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363 Foundations of computational mathematics, Hong Kong 2008, F. CUCKER, A. PINKUS & M.J. TODD (eds)
364 Partial differential equations and fluid mechanics, J.C. ROBINSON & J.L. RODRIGO (eds)
365 Surveys in combinatorics 2009, S. HUCZYNSKA, J.D. MITCHELL & C.M. RONEY-DOUGAL (eds)
366 Highly oscillatory problems, B. ENGQUIST, A. FOKAS, E. HAIRER & A. ISERLES (eds)
367 Random matrices: High dimensional phenomena, G. BLOWER
368 Geometry of Riemann surfaces, F.P. GARDINER, G. GONZÁLEZ-DIEZ & C. KOUROUNIOTIS (eds)
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INTRODUCTION

Groups St Andrews 2013 was held at the University of St Andrews from 3rd Au-
gust to 11th August 2013. This was the ninth in the series of Groups St Andrews
group theory conferences organised by Colin Campbell and Edmund Robertson of the
University of St Andrews. There were just under 200 mathematicians from over 20
countries involved in the meeting as well as some family members and partners. The
Scientific Organising Committee of Groups St Andrews 2013 (all from St Andrews)
was Colin Campbell, Max Neunhö↵er, Martyn Quick, Edmund Robertson and Colva
Roney-Dougal.

This time the academic business of the conference ran for seven days from Sunday
4th August to Saturday 10th August. Four main speakers delivered four talks each,
surveying areas of contemporary development in group theory and related areas; Em-
manuel Breuillard (Université Paris Sud 11), Martin Liebeck (Imperial College), Alan
Reid (University of Texas), and Karen Vogtmann (Cornell University). There were
five invited speakers delivering one-hour plenary talks: Peter Cameron (St Andrews),
Radha Kessar (City University, London), Markus Lohrey (Universität Leipzig), Derek
Robinson (University of Illinois at Urbana-Champaign) and Christopher Voll (Uni-
versity of Bielefeld). In addition there were nearly 100 contributed short talks from
the delegates.

In the evenings throughout the conference there was an extensive social programme.
The main conference outing was to the Royal Burgh of Falkland either to visit Falk-
land Palace or, as it turned out, to go on an adventure walk in the Lomond Hills.
Other highlights of the social programme were a whisky tasting evening, a musical
evening and the conference banquet. Once again T˙ Daily Group T˙ori< was a nice
feature of the conference. We thank the various editors of this, by now traditional,
publication.

The support of the two main United Kingdom mathematics societies, the Edin-
burgh Mathematical Society and the London Mathematical Society has, once again,
been an important factor in the success of these conferences. As well as support-
ing some of the expenses of the main speakers, the grants from these societies were
used to support postgraduate students and also participants from Scheme 5 and fSU
countries.

Once again all the main speakers have written substantial articles for these Pro-
ceedings. The majority of the other papers are of a survey nature. Regretably we
have been limited to one volume so that, even more than has been the case in the
past, we have been forced to exclude many worthwhile papers.

We would like to thank Martyn Quick and Colva Roney-Dougal not only for their
editorial assistance with these Proceedings but also, along with Max Neunhö↵er, for
all their hard work in organising the conference.

CMC, EFR





APPROXIMATE SUBGROUPS AND SUPER-STRONG
APPROXIMATION

EMMANUEL BREUILLARD

Laboratoire de Mathématiques, Bâtiment 425, Université Paris Sud 11, 91405 Orsay, France

Email: emmanuel.breuillard@math.u-psud.fr

Abstract

Surveying some of the recent developments on approximate subgroups and super-
strong approximation for thin groups, we describe the Bourgain-Gamburd method
for establishing spectral gaps for finite groups and the proof of the classification of
approximate subgroups of semisimple algebraic groups over finite fields. We then give
a proof of the super-strong approximation for mod p quotients via random matrix
products and a quantitative version of strong approximation. Some applications to
the group sieve are also presented. These notes are based on a series of lectures given
at the 2013 Groups St Andrews meeting.

1 Introduction

In the early 1980’s Matthews-Vaserstein-Weisfeiler [69], and then Nori [72] and We-
isfeiler [101] (independently) proved the following theorem:

Theorem 1.1 (Strong-approximation theorem) Suppose G is a connected, sim-
ply connected, semisimple algebraic group defined over Q, and let � 6 G(Q) be a
finitely generated Zariski-dense subgroup. Then for all su�ciently large prime num-
bers p, the reduction �p of � is equal to Gp(Fp).

For example, if � 6 SLn(Z) is a finitely generated Zariski dense subgroup, then
�p = SLn(Z/pZ) for all large enough prime numbers p. When p is large enough, the
algebraic group G (viewed as a closed subgroup of some GLn) admits a smooth reduc-
tion defined over Fp, which we denote by Gp. Since � is finitely generated, there are
finitely many primes p

1

, . . . , pk (appearing in the denominators of the matrix entries
of S) such that � belongs to G(Z[1/p

1

, . . . , 1/pk]) := G\GLn(Z[1/p1, . . . , 1/pk]), and
the reduction modulo p map is well-defined on this subgroup if p is large enough.

The result fails if G is not simply connected (e.g., the image of SL
2

(Z) in PGL
2

(Fp)
has index 2 when p > 2). However every connected absolutely almost simple algebraic
group admits a simply connected finite cover to which we can lift � and apply the
theorem. This yields that [Gp(Fp) : �p] is nevertheless always bounded (for p large)
by a constant depending only on G (one can take 1+ rank(G), see [72, Remark 3.6]).

A similar result holds for groups defined over number fields instead of Q. Its proof
reduces to the case of Q by suitable restriction of scalars. See Remark 6.4 below (see
also [101]).

That the result holds when � is an S-arithmetic group � = G(Z[1/p
1

, . . . , 1/pm])
was known much earlier by work of Kneser [49] and Platonov [74] in particular. See
[75, Chapter 7]) and [82].
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Theorem 1.1 is then of particular interest when the group � is not a full S-arithmetic
subgroup of G but has infinite index in one of them, while still remaining Zariski dense
in G (S-arithmetic subgroups are Zariski dense by the Borel density theorem). Such
a group is called a thin subgroup of G in recent terminology due to Peter Sarnak [91].

What we call super-strong approximation is the fact stated in Theorem 1.2 below
that � not only surjects onto Gp(Fp) for p large but that the associated Cayley graphs
of Gp(Fp) form a family of expanders. The goal of these notes is to give a proof of
this fact, give some applications, and introduce the reader to the various techniques
used in the proof.

It is of course not the purpose of this survey to give a complete introduction to
expander graphs and for that matter we refer the reader to the many sources on the
subject starting with Lubotzky’s monograph [61] and survey [63] (see also [38] and
[51, 96, 10]). Let us simply recall that to every finite k-regular graph G is associated a
combinatorial Laplace operator acting on the (finite dimensional) space of functions
on the vertices of the graph. It is defined by the formula

�f(x) = f(x)� 1

k

X

y⇠x

f(y),

where y ⇠ x is a vertex connected to x by an edge. This operator is symmetric and
non-negative. Its eigenvalues are real and non-negative. The eigenvalue 0 comes with
multiplicity one if the graph is connected and the first nonzero eigenvalue is denoted
by �

1

(G) and satisfies:

�
1

(G) = inf{h�f, fi, kfk
2

= 1,
X

x

f(x) = 0}. (1.1)

An infinite family of k-regular graphs (Gn)n>1

is said to be a family of expanders
if there is " > 0 such that for all n > 1,

�
1

(Gn) > ".

We are now in a position to state the following strengthening of Theorem 1.1.

Theorem 1.2 (Super-strong approximation) Suppose G is a connected, simply
connected, semi-simple algebraic group defined over Q, and let � 6 G(Q) be a Zariski-
dense subgroup generated by a finite set S. Then there is " = "(S) > 0 such that for
all large enough prime numbers p, the reduction �p of � is equal to Gp(Fp) and the
associated Cayley graph Cay(Gp(Fp), Sp) is an "-expander.

Here Sp is the image of S by reduction modulo p. As before, the result also holds
if G is not assumed to be simply connected, but �p may then only be a subgroup of
Gp(Fp) whose index is nevertheless bounded independently of p, while Cay(�p, Sp)
remains an "-expander.

This theorem is a special case of a result due to Salehi-Golsefidy and Varjú [87],
which asserts that the conclusion also holds for quotient modulo a square free inte-
ger and even when the connected algebraic group G is only assumed to be perfect.
Their proof follows the so-called Bourgain-Gamburd expansion machine, which can
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be implemented in this context in part thanks to the recent results on approximate
subgroups of linear groups due to Pyber-Szabó [80] and Breuillard-Green-Tao [19].

In these notes we describe the Bourgain-Gamburd method as well as the above
mentioned results on approximate subgroups and finally give a complete proof of
Theorem 1.2 (i.e., of super-strong approximation for mod p quotients) following a
somewhat alternate route than in [87] by use of random matrix products [15].

1.1 The Lubotzky alternative and its expander version

One can formulate a version of the strong approximation theorem, which is valid
for every finitely generated subgroup of GLd(k), where k is an arbitrary field of
characteristic zero (one can also deal with the positive characteristic case thanks to the
work of Pink [73], however no super-strong version is known in positive characteristic
thus far). When the group � = hSi we start with is non virtually solvable, one can
show that there is a non trivial connected and simply connected semisimple algebraic
group G defined over Q and a group homomorphism from a finite index subgroup of
� into G(Q) with a Zariski-dense image (see [68, Prop. 16.4.13] and the discussion
that follows). This allows to then apply the strong-approximation theorem 1.1 and
deduce that �

0

admits Gp(Fp) as a quotient for almost all p.
This information was used in a key way by Lubotzky and Mann in their work on

subgroup growth [64]. For this version of strong approximation, called the Lubotzky
alternative, we refer the reader to the notes devoted to it and its various refinements
in the book by Lubotzky and Segal on subgroup growth ([68, 16.4.12], see also [48]).
Strengthened by the super-strong approximation theorem, this gives the following
statement:

Theorem 1.3 (Lubotzky super-alternative) Let S be a finite symmetric subset
of GLd(k), where k is a field of characteristic zero. Then the subgroup � = hSi
generated by S contains a subgroup �

0

whose index m in � is finite and bounded in
terms of d only, such that

• either the subgroup �
0

is solvable,

• or there is a connected, simply connected, semisimple algebraic group G de-
fined over Q, such that for all large enough primes p 2 N, there is a surjec-
tive group homomorphism ⇢p from �

0

to Gp(Fp) such that the Cayley graph
Cay(Gp(Fp), ⇢p(S0

)) is an "-expander, for some " > 0 independent of p, where
S
0

is a subset of S2m generating �
0

.

Note that given a group � generated by a symmetric set S, then every subgroup
of finite index �

0

is finitely generated by a symmetric subset contained in S2m�1, if
m is the index of �

0

in � (e.g., see [19, Lemma C.1]).
A version of Theorem 1.3 for a bounded number of primes is also true: given large

enough distinct primes p
1

, . . . , pk, the Cayley graphs Cay(G(Fp1)⇥. . .⇥G(Fpk), (⇢p1⇥
. . .⇥⇢pk)(S)) are "-expanders for a uniform " > 0 independent of the number of primes
k. We will prove this stronger version only with an " depending on k (but not on
the choice of k primes). See Theorem 6.3 below. One needs the works of Varjú [100]
and Salehi-Golsefidy-Varjú [87] to get this uniformity in the number of primes, but
the proof is rather more involved. Note that at any case " depends on S and it is an
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open question whether this dependence can be removed (see [16] for partial results in
this direction).

1.2 The group sieve method

Knowing that the finite quotients Cayley graphs are expanders is a very useful infor-
mation for a number of applications to group theory and number theory, in particular
it is the basis of the so-called Group Sieve, pioneered by Kowalski [52, 53], Rivin [83],
and Lubotzky-Meiri [65, 66] and of the A�ne Sieve of Bourgain-Gamburd-Sarnak [7].
See [50] and [55] for two nice expositions.

Roughly speaking, the expander property allows one to give very good bounds on
the various error terms that appear when sieving modulo primes. In these notes,
we will give a general statement, the group sieve lemma (Lemma 7.3 below), due
to Lubotzky and Meiri, which allows to show that a subset Z of a given finitely
generated linear group is exponentially small, provided its reduction modulo p does
not occupy too large a subset of the quotient group for many primes p. For this
version of the group sieve, expansion for pairs of primes is su�cient (i.e., we need that
G(Fp1)⇥G(Fp2) expands for p1 6= p

2

), so our version of the Lubotzky super-alternative
above will be enough. Expansion for all square free moduli is necessary however,
and sometimes crucial, in other situations, such as in the A�ne Sieve pioneered by
Bourgain-Gamburd-Sarnak [7] and further developed by Salehi-Golsefidy-Sarnak [86],
Bourgain and Kontorovich [9] and others.

The conclusion of the super-strong approximation theorem (Theorem 1.2) can be
reformulated in the following way: there is " > 0 depending only on the generating
set S such that for every real valued function f on the group Gp(Fp), such thatP

x2Gp(Fp)
f(x) = 0 and kfk2`2 =

P
x2Gp(Fp)

|f(x)|2 = 1,

h�f, fi > ",

where

h�f, fi = 1

2k

X

s2S
ks · f � fk2`2 =

1

2k

X

s2S

X

x2Gp(Fp)

|f(s�1x)� f(x)|2.

Let Sp = {s
1

, . . . , sk} be the image of S under the reduction modulo p map and µSp

be the uniform probability measure on Sp, assigning equal mass 1/k (= 1/|S| for p
large enough) to each element of Sp.

µSp :=
1

k
(�s1 + · · ·+ �sk)

Note that µSp = Id �� as operators on `2(Gp(Fp)), and hence its operator norm
on `2

0

(Gp(Fp)), the orthogonal of constants, satisfies:

kµSp |`20k < 1� "

It is in this form that the theorem is used in its applications to the group sieve
method. For example it allows Lubotzky and Meiri [65] to establish the following
result about the scarcity of proper powers in non virtually solvable linear groups. A
group element is called a proper power if it is of the form gn for some integer n > 2
and some other group element g (from the same group).
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Theorem 1.4 (Lubotzky-Meiri [65]) Let � 6 GLd(C) be a finitely generated sub-
group and let µS be the uniform probability measure on a finite symmetric generating
S. Assume that � is not virtually solvable. Then the set P

�

of proper powers in � is
exponentially small in the sense that there is c = c(S) > 0 such that for every n 2 N,

µn
S(P�

) 6 e�cn.

Here µn
S is the n-th convolution power of the probability measure µS on �. Equiv-

alently, it is the distribution at time n of the simple random walk starting at the
identity on the associated Cayley graph Cay(�, S). Or more explicitly:

µn
S(P�

) = Pw2Wn,k
(P

�

) :=
|{w, |w| = n,w 2 P

�

}|
|{w, |w| = n}| ,

where Wn,k is the set of (non reduced!) words w of length |w| = n in the formal
alphabet made of letters from the set S, and w its value as a group element when
computed inside �. One can analogously count reduced words of length n in the free
group and get the same result, but we note in passing that obtaining a result of this
kind for the average with respect to the word metric on � induced by S seems out of
reach at the moment, because little is known about the balls for the word metric on
a group of exponential growth.

1.3 On the proof of the super-strong approximation theorem

Theorem 1.2 was first proved in the special case of subgroups of SL
2

(Z) in a remarkable
breakthrough by Bourgain and Gamburd [5]. They deduced the expansion by showing
that the simple random walk on the finite quotient SL

2

(Z/pZ) must equidistribute
very fast, indeed after only O(log p) steps. In doing so they reversed the traditional
way of looking at things: traditionally spectral gaps estimates were proven by other
methods (e.g., representation theory, property (T ), etc.) and were then used to prove
fast equidistribution of random walks. Bourgain and Gamburd reversed this order,
first proving equidistribution and then deducing the gap (see Proposition 3.3 below
for the equivalence between spectral gap and fast equidistribution).

This idea can be traced back to the seminal work of Sarnak and Xue [92], which
gave a new, softer, approach toward Selberg’s 3/16 theorem (i.e., the first eigenvalue
of the Laplace operator on quotients of the hyperbolic plane by congruence subgroups
of SL(2,Z) is at least 3/16, see [93]). They exploited, via the trace formula, the high
multiplicity of the spectrum coming from the (p�1)/2 lower bound on the dimension
of the smallest non trivial complex representation of SL

2

(Fp) (this bound goes back
to Frobenius) and a soft combinatorial upper bound on the number of lattice points
in a ball of radius roughly log p. We refer the reader to the expository papers of P.
Sarnak [90, 89], where this method and its history (in particular the role of Bernstein
and Kazhdan) is described.

In his thesis [29] Gamburd pursued this method and established the first spectral
gap result valid for thin groups: he showed that if a finitely generated subgroup � of
SL

2

(Z) is large enough in the sense that the Hausdor↵ dimension of its limit set on
P1(R) is at least 5

6

, then the spectrum of the associated (infinite volume) quotients
of the hyperbolic plane modulo the congruence subgroups �p := � \ ker(SL

2

(Z) !
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SL
2

(Z/pZ)) admits a uniform lower bound independent of p. In turn the resulting
Cayley graphs of SL

2

(Z/pZ) are expander graphs.
Bourgain and Gamburd [5] pushed the method even further to implement it for all

Zariski-dense subgroups of SL
2

(Z) with no restriction on the limit set. The structure
of their proof retained the same patterns, playing the high multiplicity lower bound
against a combinatorial upper bound via the trace formula applied to convolution
powers of a fixed probability measure on the generating set. Achieving this combi-
natorial upper bound is the gist of their work: they brought in an important graph
theoretic result (the Balog-Szemerédi-Gowers lemma, a parent of the celebrated Sze-
merédi regularity lemma) revisited in this context by Tao [97] to show that convolution
powers of probability measures decay in `2 norm (the so-called `2-flattening) unless
the measure charges significantly a certain approximate subgroup. That there exists
no interesting approximate subgroup of SL

2

(Fp) was established for this purpose by
Helfgott [36]. The combinatorial upper bound (on the probability of return to the
identity of the simple random walk at time roughly log p), and hence the spectral gap,
then reduces to establishing a certain non concentration estimate on subgroups for
random walks on SL

2

(Z) (see Theorem 5.1), which in this case can easily be deduced
from Kesten’s theorem [47].

This new method became known as the Bourgain-Gamburd expansion machine
(see, e.g., the papers [20, 22] as well as the forthcoming book [96]). Its scope goes
beyond SL

2

(Fp) and, quite remarkably, it can potentially be applied to any finite
group (see Proposition 3.1 for a precise formulation of the method and its ingredients).
It was understood early on that the scheme of the proof in [5] was general enough that
it could be made to work in the general setting of Theorem 1.2, provided one could
establish each step in the right generality. The bounds on the dimension of complex
representations are well-known thanks to classical work of Landazuri-Seitz [57]. The
graph theoretic lemma needs no modification in the general setting. The remaining
two items however require deeper consideration. The classification of approximate
groups, first established by Helfgott for SL

2

(Fp) and SL
3

(Fp), was finally completed
in the general case by Pyber and Szabó [80] and independently by Breuillard-Green-
Tao [19]. Regarding the upper bounds on the probability of hitting a subgroup,
there are two known ways to achieve them. The first is to use the theory of random
matrix products, and this was done in subsequent work of Bourgain-Gamburd [6],
but only in the special case of subgroups of SLn(Z), because the estimates from the
theory of random matrix products required to deal with the general case were lacking.
The second consists in applying a ping-pong argument akin to the proof of the Tits
alternative [99], and this was performed by Varjú in his thesis [100] and subsequently
by Salehi-Golsefidy and Varjú in their joint work [87], in which they establish Theorem
1.2 in full generality.

In the remainder of these notes we will prove Theorem 1.2 following each of these
steps very closely. The only novelty in our proof lies in the last step: thanks to
[15], we now understand how to use random matrix products to prove in the desired
generality the required upper bounds for the probability of hitting a subgroup (the
non-concentration estimates). This approach is somewhat more direct than the one
taken by Salehi-Golsefidy and Varjú in [87], and it is very close to what Green, Tao
and I had in mind, when we announced a proof of Theorem 1.2 in [18, Theorem 7.3]
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in the special case of absolutely simple groups over Z, but never came to the point of
writing it up in full.

As already mentioned Salehi-Golsefidy and Varjú [87] actually proved a strong
version of Theorem 1.2 showing the expansion property also for the quotients modulo
a square free integer, and assuming only that G is perfect (which is also a necessary
condition for expansion). See Theorem 6.5 below. That strong version is crucial for
certain applications to sieving in orbits (à la Bourgain-Gamburd-Sarnak [7]), but its
proof is much more involved. Often it is enough to have Theorem 1.2, or its extension
to two or a bounded number of primes, which is not more costly. That will be the case
for the applications presented in this paper. This, I thought, was enough justification
for writing a complete proof of super-strong approximation for prime moduli in one
place.

1.4 Outline of the article

In Section 2 we present a proof of the strong approximation theorem of Matthews,
Vassertein and Weisfeiler following Nori’s proof. Our treatment yields a quantitative
version in the sense that it gives a upper bound on the first p for which the surjectivity
of the reduction mod p holds in terms of the height of the generating set. Section 3 is
devoted to the Bourgain-Gamburd machine: we state very general conditions on the
Cayley graph of an arbitrary finite group that are su�cient to establish a spectral gap.
Section 4 is devoted to approximate subgroups of linear groups over finite fields. We
prove there the theorem of Pyber-Szabó and Breuillard-Green-Tao. In Section 5 we
discuss random matrix products and a general non-concentration on subgroups result
for random walks on linear groups. Finally in Section 6 we combine the results of
the preceding three sections to complete the proof of the super-strong approximation
theorem in the case of mod p quotients (Theorems 1.2 and 6.3). The final section
is devoted to applications to the group sieve method and results of Aoun, Jouve-
Kowalski-Zywina, Lubotzky-Meiri, Lubotzky-Rosenzweig and Prasad-Rapinchuk on
generic properties elements in non virtually solvable linear groups.

2 Nori’s theorem and a quantitative version of strong approximation

It was Matthews, Vaserstein and Weisfeiler [69] who first proved the strong approxi-
mation theorem for Zariski-dense subgroups, i.e., Theorem 1.1, in the case when G is
absolutely simple. Their proof made use of the (brand new at the time) classification
of finite simple groups. Another, classification-free proof was found roughly at the
same time and independently by M. Nori, yielding also the case G semisimple, as a
consequence of the following general result proved in [72].

Theorem 2.1 (Nori [72]) Let H be a subgroup of GLn(Fp), and H+ the subgroup
generated by its elements of order p. If p is larger than some constant c(n) depending
only on n, then there is a connected algebraic subgroup eH of GLn defined over Fp

such that H+ coincides with eH(Fp)+. Moreover there is a normal abelian subgroup
A 6 H such that [H : AH+] is bounded in terms of n only.

Observe that if p > n, then elements of order p in GLn(Fp) are precisely the
unipotent matrices: indeed xp = 1 is equivalent to (x� 1)p = 0 for x 2 GLn(Fp) and
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hence to x = 1 + n, where n is a nilpotent matrix. As Nori explains in [72, Remark
3.6.], the index of eH(Fp)+ in eH(Fp) is bounded by a function of n only. So the
meaning of Nori’s theorem is that finite subgroups of GLn(Fp) generated by elements
of order p are essentially algebraic subgroups, if p > c(n).

The key feature of Nori’s theorem is that no assumption whatsoever is made on
the subgroup H. Hence Nori’s theorem can be seen as a description of arbitrary
subgroups of GLn(Fp). It can be viewed as complementing the celebrated theorem
of Camille Jordan [44] on finite subgroups of GLn(K) whose order is prime to the
characteristic of the field K: such a group admits an abelian subgroup whose index is
bounded by some function of n only. Nori’s theorem explains what happens when the
characteristic divides the order of the finite group: recall that a finite group has an
element of prime order p if and only if its order is a multiple of p (Cauchy’s theorem).

Jordan’s theorem is usually quoted for subgroups of GLn(C), but this stronger
version can be derived easily by lifting the group to C (see [72, Theorem C]). In fact
Jordan had already proved this stronger version in his original paper: his proof is
purely algebraic and applies to any finite subgroup of GLn(K) all of whose elements
are semisimple (or equivalently to finite subgroups without a non trivial unipotent
element), where K is any algebraically closed field (see [11] for a discussion).

Textbooks presenting Jordan’s theorem usually give a di↵erent, more geometric
treatment, due to Frobenius, Bieberbach and Blichfeldt. Jordan’s own argument
seems to have been forgotten for more than a hundred years until Larsen and Pink [59]
rediscovered it and generalized it considerably to obtain a classification of all finite
subgroups of GLd in every characteristic. The Larsen-Pink theorem is more general
than Nori’s result stated above in that it applies to finite subgroups of GLd regardless
of the field and the size of the characteristic. We will comment on the Larsen-Pink
theorem further below, when we discuss approximate subgroups of linear groups.
The proof of the Larsen-Pink theorem, which by the way is also independent of the
classification of finite simple groups, plays a key role in the structure theorem for
approximate subgroups of linear groups (see Theorem 4.5 below).

For the applications to strong and super-strong approximation, we will not need
the full force of Theorem 2.1 above. Rather the following important special case will
be su�cient.

Theorem 2.2 (Su�ciently Zariski-dense subgroups) There is M = M(d) such
that the following holds. Let p > M be a prime number and Gp 6 GLd be a semisimple
simply connected algebraic group defined over Fp. If a subgroup H 6 Gp(Fp) is not
contained in a proper algebraic subgroup of Gp of complexity at most M , then it must
be equal to Gp(Fp).

We say informally that a closed algebraic subvariety of GLd has complexity at most
M if it can be defined as the vanishing locus of a finite set of polynomials such that
the sum of their degrees in each variable is at most M . See [19] for background on
this notion. It is particularly useful in positive characteristic: saying that a finite
subgroup of GLd(Fp) is algebraic is meaningless, because every finite subgroup is
an algebraic subset with several (possibly many) irreducible components. However
putting a bound on the complexity forces a bound on the number of irreducible com-
ponents [19, Lemma A.4] and hence restricts the class of finite subgroups drastically
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and leads to interesting statements, such as the above.

We now sketch Nori’s proof of Theorem 2.2. A similar argument is due to Gabber,
see [46, Thm 12.4.1]. Pushing this idea a bit further allows Nori to also prove Theorem
2.1.

Proof (sketch) If H had no non trivial unipotent element, it would have an abelian
subgroup of bounded index by Jordan’s theorem. But this would violate the assump-
tion that H is su�ciently Zariski-dense. So H contains a unipotent element, which
we may write in the form h = exp ⇠, for some nilpotent matrix ⇠. The Fp-span VH

of all H-conjugates of ⇠ is invariant under the adjoint action of H . The assumption
that H is su�ciently Zariski-dense implies that VH must be the full Fp-Lie algebra of
Gp in gld(Fp). Pick unipotent elements h

1

, . . . , hd 2 H such that the corresponding
⇠i’s form a basis of Lie(Gp).

Now consider the map � : FdimG
p ! Gp(Fp), (t1, . . . , td) 7! ht1

1

· . . . · htdd . Note that
� is a polynomial map whose degree is bounded in terms of d only. Its image lies in
H. We claim that there is a constant c = c(d) > 0 such that | Im�| > cpd. Indeed,
the Jacobian of � is not identically zero, so outside its vanishing locus (a proper
subvariety, hence a subset of size O(pd�1)) the fibers of � are of bounded cardinality.
This implies the desired bound.

Now since there are positive constants c
1

, c
2

such that c
1

pd 6 |Gp(Fp)| 6 c
2

pd (e.g.,
see [72, Lemma 3.5.]), we get that the index [Gp(Fp) : H ] is bounded. However since
G is simply connected, Gp(Fp) is an almost direct product of quasi-simple groups and
thus has no subgroups of bounded index when p is large (Kneser-Tits for Fp, see [75],
see also Remark 3.4). Hence H = Gp(Fp). ⇤

Nori’s proof of strong approximation (i.e., of Theorem 1.1) is based on Theorem
2.2 alone. We will explain this argument below. It turns out that this argument even
yields a quantitative lower bound on the first prime number for which we can claim
that �p = Gp(Fp) in terms of the height of the generating set of �. Namely:

Theorem 2.3 (Strong approximation, quantitative version)
Suppose G 6 GLd is a connected, simply connected, semisimple algebraic group de-
fined over Q. Then there are constants p

0

, C
0

> 1 such that if S ⇢ G(Q) is a finite
symmetric set generating a Zariski-dense subgroup � = hSi of G, and MS denotes the
maximal height of an element of S, then for every prime number p > max{p

0

,MC0
S },

the reduction �p of � is equal to Gp(Fp).

Here the height H(s) of an element s 2 GLd(Q) is defined naively as the maximum
of the numerators and denominators appearing in the expressions of the matrix coef-
ficients of s as irreducible fractions. The bound p

0

is related to the bound c(n) from
Nori’s theorem and to pM from Lemma 2.7 below. There is very little control on this
bound in general (see [87, Appendix] for a discussion of this issue).

Several other proofs and extensions of Theorem 1.1 (to groups defined over number
fields, to positive characteristic, etc.) have since been found. For those we refer the
reader to the original articles, in particular [101], [72], [41], [73], and to the chapter on
strong approximation in the recent book by Lubotzky and Segal [68] or in Nikolov’s
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lecture notes in [48, chapter II]. We also recommend reading Rapinchuk’s recent
survey [82], which gives a thorough overview of strong approximation.

We now pass to the derivation of Theorem 2.3 from Nori’s theorem. First, we
replace the naive height with another height, which is better suited for our purposes
since it is sub-additive. Given a 2 GLd(Q), set

h(a) :=
X

p,1
log+ kakp,

where the sum is over all prime numbers p as well as the infinite place 1. Here
log+ := max{log, 0}, and kakp denotes maxij |aij |p, the maximum p-adic absolute
value of a matrix entry aij of a, while kak1 is the operator norm of a for the standard
Euclidean norm on Rd. The following is straightforward:

Lemma 2.4 (a) The height h(a) is sub-additive, i.e., for all a, b 2 GLd(Q),

h(ab) 6 h(a) + h(b),

and (b) it is comparable to the naive height H(a), namely, for all a,

H(a) 6 eh(a) 6 d(H(a))d
2
.

We conclude that for all a
1

, . . . , an 2 GLd(Q),

H(a
1

· . . . · an) 6 dn(H(a
1

) · . . . ·H(an))
d2 (2.1)

Combined with the next lemma, this inequality allows us to assume, in the proof
of Theorem 2.3 that � is generated by two elements, i.e., that S := {1, a±1, b±1}.

Lemma 2.5 (Reduction to 2 generators) Let G be a semisimple algebraic group
over C. Then there is c > 0 such that given any finite symmetric subset S ⇢ G(C),
with 1 2 S, generating a Zariski dense subgroup of G, the bounded power Sc contains
two elements a, b which alone already generate a Zariski-dense subgroup.

Proof This is Proposition 1.8. from [13]. The proof is fairly classical, and relies on
Jordan’s theorem and the Eskin-Mozes-Oh escape from subvarieties lemma (see, e.g.,
[19, Lemma 3.11]). ⇤

Lemma 2.6 (Generating is an algebraic condition) Let G 6 GLd be a semi-
simple algebraic group defined over Q. There is a proper closed algebraic subvariety
X 6 G ⇥ G defined over Q, whose points are precisely the pairs of elements in G
which are contained in a proper algebraic subgroup of G.

Proof This is well-known (see, e.g., [35, Theorem 11.6]). We work over an algebraic
closure of Q and show that X is a closed algebraic subset. Since X is invariant under
Galois automorphisms, it will automatically be defined over Q. We claim that there
are finitely many absolutely irreducible finite dimensional non trivial modules of G,
say ⇢

1

, . . . , ⇢k such that a subgroup � 6 G is not Zariski-dense if and only if ⇢i(�)
fixes a line in the representation space Vi of ⇢i for some i = 1, . . . , k. And this happens
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if and only if ⇢i(�) fixes a non trivial subspace of Vi for some i = 1, . . . , k. This last
condition clearly forms an algebraic condition, because it is equivalent to saying that
⇢i(�) does not span the ring of endomorphisms of Vi. Moreover the span of ⇢i(�)
is spanned by the ⇢i(w(a, b))’s for a bounded set of words w. So we indeed have an
algebraic condition on the pair a, b. Finally X is proper, because every semisimple
algebraic group can be generated by two elements (see, e.g., [56]).

To prove the claim, note that if H is a proper closed algebraic subgroup of G, then
either it is finite in projection to one of the simple factors of G, or its Lie algebra is not
preserved under the adjoint action of G on Lie(G). Let j(d) the bound from Jordan’s
theorem, so that every finite subgroup of GLd has a normal abelian subgroup of index
at most j(d). For each simple factor Gi pick an irreducible module whose dimension
is larger than j(d), so that no finite subgroup of Gi can act irreducibly on it. We thus
have found finitely many irreducible modules, say ⇡

1

, . . . , ⇡m of G with the property
that if a subgroup acts irreducibly on each of them, it must be Zariski-dense. Adding
to this list all the non trivial irreducible submodules of the wedge powers ⇤⇤⇡i, we
obtain the desired list of modules ⇢

1

, . . . , ⇢k. ⇤

Now, reducing modulo a large prime p, we obtain:

Lemma 2.7 (Generating mod p) With the assumptions of the previous lemma,
there is M

0

> 1 such that for all M > M
0

, there is pM > 0 such that if p > pM
is a prime number, the reduction of X mod p is a proper algebraic subvariety of
Xp 6 Gp ⇥Gp defined over Fp whose points are precisely the pairs of elements in Gp

which are contained in a proper algebraic subgroup of Gp of complexity at most M .

Proof First observe that there is a bound M
0

such that every proper algebraic sub-
group of G is contained in a proper algebraic subgroup of complexity at most M

0

.
This follows from the discussion in the proof of Lemma 2.6, since a proper algebraic
subgroup will either stabilize a subalgebra of Lie(G) which is not an ideal, or will stabi-
lize a proper subspace of some Vi. Each of these stabilizers have bounded complexity.
Now to prove the lemma we argue by contradiction. If no such pM can be found,
there must be an infinite sequence of primes pi < pi+1

and pairs (ai, bi) 2 Gpi(Fpi)
such that either for all i, (ai, bi) 2 Xpi and are not contained in a proper algebraic
subgroup of Gpi of complexity at most M , or for all i, (ai, bi) /2 Xpi and are contained
in a proper algebraic subgroup of Gpi of complexity at most M . The ultraproduct of
the Xpi coincides with X⌦Q K, where K is the ultraproduct of the finite fields Fpi .
This gives rise to a pair (a, b) in the associated ultraproduct, which, in the first case,
belongs to X(K) and generates a Zariski-dense subgroup, and in the second case does
not belong to X(K) and yet generates a subgroup contained in a proper algebraic
subgroup of complexity at most M . In both cases we have a contradiction with the
definition of X in Lemma 2.6. For more details on similar ultraproduct arguments,
we refer the reader to the appendix of [19]. ⇤

Now comes the point where Nori’s theorem is used in the form of Corollary 2.2:
when Gp is simply connected every subgroup of Gp(Fp) which is not contained in an
algebraic subgroup of bounded complexity must be all of Gp(Fp).

We may then complete the proof of Theorem 2.3. Pick polynomial functions
(Pk)k=1,...,k0 , Pk = Pk((aij, bij)), in pairs of matrices (a, b) in GLd, which generate the
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radical ideal of polynomial functions vanishing on X in G⇥G. We may assume that
the Pk’s have integer coe�cients. If S = {1, a±1, b±1} ⇢ G(Q) generates a Zariski-
dense subgroup of G, then (a, b) /2 X and there must exist k such that Pk(a, b) 6= 0.
We may bound the height of Pk(a, b) in terms of the heights of a and b and the heights
of the coe�cients of Pk. Hence

H(Pk(a, b)) 6 O(H(a)H(b))O(1) 6 (2MS)
C ,

for some constant C depending only on G and not on k, a, b, and where MS =
max{H(a), H(b)}. This means that if p > (2MS)C , then Pk(a, b) does not vanish
modulo p. Now Lemma 2.6, combined with Nori’s theorem (in the form of Corol-
lary 2.2), tells us that if additionnally p is larger than a constant depending on G
only, then the reduction mod p of the pair (a, b) generates all of Gp(Fp) and we are
done. This ends the proof of Theorem 2.3.

3 The Bourgain-Gamburd expansion machine

Bourgain and Gamburd, in their groundbreaking paper [5], came up with a new
method to establish the expander property for Cayley graphs of finite groups. They
applied it to prove Theorem 1.2 in the special case of subgroups of SL

2

(Z), but their
method is very general. We call it the Bourgain-Gamburd expansion machine. In this
section we give an overview of this machine, suitable for the proof of Theorem 1.2 in
full generality.

Let G
0

be a finite group, and S
0

= {s
1

, . . . , sk} be a symmetric generating set for
G

0

. As before we write:

µ = µS0 :=
1

k
(�s1 + · · ·+ �sk)

for the uniform probability measure on the set S, where �x is the Dirac mass at x.
For us a probability measure on G

0

is the same thing as a function on G
0

taking
non-negative values at each element of G

0

and summing to 1.
We write

µn := µ ⇤ · · · ⇤ µ
for the n-fold convolution power of µ with itself, where the convolution µ

1

⇤µ
2

of two
functions µ

1

, µ
2

: G
0

! R+ is given by the formula

µ
1

⇤ µ
2

(g) :=
X

x2G0

µ
1

(gx�1)µ
2

(x). (3.1)

The function x 7! µn(x) is a probability measure describing the distribution of a
random walk of length n starting at the identity in G

0

and with generators from S.
In particular, if A is a subset of G

0

,

µn(A) = Pw2Wn,k
(w(a

1

, . . . , ak) 2 A), (3.2)

where Wn,k is the space of all formal words (not necessarily reduced) on k generators
of length exactly n. We can now state a version of the Bourgain-Gamburd machine,
adapted from [22] and [100].
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Proposition 3.1 (Bourgain-Gamburd machine) Suppose that G
0

is a finite
group, that S

0

✓ G
0

is a symmetric generating subset, and that there are constants
0 < ,� < 1 such that the following properties hold for every quotient G of G

0

.

(i) (High multiplicity). For every faithful representation ⇢ : G ! GLd(C) of G,
dim ⇢ > |G|�;

(ii) (Classification of Approximate Subgroups). For every " > 0, there is � = �("),
0 < � < ", with the property that every |G|�-approximate subgroup A of G, is
either of size |A| > |G|1�" or is contained in at most [G : H ]"/|G|� left cosets
of a subgroup H 6 G;

(iii) (Non-concentration estimate). Let S be the image of S
0

in G. There is some
even number n 6 log |G| such that for all subgroups H 6 G,

µn
S(H) 6 [G : H ]�.

Then the first non zero eigenvalue of the Cayley graph Cay(G
0

, S
0

) satisfies

�
1

> � · e�C/�,

where � := �(") > 0 with " := min{�,}/4 and C is an absolute constant.

We will discuss approximate subgroups in the next section. It su�ces for now to
say that by definition, given a parameter K > 1, a K-approximate subgroup of G

0

is
a finite symmetric set A containing 1 such that AA ⇢ XA for some subset X ⇢ G

0

of size at most K.

Remark 3.2 We already observed that if the Cayley graph G(G
0

, S
0

) is an "-exp-
ander, then so are all induced quotient Cayley graphs corresponding to a quotient
group G := G

0

/H, for any normal subgroup H 6 G
0

. It is therefore very natural
that the Assumptions (i) to (iii) are made on all quotients of G

0

.

As mentioned earlier, Assumption (ii), the classification of approximate subgroups
of G

0

, and (iii), the nonconcentration estimate, really constitute the beefy parts of
the proof of the expander property. They will be dealt with in the next sections. We
also remark that (iii) is the only condition of the three that actually involves the set
S. Finally we stress that the lower bound on �

1

obtained here is independent of the
size k of S.

An interesting feature of (iii) is that, unlike (i) and (ii), it is necessary in order to
verify the expander property, because the simple random walk on an expander graph
will equidistribute in logarithmic time. Indeed we have the following basic lemma
(recall the definition of "-expanders in (1.1) above).

Lemma 3.3 (Random walk characterization of expanders) Let G
0

be a finite
group and S

0

a symmetric generating subset not contained in a coset of a subgroup
of index 2 of G

0

.

• if the Cayley graph G(G
0

, S
0

) is an "-expander, then there is C = C" > 0 such
that for every n > C log |G

0

|,

max
x2G0

����µ
n
S0
(x)� 1

|G
0

|
���� 6

e�n/C

|G
0

|10 , (3.3)
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• if (3.3) holds for some n 6 C log |G
0

|, and C > 20, then G(G
0

, S
0

) is an "-
expander, with " = 10/C.

Proof Let Tµ = 1 �� be the operator f 7! µ ⇤ f on `2(G
0

). To prove the second
item, pick an eigenfunction f of the Laplacian with eigenvalue �

1

and note that
k(Tn

µ � (1/|G
0

|)Id)fk
2

6 kfk
2

/|G|10 forcing (1 � �
1

) 6 |G
0

|�10/n. As for the first

item, note that the left hand side of (3.3) is bounded by kTµkn 6 kTµkC" log |G0| =
1/|G

0

|�C" log(1/kTµk). The assumption on S
0

and the fact that G is the Cayley graph
of a group ensure that it is not bi-partite and that kTµk 6 e�c" , for some c" > 0
depending only on " and |S

0

| (see [22, Prop. E.1]). The result follows with C" = 10/c".
⇤

To see that (iii) is necessary, simply note that µnm(H) > (µn(H))m and apply the
first item in the above lemma to evaluate µnm(H) using some m between C" and 2C"

say.

Remark 3.4 According to result of Landazuri-Seitz [57], Assumption (i) is always
verified when G

0

is a simple or quasi-simple group of Lie type of bounded rank, with
the parameter � > 0 depending only on the rank. See Prop. 6.1 below. Looking at
the action by translation on `2(G

0

/H), where H is an arbitrary subgroup of G
0

, this
implies that every proper subgroup of G

0

has index at least |G
0

|c for some c > 0
depending only on the rank of G

0

.

We now pass to the proof of Proposition 3.1. The following basic observation relates
the eigenvalues of the Laplace operator � on the Cayley graph, with the probability
of return to the identity of the simple random walk. Let 1 = ↵

0

> ↵
1

> . . . > ↵|G0|�1

be the eigenvalues of the convolution operator

Tµ : f 7! µ ⇤ f
on `2(G

0

). Since Tµ = TµS0
= Id � �, the first non trivial eigenvalue of �, is just

�
1

= 1� ↵
1

.
Now observe that the eigenspace of Tµ corresponding to the eigenvalue ↵

1

is invari-
ant under G

0

and thus forms a linear representation of G
0

. Up to replacing G
0

with
its image modulo of the kernel of this representation, and µ with the corresponding
push-forward measure, we may assume that G

0

acts faithfully on this eigenspace.
And hence, applying Assumption (i), that the dimension of this eigenspace is at least
|G

0

|� .
Thus we seek a lower bound on 1�↵

1

. For this, we write the following naive trace
formula, which consists in expressing the trace of Tµn = Tn

µ in two ways (this key
idea is analogous to what is done in the context of discrete groups in Sarnak-Xue [92]
and Gamburd [29]). Firstly:

tr(Tµn) =
X

x2G0

h(Tµ)
n�x, �xi = |G

0

|h(Tµ)n�1, �1i = |G
0

|µn(1),

where µn(1) is the value at the identity of the probability measure µn. Here �x denotes
the Dirac mass at x and h·, ·i the `2 scalar product on G

0

. And secondly:

tr(Tµn) = ↵n
0

+ ↵n
1

+ . . .+ ↵n
|G0|�1

.
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We will now play the multiplicity lower bound on ↵
1

against the combinatorial upper
bound on µn(1). Since ↵n

1

appears at least |G
0

|� times in the above sum, discarding
all other eigenvalues (note that n is even and hence ↵n

i > 0), we get the following:

Observation 1 If µn(1) 6 1/|G
0

|1��/2 for some even integer n 6 C
1

log |G
0

|, then
the first non trivial eigenvalue ↵

1

of Tµ satisfies

↵
1

6 e��/2C1 .

Assumption (iii) only guarantees the existence of an even integer n
0

6 log |G
0

|
such that µn0(1) 6 1/|G

0

| for some positive  which may be smaller than 1 � �/2.
So in order to conclude, we need to show that µn(1) will decay from 1/|G

0

| at time
n = n

0

6 log |G
0

| to 1/|G
0

|1��/2 at a not much larger time n = n
1

6 C
1

log |G
0

| for
some constant C

1

depending only on the constants at hand and not on the size of G
0

.
Before going further, let us record the following simple remarks:

Remark 3.5 When n tends to infinity µn(1) converges to 1/|G
0

|, the uniform dis-
tribution on G

0

.

Remark 3.6 Since µ is assumed symmetric,

µ2n(1) =
X

x2G0

µn(x)µn(x�1) = kµnk2
2

(3.4)

Remark 3.7 For every subgroup H 6 G
0

, the sequence µ2n(H) is non-increasing:
indeed µ2n(H) = kfn,Hk2

2

, where fn,H : G
0

/H ! R, gH 7! µn(gH), and fn+1,H =
Tµfn,H , while Tµ is a contraction in `2.

The key ingredient in establishing this final decay of µn(1) from 1/|G
0

| to
1/|G

0

|1��/2 is the following `2-flattening lemma, due to Bourgain-Gamburd. It says
in substance that the only reason why the convolution of a probability measure with
itself would not decay in `2-norm is because it gave a lot of mass to (a coset of) an
approximate subgroup.

Lemma 3.8 (`2-flattening lemma) There is absolute constant R > 0 such that
the following holds. Let K > 2 and ⌫ : G

0

! R+ be a probability measure on a finite
group G

0

which satisfies

k⌫ ⇤ ⌫k
2

> 1

K
k⌫k

2

,

where convolution is defined in (3.1). Then there is a KR-approximate subgroup A
of G

0

with

K�R 1

k⌫k2
2

6 |A| 6 KR 1

k⌫k2
2

and such that for each x 2 A,

⌫ ⇤ ⌫�1(x) > 1

KR|A| .
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Here k⌫k
2

denotes the `2 norm on G
0

, i.e., k⌫k2
2

:=
P

x2G0
⌫(x)2, and ⌫�1 denotes

the symmetric of ⌫, namely the probability measure ⌫�1(x) := ⌫(x�1). Observe that
the last condition implies immediately that there is g 2 G

0

such that ⌫(Ag) > 1/KR.

Proof The proof of the `2-flattening lemma is really the core of the Bourgain-
Gamburd machine. It is derived from a powerful combinatorial tool, the Balog-
Szemerédi-Gowers lemma (see Lemma 4.4 below), due in this context to Tao ([97],
[98, §2.5, 2.7]), but which originates from the work of Balog-Szemerédi [3] and from
Szemerédi’s celebrated regularity lemma for large graphs. A simple derivation of the
above `2-flattening lemma, based on Tao’s version of the Balog-Szemerédi-Gowers
lemma, namely Lemma 4.4 below, is given by Varjú in [100, Lemma 15] and we refer
the reader to it for the details. He can also consult [22, Appendix A]. The basic
idea is to decompose ⌫ into approximate level sets ⌫ =

P
i 1Ai⌫, where Ai = {x 2

G
0

; 2i�1k⌫k2
2

< ⌫(x) 6 2ik⌫k2
2

} and show that for some suitable pair Ai1 , Ai2 the
number of collisions k1Ai1

⇤ 1Ai2
k2
2

is large enough to be able to apply Lemma 4.4. ⇤

Applying this lemma to a symmetric measure ⌫ with K = |G
0

|�/R, we obtain the
following direct consequence:

Corollary 3.9 Let 0 < �, " 6 1/4 and let ⌫ be a symmetric probability measure on a
finite group G

0

such that |G
0

|2" 6 1/k⌫k2
2

6 |G
0

|1�2". Then

k⌫ ⇤ ⌫k
2

6 1

|G
0

|�/R k⌫k
2

,

unless there is a |G
0

|�-approximate subgroup A of G
0

with |G
0

|" 6 |A| 6 |G
0

|1�" such
that ⌫(gA) > 1/|G

0

|� for some g 2 G
0

.

Here R is the absolute constant from Lemma 3.8. We are going to apply this
corollary several times to the convolution powers µn with even n between log |G

0

|
and C

1

log |G
0

|. After only a bounded number of applications of the corollary, µn(1)
will be at least as small as 1/|G

0

|1��/2 and we will be done by Observation 1 above.
So we set " = min{�,}/4, where 0 < � 6 1 is the exponent of quasirandomness

given by Assumption (i) from Proposition 3.1 and  > 0 is given by Assumption (iii).
Let � = �(") be given by Assumption (ii) of Proposition 3.1 (the Classification of
Approximate Subgroups).

We will now apply the above corollary to any ⌫ of the form ⌫ = µn for some even
n > log |G

0

|. Assume that k⌫k2
2

> 1/|G
0

|1��/2. Then 1/k⌫k2
2

6 |G
0

|1�2", and if
k⌫k2

2

6 1/|G
0

|2", we may apply Corollary 3.9, which gives

k⌫ ⇤ ⌫k
2

6 k⌫k
2

|G
0

|�/R , (3.5)

unless there is a |G
0

|�-approximate group A in G
0

with |A| 6 |G
0

|1�" such that
⌫(gA) > 1/|G

0

|� for some g 2 G
0

. By Assumption (ii) of Proposition 3.1, A must
be contained in at most [G : H]"/|G|� left cosets of a proper subgroup H . Hence
at least one coset xH of H charges ⌫ a lot, i.e., ⌫(xH) > 1/[G

0

: H]". However
⌫2(H) > ⌫(xH)2 since ⌫ is symmetric, and hence

⌫2(H) > 1/[G
0

: H]2". (3.6)
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Since n 7! µ2n(H) is non-increasing (see Remark 3.7 above), Assumption (iii) of
Proposition 3.1 implies that ⌫2(H) 6 1/[G

0

: H ]. However  > 2", so this clearly
contradicts (3.6).

Therefore (3.5) always holds as long as 1/|G
0

|2" 6 k⌫k2
2

6 1/|G
0

|1��/2. As a
consequence, we need to apply (3.5) at most a bounded number of times starting
from ⌫ = µ2n0 with n

0

= [log |G
0

|] say to reach the desired upper bound. Note that
the bound 1/|G

0

|2" > kµ2n0k2
2

holds thanks to Remark 3.7, (3.4) and Assumption (iii)
applied to H = {1}, because  > 2". Now apply successively T times Corollary 3.9
to get:

k(µ2n0)2
T k

2

6 kµ2n0k
2

|G
0

|T �/R
6 1

|G
0

|T �/R
6 1

|G
0

|1��/2
,

provided T �/R > 1� �/2.
This yields a constant C

1

such that µ2m(1) 6 1/|G
0

|1��/2 for somem > C
1

log |G
0

|,
where an upper bound for C

1

is

C
1

6 2R(1��/2)/�.

Together with Observation 1, this finishes the proof of Proposition 3.1 with a
rather explicit spectral gap, ↵

1

6 e��/2C1 . Working out the above expression yields
the following dependence of the gap in terms of the parameters involved:

�
1

> � · e�C/�,

for some absolute constant C > 0. Recall that � := �(") is the function given in
Assumption (ii) with " := min{�,}/4.

4 Approximate subgroups of linear groups

In this section, we give a very brief introduction to approximate subgroups. The
first paragraph gives a definition and some general facts, including the relation with
small tripling and the Balog-Szemerédi-Gowers lemma. Those are needed only to
understand the proof of the `2-flattening lemma, Lemma 3.8, stated in the last section.

Next we describe the classification of approximate subgroups of simple algebraic
groups required to deal with Assumption (ii) of the Bourgain-Gamburd machine
(Prop. 3.1 above) and prove Theorem 4.5 below, a structure theorem [19, 80] for
approximate subgroups of linear groups. Its proof is purely algebro-geometric and
requires nothing on approximate subgroups besides the definition. For further intro-
ductory material on approximate groups see [97, 17, 14].

4.1 General facts about approximate groups

The notion of an approximate subgroup of an ambient group G was introduced by
Terry Tao in [97] in connection with the work of Bourgain-Gamburd [5] and the
Balog-Szemerédi-Gowers theorem alluded to above in the proof of the `2-flattening
lemma (Lemma 3.8). Here is a definition:

Definition 4.1 (Approximate subgroup) A (finite) subset A of a group G is said
to be a K-approximate subgroup of G (here K > 1 is a parameter) if A is symmetric
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(i.e., a 2 A ) a�1 2 A), contains the identity, and if there is a symmetric subset
X ⇢ G of size |X| 6 K such that

AA ⇢ XA.

Although the definition makes sense without the assumption that A is finite, we
will always put this assumption throughout these notes whenever we speak of an
approximate subgroup.

Note that AA = (AA)�1 ⇢ AX, so we always have AA ⇢ XA \ AX. Clearly if
K = 1 this notion coincides with the requirement that A be a finite subgroup of G.

Although Tao was the first to define approximate subgroups in a non-commut-
ative context, their study in (Z,+), or (R,+), is an old subject, part of additive
combinatorics (see [70], [98] for modern expositions), culminating with the so-called
Freiman-Ruzsa theorem [27, 85], which gives a structure theorem for approximate
subgroups of Z, or more generally (Green-Ruzsa [33]) abelian groups:

Theorem 4.2 (Freiman-Ruzsa, Green-Ruzsa) Let G be an abelian group and
A ⇢ G be a K-approximate subgroup of G. Then there is a finite subgroup H 6 G and
a centered multidimensional progression P ⇢ G of dimension at most d(K) such that
A is contained in at most C(K) translates of the subset HP and |HP | 6 C(K)|A|.
The constants d(K) and C(K) depend only on K and not on G nor A.

By definition a centered multidimensional progression of dimension at most d is a
subset P 6 G of the form ⇡(B), where ⇡ : Zd ! G is a group homomorphism and
B is a box in Zd, namely a subset of the form

Qd
i=1

[�Ni, Ni], where the Ni’s are
non-negative integers. It is easy to see that B is a 2d-approximate subgroup, indeed
BB is the box with sides [�2Ni, 2Ni] and thus can be covered by the translates of B
centered at each of the 2d corners of the box B. Passing to the quotient via ⇡, we get
that P too is a 2d-approximate subgroup, and finally that for every finite subgroup
H 6 G, the so-called coset-progression HP is also a 2d-approximate subgroup.

For the proof of this theorem, we refer the reader to the book by Tao and Vu [98]
as well as the article [33] and the original references therein.

Two remarks are in order:

• The bounds d(K) and C(K) can be made quantitative, and good estimates on
them are useful for applications as we will see below. Conjecturally (Freiman-
Ruzsa conjecture), d(K) = O(logK) while C(K) = O(KO(1)). See Sanders [88]
for the best currently available bounds.

• The conclusion is quite special to abelian groups. A very general structure the-
orem was recently obtained in [21] valid for approximate subgroups of arbitrary
groups, but it yields no explicit bounds on C(K). As we will see below, when
G is a finite simple group of bounded rank, then a polynomial bound can be
given on C(K) provided A generates G. Obtaining here a polynomial bound is
crucial for the applications to the Bourgain-Gamburd expansion machine, i.e.
to Assumption (ii) of Prop. 3.1.

As follows immediately from their definition, approximate subgroups do not grow
much under self multiplication, namely the product set Ak := A · . . . · A of A with



Breuillard: Approximate subgroups and super-strong approximation 19

itself k times has size at most |X|k�1|A|. An important observation (due to Tao using
related ideas of Ruzsa) is that we have the following converse:

Proposition 4.3 (Small tripling) Let A be a finite subset of a group G such that
|AAA| 6 K|A| for some parameter K > 1. Then B := (A [ A�1 [ {1})2 is a c(K)-
approximate subgroup of size |B| 6 c(K)|A|, where c(K) = O(KO(1)) and the implied
constants are absolute. In particular |An| 6 O(KO(n))|A|.
Proof The proof is elementary. It is a simple application of the Ruzsa inequality
and Ruzsa covering lemma. See [97, Theorem 3.9] or [12, Prop 2.2]. ⇤

We remark that it is necessary to take the 3-fold power of A in the assumption of
this proposition. It is not true if we only assume that |AA| 6 K|A| (take A = {x}[H,
where x 2 G and H is a large subgroup such that xHx�1 \H = {1}). Nevertheless
one can still show in this case that A is covered by O(KO(1)) left translates of an
O(KO(1))-approximate subgroup of G of size at most O(KO(1))|A| (see [97, Theorem
4.6]).

A deeper fact, recorded in the lemma below, is that one can still identify an ap-
proximate subgroup “near” the finite set A assuming only that A does not grow under
self multiplication in the following statistical sense:

k1A ⇤ 1Ak2
2

= |{(a, b, c, d) 2 A⇥A⇥A⇥A; ab = cd}| > |A|3/K.

The left hand side is called the multiplicative energy of the set A with itself and is
sometimes denoted by E(A,A). It is the `2-norm squared of the convolution product
of the indicator function of A in G with itself and is easily seen to be equal to the
expression in the middle (number of “collisions” ab = cd). In other words: this
condition means that the probability that ab = cd, when a, b, c and d are chosen at
random in A is at least 1/K|A|. Clearly if A is a subgroup, this probability if exactly
1/|A|. Also easy to see is the remark that if |AA| 6 K|A|, then k1A ⇤1Ak2

2

> |A|3/K,
indeed setting r(x) := |{(a, b) 2 A ⇥ A; ab = x}| we have

P
r(x)2 = k1A ⇤ 1Ak2

2

,P
r(x) = |A|2 and |{x, r(x) > 0}| = |AA|, hence applying Cauchy-Schwarz:

|A|4 =
⇣X

r(x)
⌘
2

6 |AA|
⇣X

r(x)2
⌘
6 K|A| · k1A ⇤ 1Ak2

2

.

Lemma 4.4 (Balog-Szemerédi-Gowers-Tao lemma) Suppose A
1

, A
2

are finite
subsets of a group G such that |A

1

| 6 K|A
2

| and |A
2

| 6 K|A
1

| and assume that

k1A1 ⇤ 1A2k22 > (|A
1

||A
2

|)3/2/K,

then there is a O(KO(1))-approximate subgroup A ⇢ G of size O(KO(1))|A
1

| such that
a subset of A

1

of size at least |A
1

|/O(KO(1)) is contained in some left translate of A
and similarly a subset of A

2

of size at least |A
2

|/O(KO(1)) is contained in some right
translate of A.

Proof We will not give the proof of this important combinatorial result here. Rather
we refer the reader to the book by Tao and Vu [98, §2.5, 2.7] and Tao’s paper [97,
Theorem 5.4]. See also [12, Corollaries 4.5, 4.6] for a somewhat di↵erent argument.

⇤
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Note that we cannot claim that A
1

itself is contained in few translates of A, be-
cause if the condition k1A0

1
⇤ 1A0

2
k2
2

> (|A0
1

||A0
2

|)3/2/O(KO(1)) holds for some subsets

A0
1

, A0
2

each making a proportion > 1/O(KO(1)) of A
1

and A
2

respectively, then
k1A1 ⇤ 1A2k2

2

> k1A0
1
⇤ 1A0

2
k2
2

> (|A
1

||A
2

|)3/2/O(KO(1)). For example if A
1

= A
2

=

{1, . . . , N} [ {2, 22, . . . , 2N}, then k1A1 ⇤ 1A1k2
2

> k1{1,...,N} ⇤ 1{1,...,N}k2
2

> N3, while
A

1

is not contained in a bounded number of translates of multidimensional arith-
metic progression in Z, hence not contained in a bounded number of translates of an
approximate subgroup of Z (using Theorem 4.2).

4.2 Classification of approximate subgroups of G(Fq)

The main result here is the following:

Theorem 4.5 (Classification theorem) Let K,M > 2. Assume that G is an ab-
solutely simple algebraic group of complexity at most M defined over an algebraically
closed field. If A is a finite K-approximate subgroup of G which is C-su�ciently
Zariski-dense in G, then either |A| 6 KC , or hAi is finite and of cardinality at most
KC |A|. Here C = C(M) > 0 is a constant depending only on M and dimG.

The rest of this subsection is devoted to the proof of this theorem and some of its
corollaries.

Remark Although this will not be used later on, we may replace KC in the above
theorem by CK3 dimG+3, where C depends again on M and dimG.

Recall that an a�ne algebraic variety is said to have complexity at most M if it is
the vanishing locus of a finite set of polynomials whose sum of their total degree is
at most M . This notion can be extended to all algebraic varieties (see [19, Appendix
A] for background). Recall further that a subset of G is called M -su�ciently Zariski-
dense if it is not contained in a proper algebraic subvariety of complexity at most
M .

This result was obtained by Green, Tao and the author in [19, Theorem 5.5].
The proof of a closely related statement (in fact Corollary 4.7 below) was derived
independently at the same time by Pyber and Szabó, see [80] and [81] for their point
of view.

Simple and quasi-simple groups of Lie type are of the form G = G(Fq)�/Z, where
G is a simply connected absolutely simple algebraic group defined and split over the
prime field Fp, � is a Frobenius map, i.e., the composition of a field automorphism
and a graph automorphism, and Z is a central subgroup (whose cardinal is bounded
in terms of dimG only). It is not di�cult (for example using the Lang-Weil bounds or
the related and easier Schwarz-Zippel estimates) to check that the subgroups G(Fq)�

of fixed points of � are C-su�ciently Zariski-dense in G whenever q is larger than a
constant depending only on C and dimG (see [22, Proposition 5.4] for details). Thus
a consequence of Theorem 4.5 is the following:

Corollary 4.6 Let G be a (non-abelian) finite simple (or quasisimple) group of Lie
type and suppose that A is a K-approximate subgroup of G. Then either |A| 6 KC , or
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|A| > |G|/KC , or A is contained in a proper subgroup of G. Here C > 0 is a constant
depending only on the rank of G, not on the size of the associated finite field.

Proof By the discussion above, we may assume that G is a su�ciently Zariski-dense
subgroup of a simple algebraic group G of bounded complexity. It only remains to
check that if A generates G, then there is a bounded m such that Am is su�ciently
Zariski-dense and then apply Theorem 4.5 to Am. This fact goes back to Eskin-Mozes-
Oh [26, Prop. 3.2]. It is a basic tool called since escape from subvarieties, which can
be proved with explicit bounds using Bezout’s theorem. It can also easily be proved
(without an explicit bound on m) using ultraproducts: if no such m existed we could
form the ultraproduct of possible counter-examples, yielding a subset of G(K), where
K is the corresponding ultraproduct of fields, which generates a subgroup which is
not Zariski-dense, hence is contained in a proper algebraic subgroup of G(K). But
this means that most (for the ultrafilter) counter-examples are contained in that
algebraic subgroup, contradicting the assumption. See [19, Lemma 3.11] for more
details regarding this argument. ⇤

Another related statement is the following, sometimes called the product theorem,
because it guarantees that any generating subset of G grows under products:

Corollary 4.7 (Product theorem) Let G be a (non-abelian) finite simple (or
quasi-simple) group of Lie type and A ⇢ G an arbitrary generating finite subset,
then

|AAA| > min{|A|1+", |G|},
where " > 0 is a constant depending only on the rank of G, not on the size of the
associated finite field.

This result was obtained by Pyber and Szabó [80, Theorem 4]. We show now how
to derive it from the classification of approximate subgroups, i.e., Theorem 4.5.

Proof Let K = |A|" and apply Proposition 4.3 to get a (2|A|)C"-approximate sub-
group B containing A, where C > 0 is an absolute constant. By Corollary 4.6, either
|A| 6 KC , or |A| > |G|/KC . The first case is ruled out if " < 1/2C2, because that
would force |A| = 1. In the second case |A| > |G|1�� for � > 0 which can be taken
arbitrarily small provided " is small enough. Then a general result of Nikolov-Pyber
[71], based on an observation of Gowers [32] using the quasirandomness of G (i.e.,
Proposition 6.1 below), implies that AAA = G. See [14, Corollary 2.3.] for a detailed
proof of this last step using basic representation theory of finite groups. ⇤

Corollary 4.7 was first proved by Helfgott [36] in the special cases of SL
2

(Fp),
for the prime field Fp only, using some ad hoc matrix computations based on the
sum-product phenomenon from additive combinatorics (i.e., the Bourgain-Katz-Tao
theorem [8]). Helfgott later settled the case of SL

3

(Fp) in [37]. Earlier work of Elekes
and Király [25] had dealt with the analogous result for SL

2

(R). Although these
elementary methods fail to extend to the general case, they have the merit of being
somewhat more explicit on the " (see, e.g., [54, 23]).
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Remark Our lower bound on " is not explicit. However, if one assumes further that
the subset A is C-su�ciently Zariski-dense in the ambient simple algebraic group G
(i.e., is not contained in any proper algebraic subvariety of degree, or complexity, at
most C for some non explicit C depending only on G), then " can be taken to be
1/(3 dimG + 4). See Remark 4.11 below. The constant C itself (and hence the "
of Corollary 4.7) can be made e↵ective (although not really explicit) using e↵ective
algebraic geometry bounds as done by Pyber-Szabó in [80]. The treatment in [21]
was not e↵ective, because we used ultrafilters to achieve these uniform bounds.

We will sketch below the proof of Theorem 4.7. The proof is germane to the proof
of the Larsen-Pink theorem [59] on the classification of finite subgroups of G. Let
us first state a version of the Larsen-Pink theorem appropriate to our discussion (see
[59, Theorem 0.5] and [42]).

Theorem 4.8 (Larsen-Pink theorem) Let F be an algebraically closed field and
G be an absolutely simple simply connected algebraic group of complexity at most M
defined and split over the prime field of F . If � is a finite subgroup of G which is
C-su�ciently Zariski-dense in G, then the field F has positive characteristic p and �
is a conjugate of the subgroup G(Fq) for a finite field Fq 6 F , q a power of p. Here
C = C(M) > 0 is a constant depending only on M and dimG.

This theorem is a strict generalization of Nori’s Theorem 2.2 discussed earlier in
the case of simple algebraic groups. However the proof by Larsen and Pink is very
di↵erent from Nori’s counting argument sketched in Theorem 2.2 above. While Nori
was building the algebraic subgroup from below taking products of unipotent elements
and using crucially that p is large, Larsen and Pink argue di↵erently and cut the group
from above so to speak by computing the approximate size of the centralizers in � of
any subset of elements. This allows them to eventually find many unipotent elements
(using an argument similar to the original argument of Jordan [44, 11]) including a
minimal one which will generate the additive subgroup of the finite field Fq that we
are required to build from � alone.

In order to compute the correct size of centralizers, Larsen and Pink establish first
a very general inequality, the Larsen-Pink non-concentration estimate, which gives
an a priori upper bound on the intersection of � with any algebraic subvariety of
bounded complexity. Namely:

Proposition 4.9 (Larsen-Pink non-concentration estimate [59, Thm4.2])
Under the assumptions of Theorem 4.8, consider a closed algebraic subvariety V of G
of complexity at most M . Then if � is a finite subgroup of G which is C-su�ciently
Zariski-dense in G,

|� \ V| 6 C|�|dimV/dimG, (4.1)

where C = C(M) > 0 is a constant depending only on M and dimG.

Before we say more about the proof of this proposition and its relation to ap-
proximate subgroups, let us explain what it entails for centralizers. Define q

�

as the
positive real number |�|1/dimG. Let Za be the centralizer in G of an element a 2 �.
The orbit-stabilizer formula tells us that

|Za \ �| · |{�a��1; � 2 �}| = |�|,
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so
qdimG
�

= |�| 6 |Za \ �| |Va \ �| 6 |Za \ �| · CqdimVa
�

,

where Va is the conjugacy class of a in G, which is a constructible set in G, being the
image of G under the map g 7! gag�1. We applied the Larsen-Pink inequality (4.1)
to the Zariski closure of Va, which also has dimension dimVa = dimG�dimZa. Now
applying (4.1) once again but this time to Za we obtain:

1

C
qdimZa
�

6 |Za \ �| 6 CqdimZa
�

. (4.2)

The constant C depends only on the complexity of Za and the closure of Va, which are
both bounded in terms of dimG and the complexity of G only and are in particular
independent of a (see, e.g., [19, Appendix A] for general facts on the complexity of
algebraic varieties). So we see that the Larsen-Pink inequality (4.1) not only gives
an upper bound, but also a lower bound of the same order of magnitude on the size
of centralizers.

The proof of Theorem 4.5 rests on the same key idea. The main step consists in
extending the Larsen-Pink inequality (4.1) to the setting of approximate subgroups:

Proposition 4.10 (Larsen-Pink for approximate subgroups) Let K,M > 2.
Assume that G is an absolutely simple algebraic group of complexity at most M defined
over an algebraically closed field. If A is a finite K-approximate subgroup of G which
is C-su�ciently Zariski-dense in G, then for every closed algebraic subvariety V of G
of complexity at most M ,

|A \ V| 6 CKC |A|dimV/dimG, (4.3)

where C = C(M) > 0 is a constant depending only on M and dimG.

This is a strict generalization of (4.1), indeed we recover Proposition 4.9 in the
special case when K = 1 (i.e., A is a subgroup). The possibility of an extension
to approximate groups of the Larsen-Pink estimate is an idea of Hrushovski, who
proved a qualitative version of (4.3) in his ground-breaking paper on approximate
groups [39]. The polynomial dependence of the constant (in CKC) is proved in [19,
Thm 4.1] using a variation of the argument we are about to present. Helfgott in [37]
proved a special case of this inequality when V = T is a maximal torus.

Proof We follow the Larsen-Pink strategy for proving Proposition 4.9, see [59,
Thm 4.2]. Since a bound on complexity implies a bound on the number of irreducible
components (see [19, Appendix A]), it is enough to prove (4.3) for irreducible varieties.
Clearly the estimate (4.3) holds when V has dimension 0 or dimension dimG, so we
may pick a possible counter-example to (4.3) of minimal positive dimension, say V�

and another one of minimal co-dimension, say V+. The basic idea of the proof, which
relies crucially on the hypothesis that G is simple, is that we should be able to find
a 2 A such that the product W := V�aV+a�1 is a constructible set of dimension
> dimV+ and thus hopefully will contain too many elements of AaAa�1. Hence,
since A is an approximate subgroup, some translate of W will contain too many
elements of A, contradicting the choice of V+.
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To e↵ect this strategy rigorously, one cannot just proceed as outlined above, be-
cause A⇥A could concentrate of a singular subvariety of V�⇥V+ made of non-generic
fibers of the product map

� : V� ⇥ V+ ! W ,

(x, y) 7! xaya�1.
(4.4)

So instead we will prove first a weaker version of (4.3) in which the exponent 1/ dimG
is replaced by some ↵ 2 [1/ dimG, 1]. And then improve that estimate by showing
that, given any fixed � > 1/dimG, if the bound (4.5) below holds for all subvarieties
and for some ↵ 6 � + ", where " = 1/(dimG)2 , then it also holds for ↵ = � and all
subvarieties:

|A \ V| 6 O(KO(1))|A|↵ dimV . (4.5)

Since (4.5) holds obviously when ↵ = 1 and all subvarieties and since if (4.5) holds
for ↵ = ↵

0

, then it holds for all ↵ > ↵
0

, this will eventually prove that (4.5) holds for
↵ = 1/dimG, so that (4.3) holds as desired.

Let us proceed as announced. We fix � > 1/ dimG and assume that (4.5) holds
for all ↵ > � + ". Pick irreducible subvarieties V� and V+ as above of minimal and
maximal dimension providing counter-examples to (4.5) for ↵ = �. This means that
|A \ V+| is much bigger than CKC |A|� dimV+

and similarly for V�. By Lemma 4.12
below, we may find a 2 A such that W := V�aV+a�1 is a constructible set of
dimension > dimV+. Consider the product map � defined in (4.4) above. Let
S 6 V� ⇥ V+ be a singular subvariety of strictly smaller dimension outside of which
each point lies on a fiber of the right dimension namely d := dimV�+dimV+�dimW.
By assumption d < dimV�. Basic algebraic geometry (cf. [95, I.6.3]) tells us that S
and the fibers are closed algebraic subvarieties, and it is possible to prove by abstract
nonsense (see [19, Appendix A]) that their complexity is bounded in terms of those
of V± alone.

Then we see that A⇥A must concentrate on S, i.e., |(A⇥A) \ S| > 1

2

|(A⇥A) \
(V� ⇥ V+)|, since otherwise, decomposing (V� ⇥ V+) \ S into fibers of � we would
get:

CKC |A|�(dimV+
+dimV�

) ⌧ 1

2
|A \ V�| · |A \ V+|

6
X

z2W\�(A⇥A)

|��1(z) \ (A⇥A)|

⌧ |W \A4| |A|�d

implying that some translate of W intersects A in a subset of size much larger than
O(KO(1))|A|� dimW and thus contradicting the choice (maximality) of V+. It was licit
to bound |��1(z) \ (A ⇥ A)| as we did above because of the minimality of dimV�

and the fact that d = dim��1(z) < dimV�.
So we are reduced to the case when A⇥A concentrates on the singular subvariety S,

which is of dimension at most dimV� + dimV+ � 1. Passing to a proper subvariety
of smaller dimension if necessary, we may assume that S is a subvariety of smallest
possible dimension on which A⇥A concentrates (i.e., |A\V�| · |A\V+| ⌧ O(1)|(A⇥
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A) \ S|). If its projection to the second factor V+ is contained in a proper closed
subvariety of V+, then we use (4.5) for � + ", to write

|(A⇥A) \ S| 6 O(KO(1))|A \ V�| · |A|(�+")(dimV+�1),

which is a contradiction since (�+")(dimV+�1) < � dimV+. So we may assume that
the projection of S 6 V�⇥V+ to the second factor V+ contains an open dense set of
V+, i.e., the projection is dominant, and hence away from a proper closed subvariety
S
0

of S (on which A ⇥ A cannot concentrate by minimality of S) the fibers of this
projection have dimension at most dimV� � 1. Hence:

|(A⇥A) \ S| 6 O(1)|(A⇥A) \ S \ S
0

|
6 O(1)

X

a2A\V+

|(A⇥ {a}) \ S \ S
0

|

6 O(KO(1))|A \ V+| · |A|�(dimV��1),

which is again contradictory. This establishes that (4.5) holds for ↵ = � and thus by
induction that (4.3) holds unconditionally. ⇤

Remark 4.11 A careful analysis of the above argument shows that the exponent
of K in (4.3) can be taken to be 3 dimG, while the multiplicative constant C, depends
on the complexity of V, and is less explicit owing to the less explicit nature of our
notion of complexity and the way it bounds the number of irreducible components (as
proved in [19, Appendix A] using ultraproducts). Similarly the threshold of “su�cient
Zariski-density” of A is non explicit.

Let M > 2 and G as above an absolutely simple connected algebraic group G of
complexity at most M . In the above proof, we made use of the following lemma.

Lemma 4.12 (Finding a transverse conjugate) There is C = C(M) > 0 such
that the following holds. If A is a C-su�ciently Zariski-dense finite subset of G of
complexity at most M , then for any two closed algebraic subvarieties V

1

,V
2

in G of
complexity at most M and positive dimension and co-dimension, there is a 2 A such
that the constructible set V

1

aV
2

a�1 has dimension strictly bigger than dimV
2

and
complexity OM (1) (i.e., a constant depending on M only).

Proof We may assume both varieties to be irreducible. If no such a can be found,
then for every x

1

2 V
1

the closed irreducible subvarieties x
1

aV
2

and the closure of
V
1

aV
2

have same dimension, hence are equal. This means that x
1

aV
2

a�1 = x0
1

aV
2

a�1

for all x
1

, x0
1

2 V
1

. Hence that x�1

1

x0
1

lies in the stabilizer in G of the subvariety
aV

2

a�1, namely V�1

1

V
1

lies in aHa�1, where H is the closed algebraic subgroup {g 2
G; gV

2

= V
2

}. Since V
2

is a proper subvariety, H is a proper subgroup, and since
G is simple

T
a2G aHa�1 is finite. We claim that, because A is assumed su�ciently

Zariski-dense,
T

a2A aHa�1 is finite too; this will contradict the assumption that V
1

has positive dimension and prove the lemma.
To see the claim, observe that if Y 6 H is an algebraic subvariety of complexity at

most M 0, then {g 2 G,Y 6 gHg�1} is a subvariety of complexity at most OM 0(1). So
ifM 0 = OM (1), then there will be a 2 A outside it. Applying this remark several times
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to each of the irreducible components Y of the intersections H\a
1

Ha�1

1

\. . .\aiHa�1

i ,
i 6 k, we can build k = OM (1) elements ai 2 A such that

T
16i6k aiHa�1

i has
dimension 0. ⇤

Having the Larsen-Pink estimate for approximate groups (Proposition 4.10) at our
disposal, we are ready to prove our main theorem. So we now pass to the proof of
Theorem 4.5. For this it will be convenient to make the following definition:

Definition A maximal torus T of G will be called an involved torus if A2 \ T
contains at least one regular element.

Recall that a maximal torus is a connected closed algebraic subgroup of G contain-
ing only semisimple elements (i.e., elements that are diagonalizable in some hence any
embedding of G in GLd) and maximal for this property. Maximal tori are all con-
jugate. We refer to Borel’s book [4] or Humphreys [43] for background on algebraic
groups. A semisimple element is called regular if its centralizer has a maximal torus
of finite index. Regular semisimple elements form a Zariski open subset of G. In
particular, since the approximate group A is assumed to be su�ciently Zariski-dense
in Theorem 4.5, we see that A contains a regular semisimple element. We also recall
that every maximal torus T is of bounded index in its normalizer N(T ).

We observe at the outset that the number of involved tori is finite, indeed of size
at most |A2|, because a regular semisimple element can be contained in at most one
maximal torus (the connected component of its centralizer). As in the Larsen-Pink
theorem, we set qA := |A|1/ dimG. We need to prove that either qA is O(KO(1)), or
hAi is finite and qA/qhAi is O(KO(1)).

Claim 1 If T is an involved maximal torus, then

1/O(KO(1))qdimT
A 6 |T \A2| 6 O(KO(1))qdimT

A . (4.6)

Proof The argument is the same as the one used to prove (4.2) above applying the
Larsen-Pink inequality to both the centralizer and the conjugacy class, and yields the
desired estimate for the centralizer Z(a

0

) of a regular semisimple a
0

2 A2\T instead
of T . Namely looking at the fibers of the map A ! A3 \Va0 , a 7! aa

0

a�1, where Va0

is the conjugacy class of a
0

in G, we see that

|A| 6 |A2 \ Z(a
0

)| · |A3 \ Va0 |,

but each factor in the right handside is, respectively, at most O(KO(1))q
dimZ(a0)
A and

O(KO(1))qdimG�dimZ(a0)
A , so the product is O(KO(1))|A|. We thus obtain (4.6) with

Z(a
0

) in place of T . But Z(a
0

) is an algebraic subgroup with bounded complexity
and T is its connected component, hence T has bounded index in Z(a). This easily
implies that |A2\T | > |A2\Z(a

0

)|/O(KO(1)) (indeed A will intersect some translate
of Z(a

0

) in a set of size > qdimT
A /O(KO(1)), hence also some translate of T in a

comparable size). This establishes (4.6). ⇤

Claim 1 above is really the beef of the proof: assuming only that T \ A2 has one
regular element, we get that it has at least qdimT

A regular elements up to a O(KO(1))
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factor. Indeed, the non-regular elements in T are concentrated on a bounded union of
proper algebraic subgroups of bounded complexity (the subtori corresponding to the
vanishing of some root: in SLn this corresponds to the subgroups of diagonal matrices
having at least one double eigenvalue). So applying the Larsen-Pink inequality (4.3)
to this bounded union Tsing of subtori, we see that |A2 \ Tsing| 6 O(KO(1))qdimT�1

A .
This means that there are at least qdim T

A /O(KO(1)) elements in A2 \ T lying outside
of Tsing.

Claim 2 Unless qA is O(KO(1)), for every maximal torus T of G, if T is involved in
A, so is aTa�1 for every a 2 A.

Proof This follows easily from Claim 1 and the above remark. Note that |A2 \
aTa�1| = |a�1A2a \ T |. However aA2a�1 being contained in A4 must lie in at most
K3 left translates of A. Hence A2 is contained in at most K3 left translates of
a�1Aa. This means that one of these translates must intersect T in a set of size
at least qdimT

A /O(KO(1)). Hence |a�1A2a \ T | > qdimT
A /O(KO(1)), which implies by

the remark above, that a�1A2a contains a regular semisimple element of T , unless
qA 6 O(KO(1)). This proves the claim. ⇤

Obviously this lemma implies that all conjugates gTg�1, g 2 hAi, are involved.

Claim 3 Unless qA is O(KO(1)), hAi is finite.

Proof As remarked earlier, since A is su�ciently Zariski-dense, it must contain a
regular semisimple element, so there is at least one involved torus. Since every regular
semisimple element is contained in at most one torus, there are only finitely many in-
volved tori. By Claim 2, unless qA = O(KO(1)), they are permuted under conjugation
by hAi. In particular the Zariski-closure H of hAi intersects the normalizer N(T ), and
hence T itself in a subgroup of finite index. We claim that if hAi is infinite, and hence
the connected component of the identity H0 has positive dimension, then there is a
closed connected algebraic subgroup S 6 T of bounded complexity and containing
H0 such that H 6 N(S). This will yield the desired contradiction, because N(S) has
then bounded complexity. Starting with S = T observe that if H does not normalize
S, then there is h 2 H such that S \ hSh�1 has dimension < dimS and bounded
complexity. Hence so does the connected component S

1

of S \ hSh�1. Since H0 is
normalized by h, this S

1

also contains H0. Reiterate with S := S
1

. This process ends
after at most dimT steps and the claim follows. ⇤

The proof of Theorem 4.5 now follows in a few lines from Claims 1 and 3 and the
Larsen-Pink inequality by counting the number T of involved tori. Since every regular
semisimple element is contained in at most one maximal torus, Claim 1 implies that

T 6 O(KO(1))|A2|/qdimT
A 6 O(KO(1))qdimG�dimT

A .

On the other hand, the subgroup hAi acts by conjugation on the (finite) set of involved
tori by Claim 2. So

T > |hAi|/|hAi \N(T )| > |hAi|/O(1)qdimT
hAi = qdimG�dim T

hAi /O(1),
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where the second inequality follows from the original Larsen-Pink inequality (Prop-
osition 4.9) applied to the su�ciently Zariski-dense subgroup hAi. So qA/qhAi =

O(KO(1)) as desired. Finally note that the Larsen-Pink estimate was used only for
subvarieties (tori, conjugacy classes, etc.) whose complexity is bounded in terms of
the complexity of G only. Hence the threshold of su�cient Zariski density required
in these applications of (4.3) is uniform. This ends the proof of Theorem 4.5.

4.3 Verifying Assumption (ii) of the Bourgain-Gamburd machine

Suppose G
0

= G(Fq), where G is an absolutely simple algebraic group defined over
the finite field Fq. Then Corollary 4.6 proved in the previous subsection implies that
Assumption (ii) of the Bourgain-Gamburd machine (i.e., Proposition 3.1) holds for
G

0

with a function �(") given by �(") = "min{�, 1/(C+1)}, where C is the constant
from Corollary 4.6 (distinguishing the cases H = 1 and H 6= 1 and using Remark
3.4).

In order to deal with products of a bounded number of quasi-simple groups of
Lie type of bounded rank, one needs the following rather straightforward extension
of Theorem 4.7, based on Goursat’s lemma about subgroups of direct products of
groups.

Theorem 4.13 (Approximate subgroups of semisimple groups) Let G be an
(almost direct) product of finite simple (or quasisimple) groups of Lie type and suppose
that A a K-approximate subgroup of G. Then either |A| > |G|/KC , or A is contained
in at most KC left cosets of a proper subgroup H of G, where C > 0 is a constant
depending only on the rank of G.

We refer the reader to [22, Theorem 8.1] for a detailed proof.
If G is a semisimple algebraic group defined over Q its reduction Gp modulo p

is well-defined for all but finitely many primes p. When G is simply connected,
then Gp(Fp) is an almost direct product of quasi-simple groups of Lie type over Fq,
where q is a bounded power of p. It then follows from Remark 3.4 that every proper
subgroup H of a quotient G of Gp(Fp) has index at least |G|⌘ in G for some ⌘ =
⌘(G) > 0 independent of p and of the quotient G. We may then take as above
�(") = min{⌘, 1/(C + 1)}", where C > 1 is the constant in the above proposition
and apply this proposition to K = |G|� to obtain Assumption (ii) of the Bourgain-
Gamburd machine (Proposition 3.1).

More generally we can handle a bounded number of quasi-simple factors. Namely
if G is a (almost direct) product of at most r quasi-simple groups of Lie type of
dimension at most d (so for instance if G is the reduction modulo q := p

1

· . . . · pr,
for some distinct large primes p

1

, . . . , pr of some Zariski-dense subgroup of G(Q)),
then Assumption (ii) of the Bourgain-Gamburd machine is still satisfied with say
� := min{⌘(d)/2r, 1/(2C)}". Here ⌘(d) > 0 denotes the constant of quasi-randomness
(see Remark 3.4) such that every proper subgroup of a quasi-simple group S of Lie
type of dimension at most d has index at least |S|⌘, r is the number of quasi-simple
factors of G and C is the constant from Theorem 4.13.

To verify that these constants indeed work, split G as a product G
1

G
2

, where
G

1

is the product of the quasi-simple factors of size at most |G|"/2r. Given a
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|G|�-approximate subgroup A of G, apply Theorem 4.13 to ⇡
2

(A), the projection
of A to G

2

. Then either |⇡
2

(A)| > |G
2

|/|G|C�, in which case |A| > |⇡
2

(A)| >
|G|/(|G

1

||G|C�) > |G|1�", because |G
1

| 6 |G|"/2 and C� 6 "/2; or ⇡
2

(A) is covered
by at most |G|C� translates of a proper subgroup of G

2

. However proper subgroups of
G

2

have index at least |S|⌘, where S is a quasi-simple factor of G
2

, hence have index
at least |G|⌘"/2r. It follows that A itself is covered by at most |G|C� 6 [G : H ]"/|G|�
translates of a proper subgroup H of G. We are done.

To summarize the above discussion, we have proved in particular:

Corollary 4.14 If G is a semisimple simply connected algebraic group defined over
Q and p

1

, . . . , pr distinct large enough primes, then Assumption (ii) of Proposition
3.1 holds for G

0

:=
Qr

i=1

Gpi(Fpi) with � = "/Dr, for some constant D > 0 depending
only on the dimension of the algebraic group G and not on the pi’s.

5 Random matrix products

The theory of random matrix products is a well developed part of probability theory
on groups. It aims at understanding the statistical behavior of products of n matrices
chosen at random when n tends to infinity. It is customary to restrict attention to the
case when the matrices are independent and chosen according to the same probability
distribution.

In order to establish the non-concentration estimate in the Bourgain-Gamburd
machine (i.e., Assumption (iii) in Proposition 3.1) we will need the following result:

Theorem 5.1 (Probability of return to a subgroup [15]) Let G be a connected
semisimple algebraic group over a field K of characteristic zero and � 6 G(K) a
Zariski-dense subgroup generated by a finite set S. Let µ be a probability measure on
S with µ(s) > 0 for each s 2 S. Then there is a positive constant c > 0 such that for
every integer n > 1,

µn(H) < e�cn,

uniformly for every proper closed algebraic subgroup H of G.

We will not go here into all the details of the proof of Theorem 5.1 and instead
refer the reader to [15]. However we will indicate how the theory of random matrix
products is used to derive it. Theorem 5.1 is deduced from the following fact proved
in [15].

Proposition 5.2 (Probability of fixing a line) Let K be a local field of charac-
teristic zero and µ a probability measure on GLd(K) such that max{kgk, kg�1k}" is
µ-integrable for some " > 0. Assume that the support of µ generates a subgroup �µ

which is not relatively compact in projection to PGLd(K) and does not preserve any
finite union of proper vector subspaces of Kd. Then there is c > 0 such that for every
n > 1 and every line x 2 P(Kd),

µn({g 2 GLd(K); g(x) = x}) < e�cn.
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The condition that the support of µ does not preserve any finite union of proper
subspaces is usually called strong irreducibility. It is equivalent to asking that every
subgroup of finite index in �µ acts irreducibly, or that the connected component of the
Zariski-closure of �µ acts irreducibly. This condition was introduced by Furstenberg
in the 1960’s in his study of random matrix products [28]: he showed that under the
conditions of the proposition, if µ is supported on SLd(k), then the first Lyapunov
exponent of µ is positive, namely:

lim
1

n

Z
log kgk dµn(g) > 0.

Another key theorem in the theory of random matrix products is the simplicity of
the Lyapunov spectrum, due to Guivarc’h and Raugi [34]. It states that under the
assumptions of proposition, if the subgroup �µ is proximal (by definition this means
that the semigroup K�µ contains a rank one matrix in its closure in the algebra
of d ⇥ d matrices Md(K)), then the second Lyapunov exponent is strictly smaller
than the first. In other words the random matrix product will almost surely contract
almost all of the projective space P(kd) into an exponentially small neighborhood of
a point. From this the conclusion of Proposition 5.2 can be easily obtained. However
this requires the proximality assumption and this assumption does not always hold.
It holds for measures µ supported on Zariski-dense subgroups of SLd(R) due to work
of Goldsheid-Margulis [30] and this was used by Bourgain and Gamburd in their work
[6]. But it does not hold in general in particular if we replace R with a p-adic field.
So one needs to avoid this assumption if one wishes to establish Proposition 5.2 in
full generality (and this generality is require to get Theorem 5.1). This is what is
done in [15].

Let us now explain how to derive Theorem 5.1 from Proposition 5.2. First we claim
that we may assume that K is a local field and that � is not relatively compact in
G(K). To see it, first note that we may assume K to be finitely generated over Q,
since K can be taken to be generated by the matrix entries of the elements of the
finite generating set S. Now pick a semisimple element of infinite order in � (it always
exists, because � is Zariski-dense in G) and let � be one of its eigenvalues of infinite
order. Find an absolute value on an algebraic closure of K, which is not equal to one
on � and consider the associated completion to obtain the desired local field. This
argument is standard, details can be found in [99, Lemma 4.1].

Note that passing to a finite extension of K if necessary, we may assume that G
is K-split, so that each absolutely irreducible module of G can be defined over K.
Next, we claim that there are a finite number of absolutely irreducible finite dimen-
sional representations of G, say ⇢

1

, . . . , ⇢k, each of dimension at least 2, such that
every proper closed algebraic subgroup H of G must stabilize a line in one of these
representations. This claim was already verified in the proof of Lemma 2.6 above.

Finally, note that we may apply Proposition 5.2 to each ⇢i(�), because ⇢i(�) acts
strongly irreducibly on the representation space of ⇢i and is not relatively compact
modulo scalars, because it is non relatively compact and of determinant 1 since G
is semisimple. Since there are only finitely many ⇢i’s to consider, we get the desired
uniformity in H and Theorem 5.1 is proved.
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6 Proof of the super-strong approximation theorem

In this section we verify that the ingredients of the expansion machine (i.e., Proposi-
tion 3.1) are all met under the assumptions of Theorem 1.2 and complete the proof
of this theorem.

In view of Proposition 3.1, we see that Theorem 1.2 will follow from Proposition 3.1
applied to the groups G

0

:= Gp(Fp) with generating sets Sp, where Sp is the reduction
modulo p of the generating set S of the Zariski-dense subgroup � 6 G(Q), provided
the three assumptions of Proposition 3.1 are fulfilled. We saw in subsection 4.3 that
Assumption (ii), the classification of approximate subgroups, is satisfied. Let us now
consider Assumption (i).

Proposition 6.1 (High multiplicity/Quasirandomness) Let G be a semisimple
and simply connected algeraic group defined over Q and p a large enough prime. Then
every non-trivial irreducible representation ⇢ : Gp(Fp) ! GLd(C) of G = Gp(Fp) has
dimension at least |G|�, where � > 0 depends only on the dimension of G.

Proof As observed by Sarnak-Xue [92] and Gamburd [29], this goes back to Frobe-
nius in the case of SL

2

. In [57] Landazuri and Seitz proved that all non-trivial irre-
ducible projective representations of a finite simple group of Lie type have dimension
at least |G|� for some � > 0 depending only on the rank, which implies the analogous
claim for irreducible linear representations of any quasi-simple group. Actually, since
we do not need the best possible �, we can arrive to this conclusion rather quickly
if we observe that (see, e.g., [62, Theorem 4.1]) with the exception of the Suzuki
groups, every quasi-simple finite group of Lie type contains a copy of either SL

2

(Fq)
or PSL

2

(Fq). But both the Suzuki case and PSL
2

(Fq), can be handled easily (see [57,
Lemma 4.1]).

Now Gp(Fp) is an almost direct product of quasi-simple groups over Fq, with q = pf

and f is bounded in terms of the dimension of G only. So any non trivial linear
representation of Gp(Fp) gives rise to a representation of a quasi-simple group of Lie
type over Fpf with f and rank bounded in terms of dimG only. The proposition
follows. ⇤

Remark Tim Gowers called a group quasi-random if it has the property sought for
in this proposition. In such groups large subsets behave in a quasi-random way in
the sense that the (non-abelian) non trivial characters of the indicator function of a
subset are always very small [32]. This was used by Gowers to show that product-free
sets (i.e., subsets A ⇢ G not containing any x, y, z with xy = z) in such groups are
small.

It now remains to verify Assumption (iii) of the Bourgain-Gamburd machine. This
is usually the most di�cult step. Here it will follow easily from the combination of
the quantitative version of the strong approximation theorem proved in Section 2 and
the large deviation estimates from the theory of random matrix products recalled in
the previous section.

We may assume that G 6 GLd and this allows us to define the height H(�) of an
element of � 6 G(Q) as in Theorem 2.3. In follows from (2.1) that for every n > 1
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and every � 2 Sn,
H(�) 6 (dMS)

nd2 , (6.1)

where we recall that MS is defined as

MS = max{H(s), s 2 S} (6.2)

and the height H(s) is the naive height (maximum of the numerator and denominator
of each matrix entries written as an irreducible fraction).

Fix ⌧ > 0 to be determined below. Let p
0

be defined as in Theorem 2.3 and p > p
0

be any prime number. Choose an even integer n between ⌧ log p and 2⌧ log p. Now let
H be a proper subgroup of Gp(Fp), and SH,n be the subset of all elements in Sn whose
reduction modulo p lies in H . From (6.1) we see that if ⌧ < 1/(2C

0

d2 log(dMS)), then

p > (MSH,n
)C0 ,

where C
0

is the constant arising in Theorem 2.3. Hence Theorem 2.3 applies to the
symmetric set SH,n and we conclude that the subgroup generated by SH,n is not
Zariski-dense in G. Let H be its Zariski-closure.

From Theorem 5.1 we know that in � and for all n > 1,

µn
S(H) 6 e�cn,

where c > 0 is a positive constant independent of the choice of H. However, the
reduction mod p map from � to Gp(Fp) is injective on all elements of height at most p,
and hence on Sn, thanks to our choice of n (of size roughly ⌧ log p). Therefore

µn
Sp
(H) = µn

S(H) 6 e�cn 6 1/p⌧c 6 1/|Gp(Fp)|,

where we have set  = c⌧/2d2, because |Gp(Fp)| 6 pd
2
. In particular we see that the

exponent  can be taken of the form c
1

c/ logM(S), where c
1

> 0 depends only on G
and c is the constant from Theorem deviation. This establishes the non-concentration
estimate needed in the Bourgain-Gamburd machine (Assumption (iii)) and ends the
proof of the super-strong approximation theorem (Theorem 1.2).

Remark 6.2 (Explicit estimate on the gap) The proposed proof of Theorem 5.1
is non e↵ective (it uses the ergodic theorem in Proposition 5.2) and hence gives no
explicit lower bound on c. However it is likely that c is in fact independent of the
choice of S provided |S| is bounded. In that case the estimate given by Proposition 3.1
would give the following lower bound for the spectral gap:

�
1

> 1/M
O(1)

S ,

where MS (see (6.2)) is the maximal height of an element of S and the implied
constant depends only on G and the cardinal of S. See [54] for an explicit upper
bound on the implied constant in the special case when S belongs to SL

2

(Z).
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6.1 Several prime factors

The case of several (but boundedly many primes) can be handled at little additional
cost. Assumptions (i) and (ii) of Prop. 3.1 have already been verified in this more
general setting (see §4.3). Assumption (iii) follows in the same way as before by
projecting the proper subgroupH to the largest simple factor where it remains proper.
The corresponding bound on  and thus on the �

1

will depend on the number of prime
factors involved.

Hence we get the following improved version of Theorem 1.2.

Theorem 6.3 Suppose G is a connected and simply connected semisimple algebraic
group defined over Q and let � 6 G(Q) be a Zariski-dense subgroup generated by a
finite set S. Let also r 2 N. Then there is " = "(S, r) > 0 such that for all large
enough distinct prime numbers p

1

, . . . , pr, the projection of � in the finite group G
0

:=Qr
i=1

Gpi(Fpi) is surjective and the induced Cayley graph of G
0

is an "-expander.

Note that the spectral gap in this result depends on r but not on the choice of
the r primes p

1

, . . . , pr. Here again, if G is not assumed simply connected, then the
projection of � to G

0

may not be surjective, but it has bounded index (depending
only on G and r) in G

0

and the induced Cayley graph of the image remains an "-
expander. One reduces easily to the simply connected case by lifting to � to the
simply connected cover of G (see, e.g., [68, p.399–418]).

Remark 6.4 (Groups defined over a number field) If Q is replaced by a num-
ber field K, then a similar result holds, which can be reduced to the case of Q. If
one wants to take quotients modulo prime ideals P of the ring of integers OK of K,
then one needs to be careful that the corresponding reduction may not be surjective
on G(OK/P) (e.g., SL

2

(Z) is Zariski-dense in SL
2

, but maps onto SL
2

(Fp) and not
onto SL

2

(OK/P) ' SL
2

(Fpf ) for any prime P with residual degree f > 1.)

To palliate this problem, one needs either to pass to a smaller number field (e.g.,
the one generated by the traces of the elements of �) or to consider the Zariski-
closure of the embedding of � under the restriction of scalars of G from K to Q. This
Zariski closure will be semisimple and Theorem 6.3 will apply. In case G is not simply
connected, one can lift to the simply connected cover. At any case it will always be
the case that if � is a Zariski-dense subgroup of G(K) for some number field K and
semisimple algebraic K-group G, then the quotients of � modulo prime ideals of OK

will be expanders. This follows readily, by restriction of scalars, from Theoremn 6.3.
Bourgain-Gamburd-Sarnak [7] for SL

2

, Varjú [100] for SLd and Salehi-Golsefidy-
Varjú [87] in general for G perfect, went much further by establishing that the spectral
gap can be made independent of r (for a given S). This however requires to prove As-
sumption (ii) of the Bourgain-Gamburd machine in this setting, hence to understand
approximate subgroups of large products of quasi-simple finite groups of bounded
rank. This lies much deeper and requires a delicate multi-scale analysis. They prove:

Theorem 6.5 (Salehi-Golsefidy-Varjú [87]) Let q
0

2 N and � = hSi be a finitely
generated subgroup of GLd(Z[1/q0]). Assume that the connected component of the
Zariski closure of � is perfect. Then there is " = "(d, S) > 0 such that the Cayley
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graphs of the quotients ⇡q(�) induced by the generating set S are "-expanders uni-
formly over all square-free integers q co-prime to q

0

. Here ⇡q is the reduction modulo
q defined on rational numbers with denominator co-prime to q.

To finish, let us quote the following related by-product of the Bourgain-Gamburd
method.

Proposition 6.6 ([22, Prop. 8.4]) Let r 2 N and " > 0. Suppose G = G
1

G
2

,
where G

1

and G
2

are products of at most r finite simple (or quasisimple) groups of Lie
type of rank at most r. Suppose that no simple factor of G

1

is isomorphic to a simple

factor of G
2

. If x
1

= x
(1)

1

x
(2)

1

, . . . , xk = x
(1)

k x
(2)

k are chosen so that {x(1)
1

, . . . , x
(1)

k }
and {x(2)

1

, . . . , x(2)k } are both "-expanding generating subsets in G
1

and G
2

respectively,
then {x

1

, . . . , xk} is �-expanding in G for some � = �(", r) > 0.

The assumption that no simple factor of G
1

be isomorphic to a simple factor of G
2

is necessary here, because otherwise {x
1

, . . . , xk} may not generate. However what if
we suppose it generates, is the conclusion still true without the assumption that G

1

and G
2

have no isomorphic factors (e.g., if G
1

= G
2

= SL
2

(Fp))? This is an open
question.

7 The group sieve method

One of the leitmotives of the subject matter in this paper is the ability to study finite
simple groups of Lie type as quotients of certain infinite linear groups and thereby
to do geometry and analysis on infinite groups in order to derive properties of finite
groups, such as the expander property of their Cayley graph. The purpose of the sieve
method is to achieve the converse: to study infinite linear groups from the properties
of their finite quotients.

In this concluding section, we describe this method, first by showing a very simple
application of Theorem 1.2 to random matrix product theory, where only one prime
is required, and then by describing the group sieve lemma of Lubotzky and Meiri and
two of its applications to the study of generic properties in infinite linear groups.

7.1 Large deviations for subvarieties

One of the simplest example showing the power of Theorem 1.2 is the following
theorem. It says that random walks on linear groups do not concentrate much on any
algebraic subvariety.

Theorem 7.1 (Subvarieties are exponentially small) Let K be a field of char-
acteristic zero, � 6 GLd(K) a non virtually solvable finitely generated subgroup and
µ a probability measure whose support S is a finite symmetric generating subset of
�. Let G be the Zariski closure of �, and R its solvable radical. Suppose V is an
algebraic subvariety in GLd such that dim(R(V \G)) < dimG. Then we have for all
n > 1:

µn(� \ V) 6 c
0

(V) · e�cn,

where c
0

(V) > 0 is a constant depending only on the complexity (i.e., degree) of V,
and c > 0 depends only on µ.
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Note that we have already shown a special case of this theorem in Theorem 5.1
above. Theorem 5.1 claimed essentially the same result when the subvariety V is
assumed to be an algebraic subgroup. Although a direct approach similar to the proof
of the Larsen-Pink inequality (Prop. 4.10) might be successful in deriving Theorem
7.1 from Theorem 5.1, the sieve method here can be implemented without any e↵ort
(modulo standard reductions) and yields Theorem 7.1 as a direct consequence of the
super-strong approximation theorem (Theorem 1.2) as we now show. This was already
observed (and proved in a special case) in the original work of Bourgain-Gamburd [6,
Corollary 1.1].

Proof We first reduce to the case when the Zariski-closure G of � is semisimple and
defined over Q. Taking the quotient modulo the solvable radical R, we may assume
that G is semisimple (with connected component of the identity G0). Now since �
is finitely generated, we may assume that the field K is finitely generated over Q,
hence is a finite algebraic extension of a purely transcendental extension of Q with a
finite transcendence basis. One may then specialize and pick algebraic values for this
transcendence basis in such way that the connected component of the Zariski closure
of the resulting image group �0, now a subgroup of GLd(Q), is still G0 (this follows
from Lemma 2.6, see also [58] for a related statement). Now taking the restriction of
scalars to Q we have reduced to the case when K = Q and G0 is semisimple.

It is enough to prove the result for n even, and hence replacing S with S2 we may
assume that 1 belongs to S (note that the subgroup generated by S2 has finite index
in �). Let then �

0

:= � \ G0. It is a subgroup of finite index in � which is Zariski
dense in G0. Now pick a large prime p. For p large enough, we know by the super-
strong approximation theorem (Theorem 1.2) that (�

0

)p, the reduction mod p of �
0

,
has bounded index in G0

p(Fp) and that its induced Cayley graph is an "-expander for
some " > 0 independent of p. It follows that the reduction mod p of �, itself is a
finite group Gp containing (�

0

)p as a subgroup of bounded index and hence is also
an "0-expander for some "0 > 0 independent of p and depending only on ", G, and the
index of �

0

in �. Moreover Sp is not contained in a coset of a proper subgroup of Gp,
because 1 2 Sp. By the random walk characterization of expanders (see Lemma 3.3
above), this means that random walks at any time larger than C" log p are very well
equidistributed in the sense that if n = [C"0 log |Gp|] say

����µ
n
p (x)�

1

|Gp|
���� 6 1/|Gp|10

for every x 2 Gp. In particular

µn(V) 6 µn
p (V mod p) 6 |Vp|

|Gp| + 1/|Gp|9,

However the assumption on V implies that |Vp| 6 c
0

(V)pdimG�1 while |Gp| = ⌦(pdimG)
(see the Schwarz-Zippel lemma in [22]). If follows that

µn(V) 6 c
0

(V) ·O(1/p),

with the implied constant depending only on G0. Now given any large n, one needs
only pick a prime p such that n is roughly of size C" log |Gp| and the result follows.

⇤



Breuillard: Approximate subgroups and super-strong approximation 36

For another method towards Theorem 7.1 and related partial results see the work
of Aoun [1].

We now pass to a corollary of Theorem 7.1. In [2], R. Aoun showed a probabilistic
version of the Tits alternative: he proved that two independent random walks on a non
virtually solvable linear group eventually generate a free subgroup. In other words
a generic pair of elements always generates a free subgroup. Combining Theorem
7.1 with Lemma 2.6 we can now assert that a generic pair of elements generates a
Zariski-dense free subgroup, namely:

Corollary 7.2 (A generic pair generates a Zariski-dense free subgroup)
Under the assumptions of Theorem 7.1 assume further that the Zariski closure of
� = hSi is connected semisimple. Let E be the set of pairs (a, b) in �⇥� such that the
subgroup ha, bi is either not free, or not Zariski dense in �. Then there is c = c(µ) > 0

µn ⇥ µn(E) 6 e�cn.

Proof Aoun’s theorem [2] tells us that for some c > 0, µn ⇥ µn(NF) 6 e�cn, where
NF is the set of non-free pairs. Now applying Theorem 7.1 to the group � ⇥ � in
G⇥G the measure µ⇥ µ and subvariety V = X from Lemma 2.6, we get the desired
result. ⇤

For related results, see Aoun’s work [1] and Rivin’s [84].

7.2 The group sieve lemma

The spectral gap for mod p quotients has been exploited by Rivin [83] and Kowal-
ski [52] to perform sieving on arithmetic lattice subgroups. Prior to the new results
on thin groups such as the super-strong approximation theorem, the spectral gap was
known in a variety of cases for mod p or mod n quotients of arithmetic subgroups.
Thanks to super-strong approximation (i.e., Theorem 1.2 or [87]), we can now perform
this sieving on arbitrary Zariski-dense subgroups (i.e., thin subgroups).

In Theorem 7.1 we used only one prime number to show our non concentration
estimate. The power of the sieve consists in taking advantage of several primes and
using as a guiding principle that primes are essentially independent.

Lubotzky and Meiri [65] formulated the following elegant lemma, which gives a
simple set of conditions to be fulfilled in order to get further genericity results (akin
to Theorem 7.1 above) that may require more than one prime.

Lemma 7.3 (Group sieve lemma) Let � = hSi be a group generated by a finite
symmetric set S and {Ni}16i6N be a finite sequence of finite index normal subgroups.
Set ⇡i : � ! �/Ni the projection maps. Let Z ⇢ � be a subset of � and assume that
there are positive constants D, ",↵, with ↵ 2 (0, 1), such that

• Cay(�/(Ni \Nj), S mod Ni \Nj) for i 6= j are "-expanders;

• �/(Ni \Nj) ' �/Ni ⇥ �/Nj for i 6= j;

• |�/Ni| 6 ND for all i = 1, . . . , N ;

• |⇡(Z)| 6 (1� ↵)|⇡i(�)| for all i = 1, . . . , N .
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Then there is a constant B = B(", D,↵) > 0 such that for all n > B logN ,

µn
S(Z) 6 1

N
.

As before we have denoted by µS the uniform probability measure on the finite
symmetric generating set S. Note that only the last assumption involves the set Z. In
applying this lemma, typically the ⇡i will be the reduction maps modulo a prime pi.
It is crucial that the constant B(", D,↵) depends only on these three parameters and
not on �, nor the choice of the sequence {Ni}i.

The proof of this lemma is quite short, but before we give it in full, let us comment
on it a little. Let Sn := Y

1

· . . . ·Yn be the product of n independent random variables
Y
1

, . . . , Yn on � all distributed according to the same probability distribution µS (the
uniform distribution on the generating set S). The key feature of an expander graph
is that random walks on them become equidistributed very fast. By the first item in
the above lemma, the Cayley graph of �/(Ni\Nj) is an "-expander. Clearly this also
implies that the quotients �/Ni and �/Nj are "-expanders. Hence the distributions
of ⇡i(Sn) and ⇡j(Sn) are very close to the uniform distribution on �/Ni and �/Nj

respectively as long as n > C" log |⇡i(�)|, so in particular if n > C"D logN (thanks
to the third item). By the second item the natural injection from �/(Ni \ Nj) to
�/Ni ⇥�/Nj is surjective. This implies that the joint distribution (⇡i(Sn),⇡j(Sn)) is
also close to the uniform distribution, and hence that ⇡i(Sn) and ⇡j(Sn) are almost
independent as random variables.

Suppose for a second that they were actually independent. Then quite obviously,
using the fourth item in the last inequality:

P(Sn 2 Z) 6 P
⇣
⇡i(Sn) 2 ⇡i(Z) 8i 6 en/C"D

⌘
6 (1� ↵)e

n/C"D
,

where P(⌦) denotes the probability of the event ⌦. We would thus get a super-
exponential decay of the probability of belonging to Z.

Of course joint independence is too much to hope for, but the expander property
on �/Ni ⇥ �/Nj implies that the ⇡i(Sn) are pairwise almost independent. Now the
following classical result from basic probability theory (the second moment method)
allows us to take advantage of this pairwise almost independence in order to derive a
meaningful upper bound on P(Sn 2 Z).

Lemma 7.4 Let X > 0 be a real random variable with E(X2) < 1 and T > 1 a
parameter.

(i) (1st moment method) P(X 6 T · E(X)) > 1� 1/T ;

(ii) (2nd moment method) P(X > (1/T ) · E(X)) > (1� 1/T )2E(X)2/E(X2).

Proof The first item is an instance of Chebychev’s inequality:

P(X > T · E(X)) · T · E(X) 6 E(X1X>T ·E(X)

),

while the second follows from Cauchy-Schwarz:
⇣
1� 1

T

⌘
E(X) 6 E

⇣
X1X> 1

T
·E(X)

⌘
6 E(X2)1/2P

⇣
X > 1

T
E(X)

⌘
1/2

⇤
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Applying this lemma to the variable X :=
PN

i=1

1Ac
i
, (Ac

i being the complement of
the event Ai), we obtain:

Fact (Exploiting pairwise almost independence): If {Ai}16i6N are N events
on a probability space, such that for some ↵, � > 0,

• P(Ai) 6 1� ! for each i = 1, . . . , N , and

• P(Ai \Aj) 6 P(Ai)P(Aj) + � for all i 6= j,

then

P
✓ \

16i6N

Ai

◆
6 1

!2

✓
� +

3

N

◆
.

Proof Indeed, P(Ac
i) = 1� P(Ai) > !, so E(X) > !N and by Lemma 7.4

1� P
✓ N\

1

Ai

◆
= P(X > 1) > P

✓
X > 1

!N
· E(X)

◆
>

✓
1� 1

!N

◆
2 E(X)2

E(X2)
,

while

E(X2) =
X

i

P(Ac
i) +

X

i 6=j

P(Ac
i \Ac

j) and E(X)2 =
X

i

P(Ac
i)

2 +
X

i 6=j

P(Ac
i )P(Ac

j).

Hence using that P(Ac
i \Ac

j) 6 P(Ac
i)P(Ac

j) + �,

E(X2)� E(X)2 6
X

i

P(Ac
i )P(Ai) + �N(N � 1) 6 N(1� !) + �N2,

from which we deduce (using that E(X) > N!) that

1� P
✓ N\

1

Ai

◆
>

✓
1� 1

!N

◆
2

✓
1� N(1� !) + �N2

(!N)2

◆
> 1� 1

!2

✓
� +

3

N

◆

as desired. ⇤

We can now complete the proof of the group sieve lemma (i.e., Lemma 7.3):

Proof Note that we may assume that n is even, and thus replacing S by S2 if neces-
sary we may assume that S contains 1. Then by the random walk characterization of
"-expanders (Lemma 3.3) we know that the random walk Sn = Y

1

· . . . · Yn is almost
equidistributed in projection to each ⇡i(�) as long as n > C" log |�/Ni|, hence as soon
as n > C"D logN . In particular for all x 2 ⇡i(�):

����P(⇡i(Sn) = x)� 1

|⇡i(�)|
���� 6

e�n/C"

|⇡i(�)|10 (7.1)

and for i 6= j, x 2 ⇡i(�) and y 2 ⇡j(�)

����P((⇡i(Sn), ⇡j(Sn)) = (x, y))� 1

|⇡i(�)| · |⇡j(�)|
���� 6

e�n/C"

|⇡i(�)|10|⇡j(�)|10 (7.2)
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Let Ai be the event “⇡i(Sn) 2 ⇡i(Z)”. From (7.1) and (7.2) we get for i 6= j
����P(Ai)� |⇡i(Z)|

|⇡i(�)|
���� 6

e�n/C"

|⇡i(�)|9 ,����P(Aj)� |⇡j(Z)|
|⇡j(�)|

���� 6
e�n/C"

|⇡j(�)|9 ,����P(Ai \Aj)� |⇡i(Z)|
|⇡i(�)|

|⇡j(Z)|
|⇡j(�)|

���� 6
e�n/C"

|⇡i(�)|9|⇡j(�)|9 .

Hence
|P(Ai \Aj)� P(Ai)P(Aj)| 6 3e�n/C" .

Recall further that by assumption |⇡i(Z)|/|⇡i(�)| 6 1� ↵ hence

P(Ai) 6 1� ↵+ e�n/C" 6 1� ↵/2,

for n large enough. Setting B(", D,↵) = 10C"D/↵2 (say), the lemma now follows by
applying the Fact above with ! := ↵/2, � = 3e�n/C" . ⇤

In the next subsection, we give an application of this group sieve lemma to a
counting problem in infinite linear groups.

To conclude we note that the pairwise almost independence given by the assump-
tion that the Cayley graphs of �/(Ni\Nj) ' �/Ni⇥�/Nj are expanders corresponds
to the super-strong approximation theorem for products of two prime factors (i.e.
when r = 2 in Theorem 6.3). The result of Salehi-Golsefidy and Varjú [87] shows uni-
form expansion for an arbitrary (growing) number of prime factors. This corresponds
to joint almost independence of the sequence ⇡i(Sn) instead of pairwise. Clearly this
is a much stronger property to have at one’s disposal and it is crucial in the A�ne
Sieve of Bourgain-Gamburd-Sarnak [7] and Salehi-Golsefidy-Sarnak [86].

7.3 Proper powers in linear groups are scarce

In [65] Lubotzky and Meiri use the group sieve lemma (Lemma 7.3) above to establish
the following result:

Theorem 7.5 (Proper powers are exponentially small, [65]) Under the as-
sumptions of Theorem 7.1, let P be the proper powers in �, i.e., the set of elements in
� 2 � such that there is �

0

2 � and k > 2 such that � = �k
0

. Then P is exponentially
small, namely there is c > 0 such that for all n > 1,

µn(P) 6 e�cn.

An old result of Malcev (see [60] and references therein) says that for each n > 1,
the set of n-th powers in any finitely generated nilpotent group contains a finite index
subgroup, and thus cannot be exponentially small. So Theorem 7.5 can be seen as a
strong quantitative converse to Malcev’s theorem. Prior attempts to prove this result,
see Hrushovski-Kropholler-Lubotzky-Shalev [40], could only go as far as proving that
for each k, the set of k-powers in � does not contain a finite index subgroup of �.

We sketch the proof in the special case when � is a Zariski-dense subgroup of
SLd(Z).
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Proof We want to apply the group sieve lemma to the subset Z := P of proper
powers. The projection maps ⇡i will be the reduction maps modulo large primes pi
to be chosen carefully. By the strong approximation theorem (Theorem 1.1 above) �
maps onto SLd(Fp) for all large enough prime p.

In a finite group every element of order at least 3 is a proper power, so we have to
restrict attention tom-powers (i.e., elements in the image of the map g 7! gm) for each
given m. Luckily we do not need to consider all m’s, but only those with m 6 Cn for
some C = C(S) > 0. The reason is that if � 2 SLd(Z) has an eigenvalue � of modulus
> 1, then it is of modulus > 1 + � for some � depending only on the dimension d
(indeed eigenvalues are roots of the characteristic polynomial, which has degree d and
integer coe�cients: if all eigenvalues were say 6 2 in modulus, then the coe�cients
would be bounded, leaving only finitely many possibilities for �). So for every m > 2,

k�mk > |�|m > (1 + �)m,

while every element in the support of the measure µn has size at most Mn
S , where

MS = max{ksk, s 2 S}. So if an element g in the support of µn is a proper power �m
0

,
then either m = O(n) or g has all its eigenvalues of modulus 1. Kronecker’s lemma
tells us that if the roots of a monic polynomial of degree d in Z[X] have all modulus
1, they must be roots of unity of degree at most d. Hence gd! must be a unipotent
element, i.e., (gd! � 1)d = 0. However V := {g 2 SLd; gd! is unipotent} is a proper al-
gebraic subvariety of SLd, and hence Theorem 7.1 tells us that this set is exponentially
small and can be ignored. It follows that

µn(P) 6
X

m6C(S)n

µn{Pm}+O(e�cn)

where Pm is the set of m-powers. We will then apply the group sieve lemma to each
Pm separately.

Now given m > 2, how many m-powers are there in SLd(Fp)? If m is co-prime to
the order of SLd(Fp), then every element is an m-power. So we wish to choose p in
such a way that there are not too many m-powers. For example, assume that p ⌘ 1
mod m, so that m divides the order of the multiplicative group of Fp, which is a
cyclic group of order p � 1. In Z/(p � 1)Z there are precisely (p � 1)/m multiples
of m. So there are exactly ((p � 1)/m)d�1 m-powers in the subgroup of SLd(Fp)
made of diagonal matrices, which is a subgroup isomorphic to (Z/(p � 1)Z)d�1. In
particular at least (p � 1)d�1/2 of the diagonal matrices are not m-powers. Among
them at most (p�1)d�2 have two identical diagonal entries, i.e., at least (p�1)d�1/3
of them (for p large) have distinct eigenvalues and thus a centralizer which is as small
as possible, that is equal to the full diagonal group. In each conjugacy class of such
a diagonal matrix, there are no more than d! other such matrices. Taking the union
of the conjugacy classes of these elements thus yields at least |SLd(Fp)|/3d! di↵erent
elements that are not m-powers. Thus we have shown that for large p and any m > 2
with p ⌘ 1 mod m

|{m-powers in SLd(Fp)| 6
✓
1� 1

3d!

◆
|SLd(Fp)|

To apply Lemma 7.3 need now choose a sequence of distinct primes {pi}i=1,...,N

with N of exponential size in n. We choose one sequence of primes for each m 6 Cn.
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Dirichlet’s theorem ensures that there are infinitely many primes congruent to 1 mod
m. More follows from the proof: there is in fact a positive density of such primes
among the primes. However we need a uniform estimate as m is allowed to vary from
1 to n, while the primes we sieve with will be of exponential size in n. We need
that there are exponentially many primes of exponential size congruent to 1 mod m
uniformly in m 6 Cn. So one needs a fairly precise quantitative version of Dirichlet’s
theorem: we need to know that the number ⇡(x;m, 1) of primes congruent to 1 mod
m and less than x is at least say

p
x uniformly over all moduli m 6 log x. The Siegel-

Walfisz theorem says that the prime number theorem in arithmetic progressions is
accurate uniformly for values m going up to (log x)A for any given A > 1. But
it is non-e↵ective in the sense that the first x for which the estimate begins to be
meaningful is not explicitly computable in terms of A due to the possible presence of
Siegel zeros. In our case, we need only a much weaker lower bound on the number of
such primes and the estimate

⇡(x;m, 1) =
x

�(m)

⇣
1 +O(e�O((log x)1/5))

⌘

holds uniformly for all m 6 (log x)3/2 with e↵ective implied constants in the big O’s,
where �(m) denotes the Euler function (see (7) on page 123 of Davenport’s book
[24]). In particular ⇡(x;m, 1) > p

x for all m 6 (log x)3/2 and x large enough.
We can now finish the proof of Theorem 7.5 (in our special case of Zariski-dense

subgroups of SLd(Z)). Let B = B(", D,↵) > 0 be the constant from the group sieve
lemma (Lemma 7.3). Set ↵ = 1/3d!, D = 2d2, and " = "(S) > 0 is given by the
super-strong approximation theorem (Theorem 6.3 for r = 2 primes). Given a large
n, and some m 6 C(S)n, by the above there are at least

p
x distinct primes congruent

to 1 mod m and smaller than x := e2n/B . Pick a subset of roughly N = en/B of them,
and apply Lemma 7.3 to conclude that

µn(Pm) 6 e�n/B

for each m 6 C(S)n. The result follows. ⇤

Remark In the proof we used an e↵ective version of the prime number theorem in
progressions as opposed to the Siegel-Walfisz theorem, which is non-e↵ective. This
has only some sense if all other constants involved are indeed e↵ective. The expander
constant " > 0 depends on the approximate subgroup constant � from Proposition 3.1.
It is e↵ective since all the algebraic geometry bounds used in Section 4 are e↵ective,
although not really explicit (see in particular [80] where an attempt has been made
to make some of these constants more explicit). Finally the first prime starting from
which the super-strong approximation theorem holds is also e↵ective as it relies on
Nori’s theorem (see the appendix of [87]) although far from explicit. So it is fair to
say that the rate of exponential decay in Theorem 7.5, though e↵ective, is far from
explicit.

7.4 The generic Galois group is the Weyl group

Given a matrix in SLd(Z), one may look at its characteristic polynomial and ask if it
is irreducible over Q. This amounts to say that the Galois group of the polynomial
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acts transitively on the roots. More generally when is the Galois group equal to the
full group of all permutations of the roots? When is it only a proper subgroup?

Prasad and Rapinchuk [77] have shown that given a Zariski-dense subgroup � of
SLd(Z), the subset of elements in � whose characteristic polynomial is irreducible, or
even has full Galois group, is itself Zariski-dense in �, and even contains an entire
coset of a certain finite index subgroup (see [77, Remark 6]). They proved their
result in a much greater generality (for an arbitrary semisimple group) and we refer
the reader to [78] and to the excellent surveys [79] and [76, §9] for a description of
their work and several further interesting results on how to find many elements in �
with various constraints on their characteristic polynomial.

Their method is also based on the study of the mod p quotients of �. By Jordan’s
lemma (see below Lemma 7.7), the Galois group is maximal if and only if it has
elements from every conjugacy class of the symmetric group. It is thus enough to
find one prime number per conjugacy class for which the associated Frobenius element
modulo p is in that conjugacy class.

The same idea, this time combined with the group sieve lemma (Lemma 7.3) and
the super-strong approximation theorem (Theorem 1.2), can be applied to show the
following somewhat stronger result, due to Jouve, Kowalski and Zywina [45], which
asserts that, the set of elements in � whose characteristic polynomial is not all of
Sd is exponentially small in the above sense of random walks: the probability that
a random walk at time n hits this subset decays exponentially with n. Note that
combined with Theorem 7.1, this also implies that the subset of elements in � with
full Galois group is Zariski-dense.

Theorem 7.6 Let d > 2 and � = hSi 6 SLd(Z) be a Zariski-dense subgroup of SLd.
Let as above µS denote the uniform probability measure on the symmetric set S. Then
there is c = c(S) > 0 such that for all n > 1,

µn
S({� 2 �,Gal(�) 6= Sd}) 6 e�cn.

Here Gal(�) denotes the Galois group of the extension K� |Q, where K� is the splitting
field of the characteristic polynomial of � and Sd denotes the symmetric group of all
permutations of d elements. In particular

µn
S({� 2 �, ⇡� not Q-irreducible}) 6 e�cn.

We also refer the reader to the earlier work of Rivin [83, 84] for related statements
and generalizations to other geometric contexts. And to the subsequent work of
Gorodnik and Nevo [31], which proves a similar result (for arithmetic groups only)
when counting with respect to a height function of Md(Z) instead of the random walk
average.

Theorem 7.6 was proved by Jouve, Kowalski and Zywina [45] in the special case
when � has finite index in SLd(Z). When [45] was written the super-strong approx-
imation theorem was still in limbo. Now that we have Theorems 1.2 and 6.3 at our
disposal, we can use them in the argument from [45] and the whole proof goes through
verbatim yielding Theorem 7.6 above. We give below the complete proof (see also
[67]).
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Jouve, Kowalski and Zywina proved their result in the wider generality of arith-
metic subgroups of arbitrary connected semisimple groups (see below). Likewise,
combined with the super-strong approximation, their argument extends to all Zariski-
dense subgroups. It remains an open problem however to extend the Gorodnik-Nevo
result to Zariski-dense subgroups.

In [67] Lubotzky and Rosenzweig extended these results to cover also non-connected
semisimple algebraic groups and showed the interesting phenomenon that each coset
of the connected component has its own generic Galois group, which may be di↵erent
from the Weyl group of the connected component.

We now pass to the proof of Theorem 7.6.

Proof The method is based on the following classical lemma of Jordan:

Lemma 7.7 (Jordan) Let G be a finite group and H a subgroup. If H is a proper
subgroup of G, then some conjugacy class of G is disjoint from H.

In other words, the only subgroup of G intersecting every conjugacy class is G
itself. Looking at the action by left translations on the set of left cosets G/H, we
see that the lemma is equivalent to the following assertion: every transitive subgroup
of Sd (d > 2) must contain a permutation with no fix points. For the proof of this
simple lemma and a number of pretty applications to number theory, we refer the
reader to Serre’s short note [94].

We will apply this lemma withG = Sd andH = Gal(�). Set Z := {� 2 �; Gal(�) 6=
Sd} and ZC := {� 2 �; Gal(�) \ C = ?}, where C denotes a conjugacy class in the
symmetric group Sd. A conjugacy class C of Sd is given by a partition of d as
d = d

1

+ . . .+ dk for integers di > 1. Jordan’s lemma then tell us that

Z =
[

C

ZC ,

where the union ranges over all conjugacy classes ofSd. Thus for proving Theorem 7.6
it will su�ce to show that each ZC is exponentially small. We will apply the group
sieve lemma (Lemma 7.3 above) to show precisely this.

As is well-known, to every prime p not dividing the discriminant of ⇡� , one can asso-
ciate a particular conjugacy class of Gal(�), the Frobenius conjugacy class Frobp(⇡�).
The prime ideals above p in the splitting fieldK� are permuted transitively by Gal(�).
Each stabilizer subgroup is in bijection with the Galois group of the reduced polyno-
mial ⇡� mod p in Fp[X], which is a cyclic group generated by the Frobenius element
mapping x to xp in the corresponding residue field extension Fp[X]/(⇡� mod p). The
corresponding elements in each stabilizer (decomposition) subgroup form the con-
jugacy class Frobp(⇡�) in Gal(�). The Frobenius element permutes the roots of ⇡�
mod p and its decomposition into a product of disjoint cycles corresponds to the
factorization

⇡� mod p = ⇡� mod p = P
1

· . . . · Pk

into irreducible polynomials in Fp[X] with one cycle of length deg(Pi) for each i =
1, . . . , k. It determines a conjugacy class of Sd identified by the partition of d given
by d = deg(P

1

) + . . .+ deg(Pk).



Breuillard: Approximate subgroups and super-strong approximation 44

Let C be a conjugacy class of Sd determined by a partition d = d
1

+ . . . + dk of
d. From the above discussion, we see that if � 2 ZC and p is a prime, then either
the discriminant of ⇡� is divisible by p and � mod p has a multiple eigenvalue, or �
mod p is contained in the set of elements g 2 SLd(Fp) whose characteristic polyno-
mial is without multiple roots (i.e., g is regular semisimple) and whose factorization
into irreducible polynomials in Fp[X] determines a partition of d di↵erent from the
partition associated to C.

The set of elements with a multiple eigenvalue (i.e., non regular semisimple ele-
ments) forms a proper subvariety of SLd of bounded degree (it is defined by the van-
ishing of the gcd of the characteristic polynomial and its derivative). The Lang-Weil
bound, or the easier Schwarz-Zippel estimate (see [22]), allows us to assert that this
set has size O(pd

2�2), while SLd(Fp) has size at least ⌦(pd
2�1), and is thus negligible.

Consider now the second set.
To apply the group sieve lemma (Lemma 7.3) to the set ZC , it thus remains to show

a uniform upper bound on the proportion of SLd(Fp) the set of such elements can
occupy. Or, equivalently, to prove a uniform lower bound on the size of the set ⌦p,C

of regular semisimple elements in SLd(Fp) whose characteristic polynomial admits a
factorization of the form dictated by the partition of d associated to C.

It is easy to obtain such a lower bound. Every monic polynomial with constant
term (�1)d is the characteristic polynomial of some matrix in SLd(Fp), e.g., the
companion matrix of the polynomial. So, given C, just pick a polynomial whose
irreducible factors are distinct and whose degrees di’s are such that d = d

1

+ . . .+ dk
is the partition associated to C. Let g be the associated companion matrix. It belongs
to ⌦p,C and so do all its conjugates. It is a regular semisimple element of SLd(Fp)
and thus it belongs to a unique maximal torus T . All other regular semisimple
elements in T have the same associated partition of d, because they generate the
same commutative subalgebra of matrices over Fp. It follows that ⌦p,C containsS

g2SLd(Fp)
gT regg�1, where T reg denotes the subset of regular elements in T (i.e.,

with distinct eigenvalues). Hence

|⌦p,C | > |SLd(Fp)|
|N(T )/T | � |{g 2 SLd(Fp); g not regular semisimple}|,

where N(T ) is the normalizer of T . Now N(T )/T is the Weyl group of SLd, thus
isomorphic to Sd. As already mentioned the set of non regular semisimple elements
in SLd(Fp) is negligible (being of size O(|SLd(Fp)|/p)). Hence |⌦p,C | > |SLd(Fp)|/2d!
say when p is large enough.

To conclude the proof of Theorem 7.6, it remains to apply the group sieve lemma
(Lemma 7.3) to the sets ZC for each conjugacy class C of Sd and to the group � with
projection homomorphisms ⇡i given by the reduction modulo N primes pi of size at
most N2 say, where N is chosen of size en/B , with B = B(", D,↵) > 0 is the constant
given by Lemma 7.3 with D := 3d2, ↵ := 1/2d! say, and " = "(S) > 0 is given by the
super-strong approximation theorem for two primes (Theorem 6.3). This ends the
proof. ⇤

In their paper Jouve, Kowalski and Zywina prove (the correct modified version
of) Theorem 7.6 in the more general setting where the ambient group is a connected
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semisimple algebraic group defined (and not necessarily split) over a number field.
Again while they treated only arithmetic subgroups, because the super-strong ap-
proximation theorem was not available to them, their method extends and applies to
all Zariski dense subgroups. This was worked out by Lubotzky and Rosenzweig [67],
who also described in full the most general situation, when the field of definition is
only assumed to be finitely generated over Q and, most interestingly, the algebraic
group may not be connected nor semisimple. Without reaching out for the greatest
generality, we will only state their theorem for split connected semisimple groups de-
fined over a field of characteristic zero. In order to do so we first give some background
on the Galois action on tori (see also [76], [45]).

Let the ambient group G be a connected semisimple algebraic group defined and
split over some finitely generated field K of characteristic zero. This means that
G admits a maximal torus T

0

which is defined and diagonalizable in any linear repre-
sentation of G over K. To every regular semisimple element g in G(K) corresponds
the unique maximal K-torus Tg it contains. A priori Tg is not diagonalizable over K,
but there is a smallest finite extension of K, the splitting field KTg of Tg such that
Tg is conjugate over KTg to the K-split (i.e., diagonalizable) torus T

0

. The Galois
group Gal(g) of the extension KTg |K acts on the group X(Tg) of characters of Tg.
The group X(Tg) is the free abelian group of rank r = rank(G) made of algebraic
homomorphisms from Tg to the multiplicative group Gm. The Galois action of Gal(g)
on XTg is via the formula

�(�(t)) = ��(�(t)).

This action is faithful and thus Gal(g) can be viewed as a finite subgroup of
Aut(X(Tg)) ' GLr(Z).

The Weyl group W (Tg) := N(Tg)/Z(Tg) of Tg, where N(Tg) is the normalizer and
Z(Tg) = Tg the centralizer of Tg, can also be viewed as a subgroup of Aut(X(Tg))
using the action by conjugation of the normalizer N(Tg), namely

� 7! (t 7! �(n�1tn)),

for n 2 N(Tg) and t 2 Tg.
Under the identification, it turns out that Gal(g) becomes a subgroup of the Weyl

group W (Tg): indeed fixing aK-split maximal torus T
0

, there is an element x 2 G(K)
such that Tg = xT

0

x�1, because all maximal tori are conjugate over the algebraic
closure K of K. Now from the fact that Tg is defined over K, we see that n� :=
�(x)x�1 belongs to N(Tg), and that ��(t) = �(n�1

� tn�) for all t 2 Tg. Recall that
the isomorphism class of W (T ) is independent of T , it is the Weyl group WG of G.
When G = SLd, then WG ' Sd.

We can now state the theorem of Jouve, Kowalski and Zywina [45] in the version
proved by Lubotzky and Rosenzweig [67] (i.e., for Zariski-dense subgroups over fields
of characteristic zero and not merely arithmetic groups over number fields).

Theorem 7.8 Let G be a connected semisimple algebraic group defined and split over
K, a finitely generated field extension of Q. Suppose � 6 G(K) is a Zariski-dense
subgroup and µ a symmetric probability measure whose support is a finite generating
subset of �. Then there is c > 0 such that

µn(� 2 �; Gal(�) � W (T�)) 6 e�cn.
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Here again, this implies (via Theorem 7.1) that the set of elements � with Gal(�) =
W (T�) is Zariski-dense in �, a fact first established by Prasad and Rapinchuk in [77].

The proof of Theorem 7.8 follows the same sieving argument as in the special case of
subgroups of SLd(Z) presented above. Using a specialization argument Lubotzky and
Rosenzweig reduce to the case when K is a number field. Then the group sieve lemma
together with the super-strong approximation theorem (applied to the reduction of
scalars of G from K to Q, see Remark 6.4) apply in a similar way.

If G is not split over the base field K, or if it is not connected, then the theorem
still holds, but the generic Galois group of an element � may no longer be the Weyl
group (in the connected non split case, the Weyl group appears only as a subgroup)
and it will depend (only) on the coset of the connected component of G it lives in.
See [76], [45] and [67] for this and further information about the generic Gal(�).
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Abstract

Let G be a finite group generated by a collection S of subsets of G. Define the width
of G with respect to S to be the minimal integer n such that G is equal to the union
of a product of n subsets in S, together with all subproducts. For example, when
S consists of a single subset, the width is just the diameter of the Cayley graph
of G with respect to this subset. This article contains a discussion of a variety of
problems concerning the width of simple groups, mainly in the following cases: (1)
the case where S consists of a single subset; (2) the case where S is closed under
conjugation. There are many examples of special interest. Particular emphasis is
given to recent results and problems concerning the “word width” of simple groups
– namely, the width in the case where S consists of all values in G of a fixed word
map. Also discussed are combinatorial interpretations of some width problems, such
as the estimation of diameters of orbital graphs.

1 Introduction

Let G be a finite group, and suppose S is a collection of subsets of G such that G is
generated by their union. Every element g 2 G has an expression g = t

1

. . . t
k

where
t
i

2 T
i

2 S. Hence it is possible to write G as the union of a product T
1

· · ·T
d

:=
{t

1

. . . t
d

: t
i

2 T
i

}, together with all subproducts T
i1 · · ·Tik (i

1

< · · · < i
k

), where
each T

i

2 S and repeats are allowed among the T
i

. We define the width of G with
respect to S to be the minimal such positive integer d, and denote this by width(G,S).

In this article, we consider the problem of finding, or bounding, the width of finite
groups in various cases of interest, mainly when G is a finite non-abelian simple or
almost simple group. We remind the reader that the finite non-abelian simple groups
are the alternating groups of degree at least 5, the simple groups of Lie type over finite
fields, and the 26 sporadic groups; and an almost simple group is a group G such that
S /G  Aut(S) for some non-abelian simple group S. For brevity in the text below,
whenever we say a group G is simple, we mean that G is a finite non-abelian simple
group.

Examples Here are two contrasting examples of such width problems.

1. Let G = S
n

, the symmetric group of degree n, and let S = {T}, where T is
the set of all transpositions. Then width(G,S) is the minimal value of d such
that S

n

= T d [ T d�1 [ · · · [ {1} (where T k := {t
1

. . . t
k

: t
i

2 T}). Since every
permutation can be expressed as a product of at most n�1 transpositions, and
such an expression for an n-cycle requires precisely this number, the width in
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this example is n� 1.

2. Again let G = S
n

, but this time let S = {ht
1

i, . . . , ht
k

i}, where t
1

, . . . , t
k

are all
the transpositions in G (and k =

�
n

2

�
). Here the width problem is more subtle

than in the previous example: width(G,S) is the minimal value of d for which
we can write S

n

= ht
i1i · · · htidi (repeats allowed). Notice that the right hand

side has at most 2d elements while the left has n!, so the width d must be at
least the order of n logn. The question of whether the width in this example
does have this order of magnitude is not so easy; we shall give the answer in
Section 3.2 (see the proof of Theorem 3.9).

All the width questions we shall discuss in these lectures are of one of the two types
in the above examples:

(a) the case where S consists of a single generating subset S of G

(b) the case where S consists of a conjugacy class of subsets of G: that is,

S = {Ag : g 2 G}

for some subset A of G.

In case (a), the width is just the diameter of the Cayley graph of G with respect to
S. We shall discuss recent developments on this topic for simple groups in the next
section. There are many interesting questions arising from case (b), and these will be
the focus of the remaining sections.

2 Width, Cayley graphs and orbital graphs

Let G be a finite group with a generating set S which is symmetric – that is, closed
under taking inverses – and does not contain the identity. The Cayley graph �(G,S)
is defined to be the graph with vertex set G and edges {g, gs} for all g 2 G, s 2 S.
It is connected and regular of valency |S|, and G acts regularly on �(G,S) by left
multiplication. Because of the transitive action of G, the diameter of �(G,S), denoted
by diam(G,S), is equal to the maximum distance between the identity element and
any g 2 G, and so diam(G,S) = max{l(g) : g 2 G}, where l(g) is the length of the
shortest expression for g as a product of elements of S. If d = diam(G,S), then d is
minimal such that G = Sd [ Sd�1 [ · · · [ {1}, and hence

diam(G,S) = width(G, {S}).

Also |G| 
P

d

r=0

|S|r < |S|d+1. Hence

diam(G,S) >
log |G|
log |S| � 1. (1)
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Examples

1. Let G = C
n

= hxi, a cyclic group of order n, and let S = {x, x�1}. Then

�(G,S) is an n-gon. So diam(G,S) is [n
2

], whereas log |G|
log |S| is

logn

log 2

.

2. Let G = S
n

and S be the set of all transpositions. Here diam(G,S) is n � 1,

while log |G|
log |S| is roughly

n

2

.

3. Let G = S
n

and S = {(1 2), (1 2 · · ·n)±1}. In this case diam(G,S) is roughly

n2, while log |G|
log |S| is of the order of n logn. The same orders of magnitude apply to

a similar generating set for A
n

consisting of a 3-cycle and an n- or (n� 1)-cycle
and their inverses.

4. Let G = SL
n

(q) and S be the set of transvections. Then diam(G,S) ⇡ n and
log |G|
log |S| ⇡

n

2

.

5. Let G = SL
n

(p) (p prime) and S = {x±1, y±1} where

x =

0

BBBBBB@

1 1
1

.
.

.
1

1

CCCCCCA
, y =

0

BBBBBB@

0 1
0 0 1

.
.

1
±1

1

CCCCCCA

Then log |G|
log |S| ⇠ n2 log p, and also diam(G,S) ⇠ n2 log p.

All these examples are elementary except the last, where the fact that diam(G,S) 
Cn2 log p for some constant C is a result of Kassabov and Riley [32].

2.1 Babai’s Conjecture

Define diam(G) to be the maximum of diam(G,S) over all generating sets S. The
main conjecture in the field is due to Babai, and appears as Conjecture 1.7 in [6]:

Babai’s Conjecture There is a constant c such that diam(G) < (log |G|)c for any
non-abelian finite simple group G.

It can be seen from Example 3 above that c must be at least 2 for the conjecture
to hold.

There have been spectacular recent developments on Babai’s conjecture, both for
groups of Lie type and for alternating groups. We shall discuss these separately.

2.1.1 Groups of Lie type

For a long time, even SL
2

(p) (p prime) was a mystery as far as proving Babai’s
conjecture was concerned. Probably the first small (symmetric) generating set one
thinks of for this group is

S = {
✓
1 1
0 1

◆±1

,

✓
1 0
1 1

◆±1

}.
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Babai’s conjecture asserts that diam(G,S) < (log p)c for these generators. Surely this
must be easy?

