividing surface be perpendicular to the reaction coordinate, say
q1, so

S(q) = q1 = 0 (5.78)

All trajectories start at the dividing surface, so

F(p0,q0) = δ(S[q(0)]) q̇1 = δ(q1)p1/μ1 (5.79)
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where we have assumed a Cartesian coordinate system for simplicity. Let us apply
the exact expressions to the special situation where no trajectories recross the dividing
surface; then

F(p(t),q(t)) = δ(S[q(t)])dS/dt

= δ(t)
|dS/dt|

dS
dt

= δ(t) (5.80)

where we have used the one-dimensional version of Eq. (5.68)

δ(g(x)) =
∑

n

δ(x − xn)

|dg(x)/dx|x=xn

(5.81)

xn are the roots of g(x) (this is easily proven by a Taylor expansion of g(x) around xn).
Note that the assumption of no recrossings implies that there is only one root for t = 0.
Inserting these relations into Eq. (5.77) gives

CF (t) = 1
Qr

∫
dpdqδ(q1)

p1

μ1
δ(t)exp(−H(p,q)/kBT)

= kBT
Qr

δ(t)
∫

exp(−ES(p,q,q1 = 0)/kBT)�3n
i=2 dpi dqi

= kBT
Qr

QSh3n−1 δ(t) (5.82)

where the integration over p1 is as in Eq. (5.47), ES is defined in Eq. (5.43), and QS is
the partition function restricted to the surface S. So the flux time-correlation function
decays to zero immediately as opposed to a situation where recrossing takes place. Then,
according to Eq. (5.76), the rate constant is given by

k(T) = kBT
h

QS

Qr/V ν−1 (5.83)

This result is equivalent to Eq. (5.49), the classical version of what is known as conven-
tional transition-state theory, to be discussed in detail in subsequent chapters.

One final remark is that in the derivations given in this section we did not assume that
the chemical reaction took place in the gas phase. Thus, the foundation for condensed-
phase applications is also provided. Reaction dynamics in condensed phases will be
discussed in Part II of this book.

5.2 Quantum Dynamics

After having described the expression for the rate constant within the framework of
classical mechanics, we turn now to the quantum mechanical version. We consider first
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the definition of a flux operator in quantum mechanics.2 To that end, the flux density
operator (for a single particle of mass m) is defined by

ĵ = (P̂/m|R〉〈R| + |R〉〈R|P̂/m)/2 (5.84)

The expectation value of this (Hermitian) operator is

〈χ |ĵ|χ〉 = [〈χ |P̂|R〉〈R|χ〉 + 〈χ |R〉〈R|P̂|χ〉]/(2m)

=
[(

h̄
i
∇χ(R)

)�

χ(R)+ χ�(R)
h̄
i
∇χ(R)

]
/(2m)

= h̄
2im

[χ�(R)∇χ(R)− χ(R)∇χ�(R)] (5.85)

where we have used 〈R|P̂|χ〉 = (h̄/i)∇〈R|χ〉. Note that in the second line we observe
that the second term is just the complex conjugate of the first term. Equation (5.85)
is recognized as the probability current density or flux density of Eq. (4.118). The flux
operator corresponding to the probability flux through a surface separating reactants and
products is defined by

F̂ =
∫

S
ds n · ĵ (5.86)

where n = ∇S(R)/|∇S(R)| is the unit normal to the surface elements. The surface can
be described by S = {R ∈ Rn|S(R) = 0}, and we can rewrite the flux integral as a volume
integral rather than a surface integral:

F̂ =
∫

S
ds n · ĵ

=
∫

dR δ(S(R)) n · ĵ (5.87)

Note that in one dimension the “surface” is a point, whereas in two dimensions the
“surface” is a line, and so on. Inserting the expression for ĵ,

F̂ = 1
2m

∫
dR δ(S(R)) n · {|R〉〈R|P̂ + P̂|R〉〈R|}

= 1
2m

∫
dR δ(S(R)) {|R〉〈R|n · P̂ + n · P̂ |R〉〈R|} (5.88)

2 In order to fully appreciate the content of this section, a good background in quantum mechanics is
required; see also Appendix G.
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As an example, specializing to a surface of constant R1, S(R) = R1 − a = 0, implies
∂S/∂R1 = 1 and ∂S/∂Ri = 0 for i �= 1, that is, n · P̂ = P̂R1 and

F̂ = 1
2m

∫
dR δ(R1 − a) {|R〉〈R| P̂R1 + P̂R1 |R〉〈R|}

= 1
2m

∫
dR1 δ(R1 − a) {|R1〉〈R1| P̂R1 + P̂R1 |R1〉〈R1|} (5.89)

where we have used the completeness relation
∫

dR̃|R̃〉〈R̃| = 1, where R̃ refers to all
coordinates with the exception of R1 and |R̃〉 = |R2〉|R3〉.

5.2.1 One degree of freedom

Let us for simplicity consider k(T) for a one-dimensional “reaction,” where all degrees
of freedom are neglected except for one degree of freedom describing the progress of
the reaction. Within this framework, the reaction corresponds to the crossing of a one-
dimensional barrier. Starting from the exact Eq. (5.7) where QBC = 1, Qtrans is the par-
tition function of the relative one-dimensional translation motion, and Pcum = |S(E)|2,
the expression for the rate constant takes the form

k(T) = kBT
h

1
(Qtrans/L)

∫ ∞

0
|S(E)|2e−E/kBT d(E/kBT)

= 1
h

1
(Qtrans/L)

∫ ∞

0
(p/μ)T(p)e−E/kBT dp

=
∫ ∞

0
(p/μ)T(p)P(p)dp (5.90)

where E = p2/(2μ), |S(E)|2 = T(p) is the transmission probability, and P(p) is the
Boltzmann distribution,

P(p)dp = 1
h

1
(Qtrans/L)

e−E/kBT dp

= exp[−p2/(2μkBT)]√
2πμkBT

dp (5.91)

since in one dimension Qtrans = √
2πμkBTL/h. Thus, the interpretation of Eq. (5.90) for

the rate constant is quite simple: it is a thermal average of the speed times the transmission
probability. The unit of this rate constant is length/time.
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As a simple illustration, assume that T(p) = 0 for p < p0, and T(p) = 1 for p ≥ p0; then
k(T) = √

kBT/(2πμ)exp[−E0/kBT], where E0 = p2
0/(2μ). The pre-exponential factor

is just the average velocity for motion from left to right (see Eq. (6.9)).
Now, in order to introduce the flux operator of Eq. (5.89), we evaluate the expectation

value of the flux operator at a point R = a in the asymptotic region, using the stationary
scattering states in Eq. (4.140), which we now denote by 〈R|p+〉, with the asymptotic
form limR→∞〈R|p+〉 = 〈R|p〉 = C exp(ipR/h̄)/

√
2π h̄:

〈p|F̂ |p〉 = 1
2μ

∫
dR δ(R − a) {〈p|R〉〈R|P̂|p〉 + 〈p|P̂|R〉〈R|p〉}

= 1
2μ

[∫
dRδ(R − a)C�e−ipR/h̄pCeipR/h̄ + cc

]
/(2π h̄)

= (p/μ)T(p)/(2π h̄) (5.92)

since P̂|p〉 = p|p〉, and where cc denotes the complex conjugate term and T(p) = |C|2
is the transmission probability, see Section 4.2.2. Thus, this number is independent of
a; in fact, using Eq. (4.117) the flux associated with any stationary (scattering) state is
independent of the position. That is, 〈p|F̂ |p〉 = 〈p + |F̂ |p+〉. Furthermore, since |p+〉 is
an eigenstate of Ĥ with an eigenvalue that is the same as when Ĥ0 acts on |p〉, we have

e−Ĥ/kBT |p+〉 = e−p2/2μkBT |p+〉 (5.93)

Equation (5.90) can now be written in the form

k(T) = 1
(Qtrans/L)

∫ ∞

0
〈p+|F̂e−Ĥ/kBT |p+〉dp (5.94)

and we introduce a projection operator P̂+
r :

P̂+
r |p+〉 =

{ |p+〉 for p ≥ 0
0 for p < 0

(5.95)

then the integral can be extended to −∞, and

k(T) = 1
(Qtrans/L)

Tr[e−Ĥ/kBT F̂P̂+
r ] (5.96)
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where Tr is the quantum mechanical trace, that is, a sum over diagonal matrix elements,
and we have used that the trace can be rewritten in various ways:

Tr[F̂e−Ĥ/kBT P̂+
r ] = Tr[F̂ P̂+

r e−Ĥ/kBT ] = Tr[e−Ĥ/kBT F̂P̂+
r ] (5.97)

where we have used that Ĥ and P̂+
r commute, [Ĥ , P̂+

r ] = 0, which follows directly
from Ĥ |p+〉 = E|p+〉 and the definition in Eq. (5.95), and that the trace is invariant to
cyclic permutations. The resulting expression for the rate constant takes a form that
is well known from statistical mechanics, that is, a Boltzmann average of an operator,
〈F̂ P̂+

r 〉.
Stationary scattering states were used in the derivation of Eq. (5.96). Quantum

mechanical traces are, however, independent of the representation in which they are
carried out, so that there is no longer any explicit reference to these states, and any other
orthonormal set of functions can be used in the trace. The quantum mechanical traces
can then, for example, be evaluated in a coordinate basis.

The trace in Eq. (5.96) can be rewritten in various alternative and more convenient
forms [2]. Time evolution can be introduced in the expression using that Eq. (4.143) is
also valid for stationary scattering states [7]. Thus,

|p+〉 = �̂+|p〉 = lim
t→−∞eiĤt/h̄e−iĤ0t/h̄|p〉 (5.98)

where |p〉 is an eigenstate of Ĥ0. Note that the Møller operator is defined as the limit
t → −∞ of a product of time-evolution operators. This equation relates the scattering
states to the asymptotic form. Alternatively, the derivation leading to Eq. (5.96) could
have been carried out using the stationary scattering states |p−〉, given by the analogous
equation

|p−〉 = �̂−|p〉 = lim
t→∞eiĤt/h̄e−iĤ0t/h̄|p〉 (5.99)

The projection operator P̂+
r in Eq. (5.95), as well as the equivalent projection operator

P̂−
r associated with the |p−〉 states, can be written in a more explicit form, that is,

P̂±
r =

∫ ∞

0
dp|p±〉〈p±|

=
∫ ∞

−∞
dpθ(p)|p±〉〈p±|

=
∫ ∞

−∞
dpθ(p)�̂±|p〉〈p|�̂†

±

= lim
t→∓∞eiĤt/h̄P̂0

r e−iĤ t/h̄ (5.100)
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where θ(p) is Heaviside’s unit step function, defined in Eq. (5.46). Equations (5.98) and
(5.99) were used in the third line, and

P̂0
r =

∫ ∞

−∞
dpθ(p)|p〉〈p|

=
∫ ∞

−∞
dpθ(P̂)|p〉〈p|

= θ(P̂)

∫ ∞

−∞
dp|p〉〈p|

= θ(P̂) (5.101)

since for any function f of an operator defined through its power series (see Eq. (4.114)
for an example)

f (P̂)|p〉 = f (p)|p〉 (5.102)

Thus, from Eqs (5.100) and (5.101),

P̂±
r = lim

t→∓∞ P̂0
r (t) = lim

t→∓∞eiĤt/h̄θ(P̂)e−iĤ t/h̄ = lim
t→∓∞θ[P̂(t)] (5.103)

using the notation

Â(t) = eiĤt/h̄Âe−iĤ t/h̄ (5.104)

which is recognized as the time dependence of operators in the Heisenberg picture of
quantum dynamics [8]. In the Heisenberg picture all the time dependence is carried
by the operators, whereas in the Schrödinger picture that we have used so far the
operators are fixed in time and all the time dependence is carried by the states. Note
that in the Heisenberg picture the observables carry a time dependence exactly as in
classical mechanics and if [Ĥ , Â] = 0, that is, Â is a constant of motion, then Â(t) = Â is
independent of time. In the last step in Eq. (5.103), we used

f [Â(t)] = eiĤt/h̄f (Â)e−iĤ t/h̄ (5.105)

where Â(t) is given by Eq. (5.104) and f is again any function of an operator defined
through its (Taylor) power series. The projection operators in Eq. (5.103) project onto
states that in the infinite past (future) had (have) positive translational momenta.

The trace in Eq. (5.96) can now be rewritten in various alternative forms; we aim
in particular at a form that contains two flux operators. We note that Tr[e−Ĥ/kBT F̂P̂−

r ]

= Tr[F̂ P̂−
r e−Ĥ/kBT ] = Tr[F̂e−Ĥ/2kBT P̂−

r e−Ĥ/2kBT ], where P̂+
r was replaced by P̂−

r , and
in the last step it was used that the Hamiltonian and the projection operator commute.
Then, using Eq. (5.103), Eq. (5.96) takes the form
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k(T) = 1
(Qtrans/L)

lim
t→∞Tr[F̂eiĤt�c /h̄θ(P̂)e−iĤ tc/h̄] (5.106)

where tc = t − ih̄/(2kBT) is a complex time.
We consider the trace at t = 0, Tr[F̂e−Ĥ/2kBTθ(P̂)e−Ĥ/2kBT ] ≡ Tr[F̂Â], which defines

the operator Â. It is noted that both the flux operator F̂ and the Â operator are
Hermitian operators, which implies that Tr[F̂Â]� = Tr[(F̂Â)†] = Tr[Â†F̂†] = Tr[ÂF̂] =
Tr[F̂Â], that is, the trace must always be real-valued. Furthermore, if the trace is evaluated
in a basis of real-valued functions, then the trace must be equal to zero, since the operators
contain the momentum operator, which contains the imaginary unit i = √−1. Using this
result, Eq. (5.106) can be written in the form

k(T) = 1
(Qtrans/L)

Tr[F̂eiĤt�c /h̄θ(P̂)e−iĤ tc/h̄]|t→∞
t=0

= 1
(Qtrans/L)

∫ ∞

0
dt CF (t) (5.107)

where

CF (t) = d
dt

Tr[F̂eiĤt�c /h̄θ(P̂)e−iĤ tc/h̄]

= Tr
[

F̂
d
dt

{
eiĤt�c /h̄θ(P̂)e−iĤ tc/h̄

}]

= i
h̄

Tr[F̂eiĤt�c /h̄[Ĥ ,θ(P̂)]e−iĤ tc/h̄] (5.108)

and in the last line it was used that the time derivative of an operator in the Heisenberg
picture, see Eq. (5.104), is given by

dÂ(t)
dt

= i
h̄

[Ĥ(t), Â(t)]

= i
h̄

exp(iĤ t/h̄)[Ĥ , Â]exp(−iĤ t/h̄) (5.109)

(note the similarity with Eq. (4.120) in the Schrödinger picture). We will now show
that the commutator [Ĥ ,θ(P̂)] is related to the flux operator F̂ . It turns out to be
useful to replace θ(P̂) by θ(R − a) and it can, indeed, be shown that the projection
operator P̂−

r in Eq. (5.103) is equivalent to the projection operator limt→∞ exp(iĤ t/h̄)

θ(R − a)exp(−iĤ t/h̄) [2] (see Appendix G); that is, the commutator can be replaced by
[Ĥ ,θ(R − a)], and

[Ĥ ,θ(R − a)] =
[

P̂2

2μ
,θ(R − a)

]

= 1
2μ

{
P̂ [P̂,θ(R − a)] + [P̂,θ(R − a)] P̂

}
(5.110)
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where the commutator [P̂,θ(R − a)] = h̄/i[∂/∂R,θ(R − a)] = (h̄/i)δ(R − a), using
d[θ(x − a)]/dx = δ(x − a). Then,

[Ĥ ,θ(R − a)] = h̄
2iμ

[
P̂δ(R − a)+ δ(R − a)P̂

]
= h̄

i
F̂ (5.111)

where the coordinate representation of Eq. (5.89), 〈R|F̂ |R〉, was used in order to identify
the flux operator.

Finally, combining Eqs (5.108) and (5.111), the expression for the thermal rate
constant can be written in the form

k(T) = 1
(Qtrans/L)

∫ ∞

0
dt CF (t) (5.112)

where

CF (t) = Tr[F̂eiĤt�c /h̄F̂ e−iĤ tc/h̄] (5.113)

tc = t − ih̄/(2kBT) and CF (t) is referred to as the flux autocorrelation function or simply
the flux correlation function. The expression involves a time evolution of quantum
operators over infinite time. Often, only short-time evolution near the dividing surface is
required in order to get a converged result; this is a key point that can make this expression
convenient from a computational point of view.

The form of the expressions in Eqs (5.96) and (5.112) is closely related to the classical
expressions for the rate constant given in Section 5.1. The quantum mechanical trace
becomes in classical statistical mechanics an integral over phase space [9] and the
Heisenberg operators become the corresponding classical (time-dependent) functions
of coordinates and momenta [8]. Thus, Eq. (5.76) is the classical version of Eq. (5.112).
Furthermore, note that Eq. (5.96) is related to Eq. (5.45), that is, the relevant classical
(one-way) flux through a, at a given time, becomes δ(R − a)(p/μ)θ(p/μ), exactly as in
Eq. (5.45).

Example 5.1 The flux correlation function of a free particle

To give an idea of the form of the flux autocorrelation function, we consider the dynamics
of a free particle with a constant potential energy of E0, Ĥ = P̂2/(2m) + E0, which to a first
approximation can describe the dynamics along a relevant reaction coordinate in the barrier
region of the potential surface. The flux correlation function (5.113) can, in the coordinate
representation, be written in the form [2] (see Appendix G)

CF (t) =
(

h̄
2m

)2
(

∂2

∂x∂x′ |〈x′|Û (tc)|x〉|2 − 4

∣∣∣∣
∂

∂x′ 〈x′|Û (tc)|x〉
∣∣∣∣
2
)

x=x′=0

continued
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Example 5.1 continued

where Û (tc) = exp(−iĤ tc/h̄). Then

〈x′|Û (tc)|x〉 =
∫

dp〈x′|Û (tc)|p〉〈p|x〉

=
∫

dpe−ip2tc/2mh̄〈x′|p〉〈p|x〉e−iE0tc/h̄

= 1
2π h̄

∫
dpe−ip2tc/2mh̄eip(x′−x)/h̄e−iE0tc/h̄

=
(

m
2π h̄itc

)1/2
ei(x−x′)2m/2h̄tc e−iE0tc/h̄

where tc = t − ih̄/(2kBT). The relevant derivatives become

∂2

∂x∂x′ |〈x′|Û (tc)|x〉|2x=x′=0 = m2

2π h̄kBT
1

(t2 + [h̄/(2kBT)]2)3/2 e−E0/kBT

∣∣∣∣
∂

∂x′ 〈x′|Û (tc)|x〉
∣∣∣∣
2

x=x′=0
= 0

Then

CF (t) =
(

h̄
2m

)2
(

∂2

∂x∂x′ |〈x′|Û (tc)|x〉|2 − 4

∣∣∣∣
∂

∂x′ 〈x′|Û (tc)|x〉
∣∣∣∣
2
)

x=x′=0

= kBT
h

[h̄/(2kBT)]2

(t2 + [h̄/(2kBT)]2)3/2 e−E0/kBT (5.114)

Figure 5.2.1 shows CF (t) at T = 300K; we note that h̄/(kBT) ∼ 25fs and the correlation
function has basically decayed to zero within this time. The rate constant corresponding to
the flux correlation function in Eq. (5.114) can be evaluated analytically. Thus,

k(T) = 1
Qr

∫ ∞
0

dt CF (t)

= kBT
h

e−E0/kBT 1
Qr

∫ ∞
0

dt
[h̄/(2kBT)]2

(t2 + [h̄/(2kBT)]2)3/2

= kBT
h

e−E0/kBT /Qr

We note that in one dimension Qr = Qtrans/L = √
2πμkBT/h and (kBT/h)/Qr = √

kBT/2πμ,
that is, k(T) takes exactly the same form as in the result discussed in the model that follows
Eq. (5.90) where transmission/reaction occurs above a threshold energy.

When the dynamics in a parabolic barrier is considered (see Problem 5.4) the rate
constant takes the same form as for the free particle dynamics, except for a factor
κ(T) = h̄ωb/(2kBT)/sin[h̄ωb/(2kBT)]. This factor is one in the high-temperature limit
and increases as the temperature is lowered. It is related to quantum mechanical tunneling
as discussed in more detail in Chapter 6.



Quantum Dynamics 155

0.1

0.08

0.06

0.04

0.02

0 10 20 30 40
Time (fs)

C
F
(
t)

/(
ex

p[
–E

0/
k

B
T

]k
B
T

/h
)

50 60 70 80

Fig. 5.2.1 The flux autocorrelation function for a free particle at T = 300K.

5.2.2 The general case

The derivation in the previous subsection was based on the exact quantum mechanical
expression for the rate constant given in Eq. (5.7), and it can be generalized to any
number of degrees of freedom [1–3]. Consider the reaction A + BC(n) → AB(m)+ C.
As in Eq. (5.92) we first evaluate the flux in the product region. We use the asymptotic
form of the stationary scattering state (originating from A + BC(n)) in the product region
where the distance between AB(m) and C is large (R → ∞). When, for simplicity, the
reaction is constrained to collinear geometry, we have

lim
R→∞〈R, r|E,n+〉 =

∑

m

eikmR
√

2π h̄
φm

AB(r)

√
knμAB,C

kmμA,BC
Snm(E) (5.115)

where kn = √
2μA,BC(E − En)/h̄ and km = √

2μAB,C(E − Em)/h̄. Using Eq. (5.89), the
expectation value of the flux operator becomes

〈E,n+|F̂ |E,n+〉
= 1

2μAB,C

∫∫
dRdr δ(R − a)

{
〈E,n+|R, r〉〈R, r|P̂R|E,n+〉 + cc

}

= 1
2μAB,C

∫∫
dRdr δ(R − a)

{
∑

m′

e−ikm′R
√

2π h̄
φm′

AB(r)

√
knμAB,C

km′μA,BC
S∗

nm′(E)

×
∑

m

h̄km
eikmR
√

2π h̄
φm

AB(r)

√
knμAB,C

kmμA,BC
Snm(E)+ cc

}

= (h̄kn/μA,BC)
∑

m

|Snm(E)|2/(2π h̄) (5.116)
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where we used the orthonormality of the vibrational wave functions, that is, 〈φm
AB|φm′

AB〉 =
δmm′ , and cc denotes the complex conjugate term. This result generalizes Eq. (5.92), and
we can continue rewriting the expressions exactly as in the previous section. In this
section we simply summarize the final results.

Again, the quantum mechanical expressions can be written in a form that is analogous
to the classical expressions for the rate constant given in Section 5.1, remembering that
a classical phase-space integral is equivalent to a quantum mechanical trace [9], and
classical functions of coordinates and momenta are equivalent to the corresponding
quantum mechanical operators.

Equation (5.96) is valid in general, and analogous to the classical expression in
Eq. (5.74),

k(T) = 1
Qr V 1−ν

Tr[e−Ĥ/kBT F̂P̂r] (5.117)

where Qr is the partition function of the reactants, and ν = 2 and 1 for a bimolecular and
a unimolecular reaction, respectively. The flux operator F̂ is given by

F̂ = 1
2

[
δ(S[q])

∑

i

∂S(q)

∂qi

p̂i

mi
+

∑

i

p̂i

mi

∂S(q)

∂qi
δ(S[q])

]
(5.118)

a form that is analogous to Eq. (5.88). Again, there is a close analogy to the correspond-
ing classical expression given in Eq. (5.70). The quantum operator corresponds to a
symmetrized transcription of the classical expression. Thus, the Hermitian quantum
operator corresponding to a product of two classical functions AB = (AB + BA)/2 is
(ÂB̂ + B̂Â)/2, where Â and B̂ are Hermitian operators. Hence the factor of 1/2. The
projection operator P̂r = limt→∞ exp(iĤ t/h̄)θ(S[q])exp(−iĤ t/h̄) is analogous to the
expression discussed in Section 5.2.1 and, using Eq. (5.105), to the classical expression
in Eq. (5.72).

The general result analogous to Eq. (5.112) and to the classical results in Eqs (5.76)
and (5.77) is

k(T) = 1
QrV 1−ν

∫ ∞

0
dt CF (t) (5.119)

where the time-correlation function for the flux operator is written in the form

CF (t) = Tr[e−Ĥ/kBT F̂eiĤt/h̄F̂ e−iĤ t/h̄]

= Tr[e−Ĥ/kBT F̂ F̂(t)] (5.120)

Qr is the partition function of the reactants, and ν = 2 and 1 for a bimolecular and a
unimolecular reaction, respectively. Note that in the flux autocorrelation function, the
position of the Boltzmann operator differs from the form given in Eq. (5.113).
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Full numerical evaluations of CF (t) for simple “direct” reactions give correlation
functions that decay to zero within ∼ 30fs at T = 300K [3]. For the reaction Cl + H2 →
HCl + H, the correlation function is even quantitatively quite similar to the free-particle
result in Eq. (5.114) and Fig.5.2.1, whereas in the reaction O + HCl → OH + Cl the
function CF (t) takes negative values in the time interval t ∼ 10–30fs, which is a signature
of recrossings of the dividing surface [3].

Further reading/references

[1] W.H. Miller, J. Chem. Phys. 61, 1823 (1974).
[2] W.H. Miller, S.D. Schwartz, and J.W. Tromp, J. Chem. Phys. 79, 4889 (1983).
[3] W.H. Miller, J. Phys. Chem. 102, 793 (1998).
[4] J.C. Keck, Adv. Chem. Phys. 13, 85 (1967).
[5] R.L. Jaffe, J.M. Henry, and J.B. Anderson, J. Chem. Phys. 59, 1128 (1973).
[6] J.B. Anderson, Adv. Chem. Phys. 91, 381 (1995).
[7] J.R. Taylor, Scattering theory (Wiley, 1972).
[8] E. Merzbacher, Quantum mechanics, second edition (Addison, Wesley, 1980).
[9] D.A. McQuarrie, Statistical mechanics (University Science Books, 2000).
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PROBLEMS

5.1 A dividing surface is specified by the equation S(q) = 0. Assuming that the surfaces
are linear functions of the variables, describe dividing “surfaces” in one-, two-, and
three-dimensional configuration spaces.

5.2 Consider Eq. (5.45) for a unimolecular reaction in a one-dimensional configuration
space of a free particle with Hamiltonian H = p2

x/(2m). For a reaction coordinate
restricted to the interval x ∈ [−l/2, l/2], show that the rate constant becomes k(T) =√

kBT/(2πm)/l.

5.3 Derive an expression for the classical rate constant similar to the expressions in
Eqs (5.63) and (5.64) but now for a dividing surface perpendicular to the rC,AB-
coordinate, that is, S(q) = q1 − a ≡ rC,AB − a = 0.

5.4 The Hamiltonian of a particle moving in a parabolic barrier of height E0 can
be expressed as a harmonic oscillator with imaginary frequency: Ĥ = P̂2/(2m)+
(1/2)mω2x2 + E0 = P̂2/(2m)− (1/2)mω2

b x2 + E0, where ω = iωb. This problem
concerns the quantum flux correlation function and rate constant of a particle in
such a parabolic potential.

The time propagator for the harmonic oscillator is given by the following
expression (see, e.g., [8] p. 164)

〈x′|Û (t)|x〉 =
√

mω

2π ih̄sinωt
exp

[(
imω

2h̄sinωt

)
{(x′2 + x2)cosωt − 2x′x}− iE0t/h̄

]
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(a) Determine the relevant derivatives of 〈x′|Û (tc)|x〉 and |〈x′|Û (tc)|x〉|2, where
tc = t − ih̄/(2kBT), and show that the flux correlation function is given by

CF (t) = κ(T)
kBT

h
e−E0/kBT sin2(u)ωb cosh(ωbt)

[sinh2(ωbt)+ sin2(u)]3/2

where κ(T) = u/sinu, with u = h̄ωb/(2kBT).

(b) Show that the rate constant is given by

k(T) = κ(T)
kBT

h
e−E0/kBT/Qr

The following integral is useful:
∫

a2/(x2 + a2)3/2dx = x/
√

x2 + a2, where a is a
constant.

Note that for a parabolic barrier, the Boltzmann distribution diverges at low
temperatures.



6

Bimolecular Reactions,
Transition-State Theory

Key ideas and results

In this chapter, we consider an approximate approach to the calculation of rate
constants for bimolecular reactions. It is assumed that the progress of the reaction
corresponds to a direct reaction; the ideal case is reactions with a single saddle point
and no wells along the reaction path. In the so-called transition-state theory, one
only considers the saddle-point region of the potential energy surface and defines a
reaction coordinate that describes the progress of the reaction. The assumptions are
now that motion along this coordinate can be treated by classical mechanics, and that
this motion always leads to products without “recrossings” of the saddle point from
the product side to the reactant side. The results are as follows.

• The expression for the thermal rate constant k(T) is given as a product of two
functions: an exponential function and a prefactor. The prefactor contains the
partition function for the reaction complex, the “supermolecule,” at the saddle
point (with the reaction coordinate omitted) and partition functions for the
reactants. The second factor is an exponential with an argument that contains the
energy difference between the zero-point energy level of the supermolecule at
the saddle point and of the reactants.

• Corrections to transition-state theory due to quantum tunneling along the reaction
coordinate give a thermal rate constant that is larger than the prediction obtained
from classical transition-state theory.

In Chapter 5, the direct evaluation of k(T) via the reactive flux through a dividing
surface on the potential energy surface was described. As a continuation of that approach,
we consider in this chapter an—approximate—approach, the so-called transition-state
theory (TST).1 We have already briefly touched upon this approximation, based on

1 Also referred to as “activated-complex theory.”

Theories of Molecular Reaction Dynamics. Second Edition. Niels E. Henriksen and Flemming Y. Hansen, Oxford University
Press 2019. © Niels E. Henriksen and Flemming Y. Hansen. DOI: 10.1093/oso/9780198805014.001.0001
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an evaluation of a stationary one-way flux, which implies that the rate constant can be
obtained without any explicit consideration of the reaction dynamics. In this chapter, we
elaborate on this important approach, in a form that takes some quantum effects into
account.

As a first approximation, we can assume that a chemical reaction proceeds along the
minimum-energy path, that is, along configurations where the potential energy locally is
at a minimum. For potential energy surfaces with a saddle point, the minimum-energy
path goes through this point, and the saddle point, separating reactants from products,
is the energy “bottleneck” for the reaction. In transition-state theory, the computation
of the thermal rate constant is reduced to the computation of partition functions, and
it requires only a knowledge of the potential energy surface in the saddle-point region;
the saddle-point energy E0 and the energies of the internal states at the transition-state
configuration are needed.

The intermediate nuclear configurations between reactants and products are all
referred to as transition states for the reaction. The collection of atoms at the saddle point
form a “supermolecule,” referred to as an activated complex, and their state is equivalent
to one particular transition state for the reaction. This transition state obviously has a
special status among all the transition states, and when one just refers to the transition
state of a chemical reaction, it is tacitly assumed that one refers to the activated complex.
The symbol ‡ is used to represent activated complexes.2

The saddle point is a stationary point on a multidimensional potential energy surface.
It is a stable point in all dimensions except one, where the second-order derivative of
the potential is negative; see Fig. 6.0.1. This degree of freedom is the reaction coordinate
(note that this definition coincides with the definition in Chapter 3). In Appendix F, we
show more formally that a multidimensional system close to a stationary point can be
described as a set of uncoupled harmonic oscillators, expressed in terms of the so-called
(mass-scaled) normal-mode coordinates Qi . Thus, close to the saddle point, the potential
(electronic) energy can expanded as

(AB)++

Fig. 6.0.1 The saddle-point region of the potential energy surface.

2 Note that in this context the word “complex” does not imply an entity that has a chemically significant
lifetime. The basic approximations in the theory are only valid for direct reactions.
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E(Q1,Q2, . . .) = Ecl +
∑

i

(1/2)ω2
i Q2

i (6.1)

where Ecl is the classical barrier height of the reaction, that is, the electronic energy
at the saddle-point relative to the energy of the reactants and ω2

i > 0 for all i except
for i = k, where ω2

k < 0 and Qk is the reaction coordinate. Since ω2
k < 0, the frequency

associated with the reaction coordinate is imaginary, ωk = iω∗
k , that is, ω2

k = −(ω∗
k)

2 and
the associated potential takes the form

V (Qk) = Ecl − (1/2)(ω∗
k)2Q2

k (6.2)

where ω∗
k is the magnitude of the imaginary frequency. This is a parabolic barrier.

The complete solution to the classical motion in a quadratic potential can be written
in the form Qi(t) = Qi(0)cos(ωi t)+ Pi(0)sin(ωi t)/ωi , where Qi(0) and Pi(0) are the
initial t = 0 values for position and momentum. For ωi real, we obtain the well-known
oscillatory motion. For an imaginary frequency ωk = iω∗

k , we obtain by substitution in
the general solution,

Qk(t) = Qk(0)cosh(ω∗
kt)+ Pk(0)sinh(ω∗

kt)/ω∗
k (6.3)

Using the properties of the hyperbolic functions, we get unbound non-oscillatory motion
in the reaction coordinate. We have, for example, Qk(t) → ∞ for t → ∞, when Qk(0) ≥ 0
and Pk(0) > 0. Note that according to Eq. (4.121), an identical result for the expectation
value of the position is found in quantum mechanics.

Example 6.1 Normal-mode frequencies at a saddle point

We consider a linear triatomic molecule XYZ. As shown in Appendix F, close to a stationary
point, we can write the potential energy surface in the form

E(�RXY,�RYZ) = (1/2)f1(�RXY)2 + (1/2)f2(�RYZ)2 + f12�RXY�RYZ

where �RXY = qY − qX − b1, �RYZ = qZ − qY − b2, qX,qY,qZ are the positions of the three
atoms, and b1 and b2 are the (stable or unstable) equilibrium distances. The mass-weighted
force constant matrix, Eq. (F.4), takes the form

F =
⎡

⎣
f1/mX ( f12 − f1)/

√
mXmY −f12/

√
mXmZ

( f12 − f1)/
√

mXmY ( f1 + f2 − 2f12)/mY ( f12 − f2)/
√

mYmZ
−f12/

√
mXmZ ( f12 − f2)/

√
mYmZ f2/mZ

⎤

⎦

The eigenvalues of this matrix are the squared normal-mode frequencies, and they are: ω2 = 0
(corresponding to free translational motion), and

ω2 = (B ±
√

B2 + 4C)/2

continued
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Example 6.1 continued

where

B = f1/mX + f2/mZ + ( f1 + f2 − 2f12)/mY

C = ( f 2
12 − f1f2)

M
mXmYmZ

and M = mX + mY + mZ is the total mass.
From this expression for the frequencies we observe the following:

(i) For B > 0 and C ≤ 0 (and B2 ≥ −4C), that is, f 2
12 ≤ f1f2, then

√
B2 + 4C ≤ B. In this case

we obtain two real frequencies. This corresponds to a stationary point associated with a
minimum corresponding to a stable molecule.

(ii) For B > 0 and C > 0, that is, f 2
12 > f1f2, then

√
B2 + 4C > B. In this case we obtain one

real and one imaginary frequency, since ω2 = (B − √
B2 + 4C)/2 < 0 implies that ω is

imaginary, that is, ω = 2π iν∗. This corresponds to a stationary point associated with a
saddle point, as illustrated in Fig. 6.0.1.

The equation for the frequencies takes a particular simple form when mX = mY = mZ ≡ m and
f1 = f2 ≡ f, say corresponding to the activated complex (HHH)‡. Then the two frequencies
become ω2 = ( f + f12)/m, and ω2 = 3( f − f12)/m < 0 for f 2

12 > f 2.

In conventional transition-state theory, we place the dividing surface between reactants
and products at the saddle point, perpendicular to the minimum-energy path, and focus
our attention on the activated complex. That is, we write the reaction scheme in the form

A + B −→ (AB)‡ −→ products (6.4)

Different versions of transition-state theory differ in the description of the barrier,
Eq. (6.2), and the dynamics of the barrier crossing. The basic approximations in the
conventional theory are as follows.

• In the activated complex, motion along the reaction coordinate can be separated
from the other degrees of freedom (exact within the framework of a normal-mode
description) and treated classically as a free translation corresponding to a constant
potential.

• The activated complex is a configuration of no return: when the system has reached
this configuration, it will necessarily proceed to the product side, that is, recrossings
are neglected (exact within the framework of a normal-mode description).

The reactants as well as the activated complex are assumed to be distributed among
their states in accordance with the Boltzmann distribution. This also implies (see
Appendix B.1.2) that the concentration of the activated complex molecules is related
to concentrations of the reactants by a thermal equilibrium constant.
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6.1 Standard Derivation

Transition-state theory was developed in the 1930s. The derivation presented in this
section closely follows the original derivation given by H. Eyring [1]. From Eq. (6.4), the
reaction rate may be given by the rate of disappearance of A or, equivalently, by the rate
at which activated complexes (AB)‡ pass over the barrier, that is, the flow through the
saddle-point region in the direction of the product side.

We use the assumption of equilibrium between the reactants and activated complex
in Eq. (6.4) to relate the concentrations according to

Kc(T) = [(AB)‡]
[A][B]

= (Q(AB)‡/V )

(QA/V )(QB/V )
e−E0/kBT (6.5)

where we have used the statistical mechanical expression for the equilibrium constant
in the gas phase (Eq. (B.31) of Appendix B.1.2), E0 is the difference in zero-point
energies between the activated complex (AB)‡ and the reactants A + B, and the associated
partition functions are evaluated with respect to these zero-point energies. Note that this
expression for the equilibrium constant is independent of the volume V , as it should be,
since the molecular partition functions Q are of the form f (T)V .

The reaction coordinate is found by a normal-mode analysis at the saddle point
and is therefore separable from the other degrees of freedom in the activated complex;
the motion in this coordinate is treated as that of a free particle. Then, according to
Eq. (B.13), at sufficiently high temperatures, we have

Q(AB)‡ = (2πmkBT)1/2l
h

Q‡
(AB)‡ (6.6)

where m is the mass associated with the reaction coordinate, l is the length of a one-
dimensional box that comprises the activated complex (the actual value of l will later be
seen to be immaterial), and Q‡

(AB)‡ is the partition function for the activated complex

with all degrees of freedom except for the reaction coordinate.3 This is used in Eq. (6.5),
and we find

[(AB)‡] = (2πmkBT)1/2l
h

(Q‡
(AB)‡/V )

(QA/V )(QB/V )
e−E0/kBT [A][B] (6.7)

3 Note that the partition function associated with the reaction coordinate is identical to the expres-
sion obtained from classical statistical mechanics, Qtrans = (1/h)

∫ l/2
−l/2

∫ ∞
−∞ exp(−H/kBT)dpxdx, where

H = p2
x/(2m). Furthermore, with an atomic-scale value of l, Eq. (6.6) might not give an accurate value for

the partition function at relevant temperatures.
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Once an activated complex has been formed, it is assumed that the dynamics in the
reaction coordinate is always in the direction of the product side (say to the “right”),
since recrossing, that is, motion toward the reactant side, is neglected in the theory.

The average velocity for the motion from the left to the right over the barrier is
then evaluated. From the one-dimensional Maxwell–Boltzmann distribution of velocities,
Eq. (2.26),

f1(vx)dvx =
(

m
2πkBT

)1/2

exp
{
− mv2

x

2kBT

}
dvx (6.8)

we get4

〈vx〉+ =
∫ ∞

0
vxf1(vx)dvx

/∫ ∞

−∞
f1(vx)dvx

=
(

kBT
2πm

)1/2

(6.9)

Note that the average velocity for motion in both directions is zero, since the probability
distribution is symmetrical with respect to the direction of the motion.

The transition region around the saddle point has the width l and for motion in a
constant potential, the time for the passage of one complex will then be l/〈vx〉+ (i.e., the
“lifetime” of the complex, the time it takes to change from reactants to products). So
the number of passages per second will therefore be the reciprocal of that time, that
is, the frequency with which the complexes pass over the barrier is 〈vx〉+/l (equivalent
to a rate constant for the decay of the complex, see Problem 5.2). In order to get the
rate of the reaction that is defined as a change in concentration per unit time, [(AB)‡] is
multiplied by this frequency. Thus,

rate = [(AB)‡]〈vx〉+/l (6.10)

and the rate constant is identified, after substitution of Eq. (6.7), to be

kTST(T) = 〈vx〉+
l

(2πmkBT)1/2l
h

(Q‡
(AB)‡/V )

(QA/V )(QB/V )
e−E0/kBT

= kBT
h

(Q‡
(AB)‡/V )

(QA/V )(QB/V )
e−E0/kBT

(6.11)

4 We could have restricted our discussion to positive velocities. The average velocity would then be twice as
big; however, the translational partition function would then take only half of the value given in Eq. (6.6). That
is, the final result is unchanged.
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Notice again that Q‡
(AB)‡ is the partition function for the activated complex except for the

one degree of freedom corresponding to the reaction coordinate. That is, for a non-linear
activated complex consisting of N atoms, the partition function incorporates 3N − 7
vibrational degrees of freedom. The expression for the rate constant5 has the same form
as the Arrhenius equation; note, however, that in Eq. (6.11) the pre-exponential factor is
temperature dependent. The first factor (kBT/h) has the units of frequency, and since
the partition functions are dimensionless the rate constant has the proper units for a
bimolecular rate constant, that is, volume/time.

The partition functions can be factorized into contributions corresponding to the
various forms of motion when they are uncoupled (see Appendix B.1), and it is
advantageous to rewrite the expression for the rate constant in terms of partition function
ratios for the translational, rotational, vibrational, and electronic motion:

kTST(T) = kBT
h

(
(Q‡/V )

(QA/V )(QB/V )

)

trans

×
(

Q‡

QAQB

)

rot

(
Q‡

QAQB

)

vib

(
Q‡

QAQB

)

elec

e−E0/kBT

(6.12)

The ratio involving the translational partition functions is easily evaluated:

(
(Q‡/V )

(QA/V )(QB/V )

)

trans

= h3

(2πμkBT)3/2 (6.13)

where μ = mAmB/(mA + mB) is the reduced mass of the reactants. This result is identical
to the translation partition function [(Qtrans/V )−1] of the relative motion of the reactants.
The rotational partition functions are easily determined once the geometry, that is, the
internuclear distances, of the activated complex is known. In practice, the vibrational
part of the partition function for the activated complex is evaluated following a normal-
mode analysis of the activated complex. The vibrational part of the partition functions for
polyatomic reactants is, likewise, obtained by a normal-mode description of the reactants.
Some applications of transition-state theory are presented in Section 6.5.

When the temperature dependence of the pre-exponential factor in Eq. (6.12) is
analyzed (see Problem 6.6), one finds

kTST(T) = Z(T)e−E0/kBT

∝ Tβe−E0/kBT, β ∈ {rational numbers} (6.14)

5 We will encounter alternative derivations of this expression in the following sections.
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in the limit where the vibrational energy spacings of the reactants and the activated
complex are either  kBT or � kBT . Equation (6.14) gives a representation of the tem-
perature dependence that is superior to the Arrhenius equation where the temperature
dependence of the pre-exponential factor is neglected.

It is important to notice that the energy threshold that enters the expression in
Eq. (6.11) is E0 and not the classical threshold Ecl; see Fig. 6.1.1. Within the normal-
mode description (Appendix F, Eq. (F.15)) that is, the local harmonic approximations to
the potential energy surface around the saddle point and around the potential well(s) of
the reactants, respectively, we have (for non-linear molecules)

E0 = Ecl +
3N−7∑

i=1

h̄ω
‡
i /2 −

3(NA+NB)−12∑

i=1

h̄ωi/2 (6.15)

where ω
‡
i and ωi are vibrational frequencies associated with the activated complex (AB)‡

and the reactants (A,B), respectively, and the summations run over all vibrational degrees
of freedom giving the associated total vibrational zero-point energies. The classical
threshold energy, Ecl, which we also refer to as the classical barrier height, is the energy
that can be inferred directly from the potential energy surface.

Let us end this section by a very important observation about the expression for the
rate constant in Eq. (6.11): the exponential dependence on E0 in Eq. (6.11) implies
that the rate constant is very sensitive to small changes in E0. For example, assume
that an energy δE is added to E0 (say, corresponding to a numerical error in the
determination of the electronic energy). The rate constant will then be multiplied by
the factor exp(−δE/(kBT)). If |δE| = kBT , an error corresponding to the factor 2.7 will
be introduced. At T = 298 K, kBT = 4.1 × 10−21 J = 0.026 eV ∼ 2.5 kJ/mol. Thus, the

E0

Zero-point energy
level of A + B 

Zero-point energy
level of (AB)++

+
(AB)+

Fig. 6.1.1 An illustration of the barrier height E0. The zero-point energy levels of the activated complex
and the reactants are indicated by solid lines. Note that the zero-point energy in the activated complex
comes from vibrational degrees of freedom orthogonal to the reaction coordinate. In the classical barrier
height Ecl, vibrational zero-point energies are not included.
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potential energy surface must be highly accurate in order to provide the basis for an
accurate determination of a macroscopic rate constant k(T).

6.2 A Dynamical Correction Factor

Various alternative formulations of transition-state theory have been presented [2–4].
The treatment given next [5] is reminiscent of previous derivations (see especially [3,6])
but differs in some details from those derivations.

In this section, we present a derivation of the conventional transition-state theory
expression for the rate constant, Eq. (6.11), that avoids the artificial constructs of the
standard derivation, in particular the one-dimensional box of length l. Furthermore,
this derivation will also show how we can modify the basic assumption concerning the
classical free motion in the reaction coordinate.

The rate constant predicted by conventional transition-state theory can turn out to
be too small, compared to experimental data, when quantum tunneling plays a role.
We would like to correct for this deviation, in a simple fashion. That is, to keep the
basic theoretical framework of conventional transition-state theory, and only modify
the assumption concerning the motion in the reaction coordinate. A key assumption
in conventional transition-state theory is that motion in the reaction coordinate can
be described by classical mechanics, and that a point of no return exists along the
reaction path.

First, as before, the potential is expanded to second order in the atomic displacements
around the saddle point. From a normal-mode analysis, it follows that, in the vicinity of
the saddle point, motion in the reaction coordinate is decoupled from the other degrees
of freedom of the activated complex. Furthermore, it is assumed that the motion in the
reaction coordinate (r.c.), in this region of the potential energy surface, can be described
as classical free (translational) motion. Thus, the Hamiltonian takes the form

H = H‡
r.c. + H‡

= (p‡
1)

2

2m
+ Ecl + H‡ (6.16)

where m is the effective mass associated with the reaction coordinate, Ecl is the saddle-
point energy, and H‡ is the Hamiltonian of the activated complex, with the reaction
coordinate omitted. The motion in the reaction coordinate, in the saddle-point region, is
then given by Hamilton’s equation of motion:

dq‡
1

dt
= ∂H‡

r.c.

∂p‡
1

= p‡
1

m

dp‡
1

dt
= −∂H‡

r.c.

∂q‡
1

= 0

(6.17)
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The second major assumption related to the dynamics is that recrossings of the saddle
point are absent with a classical transmission probability given by

Tcl(E) =
{

0 for E < Ecl
1 for E ≥ Ecl

(6.18)

where E is the total kinetic and potential energy in the reaction coordinate measured
from the energy minimum of the reactants.

The third assumption is that the energy states of the reactants as well as the (short-
lived) activated complex are populated according to the Boltzmann distribution. First, we
focus on activated complexes where the reaction coordinate q‡

1 is fixed at the saddle-point

value and where the associated momentum is p‡
1, that is, with a position and momentum

in the range (q‡
1,q‡

1 + dq‡
1) and (p‡

1,p‡
1 + dp‡

1). The probability of finding such a complex

is denoted by p∗(q‡
1,p‡

1), and the probabilities of finding the reactants are pA and pB,
respectively. Using the Boltzmann distribution, we have (Appendix B.1.2; see also [6])
p∗(q‡

1,p‡
1)/(pApB) = Q∗(q‡

1,p‡
1)/(QAQB), where QA and QB are the molecular partition

functions of the reactants and Q∗(q‡
1,p‡

1) is the “partial” molecular partition function of

the activated complex with the reaction coordinate q‡
1 and the conjugate momentum p‡

1
fixed. Since the motion in the reaction coordinate is decoupled from other degrees of
freedom of the activated complex, Q∗(q‡

1,p‡
1) can be written in the form

Q∗(q‡
1,p‡

1) = 1
h

dq‡
1dp‡

1e−E/kBT × Q‡ (6.19)

where E = (p‡
1)

2/(2m)+ Ecl is the energy in the reaction coordinate, which is described
within classical statistical mechanics (Appendix B.2), and Q‡ is the partition function for
the activated complex with the reaction coordinate omitted. Note that, at this point of
the derivation, all energies are measured from the energy minimum of the reactants.

The probabilities p∗(q‡
1,p‡

1), pA, and pB are proportional to the number of activated

complexes dN∗(q‡
1,p‡

1) and the number of reactants NA and NB, respectively. Thus, we
obtain the standard result

dN∗(q‡
1,p‡

1)/V

(NA/V )(NB/V )
= Q∗(q‡

1,p‡
1)/V

(QA/V )(QB/V )
e−E0/kBT (6.20)

where the zero of energy for the partition functions is now chosen as the zero-point
energy levels of (AB)‡, A, and B, respectively, and E0 is the difference between the
zero-point energy levels of the activated complex and the reactants, that is, Ecl plus
the zero-point energy of (AB)‡ minus the zero-point energy of the reactants A + B,
see Eq. (6.15).
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Using Eqs (6.19) and (6.20), we get

dc∗(q‡
1,p‡

1) = 1
h

dq‡
1dp‡

1e−E1/kBT Q‡/V
(QA/V )(QB/V )

e−E0/kBT cAcB (6.21)

where E1 = (p‡
1)

2/(2m) is the (kinetic) energy in the reaction coordinate with respect
to a zero of energy at Ecl and cA, cB, and dc∗ are number densities of the reactants
and the activated complex. From Hamilton’s equation of motion, Eq. (6.17), we have
dt = dq‡

1/(p
‡
1/m) is the time it takes to cross the transition-state region defined by the

length dq‡
1. The number of passages per second will therefore be the reciprocal of this

“lifetime.” The rate is then equal to dc∗(q‡
1,p‡

1) divided by dt:

dc∗(E1)

dt
= 1

h
dE1e−E1/kBT Q‡/V

(QA/V )(QB/V )
e−E0/kBT cAcB (6.22)

since dE1 = (p‡
1/m)dp‡

1.
We now have an expression for the reaction rate at a fixed kinetic energy in the reaction

coordinate. The total reaction rate is obtained after multiplication of Eq. (6.22) with
Tcl(E1), followed by integration over E1:

dc‡

dt
= Rcl(T)

Q‡/V
(QA/V )(QB/V )

e−E0/kBT cAcB (6.23)

where the classical thermally averaged transmission rate (frequency) is

Rcl(T) = 1
h

∫ ∞

0
Tcl(E1)e−E1/kBT dE1

= 1
h

∫ ∞

0
e−E1/kBT dE1

= kBT
h

(6.24)

and E1 = E − Ecl ≥ 0, that is, the available translational energy at the saddle point.
The well-known expression for the rate constant of a bimolecular gas-phase reaction

then takes the form

kTST(T) = Rcl(T)
Q‡/V

(QA/V )(QB/V )
e−E0/kBT

= kBT
h

Q‡/V
(QA/V )(QB/V )

e−E0/kBT (6.25)
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The objective is now to modify this equation such that quantum dynamical corrections
to the classical transmission probability, Eq. (6.18), are introduced.

In the present context, it is relevant to consider the barrier penetration that is
associated with the traditional (one-dimensional) picture of tunneling. The classical
transmission probability of Eq. (6.18) is replaced by the quantum mechanical trans-
mission probability T(E) (see Fig. 6.4.2 later). Thus, as a natural extension of the
conventional formulation based on classical mechanics, we replace Tcl by T . That is,
we can replace Eq. (6.24) by

Rtunnel(T) = 1
h

∫ ∞

0
T(E = E1 + E0)e−E1/kBT dE1

= 1
h

eE0/kBT
∫ ∞

0
T(E)e−E/kBT dE (6.26)

where we have introduced the total energy E = E1 + E0 in the reaction coordinate,
including the vibrational zero-point energies orthogonal to the one-dimensional reaction
coordinate and, in the second integral, extended the lower limit of integration below
E0, where T(E) > 0. The correction factor to the conventional transition-state theory
expression in Eq. (6.25) is then

κtunnel(T) = Rtunnel(T)

Rcl(T)

= (kBT)−1eE0/kBT
∫ ∞

0
T(E)e−E/kBT dE

(6.27)

This tunneling correction factor appeared as a natural consequence of the fundamental
formulation of transition-state theory. This clarifies the situation, since the precise
definition of this factor is occasionally discussed in the literature [7]. κtunnel(T) > 1
and we will return to a discussion of tunneling and the tunneling correction factor in
Section 6.4.

The rate constant predicted by conventional transition-state theory is also frequently
too large, for example, when the saddle point is not a true point of no return along the path
to a particular product. It is tacitly assumed that the relevant dynamics can be described
within the framework of the separability of the reaction coordinate from all other degrees
of freedom. A violation of this assumption might lead to recrossings, and a correction
factor κ < 1. In this context κ is often called the transmission coefficient, see Eq. (5.65).
Another dynamical origin of a κ < 1 is related to non-adiabatic (“surface hopping”)
dynamics along the reaction coordinate in the saddle-point region. In the latter case, it is
again possible to make a quantitative estimate of κ [5].
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6.3 Systematic Derivation

In the preceding sections we derived an approximate expression for the thermal rate
constant k(T). These derivations were not based on the general expressions for the rate
constant that were derived in the first chapters. We consider here a derivation of the TST
result that is based on an exact expression for a bimolecular rate constant.

Thus, according to Eq. (5.7), for a reaction written in the form A+BC(n)→
AB(m)+C, we have the following expression for the rate constant:

k(T) = kBT
h

1
(Qtrans/V )QBC

∫ ∞

0
Pcum(E)e−E/kBT d(E/kBT) (6.28)

where

Pcum(E) =
∑

J

(2J + 1)
∑

n

∑

m

|SJ
nm(E)|2 (6.29)

is the so-called cumulative reaction probability. As explained in connection with Eq. (5.7),
the summations contain a finite number of terms because the internal energies of
reactants and products must be smaller than the total energy, E.

When we compare Eqs (6.11) and (6.28), we note that the TST expression for the
rate constant would be obtained provided that the integral appearing in Eq. (6.28) was
identical to the partition function of the activated complex. To that end, we introduce
the approximation

Pcum(E) = 0 for E ≤ E0 (6.30)

where E0 is the barrier height introduced in Section 6.1. The lower limit in the integral
can now be replaced by E0, we write the total energy in the form E = E‡ + E0, and rewrite
the integral using partial integration. We get

Q =
∫ ∞

E0

Pcum(E)e−E/kBT d(E/kBT)

= e−E0/kBT
∫ ∞

0
Pcum(E‡ + E0)e−E‡/kBT d(E‡/kBT)

= −e−E0/kBT
∫ ∞

0
Pcum(E‡ + E0)

[
d

dE‡
e−E‡/kBT

]
dE‡
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= −e−E0/kBT
{[

Pcum(E‡ + E0)e−E‡/kBT
]∞

0
−

∫ ∞

0

dPcum(E‡ + E0)

dE‡
e−E‡/kBT dE‡

}

= e−E0/kBT
∫ ∞

0

dPcum(E‡ + E0)

dE‡
e−E‡/kBT dE‡ (6.31)

where Pcum(E0) = 0 was used in the last line.
In order to proceed, we need to know the precise form of the cumulative reaction

probability, and introduce the following approximation:

Pcum(E‡ + E0) =
∑

J

(2J + 1)
∑

i


(E‡ − E‡
i,J) (6.32)

where 
(x) is the unit step function, defined by


(x) =
{

0 x ≤ 0
1 x > 0

(6.33)

and E‡
i,J = E‡

i + E‡
J are the vibrational/rotational energy levels of the activated complex.

Note that this approximation implies that the cumulative reaction probability is zero
when the total energy E‡ (i.e., the energy measured relative to the zero-point level of the
activated complex) is below the zero-point level of the activated complex, and when the
energy exceeds one of the quantized energy levels the cumulative reaction probability is,
for J = 0, increased by one.

Thus, according to this description the reaction probability increases in a stepwise
manner with increasing energy, as the quantized states of the activated complex become
energetically open. Since the derivative of the step function is a delta function, we get

dPcum(E‡ + E0)

dE‡
=

∑

J

(2J + 1)
∑

i

δ(E‡ − E‡
i,J) (6.34)

and

Q = e−E0/kBT
∫ ∞

0

dPcum(E‡ + E0)

dE‡
e−E‡/kBT dE‡

= e−E0/kBT
∑

J

(2J + 1)
∑

i

e−E‡
i,J/kBT

= e−E0/kBT
∑

J

(2J + 1)e−E‡
J/kBT

∑

i

e−E‡
i /kBT

= Q‡e−E0/kBT (6.35)



Barrier Crossing, Quantum Mechanics 173

where Q‡ is the partition function of the activated complex. When this approximate result
is used in Eq. (6.28), the expression for the rate constant becomes identical to the TST
expression in Eq. (6.11).

6.4 Barrier Crossing, Quantum Mechanics

In the derivations given in the previous sections, the assumptions related to the crossing
of the saddle point are based on classical mechanics. The approximation of classical
mechanics was introduced in the standard approach of Section 6.1, and is also implicitly
assumed in the approach of Section 6.3, in Eq. (6.30).

With a dividing surface placed at a saddle point, the potential has a concave-down
shape along the reaction coordinate. It is incorrect to treat the motion in the reaction
coordinate as being classical. To that end, an important feature of quantum mechanics,
that is, quantum mechanical tunneling is that barrier crossing/transmission can take place
also when the total energy is less than the potential energy at the top of the barrier.

Let us first consider the potential energy barrier in a little more detail. The normal-
mode analysis at the saddle point leads to a decoupling of the reaction coordinate
from the other coordinates and the parabolic barrier in Eq. (6.2). This decoupling is
only valid very close to the saddle point. In order to describe the dynamics in a larger
region around the saddle point, the concept of the reaction-path Hamiltonian has been
introduced [8]. The detailed development of this concept is somewhat cumbersome, and
next we summarize only the main features. The reaction-path Hamiltonian is based on
a second-order Taylor expansion in the displacement from the minimum-energy path
(MEP). In contrast to such an expansion at the saddle point, it contains a non-zero
linear term. It is, however, possible to define normal-mode coordinates orthogonal to
the reaction path where the linear term is absent. That is, this normal mode analysis at
points along the reaction path leads to a (multidimensional) “harmonic valley” about the
reaction path, generalizing the result in Eq. (6.1). The reaction coordinate s is related to
the arc length along the reaction path, that is, the curve that follows the MEP, with s = 0
at the saddle point. It is now important to notice that, expressed in these coordinates, the
kinetic energy part of the Hamiltonian contains a coupling between the momentum of
the reaction path coordinate and the normal mode coordinates. This coupling depends
on the curvature of the reaction path κ(s) at position s. For the special case of a curve in
a plane, given as y = f (s), the curvature is defined by κ(s) = |y′′|/(1 + y′2)3/2.

A one-dimensional potential can be obtained by elimination of the harmonic degrees
of freedom, assuming vibrational adiabaticity, that is, the harmonic degrees of freedom
remain in the same quantum state along the reaction coordinate. This gives rise to a
modified potential energy barrier where the vibrational zero-point energies are added to
the potential along the minimum energy path VMEP(s), that is

V (s) = VMEP(s)+
3N−7∑

k=1

h̄ωk(s)/2 (6.36)
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where s denotes the reaction coordinate along the minimum-energy path and for s = 0
VMEP(0) = Ecl, that is, the classical barrier height. This changes the shape of VMEP(s)
since the vibrational frequencies are functions of the reaction coordinate.

The coupling in the kinetic energy can be taken into account at various levels of
approximation. A zero-curvature (corresponding to a straight line) approximation is
equivalent to a one-dimensional treatment of the dynamics in the reaction coordi-
nate. This approximation will, however, often tend to underestimate tunneling. In a
small-curvature approximation, the coupling can be recast in the form of an effective
coordinate-dependent mass associated with motion along the reaction coordinate. In
large-curvature (corner-cutting) tunneling, the multidimensional nature of the problem
is treated and tunneling paths away from the minimum-energy path are included.

To correct for tunneling, in Section 6.4.1 we consider the problem of crossing the
barrier quantum mechanically rather than classically. The discussion is restricted to one-
dimensional (zero-curvature) tunneling.

6.4.1 Tunneling through one-dimensional barriers

As discussed in Section 4.2, wave functions can penetrate into potential energy barriers
corresponding to regions of configuration space that are not accessible according to
classical mechanics. Thus, the wave function is non-zero beyond a classical turning
point, that is, a purely quantum mechanical effect without any counterpart in classical
mechanics. If the barrier around the saddle point is not too broad, then the wave function
can penetrate through the barrier corresponding to tunneling.

An analytical solution to the Schrödinger equation can be obtained for the barrier

V (x) = E0 − (1/2)F∗x2 (6.37)

where for this (infinite) parabolic barrier the potential energy at x = 0 is E0 that includes
vibrational zero-point energies, as described before, and F∗ is the magnitude of the
second-order derivative. We can formally express the “frequency” of the motion on top
of the barrier in terms of the second-order derivative, F , of the potential,

ν = 1
2π

(
F
m

)1/2

= 1
2π

(−F∗

m

)1/2

= iν∗ (6.38)

That is, an imaginary frequency corresponding to passage over the barrier as already
discussed in connection with Eq. (6.2).

If we send in a particle (say, from the left) with total energy E, then it can be shown
that the probability of crossing the barrier (that is, the transmission probability) is given
by [9]
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T(E) = 1
1 + exp[2π(E0 − E)/hν∗]

(6.39)

where ν∗ was defined in Eq. (6.38). Note that T(E = E0) = 1/2, T(E) is non-zero in
the tunneling region E < E0 and increases smoothly to 1 for E > E0. The transmission
probability has an exponential dependence on the magnitude of the imaginary frequency
ν∗, that is, the width of the barrier via the second-order derivative F∗.

A more realistic barrier shape is the (unsymmetrical) Eckart barrier [10,11],
defined by

V (x) = Aexp(ax)

1 + exp(ax)
+ Bexp(ax)

(1 + exp(ax))2 (6.40)

where a is a characteristic inverse length and A ≤ 0 and B > 0. We find V (x) → 0 for
x → −∞ and V (x) → A for x → ∞, and a maximum at axmax = ln[−(A + B)/(A − B)].
The barrier height for a particle approaching from the left is V (xmax) = (A + B)2/4B ≡
�V1 and the barrier height in the reverse direction is �V2 ≡ �V1 − A = (A − B)2/4B.
The inverse relations are

A = �V1 − �V2

B = (
√

�V1 + √
�V2)

2 (6.41)

The second-order derivative, F = −F∗, of the potential can be written in the form

F∗ = 2a2�V1�V2/(
√

�V1 + √
�V2)

2 (6.42)

The Eckart barrier is shown in Fig. 6.4.1. For comparison, a parabolic barrier with the
same second-order derivative at the maximum is also shown. It is clear that the barriers
only coincide close to the maximum and the Eckart barrier is broader than the parabolic
barrier. At the total energy E, corresponding to a particle of kinetic energy E incident
from the left, the transmission probability for the Eckart barrier is [10,11]

T(E) = cosh(a + b)− cosh(a − b)

cosh(a + b)+ cosh(
√

4α1α2 − π2)
(6.43)

where

a = 2[α1ξ ]1/2(α
−1/2
1 + α

−1/2
2 )−1

b = 2[(ξ − 1)α1 + α2]1/2(α
−1/2
1 + α

−1/2
2 )−1 (6.44)
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Fig. 6.4.1 Symmetrical (A = 0) and unsymmetrical (A < 0) Eckart barriers.The potential is plotted in
units of the barrier height �V1 and as a function of the dimensionless distance ax.The same second-order
derivative at the maximum is chosen for the two barriers and the corresponding parabolic barrier is shown
for comparison. A possible value of the total energy E is shown in the tunneling regime.

with

α1 = 2π�V1/hν∗

α2 = 2π�V2/hν∗

ξ = E/�V1 (6.45)

It should be noted that the transmission probabilities for a particle incident from the left
or the right (see Fig. 6.4.1.) of this unsymmetrical barrier are identical at a given total
energy. Thus, an interchange of �V1 and �V2 in Eqs (6.44) and (6.45) is equivalent to
an interchange of a and b at the kinetic energy E + (�V2 − �V1), and the transmission
probability is unaffected since cosh is an even function.

Note that for a symmetric Eckart barrier, α = α1 = α2 and a = b = αξ1/2, and the
transmission probability, T(E), for α  1 becomes

T(E)
α1−→ 1

1 + exp[2α(1 − √
E/E0)]

E/E0→1−→ 1
1 + exp[2π(E0 − E)/hν∗]

(6.46)

which is identical to the expression for a parabolic barrier with E0 = �V1 = �V2 for
total energies close to the barrier height, that is, E/E0 → 1. The Taylor expansion√

E/E0 = √
1 + (E/E0 − 1) → 1 + (E/E0 − 1)/2 for E/E0 → 1 was used in the last line.
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Thus, the transmission probabilities for the Eckart and the parabolic barrier coincide for
energies close to the top of the barrier.

The transmission probability in Eq. (6.43) is shown in Fig. 6.4.2 as a function of
E/E0. It shows that there is a finite non-zero probability of “crossing” the barrier even
for kinetic energies smaller than the height of the barrier! This phenomenon is called
tunneling. Note also that when the kinetic energy exceeds the height of the barrier the
probability does not immediately take a value of one. Thus, above-barrier reflection takes
place. Both phenomena are quantum effects.

The transmission probabilities in Eqs (6.39) and (6.43) depends on the kinetic energy
relative to the barrier height as well as the oscillation frequency associated with the
inverted barrier. This frequency depends on the width of the barrier, that is, F∗, as well
as the mass of the particle. Thus, tunneling and reflection are enhanced when:

• the barrier height (E0) is low;

• the width of the barrier is small (F∗ large);

• the particle mass (m) is small.

Tunneling plays a role for atomic particles. If one considers heavy particles, then
the results obtained from Eq. (6.43) will be indistinguishable from the step function
predicted by classical mechanics,

1
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Fig. 6.4.2 Transmission probabilities for an Eckart barrier. The barrier height is E0 = 38 kJ/mol and
the magnitudes of the imaginary frequency (wave number) associated with the reaction coordinate are
1511 cm−1 (solid line), corresponding to the reaction H + H2, and 1511/

√
2 cm−1 (dashed line),

corresponding to the reaction D + D2. The step function is the transmission “probability” according to
classical mechanics.
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Tcl(E) =
{

0 for E/E0 ≤ 1

1 for E/E0 > 1
(6.47)

In a classical calculation, the transmission probability will therefore be underestimated
at kinetic energies smaller than the barrier energy and overestimated at kinetic energies
above the barrier energy.

If the actual potential energy barrier, V (x), is not well approximated by any of the
previously described barriers at the relevant energies E, then the transmission probability
can be estimated by a semi-classical (sc) expression derived within an extended WKB
approximation. This expression takes the form [9],

Tsc(E) = 1

1 + exp[(2/h̄)
∫ b

a |p(x)|dx]
(6.48)

in the tunneling region E < Vmax where Vmax is the maximum of the potential. The
classical momentum p(x) = √

2m(E − V (x)) = i
√

2m(V (x)− E) is imaginary, |p(x)| =√
2m(V (x)− E) and a and b are classical turning points, that is E = V (a) = V (b). For

a parabolic barrier, this expression reproduces the exact transmission probability in
Eq. (6.39) (see Problem 6.12) and it gives in general quite reliable results. For high and
broad barriers (small degree of tunneling) the exponential dominates in the denominator
and the expression reduces to the standard WKB expression for the transmission
probability. Above-barrier reflection for E > Vmax can be estimated from this equation
by assuming the same symmetry of the transmission probability as for the parabolic
barrier with a centre of symmetry at (E,T(E)) = (E0,1/2). This means in particular that
Tsc(E) = 1 − Tsc(2Vmax − E) for Vmax < E ≤ 2Vmax.

Finally, before closing this section, we recall that only in the neighborhood of the
saddle point is the motion in the reaction coordinate strictly separable from the other
degrees of freedom. In the one-dimensional description of tunneling given in this section,
we have, however, considered the full “straightened-out” reaction path. This implies
that we have assumed separability along the full reaction path. Depending on the
curvature of the reaction path, a multidimensional “corner-cutting” description may
be required.

6.4.2 Tunneling correction factor

In Section 6.2, we derived a tunneling correction factor for transition-state theory, see
Eq. (6.27). The derivation showed that kTST(T) of Eq. (6.11) is replaced by κtunnel(T)×
kTST(T) when tunneling is included.

The correction factor due to quantum tunneling, κtunnel(T), is sometimes introduced
in transition-state theory [7,11] as
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κtunnel(T) =
∫ ∞

0 dE T(E)e−E/kBT/(kBT)
∫ ∞

0 dE Tcl(E)e−E/kBT/(kBT)

=
∫ ∞

0 dp(p/μ)T(p)e−p2/2μkBT

∫ ∞
0 dp(p/μ)Tcl(p)e−p2/2μkBT

(6.49)

where E = p2/(2μ) and dE = (p/μ)dp. At temperature T , this factor is the ratio of
the number of transmitted systems in the quantum case to the number expected
from classical mechanics. In the second line, we observe that the numerator and the
denominator are proportional to a thermal average of a one-dimensional flux (see
Eq. (5.90) and Section 5.2.1) with, respectively, quantum and classical transmission
probabilities associated with the one-dimensional reaction coordinate. Now

∫ ∞

0
dE Tcl(E)e−E/kBT/(kBT) =

∫ ∞

E0

dEe−E/kBT/(kBT)

= e−E0/kBT (6.50)

which is the fraction of systems with an energy above E0, and

κtunnel(T) = (kBT)−1eE0/kBT
∫ ∞

0
dE T(E)e−E/kBT (6.51)

Note that this result is identical to Eq. (6.27). Although the quantum mechanical
transmission probability at kinetic energies above the barrier energy is less than one,
that is, particles are reflected above the barrier, the transmission in the tunneling region
dominates in the integral, especially at low temperatures, due to the Boltzmann factor
exp(−E/kBT).

An important general conclusion can be made at this point: when the temperature T
is lowered, κtunnel(T) will increase, since (due to the Boltzmann factor) the fraction of
systems with an energy above E0 will decrease (the denominator in Eq. (6.49)) and the
number of transmitted systems in the tunneling region with an energy below E0 will
increase (the numerator in Eq. (6.49)) at low temperatures.

The correction factor due to quantum tunneling for an Eckart barrier cannot be
evaluated analytically. For a parabolic barrier an analytical expression can, however,
be derived in a high temperature limit. After introduction of the variable x = 2π(E −
E0)/(hν∗) in Eq. (6.51), we obtain

κtunnel(T) = β

∫ ∞

−α

dx
exp[−βx]

1 + exp[−x]
(6.52)
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where α = 2πE0/(hν∗) and β = hν∗/(2πkBT). For β < 1 (i.e., high temperatures), the
integrand has a maximum at x = ln[β−1 − 1], that is, E = (hν∗/2π) ln[β−1 − 1] + E0,
which for 1/2 < β < 1 is found for E < E0. The maximum of the integrand is at the
maximum of the barrier E = E0 when β = 1/2. The corresponding temperature

Tc = hν∗

πkB
(6.53)

is called the crossover temperature because at this temperature the thermally averaged
probabilities for tunneling and over-barrier transmission (the contribution to the integral
for x > 0) are roughly equal when α  1. For β ≥ 1 (i.e., low temperatures), the integrand
is a decreasing function where the highest value is found for x = −α, that is E = 0.