In fact it is not at all easy, and was proved by the following beautiful but indirect
method (see [51]). First observe that the matrices in S, when regarded as integer
matrices, generate SL

2

(Z). Now let �(p) denote the congruence subgroup which is
the kernel of the natural map from SL

2

(Z) ! SL
2

(p). If H is the upper half plane
and X(p) denotes the Riemann surface �(p)\H, denote by �

1

(X(p)) the smallest
eigenvalue for the Laplacian on X(p). A theorem of Selberg [61] gives �

1

(X(p)) � 3

16

for all p, and this can be used to show that the Cayley graphs {�
p

= �(SL
2

(p), S) :
p prime} have their second largest eigenvalues bounded away from the valency, and
hence that they form a family of expander graphs. This means that there is an
expansion constant c > 0, independent of p, such that for every set A consisting of
fewer that half the total number of vertices in �

p

, we have |�A| > c|A|, where �A
is the boundary of A – that is, the set of vertices not in A that are joined to some
vertex in A. From the expansion property it is easy to deduce that �

p

has logarithmic
diameter, so that diam(�(SL

2

(p), S) < c log p, a strong form of Babai’s conjecture.

One can adopt essentially the same method for the generators

{
✓
1 2
0 1

◆±1

,

✓
1 0
2 1

◆±1

}

of SL
2

(p), since, while these do not generate SL
2

(Z), they do generate a subgroup
of finite index therein. But what if we replace the 2’s in these generators with 3’s?
Then the matrices generate a subgroup of infinite index in SL

2

(Z), and the above
method breaks down. This question became known as Lubotzky’s 1-2-3 problem, and
was not solved until the breakthrough achieved by Helfgott [23]:

Theorem 2.1 Babai’s conjecture holds for G = SL
2

(p). That is,

diam(SL
2

(p)) < (log p)c,

where c is an absolute constant.

Helfgott deduced this from his key proposition: for any generating set S of G =
SL

2

(p), either |S3| > |S|1+✏, or Sk = G, where ✏ > 0 and k do not depend on p.
(Later it was observed that one can take k = 3 here.) The heart of his proof is to
relate the growth of powers of subsets A of G with the growth of the corresponding
set of scalars B = tr(A) = {tr(x) : x 2 A} in F

p

under sums and products. By doing
this he could tap into the theory of additive combinatorics, using results such as the
following, taken from [10]: if B is a subset of F

p

with p� < |B| < p1�� for some � > 0,
then |B ·B|+ |B +B| > |B|1+✏, where ✏ > 0 depends only on �.

Following Helfgott’s result, there was a tremendous surge of progress in this area.
Many new families of expanders were constructed in [9]. Helfgott himself extended
his result to SL

3

(p) in [24], and this has now been proved for all groups of Lie type
of bounded rank in [11, 58]. As a consequence, we have

Theorem 2.2 If G = G(q) is a simple group of Lie type of rank r, then diam(G) <
(log |G|)c(r) where c(r) depends only on r.
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Again, the theorem is proved via a growth statement: for any generating set S of
G(q), either |S3| > |S|1+✏, or S3 = G, where ✏ > 0 depends only on r. From this one
gets a strong version of the previous result which takes the size of the generating set
S into account:

Theorem 2.3 If G = G(q) is a simple group of Lie type of rank r, and S is a

generating set of G, then G = Sd for some d  ( log |G|
log |S| )

c(r), where c(r) depends only
on r.

These results, and particularly their developments into the theory of expanders,
have many wonderful and surprising applications. For a survey of these developments
and some of the applications, see [53].

Finally, let us remark that Babai’s conjecture remains open for groups of Lie type
of unbounded rank.

2.1.2 Alternating groups

For the alternating groups A
n

, Babai’s conjecture is that there is a constant C such
that diam(A

n

) < nC . Until very recently, the best bound for diam(A
n

) was that
obtained by Babai and Seress in [5], where it was proved that

diam(A
n

) < exp((1 + o(1)) · (n logn)1/2) = exp((1 + o(1)) · (log |A
n

|)1/2).

Various other partial results appeared at regular intervals, such as that in [3], where
it was shown that if the generating set S contains a permutation of degree at most
0.33n, then diam(A

n

, S) is polynomially bounded. But no real progress was made on
Babai’s conjecture until a recent breakthrough of Helfgott and Seress [25]:

Theorem 2.4 We have diam(A
n

)  exp(O((log n)4 log logn)), where the implied
constant is absolute.

This does not quite prove Babai’s conjecture, but it does prove that diam(A
n

) is
“quasipolynomial” (where a quasipolynomial function f(n) is one for which log f(n)
is polynomial in logn), which represents a big step forward. The same paper also
gives a bound of the same magnitude for the diameter of any transitive subgroup of
S
n

.

2.2 Orbital graphs

Here we discuss another class of graphs for which the diameter has an interpretation
in terms of width.

Denote by (G,X) a permutation group G on a finite set X. Suppose G is transitive
on X, and let X{2} denote the set of unordered pairs of elements of X. For each orbit
� of G on X{2}, there is a corresponding orbital graph having vertex set X and edge
set �. These are precisely the non-empty graphs on X for which G acts transitively
on edges. A well known criterion of D.G. Higman (see [26, 1.12]) states that G is
primitive on X if and only if all of its orbital graphs are connected. For G primitive on
X, define diam(G,X) to be the maximum of the diameters of all the orbital graphs.
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The diameters of orbital graphs of primitive groups have an interpretation in terms
of width. Indeed, let � be an orbit of G on X{2} as above, and let {x, xg} 2 �, where
g 2 G. Notice that also {x, xg�1} 2 �. Write H = G

x

. For each i, the set of vertices
at distance i from x in the corresponding orbital graph is contained in

{xg±1h
1

g±1h
2

· · · g±1h
i

: h
i

2 H}.

It follows that if we define w = width(G,S) where S = H [ {g, g�1}, then the
diameter of the orbital graph lies between w and [1

2

w]. (Both extremes are possible:
for example the diameter is w when H = 1 and G is cyclic of prime order.)

For a positive integer d, denote by C
d

the class of all finite primitive permutation
groups (G,X) for which diam(G,X)  d. In [42], the following problem is addressed.

Problem 2.5 For each d, describe the class of finite primitive groups C
d

.

The motivation in [42] is mainly model-theoretical and stems from the fact that for
groups of bounded orbital diameter, primitivity is implied by a first order expressible
condition in the language of permutation groups (whereas for permutation groups in
general, primitivity is not a first order property). This means, for example, that the
primitivity condition extends to ultraproducts.

In [42], the above problem is solved “asymptotically”; as discussed in detail in [42],
this leads to the solution of a number of related model-theoretic problems, such as
the description of primitive infinite ultraproducts of finite permutation groups, and
of primitive !-saturated pseudofinite permutation groups.

We present part of the main result of [42] in Theorem 2.6 below, which describes
the classes of simple groups in C

d

. This time, unlike the previous section, there is a
satisfactory result for groups of unbounded rank.

In order to state the theorem we need to define some terminology. We say that the
primitive group (G,X) with G simple is a standard t-action if one of the following
holds:

(a) G = A
n

and X = I{t}, the set of t-subsets of I = {1, ..., n}
(b) G = Cl

n

(q), a classical group with natural module V = V
n

(q) of dimension n
over F

q

, and X is an orbit of subspaces of dimension or codimension t in V ;
the subspaces are arbitrary if G = PSL

n

(q), and otherwise are totally singular,
non-degenerate, or, if G is orthogonal and q is even, non-singular 1-spaces (in
which case t = 1)

(c) G = Sp
2m

(q), q is even, and a point stabilizer in G is O±
2m

(q) (here we take
t = 1).

If G(q) is a simple group of Lie type over F
q

, then a subfield subgroup is a group G(q
0

)
embedded naturally in G(q), where F

q0 is a subfield of F
q

. For convenience in the
statement below we define the rank of an alternating group A

n

to be n.

We say that a class C of finite primitive permutation groups is bounded if C ✓ C
d

for
some d. All bounds implicit in the statement below are in terms of d, where C ✓ C

d

.

Theorem 2.6 Let C be an infinite class of finite simple primitive permutation groups,
and suppose C is bounded.
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(i) If C consists of simple groups of unbounded ranks, then the groups in C of
su�ciently large rank are alternating or classical groups in standard t-actions,
where t is bounded.

(ii) If C consists of simple groups G of bounded rank, then point stabilizers G
x

have
unbounded orders; moreover, if G = G(q), of Lie type over F

q

, and G
x

is a
subfield subgroup G(q

0

), then |F
q

: F
q0 | is bounded.

Conversely, any class of simple primitive groups satisfying the conclusions of (i) or
(ii) is bounded.

One of the most interesting parts of this result is the converse statement for part (ii):
if C is a class consisting of simple primitive permutation groups of Lie type of bounded
Lie rank with unbounded point stabilizers (and also satisfying the given condition on
subfields), then C is a bounded class. For example, if C consists of the groups E

8

(q)
(q varying) acting on the coset space E

8

(q)/H(q) for some maximal subgroup H(q)
arising from a maximal connected subgroup H(K) of the simple algebraic group
E

8

(K), where K = F̄
q

(for example H(K) = D
8

(K) or A
1

(K) – see [47]), then the
diameters of all the orbital graphs are bounded by an absolute constant. In fact this
now follows fom Theorem 2.3, but a direct proof using a substantial amount of model
theory can be found in [42].

It would be interesting to have a more explicit solution to Problem 2.5, for example
for some small values of d. Work is under way on this.

3 Conjugacy width

We now turn to a discussion of the width of simple groups G with respect to a
conjugacy class of subsets – that is, width(G,S) where S = {Ag : g 2 G} for some
subset A of G which we take to be of size at least 2. The following lemma shows that
in this case no subproducts are required in the definition of width.

Lemma 3.1 If A ✓ G with |A| � 2, and S = {Ag : g 2 G}, then

width(G,S) = min{n : G = Ag1 · · ·Agn , g
i

2 G}.

Proof This is clear if 1 2 A. If not, let a 2 A, set B = a�1A, and observe that G is
a product of n conjugates of A if and only if it is a product of n conjugates of B. ⇤

Examples When G is simple there are many interesting cases to consider. Here
are some examples. In the first four, S consists of a single normal subset of G (i.e.
a subset closed under conjugation), so we are back in the Cayley graph case of the
previous section.

1. S = {I(G)}, where I(G) is the set of involutions in G: here width(G,S) is the
minimal n such that every element of G is a product of n involutions.

2. S = {C(G)}, where C(G) = {[x, y] : x, y 2 G} is the set of commutators in G:
here width(G,S) is often called the commutator width of G.

3. S = {P
k

(G)}, where k � 2 and P
k

(G) = {xk : x 2 G} is the set of kth powers
in G.
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4. (Generalizing Examples 2,3): S = {w(G)}, where w = w(x
1

, . . . , x
k

) is a fixed
word in the free group F

k

of rank k and w(G) = {w(g
1

, . . . , g
k

) : g
i

2 G}.
5. G = S

n

and S = {ht
1

i, . . . , ht
k

i}, where t
1

, . . . t
k

are all the transpositions in G
(and k =

�
n

2

�
), as in Example 2 in Section 1.

6. S = the set of Sylow p-subgroups of G, where p is a prime dividing |G|.

Clearly if S = {Ag : g 2 G} as above, then width(G,S) � log |G|/ log |A|. In [43]
the following conjecture was posed.

Conjecture 3.2 There is an absolute constant c such that for any finite non-abelian
simple group G and any subset A ✓ G with |A| � 2 , we have

width(G,S)  c
log |G|
log |A| ,

where S = {Ag : g 2 G}.

This conjecture has been proved in a number of special cases, as we shall describe
below, but it is open in general.

3.1 Normal subsets

In the case where S consists of a single normal subset of G, Conjecture 3.2 was proved
in [50]:

Theorem 3.3 There is an absolute constant k > 0 such that for any finite non-
abelian simple group G, and any non-identity normal subset S ✓ G, we have G = Sn

for all n � k log |G|/ log |S|.

In particular the diameter of the Cayley graph �(G,S) is at most k log |G|
log |S| , so this

proves Babai’s conjecture in this case in a strong form.

The covering number of a finite simple group G is the minimal positive integer n
such that Cn = G for all conjugacy classes C of G (see [2]). Theorem 3.3 implies
an upper bound for the covering number which is linear in the rank of G; further
such bounds can be found in [14, 39], and the precise covering number of PSL

n

(q)
for n � 3, q � 4 is shown to be n in [40]. However Theorem 3.3 carries much more
information than these bounds, since it takes into account the size of the class.

Let us now examine the implications of Theorem 3.3 for Examples 1–4 above.

3.1.1 Involutions

As in Example 1 above, let S = I(G), the set of involutions in G. To get a feeling

for how big log |G|
log |S| is, consider G = PSL

2m

(q) with q odd, m even, and let t 2 G

be the involution which is the image modulo scalars of the matrix diag(I
m

,�I
m

).
Then the size of the conjugacy class tG is roughly |GL

2m

(q) : GL
m

(q) ⇥ GL
m

(q)|,
which is approximately q4m

2
/q2m

2
, and so |tG| is of the order of |G|1/2. Therefore

log |G|/ log |S| is about 2 in this case. It can be shown that there is an absolute



Liebeck: Width questions for finite simple groups 59

constant c > 0 such that |I(G)| > c|G|1/2 for all finite simple groups G (see [49,
4.2,4.3]). Hence Theorem 3.3 implies the following.

Corollary 3.4 There is an absolute constant N such that every element of every
finite non-abelian simple group is a product of N involutions.

It would be quite interesting to know the minimal value of N . It is certainly more
than 2: groups in which every element is a product of two involutions are known
as strongly real groups, and the strongly real simple groups have been classified (see
[64, 59]).

3.1.2 Images of word maps

As in Example 4 above, let w = w(x
1

, . . . , x
k

) be a fixed non-identity word in the
free group F

k

of rank k and for a group G define w(G) = {w(g
1

, . . . , g
k

) : g
i

2 G}.
Let us consider the implications of Theorem 3.3 in the case where G is simple and
S = w(G).

We need information about the size of the set w(G). This can be 1 for some
simple groups G – for example if w = xk

1

and the exponent of G divides k. The
first question to consider is whether there could be a word w for which w(G) = {1}
for all (finite non-abelian) simple groups G. The answer is no: for suppose w is a
non-identity word such that w(SL

2

(p)) = {1} for all primes p. Let �
p

be the natural
map SL

2

(Z) ! SL
2

(p). Then
T

p

Ker(�
p

) = 1, hence also w(SL
2

(Z)) = 1. However
SL

2

(Z) contains a free subgroup of rank 2, so this is impossible. Since many simple
groups of Lie type over F

p

contain SL
2

(p), the assertion follows.

In fact a much stronger assertion about the nontriviality of w(G) for simple groups
G holds, as proved in [30]:

Theorem 3.5 Given any nontrivial word w, there is a constant N
w

depending only
on w, such that w(G) 6= {1} for all simple groups G of order greater than N

w

.

For simple groups of order greater than N
w

, how large is w(G)? The following
gives a weak lower bound. Better bounds will be discussed in Section 4.

Lemma 3.6 For any non-identity word w, there is a constant �
w

> 0 such that
|w(G)| > |G|�w for all simple groups G of order greater than N

w

.

Proof Consider first G = A
n

. Choose k = k(w) minimal such that w(A
k

) 6= 1, and
let 1 6= a 2 w(A

k

). Take n to be large in terms of k. If r = [n
k

], then G contains a
subgroup H ⇠= (A

k

)r. Let x 2 H be the image under this isomorphism of the element
(a, . . . , a) 2 Ar

k

. Then x 2 w(H) and x moves at least 3r points in {1, . . . , n}. Now
the conjugacy class xG is contained in w(G), and an elementary calculation shows
that |xG| is at least of the order of |G|1/2k, which gives the conclusion in this case.

The case where G = Cl
n

(q), a classical group of unbounded dimension n over a
finite field F

q

, is similar, using a subgroup H of the form (Cl
k

(q))r in the above
argument. And when G is a group of Lie type of bounded rank, the fact that any
nontrivial conjugacy class has size at least q gives the result. ⇤
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As before, Theorem 3.3 implies the following consequence.

Corollary 3.7 Let w be a nontrivial word. Then there is a constant c = c(w) such
that for any simple group G of order greater than N

w

, we have G = w(G)c (that is,
every element of G is a product of c elements of w(G)).

We shall discuss some recent vast improvements of this result in Section 4.

3.1.3 Remarks on the proof of Theorem 3.3

The proof in [50] is quite technical, but it may be instructive to illustrate two of the
main steps with the following example. Let G = PSL

n

(q) with n � 3 and let C = xG,
where

x =

✓
J
k

I
n�k

◆
,

J
k

being the k ⇥ k Jordan block matrix with 1’s on and directly above the diagonal
and 0’s elsewhere. Assume also that n is large compared to k. The centralizer of x
can be found in [48, 7.1], and it follows that |C| is roughly q(k�1)(2n�k). Hence log |G|

log |C|
is of the order of n

2(k�1)

.

The first step in the proof is the elementary but useful observation that
0

@
I
k�1

J
k

I
n�2k+1

1

A
✓
J
k

I
n�k

◆
=

✓
J
2k�1

I
n�2k+1

◆
.

Applying this repeatedly, we can obtain the matrix J
n

as a product of approximately
n

k�1

conjugates of x; in other words, J
n

2 Cn/(k�1). Set y := J
n

.

The second step is to apply some character theory of the group G. The following
observation essentially goes back to Frobenius, and applies to conjugacy classes in
arbitrary finite groups: for g 2 G, and an integer l � 2, the number of ways of
writing g as a product of l conjugates of y is

|yG|l

|G|
X

�2Irr(G)

�(y)l�(g�1)

�(1)l�1

, (2)

where Irr(G) denotes the set of irreducible characters of G. At this point we apply
some basic facts about the irreducible characters � of G = PSL

n

(q):

(a) |�(y)|  |C
G

(y)|1/2 = |C
G

(J
n

)|1/2  qn/2;

(b) for � 6= 1
G

, the degree �(1) � qn�1 � 1;

(c) |Irr(G)| < qn�1 + 3qn�2.

Indeed, (a) is trivial, (b) follows from [33] and (c) from [16, 3.6]. Let ⌃ denote the
sum in (2). The contribution to ⌃ of the trivial character � = 1

G

is 1. Hence using
(a)–(c), we see that

|⌃| � 1� (qn�1 + 3qn�2)qnl/2

(qn�1 � 1)l�2

.



Liebeck: Width questions for finite simple groups 61

Assuming that n � 10, it follows that ⌃ 6= 0 provided l � 7. Hence G = (yG)7 under
this assumption. Since y = J

n

2 Cn/(k�1), we therefore have

G = (yG)7 = C7n/(k�1).

The conclusion of Theorem 3.3 follows in this case.

3.1.4 Commutators

Applying Corollary 3.7 to the commutator word, it follows that every element of every
finite simple group is a product of a bounded number of commutators. In fact a much
stronger result is true:

Theorem 3.8 (The Ore Conjecture) Every element of every finite simple group
is a commutator.

This conjecture emerged from a 1951 paper of Ore [56], after which many partial
results were obtained, notably those of Thompson [63] for special linear groups, and of
Ellers and Gordeev [13] proving the result for groups of Lie type over su�ciently large
fields F

q

(q � 8 su�ces). The proof was finally completed in [44]. This was largely
based on character theory, via an elementary classical result, again due to Frobenius,
that for an element g of a finite group G, the number of solutions (x, y) 2 G⇥G to
the equation g = [x, y] is equal to

|G|
X

�2Irr(G)

�(g)

�(1)
.

Thus g is a commutator if and only if this sum is nonzero. The aim is to show that
for G simple, the term coming from the trivial character (namely 1) is greater than
the sum of moduli the remaining terms, in other words that

X

�6=1G

|�(g)|
�(1)

< 1. (3)

Here is a sketch of the proof from [44] of Theorem 3.8 for the family of symplectic
groups G = Sp

2n

(2). The argument proceeds by induction. The base cases for the
induction are Sp

2n

(2) with n  6, and these were handled computationally; of course
Sp

2

(2) and Sp
4

(2) are non-perfect, so Theorem 3.8 does not apply to them.

Let g 2 G, and write g in block-diagonal form

g =

0

BB@

X
1

0 · · · 0
0 X

2

· · · 0
· · ·

0 0 · · · X
k

1

CCA 2 Sp
2n1(2)⇥ · · ·⇥ Sp

2nk(2) < G,

where
P

n
i

= n, this decomposition being as refined as possible. If each X
i

is a
commutator in Sp

2ni(2) then g is a commutator in G. Hence induction gives the
conclusion except when either
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(1) k = 1, or

(2) one of the factors Sp
2ni(2) is Sp2(2) or Sp4(2).

We call g unbreakable if (1) or (2) holds for every such block-diagonal decomposition
of g. Thus to prove the theorem for this case it su�ces to show that every unbreakable
element g of G = Sp

2n

(2) with n � 7 is a commutator.

The first step is to prove that the unbreakable element g has small centralizer,
namely

|C
G

(g)| < 22n+15.

For example, if g is unipotent its unbreakability means that it can have few Jordan
blocks, and the possiblities for the centralizers of such elements are given by [48,
Chapter 7].

Next, a result of Guralnick and Tiep [21] shows that there is a collection W of 5
irreducible characters of G such that

(i) �(1) � 1

6

(2n � 1)(2n � 2) for � 2 W , and

(ii) �(1) � 24n�7 for 1 6= � 2 Irr(G) \W .

Set

⌃
1

(g) =
X

�2W

|�(g)|
�(1)

, ⌃
2

(g) =
X

1 6=�2Irr(G)\W

|�(g)|
�(1)

.

Letting k(G) denote the number of conjugacy classes of G, it follows from [16, 3.13]
that k(G)  (15.2) · 2n. Also

P
�2Irr(G)

|�(g)|2 = |C
G

(g)| by the orthogonailty
relations, from which the Cauchy-Schwartz inequality implies that

X

�2Irr(G)

|�(g)|  k(G)1/2|C
G

(g)|1/2.

Plugging all this into the expression defining ⌃
2

(g), we obtain

⌃
2

(g) <

p
15.2 · 2n/2 · |C

G

(g)|1/2

24n�7

<

p
15.2 · 2n/2 · 2n+7.5

24n�7

< 0.5.

Bounding ⌃
1

(g) depends on some detailed analysis of the values �(g) for the charac-
ters � 2 W , from which one shows that ⌃

1

(g) < 0.2.

Hence ⌃
1

(g) +⌃
2

(g) < 0.7, which implies that (3) holds, and hence g is a commu-
tator, as required.

This example gives the flavour of the proof of Theorem 3.8, but it must be said
that other families of classical groups over small fields do not yield so easily as this.
Indeed the unitary groups presented too many technical obstacles for us to handle
them in this fashion, and we used a completely di↵erent method for these.

3.2 Bounded subsets

Conjecture 3.2 has been proved for bounded subsets in [43, Theorem 3]:

Theorem 3.9 There is an absolute constant c such that if G is a finite non-abelian
simple group, and A is any subset of G of size at least 2, then G is a product of N
conjugates of A for some N  c log |G|.
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We shall sketch a proof of this result for alternating groups, and refer the reader
to [43] for the rest of the proof. Suppose then that G = A

n

.

First we claim that, in proving the conjecture for a subset A, we may assume that
1 2 A. Indeed, let a 2 A and B = a�1A. Then 1 2 B, and if G is a product of
N conjugates of B then it is also a product of N conjugates of A. Secondly, we
claim we may assume there exists x 6= 1 such that 1, x, x�1 2 A. Indeed, suppose
1 2 A and let x 2 A be a non-identity element (whose existence follows from the
assumption |A| � 2). Then 1, x, x2 2 A2, hence x�1, 1, x 2 x�1A2. Assuming the
conjecture holds for sets containing x�1, 1, x we deduce that G is a product of say
N  c log |G|/ log |A2|  c log |G|/ log |A| conjugates of x�1A2, hence it is a product
of N conjugates of A2, so G is a product of 2N  2c log |G|/ log |A| conjugates of A.

So assume that 1, x, x�1 2 A ✓ G for some x 6= 1. It is easy to choose a 3-cycle
y 2 A

n

such that [x, y] 6= 1 has support of size at most 5. Let C = xAn , the conjugacy
class of x. Since [x, y] = x�1xy 2 C�1C, we see that C�1C contains either a 3-cycle,
a 5-cycle or a double transposition. In all cases we deduce that (C�1C)2 contains all
double transpositions in A

n

. Since x, x�1 2 A, some product of 4 conjugates of A
contains {1, t} for a double transposition t 2 A

n

.

At this point a straightforward argument shows that it is su�cient to establish
the result for the subset {1, ⌧} of S

n�2

, where ⌧ is a transposition – in other words,
that S

n�2

is a product of cn logn conjugates of T := {1, ⌧} (this is Example 2 in
Section 1).

This is not as obvious as it might seem. The key to it is a lemma of Abert [1,
Lemma 4]: for positive integers a, b, we have S

ab

= ABA, where A is a conjugate of
the natural subgroup (S

a

)b and B is a conjugate of (S
b

)a. For notational convenience,
replace n � 2 by n, and let 2l be the largest power of 2 that is less than or equal to
n. Then n

2

< 2l  n. Repeated application of Abert’s lemma shows that S
2

l is a

product of 2l � 1 conjugates of (S
2

)2
l�1

, hence of (2l � 1)2l�1 conjugates of T . Since
it is routine to see that for n

2

< k  n, S
n

is a product of at most 8 conjugates of
S
k

, it follows that S
n

is a product of at most (2l � 1)2l+2 conjugates of T , and the
conclusion follows.

3.3 Bounded rank

Conjecture 3.2 has also been proved for simple groups of Lie type of bounded rank,
in [18, Theorem 1.3]:

Theorem 3.10 Fix a positive integer r. There exists a constant c = c(r) such that
if G is a finite simple group of Lie type of rank r and A is a subset of G of size at
least 2, then G is a product of N conjugates of A for some N  c log |G|/ log |A|.

It is possible to get some of the way towards this result quite quickly, as follows.
Firstly, as observed in the sketch proof of Theorem 3.9 above, we can assume that
1 2 A. Next, by a result in [22], for 1 6= x 2 A, there are m  8(2r+1) conjugates of
x that generate G; call them xg1 , . . . , xgm . Write S = Ag1 · · ·Agm . Then S generates
G, so by the Product Theorem 2.3, G = Sd for some d  ( log |G|

log |S| )
c(r), and hence G is

a product of ( log |G|
log |S| )

c1(r) conjugates of A.
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Getting rid of the exponent c
1

(r) takes a lot more e↵ort, and this is the main
content of [18]. Along the way, they prove an interesting growth result for conjugates
([18, 1.4]): for G and A as in the theorem above, either A3 = G or there exists g 2 G
such that |AAg| > |A|1+✏, where ✏ > 0 depends only on the rank r.

3.4 Sylow subgroups

The width of simple groups with respect to a class of Sylow p-subgroups has only
been addressed in the case of groups of Lie type, where p is the natural characteristic.

Theorem 3.11 If G is a simple group of Lie type over a field of characteristic p,
then G is a product of 5 Sylow p-subgroups.

This was first proved in [46] with a bound of 25 instead of 5; the improvement to 5
was announced in [4]. The proof in [46] uses the BN -structure of G, and shows that
if U 2 Syl

p

(G) is the unipotent radical of a Borel subgroup B, and V is the unipotent
radical of the opposite Borel, then G = UV UV · · ·V U (25 terms). The reduction to
5 terms was achieved by using what has become known as the “Gowers trick”, a very
useful tool in the theory of width:

Proposition 3.12 Let n > 2 be an integer and let G be a finite group and let k be
the minimal degree of a nontrivial complex character of G. Suppose that A

i

✓ G,
i = 1, 2, . . . , n are such that |Ai|

|G| � k�(n�2)/n. Then G = A
1

·A
2

· · ·A
n

.

This can often be used when G is a group of Lie type, since these have relatively
large minimal nontrivial character degrees (see [33]).

This result has an application to the width of finite linear groups. The starting
point is an elegant result of Hrushovski and Pillay [27], proved using model theory
(and not using the classification of finite simple groups):

Theorem 3.13 Let p be a prime, n a positive integer, and suppose G is a subgroup
of GL

n

(p) that is generated by elements of order p. Then G = hx
1

ihx
2

i · · · hx
k

i for
some elements x

i

of order p, where k = k(n) depends only on n.

Note that the result is trivial if p is bounded in terms of n. It was generalized as
follows in [46]:

Theorem 3.14 There is a function f : N ! N such that the following holds. Let n
be a positive integer, p a prime with p � f(n), and F a field of characteristic p. If G
is a finite subgroup of GL

n

(F ) generated by elements of order p, then G is a product
of 5 of its Sylow p-subgroups.

Again this is proved without the classification, but using the marvellous theorem of
Larsen and Pink [34] as a substitute: if S is a finite simple subgroup of GL

n

(F ), where
F is a field of characteristic p, then either S is of Lie type in characteristic p, or |S|
is bounded in terms of n. Bounds for the function f(n) in the above theorem are not
addressed in [46], but using the classification Guralnick [19] showed that f(n) = n+3
works; this is best possible, as can be seen from the example of the alternating group
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A
p

< GL
p�2

(p) (via the action on the fully deleted permutation module for A
p

over
F
p

) – clearly A
p

is not a product of a bounded number of its Sylow p-subgroups.

4 Word maps

In this section we develop further the theory of word maps on simple groups, intro-
duced in Section 3.1.2. Let w = w(x

1

, . . . , x
k

) be a nontrivial word in the free group
F
k

of rank k, and for a group G, denote also by w : Gk ! G the word map sending
(g

1

, . . . , g
k

) ! w(g
1

, . . . , g
k

) for g
i

2 G. Write w(G) for the image of this map.

We shall focus on word maps on finite (non-abelian) simple groups G. Recall from
Theorem 3.5 that there is a constant N

w

such that w(G) 6= {1} for simple groups G
with |G| > N

w

.

Questions Here are a few natural questions one might ask about word maps:

1. How large is w(G)? Previously we saw in Lemma 3.6 that |w(G)| > |G|�w for
some �

w

> 0 depending only on w. Can one do better than this?

2. What is the w-width of G, i.e. the width of G with respect to w(G)? We saw
in Corollary 3.7 that it is bounded above by a constant c(w). Is it possible to
improve this?

3. For g 2 G, define P
w

(g) to be the probability that w(g
1

, . . . , g
k

) = g for g
i

2 G
chosen uniformly at random; so

P
w

(g) =
|w�1(g)|
|G|k .

What can one say about the probability distribution P
w

on G? Is it always
close to the uniform distribution? Or are there words w for which P

w

is highly
non-uniform?

4. Regarding Question 3, consider for example G = SL
2

(p) with p prime. The
proportion of elements of order p in G is precisely 1

p

, so one cannot design an
algorithm in computational group theory that is based on finding an element
of order p in G by random search. But can one find a fiendishly clever word w
for which

P
g2C P

w

(g) >> 1

p

, where C is the set of elements of order p? Such a
word would be very interesting computationally.

4.1 Size

Sometimes w(G) = G for all simple groups G – for example for the commutator
word w = [x

1

, x
2

], by the Ore Conjecture (Theorem 3.8); and sometimes w(G) 6= G
– for example for w = x2

1

, or any power word w = xk
1

for which hcf(k, |G|) 6= 1.
Nevertheless, the following result of Larsen and Shalev [36, 2.1 and 1.10] shows that
images of word maps on simple groups are always large:

Theorem 4.1 Let w be a nontrivial word and r a positive integer. There exist pos-
itive constants N(w) and c(r) depending only on w and r respectively, such that the
following hold.
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(i) If G is a simple group of Lie type of rank at most r, then |w(G)| > c(r)|G|
provided |G| > N(w).

(ii) If G is an alternating group A
n

, then |w(G)| > n�4|G| provided n > N(w).

In fact a result stronger than (i) is proved in [36, 1.12]: one can take c(r) = cr�1

for some absolute constant c, provided G is not of type PSL or PSU .

There are some interesting tools used in the proof of the above theorem. For (i),
a crucial ingredient is a result of Borel [8], which states that if G = G(q) is of Lie
type over F

q

, and Ḡ = G(F̄
q

) is the corresponding simple algebraic group over the
algebraic closure F̄

q

, then the word map w : Ḡk ! Ḡ is dominant, which is to say that
it has dense image. Further arguments from algebraic geometry are used to deduce
part (i).

The proof of part (ii) involves a neat application of the celebrated result of Vino-
gradov [65] that every su�ciently large odd integer is a sum of three primes. So
let n be large, and write n = p

1

+ p
2

+ p
3

+ 3 + � with p
i

primes and � 2 {0, 1}.
The group L

i

:= PSL
2

(p
i

) has a 2-transitive action of degree p
i

+ 1, so we can em-
bed L

1

⇥ L
2

⇥ L
3

< A
n

in a natural way. A by-product of the proof of part (i) is
that w(L

i

) contains an element x
i

of order pi�1

2

, and x
i

acts in the degree p
1

+ 1

representation as a product of two cycles of length pi�1

2

and two fixed points. Hence
x := x

1

x
2

x
3

2 w(A
n

) has 6 long cycles and 6 or 7 fixed points. Then |C
An(x)| is of the

order of n6, which shows that |w(A
n

)| is at least of the order of n�6|A
n

|. Improving
the exponent to �4 (in fact to �29/9 in [36, 1.10]) takes more work.

There are some related results that should be mentioned here, which show that if
one omits the condition that G is su�ciently large in terms of w in the above theorem,
then w(G) can be an arbitrary subset of G subject to the obvious necessary condition
that it contains the identity and is invariant under Aut(G). Indeed, in [52], Lubotzky
proves:

Theorem 4.2 Let G be a finite non-abelian simple group, and let A be a subset of G
such that 1 2 A and A is invariant under Aut(G). Then there is a word w = w(x

1

, x
2

)
in the free group of rank 2 such that w(G) = A.

Explicit constructions of such words can be found in [31], and further results of
this type in [41].

4.2 Width

Recall that for a word w and a simple group G such that w(G) 6= 1, the w-width of G
is the width of G with respect to w(G). A rather crude bound for w-width was given
in Corollary 3.7. Can this be improved?

We pointed out at the beginning of the last section that this width is greater than
1 if w is a power word xk

1

. Hence the following remarkable result, the culmination of
several papers of Shalev together with Larsen and Tiep [35, 36, 38, 62], is the best
possible one of its kind.

Theorem 4.3 For any nontrivial word w there is a constant N
w

such that w(G)2 = G
for all finite non-abelian simple groups G of order greater than N

w

.
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Thus the w-width of all su�ciently large simple groups is at most 2. The proof
that it is at most 3, originally a result in [62], was simplified for groups of Lie type in
[55] using the Gowers trick (Proposition 3.12). Here is their idea in the bounded rank
case. Proposition 3.12 with n = 3 implies that if G is a finite group with minimal
nontrivial character degree k, and A ✓ G with |A| � k�1/3|G|, then G = A3. Letting
G = G(q) be a simple group of Lie type of rank r over F

q

, we have k � aqr for
some positive absolute constant a by [33]. Fixing r, we have |w(G)| > (aqr)�1/3|G|
for su�ciently large q by Theorem 4.1(i), and hence G = w(G)3, giving the claimed
result for groups of bounded rank.

The problem of determining w-width was termed the “Waring problem” for simple
groups by Shalev, by analogy with the celebrated Waring problem in number theory:
this concerns the determination of the function g : N ! N, where g(k) is defined to
be minimal such that every positive integer is the sum of g(k) kth powers. (So g(k)
could be thought of as the additive width of N with respect to the set of kth powers.)

In direct analogy with Waring’s problem, let us consider the width of the power
word xk

1

for simple groups G, where k � 2. By Theorem 4.3, the width is 2 for
su�ciently large G. But this is not the case for all G – for example the word x30

1

is
trivial on A

5

. For which values of k could the width be 2 for all simple groups G?
Clearly not when k is the exponent of a simple group. An obvious family of positive
integers that are not equal to the exponent of a simple group are those which are
divisible by at most two primes (by Burnside’s paqb theorem). For such integers we
have the following result from [20]:

Theorem 4.4 Let p, q be primes and a, b positive integers, and let N = paqb. Then
the word map (x, y) ! xNyN is surjective on all finite (non-abelian) simple groups.

4.3 Surjective and non-surjective words

If w has width 1 on G (i.e. w(G) = G), we call w a surjective word on G. Some
words are surjective on all groups: these are precisely the words w in the free group
F
k

such that w 2 xe1 · · · xek
k

F 0
k

, where e
1

, . . . , e
k

are integers with highest common
factor 1 (see [60, 3.1.1]).

We have already observed that there are words that are non-surjective on finite
simple groups, such as power words xr

1

. On the other hand, there are various special
words that have been proved to be surjective on all finite simple groups: these include
the commutator word (Theorem 3.8) and the word xN

1

xN
2

for N = paqb (Theorem
4.4).

Could it be that the only words that are non-surjective on large simple groups are
power words of the form w = vm (m � 2)? An a�rmative answer was stated as a
conjecture in [7, 7.14]. However it is not the case:

Theorem 4.5 Define the word

w = x2
1

[x�2

1

, x�1

2

]2 2 F
2

.

Then the word map (x, y) ! w(x, y) is non-surjective on PSL
2

(p2r+1) for all non-
negative integers r and all odd primes p 6= 5 such that p2 6⌘ 1 mod 16 and p2 6⌘
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1 mod 5.

For example, w is non-surjective on PSL
2

(32r+1) for all r.

This result was proved in [29], as part of a non-surjectivity theorem for the family
of words of the form x2

1

[x�2

1

, x�1

2

]k with 2k + 1 prime.

Here is a sketch of the proof of Theorem 4.5. Let G = SL
2

(K) with K a field. The
starting point is the observation, going back to Fricke and Klein (see [15]) that for
any word w = w(x

1

, x
2

), there is a polynomial P
w

(s, t, u) such that for all x, y 2 G,

Tr(w(x, y)) = P
w

(Tr(x),Tr(y),Tr(xy)).

We call P
w

the trace polynomial of w. A proof of this fact, providing a constructive
method of computing P

w

for a given word w, can be found in [57, 2.2]. The method
is based on the following identities for traces of 2⇥ 2 matrices A,B of determinant 1:

(1) Tr(AB) = Tr(BA)
(2) Tr(A�1) = Tr(A)
(3) Tr(A2B) = Tr(A)Tr(AB)� Tr(B).

As an example, let us compute P
c

for the commutator word c = [x
1

, x
2

]. First observe
that

Tr(x2y2) = Tr(x)Tr(xy2)� Tr(y2) ((by (3))
= Tr(x)(Tr(y)Tr(yx)� Tr(x))� Tr(y)2 + 2
= stu� s2 � t2 + 2,

where s = Tr(x), t = Tr(y), u = Tr(xy). Hence

Tr(x�1y�1xy) = Tr((x�1y�1)2yxxy)
= Tr(x�1y�1)Tr(xy)� Tr(yxxy) ((by (3))
= Tr(yx)Tr(xy)� Tr(x2y2) ((by (1),(2)).

It follows that P
c

= s2 + t2 + u2 � stu� 2.

If one plays around with the polynomials P
w

for various words w, they do not
appear to have any obvious (or non-obvious) nice behaviour. However, for the magic
word w = x2

1

[x�2

1

, x�1

2

]2 in Theorem 4.5, the polynomial P
w

turns out to have a
miraculous property. We compute that

P
w

= s10 � 2s9tu� 10s8 + 2s8t2 + s8t2u2 + · · ·� 6s2u2 � 2,

a polynomial with 29 terms, of degree 12. What is this miraculous property?

Claim Let p be a prime with p 6= 2, 5, p2 6⌘ 1 mod 16 and p2 6⌘ 1 mod 5, and let
F = F

p

2r+1 . Then
P
w

(s, t, u) 6= 0 for all s, t, u 2 F.

It follows from this that for any x, y 2 SL
2

(F ) we have Tr(w(x, y)) = P
w

(s, t, u) 6=
0. Hence the image of w contains no matrices of trace 0, and it follows that w is
non-surjective on PSL

2

(F ), proving Theorem 4.5.
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Proof of Claim The claim follows from the following amazing factorization. Letting
⇣ be a primitive 5th root of unity, P

w

factorizes over Z[⇣ + ⇣�1] as follows:

P
w

(s, t, u) = (s2 � 2) ⇥
(s4 � s3tu+ s2t2 � 4s2 + 2 + ⇣ + ⇣�1) ⇥
(s4 � s3tu+ s2t2 � 4s2 + 2 + ⇣2 + ⇣�2).

Let s, t, u 2 F . If the first factor s2�2 is 0, then F has a square root of 2, which is not
the case by the assumption that p2 6⌘ 1 mod 16. And if one of the other factors is 0,
then ⇣+ ⇣�1 2 F , which is also impossible since p2 6⌘ 1 mod 5. Hence P

w

(s, t, u) 6= 0,
proving the claim and the theorem.

One might ask how we came up with the magic word w in Theorem 4.5. The answer
is that we computed (by machine) the polynomials P

v

for v in a list of representatives
of minimal length for certain automorphism classes of words in F

2

, generated using
[12]. We then tested whether these polynomials were surjective on a selection of small
fields. Nothing of interest came up until the length of the representatives reached 14
(which is the length of the magic w). We noticed that P

w

was nonzero on the fields
F
3

and F
27

. The rest is history.... It is interesting (to me) to note that although,
as I have said, computation played a key role in our discovery of the family of non-
surjective words, the final proofs in [29] are completely theoretical and make no use
at all of machine computation.

In principle one can try to use the same method to look for non-surjective words
on higher rank groups. For example, for a word map w on G = SL

3

(K), the trace
of w(x, y) for x, y 2 G can be expressed as a polynomial in the variables Tr(x±1),
Tr(y±1), Tr((xy)±1), Tr((x�1y)±1), Tr([x, y]) (see [28, 4.6]). Again, there is an algo-
rithm for computing these polynomials, so as above one can test for non-surjectivity
on small fields in the hope of coming up with promising words. No such promising
words have come up in tests so far, and indeed it may be that there are no magic words
to be found for higher ranks. In this direction we propose the following conjecture:

Conjecture 4.6 Let w be a nontrivial word, and assume that w is not a proper power
(i.e. there is no word v such that w = vm with m � 2). Then there is a constant
r = r(w) such that w is surjective on all simple groups of Lie type of rank at least r
and all alternating groups of degree at least r.

4.4 Probability

Recall that for a nontrivial word w 2 F
k

and a finite group G, we define the probability
distribution P

w

on G by

P
w

(g) =
|w�1(g)|
|G|k (g 2 G).

Let U be the uniform distribution on G (so U(g) = 1

|G| for all g 2 G). For an infinite
family F of groups, we say that the word map w is almost uniform on F if for groups
G 2 F we have

||P
w

� U ||
1

:=
X

g2G
|P

w

(g)� U(g)| ! 0 as |G| ! 1.
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When F is the finite simple groups, various word maps have been shown to be almost
uniform: the commutator word [x

1

, x
2

] in [17]; and the words xa
1

xb
2

in [37].

Does there exist a word map that is highly non-uniform on a family of simple
groups? Currently there is not much evidence for or against this. However as observed
by Macpherson and Tent in [54, 4.10], one can say the following. For a word w and a
familyG(q) of groups of a fixed Lie type, as q ! 1 the fibres w�1(g) have cardinalities
of the order of cqd with d a non-negative integer, where the number of possibilites for
c, d is bounded; the same applies to the cardinality of w�1(C) for a conjugacy class C.
It follows, for example, that for a word map w = w(x

1

, . . . , x
k

) on the family PSL
2

(p)
(p prime), as p ! 1 the probability that w(g

1

, . . . , g
k

) has order p for random g
i

is of
the order of 1

p

c for c = 1, 2 or 3. In particular, it cannot be of an order of magnitude

greater than 1

p

, giving a disappointingly negative answer to Question 4 stated at the
beginning of this section.
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1 Introduction

This paper is based on a series of 4 lectures delivered at Groups St Andrews 2013.
The main theme of the lectures was distinguishing finitely generated residually finite
groups by their finite quotients. The purpose of this paper is to expand and develop
the lectures.

The paper is organized as follows. In §2 we collect some questions that motivated
the lectures and this article, and in §3 discuss some examples related to these ques-
tions. In §4 we recall profinite groups, profinite completions and the formulation of
the questions in the language of the profinite completion. In §5, we recall a particu-
lar case of the question of when groups have the same profinite completion, namely
Grothendieck’s question. In §6 we discuss how the methods of L2-cohomology can be
brought to bear on the questions in §2, and in §7, we give a similar discussion using
the methods of the cohomology of profinite groups. In §8 we discuss the questions
in §2 in the context of groups arising naturally in low-dimensional topology and ge-
ometry, and in §9 discuss parafree groups. Finally in §10 we collect a list of open
problems that may be of interest.
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them for their collaborations. I would also like to thank the organizers of Groups St
Andrews 2013 for their invitation to deliver the lectures, for their hopsitality at the
conference, and for their patience whilst this article was completed. This work was
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2 The motivating questions

We begin by recalling some terminology. A group � is said to be residually finite
(resp., residually nilpotent, residually-p, residually torsion-free-nilpotent) if for each
non-trivial � 2 � there exists a finite group (resp., nilpotent group, p-group, torsion-
free-nilpotent group) Q and a homomorphism � : � ! Q with �(�) 6= 1.

2.1. If a finitely-generated group � is residually finite, then one can recover any
finite portion of its Cayley graph by examining the finite quotients of the group. It
is therefore natural to wonder whether, under reasonable hypotheses, the set

C(�) = {G : G is a finite quotient of �}

might determine � up to isomorphism.
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Assuming that the groups considered are residually finite is a natural condition to
impose, since, first, this guarantees a rich supply of finite quotients, and secondly,
one can always form the free product � ⇤ S where S is a finitely generated infinite
simple group, and then, clearly C(�) = C(� ⇤S). Henceforth, unless otherwise stated,
all groups considered will be residually finite.

The basic motivating question of this work is the following due to Remesselenikov:

Question 1: If Fn is the free group of rank n, and � is a finitely-generated, resid-
ually finite group, then does C(�) = C(Fn) imply that � ⇠= Fn?

This remains open at present, although in this paper we describe progress on this
question, as well as providing structural results about such a group � (should it
exist) as in Question 1.

Following [31], we define the genus of a finitely generated residually finite group �
to be:

G(�) = {� : C(�) = C(�)}.

This definition is taken, by analogy with the theory of quadratic forms over Z where
two integral quadratic forms can be locally equivalent (i.e., at all places of Q), but
not globally equivalent over Z.

Question 2: Which finitely generated (respectively, finitely presented) groups � have
G(�) = {�}?

Question 3: Which finitely generated (respectively, finitely presented) groups � have
|G(�)| > 1?

Question 4: How large can |G(�)| be for finitely generated (resp., finitely presented)
groups?

Question 5: What group theoretic properties are shared by (resp., are di↵erent for)
groups in the same genus?

In addition, if P is a class of groups, then we define

G(�,P) = {� 2 P : C(�) = C(�)},

and can ask the same questions upon restricting to groups in P.

2.2. Rather than restricting the class of groups in a genus, we can ask to distinguish
finitely generated groups by restricting the quotient groups considered. A particularly
interesting case of this is the following. Note first that, a group � is residually
nilpotent if and only if

T
�n = 1, where �n, the n-th term of the lower central series of

�, defined inductively by setting �1 = � and defining �n+1 = h [x, y] : x 2 �n, y 2 � i.
Two residually nilpotent groups � and ⇤ are said to have the same nilpotent genus

if they have the same lower central series quotients; i.e., �/�c
⇠= ⇤/⇤c for all c � 1.

Residually nilpotent groups with the same nilpotent genus as a free group are termed
parafree. In [10] Gilbert Baumslag surveyed the state of the art concerning groups of
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the same nilpotent genus with particular emphasis on the nature of parafree groups.
We will discuss this in more detail in §9 below.

3 Some examples

We begin with a series of examples where one can say something about Questions
1–4.

3.1. We first prove the following elementary result.

Proposition 3.1 Let � be a finitely generated abelian group, then G(�) = {�}.

Proof Suppose first that � 2 G(�) and � is non-abelian. We may therefore find
a commutator c = [a, b] that is non-trivial. Since � is residually finite there is a
homomorphism � : � ! Q, with Q finite and �(c) 6= 1. However, � 2 G(�) and so
Q is abelian. Hence �(c) = 1, a contradiction.

Thus � is abelian. We can assume that � ⇠= Zr
� T1 and � ⇠= Zs

� T2, where Ti

(i = 1, 2) are finite abelian groups. It is easy to see that r = s, for if r > s say, we
can choose a large prime p such that p does not divide |T1||T2|, and construct a finite
quotient (Z/pZ)r that cannot be a quotient of �.

In addition if T1 is not isomorphic to T2, then some invariant factor appears in T1
say, but not in T2. One can then construct a finite abelian group that is a quotient
of T1 (and hence �1) but not of �2. ⇤

Note that the proof of Proposition 3.1 also proves the following.

Proposition 3.2 Let � be a finitely generated group, and suppose that � 2 G(�).
Then �ab

⇠= �ab. In particular b1(�) = b1(�).

3.2. Remarkably, moving only slightly beyond Z to groups that are virtually Z, the
situation is dramatically di↵erent. The following result is due to Baumslag [9]. We
include a sketch of the proof.

Theorem 3.3 There exists non-isomorphic meta-cyclic groups �1 and �2 for which
C(�1) = C(�2). Indeed, both of these groups are virtually Z and defined as extensions
of a fixed finite cyclic group F by Z.

Sketch Proof What Baumslag actually proves in [9] is the following, and this is
what we sketch a proof of:

(⇤) Let F be a finite cyclic group with an automorphism of order n, where
n is di↵erent from 1, 2, 3, 4 and 6. Then there are at least two non-
isomorphic cyclic extensions of F , say �1 and �2 with C(�1) = C(�2).

Recall that the automorphism group of a finite cyclic group of order m is an abelian
group of order �(m). So in (⇤) we could take F to be a cyclic group of order 11,
which has an automorphism of order 5.
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Now let F = hai be a cyclic group of order m, and assume that it admits an
automorphism ↵ of order n as in (⇤). Assume that ↵(a) = ar. Now some elementary
number theory (using that �(m) > 2 by assumption) shows that we can find an
integer ` such that (`, n) = 1, and

(i) ↵`
6= ↵, and (ii) ↵`

6= ↵�1.

Now define �1 = h a, b | am = 1, b�1ab = ar i to be the split extension of F induced

by ↵ and �2 = h a, c | am = 1, c�1ac = ar
`
i be the split extension of F induced by ↵`.

The key claims to be established are that �1 and �2 are non-isomorphic, and that
they have the same genus.

That the groups are non-isomorphic can be checked directly as follows. If ✓ : �1 !

�2 is an isomorphism, then ✓ must map the set of elements of finite order in �1 to
those in �2; that is to say ✓ preserves F , and so induces an automorphism of F . Thus
✓(a) = as where (s,m) = 1. Moreover since the quotients �i/F ⇠= Z for i = 1, 2, it
follows that ✓(b) = c✏at where ✏ = ±1 and t is an integer. Now consider ✓(ar). When
✓(b) = cat we get:

↵(as) = ars = ✓(ar) = ✓(bab�1) = (cat)as(cat)�1 = ↵`(as),

and it follows that ↵ = ↵`. A similar argument holds when ✓(b) = c�1at to show
↵�1 = ↵`, both of which are contradictions to (ii) above.

We now discuss proving that the groups are in the same genus. Setting P = �1⇥Z,
Baumslag [9] shows that P is isomorphic to �2 ⇥ Z. That �1 and �2 have the same
genus now follows from a result of Hirshon [34] (see also [9]) where it is shown that
(see Theorem 9 of [34]):

Proposition 3.4 Suppose that A and B are groups with A ⇥ Z ⇠= B ⇥ Z, then
C(A) = C(B).

3.3. The case of nilpotent groups more generally is well understood due to work of
Pickel [52]. We will not discuss this in any detail, other than to say that, in [52] it is
shown that for a finitely generated nilpotent group �, G(�) consists of a finite number
of isomorphism classes of nilpotent groups, and moreover, examples where the genus
can be made arbitrarily large are known (see for example [58] Chapter 11). Similar
results are also known for polycyclic groups (see [29] and [58]).

3.4. From the perspective of this article, more interesting examples where the genus
has cardinality greater than 1 (although still finite) are given by examples of lattices
in semi-simple Lie groups. We refer the reader to [4] and [5] for details but we will
provide a sketch of some salient points.

Let � be a lattice in a semi-simple Lie group, for example, in what follows we
shall take � = SL(n,Rk) where Rk denotes the ring of integers in a number field k. A
natural, obvious class of finite quotients of �, are those of the form SL(n,Rk/I) where
I ⇢ Rk is an ideal. Let ⇡I denote the reduction homomorphism � ! SL(n,Rk/I),
and �(I) the kernel. Note that by Strong Approximation for SLn (see [53] Chapter 7.4
for example) ⇡I is surjective for all I . A congruence subgroup of � is any subgroup
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� < � such that �(I) < � for some I. A group � is said to have the Congruence
Subgroup Property (henceforth abbreviated to CSP) if every subgroup of finite index
is a congruence subgroup.

Thus, if � has CSP, then C(�) is known precisely, and in e↵ect, to determine C(�)
is reduced to number theory. Expanding on this, since Rk is a Dedekind domain, any
ideal I factorizes into powers of prime ideals. If I =

Q
P

ai
i , then it is known that

SL(n,Rk/I) =
Q

SL(n,Rk/P
ai
i ). Thus the finite groups that arise as quotients of

SL(n,Rk) are determined by those of the form SL(n,Rk/P
ai
i ). Hence we are reduced

to understanding how a rational prime p behaves in the extension k/Q. This idea,
coupled with the work of Serre [59] which has shed considerable light on when � has
CSP, allows construction of non-isomorphic lattices in the same genus.

Example: Let k1 = Q(
8
p

37) and k2 = Q( 8
p

48). Let �1 = SL(n,Rk1) and �2 =
SL(n,Rk2) (n � 3). Then �1 and �2 have CSP (by [59]), are non-isomorphic (by
rigidity) and C(�1) = C(�2). The reason for the last statement is that the fields
k1 and k2 are known to be adelically equivalent (see [36]); i.e. their Adele rings are
isomorphic. This can be reformulated as saying that if Vi (i = 1, 2) are the sets
of valuations associated to the prime ideals in k1 and k2, then there is a bijection
� : V1 ! V2 such that for all ⌫ 2 V1 we have isomorphisms (k1)⌫ ⇠= (k2)�(⌫). This
has, as a consequence, the desired identical splitting behavior of rational primes in
k1 and k2.

3.5. Unlike in the previous subsections, there are recent examples of Bridson [14] of
finitely presented groups � for which G(�) is infinite. This will be discussed further
in §5.1.

4 Profinite methods

An important reformulation of the discussion in §2 uses the language of profinite
groups. In particular, the language of profinite completions is a particularly conve-
nient formalism for organizing finite quotients of a discrete group. For completeness
we provide some discussion of profinite groups and profinite completions of discrete
groups. We refer the reader to [56] for a more detailed account of the topics covered
here.

4.1. A directed set is a partially ordered set I such that for every i, j 2 I there exists
k 2 I such that k � i and k � j. An inverse system is a family of sets {Xi}{i2I},
where I is a directed set, and a family of maps �ij : Xi ! Xj whenever i � j, such
that:

• �ii = idXi ;

• �ij�jk = �ik, whenever i � j � k.

Denoting this system by (Xi,�ij, I), the inverse limit of the inverse system (Xi,�ij, I)
is the set

lim
 �

Xi =

⇢
(xi) 2

Y

i2I
Xi

���� �ij(xi) = xj , whenever i � j

�
.
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We record the following standard facts about the inverse limit (see [56] Chapter 1
for further details):

(i) Let (Xi,�ij, I) be an inverse system of non-empty compact, Hausdor↵, totally
disconnected topological spaces (resp. topological groups) over the directed set I,
then lim

 �

Xi is a non-empty, compact, Hausdor↵, totally disconnected topological
space (resp. topological group).

(ii) Let (Xi,�ij , I) be an inverse system. A subset J ⇢ I is defined to be cofinal, if
for each i 2 I , there exists j 2 J with j � i. If J is cofinal we may form an inverse
system (Xj ,�ij , J) obtained by omitting those i 2 I \ J . The inverse limit lim

 �

Xj

can be identified with the image of lim
 �

Xi under the projection map
Q

i2I Xi ontoQ
j2J Xj .

4.2. Returning to the world of group theory, let � be a finitely generated group (not
necessarily residually finite for this discussion), and let N denote the collection of all
finite index normal subgroups of �. Note that N is non-empty as � 2 N , and we can
make N into directed set by declaring that

For M,N 2 N , M  N whenever M contains N .

In this case, there are natural epimorphisms �NM : �/N ! �/M , and the inverse
limit of the inverse system (�/N,�NM ,N ) is denoted b� and defined to be to the
profinite completion of �.

Note that there is a natural map ◆ : �! b� defined by

g 7! (gN) 2 lim
 �

�/N,

and it is easy to see that ◆ is injective if and only if � is residually finite.
An alternative, perhaps more concrete way of viewing the profinite completion

is as follows. If, for each N 2 N , we equip each �/N with the discrete topology,
then

Q
{�/N : N 2 N} is a compact space and b� can be identified with j(�) where

j : �!
Q
{�/N : N 2 N} is the map g 7! (gN).

4.3. From §4.1, b� is a compact topological group, and so a subgroup U is open if
and only if it is closed of finite index. In addition, a subgroup H < b� is closed if and
only if it is the intersection of all open subgroups of b� containing it. More recently,
it is a consequence of a deep theorem of Nikolov and Segal [50] that if � is a finitely
generated group, then every finite index subgroup of b� is open. Thus a consequence
of this is the following elementary lemma (in which Hom(G,Q) denotes the set of
homomorphisms from the group G to the group Q, and Epi(G,Q) denotes the set of
epimorphisms).

Lemma 4.1 Let � be a finitely-generated group and let ◆ : �! b� be the natural map
to its profinite completion. Then, for every finite group Q, the map Hom(b�, Q) !
Hom(�, Q) defined by g 7! g � ◆ is a bijection, and this restricts to a bijection
Epi(b�, Q)! Epi(�, Q).

We record the following corollary for later use.
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Corollary 4.2 If �1 is finitely-generated and b�1
⇠= b�2, then

|Hom(�1, Q)| = |Hom(�2, Q)|

for every finite group Q.

4.4. The first Betti number of a finitely generated group is

b1(�) = dimQ [(�/[�,�])⌦Z Q].

Given any prime p, one can detect b1(�) in the p-group quotients of �, since it is the
greatest integer b such that � surjects (Z/pkZ)b for every k 2 N. We exploit this
observation as follows:

Lemma 4.3 Let ⇤ and � be finitely generated groups. If ⇤ is isomorphic to a dense
subgroup of b�, then b1(⇤) � b1(�).

Proof For every finite group A, each epimorphism b� ! A will restrict to an epimor-
phism on both � and ⇤ (since by density ⇤ cannot be contained in a proper closed
subgroup). But the resulting map Epi(b�, A) ! Epi(⇤, A) need not be surjective, in
contrast to Lemma 4.1. Thus if � surjects (Z/pkZ)b then so does ⇤ (but perhaps not
vice versa). ⇤

4.5. We now discuss the profinite topology on the discrete group �, its subgroups
and the correspondence between the subgroup structure of � and b�. We begin by
recalling the profinite topology on �. This is the topology on � in which a base for
the open sets is the set of all cosets of normal subgroups of finite index in �. Now
given a tower T of finite index normal subgroups of �:

� > N1 > N2 > . . . > Nk > . . .

with
T
Nk = 1, this can be used to define an inverse system and thereby determines

a completion of b�T (in which � will inject). Now if the inverse system determined by
T is cofinal (recall §4.1) then the natural homomorphism b� !

b�T is an isomorphism.
That is to say T determines the full profinite topology of �.

The following is important in connecting the discrete and profinite worlds (see [56]
3.2.2, where here we use [50] to replace “open” by “finite index”).

Notation Given a subset X of a profinite group G, we writeX to denote the closure
of X in G.

Proposition 4.4 If � is a finitely generated residually finite group, then there is a
one-to-one correspondence between the set X of subgroups of � that are open in the
profinite topology on �, and the set Y of all finite index subgroups of b�.

Identifying � with its image in the completion, this correspondence is given by:

• For H 2 X , H 7! H.
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• For Y 2 Y, Y 7! Y \ �.

If H,K 2 X and K < H then [H : K] = [H : K]. Moreover, K / H if and only if
K /H, and H/K ⇠= H/K.

The following corollary of this correspondence will be useful in what follows.

Corollary 4.5 Let � be a finitely-generated group, and for each d 2 N, let Md denote
the intersection of all normal subgroups of index at most d in �. Then the closure
Md of Md in b� is the intersection of all normal subgroups of index at most d in b�,
and hence

T
d2NMd = 1.

Proof If N1 and N2 are the kernels of epimorphisms from � to finite groups Q1

and Q2, then N1 \N2 is the kernel of the extension of � ! Q1 ⇥ Q2 to b�, while
N1 ⇥N2 is the kernel of the map b� ! Q1 ⇥ Q2 that one gets by extending each of
� ! Qi and then taking the direct product. The uniqueness of extensions tells us
that these maps coincide, and hence N1 \N2 = N1 \ N2. The claims follow from
repeated application of this observation. ⇤

If now H < �, the profinite topology on � determines some pro topology on H
and therefore some completion of H. To understand what happens in certain cases
that will be of interest to us, we recall the following. Since we are assuming that �
is residually finite, H injects into b� and determines a subgroup H. Hence there is a
natural epimorphism bH ! H . This need not be injective. For this to be injective
(i.e. the full profinite topology is induced on H) we require the following to hold:

For every subgroup H1 of finite index in H, there exists a finite index
subgroup �1 < � such that �1 \H < H1.

There are some important cases for which injectivity can be arranged. Suppose that �
is a group and H a subgroup of �, then � is called H-separable if for every g 2 G\H,
there is a subgroup K of finite index in � such that H ⇢ K but g /2 K; equivalently,
the intersection of all finite index subgroups in � containing H is precisely H . The
group � is called LERF (or subgroup separable) if it is H-separable for every finitely-
generated subgroup H , or equivalently, if every finitely-generated subgroup is a closed
subset in the profinite topology.

It is important to note that even if the subgroup H of � is separable, it need not
be the case that the profinite topology on � induces the full profinite topology on H.
Stronger separability properties do su�ce, however, as we now indicate.

Lemma 4.6 Let � be a finitely-generated group, and H a finitely-generated subgroup
of �. Suppose that � is H1-separable for every finite index subgroup H1 in H. Then
the profinite topology on � induces the full profinite topology on H; that is, the natural
map bH ! H is an isomorphism.

Proof Since � is H1 separable, the intersection of all subgroups of finite index in �
containing H1 is H1 itself. From this it easily follows that there exists �1 < � of finite
index, so that �1 \H = H1. The lemma follows from the discussion above. ⇤



Reid: Profinite properties of discrete groups 81

Subgroups of finite index obviously satisfy the conditions of Lemma 4.6, and if � is
LERF, the conditions of Lemma 4.6 are also satisfied. Hence we deduce the following.

Corollary 4.7 (1) If � is residually finite and H is a finite-index subgroup of �,
then the natural map from bH to H is an isomorphism.

(2) If � is LERF and H is a finitely generated subgroup of �, then the natural map
from bH to H is an isomorphism.

Another case of what the profinite topology does on a subgroup that will be of
interest to us is the following. Let � be a residually finite group that is the funda-
mental group of a graph of groups. Let the edge groups be denoted by Ge and the
vertex groups by Gv. The profinite topology on � is said to be e�cient if it induces
the full profinite topology on Gv and Ge for all vertex and edge groups, and Gv and
Ge are closed in the profinite topology on �. The main example we will make use of
is the following which is well-known:

Lemma 4.8 Suppose that � is a free product of finitely many residually finite groups
G1, . . . , Gn. Then the profinite topology on � is e�cient.

Proof Since � is residually finite, the trivial group is closed in the profinite topology.
To see that each Gi is closed in the profinite topology we prove that � is Gi-separable.
To that end let G denote one of the Gi, and let g 2 � \G. Since g /2 G, the normal
form for g contains at least one element ak 2 Gk 6= G. Since Gk is residually finite
there is a finite quotient A of Gk for which the image of ak is non-trivial. Using
the projection homomorphism G1 ⇤ . . . ⇤Gn ! Gk ! A defines a homomorphism for
which the image of G is trivial but the image of g is not. This proves the vertex
groups are closed.

To see that the full profinite topology is induced on each Gi, we need to show
that for each Gi, i = 1, . . . , n, the following condition holds (recall the condition for
injectivity given above). For every subgroup H of finite index in Gi, there exists a
finite index subgroup Hi < � such that Hi \ Gi < H. Let G denote one of the Gi’s
and assume that H < G is a finite index subgroup. We can also assume that H is a
normal subgroup. Then using the projection homomorphism � = G1⇤. . .⇤Gn ! G/H
whose kernel K defines a finite index of subgroup of � with K\G = H as required. ⇤

Note that in the situation of Lemma 4.8, it also follows that b� ⇠= bG1 q
bG2 . . .q bGn

where q indicates the profinite amalgamated product. We refer the reader to [56]
Chapter 9 for more on this.

4.6. We now prove one of the key results that we make use of. This is basically
proved in [25] (see also [56] pp. 88–89), the mild di↵erence here, is that we employ
[50] to replace topological isomorphism with isomorphism.

Theorem 4.9 Suppose that �1 and �2 are finitely-generated abstract groups. Then
b�1 and b�2 are isomorphic if and only if C(�1) = C(�2).

Proof If b�1 and b�2 are isomorphic then the discussion following the correspondence
provided by Proposition 4.4 shows that C(�1) = C(�2).
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For the converse, we argue as follows. For each n 2 N let

Un =
\

{U : U is a normal subgroup of �1 with [�1 : U ]  n}, and

Vn =
\

{V : V is a normal subgroup of �2 with [�2 : V ]  n}.

Then �1/Un 2 C(�1) and �2/Vn 2 C(�2). Hence there exists a normal subgroup
K < �1 so that �1/K ⇠= �2/Vn. Now it follows that K is an intersection of normal
subgroups of index  n, and so Un < K. Hence |�2/Vn| = |�1/K|  |�1/Un|. On
reversing the roles of �1 and �2 reverses this inequality from which it follows that
�2/Vn

⇠= �1/Un.
Now for each such n, let An denote the set of all isomorphisms �1/Un onto �2/Vn.

For each n this is a finite non-empty set with the property that for m  n and
↵ 2 An, then ↵ induces a unique homomorphism fnm(↵) : �1/Um ! �2/Vm such
that the following diagram commutes.

�1/Un �! �1/Um

↵
??y

??yfnm(↵)

�2/Vn �! �2/Vm

It follows that {An, fnm} is an inverse system of (non-empty) finite sets, and so
the inverse limit lim

 �

An exists and defines an isomorphism of the inverse systems
lim
 �

�1/Un and lim
 �

�2/Vn. Also note that since Un and Vn are co-final, the discussion
in §4.5 shows that they induce the full profinite topology on �1 and �2 respectively
and so we have:

b�1
⇠= lim
 �

�1/Un
⇠= lim
 �

�2/Vn
⇠= b�2

as required. ⇤

Thus statements about C(�) and G(�) can now be rephrased in terms of the profi-
nite completion. For example,

G(�) = {� : b� ⇠= b�}.

4.7. We now give some immediate applications of Theorem 4.9 and the previous
discussion in the context of the motivating questions.

Lemma 4.10 Let � : �1 ! �2 be an epimorphism of finitely-generated groups. If
�1 is residually finite and b�1

⇠= b�2, then � is an isomorphism.

Proof Let k 2 ker�. If k were non-trivial, then since �1 is residually finite, there
would be a finite group Q and an epimorphism f : �1 ! Q such that f(k) 6= 1. This
map f does not lie in the image of the injection Hom(�2, Q) ,! Hom(�1, Q) defined
by g 7! g � �. Thus |Hom(�1, Q)| > |Hom(�2, Q)|, contradicting Corollary 4.2. ⇤

Definition 4.11 The rank d(�) of a finitely-generated group � is the least integer
k such that � has a generating set of cardinality k. The rank bd(G) of a profinite
group G is the least integer k for which there is a subset S ⇢ G with k = |S| and
hSi is dense in G.
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If �1 is assumed to be a finitely generated free group of rank r and �2 a finitely
generated group with d(�2) = r and b�1

⇠= b�2, then it follows immediately from
Lemma 4.10 that �2 is isomorphic to a free group of rank r (using the natural epi-
morphism �1 ! �2).

Indeed, one can refine this line of argument as follows. In the following proposition,
we do not assume that � is residually finite.

Proposition 4.12 Let � be a finitely-generated group and let Fn be a free group. If
� has a finite quotient Q such that d(�) = d(Q), and b� ⇠= bFn, then � ⇠= Fn.

Proof First b� ⇠= bFn, so Q is a quotient of Fn. Hence n � d(Q). But d(Q) = d(�) and
for every integer s � d(�) there exists an epimorphism Fs ! �. Thus we obtain an
epimorphism Fn ! �, and application of the preceding lemma completes the proof.

⇤

Corollary 4.13 Let � be a finitely-generated group. If � and its abelianisation have
the same rank, then b� ⇠= bFn if and only if � ⇠= Fn.

Proof Every finitely-generated abelian group A has a finite quotient of rank d(A).
⇤

As an application of Corollary 4.13 we give a quick proof that that free groups
and surface groups are distinguished by their finite quotients. For if � is a genus
g � 1 surface group, then � and its abelianization have rank 2g. Corollary 4.13 then
precludes such a group having the same profinite completion as a free group.

Another application is the following. Another natural generalization of free groups
are right angled Artin groups. Let K be a finite simplicial graph with vertex set
V = {v1, . . . , vn} and edge set E ⇢ V ⇥ V . Then the right angled Artin group (or
RAAG) associated with K is the group A(K) given by the following presentation:

A(K) = h v1, . . . , vn | [vi, vj ] = 1 for all i, j such that {vi, vj} 2 E i.

For example, if K is a graph with n vertices and no edges, then A(K) is the free
group of rank n, while if K is the complete graph on n vertices, then A(K) is the free
abelian group Zn of rank n.

If the group � has a presentation of the form hA | R i where A is finite and all
of the relators r 2 R lie in the commutator subgroup of the free group F (A), then
both � and its abelianisation (which is free abelian) have rank |A|. The standard
presentations of RAAGs have this form.

Proposition 4.14 If � is a right-angled Artin group that is not free, then there exists
no free group F such that bF ⇠= b�.

4.8. We shall also consider other pro-completions, and we briefly recall these. The
pro-(finite nilpotent) completion, denoted b�fn, is the inverse limit of the finite nilpotent
quotients of �. Given a prime p, the the pro-p completion b�p is the inverse limit of

the finite p-group quotients of �. As above we have natural homomorphisms � !

b�fn



Reid: Profinite properties of discrete groups 84

and � !

b�p and these are injections if and only if � is residually nilpotent in the first
case and residually p in the second.

Note that in this language, two finitely generated residually nilpotent groups with
the same nilpotent genus have isomorphic pro-(finite nilpotent) completions. This
can proved in a similar manner as Proposition 4.4 using only the finite nilpotent
quotients. Note that it is proved in [6] (before the general case of [50]) that for a
finitely generated group �, every subgroup of finite index in b�fn is open. Moreover,
finitely generated groups in the same nilpotent genus also have isomorphic pro-p
completions for all primes p.

5 Grothendieck Pairs and Grothendieck Rigidity

A particular case of when discrete groups have isomorphic profinite completions is
the following (which goes back to Grothendieck [28]).

5.1. Let � be a residually finite group and let u : P ,! � be the inclusion of a
subgroup P . Then (�, P )u is called a Grothendieck Pair if the induced homomor-
phism bu : bP !

b� is an isomorphism but u is not. (When no confusion is likely to
arise, it is usual to write (�, P ) rather than (�, P )u.) Grothendieck [28] asked about
the existence of such pairs of finitely presented groups and the first such pairs were
constructed by Bridson and Grunewald in [15]. The analogous problem for finitely
generated groups had been settled earlier by Platonov and Tavgen [54]. Both con-
structions rely on versions of the following result (cf. [54], [15] Theorem 5.2 and [13]).

We remind the reader that the fibre product P < �⇥� associated to an epimorphism
of groups p : � ! Q is the subgroup P = {(x, y) : p(x) = p(y)}.

Proposition 5.1 Let 1 ! N ! � ! Q ! 1 be a short exact sequence of groups with
� finitely generated and let P be the associated fibre product. Suppose that Q 6= 1 is
finitely presented, has no proper subgroups of finite index, and H2(Q,Z) = 0. Then

(1) (�⇥ �, P ) is a Grothendieck Pair;

(2) if N is finitely generated then (�, N) is a Grothendieck Pair.

More recently in [14], examples of Grothendieck Pairs were constructed so as to
provide the first examples of finitely-presented, residually finite groups � that con-
tain an infinite sequence of non-isomorphic finitely presented subgroups Pn so that
the inclusion maps un : Pn ,! � induce isomorphisms of profinite completions. In
particular, this provides examples of finitely presented groups � for which G(�) is
infinite.

5.2. There are many classes of groups � that can never have a subgroup P for which
(�, P ) is a Grothendieck Pair; as in [40], we call such groups Grothendieck Rigid.

Before proving the next theorem, we make a trivial remark that is quite helpful.
Suppose that H < � and � is H-separable, then (�, H) is not a Grothendieck Pair.
The reason for this is that being separable implies that H is contained in (infinitely
many) proper subgroups of � of finite index. In particular H < b� is contained in
proper subgroups of finite index in b�. On the other hand if (�, H) is a Grothendieck
Pair, H is dense in b� and so cannot be contained in a closed subgroup (of finite index)
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of b�. With this remark in place, we prove our next result. Recall that a group � is
called residually free if for every non-trivial element g 2 � there is a homomorphism
�g from � to a free group such that �g(g) 6= 1, and � is fully residually free if for every
finite subset X ✓ � there is a homomorphism from � to a free group that restricts to
an injection on X.

Theorem 5.2 Let � be a finitely generated group isomorphic to either: a Fuchsian
group, a Kleinian group, the fundamental group of a geometric 3-manifold, a fully
residually free group. Then � is Grothendieck Rigid.

Proof This follows immediately from the discussion above, and the fact that such
groups are known to be LERF. For Fuchsian groups see [57], for Kleinian groups this
follows from [2] and [62] and for fully residually free groups [60]. If M is a geometric
3-manifold, then the case when M is hyperbolic follows from the remark above, and
when M is a Seifert fibered space see [57]. For those modelled on SOL geometry,
separability of subgroups can be established directly and the result follows. ⇤

Remark The case of finite co-volume Kleinian groups was proved in [40] without
using the LERF assumption. Instead, character variety techniques were employed.
In §8.2 we will establish Grothendieck Rigidity for prime 3-manifolds that are not
geometric.

6 L2-Betti numbers and profinite completion

Proposition 3.2 established that the first Betti number of a group is a profinite in-
variant. The goal of this section is to extend this to the first L2-Betti number, and
to give some applications of this.

We refer the reader to Lück’s paper [47] for a comprehensive introduction to L2-
Betti numbers. For our purposes, it is best to view these invariants not in terms
of their original (more analytic) definition, but instead as asymptotic invariants of
towers of finite-index subgroups. This is made possible by the Lück’s Approximation
Theorem [46]:

Theorem 6.1 Let � be a finitely presented group, and let � = �1 > �2 > . . . > �m >
. . . be a sequence of finite-index subgroups that are normal in � and intersect in the
identity. Then for all p � 0, the p-th L2-Betti number of � is given by the formula

b(2)p (�) = lim
m!1

bp(�m)

[� : �m]
.

An important point to note is that this limit does not depend on the tower, and

hence is an invariant of �. We will mostly be interested in b
(2)
1 .

Example 6.2 Let F be a free group of rank r. Euler characteristic tells us that
a subgroup of index d in F is free of rank d(r � 1) + 1, so by Lück’s Theorem

b
(2)
1 (Fr) = r � 1. A similar calculation shows that if ⌃ is the fundamental group of a

closed surface of genus g, then b
(2)
1 (⌃) = 2g � 2.
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Proposition 6.3 Let ⇤ and � be finitely presented residually finite groups and sup-

pose that ⇤ is a dense subgroup of b�. Then b
(2)
1 (�)  b

(2)
1 (⇤).

Proof For each positive integer d let Md be the intersection of all normal subgroups
of index at most d in �, and let Ld = ⇤ \ Md in b�. We saw in Corollary 4.5 thatT

dMd = 1, and so
T

d Ld = 1. Since ⇤ and � are both dense in b�, the restriction of
b� !

b�/Md to each of these subgroups is surjective, and hence

[⇤ : Ld] = [b� : Md] = [� : Md].

Now Ld is dense in Md, while cMd = Md, so Lemma 4.3 implies that b1(Ld) �

b1(Md), and then we can use the towers (Ld) in ⇤ and (Md) in � to compare L2-Betti
numbers and find

b
(2)
1 (�) = lim

d!1

b1(Md)

[� : Md]
 lim

d!1

b1(Ld)

[⇤ : Ld]
= b

(2)
1 (⇤),

by Lück’s approximation theorem. ⇤

This has the following important consequence:

Corollary 6.4 Let �1 and �2 be finitely-presented residually finite groups. If b�1
⇠=

b�2, then b
(2)
1 (�1) = b

(2)
1 (�2).

If one assumes only that the group � is finitely generated, then one does not know
if the above limit exists, and when it does exist one does not know if it is independent
of the chosen tower of subgroups. However, a weaker form of Lück’s approximation

theorem for b(2)1 was established for finitely generated groups by Lück and Osin [48].

Theorem 6.5 If � is a finitely generated residually finite group and (Nm) is a se-
quence of finite-index normal subgroups with

T
mNm = 1, then

lim sup
m!1

b1(Nm)

[� : Nm]
 b

(2)
1 (�).

6.1. We now give some applications of Proposition 6.3 in the context of Question 1
(and the analogous questions for Fuchsian groups). First we generalize the calculation
in Example 6.2.

Proposition 6.6 If � is a lattice in PSL(2,R) with rational Euler characteristic

�(�), then b
(2)
1 (�) = ��(�).

Proof It follows from Lück’s approximation theorem that if H is a subgroup of index

index d in � (which is finitely-presented) then b
(2)
1 (H) = d b

(2)
1 (�). Rational Euler

characteristic is multiplicative in the same sense. Thus we may pass to a torsion-free
subgroup of finite index in �, and assume that it is either a free group Fr of rank r,
or the fundamental group ⌃g of a closed orientable surface of genus g. The free group
case was dealt with above, and so we focus on the surface group case.



Reid: Profinite properties of discrete groups 87

Thus if �d is a subgroup of index d in �, then it is a surface group of genus
d(g � 1) + 1. The first Betti number in this case is 2d(g � 1) + 1 and so b1(�d) =

2 � d�(�). Dividing by d = |� : �d| and taking the limit, we find b
(2)
1 (�) = ��(�).

⇤

With this result and Proposition 6.3 we have the following. The only additional
comment to make is that the assumption that the Fuchsian group �1 is non-elementary

implies it is not virtually abelian, and so b
(2)
1 (�1) 6= 0.

Corollary 6.7 Let �1 be a finitely generated non-elementary Fuchsian group, and �2

a finitely presented residually finite group with b�1
⇠= b�2. Then b

(2)
1 (�2) = b

(2)
1 (�1) =

��(�1) 6= 0.

Another standard result about free groups is that if F is a finitely generated free
group of rank � 2, then any finitely generated non-trivial normal subgroup of F has
finite index (this also holds more generally for Fuchsian groups and limit groups,
see [17] for the last statement). As a further corollary of Propositon 6.4 we prove the
following.

Corollary 6.8 Let � be a finitely presented residually finite group in the same genus
as a finitely generated free group, and let N < � be a non-trivial normal subgroup. If
N is finitely generated, then �/N is finite.

Proof Proposition 3.1 shows that the genus of the infinite cyclic group contains
only itself, and so we can assume that � lies in the genus of a non-abelian free group.

Thus, by Corollary 6.4, b
(2)
1 (�) 6= 0. The proof is completed by making use of the

following theorem of Gaboriau (see [27] Theorem 6.8):

Theorem 6.9 Suppose that

1 ! N ! � ! ⇤ ! 1

is an exact sequence of groups where N and ⇤ are infinite. If b(2)1 (N) < 1, then

b
(2)
1 (�) = 0.

⇤

Indeed, using Theorem 6.5, Corollary 6.8 can be proved under the assumption
that � is a finitely generated residually finite group. In this case, the argument
establishes that if � is in the same genus as a finitely generated free group F , then

b
(2)
1 (�) � b

(2)
1 (F ) and we can still apply [27].

As remarked upon earlier, Question 1 is still unresolved, and in the light of this,
Corollary 6.8 provides some information about the structural properties of a finitely
generated group in the same genus as a free group. In §8.3, we point out some other
properties that occur assuming that a group � is in the same genus as a finitely
generated free group.
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Remark Unlike the case of surface groups, if M is a closed 3-manifold, then

typically b
(2)
1 (⇡1(M)) = 0. More precisely, we have the following from [44]. Let

M = M1#M2# . . .#Mr be the connect sum of closed (connected) orientable prime
3-manifolds and that ⇡1(M) is infinite. Then

b
(2)
1 (⇡1(M)) = (r � 1)�

rX

j=1

1

|⇡1(Mj)|
,

where in the summation, if ⇡1(Mj) is infinite, the term in the sum is understood to
be zero.

6.2. Corollary 6.4 establishes that b
(2)
1 is an invariant for finitely presented groups in

the same genus. A natural question arises as to whether anything can be said about
the higher L2-Betti numbers. Using the knowledge of L2-Betti numbers of locally

symmetric spaces (see [21]), it follows that the examples given §3.4 will have all b(2)p

equal. On the other hand, using [4] examples can be constructed which do not have

all b(2)p being equal. Further details will appear elsewhere.

7 Goodness

In this section we discuss how cohomology of profinite groups can be used to inform
about Questions 1–5.

7.1. We begin by recalling the definition of the continuous cohomology of profinite
groups (also known as Galois cohomology). We refer the reader to [59] and [56,
Chapter 6] for details about the cohomology of profinite groups.

Let G be a profinite group, M a discrete G-module (i.e., an abelian group M
equipped with the discrete topology on which G acts continuously) and let Cn(G,M)
be the set of all continous maps Gn

! M . One defines the coboundary operator
d : Cn(G,M) ! Cn+1(G,M) in the usual way thereby defining a complex C⇤(G,M)
whose cohomology groups Hq(G;M) are called the continuous cohomology groups
of G with coe�cients in M .

Note that H0(G;M) = {x 2 M : gx = x 8 g 2 G} = MG is the subgroup of
elements of M invariant under the action of G, H1(G;M) is the group of classes
of continuous crossed homomorphisms of G into M and H2(G;M) is in one-to-one
correspondence with the (equivalence classes of) extensions of M by G.

7.2. Now let � be a finitely generated group. Following Serre [59], we say that a
group � is good if for all q � 0 and for every finite �-module M , the homomorphism
of cohomology groups

Hq(b�;M) ! Hq(�;M)

induced by the natural map � !

b� is an isomorphism between the cohomology of �
and the continuous cohomology of b�.

Example 7.1 Finitely generated free groups are good.
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To see this we argue as follows. As is pointed out by Serre ([59] p. 15), for any (finitely
generated) discrete group �, one always has isomorphisms Hq(b�;M) ! Hq(�;M) for
q = 0, 1. Briefly, using the description of H0 given above (and the discrete setting),
isomorphism for H0 follows using denseness of � in b� and discreteness of M . For H1,
this follows using the description of H1 as crossed homomorphisms.

If � is now a finitely generated free group, since H2( bG;M) is in one-to-one cor-
respondence with the (equivalence classes of) extensions of M by b�, it follows that
H2(b�;M) = 0 (briefly, like the case of the discrete free group there are no interesting
extensions).

The higher cohomology groups Hq(b�;M) (q � 3) can also be checked to be zero.
For example, since Hq(�;M) = 0 for all q � 2, the induced map Hq(b�;M) !

Hq(�;M) is surjective for all q � 2, and it now follows from a lemma of Serre [59] (see
Ex 1 Chapter 2, and also Lemma 2.1 of [41]) that Hq(b�;M) ! Hq(�;M) is injective
for all q � 2. We also refer the reader to the discussion below on cohomological
dimension for another approach.

Goodness is hard to establish in general. One can, however, establish goodness for
a group � that is LERF if one has a well-controlled splitting of the group as a graph
of groups [30]. In addition, a useful criterion for goodness is provided by the next
lemma due to Serre (see [59, Chapter 1, Section 2.6])

Lemma 7.2 The group � is good if there is a short exact sequence

1 ! N ! � ! H ! 1,

such that H and N are good, N is finitely-generated, and the cohomology group
Hq(N,M) is finite for every q and every finite �-module M .

We summarize what we will need from this discussion.

Theorem 7.3 The following classes of groups are good.

• Finitely generated Fuchsian groups.

• The fundamental groups of compact 3-manifolds.

• Fully residually free groups.

• Right angled Artin groups.

Proof The first and third parts are proved in [30] using LERF and well-controlled
splittings of the group, and the fourth is proved in [41]. The second was proved by
Cavendish in his PhD thesis [23]. We will sketch the proof when M is closed.

Note first that by [30] free products of residually finite good groups are good, so
it su�ces to establish goodness for prime 3-manifolds. As is shown in [30] goodness
is preserved by commensurability, and so finite groups are clearly good. Thus it
remains to establish goodness for prime 3-manifolds with infinite fundamental group.
For geometric closed 3-manifolds, goodness will follow immediately from Lemma 7.2
(using the first part of the theorem) when � = ⇡1(M) and M is a Seifert fibered space
or has SOL geometry. For hyperbolic 3-manifolds the work of Agol [2] and Wise [62]
shows that any finite volume hyperbolic 3-manifold has a finite cover that fibers over
the circle, and once again by Lemma 7.2 (and the first part of the theorem) we deduce
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goodness. For manifolds with a non-trivial JSJ decomposition, goodness is proved
in [61]. ⇤

7.3. Let G be a profinite group. Then the p-cohomological dimension of G is the
least integer n such that for every finite (discrete) G-module M and for every q > n,
the p-primary component of Hq(G;M) is zero, and this is denoted by cdp(G). The
cohomological dimension of G is defined as the supremum of cdp(G) over all primes p,
and this is denoted by cd(G).

We also retain the standard notation cd(�) for the cohomological dimension (over
Z) of a discrete group �. A basic connection between the discrete and profinite
versions is given by

Lemma 7.4 Let � be a discrete group that is good. If cd(�)  n, then cd(b�)  n.

Proof If cd(�)  n then Hq(�,M) = 0 for every �-module M and every q > n. By
goodness this transfers to the profinite setting in the context of finite modules. ⇤

Discrete groups of finite cohomological dimension (over Z) are torsion-free. In
connection with goodness, we are interested in conditions that allow one to deduce
that b� is also torsion-free. For this we need the following result that mirrors the
behavior of cohomological dimension for discrete groups (see [59, Chapter 1 §3.3]).

Proposition 7.5 Let p be a prime, let G be a profinite group, and H a closed sub-
group of G. Then cdp(H)  cdp(G).

This quickly yields the following that we shall use later.

Corollary 7.6 Suppose that � is a residually finite, good group of finite cohomolog-
ical dimension over Z. Then �̂ is torsion-free.

Proof If b� were not torsion-free, then it would have an element x of prime order,
say q. Since hxi is a closed subgroup of b�, Proposition 7.5 tells us that cdp(hxi) 

cdp(b�) for all primes p. But H2k(hxi;Fq) 6= 0 for all k > 0, so cdq(hxi) and cdq(b�)
are infinite. Since � is good and has finite cohomological dimension over Z, we obtain
a contradiction from Lemma 7.4. ⇤

Note that this can be used to exhibit linear groups that are not good. For example,
in [45], it is shown that there are torsion-free subgroups � < SL(n,Z) (n � 3) of finite
index, for which b� contains torsion of all possible orders. As a corollary of this we
have:

Corollary 7.7 For all n � 3, any subgroup of SL(n,R) commensurable with SL(n,Z)
is not good.

7.4. When the closed subgroup is a p-Sylow subgroup Gp (i.e., a maximal closed
pro-p subgroup of G) then we have the following special case of Proposition 7.5 (see
[56] §7.3). Note that cohomology theory of pro-p groups is easier to understand
than general profinite groups, and so the lemma is quite helpful in connection with
computing cohomology of profinite groups.
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Lemma 7.8 Let Gp be a p-Sylow subgroup of G. Then:

• cdp(G) = cdp(Gp) = cd(Gp).

• cd(G) = 0 if and only if G = 1.

• cdp(G) = 0 if and only Gp = 1.

Example 7.9 Let F be a finitely generated free group. Since a p-Sylow subgroup
of bF is Zp, Lemma 7.8 gives an e�cient way to establish that cd( bF ) = 1.

7.5. In this subsection we point out how goodness (in fact a weaker property su�ces)
provides a remarkable condition to establish residual finiteness of extensions. First
suppose that we have an extension:

1 ! N ! E ! � ! 1.

Using right exactness of the profinite completion (see [56] Proposition 3.2.5), this
short exact sequence always determines a sequence:

bN !

bE !

b� ! 1.

To ensure that the induced homorphism bN !

bE is injective is simply again the
statement that the full profinite topology is induced on N . As was noticed by
Serre [59], this is guaranteed by goodness. Indeed the following is true, the proof
of which we discuss below (the proof is sketched in [59] and see also [30] and [41]).

Proposition 7.10 The following are equivalent for a group �.

• For any finite �-module M , the induced map H2(b�;M) ! H2(�;M) is an
isomorphism;

• For every group extension 1 ! N ! E ! � ! 1 with N finitely generated, the
map bN !

bE is injective.

Before discussing this we deduce the following.

Corollary 7.11 Suppose that � is residually finite and for any finite �-module M ,
the induced map H2(b�;M) ! H2(�;M) is an isomorphism. Then any extension E
(as above) by a finitely generated residually finite group N is residually finite.

Groups as in Corollary 7.11 are called highly residually finite in [41], and super
residually finite in [22].

Proof By Proposition 7.10, and referring to the diagram below, we have exact se-
quences with vertical homomorphisms iN and i� being injective by residual finiteness.
Now the squares commute, and so a 5-Lemma argument implies that iE is injective;
i.e., E is residually finite.

1 �! N �! E �! � �! 1
??yiN

??yiE
??yi�

1 �!

bN �!

bE �!

b� �! 1

⇤
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Proof We discuss the ”if” direction below, and refer the reader to [41] for the “only
if”. We will show that it su�ces to prove the result with N finite. For then the case
of N finite is dealt with by Proposition 6.1 of [30].

Thus assume thatN is finitely generated and J a finite index subgroup ofN . Recall
that from §4.5 we need to show that there exists a finite index subgroup E1 < E such
that E1 \N < J .

To that end, since N is finitely generated we can find a characteristic subgroup
H < J of finite index in N that is normal in E. Thus we have:

1 �! N �! E �! � �! 1
??y

??y⇡

1 �! N/H �! E/H �! � �! 1

Assuming that the result holds for the case of N finite we can appy this to N/H.
That is to say we can find E0

0 < E/H such that E0
0 \ (N/H) = 1. Set E0 = ⇡�1(E0

0),
then E0 \N < H < J as required. ⇤

Given Corollary 7.11 and Theorem 7.3 we have:

Corollary 7.12 Let � be a group as in Theorem 7.3. Then � is highly residually
finite.

Examples of groups that are not highly residually finite are SL(3,Z) (see [33]) and
Sp(2g,Z) ([24]). In particular in [24] lattices in a connected Lie group are constructed
that are not residually finite. These arise as extensions of Sp(2g,Z).

7.6. We now return to Question 1, and in particular deduce some consequences
about a group � in the same genus as a finitely generated free group. To that end,
the following simple observation will prove useful.

Corollary 7.13 Let �1 and �2 be finitely-generated (abstract) residually finite groups
with b�1

⇠= b�2. Assume that �1 is good and cd(�1) = n < 1. Furthermore, assume
that H is a good subgroup of �2 for which the natural mapping bH !

b�2 is injective.
Then Hq(H;Fp) = 0 for all q > n.

Proof If Hq(H;Fp) were non-zero for some q > n, then by goodness we would have

Hq( bH ;Fp) 6= 0, so cdp( bH) � q > n. Now bH !

b�2 is injective and so bH ⇠= H.

Hence b�1 contains a closed subgroup of p-cohomological dimension greater than n, a
contradiction. ⇤

Corollary 7.14 If � contains a surface group S, and bS !

b� is injective, then b� is
not isomorphic to the profinite completion of any free group.

In particular, this also shows the following:

Corollary 7.15 If L is a non-abelian free group, then bL does not contain the profinite
completion of any surface group, nor that of any free abelian group of rank greater
than 1.
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Remark 7.16 Note that bL does contain surface subgroups S of arbitrary large genus
(as shown in [12] for example) and free abelian subgroups of arbitrary rank, but the
natural map bS !

bL is never injective. The surface subgroup examples of [12] are in
fact dense in bL.

Next we single out a particular case of an application of the above discussion that
connects to two well-known open problems about word hyperbolic groups, namely:

(A) Does every 1-ended word-hyperbolic group contain a surface subgroup?

(B) Is every word-hyperbolic group residually finite?

The first question, due to Gromov, was motivated by the case of hyperbolic 3-
manifolds, and in this special case the question was settled recently by Kahn and
Markovic [35]. Indeed, given [35], a natural strengthening of (A) above is to ask:

(A0) Does every 1-ended word-hyperbolic group contain a quasi-convex surface sub-
group?

Theorem 7.17 Suppose that every 1-ended word-hyperbolic group is residually finite
and contains a quasi-convex surface subgroup. Then there exist no 1-ended word-
hyperbolic group � and free group F such that b� ⇠= bF .

Proof Assume the contrary, and let � be a counter-example, with b� ⇠= bF for some
free group F . Let H be a quasi-convex surface subgroup of �. Note that the finite-
index subgroups of H are also quasi-convex in �. Under the assumption that all
1-ended hyperbolic groups are residually finite, it is proved in [3] that H and all its
subgroups of finite index must be separable in �. Hence by Lemma 4.6, the natural
map bH ! H < b� is an isomorphism. But as above this yields a contradiction. ⇤

Corollary 7.18 Suppose that there exists a 1-ended word hyperbolic group � with
b� ⇠= bF for some free group F . Then either there exists a word-hyperbolic group that
is not residually finite, or there exists a word-hyperbolic group that does not contain
a quasi-convex surface subgroup.

8 Fuchsian groups, 3-manifold groups and related groups

In this section we prove several results in connection with distinguishing free groups
within certain classes of groups. In addition we also prove some results distinguishing
3-manifold groups.

In what follows we denote by F the collection of Fuchsian groups, and L the
collection of lattices in connected Lie groups.

8.1. In this section we sketch the proof of the following result from [19].

Theorem 8.1 Let � 2 F , then G(�,L) = {�}.

Before commencing with a sketch of the proof, we remark that there exist lattices
in connected Lie groups that are not residually finite (recall the discussion at the
end of §7.5). For simplicity, in the sketch below we will simply assume all lattices
considered are residually finite. This can be bypassed, and we refer the reader to [19]
for details on how this is done.
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Proof Suppose that � 2 G(�,L) is residually finite. Then, Corollary 6.7 shows that

b
(2)
1 (�) 6= 0. It now follows (see [43] Lemma 1 for example) that � fits into a a short
exact sequence

1 ! N ! � ! F ! 1

such that N is finite and F is a lattice in PSL(2,R).
We next claim that this forces N to be trivial and so � is Fuchsian. To see this,

suppose that N 6= 1. Since N is finite, and � is residually finite, it follows that the
short exact sequence above can be promoted to a short exact sequence of profinite
groups (recall §7.5). Hence the full profinite topology is induced on N by �, and we
deduce that b� contains a non-trivial finite normal subgroup. But, b� ⇠= b�, where � is
a Fuchsian group. This is excluded by the following result proved in [19]. We will
not comment on the proof of this result other than to say that it uses profinite group
actions on profinite trees. We recall some notation. Write cf(�) to denote the set of
conjugacy classes of maximal finite subgroups of a group �.

Theorem 8.2 If � is a finitely generated Fuchsian group, then the natural inclusion
� !

b� induces a bijection cf(�) ! cf(b�). More precisely, every finite subgroup of b� is
conjugate to a subgroup of �, and if two maximal finite subgroup of � are conjugate
in b� then they are already conjugate in �.

It follows from this that if � is a finitely generated non-elementary Fuchsian group,
then b� cannot contain a finite non-trivial normal subgroup, since � does not.

Given this discussion, to prove Theorem 8.1, it su�ces to prove:

Claim: G(�,F) = {�}.

Proof of Claim: Suppose that � 2 G(�,F). If � is torsion-free then � is torsion-
free by Corollary 7.6. Still assuming that � is torsion-free, if � is a cocompact surface
group of genus g then so is �. That is to say, � cannot be free—this was ruled out by
the discussion in §4.7 or Corollary 7.15. In addition, it also cannot be the case that
� is cocompact and � is not (or vice versa). For if this were so, then we could pass
to torsion-free subgroups of common finite index that would still have isomorphic
profinite completions and this is ruled out by the previous sentence.

If neither �1 nor �2 is cocompact, then each is a free product of cyclic groups.
We know that b1(�) = b1(�), and so by Proposition 3.2 the number of infinite cyclic
factors in each product is the same. By Theorem 8.2, the finite cyclic factors, being
in bijection with the conjugacy classes of maximal finite subgroups, are also the same.
Hence the claim follows in this case too.

It only remains to consider the case where both � and� are cocompact groups with
torsion. The genus of � is determined by b1(�), and so, by Proposition 3.2, � and �
are of the same genus. The periods of � and � are the orders of representatives of
the conjugacy classes of maximal finite subgroups of �i, and so by Theorem 8.2 these
must also be the same for � and �. Thus � and � have the same signature, and are
therefore isomorphic.

This completes the proof of the claim and also Theorem 8.1. ⇤
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8.2. In this subsection we focus on proving results distinguishing 3-manifold groups.
We summarize this in the following theorem.

Theorem 8.3 1. Let M be a prime 3-manifold. Then ⇡1(M) is Grothendieck
Rigid.

2. Let � be a finitely generated free group of rank r � 2, and let M be a closed
3-manifold with ⇡1(M) 2 G(�). Then M is a connect sum of r copies of S2

⇥S1.

3. For i = 1, 2, let Mi = H3/�i where M1 closed and M2 non-compact. Then b�1

is not isomorphic to b�2.

4. Let M be a closed hyperbolic 3-manifold and N a geometric 3-manifold. Then
if ⇡1(N) 2 G(⇡1(M)), N is a closed hyperbolic 3-manifold.

Proof 1. We have already seen that this holds if M is geometric. Thus we can
assume that M is not geometric. Since M is prime, it must therefore have a non-
trivial JSJ decomposition. By Theorem 7.3 ⇡1(M) is good. Since M is prime it is
aspherical and so we have H3(M ;Fp) = H3(⇡1(M);Fp) = Fp for all primes p. On
the other hand, if (⇡1(M), H) is a Grothendieck Pair, where H is finitely generated
subgroup of ⇡1(M), then by the discussion in §5.2, H is of infinite index. Moreover, H
is also good by Theorem 7.3, and the cover of M corresponding to H , denoted by MH

is still aspherical. However, since this is an infinite sheeted cover, 0 = H3(MH ;Fp) =
H3(H;Fp), and hence a contradiction.

2. First, it is clear that ⇡1(M) is infinite. If M is prime, then using the remark

at the end of §6, b
(2)
1 (⇡1(M)) = 0 and the result follows from Corollary 6.4. Thus we

can assume that M decomposes as a connect sum X1#X2# . . .#Xs. Again using the
remark in §6 and Example 6.2, we have s = r. Also, each Xi has infinite fundamental
group since free groups are good and so Lemma 7.6 excludes torsion in the profinite
completion.

Now ⇡1(M) has the structure of a free product and so by Lemma 4.8, the profinite
topology is e�cient. In particular each ⇡1(Xi) is a closed subgroup of ⇡1(M). Suppose
that some Xi is not homeomorphic to S2

⇥S1. Then Xi is aspherical, and then either
there exists a subgroup A ⇠= Z�Z which is closed in the profinite topology on ⇡1(Xi)
and for which the full profinite topology is induced on A (by [57] in the case of Seifert
manifolds and [61] for the case where Xi has a non-trivial JSJ decomposition), or
there exists a closed surface subgroup of genus > 1 (by [35]) which is closed in the
profinite topology and for which the full profinite topology is induced (by [2]). In

either case we deduce that \⇡1(M) contains a closed subgroup to which we can apply
Corollary 7.13 and deduce a contradiction (by Corollary 7.15).

3. This follows easily from Theorem 7.3 since for all primes p, H3(M2;Fp) =
H3(⇡1(M2);Fp) = 0 and H3(M2;Fp) = H3(⇡1(M2);Fp) 6= 0.

4. Since M is closed and hyperbolic, as above, by Theorem 7.3, we can assume
that N is closed. It is well known that ⇡1(M) has infinitely many non-abelian finite
simple quotients (see [39] for example). Thus we quickly eliminate all possibilities
for N apart from those modelled on H2

⇥ R and S̃L2. In this case, ⇡1(N) has a



Reid: Profinite properties of discrete groups 96

description as:
1 ! Z ! ⇡1(N) ! F ! 1

where Z is infinite cyclic, and F is a cocompact Fuchsian group (we can pass to a
subgroup of finite index if necessary so as to arrange the base to be orientable). Since
⇡1(N) is LERF, this short exact sequence can be promoted to (recall the discussion
in §4.5):

1 !

bZ !

\⇡1(N) ! bF ! 1.

Setting G = \⇡1(N) we have that G ⇠= \⇡1(M) and so ⇡1(M) is a dense subgroup of G.
If ⇡1(M) \ bZ 6= 1, then it follows that ⇡1(M) contains an abelian normal subgroup,
and this is impossible (as M is a closed hyperbolic 3-manifold). Thus ⇡1(M)\ bZ = 1
and therefore ⇡1(M) projects injectively to a dense subgroup of bF . However, this
then contradicts Proposition 6.3. This completes the proof. ⇤

Remarks:

1. Part 1. of Theorem 8.3 was proved in the PhD thesis of W. Cavendish [23]
(assuming the then open virtual fibration conjecture for finite volume hyperbolic
3-manifolds).

2. There appears to be no direct proof that distinguishes closed hyperbolic 3-
manifolds from finite volume non-compact hyperbolic 3-manifolds by the profi-
nite completions of their fundamental groups. In particular the issue of detect-
ing a peripheral Z� Z seems rather delicate.

3. In a similar vein, at present it also seems hard to distinguish a closed prime
3-manifold with a non-trivial JSJ decomposition from a closed hyperbolic 3-
manifold by the profinite completions of their fundamental groups. As above
the issue of detecting a Z� Z is rather subtle.
However, the author has recently been informed that Wilton and Zalesskii
claimed to have now shown that a closed prime 3-manifold with a non-trivial JSJ
decomposition from a closed hyperbolic 3-manifold by the profinite completions
of their fundamental groups.

4. Funar [26] has shown that there are non-homeomorphic geometric 3-manifolds
whose fundamental groups have isomorphic profinite completions. The known
examples are torus bundles with SOL geometry. At present, we do not know
whether other torus bundles modelled on NIL geometry (which are Seifert
fibered), or more generally other Seifert fibered spaces can be distinguished
by their finite quotients (even amongst Seifert fibered spaces).

8.3. In this subsection we discuss further properties of a group that is in the same
genus as a finitely generated free group. The starting point for this discussion is
Section 4 of Peterson and Thom [51] which contains a number of results concerning
the structure of finitely presented groups that satisfy their condition (?) and have

non-zero b
(2)
1 . We will not state their condition (?) here, but rather remark that the

condition is known to hold for left orderable groups and groups that are residually
torsion-free nilpotent. We prove the following:
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Theorem 8.4 Let � be a finitely presented group in the same genus as a free group F
of rank r � 2. Then:

(1) the reduced group C⇤-algebra C⇤
�(�) is simple and carries a unique normalised

trace.

(2) � satisfies a the following Freiheitssatz; every generating set S ⇢ � has an
r-element subset T ⇢ S such that the subgroup of G generated by T is free of
rank r.

Recall that the reduced C⇤-algebra C⇤
�(�) is the norm closure of the image of

the complex group algebra C[�] under the left-regular representation �� : C[�] !
L(`2(�)) defined for � 2 � by (��(�)⇠) (x) = ⇠(��1x) for all x 2 � and ⇠ 2 `2(�). A
group � is C⇤-simple if its reduced C⇤-algebra is simple as a complex algebra (i.e.,
has no proper two-sided ideals). This is equivalent to the statement that any unitary
representation of � which is weakly contained in �� is weakly equivalent to ��. We
refer the reader to [32] for a thorough account of the groups that were known to be
C⇤-simple by 2006. The subsequent work of Peterson and Thom [51] augments this
knowledge.

An important early result in the field is the proof by Powers [55] that non-abelian
free-groups are C⇤-simple. In contexts where one is able to adapt the Powers argu-
ment, one also expects the canonical trace to be the only normalized trace on C⇤

�(�)
(cf. Appendix to [16]). By definition, a linear form ⌧ on C⇤

�(�) is a normalised trace
if ⌧(1) = 1 and ⌧(U⇤U) � 0, ⌧(UV ) = ⌧(V U) for all U, V 2 C⇤

�(�). The canonical
trace is uniquely defined by

⌧can

0

@
X

f2F
zf��(f)

1

A = ze

for every finite sum
P

f2F zf��(f) where zf 2 C and F ⇢ � contains 1.

Proof Note that � is necessarily torsion free since b� ⇠= bF . By assumption, we have

from Corollary 6.7 that b
(2)
1 (�) = r � 1 6= 0 and so both parts of the theorem will

follow from [51] once we establish that � is left orderable (see Corollary 4.6 and 4.7
of [51]). For this we will make use of a result of Burns and Hale [20] that states that
if a group � is locally indicable (i.e., every finitely generated non-trivial subgroup A
admits an epimorphism to Z), then � is left orderable. Thus the result will follow
from the next theorem. Details of the proof will appear elsewhere, we sketch some of
the ideas.

Theorem 8.5 � as in Theorem 8.4 is locally indicable.

Sketch Proof: Let A < � be a finitely generated non-trivial subgroup. Since � is
residually finite, A injects in b� ⇠= bF for a finitely generated free group F of rank � 2.
Consider the closure A < b� which by a slight abuse of notation we view as sitting
in bF . As a closed subgroup we have from Proposition 7.5 that cd(A)  cd( bF ) = 1
(recall Example 7.9). Since A 6= 1, and cd( bF ) = 1 we must have that cdp(A) = 1 for
some prime p (see Lemma 7.8). The proof is completed by establishing the following
claims:
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Claim

(1) There is an epimorphism A ! Z/pZ.

(2) The epimorphism A ! Z/pZ in (1) lifts to an epimorphism A ! Zp.

Given these claims we can now complete the proof that A surjects onto Z. For
A being a dense subgroup of A must surject all the finite quotients arising from
A ! Zp ! Z/pnZ. That is to say A must surject onto Z.

To prove (1) we exploit the fact that cdp(A) = 1 for some prime p, which allows us
to conclude that H1(A;M) 6= 0 for some finite A-module M which is p-primary. To
prove (2) we use the fact that since cd(A) = 1, A is a projective profinite group (see
[56] Chapter 7.6). In particular this allows for lifting problems to be solved, which is
needed to pass from (1) to (2). ⇤

Note that fully residually free groups are residually torsion-free nilpotent and non-

abelian fully residually free groups have b(2)1 6= 0 (by [17]). As noted above, (?) of [51]
applies, and so these groups also satisfy a similar Freiheitssatz.

9 Parafree groups

Recall that a residually nilpotent group with the same nilpotent genus as a free group
is called parafree. Many examples of such groups are known (see [7], [8] and [10]).
Although much is known about finitely generated parafree groups, a good structure
theory for these groups is as yet out of reach. Being in the same nilpotent genus as a
parafree group, one might wonder about what properties of a free group are shared
by a parafree group. For example, in [10], Baumslag asks:

Question 6: Let G be a finitely generated parafree group and let N < G be a finitely
generated, non-trivial, normal subgroup. Must N be of finite index in G?

This was answered a�rmatively in Corollary 6.8 for groups in the same genus as a free
group, and using similar methods, in [18] we showed this also holds for the nilpotent
genus. In particular we showed that if � is a finitely generated parafree group in

the same nilpotent genus as a free group of rank r � 2, then b
(2)
1 (�) � r � 1 and in

particular is non-zero. Hence the argument given for proving Corollary 6.8 can still
be applied. The argument in [18] uses the following variation of Proposition 6.3.

Proposition 9.1 Let � be a finitely generated group and let F be a finitely presented
group that is residually-p for some prime p. Suppose that there is an injection � ,! bFp

and that � = bFp. Then b
(2)
1 (�) � b

(2)
1 (F ).

This has various other consequences for parafree groups; for example the reduced
group C⇤-algebra is simple and carries a unique normalised trace, and recovers Baum-
slag’s result ([8] Theorem 4.1) that parafree groups also satisfy a Freiheitssatz.

We now discuss some other properties of finitely generated parafree groups. In
[37], it was shown that a non-abelian finitely presented parafree group is large (i.e.,
it contains a finite index subgroup that surjects a non-abelian free group). Another
property of free groups (which has come to prominence of late through its connections
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to 3-manifold topology) is Agol’s RFRS condition (see [1]). To define this recall that
the rational derived series of a group � is defined inductively as follows. If �(1) =

[�,�], then �
(1)
r = {x 2 � : there exists k 6= 0, such that xk 2 �(1)

}. If �
(n)
r has been

defined then define �(n+1)
r = (�(n)

r )(1)r .
A group � is called residually finite rationally solvable (RFRS for short) if there is

a sequence of subgroups:
� = �0 > �1 > G2 . . .

such that
T

i �i = 1, [� : �i] < 1 and (�i)
(1)
r < Gi+1.

Theorem 9.2 Let � be a finitely generated parafree group with the same nilpotent
genus of a free group of rank r � 2. Then � is RFRS.

Proof Fix a prime p, and let G denote the pro-p completion of � (which by as-
sumption is the free pro-p group of rank r � 2). Consider the tower of finite index
subgroups defined as P1(G) = G, and Pi+1(G) = (Pi(G))p[G,Pi(G)]. Note that each
Pi(G) is a closed normal subgroup of G, that {Pi(G)} forms a basis of open neigh-
bourhoods of the identity,

T
Pi(G) = 1 and Pi(G)/Pi+1(G) is an elementary abelian

p-group.
Since � ! G is injective, we will consider the subgroups {�i = Pi(G) \ �}. These

are then normal subgroups of finite index in � that intersect in the identity. RFRS

will follow once we show that (�i)
(1)
r < �i+1.

To see this, first note that since each quotient �i/�i+1 is an elementary abelian
p-group, then each �i is normal of p-power index in �. Hence b�i,p ! �i < G is
an isomorphism (since � is residually p and �i is normal and of p-power index, the
full pro-p topology is induced). Hence b�i,p is a free pro-p group of rank l say. It
follows that �i has first Betti number equal to l (see [18] Corollary 2.9 for example).
Moreover, �i and the free group of rank l have the same p-group quotients, and so
it follows that |Tor(H1(�i;Z)| is not divisible by p. The proof is completed by the
following lemma. ⇤

Before stating and proving this, we make a preliminary remark. If H is a finitely

generated group, then trivially [H,H ] < H
(1)
r , and if H1(H ;Z) is torsion-free, then

H
(1)
r = [H,H ]. The next lemma is a variation of this.

Lemma 9.3 Let p be a prime, H be a finitely generated group and K a normal
subgroup of H satisfying:

• H/K is an elementary abelian p-group.

• |Tor(H1(H ;Z)| is not divisible by p.

Then H
(1)
r < K.

Proof As noted above, if Tor(H1(H ;Z)) = 1 then we are done since H
(1)
r = [H,H] <

K. Thus we may suppose that Tor(H1(H ;Z)) 6= 1. Let x 2 H
(1)
r , so that xd 2 [H,H]

for some d � 1. We will assume that x /2 K, otherwise we are done. In particular,
d � 2 since [H,H] < K by the first assumption. Hence x projects to a non-trivial
element in H/[H,H ] and H/K.
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Since H/K is an elementary abelian p-group, it follows from the previous discus-
sion that d is divisible by p. On the other hand, the second assumption is that
|Tor(H1(H;Z)| is not divisible by p. Putting these statements together, it follows
that the image of x must have infinite order in H/[H,H], and this is false. In par-
ticular we conclude that d cannot be greater than or equal to 2; i.e., x 2 [H,H ] < K
and the lemma is proved. ⇤

Perhaps the most famous open problem about parafree groups is the Parafreee Con-
jecture. This asserts that if � is a finitely generated parafree group, then H2(G;Z) =
0. Although goodness seems like it may be relevant here, it is not quite the right
thing—since the nilpotent genus is only concerned with nilpotent quotients. How-
ever, a variation is relevant.

One says that a group � is pro-p good if for each q � 0, the homomorphism of
cohomology groups

Hq(b�p;Fp) ! Hq(�;Fp)

induced by the natural map � !

b�p is an isomorphism. One says that the group
� is cohomologically complete if � is pro-p good for all primes p. Many groups are
known to be cohomologically complete. For example finitely generated free groups,
RAAG’s [42], and the fundamental group of certain link complements in S3 (see [11]).
However, as is pointed out in [18], there are link complements (even hyperbolic) for
which the fundamental group is not cohomologically complete. Note that such an
example is good by Theorem 7.3.

The connection with the Parafree Conjecture is the following.

Proposition 9.4 If finitely generated parafree groups are cohomologically complete,
then the Parafree Conjecture is true.

Proof Suppose that � is a finitely generated parafree group. Since � is parafree,
b�p is a free pro-p group for all primes p. If we now assume that H2(�;Z) 6= 0, then
for some prime p we must have H2(�;Fp) 6= 0. But then the Universal Coe�cient
Theorem implies that H2(�;Fp) 6= 0. If � is pro-p good a contradiction is obtained. ⇤

10 Questions and comments

We close with a list of problems and comments motivated by these notes. First, call
a finitely generated discrete group profinitely rigid if G(�) = {�}. We begin with
various strengthenings of Question 1.

Question 7: Are finitely generated Fuchsian groups profinitely rigid?

Question 8: Are finitely generated Kleinian groups profinitely rigid?

Restricting to lattices in PSL(2,C) we can ask by analogy with the hard part of
Theorem 8.1:

Question 9: Let �1 and �2 be lattices in PSL(2,C). If b�1
⇠= b�2 is �1

⇠= �2?

Much more ambitious is the following:
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Question 10: Are lattices in rank 1 semisimple Lie groups profinitely rigid?

There is some chance this may be false. In particular, an answer to this question
seems closely related to the status of CSP for lattices in Sp(n, 1) (n � 2). This is also
related to the next three questions.

Question 11: Does there exist a residually finite word hyperbolic group that is not
good?

Question 12: Does there exist a residually finite torsion free word hyperbolic group
� for which b� contains non-trivial elements of finite order?

Question 13: Does there exist a residually finite word hyperbolic group that is not
highly residually finite?

Question 14: Does there exist a word hyperbolic � for which G(�) contains another
word hyperbolic group?

Using Proposition 5.1(2) Grothendieck Pairs (�, N) can be constructed so that � is
word hyperbolic. However, in the known examples, N is not word hyperbolic.

As discussed in §3.4, there are lattices of higher rank for which the genus con-
tains more than one element. However, some interesting special cases seem worth
considering.

Question 15: Is SL(n,Z) profinitely rigid for all n � 3? Is SL(n,Z) Grothendieck
Rigid for all n � 3?

Note that using [15] and [54], for large enough n examples of subgroups H < � <
SL(n,Z) can be constructed so that (�, H) is a Grothendieck Pair.

Motivated by the Parafree Conjecture and a desire to have some type of structure
theory for finitely generated parafree groups we raise:

Question 16: Are finitely generated parafree groups cohomologically complete? How
about good?

We saw in Theorem 9.2 that finitely generated parafree groups are RFRS. The
RFRS property holds for groups that are special (see [1]). That parafree groups are
special seems too much to ask, however, the following seems plausible:

Question 17: Are finitely generated parafree groups virtually special?

Note that a positive answer to Question 17 would also imply that finitely generated
parafree groups are linear. This is still an open question (see [10] Question 8).

On a slightly di↵erent topic. Let �g denote the Mapping Class Group of a closed
orientable surface of genus g � 2.
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Question 18: Is �g profinitely rigid?

Question 19: Is �g good?

This question was raised in [38] in connection with the geometry of moduli spaces of
curves of genus g. As pointed out in [38], the answer is known for g  2 (the case
g = 1 follows from Theorem 7.3).
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Abstract

A right-angled Artin group (RAAG) is a group given by a finite presentation in
which the only relations are that some of the generators commute. Free groups
and free abelian groups are the extreme examples of RAAGs. Their automorphism
groups GL(n,Z) and Out(F

n

) are complicated and fascinating groups which have
been extensively studied. In these lectures I will explain how to use what we know
about GL(n,Z) and Out(F

n

) to study the structure of the (outer) automorphism
group of a general RAAG. This will involve both inductive local-to-global methods
and the construction of contractible spaces on which these automorphism groups act
properly. For the automorphism group of a general RAAG the space we construct is
a hybrid of the classical symmetric space on which GL(n,Z) acts and Outer space
with its action of Out(F

n

).

1 Introduction

In these lectures we will study the group of (outer) automorphism groups of a right-
angled Artin group. Most of the material can be found in the papers [5, 7, 8, 6] which
are all joint with Ruth Charney, some with additional authors. I will first go over
some basic facts about right-angled Artin groups, then introduce inductive algebraic
methods for studying these groups, then turn to more recent work on geometric
methods. I will concentrate on describing and motivating the constructions but avoid
proofs, however I will give explicit references to sources where the interested reader
can find detailed proofs.

The Groups St Andrews conference was run seamlessly by Colin Campbell, Ed-
mund Robertson, Max Neunhoe↵er, Colva Roney-Dougal and Martyn Quick, and I
would like to thank them all warmly for inviting me to give these lectures.

2 Lecture 1

2.1 Definition of a RAAG

A right-angled Artin group, or RAAG for short, is a finitely-presented group whose
relators (if any) are all simple commutators of generators. The extreme examples of
RAAGs are free groups (with no relators), and free abelian groups (with all possible
commutators of generators as relators). A RAAG is often specified by drawing a
graph � with one vertex for each generator and one edge between two vertices if
the corresponding generators commute (see Figure 1). Note that � is a simplicial
complex, i.e., it has no loops or multiple edges.
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A� = F5 A� = Z3 ⇤ Z2 A� A� = F3 ⇥ F2 A� = Z5

Figure 1. Graphs � and the associated RAAGs A�

If we start with any simplicial graph � the corresponding RAAG is denoted A�. If �
is disconnected with components C1, . . . , C

k

, then A� is the free product A
C1⇤. . .⇤ACk

and (just to maximize notational confusion) if � is a simplicial join � = �1 ⇤�2, then
A� is the direct product A�1 ⇥A�2 .

2.2 Cell complexes with fundamental group A�

Given a presentation G = hX | Ri of a group there is a standard way of constructing
a cell complex with fundamental group G, called the presentation 2-complex. This
has one vertex, an edge for each generator x 2 X, and a 2-cell for each relator r 2 R.
For a RAAG A�, the 2-cells are all squares (see Figure 2).

The universal cover of the presentation 2-complex for A� is not necessarily con-
tractible, but it can be made contractible by attaching a few more cells. Recall that a
k-clique in a graph is a complete subgraph with k vertices. If � ⇢ � is a k-clique, then
the presentation 2-complex for A� is a subcomplex of the presentation 2-complex for
A�, and is easily seen to be the 2-skeleton of a k-torus (constructed by gluing opposite
sides of a k-dimensional cube). If we fill in this 2-skeleton with the entire k-torus for
every k-clique in �, the result is called the Salvetti complex for A� and is denoted S�.

The Salvetti complex S� is a cube complex which by construction satisfies Gromov’s
link condition and therefore supports a non-positively curved (locally CAT(0)) metric.
In particular its universal cover is CAT(0) and therefore contractible. The Salvetti
complex of a RAAG is in fact a particular kind of non-positively curved cube complex
in which hyperplanes are well separated, called a special cube complex by Haglund
and Wise [16]. We will say a little more about CAT(0) geometry and Gromov’s link
condition in Lecture 4, but for a thorough introduction to these concepts we refer
to [2].

2.3 RAAGs and geometric group theory

RAAGs are important in geometric group theory for many reasons, including the fact
that they have very interesting subgroups. They have been in the news lately because
of Ian Agol’s proof of Thurston’s virtual fibering and virtual Haaken conjectures. A
key step in those proofs is showing that the fundamental groups of closed hyperbolic
3-manifolds have finite-index subgroups which embed into RAAGs.

The extreme examples of RAAGs do not have such interesting subgroups. A sub-
group of Zn is a free abelian group of rank at most n. Things get slightly more
interesting for F

n

, where a subgroup is still a free group but can be of any rank,
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Figure 2. A graph, and kits for making its presentation 2-complex and its Salvetti
complex

including infinity. Things got much more interesting when Stallings showed that
the RAAG F2 ⇥ F2 contains finitely generated subgroups which are not finitely pre-
sentable. In fact F2⇥F2⇥ . . .⇥F2 contains subgroups which are FP

n�1 but not FP
n

for all n, where FP
k

is a k-dimensional algebraic finiteness property. This shows in
particular that finitely-generated subgroups of RAAGs are not necessarily RAAGs.
Droms clarified the situation by characterizing exactly which RAAGs have the prop-
erty that all of their finitely-generated subgroups are RAAGs: they are those for
which the subgraph spanned by four vertices is never a square or a straight line [13].
Servatius, Droms and Servatius showed that if � is a pentagon, then A� contains the
fundamental group of a closed surface [26], and there is a great deal of recent work on
surface subgroups of RAAGs by authors including S. Kim, T. Koberda, A. Duncan,
I. Kazachkov, M. Cassals-Ruiz, R. Weidman, I. Kapovich and A. Minasyan.

2.4 Automorphism groups of RAAGs

The emphasis of the present lectures is on automorphism groups of RAAGs. We will
address the following three natural questions:

• How does the shape of � a↵ect properties of Out(A�)?

• Aut(F
n

), Out(F
n

) and GL(n,Z) share many basic properties. Which are in fact
properties of Out(A�) for any �?

• How can we leverage information about Out(F
n

) and GL(n,Z) to gain infor-
mation about Out(A�)?

• What techniques classically used to study Out(F
n

) andGL(n,Z) can be adapted
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to Out(A�)? We are especially interested in geometric techniques.

For the most part we will concentrate on the outer automorphism group Out(A�)
instead of the full automorphism group Aut(A�). For A� = Zn there is no di↵er-
ence. For any � the abelianization map A� ! Zn induces a map on automorphism
groups since the commutator subgroup is characteristic. But this map factors through
Out(A�), and for A� = F2, the induced map on Out(F2) is an isomorphism, so Out
seems the more natural comparison group. Further motivation is provided by the fact
that we want to model automorphisms by maps on spaces with fundamental group
A�, and passing to Out(A�) means that we do not have to endow these spaces with
basepoints and keep track of where the basepoint goes under the maps.

2.5 Generators for Aut(A�)

For A� = Zn it is an easy consequence of the Euclidean algorithm that Out(A�) =
GL(n,Z) is generated by the elementary matrices A

ij

= I
n

+E
ij

for i 6= j 2 {1, . . . , n}
(where the only non-zero entry of E

ij

is a 1 in the (i, j)-position) and the matrix

T =

0

@
�1 0 . . . 0
0 1 . . . 0
0 0 . . . 1

1

A

If we let GL(n,Z) act on Zn on the right then A
ij

sends e
i

7! e
i

+ e
j

and fixes
e
k

for k 6= i. This is called a transvection. In multiplicative notation for the free
abelian group with generators {a1, . . . , an} these generators become T : a1 7! a�1

1
and A

ij

: a
i

7! a
i

a
j

= a
j

a
i

.
For A� = F

n

, the group Out(A�) = Out(F
n

) is also generated by T : a1 7! a�1
1 and

by transvections, but right transvections ⇢
ij

: a
i

7! a
i

a
j

are now di↵erent from left
transvections �

ij

: a
i

7! a
j

a
i

and the most natural presentation of Out(F
n

) (due to
Gersten [14]) uses both. The fact that these generate Out(F

n

) was originally proved
by Magnus [20], but the slickest proof is the one by Stallings using foldings of graphs
[27].

For a general RAAG, not every transvection gives an automorphism: if a commutes
with c but b does not, then the transvection a 7! ab is not a homomorphism. This is
the only thing that can go wrong, though: one just needs to check that everything that
commutes with a also commutes with b; in this case we say the transvection a 7! ab
is �-legal. It is convenient to express this in terms of the defining graph � using the
following standard terminology, which will be used throughout these lectures:

Definition 2.1 Let a be a vertex of �. The link of a is the full subgraph lk(a)
spanned by all vertices adjacent to a, and the star of a is the full subgraph st(a)
spanned by lk(a) and a, i.e., st(a) is the simplicial join a ⇤ lk(a).

If ⇥ is a full subgraph of �, then the link of ⇥ is the intersection of the links of
vertices in ⇥

lk(⇥) =
\

b2⇥
lk(b),

and the star of ⇥ is the simplicial join of ⇥ and lk(⇥)

st(⇥) = ⇥ ⇤ lk(⇥).
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Twists and folds. Using the above notation, the condition for a transvection to be
�-legal is: transitions a 7! ab and a 7! ba are �-legal if and only if

• ab 6= ba and lk(a) ✓ lk(b), or

• ab = ba and st(a) ✓ st(b).

This can be said more economically by the single condition lk(a) ✓ st(b), but it
is often important to retain the distinction (commuting versus non-commuting is a
critical di↵erence here!) so we also introduce di↵erent terminology for the two types
of transvections.

Definition 2.2 If ab = ba, then a �-legal transvection a 7! ab is a twist. If ab 6= ba
then a �-legal transvections a 7! ab and a 7! ba are called (right and left) folds.

The reason for this terminology will become clear when we discuss geometric models
for these automorphisms.

Partial conjugations. Even if we can’t transvect b onto a we can still try to conju-
gate a by b. If we do that, we must also conjugate everything which commutes with
a, and everything that commutes with things that commute with a, etc. However,
the vertices in lk(b) don’t know whether they’ve been conjugated by b or not, so if a
and a0 are separated by lk(b), we could conjugate a by b but not a0. In other words,
conjugating an entire component of � � lk(b) by b gives an automorphism; this is
called a (�-legal) partial conjugation.

Inversions and graph automorphisms. It is clear that a permutation of the genera-
tors will be an automorphism if and only if it extends to an automorphism of �, since
� encodes the commuting relations. Since Aut(A�) does not contain all transvections,
we can’t assume that all of these permutations are products of transvections, so we
include graph automorphisms in the generating set. Similarly, we add all inversions
a
i

7! a�1
i

instead of just a1 7! a�1
1 .

The types of automorphisms described in the last three paragraphs now do generate
Aut(A�), by a theorem of Laurence and Servatius.

Theorem 2.3 ([19, 25]) Aut(A�) is generated by graph automorphisms, inversions,
and �-legal twists, folds and partial conjugations.

In particular this shows that Aut(A�) (and therefore Out(A�)) is finitely generated.
Both Aut(A�) and Out(A�) are also finitely presented. This was proved in some
special cases in [3], and an explicit finite presentation in all cases was given by Matt
Day [11]. Day’s proof closely follows McCool’s proof that Aut(F

n

) is finitely presented
using a “Peak reduction” algorithm (see [21]).

3 Lecture 2

In the last lecture we introduced right-angled Artin groups and their automorphisms.
In this lecture we will show how to infer information about general Out(A�) from
known facts about Out(F

n

) and GL(n,Z).
We already mentioned that Out(A�) is finitely generated and finitely presented for

all A�. We claim that it also has higher-dimensional homological finiteness proper-
ties:
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• Out(A�) has subgroups of finite index which are torsion-free, i.e., Out(A�) is
virtually torsion-free.

• In fact, Out(A�) has lots of torsion-free finite index subgroups: for any given
element � 2 Out(A�) there is a torsion-free finite index subgroup which does
not contain �, i.e., Out(A�) is residually finite.

• The homology of any torsion-free finite index subgroup is finitely generated.
In particular its homology vanishes above some point, i.e., Out(A�) has finite
virtual cohomological dimension.

We will introduce our method for bootstrapping information about Out(F
n

) and
GL(n,Z) to Out(A�) by giving a proof that Out(A�) contains a torsion-free subgroup
of finite index.

The proof that GL(n,Z) is virtually torsion-free is quite easy, one just checks that
the kernel of the natural map GL(n,Z) ! GL(n,Z/3) has no torsion; the proof uses
only the binomial theorem.

The proof that Out(F
n

) is virtually torsion-free relies on this calculation plus the
non-trivial fact, due to Baumslag and Taylor [1], that the kernel of the natural map
Out(F

n

) ! GL(n,Z) is torsion-free.
The kernel of the map Out(A�) ! GL(n,Z) for general A� is also torsion-free; this

is one consequence of a recent paper by Toinet [29]. We will avoid appealing to this,
however, since our point is to illustrate the general bootstrapping method.

Since we are interested in a virtual notion, it su�ces to pass to a subgroup of
finite index. Let Aut0(A�) denote the subgroup of Aut(A�) generated by inversions,
transvections and partial conjugations (we are leaving out only the graph automor-
phisms), and let Out0(A�) be the image of Aut0(A�) in Out(A�).

Exercise 3.1 Show that Aut0(A�) and Out0(A�) are normal subgroups of Aut(A�)
and Out(A�) respectively, and then that they have finite index.

To show that Out0(A�) has a torsion-free subgroup of finite index the key idea we
will exploit is that there are lots of subgroups in A� which must be sent to conjugates
of themselves by any automorphism. To describe these subgroups, we introduce some
basic facts and some new terminology.

Lemma 3.2 Let V be a set of vertices in � and ⇥ the full subgraph spanned by V .
Then the subgroup generated by V is isomorphic to A⇥.

Such a subgroup is called a special subgroup. By convention, we set A; = 1.
Now recall that a transvection a 7! ab (or a 7! ba) is an automorphism of A� if

and only if st(a) ✓ lk(b). In this case we write a � b. If a � b and b � a we say a ⇠ b;
this defines an equivalence relation on the vertices of �. The notation is justified by
the following observation.

Exercise 3.3 The set of equivalence classes of vertices of � is a partially ordered set,
with partial order induced by �.

A vertex is called maximal if its equivalence class is maximal in this partial order.
Let [a] denote the full subgraph of � spanned by vertices equivalent to a.
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Proposition 3.4 ([7], Proposition 3.2) Let � be a connected graph and a a max-
imal vertex in �. Then any � 2 Out0(A�) is represented by some f

a

2 Aut0(A�)
with

f
a

(A
st(a)) = A

st(a) and f
a

(A[a]) = A[a].

Proof The proof is accomplished by checking that the statement is true for all of
the generators of Out0(A�). ⇤

Proposition 3.5 ([8], Section 3) For � connected and a maximal in � there are
homomorphisms

• [Restriction] R
a

: Out0(A�) ! Out0(A
st[a])

• [Exclusion] E
a

: Out0(A�) ! Out0(A��[a])

• [Projection] P
a

: Out0(A�) ! Out0(A
lk[a])

Sketch of proof If f
a

is the map representing � 2 Out0(A�) described in Proposi-
tion 3.4, then the restriction map sends � to the class of the restriction of f

a

to A
st[a].

This is well-defined because A
st[a] is its own normalizer (see, e.g., [8], Proposition

2.2).
Exclusion is induced by the map A� ! A��[a] sending v 7! 1 if v 2 [a] and v 7! v

if v 62 [a]. This is well-defined because the normal subgroup generated by a maximal
equivalence class [a] is characteristic, by Proposition 3.4.

Projection is the composition P
a

= E
a

� R
a

. This is well-defined because [a] is
maximal in st[a], so E

a

is defined on the image of R
a

. ⇤

We can put all of the projection homomorphisms together to get a single homo-
morphism P =

Q
P
a

. The following theorem is the basic result which enables our
bootstrapping technique.

Theorem 3.6 ([7, Theorem 4.1], [8, Section 3]) Let � be connected, and set

P =
Y

[a]maximal

P
a

: Out0(A�) !
Y

[a]maximal

Out0(A
lk[a]).

Then ker(P ) is finitely generated and free abelian. The rank of ker(P ) is computable
in terms of �.

Notice that lk[a] is smaller than �. We would like to use this fact to do induction.
There is, however a problem: all of the above results have the hypothesis that � is
connected, but lk[a] need not be connected, even if � is. There are two ways to get
around this. First, since disconnected graphs give rise to free products of RAAGs
we can sometimes take advantage of known results about free products. If these are
not available, we can simply assume that all non-empty links are either connected or
discrete (reducing us by induction to the general linear and free group cases).

We illustrate the first option by proving that Out(A�) has torsion-free subgroups
of finite index. We take advantage of the following theorem of Guirardel and Levitt:

Theorem 3.7 ([15]) Let G = G1⇤G2 with G
i

and G
i

/Z(G
i

) torsion-free. If Out(G
i

)
is virtually torsion-free for i = 1, 2 then so is Out(G).
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With this in our repertoire we can now prove our theorem.

Theorem 3.8 ([7], Theorem 5.2) Out(A�) has torsion-free subgroups of finite in-
dex, for any �.

Proof If � is a disjoint union � = �1 t�2, then A� = A�1 ⇤A�2 , so by Theorem 3.7
it su�ces to consider connected graphs �.

If � is a complete graph then A� = Zn and the theorem is true, as noted above.
If � is not complete, then lk[a] is non-empty for some maximal vertex a. For any
vertex a of � the maximal size of a clique in lk[a] is strictly less than the maximal
size of a clique in �. Therefore we can use this number, which we denote m(�), to do
induction.

If m(�) = 1 then � is discrete and A� = F
n

, in which case the theorem is true by
the theorem of Baumslag and Taylor.

If m(�) = 2 then lk[a] is discrete for all a, so we can use the map P defined in The-
orem 3.6 to pull back a product of torsion-free finite index subgroups of Out0(A

lk[a])
to obtain a torsion-free finite index subgroup of Out(A�).

Now induction on m(�) together with Theorem 3.7 completes the proof. ⇤

The groups A� are residually finite; this follows from the fact that they are linear,
which was proved by Davis and Januskiewicz [10]. Residual finiteness for Aut(A�)
then follows from Baumslag’s theorem that the automorphism group of any residually
finite group is itself residually finite. Residual finiteness for Out(A�) is more subtle,
but using the homomorphisms P,R and E above together with various inductive
schemes we can also settle this question.

Theorem 3.9 ([8], Theorem 4.2) For any RAAG A�, Out(A�) is residually fi-
nite.

This was also proved by Minasyan [22]. Both proofs rely on the result of Minasyan
and Osin that if G1 and G2 are finitely generated groups with Out(G1) and Out(G2)
residually finite, then Out(G1 ⇤G2) is residually finite [23].

Another result which can be proved using the maps P,R and E is:

Theorem 3.10 ([7], Theorem 5.2) Out(A�) has finite virtual cohomological di-
mension.

Here again we rely on a result of Guirardel and Levitt about free products, namely:

Theorem 3.11 ([15]) Let G = G1 ⇤ G2 with G
i

and G
i

/Z(G
i

) torsion-free. If
Out(G

i

) has finite virtual cohomological dimension for i = 1, 2 then so does Out(G).

If we do not have a suitable result in the wings for free products, we need to
hypothesize that � is connected and the link of every non-maximal clique is either
connected or discrete; such a graph � is called homogeneous. This is automatically
true if � has no triangles (in which case the Salvetti complex is 2-dimensional, so we
say A� is two-dimensional). It is also true, e.g., if � is the 1-skeleton of a triangulated
manifold. As an example, we can prove:
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Theorem 3.12 ([8], Theorem 5.5) If � is homogeneous then every subgroup of
Out(A�) is either virtually solvable or contains a free group of rank 2.

We can also bound the maximum derived length of a solvable subgroup in terms
of the shape of � (see [8], Section 6). The crudest such estimate is that this length is
always less than or equal to the number of vertices in �.

4 Lecture 3

In the last lecture we studied Out(A�) via the projection map

P =
Y

[a]maximal

P
a

: Out0(A�) !
Y

[a]maximal

Out0(A
lk[a])

and its free abelian kernel.
We remarked that we can use this to bound the virtual cohomological dimension

of Out(A�). However, P is far from surjective, and ker(P ) is far from being maximal
rank among abelian subgroups, so the upper and lower bounds this gives are not very
good.

In this lecture we take a more geometric approach to the study of Out(A�) by
attempting to realize Out(A�) as symmetries of an “outer space.” As before the
classical theory of GL(n,Z) and Out(F

n

) provide guidance.
GL(n,Z) acts on the symmetric space SO(n)\SL(n,R), and Out(F

n

) acts on Outer
space. Useful features of these actions include:

• the spaces are contractible

• the actions are proper

These two properties imply that algebraic invariants of the groups can be computed by
computing topological invariants of the quotient spaces; in particular the cohomology
H⇤(�) ⇠= H⇤(X/�). Further properties of the classical actions include

• the spaces are finite-dimensional

from which we can immediately conclude that the virtual cohomological dimension
of the groups are finite, and

• there is a cocompact equivariant deformation retract

which implies that the group cohomology is finitely generated in all dimensions. Fur-
thermore, the quotient of the retract by the action can be described combinatorially,
making it possible to do explicit cohomology calculations, at least in small dimensions.

More sophisticated features include

• the spaces have bordifications, i.e., they can be enlarged to spaces with proper
cocompact actions, whose cohomology at infinity is concentrated in one dimen-
sion.

By work of Bieri and Eckmann this implies that the groups are virtual duality groups,
i.e., there is a dualizing module D and isomorphisms

H⇤(G;A) ⇠= H
d�⇤(G,D ⌦A)

between cohomology with any coe�cients A and homology with coe�cients in D⌦A.
Outer space for a general RAAG will be a hybrid species, combining features of

both symmetric spaces and Outer space. So let us now review these spaces.
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4.1 Symmetric space

The symmetric space D
n

= SO(n)\SL(n,R) has several useful alternate descriptions.
A coset SO(n)A gives a well-defined positive definite symmetric matrix Q = AtA,
identifying D

n

with

• the space of positive definite quadratic forms Q on Rn, modulo homothety.

If we fix the standard lattice Zn ⇢ Rn, then any linear map A : Zn ! Rn defines a
marked lattice, modulo homothety. If we also mod out by rotations, then D

n

can also
be described as

• the space of marked lattices A : Zn ! Rn modulo homothety and rotation.

Finally, the map A : Rn ! Rn induces a map Ā : Rn/Zn ! Rn/A(Zn). We think of
Rn/Zn as a standard torus Tn, Y = Rn/A(Zn) as a torus with a flat metric, and Ā
as an isotopy class of homeomorphisms; then D

n

is identified with

• the space of marked flat tori Ā : Tn ! Y , modulo homothety.

In each case, the group GL(n,Z) acts on the right. If g 2 GL(n,Z), then
• SO(n)A · g = SO(n)Ag

• Q · g = gtQg

• (A : Zn ! Rn) · g = Ag : Zn ! Rn

• (Ā : Tn ! Y ) · g = Ag : Tn ! Y .

Each of these descriptions of the symmetric space has its advantages. For example,
the description as the space of positive definite quadratic forms makes it easy to see
that D

n

is contractible, since the set of positive definite quadratic forms is a convex
cone in the space of n⇥n matrices. The description that will be most relevant for us
is the last, as a space of marked flat tori. Note that the action of GL(n,Z) changes
the marking, but does not change the flat metric.

4.2 Outer space

Outer space also has several useful descriptions. We can mimic the description of the
symmetric space as the space of marked flat tori by defining Outer space as a space
of marked metric graphs. To do this, we fix a rose R

n

, i.e., a graph with one vertex
and n directed edges, as a “model space” to play the role of the torus Tn. A metric
on a graph X is simply an assignment of positive real lengths to its edges, making
X into a metric space with the path metric. A marking is a homotopy equivalence
h : R

n

! X. For technical reasons we don’t allow our graphs to have univalent or
bivalent vertices, and they must be finite. Marked graphs (X,h) and (X 0, h0) are
equivalent if there is an isometry or a homothety f : X ! X 0 with f � h homotopic
to h0.

Definition 4.1 Outer space CV
n

is the space of equivalence classes of marked metric
graphs with fundamental group F

n

.

Out(F
n

) acts on CV
n

on the right by changing the marking, i.e., for � 2 Out(F
n

)
take a map f : R

n

! R
n

that induces � on ⇡1(Rn

) ⌘ F
n

and set (X,h) ·� = (X,h�f).
There is an obvious equivariant deformation retraction of CV

n

onto the subspace
consisting of marked metric graphs with no separating edges (simply shrink each
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✓
1 0
1 1

◆

Figure 3. Action of A21 on ⇤

separating edge to a point). This subspace, called reduced Outer space is sometimes
more convenient to work with.

Given a marked metric graph X, the marking serves to identify F
n

with the funda-
mental group of X. By looking at the universal cover eX we thus obtain a simplicial
tree with a free action of F

n

. The fact that we don’t allow X to be infinite or have
univalent or bivalent vertices translates into the condition that the action is minimal,
i.e., there are no F

n

-invariant subtrees. Therefore an alternate description of CV
n

is
as the space of free minimal actions of F

n

on metric simplicial trees. This is analo-
gous to the description of the symmetric space as a space of lattices instead of as a
space of flat tori. (There is a third definition of CV

n

in terms of isotopy classes of
spheres in a doubled handlebody which is extremely useful, but will not be relevant
for these lectures.)

4.3 Lattices, tori and graphs in rank 2

To motivate our definition of Outer space for a general RAAG, we first compare the
symmetric space and Outer space in rank 2. In rank 2 the natural map Out(F2) !
GL(2,Z) induced by abelianization F2 ! Z2 is an isomorphism and both (reduced)
Outer space and the symmetric space can be identified with the hyperbolic plane.
The spaces diverge dramatically in higher ranks, but the rank 2 picture gives us some
insight into the general situation because we can look at the same space from two
di↵erent points of view.

GL(n,Z) is generated by elementary matrices, so consider the action of A21 =✓
1 0
1 1

◆
on the standard lattice ⇤ = Z2 ⇢ R2, marked by the identity. This sends

e1 7! e1 and e2 7! e1 + e2 (remember we are acting on the right). This action is
illustrated in Figure 3.

Note that the action of A21 does not change the lattice, it just changes the marking.
Thus the orbit of GL(n,Z) is a discrete subset of the space of all marked lattices.
To get a path from ⇤ to ⇤ · A21 we must gradually shear the marked lattice, as in
Figure 4. In the figure we have drawn the original fundamental domain for reference.

The path in the space of marked flat tori is obtained by identifying opposite sides
of the fundamental domain for the lattices, as in Figure 5. In this figure, too, we have
marked the original fundamental domain for reference.

This gives us a clue for what this path looks like if we think of it as a path in CV2:
if we puncture the torus its fundamental group is F2 instead of Z2, and it deformation
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Figure 4. A path from ⇤ to ⇤ ·A21.

Figure 5. The same path, as a path of tori

retracts onto the dark graph. The path in CV2 is then given by the graphs in Figure 6.
Note that the total length of the graph is constant (equal to 2) in this picture. Under
the deformation retraction of the punctured torus onto the graph, the action of A21

on Z2 becomes the action of ⇢21 : x2 7! x2x1 on F2. We indicate the loop representing
x2 by the thicker curve in the picture.

4.4 A simple example

We have described CV
n

as a space of marked metric graphs R
n

! X and the sym-
metric space for Zn as a space of marked flat tori Tn ! X. In each case we needed
a model space and a homotopy equivalence to a metric space. For a general RAAG
A� we have a model space, namely the Salvetti complex S�, so we would like to have
an outer space of marked metric spaces S� ! X. We now need to decide:

• What homeomorphism types X should we allow?

• What metric structures should we allow on these spaces X?

We begin by looking at a very simple RAAG, i.e.,

h a, b, c | [a, c] = [b, c] = 1 i.

Figure 6. The same path, as a path in Outer space CV2
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b

c

a

�

a bc

Figure 7. A simple graph � and its Salvetti complex S�

Figure 8. Realizing the twist ⌧
ac

on S�

This is the RAAG associated to the graph � with three vertices a, b and c and two
edges, one from a to c and one from c to b. The Salvetti complex S� is the union of
two tori, glued along a common meridian curve labeled c (see Figure 7).

Generators for Out(A�) consist of the graph automorphism interchanging a and b,
inversion in a, inversion in c, the twist ⌧

ac

: a 7! ac = ca, and the folds ⇢
ab

: a 7! ab
and �

ab

: a 7! ba.
The group A� is the product of the cyclic group generated by c with the free group

generated by a and b, and the Salvetti complex S� is the product of the loop labeled
c by the rose formed by the two longitudinal curves. To realize the twist ⌧

ac

on S�,
we can perform a Dehn twist of the left-hand torus around a curve parallel to c but
disjoint from c (see Figure 8).

To realize the transvection ⇢
ab

we fold the left-hand torus around the right-hand
torus (see Figure 9). This is can also be described as first expanding the intersection
circle into a cylinder, then collapsing a di↵erent cylinder (the bottom shaded cylinder
in the figure).

Thus to make a path from S� to S� · ⌧
ac

we need to gradually shear the metric on
the left-hand torus, and to make a path from S� to S� · ⇢

ab

we need to pass through
spaces X which are not homeomorphic to S�. In our outer space for A� we need
to be able to vary both the homeomorphism type of spaces and the metrics on the
spaces. But we want to restrict both as much as possible so that we can control the
topology and geometry of the space.

Note that both S� and the intermediate complexes X are combinatorially cube
complexes. With standard Euclidean metrics on the cubes they are non-positively
curved cube complexes (i.e., their universal covers are CAT(0)), in fact they are
special cube complexes, in the sense of Haglund and Wise [16]. However, we want
to vary the (projective classes of) the metrics to allow shearing of the tori. This
can be accomplished in the intermediate spaces X by giving all three cylinders flat
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Figure 9. Realizing the fold ⇢
ab

on S�

right-angled metrics with the same circumference, then specifying the attaching maps
to the two circles by shear parameters.

There are a priori two shear parameters for each cylinder, but shearing both ends of
a cylinder by the same amount does not change the metric on X, so there are actually
only three total parameters. These are not independent either, since shearing all three
by the same amount simply twists the circle without a↵ecting the metric; thus in the
end we have only 2 independent shear parameters.

Shearing the top or bottom cylinder by an entire rotation changes the marking by
a twist, and shearing in the opposite direction changes the marking by its inverse.
Expanding and collapsing cylinders without shearing varies the space independently
of the c direction, so may be thought of as moving around the space of metric graphs
marked by the free subgroup generated by a and b, i.e., around reduced Outer space
in rank 2. Since reduced Outer space in rank 2 is homeomorphic to R2, the entire
moduli space of marked metric blowups is homeomorphic to the product R2⇥R⇥R.

5 Lecture 4

In this lecture we show how to construct an Outer space for any RAAG A�; this will
be a space of marked metric cube complexes. We then outline very briefly how to
prove the space we have constructed is contractible and that the action is proper.

We recall the example we studied in the last lecture, where � has three vertices
and two edges. To get a path from the standard Salvetti id : S� ! S� to its image
under the twist ⌧

ac

: a 7! ac = ca we needed to shear the metric on the left-hand
torus, while to get a path to its image under the fold ⇢

ab

: a 7! ab we needed to
expand a circle of the Salvetti into a cylinder, then collapse a di↵erent cylinder. The
first operation involves changing the metrics on the spaces without changing their
homeomorphism type, while the second operation can be described combinatorially
in terms of “blowing up” and collapsing subcomplexes.

We begin our construction by determining which cube complexes we need, tem-
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porarily ignoring their metric structure. For A� = F
n

, this amounts to describing
the (vertices of the) spine K

n

instead of the full space CV
n

, so we briefly recall that
construction.

Outer space CV
n

for a free group is the union of open simplices, one for each
equivalence class of marked (combinatorial) graphs (X,h), where X is a finite graph
with no bivalent vertices or separating edges (and hence no univalent vertices, either).
The open simplex associated to (X,h) is obtained by assigning all possible positive
real lengths to the edges of X, then either projectivising or (equivalently) normalizing
so that the sum of the lengths is one. If we take small neighborhoods of these simplices
we obtain an open cover of CV

n

by contractible sets, such that the intersection of any
two elements is either empty or is in the cover. The nerve of this cover is known as
the spine of Outer space, and is an equivariant deformation retract of all of CV

n

. The
spine can be described combinatorially as the geometric realization of the partially
ordered set of marked graphs, where the poset relation is given by forest collapse:
(X,h) > (X 0, h0) if there is a forest � ⇢ X such that X 0 is obtained from X by
collapsing each edge of � to a point, and h0 is (homotopic to) the composition of h
with this collapse. The full space CV

n

can be recovered from the spine by putting
the metric information back into the graphs.

Motivated by this, we will now construct a similar spine for any A�.

5.1 The spine of outer space for A�

For general A� we need analogs of graphs, forests and forest collapses. The analog of
a graph will be a particular type of non-positively curved cube complex adapted to
�, which we call a �-complex. We first recall some standard background about cube
complexes.

5.1.1 NPC cube complexes and hyperplanes

A cube complex is a CW complex X in which every cell is homeomorphic to a Eu-
clidean cube (of some dimension) and the attaching maps identify faces with lower-
dimensional cells by homeomorphisms.

If v is a vertex of a cube complex X there is an associated simplicial complex called
the link of v and denoted lk(v). This has one vertex for each half-edge terminating
at v, and a set of half-edges spans a k-simplex if they belong to distinct edges of
the same cube. Gromov gave a simple condition on links which guarantees that X
can be given a metric of non-positive curvature. This says that if the 1-skeleton of a
simplex appears in lk(v), then the entire simplex must be in lk(v). This is called the
flag condition on links, and a cube complex X whose links satisfy the flag condition
is said to be NPC.

Cubes in a cube complex are cut by hyperplanes. A hyperplane is dual to an
equivalence class of edges, where the equivalence relation is generated by saying two
edges are equivalent if they are parallel in some cube. If H is the hyperplane dual to
[e], then the intersection of H with a cube C is spanned by midpoints of edges of C
which are in [e]; thus H \ C is either empty or is a codimension one linear subspace
cutting C in half.
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Example 5.1 The space X from the last lecture is an NPC cube complex. There
are four hyperplanes. Three of them are circles midway up the three cylinders, and
the other is a theta graph, with one edge running the length of each cylinder.

Example 5.2 S� is an NPC cube complex with one k-cube for each k-clique in �.
There is one hyperplane for each generator a of A� (i.e., each vertex of �), and the
associated hyperplane is isomorphic to the Salvetti complex S

lk[a].

The carrier of a hyperplaneH is the closure of the union of all cubes which intersect
H. If the carrier of H is an embedded copy of H ⇥ [0, 1], then collapsing each cube
in the carrier to its intersection with H is called a hyperplane collapse, though maybe
it should be called a carrier collapse. A hyperplane collapse is trivial if the resulting
complex is still homeomorphic to X.

A set of hyperplanes {H1, . . . , H
k

} in X is called a hyperplane forest if any cycle
formed by edges dual to the H

i

is null-homotopic. In this case each H
i

determines a
hyperplane collapse in which the images of the remaining H

j

form a new hyperplane
forest.

5.1.2 Marked �-complexes

Definition 5.3 A compact NPC cube complex X is called a �-complex if there is a
hyperplane forest {H1, . . . , H

k

} in X such that performing the associated hyperplane
collapses (in any order) gives a cube complex isomorphic to S� and

1. The hyperplane collapse associated to H
i

is non-trivial for each i.

2. After each collapse, the image of any hyperplane in X is either a hyperplane or
a subcomplex parallel to a hyperplane.

A marking of a �-complex X is a homotopy equivalence h : S� ! X. Two marked
�-complexes (X,h) and (X 0, h0) are equivalent if there is an isomorphism of cube
complexes f : X ! X 0 with h0 ' f � h.

The Salvetti complex S� is of course an example of a �-complex. If we mark it
with the identity map id : S� ! S�, the result is called the standard Salvetti.

The group Out(A�) acts on the set of marked �-complexes by changing the mark-
ing: any � 2 Out(A�) can be induced by a homotopy equivalence f : S� ! S�, and
we define (X,h)� = (X,h � f).

The set of equivalence classes of marked �-complexes forms a partially ordered set
under the relation of hyperplane collapse, and we define M� to be the geometric
realization of this poset.

5.1.3 The untwisted subgroup

We expect to have to shear the metric to find a path from the standard Salvetti to its
image under a twist, as in the example from the last lecture. Since blowups, collapses
and isometries don’t do any shearing, we shouldn’t even expect M� to be connected,
much less contractible. But it turns out that we can find a large contractible piece
of M� by ignoring the twists at first, i.e., we consider an orbit of the subgroup of
Out(A�) generated by all other types of generators.
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Definition 5.4 The untwisted subgroup U(A�) of Out(A�) is the subgroup generated
by inversions, graph automorphisms, partial conjugations and folds.

The untwisted subgroup can be all of Out(A�) (e.g., if � is discrete or is without
triangles and univalent vertices) or it can be finite (e.g., if � is complete or is an n-gon
with n � 5), and is generally somewhere in between. It is not usually normal (e.g.,
conjugating an inversion v 7! v�1 by a twist u 7! uv results in the square of the twist
times the inversion).

Definition 5.5 Let M� be the geometric realization of the poset of equivalence
classes of marked �-complexes. Let �0 = (S�, id) be the standard Salvetti and st(�0)
the star of �0 in M�. The spine of outer space K� is the orbit of st(�0) under U(A�).

The following theorem is joint with Charney and Stambaugh.

Theorem 5.6 ([6]) The spine K� is contractible. The untwisted subgroup U(A�)
acts cocompactly with finite stabilizers on K�.

The following subsections give a brief indication of the proof.

5.1.4 Blowups and �-Whitehead partitions

In order to prove Theorem 5.6 we need to understand exactly which complexes occur
in the star of �0, i.e., which marked �-complexes collapse to (S�, id). The opposite
of a hyperplane collapse is called a blowup, and to explain how to find all blowups of
�0 we first recall the situation for A� = F

n

.
If we can obtain a rose R

n

by collapsing a single edge e of a graph G, then the
other edges of G can be identified with the petals a

i

of R
n

. Each petal is an edge
with two ends, a+

i

and a�
i

. We can reconstruct G by saying which a✏
i

get attached
to which end of e, i.e., by giving a partition of the set {a+1 , a�1 , . . . , a+n , a�n } into two
subsets, called the sides of the partition. In fact, any marked graph in CV

n

can be
collapsed to a rose R

n

by collapsing a maximal tree, and each edge in the maximal tree
gives a partition of the ends {a+1 , a�1 , . . . , a+n , a�n } of the petals of R

n

. A collection of
partitions corresponds to a graph if and only if the partitions are pairwise compatible
(P and Q are compatible if some side of P is disjoint from some side of Q).

Now let H be a hyperplane in a �-complex X, and suppose the corresponding hy-
perplane collapse is defined and gives the standard Salvetti (S�, id). We will partition
the edges in the 1-skeleton of S� by looking at their pre-images in the 1-skeleton of
Y = X�(H⇥(0, 1)). By condition (2) the image ofH must be parallel to a hyperplane
in S�, say the hyperplane S

lk(v) dual to v. If a
i

is an edge in this image, then a
i

has
two pre-image loops in the 1-skeleton of Y , at the top and bottom of the hyperplane
carrier H ⇥ [0, 1]. All other edges in S� have one pre-image, and we will partition
their ends according to whether they are attached at the top or bottom of the carrier.
We cannot partition these arbitrarily, however, since there are constraints imposed by
existence of the higher-dimensional cubes. For example, we cannot put the meridian
of a torus at one vertex and the longitude at the other. Careful consideration of these
constraints leads to the following definition.
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Figure 10. A graph � and a �-Whitehead partition

Definition 5.7 Let m be a vertex of �, L
m

the vertices in lk(m) and V ±
m

the set
of vertices in � � lk(m) and their inverses. A partition P of V ±

m

is a �-Whitehead
partition if

1. Each side of P has at least two elements.

2. Each side of P is a union of (vertices of) components of � � lk(m) and their
inverses except

• P separates m from m�1 and

• if lk(a) ✓ lk(m) then P may separate a from a�1.

The vertex m is called a maximal vertex for P . Note that a �-Whitehead partition
may have more than one maximal vertex but any two maximal vertices have the same
link, which we therefore call lk(P ).

An example of a �-Whitehead partition is shown in Figure 10.
The terminology “�-Whitehead” has a historical basis. Suppose the rose R

n

is
blown up by inserting a single edge e which partitions the half-edges of R

n

. Then
collapsing a di↵erent edge of the blowup gives a homotopy equivalence R

n

! R
n

which induces a Whitehead automorphism of F
n

. If the newly collapsed edge was
labeled with the generator a, this automorphism multiplies some generators by a (or
a�1) and conjugates some others by a (or a�1).

Not every Whitehead automorphism of the free group on the generators of A�

induces an automorphism of A�, but we can tell exactly which ones do. If P is a
�-Whitehead partition as defined above, we can complete P to a partition bP of all
of the generators of A� and their inverses by putting L± = L

m

[ L�1
m

on one side of
P (it doesn’t matter which side). Then the induced Whitehead automorphism of the
generators does give an automorphism of A�.

We have seen that a two-vertex �-complex in st(�) gives a �-Whitehead partition.
Conversely, given a �-Whitehead partition we can construct a two-vertex �-complex,
which we call SP . Here are instructions for its construction.

• Start with a copy of S
lk(P ) ⇥ [0, 1].

• For each a which is separated from a�1 by P (including each maximal vertex),
glue in a copy of S

lk(a)⇥[0, 1], attaching S
lk(a)⇥{i} by its inclusion into S

lk(P )⇥
{i} for i = 0, 1.

• For each remaining component C of � � lk(P ) attach a copy of S
lk(P )[C via
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the inclusion of lk(P ), where components on opposite sides of P are attached
at opposite ends of S

lk(P ) ⇥ [0, 1].

Collapsing the initial subcomplex S
lk(P ) ⇥ [0, 1] to its hyperplane S

lk(P ) ⇥ {1
2}

recovers the Salvetti complex S�, so SP is a �-complex in st(�).

Remark 5.8 For any vertex a of � the subcomplex S
st(a) of S� is a product S

lk(a)⇥
S1. Another way of describing SP is as the union of these subcomplexes, some of
which have been subdivided by hyperplanes, modulo appropriate identifications. In
particular, S

st(a) embeds into the blowup SP .

5.1.5 Compatible partitions and iterated blowups

The �-complexes in st(�) which have exactly two vertices are those which can be
obtained from � by blowing up a single �-Whitehead partition. In order to obtain
any �-complex in st(�) we may need to blow up several times. This is possible if
we are given a collection of �-Whitehead partitions which are compatible, in the
following sense.

Definition 5.9 Two �-Whitehead partitions P and Q are compatible if either

1. maximal elements of P and Q are distinct and commute, or

2. some side of P is disjoint from some side of Q.

A precise recipe for constructing a �-complex from a collection of pairwise com-
patible �-Whitehead partitions is given in [6]. We omit the details here.

5.1.6 Contractibility of the spine

The proof that the spine K� is contractible follows the general outline of the original
proof that CV

n

is contractible [9]. A vertex (S, h) of K� is called a Salvetti vertex
if S is homeomorphic to S�. We define a total order on Salvetti vertices (S, h) by
measuring the lengths of conjugacy classes of elements of A� in S. More precisely,
for each conjugacy class w 2 ⇡1(S�) = A� we record the length of the minimal loop
in the 1-skeleton of S that represents h(w), then list all these lengths in an infinite
sequence. We then build K� by gluing on stars of Salvetti vertices according to the
lexicographical order of these sequences. We need to prove that a Salvetti vertex is
determined by its length sequence, that there is a unique smallest Salvetti vertex,
and that at each stage of the construction we are attaching the next star along a
contractible subcomplex of its link. The proof of this last fact uses a variation of the
classical Peak Reduction algorithm for free group automorphisms.

5.2 The full outer space

In order to get a contractible space on which all of Out(A�) acts properly, we need
to add metric information to the marked �-complexes used to define K�.

To explain the idea, we again recall the relation of the spine K
n

to the full Outer
space CV

n

, from a slightly di↵erent point of view. The full space CV
n

decomposes as
a disjoint union of open simplices of various dimensions, where the simplex containing
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(X,h) is obtained by varying the (positive) lengths of the edges of X. If we allow
an edge length to shrink to zero, we pass to a face of the simplex. Thus the closure
of �(X,h) in CV

n

is a simplex together with some of its faces, but some faces are
missing: if we try to shrink a set of edges containing a loop to zero, we leave CV

n

. If
we formally add all of the missing faces to each �(X,h) we obtain a simplicial complex
CV

n

called the simplicial closure of Outer space. The spine K
n

is a subcomplex of
the barycentric subdivision CV

0
n

, namely K
n

is the subcomplex spanned by vertices
of CV

n

(i.e., faces of CV
n

) which are actually in CV
n

.
We can verify that CV

n

is homotopy equivalent to K
n

using a suitable open cover
of CV

n

. For each vertex v 2 K
n

, let U
v

= sto(v) ⇢ CV
n

be the open star of v in

CV
0
n

. Each U
v

is a contractible subset of CV
n

and contains no other vertices of K
n

.
An intersection U

v0 \ . . . \ U
vk is non-empty if and only if v0, . . . , vk are the vertices

of a simplex of K
n

, in which case the intersection is contractible. Thus the nerve of
the cover {U

v

} is isomorphic to K
n

and is homotopy equivalent to CV
n

.
For general A� we would like to do something similar, i.e., add metric information

to marked �-complexes to produce a space of marked metric �-complexes and an
open cover by sets {U

v

} corresponding to vertices v 2 K�. We want the nerve of
this cover to be isomorphic to K� and the cover to be by contractible sets with
contractible intersections, so that the whole space is homotopy equivalent to K� (and
hence contractible).

5.2.1 Untwisted metrics

As in the free group case we can assign positive lengths to the edges of the (rectilinear)
cubes of a �-complex X to obtain a set of metrics on X which forms an open simplex
�(X,h) of marked metric �-complexes, one for each vertex v = (X,h) of K�. Let ⌃G

denote the union of these open simplices, modulo the natural face relations. Formally
adding missing faces to the simplices �(X,h) completes ⌃� to a simplicial complex

⌃�. The spine K� is a subcomplex of the barycentric subdivision ⌃
0
�, and the space

⌃� is covered by open stars sto(v) in ⌃
0
� of vertices v 2 K

n

. The action of U(A�) on
K� extends naturally to a proper action on ⌃� and ⌃

G

.
In the free group case this is all we needed to do, but for general A� this is not

enough...we also need to allow the metrics on some cubes to be sheared in order to
get a space on which all of Out(A�) acts properly. This shearing is governed by the
subgroup T (A�) generated by twists, so we next investigate this subgroup.

5.2.2 Twisted metrics

If we order the generators {a1, . . . , an} of A� we obtain a map Out(A�) ! GL(n,Z)
induced by abelianization A� ! Zn. This map sends the twist subgroup T (A�)
injectively into SL(n,Z). The image of T (A�) is generated by the matrices A

ij

= I
n

+
E

ij

for i, j such that st(a
i

) ✓ st(a
j

). If the ordering of the generators is subordinate to
the partial ordering on the vertices of �, the image of T (A�) is block upper triangular.
The diagonal blocks correspond to equivalence classes of vertices and a non-zero upper
block corresponds to an inclusion of stars.

Now let TR(A�) ⇢ SL(n,R) be the subgroup generated by matrices A
ij

(r) =
I
n

+ E
ij

(r) with r real, for i, j such that st(a
i

) ✓ st(a
j

). TR(A�) is contained in a
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parabolic subgroup of SL(n,R) and T (A�) is a lattice in TR(A�). The quotient space

D� = (TR(A�) \ SO(n))\TR(A�)

is a subspace of the symmetric space D
n

= SO(n)\SL(n,R). It is homeomorphic to
a product of one symmetric space for each diagonal block and one copy of R for each
pair i > j with st(a

i

) ( st(a
j

). In particular, it is a contractible subspace of D
n

.
Each point of D� corresponds to a marked flat metric on Tn, but we will ignore the

marking for a moment. If we regard the Salvetti complex S� as a subcomplex of Tn,
then the flat metric on Tn induces a metric on S�, where the distance between two
points is the length of the shortest path in S� joining them. Note that the metric on
each subtorus S� corresponding to a clique � ⇢ � is flat. A metric on S� induced in
this way by a point in D� is said to be �-adapted.

If X is a blowup of S� then X contains a subcomplex X� for each clique � which
is a (possibly subdivided) copy of the cube complex S�. A CAT(0) metric on X
is �-adapted if the metric restricted to each X� is equal to the flat metric on S�

obtained from some �-adapted metric on S�.

Definition 5.10 A marked metric �-complex is a triple (X,h, d), where

1. X is a �-complex,

2. h : S� ! X is a homotopy equivalence, and

3. d is a �-adapted CAT(0) metric on X.

Two marked metric �-complexes (X,h, d) and (X 0, h0, d0) are equivalent if there is an
isometry or a homothety ◆ : X ! X 0 with ◆ � h0 ' h.

5.2.3 Outer space for A�

We now define outer space O� to be the space of equivalence classes of marked metric
�-complexes. The group Out(A�) acts on O� on the right by changing the marking,
i.e., given � 2 Out(A�), choose a homotopy equivalence f : S� ! S� inducing � on
⇡1(S�); then (X,h, d) · � = (X,h � f).

Claim Outer space O� is contractible, and Out(A�) acts properly.

Caveat. I have refrained from calling this a Theorem since the details have not yet
been posted on the arXiv.

Sketch of proof We cover O� by open sets U
v

corresponding to vertices v = (X,h)
of K�. Each U

v

is homeomorphic to the product of D� with the open star sto(v)

of v in the barycentric subdivision ⌃
0
�, and is hence contractible. The nerve of the

cover {U
v

} is isomorphic to K� and intersections U
v1 \ . . . \ U

vk are either empty
or contractible. Thus O� is homotopy equivalent to K�, which is contractible by
Theorem 5.6. Finally, one must check the stabilizer of a point (X,h, d) in O� under
the action of Out(A�). The action of a twist moves (X,h, d) “up the D�-direction,”
and the stabilizer of (X,h, d) is isomorphic to the group of isometries of (X, d), which
is finite.
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5.3 Questions

1. The action of Out(A�) on O� is not cocompact, since we’re using all �-adapted
metrics on the �-complexes X. Inside this space of metrics there should be an
analog of Ash’s well-rounded retract of SO(n)\SL(n,R), which is a cocompact
deformation retract, equivariant with respect to the action of SL(n,Z). Incor-
porating this idea should result in an Outer space with a cocompact action.

2. Is the fixed point set of a finite subgroup of Out(A�) contractible (i.e., is O�

an EG?)? Is it even non-empty, i.e., can every finite subgroup of Out(A�) be
realized as isometries of a marked �-complex?

3. Is Out(A�) a virtual duality group? Is there a bordification of O� which is
a hybrid of the Borel-Serre bordification of the symmetric space D

n

and the
Bestvina-Feighn bordification of Outer space CV

n

? If so, is bordified O� highly
connected at infinity?

4. The metric theory of symmetric spaces is classical and highly developed. There
has also been a lot of activity recently on the metric theory of Outer space, using
the asymmetric Lipschitz metric. Is there a good metric theory of O�? What
are the geodesics? Can they be used to help classify elements of Out(A�)?

5. Handel and Mosher recently proved that the 1-skeleton of the simplicial closure
CV

n

is a Gromov hyperbolic graph [17]. Is the 1-skeleton of K� Gromov hy-
perbolic? If so, is there an associated Gromov hyperbolic space on which all of
Out(A�) acts?
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Abstract

J.M. Howie, the influential St Andrews semigroupist, claimed that we value an area
of pure mathematics to the extent that (a) it gives rise to arguments that are deep
and elegant, and (b) it has interesting interconnections with other parts of pure
mathematics.

This paper surveys some recent results on the transformation semigroup generated
by a permutation group G and a single non-permutation a. Our particular concern
is the influence that properties of G (related to homogeneity, transitivity and prim-
itivity) have on the structure of the semigroup. In the first part of the paper, we
consider properties of S = hG, ai such as regularity and idempotent generation. The
second is a brief report on the synchronization project, which aims to decide in what
circumstances S contains an element of rank 1. The paper closes with a list of open
problems on permutation groups and linear groups, and some comments about the
impact on semigroups are provided.

These two research directions outlined above lead to very interesting and chal-
lenging problems on primitive permutation groups whose solutions require combining
results from several di↵erent areas of mathematics, certainly fulfilling both of Howie’s
elegance and value tests in a new and fascinating way.

1 Regularity and generation

1.1 Introduction

How can group theory help the study of semigroups?
If a semigroup has a large group of units, we can apply group theory to it. But there

may not be any units at all! According to a widespread belief, almost all finite semi-
groups have only one idempotent, which is a zero, not an identity (see [25] and [18]).
This conjecture, however, should not deter us from the general goal of investigat-
ing how the group of units shapes the structure of the semigroup. Infinitely many
families of finite semigroups, and the most interesting, are composed by semigroups
with a group of units. Some of those families are interesting enough to keep many
mathematicians busy their entire lives; in fact a unique family of finite semigroups,
the endomorphism semigroups of vector spaces over finite fields, has been keeping
experts in linear algebra busy for more than a century.
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Regarding the general question of how the group of units can shape the struc-
ture of the semigroup, an especially promising area is the theory of transformation
semigroups, that is, semigroups of mappings ⌦ ! ⌦ (subsemigroups of the full trans-
formation semigroup T (⌦), where ⌦ := {1, . . . , n}). This area is especially promising
for two reasons. First, in a transformation semigroup S, the units are the permuta-
tions; if there are any, they form a permutation group G and we can take advantage of
the very deep recent results on them, chiefly the classification of finite simple groups
(CFSG). Secondly, even if there are no units, we still have a group to play with, the
normaliser of S in Sym(⌦), the set of all permutations g such that g�1Sg = S.

The following result of Levi and McFadden [28] is the prototype for results of this
kind. Let Sn and Tn denote the symmetric group and full transformation semigroup
on ⌦ := {1, 2, . . . , n}.

Theorem 1.1 Let a 2 Tn\Sn, and let S be the semigroup generated by the conjugates
g�1ag for g 2 Sn. Then

(a) S is idempotent-generated;

(b) S is regular;

(c) S = ha, Sni \ Sn.

In other words, semigroups of this form, with normaliser Sn, have very nice prop-
erties!

Inspired by this result, we could formulate a general problem:

Problem 1.2 (a) Given a semigroup property P, for which pairs (a,G), with a 2
Tn \ Sn and G  Sn, does the semigroup hg�1ag : g 2 Gi have property P?

(b) Given a semigroup property P, for which pairs (a,G) as above does the semi-
group ha,Gi \G have property P?

(c) For which pairs (a,G) are the semigroups of the preceding parts equal?

The following portmanteau theorem lists some previously known results on this
problem. The first part is due to Levi [26], the other two to Araújo, Mitchell and
Schneider [8].

Theorem 1.3 (a) For any a 2 Tn \ Sn the semigroups hg�1ag : g 2 Sni and
hg�1ag : g 2 Ani are equal.

(b) hg�1ag : g 2 Gi is idempotent-generated for all a 2 Tn\Sn if and only if G = Sn

or G = An or G is one of three specific groups of low degrees.

(c) hg�1ag : g 2 Gi is regular for all a 2 Tn \ Sn if and only if G = Sn or G = An

or G is one of eight specific groups of low degrees.

Recently, we have obtained several extensions of these results. The first theorem
is proved in [3].

Theorem 1.4 Given k with 1  k  n/2, the following are equivalent for a sub-
group G of Sn:

(a) for all rank k transformations a, a is regular in ha,Gi;
(b) for all rank k transformations a, ha,Gi is regular;
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(c) for all rank k transformations a, a is regular in hg�1ag : g 2 Gi;
(d) for all rank k transformations a, hg�1ag : g 2 Gi is regular.

Moreover, we have a complete list of the possible groups G with these properties for
k � 5, and partial results for smaller values.

It is worth pointing out that in the previous theorem the equivalence between
(a) and (c) is not new (it appears in [27]). Really surprising, and a great result
that semigroups owe to the classification of finite simple groups, are the equivalences
between (a) and (b), and between (c) and (d).

The four equivalent properties above translate into a transitivity property of G
which we call the k-universal transversal property, which we will describe in the
Subsection 1.3.

In the framework of Problem 1.2, let P be the following property: the pair (a,G),
with a 2 Tn \ Sn and G  Sn, satisfies ha,Gi \G = ha, Sni \ Sn.

The classification of the pairs (a,G) with this property poses a very interesting
group theoretical problem. Recall that the rank of a map a 2 Tn is |⌦a| and the
kernel of a is ker(a) := {(x, y) 2 ⌦2 | xa = ya}; by the usual correspondence between
equivalences and partitions, we can identify ker(a) with a partition {A1, . . . , Ak}.
Suppose |⌦| > 2 and we have a rank 2 map a 2 Tn. It is clear that g�1a 2 ha, Sni,
for all g 2 Sn. In addition, if ker(a) = {A1, A2}, then ker(g�1a) = {A1g,A2g}.
Therefore, in order to classify the groups with property P above we need to find the
groups G such that

{{A1, A2}g | g 2 G} = {{A1, A2}g | g 2 Sn}. (1)

If |A1| < |A2|, this is just |A1|-homogeneity; but if these two sets have the same size,
the property is a little more subtle.

Extending this analysis to partitions with more than two parts, we see that the
group-theoretic properties we need to investigate are transitivity on ordered partitions
of given shape (this notion was introduced by Martin and Sagan [32] under the name
partition-transitivity) and the weaker notion of transitivity on unordered partitions of
given shape. This is done in Section 1.4, where we indicate the proof of the following
theorem from [1].

Theorem 1.5 We have a complete list (in terms of the rank and kernel type of a)
for pairs (a,G) for which ha,Gi \G = ha, Sni \ Sn.

As we saw, the semigroups ha, Sni\Sn have very nice properties. In particular, the
questions of calculating their automorphisms and congruences, checking for regularity,
idempotent generation, etc., are all settled. Therefore the same happens for the
groups G and maps a 2 Tn \Sn such that ha,Gi\G = ha, Sni\Sn, and all these pairs
(a,G) have been classified.

Another long-standing open question was settled by the following theorem, from [5].

Theorem 1.6 The semigroups ha,Gi \ G and h g�1ag : g 2 G i are equal for all
a 2 Tn \ Sn if and only if G = Sn, or G = An, or G is the trivial group, or G is one
of five specific groups.
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Problem 1.7 It would be good to have a more refined version of this where the
hypothesis refers only to all maps of rank k, or just a single map a.

1.2 Homogeneity and related properties

A permutation group G on ⌦ is k-homogeneous if it acts transitively on the set of
k-element subsets of ⌦, and is k-transitive if it acts transitively on the set of k-tuples
of distinct elements of ⌦.

It is clear that k-homogeneity is equivalent to (n � k)-homogeneity, where |⌦| =
n; so we may assume that k  n/2. It is also clear that k-transitivity implies
k-homogeneity.

We say that G is set-transitive if it is k-homogeneous for all k with 0  k  n.
The problem of determining the set-transitive groups was posed by von Neumann
and Morgenstern [33] in the first edition of their influential book on game theory. In
the second edition, they refer to an unpublished solution by Chevalley, but the first
published solution was by Beaumont and Peterson [10]. The set-transitive groups
are the symmetric and alternating groups, and four small exceptions with degrees
5, 6, 9, 9.

In an elegant paper in 1965, Livingstone and Wagner [30] showed:

Theorem 1.8 Let G be k-homogeneous, where 2  k  n/2. Then

(a) G is (k � 1)-homogeneous;

(b) G is (k � 1)-transitive;

(c) if k � 5, then G is k-transitive.

In particular, part (a) of this theorem is proved by a short argument using char-
acter theory of the symmetric group. This can be translated into combinatorics, and
generalised to linear and a�ne groups: see Kantor [23].

The k-homogeneous but not k-transitive groups for k = 2, 3, 4 were determined by
Kantor [21, 22]. All this was pre-CFSG.

The k-transitive groups for k > 1 are known, but the classification uses CFSG.
Lists can be found in various references such as [11, 15].

1.3 The k-universal transversal property

Let G  Sn, and k an integer smaller than n.
The group G has the k-universal transversal property, or k-ut for short, if for every

k-element subset S of {1, . . . , n} and every k-part partition P of {1, . . . , n}, there
exists g 2 G such that Sg is a transversal or section for P : that is, each part of P
intersects Sg in a single point.

Theorem 1.9 For k  n/2, the following are equivalent for a permutation group
G  Sn:

(a) for all a 2 Tn \ Sn with rank k, a is regular in ha,Gi;
(b) G has the k-universal transversal property.
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In order to get the surprising equivalence (noted after Theorem 1.4) of “a is regular
in ha,Gi” and “ha,Gi is regular”, we need to know that, for k  n/2, a group
with the k-ut property also has the (k � 1)-ut property. This fact, the analogue of
Theorem 1.8(a), is not at all obvious.

We go by way of a related property: G is (k� 1, k)-homogeneous if, given any two
subsets A and B of {1, . . . , n} with |A| = k � 1 and |B| = k, there exists g 2 G with
Ag ✓ B.

Now the k-ut property implies (k � 1, k)-homogeneity. (Take a partition with k
parts, the singletons contained in A and all the rest. If Bg is a transversal for this
partition, then Bg ◆ A, so Ag�1 ✓ B.)

The bulk of the argument involves these groups. We show that, if 3  k  (n�1)/2
and G is (k � 1, k)-homogeneous, then either G is (k � 1)-homogeneous, or G is one
of four small exceptions (with k = 3, 4, 5 and n = 2k � 1).

It is not too hard to show that such a group G must be transitive, and then
primitive. Now careful consideration of the orbital graphs shows that G must be
2-homogeneous, at which point we invoke the classification of 2-homogeneous groups
(a consequence of CFSG).

One simple observation: if G is (k�1, k)-homogeneous but not (k�1)-homogeneous
of degree n, then colour one G-orbit of (k � 1)-sets red and the others blue; by
assumption, there is no monochromatic k-set, so n is bounded by the Ramsey number
R(k� 1, k, 2). The values R(2, 3, 2) = 6 and R(3, 4, 2) = 13 are useful here; R(4, 5, 2)
is unknown, and in any case too large for our purposes.

Now we return to considering the k-ut property.
First, we note that the 2-ut property says that every orbit on pairs contains a pair

crossing between parts of every 2-partition; that is, every orbital graph is connected.
By Higman’s Theorem, this is equivalent to primitivity.

For 2 < k < n/2, we know that the k-ut property lies between (k�1)-homogeneity
and k-homogeneity, with a few small exceptions. In fact k-ut is equivalent to k-
homogeneous for k � 6; we classify all the exceptions for k = 5, but for k = 3 and
k = 4 there are some groups we are unable to resolve (a�ne, projective and Suzuki
groups), which pose interesting problems (see Problems 3.1 and 3.2).

For large k we have:

Theorem 1.10 For n/2 < k < n, the following are equivalent:

(a) G has the k-universal transversal property;

(b) G is (k � 1, k)-homogeneous;

(c) G is k-homogeneous.

In the spirit of Livingstone and Wagner, we could ask:

Problem 1.11 Without using CFSG, show any or all of the following implications:

(a) k-ut implies (k � 1)-ut for k  n/2;

(b) (k � 1, k)-homogeneous implies (k � 2, k � 1)-homogeneous for k  n/2;

(c) k-ut (or (k � 1, k)-homogeneous) implies (k � 1)-homogeneous for k  n/2.
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1.4 Partition transitivity and homogeneity

Let � be a partition of n (a non-increasing sequence of positive integers with sum n).
A partition of {1, . . . , n} is said to have shape � if the size of the ith part is the ith
part of �.

The group G is �-transitive if, given any two (ordered) partitions of shape �,
there is an element of G mapping each part of the first to the corresponding part
of the second. (This notion is due to Martin and Sagan [32].) Moreover, G is �-
homogeneous if there is an element of G mapping the first partition to the second
(but not necessarily respecting the order of the parts).

Of course �-transitivity implies �-homogeneity, and the converse is true if all parts
of � are distinct. If � = (n � t, 1, . . . , 1), then �-transitivity and �-homogeneity are
equivalent to t-transitivity and t-homogeneity.

The connection with semigroups is given by the next result, from [1]. Let G be a
permutation group, and a 2 Tn \ Sn, where r is the rank of a, and � the shape of the
kernel partition.

Theorem 1.12 For G  Sn and a 2 Tn \ Sn, the following are equivalent:

(a) ha,Gi \G = ha, Sni \ Sn;

(b) G is r-homogeneous and �-homogeneous.

So we need to know the �-homogeneous groups. First, we consider �-transitive
groups.

If the largest part of � is greater than n/2 (say n � t, where t < n/2), then G is
�-transitive if and only if it is t-homogeneous and the group H induced on a t-set by
its setwise stabiliser is �0-transitive, where �0 is � with the part n� t removed.

So if G is t-transitive, then it is �-transitive for all such �.
If G is t-homogeneous but not t-transitive, then t  4, and examination of the

groups in Kantor’s list gives the possible �0 in each case.
So what remains is to show that, if G is �-transitive but not Sn or An, then � must

have a part greater than n/2.
If � 6= (n), (n� 1, 1), then G is primitive.
If n � 8, then by Bertrand’s Postulate, there is a prime p with n/2 < p  n � 3.

If there is no part of � which is at least p, then the number of partitions of shape �
(and hence the order of G) is divisible by p. A theorem of Jordan (see Wielandt [40],
Theorem 13.9) now shows that G is symmetric or alternating.

The classification of �-homogeneous but not �-transitive groups is a bit harder.
We have to use

(a) a little character theory to show that either G fixes a point and is transitive on
the rest, or G is transitive;

(b) the argument using Bertrand’s postulate and Jordan’s theorem as before;

(c) CFSG (to show that G cannot be more than 5-homogeneous if it is not Sn or
An).

The outcome is a complete list of such groups.
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1.5 Normalising groups

We define a permutation group G to be normalising if hg�1ag : g 2 Gi = ha,Gi \G
for all a 2 Tn \ Sn.

The classification of normalising groups given by Theorem 1.6 is a little di↵erent;
although permutation group techniques are essential in the proof, we didn’t find a
simple combinatorial condition on G which is equivalent to this property. We will not
discuss it further here.

2 Synchronization

2.1 Introduction

In this section, we give a brief report on synchronization.
A (finite deterministic) automaton consists of a finite set ⌦ of states and a finite

set of maps from ⌦ to ⌦ called transitions, which may be composed freely.
In other words, it is a transformation semigroup with a distinguished set of gener-

ators.
An automaton is synchronizing if there is a map of rank 1 (image of size 1) in the

semigroup. A word in the generators expressing such a map is called a reset word.
We will also call a transformation semigroup synchronizing if it contains an element

of rank 1.

Example 2.1 This example has four (numbered) states, and two transitions A and
B, shown as double and single lines respectively.
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The reader can check easily that, irrespective of the starting state, following the path
BAAABAAAB always ends in state 2, and hence this is a reset word of length 9. In
fact, this is the shortest reset word.

The Černý Conjecture asserts that if an n-state automaton is synchronizing, then
it has a reset word of length at most (n � 1)2. The above example, with the square
replaced by an n-gon, shows that this would be best possible. The problem has been
open for about 45 years. The best known bound is cubic.

It is known that testing whether an automaton is synchronizing is in P, but finding
the length of the shortest reset word is NP-hard.
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2.2 Graph homomorphisms and transformation semigroups

All graphs here are undirected simple graphs (no loops or multiple edges).
A homomorphism from a graph X to a graph Y is a map f from the vertex set

of X to the vertex set of Y which carries edges to edges. (We don’t specify what
happens to a non-edge; it may map to a non-edge, or to an edge, or collapse to a
vertex.) An endomorphism of a graph X is a homomorphism from X to itself.

Let Kr be the complete graph with r vertices. The clique number !(X) of X is the
size of the largest complete subgraph, and the chromatic number �(X) is the least
number of colours required for a proper colouring of the vertices (adjacent vertices
getting di↵erent colours).

(a) There is a homomorphism from Kr to X if and only if !(X) � r.

(b) There is a homomorphism from X to Kr if and only if �(X)  r.

There are correspondences in both directions between graphs and transformation
semigroups (not quite functorial, or a Galois correspondence, sadly!).

First, any graph X has an endomorphism semigroup End(X).
In the other direction, given a transformation semigroup S on ⌦, its graph Gr(S)

has ⌦ as vertex set, two vertices v and w being joined if and only if there is no element
of S which maps v and w to the same place.

(a) Gr(S) is complete if and only if S  Sn;

(b) Gr(S) is null if and only if S is synchronizing;

(c) S  End(Gr(S)) for any S  Tn;

(d) !(Gr(S)) = �(Gr(S)); this is equal to the minimum rank of an element of S.

Now the main theorem of this section describes the unique obstruction to synchro-
nization for a transformation semigroup.

Theorem 2.2 A transformation semigroup S on ⌦ is non-synchronizing if and only
if there is a non-null graph X on the vertex set ⌦ with !(X) = �(X) and S  End(X).

In the reverse direction, the endomorphism semigroup of a non-null graph cannot
be synchronizing, since edges can’t be collapsed. In the forward direction, take X =
Gr(S); there is some straightforward verification to do. (For details see [4].)

2.3 Maps synchronized by groups

Let G  Sn and a 2 Tn \Sn. We say that G synchronizes a if ha,Gi is synchronizing.
By abuse of language, we say that G is synchronizing if it synchronizes every

element of Tn \ Sn.
Our main problem is to determine the synchronizing groups. From the theorem,

we see that G is non-synchronizing if and only if there is a G-invariant graph whose
clique number and chromatic number are equal.

Rystsov [36] showed the following result, which implies that synchronizing groups
are necessarily primitive.

Theorem 2.3 A permutation group G of degree n is primitive if and only if it syn-
chronizes every map of rank n� 1.
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We give a brief sketch of the proof, to illustrate the graph endomorphism technique.
The backward implication is trivial; so suppose, for a contradiction, thatG is primitive
but fails to synchronize the map a of rank n � 1. Then there are two points x, y
with xa = ya, and a is bijective on the remaining points. Choose a graph X with
hG, ai  End(X). Note that X is a regular graph. Since a is an endomorphism, x
and y are non-adjacent; so a maps the neighbours of x bijectively to the neighbours
of xa, and similarly the neighbours of y to those of ya. Since xa = ya, we see that
x and y have the same neighbour set. Now “same neighbour set” is an equivalence
relation preserved by G, contradicting primitivity.

So a synchronizing group must be primitive.
We have recently improved this: a primitive group synchronizes every map of rank

n � 2. The key tool in the proof is graph endomorphisms. Also, a primitive group
synchronizes every map of kernel type (k, 1, . . . , 1). For both results, and further
information, see [4].

Also, G is synchronizing if and only if there is no G-invariant graph, not complete
or null, with clique number equal to chromatic number. For more on this see [9, 13, 34,
35, 36, 38, 39]. Thus, a 2-homogeneous group is synchronizing, and a synchronizing
group is primitive. For if G is 2-transitive, the only G-invariant graphs are complete
or null; and if G is imprimitive, then it preserves a complete multipartite graph.

Furthermore, a synchronizing group is basic in the O’Nan–Scott classification, that
is, not contained in a wreath product with the product action. (For non-basic primi-
tive groups preserve Hamming graphs, which have clique number equal to chromatic
number.) By the O’Nan–Scott Theorem, such a group is a�ne, diagonal or almost
simple.

None of the above implications reverses. Indeed, there are non-synchronizing basic
groups of all three O’Nan–Scott types.

We are a long way from a classification of synchronizing groups. The attempts
to classify them lead to some interesting and di�cult problems in extremal combi-
natorics, finite geometry, computation, etc. But that is another survey paper! We
content ourselves here with a single result about an important class of primitive
groups, namely the classical symplectic, orthogonal and unitary groups, acting on
their associated polar spaces. The implicit geometric problem has not been com-
pletely solved, despite decades of work by finite geometers. We refer to Thas [37] for
a survey.

Theorem 2.4 A classical group, acting on the points of its associated polar space,
is non-synchronizing if and only if the polar space possesses either an ovoid and a
spread, or a partition into ovoids.

2.4 A conjecture

We regard the following as the biggest open problem in the area. A map a 2 Tn is
non-uniform if its kernel classes are not all of the same size.

Conjecture 2.5 A primitive permutation group synchronizes every non-uniform map.

We have some partial results about this (see [2, 4]) but are far from a proof!
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3 Problems

One of the goals of this paper is to provide a list of problems that might help the
interested reader involve himself in this fascinating topic. In addition to the problems
included above, we collect here a number of problems on the general interplay between
properties of the group of units and properties of the semigroup containing it.

We start by proposing a problem to experts in number theory. If this problem can
be solved, the results on AGL(1, p), in [3], will be dramatically sharpened.

Problem 3.1 Classify the prime numbers p congruent to 11 (mod 12) such that for
some c 2 GF(p)⇤ we have |h�1, c, c� 1i| < p� 1.

The primes less than 500 with this property are 131, 191, 239, 251, 311, 419, 431,
and 491.

Problem 3.2 Do the Suzuki groups Sz(q) have the 3-universal transversal property?
Classify the groupsG that have the 4-ut property, when PSL(2, q)  G  P�L(2, q),

with either q prime (except PSL(2, q) for q ⌘ 1 (mod 4), which is not 3-homogeneous),
or q = 2p for p prime.

A group G  Sn has the (n � 1)-universal transversal property if and only if it is
transitive. And ha,Gi (for a rank n�1 map a) contains all the rank n�1 maps of Tn
if and only if G is 2-homogeneous. In this last case ha,Gi is regular for all a 2 Tn,
because ha,Gi = {b 2 Tn | |⌦b|  n� 1}[G, and this semigroup is well known to be
regular.

Problem 3.3 Classify the groups G  Sn such that G together with any rank n� k
map, where k  5, generate a regular semigroup. We already know that such G must
be k-homogeneous; so we know which groups to look at (see Theorem 1.10).

The di�culty here (when rank k > b(n + 1)/2c) is that a k-homogenous group is
not necessarily (k�1)-homogenous. Therefore a rank k map a 2 Tn might be regular
in ha,Gi, but we are not sure that there exists g 2 G such that rank(bgb) = rank(b),
for b 2 ha,Gi such that rank(b) < rank(a).

It is clear that if ha,Gi \G is idempotent generated, for all rank k transformation
a 2 Tn \ Sn, then G has the k-ut property (see [8]).

Problem 3.4 Classify the groups G  Sn such that ha,Gi \G is idempotent gener-
ated, for all rank k maps, where k  n/2. Even if the classification of the groups with
the k-ut property is not quite finished (Problem 3.2 is the missing part), it might be
possible to settle the idempotent generation problem.

Problem 3.5 The most general problem that has to be handled is the classification
of pairs (a,G), where a 2 Tn and G  Sn, such that ha,Gi is a regular semigroup.

When investigating (k�1)-homogenous groups without the k-universal transversal
property (k-ut property), it was common that some of the orbits on the k-sets have
transversals for all the partitions. Therefore the following definition is natural.
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A group G  Sn is said to have the weak k-ut property if there exists a k-set S ✓ ⌦
such that the orbit of S under G contains a section for all k-partitions. Such a set is
called a G-universal transversal set. A solution to the following problem would have
important consequences in semigroup theory.

Problem 3.6 Classify the groups with the weak k-ut property; in addition, for each
of them, classify their G-universal transversal sets.

In McAlister’s celebrated paper [31] it is proved that, if e2 = e 2 Tn is a rank n�1
idempotent, then hG, ei is regular for all groups G  Sn. In addition, assuming that
{↵,�} is the non-singleton kernel class of e and ↵e = �, if ↵ and � are not in the
same orbit under G, then he,Gi is an orthodox semigroup (that is, the idempotents
form a subsemigroup); and he,Gi is inverse if and only if ↵ and � are not in the same
orbit under G and the stabilizer of ↵ is contained in the stabilizer of �.

Problem 3.7 Classify the groups G  Sn that together with any idempotent [rank k
idempotent] generate a regular [orthodox, inverse] semigroup.

Classify the pairs (G, a), with a 2 Tn and G  Sn, such that he,Gi is inverse
[orthodox].

The theorems and problems in this paper admit linear versions that are interesting
for experts in groups and semigroups, but also to experts in linear algebra and matrix
theory.

Problem 3.8 Prove (or disprove) that if G  GL(n, q) such that for all singular
matrices a there exists g 2 G with rank(a) = rank(aga), then G contains the special
linear group.

For n = 2 and for n = 3, this condition is equivalent to irreducibility of G. But we
conjecture that, for su�ciently large n, it implies that G contains the special linear
group.

Problem 3.9 Classify the groupsG  GL(n, q) such that for all rank k (for a given k)
singular matrices a we have that a is regular in hG, ai [the semigroup hG, ai is regular].

To handle this problem it is useful to keep in mind the following results. Kan-
tor [23] proved that if a subgroup of P�L(d, q) acts transitively on k-dimensional
subspaces, then it acts transitively on l-dimensional subspaces for all l  k such that
k + l  n; in [24], he showed that subgroups transitive on 2-dimensional subspaces are
2-transitive on the 1-dimensional subspaces with the single exception of a subgroup
of PGL(5, 2) of order 31 · 5; and, with the second author [12], he showed that such
groups must contain PSL(d, q) with the single exception of the alternating group A7

inside PGL(4, 2) ⇠= A8. Also Hering [19, 20] and Liebeck [29], using CFSG, classified
the subgroups of PGL(d, p) which are transitive on 1-spaces.

Regarding synchronization, the most important question (in our opinion) is the
following conjecture, stated earlier.

Problem 3.10 Is it true that every primitive group of permutations of a finite set ⌦
synchronizes every non-uniform transformation on ⌦?
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Assuming the previous question has an a�rmative answer (as we believe), an in-
termediate step in order to prove it would be to solve the following set of connected
problems:

Problem 3.11 (a) Prove that every map of rank n�3, with non-uniform kernel, is
synchronized by a primitive group. This is known for idempotent maps (see [4]).

(b) Prove that a primitive group synchronizes every non-uniform map of rank 5.

(c) Prove that if in S = hf,Gi there is a map of minimal rank r > 1, there can be
no map in S with rank r + 2.

The next class of groups lies strictly between primitive and synchronizing.

Problem 3.12 Is it possible to classify the primitive groups which synchronize every
rank 3 map?

Note that there are primitive groups that do not synchronize a rank 3 map (see
[34]). And there are non-synchronizing groups which synchronize every rank 3 map.
Take for example PGL(2, 7) of degree 28; this group is non-synchronizing, but syn-
chronizes every rank 3 map, since 28 is not divisible by 3.

There are very fast polynomial-time algorithms to decide if a given set of permu-
tations generates a primitive group, or a 2-transitive group.

Problem 3.13 Find an e�cient algorithm to decide if a given set of permutations
generates a synchronizing group.

It would be quite remarkable if such an algorithm exists; as we saw, it would in
particular resolve questions about ovoids and spreads in certain polar spaces (among
other things).

There are a number of natural problems related to �-homogeneity.

Problem 3.14 Let H  Sn be a 2-transitive group. Classify the pairs (a,G), where
a 2 Sn and G  Sn, such that ha,Gi = H .

Problem 3.15 Let G  Sn be a 2-transitive group. (The list of those groups is
available in [11, 15].) For every a 2 Tn describe the structure of hG, ai \ G. In
particular (where G is a 2-transitive group and a 2 Tn):

(a) classify all the pairs (a,G) such that ha,Gi is a regular semigroup (that is, for
all x 2 ha,Gi there exists y 2 ha,Gi such that x = xyx);

(b) classify all the pairs (a,G) such that ha,Gi \G is generated by its idempotents;

(c) classify all the pairs (a,G) such that ha,Gi \G = hg�1ag | g 2 Gi;
(d) describe the automorphisms, congruences, principal right, left and two-sided

ideals of the semigroups ha,Gi (when G is a 2-transitive group).

Problem 3.16 For each 2-transitive group G classify the G-pairs, that is, the pairs
(a,H) such that H  Sn, a 2 Tn and ha,Gi \G = ha,Hi \H .
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Problem 3.17 Let V be a finite dimensional vector space. A pair (a,G), where a is
a singular endomorphism of V and G  Aut(V ), is said to be an Aut(V )-pair if

ha,Gi \G = ha,Aut(V )i \Aut(V ).

Classify the Aut(V )-pairs.

Problem 3.18 Formulate and prove analogues of the results in this paper, but for
semigroups of linear maps on a vector space.

Problem 3.19 Solve the analogue of Problem 3.18 for independence algebras (for
definitions and fundamental results see [6, 7, 14, 16, 17]).
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[3] J. Araújo and P.J. Cameron, Two generalizations of homogeneity in groups with appli-
cations to regular semigroups, http://arxiv.org/abs/1204.2195
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[19] C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups

of prime order, Geom. Dedicata 2 (1974), 425–460.
[20] C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups

of prime order, II, J. Algebra 93 (1985), 151–164.
[21] W.M. Kantor, 4-homogeneous groups, Math. Z. 103 (1968), 67-68; correction ibid. 109

(1969), 86.
[22] W.M. Kantor, k-homogeneous groups, Math. Z. 124 (1972), 261–265.
[23] W.M. Kantor, On incidence matrices of projective and a�ne spaces, Math. Z. 124 (1972),

315–318.
[24] W.M. Kantor, Line-transitive collineation groups of finite projective spaces, Israel J.

Math. 14 (1973), 229–235.
[25] D.J. Kleitman, B.R. Rothschild and J.H. Spencer, The number of semigroups of order

n, Proc. Amer. Math. Soc. 55 (1976), 227–232.
[26] I. Levi, On the inner automorphisms of finite transformation semigroups, Proc. Edinburgh

Math. Soc. 39 (1996), 27–30.
[27] I. Levi, D.B. McAlister and R.B. McFadden, Groups associated with finite transformation

semigroups, Semigroup Forum 61 (2000), 453–467.
[28] I. Levi and R.B. McFadden, Sn-normal semigroups, Proc. Edinburgh Math. Soc. 37

(1994), 471–476.
[29] M.W. Liebeck, The a�ne permutation groups of rank 3, Bull. London Math. Soc. 18

(1986), 165–172.
[30] D. Livingstone and A. Wagner, Transitivity of finite permutation groups on unordered

sets, Math. Z. 90 (1965), 393–403.
[31] D.B. McAlister, Semigroups generated by a group and an idempotent, Comm. Algebra

26 (1998), 515–547.
[32] W.J. Martin and B.E. Sagan, A new notion of transitivity for groups and sets of permu-

tations, J. London Math. Soc. 73 (2006), 1–13.
[33] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Prince-

ton University Press, Princeton, 1944.
[34] P.M. Neumann, Primitive permutation groups and their section-regular partitions, Mich-

igan Math. J. 58 (2009), 309–322.
[35] J.-E. Pin, Černý’s conjecture,
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Abstract

The study of products of groups whose factors are linked by certain permutability
conditions has been the subject of fruitful investigations by a good number of au-
thors. A particular starting point was the interest in providing criteria for products
of supersoluble groups to be supersoluble. We take further previous research on total
and mutual permutability by considering significant weaker permutability hypothe-
ses. The aim of this note is to report about new progress on structural properties
of factorized groups within the considered topic. As a consequence, we discuss new
attainments in the framework of formation theory.

1 Introduction

In this survey only finite groups are considered.
The study of groups factorized as the product of two subgroups has been the sub-

ject of considerable interest in recent years. One of the important questions dealing
with this study is how the structure of the factors a↵ects the structure of the whole
group and vice versa. A natural approach to this problem is provided by the the-
ory of classes of groups. In this context, the above question can be reformulated
as when the belonging of the factors of a factorized group to a class of groups is
transferred to the whole group and reciprocally. It is well known that the product of
two normal supersoluble subgroups is not supersoluble, in general. Nevertheless, the
class of all supersoluble groups U is closed under forming direct and central products.
It seems then natural to consider factorized groups in which certain subgroups of
the corresponding factors permute, in order to obtain new criteria of supersolubility.
A starting point of this research can be located at M. Asaad and A. Shaalan’s pa-
per [6]. They considered factorized groups G = AB where A and B are supersoluble
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subgroups and, in particular, they proved that G is supersoluble under any of the
following conditions:

(i) Every subgroup of A permutes with every subgroup of B.

(ii) A permutes with every subgroup of B, B permutes with every subgroup of A
and, moreover, the derived subgroup G0 of G is a nilpotent group.

Products of groups whose factors satisfy condition (i) were called totally permutable
products by R. Maier in [33], where he proved that a corresponding result remains
valid when the saturated formation U of all supersoluble groups is replaced by any
saturated formation containing U . Later on this result was also extended to non-
saturated formations which contain U (see [14]). On the other hand, factorized groups
whose factors satisfy the permutability property stated in (ii) were called mutually
permutable products by A. Carocca in [21]. In [9] it was proved that a corresponding
result under condition (ii) is true when supersolubility is again replaced by contain-
ment in any saturated formation containing U . Totally and mutually permutable
products of groups have since been subject of an in-depth study, both in the frame-
works of formation theory (see [9, 10, 11, 13, 14, 15, 19, 22, 23, 33]) as well as in the
theory of Fitting classes (see [16, 18, 20, 27, 28, 29]), and its structure is currently
very well understood. An exhaustive report on this matter appears in [8].

More recently, this study has been spread by introducing a weaker condition of sub-
group permutability, namely conditional permutability, which requires permutability
for some conjugates of the considered subgroups. Using this permutability property
new criteria for a product of supersoluble groups to be supersoluble are obtained in
[26, 31, 32] and by the authors in [2], extending known results. A generalization in
the framework of formation theory has been initiated in [5]. In [3] recent develop-
ments involving conditional permutability and other close permutability properties,
in relation with products of groups, supersolubility and formation theory, have been
collected.

This survey reports about new progress on the current research on the topic. We
aim to contribute a better understanding of structural properties of products of groups
under consideration as well as to analyze to which extent permutability hypotheses
can be weakened. This has led to the interest in a stronger variant of conditional
permutability, namely complete conditional permutability. This information will be
used to obtain new achievements in the context of formation theory. The results
presented here can be found mainly in [2, 4, 5].

We recall that a formation is a class F of groups closed under homomorphic images,
such that G/(N \ M) 2 F whenever G is a group and M,N are normal subgroups
of G with G/N,G/M 2 F . In this case the F-residual GF of G is the smallest normal
subgroup of G such that G/GF 2 F . The formation F is saturated if G 2 F whenever
G/�(G) 2 F , where �(G) denotes the Frattini subgroup of G.

For notation we refer to [24].

2 Conditional permutability

We follow W. Guo et al. in [25, 26], and collect the following concepts:

Definition 2.1 Let G be a group. Two subgroups X and Y of G are called condi-
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tionally permutable (c-permutable, for brevity) in G if X permutes with Y g for some
element g 2 G.

The subgroups X and Y are called completely conditionally permutable (or com-
pletely c-permutable) in G if X permutes with Y g for some element g 2 hX,Y i, the
subgroup generated by X and Y .

Two subgroups A and B of G are said to be totally conditionally permutable (or
totally c-permutable) if every subgroup of A is c-permutable in G with every subgroup
of B. Moreover, if G = AB, we say that G is the totally c-permutable product of the
subgroups A and B.

Two subgroups A and B of G are said to be totally completely conditionally per-
mutable (or totally completely c-permutable) in G if every subgroup of A is completely
c-permutable in G with every subgroup of B. If G = AB, we say that G is the totally
completely c-permutable product of the subgroups A and B.

Conditional permutability has been considered by several authors in extending
classical results about the influence of permutability properties of certain families of
subgroups on the structure of groups (see [25, 30, 34]).

We mention that c-permutability fails to satisfy the property of persistence in
intermediate subgroups; i.e., if X and Y are c-permutable subgroups in a group G,
then X and Y are not necessarily c-permutable in any subgroup M of G such that
X,Y  M  G, as the next example shows (see [2, 5]). This makes a relevant
di↵erence between c-permutability and complete c-permutability. In fact, complete
c-permutability appears when requiring c-permutability to satisfy this persistence
property and becomes a stronger hypothesis.

Example 2.2 Let G = Sym(4) be the symmetric group of degree 4, Y a subgroup
of G of order 2 generated by a transposition, V the normal subgroup of G of order 4
and X a subgroup of V of order 2, X 6= Z(V Y ). Then X and Y are c-permutable
in G but they are not c-permutable in hY,Xi.

We point out that totally permutable products are examples of totally (completely)
c-permutable products, but the converse is not true in general. Also mutually per-
mutable products are not necessarily totally (completely) c-permutable products and
vice versa. These facts will appear clear along this survey.

We remark however that a totally completely c-permutable product of two sub-
groups is indeed a mutually permutable product whenever the factors are nilpotent
groups, and it is totally permutable if one of the factors is a nilpotent normal subgroup
(see [4]).

3 Structural properties

In this section we report on structural properties of the factorized groups under
consideration. It is nice to think of totally permutable products as extension of central
products as well as of mutually permutable products as extension of normal products.
In this sense, the goal of finding either centralizing or subnormality properties of
relevant subgroups of the factors have become a key point in this research. Many
authors have contributed to the knowledge of the structure of this kind of products
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(for instance, [1, 7, 14, 15, 16, 17, 20, 21, 33]). We wonder whether relevant structural
properties known for totally and mutually permutable product are satisfied under
weaker permutability conditions as complete conditional permutability.

We begin by stating that one cannot find totally completely c-permutable products
with all factors being core-free subgroups:

Lemma 3.1 ([5]) Let the group 1 6= G = G1 · · ·Gr be the product of pairwise per-
mutable subgroups G1, . . . , Gr, for r � 2. Assume that Gi and Gj are totally com-
pletely c-permutable subgroups for all i, j 2 {1, . . . , r}, i 6= j. Then there exists
1 6= N EG such that N  Gi for some i 2 {1, . . . , r}.

The corresponding result for totally permutable products was proved in [33] (for
r = 2) and in [22] (for r arbitrary). In [17] it was shown that in a product of two
mutually permutable subgroups the product of the cores of the factors is non-trivial.

Within the study of mutually and totally permutable products, the intersection of
the factors plays an important role (see, for instance, [1, 7, 16, 19, 21]). In particular,
a mutually permutable product of subgroups with trivial intersection is totally per-
mutable ([21]). More in general, in a mutually permutable product, this intersection
is a subnormal subgroup in the whole group (see [16, 21]).

The following example shows that this result is not further true in general in a
totally completely c-permutable product:

Example 3.2 ([2, 5]) We consider the symmetric group G = Sym(3) of degree 3
and the trivial factorization G = AB being A = G and B = X a 2-Sylow subgroup of
G. Then every subgroup of A is completely c-permutable in G with every subgroup
of B, but B = A \B is not subnormal in G.

However we will see next that it is possible to find a variety of relevant subnormal
subgroups in the factors of a product of totally completely c-permutable subgroups.

In [16] it was shown that the derived subgroup of each factor in a mutually per-
mutable product is a subnormal subgroup in the product. The same holds true for
products of totally completely c-permutable subgroups.

Proposition 3.3 ([4]) Let the group G = G1 · · ·Gr be the product of pairwise per-
mutable subgroups G1, . . . , Gr, for r � 2. Assume that Gi and Gj are totally com-
pletely c-permutable subgroups for all i, j 2 {1, . . . , r}, i 6= j. Then G0

i is a subnormal
subgroup of G, for all i 2 {1, . . . , r}.

Consequently, if F is a formation containing A, the class of all abelian groups,
we can deduce that the F-residual of each factor in a product of totally completely
c-permutable subgroups is a subnormal subgroup of the product.

Totally permutable products are also close to central products since in such prod-
ucts the nilpotent residual of each factor centralizes the other one, that is, ifG = AB is
the totally permutable product of the subgroups A and B, then [AN , B] = [BN , A] =
1, where N is the class of all nilpotent groups (see [15]).

In particular, if F is a formation such that N ✓ F , then [AF , B] = [BF , A] = 1
and AF and BF are normal subgroups in G = AB.
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Regarding mutual permutability, J. Bochtler in his PhD Thesis [19] ([8, Theorem
4.4.5]) proved that in a mutually permutable product of subgroups A and B, the
nilpotent residual of each factor normalizes the other factor.

The next example shows that these properties fail for totally completely c-perm-
utable products:

Example 3.4 ([2, 5]) Consider V = ha, bi ⇠= Z5 ⇥ Z5 and Z6
⇠= C = h↵,�i 

Aut(V ) given by a↵ = a�1, b↵ = b�1, a� = b, b� = a�1b�1. Let G = [V ]C the
corresponding semidirect product of V with C. Set A = h↵i and B = V h�i. Then
G = AB is a totally completely c-permutable product, but [A,BN ] = [A, V ] 6= 1. On
the other hand, BN = V does not normalizes A.

Nevertheless, under this new permutability condition, it was proved in [4] that the
nilpotent residuals of the factors are normal subgroups in the product:

Theorem 3.5 ([4]) Let the group G = G1 · · ·Gr be the product of pairwise per-
mutable subgroups G1, . . . , Gr, for r � 2. Assume that Gi and Gj are totally com-
pletely c-permutable subgroups for all i, j 2 {1, . . . , r}, i 6= j. Then GN

i is a normal
subgroup of G, for all i 2 {1, . . . , r}.

Hence, we deduce that in such products if F is a formation with N ✓ F , then the
F -residual of each factor is a subnormal subgroup in the product. Moreover, if F is a
saturated formation containing U , the F-residual of each factor is a normal subgroup
in the product, as we shall see in Corollary 4.2.

Another important structural property which holds in a totally permutable product
G = AB is that the commutator subgroup [A,B] of the factors is a nilpotent normal
subgroup in G (see [15]). This result follows as a direct consequence of the centralizing
property of the nilpotent residuals of the factors. In spite of the failure of this result
for totally completely c-permutable products as Example 3.4 shows, it is relevant that
the property of the commutator remains true in this more general framework. This
fact appears now as a deep result which involves the classification of finite simple
groups.

Theorem 3.6 ([4]) Let the group G = AB be the product of totally completely c-
permutable subgroups A and B. Then [A,B]  F (G).

For a totally permutable product G = AB, P. Hauck et al. in [27] proved that
[A,B]  Z

U

(G), where Z
U

(G) denotes the U-hypercentre of G (the largest normal
subgroup of G such that every chief factor X/Y of G with Y < X  Z

U

(G) is cyclic of
prime order). Example 3.4 shows that this property is missed when permutability is
weakened to complete conditional permutability, because in that example Z

U

(G) = 1.
Theorem 3.6 allows us however to derive the following centralizing property for

totally completely c-permutable products:

Corollary 3.7 ([4]) Let the group G = AB be the product of totally completely
c-permutable subgroups A and B. Then:

(i) If A is a normal subgroup of G, then B acts u-hypercentrally on A by conjugation
(see [24, IV. 6.2]). In particular, BU centralizes A.
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(ii) [AU , BU ] = 1.

Another significant consequence of Theorem 3.6 has been the description of the
structure of a monolithic primitive group which is a product of totally completely
c-permutable subgroups. Corollary 3.8 and Lemma 3.9 below play an important role
in the study of this kind of products and saturated formations presented in Section 4.

Corollary 3.8 ([4]) Let the group G = G1 · · ·Gr be the product of pairwise per-
mutable subgroups G1, . . . , Gr, for r � 2, and Gi 6= 1 for all i = 1, . . . , r. Assume
that Gi and Gj are totally completely c-permutable subgroups for all i, j 2 {1, . . . , r},
i 6= j. Let N be a minimal normal subgroup of G. Then:

1. If N is non-abelian, then there exists a unique i 2 {1, . . . , r} such that N  Gi.
Moreover, Gj centralizes N and N \Gj = 1 for all j 2 {1, . . . , r}, j 6= i.

2. If G is a monolithic primitive group, then the unique minimal normal subgroup
N is abelian.

Lemma 3.9 ([4]) Let the group 1 6= G = G1 · · ·Gr be the product of pairwise per-
mutable subgroups G1, . . . , Gr, for r � 2. Assume that Gi and Gj are totally com-
pletely c-permutable subgroups for all i, j 2 {1, . . . , r}, i 6= j. Assume in addition
that G is a primitive group of type 1 (see [24, A. 15.2]). Let N be the unique minimal
normal subgroup of G and p be a prime divisor of |N |. Then either G is supersoluble
or the following conditions are satisfied:

(i) w.l.o.g. N  G1;

(ii) G2 · · ·Gr is a cyclic group whose order divides p� 1;

(iii) there exists a maximal subgroup M of G with CoreG(M) = 1 such that M =
(M \G1)(G2 · · ·Gr) and M \G1 centralizes G2 · · ·Gr.

4 Products of groups and formations

Motivated by the previous research on products of totally permutable subgroups and
formations (see [10, 11, 13, 14]) it is natural to ask whether analogous results can be
achieved by weakening permutability to complete c-permutability. A first approach to
this study for products of totally completely c-permutable subgroups and saturated
formations of soluble groups containing U was carried out in [5]. The better knowledge
of the structure of such products has allowed to extend the results in that paper to
the non-soluble universe. Nevertheless, we give examples showing that the hypothesis
of saturation for the formations involved can not be removed.

Theorem 4.1 ([4]) Let F be a saturated formation containing U . Let the group
G = G1 · · ·Gr be the product of pairwise permutable subgroups G1, . . . , Gr, for r � 2.
Assume that Gi and Gj are totally completely c-permutable subgroups for all i, j 2
{1, . . . , r}, i 6= j. Then:

1. If Gi 2 F for all i = 1, . . . , r, then G 2 F .

2. If G 2 F , then Gi 2 F for all i = 1, . . . , r.
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Part (1) was first proved for totally permutable products of subgroups and satu-
rated formations F such that U ✓ F in [33] (for r = 2) and in [22] (for r arbitrary).
Later on this result was also extended to non-saturated formations which contain U
(see [11, 14]). In [10, 11, 14] the authors showed that the converse holds whenever F
is a formation containing U such that either F is saturated or F ✓ S, where S is the
class of all soluble groups.

A stronger version of the previous theorem by means of F-residuals can be stated
as follows:

Corollary 4.2 ([4]) Let F be a saturated formation containing U . Let the group
G = G1 · · ·Gr be the product of pairwise permutable subgroups G1, . . . , Gr, for r � 2.
Assume that Gi and Gj are totally completely c-permutable subgroups for all i, j 2
{1, . . . , r}, i 6= j. Then:

1. GF

i EG for all i = 1, . . . , r.

2. GF = GF

1 · · ·GF

r .

For totally permutable products Corollary 4.2(2) is also true if F is any formation
of soluble groups containing U , and part (1) is verified for F a formation such that
U ✓ F (see [11]).

The following examples show that none of the statements in Theorem 4.1 remains
true for arbitrary non-saturated formations containing U , even in the universe of
soluble groups:

Example 4.3 ([4]) We consider the set of all prime numbers P and define a mapping
f : P �! {classes of groups} by setting f(5) = (1, Z2, Z4, Z3) and f(p) to be the class
of abelian groups of exponent dividing p � 1 for all p 6= 5. Let F be the class of all
soluble groups G such that AutG(S) 2 f(p) for all p-chief factors S of G and for all
primes p dividing the order of G. By [24, IV. 1.3] it follows that F is a formation of
soluble groups, and clearly also U ✓ F .

Now we consider again Example 3.4: Let V = ha, bi ⇠= Z5 ⇥ Z5 and Z6
⇠= C =

h↵,�i  Aut(V ) given by

a↵ = a�1, b↵ = b�1; a� = b, b� = a�1b�1.

Let G = [V ]C be the corresponding semidirect product of V with C. Set A = h↵i
and B = V h�i. Then G = AB is the product of totally completely c-permutable
subgroups A and B. Observe that A and B are F-groups. But G 62 F , because
G/CG(V ) ⇠= Z3 ⇥ Z2 62 f(5). This shows that Theorem 4.1(1) is not valid if the
formation under consideration is not assumed to be saturated.

We modify the construction of the formation F by considering f(5) = (1, Z2, Z4,
Z6). It holds now that G,A 2 F but B 62 F because B/CB(V ) ⇠= Z3 62 f(5), which
shows the necessity for the formation to be saturated in order to prove Theorem 4.1(2).

The behavior of F-projectors, when F is a saturated formation of soluble groups
containing U , in products of totally completely c-permutable subgroups, studied in [5]
can be also extended to the non-soluble universe.
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Corollary 4.4 ([4]) Let F be a saturated formation containing U . Let the group
G = AB be the product of totally completely c-permutable subgroups A and B. Then
there exist F-projectors X of A and Y of B such that X is permutable with Y . In
this case XY is an F-projector of G.

As stated in [4] it is an open question whether the above result can be extended to
an arbitrary finite number of pairwise permutable factors. We mention that a positive
answer holds for totally permutable products (see [11]).

On the other hand, in the spirit of Corollary 4.2, for mutually permutable products
with nilpotent derived subgroup, the original result of M. Asaad and A. Shalaan [6],
mentioned in the Introduction, can be generalized in the following sense: for a sat-
urated formation F containing U and a group G = G1 · · ·Gr which is a pairwise
mutually permutable product of the factors and with nilpotent derived subgroup, it
holds that GF = GF

1 · · ·GF

r ([8, Theorem 5.2.23]).
In [19] (see also [8, Theorem 4.5.8]) it was proved that if G = AB is the mutually

permutable product of A and B, CoreG(A \ B) = 1 and F is a saturated formation
containing U , then GF = AFBF . This result appears at once as an extension of a
previous result in [1] which states that a mutually permutable product of supersoluble
subgroups A and B such that CoreG(A \B) = 1 is supersoluble.

Nevertheless the situation is di↵erent in relation with F-projectors, for saturated
formations F (containing U), and mutually permutable products. An example in [9]
shows a mutually permutable product G = AB with G0 nilpotent and such that A
and B possess corresponding U-projectors whose product is a subgroup but not a
U -projector of G.
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[4] M. Arroyo-Jordá, P. Arroyo-Jordá, A. Mart́ınez-Pastor and M.D. Pérez-Ramos, On con-
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ucts of totally permutable groups, Bull. Austral. Math. Soc. 53 (1996), 441–445.

[11] A. Ballester-Bolinches, M.C. Pedraza-Aguilera and M.D Pérez-Ramos, Finite groups
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Arroyo-Jordá et al.: Factorized groups and subgroup permutability 151

(1992), 540–544.
[34] G. Qian and P. Zhu, Some su�cient conditions for supersolvability of groups, J. Nanjing

Normal Univ. (Nature Science) 21 (1998), 15–21 (in Chinese).



A SURVEY ON THE NORMALIZER PROBLEM FOR INTEGRAL
GROUP RINGS

ANDREAS BÄCHLE
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Abstract

We give a survey of the normalizer problem for integral group rings. This question
asks whether the normalizer of the group basis in the unit group of the group ring
only contains the “obvious” units. It played an important role when M. Hertweck
provided a counterexample for a long-standing conjecture, namely the isomorphism
problem for integral group rings, which asks whether a finite group is determined by
its integral group ring. We also give a quick account on the subgroup normalizer
problem, which is a variation of the “classical” normalizer problem, where arbitrary
subgroups of a group basis are considered.

1 Basic definitions and motivations

Let G be a (possibly infinite) group, R be a commutative ring with identity element
and RG be the group ring of G with coe�cients in R. We denote by U(RG) the
group of units of the group ring RG. Clearly, when considering G as a subgroup of
the group of units of RG, it is normalized by all elements of G and by central units,
but it turned out that in many cases equality holds, i.e.,

N
U(RG)

(G) = G · Z(U(RG)). (NP)

In this case we say that G has the normalizer property for the coe�cient ring R,
or (NP) holds for RG. Note that this property strongly depends on the coe�cient
ring R. Some authors say that a group has the normalizer property if (NP) is satisfied
for all G-adapted coe�cient rings R (cf. next section for a definition). The problem
to decide whether a given group has the normalizer property is often referred to as
normalizer problem. The question whether the normalizer property holds for all finite
groups was raised by S. Jackowski and Z. Marciniak in [13, Question 3.7] and also
made its way in the collection of important research questions in the book of S. Sehgal
[24, Problem 43].

The normalizer problem gained popularity when M. Mazur established a connection
to the long standing question of the isomorphism problem, namely whether a finite
group is determined by the corresponding group ring, i.e., if for finite groups X and Y
the implication

ZX ' ZY ) X ' Y (IP)

holds. M. Mazur proved in [18] the following theorem.

Theorem 1.1 (Mazur) Let G be a group and ↵
0

, �
0

2 Aut(G). Consider the
homomorphisms ↵, � : C1 = hxi ! Aut(G) determined by x 7! ↵

0

and x 7! �
0

,
respectively. Then
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1. Go

↵

C1 ' Go

�

C1 if and only if ↵
0

��1

0

is an inner automorphism of G.

2. R[Go

↵

C1] ' R[Go

�

C1] if and only if ↵
0

��1

0

is an inner ring automorphism
of RG.

This connected the isomorphism problem (for infinite groups) to the question
whether group automorphisms may become inner when considered as automorphism
of the group ring (cf. next section). This was used by K. W. Roggenkamp and A. Zim-
mermann together with their discovery that outer group automorphisms become inner
in a particular semi-local group ring [22] to find a counterexample to the isomorphism
problem for (infinite) polycyclic groups over such rings [23]. Later, M. Hertweck con-
structed in his PhD thesis an example of a finite group not satisfying the normalizer
property and cleverly adapted the just mentioned idea of M. Mazur to finally settle
the isomorphism problem in the negative. He proved in [12, Theorem A, Theorem B],
cf. also [8, Theorem A, Theorem B], the following.

Theorem 1.2 (Hertweck) There is a metabelian group G of order 225 · 972 such
that (NP) does not hold for ZG.

Theorem 1.3 (Hertweck) There are two non-isomorphic solvable groups X and Y
of order 221 · 9728 with isomorphic integral group rings.

For finite groups and the coe�cient ring Z these are up to date the only known
counterexamples to (NP) and (IP).

Our notation is mostly standard. For group elements x and y we put xy = y�1xy
and [x, y] = x�1y�1xy. By [X,Y ] we denote the group generated by all [x, y] for all
x 2 X, y 2 Y . For a subset X ✓ G the subgroup of G generated by X is denoted by
hXi. (If one of the sets in the previous situations is a singleton we will omit the set
braces.) Z(G) denotes the center of the group G, C

G

(X) and N
G

(X) the centralizer
and the normalizer of the subset X in the group G, respectively. By C

n

we denote a
cyclic group of order n, where n 2 N [ {1}.

2 Some tools

The normalizer property can be restated in terms of automorphism groups. Denote
by Inn(G) the group of inner automorphisms of G, i.e., the automorphisms induced
by conjugation of elements of G and by Aut

RG

(G) the group of automorphisms of G
induced by units of RG normalizing G.

Proposition 2.1 Let G be a group G and R a commutative ring with 1. Then the
following are equivalent:

1. (NP) holds for RG.

2. Aut
RG

(G) = Inn(G).

3. For every u 2 N
U(RG)

(G) there exists g 2 G such that [gu,G] = 1.

The group Aut
RG

(G) can be “bounded” by other groups which are defined in
purely group-theoretical terms. For an element x 2 G denote by xG its conjugacy
class in G. Put Aut

c

(G) = {' 2 Aut(G) | 8x 2 G : x' 2 xG}, the group of class-
preserving automorphisms. If all conjugacy classes are finite it can be easily seen
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that Aut
RG

(G)  Aut
c

(G) using class sums. The statement is also true for arbitrary
groups, cf. [10, Theorem 17.3].

H. N. Ward [25] and independently D. Coleman [4] proved that if P is a p-subgroup
of G for some rational prime p, then N

U(RG)

(P ) = N
G

(P ) · C
U(RG)

(P ), provided the
rational prime p is not invertible in R (this result is nowadays known as Coleman
lemma). Let G be a group and R an integral domain of characteristic 0, then R is
called G-adapted if, whenever there exists an element of order a rational prime p
in G, then p is not invertible in R. Call an automorphism of a finite group G a
Coleman automorphism if its restriction to any Sylow subgroup coincides with the
restriction of an inner automorphism of G, and let Aut

Col

(G) be the group of all such
automorphisms. Then the Coleman lemma shows that, for a finite group G and a
G-adapted ring R, Aut

RG

(G)  Aut
Col

(G).
The group of class-preserving automorphisms has been a subject of study for more

than a century. W. Burnside already asked in his textbook [2, Note B] “Does there
exist any finite group G such that G has a non-inner class preserving automorphism?”
and provided in 1913 several examples of such groups [3], namely the groups of lower
unitriangular 3 ⇥ 3-matrices over fields with p2 elements for primes p ⌘ ±3 mod 8.
Since then there were more examples examined having non-inner class-preserving au-
tomorphisms, cf. for example the survey article of M. Yadav [26]. On the other hand
there were results ensuring that in certain cases the group Aut

c

(G) is as small as pos-
sible, i.e., coincides with Inn(G). For example W. Feit and G. M. Seitz [5, Theorem C]
showed, using the classification of finite simple groups, that Aut

c

(G) = Inn(G) for all
finite simple groups, settling the normalizer problem at once for these groups. Also
M. Hertweck showed that all elements of Aut

c

(G) are inner automorphism if G is a
finite group having an abelian normal subgroup such that the corresponding quotient
is cyclic [10, Proposition 14.4].

A result by J. Krempa [13, Theorem 3.2] guarantees that the quotient group
Aut

ZG

(G)/ Inn(G) is an elementary abelian 2-group. His proof makes use of the
anti-involution ⇤ of the group ring RG induced by the anti-automorphism g 7! g�1

of the group G, having for the coe�cient ring Z the striking property that for a unit
u 2 ZG, uu⇤ = 1 , u 2 ±G. This was generalized by M. Mazur in [19, Corol-
lary 14] to the case where the coe�cient ring is the ring of algebraic integers in a
number field K such that the complex conjugation is central in the Galois group of
the normal closure of K over Q. Thus in this case it is enough to show that the group
(Aut

Col

(G)\Aut
c

(G))/ Inn(G) is a 20-group to verify the normalizer property. It was
observed by S. Jackowski and Z. Marciniak that the only rational primes that could
occur as divisors of |Aut

c

(G)| are the primes dividing |G|. M. Hertweck and W. Kim-
merle showed that the corresponding statement holds true for the prime divisors of
|Aut

Col

(G)|. For details cf. [11, Proposition 1]. Using GAP [6] one could verify (NP)
for groups G of order at most 161 and G-adapted rings R by calculating their groups
of class-preserving and Coleman automorphisms.

3 Finite groups having the normalizer property

In the following theorems we list important classes of finite groups for which the
normalizer property is known to be true.
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Theorem 3.1 Let G be a finite group. Then (NP) holds for ZG provided one of the
following is true:

1. G has a normal Sylow 2-subgroup (Jackowski, Marciniak [13, Theorem 3.6]).

2. G is metabelian with abelian Sylow 2-subgroup (Marciniak, Roggenkamp [17,
Proposition 12.3]).

3. G is metabelian, A E G is abelian, G/A is abelian and has a cyclic Sylow 2-
subgroup (Li [15, Theorem 2.17]).

4. G is a Blackburn group, i.e., the intersection of all non-normal subgroups of G
is non-trivial (Li, Parmenter, Sehgal [16, Theorem 1]).

5. G is a Frobenius group (Petit Lobão, Polcino Milies [21, Theorem 3.1]).

Theorem 3.2 Let G be a finite group and R a G-adapted ring. Then (NP) holds
for RG provided one of the following is true:

1. G is quasi-nilpotent (Hertweck, Kimmerle [11, Corollary 16]).

2. G is solvable and no chief factor of G/O
2

(G) is of order 2 (here O
2

(G) denotes
the largest normal 2-subgroup of G). (Hertweck, Kimmerle [11, Corollary 20]).

4 Infinite groups having the normalizer property

When the investigation of the normalizer problem for infinite groups began, it turned
out that most of the relevant information is already encoded in the so-called support
subgroup of a unit in question, which is finite in many important cases; we give
the relevant definitions. For an element u =

P
g2G u

g

g 2 RG the set supp(u) =
{g 2 G | u

g

6= 0} of the elements of G where u has non-zero coe�cients is called the
support of u. The support subgroup of u is the subgroup hsupp(u)i of G generated
by the elements of the support of u. For a group X let

�(X) = {x 2 X | [X : C
X

(x)] < 1}

be the set of elements having finite conjugacy classes. This set is in fact a char-
acteristic subgroup of X, the FC-center. (For details see [20, Chapter 4].) In [19,
Corollary 1] it is proved by M. Mazur that hsupp(u)i is a normal subgroup of G
contained in �(G) for u 2 N

U(RG)

(G) provided 1 2 supp(u) (the latter can always be
arranged by multiplication by a group element). In [10, Theorem 18.5] M. Hertweck
proved that in this situation hsupp(u)i is finite, if the ring R is �(G)-adapted.

We will now list important classes of (infinite) groups for which the normalizer
property is known.

Theorem 4.1 Let G be a group. Then (NP) holds for ZG provided one of the fol-
lowing is true:

1. G has an abelian subgroup of index 2 (Li, Parmenter, Sehgal [16, Theorem 2]).

2. �(G) has no (non-trivial) 2-torsion elements (Jespers, Juriaans, de Miranda,
Rogerio [14, Theorem 2.1]).

3. G is a torsion group and the 2-elements of G form a normal subgroup (Jespers,
Juriaans, de Miranda, Rogerio [14, Theorem 2.2]).
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4. G is locally nilpotent (Jespers, Juriaans, de Miranda, Rogerio [14, Theorem
2.4]).

5. All finite normal subgroups of G have a normal Sylow 2-subgroup (Hertweck
[10, Corollary 19.11]).

6. G is a Blackburn group, i.e., it contains finite non-normal subgroups and the
intersection of all such subgroups is non-trivial (Hertweck, Jespers, [9, Theorem
3.3]).

For more general coe�cient rings the following results were obtained:

Theorem 4.2 Let G be a group. Then (NP) holds for RG provided one of the
following is true:

1. G is nilpotent and R is �(G)-adapted (Hertweck [10, Corollary 19.13]).

2. All finite normal subgroups of G have a normal p-subgroup containing its own
centralizer in G, p is not invertible in R (Hertweck [10, Corollary 19.15]).

3. G is a locally finite Frobenius group and R is �(G)-adapted (Hertweck [10,
Corollary 19.17]).

5 The normalizer of subgroups

When considering a subgroup H  G of a group basis G one sees that it is normalized
by all elements of N

G

(H) and all units of RG centralizing H . Also in this situation
one might ask if products of those “obvious” units are the only normalizing units,
i.e., if

N
U(RG)

(H) = N
G

(H) · C
U(RG)

(H) (NP, H  G)

holds.
The Coleman lemma is the verification of (NP, H  G) in the case that H is a

p-group. As that lemma turned out to be quite useful in proofs of theorems dealing
with units of integral group rings, it seems to be reasonable to investigate for which
other groups results of this kind could be obtained. Note that the above question can
be seen from two di↵erent standpoints. Either fix an isomorphism type of a group H.
Does (NP, H  G) hold for all groups G in which H embeds? Or it can be seen as a
question on G: Fix a group G and consider (NP, H  G) for all subgroups H of G.
If (NP, H  G) is true for all H  G we will say that G has the subgroup normalizer
property, (SNP) for short. Clearly, (SNP) for G implies (NP) for G. We will report
on results of [1].

Using a similar calculation as in the simplified proof of I. B. S. Passi for [10,
Theorem 17.3] or in the proof of [21, Theorem 3.1] the following result was obtained
[1, Proposition 3.23].

Proposition 5.1 Let H  G. If H is cyclic, then (NP, H  G) holds for arbitrary
rings R.

Proof For an element u =
P

g2G u
g

g 2 RG (u
g

2 R) and a group element x 2 G
denote by "

x

(u) =
P

g2xG u
g

the partial augmentation of u at the conjugacy class of x.
The map "

x

is R-linear and satisfies "
x

(uv) = "
x

(vu) for all u, v 2 RG. Denote by
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[RG,RG]
L

the R-submodule of RG generated by all additive commutators [x, y]
L

=
xy � yx for x, y 2 RG. Note that u 2 [RG,RG]

L

, 8x 2 G : "
x

(u) = 0. Now let
H = hhi and u 2 N

U(RG)

(H). Then

u�1hu� h = [u�1h, u]
L

2 [RG,RG]
L

and consequently "
x

(u�1hu) = "
x

(h) for all x 2 G. As u�1hu 2 H  G this implies
u�1hu 2 hG. Hence u = gz for some g 2 N

G

(H) and z 2 C
U(RG)

(H). ⇤

In [1, Lemma 3.18] the following extension of [10, Lemma 19.4] for subgroups H of
the group basis G was obtained:

Lemma 5.2 (Coleman lemma, relative version) Let H  G and R be a com-
mutative ring with identity element. Let p be a rational prime which is not invertible
in R. Let u 2 N

U(RG)

(H). Then there exists P  H with |H : P | < 1, p - |H : P |
and x 2 supp(u) \N

G

(P ) such that x�1u 2 C
U(RG)

(P ).

Using this lemma and a reduction to direct factors one can prove that the nor-
malizer of subgroups in the unit group is as small as possible for a class of groups
containing finite nilpotent groups:

Theorem 5.3 (Bächle, [1, Theorem 3.26, Theorem 3.42]) Let G be a group.
Then (SNP) holds for RG provided

1. G is a locally nilpotent torsion group and R is a G-adapted ring.

2. G admits a short exact sequence of the form 1 ! C
m

! G ! C
n

! 1 with
m,n 2 N[{1}, where m and n are coprime natural numbers or one of the two
is a rational prime, and R is any commutative ring with 1.

This implies that (SNP) holds for all dihedral groups or finite groups of square-
free order and all coe�cient rings. Also all finite subgroups of O(3,R), the three-
dimensional orthogonal group over the reals, and all groups of order at most 47
satisfy (SNP), cf. [1, Corollary 3.48, Proposition 3.54].

When dealing with the subgroup version of the normalizer problem one is lead to
the group Aut

RG

(H) of automorphisms of H induced by units u 2 N
U(RG)

(H). One
can check that (NP, H  G) holds if and only if Aut

RG

(H) = Inn(H). But in contrast
to the “classical” normalizer problem, where the group Aut

RG

(G) is contained in
Aut

c

(G) and Aut
Col

(G), the groups Aut
c

(H) and Aut
Col

(H) do not always contain
Aut

RG

(H). Here, requiring certain properties just for one prime seems to be fruitful
as was done for the normalizer property in [11]. Let p be a rational prime. An
automorphism ' of a finite group G is called p-central if there exists a Sylow p-
subgroup P of G such that the restriction of ' to P is the identity. Employing
the work of [7] and [11] on p-central automorphisms one obtains as application the
following two results. If H E G and H is a finite simple group, then (NP, H  G)
holds for RG if R is H-adapted [1, Corollary 3.38]. If H is a p-constrained group with
O

p

0(H) = 1 for some prime p, and H EG or H = N
G

(P ) for a Sylow p-subgroup P
of G, then (NP, H  G) holds for RG if p is not invertible in R (here O

p

0(H) denotes
the largest normal subgroup of H whose order is coprime to p) [1, Corollary 3.39].
Also for infinite simple groups H (or more general groups where all finite quotients
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are p-groups for a fixed prime p) the property (NP, H  G) holds true for RG if p is
not invertible in R [1, Proposition 3.19].
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[1] A. Bächle, On torsion subgroups and their normalizers in integral group rings, PhD the-
sis, Universität Stuttgart, 2012, http://elib.uni-stuttgart.de/opus/volltexte/

2013/7887/ (Last visited: June 30, 2013).
[2] W. Burnside, Theory of groups of finite order, 2nd Ed., Dover Publications, Inc., 1955.

Reprint of the 2nd edition (Cambridge, 1911).
[3] W. Burnside, On the outer automorphisms of a group, Proc. London Math. Soc. (2) 11

(1913), 40–42.
[4] D. B. Coleman, On the modular group ring of a p-group, Proc. Amer. Math. Soc. 15

(1964), 511–514.
[5] W. Feit and G. M. Seitz, On finite rational groups and related topics, Illinois J. Math. 33

(1989), 103–131.
[6] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.6.4 ; 2013,

http://www.gap-system.org.
[7] F. Gross, Automorphisms which centralize a Sylow p-subgroup, J. Algebra 77 (1982),

202–233.
[8] M. Hertweck, A counterexample to the isomorphism problem for integral group rings,

Ann. of Math. 154 (2001), 115–138.
[9] M. Hertweck and E. Jespers, Class-preserving automorphisms and the normalizer prop-

erty for Blackburn groups, J. Group Theory 12 (2009), 157–169.
[10] M. Hertweck, Contributions to the integral representation theory of groups, Habilitations-

schrift, Universität Stuttgart, 2004, http://elib.uni-stuttgart.de/opus/volltexte/
2004/1638/ (Last visited: June 26, 2013).

[11] M. Hertweck and W. Kimmerle, Coleman automorphisms of finite groups, Mat. Z. 242
(2002), 203–215.

[12] M. Hertweck, Eine Lösung des Isomorphieproblems für ganzzahlige Gruppenringen von
endlichen Gruppen, PhD thesis, Universität Stuttgart, 1998.

[13] S. Jackowski and Z. Marciniak, Group automorphisms inducing the identity map on
cohomology, J. Pure Appl. Algebra 44 (1987), 241–250.

[14] E. Jespers, S. O. Juriaans, J. M. de Miranda, and J. R. Rogerio, On the Normalizer
Problem, J. Algebra 247 (2002), 24–36.

[15] Y. Li, The normalizer of a metabelian group in its integral group ring, J. Algebra 256
(2002), 343–351.

[16] Y. Li, M. M. Parmenter, and S. Sehgal, On the Normalizer Property for Integral Group
Rings, Comm. Algebra 27 (1999), 4217–4223.

[17] Z. Marciniak and K. W. Roggenkamp, The normalizer of a finite group in its integral
group ring and Cech cohomology, Algebra – Representation Theory: Proceedings of the
NATO Advanced Study Institute (Klaus W. Roggenkamp and Mirela Ştefănescu, eds.),
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Abstract

Bernd Fischer presented a powerful and interesting technique, known as Cli↵ord-
Fischer theory, for calculating the character tables of group extensions. This tech-
nique derives its fundamentals from the Cli↵ord theory. The present article surveys
the developments of Cli↵ord-Fischer theory applied to group extensions (split and
non-split) and in particular we focus on the contributions of the second author and
his research groups including students.

1 Introduction

The character table of a finite group is a very powerful tool to study the group struc-
ture and to prove many results. Any finite group is either simple or has a non-trivial
normal subgroup and hence will be of extension type (non-trivial). The classification
of finite simple groups, more recent work in group theory, has been completed in 1985
and since then the researchers concentrated on the generation, subgroup structures
of the finite simple groups and their automorphism groups. Few also studied the
interplay between finite simple groups and combinatorial structures. A knowledge
of the character table of a finite group G provides considerable information about G
and hence it is of importance in the Physical Sciences as well as in Pure Mathemat-
ics. Character tables of finite groups can be constructed using various theoretical
and computational techniques. The character tables of all the maximal subgroups
of the sporadic simple groups are known, except for some maximal subgroups of the
Monster M and the Baby Monster B. There are several well-developed methods for
calculating the character tables of group extensions and in particular when the kernel
of the extension is an elementary abelian group. For example, the Schreier-Sims algo-
rithm, the Todd-Coxeter coset enumeration method, the Burnside-Dixon algorithm
and various other techniques. Bernd Fischer [18, 19, 20] presented a powerful and
interesting technique for calculating the character tables of group extensions. This
technique, which is known as Cli↵ord-Fischer matrices, derives its fundamentals from
the Cli↵ord theory [17]. Let G = N ·G, where N C G and G/N ⇠= G, be a finite group
extension. If we know generators or a presentation of G and we are only interested in
the calculation of the character table, then it could be computed by using Magma [16]
or GAP [21] provided G is of a reasonable size. But Cli↵ord-Fischer theory provides
many other interesting information on the group and on the character table, in partic-
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ular a character table produced by Cli↵ord-Fischer theory is in a special format that
could not be achieved by direct computations using GAP or Magma. Also applying
Cli↵ord-Fischer theory to both split and non-split extensions is making sense, since
each group requires individual approach. The readers (particulary young researchers)
will highly benefit from the theoretical background required for these computations.
GAP and Magma are computational tools and would not replace good powerful and
theoretical arguments. The following systematic steps show how to find the conjugacy
classes and the character table of a group extension via the coset analysis technique
and Cli↵ord-Fischer theory.

The first step in constructing the character table of any finite group is to find its
conjugacy classes. The basic idea of the coset analysis technique is to consider for
each conjugacy class [gi]G, one coset Ngi, where gi is a pre-image of gi in G. Then
we act N (by conjugation) on the coset Ngi, followed by the action of G on the
resulting orbits of the action of N on Ngi. Corresponding to each class [gi]G, we
construct a number of conjugacy classes of G (we denote the number of G-classes
correspond to [gi]G by c(gi)). That is each conjugacy class of G corresponds uniquely
to a conjugacy class of G and hence the coset analysis organizes the G-classes into
cosets corresponding to the G-classes representatives.

The group G has dual action on the conjugacy classes of N and on Irr(N) and
Brauer Theorem (see Theorem 5.1.5 of Mpono [26] for example) asserts that the
number of orbits on the two actions is the same. Please note that orbits lengths of
the two actions may be di↵erent. Indeed if N is non-abelian, then

t
X

k=1

|✓kG| = |Irr(N)| 6= |N | =
t

X

k=1

|[nk]
G
N |,

where

• t is the number of orbits on the action of G on the conjugacy classes of N or
on Irr(N),

• ✓k and nk are respective class representatives of characters and conjugacy classes
of N,

• ✓kG and [nk]GN are orbits of N containing ✓k and nk, respectively, on the action
of G on Irr(N) and on the conjugacy classes of N respectively.

For a representative character ✓k, k 2 {1, 2, · · · , t}, we refer to the stabilizer of ✓k
in G by the inertia group, denoted by Hk. Note that Hk  G, 8k. Each inertia group
contains N normally and the quotient group is referred to as the inertia factor group,
denoted by Hk. Note that Hk  G, 8k. Now for the characters ✓k, k 2 {1, 2, · · · , t},
two cases are distinguished. Either all ✓k are extendable to ordinary characters of
their respective inertia groups Hk, 1  k  t, or some are non-extendable. In the
case of extendability of every character ✓k, the set of irreducible characters of G is
given by

Irr(G) =
ṫ
[

k=1

n

( k inf(⇣))"GHk
| ⇣ 2 Irr(Hk/N)

o

. (1)

If for some k 2 {1, 2, · · · , t}, the character ✓k, is not extendable to an ordinary
character of Hk, then it is extendable to a projective character e k of Hk with some
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factor set ↵�1
k of the Schur multiplier of Hk. Thus a more proper formula for Eq. (1)

is given by

Irr(G) =
ṫ
[

k=1

n

( e k inf(⇣))"GHk
| e k 2 IrrProj(Hk,↵

�1
k ), ⇣ 2 IrrProj(Hk/N,↵�1

k )
o

,

(2)
where the factor set ↵k is obtained from ↵k as described in Corollary 7.3.3 of Whitely
[40]. In fact this is method Cli↵ord theory for obtaining the Irr(G). From Eq. (2)
we can see that the character table of G is partitioned into t blocks K1,K2, · · · ,Kt,
where each block Kk of characters (ordinary or projective) is produced from the inertia
group Hk.

Note that to calculate the character table of G through Cli↵ord theory (using
Eq. (2)), we need to deal with the character tables (ordinary or projective) of the
inertia groups. In practise we do not attempt to compute the character table of Hk,
simply because the character tables of these inertia groups are usually much larger
and more complicated to compute than the character table of G itself. Bernd Fischer
suggested to use the character tables of the inertia factor groups Hk together with
some matrices, called by him Cli↵ord matrices (throughout this paper we refer to
them as Fischer matrices), to construct the character table of G. Calculating the
character table of G in this way is known as the Cli↵ord-Fischer theory. Thus to
apply Cli↵ord-Fischer Theory we firstly need to determine the structures and the
character tables (ordinary or projective) of all the inertia factors Hk together with
the Fischer matrices. One of the biggest challenges in Cli↵ord-Fischer theory is the
determination of the type of the character table of Hk (projective or ordinary), which
is to be used in the construction of the character table of G. We may firstly assume
that all the irreducible characters of N are extendible to their respective inertia
groups and consequently all the character tables of the Hk that we need to use are
the ordinary ones. However, in general, there is no reason guaranteeing that one can
work with the ordinary characters of Hk, 2  k  t (see Section 5.1 of Basheer [8]
for some partial results on extendability of characters). Thus in practice making the
right choice of the appropriate projective character table of Hk, with factor set ↵k,
might be di�cult unless the Schur multipliers of all the Hk are trivial. Otherwise
there will be many combinations (for each Hk, there are many projective character
tables associated with di↵erent factor sets of the Schur multiplier of Hk) and one has
to test all the possible choices and eliminate the choices that lead to contradictions.
Sometimes Eq. (5.7) of Basheer [8] might also be useful to prove that we need to use
projective characters of some of the inertia factors of G.

Once we have determined for each inertia factor group Hk, the appropriate projec-
tive character table with factor set ↵k, the next step in our construction will be the
determination of the fusions of the ↵k-regular classes of Hk into classes of G.

The next step in our construction is the computations of the Fischer matrices.
These are non-singular square unique (up to the permutations of rows and columns)
associated to the conjugacy classes [gi]G, and denoted by Fi. These matrices satisfy
several interesting properties and certain orthogonality relations. There is an inter-
esting interplay between the coset analysis and Cli↵ord-Fischer Theory. Indeed the
size of each Fischer matrix is c(gi), the number of G-classes corresponding to [gi]G
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obtained via the coset analysis technique. That is computations of the conjugacy
classes of G using the coset analysis technique will determine the sizes of all Fischer
matrices. Note that in some cases we have used information on the sizes of some
of the Fischer matrices (which in turn were determined through the coset analysis)
to help in determining the inertia factor groups (see the proof of Proposition 10.3.2
of [8]). Also we attach many information (obtained through the coset analysis) to
the top and bottom of each Fischer matrix and these information are useful in the
computations of the entries of Fischer matrices.

In this survey article we go briefly over the technique of the coset analysis and
Cli↵ord-Fischer theory applied to both split and non-split group extensions. The
second author has a significant contribution to this domain. Indeed he developed
the coset analysis technique in his PhD thesis [24] and in [25]. Then together with
his MSc and PhD students (including the first author), they enriched this area of
research by applying the above mentioned techniques to many various split and non-
split group extensions in a considerable number of publications. For example, but not
limited to, one can refer to [6], [9], [10], [11], [12], [13], [14], [15], [28], [29], [32], [33],
[34], [35], [36], [38] or [40]. Barraclough produced an interesting PhD thesis [7], which
contained a chapter on the method of Cli↵ord-Fischer theory. He used this method to
find the character table of any group of the form 22·G:2 for any finite group G. Also
in 2007, H. Pahlings [37] calculated the Fischer matrices and the character table of
the non-split extension 21+22

+
·Co2, which is the second largest maximal subgroup of

the Baby Monster group B. Then in 2010, H. Pahlings together with his student K.
Lux published an interesting book [22] containing a full chapter on Cli↵ord-Fischer
theory that includes several examples on the application of the method.

2 Conjugacy Classes of Group Extensions

In the following we give a shortened description on how the coset analysis can be used
to determine the conjugacy classes of any group extension.

For each g 2 G let g 2 G map to g under the natural epimorphism ⇡ : G �! G and
let g1 = Ng1, g2 = Ng2, · · · , gr = Ngr be representatives for the conjugacy classes of
G ⇠= G/N . Therefore gi 2 G, 8i, and by convention we take g1 = 1G. The method
of the coset analysis constructs for each conjugacy class [gi]G, 1  i  r, a number
of conjugacy classes of G. That is each conjugacy class of G corresponds uniquely to
a conjugacy class of G. This method can be described briefly in the following steps:

• For fixed i 2 {1, 2, · · · , r}, act N (by conjugation) on the coset Ngi and let the
resulting orbits be Qi1, Qi2, · · · , Qiki . If N is abelian (regardless to whether the
extension is split or not), then |Qi1| = |Qi2| = · · · = |Qiki | = |N |/ki.

• Act G on Qi1, Qi2, · · · , Qiki and suppose fij orbits fuse together to form a new
orbit �ij and let the total number of the new resulting orbits in this action
be c(gi) (that is 1  j  c(gi)). Then G has a conjugacy class [gij ]G that
contains �ij and |[gij]G| = |[gi]G|⇥ |�ij |.

• Repeat the above two steps, for all i 2 {1, 2, · · · , r}.

Lemma 2.1 For each i 2 {1, 2 · · · , r}, write gi = Ngi =
Sc(gi)

j=1

�

Ngi \ [gij ]G
�

=
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Sc(gi)
j=1 �ij. Then {gi1, gi2, · · · , gic(gi)} is a complete set of representatives for the con-

jugacy classes of G that correspond (under the natural epimorphism) to [gi]G.

Proof One can refer to Barraclough [7] with slight di↵erence in notations. ⇤

Thus each [gi]G a↵ords c(gi) conjugacy classes in G.

Remark 2.2 For fixed i 2 {1, 2, · · · , r}, the conjugacy class [gij]G is partitioned into
|[gi]G| equal size subsets �ij1,�ij2, · · · ,�ij|[gi]G|, where |�iju| = |�ij |, for each 1 
u  |[gi]G| (we can take �ij1 = �ij). Moreover, for fixed i and s 2 {1, 2, · · · , |[gi]G|},
the relation

Pc(gi)
j=1 |�ijs| = |N | holds. If the extension splits, then �i1s is the inter-

section of [gij ]G with an element of [gi]G, for all 1  s  |[gi]G|.

Therefore information about every conjugacy class of G can be obtained by ex-
amining one coset Ngi = gi 2 G for each conjugacy class of G. The following two
propositions relate the orders of the elements of G with those of G.

Proposition 2.3 Let G = N :G, where N is an abelian group. Also let G 3 g = ng,
for some n 2 N and g 2 G. Then o(g) | o(g).

Proof Let o(g) and o(g) be k and m respectively. We have 1G = gk = (ng)k =

nngng2ng3 · · ·ngk�1
gk. Since G acts on N, we have n, ng, ng2 , ng3 , · · ·ngk�1 2 N and

therefore nngng2ng3 · · ·ngk�1 2 N . Now since N \G = {1G} and nngng2ng3 · · ·ngk�1

gk = 1G, we must have nngng2ng3 · · ·ngk�1
and gk equal to 1N and 1G respectively.

Hence m | k. ⇤

Proposition 2.4 With the settings of Proposition 2.3 and its proof, assume further
that N is an elementary abelian p-group. Then k 2 {m, pm}.

Proof See Mpono [26, 28]. ⇤

Further results on the conjugacy classes of G = N ·G, when N is abelian or the
extension splits, can be found in many sources such as Ali [1, 6], Barraclough [7],
Moori [24, 25], Mpono [26, 28], Rodrigues [38] or Whitely [40].

3 The Theory of Cli↵ord-Fischer Matrices

We give a brief description on Cli↵ord-Fischer theory for constructing the character
table of a group extension G.

Let H E G and let � 2 Irr(H). For g 2 G, define �g by �g(h) = �(ghg�1), for
h 2 H . It follows that G acts on Irr(H) by conjugation and we define the inertia
group of � in G by H� = { g 2 G | �g = � }. Also for a finite group K, we let
IrrProj(K,↵�1) denotes the set of irreducible projective characters of K with factor
set ↵�1.

Theorem 3.1 (Cli↵ord Theorem) Let � 2 Irr(G) and let ✓1, ✓2, · · · , ✓t be repre-
sentatives of orbits of G on Irr(N). For k 2 {1, 2, · · · , t}, let

✓Gk = {✓k = ✓k1, ✓k2, · · · , ✓ksk}
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and let Hk be the inertia group in G of ✓k. Then

�#GN =
t

X

k=1

ek

sk
X

u=1

✓ku, where ek = h�#GN , ✓ki.

Moreover, for fixed k

Irr(Hk, ✓k) :=
n

 k 2 Irr(Hk) | h k#Hk
N , ✓ki 6= 0

o

$
n

� 2 Irr(G) | h�#GN , ✓ki 6= 0
o

:= Irr(G, ✓k)

under the map  k 7�!  k"GHk
.

Proof See Theorems 4.1.5 and 4.1.7 of Ali [1] with the di↵erence in notations. ⇤

Theorem 3.2 Further to the settings of Theorem 3.1, assume that for k 2 {1, 2, · · · ,
t}, there exists  k 2 Irr(Hk, ✓k). Then the irreducible characters of G are given by
Eq. (1).

Proof See Ali [1] or Whitley [40]. ⇤

Remark 3.3 As mentioned in Section 1, it is by no means necessarily the case that
there exists an extension  k of ✓k to the inertia group (that is the case Irr(Hk, ✓k) = ;,
the empty set, is feasible). However, there is always a projective extension e k 2
IrrProj(Hk,↵

�1
k ) for some factor set ↵k of the Schur multiplier of Hk and Eq. (2)

becomes the more proper formula for Equation (1) (see Remark 4.2.7 of Ali [1])

Note 3.4 Observe that if ↵k ⇠ [1] in Equation (2), then we get Equation (1). That
is IrrProj(Hk, 1) = Irr(Hk) and IrrProj(Hk, 1) = Irr(Hk). By convention we take
✓1 = 1N , the trivial character of N . Thus H✓1 = H1 = G and thus H1/N ⇠= G. Since

{1G} ✓ Irr(G,1N ) and such that 1G#
G
N = 1N , the block K1 will consists only of the

ordinary irreducible characters of G.

We now fix some notations for the conjugacy classes.

• With ⇡ being the natural epimorphism from G onto G, we use the notation
U = ⇡(U) for any subset U ✓ G. We have seen from Section 2 that ⇡�1([gi]G) =
Sc(gi)

j=1 [gij ]G for any 1  i  r. Let us assume that ⇡(gij) = gi and by convention

we may take g11 = 1G. Note that c(g1) is the number of G-conjugacy classes
obtained from N .

• [gij]G \ Hk =
Sc(gijk)

n=1 [gijkn]Hk
, where gijkn 2 Hk and by c(gijk) we mean the

number of Hk-conjugacy classes that form a partition for [gij]G. Since g11 = 1G,
we have g11k1 = 1G and thus c(g11k1) = 1 for all 1  k  t.

• [gi]G\Hk =
Sc(gik)

m=1 [gikm]Hk , where gikm 2 Hk and by c(gik) we mean the number
of Hk-conjugacy classes that form a partition for [gi]G. Since g1 = 1G, we have
g1k1 = 1G and thus c(g1k1) = 1 for all 1  k  t. Also ⇡(gijkn) = gikm for some
m = f(j, n).
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Proposition 3.5 With the notations of Theorem 3.2 and the above settings, we have

( e k inf(⇣))"GHk
(gij) =

c(gik)
X

m=1

⇣(gikm)

c(gijk)
X

n=1

|CG(gij)|
|CHk

(gijkn)|
e k(gijkn).

Proof See Ali [1] or Barraclough [7]. ⇤

We proceed to define the Fischer matrix Fi corresponds to the conjugacy class
[gi]G. We label the columns of Fi by the representatives of [gij]G, 1  j  c(gi)
obtained by the coset analysis and below each gij we put |CG(gij)|. Thus there are
c(gi) columns. To label the rows of Fi we define the set J i to be (this equivalent to the
notation R(g) used by Ali [1] (page 49), where g is a representative for a conjugacy
class of G)

J i = {(k, gikm)| 1  k  t, 1  m  c(gik), gikm is ↵�1
k -regular class},

or for more brevity we let

Ji = {(k,m)| 1  k  t, 1  m  c(gik), gikm is ↵�1
k -regular class}. (3)

Then each row of Fi is indexed by a pair (k, gikm) 2 J i or (k,m) 2 Ji. For fixed
1  k  t, we let Fik be a sub-matrix of Fi with rows correspond to the pairs
(k, gik1), (k, gik2), · · · , (k, gikrik) or for brevity (k, 1), (k, 2), · · · , (k, rk). Now let

a(k,m)
ij :=

c(gijk)
X

n=1

|CG(gij)|
|CHk

(gijkn)|
e k(gijkn) (4)

(for which ⇡(gijkn) = gikm). For each i, corresponding to the conjugacy class [gi]G,

we define the Fischer matrix Fi =
⇣

a
(k,m)
ij

⌘

, where 1  k  t, 1  m  c(gik), 1 
j  c(gi). The Fischer matrix Fi,

Fi =
⇣

a(k,m)
ij

⌘

=

0

B

B

B

@

Fi1

Fi2
...

Fit

1

C

C

C

A

together with additional information required for their definition are presented in
Table 1 below. In this table the last entries give the weights mij are defined by

mij = [NG(Ngi) : CG(gij)] = |N | |CG(gi)|
|CG(gij)|

. (5)

These weights are required for computing the entries of Fi (see Proposition 3.6).
Fischer matrices satisfy some interesting properties, which help in computations of

their entries. We gather these properties in the following Proposition.

Proposition 3.6 (i)
Pt

k=1 c(gik) = c(gi),

(ii) Fi is non-singular for each i,
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Table 1.

Fi

gi gi1 gi2 · · · gic(gi)
|CG(gij)| |CG(gi1)| |CG(gi2)| · · · |CG(gic(gi))|
(k,m) |CHk(gikm)|
(1, 1) |CG(gi)| a

(1,1)
i1 a

(1,1)
i2 · · · a

(1,1)
ic(gi)

(2, 1) |CH2(gi21)| a(2,1)i1 a(2,1)i2 · · · a(2,1)
ic(gi)

(2, 2) |CH2(gi22)| a(2,2)i1 a(2,2)i2 · · · a(2,2)
ic(gi)

...
...

...
...

...
...

(2, r2) |CH2(gi2ri2)| a
(2,r2)
i1 a

(2,r2)
i2 · · · a

(2,r2)
ic(gi)

(u, 1) |CHu(giu1)| a
(u,1)
i1 a

(u,1)
i2 · · · a

(u,1)
ic(gi)

(u, 2) |CHu(giu2)| a(u,2)i1 a(u,2)i2 · · · a(u,2)
ic(gi)

...
...

...
...

...
...

(u, ru) |CHu(giuriu)| a
(u,ru)
i1 a

(u,ru)
i2 · · · a

(u,ru)
ic(gi)

(t, 1) |CHt(git1)| a
(t,1)
i1 a

(t,1)
i2 · · · a

(t,1)
ic(gi)

(t, 2) |CHt(git2)| a
(t,2)
i1 a

(t,2)
i2 · · · a

(t,2)
ic(gi)

...
...

...
...

...
...

(t, rt) |CHt(gitrit)| a(t,rt)i1 a(t,rt)i2 · · · a(t,rt)
ic(gi)

mij mi1 mi2 · · · mic(gi)

(iii) a
(1,1)
ij = 1, 8 1  j  c(gi),

(iv) If Ngi is a split coset, then a(k,m)
i1 = |CG(gi)|/|CHk(gikm)|, for i 2 {1, 2, · · · , r}.

In particular for the identity coset we have a(k,m)
11 = [G : Hk]✓k(1N ), for (k,m) 2

J1,

(v) If Ngi is a split coset, then |a(k,m)
ij |  |a(k,m)

i1 | for all 1  j  c(gi). Moreover if

|N | = p↵, for some prime p, then a
(k,m)
ij ⌘ a

(k,m)
i1 (mod p),

(vi) For each 1  i  r, the weights mij satisfy the relation
Pc(gi)

j=1 mij = |N |,
(vii) Column Orthogonality Relation:

X

(k,m)2Ji

|CHk(gikm)|a(k,m)
ij a(k,m)

ij
0 = �jj0 |CG(gij)|,

(viii) Row Orthogonality Relation:

c(gi)
X

j=1

mija
(k,m)
ij a

(k0 ,m0)
ij = �(k,m)(k0 ,m0 )a

(k,m)
i1 |N |.

Proof Proofs for many assertions of Proposition 3.6 can be founded in Moori’s
students theses, for example see Ali [1] or Mpono [26] and some other assertions
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are provided in Schi↵er [39] as well as in Basheer and Moori [9, 10] and Lux and
Pahlings [22]. ⇤

4 Character Tables of Group Extensions

Let G = N ·G, where N C G and G/N ⇠= G, be a group extension. To construct the
character table of G in the format of Cli↵ord-Fischer theory we need to have

• the conjugacy classes of G obtained though the coset analysis method,

• the character tables (ordinary or projective) of the inertia factor groups,

• the fusions of classes of the inertia factors into classes of G,

• the Fischer matrices of G = N ·G.

For fixed 1  k  t and 1  i  r, let Kik be the fragment of the projective
character table of Hk, with factor set ↵�1

k , consisting of columns correspond to the
conjugacy classes gik1, gik2, · · · , gikrik of Hk (those are the ↵�1

k -regular classes of Hk

that fuse to [gi]G and thus rik = c(gik)). Then the characters of G on the classes
[gij ]G, 1  j  c(gi), is given by the matrix KikFik, where Fik is the sub-matrix of Fi

defined previously with rows correspond to the pairs (k, gik1), (k, gik2), · · · , (k, gikrik).
Note that the size of Kik is |IrrProj(Hk,↵

�1
k )|⇥ rik and the size of Fik is rik ⇥ c(gi).

Therefore the character table of G will have the form

g1 g2 · · · gr
g11 g12 · · · g1c(g1) g21 g22 · · · g2c(g2) · · · gr1 gr2 · · · grc(gr)

K1 K11F11 K12F12 · · · K1rF1r

K2 K21F21 K22F22 · · · K2rF2r
...

...
...

. . .
...

Kt Kt1Ft1 Kt2Ft2 · · · KtrFtr

Note 4.1 From Note 3.4 we know that characters of G consisted in K1 are just Irr(G)
and therefore the size of K1iF1i, for each 1  i  r, is |Irr(G)|⇥ c(gi). In particular,
columns of K11F11 are the degrees of irreducible characters of G repeated themselves
c(g1) times, where we know that c(g1) is number of G-conjugacy classes obtained
from the normal subgroup N .

5 Two Examples

Here we give two examples on the applications of Cli↵ord-Fischer Theory to split and
non-split group extensions. These examples are fully discussed in the PhD thesis of
the first author.

5.1 On the Split Extension Group 21+6
� :((31+2:8):2)

In [15] we calculated the inertia factors, Fischer matrices and the ordinary charac-
ter table of the split extension 210:(U5(2):2) by means of Cli↵ord-Fischer Theory.
The second inertia factor group of 210:(U5(2):2) is a split extension group of the
form 21+6

� :((31+2:8):2) := G. The group G is a maximal subgroup, of index 3, in
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21+6
� :31+2

� :2S4, which in turn is the second largest maximal subgroup of the automor-
phism group of the unitary group U5(2). In [14] we used the coset analysis to compute
the conjugacy classes of G. Corresponding to the 14 classes of G = (31+2:8):2, we ob-
tain 41 conjugacy classes forG. For example the groupG has two classes of involutions
represented by 21 and 22 with respective centralizer sizes 48 and 12. Corresponding
to [22]G we get five conjugacy classes in G with information listed in Table 2.

Table 2. Few conjugacy classes of G obtained via the coset analysis method

[gi]G ki mij [gij]G o(gij) |[gij]G| |CG(gij)|
m31 = 8 g31 8 288 192
m32 = 8 g32 8 288 192

g3 = 22 k3 = 9 m33 = 24 g33 2 576 96
m34 = 48 g34 8 1728 32
m35 = 48 g35 4 1728 32

Following [14] the action of G on N produced four orbits of lengths 1, 1, 54 and 72
and it follows that the action of G on Irr(N) will also produce four orbits of characters.
Through various theoretical and computational aspects we were able to determine the
structures of the inertia factor groups. These are the groups H1 = H2 = (31+2:8):2,
H3 = QD16 and H4 = D12, where QD16 and D12 are the quasihedral and dihedral
groups of orders 16 and 12 respectively. The determination of these inertia factors
included the computations of the Schur multipliers of some of these groups, some
computations with GAP on the structures of the maximal subgroups of G and some
results on extendability of characters such as Theorem 5.1.18 of Mpono [26].

For the Fischer matrices of G we have used the arithmetical properties of the
Fischer matrices, given by Proposition 3.6, to calculate some of the entries of these
matrices. In addition to these properties, we established in [14] further properties that
the Fischer matrices of G satisfy. These additional properties are given by Lemmas
10.3.3, 10.3.4 and Note 10.3.1 of [8]. These properties helped in reducing the number
of unknowns in every Fischer matrix of size c(gi) to c(gi)2 � 4c(gi) + 4.

Using the row and column orthogonality relations given by Proposition 3.6 we have
built an algebraic system of equations. With the help of the symbolic mathematical
package Maxima [23], we were able to solve these systems of equations and hence we
have computed all the Fischer matrices of G which listed in Section 4 of [14]. As
an example below we give, in Table 3, the Fischer matrix F3 corresponding to class
g3 = 22.

Based on Table 2 and the Fischer matrix F3 below, an example on how to construct
the partial character table of G on the conjugacy classes listed in Table 2 is given
in [14]. The full character table of G in the format of Cli↵ord-Fischer Theory is
available in [8].

5.2 On the Non-Split Extension Gn = 22n·Sp(2n, 2)

In [11] we established some general results on the non-split extension group Gn =
22n·Sp(2n, 2), where Sp(2n, 2) acts faithfully on 22n. Firstly the group Gn can be
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Table 3.
F3

g3 g31 g32 g33 g34 g35
o(g3j) 8 8 2 4 8

|CG(g3j)| 192 192 96 32 32
(k,m) |CHk(g3km)|
(1, 1) 12 1 1 1 1 1
(2, 1) 12 2

p
2i �2

p
2i 0 0 0

(3, 1) 4 3 3 3 �1 �1
(4, 1) 12 1 1 �1 �1 1
(4, 2) 4 3 3 �3 1 �1
m3j 8 8 16 48 48

constructed in terms of permutations of a set of cardinality at least 22n+1, i.e.,
Gn  S22n+1 , but Gn ⇥ S22n+1�1 (in fact Gn  A22n+1). Moreover the group Gn acts
transitively on a 22n+1 � 2 points, that it fixes 2 points of the set {1, 2, · · · , 22n+1}.
Hence the resulting permutation character of this action is of degree 22n+1 � 2. The
group Gn/22n ⇠= Sp(2n, 2) acts faithfully on 22n, it yields two orbits of lengths 1 and
22n � 1 and it is necessarily that the lengths of the orbits of Gn on Irr(22n) are 1
and 22n � 1 also. The respective inertia factor groups are H1 = Gn = Sp(2n, 2) and
H2 = 22n�1:Sp(2n�2, 2), the a�ne symplectic group. From Section 3, it follows that
the irreducible characters of Gn are distributed into two blocks of characters K1 and
K2 corresponding to the ordinary characters of H1 = Sp(2n, 2) and a projective char-
acter table of H2 = 22n�1:Sp(2n� 2, 2) respectively. Thus the number of irreducible
characters of Gn is given by the following formula:

|Irr(22n·Sp(2n, 2))| = |Irr(Sp(2n, 2))|+ |IrrProj(22n�1:Sp(2n� 2, 2),↵�1)|, (6)

for some factor set ↵ of the Schur multiplier ofH2. Another result about the group Gn

is that for any n � 2, the identity Fischer matrix of Gn will have the form:

F1

g1 = 1Sp(2n,2) g11 g12
o(g1j) 1 2

|CG(g1j)| |Gn| |Gn|/22n � 1
(k,m) |CHk(g1km)|
(1, 1) |Gn| 1 1
(2, 1) |Gn|/22n � 1 22n � 1 �1
m1j 1 22n � 1

Thus the degree of any irreducible character of Gn contained in the block K2 is
a multiple of 22n � 1. We also proved that for n 2 {2, 3, 4, 5, 6}, we only need
the ordinary character table of H2 for the construction of the character table of
Gn. The following table lists the number of ordinary irreducible characters of Gn =
22n·Sp(2n, 2) for small values of n.
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Table 4. The number of ordinary irreducible characters of Gn, n 2 {2, 3, 4, 5, 6}
n |Irr(Sp(2n, 2))| |Irr(22n�1:Sp(2n� 2, 2))| |Irr(22n·Sp(2n, 2))|
2 11 10 21
3 30 37 67
4 81 114 195
5 198 322 520
6 477 839 1316

We conjectured that for any n 2 N�2, we only need to use the ordinary character
table ofH2 to construct the character table of Gn. In [10] and [11] we applied the coset
analysis technique, found the inertia factor groups, computed the Fischer matrices
and the character tables (via Cli↵ord-Fischer matrices) of the groups G3 and G4

respectively.
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Abstract

Let N be a normal subgroup of a finite group G. In the recent past years some results
have appeared concerning the influence of the G-class sizes of N , that is, with the
sizes of the conjugacy classes in G contained in N , on the structure of N . In this
survey, we present the main results and techniques used for proving that any normal
subgroup of G which has exactly three G-conjugacy class sizes is solvable. Thus, we
obtain a generalisation for normal subgroups of the classical N. Itô’s theorem which
asserts that those finite groups having three class sizes are solvable, and in particular,
a new proof of it is provided.

1 Introduction

The solvability of a finite group G with three conjugacy class sizes is a complex
problem solved by N. Itô in [22]. He proved that such groups are solvable by appealing
to Feit-Thompson’s theorem and some deep classification theorems by M. Suzuki.
This result was simplified by J. Rebmann in [25] when G is an F-group (that is, G
has no pair of non-central elements such that the centraliser of one element properly
contains the other centraliser). Then he determined the structure of F-groups by
using results of R. Baer ([8] and [9]) and M. Suzuki ([27]) about groups with a
non-trivial normal partition. Afterwards, A.R. Camina proved in [14], by using the
description of finite groups with dihedral Sylow 2-subgroups given by D. Gorenstein
and J.H. Walter, that if G is not an F-group and has three class sizes, then G is a
direct product of an abelian subgroup and a subgroup whose order involves no more
than two primes. Forty years later, the structure of these groups has been completely
determined (up to nilpotent groups, which in this context are p-groups) by S. Dolfi
and E. Jabara in [15], who based their proof on the solvability of this type of groups.

Let G be a finite group and N be a normal subgroup of G. Recent research works
have put forward that the set of sizes of those conjugacy classes of G contained in
N , also called G-class sizes of N and denoted by csG(N), exerts a strong influence
on the structure of N . If cs(N) denotes the set of class sizes of N , we stress that
|cs(N)|  |csG(N)| does not hold for every normal subgroup N of G. For instance, the
smallest example which is not a p-group is a group of order 72 defined as follows: Let
G = S3 oZ2 and let N = S3 ⇥ S3, which is normal in G. Then cs(N) = {1, 2, 3, 4, 6, 9}
while csG(N) = {1, 4, 6, 9, 12}.
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Nevertheless, it is surprising that the G-class sizes of normal subgroups still seem
to keep control on their structure. This has emerged as a new useful tool to obtain
information regarding normal subgroups, and moreover, this approach has the ad-
vantage of enabling to argue by induction on the order of N . As a first step, the
nilpotency of normal subgroups having two G-class sizes is proved in [6] and thereby
we obtain a generalisation for normal subgroups of the celebrated Itô’s Theorem on
groups having two class sizes. It is worth mentioning that while the proof of Itô’s
result is quite elementary, the proof of the above extension requires the Classification
of the Finite Simple Groups (CFSG). In this survey, we present the main results and
di↵erent methods used in order to prove the following theorem.

Theorem A If N is a normal subgroup of a finite group G and |csG(N)| = 3, then
N is solvable.

We remark that the proof of Theorem A needs CFSG too. As mentioned above,
several previous works and the use of di↵erent techniques have been necessary in
order to complete it. For example, the classification of the simple CP-groups (those
groups having only elements of prime power order) appears in a natural way. The
classification of non-abelian simple groups whose prime graph is a forest is also used,
as well as certain properties relating the G-class sizes to the Fitting subgroup and the
centre of a normal subgroup, some properties of the Schur multiplier of simple groups,
and determining the structure of normal sections of G involving certain hypothesis
on the G-class sizes.

The proof of Theorem A is divided into two cases, which call for di↵erent treat-
ments. In section 2, we analyse the case in which csG(N) = {1,m, n} and m does
not divide n, and in section 3, we study the remaining case. This latter case is more
di�cult and we will present several previous research works in di↵erent subsections.
We also pose an open problem in the last section.

All groups will be finite. If x is any element of a group G, we denote by xG the
conjugacy class of x in G and by |xG| the G-conjugacy class size of x. This is also
called the index of x in G. For the rest of the notation, we will follow [20].

2 The case in which m does not divide n

In this section, we present the main tools employed in order to prove the solvability
of a normal subgroup N of G with three G-class sizes just when csG(N) = {1,m, n}
and m does not divide n and, consequently, the structure of N is determined (these
results are obtained in [2]). The proof of the solvability sets up a generalisation
and a subsequent classification of the concept of F-group for normal subgroups. As
mentioned in the introduction, the definition and the classification of F-groups was
originally given by J. Rebmann in [25]. Our extension is the following.

Definition 2.1 A non-central normal subgroup N of a finite group G is said to be
an F-normal subgroup if for every x, y 2 N \ Z(G), such that CG(x) ✓ CG(y), then
CG(x) = CG(y).

It is not di�cult to prove the following property. As for the concept of partition
and its properties, we refer the reader to the survey [28].
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Theorem 2.2 If N is an F-normal subgroup of G, then N/(N \ Z(G)) has a non-
trivial normal abelian partition.

The authors employed Baer and Suzuki’s results on groups having a non-trivial
normal partition so as to classify F-normal subgroups, which is given in the following
(Theorem 7 of [2]).

Theorem 2.3 Let G be a group and N be an F-normal subgroup of G. Then N
satisfies one of the following conditions:

(1) N/Z(N) is a Frobenius group, with Frobenius kernel L/Z(N) and Frobenius
complement K/Z(N), where K and L are abelian, and N is an F-group.

(2) N/Z(N) is a Frobenius group, with Frobenius kernel L/Z(N) and Frobenius
complement K/Z(N), where K is abelian, and L/Z(N) is of prime-power order,
and L is an F-normal subgroup.

(3) N/Z(N) ⇠= S4 and V is non-abelian, for V/Z(N), the Klein four-group of
N/Z(N). In particular, N is an F-group.

(4) N has abelian Fitting subgroup of index p, where p divides |F(N)/Z(N)|, and
in particular, N is an F-group.

(5) N = P ⇥ Z(N)p0 , where P 2 Sylp(N).

(6) N/Z(N) ⇠= PSL(2, ph) or PGL(2, ph), where p is a prime, and ph � 4.

In all cases but case (5), we have Z(N) = N \ Z(G).

As a consequence of this classification, the solvability of F-normal subgroups with
three G-class sizes is obtained. The main part consists in showing that case (6) is
not possible. In fact, when N is not solvable, the proof reduces to the case in which
N is quasi-simple and then, by means of some properties of the Schur multiplier, a
contradiction is reached.

Theorem 2.4 Let N be an F-normal subgroup of G, such that |csG(N)| = 3. Then
N is solvable.

Notice that if csG(N) = {1,m, n} where m does not divide n, then N clearly is
an F-normal subgroup of G and then, by Theorem 2.4, N is solvable. Finally, the
normal structure is fully determined (Theorem A of [2]), basically by showing that
cases (3) and (4) of Theorem 2.3 cannot happen.

Theorem 2.5 Let N be a normal subgroup of a finite group G such that csG(N) =
{1,m, n}, where m < n and m does not divide n. Then one of the following conditions
is satisfied:

(i) N = P ⇥A, where P 2 Sylp(N), for some prime p, and A ✓ Z(G).

(ii) N is a quasi-Frobenius group. More precisely, N/Z(N) is a Frobenius group,
with Frobenius kernel L/Z(N) and Frobenius complement K/Z(N), and ei-
ther K and L are abelian, and cs(N) = {1, |L/Z(N)|, |K/Z(N)|}; or K is
abelian, and L/Z(N) is of prime-power order, and cs(N) = {1, |L/Z(N)|,
|K/Z(N)||xL| : x 2 L \ Z(N)}.
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As regards the above theorem, we point out that the structure of groups having
three conjugacy class sizes is completely determined in [15] and the authors used the
solvability due to Itô to attain its proof. Thus, the structure given in Theorem 2.5
for N when m does not divide n is a partial generalisation for normal subgroups of
this classification, which is summarized in the following.

Theorem 2.6 A finite group G has three class sizes if and only if, up to an abelian
factor, either

(1) G is a p-group for some prime p or

(2) G = KL with K EG, (|K|, |L|) = 1 and one of the following occurs

(a) both K and L are abelian, Z(G) < L and G is a quasi-Frobenius group,

(b) K is abelian, L is a non-abelian p-group, for some prime p and Op(G) is
an abelian subgroup of index p in L and G/Op(G) is a Frobenius group or

(c) K is a p-group with two class sizes for some prime p, L is abelian, Z(K) =
Z(G) \K and G is quasi-Frobenius.

Some easy examples show that each of the two types of normal structure described
in Theorem 2.5 really occurs. For instance, let G be the group of the library of the
small groups of GAP with number Id(324,8). Using GAP, it is easy to check that G
has an abelian normal subgroup N ⇠= Z3⇥Z3, with csG(N) = {1, 2, 3}. This provides
an example of groups described in Theorem 2.5 (i).

On the other hand, the group G = GL(2, 3) with normal subgroup N = SL(2, 3) is
an example of a group of type (ii), with cs(N) = {1, 4, 6} and csG(N) = {1, 6, 8}, and
where the inverse images of the Frobenius kernel and Frobenius complement of the
Frobenius group N/Z(N) are abelian. Now, we consider L = hx, yi an extraspecial
group of order p3 and exponent for some odd prime p. Let K = hai ⇥ hbi with a of
order 8 and b of order 2. Assume that ha2bi acts trivially on L and K/ha2bi = h↵i
acts on L by y↵ = x�1 and x↵ = y, where ↵ is an element of order 4. Assume that
N = LK. Note that cs(N) = {1, 4p, p2}. Let G = N ⇥ A, where A is any finite
group. Then csG(N) = cs(N), which provides another example of a group of type (ii)
in Theorem 2.5.

An easy consequence is to determine the structure of the normal subgroups having
three G-class sizes when these satisfy that the non-trivial sizes are coprime numbers.

Corollary 2.7 Let G be a finite group and N be a normal subgroup of G such that
csG(N) = {1,m, n} with (m,n) = 1. Then either N is quasi-Frobenius and the inverse
image of the kernel and complement are abelian, or N = P ⇥ A with A ✓ Z(G) and
P 2 Sylp(N), for some prime p.

The group N = A4, considered as a normal subgroup of G = S4, is an example of a
Frobenius group with cs(N) = {1, 3, 4} and csG(N) = {1, 3, 8}. Thus, this corollary
extends the ordinary case of groups with three class sizes such that the non-trivial
sizes are coprime. This appeared first in [23] and was reformulated later in [11] within
the context of graphs and we state it next.

Theorem 2.8 Let cs(G) = {1,m, n} be the set of conjugacy class sizes of a finite
group G. Then (m,n) = 1 if and only if G/Z(G) is a Frobenius group where the
inverse image of the kernel and complement are abelian.
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3 The case in which m divides n

The approach to the solvability of a normal subgroup N with csG(N) = {1,m, n} and
with m being a divisor of n needs di↵erent methods from those employed when m
does not divide n. We remark that these techniques also di↵er from those employed
by Camina in [14] in the ordinary case. As a result, we obtain a new proof of this
case when we take N = G.

The general outline to obtain the solvability of N in this case consists in proving
first that every element in N whose class size is m lies in F(N), the Fitting subgroup
of N . In order to obtain this result, we employ the structure of normal subgroups
with two G-class sizes of p-regular elements, which are analysed in section 3.1. The
important fact is that since m divides n, then m actually divides all nontrivial G-
class sizes of all elements of N . As we will see in section 3.2, this allows to obtain
relevant properties of F(N). On the other hand, once this property is proved, we have
that every element of N lying outside F(N) has G-class size n. We will explore this
condition in section 3.3. to show interesting results on the structure of the normal
section N/F(N).

3.1 Normal subgroups with two G-class sizes of p-regular elements

Some recent results indicate that the structure of the p-complements of a finite group
for some prime p is closely related to the set of sizes of its p-regular conjugacy classes,
that is, the conjugacy classes of p0-elements of G (see for instance [7] or [3]). However,
studying this relation may be a complex problem, even when G is assumed to be p-
solvable. It is easy to find examples of groups having p-complements, for some prime
p, such that the class sizes of the elements of these p-complements do not divide the
respective class sizes in the whole group. In fact, if H is a p-complement of G, then
the cardinality of the set of conjugacy class sizes of H is not necessarily bounded by
the cardinality of the set of p-regular class sizes of G. For instance, using GAP we
see that the small group Id(600,57) has four class sizes of 3-regular elements whereas
it has a 3-complement with five class sizes.

We consider again the solvability of a normal subgroup N when csG(N) = {1,m, n}
and m divides n. We observe that if we take a p-element z of index m, for some prime
p, and if y is a p-regular element of CG(z), then

|yCG(z)
| = |CG(z) : CG(z) \CG(y)| = |CG(z) : CG(yz)|.

Thus, the class size of y in CG(z) is equal to 1 or n/m, and consequently, CN (z)
is a normal subgroup of CG(z) having at most two p-regular CG(z)-class sizes. De-
termining the structure of CN (z) has been necessary in several steps in the proof of
Theorem A. This situation led us to study the structure of normal subgroups having
two p-regular G-class sizes. We obtained an extension (Theorem A of [1]), under the
p-solvability hypothesis, of the main theorem of [6] which establishes the nilpotency
of the p-complements of normal subgroups having two G-class sizes.

Theorem 3.1 Let N be a normal subgroup of a finite group p-solvable G. Suppose
that the G-conjugacy class of every p-regular element of N has size 1 or m for some
fixed integer m. Then N has abelian p-complements or N = RP ⇥A, where R and P
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are a Sylow r-subgroup for some prime r and a Sylow p-subgroup of N respectively,
and A is a central group of G.

Eliminating the p-solvability condition in the above theorem is a more complicated
problem and the following result has been fundamental to solve it.

Theorem 3.2 Let N be a normal subgroup of a group G such that the G-conjugacy
class size of every p-regular element of N is 1 or m, for some integer m. Then either
N has abelian p-complements or all p-regular elements of N/(N \ Z(G)) have prime
power order.

In order to eliminate the p-solvability hypothesis in Theorem 3.1, we take a chief
factor N/K of G such that N \Z(G) ✓ K and then, by using the above theorem, we
get that the prime graph of N/K is a forest. The problem can be reduced to the case
in which N/K is simple and then, we use the classification of the non-abelian simple
groups whose prime graph, �(G), is a forest (see [24]). This has been decisive for our
purposes.