An analytical evaluation of the integral is possible for β < 1 when the lower
limit −α is replaced by −∞, where the integral takes the form

∫ ∞
−∞ dxexp[−βx]/

(1 + exp[−x]) = π/sin(πβ). The error introduced by this change of lower limit is large
unless ln[β−1 − 1] + α  1. Thus,

κtunnel(T) = hν∗/(2kBT)

sin[hν∗/(2kBT)]
for α = 2πE0/(hν∗)  1
and β = Tc/2T < 1

(6.54)

This is the tunneling correction factor for a parabolic barrier in the limits of high
temperature and α  1, that is a high and/or broad barrier. Application of this simple
formula to situations where this inequality, or more precisely ln[β−1 − 1] + α  1, is not
strictly fulfilled will be due to the extension of the lower limit in the integral overestimating
the tunneling correction compared to the exact correction for a parabolic barrier. To that
end, the region where β is approaching one from below is problematic, κtunnel(T) → ∞,
because the integrand approaches 0 very slowly for x → −∞.

Equation (6.54) can be further simplified to a well-known expression for β � 1,
corresponding to a high temperature. Using x/sin(x) ∼ 1 + x2/6, for x = πβ small, we
obtain

κtunnel(T) ∼ 1 + 1
24

(
hν∗

kBT

)2 for α = 2πE0/(hν∗)  1
and β = Tc/2T � 1

(6.55)

This expression is called the Wigner tunneling correction factor, and is valid for small degree
of tunneling (high and/or broad barrier, hν∗ � E0) and, in addition, high temperatures
(hν∗ � kBT) are required. Note that the correction factor is larger than one.

It is important to observe the inequalities specifying the range of validity of the simple
formulas (6.54) and (6.55). Thus, for the H + H2 reaction, the low temperature limit
β > 1, as defined previously, is reached already around T = 300 K. When Eqs (6.54)
and (6.55) are compared to the result obtained by a numerical evaluation of the integral
in Eq. (6.51) (see Table 6.1), one finds good agreement at high temperatures. At lower
temperatures, the analytical formulas can, however, deviate substantially from the exact
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Table 6.1 Tunneling corrections as a function of tempera-
ture according to Eq. (6.51). κH is the correction factor for
H + H2, where the magnitude of the imaginary frequency
(wave number) associated with the reaction coordinate is
1511 cm−1.κD is the correction factor for D + D2,where the
magnitude of the imaginary frequency is 1511/

√
2 cm−1.

The tunneling probabilities are calculated for an Eckart
barrier. The barrier height is Ecl = 40 kJ/mol.

Temperature (K) κH κD

200 864 30.5

225 169 12.3

250 54.1 6.92

300 13.5 3.55

400 3.95 1.98

500 2.38 1.55

1000 1.26 1.12

result. Finally, concerning the results in Table 6.1, it should be noted that an Eckart
barrier has been assumed, this is not a completely faithful representation of the real
barrier shape (see Fig. 3.1.3) and, in addition, tunneling has been treated within the
one-dimensional zero-curvature approximation.

6.5 Applications of Transition-State Theory

It is fairly simple to apply transition-state theory once the barrier height, E0, the
vibrational energy levels, and the geometry of the activated complex are known.

In special cases, say when we want to account for isotope effects in chemical reactions,
we just need to consider the changes in the previously-mentioned quantities (see, e.g.,
Problem 6.7). As an example, consider the two exchange reactions

XH + Y
kH−→ X + HY

XD + Y
kD−→ X + DY

(6.56)

The potential energy surface is unchanged under isotope substitution, and the major
contribution to the isotope effect is, typically, related to changes in vibrational zero-point
energies, and hence the barrier height E0. Thus, the zero-point energy in XH is larger
than the zero-point energy in XD, and when the X–H/X–D bond breaking is directly
related to motion in the reaction coordinate, this difference in zero-point energies is
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absent in the activated complex. The first reaction in Eq. (6.56) has accordingly the
smallest barrier height E0, and one finds that kH > kD. The two rate constants can differ
by as much as a factor of 10 at T = 300 K (depending on the exact identity of the groups
X and Y), and even more when quantum tunneling is taken into account.

Transition-state theory has been applied to numerous reactions. In order to eval-
uate the accuracy of the theory in direct comparison to experimental results, highly
accurate data for the activated complex is required as basic input to the theory. To
that end, we can, for example, consider the simple reaction D + H2 → HD + H;
the rate constant at 1000 K (a temperature where tunneling plays a minor role) is
1.78×10−12 cm3/(molecule s) (see Problem 6.8), which is in excellent agreement with
the experimental value 2.13×10−12 cm3/(molecule s) (with an experimental uncer-
tainty of about 25%).

Before we consider in more detail some specific applications of transition-state theory,
we consider briefly three general points. In applications of transition-state theory, it is
sometimes discussed how the theory is properly applied to two special reaction types:
symmetric reactions (H + H2 → H2 + H is the standard example)6 and reactions
involving optically active species. Thus, for symmetric reactions it is often argued that a
factor of two is missing in the expression for the rate constant. Transition-state theory
gives the rate constant for a reaction in a given direction. Defining the rate of a symmetric
reaction is a little subtle. If we define the rate from the lifetime of an H2 against H atom
exchange, we must include the rate of passage in both directions. Since the rate constants
are identical in either direction, the total rate is twice the rate obtained for each direction
[12]. The rate constant at 1000 K (a temperature where tunneling plays a minor role) is,
according to transition-state theory, 8.44 × 10−13 cm3/(molecule s) (see Problem 6.4).
The experimentally measured rate constant is about twice as big, which again is in
excellent agreement (given the experimental uncertainty and the problems of defining
the rate, as described before). Another situation with some pitfalls concerns reactions
involving optically active species. For example, if the activated complex is optically active,
there are in fact two elementary reactions going on, where the two activated complexes
are mirror images of each other. These two reactions have identical rate constants, and
the overall rate is therefore twice the rate of each reaction.

In connection with transition-state theory, one will also occasionally meet the concept
of a statistical factor [13]. This factor is defined as the number of different activated
complexes that can be formed if all identical atoms in the reactants are labeled. The
statistical factor is used instead of the symmetry numbers that are associated with
each rotational partition function (see Appendix B.1) and, properly applied, the two
approaches give the same result. The statistical factor approach has, however, some

6 An additional point for H2, as a homonuclear diatomic molecule, is that the symmetry requirement of
the total wave function implies that there are two separate forms: para-H2 with only even rotational levels and
ortho-H2 with only odd rotational levels. This has consequences for the detailed description of such reactions.
To that end, experimentally the rate is typically reported as the rate of change associated with para-H2 in the
reaction: H + para−H2 � ortho−H2 + H.
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pitfalls [12], and in the following we use the standard expression for the rate constant
involving symmetry numbers.

As a final point, as remarked in the beginning of this chapter, the position of the
reaction barrier represents a “bottleneck” between reactants and products. It is the point
along the reaction coordinate where we have the smallest number of recrossings of the
dividing surface between reactants and products. However, for some reactions there is no
barrier in the effective potential, Eq. (6.36), along the reaction coordinate. To that end,
variational transition-state theory, based on Wigner’s variational theorem, Eq. (5.10), is
applied. Thus, the rate constant is calculated as a function of the reaction coordinate,
and the minimum identifies the optimum value of the rate constant.

Example 6.2 The rate constant for the F + H2 reaction

The reaction F + H2 → HF + H is of special theoretical interest because it is one of the sim-
plest examples of an exothermic chemical reaction. Furthermore, the reaction is characterized
by an early and very small barrier.

The relevant parameters for the reactants and the activated complex are given in Table 6.2.
The activated complex F · · ·H · · ·H is bent with an angle of 119◦. The resulting three principal
moments of inertia of this asymmetric rotor are given in the table. Note that the interatomic
distances in the activated complex are characteristic of an early barrier; H · · ·H is close to its
initial equilibrium bond length and F · · ·H is much longer than the final equilibrium bond
length (which is 0.9168 Å). The vibrational frequencies of the activated complex are obtained
from a normal-mode analysis at the saddle point (Appendix F). There are two real frequencies
and one imaginary frequency. The imaginary frequency (wave number) at 723i corresponds
to the reaction coordinate and passage over the barrier. The frequency at 3772 corresponds,
approximately, to the H–H stretch in the complex, and the frequency at 296 is the bending
frequency of the non-linear complex.

In order to evaluate the electronic partition function of F(1s22s22p5), we need to know
that in its electronic ground state (with the term 2P3/2 when the spin–orbit coupling is taken
into account) the total angular momentum (orbital + spin) is J = 3/2, and the degeneracy is
therefore 2J + 1 = 4.

Furthermore, for the fluorine atom it is necessary to include the doubly degenerate first
electronically excited state (2P1/2) because its energy relative to the ground state is just
� = 0.05 eV. For H2(1σ2

g ), the total electronic angular momentum is 0, and the degeneracy
is therefore 1. The electronic degeneracy of the activated complex (with an electronic state
denoted by 2A

′
, and in the special case of a linear configuration by 2�) is 2.

We will now calculate the rate constant at T = 300 K using Eq. (6.12) and the data in
Table 6.2. The relevant ratio between the translational partition functions is

(
(Q‡/V )

(QF/V )(QH2/V )

)

trans

= h3

(2πμkBT)3/2

= 4.16 × 10−31 m3

continued
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Example 6.2 continued

Table 6.2 Properties of the reactants and the activated complex for the
F + H2 reaction.Data from an ab initio potential energy surface [ J. Chem.
Phys. 104, 6515 (1996) and Chem. Phys. Lett. 286, 35 (1998)].

Parameters F · · ·H · · ·H F H2

r(F–H), Å 1.546

r(H–H), Å 0.771 0.7417

m, amu 21.014 18.9984 2.016

I , amuÅ2 0.277

Ia, amuÅ2 0.173

Ib, amuÅ2 5.807

Ic, amuÅ2 5.981

ν̃1, cm−1 3772 4395.2

ν̃2, cm−1 296

ν̃3, cm−1 723i

E0, kJ/mol 4.56

ωelec (ground state) 2 4 1

where μ is the reduced mass of F and H2. The ratio between the rotational partition functions
(see Appendix B.1.1) is

(
Q‡

QH2

)

rot

= √
π

σH2

σ‡

√
IaIb

IH2

√
8π2IckBT/h2

= 110.30

where the two symmetry numbers are σ‡ = 1 and σH2 = 2. The ratio between the vibrational
partition functions (see Appendix B.1.1) is

(
Q‡

QH2

)

vib

= 1 − exp(−hνH2/kBT)

�2
i=1[1 − exp(−hν

‡
i /kBT)]

= 1.32

where it is remembered that the wave number ν̃ and frequency ν are related by the relation
ν̃ = ν/c. The ratio between the electronic partition functions (see Appendix B.1.1) is
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(
Q‡

QFQH2

)

elec

= 2/(4 + 2exp[−�/kBT])

= 0.466

After multiplication of all the factors, we obtain

kTST(T = 300 K) = 2.83 × 10−11 cm3

molecule s
= 1.71 × 1010 liter

mol s
The experimental data can, in the temperature range T ∈ [190,373] K, be represented by
the equation k(T) = 1.0 × 10−10 exp(−(432.8 ± 50.32)/T) cm3/(molecule s) [J. Chem. Phys.
92, 4811 (1980)], and in a larger temperature range by k(T) = 2.7 × 109T0.5 exp(−319/T)

liter/(mol s), for T ∈ [190,800] K [J. Phys. Chem. Ref. Data 12, No. 3, (1983)], where the
uncertainty in the experimental data is estimated as log10[k(T)] = ±0.15. Thus, at T =300 K,
the experimental value is k(T = 300 K) = (2.36 ± 0.4) × 10−11 cm3/(molecule s), and the
transition-state theory rate constant agrees with the experimental data to within the experi-
mental uncertainty.

As shown in the previous example, for the reaction F + H2 → HF + H, transition-state
theory is sufficiently accurate to reproduce the experimental result for the thermal rate
constant at T = 300 K.

Table 6.3 A comparison of different theoretical approaches to the
evaluation of the thermal rate constant for the F + H2 → HF + H
reaction at T = 300 K. TST is transition-state theory (Example
6.2), QCT is the quasi-classical trajectory method [Chem. Phys.
Lett. 254, 341 (1996)], and QM is (exact) quantum mechanics
[J. Phys. Chem. 102, 341 (1998)].

Method TST QCT QM

k/10−11 cm3/(molecule s) 2.83 2.07 2.26

Clearly, the successful reproduction of the experimental result is, in part, related to the
high quality of the potential energy surface. A more direct evaluation of the accuracy of
transition-state theory can be obtained via a comparison to other (more exact) theoretical
approaches to the calculation of the rate constant, all using the same potential energy
surface. Table 6.3 shows such a comparison. We observe that transition-state theory does
overestimate the rate constant but the agreement is quite reasonable, especially when the
simplicity of the calculation is taken into account.

The reaction rate depends critically on the barrier height and the shape of the potential
energy surface in the vicinity of the saddle point. As an illustration of this, we consider
again the F + H2 → HF + H reaction, where a second saddle point has been identified
(Section 3.1), which corresponds to a linear activated complex with a classical barrier
height that is slightly higher than for the bent complex. An evaluation of the rate constant
based on the linear activated complex would have resulted in a rate constant that is about
ten times smaller than the experimental result.
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Example 6.3 Collision between two atoms

The simplest application of transition-state theory is to the collision between two structureless
molecules, that is, two atoms A and B:

A + B −→ (AB)‡ −→ product

The reaction coordinate is the interatomic distance, and the energy profile along the reaction
coordinate is identical to a one-dimensional interatomic potential energy curve; that is, there
is no saddle point along the reaction path. Furthermore, the total energy is conserved along
the reaction coordinate, and any intermediate AB configuration will always have the same
energy as the reactants; it will consequently dissociate after the turning point on the potential
energy curve has been reached. If, however, there is a mechanism for releasing the energy, a
stable molecule may be formed and the rate constant can be related to the formation of this
molecule. An example is the so-called radiative recombination, where an electronically excited
molecule may emit a photon and form a stable AB molecule in the electronic ground state.
Thus, (AB)‡ → AB + hν; see Fig. 6.5.1.

A + B*

AB

hv

rc

Fig. 6.5.1 Radiative recombination. B� is an electronically excited atom.

We place the dividing surface between reactants and products at a critical separation rc and
calculate the rate constant according to Eq. (6.11) (assuming, as in Section 4.1.2, that the
atoms “react” with a probability of one when r = rc). In the relevant partition function for
the activated complex, there are both translational degrees of freedom for the center-of-mass
motion and rotational degrees of freedom (with the electronic degrees of freedom omitted).
Thus (see Appendix B.1),

(Q‡
(AB)‡/V ) = (2π[mA + mB]kBT)3/2

h3
8π2I‡kBT

h2
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with the moment of inertia for the diatomic complex, I‡ = μr2
c, and μ is the reduced mass. The

reactants have only translational degrees of freedom. So,

(QA/V ) = (2πmAkBT)3/2/h3

with an equivalent expression for the B atom.
The rate constant, Eq. (6.11), then takes the form

kTST(T) = kBT
h

(Q‡
(AB)‡/V )

(QA/V )(QB/V )
e−E0/kBT

= kBT
h

h3

(2πμkBT)3/2
8π2μr2

c kBT

h2 e−E0/kBT

= πr2
c

(
8kBT
πμ

)1/2
e−E0/kBT (6.57)

We observe that the result is the same as in Eq. (4.23).

The expression for the rate constant in Example 6.3 can also be considered as an
application of transition-state theory to a bimolecular reaction where the molecules are
considered as structureless “atoms” with the relevant masses. Thus, when we compare
this with the proper expression for a bimolecular reaction, we can gain insight into how
the internal molecular degrees of freedom affect the rate constant. In Section 4.1.2,
we noticed that the pre-exponential factor predicted by Eq. (6.57), when compared to
experimental data for a number of bimolecular reactions, typically, is much too large.
Now when we compare Eq. (6.57) to the proper TST expression for a bimolecular
reaction, Eq. (6.12), we observe that the pre-exponential factor contains vibrational
and electronic partition functions, as well as rotational partition functions associated
with the reactants. The vibrational and electronic partition functions are typically in the
order of one, whereas the value of the rotational partition functions is well above one
(remember that the partition function gives an indication of the average number of states
that are populated at a given temperature). Since the rotational partition functions of the
reactants are in the denominator of the expression, transition-state theory will typically, in
agreement with experimental observations, predict smaller pre-exponential factors than
the simple collision model where molecules are treated as structureless spheres.

Finally, we must stress that transition-state theory is not an exact theory. Thus,
complete agreement with experimental data cannot be expected in all cases. In particular,
recrossings of the saddle-point region were neglected. The validity of this assumption will
depend on the exact topology of the potential energy surface; that is, the barrier height,
the position of the barrier along the reaction coordinate, and so on.7

7 Note that for two reactions that only differ by the position of the saddle point along the reaction path,
i.e., “early” and “late” barriers (Section 3.1), respectively, transition-state theory will predict exactly the
same rate.
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6.6 Thermodynamic Formulation

For some reactions, especially those involving large molecules, it might be difficult to
determine the precise structure and energy levels of the activated complex. In such
cases, it can be useful to phrase the transition-state theory result for the rate constant
in thermodynamic terms. It does not bring any new information but an alternative
way of interpreting the result. This formulation leads to an expression where the pre-
exponential factor is related to an entropy of activation that, at least qualitatively, can be
related to the structure of the activated complex. We will encounter the thermodynamic
formulation again in Chapter 10, in connection with chemical reactions in solution, where
this formulation is particularly useful.

According to Eq. (6.11),

kTST(T) = kBT
h

Q‡/V
(QA/V )(QB/V )

e−E0/kBT

= kBT
h

V
Q‡

QAQB
(6.58)

where, in the second line, the zero point of energy for all partition functions has been
chosen to coincide with the zero-point energy of A + B. Note that the rate constant
depends on T but is independent of the volume V (or pressure) since the molecular
partition functions are of the form f (T)V .

According to statistical mechanics, the partition function for a system of volume
V , at the temperature T , containing N independent (non-interacting) indistinguishable
molecules is QN/N !. The entropy, S, of the system is related to the molecular partition
function Q according to8

S = NkBT
(

∂ lnQ
∂T

)
+ NkB ln

(
Q

e
N

)

= E/T + NkB ln
(

Q
e
N

)
(6.59)

where E = 〈E〉 according to Eq. (B.22) is the temperature-dependent internal energy.
Now, the difference in entropy between the activated complex (AB)‡ (where the reaction
coordinate is pulled out) and the reactants A + B, that is, the entropy of activation, is (per
mole, N = nNA, where n = 1 mole)

�S�
‡ ≡ S‡ − (SA + SB)

= E‡/T + R ln[Q‡e/N] − (EA/T + R ln[QAe/N] + EB/T + R ln[QBe/N])

8 Using Sterling’s approximation, i.e., lnN ! ∼ N(lnN − 1) = N ln(N/e).



Thermodynamic Formulation 189

= {E‡ − (EA + EB)}/T + R ln

[
Q‡

QAQB

N
e

]

= �E�
‡ /T + R ln

[
Q‡

QAQB

N
e

]
(6.60)

where the energy of activation was defined as �E�
‡ ≡ E‡ − (EA + EB). Note that the

change in entropy refers to the entropy of pure (unmixed) activated complexes minus
the entropy of pure (unmixed) reactants. Furthermore, the entropies refer to the same
values of N ,V , and T (and the pressure, since p = (N/V )kBT). These conditions are
identical to the standard changes known from chemical thermodynamics, and they are
indicated by the symbol �. Thus,

Q‡

QAQB
= e

N
exp(�S�

‡ /R)exp(−�E�
‡ /RT) (6.61)

The enthalpy H = E + pV = E + RT for one mole of an ideal gas, and the enthalpy of
activation �H�

‡ is

�H�
‡ ≡ E‡ + RT − (EA + RT + EB + RT)

= �E�
‡ − RT (6.62)

Note that �E�
‡ = �E‡ and �H�

‡ = �H‡, since there is no interaction between the
molecules. Thus, for these energy changes the symbol � is not needed, since the
standard changes and the changes in a mixture of ideal gases are identical. We have
now �E�

‡ = �H�
‡ + RT , and

kTST = kBT
h

1
c� exp(�S�

‡ /R)exp(−�H�
‡ /RT) (6.63)

where c� = N/V is a concentration, typically chosen as 1 mole/liter. The rate constant is
now related to the activation entropy �S�

‡ and the enthalpy of activation �H�
‡ = �H‡.

Alternatively, the Gibbs energy of activation can be introduced, that is, �G�
‡ = �H�

‡ −
T�S�

‡ , and

kTST = kBT
h

1
c� exp(−�G�

‡ /RT) (6.64)

It might be argued that in a (N ,V ,T) system, the Helmholtz energy is a more natural
choice than the Gibbs energy. Since A = G − pV , the Helmholtz energy of activation is
�A�

‡ = �G�
‡ + RT , and
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kTST = kBT
h

e
c� exp(−�A�

‡ /RT) (6.65)

Finally, these expressions can be related to the Arrhenius equation, where the activa-
tion energy Ea is identified from RT2d lnk/dT . Although the rate constant is independent
of volume (or pressure), we note that the exponential factor, as well as the pre-exponential
factor, in Eq. (6.64) depends on volume (or pressure). Thus, we choose to perform the
differentiation under constant pressure. Using that 1/c� = V/N = kBT/p, we get

d lnkTST

dT
= 2

T
− 1

R

(
∂(�G�

‡ /T)

∂T

)

p

= 2
T

+ �H�
‡

RT2

= 2RT + �H�
‡

RT2

≡ Ea

RT2 (6.66)

where the Gibbs–Helmholtz equation was used in the second line. We observe that
Ea = 2RT + �H�

‡ = RT + �E�
‡ = RT + E‡ − (EA + EB), that is, we have a simple inter-

pretation of Ea in terms of the enthalpy of activation �H�
‡ and the energy of activation

�E�
‡ , and from Eq. (6.63) we get

kTST = kBT
h

e2

c� exp(�S�
‡ /R)exp(−Ea/RT) (6.67)

From this expression originates the statement that “entropy effects” are determining the
pre-exponential factor in the Arrhenius expression. Thus we have the following.

• A positive entropy of activation implies that there has been an increase in entropy
in forming the activated complex, and the activated complex must be more
“disordered” or “floppy” than the reactants.

• A negative entropy of activation implies that the activated complex must be more
“ordered” than the reactants.

Bimolecular reactions correspond to a negative entropy of activation. Note that �E�
‡ ,

�H�
‡ , �S�

‡ , �G�
‡ , and �A�

‡ all refer to an activated complex where the reaction
coordinate is pulled out.



Problems 191

Further reading/references

[1] H. Eyring, J. Chem. Phys. 3, 107 (1935).
[2] D.G. Truhlar, W.L. Hase, and J.T. Hynes, J. Phys. Chem. 87, 2664 (1983).
[3] B.H. Mahan, J. Chem. Educ. 51, 709 (1974).
[4] W.H. Miller, Acc. Chem. Res. 9, 306 (1976).
[5] N.E. Henriksen and F.Y. Hansen, Phys. Chem. Chem. Phys. 4, 5995 (2002).
[6] J.H. Knox, Molecular thermodynamics (John Wiley, New York, 1978).
[7] R.P. Bell, The tunnel effect in chemistry (Chapman and Hall, London, 1980).
[8] W.H. Miller, N.C. Handy, and J.E. Adams, J. Chem. Phys. 72, 99 (1980).
[9] M.S. Child, Molecular collision theory (Dover, 1996).

[10] C. Eckart, Phys. Rev. 35, 1303 (1930).
[11] H. Eyring, J. Walter, and G.E. Kimball, Quantum chemistry (John Wiley, New York, 1944).
[12] E. Pollak and P. Pechukas, J. Am. Chem. Soc. 100, 2984 (1978).
[13] K.J. Laidler, Chemical kinetics (Harper Collins, New York, 1987).
[14] D.G. Truhlar, B.C. Garrett, and S.J. Klippenstein, J. Phys. Chem. 100, 12771 (1996).
[15] A. Fernández-Ramos, J.A. Miller, S.J. Klippenstein, and D.G. Truhlar, Chem. Rev. 106,

4531–46 (2006).

.....................................................................................................................................

PROBLEMS

6.1 The “lifetime” of the activated complex was defined in connection with the
standard derivation of transition-state theory. Estimate the numerical value of the
lifetime (in femtoseconds) using the following numbers: l = 0.1 Å, m = 1 amu, and
T = 300 K.

6.2 Consider a collinear reaction of the form A + BC → AB + C, that is, all atoms
are assumed to move along the same line. Imagine that a calculation of the (real-
valued) vibrational frequency of the activated complex, at two different levels of
accuracy, gives ν̃1 cm−1 and ν̃2 cm−1, respectively, and ν̃1 > ν̃2.

Using transition-state theory, which of the two frequencies will give the larger
pre-exponential factor? (Remember that the partition function for a harmonic
oscillator is given by Qvib = (1 − exp[−h̄ω/(kBT)])−1.)

6.3 Consider a linear triatomic AAA molecule where the atoms have mass m. Assume
that the potential energy for the linear internal bond-stretching motion is given by

V = (1/2)k(q2 − q1 − b)2 + (1/2)k(q3 − q2 − b)2

where q1, q2, and q3 are the positions of atoms 1, 2, and 3, respectively, and b is the
bond length at equilibrium.

(a) Find expressions for the normal-mode frequencies (note that one of the
frequencies, that for translation, will be zero).
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(b) Find expressions for the normal-mode coordinates expressed as linear com-
binations of the atomic displacement coordinates.

(c) Show the result from (b) in graphical form, that is, for each normal mode,
using “arrows” to represent (the magnitude and sign of) the coefficients in
the linear combinations of the atomic displacement coordinates.

6.4 Using transition-state theory, calculate the rate constant for the exchange reaction

H + H2 → (H · · ·H · · ·H)‡ → H2 + H

Assume that (H · · ·H · · ·H)‡ has a linear symmetric configuration with a ground-
state electronic degeneracy of two and a symmetry number of two. The electronic
degeneracies for ground-state H2 and H are one and two, respectively. For
the (H · · ·H · · ·H)‡ transition state (from accurate ab initio electronic structure
calculations; J. Chem. Phys. 68, 2457 (1978)) the H · · ·H distance is 0.93 Å and
the fundamental frequencies (wave numbers) are 2058 cm−1, 909 cm−1, and 909
cm−1. The classical barrier height is 41.0 kJ/mol. The H–H distance in H2 is 0.74
Å, and its fundamental vibrational frequency is 4395 cm−1.

(a) Calculate numerical values for the transition-state theory rate constants for the
reaction at 300 K and 1000 K (the experimentally measured rate coefficient
is [2.1 ± 0.6] × 10−12 cm3 molecule−1 s−1 at 1000 K).

(b) Estimate the tunneling correction for the reaction at 400 K, 500 K, and
1000 K. Use the Wigner tunneling correction factor for a barrier with
ν̃∗ = 1511 cm−1.

6.5 We consider a forward and its reverse bimolecular elementary reaction at thermal
equilibrium:

A + B
kf−→←−
kr

C + D

(a) Write down the expressions for the rate constants kf (T) and kr(T) according
to transition-state theory.

(b) Show that kf (T)/kr(T), calculated according to transition-state theory, fulfills
the principle of detailed balance described by Eq. (2.34) (for a potential
energy surface with one saddle point).

6.6 Determine, using transition-state theory, the temperature dependence of the pre-
exponential factor for each of the reactions:

(a) H2 + F2 → 2HF

(b) C2H4 + HCl → C2H5Cl

Assume that the activated complexes are non-linear. Determine the temperature
dependence for hv � kBT , corresponding to classical partition functions for the
harmonic vibrational degrees of freedom, as well as for hv  kBT .
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6.7 In order to illustrate an isotope effect for a bimolecular reaction, we consider the
following reactions:

(i) H + H2
k1−→ H + H2

(ii) D + H2
k2−→ DH + H

where “D” is deuterium. The potential energy surfaces and electronic states for
the two systems (i) and (ii) are, according to the adiabatic (Born–Oppenheimer)
approximation, identical. The activated complexes, ABC, of the three atoms are
linear with interatomic distances RAB = RBC = R = 0.93 Å, and the vibrational
frequencies (wave numbers) for the complex are, respectively, 2058 cm−1, 909
cm−1, and 909 cm−1 for reaction (i) and 1764 cm−1, 870 cm−1, and 870 cm−1

for reaction (ii).
In the following, we use transition-state theory in order to calculate the ratio

between the rate constants k2/k1 (tunneling is neglected).

(a) Calculate E2
0 − E1

0 (in kJ/mol), that is, the difference between the barrier
heights for the two reactions.

(b) Show that k2/k1 can be written in the following form:

k2

k1
=

(
μ1

μ2

)3/2
(

Q‡
2

Q‡
1

)

rot

(
Q‡

2

Q‡
1

)

vib

e−(E2
0−E1

0 )/kBT

where μi is the reduced mass of the reactants in reaction “i”, and the second
and third factors are the ratios between the rotational and vibrational partition
functions of the activated complexes of the “i”th reaction.

(c) Calculate (Q‡
2/Q‡

1)rot, using that the moment of inertia for a linear three-
atomic molecule ABC is I = (mA + mC)R2 − (mA − mC)2R2/(mA + mB +
mC), with RAB = RBC = R, where R is the bond distance.

(d) Calculate k2/k1 at T = 450 K, and compare with the experimental values
k1 = 3.85 × 109 cm3/(mol s) and k2 = 9 × 109 cm3/(mol s).

(e) Calculate k2/k1 at T = 450 K, when tunneling is included in the transition-
state calculation, using the Wigner tunneling correction factor. The ratio of the
imaginary frequencies associated with the activated complexes (HHH)‡ and
(DHH)‡ is νH/νD = 1.05, and the imaginary frequency (in wave number) for
the (HHH)‡ complex is ν̃H = iν̃∗

H = i 1511 cm−1.

The atomic masses are 1.007825 amu for 1H and 2.0140 amu for D ≡ 2H.

6.8 Calculate the rate constant for the reaction D + H2 → DH + H at T = 1000 K. Use
transition-state theory and the data and results of Problems 6.4 and 6.7. The exper-
imentally measured rate coefficient is [2.13 ± 28%] × 10−12 cm3 molecule−1 s−1

at 1000 K [J. Phys. Chem. 94, 3318 (1990)].

6.9 A molecule AB can be formed from the two molecules A and B in an association
reaction via the following mechanism:
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(i) A + B � AB∗

(ii) AB∗ + M → AB + M

where AB∗ is an energy-rich (unstable) state of AB (with an energy that exceeds the
bond dissociation energy of AB) and M is a molecule that in an inelastic collision
can absorb the excess energy in AB∗. At low pressures of M one finds a third-order
rate law, v = k(T)[A][B][M], k(T) = K1(T)k2(T), where K1(T) is the equilibrium
constant for (i) and k2(T) is the rate constant for (ii).

An important example of an association reaction is the formation of ozone in
the stratosphere from atomic and molecular oxygen: O + O2 + M → O3 + M. At
low pressures, a third-order rate law is found with rate constants given in the table
here for M = N2 [J. Phys. Chem. Ref. Data 26, 1329 (1997)].

T/K 100 200 300

k(T)/m6 molecule−2 s−1 1.19 × 10−44 1.71 × 10−45 5.49 × 10−46

(a) Express the equilibrium constant K1(T) for (i) in terms of molecular partition
functions for a reaction in an ideal gas.

(b) Write down the expression for the rate constant k2(T) according to trans-
ition-state theory, where it can be assumed that (ii) proceeds via a particular
activated complex (AB∗M)‡. It can be assumed that E0 = 0, where E0 is the
difference between the zero-point energy level of the activated complex and
the zero-point energy level of the reactants A + B + M. Also, write down an
expression for k(T).

(c) Determine the temperature dependence of k(T) for O + O2 + M → O3 + M,
where it can be assumed that the activated complex is non-linear, that E0 = 0,
and the temperature dependence of the vibrational and electronic partition
functions can be neglected.

(d) The experimental values in the table can be represented by an expression of
the form k(T) = ATa, where A and a are constants. Compare the theoretically
determined value of a to the value that can be determined from the experi-
mental values in the table. The experimental uncertainty on a is ±0.5.

(e) The pre-exponential factor for (“trimolecular”) association reactions is very
small compared to typical values for bimolecular reactions. Calculate how
much bigger the rate constant would be at T = 300 K, if M = N2 did not
participate in the reaction. It can be assumed that the difference is solely due
to the translational contributions from M = N2.

6.10 Consider the reaction

F + H2

kf−→←−
kr

HF + H
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(which we also considered in Section 6.5). The rate constant of the forward
reaction is kf (T) = 2.0 × 1011 exp{−800/T(K)} liter/(mol s). Calculate kr(T) at
T = 300 K and T = 1000 K.

Use the following information:

• �E0 = −1.391 eV, that is, the difference between the zero-point energies of the
products and reactants;

• vibrational wave numbers: ν̃ = 4400 cm−1 for H2 and ν̃ = 4138 cm−1 for HF;

• equilibrium bond lengths: re = 0.7414 Å for H2 and re = 0.9168 Å for HF;

• electronic ground-state degeneracies: ωelec = 4 for F, ωelec = 1 for H2, ωelec = 1
for HF, and ωelec = 2 for H.

6.11 We consider, in the gas phase, the SN2 reaction

Cl− + CH3Cl −→ CH3Cl + Cl−

The data for the activated complex are given in the following—essentially cor-
responding to a calculation at the Hartree–Fock (HF) level using a 6–31G�

basis set.

• The barrier height (corrected for vibrational zero-point energies) is E0 = 16.6
kJ/mol.

• The principal moments of inertia for CH3Cl are: Ia = Ib = 38.1 amuÅ
2

and
Ic = 3.08 amuÅ

2
, and the symmetry number is 3.

• The principal moments of inertia for the activated complex, (Cl · · ·CH3 · · ·Cl)‡,
are: Ia = Ib = 405.0 amuÅ

2
and Ic = 3.46 amuÅ

2
, and the symmetry number

is 6.

• The degeneracies of the electronic states can be set to one.

• The vibrational frequencies (in wave numbers), for the reactants and activated
complex, are given here.

Molecule Wave numbers/cm−1

CH3Cl 3042(2) 2933(1) 1463(1) 1403(2) 1013(2) 736(1)

(Cl · · ·CH3 · · ·Cl)‡ 3430(1) 3274(2) 1379(2) 1015(2) 1004(1) 195(1) 188(2)

The degeneracies of the vibrational states are given in parentheses after the
frequencies. The imaginary frequency of the activated complex is not included.
The vibrational frequencies of CH3Cl correspond to the data in G. Herzberg,
Electronic spectra of polyatomic molecules.
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Calculate the rate constant, at T = 300 K, according to transition-state theory. The
vibrational partition functions for vibrations with wave numbers larger than 1000
cm−1 can be set to 1.

The atomic masses are H: 1.008 amu, C: 12.01 amu, and Cl: 35.45 amu.

6.12 Apply the semi-classical expression for the transmission probability in Eq. (6.48)
to a parabolic barrier V (x) = E0 − (1/2)F∗x2, and show that the exact result for
the transmission is obtained.

The following integral is useful:
∫ a
−a

√
a2 − x2dx = πa2/2, where a is a constant.
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Unimolecular Reactions

Key ideas and results

When a molecule is supplied with an amount of energy that exceeds some threshold
energy, a unimolecular reaction can take place, that is, a dissociation or an isomer-
ization. We distinguish between a true unimolecular reaction that can be initiated
by absorption of electromagnetic radiation (photo-activation) and an apparent
unimolecular reaction initiated by bimolecular collisions (thermal activation). For the
apparent unimolecular reaction, the time scales for the activation and the subsequent
reaction are well separated. When such a separation is possible, for true or apparent
unimolecular reactions, the reaction is also referred to as an indirect reaction. We will
discuss the following.

• Elements of classical dynamics of unimolecular reactions; in particular, the Slater
theory for indirect reactions, where the molecule is modeled as a set of uncoupled
harmonic oscillators. Reaction is defined to occur when a particular bond length
attains a critical value, and the rate constant is given as the frequency with which
this occurs.

• Elements of quantum dynamics of unimolecular reactions; in particular, photo-
activated reactions.

• RRKM theory, an approach to the calculation of the rate constant of indirect
reactions that, essentially, is equivalent to transition-state theory. The reaction
coordinate is identified as being the coordinate associated with the decay of an
activated complex. It is a statistical theory based on the assumption that every state,
within a narrow energy range of the activated complex, is populated with the same
probability prior to the unimolecular reaction. The microcanonical rate constant
k(E) is given by an expression that contains the ratio of the sum of states for the
activated complex (with the reaction coordinate omitted) and the total density of
states of the reactant. The canonical k(T) unimolecular rate constant is given by an
expression that is similar to the transition-state theory expression of bimolecular
reactions.

continued

Theories of Molecular Reaction Dynamics. Second Edition. Niels E. Henriksen and Flemming Y. Hansen, Oxford University
Press 2019. © Niels E. Henriksen and Flemming Y. Hansen. DOI: 10.1093/oso/9780198805014.001.0001
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• How thermal activation can take place following the Lindemann and the
Lindemann–Hinshelwood mechanisms. An effective rate constant is found that
shows the interplay between collision activation and unimolecular reaction. In the
high-pressure limit, the effective rate constant approaches the microcanonical rate
constant of a unimolecular reaction multiplied by the probability of finding the
molecule at a given energy.

• Basic concepts of femtochemistry, that is, the real-time detection and control of
chemical dynamics.
The relation between the key quantities (the rate constant k(T), the microcanoni-

cal rate constant k(E), and the reaction probability P) and various approaches to the
description of the nuclear dynamics is illustrated here.

Statistical theories (RRKM, etc.) 

Quasi-classical mechanics (Slater, etc.)

Quantum mechanics

Unimolecular reaction

Pk(T ) k(E)

So far, we have only considered bimolecular reactions. Elementary reactions can,
however, also be unimolecular; that is, just one molecule takes part in the chemical reac-
tion. Such reactions correspond to either isomerization (rearrangement) or dissociation
(fragmentation).

In chemical kinetics, we learn that an elementary unimolecular reaction

A −→ products (7.1)

obeys a first-order rate law, given by

− d[A]
dt

= k[A] (7.2)

where k ≡ k(T) is the temperature-dependent unimolecular rate constant. The purpose
of this chapter is to obtain an in-depth understanding of this relation.

Before we go on, we note that it is easy to interpret the physical significance of the
unimolecular rate constant. The integrated rate law takes the form

[A] = [A]t0 exp[−k(t − t0)]

= [A]t0[1 − k(t − t0)+ ·· · ] (7.3)
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That is, for k(t − t0) � 1, k(t − t0) can be interpreted as the fraction of molecules that
has disappeared, and k is the fraction of molecules that disappear per unit time. For example,
k(T) may have the value 0.001 s−1, which means that during each second 1/1000 of the
molecules would react. Note that this fraction can also be interpreted as the probability
that a single molecule undergoes reaction per unit time.

7.1 True and Apparent Unimolecular Reactions

In unimolecular reactions only one molecule is involved in the reaction. Since, however,
the molecules prior to the reaction are stable, it is necessary to “activate” them in order to
initiate the reaction. Based on the different methods of activation, we distinguish between
the following two types of unimolecular reaction:

• a true unimolecular reaction;

• an apparent unimolecular reaction.

In a true unimolecular reaction, the activation is done by exposing the molecules to
electromagnetic radiation, whereas activation is accomplished by inelastic collisions with
other molecules in an apparent unimolecular reaction. The condition for the latter
process to be unimolecular is that the time scales of the activation process and the
chemical reaction are very different, so that the chemical reaction is much slower than
the activation process.

7.1.1 True unimolecular reactions

A true unimolecular reaction is induced by electromagnetic radiation. That is, only one
molecule takes part in the reaction and the energy is provided by the electromagnetic
field. In fact, chemical reactions induced by electromagnetic radiation form such an
important subfield of chemistry that it has its own designation: photochemistry.

A well-known example is the photodissociation of ozone:

O3 + hν −→ O2 + O

There are also many interesting photochemical rearrangements of organic molecules.
One example is the cis-trans isomerization of retinal induced by visible light, a basic step
in the chemistry of vision.

The electromagnetic radiation will normally induce a transition from the electronic
ground state to an excited electronic state, where the reaction takes place.

It is also possible that the unimolecular reaction takes place with the molecule in
the electronic ground state, but it requires very intense fields to generate so-called
multiphoton or direct overtone transitions; that is, transitions from the vibrational ground
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state of the type 0 → n, where n > 1. The opening of the cyclo-butene ring to form
butadiene is an example of a unimolecular reaction induced by direct overtone excitation:

H H

H

H2C CH2CH HC

H HH

In a normal-mode picture, the C–H stretching of cyclobutene is, essentially, a pure
normal mode. There are two types of CH bonds, and the normal modes involve either
olefinic CH stretch or methylenic CH stretch. Experimentally, it has been demonstrated
that direct overtone excitation of these modes, for example, to the fourth excited C–H
stretch mode, provides enough energy for ring-opening to 1,3-butadiene.

Unimolecular reactions induced by electromagnetic radiation are often further divided
into direct and indirect reactions. In a direct reaction, the unimolecular reaction is
over within the order of a vibrational period after the initial excitation. In an indirect
reaction, the unimolecular reaction starts long after the initial excitation, since a long-
lived intermediate complex is formed. Evidently, the cyclobutene reaction is not a
direct reaction, since the energy first has to flow from the C–H stretch to the C–C
bond connecting the two –CH2– units in the ring. These definitions correspond to two
extremes; real unimolecular reactions can fall in between these limiting cases and, in
general, we have to consider the interplay between activation and reaction.

It is quite easy to derive the rate law for a unimolecular reaction. Consider the situation
where molecules, all in the quantum state n, are irradiated by radiation of frequency ν,
which induces an electronic transition:

A(n)+ hν
Pn(hν)−→ products (7.4)

for example, as illustrated in Fig. 7.1.1. Assume a constant reaction probability per
unit time, at the energy E = hν, denoted by Pn(hν). Here we limit the discussion to
direct reactions where products are formed directly without delay following electronic
excitation. Indirect reactions can be handled as in Section 7.1.2.

The number of molecules that disappear per unit volume and per unit time is then
Pn(hν)× [A(n)], where [A(n)] is the concentration (number/volume) at time t. The rate
of reaction must then be given by

d[A(n)]/dt = −Pn(hν)[A(n)] (7.5)

that is, a first-order rate law. When we make the identification

kn(hν) ≡ Pn(hν) (7.6)
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UV excitation

Fig. 7.1.1 Photodissociation (at a fixed bending angle) for a symmetric triatomic molecule like ozone.The
vibrational ground state is superimposed on the potential energy surface of the electronic ground state; an
illustration of a true (direct) unimolecular reaction. (Note that in this figure all potential energies above a
fixed cut-off value Emax have been replaced by Emax, in the electronic ground state as well as in the excited
electronic state.)

and denote by kn(hν) the rate constant of the unimolecular reaction, the rate law is clearly
equivalent to a standard first-order rate law. The pre-requisite used in this derivation,
a rate constant that is equivalent to a constant reaction probability per unit time, is
obtained from a microscopic quantum mechanical treatment of the interaction between
the molecule and electromagnetic radiation; see Section 7.2.2.

Except for high vacuum systems, where isolated reactions occur, the energy of the
molecules is not fixed. We must then, as in Chapter 2, consider the transition from the
microscopic to the macroscopic description. Again, it is quite easy to derive the rate law
of macroscopic reaction kinetics for the unimolecular reaction. We now write the number
density of A(n) in a form that is equivalent to Eq. (2.16), that is,

[A(n)] = [A]pA(n) (7.7)

where [A] is the total concentration of A molecules and pA(n) is the probability of finding
A in the quantum state denoted by the quantum number n.
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The macroscopic rate of reaction, d[A]/dt, is obtained from Eq. (7.5) by summation
over the quantum states. We get

d[A]/dt = −k(T)[A] (7.8)

with the rate constant

k(T) =
∑

n

kn(hν)pA(n) (7.9)

where we have used that
∑

n pA(n) = 1. Since pA(n) is typically the Boltzmann distribution,
for the vibrational and rotational quantum states, we have indicated that the macroscopic
rate constant will be a function of the temperature T .

In Chapter 2 where bimolecular reactions were discussed, we considered the forma-
tion of products in particular quantum states and at particular orientations in space.
The description here for unimolecular reactions can be generalized in a similar way.
Thus, experiments similar to the molecular-beam set-up in Fig. 2.1.1 are carried out for
unimolecular reactions, however, with one of the molecular beams replaced by a beam
of photons from a laser, see Fig. 7.1.2.

light beam

x

A(l, vA)

y

z

V

AB(i)

E(t)

dΩ

Fig. 7.1.2 Schematic crossed molecular/light beam set-up.The molecular beam is directed along the x-axis
and the light beam along the y-axis. The AB molecules move with a constant center-of-mass velocity V .
The electric field vector E(t) is polarized along the z-axis.Fragment speeds can be determined by time-of-
flight detection in the y–z-plane. The cos2 θ distribution implies that most recoiling fragments will show
up along z-axis and no fragments will be detected along the y-axis.
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Example 7.1 Photofragment speeds

We consider the photofragmentation of a AB molecule where A and B can be atomic or
molecular fragments. The motion of AB can be described in terms of a center-of-mass velocity
V = (mAvA + mBvB)/M and the relative velocity v = vA − vB, where M = mA + mB is the
total mass. Inverting these relations, the velocity vectors of the two fragments become

vA = V + mB
M

v

vB = V − mA
M

v

If we, as in Fig. 7.1.2, consider detection orthogonal to V , the center-of-mass motion is
eliminated. The fragments are recoiling with momenta, mAvA = μv and mBvB = −μv in
opposite directions directly related to the relative velocity, where μ = mAmB/M is the reduced
mass of the relative motion.

After the absorption of a photon of energy hν,

AB(n) → A + B

(in the continuous wave limit, see Section 7.2.2) energy conservation implies that the relative
translational energy of the fragments become

μv2/2 = hν − D0 − Eex

where v =|v | is the relative speed, μ = mAmB/M is the reduced mass, D0 is the dissociation
energy of AB in its electronic ground state, Eex is the energy associated with internal (rota-
tional/vibrational/electronic) excitation of the fragments, and for simplicity AB was assumed
to be in its ground state.

As a numerical example, we consider the photodissociation of 23Na127I in the vibrational
ground state, using a laser with wavelength λ = 205.0 nm. The dissociation energy into
fragments in the electronic ground state is D0 = 3.160 eV. The Na atom is formed in the excited
3p state, where the excitation energy, Eex, for the Na(3s) to Na(3p) transition is 16,956 cm−1,
whereas the I atom is formed in the electronic ground state. The speed of the atomic fragments
is then vI = (mNa/M)v = 428.1 m/s and vNa = (mI/M)v = 2363 m/s.

7.1.2 Apparent unimolecular reactions

In an apparent unimolecular reaction, the molecule is activated in a bimolecular collision
process. In addition, it is assumed that the preparation of the initial metastable state of the
molecule can be separated from its subsequent unimolecular decay. Thus, the apparent
unimolecular reaction can also be classified as an indirect reaction. One writes such an
apparent unimolecular reaction in the form

A∗ −→ products (7.10)
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Fig. 7.1.3 Contour plot (at a fixed bending angle) of the electronic ground-state potential energy surface
for a (asymmetric) triatomic molecule. The last contour exceeds the dissociation limit of one of the bonds.

where A∗ is a highly vibrationally (and rotationally) excited A molecule with a total
vibrational and rotational energy1 E > E0, where E0 is the threshold energy for the
unimolecular reaction. A∗ is created in an activation step, which can be: (i) thermal
activation, due to inelastic collisions where translational energy is converted to vibrational
energy, A + M → A∗ + M; this type of activation takes place in the electronic ground
state, see Fig. 7.1.3, or (ii) chemical activation, where a long-lived intermediate is formed
in a bimolecular complex mode reaction, A + B → (AB)∗, that is, the long-lived complex
(AB)∗ can be considered as an activated molecule; for such a “sticky” collision the
potential energy surface contains a potential well along the reaction path. The formation
of energized molecules is discussed in more detail in Section 7.4.

Thus, it is clear what is meant by the words “apparent” unimolecular reaction, since
the activation process is bimolecular. A key point is the separation in time scales between
the activation step and the subsequent unimolecular reaction dynamics. This was also
a distinctive feature of the indirect photo-activated reactions considered in the previous
section. Thus, the theoretical description of these reaction types is very similar; photo-
activation makes it, in particular, possible to deposit a precise amount of energy according
to E = hν, that is, the energy of a photon.

After (and during) the creation of A∗, intramolecular vibrational energy redistrib-
ution—denoted IVR—will take place. Consider again the ring-opening of cyclobutene
to 1,3-butadiene. After the excitation of the C–H stretch, IVR will occur. The normal-
mode description is not accurate for highly excited states due to anharmonic coupling
terms in the potential. Thus, the vibrational energy will redistribute and spread to all
vibrational degrees of freedom in the molecule.

1 The center-of-mass translational motion can be separated out (as described in Section 1.1) and it plays no
role in unimolecular or bimolecular reactions. Thus, the translational energy of the molecule is not included in
the internal energy that is relevant to unimolecular reactions.
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Assume a constant reaction probability per unit time at the internal energy E. In
anticipation of the role played by this probability in the final result, the probability is
denoted by k(E). The unimolecular reaction for an A∗ molecule at the fixed internal
energy E is

A∗(E)
k(E)−→ products (7.11)

The molecule is highly vibrationally (and rotationally) excited with an energy above
the threshold for unimolecular reaction. The density of vibrational eigenstates will be
very high when the energy exceeds the energy threshold for reaction (recall, e.g., that
the energy spacing in, say, a Morse potential is decreasing as the dissociation limit is
approached). Thus, the internal energy can be considered as continuous.2

The number of molecules that disappear per unit volume and per unit time is
then k(E)× [A∗(E)]dE, where [A∗(E)]dE is the concentration (number/volume) of
A∗(E) molecules at time t, in the internal energy range [E,E + dE]. [A∗(E)] denotes,
consequently, a concentration per unit energy at the energy E. The rate of reaction must
then be given by

d{[A∗(E)]dE}/dt = −k(E){[A∗(E)]dE} (7.12)

that is, a first-order rate law resulting in an exponential decay of the population. The pre-
requisite used in this derivation, a rate constant that is equivalent to a constant reaction
probability per unit time is, for example, obtained in RRKM theory, to be described next
in Section 7.3.2.

Except for high vacuum systems, where isolated reactions may occur, the internal
energy is not fixed at a given value. We must therefore, as in Chapter 2, consider a
transition from the microscopic to a macroscopic description. We write the number
density of A∗(E) (E > E0) in a form that is equivalent to Eq. (2.16), that is,

[A∗(E)]dE = [A∗]P(E)dE
/∫ ∞

E0

P(E)dE (7.13)

where [A∗] = ∫ ∞
E0

[A∗(E)]dE is the total concentration of A∗ molecules and P(E)dE is the
probability of finding A in the internal energy range [E,E + dE].

The macroscopic rate of reaction, d[A∗]/dt, is obtained from Eqs (7.12) and (7.13)
by integration over the energy, E, from E0 to infinity. We get

d[A∗]/dt = −k(T)[A∗]
/∫ ∞

E0

P(E)dE (7.14)

with the rate constant

2 There is most likely a high degeneracy at the energy E. These states will, in general, not decay with the same
rate constant. Thus, to be more precise, one should introduce additional quantum numbers, n, to distinguish
between the degenerate states, and replace k(E) by kn(E) in the discussion.
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k(T) =
∫ ∞

E0

k(E)P(E)dE (7.15)

Since P(E) is normally the Boltzmann distribution, we have indicated that the macro-
scopic rate constant will be a function of the temperature T . Note that typically the
magnitude of k(T) and k(E) will differ by many orders of magnitude. For example,
k(E) may have the value 0.01 fs−1 (corresponding to a typical vibrational frequency
of 1013 s−1), which means that during each femtosecond 1/100 of the molecules, at an
energy E > E0, will react. However, k(T) will be much smaller; it may have, say, the value
0.001 s−1, which means that during each second 1/1000 of the molecules would react at
the temperature T . This difference is, of course, due to the Boltzmann distribution P(E)

in Eq. (7.15). Thus, the fraction of reactants with sufficient internal energy to react is
very small at typical temperatures.

Now using d[A∗]/dt = d[A]/dt, and that [A]/[A∗] = ∫ ∞
0 P(E)dE/

∫ ∞
E0

P(E)dE, where∫ ∞
0 P(E)dE = 1, the well-known first-order rate law is obtained,3 that is,

d[A]/dt = −k(T)[A] (7.16)

In the following, we discuss how to calculate the rate constants for a unimolecular
decay.

7.2 Dynamical Theories

In dynamical theories, one solves the equation of motion for the individual nuclei, subject
to the potential energy surface. This is the exact approach, provided one starts with the
Schrödinger equation. The aim is to calculate k(E) and kn(hν), the microcanonical rate
constants associated with, respectively, indirect (apparent or true) unimolecular reactions
and true (photo-activated) unimolecular reactions.

7.2.1 Classical mechanics, Slater theory

This is an approach for the calculation of the microcanonical rate constant k(E) for indi-
rect unimolecular reactions that is based on several approximations. The molecule is rep-
resented by a collection of s uncoupled harmonic oscillators. According to Appendix F,
such a representation is exact close to a stationary point on the potential energy surface.
Furthermore, the dynamics is described by classical mechanics.

3 The same result is traditionally derived from the high-pressure limit of the Hinshelwood–Lindemann
mechanism; see Section 7.4.2.
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The Hamiltonian takes, according to Eqs (F.12) and (F.10), the form

H = T + V

=
s∑

n=1

[(1/2)P2
n + (1/2)ω2

nQ2
n] (7.17)

where Qn are normal-mode coordinates. Hamilton’s equations of motion, Eq. (4.74),
take the form

Q̇i =
(

∂H
∂Pi

)
= Pi

Ṗi = −
(

∂H
∂Qi

)
= −ω2

i Qi

(7.18)

where i = 1, . . . , s. These equations are equivalent to

d2Qi

dt2 + ω2
i Qi = 0 (7.19)

that is, a linear second-order differential equation with constant coefficients, which has
the complete solution

Qi(t) = Qi(0)cos(ωi t)+ Pi(0)sin(ωi t)/ωi

= Ai cos(ωi t − φi)

=
√

2Ei/ω
2
i cos(ωi t − φi) (7.20)

where Ai = Qi(0)/cos(φi) is the amplitude of the oscillation, and the phase φi is
given by tan(φi) = Pi(0)/[ωiQi(0)] (using the relation cos(ωi t − φi) = cos(φi)cos(ωi t)+
sin(φi)sin(ωi t)). The time dependence of the normal-mode coordinate is illustrated
in Fig. 7.2.1. The energy in the ith mode is related to the amplitude, that is,
Ei = 1/2[P2

i (t)+ ω2
i Q2

i (t)] = (1/2)A2
i ω

2
i . When Qi(0) and Pi(0) are chosen, the energy

and phase are fixed and Eq. (7.20) gives the time evolution of the particular normal-
mode coordinate.

Note that the time it takes to complete one full oscillation, that is, the period of
the oscillation, is P = 2π/ωi , since cos(ωi t − φi) = cos(ωi[t + P] − φi). Furthermore, the
number of complete oscillations per unit of time is 1/P = ωi/(2π) = νi , that is, the
frequency of the oscillation. For typical molecules these vibrational frequencies are in
the range 1013 to 1014 s−1.

Since there is no coupling between the normal modes, the energy in each mode is
constant. The description is rigorous only for small displacements from a stationary
point, typically chosen as the molecular equilibrium geometry. Slater suggested the use
of this description also when molecules are highly vibrationally excited, corresponding
to large amplitude motions. This is obviously a serious approximation.
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Fig. 7.2.1 Time evolution of a harmonic-oscillator coordinate, according to Eq. (7.20). The phase is
chosen as φ = 0, and note that the amplitude of the oscillation is related to the energy.

Since harmonic oscillators are considered in this theory, the bonds will never break,
so it is necessary to introduce an ad hoc criterion for when a reaction occurs. Reaction is
normally defined to occur when a particular bond length attains a critical value. The bond
length cannot be extracted directly from a particular normal-mode coordinate, since
these coordinates, typically, involve the motion of several atoms in the molecule. The
bond length can, however, be calculated quite readily, by noting that the displacement of
a coordinate associated with an atom of mass mr is given by Eq. (F.5):

qr(t)− q0
r = 1√

mr

s∑

j=1

LrjQj(t) (7.21)

where q0
r is the equilibrium position of coordinate qr ; that is, the displacement can

be expressed as a linear combination of the normal-mode coordinates. Unimolecular
reaction is assumed to occur when the bond length exceeds a critical extension at a
particular time when the normal modes will be in phase; see Fig. 7.2.2.

The rate constant k(E) at the total vibrational energy

E =
s∑

i=1

Ei (7.22)

is calculated from the number of times per second a superposition of harmonic terms
(Eq. (7.21)) exceeds the critical value.
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Fig. 7.2.2 Displacement of bond length from its equilibrium value for a linear chain of three identical
atoms. The energy and phase of the symmetric and antisymmetric normal modes are assumed to be
identical. The displacement is proportional to cos(ωt) + cos(

√
3ωt). The dashed line marks a critical

value.

The molecule undergoing reaction can, accordingly, be pictured as an assembly of
s harmonic oscillators of particular amplitudes. The time evolution will, however, also
depend on the phases of each oscillator (see Eq. (7.20)), and we have to consider a
large number of these “oscillator assemblies” and average over the initial phase of each
oscillator.4

When the average behavior over a long time interval (much longer than the longest
period associated with the normal modes) is considered, the problem of finding the
fraction of molecules with a particular bond that—per unit time—exceeds the critical
value can be solved analytically [1]. k(E) will depend on the particular distribution
of energy E1,E2, . . . ,Es in the normal modes. Thus, since the theory does not allow
for redistribution of energy between the normal modes, that is, IVR, the rate constant
will depend on how the molecule was excited initially. Such mode specificity is, in
general, not observed in practice. Overall, the Slater theory is unsuccessful in interpreting
experiments; the theory has, however, still some pedagogical value.

4 Note that this average over phases is equivalent to the approach used in quasi-classical trajectory
calculations for bimolecular reactions; see, e.g., Fig. 4.1.2.
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The harmonic approximation is unrealistic in a dynamical description of the disso-
ciation dynamics, because anharmonic potential energy terms will play an important
role in the large amplitude motion associated with dissociation. An accurate potential
energy surface must be used in order to obtain a realistic dynamical description of the
dissociation process and, as in the quasi-classical approach for bimolecular collisions, a
numerical solution of the classical equations of motion is required [2].

To that end, we note that a formally exact classical expression for a unimolecular rate
constant was given in Eq. (5.74).

7.2.2 Quantum mechanical theory

7.2.2.1 True unimolecular reactions

When an electromagnetic field is present, a term describing the coupling between
the molecule and the field must be added to the Hamiltonian. The most important
contribution related to absorption of electromagnetic radiation is

Ĥ I = −μ · E(t) (7.23)

where μ is the dipole-moment operator of the molecule and E(t) is the electric field
(more general fields are considered in Section 7.5.2) given by

E(t) = E0a(t)cos(ωt) (7.24)

The field is linearly polarized in the direction given by E0. a(t) is an envelope function
corresponding to a pulsed field; when a(t) is constant E(t) describes a continuous wave
(cw) field oscillating with the frequency ω = 2πν.

When the field oscillates with a frequency that matches the energy spacing of the
electronic states, all the relevant electronic states must be taken into consideration in the
equation of motion. When, for example, two electronic states are coupled by the field,
the time-dependent Schrödinger equation for the atomic nuclei takes the form (with a
derivation similar to Eq. (4.187), here with non-adiabatic coupling omitted)

ih̄
∂

∂t

[
χ1(R, t)
χ2(R, t)

]
=

[
Ĥ1 Ĉ12

Ĉ21 Ĥ2

][
χ1(R, t)
χ2(R, t)

]
(7.25)

where Ĥ1 and Ĥ2 are nuclear Hamiltonians associated with the two electronic states, the
coupling term is Ĉ12 = −〈ψ1|μ|ψ2〉 · E(t) ≡ −μ12 · E(t) = −μ12E(t)cosθ , and

μ12 = |〈ψ1|μ|ψ2〉| (7.26)

is the magnitude of the electronic transition-dipole moment, where ψi are electronic wave
functions and integration is over all electronic coordinates. θ is the angle between
the transition-dipole vector, μ12, and the direction of the (linearly polarized) electric
field, E0. Electronic transitions are clearly subject to the condition of a non-vanishing
electronic transition-dipole moment. The initial state χ1(R, t0), χ2(R, t0) = 0 is one of
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the nuclear eigenstates of the electronic ground state i = 1, for example, the vibrational
(and rotational) ground state of the molecule. Equation (7.25) is a set of coupled first-
order differential equations in time, where the coupling terms can be considered as
an inhomogeneous term in each differential equation. The solution to such first-order
differential equations can be written as a complete solution to the homogeneous equation
plus a specific solution to the inhomogeneous equation:

χ1(R, t) = exp(−iĤ1t/h̄)χ1(R,0)− i
h̄

∫ t

0
exp(−iĤ1(t − t′)/h̄)Ĉ12(t′)χ2(R, t′)dt′

χ2(R, t) = − i
h̄

∫ t

0
exp(−iĤ2(t − t′)/h̄)Ĉ21(t′)χ1(R, t′)dt′

(7.27)
that is, we have replaced the differential equations in time by integral equations. We note
that Eq. (7.27) reduces to the right solution when Ĉ12(t′) = 0 and for t = 0. For arbitrary
strengths of the electric field, Eq. (7.27) must be solved numerically.

When the interaction with the field is sufficiently weak, the second term on the right-
hand side of the equation for χ1(R, t) can be neglected, and the wave packet associated
with the excited electronic state is identical to the result obtained within the framework
of so-called first-order perturbation theory, giving [3,4]

χ2(R, t) = i
h̄

∫ ∞

0
dt′e−iε0t′/h̄E(t′)φ(R, t − t′) (7.28)

where E(t) is the laser field, φ(R, t − t′) = 〈R|exp(−iĤ2(t − t′)/h̄)|φ〉 and

|φ〉 = μ′
12|χ1(0)〉 (7.29)

|φ〉 is often referred to as the Franck–Condon wave packet with |χ1(0)〉 being the initial
(t = 0) stationary nuclear state in electronic state “1” with energy ε0, and μ′

12 = μ12 cosθ

is the projection of the electronic transition-dipole moment on the polarization vector of
the electric field. The nature of the excited-state wave packet clearly depends on the form
of the electric field.

Consider, for example, E(t) = E0δ(t − t0), that is, an ultrashort pulse. According to
Eq. (7.28), χ2(R, t) is then proportional to φ(R, t − t0). For t = t0, the wave packet is the
Franck–Condon wave packet, that is, the ground-state wave function times the transition-
dipole moment is transferred to the excited state at t = t0 and, subsequently, this wave
packet evolves in time on the excited-state surface. The transition-dipole moment
depends on the internuclear coordinates via the electronic wave functions. Neglecting
this dependence is referred to as the Condon approximation. This is often an excellent
approximation since, typically, the transition-dipole moment is essentially constant in
the range of internuclear distances where the initial vibrational state is non-vanishing.
The electronic transition described here is referred to as a “vertical transition”—the
energy is increased but the distribution of internuclear positions, described by χ1(R, t0),
is unchanged. Figure 7.2.3 illustrates the vertical transition (which is also referred to
as the Franck–Condon principle) and the subsequent dynamics. Note that for the
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Fig. 7.2.3 A true unimolecular reaction; here photodissociation of a diatomic molecule.

purpose of illustration it is assumed that μ12 = 1, but typical values are of the order of
1 debye = 3.3356 × 10−30 Cm. The vibrational ground state is normally well described by
a Gaussian wave function and the subsequent dynamics can (at least semi-quantitatively)
be described by the well-known dynamics of a Gaussian wave packet (Section 4.2.1).

For a general form of E(t), the excited-state wave function can be thought of as a
coherent superposition of Franck–Condon wave packets promoted to the upper state at
times t′ with different weighting factors and phases. At time t each of these wave packets
has evolved for a time t − t′.

The general outcome of photodissociation, say for a triatomic molecule,

ABC(n) −→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

AB(m)+ C

AC(m)+ B

A + B + C

A + BC(m)

(7.30)

is very similar to the bimolecular reaction described in Eq. (4.123). Photodissociation
can be considered as a “half collision,” where the dynamics start in the transition-state
region of the excited-state potential energy surface. State-to-state transition probabilities
can be calculated from the projection of χ2(R, t ∼ ∞) onto the various final states.

The coupling to the electromagnetic field depends on the orientation of the molecule,
and this will be reflected in the spatial distribution of the products. Consider, as an
example, a diatomic molecule with μ12 parallel to the molecular axis. For a spherically
symmetric initial state, the angular distribution is given by (cosθ)2. That is, no products
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will show up in the direction perpendicular to the field E0, whereas most products are
found parallel or anti-parallel to E0.

When a(t) = 1, the field E(t) in Eq. (7.24) describes a continuous wave with amplitude
E0. The transition probability to the excited state is given by 〈χ2(t)|χ2(t)〉, and in this case
a constant transition probability per unit time is found (after a few oscillations of the
electromagnetic field). For a direct reaction, this is equal to the rate constant of Eq. (7.5),
kn(hν). Using Eq. (7.28), it is found [3,4] that

kn(hν) = E2
0

2h̄2

∫ ∞

0
Re

{
eiEl t/h̄〈φ|Û2(t)|φ〉

}
dt (7.31)

where El = hν + ε0, and

Û2(t) = exp(−iĤ2t/h̄) (7.32)

is the propagator for nuclear motion in the excited electronic state, with the potential
energy surface E2(R), which for a direct reaction does not support any bound states
(as in Fig. 7.2.3). Again, the general features of the time evolution of the wave packet
are equivalent to the description in Section 4.2. The rate constant is proportional to the
strength of the electric field or, more precisely, the squared amplitude E2

0 , which can
be shown to be related to the intensity I of the field, or the photon density. Within the
Condon approximation, μ12 can be taken outside the integral and the rate then also
becomes proportional to μ2

12. Furthermore, it is easy to show that the integral is identical
to the so-called Franck–Condon factors, that is, overlaps between the initial stationary
state and the stationary states of the excited electronic state.

Examples of photo-activated reactions that have been studied intensively are the direct
ICN → I + CN, and the indirect NaI → NaI∗ → Na + I.

7.2.2.2 Apparent unimolecular reactions

The basic equation of motion is again the time-dependent Schrödinger equation for the
atomic nuclei, given by Eq. (4.112):

ih̄
∂χ(R, t)

∂t
= Ĥiχ(R, t) (7.33)

where Ĥi = T̂nuc + Ei(R). A subscript “i” has been added here to the Hamiltonian, in
order to emphasize that the equation describes the dynamics in this particular electronic
state (the same index is on the electronic energy). In a thermally activated unimolecular
reaction, the dynamics is normally associated with the electronic ground state i = 1.

When the reaction probability of the activated molecule A∗(E) is sufficiently small, see
Example 7.2 for an illustration, one can introduce the concept of quasi-stationary states.
These states, |n〉, associated with the slowly decaying “bound states” of A∗(E) are also
called resonance states. The dynamics of the states is, essentially, given by [3] Û (t)|n〉 =
e−i(E0

n −in/2)t/h̄|n〉. Note that, if |n〉 was a true stationary state, that is, an eigenstate of
the full Hamiltonian Ĥi , then n = 0. The probability of observing the molecule in a
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quasi-stationary state is given by |Û (t)|n〉|2 = e−nt/h̄; that is, a probability that decreases
with time according to the anticipated exponential law, and with a rate constant that can
be identified as kn = n/h̄.

Example 7.2 Photodissociation of NaI: an indirect reaction

NaI dissociates when it is excited from the electronic ground state to the first electronically
excited state. In the excited state the molecule, NaI∗, is trapped for several vibrational periods,
with a vibrational period close to 1 ps. The finite lifetime of NaI∗ is due to non-adiabatic
coupling to the electronic ground state. This coupling is largest when the energy spacing
between the electronic states is at a minimum, which is at the so-called avoided crossing at
an internuclear distance around 7 Å; see Fig. 7.2.4. Each time the wave packet passes through
this avoided crossing, a small fraction of the wave packet leaks into Na + I. The transition can
be described by the Landau–Zener formula, Eq. (4.194), with a transition probability that is
about 10%.

The decay of NaI∗ can be described in an alternative way [K.B. Møller, N.E. Henriksen, and
A.H. Zewail, J. Chem. Phys. 113, 10477 (2000)]. In the “bound” region of the excited-state
potential energy surface, one can define a discrete set of quasi-stationary states that are (weakly)
coupled to the continuum states in the dissociation channel Na + I. These quasi-stationary
states are also called resonance states and they have a finite lifetime due to the coupling to the
continuum. Each quasi-stationary state has a time-dependent amplitude with a time evolution
that can be expressed in terms of an effective (complex, non-Hermitian) Hamiltonian.

The decay of the individual quasi-bound (metastable) resonance states follows an exponen-
tial law. The wave packet prepared by an ultrashort pulse can be represented as a (coherent)
superposition of these states. The decay of the associated norm (i.e., population) follows
a multi-exponential law with some superimposed oscillations due to quantum mechanical
interference terms. The description given here is confirmed by experimental data.

Na++ I–

Na + I

Fig. 7.2.4 Photodissociation of NaI. Potential energy curves for the electronic ground state and the first
electronically excited state. The wave packet created by an ultrashort pulse and its subsequent dynamics
is indicated.
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The information about the decay of the resonance states can be extracted from a wave
packet propagation. The initial state χ(R, t0) = 〈R |χ(0)〉 is chosen such that it represents
a highly excited vibrational state of the reactant at an energy E > E0, and such that
it has substantial overlap, 〈n|χ(0)〉, with the resonance states and no overlap with the
products. The lifetimes τn = h̄/n can now be extracted from the autocorrelation function
〈χ(0)|χ(t)〉. Thus,

〈χ(0)|χ(t)〉 = 〈χ(0)|Û (t)|χ(0)〉
=

∑

n

〈χ(0)|Û (t)|n〉〈n|χ(0)〉

=
∑

n

〈χ(0)|e−i(E0
n −in/2)t/h̄|n〉〈n|χ(0)〉

=
∑

n

|〈n|χ(0)〉|2e−iE0
n t/h̄e−nt/2h̄ (7.34)

The Fourier transformation of this autocorrelation function,
∫ ∞
−∞ eiEt/h̄〈χ(0)|χ(t)〉dt,

gives an energy spectrum with lines centered at E0
n , and line shapes of a Lorentzian form.