Theorem 3.3 Let G be a finite non-abelian simple group. If �(G) is a forest then
G is one of the following simple groups: A5, A6, A7, A8, M11, M22, PSL4(3), B2(3),
G2(3), U4(3), U5(2),2F4(2)0, or belongs to one of the families: PSL2(q), PSL43(q),
PSU3(q), Sz(q2) with q2 = 2f or q = 2f

2
with f an odd prime, and Ree(3f ), with f

an odd prime.

Finally, the application of certain properties of the Schur multiplier of these simple
groups has allowed to conclude the desired result which appears as Theorem 8 of [4].

Theorem 3.4 Let N be a normal subgroup of a finite group G. Let p a prime number
and suppose that N has two G-conjugacy class sizes of every p-regular elements. Then
N is solvable.

3.2 Properties of the Fitting subgroup of N

Let us go back to the proof of the fact that every element in N of G-class size m lies
in F(N) when m divides n. In order to prove it, we use several properties which have
been developed in [10] and have interest on their own. The first one (Theorem 5 of
[10]) is an extension for normal subgroups of a result by Dolfi and Jabara (Theorem
3.2 of [15]) which asserts that when G is a solvable group and m divides s for every
s 2 cs(G), s 6= 1, we have that if g 2 G and |gG| = m, then g 2 F(G). This property
suitably works for solvable normal subgroups and G-class sizes.

Theorem 3.5 Suppose that N is a normal solvable subgroup of a group G and sup-
pose that m divides s for every s 2 csG(N), s 6= 1. If g 2 N and |gG| = m, then
g 2 F(N).

We do not know whether Theorem 3.5 could hold for non-solvable subgroups (and
for Dolfi and Jabara’s original result either) and therefore, this problem remains open.
However, when N is non-solvable we can still attain some useful properties under the
hypothesis that there is an integer dividing all non-trivial G-class sizes. We point out
that the following result (Theorem 7 of [10]) relies on the CFSG.
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Theorem 3.6 Suppose that N is a normal nonsolvable subgroup of a group G and
suppose that an integer m divides |xG| for every x 2 N \ Z(N). Then m divides
|Z(N)|.

The main application of our development is Theorem 3.8, which is not trivial at
all. It relies on the Classification, precisely, on the following property concerning the
Schur multiplier of a simple group.

Lemma 3.7 A finite nonabelian simple group does not have a nontrivial conjugacy
class whose size divides the order of its Schur multiplier.

The following theorem is one of the turning points when dealing with obtaining
the solvability of N .

Theorem 3.8 If N is a nonabelian normal subgroup of a finite group G and if
|csG(N)| = 3, then Z(N) is properly contained in F(N).

3.3 Normal sections

Once we have obtained that every element in N of G-class size m belongs to F(N),
we deduce that every element in N \F(N) has index n. Let us examine for a moment
ordinary conjugacy classes. In [19], I.M. Isaacs considered finite groups G which
contain a proper normal subgroup N such that all of the conjugacy classes of G
which lie outside N have equal sizes. A nonabelian group with this property is said
to satisfy condition (*). It turns out that either G/N is cyclic or else every nonidentity
element of G/N has prime order. Moreover, Isaacs provides examples for these two
situations: a Frobenius group G with kernel N and cyclic complement is an example
of the first kind of groups, and for the second case, it is not di�cult to produce a
group G with a normal subgroup N such that G/N isomorphic to the symmetric
group S3 satisfying condition (*). Extending Isaacs’ definition, we give in [5] the
following definition.

Definition 3.9 A normal section N/K of a group G satisfies condition (*) over G
when N is a nonabelian normal subgroup of G such that all the G-conjugacy classes
in N lying outside of K have equal size.

The main tool employed by Isaacs to cope with this situation is the concept of
partition relative to a normal subgroup. In order to provide a better understanding of
the properties of normal sections under condition (*), we will state the original results
on normal partitions relative to a section G/N , which, as we said, were introduced
by Isaacs in [19].

Definition 3.10 Suppose that N E G and G = N [ ([iHi) where Hi ⇢ G are
subgroups satisfying Hi \ Hj ✓ N when i 6= j. In this situation we say that G is
partitioned relative to N .

Proposition 3.11 Let G satisfy (*) and suppose that G/N contains an element of
order p2 for some prime p, then G has abelian Sylow p-subgroups.
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Proposition 3.12 Let N E G and suppose that G is partitioned relative to N and
that G/N is abelian. Let p be a prime divisor of |G : N | and suppose that a Sylow
p-subgroup of G is normal in G. Then G/N is an elementary abelian p-group.

Now, we focus our attention on a normal section N/K of a group. Relative parti-
tions also appear naturally when studying such a normal section satisfying condition
(*). It is easy to see the following results.

Lemma 3.13 If N/K satisfies (*) over G and Z(N) ✓ K, then N is partitioned
relative to K.

Lemma 3.14 Suppose that N/K satisfies (*) over G. Let x 2 N \K.

i) If xK 2 N/K is not a p-element, then there exists a Sylow p-subgroup P of
CN (x) such that P ✓ Z(CG(x)).

ii) If the order of xK 2 N/K is divisible by two distinct primes, then CN (x) ✓

Z(CG(x)) and in particular, CN (x) is abelian.

These are the main properties which finally lead to obtain Theorem 3.17.

Proposition 3.15 Let N/K be a normal section satisfying (*) over G and suppose
that N/K has elements of order p2 for a certain prime p. Let P 2 Sylp(N) and let
A = hx 2 P |xp /2 Ki. Then

i) A is abelian and P \K ✓ AENG(P ).

ii) If A = A/(P \ K) and P = P/(P \ K), for every generator a of A we have
CP (a) = A and CP (a) = A.

By using Proposition 3.12 and Lemma 3.13 we obtain the following.

Lemma 3.16 Let N/K satisfy (*) over G and Z(N) ✓ K. Let xK 2 N/K whose
order is not a prime number and let p be a prime divisor of the order of xK. If P
is a Sylow p-subgroup of K, then P is abelian, K has a normal p-complement and
xK 2 CN (P )K/K.

Finally, we attain the main theorem about normal sections, which is Theorem B
of [5].

Theorem 3.17 Let N/K be a normal section satisfying (*) over G.

i) If Z(N) * K, then N/K is a p-group for some prime p and N/K is either
abelian or has exponent p.

ii) If Z(N) ✓ K, then either N/K is cyclic or is a CP-group. If N/K is not
a CP-group, then N has abelian Hall ⇡-subgroups and normal ⇡-complement,
where ⇡ is the set of prime divisors of |N/K|.

3.4 CP-groups and final arguments

If we continue with our reasoning, we see that N/F(N) is a nontrivial normal section
of G satisfying (*). If we want to prove that a normal subgroup N with |csG(N)| = 3
is solvable, then by Theorem 3.17 ii), the only case to be studied is when N/F(N) is a
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non-solvable CP-group. We appeal then to the structure theorem of nonsolvable CP-
groups (Theorem 3.18), which are those groups having all elements of prime-power
order. The structure of finite solvable CP-groups was given by G. Higman fifty years
ago ([17]), and the structure of non-solvable CP-groups and the classification of the
simple CP-groups have been recently obtained by H. Heineken in [16]. It can be
summarised as follows.

Theorem 3.18 If G is a finite, non-solvable CP-group, then there are normal sub-
groups B, C of G such that 1 ✓ B ✓ C ✓ G and B is a 2-group, C/B is non-abelian
and simple, and G/C is a p-group for some prime p and cyclic or generalised quater-
nion. In particular, if G is a finite non-abelian simple CP-group, then G is isomorphic
to one of the following groups: L2(q), for q = 5, 7, 8, 9, 17, L3(4), Sz(8) or Sz(32).

In our proof, we are able to reduce to the case in which N/B is simple, where B
denotes the radical solvable subgroup of N . Taking into account the classification in
Theorem 3.18, we carry out a case-by-case analysis on each of the eight simple groups
appearing in such theorem. Without going into details in these cases, we only remark
that the key facts in the analysis are the order of the elements of the simple groups,
Proposition 3.15 and Lemma 3.16. With all of them we produce a contradiction in
each case. The most laborious cases are L2(5) and L2(9) (that is, the alternating
groups A5 and A6).

4 Open problem

We note that a complete classification of the structure of normal subgroups N with
csG(N) = {1,m, n} and m dividing n is still open. As we said in the introduction, in
the ordinary case, the structure of a finite group G satisfying cs(G) = {1,m, n} with
m dividing n was already studied by Camina, although it was completely determined
in [15]. In fact, such a group satisfies that either G/Z(G) is a p-group for some prime
p, or F(G) is an abelian subgroup of index p. Nevertheless, when dealing with G-class
sizes in normal subgroups, such structure does not hold as we show in the following
example.

Let
L = hx, y|x3 = y3 = 1, [x, y]3 = 1, [x, [x, y]] = [y, [x, y]] = 1i

be the extraspecial group of order 33 and exponent 3. If z = [x, y], then Z(L) = hzi.
Let hai be the automorphism of L defined by xa = x2 and ya = y2. The set of fixed
points of a on L is exactly Z(L). On the other hand, let us consider an automorphism
↵ of order 3 acting non-trivially on the quaternion group Q of order 8. Observe that
↵ exactly fixes the elements in Z(Q). We form the group G := Qh↵i ⇥Lhai and take
the normal subgroup N = Q ⇥ L. It follows that csG(N) = {1, 6, 36} and, however,
N/Z(N) is not a p-group and F(N) is not abelian either.
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Abstract

This paper is a survey on automorphism groups of compact unbordered non-orientable
surfaces with dianalytic structures, called non-orientable Riemann surfaces. We deal
with di↵erent aspects of groups acting on these surfaces, as the maximum order and
minimum genus problems, the determination of the symmetric crosscap number of a
finite group and the fixed point set of an automorphism. The guiding theme linking
the sections of this survey comes from the Riemann uniformization theorem, which
relates these surfaces to the combinatorial group theory of non-Euclidean crystallo-
graphic groups. Some other areas are also related to these surfaces, amongst which
we mention real algebraic curves.

1 Introduction

It is easy to see that a classical analytic structure existing on orientable topological
surfaces cannot exist on non-orientable ones. One can, however, relax a bit the no-
tion of analyticity of a structure allowing the complex conjugation to be involved for
transition functions between charts with overlapping domains. Such structures, called
dianalytic, can exist on non-orientable closed surfaces. Sometimes they are also called
conformal – motivated by the fact that the transition functions are angle-preserving
but not necessarily orientation-preserving – while usually for classical structures of
Riemann surfaces the term analytic is reserved. This way we obtain the notion of
unbordered non-orientable Klein surface. These surfaces were called non-orientable
Riemann surfaces by Singerman in [35], and we will keep here this convention. Simi-
larly, a self-homeomorphism of such a surface is said to be an automorphism if its local
forms are either analytic or the composite of complex conjugation with an analytic
function.
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The topic we present here is at the intersection of several important disciplines of
mathematics: theory of functions of one complex variable (classical Riemann sur-
faces), algebraic geometry (algebraic curves), low-dimensional topology (mapping
class groups, three-dimensional hyperbolic manifolds), Galois theory (automorphisms
of algebraic function fields in one variable), di↵erential geometry (moduli spaces, com-
plex surfaces), combinatorics (regular maps on surfaces) and combinatorial group
theory. This last is the main tool used to prove the results we present here, and that
makes this survey suitable to this volume.

Such objects and their automorphisms are interesting by themselves and have a vast
literature. Let us however, for the sake of completeness, explain more precisely their
connection with algebraic geometry and Galois theory as mentioned above. Firstly,
non-orientable Riemann surfaces can be seen as complex curves allowing defining
equations over the reals R but having no R-rational points. Such curves are called
purely imaginary real algebraic curves. Next, in the theory of algebraic function
fields in one variable over the reals these curves can be seen as not formally real
fields in which �1 is not a square. (A field is formally real if �1 is not a sum of
squares.) Moreover, their groups of automorphisms are the Galois groups of such
fields of rational functions viewed as extensions over the reals.

The importance of such surfaces and their automorphism groups seems to have been
perceived already by Felix Klein himself, but the foundations for their modern study
have been given by Alling and Greenleaf in their monograph [1]. The principal tool
comes from the Riemann uniformization theorem, which allows to relate the topology
of compact surfaces with conformal structures and conformal actions on them, to
the algebra of classical cocompact Fuchsian groups or, more generally, non-euclidean
crystallographic groups. Combinatorial algebraic foundations for these groups had
been established by Macbeath in the early sixties of the last century and developed
later by Singerman, May and Bujalance, among others.

Throughout the paper, we will only deal with surfaces of topological genus bigger
than 2, in order to assure finiteness of their automorphism groups.

2 Preliminaries

This is a survey of known results on the groups of automorphisms of non-orientable
Riemann surfaces (for a survey on bordered Klein surfaces, see [5]). Our purpose is
to give a general overview of the state of the art of this topic, and not to analyze
in detail the techniques used in each paper. The interested reader is referred to
the appropriate reference in the Bibliography. So in general proofs are omitted.
Nevertheless we consider it appropriate to outline the general approach to be used
in this area. The most fruitful technique turns out to be the combinatorial theory of
non-euclidean crystallographic groups (NEC groups in short). The first presentations
for NEC groups appeared in [38] and their structure was clarified by the introduction
of signatures in [32].

An NEC group will mean here a discrete and co-compact subgroup of the group
of all isometries of the hyperbolic plane H (including the orientation reversing ones).
The canonical Fuchsian subgroup �+ of an NEC group � comprises the orientation
preserving isometries of �. We say that � is a proper NEC group if � 6= �+. The
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algebraic presentation of such a group � is well known and is concentrated in its so
called signature. We shall not give here the general definition of the signature of an
NEC group since it can be quite complicated. Just for some specific NEC groups,
their signature and their presentation will be explicitly described.

A non-orientable Riemann surface S is canonically doubly covered by a Riemann
surface R whose topological genus is said to be the algebraic genus of S. If S has
algebraic genus g � 2 then it can be represented as the orbit space H/� of the
hyperbolic plane under the action of an NEC group � with no non-trivial elements of
finite order. In this situation we say that � is a surface group and that it uniformizes S.
Such NEC group � has signature (g;�; [�]; {�}) where g is the topological genus of
H/�, and presentation

h d1, . . . , dg | d21 . . . d2g i.
The orbit space H/� has algebraic genus g � 1.

Elementary properties of covering spaces and of the mentioned Riemann double
cover R allow to show that a finite group G acts as a group of dianalytic automor-
phisms of the non-orientable surface H/� if and only if there exist a proper NEC
group ⇤ and an epimorphism ✓ : ⇤ ! G such that ker ✓ = � and ✓(⇤+) = G. Such
epimorphisms with a surface group as a kernel will be called smooth epimorphisms, for
short. Observe however that there is another way to see such surface and its group of
automorphisms. Namely there is a fixed-point-free orientation-reversing involution �
of R so that the mentioned double covering R ! S induces a conformal isomorphism
between S and the orbit space R/�. Consequently we obtain

Aut(S) = CAut+(R)(�),

the centralizer of � in the group Aut+(R) of orientation-preserving automorphisms
of R.

At the beginning of the eighties, the first author of this paper developed a combi-
natorial method to study the relation between the signatures of ⇤ and � in function
of G. The method is described in Chapter 2 in [7] and it is an essential ingredient in
most of the proofs of the results presented here.

The area µ(�) of a fundamental region of an NEC group � depends only on
the algebraic structure of the group itself and we have the following, crucial for our
considerations, Hurwitz-Riemann formula:

[�1 : �2] =
µ(�2)

µ(�1)
,

where �2 is a subgroup of finite index in �1.

3 Prescribed families of groups acting on non-orientable surfaces

In the beginning of the seventies, Singerman in [35] considered the problem of finding
the largest possible groups of automorphisms of non-orientable surfaces. He showed
that a necessary and su�cient condition for a finite group G to be a group of au-
tomorphisms of a non-orientable Riemann surface is the existence of a proper NEC
group ⇤ and a smooth epimorphism ✓ : ⇤ ! G such that ✓(⇤+) = G, where ⇤+ is
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the canonical Fuchsian group of ⇤. As a corollary, he showed that if G is a group of
automorphisms of the non-orientable Riemann surface S, then G is (isomorphic to)
a group of conformal automorphisms of the two-sheeted orientable covering surface
of S. Using this, together with known results on Hurwitz groups, he showed that the
largest order of a group of automorphisms of a non-orientable Riemann surface of
topological genus g is 84(g � 2). A group G attaining this bound is called H⇤-group,
and it is characterized by the existence of three generators c0, c1, c2 which satisfy the
relations

(c0)
2 = (c1)

2 = (c2)
2 = (c0c1)

2 = (c1c2)
3 = (c0c2)

7 = 1,

and such that c0c1 and c1c2 generate G. In particular, every H⇤-group is a Hurwitz
group. The converse is not true, as Singerman showed that the linear fractional
group PSL(2,7) (which is known to be Hurwitz) is not an H⇤-group. Other examples
of Hurwitz groups which are not H⇤-groups are the alternating groups A21, A22 and
A29, as Etayo and Mart́ınez proved in [20]. Singerman also showed that there are
infinitely many values of g for which the bound 84(g � 2) is attained, and this led
him to find new infinite families of Hurwitz groups.

Conditions under which PSL(2, q) is an H⇤-group were found later on by W. Hall
in her unpublished thesis [30] as follows:

The group PSL(2, q) is an H⇤-group if and only if one of the following conditions
hold:

i) q = p is prime and p ⌘ 1 or 13 (mod 28).

ii) q = p is prime, p ⌘ �1 or �13 (mod 28), and (3 � ⌧2i ) is a square for two
values of i where ⌧1, ⌧2, ⌧3 are the roots of ⇠3 + ⇠2 � 2⇠ � 1 = 0 in GF(q).

iii) q = p3 for p = 2 or p prime, p ⌘ 5, 9, �3 or �11 (mod 28).

The other result on simple H⇤-groups was obtained by Conder in [13] who proved
that the alternating group An is an H⇤-group for n > 167, as well as for a given list
of values of n < 167.

Using computational methods, Conder [14] found the list of the largest orders of a
group of automorphisms of a non-orientable surface of given topological genus g, for
g between 3 and 302. It turns out that the 84(g � 2) bound is attained for very few
genera in that range, namely for g = 8, 15 and 147 only.

Singerman’s bound may be considered as a particular case of the general problem
of finding the minimum genus of surfaces for which a given finite group G is a group of
automorphisms. Bujalance in [2] carried out the preliminary step to this by studying
the case of cyclic groups. He analyzed the possible signatures that a proper NEC
group � may have in order for it to admit a smooth epimorphism onto a cyclic group.
This allowed him to obtain a precise lower bound for the genus of a non-orientable
surface with an automorphism of order n, in terms of the prime decomposition of n. As
a corollary, he reproved Hall’s bound in [30] for the largest order of an automorphism
acting on a non-orientable surface of topological genus g, namely, 2g if g is odd, and
2g � 2 if g is even.

An interesting property of these surfaces (with a cyclic automorphism group of the
largest possible order) is that they admit more automorphisms than those in the cyclic
group, as proved in [6]. This problem is related to the question of extendability of
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group actions, which can be stated as follows: given a group G acting on a surface S,
does S admit more automorphisms than those in G or, on the contrary, G is the full
group Aut(S) of all automorphisms of S? In the case of cyclic actions, this problem
was considered in [4], where it was shown that if such a cyclic action is realised by
means of a non-maximal NEC signature, then the action always extends. The special
case where the full automorphism group is cyclic of the largest possible order (for
given genus) was also considered. In addition, the smallest algebraic genus of a non-
orientable surface on which a given cyclic group acts as the full automorphism group
was determined. This is called the full cross-cap genus of the cyclic group, following
the definition of the symmetric cross-cap number, see Section 6.

As said above, the largest cyclic group acting on a non-orientable surface of topo-
logical genus g has order 2g if g is odd and 2g� 2 if g is even. Bujalance, Gromadzki
and Turbek in [9] showed that this order almost characterizes the group itself. In
fact, if G is a group of order 2g or 2g � 2 then either G is cyclic (and this occurs if
and only if the surface is hyperelliptic) or G is an extension of a cyclic group by C2.
It is worth mentioning that defining equations for all but one family of such surfaces
were also obtained.

At the end of the eighties, the order of the largest supersoluble group of automor-
phisms acting on surfaces was known for orientable or bordered surfaces. Gromadzki
in [27] completed the panorama by showing that if G is a supersoluble group acting
on a non-orientable surface of topological genus g then |G|  12(g� 2). The bound is
sharp since he also showed that a necessary and su�cient condition for the existence
of a such a surface having a supersoluble group of automorphisms of order 12(g � 2)
is that g = 3n + 2 for some n � 0.

Analogous results for soluble groups were found by the same author in [28]. In this
case the bound is 24(g � 2), and an infinite series of values of g for which this bound
is attained was also given. It is worth mentioning the relation found by Gromadzki
between soluble groups attaining this bound and M⇤-groups, that is, maximal groups
of automorphisms of bordered surfaces. More precisely, he found that a soluble group
of order 24(g � 2) acts on a non-orientable surface of topological genus g if and only
if it can be viewed as an M⇤-group acting on a non-orientable bordered surface with
maximal symmetry of algebraic genus 2g�3 with g�2 boundary components. Other
relations between H⇤-groups and M⇤-groups can be found in [5, Section 5].

It is well known that for each g � 2 there exists a compact Riemann surface of
genus g with 8g + 8 automorphisms. Thus, if ⌫(g) denotes the largest number of
automorphisms of a compact Riemann surface of genus g then the above shows that
⌫(g) � 8g + 8. The search of similar bounds for non-orientable surfaces has been
considered by Conder, Maclachlan, Todorovic Vasiljevic and Wilson in [17], see also
[36]. The authors first defined smooth epimorphisms onto the dihedral group of order
4g for each g odd, and onto a group of order 8(g� 2) for each g even. So ⌫(g) � 4g if
g is odd, while ⌫(g) � 8(g� 2) if g is even. Next, they achieved improvements of the
bounds for all g 6⌘ 3 (mod 12), namely, ⌫(g) � 8(g + 2) for g ⌘ 1, 4, 7, 10 (mod 12),
while ⌫(g) � 8(g � 2) for g ⌘ 0, 2, 5, 6, 8, 11 (mod 12), and ⌫(g) � 6(g + 1) for g ⌘ 9
(mod 12). Finally, the authors also showed that these bounds are sharp for infinitely
many values of g in each congruence class modulo 12.
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4 Groups acting on prescribed families of non-orientable surfaces

Another direction in the study of automorphism groups of non-orientable Riemann
surfaces is to fix a family of such surfaces and describe which groups act on them.
As usual, one of the first examples to be considered is the family of hyperelliptic
surfaces. A non-orientable Riemann surface S is hyperelliptic if it admits a dianalytic
involution ' : S ! S such that the orbit space S/h'i has algebraic genus 0 (so in this
case S/h'i is either the projective plane or the closed disc). In [3], using non-euclidean
crystallographic groups and Teichmüller spaces, the authors gave the complete list of
full automorphism groups of hyperelliptic non-orientable surfaces which are double
covers of the closed disc.

The case of double covers of the real projective plane was solved in [12] using
a di↵erent approach. In this paper, the author directly worked with polynomial
equations defining such double covers, and this allowed him to obtain explicit formulae
of generators of the full automorphism groups.

A natural generalization of the notion of hyperellipticity is that of q-hyperellipticity:
a non-orientable surface S is said to be q-hyperelliptic if it admits a dianalytic invo-
lution ' such that the orbit space S/h'i has algebraic genus q. Hence, hyperelliptic
means 0-hyperelliptic. J. A. Bujalance in [10] characterized q-hyperellipticity by
means of NEC groups, and this allowed him to show that the q-hyperelliptic invo-
lution ' is unique and central in Aut(S) provided that g > 4q + 2, where g is the
topological genus of S.

Under this assumption, the same author together with Estrada determined in [11]
bounds for the order of the automorphism group of a non-orientable q-hyperelliptic
surface S such that the orbit space S/h'i has no boundary. They also proved that
the bounds are attained.

5 On fixed points of automorphisms

An interesting feature of the fixed point set of an automorphism of a non-orientable
surface is that it may contain closed curves. In the classical case of Riemann surfaces,
Macbeath gave a formula to count the number of (isolated) points fixed by each non-
identity element of a cyclic group of automorphisms. It was given in terms of the
cyclic group and its universal covering transformation Fuchsian group. Izquierdo
and Singerman in [31] showed that Macbeath’s formula generalizes to non-orientable
surfaces except when the element is an involution. In this case, in addition to isolated
fixed points, the automorphism may fix curves (called ovals). The authors calculated
the number of ovals and isolated fixed points of an involution in terms of the universal
covering transformation NEC group. In addition, they also determined whether the
ovals are twisted or not. (An oval is twisted if it has a Möbius band neighbourhood,
and untwisted if it has an annular neighbourhood.)

The formulae given by Izquierdo and Singerman for cyclic groups were general-
ized by Gromadzki in [29] for an arbitrary finite group G of automorphisms of a
non-orientable surface S. He gave a formula for the number of isolated points of an
automorphism f 2 G in terms of the normalizer of f in G and the branched indices
of the covering map S ! S/G. The same data is used to give another formula for the
number of ovals of an involution.
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6 The symmetric crosscap number of a group

Every finite group G may act as an automorphism group of non-orientable Riemann
surfaces, [2, Theorem 2.5]. The minimum genus of these surfaces is called the sym-
metric crosscap number of G and it is denoted by �̃(G). The systematic study of
the symmetric crosscap number was begun by C. L. May in [33], although previous
results from other authors are also to be noted, see for instance [2], [19] and [26].
A very early result was obtained by W. Hall in [30]. As said above, she determined
which groups PSL(2, q) attain the maximal bound 84(g � 2).

Four types of problems arise naturally when dealing with the symmetric crosscap
number �̃(G).

1) First of all, to obtain �̃(G) for any given group G, and for the groups belonging
to an infinite family.

2) Second, to obtain �̃(G) for all groups G with o(G) < n for a given (small) value
of n.

3) Third, for a given value of g, to obtain all groups G such that g = �̃(G).
Evidently this question is feasible only for low values of g.

4) Finally, to determine which values of g are in fact �̃(G) = g for a group G. The
set of such values is called the symmetric crosscap spectrum and there exists a
conjecture according to which g = 3 is the unique positive integer not belonging
to the spectrum.

These four problems are intertwined and we will describe the present status of all of
them.

Let H/� be a non-orientable Riemann surface on which G acts as an automorphism
group. Then there exists another NEC group ⇤ such that G = ⇤/�. From the
Hurwitz-Riemann relation we have g � 2 = o(G)|⇤|, where o(G) denotes the order of
G and |⇤| = µ(⇤)/2⇡ is the reduced area of ⇤. Then

�̃(G)  g = 2 + o(G)|⇤|,

and so to obtain the symmetric crosscap number is equivalent to find a group ⇤ and
an epimorphism ✓ : ⇤ ! G, such that � = ker(✓) is a surface NEC group with
G = ✓(⇤+) and minimal |⇤|.

The symmetric crosscap number of groups belonging to an infinite family.

The symmetric crosscap number of groups belonging to several infinite families has
been obtained. For Abelian groups of odd order it was calculated in [19] and this
result was extended to all Abelian groups in [26] in the following terms.

Let G be an Abelian group di↵erent from Cn, C2 �Cn (n even) and C2 �C2 �C2

(these groups have symmetric crosscap number 1 or 2, see below). We distinguish two
cases. In the first one, G has non-cyclic 2-Sylow subgroup. The result is as follows:

Let G be an Abelian group of order N having non-cyclic 2-Sylow subgroup and
suppose that G = Cs

2 � H, where s is as big as possible and H = Cm1 � · · · � Cmk

is the canonical decomposition, where m1, . . . ,ml are odd and ml+1, . . . ,mk are even.



Bujalance et al.: Automorphism groups of non-orientable Riemann surfaces 190

Then (�̃(G)� 2)/N is equal to

k � 1�
k�sX

i=1

1

mi
if s� (k � l)  0

k � 1 if s� (k � l) = 2l

k � 1 +
s� k � l + 1

4
if s� (k � l) > 2l

k � 1�
(k+l�s)/2X

i=1

1

mi
if 0 < s� (k � l) < 2l, s� (k � l) even

k � 1� 1

2m(k+l�s+1)/2
�
(k+l�s�1)/2X

i=1

1

mi
if 0 < s� (k � l) < 2l, s� (k � l) odd.

The second case covers the remaining possibilities:

Let G be an Abelian group of order N having cyclic 2-Sylow subgroup, or N odd.
Let G = Cm1 � · · ·� Cmk be its canonical decomposition. Then

�̃(G) = N

 
�1 +

rX

i=1

✓
1� 1

mi

◆!
+ 2.

May obtained in [33] the symmetric crosscap number of dicyclic groups and Hamil-
tonian groups without odd order part. The result corresponding to the first family
of groups is the following:

Let DCn be the dicyclic group of order 4n. If n 6= 3, then �̃(DCn) = 2n + 2.
Besides, �̃(DC3) = 7.

In [21], [22] and [23], the symmetric crosscap number of the groups Cm � Dn,
Dm � Dn, DC3 � Cn and A4 � Cn have been calculated. These families of groups
whose orders are in arithmetic progressions are a useful tool for the study of the
symmetric crosscap spectrum, see below.

The symmetric crosscap number of groups of small order. In [24] the sym-
metric crosscap number of all groups G of order less than 32 is obtained. For each
group G the corresponding NEC group ⇤ and the epimorphism ✓ : ⇤ ! G are given.

M. Conder announced in a Conference in Castro Urdiales (2010) to have obtained
these values for the groups G with o(G) < 128 in terms of the SmallGroupLibrary

identification. The result is still not published, but the list can be consulted in
Conder’s web page [15].

Groups with small symmetric crosscap number. The groups having symmet-
ric crosscap numbers 1 and 2 have been classified by Tucker in [37]. The groups of
genus 1 are Cn, Dn, A4, S4 and A5. Of genus 2 we have C2 � Cn and C2 � Dn, in
both cases with n even. May proved that there is no group with symmetric crosscap
number 3 in [33].
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The groups with �̃(G) = 4 or 5 have been obtained in [8]. There are two groups
with symmetric crosscap number 4 which are C2�A4 and C2�S4. The eight groups
G with �̃(G) = 5 are C3 � C3, ((3, 3, 3; 2)), C3 � D3, h5, 4, 2i, D3 � D3, (4, 4 | 2, 3),
(2, 4, 6; 2) and S5.

In the above unpublished result by M. Conder, the groups G with �̃(G)  65 were
also expressed by the SmallGroupLibrary identification, see [16].

The symmetric crosscap spectrum. A natural question arises: which numbers
are the symmetric crosscap number of a group? The aforementioned results on fam-
ilies of groups are a useful tool in order to cover most of the numbers. In particular,
the groups Cm �Dn cover all numbers of the forms 4k, 4k+ 1 and 4k+ 2, [21, Prop.
3.2]. So only the numbers 4k+3 with k � 1 need to be studied. For each n congruent
to 11 modulo 12, there exists an Abelian group G with �̃(G) = n, see [26, Prop. 6.2]
and [21, Prop. 3.3].

Finally, concerning the numbers congruent to 3 or 7 modulo 12, the groups DC3 �
Cn and A4 � Cn cover nine classes modulo 144 among the numbers congruent to 7
modulo 12, as well as the numbers congruent to 39, 87 and 135 modulo 144, which
are of the form 12k + 3, [23]. The whole set 12k + 7 has been dealt by Conder in
an unpublished work, by means of a subgroup of a semidirect product C3n o S4. So
that, the present state of the question is summarized in the following:

Let S = {3, 15, 27, 51, 63, 75, 99, 111, 123}. If g is a number non-congruent to x
modulo 144, for x 2 S, there exists a group G such that �̃(G) = g.

It remains to prove the conjecture that 3 is actually the unique gap. In order
to enforce this conjecture we know the following facts. First, Etayo and Mart́ınez
exhibit in [23] a group PSL(2, p) whose symmetric crosscap number is congruent with
x modulo 144 for each x 2 S. Besides, infinitely many numbers in six of those nine
classes are proved to be the symmetric crosscap number of groups (3, 3 | 3, k) in [24].
Finally, in [25] the same authors have found groups for all remaining numbers g up
to 206. However, the procedure does not use a family of groups which may fill all the
gaps. All in all, this information supports the following

Conjecture: For all n 6= 3 there exists a group G such that �̃(G) = n.

Related results were recently obtained for the corresponding parameters on ori-
entable surfaces. The strong symmetric genus �0(G) is the least genus of an orientable
Riemann surface on which the groupG acts conformally. May and Zimmerman proved
in [34] that for every n there is a group G which �0(G) = n. If one allows anticonfor-
mal automorphisms, the parameter is called the symmetric genus. Its spectrum has
been studied by Conder and Tucker in [18]. They prove that the possible gaps of the
spectrum are numbers congruent with 8 or 14 (mod 18), and also conjecture that
there is no gap at all.

Both conjectures could be related, but a complete proof of them seems to be
di�cult.

The authors wish to thank the anonymous referee for his/her helpful suggestions
which have contributed to improve the final version.
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The Classification of Finite Simple Groups (CFSG) is a theorem that states that
if G is a finite simple group, then it is either:

(i) A cyclic group of prime order,

(ii) A an alternating group Alt(n) for some n � 5,

(iii) A simple group of Lie type, or

(iv) A sporadic simple group.

The original proof of the CFSG was a patchwork of interrelated individual theorems
with spectacular contributions by many mathematicians. It was finally completed in
2004 with the monumental work of M. Aschbacher and S. Smith, which classified the
so-called quasithin groups [AS].

The project of D. Gorenstein, R. Lyons and R. Solomon (the GLS-project) aims
to produce what is known as the Generation-2 proof of the Classification Theorem.
The outcome of this impressive work will be a new, coherent proof of the CFSG and
it will be (and is being) published in the special series of monographs by the AMS
[GLS1].

The basic strategy of the proof of the CFSG is to consider a simple group X
which is a minimal counterexample to the theorem. This is a finite group all of whose
proper simple subsections are listed in the statement of the CFSG (in general, a group
satisfying this condition is called a K-proper group). Thanks to the celebrated result
of W. Feit and J.G. Thompson [FT], one pays special attention to the centralisers of
involutions (elements of order 2) ofX. According to the structure of those centralisers,
the group X is always either of even type or of odd type (this is by definition [GLS1,
p.58]). Thus the proof of CFSG is reduced to the classification of groups of even type
and classification of groups of odd type. While the classification of groups of odd
type is currently nearing its completion in the work of Lyons and Solomon [GLS5],
[GLS6], [GLS7], the classification of groups of even type remains to be researched. Let
us therefore discuss this important notion ([GLS1, 21.3]). We abide by the definitions
in [GLS3], in particular, the description of the automorphisms of groups of Lie type
(which is given in [GLS3, 2.5.13]) is especially important to us.

First of all it is useful to consider the structure of a finite group G in general.
Recall that a group is H called quasisimple provided H is perfect, that is H = [H,H],
and H/Z(H) is simple. For any finite group G, a component of G is a subnormal
quasisimple subgroup. It is a fact that follows from the three subgroups lemma and
induction, that any two distinct components commute. The layer of G is

E(G) = hH | H is a component of Gi.
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Thus, if L1, L2, . . . , Ln, are the distinct components of G, then

E(G) = L1 � L2 � · · · � Ln

where � denotes a commuting product.
The Fitting subgroup of G, F (G), is better known. It is the largest nilpotent

normal subgroup of G. Recall that the largest odd order normal subgroup of a group
H is denoted by O(H) and O2(H) is the largest normal 2-subgroup of H . Thus
F (G) = O2(G)⇥O(F (G)).

The generalized Fitting subgroup of G is the product

F ⇤(G) = F (G)E(G) = F (G) � L1 � L2 � · · · � Ln.

The most fundamental property of F ⇤(G) is that CG(F ⇤(G)) = Z(F ⇤(G)). It is the
structure of F ⇤(CG(x)), for x 2 G an involution, that dictates whether or not G has
odd or even type.

Definition 1.1 A K-proper simple group G is said to be of even type

1 if and only if
the following conditions hold:

(i) G contains an elementary abelian subgroup of order at least 8.

(ii) if x 2 G is an involution, then CG(x) has no non-trivial odd order normal
subgroups and

F ⇤(CG(x)) = O2(CG(x))E(CG(x)) = O2(CG(x)) � L1 � . . . � Ln

where each Li is a component of CG(x) and Li 2 C2 for 1  i  n.

If G does not contain an elementary abelian subgroup of order 8, then the structure
of a Sylow 2-subgroup of G is very limited. The determination of the simple groups
without an elementary abelian subgroup of order 8 was presented in [ABG] as a
culmination of many significant contributions especially including work of Walter
(on abelian and dihedral Sylow 2-subgroups) and Lyons for the characterisation of
PSU3(4). This theorem is proved in volume six of the GLS-project and is subsumed
into Theorem C

⇤
2 [GLS6]. We distill it here as follows.

Theorem 1.2 If G is a finite simple group with no elementary abelian subgroup of

order 8, then one of the following holds:

(i) G has dihedral Sylow 2-subgroups and G ⇠= PSL2(q), q odd, or Alt(7);

(ii) G has semidihedral (quasidihedral) Sylow 2-subgroups and G ⇠= PSL3(q), q ⌘ �1
(mod 4), or PSU3(q), q ⌘ 1 (mod 4) or M11;

(iii) G has wreathed Sylow 2-subgroups and G ⇠= PSL3(q), q ⌘ 1 (mod 4), or

PSU3(q), q ⌘ �1 (mod 4); or

(iv) G ⇠= PSU3(4).

In definition of groups of even type condition 1.1(ii) involves the mysterious set C2
which is a part of the title of this paper. We now populate this set. Recall that Lie(2)
consists of the groups of Lie type defined in characteristic 2.

1
This is equivalent to the Definition 21.3 given in [GLS1]
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Definition 1.3

2 A quasisimple group K-group is a C2-group if and only if K has no
odd order normal subgroup and one of the following holds:

(i) K 2 Lie(2) or K ⇠= 2·2B2(8), 22·2B2(8), 2·Sp6(2), 2·PSU6(2), 22·PSU6(2),
2·PSL3(4), 22·PSL3(4), 2·PSU4(3), 2·⌦

+
8 (2), 2

2·⌦+
8 (2), 2

·G2(4), 2·F4(2),
2·2E6(2), 22·2E6(2);

(ii) K ⇠= PSL2(q) where q is a Fermat or Mersenne prime;

(iii) K ⇠= PSL3(3), PSL4(3), PSU4(3), G2(3), 2·PSU4(3); or

(iv) K ⇠= M11, M12, 2·M12, M22, 2·M22, 4·M22, M23, M24, J2, 2·J2, J3, J4, HS, 2·HS,
Suz, 2·Suz, Ru, 2·Ru, Co1, 2·Co1, Co2, Fi22, 2·Fi22, Fi23, Fi

0
24, Th, B, 2

·B or
M.

The definition of C2 at first sight looks technical and complicated. Let us explain
the motivation for this definition and so reveal its inner coherence.

Suppose for a moment that G 2 Lie(2) and ↵ is its automorphism of order 2.
If ↵ is inner, then a straightforward consequence of the Borel-Tits Theorem [GLS3,
Theorem 3.1.3] is that F ⇤(CG(↵)) = O2(CG(↵)) and if ↵ is an outer automorphism
of G, then [GLS3, Propositions 4.9.1 and 4.9.2] imply that F ⇤(CG(↵)) 2 Lie(2).
Let us try to distinguish such a group from say K = G2(3). In this case there
is a unique conjugacy class of inner involutions ↵. For such involutions we have
CK(↵) ⇠= (SL2(3) � SL2(3)) : 2 and so F ⇤(CK(↵)) = O2(CK(↵)). As for the outer
automorphisms of order 2, we have F ⇤(CK(↵)) ⇠= PSL2(8) 2 Lie(2). Likewise, for
the other C2-groups defined in characteristic 3, the fact that F ⇤(SL2(3)) is a 2-group
, PSL2(9) ⇠= PSp4(2)

0, PSp4(3) ⇠= PSU4(2) and PSU3(3) ⇠= G2(2)0 reveals a similar
picture but in these cases without the distinction between inner and outer involutions.
Inductively, allowing components in C2, we have revealed what is almost a common
feature of the groups in C2, the exceptions being the groups PSL2(q) (for q a Fermat or
Mersenne prime or 9) and PSL3(4) with ↵ acting as a graph-field automorphism. Such
exceptions have the centralizer of an outer automorphism of order 2 containing an
odd order non-trivial normal subgroup. We record this “internal closure” observation
(with the exceptions) as follows.

Proposition 1.4 Let K be a C2-group and ↵ be an automorphism of order 2. Then

exactly one of the following holds.

(i) F ⇤(CK(↵)) = O2(CK(↵)) or F ⇤(CK(↵)) = O2(CK(↵)) � L with L 2 C2.

(ii) K ⇠= PSL2(q), q a Fermat or Mersenne prime or 9, ↵ is an outer automorphism

of K which is inner-diagonal and O(CK(↵)) is a non-trivial cyclic group.

(iii) K/Z(K) ⇠= PSL3(4), ↵ is a graph-field automorphism of K and O(CK(↵)) is

elementary abelian of order 9.

A further common feature of C2-groups is the following statement.

Lemma 1.5 Suppose that K 2 C2 and R 2 Syl2(K). Then CAut(K)(R) is a 2-group.

2
This is equivalent to Definition 12.1 of [GLS1]
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Proof Suppose first that K/O2(K) is in Lie(2) (including K ⇠= PSL2(9)). Assume
that � 2 Aut(K) has odd order and centralizes R. Set X = Inn(K)h�i. Then

F ⇤(NX(R/Z(K))) = O2(NX(R/Z(K)))  R/Z(K)

is a 2-group by [GLS3, Corollary 3.1.4]. Since � centralizes R, we now have � 2

F ⇤(NX(R/Z(K))) which is nonsense. Thus the result is true for K/Z(K) 2 Lie(2).
The remaining members K of C2 have Out(K) a 2-group. So we only need to

consider CK(R). Let t 2 R be such that tZ(K) 2 Z(R/Z(K)) is an involution.
Clearly CK(R)  CK(t).

Suppose that K ⇠= PSL2(q) where q is a Fermat or Mersenne prime. Since CK(t)
is a dihedral 2-group by [GLS3, Theorem 4.5.1], the result follows.

If K/Z(K) ⇠= PSL3(3), PSL4(3), PSU4(3) or G2(3), then [GLS3, Tables 4.5.1 and
4.5.2] yield F ⇤(CK(t)) = O2(CK(t)) and so the result holds in this case.

Finally, suppose that K/Z(K) is a sporadic simple group. Since CK(R)  CK(t),
the result now follows by examination of of [GLS3, Tables 5.3] and their “notes”. ⇤

Recall that for a prime number r and group H , mr(H) denotes the minimal number
of generators of a maximal abelian r-subgroup of H. We call mr(H) the r-rank of H.
A 2-local subgroup of G is, by definition, the normalizer of a non-trivial 2-subgroup
of G. The measure of largeness used in the CFSG (called the rank of G) e(G), is the
maximum of mr(H) as H runs through the 2-local subgroups of G and r runs through
the odd primes dividing |G|. Rank 1 and rank 2 groups are known as quasithin groups
and were the subject of the aforementioned monograph of Aschbacher and Smith.
Even type groups of rank at least 4 are the subject of current study of Lyons and
Solomon. This leaves groups of even type and rank 3 as an outstanding problem. In
such groups, the only components which can appear in the centralizer of an involution
are the C2-group that have r-rank at most 3 for all odd primes r. We we will call this
subset of C2-groups, 3

C2-groups.
The remainder of this paper is devoted to cataloguing various properties of 3

C2-
groups which are exploited in our work on rank 3 groups.

Lemma 1.6 Let K be an element of

3
C2. Then the isomorphism type of K and the

r-rank of K for various primes r are listed in Table 1. Moreover, for every K 2

3
C2

and an odd prime r, one has:

mr(Aut(K))  mr(K) + 1.

The notation FM stands for the set of Fermat and Mersenne primes, and for

a 2 N with a � 1, a+ := 3+(�1)a

2 and a� := 3�(�1)a

2 .

Proof To obtain the complete list of elements of 3
C2 and to complete Table 1, we

need to determine the r-ranks of the members of C2.
Suppose first that K ⇠= PSL2(q) for q 2 FM, q = 9 or q = 2a. Then [G, Lemma

15.1.1] yields a precise statement about m2(K), m3(K) and mr(K). These are listed
in Table 1 and we have K 2

3
C2. We continue to examine all the other elements of

C2.
Suppose that K ⇠= PSL3(3). Then m3(K) = 2 by [GLS3, Theorem 3.1.3]. Since

|K| = 24 · 33 · 13, K 2

3
C2. Now Theorem 1.2 gives us that m2(K) = 2. If K ⇠=
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K m2(K) m3(K) mr(K), r � 5
PSL2(q), q 2 FM 2 1  1
PSL2(9) ⇠= PSp4(2)

0 2 2  1
PSL3(3) 2 2  1
PSU3(3) ⇠= G2(2)0 2 2  1
PSL2(2a+2) a+ 2 1  1
PSL3(2a) 2a a+  2
PSU3(2a) a a�  2
PSL4(2a) 4a 1 + a+  3
PSU4(2a) 4a 1 + a�  3
PSL5(2) 6 2  1
PSU5(4) 8 2  3
PSL6(2) 9 3  2
PSL7(2) 12 3  2
PSp4(2

a+1) 3(a+ 1) 2  2
PSp6(2

a) 6a 3  3
⌦�
8 (2

a) 6a 3  3
2B2(22a+1) a 0  1
G2(2a+1) 3(a+ 1) 2  2
2F4(2)0 5 2  2
2F4(22a+1) 5a 2  2
3D4(2a) 5a 2  2
2·PSL3(4) 5 2  1
22·PSL3(4) 6 2  1
2·Sp6(2) 4 3  2
2·2B2(8) 4 0  1
22·2B2(8) 5 0  1
2·G2(4) 5 2  2
M11 2 2  1
M12/2·M12 3/4 2  1
M22/2·M22 4/5 2  1
4·M22 4 2  1
M23 4 2  1
M24 6 2  1
J2/2·J2 4/3 2  2
J3 4 3  1
J4 11 2  2
HS/2·HS 4/5 2  2
Ru/2·Ru 6/7 2  2

Table 1. The Ranks of K
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PSU3(3), then m3(K) = 2 by [GLS3, Theorem 3.1.3]. Since |K| = 25 · 33 · 7, K 2

3
C2 and by Theorem 1.2, m2(K) = 2. If K/Z(K) ⇠= PSL4(3),PSU4(3) or G2(3),
m3(K) � 4 by [GLS3, Theorem 3.1.3]. Hence, K 62

3
C2.

Suppose now that K is a simple group of Lie type in characteristic 2. We will use
the results of Section 4.10 of [GLS3] to establish the r-ranks of K for odd primes r.

Recall that �m(x) is the mth cyclotomoic polynomial. Decomposing the order of
K into a product of such polynomials is necessary when applying the results from
[GLS3].

We begin by considering K ⇠= ⌦+
8 (q). Then

|K| = q12�4
1(q)�

4
2(q)�3(q)�

2
4(q)�6(q)

and so applying of [GLS3, Theorem 4.10.3], we obtain that mr(K) = 4 for an odd
prime r which divides q + 1 or q � 1. Thus K and any group containing a subgroup
isomorphic to K is not contained in 3

C2. In particular, the groups PSp2n(q), ⌦
±
2n(q)

for n � 5 are not contained in 3
C2.

Since B4 is a subdiagram of extended Dynkin diagram F4 and B4(2a) = C4(2a),
F4(q) contains PSp8(q) and so this group is also not in 3

C2. We may exclude E6(q)
and 2E6(q) from 3

C2 as, by [GLS3, Proposition 4.9.2 ], F4(q) is a subgroup of the
fixed points of a graph automorphism of those groups. Because E6(q) is contained in
E7(q) and E8(q) these groups are not in 3

C2.
Therefore out of the families of exceptional, symplectic and orthogonal groups the

only possible surviving families are 2B2(2a), G2(2a), PSp4(2
a), PSp6(2

a), ⌦�
8 (2

a),
3D4(2a) and 2F4(2a)0 and we shall return to these groups at a later stage in the proof
where we determine the various r-ranks.

Let us now study the linear groups. Suppose first that K ⇠= PSL5(q) with q > 2.
Then

|K| = q10�4
1(q)�

2
2(q)�3(q)�4(q)�5(q)/(q � 1, 5).

Consider the equation �1(q) = 2a� 1 = 5b for b 2 N. Since a � 2, taking the identity
modulo 4, we get a contradiction. Thus there exists prime r 6= 5 that divides q � 1.
Now [GLS3, Theorem 4.10.3 ] yields mr(K) = 4 for such a prime. Thus K 62

3
C2

and so neither are the groups containing K. In particular, if n � 5 and q > 2, then
PSLn(q) is not a member of 3

C2.
Suppose that q = 2. Since PSL8(2) � PSp8(2), for n � 8, PSLn(2) is not a

member of 3
C2. Thus the only possible linear groups in 3

C2 are PSLn(2a) for n  4
and PSLn(2) for n = 5, 6, 7.

ConsiderK ⇠= PSU6(q). Then |K| is divisible by �4
2(q) and [GLS3, Theorem 4.10.3]

implies that mr(K) � 4 for some odd prime r with r dividing q + 1. Thus K and all
groups containing K are not in 3

C2. Suppose that K ⇠= PSU5(q) with q = 2a 6= 4.
Then

|K| = q10�2
1(q)�

4
2(q)�4(q)�6(q)�10(q)/(q + 1, 5).

We investigate the equation �2(q) = 2a + 1 = 5b for b 2 N. If b is odd, reducing
modulo 8 gives us that 1 ⌘ 5 (mod 8) if 2a � 8 and 3 ⌘ 5 (mod 8) if 2a = 2, a
contradiction which shows that b is even. Hence, b = 2B for some B 2 N. It follows
that 2a = 52B � 1 = (5B � 1)(5B + 1), which is obviously incorrect as the right side
is divisible by 3, a contradiction. Thus there is an odd prime di↵erent to 5 which
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divides �2(q) so long as q 6= 4. Therefore the unitary groups are not members of 3
C2

unless possibly K ⇠= PSU5(4) or PSUn(2a) for n  4.
We have now narrowed down the list of possibilities for groups of Lie type in

characteristic 2 to be elements of 3C2. Let us now see that the r-ranks of the remaining
groups indeed do not exceed 3. We show this below and record our findings in Table
1.

Let K ⇠= PSL3(2a) and set q = 2a. Then

|K| = q3�2
1(q)�2(q)�3(q)/(q � 1, 3)

By [GLS3, Theorem 4.10.3], mr(K)  2 for all odd primes r. If a is odd, 3 divides q+1

and so m3(K) = 1 = 3+(�1)a

2 = a+. If a is even, 3 divides �1(q). Since K contains
a subgroup isomorphic to PSL3(4), m3(K) � m3(PSL3(4)) = 2, and so m3(K) = 2.
Moreover, using [GLS3, Theorem 4.10.3] again we obtain that m3(Inndiag(K)) = 2.
Since the only non-inner-diagonal outer automorphisms of K of odd order are the
field automorphisms and those form a cyclic subgroup of Out(K), it follows that
mr(Aut(K))  mr(K) + 1 for all odd primes r.

Let K ⇠= PSU3(2a). Then

|K| = q3�1(q)�
2
2(q)�6(q)/(q + 1, 3)

with q = 2a. Again [GLS3, Theorem 4.10.3], mr(K)  2 for all odd primes r. If

a is even, 3 divides q � 1 and so m3(K) = 1 = 3�(�1)a

2 = a�. If a is odd, 3
divides q + 1. Since K contains a subgroup isomorphic to PSU3(2), 2 � m3(K) �

m3(PSU3(2)) = 2, and so m3(K) = 2. Using [GLS3, Theorem 4.10.3] again we obtain
that m3(Inndiag(K)) = m3(SU3(2a)) = 2. Since the only non-inner-diagonal outer
automorphisms of K of odd order are the field automorphisms and those form a cyclic
subgroup of Out(K), it follows that mr(Aut(K))  mr(K) + 1 for all odd primes r.

Suppose now thatK ⇠= PSL4(2a) or PSU4(2a). SinceK has no outer inner-diagonal
automorphisms, we have K ⇠= SL4(2a) or SU4(2a) respectively. Thus application of
[GLS3, Theorem 4.10.3] is very straightforward and gives the desired answers.

If K ⇠= PSL5(2)(⇠= SL5(2)), |K| = 210 · 32 · 5 · 7 · 31. Since K naturally contains the
subgroup SL2(2)⇥ SL2(2), the results of Table 1 follow immediately.

Suppose that K ⇠= PSU5(4). Then |K| = 220 ·32 ·54 ·13 ·17 ·41. Clearly m3(K) = 2
and mr(K)  1 for r > 5. So suppose that r = 5. Then, as GU1(4) o Sym(5) =
5 oSym(5) is a subgroup of GU5(4), we have m5(K) = 3 and m5(Inndiag(K)) = 4. As
K does not admit non-inner-diagonal outer automorphisms of odd order, this finishes
the proof for PSU5(4).

If K ⇠= PSL6(2), |K| = 215 · 34 · 5 · 72 · 31. Since the Sylow 3-subgroup of K is
isomorphic to 3 o3 contained in SL2(2) o3 and K does not admit outer automorphisms
of odd order, the tabulated results follow immediately.

If K ⇠= PSL7(2)(⇠= SL7(2)), |K| = 221 · 34 · 5 · 72 · 31 · 127. Then we obtain the
results in Table 1 as the Sylow 3-subgroup of K is again isomorphic to 3 o 3 and K
does not admit outer automorphisms of odd order.
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We now consider the remaining families of groups. We have

|

2B2(q)| = q2�1(q)�4(q)

|PSp4(q)| = q4�2
1(q)�

2
2(q)�4(q)

|G2(q)| = q6�2
1(q)�

2
2(q)�3(q)�6(q)

|PSp6(q)| = q4�3
1(q)�

3
2(q)�3(q)�4(q)�6(q)

|⌦�
8 (q)| = q12�3

1(q)�
3
2(q)�3(q)�4(q)�6(q)�8(q)

|

2F4(q)| = q12�2
1(q)�

2
2(q)�

2
4(q)�6(q)�12(q)

|

3D4(q)| = q12�2
1(q)�

2
2(q)�

2
3(q)�

2
6(q)�12(q).

In all of these cases the centre of the universal group is trivial. Hence [GLS3,
Theorem 4.10.3] gives us the desired upper bounds on the odd ranks of K and as 3
divides �1(q) or �2(q), we always have m3(K) = 2. Since the Tits group 2F4(2)0 has
index 2 in 2F4(2), Table 1 is also true for this group. Finally, as Out(K) is cyclic for
all the groups listed, we have mr(Aut(K))  mr(K) + 1.

The 2-ranks of the groups of Lie type in characteristic 2, are given in [GLS3,
Theorem 3.3.3].

Suppose now that K is a quasisimple group of Lie type of characteristic 2 with
Z(K) 6= 1. Since Z(K) is a 2-group, for an odd prime r, the structure of Sylow
r-subgroup of K is the same as in K/Z(K), the results are as in the table. As for the
2-ranks, if K/Z(K) ⇠= PSL3(4) or Sp6(2), then m2(K) is given by [GLS3, Proposition
6.4.4].

Suppose that K/Z(K) ⇠= 2B2(8), |Z(K)| = 2 and T 2 Syl2(K). Since T is
not quaternion or cyclic, T contains a fours subgroup. Ass all the involutions in
Z(T/Z(K)) are central and NK(T ) acts transitively on Z(T/Z(K)) we deduce that
m2(T ) = 4. Now suppose that |Z(K)| = 4. Then as Aut(K) acts transitively on
Z(K) we obtain m2(K) = 5.

Let K/Z(K) ⇠= G2(4). From the character table of G2(4) and 2·G2(4), we see
that the 2-central involutions of K/Z(K) lift to involutions and the other class of
involutions of K/Z(K) lift to elements of order 4. Thus, if A is an elementary abelian
subgroup of K of maximal 2-rank, then (A/Z(K))# consists of 2-central involutions
of K/Z(K). In particular, |A| � 25. Let � be a character of degree 300 for K/Z(K)
and let B = A/Z(K). Then the inner product of characters (�|B, 1B) is non-negative.
Thus, for z 2 B#),

(|B|� 1)�(z) + �(1) = �(|B|� 1)20 + 300 � 0.

Hence |B|  24. This shows that |A| = 25 and m2(K) = 5 as claimed.
Finally, for sporadic groups, the members of 3

C2 and their ranks can be read from
[GLS3, Table 5.6.1]. ⇤

While we know the general shape of the centralisers of involutions of elements
of 3

C2, let us state explicitly the structure of F ⇤(CK(↵)) (and whenever obvious of
CK(↵)) for an involutory automorphism ↵ of K 2

3
C2. In the statement below E2a

denotes an elementary abelian group of order 2a, 21+2a
± an appropriate (+ or �)
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extraspecial group of order 21+2a, Dih(n) dentes a dihedral group of order n and
Frob(20) a Frobenius group of order 20.

Proposition 1.7 Let K be a simple group contained in

3
C2. Assume that ↵ 2

Aut(K) is an involution. Then one of the following holds.

(i) K ⇠= PSL2(p) where p = 2a + 1 is a Fermat prime, and either

(a) ↵ is inner and CK(↵) ⇠= Dih(2a), or

(b) ↵ is outer inner-diagonal and CK(↵) ⇠= Dih(2a + 2).

(ii) K ⇠= PSL2(p) where p = 2a � 1 is a Mersenne prime, and either

(a) ↵ is inner and CK(↵) ⇠= Dih(2a), or

(b) ↵ is outer inner-diagonal and CK(↵) ⇠= Dih(2a � 2).

(iii) K ⇠= PSL2(9)(⇠= PSp4(2)
0), and either

(a) ↵ is inner and CK(↵) ⇠= Dih(8), or

(b) ↵ is outer and one of the following holds:

i. ↵ is a field automorphism and CK(↵) ⇠= PGL2(3) ⇠= Sym(4).

ii. ↵ is an outer inner-diagonal automorphism and CK(↵) ⇠= Dih(10).

(iv) K ⇠= PSL3(3), and either

(a) ↵ is inner and CK(↵) ⇠= GL2(3), or

(b) ↵ is a graph automorphism and CK(↵) ⇠= PGL2(3) ⇠= Sym(4).

(v) K ⇠= PSU3(3)(⇠= G2(2)0), and either

(a) ↵ is inner and CK(↵) ⇠= GU2(3) ⇠= 4 �GL2(3), or

(b) ↵ is a graph automorphism and CK(↵) ⇠= PGL2(3) ⇠= Sym(4).

(vi) K ⇠= PSL2(2a) with a � 2, and either

(a) ↵ is inner and CK(↵) ⇠= E2a, or

(b) a is even, ↵ is a field automorphism and CK(↵) ⇠= PSL2(2a/2).

(vii) K ⇠= PSL3(2a) with a � 2 and either

(a) ↵ is inner, |CK(↵)| = (q�1)
(3,q�1)2

3a
and F ⇤(CK(↵)) is a Sylow 2-subgroup of

K, or

(b) ↵ is outer and one of the following holds:

i. ↵ is a graph automorphism and CK(↵) ⇠= PSp2(2
a) ⇠= PSL2(2a).

ii. a is even, ↵ is a field automorphism and CK(↵) ⇠= PSL3(2a/2).

iii. a is even, ↵ is a graph-field automorphism and CK(↵) ⇠= PSU3(2a/2).

(viii) K ⇠= PSU3(2a) with a � 2, and either

(a) ↵ is inner, |CK(↵)| ⇠=
(q+1)
(3,q+1)2

3a
and F ⇤(CK(↵)) is a Sylow 2-subgroup of

K, or

(b) ↵ is a graph automorphism and CK(↵) ⇠= PSp2(2
a) ⇠= PSL2(2a).

(ix) K ⇠= PSL4(2a) with a � 1, and either

(a) ↵ is inner and F ⇤(CK(↵)) is a 2-group, or

(b) ↵ is outer and one of the following holds:

i. ↵ is a graph automorphism and CK(↵) ⇠= PSp4(2
a).
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ii. ↵ is a graph automorphism and F ⇤(CK(↵)) is a 2-group.

iii. a is even, ↵ is a field automorphism and CK(↵) ⇠= PSL4(2a/2).

iv. a is even, ↵ is a graph-field automorphism and CK(↵) ⇠= PSU4(2a/2).

(x) K ⇠= PSU4(2a) with a � 1, and either

(a) ↵ is inner and F ⇤(CK(↵)) is a 2-group, or

(b) ↵ is outer and one of the following holds:

i. ↵ is a graph automorphism with CK(↵) ⇠= PSp4(2
a).

ii. ↵ is a graph automorphism and F ⇤(CK(↵)) is a 2-group.

(xi) K ⇠= PSL5(2) and either

(a) ↵ is inner and F ⇤(CK(↵)) is a 2-group, or

(b) ↵ is a graph automorphism and CK(↵) ⇠= PSp4(2).

(xii) K ⇠= PSU5(4) and either

(a) ↵ is inner and F ⇤(CK(↵)) is a 2-group, or

(b) ↵ is a graph automorphism and CK(↵) ⇠= PSp4(4).

(xiii) K ⇠= PSL6(2) and either

(a) ↵ is inner and F ⇤(CK(↵)) is a 2-group, or

(b) ↵ is outer and one of the following holds:

i. ↵ is a graph automorphism with CK(↵) ⇠= PSp6(2).

ii. ↵ is a graph automorphism and F ⇤(CK(↵)) is a 2-group.

(xiv) K ⇠= PSL7(2) and either

(a) ↵ is inner and F ⇤(CK(↵)) is a 2-group, or

(b) ↵ is a graph automorphism and CK(↵) ⇠= PSp6(2).

(xv) K ⇠= PSp4(2
a) with a � 2, and either

(a) ↵ is inner and F ⇤(CK(↵)) is a 2-group, or

(b) ↵ is outer and one of the following holds:

i. a is odd, alpha is a graph-field automorphism and CK(↵) ⇠= 2B2(2a).

ii. a is even, alpha is a field automorphism and CK(↵) ⇠= PSp4(2
a/2).

(xvi) K ⇠= PSp6(2
a) and either

(a) ↵ is inner and F ⇤(CK(↵)) is a 2-group, or

(b) a is even and ↵ is a field automorphism with CK(↵) ⇠= PSp6(2
a/2).

(xvii) K ⇠= ⌦�
8 (2

a) and either

(a) ↵ is inner and F ⇤(CK(↵)) is a 2-group, or

(b) ↵ is outer and one of the following holds.

i. ↵ is a graph automorphism with CK(↵) ⇠= PSp6(2
a).

ii. ↵ is a graph automorphism and F ⇤(CK(↵)) is a 2-group.

(xviii) K ⇠= 2B2(2a), ↵ is inner and CK(↵) is a Sylow 2-subgroup of K.

(xix) K ⇠= G2(2a), a � 2, and either

(a) ↵ is inner and F ⇤(CK(↵)) is a 2-group, or
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(b) a is even, ↵ is a field automorphism and CK(↵) ⇠= G2(2a/2).

(xx) K ⇠= 2F4(2a)0, ↵ is inner and F ⇤(CK(↵)) is a 2-group.

(xxi) K ⇠= 3D4(2a), and either

(a) ↵ is inner and F ⇤(CK(↵)) is a 2-group, or

(b) a is even, ↵ is a field automorphism and CK(↵) ⇠= 3D4(2a/2).

(xxii) K ⇠= M11, ↵ is inner in class 2A and CK(↵) ⇠= GL2(3).

(xxiii) K ⇠= M12 and

(a) ↵ is inner in class 2A and CK(↵) ⇠= 2⇥ Sym(5).

(b) ↵ is inner in class 2B and CK(↵) ⇠= 21+4
+ .Sym(3) with F ⇤(CK(↵)) a 2-

group.

(c) ↵ is outer in class 2C and CK(↵) ⇠= 2⇥Alt(5).

(xxiv) K ⇠= M22 and

(a) ↵ is inner in class 2A and CK(↵) ⇠= E24 .Sym(4) with F ⇤(CK(↵)) a 2-
group.

(b) ↵ is outer in class 2B and CK(↵) ⇠= E23 .SL3(2) with F ⇤(CK(↵)) a 2-group.

(c) ↵ is outer in class 2C and CK(↵) ⇠= E24 .Frob(20) with F ⇤(CK(↵)) a 2-
group.

(xxv) K ⇠= M23, ↵ is inner in class 2A and CK(↵) ⇠= E24 .SL3(2) with F ⇤(CK(↵)) a

2-group.

(xxvi) K ⇠= M24 and

(a) ↵ is inner in class 2A and CK(↵) ⇠= 21+6
+ .SL3(2) with F ⇤(CK(↵)) a 2-

group.

(b) ↵ is inner in class 2B and CK(↵) ⇠= E26 .Sym(5) with F ⇤(CK(↵)) a 2-
group.

(xxvii) K ⇠= J2 and

(a) ↵ is inner in class 2A and CK(↵) ⇠= 21+4
� .Alt(5) with F ⇤(CK(↵)) a 2-group.

(b) ↵ is inner in class 2B and CK(↵) ⇠= E22 ⇥Alt(5).

(c) ↵ is outer in class 2C and CK(↵) ⇠= PGL2(7).

(xxviii) K ⇠= J3 and

(a) ↵ is inner in class 2A and CK(↵) ⇠= 21+4
� .Alt(5) with F ⇤(CK(↵)) a 2-group.

(b) ↵ is outer in class 2B and CK(↵) ⇠= PSL2(17).

(xxix) K ⇠= J4 and

(a) ↵ is inner in class 2A and CK(↵) ⇠= 21+12
+ .(3·M22.2) with F ⇤(CK(↵)) a

2-group.

(b) ↵ is inner in class 2B and CK(↵) ⇠= E211(M22.2) with F ⇤(CK(↵)) a 2-
group.

(xxx) K ⇠= HS and

(a) ↵ is inner in class 2A and CK(↵) ⇠= 4 � 21+4
+ .Sym(5) with F ⇤(CK(↵)) a

2-group.

(b) ↵ is inner in class 2B and CK(↵) ⇠= 2⇥Aut(Alt(6)).
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(c) ↵ is outer in class 2C and CK(↵) ⇠= E24 .O
�
4 (2) with F ⇤(CK(↵)) a 2-group.

(d) ↵ is outer in class 2D and CK(↵) ⇠= Sym(8).

(xxxi) K ⇠= Ru and

(a) ↵ is inner in class 2A and CK(↵) ⇠= 211.Sym(5) 3
with F ⇤(CK(↵)) a 2-

group.

(b) ↵ is inner in class 2B and CK(↵) ⇠= E22 ⇥
2B2(8).

Proof For the first five cases we refer to [GLS3, Table 4.5.1 and Proposition 4.9.1].
The groups parts (vi) to (xxi) are simple groups of Lie type in characteristic 2.

Thus, for these groups, the Borel-Tits Theorem [GLS3, Theorem 3.1.3 ] implies that
every inner involutory automorphism ↵ of K has F ⇤(CK(↵)) is a 2-group. Suppose
now that ↵ is an outer automorphism of K. Then ↵ is either a graph, field or graph-
field automorphism and, according to the conventions in [GLS3, Definition 2.5.13],
the latter two can only occur when a is even. In particular, K is neither 2B2(2a)
nor 2F4(2a)0 (be aware the outer automorphism of 2F4(2) is covered by the Borel-
Tits theorem and in fact there is no involution in 2F4(2) \ 2F4(2)0). Suppose that
K ⇠= PSLn(2a) or PSUn(2a) and ↵ has order 2. If ↵ is a graph automorphism, then
the structure of CK(↵) is presented in [GLS3, Proposition 4.9.2]. Thus, if n is odd,
CK(↵) ⇠= Spn�1(2

a), while, if . n is even, either CK(↵) ⇠= Spn(2
a) or F ⇤(CK(↵)) is a

2-group and, in this latter case, both possibilities occur.
Now, PSUn(2a) does not admit any other outer automorphisms of order 2 ([GLS3,

Definition 2.5.13]). Neither does PSLn(2a) when a is odd. Suppose though that a
is even. Then [GLS3, Proposition 4.9.1] says that for ↵ a field automorphism and
CK(↵) contains PSLn(2a/2) and is contained in PGLn(2a/2) and that for ↵ a graph-
field automorphism CK(↵) contains PSUn(2a/2) and is contained in PGUn(2a/2). For
the values of n and a being considered, this means that CK(↵) ⇠= PSLn(2a/2) is ↵
is a field automorphism or CK(↵) ⇠= PSUn(2a/2) if ↵ is a graph-field automorphism
unless perhaps n = 3 and a is even. Since PSL3(2a) does not contain PGL3(2a/2) or
PGU3(2a/2) by [GLS3, Theorem 6.5.3], the statements involving field and graph-field
automorphisms in (vii)–(xiv) are true. This completes the discussion of linear and
unitary groups.

Suppose that K ⇠= Sp4(2
a) with a � 2 or Sp6(2

a), G2(2a), 3D4(2a) with a � 1. If a
is even, it follows from [GLS3, Definition 2.5.13 ] that the only outer automorphisms of
K of order 2 are the field ones. Thus by [GLS3, Proposition 4.9.], CK(↵) ⇠= Sp4(2

a/2),
Sp6(2

a/2), G2(2a/2) and 3D4(2a/2) respectively. If however a is odd, then [GLS3,
Definiton 2.5.13 together with Proposition 4.9.1] imply that for K to admit an outer
involutory automorphisms, K ⇠= Sp4(2

a). In this case ↵ is a graph-field automorphism
and CK(↵) ⇠= 2B2(aa). Thus (xv), (xvi), (xix) and (xxi) hold.

If K ⇠= ⌦�
8 (2

a), then [GLS3, Definition 2.5.13 and Theorem 4.9.2(3)] yields that
↵ is a graph automorphism and either CK(↵) ⇠= Sp6(2

a) or F ⇤(CK(↵)) is a 2-group
( and both cases occur). This proves (xvii). This completes the consideration of all
possibilities with K a Lie type group in characteristic 2.

The remaining results about the sporadic simple groups follow from inspection of
[GLS3, Tables 5.3]. ⇤

3
The notation 2

11
means a 2 group of order 2

11
.
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Here is an important property of 3
C2-groups that can be obtained as an immediate

consequence of the previous statement.

Corollary 1.8 Let K be a simple group contained in

3
C2. If z is a 2-central involution

of K (i.e., z is an involution contained in the centre of a Sylow 2-subgroup of K),

then F ⇤(CK(z)) is a 2-group.

While we now know “everything” about the structure of the involutory automor-
phisms of C2-groups, it is often handy to look at the 2-subgroups of Aut(K) and to
know the structure of centralisers of those.

Lemma 1.9 Let K be a

3
C2-group and W is a non-trivial 2-subgroup of Aut(K). If

J is a component of CK(W ), then J 2 C2.

Proof This follows by repeated use of Proposition 1.7. ⇤

In fact, the components from the above statement disappear very quickly. The
next result is true in general for groups in Lie(2) but not for arbitrary members of
C2.

Lemma 1.10 Let K be a simple group contained in

3
C2. Assume that W  Aut(K)

is an elementary abelian group of order 8. Then F ⇤(CK(W )) = O2(CG(W )).

Proof Assume that K 2

3
C2 is a counterexample to the statement. In particular,

K 6

⇠= PSL2(p) with K a Mersenne or Fermat prime, then there is no eights subgroup
in Aut(K) ⇠= PGL2(p).

If for any involution w in W , F ⇤(CK(w)) is a 2-group, then as CK(W )  CK(w),
[GLS2, Corollary 5.12] implies that F ⇤(CK(W )) is a 2-group. Thus all the involutions
in W have centralizers with components in K.

Using of [GLS3, Theorem 2.5.12] for groups of Lie type and Tables 5.3 of [GLS3],
we observe that Out(K) does not contain an eights subgroup. Thus W must contain
an inner automorphism of K. It follows from Proposition 1.7 that K is one of the
following sporadic simple groups: M12, J2, HS or Ru.

Suppose that K ⇠= M12. Then W contains 2A involutions and possibly 2C invo-
lutions. If ↵ is a 2A involution of K, then CAut(K)(↵) ⇠= D8Y Sym(5), and so for
every eights group W  CAut(K)(↵), F

⇤(CK(W ))  F ⇤(CCK(↵)(W )) is a 2-group. So
K 6

⇠= M12.
Suppose that K ⇠= J2. Then, if W  K, all the involutions in W must be in

class 2B. Since the centralizer of such an element is isomorphic to E22 ⇥ Alt(5), we
obtain a contradiction. So W 6 K. Hence W contains an element w in class 2C. So
CK(w) ⇠= PGL2(7) and we observe a contradiction.

Suppose that K ⇠= HS. If W  K, W is contained in a subgroup isomorphic to
2 ⇥ Aut(Alt(6)) and we have a contradiction. So suppose that W 6 K. Then there
exists ↵ 2 W in class 2D. In particular, W  CK(↵) ⇠= 2 ⇥ Sym(8). It follows that
W \ E(CK(↵)) 6= 1 and so, as E(CK(↵)) ⇠= PSL4(2), F ⇤(CK(W )) is a 2-group by
Proposition 1.7 (ix).

Finally, if K ⇠= Ru, then W is contained in a subgroup isomorphic to E22 ⇥
2B2(8)

and again we have a contradiction. ⇤
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In fact, just like for involutory automorphisms, O(CK(W )) is is often trivial for
the 2-subgroups W  Aut(K).

Lemma 1.11 Suppose that K is a simple group contained in

3
C2. Assume that W 

Aut(K), W = ⌦1(W ) and O(CK(W )) 6= 1. Then either

(i) K ⇠= PSL2(p) with p a Fermat or Mersenne prime, |W | = 2 and O(CK(W )) is
cyclic;

(ii) K ⇠= PSL2(9), |O(CK(W ))| = 5 and |W | = 2;

(iii) K ⇠= PSL3(4), |O(CK(W ))| = 9 and |W | = 2, or |O(CK(W ))| = 3 and |W | = 4;

(iv) K ⇠= M12, |O(CK(W ))| = 3, |W | = 4 or W ⇠= Dih(8);

(v) K ⇠= J2, |O(CK(W ))| = 3, |W | = 4 or W ⇠= Dih(8); or

(vi) K ⇠= HS, |O(CK(W ))| = 5, |W | = 4 or W ⇠= Dih(8).

Proof This follows from a recursive use of Proposition 1.7. ⇤

Going back to the centralisers of involutory automorphisms of 3
C2-groups, we may

look at those in the “opposite direction”.

Lemma 1.12 Let K be an element of

3
C2. For each such K Table 2 indicates the

groups K⇤
2

3
C2 and an involution z 2 Aut(K⇤) such that E(CK⇤(z)) ⇠= K. We note

that such K⇤
is usually called a pumpup of K and that the absence of any sporadic

simple groups K in this table is a consequences of no such K⇤
existing.

Proof The proof follows from Proposition 1.7. ⇤
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K hK⇤, zi type of z
PSL2(q), q 2 FM \ {5, 7, 17} — —

PSL2(17) Aut(J3) 2B
PSL2(7) ⇠= PSL3(2) PSL3(4):2 field

Aut(J2) 2C
PSL2(4) ⇠= PSL2(5) ⇠= Alt(5) PSL2(24):2 field

PSL3(4):2 graph
PSU3(4):2 graph

M12 2A
Aut(M12) 2C

J2 2B
PSL2(9) ⇠= PSp4(2)

0
⇠= Alt(6) PSp4(4):2 field

PSL4(2):2 graph
PSU4(2):2 graph
PSL5(2):2 graph

HS 2B
PSL3(3) — —
PSU3(3) G2(4):2 field

PSL2(2a), a � 3 PSL2(22a):2 field
PSL3(2a):2 graph
PSU3(2a):2 graph

PSL3(2a) PSL3(22a):2 field
PSU3(2a), a � 2 PSL3(22a):2 graph-field
PSL4(2) ⇠= Alt(8) Aut(HS) 2D

PSL4(2a) PSL4(22a):2 field
PSU4(2a) PSL4(22a):2 graph-field
PSL5(2) — —
PSU5(4) — —
PSL6(2) — —
PSL7(2) — —

PSp4(2
a), a � 2 PSp4(2

2a):2 field
PSL4(2a):2 graph
PSU4(2a):2 graph

PSp4(4) PSU5(4):2 graph
PSp6(2

a) PSp6(2
2a):2 field

⌦�
8 (2

a):2 graph
PSp6(2) PSL6(2):2 graph

PSL7(2):2 graph
⌦�

8 (2
a) — —

2B2(2a), a � 3 PSp4(2
a):2 graph-field

2B2(8) Ru 2B
G2(2a), a � 2 G2(22a):2 field

2F4(2a) — —
3D4(2a) 3D4(22a):2 field

Table 2. Pumpups in 3
C2
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Abstract

We give a historical perspective on the Wells exact sequence and Buckley’s interpre-
tation of it, and include a survey of applications and extensions of their work from
the 1970’s to the present.

1 Introduction

In 1971, Charles Wells [26] constructed an exact sequence for the automorphism group
of a group extension. The paper received a bit of attention at the time, but seems
to have been largely ignored until the last decade. In particular, a series of papers
in the Journal of Algebra over the last few years (see [12], [13], [16]) have brought
attention to the sequence and its applications.

This paper presents a historical view of the Wells exact sequence, emphasizing
the game-changing nature of Joseph Buckley’s interpretation of Wells’ result in the
context of group actions. Indeed, one goal of this paper is to give Buckley credit–at
least equal to Wells–for describing an invaluable method for investigating automor-
phisms of group extensions. A survey of applications of Wells’ and Buckley’s work is
provided.

The paper is organized as follows: Section 2 begins with background information
on group extensions and their automorphisms; Section 3 focuses on the 1970’s and
gives a history of Wells’ work and subsequent papers by Buckley and others; Section 4
focuses on the “resurrection” of Wells’ and Buckley’s work in the last decade, but
does not contain detailed statements of theorems; and Section 5 concludes with a
survey of applications and extensions of the Wells exact sequence, including details
missing in Section 4.

2 Background Information

In this section we give background information on group extensions and their auto-
morphisms. This information is well known and available in many other places, but
we will use this opportunity to establish some notation. For group extensions, we will
follow the notation in [20] as closely as possible since Derek Robinson’s book is widely
available, and because both the book and an old paper of his [18] are commonly used
resources by those in the field. In particular, we use the following conventions:

• if f is a function, then either xf or xf will denote the image of x under f ;

• if f : A ! B and g : B ! C then fg : A
f! B

g! C will denote the composition
of f and g;
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• conjugation will be denoted by xy = y�1xy and the corresponding conjugation
homomorphism is denoted by ◆(y) so that x◆(y) = y�1xy;

• ZN is the center of the group N .

2.1 Group extensions

A group extension is a short exact sequence of groups of the form

e : 1 ! N
µ! G

"! Q ! 1.

Thus µ is injective, " is surjective, and Imµ = Ker ". Although some authors present
a di↵erent viewpoint, we will call both e and the group G itself an extension of N
by Q. For convenience, we will write e as

e : N ⇢ G ⇣ Q,

and assume that µ is inclusion, so that N is considered a normal subgroup of G
(n.b. Robinson does not assume µ is inclusion in his book, but he does in a recent
paper [22]).

A transversal is a function t : Q ! G satisfying t" = 1Q. Note that every element
g 2 G can be uniquely represented as g = qtn for some q 2 Q and n 2 N . A
transversal need not be a homomorphism; indeed, a factor set ↵ : Q ⇥ Q ! N
measures how far away t is from being a homomorphism. That is, if q

1

, q
2

2 Q, then
↵ is defined by

qt
1

qt
2

= (q
1

q
2

)t(q
1

, q
2

)↵.

The group extension splits if there is a transversal that is a homomorphism. A
splitting exists if and only if G ⇠= N oQ is a semi-direct product.

We see that Q essentially acts on N by conjugation as follows. Define a function
� : Q ! AutN by q� = ◆(qt); that is,

nq� = (qt)�1n(qt)

for q 2 Q and n 2 N . Clearly � depends on the choice of transversal t. If t0 : Q ! G
is another transversal, then t" = 1Q = t0" means that qt and qt

0
di↵er by an element

of Ker " = Imµ = N . Hence, conjugation by qt is equal to conjugation by qt
0
modulo

an inner automorphism of N . Thus we get a homomorphism

� : Q ! OutN

defined by q� = q�InnN . The homomorphism � is called the coupling or twisting
of the extension e, and is independent of the choice of transversal. We see that �
is uniquely defined by the extension e, and it tracks the way Q twists the normal
subgroup N inside of G.

2.2 Equivalence classes of group extensions

Let

e0 : N
µ0

⇢ G0 "0⇣ Q
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be another extension of N by Q with coupling �0 : Q ! OutN .
We say that e0 is equivalent to e if there is an homomorphism � : G ! G0 that

restricts to the identity on N and induces the identity on Q; that is, if n� = n for all
n 2 N , and (g�)"

0
= g" for all g 2 G. That is, the diagram below commutes.

N ⇢ G
"⇣ Q

|| �# ||

N ⇢ G0 "0⇣ Q

It can be shown that equivalent extensions have the same coupling.
Let E(Q,N) be the set of equivalence classes of extensions of N by Q, and let

E�(Q,N) be the subset of equivalence classes of extensions of N by Q with coupling �.
In either case, let [e] denote the equivalence class of the extension e.

2.3 Automorphisms of group extensions

An automorphism of the group extension e is an isomorphism � : G ! G that is
invariant on N ; that is, N� = N . We will denote the group of all such automorphisms
by Aut e, but other common notations are Aut(G;N) and AutNG.

Any element � 2 Aut e restricts to an automorphism �|N of N , and hence induces
an automorphism of Q that we will denote �|Q. More specifically n�|N = n� for all
n 2 N , and q�|Q = (qt)(�") for all q 2 Q, where t is a transversal. If t0 is another
transversal, then qt and qt

0
di↵er by an element of N . Since �" is the identity on N

by the exactness of e, we see that �|Q is well-defined.
Define a homomorphism

⇢ : Aut e ! AutN ⇥AutQ

by ⇢(�) = (�|N , �|Q). An issue of fundamental importance is to identify the image
of ⇢, denoted Im ⇢. This is the subgroup of inducible pairs (✓, �) 2 AutN ⇥ AutQ
for which there is some � 2 Aut e satisfying �|N = ✓ and �|Q = �.

3 History

In this section we focus on the 1970’s, describing Wells’ original exact sequence and
Buckley’s insightful observation that Im ⇢ is a stabilizer group.

3.1 Charles Wells, 1971

The main result in Wells’ paper [26] is the construction of an exact sequence built
around Aut e, but Wells also gives a precise (and di�cult) description of the elements
in Aut e. We begin with the description of Aut e as a way of motivating Wells’ exact
sequence.

The pair of functions (�,↵) for an extension e : N ⇢ G ⇣ Q with coupling
� : Q ! AutN and transversal t : Q ! G as described in Section 2 is called
an associated pair. Recall that � = � InnN and ↵ : Q ⇥ Q ! N is a factor set
for t. Wells proves that there is a bijection between Aut e and a set of triples in
AutN⇥AutQ⇥NQ, where NQ denotes the set of all functions � : Q ! N , satisfying
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certain conditions. We will use the equations from section 4 of [18], which seem a bit
more usable than Wells’ equations, and adopt Robinson’s and Wells’ convention of
writing N additively.

Theorem 3.1 (Wells [26], Robinson [18]) Using the notation above, there is a
bijection between Aut e and triples (✓,�,�) 2 AutN ⇥ AutQ ⇥ NQ satisfying the
following equations for all n 2 N and q

1

, q
2

2 Q:

q�
1

· ✓ = ✓ · q��
1

· ◆(q��
1

) (1)

((q
1

, q
2

)↵)✓ = �(q�
1

q�
2

)�+ (q�
1

, q�
2

)↵+ (q��
1

)(q��
2

) + (q�
2

)� (2)

Under this bijection, � 2 Aut e is associated with the triple (�|N , �|Q,�), where �
is defined by equation (1) above. Conversely, a triple (✓,�,�) is associated with the
automorphism � defined by

(qtn)� = (q�)t · (q�)� · (n✓),

for q 2 Q and n 2 N .

In particular, we note that a pair (✓,�) 2 AutN ⇥ AutQ is inducible if and only
if there is a function � : Q ! N satisfying the equations above.

The complexity of the three equations in Theorem 3.1 may have led Wells to
the more tractable notion of “compatibility.” A pair (✓, �) 2 AutN ⇥ AutQ, is a
compatible pair for � if it satisfies

✓̄�1q�✓̄ = (q�)�, (3)

where q 2 Q and ✓̄ = ✓ InnN 2 OutN . Wells denotes the subgroup of AutN⇥AutQ
all all compatible pairs simply by C, but these pairs depend on � so a more clear
notation (used by several authors) is Comp(�). One can check that inducible pairs
are compatible so we have

Im ⇢ ✓ Comp(�).

Next, Wells constructs a set map ! : Comp(�) ! H2(Q,ZN) by building a
2-cocycle from a compatible pair (✓,�). By compatibility, we know that ✓�1q�✓ =
(q�)� modulo an inner automorphism of N . The function � : Q ! N associates
q 2 Q with the element n that induces the inner automorphism. Then Wells defines
a 2-cocycle k : Q⇥Q ! ZN that essentially measures how � deviates from satisfying
equation (2). He notes that k = 1 2 H2(Q,ZN) if and only if (✓, �) is inducible,
thus Ker! = Im ⇢. (Another interpretation of ! via group actions will be given in
Section 5, equation (4).)

The last piece needed for Wells’ exact sequence is Ker ⇢. First note that ZN has
the structure of a Q-module via � : Q ! AutN , where

mq := mq� = (qt)�1m(qt)

for m 2 ZN and q 2 Q.
Wells denotes Ker ⇢ by Z1

�(Q,ZN), but it is more commonly denoted Der(Q,ZN),
where Der(Q,ZN) is the group of derivations � : Q ! ZN satisfying

(q
1

q
2

)� = (q�
1

)q2 + (q�
2

), 8qi 2 Q.
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Define  : Der(Q,ZN) ! Aut e by

g(� ) = g(g")�, where g 2 G.

It is easy to see that � restricts to the identity on N and induces the identity on Q,
so is in Ker ⇢.

Now we can describe Wells’ exact sequence.

Theorem 3.2 (Wells [26]) Given a group extension of the form

e : N ⇢ G ⇣ Q,

there is an exact sequence

0 ! Der(Q,ZN)
 ! Aut e

⇢! Comp(�)
!! H2(Q,ZN),

where ! is a set map, and Comp(�) is the subgroup of AutN ⇥ AutQ consisting of
compatible pairs.

A few notes concerning the theorem:

• By Wells’ time it was well known that when N is abelian there is a bijec-
tion between H2(Q,N) and E�(Q,N) (see Urs Stammbach’s 1973 book [25],
for example), so cohomology classes were known to contain information about
equivalent and isomorphic group extensions, but much of the prior work was fo-
cused on computing cohomology groups via spectral sequences and other means.
Wells may not have been the first to study Aut e, but his exact sequence is the
most enduring tool.

• It turns out that ! depends on [e] so we will sometimes adopt the notation in
[13] and write !(e) if the dependency is important.

• A pair (✓,�) 2 AutN ⇥AutQ is inducible if and only if (✓, �)! is the identity
in H2(Q,ZN).

3.2 Joseph Buckley, 1974

Buckley [1] was not particularly interested in the Wells exact sequence–he barely men-
tions the set map !–but he provided a new interpretation of Comp(�) as a stabilizer
group that has proved to be invaluable. Indeed, we will generally refer to “Buckley’s
group action” in conjunction with the Wells exact sequence in order to give Buckley
the credit he deserves.

There is a right group action of AutN ⇥AutQ on E(Q,N) defined by [e] · c = [ec],
where c = (✓, �) 2 AutN ⇥AutQ and ec is the extension

N
✓�1µ
⇢ G

"�⇣ Q.

The coupling associated with ec is ��1�◆(✓̄). Note that instead of ec, Buckley writes
e(✓,�).

We see that ec has coupling � if and only if ��1�◆(✓̄) = �. This is equivalent to (3)
so we see that the subgroup Comp(�) acts on the right of the set E�(Q,N).
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Theorem 3.3 (Buckley [1]) Given a group extension of the form

e : N ⇢ G ⇣ Q,

there is an exact sequence

0 ! Der(Q,ZN)
 ! Aut e

⇢! Comp(�)
!! H2(Q,ZN),

where ! is a set map, and the image of ⇢ is the stabilizer of [e] under the action of
Comp(�) on E�(Q,N).

The rest of Buckley’s paper concerns extensions with trivial coupling, and uses the
theorem above applied to p-groups to help prove a result about the size of AutG.

3.3 Others

In the mid-1960s, prior to Wells’ paper, Wolfgang Gaschütz used cohomological tech-
niques to first prove the existence of outer automorphisms of finite p-groups [5],
and then prove that non-abelian finite p-groups have outer p-automorphisms [6]. A
series of papers extended Gaschütz’s celebrated theorems, including one by Peter
Schmid [23]. Also using cohomological techniques, including the Wells exact sequence,
Schmid found conditions under which OutP has a non-trivial normal p-subgroup.
(Ping Jin [11] takes this theorem a step further, as we will see in Section 4.)

It is worth noting that Kung-Wei Yang, a colleague of Buckley’s at Western Michi-
gan University, wrote a paper [27] appearing in 1974 that might have been a pre-
cursor to Buckley’s work. Yang mentions the Wells exact sequence, but his study of
equivalent extensions does not yet include the language of group actions that makes
Buckley’s work so enduring. Still, something good was brewing at Western Michigan.

Derek Robinson [18] wrapped up the 1970’s with his thorough presentation of
applications of cohomology to group theory in 1982, including a complete discussion
of Wells’ work. Robinson’s study of Wells’ exact sequence in special cases resulted in
new proofs of the theorems of Gaschütz’, Schmid and others. This remains a “go-to”
reference, because of its scope and attention to detail.

4 Rebirth

After Robinson’s paper in 1982 and a related follow-up in 1984 [19], there are no
references (at least none that this author could find in a thorough search of the
MathSciNet c� database) to either Wells’ work or Buckley’s until the early 2000’s. As
noted above, in 2002 Jin [11] used the Wells exact sequence and other cohomological
tools to extend Schmid’s work to a larger class of groups (finite p-nilpotent groups).
At this time, Jin makes no mention of group actions on E(Q,N) in general, nor of
Buckley’s work in particular.

Also in 2002, Wim Malfait [14] examines Im ⇢ in detail and essentially extends the
Wells exact sequence to a 27 term, cubic commutative diagram with exact rows and
columns. Malfait does not mention Buckley’s work directly, but was clearly influenced
by it–probably via Robinson’s work in [18] and [19]–since he describes a group action
of AutN ⇥AutQ on H2(Q,ZN) and identifies Im ⇢ as a stabilizer.
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In 2003, John Martino and Stewart Priddy [15] seemingly rediscover Buckley’s
influence and tweak his work by considering the action of Comp(�) on E�(Q,N) as two
separate actions, and then computing what they call the “intersection orbit group.”
The intersection orbit group gives Martino and Priddy a useful tool for computing
|Im ⇢|. One might surmise that Martino and Priddy became aware of Buckley’s
work on Aut e because Martino and Buckley were colleagues at Western Michigan
University.

In 2007, this author [3] uses the Wells exact sequence and Buckley’s group action
to prove that if the extension e splits and N is abelian, then the extension

eW : 1 ! Der(Q,N) ! Aut e ! Im ⇢ ! 1

splits. Based on a query in Wells’ original paper, we obtain a further characterization
of the conditions under which eW splits in [4]. We can say with absolute certainty
that Dietz learned about the work of Wells and Buckley via Martino and Priddy.

In the mid-2000’s, Marek Golasiński and Daciberg Lima Gonçalves computed au-
tomorphisms of groups, especially automorphisms of semi-direct products, as a means
of counting homotopy types of spherical space forms (see [7] for one example). They
did not specifically reference Wells or Buckley until later in the decade, perhaps after
learning about the Wells exact sequence via [3] and [24], and through private com-
munication with Dietz. In [9] Golasiński and Gonçalves interpret the Wells exact
sequence in the case G = N o Q and independently find that eW splits when N
is abelian. They further compute Im ⇢ when G is a split metacyclic group. Using
the splitting of eW in the case that A is a finitely generated abelian group with
A ⇠= T (A) � F (A), where T (A) is the torsion part of A and F (A) is free abelian of
finite rank, Golasiński and Gonçalves [8] write AutA as a semi-direct product that is
essentially determined by an action based on Buckley’s group action.

Most of the results listed above use the work of Wells and Buckley, but do not
advance their ideas in substantial ways. This begins to change toward the end of the
decade, with three interesting papers published in the Journal of Algebra.

In 2007, Jin [12] restricts his attention to automorphisms of e that restrict to
the identity on Q. More specifically, (✓, 1Q) is a compatible pair if and only if ✓ 2
C
AutN (Q�). Then Jin defines an action of C

AutN (Q�) on H2(Q,ZN) in such a way
that Wells’ set map ! becomes a derivation when restricted to C

AutN (Q�). This is
the first time we see Wells’ function ! described as anything but a set map.

There are two notions related to inducibility that we remark on here. First recall
that a pair (✓,�) 2 AutN ⇥ AutQ is inducible if there is some � 2 Aut e such that
�|N = ✓ and �|Q = �; that is the group of inducible pairs is equal to Im ⇢.

We will say that an element ✓ 2 AutN extends to an automorphism of G if there
exists � 2 AutG such that �|N = ✓. Necessarily, � 2 Aut e. Of particular interest are
the extendable automorphisms of N that induce the identity on Q, so that (✓, 1Q) 2
Im ⇢.

On the other hand, we will say that an element � 2 AutQ lifts to an automorphism
of G if there exists � 2 AutG such that �|Q = �. Necessarily, � 2 Aut e. Of particular
interest are the liftable automorphisms of Q that induce the identity on N , so that
(1N , �) 2 Im ⇢.

Jin [12] describes necessary and su�cient conditions for (✓, 1Q) to be an inducible
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pair. In particular, he reduces this particular extension problem to an extension
problem involving Sylow subgroups.

In 2010, I.B.S. Passi, Mahender Singh, and Manoj Yadav [16] continue in this same
vein. Not only do they consider extensions of automorphisms of N as well as lifts of
automorphisms of Q, but they reduce the questions to analogous ones involving just
some Sylow subgroups rather than all. Along the way, they establish two variations
of the Wells exact sequence.

In 2010, Jin is joined by Heguo Liu [13], and together the pair proves in full
generality that !(e) is a derivation:

!(e) 2 Der(Comp(�), H2(Q,ZN)).

They further show that the Wells map depends on the extension e and that the class
of !(e) in H1(Comp(�), H2(Q,ZN)) is “the obstruction to every compatible pair
being inducible in some extension.”

These exciting developments have several consequences that we will say more about
in Section 5.

Finally we reach 2013, when Robinson [22] uses properties of restriction and core-
striction maps in cohomology (rather than referring directly to the Wells exact se-
quence) to further extend the results in [12] and [16] on the inducibility of general
pairs of the form (✓,�) 2 AutN ⇥ AutQ and the role of Sylow subgroups. Much of
this work, including detailed proofs, appears in 2012 [21], but the 2013 paper is easier
to locate.

The last 10 years have seen the resurrection of the Wells exact sequence in the
service of understanding automorphisms of group extensions, and recognition of the
value of Buckley’s group action point-of-view.

5 Survey of Results

In this section we provide some details on applications and extensions of the Wells
exact sequence and Buckley’s group action, including all of the theorems described
in Section 4. We no longer adhere to a chronological order in this section, but try to
group together similar ideas.

5.1 The Wells map is a derivation

We begin with the details needed to understand two important theorems of Jin and
Liu in [13].

Clearly inspired by Buckley, Jin and Liu investigate the interplay of three group
actions: one is attributed to Buckley, and the other two were certainly known by
Robinson in [18], who gives credit to a comprehensive series of lecture notes by Karl
Gruenberg [10].

First, there is the action of Comp(�) on E�(Q,N) described by Buckley that we
recall here: If c = (✓, �) 2 Comp(�) and [e] 2 E�(Q,N), then [e] · c = [ec], where ec

is the extension

ec : N
✓�1µ
⇢ G

"�⇣ Q.
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Second, there is an action of H2(Q,ZN) on E�(Q,N) described as follows. Let
(�,↵) be an associated pair for an extension e : N ⇢ G ⇣ Q with coupling � and
transversal t. We can define a new extension

e(�,↵) : N ⇢ G(�,↵) ⇣ Q,

where the group G(�,↵) is the set of pairs (q, n) 2 Q⇥N with the binary operation

(q
1

, n
1

)(q
2

, n
2

) = (q
1

q
2

, (q
1

, q
2

)↵ + (n
1

)q�
2

+ n
2

), where qi 2 Q,ni 2 N.

It can be shown that e and e(�,↵) are equivalent extensions. Now let [�] 2 H2(Q,ZN)
where � 2 Z2(Q,ZN), and define ↵� : Q⇥Q ! N by

(q
1

, q
2

)(↵�) = (q
1

, q
2

)↵ + (q
1

, q
2

)� ,

then (�,↵�) is an associated pair for an extension of N by Q with coupling �. Thus,
we can define a right action of H2(Q,ZN) on E�(Q,N) by

[e] · [�] = [e(�,↵)] · [�] = [e(�,↵�)].

This turns out to be a regular action so that given c 2 Comp(�), there is a unique
element h 2 H2(Q,ZN) satisfying [ec] · h = [e]. It can be shown that the map

!(e) : Comp(�) ! H2(Q,ZN)

defined by the equation
[ec] · c!(e) = [e] (4)

matches Wells’ original definition of !.
Third, there is an action of Comp(�) on H2(Q,ZN). Let c = (✓, �) 2 Comp(�)

and [⇣] 2 H2(Q,ZN) where ⇣ 2 Z2(Q,ZN). Define [⇣] · c = [⇣]c = [⇣c], where
⇣c 2 Z2(Q,ZN) is defined by

(q
1

, q
2

)⇣
c
= (q�

�1

1

, q�
�1

2

)⇣✓.

This last action allows one to form the semi-direct product

� = Comp(�)nH2(Q,ZN).

Combining the first two actions, Jin and Liu prove their Theorem A and Corollary B,
stated next.

Theorem 5.1 (Jin and Liu [13]) Given a group extension of the form

e : N ⇢ G ⇣ Q

with coupling �, there is a group action of � = Comp(�)nH2(Q,ZN) on E�(Q,N)
defined by

[e] · (ch) = [e]c · h,

where [e] 2 E�(Q,N), c 2 Comp(�), and h 2 H2(Q,ZN). Furthermore, the stabilizer
of [e] in � is a complement of H2(Q,ZN) in �, and the set of all such stabilizers is
a single conjugacy class of subgroups of �.
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Theorem 5.2 (Jin and Liu [13]) For any group extension of the form

e : N ⇢ G ⇣ Q

with coupling �, the Wells map !(e) is a derivation from Comp(�) into H2(Q,ZN)
under the natural action of Comp(�) on H2(Q,ZN). Further, if e0 is another exten-
sion of N by Q with coupling �, then !(e) and !(e0) di↵er by an inner derivation.

5.2 Variations on the Wells exact sequence

Several authors describe variations on the Wells exact sequence, each using his or
her own notation. Here we use the notation from [16] as the common language. We
will use superscripts on AutG to denote automorphisms that centralize a subgroup
by fixing its elements, and subscripts to denote automorphisms that normalize a
subgroup by acting invariantly on it. More specifically we have

• Aut e = AutN (G) is the group of automorphisms � for which �(N) = N .

• AutN (G) is the group of automorphisms � for which �(n) = n for all n 2 N .

• AutQN (G) is the group of automorphisms in AutN (G) that induce the identity
on Q.

• AutN,Q(G) is the group of automorphisms in AutN (G) that induce the identity
on Q.

We will also need to consider subgroups of Comp(�). Let

C
1

= {✓ 2 AutN | (✓, 1Q) 2 Comp(�)}

and
C
2

= {� 2 AutQ | (1N ,�) 2 Comp(�)}.

The first variation on Wells’ exact sequence that we will mention comes from
Robinson in [18] (Theorem 4.4), where he considers extensions that have injective
coupling. We can deduce that � : Q ! OutN is injective exactly when CG(N) = ZN .
Let ⇢N : Aut e ! AutN be the restriction of an automorphism to N . It turns out
that Ker ⇢N = Ker ⇢ = Der(Q,ZN) when � is injective. If ✓ 2 Im ⇢N then there exists
� 2 AutQ such that (✓, �) is inducible. The compatibility condition in equation (3)
implies that ✓̄ normalizes Q� so ⇢N maps into N

AutN (Q�).

Theorem 5.3 (Robinson [18]) Let e : N ⇢ G ⇣ Q be an extension with injective
coupling �, then there is an exact sequence

0 ! Der(Q,ZN) ! Aut e ! N
AutN (Q�) ! H2(Q,ZN).

Robinson eventually uses this theorem and others to construct outer automor-
phisms of free abelianized extensions.

Next we see a special case of the Wells exact sequence applied to central products
in [3] (Theorem 5.17). Let G = A � B be a central product so that [A,B] = 1, and
let C = A \B. From G we can build the extension

B ⇢ G ⇣ A/C

that has trivial coupling �. In this case Comp(�) = Aut(A/C)⇥AutB.
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Theorem 5.4 (Dietz [3]) Let G = A�B be as above, then there is an exact sequence

1 ! Hom(A,ZB) ! AutCB(G)
⌫! Aut(A/C)⇥AutCB

!! H2(A/C,ZB)

where ⌫ is the restriction of ⇢ to AutCB(G) and ! is the Wells map restricted to
Aut(A/C)⇥AutCB  Aut(A/C)⇥AutB.

In 2007, Jin [12] concentrates on the subgroup C
1

of Comp(�) and we see the Wells
map as a derivation for the first time in Theorem A. Note that an element (✓, 1Q) is
compatible if and only if

✓̄�1q�✓̄ = q�

by equation (3); that is, (✓, 1Q) 2 C
1

if and only if ✓ 2 C
AutN (Q�).

Theorem 5.5 (Jin [12]) Given a group extension of the form

e : N ⇢ G ⇣ Q,

there is an exact sequence

0 ! Der(Q,ZN)!C
AutG(Q)!C

AutG(Q
�)

!! H2(Q,ZN),

where the derivation ! is the restriction of Wells’ map ! to compatible pairs of the
form (✓, 1Q).

Continuing in the same vein, but imposing the restriction that N is abelian, we
get three exact sequences in [16] (Theorems 1 and 2).

Theorem 5.6 (Passi, Singh, and Yadav [16]) Let e : N ⇢ G ⇣ Q be an exten-
sion with N abelian, then there exist the following two exact sequences:

1 ! AutN,Q(G) ! AutQN (G)
⇢1! C

1

!1! H2(Q,N)

and
1 ! AutN,Q(G) ! AutN (G)

⇢2! C
2

!2! H2(Q,N),

where ⇢i is the restriction of ⇢ to the indicated subgroup and !i is the restriction of
! to Ci.

1 Note that !i is not necessarily a homomorphism.

Theorem 5.7 (Passi, Singh, and Yadav [16]) Let e : N ⇢ G ⇣ Q be a central
extension (i.e., N  Z(G)), then there is an exact sequence

1 ! AutN,Q(G) ! AutN (G)
⇢! AutN ⇥AutQ

!! H2(Q,N).

Robinson alludes to the three sequences above in his discussion of extensions with
abelian kernel, but he does not directly mention a variation on the Wells exact se-
quence except in the case that the coupling is injective (see Theorem 4.4 in [18]).

Finally, we will mention again that Malfait [14] produces a 27-term, cubic com-
mutative diagram related to the Wells exact sequence. We will not reproduce his
Theorem 4.10 here.

1
This statement is true modulo a coboundary. That is, the functions !i (denoted �i in the original)

may not be exactly equal to the restriction of Wells’ !, but they will be cohomologous.
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5.3 Splitting the Wells exact sequence

In Wells’ original paper he states that “it would be interesting to know precisely
under what conditions” Aut e splits over Z1(Q,ZN). In such a case we would know

Aut e ⇠= Der(Q,ZN)o Im ⇢,

and together with information on inducible pairs (see Subsection 5.5), one would
know exactly what Aut e is. Wells’ question is not precisely answered, but there are
a few things known about when the sequence

eW : 1 ! Der(Q,N) ! Aut e ! Im ⇢ ! 1

and its variations split.
Though Robinson and others surely knew this early on, we see the following in

print in 2007 (Theorem 4.6).

Theorem 5.8 (Dietz [3]) Let e : N ⇢ G ⇣ Q be a split extension with N abelian,
then eW splits.

Note that Golasiński and Gonçalves prove the same result in [9], and John Curran
proves it directly in [2] without using cohomological methods.

Using the notation in [16], let C⇤
i = {� 2 Ci | �!i = 1}. Then the exact sequences

in Theorem 5.6 yield the following exact sequences when N is abelian:

1 ! AutN,Q(G) ! AutQN (G)
⇢1! C⇤

1

! 1 (5)

and
1 ! AutN,Q(G) ! AutN (G)

⇢2! C⇤
2

! 1. (6)

When the extension is central, Theorem 5.7 yields the exact sequence

1 ! AutN,Q(G) ! AutN (G)
⇢! C⇤ ! 1, (7)

where C⇤ = {(✓,�) 2 AutN ⇥AutQ | (✓,�)! = 1}. Theorem 8 in [16] states:

Theorem 5.9 (Passi, Singh, and Yadav [16]) Let G be a finite group and N an
abelian normal subgroup of G such that e : N ⇢ G ⇣ Q splits. Then sequences (5)
and (6) split. Furthermore, if the extension is central then the sequence (7) splits.

Finally, in 2012 we get some information on the splitting homomorphism for eW
(Theorem 2.2 of [4]). Assume G = N o Q and for (✓, �) 2 AutN ⇥ AutQ, define
✓ ⇤ � : G ! G by

(nq)✓⇤� = n✓q�.

If ✓ ⇤ � is a homomorphism, it will be in Aut e and (✓,�) will be an inducible pair.

Theorem 5.10 (Dietz [4]) Let e : N ⇢ G ⇣ Q be a split extension and consider
G = N oQ. As long as Der(Q,ZN) is non-trivial, the extension

eW : 1 ! Der(Q,N) ! Aut e ! Im ⇢ ! 1

splits if and only if ✓ ⇤ � 2 Aut e for all (✓,�) 2 Im ⇢. In this case, the assignment
(✓, �) 7! ✓ ⇤ � is a splitting homomorphism.
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5.4 The role of Sylow subgroups

Questions of inducibility can be reduced to questions about lifting and extending
automorphisms that come from Sylow subgroups.

Below we state Theorem D in [12] that gives a necessary and su�cient condition
for a pair (✓, 1Q) 2 AutN ⇥AutQ to be inducible, where we identify Q with G/N .

Theorem 5.11 (Jin [12]) Let N be a normal subgroup of G. Then ✓ 2 AutN
extends to an automorphism of G inducing the identity on G/N if and only if for
each Sylow subgroup P/N of G/N , ✓ extends to an automorphism of P inducing the
identity on P/N .

Next are Theorem 7 and part of Theorem 4 from [16], rewritten in the language
established in this paper, and with Q identified with G/N . The first theorem below
extends Jin’s theorem above, but under the restriction that N is an abelian group.
The second theorem below concerns lifting automorphisms of G/N .

Theorem 5.12 (Passi, Singh, and Yadav [16]) Let N be an abelian normal sub-
group of a finite group G. Then ✓ 2 AutN extends to an automorphism of G inducing
the identity on G/N if and only if for some Sylow p-subgroup P/N of G/N , for each
prime number p dividing |G/N |, ✓ extends to an automorphism of P inducing the
identity on P/N .

Theorem 5.13 (Passi, Singh, and Yadav [16]) Let N be an abelian normal sub-
group of a finite group G. Then � 2 Aut(G/N) lifts to an automorphism of G that
is the identity on N provided the restriction of � to some Sylow p-subgroup P/N of
G/N , for each prime number p dividing |G/N |, lifts to an automorphism of P that is
the identity on N .

Thus we see that the theorems above give conditions under which pairs of the form
(✓, 1Q) and (1N , �) in AutN ⇥AutQ are inducible.

Robinson extends all three theorems from above by considering the inducibility of
general pairs of the form (✓,�). Before we state Theorem 2 in [22], we need some
notation.

Assume Q is finite and let ⇡(Q) = {p
1

, p
2

, . . . , pk} be the complete set of distinct
primes dividing |Q|. Let Pi = Ri/N be a Sylow pi-subgroup of Q, where Ri  G.
Then we have subextensions of the form

ei : N ⇢ Ri ⇣ Pi

with couplings �i = �|Pi . Let (✓,�) 2 AutN⇥AutQ, then P �
i is a Sylow pi-subgroup

of Q, hence there exists qi 2 Q such that P �
i = qiPiq

�1

i . Thus P
�◆(qi)
i = Pi and we

see that �◆(qi) 2 AutPi. Let qti = gi, then ✓◆(gi) 2 AutN .

Theorem 5.14 (Robinson [22]) With the notation above, the pair

(✓,�) 2 AutN ⇥AutQ

is inducible to Aut e if and only if (✓◆(gi),�◆(qi)) is inducible to Aut ei for all i =
1, 2, . . . , k.
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Robinson further investigates the case when Q is not necessarily finite, but is locally
finite. The set-up to describe Theorem 3 in [22] will take us too far astray, so we refer
the reader to Robinson’s paper.

5.5 Inducible pairs

Certainly all five theorems in Subsection 5.2 concern inducible pairs, but there are
other results.

In 1977, Robinson [17] uses the exact sequence described below to investigate
groups with finitely many automorphisms, but in [18] he rephrases it in terms of
Wells’ work. Essentially he proves in Theorem 4.3 of [18] that if N is abelian then

Im ⇢ = C
Comp(�)([e]).

Theorem 5.15 (Robinson [18]) Let e : N ⇢ G ⇣ Q be an extension with N
abelian and coupling �, then there is an exact sequence

1 ! Der(Q,N) ! Aut e ! C
Comp(�)([e]) ! 1.

Furthermore, if the extension is central so that � is trivial, then it is easy to see
that Comp(�) = AutN ⇥AutQ and the sequence above becomes

1 ! Hom(Qab, N) ! Aut e ! C
AutN⇥AutQ([e]) ! 1.

In 2004 we see conditions under which a pair (✓,�) is inducible if and only if
both (✓, 1Q) and (1N ,�) are inducible. Suppose e : N ⇢ G ⇣ Q is split so that
we can identify Q with a subgroup of G and write G = N o Q. Decompose ⇢ :
Aut e ! AutN ⇥ AutQ as ⇢ = ⇢N ⇥ ⇢Q where ⇢N (�) = �|N and ⇢Q(�) = �|Q
for � 2 Aut e. Putting the work of [3] into established language and notation, and
combining Theorems 4.5 and 4.7, we get the following theorem.

Theorem 5.16 (Dietz [3]) Let G = N o Q. If either C
1

= AutN ⇥ {1Q} or
C
2

= {1N} ⇥ AutQ, then Im ⇢ = Im ⇢N ⇥ Im ⇢Q. If we further know that N is
abelian, then the previous hypothesis implies Im ⇢ ⇠= C

1

⇥ C
2

.

The first part of the theorem above says that if either ⇢N or ⇢Q is surjective, then
a pair (✓,�) is inducible if and only if both (✓, 1Q) and (1N , �) are inducible.

Jin and Liu call the class of !(e) in H1(Comp(�), H2(Q,ZN)) the associated co-
homology element with the coupling � and denote it by [�]. The vanishing of [�] has
consequences on the inducibility of a pair in AutN⇥AutQ. We site Corollary C and
Theorem D of [13] below.

Theorem 5.17 (Jin and Liu [13]) The following statements are equivalent:

1. [�] vanishes in H1(Comp(�), H2(Q,ZN)).

2. For some extension e with coupling �, the stabilizer of [e] under the action of
� on E�(Q,N) is equal to the stabilizer of [e] under Buckley’s action of C on
E�(Q,N).

3. There exists an extension e with coupling � such that ⇢ : Aut e ! Comp(�) is
surjective.
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An element c 2 Comp(�) is absolutely inducible for � if c is inducible for each
extension with coupling �.

Theorem 5.18 (Jin and Liu [13]) If [�] vanishes, then an element c 2 Comp(�)
is absolutely inducible if and only if c acts trivially on H2(Q,ZN).

5.6 An algorithm for determining automorphisms of p-groups

Martino and Priddy [15] use their notion of an intersection orbit group and the Wells
exact sequence in the case of trivial coupling to describe an inductive procedure for
computing AutP when P is a p-group.

Let {�n(P )} be the mod p lower central series

P = �0(P ) � �1(P ) � �2(P ) � · · · � �n(P ) = {1}

with
�n(P ) = h[g

1

, g
2

, . . . , gs]
pk | spk > ni, n � 1

where
[g

1

, g
2

, . . . , gs] = [g
1

, [g
2

, [. . . [gs�1

, gs] . . .]]]

is the s-fold iterated commutator. We see that �1(P ) = �(P ) is the Frattini subgroup
of P , and P/�1(P ) is an elementary abelian p-group. Since P is finite, �n(P ) = 1 for
some n.

Since �i(P ) is characteristic in P , the natural homomorphism

⇢V : AutP ! Aut(P/�1(P ))

factors as

AutP ! · · · ! Aut(P/�i+1(P )) ! Aut(P/�i(P )) ! · · · ! Aut(P/�1(P )). (8)

Applying Wells’ and Buckley’s ideas to various extensions associated with the
mod p lower central series, Martino and Priddy show how to lift an element f 2 Im ⇢V
up the “ladder” in (8) to f̂ 2 AutP . Note that Aut(P/�1(P )) ⇠= GLr(Fp) for some r,
so this group is well understood; nonetheless, the inductive procedure is di�cult,
and actually applying it requires knowledge of the second cohomology group of many
di↵erent groups. (There are several interesting examples in [15] where the inductive
process ends quickly.)

The theorems given above are certainly not an exhaustive list of applications of the
Wells exact sequence and Buckley’s group action. In particular, we have not included
results on outer automorphism groups as seen in [23], [11], [18], and others. However,
this survey should give one a sense of the history of the Wells exact sequence over
the last 40 years, and some interesting new views on it in recent years.

References

[1] Joseph Buckley, Automorphism groups of isoclinic p-groups, J. London Math. Soc. 12
(1975), 37-44.

[2] M. John Curran, Automorphisms of semidirect products, Math. Proc. R. Ir. Acad. 108
(2008), 205–210.



Dietz: Resurrecting Wells’ Exact Sequence 224

[3] Jill Dietz, On automorphisms of products of groups, Groups St Andrews 2005, Vol. 1,
London Math. Soc. Lecture Note Ser. 339 (CUP, Cambridge, 2007), 288–305.

[4] Jill Dietz, Automorphism groups of semi-direct products, Comm. Algebra 40 (2012),
3308–3316.
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Abstract

Beauville surfaces are a class of complex surfaces defined by letting a finite group G
act on product of Riemann surfaces. These surfaces possess many attractive geometric
properties several of which are dictated by properties of the group G. In this survey
we discuss the groups that may be used in this way. En route we discuss several open
problems, questions and conjectures.

1 Introduction

Roughly speaking (precise definitions will be given in the next section), a Beauville
surface is a complex surface S defined by taking a pair of complex curves, i.e., Riemann
surfaces, C1 and C2 and letting a finite group G act freely on their product to define S
as a quotient (C1 ⇥ C2)/G. These surfaces have a wide variety of attractive geometric
properties: they are surfaces of general type; their automorphism groups [50] and
fundamental groups [20] are relatively easy to compute (being closely related to G
— see Section 7.2 and 7.3); these surfaces are rigid surfaces in the sense of admitting
no nontrivial deformations [10] and thus correspond to isolated points in the moduli
space of surfaces of general type [37].

Much of this good behaviour stems from the fact that the surface (C1 ⇥ C2)/G is
uniquely determined by a particular pair of generating sets of G known as a ‘Beauville
structure’. This converts the study of Beauville surfaces to the study of groups with
Beauville structures, i.e., Beauville groups.

Beauville surfaces were first defined by Catanese in [20] as a generalisation of an
earlier example of Beauville [14, Exercise X.13(4)] (native English speakers may find
the English translation [15] somewhat easier to read and get hold of) in which C = C

0

and the curves are both the Fermat curve defined by the equation X5 + Y 5 +Z5 = 0
being acted on by the group (Z/5Z)⇥(Z/5Z) (this choice of group may seem somewhat
odd at first, but the reason will become clear later). Bauer, Catanese and Grunewald
went on to use these surfaces to construct examples of smooth regular surfaces with
vanishing geometric genus [11]. Early motivation came from the consideration of
the ‘Friedman-Morgan speculation’ — a technical conjecture concerning when two
algebraic surfaces are di↵eomorphic which Beauville surfaces provide counterexamples
to. More recently, they have been used to construct interesting orbits of the absolute
Galois group Gal(Q/Q) (connections with Gothendeick’s theory of dessins d’enfant
make it possible for this group to act on the set of all Beauville surfaces). We will
discuss this in slightly more detail in Section 7.6. Furthermore, Beauville’s original
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example has also recently been used by Galkin and Shinder in [34] to construct
examples of exceptional collections of line bundles.

Like any survey article, the topics discussed here reflect the research interests of the
author. Slightly older surveys discussing related geometric and topological matters
are given by Bauer, Catanese and Pignatelli in [12, 13]. Other notable works in the
area include [7, 51, 58, 62].

We remark that throughout we shall use the standard ‘Atlas’ natation for finite
groups and related concepts as described in [24], excepting that we will occasionally
deviate to minimise confusion with similar notation for geometric concepts.

In Section 2 we will introduce the preliminary definitions before proceeding in
Section 3 to discuss the case of the finite simple groups. We then go on in Section 4
to discuss the abelian and nilpotent groups. Next, we focus our attention on special
types of Beauville structures when we discuss strongly real Beauville structures in
Section 5 and mixed Beauville structures in Section 6. Finally, we discuss a miscellany
of related but less well studied topics in Section 7.

2 Preliminaries

Definition 2.1 A surface S is a Beauville surface of unmixed type if

• the surface S is isogenous to a higher product, that is, S ⇠= (C1 ⇥ C2)/G where
C1 and C2 are algebraic curves of genus at least 2 and G is a finite group acting
faithfully on C1 and C2 by holomorphic transformations in such a way that it
acts freely on the product C1 ⇥ C2, and

• each C

i

/G is isomorphic to the projective line P1(C) and the covering map
C

i

! C

i

/G is ramified over three points.

There also exists a concept of Beauville surfaces of mixed type but we shall post-
pone our discussion of these until Section 6. In the first of the above conditions the
genus of the curves in question needs to be at least 2. It was later proved by Fuertes,
González-Diez and Jaikin-Zapirain in [32] that in fact we can take the genus as being
at least 6. The second of the above conditions implies that each C

i

carries a regular
dessin in the sense of Grothendieck’s theory of dessins d’enfants (children’s draw-
ings) [45]. Furthermore, by Bely̆ı’s Theorem [16] this ensures that S is defined over
an algebraic number field in the sense that when we view each Riemann surface as
being the zeros of some polynomial we find that the coe↵cients of that polynomial be-
long to some number field. Equivalently they admit an orientably regular hypermap
[52], with G acting as the orientation-preserving automorphism group. A modern
account of dessins d’enfants and proofs of Bely̆ı’s theorem may be found in the recent
book of Girondo and González-Diez [38].

This can also be described instead in terms of uniformisation and the language of
Fuchsian groups [40, 60].

What makes this class of surfaces so good to work with is the fact that all of the
above definition can be ‘internalised’ into the group. It turns out that a group G can
be used to define a Beauville surface if and only if it has a certain pair of generating
sets known as a Beauville structure.
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Definition 2.2 Let G be a finite group. Let x, y 2 G and let

⌃(x, y) :=

|G|[

i=1

[

g2G
{(xi)g, (yi)g, ((xy)i)g}.

An unmixed Beauville structure for the group G is a set of pairs of elements
{{x1, y1}, {x2, y2}} ⇢ G ⇥ G with the property that hx1, y1i = hx2, y2i = G such
that

⌃(x1, y1) \ ⌃(x2, y2) = {e}.

If G has a Beauville structure we say that G is a Beauville group. Furthermore we
say that the structure has type

((o(x1), o(y1), o(x1y1)), (o(x2), o(y2), o(x2y2))).

Traditionally, authors have defined the above structure in terms of so-called ‘spher-
ical systems of generators of length 3’, meaning {x, y, z} ⇢ G with xyz = e, but we
omit z = (xy)�1 from our notation in this survey. (The reader is warned that this
terminology is a little misleading since the underlying geometry of Beauville surfaces
is hyperbolic thanks to the below constraint on the orders of the elements.) Further-
more, many earlier papers on Beauville structures add the condition that for i = 1, 2
we have that

1

o(x
i

)
+

1

o(y
i

)
+

1

o(x
i

y
i

)
< 1,

but this condition was subsequently found to be unnecessary following Bauer, Catan-
ese and Grunewald’s investigation of the wall-paper groups in [9]. A triple of elements
and their orders satisfying this condition are said to be hyperbolic. Geometrically,
the type gives us considerable amounts of geometric information about the surface:
the Riemann-Hurwitz formula

g(C
i

) = 1 +
|G|
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tells us the genus of each of the curves used to define the surface S and by a theorem
of Zeuthen-Segre this in turn gives us the Euler number of the surface S since

e(S) = 4
(g(C1)� 1)(g(C2)� 1)

|G|

which in turn gives us the holomorphic Euler-Poincaré characteristic of S, namely
4�(S) = e(S) (see [20, Theorem 3.4]).

Furthermore, if a group can be generated by a pair of elements of orders a and b
whose product has order c then G is a homomorphic image of the triangle group

T
a,b,c

= hx, y, z|xa = yb = zc = xyz = 1i.

Homomorphic images of the triangle group T2,3,7 are known as Hurwitz groups. In
several places in the literature, knowing that a particular group is a Hurwitz group
has proved useful for deciding its status as a Beauville group. For a discussion of
known results on Hurwitz groups see the excellent surveys of Conder [22, 23].
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3 Finite Simple Groups

A necessary condition for a group to be a Beauville group is that it is 2-generated.
In [1, 59] it is proved that all non-abelian finite simple groups are 2-generated. For
a long time it was conjectured that every non-abelian finite simple group, aside from
the alternating group A5, is a Beauville group [10, Conjecture 7.17], providing a rich
source of examples. Various authors proved special cases of this [10, 31, 33]. The full
result comes from the following Theorem which is proved by the author, Magaard
and Parker in [27, 28].

Theorem 3.1 With the exceptions of SL2(5) and PSL2(5)(⇠= A5
⇠= SL2(4)), every

finite quasisimple group is a Beauville group.

Similar results were proved at around the same time by Garion, Larsen and Lubotzky
in [36] (using probabilistic results concerning triangle groups from the PhD thesis of
Marion [55]) and by Guralnick and Malle in [46] using the theory of linear algebraic
groups. Since the overriding ideas behind the proofs given in [27, 36, 46] are in many
ways quite general we sketch these ideas in the hope that they may be useful in
proving other conjectures that appear later in this survey.

First note that the alternating groups can be dealt with using classical permutation
group theory. Furthermore, the low rank groups of Lie type may be dealt with using
explicit matrix calculations (see for instance the work of Fuertes and Jones in [33]
concerning the groups PSL2(q), 2B2(22n+1) and 2G2(32n+1).) The sporadic simple
groups are easily dealt with on a case by case basis with structure constant calculations
being useful for the larger groups. The real di�culty lies with the groups of Lie type
of unbounded rank.

Let G be a finite simple group of Lie type of characteristic p. To ensure that we
can choose elements of the group G whose product behaves as we require we use a
theorem of Gow [44] (a slight generalisation of this result to quasisimple groups is
given in [27, Theorem 2.6]). An element of G is said to be ‘semisimple’ if its order
is coprime to p and is said to be ‘regular semisimple’ if its centralizer in G has order
coprime to p.

Theorem 3.2 Let G be a finite simple group of Lie type of characteristic p and let

s 2 G be a semisimple element. Let R1, R2 ⇢ G be conjugacy classes of regular

semisimple elements of G. Then there exist elements x 2 R1 and y 2 R2 such that

s = xy.

To ensure that the conjugacy part of the definition of a Beauville structure is
satisfied we aim to choose x1, x2, y1, y2 2 G such that o(x1)o(y1)o(x1y1) is coprime
to o(x2)o(y2)o(x2y2). This is made possible by a classical theorem of Zsigmondy [63]
(or rather Bang [2] in the case p = 2.) Whilst [2] and [63] are over a century old and
therefore di�cult to read and get hold of, a more recent account of a proof is given
by Lünburg in [54].

Theorem 3.3 For any positive integers a and n there exists a prime that divides

an � 1 but not ak � 1 for any k < n with the following exceptions:

• a = 2 and n = 6; and
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• a+ 1 is a power of 2 and n = 2.

The real significance of the above results stems from the fact that most groups of
Lie type have an order that is a product of numbers of the form pk � 1 and so the
above result guarantees the existence of a rich supply of distinct primes that can be
taken as being the orders of the elements of our Beauville structure.

It remains to decide if a given triple will generate the group. Since our elements
have orders given by Theorem 3.3 we can use a theorem of Guralnick, Pentilla, Praeger
and Saxl [47] concerning subgroups of the general linear group GL

n

(pa) containing
elements of these orders and closely related results of Niemeyer and Praeger [56] for
the other classical groups to show that no proper subgroups contain our elements. It
follows that our chosen elements will generate the group.

4 Abelian and Nilpotent Groups

The abelian Beauville groups were essentially classified by Catanese in [20, page 24]
and the full argument is given explicitly in [9, Theorem 3.4] where the following is
proved.

Theorem 4.1 Let G be an abelian group. Then G is a Beauville group if, and only

if, G = (Z/nZ)⇥ (Z/nZ) where n > 1 is coprime to 6.

This explains why Beauville’s original example used the group (Z/5Z) ⇥ (Z/5Z):
it is the smallest abelian Beauville group.

Theorem 4.1 has been put to great use by González-Diez, Jones and Torres-Teigell
in [42] where several structural results concerning the surfaces defined by abelian
Beauville groups are proved. For each abelian Beauville group they describe all the
surfaces arising from that group, enumerate them up to isomorphism and impose
constraints on their automorphism groups. As a consequence they show that all such
surfaces are defined over Q.

After the abelian groups, the next most natural class of finite groups to consider
are the nilpotent groups. In [3, Lemma 1.3] Barker, Boston and the author note the
following easy Lemma.

Lemma 4.2 Let G and G0
be Beauville groups and let {{x1, y1, }, {x2, y2}} and

{{x01, y
0
1, }, {x

0
2, y

0
2}} be their respective Beauville structures. Suppose that

gcd(o(x
i

), o(x0
i

)) = gcd(o(y
i

), o(y0
i

)) = 1

for i = 1, 2. Then {{(x1, x01, ), (y1, y
0
1)}, {(x2, x

0
2), (y2, y

0
2)}} is a Beauville structure

for the group G⇥G0
.

Recall that a finite group is nilpotent if, and only if, it isomorphic to the direct
product of its Sylow subgroups. It thus follows that this lemma, and its easy to
prove converse, reduces the study of nilpotent Beauville groups to that of Beauville
p-groups. Note that Theorem 4.1 gives us infinitely many examples of Beauville p-
groups for every prime p > 3 — simply let n be any power of p. Early examples
of Beauville 2-groups and 3-groups were constructed by Fuertes, González-Diez and
Jaikin-Zapirain in [32] where a Beauville group of order 212 and another of order 312
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were constructed. Even earlier than this, two Beauville 2-groups of order 28 arose
as part of a classification due to Bauer, Catanese and Grunewald in [11] of certain
classes of surfaces of general type.

More recently, in [3], Barker, Boston and the author classified the Beauville p-
groups of order at most p4 and made substantial progress on the cases of groups of
order p5 and p6. In particular, the number of Beauville p-groups of order p4 is two
for every p > 3 and zero otherwise, but for p5 we have the following.

Conjecture 4.3 For all p � 5, the number of Beauville p-groups of order p5 is given

by p+ 10.

In [3, Theorem 1.4] we prove that there are at least p + 8 Beauville groups of
order p5. Furthermore, the above conjecture has been verified computationally for all
primes p such that 5  p  19. Perhaps more interestingly, other results proved in [3]
verify that the proportion of 2-generated p-groups of order p5 that are Beauville tends
to 1 as p tends to infinity, however this fails to to be true for p-groups of order p6.

Question 4.4 If n > 6 what is the behaviour, as p tends to infinity, of the proportion
of 2-generated p-groups that are Beauville?

Another consequence of this work was determining the smallest Beauville p-group
for all primes. In the below presentations, if no relationship between two generators
is specified by a relation or relator then it should be assumed that the two generators
commute.

Theorem 4.5 The smallest Beauville p-groups are as follows.

• For p = 2 the group

hx, y |x4, y4, [x, y2]22, [x, y3]2, [x2, y3]i

of order 27.

• For p = 3 the group

hx, y, z, w, t | x3, y3, z3, w3, t3, yx = yz, zx = zw, zy = zti

of order 35.

• For p � 5 the group

hx, y, z | x5, y5, z5, [x, y] = zi

of order p3.

Further examples are given by the following unpublished constructions due to Jones
and Wolfart.

Theorem 4.6 Let G be a finite group of exponent n = pe > 1 for some prime p � 5,
such that the abelianisation G/G0

of G is isomorphic to Z
n

⇥ Z
n

. Then G has a

Beauville structure.

Corollary 4.7 Let G be a 2-generated finite group of exponent p for some prime

p � 5. Then G has a Beauville structure.
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As noted earlier Beauville p-groups for p > 3 are in bountiful supply. Several
examples of Beauville 2-groups and 3-groups are constructed by Barker, Boston,
Peyerimho↵ and Vdovina in [5, 6] by considering sections of groups defined using
projective planes. More recently, in [4], Barker, Boston, Peyerimho↵ and Vdovina
using similar ideas constructed the first infinite family of Beauville 2-groups. At the
time of writing, as far as the author is aware, only finitely many Beauville 3-groups
are known leading to the following natural problem.

Problem 4.8 Construct infinitely many Beauville 3-groups.

We conclude this section with the following remarks. Nigel Boston has recently
undertaken some substantial and as yet unpublished computations regarding the re-
lationship between p-groups’ status as Beauville groups and their position on the
so-called ‘O’Brien Trees’ [57]. Whilst little global pattern appears to exist in general,
there does appear to be some mysterious relationship with an invariant known as
the ‘nuclear rank’ of the group — see [17]. Since defining this concept is somewhat
involved we shall say no more about this here.

5 Strongly Real Beauville Groups

Given any complex surface S it is natural to consider the complex conjugate surface S.
In particular it is natural to ask if the surfaces are biholomorphic.

Definition 5.1 Let S be a complex surface. We say that S is real if there exists a
biholomorphism � : S ! S such that �2 is the identity map.

As noted earlier this geometric condition can be translated into algebraic terms.

Definition 5.2 Let G be a Beauville group and let X = {{x1, y1}, {x2, y2}} be a
Beauville structure for G. We say that G and X are strongly real if there exists an
automorphism � 2 Aut(G) and elements g

i

2 G for i = 1, 2 such that

g1�(xi)g
�1
1 = x�1

i

and g2�(yi)g
�1
2 = y�1

i

for i = 1, 2.

It is often, but not always, convenient to take g1 = g2.
Our first examples come immediately from Theorem 4.1 since for any abelian group

the function x 7! �x is an automorphism.

Corollary 5.3 Every Beauville structure of an abelian Beauville group is strongly

real.

A little more generally, when it comes to strongly real Beauville p-groups the exam-
ples given by Theorem 4.1 are, as far as the author is aware, the only known examples.
Furthermore, the Beauville 2-groups constructed by Barker, Boston, Peyerimho↵ and
Vdovina in [4] are explicitly shown to not be strongly real. However, a combination of
Corollary 5.3 and the fact that p-groups in general tend to have large automorphism
groups [18, 19] it seems likely that most Beauville p-groups are in fact strongly real
Beauville groups. This makes the following problem particularly pressing.



Fairbairn: Beauville Surfaces, Structures and Groups 232

Problem 5.4 Construct examples of strongly real Beauville p-groups.

In [25] the following conjecture, a refinement of an earlier conjecture of Bauer,
Catanese and Grunewald [9, Section 5.4], is made.

Conjecture 5.5 All non-abelian finite simple groups apart from A5, M11 and M23

are strongly real Beauville groups.

Only a few cases of this conjecture are known.

• In [31] Fuertes and González-Diez showed that the alternating groups A
n

(n �

7) and the symmetric groups S
n

(n � 5) are strongly real Beauville groups
by explicitly writing down permutations for their generators and the automor-
phisms used and applying some of the classical theory of permutation groups to
show that their elements had the properties they claimed. It was subsequently
found that the group A6 is also strongly real.

• In [33] Fuertes and Jones proved that the simple groups PSL2(q) for prime
powers q > 5 and the quasisimple groups SL2(q) for prime powers q > 5 are
strongly real Beauville groups. As with the alternating and symmetric groups,
these results are proved by writing down explicit generators, this time combined
with a celebrated theorem usually (but historically inaccurately) attributed to
Dickson for the maximal subgroups of PSL2(q). (For a full statement of this
result and related theorems as well a detailed historical account of the maximal
subgroups of low dimensional classical groups see the excellent survey of King
in [53].) General lemmas for lifting structures from a group to its covering
groups are also used.

• In [26] the author determined which of the sporadic simple groups are strongly
real Beauville groups, including the ‘27th sporadic simple group’, the Tits group
2F4(2)0. Only the Mathieu groups M11 and M23 are not strongly real For all
of the other sporadic groups smaller than the Baby Monster group B explicit
words in the ‘standard generators’ [61] for a strongly real Beauville structure
were given. For the Baby Monster group B and Monster group M character
theoretic methods were used.

• In [25] the author also verified this conjecture for the Suzuki groups 2B2(22n+1).
Again, this was achieved by writing down explicit elements of the group which
using the list of maximal subgroups of the Suzuki group are shown to generate.

• In [25] the author extended earlier computations of Bauer, Catanese and Grune-
wald, verifying this conjecture for all non-abelian finite simple groups of order
at most 100 000 000.

We remark that several of the groups mentioned in the above bullet points are not
simple. More generally we ask the following.

Question 5.6 Which groups are strongly real Beauville groups?

Finally, we remark that in [25] the author constructs many further examples of
strongly real Beauville groups. This includes the characteristically simple groups Ak

n

for moderate values of k and su�ciently large values of n, the groups S
n

⇥ S
n

for
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n � 5 and the almost simple sporadic groups. This last calculation combined with
the earlier remarks on the symmetric group lead to the following conjecture.

Corollary 5.7 A split extension of a simple group is a Beauville group if, and only

if, it is a strongly real Beauville group.

6 The Mixed Case

When we defined Beauville surfaces and groups we considered the action of a group G
on the product of two curves C1 ⇥ C2. In an unmixed structure this action comes
solely from the action of G on each curve individually, however there is nothing to
stop us considering an action on the product that interchanges the two curves and it
is precisely this situation that we discuss in this section. Recall from Definition 2.2
that given x, y 2 G we write

⌃(x, y) :=

|G|[

i=1

[

g2G
{(xi)g, (yi)g, ((xy)i)g}.

Definition 6.1 Let G be a finite group. A mixed Beauville structure for G is a
quadruple (G0, g, h, k) where G0 is an index 2 subgroup and g, h, k 2 G are such
that

• hg, hi = G0;

• k 62 G0;

• for every � 2 G0 we have that (k�)2 62 ⌃(g, h) and

• ⌃(g, h) \ ⌃(gk, hk) = {e}

A Beauville surface defined by a mixed Beauville structure is called a mixed Beauville

surface and group possessing a mixed Beauville structure is called a mixed Beauville

group.

In terms of the curves defining the surface, the group G0 is the stabiliser of the
curves with the elements of G \G0 interchanging the two terms of C1 ⇥ C2. Moreover
it is only possible for a Beauville surface (C1⇥C2)/G to come from a mixed Beauville
structure if C1

⇠= C2. The above conditions also ensure that {{g, h}, {gk, hk

}} ⇢

G0
⇥G0 is a Beauville structure for G0.
In general, mixed Beauville structures are much harder to construct than their

unmixed counterparts. The following lemma of Fuertes and González-Diez imposes
a strong condition on a group with a mixed Beauville structure [31, Lemma 5].

Lemma 6.2 Let (C1⇥C2)/G be a mixed Beauville surface and let G0
be the subgroup

of G consisting of the elements which do not interchange the two curves. Then the

order of any element in G \G0
is divisible by 4.

Clearly no simple group can have a mixed Beauville structure since it is necessary
to have a subgroup of index 2 and the cyclic group of order 2 is not a Beauville
group, however that does not preclude the possibility of almost simple groups having
mixed Beauville structures. The above lemma was originally used to show that no
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symmetric group has a mixed Beauville structure. In [26] the author used the above to
show that no almost simple sporadic group has a mixed Beauville structure (though
the almost simple Tits group 2F4(2) is not excluded by the above lemma) and in
general most almost simple groups are ruled out by it (though as the groups P⌃L2(p2)
show there are infinitely many exceptions to this). A further restriction comes from
[9, Theorem 4.3] where Bauer, Catanese and Grunewald prove that G0 must be
non-abelian. Various geometric constraints are proved by Torres-Teigell in his PhD
thesis [60]. Most notably the genus of a mixed Beauville surface is odd and at least 17.
Furthermore, this bound is sharp. This naturally leads to the following problem.

Problem 6.3 Find mixed Beauville structures.

The earliest examples of groups that do possess mixed Beauville structures were
given by Bauer, Catanese and Grunewald in [9]. Their general construction is of the
form (H⇥H) : (Z/4Z), the generator of the group Z/4Z acting on the direct product
by interchanging its two factors and G0 = H ⇥H ⇥ Z/2Z.

Lemma 6.4 Let H be a finite group and let x1, y1, x2, y2 2 H. Suppose that

(1) o(x1) and o(y1) are even;

(2) hx21, y
2
1 , x1y1i = H;

(3) hx2, y2i = H and

(4) o(x1)o(y1)o(x1y1) is coprime to o(x2)o(y2)o(x2y2).

If the above conditions are satisfied then (G0, x, y, g) is a mixed Beauville structure

for some g 2 (H ⇥H) : (Z/4Z) where x = (x1, x2, 2), y = (y1, y2, 2) 2 H ⇥H ⇥ Z/2Z
(note that 2 2 Z/4Z generates the subgroup isomorphic to Z/2Z). Furthermore, if H
is a perfect group then we cane replace condition (2) with the condition

(2’) hx1, y1i = H.

Note that in [9] this last hypothesis was incorrectly stated in terms of the perfect-
ness of G rather than H . Bauer, Catanese and Grunewald go on to use the above
lemma to construct examples in the cases with the property that if H is taken to be a
su�ciently large alternating group or a special linear groups SL2(p) with p 6= 2, 3, 5, 17
(though their argument also does not apply in the case p = 7), then (H⇥H) : (Z/4Z)
has a mixed Beauville structure. Given the extent to which mixed Beauville groups
are in short supply it would be interesting to see if the above construction can be
used in other cases.

Problem 6.5 Find other groups H that the above lemma can be applied to.

In [29] the author and Pierro prove a slight generalisation of Lemma 6.4 that
replaces the cyclic group of order 4 with the dicyclic group of order 4k defined by the
presentation

hx, y | x2k = y4 = 1, xy = x�1, xk = y2i

for some positive integer k. In particular, when finding examples of groups that satisfy
the hypotheses of this generalisation (which is su�cient to show that such groups
satisfy the hypotheses of Lemma 6.4) we obtain new examples of mixed Beuville
groups from the groups H and H ⇥H where H is any of the alternating groups A

n
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(n � 6), the linear groups PSL2(q) (q � 7 odd), the unitary groups PSU3(q) (q � 3),
the Suzuki groups 2B2(22n+1) (n � 1), the small Ree groups 2G2(32n+1) (n � 1), the
large Ree groups 2F4(q) (q � 8), the Steinberg triality groups 3D4(q) (q � 2) and
the sporadic simple groups (including the Tits group 2F4(2)0) as well as the groups
PSL2(2n)⇥ PSL2(2n) (n � 3).

What about p-groups? If p is odd then again, the absence of index 2 subgroups
ensures that there exist no mixed Beauville p-groups. In the construction described
above the technical constraints on H ensure that it cannot be a 2-group, stopping
this providing a source of examples. Early examples of mixed Beauville 2-groups were
given by Bauer, Cataneses and Grunewald constructed in [11] where they constructed
two mixed Beauville groups of order 28. Even so, the lack of known Beauville 2-groups
makes the following a natural problem.

Problem 6.6 Construct infinitely many mixed Beauville 2-groups.

7 Miscellanea

7.1 PSL2(q) and PGL2(q)

In [10, Question 7.7] Bauer, Catanese and Grunewald asked the following question,

Existence and classification of Beauville surfaces, i.e.,

a) which finite groups G can occur?

b) classify all possible Beauville surfaces for a given finite group G.

In [35] Garion answered the above in the case of the groups PSL2(q) and PGL2(q).
For PSL2(q) we have the following.