The widths of these lines are n = h̄/τn and the rate constants can then be obtained as
kn = 1/τn.

Examples of unimolecular reactions that have been studied intensively are HCO∗
→ H + CO [S.K. Gray, J. Chem. Phys. 96, 6543 (1992)] and HO2

∗ → H + O2 [A.J.
Dobbyn et al., J.Chem.Phys.104, 8357 (1996)]. Larger molecules will have a high density
of states and the resonances will most likely be overlapping, that is, n can be larger than
the energy spacing between adjacent lines, making it impossible to extract the decay rates
of the individual resonance states.

7.3 Statistical Theories

In statistical theories of unimolecular reactions, the rate is determined from an approach
that does not involve any explicit consideration of the reaction dynamics.

The basic assumption in statistical theories is that the initially prepared state, in an
indirect (true or apparent) unimolecular reaction A∗(E) → products, prior to reaction
has relaxed (via IVR) such that any distribution of the energy E over the internal degrees
of freedom occurs with the same probability. This is illustrated in Fig. 7.3.1, where we
have shown a constant energy surface in the phase space of a molecule. Note that the
assumption is equivalent to the basic “equal a priori probabilities” postulate of statistical
mechanics, for a microcanonical ensemble where every state within a narrow energy
range is populated with the same probability. This uniform population of states describes
the system regardless of where it is on the potential energy surface associated with the
reaction.

Similar to the simplified descriptions of reaction dynamics discussed in previous
chapters, a reaction coordinate is identified and the rate is obtained by counting the rate
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pk

qi

ql

Fig. 7.3.1 A surface in the phase space where all states (corresponding to each point) have the same
energy. Furthermore, all states are populated with the same probability, indicated by the uniform shading.
A range of different molecular configurations is considered; the states within the closed curve can undergo
unimolecular reaction.

at which the molecules pass through a critical point along the reaction coordinate. This
point is assumed a point of no return where recrossings are neglected, that is, no detailed
description of the reaction dynamics is required.

7.3.1 The RRK theory

The RRK (after Rice, Ramsperger, and Kassel) theory is, like the Slater theory, a
model for a unimolecular reaction rather than a faithful representation. The molecule
is again represented by a collection of s uncoupled harmonic oscillators, which is an
exact representation close to a stationary point on the potential energy surface. One
of these oscillators, say oscillator number r, is associated with the reaction coordinate.
Reaction occurs if the energy Er exceeds the threshold energy of unimolecular reaction
in the reaction coordinate, and the rate constant is then equal to the associated vibrational
frequency, νr . As discussed in connection with Eq. (7.20), a frequency is the number
of complete oscillations per unit time, and, together with the energy criterion, the rate
constant is then equivalent to the number of times (per unit time) the amplitude of an
oscillator attains a critical value. Thus, the microcanonical rate constant is, according to
this model, given by

k(E) = νrPEr>E0(E) (7.35)

where PEr>E0(E) is the probability that Er > E0 for oscillator number r at the total energy
E ≥ Er > E0.
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The probability is calculated according to classical statistical mechanics
(Appendix B.2). According to Eq. (B.49), the density of states (number of states per
unit energy) for s uncoupled harmonic oscillators with frequencies νi is

N(E) = Es−1

(s − 1)!�s
i=1hνi

(7.36)

The assumption about a uniform probability for any distribution of the energy between
the harmonic oscillators may now be used to determine the probability PEr>E0(E). It can
be expressed as the ratio between the density of states corresponding to the situation
where the energy exceeds the threshold energy in the reaction coordinate and the total
density of states at energy E, that is, N(E) of Eq. (7.36).

Assume that the energy in the reaction coordinate is Er = E0 + E ′, where E ′ ∈
[0,E − E0]. Then the energy in the remaining s − 1 vibrational degrees of freedom is
E − (E0 + E ′). The density of states corresponding to this particular partitioning of the
energy is (E − [E0 + E ′])s−2/((s − 2)!�s−1

i=1hνi)× (E0 + E ′)0dE ′/(hνr), where dE ′/hνr is
the number of states in the reaction coordinate in the energy range [(E0 + E ′),(E0 + E ′)+
dE ′], and the first term is the density of states in the remaining s − 1 vibrational degrees of
freedom at the energy E − (E0 + E ′). Now we invoke the assumption that all partitionings
of the total energy between the reaction coordinate and the remaining vibrational degrees
of freedom are equally probable, and sum (integrate) over all partitionings of the energy
in order to get the total density. Thus,5

PEr>E0(E) = 1
N(E)

∫ E−E0

0

(E − [E0 + E ′])s−2

(s − 2)!�s−1
i=1hνi

(E0 + E ′)0

hνr
dE ′ (7.37)

The probability can be written in the following form, using Eq. (7.36):

PEr>E0(E) = (s − 1)

Es−1

∫ E−E0

0
(E − E0 − E ′)s−2dE ′

= (s − 1)

Es−1

[
− (E − E0 − E ′)s−1

(s − 1)

]E−E0

0

=
(

E − E0

E

)s−1

(7.38)

5 Note that the integral is a so-called convolution of two densities, i.e.,

Ntot(E) =
∫ E

E0

N1(E − E2)N2(E2)dE2

It can be shown formally that the total density of states for two independent degrees of freedom with the
densities N1(E) and N2(E) is obtained as a convolution of the densities.
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The microcanonical rate constant takes, accordingly, the form

k(E) = νr

(
E − E0

E

)s−1

(7.39)

for E > E0, and k(E) = 0 otherwise. Note that k(E) = νr for s = 1, and k(E) → νr for
E/E0 → ∞ when s > 1. Furthermore, at a fixed energy E > E0, k(E) decreases as a
function of s, that is, as a function of the number of degrees of freedom (see Fig. 7.3.2)
simply because the probability of having the “right” distribution of the energy decreases
with the number of oscillators.

When the energy levels are populated according to thermal equilibrium, we get
according to Eq. (7.15) the rate constant

k(T) =
∫ ∞

E0

k(E)P(E)dE (7.40)

where P(E) is the Boltzmann distribution for s uncoupled harmonic oscillators at
temperature T . This distribution is given in Eq. (B.51), and

k(T) =
∫ ∞

E0

k(E)
1

(s − 1)!
(

E
kBT

)s−1

exp(−E/(kBT))
dE

kBT

0

0.2

0.4
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E
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ν
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Fig. 7.3.2 The rate constant k(E) according to RRK theory, for a molecule with s vibrational degrees of
freedom.
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= νr

(s − 1)!
∫ ∞

E0

(
E − E0

kBT

)s−1

exp(−E/(kBT))
dE

kBT

= νr exp(−E0/(kBT))

(s − 1)!
∫ ∞

0
xs−1e−xdx (7.41)

where the variable x = (E − E0)/(kBT) was introduced in the last line. The integral in
the last line defines the Gamma function (s), which is equal to (s − 1)!. Thus,

k(T) = νr exp(−E0/(kBT)) (7.42)

which has the form of the Arrhenius equation with a constant prefactor. Vibrational
frequencies (νr) are typically in the range 1013 to 1014 s−1. Experimentally one often
finds, however, pre-exponential factors that are larger than 1014 s−1. Thus, a more
complete theory is needed.

7.3.2 The RRKM theory

The RRKM (after Rice, Ramsperger, Kassel, and Marcus) theory is, basically,
transition-state theory (see, in particular, the description in Section 6.2) applied to a
unimolecular reaction. Thus, one focuses on the activated complex

A∗ −→ A‡ −→ products (7.43)

which for a potential energy surface with a barrier is located at a saddle point. Unlike
RRK theory, the reaction coordinate is then precisely identified as being the coordinate
associated with the formation and decay of the activated complex, and the energy
threshold is determined from the properties of the potential energy surface at the position
of the complex; see Fig. 7.3.3.

7.3.2.1 The microcanonical rate constant k(E)

First, we want to derive an expression for the microcanonical rate constant k(E) when the
total internal energy of the reactant is in the range E to E + dE. From Eq. (7.43), the rate
of reaction is given by the rate of disappearance of A or, equivalently, by the rate at which
activated complexes A‡ pass over the barrier, that is, the flow through the saddle-point
region. The essential assumptions of RRKM theory are equivalent to the assumptions
underlying transition-state theory.

Besides the assumption of separability of the reaction coordinate from the other
degrees of freedom in the saddle-point region, and the assumption of classical dynamics
along the reaction coordinate, there are two key assumptions in the derivation:

• all possible ways of partitioning a given total energy between the internal degrees
of freedom of the activated complex and the translational energy of the reaction
coordinate are equally probable; and
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Zero-point energy of A‡

q1
‡

A‡

Fig. 7.3.3 Schematic illustration of the energetics in RRKM theory.

• a point of no return (corresponding to the activated complex) exists along the
reaction coordinate, that is, there are no recrossings of trajectories at this point.

The first assumption, that phase space is populated statistically prior to reaction, implies
that the ratio of activated complexes to reactants is obtained by the evaluation of the ratio
between the respective volumes in phase space. If this assumption is not fulfilled, then
the rate constant k(E, t) may depend on time and it will be different from kRRKM(E). If,
for example, the initial excitation is localized in the reaction coordinate, k(E, t) will be
larger than kRRKM(E). However, when the initially prepared state has relaxed via IVR,
the rate constant will coincide with the predictions of RRKM theory (provided the other
assumptions of the theory are fulfilled).

The derivation of the expression for k(E) consists of the following four steps.

• In the first step, we define the relevant activated complexes as “microcanonical
transition states” having a total energy H = E and a value for the reaction coordinate
q1 that lies between q‡

1 and q‡
1 + dq‡

1. The separation of the reaction coordinate from
the other degrees of freedom in the saddle-point region implies that the Hamiltonian
in this region can be written as

H = H‡
trans + H‡ (7.44)

where

H‡
trans = (p‡

1)
2

2μ1
= E‡

1 (7.45)
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corresponding to free motion along the reaction coordinate, and H‡ is the Hamilto-
nian for the internal degrees of freedom of the activated complex, with the reaction
coordinate omitted.

• In the second step, we evaluate the fraction of molecules in the transition state, for a
particular partitioning of the total energy between the internal degrees of freedom
of the activated complex and the translational energy associated with the reaction
coordinate. This fraction of molecules in the transition state is evaluated as the
number of states in the transition state divided by the total number of states of the
reactant6 and is denoted by dN‡(q‡

1,p‡
1)/N(E). The number of states at the energy

E is in quantum mechanics referred to as the degeneracy, and when the energy is
continuous (i.e., classical mechanics) as the density of states, that is, the number of
states per unit energy. We denote in the following N(E) as a density of states.

According to classical statistical mechanics (Appendix B.2) dq‡
1dp‡

1/h is the

number of states in the reaction coordinate at the position q‡
1 and the momentum p‡

1

(corresponding to the particular energy E‡
1 in the reaction coordinate). The energy,

measured relative to the zero-point level at the transition state, for all degrees of
freedom except the reaction coordinate is E

′ = E − E‡
1 − E0, and we get

dN‡(q‡
1,p‡

1)

N(E)
= (dq‡

1dp‡
1/h)N‡(E − E‡

1 − E0)

N(E)
(7.46)

where N(E) is the density of states of the reactant and N‡(E) is the density of
states of the transition state (except for the reaction coordinate). Note that the
“microcanonical transition states” have a fixed value for the reaction coordinate
q‡

1 (within an infinitesimal region dq‡
1), whereas the remaining coordinates as well

as all the momenta can take any value as long as the total energy equals H = E.

• In the third step, the number of activated complexes that pass over the barrier per
unit time is evaluated, assuming the same partitioning of the total energy as before,
that is, at the momentum p‡

1.

From Hamilton’s equation of motion, dq‡
1/dt = ∂H‡

trans/∂p‡
1 = p‡

1/μ1, we have

that dq‡
1 = (p‡

1/μ1)dt, or dt = dq‡
1/(p

‡
1/μ1), which is the time it takes the activated

complexes to cross the transition-state region as defined by dq‡
1 (i.e., the “lifetime”

of the activated complex). The rate is then equal to dN‡(q‡
1,p‡

1) divided by dt; that
is, from Eq. (7.46),

dN‡(p‡
1)

dt
= dE‡

1N‡(E − E‡
1 − E0)

hN(E)
N(E) (7.47)

where Eq. (7.45) was used, which implies that dE‡
1 = (p‡

1/μ1)dp‡
1.

6 The number of states in the transition state is neglected in the denominator, since this number will be
negligible compared to the reactant phase space.
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By identifying dN‡(p‡
1)/dt with the rate of reaction, we used the assumption

of a configuration of no return, which in the context of dynamics implies that
it is not necessary to follow the trajectories all the way from the reactant to the
product valley; it is sufficient to count the rate at which molecules pass through the
critical configuration. When there is a barrier along the reaction path, the location
of the barrier is a good choice for a point of no return. Trajectory calculations
show that the assumption of no recrossings holds for trajectories with low energies
that just make it past the barrier. In general, the assumption of no recrossings will
overestimate the true rate.

• In the final step, the total number of activated complexes that pass over the barrier
per unit time is evaluated, allowing all possible partitionings of the total energy; that
is, we evaluate the total rate of reaction.

This number is obtained by integration over E‡
1 from 0 to E − E0 (corresponding

to the situation where all available energy is in the reaction coordinate). Thus,

dN‡

dt
=

∫ E−E0
0 dE‡

1N‡(E − E‡
1 − E0)

hN(E)
N(E) (7.48)

In this step, we used the assumption that all possible ways of partitioning a given
total energy between the internal degrees of freedom of the activated complex and
the translational energy of the reaction coordinate are equally probable. In terms of
dynamics, an efficient interchange of vibrational and translational energy along the
reaction path is required. That is, it is assumed that there is no bias for the energy
to go into particular degrees of freedom, that is, a total randomization of the energy
is required.

The rate constant k(E) is defined by the relation −dN(E)/dt = k(E)N(E), and
from dN‡/dt = −dN(E)/dt we may identify the rate constant in Eq. (7.48) to be

k(E) =
∫ E−E0

0 dE‡
1N‡([E − E0] − E‡

1)

hN(E)
≡ G‡(E − E0)

hN(E)
(7.49)

where G‡(E − E0) is the sum of states in the transition state (with the reaction
coordinate omitted) at the energy E − E0; that is, the total number of states at or
below the energy E − E0. N(E) is the density of states of the reactant.

We now introduce a correction/amendment to this expression. The (overall) rotational
motion was implicitly neglected in the derivation of k(E). The overall rotational energy
is not active (available) in overcoming the energy threshold; therefore, we subtract the
rotational energy from the total energy in Eq. (7.49). The rotational energy is, however,
not always constant when a molecule undergoes unimolecular reaction. Consider, as
an example, unimolecular dissociation; the activated complex is usually larger than the
stable molecule, since at least one of the bonds extends as the molecule dissociates; the
activated complex therefore has larger moments of inertia. Since conservation of angular
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momentum requires that, as the molecule undergoes unimolecular reaction, it does not
change its total angular momentum quantum number J, the total rotational energy of the
complex E‡

r is then less than the rotational energy in the reactant Er (consider, e.g., the
rotational energy of a linear molecule, EJ = h̄2J(J + 1)/2I). The total internal energy is
conserved and therefore the difference in rotational energy is released into the vibrational
degrees of freedom of the activated complex. Thus, we subtract the overall rotational
energy, for the reactant and the activated complex, respectively:

kRRKM(E) = G‡(E − E0 − E‡
r )

hN(E − Er)
(7.50)

where E = Ev + Er is the sum of vibrational and rotational energy and E − E0 = E‡ + E‡
r ,

where E‡ is the available energy of the activated complex excluding rotational energy.
Note that Planck’s constant h has the unit [energy × time], the sum of states is dimen-
sionless, the density of states has the unit [energy]−1, that is, the rate constant has the
proper unit for a unimolecular rate constant, that is, [time]−1.

Motion along the reaction coordinate was limited to classical mechanics, whereas
the sum and density (or, to be precise, the degeneracy) of states should be evaluated
according to quantum mechanics. The integral in Eq. (7.49) should really be replaced
by a sum; N‡(E) is not a continuous function of the energy, but due to the quantization
of energy, it is only defined at the allowed quantum levels of the activated complex. That
is, the sum of states G‡(E‡) should be calculated exactly by a direct count of the number
of states:

G‡(E‡) =
∑

i

�(E‡ − E‡
i ) (7.51)

where the sum runs over all states of energy E‡
i of the activated complex, and the unit step

function is defined in Eq. (6.33). Thus, according to RRKM theory, the rate constant
increases in a stepwise manner as the internal energy increases; see Fig. 7.3.4. This
prediction has been confirmed experimentally [5,6]. Since the density of states N(Ev)

is essentially continuous at high energies (E > E0), a classical evaluation of this quantity
suffices in most cases. It will be evaluated in the following.

An additional consequence of the omission of rotation is that symmetry numbers (see
Appendix B.1.1) were ignored in calculating the sum and density of states. Thus, the
sum of states of the activated complex and the density of states of the reactant should be
divided by their symmetry numbers, σ ‡ and σ , respectively.

The information needed for calculating the sum and density of states in Eq. (7.50)
includes the barrier height corrected for zero-point energies E0 (see Eq. (6.15)), and the
geometry and the vibrational frequencies of the activated complex and the reactant. From
the geometry one can determine the moments of inertia and the rotational energy for a
given rotational quantum state. Obtaining the structure and properties of the activated
complex including E0 is the most difficult part. These properties can all be derived
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Fig. 7.3.4 Schematic illustration of the rate constant k(E) according to RRKM theory.

from the potential energy surface, and with modern ab initio programs (Chapter 3)
this information can be obtained with high accuracy, especially for molecules where the
number of electrons is fairly small. There are two general situations: (i) a saddle point
exists and the previously mentioned programs can directly determine the properties of
the activated complex; (ii) no saddle point exists on the potential energy surface—this
happens quite often for unimolecular reactions, see, for example, Fig. 3.1.6. In the second
case where there is no barrier on the surface we have to generalize our definition of the
activated complex.

To that end, variational transition-state theory has been introduced, which is based
on Wigner’s variational theorem, Eq. (5.10). When a saddle point exists, it represents a
“bottleneck” between reactant and products. It is the point along the reaction coordinate
where we have the smallest rate of transformation from the reactant to products. This
can be seen from Eq. (7.50), where it should be noted that only the sum of states G‡(E‡)

changes as the reaction proceeds along the reaction coordinate. We have the smallest sum
of states of the activated complex G‡(E‡) on top of the barrier because at this point the
available energy E‡ is at a minimum; see Fig. 7.3.3.

In the absence of a saddle point, we have to search for the configuration corresponding
to a minimum in the sum of states. The potential energy will in this case be constantly
rising as the reaction proceeds from the configuration of the stable reactant to the
products; see Fig. 7.1.3 for an illustration. The existence of a minimum in the sum
of states is due to the interplay between the constantly rising potential energy and the
decrease in the vibrational frequencies that are evolving into product rotations and
translations. As the reaction proceeds, the reduction in the available energy will reduce the
sum of states while the lowering of the vibrational frequencies increases the sum of states.
These opposing factors result in a minimum in the sum of states at some point along the
reaction coordinate. Thus, in variational transition-state theory the rate constant, that is,
G‡(E‡), is calculated as a function of the reaction coordinate, and the minimum identifies
the activated complex.
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More explicit insights into the predictions of RRKM theory are obtained when the
following approximations are introduced:

• rotational motion is neglected;

• the sum and density of vibrational states are calculated classically.

From Appendix B.2, we have classical expressions for the sum and density of states of s
uncoupled harmonic oscillators. Thus, the sum of states is

G(E) = Es

s!�s
i=1hνi

(7.52)

and the density of states is

N(E) = dG(E)/dE

= Es−1

(s − 1)!�s
i=1hνi

(7.53)

Now, if there are s degrees of freedom in the reactant with frequencies νi , there are
s − 1 degrees of freedom in the activated complex with frequencies ν

‡
i , when the reaction

coordinate is excluded (assuming that the reactant as well as the activated complex are
linear or non-linear, respectively). When these approximations are introduced in RRKM
theory, we get

k(E) = G‡(E − E0)

hN(E)

= (E − E0)
s−1

(s − 1)!�s−1
i=1hν

‡
i

/
h

Es−1

(s − 1)!�s
i=1hνi

= �s
i=1νi

�s−1
i=1ν

‡
i

(
E − E0

E

)s−1

(7.54)

The dimension of the factor �s
i=1νi/�s−1

i=1ν
‡
i is that of a frequency. If the frequencies of

the reactant and the activated complex are not too different, this frequency is roughly
a typical vibrational frequency νr (typically in the range 1013 to 1014 s−1). Since the
energy-dependent factor is less than one, we have that the microcanonical rate constant
k(E) < νr , that is, it is less than a typical vibrational frequency. The energy dependence as
a function of the number of vibrational degrees of freedom was illustrated in Fig. 7.3.2,
and as shown previously in Eq. (7.38) it can be interpreted as the probability that the
energy in one out of s vibrational modes exceeds the energy threshold E0 for the reaction.
Note that if we make the identification νr ∼ �s

i=1νi/�s−1
i=1ν

‡
i , we have recovered RRK

theory, Eq. (7.39), from RRKM theory.
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The classical evaluation of the sum and density of vibrational states can introduce
quite large errors, especially at low energies and for molecules with many vibrational
degrees of freedom. Equation (7.52) gives the sum of vibrational states when we have
a vibrational energy E, measured relative to the lowest possible vibrational energy, that
is, zero in this classical description. Consider, as a simple example, the evaluation of the
sum of states for a single harmonic oscillator. According to Eq. (7.52), the classical result
is Gcl(E) = E/(hν1), whereas the quantum result according to Eq. (7.51) is an integer
given by Gqm(E) = [E/(hν1)+ 1]int; the subscript “int” means the integer part and E is
the energy in excess of the lowest possible vibrational energy Ez = hν1/2. We see that
the classical expression in Eq. (7.52) underestimates the true number of states. At low
energies, the relative error introduced by the classical expression is quite large, even for
this simple example where only a single oscillator is considered. The two expressions are
similar when the energy is large compared to hν1.

A simple correction to the classical approach to the evaluation of the sum of vibrational
states has been suggested. As before, the sum of states is evaluated at a vibrational energy
E, measured relative to the lowest possible energy, and we now use that, according to
quantum mechanics, this vibrational energy is Ez, that is, the zero-point energy. We can
obtain an improved estimate of the sum of states simply by replacing E by E + Ez in
Eq. (7.52), where Ez is the zero-point energy (see Appendix B.2.1 and Problems 7.3
and 7.6). This approach is an improvement but still not highly accurate. For a detailed
account on the evaluation of sums and densities of molecular quantum states, the reader
should consult the literature [1,7,8].

Before closing the general discussion of Eq. (7.50), we note that quite often a molecule
can dissociate (or isomerize) to more than one set of products; for a triatomic molecule,
for example,

ABC∗ −→
{

AB + C
A + BC

(7.55)

which means that the reaction may proceed via several activated complexes. Then, for
each reaction, we have a rate constant given by Eq. (7.50), and the total decay rate of ABC
is given by the sum of all the dissociation rate constants. The branching ratio between
the channels is given by the ratio of the rate constants (see, e.g., Problem 7.7).

An important question is: how accurate is RRKM theory? One answer comes from
detailed dynamical calculations on small molecules. These studies have, for example,
shown that the energy dependence of the rate constant can be much stronger than
predicted by RRKM theory. For example, the decay rates of the individual resonance
states in HO2

∗ → H + O2 can vary over several orders of magnitude even within a very
narrow energy range. However, when the rates are convoluted with a Gaussian with a
width corresponding to a few hundred cm−1, the rate constant agrees well with the
predictions of RRKM theory. Larger molecules will have a high density of states and
the resonances will most likely be overlapping (see Section 7.2.2), making it impossible
to extract the decay rates of the individual resonance states. Thus, the question of the
accuracy of RRKM theory must be analyzed in comparison to experimental data. Here,
a number of studies show that the microcanonical rate constant predicted by RRKM
theory agrees with experiments, within the experimental uncertainty.
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7.3.2.2 The canonical rate constant k(T)

Finally, when the energy levels are populated according to thermal equilibrium, we get
the rate constant k(T) by applying Eq. (7.15):

k(T) =
∫ ∞

E0

k(E)P(E)dE (7.56)

where P(E) is the Boltzmann distribution, which in the following calculation we use in its
classical statistical mechanical form, that is, P(E) = N(E)exp(−E/kBT)/Q, according to
Eq. (B.6), where N(E) is the density of states.

The total internal energy is written in the form E = E‡ + E0, and with k(E) given by
Eq. (7.49) we obtain7

k(T) = 1
hQ

∫ ∞

E0

G‡(E − E0)e−E/kBT dE

= e−E0/kBT

hQ

∫ ∞

0
G‡(E‡)e−E‡/kBT dE‡

= −kBT
e−E0/kBT

hQ

∫ ∞

0
G‡(E‡)

[
d

dE‡
e−E‡/kBT

]
dE‡

= −kBT
e−E0/kBT

hQ

{[
G‡(E‡)e−E‡/kBT

]∞
0

−
∫ ∞

0

dG‡(E‡)

dE‡
e−E‡/kBT dE‡

}

= kBT
h

∫ ∞
0 N‡(E‡)e−E‡/kBT dE‡

Q
e−E0/kBT (7.57)

where partial integration and G‡(E‡ = 0) = 0 was used in the fourth line and in the
last line N‡(E‡) = dG‡(E‡)/dE‡. The integral is identified as Q‡ and the well-known
expression of transition-state theory is obtained:

k(T) = kBT
h

Q‡

Q
exp(−E0/(kBT)) (7.58)

where Q‡ and Q are vibrational–rotational partition functions for the activated complex
(with the reaction coordinate omitted) and the reactant. The expression in Eq. (7.58) is
often referred to as the unimolecular rate constant in the high-pressure limit. For appar-
ent unimolecular reactions activated by inelastic collisions, it is shown in Section 7.4.2
that under high-pressure conditions an equilibrium (Boltzmann) distribution of reac-
tants is maintained. This condition is equivalent to the assumption behind Eq. (7.56).

From Eq. (7.58), we see that the pre-exponential factor in k(T), roughly, corresponds
to a typical vibrational frequency, kBT/h = 6.25 × 1012 s−1 at T = 300 K. We can

7 The same expression for k(T) can be derived from Eq. (7.50).
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also understand why the pre-exponential factors can be larger than typical vibrational
frequencies (which could not be accounted for in RRK theory). If we, for a moment,
assume that the rotational contributions to the partition functions cancel (corresponding
to a negligible change in the geometry between the reactant and the activated complex)
and focus on the vibrational degrees of freedom in the classical (high-temperature) limit,
we get, according to Eq. (B.50),

k(T) ∼ kBT
h

(kBT)s−1/�s−1
i=1hν

‡
i

(kBT)s/�s
i=1hνi

exp(−E0/(kBT))

= �s
i=1νi

�s−1
i=1ν

‡
i

exp(−E0/(kBT)) (7.59)

where we assumed that the reactant as well as the activated complex are linear or
non-linear, respectively. Thus, we see again that the pre-exponential factor in k(T),
roughly, corresponds to a typical vibrational frequency, but if �s−1

i=1ν
‡
i < �s−1

i=1νi the pre-
exponential factor will be larger than the vibrational frequency, νs. This corresponds to
a “loose” transition state, as illustrated by Example 7.3.

Example 7.3 The lifetime of CH3CO

Using femtosecond spectroscopy, the lifetime of the acetyl radical (CH3CO),

CH3CO −→ CH3 + CO

has been measured as a function of the internal energy [J. Chem. Phys. 103, 477 (1995)]. We
can estimate the lifetime via RRKM theory.

The potential energy surface for the reaction has been calculated and the classical barrier
height associated with the activated complex is Ecl = 90.8 kJ/mol. The relevant vibrational
frequencies are given in the table here. (Note that the imaginary frequency of the activated
complex is not included in the table.)

CH3CO (CH3CO)‡

ν̃i/cm−1 ν̃i/cm−1

3193 3325
3188 3321
3175 3225
1928 2027
1478 1452
1477 1445
1361 901
1062 568

960 566
884 276
468 43
101
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First, we calculate the barrier height (E0), corrected for vibrational zero-point energies, using
Eq. (6.15). Thus (1 cm−1 = 0.01196 kJ/mol),

E0 = 90.8 kJ/mol + (8574.5 − 9637.5) × 0.01196 kJ/mol

= 78.2 kJ/mol

that is, a significant difference between E0 and Ecl.
Second, we calculate the unimolecular rate constant at the internal energy E via the RRKM

theory. We use Eq. (7.54), where the rotational energy is neglected and where the sum and
density of vibrational states are evaluated classically. Thus at E = 184 kJ/mol we get

k(E) = �s
i=1νi

�s−1
i=1ν

‡
i

(
E − E0

E

)s−1

= �12
i=1νi

�11
i=1ν

‡
i

(
184 − 78.2

184

)11

= 15147.8 × 2.27 × 10−3 cm−1

= 1.03 × 1012 s−1

where in the last line we have used the connection between frequency and wave number, ν = cν̃.
The lifetime expressed as the half-life time, τ = ln2/k, is then 671 fs.

It should be noted that the result in Eq. (7.59) is strictly valid only in the classical
high-temperature limit that, except for very high temperatures, is not well satisfied for
typical vibrational frequencies. Qualitatively, a similar result will also be obtained when
the exact vibrational partition functions are used in Eq. (7.58). Rotational contributions
were also neglected, but the moments of inertia associated with the activated complex are
often larger than the moments of inertia of the reactant. Thus, we have very often that
Q‡ > Q, and large pre-exponential factors may often arise due to a “loose” transition
state as well as due to a substantial change in geometry between the reactant and the
activated complex.

7.4 Collisional Energy Transfer and Reaction

In a true unimolecular reaction, the energized molecules are formed by absorption of
electromagnetic radiation; see Section 7.2.2. In an apparent unimolecular reaction, the
first step is the formation of the energized molecules by collisions with other molecules.
We consider in the following subsections the formation of energized molecules—by
bimolecular collision—and their subsequent reaction. Energized molecules are formed
by (i) thermal activation, due to inelastic collisions where translational energy is converted
to vibrational energy, A + M → A∗ + M; or by (ii) chemical activation, where a long-lived
intermediate is formed in a bimolecular complex mode reaction, A + B → (AB)∗, that is,
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the long-lived complex (AB)∗ can be considered as an activated molecule; formed over
a potential well on the potential energy surface.

7.4.1 Inelastic collisions and reaction

The energy needed for activation of a molecule can be provided by collisions with other
molecules, as in

A(n)+ M −→ A(m)+ M (7.60)

where M is an (inert) buffer gas or any molecule that does not react with the A molecule,
which could be A itself. We distinguish between an elastic collision process, if quantum
states n and m are identical, and an inelastic collision process when n �= m. Note that
inelastic collisions are equivalent to energy transfer between molecules. In the present
case, for example, there will be transfer of relative translational energy between M and
A to vibrational energy in A, when m > n. The dynamics of such an inelastic collision
process can, of course, be described in detail by the equation of motion of the atomic
nuclei, the time-dependent Schrödinger equation in Eq. (1.11).

Activation by inelastic collisions is also called thermal activation. After a large number
of collisions, a distribution over internal (rotational and vibrational) states will be
established as given by the Boltzmann distribution at the given temperature (see also
Example 2.2).

For collision complexes (AB)∗ or activated molecules A∗, there are typically too many
quantum states at the energies of interest to resolve them all, and only the total energy E
is specified. The inelastic collisions are now of the form

(AB)∗(E)+ M −→ (AB)∗(E ′)+ M (7.61)

Such collisions will result in a certain population of the energy states. These populations
may differ from thermal equilibrium distributions—depending on the concentration
of M and the interplay with unimolecular reaction, (AB)∗(E) → products. Similarly to
Eq. (7.15), the rate constant for the reaction can be represented as an integral over the
microcanonical rate constant, for example, kRRKM(E) from RRKM theory, multiplied by
the populations. More detailed descriptions of the competition between energy transfer
collisions and reaction are given by so-called master equations.

7.4.2 Inelastic collisions and reaction, Lindemann mechanism

The activation in A + M → A∗ + M and its interplay with chemical reaction is often
described by a simplified so-called (generalized) Hinshelwood–Lindemann mechanism:

A + M
dk1(E)−→ A∗(E)+ M

A∗(E)+ M
k−1−→ A + M

A∗(E)
k(E)−→ products (7.62)
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where dk1(E) is the rate constant for activation of the molecule to an energy in the range
[E,E + dE]. Note that k−1 is assumed to be independent of the energy. We introduce the
steady-state approximation for the activated molecule:

d[A∗(E)]
dt

= dk1(E)[A][M] − k−1[A∗(E)][M] − k(E)[A∗(E)]

= 0 (7.63)

which implies

[A∗(E)] = dk1(E)[A][M]
k−1[M] + k(E)

(7.64)

The rate of reaction is

Rate = k(E)[A∗(E)]

= k(E)dk1(E)[M]
k−1[M] + k(E)

[A]

≡ kuni(E)[A] (7.65)

The apparent unimolecular rate constant kuni may be written

kuni(E) = k(E)dk1(E)[M]
k−1[M] + k(E)

= k(E)dk1(E)/k−1

1 + k(E)/(k−1[M])

= k∞
uni

1 + k∞
uni/(dk1(E)[M])

(7.66)

where k∞
uni(E) is the rate constant in the high-pressure limit ([M] → ∞), which is

given by

k∞
uni(E) = lim

[M]→∞kuni(E)

= k(E)(dk1(E)/k−1) (7.67)

Note that kuni(E), in general, is a function of [M].
In high pressure ([M] → ∞), the rate in Eq. (7.65) is given by a first-order expression

in [A] with rate constant k∞
uni(E). In the low-pressure limit ([M] → 0) we find



232 Unimolecular Reactions

k0
uni(E) = lim

[M]→0
kuni(E)

= dk1(E)[M] (7.68)

and the rate in Eq. (7.65) is given by a second-order expression, when the activation step
is the rate-limiting step.

The ratio of rate constants in Eq. (7.67) has a simple interpretation. When the rate of
reaction is small compared to the rates of activation/deactivation, we have from Eq. (7.63)
dk1(E)[A][M] = k−1[A∗(E)][M], which implies

dk1(E)/k−1 = [A∗(E)]/[A]

= P(E)dE (7.69)

where P(E)dE is the probability of finding an A molecule in the energy range [E,E + dE].
To obtain the thermal rate constant, we must integrate kuni(E) over energy. In the

high-pressure limit [M] → ∞, we use Eqs (7.67) and (7.69), and obtain

k∞
uni(T) =

∫ ∞

E0

k(E)P(E)dE (7.70)

and the expression is identical to Eq. (7.15).
In the low-pressure limit [M] → 0, we use Eqs (7.68) and (7.69), and obtain

k0
uni(T) = k−1[M]

∫ ∞

E0

P(E)dE (7.71)

Thus, the rate in this limit is proportional to the fraction of molecules with energies above
the energy threshold for a unimolecular reaction.

7.5 Detection and Control of Chemical Dynamics

Recently, two basic questions of chemical dynamics have attracted much attention: first,
is it possible to detect (“film”) the nuclear dynamics directly on the femtosecond time
scale; and second, is it possible to direct (control) the nuclear dynamics directly as it
unfolds? These efforts of real-time detection and control of molecular dynamics are
also known as femtosecond chemistry. Most of the work on the detection and control
of chemical dynamics has focused on unimolecular reactions where the internuclear
distances of the initial state are well defined within, of course, the quantum mechanical
uncertainty of the initial vibrational state. The discussion in the following builds on
Section 7.2.2, and we will in particular focus on the real-time control of chemical
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dynamics. It should be emphasized that the general concepts discussed in the present
section are not limited to reactions in the gas phase.

7.5.1 Detection of chemical dynamics

We know that the key events of chemical reactions take place on a femtosecond time
scale. Recent fundamental breakthroughs in experimental methods have made it possible
to resolve—in real time—the transformation from reactants to products via transition
states [9–11]. This spectacular achievement was made possible by the development of
femtosecond lasers, that is, laser pulses with a duration as short as a few femtoseconds.

To monitor fast events in time, firstly, a precise zero of time must be established. To
that end, a femtosecond pulse is used to excite the system and initiate the dynamics. This
pulse is called a pump pulse, and a nuclear wave packet is created as described in Section
7.2.2. Secondly, the different dynamical states must be detected as the dynamics unfolds.
Two approaches can, in principle, be taken: (i) the detector operates in a continuous
mode and it has to be fast enough to resolve every step of the dynamical process, or
(ii) the detector operates in a pulsed mode, that is, a short (femtosecond) pulse of
radiation is used to detect (“illuminate”) the instantaneous state of the system. In the
latter approach, the pulse is called a probe pulse. The probe pulse must arrive at the system
at a well-defined time delay with respect to the pump pulse (this delay can be introduced
by letting the probe pulse travel a slightly longer distance than the pump pulse). The
pump–probe approach has so far been the only method that can resolve dynamics in the
femtosecond regime.

Various detection methods can be used, depending on the (central) frequency of the
probe pulse. So far, the shortest pulses have been laser pulses generated at wavelengths
close to visible light. In this case, the probe pulse can be tuned to be in resonance with
an electronic transition, coupling the electronic state where the wave packet was created
with another higher-lying electronic state. Note that, since the energy difference between
electronic states will depend on the internuclear distances, the resonance condition is
associated with a certain set of distances. The radiation of the probe pulse will then be
absorbed by the molecular system, at the time where the wave packet created by the
pump pulse has reached the internuclear positions corresponding to resonance. An early
application of this approach was to the direct photodissociation of ICN into I + CN,
where it was possible to detect the different stages of the bond breaking and to witness the
“birth” of CN. Another method of detection is based on ultrafast scattering, for example,
x-ray scattering; that is, an extension of the well-known structural determination for static
structures into dynamical non-equilibrium structures. An advantage of the scattering
method is that the relation between the internuclear distances and the time-resolved
signal is more direct, that is, a detailed knowledge of various excited electronic states
is not required.

In the theoretical analysis of such experiments, the finite duration of the pulses
must be taken into account and, consequently, that nuclear motion might occur during
probing [12].
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7.5.2 Control of chemical dynamics

A central objective of chemistry is how to “steer” the reactants into a particular desired
product. In order to attain this goal, the reaction might be assisted by a catalyst and
perhaps by a proper choice of solvent. The outcome of chemical reactions is, in addition,
determined by the energy that is supplied to the reactants.

The way that energy is injected into the molecular system affects the dynamics, that
is, the motion under the influence of the forces, and hence the outcome of the reaction.
Traditionally, the necessary energy of activation that is required in order for a chemical
reaction to take place is supplied in the form of heat, that is, by thermal activation.
This approach gives rise to a distribution of population over the molecular energy states
that follows the Boltzmann distribution. Alternatively, the energy can be supplied in the
form of electromagnetic radiation, as is known from traditional photochemistry where a
monochromatic light source can create an energy state in the molecular system with a
very well-defined energy. With short laser pulses of so-called coherent electromagnetic
radiation it is possible to create dynamical states in molecules that cannot be created by
heating or by traditional photochemistry. Experimentally, one can now “design” tailored
laser pulses with a duration that is shorter than typical vibrational periods. This provides,
in principle, new possibilities for controlling molecular dynamics and chemical reactions
directly on the femtosecond time scale where they take place.

Thus, the key point is [13–15] to circumvent the Boltzmann distribution (i.e., “the
temperature”) by replacing the “heat bath” by a controllable electromagnetic field. This
generates distributions over the molecular states that are inaccessible when energy is
supplied in the form of heat. In addition, when the electromagnetic field is generated by
a laser there is a more fundamental difference: laser excitation is a coherent excitation of
states; this is explained in more detail next.

Perhaps the simplest approach is obtained by noting that with electromagnetic
radiation we can control the supply of energy into specific molecular degrees of freedom
prior to reaction, for example, in the form of pre-excitation of vibrational degrees of
freedom of the reactants. This might affect the reactivity; we have already, in Section 4.2,
discussed the concept of mode-selective chemistry for bimolecular reactions, that is, the
notion that not all partitionings of the total energy might be equally effective in promoting
a reaction. Example 7.4 illustrates this concept for a unimolecular reaction: the direct
photodissociation of HOD.

Example 7.4 Controlling the chemical nature of products

Consider the reaction

H + OD
↗

HOD
↘

D + OH
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The potential energy surfaces of the ground as well as the first electronically excited state of
HOD are shown in Fig. 7.1.1. When the photodissociation is induced by ultraviolet (UV) light
corresponding to an excitation to the first electronically excited state of HOD, the branching
ratio between H + OD and D + OH depends on the frequency of the radiation but in such a
way that one will always get, at least, about twice as much H + OD as D + OH.

As in Example 4.2, the branching ratio between the two product channels can be controlled
by appropriate vibrational pre-excitation of HOD [16]. For example, when the initial state
is a vibrationally excited state of HOD corresponding to four quanta in the HO–D stretch,
the channel D + OH is exclusively populated in a subsequent unimolecular photodissociation
reaction induced by a UV-photon. The energy of the UV-photon must, however, lie within a
rather narrow energy range.

The approach illustrated in Example 7.4 works only in special cases. It is clear that
a more general approach to microscopic control would involve an active intervention
during the course of the reaction; that is, femtosecond-laser pulses are required [17,18].

To that end, we take a look at the electromagnetic field of a laser pulse. When the
electromagnetic wave propagates in space, the electric and magnetic fields and the
direction of propagation are mutually orthogonal. We assume in the following that
the electric field is linearly polarized, that is E(t) = E(t)ê, where ê is a unit vector in
the direction of polarization. Neglecting the spatial variation of the field (compared to
molecular dimensions), the electric field of a laser pulse can be represented as a phase-
coherent superposition of different frequency components

E(t) = E0Re
[∫ ∞

−∞
A(ω)eiφ(ω)e−iωtdω

]
(7.72)

where E0 determines the amplitude of the field, A(ω) is the real-valued distribution
of frequencies, and φ(ω) is the real-valued frequency-dependent phases. A(ω) is non-
zero only for positive frequencies. Note that the phase coherence means that there is a
definite phase relationship between all the frequency components. The electric field E(t)
in Eq. (7.72) is represented as a Fourier transform of the frequency distribution. The
widths of Fourier transform pairs are related according to

�t�ω ≥ 1/2 (7.73)

where �t and �ω are the standard deviations in the distributions |E(t)|2 and |A(ω)|2,
respectively. Thus, a pulsed field must have a frequency spread given by �ω ≥ 1/(2�t).

Due to the latest advances in laser pulse-shaping technology, one can modulate the
frequency distribution and the phases of each spectral component of a short pulse
[19]. In this way it is possible to experimentally tailor, essentially, any laser pulse shape
E(t) according to Eq. (7.72). The modulation is, however, limited by the frequency
distribution (bandwidth) of the original pulse.
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As a special case, consider a pulse with a flat (constant) phase φ(ω) = 0 and a
frequency distribution centered at ω = ω0. Then,

E(t) = E0Re
[∫ ∞

−∞
A(ω′ + ω0)e−iω′tdω′e−iω0t

]

= E0a(t)cos(ω0t) (7.74)

where ω′ = ω − ω0 and the pulse envelope a(t) is the Fourier transform of the frequency
distribution that is assumed to be a symmetric (even) function around ω = ω0, such that
the Fourier transform becomes a real-valued function. This expression is identical to the
form of the electric field introduced in Eq. (7.24). When A(ω) is a Gaussian frequency
distribution, A(ω) ∝ exp(−a(ω − ω0)

2), it can be shown that �t�ω = 1/2. Such a pulse
is denoted a transform-limited pulse, that is, it has the smallest product of widths in time
and frequency.

For a plane-polarized field, the total energy (flux) of a pulse passing through a unit
area perpendicular to the direction of propagation is related to the so-called Poynting
vector and given by

Ep = ε0c
∫ ∞

−∞
|E(t)|2dt

= 2πε0c
∫ ∞

−∞
|A(ω)eiφ(ω)|2dω

= 2πε0c
∫ ∞

−∞
|A(ω)|2dω (7.75)

where ε0 is the vacuum permittivity, c is the speed of light and the general representation
of the field in Eq. (7.72), and Parseval’s theorem for Fourier transform pairs was used
in the second line. This result shows that pulse shaping obtained via pure phase, φ(ω),
modulation will leave the pulse energy unchanged, that is, the pulse energy is determined
solely from the frequency distribution. The (instantaneous) intensity of the field is given
by ε0c|E(t)|2.

Next, we return to the basic equations of motion of a molecule in the presence of
an electromagnetic field. We have already discussed the equation of motion for the
atomic nuclei in the case where two electronic states are coupled by the field; that is,
Eq. (7.25). This situation describes, typically, the dynamics induced by fields in the
visible or ultraviolet (UV) spectral region. We observe from the equation of motion that
a necessary condition for electronic excitation is that the electronic states are coupled by
a non-vanishing transition-dipole moment.

When the center frequency of the field is below the visible region, the dynamics
will be confined to the electronic ground state. This is, typically, dynamics induced by
fields in the infrared (IR) spectral region. In this case, the time-dependent Schrödinger
equation for the atomic nuclei takes the form (with a derivation similar to Eq. (1.11),
after including the interaction Hamiltonian in Eq. (7.23))
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ih̄
∂

∂t
χ1(R, t) =

[
Ĥ1 + Ĉ11

]
χ1(R, t) (7.76)

where Ĥ1 is the nuclear Hamiltonian associated with the electronic ground state and the
coupling term is Ĉ11 = −〈ψ1|μ|ψ1〉 · E(t) ≡ −μ11 · E(t) = −μE(t)cosθ , where

μ = |〈ψ1|μ|ψ1〉| (7.77)

is the magnitude of the static dipole moment in the electronic state ψ1, integration is over
all electronic coordinates, and θ is the angle between the dipole vector, μ11, and the
direction of the (linearly polarized) electric field, E.

In the previous description, it is assumed that the electrons are not perturbed by the
field. However, when high intensity fields are applied, this assumption is not adequate.
Intense fields can polarize the electrons and give rise to induced dipole moments. The
coupling to the field can now be represented by

Hint(t) = −μ11 · E(t)− (1/2)ET(t) · α11 · E(t) (7.78)

where again μ11 is the static (permanent) electric dipole moment vector and α11 is the
static molecular polarizability (3 × 3) tensor; the last term arises due to an induced
dipole moment. ET(t) is the transposed electric field vector, that is, a row vector. The
first term dominates under resonant conditions, that is, when the frequencies of the
field matches relevant quantized energy spacings in the molecule. The second term
dominates under non-resonant conditions and the induced dynamics is independent of
the field frequencies. That is, it is a time-dependent term that follows the envelope of
the laser pulse and it amounts to a time-dependent modification of the potential energy
surface. This term is responsible for the so-called non-resonant dynamic Stark effect,
also denoted impulsive Raman scattering.

The dipole moment (like the transition-dipole moment and polarizability) depends on
the internuclear coordinates via the electronic wave functions. In order to vibrationally
excite a molecule, a dipole moment that changes as a function of the internuclear
coordinates is required. This is easy to demonstrate; if we consider for simplicity one-
dimensional motion, then Eq. (4.120) shows that

d〈Ĥ1〉/dt = −i(E(t)/h̄)〈χ1(R, t)|[μ(R), T̂nuc]|χ1(R, t)〉 (7.79)

Clearly, if μ(R) is constant, the commutator is zero, and there will be no change in energy.
As shown in Example 7.4, vibrational pre-excitation of stationary vibrational states in

HOD gives a large degree of control in the subsequent photochemical decomposition.
This scheme can be readily extended beyond the case where the normal-mode vibrations
coincide with local bond-stretching modes [18]. Consider, as an example, an ozone
molecule with isotopic substitution, that is, 16O16O18O. The relevant potential energy
surfaces are similar to the ones in Fig. 7.1.1. In this case, the isotopic substitution leads
only to a minor asymmetry in the wave functions. The normal modes of the electronic
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ground state are quite close to the symmetric and asymmetric bond-stretching modes
of the normal ozone molecule. One way to control the outcome of the fragmentation,
that is, to produce 16O + 16O18O or 16O16O + 18O, is to use two laser pulses. The first
IR-pulse forces the molecule into a non-stationary vibrational state, corresponding to
asymmetric bond stretching in 16O16O18O. We note that, when μ(R) is linear in the
internuclear coordinate and the potential is harmonic, then Eq. (7.76) can be solved
analytically, and the dynamics is described by Gaussian wave packet dynamics (Section
4.2.1). Thus, an oscillating Gaussian wave packet is created by an (intense) IR-pulse with
a center frequency that matches the frequency of the asymmetric bond-stretching mode.
A second UV-pulse at an appropriate time delay relative to the first pulse initiates the
reaction. We have seen that an ultrashort pulse in the ultraviolet region of the spectrum
can launch, at a well-defined time, a localized wave packet on a potential energy surface
of an excited electronic state. We note in particular that the short duration of the second
(control) pulse implies that intramolecular vibrational relaxation (IVR) of the electronic
ground state is bypassed. Note that this scheme has a close formal correspondence to
femtosecond pump–probe spectroscopy.

The scheme considered here is based on a limited number of optimization parameters,
primarily the center frequencies and durations of the laser pulses, and the time delay
between the two pulses. In more complex systems, these parameters may not be sufficient
and, furthermore, the separation of the laser pulse into two distinct non-overlapping
pulses might not be possible.

In principle, one can induce and control unimolecular reactions directly in the
electronic ground state via intense IR fields (or via the non-resonant dynamic Stark
effect). Note that this resembles traditional thermal unimolecular reactions, in the sense
that the dynamics is confined to the electronic ground state. High intensities are typically
required in order to “climb up the vibrational ladder” and induce bond breaking or
isomerization. The dissociation probability is substantially enhanced when the frequency
of the field is time dependent, that is, the frequency must decrease as a function of time
in order to accommodate the anharmonicity of the potential. Such a field is obtained with
a quadratic phase φ(ω) in Eq. (7.72). Selective bond breaking in polyatomic molecules
is, in addition, complicated by the fact that the dynamics in various bond-stretching
coordinates is coupled due to anharmonic terms in the potential.

The problem of laser-controlled chemical reactions is in general how to design a laser
pulse that can guide the system into the desired final state. In general, it is not possible to
guess what form an optimal pulse takes. The problem can, however, be handled system-
atically by the optimization technique called optimal control theory [20]. This leads to a
procedure where the time-dependent Schrödinger equation, Eq. (7.76), must be solved
iteratively. A hint to the “mechanism” and the resulting optimal pulses of such numerical
optimization procedures can be obtained from Eq. (7.79). Suppose the objective is to
pump energy into a bond (neglecting, for simplicity, coupling to all other bonds). This
goal can be achieved when the right-hand side of the equation takes a positive value at
every time step, that is, when E(t) is proportional to i〈χ1(R, t)|[μ(R), T̂nuc]|χ1(R, t)〉∗.

Unimolecular reactions can, of course, also be induced by UV-laser pulses. As pointed
out before, in order to reach a specific reaction channel, the electric field of the laser pulse
must be specifically designed to the molecular system. All features of the system, that
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is, the Hamiltonian (including relativistic terms), must be completely known in order
to solve this problem. In addition, the full Schrödinger equation for a large molecular
system with many electrons and nuclei can at present only be solved in an approximate
way. Thus, in practice, the precise form of the laser field cannot always be calculated in
advance.

In order to bypass this problem, a clever idea has been introduced: the laboratory
feedback control technique [21]. The optimization procedure is based on the feedback
from the observed experimental signal (e.g., a branching ratio) and an optimization
algorithm that iteratively improves the applied femtosecond-laser pulse. This iterative
optimum-seeking process has been termed “training lasers to be chemists” [22].

Based on these developments, the experimental implementation of automated feed-
back optimized laser control has been achieved [23]. This type of control at the molecular
level can be much more selective than traditional methods of control where only
macroscopic parameters like the temperature can be varied.

We end this section with a comparison of the basic concepts of laser control and
traditional temperature control. This discussion includes an elementary explanation
and definition of concepts such as incoherent superpositions of stationary states versus
coherent superpositions of stationary states and quantum interference.

7.5.2.1 Incoherent excitation

According to quantum mechanics, the allowed energy eigenstates of an isolated molecule
are described by stationary states, �n(x, t) = ψn(x)e−iEnt/h̄, where En is the energy of the
state. The wave functions depend on the time, t, and coordinates, x, which specify the
configuration of the molecule. The molecule can be found in any of these energy states,
where n = 0,1,2, . . .. At T = 0 K, all molecules will be found in the lowest energy state
with the energy E0. When collisions between molecules are allowed to take place, energy
will be transferred between translational and internal (vibrational/rotational) degrees of
freedom. This implies that the molecular energy states will be populated in a specific way
according to the Boltzmann distribution.

When molecules are produced in chemical reactions, the energy states are normally
not populated according to the Boltzmann distribution. However, this distribution will
be quickly established. Thus, say at 1 atm, the Boltzmann distribution will typically be
established among the vibrational energy levels within the order of a millisecond, and
within the order of a nanosecond among the rotational energy levels (see Example 2.2).
When the pressure is reduced, the distribution will, however, be established more slowly.
In liquids, the Boltzmann distribution will typically be established among the vibrational
energy levels within the order of a picosecond.

Consider, as an example, the probability of finding the system at a given configuration
specified by the coordinate x,

Pincoherent(x) =
∑

n

pn|�n(x, t)|2

=
∑

n

pn|ψn(x)|2 (7.80)
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where |�n(x, t)|2 = �n(x, t)�n(x, t)∗, that is, the product of the wave function and its
complex conjugate, and pn is the probability (population) according to the Boltzmann
distribution. Equation (7.80) defines what is meant by a so-called incoherent (classical)
sum of quantum states. For a harmonic oscillator (i.e., a normal-mode vibration in a
molecule), the probability takes a Gaussian form, Pincoherent(x) ∝ exp[−f (T)x2], where
f (T) = (mω/h̄) tanh[h̄ω/(2kBT)] (m and ω are the mass and the frequency, respectively,
of the oscillator). At low temperatures, T → 0, the probability distribution corresponds
to the well-known ground state of a harmonic oscillator, that is, f (T) = mω/h̄ indepen-
dent of T , whereas in the high-temperature limit f (T) = mω2/(2kBT). Note that the
probability distribution broadens when the temperature is raised and, consequently, the
probability of finding configurations with high potential energy is increasing.

When we consider a thermally activated unimolecular reaction, say the fragmentation
of a triatomic molecule with two product channels,

A + BC
k1↗

ABC
k2↘

C + AB

the branching ratio, b, is at all times determined by the ratio of the rate constants, that
is, b = [A]/[C] = k1/k2. It is easy to estimate the temperature dependence of this ratio.
According to transition-state (RRKM) theory, ki = (kBT/h)(Q‡

i /Q)e−Ei
0/RT , where Q

and Q‡
i are partition functions associated with the reactant and the activated complex

leading to product channel i, respectively, and Ei
0 are the barrier heights associated with

the product channels. Thus, when we neglect the weak temperature dependence of the
pre-exponential factors, b = k1/k2 ∼ e−�Ea/RT , where �Ea = E1

0 − E2
0 is the difference

between the barrier heights (∼ activation energies) of the two channels.
The branching ratio can be controlled, to some extent, by the temperature, provided

�Ea �= 0. Thus, when T is small, that is, �Ea � RT , then b � 1 when �Ea > 0, and
b � 1 when �Ea < 0. On the other hand, at higher temperatures both channels will be
populated more evenly. Thus in the limit where T is large, that is, �Ea � RT , then b ∼ 1.
This result is, of course, a reflection of the Boltzmann distribution, that is, it is impossible
to make the channel with the largest barrier height, the preferred channel.

7.5.2.2 Coherent excitation

It is possible to create a coherent linear superposition of energy eigenstates via laser
excitation. This is a state of the form

∑
n cn�n(x, t), where ci = |ci|exp(iδi), with a

particular phase relation between the coefficients cn. The value of these coefficients is
determined by the pulsed laser excitation, that is, the frequency distribution A(ω) and
the associated phases φ(ω) in Eq. (7.72). Thus, the phase coherence of laser light can be
transferred to a molecular system in the form of a coherent superposition of stationary
states.
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We consider again the probability of finding the system at the configuration specified
by the coordinate x. Then, according to the rules of quantum mechanics,

Pcoherent(x, t) =
∣∣∣∣∣
∑

n

cn�n(x, t)

∣∣∣∣∣

2

=
∑

n

|cn|2|�n(x, t)|2 +
∑

n

∑

m�=n

cnc∗
m�n(x, t)�m(x, t)∗

=
∑

n

|cn|2|ψn(x)|2 + 2Re

{
∑

n

∑

m<n

cnc∗
m�n(x, t)�m(x, t)∗

}
(7.81)

Equation (7.81) defines what is meant by a so-called coherent sum of quantum states. The
diagonal terms resemble the incoherent sum in Eq. (7.80); the values of the populations
|cn|2 are, however, determined by the laser pulse. The off-diagonal terms are called
interference terms; these terms are the key to quantum control. They are time dependent
and we use the term “coherent dynamics” for the motion associated with the coherent
excitation of quantum states. A particular simple form of Eq. (7.81) is obtained in the
special case of two states. Then

Pcoherent(x, t) = |c1|2|ψ1(x)|2 + |c2|2|ψ2(x)|2
+ 2|c1||c2||ψ1(x)||ψ2(x)|cos[�Et/h̄ − δ]

(7.82)

where real-valued wave functions ψn(x) were assumed, �E = E1 − E2, δ = δ1 − δ2, and
ci = |ci|exp(iδi). The coherent superposition of quantum states differs clearly from the
incoherent superposition of Eq. (7.80).

In the control scheme [13,17] that we have focused on, the time evolution of the
interference terms plays an important role. We have already discussed more explicit
forms of Eq. (7.81). One example is the Franck–Condon wave packet considered in
Section 7.2.2; another example, which we considered before, is the oscillating Gaussian
wave packet created in a harmonic oscillator by an (intense) IR-pulse. Note that the
interference term in Eq. (7.82) becomes independent of time when the two states
are degenerate, that is, �E = 0. The magnitude of the interference term still depends,
however, on the phase δ. This observation is used in another important scheme for
coherent control [14].

The time evolution in Eq. (7.81) is described by the time-dependent Schrödinger
equation, provided the molecule is isolated from the rest of the universe. In practice,
there are always perturbations from the environment, say due to inelastic collisions.
The coherent sum in Eq. (7.81) will then relax to the incoherent sum of Eq. (7.80),
that is, the off-diagonal interference terms will vanish and |cn|2 → pn corresponding to
the Boltzmann distribution. As mentioned earlier, the relaxation time depends on the
pressure. In order to take advantage of coherent dynamics it is, of course, crucial that
relaxation is avoided within the duration of the relevant chemical dynamics.
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PROBLEMS

7.1 The (high-pressure) pre-exponential factor for the ring-opening of cyclobutene into
butadiene is 1013.4 s−1, and the activation energy is 137.6 kJ/mol. Using the RRK
theory calculate the unimolecular rate constant for the reaction at an excitation
energy of 200 kJ/mol.

7.2 We consider two molecules, X–H and X–D, where X is a heavy group of atoms,
which in the following is considered as a point mass. The two molecules have,
according to the Born–Oppenheimer approximation, the same potential. The uni-
molecular bond breakage is described within the framework of the RRKM theory.
(a) Show that νXH = √

2νXD, for the vibrational frequencies within the harmonic
approximation, when X is considered as infinitely heavy compared to H (1.00
amu) and D (2.00 amu).

(b) Determine the difference in the barrier heights for the breaking of the X–H and
X–D bonds, that is, (EXD

0 − EXH
0 ) expressed by νXH.
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(c) Derive an expression for the ratio kXH(T)/kXD(T) between the unimolecular
rate constants. Use RRKM theory (in the high-pressure limit) and express the
result in terms of νXH.

(d) Assume that the zero-point energy in the X–H bond is 17.2 kJ/mol and calculate
the ratio kXH(T)/kXD(T) at T = 298 K.

7.3 Consider three harmonic oscillators (normal modes) with frequencies (wave num-
bers) 1600 cm−1, 3650 cm−1, and 3750 cm−1. We want to calculate the sum of
vibrational states at the total energy E = 6000 cm−1 relative to the lowest possible
(zero-point) energy.

(a) Calculate the sum of states, G(E), based on the classical expression Eq. (7.52):

(i) use Eq. (7.52);

(ii) use the modification where the zero-point energy, Ez, is added to the
argument, that is, G(E + Ez);

(iii) use the modification G(E + Ez)− G(Ez), where we also subtract the states
that are not allowed according to quantum mechanics.

(b) Label the possible states by the quantum numbers associated with each oscil-
lator and, by direct count, show that the exact sum of states at E = 6000 cm−1

is 8. Compare with the estimates in part (a).

7.4 We consider the isomerization

HCN −→ HNC

The unimolecular rate constant k(E) is described within the framework of RRKM
theory. In the following, we neglect the rotational energy in HCN as well as in the
activated complex. The classical barrier height is Ecl = 1.51 eV.

(a) Calculate the barrier height E0 for isomerization.

(b) Calculate k(E) at E = 1.5 eV and E = 2.5 eV, respectively.

The vibrational frequencies (wave numbers) are:

• HCN: 3300(1) cm−1, 2100(1) cm−1, 713(2) cm−1;

and for the activated complex

• (HCN)‡: 3000(1) cm−1, 2000(1) cm−1.

The degeneracy of the vibrational states is given in the parentheses after each
vibrational frequency.

7.5 Consider the thermal unimolecular rearrangement of hydrogen isocyanide,

HNC −→ HCN

Assume that the reaction proceeds via a three-center transition state with the atoms
at the corners of a triangle.
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(a) Evaluate kBT/h at T = 1000 K.

(b) Evaluate the pre-exponential factor according to the RRKM theory at
T = 1000 K, given the following values:

• HNC: I = 11.3 amuÅ
2
; ν̃ = 3652 cm−1 (stretch), 464 cm−1 (doubly-

degenerate bend), 2024 cm−1 (stretch);

• transition state: I‡ = 1.02 amuÅ
2
, 10.5 amuÅ

2
, 12 amuÅ

2
; ν̃ = 3000 cm−1

(stretch), 1000i cm−1 (bend), 2000 cm−1 (ring-breathing stretch).

7.6 The classical expression in Eq. (7.52) often underestimates the true number of
vibrational states. In order to correct the formula, it has been suggested to replace
E by E + Ez in the expression, where Ez is the zero-point energy.

(a) Consider an apparent unimolecular reaction A∗(E) →, where the molecule A
has s vibrational degrees of freedom (and rotation is neglected). Using the
classical expression with E replaced by E + Ez, write down the rate constant
k(E), according to RRKM theory.

(b) Repeat the calculation in Example 7.3, using the formula derived in part (a).

(c) Consider now a system of two uncoupled harmonic oscillators with identical
frequencies. An energy level for the system can, as for a single harmonic
oscillator, be characterized by a single quantum number n (n = 0,1,2, . . .).
What is the zero-point energy, Ez, and what is the energy and degeneracy of
the energy level En with quantum number n?

7.7 We consider a thermally activated unimolecular reaction with two product
channels:

CHD = CH2 + HCl
k1↗

CH2DCH2Cl
k2↘

CH2 = CH2 + DCl

The reaction takes place at high pressure where it obeys first-order kinetics.

(a) Write down the rate law −d[A]/dt for the reactant, here denoted by A, and
integrate this expression in order to obtain an expression for the concentration
of A as a function of time.

(b) Determine the ratio [HCl]/[DCl] expressed in terms of the rate constants, when
the initial concentrations are [HCl]0 = [DCl]0 = 0.

(c) Using RRKM theory, calculate in the high-pressure limit k1/k2 at T = 1000
K. The vibrational frequencies (wave numbers) and the barrier heights (E0)
for the two activated complexes (T.S. 1 and T.S. 2) are given in the table [data
taken from J.I. Steinfeld, J.S. Francisco, and W.L. Hase, Chemical kinetics and
dynamics, second edition (Prentice Hall, 1999)].
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The degeneracy of the vibrational states is specified in parentheses after the
frequency. The imaginary frequency is not included. In order to simplify the
calculations, one can assume that hν � kBT when the vibrational frequencies (wave
numbers) are larger than 1000 cm−1. Assume also that the moments of inertia and
the symmetry numbers for the activated complexes are identical.

T.S. 1 T.S. 2
CH2DCH2Cl (HCl elimination) (DCl elimination)

ν̃i/cm−1 ν̃i/cm−1 ν̃i/cm−1

2940(4) 3000(3) 3000(4)

2160(1) 2200(2) 2088(1)

1340(4) 1380(2) 1380(1)

1270(2) 1115(1) 1100(1)

960(3) 960(5) 960(4)

720(2) 850(1) 850(3)

330(1) 820(1) 750(1)

200(1) 645(1) 570(1)

403(1) 501(1)

Barrier(kJ/mol) 232.7 237.9



8

Microscopic Interpretation of
Arrhenius Parameters

Key ideas and results

We return to the microscopic interpretation of the Arrhenius parameters, that is,
the pre-exponential factor (A) and the activation energy (Ea) known from classical
chemical kinetics.

• The pre-exponential factor of an apparent unimolecular reaction is, roughly,
expected to be of the order of a vibrational frequency; that is, 1013 to 1014 s−1.
The pre-exponential factor of a bimolecular reaction is, roughly, related to the
collision frequency; that is, the number of collisions per unit time and per unit
volume.

• The activation energy of an elementary reaction is related to the classical barrier
height of the potential energy surface corrected, however, for zero-point energies
and average internal molecular energies. The activation energy is the average
energy of the molecules that react minus the average energy of the reactants. Spe-
cializing to transition-state theory, the activation energy is equal to the difference
in zero-point energy levels of the activated complex and the reactants plus the
difference in the average internal energies (relative to the zero-point levels). When
tunneling corrections are introduced in conventional transition-state theory, the
activation energy is reduced compared to the interpretation given above.

In Chapter 2, the first chapter of the gas-phase part of the book, we began the transition
from microscopic to macroscopic descriptions of chemical kinetics. In this last chapter
of the gas-phase part, we will assume that the Arrhenius equation forms a useful
parameterization of the rate constant, and consider the microscopic interpretation of the
Arrhenius parameters, that is, the pre-exponential factor (A) and the activation energy
(Ea) defined by the Arrhenius equation: k(T) = Aexp(−Ea/kBT).

In Chapters 4–7, we have seen that the rate constant for unimolecular as well as
bimolecular elementary reactions can be written in a form similar to the Arrhenius
equation, provided we allow for a (weak) temperature dependence of the pre-exponential

Theories of Molecular Reaction Dynamics. Second Edition. Niels E. Henriksen and Flemming Y. Hansen, Oxford University
Press 2019. © Niels E. Henriksen and Flemming Y. Hansen. DOI: 10.1093/oso/9780198805014.001.0001
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factor, A. Experimentally, the parameters may be determined from an Arrhenius plot,
that is, a plot of ln[k(T)] versus 1/T , which according to the Arrhenius equation will be
a straight line with slope −Ea/R and an intercept of lnA. The question is: what is the
molecular origin of these parameters?

8.1 The Pre-Exponential Factor

In the previous chapters, we have already discussed the calculation and, to some extent,
the microscopic interpretation of the pre-exponential factor. In this section, we review
the microscopic interpretation. In Section 8.2, we will show that the activation energy
is typically (when tunneling is neglected) related to the barrier height E0 according to
Ea = E0 + βkBT , where β is a small rational number. In the context of interpreting the
order of magnitude of the pre-exponential factor, we will neglect the small factor e−β .

8.1.1 Unimolecular reactions

The general relation between the rate constant of (apparent) unimolecular reactions and
the microscopic dynamics is illustrated in Fig. 8.1.1.

Based on the theoretical descriptions of Chapter 7, the pre-exponential factor of an
apparent unimolecular reaction is, roughly, expected to be of the order of a vibrational
frequency, that is, 1013 to 1014 s−1.

Thus, according to RRKM theory for an apparent unimolecular reaction, Eq. (7.58)
gives the (canonical) rate constant for such an elementary reaction:

k(T) = kBT
h

Q‡

Q
e−E0/kBT (8.1)

We see that the pre-exponential factor in k(T), roughly, corresponds to a typical
vibrational frequency, since kBT/h = 6.25 × 1012 s−1 at T = 300 K. We can also under-
stand why the pre-exponential factors can be somewhat larger than typical vibrational
frequencies, because very often Q‡ > Q. This situation will arise when the (product of

Statistical theories (RRKM, etc.) 

Quasi-classical mechanics (Slater, etc.)

Quantum mechanics

Unimolecular reaction

Pk(T ) k(E)

Fig. 8.1.1 An illustration of the relations between the rate constants, k(T) and k(E), and the reaction
probability P as obtained from either quantum mechanics,quasi-classical mechanics, or statistical theories
for the reaction dynamics.
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the) vibrational frequencies of the activated complex are smaller than the vibrational
frequencies of the reactant. Furthermore, the rotational contribution in the ratio of
partition functions, which is proportional to [I‡

a I‡
b I‡

c /(IaIbIc)]1/2, will often also be larger
than one since, typically, the principal moments of inertia associated with the activated
complex are larger than the moments of inertia of the reactant.

8.1.2 Bimolecular reactions

The general relation between the rate constant of a bimolecular reaction and the
microscopic dynamics is illustrated in Fig. 8.1.2.

Based on the theoretical descriptions of Chapters 2, 4, and 6, the pre-exponential
factor of a bimolecular reaction A + B → products is expected to be related to the
collision frequency; that is, the number of collisions per unit time and per unit volume.

The pre-exponential factor of a bimolecular reaction is related to the reaction cross-
section (see Problem 2.3). A relation that is fairly easy to interpret can be obtained within
the framework of transition-state theory. Combining Eqs (6.12) and (6.57), we can write
the expression for the rate constant in a form that gives the relation to the (hard-sphere)
collision frequency:

kTST(T) = kBT
h

h3

(2πμkBT)3/2

⎛

⎝
Q‡

(AB)‡

QAQB

⎞

⎠

int

e−E0/kBT

= Z
1

QAB
rot

⎛

⎝
Q‡

(AB)‡

QAQB

⎞

⎠

int

e−E0/kBT (8.2)

Here the partition functions refer to internal degrees of freedom (subscript ‘int’ for
internal), QAB

rot = 8π2(μd2)kBT/h2, that is, a rotational partition function where A and B
are considered as point masses separated by the distance d, and Z = πd2〈v〉 is related to
the (hard-sphere) collision frequency ZAB defined in Eq. (4.16), that is, ZAB =Z[A][B].

σ

Models

Quasi-classical mechanics

Quantum mechanics

Pk(T )

Bimolecular reaction

Fig. 8.1.2 An illustration of the relations between the rate constant k(T), the reaction cross-section σ ,
and the reaction probability P as obtained from either quantum mechanics, quasi-classical mechanics, or
various models (approximations) for the reaction dynamics.
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Within transition-state theory, Eq. (8.2) is an exact expression for the rate constant.
We observe that the pre-exponential factor deviates from the simple interpretation, as
being related to the collision frequency ZAB via Z, due to the presence of internal degrees
of freedom. Typically, the calculated value of Z is of the order of 1011 dm3 mol−1 s−1

∼ 10−16 m3 molecule−1 s−1 (see Example 4.1). The magnitude of the partition functions
in Eq. (8.2) is typically small compared to this number. Thus, if we neglect the internal
degrees of freedom of the reactants and the activated complex, except for rotational
degrees of freedom of the activated complex (AB)‡, and assume that the associated
partition function can be approximated by QAB

rot , we will get a pre-exponential factor
given by Z.