Theorem 7.1 Let G = PSL2(q) where 5 < q = pe for some prime number p and

some positive integer e. Let ⌧1 = (r1, s1, t1), ⌧2 = (r2, s2, t2) be two hyperbolic triples

of integers. Then G admits an unmixed Beauville structure of type (⌧1, ⌧2) if, and

only if, the following hold:

(i) the group G is a quotient of the triangle groups T
r1,s1,t1 and T

r2,s2,t2 with torsion-

free kernel;

(ii) if p = 2 or e is odd or q = 9, then r1s1t1 is coprime to r2s2t2. If p is odd,

e is even and q > 9, then g = gcd(r1s1t1, r2s2t2) 2 {1, p, p2}. Moreover, if p
divides g and ⌧1 (respectively ⌧2) is up to a permutation (p, p, n) then n 6= p and

n is a ‘good G-order’.

Here by ‘good G-order’ we mean the following. Let q be an odd prime power and
let n > 1 be an integer. Then n is a good G-order if either

• n divides (q � 1)/2 and a primitive root of unity a of order 2n in F
q

has the
property that �a = c2 for some c 2 F

q

or

• n divides (q + 1)/2 and a primitive root of unity a of order 2n in F2
q

has the
property that �a = c2 for some c 2 F

q

2 such that cq+1 = 1.
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A similar theorem is given for the groups PGL2(q).
Given that generic lists of maximal subgroups of other low rank groups of Lie type

are well known in numerous other cases, it seems likely that analogous results for these
groups can also be obtained. We thus reiterate Bauer, Catanese and Grunewald’s
earlier question in this case.

Problem 7.2 Obtain results analogous to the above for other classes of finite simple
groups.

7.2 Fundamental Groups of Beauville Surfaces

We mentioned in the introduction that Beauville surfaces have fundamental groups
that are easy to work with. To make this vague remark a little more specific we note
the following. Suppose that if G is a Beauville group with a Beauville structure of
type ((a1, b1, c1), (a2, b2, c2)), then for i = 1, 2 there exist surjective homomorphisms
⇢
i

: T
ai,bi,ci ! G. The direct product ker(⇢1)⇥ker(⇢2) is the fundamental group of the

product C1⇥C2. The fundamental group of the surface (C1⇥C2)/G is now an extension
of a normal subgroup ker(⇢1)⇥ker(⇢2) by G, or more precisely the inverse image in
T
a1,b1,c1 ⇥T

a2,b2,c2 of the diagonal subgroup of G⇥G under the epimorphism ⇢1 ⇥ ⇢2.
It turns out that this simple description of the fundamental group is responsible for
the rigidity of Beauville surfaces and this in turn ensures that the topological and
geometric features of the surfaces are closely intertwined - see [51, Section 9] for
details.

Unsurprisingly, since a Beauville group dictates so many features of its correspond-
ing Beauville surface which in turn determines its fundamental group we also have the
reverse relationship whereby the fundamental group determines the original Beauville
group. The following is proved by González-Diez and Torres-Teigell [41, 60]. (It also
worth noting related results given by Bauer, Catanese and Grunewald in [10] and by
Catanese in [20]).

Theorem 7.3 Two Beauville surfaces are isometric if and only if their fundamental

groups are isomorphic.

The fundamental group is one of the most basic tools in algebraic topology. It
is, however, somewhat limited in its usefulness and topologists have found several
important higher dimensional analogues of the fundamental group and so it is natural
to pose the following question.

Question 7.4 Do the higher homotopy/homology/cohomology groups of a Beauville
surface have similar descriptions in terms of triangle groups and the corresponding
Beauville group and to what extent do they uniquely determine the surface?

By way of partial progress on this question in [8] Bauer, Catanese and Frapporti
recently showed that for any Beauville surface S the homology group H1(S,Z) is
finite. They also give a much more detailed discussion of geometric aspects of the
study of fundamental groups of Beauville surfaces and related objects as well as
computer calculations of these objects in some cases.
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7.3 Automorphism Groups of Beauville Surfaces

In [50] Jones investigated the automorphism groups of unmixed Beauville surfaces.
Some of these results were obtained independently by Fuertes and González-Diez
in [30] and were later extended to mixed Beauville surfaces by González-Diez and
Torres-Teigell in [40, Section 5.3].

Theorem 7.5 The automorphism group Aut(S) of a Beauville surface S = (C1 ⇥

C2)/G has a normal subgroup Inn(S) / Z(G) with Aut(S)/Inn(S) isomorphic to a

subgroup of the wreath product S3 o S2. In particular Aut(S) is a finite soluble group

of order dividing 72|Z(G)| and of derived length at most 4.

Here the subgroup Inn(S) consists of automorphisms preserving the two curves
(or more precisely, induced by automorphisms of C ⇥ C

0 preserving them) though it
does not necessarily contain all of them: they form a subgroup of index at most 2 in
Aut(S), whereas Inn(S) can have index up to 72. The results in the mixed case are
similar.

7.4 Beauville Genus Spectra

In [10, Question 7.7(b)] Bauer, Catanese and Grunewald ask us to classify all possible
Beauville surfaces for a given finite group G.

As a partial answer to this, in [32, Section 4] Fuertes, González-Diez and Jaikin-
Zapirain introduce the concept of Beauville genus spectrum which we define as follows.

Definition 7.6 Let G be a finite group. The Beauville genus spectrum of G is the
set Spec(G) of pairs of integers (g1, g2) such that g1  g2 and there are curves C1

and C2 of genera g1 and g2 with an action of G on C1 ⇥ C2 such that (C1 ⇥ C2)/G is a
Beauville surface.

By the Riemann-Hurwitz formula each g
i

is bounded above by 1 + |G|/2 and so
this set is always finite. Fuertes, González-Diez and Jaikin-Zapirain determine the
Beauville spectra of several small groups.

Proposition 7.7 1. Spec(S5) = {(19, 21)}

2. Spec(PSL2(7)) = {(8, 49), (15, 49), (17, 22), (22, 33), (22, 49)}

3. Spec(S6) = {(49, 91), (91, 121), (91, 169), (121, 169), (151, 169)}

4. If gcd(n, 6) = 1 and n > 1 then

Spec((Z/nZ)⇥ (Z/nZ)) =
⇢✓

(n� 1)(n� 2)

2
,
(n� 1)(n� 2)

2

◆�
.

Unpublished calculations of the author’s PhD student, Emilio Pierro, has added a
few more finite simple and almost simple groups to the above list, the largest being
the Mathieu group M23. Furthermore, the Beauville genus structures of PSL2(q) and
PGL2(q) may be deduced from the results discussed in Subsection 7.1. This naturally
leads us to ask the following.

Problem 7.8 Determine the Beauville genus spectrum of more groups.
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7.5 Characteristically Simple Groups

Characteristically simple groups are usually defined in terms of characteristic sub-
groups, but for finite groups this turns out to be equivalent to the following.

Definition 7.9 A finite group G is said to be characteristically simple if G is iso-
morphic to the direct product Hk where H is a finite simple group for some positive
integer k.

If we fix H then for large values of k the group Hk will not be 2-generated and
therefore will not be Beauville. For more modest values of k there is, however, still
hope. These groups have recently been investigated by Jones in [48, 49] where the
following conjecture is investigated.

Conjecture 7.10 Let G be a finite characteristically simple group. Then G is Beau-

ville if and only if it is 2-generated and not isomorphic to the alternating group A5.

Theorem 3.1 shows that this conjecture is true for the characteristically simple
group Hk in the case k = 1 for every non-abelian finite simple group H . If G
is abelian then this conjecture holds by Theorem 4.1 following the convention that
a cyclic group is not considered to be 2-generated. In [39] the above conjecture
is verified for the alternating groups and in [49] it is verified for the linear groups
PSL2(q) and PSL3(q), the unitary groups PSU3(q), the Suzuki groups 2B2(22n+1),
the small Ree groups 2G2(32n+1) and the sporadic simple groups. In addition to the
above the author has performed computations that verify the above conjecture for
all characteristically simple groups of order at most 1030. As an amusing aside we
note that this shows that whilst A5 is not a Beauville group, the direct product of
nineteen copies of A5 is!

In [25] the author considers which of the characteristically simple groups are
strongly real Beauville groups. The main conjecture is the following.

Conjecture 7.11 If G is a finite simple group of order greater than 3, then G⇥ G
is a strongly real Beauville group.

It is likely that many larger direct products are also strongly real, however the
precise statement of a conjecture along these lines is likely to be much more compli-
cated. For example, a straightforward computation verifies that neither of the groups
M11⇥M11⇥M11 and M23⇥M23⇥M23 are strongly real despite the fact that both of
the groups M11⇥M11⇥M11⇥M11 and M23⇥M23⇥M23⇥M23 are.

The above conjecture has been verified for the alternating groups (though slightly
stronger results are true in this case), the sporadic simple groups, the linear groups
PSL2(q) (q > 5), the Suzuki groups 2B2(22n+1), the sporadic simple groups (including
the Mathieu groups M11 and M23, despite the statement of Conjecture 5.5) and all
of the finite simple groups of order at most 100 000 000.

7.6 Orbits of the Absolute Galois Group

The task of understanding the absolute Galois group Gal(Q/Q) is of central impor-
tance in algebraic number theory and is related to the Inverse Galois Problem (it is
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equivalent to asking if every finite group is a quotient of Gal(Q/Q) under a topo-
logically closed normal subgroup) and this is arguably the hardest open problem in
algebra today. As things stand Gal(Q/Q) remains very poorly understood. A nat-
ural approach to understanding any group is to study some action(s) of the group.
An immeidate consequence of Bely̆ı’s Theorem is that Gal(Q/Q) acts on the set of
all Beauville surfaces. Recently there has been much interest in constructing orbits
consisting of mutually non-homeomorphic pairs of Beauville surfaces. In [41, 43]
González-Diez, Jones and Torres-Teigell have constructed arbitrarily large orbits of
Gal(Q/Q) consisting of mutually non-homeomorphic pairs of Beauville surfaces de-
fined by the Beauville groups PSL2(q) and PGL2(q).

Problem 7.12 Construct arbitrarily large orbits of Gal(Q/Q) consisting of mutually
non-homeomorphic pairs of Beauville surfaces using other groups.

A slightly di↵erent motivation for addressing the above problem comes from the
following. Knowing whether or not Gal(Q/Q) acts faithfully on the set of Beauville
surfaces is equivalent to the longstanding question of whether or not Gal(Q/Q) acts
faithfully on the set of regular dessins. This was recently resolved by González-Diez
and Jaikin-Zapirain in [39] by showing that Gal(Q/Q) acts faithfully on the set of
Beauville surfaces.
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[41] G. González-Diez and D. Torres-Teigell, Non-homeomorphic Galois conjugate Beauville
structures on PSL(2, p), Adv. Math. 229 (2012), 3096–3122.
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1 Introduction

Alfred Tarski in 1940 made three well-known conjectures concerning nonabelian free
groups (see Section 2). There had been various partial solutions until complete posi-
tive solutions were presented during the past 15 years by Kharlampovich and Myas-
nikov (see [51]–[59]) and independently by Z. Sela (see [78]–[83]). In the Kharlamp-
ovich-Myasnikov approach the proof arose from a detailed study of fully residually
free groups (called limit groups in Sela’s approach), the development of algebraic ge-
ometry over free groups, and an elimination process involving solutions of equations
over free groups based on work of Makhanin and Razborov (see [51]–[59]). These
steps were mirrored, with somewhat di↵erent terminology, by Sela, who called his
approach diophantine geometry over free groups.

The positive solution of the Tarski conjectures provides a straightforward proof of
Magnus’s theorem in surface groups which we present. This result was proved directly
by J. Howie [46] and independently by O. Bogopolski [10]. We will present this proof
in Section 4. This type of proof leads to several di↵erent types of questions.

• Which additional nontrivial free group results are true in surface groups but
di�cult to obtain directly?

• What first-order properties of nonabelian free groups are true beyond the class
of elementary free groups?

After showing a proof of Magnus’s Theorem based on the solution of the Tarski
problems we give several examples of other free group results holding in surface
groups. Using this technique we give a proof of a theorem of D. Lee on C-test
words. We then consider and prove certain other results that hold in elementary free
groups, in particular surface groups, including the retract theorem of Turner [86] and
the property of conjugacy separability.

After this we turn to the second type of question and survey a large number of
recent results. In particular we first consider groups satisfying certain quadratic
properties that we call Lyndon properties and show that the class of groups satisfying
these properties are closed under many amalgam constructions. Elementary free
groups satisfy these properties and these amalgam results extend the class of groups



Fine et al.: Something for nothing 243

satisfying Lyndon properties beyond the class of elementary free groups. We then
introduce a class of groups that generalize a theorem of B. Baumslag [2] and then
generalized by Gaglione and Spellman [42] and independently Remeslennikov [73].
All elementary free groups satisfy these theorems and we show that the classes of
groups satisfying these results are fairly extensive. In the next section we provide
some background material.

2 The Tarski Problems and Elementary Free Groups

The original Tarski Problems (or Tarski Conjectures) asked, among other things,
whether all nonabelian free groups satisfy the same first-order or elementary theory.

Recall that a first-order sentence in group theory has logical symbols 8,9,_,^,⇠
but no quantification over sets. A first-order theorem in a free group is a theorem
that says a first-order sentence is true in all nonabelian free groups. We make this a
bit more precise:

We start with a first-order language appropriate for group theory. This language,
which we denote by L0, is the first-order language with equality containing a binary
operation symbol ·, a unary operation symbol �1 and a constant symbol 1. A universal
sentence of L0 is one of the form 8x{�(x)} where x is a tuple of distinct variables, �(x)
is a formula of L0 containing no quantifiers and containing at most the variables of x.
Similarly an existential sentence is one of the form 9x{�(x)} where x and �(x) are as
above. A universal-existential sentence is one of the form 8x9y{�(x, y)}. Similarly
defined is an existential-universal sentence. It is known that every sentence of L0 is
logically equivalent to one of the form Q1

x1
. . . Q

n

xn
�(x) where x = (x1, . . . , xn) is

a tuple of distinct variables, each Q
i

for i = 1, . . . , n is a quantifier, either 8 or 9,
and �(x) is a formula of L0 containing no quantifiers and containing free at most
the variables x1, . . . , xn. Further vacuous quantifications are permitted. Finally a
positive sentence is one logically equivalent to a sentence constructed using (at most)
the connectives _,^,8,9.

If G is a group then the universal theory of G consists of the set of all universal
sentences of L0 true in G. We denote the universal theory of a group G by Th

8

(G).
Since any universal sentence is equivalent to the negation of an existential sentence
it follows that two groups have the same universal theory if and only if they have
the same existential theory. The set of all sentences of L0 true in G is called the
first-order theory or the elementary theory of G. We denote this by Th(G). We note
that being first-order or elementary means that in the intended interpretation of any
formula or sentence all of the variables (free or bound) are assumed to take on as
values only individual group elements — never, for example, subsets of nor functions,
on the group in which they are interpreted.

We say that two groups G and H are elementarily equivalent (symbolically G ⌘ H)
if they have the same first-order theory, that is Th(G) = Th(H).

Group monomorphisms which preserve the truth of first-order formulas are called
elementary embeddings. Specifically, if H and G are groups and f : H ! G is a
monomorphism then f is an elementary embedding provided whenever �(x0, . . . , xn)
is a formula of L0 containing free at most the distinct variables x0, . . . , xn and
(h0, . . . , hn) 2 Hn+1 then �(h0, . . . , hn

) is true in H if and only if �(f(h0), . . . , f(hn))
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is true in G. IfH is a subgroup of G and the inclusion map i : H ! G is an elementary
embedding then we say that G is an elementary extension of H.

Two very important concepts in the elementary theory of groups are completeness
and decidability. Given a nonempty class of groups X closed under isomorphism then
we say its first-order theory is complete if given a sentence � of L0 then either � is
true in every group in X or � is false in every group in X . The first-order theory of
X is decidable if there exists a recursive algorithm which, given a sentence � of L0

decides whether or not � is true in every group in X .
The positive solution to the Tarski Problems, given by Kharlampovich and Myas-

nikov (see [51]–[59] and independently by Sela (see [78]–[83]) is given in the next three
theorems:

Theorem 2.1 (Tarski 1) Any two nonabelian free groups are elementarily equiv-
alent. That is any two nonabelian free groups satisfy exactly the same first-order
theory.

Theorem 2.2 (Tarski 2) If the nonabelian free group H is a free factor in the free
group G then the inclusion map H ! G is an elementary embedding.

In addition to the completeness of the theory of the nonabelian free groups the
question of its decidability also arises. The decidability of the theory of nonabelian
free groups means the question of whether there exists a recursive algorithm which,
given a sentence � of L0, decides whether or not � is true in every nonabelian free
group. Kharlampovich and Myasnikov, in addition to proving the two above Tarski
conjectures, also proved the following.

Theorem 2.3 (Tarski 3) The elementary theory of the nonabelian free groups is
decidable.

Prior to the solution of the Tarski problems it was asked whether there exist non-
free elementary free groups, that is whether there exists non-free groups that have
exactly the same first-order theory as the class of nonabelian free groups. Elemen-
tary free groups are also known as elementarily free groups. The answer was yes,
and both the Kharlampovich-Myasnikov solution and the Sela solution provide a
complete characterization of the finitely generated elementary free groups. In the
Kharlampovich-Myasnikov formulation these are given as a special class of what are
termed NTQ groups (see [51]–[59]).

What is important for this paper is that the orientable surface groups of genus
g � 2 are elementary free. Recall that a surface group is the fundamental group of a
compact surface. If the surface is orientable it is an orientable surface group otherwise
a nonorientable surface group.

If S
g

denotes the orientable surface group of genus g then S
g

has a one-relator
presentation with a quadratic relator.

S
g

= ha1, b1, . . . , ag, bg; [a1, b1] . . . [ag, bg] = 1i.

Groups with presentations similar to this play a major role in the structure theory
of fully residually free groups and NTQ groups (see [51]–[59]).
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Further if N
g

denotes the nonorientable surface group of genus g then N
g

has a
one-relator presentation with a quadratic relator.

N
g

= ha1, . . . , ag; a21 · · · a2g = 1i.

We note that the solution to the Tarski Problems implies that any first-order
theorem holding in the class of nonabelian free groups must also hold in most surface
groups. In many cases proving these results directly is very nontrivial.

Theorem 2.4 (see [51]–[59], [78]–[83]) An orientable surface group of genus g �
2 is elementary free, that is has the same elementary theory as the class of nonabelian
free groups. Further the nonorientable surface groups N

g

for g � 4 are also elementary
free.

3 Surface Groups and Magnus’s Theorem

Magnus proved the following theorem about the normal closures of elements in non-
abelian free groups:

Theorem 3.1 (Magnus) Let F be a finitely generated nonabelian free group and
R,S 2 F . Then if N(R) = N(S), it follows that R is conjugate to either S or S�1.
Here N(g) denotes the normal closure in F of the element g.

J. Howie [46] and independently O. Bogopolski and Bogopolski–Sviridov [11] gave
a proof of this for surface groups. Howie’s proof was for orientable surface groups
while Bogopolski and Sviridov also handled the nonorientable case. Their proofs were
nontrivial and Howie’s proof used the topological properties of surface groups. Howie
further developed, as part of his proof of Magnus’s theorem for surface groups, a
theory of one-relator surface groups. These are surface groups modulo a single addi-
tional relator. Bogopolski and Bogopolski-Sviridov proved in addition that Magnus’s
Theorem holds in even a wider class of groups.

With some work it can be determined that Magnus’s result is actually a first-
order theorem on nonabelian free groups and hence from the theorems concerning
the solution of the Tarski problems it holds automatically in all elementary free
groups. In particular Magnus’ theorem will hold in surface groups, both orientable
and nonorientable of appropriate genus. If G is a group and g 2 G then N(g), as in
the statement of Magnus’s Theorem above, will denote the normal closure in G of
the element g.

Theorem 3.2 Let G be an elementary free group and R,S 2 G. Then if N(R) =
N(S), it follows that R is conjugate to either S or S�1.

Before exhibiting the proof of this result we mention the following two corollar-
ies which extend Magnus’s Theorem to surface groups and recover the results of
Howie [46], Bogopolski [10] and Bogopolski-Sviridov [11].

Corollary 3.3 ([46], [10]) Let S
g

be an orientable surface group of genus g � 2.
Then S

g

satisfies Magnus’s theorem, that is if u, v 2 S
g

and N(u) = N(v) it follows
that u is conjugate to either v or v�1.
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Corollary 3.4 ([11]) Let N
g

be a nonorientable surface group of genus g � 4. Then
N

g

satisfies Magnus’s theorem, that is if u, v 2 S
g

and N(u) = N(v) it follows that u
is conjugate to either v or v�1. The genus g � 4 is essential here.

We now present a proof of Theorem 3.2. From Theorem 3.2 the two corollaries
describing this result in surface groups follow easily based on the solution to the
Tarski problems coupled with the facts that orientable surface groups of genus g � 2
and nonorientable surface groups of genus g � 4 are elementary free.

Proof To prove the theorem we show that Magnus’s theorem is actually a first-order
result in nonabelian free groups. Therefore the result will hold in any elementary free
group.

Magnus’s theorem can be given by a sequence of elementary sentences of the form
(see also [GLS]).

{8R,S 2 G,8g 2 G,9g1, . . . , gt, h1, . . . , hk}
(g�1Rg = g�1

1 S±1g1 . . . g
�1
t

S±1g
t

) ^ (g�1Sg = h�1
1 R±1h1 . . . h

�1
k

R±1h
k

)}
=) {9x 2 G(x�1Rx = S _ x�1Rx = S�1)}

Magnus’s theorem is therefore a first-order result proving Theorem 3.2. ⇤

As described prior to the proof it follows that any elementary free group and hence
surface groups of the appropriate genus satisfy Magnus’s theorem. This recovers
the results in [46], [11], [10]. Actually more is true. An examination of the sentences
capturing that Magnus’s theorem (Theorem 3.1) is first-order shows that the sentences
are universal-existential. Hence the theorem holds in the almost locally free groups
of Gaglione and Spellman [43].

Before continuing we mention that Magnus’s theorem is related to some interesting
consequences for one-relator groups and their automorphisms.

Lemma 3.5 If G = hX;Ri a one-relator group and ↵ 2 Aut(F ) then G is isomorphic
to ↵(G) = hX;↵(R)i.

The converse is not true. That is, there exist examples of two one-relator presen-
tations hX;Ri and hX;Si of a one-relator group G such that there is no ↵ 2 Aut(F )
with S = ↵(R). An example can be found in the book by Collins and Zieschang [19].
However surprisingly the result has been shown to be generically true (Kapovich,
Schupp, Shpilrain [49]). This means that a measure can be put on the set of one-
relator presentations such that the asymptotic density of those one-relator groups
that satisfy the above lemma is one.

4 Questions and Something for Nothing

The proof of Magnus’s theorem for surface groups given in the last section is a type
of something for nothing result. That is nontrivial proofs, such as those of Howie and
Bogopolski, of results in certain classes of groups fall out directly from the solution
to the Tarski problems. These types of proofs and results lead to several di↵erent
types of questions:
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1. Which additional nontrivial free group results are true in surface groups but
di�cult to obtain directly?

2. What first-order properties of nonabelian free groups are true beyond the class
of elementary free groups?

In the next section we consider the first question and present a series of results
true in all elementary free groups and in particular surface groups of the appropriate
genus.

5 Results in Elementary Free Groups

As a simple example of the first type of question we consider the well known property
concerning commutativity in free groups. It is well known (see [68]) that nonabelian
free groups have cyclic centralizers of nontrivial elements. This is a consequence of
the following somewhat weaker result.

Theorem 5.1 ([68]) Let F be a nonabelian free group. If x, y 2 F and x, y commute
then both x and y are powers of a single element w 2 F .

This result is given by the sentence

8{x, y 2 F}([x, y] = 1) =) 9{w 2 F}9{m,n 2 Z}(x = wm ^ y = wn)

This is not first-order in the language of group theory since we must quantify over
the integers which are not included in the language L0. Hence this result is not
necessarily true in elementary free groups. As an example, let D be a nonprincipal
ultrafilter on Z (see [8]). Let F = ha1, a2; i the free group of rank 2 on a1, a2 and let
⇤F = FZ/D be the corresponding ultrapower so that ⇤F is elementary free (see [8]).
Consider the elements

[(a1)
k2Z]D = [(. . . , a1, a1, . . . , a1, . . . )]D

and
[(ak1)k2Z]D = [(. . . , a�2

1 , a�1
1 , 1, a1, a

2
1, . . . )]D.

These commute but there is no fixed element B of which they are both powers.

However the following result can be proved directly:

Theorem 5.2 Let G be a finitely generated elementary free group. Then G has cyclic
centralizers of nontrivial elements. It follows that if x, y 2 G and x,y commute then
both x and y are powers of a single element w 2 G.

Proof Let G be a finitely generated elementary free group. Then G is finitely
generated and fully residually free. It follows from the fact that finitely generated
fully residually free groups are commutative transitive that G has abelian centralizers.
Applying Szmielew’s criteria for elementary equivalence of abelian groups (see [85])
it follows that in any elementary free group the centralizer of any nontrivial element
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is elementarily equivalent to the infinite cyclic group. In particular such centralizers
must satisfy the sentences:

8x1, x2(x1x2 = x2x1);

9x(x 6= 1);

for each integer n � 2 the sentence

8x((xn = 1) ! (x = 1));

and the sentence

8x1, x2, x39y((x1x�1
2 = y2) _ (x1x

�1
3 = y2) _ (x2x

�1
3 = y2));

asserting that, modulo 2, there are at most 2 distinct elements.
A result of Gaglione, Lipschutz and Spellman (Lemma 3.6 in [41]) shows that up to

isomorphism the only finitely generated group M which can satisfy these properties
simultaneously is the infinite cyclic group. Here we will repeat the proof given there.

Suppose not and M is a finitely generated abelian group satisfying the above
sentences. Then M contains a rank 2 free abelian direct factor A and suppose that
M = A⇥B.

Now let (a1, a2, a3) 2 A3. Then there is a 2 A, b 2 B such that

a1a
�1
2 = a2b2 _ a1a

�1
3 = a2b2 _ a2a

�1
3 = a2b2.

Since the product is direct b2 = 1 is the only possibility. Then, writing A(X2) for
the subgroup of A generated by the squares, a1 ⌘ a2 mod A(X2) or a1 ⌘ a3 mod
A(X2) or a2 ⌘ a3 mod A(X2). Since (a1, a2, a2) 2 A3 was arbitrary, the index
[A : A(X2)]  2. However if A has rank 2 it follows that [A : A(X2)] = 4. This
contradiction shows that M is cyclic. ⇤

As a corollary we get that the result must be true in surface groups a fact that can
also be obtained directly from the amalgam structure of such groups or from their
faithful representations in PSL(2,C).

Corollary 5.3 Let G be either an orientable surface group of genus g � 2 or a
nonorientable surface group of genus g � 4. If x, y 2 G and x, y commute then both
x and y are powers of a single element w 2 F .

An example that is less trivial and is not obvious in a surface group is the following.
The next theorem can be easily proved in free groups.

Theorem 5.4 Let F be a free group and n, k nonzero integers. For all x, y 2 F if
[xn, y] = [x, yk] then either n = k = 1 or x, y commute and both are powers of a
single element.

The first part of the result that either n = k or [x, y] = 1 is first-order given by a
sequence of elementary sentences, one for each (n, k) 2 Z2 \ {(1, 1)} with neither n
nor k zero;

8x, y 2 F ([xn, y] = [x, yk]) =) [x, y] = 1

Therefore this part of the result must hold in any elementary free group. Further if
the elementary free group is finitely generated the second part must also hold.
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Corollary 5.5 Let G be an elementary free group. If x, y 2 G and if [xn, y] = [x, yk]
then either n = k = 1 or x, y commute. If G is finitely generated then both x and y
are powers of a single element w 2 G.

Since surface groups are finitely generated we have the following.

Corollary 5.6 Let G be either an orientable surface group of genus g � 2 or a
nonorientable surface group of genus g � 4. If x, y 2 G and if [xn, y] = [x, yk] then
either n = k = 1 or x, y commute and then both x and y are powers of a single
element w 2 G.

Csorgo, Fine and Rosenberger [21] proved the following extension of this.

Theorem 5.7 ([21]) Suppose F is a nonabelian free group and x, y, u, v 2 F with
[x, y] 6= 1 and u, v in the subgroup generated by x, y. Then if [x, y] is conjugate to
a power of [u, v] within hx, yi, that is there exists a k with [x, y] = g([u, v]k)g�1 for
some g 2 hx, yi, and [x, ym] = [u, vn] it follows that m = n. Further if m = n � 2
then y is conjugate within hx, yi to v or v�1.

As with Magnus’s theorem this can be shown to be given by a sequence of first-order
sentences and is hence a first-order result. Therefore this holds in any elementary free
group.

Theorem 5.8 Let G be an elementary free group and x, y, u, v 2 G with [x, y] 6= 1
and u, v in the subgroup generated by x, y. Then if [x, y] is conjugate to a power
of [u, v] within hx, yi, that is there exists a k with [x, y] = g([u, v]k)g�1 for some
g 2 hx, yi, and [x, ym] = [u, vn] it follows that m = n. Further if m = n � 2 then y
is conjugate within hx, yi to v or v�1.

In particular we get the extension to surface groups.

Corollary 5.9 Let G be either an orientable surface group of genus g � 2 or a
nonorientable surface group of genus g � 4 and suppose that x, y, u, v 2 G with
[x, y] 6= 1 and u, v in the subgroup generated by x, y. Then if [x, y] is conjugate to
a power of [u, v] within hx, yi, that is there exists a k with [x, y] = g([u, v]k)g�1 for
some g 2 hx, yi, and [x, ym] = [u, vn] it follows that m = n. Further if m = n � 2
then y is conjugate within hx, yi to v or v�1.

5.1 The Retract Theorem and Turner Groups

An element g in a group G is a test element if whenever f(g) = g for some endomor-
phism of G then f must be an automorphism. This concept dates back to Nielsen
who showed that [x, y] is a test element in the free group on {x, y}. Test elements in
a free group are called test words (see [39]).

Turner [86] gave the following characterization of test words in finitely generated
free groups. This is now referred to as either the Retract Theorem or Turner’s The-
orem.

Theorem 5.10 Let F be a finitely generated nonabelian free group. Then an element
g 2 F is a test word if and only if g lies in no proper retract.
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The question whether Turner’s theorem is first-order or not was considered in [23]
where it was shown that the theorem is not first-order. We call an element g in a
group G nonprojectible if it lies in no proper retract of G. We then call a group G a
Turner group if for g 2 G being nonprojectible in G implies that g is a test element.
Equivalently G is a Turner group if and only if the Retract Theorem holds. Hence
Turner’s theorem says that nonabelian free groups are Turner groups.

A group G is stably hyperbolic if G is hyperbolic and for any endomorphism � :
G ! G for all n there is an m � n such that �m(G) is hyperbolic. A result of O’Neill
and Turner (see [71]) shows that stably hyperbolic groups are Turner groups. Using
this result we can prove that finitely generated elementary free groups are Turner
groups, that is they satisfy the Retract Theorem.

Theorem 5.11 Let G be a finitely generated elementary free group. Then G is a
Turner group, that is G satisfies the Retract Theorem and hence the test elements
in G are precisely those elements that avoid any proper retract.

Proof Let G be a finitely generated elementary free group. Then G is finitely
generated and fully residually free. It follows from the classification in [24] that any
two generator subgroup is either free of rank 2 or free abelian of rank 2. Further since
it is finitely generated and elementary free it has cyclic centralizers. Since G is fully
residually free and has cyclic centralizers it is hyperbolic (see [51]–[54]). Full residual
freeness is preserved by subgroups as is cyclic centralizers and therefore any finitely
generated subgroup of G is also hyperbolic. Let � : G ! G be an endomorphism.
Since G is finitely generated then �n(G) is also a finitely generated fully residually free
group for any natural number n. Hence �n(G) is hyperbolic for any n and therefore
G is stably hyperbolic. Therefore G satisfies the Retract Theorem from the result of
O’Neill and Turner. ⇤

As in the previous cases this then extends to surface groups of appropriate genus.

Corollary 5.12 Let G be either an orientable surface group of genus g � 2 or a
nonorientable surface group of genus g � 4. Then G is a Turner group.

In [71] it was proved directly that there are test elements in surface groups. However
this also follows directly from the previous corollary since not every element in either
S
g

or N
g

falls in a proper retract.

Corollary 5.13 Let G be either an orientable surface group of genus g � 2 or a
nonorientable surface group of genus g � 4. Then G has test elements.

In [23] the following results were proved showing that Turner’s Theorem is not
first-order and not the model class of any set of sentences of L0.

Theorem 5.14 (Nondefinability Theorem) 1. There is no set N(x) of for-
mulas of L0 such that, for an arbitrary group G and arbitrary element g 2 G,
N(g) holds if and only if g is nonprojectible.

2. There is no set T (x) of formulas of L0 such that, for an arbitrary group G and
arbitrary element g 2 G, T (g) holds if and only if g is a test element.
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Theorem 5.15 (Nonaxiomatizability Theorem) The class of Turner groups is
not the model class of any set of sentences of L0.

5.2 Conjugacy Separability of Elementary Free Groups

A group G is conjugacy separable if given any two elements g1, g2 2 G either g1 is
conjugate to g2 or there exists a homomorphism ⇢ : G ! H where H is a finite group
and in which ⇢(g1) is not conjugate to ⇢(g2). It is known that all free groups are
conjugacy separable. Here we next prove that all finitely generated elementary free
groups are conjugacy separable.

Theorem 5.16 Let G be a finitely generated elementary free group. Then G is con-
jugacy separable.

Proof Suppose G is a finitely generated elementary free group and g1, g2 are two
nonconjugate elements of G. Since free groups are conjugacy separable to show that
G is conjugacy separable it su�ces to show that there is a free homomorphic image
of G in which the images of g1 and g2 are nonconjugate.

Suppose there is no free homomorphic image of G in which g1 is not conjugate
to g2. Note that a finitely generated elementary free group, in fact more generally a
finitely generated fully residually free group must be finitely presented (see [52]). Fix
a finite presentation for G,

ha1, . . . , an;R1(a1, . . . , an) = · · · = R
m

(a1, . . . , an) = 1i

and suppose that g
i

= w
i

(a1, . . . , an) for i = 1, 2. Then since there are no free
homomorphic images ofG in which g1 and g2 are not conjugate the following universal-
existential sentence which we denote by h1i of L0 would be true in every nonabelian
free group

8x1, . . . , xn9y(^m

i=1(Ri

(x1, . . . , xn) = 1)) ! (w2(x1, . . . , xn) = y�1w1(x1, . . . , xn)y).

It follows that h1i would have to be true in G. But this contradicts the fact that
g1 is not conjugate to g2 in G. Therefore there must exist a free homomorphic image
in which g1 and g2 are not conjugate and hence G is conjugacy separable. ⇤

5.3 The Genus Question

Let f lie in the derived group [F, F ] of the free group F . We define the genus
of f , written genus

F

(f), as follows. If f = 1, then genus
F

(f) = 0. Otherwise,
genus

F

(f) = g where g is the least positive integer n such that f can be expressed
in F as the product of n commutators. The following question was posed in [43].

The Genus Question For each ordered pair (g, k) of positive integers, must there
exist a finite bound n(g, k) on

{genus
F

(f) : genus
F

(fk)  g}?

The question was answered in the negative in [54]. We present here a variant of
their argument. Let X = hx1, x2, x3, x4; i and F = hb1, b2; i. By a solution in F to
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the equation x21x
2
2x

2
3x

2
4 = 1 we mean an element (f1, f1, f3, f4) 2 F 4 such that the

homomorphism � given by x
i

7! f
i

, i = 1, 2, 3, 4, maps x21x
2
2x

2
3x

2
4 to 1. Let V be

the solution set of x21x
2
2x

2
3x

2
4 = 1 in F 4. Note that V is nonempty since, for example,

(b1, b2, b
�1
2 , b�1

1 ) 2 V . Now let x abbreviate the element (x1x2x3x4)2(x21x
2
2x

2
3x

2
4)

�1

of X so that clearly x lies in its derived group [X,X]. Let g = genus
X

(x) be its genus.
From this it follows that, for all f1, f2, f3, f4 2 V we would have genus

F

(f1f2f3f4)2 
g. If there were a finite bound n = n(g, 2) on

{genus
F

(f) : genus
F

(f2)  g}

then the following universal-existential sentence (call it �) would hold in the non-
abelian free groups.

8x1, x2, x3, x49y1, . . . , y2n((x22x22x23x24 = 1) ! (x1x2x3x4 = [y1, y2] . . . [y2n�1, y2n]))

(Note that if x1x2x3x4 is expressible as the product of m < n commutators then we
can append n�m trivial factors [1, 1] to the product.)

Since the nonorientable surface group N4 of genus 4 is elementary free we would
have that the sentence � holds in N4. Let N4 = ha1, a2, a3, a4; a21a22a23a24 = 1i. Then
a21a

2
2a

2
3a

2
4 = 1 whereas a1a2a3a4 maps to an element of order 2 modulo the derived

group [N4, N4]. Hence a1a2a3a4 does not lie in the derived group N4 let alone be
the product of n commutators in N4. This contradiction shows that there can be no
finite bound on the genus.

5.4 The Other Direction

Sometimes the solution of the Tarski problem and the fact that surface groups are
elementary free can be used to prove results in free groups that are very di�cult or
impossible to prove directly within nonabelian free groups. As an example we use the
negative solution to the genus question. The following sentence is clearly true in N4,
the nonorientable surface group of genus 4, where n is a large natural number;

9x1, x2, x3, x48y1, y2, . . . , y2n((x21x22x23x24) = 1) ^ (x1x2x3x4 6= [y1, y2] · · · [y2n�1y2n]))

Since it is first-order and true in N4 and N4 is elementary free it follows that it is true
in all nonabelian free groups. However this is extremely di�cult to prove directly
alhtough it is an extension of the well-known result in free groups that a commutator
cannot be a square.

5.5 Tame Automorphisms of Elementary Free Groups

As part of the proof of the Tarski theorems, both Kharlampovich-Myasnikov and Sela
completely described the structure of finitely generated fully residually free groups
in terms of what is called the JSJ-decomposition. These structure results can be
used to both solve the isomorphism problem for limit groups and to prove that the
automorphism group of a finitely generated fully residually free group is tame. It
follows that the automorphism group of an elementary free group is also tame. We
explain these concepts.
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A minimal finite presentation of a finitely presented group G is a presentation
that is minimal with respect to the number of generators. Hence a presentation
G = hx1, . . . , xn; r1, . . . , rmi is a minimal finite presentation for G if n = rank(G),
the minimal number of generators necessary to present G. Now suppose that G =
hx1, . . . , xn; r1, . . . , rmi with 1  n,m < 1 is minimal finite presentation of G. Let
F = hx1, . . . , xn; i be the free group of rank n on {x1, . . . , xn}. An automorphism
↵ : G ! G is tame if it is induced by or lifts to an automorphism on F (considered as
free on the generators of G). If each automorphism of G is tame we say that the auto-
morphism group Aut(G) is tame. In [84] Shpilrain gives a survey of some of the known
general results on tame automorphisms and tame automorphism groups. If G is a
surface group a result of Zieschang [88] and improved upon by Rosenberger [77] shows
thatG has only one Nielsen class of minimal generating systems. An easy consequence
of this is that that Aut(G) is tame. Rosenberger (see [67] or [76]) uses the term al-
most quasifree for a finitely presented group which has a tame automorphism group.
If G is almost quasifree, G = hx1, . . . , xn; r1, . . . , rmi, 1  n,m < 1 a minimal finite
presentation of G and, in addition, each automorphism of F = hx1, . . . , xn; i induces
an automorphism of G, G is called quasifree. Rosenberger observed that a non-cyclic,
non-free one-relator group is quasifree only if it has a presentation ha, b; [a, b]n = 1i
for n � 1. This is a Fuchsian group if n � 2 and isomorphic to a free abelian group
of rank 2 if n = 1.

JSJ decompositions were introduced by Rips and Sela [74]. A JSJ-decomposition
of a group G is a graph of groups decomposition of G with abelian edge groups that
encodes all other graph of groups decompositions of G. Any finitely generated fully
residually free group has a JSJ decomposition with cyclic edge groups and vertex
groups of specific types if it is not abelian or a surface group. We refer to the relevant
papers for further discussions of these but mention that Bumagin, Kharlampovich
and Myasnikov [14] used the JSJ decomposition to describe the automorphism group
of a limit group. See [14] for a decsription of the canonical automorphisms.

Theorem 5.17 ([14]) Let G be a finitely generated fully residually free group not
abelian or a surface group and let � be a cyclic JSJ-decomposition for G. Let Out�(G)
be the outer automorphism group of G generated by the canonical automorphisms.
Then Out�(G) has finite index in Out(G).

As an application Bumagin, Kharlampovich and Myasnikov [14] were further able
to prove that the isomorphism problem is solvable for finitely generated fully residu-
ally free groups. This is actually part of the algorithmic study of this class of groups
(see [60, 61]).

Theorem 5.18 ([14]) The isomorphism problem is solvable in the class of finitely
generated fully residually free groups. That is given two finite presentations that are
known to define fully residually free groups there is an e↵ective algorithm to determine
if the defined groups are isomorphic.

As an additional consequence of the JSJ decomposition of a fully residually free
group and the work of Bumagin, Kharlampovich and Mysasnikov, the tameness of
Aut(G) for a limit group was proved by Fine, Kharlmapovich, Myasnikov, Rosen-
berger and Remeslennikov [26].
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Theorem 5.19 ([26]) The automorphism group Aut(G) of a finitely generated freely
indecomposable fully residually free group G is tame with respect to a presentation for
the JSJ decomposition for G.

Since each finitely generated elementary free group is universally free and hence
fully residually free the proof of the corollary is immediate.

Corollary 5.20 The automorphism group of a finitely generated freely indecompos-
able elementary free group G is tame.

We note that the converse of this corollary is false. That is there do exist groups
(in fact hyperbolic groups) where every automorphism is tame but which are not fully
residually free. As an example the groups

G = ha1, . . . , an; a↵1
1 · · · a↵n

n

i, with n � 4, 2  ↵1, . . . ,↵n

,

and

H = hs1, . . . , sn; s21, . . . , s2n�1, s
2k+1
n

, s1s2 · · · sni with n = 2`, n � 4 even and k � 1,

are all hyperbolic. Further every automorphism is tame (see [75] and [39]). However
not all of these groups are fully residually free.

5.6 C-test Words in Free Groups and Surface Groups

We now give a much more di�cult but more technical example. We thank A. Myas-
nikov for bringing this to our attention. V. Shpilrain (see [64]) posed the following
problem:

Problem Are there two elements u1, u2 in a free group F
m

of rank m � 2 such that
any endomorphism � of F

m

with non-cyclic image is uniquely determined by �(u1)
and �(u2)?

Ivanov [47] answered this in the a�rmative in the case where � is a monomorphism.
To do this he introduced C-test words.

Definition 5.21 A nonempty word v(x1, . . . , xn) is a C-test word in n letters for F
m

if for any two n-tuples (X1, . . . , Xn

), (Y1, . . . , Yn

) of elements of F
m

the equality
v(X1, . . . , Xn

) = v(Y1, . . . , Yn

) 6= 1 implies the existence of an element S 2 F
m

such
that Y

i

= SX
i

S�1 for all i = 1, . . . , n.

Donghi Lee [64] extends Ivanov’s work and uses C-test words to provide a positive
solution to Shpilrain’s question in the case where the endomorphism has non-cyclic
image. For this extension Lee proves the following result:

Theorem 5.22 For every n � 2 there exists a C-test word v
n

(x1, . . . , xn) in n letters
for F

m

with the additional property that v
n

(x1, . . . , xn) = 1 if and only if the subgroup
hX1, . . . , Xn

i of F
m

generated by X1, ..., Xn

is cyclic.
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This theorem can be given by a sequence of elementary sentences of the following
form. For each n we assume that we have a fixed C-test word v

n

(x1, . . . , xn) satisfying
D. Lee’s Theorem. The integer n is fixed in each sentence.

(S
n

) 8x1, . . . , xn, y1, . . . , yn(vn(x1, . . . , xn) = v
n

(y1, . . . , yn))

^ (v
n

(x1, . . . , xn) 6= 1) ! 9T
✓

n^

i=1

Tx
i

T�1 = y
i

◆

^ 8x1, . . . , xn((vn(x1, . . . , xn) = 1) $
^

1i<jn

([x
i

, x
j

] = 1)

For a general group G we define a C-test word exactly as for a free group.

Definition 5.23 Let G be a group. Then a nonempty word v(x1, . . . , xn) is a C-test
word in n letters for G if for any two n-tuples (X1, . . . , Xn

), (Y1, . . . , Yn

) of elements
of G the equality v(X1, . . . , Xn

) = v(Y1, . . . , Yn

) 6= 1 implies the existence of an
element S 2 G such that Y

i

= S�1X
i

S for all i = 1, . . . , n.

From D. Lee’s theorem each first order sentence (S
n

) holds in any nonabelian free
groups and hence each (S

n

) must hold in any elementary free groups. Therefore in
an elementary free group v

n

(x1, . . . , xn) = 1 forces hx1, . . . , xni to be abelian and in
particular in any finitely generated elementary free group v

n

(x1, . . . , xn) = 1 forces
hx1, . . . , xni to be cyclic.

It follows that D. Lee’s result is true in orientable surface groups of of genus g � 2
and nonorientable surface groups of genus g � 4. Hence we get the following result.

Theorem 5.24 Let G be either an orientable surface group of genus g � 2 or
a nonorientable surface group of genus g � 4. Then for every n � 2 there ex-
ists a C-test word v

n

(x1, . . . , xn) in n letters for G with the additional property
that v

n

(x1, . . . , xn) = 1 if and only if the subgroup hX1, . . . , Xn

i of G generated by
X1, . . . , Xn

is cyclic.

For the remainder of this paper we will be considering the second type of question.
We first consider groups satisfying certain quadratic properties that we call Lyndon
properties and show that the class of groups satisfying these are closed under many
amalgam constructions. We next discuss a class of groups that generalize a theorem
of B. Baumslag [2] and then generalized by Gaglione and Spellman [42] and inde-
pendently Remeslennikov [73]. All elementary free groups satisfy these theorems and
we show that the classes of groups satisfying these results are fairly extensive and
beyond the class of elementary free groups.

6 Cyclically Pinched and Conjugacy Pinched Constructions

The algebraic generalization of the one-relator presentation type of a surface group
presentation leads to cyclically pinched one-relator groups. These groups have the
same general form of a surface group and have proved to be quite amenable to study.
In particular a cyclically pinched one-relator group is a one-relator group of the fol-
lowing form

G = ha1, . . . , ap, ap+1, . . . , an;U = V i



Fine et al.: Something for nothing 256

where 1 6= U = U(a1, . . . , ap) is a cyclically reduced, non-primitive (not part of a
free basis) word in the free group F1 on a1, . . . , ap and 1 6= V = V (a

p+1, . . . , an) is a
cyclically reduced, non-primitive word in the free group F2 on a

p+1, . . . , an.
Clearly such a group is the free product of the free groups on a1, . . . , ap and

a
p+1, . . . , an respectively amalgamated over the cyclic subgroups generated by U

and V . More generally if G1 and G2 are groups and U , V are elements of G1, G2

respectively then the cyclically pinched construction from these is a free product with
amalgamation

G = G1 ?
{U=V }

G2.

Notice that from the Poincare presentation that most finitely generated Fuchsian
groups are cyclically pinched constructions from free products of cyclics.

Cyclically pinched one-relator groups have been shown to be extremely similar to
surface groups. We summarize many of the most important results.

Theorem 6.1 Let G be a cyclically pinched one-relator group. Then

1. G is residually finite (G. Baumslag [3]).

2. G has a solvable conjugacy problem (S. Lipschutz [65]) and is conjugacy sepa-
rable (J. Dyer [22]).

3. G is subgroup separable (Brunner, Burns and Solitar [13]).

4. If neither U nor V is a proper power then G has a faithful representation over
some commutative field (Wehrfritz [87]).

5. If neither U nor V is a proper power then G has a faithful representation in
PSL2(C) (Fine-Rosenberger [34]). In fact G has a faithful representation in
PSL(2,R) ([27]).

6. If neither U nor V is a proper power then G is hyperbolic ([9, 48, 53]).

7. If neither U nor V is in the commutator subgroup of its respective factor then
G is free-by-cyclic ([4]).

8. The isomorphism problem for any cyclically pinched one-relator group is solv-
able; given a cyclically pinched one-relator group G there is an algorithm to
decide in finitely many steps whether an arbitrary one-relator group is isomor-
phic or not to G ([76]).

The HNN analogs of cyclically pinched one-relator groups are called conjugacy
pinched one-relator groups and are also motivated by the structure of orientable
surface groups. A conjugacy pinched one-relator group is a one-relator group of the
form

G = ha1, . . . , an, t; tUt�1 = V i
where 1 6= U = U(a1, . . . , an) and 1 6= V = V (a1, . . . , an) are cyclically reduced in
the free group F on a1, . . . , an.

Structurally such a group is an HNN extension of the free group F on a1, . . . , an
with cyclic associated subgroups generated by U and V and is hence the HNN analog
of a cyclically pinched one-relator group.

Groups of this type arise in many di↵erent contexts and share many of the general
properties of the cyclically pinched case. However many of the proofs become tremen-
dously more complicated in the conjugacy pinched case than the cyclically pinched
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case. Further in most cases additional conditions on the associated elements U and
V are necessary. In [30], see also [33], a partial solution to the isomorphism problem
for conjugacy pinched one-relator groups was given.

An extremely important conjugacy pinched construction is an extension of central-
izers. Recall that H ⇢ G is malnormal if xHx�1\H = {1} for x /2 H. A CSA group
is a group G in which maximal abelian subgroups are malnormal. CSA groups can be
shown to be commutative transitive. Let B be a CSA group so that the centralizer
of an element is abelian. Let U 2 B not a proper power then the rank one extension
of centralzier is the conjugacy pinched construction

G = ht, B; rel(B), t�1Ut = Ui

Myasnikov and Remeslennikov proved that a finitely generated fully residually free
group is embeddable as a subgroup in an iterated extension of centralizers starting
with free groups (see [51]–[59])

Theorem 6.2 ([73]) Any finitely generated fully residually free group can be em-
bedded as a subgroup in a finite iterated extension of centralizers starting with free
groups.

This result has been used e↵ectively to prove results about finitely generated fully
residually free groups also called limit groups. In particular in [24] a complete classi-
fication of limit groups of rank three or less was given. Using both this theorem and a
characterization of limit groups in terms of nonstandard free groups Fine and Rosen-
berger [35, 36] proved that any limit group has an e↵ective faithful representation in
PSL(2,C) generalizing what is known for surface groups.

Theorem 6.3 ([35, 36]) Let G be a limit group. Then G has a faithful represen-
tation ⇢ : G ! PSL(2,C). Further a faithful representation can be e↵ectively con-
structed given information on the graph of groups decomposition of G.

Related to the cyclically pinched and conjugacy pinched constructions is the general
concept of n-free groups. A group G is n-free for some natural number n if any
subgroup generated by n or fewer elements must be a free group. If S

g

is an orientable
surface group of genus g then S

g

is (2g � 1)-free.
G. Baumslag [3] proved that a cyclically pinched one-relator group with the prop-

erty that U and V are not proper powers is 2-free. This was generalized by G.
Rosenberger to show that such groups are 3-free. We extended these results in sev-
eral directions:

Theorem 6.4 ([75]) Let G be a cyclically pinched one-relator group with free factors
F1, F2 and amalgamated elements U and V . Suppose that U and V are not proper
powers in the respective free groups on the generators which they involve. Then

1. G is 3-free.

2. Let H ⇢ G be a subgroup of rank 4. Then one of the following two cases
occurs:

(i) H is free of rank 4.
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(ii) If {x1, . . . , x4} is a generating system for H then there is a Nielsen trans-
formation from {x1, . . . , x4} to {y1, . . . , y4} with y1, y2 2 zF1z�1, y3, y4 2
zF2z�1 for a suitable z 2 G. Further there is a one-relator presentation
for H on {x1, ..., x4}.

In conjunction with a study on the universal theory of non-abelian free groups
the freeness part of the above results was extended Fine, Gaglione, Rosenberger and
Spellman [25], using Nielsen reduction techniques.

7 The Basic Lyndon Properties

We now return to the question of what first-order free group results are true beyond
the class of elementary free groups.

Vaught proposed the question whether in a free group a solution of the equation
x2y2z2 = 1 must generate an abelian (and hence cyclic) subgroup. This was proved by
Lyndon and Schutzenberger and then generalized by Baumslag. Based on Lyndon’s
result in any group G we define the following Lyndon Properties.

Definition 7.1 The following are called Lyndon properties. Let G be a group. Then
G satisfies Property

1. LZ if whenever x2y2z2 = 1 for x, y, z 2 G then hx, y, zi is cyclic;
2. LA if whenever x2y2z2 = 1 for x, y, z 2 G then hx, y, zi is abelian;
3. LPZ if whenever xpyqzr = 1 for x, y, z 2 G with 2  p, q, r 2 N then hx, y, zi is

cyclic;

4. LPA if whenever xpyqzr = 1 for x, y, z 2 G with 2  p, q, r 2 N then hx, y, zi is
abelian;

5. LCZ if whenever [xp, yq]zr = 1 for x, y, z 2 G with 1  p, q 2 N, 2  r 2 N then
hx, y, zi is cyclic;

6. LCA if whenever [xp, yq]zr = 1 for x, y, z 2 G with 1  p, q 2 N, 2  r 2 N then
hx, y, zi is abelian.

All of these properties hold in free groups and Properties LA, LPA and LCA are
given by universal sentences. Hence these hold in any fully residually free group.
They are all first-order so they hold in an elementary free group. Note that it is an
open question as to when a free product with amalgamation of fully residually free
groups is still fully residually free.

We show that the Lyndon properties extend beyond the class of elementary free
groups by showing that the property is preserved under some general group amalgams.

7.1 Lyndon Properties in Amalgams and One-Relator Groups

Using Nielsen cancellation methods it can be proved that several of the Lyndon
properties are preserved under special free product with amalgamation constructions
(see [31]). Since these constructions are not always fully residually free it makes the
class of groups satisfying the Lyndon properties wider than the class of limit groups.
The following results are from [31].
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Theorem 7.2 Suppose that H1 and H2 are groups with no elements of order 2 and
that G is the amalgamated product G = H1 ?

A

H2 with H1 6= A 6= H2 and A is
malnormal in both H1 and H2. Then

1. if both H1 and H2 satisfy Property LZ then G also satisfies Property LZ;

2. if both H1 and H2 satisfy Property LA then G also satisfies Property LA.

Theorem 7.3 Suppose that H1 and H2 are torsion-free groups and that G is the
amalgamated product G = H1 ?

A

H2 with H1 6= A 6= H2 and A is malnormal in both
H1 and H2. Then

1. if both H1 and H2 satisfy Property LPZ then G also satisfies Property LPZ;

2. if both H1 and H2 satisfy Property LPA then G also satisfies Property LPA;

3. if both H1 and H2 satisfy Property LCZ then G also satisfies Property LCZ;

4. if both H1 and H2 satisfy Property LCA then G also satisfies Property LCA.

In particular if x, y 2 G with [x, y] 6= 1 then if both H1, H2 have property LCZ or
LCA then [x, y] is never a proper power.

We note that the malnormality condition in both theorems is essential. For example
in the nonorientable surface group of genus 3

G = ha, b, c; a2b2c2 = 1i

we have an equation x2y2z2 = 1 such that hx, y, zi is not abelian.

Theorem 7.4 Suppose that G is a cyclically pinched one-relator group

G = ha1, . . . , ap, b1, . . . , bq;WV = 1i

where p � 2, q � 2, 1 6= W = W (a1, . . . , ap) is not a proper power nor a primitive
element in the free group on a1, . . . , ap and 1 6= V = V (b1, . . . , bq) is not a proper
power nor a primitive element in the free group on b1, . . . , bq. Then G has properties
LZ, LPZ, and LCZ.

The key idea in the above theorem is that a cyclically pinched one-relator group of
the above form is 3-free, that is any subgroup generated by 3 or fewer elements must
be a free group. The following is then immediate.

Lemma 7.5 Let G be a 3-free group. Then G satisfies properties LZ, LA, LPZ, LPA,
LCZ and LCA.

In [31] a theorem on 3-freeness was further extended.

Theorem 7.6 Suppose that G = H1 ?
A

H2 is an amalgamated free product with
H1 6= A 6= H2. Suppose further that A is malnormal in both H1 and H2 and that both
H1 and H2 are 3-free. Then G is 3-free.

Combining this result with the lemma we get.

Corollary 7.7 Suppose that G = H1 ?
A

H2 is an amalgamated free product with
H1 6= A 6= H2. Suppose further that A is malnormal in both H1 and H2 and that both
H1 and H2 are 3-free. Then G satisfies LZ, LA, LPZ, LPA, LCZ, and LCA.
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7.2 The Lyndon Properties and HNN Constructions

The situation for HNN groups is much more complicated.

Theorem 7.8 ([31]) Suppose that G is an HNN extension of the base B so that G
has the form

G = hB, t; rel(B), t�1K1t = K2i.
Suppose further that K1 and K2 are both malnormal in B and that B does not contain
an element of order 2. Suppose further that B satisfies the basic Lyndon Property LZ.
Then if x2y2z2 = 1 in G and U = {x, y, z} is regular then hx, y, zi is cyclic.

Let G = hB, t; rel(B), t�1K1t = K2i be an HNN group with base group B, stable
letter t and associated subgroups K1,K2. An ordered set U = {u1, . . . , un} ⇢ G is
regular if there is no Nielsen transformation from U to a system U 0 = {u01, . . . , u0n}
in which one of the elements is conjugate to an element of K1 or K2. However the
theorem does not necessarily hold for HNN group when U = {x, y, z} is not regular.

Let G = hx, y, z; x2y2z2 = 1i be the nonorientable surface group of genus g = 3.
In G the equation x2y2z2 = 1 holds trivially and hx, y, zi is nonabelian and hence
noncyclic. G can be written as an amalgamated free product G = H1 ?A H2 with

H1 = hx, y; i, H2 = hz; i and A = hx2y2i = hz�2i.

However here G does not contradict any of our results since A is not malnormal in H2.
This again shows that malnormality is essential in the amalgamated free product case.

On the other hand using straightforward Tietze transformations (t = z, v = zxz�1,
u = yz) the nonorientable surface group G = hx, y, z : x2y2z2 = 1i can also be written
as an HNN group

G = hH, t; t�1ut = v2u�1i
with H = hu, v; i. The element u is not conjugate in the base H to v2u�1 and both
associated subgroups are malnormal in the base. However the system {x, y, z} is not
regular (see the definition above) showing that in the HNN case regularity is essential.

7.3 The Lyndon Properties in Certain One-Relator Groups

A large subclass of the class of one-relator groups satisfies the Lyndon properties since
cyclically pinched one-relator groups do. The following due to Fine, Rosenberger and
Rosenberger extends the class even further to some one-relator groups with torsion.

Theorem 7.9 ([32]) Let G be the one-relator group

G = ha, b, c, . . . ;Rmi

with m � 3 and m odd and R a cyclically reduced word, not a proper power in the free
group on a, b, c, . . . . Let w(x1, x2, x3) be a regular quadratic word in the free group F
on x1, x2, x3 and let � : F ! G be a homomorphism from F into G with �(x

i

) = u
i

for i = 1, 2, 3. If w(u1, u2, u3) = 1 in G then the subgroup hu1, u2, u3i is cyclic.
In particular G satisfies the Lyndon properties LZ and LCZ.

Recall that the quadratic word w(x1, x3, x3) is regular if there is no automorphism
↵ : F ! F such that w0 = ↵(w), as a word in x1, x2, x3, contains fewer of the
generators x1, x2, x3 than w itself, that is w is of maximal rank.
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7.4 The Lyndon Properties and Tree-free Groups

N. Brady, L. Ciobanu, A. Martino and S. O’Rourke [12] considered the Lyndon prop-
erties in groups acting freely on ⇤-trees. Using the concept of translation length in
such groups they were able to prove the following.

Theorem 7.10 ([12]) Let ⇤ be an ordered abelian group and let G act freely on a
⇤-tree. Then if xpyq = zr with p, q, r � 4 it follows that x, y and z commute. That
is such groups satisfy LCA.

A study was initiated by Ciobanu, Fine and Rosenberger [16] to consider the smaller
cases. It was shown that for small cases you can have tree-free groups that do not
satisfy the Lyndon properties.

Theorem 7.11 Let F be a finitely generated non-cyclic free group, and let U and V
be elements in F which are not proper powers. Let G = hF, t; tUt�1 = V i and r � 2
be a given integer. Then for particular choices of U and V there exist non-commuting
elements a, b, c 2 G such that a2b2cr = 1.

Corollary 7.12 There exist ⇤-free groups in which a2b2cr = 1 holds for non-com-
muting a, b, c 2 G, and r � 2.

Theorem 7.13 Let F be a finitely generated free group, U and V elements in F that
are not proper powers and U is not conugate to V �1, and G = hF, t; tUt�1 = V i.
Then if for a, b, c 2 G and p � 2, q � 3, r � 3 the equality apbqcr = 1 holds, the
elements a, b, c must commute.

8 The Class of BX -Groups

Let X be a class of groups. Then a group G is residually X if given any nontrivial
element g 2 G there is a homomorphism � : G ! H where H is a group in X such
that �(g) 6= 1. A group G is fully residually X if given finitely many nontrivial
elements g1, . . . , gn in G there is a homomorphism � : G ! H, where H is a group in
X , such that �(g

i

) 6= 1 for all i = 1, . . . , n. Fully residually free groups have played
a crucial role in the study of equations and first-order formulas over free groups.
Recall that universal theory of a group G consists of all universal sentences true in G.
All nonabelian free groups share the same universal theory and a group G is called
universally free if it shares the same universal theory as the class of nonabelian free
groups. We recall two additonal concepts that are needed. A group G is commutative
transitive or CT if commutativity is transitive on the set of nontrivial elements of G.
That is if [x, y] = 1 and [y, z] = 1 for nontrivial elements x, y, z 2 G then [x, z] =
1. A group G is CSA if maximal abelian subgroups are malnormal. CSA implies
commutative transitivity but there exist CT groups that are not CSA. For example
it can be shown that a noncyclic one-relator group G with torsion is CT but not CSA
if G has elements of order 2 (see [28]). Another example of a CT group that is not
CSA is the infinite dihedral group G = ha, b; a2 = b2 = 1i. It is straightforward that
free products of abelian groups are CT and hence G is CT. On the other hand the
commutator subgroup G0 is the cyclic subgroup of G generated by ab. A nonabelian
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CSA group cannot have a nontrivial abelian normal subgroup and hence G is not
CSA.

Remeslennikov [73] and independently Gaglione and Spellman [42] proved the fol-
lowing remarkable theorem which became one of the cornerstones in the proof of the
Tarski problems (see [51] and [78]).

Theorem 8.1 Suppose G is nonabelian and residually free. Then the following are
equivalent:

1. G is fully residually free,

2. G is commutative transitive,

3. G is universally free.

Therefore the class of nonabelian fully residually free groups coincides with the
class of residually free universally free groups. The equivalence of (1) and (2) in the
theorem above was proved originally by Benjamin Baumslag [2], where he introduced
the concept of fully residually free. Any residually free elementary free group being
universally free must satisfy this theorem and hence be fully residually free.

In [18] classes of groups X were studied for which being fully residually X is equiv-
alent to being residually X and commutative transitive, thus extending Baumslag’s
result.

Definition 8.2 A class of groups X satisfies BX if a group G is fully residually X
if and only if G is residually X and CT.

With this definition B. Baumslag’s original theorem says that the class of free
groups F satisfies BF . In [18] it was shown that classes of BX groups are fairly
extensive.

Theorem 8.3 ([18]) Let X be a class of groups such that each nonabelian H 2
X is CSA. Let G be a nonabelian and residually X group. Then the following are
equivalent:

1. G is fully residually X .

2. G is CSA.

3. G is CT.

Therefore the class X has the property BX .

Hence a class of groups X satisfies BX if each nonabelianH 2 X is CSA. Examples
of BX classes abound. In particular we list the following.

Theorem 8.4 ([18]) Each of the following classes satisfies BX :

1. The class of nonabelian free groups.

2. The class of noncyclic torsion-free hyperbolic groups (see [33]).

3. The class of noncyclic one-relator groups with only odd torsion (see [33]).

4. The class of cocompact Fuchsian groups with only odd torsion.

5. The class of noncyclic groups acting freely on ⇤-trees where ⇤ is an ordered
abelian group (see [46]).
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6. The class of noncylic free products of cyclics with only odd torsion.

7. The class of noncyclic torsion-free RG-groups (see [28] and [1]).

8. The class of conjugacy pinched one-relator groups of the following form

G = hF, t; tut�1 = vi

where F is a free group of rank n � 1 and u, v are nontrivial elements of F that
are not proper powers in F and for which hui \ xhvix�1 = {1} for all x 2 F .

The theorem follows from the fact that each of these classes has the property that
each nonabelian group in them is CSA.

Since CSA always implies CT we have the following corollary.

Corollary 8.5 Let X be a class of CSA groups. Then if G is a nonabelian residually
X group then CT is equivalent to CSA.

Commutative transitivity (CT) has been shown to be equivalent to many other
properties (see [1]) under the additional condition that abelian subgroups are locally
cyclic (ALC). A group G is power commutative if [x, yn] = 1 implies that [x, y] = 1
whenever yn 6= 1. Two elements a, b 2 G are in power relation to each other if there
exists an x 2 G \ {1} with a = xn, b = xm for some n,m 2 Z. G is power transitive
or PT if this relation is transitive on nontrivial elements. Hence we get the corollary.

Corollary 8.6 Let X be a class of groups such that each nonabelian H 2 X is CSA.
Let Y be the subclass of X consisting of those groups in X which are ALC. Let G
be a nonabelian residually Y group which is ALC and has trivial center. Then the
following are equivalent.

1. G is fully residually Y.
2. G is CSA.

3. G is CT.

4. G is power commutative

5. G is power transitive.

This follows directly from the equivalences given in [1].

8.1 Big Powers Groups and Univeral Freeness

The results of the previous section showed the equivalence of fully residually-X and
commutative transitivity for any class X of CSA groups. To prove an equivalence with
universally-X groups in [18] the big powers condition was used. This was introduced
originally by G. Baumslag in [3].

Definition 8.7 Let G be a group and u = (u1, . . . , u
k

) be a sequence of nontrivial
elements of G. Then

1. u is generic if neighboring elements in u do not commute, that is [u
i

, u
i+1] 6= 1

for every i 2 {1, . . . , k � 1};
2. u is independent if there exists an n = n(u) 2 N such that for any ↵1, . . . ,↵

k

� n
we have u↵1

1 · · ·u↵k
k

6= 1;
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3. a group satisfies the big powers condition or BP if every generic sequence in G
is independent. We call such groups BP -groups.

G. Baumslag proved that free groups are BP-groups [3] while Olshansky [70] showed
that torsion-free hyperbolic groups are BP-groups. For BP groups the following
results are known.

Lemma 8.8 ([60]) A subgroup of a BP-group is itself a BP-group.

Lemma 8.9 ([70]) Every torsion-free hyperbolic group is a BP-group.

A stronger version of this lemma for relatively hyperbolic groups is given in [60].

Lemma 8.10 A free product of CSA BP-groups is also a BP-group.

Lemma 8.11 Let G = F1 ?
U=V

F2 where F1, F2 are finitely generated free groups and

U, V are nontrivial elements of F1, F2 respectively with not both proper powers. Then
G is a CSA and BP-group.

If G and H are groups then we say that G is an H-group or H-domain if G
contains an isomorphic copy of H . Being an H-group is crucial for considering the
next equivalence. We consider a class of groups Z in which each finitely generated
nonabelian group H in Z is CSA and BP. Reinterpreting a result in [6] and [5] (see
also [60]) and following the same proof the next theorem proved in [18].

Theorem 8.12 ([18]) Let Z be a class of finitely presented groups such that each
nonabelian H 2 Z is CSA and BP. Let H 2 Z and G a finitely presented nonabelian
H-group. Then the following are equivalent:

1. G is fully residually H,

2. G is universally equivalent to H.

Note that being an H-group was not necessary in the case of the class of free
groups since a nonabelian free group and a nonabelian fully residually free group
contain copies of free groups of all countable ranks. It was noticed by D. Spellman
that while the BP and CSA conditions were necessary in [6] for embedding a given
hyperbolic group into its Lyndon completion and then a modification of this proof
with the given conditions was used in the proof of Theorem 8.12 in [18] they were not
really necessary for universal equivalence.

In alternative language if a group G is fully residually H then we say that H
discriminates G. Further if we append to the basic language L0 appropriate for group
theory constants from the group H then we say that G is H-universally equivalent
to G if G and H have the same universal theory in this extended language. We
actually have the following theorem which says that if G is an H-group then H
discriminating G is equivalent to H being universally equivalent to G. Further if H is
finitely generated then G is H-universally equivalent to G if and only if there is a
discriminating family of retractions from G onto H .

Theorem 8.13 Let G be a finitely presented H-group. Then the following are equiv-
alent:
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1. G is fully residually H, that is H disciminates G.

2. G is universally equivalent to H.

Further if H is finitely generated then G is H-universally equivalent to H if and only
if there is a discriminating family of retractions G ! H.

Proof Suppose first that G is an H-group and that G is fully residually H . We
show that G is universally equivalent to H . To show this we prove that any universal
sentence true in H is also true in G. Hence the universal theory of H is contained
in the universal theory of G. However H is a subgroup of G so the universal theory
of G is contained in the universal theory of H . The equivalence then follows.

To show that that every universal sentence true in H is also true in G we show that
every existential sentence true in G must also be true in H . Suppose the following
existential sentence, which we label (⇤), and whose matrix is written in disjunctive
normal form, is true in G:

(⇤) 9x1, . . . , xn
✓_

i

✓^

j

(u
ij

(x1, . . . , xn) = 1)

◆
^
✓^

k

(w
ik

(x1, . . . , xn) 6= 1)

◆◆

The sentence (⇤) is equivalent to the sentence below which we label (⇤⇤):

(⇤⇤)
_

i

9x1, . . . , xn
✓✓^

j

(u
ij

(x1, . . . , xn) = 1)

◆
^
✓^

k

(w
ik

(x1, . . . , xn) 6= 1)

◆◆

Since (⇤⇤) holds in G it follows that at least one disjunct must be true in G.
Suppose that

(⇤⇤⇤) 9x1, . . . , xn
✓✓

r^

j=1

(u
i0j(x1, . . . , xn) = 1)

◆
^
✓

q^

k=1

(w
i0,k(x1, . . . , xn) 6= 1)

◆◆

holds in G. Let (g1, . . . , gn) 2 Gn be an n-tuple such that

u
i01(g1, . . . , gn) = · · · = u

i0r(g1, . . . , gn) = 1

^ w
i01(g1, . . . , gn) 6= 1 ^ · · · ^ w

i0q(g1, . . . , gn) 6= 1.

Since G is fully residually H there is a map � : G ! H such that

�(w
i0k(g1, . . . , gn)) = w

i0k(�(g1), . . . ,�(gn)) 6= 1 for all k = 1, . . . , q.

Further clearly

u
i0j(�(g1), . . . ,�(gn)) = �(u

i0j(g1, . . . , gn)) = �(1) = 1 for all j = 1, . . . , r.

Therefore (⇤⇤⇤) is true in H and working backwards it follows that (⇤) holds in H .
Therefore every existential sentence true in G is also true in H and hence they are

universally equivalent. Further if the discrimination is by retractions onto H then
the result holds in the extended language where the elements of H are appended as
constants.
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Now we show that G being fully residually H is necessary for universal equivalence.
Let us assume than that G and H are universally equivalent and we wish to show
that H discriminates G.

Suppose that the finitely presented H-group G is universally equivalent to H and
let ha1, . . . , am;R1(a1, . . . , am) = · · · = R

n

(a1, . . . , am) = 1i be a finite presentation
for G. Let g

j

= w
j

(a1, . . . , am), j = 1, . . . , k be nontrivial elements in G. Then the
following existential sentence that we denote by (?) is true in G.

(?) 9x1, . . . , xn
✓✓

n^

i=1

(R
i

(x1, . . . , xn) = 1)

◆
^
✓

k^

j=1

(w
j

(x1, . . . , xn) 6= 1)

◆◆

Therefore (?) is also true in H. Let (h1, . . . , hm) 2 Hm be such that

R1(h1, . . . , hm) = · · · = R
n

(h1, . . . , hm

) = 1

and
w1(h1, . . . , hm) 6= 1 ^ · · · ^ w

k

(h1, . . . , hm) 6= 1.

Then since the relations are preserved the map a
⌫

7! h
⌫

, ⌫ = 1, . . . ,m, extends to a
homomorphism � : G ! H. Then

�(g
j

) = �(w
j

(a1, . . . , am)) = w
j

(�(a1), . . . ,�(am)) = w
j

(h1, . . . , hm) 6= 1

for all j = 1, . . . , k. Therefore G is fully residually H and the first set of equivalences
are completed.

Now we consider H to be finitely generated and we want to consider the extended
language where we adjoin the elements of H as constants. From the comments after
the first part of the proof we know that if there is a family of discriminating retractions
then G is H-universally equivalent to G. Now we assume that G is H-universally
equivalent to G and we show that that there is a discriminating family of retractions
from G onto H .

Let a1, . . . , ap be a set of generators for H and these extend to a finite set a1, . . . ,
a
p

, b1, . . . , bq of generators of G. Let

ha1, . . . , ap, b1, . . . , bq;R1(a1, . . . , ap, b1, . . . , bq) = · · · = R
n

(a1, . . . , ap, b1, . . . , bq) = 1i

be a finite presentation for G.
Suppose g

j

= w
j

(a1, . . . , ap, b1, . . . , bq) 6= 1 for j = 1, . . . , k are nontirvial elements
of G. The the following existential sentence is true in G:

9x1, . . . , xq
✓✓

n^

i=1

(R
i

(a1, . . . , ap, x1, . . . , xq) = 1)

◆
^

✓
k^

j+1

(w
j

(a1, . . . , ap, x1, . . . , xq) 6= 1)

◆◆
.

Since G and H are assumed to H-universally equivalent this must also hold in H.
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Let (h1, . . . , hq) 2 Hq be such that

R1(a1, . . . , ap, h1, . . . , hq) = · · · = R
n

(a1, . . . , ap, h1, . . . , hq) = 1

and
w1(a1, . . . , ap, h1, . . . , hq) 6= 1 ^ · · · ^ w

k

(a1, . . . , ap, h1, . . . , hq) 6= 1.

Then since the relations are preserved the maps a
⌫

7! a
⌫

, ⌫ = 1, . . . , p, b
µ

7! h
µ

,
µ = 1, . . . , q, extend to a retraction � : G ! H . Furthermore, for all j = 1, . . . , k, we
have

�(g
j

) = �(w
j

(a1, . . . , ap, b1, . . . , bq)) = w
j

(�(a1), . . . ,�(ap),�(b1), . . . ,�(bq))

= w
j

(a1, . . . , ap, h1, . . . , hq

) 6= 1.

Therefore G is discriminated by retractions completing the proof. ⇤

Summarizing our results:

Theorem 8.14 Let Z be a class of finitely presented groups such that each nonabelian
H 2 Z is CSA. Let G be a finitely presented nonabelian residually Z group. Then
the following are equivalent:

1. G is fully residually Z,

2. G is CSA,

3. G is CT.

If in addition G is an H-group for some H 2 Z then the following are equivalent.

(a) G is fully residually H,

(b) G is universally equivalent to H.
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[88] H. Zieschang, Über Automorphismen ebener discontinuerlicher Gruppen, Math. Ann.

166 (1966), 148–167.



THE GROUPS OF PROJECTIVITIES IN FINITE PLANES

THEO GRUNDHÖFER

Institut für Mathematik, Universität Würzburg, Emil-Fischer-Str. 30, 97074 Würzburg, Ger-

many

Email: grundh@mathematik.uni-wuerzburg.de

Abstract

In every finite non-desarguesian projective plane, the group of all projectivities of a
line onto itself is the alternating group or the symmetric group. Similar results hold
for a�ne planes.

1 Introduction

The group of projectivities of a geometry reflects the complexity of the geometry:
one obtains a rather large group if the geometry is not a classical geometry; this is in
marked contrast to automorphism groups. See [36] for more information on the role
of projectivities in geometry.

In finite projective or a�ne planes, there are only very few possibilities for the
groups of projectivities, as the results 3.2, 4.1 and 4.2 below show.

2 Sharply 2-transitive sets of permutations

A set S of permutations of ⌦ = {1, . . . , n} is said to be sharply 2-transitive if the
following holds: given i, j, i

0
, j

0
2 ⌦ with i 6= j and i

0
6= j

0, there exists exactly one
element s 2 S with s(i) = i

0 and s(j) = j

0.
The following result is contained in Müller–Nagy [32, Lemma 1 and Theorem 3].

This elementary lemma is useful in the proofs for Theorems 3.2 and 4.3.

Lemma 2.1 Let S be a sharply 2-transitive subset of the symmetric group Sn. Then
|S \An| is odd if, and only if, n ⌘ 2, 3 (mod 4).

In particular, for n ⌘ 2, 3 (mod 4) the alternating group An does not contain any
sharply 2-transitive subset.

Proof There exist precisely
�n
2

�2
triples (s, i, j) with s 2 S, 1  i < j  n and

s(i) > s(j), because such a triple is uniquely determined by the two sets {i, j} and
{s(i), s(j)}. A second counting of these triples yields

✓
n

2

◆2

=
X

s2S
|{(i, j) | 1  i < j  n, s(i) > s(j)}| ⌘ |S \An| (mod 2),

and
�n
2

�
is odd precisely if n ⌘ 2, 3 (mod 4). ⇤

Let S be a sharply 2-transitive set of permutations of a finite set ⌦ with |⌦| > 1.
According to Witt [39, p. 267], compare [5, 3.2.4(b), 3.2.6] or [34, 12.1.1], we obtain
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an a�ne plane as follows: the points are the elements of ⌦2, and the lines are the
elements s 2 S (note that s ✓ ⌦2 by the set-theoretic definition of mappings) together
with the horizontal lines ⌦⇥{i} and the vertical lines {i}⇥⌦ where i 2 ⌦. Conversely,
every a�ne plane arises in this fashion. For example, the classical a�ne plane over a
(skew) field F is obtained from the sharply 2-transitive group S = AGL1 F := {x 7!

xa+ b | a, b 2 F, a 6= 0}.
The celebrated Bruck–Ryser theorem may be stated as follows: the symmetric

group Sn does not contain any sharply 2-transitive subset if n ⌘ 1, 2 (mod 4) and n

is not a sum of two squares; see, e.g., [5, 3.2.13 and 3.2.6] or [21, III.6].

3 Projective planes

Let L, M be lines of a projective plane P . We consider lines as sets of points. Every
point p /2 L [ M gives rise to the bijection [L, p,M ] : L ! M : x 7! (xp) \ M .
Projectivities are concatenations of bijections of this type. The projectivities of L
onto itself form a triply transitive group of permutations of L (by Remark 3.1 below);
choosing another line in P leads to an isomorphic permutation group (see [5, p. 160]).
We denote this permutation group by G(P) and call it the group of projectivities of
the projective plane P . The dual plane of P has the same group of projectivities, up
to an isomorphism of permutation groups.

If P is the desarguesian projective plane coordinatized by a skew field F , then
G(P) = PGL2 F in its natural action on the projective line F [ {1}. Adriano
Barlotti [1, 2] has started the study of groups of projectivities in non-desarguesian
planes: he showed that G(P) = S10 if P is the Hughes plane of order 9 or the nearfield
plane of order 9, and that G(P) = A17 for the Hall plane P of order 16.

Remark 3.1 Consider a line L of a projective plane P and distinct points u, v /2 L.
Then the set

S := { [L, u,X][X, v, L] | X is a line with u, v /2 X }

consists of projectivities that fix the point 1 := L \ uv, and S ✓ G(P)1 is sharply
2-transitive on L \ {1}. This well-known fact is a direct consequence of the axioms
for projective planes.

The following theorem was conjectured by Dembowski [5, p. 160] and proved by
Müller–Nagy [31], with a computer search to remove the largest Mathieu group M24

from [13, Theorem 2]; this computer search was replaced by Lemma 2.1 in Müller–
Nagy [32].

Theorem 3.2 Let P be a finite non-desarguesian projective plane of order n. Then
G(P) 2 {An+1, Sn+1}, and G(P) = Sn+1 if n ⌘ 2, 3 (mod 4).

Proof G := G(P) is a triply transitive subgroup of Sn+1 and n > 3. If G has a
regular (i.e., sharply transitive) normal subgroup, then n = 2d�1 with d > 2 and the
stabilizer G1 is a subgroup of the linear group GLd F2, compare [4, Theorem 1.6] or
[6, Theorem 7.2A]; the simple group GLd F2 is contained in An and n ⌘ 3 (mod 4),
which yields a contradiction to Remark 3.1 and Lemma 2.1. Therefore G has no
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regular normal subgroup; for another argument see [5, 3.4.10(c)] or [9, Korollar 3.6].
By a result of Burnside [3, § 154, Theorem XIII], compare [4, Section 4.8] or [6,
Theorem 7.2E], the group G is almost simple, i.e., N  G  AutN for some simple
group N .

If An+1  G, then we obtain the assertion using Remark 3.1 and Lemma 2.1. If
PSL2 Fn  G  P�L2 Fn with a prime power n, then the stabilizer G1 has a regular
normal subgroup, and P is desarguesian by the Lüneburg–Yaqub theorem; see [27,
Theorem 3] and [40], or Schleiermacher [38].

In the remaining cases, the triply transitive group G is a simple Mathieu group
of degree n + 1 2 {11, 12, 22, 23, 24}, or n + 1 = 22 and G = AutM22; this is a
consequence of the classification of finite simple groups, see [4, Section 7.4]. We have
n 6= 21 (and n 6= 22) by the Bruck–Ryser theorem mentioned above, thus n ⌘ 2, 3
(mod 4). The simple group G is contained in An+1, hence G1  An; this is a
contradiction to Remark 3.1 and Lemma 2.1. (The two small Mathieu groups are
excluded already by [37], see also [7] or [35, p. 13].) ⇤

Theorem 3.2 and the results in the sections below depend on the classification
of all finite permutation groups that are triply (or doubly) transitive, hence on the
classification of finite simple groups. This appears to be unavoidable, because an
explicit classification of all finite non-desarguesian planes is out of reach. If the
order n in Theorem 3.2 is a power of 2, then the classification of finite simple groups
can be replaced by a deep group-theoretic result of Holt [20, Corollary 1].

In the situation of Theorem 3.2, one might expect that G(P) = An+1 if n is even,
and G(P) = Sn+1 if n is odd. This is true for all André planes ([19] and [10]),
in particular for Hall planes, for planes over commutative semifields ([23] and [14]),
and for semifield planes and nearfield planes of odd order ([14] and [10]). However,
Kilmer [23] describes semifield planes P with orders n = 16, 32 and 64 such that
G(P) = Sn+1.

Question 3.3 Are there finite projective planes P of order n ⌘ 1 (mod 4) with
G(P) = An+1? Examples will have order n � 13, because the planes of order 5 and 9
are known (see [5, 3.2.15] and [24]) and covered by the results of Barlotti mentioned
above.

4 A�ne planes

Let L, M be lines of an a�ne plane A; again we consider lines as sets of points. Every
point p at infinity (i.e., every parallel class of lines) defines a parallel projection L !

M in the direction of p. The a�ne projectivities are the concatenations of bijections
of this type. The a�ne projectivities of L onto itself form a doubly transitive group
of permutations of L (by Remark 3.1, with points u, v at infinity); choosing another
line in A leads to an isomorphic permutation group. We denote this permutation
group by G

a↵(A) and call it the group of a�ne projectivities of the a�ne plane A.
(This is the group ⇧W in [5, p. 161].)

If A is the desarguesian a�ne plane coordinatized by a skew field F , then G

a↵(A) =
AGL1 F in its natural action on F .



Grundhöfer: Groups of projectivities 274

By Schleiermacher [38, Satz 2] (see also [35, Proposition 7]), the permutation group
G

a↵(A) has a regular normal subgroup if, and only if, the a�ne planeA is a translation
plane; this means that the point set of A is a vector space, each line is an a�ne
subspace, and each translation v 7! v + a of the vector space is an automorphism
(a collineation) of A. The kernel of A is then the largest skew field a↵ording such a
vector space structure; see [29, p. 3] or [21, VII]. This result of Schleiermacher splits
the study of the groups Ga↵(A) into two quite di↵erent cases; see Theorems 4.1 and
4.2 below.

The a�ne group AGLd Fq := {v 7! Av + a | A 2 GLd Fq, a 2 Fd
q } has a normal

subgroup ASLd Fq defined by the condition detA = 1.

Theorem 4.1 Let A be a finite translation plane of order n = q

d with kernel Fq.
Then ASLd Fq  G

a↵(A)  AGLd Fq.

This is proved in [11, 3.2], relying on the list of all subgroups of GLd Fq that
act transitively on the set of non-zero vectors; see Hering [17, 18] and Liebeck [25,
Appendix 1]; cp. also Malle [30, Satz 5.1]. The completeness of this list depends on
the classification of finite simple groups. Often, perhaps always, one has G

a↵(A) =
AGLd Fq; this holds for all nearfield planes and for all André planes by [10], and for
many semifield planes by [14].

An analogous result for infinite topological translation planes homeomorphic to Rn

is proved in [16].

Theorem 4.2 Let A be a finite a�ne plane of order n which is not a translation
plane. Then G

a↵(A) 2 {An, Sn}, or n = 24 and G

a↵(A) = M24 is the largest
Mathieu group. Moreover G

a↵(A) = Sn if n ⌘ 2, 3 (mod 4).

These groups G

a↵(A) have no regular normal subgroups, hence they are almost
simple (compare the proof of Theorem 3.2). Therefore Theorem 4.2 is a consequence
of Remark 3.1 (with points u, v at infinity) and the following group-theoretic result.

Theorem 4.3 If an almost simple permutation group G  Sn contains a sharply
2-transitive subset, then G 2 {An, Sn}, or n = 24 and G = M24.

This is obtained by combining [15, Theorem 1.9] with Lemma 2.1. In fact, the
proof of [15, Theorem 1.9] can be shortened using that Lemma and [32, Section 3];
this proof considers all doubly transitive actions of almost simple groups and extends
earlier results of Lorimer [26] and O’Nan [33].

Problem 4.4 One would like to eliminate the unlikely possibility n = 24 with the
Mathieu group M24 in Theorems 4.2 and 4.3. The results in [32, Section 4] suggest
that this requires new ideas.

In the projective closure P of an a�ne plane A, the parallel projection L ! M in
the direction of p is just the projectivity [L, p,M ] considered in the previous section
(if we ignore the points at infinity of L and M). Thus G

a↵(A) is a subgroup of the
stabilizer G(P)1, where 1 is a point at infinity.

Fix a parallel class p of A and consider concatenations of central projections
[L, c,M ] where L,M 2 p and c is a point of P with c /2 L [M . The concatenations
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mapping a fixed line L 2 p onto itself form another ‘group of a�ne projectivities’
of A, but this permutation group is isomorphic to G

a↵(A0) where the a�ne plane A

0

is obtained by removing the line that contains the set p from the dual plane of P .

Theorem 3.2 is a consequence of Theorem 4.2: every finite non-desarguesian pro-
jective plane P has at most one translation line (see [21, Theorems 6.18 and 6.20]),
hence some a�ne part A of P is not a translation plane, we have G

a↵(A)  G(P)1,
and the Mathieu group M24 is maximal in A24 and has no transitive extension (see
[28, 13.2, p. 94]).

5 Locally finite planes

A structure (a group, a field, a projective or a�ne plane) is called locally finite, if
every finite subset is contained in a finite substructure. A subplane of an a�ne plane
is required to have the induced parallelity relation, as in [5, p. 118].

Let P be a locally finite projective (or a�ne) plane. Every projectivity of P

is determined by finitely many points and lines, hence every orbit of every finitely
generated subgroup of G(P) (or G

a↵(P)) is finite. This entails that these groups
of projectivities are locally residually finite; they are not always locally finite, not
even periodic, as the a�ne generalized André planes described in [8, V.3.8] or [22,
Section 3] show.

Every projectivity of a subplane of P extends to a projectivity of P. Therefore the
following two results are consequences of Theorems 3.2 and 4.2.

Corollary 5.1 Let P be an infinite, locally finite projective plane which is not de-
sarguesian. Then G(P) is t-transitive for every t 2 N.

Corollary 5.2 Let A be an infinite, locally finite a�ne plane which is not a trans-
lation plane. Then G

a↵(A) is t-transitive for every t 2 N.

For translation planes, the following result is proved in [12, Theorem 2]; note that
finite-dimensionality is not a consequence of local finiteness.

Theorem 5.3 Let A be a locally finite translation plane of finite dimension 2d over
its kernel K. Then ASLdK  G

a↵(A)  AGLdK.

The equation G

a↵(A) = AGLdK holds if A is an André plane or a nearfield plane.

Question 5.4 Is every locally finite projective plane countable? This holds if the
plane is desarguesian, since every locally finite (skew) field is algebraic over its prime
field, and therefore countable.
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[10] Theo Grundhöfer, Projektivitätengruppen von Translationsebenen, Results Math. 6

(1983), 163–182.
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Grundhöfer: Groups of projectivities 277

planes, Innov. Inc. Geom. 6/7 (2007/08), 291–294.
[32] Peter Müller and Gábor P. Nagy, On the non-existence of sharply transitive sets of

permutations in certain finite permutation groups, Adv. Math. Commun. 5 (2011), 303–
308.

[33] M. E. O’Nan, Sharply 2-transitive sets of permutations, in Proc. Rutgers group theory
year, 1983–1984 (M. Aschbacher et al., eds.), Rutgers University, New Brunswick, N.J.
(CUP, Cambridge 1985), 63–67.

[34] Günter Pickert, Projektive Ebenen, zweite Auflage (Springer, Berlin 1975).
[35] Günter Pickert, Projectivities in projective planes, in [36, pp. 1–49].
[36] Peter Plaumann and Karl Strambach (eds), Geometry — von Staudt’s point of view,

Proc. Bad Windsheim 1980 (Reidel, Dordrecht 1981).
[37] Adolf Schleiermacher, Bemerkungen zum Fundamentalsatz der projektiven Geometrie,

Math. Z. 99 (1967), 299–304.
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Abstract

This article surveys results in connection with the relation gap problem, the relation
lifting problem, and the geometric realization problem. These three problems lie in
the intersection of combinatorial group theory and 2-dimensional homotopy theory.
We present key examples that lie at the heart of these problems.

1 Three problems

Let G be a group. A generating set G = {g1, . . . , gn} defines an epimorphism �G :
F (x1, . . . , xn) ! G that sends xi to gi, i = 1, . . . , n. Let NG be the kernel of �G.
A fundamental problem in combinatorial group theory is to determine a minimal
normal generating set for NG . If it is clear which generating set is used we will drop
the subscript and simply write N instead of NG . When we say

F/N = hx1, . . . , xn | r1 = 1, . . . , rm = 1 i

is a presentation for a group G, we mean that F is a free group on {x1, . . . , xn}, N is
the normal closure of r1, . . . , rm in F , and G is isomorphic to F/N . The conjugation
action of F on N provides a ZG-module structure on Nab = N/[N,N ]. This module
is the relation module of the presentation F/N of G. We have

dF (N) � dG(N/[N,N ]) � d(N/[F,N ]) = n� tfr(H1(G)) + d(H2(G)).

Here dF (�) denotes the minimal number of F -group generators, dG(�) denotes the
minimal number of G-module generators, d(�) denotes the minimal number of gen-
erators, and tfr(�) denotes the torsion free rank. The chain of inequalities follows
from the exact sequence

H2(G) ! H2(Q) ! Z⌦ZG H1(H) ! H1(G) ! H1(Q) ! 0,

associated with an exact sequence of groups 1 ! H ! G ! Q ! 1 (see Brown [5]).
We say the presentation F/N has a relation gap if

dF (N)� dG(N/[N,N ]) > 0.

The presentation is called e�cient if dF (N) = d(N/[F,N ]).

Relation gap problem: Does there exist a finite presentation F/N with a relation
gap?

Infinite relation gaps are known to exists for finitely generated groups. See Bestvina
and Brady [2].
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Relation lifting problem: Given set s1[N,N ], . . . , sm[N,N ] of relation module
generators, do there exists defining relators r1, . . . , rm (i.e., elements that normally
generate N), such that ri[N,N ] = si[N,N ], i = 1, . . . ,m?

We refer to the elements ri as lifts of the generators si[N,N ], i = 1, . . . ,m. The
relation lifting problem arose in work of C. T. C. Wall [31]. M. Dunwoody [8] provided
an example where lifting is not possible. We will provide more details on Dunwoody’s
construction in a later section.

Let G be a finite generating set of a group G and F/NG be the associated pre-
sentation. Since the relation module NGab is isomorphic to H1(�G), where �G is the
Cayley graph of G associated with the generating set G, a choice of relation module
generators M gives rise to an partial resolution KM of the trivial ZG-module Z:

ZGm @2! ZGn @1! ZG ✏! Z ! 0,

where m is the number of elements in M. We call such a partial resolution KM an
algebraic 2-complex for G. We say an algebraic 2-complex K for G is geometrically
realizable if it is chain homotopy equivalent to an algebraic 2-complex C(K̃) that
arises as the augmented chain complex of the universal covering K̃ of a 2-complex K
with fundamental group G.

Geometric realization problem: Does there exist an algebraic 2-complex that is
not geometrically realizable?

A relation gap in a finite presentation F/N would certainly provide a set of relation
module generators that can not be lifted. If in addition dF (N) � d(F ) is minimal
among all finite presentations of G one can construct an algebraic 2-complex that
is not realizable. Indeed, if M is a minimal generating set for the relation module
N/[N,N ], then the Euler characteristic of KM is smaller that the Euler characteristic
of any finite 2-complex with fundamental group G. Geometric realization has been
studied by F. E. A. Johnson and his students in connection with the D(2)-problem.
See [25].

2 Examples concerning the relation gap question

Example 2.1 Consider the presentation

F/N = h a, b, c, d | [a, b] = 1, am = 1, [c, d] = 1, cn = 1 i

of the group G = (Zm � Z) ? (Zn � Z), where m and n are relatively prime. Note
that d(N/[F,N ]) = 4� 2 + 1 = 3. Epstein asked [10] if this presentation is e�cient.
Gruenberg and Linnell showed [12] that dG(N/[N,N ]) = 3.

Example 2.2 The following examples were constructed by Bridson and Tweedale [3].
They are very much in the spirit of the Epstein example above, but an unexpectedly
small set of relation module generators can be seen more easily. Let Qn be the
group defined by h a, b, x | an = 1, bn = 1, [a, b] = 1, xax�1 = b i. This groups
is an HNN-extension of Zn ⇥ Zn where the stable letter x conjugates one factor
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into the other. Note that h a, x | an = 1, [a, xax�1] = 1 i also presents Qn. Let
⇢n(a, x) = [xax�1, a]a�n and let qn = (n+ 1)n � 1. Then

F/N = h a, x, b, y | am = 1, [a, xax�1] = 1, bn = 1, [b, yby�1] = 1 i

is a presentation of the free product Qm ?Qn. Bridson and Tweedale show that the
relation module Nab is generated by ⇢m(a, x)[N,N ], ⇢n(b, y)[N,N ], and amb�n[N,N ].
Other articles by Bridson and Tweedale that address the relation gap are [4] and [13].

Example 2.3 The following construction first appeared in [16]. Let F1/N1 and
F2/N2 be finite presentations of groups G1 and G2, respectively. Let H be a finitely
generated subgroup of both G1 and G2 and let F/N be the standard presentation of
the amalgamated product G = G1 ?H G2. One can show that

dG(Nab)  dG1(N1ab) + dG2(N2ab) + dH(IH),

where IH is the augmentation ideal of H. Denote by Hn the n-fold direct product
H ⇥ · · · ⇥H . Cossey, Gruenberg, and Kovacs [7] showed that dHn(IHn) = dH(IH)
in case H is a finite perfect group. Since d(Hn) ! 1 as n ! 1 one can produce
arbitrarily large generation gaps d(Hn)�dHn(IHn). This leads to unexpectedly small
generating sets for the relation module Nab for for presentations F/N of G1 ?Hn G1.
The hope is that the amalgamated product shifts the generation gap into a relation
gap.

3 Dunwoody’s counter example to relation lifting [8]

Consider the presentation F/N = h a, b | a5 = 1 i of the group G = Z5 ? Z. Note that
(1 � a+ a2)(a + a2 � a4) = 1, so 1 � a + a2 is a non-trivial unit in ZG. Hence so is
↵ = (1� a+ a2)b. It follows that

↵ · a5[N,N ] = (ba5b�1)(aba�5b�1a�1)(a2ba5b�1a�2)[N,N ] = s[N,N ]

is a generator for the relation module. This generator can not be lifted. For suppose
that hha5ii = hhrii and r[N,N ] = s[N,N ]. One relator group theory implies that
r = wa±5w�1, for some w 2 F . Using the well known resolution for Z5 (see Brown
[5], Chapter I, Section 6) one can show that Nab

⇠= ZG/ZGha � 1i ⇠= A, where A is
the free abelian group with basis the elements of G that end in b±1 (this can also be
seen by directly inspecting the Cayley graph � for the generating set {a, b}.) The
isomorphism Nab ! A sends s[N,N ] to b � ab + a2b and sends r[N,N ] to a single
basis element in A. Hence r[N,N ] 6= s[N,N ].

Dunwoody’s construction uses non-trivial units in ZG and one relator group the-
ory. We do not know an example of a torsion free group where relation lifting fails.
Also note that the algebraic 2-complex K that one obtains from the relation module
generator s[N,N ] is geometrically realizable. In fact it is chain homotopically equiva-
lent to the cellular chain complex of the universal covering of the standard 2-complex
K built from the presentation F/N = h a, b | a5 = 1 i of G. Thus the example does
not provide a negative answer to the geometric realization question.
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It is easy to give examples of relation module generators that are not defining
relators but can be lifted. Let

F/J = h a, b, c, d, x | a = 1, b = 1, c = 1, d = 1 i

be a presentation of the infinite cyclic group. Let s1 = b[b, a], s2 = c[c, b], s3 = d[d, c],
s4 = a[a, b]. The elements si[J, J ], i = 1, 2, 3, 4, generate the relation module Jab,
but the si, i = 1, 2, 3, 4, do not normally generate J . Indeed, notice that s1 = 1 can
be rewritten as aba�1 = b2. Rewriting the other relations si = 1 in a similar way
the presentation F/N = h a, b, c, d, x | s1 = 1, s2 = 1, s3 = 1, s4 = 1 i turns into the
presentation

F/N = h a, b, c, d, x | aba�1 = b2, bcb�1 = c2, cdc�1 = d2, dad�1 = a2 i,

which presents the free product H ?Z, where H = ha, b, c, di is the Higman group on
four generators. Higman groups Hn on n � 2 generators are defined similarly [19].
It is known that Hn is trivial for n = 2, 3 and infinite (in fact aspherical, see Gersten
[11]) for n � 4. All Hn are perfect and do not have proper subgroups of finite index.
In particular F/N does not present the infinite cyclic group. Since s1[J, J ] = b[J, J ],
s2[J, J ] = c[J, J ], s3[J, J ] = d[J, J ], s4[J, J ] = a[J, J ], the relation module generators
si[J, J ], i = 1, 2, 3, 4 can be lifted.

The following observation is often useful when constructing examples of presenta-
tions that are interesting in view of relation lifting.

Lemma 3.1 Let F/N = hx1, . . . , xn | s1, . . . , sm i be a presentation of a group
G and suppose P = J/N is a perfect normal subgroup. Let Q be the quotient
G/P . Then F/J is a presentation for Q and the relation module Jab is generated
by s1[J, J ], . . . , sm[J, J ].

Proof Since Pab = J/N [J, J ] = 1 we have J = N [J, J ]. The result follows. ⇤

4 Stabilization

All examples encountered so far are free products, except for Example 2.3 in Section 2,
where the group is a free product amalgamated over a finite group. Free products
can have unexpectedly small presentations. See Hog-Angeloni, Metzler, Lustig [21].
In his work on distinguishing homotopy and simply homotopy type for 2-complexes,
Metzler [27] showed that Whitehead torsion elements can be topologically realized if
one allows stabilization using copies of the complex K = h a, b | [a, b], a2, b4 i. See also
Hog-Angeloni, Metzler [22] and [24], Chapter XII. These stabilization techniques can
also be applied to closing the relation gap. See [14], [15], and also [16].

Theorem 4.1 Given a finite presentation F/N . Then there exists k � 0 such that

F/N ? h a, b | a2 = 1, b2 = 1, [a, b] = 1 i ? · · · ? h a, b | a2 = 1, b2 = 1, [a, b] = 1 i

(k copies) does not have a relation gap.



Harlander: Relation gap and relation lifting problem 282

Here is the main idea of the proof. Suppose the relation module is generated by
r1[N,N ], . . . , rm[N,N ]. Then N is normally generated by r1, . . . , rm together with a
finite set of elements of the form [s, t], where s, t 2 N . For simplicity assume that
N = hhr1, . . . , rm, [s, t]ii. Now note that

hx1, . . . , xn, a, b | r1 = 1, . . . , rm = 1, [s, t] = 1, a2 = 1, b2 = 1, [a, b] = 1 i

presents the same groups as

hx1, . . . , xn, a, b | r1 = 1, . . . , rm = 1, s = a2, t = b2, [a, b] = 1 i.

Indeed, since a and b commute, the squares a2 and b2 also commute, hence s and t
commute. So the relation [s, t] = 1 holds. Since N = hhr1, . . . , rm, [s, t]ii, we get s = 1
and t = 1, and hence a2 = 1 and b2 = 1. The commutator relation [s, t] = 1 got
“absorbed”, the second presentation makes due with one less relator than the first
presentation.

We will illustrate this method further by working through Dunwoody’s example
considered in Section 3. For economical reasons we use the notation x ⇤ y = xyx�1.
Let r = a5 and let s = (b⇤r)(ab⇤r�1)(a2b⇤r) 2 N = hhrii. We know that h a, b | s = 1 i
is not a presentation for G = Z5 ⇤ Z. But since s generates the relation module, we
can add commutators of relators to obtain a presentation. We need to add enough
commutators to be able to do the calculation (a+a2�a4) ·s[N,N ] = b ·r[N,N ](based
on (1� a+ a2)(a+ a2 � a4)b = b) in N . We claim that

h a, b | s = 1, [r, b ⇤ r] = 1, [b ⇤ r, ab ⇤ r] = 1, [b ⇤ r, a2b ⇤ r] = 1 i

does present G. Note that (a ⇤ s)(a2 ⇤ s)(a4 ⇤ s�1) is

(ab ⇤ r)(a2b ⇤ r�1)(a3b ⇤ r)(a2b ⇤ r)(a3b ⇤ r�1)(a4b ⇤ r)(a6b ⇤ r�1)(a5b ⇤ r)(a4b ⇤ r�1).

Since b⇤r commutes with ab⇤r, it follows that aib⇤r commutes with ai+1b⇤r. And since
b⇤r commutes with a2b⇤r it follows that aib⇤r commutes with ai+2b⇤r. Thus the above
expression becomes (ab⇤r)(a6b⇤r�1)(a5b⇤r). Now note that a5b⇤r = r⇤(b⇤r) = b⇤r
because r commutes with b ⇤ r. It follows that a6b ⇤ r = a ⇤ (a5 ⇤ r) = ab ⇤ r. Thus
our expresion becomes (ab ⇤ r)(ab ⇤ r�1)(b ⇤ r) = b ⇤ r. Thus b ⇤ r and hence r
defines the trivial element in the group defined by the presentation above. Hence
we have a presentation of G = Z5 ⇤ Z as claimed. It follows that the presentation
of generators a, b, c, d, e, f, g, h and relations s = 1, c2 = r, d2 = b ⇤ r, e2 = b ⇤ r,
f2 = ab ⇤ r, g2 = b ⇤ r, h2 = a2b ⇤ r, [c, d] = [e, f ] = [g, h] = 1 is a presentation for
(Z5 ? Z) ? (Z2 ⇥ Z2) ? (Z2 ⇥ Z2) ? (Z2 ⇥ Z2).

5 One relator groups and another example of Dunwoody’s

Let F/N = hx1, . . . , xn | r i be a presentation of a torsion-free one-relator group G.
Then the relation module Nab is isomorphic to ZG. Let ↵ and � be left module
generators of ZG. Let @↵,� : ZG � ZG ! Nab be the homomorphism that sends
e1 = (1, 0) to ↵ · r[N,N ] and e2 = (0, 1) to � · r[N,N ]. Since the relation module
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Nab is isomorphic to the kernel of @1 : ZGn ! ZG that sends the basis element ei to
xi � 1, i = 1, . . . , n, we obtain an algebraic 2-complex K↵,�

ZG� ZG
@↵,�! ZG� ZG @1! ZG ✏! Z ! 0.

This construction provides easy access to examples relevant for relation lifting and
geometric realization.

Example 5.1 (M. Dunwoody [9]) Let G be the trefoil group presented by h a, b |
a2 = b3 i. Then ↵ = 1+a+a2 and � = 1+b+b2+b3 generate the left module ZG. In
order to see this observe that (a�1)↵ = a3�1 and (b�1)� = b4�1. Since a3 and b4

generate G (simply note that (a3)3(b4)�3 = a and (a3)2(b4)�2 = b), the elements (a�
1)↵ and (b�1)� generate the augmentation ideal. Thus (a�1)↵, (b�1)�, ��↵, and
hence ↵ and �, generate ZG. It follows that ↵ · r[N,N ] = (r)(ara�1)(a2ra�2)[N,N ]
and � · r[N,N ] = (r)(brb�1)(b2rb�2)(b3rb�3)[N,N ] generate the relation module,
where r = a2b�3. One obtains an algebraic 2-complex K↵,� . Dunwoody shows in [9]
thatH2(K↵,�) is stably-free but not free. In particular K↵,� is not chain homotopically
equivalent to the chain complex of the universal covering of h a, b | a2b�3 i _ S2. The
algebraic 2-complex K↵,� is geometrically realizable. Dunwoody shows that

h a, b | (r)(ara�1)(a2ra�2) = 1, (r)(brb�1)(b2rb�2)(b3rb�3) = 1 i

is indeed a presentation of G. This provided the first example of di↵erent homotopy
types of 2-complexes K and L with the same fundamental group G and Euler char-
acteristic �(K) = �(L) = �min(G) + 1. For finite groups di↵erent homotopy types
can occur only at the minimal Euler characteristic level. See [24], Chapter III. Other
examples similar to Dunwoody’s are known [17]. Later M. Lustig [23] showed that
there are infinitely many distinct homotopy types for G on the Euler characteristic
�min(G) + 1.

6 Algebraic 2-complexes for the Klein bottle group

The homotopy classification of 2-complexes with fundamental group G is complete
in case G is free of rank n, or G is free abelian of rank 2. In the first case (S1 _
· · · _ S1) _ S2 _ · · · _ S2 (n copies of S1) is a complete list, and in the second case
(S1⇥S1)_S2 · · ·_S2 is a complete list. This follows from the fact that the homotopy
type of a 2-complexe K is assembled from ⇡1(K), ⇡2(K), and the k-invariant  2
H3(⇡1(K),⇡2(K)). See Chapter II in [24]. For G free or G = Z⇥Z, the cohomology
group H3(G,M) = 0 for all ZG-modules M . The second homotopy module ⇡2(K) is
stably free since the cohomological dimension of G is less or equal to two, and hence
free by results of Cohn [6] for free groups (see also Hog-Angeloni [20] for a short
topological proof) and Quillen [29] (independently, Suslin) for free abelian groups. It
follows that the homotopy type is determined by the Euler characteristic.

The situation is more complicated for the Klein bottle group G. Let F/N =
ha, b | aba�1 = b�1i be the standard presentation of G. Then Nab is isomorphic
to ZG. Let p(b) 2 ZG be a polynomial in b and let q(b) = p(b�1). The elements
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↵ = a+ q(b) and � = p(b) generate ZG as a left module. Indeed,

(a� p(b))↵+ p(b�1)� = (a� p(b))(a+ p(b�1) + p(b�1)p(b)

= a2 + ap(b�1)� p(b)a� p(b)p(b�1) + p(b�1)p(b) = a2

Artamonov [1] and Sta↵ord [30] studied the K-theory of solvable groups. Their
results can be used to construct exotic alsgebraic 2-complexes for G.

Theorem 6.1 Let pn(b) = 1+nb+nb3 and qn(b) = p(b�1), n 2 N. Then the elements
↵n = a+ qn(b) and �n = pn(b) generate ZG as a left module and the set {K↵n.�n}n2N
contains infinitely many distinct homotopy types of algebraic 2-complexes for G, each
of Euler characteristic one.

The algebraic 2-complexes K↵n,�n are studied in [18]. We do not know if the
relation module generators

↵n · r[N,N ] = (ara�1)(r)(b�1rnb)(b�3rnb3)[N,N ],

�n · r[N,N ] = (r)(brnb�1)(b3rnb�3)[N,N ],

where r = aba�1b�2, can be lifted, or if any of the complexes K↵n,�n are geometrically
realizable.

We conclude this article by providing some details on the work of Artamonov [1] and
Sta↵ord [30]. Given a Noetherian domain R and an automorphism � : R ! R, one
can defined the skewed Laurent-polynomial ring S = R[x, x�1, �], where xr = �(r)x.
Sta↵ord shows that given two elements r1, r2 that satisfy the properties

1. S = Sr1 + S(x+ r2),

2. �(r1)r2 /2 Rr1,

then the left ideal K = { s 2 S | sr1 2 S(x+r2) } is not generated by a single element.
Note that K is isomorphic to the kernel of the S-module homomorphism S�S ! S,
sending e1 to r1 and e2 to x+ r2. Hence K � S ⇠= S � S. Since K is not cyclic, it is
not free.

If G is the Klein bottle group as above, then ZG = ZH [a, a�1, �], where H = hbi.
Now one can take r1 = 1 + nb + nb3 and r2 = 1 + nb�1 + nb�3. By Sta↵ord Kn is
not free. Note that Kn is isomorphic to H2(K↵n,�n), where K↵n,�n is the algebraic
2-complex defined above. Artamonov shows that the set {Kn} contains infinitely
many distinct isomorphism types. His reasoning is as follows. First construct a set
of primes Q such that if p < q and both p and q are in Q, then q = 1 modulo p.
Let Kn,p = Kn/pKn. Using Sta↵ord’s construction one can show that Kq,p is not
free, but Kq,q is free. Thus if q1 < q2, then Kq1 and Kq2 are not isomorphic because
Kq1,q1 is free but Kq2,q1 is not free. It follows that the set {H2(K↵n.�n)}n2N contains
infinitely many isomorphism types and hence the set {K↵n.�n}n2N contains infinitely
many algebraic homotopy types.
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Abstract

In this paper we survey some recent results concerning products of finite subsets in
groups, some of which are still under preparation for publication.

1 Introduction

If X,Y are subsets of a group G, we write

X�1 = {x�1 | x 2 X}, X2 = {x1x2 | x1, x2 2 X} and XY = {xy | x 2 X, y 2 Y }.

If G is an additive group, then we write

X + Y = {x+ y | x 2 X, y 2 Y } and 2X = {x1 + x2 | x1, x2 2 X}.

In this survey we are interested in two topics related to products of finite subsets
in groups. Let X be a finite subset of a group G. The first topic deals with the size
of the product set X2, while the second one is concerned with those finite subsets X
of G which satisfy the equation |XX�1| = |X�1X|.

Results related to the first topic appear in our paper [8], joint with G.A. Freiman,
and in the following joint papers with G.A. Freiman and Y.V. Stanchescu: [10] and
[9], [11] (both under preparation). The second topic was investigated in the paper
[14], joint with G. Kaplan.

Our aim in this survey is to be of interest to group theorists who are experts in
the described area of research, as well as to those who wish only to take a glimpse
into the area. Therefore, in addition to definitions and referenced results, we provide
a brief overview of subjects under consideration.

We continue with a more detailed description of our topics of interest. As men-
tioned above, our first major topic deals with the size of the product set X2, where
X is a finite subset of a group G.

More precisely, we are concerned with the following problem.

Problem 1. Let S be a finite subset of a group G of size |S| = k. Determine the
structure of S if it satisfies the following restriction: |S2|  f(k) for some function f
of k.
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Problems of this type are called “inverse” problems.
In particular, we shall be interested in “small doubling” problems, dealing with the

structure of finite subsets S of G, of order k, satisfying the inequality |S2|  ↵k + �
for some small ↵ � 1 and small |�|.

For example, if X is a finite subgroup of a group G of order |X| = k, then |X2| = k.
This is a direct (trivial) result. The corresponding “ordinary” inverse problem is:

Problem 2. Let S be a finite subset of a group G of order |S| = k and suppose that
|S2| = k. What is the structure of S?

If 1 2 S, then S is a subgroup of G, since by our assumptions clearly S2 = S. But
without any assumptions, S does not need to be a subgroup of G. Indeed, if H is
a normal subgroup of G of order |H | = k and a 2 G, then the coset S = aH also
satisfies |S| = k and |S2| = |aHaH | = |a2H| = |H | = k.

What happens in general? It turns out that S is always a coset of a subgroup of
G. This follows from a more general “extended” inverse theorem of G.A. Freiman.

Theorem 1.1 ([6]) Let A be a finite subset of a group G and suppose that |A2| <
3
2 |A|. Then A2 is a coset of a subgroup of G.

The first version of the paper [6] was published in 1951.
How does our claim follow from Freiman’s theorem? If |S2| = |S|, then clearly

S2 = xS for every x 2 S. By Theorem 1.1, xS = S2 = uH for some subgroup H of G
and some u 2 G. It follows that S = x�1uH, as claimed.

Why is Theorem 1.1 called an “extended” inverse theorem? We call Problem 2 an
“ordinary” inverse problem, since the assumption is that the minimal bound on |S2|
holds. We call Theorem 1.1 an “extended” inverse result, because the assumed bound
for |S2| is a bit higher than the minimal one, still enabling us to say something about
the structure of S.

The 1951 version of [6] was the beginning of what is now called the “Freiman’s
structural theory of set addition”. The foundations for this theory were laid in his
book “Foundations of a structural theory of set addition” (see [4]). For us, the
following result from [4] is the most important.

Theorem 1.2 ([4, Theorem 1.9, page 11]) Let K be a finite set of integers of
size k and suppose that |K2| = 2k � 1 + b, where 0  b < k � 2. Then K is a subset
of an arithmetic progression

P = {a, a+ q, a+ 2q, . . . , a+ (k + b� 1)q},

where a and q are integers with q > 0. In particular, |P |  2k � 3.

By now, Freiman’s theory had been extended tremendously. Freiman and many
other mathematicians showed that problems in various fields may be looked at and
treated as Structure Theory problems. In [5], Freiman listed, among others, the
following areas and problems, whose solution was influenced by the ideas and methods
of Structure Theory.
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Additive Number Theory. The paper [7] of G.A. Freiman, H. Halberstam and
I.Z. Ruzsa confronts the problem of showing that given a set of integers A, the set
rA = {ra | a 2 A} contains an arithmetic progression of length L and di↵erence d.

Combinatorial Number Theory. The paper [19] of Lipkin confronts the problem
of determining the value of the critical number c(G) of a finite abelian group G. The
critical number c(G) is the minimal integer n, such that if A is any subset of G of
size at least n, then the set of all sums of subsets of A equals G.

Group Theory. In the paper [2], L. Brailovsky proved the following theorem.

Theorem 1.3 ([2, Lemma 1]) A group G (finite or infinite) is central-by-finite if
and only if there exists a positive integer k such that |K2|  k2� k for each subset K
of G of size |K| = k.

For more details, see [5], Sections 21–27. Freiman lists there also problems from
additional areas: Integer Programming, Probability Theory, Coding Theory and Math-
ematical Statistics. This paper of Freiman served as an introductory paper to the
258th volume of the journal Astérisque, which was entirely dedicated to Freiman’s
“Structure Theory of Set Addition”.

Since 1999, Freiman’s theory has continued to flourish. In particular, various results
of Freiman concerning subsets of integers were extended to subsets of other groups.
We shall conclude this glimpse into Freiman’s theory by quoting another of his basic
results and its extension to abelian groups by Ben Green and Imre Z. Ruzsa.

In order to state these results, we need the following definitions. A subset P of Z
is called a proper d-dimensional progression if

P = {v0 + l1v1 + l2v2 + · · ·+ l
d

v
d

| l
i

= 0, 1, . . . , L
i

� 1, i = 1, 2, . . . , d}

and |P | =
Q

d

1 Li

, where v
i

are integers and L
i

are positive integers. A proper d-
dimensional progression of an abelian group G is defined similarly, the only di↵erence
being that in this case v0, v1, . . . , v

d

are elements of G. Finally, a subset C of G is
called a coset progression if C = P +H, where H is a subgroup of G, P is a proper
d-dimensional progression of G and if p, p0 2 P and h, h0 2 H , then p + h = p0 + h0

implies that p = p0 and h = h0. The size of C is defined as |P |.
In [4], Freiman proved the following theorem:

Theorem 1.4 ([4, Theorem 2.8], more generally stated) If A is a finite subset
of Z and |A+ A|  K|A|, for a constant K, then A is contained in a proper d(K)-
dimensional progression of size at most f(K)|A|, for some functions d and f .

In 2007, Green and Ruzsa proved an analogous theorem for abelian groups.

Theorem 1.5 ([13, Theorem 1.1]) If A is a finite subset of an abelian group G
(finite or infinite) and |A + A|  K|A|, for a constant K, then A is contained in
a coset progression of dimension at most d(K) and size at most f(K)|A|, for some
functions d and f .
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Many results concerning the possible orders of magnitude of the functions d and
f were obtained in the literature. While the assumptions in Theorems 1.4 and 1.5
are much more general that those in Theorem 1.2 and in our analogous Theorem 3.1
for finite subsets in ordered groups (see Section 3), their conclusions concerning the
structure of the set A are much less precise.

More results concerning the recent advances in the “Structure theory of set addi-
tion” may be found in T. Sanders’ survey article [23].

Our joint papers [8], [9], [10] and [11] deal with problems which belong to the first
major topic which was described above. Our aim in papers [8] and [9] was to extend
the results of Freiman’s Theorem 1.2 to finite subsets in ordered groups G, which
are, like Z, torsion-free and totally ordered. Assuming that a finite subset S of G
satisfies the inequality |S2|  ↵|S| + � for some ↵ close to 3 and some small |�|, we
tried to determine the precise structure of S. Our results apply in particular to the
class of torsion-free nilpotent groups, which were shown to be orderable groups by K.
Iwasawa, A.I. Mal’cev and B.H. Neumann (see Section 2).

The papers [10] and [11] deal with finite subsets of Baumlag-Solitar groups satis-
fying similar inequalities.

We continue with a survey of the main results in the above-mentioned four papers.
In order to describe the results of [8], we assume that G denotes an ordered group

and S is a finite subset of G of size k � 2. It is easy to see that, like in Z, |S2| � 2k�1
and if |S2| = 2k�1, then S is an abelian geometric progression (see Proposition 2.2).
This result raises the basic question: what is the maximal upper bound on |S2|
which implies that the set S is abelian? We solved this problem by proving that if
|S2|  3k� 3, then S is abelian and this bound is the best possible (see Theorem 2.6
and Example 2.7). Moreover, we extended Freiman’s Theorem 1.2 to ordered groups
(see Theorem 2.5).

The results of [8] are presented in Section 2.

In [9] we considered non-abelian subsets X of ordered nilpotent groups G of class 2.
If |X| = k, then by Theorem 2.6 we must have |X2| � 3k � 2. We succeeded in
determining the possible structures of X in the two smallest possible cases: |X2| =
3k � 2 and |X2| = 3k � 1 (see Section 3).

In [10] we dealt with inverse problems concerning finite subsets in Baumslag-Solitar
groups. Baumslag-Solitar groups are denoted by BS(n,m), where m and n are inte-
gers, and they are defined as follows:

BS(m,n) = h a, b | amb = ban i.

We concentrated our attention to Baumslag-Solitar groups with m = 1: BS(1, n) =
h a, b | ab = ban i.

We noticed in [10] that inverse small doubling problems in these groups are related
to similar problems concerning sums of dilates in Additive Number Theory. A dilate
is a subset r ⇤A of Z, where A is a finite subset of Z, r is a positive integer and

r ⇤A = {ra | a 2 A}.

Finding bounds for sizes of sums of dilates of the form

r ⇤A+ s ⇤A = {ra+ sb | a, b 2 A}
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is a popular subject in Additive Number Theory. For example, it was shown in [3]
that |A+2 ⇤A| � 3|A|� 2 and |A+2 ⇤A| = 3|A|� 2 if and only if A is an arithmetic
progression. For more information, see M. Nathanson’s book [21].

In [10], our contribution to this area consisted of two new results. First, we proved
that if |A| � 3 and |A + 2 ⇤ A| < 4|A| � 4, then A is contained in an arithmetic
progression of size  2|A| � 3 (see Theorem 4.2). Our second result is that if r � 3,
then |A+ r ⇤A| � 4|A|� 4 (see Theorem 4.1).

We return now to the Baumslag-Solitar groups BS(1, n). Let S be a finite subset
of BS(1, n) of size k contained in the coset brhai of hai, where r is a positive integer.
Then

S = {brax0 , brax1 , . . . , braxk�1},

where A = {x0, x1, . . . , x
k�1} is a set of integers. We introduce now the notation

S = {brax : x 2 A} = braA.

Thus |S| = |A|. We proved the following equality: |S2| = |nr ⇤ A + A| (see
Theorem 4.3). This result served as the major means for investigating |S2| for
S 2 BS(1, n), using information about sizes of sums of dilates.

Here is a partial list of our results. Suppose, first, that S = baA is a subset of
BS(1, 2). Then:

1. |S2| � 3|S|� 2 (see Proposition 4.4).

2. |S2| = 3|S|�2 if and only if A is an arithmetic progression (see Proposition 4.4).

3. If |S2| < 4|S|�4, then A is a subset of an arithmetic progression of size 2|A|�3
(see Theorem 4.5).

Suppose, next, that S = bmaA is a subset of BS(1, 2) with m � 2. Then:

4. |S2| � 4|S|� 4 (see Theorem 4.6).

Finally suppose that S = baA is a subset of BS(1, r) with r � 3. Then:

5. |S2| � 4|S|� 4 (see Theorem 4.7).

The results of [10] are presented in the first part of Section 4.

Finally, in [11], we proved an extended inverse theorem concerning arbitrary finite
subsets of the monoid BS+(1, 2). This monoid is a subset of the Baumslag-Solitar
group BS(1, 2) and it is defined by:

BS+(1, 2) = { g = bmax 2 BS(1, 2) | x,m are integers, m � 0 }.

In particular, the set BS+(1, 2) is closed with respect to multiplication and all el-
ements can be uniquely represented by a word of the form bmax. This property is
basic for our arguments.

We proved the following result. Suppose that S is a finite non-abelian subset of
BS+(1, 2). Then:

6. If |S2| < 7
2 |S| � 4, then S = baA, where A is contained in an arithmetic pro-

gression of length less than 3
2 |A| (see Theorem 4.8)

This result is best possible. Its proof required rather complicated arguments. For
more details, see the second part of Section 4.
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Our second major topic deals with the size of products XY , where X and Y are
finite subsets of a group G. In the joint paper [14] with G. Kaplan, we investigated
the relation between the sizes |XY | and |Y X|, and in particular we concentrated on
the comparison of |XX�1| and |X�1X|. As far as we know, the problems and results
of our paper [14] had not been dealt with before.

Following the notation in [14], we call a finite subset X of a group G “good”
if |XX�1| = |X�1X| and “bad” otherwise. In Section 5 we present some results
concerning “good” and “bad” subsets of G. Then in Section 6 we describe our clas-
sification of all groups in which all finite subsets are “good”.

In more detail, if k is a positive integer, we say that a group G is a P-group
(P

k

-group) if each finite subset X of G (each subset X of G of size |X|  k) satisfies

|XX�1| = |X�1X|,

i.e., if each finite subset (finite subset of size  k) of G is “good”. We shall also write
G is in P (G is in P

k

) or G 2 P (G 2 P
k

). In [14], the P-groups were completely
classified. They are either abelian, or Hamiltonian 2-groups, or isomorphic to one of
seven fixed finite groups of order at most 20 (see Theorem 6.14).

In Section 7 we describe some results which were obtained in [14], concerning P
k

-
groups, where k is a positive integer. It is easy to see that every group is a P3-group,
but there exist groups that are not in P4 (see Proposition 5.3). In [14], P4-groups
were completely described. They are of one of the following three types: (i) groups
in which every involution is central, (ii) groups of the form A o hti, where t is an
involution and at = a�1 for any a 2 A, or (iii) some particular finite 2-groups of
exponent 4 (see Theorem 7.1).

We also showed that P6 ⇢ P5 ⇢ P4 (see the discussion in Section 7). We have
not been able to find a P-group which is not a P6-group. This raises the following
question:

Is every P6-group a P-group?

Finally, in Section 8 we use our classification of P-groups for the characterization
of the following two related families of groups: (i) groups in which XX�1 = X�1X
for any subset X (see Theorem 8.1), and (ii) groups satisfying |PQ| = |QP | for all
finite subsets P and Q (see Theorem 8.6).

The authors of this survey are grateful to the referee for his constructive remarks.

2 Products of subsets in ordered groups

We say that (G,) is an ordered group if G is a group and  is a total order relation
defined on the set G, satisfying the following condition:

for all a, b, x, y 2 G, a  b implies that xay  xby.

A group G is called orderable if there exists a total order relation  on the set G,
such that (G,) is an ordered group.

It is easy to prove that an orderable group is torsion free. The converse of this
statement is also true.
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Theorem 2.1 (see [15], [18], [20] and [22]) A nilpotent group is orderable if and
only if it is torsion-free.

More information about ordered groups may be found, for example, in [1] and
in [12].

First we state some basic facts concerning |S2|. For G = Z, the result of next
Proposition is part of the folklore of the additive number theory. The proof for
ordered groups is, as a matter of fact, almost identical.

Proposition 2.2 ([8, Theorem 1.1]) Let (G,) be an ordered group and let S =
{x1, x2, . . . , xk} be a finite subset of G of size k, with x1 < x2 < · · · < x

k

. Then the
following statements hold:

1. |S2| � 2k � 1.

2. If |S2| = 2k � 1, then S is an abelian geometric progression.

Our next proposition is basic for our arguments and it is also of independent
interest.

Proposition 2.3 ([8, Proposition 2.3]) Let (G,) be an ordered group and let S
be a finite subset of G of size k. If y 2 G \ C

G

(S), then

|yS [ Sy| � k + 1.

In particular, there exist x
i

, x
j

2 S such that yx
i

/2 Sy and x
j

y /2 yS.

This result implies the following corollary concerning normalizers of finite subsets
in ordered groups.

Corollary 2.4 ([8, Corollary 2.4]) Let G be an ordered group and let S be a finite
subset of G. Then N

G

(S) = C
G

(S).

Recall that a finite subset X of G is said to satisfy the small doubling property if
|X2|  ↵|S|+ �, where ↵ and � denote real numbers, ↵ and |�| small and ↵ � 1.

In [8], a joint paper with G.A. Freiman, we studied subsets of ordered groups G
satisfying the small doubling property for ↵ = 3 and for small |�|. Our first aim
was to extend Freiman’s Theorem 1.2 dealing with subsets of Z to subsets of ordered
groups. Indeed, we proved the following theorem:

Theorem 2.5 ([8, Corollary 3.4]) Let (G,) be an ordered group and let S =
{x1, x2, . . . , x

k

} be a finite subset of G of size k � 3, with x1 < x2 < · · · < x
k

.
Assume that t = |S2|  3k � 4 .

Then S is abelian and there exists g 2 G, g > 1, such that gx1 = x1g and S is a
subset of {x1, x1g, x1g2, . . . , x1gt�k}.

Since, by Theorem 2.5, subsets S of ordered groups satisfying |S2|  3|S| � 4 are
abelian, we considered the ensuing question: what is the maximal upper bound on
|S2| which guarantees that S is abelian? It turned out that 3|S|� 3 is such a bound.
We proved the following theorem:



Herzog, Longobardi, Maj: Products of subsets in groups 293

Theorem 2.6 ([8, Theorem 3.2]) Let (G,) be an ordered group and let S be a
finite subset of G of size k � 2. Suppose that |S2|  3k � 3. Then S is abelian.

This result is best possible. In fact, there exist ordered groups G and finite non-
abelian subsets S of G such that |S| = k � 2 and |S2| = 3k � 2.

Example 2.7 ([8, in the proof of Theorem 3.2]) Let G = A o hbi be a semidi-
rect product of an abelian subgroup A, isomorphic to the additive rational group
(Q,+), by an infinite cyclic group hbi, such that ab = a2 for each a 2 A. Then
G is torsion-free and it is orderable (see [1] and [16]). Take a 2 A \ {1} and let
S = {b, ba, ba2, . . . , bak�1}. Since ab = ba2, it is easy to see that

S2 = {b2, b2a, b2a2, b2a3, . . . , b2a3k�3}.

Thus S is non-abelian and |S2| = 3k � 2, as required.

3 Small doubling in torsion-free nilpotent groups of class 2

Let G be a torsion-free nilpotent group of class 2. Then G is orderable and the results
of the previous section apply. In particular, it follows from Theorems 2.5 and 2.6 that
if S = {x1, x2, . . . , x

k

} is a finite subset of G of size k � 2 with x1 < x2 < · · · < x
k

and |S2|  3k � 3, then S is abelian, and if t = |S2|  3k � 4, then S is a subset of
the geometric progression

{x1, x1g, x1g2, · · · , x1gt�k}

for some g 2 G, with g > 1 and gx1 = x1g.

In [9], a joint paper with G.A. Freiman and Y.V. Stanchescu which is under prepa-
ration, we considered the following question: what is the structure of a finite subset
S of G of size k, if S is non-abelian and either |S2| = 3k � 2 or |S2| = 3k � 1?

If |S2| = 3k�2 and k > 2, then the following two results supply a complete answer.
First we consider the general case: k � 4.

Theorem 3.1 Let G be a torsion-free nilpotent group of class 2 and let S be a non-
abelian subset of G of size k � 4. Then |S2| = 3k � 2 if and only if

S = {a, ac, . . . , aci, b, bc, bc2, . . . , bcj},

with 1 + i+ 1 + j = k and ab = bac, c > 1.

The remaining case: k = 3 is dealt with in the following proposition:

Proposition 3.2 Let G be a torsion-free nilpotent group of class 2 and let S be a
non-abelian subset of G of size k = 3. Then |S2| = 3k � 2 = 7 if and only if one of
the following holds:

(i) S \ Z(hSi) 6= ;;
(ii) S = {a, ac, b}, with c > 1 and either ab = bac or ba = abc; in particular,

c 2 Z(G).
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If |S2| = 3k�1 and k > 3, then again we state separately the results for k � 5 and
for k = 4.

Theorem 3.3 Let G be a torsion-free nilpotent group of class 2 and let S be a non-
abelian subset of G of size k � 5. Then |S2| = 3k�1 if and only if one of the following
holds:

(i) S = {a, ac, . . . , aci�1, b, bc, . . . , bcj�1}, with ab = bac2, c > 1;

(ii) S = {a, ac2, b, bc, . . . , bcj}, j � 2, with either ab = bac or ba = abc, c > 1.

In the case when k = 4, the situation is more complicated and more cases arise. In
fact, we have:

Theorem 3.4 Let G be a torsion-free nilpotent group of class 2 and let S be a non-
abelian subset of G of size k = 4. Then |S2| = 3k � 1 = 11 if and only if one of the
following holds:

(i) There exist s, t 2 S \ Z(hSi), s 6= t;

(ii) S = {a, ac, b, bc, }, with ab = bac2, c > 1;

(iii) S = {a, ac2, b, bc}, with ba = bac or ab = bac, c > 1;

(iv) S = {a, ac, ac2, b}, with either ba = bac2 or ab = ba2c, c > 1;

(v) S = {a, ac, b, x}, with either ba = bac or ab = bac, c > 1, ax = xa and bx = xb;

(vi) S = {a, ac, ac2, x}, with ac = ca and there exists exactly one i 2 {0, 1, 2} such
that acix = xaci;

(vii) S = {a, ac, b, x}, with either ab = bac, xa = axc, c > 1 or ba = abc, ax =
xac, c > 1, and x = b�1a2 = a2b�1c2.

The following Lemma was very useful in our proofs.

Lemma 3.5 Let G be a torsion-free nilpotent group of class 2 and let S = {x1, . . . , x
k

}
be a subset of G satisfying x1 < x2 < · · · < x

k

and x
k

x
k�1 6= x

k�1xk. Let T =
{x1, . . . , x

k�1}. Then: |S2| � |T 2| + 4. In particular, if T is non-abelian, then
|S2| � 3k � 1.

We end this section with a consequence of Lemma 3.5, concerning completely non-
abelian subsets of G.

We say that a subset S of a group G is completely non-abelian (S 2 CNA) if
ab 6= ba for all a, b 2 S, a 6= b.

Proposition 3.6 Let S be a CNA-subset of a torsion-free nilpotent group of class 2
of size |S| = k. Then |S2| � 4k � 4.

This result raises the following question:

Is Proposition 3.6 true for all ordered groups?
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4 Inverse problems in Baumslag-Solitar groups

We noticed in [10], a joint paper with G.A. Freiman and Y.V. Stanchescu, that
there exists an important connection between results on sums of dilates in Additive
Number Theory and some small doubling problems in the Baumslag-Solitar groups.
So we begin this section with a short introduction into the theory of sums of dilates,
including two new results which we proved in [10].

Let A be a finite set of integers and let r be positive integers. Define r ⇤A = {ra |
a 2 A}. Such sets are called dilates and sums of dilates of the form

r ⇤A+ s ⇤A = {ra+ sb | a, b 2 A}

have been studied recently by several authors. For example, it was shown in [3] that

|A+ 2 ⇤A| � 3|A|� 2

and |A+ 2 ⇤A| = 3|A|� 2 if and only if A is an arithmetic progression.
In [10], we proved the following two new results in this area:

Theorem 4.1 ([10, Theorem 6]) Let A be a finite set of integers and let r be an
integer satistying r � 3. The the following inequality holds:

|A+ r ⇤A| � 4|A|� 4.

Theorem 4.2 ([10, Theorem 4]) Let A be a finite set of integers of size |A| � 3
and suppose that |A+2⇤A| < 4|A|�4. Then A is a subset of an arithmetic progression
of size  2|A|� 3.

We continue with the definition of Baumslag-Solitar groups BS(m.n). These are
two-generated groups with one relation which are defined as follows:

BS(m,n) = h a, b | amb = ban i,

where m and n are integers. We shall concentrate our attention to the groups

BS(1, n) = h a, b | ab = ban i.

We shall describe now the connection between small doubling problems in the
Baumslag-Solitar groups BS(1, n) and sums of dilates.

Let S be a finite subset of BS(1, n) of size k1 contained in the coset brhai for some
positive integer r and let T be a finite subset of BS(1, n) of size k2 contained in the
coset bshai for some positive integer s. Then

S = {brax0 , brax1 , . . . , braxk1�1},

where A = {x0, x1, . . . , x
k1�1} is a set of integers. We introduce now the notation

S = {brax : x 2 A} = braA.

Thus |S| = |A|.
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Similarly, T = bsaB for some set of integers B = {y0, y1, . . . , y
k2�1}. Since ab = ban,

it follows that a�1b = ba�n and

axbt = btan
t
x for each x 2 Z and t 2 N. (4.1)

In particular, axb = banx for each x 2 Z. Equation (4.1) implies that

(brax)(bsay) = br(axbs)ay = br(bsan
s
x)ay = br+san

s
x+y

for each x, y 2 Z and for each r, s 2 N. Therefore the product set ST = {vw | v 2
S, w 2 T} can be written as

ST = {(braxi)(bsayj ) | i 2 {0, 1, . . . , k1 � 1}, j 2 {0, 1, . . . , k2 � 1}} (4.2)

= {br+san
s
xi+yj | i 2 {0, 1, . . . , k � 1}}, j 2 {0, 1, . . . , k2 � 1}}

= br+san
s⇤A+B

and |ST | = |ns ⇤A+B|.
We proved the following basic theorem.

Theorem 4.3 ([10, Theorem 1]) Suppose that S = braA ✓ BS(1, n), T = bsaB ✓
BS(1, n) where r, s 2 N and A,B are finite subsets of Z. Then

ST = br+san
s⇤A+B and |ST | = |ns ⇤A+B|.

In particular,

S2 = b2ran
r⇤A+A and |S2| = |nr ⇤A+A|.

This result served us as the major means for investigating |ST |, and in particular
|S2|, using known information about sizes of sums of dilates. For example, Theo-
rem 4.3 and the above mentioned results concerning |A + 2 ⇤ A| yield the following
proposition:

Proposition 4.4 ([10, Theorem 2(a)]) Let A be a finite set of integers and let
S = baA ✓ BS(1, 2). Then

|S2| = |A+ 2 ⇤A| � 3|S|� 2.

Moreover, |S2| = 3|S|� 2 if and only if A is an arithmetic progression.

Moreover, Theorem 4.3 and Theorems 4.1 and 4.2 yield the following additional
results:

Theorem 4.5 ([10, Theorem 4]) Let A be a finite set of integers of size k and let
S = baA ✓ BS(1, 2). Suppose that |S2| < 4k�4. Then A is a subset of an arithmetic
progression of size  2k � 3.

Proof By Theorem 4.3, |S2| = |A + 2 ⇤ A| < 4k � 4 and Theorem 4.2 implies that
A is a subset of an arithmetic progression of size  2k � 3. ⇤
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Theorem 4.6 ([10, Theorem 6]) Let A be a finite set of integers of size k and let
S = bmaA ✓ BS(1, 2), where m � 2. Then |S2| � 4k � 4.

Proof By Theorem 4.3 |S2| = |A + 2m ⇤ A|. Since m � 2, 2m � 4 > 3 and
Theorem 4.1 implies that |S2| � 4k � 4. ⇤

Theorem 4.7 ([10, Corollary 1]) Let A be a finite set of integers of size k and let
S = baA ✓ BS(1, r) for r � 3. Then |S2| � 4k � 4.

Proof By Theorem 4.3 |S2| = |A+r⇤A| and Theorem 4.1 implies that |S2| � 4k�4.
⇤

Until now, we have obtained inverse results concerning subsets of BS(1, 2) which
were contained in one coset of hai. In [11], a joint paper with G A. Freiman and Y.V.
Stanchescu under preparation, we dealt with an inverse problem concerning arbitrary
non-abelian finite sets S contained in the following subset of BS(1, 2):

BS+(1, 2) = {g = bmax 2 BS(1, 2) | x,m are integers, m � 0}.

This subset of BS(1, 2) is closed with respect to multiplication, so it constitutes a
monoid.

We assumed that a finite subset S of BS+(1, 2) satisfies the following small dou-
bling condition: |S2| < 7

2k � 4. Using rather complicated arguments, we proved the
following theorem.

Theorem 4.8 Let S be a finite non-abelian subset of BS+(1, 2) of size k and suppose
that |S2| < 7

2k � 4. Then S = baA, where A is a set of integers of size k which is
contained in an arithmetic progression of size less than 3

2k.

The result is best possible. In fact, there exist non-abelian subsets S of BS+(1, 2)
satisfying |S2| = 7

2k � 4, which are not contained in one coset of the cyclic subgroup
hai of BS+(1, 2).

Example 4.9 Theorem 4.8 is optimal in view of the following example:

S = aA0 [ {b} ⇢ BS+(1, 2),

where A0 = {0, 1, 2, . . . , k � 2} and k > 2 is even. The set S is clearly non-abelian
and not contained in one coset of hai. Moreover,

S2 = aA0aA0 [ baA0 [ aA0b [ {b2}.

Using aA0b = ba2⇤A0 , we get

S2 = aA0+A0 [ (baA0 [ ba2⇤A0) [ {b2} = aA0+A0 [ baA0[2⇤A0 [ {b2}.

Since aA0+A0 ✓ aZ, baA0[2⇤A0 ✓ baZ, {b2} ✓ b2aZ, the three components of S2 are
disjoint in pairs and hence

|S2| = |A0 +A0|+ |A0 [ 2 ⇤A0|+ 1 = (2k � 3) + (32k � 2) + 1 = 7
2k � 4.
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Remark 4.10 We noticed that the Baumslag-Solitar groups BS(1, n) are metabel-
ian. They are semidirect products of the normal closure of hai, which is isomorphic
to the n-adic rational group, by hbi, which acts by raising to n-th power (see, for
example, the Encyclopedia of Mathematics, under “Baumslag-Solitar group”). Since
the n-adic rational group is torsion-free and abelian, it is orderable, and using a
theorem of Kargapolov in [16] (see also [8], Theorem K), it follows that this order can
be extended to an order in BS(1, n). Hence the groups BS(1, n) are orderable.

5 Subsets X satisfying |XX�1| = |X�1X|

Let G be a group and let X, Y denote finite subsets of G. In this paragraph we
describe our results in [14], a joint paper with G. Kaplan, considering the relationship
between the orders |XY | and |Y X|. In particular, we are interested in comparison of
|XX�1| and |X�1X|.

Let G be a group and let X be a finite subset of G.

Question 5.1 Is |XX�1| = |X�1X|?

The answer is clearly “yes” if X is a coset gH of a finite subgroup H of G. In fact,
in this case X�1 = Hg�1, XX�1 = gHg�1 and X�1X = H. Thus |XX�1| = |H| =
|X�1X|.

If X is a union of two cosets of H , say, X = H [ gH for some g 2 G \H, then the
equality is not always true. In fact, we have:

Example 5.2 ([14, in the proof of Proposition 2.4])

Consider the semi-dihedral group of order 16:

G = ha, b | a8 = b2 = 1, ab = a3i

and let X = hbi [ a�1hbi = {1, b, a�1, a�1b}. Then X�1 = {1, b, a, b�1a},

X�1X = {1, b, a, a3, a5, a7, a3b, ab, a5b, a7b}

and
XX�1 = {1, b, a, a7, a3b, a2b, a7b}.

Thus X�1X is of size 10, while XX�1 is of size 7.

In this section we present some basic results concerning XX�1 and X�1X. We
call a finite subset X of a group G “good” if |XX�1| = |X�1X| and “bad” otherwise.
We have:

Proposition 5.3 ([14, Proposition 2.4]) Let X be a finite subset of a group G
and suppose that one of the following holds:

1. |X|  3;

2. G is finite and |X| > |G|/2.
Then X is “good”.

Moreover, if |X| = 4, then X may be “bad”.
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We also proved:

Theorem 5.4 ([14, Theorem 2.1(3)]) If G is a finite group of order n and X is
a subset of G satisfying |X| > n/k for some integer k � 2, then

|XX�1| � n

k � 1
and |X�1X| � n

k � 1
.

Furthermore, we mention the following two results of T. Tao.

Theorem 5.5 ([25]) Let X be a finite subset of a group G. Then |X2| < 2|X|
implies XX�1 = X�1X.

Theorem 5.6 ([24]) Let X be a finite subset of a group G and suppose that
|XX�1| < 3

2 |X|. Then XX�1 and X�1X are conjugate subgroups of G.

6 Groups with all finite subsets X satisfying |XX�1| = |X�1X|

In this section we continue to present results from [14].
In the previous section we have seen that a finite subset of a group G can be “bad”.

So another question arises:

Question 6.1 Which groups G satisfy |XX�1| = |X�1X| for all finite subsets X
of G?

We recall our definition of P-groups.

Definition 6.2 Let k denote a positive integer. A group G is called a P-group (P
k

-
group) if each finite subset X of G (each subset X of G of size |X|  k) satisfies

|XX�1| = |X�1X|.

We shall also write G is in P (G is in P
k

) or G 2 P (G 2 P
k

).

Remark 6.3 If G is an abelian group, then obviously XX�1 = X�1X for each
subset X of G. Therefore, in particular, all abelian groups are P-groups.

Other examples of P-groups are the Dedekind 2-groups. They also satisfy the
stronger condition: XX�1 = X�1X for each subset X.

Proposition 6.4 ([14, Proposition 6.1]) Let G be a Dedekind 2-group. Then
XX�1 = X�1X for each subset X of G.

Therefore, in particular, all Dedekind 2-groups are P-groups.

Notice that a Dedekind group need not be a P-group. For instance, C3 ⇥Q8 /2 P.
Furthermore, there are non-abelian P-groups which are not 2-groups. In fact we have:

Example 6.5 ([14, Proposition 5.3]) Let G = hai o hci, where |a| 2 {3, 5}, |c| 2
{2, 4} and ac = a�1. Then G is a P-group.

There are also non-Dedekind 2-groups which are P-groups.
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Example 6.6 ([14, Lemma 6.5]) The following 2-groups are P-groups: the di-
hedral group D8, the quaternion group Q16 and the group G = hai o hbi, where
|a| = |b| = 4 and ab = a�1.

Moreover, the following 2-group is not a P-group.

Example 6.7 Let G = (hai ⇥ hsi) o hbi, where |a| = 4, |s| = |b| = 2, ab = a�1 and
sb = a2s. Then G is not a P-group.

If G is a P-group (P
k

-group) and H is a subgroup of G, then also H is a P-group
(P

k

-group). Thus the classes P and P
k

are closed with respect to the subgroup oper-
ation, but they are not closed with respect to the quotient operation. Nevertheless,
we were able to prove the following result.

Proposition 6.8 ([14, Corollary 3.2]) Let G be a P-group, H a subgroup of G
and suppose that hhi is normal in G for each h 2 H. Then G/H is a P-group.

Our main result in [14] was the classification of the P-groups. We dealt sepa-
rately with the following three complementary cases: finite groups, infinite periodic
groups and non-periodic groups. Our classification consists of three theorems, each
corresponding to one of these cases.

Theorem 6.9 ([14, Theorem 7.15]) Let G be a finite group. Then G is a P-group
if and only if one of the following holds:

(i) G is abelian;

(ii) G is a finite Hamiltonian 2-group;

(iii) G is isomorphic to one of the following seven groups:

D6, D8, D10, Q16, ha3io hbi, ha4io hbi, ha5io hbi,

where |a3| = 3, |a4| = 4, |a5| = 5, |b| = 4 and ab
i

= a�1
i

for i = 3, 4, 5.

In the infinite case, we start with the study of periodic P-groups. First we have:

Proposition 6.10 ([14, Proposition 8.1]) Let G be a periodic P-group. Then G
is locally-finite.

Now it is not di�cult to obtain the following complete classification of infinite
periodic P-groups.

Theorem 6.11 ([14, Theorem 8.2]) Let G be an infinite periodic group. Then G
is a P-group if and only if G is either an abelian group or a Hamiltonian 2-group.

In order to study the non-periodic P-groups, we first consider torsion-free groups.
In this case, we proved the following results.

Proposition 6.12 ([14, Proposition 9.3]) Let G be a torsion-free P-group. Then
[hbi : hbi \ hbia] is finite for any a, b 2 G.
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Groups G satisfying the property that [hbi : hbi \ hbia] is finite for any a, b 2
G had been called C2-groups and have been studied by Lennox, Longobardi, Maj,
Smith, Wiegold in [17]. They proved that if a C2-group G is torsion-free and finitely
generated, then G/Z(G) is periodic. Using this result, we are able to prove the
following classification of non-periodic P-groups.

Theorem 6.13 ([14, Theorem 9.1]) Let G be a non-periodic group. Then G is a
P-group if and only if G is abelian.

To summarize, we have established the following complete classification of P-
groups.

Theorem 6.14 ([14, Theorems 7.15, 8.2 and 9.1]) The group G is a P-group if
and only if one of the following statements holds:

1. G is abelian;

2. G is a Hamiltonian 2-group;

3. G is one of the following seven fixed non-abelian finite groups of orders 6, 8,
10, 12, 16, 16 and 20:

D6, D8, D10, ha3io hbi, Q16, ha4io hbi, ha5io hbi,

where |a3| = 3, |a4| = 4, |a5| = 5, |b| = 4 and ab
i

= a�1
i

for i = 3, 4, 5.

7 Pk-groups

Obviously P1 is the class of all groups. Moreover, by Proposition 5.3, P2 = P3 are
again classes of all groups and there exist groups that are not P4-groups. Therefore
the following problem arises:

Determine the class of P4-groups.

In [14], a joint paper with G. Kaplan, we characterized these groups. In fact, we
proved the following theorem:

Theorem 7.1 ([14, Theorem 10.4]) A group G is a P4-group if and only if one
of the following holds:

(i) every involution is central in G;

(ii) G = Ao hti, with A abelian, t2 = 1 and at = a�1 for each a 2 A;

(iii) G is a 2-group of exponent 4 and G = E ⇥ H, where E is elementary abelian
and either H = V , an extraspecial group, or H is the central product of a cyclic
group hsi of order 4 and an extraspecial group V , with hs2i and V 2 amalgamated.

In our proof we use the following result.

Theorem 7.2 ([14, Theorem 10.2]) Let G be a group and let X be a subset of G
such that 1 2 X and |X| = 4. Then |XX�1| 6= |X�1X| if and only if X = {1, y, t, z},
where |y| > 2, t is an involution, z 2 {yt, ty} and yt /2 {y, y�1}.
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This theorem gives rise to another characterization of P4-groups.

Theorem 7.3 ([14, Theorem 10.3]) Let G be a group. Then G 2 P4 if and only
if for any y, t 2 G with |y| > 2 and t an involution, we have yt 2 {y, y�1}.

Next we notice that P5 ⇢ P4. In fact we have:

Proposition 7.4 ([14, Proposition 4.10]) Let G = Ahbi, where A  G, b 2 G,
A is not an elementary abelian 2-group, ab = a�1 for each a 2 A and b2 /2 A if |b| = 4.
If L is any group which is not an elementary abelian 2-group, then G⇥ L /2 P5.

Thus, if every involution in G is central and L is of odd order, then G⇥L 2 P4 by
Theorem 7.1, but G⇥ L /2 P5 by Proposition 7.4.

So we may ask:

Question 7.5 Which groups belong to P5?

Moreover, by definition

P ✓ · · · ✓ P
m+1 ✓ P

m

✓ · · · ✓ P3 ✓ P2 ✓ P1.

So we may also ask:

Question 7.6 Is P = P
m

for some integer m? In other words, does there exist an
integer m such that every finite group G satisfying G 2 P

m

, satisfies also G 2 P?

Notice that P5 ⇢ P4 ⇢ P3 = P2 = P1 = class of all groups.
We also have P6 ⇢ P5. In fact we have:

Proposition 7.7 ([14, Proposition 11.1]) Let G = Ao hbi, where A  G, |b| = 2
and ab = a�1 for each a 2 A. Then G 2 P5.

On the other hand, if G = haio hbi, where a, b 2 G, |a| > 5, |b| = 2 and ab = a�1,
then G /2 P6. Indeed, if S = {1, a, a3} and X = S [ Sb, one can easily verify that
|XX�1|  13, while |X�1X| = 15.

Therefore, if P = P
m

for some integer m, then m > 6.

Some of our results led us to the following conjecture:

G is a P-group if and only if G is a P6-group.

Our conjecture is also supported by the following new result.

Theorem 7.8 Let G be a periodic group. If G is a P6-group, then every element
of G of odd order generates a normal subgroup of G.

Indeed, let G 2 P6 be a periodic group without elements of even order. Then,
by Theorem 7.8, every element of G generates a normal subgroup of G. Thus G is
a Dedekind group without elements of order 2, hence abelian. In particular, G is a
P-group. We state this fact as a corollary.
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Corollary 7.9 Let G 2 P6 be a periodic group without elements of even order. Then
G is a P-group.

We conclude this section with a proof of Theorem 7.8.

Proof Suppose that G 2 P6. We need to show that hbi is normal in G for any
element b 2 G of odd order. We clearly may assume that G is not a 2-group.

First suppose that |b| = 3 and let H = hbi and X = H [ a�1H . As |X| = 6 and
G 2 P6, it follows that |XX�1| = |X�1X| and by Theorem 2.1 of [14], |H | is even,
a contradiction.

So suppose that |b| > 3. Since G is a P4-group and it is not a 2-group, it follows
by Theorem 7.1 that either G = Ahti, with A abelian, t an involution and ct = c�1

for any c 2 A, or every involution is central in G. In the first case obviously hbi is
normal in G. So we may assume that every involution is central in G.

Suppose that there exists a 2 G \ N
G

(hbi). Write S = {1, b, b2} and X = S [ aS.
As |X| = 6 and G 2 P6, it follows that |XX�1| = |X�1X|. Now SS�1 = S�1S =
{1, b, b�1, b2, b�2} and |SS�1| = 5. Furthermore, since a /2 hbi, we have:

XX�1 = (SS�1 [ aSS�1a�1) [̇ (aSS�1 [ SS�1a�1)

and
X�1X = S�1S [̇ (S�1aS [ S�1a�1S).

Therefore |XX�1|  9 + 5 + 5 = 19.
Next we show that |X�1X| = 23, a contradiction.
Our first claim is that S�1aS \ S�1a�1S = ;. Assume, to the contrary, that

there exist integers i, j, h, k such that (i, j) 6= (h, k) and b�iabj = b�ha�1bk. Then
abh�ia = bk�j and since also a�1 2 G \ N

G

(hbi), we may assume that i 6= h. Since
(bh�ia)2 = bk�j+h�i, b is of odd order and the element bh�ia is non-trivial as a /2 hbi,
it follows that bh�ia has order 2d, where d is an odd integer. Thus (bh�ia)d is
an involution and hence (bh�ia)d 2 Z(G). As (bh�ia)2 2 C

G

(hbi), it follows that
[bh�ia, b] = 1, so [a, b] = 1 and a 2 N

G

(hbi), a contradiction. This proves our claim.
Next we claim that |S�1aS| = 9. Assume, to the contrary, that there exist

i, j, h, k 2 {0, 1, 2}, such that (i, j) 6= (h, k) and b�iabj = b�habk. Then a�1bh�ia =
bk�j and arguing as in the previous paragraph, we may assume that h > i. Thus
0 < h � i  2 and b being of odd order implies that hbi = hb2i. Consequently
a�1hbia ✓ hbi and a�1hbia = hbi since hbi is finite. So a 2 N

G

(hbi), a contradiction.
This proves our second claim.

Hence |S�1aS| = |S�1a�1S| = 9 and |X�1X| = 5 + 9 + 9 = 23, as claimed.
It follows from this contradiction that a 2 G \ N

G

(hbi) does not exist and hence
hbi is normal in G, as required. ⇤

8 Two applications

Using Proposition 6.4 and Theorem 6.14, we can prove two interesting theorems.
First of all, we have the following new result.
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Theorem 8.1 The class of groups G satisfying

XX�1 = X�1X (8.1)

for all finite subsets X of G coincides with the class of groups G satisfying (8.1) for all
(finite or infinite) subsets X of G and consists of two families of groups: the abelian
groups and the Hamiltonian 2-groups.

Proof It is clear that groups G satisfying (8.1) either for all finite subsets X of
G or for all subsets X of G, are P-groups. Now, the class of P-groups consists, by
Theorem 6.14, of the abelian groups, the Hamiltonian 2-groups and of the seven non-
abelian groups: D6, D8, D10, Q16, ha3io hbi, ha4io hbi, ha5io hbi, |a

i

| = i, |b| = 4,
ab
i

= a�1
i

. Moreover, by Proposition 6.4, the abelian groups and the Hamiltonian
2-groups G satisfy (8.1) for all subsets X of G and in particular for all finite subsets
X of G.

Thus it follows that the two classes coincide and consist of the abelian groups and
the Hamiltonian 2-groups, provided that each of the seven groups mentioned above
does not satisfy (8.1) for all finite subsets X.

Now, each of these seven groups contains two non-commuting elements a, b such
that a2 6= b2. Consider X = {a, b}. Then: XX�1 = {1, ab�1, ba�1} and X�1X =
{1, a�1b, b�1a}. But, ab�1 6= 1 and ab�1 6= b�1a since a, b are non-commuting. More-
over, also ab�1 6= a�1b since a2 6= b2. Hence ab�1 /2 X�1X and XX�1 6= X�1X, as
required. The proof of Theorem 8.1 is complete. ⇤

The second application of our classification of P-groups was proved in [14]. It
concerns the following class of groups.

Definition 8.2 A group G is called a Q-group if |AB| = |BA| for all finite subsets
A and B of G.

Example 8.3 Abelian groups are Q-groups.

Remark 8.4 Q8 /2 Q. For, if A = {1, i,�i, j} and B = {i, j, k}, then AB = Q8 \
{�i}, while BA = Q8.

Using Theorem 6.14 we are able to prove the following result.

Proposition 8.5 ([14, Proposition 12.2]) Let G be a finite Q-group. Then G is
abelian.

The following general theorem follows rather easily from Proposition 8.5.

Theorem 8.6 ([14, Theorem 12.1]) If G is a Q-group, then G is abelian.
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1 Introduction

Our aim is to explore some connections between word problems of groups and formal
language theory. One question is whether any finitely presented group has a recursive
word problem, i.e., if there is an algorithm to decide if a given word in the generators of
such a group represents the identity; this was shown not to be the case by Novikov and
Boone independently [37, 6]. A finitely presented group has a recursively enumerable
word problem however, i.e., there is a process listing the words representing the
identity; the process will not terminate (there are infinitely many such words) but
any word representing the identity will eventually appear.

We are interested in relating the complexity of the word problem (as a formal
language) to the algebraic structure of the group. With regards to the classes of
languages we have just mentioned, there is the beautiful Higman embedding theo-
rem [16] which says that a finitely generated group has a recursively enumerable word
problem if and only if it can be embedded in a finitely presented group. For recursive
languages it was shown by Boone and Higman [7] that a finitely generated group has
a recursive word problem if and only if it can be embedded in a simple group which
can, in turn, be embedded in a finitely presented group. This was strengthened by
Thompson [44] who showed that a finitely generated group has a recursive word prob-
lem if and only if it can be embedded in a finitely generated simple group which can,
in turn, be embedded in a finitely presented group. There is a natural (and seemingly
di�cult) question (attributed to Higman) which asks if we can strengthen this further
by proving that every finitely generated group with a recursive word problem can be
embedded in a finitely presented simple group.

We will survey some work concerning groups whose word problem is a simpler type
of language. We will concentrate on the class of context-free languages, some sub-
classes of the context-free languages and some other related classes (such as intersec-
tions and complements of context-free languages); there are many other interesting
classes of languages we have not discussed such as the the class of real-time lan-
guages (see [18, 20, 23] for example) the class of growing context-sensitive languages
(see [22, 29]) and the class of context-sensitive languages (see [31, 41]).

To make the paper reasonably self-contained (from a group theorist’s perspective)
we summarize the concepts from formal language theory we need; we introduce the
basic definitions in Section 2 and then discuss some operations on languages and the
closure properties of classes of languages in Sections 3 and 4 respectively. In Section 5
we discuss some general issues concerning the connections between formal languages
and word problems of groups and then turn in Section 6 to some characterizations of
groups whose word problem lies in some specified class of languages. We finish the
paper with a discussion of some decidability issues in Section 7.
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2 Formal language theory

In this section we will survey some of the concepts, notation and results we need from
formal language theory; for further information see [4, 24, 26].

If ⌃ is a finite set (or alphabet), let ⌃⇤ denote the set of all words, i.e., finite strings
of symbols from ⌃, including the empty word ✏, and ⌃+ the set of all non-empty finite
strings of symbols from ⌃. A subset of ⌃⇤ is called a language (or, if we want to stress
the set ⌃, a language over ⌃). If ↵ is a word a1a2 . . . a

n

in ⌃⇤ with n > 1 (where
a
i

2 ⌃ for each i) we denote the length n of ↵ by |↵| and the number of occurrences
of the symbol x in ↵ (where x 2 ⌃) by |↵|

x

(we define |✏| and |✏|
x

to be 0 for any
x 2 ⌃). A factor of ↵ = a1a2 . . . a

n

is a sequence a
i

a
i+1 . . . aj�1aj of consecutive

characters from ↵ for some 1 6 i 6 j 6 n (the only factor of ✏ is ✏).
We introduce the first of our notions of some sort of abstract “machine”:

Definition 2.1 A (nondeterministic) finite automaton (or NFA) M is a quintuple
(Q,⌃, ⌧, s, A), where Q and ⌃ are non-empty finite sets, ⌧ is a subset of Q⇥ ⌃⇥Q,
s is a designated element of Q and A is a subset of Q.

Here Q is the set of states of M , ⌃ is the set of inputs, ⌧ is the transition relation,
s is the start state and A is the set of accept states. Some definitions also allow the
possibility of empty moves as well, i.e., moves of the form (q, ✏, r) where q, r 2 Q.

Given an NFA (Q,⌃, ⌧, s, A), we may extend ⌧ to a subset of Q ⇥ ⌃⇤ ⇥ Q by
composition. We first define (q, ✏, r) to be in ⌧ if q = r; if we have allowed empty
moves, we can also have (q, ✏, r) 2 ⌧ for some q, r 2 Q with q 6= r. We then inductively
define (q, a�, r) to be in ⌧ (where a 2 ⌃, � 2 ⌃⇤) whenever (q, a, p) 2 ⌧ and (p,�, r) 2
⌧ for some p 2 Q. Given this, we make the following definition:

Definition 2.2 An NFA M = (Q,⌃, ⌧, s, A) accepts a word ↵ 2 ⌃⇤ if (s,↵, f) 2 ⌧ for
some f 2 A, and L(M) (the language accepted by M) is the set of all words accepted
by M . A word in ⌃⇤ that is not accepted by M is rejected by M .

A language L ✓ ⌃⇤ is called regular if L = L(M) for some NFA M and Reg denotes
the class of all regular languages. A finite automaton is said to be a deterministic
finite automaton (DFA) if ⌧ is a function from Q ⇥ ⌃ to Q (some definitions allow
⌧ to be a partial function); note that a DFA is an example of an NFA. It is a standard
result that, for every NFA, there is a DFA accepting the same language.

We extend our automaton by adding a stack, i.e., a memory device where we may
store a sequence of elements but where we may only access the topmost element. Each
move may read an input (we allow empty moves), “pops” o↵ the topmost element
and “pushes” a (possibly empty) sequence of elements onto the stack:

Definition 2.3 A (nondeterministic) pushdown automaton (or NPDA)M is a sextu-
ple (Q,⌃,�, ⌧, s, A), where Q, ⌃ and � are non-empty finite sets with ? a designated
element of �, ⌧ a finite subset of Q⇥ (⌃ [ {✏})⇥ �⇥Q⇥ �⇤, s a designated element
of Q and A a subset of Q. If �1 = �� {?}, we insist that:

(q, a,?, r, �) 2 ⌧ =) � 2 �⇤
1{?};

(q, a, g, r, �) 2 ⌧, g 2 �1 =) � 2 �⇤
1.
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Here Q is the set of states, ⌃ the set of inputs, � the set of stack symbols, s the start
state, A the set of accept states and ⌧ the transition relation. A configuration of
M is an element of Q ⇥ ⌃⇤ ⇥ �⇤

1{?}; this records the current state of M , the input
remaining to be read and the contents of the stack (from top to bottom). We write
(q, a�, g�) |= (r, �, ✓�) if a 2 ⌃ and (q, a, g, r, ✓) 2 ⌧ , and (q,�, g�) |= (r, �, ✓�) if
(q, ✏, g, r, ✓) 2 ⌧ . If |=⇤ denotes the reflexive and transitive closure of |=, then M
accepts ↵ 2 ⌃⇤ if (s,↵,?) |=⇤ (f, ✏, �?) for some f 2 A and � 2 �⇤

1. We let L(M)
denote the set of all words accepted by M . We say that L is a context-free language
(CFL) if L = L(M) for some NPDA M and let CF denote the class of CFLs.

Some definitions of an NPDA do not include the bottom symbol ?; this is not
significant as the classes of languages accepted are the same. There are other notions
of acceptance in NPDAs, such as acceptance by empty stack, but these di↵erent
notions of acceptance all give rise to the same class of languages.

If, given any configuration (q,↵, �) of an NPDA M , there is at most one (r, �, ✓)
such that (q,↵, �) |= (r,�, ✓) we say that M is a deterministic pushdown automaton
(DPDA). If L = L(M) for some DPDA M then L is a deterministic context-free
language (DCFL). Let DCF denote the class of all DCFLs. Unlike finite automata,
insisting on determinism does make a di↵erence, in that there are languages that
are context-free but not deterministic context-free. We also have to be a little more
careful with our notions of acceptance; for example, there are languages accepted
by a DPDA as described here, where we accept by accept state, but which are not
accepted by any DPDA that always has the stack empty when accepting a word.

We now consider a restricted type of NPDA. A nondeterministic one-counter au-
tomaton (NOCA) is an NPDA (Q,⌃,�, ⌧, s, A) where |�| = 2, � = {?, g} say. At any
stage the stack of an NOCA contains gn? for some n > 0 and so can be described
by a single natural number n; hence the title “one-counter”. If the NOCA is deter-
ministic we have a deterministic one-counter automaton (DOCA). L is a one-counter
language (OCL) if L = L(M) for some NOCA M and a deterministic one-counter
language (DOCL) if L = L(N) for some DOCA N . We let OC and DOC denote the
classes of one-counter and deterministic one-counter languages.

Clearly Reg ✓ DOC ✓ OC ✓ CF ; in fact we have that Reg ⇢ DOC ⇢ OC ⇢ CF .
It is clear that DOC ✓ OC \ DCF and, in fact, DOC ⇢ OC \ DCF . We also have
that DCF and OC are incomparable (i.e., that DCF 6✓ OC and OC 6✓ DCF).

Another approach to languages is via grammars. We have the following:

Definition 2.4 A grammar G is a quadruple (N,⌃, P, S) where N is a finite set
of nonterminals, ⌃ is a finite set of terminals (where we insist that N \ ⌃ = ;),
P ✓ (V ⇤�⌃⇤)⇥V ⇤ is a finite set of productions (where V = N [⌃) and the sentence
symbol S is a designated element of N .

We write ↵ ) � if ↵ and � are of the form �⇢�, ��� respectively where (⇢,�) 2 P

and �, � 2 V ⇤. We let
⇤) denote the reflexive and transitive closure of ) and then

define the language L(G) generated by the grammar G to be {↵ 2 ⌃⇤ : S
⇤) ↵}.

Definition 2.4 allows a wider range of languages than just CFLs: if we only insist
that P ✓ (V ⇤ � ⌃⇤) ⇥ V ⇤ we get the class of recursively enumerable languages.
However, if every rule in P is of the form (A,↵) with A 2 N (i.e., P ✓ N ⇥ V ⇤), we
have the context-free grammars (CFGs) which generate precisely the CFLs.
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There are many interesting subclasses of CF obtained by imposing further restric-
tions on the types of production allowed in a CFG. For example, for Reg (defined
above as the languages accepted by NFAs) we have regular grammars which are CFGs
where each production is either of the form (A, xB) or (A, ✏) with A,B 2 N and x 2 ⌃
(there are other definitions used for regular grammars but they are equivalent in that
they all give rise to the same class of languages).

An interesting class of languages is that of the NTS languages (see Remark 6.3)
which are the languages generated by CFGs with the property that, if A and B are
nonterminals such that A

⇤) � and B
⇤) ↵��, then B

⇤) ↵A�. The class of linear
languages (see Remarks 5.6 and 6.8) is the subset of CF generated by CFGs with the
property that each production has at most one nonterminal on the right-hand side,
i.e., such that P ✓ N ⇥ (⌃⇤ [ ⌃⇤N⌃⇤); there are various definitions used for linear
grammars but they all give rise to the same class of languages. We can also define
the class of linear languages by restricting the range of the possible NPDAs (where
we insist that all the push operations must precede any pop operations).

There are also grammars generating classes of languages that contain CF but which
are still proper subsets of the class of recursively enumerable languages. One such
class is that of the indexed languages which are defined by extending our notion of a
grammar (although they can be generated by grammars as in Definition 2.4). There
are some variations in the definition of an indexed grammar (though not in the class
of languages they define); we follow the approach in [24].

In an indexed grammar (N,⌃, I, P, S) we have the set N of nonterminals, the set ⌃
of terminals, the set P of productions and a designated element S of N as before;
however, we also have a finite set I of indices. As before we let V denote the set
N [ ⌃. Each production rule in P is then of one of the following types:

(T1) A ! ↵ A 2 N, ↵ 2 V ⇤;
(T2) A ! Bf A,B 2 N, f 2 I;
(T3) Af ! ↵ A 2 N, f 2 I, ↵ 2 V ⇤.

A derivation is similar to one in a CFG except that a nonterminal may be followed
by a sequence of indices; so our derived strings are elements of (NI⇤[⌃)⇤. We define
) (where �, � 2 (NI⇤ [ ⌃)⇤, � 2 I⇤ and X1, X2, . . . , X

k

2 V ) as follows:

(i) if (A,X1X2 . . . X
k

) 2 P is of type (T1) then �A�� ) �X1�1X2�2 . . . X
k

�
k

�
where �

i

= � if X
i

2 N and �
i

= ✏ if X
i

2 ⌃;

(ii) if (A,Bf) 2 P is of type (T2) then �A�� ) �Bf��;

(iii) if (Af,X1X2 . . . X
k

) 2 P is of type (T3) then �Af�� ) �X1�1X2�2 . . . X
k

�
k

�
where �

i

= � if X
i

2 N and �
i

= ✏ if X
i

2 ⌃.

As before, let
⇤) denote the reflexive and transitive closure of ) and define the

language L(G) generated by G to be {↵ 2 ⌃⇤ : S
⇤) ↵}. There is an alternative

approach based on an extension of NPDAs known as nested stack automata but we
will not go into that here. The class of indexed languages properly contains CF .

3 Operations on languages

We now turn our attention to various operations on languages. There is the operation
of concatenation on words (we denote the concatenation of ↵ and � by ↵�); we can
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extend this to languages and define the concatenation L1L2 of L1 and L2 to be
{↵� : ↵ 2 L1, � 2 L2}. We define the Kleene star of a language L to be

L⇤ = {✏} [ {↵1↵2 . . .↵n

: n > 0, ↵
i

2 L for all i}.
We now have the notion of a “prefix”: For a word ↵ = x1x2 · · · xn with x

i

2 ⌃
for each i, a prefix of ↵ is a word of the form x1x2 · · ·xm where 0 6 m 6 n. Note
that, for any word ↵, the words ✏ and ↵ are both prefixes of ↵ (and the only prefix
of ✏ is ✏). We can extend this to an operation on languages: for any language L we
denote the set of all the prefixes of the words in L by Pref(L), so that

Pref(L) = {↵ 2 ⌃⇤ : there exists � 2 ⌃⇤ such that ↵� 2 L}.
We call Pref(L) the prefix closure of the language L.

As languages are sets the operations [, \ and � are naturally defined on languages.
As ⌃⇤ (under concatenation) is a monoid with identity element ✏ for any set ⌃ we
can also form languages via monoid homomorphism: if ' is a monoid homomorphism
from ⌃⇤ to ⌦⇤ for some finite sets ⌃ and ⌦ and if K ✓ ⌃⇤, then K' ✓ ⌦⇤. We
similarly have inverse homomorphisms: if L ✓ ⌦⇤ then L'�1 ✓ ⌃⇤.

A generalization of a homomorphism is a “gsm-mapping” which can be thought of
as a mapping computed by a finite automaton with output. A generalized sequential
machine (gsm) is a sextuple (Q,⌃,�, ⌧, s, A) where Q is a finite set of states, ⌃ a
finite set of inputs, �s a finite set of outputs, ⌧ a function from Q⇥⌃ to finite subsets
of Q⇥�⇤, s the start state and A the set of accept states.

If M is a generalized sequential machine, then we can extend ⌧ to a function from
Q⇥ ⌃⇤ to finite subsets of Q⇥�⇤ as follows:

(i) if q 2 Q then ⌧(q, ✏) = {(q, ✏)};
(ii) if q 2 Q, x 2 ⌃ and ↵ 2 ⌃⇤ then ⌧(q,↵x) is defined to be:

{(p,�) : 9�, � 2 ⌃⇤, r 2 Q such that � = �� with (r, �) 2 ⌧(q,↵), (p, �) 2 ⌧(r, x)}.
Given this extended definition of ⌧ , if ↵ 2 ⌃⇤ we define M(↵) to be

{� 2 �⇤ : there exists f 2 A such that (f,�) 2 ⌧(s,↵)},
in other words M(↵) is the set of words � such that M can output � and finish in an
accept state when given ↵ as input. If L ✓ ⌃⇤ then we define

M(L) =
[

{M(↵) : ↵ 2 L}.
We say that M(L) is a gsm-mapping. In a similar vein, if � 2 �⇤, we can define
M�1(�) = {↵ 2 ⌃⇤ : � 2 M(↵)}, and then, if K ✓ �⇤, we define

M�1(K) = {↵ 2 ⌃⇤ : � 2 M(↵) for some � 2 K}.
We say that M�1(K) is an inverse gsm-mapping. Note that this is not a true inverse
as we do not necessarily have that M(M�1(K)) = K or that M�1(M(L)) = L.

We have one last operation to define, that of “shu✏e”. The shu✏e L1 $ L2 of
L1 ✓ ⌃⇤ with L2 ✓ �⇤ is defined to be the language over ⌃ [� defined by:

{↵1�1↵2�2 · · ·↵n

�
n

: n > 0, ↵1↵2 · · ·↵n

2 L1,�1�2 · · · �n 2 L2, ↵i

2 ⌃⇤, �
i

2 �⇤}.
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4 Closure properties

We now come to the topic of closure properties of classes F of languages.

(i) If u is a unary operation on languages (i.e., if L ✓ ⌃⇤ then u(L) is a uniquely
defined subset of ⌦⇤ for some ⌦) we say that F is closed under u if, whenever
L 2 F , we have that u(L) 2 F .

(ii) If b is a binary operation on languages (i.e., if L1 ✓ ⌃⇤ and L2 ✓ �⇤ then
b(L1, L2) is a uniquely defined subset of ⌦⇤ for some ⌦) we say that F is closed
under b if, whenever L1, L2 2 F , we have that b(L1, L2) 2 F .

We could extend this to n-ary operations for n > 3 but we won’t need such opera-
tions here. Examples of closure under unary operations include closure under com-
plementation, Kleene star, prefix closure, homomorphism, inverse homomorphism,
gsm-mapping and inverse gsm-mapping; closure under binary operations includes
closure under union, intersection, concatenation and shu✏e.

Going on from this, we say that a class of languages F is closed under intersection
with regular languages if

L1 2 F , L2 2 Reg, L1 ✓ ⌃⇤, L2 ✓ ⌃⇤ =) L1 \ L2 2 F ,

and that F is closed under union with regular languages if

L1 2 F , L2 2 Reg, L1 ✓ ⌃⇤, L2 ✓ ⌃⇤ =) L1 [ L2 2 F .

There are variants such as closure under intersection and union with CFLs.
Three of the most important closure properties are combined in the notion of a cone

which is a class of languages closed under homomorphism, inverse homomorphism and
intersection with regular languages. We have taken the term “cone” from [4]; there
are other names in use such as “full trio” (see [24]). If we have these three properties
then others must hold as well; for example any cone is closed under gsm and inverse
gsm mappings (see [24]); as a result, there are other (equivalent) definitions of a cone
used. The classes of languages we will be most concerned with in this paper, namely
Reg, OC and CF , are all cones. The classes DOC and DCF are not cones, however,
as they are not closed under homomorphism.

5 Formal languages and word problems

We will now explain how word problems are related to formal language theory.
If G is a group and ⌃ is a finite subset of G such that every element of G can be

expressed in the form a1a2 . . . an for some a
i

2 ⌃ and n > 0 (so that G is finitely
generated) then ⌃ generates G (as a monoid). We then have a natural (monoid)
homomorphism ' from ⌃⇤ onto G. For each element a 2 ⌃ let a be an element of ⌃⇤

such that a' = (a')�1. We have that a1a2 . . . an = b1b2 . . . bm in G (where a
i

, b
j

2 ⌃)
if and only if a1a2 . . . anbm b

m�1 . . . b1 represents the identity element of G; so we focus
on the set of the words in ⌃⇤ representing the identity and refer to this as the word
problem W (G,⌃) of G with respect to the generating set ⌃.

Given a group G and a surjective homomorphism ' : ⌃⇤ ! G for some finite set ⌃,
the word problem of G is completely specified (given such a homomorphism ' we can



Jones, Thomas: Formal languages and group theory 312

consider ⌃ as a subset of G by identifying a and a' for each a 2 ⌃). Conversely,
given a language L ✓ ⌃⇤ that is the word problem of some group, then it turns out
that the group in question is completely specified by the language L. One way of
thinking about this is to consider the “syntactic monoid” of L:

If ⌃ is a finite set and L ✓ ⌃⇤ then the syntactic congruence ⇡
L

is the congruence
on ⌃⇤ defined by:

↵ ⇡
L

� () (�↵� 2 L , ��� 2 L for all �, � 2 ⌃⇤).

Another way to think of ⇡
L

is that it is the coarsest congruence on ⌃⇤ such that L is
a union of congruence classes. The syntactic monoid M

L

of L is then the quotient
⌃⇤/⇡

L

. If L is a language that is the word problem of a group G, then G is the
syntactic monoid of L (see [15] for example).

Remark 5.1 There are many interesting results on syntactic monoids; one funda-
mental result is that the syntactic monoid M

L

is finite if and only if L is regular. We
note one feature of this connection that will be useful later in this paper.

Given an NFA accepting L, there is a procedure for constructing the minimal (with
respect to the number of states) DFA P accepting L (and this DFA is then uniquely
determined up to the labelling of its states). If Q is the set of states of P then each
element of ⌃⇤ induces a function from Q to Q; the set of all such functions forms a
monoid under composition known as the transition monoid of P . One way to then
think of the syntactic monoid of L is as this transition monoid.

Let ' be the natural map from ⌃⇤ to M = M
L

, so that L = S'�1 for some S ✓ M
(given that L is a union of congruence classes). For each x 2 M we can test whether
x 2 S by checking whether x'�1 ✓ L (we can pick any element ↵ of ⌃⇤ with ↵' = x,
i.e., any element of ⌃⇤ inducing the same function from Q to Q as x, and then test
whether ↵ 2 L) and so we may e↵ectively determine S.

One natural question is which languages are word problems of groups; the following
characterization was given in [38]:

Theorem 5.2 A language L over an alphabet ⌃ is the word problem of a group with
generating set ⌃ if and only if L satisfies the following two conditions:

(W1) for all ↵ 2 ⌃⇤ there exists � 2 ⌃⇤ such that ↵� 2 L;
(W2) if ↵�� 2 L and � 2 L then ↵� 2 L.

The condition (W1) in Theorem 5.2 says that the prefix closure Pref(L) of L is ⌃⇤;
this is referred to as saying that L has the universal prefix closure property. The
condition (W2) is referred to as saying that the language L is deletion closed.

It is clear that conditions (W1) and (W2) in Theorem 5.2 are necessary for L to
be the word problem of a group but it is perhaps a little surprising that they are also
su�cient. One obvious further condition that word problems of groups must satisfy
is the following:

(W3) if ↵� 2 L and � 2 L then ↵�� 2 L.

Property (W3) is sometimes referred to as saying that L is insertion closed.
These notions give rise to further closure operations: “insertion closure” and “dele-

tion closure”. Suppose that L is a language over ⌃. Given that the intersection of
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a collection of insertion closed languages is insertion closed, the intersection I of all
the insertion closed languages over ⌃ containing L is itself insertion closed and is
the minimal insertion closed language over ⌃ containing L. We call I the insertion
closure of L (in ⌃⇤) and define the deletion closure of L similarly. It is intriguing that
we have a connection between word problems of groups and natural formal language
conditions such as insertion and deletion closure as studied in [27].

The proof of Theorem 5.2 in [38] essentially shows that L is the set of words in the
syntactic monoid M

L

that represent the identity element of M
L

and then that M
L

is
a group (which has L as its word problem). Let us leave groups for a moment and
consider this issue about representing the identity element of a monoid.

If we consider monoids then the set of words representing the identity clearly does
not determine when two words represent the same element of the monoid. Indeed, this
set of words could tell us very little; for example, consider an arbitrary semigroup S
with a (semigroup) homomorphism ' : ⌃+ ! S and then add an identity element 1
to S to form a monoid M . We can extend ' to a (monoid) homomorphism ' :
⌃⇤ ! M by defining ✏' to be 1 but the only word representing the identity is then ✏.
Notwithstanding all this, we note the following fact (compare Proposition 2.1 of [30]):

Proposition 5.3 If ⌃ is an alphabet and ; 6= L ✓ ⌃⇤ then there is a monoid M and
a monoid homomorphism ' : ⌃⇤ ! M with L = {1}'�1 if and only if L satisfies
conditions (W2) and (W3) above, i.e., if and only if

if � 2 L then, for all ↵,� 2 ⌃⇤, we have that (↵� 2 L () ↵�� 2 L).

Proof It is easy to check that, if there is a monoid M and a monoid homomorphism
' : ⌃⇤ ! M with L = {1}'�1, then L must satisfy conditions (W2) and (W3): if
� 2 L, i.e., �' = 1, then (↵��)' = (↵')(�')(�') = (↵')(�') = (↵�)', and so
(↵��)' = 1 if and only if (↵�)' = 1 as required. It remains to prove the converse.

Suppose that L satisfies (W2) and (W3). As L 6= ;, we must have that ✏ 2 L
(using (W2) with ↵ = � = ✏ and � any element of L). Let M be the syntactic monoid
M

L

of L and then let ' be the natural homomorphism from ⌃⇤ onto M .
If � 2 L then, given (W2) and (W3), we have that ↵�� 2 L if and only if ↵✏� 2 L,

and so � ⇡
L

✏ for all � 2 L, i.e., L forms a single congruence class under ⇡
L

. So
L = {m}'�1 for some m 2 M and, since ✏ 2 L, we have m = 1 as required. ⇤

If we want to address the word problem in semigroups, we do have to consider pairs
of words (↵,�) such that ↵ and � represent the same element and it is not immediate
how to link this with formal language theory. One natural approach is taken in [11];
if S is a semigroup generated by a finite set ⌃ then consider the set

W (S,⌃) = {↵#�rev : ↵,� 2 ⌃+, ↵ and � represent the same element of S} (⇤)

and think of W (S,⌃) as being the word problem of S with respect to ⌃.
Here # is some new symbol (i.e., # 62 ⌃) and �rev denotes the reversal of the

word � (i.e., if � is the word x1x2 . . . xn�1xn then �rev is x
n

x
n�1 . . . x2x1). This is

a natural extension of the way we approached the word problem of groups where we
considered ↵��1; if we restrict the concept W (S,⌃) back to groups then we can think
of �rev playing the role of ��1 and the # symbol as indicating that we are operating
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with inverse symbols after that point (or, if we take a monoid generating set, as we
have here, with words representing the inverses of the symbols in �).

One satisfying aspect of this approach is that the word problem of a finitely gener-
ated group G (the set of words representing the identity) lies in a class F of languages
if and only if the word problem W (G,⌃) of G (as a semigroup) defined in (⇤) lies in F ,
and so we have a natural extension. Semigroups with a one-counter word problem
were investigated in [19] and with a context-free word problem in [17].

An interesting alternative approach was taken in [36] (see also [9]). Instead of
considering words of the form ↵#�rev, take a finite automaton with two tapes, one of
which contains ↵ and the other �; the tapes can be read synchronously (in which case
the shorter of the words ↵ and � needs to be padded with some symbol at the end
so that the resulting words are of the same length) or asynchronously. The family of
semigroups whose word problem can be recognized by such a machine is intriguing and
they are not the same as those having a regular word problem in the sense of [11]: the
latter is the family of finite semigroups whereas there are infinite semigroups, such
finitely generated free semigroups, whose word problems are accepted by two-tape
synchronous finite automata.

Returning to groups, when we examine finitely generated groups based on their
word problem as a formal language it is quite natural to try to classify groups based
on what class of languages their word problem lies in. However, a group will have
many di↵erent finite generating sets and there is no guarantee, in general, that the
word problem of the group will necessarily lie in the same class F of languages for
di↵erent generating sets. However the following result (see [15] for example) shows
that, under certain mild assumptions on the class F , this is not a problem:

Theorem 5.4 If a class of languages F is closed under inverse homomorphism and
the word problem of a group G with respect to some finite generating set lies in F
then the word problem of G with respect to any finite generating set lies in F .

Given Theorem 5.4, if F is closed under inverse homomorphism, then we say that
a finitely generated group G is an F-group if the word problem of G lies in F with
respect to some finite generating set. If we assume some further closure properties of
the class F , then we can say something about the family of F-groups:

Proposition 5.5 Let F be a class of languages which is closed under inverse homo-
morphism.

(i) If F is closed under intersection with regular languages then the family of F-
groups is closed under taking finitely generated subgroups.

(ii) If F is closed under union with regular languages and inverse gsm-mappings
then the family of F-groups is closed under passing to finite index overgroups.

(iii) If F is closed under shu✏e then the family of F-groups is closed under taking
direct products.

(iv) If F is closed under union and insertion closure then the family of F-groups is
closed under taking free products.

Proof For the proofs of (i) and (ii) see [21].

For (iii) let A and B be F-groups with finite generating sets ⌃ and ⌦ respectively
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and consider the direct product A ⇥ B with generating set ⌃ [ ⌦. Let J and K be
the word problems of A and B with respect to ⌃ and ⌦ respectively. If ↵1, ↵2, . . . ,
↵
n

are words over ⌃ and �1, �2, . . . , �n are words over ⌦ then ↵1�1↵2�2 . . .↵n

�
n

represents the identity of A⇥B if and only if ↵1↵2 . . .↵n

represents the identity of A
and �1�2 . . .�n represents the identity of B. So the word problem of A⇥B is

{↵1�1↵2�2 . . .↵n

�
n

: ↵1↵2 . . .↵n

2 J and �1�2 . . . �n 2 K} = J $ K,

and, as F is closed under shu✏e, we have that A⇥B is an F-group as required.
For (iv), let A and B be F-groups with finite generating sets ⌃ and ⌦ respectively

and consider the free product A ⇤ B with generating set ⌃ [ ⌦. Let J and K again
be the word problems of A and B with respect to ⌃ and ⌦. Let L be the insertion
closure of J [ K; by assumption we have that L 2 F . Clearly any word in J [ K
represents the identity in A ⇤ B and, if we insert a word representing the identity in
A ⇤B into another such word, then the resulting word still represents the identity in
A ⇤B. So L is contained in the word problem W of A ⇤B with respect to ⌃ [ ⌦.

Suppose that L 6= W and let ✓ = ↵1�1 . . .↵n

�
n

(n > 1) be a word in W �L where
the ↵

i

are words over ⌃, the �
i

are words over ⌦ and the free product length n of ✓
is minimal over all such words in W � L. We must have that at least one of the
factors ↵

i

or �
i

represents the identity in A or B respectively and that the word ⌘
that results from deleting this factor ⇣ from ✓ still represents the identity in A ⇤ B
but with smaller free product length (if we have deleted ↵1 or �

n

we need to take a
cyclic permutation of the word ⌘, moving �1 to the end or ↵

n

to the start of ⌘ as
appropriate, to reduce the free product length). However, by the minimality of n, we
would have that ⌘ 2 L and, as ✓ can be formed by inserting ⇣ into ⌘ with ⇣ 2 L, that
✓ 2 L, a contradiction. So L = W as required and A ⇤B is an F-group. ⇤

Remark 5.6 The assumptions in Proposition 5.5 are su�cient but are not necessary;
in particular, it could be that the restriction on being a word problem of a group means
that we do not need the full force of the closure properties of the class F of languages
to get the corresponding property of the family of F-groups.

As an example, let F be the class of linear languages. We comment below (Re-
mark 6.8) that the family of F-groups is actually the family of finite groups, and so
is closed under direct products. However, the linear languages are not closed under
shu✏e. For example, if L1 = {umvm : m 2 N} and L2 = {xnyn : n 2 N}, then
L1 and L2 are both linear. However, if J is the shu✏e L1 $ L2 and K is the regular
language {uaxbvcyd : a, b, c, d 2 N}, then J \K = {umxnvmyn : m,n 2 N}. This lan-
guage J \K is not linear. As the class of linear languages is closed under intersection
with regular languages, the shu✏e J = L1 $ L2 is not linear.

6 Groups, word problems and algebraic characterizations

In the previous section we discussed some general properties which families of groups
whose word problem lies in some designated class of languages might have. Let us
now turn our attention to what is known for some specific classes. We start with the
groups with a regular word problem which were classified by Anisimov [1]:
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Theorem 6.1 A finitely generated group G has a regular word problem if and only
if it is a finite group.

Further work was done by Muller and Schupp [35] (see also [2, 34, 42]) and their
work, modulo a subsequent result of Dunwoody [12], characterized the groups with a
context-free word problem. Before we state the result recall that, if P is a property
of groups (such as being abelian or free) we say that a group is virtually-P if it has
a subgroup of finite index with property P. Given that, we have the following:

Theorem 6.2 A finitely generated group G has a context-free word problem if and
only if it is a virtually free group.

This is a beautiful result and uses many deep theorems from group theory (in addition
to Dunwoody’s theorem) such as Stallings’ characterization [43] of groups with more
than one end. The following will be of relevance in what follows:

Remark 6.3 As a consequence of the classification in Theorem 6.2, one can show
that any CFL that is the word problem of a group is accepted by a DPDA with the
stack empty on acceptance; indeed, by [3], it is even an NTS language.

In the light of this we have the following consequence of Theorems 5.2 and 6.2:

Corollary 6.4 If L is a CFL that satisfies the following two conditions:

(W1) for all ↵ 2 ⌃⇤ there exists � 2 ⌃⇤ such that ↵� 2 L;
(W2) if ↵�� 2 L and � 2 L then ↵� 2 L.

then L is a DCFL.

Indeed, given Remark 6.3, one could strengthen Corollary 6.4 to deduce that L is an
NTS-language. The only proof of Corollary 6.4 we are aware of uses Theorem 6.2,
and hence we have a simple fact about formal languages deduced using deep results
from the theory of groups. It is tempting, therefore, to ask the following:

Question 6.5 Is there a natural proof of Corollary 6.4 that avoids the use of Theo-
rem 6.2?

We accept that the word “natural” in Question 6.5 is a little vague but we are thinking
about a proof couched purely in terms of CFGs or NPDAs which proves Corollary 6.4
without any need to appeal to results from group theory. In addition, there are
variants of Question 6.5 which are still open. If we consider the class of indexed
languages one can ask whether a finitely generated group with an indexed word
problem must have a context-free word problem. This is true if we impose some
extra hypotheses on the type of indexed language (see [13] for example) but is open
in general. It is an intriguing question which is equivalent to the following:

Question 6.6 If L is an indexed language that satisfies:

(W1) for all ↵ 2 ⌃⇤ there exists � 2 ⌃⇤ such that ↵� 2 L;
(W2) if ↵�� 2 L and � 2 L then ↵� 2 L.

does it follow that L is necessarily context-free?
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Returning to Theorems 6.1 and 6.2 one might ask what other classes F of languages
contained in CF give rise to interesting families of groups. Herbst [14] showed that,
if F is a cone, then there are not many possibilities:

Theorem 6.7 If F is a cone which is a subset of CF then the family of finitely
generated groups whose word problem lies in F is the family of groups with a regular
word problem, the family of groups with a one-counter word problem or the family of
groups with a context-free word problem.

Remark 6.8 Theorem 6.7 is not saying that Reg, OC and CF are the only cones
contained in CF ; there are others such as the cone of all linear languages. What
it says is that, if F is a cone contained in CF , then the set of F -groups is one of
the three families of groups mentioned. If we take the cone of linear languages, for
example, then this properly contains Reg but the family of groups with a linear word
problem is the same as the family of groups with a regular word problem, i.e., the
finite groups by Theorem 6.1. This gives another result analogous to Corollary 6.4,
in that a linear language satisfying (W1) and (W2) is necessarily regular.

In the light of Theorems 6.1, 6.2 and 6.7 it is natural to ask which groups have a
one-counter word problem. Herbst characterized these groups in [14]:

Theorem 6.9 A finitely generated group G has a one-counter word problem if and
only if it is a virtually cyclic group.

The proof in [14] uses Theorem 6.2; see [19] for a proof that avoids doing so. One
consequence of Theorem 6.9 is that any OCL which is the word problem of a group
is also a DOCL (and so we have a version of Question 6.5 for OCLs).

Following on from Theorem 6.9, the following generalization was proved in [19]:

Theorem 6.10 If n > 1 the following are equivalent for a finitely generated group G:

(i) The word problem of G is the intersection of n OCLs.
(ii) The word problem of G is the intersection of n DOCLs.
(iii) G is virtually abelian of free abelian rank at most n.

This theme was continued by Brough who investigated groups whose word problem
is an intersection of finitely many CFLs; such a language is said to be poly-context-free
or poly-CF . If we want to specify that a language is the intersection of n CFLs for
some specific value of n, then we say that it is n-context-free or n-CF .

It is pointed out in [8] that, for any n > 1, the class of n-CF languages is closed
under inverse homomorphisms, inverse gsm-mappings, union with CFLs and inter-
section with regular languages. The class of poly-CF languages is closed under all
these operations and also under intersection and union. Given this, if we fix n > 1,
the family of groups whose word problem is an n-CF language is closed under taking
finitely generated subgroups and finite index overgroups by Proposition 5.5, and the
same holds for groups whose word problem is a poly-CF language.

It is also shown in [8] that the direct product of a group whose word problem
is m-CF with a group whose word problem is n-CF results in a group whose word
problem is (m+ n)-CF , so that the family of groups whose word problem is poly-CF
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is closed under direct products. The proof in [8] essentially follows the line we have
taken in Proposition 5.5 above given the fact that the class of poly-CF languages is
closed under shu✏e. Given all this, one has the following:

Proposition 6.11 If G is a finitely generated group which has a subgroup H of finite
index such that H is a finitely generated subgroup of a direct product of free groups
then G has a poly-CF word problem.

We have included the assumption that H is finitely generated for clarity but it follows
from the fact that H has finite index in a finitely generated group. In the light of
Proposition 6.11, Brough makes the following intriguing conjecture:

Conjecture 6.12 A finitely generated group G has a poly-CF word problem if and
only if G has a subgroup H of finite index such that H is a subgroup of a direct product
of free groups.

Some evidence for this conjecture is provided in [8]. For example, it is shown that
a polycyclic group or a finitely generated nilpotent group G has a poly-CF word
problem if and only if G is virtually abelian. Going on from this, we have from [8]
the following restriction of Conjecture 6.12 to soluble groups:

Conjecture 6.13 A finitely generated soluble group G has a poly-CF word problem
if and only if G is virtually abelian.

Some further evidence for Conjecture 6.13 is provided by the following result [8]:

Theorem 6.14 If G is a finitely generated soluble group with a poly-CF word prob-
lem, then one of the following must hold:

(i) G is virtually abelian; or (possibly)

(ii) G has a finitely generated subgroup H with an infinite normal torsion subgroup U
such that H/U is either free abelian or isomorphic to a Gc-group which is not
virtually abelian.

The notion of a Gc-group was defined in [10]. For soluble groups Conjectures 6.12
and 6.13 imply that case (ii) in Theorem 6.14 cannot occur.

The study of groups with a poly-CF word problem is potentially related to groups
whose word problem is the complement of a CFL (see below). If F is a class of
languages let coF denote the class of languages that are complements of languages
in F . The following will be convenient in what follows:

Definition 6.15 If G is a group generated by a finite set ⌃ then the co-word problem
of G (with respect to ⌃) is the set of elements in ⌃⇤ that do not represent the identity
element of G.

Groups with a context-free co-word problem were initially studied in [21]. Study-
ing such groups may seem a little strange but the original interest sprang from the
following observation. If the word problem of a group is a CFL, then it is a DCFL
(Remark 6.3) and, unlike CF , the class DCF is closed under complementation; so we
have that DCF = coDCF ✓ CF \ coCF . Given this, we have the following:
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Proposition 6.16 If G is a finitely generated group such that word problem for G is
a CFL then the word problem for G is co-context-free.

Like CF , coCF is closed under inverse homomorphism, and so we do not need to refer
to the particular choice of generating set in Proposition 6.16 by Theorem 5.4.

One might expect the converse of Proposition 6.16 to be true and that the families
of groups with context-free and co-context-free word problems to coincide, but this
is not the case. as the following example shows.

Example 6.17 Consider the group Z ⇥ Z generated by a and b and let ⌃ be the
(monoid) generating set {a, b, A,B} where A represents a�1 and B represents b�1;
then the co-word problem of G with respect to ⌃ is the set

{↵ 2 ⌃⇤ : |↵|
a

6= |↵|
A

or |↵|
b

6= |↵|
B

}

which is context-free; so the word problem is co-context-free. However, the word
problem of G is {↵ 2 ⌃⇤ : |↵|

a

= |↵|
A

and |↵|
b

= |↵|
B

} which is not a CFL.

Some information about groups with a co-context-free word problem comes from [21]:

Proposition 6.18

(i) All finitely generated free groups are coCF -groups.

(ii) All finitely generated abelian groups are coCF-groups.

(iii) The family of coCF-groups is closed under passing to finite index overgroups.

(iv) The family of coCF-groups is closed under taking finitely generated subgroups.

(v) The family of coCF-groups is closed under taking direct products.

(vi) If G is a coCF-group and H is a CF-group then the restricted standard wreath
product G oH of G with H is a coCF-group.

It is not clear whether the hypothesis in Proposition 6.18 (vi) that H is a CF-group
(i.e., that H is virtually free by Theorem 6.2) is necessary; it is conjectured in [21]
that this is the case, i.e., that, if G oH is a coCF -group, then H is a CF-group (we
have that G and H are coCF-groups by part (iv) of Proposition 6.18 however).

Conjecture 6.12 stated that a finitely generated group G has a poly-CF word prob-
lem if and only if G has a subgroup H of finite index such that H is a subgroup of
a direct product of free groups. We see from Proposition 6.18 that any such group
would have a co-context free word problem; one wonders if one could establish this
fact in general (that any word problem for a group in poly-CF must lie in coCF)
without proving Conjecture 6.12 in full. If this were so then it must depend on the
fact that we are considering word problems of groups as we do not have that poly-CF
is contained in coCF (it is not even the case that CF is contained in coCF).

One might wonder if Proposition 6.18 describes all coCF-groups, i.e., any group
with a coCF word problem can be constructed from free groups and abelian groups
via a sequence of the operations described in parts (iii), (iv), (v) and (vi); however
this is not the case. If all coCF-groups could be constructed in this way then, for
any particular coCF-group G, there would only be finitely many natural numbers n
such that G contains an element of order n. However, in [33], Lehnert and Schweitzer
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showed that the co-word problem for the Higman-Thompson group G
n,r

is context-
free and the set of elements of finite order in G

n,r

does not have this property.
Another interesting question about the closure properties of the coCF-groups is

that of free products. We saw in Proposition 5.5 (iv) that, if F is a class of languages
closed under inverse homomorphism, union and insertion closure, then the family of
F -groups is closed under free products. These closure properties hold in the CF for
example (so we could deduce that the family of CF-groups is closed under taking free
products without recourse to Theorem 6.2); on the other hand, coCF is not closed
under union. However, as pointed out in Remark 5.6, we are not claiming that the
hypotheses in Proposition 5.5 are necessary.

As a specific example, there is the question as to whether the co-word problem of
G = (Z ⇥ Z) ⇤ Z is context-free. One approach might be to show that G embeds in
a group with context-free co-word problem and use Proposition 6.18 (iv). A possible
candidate for such a group was Thompson’s group V = G2,1 but it was shown by
Bleak and Salazar-Dı́az in [5] that G does not embed in V .

In [14] Herbst asked the following: if L is a DCFL and the syntactic monoid of L is
a group G, does it follow that G has context-free word problem, i.e., that G is virtually
free? This was answered by Röver in [39]. In an analogous result to Proposition 6.18
(vi), he showed that the family of groups which are syntactic monoids of DCFLs
is closed under taking restricted standard wreath products with virtually free top
groups. So a group such as a restricted standard wreath product Z o F , where F is
finite, is the syntactic monoid of a DCFL but is not virtually free. An interesting
question from [39] is the following: suppose that the syntactic monoid of a DCFL is
a group G; is G is necessarily a coCF-group?

7 Decidability

In this section we turn our attention to some questions of decidability concentrating
on the concepts and characterizations introduced above. One natural question is
that of asking, given a language L (specified by some means such as an automaton
or grammar), whether L is the word problem of a group. Related to this is the
decidability of properties of languages such as (W1), (W2) and (W3) introduced in
Section 5. In particular, if properties (W1) and (W2) were both decidable for some
class F of languages, then the question of deciding whether a language in F is the
word problem of a group would also be decidable by Theorem 5.2.

In general such questions are decidable for Reg. One approach is to consider the
syntactic monoid. Taking the notation used in Remark 5.1, (W1) is equivalent to

for all x 2 M there exists y 2 M such that xy 2 S.

Since M is a finite monoid, this is easily seen to be decidable. In a similar fashion,
conditions (W2) and (W3) are equivalent to

if xuy 2 S and u 2 S then xy 2 S, and
if xy 2 S and u 2 S then xuy 2 S,

respectively; again, these are easily seen to be decidable. As a result, we can decide
whether a regular language L is the word problem of a group by Theorem 5.2.
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If we are only interested in deciding whether a regular language L is the word
problem of a group, and not in whether L satisfies (W1), (W2) and (W3) individually,
we could check this without using Theorem 5.2: we simply calculate the transition
monoid M of the minimal DFA of L (as in Remark 5.1) and then see if M is a group
with L as the pre-image of the identity element of M .

The situation changes for CF however; in fact, even for OC, all the properties
(W1), (W2) and (W3) are undecidable. For (W3) the argument is straightforward.
It is known [25] that the problem of deciding whether a OCL L over an alphabet ⌃
is equal to ⌃⇤ is undecidable. Now suppose we could decide (W3) for OCLs. We first
check whether ✏ and the elements of ⌃ are in L (we can do this as the membership
problem for OCLs is decidable); if not we know that L 6= ⌃⇤. Assuming that ✏ and
the elements of ⌃ are in L, we next see whether L satisfies (W3), i.e., whether L is
insertion closed. If L is not insertion closed, then L 6= ⌃⇤ and, if L is insertion closed
then, as ⌃ ✓ L, we have that ⌃+ ✓ L and then, as ✏ 2 L, ⌃⇤ ✓ L, and hence L = ⌃⇤.
So we would be able to decide whether L = ⌃⇤, a contradiction.

The arguments that (W1) and (W2) are undecidable for OCLs are more involved
and may be found in [28]. We also cannot decide whether an arbitrary OCL is the
word problem of a group. This does not follow from the undecidability of (W1)
and (W2), as it is possible to have two undecidable properties whose conjunction is
decidable, but it was shown in [32] that the problem of deciding whether a CFL is
the word problem is undecidable and this was generalized to OCLs in [28].

However, given a DCFL L, it is decidable whether L is the word problem of a
group [28]. At first sight this may seem rather strange, in that it is undecidable
whether a context-free language is the word problem of a group and any CFL that
is such a word problem is necessarily a DCFL by Remark 6.3. We have to be careful
how we express this problem. The important point is that, when we say “given a
DCFL L”, we are insisting that it is given as a DCFL, i.e., that we are given a DPDA
accepting L; so we are considering the following problem:

Input: a DPDA M = (Q,⌃,�, ⌧, s, A).
Output: “yes” if L(M) is the word problem of a group; “no” otherwise.

This changes the problem; a critical component of the proof in [28] of this decidability
result is the fact that, while the equivalence problem (given M1 and M2 do we have
L(M1) = L(M2)) is undecidable for NPDAs, it is decidable for DPDAs [40].

The fact that our CFL L would have to be a DCFL in order for L to be the word
problem of a group does not help as the problem of deciding whether a CFL is a
DCFL is undecidable. Even if we are given the promise that L is a DCFL, we cannot
find a DPDA accepting L, i.e., there is no algorithm solving the following:

Input: an NPDA M such that L(M) is deterministic context-free.
Output: a DPDA N with L(N) = L(M).
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Abstract

Symonds’ proof of Benson’s regularity conjecture implies that the regularity of the
cohomology of a fusion system and that of the Hochschild cohomology of a p-block
of a finite group is at most zero. Using results of Benson, Greenlees, and Symonds,
we show that in both cases the regularity is equal to zero.

Let p be a prime and k an algebraically closed field of characteristic p. Given a
finite group G, a block algebra of kG is an indecomposable direct factor B of kG as a k-
algebra. A defect group of a block algebra B of kG is a minimal subgroup P of G such
that B is isomorphic to a direct summand of B⌦kP B as a B-B-bimodule. The defect
groups of B form a G-conjugacy class of p-subgroups of G. The Hochschild cohomol-
ogy of B is the algebra HH⇤(B) = Ext⇤B⌦kBop

(B), where Bop is the opposite algebra
of B, and where B is regarded as a B⌦kB

op-module via left and right multiplication.
By a result of Gerstenhaber, the algebra HH⇤(B) is graded-commutative; that is,
for homogeneous elements ⇣ 2 HHm(B) and ⌘ 2 HHm(B) we have ⌘⇣ = (�1)nm⇣⌘,
where m, n are nonnegative integers. In particular, if p = 2, then HH⇤(B) is commu-
tative, and if p is odd, then the even partHHev(B) =

L
n�0

HH2n(B) is commutative
and all homogeneous elements in odd degrees square to zero. The extension of the
Castelnuovo-Mumford regularity to graded-commutative rings with generators in ar-
bitrary positive degrees is due to Benson [2, §4]. We follow the notational conventions
in Symonds [18]. In particular, if p is odd and T =

L
n�0

Tn is a finitely generated
graded-commutative k-algebra and M a finitely generated graded T -module, we de-
note by reg(T,M ) the Castelnuovo-Mumford regularity of M as a graded T ev-module,
where T ev =

L
n�0

T 2n is the even part of T . We set reg(T ) = reg(T, T ); that is,
reg(T ) is the Castelnuovo-Mumford regularity of T as a graded T ev-module. See
also [3] and [8] for more background material and references. We note that Ben-
son’s definition of regularity uses the ring T instead of T ev, but the two definitions
are equivalent. This can be seen by noting that [18, Proposition 1.1] also holds for
finitely generated graded commutative k-algebras.

Theorem 1 Let G be a finite group and B a block algebra of kG. We have

reg(HH⇤(B)) = 0.

This will be shown as a consequence of a statement on Scott modules. Given a
finite group G and a p-subgroup P of G, there is up to isomorphism a unique inde-
composable kG-module Sc(G;P ) with vertex P and trivial source having a quotient
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(or equivalently, a submodule) isomorphic to the trivial kG-module k. The module
Sc(G;P ) is called the Scott module of kG with vertex P . It is constructed as follows:
Frobenius reciprocity implies that HomkG(Ind

G
P (k), k)

⇠= HomkP (k, k) ⇠= k, and hence
IndGP (k) has up to isomorphism a unique direct summand Sc(G;P ) having k as a quo-
tient. Since IndGP (k) is selfdual, the uniqueness of Sc(G;P ) implies that Sc(G;P ) is
also selfdual, and hence Sc(G;P ) can also be characterised as the unique summand,
up to isomorphism, of IndGP (k) having a nonzero trivial submodule. Moreover, it is
not di�cult to see that Sc(G;P ) has P has a vertex. See [7] for more details on Scott
modules, as well as [11] for connections between Scott modules and fusion systems.
For a finitely generated graded module X over H⇤(G; k) we denote by H⇤,⇤

m (X) the
local cohomology with respect to the maximal ideal of H⇤(G; k) generated by all el-
ements in positive degree. The first grading is here the local cohomological grading,
and the second is induced by the grading of X.

Theorem 2 Let G be a finite group and P a p-subgroup of G. We have

reg(H⇤(G; k);H⇤(G;Sc(G;P ))) = 0.

Remark 3 Using Benson’s reinterpretation in [1, §4], of the ‘last survivor’ from [5,
§7], applied to the Scott module instead of the trivial module, one can show more
precisely that

Hr,�r
m (H⇤(G;Sc(G,P ))) 6= {0},

where r is the rank of P . It is not clear whether this property, or even the property of
having cohomology with regularity zero, characterises Scott modules amongst trivial
source modules.

For F a saturated fusion system on a finite p-group P , we denote by H⇤(P ; k)F

the graded subalgebra of H⇤(P ; k) consisting of all elements ⇣ satisfying ResPQ(⇣) =
Res'(⇣) for any subgroup Q of P and any morphism ' : Q ! P in F . If F is the
fusion system of a finite group G on one of its Sylow-p-subgroups P , then H⇤(P ; k)F

is isomorphic to H⇤(G; k) through the restriction map ResGP , by the characterisation
of H⇤(G; k) in terms of stable elements due to Cartan and Eilenberg. In that case we
have reg(H⇤(P ; k)F ) = 0 by [18, Corollary 0.2]. If F is the fusion system of a block
algebra B of kG on a defect group P , then H⇤(P ; k)F is the block cohomology H⇤(B)
as defined in [14, Definition 5.1]. It is not known whether all block fusion systems
arise as fusion systems of finite groups. There are examples of fusion systems which
arise neither from finite groups nor from blocks; see [10], [13].

Theorem 4 Let F be a saturated fusion system on a finite p-group P . We have

reg(H⇤(P ; k)F) = 0.

The key ingredients for proving the above results are Greenlees’ local cohomology
spectral sequence [9, Theorem 2.1], results and techniques in work of Benson [1],
[2], [4], and Symonds’ proof in [18] of Benson’s regularity conjecture. We use the
properties of the regularity from [18, §1] and [19, §2].

Lemma 5 Let G be a finite group and V an indecomposable trivial source kG-module.

Then reg(H⇤(G; k);H⇤(G;V ))  0.
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Proof Since V is a direct summand of IndGP (k), we have

reg(H⇤(G; k);H⇤(G;V ))  reg(H⇤(G; k);H⇤(G; IndGP (k)).

By [12, Lemma 4], the right side is equal to reg(H⇤(P ; k)), hence zero by [18, Corol-
lary 0.2]. ⇤

Lemma 6 Let G be a finite group and V a finitely generated kG-module. If H
0

(G;V )
6= {0}, then reg(H⇤(G; k);H⇤(G;V )) � 0.

Proof It follows from the assumption H
0

(G;V ) 6= {0} and Greenlees’ spectral
sequence [9, Theorem 2.1] that there is an integer s such that Hs,�s

m (H⇤(G;V )) 6= {0},
which implies the result. ⇤

Proof of Theorem 2 Set V = Sc(G;P ). By Lemma 5 we have

reg(H⇤(G; k); Ext⇤kG(k;V ))  0.

Since V has a nonzero trivial submodule, we have H
0

(G;V ) 6= {0}, and hence the
other inequality follows from Lemma 6. ⇤

Theorem 1 will be a consequence of Theorem 2 and the following well-known ob-
servation (for which we include a proof for the convenience of the reader; the block
theoretic background material can be found in [20]).

Lemma 7 Let G be a finite group, B a block algebra of kG and P a defect group

of B. As a module over kG with respect to the conjugation action of G on B, the

kG-module B has an indecomposable direct summand isomorphic to the Scott module

Sc(G;P ).

Proof Since the conjugation action of G on B induces the trivial action on Z(B) and
since Z(B) 6= {0}, it follows that the kG-module B has a nonzero trivial submodule.
Moreover, B is a direct summand of kG, hence B is a p-permutation kG-module, and
the vertices of the indecomposable direct summands of B are conjugate to subgroups
of P . Thus B has a Scott module with a vertex contained in P as a direct summand.
Since Z(B) is not contained in the kernel of the Brauer homomorphism BrP , it follows
that B has a direct summand isomorphic to the Scott module Sc(G;P ). ⇤

Proof of Theorem 1 By [12, Proposition 5] we have reg(HH⇤(B))  0. Recall
that HH⇤(kG) is an H⇤(G; k)-module via the diagonal induction map, and we have
a canonical graded isomorphism HH⇤(B) ⇠= H⇤(G;B) as H⇤(G;B)-modules where
G acts on B by conjugation; see, e.g., [17, (3.2)]. It follows from [12, Lemma 4] that

reg(HH⇤(B)) = reg(H⇤(G; k);H⇤(G;B)).

By Lemma 7, the kG-module B has a direct summand isomorphic to V = Sc(G;P ),
where P is a defect group of B. Thus as an H⇤(G; k)-module, H⇤(G;B) has a direct
summand isomorphic to H⇤(G;V ). It follows that

reg(HH⇤(B)) � reg(H⇤(G; k);H⇤(G;V )) = 0,

where the last equality is from Theorem 2. This completes the proof of Theorem 1.
⇤
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Remark 8 The above proof can be adapted to show that the regularity of the stable
quotient HH⇤(B) of HH⇤(B) also equals zero. Recall that HH⇤(B) is the quotient
of HH⇤(B) by the ideal Zpr(B) = TrG

1

(B) of Z(B) ⇠= HH0(B). Note that Zpr(B) is
concentrated in degree 0. Alternatively, HH⇤(B) may be defined as the non-negative
part of the Tate Hochschild cohomology of B. Our interest in HH⇤(B) comes from
the fact that Tate Hochschild cohomology of symmetric algebras is an invariant of
stable equivalence of Morita type. We briefly indicate how the regularity of HH⇤(B)
may be calculated. Let B =

L
iMi be a decomposition of B into a direct sum of

indecomposable kG-modules Mi, where G acts by conjugation on B. The canonical
graded H⇤(G; k)-module isomorphism HH⇤(B) ⇠= H⇤(G;B) induces an isomorphism

HH0(B) ⇠= H0(G;B) =
M

i

H0(G;Mi)

in degree zero. Composing this with the the canonical isomorphisms Z(B) ⇠= HH0(B)
and H0(G;Mi) ⇠= MG

i , it is easy to check that the image of Zpr(B) in
L

iM
G
i isL

iTr
G
1

(Mi). Since B is a p-permutation kG-module, TrG
1

(Mi) is non-zero precisely
if Mi is isomorphic to the Scott module Sc(G; 1) (which is a projective cover of the
trivial kG-module). Let M 0 denote the sum of all Mi’s in the above decomposition
which are isomorphic to Sc(G, 1) and let M 00 be the complement of M 0 in B with
respect to the above decomposition. Since Zpr(B) is concentrated in degree zero, we
have a direct sum decomposition HH⇤(B) ⇠= �H⇤(G;M 00) � Zpr(B) as H⇤(G; k)-
modules. In particular,

reg(H⇤(G; k);HH⇤(B)) = max{reg(H⇤(G; k);H⇤(G;M 00)), reg(H⇤(G; k);Zpr(B))}.

We may assume that a defect group P of B is non-trivial. By Lemma 7, M 00 contains
a direct summand isomorphic to Sc(G;P ). Hence reg(H⇤(G; k);H⇤(G;M 00)) � 0,
by Theorem 2. It follows from Theorem 1 and the above displayed equation that
HH⇤(B) ⇠= H⇤(G;M 00) has regularity zero.

Proof of Theorem 4 By [18, Proposition 6.1] we have reg(H⇤(P ; k)F )  0. For
the other inequality we follow the arguments in [1, §3, §4], applied to transfer maps
using fusion stable bisets. For Q a subgroup of P and ' : Q ! P an injective
group homomorphism, we denote by P ⇥

(Q,') P the P -P -biset of equivalence classes
in P ⇥ P with respect to the relation (uw, v) ⇠ (u,'(w)v), where u, v 2 P , and
w 2 Q. The kP -kP -bimodule having P⇥

(Q,')P as a k-basis is canonically isomorphic
to kP ⌦kQ ('kP ). This biset gives rise to a transfer map trP⇥

(Q,')

P on H⇤(P ; k)

obtained by composing the restriction map resP'(Q)

: H⇤(P ; k) ! H⇤('(Q); k), the

isomorphism H⇤('(Q); k) ⇠= H⇤(Q; k) induced by ', and the transfer map trPQ :
H⇤(Q; k) ! H⇤(P ; k). Let X be an F -stable P -P -biset satisfying the conclusions of
[6, Proposition 5.5]. That is, every transitive subbiset ofX is isomorphic to P⇥

(Q,')P
for some subgroup Q of P and some group homomorphism ' : Q ! P belonging to
F , the integer |X|/|P | is prime to p, and for any subgroup Q of P and any group
homomorphism ' : Q ! P in F , the Q-P -bisets 'X and QX (resp., the P -Q-
bisets XQ and X') are isomorphic. By taking the sum, over the transitive subbisets
P⇥

(Q,')P , of the transfer maps trP⇥
(Q,')

P , we obtain a transfer map trX onH⇤(P ; k).
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Following [15, Proposition 3.2], the map trX acts as multiplication by |X|/|P | on
H⇤(P ; k)F , hence =(trX) = H⇤(P ; k)F , and we have a direct sum decomposition

H⇤(P ; k) = H⇤(P ; k)F � ker(trX)

as H⇤(P ; k)F -modules. A similar decomposition holds for Tate cohomology, and for
homology (using either the canonical duality Hn(P ; k) ⇠= Hn(P ; k)_ or the isomor-
phism Hn(P ; k) ⇠= Ĥ�n�1(P ; k) obtained from composing the previous duality with
Tate duality). By [1, Equation (4.1)], the transfer map trPQ induces a homomorphism
of Greenlees’ local cohomology spectral sequences

Hi,j
m H⇤(Q, k)

(tr

P
Q)⇤
✏✏

+3 H�i�j(Q; k)

(res

P
Q)⇤

✏✏
H i,j

m H⇤(P ; k) +3 H�i�j(P ; k)

where (trPQ)⇤ and (resPQ)⇤ are the maps induced by trPQ and the inclusion Q ! P ,
respectively. The isomorphism ' : Q ! '(Q) induces an obvious isomorphism of
spectral sequences

Hi,j
m H⇤('(Q), k)

⇠
=

✏✏

+3 H�i�j('(Q); k)

⇠
=

✏✏
Hi,j

m H⇤(Q; k) +3 H�i�j(Q; k)

Restriction and transfer on Tate cohomology are dual to each other under Tate duality,
and hence the dual version of [1, Equation (4.1)] implies that the restriction resP'(Q)

induces a homomorphism of spectral sequences

Hi,j
m H⇤(P, k)

(res

P
'(Q)

)⇤
✏✏

+3 H�i�j(P ; k)

(tr

P
'(Q)

)⇤

✏✏
H i,j

m H⇤('(Q); k) +3 H�i�j('(Q); k)

Composing the three diagrams above yields a homomorphism induced by trP⇥
(Q,')

P

on the spectral sequence for P , and taking the sum over all transitive subbisets of X
yields a homomorphism of spectral sequences

H i,j
m H⇤(P, k)

(trX )⇤
✏✏

+3 H�i�j(P ; k)

(trX_ )⇤

✏✏
H i,j

m H⇤(P ; k) +3 H�i�j(P ; k)

where X_ is the P -P -biset X with the opposite action u · x · v = v�1xu�1 for all
u, v 2 P and x 2 X. One easily checks that X_ is isomorphic to a dual basis of X in
the dual bimodule Homk(kX, k). By [6, Proposition 5.2], H⇤(P ; k) is finitely gener-
ated as a module overH⇤(P ; k)F . Thus the local cohomology spacesH i,j

m H⇤(P ; k) can
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be calculated using for m the maximal ideal of positive degree elements in H⇤(P ; k)F

instead of H⇤(P ; k). It follows that trX induces a homomorphism of spectral se-
quences

Hi,j
m H⇤(P, k)

(trX)⇤
✏✏

+3 H�i�j(P ; k)

(trX_ )⇤
✏✏

Hi,j
m H⇤(P ; k)F +3 H�i�j(P ; k)F

For i = �j = r, where r is the rank of P , the edge homomorphism yields a commu-
tative diagram of the form

Hr,�r
m H⇤(P ; k)

�P //

(trX )⇤
✏✏

H
0

(P ; k)
⇠
= //

(trX_ )⇤
✏✏

k

·|X|/|P |
✏✏

Hr,�r
m H⇤(P ; k)F

�F
// H

0

(P ; k)F ⇠
=

// k

where the right vertical map is multiplication on k by |X|/|P |. By [1, Theorem 4.1],
the map �P is surjective, and hence so is the map �F . In particular, Hr,�r

m H⇤(P ; k)F 6=
{0}, whence the result. ⇤

Remark 9 The fact that transfer and restriction on Tate cohomology are dual to
each other under Tate duality can be deduced from a more general duality for transfer
maps on Tate-Hochschild cohomology of symmetric algebras induced by bimodules
which are finitely generated projective as left and right modules (cf. [16]).
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Abstract

This survey reports on recent progress made on finite subgroups of the unit group
of integral group rings of finite groups. We show that the Gruenberg–Kegel graph
of ZG coincides with that one of G provided |G| is divisible by at most three primes
and give an outline how such a result may be obtained with the aid of computational
algebra. In the last section we discuss this question for sporadic simple groups and
their automorphism groups.

1 Introduction

Let G be a finite group, and let ZG denotes its integral group ring. The map " :
ZG �! Z defined by

P
g2G z

g

g 7!

P
g2G z

g

is called, as usual, the augmentation
map, and its kernel is the augmentation ideal I(G). The unit group is denoted by
U(ZG), and V (ZG) denotes its subgroup consisting of units with augmentation 1,
which is called the normalised unit group, or the group of normalised units.

A fundamental question in the theory of integral group rings is which properties
of G are reflected by ZG. One may expect that the most informative answers to this
question come from considering U(ZG).

For a long time, starting with G. Higman’s thesis [41] in 1940 (cf. also [58]), the
focus was on the question whether any torsion subgroup of V (ZG) is isomorphic to a
subgroup of the group G. In 1997, M. Hertweck showed with his counterexample to
the isomorphism problem that this is not always the case [32]. Nevertheless for many
groups G the answer is a�rmative, in particular if G is a p-group [57, 63].

Thus it makes sense to rephrase the question in the following way:

Question 1.1 Classify the finite groupsH with the property that wheneverH occurs
as subgroup in the unit group V (ZG) of the integral group ring ZG of a finite group
G then H is isomorphic to a subgroup of G.

Z. Marciniak posed this question in the special case when H is the Klein four-group
on a satellite conference of the ICM at Granada 2006. One can consider the rephrased
question as the subgroup isomorphism problem (SIP), and we say that (SIP) holds
for a finite group H if this question has an a�rmative answer for H. In this article
we focus especially on recent results on the following classes of subgroups.
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Question 1.2 Has (SIP) an a�rmative answer when H is cyclic?

Question 1.3 Does (SIP) hold when H is a p-group?

The second question clearly points into the direction of a Sylow-like theorem, cf.
Section 3. The first question circulates around the Zassenhaus Conjecture (ZC) and
the prime graph question (PQ), cf. Sections 2 and 4.

Clearly we could consider mainly the case when G is soluble. But the research
done in the last years tends also in the direction of arbitrary finite groups or at least
of groups whose nonabelian composition factors have small Lie rank or are of specific
nature. Note that in order to get a positive result on (SIP) one has to establish such
a result also for integral group rings of the nonabelian simple groups.

Integral group rings of soluble groups may be handled in terms of successive abelian
extensions of the integral group ring of the groups C

p

of prime order p. G. Higman
showed in his thesis [41] that for a finite abelian group A the torsion subgroups of
V (ZA) are just the subgroups of A. However with respect to nonabelian simple groups
very little is known concerning the torsion subgroups of their integral group rings,
so this gives the first big contrast to the soluble case. The second di�culty which
arises in handling arbitrary finite groups is that in addition to abelian extensions one
has also to deal with perfect extensions. Nevertheless within the last ten years some
progress has been made also concerning several classes of insoluble groups.

2 Around the Zassenhaus Conjecture

H. Zassenhaus posed in [66] the following conjecture for a finite group G.

(ZC) Every torsion unit u 2 V (ZG) is conjugate within QG to an element in G.

As reported in [60, p.205], H.Zassenhaus stated concerning torsion subgroups even
stronger conjectures than (ZC). The strongest one, the so-called (ZC 3), says that
each torsion subgroup of V (ZG) is conjugate within QG to a subgroup of G.

In general the (ZC 3) conjecture fails. A finite subgroup H of V (ZG) which has the
same order asG is called a group basis. K.W. Roggenkamp and L.L. Scott constructed
a metabelian group G such that V (ZG) has isomorphic group bases which are not
conjugate within QG [49, 56, 59]. Of course the counterexample of M.Hertweck to
the isomorphism problem provides even stronger counterexample to (ZC 3). In the
meantime, the smallest counterexamples to (ZC 3) with group bases which are not
conjugate within QG are groups of order 96 [5, 39].

The conjecture (ZC) however is still open. The most far reaching results are the
following.

Theorem 2.1 (A. Weiss, [64]) The conjecture (ZC) holds provided G is nilpotent.
Moreover, in this case even (ZC 3) is valid.

For a long time, it was an open question whether (ZC) is valid for metacyclic
groups. Finally, in 2007 M. Hertweck gave a positive answer [36]. M. Hertweck
proved that (ZC) holds provided G has a cyclic normal subgroup C which has an
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abelian complement. The following result shows that it su�ces to assume that G/C
is abelian.

Theorem 2.2 (M. Caicedo, A. del Rio and L. Margolis [22]) The conjecture
(ZC) holds provided G has a cyclic normal subgroup C such that G/C is abelian.

Theorem 2.2 is the best result on (ZC) obtained so far concerning metabelian
groups. As pointed out before, (ZC 3) is not valid for all metabelian groups. But
if G is metabelian, it is known that each torsion subgroup of V (ZG) is isomorphic
to a subgroup of G. This follows immediately from the result of Z. Marciniak and
S.K. Sehgal that the units of the form

1 + I(G)I(A),

where A is an abelian normal subgroup of the finite group G, form a torsion-free
normal subgroup of V (ZG) [53]. Note that these units are just the kernel of the
normalised unit group under the projection from ZG onto the so called small group
ring S(G,A) := ZG/I(G)I(A).

As the results on (ZC 3) show, it might be worth to check systematically groups
of small order. In [42] it was shown that (ZC) holds for all groups of order |G|  71.
From Theorem 2.2 it follows that groups of order 72 as well can not provide a coun-
terexample to (ZC). The next critical small group order which should be considered
is certainly 96.

In order to get evidence concerning (ZC) one might ask whether at least torsion
units of prime order in V (ZG) are conjugate to an element of G. This is unknown and
stands of course in a big contrast to the celebrated results on p-groups and nilpotent
groups mentioned above. From this point of view one could certainly say that for
arbitrary finite groups we still know nothing about (ZC). There is just one general
result in this context.

Proposition 2.3 ([37]) Suppose that the finite group G has precisely one conjugacy
class of elements of prime order p. Then all elements of order p of V (ZG) are
conjugate within QG to an element of G.

Thus, it is certainly justified to look first in the context of (SIP) for an isomorphism
of cyclic torsion subgroups. Note that we get then precisely [60, Research Problem 8].
Indeed, we know in this situation at least a bit more.

Proposition 2.4 ([23]) Let G be a finite group. The cyclic subgroups of prime power
order of V (ZG) are isomorphic to subgroups of G.

A result due to D.S. Passman [55] shows that this holds also in the case when G is
infinite, see also [61, 3.10, 3.14]. With respect to non-cyclic subgroups the following
is known.

Proposition 2.5 Let G be a finite group.

(a) [43, pp.3169–3170] Suppose that V (ZG) has a Klein four-group C2 ⇥ C2 as
subgroup. Then G has a subgroup isomorphic to C2 ⇥ C2.
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(b) [33] Let p be an odd prime. Suppose that C
p

⇥C
p

occurs as subgroup of V (ZG),
then as well it occurs as subgroup of G.

Clearly, Proposition 2.5(a) answers the question of Z. Marciniak raised in the intro-
duction. It is worth to note that the proofs of parts (a) and (b) of Proposition 2.5 are
substantially di↵erent. The proof of part (a) relies on the Brauer–Suzuki theorem,
whereas for part (b) elementary arguments from ordinary character theory su�ce.
Before we give a proof of Proposition 2.5(a), we explain partial augmentations which
provide one of the fundamental methods for the analysis of torsion units.

Let g 2 G and u =
P

x2G u
x

x 2 ZG. Then

⌫
g

(u) =
X

h2gG
u
h

is called the partial augmentation of u with respect to the conjugacy class gG.

Theorem 2.6 Let G be a finite group.

(a) [54, Theorem 2.5],[51] A unit u 2 V (ZG) is rationally conjugate to a trivial unit
g 2 G if and only if ⌫

x

(v) � 0 for every v 2 hui and every x 2 G.

(b) [38, Theorem 2.3] Let u 2 V (ZG) be of finite order o(u). Then

⌫
g

(u) 6= 0 =) o(g) divides o(u).

Proof of 2.5(a) LetG be a counterexample of minimal order. By [25, Lemma 2.1] we
may assume that G has no normal subgroup of odd order. Because G is a counterex-
ample, Sylow 2-subgroups of G have precisely one involution. Thus Sylow 2-subgroups
of G are either cyclic or generalized quaternion groups. In the second case it follows
from the Brauer–Suzuki theorem that G has precisely one involution t which has to be
central. In the first case we get the same conclusion by Burnside’s transfer theorem.
By [23] (or by Theorem 2.6(b)) for each involution u of V (ZG) there exists an involu-
tion j 2 G such that ⌫

j

(u) 6= 0. Thus each involution of V (ZG) has a non-vanishing
partial augmentation on t. If u 6= t we get via u · t a non-trival torsion unit of V (ZG)
with 1-coe�cient 6= 0. Now the classical result of Berman and Higman [4, 41], shows
that u · t = 1.

The next case to be considered is certainly the one of arbitrary finite cyclic sub-
groups of V (ZG).

Proposition 2.7 ([34]) Let G be a finite soluble group. Then finite cyclic subgroups
of V (ZG) are isomorphic to subgroups of G.

However with respect to a general finite group much less is known. In the case
when the subgroup has order p · q where p and q are di↵erent primes some general
statements can be made. We report on this in the section on the Gruenberg–Kegel
graph of ZG.

There are also positive results on (ZC) for some specific insoluble groups. Most of
them will be presented in the Gruenberg–Kegel graph section.
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3 Sylow-type results

The previous sections certainly support the question whether a Sylow-like theorem
may hold in V (ZG). We say that in V (ZG) a Sylow-like theorem holds provided for
each prime p each finite p-subgroup of V (ZG) is conjugate within QG to a Sylow
p-subgroup of G. If for a fixed prime p the p-subgroups of V (ZG) have the property
stated above then we say that in V (ZG) the p-Sylow-like theorem is valid. Clearly if
(ZC 3) holds for ZG then a Sylow-like theorem holds for V (ZG).

Thus, a Sylow-like theorem holds in V (ZG) when G is nilpotent by Theorem 2.1.
Further evidence is given because in GL(n,Z) a Sylow-like theorem holds [1].

M. Dokuchaev and S.O. Juriaans showed using the results of A. Weiss the following
which covers the supersoluble groups.

Theorem 3.1 ([25, Theorem 2.9]) Let G be a finite group with a nilpotent normal
subgroup N such that G/N is nilpotent. Then the Sylow-like theorem holds in V (ZG).

With respect to group bases even more is known.

Theorem 3.2 ([47]) Let G be a finite soluble group and let H be a group basis of ZG.
Let p be a prime. Then each p-subgroup of H is conjugate within QG to a subgroup
of a Sylow p-subgroup of G.

If one assumes that Sylow p-subgroups of G have a special structure much more is
known. This is especially the case when G has abelian Sylow subgroups.

Proposition 3.3 ([25, Proposition 2.11]) Assume that G is a finite soluble group.
Suppose that G has abelian Sylow p-subgroups. Then a p-subgroup of V (ZG) is ratio-
nally conjugate to a subgroup of G.

This proposition may easily be generalized to p-constrained case [2, Proposition
3.2]. The same is the case for Theorem 3.2. Nevertheless these are results which still
circulate as all other results before in this section around the class of soluble groups.
But for abelian Sylow 2-subgroups there are also results which hold for each group
which such Sylow subgroups.

If G has elementary abelian Sylow 2-subgroups then by Proposition 2.4 all 2-
elements of V (ZG) are involutions. Thus all 2-subgroups of V (ZG) are abelian.
Because the order of a torsion subgroup of V (ZG) divides |G| it follows that each
2-subgroup is isomorphic to a subgroup of a Sylow 2-subgroup of G.

For small abelian Sylow 2-subgroups it is known that a Sylow-like theorem holds.

Proposition 3.4 Let G be a finite group whose Sylow 2-subgroups are abelian of
order  8. Then each 2-subgroup of V (ZG) is rationally conjugate to a subgroup
of G.

Proof If G has cyclic Sylow 2-subgroups or Sylow 2-subgroups isomorphic to C4⇥C2

then by Burnside’s transfer theorem G is soluble and the result follows from Proposi-
tion 3.3. If S 2 Syl2(G) is elementary abelian of order 4 or 8 then [2, Proposition 3.4]
completes the proof. ⇤
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Note that the proof of [2, Proposition 3.4] uses the classification of the finite simple
groups with abelian Sylow 2-subgroups [62]. These simple groups S have all precisely
one conjugacy class of involutions. By Proposition 2.3 it follows that in V (ZS) all
involutions are conjugate. This establishes a substantial part for the insoluble part
of Proposition 3.4.

We remark further that it is unknown whether a Sylow-like theorem holds in V (ZG)
when G has elementary abelian Sylow 2-subgroups of order 16. In the case when G is
soluble it is shown in [25, Theorem 5.3] that a Sylow-like theorem holds in V (ZG)
provided Sylow p-subgroups of G have order dividing p3.

The following result indicates that a Sylow-like theorem in nonabelian simple
groups of small Lie rank may be true.

Theorem 3.5 ([40]) Let G = PSL(2, q). Then finite 2-subgroups of V (ZG) are
isomorphic to subgroups of G.

When q is even, this is clear from the above because G = PSL(2, 2f ) has elementary
abelian subgroups. Thus, the main part of the Theorem is the case of an odd q, cf.
[40, Theorem 2.1]. Note that if q is odd then the Sylow 2-subgroups of PSL(2, q) are
dihedral or elementary abelian.

Theorem 3.6 ([8, Theorem 3]) Let G be a finite Frobenius group. Then each tor-
sion unit of prime power order in V (ZG) is conjugate within QG to an element of G.

V. Bovdi and M. Hertweck completed the proof of Theorem 3.6 by showing that
(ZC) holds for the covering group Ŝ5 of the symmetric group S5 which has a unique
conjugacy class of involutions1. This was the missing piece in earlier work on integral
group rings of Frobenius groups done in [25, 26, 45]. Note that by [25, Corollary 5.2]
for soluble Frobenius groups G the Sylow-like theorem is valid in V (ZG).

4 The Gruenberg–Kegel graph of ZG

The prime graph ⇧(G) of a groupG is the graph whose vertices are the primes dividing
the order of a torsion element of G. Two di↵erent vertices p and q are connected by
an edge if and only if G has an element g with o(g) = pq. By Proposition 2.4 the
vertices of the prime graph of G and that one of V (ZG) coincide.

The interest in the prime graph of a finite group comes from the work of K.W.
Gruenberg and K.W. Roggenkamp in 1970s on the decomposition of the integral aug-
mentation ideal I(G) of ZG [30]. Using the classification of the finite simple groups,
J.S. Williams finally established that for a finite group G the augmentation ideal
of ZG decomposes if and only if the prime graph of G is disconnected. The proof uses
a purely group-theoretical result of K.W. Gruenberg and O. Kegel on the structure
of finite groups with disconnected prime graph [65, Theorem A]. J.S. Williams and
finally A.S. Kondratiev described the prime graphs of all simple groups with more
than one connected component [50, 65].

1
ˆS5 is the group (240,89) in the GAP Small Groups Library
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In the case of the normalised unit group V (ZG) we call ⇧(V (ZG)) the Gruenberg–
Kegel graph of ZG and denote it by �(ZG). It is certainly natural to pose the
prime graph question (PQ) asking whether �(ZG) = ⇧(G) [46]. In the context of
the decomposition of augmentation ideals an a�rmative answer just means that the
augmentation ideal of a torsion subgroup U of V (ZG) decomposes if and only if there
are primes dividing |U | which belong to di↵erent components of ⇧(G). Clearly, if
(ZC) is valid, the prime graph question has an a�rmative answer. In the context of
(SIP), the prime graph question is just the question whether (SIP) is true for cyclic
subgroups of order p · q, where p and q are di↵erent primes.

(PQ) has been intensively studied during recent years. One main method used for
it is the so-called HeLP–method. This method has its origin in the proof of (ZC)
for the alternating group A5 given by I.S. Luthar and I.B.S. Passi [51]. It uses the
relationship between partial augmentations and the eigenvalues of a torsion unit u
on a Wedderburn component of CG. A first algorithmic treatment has been given
in the Diplomarbeit of R. Wagner under the supervision of the first author. This is
documented in [9, p.293]. Later M. Hertweck noticed that the same arguments may
be applied with Brauer characters [38, §3,§4].

For the convenience of the reader we give a short explanation. Let F be a field
whose characteristic does not divide the order n of the unit u and which contains a
primitive n-th root of unity. Assume that the partial augmentations of u and all its
powers are known. Let � be the character of D and let ⇠ be a possible eigenvalue of
D(u). Denote by µ(u, ⇠,�) the multiplicity of ⇠ as an eigenvalue of D(u). Then

µ(u, ⇠,�) =
1

n

X

d|n

TrQ(⇣d)/Q(�(u
d)⇠�d), (1)

where n is the order of u, is a non-negative integer. Note that the eigenvalues of D(u)
and the character values are considered within Q(⇣) where ⇣ is a primitive n-th root
of unity, and TrQ(⇣d)/Q(x) denotes the trace.

Clearly the degrees of the (irreducible) F -representations bound the possibilities for
µ(u, ⇠,�). Note that �(ud) is given by the partial augmentations of ud. Since by [31]
there is a bound for absolute values of partial augmentations given by the condition
⌫
g

(u)2  |gG|, there are only finitely many possible partial augmentations of u, and
computational tools may be employed nowadays to implement the HeLP–method and
systematically investigate more groups. In some situations this method shows that u
and its powers have only the trivial partial augmentations, i.e., for um,m 2 N there is
precisely one conjugacy class C

m

of group elements with ⌫
Cm(u

m) = 1 and the partial
augmentations of all other classes vanish. By Theorem 2.6(a) it follows then that u is
conjugate within QG to a group element. Also it is useful to exclude possible orders
of torsion units and so permits to attack (PQ) and (ZC) using the ordinary character
table and the Brauer tables for the group in question or with generic character tables
for series of groups, cf. [9, §6].

In particular sporadic simple groups have been considered that way, mainly by
V. Bovdi and the second author. For about a half of the 26 sporadic simple groups
the prime graph question could be positively settled, cf. Section 5. The following
reduction to almost simple groups demonstrates that these computations do not just
play a role of single examples, but may give a rise to a more general result. This
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reduction has been obtained for soluble extensions in [46] and with respect to arbitrary
extensions in [48].

Proposition 4.1 Let N be a minimal normal subgroup of the finite group G. Assume
that N is abelian or not simple perfect and that �(ZG/N) = ⇧(G/N) then

�(ZG) = ⇧(G).

Because for abelian (simple) groups the only torsion elements of V (ZG) are the
elements of G it follows immediately that the Gruenberg–Kegel graph of ZG coincides
with the prime graph of G provided G is soluble [46].

So the remaining task for a given nonabelian simple group S is to determine the
prime graph of V (ZH) for the almost simple groupsH sandwiched between S = InnS
and AutS. In Section 5 we give a survey on all such results concerning sporadic simple
groups. The rest of this section is devoted to the following result.

Theorem 4.2 Let G be a finite group whose order is divisible by at most three primes.
Then

�(ZG) = ⇧(G).

Proof By [46, Proposition 4.3] we may assume that G is not soluble and that G
has no minimal normal subgroup which is abelian. By the classical Burnside result,
groups of order pa · qb are soluble. By assumption |⇡(G)|  3. Thus if G has more
than one minimal normal subgroup which is perfect or one minimal normal subgroup
which is not simple then the prime graph of G is a complete graph. Because the
vertices of �(ZG) and ⇧(G) coincide [23] it follows in this case that �(ZG) = ⇧(G).2

So it remains to consider the almost simple groups whose order is divisible by exactly
three primes. By the classification of the finite simple groups (see also [27]), the
simple groups S with |⇡(S)| = 3 are as given in the table below. We also include
in the table the isomorphism type of OutS. In the third column we indicate with
(ZC) when the Zassenhaus conjecture is established, with (SIP-C) when the the cyclic
subgroups of V (ZS) are isomorphic to subgroups of S and with (PQ) that the prime
graph question has an a�rmative answer. The fourth column contains the references.

OutS
A5

⇠= PSL(2, 5) C2 (ZC) [51]
PSL(2, 7) C2 (ZC) [37]
PSL(2, 8) C3 (ZC) [29, 48]

A6
⇠= PSL(2, 9) C2 ⇥ C2 (ZC) [35]
PSL(2, 17) C2 (ZC) [29]
PSL(3, 3) C2 (PQ) [2]

PSP(3, 4) ⇠= U(4, 2) C2 (PQ) [48]
U(3, 3) C2 (PQ) [48]

For the full automorphism groups of these simple groups the results are as follows.

2
Note we also could have used Proposition 4.1. But for Theorem 4.2 the given direct argument is

shorter.
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AutA5
⇠= S5 (ZC) [52]

AutPSL(2, 7) ⇠= PGL(2, 7) (ZC) [48]
AutPSL(2, 8) ⇠= P�L(2, 8) (SIP-C) [48]

AutA6
⇠= P�L(2, 9) (PQ) [48]

AutPSL(2, 17) ⇠= PGL(2, 17) (ZC) [48]
AutPSL(3, 3) (PQ) [48]
AutPSP(3, 4) (PQ) [48]
AutU(3, 3) (PQ) [48]

(SIP-C) holds for S6 by [48]. The other two subgroups of AutA6 of index 2, the
groups M10 and PGL(2, 9) could not be settled with the HeLP–method. The HeLP–
method does not answer whether there are elements of order 6 in V (ZG). Very
recently A. Bächle and L. Margolis were able to complete the proof of Theorem 4.2
using additionally special integral representations in order to settle the question on
the elements of order 6. So (PQ) holds for these two groups [3]. ⇤

5 Results on sporadic simple groups

For sporadic simple groups, the first result appeared in [10]. Later, a series of pa-
pers dedicated to further sporadic simple groups has emerged. At the moment, the
following is known:

• (PQ) answered a�rmatively for 13 sporadic simple groups:

– M11 [10], M12 [19], M22 [16], M23 [12], M24 [15];

– J1, J2, J3 [7];

– HS [14], McL [11], He [6], Ru [13], Suz [18]

• For G = ON the prime graph of V (ZG) is not connected [6];

• For G = Co3, Co2 and G = Co1, prime graphs of G and V (ZG) have the same
number of components [17].

The technique used for these groups is based on the Hertweck–Luthar–Passi (HeLP)
method. The key observation is that even being unable to prove the rational conju-
gacy for elements of orders that appear in G, one could try to use information about
their partial augmentations to eliminate some torsion units in V (ZG).

Some optimisations of the HeLP–method has been developed, in particular, the
notion of (p, q)-constant characters and a hybrid symbolic–numeric approach, see [17]
for the latest exposition of these techniques. In particular, in some cases it became
possible to answer (PQ) by eliminating torsion units of order pq without preliminary
enumeration of all admissible tuples of partial augmentations of elements of orders p
and q.

The next table summarises results about possible orders and partial augmentations
of normalised torsion units in integral group rings for the 17 sporadic simple groups
listed above. It is divided into three cases w.r.t. (PQ) by horizontal lines.

• Column 2 lists orders (of normalised torsion units) for which the rational con-
jugacy is known, either as an immediate consequence of [37, Proposition 3.1] or
using the HeLP–method for orders displayed using the bold face.
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• Column 3 lists orders of elements of G with remaining non-trivial tuples of
partial augmentations. In each entry of the form M(N), M means the order
and N means the number of all (both trivial and non-trivial) admissible tuples
of partial augmentations that are produced by the HeLP–method. Here and
in columns 5 and 6 numbers in italics denote cases where only computer-aided
results are available (these were computed using the software by V. Bovdi and
the second author developed on the base of the GAP package LAGUNA [20]);
for other cases, theoretical proofs are available.

• Column 4 lists orders of elements of G which were omitted as not relevant to
(PQ) (for some groups it was possible to cover all or most of orders, though).
A dash (—) means that no orders were omitted.

• Column 5 lists orders that do not appear neither in G nor in V (ZG).

• Column 6 lists some orders with remaining non-trivial tuples of partial augmen-
tations that still have to be eliminated for positive answers on (SIP-C) for M11,
M22, J1 or (PQ) for ON and Conway groups.

Remark 5.1 Infinite number of admissible tuples of partial augmentations for or-
der 57 in ON corresponds to the condition ⌫3a = �18, ⌫19a+⌫19b+⌫19c = 19 from [6].

Remark 5.2 Thus, the remaining 9 more sporadic simple groups for which the (PQ)
or its weakened variations are not yet settled, are Fi22, HN , Ly, Th, Fi23, J4, Fi24

0,
B and M . Also, for the Tits group T , which is sometimes referred as the 27th sporadic
simple group, the second author and V. Bovdi established the positive answer to (PQ).
This result will be reported elsewhere.

G ZC order(#) Not considered No orders order(#)
in G orders in G in V (ZG) in V (ZG)

1 2 3 4 5 6

M11 2, 3, 4(2), 6(5), 8(4) — 10, 15, 22, 12(2)
5, 11 24, 33, 55

M12 5 2(6), 3(5), 4, 6, 8 15, 22, 33, 55
10(2), 11(4)

M22 2, 3, 4(34), 6(15), — 10, 14, 15, 21, 12
5 7(4), 8(76), 22, 33, 35, (1166)

11(10) 55, 77

M23 2, 3, 4(3), 6(21), 7(4), 14 10, 21, 22, 28, 33,
5, 23 8(10), 11(20), 35, 46, 55, 56, 69,

15(6) 77, 115, 161, 253

M24 5, 11, 2(6), 3(6), 7(4), 4, 6, 8, 12, 14 22, 33, 35, 46,
23 10(11), 15(34), 55, 69, 77, 115,

21(21) 161, 253
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G ZC order(#) Not considered No orders order(#)
in G orders in G in V (ZG) in V (ZG)

1 2 3 4 5 6

J1 2, 3, 5(4), 6(6), — 14, 21, 22, 33, 30(6)

7, 11, 10(12), 15(4) 35, 38, 55,
19 57, 77, 95,

133, 209

J2 7, 15 2(6), 3(3), 4(15), 6, 10, 12 14, 21, 35
5(10), 8(18)

J3 2 3(10), 4(3), 6, 9, 10, 12, 15 34, 38, 51, 57,
5(8), 8(15), 85, 95, 323

17(10), 19(10)

HS 3, 7 2(6), 5(23), 4, 6, 8, 12, 14, 21, 22, 33,
11(10) 15, 20 35, 55, 77

McL 2 3(4), 5(6), 4, 6, 8, 9, 10, 21, 22, 33,
7(174), 11(20) 12, 14, 15, 30 35, 55, 77

He 5 2(13), 3(10), 4, 6, 7, 8, 10, 12, 34, 35, 51,
17(30) 14, 15, 21, 28 85, 119

Ru 3, 7, 2(22), 5(8), 4, 6, 8, 10, 12, 21, 35, 39, 58,
13 29(10) 14, 15, 16, 20, 65, 87, 91, 145,

24, 26 203, 377

Suz 7, 11 2(8), 5(10), 4, 6, 8, 9, 10, 22, 26, 33, 35,
13(18) 12, 14, 15, 18, 39, 55, 65, 77,

20, 21, 24 91, 143

ON 2, 3, 7(26), 4, 6, 8, 10, 12, 21, 22, 35, 38, 33(1),
5, 11 19(2145), 14, 15, 16, 20, 28 55, 62, 77, 93, 57 (1)

31(80) 95, 133, 155,
209, 217,
341, 589

Co3 7 2(6), 3(155), 6, 8, 9, 10, 12, 33, 46, 55, 35(2)
4(510), 5(6), 15, 18, 20, 21, 69, 77, 115,
11(24), 14(5), 22, 24, 30 161, 253

23(12)
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G ZC order(#) Not considered No orders order(#)
in G orders in G in V (ZG) in V (ZG)

1 2 3 4 5 6

Co2 7, 11 2(48), 3(4), 4, 6, 8, 9, 10, 12, 21, 22, 33, 46, 35(2)
5(6), 23(66) 14, 15, 16, 18, 55, 69, 77,

20, 24, 28, 30 115, 161, 253

Co1 11, 13 2(216), 6, 8, 9, 10, 12, 14, 46, 69, 77, 91, 55(36),
3(15239) 15, 16, 18, 20, 21, 115, 143, 161, 65(14)

5(1041), 7(47), 22, 24, 26, 28, 30, 253, 299
23(58588) 33, 35, 36, 39,

40, 42, 60

As shown in Section 3 (cf. [48]), it is important to consider also automorphism
groups of sporadic simple groups. Below we will give an outline of the proof that for
all 13 sporadic simple groups where (PQ) has a positive answer, is has also a positive
answer for their automorphism groups.

Theorem 5.3 Let G be one of the following sporadic simple groups: M12, M22, J2,
J3, HS, McL, He, Suz. Then (PQ) holds for AutG, i.e.,

�(ZAutG) = ⇧(AutG).

Accordingly to [24], the following 5 groups have trivial OutG: M11, M23, M24,
J1, Ru. Thus we get together with the results of Section 4 the following consequence.

Corollary 5.4 (PQ) holds for a finite group provided its composition factors S are
isomorphic to one of the following 13 sporadic simple groups:

M11, M12, M22, M23, M24, J1, J2, J3, HS, McL, He, Ru, Suz,

or |⇡(S)| = 3, or S is of prime order.

Proof of Theorem 5.3. We have to consider 8 groups, namely M12, M22, J2, J3,
HS, McL, He, Suz. We will give here several examples to demonstrate our methods,
and will only give an outline proof for the remaining cases, due to space considerations
and the review nature of the paper. The full proof will be published elsewhere.

• Let G = Aut(M12). Then |G| = 27 · 33 · 5 · 11, exp(G) = 23 · 3 · 5 · 11 and we have
to show that there are no units of orders 15, 22, 33 and 55 in V (ZG).

For this group, we may complete the entire proof by using the technique of (p, q)-
constant characters [17], which, when successful, allows to eliminate torsion units of
order pq without preliminary consideration of units of orders p and q. We will use the
ordinary and p-Brauer character tables of G for p 2 {2, 3, 5, 11} which can be found
using the Character Table Library [21] of the computational algebra system GAP [28],
deriving its data from [24, 44]. Therefore, we will use the same notation, including
indexation, for characters and conjugacy classes as used in the GAP Character Table
Library.
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Let u 2 V (ZG) be a unit of order 22. Then ⌫2 + ⌫11 = 1, and all other its
partial augmentations are equal to zero by Theorem 2.6. Now consider the ordinary
character � = �12 +�15 (notation � = �(n1,...,ns)[p] indicates that � = �

n1 + · · ·+�
ns

and p is either 0 when ordinary characters are used, or corresponding p when p-Brauer
character tables are used). Then � is (2, 11)-constant character, since �(C2) = 5 and
�(C11) = 0. Let ⇣ be a primitive 22nd root of unity. Using Equation (1) from
Section 4, we obtain the following system of constraints on partial augmentations of
u:

µ(u, 1,�(12,15)[0]) =
1
22(50⌫2 + 170) � 0;

µ(u, ⇣11,�(12,15)[0]) =
1
22(�50⌫2 + 160) � 0,

which yields �3  ⌫2  3. Now the condition

µ(u, ⇣2,�(12,15)[0]) =
1
22(�5⌫2 + 170) � 0

eliminates these cases, since the left hand side is not an integer for any �3  ⌫2  3.
The proof for units of orders 15, 33 and 55 can be derived similarly from the table

below containing the data for the constraints on partial augmentations ⌫
p

and ⌫
q

for
possible orders pq (including the order 22 as well) to write the constraint

µ(u, ⇣ l,�) = 1
pq

(m1 + ⌫
p

m
p

+ ⌫
q

m
q

) � 0, (2)

where ⇣ is the pqth primitive root of unity.

|u| p q � �(C
p

) �(C
q

) l m1 m
p

m
q

15 3 5 � = (3, 4)[0] 0 4 0 70 0 32
5 70 0 16
0 170 50 0

22 2 11 � = (12, 15)[0] 5 0 2 170 -5 0
11 160 -50 0

33 3 11 � = (7)[0] 0 -1 0 44 0 -20
11 44 0 10
0 30 80 0

55 5 11 � = (3)[0] 2 0 1 20 2 0
11 20 -20 0

Similarly, (p, q)-constant characters technique su�ces to show that there are no
units of orders 15, 21, 22, 33, 35, 55 and 77 in V (ZG) for G = Aut(M22); of orders
21 and 35 for G = Aut(J2); of orders 38, 51, 57, 85, 95 and 323 for G = Aut(J3). For
G = Aut(HS), however, it su�ces for orders 21, 33, 55, 77 but we did not manage
to find suitable (p, q)-constant characters for orders 22 and 35. However, they were
eliminated using a di↵erent technique, which we will demonstrate later describing the
case of G = Aut(Suz).

• Let G = Aut(McL). Then we have to show that there are no units of orders 21,
33, 35, 55 and 77 in V (ZG). For all orders except 35, the proof may be obtained using
(p, q)-constant characters method. For the order 35, we substitute into Equation (1)
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in Section 4 partial augmentations of u5 and u7 as described in [17] and obtain for
the ordinary character �1 that

µ(u, 1,�1) =
1
35(6⌫7a5 + 1) � 0

where ⌫7a5 is the partial augmentation of u5 corresponding to the class 7a. Since
elements of order 7 are rationally conjugate to an element of G, we have ⌫7a5 = 1 and
µ(u, 1,�1) is not an integer, a contradiction.

• Let G = Aut(He). Then we have to show that there are no units of orders 34, 35,
51, 85 and 119 in V (ZG). Here the (p, q)-constant characters method works for all
orders except 35. For order 35, we substitute into Equation (1) in Section 4 partial
augmentations of u5 and u7 and obtain that for the ordinary character �1

µ(u, 1,�1) =
1
35(6(⌫7a5 + ⌫7b5 + ⌫7c5) + 1) � 0

where µ(u, 1,�1) is not an integer since ⌫7a5 + ⌫7b5 + ⌫7c5 = 1 (note that the HeLP–
method implementation by V. Bovdi and the second author produces 225 admissible
tuples of partial augmentation for units of order 7, but we do not need to check them
individually since we obtained a contradiction in a much more elegant way).

• Let G = Aut(Suz). Then we have to show that there are no units of orders 26,
33, 35, 39, 55, 65, 77, 91 and 143 in V (ZG).

First, (p, q)-constant characters method succeeds for orders 55, 65, 77, 91, 143.
For order 35, we obtain that for the ordinary character �1

µ(u, 1,�1) =
1
35(6⌫7a5 + 1) � 0.

Since elements of order 7 are rationally conjugate to elements of G, we have ⌫7a5 = 1,
so µ(u, 1,�1) is not an integer, a contradiction.

For order 39, we substitute into Equation (1) in Section 4 partial augmentations
of u3 and u13 as described in [17] and obtain the following system using ordinary
characters �3, �5 and �7 (⇣ is the 39th root of unity):

µ(u, 1,�3) =
1
39(840⌫3a + 192⌫3b � 24⌫3c + 70⌫3a13 + 16⌫3b13 � 2⌫3c13 + 143) � 0;

µ(u, ⇣,�3) =
1
39(35⌫3a + 8⌫3b � ⌫3c � 35⌫3a13 � 8⌫3b13 + ⌫3c13 + 143) � 0;

µ(u, ⇣3,�3) =
1
39(�70⌫3a � 16⌫3b + 2⌫3c + 70⌫3a13 + 16⌫3b13 � 2⌫3c13 + 143) � 0;

µ(u, ⇣13,�3) =
1
39(�420⌫3a � 96⌫3b + 12⌫3c � 35⌫3a13 � 8⌫3b13 + ⌫3c13 + 143) � 0;

µ(u, 1,�5) =
1
39(�336⌫3a + 312⌫3b + 96⌫3c � 28⌫3a13 + 26⌫3b13 + 8⌫3c13 + 364) � 0;

µ(u, ⇣,�5) =
1
39(�14⌫3a + 13⌫3b + 4⌫3c + 14⌫3a13 � 13⌫3b13 � 4⌫3c13 + 364) � 0;

µ(u, ⇣3,�5) =
1
39(28⌫3a � 26⌫3b � 8⌫3c � 28⌫3a13 + 26⌫3b13 + 8⌫3c13 + 364) � 0;

µ(u, ⇣13,�5) =
1
39(168⌫3a � 156⌫3b � 48⌫3c + 14⌫3a13 � 13⌫3b13 � 4⌫3c13 + 364) � 0;

µ(u, 1,�7) =
1
39(2520⌫3a � 72⌫3b + 144⌫3c + 210⌫3a13 � 6⌫3b13 + 12⌫3c13 + 780) � 0;

µ(u, ⇣13,�7) =
1
39(�1260⌫3a + 36⌫3b � 72⌫3c � 105⌫3a13 + 3⌫3b13 � 6⌫3c13 + 780) � 0;

which, as confirmed using the HeLP–method implementation by V. Bovdi and the
second author, has no solutions. The same technique works for eliminating orders 26
and 33. This completes the proof.
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Abstract

We survey the recent results of the authors on finite groups with a small prime
spectrum. The prime spectrum ⇡(G) of a finite group G is the set of prime divisors
of its order. If |⇡(G)| = n then G is called n-primary. We describe the chief factors
of 3-primary groups and the chief factors of commutator subgroups of 4-primary
groups whose prime graphs are disconnected. As a corollary, 3-primary finite almost
simple groups and 4-primary finite simple groups recognizable by prime graph are
determined. The complete irreducibility of GF (2)A7-modules in which an element of
order 5 acts fixed-point-freely is proved. Finite groups with the same prime graph as
the group Aut(J2) or A10 are described.

1 Introduction

In finite group theory, many researchers are interested in various problems of recog-
nizability, i.e., in the characterization of a group by a certain set of its parameters up
to isomorphism. Examples of such problems are the problems of recognizing finite
groups by their spectrum or prime graph. Let G be a finite group. Denote by ⇡(G)
the set of prime divisors of the order of G. We also call ⇡(G) the prime spectrum.
Denote by !(G) the spectrum of the group G, i.e., the set of its element orders. The
set !(G) defines the prime graph (the Gruenberg–Kegel graph) �(G) of the group G;
in this graph, the vertex set is ⇡(G) and two di↵erent vertices p and q are connected
by an edge if and only if pq 2 !(G). Denote the number of connected components of
�(G) by s(G) and the set of connected components by {⇡

i

(G) | 1  i  s(G)}; for a
group G of even order, we assume that 2 2 ⇡1(G).

The notion of prime graph appeared by the investigation some cohomological prob-
lems related to integer representations of finite groups and was found very fruitful.

A group G is called recognizable by its spectrum (resp., prime graph) if, for any
finite group H , the equality !(H) = !(G) (resp., �(H) = �(G)) implies a group
isomorphism H ⇠= G. Here, the equality of the graphs �(H) and �(G) means the
coincidence of the sets of their vertices and their edges, respectively. It is clear that
the recognizability of a finite group by prime graph implies its recognizability by its
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spectrum. At present, large progress in the solving the problem of the recognizability
of finite simple groups by spectrum has been achieved and the problem of the recog-
nizability of finite simple groups by prime graph has been intensively investigated.

In 1996, Chen [5] proved that any sporadic simple group is recognizable by its order
and prime graph up to isomorphism in class of all finite groups. In 2003, Hagie [6]
gave the first examples of finite groups recognizable by prime graph, namely the
sporadic simple groups J1, M22, M23, M24 and Co2, and obtained a description of
finite groups G such that �(G) = �(S), where S is a sporadic simple group. But
the description was not complete classification. Further many authors obtained other
results in this direction.

The problem of recognition of a group by prime graph is a particular case of
more general problem: study finite groups by the properties of their prime graphs. In
the frame of this general problem, our attention draws first of all a more detailed
study of the class of finite groups with disconnected prime graph. In fact, this class
generalizes widely the class of finite Frobenius groups as is obvious from the well-
known stuctural Gruenberg-Kegel theorem on finite groups with disconnected prime
graph (see [40]). And Frobenius groups occupy an absolutely exceptional place in
the finite group theory. Note also that the class of finite groups with disconnected
prime graph coincides with the class of finite groups having an isolated subgroup (i.e.,
a proper subgroup containing the centralizer of any its nontrivial element) which
have been studied without the classification of finite simple groups by many known
algebraists (Frobenius, Suzuki, Feit, Thompson, G. Higman, Arad, Chillag, Busarkin,
Gorchakov, Podufalov, and others). See, for example, [1]).

The classification of connected components of prime graph for finite simple groups
was established in papers of Williams [40], the first author [21], and Iiyori and Ya-
maki [15]. Lucido [29] extended this classification onto all finite almost simple groups,
i.e., groups with nonabelian simple socle. The finite simple groups with disconnected
prime graph compose a su�ciently restricted class of all finite simple groups, but
include many “small” (in various senses) groups which arise often in the investiga-
tions. For example, all finite simple groups of exceptional Lie type besides the the
groups E7(q) for q > 3, as well as simple groups from the well-known “Atlas of finite
groups” [7] besides the group A10, have disconnected prime graphs.

The problem of the study of finite unsoluble groups with disconnected prime graph,
which are not almost simple, is solved for several particular cases only, because here
some nontrivial problems related with modular representations of finite almost simple
groups arise. Let us consider such a problem.

Let G be a finite group with disconnected prime graph, and let G be nonisomorphic
to a Frobenius group or a 2-Frobenius group. A 2-Frobenius group is a finite group G
such that G = ABC where A and AB are normal subgroups in G, and AB and BC
are Frobenius groups with kernels A and B and complements B and C, respectively.
Then, by the Gruenberg–Kegel theorem, the groupG := G/F (G) is almost simple and
is known by the above mentioned results. Assume that F (G) 6= 1. Each connected
component ⇡

i

(G) of the graph �(G) for i > 1 corresponds to a nilpotent isolated
⇡
i

(G)-Hall subgroup X
i

(G) of the group G. Any nontrivial element x from X
i

(G)
(i > 1) acts fixed-point-freely (freely) on F (G), i.e., C

F (G)(x) = 1. Let K and L be
two neighboring terms of a chief series of the group G and K < L  F (G)). Then,
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the (chief) factor V = L/K is an elementary abelian p-group for some prime p (we
will call it the p-chief factor of the group G), and we can consider it as a faithful
irreducible GF (p)G-module (since C

G/K

(V ) = F (G)/K). Moreover, any nontrivial
element from X

i

(G) (i > 1) acts fixed-point-freely on V .
Therefore, the problem of studying the structure of the group G largely reduces to

the following problem, which is of independent interest.

Problem 1.1 For the finite simple groupG and given prime p, describe all irreducible
GF (p)G-modules V such that an element of prime order 6= p from G acts on V fixed-
point-freely.

Extending and refining Problem 1.1 we obtain the following:

Problem 1.2 Let G be a finite group, Q be a normal nontrivial subgroup from G,
G = G/Q be a known group and an element of prime order from G\Q acts on Q
fixed-points-freely. The following questions arise.

1) What are the chief factors of the group G in Q?

2) What is the structure of the group Q?

3) If Q is elementary abelian group, is the action of G on Q completely irreducible?

4) Is the extension of G over Q splittable?

The well-known Thompson’s theorem implies that Q is a nilpotent group in this
situation.

In spite of importance of the questions 1) – 4), we have few results about them. In
general, this important problem is far from being solved.

The first work, devoted to the study of the case when G is a simple nonabelian
group, was a classical work of G. Higman [12]. If G ⇠= L2(2m) for m � 2 and an
element of order 3 from G acts on Q fixed-point-freely then Higman gave a�rmative
answers on all above-formulated questions. In particular, Q is an elementary abelian
2-group, the action of G on Q is completely irreducible and every 2-chief factors of G
is isomorphic to the natural GF (2m)SL2(2m)-module.

Later Martineau [30, 31] obtained an analogous result for the case when G is
isomorphic to the Suzuki group Sz(2n) and an element of order 5 from G acts on Q
fixed-point-freely.

Continuing the work of Higman, Stewart [39] showed that Q = 1 in the case when
G ⇠= L2(q) for odd q > 5 and an element of order 3 from G acts on Q fixed-point-freely.

The papers of Prince [34, 35], Zurek [43], Holt and Plesken [13] were devoted to the
study of the case, when Q = O2(G), G ⇠= A5 and an element of order 5 from G acts
on Q fixed-point-freely. This case is di�cult, because Q can be a nonabelian group.
Prince and Zurek gave a�rmative answers on the questions 1), 3) and 4). In particu-
lar, Q is a product of G-invariant subgroups Q

i

’s, isomorphic to either a homocyclic
2-group of the rank 4, or the special 2-group of order 28 with the center of order 24

(isomorphic to the unipotent radical some parabolic maximal subgroup in U5(2)). In
addition, in the first case every 2-chief factor of G involving in Q

i

is isomorphic to
the orthogonal (permutational) GF (2)A5-module, and in the second case the group
Z(Q

i

) is isomorphic to the orthogonal GF (2)A5-module, but Q
i

/Z(Q
i

) is isomorphic
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to the natural GF (4)SL2(4)-module. By an early result of G. Higman [11], a theo-
retical upper bound of the nilpotency class of Q was 6. Zurek conjectured that such
bound must be 2. But later on, Holt and Plesken proved that the nilpotency class
of Q is at the most 3 and constructed an example of the group Q of order 228 where
this bound is reached. Using a computer, they showed also that this is an example
of minimal order.

If G ⇠= L2(7) and an element of order 7 from G acts on a 2-group Q fixed-point-
freely then Holt and Plesken in [13] proved that neither the nilpotency class nor the
derived length of Q can be bounded.

Prince [34, 35] proved that if Q = O2(G), G ⇠= A6 and an element of order 5 from G
acts on Q fixed-point-freely then the questions 1) – 4) are solved a�rmatively. Dolfi,
Jabara and Lucido [8] proved that if G ⇠= A6 and an element of order 5 from G
acts on Q fixed-point-freely, then O(Q) is abelian, O(Q) = O3(G) and 3-chief factors
of G are isomorphic to the 4-dimentional permutational GF (3)G-module. In [8], it
is asserted also that if G ⇠= A5 and an element of order 5 from G acts on Q fixed-
point-freely, then O(Q) is abelian. But this assertion is found wrong. Recently, Astill,
Parker and Waldecker in[3] proved that in this situation O(Q) is a nilpotent group
of class at most 2 and, for any odd prime p 6= 5, constructed a r-group of class 2
admitting the group A5 with the mentioned property.

If the socle of the group G is a finite simple group of Lie type over a field of a prime
characteristic p, then, for the solving the item 1) of Problem 1.2, the classification
of Guralnick and Tiep [9] of all unisingular finite simple group of Lie type is useful.
A finite simple group S of Lie type over a field of a prime characteristic p is called
unisingular if any element s 2 S has a non-trivial fixed point in any non-trivial finite
abelian p-group on which S acts.

Zavarnitsine in [41, 42] found some su�cient conditions for an element of a large
prime order in the group S = L±

n

(q), where q is a power of a prime p, to have non-zero
fixed points in S-modules over a field of characteristic p.

The mentioned results of Guralnick–Tiep and Zavarnitsine are useful for the study
of reconizability of finite simple groups by spectrum or prime graph.

The considered partial results show that Problem 1.2 is complicated. In general,
this important problem is far from being solved.

If the table of irreducible Brauer characters is known (for example, from [16] or [17])
then the following result can be applied for the solving the item 1) of Problem 1.2.

Proposition 1.3 Suppose that G is a finite quasi-simple group, F is a field of char-
acteristic p > 0, V is a faithful absolutely irreducible FG-module, and � is a Brauer
character of the module V . If g is an element in G of a prime order coprime to
p|Z(G)|, then

dimC
V

(g) = (�|hgi, 1|hgi) =
1

|g|
X

x2hgi

�(x).

In this paper, we survey the recent author’s results on finite groups with small
prime spectrum.

Our notation and terminology are mostly standard and can be found in [2, 7, 16].
Denote by G1 the last member in the derived series of a finite group G.
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2 Finite 3-primary and 4-primary groups with disconnected prime
graph

The authors investigate finite groups whose prime graph is disconnected and has a
small number of vertices. First of all, let us consider the trivial cases, when the prime
graph of a finite group has one or two vertices. A finite group G is called n-primary
if |⇡(G)| = n. The class of 1-primary groups coincides with the boundless class of
all primary groups. Using Gruenberg-Kegel theorem and the properties of solvable
complements in finite Frobenius groups, it is not di�cult to describe 2-primary (bipri-
mary) groups with disconnected prime graph. They are either Frobenius groups or
2-Frobenius groups of a special form.

In [24, 26], the authors described the chief factors of 3-primary groups with dis-
connected prime graph. In particular, the following theorem is proved.

Theorem 2.1 Let G be a finite threeprimary group with disconnected prime graph
and G = G/F (G). Then, one of the following statements holds:

(1) G is a Frobenius group.

(2) G is a 2-Frobenius group.

(3) s(G) = 3 and either G is isomorphic to A5, A6, L2(7), L2(8), M10 or L2(17), or
G/O2(G) ⇠= L2(2n), where n 2 {2, 3} and O2(G) is a direct product of minimal
normal subgroups of the order 22n in G, each of which as G-module is isomorphic
to the natural GF (2n)SL2(2n)-module.

(4) s(G) = 2, ⇡1(G) = {2, 5} and G ⇠= PGL2(9).

(5) s(G) = 2, ⇡1(G) = {2, 3}, F (G) = O2(G) ⇥ O3(G), and one of the following
statements (i)–(viii) holds:

(i) G ⇠= A5 or S5, any 2-chief factor of the group G as GF (2)G-module is iso-
morphic to one of two 4-dimensional irreducible GF (2)G-modules, and any
3-chief factor of G as GF (3)G-module is isomorphic to the 4-dimensional
irreducible permutation GF (3)G-module.

(ii) G ⇠= A6, S6 or M10, F (G) is the direct product of an elementary abelian
2-group and an abelian 3-group, and F (G) 6= 1 for G ⇠= A6 or M10. If
O2(G) 6= 1 then O2(G) is the direct product of G0-invariant subgroups of or-

der 16 that are as GF (2)G
0
-module isomorphic to either the 4-dimensional

irreducible permutation GF (2)A6-module or conjugated with them by an

outer automorphism of S6. Any 3-chief factor in G0 as GF (3)G
0
-module is

isomorphic to the 4-dimensional irreducible permutation GF (3)A6-module.

(iii) G ⇠= U4(2) and F (G) = O2(G) is an elementary abelian 2-group. Any 2-
chief factor of the group G as GF (4)G-module is isomorphic to the natural
unitary 4-dimensional GF (4)SU4(2)-module.

(iv) G ⇠= L2(8) or Aut(L2(8)), F (G) = O2(G), and F (G) 6= 1 for G ⇠= L2(8).

Any 2-chief factor of the group G0 as GF (8)G
0
-module is isomorphic to the

natural 2-dimensional GF (8)SL2(8)-module or 4-dimensional irreducible
GF (8)L2(8)-module.

(v) G ⇠= L2(7) or PGL2(7), and F (G) 6= 1 for G ⇠= L2(7). Any 2-chief
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factor of the group G0 as GF (2)G
0
-module is isomorphic to the natural

3-dimensional GF (2)SL3(2) modul or to the module conjugated with them
by an outer involutive automorphism of the group SL3(2). Any 3-chief

factor of the group G0 as G
0
-module is isomorphic to the 3-dimensional

irreducible GF (9)L2(7)-module or the 6-dimensional absolutely irreducible
GF (3)L2(7)-module.

(vi) G ⇠= U3(3) or Aut(U3(3))(⇠= G2(2)). Any 2-chief factor of the group G as
GF (2)G-module is isomorphic to the 6-dimensional absolutely irreducible

GF (2)G-module. Any 3-chief factor of the group G0 as GF (9)G
0
-module

is isomorphic to the natural unitary 3-dimensional GF (9)U3(3)-module or
the 6-dimensional GF (9)U3(3)-module.

(vii) G ⇠= L3(3) or Aut(L3(3)). Any 2-chief factor of G0 is isomorphic as

GF (2)G
0
-module to the 12-dimensional absolutely irreducible GF (2)L3(3)-

module. Any 3-chief factor of the group G0 as GF (3)G
0
-module is isomor-

phic to one of the three absolutely irreducible GF (3)L3(3)-modules of the
dimensions 3, 6 or 15; for those dimensions up to isomorphism there exists
exactly two GF (3)L3(3)-modules that are conjugated by an outer involutive
automorphism of the group L3(3).

(viii) G ⇠= L2(17) or PGL2(17) and F (G) 6= 1 for G ⇠= L2(17). Any 2-chief fac-

tor of the group G0 as G
0
-module is isomorphic either to the 8-dimensional

absolutely irreducible GF (2)L2(17)-module, to the module conjugated with
them by an outer involutive automorphism of the group L2(17), to the
16-dimensional absolutely irreducible GF (2)L2(17)-module, or to the 16-
dimensional irreducible GF (8)L2(17)-module. Any 3-chief factor of the
group G as GF (3)G-module is isomorphic to the 16-dimensional absolutely
irreducible GF (3)G- module.

Each item of the theorem is realized.

The proof of Theorem 2.1 uses the well-known description of finite simple 3-primary
groups (see, for example, [10]).

As a corollary of Theorem 2.1, the following result is obtained.

Corollary 2.2 The finite 3-primary almost simple group with disconnected prime
graph is recognizable by prime graph if and only if it is isomorphic to L2(17).

In [25], the authors described chief factors of commutator subgroups of finite 4-
primary groups with disconnected prime graph. In some cases, all possibilities for such
chief factors were not determined; however, the existence of at least one possibility
was proved. The description is too large so we formulate here only first theorem,
which was proved in [25].

Theorem 2.3 Let G be a finite tetraprimary group with disconnected prime graph,
and let G = G/F (G). Then, one of the following statements holds:

(1) G is a Frobenius group;

(2) G is a 2-Frobenius group;

(3) G is an almost simple triprimary group;
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(4) G ⇠= L2(2m), where m � 5, 2m � 1, and (2m + 1)/3 are primes;

(5) G ⇠= L2(3m) or PGL2(3m), where m and (3m � 1)/2 are odd primes and (3m +
1)/4 is either a prime or 112 (for m = 5);

(6) G ⇠= L2(r) or PGL2(r), where r is a prime, 17 6= r � 11, r2�1 = 2a3bsc, s > 3
is a prime, a, b 2 N, and c is either 1 or 2 for r 2 {97, 577};

(7) G ⇠= A7, S7, A8, S8, A9, L2(16), L2(16) : 2, Aut(L2(16)), L2(25), L2(25) : 2,
L2(27) : 3, L2(49), L2(49) : 21, L2(49) : 23, L2(81), L2(81) : 2, L2(81) : 4, L3(4),
L3(4) : 21, L3(4) : 23, L3(5), Aut(L3(5)), L3(7), L3(7) : 2, L3(8), L3(8) : 2,
L3(8) : 3, Aut(L3(8)), L3(17), Aut(L3(17)), L4(3), L4(3) : 22, L4(3) : 23, U3(4),
U3(4) : 2, Aut(U3(4)), U3(5), U3(5) : 2, U3(7), Aut(U3(7)), U3(8), U3(8) : 2,
U3(8) : 31, U3(8) : 33, U3(8) : 6, U3(9), U3(9) : 2, Aut(U3(9)), U4(3), U4(3) : 22,
U4(3) : 23, U5(2), Aut(U5(2)), S4(4), S4(4) : 2, Aut(S4(4)), S4(5), S4(7), S4(9),
S4(9) : 21, S4(9) : 23, S6(2), G2(3), Aut(G2(3)), O

+
8 (2),

3D4(2), Aut(3D4(2)),
Sz(8), Sz(32), Aut(Sz(32)), 2F4(2)0, 2F4(2), M11, M12, Aut(M12), or J2.

The proof of Theorem 2.3 uses the description of finite simple 4-primary groups
obtained in [36, 14, 4]. Shi wrote Question 13.65 in “The Kourovka Notebook” [28]:
Is the number of finite simple tetraprimary groups finite or infinite? However, Shi’s
question is still open.

In the proofs of the theorems from [24, 25, 26], computations are carried out by
applying the computer system GAP. A program written in the language of this system
makes it possible to compute by the formula from Proposition 1.3 the dimension of
the centralizer in the vector space of an element of prime order from a finite simple
group that acts irreducibly on this space.

As a corollary of Theorems 1–8 from [25], the following result is obtained.

Corollary 2.4 A finite 4-primary simple group is recognizable by prime graph if and
only if it is isomorphic to one of the following groups: A8, L3(4), and L2(q), where
|⇡(q2 � 1)| = 3, q > 17, and either q = 3m and m is an odd prime or q is a prime
and q 6⌘ 1 (mod 12) or q 2 {97, 577}.

Theorems 5 and 6 from [25] that are concerned with 4-primary sporadic groups
M11, M12, and J2 refine essentially the corresponding Hagie’s results [6].

Vasil’ev wrote Problem 16.26 in “The Kourovka Notebook” [28] about the find-
ing the maximal number of pairwise nonisomorphic finite nonabelian simple groups
with the same prime graph. It is conjectured that this number equals to 5 and is
achieved on the groups J2, A9, C3(2), D4(2). Theorem 6 from [25] shows that the set
{J2, A9, C3(2), D4(2)} is a maximal set of pairwise nonisomorphic finite nonabelian
simple groups with the same prime graph.

In [27], it is obtained the positive solution for all items of Problem 2.2 in the case
when Q = O2(G), G ⇠= A7 and an element of order 5 from G acts on Q fixed points
freely. The following theorem is proved.

Theorem 2.5 Let G be a finite group with a nontrivial normal 2-subgroup Q and
G/Q ⇠= A7. Suppose that an element of order 5 from G acts on Q fixed points freely.
Then the extension G over Q is split, Q is an elementary abelian group and Q is
the direct product of minimal normal subgroups each of which as GF (2)G/Q-module
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is isomorphic to one of the two 4-dimensional irreducible GF (2)A7-modules that are
conjugated by outer automorphism of the group A7.

3 Finite groups with the same graph as the group Aut(J2)

Khosravi in [18, 19, 20] obtained a description of a group having the same prime
graph as the group Aut(S) for any sporadic simple group S except for the group J2.
He posed the problem: describe all groups G such that �(G) = �(Aut(J2)). Note that
if S is a sporadic simple group then |Aut(S) : S|  2 and graphs �(S) and �(Aut(S))
are disconnected except for the graphs �(Aut(J2)) and �(Aut(McL)). In [22], the
first author solved the Khosravi’s problem. The following theorem is proved.

Theorem 3.1 Let G be a finite group, �(G) = �(Aut(J2)) and G = G/O2(G). Then
one of the following statements holds:

(1) G is soluble, the 2-complement in G is a Frobenius group, whose core is a
7-group and complement B is a cyclic {3, 5}-group of order divisible by 15, the
factor-group G/O{2,7}(G) is isomorphic to a subgroup of order dividing 8|B|
from Hol(C);

(2) G is soluble, the 2-complement R in G is a Frobenius group of form A : B,
where A = F (R) is a biprimary {3, 5}-group, and B is a cyclic 7-group, the
factor-group O70(G)/O2(G) has the normal 2-complement AO2(G)/O2(G), and
the factor-group G/O70(G) is isomorphic to B or the dihedral group of order
2|B|;

(3) G is soluble, the 2-complement R in G is a 2-Frobenius group of form A : B : C,
where A = F (R) is a {3, 5}-group of order divisible by 5, B is a cyclic 7-group,
and |C| = 3, the factor-group O70(G)/O2(G) has the normal 2-complement
AO2(G)/O2(G), and the factor-group G/O70(G) is isomorphic to a Frobenius
group of order 3|B| or 6|B|;

(4) G is isomorphic to one of the groups A8, S8, A9, S9, S6(2), O
+
8 (2), O

+
8 (2) : 2,

J2 or Aut(J2);

(5) G is isomorphic to an extension of a nontrivial nilpotent {3, 5}-group A by
a group B such that F ⇤(B) = O2(B) ⇥ L, where the group L is isomorphic
to A7, the group B/O2(B) is isomorphic to A7 or S7, the group L induces (by
conjugation) on any p-chief factor of the group G

1
the irreducible 6-dimensional

GF (p)A7-module for p 2 {3, 5};
(6) G is isomorphic to an extension of a nilpotent {3, 5}-group A of order divisible

by 5 by a group B such that F ⇤(B) = O2(B)⇥L, where the group L is isomorphic
to U3(3), the group B/O2(B) is isomorphic to U3(3) or G2(2), the group L
induces on any 3-chief factor of the group G

1
the natural unitary 3-dimensional

GF (9)U3(3)-module or the irreducible 6-dimensional GF (9)U3(3)-module, and
on any its 5-chief factor the absolutely irreducible 6-dimensional GF (5)U3(3)-
module;

(7) G is isomorphic to an extension of a nilpotent {3, 5}-group A of order divisible
by 5 by a group B such that F ⇤(B) = O2(B)⇥L, where the group L is isomorphic
to L2(7), the group B/O2(B) is isomorphic to L2(7) or PGL2(7), the group L
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induces on any p-chief factor of the group G
1

the irreducible 3-dimensional
GF (p2)L2(7)-module or the absolutely irreducible 6-dimensional GF (p)L2(7)-
module for p 2 {3, 5};

(8) G is isomorphic to a semidirect product of a nontrivial abelian 3-group A on
a group B such that F ⇤(B) = O2(B) � L, where the group L is isomorphic to
2·L3(4) or 2·U4(3), the group B/F ⇤(B) is isomorphic to a subgroup from D8,
the involution from Z(L) inverts A, and the group L induces on any 3-chief
factor of the group AL the faithful irreducible 6-dimensional GF (3)L-module;

(9) G is isomorphic to a semidirect product of a nontrivial abelian 3-group A on
a group B such that F ⇤(B) = O2(B) � L, where the group L is isomorphic
to 22·L3(4), the group B/F ⇤(B) is isomorphic to a subgroup from 22, Z(L) is
generated by some involutions z1 and z2 such that A = C

A

(z1)⇥C
A

(z2), and the
group L induces on any 3-chief factor of the group AL the faithful irreducible
6-dimensional GF (3)2·L3(4)-module;

(10) G is isomorphic to a semidirect product of a abelian {3, 5}-group A on a group
B such that F ⇤(B) = O2(B) � L, where the group L is isomorphic to 2·J2,
the group B/O2(B) is isomorphic to J2 or Aut(J2), the involution from Z(L)
inverts A, and the group L induces on any 3-chief factor of the group AL the
faithful irreducible 6-dimensional GF (9)L-module and on any its 5-chief factor
the faithful irreducible 6-dimensional GF (5)L-module;

(11) G is isomorphic to an extension of a nilpotent {3, 5}-group A of order divisible by
5 by a group B such that F ⇤(B) = O2(B) �L, where the group L is isomorphic
to SL2(7), the group B/O2(B) is isomorphic to L2(7) or PGL2(7), and the
group L induces on any p-chief factor of the group G

1
for p 2 {3, 5} either a

unfaithful irreducible L-module with the core of order 2 (see item (7)), or the
faithful irreducible 6-dimensional GF (p2)L-module

Each from items (1)–(11) of the theorem is realised.