8.2 The Activation Energy

The activation energy, Ea, is a macroscopic quantity defined by the Arrhenius equation
k(T) = Aexp(−Ea/kBT) and given by

Ea = −kB
d lnk(T)

d(1/T)

= kBT2 d lnk(T)

dT
(8.3)

This definition is used whether or not A is independent of temperature, that is, whether
or not the Arrhenius plot is linear. Note that Eq. (8.3) shows that a large value of Ea
implies that the rate constant depends strongly on the temperature.

When we have expressed k(T) in terms of microscopic information, we can obtain a
corresponding microscopic interpretation of the activation energy. It should be stressed
that the following relations are only valid for elementary gas-phase reactions.

8.2.1 Activation energy and detailed balance

From the definition of activation energy in Eq. (8.3), we obtain the following expression
for the difference in activation energies between the forward and the reverse direction of
a reaction:

Ef
a − Er

a = kBT2 d
dT

(
lnkf − lnkr

)

= kBT2 d
dT

ln
(

kf

kr

)
(8.4)

We note, in passing, that this equation is consistent with the well-known equation for the
temperature dependence of an equilibrium constant K = kf /kr , that is, the van’t Hoff
equation. From the general principle of detailed balance, one can obtain a microscopic
interpretation of the difference in activation energies between the forward and the reverse
direction of an elementary reaction. Detailed balance, Eq. (2.34), implies
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kf

kr
=

(
μCD

μAB

)3/2 QCQD

QAQB
e−�E0/kBT (8.5)

where the partition functions are associated with the internal degrees of freedom of the
molecules. Now,

Ef
a − Er

a = kBT2 d
dT

(
ln

(
QCQD

QAQB

)
− �E0

kBT

)

= �E0 + kBT2
(

d lnQC

dT
+ d lnQD

dT
− d lnQA

dT
− d lnQB

dT

)

= �E0 + (〈EC
int〉 + 〈ED

int〉)− (〈EA
int〉 + 〈EB

int〉) (8.6)

where the expression for the average energy 〈E〉 (Eq. (B.22)) was used in the last line.
Thus, the difference between activation energies of the forward and the reverse reaction
is equal to the difference in zero-point energies between products and reactants �E0 plus
the difference between the average internal energy of the products and the reactants at a
given temperature. If we had chosen to include the zero-point energies in the average
energies, the difference in activation energies would simply be equal to the average
internal energy of the products minus the average internal energy of the reactants. This
relation is illustrated in Fig. 8.2.1.

The average internal energies depend on the temperature, and can according to
Eqs (B.22) and (B.9) be written in the form

〈Eint〉 = 〈Evib〉 + 〈Erot〉 (8.7)

Zero-point energy
level of A + B

(AB)‡

ΔEa
ΔE0

Zero-point energy
level of C + D

Fig. 8.2.1 An illustration of Eq. (8.6). The zero-point energy levels for an exothermic reaction are
indicated by solid lines and the average internal energies of the products and the reactants (relative to
the zero-point levels) are given by dashed lines.
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when the coupling between vibration and rotation is neglected. The average vibrational
energy of a harmonic oscillator can be calculated from the partition function given in
Eq. (B.15) (remember that the energy is measured relative to the zero-point level); that is,

〈Evib〉 = kBT2 d lnQvib

dT

= kBT2

Qvib

dQvib

dT

= hνs

exp(hνs/kBT)− 1
(8.8)

In the (classical) high-temperature limit, when hνs � kBT , the exponential can be
expanded to first order and the average vibrational energy is ∼ kBT . The approximation
hνs � kBT is, however, not well satisfied for typical molecular vibrational frequencies,
except at temperatures that exceed several thousand degrees. The average rotational
energy of a rigid rotor is

〈Erot〉 =
{

kBT for a linear molecule
(3/2)kBT for a non-linear molecule

(8.9)

where the rotational partition functions in Eqs (B.19) and (B.20) were used.

Example 8.1 The temperature dependence of Ef
a − Er

a

The temperature dependence of (Ef
a − Er

a) is often negligible. Consider, for example, the
reaction

F + H2 −→ HF + H

The difference between the average internal energies of the products and the reactants,
(〈EHF

vib 〉 + kBT) − (〈EH2
vib 〉 + kBT)=〈EHF

vib 〉 − 〈EH2
vib 〉 ∼ 0, since the vibrational frequencies

ν̃HF =4138 cm−1 and ν̃H2 =4395 cm−1 are quite similar. Thus, in this case the difference

between the average energies is zero, essentially, and (Ef
a − Er

a) = �E0.

8.2.2 Activation energy and transition-state theory

As demonstrated in the previous section, it is quite easy to obtain an exact and transparent
interpretation of the difference in activation energies between the forward and the reverse
direction of an elementary reaction.

It is also possible to obtain an exact interpretation of the individual activation energies,
often referred to as “Tolman’s theorem.” Starting from an exact expression for the
bimolecular rate constant, Eq. (5.7), we have k(T) = aI(T)/Qreact, where a is a constant,
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I is an integral over the Boltzmann factor exp(−E/kBT) times the reaction probability
Pcum(E), and Qreact is the partition function of the reactants. Then using Eq. (8.3),
Ea = kBT2(1/I)dI/dT − 〈E〉, where 〈E〉 is the average energy of the reactants. The first
term can be identified as an average value of the energy E, averaged over the distribution
Pcum(E)exp(−E/kBT). This leads to the result Ea = 〈E〉∗ − 〈E〉, that is, the activation
energy is the average energy of the molecules that react minus the average energy of the
reactants.

In the following, we elaborate on this interpretation of the activation energy within
the framework of transition-state theory, where a particularly simple and transparent
microscopic interpretation of the activation energy can be obtained. This interpretation
agrees with Tolman’s theorem. The rate constant for a bimolecular reaction is, according
to transition-state theory [Eq. (6.11)],

kTST(T) = kBT
h

(Q‡/V )

(QA/V )(QB/V )
e−E0/kBT (8.10)

Now using Eq. (8.3), the activation energy takes the form

Ea = kBT2 d
dT

(
lnT + ln(Q‡/V )− ln(QA/V )− ln(QB/V )− E0

kBT

)

= E0 + kBT + kBT2

(
d ln(Q‡/V )

dT
− d ln(QA/V )

dT
− d ln(QB/V )

dT

)

= E0 + kBT + 〈E‡〉 − (〈EA〉 + 〈EB〉)
= E0 + 〈E‡

int〉 − (〈EA
int〉 + 〈EB

int〉)− (1/2)kBT (8.11)

where Eq. (B.22) was used and the relation (see Eqs (B.8) and (B.14))

〈E〉 = kBT2
(

d ln(Qtrans/V )

dT
+ d lnQint

dT

)

= (3/2)kBT + 〈Eint〉 (8.12)

was used in the last line. Note that in the third line the term kBT corresponds to the
average energy in the (‘low frequency’) reaction coordinate pulled out of the activated
complex, and this internal degree of freedom is not included in the energy 〈E‡〉.

Thus, the activation energy is equal to the difference in zero-point energies between
the activated complex and the reactants plus the difference between the average energy
of the activated complex and the reactants. Alternatively, if we had chosen to include the
zero-point energies in the average energies, the activation energy would simply be equal
to the average energy of the activated complex minus the average energy of the reactants.
This relation is illustrated in Fig. 8.2.2.
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E0

(AB)‡

Zero-point energy
level of A + B

Ea

Fig. 8.2.2 An illustration of Eq. (8.11) for the activation energy. The zero-point energy levels of the
activated complex and the reactants are indicated by solid lines and the associated average internal energies
(relative to the zero-point levels) are given by dashed lines.Note that the zero-point energy in the activated
complex comes from vibrational degrees of freedom orthogonal to the reaction coordinate.

Example 8.2 The relation between Ea and E0

As an example, we consider again the reaction

F + H2 −→ (FHH)‡ −→ HF + H

Recent calculations (see Section 3.1) show that the activated complex is non-linear, that is,
the average rotational energy is (3/2)kBT and Ea = E0 + 〈E‡

vib〉 − 〈EH2
vib 〉. ν̃H2 = 4395 cm−1

and the two vibrational frequencies associated with the activated complex are 3772 cm−1

and 296 cm−1, respectively (remember that the third vibrational degree of freedom of the
non-linear triatomic molecule is the reaction coordinate that is not included in Q‡). The
thermal energies associated with the two high frequency modes are small and cancel, essentially,
whereas the energy associated with the low frequency mode is kBT , at sufficiently high
temperatures. So, according to transition-state theory, at high temperatures Ea ∼ E0 + kBT .
Since, E0 ∼ 4.5 kJ/mol and kBT ∼ 8.31 kJ/mol at T = 1000 K, we obtain Ea ∼ 12.8 kJ/mol at
T = 1000 K. Thus, in this example, Ea deviates substantially from E0.

Example 8.3 On negative activation energy

For the reaction

O + OH −→ H + O2

it is observed [J. Chem. Phys. 96, 1077 (1992)] that the rate constant can decrease when the
temperature is increased. Thus, k(T = 1000 K) = 22.2 × 10−12 cm3/s and k(T = 2000 K) =
16.5 × 10−12 cm3/s. The activation energy becomes

continued
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Example 8.3 continued

Ea = −kB
d lnk(T)

d(1/T)

= −kB
ln[k(T = 1000 K)/k(T = 2000 K)]

1/1000 − 1/2000

= −8.19 × 10−21 J

= −4.93 kJ/mol

This result clearly shows that the activation energy is not equivalent to a barrier height.
Such negative activation energies can occur for reactions without barriers (E0 ∼ 0), typically
for bimolecular reactions between radicals, as here. Within the framework of transition-state
theory, the activation energy is given by Eq. (8.11). From this equation, we observe that Ea
can become negative when no barrier is present, provided the average thermal energies of the
reactants exceed the energy of the activated complex. Such energies are of the order of RT ,
which at 1000 K amounts to 8.31 kJ/mol, in good agreement with the result in this example.

These two examples clearly demonstrate that Ea is not equal to E0. The temperature
dependence of Ea will, however, often be negligible since typically kBT � E0. Thus, we
have a rough identification of Ea with E0. It should be remembered that this is not the
potential energy barrier height, Ecl, but the difference in zero-point energies between the
activated complex and the reactants.

Within the framework of transition-state (RRKM) theory for unimolecular reactions,
one can obtain a microscopic interpretation of the activation energy that is analogous to
the one presented here (see also Problem 8.4).

8.2.3 Activation energy and quantum tunneling

We consider again the interpretation of activation energy within transition-state theory
and now the implications of quantum tunneling. A correction factor due to quantum
tunneling is given in Eq. (6.55):

κtunnel(T) ∼ 1 + 1
24

(
hν∗

kBT

)2

(8.13)

which is valid at high temperatures (hν∗ � kBT) and for high and/or broad barriers
(hν∗ � E0).

We let “· · ·” denote the four temperature-dependent average energies on the right-
hand side in Eq. (8.11), and the activation energy now takes the form

Ea = E0 + ·· · + kBT2 d lnκtunnel(T)

dT
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ln[k(T)]

1/T

Fig. 8.2.3 An Arrhenius plot, that is, ln[k(T)] versus the reciprocal temperature. The straight line
represents ‘normal’ Arrhenius behavior whereas the curved behavior is found in systems with quantum
tunneling. It shows that at low temperatures the rate constant is larger than in a classical system.

= E0 + ·· · + kBT2

κtunnel(T)

dκtunnel(T)

dT

= E0 + ·· · − (hν∗)2/12
κtunnel(T)

1
kBT

(8.14)

Since the last term is negative, we see that the activation energy is lowered due to quantum
tunneling. Now

κtunnel(T)kBT = kBT + (hν∗)2

24kBT
∼ kBT (8.15)

where the limit hν∗ � kBT is taken in the last line. Thus, the activation energy decreases
(∝ −T−1) when the temperature is lowered and Arrhenius plots show deviations from
linearity as a consequence of quantum tunneling; see Fig. 8.2.3.

.....................................................................................................................................

PROBLEMS

8.1 Assume that the temperature dependence of the rate constant can be represented
as in Eq. (6.14). Derive an expression for the activation energy.

8.2 Using the exact expression for the average vibrational energy, calculate the activation
energy for the reaction of Example 8.2, at T = 298 K and T = 1000 K.
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8.3 We consider the gas-phase reaction

F + H2 −→ HF + H

The rate constant has been determined experimentally in the temperature range
T ∈ [190,1000] K, and it can be represented by the expression k(T) = 4.5 ×
10−12T0.5 × exp(−319/T) cm3 molecule−1 s−1.

(a) Calculate the activation energy Ea (in the unit kJ/mol) at T = 298 K.

(b) The harmonic vibrational frequency (wave number) for H2 is 4395 cm−1, and
from the latest calculations of the potential energy surface it is known that the
activated complex is non-linear, and the harmonic vibrational frequencies are
3772 cm−1, 296 cm−1, and i723 cm−1.

We assume that the rate constant is calculated according to transition-state
theory. Calculate the barrier height E0 (in the unit kJ/mol), using Ea and the
exact average vibrational energies.

(c) The transition-state theory is now corrected for quantum tunneling according
to Eq. (6.55). Calculate again the barrier height E0 (in the unit kJ/mol) when
quantum tunneling is included.

8.4 We consider a unimolecular reaction where the rate constant is described by the
RRKM theory. Show how the Arrhenius activation energy, Ea, is related to the
barrier height, E0, of the reaction.
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Introduction to
Condensed-Phase Dynamics

Key ideas and results

In this chapter, we consider chemical reactions in solution; first, how solvents
modify the potential energy surface of the reacting molecules and second, the role
of diffusion. The reactants of bimolecular reactions are brought into contact by
diffusion, and there will therefore be an interplay between diffusion and chemical
reaction that determines the overall reaction rate. The results are as follows.

• As a first approximation, solvent effects can be described by models where
the solvent is represented by a dielectric continuum, for example, the Onsager
reaction-field model.

• The overall (effective) reaction rate of a bimolecular reaction is, in general,
determined by both the diffusion rate and the chemical reaction rate. A steady-state
limit for the effective reaction rate is approached at long times and the rate constant
takes a simple form. When the chemical reaction is very fast, the overall rate is
determined by the diffusion rate, which is proportional to the diffusion constant.
In the opposite limit where the chemical reaction is very slow, the overall rate is
equal to the intrinsic rate of the chemical reaction.

Most reactions of interest to chemists take place in either solution or at the gas–solid
interface. At the atomic level, much less is known about the reaction dynamics in such
systems than about the dynamics of gas-phase reactions. In the gas phase, one may follow
the detailed evolution from reactants to products without disturbing collisions with other
molecules, at least in the low pressure limit. Contrary to that, in solution, where reactants
and products are continually perturbed by collisions with solvent molecules, it is much
more complicated to follow a chemical reaction.

The complexity of condensed-phase reaction dynamics implies that both from a
practical (computational) as well as a conceptual (i.e., insight) point of view, it is
desirable to change the approach somewhat compared to gas-phase reaction dynamics.

Theories of Molecular Reaction Dynamics. Second Edition. Niels E. Henriksen and Flemming Y. Hansen, Oxford University
Press 2019. © Niels E. Henriksen and Flemming Y. Hansen. DOI: 10.1093/oso/9780198805014.001.0001
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For example, we will see approximate representations of the interaction potentials and
the dynamics—the latter, for example, in the form of so-called stochastic dynamics.

The elementary reactions in a solvent include unimolecular and bimolecular reactions
as in the gas phase. In the gas phase the products always fly apart, but in a solvent
we also have elementary reactions of the type A + BC → ABC that can take place
because ABC may be stabilized due to energy transfer to the solvent; that is, a bimolecular
association/recombination reaction.

The solvent influences the chemical reaction in several ways.

• Solvents may modify the potential energy surface for the reaction.

• Solvents may create the so-called cage effect, where the separation of products may
be impeded, leading to a high probability of association/recombination.

• Solvents may enhance and impede molecular motions. There will be energy
exchanges between reactants and solvents that may act as an energy sink or
source.

These effects are related to the electric properties of the reacting molecules, like their
dipole moments and polarizability, as well as to solvent properties, like their dielectric
constants and viscosity.

A solvent can dramatically alter the potential energy surface of a reaction from that in
the gas phase, as illustrated schematically in Fig. 9.0.1 for the generic SN2 reaction

X− + CH3Y → XCH3 + Y− (9.1)

Epot

X– + RY

ΔHsol (XRY)

ΔHsol (X–)
+

ΔHsol (RY)

XR + Y–

(a)

(b) rc

(X – R – Y)–‡

Fig. 9.0.1 Schematic diagram of the potential energy as a function of the reaction coordinate for an SN2
reaction in (a) the gas phase and in (b) a polar solvent. [Adapted from W.N. Olmstead and J.I. Brauman,
J. Am. Chem. Soc. 99, 4219 (1977).]
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Representative potential energies as functions of the reaction coordinate are shown. Path
(a) is followed in the gas phase and path (b) is followed in a polar solvent; the change in
the potential energy in a polar solvent shows that both reactants and products are more
stabilized than the transition state, because the electrons are less localized in the transition
state than in the ionic state. The solvent is seen to have a strong effect on the reaction
barrier, so the rate constant in solution may be many orders of magnitude smaller than
in the gas phase due to the different stabilization of transition state and reactants and
products.

It is, however, also possible to find elementary reactions with very similar rates in
gas and solution phases. Thus, the thermally activated unimolecular isomerization of
some substituted cyclobutenes in a solution (of dimethyl phtalate at temperatures around
275◦C) has been found to proceed at, essentially, the same rate as in the gas phase.

The well-known Maxwell–Boltzmann distribution for the velocity or momentum
associated with the translational motion of a molecule is valid not only for free molecules
but also for interacting molecules in a liquid phase (see Appendix B.2.1). The average
kinetic energy of a molecule at temperature T is, accordingly, (3/2)kBT . For the mole-
cules to react in a bimolecular reaction they should be brought into contact with each
other. This happens by diffusion when the reactants are dispersed in a solution, which is
a quite different process from the one in the gas phase. For fast reactions, the diffusion
rate of reactant molecules may even be the limiting factor in the rate of reaction.

We begin this part by considering the energetics of solvation, and the combination of
diffusion and chemical reactions in order to study the importance of diffusion for the
effective rate constant of bimolecular reactions. In Chapter 10 we study a generalization
of transition-state theory to reactions in a solution. The average effect of the solvent
on the reaction is studied in a mean-field approximation, where the influence of all
dynamical fluctuations has been averaged out. In Chapter 11 we study a model that
includes the dynamical fluctuations. It is a model originally proposed by Kramers, and
since it is based on stochastic dynamics, as opposed to deterministic dynamics, we
include a discussion of random processes as represented by the Langevin equation and
the Fokker–Planck equation to provide a basis for understanding Kramers theory.

9.1 Solvation: The Born and Onsager Models

When a molecule is placed in a solvent, the interaction between the molecule (the solute)
and the solvent can, roughly, be divided into long-range effects and short-range effects,
that is, effects related to the first few “solvation shells.”

In an exact representation of the interaction between a solute and a solvent, that is,
solvation, the solvent molecules must be explicitly taken into account. That is, the solvent
is described on a microscopic level, where the individual solvent molecules are considered
explicitly. The interaction potential between solvent molecules and between solvent
molecules and the solute can, in principle, be found by solving the electronic Schrödinger
equation for a system consisting of all the involved molecules. Typically, in practice,
a more empirical approach is followed where the interaction potential is described by
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parameterized energy functions. These potential energy functions (often referred to as
force fields) are typically parameterized as pairwise atom–atom interactions.

Alternatively, as a first approximation, the solvent can be described on a macroscopic
level, where the solvent is considered as a continuous medium, that is, the molecular
structure of the solvent molecules is not considered. This description cannot, of course,
describe specific short-range effects between the solute and nearby solvent molecules.
Within such a model where the solvent is a continuous medium with relative permittivity
εr , also commonly known as the dielectric constant, the potential energy of two particles
with charges q1 and q2 separated by a distance R is given by Coulomb’s law,

V (R) = q1q2

4πεR
(9.2)

where ε = εrε0, ε0 is the vacuum permittivity, and εr ≥ 1 with εr = 1 in vacuum.1 The
effect of the solvent is accordingly to reduce the interaction between two charges, and for
solvents with high dielectric constants (polar solvents) the magnitude of the interaction
potential is strongly reduced compared to vacuum.

Beyond point charges, the electrostatic potential energy for a continuous charge
distribution ρ(x) is given by [1],

V = 1
8πε

∫ ∫
ρ(x)ρ(x′)
|x − x

′ | d3xd3x′

= 1
2

∫
ρ(x)φ(x)d3x

= ε

2

∫
|E|2d3x (9.3)

Note that the extra factor of 2 in the denominator compensates for the unrestricted
double integration, that is, double counting of the Coulomb interactions. An expression
for the electric potential φ(x) is found by comparision of the first two lines in the equation
and the potential satisfies the Poisson equation,

∇2φ(x) = −ρ(x)/ε (9.4)

In the last line of Eq. (9.3), one make use of the Poisson equation to eliminate the charge
density, followed by integration by parts, where the electric field is given by

E(x) = −∇φ(x) (9.5)

1 SI units are used throughout this book. Note that various alternative systems of units are used frequently
in electrostatics. For example, Electrostatic and Gaussian units where 4πε0 = 1.
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In the last line of Eq. (9.3), the electrostatic energy is expressed as an integral of the
square of the electric field over all space without any explicit reference to charges.

9.1.1 The Born model for ions

In the Born model [2] for solvation of an ion, the ion is represented as a sphere of radius
ri with a uniform surface charge of zie. The electric field outside (r > ri) the sphere is
E(r) = zie/(4πεr2) (equivalent to the electric field from a point charge at the center of
the sphere) and the electrostatic energy in Eq. (9.3) becomes

V = ε

2

∫ 2π

0

∫ π

0

∫ ∞

ri

|E|2r2dr sin θdθdφ

= 4πε

2

∫ ∞

ri

|E|2r2dr

= (zie)2

8πε

∫ ∞

ri

1
r2 dr (9.6)

= (zie)2

8πεri

where integration was carried out in spherical polar coordinates.
That is, the solvation energy defined as the electrostatic energy of the ion in the

medium of relative permittivity (dielectric constant) εr minus the energy in the gas phase
(εr = 1) is

�Vsol = (zie)2

8πε0ri

(
1
εr

− 1
)

(9.7)

Note that �Vsol < 0, corresponding to a stabilization relative to the gas phase with a high
value for small, highly charged ions in media of high relative permittivity. This model
predicts a stabilization that is inversely proportional to the size (radius) of the ion, in
agreement with the schematic diagram in Fig. 9.0.1.

For the two series of ions in order of increasing ionic radius—Li+,Na+,K+, and
F−,Cl−,Br−, the experimental solvation energies in water are found to decrease in
agreement with the Born model. Furthermore, the model predicts the right order of
magnitude of solvation energies for typical ionic radii in the range of 100–200 pm
(e.g., ri = 150 pm gives �Vsol = −457 kJ/mol). Agreement, beyond the semi-quantitative
level, depends critically on the assignment/definition of the ionic radius ri .

9.1.2 The Onsager model

The Onsager model [3] describes the solvation energy of a neutral charge distribution
with a dipole moment. When a molecule with a permanent dipole moment, or any
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configuration of atoms corresponding to transition states in chemical reactions (in
the following simply referred to as a “molecule”) is placed in a solvent described
as a polarizable continuous medium it will experience: (i) a lowering of its energy,
that is, a net stabilization, and (ii) an increased dipole moment, depending on its
polarizability. This is described quantitatively within the so-called Onsager reaction-field
model [3,4].

The energy of a localized charge distribution in an external electric potential is given
by an expression similar to the electrostatic energy in Eq. (9.3). The potential φ(x) can be
expanded around the center of the localized charge distribution, this leads to a multipole
expansion of the electrostatic energy

V =
∫

ρ(x)φ(x)d3x

= qφ(0)− μ · E(0)+ ·· · (9.8)

where the first term is absent for a neutral charge distribution, since the total charge
q = ∫

ρ(x)d3x = 0, the electric field E(0) = −∇φ(x)|x=0, and the permanent dipole
moment is defined as

μ =
∫

xρ(x)d3x (9.9)

Thus, the energy of the molecule is given by −μ · E(0), where E(0) is the external electric
field at the center of the charge distribution. Often, in a simplified molecular model, a
net point charge is associated with each atom in a molecule. For such a distribution of
localized point charges ρ(x) = ∑

i qiδ(x − ri), and the dipole moment associated with a
set of n point charges become

μp =
n∑

i=1

qiri (9.10)

where qi and ri are the charge and the position vector, respectively, of the point
charge i. The unit of a dipole is charge (Coulomb) times length, that is, C × m.

The molecule is surrounded by the solvent described as a continuous medium with
dielectric constant εr , and it is assumed that the molecule fills a spherical cavity of radius
a, which reflects the size of the molecule.

The physical picture is now as illustrated in Fig. 9.1.1. The electric field associated
with the molecular dipole (μ) polarizes the dielectric medium (i.e., the solvent). This
polarization of the solvent will give rise to an additional electric field (ER) at the molecular
dipole (in addition to the field created by the isolated molecular dipole). The field is called
the reaction field of the dipole. The dipole and the field are parallel, that is,

ER = f μ (9.11)
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μ

δ+

δ–

ER

Fig. 9.1.1 The dipole moment μ associated with two point charges inside a spherical cavity of a dielectric
medium. The induced polarization of the medium is illustrated with + and −. The resulting electric field
is ER.

where the factor f will be specified next for two cases, one where the molecule is non-
polarizable and one where it is polarizable.

9.1.2.1 A non-polarizable molecule

In the Onsager model, the Poisson equation Eq. (9.4) is solved for a spherical cavity.
As described before, inside the cavity, the electric potential and the associated electric
field contains an additional term ER compared to vacuum. The electric (reaction) field
at the dipole, due to the solvent, is given by [3,4]

ER = f (a,εr)μ

= 1
4πε0a3

2(εr − 1)

2εr + 1
μ (9.12)

Note that the unit of the electric field is V/m [V/m = J/(C m) = (J−1 C2 m−1 m3)−1 C m].
The solvation energy defined as the electrostatic energy in a solvent minus the energy in
the gas phase (εr = 1) is obtained from Eqs (9.8) and (9.12)

�Vsol = −μ · ER = − μ2

4πε0a3

2(εr − 1)

2εr + 1
(9.13)

From this expression, we observe that the energy stabilization depends on:

(i) the magnitude of the dipole moment (μ2);

(ii) the radius of the molecule (cavity radius a);

(iii) the dielectric constant of the solvent (εr).
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The dependence on the dielectric constant is given by the factor 2(εr − 1)/(2εr + 1),
which can take values in the interval between 0 (for εr = 1) and 1 (e.g., 0.98 for
εr = 78.5, the dielectric constant of water). Furthermore, a small value of a gives
a large stabilization. The magnitude of this radius can, for example, be estimated
from the molecular volume obtained from the ratio between the molecular weight and
the molecular density. Again, agreement beyond the semi-quantitative level, depends
critically on the assignment/definition of the molecular volume.

9.1.2.2 A polarizable molecule

From Fig. 9.1.1, it is clear that the polarization of the solvent will tend to enhance the
electrical asymmetry of the molecule, that is, enhance the molecular dipole moment.
The resulting dipole moment μ∗ is then the permanent dipole plus an induced dipole
moment:

μ∗ = μ + αE∗
R (9.14)

where α is the polarizability of the molecule, and E∗
R is the reaction field of the polarizable

molecule. The polarizability measures, roughly speaking, how easy it is to move the
electrons of the molecule. Equation (9.11) now takes the form

E∗
R = f μ∗

= f (1 − αf )−1μ (9.15)

where Eq. (9.14) was used in the last line. The factor f is defined in Eq. (9.12). The
resulting dipole moment is according to this equation related to the permanent dipole by
the relation

μ∗ = (1 − αf )−1μ (9.16)

The increase compared to the permanent dipole moment can be in the order of 20–50%.

9.1.3 Quantum mechanical energy, potential energy surface

The description given in Section 9.1.2 is purely classical, that is, based on classical
electrostatics. In order to transcribe the result into quantum mechanics, we must first
replace the dipole moment with the dipole moment operator, which formally takes the
same form as Eq. (9.10). The charges qi and position vectors ri are associated with the
nuclei and the electrons, respectively, of the molecular system.

We add the operator −μ · ER to the total molecular Hamiltonian. According to
Eq. (3.1), the electronic Hamiltonian of the molecule in the field due to the solvent is
then Ĥe − μ · ER. The electronic Schrödinger equation is then solved using this modified
Hamiltonian. This leads to a self-consistent solution where the electronic wave function
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and the electronic energy are modified due to the solvent field. Thus, polarization of
the molecular electronic density (as described approximately before) is automatically
included in this approach.

We can estimate the effect of the solvent within first-order perturbation theory.
The corrected energy takes the form

Ẽi(R′) = Ei(R′)+ 〈ψi(r;R′)| − μ · ER|ψi(r;R′)〉
= Ei(R′)− f 〈ψi(r;R′)|μ2|ψi(r;R′)〉 (9.17)

where Ei(R′) is the electronic energy, ψi(r;R′) is the stationary electronic wave function
of the isolated (gas-phase) molecule, and f = (4πε0a3)−12(εr − 1)/(2εr + 1). Note that
the integration in the matrix element is over all coordinates (r) associated with the
electrons. Thus, the quantum mechanical expectation value of the (squared) dipole
moment will depend on the internuclear distances. The perturbation from the solvent
will accordingly introduce a modified potential energy surface. This will lead to a shift
of vibrational frequencies and barrier heights compared to the gas phase [5].

The order of magnitude of the energy correction is easy to estimate. Thus, with
a dipole moment equivalent to a unit (electron) charge separated by 1 ångström, we
get μ ∼ 1.602 × 10−19 × 10−10 C m, and with f ∼ (4πε0a3)−1 and a ∼ 3 × 10−10 m the
energy correction is 8.5 × 10−20 J = 0.5 eV ∼ 50 kJ/mol. This number is similar to barrier
heights in the gas phase and the energetics of solvation can clearly play an essential role
in condensed-phase reaction dynamics.

Since the development of the Onsager model, there have been a number of elab-
orations on the model [6,7]. For example, the spherical cavity has been replaced by
“molecularly-shaped” cavities. The state of the art within the field of solvent effects
described by continuum solvent models is now implemented in quantum chemical
program packages.

9.2 Diffusion and Bimolecular Reactions

In order for two reactants A and B to react in a bimolecular reaction, they need to
be brought in the vicinity of each other. When dispersed in a fluid, this happens by
diffusive motion, which is entirely different from the free motion in the gas phase. Once
an encounter between two reactants takes place, they will usually stay together much
longer than in a gas phase due to a “cage” effect of the surrounding fluid molecules. This
allows for numerous exchanges of energy between reactants and fluid, and thereby for
activation and deactivation of the reaction complex. A complicated interplay between
diffusion rates and reaction rates may determine the overall reaction rate in a fluid.
We shall study an example of how diffusive motion and chemical reactions are combined
in a description of chemical reactions in solution.
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9.2.1 Introduction, a macroscopic description

A simplified picture of the situation is often given by the reaction scheme

A + B
kD−→←−
k′

D

AB
k′

s−→ P

kD is determined by the diffusion of reactants toward each other and k′
D is the rate

constant for the reverse process, which implies that the reactants in the encounter pair
may diffuse away from each other without reaction. k′

s denotes the reaction rate constant
for the pair. Assuming steady state with respect to AB leads to

dCAB

dt
= kDCACB − k′

DCAB − k′
sCAB ≡ 0 (9.18)

so

CAB = kDCACB

k′
s + k′

D
(9.19)

and

dCP

dt
= k′

sCAB = k′
skD

k′
s + k′

D
CACB ≡ kCACB (9.20)

We note that the effective rate constant k is determined by both the diffusion rate constant
kD and the reaction rate constant k′

s. Let us consider two limits. If k′
D � k′

s, then the
effective rate constant is seen to be k ∼ kD, that is, the rate constant is determined by the
rate of diffusion. This is often referred to as the diffusion-controlled limit. When k′

s � k′
D,

then

k ∼ kD

k′
D

k′
s = Kk′

s (9.21)

where K is the equilibrium constant for A + B � AB. The effective rate constant is given
as a product of the equilibrium constant K and the rate constant k′

s. This is usually
referred to as the activation-controlled limit, since the effective rate constant is determined
by the rate constant k′

s.

9.2.2 Fick’s second law of diffusion and chemical reaction

After these qualitative considerations we will go on and study chemical reactions in
solution in more detail and determine the effective rate constant in terms of fundamental
properties such as a diffusion constant D and the intrinsic bimolecular rate constant ks.
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The equation we have to solve may be written as

∂CB

∂t
= D∇2CB − ksCBCA (9.22)

when we neglect convection in the system. The left-hand side of the equation expresses
the local rate of change in the concentration of B. The first term on the right-hand
side of the equation expresses the contribution to the rate of change from diffusion
and the second term the contribution from the chemical reaction. The change in the
concentration of A may usually be found from a material balance equation. This is a very
complicated partial differential equation that is difficult to solve and cannot be solved
analytically. For a qualitative understanding of the behavior of a system with diffusion
and chemical reactions it would, however, be useful if an approximate analytical solution
could be found. This is indeed possible, as shown in the following. The idea is that,
instead of solving the complete equation (9.22), we solve the equation with the diffusion
term included but without the chemical reaction term. That term is then introduced in
the boundary condition. This gives equations that may be solved analytically and the
solution may help us to understand qualitative features of such a system.

We consider the diffusive motion of a B molecule relative to an A molecule. In order
for a reaction to occur, the reactants must be brought close together by the diffusive
motion, that is, a B molecule must approach an A molecule. For the sake of solving the
differential equation used to describe this problem we need to specify some distance
Rc between A and B at which a reaction may take place. It is a necessary condition for a
reaction to occur that the molecules must get close to each other, say at a distance Rc, but
not a sufficient condition. Whether or not they will react is determined by the reaction
rate constant ks in a simple second-order reaction scheme according to ksCB(Rc, t) (it
is second order because the concentration of A is one at Rc and therefore not seen
explicitly in the expression). CB(Rc, t) is the concentration of B at a distance Rc from
the A molecule. The diffusive motion of B is described by Fick’s second law of diffusion:

∂CB

∂t
= D∇2CB (9.23)

We shall assume that our system is spherically symmetric; so with the nabla operator in
spherical coordinates, the diffusion equation may be written

∂CB(r, t)
∂t

= D
[

∂2

∂r2 + 2
r

∂

∂r

]
CB(r, t) (9.24)

Here, r denotes the distance of B from A. The equation is solved with the following
boundary conditions:

(i) for r < Rc: CB(r,0) = 0;

(ii) for r ≥ Rc: CB(r,0) = CB (the bulk concentration);
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(iii) for t > 0: CB(r → ∞, t) = CB;

(iv) IB(Rc, t) = 4πR2
c |JB(Rc, t)| = 4πR2

c D(∂CB(r, t)/∂r)r=Rc = ksCB(Rc, t).

In boundary condition (iv), IB(Rc, t) is the flow of B molecules across the surface of a
sphere with radius Rc, the distance between the reactants, where a reaction may take
place. This flow is expressed by the flux density, JB(Rc, t) (i.e., the number of molecules
per second that are passing through an area of one square meter), as given by Fick’s
first law

JB(Rc, t) = −D
(

∂CB(r, t)
∂r

)

r=Rc

(9.25)

multiplied by the area of the sphere. The flow of B is set equal to the rate by which
B molecules disappear in the chemical reaction. The condition expresses a steady state at
all times at r = Rc between the diffusive influx of B and the rate by which B molecules
disappear by the chemical reaction. The boundary conditions are summarized in the
sketch in Fig. 9.2.1.

Equation (9.24) is solved by a Laplace transformation. In chemical kinetics and
diffusion, the problems may often be formulated in terms of partial differential equations
that are first order with respect to time and second order with respect to position
coordinates. In order to solve the problem we seek a solution to the differential equation
for given initial and boundary conditions. The Laplace transformation technique is often
used in solving these differential equations. One transforms the original function in time
and coordinates F(r, t) to a Laplace transformed function F̃(r, s) in frequency s and
coordinates r, by

F̃(r, s) =
∫ ∞

0
dtF(r, t)exp(−st) (9.26)

t = 0

r

CB

t ~∞

CB(r)

Fig. 9.2.1 Sketch of boundary conditions (i), (ii), and (iii) at infinite time. The concentration profile at
time t ∼ ∞ is a sketch of the solution when every encounter at r = Rc leads to reaction.
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The idea of using this technique is that we may transform the partial differential equation
in both time and coordinates into an ordinary differential equation in just the coordinates,
which is usually easier to solve. The elimination of the derivative with respect to time
dc/dt is easily seen by partial integration:

∫ ∞

0
dt(dc(t)/dt)exp(−st)

= [exp(−st)c]∞0 + s
∫ ∞

0
dtc(t)exp(−st) = sc̃(s)− c(0)

(9.27)

When we have found a solution for the Laplace transformed function, then we need to
make an inverse transformation to find the solution in terms of time and coordinates.
There are elegant techniques for doing this based on the theory of complex functions,
but often these are not necessary since there exist extensive tables in mathematical
handbooks of functions and their Laplace transformed functions. Only in cases where
the relevant functions have not been tabulated will it be necessary to carry out the inverse
transformation using these techniques.

Taking the Laplace transform of Eq. (9.24) gives

sC̃B(r, s)− CB(r,0) = D
[

∂2

∂r2 + 2
r

∂

∂r

]
C̃B(r, s) (9.28)

This is a standard second-order differential equation with the solution

C̃B(r, s)
CB(r,0)

= 1
s

+ A
r

exp(r
√

s/D)+ B
r

exp(−r
√

s/D) (9.29)

which may easily be checked by substitution into the differential equation.
Boundary condition (iii) requires that A = 0. The Laplace transform of boundary

condition (iv) is

ksC̃B(Rc, s) = 4πR2
c D

(
∂C̃B(r, s)

∂r

)

r=Rc

(9.30)

This may be used to determine B. We find after some lengthy but straightforward
manipulations that

B = −Rc

s
ks

ks + 4πRcD + 4πR2
c

√
sD

exp(Rc
√

s/D)

= −1
s

Rcks

(ks + 4πRcD)

(ks + 4πRcD)/(4πR2
c

√
D)

(ks + 4πRcD)/(4πR2
c

√
D)+ √

s
exp(Rc

√
s/D) (9.31)
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so the Laplace transformation of the concentration is given by

C̃B(r, s)
CB

= 1
s

− Rc

r
ks

(ks + 4πRcD)

(ks + 4πRcD)/(4πR2
c

√
D)

s((ks + 4πRcD)/(4πR2
c

√
D)+ √

s)
exp(−(r − Rc)

√
s/D)

(9.32)
where we have used boundary condition (ii).

We shall now determine the inverse Laplace transform of this function to find the
concentration of B at time t. In tables of Laplace transforms the following pair has been
found:

F̃(s) = a
s(a + √

s)
exp(−b

√
s) (9.33)

with the inverse given by

F(t) = erfc(b/(2
√

t))− exp(ab)exp(a2t)erfc(a
√

t + b/(2
√

t)) (9.34)

where erfc denotes the error function complement, which is defined by the error function,
erf, according to

erfc(x) = 1 − erf(x)

≡ 1 − 2√
π

∫ x

0
dzexp(−z2) (9.35)

The Laplace transform F̃(s) is seen to have exactly the same form as the second term in
Eq. (9.32) with

b = (r − Rc)/
√

D (9.36)

and

a = (ks + 4πRcD)/(4πR2
c

√
D) (9.37)

so the solution may be written

CB(r, t)/CB = 1 − Rc

r
ks

ks + 4πRcD

[
erfc

(
r − Rc√

4Dt

)
− exp

(
(ks + 4πRcD)(r − Rc)

4πR2
c D

)

exp

(
(ks + 4πRcD)2

(4πR2
c

√
D)2

t

)
×erfc

(
r − Rc√

4Dt
+ ks + 4πRcD

4πR2
c

√
D

√
t

)]

(9.38)
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where we have used that the inverse transform of 1/s is 1, as easily shown or found in
the tables.

The time evolution of the concentration is illustrated in Fig. 9.2.2, using a diffusion
constant that is typical for diffusional motion in liquid water. The curve at t = 25 ns is
very close to being stationary, consistent with the steady-state boundary condition (iv).

The rate of reaction may then be expressed in terms of the flow IB(Rc, t) of B across
a sphere of radius Rc around A using boundary condition (iv):

− dCA

dt
= IB(Rc, t)CA = ksCB(Rc, t)CA ≡ k(t)CACB (9.39)

which defines an effective rate constant k(t) that may be a function of time. After a little
algebra using Eq. (9.38), we find the following expression for the rate constant:

k(t) = 4πRcDks

ks + 4πRcD

[
1 + ks

4πRcD
exp

(
(ks + 4πRcD)2

(4πR2
c

√
D)2

t

)
erfc

(
ks + 4πRcD

4πR2
c

√
D

√
t

)]

(9.40)

It is seen that the effective rate constant depends on the diffusion constant D and the
intrinsic rate constant ks in a rather complicated way, and that it is a function of time.
The time dependence is a consequence of the transient approach to stationarity of the
concentration profile of B (see Fig. 9.2.2). At stationarity, the rate constant is independent
of time, which is also seen from the asymptotic expansion

lim
z→∞

√
πzexp(z2)erfc(z) = 1 + ·· · (9.41)

t = 10 ps

t = 10 ns
t = 25 ns
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Fig. 9.2.2 Concentration profiles according to Eq. (9.38). The diffusion constant is D = 10−9 m2 s−1,
Rc = 5 Å (see Example 9.2), and 4πRcD/ks = 2.
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Thus, for t → ∞ we obtain the steady-state limit for the effective rate constant:

k(t → ∞) ≡ k = 4πRcDks

ks + 4πRcD
(9.42)

The relation for k is often written as

1
k

= 1
ks

+ 1
4πRcD

(9.43)

For the case where ks → ∞, which means that every physical encounter at Rc leads to a
reaction, we find

lim
ks→∞k = 4πRcD ≡ kD (9.44)

which is the rate constant in the diffusion-controlled limit, where the diffusion constant
determines the overall rate of the reaction. This relation identifies kD of the simplified
picture in Eq. (9.20) with 4πRcD. Diffusion-controlled reactions typically include
recombination reactions of atoms and radicals that have small, zero, or even negative acti-
vation energies. For example, for the association/recombination reaction of iodine atoms
in hexane at 298 K, I + I → I2, the rate constant is found to be 1.3 × 107 m3 mol−1 s−1.

In the activation-controlled limit where ks � kD, the rate constant is seen to be ks, that
is, the reaction rate is determined by the intrinsic rate constant alone. The majority of
chemical reactions in liquid solution are activation controlled.

Example 9.1 Diffusion and chemical reaction in an ideal gas

Here we estimate the relative magnitude of ks and kD in an ideal gas at various pressures.
An upper limit to ks, where it is assumed that every collision leads to reaction, was given by
Eq. (4.14), ks = σ 〈v〉, where σ = πd2 is the reaction cross-section and 〈v〉 = √

8kBT/(μπ) is
the average velocity at the temperature T . The diffusion constant is (from kinetic gas theory)
given by D = (1/3)λ〈v〉, where λ = kBT/(

√
2σp) is the mean-free path of the molecule at the

pressure p.
That is,

ks

kD
= σ 〈v〉

4πRcD

= 3σ

4πRcλ

∼ Rc

λ
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where in the last line it was assumed that d ∼ Rc. Thus, as long as the mean-free path is large
compared to the internuclear distance where reaction takes place, Rc, we are in the activation-
controlled limit.

Consider, as an example, molecules at p = 1 atm and T = 298 K. Typically, d (∼ Rc) is
0.3 nm, which implies that λ ∼ 102 nm. Thus, at moderate—not too high—pressures the mean-
free path is several hundred times larger than the molecular dimensions. Reactions in an ideal
gas at standard conditions accordingly take place such that “free flight” prevails between the
collisions. Diffusional motion only plays a role at very high pressures.

Before closing, let us add a few comments about the diffusion constant D in the
equations. For diffusion of solutes like A and B in a solvent, it is customary to introduce
diffusion constants DA and DB such that the associated fluxes J ′

A and J ′
B are given relative

to the flux of the solvent molecules. Since they are present in an overwhelming quantity
compared to the solutes, this will be equivalent to a center-of-mass reference frame, and,
if the system is stationary, to a laboratory reference frame. In this calculation we have
used another reference frame in which the flux of B is measured relative to the flux of A,
so we need to find a relation between D and the ordinary diffusion constants DA and DB
as they may be found in tables. We write

J ′
A = −DA∇CA

J ′
B = −DB∇CB

(9.45)

so the flux of B relative to the flux of A is given by

JB ≡ J ′
B − J ′

A = −DB∇CB + DA∇CA (9.46)

The gradients are not independent but coupled through the Gibbs–Duhem equation

CA∇μA + CB∇μB + Cw∇μw = 0 (9.47)

Here, Cw is the concentration of the solvent and μi is the chemical potential of
component i. For the solvent, we have that ∇μw ∼ 0, so

CA∇μA = −CB∇μB (9.48)

and with

μi = μ0
i + RT ln(Ci/C0

i ) (9.49)
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we find that

∇CA = −∇CB (9.50)

Substitution into Eq. (9.46) gives

JB = −(DA + DB)∇CB (9.51)

and a comparison with Eq. (9.25) finally shows that

D = DA + DB (9.52)

Example 9.2 Diffusion and chemical reaction in liquid water

In the diffusion-controlled limit we found that k = kD = 4πRcD, so from the diffusion constant
D and a reasonable estimate of Rc it is possible to determine the order of magnitude of
kD. In Table 9.1, we have listed the diffusion constants for a series of ions and molecules
in water at room temperature. It is seen that typical values of D are 10−8–10−10 m2 s−1.
When the distance between reactants is small enough and equal to Rc, then a reaction may
occur as it was assumed in the derivation given. A reasonable estimate of that distance
would be that Rc ≈ 5.0 × 10−10 m, so with a diffusion constant D ≈ 10−9 m2 s−1 we find
kD = 4π × 5.0 × 10−10 × 10−9 m3 molecule−1 s−1, and after multiplication by Avogadro’s
number NA = 6.023 × 1023 we find kD ≈ 106–107 m3 mol−1 s−1. Note that k = kD = 4πRcD
is the upper limit for the magnitude of a rate constant associated with a bimolecular reaction
in solution.

Thus, from the discussion of the rate constant in Eq. (9.42), we have in water the following
conditions:

• ks � 106 m3 mol−1 s−1, the reaction will be activation controlled;

• ks � 107 m3 mol−1 s−1, the reaction will be diffusion controlled.

An example of a diffusion-controlled reaction is the acid–base reaction H+ + OH− → H2O.
The experimentally determined rate constant at 298 K is 1.4 × 108 m3 mol−1 s−1, which is
very large even for a diffusion-controlled reaction. Although, as observed from the table, the
diffusion constants for the ions are large, kD = 4πRcD = 5.4 × 107 m3 mol−1 s−1 assuming
Rc = 5.0 × 10−10 m. Thus, the predicted value is about a factor of two smaller than the
experimentally observed value. This suggests, not surprisingly, that a modified treatment of
diffusion is required for reactions involving ions (see Subsection 9.2.3 and Problem 9.2).

The diffusion constant, Di , of a particle in a solvent is related to the viscosity of the
solvent by the Stokes–Einstein relation known from hydrodynamics:

Di = kBT
nhπηRi

(9.53)
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Table 9.1 Diffusion constants in water at 298 K.

Substance D m2 s−1 Substance D m2 s−1

H+ 9.1 × 10−9 Glycin 1.06 × 10−9

Li+ 1.0 × 10−9 Dextrose 0.67 × 10−9

Na+ 1.3 × 10−9 Sucrose 0.52 × 10−9

OH− 5.2 × 10−9 Methanol 1.58 × 10−9

Cl− 2.0 × 10−9 Ethanol 1.24 × 10−9

where η is the viscosity, Ri the hydrodynamic radius of the diffusing particle, and nh is
a numerical constant. The equation was derived for a continuum solvent (that is, Ri �
radius of the solvent molecules), in which case nh = 6. The validity of the equation for
molecular diffusion is somewhat questionable; in spite of this it is also used for this case
but with a change of the numerical constant nh from 6 to 4. When we apply the equation
to our case, we find the following relation between D and the viscosity of the solvent:

D = kBT
nhπη

[
1

RA
+ 1

RB

]
(9.54)

There is rarely much information available on either the hydrodynamic radius of
a species and the encounter radius Rc. It is often assumed that Rc = RA + RB, and if
RA and RB are also approximately equal, Eqs (9.44) and (9.54) may be combined to
give a simple expression for the rate constant:

kD = 16kBT
nhη

≈ 4kBT
η

(9.55)

where we have used nh = 4. This shows that the rate constant in the diffusion-controlled
limit is given as a function of the viscosity and the temperature of the solvent, and
is independent of the properties of the reactants. The viscosity of water at 298 K is
η = 0.8904 × 10−3 kg m−1 s−1, so for water at 298 K the rate constant will be
kD = 1.1 × 107 m3 mol−1 s−1, in rough agreement with the result in Example 9.2.

9.2.3 Stochastic description of diffusion and chemical reaction

In this section, we will describe the results of the previous section within a probabilistic
framework based on stochastic dynamics [10,11]. Furthermore, the discussion will be
extended to the diffusion of particles with an interaction potential U (r) depending on the
distance r between the particles. An example will be the electrostatic potential associated
with the interaction of ions.



278 Introduction to Condensed-Phase Dynamics

Diffusion can be considered as a stochastic or random process and described by
the so-called Fokker–Planck equation adapted to Brownian motion. This equation is also
known as the Smoluchowski equation. We consider the description of stochastic processes
and Brownian motion in more detail in Section 11.1 and Appendix I.

The Fokker–Planck equation, Eq. (I.24), describing one-dimensional diffusive motion
in a potential U (x) in terms of the probability P(x, t)dx of finding a particle at the position
[x,x + dx], is

∂P(x, t)
∂t

= D
∂2P(x, t)

∂x2 + D
kBT

∂

∂x

(
∂U
∂x

P(x, t)
)

= − ∂

∂x

(
−D

∂P(x, t)
∂x

− D
∂U
∂x

P(x, t)
kBT

)

≡ − ∂

∂x
J(x, t) (9.56)

In the second line, the equation is written in the form of a continuity equation that,
formally, is identical to the continuity equations in quantum mechanics, Eq. (4.117), and
in classical statistical mechanics, Eq. (5.17). The probability flux density is identified as

J(x, t) = −D
(

∂P(x, t)
∂x

+ ∂U
∂x

P(x, t)
kBT

)
(9.57)

The first term is equivalent to the flux due to concentration gradients (i.e., Fick’s first
law) and the second term represents the flux due to gradients in the potential.

Equation (9.56) can be generalized to spherically-symmetric diffusion in three dimen-
sions, and the probability of finding the AB pair at the distance [r, r + dr] is P(r, t)dr, and
is given by

∂P(r, t)
∂t

= D
[

∂2

∂r2 + 2
r

∂

∂r

]
P(r, t)+ D

kBT

[
∂

∂r

(
∂U
∂r

P(r, t)
)

+ 2
r

∂U
∂r

P(r, t)
]

(9.58)

Note that, if the potential U (r) is independent of r, then the second term disappears, and
the equation becomes equivalent to Fick’s second law in Eq. (9.24) (furthermore, the
two terms containing 2/r are absent in the one-dimensional description).

Equation (9.58) is solved with the initial condition (replacing boundary condition
(ii) in Section 9.2.2)

P(r, t = 0) = C exp(−U (r)/kBT) (9.59)

which is the probability density, irrespective of the momentum, of finding the AB pair
at distance r according to the equilibrium Boltzmann distribution (C is a normalization
constant). The boundary condition at r = Rc, replacing (iv) from Section 9.2.2, is
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4πR2
c D

(
∂P(r, t)

∂r
+ ∂U

∂r
P(r, t)
kBT

)

r=Rc

= ksP(Rc, t) (9.60)

following Eq. (9.57).
For U (r) = 0, the equations are mathematically equivalent to the equations in Section

9.2.2, and Eq. (9.33) is the exact solution for k(t). For U (r) �= 0, it can be shown [10] that
an approximate expression for the time-dependent rate constant is given by Eq. (9.33),
provided Rc is replaced by Reff

c , where the effective radius is given by

1/Reff
c =

∫ ∞

Rc

eU (r)/kBT r−2dr (9.61)

Note that for U (r) = 0, Reff
c = Rc.

When U (r) �= 0, the approximate expression for k(t) behaves correctly at t → ∞, and
the diffusion-controlled rate constant becomes

kD = 4πReff
c D (9.62)

that is, the same form as in Eq. (9.44).
For reactions involving ions, it is relevant to consider a Coulomb potential, Eq. (9.2).

The integral in Eq. (9.61) is easily evaluated (using the substitution x = 1/r) and

Reff
c = Rc(V (Rc)/kBT)[exp(V (Rc)/kBT)− 1]−1 (9.63)

where V (Rc) = qAqB/(4πεrε0Rc) is the Coulomb potential evaluated at R = Rc, and qA =
zAe and qB = zBe. For ions of opposite charge, Reff

c > Rc, and the charges give rise to an
increased value of the diffusion-controlled rate constant.

The Coulomb potential describes the interaction between two isolated charged
particles, that is, ions. At finite concentrations, a better description is obtained using
the so-called (Debye–Hückel) screened or shielded Coulomb potential.
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PROBLEMS

9.1 Show that the function in Eq. (9.59) is a stationary solution to Eq. (9.58); that is, it
satisfies the equation for ∂P(r, t)/∂t = 0.

9.2 Calculate the diffusion-controlled rate constant for H+ + OH− → H2O at
T = 298 K using Eqs (9.62) and (9.63) and relevant data from Example 9.2.



10

Static Solvent Effects,
Transition-State Theory

Key ideas and results

In this chapter, we consider static solvent effects on the rate constant for chemical
reactions in solution. The static equilibrium structure of the solvent will modify the
potential energy surface for the chemical reaction. This effect can be analyzed within
the framework of transition-state theory. The results are as follows.

• The rate constant can be expressed in terms of the potential of mean force at
the activated complex. This potential may, for example, be defined such that
the gradient of the potential gives the average force on an atom in the activated
complex due to the solvent molecules, Boltzmann averaged over all configurations.

• A relation between the rate constants in the gas phase and in solution can be
derived. The solvent effect can, approximately, be expressed in a form where the
relation between the rate constants is given in terms of the potential of mean force
at the transition state.

We shall begin our studies of the transition-state theory for reactions in solution by
considering the influence of the static structure of the solvent on the rate constant for
a reaction. This corresponds to an evaluation of the average effect of the solvent on the
rate constants; that is, we consider all possible configurations of the solvent molecules
around the reactants and the activated complex, determine the effect on them for each
particular solvent-molecule configuration, and evaluate the overall effect as a statistical
weighted sum of the particular effects. This approach is therefore often referred to
as a mean field determination of the solvent effect, since the influence of spontaneous
fluctuations in solvent molecule positions and velocities is neglected. The effect of these
will be considered in the next chapter using stochastic dynamics for the effect of solvents
on the rate constants.

The basic expressions for the rate constant within a fully classical version of conven-
tional transition-state theory were derived in Chapter 5. According to Eq. (5.49), we
may write

Theories of Molecular Reaction Dynamics. Second Edition. Niels E. Henriksen and Flemming Y. Hansen, Oxford University
Press 2019. © Niels E. Henriksen and Flemming Y. Hansen. DOI: 10.1093/oso/9780198805014.001.0001
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kTST(T) = kBT
h

V ν−1Q‡

Qr
(10.1)

where Q‡ and Qr are the partition functions of the activated complex and the reactants,
respectively, including the surrounding solvent molecules, V is the volume, and ν = 1
for a unimolecular reaction and ν = 2 for a bimolecular reaction. Before we go into the
more detailed atomic-level description of solvent effects, let us briefly consider the ther-
modynamic formulation of Eq. (10.1). We showed in Section 6.6 that in the gas phase the
transition-state theory rate constant given in terms of molecular partition functions can
be transcribed into a thermodynamic formulation. In a condensed phase, we can again
transcribe the basic expression for the rate constant into a thermodynamic formulation.
To that end, we note that the Helmholtz (free) energy is related to the canonical partition
function according to [1] F = −kBT lnQ, where Q here is the partition function of N
interacting molecules (the Helmholtz function is also often denoted by the letter A). We
define the Helmholtz energy of activation, say for a unimolecular reaction A → product,
as �F�

‡ ≡ F‡ − FA = −kBT ln(Q‡/QA), and Eq. (10.1) takes the form

kTST(T) = kBT
h

exp(−�F�
‡ /kBT)

= kBT
h

exp(�S�
‡ /kB)exp(−�E�

‡ /kBT) (10.2)

From this equation originates the statement that the rate constant is determined by
the free energy of activation. Furthermore, as also discussed in Section 6.6, the pre-
exponential factor in front of the activation energy �E�

‡ is related to the entropy of
activation. For reactions in solution, it is important to notice that the values of �F�

‡ ,
�S�

‡ , and �E�
‡ are determined by the activated complex and the reactant as well as by

the surrounding solvent molecules.
The interaction potential between solvent molecules and between solvent and solute

molecules may, in principle, be found by solving the electronic Schrödinger equation,
Eq. (3.1), for the solute/solvent system. Thus, the electronic energy (the potential for
the nuclear motion) is, for a system with N nuclei, a function of the position vectors
of each nucleus; that is, UN (r1,r2, . . . ,rN ). Note that if the whole system is invariant to
translation and rotation, the electronic energy can be expressed in terms of internuclear
distances, rij = |ri − rj |. With the exception of the case of a few solvent molecules, this
approach is, however, not feasible because of the complexity of such calculations.

In practice, empirical or semi-empirical interaction potentials are used. These poten-
tial energy functions are often parameterized as pairwise additive atom–atom interactions,
that is, UN (r1,r2, . . . ,rN ) = ∑

i<j u(rij), where the sum runs over all atom–atom distances.
An all-atom explicit solvent model requires a substantial amount of computation. This
may be reduced by estimating the electronic energy via a continuum solvation model like
the Onsager reaction-field model, discussed in Section 9.1.
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10.1 An Introduction to the Potential of Mean Force

In this section, we will give a short introduction to some important results of this chapter,
in particular, to the concept of a potential of mean force.

For any given reaction, the classical rate constant according to transition-state theory
(TST) is given by the average flux of system points across the transition state (TS) from
reactants to products, Eq. (5.45). In order to obtain a simple expression for the rate
constant, we assume that the Hamiltonian of the system of N atoms can be written in
the form

HN = p2
1

2μ1
+

3N∑

i=2

p2
i

2mi
+ UN (q1, . . . ,q3N ) (10.3)

where q1 is a one-dimensional reaction coordinate with associated mass μ1 and q2, . . . ,q3N
are the Cartesian coordinates for all other degrees of freedom including solvent molecules
with associated masses mi . The momenta in the equation are the momenta conjugated to
the coordinates. Such a separation of the kinetic energy where the kinetic energy of the
reaction coordinate is pulled out is possible in the transition-state region (see Sections
10.2.1 and 10.2.2 for details). Outside the transition-state region, in the reactant space,
Eq. (10.3) is only valid within a “zero-curvature” approximation (see Section 6.4).

With q1 = q‡ at the TS and asserting (arbitrarily) that the reactants are “to the left” of
the TS (q1 < q‡), the TST rate constant can, according to Eq. (5.45), be written in the
form

kTST(T) = V ν−1

∫ · · ·∫ e−HN /kBTδ(q1 − q‡)p1/μ1 θ(p1/μ1)dq1 · · ·dq3N dp1 · · ·dp3N∫ · · ·∫ θ(q‡ − q1)e−HN /kBT dq1 · · ·dq3N dp1 · · ·dp3N
(10.4)

where ν = 1 for a unimolecular reaction and ν = 2 for a bimolecular reaction, δ(x) is the
Dirac delta function, and θ(x) is the Heaviside step function. θ(p1/μ1) ensures that the
integral is evaluated only for positive momenta p1 taking the system from reactants to
products. θ(q‡ − q1) in the denominator ensures that the integrations are evaluated for
the reactants only, which are characterized by values of q1 < q‡.

Except for p1, the integration over momenta in the numerator and denominator of
Eq. (10.4) cancels. Hence, kTST can now be written

kTST(T) = V ν−1

∫ ∞
0 e−p2

1/2μ1kBT (p1/μ1)dp1
∫

e−p2
1/2μ1kBT dp1

×
∫

δ(q1 − q‡)
[∫ · · ·∫ e−UN (q1,...,q3N )/kBT dq2 · · ·dq3N

]
dq1∫

θ(q‡ − q1)
[∫ · · ·∫ e−UN (q1,...,q3N )/kBT dq2 · · ·dq3N

]
dq1

(10.5)
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The first term in this expression, as we have seen several times in Chapters 5 and 6,
is easily evaluated:

∫ ∞
0 e−p2

1/2μ1kBT (p1/μ1)dp1
∫

e−p2
1/2μ1kBT dp1

=
√

kBT
2πμ1

(10.6)

and is the average speed along the reaction coordinate.
With regard to the second term, the quantity P1(q1)dq1, where

P1(q1) = 1
ZN

∫
· · ·

∫
e−UN (q1,...,q3N )/kBT dq2 · · ·dq3N (10.7)

and

ZN =
∫

· · ·
∫

e−UN (q1,...,q3N )/kBT dq1 · · ·dq3N (10.8)

gives the probability of finding values of the reaction coordinate between q1 and q1 + dq1.
The dimension of P1(q1) is inverse length, and a dimensionless distribution function
g1(q1) and a potential w(q1) may be introduced according to

g1(q1) ≡ V 1/3P1(q1) ≡ e−w(q1)/kBT (10.9)

The physical significance of the potential w(q1) is easy to establish. We take the logarithm
of Eq. (10.9):

− w(q1)/kBT = ln
{∫

· · ·
∫

e−UN (q1,...,q3N )/kBT dq2 · · ·dq3N

}
+ const. (10.10)

and take the derivative ∂/∂q1:

−∂w(q1)

∂q1
=

∫ · · ·∫ − ∂UN
∂q1

e−UN (q1,...,q3N )/kBT dq2 · · ·dq3N∫ · · ·∫ e−UN (q1,...,q3N )/kBT dq2 · · ·dq3N

= 〈−∂UN/∂q1〉 (10.11)

that is, −∂w(q1)/∂q1 is the mean value of the force acting on the reaction coordinate,
averaged over all other coordinates. These coordinates include the position of all the
solvent molecules as well as all the configurations of the reacting molecules, with the
exception of the reaction coordinate. Thus, w(q1) is the potential that gives the mean
force acting on the reaction coordinate and w(q1) is referred to as a potential of mean force.

With the definition in Eq. (10.9), the integrals over q2, . . . ,q3N in Eq. (10.5) equal
ZN V −1/3 exp[−w(q1)/kBT], and the TST rate constant can be expressed as [2,3]
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kTST(T) = V ν−1

√
kBT
2πμ1

e−w(q‡)/kBT

∫ q‡

−∞ e−w(q1)/kBT dq1

(10.12)

Note that, in this expression, the square root has the dimension of speed and the
dimension of the integral in the denominator is length. Hence, the expression indeed gives
the correct unit for a unimolecular rate constant (where ν = 1) as well as for a bimolecular
rate constant (where ν = 2). Equation (10.12) gives an expression for the intrinsic rate
constant, ks of Section 9.2, in the activation-controlled limit. It should be recalled that
due to the assumption introduced by Eq. (10.3), this is not an exact expression for the
rate constant within the framework of transition-state theory.

The multidimensional integrals in the definition of the potential of mean force in
Eq. (10.9), w(q1) = −kBT ln[g1(q1)], can be evaluated directly using the Monte Carlo
method (see Appendix J).

Example 10.1 Potential of mean force

Consider the SN2 reaction

Cl− + CH3Cl′ −→ CH3Cl + Cl′−

The dashed line in Fig. 10.1.1 shows, in the gas phase, a calculation at the Hartree–Fock
(HF) level with a 6-31G� basis set. The electronic energies correspond to a minimum-energy
path with a reaction coordinate defined as rc = rCCl′ − rCCl, where rc = 0 corresponds to
the activated complex (Cl · · ·CH3 · · ·Cl′)‡. The minimum-energy path is optimized in C3v
symmetry for fixed values of rc.

In aqueous solution, the intermolecular interactions were assumed to be pairwise additive and
described by Lennard–Jones (12–6) potentials with added interactions corresponding to point
charges. The solid line in Fig. 10.1.1 shows the potential of mean force w(rc) evaluated in a
solution of 250 water molecules at T = 25◦C [4].

In solution, the pronounced ion–dipole complex is not observed and the overall potential
energy barrier is significantly higher. Note that this calculation agrees with the schematic energy
diagram in Fig. 9.0.1. However, in order to facilitate the comparison in Fig. 10.1.1, the curve
corresponding to the aqueous solution has been shifted in energy to the same asymptotic value
as in the gas phase.

10.2 Transition-State Theory and the Potential
of Mean Force

The purpose of this section is to give a detailed discussion of the material in Section
10.1, as well as to elaborate on the results. Equation (10.12) is a convenient expression
from a computational point of view, but the simplicity of the expression is at the cost
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Fig. 10.1.1 Electronic energies in the gas phase (dashed curve) and the potential of mean force in water
(solid curve) as a function of the reaction coordinate rc. [Adapted from J. Chandrasekhar, S.F. Smith, and
W.L. Jorgensen, J. Am. Chem. Soc. 107, 154 (1985).]

of “hiding” the complexity of the terms involved, including physical insights concerning
solvent effects.

We will have a closer look at the coordinate transformations leading to Eq. (10.12).
Furthermore, we will consider some alternative forms of Eq. (10.12). In Eq. (10.12),
the potential of mean force is related to the average force on the reaction coordinate. An
alternative definition of the potential of mean force, which we will consider, is related to
the average force on the atoms of the activated complex exerted by the solvent molecules.

The structure of the activated complex may be perturbed compared to the gas phase
when it is placed in a solvent. We derive an exact expression for the static solvent
effect on the rate constant. Then, assuming that the activated complex is not perturbed
by the solvent, we show that the exact expression for the rate constant in solution
simplifies to the well-known gas-phase result in the absence of solvent molecules, and an
expression for the relation between the solution and gas-phase rate constants is derived.
Furthermore, when the internal degrees of freedom of the reactants are neglected, the
solvent effect on the rate constant is given by the simple expression in Eq. (10.53),
where the relation between the rate constant ks in solution and the rate constant kg
in the gas phase is given in terms of the potential of mean force. This is, however, an
approximation and only valid for atomic reactants A and B with no internal degrees of
freedom, but can still be used for molecules with internal degrees of freedom as a crude
estimate.

We consider in the following a bimolecular reaction, and the starting point for the
evaluation of the solvent effects on the reaction is the situation where the reactants A and



Transition-State Theory and the Potential of Mean Force 287

B have been brought together by diffusion in the same solvent “cage.” We then consider
the reaction

A + B � (AB)‡ → products (10.13)

just like in the gas phase. The Hamiltonian HN for a system of reactants A and B and
solvent molecules, N atoms in all, may in general be written as

HN = HA(pA,qA)+ HB(pB,qB)+ Hsol(P,R)+ Vint(qA,qB,R)

= TA(pA)+ VA(qA)+ TB(pB)+ VB(qB)+ Tsol(P)+ Vsol(R)+ Vint(qA,qB,R)

(10.14)

Here HA and HB are the Hamiltonians of the isolated reactant molecules, Hsol is the
Hamiltonian of the pure solvent, and Vint is the interaction energy between reactants
and between reactant and solvent molecules; that is, it contains the solute–solute as well
as the solute–solvent interactions. qA and qB are the (e.g., Cartesian) coordinates of the
atoms in reactant molecules A and B, respectively, and pA and pB are the conjugated
momenta. If there are nA atoms in molecule A and nB atoms in molecule B, then there
will be, respectively, 3nA coordinates qA and 3nB coordinates qB. Similarly, R are the
coordinates for the solvent molecules and P are the conjugated momenta. In the second
line of the equation, we have partitioned the Hamiltonians Hi into a kinetic energy part
Ti and a potential energy part Vi .

The Hamiltonian of Eq. (10.14) is, of course, valid for any configuration of the system,
also when an activated complex (AB)‡ is formed and the identity of the reactants is lost.
It will then be natural to restructure the terms in Eq. (10.14), so the Hamiltonian will be a
sum of a Hamiltonian for the activated complex H‡

AB(p,q), a Hamiltonian for the solvent

Hsol(P,R), and an interaction energy term V ‡
int(q,R) between the activated complex and

the solvent:

H‡
N = H‡

AB(p,q)+ Hsol(P,R)+ V ‡
int(q,R)

= T‡
AB(p)+ V ‡

AB(q)+ Tsol(P)+ Vsol(R)+ V ‡
int(q,R) (10.15)

Here, q are the coordinates of the atoms in the activated complex and p are the
conjugated momenta. There will be a total of 3n = 3nA + 3nB coordinates q. V ‡

AB is the

intramolecular gas-phase potential and V ‡
int describes the solute–solvent interaction. The

double dagger ‡ on the energy terms indicates that they refer to the activated complex and
its interaction with the solvent. The potential energy terms are illustrated in Fig. 10.2.1.

In a system with many degrees of freedom, there may be several activated complexes
depending on the constraints imposed on the degrees of freedom. As an example, look at
the energy plot for the H + H2 system in Fig. 3.1.3. The energy of the activated complex
at the saddle point of the potential energy surface depends on the angle of approach of
the H atom with respect to the H2 bond. So, here and in the following we always refer to
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A B

Vsol

V‡
int

V‡
AB

Fig. 10.2.1 Reactants A and B in a solvent “cage.” V ‡
AB is the intramolecular gas-phase potential of

the activated complex. Vsol is the intermolecular potential of the pure solvent. V ‡
int is the intermolecular

potential that describes the interaction between the activated complex and solvent molecules.

the activated complex with the lowest energy, that is, to the complex with all degrees of
freedom relaxed except for the reaction coordinate q1 to give the activated complex with
the lowest energy. In order to identify the reaction coordinate, we use an expansion of
the potential to second order in the coordinates around the saddle point that introduces
normal-mode coordinates (see Sections 10.2.1 and 10.2.2 for details).

According to Eq. (5.45), we can now write the rate constant in the form

kTST = V

∫∫
dqdpdRexp(−(H‡

AB + Vsol + V ‡
int)/kBT)δ(q1 − q‡)p1/μ1 θ(p1/μ1)∫

React dqdp
∫

dRexp(−(HA + HB + Vsol + Vint)/kBT)

(10.16)

where the integration over all solvent momenta P in the numerator and denominator
has canceled. The integration in the denominator is over all configurations associated
with the reactant space. The integration over all solvent-molecule coordinates implies
that it is a mean field rate constant, averaged over all solvent-molecule configurations.
As emphasized previously, the reaction coordinate q1 is, in general, a superposition of
the absolute Cartesian position coordinates for the atoms of the activated complex. We
consider in the following the identification of the reaction coordinate.

10.2.1 Solvent-perturbed activated complex

The structure of the activated complex may or may not be perturbed when it is placed in
a solvent, depending on the relative strength of the complex–solvent interactions and the
intramolecular interactions. Typically, when stable molecules are placed in an external
field used to probe some molecular property, it is assumed that the molecular structure
is not perturbed. This is often justified, but whether or not that is the case here is more
difficult to decide since at least one intramolecular mode becomes soft compared to what
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it is in a stable molecule, namely the mode associated with the reaction coordinate. This is
illustrated in Fig. 10.2.2. In Fig. 10.2.2(a) we see an activated complex consisting of two
groups G1 and G2 separated by a bond, which is the reaction coordinate. The complex
has been immersed in a solvent with a given configuration of the solvent molecules,
referred to as configuration R1. A different solvent configuration R2 is shown in
Fig. 10.2.2(b), where the structure of the activated complex is identical to the one in
Fig. 10.2.2(a), and in Fig. 10.2.2(c) with a different structure of the activated complex.
These are the two cases that may occur: one where the structure remains unperturbed
by the solvent and one where it is perturbed.

It is therefore natural to first derive a general expression for the rate constant that
includes the possibility that the structure of the activated complex is different from the
structure in the gas phase, and then specialize this result to the case where it is assumed
that the structure will not be perturbed. We will see that the general result does not allow
us to extract a simple physical picture of the solvent effect on the rate constant, whereas
more insight may be obtained with the simplifying assumption that the structure of the
complex is not perturbed.

(a)

(b)

(c)

G1

G2

G2

G2
: R2

: R2

: R1

G1

G1

Fig. 10.2.2 Activated complex consisting of two groups G1 and G2 surrounded by solvent molecules
(filled circles). The two groups are connected by a bond (shown here as a dashed line), which is the reaction
coordinate. (a) The activated complex in a solvent with configuration R1. (b) Another solvent configuration
R2 with an unperturbed activated complex identical to the one in (a). (c) Same solvent configuration as in
(b) but with a perturbed activated complex.
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The gas-phase potential energy surface for the complex, V ‡
AB(q), is perturbed by

the interaction potential, V ‡
int(q,R), when the complex is placed in the solvent. This

means that both the position of the saddle point on the potential energy surface for the
complex and the shape of the potential energy surface around the saddle point may differ
from that in the gas phase and depend on the particular configuration R of the solvent
molecules around the complex. For a given configuration R of the solvent, we determine
the coordinates, S(R), of the saddle point associated with the lowest energy of the total
potential energy surface V ‡

AB,sol(q,R), where

V ‡
AB,sol(q,R) = V ‡

AB(q)+ V ‡
int(q,R) (10.17)

They will in general be a function of the solvent configuration, as indicated and illustrated
in Fig. 10.2.3.

V ‡
AB,sol(q,R) is expanded around the saddle point S(R) to second order in the

displacement coordinates

�qi = qi − Si(R) (10.18)

and the harmonic approximation to the potential surface around the saddle point will be

V ‡
harm(�q,S(R),R) = V ‡

AB,sol(S(R),R)

+ 1
2

∑

i

∑

j

⎛

⎝∂2V ‡
AB,sol(q,R)

∂qi∂qj

⎞

⎠

q=S(R)

�qi�qj (10.19)

The standard procedure for introducing normal-mode coordinates (see Appendix F) is
followed and we define a set of mass-weighted displacement coordinates ηi :

ηi = √
mi�qi (10.20)

(a) (b)
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Fig. 10.2.3 (a) Potential energy surface for a chemical reaction in solution with solvent configuration R1.
(b) Potential energy surface for a chemical reaction in solution with another solvent configuration R2.
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In these coordinates, the potential has the form

V ‡
harm(η,S(R),R) = V ‡

AB,sol(S(R),R)+ 1
2

∑

i

∑

j

F‡
ijηiηj

= V ‡
AB,sol(S(R),R)+ 1

2
ηT F‡η (10.21)

where F‡
ij is the mass-weighted force constant matrix. The normal-mode coordinates

Q are introduced by the linear transformation of the mass-weighted displacement
coordinates:

η = L‡(R)Q (10.22)

where L‡(R) is a 3n × 3n matrix that depends on the solvent configuration R. The
potential energy can then be written as

V ‡
harm(Q,S(R),R) = V ‡

AB,sol(S(R),R)+ 1
2

QT [L‡(R)T F‡L‡(R)]Q

= V ‡
AB,sol(S(R),R)+ 1

2
QT�‡(R)Q

= V ‡
AB,sol(S(R),R)+ 1

2

3n∑

i=1

ω2
i Q2

i (10.23)

The L‡(R) matrix is chosen such that the matrix L‡(R)T F‡L‡(R) = �‡(R) is diagonal
with elements ω2

i , which also depend on the solvent configuration R. The eigenvectors
of F‡ are arranged as columns in the L‡(R) matrix. It should also be noted that
V ‡

AB,sol(S(R),R) can no longer be written as a sum of an intramolecular (gas-phase
potential) and an intermolecular part as in Eq. (10.17), because the harmonic expansion
of the potential around the saddle point is based on the total potential energy surface and
not just on the intramolecular part. By combining Eqs (10.18), (10.20), and (10.22) we
see that the absolute position coordinates of the atoms in the activated complex around
the saddle point of the total potential energy surface can be written as

qi = Si(R)+ �qi = Si(R)+ 1√
mi

3n∑

j=1

L‡
ij(R)Qj (10.24)

in terms of the normal coordinates Q and the position of the saddle point S.
The salient feature of the normal coordinate description is that there is no coupling

between the various normal modes, so the Hamiltonian can be written as a sum of
Hamiltonians for each normal mode. The reaction coordinate is defined, like in gas-
phase transition-state theory, as the normal mode for which the associated frequency is
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imaginary. Let that be normal-mode coordinate Q1, so the Hamiltonian for the activated
complex using normal-mode coordinates may be written

H‡
AB,sol(P,Q,R) = P2

1

2μ1
− 1

2
(ω∗

1)
2Q2

1 +
3n∑

i=2

P2
i

2μi
+ 1

2

3n∑

i=2

ω2
i Q2

i + V ‡
AB,sol(S(R),R)

(10.25)

where P1 is the momentum conjugate to normal-mode coordinate Q1 with the associated
frequency ω1 = iω∗

1 and Pi is the momentum conjugate to normal-mode coordinate Qi
with the associated frequency ωi . Because we have used mass-weighted coordinates in the
transformation from the ordinary Cartesian coordinates to normal-mode coordinates, all
reduced masses μi are equal to 1 (see Appendix F) but we have chosen to keep them
in the expressions to remind that a mass is involved in the terms with the conjugate
momenta. We have pulled out the contributions to the Hamiltonian from the reaction
coordinate in the first terms on the right-hand side of the equation.

The motion in the reaction coordinate Q1 is, like in gas-phase transition-state theory,
described as a free translational motion in a very narrow range of the reaction coordinate
at the transition state; that is, for Qi = 0, i = 1,2, . . . ,3n. Thus, the potential along the
reaction coordinate is considered to be constant (free translational motion) and equal to
its value at the saddle point. The central assumption in the theory is now that the flow
about the transition state is given solely by the free motion at the transition state with no
recrossings. So when we associate a free translational motion with that coordinate it does
not mean that the interaction potential energy is independent of the reaction coordinate,
but rather that it has been set to its value at the saddle point, because we only consider
the motion at that point. The contribution to the Hamiltonian in Eq. (10.25) from the
motion in the reaction coordinate is therefore only given by the term P2

1/(2μ1).
We now introduce the Hamiltonian and the notation for coordinates and conjugate

momenta from Eq. (10.25) into the expression for the rate constant in Eq. (10.16), using
the invariance of the phase-space volume element in the transformation to normal-mode
coordinates (see Appendix F.3); we find

k TST = V

∫∫
dP1dP̃dQ̃dR(P1/μ1)θ(P1/μ1)exp(−(H‡

AB,sol(Q1 =0)+ Vsol)/kBT)
∫

React dqdp
∫

dRexp(−(HA + HB + Vsol + Vint)/kBT)

(10.26)
The integration over Q1 has been carried out, which implies that H‡

AB,sol is evaluated

for a fixed value of Q1 = 0. With the tilde on P̃ and Q̃, we indicate that they exclude P1
and Q1. The Heaviside step function θ(P1/μ1) in the numerator limits the integration
over P1 to positive P1, that is to motion from reactants to products consistent with the
assumption about no recrossings in transition-state theory. The integration over P1 gives

∫ ∞

0

P1

μ1
exp(−P2

1/(2μ1kBT))dP1 = kBT (10.27)
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with the definitions

H‡
intra(P̃,Q̃,R) ≡ H‡

AB,sol(P,Q,R)−
(

P2
1

2μ1
− 1

2
(ω∗

1)
2Q2

1

)

≡ T‡
intra(P̃)+ V ‡

intra,sol(S(R),R,Q̃) (10.28)

where

V ‡
intra,sol(S(R),R,Q̃) = V ‡

AB,sol(S(R),R)+ 1
2

3n∑

i=2

ω2
i Q2

i (10.29)

that is H‡
AB,sol(P,Q,R) in Eq. (10.25) without the contributions from the reaction

coordinate, we may write Eq. (10.26) as

kTST = kBT V

∫
dP̃ exp(−T‡

intra/kBT)∫
React dpexp(−(TA + TB)/kBT)

×
∫∫

dQ̃dRexp(−(V ‡
intra,sol + Vsol)/kBT)

∫
React dq

∫
dRexp(−(VA + VB + Vsol + Vint)/kBT)

(10.30)

where we have pulled out the kinetic energy terms T‡
intra, TA, and TB.

The integrals over momenta may easily be evaluated, since the kinetic energy terms
TA and TB are a sum of terms p2

i /(2mi). Likewise, T‡
intra is a sum of terms P2

j /2, when the
reduced masses for the normal modes are all equal to one. The total number of degrees
of freedom for the activated complex is 3n, and the˜indicates that one degree of freedom
P1 has already been considered. We then find

� ≡
∫

dP̃ exp(−T‡
intra/kBT)∫

React dpexp(−(TA + TB)/kBT)

= (
√

2πkBT)(3n−1)

∏3nA
i=1

√
2πmA,ikBT

∏3nB
j=1

√
2πmB,jkBT

= 1√
2πkBT

1
∏3nA

i=1
√

mA,i
∏3nB

j=1
√

mB,j
(10.31)

mA,i is the mass of atom i in molecule A and mB,j is the mass of atom j in molecule B.
We then have

kTST = kBT V �

∫∫
dQ̃dRexp(−(V ‡

intra,sol + Vsol)/kBT)
∫

React dq
∫

dRexp(−(VA + VB + Vsol + Vint)/kBT)
(10.32)
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This is an exact mean field expression for the rate constant when the reaction takes
place in a solution because we have averaged over all solvent configurations. The result
incorporates the possibility, through V ‡

intra,sol, that the structure of the activated complex
may be perturbed by the interaction with the solvent molecules. The cost we must pay for
the general validity of the expression is that we cannot reduce the complicated integrals
further, so the result is as such not very informative and does not provide us with a simple
physical picture of how the rate constant is affected by the solvent.

The integrals in Eq. (10.32) are referred to as configuration integrals. Thus, the
denominator and the numerator are configurational integrals of, respectively, the reac-
tants including the solvent and the activated complex including the solvent (with the
reaction coordinate fixed at Q1 = 0). The unit of kTST is m3 s−1 and this is consistent
with the expression in Eq. (10.32). The unit of the kBTV factor is J m3, the unit of the
� factor is J1/2 kg−3n/2, and the unit of the last factor is kg(3n−1)/2 m−1 (because Q̃ is
mass-weighted coordinates). Put together, the unit is J1/2 kg−1/2 m2 = m3 s−1.

10.2.2 Unperturbed activated complex

When we introduce the simplifying assumption that the structure of the activated
complex will not be perturbed when exposed to the solvent molecules, then it is possible
to reduce the integrals and obtain more physical insight into the effect of the solvent. The
saddle-point coordinates S are now obtained from the gas-phase potential V ‡

AB(q) alone
and are therefore independent of the solvent configuration. The eigenvectors in the L‡

matrix and eigenfrequencies ωi are likewise determined from the gas-phase potential
alone and therefore also independent of the solvent configuration.

This implies that V ‡
AB,sol(S(R),R) in Eq. (10.23) may now be written as a sum of an

intramolecular V ‡
AB and an intermolecular part V ‡

int:

V ‡
AB,sol(S(R),R) = V ‡

AB(S)+ V ‡
int(S,R) (10.33)

as in Eq. (10.17). Note that we in V ‡
int in Eq. (10.33) use the coordinates at the saddle

point S. The relation between the two sets of coordinates is given in Eq. (10.24). S is
no longer a function of the coordinates of the solvent molecules. When Eq. (10.33) is
introduced into the expression for V ‡

intra,sol(S,R,Q̃) in Eq. (10.29), we may write

V ‡
intra,sol(S,R,Q̃) = V ‡

AB(S)+ 1
2

3n∑

i=2

ω2
i Q2

i + V ‡
int(S,R)

≡ V ‡
intra(S,Q̃)+ V ‡

int(S,R) (10.34)

Note the difference in the definitions of V ‡
intra,sol in Eq. (10.29) and V ‡

intra in Eq. (10.34).
The interactions between the activated complex and the solvent are included in the
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former but not in the latter. Equation (10.34) is used in the expression for the rate
constant kTST in Eq. (10.32), and we find

kTST = kBT V �

∫
dQ̃exp(−V ‡

intra/kBT)
∫

dRexp(−(Vsol + V ‡
int)/kBT)∫

React dq
∫

dRexp(−(VA + VB + Vsol + Vint)/kBT)

= kBT V �

∫
dQ̃P(n)(S,Q2, . . . ,Q3n−r)

(10.35)

where we have introduced the function

P(n)(S,Q2, . . . ,Q3n−r) =
exp(−V ‡

intra/kBT)
∫

dRexp(−(Vsol + V ‡
int)/kBT)∫

React dq
∫

dRexp(−(VA + VB + Vsol + Vint)/kBT)

(10.36)

This function is the n-particle distribution function. For n = 2, it is related to the
well-known pair-distribution function. It gives the probability of finding the atoms in the
activated complex in a given configuration S,Q1 = 0,Q2, . . . ,Q3n−r (represented here
by the normal-mode coordinates and the position of the saddle point) averaged over
all solvent molecule configurations. P(n) can only depend on the internal coordinates of
the activated complex when we average over all possible configurations of the solvent
molecules, because that averaging will produce configurations that may be obtained by
a rigid translation (center-of-mass translation) and a rigid rotation of the complex. For
a non-linear molecule there will be r = 6 coordinates that describe the center-of-mass
position and the orientation of the molecule, and r = 5 coordinates for a linear molecule.
Equation (10.35) is an exact mean field expression for the rate constant of a reaction
taking place in a solvent, when the structure of the activated complex is not perturbed by
the solvent.

The n-particle distribution function P(n) in Eq. (10.36) is often replaced by the so-
called potential of mean force function Wmean for the activated complex, defined as

P(n) ≡ exp(−V ‡
intra/kBT)exp(−Wmean/kBT)/V n

≡ g(n)(S,Q2, . . . ,Q3n−r)/V n

= exp(−V ‡
intra/kBT)

∫
dRexp(−(Vsol + V ‡

int)/kBT)∫
React dq

∫
dRexp(−(VA + VB + Vsol + Vint)/kBT)

(10.37)

where the factor V −n is introduced, since the unit of the probability density function P(n)

is (m)−3n according to Eq. (10.36). g(n) is the so-called n-particle correlation function,
and for n = 2 it is identical to the pair-correlation function g(r), where r is the internuclear
distance. For an infinite separation there will be no correlation between the atoms and
g(r → ∞) → 1, whereas it will be different from one at smaller separations.
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It is easy to verify that Wmean is the potential of the mean force exerted by the solvent
molecules on the activated complex. From the definition in Eq. (10.37), we find, by taking
the natural logarithm on both sides of the expression,

− Wmean/kBT = ln
[∫

dRexp(−(Vsol + V ‡
int)/kBT)

]
− const. (10.38)

Then we take the gradient with respect to the position vector of the jth atom in the
activated complex:

−∇jWmean/kBT = −∫ ∇jV
‡
int/kBT exp(−(Vsol + V ‡

int)/kBT)dR
∫

dRexp(−(Vsol + V ‡
int)/kBT)

≡ 〈F j〉/kBT (10.39)

which is just the definition of the average force on the jth atom in the activated complex
due to the solvent molecules. Note that V ‡

int depends on the atomic position coordinates
as discussed in connection with Eq. (10.33). The situation is illustrated in Fig. 10.2.4.
Here we have shown the atoms (open circles) in an activated complex and the average
force 〈F i〉 on each of the atoms from the solvent molecules.

Equation (10.35) can be expressed in terms of the potential of mean force

kTST = kBT V n+1 �

∫
dQ̃exp(−V ‡

intra/kBT)exp(−Wmean/kBT) (10.40)

This simple form is clearly at the cost of “hiding” the complexity of the terms involved.
Equations (10.35) and (10.40) can be written in an alternative form based on

the introduction of a probability density function for the reaction coordinate and the
associated potential of mean force, in contrast to previously, where we considered
the probability density of a particular arrangement of n atoms. Let �(Q1)dQ1 be the
probability of finding the reaction coordinate in the range Q1,Q1 + dQ1. We introduce
the energy function V ‡(S,Q) = V ‡

intra(S,Q̃)− 1/2(ω∗
1)

2Q2
1, which is a function of all Q

〈F1〉 〈F2〉

〈F3〉

Fig. 10.2.4 Activated complex atoms (open circles) in a cage of solvent molecules (filled circles).The mean
force 〈F i〉 on the atoms in the activated complex from the solvent molecules is shown.
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including the reaction coordinate. Then, from equilibrium statistical mechanics (see
Appendix B.2), the probability density function �(Q1) is given by

�(Q1) =
∫

dQ̃exp(−V ‡/kBT)
∫

dRexp(−(Vsol + V ‡
int)/kBT)

∫
dQexp(−V ‡/kBT)

∫
dRexp(−(Vsol + V ‡

int)/kBT)

≡ V −1/3μ
−1/2
1 exp(−w(Q1)/kBT) (10.41)

where in the second line we have introduced the potential of mean force, w(Q1), for the
reaction coordinate in analogy to Eq. (10.37). Here the volume is raised to the power of
−1/3, since we consider just one coordinate and not n atoms and 1/

√
μ1 comes from the

mass-weighted reaction coordinate. The derivative of w(Q1), with respect to Q1 is easily
seen to give the average force on the reaction coordinate from the solvent molecules.

The numerator in Eq. (10.35) may then be written, using Eq. (10.41):

∫
dQ̃exp(−V ‡

intra/kBT)

∫
dRexp(−(Vsol + V ‡

int)/kBT) =
μ

−1/2
1

V 1/3 exp(−w(Q1 =0)/kBT)

∫
dQexp(−V ‡/kBT)

∫
dRexp(−(Vsol + V ‡

int)/kBT)

(10.42)

In the denominator of the expression in Eq. (10.35), we change integration variables from
dq to dQ using the transformation Eq. (10.24), to have the same integration variables in
the numerator and denominator. From Appendix F.3, we have the following relation
between the volume elements:

dq = 1
∏3nA

i=1
√

mA,i
∏3nB

j=1
√

mB,j
dQ

= �
√

2πkBT dQ (10.43)

using the same notation as in Eq. (10.31), and we find

∫

React
dq

∫
dRexp(−(VA + VB + Vsol + Vint)/kBT)

= �
√

2πkBT
∫

React
dQ

∫
dRexp(−(VA + VB + Vsol + Vint)/kBT)

(10.44)

The combination of the expressions for the numerator, Eq. (10.42), and the
denominator, Eq. (10.44), then gives the following expression for the rate constant
in Eq. (10.35):
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kTST = V

√
kBT
2πμ1

V −1/3e−w(Q1=0)/kBT

×
∫

dQexp(−V ‡/kBT)
∫

dRexp(−(Vsol + V ‡
int)/kBT)∫

React dQ
∫

dRexp(−(VA + VB + Vsol + Vint)/kBT)

(10.45)

This result is somewhat similar to the expression in Eq. (10.12). Further identification
would require that the second factor could be related to an integral of the potential
of mean force, exp(−w(Q1)/kBT), over Q1 ∈] − ∞,0]. However, such identification is
impossible since the probability density in Eq. (10.41) is only defined for Q1 ∼ 0.

Before we derive a relation between the rate constants in solution and gas phase, let
us first verify that the expression for the rate constant in Eq. (10.35) simplifies to the
well-known result for the gas-phase rate constant, when there is no solvent present. With
no solvent, we have Vsol = 0. Also V ‡

int = 0, since this is the interaction energy between
solvent and activated complex. The n-particle distribution function in Eq. (10.36)
simplifies to

P(n)(S,Q2, . . . ,Q3n−r) = exp(−V ‡
intra/kBT)∫

React dqexp(−(VA + VB + Vint)/kBT)
(10.46)

When introduced into the expression for the rate constant, we find

kg = kBTV

∫
dP̃ exp(−T‡

intra/kBT)∫
React dpexp(−(TA + TB)/kBT)

×
∫

dQ̃exp(−V ‡
intra/kBT)∫

React dqexp(−(VA + VB + Vint)/kBT)

(10.47)

where we have used the definition of the � factor from Eq. (10.31). If we also make the
assumption that Vint = 0, that is, we neglect interactions between the reactant molecules
except when they form an activated complex, then the denominator in Eq. (10.47) is
simply proportional to the molecular partition functions ZA and ZB. Please note that here
we use Z to denote a partition function to avoid confusion with the normal coordinates
Q. The product of the denominators is

∫

React
dpexp(−(TA + TB)/kBT)

∫

React
dqexp(−(VA + VB)/kBT)

=
∫

React
dpAdqA exp(−HA/kBT)

∫

React
dpBdqB exp(−HB/kBT)

= h3nAZAh3nBZB

= h3nZAZB

= h3nV 2(ZA/V )(ZB/V ) (10.48)
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In the same way, the product of numerators may be written

∫
dP̃ exp(−T‡

intra/kBT)

∫
dQ̃exp(−V ‡

intra/kBT) =
∫

dP̃dQ̃exp(−H‡
intra/kBT)

= h3n−1Z‡ exp(−Ecl/kBT)

= h3n−1V (Z‡/V )exp(−Ecl/kBT)

(10.49)

where it is noticed that the partition function for the activated complex does not include
the reaction coordinate, so the phase-space dimension is two less than that of the
reactants, and hence the power of h is one less than for the reactants. The exponential
function ensures that we refer to the same zero point for the energy for both reactants
and the activated complex. Ecl is the saddle-point energy, and is given by

Ecl = V ‡
intra(S,Q1 = 0,Q̃ = 0) (10.50)

When these results are introduced into the expression for the gas-phase rate constant
Eq. (10.47), we get the familiar expression

kg = kBT
h

(Z‡/V )

(ZA/V )(ZB/V )
exp(−Ecl/kBT) (10.51)

Having established that the general expression for the rate constant in Eq. (10.35)
simplifies to the well-known expression from the gas phase in the absence of a solvent,
let us then write down a general expression for the relation between the two rate constants
when the activated complex is unperturbed by the solvent. We find, using Eqs (10.31),
(10.35), and (10.47),

ks

kg
=

∫
dQ̃P(n)(S,Q2, . . . ,Q3n−r)

×
∫

React dqexp(−(VA + VB + Vint)/kBT)
∫

dQ̃exp(−V ‡
intra/kBT)

(10.52)

This is not a simple expression that allows us to immediately evaluate the effect of
the solvent molecules on the rate constant. The integrals have to be evaluated by, for
example, the Monte Carlo technique. Both P(n) and V ‡

intra only depend on the internal
3n − r coordinates and not on the center-of-mass coordinates and rotational coordinates,
as explained earlier. Integration over these coordinates therefore always cancels in this
expression.
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10.2.2.1 A special case: reactants without internal degrees of freedom

The expression in Eq. (10.52) only becomes simple in the special case when the reactants
A and B are atoms with no internal degrees of freedom. Then, in the second factor, which
is related to the gas-phase reaction VA = VB = 0, and with no interactions between the
reactant molecules, Vint = 0. The integral over reactant states is therefore simply equal to
the square of the volume, V 2. The reaction coordinate Q1 is the distance, r, between the
atoms, so the five coordinates Q̃ involve the center-of-mass coordinates and the rotational
coordinates for the linear activated complex. The integrals over them cancel, since both
P(n) and V ‡

intra are independent of them. There are no other integration variables, so the
integrands just take the value they have for Q1 = 0. We find

ks

kg
= V 2P(2)(S,Q1 = 0)exp(V ‡

intra(S,Q1 = 0)/kBT)

= g(r‡)exp(V ‡
intra(r

‡)/kBT)

= exp(−Wmean(r‡)/kBT)

(10.53)

where r‡ is the distance between the atoms at the saddle point (i.e., Q1 = 0), and we
have used Eq. (10.37) to introduce the pair-distribution function g(2)(r‡) ≡ g(r‡) and
the potential of mean force Wmean(r‡), that is,

g(r‡) = exp(−V ‡
intra(r

‡)/kBT)exp(−Wmean(r‡)/kBT)

= exp(−Ecl/kBT)exp(−Wmean(r‡)/kBT)

= V 2 exp(−Ecl/kBT)
∫

dRexp(−(Vsol + V ‡
int)/kBT)∫

React dqAdqB
∫

dRexp(−(Vsol + Vint)/kBT)
(10.54)

where we have set VA = VB = 0 in the integral over reactants, since we only consider
atoms. Let us emphasize the physical meaning of the result in Eq. (10.53). If we introduce
the expression for the gas-phase rate constant kg in Eq. (10.51), we find

ks = kBT
h

(Z‡/V )

(ZA/V )(ZB/V )
exp(−(Ecl + Wmean)/kBT) (10.55)

From this it is clear that the solvent effect on the rate constant amounts to a modification
of the energy barrier from being Ecl in the gas phase to Ecl + Wmean in solution. This
represents the net effect of stabilization of the activated complex and the reactants in the
solution.

To see this, let us consider the definition of Wmean. From Eq. (10.54) we have

exp(−Wmean(r‡)/kBT) = V 2

∫
dRexp(−(Vsol + V ‡

int)/kBT)∫
React dqAdqB

∫
dRexp(−(Vsol + Vint)/kBT)

(10.56)
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The influence of the solvent on the activated complex is embedded in the V ‡
int term

and on the reactants in the Vint term, since that term not only includes the interac-
tion between reactant molecules but also between reactant and solvent molecules. So,
even when we neglect interactions between reactant molecules, there is an extra contri-
bution to Vint from the reactant–solvent interaction, that is, solute–solvent interactions,
absent in the gas phase. If we assume that the stabilization of the activated complex and
reactant molecules is the same, that is, V ‡

int = Vint, then

exp(−Wmean(r‡)/kBT) = V 2 1∫
React dqAdqB

= 1 (10.57)

that is, Wmean = 0.
This is illustrated in Fig. 10.2.5. In the central part of the figure, we have shown the

energy levels for the activated complex and reactants in the gas phase. If the stabilization
in solution is the same, as illustrated by the energy diagram to the left, then both levels
are displaced by the same amount and the rate constant will be the same in solution as
in the gas phase (disregarding any dynamical effects). If the stabilization is different,
as illustrated in the energy diagram to the right, the two levels are displaced differently,
and we will have a different rate constant in solution. The interaction energies Vint and
V ‡

int can, for example, be estimated within a continuum solvation model like the Onsager
model, Eq. (9.13).

The idea, therefore, is to use Eq. (10.53) on “real” chemical reactions to give, if not an
exact account of the effect, then at least a qualitative account. We then need to understand
the two functions g(r) and Wmean(r) for such a system. The pair-distribution function is
proportional to the probability of finding a separation of r between two atoms in a liquid,
and here between two groups of atoms along the reaction coordinate. That function looks
like the pair-distribution function for a pure liquid as sketched in Fig. 10.2.6. Note that a
high value of g(r) implies a low value of the potential of mean force. In the liquid, as well
as in the reacting system, it may, for example, be determined by Monte Carlo simulations.
Also shown is the potential of mean force based on the relation for a pure liquid:

g(r) = exp(−Wmean(r)/kBT) �⇒ Wmean(r) = −kBT lng(r) (10.58)

Gas

Activated complex

Reactants

Ecl

Ecl

Ecl + Wmean

Fig. 10.2.5 Energy diagram for the activated complex and reactants in the gas phase and solution. To
the left is shown the case where the stabilization of the activated complex and reactants in solution is the
same, and to the right where it differs.
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g(r)

r

Wmean/kBT

1

r1
‡ r2

‡
0

Fig. 10.2.6 Sketch of the pair-distribution function and potential of mean force.

This expression is a little simpler than the expression in Eq. (10.54), since we only
consider a one-component liquid and therefore do not have to distinguish between a
Vintra and a Vint contribution to the potential energy.

In practice, in order to apply Eq. (10.53), the value of the reaction coordinate r‡ is
determined from the gas-phase potential energy surface of the complex. Then we use the
pair-distribution function for the system (e.g., determined by a Monte Carlo simulation)
and the intramolecular potential energy V ‡

intra to calculate the relation between the two
rate constants. Alternatively, one may determine the potential of mean force directly in a
Monte Carlo simulation. With the example in Fig. 10.2.6 and a reaction coordinate at r‡

1,
we see that the potential of mean force is negative, which implies that the rate constant
in solution is larger than in the gas phase. Physically, this means that the transition state
is more stabilized (has a lower energy) than in the gas phase. If the reaction coordinate
is at r‡

2, then the potential of mean force is positive and the rate constant in solution is
smaller than in the gas phase.

The determination of potentials of mean force has, for example, been applied to
nucleophilic substitution (SN2) reactions in solution, as illustrated in Example 10.1.
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PROBLEMS

10.1 Consider a potential of mean force, where the reactants are localized around a
minimum at q1 = qa, represented by w(q1) = (1/2)μ1ω

2
a(q1 − qa)

2. Assume that
w(q‡)/kBT � 1, where q‡ > qa is the position of the barrier. Use Eq. (10.12) to
derive the expression kTST(T) = V ν−1(ωa/2π)exp(−w(q‡)/kBT).
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Dynamic Solvent Effects: Kramers
Theory and Beyond

Key ideas and results

In this chapter, we consider dynamical solvent effects on the rate constant for
chemical reactions in solution. Solvent dynamics may enhance or impede molecular
motion. The effect is described by stochastic dynamics, where the influence of
the solvent on the reaction dynamics is included by considering the motion along
the reaction coordinate as (one-dimensional) Brownian motion. The results are as
follows.

• In Kramers theory that is based on the Langevin equation with a constant time-
independent friction constant, it is found that the rate constant may be written as a
product of the result from conventional transition-state theory and a transmission
factor. This factor depends on the ratio of the solvent friction (proportional to the
solvent viscosity) and the curvature of the potential surface at the transition state.
In the high friction limit the transmission factor goes toward zero, and in the low
friction limit the transmission factor goes toward one.

• Grote–Hynes theory is a generalization of Kramers theory, based on the gener-
alized Langevin equation with a time-dependent solvent friction coefficient on
the dynamics of the reaction coordinate. The Kramers result is recovered in the
limit where the motion in the reaction coordinate is slow enough for the solvent
molecules to adjust to the changes and re-establish equilibrium conditions. In the
other limit, the non-adiabatic limit, where the motion in the reaction coordinate
is so fast that the solvent molecules are “frozen,” the result may differ from the
Kramers result by several orders of magnitude.

In our discussion of the transition-state theory with static solvent effects, it was noticed
that it is a mean field description where the effects of dynamical fluctuations in the solvent
molecule positions and velocities were excluded.

Theories of Molecular Reaction Dynamics. Second Edition. Niels E. Henriksen and Flemming Y. Hansen, Oxford University
Press 2019. © Niels E. Henriksen and Flemming Y. Hansen. DOI: 10.1093/oso/9780198805014.001.0001
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Most modern investigations of the effects of a solvent on the rate constant, where
dynamical fluctuations are included, are based on a classical paper by Kramers from
1940 [1]. His theory is based on the transition-state theory approach where we have
identified the reaction coordinate as the normal mode of the activated complex that has
an imaginary frequency. In ordinary transition-state theory, we assume that the motion
in that coordinate is like a free translational motion with no recrossings. This may be
partially justified in the gas phase, but hardly in solution. Typically, the activated complex
is positioned in a “cage” in the solvent, which means that the motion in the reaction
coordinate cannot be considered as free due to interactions with the surrounding solvent
molecules, and it indeed appears that recrossings may be important.

The differences between gas-phase reaction dynamics and reaction dynamics in a
solvent are illustrated in the sketches in Fig. 11.0.1. In Fig. 11.0.1(a), a potential energy
surface (PES) in the gas phase is shown with a trajectory that passes the saddle point
and leads to a chemical reaction. In Fig. 11.0.1(b), the PES is shown for the reaction
in solution. It may or may not be perturbed by the interactions with the solvent; in the
figure we have shown a slight distortion. The trajectory would have led to a reaction
as indicated by the dot–dashed part of it, had it not been for a dynamical interaction
with the solvent, where energy is exchanged between reactants and solvent briefly before
the saddle-point region is passed. This causes the trajectory to turn back into the phase
space of the reactants. Another possibility is shown in Fig. 11.0.1(c), where the trajectory

(b)
x2

(c)
x2

(a)
x2

x1

x1 x1

Fig. 11.0.1 (a) PES for a reaction in the gas phase with a trajectory leading to a reaction because it
passes the saddle-point region. (b) A slightly perturbed PES for the same reaction as in (a) carried out
in solution. The dot–dashed part of the trajectory is the one followed when the solvent is absent. At the
asterisk, just before the saddle point, there is a dynamical energy exchange between reactants and solvent
that causes the trajectory to move back into the phase space of the reactants. (c) As in (b) except for the
position along the trajectory where the energy exchange with the solvent takes place; here it is after passing
the saddle point, resulting in a recrossing of the barrier.
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has passed the saddle point before the energy exchange with the solvent takes place and
sends it back into the phase space of the reactants. This is an example of recrossing.

It should be emphasized that these dynamical effects can lead to significant corrections
to conventional transition-state theory where recrossings are neglected. However, in
general, the corrections are small compared to the static solvent effects discussed in the
previous chapter.

Kramers idea was to give a more realistic description of the dynamics in the reaction
coordinate by including dynamical effects of the solvent. Instead of giving a deterministic
description, which is only possible in a large-scale molecular dynamics simulation, he
proposed to give a stochastic description of the motion similar to that of the Brownian
motion of a heavy particle in a solvent. From the normal coordinate analysis of the
activated complex, a reduced mass μ has been associated with the motion in the reaction
coordinate, so the proposal is to describe the motion in that coordinate as that of a
Brownian particle of mass μ in the solvent.

The one-dimensional Brownian motion takes place in a potential, as sketched in
Fig. 11.0.2, where the well at ya refers to the reactants, yb to the transition state, and
yc to the products. This is the potential of mean force along the reaction coordinate as
described in Chapter 10. The dynamical influence of the solvent may be described as
in the Langevin equation. Since it is a probabilistic description, we want to determine the
probability density P(y,v; t), where P(y,v; t)dydv is the probability of finding the particle
in the position interval (y,y + dy) with velocity in the interval (v,v + dv) at time t.

If na is the probability of finding reactants at the a-well, and ks is the rate constant for
going from the a-well to the c-well, then the probability flux j across the barrier is

j = ksna (11.1)

(b)

(a)
(c)

y
ycybya

Epot

Fig. 11.0.2 Sketch of the potential energy as a function of the reaction coordinate y. The state around
(a) represents the reactant state, the transition state is at (b), and the product state is at (c).
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which defines the rate constant, ks. At stationary conditions P(y,v; t) = P(y,v), so the
probability flux j across the transition state at y = yb may be determined as

j =
∫ ∞

−∞
dvvP(yb,v) (11.2)

and na according to

na =
∫

awell

dydvP(y,v) (11.3)

So the rate constant ks may be found as ks = j/na. This expression for the rate constant is
equivalent to a one-dimensional version of Eq. (5.45) when the Boltzmann distribution
is replaced by P(y,v). It is, however, important to notice that Eq. (11.2) allows for
recrossings across the barrier, since the lower integration limit is −∞ and not 0 as in
the previous presentations of transition-state theory where the possibility of recrossings
was neglected.

We note that the probability density P(y,v) has the dimension s m−2, so j has the
dimension s−1, na is dimensionless, and ks has the dimension s−1. If both na and j are
multiplied by the number of reactant molecules, we will get, respectively, the number of
molecules in the a-well and the flux of reactants across the transition-state barrier.

Since probabilistic dynamics is central to an understanding of Kramers theory for the
influence of solvents on the rate constant, we shall first summarize some of the essential
features in such a description.

11.1 Brownian Motion, the Langevin Equation

Brownian motion relates to the motion of a heavy colloidal particle immersed in a fluid
made up of light particles. In Fig. 11.1.1 the trajectory of a Brownian particle is shown.
The coordinates of a particle with a diameter of 2 μm moving in water are observed every
30 s for 135 min. As the first step in the theoretical description, one renounces an exact
deterministic description of the motion and replaces it with a probabilistic description.

Let us consider a Brownian particle of mass M immersed in a fluid. Macroscopically,
the laws of hydrodynamics would tell us that during its motion the particle undergoes a
friction force due to the viscosity of the fluid, and that this force is proportional to the
velocity v of the particle; hence Newton’s equation of motion has the form

M
d〈v〉
dt

= −g〈v〉 (11.4)

where g is the friction, assumed to be a constant, and 〈v〉 is the average macroscopic
velocity as opposed to the instantaneous microscopic velocity v. We restrict ourselves to
one-dimensional notation because we are going to use the theory on a one-dimensional
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10 μm

Fig. 11.1.1 The trajectory of a Brownian particle with a diameter of 2 μm in water. The coordinates of
the particle are observed every 30 s for 135 min.

problem and omit for simplicity the potential U (r), as sketched in Fig. 11.0.2, in this
introduction to stochastic dynamics.

We need, however, a more refined and realistic description, since this equation predicts
an exponential decay of the initial velocity to zero, in contrast to the observed incessant
motion of a Brownian particle. Therefore, we must add to the systematic friction force
the action of all individual solvent molecules on the Brownian particle, which results in
an additional term F(t):

M
dv
dt

= −gv + F(t) (11.5)

Note that in this equation we consider the actual velocity, v. Suppose the Brownian
particle starts at t = 0 with velocity v0. Equation (11.5) is an ordinary inhomogeneous
linear first-order differential equation with the solution

v = v0 exp(−γ t)+ exp(−γ t)
∫ t

0
dτ exp(γ τ)F(τ )/M (11.6)

where γ = g/M is defined as the friction constant g divided by the mass M. This result
is useless when we do not know F(t). Since we do not want to go into the details of
this many-body problem, we can only say that the collisions with solvent molecules
are very numerous and irregular as regards their strength and direction. This leads
to a probabilistic description. We cannot specify the force F(t) as a given function of
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time, but we can make reasonable assumptions about the average effect of the collisions
over a large number of identical macroscopic situations (like an ensemble). Similarly,
we cannot predict the velocity of the Brownian particle at every time t, but we may be
able to predict the average outcome of a large number of experiments performed under
identical conditions. Therefore, the whole idea of solving Eq. (11.5) is a typical example
of the class of so-called stochastic (or random) equations of motion. It is called, after its
discoverer, the Langevin equation.

Let us see how such an equation is solved. First, we must define the random function
F(t) quantitatively. The average of F(t) over an ensemble of Brownian particles vanishes.
This condition ensures that the average velocity of the Brownian particle obeys the
macroscopic law (Eq. (11.4)), that is, the fluctuations cancel each other on average. This
is written as follows:

〈F(t)〉 = 0 (11.7)

We may express the idea of irregularity by assuming that collisions, well separated in
time, are statistically independent. In other words, the correlation between values of F(t)
at two times t1 and t2 is different from zero only for time intervals of the order of the
duration of a collision τc. Explicitly,

〈F(t1)F(t2)〉 = φ(t1 − t2) � f δ(t1 − t2) (11.8)

where φ(t) is a function that is sharply peaked at t = 0 and that vanishes for t > τc. Often
φ is approximated by a delta function times a constant f describing the strength of the
random force, as indicated in the equation. If we average all terms in Eq. (11.6) over the
ensemble defined here and use assumption (11.7), we obtain

〈v〉 = v0 exp(−γ t) (11.9)

This is just the solution of the macroscopic equation (11.4), a result that is not surprising.
More interesting is the square of the velocity, if we square the right-hand side of
Eq. (11.6) we find

v2 = v2
0 exp(−2γ t)+ 2v0 exp(−2γ t)

∫ t

0
dτ exp(γ τ)F(τ )/M

+ exp(−2γ t)
∫ t

0
dτ1

∫ t

0
dτ2 exp(γ (τ1 + τ2))F(τ1)F(τ2)/M2

(11.10)

Then, taking the ensemble average using Eq. (11.7), we get

〈v2〉 = v2
0 exp(−2γ t)+ exp(−2γ t)

∫ t

0
dτ1

∫ t

0
dτ2 exp(γ (τ1 + τ2))〈F(τ1)F(τ2)〉/M2

(11.11)
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The two-dimensional integral may be reduced to two one-dimensional integrals by a
change of variables. Details may be found in Appendix H. The result is

〈v2〉 = v2
0 exp(−2γ t)+ f

2γ M2 (1 − exp(−2γ t)) (11.12)

This tells us how the square of the velocity of the particle, on the average, develops in time
given that it had the value v2

0 at time t = 0. In other words, the average is a conditional
average, a point of view that will be emphasized in the following section, where a statistical
approach to the Brownian motion will be given. The expression shows that, for short
times t � (2γ )−1, the velocity fluctuations are mainly determined by the initial value v2

0,
but for larger times the initial value is progressively forgotten and the average square
of the velocity approaches the value of f /(2γ M2), which is solely determined by the
mechanism of collision and is independent of the initial velocity.

To complete the theory we need to specify f , given the friction constant γ . There is,
however, nothing in the theory that allows us to determine this constant from microscopic
molecular data. However, we may get around the problem if we believe, with good reason,
that the end point of the evolution of particle motions will lead to a state of thermal
equilibrium at temperature T , no matter the original perturbation of the particle motion.
In this state the mean square velocity of the particle is determined by the average kinetic
energy per degree of freedom, (1/2)kBT , at temperature T . Hence, we may require that

lim
t→∞〈v2〉 = f

2γ M2 = kBT
M

(11.13)

so

f = 2γ kBTM (11.14)

This is a specific example of the fundamental fluctuation–dissipation theorem that relates
the random force f (fluctuation) to the friction constant γ (dissipation) to ensure that
any initial state eventually evolves into a state in thermal equilibrium with the fluid at
temperature T . With this requirement, we obtain from Eq. (11.12) the final result

〈v2〉 = kBT
M

+
[

v2
0 − kBT

M

]
exp(−2γ t) (11.15)

11.2 Kramers Theory for the Rate Constant

The theory of Brownian motion is a particular example of an application of the general
theory of random or stochastic processes [2]. Since Kramers approach is based on a more
general stochastic equation than the Langevin equation, we have reviewed some of the
fundamental ideas and methods of the theory of stochastic processes in Appendix I.
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Kramers theory is based on the Fokker–Planck equation for the position and velocity of
a particle. The Fokker–Planck equation is based on the concept of a Markov process and
in its generic form it contains no specific information about any particular process. In
the case of Brownian motion, where it is sometimes simply called the Kramers equation,
it takes the form

∂P(y,v; t)
∂t

= −v
∂P(y,v; t)

∂y
+ 1

M
∂U
∂y

∂P(y,v; t)
∂v

+ γ
∂

∂v
(vP(y,v; t))+ γ kBT

M
∂2P(y,v; t)

∂v2

(11.16)

where P(y,v; t)dydv is the probability of finding a particle at y,y + dy with a velocity
v,v + dv at time t, M is the mass of the particle, and γ is the friction coefficient known
from the Langevin equation. When applied to a chemical reaction M = μ where μ is the
mass associated with the reaction coordinate y. The motion takes place in a potential
U (y), as sketched in Fig. 11.0.2. This is the potential from the gas phase modified by
the interactions from the solvent molecules, as determined in Chapter 10. The equation
describes the “diffusion” of a point in phase space for a one-dimensional Brownian
particle.

We shall now determine a solution to Eq. (11.16) with proper boundary conditions
and use the result to determine the rate constant in a fluid. It is assumed that the barrier
in going from reactant states at well (a) in Fig. 11.0.2 to the transition state at (b) is
large compared to kBT ; the probability of being at (b) is therefore small and it will be
reasonable to seek a steady-state solution to Eq. (11.16). Similarly, around the a-well, we
also assume stationary conditions with reactants in thermal equilibrium with the solvent.
Thus, we seek a solution to the equation with (∂P/∂t) = 0.

At equilibrium, stationary conditions exist where P(y,v; t) = P(y,v) and P(y,v) is
given by equilibrium statistical mechanics:

P(y,v) = Q−1 exp(−(Mv2/2 + U (y))/kBT) (11.17)

where Q is a normalization constant proportional to the partition function:

Q =
∫

React
dydvexp(−(Mv2/2 + U (y))/kBT) (11.18)

It is easy to show that the function in Eq. (11.17) indeed is a solution to the stationary
equation. We have

(
∂P
∂y

)
= − 1

kBT

(
∂U
∂y

)
P

(
∂P
∂v

)
= − Mv

kBT
P

(
∂2P
∂v2

)
= − M

kBT
P +

(
Mv
kBT

)2

P

(11.19)
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This is introduced into Eq. (11.16) and all terms do indeed cancel, corresponding to
stationarity; that is, ∂P/∂t = 0:

Pv
kBT

(
∂U
∂y

)
− Pv

kBT

(
∂U
∂y

)
+ γ P − Mγ v2

kBT
P + Mγ v2

kBT
P − γ P = 0 (11.20)

We will now search for a non-trivial solution to the stationary Fokker–Planck equation.
To find a steady-state solution at the transition state, y ∼ yb, we make the substitution

P(y,v) = Y (y,v)Q−1 exp(−(Mv2/2 + U (y))/kBT) (11.21)

where Y (y,v) has to be determined with the following boundary conditions:

(i) y ∼ ya: Y (y,v) = 1;

(ii) y ∼ yc: Y (y,v) = 0.

Boundary condition (i) ensures that the reactants will be in thermal equilibrium with
the solvent, and boundary condition (ii) expresses a sink condition at the product
side, that is, the products are removed as soon as they are formed or, equivalently, the
concentration of them remains negligible. The shape of the potential near the transition
state is approximated by a parabolic shape:

U (y) = U (yb)− 1
2

M(ω∗
b )

2(y − yb)
2 (11.22)

where ω∗
b is the magnitude of the imaginary frequency associated with the barrier and

when introduced into Eq. (11.16) we get

0 = −v
∂P(y,v; t)

∂y
− (ω∗

b )
2(y − yb)

∂P(y,v; t)
∂v

+ γ
∂

∂v
(vP(y,v; t))+ γ kBT

M
∂2P(y,v; t)

∂v2

(11.23)

The introduction of Eq. (11.21) gives, after some lengthy but straightforward manipu-
lations, the following equation for Y (y,v)

− v
∂Y
∂y

− ((ω∗
b )

2(y − yb)+ γ v)
∂Y
∂v

+ γ kBT
M

∂2Y
∂v2 = 0 (11.24)

where we have used the result in Eq. (11.20). In order to convert this partial differential
equation in the two variables y and v into an ordinary second-order differential equation
in one variable, u, Kramers introduced the substitution

u = v − a(y − yb) (11.25)
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and assumed that Y depends on y and v only in this combination, that is, Y (y,v) = Y (u).
The constant a has the unit s−1 and will be determined in Eq. (11.33). The idea with
this transformation is that the partial derivatives with respect to the two variables y and
v may be expressed as the partial derivatives with respect to the single variable u, since

∂Y
∂y

=
(

dY
du

)(
∂u
∂y

)
= −a

(
dY
du

)

∂Y
∂v

=
(

dY
du

)(
∂u
∂v

)
=

(
dY
du

) (11.26)

So the differential equation becomes

(av − (ω∗
b )

2(y − yb)− γ v)

(
dY
du

)
+ γ kBT

M
d2Y
du2 = 0 (11.27)

This is now an ordinary second-order differential equation. The solution Y = const.
corresponds to thermal equilibrium according to Eq. (11.21). There is, however, another
solution to the equation. To that end, we show that the equation can be brought into the
standard form

A
d2Y
du2 + Bu

dY
du

= 0 (11.28)

This can be done if

A = γ kBT
M

(11.29)

and the coefficient of the first derivative can be brought into the form Bu, that is

Bu = Bv − aB(y − yb)

= (a − γ )v − (ω∗
b )

2(y − yb) (11.30)

From this it follows that

B = a − γ (11.31)

and

a(a − γ ) = (ω∗
b )

2 (11.32)
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or

a =
γ ±

√
γ 2 + 4(ω∗

b )
2

2

= γ

2
±

√
γ 2

4
+ (ω∗

b )
2 (11.33)

The solution to the second-order differential equation in Eq. (11.28) is

Y (u) = K
∫ u

uc

dzexp(−Bz2/(2A))

= K
∫ u

uc

dzexp(−(a − γ )z2M/(2γ kBT)) (11.34)

as easily checked by substitution of the expression into the differential equation. The
lower limit in the integration uc ≡ u(y = yc) = v − a(yc − yb) is chosen such that boundary
condition (ii) is satisfied.

In Eq. (11.33) we choose the upper sign, so that the argument to the exponential will
be negative and Y will therefore be well behaved. K may be determined from boundary
condition (i). We have

Y (ua) = 1 = K
∫ ua

uc

dzexp(−(a − γ )z2M/(2γ kBT))

= K
∫ ∞

−∞
dzexp(−(a − γ )z2M/(2γ kBT))

= K

√
2πγ kBT
(a − γ )M

(11.35)

Thus

K =
√

(a − γ )M
2πγ kBT

(11.36)

We have replaced the integration limits ua = v − a(ya − yb) and uc = v − a(yc − yb) by ∞
and −∞, respectively. This can be done because ua > uc and because the integrand only
differs from zero in a relatively narrow zone about z = 0.

Before continuing, we see that the integral in Eq. (11.34) may, after a simple substitu-
tion, be determined as the difference between two error functions. Of particular interest is
a determination of Y (u) at the transition state u = ub. We get Y (ub) = [erf(tb)− erf(tc)]/2
with tb = √

π/MKv and tc = √
π/MK[v − a(yc − yb)]. For positive v, tb > tc and Y (ub)

is positive as it should be because it is part of a probability distribution. For negative
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v, both tb and tc are negative with |tc| > |tb|. Since erf(−z) = −erf(z) we still see that
Y (ub) is positive, but importantly, it is smaller than for positive v. This means that
Y (ub) at the transition state is not symmetric in v, as the Boltzmann distribution is, but
Y (ub(v)) > Y (ub(−v)). The symmetry in the Boltzmann distribution is therefore broken.

We may now determine the probability flux j in Eq. (11.2) at y = yb, where u = v:

j =
∫ ∞

−∞
dvvP(yb,v) = KQ−1 exp(−U (yb)/kBT)

∫ ∞

−∞
dvvexp(−v2M/(2kBT))

×
∫ v

−∞
dzexp(−(a − γ )z2M/(2γ kBT)) (11.37)

The order of integration is interchanged, as sketched in Fig. 11.2.1. The region covered
in the integration is marked by the hatched region between the 45◦ line and the abscissa
axis. This region may be spanned in two ways. We may choose an interval (v,v + dv)
along the v-axis and let z vary from the lower bound in the integral to the value of v
on the 45◦ line. This is how the integral is performed in the equation as written. The
alternative is to choose an interval (z,z + dz) along z and then let v span the region z to
∞. With the integrations done in that order, Eq. (11.37) will be

j = KQ−1 exp(−U (yb)/kBT)

∫ ∞

−∞
dzexp(−(a − γ )z2M/(2γ kBT))

×
∫ ∞

z
dvvexp(−v2M/(2kBT))

(11.38)

The integral over the variable v is now easily done, and we get

j = KQ−1 exp(−U (yb)/kBT)
kBT
M

×
∫ ∞

−∞
dzexp(−(a − γ )z2M/(2γ kBT))exp(−z2M/(2kBT))

z

z

v
v

v + dv

z + dz

Fig. 11.2.1 A sketch of the order of integration in a double integration.
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= KQ−1 exp(−U (yb)/kBT)
kBT
M

∫ ∞

−∞
dzexp(−az2M/(2γ kBT))

= KQ−1 exp(−U (yb)/kBT)
kBT
M

√
2πγ kBT

aM
(11.39)

In order to obtain an expression for the population of reactant states around well (a), we
expand the potential around (a) to second order:

U (y) = U (ya)+ 1
2

Mω2
a(y − ya)

2 (11.40)

where ka = Mω2
a is the force constant and find the population of reaction states in well

(a) according to Eq. (11.3) using that Y = 1 in that region:

na =
∫ ∞

−∞
dv

∫

awell

dyP(y,v)

= Q−1 exp(−U (ya)/kBT)

∫ ∞

−∞
dvexp(−v2M/(2kBT))

×
∫ ∞

−∞
dyexp(−Mω2

a(y − ya)
2/(2kBT))

= Q−1 exp(−U (ya)/kBT)

√
2πkBT

M

√
2πkBT
Mω2

a

= Q−1 exp(−U (ya)/kBT)
2πkBT
Mωa

(11.41)

We may now use the expressions for j and na to determine the rate of transition across
the transition state according to Eq. (11.2):

ks = j
na

= K exp(−U (yb)/kBT)kBT/M
√

2πγ kBT/(aM)

exp(−U (ya)/kBT)2πkBT/(Mωa)

=
√

a − γ

a
ωa

2π
exp(−(U (yb)− U (ya))/kBT) (11.42)

where we have used the expression for K in Eq. (11.36). From Eq. (11.32) we have

a = (ω∗
b )

2

a − γ
(11.43)
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so

ks =
√

(a − γ )2

(ω∗
b )

2

ωa

2π
exp(−(U (yb)− U (ya))/kBT)

= ωa

2πω∗
b

⎛

⎝
√

γ 2

4
+ (ω∗

b )
2 − γ

2

⎞

⎠exp(−(U (yb)− U (ya))/kBT)

(11.44)

where Eq. (11.33) was used in the last line. This is Kramers equation for the rate constant
of a chemical reaction in a solution. The influence of the solvent is represented by the
friction coefficient, which may be directly related to the viscosity η of the solvent via
Stokes law: g = 6πηR or

γ = 6πηR
M

(11.45)

where R is the hydrodynamic radius of the particle.
For γ /2  ω∗

b we find (using
√

1 + x ∼ 1 + x/2, for x small) that

ks = ωa

2π

ω∗
b

γ
exp(−(U (yb)− U (ya))/kBT) (11.46)

which is the high friction or high viscosity limit. It shows that the rate constant goes
toward zero for an infinite friction constant.

In the other limit, where γ /2 � ω∗
b , we find

ks = ωa

2π
exp(−(U (yb)− U (ya))/kBT) (11.47)

which is just the ordinary (gas-phase) transition-state theory result in the classical limit.
This is seen by realizing that our reactant state is represented by just a one-dimensional
oscillator at the a-well; the expression for the ordinary (gas-phase) transition-state rate
constant, where recrossings of the transition state are neglected, is then (Eq. (7.58))

kTST = kBT
h

Q‡

Qvib
exp(−E0/kBT)

= kBT
h

1
kBT/(hνa)

exp(−E0/kBT)

= νa exp(−E0/kBT)

= ωa

2π
exp(−E0/kBT) (11.48)
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which is identical to the expression in Eq. (11.47) when vibrational zero-point energies
are neglected such that E0 can be identified with Ecl = U (yb)− U (ya) for the energy
barrier of the reaction. Note that we have also used the classical expression for the
vibrational partition function and that the partition function of the transition state is
equal to one, since the number of degrees of freedom in this state is one less than in the
reactant state, that is, equal to zero.

We may therefore write the expression for the rate constant as a product of the
conventional transition-state rate constant kTST and a transmission factor κKR:

ks = κKRkTST (11.49)

with

κKR =
(√

γ 2/4 + (ω∗
b )

2 − γ /2
)/

ω∗
b

=
√

1 + (γ /(2ω∗
b ))2 − γ /(2ω∗

b ) (11.50)

The departure from ordinary transition-state theory is seen to be determined by the ratio
between the friction γ and the frequency ω∗

b , that is, the magnitude of the imaginary
frequency associated with the barrier, representing the curvature of the potential surface
along the reaction coordinate at the transition state. For γ /(2ω∗

b ) → ∞,κKR → 0, whereas
for γ /(2ω∗

b ) → 0, κKR → 1, the ordinary result. κKR is shown in Fig. 11.2.2 as a function
of γ /(2ω∗

b ).
The basic difference in the physics between transition-state theory and Kramers

theory is that in the former theory, it is assumed that there exists a Boltzmann equilibrium
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Fig. 11.2.2 The correction factor κKR to the ordinary (gas-phase) transition-state rate constant according
to Kramers theory, as a function of γ /(2ω∗

b ).
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distribution in coordinates and velocities at the transition state (on top of the potential
energy barrier (b) in Fig. 11.0.2) while in the latter theory this assumption is only used for
the reactants (reactant well (a) in Fig. 11.0.2). This is expressed in the central Eq. (11.21)
by the function Y (y,v). It is equal to 1 for the reactants and determined as a function
of the reaction coordinate and velocities by the Fokker–Planck equation. Thus, at the
transition state Y (yb,v) < 1, and importantly, the symmetry of Boltzmann distribution
in the velocity is broken by Y (yb,v), so we may in Eq. (11.2) integrate over all velocities
and obtain a result that include recrossings.

The result in Eq. (11.49) is only valid for a one-dimensional system. However, within
the usual assumption of separability of the reaction coordinate from all other degrees of
freedom of the activated complex, it can also be used in multidimensional cases as an
estimate of the dynamical influence of a solvent on the conventional transition-state rate
constant. The theory can be tested experimentally by studying the kinetics of a reaction
in a series of solvents with varying viscosity.

Example 11.1 Validity of Kramers theory

In order to evaluate the validity of Kramers theory, it is natural to focus on unimolecular
reactions since in this case diffusive motion does not come into play.

Kramers theory in the high-viscosity regime, Eq. (11.46), predicts that ks ∝ η−1. Experi-
mental results for the rate of excited-state isomerization dynamics (i.e., thermally-activated
barrier crossing in the lowest excited singlet state) in the high-viscosity regime agree quali-
tatively with this prediction. However, the experimental results show a much weaker viscosity
dependence. Thus, the rate constant can be fitted to ks ∝ η−α , where α = 0.32 for trans-stilbene
[G. Rothenberger, D.K. Negus, and R.M. Hochstrasser, J. Chem. Phys. 79, 5360 (1983)], and
α = 0.2 for cis-2-vinylanthracene [K. Hara, H. Kiyotani, and D.S. Bulgarevich, Chem. Phys.
Lett. 242, 455 (1995)].

This discrepancy can be due to a breakdown in the hydrodynamics friction law, Eq. (11.45),
that is, Stokes law, and/or a breakdown of the basic assumptions of Kramers theory. As we will
see in the following section, a problem with Kramers theory is that the Langevin equation does
not provide a sufficiently accurate description of the dynamics associated with the reaction
coordinate.

11.3 Beyond Kramers: Grote–Hynes Theory and MD

Both in the Langevin equation Eq. (11.5) and in Kramers theory, the response of the
solvent is given by the friction γ , which is assumed to be constant. That description
may be accurate at large times t  τrelax; that is, times large compared to the relaxation
time τrelax of the solvent. At small times one finds, however, that correlation functions
have an unphysical discontinuity. For example, from Eq. (11.9) we find that the velocity
autocorrelation function is given by

〈v(0)v(t)〉 = v2
0 exp(−γ |t|) (11.51)
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In the argument to the exponential we have |t|, because the autocorrelation function
is symmetric about t = 0 as a consequence of the time-reversibility of the classical
equations of motion. The derivative of the velocity autocorrelation function for t → 0,
and t positive, is −v2

0γ and v2
0γ for t negative. This discontinuity in the first derivative

at t = 0 shows that the description with a constant γ cannot be valid at small t, because
the exact correlation function is a continuous and differentiable function.

To overcome this difficulty Kubo, Mori, Zwanzig, and others introduced a time-
dependent friction coefficient, writing, instead of the “simple” Langevin equation,
Eq. (11.5), the generalized Langevin equation (GLE)

Mv̇(t) = −
∫ t

0
dτ g(τ )v(t − τ)+ F(t) (11.52)

where v̇(t) = dv/dt. In this equation, g(τ ) represents the retarded effect of the frictional
force, and F(t) is a force including the random force from the solvent molecules. We see,
in contrast to the simple Langevin equation with a constant friction coefficient, that the
friction force at a given time τ depends on all previous velocities along the trajectory.
The friction force is no longer local in time and does not depend on the current velocity
alone. The time-dependent friction coefficient is therefore also referred to as a “memory
kernel.” It can be shown that a short-time Taylor expansion of the velocity correlation
function, 〈v(0)v(t)〉, based on the GLE gives (kBT/M)(1 − (g(0)/M)t2/2 + ·· · ), and it
therefore does not have a discontinuous first derivative at t = 0. The discussion of the
properties of the GLE is most easily accomplished by using so-called linear response
theory, which forms the theoretical basis for the equation and is a powerful method
that allows us to determine non-equilibrium transport coefficients from equilibrium
properties of the systems. A discussion of this is, however, beyond the scope of this book.

In this section, we will describe the Grote–Hynes theory for the calculation of the
dynamical effect on the rate constant. The theory generalizes the Kramers result by using
the GLE to describe the dynamics of the reaction coordinate. The Grote–Hynes theory
“lifts” the requirement of complete relaxation to an equilibrium distribution of solvent
molecules along the reaction coordinate. A requirement that may not always be satisfied,
in particular in cases where the curvature at the top of the barrier is large, corresponds
to very fast motion in the reaction coordinate, much faster than the relaxation time of
the surrounding solvent molecules. The limit of this non-equilibrium solvation will be the
non-adiabatic limit, where all solvent molecules do not have time to move (are “frozen”)
in the very short time when the destiny of a trajectory is determined, that is, whether it is
reactive or not. In this limit there may be an order of magnitude difference between the
Grote–Hynes result and the Kramers result.

11.3.1 Generalized Langevin equation

The GLE for the motion in the reaction coordinate y(t) has the form

μÿ(t) = −∂U [y(t)]
∂y(t)

−
∫ t

0
dτ g(τ ) ẏ(t − τ)+ F(t) (11.53)
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where μ is the reduced mass of the reaction coordinate and ÿ(t) = d2y/dt2. F(t) is
assumed to be a random force from the solvent molecules with zero average, 〈F(t)〉 = 0,
and describes together with the time-dependent friction coefficient g(t) the effect of the
solvent molecules on the reaction coordinate.

If we take an equilibrium ensemble average in Eq. (11.53), the second as well as the
last term on the right-hand side of the equation disappears because 〈ẏ〉 = 0 and because
〈F(t)〉 = 0. Thus, the potential U (y) is the equilibrium potential of mean force along the
reaction coordinate (see Chapter 10) and it is assumed to be parabolic U (0)− (1/2)kxy2,
as in Eq. (11.22), in the region of interest near the transition state, where y = 0.

It will be convenient to introduce the mass-weighted coordinate x according to

x(t) = √
μy(t) (11.54)

where μ is the effective mass associated with the motion in the reaction coordinate. After
division by

√
μ, Eq. (11.53) takes the form

ẍ(t) = (ω∗
b,eq)2 x(t)−

∫ t

0
dτ γ (τ) ẋ(t − τ)+ R(t) (11.55)

with

(ω∗
b,eq)2 = kx/μ

γ (t) = g(t)/μ

R(t) = F(t)/
√

μ

(11.56)

The subscript “eq” on the frequency ω∗
b stresses that it is the curvature of the equilibrium

potential of mean force at the top of the energy barrier and, as previously, the asterisk ∗
indicates that this “frequency” is the magnitude of the imaginary frequency associated
with the barrier.

Before we continue with the derivation of the Grote–Hynes expression for the
transmission coefficient, it may be instructive to study the GLE, if not from the basic
linear response theory point of view, then for a simple system where the GLE can be
derived from the Hamiltonian of the system. For the special case where all forces are
linear, that is, a parabolic reaction barrier and a “harmonic” solvent, it is possible to
derive the GLE directly from the Hamiltonian. This allows us to identify and express
the various terms in the GLE by system parameters, which helps to clarify the origin of
the various terms in the equation.

11.3.1.1 Derivation of the GLE for a harmonic system

We expand the potential energy surface at the saddle point to second order in the
coordinates at the top of the barrier and determine the normal modes (see Appendix F)
of the activated complex; one of them is the reaction coordinate y identified as the mode
with an imaginary frequency. Since the other normal modes of the activated complex
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are not coupled to the reaction coordinate in the harmonic approximation, we do not
consider them here because they are irrelevant. For the solvent, we may likewise find
the normal modes, S. We use these normal modes to write down the Hamiltonian, and
then add a linear coupling term representing the coupling between the reaction coordinate
and the solvent coordinates. Let us start with the Lagrange function, Eq. (4.70), for the
system:

L = 1
2
μẏ2 +

∑

i

1
2
μi Ṡ2 + 1

2
kxy2 −

∑

i

1
2

kiS2
i +

∑

i

kix ySi (11.57)

Here, μ and μi are the reduced masses for the normal mode associated with the reaction
coordinate and for the ith normal mode of the solvent, respectively. Note the different
signs of the potential energy terms for the “unstable” reaction coordinate with force
constant −kx and the “stable” solvent coordinates with force constants ki . kix is a constant
related to the linear coupling strength between the reaction coordinate and the solvent
coordinate Si .

Introducing mass-weighted coordinates,

x = √
μy

Qi = √
μi Si

(11.58)

the Lagrangian takes the form

L = 1
2

ẋ2 +
∑

i

1
2

Q̇2
i + 1

2
(ω∗

b )
2x2 −

∑

i

1
2
ω2

i Q2
i +

∑

i

ω2
ix xQi (11.59)

with

(ω∗
b )

2 = kx/μ

ω2
i = ki/μi

ω2
ix = kix/

√
μμi

(11.60)

where ω∗
b is the magnitude of the imaginary frequency associated with the barrier. It is

important to notice that the ω∗
b frequency is not, as we shall see, identical to the curvature

of the potential of mean force ω∗
b,eq, but is identical to the non-adiabatic curvature, and

the coupling term, ω2
ix, may be positive or negative.

The Hamiltonian for the system when we use mass-weighted coordinates is then, using
pi = (∂L/∂ q̇i),

H = 1
2

p2
x − 1

2
(ω∗

b )
2x2 + 1

2

∑

i

P2
i + 1

2

∑

i

ω2
i Q2

i −
∑

i

ω2
ix Qi x (11.61)
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Hamilton’s equations of motion, Eq. (4.74), are then given by

ẋ =
(

∂H
∂px

)
= px, Q̇i =

(
∂H
∂Pi

)
= Pi

ṗx = −
(

∂H
∂x

)
= (ω∗

b )
2 x +

∑

i

ω2
ix Qi , Ṗi = −

(
∂H
∂Qi

)
= −ω2

i Qi + ω2
ix x

(11.62)

and combining the equations of motion for the coordinates and momenta gives equations
of motion for the coordinates, that is,

ẍ = ṗx = (ω∗
b )

2 x +
∑

i

ω2
ix Qi

Q̈i = Ṗi = −ω2
i Qi + ω2

ix x
(11.63)

These coupled linear second-order differential equations may be converted into simple
algebraic equations by a Laplace transformation. The Laplace transformation is defined
as (see Section 9.2.2)

f̂ (λ) =
∫ ∞

0
dt exp(−λt) f (t) (11.64)

By repeated partial integration, we find the expression for the Laplace transform of the
accelerations:

ˆ̈x(λ) =
∫ ∞

0
dt exp(−λt) ẍ

= [exp(−λt) ẋ]∞0 + λ

∫ ∞

0
dt exp(−λt) ẋ

= −ẋ(0)+ λ

{
[exp(−λt)x]∞0 + λ

∫ ∞

0
dt exp(−λt)x

}

= −ẋ(0)− λx(0)+ λ2 x̂(λ) (11.65)

So, the Laplace transforms of Eqs (11.63) with x(0) = 0 (start at the top of the barrier)
are

λ2 x̂ − px(0) = (ω∗
b )

2 x̂ +
∑

i

ω2
ix Q̂i

λ2Q̂i − Pi(0)− λQi(0) = −ω2
i Q̂i + ω2

ix x̂

(11.66)

Here we have used Eqs (11.64) to replace ẋ(0) with the momentum px(0), and Q̇i(0)

with Pi(0). We are only interested in the motion in the reaction coordinate, so we solve
the second equation for Q̂i and substitute the solution into the first equation. We find
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λ2 x̂ − px(0) = (ω∗
b )

2 x̂ +
∑

i

ω4
ix

λ2 + ω2
i

x̂ +
∑

i

ω2
ix[Pi(0)+ λQi(0)]

λ2 + ω2
i

(11.67)

This is the equation for the Laplace transform of the reaction coordinate, and we could
then take the inverse transform of this equation to show that it is identical to the GLE in
Eq. (11.55).

Alternatively, we may take the Laplace transform of the GLE and compare with
Eq. (11.67) and, since this is easier, we follow this strategy. The transformation is
straightforward except perhaps for the second term on the right-hand side of Eq. (11.55),
which is a convolution term. The Laplace transform of this is found as

∫ ∞

0
dt exp(−λt)

∫ ∞

0
dτ γ (τ) ẋ(t − τ) =

∫ ∞

0
dτ γ (τ)

∫ ∞

0
dt exp(−λt) ẋ(t − τ)

=
∫ ∞

0
dτ γ (τ)exp(−λτ)

∫ ∞

0
dt′ exp(−λt′) ẋ(t′)

= γ̂ (λ)λx̂(λ) (11.68)

where we have replaced the upper integration limit t with ∞, which is permissible since
the friction coefficient is usually only non-zero over relatively small times.