As a corollary of Theorem 3.1, we obtain:

Corollary 3.2 A finite group G such that |G| = |Aut(J2)| and �(G) = �(Aut(J2))
is isomorphic to Aut(J2), 2⇥ J2 or 2·J2.

4 Finite groups with the same graph as the group A10

The group A10 is exceptional in many senses. It is the only group with connected
prime graph among all finite simple groups from “Atlas of Finite Groups” [7] and
also among all 4-primary simple groups. The non-recognizability by spectrum of the
group A10 was established by Mazurov [32] in 1998. Staroletov in [37, 38] determined
the structure of the group G such that !(G) = !(A10) and in particular proved its
unsolvability. In [33] it is proved that the group A10 is recognizable by its prime
graph and order. Extending these results, recently the first author in [23] describe all
finite group with the same prime graph as the group A10. The following theorem is
proved.

Theorem 4.1 Let G be a finite group, �(G) = �(A10 and G = G/O3(G). Then one
of the following statements holds:
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(1) G is soluble, 3-complement R in G is a Frobenius group, whose core is a non-
cyclic 7-group and complement B is a biprimary group of form C : D, where C
is a cyclic 5-group and D is a cyclic or (generalized) quaternion 2-group, the
factor-group G/O(G) is isomorphic to D, SL2(3), or Q8.S3;

(2) G is soluble, 3-complement R in G is a Frobenius group of form A : B, where
A = F (R) is a biprimary {2, 5}-group and B is a cyclic 7-group, the factor-
group O70(G)/O3(G) has the normal 3-complement AO3(G)/O3(G), and the
factor-group G/O70(G) is isomorphic to B or a Frobenius group of order 3|B|;

(3) G is soluble, 3-complement R in G is a 2-Frobenius group of form A : B : C,
where A = F (R) is a {2, 5}-group of order divisible by 5, B is a cyclic 7-group,
and |C| = 2, the factor-group O70(G)/O3(G) has the normal 2-complement
AO3(G)/O3(G), and the factor-group G/O70(G) is isomorphic to a Frobenius
group of order 2|B| or 6|B|;

(4) G is isomorphic to a semidirect product of a nontrivial abelian 7-group A on
a group B such that F ⇤(B) = O3(B) ⇥ L, where the group L is isomorphic to
SL2(q) for q 2 {5, 9}, the group B/O3(B) is isomorphic to L2(q) or PGL2(q),
and any 7-chief factor of the group AL as L-module is isomorphic for q = 5
to the faithful irreducible 2-dimensional GF (49)SL2(5)-module or the faithful
irreducible 4-dimensional GF (7)SL2(5)-module, and for q = 9 to one of two
quasiequivalent faithful irreducible 4-dimensional GF (7)SL2(9)-modules;

(5) G is isomorphic to one of the groups S7, S8, A9, A10, PGL2(49), L3(4) : 23,
L3(4).3.23, U3(5), U3(5) : 2, U3(5) : 3, U3(5) : S3, S6(2), O

+
8 (2), O

+
8 (2) : 3, or

J2;

(6) G is isomorphic to an extension of a nilpotent {3, 5}-group A of order divisible
by 5 by a group B such that F ⇤(B) = O3(B)⇥L, where the group L is isomorphic
to L2(7), the group B/O3(B) is isomorphic to L2(7) or PGL2(7), any 2-chief
factor of the group G

1
as L-module is isomorphic to one of two quasiequivalent

irreducible 3-dimensional GF (3)L2(7)-modules, and any 5-chief factor of the
group G

1
as L-module is isomorphic either to the irreducible 3-dimensional

GF (25)L2(7)-module or to the absolutely irreducible 6-dimensional GF (5)L2(7)-
module;

(7) G is isomorphic to an extension of a nontrivial nilpotent {2, 5}-group A by a
group B such that F ⇤(B) = O3(B)⇥L, where the group L is isomorphic to A7

or U3(3), |B : F ⇤(B)|  2, and any p-chief factor of the group G
1

as L-module
is isomorphic to the irreducible 6-dimensional GF (p)L-module for p 2 {2, 5};

(8) G is isomorphic to an extension of a nontrivial nilpotent {2, 5}-group A by a
group B such that F ⇤(B) = O3(B) � L, where L ⇠= 3·A7, the group B/O3(B)
is isomorphic to L or Aut(L), any p-chief factor of the group G

1
as L-module

for for p 2 {2, 5} is isomorphic either to the faithful irreducible 6-dimensional
GF (p2)L-module or to the unfaithful irreducible 6-dimensional GF (p)L-module
with the core of order 3 (see the item (6));

(9) G is isomorphic to an extension of a nontrivial 5-group A by a group B such
that F ⇤(B) = O3(B) �L, where L ⇠= SU3(5), the group B/O3(B) is isomorphic
to a subgroup from Aut(L), any 5-chief factor of the group G

1
as L-module is

isomorphic to the faithful irreducible 3-dimensional or 6-dimensional GF (25)L-
module;
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(10) G is isomorphic to an extension of a nontrivial 2-group A by a group B such that
F ⇤(B) = O3(B)�L, where the group L is isomorphic to A8, S6(2), 3·U4(3) or J2,
the group B/O3(B) is isomorphic to a subgroup from S8, S6(2), U4(3).22/3 or

J2, respectively, any 2-chief factor of the group G
1

as L-module is isomorphic
to the faithful irreducible 6-dimensional L-module over the field GF (2) for the
first and second cases and over the field GF (4) for the remaining cases;

(11) G is isomorphic to an extension of a nontrivial 2-group A by a group B such
that F ⇤(B) = O3(B) � L, where the group L is isomorphic to L3(4) or SL3(4),
the group B/O3(B) is isomorphic to a subgroup from L3(4).6 or L3(4).3.23, re-
spectively, any 2-chief factor of the group G

1
as L-module is isomorphic either

to the natural 3-dimensional GF (4)SL3(4)-module or to one of two quasiequiv-
alent unfaithful irreducible 9-dimensional GF (2)SL3(4)-modules with the core
of order 3.

Each from items (1)–(11) of the theorem is realised.

Since the di↵erent prime graphs �(Aut(J2)) and �(A10) are isomorphic as abstract
graphs, the arguments in the proofs of Theorems 3.1 and 4.1 are similar. It is inter-
esting that �(Aut(J2)) = �(2⇥ J2) and �(A10) = �(3⇥ J2).
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Abstract

We study how the solvability of finite loops follows from certain properties of their
multiplication groups and inner mapping groups. In this survey we review the progress
of this research problem from the last two decades and the best results achieved so far.
We also introduce a few new improvements with proofs in order to give the readers
some idea about the basic methods used in this study.

1 Introduction

Let Q be a groupoid with a neutral element e. If the equations ax = b and ya = b
have unique solutions x and y in Q for every a, b 2 Q, then we say that Q is a
loop. If a loop Q is associative, then it is in fact a group. For each a 2 Q we
have two permutations La (left translation) and Ra (right translation) on Q, defined
by La(x) = ax and Ra(x) = xa for every x 2 Q. These permutations generate a
permutation group M(Q), which is called the multiplication group of Q. Clearly,
M(Q) is a transitive permutation group on Q. The stabilizer of the neutral element e
is called the inner mapping group ofQ and denoted by I(Q). IfQ is a group, then I(Q)
is just the group of inner automorphisms of Q. The concepts of the multiplication
group and the inner mapping group of a loop were defined by Bruck [1] in 1946.

A subloopH of Q is normal inQ if x(yH) = (xy)H , (xH)y = x(Hy) and xH = Hx
for every x, y 2 Q. As in groups, a subloop H of a loop Q is normal if and only if H
is the kernel of some homomorphism of Q. A loop Q is said to be solvable if it has a
series 1 = Q0 ✓ · · · ✓ Qn = Q, where Qi�1 is normal in Qi and Qi/Qi�1 is an abelian
group for each i.

2 Connected transversals

Let G be a group, H  G and let A and B be two left transversals to H in G. We
say that the two transversals A and B are H-connected if a�1b�1ab 2 H for every
a 2 A and b 2 B. If A and B are H-connected, it follows that also Ag and Bg are left
transversals to H in G for every g 2 G [13, Lemma 2.1 and Lemma 2.2]. We denote
by HG the core of H in G (the largest normal subgroup of G contained in H).

Let Q be a loop and write A = {La : a 2 Q} and B = {Ra : a 2 Q}. Now these two
sets are left (and right) transversals to I(Q) in M(Q) and as [A,B]  I(Q), they are
I(Q)-connected. Moreover, M(Q) = hA,Bi and the core of I(Q) in M(Q) is trivial.
In 1990 Niemenmaa and Kepka proved the following theorem [13, Theorem 4.1], which
gives the relation between multiplication groups of loops and connected transversals.
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Theorem 2.1 A group G is isomorphic to the multiplication group of a loop if and

only if there exist a subgroup H and H-connected transversals A and B such that

HG = 1 and G = hA,Bi.

In the following results, which are needed later, we assume thatH  G and A andB
are H-connected transversals in G.

Lemma 2.2 If HG = 1, then 1 2 A \B.

Proof Let 1 = ah, where a 2 A and h 2 H . Then h = a�1, and b�1hb = b�1a�1b =
b�1a�1bah 2 H for every b 2 B. Thus h 2

T
b2B Hb�1

= 1, and hence 1 = a 2 A. In
a similar manner we show that 1 2 B. ⇤

Lemma 2.3 If HG = 1, then NG(H) = H ⇥ Z(G).

Lemma 2.4 If C ✓ A [B and K = hH,Ci, then C ✓ KG.

For the proofs, see [13, Proposition 2.7 and Lemma 2.5].

Lemma 2.5 Let N be a normal subgroup of G and set Ḡ = G/N . Then Ā and B̄
contain H̄-connected transversals in Ḡ.

Proof Now [aN, bN ] = [a, b]N ✓ HN , and clearly ANH = BNH = G. Thus
[Ā, B̄]  H̄ and ĀH̄ = B̄H̄ = Ḡ. ⇤

3 Solvability criteria for finite loops

In 1996 Vesanen [15] studied the connection between solvable loops and solvable
groups. He was able to prove the following

Theorem 3.1 Let Q be a finite loop. If M(Q) is a solvable group, then Q is a

solvable loop.

This result opened new possibilities to study the solvability of finite loops. By
combining this result with the theorem of Niemenmaa and Kepka, we may create
solvability criteria for finite loops in terms of their inner mapping groups. Hence we
focus on the following

Question 3.2 Which properties of the inner mapping group I(Q) of a finite loop Q
guarantee the solvability of M(Q), and hence that of the loop Q?

In [14], Niemenmaa and Kepka managed to show that M(Q) and Q are solvable
provided that I(Q) is abelian. The case where I(Q) is a nonabelian group of order pq
was first investigated in [11]. The case where |I(Q)| = 2p was solved by Csörgő
and Niemenmaa in [2] and in 2002 Drápal [3] finally managed to solve the entire
nonabelian case of order pq.

The following series of results forms the best answers achieved so far. The proofs
to the following theorems can be found in [10, Theorem 1], [12, Theorem 3.1], [8,
Theorem 2.7, Theorem 3.2 and Theorem 3.3] and [9, Theorem 3.4].

In the following four theorems we assume that there exist H-connected transversals
A and B in G.
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Theorem 3.3 Assume that G is a finite group, H  G and H is nilpotent. Then G
is solvable.

Theorem 3.4 Assume that G is a finite group, H  G and H is either a dihedral

group or a nonabelian group of order pq (p 6= q are odd primes). Then G is solvable.

Theorem 3.5 Assume that G is a finite group, H  G and H = S ⇥ L, where S
is either a dihedral group or a nonabelian group of order pq (p 6= q are odd primes),

L is abelian and gcd(|S|, |L|) = 1. Then G is solvable.

Theorem 3.6 Assume that G is a finite group, H  G and H = D⇥ S, where D is

a dihedral 2-group and S is a nonabelian group of order pq (p 6= q are odd primes).

Then G is solvable.

Next we state and prove some minor improvements. These proofs give an idea of
the structure of the proofs of some of the solvability theorems above.

A group is called a Dedekind group, if its every subgroup is normal. A finite
Dedekind group is either abelian or of the formQ8⇥K⇥N , where Q8 is the quaternion
group, K is an elementary abelian 2-group and N is an abelian group of odd order
(for the details, see [6, pp. 308–309]). Clearly, a finite Dedekind group is nilpotent.

Theorem 3.7 Let G be a group, H  G and H = D ⇥ S, where D is a finite

Dedekind group, S is a nonabelian group of order pq (p 6= q are odd primes) and

gcd(|D|, |S|) = 1. If there exist H-connected transversals A and B in G, then G is

solvable.

Proof First, let G be a finite group. Assume that G is a minimal counterexample.
If D is abelian, then by Theorem 3.5, G is solvable. Thus we may assume that
D = Q8 ⇥K ⇥N , where Q8, K and N are defined as above.

If HG > 1, then we consider G/HG and its subgroup H/HG. Here either H/HG
⇠=

D0 orH/HG
⇠= D0⇥S, whereD0 is a Dedekind group. By Theorem 3.3 or by induction

combined with Lemma 2.5, G/HG is solvable, and hence G is solvable.
Thus we may assume that HG = 1. If H is not maximal in G, then there exists

a subgroup T such that H < T < G. By Lemma 2.4, TG > 1 and we may consider
G/TG and its subgroup HTG/TG = T/TG. Again by Theorem 3.3 or induction, we
conclude that G/TG is solvable. Since T is solvable by induction, TG is solvable, and
we conclude that G is solvable.

Thus we may assume that H is maximal in G. Now Q8⇥K is a Sylow 2-subgroup
ofH . If [G : H] is even, then there exists a 2-subgroup R of G such that [R : Q8⇥K] =
2. But then Q8 ⇥K E hH,Ri = G, as H is maximal in G, which is a contradiction,
as HG = 1. Thus we may assume that [G : H] is odd, and hence Q8 ⇥K is a Sylow
2-subgroup of G.

If 1 < L  Q8 ⇥K, then L is normal in H. Since HG = 1 and H is maximal in G,
it follows that NG(L) = H . As CG(L) � N ⇥S, NG(L)/CG(L) is a 2-group for every
1 < L  Q8⇥K. By Frobenius normal p-complement theorem, G is then 2-nilpotent.
Thus G = MP , where M is normal in G, P ⇠= Q8 ⇥K is a Sylow 2-subgroup of G
and gcd(|M |, |P |) = 1.
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If 1 6= a 2 A, then a = yx, where y 2 P and x 2 M . Then aM = yM and
(aM)d = M , where d divides |P |. Thus ad 2 M , hence (ad)t = 1, where t divides |M |.
It follows that (at)d = 1, hence |at| divides d, and |P |. As P is a Sylow 2-subgroup
ofG, at 2 P g for some g 2 G. Now P g is a Dedekind group, and hence hatiEhHg, ai =
G, as A is a left transversals to Hg, too. But (Hg)G = 1, and we conclude that
at = 1. As gcd(d, t) = 1, there exist integers m and n such that md + nt = 1. Thus
a = amd+nt = (ad)m(at)n = (ad)m 2 M .

We may conclude that A [ B ✓ M . Now G = AH = APNS = MP , and hence
M = A(NS) = B(NS). Here [A,B]  M \H = NS and thus by Theorem 3.5, M is
solvable and hence G is solvable.

Then assume that G is infinite. Let first G = hA,Bi. Let a 2 A and k 2 H be
fixed and write E(a, k) = {b 2 B : a�1b�1ab = k}. If b, c 2 E(a, k), then a�1b�1ab =
a�1c�1ac, and hence bc�1 2 CG(a) and b 2 CG(a)c. Thus E(a, k) ✓ CG(a)ck, where
ck 2 E(a, k) is fixed.

Now B =
S

k2H E(a, k), and hence G = BH ✓ CG(a){ck : k 2 H}H . Thus
[G : CG(a)]  |H |2 is finite for every a 2 A. Similarly we see that [G : CG(b)] is finite
for every b 2 B. As G = hA,Bi, it follows that

[G : CG(H)] = [G :
\

h2H
CG(h)] 

Y

h2H
[G : CG(h)]

is finite, and hence [G : NG(H)] is finite, too.
By Lemma 2.3, NG/HG

(H/HG) = H/HG⇥Z(G/HG). Thus NG(H) = HM , where
M/HG = Z(G/HG) and M is normal in G. Now [G : M ] = [G : HM ][HM : M ] =
[G : NG(H)][H : H \ M ] is finite, and we may consider G/M and its subgroup
HM/M ⇠= H/H \M . By the first part of the proof, G/M is solvable. As M/HG =
Z(G/HG) is abelian, M is solvable, and thus G is solvable, too.

Assume now that K = hA,Bi is a proper subgroup of G. Then A and B are
K \H-connected transversals in K. By the previous part of the proof, K is solvable.
Since G = KH, [G : K] is finite. Thus

[G : KG] = [G :
\

g2G
Kg] 

Y

g2G
[G : Kg]

is finite, as there are only finitely many conjugates of K in G. Now we consider G/KG

and its subgroup HKG/KG
⇠= H/H\KG. Again by the first part of the proof, G/KG

is solvable. As K is solvable, G is also solvable. ⇤

Remark 3.8 In the previous proof, we were able to avoid using the odd order theo-
rem. However, in the proofs of Theorems 4.2 and 4.3 it is necessary.

Remark 3.9 Here we were able to prove the infinite case, too. However, this does not
add to the loop theoretical consequence which we receive by applying Theorems 2.1
and 3.1 to Theorem 3.7.

4 Solvability criteria for loops of odd order

As M(Q) is transitive on Q and I(Q) is the stabilizer of the neutral element, |Q| =
[M(Q) : I(Q)]. Thus, if Q is a loop of odd order and its inner mapping group I(Q)
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has odd order too, then Q is solvable by Theorem 3.1 and the odd order theorem.
However, loops of odd order are not solvable in general.

Left cosets of a normal subloop form a partition of the loop (this is not true for
any subloop). Thus the order of a normal subloop must divide the order of the loop.
This implies that every non-associative loop of prime order is in fact non-solvable.
The smallest example of a non-solvable loop (of odd order) is also the smallest non-
associative loop. The loop is given by the following multiplication table.

1 2 3 4 5
2 1 4 5 3
3 5 1 2 4
4 3 5 1 2
5 4 2 3 1

Here (3 · 4) · 5 6= 3 · (4 · 5), and thus the loop is non-associative.
In some special cases the analogue of the odd order theorem holds for loops. A

loop is called a Moufang loop if it satisfies the identity x(y(zy)) = ((xy)z)y. In 1968,
Glauberman [4] was able to show that Moufang loops of odd order are solvable. A
loop is an automorphic loop if its every inner mapping is an automorphism. Recently,
Kinyon, Kunen, Phillips and Vojtĕchovský [7] were able to prove that the odd order
theorem holds for automorphic loops, too.

In this section, we consider the situation where |Q| is odd and |I(Q)| is even.
Which conditions for I(Q) imply the solvability of the loop Q? Naturally, all results
in Section 3 hold for loops of odd order, too.

In the proof of our next result, we need the following theorem by Gorenstein and
Walter ([5, Theorem 1]).

Theorem 4.1 Let G be a finite group with dihedral Sylow 2-subgroups. Let O(G) de-
note the maximal normal subgroup of odd order. Then G satisfies one of the following

conditions:

1. G/O(G) is isomorphic to a subgroup of P�L(2, q) containing PSL(2, q), q odd.

2. G/O(G) is isomorphic to the alternating group A7.

3. G/O(G) is isomorphic to a Sylow 2-subgroup of G.

Theorem 4.2 Let G be a finite group, H  G and H = D⇥T , where D is a dihedral

group, T is a group of odd order and gcd(|D|, |T |) = 1. If there exist H-connected

transversals A and B in G and [G : H] is odd, then G is solvable.

Proof Assume that G is a minimal counterexample. If 4 doesn’t divide |G|, then
the Sylow 2-subgroups of G are cyclic, and by Burnside’s folklore theorem, G is
2-nilpotent and thus solvable by the odd order theorem. Thus we may assume that
4 divides |G|. If [G : H ] = 1, then G = H and G is solvable. Thus we may assume
that [G : H ] > 1. By the odd order theorem, Burnside’s theorem or induction, we
conclude that HG = 1 and H is maximal in G (see the proof of Theorem 3.7).

Now the Sylow 2-subgroup E of D is also the Sylow 2-subgroup of G. Since E is
dihedral, we may use Theorem 4.1. If O(G) > 1 is the maximal normal subgroup of
odd order, then G = O(G)H and G is solvable by the odd order theorem.
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Thus we may assume thatO(G) = 1. As [G : H ] > 1, G is not a 2-group. IfG ⇠= A7,
then G cannot have a maximal subgroup which is isomorphic to H = D ⇥ T . Thus
we are left with the case that G is isomorphic to a subgroup of P�L(2, q) containing
PSL(2, q) (here q = pn for an odd prime p). Since P�L(2, q) ⇠= PGL(2, q) o Cn, it
follows that G = NH, where N ⇠= PSL(2, q) is normal in G and G/N is abelian.

Now N \H = (N \D)⇥ (N \ T ), where N \D is dihedral. If N \ T is nontrivial,
then N \H  N ⇠= PSL(2, q) is not possible. Thus N \T = 1 and H/N \H ⇠= G/N
contains a subgroup isomorphic to T . But then T must be abelian, and again G is
solvable by Theorem 3.5. ⇤

Theorem 4.3 Let G be a finite group, H  G and H = D⇥T , where D is a Dedekind

group, T is a group of odd order and gcd(|D|, |T |) = 1. If there exist H-connected

transversals A and B in G and [G : H] is odd, then G is solvable.

Proof Assume again that G is a minimal counterexample. By induction or the odd
order theorem, we conclude that HG = 1 and H is maximal in G (see the proof of
Theorem 3.7).

Assume first that D is abelian. If |D| is odd, then G is solvable by the odd order
theorem. Let then |D| be even, and as [G : H ] is odd, D contains a Sylow 2-subgroup
of G. If 1 < L  D is a 2-group, then L is normal in H, and since HG = 1 and
H is maximal in G, NG(L) = H. As CG(L) = H , NG(L)/CG(L) is trivial for every
2-group L  D.

Assume now that D is a nonabelian Dedekind group. Thus D = Q8 ⇥ K ⇥ N ,
where Q8 is the quaternion group, K is an elementary abelian 2-group and N is an
abelian group of odd order. As [G : H ] is odd, Q8⇥K is a Sylow 2-subgroup of G. If
1 < L  Q8 ⇥K, then L is normal in H and again NG(L) = H . As CG(L) � N ⇥ T ,
NG(L)/CG(L) is a 2-group for every 2-group L  D.

In any case, NG(L)/CG(L) is a 2-group for every 2-group L of G. By Frobenius
normal p-complement theorem, G is 2-nilpotent, and thus solvable by the odd order
theorem. ⇤

If [G : H] is odd and H has a cyclic Sylow 2-subgroup, then G is 2-nilpotent, and
hence solvable. We introduce the following

Conjecture 4.4 Let G be a finite group and H  G, where H is a solvable group with

the Klein four-group as a Sylow 2-subgroup. If there exist H-connected transversals

A and B in G, [G : H] is odd and G = hA,Bi, then G is solvable.

Remark 4.5 The last assumption is unavoidable: Let G = A5, H  G, H ⇠= A4

and A = B = hxi, where |x| = 5. Then A and B are H-connected transversals in G,
[G : H] is odd, H is solvable and the Sylow 2-subgroup of H is the Klein four-group,
but G is not solvable.

5 Loop theoretical interpretation

By combining Theorem 2.1 with Theorems 3.3, 3.4, 3.5, and 3.6 and by applying
Theorem 3.1, we have
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Theorem 5.1 Let Q be a finite loop. If I(Q) is nilpotent, dihedral or a nonabelian

group of order pq (p 6= q are odd primes), then M(Q) is a solvable group and Q is a

solvable loop.

Theorem 5.2 Let Q be a finite loop. If I(Q) = S ⇥ L, where S is either a dihedral

group or a nonabelian group of order pq (p 6= q are odd primes), L is abelian and

gcd(|S|, |L|) = 1, then M(Q) is a solvable group and Q is a solvable loop.

Theorem 5.3 Let Q be a finite loop. If I(Q) = D ⇥ S, where D is a dihedral

2-group and S is a nonabelian group of order pq (p 6= q are odd primes), then M(Q)
is a solvable group and Q is a solvable loop.

By combining Theorem 2.1 with Theorems 3.7, 4.2, and 4.3 and by applying The-
orem 3.1, we obtain

Theorem 5.4 Let Q be a finite loop. If I(Q) = D⇥S, where D is a Dedekind group,

S is a nonabelian group of order pq (p 6= q are odd primes) and gcd(|D|, |S|) = 1,
then M(Q) is a solvable group and Q is a solvable loop.

Theorem 5.5 Let Q be a loop of odd order. If I(Q) = D⇥ T , where D is a dihedral

group, T is a group of odd order and gcd(|D|, |T |) = 1, then M(Q) is a solvable group

and Q is a solvable loop.

Theorem 5.6 Let Q be a loop of odd order. If I(Q) = D⇥T , where D is a Dedekind

group, T is a group of odd order and gcd(|D|, |T |) = 1, then M(Q) is a solvable group

and Q is a solvable loop.
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Leppälä: Solvability criteria for finite loops and groups 367

[12] M. Niemenmaa, Finite loops with dihedral inner mapping groups are solvable, J. Algebra
273 (2004), 288–294.

[13] M. Niemenmaa and T. Kepka, On multiplication groups of loops, J. Algebra 135 (1990),
112–122.

[14] M. Niemenmaa and T. Kepka, On connected transversals to abelian subgroups, Bull.
Austral. Math. Soc. 49 (1994), 121–128.

[15] A. Vesanen, Solvable loops and groups, J. Algebra 180 (1996), 862–876.



THE RATIONAL SUBSET MEMBERSHIP PROBLEM FOR
GROUPS: A SURVEY

MARKUS LOHREY

Department für Elektrotechnik und Informatik, University of Siegen, Hölderlinstraße 3, D-
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Abstract

The class of rational subsets of a group G is the smallest class that contains all
finite subsets of G and that is closed with respect to union, product and taking the
monoid generated by a set. The rational subset membership problem for a finitely
generated group G is the decision problem, where for a given rational subset of G and
a group element g it is asked whether g ∈ G. This paper presents a survey on known
decidability and undecidability results for the rational subset membership problem
for groups. The membership problems for finitely generated submonoids and finitely
generated subgroups will be discussed as well.

1 Introduction

The study of algorithmic problems in group theory has a long tradition. Dehn [13],
in his seminal paper from 1911, introduced the word problem (Does a given word
over the generators represent the identity?), the conjugacy problem (Are two given
group elements conjugate?) and the isomorphism problem (Are two given finitely
presented groups isomorphic?), see [38] for general references in combinatorial group
theory. Starting with the work of Novikov and Boone from the 1950’s, all three
problems were shown to be undecidable for finitely presented groups in general. A
generalization of the word problem is the subgroup membership problem (also known
as the generalized word problem) for finitely generated groups: Given group elements
g, g1, . . . , gn, does g belong to the subgroup generated by g1, . . . , gn? Explicitly, this
problem was introduced by Mihailova [42] in 1959, although Nielsen [47] had already
presented an algorithm for the subgroup membership problem for free groups in his
paper from 1921.

Motivated partly by automata theory, the subgroup membership problem was fur-
ther generalized to the rational subset membership problem. Assume that the group
G is finitely generated by the set X (where a ∈ X if and only if a−1 ∈ X). A finite
automaton A with transitions labelled by elements of X defines a subset L(A) ⊆ G in
the natural way; such subsets are the rational subsets of G, see Sections 2 and 3 for
precise definitions. The rational subset membership problem asks whether a given
group element belongs to L(A) for a given finite automaton (in fact, this problem
makes sense for any finitely generated monoid). The notion of a rational subset of
a monoid can be traced back to the work of Eilenberg and Schützenberger [15] from
1969. The first decidability result for the rational subset membership problem was
shown by Benois [5]: Every finitely generated free group has a decidable rational



Lohrey: The rational subset membership problem for groups 369

subset membership problem.
It seems that after Benois’ work the rational subset membership problem had been

forgotten for a long time. Aspects of rational sets in monoids that are close to classical
formal language theory were studied in the 1980s and 1990s, see [7, 18] for surveys.
Only in 1999, Grunschlag [19] returned to the rational subset membership problem
in his thesis. He proved that the rational subset membership problem is decidable for
finitely generated abelian groups and that decidability of the rational subset member-
ship problem is preserved by finite extensions. Also in 1999, Roman’kov presented at
a conference a proof, showing that the rational subset membership problem is unde-
cidable for nilpotent groups (even of class 2), see Section 7. The next step was done
by Kambites, Silva, and Steinberg [26] in 2006. They proved that the rational subset
membership problem is decidable for the fundamental group of a graph of groups,
provided that (i) all edge groups are finite and (ii) every vertex group has a decidable
rational subset membership problem, see Section 5. Further (un)decidability results
on the rational subset membership problem in various classes of groups (right-angled
Artin groups, metabelian groups, wreath products) can be found in [33, 36, 37], see
Sections 6, 8, and 9. The latter three papers also studied the submonoid membership
problem, which sits in between the subgroup membership problem and the rational
subset membership problem. The input consists of group elements g, g1, . . . , gn ∈ G
and it is asked whether g belongs to the submonoid of G generated by g, g1, . . . , gn.
In [35] it was shown that if the group G has at least two ends, then the rational sub-
set membership problem for G is decidable if and only if the submonoid membership
problem for G is decidable, see Section 10.

Rational subsets of groups also found applications for the solution of word equations
(here, quite often the term rational constraint is used) [14, 31]. In automata theory,
rational subsets are tightly related to valence automata: A valence automaton over a
monoid M (the term M -automaton is also used) is a finite automaton, where every
transition is labeled with an input symbol and an element of M . A word w is accepted
by such a valence automaton if there exists a path from the initial state to a final state
such that (i) the concatenation of the inputs symbols along this path yields the word w
and (ii) the product of the M -elements along the path is the monoid identity. For any
group G, the emptiness problem for valence automata over G is decidable if and only
if G has a decidable rational subset membership problem. See [10, 16, 24, 26, 60, 61]
for details on valence automata.

2 Finite automata

We assume that the reader has some background in computability theory. She or he
should be familiar with the concepts of a decidable problem (also called computable
problem) and undecidable problem (also called unsolvable problem or insoluble prob-
lem), see, e.g., [51] for background. In Section 4, we present a proof that requires some
basic knowledge of complexity theory, in particular the theory of NP-completeness,
see [48] for background. Although we give all needed definitions related to finite
automata, some background on automata theory (see, e.g., [21]) makes the paper
certainly easier to read.

Let X be a finite set of symbols, which is also called an alphabet. With X∗ we
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denote the set of all finite words w = a1a2 · · · an with a1, . . . , an ∈ X. If n = 0, then
w is the empty word, which is also denoted by ε. A subset of X∗ is also called a
language. A finite automaton over X is a tuple A = (Q,∆, q0, F ), where

• ∆ ⊆ Q×X ×Q is the set of transitions,

• q0 ∈ Q is the initial state, and

• F ⊆ Q is the set of final states.

The language accepted byA, denoted by L(A), is the set of all words w = a1a2 · · · an ∈
X∗ for which there exist states q1, q2, . . . , qn ∈ Q with (qi−1, ai, qi) ∈ ∆ for 1 ≤ i ≤ n
(note that for i = 1, qi−1 = q0 is the initial state) and qn ∈ F . Languages of the form
L(A) for A a finite automaton are called regular.

A finite automaton over X with ε-transitions is defined as above, except that
∆ ⊆ Q × (X ∪ {ε}) × Q. A transition (q, ε, p) ∈ ∆ means that the automaton can
move from state q to state p without reading an input symbol. It is well-known that
for every finite automaton with ε-transitions there exists an ordinary finite automaton
(without ε-transitions) that accepts the same language [21]. Allowing ε-transitions
sometimes simplifies technical details in proofs.

3 Rational subsets of groups

We assume that the reader has some background in combinatorial group theory. A
classical reference is [38]. Let G be a finitely generated group andX a finite symmetric
generating set for G (symmetric means that X is closed under taking inverses). This
mean that the canonical morphism π : X∗ → G that maps a word w ∈ X∗ to the
group element of G represented by w is surjective. Hence, elements of group G can
be represented by finite words over the alphabet X. When we say below that the
input for a decision problem consists of a group element g ∈ G (plus possibly some
other objects), then we actually mean that the input consists of a finite word w ∈ X∗

that represents the group element g.
Let us fix a monoid M . For a subset B ⊆ M we denote by B∗ the submonoid of M

generated by B. Of course we have to distinguish B∗ from the set of all words over
B, which is also denoted by B∗. It will be always clear, whether B∗ is viewed as the
set of all words over B or as the submonoid of M generated by B. In the case M is a
group, we denote with ⟨B⟩ the subgroup generated by B. The set of rational subsets
of M is the smallest subset of 2M that (i) contains all finite subsets of M and (ii) is
closed under union, product, and ∗.

In the following, we will mainly consider rational subsets of a group G. If G is
finitely generated by X∗ and π : X∗ → G is the corresponding canonical homomor-
phism, then rational subsets of G can be represented by finite automata over X. The
following result can be deduced from Kleene’s theorem for regular languages, see [18]
for a proof:

Proposition 3.1 Let G be a finitely generated group, let X be a finite generating
set for G, and let π : X∗ → G be the corresponding canonical homomorphism. A
subset L ⊆ G is rational if and only if there is a finite automaton A over X such that
L = π(L(A)).
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This characterization of rational subsets is useful since it allows us to represent a
rational subset of G by a finite automaton over X.

We consider the following decision problem for a finitely generated groupG together
with a canonical morphism π : X∗ → G.

Decision problem 3.2 (Rational subset membership problem for G)

• INPUT: A finite automaton A over X and an element g ∈ G.

• QUESTION: Does g ∈ π(L(A)) hold?

Note that g ∈ L(A) if and only if 1 ∈ L(A)g−1. Moreover, the set L(A)g−1 is rational
too and a finite automaton for this set can be constructed from A and g. Hence, the
rational subset membership problem for G is equivalent to the following problem:

• INPUT: A finite automaton A over X.

• QUESTION: Does 1 ∈ π(L(A)) hold?

Decision problem 3.3 (Submonoid membership problem for G)

• INPUT: Elements g, g1, . . . , gn ∈ G.

• QUESTION: Does g ∈ {g1, . . . , gn}∗ hold?

Decision problem 3.4 (Subgroup membership problem for G)

• INPUT: Elements g, g1, . . . , gn ∈ G.

• QUESTION: Does g ∈ ⟨g1, . . . , gn⟩ hold?

The subgroup membership problem for G is also known as the generalized word prob-
lem for G or as the occurrence problem for G.

Strictly speaking, we should speak of the rational subset membership problem for
G with respect to π : X∗ → G, since another choice for the generating set leads to
another decision problem. On the other hand, if X and Y are two finite generating
sets for G with canonical morphisms π : X∗ → G and σ : Y ∗ → G, then the rational
subset membership problem for G with respect to π : X∗ → G is decidable, if and
only if the rational subset membership problem for G with respect to σ : Y ∗ → G is
decidable. For the proof, one chooses a morphism ρ : Y ∗ → X∗ such that for every
a ∈ Y , σ(a) = π(ρ(a)) (clearly, such a morphism exists). Then, for w ∈ Y ∗ and a
finite automaton A over Y , we have σ(w) ∈ σ(L(A)) if and only if π(ρ(w)) ∈ π(L(B)).
Here, B is the automaton over X that results from A by replacing every a-labelled
transition (a ∈ Y ) by a chain of transitions that is labelled with the word ρ(a).
A similar remark applies to the submonoid membership problem and the subgroup
membership problem for G.

Clearly, decidability of the rational subset membership problem forG implies decid-
ability of the submonoid membership problem for G, and the latter implies decidablity
of the subgroup membership problem for G.

Note that in the above three decision problems, the input consists of a group
element g and a finite description of a subset Z ⊆ G, and it is asked whether g ∈ Z.
A more restricted setting is obtained by fixing a subset Z ⊆ G. For this set Z, we
can consider the following decision problem:

Decision problem 3.5 (Membership problem for the set Z ⊆ G)
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• INPUT: An element g ∈ G.

• QUESTION: Does g ∈ Z hold?

Problem 3.6 Is there a finitely generated group G with the following properties?

• For every rational subset R ⊆ G, the membership problem for R is decidable.

• The rational subset membership problem for G is undecidable.

The same question can be considered for rational subsets replaced by finitely gener-
ated submonoids or finitely generated subgroups.

One should note that a positive answer to this problem is conceivable: There
might exist a group G for which there is no algorithm that decides the rational subset
membership problem for G, but for every rational subset R ⊆ G there is an algorithm
AR that checks whether a given group element belongs to R. These algorithms AR

must be completely unrelated in the sense that they do not follow a uniform scheme.
Of course, one may also generalize Problem 3.2 further, e.g., by considering context-

free languages. Given a context-free grammar G over the symmetric generating set
X of the group G and a group element g ∈ G, one can ask whether g ∈ π(L(G)).
But this problem is already undecidable for free groups: To see this, take a finitely
presented group G = Gp⟨X | R⟩ with an undecidable word problem. Here R ⊆ X∗ is
a finite set of relators. Then, for a given word w ∈ X∗ we have w = 1 in G if and only
if in the free group F (X), w belongs to the normal closure of R. But the latter is the
canonical image of the context-free language L = {crc−1 | r ∈ R, c ∈ X∗}. Hence,
if the word problem for G is undecidable, then the membership problem for the free
group image of the context-free language L is undecidable.

By the last paragraph, the membership problem for (images of) context-free sets is
already undecidable for the simplest finitely generated groups1 (namely free groups).
On the other hand, the following sections will show that for the rational subset
membership problem we can prove non-trivial decidability results. This is one of the
reasons for restricting the membership problem to rational sets in this paper.

4 Classical results

The first decidability result for the rational subset membership problem was shown
by Benois [5] in 1969 for free groups:

Theorem 4.1 Every free group of finite rank has a decidable rational subset mem-
bership problem.

This result can be shown by a simple automata saturation procedure. Consider a
free group F (Y ), where Y (a finite set) generates F (Y ) as a group. Let X = Y ∪Y −1.
Let A = (Q,∆, q0, F ) be a finite automaton with ε-transitions over the alphabet X.
Since we will add ε-transitions to the automaton, will start with an automaton with
ε-transitions from the very beginning. As remarked in the previous section, it suffices
to check whether 1 ∈ π(L(A)). For this we iterate the following operation as long as

1The only class of groups with a decidable membership problem for context-free sets, the author
is aware of, are finitely generated virtually abelian groups.
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possible: If there are transitions (p, a, q), (r, a−1, s) ∈ ∆ with a ∈ X, and state r can
be reached from state q by a sequence of ε-transitions, then we add the ε-transition
(p, ε, s) to ∆. The order in which we add ε-transitions is not important. Note that we
only add new transitions but we do not add new states. Hence the saturation process
has to terminate after at most |Q|2 many steps. Let B be the resulting automaton
with ε-transitions. Then, one can show the following:

• π(L(A)) = π(L(B)) (this follows by induction on the construction of B).

• If w ∈ L(B) and w is of the form w = uaa−1v with u, v ∈ X∗ and a ∈ X, then
also uv ∈ L(B).

Hence, we have 1 ∈ π(L(A)) if and only if 1 ∈ π(L(B)) if and only if there is a word
w ∈ L(B) such that w can be reduced by cancellations of the form aa−1 → ε (a ∈ X).
But the latter condition is equivalent to ε ∈ L(B). Hence, 1 ∈ π(L(A)) if and only if
ε ∈ L(B), and the latter means that there is a path consisting only of ε-transitions
leading from the initial state q0 to a final state. This condition can be checked by an
algorithm.

It is worth mentioning that the above algorithm works in polynomial time, see [6]
for a precise complexity analysis.

Next, let us consider finitely generated abelian groups. The following result was
shown by Grunschlag in his thesis [19] using integer linear programming.

Theorem 4.2 Every finitely generated abelian group has a decidable rational subset
membership problem.

Grunschlag reduces the rational subset membership problem for finitely generated
abelian groups to integer linear programming, which is a classical NP-complete prob-
lem. It turns out that already the submonoid membership problem for free abelian
groups Zk is NP-complete if k is part of the input. To see this, we start with the
NP-complete problem 1-in-3 SAT [48]. The input is a conjunction

ψ =
m∧

i=1

Ci,

where every Ci is a disjunction of three literals (a literal is a boolean variable or a
negated boolean variable). Let x1, . . . , xn be the boolean variables that appear in ψ
and let Ci = x̃i1 ∨ x̃i2 ∨ x̃i3 , where x̃ij ∈ {xij ,¬xij}. It is asked whether there exists a
truth assignment for the variables x1, . . . , xn such that in each disjunction Ci exactly
one literal becomes true. This is true if and only if the following system of linear
equations in the 2n variables x1, x1, . . . , xn, xn has a solution in N:

xi + xi = 1 for 1 ≤ i ≤ n

x̃i1 + x̃i2 + x̃i3 = 1 for 1 ≤ i ≤ m

In the second equation, we identify the literal ¬xij with the variable xij . This system
can be written as

n∑

i=1

(xi · ai + xi · bi) = c,
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for a1,b1, . . . , an,bn, c ∈ Zn+m. This system is solvable in the natural numbers if
and only if c belongs to the submonoid generated by a1,b1, . . . , an,bn.

Note that in the above NP-hardness proof we have to assume that the dimension
(which is n+m) is not fixed. In our context, it is more natural to consider the case
of a fixed dimension, since in Problems 3.2–3.4 we always fix an underlying group.
Using some recent results on the Parikh images of regular languages, we can show:

Theorem 4.3 For every finitely generated abelian group the rational subset member-
ship problem can be solved in polynomial time.

Proof Consider a fixed finitely generated abelian group G =
∏n

i=1 Zi, where every
Zi is cyclic. By Theorem 5.5 from the next section, we can assume that Zi

∼= Z

for every 1 ≤ i ≤ n. Take the generating set X = {x1, x
−1
1 , . . . , xn, x−1

n }, where xi
generates Zi as a group. As usual, let π : X∗ → G be the canonical morphism. Recall
that the Parikh image of a language L ⊆ X∗ is the image of L under the canonical
morphism Ψ : X∗ → N2n. Thus, if Ψ(w) = (c1, d1, . . . , cn, dn), then ci (resp., di) is the
number of occurrences of the symbol xi (resp., x

−1
i ) in the word w. It is well-known

that the Parikh image Ψ(L) of a regular language (and even a context-free language)
is semi-linear, i.e., Ψ(L) can be written as

Ψ(L) =
k⋃

i=1

{ai + λ1ai,1 + · · ·+ λliai,li | λ1, . . . ,λli ∈ N},

for ai,ai,1, . . . , ai,li ∈ N2n. It has been recently shown that from a given finite au-
tomaton A over X one can compute a semi-linear representation of the Parikh image
Ψ(L(A) in polynomial time2 [28]. Such a semi-linear representation consists of a list
of all vectors ai,ai,j (1 ≤ i ≤ k, 1 ≤ j ≤ li), where the vector entries are represented
as binary encoded numbers. It is crucial here that the alphabet Σ is fixed, because
the running time of the algorithm from [28] is exponential in the size of the alphabet.

Let us now consider the rational subset membership problem for G. Let A be a
finite automaton over X. We have to check whether 1 ∈ π(L(A)). First, we compute
in polynomial time the Parikh image

Ψ(L) =
k⋃

i=1

{ai + λ1ai,1 + · · ·+ λliai,li | λ1, . . . ,λli ∈ N}.

For a = (c1, d1, . . . , cn, dn) ∈ Z2n define the vector a′ = (c1 − d1, . . . , cn − dn) ∈ Zn.
Then, we have 1 ∈ π(L(A)) if and only if there are 1 ≤ i ≤ k such that the system

λ1a
′
i,1 + · · ·+ λlia

′
i,li = −a′i

has a solution in N. But this is an instance of integer programming in the fixed
dimension n, which can be solved in polynomial time [30, Sec. 4]. !

Let us now come to classical undecidablity results in the context of rational subsets.
The first such result was shown by Mihailova [43] in 1966:

2In particular, all numbers k, l1, . . . , lk are polynomially bounded in the size of A.
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Theorem 4.4 The direct product F2 × F2 of two copies of the free group of rank 2
contains a fixed finitely generated subgroup with an undecidable membership problem.

In particular, F2×F2 has an undecidable subgroup membership problem. Hence also
the submonoid membership problem and the rational subset membership problem
for F2 × F2 are undecidable. Mihalova’s result is also remarkable since F2 × F2 is
a very natural group. In contrast all known examples of finitely presented groups
with an undecidable word problem are constructed from Turing machines (or other
universal computation models) with undecidable acceptance problem and cannot be
considered as simple or natural. Nevertheless, Mihailova’s result is shown by reducing
the word problem for a finitely presented group to the membership problem for a
finitely generated subgroup of F2 × F2.

A second classical undecidability result for the subgroup membership problem was
shown by Rips in 1982:

Theorem 4.5 There is a word-hyperbolic group that contains a finitely generated
subgroup with an undecidable membership problem.

So again, the subgroup membership problem, the submonoid membership problem,
and the rational subset membership problem are in general undecidable for word-
hyperbolic groups. The group constructed by Rips is actually a torsion-free small
cancellation group satisfying the condition C ′(1/6). Wise [58] modified Rips’ con-
struction so that the resulting group is also residually finite.

5 Closure properties

For every group theoretic decision problem, let us call it P, it is good to know closure
properties with respect to group theoretic constructions. They allow us to construct
from groups for which P is decidable new (and maybe more complicated) groups
for which P is decidable. Mihailova’s result (Theorem 4.4) implies that the class of
groups for which the subgroup membership problem (or the submonoid membership
problem, or the rational subset membership problem) is decidable is not closed under
direct products: F2 has a decidable rational subset membership problem by Benois’
result (Theorem 4.1) but F2×F2 has an undecidable subgroup membership problem.
Another important operation, which destroys the decidability of the rational subset
membership problem is the wreath product; see Section 9 for more details. But
fortunately, there are other important group constructions for which we can prove
positive results.

Two very important constructions in combinatorial group theory are HNN-exten-
sions and amalgamated free products. The following two results were shown in [26]
(and independently in [32]) for the rational subset membership problem and in [27]
for the subgroup membership problem.

Theorem 5.1 Let P stand for either the rational subset membership problem or the
subgroup membership problem. Assume that G is a finitely generated group for which
P is decidable. Then P is decidable for every HNN-extension ⟨G, t | t−1at = ϕ(a) (a ∈
A)⟩ with A ≤ G finite.
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Theorem 5.2 Let P stand for either the rational subset membership problem or the
subgroup membership problem. Assume that G1 and G2 are finitely generated groups
for which P is decidable. Then P is decidable for every amalgamated free product
G1 ∗A1=A2

G2 with A1 ≤ G1 and A2 ≤ G2 finite.

Closure of the class of groups with a decidable subgroup membership problem under
free products was already shown by Mihailova in [42].

Theorems 5.1 and 5.2 can be rephrased in terms of graphs of groups. Every fun-
damental group of a graph of groups with finite edge groups and vertex groups that
have a decidable rational subset membership problem (resp., subgroup membership
problem) has a decidable rational subset membership problem (resp., subgroup mem-
bership problem) as well.

Surprisingly, it is not known whether the decidability of the submonoid membership
problem is preserved under HNN-extensions with finite associated subgroups and
amalgamated free products over finite subgroups:

Problem 5.3 Assume that G is a finitely generated group with a decidable sub-
monoid membership problem, and let H = ⟨G, t | t−1at = ϕ(a) (a ∈ A)⟩ be an
HNN-extension with A ≤ G finite. Does H have a decidable submonoid membership
problem?

Assume that G1 and G2 are finitely generated groups with a decidable submonoid
membership problem, and let G = G1 ∗A1=A2

G2 be an amalgamated free product
with A1 ≤ G1 and A2 ≤ G2 finite. Does G have a decidable submonoid membership
problem? Does the free product G1 ∗ G2 have a decidable submonoid membership
problem?

Actually, the author conjectures that there are specific groups where the answers to
the above questions are negative. We will come back to this conjecture in Section 10
when we consider the relationship between the rational subset membership problem
and the submonoid membership problem in more detail.

Let us now discuss subgroups and extensions. The following result is trivial:

Proposition 5.4 Let P stand for either the rational subset membership problem, the
submonoid membership problem, or the subgroup membership problem. Assume that
H is a finitely generated subgroup of the finitely generated group G. If P is decidable
for G, then P is decidable for H as well.

Our last closure result concerns finite extensions and was shown by Grunschlag in
his thesis [19]:

Theorem 5.5 Let P stand for either the rational subset membership problem or the
subgroup membership problem. Assume that G is a finite index subgroup of H. If P
is decidable for G, then P is decidable for H as well. Moreover, if P can be solved in
polynomial time for G, then the same holds for the group H.

Let us sketch the proof. Assume that G (resp., H) is generated by the symmetric
set X (resp., Y ). Let WX(G) ⊆ X∗ (resp., WY (H) ⊆ Y ∗) be the set of all words
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that evaluate to the identity of G (resp., H). There exists a rational transduction
τ ⊆ X∗ × Y ∗ (which is just a rational subset of the monoid X∗ × Y ∗) such that

WY (H) = τ(WX(G)) = {w ∈ Y ∗ | ∃u ∈ WX(G) : (u,w) ∈ τ},

see [26, Lemma 3.3]. This rational transduction is given by a fixed automaton T with
transitions labelled by pairs from (X × {ε}) ∪ ({ε} × Y ). Here, “fixed” means that
we do not have to construct the automaton T .

Take a finite automaton A over Y . We have to check, whether L(A) contains a
word that evaluates to the identity of H , i.e., that belongs to WY (H). We have
L(A) ∩WY (H) ̸= ∅ if and only if L(A) ∩ τ(WX(G)) ̸= ∅ if and only if τ−1(L(A)) ∩
WX(G) ̸= ∅. Finally, an automaton for τ−1(L(A)) can be constructed in polynomial
time from the automaton A using a product construction with the automaton T .

For HNN-extensions and amalgamated free products, it is open whether the decid-
ability of the submonoid membership problem is preserved by finite extensions:

Problem 5.6 Assume that G is a finite index subgroup of H and that G has a
decidable submonoid membership problem. Is the submonoid membership problem
for H decidable?

6 Right-angled Artin groups

Let H = (Γ, E) be a finite simple graph. In other words, the edge relation E ⊆ V ×V
is irreflexive and symmetric. One associates with H the group

G(H) = ⟨Γ | ab = ba ((a, b) ∈ E)⟩.

Such a group is called a right-angled Artin group, graph group, or free partially com-
mutative group. Here, we use the term right-angled Artin group3. Right-angled Artin
groups received a lot of attention in group theory during the last few years, mainly
due to their rich subgroup structure [8, 12, 17].

For graphs H1 = (V,E) and H2, we say that H1 contains an induced H2, if there
is a subset U ⊆ V such that the graph (U,E ∩ (U × U)) is isomorphic to H2. In this
situation, G(H2) is a subgroup of G(H1). With C4 (cycle on 4 nodes) we denote the
following graph:

Note that the right-angled Artin group G(C4) is F2 × F2. Hence, by Mihailova’s
result (Theorem 4.4), the subgroup membership problem is undecidable for every
graph group G(H) such that H contains an induced C4.

On the decidability side, the following result is shown in [27]. A simplified proof4

can be found in [34].

3This term comes from the fact that right-angled Artin groups are exactly the Artin groups
corresponding to right-angled Coxeter groups.

4Actually, decidability of the subgroup membership problem is shown in [27, 34] for a much larger
class of groups.
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Theorem 6.1 Let H be a finite simple graph that does not contain an induced cycle
on n ≥ 4 nodes (such a graph is called chordal). Then, the subgroup membership
problem for the graph group G(H) is decidable.

This result and Mihailova’s result leave a gap for the decidability status of the
subgroup membership problem.

Problem 6.2 For which graphsH is the subgroup membership problem for the right-
angled Artin group G(H) decidable? More specifically, is the subgroup membership
problem decidable for the right-angled Artin group G(C5) (where C5 denotes a cycle
on 5 nodes)?

With P4 (path on 4 nodes) we denote the following graph:

The following characterization of right-angled Artin groups with a decidable ratio-
nal subset membership problem (resp., submonoid membership problem) is shown in
[33]:

Theorem 6.3 Let H be a finite simple graph. Then, the following three conditions
are equivalent:

• H does not contain an induced P4 or C4.

• The rational subset membership problem for G(H) is decidable.

• The submonoid membership problem for G(H) is decidable.

For the undecidability statement in Theorem 6.3 one has to show that the submonoid
membership problem is undecidable for G(P4) and G(C4). The latter group is cov-
ered by Mihailova’s result. For G(P4) it is first shown in [33] that this group has
an undecidable rational subset membership problem. Then, in a second step the
rational subset membership problem for G(P4) is reduced5 to the submonoid mem-
bership problem for G(P4). To prove that G(P4) has an undecidable rational subset
membership problem, one can use a result from the theory of trace monoids. Trace
monoids are the monoid counterparts of right-angled Artin groups. For a finite simple
graph H = (Γ, E) one defines the corresponding trace monoid M(H) as the quotient
of the free monoid Γ∗ by the monoid congruence generated by all pairs (ab, ba) with
(a, b) ∈ E. Aalbersberg and Hoogeboom [1] proved that the following two conditions
are equivalent:

• It is decidable, whether the intersection of two given rational subsets of the
trace monoid M(H) is nonempty.

• The graph H does not contain an induced P4 or C4.

But for two rational subsets L,K ⊆ M(H), one has L ∩ K = ∅ if and only if the
set LK−1 (interpreted in the right-angled Artin group G(H)) contains the identity
element 1.

5This reduction is very similar to the reduction of the rational subset membership problem to
the submonoid membership problem in case of a group with infinitely many ends. This reduction is
outlined in Section 10.
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The proof of the decidability statement in Theorem 6.3 uses the following charac-
terization of graphs without induced P4 or C4, see [59]: A finite simple graph H does
not contain an induced P4 or C4 if and only if H can be obtained from the graph
with one node using the following two operations:

• Take the disjoint union of two graphs.

• Add a new vertex to the graph and connect it to all old nodes.

On the level of right-angled Artin groups, these two operations correspond to (i) the
free product of two groups, and (ii) the direct product by Z. Hence, one has to show
that the rational subset membership problem is decidable for every group that can
be produced from the trivial group 1 using the operations of free product and direct
product with Z.

The algorithm from [33] is not very efficient. To deal with the case of a free product,
Parikh’s theorem (stating that the Parikh image of a context-free language is semi-
linear) is applied, which leads to an exponential blow-up in the running time. This
implies that for the uniform rational subset membership problem for right-angled
Artin groups G(H), where H does not contain an induced P4 or C4 (in this problem,
H is also part of the input), the proof in [33] only yields a non-elementary algorithm,
i.e., an algorithm whose running time is not bounded by a tower of exponents of fixed
height.

Problem 6.4 What is the computational complexity of the rational subset mem-
bership problem for a right-angled Artin group G(H), where H does not contain
an induced P4 or C4? Is there an algorithm with elementary running time for the
uniform problem, where the graph H is part of the input?

7 Nilpotent groups and polycyclic groups

The lower central series of the group G is the sequence of subgroups G = G1 ≥
G2 ≥ G3 ≥ · · · where Gi+1 = [Gi, G] (which is the subgroup of Gi generated by all
commutators g−1h−1gh for g ∈ Gi and h ∈ G; by induction one can show that indeed
Gi+1 ≤ Gi). The group G is nilpotent if there exists i ≥ 1 with Gi = 1. A group G
is polycyclic, if there exists a subnormal series G = G0 ◃ G1 ◃ · · · ◃Gn−1 ◃Gn = 1
such that every quotient Gi−1/Gi is cyclic. Nilpotent groups are polycyclic.

Mal’cev [39] proved that every polycyclic group G is subgroup separable, i.e., for
every finitely generated subgroup H ≤ G and g ∈ G \ H there exists a morphism
ϕ : G → K to a finite group K such that ϕ(g) ̸∈ ϕ(H). Together with the finite
presentability of finitely generated polycyclic groups, one gets:

Theorem 7.1 Every finitely generated polycyclic group has a decidable subgroup
membership problem.

A more practical algorithm for the subgroup membership problem for polycyclic
groups can be found in [2].

By Theorem 7.1 every finitely generated nilpotent group has a decidable subgroup
membership problem. This result does not generalize to the rational subset member-
ship problem, as Roman’kov [52] has shown:
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Theorem 7.2 There exists a number r such that the free nilpotent group of class 2
generated by r elements (this group is denoted by N2,r) has an undecidable rational
subset membership problem.

The proof of this result in [52] uses a reduction from Hilbert’s 10th problem, i.e., the
question whether a Diophantine equation P (x1, . . . , xn) with P a polynomial with
integer coefficients has an integer solution. The decidability status of the submonoid
membership problem for finitely generated nilpotent groups is open:

Problem 7.3 Is there a finitely generated nilpotent group with an undecidable sub-
monoid membership problem?

Rational subsets in nilpotent groups were also studied by Bazhenova [4]. She proved
that the rational subsets of a finitely generated nilpotent group G are a Boolean
algebra if and only if G is virtually abelian.

8 Metabelian groups

Recall that a group G is metabelian if the commutator subgroup [G,G] is abelian.
Equivalently, G is metabelian if G has an abelian normal subgroup A such that the
quotient G/A is abelian too. Hall [20] has shown that one can view A as a Z[Q]-
module, which is finitely generated (as a Z[Q]-module) if G is finitely generated.
This fact allows us to apply commutative algebra to obtain decidability results for
metabelian groups. In particular, in [53, 54] the following result is shown:

Theorem 8.1 For every finitely generated metabelian group, the subgroup member-
ship problem is decidable.

The submonoid membership problem seems to mark the borderline between decid-
ability and undecidability for metabelian groups.

Theorem 8.2 The free metabelian group generated by two elements (this group is
denoted by M2 in the following) contains a fixed finitely generated submonoid with an
undecidable membership problem.

This result is shown in [36] via a reduction from the membership problem for finitely
generated subsemimodules of free (Z×Z)-modules of finite rank. This latter problem
is shown to be undecidable in [36] by interpreting it as a particular tiling problem of
the Euclidean plane6 that in turn is shown to be undecidable via a direct encoding
of a Turing machine.

Also if one tries to generalize Theorem 8.1 to a larger classes of groups, one quickly
reaches undecidability, as Umirbaev [57] has shown:

Theorem 8.3 The free solvable group of derived length 3 and rank 2 has an unde-
cidable subgroup membership problem.

6A good introduction into tiling problems can be found in [9, Appendix A].
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9 Wreath products

Let G and H be groups. Consider the direct sum

K =
⊕

g∈G

Hg,

where Hg is a copy of H. We view K as the set

H(G) = {f ∈ HG | f−1(H \ {1}) is finite}

of all mappings fromG toH with finite support together with pointwise multiplication
as the group operation. The group G has a natural left action on H(G) given by

gf (a) = f(g−1a)

where f ∈ H(G) and g, a ∈ G. The corresponding semidirect product H(G)!G is the
wreath product H ≀G. In other words:

• Elements of H ≀G are pairs (f, g), where f ∈ H(G) and g ∈ G.

• The multiplication in H ≀ G is defined as follows: Let (f1, g1), (f2, g2) ∈ H ≀ G.
Then (f1, g1)(f2, g2) = (f, g1g2), where f(a) = f1(a)f2(g

−1
1 a).

The following intuition might be helpful: An element (f, g) ∈ H ≀G can be thought of
as a finite multiset of elements of H \{1} that are sitting at certain elements of G (the
mapping f) together with the distinguished element g ∈ G, which can be thought of
as a cursor moving in G. If we want to compute the product (f1, g1)(f2, g2), we do
this as follows: First, we shift the finite collection of H-elements that corresponds to
the mapping f2 by g1: If the element h ∈ H \ {1} is sitting at a ∈ G (i.e., f2(a) = h),
then we remove h from a and put it to the new location g1a ∈ H . This new collection
corresponds to the mapping f ′

2 : a #→ f2(g
−1
1 a). After this shift, we multiply the two

collections of H-elements pointwise: If in a ∈ G the elements h1 and h2 are sitting
(i.e., f1(a) = h1 and f ′

2(a) = h2), then we put the product h1h2 into the location a.
Finally, the new distinguished G-element (the new cursor position) becomes g1g2.

If H (resp., G) is generated by the set X (resp., Y ) with X ∩ Y = ∅, then H ≀ G
is generated by X ∪ Y . It is well-known and easy to see that decidability of the
word problem for G and H implies decidability of the word problem for H ≀ G. The
following simple proposition is useful, see [37] for a proof:

Proposition 9.1 Let K be a subgroup of G of finite index m and let H be a group.
Then Hm ≀K is isomorphic to a subgroup of index m in H ≀G.

The following decidability result is shown in [37]:

Theorem 9.2 The rational subset membership problem is decidable for every group
H ≀ V with H finite and V virtually free.

Note that Theorem 9.2 covers the well known lamplighter group Z2 ≀ Z.
The proof of Theorem 9.2 in [37] makes use of well-quasi-order (wqo) theory. Let

us briefly explain the idea for a wreath product G = H ≀F2, where H is finite and F2

is the free group generated by a and b. Given a finite automaton A over the alphabet
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H ∪ {a, a−1, b, b−1}, it suffices to check whether A accepts a word that represents the
identity of G. The key ingredient is a certain language over the alphabet of triples
(p, d, q), where p and q are states of the automaton A and d ∈ {a, a−1, b, b−1}. The
idea is that such a triple may represent a path in A from state p to q such that the
sequence of labels from {a, a−1, b, b−1} along the path is a loop in the Cayley-graph
of F2 that leaves the origin in direction d and returns to the origin from direction d.
The effect of such a path is the product of all transition labels; it is an element of the
direct sum K =

⊕
g∈F2

H. A word w over the alphabet of triples is a loop pattern if
each triple (p, d, q) in the word can be replaced by an automaton path as described
above, such that the product of the effects of these paths is the identity of K. It is
shown in [37] that the set of all loop patterns is a regular language. For this, it is
shown that the set of loop patterns is an upward closed set of words with respect to a
wqo, which is a refinement of the subsequence relation (also known as embeddability)
on words (which is a wqo by Higman’s Lemma). Using a saturation process one can
actually compute an automaton for the set of all loop patterns. Using this, it is
straightforward to check whether A accepts a word that represents the identity of G.

The computational complexity of the rational subset membership problem for
groups H ≀ V with H finite and V virtually free is open. Due to the use of well
quasi orders, the algorithm from [37] is not primitive recursive.

Problem 9.3 Is the rational subset membership problem for groups H ≀ V with H
finite and V virtually free primitive recursive? In particular, is the rational subset
membership problem for the lamplighter group Z2 ≀ Z primitive recursive?

It should be mentioned that there exist several decision problems, for which de-
cidability is proved using a well quasi order, and which can be shown to be not
primitive recursive. An example is the membership problem for so called leftist gram-
mars [23, 45] (these are grammars, where every production has the form ab → b or
d → cd).

By the following result from [37], decidability for the rational subset membership
problem cannot be pushed very far beyond wreath products of the form H ≀ V with
H finite and V virtually free:

Theorem 9.4 There is a fixed finitely generated submonoid M of the wreath product
Z ≀ Z with an undecidable membership problem.

For the proof of Theorem 9.4 in [37], the authors encode the acceptance problem for
a 2-counter machine (Minsky machine [44]) into the submonoid membership problem
for Z ≀ Z. One should remark that Z ≀ Z is a finitely generated metabelian group and
hence has a decidable subgroup membership problem, see Theorem 8.1.

The wreath product Z ≀Z is a subgroup of Thompson’s group F (see [41]) as well as
of Baumslag’s [3] finitely presented metabelian group ⟨a, s, t | [s, t] = [at, a] = 1, as =
aat⟩, see, e.g., [11]. Hence, we get:

Corollary 9.5 Thompson’s group F and Baumslag’s finitely presented metabelian
group both contain finitely generated submonoids with an undecidable membership
problem.
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A further undecidability result for wreath products was shown in [36]:

Theorem 9.6 For every non-trivial group H, the rational subset membership prob-
lem for H ≀ (Z× Z) is undecidable.

The proof of this result in [36] uses an encoding of a tiling problem, which uses the grid
structure of the Cayley graph of Z× Z. It is very similar to the undecidability proof
for the submonoid membership problem for free metabelian groups (Theorem 8.2).
It is open, whether Theorem 9.6 can be sharpened to the submonoid membership
problem:

Problem 9.7 Assume that H is a non-trivial group. Is the submonoid membership
problem for H ≀ (Z× Z) undecidable?

The author conjectures that the answer to this question is positive. Another reason-
able conjecture is that Theorem 9.6 can be generalized to every wreath product H ≀G,
where H is non-trivial and G is not virtually free (note that Z × Z is not virtually
free).

Problem 9.8 Assume that H is a non-trivial group and G is not virtually free. Is
the rational subset membership problem for H ≀G undecidable?

As remarked above, the author conjectures that the answer to this question is again
positive. The reason is that the undecidability proof for H ≀ (Z × Z) from [36] only
uses the grid-like structure of the Cayley graph of Z × Z. In [29] it was shown that
the Cayley graph of a group G has bounded tree width (a graph-theoretic measure
that, roughly speaking, determines how tree-like a graph is) if and only if the group
is virtually free. Hence, if G is not virtually free, then the Cayley-graph of G has
unbounded tree width. By known results from graph theory, this implies that finite
grids of arbitrary size appear as graph-theoretic minors in the Cayley-graph of G.
There is hope to use these grids for encoding an undecidable tiling problem into the
rational subset membership problem for H ≀G (for H non-trivial).

Theorem 9.4 and 9.6 imply the following: For finitely generated non-trivial abelian
groupsG andH, the wreath productH ≀G has a decidable rational subset membership
problem if and only if (i) G is finite7 or (ii) G has rank 1 and H is finite. Further-
more, for virtually free groups G and H, the rational subset membership problem is
decidable for H ≀G if and only if (i) G is trivial, or (ii) H is finite, or (iii) G is finite
and H is virtually Z, i.e., has Z as a finite index subgroup. Note that if G is finite,
then Proposition 9.1 implies that H |G| is a finite index subgroup of H ≀G. Hence, if H
is virtually Z, then H |G| is virtually abelian and hence has a decidable rational subset
membership problem. On the other hand, if H is virtually Fn for Fn a free group
of rank n > 1 and G is nontrivial, then H |G| (and hence H ≀ G) has an undecidable
subgroup membership problem by Theorem 4.4.

7If G has size m, then by Proposition 9.1, Hm ∼= Hm
≀ 1 is isomorphic to a subgroup of index

m in H ≀ G. Since Hm is finitely generated abelian, decidability of the rational subset membership
problem of H ≀G follows from Theorems 4.2 and 5.5.
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10 Rational subsets versus submonoids

It is a trivial obersvation that decidability of the rational subset membership problem
for a group G implies decidability of the submonoid membership problem for G, and
the latter implies decidability of the subgroup membership problem for G. On the
other hand, we have seen groups, for which the subgroup membership problem is
decidable, but the submonoid membership problem is undecidable. Examples are the
free metabelian group generated by two elements (see Theorems 8.1 and 8.2) and
the right-angled Artin group G(P4) (see Theorems 6.1 and 6.3; note that P4 does
not contain an induced cycle, which allows us to apply Theorem 6.1). It is therefore
an interesting question, whether there is a finitely generated group, for which the
submonoid membership problem is decidable but the rational subset membership
problem is undecidable. Unfortunately, we do not know, whether such a group exists.

Problem 10.1 Is there a finitely generated group, for which the submonoid member-
ship problem is decidable but the rational subset membership problem is undecidable?

By the following result from [35] we know that if such a group exists, then it must
have only one end. The number of ends of a finitely generated infinite group G is a
geometric invariant of G that is defined as follows: Assume that G is finitely generated
by the symmetric set X (the following definition is not influenced by the concrete
choice of X) and consider the Cayley graph G(G,X). The nodes of this graph are the
elements of G and there is an edge between two elements of g, h ∈ G if and only if
there is a generator a ∈ X such that h = ga in G. This graph is undirected (since X
is symmetric) and connected (since X generates G). Moreover, it is vertex-transitive,
which means that for all g, h ∈ G, there is a graph automorphism of G(G,X) that
maps g to h. To define the number of ends of G, choose an arbitrary node g ∈ G
(the concrete choice of g is not important) and let Gn (for n ≥ 0) be the subgraph of
G(G,X) obtained by removing all nodes from G(G,X) that have distance at most n
from g. Let en be the number of connected components of Gn. Then the number of
ends is the limit of the sequence (en)n≥0 or ∞ if this sequence is unbounded. By the
Freudenthal-Hopf Theorem, every finitely generated infinite group G has either 1, 2,
or ∞ many ends, see, e.g., [41]. Here are three typical examples for each possibility:

• The number of ends of Z× Z is 1.

• The number of ends of Z is 2.

• The number of ends of the free group F2 or rank 2 is ∞.

A group has two ends if and only if it is virtually Z. A seminal result of Stallings
[55, 56] characterizes groups with infinitely many ends: A group has infinitely many
ends if and only if it is an HNN-extension with finite associated subgroups or an
amalgamated product with finite amalgamated subgroups. The following result was
shown in [35]:

Theorem 10.2 Assume that G is a finitely generated group G. If G has more than
one end, then the rational subset membership problem for G is decidable if and only
if the submonoid membership problem for G is decidable.
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The case of group G with two ends is easy: G has Z as a finite index subgroup.
Since the rational subset membership problem for Z is decidable, Theorem 5.5 implies
that the rational subset membership problem (and hence also the submonoid mem-
bership problem) is decidable. So, it remains to consider a group G with infinitely
many ends. By Stalling’s theorem one can write G as an HNN-extension with finite
associated subgroups or an amalgamated product with finite amalgamated subgroups.
Let us sketch the proof of Theorem 10.2 in a simple case that nevertheless shows the
main idea: Assume that G = H ∗ F2 and assume that the submonoid membership
problem for G is decidable. We have to show that G has a decidable rational subset
membership problem. By Theorem 5.2 (and the fact that F2 has a decidable rational
subset membership problem) it suffices to show that H has a decidable rational subset
membership problem. So, let us fix a generating set X for H together with a canon-
ical homomorphism π : X∗ → H, and let A = (Q,∆, q0, F ) be a finite automaton
over X. By adding ε-transitions to ∆ we can assume that F consists of a single state
qf ̸= q0. Since F2 contains a copy of Fn (the free group of rank n) for any n ≥ 1,
we can assume that F2 contains a copy of F (Q), i.e., the free group generated by the
states of A. Recall that ∆ ⊆ Q× (X ∪ {ε})×Q is the set of transitions. Now define
a finitely generated submonoid of G = H ∗ F2 as follows. Let

Y = {q−1ap | (q, a, p) ∈ ∆} ⊆ H ∗ F (Q) ⊆ H ∗ F2 = G.

Then, one can show that for every w ∈ X∗, we have π(w) ∈ π(L(A)) if and only
if q−1

0 wqf represents an element of the submonoid Y ∗ of G. The idea is that in a
product of the form (q−1

1 a1p1)(q
−1
2 a2p2) · · · (q−1

n anpn) a factor of the form piq
−1
i+1 with

pi ̸= qi+1 cannot be erased. On the other hand, if pi = qi+1 for 1 ≤ i ≤ n − 1, then
the word is equal to q−1

1 (a1a2 · · · an)pn.
Problem 10.1 is related to Problem 5.3: Assume that the class of finitely generated

groups with a decidable submonoid membership problem is closed under free product
(whether this is true was asked in Problem 5.3). Let G be an arbitrary finitely
generated group with a decidable submonoid membership problem. Hence, by our
assumption, also the free product G ∗ F2 has a decidable submonoid membership
problem. But this group has infinitely many ends. So, by Theorem 10.2, G∗F2 has a
decidable rational subset membership problem. But then, also the finitely generated
subgroup G has a decidable rational subset membership problem.

The author conjectures that one can construct a finitely generated group with a
decidable submonoid membership problem and an undecidable rational subset mem-
bership problem. This leads to the conjecture that the class of groups with a decidable
submonoid membership problem is not closed under free products.

11 Further results on the submonoid membership problem

Let us briefly mention some further results on the submonoid membership problem.
In [46] the bounded submonoid membership problem for a finitely generated group G
was introduced:

Decision problem 11.1 (Bounded submonoid membership problem)

• INPUT: Elements g, g1, . . . , gn ∈ G and a unary encoded number k.
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• QUESTION: Can g be written as a product g = gi1gi2 · · · gil with l ≤ k and
1 ≤ i1, . . . , il ≤ n.

It was shown in [46] that the bounded submonoid membership problem can be solved
in polynomial time for finitely generated virtually nilpotent groups and word hyper-
bolic groups.

In [22] it was shown that the word problem for a one-relator inverse monoid Inv⟨X |
r = 1⟩ is decidable if and only if the submonoid of the one-relator group Gp⟨X | r = 1⟩
that is generated by all prefixes of r has a decidable membership problem. The latter
problem is also called the prefix monoid membership problem for the one-relator group
Gp⟨X | r = 1⟩. Motivated by this result, the submonoid membership problem was
further studied in [40], where a general technique based on distortion functions for
solving submonoid membership problems is introduced. Using this technique, the
authors show that the prefix membership problem is decidable for Baumslag-Solitar
groups, surface groups of genus at least two (for which decidability was already shown
in [22]), and certain one-relator groups given by Adian type presentations.

12 The rational subset membership problem for monoids and
semigroups

We defined the notion of a rational subset for all monoids. Hence, it makes sense to
study the rational subset membership problem for finitely generated monoids (and,
by replacing the monoid closure by the semigroup closure, even for finitely generated
semigroups). Kambites and Render proved several interesting results in this con-
text. They showed that the rational subset membership problem is decidable for the
following classes of finitely generated monoids:

• Polycyclic and bicyclic monoids [49],

• Finitely generated Rees matrix semigroups (with or without zero) over a semi-
group with decidable rational subset membership problem [50],

• Monoids that satisfy the small overlap condition C(4) (which is inspired by
small cancellation theory for groups) [25].
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Abstract

The group laws which are not satisfied in product-varieties ApA for any prime p will
be called, after F. Point, the Milnor laws. Let G be a 2-generator relatively free group
defined by a nontrivial law w ⌘ 1. We show that this law is the Milnor law if and only
if G0/G00 is finitely generated. Moreover, the properties G0 = G00 and G0 is finitely or
infinitely generated, allow us to split the Milnor laws for three disjoint classes. We
describe their properties.

1 Introduction

We denote by F = hx, yi the free group of rank 2 and by F1 the free group on
X = {x1, x2, . . . }. A word w = w(x1, x2, . . . , xn) is called a law for a group G if
w(g1, g2, . . . , gn) = e for all g1, g2, . . . , gn in G. The law w can be written as w ⌘ 1.
We denote [x, y] = x�1y�1xy = x�1xy, [x,0 y] = x, and [x,n y] = [[x,n�1 y], y].

A variety of groups is the class of all groups satisfying every law in a given set of
laws (see [20] Chapter 1). Each variety is defined by a verbal subgroup V ✓ F1 and
consists of all groups G satisfying V (G) = {e}.

By Ap we denote the variety of all abelian groups of a prime exponent p, by A –
the variety of all abelian groups. Nc denotes the variety of nilpotent groups of class
 c and Be – the variety of all groups of exponent dividing e.

In the following section we describe di↵erent types of laws, such as positive laws,
pseudo-abelian laws, R-laws, Milnor laws. The corresponding varieties have similar
names. The aim of the paper is to show that the commutator subgroup G0 of a 2-
generator free group G in the variety defined by a law w ⌘ 1 is responsible for the
crucial properties of the law.

We prove that the number of generators in G0 and G0/G00 allow to split all the
laws into four disjoint classes, where for the classes (I), (II), (III), G0/G00 is finitely
generated and for (II), (III), (IV), G0

6= G00.
We write f.g. and inf.g. for ‘finitely generated’ and ‘infinitely generated’ respectively.

We show the connection of G0 and the following law properties:

(I) G0 = G00 – abelian and pseudo-abelian laws

(II) G0
6= G00, G0 f.g. – restraining laws (R-laws)

(III)G0
6= G00, G0 inf.g., G0/G00 f.g. – there are no examples known

(IV) G0
6= G00, G0/G00 inf.g. – non-Milnor laws.
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2 Di↵erent types of laws and varieties

We recall definitions and facts concerning di↵erent types of laws and varieties. We
use the same name for a law and the variety, it defines.

Positive laws and varieties

Definition 2.1 A law is called positive if it implies a nontrivial law of the form
u(x1, x2, . . . , xn) ⌘ v(x1, x2, . . . , xn) where u, v are positive words (not involving the
inverses of the xi’s)

The law is called balanced if the exponent sum of each xi is the same in u and
v. Note that each positive law implies a two-variable positive law u(x, y) ⌘ v(x, y) if
we substitute xi by xyi. This law can be assumed balanced because each law u ⌘ v
implies the law uv ⌘ vu. So we have the following.

Proposition 2.2 Let G be a 2-generator free group in a variety V. Every group in
V satisfies a positive law if and only if G satisfies a binary balanced positive law.

In 1953 A. I. Maltsev [15] and independently in 1963 B.H. Neumann and T. Taylor
[19] proved that nilpotency can be defined by a positive law. It follows that groups
which are nilpotent-by-(finite exponent), in particular nilpotent-by-finite groups, sat-
isfy positive laws.

Pseudo-abelian laws and varieties

Definition 2.3 A non-abelian law is called pseudo-abelian if every metabelian group
satisfying this law is abelian. A variety defined by such a law is called a pseudo-abelian
variety.

The problem of existence of such a variety was formulated as a Problem 5 in the book
of Hanna Neumann [20] and solved by A.Yu.Ol’shanskii in [21].

It is clear that a relatively free group G in a pseudo-abelian variety has G0 = G00,
which is if and only if G satisfies a law of the form

(⇤) : [x, y] ⌘ u, where u := u(x, y) 2 F 00.

Proposition 2.4 Let V be a variety of groups and let G be the free group of rank 2
in V. We have G0 = G00 if and only if every finite group in V is abelian.

Proof Assume that there is a finite non-abelian group satisfying the law (⇤) then
there is such a group H of the smallest order, all whose proper subgroups are abelian.
By [16], the group H must be metabelian. Then H is abelian. The contradiction
proves that every finite group satisfying (⇤) is abelian.

Conversely, let every finite group satisfying (⇤) be abelian and H be a non-abelian
metabelian group satisfying (⇤). By [18], every 2-generator non-abelian metabelian
group has a finite non-abelian quotient. This contradiction proves that every met-
abelian group satisfying (⇤) is abelian. ⇤
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Answering a question of H. Neumann (Problem 5 of [20]), A.Yu. Ol’shanskii [21]
proved existence of pseudo-abelian varieties by constructing a family of pseudo-abelian
laws of the form

[x, y] ⌘ vn [y, x]"1vn+1 [y, x]"2vn+2
· · · [y, x]"h�1vn+h�1 (1)

where v := [ [yd, xd]d, [xd, y�d]d], h ⌘ 1 (mod 10), "10k+1 = "10k+2 = "10k+3 =
"10k+5 = "10k+6 = 1, "10k+4 = "10k+7 = "10k+8 = "10k+9 = "10k+10 = �1, k =
0, 1, . . . , (h � 1)/10 and d, n, h are su�ciently large natural numbers chosen with
respect to the restrictions that are given in Chapter 7 of [22]. Note that "1 + · · · +
"h�1 = 0 and the right side of (1) is in F 00. The varieties defined by the law (1) are
of exponent zero [11]. The pseudo-abelian varieties of finite exponent are constructed
in [9].

Proposition 2.5 A law [x, y] ⌘ [x,n y], n > 1, is either abelian or pseudo-abelian.

Proof If we substitute [y, x] for y, we get [x, [y, x]] ⌘ [x,n [y, x]], which implies the law
[y, x, x] ⌘ u(x, y), where u(x, y) 2 F 00. It follows that a metabelian group satisfying
the law [x, y] ⌘ [x,n y], also satisfies [x, y, y] ⌘ 1. Since [x,n y] = [[x, y, y],n�2 y], every
metabelian group satisfying the initial law is abelian, which finishes the proof. ⇤

It was shown by N. Gupta [6] that for n  3 the law [x, y] ⌘ [x,n y] is abelian.

Question 1 Is the law [x, y] ⌘ [x,n y] pseudo-abelian for n > 3?

Varieties ApA for a prime p

The variety ApA is metabelian and every group G in it has (G0)p = {e}. The variety
ApA is generated by the restricted wreath product W := Cp o C, where Cp = haip,
C = hbi1 denote the cyclic group of order p and the infinite cyclic group respectively
(see e.g. [20], Corollary 22.44). V.V. Belyaev, N. F. Sesekin [2] proved that the group
Cp oC contains a free subsemigroup of rank 2, hence the varieties ApA do not satisfy
positive laws.

Proposition 2.6 The commutator subgroup W 0 of the group W := Cp oC is infinitely
generated.

Proof The group W contains elements [a, bi] = a�1ab
i
for all i 2 Z, hence W 0 has

an infinite support and cannot be finitely generated. ⇤

Just not p.l.-varieties

Every variety which does not satisfy a positive law contains (by Zorn Lemma) a
minimal subvariety without positive laws, which is called a just not p.l.-variety. We
can see that the varieties of the form ApA are just not p.l.-varieties. In 1971 J.R. J.
Groves [5, Theorem C(ii)] proved, in particular, that each soluble variety either lies
in a variety of the form NcBe or contains a subvariety AqA for some prime q. Since
a proper subvariety in ApA cannot contain any of AqA, we conclude that each proper
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subvariety in ApA lies in some NcBe, hence satisfies a positive law. So the varieties
ApA for any prime p are just not p.l.-varieties.

The problem whether the varieties of the form ApA are the only just not p.l.-
varieties posed in [26, 19.2], was solved in [10, Corollary]. It was shown that there
exist continuum of pseudo-abelian just not p.l.-varieties. The question arises

Question 2 Must every just not p.l.-variety be either pseudo-abelian or of the form
ApA for some prime p?

R-laws and varieties

The property that for all g, h 2 G the subgroup hh�ighi, i 2 Z i is finitely generated
is called the Milnor property by F. Point in [23] because this property first was used
by J. Milnor [17, Lemma 3]. Later it attracted attention of many authors, e.g., [25],
[8], [3], [13], [14]. The groups satisfying this property are called restrained groups [8].
We call a law providing this property an R-law (or a restraining law) [12].

Definition 2.7 A law w ⌘ 1 is called an R-law if for all elements g, h in a group
satisfying this law, the subgroup hh�ighi, i 2 Z i is finitely generated.

We need the following property of R-laws, which can be found in [7].

Lemma 2.8 Let G be an n-generator group satisfying an R-law. If G/H is cyclic
then H is finitely generated.

Proof We can assume that G/H is generated by a coset gH and hgi\H = {e}. Since
G is an n-generator group, there exist h1, . . . , hn 2 H such that G = hg, h1, . . . , hni.
Let T := hh1, . . . , hni. Then its normal closure TG is generated by subgroups g�iTgi,
i 2 Z, hence by subgroups h g�ihkg

i, i 2 Z i, k = 1, 2, . . . , n, which are finitely
generated by assumption. So TG is finitely generated. Moreover, hgiTG = G and
TG

✓ H . Then by means of the modular law: H = G \ H = hgiTG
\ H =

(hgi \H)TG = TG. So H is finitely generated. ⇤

Proposition 2.9 1. Every finitely generated group G satisfying an R-law has its
commutator subgroup G0 finitely generated.

2. If a 2-generator relatively free group G defined by a law w ⌘ 1 has G0 finitely
generated, then w ⌘ 1 is the R-law.

Proof 1. Let G satisfy an R-law. Since G/G0 is abelian and finitely generated, there
exists a finite normal series with, say, m cyclic factors: G = N0 .N1 . · · · .Nm = G0.
If Ni is finitely generated then since Ni/Ni+1 is cyclic, we have by Lemma 2.8 that
Ni+1 is finitely generated. By repeating this step we get that G0 is finitely generated.

2. Let G be a relatively free group defined by a law w ⌘ 1, with free generators a, b
and let G0 be finitely generated. Then the normal closure of a is equal to h b�iabi, i 2
Z i = hai

⇥
hai, hbi

⇤
= haiG0, hence is finitely generated.

Since for all elements g, h in any group satisfying the law w ⌘ 1, the subgroup
hh�ighi, i 2 Z i is an image of h b�iabi, i 2 Z i, we conclude that the law w ⌘ 1 is an
R-law. ⇤
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Lemma 2.10 A law w ⌘ 1 is an R-law if and only if for some natural n it implies
a law of the form

xy
n
⌘ v(x, y) where v(x, y) 2 hx, xy, . . . , xy

n�2
, xy

n�1
i (2)

Proof Let G be a relatively free group of rank 2, defined by the law w ⌘ 1. Let G
be generated by elements a, b. Assume that G satisfies an R-law. By Definition 2.7
the subgroup h b�iabi, i 2 Z i is finitely generated. Then it is generated by some
n consequent elements in the row . . . , ab

�3
, ab

�2
, ab

�1
, a, ab, ab

2
, ab

3
, . . . . Since this

subgroup is invariant to conjugation by b, it is generated by a, ab, . . . , ab
n�2

, ab
n�1

and
then

ab
n
2 ha, ab, . . . , ab

n�2
, ab

n�1
i, (3)

which implies the law (2) because a and b are the free generators in G.
Conversely, the law (2) implies (3) which, conjugated by b, gives

ab
n+1

2 hab, ab
2
, . . . , ab

(n�1)
, ab

n
i

and in view of (3) can be written as

ab
n+1

2 ha, ab, . . . , ab
n�2

, ab
n�1

i

Repeated conjugation gives by induction ab
i
2 ha, ab, . . . , ab

n�2
, ab

n�1
i, i � 0. By (3)

we obtain
ab

�n
2 ha, ab

�1
, . . . , ab

�(n�1)
i. (4)

Conjugating by bn�1, it follows that ab
�1

is in ha, ab, . . . , ab
n�2

, ab
n�1

i, which implies
that h b�iabi, i 2 Z i = ha, ab, . . . , ab

n�2
, ab

n�1
i is finitely generated. ⇤

Example 2.11 Every Engel law [x,n y] ⌘ 1 is an R-law.

Proof Let vi denote any word in hx, xy, . . . , xy
i
i. In view of Lemma 2.10 it su�ces

to show that the law [x,n y] ⌘ 1 is equivalent to a law vn�1x
yn

⌘ 1.
For n = 1, [x, y] = x�1xy = v0x

y, and if assume [x,n�1 y] = vn�2x
yn�1

, then

[x,n y] = (vn�2x
yn�1

)�1(vn�2x
yn�1

)y = (x�yn�1
v�1
n�2v

y
n�2| {z }

vn�1

)xy
n
= vn�1x

yn .

Hence the law [x,n y] ⌘ 1 implies (2), which finishes the proof. ⇤

Example 2.12 Every positive law is an R-law.

Proof Each positive law implies a balanced positive law u(x, y) ⌘ v(x, y) where we
can assume that u has xy as initial segment, and the first letter in v is y. Then

u = xyr1xk1yr2xk2yr3 · · · = x · (xk1)y
�a1 (xk2)y

�a2
. . . (xkm)y

�am
· y�

P
ri ,

ak =
kX

i=1

ri,

v = ys1xt1ys2xt2ys3 · · · = (xt1)y
�b1 (xt2)y

�b2
. . . (xtq )y

�bq
· y�

P
si , bk =

kX

i=1

si.
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Since the law u ⌘ v is balanced,
P

ri =
P

si =: n, and the law can be written as

x ⌘ w(x, y), w 2 hxy
�1
, xy

�2
, . . . , xy

�n
i.

If conjugate this by yn we obtain the law (2) as required. ⇤

The common properties of groups satisfying positive laws and Engel laws are stud-
ied in [12] and [13]. It is shown in [1] that finitely generated, locally graded groups
satisfying an R-law is virtually nilpotent.

3 Milnor laws and varieties

The name of Milnor laws is due to F. Point [23] who introduced so called Milnor
identities, which by G. Endimioni [4] are exactly those laws not satisfied in any
variety of the form ApA for a prime p (see [24, Proposition 1.1]). So we suggest the
following

Definition 3.1 A law w ⌘ 1 is called the Milnor law if it is not satisfied in any
variety of the form ApA, with p a prime number.

A Milnor variety is the one which does not contain any of ApA as a subvariety.

By another words the Milnor law is a law which is not satisfied in any group Cp oC,
with a prime p. By Proposition 2.6, the group W := Cp o C has infinitely generated
W 0, hence by Proposition 2.9, we conclude that W does not satisfy an R-law. Hence
the R-laws are Milnor laws. By Examples 1 and 2 we have that positive laws and
Engel laws are Milnor laws. Each pseudo-abelian law is a Milnor law because by
definition it cannot be satisfied in non-abelian metabelian groups.

An algorithm which allows to check whether w(x, y) ⌘ 1 is the Milnor law is given
in [27].

Proposition 3.2 Let G be a 2-generator free group in the variety defined by the law
w ⌘ 1. Then G0/G00 is finitely generated if and only if w ⌘ 1 is the Milnor law.

Proof If w ⌘ 1 is the Milnor law then, by definition, it is not satisfied in any variety
ApA. Hence the metabelian variety generated by the group G/G00 does not contain
any of ApA as a subvariety. By J.R. J. Groves [5, Theorem C(ii))], the group G/G00 is
nilpotent-by-(finite exponent). Hence by result of A. I. Maltsev [15], G/G00 satisfies a
positive law which is theR-law (Example 1). Then the commutator (G/G00)0 = G0/G00

is finitely generated (see Proposition 2.9), as required.
Conversely, if w ⌘ 1 is not the Milnor law, then for some p, var(G) ◆ ApA and

hence also var(G/G00) ◆ ApA. It follows that G/G00 has a quotient Cp o C which
has the commutator subgroup infinitely generated. Hence (G/G00)0 = (G0/G00) is not
finitely generated, which finishes the proof. ⇤

Let G be a 2-generator free group in the variety defined by the law w ⌘ 1. The
properties of G0 and G00 allow us to classify the laws and the varieties.



Macedońska: A survey on Milnor laws 396

Theorem 3.3 (Main Theorem) Every law w ⌘ 1 belongs to one of four disjoint
classes (I)–(IV), defined by properties of the commutator subgroup of the free 2-
generator group in the variety defined by this law.

The first three classes consist of the Milnor laws. All the laws in the class (II) and
some in (I) are the R-laws.

Milnor laws

R-lawsab.+pseudo-ab.

non-Milnor laws

(IV) G0/G00 inf.g.G0/G00 f.g.

�
�

� 

(I) G0 = G00

@@R
G0

6= G00

� 

(II) G0 fin.gen.

@R

(III) G0 infin.gen.

By Proposition 3.2 we can split all laws for Milnor and non-Milnor laws accordingly
to finite or infinite number of generators in G0/G00. It is clear that the classes on the
picture are disjoint. We describe some details.

3.1 (I) (G0
= G00

)

Corollary 3.4 By Proposition 2.4 the class (I) contains all abelian and all pseudo-
abelian Milnor laws.

Question 3 Each law of the form [x, y] ⌘ u(x, y), where u(x, y) 2 F 00 is in the
class (I). Which words u(x, y) define abelian and which pseudo-abelian varieties?

3.2 (II) (G0 6= G00, G0
is finitely generated)

Corollary 3.5 By Propositions 2.4 and 2.9 the class (II) contains all R-laws, which
are not pseudo-abelian.

Question 4 Are there R-laws in the class (II) di↵erent from the Engel laws and
positive laws?

3.3 (III) (G0 6= G00, G0
inf. gen., G0/G00

finit. gen.)

Corollary 3.6 By Propositions 2.4, 2.9 and 3.2 the class (III) contains all Milnor
laws which are not R-laws, and are not pseudo-abelian.

Question 5 Are there examples of laws in the class (III)?
We can prove the following

Proposition 3.7 Let [x, y] ⌘ u(x, y) with u(x, y) 2 F 00 be a pseudo-abelian law
which is not an R-law. Then the law

[x, y, y] ⌘ [u(y, x), y] (5)

is in the class (III).
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Proof Let G be the 2-generator relatively free group defined by the law (5). The
law (5) is a Milnor law because each metabelian group satisfying (5) is a 2-Engel group,
while none of Cp oC is. So by Proposition 3.2, G0/G00 is finitely generated. The law (5)
is not a R-law, because it is the consequence of the law which, by assumption, is not
the R-law. So in view of Proposition 2.9, G0 is infinitely generated. The law (5) is
satisfied in the quaternion group Q8, which is not abelian, hence by Proposition 2.4,
G0

6= G00. Hence all conditions of the class (III) are satisfied which finishes the proof. ⇤

Question 6 Are the pseudo-abelian laws of the form (1) R-laws?
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Abstract

A group G is said to be capable if it is isomorphic to a central quotient of some group
K; that is, G ⇠= K/Z(K). We survey three di↵erent approaches to the question of
which groups are and which are not capable, with particular emphasis on p-groups.
We discuss the historical connection with Philip Hall’s program to classify p-groups
up to isoclinism, and how the di↵erent approaches interconnect.

1 Introduction

A common exercise in a first course in group theory is to prove that if G is a group,
and G/Z(G) is cyclic, then G is abelian; in other words, no group can have an inner
automorphism group that is nontrivial cyclic.

This may raise two questions in the mind of the reader. First, what groups can
and cannot occur as an inner automorphism group? And second, does it matter?

The purpose of this survey is two-fold: we will review some of the recent advances
in answering the first question, and put them into the context of the ideas and tools
that have come to be used in studying it. And we will try to put those advances
in context, and thereby answer the second question. We are particularly interested
in the recent progress in determining which p-groups occur as inner automorphism
groups, but we will discuss the problem in more generality when it does not take us
too far afield.

Today, a group that is the central quotient of another group is said to be “capable,”
a term coined by J.K. Senior and Marshal Hall, Jr. [32]. Thus, a group G is capable
if there exists a group K such that G ⇠= K/Z(K); and is not capable or incapable
otherwise. The exercise mentioned at the beginning shows that a nontrivial cyclic
group is never capable.

Many papers that discuss capability invoke the great group theorist Philip Hall,
who made the following oft-quoted observation in his paper on the classification of
finite p-groups [34] (we change the name of the groups to match our nomenclature
above):

The question of what conditions a group G must fulfil in order that it may
be the central quotient group of another group K, G ⇠= K/Z(K), is an
interesting one. But while it is easy to write down a number of necessary
conditions, it is not so easy to be sure that they are su�cient.
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However, the exact reason why this comment was made in a paper about classifying
p-groups seems to be less well known. We want to take the opportunity a↵orded by
this survey to recount that connection and make it explicit. Since the connection
traces back to the Schur multiplier and the homological approach, and so connects
the three strands we discuss below, we believe it makes sense to include it in this
survey to provide a more complete picture of both the results that are known, and
the reason why we might care about them.

Many di↵erent techniques have been brought to bear on the problem of determining
which groups are capable. Rather than give a purely chronological presentation, we
organize our presentation along three of the major ‘flavors’, as we see them.

The first part of the paper deals with what we are calling the classical approach,
where we deal with the groups more or less directly. This approach includes the early
success of Baer, who described precisely which groups that are direct sums of cyclic
groups are capable, and recent generalizations; the techniques are also used to find
structural conditions that a group must satisfy in order to be capable.

The second part of the paper deals with an approach that we have called the
“modern approach”, even though it harkens back to the first investigations into this
problem which arose in the work of Schur, Speiser, and Brauer, among others, when
studying extensions of groups. The modern period began with the introduction of the
epicenter of a group by Beyl, Felgner, and Schmid [13] (the name is due to Burns and
Ellis [20]), which is a characteristic central subgroup that measures the obstruction
to the capability of G. Using this approach, the first major additions to Baer’s
characterization were obtained: the characterization of precisely which extraspecial
p-groups are capable, and precisely which metacyclic groups are capable.

The third approach is the most recent one, and we explore it in the third part of the
paper. This approach, which we call the “homological approach”, brings together sev-
eral homological functors (in particular the nonabelian tensor and nonabelian exterior
square of a group) and connects to both the motivations for the classical approach of
Philip Hall through the Schur multiplier, and to the epicenter of Beyl, Felgner, and
Schmid. This final approach has brought new results which we will discuss below.

Within each approach we will attempt to give a more-or-less chronological over-
view; we note, however, that the three approaches overlap in time.

In the fourth and final part, we briefly mention some related concepts and gener-
alizations of capability, as well as some of what we think are the more tractable open
questions about capability of p-groups lying just beyond our current knowledge.

Part I: The classical approach

2 History and beginnings

2.1 Baer: capability of abelian groups

Perhaps the first investigation that dealt directly and specifically with what would
come to be known as “capable groups” occurs in the work of Reinholt Baer. In
a 1934 paper [5] in which he considers the automorphisms of a group extension,
Baer determined those finitely generated abelian groups that can occur as a central
quotient. Four years later, Baer published a pair of articles [6, 7]; the first one
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considered the general construction of “groups with abelian central quotient group”
(i.e., what we would now call nilpotent groups of class 2). The second paper considers
the following related question: given two groups A and B, what are the necessary
and su�cient conditions for the existence of a group G such that A ⇠= Z(G) and
B ⇠= G/Z(G); and what are the necessary and su�cient conditions for such a group
to be unique up to isomorphism? Baer answers the first question (existence) provided
that B is a direct sum (finite or infinite) of cyclic groups; and solves the uniqueness
problem under the further assumption that B is a finitely generated abelian group.

In the latter paper, Baer does not suggest any other consideration that might have
led him to ask these questions, but rather says only that the existence and uniqueness
problem “seem to be most elementary.” However, it seems fair to guess that he was
led to these questions by his previous work on constructions of nilpotent groups of
class two and on determining the automorphism group of extensions.

Baer takes the time to state explicitly the corollary that describes which abelian
groups that are direct sums of cyclic groups can be realized as a central quotient. To
state the result, we need a bit of notation: given an abelian group G that is a direct
sum of cyclic groups, r(G, 0) denotes the number of direct summands that are infinite
in any decomposition of G into indecomposable direct summands; and for a prime p
and positive integer i, r(G, pi) denotes the number of direct summands of order pi in
such a decomposition. These invariants can be computed directly from the structure
of G (that is, without explicitly giving the decomposition) in well-known ways. We
use G

tor

to denote the torsion subgroup of an abelian group.
Baer’s result can then be stated as follows:

Theorem 2.1 ([7], Corollary on p. 389) A group G that is a direct sum of cyclic
groups is isomorphic to the central quotient group of a suitable group K, G ⇠=
K/Z(K), if and only if

(a) If r(G, 0) = 1, then the orders of the elements in G
tor

are not bounded;

(b) If G is a torsion group, and r(G, pi) = 1, then G contains elements of order
pi+1.

In the case of a finitely generated abelian group, this becomes the oft-quoted result.

Corollary 2.2 If G is a finitely generated abelian group, and we write

G ⇠= Ca1 � Ca2 � · · ·� Can , a
1

6= 1, ai|ai+1

, i = 1, . . . , n� 1,

where Cm is cyclic of order m if m > 0 and C
0

is infinite cyclic, then G is isomorphic
to the central quotient of a suitable group if, and only if, n > 1 and an�1

= an.

Baer establishes the su�ciency constructively, in the sense that given a group
G that satisfies the given conditions Baer uses the material in [6] to construct a
witness K for which G ⇠= K/Z(K). Baer’s conditions would later be generalized in
several directions: Philip Hall proved that the necessary condition on the orders of
the invariant factors extends to regular p-groups, while one of us (AM) proved that
the characterization extends from direct sums to nilpotent products in the small class
case; see the discussion in Section 3.1 below.
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Baer’s papers do not seem to have made much of an impact, at least at the time of
their publication and in the years that followed. The 1934 paper [5] is cited only five
times in the next twenty years in the MathSciNet database, and most of its citations
came after 2000. The other two papers fared even worse, with [6] cited a total of
eight times, and [7] cited for the first time in 2002.

In fact, Baer’s characterization of the finitely generated abelian groups that are
capable was re-proven in [32], with no indication that the authors were aware that
the result had already been proven over twenty years earlier.

2.2 P. Hall, J.K. Senior, and M. Hall, Jr.: p-groups, isoclinism and the
groups of order 2n, n  6.

The next appearance of the concept bears directly on our own interest (p-groups), in
the work of Philip Hall. In a 1940 paper [34], Philip Hall sets forth a general scheme
which he hoped would help in the classification of p-groups. The paper was submitted
to the German J. für die Reine und Angewandte Mathematik on July 1st, 1939, two
months before the beginning of World War II, and the paper was published in 1940.
The onset of the war delayed further development.

This was not Philip Hall’s first foray into the problem of classifying p-groups; he had
made seminal contributions eight years earlier in [33], where he introduced many of
the invariants that are still used today. The main goal of the earlier paper, according
to Hall, was to present a general theory for p-groups, in contrast to previous e↵orts
that had been dominated by considering special classes of p-groups, such as those
with “large” abelian subgroups, those that occur as Sylow subgroups of important
insoluble groups like the symmetric and modular linear groups, etc. Philip Hall
divides p-groups into regular and irregular, with regular groups being those in which
the operations of commutation interacts well with what Hall terms the “order-power
structure” of the group (the characteristic series of subgroups ⌦i = hx 2 G | xpi = 1 i
and fi = hxpi | x 2 G i). By restricting himself to regular groups, Philip Hall was
able to show that “most of the classical theory of abelian groups ... is valid for the
more general class of regular groups.” In particular, Philip Hall proves that a finite
regular p-group has invariants !, µ

1

, . . . , µ! such that |G| = pµ1+···+µ! , and such that
G has elements x

1

, . . . , x! with xi of order pµi , with the property that any element of
G can be expressed uniquely in the form xa1

1

· · ·xa!! with 0  ai < pµi . The quantities
µ
1

, . . . , µ! are called the “type invariants” of the group. When the group is abelian,
the type invariants correspond precisely to the invariant factors.

Parenthetically (top of page 33) Philip Hall remarks that he “hope[s], in a later
paper, to deal with irregular groups on similar principles.” Hall’s hope was never
realized, and perhaps the di�culties he encountered eventually led to [34].

In [34], Philip Hall changes strategies. He notes that it is not so di�cult to construct
all possible groups of order pn once we know those of order pn�1, by realizing them
as extensions by a cyclic group of order p; but rather, that the di�culty lies in
recognizing those that are isomorphic. Hall proposes instead to consider a coarser
classification scheme, which he terms isoclinism. Capable groups make a remarkable
appearance in these considerations, as we will see below. Philip Hall describes two
ideas that guide his definition (bottom of p. 132 in [34]):
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First, two groups G and K are considered to be the same in the abstract
sense if they can be placed in the relation of isomorphism to one another:
G ⇠= K. Clearly then, if we replace the relation of isomorphism by some
weaker equivalence relation, G ⇠ K, we shall obtain a classification of all
groups into mutually exclusive classes. The second idea is that the Abelian
groups, at least those of finite order, do not need to be classified, since they
may be regarded as completely known. Thus we shall choose the relation
G ⇠ K in such a way that the statement G ⇠ 1 means the same as: G is
Abelian. For this reason, we call the equivalence relation ⇠, on which the
system of classification is based, isoclinism, and read the relation G ⇠ K
as saying that G and K are isoclinic groups. (The word isoclinic might
perhaps be translated: gleich schief.)

Explicitly, given two groups G and K, we say that G is isoclinic to K if and only
if we have two isomorphisms, ✓ : G/Z(G) ! K/Z(K) and  : [G,G] ! [K,K], which
are compatible in the sense that  ([g

1

, g
2

]) = [✓(g
1

), ✓(g
2

)]. The attentive reader
will no doubt note that this equation does not literally make sense, since ✓ is a map
defined on the cosets of Z(G) and with images that are cosets of Z(K), whereas the
image of  is supposed to be an element of K; however, it is easy to verify that
in any group H , if h

1

Z(H) = h0
1

Z(H), h
2

Z(H) = h0
2

Z(H), then [h
1

, h
2

] = [h0
1

, h0
2

];
thus, we can view [✓(g

1

), ✓(g
2

)] as the commutation of any element of ✓(g
1

Z(G)) with
any element of ✓(g

2

Z(G)), since the result will be independent of the choice of coset
representative. Intuitively, we might say that G is isoclinic to K if G and K fail to
be abelian in the same manner.

The concept of isoclinism fails to simplify the isomorphism problem for many classes
of groups; for example, two simple groups are isomorphic if and only if they are
isoclinic. But Philip Hall believed it held great promise for nonabelian p-groups. For
one thing, in this setting both [G,G] and Z(G) must be proper nontrivial subgroups.
For another, many of the standard invariants of p-groups remain invariants under
isoclinism, notably the terms of the lower central series (and not just the commutator
subgroup), as well as the class of the group.

The idea of using isoclinism to study p-groups seems to have arisen in large part
during extended discussions between Philip Hall and James K. Senior about the
classification of the groups of order 64; the background is related in the introduction
to [32] and we refer the reader there. They believed they were within months of
sending out the classification in the summer of 1939, but circumstances conspired
against them. After many delays, Hall withdrew from the project permanently in
1959, and Marshall Hall, Jr. joined Senior to complete the e↵ort (with the approval
of Philip Hall), leading to the publication of [32].

Let us discuss in a bit more detail the ideas at play in the classification of p-
groups up to isoclinism, and how capable groups enter into the picture; the connection
of capable groups to the classification of p-groups is often mentioned, but seldom
explained, so it seems worthwhile to expound on it here.

First we begin by recounting some observations made by Philip Hall. If H is a
subgroup of G, then H is isoclinic to HZ(G), and so in particular G is isoclinic to
any of its cocentral subgroups (subgroups H such that HZ(G) = G); conversely, if
G/Z(G) is finite, thenG is isoclinic to a subgroupH of itself if and only ifHZ(G) = G.
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Dually, if H is a normal subgroup of G that is not contained in [G,G], then G/H
is isoclinic to G/(H \ [G,G]); so G/H is isoclinic to G if H \ [G,G] = {1}, and the
converse holds when [G,G] is finite.

Philip Hall identifies an important class of groups, which he calls the stem groups:
these are the groups G in which Z(G) ✓ [G,G]. An important observation that Philip
Hall makes is contained in the following theorem, which says that every equivalence
class under isoclinism contains a stem group:

Theorem 2.3 ([34], discussion on p. 135) Every group is isoclinic to a group G
in which we have Z(G) contained in [G,G].

To give the reader a feel for the kind of arguments employed by Hall (and more
generally, those that go into investigations of this sort), we sketch the proof:

Sketch. Given an arbitrary group K, pick a generating set S; let A be the free
abelian group generated by S, and let H be the subgroup of K ⇥A generated by the
pairs (s, s) with s 2 S. It is then easy to verify that K is isoclinic to K ⇥A, and the
latter to H . Moreover, Hab ⇠= A, and

Z(H)

Z(H) \ [H,H ]
⇠=

Z(H)[H,H ]

[H,H]
;

the latter corresponds to a subgroup of A, so Z(H)/(Z(H) \ [H,H ]) is free abelian
(possibly trivial), hence projective. Therefore, Z(H) ⇠= (Z(H) \ [H,H ]) � L for
some complement L. Then L \ [H,H ] = {1}, and H/L is isoclinic to H . Finally,
Z(H/L) = Z(H)/L ✓ [H/L,H/L] = L[H,H ]/L. Thus, G = H/L has the desired
properties. ⇤

Philip Hall refers to the stem groups (those G with Z(G) ✓ [G,G]) in a given
isoclinism family1 as the stem of the family. Two stem groups in the same family
are necessarily of the same order, and if K is any group, then the order of the stem
groups in the isoclinism family of K is given by [K : Z(K)]

��Z(K)\ [K,K]
��. For finite

groups, the stem groups of an isoclinism family are precisely all the groups in the
family that are of minimal order (within the family). Much of the e↵ort in describing
an isoclinism family goes into determining the stem groups of the family.

In the case of isoclinism families of p-groups, the stem groups will themselves be
p-groups. If the stem groups of a given family have order p⇢, then ⇢ is called the rank
of the family. If we determine all stem groups of a given order, we will determine all
isoclinism families of that rank.

But how can we determine the stem groups of a given rank? It is here that capable
groups make an important appearance. Philip Hall sketches the ideas in [34], and the
details are fleshed out by M. Hall and Senior in [32].

The question Philip Hall asks is: suppose that G and bG are groups with isomorphic
central quotients, G/Z(G) ⇠= bG/Z( bG) ⇠= H . What relations, if any, hold between the
isoclinism family of G and that of bG? What Philip Hall proves is that there is a most
general stem group with the same central quotient as G (and bG), and such that each

1
We use “family” to describe an equivalence class under isoclinism, because the term “class” may

be confused with the nilpotency class of a group.
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of G and bG are quotients of this group. What follows is the argument as presented
in [32].

Let h
1

, . . . , hr be generators of H , and let F be the free group on x
1

, . . . , xr. Let
K be the kernel of the map F ! H induced by xi 7! hi. Let N

0

= [K,F ] and
N

1

= K \ [F, F ]; then K/N
0

is abelian, and K/N
1

⇠= [F, F ]K/[F, F ] is a subgroup of
the free abelian group F/[F, F ] and so is itself free abelian, and hence K/N

0

is the
direct product of N

1

/N
0

and a free abelian group of the form L/N
0

for a suitable
subgroup L of F . The group N

1

/N
0

is none other than the Schur multiplier of H,
and depends only on H and not on the choice of presentation.

Recall now that G is a group with G/Z(G) ⇠= H. Let g
1

, . . . , gr be elements of
G that map to h

1

, . . . , hr under the isomorphism, and let G = hg
1

, . . . , gri. Then
G = GZ(G), hence G ⇠ G, so G is also a witness to the capability of H. Let M be
the kernel of the map F ! G induced by xi 7�! gi. Then M ✓ K, and K/M is the
center of F/M , hence N

0

= [K,F ]  M , and K/N
0

is the center of F/N
0

.
Let N = M \ N

1

, so that N
0

 N  N
1

. Since M  K, then M \ [F, F ] =
M \N

1

= N , so the subgroup M/N of F/N intersects [F, F ]/N trivially. Therefore,
F/M ⇠ F/N , and so G ⇠ F/N , and K/N = Z(F/N).

The conclusion of the above is that if G is a group such that G/Z(G) ⇠= H , then
the isoclinism family to which G belongs has at least one representative of the form
F/N , where N

0

 N  N
1

and K/N is the center of F/N .
By selecting N = N

0

we obtain a group that belongs to a family M(H) that
is maximal, in the sense that any group with central quotient isomorphic to H is
isoclinic to a suitable quotient of a group from M(H). The family M(H) is called
the maximal family associated to the given H. In particular, we can obtain the stem
groups of every family M that has central quotients isomorphic to H by considering
F/N

0

and suitable quotients thereof.
The question that remains is whether we have a way of recognizing that two quo-

tients F/N and F/M are isoclinic. We have:

Theorem 2.4 ([32], Theorem 2.2) The outer automorphisms of H are represented
in a natural way by automorphisms of the Schur multiplier of H, N

1

/N
0

. The sub-
groups N/N

0

such that N
0

 N  N
1

and K/N = Z(F/N) are permuted among
themselves by this representation; and F/N ⇠ F/M if and only if N and M belong
to the same orbit of the action.

Say we want to find all isoclinism families of rank n; if we know all capable groups
of order pk, k < n, then we can proceed by considering each such capable group H,
constructing the corresponding maximal family M(H), and determining the suitable
quotients F/N that lead to stem groups of order pn. Then we use Theorem 2.4 to
ensure we have not listed any isoclinism family more than once.

Philip Hall shows the usefulness of these ideas by obtaining a classification up to
isoclinism of the p-groups of order at most p5, with p > 3 (the restriction simplifies
calculations by ensuring all groups are regular; some minor but potentially obfuscating
di�culties arise when dealing with p = 3, while p = 2 was being dealt with in the
work with Senior). Philip Hall does not need the approach through capable groups
and maximal families to deal with the families of smallest rank, since we already
know the structure of p-groups of small order: the family of rank 0 corresponds to
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abelian groups; there are no families of rank 1 or 2 (since the stem groups would be
abelian); the two nonabelian groups of order p3 are isoclinic and yield a single family;
and there is a single family of rank 4, corresponding to a stem group that is of order
p4 and maximal class (Philip Hall characterizes the groups in this isoclinism class as
those that have an abelian subgroup of order p, commutator subgroup of order p2,
and third term of the lower central series of order p).

But in order to deal with the family of rank 5, Philip Hall uses the approach
outlined above; he does not go into all the details (in particular, he does not derive
the necessary and su�cient condition for F/N ⇠ F/M to hold) because he does not
need them for the application in question and presumably because he expected them
to appear in the planned work with Senior. Philip Hall determines that the groups
of order at most p5, p > 3, fall into ten families: one each of ranks zero, three, and
four; and seven of rank five.

These ideas were also used to great e↵ect in [32], where all 267 groups of order 64
are described by generators and relations, along with all groups of orders 2, 4, 8, 16,
and 32. A lot of information is provided for each group; e.g., the nilpotency class,
the isoclinism family to which it belongs, the number of elements of a given order,
the order of the automorphism groups, and the lattice of normal subgroups.

The ideas presented by Philip Hall in [34] play a central role in the exposition given
in [32], though in the latter they are further refined and expanded. The groups of
order 2n, n  6, fall into 27 isoclinism families: one each of ranks zero, three, and
four; five of rank five; and nineteen of rank six.

Philip Hall’s isoclinism program was later used to classify the groups of order p6

for odd prime p; they fall into 43 isoclinism families [40]. It was also used to classify
the groups of order 27, which fall into 115 isoclinism families [41].

2.3 Beyond Hall

As far as we are aware, there was no sustained e↵ort to extend the work of Philip Hall,
Marshall Hall Jr., and Senior beyond that mentioned above. Although the groups
of order p7, p > 2, and the groups of orders 2n with n = 8, 9 have been described
[56, 57, 11], and those of order 210 have been counted [11], the methods used do
not follow the outline of Philip Hall’s isoclinism program, so there was no need to
determine capable groups and maximal families to obtain these results.

This may help explain why work on capable groups often mentions Philip Hall’s
dictum that determining the capable p-groups is interesting and important for their
classification, but more recent work that focuses on understanding p-groups does not
seem to touch on the problem at all.

Still, results on capable groups that proceed by working directly with the groups
(and do not involve the homological machinery we will discuss in the next two sections)
continue to appear, e.g., [36, 38, 39, 47, 49]. We discuss some of these results in the
next section.

3 Further results

We call the approach above “classical”: though the Schur multiplier shows up in the
considerations of Philip Hall, the actual determination of which groups are capable
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or, more often, necessary conditions for a group to be capable, take a very hands-on
approach.

In this section we discuss some further developments that proceed along those
same lines: by working directly with the groups, without homological constructions
or other high-power results.

3.1 Orders of elements and beyond Baer.

Baer proves his results in [7] constructively; the su�ciency of the conditions is estab-
lished by explicitly constructing the required groups, and the necessity by directly
analyzing the consequences that the required relations would imply in a group whose
central quotient is the given group. Some remarks made by Philip Hall in [34] sug-
gest that Hall was unaware of Baer’s results, and the same seems to be true about
Senior and M. Hall: Corollary 2.2 is proven de nuovo in [32], without any reference
to Baer. The proof is di↵erent from Baer’s, though again it is very hands on. It
is based on the lemma below; we give its proof and a sketch of how it was used to
establish Corollary 2.2, again to give the reader a feel for the type of arguments that
are typical of the classical approach.

Lemma 3.1 ([32], Lemma 3.1) Let G be generated by x
1

, . . . , xr, and suppose that
there is an element u 6= 1 of G such that u 2 hxii for each i; then G is not capable.

Proof Suppose K is such that K/N ⇠= G, with N ✓ Z(K). If k 2 K is such
that k maps to u, and k

1

, . . . , kr 2 K map to x
1

, . . . , xr, respectively, then there
exist integers m

1

, . . . ,mr such that k ⌘ kmi
i (mod Z(K)). Therefore, k commutes

with each ki; for example, there exists z 2 Z(K) such that k = km1
1

z, hence k
1

k =
km1+1

1

z = zk
1

km1
1

= kk
1

. Since K = hZ(K), k
1

, . . . , kri it follows that k 2 Z(K),
hence N 6= Z(K), since kN 6= N . ⇤

From here one can prove Corollary 2.2: let G = Cr1 ⇥ · · ·⇥Crk , where Crj is cyclic
of order rj generated by xj, r1 6= 1, and ri|ri+1

. If rk�1

< rk, let yi = xixk for i < k
and yk = xk; then H is generated by y

1

, . . . , yk, u = y
rk�1

k 6= 1, and u = y
rk�1
i for each

i; by the previous lemma, it follows that G is not capable. Conversely, if G satisfies
the conditions of Corollary 2.2, one can define a group of class 2 (which will lie in the
maximal family associated to G) generated by y

1

, . . . , yr and subject to the relations
[yi, yj ]ri = 1 with i < j, together with the relations that make commutators central.
The center of this group is then easily seen to be generated by the commutators and
by y

rk�1

k , so that K/Z(K) ⇠= Cr1 � · · ·�Crk�1 �Crk�1 which is isomorphic to G when
rk�1

= rk. See also Theorem 3.4 below.
The same ideas can be used to establish necessary conditions on the orders of ele-

ments of a generating set of a capable group. Immediately after noting that necessary
conditions are not di�cult to come by, but su�cient conditions are harder, Philip Hall
illustrates his remark by mentioning the following generalization of the necessary half
of Baer’s Theorem:

Proposition 3.2 ([34], bottom of p. 137) If G is a regular p-group, and G is ca-
pable, then its two largest type invariants are the same.
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This can be shown using a similar argument as that used above, augmented with
some commutator calculus for regular groups.

Philip Hall notes that this condition is su�cient for regular p-groups of order
less than p5 with p odd, which su�ces for his application in [34]. However, the
condition is not su�cient in general for regular groups, and in fact already fails for
groups of order p6; that is, just after the orders considered by Philip Hall (perhaps
it was this failure that led Hall to consider only groups of order at most p5). For
example, the extraspecial group of order p5 and exponent p, E

5

= hx, yi � hz, wi is
not capable, where hx, yi ⇠= hz, wi are nonabelian groups of order p3 and exponent p
(p an odd prime), and � represents the central product (the quotient of their direct
product obtained by identifying their isomorphic centers). To see that E

5

is not
capable (even though it is regular and its four type invariants are equal), suppose
that H is a group and N ✓ Z(H) is such that H/N ⇠= E

5

; we show that N 6=
Z(H). If hx, hy, hz, hw map onto x, y, z, w, respectively, in the isomorphism, then
[hx, hz], [hx, hw], [hy, hz] and [hy, xw] are all central in H . Since H is of class 3, the
Hall-Witt identity yields that in H , [hx, hy, hz] = 1 and so [hx, hy] commutes with
hz; similar calculations show that [hx, hy] also commutes with hw, and that [hz, hw]
commutes with both hx and hy. But since [hx, hy][hw, hz] is also central, we also
obtain 1 =

⇥
[hx, hy][hw, hz], hx] = [hx, hy, hx][hw, hz, hx] = [hx, hy, hx], so [hx, hy] also

commutes with hx. Symmetrically, it commutes with hy, and so we conclude that
[hx, hy] 2 Z(H) \N , so E

5

is not capable.
The necessary condition in terms of type invariants does not make sense for irregu-

lar groups (which do not have type invariants); however, one of us (AM) proved that
there is a generalization for arbitrary p-groups, whose proof only requires commutator
calculus.

Proposition 3.3 ([47], Lemma 3.12) Let G be a p-group of class c, with c � 1
and p a prime. Furthermore, let {x

1

, . . . , xr} be a generating set for G with xi of
order pai, where a

1

 a
2

 · · ·  ar. If G is capable, then r > 1 and

ar  ar�1

+

�
c� 1

p� 1

⌫
,

where bxc is the floor of x, i.e., largest integer less than or equal to x.

If c < p, often called the “small class case”, the group will necessarily be regular,
and the theorem yields Philip Hall’s condition on the type invariants. When c = 1,
the condition readily yields the necessity clause of Baer’s theorem for finite abelian
groups.

The proof requires only some careful calculations with commutators: if H is a
p-group of class c+1, y and z are elements of H , and a is a positive integer with the
property that [z, yp

i
, z] = [z, yp

i
, y] = 1 for all i � a, then [zp

N
, y] = [z, y]p

N
= [z, yp

N
]

for all N � a + b(c � 1)/(p � 1)c (see Theorem 3.9 in [47]). From this it follows
that if H is a p-group of class c + 1, and the elements y

1

, . . . , yr have images that

generate H/Z(H) and have order pa1 , . . . , par , respectively, then yp
`

r 2 Z(H), where
` = ar�1

+ b(c� 1)/(p� 1)c. The necessary condition then follows immediately.
The inequality is best possible: for p = 2, the dihedral groups provide examples

where we have equality. For odd primes, a modification of a construction of East-
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erfield [22] provides the necessary examples; see [46]. However, the condition is not
su�cient in general, as witnessed again by the extraspecial group E

5

.
How far can we generalize Baer’s Theorem for finitely generated abelian groups?

One may attempt to generalize Baer’s Theorem by noting that the direct sum of
abelian groups is their coproduct in the category of abelian groups. Any variety of
groups (in the sense of universal algebra: a class of groups closed under subgroups,
homomorphic images, and arbitrary direct products) has a coproduct; in the case
of nilpotent groups of class at most c, the coproduct is the “c-nilpotent product”,
originally introduced by Golovin [31] in a slightly more general setting. At least for
values of c that are no larger than p, we do get the generalization of Baer’s Theorem.
Recall that if A

1

, . . . , Ak are nilpotent groups of class at most c, then their c-nilpotent
product A

1

qNc · · · qNc Ak is defined to be

A
1

qNc · · ·qNc Ak =
A

1

⇤ · · · ⇤Ak

(A
1

⇤ · · · ⇤Ak)c+1

,

where ⇤ denotes the free product, and Bc+1

is the (c+ 1)st term of the lower central
series of a group B. For instance, the explicit group that witnesses the capability
of a direct sum of cyclic groups with ar�1

= ar mentioned above is the 2-nilpotent
product of the same cyclic groups. We have:

Theorem 3.4 ([47], Theorem 4.4; [49], Theorem 3.11) Let p be a prime, and
let C

1

, . . . , Cr be cyclic groups generated by x
1

, . . . , xr, respectively; assume that the
order of xi is pai, and that a

1

 · · ·  ar. If c  p and G is the c-nilpotent product
of the Ci, C

1

qNc · · · qNc Cr, then G is capable if and only if r > 1 and ar 
ar�1

+ b(c� 1)/(p� 1)c.

Necessity follows from Proposition 3.3; su�ciency can be established construc-
tively: the given nilpotent product is the central quotient of the nilpotent product
“one class up”, that is, of C

1

qNc+1 · · ·qNc+1 Cr. The proof in [47] uses a normal form
that was found by R.R. Struik [65, 66], together the same commutator calculus that
is used to establish Proposition 3.3.

We do not know whether the restriction on c can be dropped, though one of us
(AM) conjectures that this is indeed the case. The generalization does have one
weakness that Baer’s Theorem does not: whereas in the abelian case (c = 1) all finite
p-groups can be expressed as a coproduct of cyclic groups, the same is not true for
c > 1. Of course, the universal property of the coproduct guarantees that any finite
p-group of class c is a quotient of a c-nilpotent product of cyclic groups, so some
progress can be made.

3.2 Index of the center

Another consequence of capability that can be established through elementary meth-
ods is the following result from Isaacs:

Theorem 3.5 ([39]) There exists a function t(n) defined on the natural numbers
such that if G is finite and capable, then |G : Z(G)|  t(|G0|).
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Isaacs does not provide an estimate for the function t(n). Podoski and Szegedy take
up the matter in [58], providing an upper bound and eliminate the need that G be
finite.

Theorem 3.6 ([58]) If G is capable and |G0| = n, then |G : Z(G)|  nc log2 n with
c = 2.

They conjecture that the bound on the central index might be improved to

|G : Z(G)|  n
1
2 log2 n+c2

for some constant c
2

.
A classical result of Schur states for any group G, if |G : Z(G)| is finite then |G0|

is finite. The converse of this result is not true in general. However Philip Hall
shows that if |G0| is finite then |G : Z

2

(G)| is finite, where Z
2

(G) is the second center
of G. Since for any group G the quotient G/Z(G) is capable, we can apply Theorem
3.6 whenever |(G/Z(G))0| is finite and obtain a bound for |G : Z

2

(G)|. Suppose
|(G/Z(G))0| = n. Then by Theorem 3.6

|G/Z(G) : Z(G/Z(G))| = |G : Z
2

(G)|  nc log2 n.

Observing |(G/Z(G))0| = |G0 : G0 \ Z(G)| we obtain the following result.

Theorem 3.7 ([58]) Let G be an arbitrary group. If |G0 : G0 \ Z(G)| = n then
|G : Z

2

(G)|  nc log2 n with c = 2.

In a second paper [59] Podoski and Szegedy look to bound |G : Z(G)| of a finite
capable group by the size of certain generating sets. This can lead to improvements
to Theorem 3.6. Denote by d(G) the minimum number of generators of G, and by
rk(G) the rank of G, which is the minimal number such that each subgroup of G is
generated by rk(G) elements. It is clear d(G)  rk(G). Since any subgroup of a finite
group G can be generated by at most log

2

(|G|) elements this is an upper bound on
rk(G).

Theorem 3.8 ([59]) If G is a finite capable group and rk(G0) = r, then

|G : Z(G)|  |G0|4r.

Placing conditions on the structure of Z(G) or [G,G] provides further leverage to
improve the bounds on the index of Z(G) in G. All centerless groups are capable and
in this case we can improve Theorem 3.8.

Theorem 3.9 ([59]) If G is a finite group with Z(G) = 1 and d = d(G0), then
|G|  |G0|d+1.

If G0 is cyclic, Theorem 3.8 can be further improved:

Theorem 3.10 ([58]) If G is a finite capable group whose commutator subgroup G0

is cyclic, then |G : Z(G)|  |G0|2.
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For certain capable p-groups of nilpotency class two it is possible to obtain exact
bounds on the index of the center. For example, by considering the bilinear map

(G/Z(G))⇥ (G/Z(G)) ! [G,G].

Heineken proved the following:

Theorem 3.11 ([36], Prop. 3) If G is a finite capable group with [G,G] ✓ Z(G)
and Cp ⇥ Cp

⇠= [G,G], then p2 < |G/Z(G)| < p6.

For groups of nilpotency class two and exponent p, a much better result is possible:

Theorem 3.12 (Heineken and Nikolova [38]) Assume that G is a finite group
of exponent p, Z(G) = [G,G], and that G is capable. If Z(G) is of rank k, then
G/Z(G) is of rank at most 2k +

�
k
2

�
.

It is worth noting that the condition Z(G) = [G,G] is not an obstruction to the
applicability of this result: if G is a p-group of class exactly 2 and exponent p, then it
is easy to show that G can be expressed as G = K⇥A, where A is a elementary abelian
p group of rank � 0 and K is a group such that Z(K) = [K,K]. It is straightforward
to show that G is capable if and only if K is capable. So the problem of determining
the capability of any group of class two and exponent p can be reduced to one for a
group whose center is equal to its commutator subgroup.

3.3 A su�cient condition

As we have repeated a number of times, it seems to be di�cult to obtain su�cient
conditions for capability. The results summarized above hint at this: there are very
few conditions guaranteeing capability.

One class of groups that seems like a good candidate for a complete characterization
is the class of p-groups of class two and exponent p. Combining an argument of Isaacs
(Lemma 2.1 of [39]) and one of Heineken and Nikolova (mentioned en passant in the
proof of Theorem 1 in [38]), one can show that if G is a finite capable group, then
we can always find a finite group H that acts as witness for the capability of G (that
is, a finite H such that G ⇠= H/Z(H)) and moreover, if G is generated by elements
g
1

, . . . , gn, then one may choose such an H to be generated by elements h
1

, . . . , hn,
with hi mapping to gi under the isomorphism G ⇠= H/Z(H), and with hi of the same
order as gi (see Theorem 3.1 in [51]).

This means that if G is a capable p-group of class 2 and odd exponent p, then
there necessarily exists a witness H to that capability which is a finite p-group of
class 3 and generated by elements of exponent p. These groups have a straightforward
commutator structure (which is an abelian group of exponent p with basis given by
the basic commutators on the generators), and so there is a lot of structure with
which to perform computations. One can even write down a “canonical witness” for
the capability of G in the following sense: if we let N be the kernel of the map from
the relatively free group of class 2, exponent p, and rank r, onto G, then we can
view N as a subgroup of the commutator subgroup of F , the 3-nilpotent product of
r cyclic groups of order p. Then G is capable if and only if F/[N,F ] is a witness to
the capability of G.



Magidin, Morse: Capable p-groups 412

By relating the size of N and that of [N,F ], one can test to see whether there can
exist an M , N ( M , with [N,F ] = [M,F ]; the existence of such an M is equivalent
to the incapability of G. This gives a nice counterpart to Theorem 3.12:

Theorem 3.13 ([51], Theorem 5.28) Let G be a p-group of class two and expo-
nent p, where p is an odd prime, and assume that Z(G) = [G,G]. Let rk(Gab) = n
and rk([G,G]) = m. Define a function f on positive integers by f(n) =

�
r
3

�
+

�
s
2

�
, if

n is a positive integer and n =
�
r
2

�
+ s, 0  s < r. If f

��
n
2

�
�m+ 1

�
< n, then G is

capable.

In essence, Theorem 3.13 says that if the commutator subgroup of G is “big
enough”, then G will necessarily be capable; on the other hand, Theorem 3.12 can
be thought of as saying that if G is capable, then the commutator subgroup of G
cannot be “too small.” The two results, together with some classification work of
Brahana [16], su�ce to characterize the capable groups of class at most 2 and expo-
nent p with G/Z(G) of rank at most 5.

Corollary 3.14 ([51], Theorem 6.1) Let p be an odd prime, and let G be a p-group
of class at most 2 and exponent p, and assume that G/Z(G) is of rank at most 5.
Then G is one and only one of:

(i) Cyclic and nontrivial;

(ii) A nontrivial central product AB with [A,A] \ [B,B] ⇠= Cp; or

(iii) Capable.

Unfortunately, as n grows the gap between the necessary condition of Theorem 3.12
and the su�cient condition of Theorem 3.13 also grows. However, the two results sug-
gest that a full characterization for the class of groups of class 2 and prime exponent
may be within reach using current ideas and techniques.

Part II: The modern approach

4 The Schur multiplier, extensions, and the epicenter

The approach that we dub “modern” originated in the work of Beyl, Felgner, and
Schmid [13], and the introduction of the “precise center” or “epicenter” Z⇤(G) of a
group G. This led to the determination of exactly which metacyclic groups and which
extraspecial p-groups are capable, the first classes to be completely dealt with since
Baer’s result on finitely generated abelian groups. In this section, we discuss these
developments, starting with the definition of the epicenter and its connection with
the Ganea map.

The subject of capable groups seems to have lain more or less dormant for several
years after the appearance of [32]. The next major development came in 1979, with
a paper of Beyl, Felgner, and Schmid [13]. In a sense, this paper harkens back to
ideas of Schur [61] and Speisel [64] on representation theory mentioned by Philip Hall
in [34].

Beyl, Felgner, and Schmid introduced a central subgroup of a given group G, which
they denote by Z⇤(G); this subgroup was sometimes called the “precise center” of G,
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but would later be christened the epicenter of G by Burns and Ellis [20], the name
by which it is generally known today.2

The first definition of Z⇤(G) comes from considering group extensions. We say
that an extension of G is a pair, (E,'), with ' : E ! G a surjective group morphism.
If (F, ⇡) is another extension of G, then a homomorphism f : F ! E is said to be
a homomorphism over G if 'f = ⇡. And we say that (E,') is a central extension
of G if ker(') ✓ Z(E). Beyl, Felgner, and Schmid define the epicenter as: Z⇤(G) =T
{'(Z(E)) | (E,') is a central extension of G}. The connection with capability is

the following:

Theorem 4.1 ([13], Corollary 2.2) The epicenter Z⇤(G) is the intersection of all
normal subgroups N of G such that G/N is capable. In particular, Z⇤(G) is the
smallest subgroup of Z(G) such that G/Z⇤(G) is capable.

Corollary 4.2 ([13], Corollary 2.3) G is capable if and only if Z⇤(G) = {1}.

Thus, we can view Z⇤(G) as the obstruction to the capability of G, or as a measure
of how far G is from being capable. This also connects the study of capability with the
study of unicentrality, introduced by Evens [28]. Evens was interested in computing
the Schur multiplier of a semidirect product AoK, with A abelian, in terms of the
Schur multipliers of A and of K. Evens defines a group G to be unicentral if and
only if for every central extension (E,') of G, '(Z(E)) = Z(G). Thus, we see that,
in terms of the epicenter, a group G is unicentral if and only if Z⇤(G) = Z(G); that
is, unicentral groups are at the opposite end of the spectrum from capable groups.

The epicenter had been looked at elsewhere; for example, it occurs in the work of
Read [28].

As defined above, the epicenter seems di�cult to compute; inspired by the result
that G is unicentral if and only if the canonical map M(G) ! M(G/Z(G)) is one-
to-one (where M(K) is the Schur multiplier of K), Beyl, Felgner, and Schmid looked
for an alternate description of the epicenter. Let 1 ! N ! G ! Q ! 1 be a central
extension. Ganea [30] associates to this extension the exact sequence

N ⌦G/G0 ! M(G) ! M(Q) ! N ! G/G0 ! Q/Q0 ! 1.

The map N ⌦ G/G0 ! M(G) is called the Ganea map associated with N . The
following theorem connects the epicenter with the Ganea map.

Theorem 4.3 ([13], Thm 5.1) Let �G be the Ganea map associated to Z(G). Then
Z⇤(G) is the left kernel of �G.

This characterization provides a more computational way to find the epicenter.
With this in hand, in [13] a number of interesting results regarding capable groups
are proven: that reduced and subdirect products of capable groups are capable ([13],
Prop. 6.1); that if H / G has finite index, both H and G/H are capable, and the
transfer map G ! H/[H,H ] is onto, then G is capable ([13], Cor. 6.5); a simple
proof of Baer’s Theorem for finitely generated abelian groups is given, and extended

2
According to Ellis, they came up with the name when, while they were working on these ideas

in the mid-90s, there was an earthquake with epicenter in the Irish Sea.
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to show that a torsion-free abelian group (whether or not it is a direct sum of cyclic
groups) is capable if and only if its rank is not 1 ([13], Prop. 7.5).

Beyl, Felgner, and Schmid also characterize exactly which extraspecial p-groups
and which metacyclic groups are capable. Recall that a p-group G is extraspecial
if and only if Z(G) = [G,G] = �(G) ⇠= Cp, where �(G) is the Frattini subgroup
of G. Extraspecial p-groups arise as iterated central products of nonabelian groups
of order p3. We have:

Theorem 4.4 ([13], Prop. 8.1 and Cor. 8.2) If G is the central product of nil-
potent groups Gi with [Gi, Gi] = Z(Gi) (i 2 I), and |I| � 2, then G is unicentral.
In particular, an extraspecial p-group is capable if and only if it is either dihedral of
order 8, or of order p3 and exponent p > 2.

As for metacyclic groups, if G has a cyclic normal subgroup of order m with
quotient cyclic of order n, we can present G as

G(m,n, r, s) = hx, y | xm = 1, y�1xy = xr, yn = xs i,

where r and s are positive integers such that gcd(m, 1+ r+ · · ·+ rn�1) ⌘ 0 (mod s),
and rn ⌘ 1 (mod m). With that notation, the following result is proven:

Theorem 4.5 ([13], Prop. 9.2 and Cor. 9.3) Let G = G(m,n, r, s), and let n be
the smallest positive divisor of n such that 1 + r + · · · + rn�1 ⌘ 0 (mod s). Then
Z⇤(G) is the cyclic group of order nm/ns generated by yn. In particular, G is capable
if and only if s = m and n = n.

The capable groups in other families would be characterized later by combining
the epicenter and the approach through homological algebra that we will describe in
Part III.

5 Results using the epicenter: subgroup structure

The epicenter has proven useful in studying the normal subgroup structure of capable
groups. For example, Shahriari considered in [62] the situation in which we have a
group G that has a known incapable subgroup Q and whether one can establish that
certain nontrivial subgroups of the epicenter Z⇤(Q) of Q must also be subgroups of
the epicenter Z⇤(G) of G, thus proving that G will also not be capable. Shahriari
proves:

Proposition 5.1 ([62], Prop. 3.2) Let G be a finite group. If G = QCQ(G) for
some Q  G, and 1 6= M ✓ Z⇤(Q) \ [Q,Q], then M ✓ Z⇤(G). In particular, G is
not capable.

The idea of the proof is to show that if (E,') is a central extension of G, then
the inverse image of M under ' will be contained in Z(E), which implies that M is
contained in the epicenter of G.

Shahriari also relaxes the condition that G = QCG(Q) in a number of ways (see in
particular Proposition 3.3 in [62]), leading to:
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Theorem 5.2 ([62], Theorems 4.2, 4.3, and 5.2) Let G be a finite group.

(i) If Q
2

n / G, where Q
2

n is the generalized quaternion group of order 2n, then
Z(Q

2

n) ✓ Z⇤(G). In particular, G is not capable.

(ii) If S
2

n/G, where S
2

n is the semidihedral group of order 2n, n > 3, then Z(S
2

n) ✓
Z⇤(G). In particular, G is not capable.

(iii) If G is nilpotent and E /G, where E is the extraspecial p-group of order p3 and
exponent p2, p > 2, then Z(E) ✓ Z⇤(G). In particular, G is not capable.

On the other hand, trying to restrict the subgroup structure itself seems to be a
more di�cult matter. By using the “coproduct with amalgamation” (a construction
that is to the nilpotent product as the free product with amalgamation is to the free
product of groups), and a description of the epicenter more suitable for computations
that was developed by Ellis [25], one of us (AM) proved;

Proposition 5.3 ([50], Theorems 3.1 and 3.2) Let G be any nontrivial group of
class at most two and odd prime exponent. Then there exist groups G

1

and G
2

such
that:

(i) Both G
1

and G
2

have a subgroup isomorphic to G.

(ii) Both G
1

and G
2

are of class two and prime exponent.

(iii) Neither G
1

nor G
2

can be decomposed as a nontrivial direct or central product.

(iv) G
1

is capable and G
2

is not capable.

Part III: The homological approach

6 The nonabelian tensor product

In the 1980’s Brown and Loday [18, 19] defined the nonabelian tensor product of two
groupsG andH whenever the groups act compatibly on each other and by conjugation
on themselves. Brown and Loday’s motivation for developing the nonabelian tensor
product of two groups was topological: for instance it provides an algebraic descrip-
tion for certain homotopy groups and allows for a characterization of low dimensional
homology groups. For further details on this subject, see [17]. The construction had
forerunners in the work of Miller [54] and Dennis [21]. In this section, we first survey
the construction and the work that preceded it.

The connection of the epicenter and the Ganea map to capability described in
Section 4 provides a means for determining the capability of a group by connecting it
to the study of the nonabelian tensor square of a group; this gives a new description
of the epicenter which makes it easier to compute (for example, using a computer
algebra system). We will describe this connection and discuss some of the results
obtained via this description after defining the nonabelian tensor square.

6.1 The nonabelian tensor square

A special case of the nonabelian tensor product occurs when the two groups are equal
and act compatibily on each other by conjugation. The resulting object is called the
nonabelian tensor square.
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Explicitly, if G is a group, then the nonabelian tensor square G ⌦ G of G has
generating set consisting of formal elements labeled g⌦ h for g, h 2 G, with relations

gg0 ⌦ h = (gg0 ⌦g h)(g ⌦ h) and g ⌦ hh0 = (g ⌦ h)(hg ⌦h h0). (1)

In the nonabelian tensor square there are two important central subgroups: r(G) =
hx⌦ x | x 2 G i, and �(G) = h (x ⌦ y)(y ⌦ x) | x, y 2 G i. We define the nonabelian
exterior square G ^G as the quotient (G⌦G)/r(G) and the nonabelian symmetric
square G⌦̃G as the quotient (G⌦G)/�(G). See [17, 18, 19].

Although Brown and Loday’s interest arose from topological considerations, the
nonabelian tensor square is connected to prior work that had its roots in algebraic
K-theory [21] and in the work of Clair Miller [54].