Thus the Laplace transform of the GLE in Eq. (11.55) is

λ2 x̂ − px(0) = (ω∗
b,eq)2x̂ − γ̂ (λ)λ x̂ + R̂(λ) (11.69)

From a comparison with Eq. (11.67), it is clear that the last term on the right-hand side
is related to the random force R̂. At the same time it is also clear that the second term
on the right-hand side of the equation still does not have a form that makes it possible to
identify (ω∗

b,eq)2 and γ̂ . A factor of λ is missing in Eq. (11.67).
However, it is possible to recast the second term in such a way that the missing factor

of λ appears. Consider a fraction, a/(b + c), like the second term in Eq. (11.67). It may
be broken up in the following way:

a
b + c

= a
b

[
1 + z

b + c

]
(11.70)

where the unknown z is determined by the equation and gives z = −c. With a = ω4
ix,

b = ω2
i , and c = λ2, we have that

ω4
ix

λ2 + ω2
i

x̂ = ω4
ix

ω2
i

[
1 − λ2

λ2 + ω2
i

]
x̂ = ω4

ix

ω2
i

x̂ − ω4
ix

ω2
i

λ

λ2 + ω2
i

λ x̂ (11.71)

When introduced into Eq. (11.67), we finally arrive at a form that makes it possible to
identify the terms in the GLE with the parameters of our simple harmonic model. We find



Beyond Kramers: Grote–Hynes Theory and MD 325

λ2x̂ − px(0) =
[
(ω∗

b )
2 +

∑

i

ω4
ix

ω2
i

]
x̂ −

∑

i

[
ω4

ix

ω2
i

λ

λ2 + ω2
i

]
λx̂ +

∑

i

ω2
ix[Pi(0)+ λQi(0)]

λ2 + ω2
i

(11.72)

This has exactly the same form as the Laplace transform of the GLE in Eq. (11.69), and
the different terms may be identified according to

(ω∗
b,eq)2 = (ω∗

b )
2 +

∑

i

ω4
ix

ω2
i

∼ (ω∗
b )

2 + γ (0)

γ̂ (λ) =
∑

i

ω4
ix

ω2
i

λ

λ2 + ω2
i

R̂(λ) =
∑

i

ω2
ix[Pi(0)+ λQi(0)]

λ2 + ω2
i

(11.73)

where the second relation in the first line, valid in the limit ωi/λ � 1, is derived below.
The following important features are noticed:

• The curvature of the barrier potential along the reaction coordinate, (ω∗
b )

2, in the
Hamiltonian is different from the equilibrium curvature (ω∗

b,eq)2. The physical
reason for this is clear. If we go back to the Hamiltonian in Eq. (11.61), then we see
that

(ω∗
b )

2 = −
(

∂2H
∂2x

)

Qi

= − ∂

∂x

(
∂H
∂x

)

Qi

=
(

∂

∂x
ṗx

)

Qi

=
(

∂ ẍ
∂x

)

Qi ,x=0
(11.74)

that is, it describes the change in the force determining the motion in the reaction
coordinate when it moves along the reaction path with all solvent molecules
“frozen” at their position, that is, it is the non-adiabatic curvature of the potential.
The second relation between the non-adiabatic and equilibrium curvatures of the
barrier potential is derived in the following way. Assume that the friction kernel is
a constant and equal to its value at t = 0, that is, γ (t) = γ (t = 0); then the Laplace
transform is simply

γ̂ (λ) =
∫ ∞

0
dt exp(−λ t)γ (0) = γ (0)/λ (11.75)

Therefore, if we multiply the expression for γ̂ (λ) in Eq. (11.73) by λ we should get
a constant, independent of λ. This is obtained when the fraction 1/(1 + ω2

i /λ2) ∼ 1,
that is, when ω2

i /λ2 � 1, corresponding to “frozen” solvent molecules thanks to the
very small ωi compared to λ, and therefore “slow” solvent molecule motions. This
is the background for the second relation in the first equation in Eq. (11.73).
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• We see how the fluctuating forces depend on the initial positions and momenta of
the solvent molecules—a result that is meaningful.

The results may be used to derive the fluctuation–dissipation theorem for a system
where the friction coefficient is a function of time and where the dynamics are given
by harmonic forces. The Laplace transform of the autocorrelation function for the
fluctuating forces is

∫ ∞

0
dt exp(−λ t)〈R(0)R(t)〉 = 〈R(0)R̂(λ)〉 (11.76)

The bracket indicates a Boltzmann average over the solvent degrees of freedom with the
reaction coordinate at the top of the barrier (x = 0). Inserting the relation R(0) = λ R̂(λ),
equivalent to the result in Eq. (11.75), we find using Eq. (11.73) that

〈R(0)R̂(λ)〉 =
〈
∑

i

λω4
ix

(λ2 + ω2
i )2

[
Pi(0)2 + λ2 Q2

i (0)+ 2λPi(0)Qi(0)
]〉

(11.77)

We have only included diagonal terms in the sum, since the ensemble average will be
zero for all off-diagonal terms. Then

〈P2
i (0)〉 =

∫ ∞
−∞ dPi(0)P2

i (0)exp(−P2
i (0)/(2kBT))

∫ ∞
−∞ dPi(0) exp(−P2

i (0)/(2kBT))
= kBT

〈Q2
i (0)〉 =

∫ ∞
−∞ dQi(0)Q2

i (0)exp(−ω2
i Q2

i (0)/(2kBT))
∫ ∞
−∞ dQi(0) exp(−ω2

i Q2
i (0)/(2kBT))

= kBT

ω2
i

(11.78)

This is then introduced into Eq. (11.77) and we get

〈R(0) R̂(λ)〉 =
∑

i

λω4
ix

(λ2 + ω2
i )2

[
kBT + kBT

λ2

ω2
i

]

= kBT
∑

i

λω4
ix

(λ2 + ω2
i )2

[
1 + λ2

ω2
i

]

= kBT
∑

i

λω4
ix

(λ2 + ω2
i )ω2

i

= kBT γ̂ (λ) (11.79)

When we take the inverse Laplace transform of Eq. (11.79), we get

〈R(0)R(t)〉 = kBT γ (t) (11.80)
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or (see Eq. (11.56))

〈F(0)F(t)〉 = μkBT γ (t) (11.81)

which is a generalization of the fluctuation–dissipation theorem in Eq. (11.14) to the case
with a time-dependent friction.

11.3.2 The Grote–Hynes equation

Let us then return to a simple derivation of the Grote–Hynes equation based on the
solution to the GLE in Eq. (11.55) [3,4]. Alternative derivations can be found in the
literature [5,6].

We have previously, in Eq. (6.3), considered the motion associated with a parabolic
barrier. Inspired by that result, let us write the solution to the GLE that diverges at large
t as

x(t) = C exp(λr t), t → ∞ (11.82)

where λr > 0 and the subscript r refers to a reactive trajectory. In order to determine
λr , we introduce this equation into Eq. (11.55) and take the average for an ensemble of
trajectories initiated at the barrier top. Then, since 〈R(t)〉 = 0, we find

λ2
r C exp(λr t) = (ω∗

b,eq)2 C exp(λr t)−
∫ ∞

0
dτ γ (τ)λr C exp(λr(t − τ)) (11.83)

which may be rearranged to

C exp(λr t)λ2
r = C exp(λr t)

[
(ω∗

b,eq)2 − λr

∫ ∞

0
dτ γ (τ) exp(−λr τ)

]
(11.84)

or

λ2
r = (ω∗

b,eq)2 − λr

∫ ∞

0
dτ γ (τ) exp(−λr τ) = (ω∗

b,eq)2 − λr γ̂ (λr) (11.85)

which is the Grote–Hynes equation for the frequency λr by which the trajectories cross the
top of the barrier to form products. It should be recalled that this “frequency” is really
the magnitude of an imaginary frequency corresponding to unbound motion.

We see that a calculation of λr involves a Laplace transform of the time-dependent
friction kernel. This may typically be determined in a molecular dynamics (MD)
simulation where the autocorrelation function of the random force 〈F(0)F(t)〉 may be
determined, which then allows us to determine γ (t) using the fluctuation–dissipation
theorem in Eq. (11.81). Note that Eq. (11.85) is an implicit equation for λr which in
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general must be solved by iteration. In the absence of friction we see from Eq. (11.85)
that λr = ω∗

b,eq.
The transmission coefficient κGH is, as previously, a measure of the departure of the rate

constant from transition-state theory. κGH is given as the ratio between the frequencies
with and without friction, that is,

κGH = λr

ω∗
b,eq

(11.86)

as can indeed be shown more formally [3,4].
In practical calculations it is more convenient to calculate Fourier transforms (with

fast Fourier transform (FFT) routines) than Laplace transforms, so usually the Fourier
transform of the friction kernel is introduced:

γ̃ (ω) =
∫ ∞

−∞
dt exp(iωt)γ (t)

γ (t) =
∫ ∞

−∞
dω

2π
exp(−iωt) γ̃ (ω)

(11.87)

If we introduce the second of the equations in Eq. (11.87) into the Laplace transform of
Eq. (11.85), we find

γ̂ (λr) =
∫ ∞

0
dt exp(−λr t)

∫ ∞

−∞
dω

2π
exp(−iωt) γ̃ (ω)

=
∫ ∞

−∞
dω

2π
γ̃ (ω)

∫ ∞

0
dt exp(−(iω + λr) t)

=
∫ ∞

−∞
dω

2π
γ̃ (ω)

1
iω + λr

=
∫ ∞

−∞
dω

2π
γ̃ (ω)

λr − iω
λ2

r + ω2

=
∫ ∞

−∞
dω

2π
γ̃ (ω)

λr

λ2
r + ω2 (11.88)

The imaginary term on the right-hand side of the equation vanishes since the left-hand
side of the equation is real and because γ̃ (ω) is real according to Eq. (11.87), where γ (t)
is an even function in t. When Eq. (11.88) is introduced into Eq. (11.85) we find

λ2
r − (ω∗

b,eq)2 + λ2
r

∫ ∞

−∞
dω

2π

γ̃ (ω)

λ2
r + ω2 = 0 (11.89)
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11.3.2.1 Discussion of the Grote–Hynes equation

When friction is present, there will be solvent-induced recrossings of the barrier and
non-equilibrium solvation, and the rate λr by which products are formed depends both
on the equilibrium curvature (ω∗

b,eq)2 of the barrier and on the dynamics of the solvent as
expressed by the time-dependent friction kernel. The following two limiting cases should
be noticed:

• In the adiabatic regime, the solvent relaxation time τrelax � λ−1
r , that is, the solvent

responds instantaneously to any change in the reaction coordinate. This limit
corresponds to γ (t) = γ δ(t), so the power spectrum (Eq. (11.87)) is γ̃ (ω) = γ , that
is, to “white noise.” The GLE is reduced to the simple Langevin equation with a
time-local friction force −γ ẋ. In this limit λr ≡ λr,a is found from Eq. (11.85):

λ2
r,a − (ω∗

b,eq)2 + γ λr,a = 0 (11.90)

with the (positive) solution

λr,a =
−γ +

√
γ 2 + 4(ω∗

b,eq)2

2
=

√

(ω∗
b,eq)2 + γ 2

4
− γ

2
(11.91)

which leads to a transmission coefficient, κGH = λr,a/ω
∗
b,eq = κKR, that is, identical

to Kramers result in Eq. (11.50).

• In the non-adiabatic regime, the time scale λ−1
r � τrelax of the reaction is so short

compared to the relaxation times of the solvent molecules that they have no chance
to respond to the motion in the reaction coordinate; said differently, the solvent
molecules are effectively “frozen” in their positions during the rapid passage of
the barrier. This limit corresponds to the limit with γ (t) = γ (0), that is, solvent
dynamics is ignored, so the power spectrum γ̃ (ω) ∝ δ(ω) (see Eq. (11.87)) is
peaked around zero frequency. In this limit λr ≡ λr,na is found from Eq. (11.85):

λ2
r,na = (ω∗

b,eq)2 − γ (0) (11.92)

The motion is not determined by the equilibrium barrier −(ω∗
b,eq)2 x2/2, since the

solvent molecules cannot provide an equilibrium solvation. Instead, the motion
is along a different non-adiabatic barrier −(ω∗

b,na)
2 x2/2 (the −(ω∗

b )
2 x2/2 barrier

in the harmonic model system considered previously) that depends on the initial
configuration of the solvent molecules. We have seen in Eq. (11.73), for ω∗

b → ω∗
b,na,

that

(ω∗
b,na)

2 = (ω∗
b,eq)2 − γ (0) (11.93)
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in agreement with Eq. (11.92) for λr,na = ω∗
b,na. When the solvent molecules cannot

yield to the motion in the reaction coordinate, they tend to offset the equilibrium
potential barrier, and hence to reduce the reaction rate, giving the transmission
coefficient

κna = λr,na

ω∗
b,eq

=
√

(ω∗
b,eq)2 − γ (0)

/
ω∗

b,eq (11.94)

Let us in the following derive a relation between the actual transmission coefficient, κGH,
and the non-adiabatic coefficient, κna, since it will show why κGH > κna and which part
of the power spectrum for the solvent motion is responsible for this.

We see from Eq. (11.87) that

γ (0) =
∫ ∞

−∞
dω

2π
γ̃ (ω) (11.95)

Substitution of Eqs (11.92) and (11.95) into Eq. (11.89) gives

λ2
r − λ2

r,na =
∫ ∞

−∞
dω

2π
γ̃ (ω)− λ2

r

∫ ∞

−∞
dω

2π

γ̃ (ω)

λ2
r + ω2

=
∫ ∞

−∞
dω

2π

[
1 − λ2

r

λ2
r + ω2

]
γ̃ (ω) (11.96)

Division by (ω∗
b,eq)2 gives

κ2
GH − κ2

na = (κGH − κna)(κGH + κna) =
∫ ∞

−∞
dω

2π

ω2

λ2
r + ω2

γ̃ (ω)

(ω∗
b,eq)2 (11.97)

and finally

κGH − κna = 1
ω∗

b,eq(λr + λr,na)

∫ ∞

−∞
dω

2π

ω2 γ̃ (ω)

λ2
r + ω2 (11.98)

Since κna is equal to the transmission coefficient when the solvent molecules do not
respond to the motion in the reaction coordinate (“frozen” solvent molecules), the right-
hand side of the equation represents the dynamical response of the solvent. We see that,
with the factor ω2/(λ2

r + ω2) in the integrand, the high frequency part of the friction
kernel power spectrum is emphasized since the factor is small for small frequencies and
approaches the value of one at high frequencies. This is exactly what is expected, since
it will be the high frequency modes that may respond to the fast motion in the reaction
coordinate. We also note that, provided the integral is convergent, κGH > κna since the
right-hand side of the equation will always be positive and, therefore, any dynamical
response of the solvent will always enhance the reaction rate.
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The integral on the right-hand side of Eq. (11.98) diverges unless γ̃ (ω) falls off
faster than 1/ω at infinity. Thus, Eq. (11.98) and the inequality established before might
not be valid close to the adiabatic limit. In the adiabatic limit where γ̃ (ω) = γ , we use
instead Eqs (11.90) and (11.92) to determine the difference between the transmission
coefficients in the adiabatic (Kramers) limit and in the non-adiabatic limit. We find

λ2
r,a − λ2

r,na = γ (0)− γ λr,a (11.99)

After division by (ω∗
b,eq)2 and factorization of κ2

KR − κ2
na, we find

κKR − κna = γ (0)− γ λr,a

ω∗
b,eq(λr,a + λr,na)

(11.100)

So, κKR > κna if γ (0) > γ λr,a, and κKR < κna when γ (0) < γ λr,a. The latter case is found
in Example 11.2.

Finally, it will also be interesting to develop a general relation between the actual
transmission coefficient κGH and the limiting value of one corresponding to no friction.
This will show that κGH < 1 in a solution and which part of the power spectrum for the
solvent that is responsible for this. We have from Eq. (11.89) that

λ2
r − (ω∗

b,eq)2 = −λ2
r

∫ ∞

−∞
dω

2π

γ̃ (ω)

λ2
r + ω2 (11.101)

and after division by (ω∗
b,eq)2 and factorization of κ2

GH − 12,

κGH − 1 = − λ2
r

ω∗
b,eq(λr + ω∗

b,eq)

∫ ∞

−∞
dω

2π

γ̃ (ω)

λ2
r + ω2 (11.102)

This relation shows that κGH < 1 and, in contrast to before, the factor 1/(λ2
r + ω2)

emphasizes the low frequency part of the power spectrum of the friction kernel, since
it approaches zero at high frequencies. The low frequency modes cannot follow the fast
reaction mode and therefore a non-equilibrium solvent distribution is produced that
causes the reaction rate to decrease.

Example 11.2 Comparison of Kramers and Grote–Hynes theory with MD

As in Example 10.1, we consider the SN2 reaction

Cl− + CH3Cl′ −→ CH3Cl + Cl′−

in water at T = 298 K. The transmission coefficient for this reaction has been evaluated at
different levels of approximation [4,7]. The multidimensional potential energy surface was

continued
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Example 11.2 continued

written as the sum of a gas-phase (LEPS) energy surface incorporating the main features
of the one-dimensional double-well potential in Example 10.1, solvent–solute interactions
described by Lennard–Jones potentials with added (Coulomb) interactions corresponding to
point charges, and solvent–solvent interactions including intermolecular degrees of freedom.
The solvent consisted of 64 water molecules.

The exact transmission factor (within classical molecular dynamics) κMD was calculated
using the approach described in Section 5.1.2; that is, trajectories were sampled from the
thermal equilibrium distribution at a dividing surface. Good agreement between κMD and
κGH was found (with a transmission coefficient ∼ 0.5), whereas κKR severely underestimates
the transmission (with a transmission coefficient < 0.05). For the transmission coefficient in
the non-adiabatic (frozen solvent) regime κna < κGH, but this description is in much better
agreement with the numerical value of κMD ∼ κGH.

In full molecular dynamics computer simulations, the time evolution of all atomic
nuclei (including solvent atoms) is followed. This approach has been applied to several
examples of chemical reactions in solution, including bimolecular reactions (as in
Example 11.2), and unimolecular reactions like photodissociation and isomerization.
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PROBLEMS

11.1 Derive Eq. (11.24) for the function Y .

11.2 In the absence of friction and for 〈R(t)〉 = 0, write down the complete solution to
Eq. (11.55) for the barrier-crossing trajectory, that is, Newton’s equation of motion
and show that the solution can be written as in Eq. (11.82) with λr = ω∗

b,eq.
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11.3 We consider a bimolecular reaction with two product channels:

C1 + D1
k1↗

A + B
k2↘

C2 + D2

(a) Write down the rate laws for the formation of the products C1 and C2,
respectively, for the parallel bimolecular reactions. Show that [C1]/[C2] =
k1/k2, when the initial concentrations are [C1]0 = [C2]0 = 0.

First, we assume that the reaction takes place in the gas phase.

(b) Using transition-state theory, write down an expression for [C1]/[C2].

The reactants are now surrounded by a solvent.

(c) How is the equation for the effective rate constant, Eq. (9.42), modified when
it is taken into consideration that the reactants can disappear via two channels?
Under what condition is the reaction “activation controlled”?

(d) The “potentials of mean force” for the two activated complexes are W (1)
mean and

W (2)
mean, respectively. When, in addition, dynamic solvent effects are included

according to Kramers theory, write down an expression for [C1]/[C2].





A

Adiabatic and Non-Adiabatic
Electron-Nuclear Dynamics

In the following, we consider the derivation of the equation of motion within the adiabatic
approximation of nuclear motion, Eq. (1.11), as well as the general equation of motion,
Eq. (4.187), allowing for non-adiabatic nuclear dynamics.

First, in order to derive Eq. (1.11), we substitute �adia(r,R, t) = χ(R, t)ψi(r;R) into
Eq. (1.1), and obtain

ψi(r;R) ih̄
∂χ(R, t)

∂t
= [T̂nuc + Ĥe]χ(R, t)ψi(r;R)

= [T̂nuc + Ei(R)]χ(R, t)ψi(r;R)

where the electronic Schrödinger equation Eq. (1.6) was used in the last line. Multiplying
from the left with ψ∗

i (r;R) and integrating over the electronic coordinates gives

ih̄
∂χ(R, t)

∂t
= [〈ψi|T̂nuc|ψi〉 + Ei(R)]χ(R, t) (A.1)

where it was used that the electronic wave function is normalized. The nuclear kinetic
energy operator is given by

T̂nuc =
N∑

g=1

P̂2
g

2Mg
= −

N∑

g=1

h̄2

2Mg
∇2

g (A.2)

and

〈ψi|T̂nuc|ψi〉χ(R, t) = −
N∑

g=1

h̄2

2Mg
〈ψi|∇2

g |ψi〉χ(R, t) (A.3)
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That is, T̂nuc contains differentiation with respect to the nuclear coordinates in the
form ∇2

g = ∂2/∂x2
g + ∂2/∂y2

g + ∂2/∂z2
g and it is important to notice that the electronic

as well as the nuclear wave function depends on the nuclear coordinates. Thus, T̂nuc
operates on a product of two functions which depend on the nuclear coordinates. To that
end, we note ∇2[ f (R)g(R)] = f (R)∇2g(R)+ ∇2[ f (R)]g(R)+ 2∇[ f (R)] · ∇[g(R)]. With
f ≡ ψi and g ≡ χ , we find

〈ψi|T̂nuc|ψi〉 = T̂nuc + 〈ψi|T̂nuc|ψi〉0 +
N∑

g=1

〈ψi|P̂g|ψi〉0 · P̂g/Mg (A.4)

where the subscript on the second and third matrix elements indicate that the operator
acts only on ψi and P̂g = −ih̄∇g. Since, 〈ψi|P̂g|ψi〉 = −ih̄〈ψi|∇g|ψi〉 and the expectation
value of a Hermitian operator is a real-valued number, then for ψi real, we can conclude
that 〈ψi|P̂g|ψi〉 = 0, because this is the only way that a real number can be equal to a com-
plex number. Equation (A.1) with the result in Eq. (A.4) is then identical to Eq. (1.11).

Next, in order to derive Eq. (4.187) allowing for non-adiabatic nuclear dynamics,
we note that the electronic states, ψi(r;R), of a molecule or a collection thereof, form a
complete set of states for each set of fixed nuclear coordinates R. Thus, a general wave
function for the nuclear and electronic degrees of freedom can be expanded in the form
(often denoted as the Born–Huang expansion)

�(r,R, t) =
∑

i

χi(R, t)ψi(r;R) (A.5)

Although this expansion is in principle exact, it is motivated by an anticipation of fast
electronic motion relative to the timescale of nuclear motion.

Specializing to two electronic states, that is, χ1(R, t)ψ1(r;R)+ χ2(R, t)ψ2(r;R) and
substituting the expansion into Eq. (1.1), multiplying from the left with, respectively,
ψ∗

1 (r;R) and ψ∗
2 (r;R), integrating over the electronic coordinates, and using the

orthonormality of electronic states 〈ψj |ψi〉 = δij , we obtain

ih̄
∂

∂t

[
χ1(R, t)
χ2(R, t)

]
=

[ 〈ψ1|T̂nuc|ψ1〉 + E1(R) 〈ψ1|T̂nuc|ψ2〉
〈ψ2|T̂nuc|ψ1〉 〈ψ2|T̂nuc|ψ2〉 + E2(R)

][
χ1(R, t)
χ2(R, t)

]

(A.6)
As shown in Eq. (A.4), the diagonal matrix elements take the simplified form,

〈ψi|T̂nuc|ψi〉 = T̂nuc + 〈ψi|T̂nuc|ψi〉0 (A.7)

and except for the non-diagonal coupling operators, the equation of motion in each
electronic state, take the same form as in the case of a single electronic state. The
non-diagonal coupling operators 〈ψi|T̂nuc|ψj〉 are developed as before, now using the
orthogonality of the electronic states,
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〈ψi|T̂nuc|ψj〉 = 〈ψi|T̂nuc|ψj〉0 +
N∑

g=1

〈ψi|P̂g|ψj〉0 · P̂g/Mg (A.8)

where P̂g = −ih̄∇g = −ih̄(∂/∂xg,∂/∂yg,∂/∂zg) contains differentiation with respect to the
nuclear coordinates of the gth nucleus. Inserting these forms of the matrix elements,
Eq. (A.6) is then identical to Eq. (4.187). This derivation is easily generalized to more
than two electronic states.

The matrix elements 〈ψi|P̂g|ψj〉 = −ih̄〈ψi|∇g|ψj〉 associated with the non-diagonal
coupling operators can be rewritten into a form that provides physical insight into
the magnitude of these elements. Starting from the electronic Schrödinger equation,
Eq. (1.6), Ĥe(r;R)ψj(r;R) = Ej(R)ψj(r;R), taking the gradient ∇g, multiplying by ψ∗

i ,
and integrating over the electronic coordinates r on the left- and right-hand sides of the
equation give, respectively:

〈ψi|∇gĤ e|ψj〉 = 〈ψi|Ĥe|∇gψj〉 + 〈ψi|(∇gĤ e)|ψj〉
= 〈∇gψj |Ĥe|ψi〉∗ + 〈ψi|(∇gĤ e)|ψj〉 (A.9)

= Ei(R)〈ψi|∇g|ψj〉 + 〈ψi|(∇gĤ e)|ψj〉

and from the right-hand side

〈ψi|∇gEj(R)|ψj〉 = Ej(R)〈ψi|∇g|ψj〉 + ∇gEj(R)δij (A.10)

where the orthogonality of the electronic states was used. From the identity of the right-
hand sides of these two equations, we obtain

〈ψi|∇g|ψj〉 = 〈ψi|(∇gĤ e)|ψj〉
Ej(R)− Ei(R)

for i �= j (A.11)

Thus, the matrix element associated with the coupling of electronic states is small,
provided that the energy difference between electronic potential energy surfaces, Ej(R)−
Ei(R), is sufficiently large.

For a molecular system in the electronic ground state, ψ1(r;R), the separation in
energy to all higher electronically excited states is typically large, and we see that only
the first term in the expansion of Eq. (A.5) is significant. That is, the adiabatic limit
of nuclear dynamics is recovered and the nuclear dynamics, as described by χ1(R, t), is
sufficiently slow compared to the electronic dynamics such that no electronic transitions
are induced during nuclear motion. Non-adiabatic dynamics play typically an important
role in the dynamics of excited electronic states.



B

Statistical Mechanics

The main objective of statistical mechanics is to provide a method for calculating
macroscopic (thermodynamic) properties from a knowledge of microscopic information
like quantum mechanical energy levels. The purpose of the present appendix is merely
to present a selection of the results that are most relevant in the context of reaction
dynamics, while a broader knowledge may be obtained from one of the many textbooks
on the subject [1].

Consider a macroscopic system with a fixed number of molecules N , a fixed volume
V , and at fixed energy E. This is an isolated system. With N , V , and known interaction
energies between the molecules, we may set up and in principle solve the Schrödinger
equation and determine the quantum states of the system. Obviously, the energy E must
be one of the eigenvalues of the N-body Hamiltonian HN , and the number of states with
energy E is the degeneracy, which we denote by �(N ,V ,E). N and �(N ,V ,E) are, for
ordinary thermodynamic systems, huge.

As a conceptual illustration of the degeneracy, it is common to introduce the concept
of an ensemble of a large number of systems, identical on a macroscopic level (N ,V ,E)

but each representing the different quantum states. The ensemble of the isolated systems
is called a microcanonical ensemble. It plays a central role in statistical mechanics, because
it is used to set up one of the basic axioms on which statistical mechanics is based. It
is postulated that all �(N ,V ,E) quantum states are equally probable (the assumption
of equal a priori probabilities). It means that if we pick at random a system in the
microcanonical ensemble then the probability of finding the system in any of the � states
is P = 1/�(N ,V ,E), that is, independent of which quantum state we had chosen.

For most practical applications, we do not consider isolated systems but systems in
thermal equilibrium so the temperature will be fixed. The ensemble of systems with N ,
V , and T fixed is referred to as a canonical ensemble, where the energy of the systems in
the ensemble may differ. The challenge is then to determine the probability Pi of finding
a system in the ensemble in a given quantum state from the basic postulate of equal a
priori probabilities. We shall not give the detailed derivation here but merely state that the
probability that the system is found in the ith state with energy Ei , given as an eigenvalue
of the N-body Hamiltonian of N interacting molecules is

Pi = exp(−Ei/kBT)

Q (B.1)
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where the normalization factor

Q(N ,V ,T) =
∑

states, i

exp(−Ei/kBT)

=
∑

levels,Ei

�(N ,V ,Ei)exp(−Ei/kBT) (B.2)

is the canonical partition function. Note that the summation (i.e., the enumeration) can
be written as a sum over all the energy states or, alternatively, as a sum over the energy
levels, when the degeneracy is included in the sum. Likewise, the probability that the
system is found in the energy level Ei is given by P(Ei) = �(N ,V ,Ei)Pi .

B.1 A System of Non-Interacting Molecules

Now, at sufficiently high temperatures, for N non-interacting identical and indistinguish-
able molecules (i.e., molecules in an ideal gas), the partition function can be written in
the form

Q(N ,V ,T) = Q(V ,T)N

N ! (B.3)

where Q is the partition function of the individual molecules and N ! corrects for the
permutations of N identical particles. In the following, Q will be referred to as the
molecular partition function. When Eq. (B.3) is valid, the molecules are said to obey
Boltzmann statistics. All results that are given below fall within this “ideal gas” limit
(except when it is explicitly stated that the equation is valid for interacting molecules).

The probability of finding a molecule in any one of the ωi states with energy Ei is

P(Ei) = ωi

Q
exp(−Ei/kBT) (B.4)

where Q is the molecular partition function,

Q =
∑

i

ωi exp(−Ei/kBT) (B.5)

and Ei and ωi are the energy and the degeneracy of the ith quantum level. Note
that the summation here runs over all energy levels. The probability distribution in
Eq. (B.4) is referred to as the Boltzmann distribution. If the energy is continuous (e.g.,
the free particle), then the probability that a molecule has energy in the energy interval
E → E + dE is

P(E)dE = N(E)

Q
exp(−E/kBT)dE (B.6)
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where

Q =
∫ ∞

0
N(E)exp(−E/kBT)dE (B.7)

and N(E)dE is the number of states in the energy interval E → E + dE. Thus, N(E) is
the density of states.

The Boltzmann distribution is illustrated in Figs 1.2.1–1.2.3 of Chapter 1.

B.1.1 The molecular partition function

The evaluation of the molecular partition function can be simplified by noting that the
total energy of the molecule may be written as a sum of the center-of-mass translational
energy and the internal energy, E = Etrans + Eint, which implies

Q = QtransQint (B.8)

since a product of exponentials is equal to an exponential with an argument that equals
the sum of the arguments of the exponentials, and since Eint ∼ Evib + Erot + Eelec, the
partition function for the internal degrees of freedom can be written in the form

Qint ∼ QvibQrotQelec (B.9)

These partition functions can be evaluated quite readily. Since the energies are not
absolute quantities, they are given relative to some energy, E0, which can be chosen
arbitrarily. In Eq. (B.5) the energies are measured relative to a state that have been given
an energy equal to zero. In the following, it turns out to be convenient to choose E0 as
the energy of the quantum state with the lowest energy. Thus, on this scale, the zero of
energy coincides with the zero-point level of the quantized energy levels. To that end,
we note that, if we subtract the zero-point energy E0 from all energy levels, the partition
function Eq. (B.5) takes the form

Q = exp(−E0/kBT)
∑

i

ωi exp(−[Ei − E0]/kBT) (B.10)

Here, the sum is the partition function with the energy measured relative to the zero-
point level and Q is obtained after multiplication by exp(−E0/kBT). The Boltzmann
distribution Eq. (B.4) can be written in the form

P(Ei − E0) = ωi exp(−[Ei − E0]/kBT)∑
i ωi exp(−[Ei − E0]/kBT)

= P(Ei) (B.11)
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Thus, the partition functions differ by the factor exp(−E0/kBT), whereas the Boltzmann
distribution is invariant to such a shift of the energy scale in the standard expressions for
the energy levels.

For the translational partition function, we first consider a particle in a one-dimensional
box of length l. The energy levels, with the zero of energy as the zero-point level, are
En = (n2 − 1)h2/(8ml2), with n = 1,2, . . ., and degeneracy ωn = 1. The partition function
takes the form

Qtrans =
∞∑

n=1

exp
(

− (n2 − 1)h2

8ml2kBT

)
(B.12)

This sum cannot be evaluated analytically. However, when the energy difference between
subsequent levels can be considered as small, then the sum can be replaced by an integral.
Thus, when En+1 − En = (2n + 1)h2/(8ml2) � kBT , that is, at high temperatures,1 we
have

Qtrans ∼
∫ ∞

0
exp

(
− n2h2

8ml2kBT

)
dn

= (2πmkBT)1/2l/h (B.13)

The energy levels for a particle in a three-dimensional box are given as the sum of the
energies for each dimension, and the partition function for the three-dimensional box is
simply a product of the partition functions for each dimension; that is,

Qtrans = (2πmkBT)3/2V/h3 (B.14)

where V = l3 is the volume of the box.
In order to evaluate the vibrational partition function, we consider a single harmonic

oscillator with vibrational frequency νs. The energy levels, with zero energy as the
zero-point level, are En = hνsn, with n = 0,1, . . ., and degeneracy ωn = 1. The partition
function takes the form

Qvib =
∞∑

n=0

e−hνsn/kBT

=
∞∑

n=0

(
e−hνs/kBT

)n

1 The inequality cannot hold as n increases; but, by the time n is large enough to contradict this, the terms
are so small that they make no contribution to the sum.
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= 1 + e−hνs/kBT +
(

e−hνs/kBT
)2 + ·· ·

= (1 − exp(−hνs/kBT))−1 (B.15)

since the sum of a geometric series, 1 + x + x2 + ·· · = (1 − x)−1 for |x| < 1. For a set of s
harmonic oscillators (e.g., normal modes, see Appendix F), the total energy is the sum
of the energies for each oscillator and the partition function becomes, accordingly, a
product of partition functions of the form given in Eq. (B.15); that is,

Qvib =
s∏

i=1

(1 − exp(−hνi/kBT))−1 (B.16)

For the rotational partition function, we first consider a linear rigid rotor. The energy
levels are EJ = J(J + 1)h̄2/(2I), with J = 0,1, . . ., and I is the moment of inertia. Each
energy level has a degeneracy of mJ = 2J + 1. The partition function takes the form

Qrot =
∞∑

J=0

(2J + 1)exp{−J(J + 1)h̄2/(2IkBT)} (B.17)

This sum cannot be evaluated analytically. However, when the energy difference between
subsequent levels can be considered as small (EJ+1 − EJ = h̄2(J + 1)/I � kBT , that is,
at high temperatures) then the sum can be replaced by an integral:

Qrot ∼
∫ ∞

0
(2J + 1)exp{−J(J + 1)h̄2/(2IkBT)}dJ

=
∫ ∞

0
exp{−J(J + 1)h̄2/(2IkBT)}d{J(J + 1)} (B.18)

The last integral is easily evaluated, and

Qrot = 8π2IkBT/h2 (B.19)

This is the correct expression for the rotational partition function of a heteronuclear
diatomic molecule. For a homonuclear diatomic molecule, however, it must be taken
into account that the total wave function must be either symmetric or antisymmetric
under the interchange of the two identical nuclei: symmetric if the nuclei have integral
spins or antisymmetric if they have half-integral spins. In the high-temperature limit, as
in Eq. (B.18), the effect on Qrot is that it should be replaced by Qrot/σ , where σ is a
symmetry number that represents the number of indistinguishable orientations that the
molecule can have (i.e., the number of ways the molecule can be rotated “into itself”).
Thus, Qrot in Eq. (B.19) should be replaced by Qrot/σ , where σ = 1 for a heteronuclear
diatomic molecule and σ = 2 for a homonuclear diatomic molecule. When Eq. (B.19) is
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extended to a non-linear molecule with moments of inertia Ia, Ib, and Ic about its principal
axes, the rotational partition function takes the form

Qrot = π1/2
√

8π2IakBT/h2
√

8π2IbkBT/h2
√

8π2IckBT/h2/σ (B.20)

Finally, the electronic partition function is considered. The zero of energy is chosen as
the electronic ground-state energy. The spacings between the electronic energy levels are,
normally, large and only the first term in the partition function will make a significant
contribution; that is,

Qelec =
∑

i

ωi exp(−Ei/kBT)

∼ ω0 (B.21)

Thus, the partition function is simply the degeneracy of the electronic ground state.

B.1.2 Macroscopic properties

When we know the partition function, we can calculate thermodynamic quantities from
a knowledge of the quantum mechanical energy levels. Consider, as an example, the
(internal) energy U . A basic postulate of statistical mechanics is that such an energy is
the average value, U = 〈E〉, of all the quantum mechanical energy levels with the weights
given by the Boltzmann distribution; that is,

〈E〉 =
∑

i

EiP(Ei)

= kBT2

Q
dQ/dT

= kBT2d lnQ/dT (B.22)

using Eqs (B.4) and (B.5).
In a similar manner, the equilibrium constant of a chemical reaction can be related

to the quantum mechanical energy levels of the reactants and products. Consider, as an
example, a mixture of A and B molecules in equilibrium:

A −→←− B (B.23)

The equilibrium constant is

Kc(T) = [B]/[A]

= NB/NA (B.24)
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that is, equal to the ratio of the number of products and reactants. The total number of
molecules N = NA + NB is fixed, whereas NA and NB depends on the temperature. The
quantum states can be divided into two groups; one associated with the A molecules and
a second group associated with the B molecules.

According to the Boltzmann distribution, Eq. (B.4), the probability of finding an A
molecule in the energy level Ea is

P(Ea) = na/N

= ωa

Q
exp(−Ea/kBT) (B.25)

where na is the number of A molecules in the energy level Ea, and Q is the partition
function including both (A and B) groups of states. Similarly,

P(Eb) = nb/N

= ωb

Q
exp(−E ′

b/kBT) (B.26)

is the probability of finding a B molecule in the energy level E ′
b, where E ′

b = Eb + E0, and
E0 is the difference between the zero-point levels of the products and the reactants. Thus,
Eb denotes the energy levels of molecule B measured relative to the zero-point level of
the molecule. Note that Q = ∑

a ωa exp(−Ea/kBT)+ ∑
b ωb exp(−E ′

b/kBT). Now,

NA =
∑

a

na

= (N/Q)
∑

a

ωa exp(−Ea/kBT)

= NQA/Q (B.27)

and

NB =
∑

b

nb

= (N/Q)
∑

b

ωb exp(−E ′
b/kBT)

= (N/Q)exp(−E0/kBT)
∑

b

ωb exp(−Eb/kBT)

= NQB exp(−E0/kBT)/Q (B.28)

and the equilibrium constant is given by

Kc(T) = QB

QA
exp(−E0/kBT) (B.29)

that is, it can be calculated from the energy levels of the molecules.
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For a general equilibrium of the form

νAA + νBB −→←− νCC + νDD (B.30)

where the νs are stoichiometric coefficients, the result is

Kc(T) = (QC/V )νC(QD/V )νD

(QA/V )νA(QB/V )νB
e−E0/kBT (B.31)

where QA is the partition function for molecule A, E0 is the difference between the zero-
point levels of the products and the reactants, and the partition functions are evaluated
such that the zero of energy is the zero-point level.

B.2 Classical Statistical Mechanics

It is often impossible to obtain the quantum energies of a complicated system and
therefore the partition function. Fortunately, a classical mechanical description will often
suffice. Classical statistical mechanics is valid at sufficiently high temperatures. The
classical treatment can be derived as a limiting case of the quantum version for cases
where energy differences between quantum states are small compared with kBT .

The state of a classical system is completely described by specifying coordinates and
momenta, that is, a point in phase space; see Fig. B.2.1. For a system with s degrees of
freedom (i.e., s coordinates are required to completely describe its position), the phase
space has the dimension 2s. When the system evolves in time, its dynamics is described
by the trajectory of the phase-space point through phase space. The trajectory is given

pk

qi

ql

Fig. B.2.1 An illustration of the 2s-dimensional phase space of a system with s degrees of freedom. The
solid path describes the motion of the system according to Hamilton’s equations of motion. The cube
illustrates a phase-space cell of volume hs that contains one state.
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by Hamilton’s equations of motion, Eq. (4.74), and the total energy for the molecule is
given by the classical Hamiltonian H . The summations over states (or energy levels) in
quantum statistical mechanics are replaced by integrations over regions of phase space.

The problem now is how to count the number of states in this continuous description.
For proper counting, the use of quantum mechanics (Planck’s constant) is unavoidable.
For a system with one degree of freedom, the number of states in the area element
dqdp is

dqdp/h (B.32)

or, equivalently, a “phase-space cell” of area h contains one state. The sum of states G(E),
that is, the total number of states having energy in the range from 0 to E, is then the
total phase-space area occupied at the energy E divided by h. For a multidimensional
system with s degrees of freedom, a phase-space cell of volume hs contains one state (see
Fig. B.2.1), and the sum of states is then given by

G(E) = 1
hs

∫ H=E

H=0
· · ·

∫
dq1 · · ·dqsdp1 · · ·dps (B.33)

where all possible combinations of coordinates and momenta are included with the
restriction that H(q1, . . . ,qs,p1, . . . ,ps) lies between 0 and E. The density of states N(E)

is given by

N(E) = (G(E + dE)− G(E))/dE

= 1
hs

∫

H=E
· · ·

∫
dq1 · · ·dqsdp1 · · ·dps

= 1
hs

∫
· · ·

∫
δ(E − H)dq1 · · ·dqsdp1 · · ·dps (B.34)

using that G(E + dE)− G(E) is a multidimensional volume of phase space enclosed by
the two hypersurfaces defined by H = E and H = E + dE, and this integral can therefore
be expressed as the area of the hypersurface for H = E multiplied by dE. The condition
that the range of integration is restricted to this hypersurface is in the last integral
expressed in terms of a delta function. Note that the definition in Eq. (B.34) implies

N(E) = dG(E)/dE (B.35)

The Boltzmann statistics of particles described by classical mechanics is obtained
from Eqs (B.6) and (B.34):

P(E)dE = N(E)

Q
exp(−E/kBT)dE (B.36)
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where

Q =
∫ ∞

0
N(E)exp(−E/kBT)dE

= 1
hs

∫
· · ·

∫
dq1 · · ·dqsdp1 · · ·dps exp(−H(q,p)/kBT) (B.37)

The expectation value of the energy 〈E〉 = U in Eq. (B.22) is given by

〈E〉 = 1
Q

∫
EN(E)exp(−E/kBT)dE

=
∫ · · ·∫ dq1 · · ·dqsdp1 · · ·dpsH(q,p)exp(−H(q,p)/kBT)∫ · · ·∫ dq1 · · ·dqsdp1 · · ·dps exp(−H(q,p)/kBT)

(B.38)

Finally, the classical partition function for N interacting identical molecules, that is,
the classical limit of Eq. (B.2), takes the form

Q(N ,V ,T) = 1
N !hsN

∫
· · ·

∫
dq1 · · ·dqsN dp1 · · ·dpsN exp(−HN (q,p)/kBT) (B.39)

where HN (q,p) is the classical N-body Hamiltonian with each molecule described by s
coordinates in configuration space. The probability of finding the system at the point
q1, . . . ,qsN ,p1, . . . ,psN in a volume element dq1 · · ·dqsN dp1 · · ·dpsN is given by

P(q1, . . . ,qsN ,p1, . . . ,psN )dq1 · · ·dqsN dp1 · · ·dpsN

= dq1 · · ·dqsN dp1 · · ·dpsN exp(−HN (q,p)/kBT)∫ · · ·∫ dq1 · · ·dqsN dp1 · · ·dpsN exp(−HN (q,p)/kBT)

(B.40)

B.2.1 Applications of classical statistical mechanics

In the following, we derive some results that are used in various parts of this book.

Example B.1 The free particle

We consider the sum of states, density of states, and energies of an ideal gas in a box of volume
V . The Hamiltonian for a free particle of mass m is

H(p,q) = (p2
x + p2

y + p2
z)/2m (B.41)

We first consider the sum of states. Now, in Eq. (B.33) the integration over coordinates gives the
volume of the container, and the integral over the momenta is the momentum-space volume for

continued
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Example B.1 continued

H having values between 0 and E. Equation (B.41) is the equation for a sphere in momentum
space with radius

√
2mH . Thus, the volume of the sphere is 4π(

√
2mH)3/3 and

G(E) = 1

h3
4π

3
(
√

2mE)3V (B.42)

and after differentiation with respect to E,

N(E) = (21/2π2h̄3)−1m3/2E1/2V (B.43)

(note that the same result is obtained from the quantum solution to a “particle in a box”, for
high quantum numbers, or, equivalently, high energies [1]). The partition function can then
be evaluated:

Qtrans =
∫ ∞

0
N(E)exp(−E/kBT)dE

= (2πmkBT)3/2V/h3 (B.44)

Note that this expression is identical to the approximate form of the quantum mechanical
partition function in Eq. (B.14).

The energy distribution in Eq. (B.36) becomes

P(E)dE = 2π

(
1

πkBT

)3/2 √
E exp

{
− E

kBT

}
dE (B.45)

This result was given in Eq. (2.28). The well-known Maxwell–Boltzmann distribution of
molecular speeds, Eq. (2.27), is obtained after substitution of E = mv2/2, dE = mvdv.

Example B.2 s uncoupled harmonic oscillators

We consider the sum of states, density of states, and energies for a set of harmonic oscillators.
The Hamiltonian for s harmonic oscillators of unit mass is

H(p,q) =
s∑

i=1

(
p2

i
2

+ ω2
i q2

i
2

)
(B.46)

where ωi = 2πνi and νi is the frequency of the ith oscillator. First, consider a single harmonic
oscillator (s = 1). Equation (B.46) can be written in the form

p2
1

(
√

2H)2
+ q2

1

(

√
2H/ω2

1)2
= 1 (B.47)

This is the equation of an ellipse with semi-axes
√

2H and
√

2H/ω2
1. The integral in Eq. (B.33)

is simply the area of this ellipse, which is equal to π multiplied by the product of the two
semi-axes. The area is, accordingly, H/ν1, and G(E) = E/(hν1). For s harmonic oscillators,



Classical Statistical Mechanics 351

Eq. (B.46) is the equation for a 2s-dimensional ellipsoid and the integral in Eq. (B.33) is
simply the volume of this ellipsoid. The volume of a 2s-dimensional ellipsoid is given by
(π s/s!)∏2s

i=1 ai , where ai are the semi-axes. Thus, the sum of states takes the form

G(E) = Es

s!∏s
i=1 hνi

(B.48)

and the density of states is

N(E) = Es−1

(s − 1)!∏s
i=1 hνi

(B.49)

which implies that the partition function (Eq. (B.37)) is

Qvib = (kBT)s
∏s

i=1 hνi
(B.50)

Note that this expression differs from the quantum mechanical partition function in Eq. (B.16);
it is the high-temperature limit, where hνi/kBT is small.

The Boltzmann energy distribution function, as given by Eq. (B.36), takes the form

P(E)dE = 1
(s − 1)!

(
E

kBT

)s−1
exp

{
− E

kBT

}
dE

kBT
(B.51)

Finally, since Eq. (B.48) is based on a classical evaluation of the sum of states, the fact that,
according to quantum mechanics, no vibrational states exist at energies below the zero-point
energy Ez is clearly violated. Thus, we can anticipate that a better estimate of the sum of states
at the vibrational energy E, defined as the energy in excess of the lowest possible vibrational
energy, is G(E) = G(E + Ez) − G(Ez).

Example B.3 The rigid rotor

We consider the sum of states and density of states for a rigid rotor. The Hamiltonian for a
linear rigid rotor with the moment of inertia I is

H(θ ,φ,pθ ,pφ) = p2
θ

2I
+

p2
φ

2I sin2 θ
(B.52)

where (θ ,φ) are polar angles that specify the orientation of the rotor (θ ∈ [0,π] and φ ∈ [0,2π])
and (pθ ,pφ) are the conjugate momenta. Equation (B.52) can be written in the form

p2
θ

2IH
+

p2
φ

2IH sin2 θ
= 1 (B.53)

For a fixed value of θ , this is the equation of an ellipse with semiaxes
√

2IH and
√

2IH sin2 θ .
The integral in Eq. (B.33) takes the form

continued
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Example B.3 continued

G(E) = 1

h2

∫ π

0

∫ 2π

0
dθdφ

∫ H=E

0

∫
dpθ dpφ

= 1

h2

∫ π

0

∫ 2π

0
π2IE sinθ dθdφ (B.54)

since the integral over pθ and pφ with the restriction that the energy is between 0 and E is simply
the area of the ellipse defined by Eq. (B.53), which is equal to π multiplied by the product of
the two semiaxes.

Thus, the sum of states takes the form

G(E) = 8π2IE

h2 (B.55)

and the density of states is

N(E) = 8π2I

h2 (B.56)

The partition function (Eq. (B.37)) is then

Qrot =
∫ ∞

0
N(E)e−E/kBT dE

= 8π2IkBT

h2 (B.57)

Note that this expression is identical to the (approximate) quantum mechanical partition
function, Eq. (B.19), for a linear rigid rotor.

The Hamiltonian for a non-linear rigid rotor is quite complicated [1] and the derivation of
the expressions for the sum and density of states is cumbersome. We know, however, that the
partition function is given by Eq. (B.20), and it is quite easy to find the expressions for the sum
and density of states that are consistent with Eq. (B.20).

Thus, for the sum of states we use a form that is analogous to Eq. (B.55):

G(E) = 4
3

√
8π2Ia/h2

√
8π2Ib/h2

√
8π2Ic/h2 E3/2 (B.58)

and the density of states is then

N(E) = 2
√

8π2Ia/h2
√

8π2Ib/h2
√

8π2Ic/h2 E1/2 (B.59)

The partition function (Eq. (B.37)) is then

Qrot =
∫ ∞

0
N(E)e−E/kBT dE

= 2
√

8π2Ia/h2
√

8π2Ib/h2
√

8π2Ic/h2
∫ ∞

0
E1/2e−E/kBT dE
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= 2
√

8π2Ia/h2
√

8π2Ib/h2
√

8π2Ic/h2 (kBT)3/2
∫ ∞

0
E′1/2e−E′

dE′

= π1/2
√

8π2IakBT/h2
√

8π2IbkBT/h2
√

8π2IckBT/h2 (B.60)

since the integral is the Gamma function with the argument 3/2, and 
(3/2) = √
π/2.

This expression is identical to the (approximate) quantum mechanical partition function in
Eq. (B.20).

Example B.4 Maxwell–Boltzmann distribution for N interacting molecules

The well-known Maxwell–Boltzmann distribution for the velocity or momentum distribution
associated with the translational motion of a molecule is valid not only for free molecules,
but also for interacting molecules; say, in a liquid phase. We start with the general expression,
Eq. (B.40), that is, the Boltzmann distribution for N identical molecules each with s degrees
of freedom:

P(q1, . . . ,qsN ,p1, . . . ,psN )dq1 · · ·dqsN dp1 · · ·dpsN

= dq1 · · ·dqsN dp1 · · ·dpsN exp(−HN (q,p)/kBT)∫ · · ·∫ dq1 · · ·dqsN dp1 · · ·dpsN exp(−HN (q,p)/kBT)

(B.61)

where q,p is a short-hand notation for q1, . . . ,qsN ,p1, . . . ,psN and the Hamiltonian can be
written in the form

HN (q,p) = Ttrans(ptrans) + Trot,vib(prot,vib)+ U (q) (B.62)

We choose the first 3N momenta to be associated with the Cartesian coordinates of the centers
of mass of the N molecules, that is, the kinetic energy associated with the translational motion
of the N molecules is

Ttrans(ptrans) =
N∑

n=1

(p2
xn + p2

yn + p2
zn)/2m (B.63)

Trot,vib(prot,vib) is the kinetic energy associated with rotational and vibrational motion, and
U (q) is the potential energy describing the interaction between all molecules.

We want the probability distribution irrespective of all the position coordinates, q, as well as all
the momenta associated with the rotational and vibrational motion, prot,vib. Thus, in Eq. (B.61),
we integrate over all these coordinates and momenta. The form of the Hamiltonian, Eq. (B.62),
implies that the exponentials can be factorized into three terms, and integration over the three
sets of coordinates and momenta can be carried out separately, that is, integrals over q and
prot,vib in the numerator and denominator cancel and

Ptrans(p1, . . . ,p3N )dp1 · · ·dp3N = dp1 · · ·dp3N exp(−Ttrans(ptrans)/kBT)∫ · · ·∫ dp1 · · ·dp3N exp(−Ttrans(ptrans)/kBT)
(B.64)

continued
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Example B.4 continued

Finally, we integrate over the three momentum components for N − 1 of the molecules, that
is, all the molecules except one, and obtain the well-known result

Ptrans(px1,py1,pz1)dpx1dpy1dpz1

= (2πmkBT)−3/2 exp
[
−

(
p2

x1 + p2
y1 + p2

z1

)
/(2mkBT)

]
dpx1dpy1dpz1

(B.65)

The corresponding velocity distribution is obtained after substitution of px1 = mvx1, py1 =
mvy1, and pz1 = mvz1.

Further reading/references

[1] D.A. McQuarrie, Statistical mechanics (University Science Books, 2000).



Further reading/references

Page 1 of 1

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 
2020. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use.  
Subscriber: KTH Royal Institute of Technology; date: 09 December 2020

Theories of Molecular Reaction Dynamics: The 
Microscopic Foundation of Chemical Kinetics
Niels E. Henriksen and Flemming Y. Hansen

Print publication date: 2018
Print ISBN-13: 9780198805014
Published to Oxford Scholarship Online: November 2018
DOI: 10.1093/oso/9780198805014.001.0001

Access brought to you by:

Further reading/references
Niels Engholm Henriksen
Flemming Yssing Hansen

Bibliography references:

[1] D.A. McQuarrie, Statistical mechanics (University Science Books, 2000).

https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198805014.001.0001/oso-9780198805014
https://oxford.universitypressscholarship.com/view/10.1093/oso/9780198805014.001.0001/oso-9780198805014


C

Microscopic Reversibility
and Detailed Balance

Both Newton’s equation of motion for a classical system and Schrödinger’s equation
for a quantum system are unchanged by time reversal, that is, when the sign of the time
is changed. Due to this symmetry under time reversal, the transition probability for a
forward and the reverse reaction is the same, and consequently a definite relationship
exists between the cross-sections for forward and reverse reactions. This relationship,
based on the reversibility of the equations of motion, is known as the principle of micro-
scopic reversibility, sometimes also referred to as the reciprocity theorem. The statistical
relationship between rate constants for forward and reverse reactions at equilibrium
is known as the principle of detailed balance, and we will show that this principle is a
consequence of microscopic reversibility. These relations are very useful for obtaining
information about reverse reactions once the forward rate constants or cross-sections are
known. Let us begin with a discussion of microscopic reversibility.

C.1 Microscopic Reversibility

C.1.1 Transition probability

The trajectory of a classical particle may be found by integrating Newton’s equation of
motion

F = m
d
dt

(
dr
dt

)
(C.1)

from time t0 to time t1. Let us introduce the substitution

τ = −t + (t0 + t1) (C.2)

into Eq. (C.1). We find
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F = m
d

d(−τ)

(
dr

d(−τ)

)

= m
d

dτ

(
dr
dτ

)
(C.3)

As t varies from t0 to t1, τ is seen from Eq. (C.2) to vary from t1 to t0, so the substitution
is equivalent to a time reversal. Since the equations of motion are identical, the system
will follow exactly the same trajectory; the only difference will be that in one case it is
followed forward in time from t0 to t1, and in the other case backward in time from t1
to t0. In other words, it is not possible from the equation of motion to decide whether
it describes a forward or a reverse propagation in time. This is summarized by saying
that the classical equation of motion has time-reversal symmetry. As a consequence, the
probability for a forward scattering process must equal the probability for the reverse
scattering process, where all velocities dr/dt and time have changed sign (see Eq. (C.3)).

The Schrödinger equation for a quantum system also has time-reversal symmetry.
The solution to the time-dependent Schrödinger equation

ih̄
∂ψ

∂t
= Ĥψ (C.4)

may be formally written as

ψ(t1) = exp(−iĤ(t1 − t0)/h̄)ψ(t0)

≡ Û (t1 − t0)ψ(t0) (C.5)

where the propagator

Û (t1 − t0) = exp(−iĤ(t1 − t0)/h̄)

≡ 1 − iĤ(t1 − t0)/h̄ − Ĥ2(t1 − t0)2/2h̄2 + ·· · (C.6)

(formally defined by its Taylor expansion) propagates the wave function from time t0 to
time t1. From this definition it is clear that

Û (t0 − t1) = Û†(t1 − t0) (C.7)

where † indicates Hermitian conjugation. Suppose now that we propagate the wave
function ψ(t1) at time t1 backward in time to time t0; then we have

ψ(t0) = Û (t0 − t1)ψ(t1) (C.8)
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or

ψ∗(t0) = Û (t1 − t0)ψ∗(t1) (C.9)

where we have used Eq. (C.6). The propagators in Eqs (C.5) and (C.9) for, respectively,
a forward and a backward propagation in time are identical, and if the wave functions
are real, it is immediately obvious that the same equation may be used for forward and
backward propagation in time as in a classical system; hence the Schrödinger equation
has time-reversal symmetry. In general, however, the wave functions are complex, so
the two equations of motion differ in the sense that it is the wave function itself that is
propagated in the forward direction of time, whereas it is the complex conjugate wave
function that is propagated in the reverse direction of time. The complex conjugation of
the wave packet is equivalent to a change in sign of the momentum of the wave packet
(the Gaussian wave packet, Eq. (4.124), has this property), just like time reversal in a
classical system, where the velocities change sign.

Then it is remembered that the wave function itself does not have a physical meaning.
So let us, for example, determine the transition probability from say state |k(t0)〉 at time
t0 to state |m(t1)〉 at time t1. Then we have

|k(t1)〉 = Û (t1 − t0)|k(t0)〉 (C.10)

and the transition probability is

P|k(t0)〉→|m(t1)〉 = |〈m(t1)|Û (t1 − t0)|k(t0)〉|2 (C.11)

This transition probability is now compared to the transition probability for the reverse
process, where we consider the transition from |m(t1)〉 to |k(t0)〉. We find

P|m(t1)〉→|k(t0)〉 = |〈k(t0)|Û (t0 − t1)|m(t1)〉|2
= |〈m(t1)|Û (t1 − t0)|k(t0)〉|2 (C.12)

where we have used the relation 〈k(t0)|Û (t0 − t1)|m(t1)〉∗ = 〈m(t1)|Û†(t0 − t1)|k(t0)〉 and
Eq. (C.7). In other words, the transition probability from state |k(t0)〉 at time t0 to state
|m(t1)〉 at time t1 is equal to the transition probability for the reverse process, that is, from
|m(t1)〉 to |k(t0)〉. This is a manifestation of the time-reversal symmetry of the equation
of motion.

The transition probabilities per unit time and per scattering center in Eqs (C.11) and
(C.12) are for a collision process, often written in a more explicit form to emphasize the
particular transition considered:

P(ml, ij;vi ,�) = P(ij,ml;vf,�) (C.13)
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where vi and vf are the initial and final relative speeds, respectively, of the colliding
particles, ij are the initial internal states of the two colliding molecules, ml are the final
internal states of the product molecules, and � is the solid angle into which the particle
of interest is scattered. This angle, as measured from the direction of the initial relative
velocities, respectively, vi and vf , is the same for both the forward and the reverse
scattering process. Finally, let us emphasize that the transition probability P refers to
a well-specified initial and final state and that it gives us the probability per unit time and
per scattering center for the scattering process indicated.

C.1.2 Cross-sections

From the fundamental relation in Eq. (C.13), we are now going to derive a relation
between the differential cross-section for the forward and the reverse scattering process.

As defined previously in Eq. (2.7), differential cross-sections are defined as the flux of
particles scattered into a range of solid angle d� around the solid angle � per unit initial
flux and per scattering center. The state-to-state transition probabilities are already per
unit scattering center and, since we do not scatter into one single final state but a range of
final states as given by d�, we need to determine how many final states are consistent with
that uncertainty in the final solid angle. It is then assumed that the transition probability
to that small range of final states is the same, irrespective of the state; then the product
of the transition probability and the number of final states will be the total transition
probability. The scattering into the solid angle d� around � with a relative final velocity
vf is equivalent to scattering into a final state with momentum pf,pf + dpf . The number
of final states in this range may be determined in the following way. We consider a
free particle in one dimension where the momentum eigenfunction is given by ψp(x) =
c(p)exp(ipx/h̄). In a (macroscopic) box of length L, periodic boundary conditions on the
wave function ψp(x + L) = ψp(x) imply that exp(ipL/h̄) = 1 or p/h̄ = 2nπ/L, where n is
an integer. That is, the spacing between momentum values is h/L, which implies that the
density is L/h. This argument can be extended to three dimensions, and it can be shown
that the density, ρ(p), is (L/h)3 and

ρ(pf )dpf = V
h3 dpf

= V
h3 p2

f sinθdθdφdpf

= V
h3 p2

f dpf d�

(C.14)

where we have changed from Cartesian coordinates to spherical coordinates and used
the definition of the solid angle d� = sinθdθdφ.

If the density of particles in the incident beam of A(i) molecules with relative velocity
vi with respect to the B molecules is nA(i), then the magnitude of the incoming flux
density is
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JA = vinA(i) = viNA(i)/V (C.15)

and the number of scattered molecules in the solid angle d� per unit time is

JC = NA(i)P(ml, ij;vi ,�)ρ(pf )dpf

= NA(i)P(ml, ij;vi ,�)
V
h3 p2

f dpf d� (C.16)

From the definition of the differential cross-section, we obtain1

σR(ml|ij;vi ,�)d�δ(Ef − Ei)dEf = P(ml, ij;vi ,�)
V
vi

Vp2
f dpf d�

h3 (C.17)

The factor δ(Ef − Ei)dEf on the left-hand side of the equation has been introduced to
emphasize energy conservation for the process indicated in the argument to σR. The
transition probability P on the right-hand side is determined directly from the equation
of motion, so it is therefore not necessary to include the delta function on the right-hand
side.

The cross-section for the reverse reaction may be written analogously:

σR(ij|ml;vf,�)d�δ(Ei − Ef )dEi = P(ij,ml;vf,�)
V
vf

Vp2
i dpid�

h3 (C.18)

When we use Eq. (C.13) and cancel common factors, we find from Eqs (C.17) and
(C.18) that

σR(ml|ij;vi ,�)
vi

p2
f dpf

= σR(ij|ml;vf,�)
vf

p2
i dpi

(C.19)

From the energy balance

Ei = Ei, internal + p2
i

2μi
= Ef = Ef, internal +

p2
f

2μf
(C.20)

1 Note that, in this appendix, we use a notation for the differential cross-sections that differs somewhat from
the one in Chapter 2. Thus, σR(ml|ij;vi ,�) is dσR

d�
(ij,v|ml,�) in the notation of Chapter 2.
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where μi is the reduced mass for the relative motion of the reactants and μf for the
products, we find the following relation between pi and pf for fixed internal states:

pi

μi
dpi = pf

μf
dpf

⇒ vidpi = vf dpf (C.21)

The desired relation between cross-sections for the forward and the reverse reactions is
thus found to be

p2
i σR(ml|ij;vi ,�) = p2

f σR(ij|ml;vf,�) (C.22)

This relation expresses the principle of microscopic reversibility for the differential cross-
sections.

Alternatively, using Eq. (4.184) and the symmetry of the S-matrix element, using
Eq. (C.12), we immediately obtain

k2
nσR(n,E|m) = k2

mσR(m,E|n) (C.23)

where, on the left-hand side, n and m refer to the quantum state of the reactant and
product and, on the right-hand side, the reverse reaction is considered; that is, the initial
and final quantum states are m and n, respectively. E is the total energy. Equation (C.23)
is the desired relation (at the level of integrated cross-sections), and it is equivalent to
Eq. (C.22), since p = h̄k.

If the system has an internal angular momentum (associated with rotational states of
molecules) there will, in the absence of an external field, be degeneracies in the system
that will be practical to display explicitly in the expression for microscopic reversibility in
Eq. (C.22). For systems with angular momenta, time reversal of the quantum equations
of motion reverses the signs of both the momenta and their projections on a given
direction, just like in a classical system. To express this explicitly, Eq. (C.13) is written as

P(ml, ij;vi ,�) = P(i∗j∗,m∗l∗;vf,�) (C.24)

The “starred” quantum states differ from the “unstarred” ones by the sign of the
projection of their angular momenta, so if the projection of the angular momentum of
state i on the z-axis is mi then the projection of i∗ on the z-axis is −mi , and so on. By an
analysis similar to that used to derive Eq. (C.22), we obtain

p2
i σR(ml|ij;vi ,�) = p2

f σR(i∗j∗|m∗l∗;vf,�) (C.25)

Experimental and calculated cross-sections are usually averaged over the degenerate
quantum states associated with the angular momenta when there is no external field.
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A more useful statement of microscopic reversibility can therefore be obtained by
working with average cross-sections σ̄R, which refer to transitions between sets of
degenerate levels in the initial and final states. Let Ji denote the total angular momentum
of state i and mi its projection on the z-axis. Then by summing Eq. (C.24) over all
degenerate states of the reactants and products one obtains

∑

mi ,mj ,mm,ml

P(ml, ij;vi ,�) =
∑

mi ,mj ,mm,ml

P(ij,ml;vf,�) (C.26)

where the summations over the mk are from −Jk to Jk. Note that we have dropped the
star on the quantum states because the range of the mk extends over both positive and
negative values.

Since the pi and pf are constant when summed over degenerate states, we may now
use Eqs (C.17) and (C.26) to introduce a cross-section, σR(s), where we have summed
over all degenerate states:

σR(s)(m̄l̄|ī j̄;vi ,�)d�δ(Ef − Ei)dEf =
∑

mi ,mj ,mm,ml

P(ml, ij;vi ,�)
V
vi

Vp2
f dpf d�

h3 (C.27)

So the principle of microscopic reversibility may be rewritten as

p2
i σR(s)(m̄l̄|ī j̄;vi ,�) = p2

f σR(s)(ī j̄|m̄l̄;vf,�) (C.28)

The σR(s) refers to the sum of cross-sections for the transition from the degenerate set
of states ī, j̄ to l̄,m̄ defined for unit flux from each initial state (see Eqs (C.15)–(C.17)).
We may instead operate with an average cross-section σ̄R based on an initial flux for the
total set of degenerate states:

σ̄R(m̄l̄|ī j̄;vi ,�) = 1
gigj

σR(s)(m̄l̄|ī j̄;vi ,�) (C.29)

where gi is the number of degenerate states, gi = 2Ji + 1. Substitution of Eq. (C.29) into
Eq. (C.28) leads to yet another expression of microscopic reversibility, based here on the
average cross-sections for the degenerate states:

p2
i gigj σ̄R(m̄l̄|ī j̄;vi ,�) = p2

f gmgl σ̄R(ī j̄|m̄l̄;vf,�) (C.30)

It is noted that this relation only holds in the absence of an external field, when the sets of
states are degenerate. Other degeneracies may also occur in the internal molecular states.
In this case, the g factors should include those degeneracies.
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C.2 Detailed Balance

Detailed balance provides a relation between the macroscopic rate constants kf and kr
for the forward and reverse reactions, respectively. On a macroscopic level, the relation is
derived by equating the rates of the forward and reverse reactions at equilibrium. Here,
it will be shown that the principle of detailed balance can be readily obtained as a direct
consequence of the microscopic reversibility of the fundamental equations of motion.

On a macroscopic level in the absence of an external field, we cannot distinguish
between sets of degenerate states in the reactants and products; so the most detailed
relation between macroscopic rate constants and microscopic cross-sections will be one
where we have summed over all degenerate states as in Eq. (C.27). The macroscopic rate
constant for a particular transition between degenerate states is then given by

kσ(s)(m̄l̄, ī j̄) =
∫∫

viσR(s)(m̄l̄|ī j̄;vi ,�)fA(i)(vA)fB(j)(vB)d�dpAdpB (C.31)

analogous to the relation in Eq. (2.18). This relation is general in the sense that it applies
to both equilibrium and non-equilibrium systems. We now assume that the velocity
distributions for vA and vB (or momenta distributions pA and pB) are given by the
equilibrium Maxwell–Boltzmann distribution at temperature T . We obtain, as in Section
2.2 (see Eq. (2.29)), the following result:

kσ(s)(m̄l̄, ī j̄) = 1
(2πμikBT)3/2

∫
viσR(s)(m̄l̄|ī j̄;vi)exp

(
− p2

i

2μikBT

)
dpi (C.32)

where μi is the reduced mass and pi = μivi is the momentum associated with the relative
translation of the reactants. Similarly, the expression for the rate constant for the reverse
reaction is

kσ(s)(ī j̄,m̄l̄) = 1
(2πμf kBT)3/2

∫
vf σR(s)(ī j̄|m̄l̄;vf )exp

(
− p2

f

2μf kBT

)
dpf (C.33)

where μf refers to the reduced mass and pf = μf vf is the relative momentum of the
products. Note that σR(s)(m̄l̄|ī j̄;vi) is the integrated cross-section (see Eq. (2.12)) where
σR(s)(m̄l̄|ī j̄;vi ,�) is integrated over all space angles.

To relate the rate constants in Eqs (C.32) and (C.33), we substitute Eq. (C.28)
and use the conservation of energy to relate the differentials and limits of integration.
Conservation of energy requires

p2
i

2μi
= p2

f

2μf
+ �Eint (C.34)
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where

�Eint = Em + El − (Ei + Ej)+ E0,p − E0,r (C.35)

is the change in the internal energies associated with the reaction. E0,p is the zero-point
energy of the products and E0,r is the zero-point energy of the reactants. We then have
for the reverse rate constant, using Eqs (C.21), (C.28), and dp = 4πp2dp,

kσ(s)(ī j̄,m̄l̄)

= 4π

(2πμf kBT)3/2

∫ ∞

0
vip2

i σR(s)(m̄l̄|ī j̄;vi)exp

(
−

[
p2

i

2μikBT
− �Eint

kBT

])
dpi

(C.36)

From Eq. (C.32), we then obtain the following relation between the forward and reverse
rate constants:

kσ(s)(m̄l̄, ī j̄)

kσ(s)(ī j̄,m̄l̄)
=

(
μf

μi

)3/2

exp(−�Eint/kBT) ≡ K(m̄l̄, ī j̄) (C.37)

It is noted that the right-hand side is the ratio of the translational partition functions
of products and reactants times the Boltzmann factor for the internal energy change.
In the derivation of this expression we have only used that the translational degrees
of freedom have been equilibrated at T through the use of the Maxwell–Boltzmann
velocity distribution. No assumption about the internal degrees of freedom has been
used, so they may or may not be equilibrated at the temperature T . The quantity K(m̄l̄, ī j̄)
may therefore be considered as a partial equilibrium constant for reactions in which the
reactants and products are in translational but not necessarily internal equilibrium.

To obtain the statement of detailed balance for complete equilibrium, with both
translational and internal degrees of freedom in thermal equilibrium, we must sum over
the rate constants in Eqs (C.32) and (C.33), weighting each by its equilibrium Boltzmann
distribution; that is (as in Eq. (2.18)),

kf =
∑

ī j̄

∑

m̄l̄

kσ(s)(m̄l̄, ī j̄)pA(ī)pB(j̄) (C.38)

and

kr =
∑

ī j̄

∑

m̄l̄

kσ(s)(ī j̄,m̄l̄)pC(m̄)pD(l̄) (C.39)

Here kf is the rate constant for the forward reaction and kr for the reverse reaction. pA(ī)

is the probability (mole fraction) of A in any of the set of states ī, which is given by



364 Microscopic Reversibility and Detailed Balance

statistical mechanics according to Eq. (B.4), and similarly for the other constituents. If
we substitute these relations into Eqs (C.38) and (C.39), we obtain

kf = 1
QAQB

∑

ī j̄

∑

m̄l̄

kσ(s)(m̄l̄, ī j̄)exp(−[Ei + Ej + E0,r]/kBT) (C.40)

and for the reverse reaction

kr = 1
QCQD

∑

ī j̄

∑

m̄l̄

kσ(s)(ī j̄,m̄l̄)exp(−[El + Em + E0,p]/kBT) (C.41)

Note that the degeneracies gi do not appear explicitly in the equations, because we use
“barred” quantities as indices in the sums. They imply a sum over degenerate states;
had we used “unbarred” indices, then the degeneracy factor gi should be included
explicitly. From Eqs (C.40) and (C.41) and using Eq. (C.37), we find the following
relation between the rate constants:

kr =
(

μi

μf

)3/2 (
QAQB

QCQD

)
kf

=
(

μi

μf

)3/2 (
QAQB

QCQD

)

int
exp([E0,p − E0,r]/kBT)kf (C.42)

where the subscript “int” has been added in order to emphasize that the partition
functions refer to internal (non-translational) degrees of freedom. Furthermore, in the
second line, following Eq. (B.10), the partition functions are evaluated with the energies
measured relative to the zero-point levels of the reactants and products, respectively.
Rearranged, the general statement of detailed balance at equilibrium may be written

kf

kr
=

(
μf

μi

)3/2 (
QCQD

QAQB

)

int
exp(−[E0,p − E0,r]/kBT) ≡ K(T) (C.43)

where K(T) is the equilibrium constant for the reaction. This is the usual statistical
mechanical expression for the equilibrium constant in terms of the molecular partition
functions.

In summary, we have seen that the application of microscopic reversibility for the
forward and reverse cross-sections and the use of complete equilibrium distributions
for the evaluation of the statistical rate constant lead to the usual results known from
equilibrium statistical mechanics. If one knows the cross-section for a forward reaction,
one can always determine the inverse cross-section through the principle of microscopic
reversibility. Also, if one knows the cross-section for the forward reaction, and in addition
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one knows that the translational and internal distribution functions of reactants and
products have reached equilibrium, one can calculate the rate constant. Detailed balance
then permits the calculation of the reverse rate constant.
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[1] J.C. Light, J. Ross, and K.E. Shuler, in Kinetic processes in gases and plasmas (Academic Press,
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D

Cross-sections in Various Frames

We consider the scattering process between two molecules in the gas phase. In the
laboratory, the experiments are usually done by letting two beams, one consisting of
one kind of molecules and another consisting of the other kind of molecules, cross in
a small volume element where the collision takes place. The result of the scattering
experiment is usually reported as a scattering angle formed by the velocity of some
molecule after the scattering and one of the incident molecules, and as a differential
cross-section with respect to some space angle, both given in the laboratory coordinate
system. The scattering angle alone does not uniquely specify the direction in which the
scattered molecules move, only that the velocity is somewhere on a cone with an opening
angle that is twice the scattering angle. We also need to specify an azimuthal angle for
rotation around the incident molecular velocity to uniquely determine the position of the
velocity vector on the cone and thereby its direction.

It is intuitively clear that the outcome of the scattering event only depends on the
relative motion of the colliding molecules rather than on the overall motion of the
molecules. In a theoretical calculation of the scattering event, it is therefore natural
to describe it in terms of the center-of-mass motion of the colliding molecules and
their relative motion. The center-of-mass motion, representing the overall motion of the
system, is irrelevant for the scattering event and therefore not followed further, whereas
the relative motion determines the outcome of the scattering event and is followed in
detail.

Since the center-of-mass coordinate system used in a theoretical calculation is differ-
ent from the laboratory coordinate system used in an experiment, we need to determine
a relation between the scattering angle χ and the azimuthal angle φ in the center-of-mass
coordinate system, and the scattering angle � and the azimuthal angle ξ in the laboratory
coordinate system when theoretical and experimental results are compared. We also need
a relation between the differential scattering cross-sections (dσ/d�)c.m. in the center-of-
mass coordinate system and (dσ/d�)lab in the laboratory coordinate system, where d�

is a space angle.
In the following, we first derive a general relation between χ , φ and �, ξ for an elastic

or inelastic scattering event between two molecules. From the relations between the
scattering angles and azimuthal angles we derive an expression for the relation between

Theories of Molecular Reaction Dynamics. Second Edition. Niels E. Henriksen and Flemming Y. Hansen, Oxford University
Press 2019. © Niels E. Henriksen and Flemming Y. Hansen. DOI: 10.1093/oso/9780198805014.001.0001



Elastic and Inelastic Scattering of Two Molecules 367

the differential scattering cross-sections in the two coordinate systems. Finally, the results
are generalized to a reactive scattering event.

D.1 Elastic and Inelastic Scattering of Two Molecules

Let us consider the collision between two atoms with masses mA and mB. The center-of-
mass coordinate R and center-of-mass velocity V of the two-atom system are given by

R =
(mA

M

)
rA +

(mB

M

)
rB

V =
(mA

M

)
vA +

(mB

M

)
vB

=
(mA

M

)
v0

A +
(mB

M

)
v0

B

(D.1)

M = mA + mB is the total mass of the system and the superscript 0 on the velocities
vi implies the start velocities before the scattering event. The last identity in Eq. (D.1)
follows from the fact that the center-of-mass velocity V is constant, since the action
forces only depend on the distance between the atoms, making the total force on the
system equal to zero.

The relative coordinate r and relative velocity v are given by

r = rA − rB

v = vA − vB

v0 = v0
A − v0

B

|v| = β|v0|

(D.2)

We have also given the initial relative velocity v0 and the β parameter determines the
magnitude of the relative velocity after the scattering event. For an elastic scattering event
β = 1, while it will be different from 1 in an inelastic scattering event, where relative
translational energy may be lost to internal degrees of freedom (0 < β < 1) or gained
from the internal degrees of freedom (β > 1).

The definitions in Eqs (D.1) and (D.2) for two atoms may easily be generalized to two
molecules. mA and mB are then the masses, rA and rB the center-of-mass positions, and
vA and vB the center-of-mass velocities of the two molecules. The interactions between
the two molecules are usually more complex than between atoms and will most likely
not be given in terms of central forces. This means that the angular momentum for the
relative motion will change both in magnitude and direction during the scattering event,
so velocities like vA and v after the scattering will no longer be in the plane spanned by the
initial velocities v0

A and v0
B. However, the center-of-mass velocity, V , of the two molecules

will not change during the scattering event because there are no external forces acting
on the system.
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Fig. D.1.1 The geometry for the scattering between two molecules. ψ is the angle between the two
molecular beams. α, γ , and η are auxiliary angles used in the final expressions. χ is the scattering angle
and φ is the azimuthal angle in the center-of-mass coordinate system. � is the scattering angle and ξ is
the azimuthal angle in the laboratory coordinate system. All velocities are in the plane spanned by the
initial velocities v0

A and v0
B of the molecules, when only central forces are acting. Otherwise, v and vA will

in general be out of the plane as given by the azimuthal angles φ and ξ .

The scattering geometry is illustrated in Fig. D.1.1, often referred to as a Newton
diagram. The χ angle is given as the angle between v and v0, and is the angle usually
determined in a theoretical calculation of the scattering event, whereas the experimentally
determined scattering angle � in the laboratory coordinate system is given by the angle
between the vA and v0

A vectors, the velocities of particle A in the laboratory coordinate
system after and before the scattering event, respectively.

The χ angle is, however, not sufficient to specify the orientation of the relative velocity
v. It only limits v to be somewhere on a cone with opening angle 2χ and generated by
rotation of v through 2π around v0. We therefore introduce an azimuthal angle φ that
gives the rotation angle of v around v0, with φ = 0 when v is in the plane spanned by
the initial velocities of the molecules. The angle φ is also determined in a simulation
of the scattering event, and when φ = 0 the scattering takes place in the plane spanned
by the initial velocities of the molecules, so all velocities after the scattering will still be in
that plane. This occurs when only central forces are acting, since the angular momentum
of the relative motion is then conserved. Otherwise, v and vA will be out of that plane
when non-central forces are acting and in the plane spanned by v and V .

Likewise, vA is bound to be somewhere on a cone with opening angle 2� and
generated by rotation of vA through 2π around v0

A, and we introduce the azimuthal
angle ξ to give the rotation angle of vA around v0

A to completely specify the orien-
tation of vA. Then ξ = 0 when vA is in the plane spanned by the initial velocities
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of the molecules. The ξ and � angles determine the position of the detector in
the laboratory coordinate system for monitoring the intensity of a scattering experi-
ment that in the center-of-mass coordinate system leads to scattering through angles
χ and φ.

v0
A and v0

B are the velocities of the molecules in the two incident beams. From them
we may determine the center-of-mass velocity V as shown. Also, the relative velocity
v0 = v0

A − v0
B is found as illustrated in Fig. D.1.1. The relative velocity v is at an angle χ

with respect to v0, rotated through an angle φ around v0, and of magnitude β|v0| after
the scattering event.

The velocity uA of molecule A with respect to the center-of-mass velocity is given by

uA = vA − V

= vA −
(mA

M

)
vA −

(mB

M

)
vB

=
(mB

M

)
v (D.3)

that is, in the same direction as the relative velocity v, as shown in Fig. D.1.1. By
combining uA with V , we may determine the velocity vA of particle A after the scattering
event in the laboratory coordinate system. vA is also shown in the figure. All these
velocities will be in the same plane during the scattering event when only central forces
are acting along r, since the angular momentum of the relative motion is then conserved.
In general, with non-central forces acting, velocities v and vA after the scattering will be
in a plane that is rotated around the center-of-mass velocity V , which is invariant during
the scattering since no external forces are acting.

D.1.1 Scattering angle �

The scattering angle � in the laboratory coordinate system is the angle between v0
A and

vA, as shown in Fig. D.1.1. We have

vA · v0
A = (V + uA) · v0

A

=
(
V + mB

M
v
)

· v0
A

= |vA||v0
A|cos� (D.4)

where we have used the relation for uA in Eq. (D.3). When we introduce the definition
of the center-of-mass velocity V from Eq. (D.1), we get

|vA||v0
A|cos� =

(mA

M

)
v0

A · v0
A +

(mB

M

)
v0

B · v0
A +

(mB

M

)
v · v0

A (D.5)

It will be convenient to introduce the angles ψ , α, and γ as defined by their cosines in
the following. ψ is the angle between the molecular beams and defines the geometry
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of the scattering experiment. α is an auxiliary angle that is determined by the set-up
of the scattering experiment (see Eq. (D.20)), and γ is another auxiliary angle that is
determined by the set-up (see Eq. (D.11)). All three angles are shown in Fig. D.1.1. We
have

cosψ = v0
B · v0

A

|v0
B||v0

A|

cosα = v0
A · v0

|v0
A||v0|

cosγ = v · v0
A

|v||v0
A|

(D.6)

When the expressions in Eq. (D.6) are introduced into Eq. (D.5), it may be written

|vA||v0
A|cos� =

(mA

M

)
|v0

A|2 +
(mB

M

)
|v0

B||v0
A|cosψ +

(mB

M

)
|v||v0

A|cosγ (D.7)

or

cos� = 1
|vA|

[(mA

M

)
|v0

A| +
(mB

M

)
|v0

B|cosψ +
(mB

M

)
|v|cosγ

]
(D.8)

The angle γ will be given once the χ and φ angles have been specified, so let us determine
the relation between γ , χ , and φ.

We write v as a sum of three vectors, one along v0, one along the perpendicular
direction to v0 in the plane spanned by the initial velocities of the molecules and specified
by the unit vector v̂0⊥, and one along the perpendicular direction to the plane and specified
by the unit vector k̂. The projections of v onto the three directions are easily expressed
in terms of the angles χ and φ, and we get

v = |v|
|v0| cosχ v0 + |v|sinχ cosφ v̂0⊥ + |v|sinχ sinφ k̂ (D.9)

We then take the dot product of v and v0
A to determine the angle γ , and use Eq. (D.6) to

find

v · v0
A =

[ |v|
|v0| cosχ v0 + |v|sinχ cosφ v̂0⊥ + |v| sinχ sinφ k̂

]
· v0

A

= |v|
|v0| |v

0
A||v0|cosχ cosα + |v||v0

A|sinχ cosφ cos(90 − α)

= |v||v0
A|cosχ cosα + |v||v0

A|sinχ cosφ sinα

= |v||v0
A|cosγ (D.10)
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We have used that, if the angle between two vectors is α, then the angle between one
of the vectors and a vector perpendicular to the other in the plane spanned by the two
vectors is 90 − α. Thus, we have

cosγ = cosχ cosα + sinχ sinα cosφ (D.11)

All quantities on the right-hand side of Eq. (D.8) are now known except for |vA|. It
may be determined from the triangle with sides V , uA, and vA, and we find

|vA| =
√

|uA|2 + |V |2 − 2|uA||V |cos(180 − η)

=
√(mB

M

)2 |v|2 + |V |2 + 2
(mB

M

)
|v||V |cosη (D.12)

where η is the angle between the center-of-mass velocity V and v. This angle is, like γ ,
given when χ and φ are specified. To obtain the relation to those angles, take the dot
product of V and v. We find

v · V =
[ |v|
|v0| cosχ v0 + |v|sinχ cosφ v̂0⊥ + |v| sinχ sinφ k̂

]
·
[mA

M
v0

A + mB

M
v0

B

]

= mA

M
|v0

A||v|cosχ cosα + mB

M
|v0

B||v|cosχ cos(α + ψ)

+ mA

M
|v0

A||v|sinχ cosφ cos(90 − α)+ mB

M
|v0

B||v|sinχ cosφ cos(90 − (α + ψ))

= |v||V | cosη (D.13)

which leads to the following relation:

cosη = mB|v0
A|

M|V |

[(
mA

mB
cosα + |v0

B|
|v0

A| cos(α + ψ)

)
cosχ

+
(

mA

mB
sinα + |v0

B|
|v0

A| sin(α + ψ)

)
cosφ sinχ

] (D.14)

D.1.2 Azimuthal angle ξ

The azimuthal angle ξ for rotation of vA around v0
A is related to χ and φ in the following

way. It is clear from the construction of vA that it has the same component perpendicular
to the plane spanned by the initial velocities of the molecules as the uA vector has because
V does not change during the scattering event. This component may be found by analogy
with the construction in Eq. (D.9), and is given by the component of the unit vector k̂ with



372 Cross-sections in Various Frames

|v| replaced by |uA| since the two vectors are collinear. We may, however, also express
the component in terms of the azimuthal angle ξ for the rotation of vA around v0

A by a
similar construction as in Eq. (D.9), and we get

|uA|sinχ sinφ = |vA|sin� sinξ (D.15)

which leads to the relation

sinξ = mB

M
|v|
|vA|

sinχ sinφ

sin�
(D.16)

where we have used Eq. (D.3). A combination of Eqs (D.8), (D.12), and (D.14) allows
us to determine the scattering angle �, and Eq. (D.16) gives the azimuthal angle ξ in
the laboratory coordinate system as a function of the theoretically calculated scattering
angles χ and φ in the center-of-mass coordinate system, since all terms in the equations
are known, remembering that |v| = β|v0| with β = 1 for an elastic scattering event.

D.1.3 Further development of expressions for � and ξ

By algebraic manipulations it is possible to show that the scattering angles � and ξ in
the laboratory coordinate system may be expressed as functions of the scattering angles
χ , φ in the center-of-mass coordinate system in terms of the following parameters that
characterize the initial geometry and set-up of the scattering event:

(i) ψ : defined by the geometry of the beam experiment as the angle between the
velocities v0

A and v0
B in the beams, 0 ≤ ψ ≤ π ;

(ii) mA/mB: the relative mass of the two molecules in the beams;

(iii) |v0
B|/|v0

A|: the relative initial speed of the two molecules in the beams.

Let us in the following give explicit expressions for all the relevant variables in Eqs (D.8),
(D.12), and (D.16) and introduce a shorthand notation fi (i = 1,2,3) for certain
combinations of terms that occur repeatedly:

|V | =
√(mA

M

)2 |v0
A|2 +

(mB

M

)2 |v0
B|2 + 2

mAmB

M2 v0
A · v0

B

= mB|v0
A|

M

√(
mA

mB

)2

+ |v0
B|2

|v0
A|2 + 2

(
mA

mB

) |v0
B|cosψ

|v0
A|

= mB|v0
A|

M

√
f1 (D.17)
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|v0| =
√

|v0
A|2 + |v0

B|2 − 2|v0
A||v0

B|cosψ

= |v0
A|

√

1 + |v0
B|2

|v0
A|2 − 2

|v0
B|cosψ

|v0
A|

= |v0
A|√f2 (D.18)

|v| = β|v0| = β|v0
A|√f2 (D.19)

cosα = v0
A · v0

|v0
A||v0| = v0

A · [v0
A − v0

B]

|v0
A||v0|

= |v0
A|

|v0|

[
1 − |v0

B|cosψ

|v0
A|

]

=
1 − |v0

B|cosψ

|v0
A|√

1 + |v0
B|2

|v0
A|2 − 2

|v0
B|cosψ

|v0
A|

= f3√
f2

(D.20)

cosγ = cosα cosχ + sinα sinχ cosφ (D.21)

cosη = mB|v0
A|

M|V |

[(
mA

mB
cosα + |v0

B|
|v0

A| cos(α + ψ)

)
cosχ

+
(

mA

mB
sinα + |v0

B|
|v0

A| sin(α + ψ)

)
cosφ sinχ

]

= 1√
f1

[(
mA

mB
cosα + |v0

B|
|v0

A| [cosα cosψ − sinα sinψ]

)
cosχ

+
(

mA

mB
sinα + |v0

B|
|v0

A| [sinα cosψ + cosα sinψ]

)
cosφ sinχ

]
(D.22)

where the shorthand notations fi are defined as

f1 =
(

mA

mB

)2

+ |v0
B|2

|v0
A|2 + 2

(
mA

mB

) |v0
B|cosψ

|v0
A|

f2 = 1 + |v0
B|2

|v0
A|2 − 2

|v0
B|cosψ

|v0
A|

f3 = 1 − |v0
B|cosψ

|v0
A|

(D.23)
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There is an ambiguity in the definition of the sine of the angle α, but from the usage
in Eq. (D.13), where the angle between v0 and v0

B is given as ψ + α, it follows that the
signs of both angles are positive, that is, we do not distinguish between “clockwise” and
“counterclockwise” rotations, so

sinα =
√

1 − cos2 α (D.24)

The introduction of Eqs (D.17) and (D.19) into Eq. (D.12) gives the following
expression for |vA|:

|vA| =
√(mB

M

)2 |v|2 + |V |2 + 2
(mB

M

)
|v||V |cosη

= mB

M
|v0

A|
√

β2 f2 + f1 + 2β
√

f1 f2 cosη (D.25)

If we introduce the relations defined above into the expression for �, Eq. (D.8), we
get the final expression for the scattering angle �:

cos� =
mA
mB

+ |v0
B|cosψ

|v0
A| + β

√
f2 cosγ

√
β2f2 + f1 + 2β

√
f1f2 cosη

(D.26)

and for the angle ξ in Eq. (D.16):

sinξ = β
√

f2 sinχ sinφ

sin�
√

β2f2 + f1 + 2β
√

f1f2 cosη
(D.27)

with cosγ and cosη given by the expressions in Eq. (D.21) and Eq. (D.22). These
expressions relate the laboratory scattering angles �, ξ to the center-of-mass scattering
angles χ , φ for the scattering of two molecules, including elastic (β = 1), inelastic (β �= 1),
in-plane (φ = 0), and out-of-plane (φ �= 0) scattering.

D.1.4 Relation between differential cross-sections

The differential cross-section is not invariant when we change our description from one
coordinate system to another, since the space angle d� is not. To find a relation between
the differential cross-section in the laboratory coordinate system, (dσ/d�)lab, and in the
center-of-mass coordinate system, (dσ/d�)c.m., we write
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(
dσ

d�

)

lab
=

(
dσ

d�

)

c.m.

∣∣∣∣
d�c.m.

d�lab

∣∣∣∣

=
(

dσ

d�

)

c.m.

∣∣∣∣
sinχ dχ dφ

sin�d�dξ

∣∣∣∣

=
(

dσ

d�

)

c.m.

∣∣∣∣
−sinχ

(d cos�/dχ)(dξ/dφ)

∣∣∣∣

=
(

dσ

d�

)

c.m.

∣∣∣∣
−sinχ cosξ

(d cos�/dχ)(d sinξ/dφ)

∣∣∣∣

(D.28)

Note that we have taken the absolute value of the second factor on the right-hand side
of the equations since � and ξ are, in general, not monotonic functions of χ and φ, and
a negative differential scattering cross-section is meaningless.

An expression for the denominator in the last relation in Eq. (D.28) is easily derived
from Eqs (D.26) and (D.27), using Eqs (D.21) and (D.22). It will be convenient to
introduce a shorthand notation for the numerator and denominator in Eq. (D.26) since
they occur repeatedly in the final expressions. This will simplify the equations. We
introduce

f4 = mA

mB
+ |v0

B|cosψ

|v0
A| + β

√
f2 cosγ

f5 = β2f2 + f1 + 2β
√

f1f2 cosη

(D.29)

and then find

d cos�

dχ
= 1√

f5

(
df4
dχ

)
− f4

2f 3/2
5

(
df5
dχ

)

= β
√

f2√
f5

(
d cosγ

dχ

)
− β f4

√
f1f2

f 3/2
5

(
d cosη

dχ

)

= β
√

f2√
f5

[
sinα cosχ cosφ − cosα sinχ − f4

√
f1

f5

(
d cosη

dχ

)]
(D.30)

where we have used Eq. (D.21), and from Eq. (D.22) we find that

d cosη

dχ
= 1√

f1

[
−

(
mA

mB
cosα + |v0

B|
|v0

A| [cosα cosψ − sinα sinψ]

)
sinχ

+
(

mA

mB
sinα + |v0

B|
|v0

A| [sinα cosψ + cosα sinψ]

)
cosφ cosχ

] (D.31)
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For the azimuthal angle ξ we find

(
d sinξ

dφ

)
= β

√
f2 sinχ cosφ√

f5 sin�
− β

√
f2 sinχ sinφ

f5 sin2 �

[√
f5

(
d sin�

dφ

)
+ sin�

2
√

f5

(
df5
dφ
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= β
√

f2 sinχ√
f5 sin�
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(
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sin2 �

(
d cos�

dφ

)
− β

√
f1f2

f5

(
d cosη

dφ

))
sinφ

]

(D.32)

with

(
d cos�

dφ

)
= −β

√
f2√

f5

(
d cosγ

dχ

)
− βf4

√
f1f2

f 3/2
5

(
d cosη

dφ

)

= −β
√

f2√
f5

[
sinα sinχ sinφ + f4

√
f1

f5

(
d cosη

dφ

)]
(D.33)

where we have used Eq. (D.21), and

d cosη

dφ
= − 1√

f1

[
mA

mB
sinα + |v0

B|
|v0

A| [sinα cosψ + cosα sinψ] sinχ sinφ

]
(D.34)

where we have used Eq. (D.22). Equation (D.30) with Eq. (D.31), and Eq. (D.32) with
Eqs (D.33) and (D.34) are introduced into Eq. (D.28) to give the relation between the
differential cross-sections.

In summary, we have derived general relations between the center-of-mass scattering
angles, χ and φ, and the laboratory scattering angles, � and ξ , that are valid for elastic
and inelastic as well as in-plane and out-of-plane scattering events. They are also used
to derive a general relation between the differential scattering cross-sections in the two
coordinate systems. The central results are given in Eqs (D.26)–(D.28) with Eqs (D.20)–
(D.24) and Eqs (D.30)–(D.34). The expressions may be used to convert theoretical
results for the scattering event of two molecules to results that may be compared directly
with experimental results.

D.1.5 The special case with |v0
B|/|v0

A| = 0

For the special case where |v0
B|/|v0

A| = 0 or is very small, that is, the target molecules are
at rest before the scattering event, the relations are greatly simplified since V , v0

A, and v0

are collinear. We have
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f1 =
(

mA

mB

)2

, f2 = 1, f3 = 1

cosα = 1, sinα = 0, cosγ = cosχ , cosη = cosχ

f4 = mA

mB
+ β cosχ , f5 = β2 +

(
mA

mB

)2

+ 2β

(
mA

mB

)
cosχ

(
d cosη

dχ

)
= −sinχ ,

(
d cosη

dφ

)
= 0,

(
d cos�

dφ

)
= 0

(D.35)

With the target molecule at rest, cosψ is not defined, but since it is always multiplied by
the ratio of the initial speeds, which is equal to zero, it does not matter. We find

cos� =
mA
mB

+ β cosχ
√

β2 +
(

mA
mB

)2 + 2β
(

mA
mB

)
cosχ

(D.36)

From this we may determine the sine of � as

sin� =
√

1 − cos2 �

= β sinχ
√

β2 +
(

mA
mB

)2 + 2β
(

mA
mB

)
cosχ

(D.37)

and therefore

tan� = β sinχ
mA
mB

+ β cosχ
(D.38)

which is identical to the expression derived in Eq. (4.66) for elastic in-plane scattering.
However, the derivations show that it is also valid for out-of-plane scattering since φ has
not been constrained to be zero.

For the azimuthal angle ξ we find

sinξ = β sinχ sinφ

sin�
√

f5

= β sinχ sinφ
√

f5
β sinχ

√
f5

= sinφ

⇒ ξ = φ (D.39)

where we have used Eq. (D.37).
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For the relation between the differential scattering cross-sections we find

d cos�

d χ
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)
sinχ
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(
mA
mB

)2 + 2β
(

mA
mB

)
cosχ

)3/2 − β sinχ
√
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(
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mB

)
cosχ

)3/2 (D.40)

and

d sinξ

dφ
= β sinχ cosφ√

f5 sin�
= β sinχ cosφ√
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√
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Then
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(

mA
mB

)
cosχ

)3/2

β2
[
β +

(
mA
mB

)
cosχ

]

∣∣∣∣∣∣∣∣∣

(D.42)

which is identical to the expression found in the literature for in-plane scattering.
However, the derivations show that it is also valid for out-of-plane scattering since φ

is not constrained to be zero.

D.2 Reactive Scattering between Two Molecules

We will now show that the expressions for non-reactive scattering may also, with a few
changes, be applied to reactive scattering. Let us consider the reactive scattering event

A + B → C + D (D.43)

The distinction between elastic and inelastic scattering events in non-reactive scattering
becomes meaningless in reactive scattering. Still, we may use the parameter β introduced
in Eq. (D.2) to relate the relative speed of products C and D after the scattering to the
relative speed of the reactants. For non-reactive scattering we may write the total energy
of the system before and after the scattering event as
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Ebefore = 1
2

M|V |2 + 1
2

mAmB

M
|v0|2 + E0

A + E0
B

Eafter = 1
2

M|V |2 + 1
2

mAmB

M
|v|2 + EA + EB

(D.44)

where E0
A and E0

B are the intramolecular energies (vibrational, rotational, and electronic)
before the scattering event and EA and EB are the energies after the scattering event.
Conservation of energy requires that

Eafter − Ebefore = 1
2

mAmB

M
|v0|2

[
β2 − 1

]
+ (EA − E0

A)+ (EB − E0
B) = 0 (D.45)

which gives the following equation for β:

β2 = 1 − (EA − E0
A)+ (EB − E0

B)

1
2

mAmB
M |v0|2 (D.46)

We see that β = 1 for elastic scattering, where EA = E0
A and EB = E0

B. For the reactive
scattering event in Eq. (D.43) we may write

Ebefore = 1
2

M|V |2 + 1
2

mAmB

M
|v0|2 + E0

A + E0
B

Eafter = 1
2

M|V |2 + 1
2

mCmD

M
|v|2 + EC + ED

(D.47)

Conservation of energy gives

Eafter − Ebefore = 1
2

mAmB

M
|v0|2

[
mCmD

mAmB
β2 − 1

]
+ (EC + ED)− (E0

A + E0
B) = 0 (D.48)

which leads to the following equation for β:

β2 =
[

1 − (EC + ED)− (E0
A + E0

B)

1
2

mAmB
M |v0|2

][
mAmB

mDmC

]
(D.49)

We note that β for the inelastic non-reactive scattering event differs from β for the reac-
tive scattering event even with (EC + ED)− (E0

A + E0
B) = (EA − E0

A)+ (EB − E0
B) because

of the mass factor (mAmB)/(mCmD) in Eq. (D.49). For this special situation where the
difference in the intramolecular energy of the molecules after and before the scattering
is the same, the values of β for the two types of scattering event differ and are related by
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βreactive =
√

mAmB

mCmD
βnon-reactive (D.50)

Thus, even in reactive scattering it makes sense to work with the β parameter as defined
in Eq. (D.2), although it is no longer related to whether the scattering event is elastic
or inelastic. It may always be determined from the simulation of the scattering event as
shown in Eq. (D.49).

D.2.1 Scattering angles � and ξ

Let us then go through the derivations leading to the results for non-reactive scattering
events and detect where changes are necessary to get a result for a reactive scattering
event. We begin by extending the definition of the center-of-mass velocity in Eq. (D.1)
with the expression

V =
(mC

M

)
vC +

(mD

M

)
vD (D.51)

and replace the definition of the relative velocity v in Eq. (D.2) by the relative velocity of
the product molecules

v = vC − vD (D.52)

We then have to decide how to report the results of the scattering event. Let us choose to
follow product C, so the angle � will be the angle between v0

A and vC, with χ still being
the angle between v0 and v. Then we replace Eq. (D.3) by

uC = vC − V

= vC −
(mC

M

)
vC −

(mD

M

)
vD

=
(mD

M

)
v (D.53)

where we have used Eq. (D.51). Equation (D.4) is then replaced by

vC · v0
A = (V + uC) · v0

A

=
(
V + mD

M
v
)

· v0
A

= |vC||v0
A|cos� (D.54)

and Eq. (D.5) is replaced by

|vC||v0
A|cos� =

(mA

M

)
v0

A · v0
A +

(mB

M

)
v0

B · v0
A +

(mD

M

)
v · v0

A (D.55)
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where we have used the last expression in Eq. (D.1) for the center-of-mass velocity V .
Equation (D.16) is replaced by

sinξ = mD

M
|v|
|vC|

sinχ sinφ

sin�
(D.56)

With the definitions in Eq. (D.6), we get the equation for �, equivalent to Eq. (D.8):

cos� = 1
|vC|

[(mA

M

)
|v0

A| +
(mB

M

)
|v0

B|cosψ +
(mD

M

)
|v|cosγ

]
(D.57)

and the following equation, equivalent to Eq. (D.12):

|vC| =
√

|uC|2 + |V |2 − 2|uC||V |cos(180 − η)

=
√(mD

M

)2 |v|2 + |V |2 + 2
(mD

M

)
|v||V |cosη (D.58)

Equations (D.17)–(D.24) are the same as before since all are based on the initial set-up of
the scattering event and the direction of v as given by the angles χ and φ. Equation (D.25)
changes to

|vC| =
√(mD

M

)2 |v|2 + |V |2 + 2
(mD

M

)
|v||V |cosη

= mB

M
|v0

A|
√(

mD

mB

)2

β2 f2 + f1 + 2
(

mD

mB

)
β
√

f1 f2 cosη (D.59)

so Eq. (D.57) becomes

cos� =
mA
mB

+ |v0
B|cosψ

|v0
A| +

(
mD
mB

)
β
√

f2 cosγ

√(
mD
mB

)2
β2f2 + f1 + 2

(
mD
mB

)
β
√

f1f2 cosη

(D.60)

which replaces Eq. (D.26). Similarly, Eq. (D.16) becomes

sinξ =
mD
mB

β
√

f2 sinχ sinφ

sin�

√(
mD
mB

)2
β2f2 + f1 + 2 mD

mB
β
√

f1f2 cosη

(D.61)

and replaces Eq. (D.27).
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D.2.2 Relation between differential cross-sections

From Eq. (D.60) it is seen that Eqs (D.29) are replaced by

f4 = mA

mB
+ |v0

B|cosψ

|v0
A| +

(
mD

mB

)
β
√

f2 cosγ

f5 =
(

mD

mB

)2

β2f2 + f1 + 2
(

mD

mB

)
β
√

f1f2 cosη

(D.62)

The relations in Eqs (D.30) and (D.31) are then replaced by

d cos�

dχ
=

mD
mB

β
√

f2√
f5

[
sinα cosχ cosφ − cosα sinχ − f4

√
f1

f5

(
d cosη

dχ

)]
(D.63)

d cosη

dχ
= 1√

f1

[
−

(
mA

mB
cosα + |v0

B|
|v0

A| [cosα cosψ − sinα sinψ]

)
sinχ

+
(

mA

mB
sinα + |v0

B|
|v0

A| [sinα cosψ + cosα sinψ]

)
cosφ cosχ

]

(D.64)

(
d sinξ

dφ

)
=

mD
mB

β
√

f2 sinχ√
f5 sin�

×
[

cosφ +
(

cos�

sin2 �

(
d cos�

dφ

)
−

mD
mB

β
√

f1f2

f5

(
d cosη

dφ

))
sinφ

]
(D.65)

(
d cos�

dφ

)
= −

mD
mB

β
√

f2√
f5

[
sinα sinχ sinφ + f4

√
f1

f5

(
d cosη

dφ

)]
(D.66)

d cosη

dφ
= − 1√

f1

[
mA

mB
sinα + |v0

B|
|v0

A| [sinα cosψ + cosα sinψ] sinχ sinφ

]
(D.67)

Equation (D.63) with Eq. (D.64), and Eq. (D.65) with Eqs (D.66) and (D.67)
may then be introduced into Eq. (D.28) to determine the relation between the differential
cross-sections in the center-of-mass coordinate system and in the laboratory coordinate
system.

In summary, we have derived a general relation between the center-of-mass scattering
angles, χ , φ, and the laboratory scattering angles, �, ξ , for reactive scattering events. The
central results are given in Eqs (D.60), (D.61), and (D.28) with Eqs (D.20)–(D.24) and
Eqs (D.62)–(D.67). We see that, in order to get the results for the reactive scattering
process in Eq. (D.43), we may use the general results for an inelastic non-reactive
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scattering event with β replaced by β (mD/mB), when we follow product molecule C.
Had we followed product molecule D, we would just need to replace β by β (mC/mB).
The angles χ and φ, and the parameter β and differential scattering cross-section in the
center-of-mass coordinate system may be obtained in a simulation of the process, and the
expressions above may be used to convert the simulation results from the center-of-mass
coordinate description to the laboratory coordinate system used in experiments.

D.2.3 Resolution of ambiguity in the determination of ξ

The angle ξ is not given directly in Eqs (D.27) or (D.61) but indirectly as the sine of
the angle. This introduces an ambiguity in the determination of ξ , since ξ has the same
sine as π − ξ . The other azimuthal angle φ is given in the range from 0 to 2π , and we
need to resolve the ambiguity in the determination of ξ to get the correct position for the
detector in an experiment. The problem is that the arcsine function returns angles in the
range from −π/2 to π/2. A simple way to resolve the ambiguity is to determine whether
the projection of vA onto the plane spanned by the initial velocities of the molecules has
a component “above” or “below” v0

A in Fig. D.1.1. We introduce a Cartesian coordinate
system with the x-axis along v0

A and the y-axis perpendicular to that vector in the plane
of the initial velocities of the molecules and “pointing” upward in the figure.

We write sinξ = a and let the y-component of the projection of vA onto the plane be
vA,y. Then the following four cases may arise:

(i) vA,y > 0 and a > 0 �⇒ ξ = arcsin(a);

(ii) vA,y < 0 and a > 0 �⇒ ξ = π − arcsin(a); (D.68)

(iii) vA,y < 0 and a < 0 �⇒ ξ = π + |arcsin(a)|;
(iv) vA,y > 0 and a < 0 �⇒ ξ = 2π − |arcsin(a)|.

The y-component of vA is determined in the following way. We have from Eqs (D.1),
(D.3), and (D.9) that

vA = V + uA

= mA

M
v0

A + mB

M
v0

B + mB

M
v

= mA

M
v0

A + mB

M
v0

B + mB

M

[ |v|
|v0| cosχ v0 + |v|sinχ cosφ v̂0⊥ + |v|sinχ sinφ k̂

]
(D.69)

The y-component of v0
A is zero and for v0

B, v0, and v̂0⊥ we find

v0
B,y = |v0

B|sinψ

v0
y = −|v0

B|sinψ

v̂0⊥,y = sin(90 − α) = cosα = f3/
√

f2

(D.70)
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so the y-component of vA is

vA,y = mB

M
|v0

B| sinψ + mB

M

[
− |v|

|v0| |v
0
B|cosχ sinψ + |v| sinχ cosφ cosα

]

= mB|v0
A|

M

[
|v0

B|
|v0

A| sinψ − β
|v0

B|
|v0

A| cosχ sinψ + β
√

f2 sinχ cosφ cosα

]
(D.71)

The sign of vA,y is given by the sign of the expression in the square brackets. A positive
sign means that the y-component is positive, whereas a negative sign means that it is
negative. The logic presented here is used to decide the proper angle ξ .

In the case of a reactive scattering event, β is replaced by β(mD/mB), as we did here
for the scattering angles and differential cross-sections.



E

Internal Kinetic Energy,
Jacobi Coordinates

When the dynamics of a molecular system is studied, we have to choose a set of
coordinates to describe the system. There are many possibilities and in the following
we will focus on coordinates that are convenient in the analysis of molecular collisions
and chemical reactions.

E.1 Diagonalization of the Internal Kinetic Energy

It is often useful to transform from simple Cartesian coordinates to other sets of
coordinates when we study collision processes including chemical reactions. In a collision
process, it is obvious that the relative positions of the reactants are relevant and not the
absolute positions as given by the simple Cartesian coordinates. It is therefore customary
to change from simple Cartesian coordinates to a set describing the relative motions of
the atoms and the overall motion of the atoms. For the latter motion, the center-of-
mass motion is usually chosen. In the following, we will describe a general method of
transformation from Cartesian coordinates to internal coordinates and determine its
effect on the expression for the kinetic energy.

A system of N particles is described by the N position coordinates r1, . . . ,rN and
N momenta p1, . . . ,pN . Here pi = mi ṙi , since we use Cartesian coordinates.

By a linear transformation, let us introduce a new set of coordinates R1, . . . ,RN :

R = Ar (E.1)

R is a column vector with N elements Ri , r is a column vector with N elements ri , and
A is an N × N square matrix with constant elements Aij . The new momenta Pi may be
determined using the definition in Eq. (4.72). From Eq. (E.1) we obtain

Ṙ = Aṙ (E.2)

Theories of Molecular Reaction Dynamics. Second Edition. Niels E. Henriksen and Flemming Y. Hansen, Oxford University
Press 2019. © Niels E. Henriksen and Flemming Y. Hansen. DOI: 10.1093/oso/9780198805014.001.0001
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and find from Eq. (4.72)

pi =
∑

j

(
∂L

∂Ṙj

)(
∂Ṙj

∂ ṙi

)
=

∑

j

PjAji (E.3)

In matrix form this equation may be written

p = AT P (E.4)

where AT is the transpose of A. In Cartesian laboratory coordinates, the kinetic energy
has the form

Tkin = 1
2

pT m−1p (E.5)

where m−1 is a diagonal square matrix with elements m−1
i . In the new coordinates, the

expression for the kinetic energy may be found by substitution of Eq. (E.4). We find

Tkin = 1
2

PT Am−1AT P (E.6)

The N × N matrix Am−1AT will in general not be diagonal, so there will be cross
terms of the kind PiPj in the expression for the kinetic energy. This may sometimes
be inconvenient, and we shall see in the following how one may choose the matrix A in
such a way that the kinetic energy is still diagonal in the new momenta. This leads to the
so-called Jacobi coordinates that are often used in reaction dynamics calculations.

First we want to single out the overall motion of the system, where all atoms move
by the same amount, so all distances will be preserved. This is done by introducing the
following condition on the matrix elements in A:

N∑

i=1

Aki = δk,N (E.7)

If all particles are displaced by the amount u to the position ri + u, then coordinates
R1, . . . ,RN−1 are seen from Eq. (E.1) not to change because of the condition in Eq. (E.7),
while RN is displaced by u. R1, . . . ,RN−1 are thus internal coordinates, whereas RN
describes the overall position of the system. For the momenta, we get

N∑

i=1

pi =
N∑

i=1

N∑

k=1

PkAki =
N∑

k=1

Pkδk,N = PN (E.8)
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The moment PN , conjugate to coordinate RN , is therefore the total momentum of the
system.

Usually, RN is chosen as the center-of-mass coordinate:

RN =
N∑

i=1

mi

M
ri , M =

N∑

i=1

mi (E.9)

so the elements in the last row of the matrix A are

ANi = mi

M
(E.10)

If we develop the matrix product in Eq. (E.6) then we get

Tkin =
N−1∑

k=1

N−1∑

l=1

(
N∑

i=1

1
2mi

AkiAli

)
Pk · Pl + Tc.m. (E.11)

The kinetic energy has been divided into two contributions: an internal kinetic energy
Tint (the first term) and an external center-of-mass kinetic energy Tc.m., where

Tc.m. =
N∑

i=1

1
2mi

m2
i

M2 P2
N = P2

N

2M
(E.12)

In the special case of two particles (N = 2), the internal kinetic energy Tint in
Eq. (E.11) consists of just one term, and Eq. (E.7) is, for example, fulfilled for A11 = −1
and A12 = 1, and

Tint = P2
1

2M1
(E.13)

where M1 = (1/m1 + 1/m2)
−1 is the usual reduced mass for a two-particle system.

The general condition for the internal kinetic energy Tint to be “diagonal,” so that
there will be no cross terms, is seen from Eq. (E.11) to be

N∑

i=1

1
2mi

AkiAli = 0 for k �= l and k, l �= N (E.14)

If we introduce the notation

N∑

i=1

1
2mi

A2
ki = 1

2Mk
(E.15)
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then the internal kinetic energy Tint will be

Tint =
N−1∑

k=1

1
2Mk

P2
k (E.16)

Such internal coordinates for which the internal kinetic energy is diagonal are called
generalized Jacobi coordinates when more than two particles are considered.

For a system of three particles (N = 3), the explicit form of the transformation matrix
A is given by Eq. (4.77) and illustrated in Fig.4.1.16. The masses M1 and M2 associated
with the two Jacobi vectors R1, R2 are given by Eq. (4.80). For a A + BC three particle
system, R1 is the vector connecting BC and R2 is the vector connecting A with the center
of mass of BC.

Example E.1 illustrates a systematic way to choose the matrix elements in accordance
with the conditions in Eqs (E.7), (E.10), and (E.14).

Example E.1 A five-particle system

In this example, we shall describe a systematic way to choose the matrix elements such that
the kinetic energy will be “diagonal,” that is, with no cross terms. The procedure is to couple
the particles with the aid of the center-of-mass coordinates for larger and larger clusters of
particles. Let us illustrate the method for a five-particle system. We start with particles one and
two. For the first row in A we find, using Eq. (E.7),

A1i : -α1 α1 0 0 0

where α1 is a constant. Then, using Eq. (E.14) for rows one and two, and Eq. (E.7) for row
two, we get

A2i : -α2
m1
s2

−α2
m2
s2

α2 0 0, s2 = m1 + m2

Particles one and two are now coupled in the center-of-mass coordinates for those two particles.
This center is now coupled to particle three. Again we use Eq. (E.14) for rows two and three,
and Eq. (E.7) for row three to get

A3i : -α3
m1
s3

−α3
m2
s3

−α3
m3
s3

α3 0, s3 = m1 + m2 + m3

The particles one, two, and three are now coupled and we continue with particle four in the
same way:
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A4i : -α4
m1
s4

−α4
m2
s4

−α4
m3
s4

−α4
m4
s4

α4, s4 = m1 + m2 + m3 + m4

The fifth row is finally given by

A5i :
m1
s5

m2
s5

m3
s5

m4
s5

m5
s5

, s5 = m1 + m2 + m3 + m4 + m5

which is the center-of-mass coordinate for the five-particle system. Then, from Eq. (E.15) we
find the effective masses for the internal coordinates:

Coordinate R1:
1

2M1
= α2

1

2

[
1

m1
+ 1

m2

]

Coordinate R2:
1

2M2
= α2

2

2

[
1

m1

(
m1

s2

)2

+ 1
m2

(
m2

s2

)2

+ 1
m3

]

Coordinate R3:
1

2M3
= α2

3

2

[
1

m1

(
m1

s3

)2

+ 1
m2

(
m2

s3

)2

+ 1
m3

(
m3

s3

)2

+ 1
m4

]

Coordinate R4:
1

2M4
= α2

4

2

[
1

m1

(
m1

s4

)2

+ 1
m2

(
m2

s4

)2

+ 1
m3

(
m3

s4

)2

+ 1
m4

(
m4

s4

)2

+ 1
m5

]

Here, we recognize the mass associated with coordinate R1 as the reduced mass M1 for a two-
particle system (as in Eq. (E.13)). With these generalized Jacobi coordinates, the internal kinetic
energy has the simple form without cross terms according to Eq. (E.16):

Tint = P2
1

2M1
+ P2

2
2M2

+ P2
3

2M3
+ P2

4
2M4

(E.17)

Often one chooses to set α1 = α2 = α3 = α4 = 1 in the expressions for the effective masses.
Another possibility would be to choose values of αi so that all the effective masses will be equal
to one, that is,

α1 =
[

1
m1

+ 1
m2

]−1/2

α2 =
[

1
m1

(
m1
s2

)2
+ 1

m2

(
m2
s2

)2
+ 1

m3

]−1/2 (E.18)

and similarly for the other αs.
Then the internal kinetic energy will have the simple form

Tint = P2
1

2
+ P2

2
2

+ P2
3

2
+ P2

4
2

(E.19)

continued
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Example E.1 continued

When the potential energy, V = V (R1,R2,R3,R4), only depends on the internal coordinates,
Hamilton’s equations of motion are (use Eq. (4.74))

Ṗ1 = − ∂V
∂R1

Ṗ2 = − ∂V
∂R2

Ṗ3 = − ∂V
∂R3

Ṗ4 = − ∂V
∂R4

(E.20)

and

Ṙ1 = P1
M1

or P1

Ṙ2 = P2
M2

or P2

Ṙ3 = P3
M3

or P3

Ṙ4 = P4
M4

or P4

(E.21)

where the first case on the right-hand side of the equality sign refers to the kinetic energy
expression in Eq. (E.17) and the second case to the expression in Eq. (E.19).

These results are easily transferred to quantum mechanics. In quantum mechanics
the kinetic energy is represented by the operator

T̂ = −h̄2
N∑

i=1

1
2mi

(
∂2

∂q2
ix

+ ∂2

∂q2
iy

+ ∂2

∂q2
iz

)
(E.22)

where (qix,qiy,qiz) is the Cartesian coordinates of the position vector ri associated with
the ith particle. We want an expression in terms of the new coordinates. The Cartesian
coordinates of the lth vector of the new coordinates, Rl , are denoted (Qlx,Qly,Qlz) and
according to Eq. (E.1) Qlx = ∑

k Alkqkx and equivalently for the y− and z−components.
The chain rule gives: ∂/∂qix = ∑

l(∂Qlx/∂qix)∂/∂Qlx = ∑
l Ali∂/∂Qlx, again with equiv-

alent results for the y− and z−components. The kinetic operator expressed in the new
coordinates is

T̂ = −h̄2
∑

l,k

(
N∑

i=1

1
2mi

AkiAli

)(
∂

∂Qkx

∂

∂Qlx
+ ∂

∂Qky

∂

∂Qly
+ ∂

∂Qkz

∂

∂Qlz

)
(E.23)
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This result is similar to the classical expression in Eq. (E.11). Thus, introduction of
the conditions in Eq. (E.7) and Eq. (E.10) lead to separation of the kinetic energy into
internal and center-of-mass contributions and diagonalization of the internal kinetic
energy is obtained by application of the condition in Eq. (E.14),

T̂ int = −h̄2
N−1∑

k=1

1
2Mk

(
∂2

∂Q2
kx

+ ∂2

∂Q2
ky

+ ∂2

∂Q2
kz

)
(E.24)

where the masses Mk are defined by Eq. (E.15). For a three-particle system, the
masses are given by Eq. (4.80) and the Hamiltonian is totally equivalent to the classical
Hamiltonian in Eq. (4.79).

E.2 Mass-Weighted Skewed Angle Coordinate Systems

Sometimes a mass-weighted skewed angle coordinate system rather than a rectangular
system is used to plot the potential energy surface and the trajectories for a simple
triatomic reaction like

A + BC → AB + C (E.25)

For simplicity, we assume that the collision is collinear, say along the x-axis. The atoms
A,B, and C are numbered 1,2, and 3, respectively, to harmonize the notation with the
previous section. Then, according to the analysis in Section E.1, the following internal
Jacobi coordinates are consistent with a “diagonal” kinetic energy:

X1 = α1(x2 − x1)

X2 = α2

[
(x3 − x2)+ m1

s2
(x2 − x1)

]
(E.26)

where s2 = m1 + m2. We note that the coordinate X1 directly reflects the distance between
atoms one and two, whereas the coordinate X2 reflects a combination of both distances.
Therefore, a knowledge of the two coordinates does not directly tell us what the distances
are between the involved atoms. Also, for the potential energy function in a collinear
collision, the natural variables will be the distances between atoms A and B and atoms
B and C. These variables appear as the components along a new set of coordinate
axes, if instead of a rectangular coordinate system we use a mass-weighted skewed angle
coordinate system.

Let X1 and X2 be the coordinates in a rectangular Cartesian coordinate system
with X1 along the ordinate axis and X2 along the abscissa axis. One of the axes in
the new coordinate system is now chosen to be collinear with the abscissa axis in the
rectangular coordinate system, and we let the coordinate along this axis be the first term
in the expression for X2 in Eq. (E.26), namely α2(x3 − x2). The situation is sketched in
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X1

X2

α1(x2 – x1)

β(x2 – x1)

ϕ

α2 m1(x2 – x1)
s2

α2(x3 – x2)

Fig. E.2.1 Sketch of an ordinary Cartesian coordinate system and the associated mass-weighted skewed
angle coordinate system.

Fig.E.2.1. The other axis with a coordinate proportional to the other distance x2 − x1
forms an angle φ with the first. This angle is determined from the requirements that the
projections of this coordinate on the X1 coordinate axis are α1(x2 − x1) and on the X2
coordinate axis are α2m1(x2 − x1)/s2. If we let the proportionality constant of x2 − x1 be
β, then we have

α1(x2 − x1) = β(x2 − x1)sin(φ)

α2
m1

s2
(x2 − x1) = β(x2 − x1)cos(φ)

(E.27)

Thus

tan(φ) = α1s2

m1α2
(E.28)

and

β2 = α2
1 + α2

2

(
m1

s2

)2

(E.29)
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For the case where α1 = α2 = 1, we find

tan(φ) = s2

m1

β =
[

1 +
(

m1

s2

)2
]1/2

α2 = 1

(E.30)

and for the case where all reduced masses are equal to one, the α values are given in
Eq. (E.18) and we find

tan(φ) = m2s3

m1m3

β =
[

m1(m2 + m3)

s3

]1/2

α2 =
[

m3s2

s3

]1/2

(E.31)

where s3 = m1 + m2 + m3.
If we consider the potential energy as a function of the Jacobi coordinates X1 and X2

and draw the energy contours in the X1–X2 plane, then the entrance and exit valleys will
asymptotically be at an angle φ to one another and in the mass-weighted skewed angle
coordinate system parallel to its axes. So the idea with this coordinate system is that it
allows us to directly determine the atomic distances as they develop in time and that it
shows us the asymptotic directions of the entrance and exit channels.

It is important to note that the dynamics is done in the Jacobi coordinates because
they make the equations of motion [see Eqs (E.20) and (E.21)] particularly simple. The
idea of choosing the αs as in Eq. (E.18) is that all masses Mk equal one, so the equations
of motion are analogous to those for a particle of mass one with coordinates X1 and X2.

In fact, we can construct a mechanical analog to the trajectories generated by the
equations of motion by rolling a particle of mass one on a hard surface under the influence
of gravity. The topography of this analog surface is closely related to that of the potential
energy surface. It is determined by realizing that we have to transform from a potential
energy surface to a position surface or “mountain landscape,” so the energy axis is
converted into a position axis with a coordinate giving the “height” of the particle above
the X1–X2 plane. In Fig.E.2.2(a) a cut through the potential energy surface and the
force at some point X0 are shown. In Fig.E.2.2(b) the same cut through the “mountain
landscape” of the analog surface is shown. The tangential component Fg of the gravity
force mg (here m = 1) causes the particle to move on the analog surface. We can construct
the analog surface, h(X), by requiring that this force shall equal the force derived from
the potential energy function at any point; that is,
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X0 X0

X

(a) (b)

X

mg

Fg

h(X)

Θ

V

∂V
∂X

–FV =

Fig. E.2.2 (a) A cut through the potential energy surface V . (b) The same cut as in (a) through the analog
“physical surface” h(X).

Fg = −mg sinθ = −∂V
∂X

(E.32)

or

sinθ = 1
mg

∂V
∂X

= ∂ V
mg

∂X
(E.33)

Thus, the analog surface should be constructed in such a way that θ at any point X1,X2
satisfies Eq. (E.33).

Further reading/references

[1] J.O. Hirschfelder, Int. J. Quant. Chem. 3, 17 (1969).
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F

Small-Amplitude Vibrations,
Normal-Mode Coordinates

In the following, we show that a simple description of the (quantum or classical)
dynamics can be obtained in a multidimensional system close to a stationary point. Thus,
the system can be described by a set of uncoupled harmonic oscillators. The formalism is
related to the generalization of the harmonic expansion in Eq. (1.8) to multidimensional
systems.

F.1 Diagonalization of the Potential Energy

We consider a potential energy surface expressed in Cartesian laboratory coordinates,
qi (i = 1, . . . ,n), for a system of n = 3N (where N is the number of nuclei) degrees of
freedom. A Taylor expansion of the potential V around the point (q0

1, . . . ,q0
n) gives

V (q1, . . . ,qn) = V (q0
1, . . . ,q0

n)+
∑

i

(
∂V
∂qi

)

0
η′

i + 1/2
∑

i,j

(
∂2V

∂qi∂qj

)

0
η′

iη
′
j + ·· · (F.1)

where η′
i = qi − q0

i is the displacement from the point of expansion.
We now assume that the expansion of the potential is around a stationary point (stable

or unstable, depending on the sign of the second-order derivatives), that is, all the first-
order derivatives vanish. The energy is measured relative to the value at equilibrium, and
we obtain

V (q1, . . . ,qn) = 1/2
∑

i,j

(
∂2V

∂qi∂qj

)

0
η′

iη
′
j

= 1/2
∑

i,j

η′
iV

′
ijη

′
j

= 1/2(η′)T V ′η′ (F.2)

Theories of Molecular Reaction Dynamics. Second Edition. Niels E. Henriksen and Flemming Y. Hansen, Oxford University
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where (η′)T (‘T ’ for transpose) and η′ are row and column vectors, respectively, and V ′
is an n × n matrix.

We introduce mass-weighted displacement coordinates

ηi = η′
i
√

mi (F.3)

In these coordinates, the potential takes the form

V = 1/2ηT Fη (F.4)

where Fij = V ′
ij/(

√
mi

√
mj) is the symmetric mass-weighted force constant matrix.

In the potential of Eq. (F.4), we still find that all the coordinates are coupled, that is,
it contains off-diagonal terms of the form ηiηj with i �= j. However, since the potential
is a quadratic form, we know from mathematics that it is possible to introduce a linear
transformation of the coordinates such that the potential takes a diagonal form in the new
coordinates. To that end, normal-mode coordinates, Q, are introduced by the following
linear transformation of the mass-weighted displacement coordinates:

η = LQ (F.5)

where L is an n × n matrix. The potential can now be written in the form

V = 1/2ηT Fη

= 1/2QT LT FLQ (F.6)

and we are going to determine L such that the matrix LT FL becomes diagonal. The
columns of L are now chosen as eigenvectors of the matrix F . Thus,

F

⎛

⎜⎝
L1j
...

Lnj

⎞

⎟⎠ = ω2
j

⎛

⎜⎝
L1j
...

Lnj

⎞

⎟⎠ (F.7)

where ω2
j (j = 1, . . . ,n) are the corresponding eigenvalues, which are determined as roots

to the equation |F − ω2I| = 0. Since F is real and symmetric, we know from matrix theory
that the eigenvalues are real and that the column vectors of L are mutually orthogonal. If
the column vectors are normalized to unit length, then L becomes an orthogonal matrix.
The inverse of an orthogonal matrix is obtained by transponation, L−1 = LT , that is,
LT L = I or equivalently

∑
i(L)il(L)ik = δlk.

Equation (F.7) can be written in the form

FL = Lω2 (F.8)
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where ω2 is a diagonal matrix with the n eigenvalues along the diagonal (note that Lω2 �=
ω2L) and

ω2 = L−1FL

= LT FL (F.9)

since the inverse of L is obtained by transponation. Using Eqs (F.6) and (F.9), we obtain

V = 1/2QT LT FLQ

= 1/2QTω2Q

=
n∑

s=1

(1/2)ω2
s Q2

s (F.10)

We have now obtained the desired diagonal form of the potential energy. If all
the frequencies, ω2

s , are positive then the stationary point represents a minimum on
the potential energy surface. If, on the other hand, one or more frequencies, ω2

k , are
negative (which implies that ωk is imaginary) then the potential corresponds to an
inverted harmonic potential in that mode and the associated motion is not oscillatory
but unbound. A saddle point is an example of such an unstable point.

In practice, from a given potential we first calculate the mass-weighted force constant
matrix F (Eq. (F.4)). The eigenvalues of this matrix give the normal-mode frequencies
(Eq. (F.7)). The corresponding eigenvectors give, according to Eq. (F.5), the normal-
mode coordinates expressed as a linear combination of atomic (mass-weighted) displace-
ment coordinates; thus, Q = LTη. The normal modes are often presented in graphical
form by “arrows” that represent (the magnitude and sign of) the coefficients in the linear
combinations of the atomic displacement coordinates.

Since the potential energy in Eq. (F.2) has been expressed as a function of the positions
of the N nuclei, one will find zero-frequency modes corresponding to translation and
rotation. Thus, there are only 3N − 5 and 3N − 6 modes with non-zero frequencies for
linear and non-linear molecules, respectively.

Some examples are given in Figs F.1.1 and F.1.2, for triatomic molecules. A linear
triatomic molecule has four (3 × 3 − 5) vibrational modes: two bond-stretching modes
and two (degenerate) bending modes. Figure F.1.2 shows one of the four normal modes
in OCS.

(a)

(b)

O C O

OO C

Fig. F.1.1 (a) Symmetric and (b) anti-symmetric stretch in a symmetric molecule like CO2. Note that
the C atom does not participate in the symmetric stretch motion.
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O C S

Fig. F.1.2 One of the two stretch modes in OCS. Note that this mode, essentially, corresponds to a pure
CO vibration.

F.2 Transformation of the Kinetic Energy

As shown in Section F.1, the potential energy can be expressed as a sum of harmonic
potentials. We now consider the expression for the kinetic energy in classical as well as
quantum mechanical form. In classical mechanics,

T = 1/2
∑

i

miq̇i q̇i

= 1/2
∑

i

mi η̇
′
i η̇

′
i

= 1/2η̇T η̇ (F.11)

where we have introduced mass-weighted coordinates according to Eq. (F.3). Expressed
in normal-mode coordinates, the kinetic energy takes the form

T = 1/2η̇T η̇

= 1/2Q̇
T

L−1LQ̇

= 1/2
n∑

s=1

Q̇2
s (F.12)

Thus, from Eqs (F.12) and (F.10) we see that the classical dynamics of the normal modes
is just the dynamics of n uncoupled harmonic oscillators.

In quantum mechanics, the kinetic energy is represented by the operator

T̂ = −
∑

i

h̄2

2mi

∂2

∂q2
i

= −
∑

i

h̄2

2
∂2

∂η2
i

(F.13)

where the relation ∂/∂qi = √
mi∂/∂ηi was used in order to derive the second line. Since

Ql = ∑
k(L

T )lkηk, the chain rule gives ∂/∂ηi = ∑
l(∂Ql/∂ηi)(∂/∂Ql) = ∑

l(L)il∂/∂Ql
and
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T̂ = −
∑

i

h̄2

2
∂2

∂η2
i

= −
∑

l,k

h̄2

2

(
∑

i

(L)il(L)ik

)
∂

∂Ql

∂

∂Qk

= −
n∑

s=1

h̄2

2
∂2

∂Q2
s

(F.14)

Thus, with this result for the kinetic energy and Eq. (F.10) for the potential energy, we
conclude that the quantum dynamics of the normal modes is just the dynamics of n
uncoupled harmonic oscillators; that is,

Ĥ =
n∑

s=1

(
− h̄2

2
∂2

∂Q2
s

+ (1/2)ω2
s Q2

s

)
(F.15)

The total energy can, accordingly, be written as the sum E = ∑
s Es, where the quantized

energy of each mode (with a real-valued frequency) is Es = h̄ωs(n + 1/2) with n being the
associated quantum number, and the wave function can be written as a product of wave
functions corresponding to each mode. The energy eigenfunctions corresponding to
each mode are, in particular, just the well-known eigenfunctions for a harmonic oscillator.

F.3 Transformation of Phase-Space Volumes

We consider here the relation between volume elements in phase space; in particular,
the relation between dqdp and dQdP, where dq = dq1 · · ·dqn refers to Cartesian coordi-
nates in a laboratory fixed coordinate system, dQ = dQ1 · · ·dQn refers to normal-mode
coordinates, and p and P are the associated generalized conjugate momenta.

For coordinate transformations we generally have the following relation between the
volume elements: dq = |J|dQ, where |J| is the absolute value of the Jacobian J, which is
given by the determinant

J =

∣∣∣∣∣∣∣∣∣

∂q1/∂Q1 ∂q1/∂Q2 · · · ∂q1/∂Qn
∂q2/∂Q1 ∂q2/∂Q2 · · · · · ·

...
∂qn/∂Q1 · · · · · · ∂qn/∂Qn

∣∣∣∣∣∣∣∣∣

(F.16)

From Eq.(F.5), we get qi = q0
i + 1√

mi

∑
j LijQj , and therefore

∂qi/∂Qj = 1√
mi

Lij (F.17)
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so

J =

∣∣∣∣∣∣∣∣∣∣

1√
m1

L11
1√
m1

L12 · · · 1√
m1

L1n
1√
m2

L21
1√
m2

L22 · · · · · ·
...

1√
mn

Ln1 · · · · · · 1√
mn

Lnn

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

⎛

⎜⎜⎜⎜⎝

1√
m1

0 · · · 0

0 1√
m2

0 · · ·
...
0 · · · · · · 1√

mn

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

L11 L12 · · · L1n
L21 L22 · · · · · ·

...
Ln1 · · · · · · Lnn

⎞

⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣

= 1√
m1m2 · · ·mn

|L| (F.18)

Since L is an orthogonal matrix, |LLT | = |I|, i.e., |L| · |LT | = 1, which implies that |L| =
±1. That is,

dq = 1√
m1m2 · · ·mn

dQ (F.19)

is the relation between the volume elements in configuration space.
In momentum space, we have the similar relation dp = |J|dP. The Jacobian is given

by a determinant similar to the one in Eq. (F.16), now with the elements ∂pi/∂Pj . The
momenta are defined by Eq. (4.72), that is, pi = ∂L/∂ q̇i and Pj = ∂L/∂Q̇j , where L is the
Lagrange function. The relation between the two sets of momenta is

pi = ∂L/∂ q̇i

=
∑

j

∂L

∂Q̇j

∂Q̇j

∂ q̇i

=
∑

j

Pj
∂Q̇j

∂ q̇i
(F.20)

From Eq.(F.5), we get Q̇ = LT η̇, that is, Q̇j = ∑
i′ Li′j

√
mi′ q̇i′ . Thus,

∂pi/∂Pj = √
miLij (F.21)
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and

J =

∣∣∣∣∣∣∣∣∣

√
m1L11

√
m1L12 · · · √

m1L1n√
m2L21

√
m2L22 · · · · · ·

...√
mnLn1 · · · · · · √

mnLnn

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

⎛

⎜⎜⎜⎝

√
m1 0 · · · 0
0

√
m2 0 · · ·

...
0 · · · · · · √

mn

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

L11 L12 · · · L1n
L21 L22 · · · · · ·

...
Ln1 · · · · · · Lnn

⎞

⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣

= √
m1m2 · · ·mn |L| (F.22)

Thus,

dp = √
m1m2 · · ·mndP (F.23)

and finally,

dqdp = dQdP (F.24)

demonstrating the invariance of the volume element in phase space. It can be shown that
this invariance of the volume element in phase space holds in general, that is, for any two
sets of coordinates and their conjugate momenta. That is, q and Q can be any two sets
of coordinates that describe the same point.

Further reading/references

[1] H. Goldstein, Classical mechanics, second edition (Addison–Wesley, 1980).
[2] E.B. Wilson, J.C. Decius, and P.C. Cross, Molecular vibrations (Dover, 1980).
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G

Quantum Mechanics

In the following, we present the axioms or basic postulates of quantum mechanics and
accompany them by their classical counterparts in the Hamiltonian formalism. We begin
the presentation with a brief summary of some of the mathematical background essential
for the developments in the following. It is by no means a comprehensive presentation,
and the reader is supposed to have some basic knowledge about quantum mechanics that
may be obtained from any of the many introductory textbooks in quantum mechanics.
The focus here is on results of particular relevance to the subjects of this book. We
consider, for example, a derivation of a formal expression for the flux density operator
in quantum mechanics and its coordinate representation. A systematic way of generating
any representation of any combination of operators is set up, and is of immediate usage
for the time autocorrelation function of the flux operator used to determine the rate
constants of a chemical process.

G.1 Basic Axioms of Quantum Mechanics

Before describing the axioms of quantum mechanics, one needs some mathematical
background in linear vector spaces. Since this may be acquired from any of the
introductory textbooks on quantum mechanics, we shall just review some of the main
points without going into much detail.

We use the ket symbol |ψ〉 introduced by Dirac to denote the state of a physical system.
The scalar product (the “dot product”) between two vectors is a complex number
denoted by

〈φ|ψ〉 = 〈ψ |φ〉∗ (G.1)

Physical observables are represented by Hermitian operators �̂, where a Hermitian
operator is defined by �̂ = �̂†. Here, �̂† is the so-called adjoint operator defined by
the relation

〈φ|�̂|ψ〉 = 〈ψ |�̂†|φ〉∗ (G.2)

Theories of Molecular Reaction Dynamics. Second Edition. Niels E. Henriksen and Flemming Y. Hansen, Oxford University
Press 2019. © Niels E. Henriksen and Flemming Y. Hansen. DOI: 10.1093/oso/9780198805014.001.0001
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We can expand the state vector |ψ〉 in any orthonormal basis of basis vectors, for
example, the eigenstates of the position operator:

|ψ〉 =
∫

dqiψ(qi)|qi〉 (G.3)

where the eigenstates and eigenvalues associated with the position are given by

q̂i|qi〉 = qi|qi〉 (G.4)

where 〈q′
i|qi〉 = δ(q′

i − qi).
To identify the expansion coefficients in Eq. (G.3), ψ(qi), we multiply from the left

with the bra 〈q′
i|:

〈q′
i|ψ〉 =

∫
dqiψ(qi)〈q′

i|qi〉

= ψ(q′
i) (G.5)

and ψ(qi) is referred to as the representation of |ψ〉 in coordinate space, that is, the
ordinary wave function in coordinate space. Using this result, we may write Eq. (G.3) as

|ψ〉 =
∫

dqiψ(qi)|qi〉

=
∫

dqi〈qi|ψ〉|qi〉

=
∫

dqi|qi〉〈qi|ψ〉 (G.6)

When written like this, we immediately see that the identity operator Î can be written in
the form

Î =
∫

dqi|qi〉〈qi| (G.7)

This is a very important relation that we will be using over and over again in the
following. The operator P̂qi = |qi〉〈qi | is called the projection operator for the ket |qi〉.
Equation (G.7), which is called the completeness relation, or closure relation, expresses
the identity operator as a sum over projection operators. The relation is true for any
orthonormal basis we may choose.

We consider a system of N particles. To keep the notation simple, we have chosen
only to consider the coordinate qi and conjugate momentum pi , and we neglect all the
other coordinates and momenta in all the derivations to follow. The straightforward
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generalization to include all coordinates and momenta will be discussed toward the end
of the appendix.

(1) In classical mechanics, the state of the system is specified by q(t) and p(t), that is,
as a point in the 6N-dimensional phase space of the N-particle system.

In quantum mechanics, the state of the system is represented by a vector |ψ(t)〉
in Hilbert space.

(2) In classical mechanics, every dynamical variable ω is a function of coordinates q
and conjugate momenta p, that is, ω = ω(q,p).

In quantum mechanics, the independent variables q and p of classical mechanics
are represented by the Hermitian operators q̂ and p̂ with the following matrix
elements in the Cartesian coordinate basis |q〉, here just written for the coordinate
qi and the conjugate momentum pi :

〈qi |q̂i|q′
i〉 = qiδ(qi − q′

i) (G.8)

and

〈qi |p̂i|q′
i〉 = −ih̄

d
dqi

δ(qi − q′
i) = ih̄

d
dq′

i
δ(qi − q′

i)

≡ −ih̄δ′
qi
(qi − q′

i) = ih̄δ′
q′

i
(qi − q′

i) (G.9)

The prime on the delta function indicates differentiation with respect to the
variable given in the subscript. The prime on the coordinate is just another
coordinate value, different from the coordinate without a prime. This prime
should not be confused with the prime on the delta function. The operator
corresponding to a dependent variable ω(q,p) is given by a Hermitian operator
�̂(q̂, p̂) = ω(q → q̂,p → p̂). At the end of this section, the complete expression for
the relations with all coordinates is given. For brevity of notation, we usually only
include the coordinate of interest, as in Eqs (G.8) and (G.9).

(3) In classical mechanics, if a system is in a given state (q,p), the measurement of the
dynamical variable ω will yield a value ω(q,p). The state of the system will remain
unaffected.

In quantum mechanics, if a system is in the state |ψ〉, the measurement of
the dynamical variable corresponding to the operator �̂ will yield one of the
eigenvalues ω with a probability P(ω) = |〈ω|ψ〉|2. The state of the system will
change from |ψ〉 to |ω〉 as a result of the measurement.

The expectation value 〈�̂〉 of an operator in a state |ψ〉 is just the mean value
as defined in statistics:

〈�̂〉 =
n∑

i=1

P(ωi)ωi =
n∑

i=1

|〈ωi|ψ〉|2 ωi
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=
n∑

i=1

〈ψ |ωi〉〈ωi|ψ〉ωi

=
n∑

i=1

〈ψ |�̂|ωi〉〈ωi|ψ〉

= 〈ψ |�̂|ψ〉 (G.10)

where we have assumed that the eigenstates of �̂ are discrete and have used
a completeness relation similar to Eq. (G.7) for the eigenstates |ωi〉 of �̂. In
particular, the expectation value of the projection operator P̂qi = |qi〉〈qi | (see
Eq. (G.7)) is

〈P̂qi 〉 = 〈ψ |qi〉〈qi|ψ〉 = ψ∗(qi)ψ(qi) (G.11)

which is the probability density for the ith coordinate being equal to qi .

(4) In classical mechanics, the state variables change with time according to Hamilton’s
equations of motion

q̇i = ∂H
∂pi

, i = 1,3N

ṗi = −∂H
∂qi

, i = 1,3N
(G.12)

In quantum mechanics, the state vector |ψ〉 obeys the Schrödinger equation

ih̄
d
dt

|ψ(t)〉 = Ĥ |ψ(t)〉 (G.13)

where Ĥ(q̂, p̂) = H(q → q̂,p → p̂) is the Hamilton operator for the system.

G.2 Application of the Axioms—Examples

G.2.1 The action of the position operator

Suppose we are in a state |ψ〉. Then determine the action of the operator q̂i , that is,

q̂i|ψ〉 = |ψ ′〉 (G.14)

From the axioms, we have

〈qi |q̂i|q′
i〉 = qi δ(qi − q′

i) (G.15)
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so let us convert Eq. (G.14) to a form that has the matrix element in Eq. (G.15). To do
that, we multiply Eq. (G.14) from the left by the bra 〈qi | and insert the unit operator∫

dq′
i|q′

i〉〈q′
i |, according to Eq. (G.7), between q̂i and |ψ〉 to give

∫
dq′

i 〈qi |q̂i|q′
i〉〈q′

i|ψ〉 = 〈qi|ψ ′〉 (G.16)

and with Eq. (G.15) we have

∫
dq′

i qi δ(qi − q′
i)〈q′

i|ψ〉 = qi〈qi|ψ〉 = qi ψ(qi) (G.17)

That is, in the coordinate representation the action of q̂i is simply a multiplication of the
coordinate representation of the wave function with qi .

Then, what is the action of q̂2
i ? We write the operator as q̂i q̂i , multiply from the left by

the bra 〈qi |, and insert two unit operators, one between the operators and one between
the operator and |ψ〉 to introduce the matrix elements of the operator in the coordinate
representation that are known from the axioms. We get

∫∫
dq′

i dq′′
i 〈qi |q̂i|q′

i〉〈q′
i |q̂i|q′′

i 〉〈q′′
i |ψ〉 =

∫∫
dq′

i dq′′
i qi δ(qi − q′

i)q′
i δ(q

′
i − q′′

i ) 〈q′′
i |ψ〉

=
∫

dq′
i qi δ(qi − q′

i)q′
i 〈q′

i|ψ〉
= q2

i 〈qi|ψ〉 = q2
i ψ(qi) (G.18)

that is, the wave function is multiplied by q2
i . This result is easily generalized to any

function f of the position operator, that is, in the coordinate representation it is simply
given by f (qi).

G.2.2 The action of the momentum operator

We now want to determine the action of the momentum operator

p̂i|ψ〉 = |ψ ′〉 (G.19)

In order to use the axioms, we need to recast Eq. (G.19) such that the coordinate
representation of the momentum operator appears. This is done by first multiplying
the equation from the left by the bra 〈qi |, then introducing the unit operator Eq. (G.7)
between the operator and |ψ〉, and finally using partial integration to evaluate the
resulting integral:

〈qi |p̂i|ψ〉 =
∫

dq′
i〈qi |p̂i|q′

i〉〈q′
i|ψ〉
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=
∫

dq′
i (−ih̄)δ′

qi
(qi − q′

i)ψ(q′
i) =

∫
dq′

i (ih̄)δ′
q′

i
(qi − q′

i)ψ(q′
i)

= ih̄
(

[δ(qi − q′
i)ψ(q′

i)]
∞−∞ −

∫
dq′

iδ(qi − q′
i)

dψ(q′
i)

dq′
i

)

= −ih̄
∫

dq′
i δ(qi − q′

i)
dψ(q′

i)

dq′
i

= −ih̄
(

dψ(q′
i)

dq′
i

)

qi=q′
i

(G.20)

The term [δ(qi − q′
i)ψ(q′

i)]
∞−∞ always equals zero since ψ(q′

i) = 0 for q′
i → ±∞. The

momentum operator in the coordinate representation is therefore a differential operator
and the result of its action is the derivative of the wave function at qi multiplied by −ih̄,
a standard result given in any textbook on quantum mechanics, here deduced directly
from the axioms of quantum mechanics.

This result may be used to determine the eigenstates |pi〉 of the momentum operator,
defined by

p̂i|pi〉 = pi|pi〉 (G.21)

in the coordinate representation. We may use the result from Eq. (G.20) if we replace
|ψ〉 with |pi〉 and |ψ ′〉 by pi|pi〉 in Eq. (G.19), and therefore ψ(qi) = 〈qi|ψ〉 by 〈qi|pi〉 and
ψ ′(qi) by pi〈qi|pi〉 in Eq. (G.20). This gives the following first-order differential equation
in 〈qi|pi〉:

−ih̄
d〈qi|pi〉

dqi
= pi〈qi|pi〉 (G.22)

where 〈qi|pi〉 is the momentum eigenfunction in the coordinate representation. Equation
(G.22) is easily solved, and we get

〈qi|pi〉 = 1√
2π h̄

exp(ipiqi/h̄) (G.23)

where we have used the normalization 〈pi|p′
i〉 = δ(pi − p′

i), and the representation of the
delta function (with pi = kih̄)

δ(ki) = 1
2π

∫ ∞

−∞
dx exp(ikix) (G.24)

G.2.3 The displacement operator

In Section 4.2.2, we used the displacement (translation) operator exp(−ibp̂i/h̄). We
consider here this operator and its action on the state |φ〉, that is, we consider the
momentum-space and coordinate-space representations of |φb〉 = exp(−ibp̂i/h̄)|φ〉.
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In the momentum-space representation, we have

〈pi|φb〉 = 〈pi|e−ibp̂i/h̄|φ〉
=
∫

dp′
i〈pi|e−ibp̂i/h̄|p′

i〉〈p′
i|φ〉

=
∫

dp′
i〈pi|e−ibp′

i/h̄|p′
i〉〈p′

i|φ〉

=
∫

dp′
ie

−ibp′
i/h̄δ(pi − p′

i)〈p′
i|φ〉

= e−ibpi/h̄〈pi|φ〉 (G.25)

where Eq. (G.21) was used in the third line. Using this result and Eq. (G.23), we get, in
the coordinate-space representation,

〈qi|φb〉 =
∫

dpi〈qi|pi〉〈pi|φb〉

= (2π h̄)−1/2
∫

dpi eipiqi/h̄e−ibpi/h̄〈pi|φ〉

= (2π h̄)−1/2
∫

dpi eipi(qi−b)/h̄〈pi|φ〉

=
∫

dpi〈qi − b|pi〉〈pi|φ〉
= 〈qi − b|φ〉 (G.26)

which demonstrates that the operator exp(−ibp̂/h̄) generates a displacement of b in
coordinate space.

G.2.4 Equivalence of spatial and momentum
projection operators

In Section 5.2.1, we used the equivalence of the two projection operators

P̂r1 = lim
t→∞exp(iĤ t/h̄)h(r̂1)exp(−iĤ t/h̄)

P̂p1 = lim
t→∞exp(iĤ t/h̄)h(p̂1)exp(−iĤ t/h̄)

(G.27)

where h(x) is the Heaviside step function. In momentum space we defined the reactant
region as the one where the translational momentum in the reaction coordinate was
negative, while positive in the product region. In coordinate space we define the reactant
region as the one with a negative reaction coordinate and the product region as the one
with a positive reaction coordinate, with the reaction coordinate r1 = 0 separating the
two regions. Intuitively, such a modification should be possible because the definition in
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momentum space implies an equivalent motion in the reaction coordinate that therefore
may also be used to define the reactant and product regions.

We consider in the following the proof that the projection operators in Eq. (G.27) are
equivalent. We introduce the unit operator exp(−iĤ0t/h̄)exp(iĤ0t/h̄) on both sides of
the Heaviside step functions. We find

P̂r1 = lim
t→∞exp(iĤ t/h̄)exp(−iĤ0t/h̄)exp(iĤ0t/h̄)h(r̂1)

× exp(−iĤ0t/h̄)exp(iĤ0t/h̄)exp(−iĤ t/h̄)

= lim
t→∞�̂− exp(iĤ0t/h̄)h(r̂1)exp(−iĤ0t/h̄)�̂

†
− (G.28)

and similarly for P̂p1 we have

P̂p1 = lim
t→∞�̂− exp(iĤ0t/h̄)h(p̂1)exp(−iĤ0t/h̄)�̂

†
− (G.29)

where �̂− is the Møller operator in Eq. (4.144). Comparing the operators in Eqs (G.28)
and (G.29), we just need to prove that

P̂0
r1

= lim
t→∞exp(iĤ0t/h̄)h(r̂1)exp(−iĤ0t/h̄) (G.30)

is equal to

P̂0
p1

= lim
t→∞exp(iĤ0t/h̄)h(p̂1)exp(−iĤ0t/h̄) (G.31)

This is done by writing down the coordinate representations of the operators using the
methodology presented in this appendix. We introduce unit operators on both sides of
the Heaviside step function using the momentum eigenstates and find

〈r′
1|P̂0

p1 |r1〉 = 〈r′
1|exp(iĤ0t/h̄)h(p̂1)exp(−iĤ0t/h̄)|r1〉

=
∫ ∞

−∞
dp1

∫ ∞

−∞
dp′

1〈r′
1|exp(ip̂2

1t/(2μh̄))|p1〉〈p1|h(p̂1)|p′
1〉

× 〈p′
1|exp(−ip̂2

1t/(2μh̄))|r1〉

=
∫ ∞

−∞
dp1

∫ ∞

−∞
dp′

1〈r′
1|exp(ip2

1t/(2μh̄))|p1〉h(p′
1)δ(p1 − p′

1)

×〈p′
1|exp(−ip′2

1 t/(2μh̄))|r1〉
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= 1
2π h̄

∫ ∞

−∞
dp1

∫ ∞

−∞
dp′

1 exp(ip1r′
1/h̄)exp(ip2

1t/(2μh̄))h(p′
1)δ(p1 − p′

1)

× exp(−ip′2
1 t/(2μh̄))exp(−ip′

1r1/h̄)

= 1
2π h̄

∫ ∞

−∞
dp1 exp(ip1r′

1/h̄)h(p1)exp(−ip1r1/h̄)

= 1
2π h̄

∫ ∞

0
dp1 exp(ip1(r′

1 − r1)/h̄) (G.32)

In the second line of the equation we have used that Ĥ0, in this one degree of freedom
case, contains only kinetic energy in the coordinate r1 since the potential energy term is
zero in the reactant/product region. In the sixth line we have introduced the momentum
eigenfunctions in the coordinate representation, using Eq. (G.23).

Similarly, for the P̂0
r1

operator, we introduce unit operators on both sides of the
Heaviside step function, but using the coordinate eigenfunctions in this case:

〈r′
1|P̂0

r1
|r1〉 = 〈r′

1|exp(iĤ0t/h̄)h(r̂1)exp(−iĤ0t/h̄)|r1〉
=
∫ ∞

−∞
dr′′

1

∫ ∞

−∞
dr′′′

1 〈r′
1|exp(iĤ0t/h̄)|r′′

1〉〈r′′
1 |h(r̂1)|r′′′

1 〉

× 〈r′′′
1 |exp(−iĤ0t/h̄)|r1〉

=
∫ ∞

−∞
dr′′

1

∫ ∞

−∞
dr′′′

1 〈r′
1|exp(iĤ0t/h̄)|r′′

1〉h(r′′′
1 )δ(r′′

1 − r′′′
1 )

×〈r′′′
1 |exp(−iĤ0t/h̄)|r1〉

=
∫ ∞

−∞
dr′′

1〈r′
1|exp(iĤ0t/h̄)|r′′

1〉h(r′′
1)〈r′′

1 |exp(−iĤ0t/h̄)|r1〉 (G.33)

The matrix elements in the integral are evaluated by introducing a unit operator using
the momentum eigenfunctions between the operator and the coordinate eigenfunction:

〈r′
1|exp(iĤ0t/h̄)|r′′

1〉 =
∫

dp1〈r′
1|exp(ip̂2

1t/(2μh̄))|p1〉〈p1|r′′
1〉

=
∫

dp1〈r′
1|exp(ip2

1t/(2μh̄))|p1〉〈p1|r′′
1〉

= 1
2π h̄

∫
dp1 exp(ip2

1t/(2μh̄))exp(ir′
1p1/h̄)exp(−ir′′

1p1/h̄)

= 1
2π h̄

∫
dp1 exp[ip2

1t/(2μh̄)+ ip1(r′
1 − r′′

1)/h̄]

= 1√
2π h̄

√
μ

−it
exp(−iμ(r′

1 − r′′
1)2/(2h̄t)) (G.34)
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In the first line we have introduced the unit operator using the momentum eigenstates
because we may then evaluate the resulting matrix elements. In the third line we have
introduced the momentum eigenfunctions in the coordinate representation, and in the
last line we have used the standard integral

∫
dxexp(−p2x2 ± qx) = exp(q2/(4p2))

√
π/p.

For the second matrix element in Eq. (G.33) we find by analogy that

〈r′′
1 |exp(−iĤ0t/h̄)|r1〉 = 1√

2π h̄

√
μ

it
exp(iμ(r1 − r′′

1)2/(2h̄t)) (G.35)

The expressions in Eqs (G.34) and (G.35) are finally introduced in Eq. (G.33) and
we find

〈r′
1|P̂0

r1
|r1〉 = μ

t
1

2π h̄

∫ ∞

0
dr′′

1 exp[iμ((r1 − r′′
1)2 − (r′

1 − r′′
1)2)/(2h̄t)]

= μ

2π h̄t

∫ ∞

0
dr′′

1 exp[iμ((r2
1 − r′2

1 )+ 2r′′
1(r′

1 − r1))/(2h̄t)]

= μ

2π h̄t
exp(iμ(r2

1 − r′2
1 )/(2h̄t))

×
∫ ∞

0
dr′′

1 exp[iμr′′
1(r′

1 − r1)/(h̄t)] (G.36)

For comparison with the result in Eq. (G.32), we introduce the substitution r′′
1 = p1t/μ

in Eq. (G.36) and find

〈r′
1|P̂0

r1
|r1〉 = 1

2π h̄
exp(iμ(r2

1 − r′2
1 )/(2h̄t))

∫ ∞

0
dp1 exp[ip1(r′

1 − r1)/h̄]

= 1
2π h̄

∫ ∞

0
dp1 exp[ip1(r′

1 − r1)/h̄] (G.37)

when the limit t → ∞ is taken. We then see that the expression is identical to the one in
Eq. (G.32) and have thereby proven the equivalence of the two expressions in Eq. (G.27).

G.3 The Flux Operator

In Section 5.2, we used an expression for the flux operator. In most quantum mechanics
textbooks expressions for the probability current density, or probability flux density, are
given in terms of the wave function in the coordinate representation. We need an expres-
sion for the flux density operator without reference to any particular representation, and
since it is rarely found in the textbooks, let us in the following derive this expression.

Consider the Hermitian position projection operator (P̂qi )qi=r :

(P̂qi )qi=r = (|qi〉〈qi |)qi=r ≡ | r〉〈r | ≡ P̂r (G.38)
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It is related to the probability density for one of the coordinates of a particle to be r. This
is seen by forming the expectation value of P̂r for the system in the state |ψ〉. We find

〈ψ |P̂r|ψ〉 = 〈ψ |r〉〈r|ψ〉 = ψ∗(r)ψ(r) = ρ(r) (G.39)

where we have introduced the symbol ρ(r) for the probability density.
We seek an expression for the flux operator by deriving an expression for the time

variation of the position projection operator P̂r , and compare the resulting equation with
the standard continuity equation known in several branches of physics, for example, in
fluid dynamics:

∂ρ

∂t
= −∇ · Fρ (G.40)

which expresses that the rate of change in density is equal to the net flux of mass in and
out of the volume element, as given by the divergence of the flux density of mass Fρ as
defined in Eq. (G.40).

Let us therefore determine the rate of change of the position projection operator for
the coordinate qi , which in the Heisenberg picture is given by the following commutator
equation:

dP̂r

dt
= i

h̄
[Ĥ , P̂r] (G.41)

where Ĥ is the Hamiltonian of the system. Since all momenta operators p̂j �=i and position
operators q̂j �=i commute with p̂i and q̂i we only need to include the momentum operator
for the coordinate qi in the kinetic energy term of the Hamiltonian, and find

dP̂r

dt
= i

h̄
[p̂2

i /(2mi)+ V (q̂), P̂r]

= i
2mih̄

[p̂2
i , P̂r] + i

h̄
[V (q̂), P̂r] (G.42)

Note that the potential energy term in general cannot be split up into a term only
depending on the coordinate qi like the kinetic energy term. The commutator [p̂2

i , P̂r]
may be written

[p̂2
i , P̂r] = p̂2

i P̂r − P̂r p̂2
i

= p̂2
i P̂r − p̂i P̂r p̂i + p̂i P̂r p̂i − P̂r p̂2

i

= p̂i(p̂i P̂r − P̂r p̂i)+ (p̂i P̂r − P̂r p̂i)p̂i

= p̂i[p̂i , P̂r] + [p̂i , P̂r]p̂i (G.43)
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The commutator [p̂i , P̂r] is found in the usual way by forming the matrix element with
any two states |φ〉 and |ψ〉:

〈φ|[p̂i , P̂r]|ψ〉 = 〈φ|p̂i P̂r − P̂r p̂i|ψ〉
= 〈φ|p̂i|r〉〈r|ψ〉− 〈φ|r〉〈r|p̂i|ψ〉
= 〈φ|p̂i|r〉ψ(r)− φ∗(r)〈r|p̂i|ψ〉 (G.44)

The matrix elements involving the momentum operator were evaluated in Eq. (G.20):

〈r|p̂i|ψ〉 = −ih̄
(

dψ(qi)

dqi

)

qi=r
(G.45)

and similarly for

〈φ|p̂i|r〉 = 〈r|p̂i|φ〉∗ = ih̄
(

dφ∗(qi)

dqi

)

qi=r
(G.46)

using that the momentum operator is Hermitian. These results are inserted into
Eq. (G.44) and we get

〈φ|[p̂i , P̂r]|ψ〉 = ih̄

[
ψ(r)

(
dφ∗(qi)

dqi

)

qi=r
+ φ∗(r)

(
dψ(qi)

dqi

)

qi=r

]

= ih̄
(

d(φ∗(qi)ψ(qi))

dqi

)

qi=r

= ih̄
(

d
dqi

〈φ|qi〉〈qi|ψ〉
)

qi=r

= ih̄
(

〈φ | d
dqi

{|qi〉〈qi |}|ψ〉
)

qi=r

= ih̄
(
〈φ| d

dqi
P̂qi |ψ〉

)

qi=r
(G.47)

and from this

[p̂i , P̂r] = ih̄

(
dP̂qi

dqi

)

qi=r

= ih̄
dP̂r

dr
(G.48)
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The commutator [V (q̂), P̂r] is found in the same way. We get

〈φ|[V (q̂), P̂r]|ψ〉 = 〈φ|V (q̂)P̂r|ψ〉 − 〈φ|P̂rV (q̂)|ψ〉
=
∫

dqi 〈φ|qi〉〈qi|V (q̂i ;qj �=i)|r〉〈r|ψ〉

−
∫

dqi 〈φ|r〉〈r|V (q̂i ;qj �=j)|qi〉〈qi|ψ〉

=
∫

dqi φ
∗(qi)V (qi ;qj �=i)δ(qi − r)ψ(r)

−
∫

dqi φ
∗(r)V (qi ;qj �=i)δ(qi − r)ψ(qi)

= φ∗(r)V (r;qj �=i)ψ(r)− φ∗(r)V (r;qj �=i)ψ(r)

= 0 (G.49)

that is,

[V (q̂), P̂r] = 0 (G.50)

With the results in Eqs (G.48) and (G.50) introduced into Eq. (G.42), we find

dP̂r

dt
= i

h̄

[
Ĥ , P̂r

]
= i

2mih̄

[
p̂2

i , P̂r

]

= i
2mih̄

[
p̂i [p̂i , P̂r] + [p̂i , P̂r] p̂i

]

= i
2mih̄

[
p̂i ih̄

(
d

dqi
P̂qi

)

qi=r
+ ih̄

(
d

dqi
P̂qi

)

qi=r
p̂i

]

= − 1
2mi

[
p̂i

(
d

dqi
P̂qi

)

qi=r
+
(

d
dqi

P̂qi

)

qi=r
p̂i

]

= − 1
2mi

(
d

dqi

[
p̂i P̂qi + P̂qi p̂i

])

qi=r
(G.51)

When we compare with Eq. (G.40), we see that the flux (density) operator related to the
coordinate qi , at qi = r, is given by the expression

F̂ r = 1
2mi

[
p̂i P̂qi + P̂qi p̂i

]

qi=r
= 1

2mi

[
p̂i P̂r + P̂r p̂i

]
(G.52)

We note that the flux is a vector and the expression in Eq. (G.52) is therefore the
ith component of the quantum flux operator. The quantum flux of probability through
a surface given by S(q) = 0 for a system in the quantum state |ψ〉 may therefore be
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determined as the dot product of the quantum flux and the normalized gradient vector
∇S, integrated over the entire surface.

Let us then derive an expression for the matrix element of the flux operator in
the coordinate representation, an expression we need in order to develop the time
autocorrelation function of the flux operator in the coordinate representation. We
use the axiom for the matrix element of the momentum operator in the coordinate
representation, and obtain

〈qi|F̂ r|q′
i〉 = 1

2mi

[
〈qi|p̂i P̂r|q′

i〉 + 〈qi|P̂r p̂i|q′
i〉
]

= 1
2mi

[
〈qi|p̂i|r〉〈r|q′

i〉 + 〈qi|r〉〈r|p̂i|q′
i〉
]

= 1
2mi

[
−ih̄

d
dqi

δ(qi − r)δ(q′
i − r)+ ih̄δ(qi − r)

d
dq′

i
δ(r − q′

i)

]

= h̄
i2mi

[
δ(q′

i − r)
d

dqi
δ(qi − r)− δ(qi − r)

d
dq′

i
δ(r − q′

i)

]

= h̄
i2mi

[
δ(q′

i − r)δ′
qi
(qi − r)− δ(qi − r)δ′

q′
i
(r − q′

i)
]

(G.53)

The primes on the delta functions in the last line of the equation indicate differentiation
with, respectively, qi and q′

i .
As an example we use this expression for the matrix element of the flux operator in

the coordinate representation to determine the flux at r for a system in the state |ψ〉. The
expectation value of the flux operator is

〈ψ |F̂ r|ψ〉 =
∫

dqi

∫
dq′

i 〈ψ |qi〉〈qi|F̂r|q′
i〉〈q′

i|ψ〉

= h̄
i2mi

∫
dqi

∫
dq′

iψ
∗(qi)[δ(q′

i − r)δ′
qi
(qi − r)− δ(qi − r)δ′

q′
i
(r − q′

i)]ψ(q′
i)

(G.54)

Partial integration is used to evaluate the terms. Let us begin with the first term:

∫
dqi

∫
dq′

i ψ
∗(qi)δ(q′

i − r)δ′
qi
(qi − r)ψ(q′

i)

=
∫

dq′
i

{
[δ(qi − r)ψ∗(qi)δ(q′

i − r)ψ(q′
i) ]∞−∞

−
∫

dqi δ(qi − r)
d

dqi

(
ψ∗(qi)δ(q′

i − r)ψ(q′
i)
)}

= −
∫

dqi

∫
dq′

i δ(qi − r)δ(q′
i − r)ψ(q′

i)
dψ∗(qi)

dqi

= −ψ(r)
(

dψ∗(qi)

dqi

)

qi=r
(G.55)
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since the first term on the right-hand side of the equation in the second line is zero,
because ψ(qi) = 0 for qi → ±∞. Similarly, we find for the second term:

−
∫

dqi

∫
dq′

i ψ
∗(qi)δ(qi − r)δ′

q′
i
(r − q′

i)ψ(q′
i)

= −
∫

dqi

{
[δ(r − q′

i)ψ
∗(qi)δ(qi − r)ψ(q′

i)]
∞−∞

−
∫

dq′
i δ(r − q′

i)
d

dq′
i

(
ψ∗(qi)δ(qi − r)ψ(q′

i)
)}

=
∫

dqi

∫
dq′

i δ(r − q′
i)δ(qi − r)ψ∗(qi)

dψ(q′
i)

dq′
i

= ψ∗(r)
(

dψ(q′
i)

dq′
i

)

q′
i=r

(G.56)

that is, we have

〈ψ |F̂ r|ψ〉 = h̄
i2mi

[
ψ∗(r)

(
dψ(q′

i)

dq′
i

)

q′
i=r

− ψ(r)
(

dψ∗(qi)

dqi

)

qi=r

]
(G.57)

which is the expression for the ith component of the flux density found in many
textbooks. It is immediately evident from this expression that the flux density in a system
where the wave function is real will be zero.

G.4 Time-Correlation Function of the Flux Operator

In Section 5.2, we have seen how the rate constant for a chemical reaction may be
determined as a time integral of the auto-time-correlation function of the flux operator
given by

CF (t) = Tr[F̂Û†F̂Û ] (G.58)

with

Û = exp(−iĤ t/h̄)exp(−Ĥ/2kBT)

Û† = exp(iĤ t/h̄)exp(−Ĥ/2kBT)
(G.59)

In order to use this formal expression in a calculation of the rate constant we need to
choose a representation. In the following, we will determine the coordinate representation
of the correlation function. We use the coordinate representation of the flux operator as
derived in Eq. (G.53). It is introduced in the expression for the time-correlation function
by introducing three unit operators like
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CF (t) =
∫

dqi

∫
dq′

i

∫
dq′′

i

∫
dq′′′

i 〈qi|F̂ |q′
i〉〈q′

i|Û†|q′′
i 〉〈q′′

i |F̂ |q′′′
i 〉〈q′′′

i |Û |qi〉

= − h̄2

4m2

∫
dqi

∫
dq′

i

∫
dq′′

i

∫
dq′′′

i [· · ·]qiq′
i
U†

q′
iq

′′
i
[· · ·]q′′

i q′′′
i

Uq′′′
i qi

(G.60)

where the expressions for the matrix element of the flux operator in Eq. (G.53) are used.
We have introduced the following shorthand notations:

U†
q′

iq
′′
i
= 〈q′

i|Û†|q′′
i 〉 = 〈q′′

i |Û |q′
i〉

∗ = U∗
q′′

i q′
i

Uq′′′
i qi

= 〈q′′′
i |Û |qi〉

[· · ·]qiq′
i
= [δ(q′

i − r)δ′
qi
(qi − r)− δ(qi − r)δ′

q′
i
(r − q′

i)]

[· · ·]q′′
i q′′′

i
= [δ(q′′′

i − r)δ′
q′′

i
(q′′

i − r)− δ(q′′
i − r)δ′

q′′′
i
(r − q′′′

i )]

(G.61)

We see that there are four terms to be evaluated, and each term is evaluated by partial
integration with respect to, respectively, qi , q′

i , q′′
i , and q′′′

i . They may look a little
complicated, so let us take them term by term. Let us start with an evaluation of the
two terms associated with [· · ·]qiq′

i
. The first term in [· · ·]qiq′

i
in Eq. (G.61) gives

∫
dqi

∫
dq′

i

∫
dq′′

i

∫
dq′′′

i δ′
qi
(qi − r)δ(q′

i − r)U∗
q′′

i q′
i
[· · ·]q′′

i q′′′
i

Uq′′′
i qi

=
∫

dq′
i

∫
dq′′

i

∫
dq′′′

i

{
[δ(qi − r)δ(q′

i − r)U∗
q′′

i q′
i
[· · ·]q′′

i q′′′
i

Uq′′′
i qi

]∞−∞

−
∫

dqi δ(qi − r)
d

dqi
(δ(q′

i − r)U∗
q′′

i q′
i
[· · ·]q′′

i q′′′
i

Uq′′′
i qi

)

}

= −
∫

dqi

∫
dq′

i

∫
dq′′

i

∫
dq′′′

i δ(qi − r)δ(q′
i − r)U∗

q′′
i q′

i
[· · ·]q′′

i q′′′
i

dUq′′′
i qi

dqi
(G.62)

using that [δ(qi − r) · · · ]qi=∞
qi=−∞ equals zero since r takes a finite value. Similarly, the next

term in [· · ·]qiq′
i

in Eq. (G.61) gives

−
∫

dqi

∫
dq′

i

∫
dq′′

i

∫
dq′′′

i δ′
q′

i
(r − q′

i)δ(qi − r)U∗
q′′

i q′
i
[· · ·]q′′

i q′′′
i

Uq′′′
i qi

= −
∫

dqi

∫
dq′′

i

∫
dq′′′

i

{
[δ(r − q′

i)δ(qi − r)U∗
q′′

i q′
i
[· · ·]q′′

i q′′′
i

Uq′′′
i qi

]∞−∞

−
∫

dq′
i δ(r − q′

i)
d

dq′
i
(δ(qi − r)U∗

q′′
i q′

i
[· · ·]q′′

i q′′′
i

Uq′′′
i qi

)

}

=
∫

dqi

∫
dq′

i

∫
dq′′

i

∫
dq′′′

i δ(qi − r)δ(r − q′
i) [· · ·]q′′

i q′′′
i

Uq′′′
i qi

dU∗
q′′

i q′
i

dq′
i

(G.63)
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Then we need to evaluate the two terms associated with the [· · ·]q′′
i q′′′

i
operator in each of

the equations in Eqs. (G.62) and (G.63). We begin with the result in Eq. (G.62), combine
it with the first term in [· · ·]q′′

i q′′′
i

in Eq. (G.61), and use partial integration over q′′
i :

−
∫

dqi

∫
dq′

i

∫
dq′′

i

∫
dq′′′

i δ(qi − r)δ(q′
i − r)U∗

q′′
i q′

i
δ′

q′′
i
(q′′

i − r)δ(q′′′
i − r)

dUq′′′
i qi

dqi

= −
∫

dqi

∫
dq′

i

∫
dq′′′

i

{[
δ(q′′

i − r)δ(qi − r)δ(q′
i − r)δ(q′′′

i − r)U∗
q′′

i q′
i

dUq′′′
i qi

dqi

]∞

−∞

−
∫

dq′′
i δ(q′′

i − r)
d

dq′′
i

(
δ(qi − r)δ(q′

i − r)δ(q′′′
i − r)U∗

q′′
i q′

i

dUq′′′
i qi

dqi

)}

=
∫

dqi

∫
dq′

i

∫
dq′′

i

∫
dq′′′

i δ(qi − r)δ(q′
i − r)δ(q′′

i − r)δ(q′′′
i − r)

dU∗
q′′

i q′
i

dq′′
i

dUq′′′
i qi

dqi

(G.64)

and finally combine the result in Eq. (G.62) with the last term in [· · ·]q′′
i q′′′

i
in Eq. (G.61),

and use partial integration over q′′′
i :

∫
dqi

∫
dq′

i

∫
dq′′

i

∫
dq′′′

i δ(qi − r)δ(q′
i − r)U∗

q′′
i q′

i
δ′

q′′′
i
(r − q′′′

i )δ(q′′
i − r)

dUq′′′
i qi

dqi

=
∫

dqi

∫
dq′

i

∫
dq′′

i

{[
δ(r − q′′′

i )δ(qi − r)δ(q′
i − r)δ(q′′

i − r)U∗
q′′

i q′
i

dUq′′′
i qi

dqi

]∞

−∞

−
∫

dq′′′
i δ(r − q′′′

i )
d

dq′′′
i

(
δ(qi − r)δ(q′

i − r)δ(q′′
i − r)U∗

q′′
i q′

i

dUq′′′
i qi

dqi

)}

= −
∫

dqi

∫
dq′

i

∫
dq′′

i

∫
dq′′′

i δ(qi − r)δ(q′
i − r)δ(q′′

i − r)δ(r − q′′′
i )U∗

q′′
i q′

i

d2Uq′′′
i qi

dq′′′
i dqi

(G.65)

Similarly, the result in Eq. (G.63) is combined with the first term in [· · ·]q′′
i q′′′

i
in

Eq. (G.61), and we use partial integration over q′′
i :

∫
dqi

∫
dq′

i

∫
dq′′

i

∫
dq′′′

i δ(qi − r)δ(r − q′
i)δ

′
q′′

i
(q′′

i − r)δ(q′′′
i − r)Uq′′′

i qi

dU∗
q′′

i q′
i

dq′
i

=
∫

dqi

∫
dq′

i

∫
dq′′′

i

{[
δ(q′′

i − r)δ(qi − r)δ(r − q′
i)δ(q

′′′
i − r)Uq′′′

i qi

dU∗
q′′

i q′
i

dq′
i

]∞

−∞

−
∫

dq′′
i δ(q′′

i − r)
d

dq′′
i

(
δ(qi − r)δ(r − q′

i)δ(q
′′′
i − r)Uq′′′

i qi

dU∗
q′′

i q′
i

dq′
i

)}
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= −
∫

dqi

∫
dq′

i

∫
dq′′

i

∫
dq′′′

i δ(qi − r)δ(q′
i − r)δ(q′′

i − r)δ(q′′′
i − r)Uq′′′

i qi

d2U∗
q′′

i q′
i

dq′
i dq′′

i
(G.66)

and finally combine the result in Eq. (G.63) with the last term in [· · ·]q′′
i q′′′

i
in Eq. (G.61),

and use partial integration over q′′′
i :

−
∫

dqi

∫
dq′

i

∫
dq′′

i

∫
dq′′′

i δ(qi − r)δ(r − q′
i)δ

′
q′′′

i
(r − q′′′

i )δ(q′′
i − r)Uq′′′

i qi

dU∗
q′′

i q′
i

dq′
i

= −
∫

dqi

∫
dq′

i

∫
dq′′

i

{[
δ(r − q′′′

i )δ(qi − r)δ(r − q′
i)δ(r − q′′

i )Uq′′′
i qi

dU∗
q′′

i q′
i

dq′
i

]∞

−∞

+
∫

dq′′′
i δ(r − q′′′

i )
d

dq′′′
i

(
δ(qi − r)δ(r − q′

i)δ(q
′′
i − r)Uq′′′

i qi

dU∗
q′′

i q′
i

dq′
i

)}

=
∫

dqi

∫
dq′

i

∫
dq′′

i

∫
dq′′′

i δ(qi − r)δ(r − q′
i)δ(q

′′
i − r)δ(r − q′′′

i )
dU∗

q′′
i q′

i

dq′
i

dUq′′′
i qi

dq′′′
i
(G.67)

These results are now introduced into Eq. (G.60), and we have

h̄2

4m2

∫
dqi

∫
dq′

i

∫
dq′′

i

∫
dq′′′

i δ(qi − r)δ(q′
i − r)δ(q′′

i − r)δ(r − q′′′
i )

×
⎡

⎣U∗
q′′

i q′
i

d2Uq′′′
i qi

dq′′′
i dqi

+ Uq′′′
i qi

d2U∗
q′′

i q′
i

dq′
i dq′′

i
−

dU∗
q′′

i q′
i

dq′′
i

dUq′′′
i qi

dqi
−

dU∗
q′′

i q′
i

dq′
i

dUq′′′
i qi

dq′′′
i

⎤

⎦

= h̄2

4m2

⎡

⎢⎣U∗
rr

(
d2Uq′′′

i qi

dq′′′
i dqi

)

qi=q′′′
i =r

+ Urr

⎛

⎝
d2U∗

q′′
i q′

i

dq′
i dq′′

i

⎞

⎠

q′
i=q′′

i =r

−
(

dU∗
q′′

i r

dq′′
i

)

q′′
i =r

(
dUrqi

dqi

)

qi=r
−
(

dU∗
rq′

i

dq′
i

)

q′
i=r

(
dUq′′′

i r

dq′′′
i

)

q′′′
i =r

⎤

⎦ (G.68)

This may be written in a more compact form. Consider the following expression:

{
d2|Uqiq′

i
|2

dqi dq′
i

}

qi=q′
i=r

=
⎧
⎨

⎩

d2(U∗
qiq′

i
Uqiq′

i
)

dqi dq′
i

⎫
⎬

⎭
qi=q′

i=r

=
{

d
dqi

[
Uqiq′

i

dU∗
qiq′

i

dq′
i

+ U∗
qiq′

i

dUqiq′
i

dq′
i

]}

qi=q′
i=r



420 Quantum Mechanics

=
⎧
⎨

⎩Uqiq′
i

d2U∗
qiq′

i

dqi dq′
i

+ U∗
qiq′

i

d2Uqiq′
i

dqi dq′
i

+ dUqiq′
i

dqi

dU∗
qiq′

i

dq′
i

+
dU∗

qiq′
i

dqi

dUqiq′
i

dq′
i

}

qi=q′
i=r

= Urr

⎛

⎝
d2U∗

qiq′
i

dqi dq′
i

⎞

⎠

qi=q′
i=r

+ U∗
rr

(
d2Uqiq′

i

dqi dq′
i

)

qi=q′
i=r

+
(

dUqir

dqi

)

qi=r

(
dU∗

rq′
i

dq′
i

)

q′
i=r

+
(

dU∗
qir

dqi

)

qi=r

(
dUrq′

i

dq′
i

)

q′
i=r

(G.69)

We see that the first two terms in the square parenthesis in Eq. (G.68) are identical
to the first two terms in Eq. (G.69). The next two terms in the equations are also
almost identical, except for the sign. Taking this into account we see that the coordinate
representation of the time-correlation function in Eq. (G.58) may finally be written as

CF (t) =
(

h̄
2m

)2
{

d2

dqidq′
i

∣∣∣Uqiq′
i

∣∣∣
2 − 4

∣∣∣∣
d

dqi
Uqiq′

i

∣∣∣∣
2
}

qi=q′
i=r

(G.70)

The discussion has so far been restricted to one degree of freedom, that is, one
coordinate and its conjugate momentum, to make the notation simple. When we
extend our description to a system of N particles with 3N degrees of freedom, there
will be a modification of the equations in axiom 2. Corresponding to 3N Cartesian
coordinates q1, . . . ,q3N describing the classical system, there exist in quantum mechanics
3N mutually commuting operators q̂1, . . . , q̂3N . In the eigenvector basis |q1, . . . ,q3N 〉 of
these operators is called the coordinate basis and normalized as

〈q1, . . . ,q3N |q′
1, . . . ,q′

3N 〉 = 
3N
j=1δ(qj − q′

j) (G.71)

we have the following correspondence:

〈q1, . . . ,q3N |q̂i|q′
1, . . . ,q′

3N 〉 = qi

3N
j=1δ(qj − q′

j)

〈q1, . . . ,q3N |p̂i|q′
1, . . . ,q′

3N 〉 = −ih̄δ′
qi
(qi − q′

i)

i−1
j=1δ(qj − q′

j)

3N
j=i+1δ(qj − q′

j)
(G.72)

The other axioms remain the same.
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H

An Integral

We let τ1 and τ2 in Eq. (11.11) be the coordinates in a coordinate system spanned by
the orthonormal unit vectors i and j. The integrand in the two-dimensional integral
in Eq. (11.11) depends on either the sum (τ1 + τ2) or the difference (τ2 − τ1) of the
two coordinates. It will therefore be convenient to evaluate the integral in another
coordinate system with coordinates that equals the sum and the difference of the original
coordinates. Such coordinates may be found by a 45◦ rotation of the coordinate system
spanned by i and j. This is illustrated in Fig.H.0.1, which shows a Cartesian coordinate
system with unit axes (i, j) and associated coordinates τ1 and τ2.

We now rotate the (i, j) system by 45◦ to the (i′, j′) system. The orthonormal
transformation is given by

[i′ j′] = [i j]

[√
2

2
−√

2
2√

2
2

√
2

2

]
(H.1)

so a vector R represented in the two coordinate systems is

R = [i′ j′]
[
τ ′

1
τ ′

2

]

= [i j]

[√
2

2
−√

2
2√

2
2

√
2

2

][
τ ′

1
τ ′

2

]

≡ [i j]
[
τ1
τ2

]
(H.2)

Then the relation between the “old” and “new” coordinates is

[
τ1
τ2

]
=

[√
2

2
−√

2
2√

2
2

√
2

2

][
τ ′

1
τ ′

2

]
(H.3)
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t

t

l

i(τ1)

j(τ2)

j′(τ′
2) i ′(τ′

1)

Fig. H.0.1 A sketch of the coordinate transformation for the evaluation of the double integral in
Eq.(11.11).

or the inverse, between “new” and “old”

[
τ ′

1
τ ′

2

]
=

[ √
2

2

√
2

2
−√

2
2

√
2

2

][
τ1
τ2

]
(H.4)

and, since the Jacobian determinant for the transformation is unity, the area element
in the new coordinate system is identical to the one in the old coordinate system, that
is, dτ1dτ2 = dτ ′

1dτ ′
2. The integral spans the “hatched” square with side t in Fig.H.0.1.

To cover the same area in the new coordinate system, the integral is divided into two
integrals; one for the triangle below the line l and one for the triangle above this line.
This division is naturally introduced in order to set the limits for τ ′

2 when we integrate
over τ ′

1. For the lower triangle we see from Eqs (H.3) and (H.4) that the region spanned
by τ ′

2 for a given value of τ ′
1 is

−τ ′
1 ≤ τ ′

2 ≤ τ ′
1 (H.5)

and for the upper triangle

−√
2t + τ ′

1 ≤ τ ′
2 ≤ √

2t − τ ′
1 (H.6)

The integral in Eq. (11.11) then becomes

∫ √
2t/2

0
dτ ′

1

∫ τ ′
1

−τ ′
1

dτ ′
2 exp(γ

√
2τ ′

1)φ(
√

2τ ′
2)

+
∫ √

2t

√
2t/2

dτ ′
1

∫ √
2t−τ ′

1

−(
√

2t−τ ′
1)

dτ ′
2 exp(γ

√
2τ ′

1)φ(
√

2τ ′
2)

(H.7)
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where we have used Eq. (11.8) for the correlation function of the random force. We may
now introduce the substitution

ψ = √
2τ ′

1

η = √
2τ ′

2

(H.8)

into Eq. (H.7) and find

1
2

∫ t

0
dψ

∫ ψ

−ψ

dηexp(γψ)φ(η)+ 1
2

∫ 2t

t
dψ

∫ 2t−ψ

−(2t−ψ)

dηexp(γψ)φ(η)

= 1
2

∫ t

0
dψ exp(γψ)f (ψ)+ 1

2

∫ 2t

t
dψ exp(γψ)f (2t − ψ)

(H.9)

where we have used

f (z) =
∫ z

−z
φ(θ)dθ ∼ f ≡ f (∞) (H.10)

Our assumption that φ(θ) is sharply peaked around θ = 0 and drops to zero for θ > τc
implies that its integral f (z) reaches a constant value f = f (∞) for τ ∼ τc. Therefore,
when we are interested in much longer times, we may replace f (ψ) and f (2t − ψ) by
their constant asymptotic value f in the right-hand side of Eq. (H.9). Hence we may
write, for t 	 τc,

1
2

f
∫ t

0
dψ exp(γψ)+ 1

2
f
∫ 2t

t
dψ exp(γψ) = 1

2
f
∫ 2t

0
dψ exp(γψ)

= f
exp(2γ t)− 1

2γ
(H.11)

Substitution of this result for the double integral in Eq. (11.11) finally gives us Eq.
(11.12).



I

Dynamics of Random Processes

In this appendix we will give a review of the general theory of random or stochastic
processes.

Let y denote the variable or set of variables in which we are interested. It may be the
position or the velocity or both for a Brownian particle, for example. If y is a deterministic
quantity, we can construct a function of time y(t) that determines the value of y at every
time t given appropriate initial data at t = 0. If it is a random variable, such a function
does not exist. At every given time, the variable y can have any value whatsoever within its
range of variation. To every possible value there is attached a certain probability, which
may have any value between zero and one. As we assume y to be a continuous variable, it
is easier to speak about probability densities. We say that the value of y has a probability
density P(y; t) at time t if there is a probability P(y; t)dy of finding the value of the variable
in the infinitesimal interval (y,y + dy). The mere knowledge of the probability density
P(y; t) is not sufficient, in general, for the characterization of the process. If we know
that the variable has the value y1 at t1, then this knowledge will influence the probability
of finding the value y2 at time t2 because the various values of y are not necessarily
independent; there could be a correlation between what happens at t1 and what happens
at t2. That is, the joint probability density of finding the value y1 at t1 and the value y2 at
t2, W (y2; t2|y1; t1), cannot necessarily be inferred from a knowledge of P(y1; t1). Hence,
for a complete characterization of the random process, we must in principle specify all
the joint probability densities P(y1; t1), W2(y2; t2|y1; t1), W3(y3; t3|y2; t2|y1; t1), and so on.
The Wn must satisfy the following obvious conditions:

(a) Wn ≥ 0 because they are probabilities;

(b) Wn(yn; tn| · · · |y1; t1) must be symmetric with respect to permutation of the group
of variables among each other, because Wn represents a joint probability;

(c) Wk(yk; tk| · · · |y1; t1) = ∫
dyk+1 · · ·dynWn(yn; tn| · · · |y1; t1) for any value of k in the

range 1 ≤ k ≤ n − 1, so Wn must be compatible with all the lower-order joint
probabilities.

Notice that the arguments for the joint probabilities are ordered such that t1 < t2 · · · < tn,
so the “order of events” should be read from the right to the left. To continue we must
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Dynamics of Random Processes 425

somehow truncate the series of higher-order joint probability densities. The simplest case
(often referred to as a purely random process) is one in which the knowledge of P(y; t)
suffices for the solution of the problem. In particular,

W2(y2; t2|y1; t1) = P(y2; t2)P(y1; t1) (I.1)

so correlations in time are completely absent. This is, however, a very unrealistic
assumption in a continuous physical process; indeed, for short enough time intervals
there must be a causal relationship between successive events.

The next simplest case is of fundamental importance in statistical physics and is called
the Markov process. The whole information is now contained in the two functions P
and W2. To help characterize the problem precisely, it is conventional to introduce the
concept of a transition probability w2(y2; t2|y1; t1) defined by

W2(y2; t2|y1; t1) = w2(y2; t2|y1; t1)P(y1; t1) (I.2)

This relation defines w2 and tells us that the joint probability density of finding y1 at t1
and y2 at t2 equals the probability density of finding y1 at t1 times the probability of a
transition from y1 to y2 in time t2 − t1.

Conditions (a)–(c) imply the following properties of w2:

(a′) w2(y2; t2|y1; t1) ≥ 0, because it is a transition probability;

(b′)
∫

dy2w2(y2; t2|y1; t1) = 1, because the system has to go somewhere;

(c′) P(y2; t2) = ∫
W2(y2; t2|y1; t1)dy1 = ∫

w2(y2; t2|y1; t1)P(y1; t1)dy1.

The nth-order transition probability wn(yn; tn| · · · |y1; t1) is defined as the conditional
probability of finding the value yn at time tn given that y had values yn−1, . . . ,y1 at the
respective times tn−1, . . . , t1. We now define a Markov process by the condition

wn(yn; tn| · · · |y1; t1) = w2(yn; tn|yn−1; tn−1) (I.3)

This definition implies that, for a Markov process, the probability of a transition at time
tn−1 from a value yn−1 to a value yn at time tn depends only on the value of y at the time
tn−1 of the transition and not at all on the previous history of the system.

For example, it is easy to see how W3 can be expressed in terms of P and W2. When
we use Eq. (I.3), W3 can be written as

W3(y3; t3|y2; t2|y1; t1) = w2(y3; t3|y2; t2)w2(y2; t2|y1; t1)P(y1; t1)

= w2(y3; t3|y2; t2)W2(y2; t2|y1; t1)

= W2(y3; t3|y2; t2)W2(y2; t2|y1; t1)
P(y2; t2)

(I.4)
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If we use proposition (c) then we may write

W2(y3; t3|y1; t1) =
∫

dy2W3(y3; t3|y2; t2|y1; t1)

=
∫

dy2w2(y3; t3|y2; t2)w2(y2; t2|y1; t1)P(y1; t1)

= w2(y3; t3|y1; t1)P(y1; t1) (I.5)

From Eq.(I.5) we finally get

w2(y3; t3|y1; t1) =
∫

dy2w2(y3; t3|y2; t2)w2(y2; t2|y1; t1) (I.6)

This is an important integral equation for the transition probability and is often taken
as the definition of a Markov process. It is called the Chapman–Kolgomorov equation, or
sometimes the Smoluchowski equation. The physical interpretation of this equation is:
the probability of a transition from y1 at t1 to y3 at t3 can be calculated by taking the
product of the probability of a transition to some value y2 at an intermediate time t2 and
the probability of a transition from that value to the final one at t3 and summing over all
possible intermediate values. Note that nothing is said about the choice of t2, only that it
should be an intermediate time.

In the physical applications that will be of interest to us, the transition probability and
probability density do not depend on the times t1 and t2 at which transitions occur but
only on the time interval t2 − t1. This is the condition of stationarity, which means that
the statistics of the process is invariant to a change of the origin of time or to a translation
in time. Equation (I.6) may then be written

w2(y3|y1; t) =
∫

dy2w2(y3|y2; t − t2)w2(y2|y1; t2) (I.7)

where we have set t1 = 0.

I.1 The Fokker–Planck Equation

Continuous Markov processes occurring in physical systems like the Brownian particle
system are characterized by frequent and small changes in the stochastic variable. When
the changes are small, a differential equation for the distribution function P(y; t) may
be obtained in the following way. We suppose that the changes in the variable occur at
intervals of the order of τc, while the distribution function changes in times of order τr .
If the changes of the variables are very small compared to typical values of the variable,
and if the changes are very rapid, then we may expect the two time scales to be widely
separated; in other words, we may expect that a time τ exists that satisfies the conditions
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τc � τ � τr (I.8)

With this in mind, we may write the Markov integral equation in Eq. (I.7) for a stationary
process as

w2(y|y1; t) =
∫

dy2w2(y2|y1; t − τ)w2(y|y2;τ) (I.9)

or in a slightly more convenient form

w2(y|y1; t + τ) =
∫

dy2w2(y2|y1; t)w2(y|y2;τ) (I.10)

This equation can be said to relate the w2 function at two slightly separated time instants,
both at finite time, with the limiting form of the function for very short times τ . This
function is only non-zero for very small changes in y due to the small time period
of τ . The assumption of small changes in the variable during τ may be exploited by
substituting

y − y2 = �y (I.11)

so

dy2 = −d(�y) (I.12)

Then Eq. (I.10) may be written

w2(y|y1; t + τ) =
∫

d(�y)w2(y − �y|y1; t)w2(y|y − �y;τ) (I.13)

The minus sign in Eq. (I.12) has been absorbed in an inversion of the limits of integration
in Eq. (I.13). Then comes a somewhat “tricky” point. The second w2 function in the
integrand is the limiting form of the function for short times. It expresses the probability
that y will undergo a transition �y in a time interval τ starting from y − �y. It is plausible
that w2 in the short time interval limit is a function of �y, so in order to emphasize this
it is customary to introduce a particular notation, namely

w2(y|y − �y;τ) ≡ w̃2(�y|y − �y;τ) (I.14)

so we may write Eq. (I.13) as

w2(y|y1; t + τ) =
∫

d(�y)w2(y − �y|y1; t)w̃2(�y|y − �y;τ) (I.15)
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One confusion is that y − �y in the argument does not express the �y dependence but
merely the starting point for the transition through �y in the time interval τ . Now the �y
dependence is underlined rather than a y dependence. This also enables us to distinguish
among the two functions, but it is a rather subtle point. w2(y|y1; t + τ) is now expanded
in a Taylor series of powers of τ about w2(y|y1; t); by virtue of the right-hand inequality
in Eq. (I.8) the expansion may be truncated after the first-order term. We also expand
the product in the integrand around w2(y|y1; t)w̃2(�y|y;τ) ≡ w2w̃2 and obtain

w2 + τ
∂w2

∂t
+ ·· · =

∫
d�y

[
w2w̃2 − �y

∂

∂y
(w2w̃2)+ 1

2
(�y)2 ∂2

∂y2 (w2w̃2)

]

= w2 − ∂

∂y
(w2〈�y〉)+ 1

2
∂2

∂y2 (w2〈(�y)2〉)+ ·· · (I.16)

where we have used the normalization condition

∫
d(�y)w̃2(�y|y;τ) = 1 (I.17)

and 〈· · ·〉 is the average of the enclosed variable, conditional upon the given initial value
of y:

〈(�y)n〉 =
∫

d(�y)(�y)nw̃2(�y|y;τ) (I.18)

Division by τ finally gives the equation

∂

∂t
(w2(y|y1; t)) = − ∂

∂y
(A(y)w2(y|y1; t))+ 1

2
∂2

∂y2 (B(y)w2(y|y1; t)) (I.19)

with

A(y) = lim
τ→0

〈�y〉
τ

B(y) = lim
τ→0

〈(�y)2〉
τ

(I.20)

which are the averages of �y and �y2 over the transition probability rates. They will
only be meaningful if the averages are proportional to τ , so there will be no explicit τ

dependence. This is usually the case. Eq. (I.19) is known as the Fokker–Planck equation;
the solutions are the transition probability w2.
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It is easy to see that the probability P(y; t) itself also satisfies a Fokker–Planck equation,
when we use the relation from proposition (c′):

P(y; t) =
∫

dy1w2(y|y1; t − t1)P(y1; t1) (I.21)

which gives the probability at (y; t) when it is known at (y1; t1). Then we find

∂

∂t
P(y; t) =

∫
dy1

∂

∂t
(w2(y|y1; t − t1))P(y1; t1) (I.22)

Substituting the right-hand side of Eq. (I.19), we get

∂

∂t
P(y; t) =

∫
dy1

[
− ∂

∂y
(A(y)w2(y|y1; t − t1))+ 1

2
∂2

∂y2 (B(y)w2(y|y1; t − t1))
]

P(y1; t1)

(I.23)

Now the integration over y1 simply gives P(y; t), so the Fokker–Planck equation for P is

∂

∂t
P(y; t) = − ∂

∂y
(A(y)P(y; t))+ 1

2
∂2

∂y2 (B(y)P(y; t)) (I.24)

with the initial condition P(y;0) = δ(y − y1).
We now specialize the Fokker–Planck equation to the case of Brownian motion in

Section 11.1. In this case, the variable y is the velocity v of the Brownian particle. We
also note that the average of a function of the velocity v at time t, given that v = v0 at
t = t0, is simply expressed in terms of the transition probability by

〈f (v)〉 =
∫

dvf (v)w2(v|v0; t − t0) (I.25)

So, we can therefore immediately use our results obtained from the Langevin equation
in order to evaluate the coefficients A(v) and B(v) in the Fokker–Planck equation. From
Eq. (11.9), we obtain

〈v − v0〉 = v0 exp(−γ�t)− v0

= −γ v0�t + O((�t2))

= −γ (v − a�t)�t + O((�t2))

= −γ v�t + O((�t2)) (I.26)
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where in the third line, v and v0 were related by a first-order expansion in �t. Hence,
from Eq. (I.20),

A(v) = −γ v (I.27)

Similarly, we obtain from Eq. (11.15) that

〈(v − v0)
2〉 = 〈v2〉 + v2

0 − 2〈v〉v0

= kBT
M

+
(

v2
0 − kBT

M

)
(1 − 2γ�t + ·· ·)+ v2

0 − 2v2
0(1 − γ�t · · ·)

= 2γ kBT
M

�t (I.28)

so

B(v) = 2γ kBT
M

(I.29)

The Fokker–Planck equation for the Brownian particle system is then

∂

∂t
P(v; t) = −γ

∂

∂v
(vP(v; t))+ γ

kBT
M

∂2

∂v2 P(v; t) (I.30)

The physical mechanism described by this equation can be understood by starting
at time zero with a velocity distribution sharply peaked at v = v0. As time passes,
the maximum of this distribution is shifted toward smaller velocities, as a result of
a systematic friction undergone by the particles (first term on the right-hand side of
the equation). Furthermore, the peak broadens progressively as a result of diffusion
in velocity space (second term on the right-hand side, which is the velocity space
equivalent of the similar coordinate space term in Fick’s law of diffusion). The final
time-independent distribution reached by the Brownian particle is nothing more than
the familiar Maxwell distribution:

P(v;∞) = C exp(−Mv2/(2kBT)) (I.31)

This is seen by substitution of this distribution into Eq. (I.30), and with ∂P/∂t = 0 at
equilibrium the right-hand side should be identical to zero. This is indeed the case;
we get

− γ C
Mv2

kBT
exp(−Mv2/(2kBT))+ Cγ exp(−Mv2/(2kBT))

+ γ C
Mv2

kBT
exp(−Mv2/(2kBT))− γ C exp(−Mv2/(2kBT)) = 0

(I.32)
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The picture offered by the Fokker–Planck equation is, of course, in complete agreement
with the Langevin equation and the assumptions made about the process. If we can solve
the partial differential equation, we can determine the probability density or eventually
the transition probabilities at any time and thereby determine any average value of
functions of v by simple quadratures.

I.2 The Chandrasekhar Equation

The idea in Kramers theory is to describe the motion in the reaction coordinate as that of
a one-dimensional Brownian particle and in that way include the effects of the solvent on
the rate constants. In Section I.1 we have seen how the probability density for the velocity
of a Brownian particle satisfies the Fokker–Planck equation that must be solved. Before
we do that, it will be useful to generalize the equation slightly to include two variables
explicitly, namely both the coordinate r and the velocity v, since both are needed in order
to determine the rate constant in transition-state theory.

For the Markovian random process (r,v), the integral equation Eq. (I.15) can be
written

w2(r,v|r1,v1; t + τ) =
∫∫

d(�r)d(�v)w2(r − �r,v − �v|r1,v1; t)

× w̃2(�r,�v|r − �r,v − �v;τ)

(I.33)

τ is, as before, long compared to the time scale of molecular fluctuations but short
compared to the decay time of the particle velocity, so �v and �r are small. Indeed,
�r is not independent and may be written as

�r = vτ (I.34)

so the �r dependence in w̃2 can be pulled out into a delta function as follows:

w̃2(�r,�v|r − �r,v − �v;τ) = δ(�r − vτ)ŵ2(�v|v − �v;τ) (I.35)

Integration of Eq. (I.33) with respect to d(�r) gives

w2(r,v|r1,v1; t + τ) =
∫

d(�v)w2(r − vτ ,v − �v|r1,v1; t)ŵ2(�v|v − �v;τ) (I.36)

As before, we now expand the left-hand side about t and the integrand in a Taylor series
about w2(r,v|r1,v1; t)ŵ2(�v|v;τ), and obtain
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w2 + τ
∂

∂t
(w2) =

∫
d(�v)

[
w2ŵ2 − (�v)

∂

∂v
(w2ŵ2)

+1
2
(�v)2 ∂2

∂v2 (w2ŵ2)− vτ
∂

∂r
(w2ŵ2)

]

= w2 − vτ
∂

∂r
(w2)− ∂

∂v
(〈�v〉w2)+ 1

2
∂2

∂v2 (〈(�v2)〉w2) (I.37)

with

〈(�v)n〉 =
∫

d(�v)(�v)nŵ2(�v|v;τ) (I.38)

and

∫
d(�v)ŵ2(�v|v;τ) = 1 (I.39)

From this, the version of the Fokker–Planck equation for the transition probability density
with two variables r and v is seen to be

∂

∂t
(w2(r,v|r1,v1; t))+ v

∂

∂r
(w2(r,v|r1,v1; t))

= − ∂

∂v
(A(v)w2(r,v|r1,v1; t))+ 1

2
∂2

∂v2 (B(v)w2(r,v|r1,v1; t))
(I.40)

with

A(v) = lim
τ→0

〈�v〉
τ

B(v) = lim
τ→0

〈(�v)2〉
τ

(I.41)

The probability density P(r,v; t) also satisfies a Fokker–Planck equation. This was shown
in Eq. (I.24) with one stochastic variable, and similarly we find in this case

∂P(r,v; t)
∂t

+ v
∂P(r,v; t)

∂r
= − ∂

∂v
(P(r,v; t)A(v))+ 1

2
∂2

∂v2 (P(r,v; t)B(v)) (I.42)

As before, 〈�v〉 and 〈(�v)2〉 may be determined from the Langevin equation. It differs
slightly from the Langevin equation in Eq. (11.5), since the motion takes place in a
potential U (r), as sketched in Fig.11.0.2. This is the potential from the gas phase
modified by the interactions from the solvent molecules.
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So the Langevin equation for this problem may be written

dv
dt

= −γ v − 1
M

(
∂U (r)

∂r

)
+ F(t) (I.43)

From this equation we can determine �v and (�v)2 using the separation in time scales
indicated in Eq. (I.8). We obtain

�v =
∫ t+τ

t
dt′ dv

dt′
= −

[
γ v + 1

M

(
∂U (r)

∂r

)]
τ +

∫ t+τ

t
dt′F(t′) (I.44)

and therefore

(�v)2 = −
[
γ v + 1

M

(
∂U (r)

∂r

)]
τ

∫ t+τ

t
dt′F(t′)

+
∫ t+τ

t
dt1

∫ t+τ

t
dt2F(t1)F(t2)+ O(τ2)

(I.45)

Hence,

〈�v〉 = −
[
γ v + 1

M

(
∂U (r)

∂r

)]
τ (I.46)

and

〈(�v)2〉 = f τ + O(τ2) (I.47)

where f is given by Eq. (11.14).
These results are now used to determine A(v) and B(v) in Eq. (I.41). We find

A(v) = −γ v − 1
M

(
∂U (r)

∂r

)
(I.48)

which is different from before, and

B(v) = 2γ kBT
M

(I.49)

which is the same as before. These relations are introduced into Eq. (I.42) and we get
the Fokker–Planck equation, sometimes also called the Chandrasekhar equation, for the
position and velocity of a particle:
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∂P(r,v; t)
∂t

= −v
∂P(r,v; t)

∂r
+ 1

M
∂U
∂r

∂P(r,v; t)
∂v

+ γ
∂

∂v
(vP(r,v; t))+ γ kBT

M
∂2P(r,v; t)

∂v2

(I.50)

It describes the diffusion of a point in phase space for a one-dimensional Brownian
particle and is used in Kramers theory.

Further reading/references

[1] N.G. van Kampen, Stochastic processes in physics and chemistry (North-Holland, 1981).
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J

Multidimensional Integrals, Monte
Carlo Method

The Monte Carlo method is a very powerful numerical technique used to evaluate
multidimensional integrals in statistical mechanics and other branches of physics and
chemistry. It is also used when initial conditions are chosen in classical reaction dynamics
calculations, as we have discussed in Chapter 4. It will therefore be appropriate here to
give a brief introduction to the method and to the ideas behind the method.

From Appendix B on statistical mechanics we have seen that the thermodynamic
average value of an observable A is given by the expression

〈A 〉 =
∫

dpdqA(p,q)exp(−H(p,q)/kBT)∫
dpdq exp(−H(p,q)/kBT)

(J.1)

In a system with N atoms there are 3N momenta p and position coordinates q, so the
integrals are 6N-dimensional. A(p,q) is an observable depending on the coordinates
and momenta of the atoms and H(p,q) is the Hamiltonian of the system. Since the
kinetic energy term in H is quadratic in the momenta, the integration over momenta
can be carried out analytically. Hence, averages of functions that depend on momenta
only are usually easy to evaluate. The very difficult problem is the computation of
averages of functions depending on the positions q. Except for a few special cases, it
is impossible to compute the 3N-dimensional configurational integral analytically, and
numerical techniques must be used.

The most straightforward approach may appear to be an evaluation of the integrals by
numerical quadrature, for instance using Simpson’s rule. It is, however, easy to see that
such a method quickly becomes hopeless to use. Suppose, for example, that we consider
a system with N atoms. Let us assume that we take m equidistant points along each of the
3N Cartesian axes. The total number of points at which the integrand must be evaluated
is then equal to m3N . For all but the smallest systems this number becomes very large,
even for small values of m. For instance, if we take m = 5 in a system with 100 atoms,
then we need to evaluate the integrand at 5300 = 10210 points! This clearly demonstrates
that better numerical techniques are needed to compute thermal averages. One such

Theories of Molecular Reaction Dynamics. Second Edition. Niels E. Henriksen and Flemming Y. Hansen, Oxford University
Press 2019. © Niels E. Henriksen and Flemming Y. Hansen. DOI: 10.1093/oso/9780198805014.001.0001



436 Multidimensional Integrals, Monte Carlo Method

technique is the Monte Carlo method or, more precisely, the Monte Carlo importance
sampling algorithm introduced by Metropolis et al. in 1953 [1], when simulating the
neutron flux in the core of nuclear reactors.

J.1 Random Sampling and Importance Sampling

The Monte Carlo method includes both a random sampling scheme and an importance
sampling scheme. Both sampling schemes have been used in Section 4.1 on classical
trajectory calculations.

Let us first look at the simple random sampling scheme. Suppose we want to evaluate
the one-dimensional integral

S =
∫ b

a
dx f (x) (J.2)

A simple quadrature scheme for evaluating this integral may look like

S =
∫ b

a
dx f (x)

� b − a
L

L+1∑

i=1

f (a + (i − 1) ∗ (b − a)/L)

= (b − a)

∑L+1
i=1 f (a + (i − 1) ∗ (b − a)/L)

L
≡ (b − a)〈f 〉 (J.3)

where the x-axis is divided into L equidistant intervals �x of magnitude (b − a)/L. The
integral is determined as the product sum of �x and f evaluated at L x values. Division
of the sum by L, as in the last part of Eq. (J.3), gives a simple average 〈f 〉 of f (x) in the
interval [a,b], where each point has the same weight, 1/L.

In brute force Monte Carlo, this average is determined by evaluating f (x) at a large
number, say L, of x values randomly distributed in the interval [a,b]. This is equivalent
to giving each x value the same weight in the summation, just like in the average in
Eq. (J.3). No x values are preferred to others, and in the limit as L → ∞ there will be the
same number of x values in each interval, no matter where the interval is chosen between
a and b. Hence, an estimate of the integral may be found from

S � (b − a) ∗ 1
L

L∑

i=1

f (xi) (J.4)

However, like conventional quadrature, this method is of little use for the evaluation of
averages such as in Eq. (J.1) because most of the computing is spent at points where the
Boltzmann factor is negligible and the integrand is therefore very close to being zero.
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Obviously, it would be more preferable to sample many points in regions where the
Boltzmann factor is larger than zero. This is the basic idea behind importance sampling.

That is, instead of sampling the independent variable x in Eq. (J.2), and position coor-
dinates q in Eq. (J.1), as in brute force Monte Carlo, we should choose the independent
variables according to some distribution function so we preferably sample regions of the
variables, where the integrand has non-zero values rather than regions where it essentially
is equal to zero and therefore does not give a contribution to the integral.

Let us begin with the one-dimensional case in Eq. (J.2). Suppose we want to com-
pute the definite integral by Monte Carlo importance sampling with sampling points
distributed non-uniformly over the interval [a,b], according to some non-negative
normalized probability density w(x), that is,

∫ b

a
dxw(x) = 1 (J.5)

Clearly, we may multiply and divide the integrand by w(x), and thereby rewrite the
integral in the form

S =
∫ b

a
dxw(x)

f (x)

w(x)
(J.6)

Let us now assume that there exists a function u(x) satisfying the relation

du = w(x)dx (J.7)

with u(b)− u(a) = 1, such that w(x) is normalized as expressed in Eq. (J.5). It is not always
possible to find such a function u, as we shall see below, but for the moment we assume
that it is possible. Then the integral can be written as

S =
∫ u(a)+1

u(a)

du
f (x(u))

w(x(u))
(J.8)

In Eq. (J.8) we have written x(u) to indicate that, if we consider u as the integration
variable, then x must be expressed as a function of u by inverting the relation u = u(x).
The expression in Eq. (J.8) is now similar to the expression in Eq. (J.3) and may be
evaluated by generating L random numbers ui of u in the interval [u(a),u(a)+ 1]. We
then obtain the following estimate of the integral in Eq. (J.4):

S � 1
L

L∑

i=1

f (x(ui))

w(x(ui))
(J.9)

An obvious question now is, what have we gained by rewriting the integral in Eq. (J.2) in
the form of Eq. (J.8)?
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To see this, let us form the variance σ 2 of the estimate of the integral. We find

σ 2 = 1
L2

L∑

i=1

L∑

j=1

〈(
f (x(ui))

w(x(ui))
−

〈
f
w

〉)(
f (x(uj))

w(x(uj))
−

〈
f
w

〉)〉
(J.10)

Here, the bracket 〈· · ·〉 denotes the true average as obtained for L → ∞. Since the
different samples i and j are random and therefore statistically independent, all cross
terms between i and j vanish when we evaluate the expression in Eq. (J.10). It may
therefore be written

σ 2 = 1
L2

L∑

i=1

〈(
f (x(ui))

w(x(ui))
−

〈
f
w

〉)2
〉

= 1
L

[〈(
f
w

)2
〉

−
〈

f
w

〉2
]

(J.11)

This shows that the variance behaves as 1/L, and becomes smaller for large L. However,
we may reduce the variance significantly, for a given L, by a proper choice of w. For
instance, if w is proportional to f , w = af , then f /w is a constant and the variance will
be zero. This is the ideal situation, but if we choose a w such that the ratio f /w will be a
smoothly varying function, we may still get a very small variance. In contrast, if w(x) is
chosen constant, as in brute force Monte Carlo sampling, there may be large fluctuations
in the ratio f /w, which is equivalent to a poor determination of the integral.

This becomes even more clear when we consider the multidimensional integrals
encountered in statistical mechanics. Then only a very small fraction of the points in
phase space are accessible, that is, correspond to states with a non-zero Boltzmann factor.
So, even if L is very large, only ρL of the points will be in such a region corresponding to a
sampling of the function with only ρL points, and thus a variance that behaves as 1/(ρL)

rather than 1/L. Here, ρ is the fraction of points in phase space accessible to the system.
The variance in a random sampling may indeed be very large when it is observed that for
a liquid of 100 atoms it has been estimated that the Boltzmann factor will be non-zero
for 1 out of about 10260 points in phase space, that is, ρ = 10−260.

Hence, it would clearly be advisable to carry out a non-uniform Monte Carlo
importance sampling of configuration space with a w approximately proportional to the
Boltzmann factor.

Unfortunately, the simple importance sampling as described here cannot be used to
sample multidimensional integrals over configuration space as in Eq. (J.1). The reason
is that we do not know how to construct the transformation in Eq. (J.7) that will enable
us to generate points in configuration space with a probability density as given by the
Boltzmann factor. In fact, in order to do so, we must be able to compute analytically the
partition function of the system. If we could do that, there would hardly be any need for
computer simulations!
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In many cases in statistical mechanics, we are not interested in the configurational part
of the partition function itself, but in averages of the type in Eq. (J.1), where the ratio
between integrals is involved. Metropolis et al. [1] showed that it is possible to devise
an efficient Monte Carlo scheme to sample such a ratio even when we do not know the
probability density P(q) in configuration space:

P(q) = exp(−H(q)/kBT)∫
dq exp(−H(q)/kBT)

(J.12)

but only know the numerator in Eq. (J.12), that is, the relative probability density of the
various regions in phase space.

Further reading/references

[1] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.N. Teller, and E. Teller, J. Chem. Phys.
21, 1087 (1953).
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