Miller was interested in determining a group theoretic interpretation of the second
homology group with integer coe�cients. For a group G, Miller defines the free group
hG,Gi whose generators are all pairs (x, y) for all x, y 2 G. This group has a natural
epimorphism � : hG,Gi ! [G,G]. The kernel of this epimorphism, which we will
denote as N(G), is then a measure of all the commutator identities in G. Miller then
defines the normal subgroup B(G) to be the normal closure in hG,Gi of certain words
in hG,Gi whose image under � are commutator identities satisfied in the free group.
Such identities are referred to as universal commutator relations. The generators
Miller chooses to generate B(G) are

(x, x), (2)

(x, y)(y, x), (3)

(xy, z)�1(xy, xz)(x, z), (xy, xz)�1(x, [y, z])(y, z) (4)

for all x, y, z in G where uv = uvu�1. Identity (2) corresponds to the fact that
[x, x] is trivial for all x; (3) to the identity [y, x] = [x, y]�1; and the identities in
(4) to the product identity [xy, z] = x[y, z][x, z] when we use the convention that
[a, b] = aba�1b�1 (a trivial modification is needed if one wants to follow the alternative
convention [a, b] = a�1b�1ab), together with x[y, z] = [xy, xz] and uv = [u, v]u.

We can think of the formal symbol (x, y) in Miller’s construction as corresponding
to the formal symbol x⌦ y in Brown and Loday’s definition of the nonabelian tensor
square. With this in mind, note that the first relation in (1) is the same as the first
relator in (4). In [17] it is shown that G acts on G⌦G so that h(g⌦g0) = hg⌦hg0. This
action along with the relations of the nonabelian tensor square lead to the identity
g0 ⌦ [g, h] = (g

0
g ⌦ g0h)(g ⌦ h)�1 which is equivalent to the second relator of (4). In

the other direction, the relators of (4) imply the relations (1). Hence G ⌦ G and
hG,Gi/B

1

(G) are the same group where B
1

(G) is the normal closure of the subgroup
generated by the elements given in (4).

Miller then shows that the quotientM(G) = N(G)/B(G) is isomorphic toH
2

(G,Z),
the second homology group of G with integer coe�cients. The notation is appropriate
as M(G) is also the Schur multiplier of G. Miller proves that M(G) is trivial for the
free group and hence any universal commutator relation is a consequence of the ones
chosen to generate B(G). Therefore, M(G) can be interpreted as a measure of the
extent to which relations among commutators in G fail to be consequences of the
universal commutator relations.
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Another strand of the story arises in the work of Keith Dennis, whose 1976 preprint
[21] is one of the most cited preprints in recent memory, being cited at least 17 times
since 1999 and more than 20 times prior to that. Dennis was interested in defining
a new sequence of homology functors that he labels eHi(G,M) that should satisfy
certain axioms related to K-theory; here, G is a group and M is a G-module. These
axioms hold for eHi(G,M) = Hi(G,M) when i = 0, 1 but there is an obstruction to
the equality eH

2

(G,M) = H
2

(G,M). Dennis follows Miller’s construction and forms
a quotient of hG,Gi with the subgroup B

0

(G) which is the normal closure of the
words (3) and (4) in hG,Gi. He then defines eH

2

(G,Z) = N(G)/B
0

(G) and shows
this functor satisfies the required axioms.

The extension hG,Gi/B(G) of M(G) by [G,G] of Miller is called the nonabelian
exterior square of G, and is readily seen to be isomorphic to the group G ^ G
defined above following Brown and Loday’s construction. Likewise, the extension
hG,Gi/B

0

(G) of eH
2

(G,Z) by [G,G] of Dennis is called the nonabelian symmetric
square, and corresponds to the group G⌦̃G of the same name described above. These
isomorphisms establish the connection between the works of Miller, Dennis, and of
Brown and Loday.

We also mention that the functor eH
2

(G,Z) has topological significance: it is
⇡
4

S2K(G, 1), the fourth homotopy group of the double suspension of the Eilenberg-
Mac Lane space K(G, 1) with fundamental group G [19].

In 1988, R. Brown visited L.-C. Kappe at the State University of New York at
Binghamton and gave a talk about the group theoretic aspects of the nonabelian
tensor product and square as outlined in what is now considered a seminal paper on
the subject [17]. L.-C. Kappe was taken with this topic, since commutator calculus
is one of her specialties, and she and her students began working on problems related
to the nonabelian tensor product in earnest. Five of her Ph.D. students from 1992
to 2010 wrote dissertations on topics related to the nonabelian tensor product, and
about 12 research papers and one expository paper on the subject were published
by her and/or her students. The theme of several of these papers was to describe
the isomorphism types of a class of groups, and use this description to compute their
nonabelian tensor squares. Among the classes they considered were the 2-generator
p-groups of class 2 [2], infinite metacyclic groups [12], and the infinite 2-generator
groups of class 2 [42].

6.2 The nonabelian exterior square and the epicenter

With this body of knowledge in place, two papers by Graham Ellis [26, 25] are of
interest. In these papers Ellis defines two central subgroups in a group G:

Z⌦(G) = {x | x⌦ y = 1⌦ for all y in G}
Z^(G) = {x | x ^ y = 1^ for all y in G}

called the tensor center and exterior center, respectively. Ellis proves the following:

Theorem 6.1 ([26], Prop. 16) Let G be a group. Then Z^(G) = Z⇤(G).

With this result in hand and the established computations for the nonabelian ten-
sor square for various classes of groups in place, several authors then computed the
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nonabelian exterior square and the exterior center to identify those groups that are
capable in these classes. See for example [3, 12, 42].

6.3 The group ⌧(G) and the epicenter

The computations of the epicenter using the nonabelian exterior square were still
somewhat impeded by di�culties in computing the latter, in the sense of finding
some way to recognize the group G ^ G in a more familiar guise (for example, as
a direct sum of cyclic groups when it is abelian). Computing the nonabelian exte-
rior square required first computing the nonabelian tensor square. Hand methods to
compute the nonabelian tensor square typically used crossed pairings (see [17]) which
became computationally di�cult as the nonabelian tensor square become more com-
plex and nonabelian. Examples of this complexity can be seen in [4] and [15] where
the nonabelian tensor squares are computed for the free 2-Engel groups of finite rank
using crossed pairings.

Given a finite group G, initial computer methods for determining the nonabelian
tensor square used the defining generators and relations from (1) to obtain a finite
presentation for G ⌦ G. This presentation has |G|2 generators and 2|G|3 relations.
Tietze transformations were then applied to the presentation to simplify it so its
structure might be determined. The nonabelian tensor squares of the nonabelian
groups up to order 30 were computed this way with some optimizations in [17].

A better way of approaching the problem was developed independently by Ellis and
Leonard [27] and by Rocco [60]. In each case, they define the group ⌫(G) = (G⇤G')/J
where G' is an isomorphic copy of G via the mapping ' : g 7! g', G ⇤G' is the free
product, and J is the normal closure in G ⇤G' of the subgroup generated by the set
of words

{z[g, h'][(zh)', zg], z' [g, h'][(zh)', zg] | for all z, g, h 2 G}. (5)

The groupsG andG' isomorphically embed into ⌫(G), and their images intersect triv-
ially. We abuse notation and label these isomorphic subgroups of ⌫(G) as G and G'.
The main feature of ⌫(G) is given in the following theorem:

Theorem 6.2 ([27] Claim 6; [60] Prop. 2.6) Let ⌫(G), G, and G' be as above.
The normal subgroup [G,G'] of ⌫(G) is isomorphic to G⌦G via the natural mapping
[g, h'] 7! g ⌦ h.

We obtain two major advantages by using this construction. The first is the ability
to extend computer calculations by having a smaller presentation for G ⌦ G. This
was pursued by Ellis and Leonard in [27]. They show if G is a generating set for G
and D is the union of a transversal of Z(G) and a generating set of Z(G) then the
set of words generating J can be limited to

{z[g, h'][(zh)', zg], z' [g, h'][(zh)', zg] | for all g, h 2 G and z 2 D}.

Hence, if G is a finite group with presentation hG | Ri, then we can find a presentation
for ⌫(G) with 2|G| generators and 2|R||G|2|D| relations. This is a significant reduction
in the size of the presentation to work with over that of definition (1). Ellis and
Leonard were able to compute the nonabelian tensor squares for significantly larger
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groups than those found in [17], such as the Burnside group of rank 2 and exponent 4
which has order 212.

The second advantage of working with ⌫(G) is that tensor calculations become
commutator calculations within [G,G']. Certainly all the usual commutator identities
hold, but there are further identities (derived from the relations in ⌫(G)) that also
hold in [G,G']. The investigation of this expanded commutator calculus was initiated
by Rocco [60], and extended by Blyth and Morse [14]. The list below gives a flavor
of these identities. For all g

1

, g
2

, g
3

, g
4

2 G:

[g
1

, [g
2

, g
3

]'] = [g
2

, g
3

, g'
1

]�1 (6)

[g
1

, g
2

, g'
3

] = [g'
1

, g'
2

, g
3

] (7)

[[g
1

, g'
2

], [g
3

, g'
4

]] = [[g
1

, g
2

], [g
3

, g
4

]']. (8)

If we take the union of the set containing the words [g, g'] and [g, h'][h, g'] for
all g, h 2 G with the set (5), and let J 0 be the normal closure in G ⇤ G' of the
subgroup generated by this new larger set of words, then we obtain a new group
⌧ (G) ⇠= (G ⇤ G')/J 0. This group is defined in [14] and has analogous properties
to ⌫(G) that apply to the nonabelian exterior square. That is, both G and G'

embed in ⌧(G), their images intersect trivially, and the corresponding commutator
subgroup [G,G'] is isomorphic to G ^ G via the natural mapping [g, h'] 7! g ^ h.
This construction leads to the following characterization of the epicenter.

Theorem 6.3 ([14], Theorem 19) Let G be a group. Then G\Z(⌧(G)) ⇠= Z⇤(G)
where we identify G with its isomorphic image inside ⌧(G).

Now suppose that G is a group with generating set G, and let z 2 Z(G) be an element
that we want to test for membership in the epicenter of G. Applying the theorem we
can show z is in the epicenter of G by demonstrating [z, h'] = 1⌧(G)

for all h 2 G.
This characterization of the epicenter combined with the commutator calculus for
[G,G'] makes determining whether a nontrivial central element is in the epicenter
independent from computing the nonabelian exterior square, and so, in fact, means
that we do not need to recognize a “more tractable” description of G^G in order to
describe the epicenter. These ideas have been used to determine the capability of the
2-generator p-groups of class 2 [52] and the special p-groups of rank 2 [37].

7 Capable p-groups of nilpotency class two

As we mentioned above, the nonabelian exterior square and related constructions
have been used to identify the capable groups within various classes of groups. These
classes include the 2-generator p-groups of class 2 [52], the infinite metacyclic groups
[12], and the 2-generator nontorsion groups of class 2 [43]. These groups in part were
singled out because if G is metacyclic or nilpotent of class 2, then the nonabelian
tensor and nonabelian exterior square of G are abelian, which makes them easier to
compute and describe.

General results identifying capable p-groups are rare even for p-groups of class 2.
The following is from ongoing work of H. Heineken, L.-C. Kappe, and R. F. Morse:
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Proposition 7.1 ([37]) Let G be a p-group of nilpotency class 2. If fk(G) is non-
trivial and cyclic for some k 2 N, then G is not capable, provided that the exponent
of G0 divides pk, if p is odd, and the exponent of G0 divides pk�1, if p = 2.

In addition to the abelian, extraspecial, and metacyclic p-groups, the only class
of p-groups where we have a complete characterization of the capable groups is that
of the 2-generator p-groups of class 2. We describe some of this work in the next
subsection, and conclude with a few more results obtained by homological methods
for p-groups of class 2 and exponent p.

7.1 Two generator p-groups of class 2

The classification of the 2-generator p-groups of class 2 was initiated by Trebenko
[67]. This classification, unfortunately, contained several errors and was incomplete.
Bacon and L.-C. Kappe made corrections to this work for odd primes in [2], and
used their description to compute the nonabelian tensor squares of these groups. The
p = 2 case was taken up by L.-C. Kappe, Visscher, and Sarmin [43], again presenting
a classification and using it to compute their nonabelian tensor squares.

Bacon and L.-C. Kappe [3] also used their computations of the nonabelian tensor
squares for odd p to compute the nonabelian symmetric and exterior squares of these
groups. The paper noted some errors that had remained in the classification from
their earlier paper [2], and also some errors in computing the tensor squares. They
attempted to corrected these errors, and with the new computations found the exte-
rior centers, thus identifying most of the capable groups within this class. Classical
methods were later used to complete the determination, and deal with the case of
p = 2 [47, 48].

Unfortunately, in 2008 it was discovered that the classification for p = 2 found
in [43] was incomplete, and further review unearthed a similar problem for the odd
prime case analyzed in [2] and [3], as well as further issues with the classification
for p = 2; however, it should be noted that these issues turn out not to a↵ect the
determination of capable groups, as the missing families consisted only of incapable
groups.

Faced with these issues, a new classification for these groups using a di↵erent
approach was done in [1]. This new classification lists the groups in terms of five
parameters, and identifies precisely when two 5-tuples of parameters correspond to
isomorphic groups. We will not go into the details, directing the interested reader to
[1], and describe only how the five parameters yield a presentation for the group:

Theorem 7.2 Let p be a prime and n > 2 a positive integer. Every 2-generator
p-group of order pn and class 2 corresponds to an ordered 5-tuple of integers,
(↵,�, �; ⇢,�), such that: ↵ � � � � � 1, ↵ + � + � = n, 0  ⇢  �, and 0  �  �,
with (↵,�, �; ⇢,�) corresponding to the group presented by

G = h a, b | [a, b]p� = [a, b, a] = [a, b, b] = 1, ap
↵
= [a, b]p

⇢
, bp

�
= [a, b]p

� i. (9)

The same group may be represented by di↵erent 5-tuples (this is handled in [1],
which provides a distinguished 5-tuple for each isomorphism class); for example, if ↵ =
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� > �, then the groups corresponding to (↵,�, �; ⇢, �) and to (↵,�, �; min(⇢,�), �)
are isomorphic.

In [52], this description is used to compute the nonabelian tensor and exterior
squares of these groups, describing them in terms of the parameters. This then makes
a determination of the capable (and likewise the unicentral) 2-generator p-groups of
class 2 easy to describe using the exterior center and Theorem 6.3. For odd p, the
result is:

Theorem 7.3 ([52], Theorem 63) Let G be any 2-generator p-groups of class 2
with presentation (9) and p > 2. Then the group G is capable if it meets one of the
following conditions:

(i) ⇢  �, ↵ = �, and � = ⇢;

(ii) ⇢ > �, (↵� �) = (⇢� �), and ⇢ = �.

A similar result holds for p = 2.
This process is a good illustration of what is perhaps the most successful way

in which the nonabelian tensor square has been used to date to determine capable
groups: describe a class of groups via some parameterization, use the parameterization
to compute the exterior center, and then identify the capable groups by constraints on
the parameters. The end result is then theorems that echo Baer’s classic Corollary 2.2,
as well as the characterization of the capable metacyclic groups in Theorem 4.5.

7.2 Groups of class 2 and exponent p

The p-groups of class 2 and exponent p are an elusive class of p-groups when trying
to characterize those which are capable. In Section 3 we saw conditions obtained via
classical methods that either require or disallow the groups to be capable. In many
ways, it seems that we are tantalizingly close to a full characterization, yet the full
characterization has not yet been realized.

Using homological methods, there are two more results on p-groups of class 2
and exponent p. We include them here to show some of the ideas that are used to
find nontrivial elements in the epicenter, and give the reader some idea of how the
homological methods come into play.

Proposition 7.4 ([25], Prop. 9) Let G be a finitely generated group of nilpotency
class two and of prime exponent. Let {x

1

, . . . , xk} be a subset of G corresponding to a
basis of the vector space G/Z(G), and suppose that those non-trivial commutators of
the form [xi, xj ] with 1  i < j  k are distinct and constitute a basis for the vector
space [G,G]. Then G is capable.

The next result is similar; though it has not been included in any published paper
that we are aware of:

Proposition 7.5 Let G be a p-group of class 2 and exponent p with generating set
g
1

, . . . , gn and Z(G) = G0. If
T
[CG(gi), CG(gi)] 6= 1, then G is not capable.

Proposition 7.5 is proved with the aid the following lemma already found in [60].
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Lemma 7.6 Let G be a group and x, y, z 2 G. If [x, z] = 1 and [y, z] = 1 in G then
[z, [x, y]'] = 1⌧(G)

.

Proof [Proposition 7.5] Suppose
T
[CG(gi), CG(gi)] 6= 1. Let c be in the intersection.

Then by Lemma 7.6, [c, g'i ] = 1⌧(G)

for i = 1, . . . , n. Hence c is in the epicenter and
G is not capable by Theorem 6.3. ⇤

The converse of Proposition 7.5 does not hold. To see this, let A be the group of
class 2 and exponent p generated by x, y, and z, with [x, z] = 1; and let B be the
nonabelian group of order p3 and exponent p, generated by w and t. Let G be the
central product of A and B identifying [x, y] with [w, t]. If we let M = {x, y, z, w, t},
then we have [x, y] 2

T
m2M [CG(m), CG(m)]. However, we can perturb the generator

x and then take a new generating set N = {xw, y, z, w, t}; with this set, CG(xw) =
hG0, x, w, zi is abelian, we have

T
n2N [CG(n), CG(n)] = 1, proving that the converse

of Proposition 7.5 does not hold.
Nonetheless, we (AM and RFM) conjecture that for G of class two, exponent p, and

such that Z(G) = G0, G is capable if and only if for any choice of minimal generating
set {g

1

, . . . , gn}, we have
T
[CG(gi), CG(gi)] = 1.

Part IV: Generalizations and future directions

8 Related concepts

There are many directions in which the notions in the previous sections may be
generalized; because of space limitations, we only briefly sample a few of them with
no claim of completeness.

Perhaps the simplest extension is to replace the center of a group with another
term of the upper central series, Z(G) = Z

1

(G)  Z
2

(G)  · · · . We say that a
group G is c-capable if there exists a group K such that G ⇠= K/Zc(K) [20]. Clearly,
if G is c-capable, then it is also d-capable for all d  c. Does the converse hold? For
finitely generated abelian groups, Burns and Ellis proved it does:

Theorem 8.1 ([20], Theorem 1.3) Fix c � 1. A finitely generated abelian group
is c-capable if and only if it is capable.

However, the converse does not hold in general: Burns and Ellis exhibit a group
of order 211 that is nilpotent of class 2, is 1-capable (that is, capable), but is not
2-capable.

For each c, there is an analogue of the epicenter, the c-epicenter Z⇤
c (G), which

measures the obstruction to being c-capable, and analogues of the Schur multiplier.
In fact, these analogues fit into the much richer picture of Baer invariants and

isologisms. In [35], a short follow-up to [34], Philip Hall introduced the notion of
marginal subgroups. We can replace the commutator word w(x, y) = [x, y] with an
arbitrary group-theoretic word w (or a set of words), and the center with a subgroup,
called the marginal subgroup w⇤(G) associated to w. The corresponding relation is
called isologism, and Hall remarks that many, but not all, of the theorems of isoclinism
carry over to the general theory. See [35] for the details.
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In this setting, the role of the Schur multiplier is played by the Baer invariants;
these were first introduced in the context of associative algebras by Frölich [29], who
named them after Baer’s work in [8, 9, 10]. A thorough exploration of these ideas,
together with a short historical summary and many references, can be found in [44].
The corresponding analogues of capability and the epicenter have been studied by
Moghaddam and Kayvanfar in several papers, beginning with [55].

Finally, in [24], Ellis points to the work of Shahriari mentioned above, and intro-
duces the notion of “relative capability”: a group N is said to be “relatively capable”
if there exists a capable group G containing N as a normal subgroup. Ellis then ex-
tends the notions of capability, Schur multipliers, and central series to pairs of groups,
by which he means a pair (G,N) where G is a group and N /G. When N = G, the
notion reduces to the usual one for a single group. See [24] for relevant definitions
and details. The notion was then extended to Baer invariants by Moghaddam and
others.

9 Open questions

The homological approach has opened many doors in the study of capable groups. In
particular, it is now relatively easy to determine whether a given finitely presented
group is capable or not; this is particularly simple to do for polycyclic groups, and the
algorithms developed to study that class apply, of course, to any particular p-group.
The questions of interest are therefore no longer of the form “is this particular G
capable?” as that question can be answered in a straightforward way for the majority
of specific given groups G. Instead, we look for characterizations of the capable
groups among some suitable class of groups, ideally along the lines of Baer’s theorem,
Corollary 2.2; this is a kind of gold standard for the type of theorems we want: it
covers a fairly large class of groups, and it characterizes capability in terms of standard
invariants of the group that are easy to compute.

The list of classes for which such a characterization has been obtained is still
surprisingly short: (i) abelian groups that are direct sums of cyclic groups (Baer [7]),
and in particular finitely generated abelian groups. (ii) Torsionfree abelian groups,
even if they are not direct sums of cyclic groups (Beyl, Felgner, and Schmid, [13]).
(iii) Extraspecial p-groups (Beyl, Felgner, and Schmid [13]). (iv) Metacyclic groups
(Beyl, Felgner, and Schmid [13]). And (v) 2-generated p-groups of class two (AM and
RFM [52]).

Not only is the list short, we may also note that with the exception of the very
first (and oldest) result, the classes are somewhat restricted.

As we mentioned earlier, progress in the last few years has been along the following
lines: if a class of p-groups (or more generally, polycyclic groups) can be parameter-
ized in some way, then we can attempt to determine the capability of the groups
in that class via those parameters: this is done by computing the nonabelian tensor
square, and then the epicenter in terms of the nonabelian tensor square. The param-
eterization usually facilitates computational exploration (for example, using GAP),
and a description of the epicenter in terms of the parameters. This was the situa-
tion for 2-generated p-groups of class two in [52], and other attempts (e.g., [3]). Our
ability to obtain further results following this line depends, then, on our ability to
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provide suitable descriptions of the families of groups in question. Once a suitable
description can be found, it is possible to use computer packages such as GAP to
accumulate computational evidence to help guide the desired characterization, as the
authors of this survey did in [52].

Among the classes that seem within reach, we mention four:

• The semiextraspecial p-groups. A p-group G is semiextraspecial if for every
maximal subgroup N of Z(G), G/N is extraspecial. Moretó has shown that if
a semiextraspecial p-group is capable, then its order must be of the form p3n

and the group must be of exponent p; if the condition is su�cient as well, as
Moretó conjectures, this would give a nice generalization of the description of
the capable extraspecial p-groups.

• The p-groups of class 2 with commutator subgroup isomorphic to Cp ⇥ Cp; it
was shown by Heineken [36] that any capable group satisfying this condition
must have p2 < |G/Z(G)| < p6; as mentioned above, one of us (RFM) has been
working with Heineken and L.-C. Kappe on determining up to isomorphism of
all the capable groups in this class [37].

• The 2-generator p-group with cyclic derived subgroup and p odd. These groups
were described by Miech [53], and again more recently but following a di↵erent
scheme by Song [63]. The descriptions should allow a determination of the
nonabelian tensor square, and from there the epicenter, in terms of the same
parameters that describe the groups.

• The p-groups of class 2 and prime exponent, discussed above. Intuitively, it
seems that a group in this class will be capable if and only if it is “non-abelian
enough”, but making this precise is proving challenging.

In each of these cases, ideally we would prefer a full description of the epicenter,
which would yield both the capable and the unicentral groups in the class.

Finally, we briefly mentioned a line of inquiry suggested to us by Primož Moravec.
Recall that if G is a finite p-group of order pn and nilpotency class c, then the coclass
of G is defined as n� c. Great strides have been made in understanding p-groups via
coclass; see for example [45]. Associated with every prime p and positive integer r,
we have a directed graph G(p, r); the vertices correspond to isomorphism types of
p-groups of coclass r, and we have a directed edge G ! H if G ⇠= H/H

cl(H)

, where
cl(H) is the nilpotency class of H and Hi is the ith term of the lower central series
of H . The graphs are trees, and they are usually pictured with nodes in “levels”,
with the nodes in level n corresponding to groups of order pn. For more on the
graphs, see for example [23]. One of the aims of coclass theory is to understand these
graphs. Moravec noted in a personal communication that in the case of coclass 1, the
capable groups are precisely the groups that are not leaves in the graphs. It would be
interesting to see whether the capable groups are placed in some predictable pattern
on the graph G(p, r) for arbitrary p and r.
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1 Introduction

Our terminology and notation are mostly standard (see, for example, [1, 2]). We use
the term “group” to mean “finite group.”

Let ⇡ be a set of primes. Denote by ⇡0 the set of primes not in ⇡. Given a natural n,
we denote by ⇡(n) the set of prime divisors of n. A natural number n with ⇡(n) ✓ ⇡
is called a ⇡-number, and a group G such that ⇡(G) ✓ ⇡ is called a ⇡-group. For a
group G, the set ⇡(G) = ⇡(|G|) is the prime spectrum of G. A subgroup H of a group
G is called a ⇡-Hall subgroup if ⇡(H) ✓ ⇡ and ⇡(|G : H|) ✓ ⇡0. Thus, if ⇡ consists
of a single prime p then a ⇡-Hall subgroup is exactly a Sylow p-subgroup. A Hall
subgroup is a ⇡-Hall subgroup for some set ⇡ of primes. A group G is prime spectrum
minimal if ⇡(H) 6= ⇡(G) for every proper subgroup H of G.

We say that G is a group with Hall maximal subgroups if every maximal subgroup of
G is a Hall subgroup. It is easy to see that every group with Hall maximal subgroups
is prime spectrum minimal.

A group G is a group with complemented maximal subgroups if for every maximal
subgroup M of G, there exists a subgroup H such that MH = G and M \H = 1.

The study of groups with Hall maximal subgroups was started in 2006 by Levchuk
and Likharev [3] and Tyutyanov [4], who established that a nonabelian simple group
with complemented maximal subgroups is isomorphic to one of the groups PSL2(7) ⇠=
PSL3(2), PSL2(11) or PSL5(2). In all these groups, every maximal subgroup is a
Hall subgroup. In 2008, Tikhonenko and Tyutyanov [5] showed that the nonabelian
simple groups with Hall maximal subgroups are exhausted up to isomorphism by the
groups PSL2(7), PSL2(11), and PSL5(2).
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In 2008, Monakhov [6] studied the normal structure and other properties of a
solvable group with Hall maximal subgroups. Also in [6], he formulated the following
problem.

Problem 1. What are the nonabelian composition factors of a nonsolvable group
whose all maximal subgroups are Hall?

In 2010, Problem 1 was written by Monakhov into the ”Kourovka Notebook” [7]
as Problem 17.92.

We have solved Problem 1, determined the normal structure of groups with Hall
maximal subgroups and investigated the nonabelian composition factors of prime
spectrum minimal groups. In this paper we give a survey of these results.

2 Nonabelian composition factors of a group with Hall maximal
subgroups

Despite the fact that simple groups with Hall maximal subgroups are known, non-
abelian composition factors of a nonsolvable group with Hall maximal subgroups need
not be a priori groups with Hall maximal subgroups.

Although Hall subgroups in simple groups and groups close to them were studied by
various authors and are at present completely described (see, for example, the surveys
[8, 9]), the study of Hall maximal subgroups in an arbitrary group cannot be reduced
only to the study of the Hall maximal subgroups of its composition factors. For
example, each subgroup P 2 Syl2(Aut(A6)) is maximal in Aut(A6) but P \A6 < S4

and S4 is a maximal subgroup in A6 which is not Hall. But the maximal subgroups of
a simple group give some information about whether or not the group is isomorphic
to a composition factor of some group with Hall maximal subgroups.

The following lemma gives an approach to solving Problem 1.

Lemma 2.1 Let S be a nonabelian simple group having a subgroup X such that

(1) the conjugacy class XS = {Xs
| s 2 S} is invariant under Aut(S);

(2) |Z| and |S : Z| are not coprime for every subgroup Z such that X  Z < S.

Then there is no a group G with Hall maximal subgroups such that S is isomorphic
to a composition factor of G.

The first author has obtained a full description of nonabelian composition factors
for nonsolvable groups with Hall maximal subgroups. Thus, Problem 17.92 in the
“Kourovka Notebook” was solved. The solution of Problem 1 is given by the following
theorem [10, Theorem 1].

Theorem 2.2 The nonabelian composition factors of a group with Hall maximal
subgroups are exhausted by the groups PSL2(7), PSL2(11), and PSL5(2).

In the proof of Theorem 2.2 we use the approach from Lemma 2.1, the classification
of maximal subgroups of odd index in almost simple groups [11, 12, 13, 14, 15] and
the description of ⇡-Hall subgroups of Chevalley groups whose characteristic belongs
to ⇡ [16].
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3 Normal structure of a group with Hall maximal subgroups

The following problem is closely related to Problem 1.

Problem 2. What are the chief factors of a nonsolvable group with Hall maximal
subgroups?

Monakhov in [6, Corollary 1] proved the following theorem.

Theorem 3.1 Let G be a solvable group. The following conditions are equivalent:

(1) G is a group with Hall maximal subgroups;

(2) every maximal subgroup of G is complemented by a Sylow subgroup of G;

(3) every chief factor of G is isomorphic to a Sylow subgroup of G;

(4) every normal subgroup of G is a Hall subgroup in G.

In other words, a solvable group G is a group with Hall maximal subgroups if and
only if in G there exists a normal series

G = G0 > G1 > . . . > Gn = 1

such that every factor Gi/Gi+1 is an elementary abelian p-group isomorphic to a
Sylow subgroup of G for some prime divisor p of |G| and G/Gi acts irreducibly on
Gi/Gi+1.

Evidently, the normal structure of an arbitrary group with Hall maximal subgroups
can be significantly di↵erent from the normal structure of a solvable group with Hall
maximal subgroups. Problem 2 was considered by the authors. Using Theorem 2.2
we proved the following theorem [17, Theorem 1].

Theorem 3.2 Let G be a group. Then G is a group with Hall maximal subgroups if
and only if in G there exists a normal series

G = G0 > G1 > . . . > Gn = 1

such that

(1) for i � 1, the factor Gi/Gi+1 is an elementary abelian p-group isomorphic to a
Sylow subgroup of G for some prime divisor p of |G| and G/Gi acts irreducibly
on Gi/Gi+1;

(2) for the factor Ḡ = G0/G1, one of the following conditions holds:

(i) Ḡ ⇠= Zp, where p is a prime;

(ii) Ḡ is isomorphic to either PSL2(11) or PSL5(2);

(iii) Ḡ/�(Ḡ) ⇠= PSL2(7) and �(Ḡ) is a 3-group.

In particular, a group G with Hall maximal subgroups contains at most one non-
abelian composition factor, and the solvable radical S(G) of G possesses a Sylow
normal chain. Furthermore, G acts irreducibly on the factors of this chain and the
factor group G/S(G) is either trivial or isomorphic to one of the following groups:
PSL2(7), PSL2(11) or PSL5(2).

In 2013, using Theorems 2.2 and 3.2, Vedernikov [18, Theorem 2] described the
nonabelian compositional factors of a group in which every maximal subgroup is
solvable or Hall.
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4 Groups with complemented maximal subgroups

Since every solvable or simple group with Hall maximal subgroups is a group with
complemented maximal subgroups, the following conjecture was formulated in [5].

Conjecture 1. Every group with Hall maximal subgroups is a group with comple-
mented maximal subgroups.

Using Theorem 3.2, we have confirmed this conjecture. We have proved the fol-
lowing theorem [17, Theorem 2].

Theorem 4.1 If G is a group with Hall maximal subgroups then G is a group with
complemented maximal subgroups.

Note that the converse to Theorem 4.1 is false even for a solvable group. For exam-
ple, in an elementary abelian p-group, all maximal subgroups are complemented but
are not Hall subgroups. In the groups PGL2(7) and Z3 ⇥PSL2(7), all maximal sub-
groups are complemented but these groups possess maximal subgroups which are not
Hall subgroups. It is interesting to study the normal structure of a group with com-
plemented maximal subgroups. Because of simple groups PSL2(7), PSL2(11) and
PSL5(2) in Theorem 2.2 are the only nonabelian simple groups with complemented
maximal subgroups, the following open problem is interesting.

Problem 3. What are nonabelian composition factors of a group with comple-
mented maximal subgroups?

We have written Problem 3 into the “Kourovka Notebook” as Problem 18.68.

5 Generation of a group with Hall maximal subgroups by a pair of
conjugate elements

In 2010, Shumyatsky has written into the “Kourovka Notebook” [7, Problem 17.125]
the following conjecture.

Conjecture 2. In any group G, there is a pair a, b of conjugate elements such
that ⇡(G) = ⇡(ha, bi).

Note that ⇡(G) = ⇡(hx, yi) for every group G and some x, y 2 G [20].
It is easy to prove that Shumyatsky’s conjecture is equivalent to the following

conjecture.

Conjecture 3. Every prime spectrum minimal group is generated by a pair of
conjugate elements.

Moreover, a minimal counterexample to either of conjectures 2 or 3 will also be a
minimal counterexample to the other one (see [19, Lemma 1]).

Because every group with Hall maximal subgroups is prime spectrum minimal and
every solvable prime spectrum minimal group is a group with Hall maximal subgroups
(see [19, Lemma 2]), it is interesting to study the following question.
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Question. Is every group with Hall maximal subgroups generated by a pair of
conjugate elements?

Using Theorem 3.2, we have proved the following theorem [19, Theorem].

Theorem 5.1 Every group with Hall maximal subgroups is generated by a pair of
conjugate elements.

Moreover, we have given an algorithm that constructs explicitly for every group
with Hall maximal subgroups a pair of conjugated elements generating this group [19,
P. 204].

Thus, we have obtained a partial confirmation of Conjecture 2 and a partial solution
of Problem 17.125 from the ”Kourovka Notebook”. Note that we succeeded to prove
Theorem 5.1 because the normal structure of a group with Hall maximal subgroups
is known. Thus, the following open problem is of interest.

Problem 4. Let G be a simple group. Is G isomorphic to a nonabelian composition
factor of a prime spectrum minimal group?

6 Nonabelian composition factors of a prime spectrum minimal
group

Note that the class of prime spectrum minimal groups is more general than the
class of groups with Hall maximal subgroups. Indeed, by using [1, 24], it is possible
to show that the following groups are prime spectrum minimal: Aut(PSL2(32)) and
Sz(2p1)⇥Sz(2p2)⇥. . .⇥Sz(2pn) where p1, p2, . . . , pn are pairwise di↵erent odd primes.
Thus, a prime spectrum minimal group can be almost simple, but not simple, and
the number of nonabelian composition factors of a prime spectrum minimal group
is unbounded, while every nonsolvable group G with Hall maximal subgroups has
exactly one nonabelian composition factor and the quotient G/S(G) is simple.

Simple prime spectrum minimal groups were described by Liebeck, Praeger and
Saxl in [21, Corollary 5, Table 10.7].

Theorem 6.1 If G is a simple group then G is prime spectrum minimal except of
the following cases:

(i) G ⇠= An where n is not a prime;

(ii) G ⇠= PSp2m(q) where m and q are even;

(iii) G ⇠= PSp4(q) where q is odd;

(iv) G ⇠= P⌦2m+1(q) where m is even and q is odd;

(v) G ⇠= P⌦+
2m(q) where m is even;

(vi) G is isomorphic to one of the following simple groups: PSL6(2), PSU3(3),
PSU3(5), PSU4(2), PSU4(3), PSU5(2), PSU6(2), PSp6(2), G2(3), 2F4(2)0,
M11, M12, M24, HS, McL, Co2, Co3.

As follows from Theorem 3.2, every nonabelian composition factor of a group with
Hall maximal subgroups is a group with Hall maximal subgroups. In the case of prime
spectrum minimal groups the same statement is false. V. I. Trofimov has constructed
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the prime spectrum minimal group G such that G ⇠= (McL)104 h SL2(103), and the
unique involution in SL2(103) induces a nontrivial outer authomorphism on every
component of the socle of G. We have proved the following theorem [22, Theorem 2].

Theorem 6.2 The McLaughlin group McL is not prime spectrum minimal, but there
exists a prime spectrum minimal group G containing McL as a composition factor.
In every such group G there exists a normal series G � Y > Z � 1 such that

a) groups G/Y and Z are not containing McL as a composition factor;

b) the factor Y/Z is a chief factor of G and is isomorphic to a direct product of
simple groups every of which is isomorphic to the group McL;

c) the factor G/Y is nonsolvable, its order is not divisible by 7 and by 11 and
its nonabelian composition factors are isomorphic to groups from the following
list: PSL2(q), PSL3(q), PSL4(q), PSL5(q), PSU3(q), PSU4(q), PSU5(q),
PSp4(2m), 2B2(22m+1), 2F4(22m+1), J3.

Note that our proof of the existence of a prime spectrum minimal group having
a composition factor isomorphic to the McLaughlin group is based on Trofimov’s
idea (see above) and on an embedding of SL2(103) into the the permutation wreath
product Z2 o PSL2(103) associated with the natural projective action of PSL2(103)
(see [23]).

Within studying Problem 4 we have proved the following theorem [22, Theorem 1].

Theorem 6.3 The following simple groups are not isomorphic to composition factors
of prime spectrum minimal groups:

(1) sporadic groups M11, M12, M24, HS, Co3, Co2 and the Tits group 2F4(2)0;

(2) An where n is not a prime;

(3) PSp4(q) where q is odd;

(4) PSp2m(q) where m � 4 and q are even;

(5) P⌦2m+1(q) where m � 4 is even and q is odd;

(6) simple groups PSU3(3), PSU4(2), PSU5(2), PSp6(2), PSL6(2), G2(3).

A good approach to prove Theorem 6.3 gives the following lemma.

Lemma 6.4 Let S be a nonabelian simple group having a subgroup X such that

(1) the conjugacy class XS = {Xs
| s 2 S} is invariant under Aut(S);

(2) ⇡(X) = ⇡(S).

Then there is no a prime spectrum minimal group G such that S is isomorphic to a
composition factor of G.

However, there are some simple groups S such that ⇡(X) = ⇡(S) for some proper
subgroup X < S and the conjugacy class XS = {Xs

| s 2 S} is not invariant under
Aut(S) for every such subgroup X. For such a group S the solution of Problem
4 can be positive (for example, for S = McL) as well as negative (for example,
for S = A6). In every such ”unregular” case the solution of Problem 4 demands
individual approach.
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Remark. For simple groups P⌦+
4k(q), PSp4(2w), PSU3(5), PSU4(3) and PSU6(2)

Problem 4 is open.

7 Prime spectrum critical groups

A group G is said to be prime spectrum critical if for every subgroups K and L such
that K E L  G the equality ⇡(L/K) = ⇡(G) implies L = G and K = 1.

It was proved in [19, Proposition 3] that a minimal counterexample to Conjecture 2
is a prime spectrum critical group. The set of all nonabelian composition factors of all
prime spectrum minimal groups coincides with the set of all nonabelian composition
factors of all prime spectrum critical groups in view of the following criterion.

Proposition 7.1 Let G be a prime spectrum minimal group. Then G is prime spec-
trum critical if and only if its Fitting subgroup F (G) is a Hall subgroup of G.

It’s easy to see, every solvable or simple prime spectrum minimal group is prime
spectrum critical.
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Abstract

Suppose that G is a finite p-solvable group such that NG(P )/P has odd order, where
P 2 Sylp(G). If � is an irreducible complex character with degree not divisible
by p and field of values contained in a cyclotomic field Qpa , then every subnormal
constituent of � is monomial. Also, the number of such irreducible characters is the
number of NG(P )-orbits on P/P 0.

1 Introduction

There are few results guaranteeing that a single irreducible complex character � 2
Irr(G) of a finite group G is monomial. Recall that � 2 Irr(G) is monomial if there
is � 2 Irr(U) linear such that �G = �. It is known that every irreducible character of
a supersolvable group is monomial, for instance, but this result depends more on the
structure of the group rather than on the properties of the characters themselves. An
exception is a theorem by R. Gow of 1975 ([3]): an odd degree real valued irreducible
character of a solvable group is monomial. Recently, we gave in [8] an extension of
this theorem which also dealt with the degree and the field of values of the character.
(Yet another similar monomiality criterium was given in [9]: if the field of values Q(�)
of � is contained in the cyclotomic field Qn and (�(1), 2n) = 1, then � is monomial
whenever G is solvable.) In this note, we apply non-trivial Isaacs ⇡-theory of solvable
groups to give a shorter proof of the above result at the same time that we gain some
new information about the subnormal constituents of the characters, among other
things. It does not seem easy at all to prove these new facts without using this deep
theory.

Recall that for every solvable group and any set of primes ⇡, M. Isaacs defined
a canonical subset B⇡(G) of Irr(G) with remarkable properties ([4]). Since, by def-
inition, every � 2 B⇡(G) is induced from a character of ⇡-degree, it is clear that
B⇡-characters of ⇡0-degree are monomial.

Theorem 1.1 Let p be a prime, let G be a p-solvable finite group, and let P 2
Sylp(G). Let � 2 Irr(G) be such that p does not divide �(1) and such that Q(�) ✓ Qpa

for some a � 0. If |NG(P )/P | is odd, then � 2 Bp(G). In particular, if N // G and

✓ is an irreducible constituent of �N , then ✓ is monomial.

We obtain the following consequence, in which a global invariant of a finite group
(that can be calculated in its character table) is computed locally.
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Corollary 1.2 Let p be a prime, let G be a p-solvable finite group, and let P 2
Sylp(G). Assume that NG(P )/P has odd order. Then the number of irreducible

characters � of G such that �(1) is not divisible by p and Q(�) ✓ Q|G|p is the number

of orbits of the natural action of NG(P ) on P/P 0
.

2 Proofs

The notation for characters is that of [6]. The ⇡-special characters were defined in [2],
while B⇡-characters were defined in [4].

Lemma 2.1 Suppose that G is a finite p-solvable group. Let P 2 Sylp(G), and

assume that NG(P )/P has odd order. If ↵ 2 Irr(G) is p0-special and real, then ↵ is

the trivial character.

Proof We argue by induction on |G|. Let K = Op(G). If K > 1, then K ✓ ker↵ by
Corollary (4.2) of [2], and we apply induction in G/K. Otherwise, let K = Op0(G).
Since ↵ has p0-degree, then the set ⌦ of irreducible constituents of ↵K has a p0-
number of elements, using Cli↵ord’s Theorem. Also, by Cli↵ord’s Theorem, we have
that G acts transitively on ⌦. By elementary group theory, it follows that P fixes
a point in ⌦, and that two points fixed by P are NG(P )-conjugate. Let ✓ 2 ⌦.
Since ↵ is real, then ✓̄ is also under ↵, and therefore there is g 2 NG(P ) such that
✓̄ = ✓g. Now g2 fixes ✓, and since NG(P )/P has odd order, we see that ✓̄ = ✓. Since
NG(P )/P has odd order, we have that CK(P ) has odd order. Let ✓⇤ 2 Irr(CK(P ))
be the P -Glauberman correspondent of ✓. Since the Glauberman correspondence
commutes with Galois automorphisms, we have that ✓⇤ is a real irreducible character
of a group of odd order. By Burnside’s theorem, ✓⇤ = 1 and ✓ = 1 by the uniqueness
of the Glauberman correspondence. Thus K ✓ ker ✓, and we apply induction. ⇤

We are now ready to prove our main results.

Proof [Proof of Theorem 1.1 and Corollary 1.2] By Theorem (3.6) of [5], there exists
a subgroup P ✓ W ✓ G and a p-special linear character � 2 Irr(W ), such that:
 = �G 2 Irr(G) is a Bp-character, and (W,�) is a nucleus of  . Also, there is a
p0-special character ↵ 2 Irr(W ) such that � = (�↵)G. By Theorem 4.2 of [7], the pair
(W,�↵) is unique up to G-conjugacy. Now, let � 2 Gal(Q|G|/Q|G|p) be the unique
Galois automorphism that complex conjugates the p0-roots of unity and fixes p-power
roots of unity. Since � and � are fixed by �, then we deduce that there is g 2 G
such that (W g,�g↵g) = (W,�↵�) by uniqueness. Hence ↵g = ↵� by Proposition (7.1)
of [2]. Since P, P g ✓ W , then P gw = P for some w 2 W , and we may assume that
g 2 NG(P ). Also, ↵g2 = ↵, and therefore since NG(P )/P has odd order, we see that
↵� = ↵. Now, let H be a p-complement of W . Then

↵̄H = ↵H = (↵�)H = ↵H

and we deduce that ↵̄ = ↵, by using Proposition (6.1) of [2]. Since NW (P )/P has
odd order, by Lemma (2.1), we have that ↵ = 1. Thus � =  2 Bp(G) and � is
monomial. Now, to finish the proof of the theorem, use that subnormal constituents
of Bp-characters are Bp-characters (Corollary (7.5) of [4]).
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Recall that B⇡-characters have their values in Q|G|⇡ by their definition and part (a)
of Proposition 6.3 of [2]. We have proved that the irreducible characters of G of p0-
degree and field of values contained in Q|G|p are exactly the Bp-characters of p0-degree
of G. Suppose now that � 2 Bp(NG(P )) has p0-degree. Let � 2 Irr(P ) be linear

under � and let �̂ 2 Irr(T ) be the canonical extension of � to T (Corollary (8.16)
of [6]). By Gallagher’s Corollary (6.17) of [6] and the Cli↵ord correspondence, let
↵ 2 Irr(T/P ) be such that (↵�̂)NG(P ) = �. Now the argument in the first paragraph of
this proof (with T instead ofW ) shows that ↵ = 1. Hence the number of Bp-characters
in NG(P ) of p0-degree is the number of orbits of the action of NG(P ) on Irr(P/P 0).
Now Corollary 1.2 follows from Theorem 2.2 and Corollary 2.3 of [1]. ⇤
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Abstract

We present some recent advances in the study of the problem of recognizing finite
groups by the degrees of their irreducible complex representations. We especially
focus on simple groups and more generally quasi-simple groups.

1 Introduction

Representation theory of finite groups was originally developed to analyze groups
in terms of linear transformations or matrices. A representation of degree n (where
n is a positive integer) over a field F of a group is a way to represent elements in
the group by n ⇥ n invertible matrices with entries in F in such a way that the
rule of group operation corresponds to matrix multiplication. Degree certainly is the
most important piece of information in a representation, and therefore the degrees of
irreducible representations are a key tool to study the structure of finite groups.

This is an expository paper in which we survey some recent advances on the prob-
lem of recognizing finite groups by the degrees of their (complex) representations,
especially for simple groups and more generally quasi-simple groups. For a finite
group G, we denote the set of degrees of irreducible representations of G by cd(G)
and call it the degree set of G. The multiplicity of each degree is the number of
irreducible representations of that degree, and when these numbers are taken into
account, we will similarly have the degree multiset of G, denoted by cd⇤(G).

A fundamental question in group representation theory is whether one can recover
a group or some of its properties from the degrees of its irreducible representations.
In the late 1980s, I.M. Isaacs [19] proved that if cd⇤(G) = cd⇤(H) and p is a prime,
then G has a normal p-complement if and only if H has a normal p-complement,
and therefore the nilpotency of a group is determined by its degree multiset. Later,
T. Hawkes [14] provided a counterexample showing that the same assertion does not
hold for super-solvability. It is still unknown whether the solvability of a finite group
is determined by its degree multiset, see [30, Problem 11.8].

In his famous list of problems in representation theory of finite groups [9], R. Brauer
asked: when do non-isomorphic groups have isomorphic complex group algebras? (see
[9, Problem 2]). The complex group algebra of a finite group G, denoted by CG, is
isomorphic to a direct sum of matrix algebras over C whose dimensions are exactly
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the degrees of irreducible representations of G. Therefore, Brauer’s question leads to
the following:

Problem 1.1 Given a finite groupG, determine all finite groups (up to isomorphism)
having the same degree multiset as G.

A complete solution to this problem seems out of reach based on the present knowledge
of group representation theory, but one may hope to obtain a partial solution.

Problem 1.1 is easy for abelian groups but di�cult for solvable groups in general.
This is due to the fact that the connection between a solvable group and its degree
multiset is rather loose, in the sense that there are often several non-isomorphic groups
having the same degree multiset as a given solvable group. In contrast to solvable
groups, simple groups or groups ‘close’ to simple seem to have a stronger connection
with their representation degrees.

In Section 2, we sketch some main ideas in the solution of Problem 1.1 for simple
groups, mainly due to the second author. In Section 3, we discuss the problem for
other groups close to simple such as quasi-simple groups and almost simple groups.
Especially, we will present a method to approach the conjecture that every quasi-
simple group is determined uniquely up to isomorphism by its degree multiset.

We have seen a tight connection between a quasi-simple group and its multiset
of irreducible representation degrees. In the late 1990s, B. Huppert proposed that
the connection should be tighter, at least for non-abelian simple groups. In fact, he
conjectured in [16] that if G is a finite group and S is a finite non-abelian simple group
such that the degree sets of G and S are equal, then G is isomorphic to the direct
product of S and an abelian group. To give some evidence, Huppert himself verified
the conjecture on a case-by-case basis for many simple groups, including the Suzuki
groups, many of the sporadic simple groups, and a few of the simple groups of Lie
type. Recently, there has been substantial progress on verifying Huppert’s conjecture
by the authors and their collaborators, especially for various families of simple groups
of Lie type of small rank. This is discussed in Section 4.

Recent success on Problem 1.1 for quasi-simple groups suggests that Huppert’s
conjecture might be extended from non-abelian simple groups to quasi-simple groups.
The following conjecture has been recently proposed in [15] and will be discussed in
Section 5.

Conjecture 1.2 Let G be a finite group and H a finite quasi-simple group. If
cd(G) = cd(H), then G ⇠= H � A, a central product of H with an abelian group
A. In other words, every finite quasi-simple group is determined up to an abelian
central product factor by its degree set.

In the last section, we report some recent results concerning the recognition of non-
abelian simple groups by using the multiplicity of irreducible representation degrees.
Notice that if the complex group algebra CG of some finite group G is given, then
we know both cd(G) and the multiplicity pattern mp(G) (defined in Section 6). It is
shown in [52] that several families of non-abelian simple groups are uniquely deter-
mined by the multiplicity patterns and we conjecture that every non-abelian simple
group is uniquely determined by its multiplicity pattern.
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Perhaps the best way to describe complex representations (and indeed modular
representations as well) is by characters, as a complex representation of a finite group
is determined (up to equivalence) by its character. The character a↵orded by a group
representation is a function on the group which associates to each group element the
trace of the corresponding matrix and therefore it carries the essential information
about the representation in a more condensed form. The degree of a character is
exactly the degree of the representation a↵ording it. This explains why we have used
the notations cd(G) and cd⇤(G) (c.d. stands for character degree) for the set and
multiset of irreducible representation degrees. Throughout the paper, we will go back
and forth between representations and characters, depending on which one is more
convenient.

2 Simple groups and their degree multisets

If G is any finite abelian group of order n, then CG is isomorphic to a direct sum of
n copies of C so that the degree multisets of any two abelian groups having the same
order are equal. For p-groups or more generally nilpotent groups, the probability that
two groups have equal degree multisets is also fairly ‘high’. For instance, Huppert
pointed out in [16] that among 2328 groups of order 27, there are only 30 di↵er-
ent degree multisets. In [13], Dade even managed to construct two non-isomorphic
metabelian groups G and H with isomorphic group algebras FG and FH over an
arbitrary field F.

We now turn our attention to finite non-abelian simple groups. As mentioned
above, simple groups seem to have a stronger connection with their representation
degrees. In [49, 50, 51], the second author has succeeded in proving that, if G is a
finite group and S is a finite non-abelian simple group such that cd⇤(G) = cd⇤(S),
then G ⇠= S. This substantially improves a classical result of W. Kimmerle in [20]
where it was proved that G ⇠= S if FG ⇠= FS for every field F.

Obverse that knowing cd⇤(G) is equivalent to knowing CG and cd⇤(G) is just the
first column of the ordinary character table of G. There are several papers in the
literature devoted to characterizing the non-abelian simple groups by their character
tables, see [25, 41, 42, 43] for instance. Upon the completion of the classification, it
is easy to see that all non-abelian simple groups are uniquely determined by their
character tables. In fact, as the normality of subgroups of a group can be detected
from the character table, if finite groups G and S have the same character table,
where S is non-abelian simple, then G is also non-abelian simple, and furthermore
|G| = |S|. Now by applying Artin’s Theorem [21, Theorem 5.1], we have

{G,S} = {PSL4(2),PSL3(4)}

or
{G,S} = {PSp2n(q),⌦2n+1(q)},

where n � 3 and q is an odd prime power. For these exceptions, we can easily check
that they have distinct character tables. Thus, we have proved that if a finite group
G and a finite non-abelian simple group S have the same character table, then G ⇠= S.
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Indeed, the ordinary character table reflects much more of the group structure. By
W. Kimmerle [22], the character table of a finite group determines the chief series
and chief factors of the group, and therefore its composition factors as well.

The main result in this section, stated below, gives a new characterization of finite
non-abelian simple groups by using the first column of their ordinary character tables
or equivalently, by their complex group algebras.

Theorem 2.1 ([49, 50, 51]) If G is a finite group and S is a finite non-abelian
simple group such that cd⇤(G) = cd⇤(S), then G ⇠= S. In other words, every non-
abelian simple group is determined uniquely up to isomorphism by its degree multiset.

The result above is a weaker version of Huppert’s conjecture proposed by B. Hup-
pert in the late 1990s, which will be considered in Section 4. Indeed, if H is any
non-abelian simple group and G is a finite group such that cd⇤(G) = cd⇤(S), then
cd(G) = cd(S) and |G| = |S|. In particular, if Huppert conjecture holds for the sim-
ple group S, then since cd(G) = cd(S), we deduce that G ⇠= S ⇥A, for some abelian
group A. By comparing the orders, we deduce that G ⇠= S as wanted.

As expected, we have made use of the classification of finite simple groups in the
proof of Theorem 2.1. We know that every non-abelian simple group is a sporadic
simple groups, an alternating group of degree at least 5, or a finite simple group of
Lie type. The latter class can be divided into the simple classical groups and the
simple exceptional groups of Lie type. We first record some easy properties of groups
G and S under the hypothesis that cd⇤(G) = cd⇤(S), where S is non-abelian simple.
In the following lemma, the notation ⇡(G) stands for the set of prime divisors of the
order of G.

Lemma 2.2 Assume that G and S satisfy the hypothesis of Theorem 2.1. Then

(1) |G| = |S|,
(2) cd(G) = cd(S),

(3) G is perfect, i.e., G = G0,

(4) If N is a maximal normal subgroup of G, then G/N is a non-abelian simple
group and cd(G/N) ✓ cd(S). Furthermore, the ith-smallest nontrivial degree of
G/N is greater than or equal that of S and ⇡(G/N) ✓ ⇡(S).

For simple groups which are not classical, we managed to prove the following result,
which is the main part of the proof of Theorem 2.1 for these groups.

Proposition 2.3 Let S be a sporadic simple group, the Tits group, an alternating
group of degree at least 7, or a finite simple exceptional group of Lie type and let T
be any non-abelian simple group. If cd(T ) ✓ cd(S), then T ⇠= S.

For each of the sporadic simple groups, the Tits group and the alternating groups of
degree at least 5, and each possibility of the non-abelian simple group T, we compare
several smallest nontrivial degrees of S and T using results of F. Lübeck [26] and
R. Rasala [44] and also the classification of prime power character degrees of quasi-
simple groups by G. Malle and A.E. Zalesskii [29] to eliminate all but the simple
groups which are isomorphic to the given simple group S. For the exceptional simple
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groups of Lie type, apart from the previous results, we also made use of the explicit
list of character degrees of these simple groups by F. Lübeck [27].

Let G be a finite group and let S be any non-abelian simple group which appears
in Proposition 2.3 such that cd⇤(G) = cd⇤(S). By Lemma 2.2(4), cd(G/N) ✓ cd(S)
and G/N is non-abelian simple. Proposition 2.3 yields that G/N ⇠= S and thus
|G/N | = |S|. By Lemma 2.2(1), we obtain that |G| = |S| and so |N | = 1, which
implies that G ⇠= S. This gives a proof of Theorem 2.1 for the simple group S.

For finite simple classical groups, we can prove Proposition 2.3 for these groups
by a similar method. However the proof is quite long and complicated. Instead, we
have used a di↵erent approach. Assume now that S is a finite simple classical group
in characteristic p and G is a finite group such that cd⇤(G) = cd⇤(S). With the same
method as above, we can deduce that G/N is a finite simple group of Lie type in the
same characteristic p.

If N is trivial, then G is a finite simple group of Lie type in characteristic p,
cd(G) = cd(S) and |G| = |S|. Using Artin’s Theorem mentioned earlier, we have
{G,S} = {PSp2n(q),⌦2n+1(q)}, where n � 3 and q is an odd prime power or {G,S} =
{PSL4(2),PSL3(4)}. The latter case can be eliminated easily. For the former case,
using the existence of the Weil characters of PSp2n(q) with odd prime power q and
the minimal characters of ⌦2n+1(q) in [45, 46], one sees that these two groups have
di↵erent degree sets and thus G ⇠= S in this case.

Assume that N is nontrivial. As the Steinberg character StS of S of degree |S|p is
the only irreducible character of S of nontrivial p-power degree and StG/N 2 Irr(G/N)
also has nontrivial p-power degree which is |G/N |p we deduce that |G/N |p = |G|p.
If N is non-solvable, then N possesses a nontrivial irreducible character ' which is
extendible to '0 2 Irr(G) (see [8, Lemma 5]) and then by Gallagher’s Theorem [18,
Corollary 6.17], we have '0StG/N 2 Irr(G) and hence '0(1)|G/N |p = '(1)|S|p 2
cd(S), which is impossible as StS is the only irreducible character of S of p-defect
zero (see [12, Theorem 4]). Recall that an irreducible character � 2 Irr(G) is of
r-defect zero for some prime r if �(1)r = |G|r. Therefore, N must be a nontrivial
solvable group. In order to arrive at a contradiction, we need the following result.

Lemma 2.4 Let S be a finite simple group of Lie type and let G be a finite group. If
cd(G) = cd(S) and |G| = |S|, then the Fitting subgroup F (G) of G is trivial.

The proof of this lemma is an easy application of the existence of blocks of defect
zero of finite simple groups of Lie type [59] and Ito’s Theorem [18, Theorem 6.15].

Return to our problem, we see that F (G) is nontrivial as N is a nontrivial solvable
subgroup of G and furthermore cd(G) = cd(S) and |G| = |S|. Now Lemma 2.4 will
provide a contradiction.

Problem 1.1 is now done for finite simple groups. The next natural groups to be
considered are perhaps the characteristically simple groups.

Question 2.5 Let G be a finite group and H a direct product of copies of a non-
abelian simple group such that cd⇤(G) = cd⇤(H). Can we conclude that G ⇠= H?.
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3 Quasi-simple groups and their degree multisets

We have seen in Section 2 that every simple group is determined uniquely up to
isomorphism by its degree multiset. What other groups have the same property? It
was proved that all the symmetric groups are determined by their degree multisets
by M. Nagl in [33] and independently by the second author in [48], improving an old
result of H. Nagao [32] that if G is a finite group whose character table agrees, up
to a permutation of its rows and columns, with the character table of the symmetric
group Sn, then G ⇠= Sn. This suggests that finite groups ‘close’ to simple might be
determined by their degree multisets. We have proposed in [38]:

Conjecture 3.1 Let G be a finite group and H a finite quasi-simple group. If
cd⇤(G) = cd⇤(H), then G ⇠= H. In other words, every finite quasi-simple group
is determined uniquely up to isomorphism by its degree multiset.

Let us recall that a finite group H is said to be quasi-simple if H is perfect and
H/Z(H) is non-abelian simple, in which case we also say that H is a perfect central
cover or simply a cover of H/Z(H).

Conjecture 3.1 indeed has been predicted earlier by the first author in [37], where
he proved that every quasi-simple classical group H is uniquely determined up to
isomorphism by its degree multiset, except possibly when H/Z(H) is isomorphic to
PSL3(4) or PSU4(3). The main ideas can be summarized as follows.

As H is perfect, it has a unique linear character. Therefore G has a unique linear
character as well and hence G is perfect. It follows that, if M is a maximal normal
subgroup of G then G/M is non-abelian simple. The first step in the proof is quite
similar to what we have done for simple groups; that is, to show that

G/M is isomorphic to S := H/Z(H).

This basically eliminates the involvement of all non-abelian simple groups other than
S in the structure of G. Let Schur(S) denote the Schur cover (or the covering group)
of S. We have

cd⇤(G/M) ✓ cd⇤(G) = cd⇤(H) ✓ cd⇤(Schur(S)),

where the last containment comes from the fact that every cover of S is a quotient
of the Schur cover of S. This condition together with some others if necessary can
be used to force two non-abelian simple groups G/M and H/Z(H) to be isomorphic.
On the way to the proof of Conjecture 3.1 for quasi-simple classical groups, we in fact
prove the following:

Proposition 3.2 Let S be a simple classical group. Let G be a perfect group such
that |S| | |G| | |Schur(S)| and cd(S) ✓ cd(G) ✓ cd(Schur(S)). If M is a maximal
normal subgroup of G, then G/M ⇠= S.

The proof of this proposition depends heavily on the results on prime power rep-
resentation degrees, due to G. Malle and A.E. Zalesskii [29], and relatively small
character degrees of quasi-simple classical groups, due to P.H. Tiep and A.E. Za-
lesskii [45] and H.N. Nguyen [35].
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The second step is to show that G ⇠= H. Since |G| = |H | and G/M ⇠= H/Z(H),
we deduce that |M | = |Z(H)|. It follows that, if H is simple then M is trivial
and we have immediately that G ⇠= H. However, since we are working with quasi-
simple groups, the problem becomes more di�cult; especially for quasi-simple groups
with complicated centers such as the covers PSL3(4) or PSU4(3) whose the Schur
multipliers are very exceptional. We have done this in a series of lemmas. We
reproduce the proofs of some of them.

The first two lemmas follow from the classification of finite simple groups.

Lemma 3.3 Let S be a non-abelian simple group. Let A be an abelian group such
that |A|  |Mult(S)|. Then |S| > |Aut(A)|.

Lemma 3.4 Let S be simple group of Lie type. Then no proper multiple of StS(1)
is a degree of Schur(S).

For each nonnegative integer i, let M (i) denote the ith derived subgroup of M .

Lemma 3.5 Let S be a non-abelian simple group. Let G be a perfect group and MCG
such that G/M ⇠= S and |M |  |Mult(S)|. Then, for every nonnegative integer i, the
quotient G/M (i) is isomorphic to a quotient of Schur(S).

Proof We prove by induction that G/M (i) is isomorphic to a quotient of Schur(S)
for every i. The induction base i = 0 is exactly the hypothesis. Assuming that
G/M (i) ⇠= Schur(S)/Zi for some normal subgroup Zi of Schur(S), we will show that
G/M (i+1) is also a quotient of Schur(S).

As M (i)/M (i+1) is abelian and normal in G/M (i+1), we have

M (i)

M (i+1)
 CG/M (i+1)(

M (i)

M (i+1)
)E G

M (i+1)
.

We first consider the case CG/M(i+1)(M (i)/M (i+1)) = G/M (i+1). Then M (i)/M (i+1)

is central in G/M (i+1). As G is perfect, G/M (i+1) is a stem extension of G/M (i) ⇠=
Schur(S)/Zi. As Schur(S)/Zi is a quasi-simple group whose quotient by the center
is S, we deduce that G/M (i+1) is a quotient of the Schur cover of Schur(S)/Zi.
Therefore, G/M (i+1) is a quotient of Schur(S), as wanted.

The lemma is completely proved if we can show that CG/M(i+1)(M (i)/M (i+1)) can-

not be a proper normal subgroup of G/M (i+1). Assume so, then it follows by the
induction hypothesis that

CG/M (i+1)(M (i)/M (i+1))

M (i)/M (i+1)
C G/M (i+1)

M (i)/M (i+1)
⇠=

G

M (i)
=

Schur(S)

Zi
.

Therefore,
���
CG/M(i+1)(M (i)/M (i+1))

M (i)/M (i+1)

��� 
���
Mult(S)

Zi

��� =
���
M

M (i)

���

and hence
|CG/M (i+1)(M (i)/M (i+1))|  |M/M (i+1)|.
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Thus ���
G/M (i+1)

CG/M (i+1)(M (i)/M (i+1))

��� � |G/M | = |S|.

Since the quotient group on the left side can be embedded in Aut(M (i)/M (i+1)) and
M (i)/M (i+1) is abelian of order less than or equal to |M |, this last inequality leads to
a contradiction by Lemma 3.3. ⇤

Since the Schur multipliers of the alternating groups and sporadic simple groups
are ‘small’, the proof for these groups are easier and therefore, let us just focus on
simple groups of Lie type.

Lemma 3.6 Let S be a simple group of Lie type. Let G be a perfect group and
M C G such that G/M ⇠= S, |M |  |Mult(S)|, and cd(G) ✓ cd(Schur(S)). Then G
is isomorphic to a quotient of Schur(S).

Proof By Lemma 3.5, we are done if M is solvable. So it remains to consider the
case when M is nonsolvable. If M is nonsolvable, there is an integer i such that

M (i) = M (i+1) > 1.

Let N  M (i) be a normal subgroup of G so that M (i)/N ⇠= T k for some non-abelian
simple group T . By [31, Lemma 4.2], T has a non-principal irreducible character
' that extends to Aut(T ). Now [8, Lemma 5] implies that 'k extends to G/N .
Therefore, by Gallagher’s lemma, 'k� 2 Irr(G/N) for every � 2 Irr(G/M (i)). In
particular,

'(1)k�(1) 2 cd(G/N) ✓ cd(G) ✓ cd(Schur(S)).

Taking � to be the Steinberg character of S. By Lemma 3.5, S is a quotient of
G/M (i) and hence � can be considered as a character of of G/M (i). We now get a
contradiction since '(1)k�(1), which is larger than �(1) = StS(1), can not be degree
of Schur(S) by Lemma 3.4. ⇤

Lemma 3.7 Let S be a simple group of Lie type di↵erent from PSL3(4), PSU4(3),
and P⌦+

2n(q) with n even and q odd. Let G be a perfect group and M C G such
that G/M ⇠= S, |M |  |Mult(S)|, and cd(G) ✓ cd(Schur(S)). Then G is uniquely
determined (up to isomorphism) by S and the order of G.

Remark 3.8 The exceptions in the lemma are true exceptions. For instance, let
S = PSL3(4). Then Mult(S) = Z4⇥Z4⇥Z3. Let Z1 and Z2 be subgroups of Mult(S)
isomorphic respectively to Z4 and Z2 ⇥ Z2. The non-isomorphic groups Schur(S)/Z1

and Schur(S)/Z2 (see [10] where these groups are denoted by 121.S and 122.S) both
satisfies the hypothesis of the lemma.

Proof First we consider the case S = P⌦+
8 (2) or Suz(8). Then Mult(S) ⇠= Z2 ⇥ Z2.

By Lemma 3.6, S is isomorphic to a quotient of Schur(S) so that we can assume
G ⇠= Schur(S)/Z with Z  Mult(S) (note that Z cannot be Schur(S)). If |M | = 1 or
4 then Z = Mult(S) or 1, respectively, and so we are done. Thus it remains to consider
|M | = 2. We then have |Z| = 2 and hence Z is generated by an involution of Mult(S).
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However, as these three involutions are permuted by an outer automorphism of S of
degree 3, the quotient groups of the form Schur(S)/hti for any involution t 2 Mult(S)
are isomorphic and we are done again. Next, we assume that S = PSU6(2) or 2E6(2).
Though the Schur multipliers of these groups are more complicated, these cases in
fact can be argued similarly as above.

If S is none of the groups already considered and also S 6= PSL3(4) and PSU4(3),
then Mult(S) indeed is cyclic. Again, S is isomorphic to a quotient of Schur(S) and
we can assume

G ⇠= Schur(S)/Z,

where Z  Mult(S). As G/M ⇠= S, we then deduce that |Z| = |Mult(S)|/|M | =
|Schur(S)|/|G|. Since the cyclic group Mult(S) has a unique subgroup of order
|Schur(S)|/|G|, Z is uniquely determined by S and |G| and the lemma follows. ⇤

Following the method outlined above, we have shown in [38] that:

Theorem 3.9 Every finite quasi-simple group except possibly the Schur double covers
of the alternating groups is uniquely determined up to isomorphism by its degree
multiset.

For now, we are unable to establish the first step for the Schur double covers of the
alternating groups. Specifically, we do not yet know how to eliminate the case where
H = Schur(An) and G/M is a simple group of Lie type in even characteristic.

There is an ongoing work on this in [6] where the authors also study Problem 1.1
for the Schur double covers of symmetric groups. The symmetric group Sn has two

isomorphism classes of Schur double covers, denoted by Ŝ
�
n and Ŝ

+
n . It is well known

that the group algebras CŜ+n and CŜ�n are canonically isomorphic and therefore Ŝ
+
n

and Ŝ
�
n are not uniquely determined by their degree multisets. Nevertheless, it is

anticipated in [6] that

if cd⇤(G) = cd(Ŝ
+
n ) = cd⇤(Ŝ

�
n ) then G ⇠= Ŝ

+
n or Ŝ

�
n .

The proof of this, as expected, depends heavily on the representation theory of the
symmetric and alternating groups, their Schur double covers, and quasi-simple groups
in general. We particularly needs the results on relatively small degrees and prime
power degrees of the regular and spin representations of the alternating and symmetric
groups. These results are due to various authors, including A. Balog, C. Bessenrodt,
J. B. Olsson, and K. Ono [4], C. Bessenrodt and J. B. Olsson [7], and A. Kleshchev
and P.H. Tiep [23, 24].

A group is said to be almost simple if it contains a non-abelian simple group and is
contained within the automorphism group of that simple group. We end this section
by a question.

Question 3.10 What are almost simple groups that are uniquely determined (up to
isomorphism) by their degree multisets?
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4 Character degrees of simple groups and Huppert’s conjecture

In Sections 2 and 3, we have seen that the degree multiset of a finite group encodes
a lot of structural information of the group. In this section and the next one, we will
drop the multiplicities of the character degrees and focus on the degrees only. The
multiplicities will be considered in Section 6. We will see that the degree set also
provide some information on the group structure.

In general, the character degree set of G does not completely determine the struc-
ture of G. As abelian groups have only the trivial character degree, it is easy to see
that cd(G) = cd(G ⇥ A) for any abelian group A. There are many other examples
without an abelian direct factor. For instance, the non-isomorphic groups D8 and Q8

not only have the same set of character degrees, but also share the same character ta-
ble. The degree set also cannot be used to distinguish between solvable and nilpotent
groups, as the groups Q8 and S3 show. Recently, Gabriel Navarro constructed a finite
perfect group of order 37500 and a finite solvable group, both have the same character
degree set. Thus, the degree set cannot distinguish solvable and non-solvable groups
either. However, it remains open whether the complex group algebras determine the
solvability of the groups or not.

Huppert conjectured in the late 1990s that the non-abelian simple groups are essen-
tially determined by the set of their character degrees. More explicitly, he proposed
in [16] the following.

Conjecture 4.1 (Huppert’s Conjecture) Let S be any non-abelian simple group
and let G be a group such that cd(G) = cd(S). Then G ⇠= S ⇥A, where A is abelian.

As the character degrees of S ⇥ A are the products of the character degrees of S
and those of A, this result is the best possible. The hypothesis that S is a non-
abelian simple group is critical. There cannot be a corresponding result for solvable
groups. For example, if we consider the solvable group Q8, then cd(Q8) = cd(S3) but
Q8 � S3 ⇥A for any abelian group A.

Huppert in [16, 17] and his unpublished preprints verified the conjecture on a case-
by-case basis for many non-abelian simple groups, including the Suzuki groups, many
of the sporadic simple groups, and a few of the simple groups of Lie type. Except for
the Suzuki groups and the family of simple linear groups PSL2(q), Huppert proved
the conjecture only for specific simple groups of Lie type of small, fixed rank. He
indeed provided a pattern to approach the conjecture.

(1) Show that G0 = G00.

(2) Suppose that G0/M is a chief factor of G. Show that G0/M ⇠= S.

(3) Show that any linear character ✓ 2 Irr(M) is stable under G0, which implies
[M,G0] = M 0.

(4) Show that M is trivial.

(5) Show that G ⇠= G0 ⇥CG(G0).

This pattern and variants thereof have been successfully used to make significant
progress on the verification of the conjecture for a number of families of simple groups,
notably the sporadic simple groups, alternating groups of small degree, and simple
groups of Lie type of small rank. It is hoped that more general techniques can be
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developed to aid in the verification of the conjecture for simple groups of Lie type of
higher rank and alternating groups of higher degree.

T. P. Wakefield verified Huppert’s conjecture for most of the simple groups of Lie
type of rank two as part of his dissertation research. These results appear in [60, 61,
62]. The conjecture was verified for G2(5) by S.H. Alavi and A. Daneshkah in [1] and
established more generally for G2(q) by Wakefield and the second author in [57]. The
conjecture for simple group F4(2) was verified in [58]. The remaining sporadic simple
groups also have been shown to satisfy the conjecture in [2, 3, 55]. In [47, 56], the
result is established for the Steinberg triality and the Ree groups. For the alternating
groups, it has been confirmed up to the degree 13 in [39]. We summarize all these
results in the following theorem.

Theorem 4.2 Let G be a finite group and S a sporadic simple group, an alternating
group of degree at most 13, a simple group of Lie type of rank at most 2 or F4(2). If
cd(G) = cd(S), then G ⇠= S ⇥ A, where A is an abelian group.

Let us now describe in more details some techniques as well as di�culties in ac-
complishing the steps in Huppert’s method.

1. The first step is to show that if S is a non-abelian simple group and G is a
group such that cd(G) = cd(S), then G0 = G00. This step can be done by using the
techniques in [16] and is described in details in [60]. Suppose that G00 < G0, and
take K to be maximal subject to K being normal in G and G/K being a non-abelian
solvable group. This means G0/K is the unique minimal normal subgroup of G/K.
The structure of finite groups with this property has been described explicitly in [18].
In particular, it then can be deduced that G/K is either a p-group or a Frobenius
group whose kernel is an elementary abelian p-group for some prime p. With this
special structure of G/K, we can identify a degree of G that is not a degree of S to
get a contradiction.

2. The second step is to show that if G0/M is a chief factor of G then it is isomorphic
to the simple group S. By Step 1, the quotient G0/M is a non-abelian chief factor of
G and therefore it is the direct product of k copies of a non-abelian simple group T :

G0/M ⇠= T ⇥ T ⇥ · · ·⇥ T| {z }
k times

.

To prove Step 2, we must show that k = 1 and T ⇠= S. Huppert’s proofs of this step
for some non-abelian simple groups mentioned above relies upon either very specific
properties of the groups (for the Suzuki groups Suz(q) and the linear groups PSL2(q))
or the fact that the orders of the simple groups under consideration are divisible by
very few primes.

The approach by Wakefield and the authors for Step 2 in [39, 40], described as
follows, has proved to be e↵ective for more complicated simple groups, especially
finite groups of Lie type of higher rank. If ↵ is an irreducible character of S that
extends to Aut(S), then, by tensor induction, it can be shown that

↵⇥ ↵⇥ · · ·⇥ ↵| {z }
k times

is in Irr(G0/M) and extends to G/M.
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It in particular follows that ↵(1)k 2 cd(G) and therefore

↵(1)k 2 cd(S).

If T is a simple group with “small” outer automorphism group such as an alternating
or sporadic group, this gives many di↵erent characters ↵ so that ↵(1)k is a degree
in cd(S). It is unlikely that cd(S) contains many degrees that are powers whose
exponents are divisible by k, so it should be possible to show that k = 1.

The other possibility is when T is a simple group of Lie type. We know that the
Steinberg character St of T extends to Aut(T ). This yields St(1)k as a degree in cd(S).
Recall that St(1) is a power of p, where the prime p is the defining characteristic for S.
It is known that prime powers as degrees of quasi-simple groups are relatively rare [29].
Other than a known finite list, the only possibilities are the Steinberg characters of
groups of Lie type. Unless S is one of the exceptions, this forces St(1) 2 cd(T ) to
be the degree of the Steinberg character of S. From this, we can obtain a bound on
the characteristic and size of the underlying field of T . We then find a degree of T
which divide degrees of S of relatively large degree and this will allow us to establish
a contradiction if T � S.

3. In Step 3, we have to prove a technical result that every linear character of M
is invariant in G0. Let ✓ 2 Irr(M) be such a character and let I = IG0(✓) be the
stabilizer of ✓ under the action of G0 on Irr(M). If ✓ is not invariant in G0, the inertia
group I would be a proper subgroup of G0. This means I would be contained in a
maximal subgroup, say U , of G0. Suppose that

✓I =
X

i

�i, where �i 2 Irr(I).

Then �G0
i 2 Irr(G0) and hence �i(1)|G0 : I | 2 cd(G0) by Cli↵ord theory. It follows

that
�i(1)|G0 : U ||U : I| divides some degree of G.

In particular, the index of U/M in G0/M(⇠= S, by Step 2) divides a degree of G.
We have seen that, in Step 3, knowledge of maximal subgroups of finite simple

groups plays an important role. In particular, we need to consider the maximal
subgroups of S that have indices dividing degrees in cd(S). The idea is to show that
if U/M is a maximal subgroup of G0/M , then U is not the stabilizer of any character
in Irr(M). Fortunately, it seems rare that S has maximal subgroups whose indices
divide degrees in cd(S).

4. The result obtained in Step 3 implies in particular that [M,G0] = M 0 and |M : M 0|
divides the order of Mult(G0/M) = Mult(S). We recall that Mult(G) denote the
Schur multiplier of G. In order to prove that M is trivial or equivalently G0 ⇠=
S, we have to analyze the di↵erences between character degrees of various central
extensions of the simple group S. In other words, the knowledge on the degrees of
the irreducible projective representations of S is crucial in this step. This is expected
to be complicated when the Schur multiplier of S is large.

5. The proof of Step 5 requires an understanding of the action of the automorphism
group of a quasi-simple group on its irreducible representations. Let C := CG(G0) be
the centralizer of G0 in G. Then G/C is embedded into the automorphism group of
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G0 ⇠= S. One sees that G/G0C will correspond to a subgroup of the outer automor-
phism group of S. The goal is to show that any outer automorphism of G0 will cause
fusion among the irreducible characters in Irr(G0). This will produce a character
degree in cd(G) that is not a degree in cd(S). In other words, we aim to show that

G = G0C.

Once this is proved, G will be a direct product of G0 and C. It follows that C ⇠= G/G0

and hence C is abelian, as wanted.
Step 5 can be di�cult when the outer automorphism group Out(S) of S is compli-

cated. For instance, if S is simple of Lie type, the structure of Out(S) is

d · f · g,

where d is the group of diagonal automorphisms, f is the (cyclic) group of field
automorphisms (generated by a Frobenius automorphism), and g is the group of
graph automorphisms (coming from automorphisms of the Dynkin diagram). To
understand the action of Out(S) on the set of irreducible characters of H , one has to
study the action of these kinds of automorphisms individually. This topic might be of
independent interest and we hope that Huppert’s conjecture will motivate more study
on the behavior of irreducible representations of a simple group under the action of
its outer automorphisms.

With Wakefield, we have recently succeeded in applying these arguments to es-
tablish the conjecture for the simple linear and unitary groups in dimension 4. The
result for the linear groups appears in [40] and its proof requires modifications in the
five steps outlined above.

Theorem 4.3 ([40]) Let q � 13 be a prime power and let G be a finite group such
that cd(G) = cd(PSL4(q)). Then G is isomorphic to the direct product of PSL4(q)
and an abelian group.

With further modifications of Huppert’s method, the second author has recently
completed the verification of Huppert conjecture for the remaining simple exceptional
groups of Lie type in [54].

5 Extending Huppert’s conjecture to quasi-simple groups

Recent success on Problem 1.1 for quasi-simple groups suggests that Huppert’s con-
jecture might be extended from non-abelian simple groups to quasi-simple groups. In
an ongoing work with Majozi and Wakefield [15], we put forward the following, which
is Conjecture 1.2 in the Introduction.

Conjecture 5.1 Let G be a finite group and H a finite quasi-simple group. If
cd(G) = cd(H), then G ⇠= H � A, a central product of H with an abelian group
A. In other words, every finite quasi-simple group is determined up to an abelian
central product factor by its degree set.

As mentioned in Section 4, Huppert [16] outlined a pattern consisting of five steps
to study his conjecture. This pattern and variants thereof have been successfully used
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in verifying the conjecture for several non-abelian simple groups. Drawing upon his
method, the following pattern is proposed in [15] to approach Conjecture 5.1.

(1) Show that G0 = G00.

(2) Suppose that G0/M is a chief factor of G. Show that G0/M ⇠= H/Z(H).

(3) Show that G0 is isomorphic to a perfect central cover of H/Z(H).

(4) Show that G = G0 �CG(G0). It follows in particular that cd(G) = cd(G0).

(5) Show that covers of H/Z(H) have distinct sets of character degrees. Steps 3
and 4 then imply that G0 ⇠= H and hence G is isomorphic to the central product
of H and the abelian group CG(G0).

It is worth pointing out that Steps 1, 2 and 4 here correspond respectively to
Steps 1, 2 and 5 in Huppert’s method for non-abelian simple groups, while Steps 3
and 5 are fundamentally di↵erent.

With extra work, the proof of Huppert conjecture for a certain non-abelian simple
group can be extended to obtain the proof of Conjecture 5.1 for the perfect central
cover covers of that simple group, although it is not always obvious. In [15], by
following the pattern outlined above, the authors have established Conjecture 5.1 for
all quasi-simple linear groups in dimensions 2 and 3.

6 Characterizing non-abelian simple groups by their multiplicity
patterns

In this last section, we shift our focus on the multiplicities of character degrees of
finite groups. Before we can present some results and open conjectures, we need
some notation. For a finite group G, we write cd(G) = {d0, d1, · · · dt} with d0 = 1 <
d1 < · · · < dt. For each positive integer d, the multiplicity of d in G, denoted by
mG(d), is the number of irreducible characters of G of degree d, that is

mG(d) = |{� 2 Irr(G) : �(1) = d}|.

The multiplicity pattern mp(G) of G is defined to be the vector

(mG(d0),mG(d1), · · · ,mG(dt)).

Clearly, the first coordinate of mp(G) is the number of linear characters of G, which
is |G : G0|, and for i � 1, the (i + 1)th-coordinate of mp(G) is the multiplicity of
the ith-smallest nontrivial character degree of G. Similarly, we can define mp1(G) to
be the vector (mG(d1),mG(d2), · · · ,mG(dt)). If the complex group algebra CG of G
is given, then both mp(G) and mp1(G) are known. Also, if we know mp(G), then
k(G), the number of conjugacy classes of G, can be computed by taking the sum of
all entries of mp(G).

It seems that the multiplicities of character degrees of a finite group G also have
strong influence on the structure of the group. For example, it was proved by
A. Moretó and D. Craven in [11, 31] that the order of a finite group G is bounded
above by a function of the maximum multiplicity of character degrees of G. A conju-
gacy class analogue of this was studied by the first author in [36]. In [5], Y. Berkovich



Nguyen, Tong-Viet: Quasisimple groups and their character degrees 453

and L. Kazarin proved that the nonsolvable groups in which only two nonlinear irre-
ducible characters have equal degrees are exactly PSL2(5) and PSL2(7). This result
has recently been generalised in [53], where it was showed that two simple groups
above are also the only nonsolvable groups which have a unique nontrivial multiplic-
ity of nontrivial character degrees. In [52], we proposed the following problem which
is much stronger than Problem 1.1.

Problem 6.1 Given a finite groupG, determine all finite groups (up to isomorphism)
having the same multiplicity pattern mp(G) as that of G.

We can also ask the following question: What does mp(G) (or mp1(G)) know about
G? Notice that we use the vector mp(G) rather than the set of multiplicities as there
are many non-isomorphic groups having the same set of multiplicity of character
degrees, for instance, D8, Q8, S3, A5, PSL2(7), J2, M22 and B all have the same
set {1, 2} of multiplicities. As the quaternion group Q8 and the dihedral group D8

have the same character table, we deduce that mp(Q8) = mp(D8), which is equal
to (4, 2). Hence, solvable groups are not uniquely determined by the multiplicity
patterns. Using [10], we see that the multiplicities of the non-abelian simple groups
in the Atlas are all distinct.

Conjecture 6.2 Let H be a non-abelian simple group. If G is a finite group such
that mp(G) = mp(H), then G ⇠= H.

This conjecture, if true, would be a generalisation of Theorem 2.1. We do not know
whether G ⇠= H or not if mp1(G) = mp1(H), with H a non-abelian simple group.
Notice that mp1(S6 · 2) = mp1(S6). In support of Conjecture 6.2, we have proved:

Theorem 6.3 Let G be a finite group and let H be a non-abelian simple group with
at most seven distinct character degrees. If mp(G) = mp(H), then G ⇠= H.

The non-abelian simple groups with at most seven distinct character degrees have
been classified by G. Malle and A. Moretó [28].

Lemma 6.4 ([28, Theorem C]) Let S be a non-abelian simple group. If |cd(S)|  7,
then one of the following cases holds.

(1) |cd(S)| = 4 and S ⇠= PSL2(q), q = 2f � 4.

(2) |cd(S)| = 5 and S ⇠= PSL2(q), q = pf > 5 and p > 2.

(3) |cd(S)| = 6 and S ⇠= 2B2(q2), q2 = 22m+1,m � 1 or PSL3(4).

(4) |cd(S)| = 7 and S ⇠= PSL3(3),A7,M11 or J1.

In the next lemma, we obtain some consequences under the assumption that
mp(G) = mp(H), where H is a finite perfect group and G is a finite group.

Lemma 6.5 Let G be a group and let H be a nontrivial perfect group. Assume that
mp(G) = mp(H). Then the following hold.

(1) |cd(G)| = |cd(H)| and k(G) = k(H).

(2) G is perfect, i.e., G0 = G.
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(3) If M is a maximal normal subgroup of G, then G/M is a non-abelian simple
group, k(G/M)  k(H) and |cd(G/M)|  |cd(H)|. Moreover, if d 2 cd(G/M),
then mG(d) � mG/M (d).

The proof of Theorem 6.3 is based on the previous two lemmas together with
the explicit lists of the multiplicity patterns of those simple groups in Lemma 6.4.
Indeed, if the finite groups G and H satisfy the hypotheses of Theorem 6.3, then
by Lemma 6.5, G is perfect, k(G) = k(H), |cd(G)| = |cd(H)| and G/M is a non-
abelian simple group with |cd(G/M)|  |cd(G)|, where M is a maximal normal
subgroup of G. It follows that G/M is one of the simple groups in Lemma 6.4 as
|cd(G/M)|  |cd(G)|  7. Now if |cd(G/M)| = |cd(G)|, then cd(G) = cd(G/M) and
so by applying Theorem 4.2 and the fact that G is perfect, we obtain that G ⇠= G/M.
Hence, M = 1 and G is non-abelian simple with |cd(G)| = |cd(H)|. Using Lemma 6.4
again and the fact that G and H have the same number of conjugacy classes, we
deduce that G ⇠= H as required. Assume that |cd(G/M)| < |cd(G)|. For each possible
G/M, using Cli↵ord Theory and the theory of character triple isomorphisms in [18],
we eliminate these cases by showing that mp(G) 6= mp(H).

For quasi-simple groups, we obtain the following.

Theorem 6.6 Let G be a finite group and let q � 4 be a prime power. If mp(G) =
mp(SL2(q)), then G ⇠= SL2(q).

As with complex group algebras, we predict that all quasi-simple or symmetric
groups are uniquely determined up to isomorphism by their multiplicity patterns.
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1 Introduction

A generalized Baumslag-Solitar group is the fundamental group of a graph of groups
with infinite cyclic vertex and edge groups. These groups have been the subject of
numerous investigations over the last twenty five years. Here we give an account of
some of what has been discovered, particularly relating to homology, the determi-
nation of the centre and the maximum cyclic normal subgroup, and the relation to
3-manifold groups. Generally proofs are omitted.

We begin by recalling that the Baumslag-Solitar groups are the groups with a
presentation of the form

BS(m,n) = h t, x | (xm)t = xn i,

where m,n 2 Z⇤ = Z\{0}. A similar type of group is

K(m,n) = hx, y | xm = yn i,

where m,n 2 Z⇤. When m and n are relatively prime, K(m,n) is a torus knot group.
Aside from being 1-relator groups with simple presentations, what these groups

have in common is that they are the fundamental groups of certain simple graphs of
groups.

Generalized Baumslag-Solitar graphs and groups

Let � be a finite connected graph, loops and multiple edges being allowed. Let V (�)
and E(�) denote the respective sets of vertices and edges of �. For each e 2 E(�) label
the endpoints e� and e+, so that e = he�, e+i. Infinite cyclic groups hg

x

i and hu
e

i
are assigned to each vertex x and edge e and injective homomorphisms hu

e

i ! hg
e

+i
and hu

e

i ! hg
e

�i are defined by

u
e

7! g
!

+(e)
e

+ and u
e

7! g
!

�(e)
e

� ,

where !+(e), !�(e) 2 Z⇤. This means that we have a weight function

! : E(�) ! Z⇤ ⇥ Z⇤,

where !(e) = (!�(e),!+(e)) is defined up to ±. The weighted graph (�,!) is called
a generalized Baumslag-Solitar graph or GBS-graph.

The generalized Baumslag-Solitar group (or GBS-group) determined by the GBS-
graph (�,!) is its fundamental group G = ⇡1(�,!). If T is a maximal subtree of �,
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then G has a presentation with generators g
x

, (x 2 V (�)), and t
e

, (e 2 E(�)\E(T )),
and relations

(
g
!

+(e)
e

+ = g
!

�(e)
e

� , if e 2 E(T ),

(g
!

+(e)
e

+ )te = g
!

�(e)
e

� , if e 2 E(�)\E(T ).

The t
e

are the stable letters. Thus G = K(m,n) if � is a single edge e and G =
BS(m,n) if � is a loop e, where m = !+(e), n = !�(e).

Example 1.1 Consider the GBS-graph

•
y

•
x

•
u

•
z

4 �1
ee

s

ee

20 12
44

t

44

4 4 **

3
5

OO2 �3

%%
r
2
2

((

Let the maximal subtree T be the path x, y, z, u. The stable letters are r, s, t and the
GBS-group has a presentation in generators r, s, t, g

x

, g
y

, g
z

, g
u

with relations

g2
x

= g�3
y

, g4
y

= g4
z

, g5
z

= g3
u

,

(g2
x

)r = g2
x

, (g4
x

)s = g�1
y

, (g12
u

)t = g20
y

.

It is worthwhile reflecting on the concepts introduced so far. We began with a
GBS-graph (�,!), an arithmetic-combinatorial object, and we constructed an al-
gebraic object, its fundamental group ⇡1(�,!). In fact there is also a topological
structure associated with the GBS-graph (�,!), namely a 2-dimensional simplicial
complex C(�,!) whose fundamental group is isomorphic with ⇡1(�,!). Details of
the construction may be found in [5: 7]. Thus we have a combinatorial object, an
algebraic object and a topological object linked by the isomorphism

⇡1(�,!) ' ⇡1(C(�,!)).

It is the interplay between combinatorics, algebra and topology that makes this area
a fertile one for research.

Some properties of GBS-groups

Let ⇡1(�,!) be a GBS-graph and put G = ⇡1(�,!). Then G has the following
properties.

(i) Up to isomorphism the group G is independent of the choice of maximal subtree.
This is a standard fact from the theory of graphs of groups – see [3] or [18].

The next two results are also well known.

(ii) G is finitely presented and torsion-free.

(iii) If � is a tree, then G is residually finite and hence is hopfian.
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The next result, which is due to P. Kropholler [13], shows clearly the central position
of GBS-groups in combinatorial group theory.

(iv) The non-cyclic GBS-groups are exactly the finitely generated groups of cohomo-
logical dimension 2 which have a commensurable infinite cyclic subgroup.

(v) If H is a finitely generated subgroup of a GBS-group G, then either H is a
GBS-group or else it is free. Hence G is coherent.

Proof We have cd(H)  cd(G)  2. If cd(H) = 1, then H is free by the Stallings-
Swan Theorem. Otherwise cd(H) = 2. If H contains a commensurable element, it
is a GBS-group by (iv). If H has no commensurable elements, it intersects every
conjugate of a vertex group trivially, so it it is free. ⇤

Another interesting result of Kropholler [13] is:

(vi) The second derived subgroup of a GBS-group is free.

This shows that there is a Tits Alternative for GBS-groups: either a GBS-group is
soluble or it has a free subgroup of rank 2.

(vii) The GBS-graphs with soluble fundamental groups have been classified in [6].

The automorphism groups of GBS-groups have been studied by G. Levitt [15],
where the following is established.

(viii) If G is a GBS-group, then either Out(G) has a free subgroup of rank 2 or it is
virtually nilpotent of class at most 2.

Open problems

We mention some open problems about GBS-groups.

(i) Find necessary and su�cient conditions for a GBS-group to be residually finite
or hopfian. This has been done for Baumslag-Solitar groups – see [1] and [16].

(ii) Is the Isomorphism Problem for GBS-groups soluble? In other words, given
two GBS-graphs, is there an algorithm which can decide if their fundamental
groups are isomorphic? The answer is positive for graphs for which the outer
automorphism group of the fundamental group has no free subgroups of rank 2:
this is due to Levitt [15]. For further results see [2] and [10].

(iii) Can the structure of the abelianization of a GBS-groupG be determined directly
from the underlying GBS-graph? Or is there at least a method for determining
whether G

ab

is torsion-free: note that the torsion-free rank is given by Theo-
rem 2.3 below. Of course, the structure of G

ab

can be determined algebraically
from a presentation for G

ab

.

2 The weight of a path in a GBS-graph

The concept of the weight of a path in a maximal subtree of a GBS-graph is a useful
one. Let (�,!) be a GBS-graph with a maximal subtree T and let e = hx, yi be a
non-tree edge where x 6= y. Then there is a unique path in T from x to y, say

x = x0, x1, . . . , xn = y.
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By reading along the path, we detect a relation

gp1(e)
x

= gp2(e)
y

in G = ⇡1(�,!), where p1(e) and p2(e) are the products of the left and right weight
values of the edges in the tree path [x, y]. The elementary result that follows estab-
lishes the existence of a minimal relation of this type.

Lemma 2.1 Let (�,!) be a GBS-graph with a maximal subtree T and let ↵ = [x, y]
be a path in T . Then there exist a, b 2 Z⇤ such that ga

x

= gb
y

in ⇡1(�,!), and if
gm
x

= gn
y

, then (m,n) = (a, b)q for some q 2 Z⇤.

Proof As already remarked, there exist a, b 2 Z⇤ such that ga
x

= gb
y

. Assume that
the pair (a, b) has been chosen with |a| minimal. Suppose that gm

x

= gn
y

and write

m = aq + r where q, r 2 Z, 0  r < |a|. Then gn
y

= gm
x

= gaq+r

x

= gbq
y

gr
x

, so that

gr
x

= gn�bq

y

. From the minimality of |a| we deduce that r = 0 and m = aq. Then

gaq
x

= gn
y

and gbq
y

= gn
y

, so that n = bq, as required. ⇤

We call the integer pair (a, b) in Lemma 2.1 the weight of the path ↵ in T and
denote it by !

T

(↵) or

!
T

(x, y) = (!
(1)
T

(x, y),!
(2)
T

(x, y)).

By convention if x = y, so that [x, y] is a loop, then !
T

([x, y]) = (1, 1). Keep in mind
that the weight is unique only up to ±.

Computing the weight of a path

Let (�,!) be a GBS-graph with a maximal subtree T . Let ↵ be the path x =

x0, x1, . . . , xn = y in T and write !(hx
i

, x
i+1i) = (u(1)

i

, u
(2)
i

), i = 0, 1, . . . , n � 1.
Define a pair of non-zero integers (`

i

,m
i

), 0  i  n, recursively by `0 = 1 = m0 and

`
i+1 =

`
i

u
(1)
i

gcd(m
i

, u
(1)
i

)
, m

i+1 =
m

i

u
(2)
i

gcd(m
i

, u
(1)
i

)
.

With this notation we state a result which allows the weight of a path to be
calculated e�ciently.

Lemma 2.2 !
T

(x, y) = (`
n

,m
n

).

Tree and skew tree dependence

Let (�,!) be a GBS-graph with a maximal subtree T . A non-tree edge e = hx, yi
with x 6= y is called T-dependent or skew T-dependent if

!�(e)

!+(e)
=

!
(1)
T

(e)

!
(2)
T

(e)
or �

!
(1)
T

(e)

!
(2)
T

(e)
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respectively. If e is a loop, then e is said to be T -dependent or skew T -dependent if
and only if !�(e) = !+(e) or �!+(e) respectively.

If every non-tree edge of a GBS-graph is T -dependent, the graph is called tree
dependent. If every non-tree edge is T -dependent or skew T -dependent, with at least
one edge of the latter type, the GBS-graph is called skew tree dependent. It is a
fact that these properties are independent of the choice of maximal subtree T – see
Corollary 1 below.

Tree dependence is relevant to the computation of homology in low dimensions.
Recall that the homology of a GBS-group vanishes in dimensions 3 and higher. The
following is what is known about the integral homology in dimensions 1 and 2.

Theorem 2.3 (Levitt [15], Robinson [17]) Let G = ⇡1(�,!) be a GBS-group.
Then the torsion-free rank of H1(G) = G

ab

is

r0(G) = |E(�)|� |V (�)|+ 1 + ✏(�,!)

where ✏(�,!) = 1 if (�,!) is tree dependent and otherwise ✏(�,!) = 0.

Theorem 2.4 (Robinson [17]) Let G = ⇡1(�,!) be a GBS-group. Then the Schur
multiplier H2(G) is free abelian of rank r0(G)� 1.

For example, consider the GBS-group G arising from the GBS-graph in Exam-
ple 1.1, where the maximal subtree chosen is the path x, y, z, u. The non-tree edges
with the exception of hy, xi are T -dependent. Therefore (�,!) is not tree-dependent,
✏(�,!) = 0 and r0(G) = |E(�)|� |V (�)|+ 1 = 3. Thus M(G) ' Z� Z.

The �-function

Let G be a group with a commensurable element x of infinite order. If g 2 G, then
hxi \ hxig 6= 1 and (xn)g = xm for some m,n 2 Z⇤. Define �

x

(g) = m/n. A simple
calculation reveals that

�
x

: G 7! Q⇤ = Q\{0}

is a well defined homomorphism. This useful function was introduced by Kropholler
in [12] and is sometimes referred to as the modular homomorphism.

If y 2 G is commensurable and hxi \ hyi 6= 1, it is easily seen that �
x

= �
y

. If
this holds for all commensurable elements y, the function �

x

does not depends on x
and we denote it by �

G

.

The �-function of a GBS-group

A GBS-graph (�,!), or the corresponding group G = ⇡1(�,!), is called elementary if
G ' Z or BS(1,±1). If G is non-elementary, then each commensurable element of G
is elliptic in its action on the Bass-Serre tree – see [5: 3.1] – and hence is conjugate
to a power of some vertex generator. Therefore the �-function does not depend on
any particular element. Suppose that T and T̄ are two maximal subtrees in (�,!)
leading to GBS-groups G and Ḡ. There is an isomorphism  : G ! Ḡ and clearly
�

G

= �
Ḡ

 . Hence Im(�
G

) = Im(�
Ḡ

) is independent of the maximal subtree chosen,
a fact that will be important in the sequel.
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The �-function of a GBS-group is easily calculated from the graph by using the
next result.

Lemma 2.5 Let (�,!) be a non-elementary GBS-graph with a maximal subtree T
and let G = ⇡1(�,!). Then:

(i) �
G

(g
x

) = 1 for all x 2 V (�);

(ii) If e 2 E(�)\E(T ), !(e) = (a, b) and !
T

(e) = (m,n), then �
G

(t
e

) = an/bm.

The �-function provides criteria for tree dependence and skew tree dependence:

Corollary 2.6 Let (�,!) be a non-elementary GBS-graph with a maximal subtree T
and let G = ⇡1(�,!). If e 2 E(�)\E(T ), then:

(i) e is T -dependent if and only if �
G

(t
e

) = 1. Hence (�,!) is tree dependent if
and only if Im(�

G

) = {1}.
(ii) e is skew T -dependent if and only if �

G

(t
e

) = �1. Hence (�,!) is skew tree
dependent if and only if Im(�

G

) = {±1}.

A consequence of the corollary is that the properties of tree dependence and skew
tree dependence do not depend on the choice of maximal subtree. If Im(�

G

) ✓ {±1},
the graph (�,!), or G = ⇡1(�,!), is called unimodular.

3 The cyclic radical

A non-elementary GBS-group contains a unique maximum cyclic normal subgroup.

Lemma 3.1 Let (�,!) be a non-elementary GBS-graph and set G = ⇡1(�,!).
Then:

(i) G has a unique maximum cyclic normal subgroup C(G) and Z(G)  C(G).

(ii) Exactly one of the following is true: 1 = C(G), 1 = Z(G) < C(G) and 1 <
Z(G) = C(G).

Proof Suppose that {C
i

| i 2 I } is an infinite ascending chain of cyclic normal
subgroups of G. Each C

i

is commensurable and hence is elliptic since G is not
elementary. Therefore each C

i

lies in a vertex subgroup. But then infinitely many of
the C

i

lie in some hg
v

i, which is impossible. Therefore G has a maximal cyclic normal
subgroup, say C.

Next let D be any non-trivial cyclic normal subgroup of G. We show that D  C.
Since CD is nilpotent, no element of C can induce inversion in D and therefore CD
is abelian. Also C and D are commensurable and hence are contained in vertex
subgroups. It follows that C \ D 6= 1 and CD/D is finite, which shows that CD
is cyclic. Hence D  C, so we may define C(G) to be C. Clearly Z(G)  C(G).
Finally, if Z(G) 6= 1, then elements of G centralize a non-trivial subgroup of C(G),
so they centralize C(G). ⇤

We will refer to the subgroup C(G) in Lemma 3.1 as the cyclic radical of G. The
�-function can also be used to give criteria for the center or cyclic radical of a GBS-
group to be non-trivial.
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Proposition 3.2 Let (�,!) be a non-elementary GBS-graph and put G = ⇡1(�,!).
Then the following are equivalent.

(i) (�,!) is tree dependent or skew dependent;

(ii) Im(�
G

) = {1}, respectively Im(�
G

) = {�1, 1};
(iii) Z(G) 6= 1, respectively 1 = Z(G) < C(G).

The the equivalence of conditions (ii) and (iii) in Proposition 3.2 was proved by
Levitt [15: 2.5, 2.6]. We remark that as a consequence of Proposition 3.2, if G is a
unimodular GBS-group, then G/C(G) is the fundamental group of a graph of finite
cyclic groups. In consequence G/C(G) is virtually free and from this it follows readily
that G is residually finite and hence is hopfian.

Locating the cyclic radical and centre of a GBS-group

Let (�,!) be a GBS-graph with G = ⇡1(�,!). By Lemma 3.1 it is su�cient to show
how to find C(G). In this task we may assume the graph is non-elementary and we
can also assume (�,!) is unimodular, since otherwise C(G) = 1.

First some useful terminology: in a GBS-graph the distal weight of a leaf in a
maximal subtree is the weight occurring at the vertex of degree 1. In finding the
cyclic radical there is no loss in assuming there are no leaves with distal weight ±1,
since the vertex generator corresponding to the vertex of degree 1 can be deleted.
Under these circumstances we can make an initial determination of the location of
the cyclic radical.

Lemma 3.3 Let (�,!) be a non-elementary GBS-graph with a maximal subtree T
which has no leaves of distal weight ±1. If G = ⇡1(�,!), then

C(G)  J =
\

v2V (�)

hg
v

i.

For any x, v 2 V (�) we have hg
x

i \ hg
v

i = hg!
(1)
T

(v,x)
v

i by Lemma 2.1. Hence
J = hg

v

h

vi where

h
v

= lcm{!(1)
T

(v, x) | x 2 V (�)} = !tot

T

(v),

which is called the total weight of v in T : this is just the smallest positive power of g
v

which belongs to to every vertex subgroup.
There is a more economic expression for the total weight. Let y1, y2, . . . , y

k

be the
vertices of degree 1 in T . Then

!tot

T

(v) = lcm{!(1)
T

(v, y
i

) | i = 1, 2, . . . , k}.

This is true since by Lemma 2.2 the weight of a path from v in T is divisible by the
weight of the subpath from v to any previous vertex on the path.

Corollary 3.4 Let (T,!) be a non-elementary GBS-tree with no distal weights ±1
and let G = ⇡(T,!). Then for any vertex v of �

Z(G) = hg!
tot

T

(v)
v

i.
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Of course Z(G) = C(G) in this corollary since Z(G) 6= 1. Turning to the case of a
general GBS-group, we deduce from Lemma 3.3 the following result.

Corollary 3.5 Let (�,!) be a non-elementary GBS-graph with a maximal subtree T .
Assume that no leaf of T has distal weight ±1 and let G = ⇡1(�,!). If I =T

v2V (�)hgvi, then
C(G) =

\

e2E(�)\E(T )

Iht
e

i,

where Iht
e

i is the ht
e

i-core of I, that is, the largest ht
e

i-invariant subgroup of I.

It remains to show how to compute the cores in Corollary 3.5. The next lemma
provides the crucial step.

Lemma 3.6 Let (�,!) be a GBS-graph with a maximal subtree T and let e = hv, ui
be a non-tree edge which is T -dependent or skew T -dependent. If !(e) = (m,n) and
!
T

(v, u) = (a, b), then
Iht

e

i = hglcm(a,m)
v

i \ I.

By combining the Lemmas 3.3 and 3.6 we arrive at our principal result about the
cyclic radical of a non-elementary GBS-group.

Theorem 3.7 Let (�,!) be a non-elementary, unimodular GBS-graph with G =
⇡1(�,!). Assume that T is a maximal subtree with no leaves of distal weight ±1.
Let v be any fixed vertex of � and let the non-tree edges of � be e

i

= hx
i

, y
i

i | i =
1, 2, . . . , k. Write !(e

i

) = (m
i

, n
i

), !
T

(x
i

, y
i

) = (a
i

, b
i

), !
T

(v, x
i

) = (c
i

, d
i

), and put
`
i

= lcm(a
i

,m
i

). Then

C(G) = hg
!

tot

(�,!)(v)
v

i

where

!tot

(�,!)(v) = lcm

⇢
c
i

`
i

gcd(`
i

, d
i

)
, !tot

T

(v)

����i = 1, 2, . . . , k

�
.

The positive integer

!tot

(�,!)(v) = !tot(v)

is called the total weight of the vertex v: it is the positive power of g
v

which generates
the cyclic radical in a non-elementary, unimodular GBS-group. Theorem 3.7 provides
a method for computing total weights: for small graphs the computations can be done
by hand, while larger examples may require machine computation, (and a program
to achieve this has in fact been implemented).

Example 3.8 Consider the GBS-graph that follows below. Here the edges which
do not belong to the maximal subtree T are e

i

= hx
i

, y
i

i, i = 1, 2, and the loop
e3 = hx3, x3 = y3i. The vertices of degree 1 in T are x2, y2, x3. By inspection of
the graph we see that the edges e

i

are T -dependent, so (�,!) is tree dependent and
C(G) = Z(G) 6= 1. Suppose that we want to express C(G) in terms of g

v

: simply
read o↵ the data required from the GBS-graph. Firstly

!tot

T

(v) = lcm
�
!
(1)
T

(v, x2), !
(1)
T

(v, y2), !
(1)
T

(v, x3)
�
= lcm(6, 21, 15),
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v•

x1• •
y1

x2• •
y2 •x3

2

3

��

5

4

��

7
2

��

3
3

��

5
2

��

35 8
//e2 //

e1 //

e3

5 5

YY

18 27
//

which equals 210.
Next !(e1) = (m1, n1) = (18, 27), !(e2) = (m2, n2) = (35, 8), !(e3) = (m3, n3) =

(5, 5), !
T

(x1, y1) = (a1, b1) = (2, 3), !
T

(x2, y2) = (a2, b2) = (35, 8), !
T

(x3, y3) =
(a3, b3) = (1, 1), !

T

(v, x1) = (c1, d1) = (3, 2), !
T

(v, x2) = (c2, d2) = (6, 5),
!
T

(v, x3) = (c3, d3) = (15, 2). Hence `1 = 18, `2 = 35, `3 = 5 and !tot(v) =
lcm(27, 42, 75, 210) = 9450. Therefore

C(G) = Z(G) = hg9450
v

i.

Now suppose we change the weights on the edge e2 to (�35, 8). The GBS-graph
then becomes skew tree dependent and Theorem 3.7 yields C(G) = hg9450

v

i. Con-
jugation in this subgroup by t

e2 induces inversion since �
G

(t
e2) = �1. Of course

Z(G) = 1.

4 GBS-groups and 3-manifold groups

As the final topic in this survey, we consider the relation between GBS-groups and
3-manifold groups, i.e., the fundamental groups of compact 3-manifolds. We begin
with some interesting examples due to W. Heil [11].

(i) K(m,n) = hx, y | xm = yn i is a 3-manifold group. Note that the underlying
GBS-graph is: •

x

•
y

m n //

(ii) The group hx1, x2, x3 | x1m = xn2 , x2
m = xn3 i is a 3-manifold group if and only

if |m| = 1 or |n| = 1 or |m| = |n|. Here the GBS-graph is:

•
x1 •

x2 •
x3

m n // m n //

(iii) B(m,n) is a 3-manifold group if and only if |m| = |n|. Of course the GBS-graph
is a loop in this case.

These examples suggest the problem of finding necessary and su�cient condi-
tions on a GBS-graph (�,!) for ⇡1(�,!) to be the fundamental group of a compact
3-manifold. To solve this problem we introduce two special types of GBS-graphs. A
GBS-graph (�,!) is called locally weight constant if at every vertex v all weights are
equal to a constant c

v

and locally ± weight constant if all weights at v equal ±c
v

for
some constant c

v

. We begin with a simple observation.
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Lemma 4.1 A GBS-graph is tree dependent if it is locally weight constant, and it is
tree or skew tree dependent, i.e., unimodular, if it is locally ± weight constant.

Example 4.2 The GBS-graph shown is locally ± weight constant, but not locally
weight constant.

•
y

•
x

•
u

•
z

2 5
ee
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ee

5 3
44
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44
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3
3
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r 2 2
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The following result furnishes a complete description of the non-elementary GBS-
groups that are 3-manifold groups. (The elementary GBS-groups are easily seen to
be 3-manifold groups).

Theorem 4.3 (Delgado, Robinson and Timm [8]) Let (�,!) be a non-element-
ary GBS-graph. Then the following properties are equivalent.

(i) ⇡1(�,!) is a 3-manifold group.

(ii) ⇡1(�,!) is an orientable 3-manifold group.

(iii) (�,!) is locally ± weight constant.

This result explains Heil’s examples: for example, B(m,n) is a 3-manifold group if
and only if |m| = |n|.

3-Manifold GBS-group covers

Let (�,!) be a non-elementary GBS-graph. If ⇡1(�,!) is not a 3-manifold group,
it might still be a quotient of a GBS-group which is a 3-manifold group. With
this possibility in mind, we define a 3-manifold GBS-group cover of ⇡1(�,!) to be a
surjective homomorphism

' : ⇡1(�, ⌧) ! ⇡1(�,!)

where (�, ⌧) is a GBS-graph such that ⇡1(�, ⌧) is a 3-manifold group, and ' is a pinch
map, i.e., it is a composite of pinches. Here a pinch is a map arising from division
of the weights on a fixed edge of � by a common factor. (For a detailed account of
pinch maps and other “geometric homomorphisms” between GBS-groups, see [5]).

The next theorem tells us exactly which GBS-groups possess 3-manifold GBS-group
covers.

Theorem 4.4 (Delgado, Robinson and Timm [8]) Let (�,!) be a non-element-
ary GBS-graph. Then the following properties are equivalent:

(i) ⇡1(�,!) has a 3-manifold GBS-group cover.

(ii) ⇡1(�,!) has an orientable 3-manifold GBS-group cover.

(iii) ⇡1(�,!) is unimodular, i.e., (�,!) is tree dependent or skew tree dependent.

Thus in Example 4.2 the GBS-groups are unimodular and so have 3-manifold GBS-
group covers, but they are not 3-manifold groups.
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The total ± weight cover of a GBS-group

While we do not present a complete proof of Theorem 4.4, we will explain how the
3-manifold GBS-group covers in the theorem are constructed. Suppose that (�,!) is
a non-elementary GBS-graph such that ⇡1(�,!) unimodular and let T be a maximal
subtree with no distal weights ±1: we can also assume that the edges of T have been
labelled so that all weights are positive. Define a new GBS-graph ⇡1(�, ⌧) in the
following manner.

(i) Case: (�,!) is tree dependent.
Define the new weight function ⌧ by

⌧(e) = (!tot(e�),!tot(e+)), e 2 E(�).

The GBS-graph (�, ⌧) is called the total weight cover of (�,!). Notice that (�, ⌧)
is locally weight constant, so ⇡1(�, ⌧) is a compact (orientable) 3-manifold group by
Theorem 4.3. The identity map on � and a suitable sequence of pinches give rise to a
surjective homomorphism ' : ⇡1(�, ⌧) ! ⇡1(�,!), which is a 3-manifold GBS-group
cover of ⇡1(�,!).

(ii) Case: (�,!) is skew tree dependent.
In this situation we partition the set of non-tree edges of � into two subsets,

E(�)\E(T ) = P [N where P is the set of edges with positive weights and N is the
set of remaining edges. Define the weight function ⌧ by

⌧(e) =

(
(!tot(e�),!tot(e+)), e 2 E(T ) [ P,

(�!tot(e�),!tot(e+)), e 2 N.

Thus (�, ⌧) is a locally ± weight constant GBS-graph, which is called the total ±
weight cover of (�,!). From Theorem 4.3 we see that ⇡1(�, ⌧) is a 3-manifold group,
so that once again we have a 3-manifold GBS-group cover ' : ⇡1(�, ⌧) ! ⇡1(�,!)
defined by the identity map on � and a sequence of suitable pinches.

Finally, we remark that the 3-manifold GBS-group covers constructed above are
unique with respect to a minimality property, in the sense that all other covers factor
through them. Also the pinch maps involved in these minimal 3-manifold GBS-group
covers can be computed using the algorithm of Theorem 3.7. Details of the proofs
can be found in [7] and [8].

Example 4.5 Consider the GBS-graph in Example 3.8 in the skew dependent case.
To find the the 3-manifold GBS cover, compute the total weights of all the vertices,
using the formulas in Theorem 3.7. This yields the locally ± weight constant GBS-
graph below, which determines the canonical GBS-covering group of the original
GBS-group.
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Abstract

I survey some recent developments in the theory of zeta functions associated to infinite
groups and rings, specifically zeta functions enumerating subgroups and subrings of
finite index or finite-dimensional complex representations.

1 About these notes

Over the last few decades, zeta functions have become important tools in various areas
of asymptotic group and ring theory. With the first papers on zeta functions of groups
published barely 25 years ago, the subject area is still comparatively young. Recent
developments have led to a wealth of results and given rise to new perspectives on
central questions in the field. The aim of these notes is to introduce the nonspecialist
reader informally to some of these developments.

I concentrate on two types of zeta functions: firstly, zeta functions in subgroup
and subring growth of infinite groups and rings, enumerating finite-index subobjects.
Secondly, representation zeta functions in representation growth of infinite groups,
enumerating finite-dimensional irreducible complex representations. I focus on com-
mon features of these zeta functions, such as Euler factorizations, local functional
equations, and their behaviour under base extension.

Subgroup growth of groups is a relatively mature subject area, and the existing
literature reflects this: zeta functions of groups feature in the authoritative 2003
monograph [39] on “Subgroup Growth”, are the subject of the Groups St Andrews
2001 survey [16] and the report [18] to the ICM 2006. The book [21] contains, in
particular, a substantial list of explicit examples. Some more recent developments
are surveyed in [32, Chapter 3].

On the other hand, few papers on representation zeta functions of infinite groups
are older than ten years. Some of the lecture notes in [32] touch on the subject. The
recent survey [31] on representation growth of groups complements the current set of
notes.

In this text I use, more or less as blackboxes, the theory of p-adic integration and
the Kirillov orbit method. The former provides a powerful toolbox for the treatment
of a number of group-theoretic counting problems. The latter is a general method
to parametrize the irreducible complex representations of certain groups in terms of
co-adjoint orbits. Rather than explain in detail how these tools are employed I will
refer to specific references at appropriate places in the text. I all but ignore the rich
subject of zeta functions enumerating representations or conjugacy classes of finite
groups of Lie type; see, for instance, [34].
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These notes grew out of a survey talk I gave at the conference Groups St Andrews
2013 in St Andrews. I kept the informal flavour of the talk, preferring instructive
examples and sample theorems over the greatest generality of the presented results.
As a consequence, the text is not a systematic treatment of the subject, but rather
the result of a subjective choice.

2 Zeta functions in asymptotic group and ring theory

We consider counting problems of the following general form. Let � be a – usually
infinite – algebraic object, such as a group or a ring, and assume that, for each n 2 N,
we are given integers dn(�) 2 N

0

, encoding some algebraic information about �.
Often this data will have a profinite flavour, in the sense that, for every n, there
exists a finite quotient �n of � such that dn(�) can be computed from �n. In any
case, we encode the sequence (dn(�)) in a generating function.

Definition 2.1 The zeta function of (�, (dn(�))) is the Dirichlet generating series

⇣
(dn(�))(s) =

1X

n=1

dn(�)n
�s, (2.1)

where s is a complex variable. If (dn(�)) is understood from the context, we simply
write ⇣

�

(s) for ⇣
(dn(�))(s).

In the counting problems we consider Dirichlet series often turn out to be preferable
over other generating functions, in particular if the arithmetic function n 7! dn(�)
satisfies some of the following properties.

(A) Polynomial growth, i.e., the coe�cients dn(�) – or, equivalently, their partial
sums – have polynomial growth: Dn(�) :=

P
⌫n d⌫(�) = O(na) for some a 2 R.

(B) Multiplicativity in the sense of elementary number theory: if n =
Q

i p
ei
i is the

prime factorization of n, then dn(�) =
Q

i dpeii
(�).

Indeed, polynomial growth implies that ⇣
(dn(�))(s) converges absolutely on some com-

plex half-plane. If dn(�) 6= 0 for infinitely many n, then the abscissa of convergence
of ⇣

(dn(�))(s) is equal to

↵((dn(�))) := lim sup
n!1

log
P

⌫n Dn(�)

logn
.

Thus ↵((dn(�))) gives the precise degree of polynomial growth of the partial sums
Dn(�) as n tends to infinity. If the sequence (dn(�)) is understood from the context,
we sometimes write ↵(�) for ↵((dn(�)).

Multiplicativity implies that – at least formally – the series (2.1) satisfies an Euler
factorization, indexed by the prime numbers:

⇣
(dn(�))(s) =

Y

p prime

⇣
(dn(�)),p(s), (2.2)
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where, for a prime p, the function

⇣
(dn(�)),p(s) = ⇣

(dpi(�))
(s) =

1X

i=0

dpi(�)p
�is

is called the local factor of ⇣
(dn(�))(s) at the prime p. We will later consider other

Euler factorizations, indexed by places of a number field rather than rational prime
numbers, which reflect multiplicativity features of the underlying counting problem
which are subtler than the multiplicativity of n 7! dn(�). In any case, there are
often rationality results which establish that the Euler factors are rational functions,
rendering them — at least in principle — amenable to computation. In practice,
the study of many (global) zeta functions of the form (2.1) proceeds via a uniform
description of local factors in Euler factorizations like (2.2).

Key questions regarding zeta functions of groups and rings concern the following:

1. Analytic properties regarding, e.g., the abscissa of convergence, analytic con-
tinuation, natural boundaries, location and multiplicities of zeros and poles,
residue formulae, special values, etc.,

2. arithmetic properties of the local factors, e.g., rationality; if so, structure of
numerators and denominators, special symmetries (functional equations), etc.,

3. the variation of these properties as � varies within natural families of groups.

In the sequel we survey some key results and techniques in the study of zeta functions
in the context of subgroup and subring growth (Section 3) and of representation
growth (Section 4).

3 Subgroup and subring growth

3.1 Subgroup growth of finitely generated nilpotent groups

A finitely generated group � has only finitely many subgroups of each finite index n.
We set, for n 2 N,

an(�) := #{H  � | |� : H | = n}.

If sn(�) :=
P

⌫n a⌫(�) = O(na) for some a 2 R, then � is said to be of polynomial
subgroup growth (PSG). Finitely generated, residually finite groups of PSG have been
characterized as the virtually solvable groups of finite rank; see [37]. This class of
groups includes the torsion-free, finitely generated nilpotent (or T-)groups. Let � be
a T-group. Then the sequence (an(�)) is multiplicative. This follows from the facts
that every finite index subgroup H of � contains a normal such subgroup, and that a
finite nilpotent group is isomorphic to the direct product of its Sylow p-subgroups. In
[27], Grunewald, Segal, and Smith pioneered the use of zeta functions in the theory
of subgroup growth of T-groups. They studied the subgroup zeta function

⇣
�

(s) := ⇣
(an(�))(s) =

1X

n=1

an(�)n
�s

of � via the Euler factorization

⇣
�

(s) =
Y

p prime

⇣
�,p(s), (3.1)
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where, for each prime p, the local factor at p is defined via ⇣
�,p(s) =

P1
i=0

api(�)p
�is.

One of the main result of [27] is the following fundamental theorem.

Theorem 3.1 ([27, Theorem 1]) For all primes p, the function ⇣
�,p(s) is rational

in p�s, i.e., there exist polynomials Pp, Qp 2 Q[Y ] such that

⇣
�,p(s) = Pp(p

�s)/Qp(p
�s).

The degrees of Pp and Qp in Y are bounded.

The following is by now a classical example.

Example 3.2 ([27, Proposition 8.1]) Let

H(Z) =

0

@
1 Z Z

1 Z
1

1

A (3.2)

be the integral Heisenberg group. Then

⇣H(Z)(s) = ⇣(s)⇣(s� 1)⇣(2s� 2)⇣(2s� 3)⇣(3s� 3)�1, (3.3)

where ⇣(s) =
P1

n=1

n�s =
Q

p prime

(1� p�s)�1 is the Riemann zeta function.

It is of great interest to understand how the rational functions giving the local zeta
functions in Euler factorizations like (3.1) vary with the prime p. It is known that the
denominator polynomials Qp(Y ) can be chosen to be of the form

Q
i2I(1� pai�bis),

for a finite index set I and nonnegative integers ai, bi, all depending only on �.
Computing these integers, or even just a reasonably small set of candidates, however,
remains a di�cult problem. The numerator polynomials’ variation with the prime p is
even more mysterious. It follows from fundamental work of du Sautoy and Grunewald
that there are finitely many varieties V

1

, . . . , VN defined over Q, and rational functions
W

1

(X,Y ), . . . ,WN (X,Y ) 2 Q(X,Y ) such that, for almost all primes p,

⇣
�,p(s) =

NX

i=1

|Vi(Fp)|Wi(p, p
�s), (3.4)

where Vi denotes the reduction of Vi modulo p; cf. [17]. One may construct T-groups
where the numbers |Vi(Fp)| are not all polynomials in p; cf., for instance, [15]. Re-
cent results determine the degree in Y of the rational functions Pp/Qp 2 Q(Y ) in
Theorem 3.1 for almost all primes p; cf. Corollary 3.9.

Variations of the sequence (an(�)) include the normal subgroup sequence (a/n(�)),
where

a/n(�) := #{H / � | |� : H | = n}.

It gives rise to the normal (subgroup) zeta function

⇣/
�

(s) := ⇣
(a/n(�))(s) =

1X

n=1

a/n(�)n
�s
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of �. It also has an Euler factorization whose factors are rational in p�s and, in
principle, given by formulae akin to (3.4). The normal zeta function of the integral
Heisenberg group (cf. (3.2)), for example, is equal to

⇣/H(Z)(s) = ⇣(s)⇣(s� 1)⇣(3s� 2) =
Y

p prime

1

(1� p�s)(1� p1�s)(1� p2�3s)
;

cf. [27, Section 8].
It is interesting to ask how subgroup zeta functions of T-groups, or their variations,

vary under base extension. Given a number field K with ring of integers O one may
consider, for instance, the T-group H(O) of upper-unitriangular 3⇥3-matrices over O.
Then

⇣/H(O)(s) =
Y

p prime

⇣/H(O),p(s). (3.5)

The following result extends parts of [27, Theorem 2] and makes it more precise.

Theorem 3.3 ([44]) For every r 2 N and every finite family f = (f
1

, . . . , fr) 2 Nr,
there exist explicitly given rational functions Wf (X,Y ) 2 Q(X,Y ), such that the
following hold.

1. If p is a prime which is unramified in K and decomposes in K as pO =
Qr

i=1

Pi

for prime ideals Pi of O with inertia degrees fi = logp |O : Pi| for i = 1, . . . , r,
then

⇣/H(O),p(s) = Wf (p, p
�s).

2. Setting d = |K : Q| =
Pr

i=1

fi, we have

Wf (X
�1, Y �1) = (�1)nX(3d2 )Y 5dWf (X,Y ). (3.6)

The proof of Theorem 3.3 is essentially combinatorial. In the case that p splits
completely, i.e., f = (1, . . . , 1), it proceeds by organizing the infinite sums defining
the local zeta functions as sums indexed by pairs of partitions (�, µ), each of at most
n parts, where � dominates µ. We further partition the infinite set of such pairs
into Cn = 1

n+1

�
2n
n

�
(the n-th Catalan number) parts, indexed by the Dyck words

of length 2n, determined by the “overlap” between � and µ. This subdivision by
Dyck words is suggested by a simple lemma, attributed to Birkho↵, that determines
the numbers of subgroups of type µ in a finite abelian p-group of type �. For each
fixed Dyck word, we express the corresponding partial sum of the local zeta function
in terms of natural generalizations of combinatorially defined generating functions,
first studied by Igusa (cf. [49, Theorem 4]) and Stanley [47]. Remarkably, a functional
equation of the form (3.6) is already satisfied by each of the Cn partial sums. If p does
not split completely, the strategy above still works after some moderate modification.

The functional equation (3.6) reflects the Gorenstein property of certain face rings.
That such a functional equation holds for almost all primes p follows from [50, Theo-
rem B]; that it holds in fact for all unramified primes is additional information. Note
that 3d = h(H(O)) and 5d = h(H(O)) + h(H(O)/Z(H(O))), the sums of the Hirsch
lengths of the nontrivial quotients by the terms of the upper central series of H(O).
Here, given a T-group G, we write h(G) for the Hirsch length of G, i.e., the number
of infinite cyclic factors in a decomposition series of G.
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Formulae for the Euler factors in (3.5) indexed by primes which are nonsplit (but
possibly ramified) in K are given in [45].

3.2 Subring growth of additively finitely generated rings

By a ring we shall always mean a finitely generated, torsion-free abelian group, to-
gether with a bi-additive multiplication – not necessarily associative, commutative,
or unital. Examples of such rings include Zd (e.g., with null-multiplication or with
componentwise multiplication), the rings of integers in number fields, and Lie rings,
that is rings with a multiplication (or “Lie bracket”) which is alternating and satisfies
the Jacobi identity. Examples of Lie rings include “semi-simple” matrix rings such
as slN (Z) and the Heisenberg Lie ring

h(Z) =

0

@
0 Z Z

0 Z
0

1

A ,

with Lie bracket induced from gl
3

(Z).
The subring sequence of a ring ⇤ is (an(⇤)), where

an(⇤) := #{H  � | |� : H | = n}.

It is encoded in the subring zeta function of ⇤, that is the Dirichlet generating series

⇣
⇤

(s) = ⇣
(an(⇤))(s) =

1X

n=1

an(⇤)n
�s.

In contrast to the case of subgroup growth, polynomial growth requires no assumption
on the multiplicative structure: indeed, the null-multiplication on Zd yields a trivial
polynomial upper bound on sn(⇤) :=

P
⌫n a⌫(⇤). Also, multiplicativity of the

subring growth function n 7! an(⇤) follows from the Chinese Reminder Theorem.
Consequently, the subring zeta function of ⇤ satisfies the following Euler factorization:

⇣
⇤

(s) =
Y

p prime

⇣
⇤,p(s).

Many of the structural results for local zeta functions of T-groups have analogues in
the setting of zeta functions of rings. One example is the following.

Theorem 3.4 ([27, Theorem 3.5]) For all primes p, the function ⇣
⇤,p(s) is ratio-

nal in p�s, i.e., there exist polynomials Pp, Qp 2 Q[Y ] such that

⇣
⇤,p(s) = Pp(p

�s)/Qp(p
�s).

The degrees of Pp and Qp in Y are bounded.

As in the context of subgroup growth of T-groups, one also considers variations
such as ideal growth of rings. The ideal zeta function of a ring enumerates its ideals
of finite additive index. These zeta functions, too, enjoy Euler factorizations indexed
by the rational primes. A rationality result analogous to Theorem 3.4 holds for the
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local factors. From this perspective one recovers, for example, the classical Dedekind
zeta function of a number field, enumerating ideals of finite index in the number field’s
ring of integers.

In fact, the study of subgroup zeta functions of T-groups as outlined in Section 3.1
may – to a large extent – be reduced to the study of subring zeta functions of nilpotent
Lie rings. Indeed, a key tool in the analysis of [27] is a linearization technique: the
Mal’cev correspondence associates to each T-group � a nilpotent Lie ring ⇤(�), that
is a Lie ring whose additive group is isomorphic to Zd, where d = h(�) is the Hirsch
length of �, which is nilpotent with respect to the Lie bracket; see [27, Section 4]
for details on the Mal’cev correspondence and its consequences for zeta functions of
T-groups. One of these consequences is the fact that, for almost all primes p,

⇣
�,p(s) = ⇣

⇤(�),p(s); (3.7)

cf. [27, Theorem 4.1]. In nilpotency class at most 2 this equality holds for all primes p.
The formula (3.3), for instance, coincides with the subring zeta function of the Heisen-
berg Lie ring h(Z) = ⇤(H(Z)).

Maybe it is due to connections to subgroup growth like the ones just sketched that
the study of subring growth has long focussed on Lie rings. The following example
does not arise in this context.

Example 3.5 Let O be the ring of integers in a number field K and, for n 2 N,
let bn(O) denote the number of subrings of O of index n, containing 1 2 O. The
resulting zeta function ⇣

(bn(O))(s) may be called the order zeta function ⌘K(s) of K.
The function ⌘K has an Euler factorization indexed by the rational primes, though –
in contrast to the Dedekind zeta function ⇣K(s) – not generally by the prime ideals
of O. Clearly ⌘Q = 1. If d = |K : Q| = 2, then ⌘K(s) = ⇣(s), the Riemann zeta
function. For d = 3 it is known that

⌘K(s) =
⇣K(s)

⇣K(2s)
⇣(2s)⇣(3s� 1);

see [12]. For d = 4, Nakagawa computes in [41] the Euler factors ⌘K,p(s), where
p ranges over the primes with arbitrary but fixed decomposition behaviour in K.
Remarkably, the resulting formulae are rational functions in p and p�s though not,
in general, expressible in terms of translates of local Dedekind zeta functions. It is
interesting to establish whether this uniformity on sets of primes with equal decompo-
sition behaviour is a general phenomenon. Of particular interest is the case of primes
which split totally in K, i.e., primes p such that pO = P

1

· · ·Pd, where P
1

, . . . ,Pd

are pairwise distinct prime ideals of O with trivial residue field extension. For such
primes, it is not hard to see that

⌘K,p(s) = ⇣Zd�1,p(s),

where we consider Zd�1 as a ring with componentwise multiplication.

Theorem 3.6 ([41] and [35, Proposition 6.3]) Consider Z3 as ring with compo-
nentwise multiplication. Then ⇣Z3(s) =

Q
p prime

⇣Z3
p,p

(s), where, setting t = p�s, we
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have

⇣Z3,p(s) =
⇣
1 + 4t+ 2t2 + (4p� 3)t3 + (5p� 1)t4 + (p2 � 5p)t5 + (3p2 � 4p)t6

� 2p2t7 � 4p2t8 � p2t9
⌘.

(1� t)2(1� p2t4)(1� p3t6). (3.8)

The evidence available for d  3 suggests a positive answer to the following ques-
tion.

Question 3.7 Do there exist rational functions Wd(X,Y ) 2 Q(X,Y ), for d 2 N,
such that, for all primes p,

⇣Zd
p,p

(s) = Wd(p, p
�s)?

Local zeta functions such as the ones given in (3.8) exhibit a curious palindromic
symmetry under inversion of p. This is no coincidence, as the following result shows.

Theorem 3.8 ([50, Theorem A]) Let ⇤ be a ring with (⇤,+) ⇠= Zd. Then, for
almost all primes p,

⇣
⇤,p(s)|p!p�1 = (�1)dp(

d
2)�ds⇣

⇤,p(s). (3.9)

Corollary 3.9 For almost all primes p, degp�s(⇣
⇤,p(s)) = �d.

Via the Mal’cev correspondence, Theorem 3.8 yields an analogous statement for al-
most all of the local factors ⇣

�,p(s) of the subgroup zeta function ⇣
�

(s) of a T-group �;
cf. (3.7). There are analogous results giving functional equations akin to (3.9) for ideal
zeta functions of T-groups – or equivalently, again by the Mal’cev correspondence,
nilpotent Lie rings of finite additive rank – of nilpotency class at most 2. There are,
however, examples of T-groups of nilpotency class 3 whose local normal subgroup
zeta functions do not satisfy functional equations like (3.9); cf. [21, Theorem 1.1].

Other variants of subgroup zeta functions of T-groups which have been studied
include those encoding the numbers of finite-index subgroups whose profinite com-
pletion is isomorphic to the one of the ambient group. These pro-isomorphic zeta
functions also enjoy Euler product decompositions, indexed by the rational primes,
whose factors are rational functions. It is an interesting open problem to characterise
the T-groups for which these local factors satisfy functional equations comparable
to (3.9). For positive results in this direction see [20, 10]. An example of a T-group
(of nilpotency class 4 and Hirsch length 25) whose pro-isomorphic zeta function’s
local factors do not satisfy such functional equations was recently given in [11].

3.3 Taking the limit p ! 1: reduced and topological zeta functions of
groups and rings

Numerous mathematical concepts, theorems, and identities allow natural q-analogues.
Featuring an additional parameter q, often interpreted as a prime power, these ana-
logues return the original object upon setting q = 1. Examples include the Gaussian
q-binomial coe�cients, generalizing classical binomial coe�cients and Heine’s basic
hypergeometric series, generalizing ordinary hypergeometric series.
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An idea that only recently took hold in the theory of zeta functions of groups
and rings is to interpret local such zeta functions as “p-analogues” of certain limit
objects as p ! 1 and to investigate the limit objects with tools from combinatorics
or commutative algebra.

3.3.1 Reduced zeta functions

One way to make this idea rigorous leads, for instance, to the concept of the reduced
zeta function ⇣

⇤,red(t) of a ring ⇤. Informally, this rational function in a variable t over
the rationals is obtained by setting p = 1 in the coe�cients of the p-adic subring zeta
function of ⇤, considered as a series in t = p�s; formally, it arises by specializing the
coe�cients of the motivic zeta function associated to ⇤ via the Euler characteristic;
cf. [19, 22]. Under some very restrictive conditions on ⇤, the reduced zeta function
⇣
⇤,red(t) is known to enumerate the integral points of a rational polyhedral cone. In
the language of commutative algebra this means that ⇣

⇤,red(t) is the Hilbert series of
an a�ne monoid algebra attached to a Diophantine system of linear inequalities. For
general rings a somewhat more multifarious picture seems to emerge, as the following
example indicates.

Example 3.10 Consider ⇤ = Z3 viewed as a ring with componentwise multiplica-
tion. Heuristically, setting p = 1 in (3.8) we obtain

⇣Z3,red(t) =
1 + 5t+ 6t2 + 3t3 + 6t4 + 5t5 + t6

(1� t)(1� t2)(1� t6)
.

Intriguingly, this rational function is not the generating function of a polyhedral cone,
but does exhibit some tell-tale signs of the Hilbert series of a graded Cohen-Macaulay
(even Gorenstein) algebra of dimension 3.

3.3.2 Topological zeta functions

Topological zeta functions o↵er another way to define a limit as p ! 1 of families
of p-adic zeta functions. They were first introduced in the realm of Igusa’s p-adic
zeta function as singularity invariants of hypersurfaces [13]. Informally, the topolog-
ical zeta function is the leading term of the expansion of the p-adic zeta function in
p� 1. Formally, it may be obtained by specialising the motivic zeta function; cf. [14].
Whereas the latter lives in the power series ring over a certain completion of a local-
ization of a Grothendieck ring of algebraic varieties, the topological zeta function is
just a rational function in one variable s, say, over the rationals. The topological zeta
function ⇣

⇤,top(s) of a ring was introduced in [19].

Example 3.11 The topological zeta function of Z3 (cf. Example 3.10) is

⇣Z3,top(s) =
9s� 1

s2(2s� 1)2
.

In [43] Rossmann develops an e↵ective method for computing topological zeta func-
tions associated to groups, rings, and modules. It is built upon explicit convex-
geometric formulae for a class of p-adic integrals under suitable non-degeneracy con-
ditions with respect to associated Newton polytopes. This method yields examples of
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explicit formulae for topological zeta functions of objects whose p-adic zeta functions
are well out of computational reach. For a number of intriguing conjectures about
arithmetic properties of topological zeta functions see [43, Section 8]. Rossmann im-
plemented his algorithm in Sage; together with a sequel to [43] it will be publicly
available shortly.

4 Representation growth

Let � be a group. Consider, for n 2 N, the set Irrn(�) of n-dimensional irreducible
complex representations of � up to isomorphism. If � has additional structure, we
restrict our attention to representations respecting this structure. For instance, if �
is a topological group, we only consider continuous representations. The group � is
called (representation) rigid if rn(�) := # Irrn(�) is finite for all n. In this case, the
Dirichlet generating series

⇣ irr
�

(s) := ⇣
(rn(�))(s) =

1X

n=1

rn(�)n
�s

is called the representation zeta function of �. We discuss several classes of groups
whose representation zeta functions (or natural variants thereof) have recently at-
tracted attention. These are

1. finitely generated nilpotent groups,

2. arithmetic groups in characteristic 0,

3. algebraic groups,

4. compact p-adic analytic groups,

5. iterated wreath products and branch groups.

Throughout, let K be a number field with ring of integers O = OK . We write

⇣K(s) =
X

I/O

|O : I|�s =
Y

p2SpecO
(1� |O/p|�s)�1

for the Dedekind zeta function of K. Note that ⇣Q(s) = ⇣(s). By representations we
will always mean complex representations.

4.1 Finitely generated nilpotent groups

Let � be a T-group. Unless � is trivial, the sets Irrn(�) are not all finite. Indeed, a
nontrivial T-group surjects onto the infinite cyclic group and thus has infinitely many
one-dimensional representations. We therefore consider finite-dimensional represen-
tations up to twists by one-dimensional representations. More precisely, two repre-
sentations ⇢

1

, ⇢
2

2 Irrn(�) are said to be twist-equivalent if there exists � 2 Irr
1

(�)
such that ⇢

1

is isomorphic to ⇢
2

⌦ �. The numbers ern(�) of isomorphism classes of
irreducible, complex n-dimensional representations of � are all finite; cf. [36, Theo-
rem 6.6]. We define the representation zeta function of � to be the Dirichlet generating
series

⇣
f
irr

�

(s) := ⇣
(ern(�))(s) =

1X

n=1

ern(�)n�s.
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The coe�cients ern(�) grow polynomially, so ⇣
f
irr

�

(s) converges on some complex right-

half plane. The precise abscissa of convergence of ⇣
f
irr

�

(s) is an interesting invariant
of �.

The function n 7! ern(�) is multiplicative, which yields the Euler factorization

⇣
f
irr

�

(s) =
Y

p prime

⇣
f
irr

�,p(s), (4.1)

where, for a prime p, the local factor ⇣
f
irr

�,p(s) =
P1

i=0

erpi(�)(p�s)i enumerates twist-
isoclasses of representations of � of p-power dimension.

Theorem 4.1 ([28, Theorem 8.5]) For all primes p, the function ⇣
f
irr

�,p(s) is ratio-

nal in p�s, i.e., there exist polynomials Pp, Qp 2 Q[Y ] such that

⇣
f
irr

�,p(s) = Pp(p
�s)/Qp(p

�s).

The degrees of Pp and Qp in Y are bounded.

The proof uses model-theoretic results on definable equivalence classes. We illustrate
this important rationality result with a simple but instructive example.

Example 4.2 Consider the integral Heisenberg group H(Z); cf. (3.2). Then

⇣
f
irr

H(Z)(s) =
1X

n=1

'(n)n�s =
⇣(s� 1)

⇣(s)
=

Y

p prime

1� p�s

1� p1�s
, (4.2)

where ' is the Euler totient function; cf. [42].
It turns out that the formula in (4.2) behaves uniformly under some base extensions,

as we shall now explain. Consider, for example, the Heisenberg group H(O) over O,
i.e., the group of upper-unitriangular 3⇥ 3-matrices over O. Then

⇣
f
irr

H(O)(s) =
⇣K(s� 1)

⇣K(s)
=

Y

p2SpecO

1� |O/p|�s

1� |O/p|1�s
. (4.3)

For quadratic number fields this was proven by Ezzat in [24]. The general case follows
from [48, Theorem B].

Each factor ⇣
f
irr

H(O),p(s) := (1 � |O/p|�s)/(1 � |O/p|1�s) of the Euler factorization

(4.3) is interpretable as a representation zeta function associated to a pro-p group.

Indeed, for p 2 SpecO, we denote by Op the completion of O at p. Then ⇣
f
irr

H(O),p(s) is

equal to the zeta function ⇣
f
irr

H(Op)
(s) of the pro-p group

H(Op) =

0

@
1 Op Op

1 Op

1

1

A ,

enumerating continuous irreducible representations of H(Op) up to twists by contin-

uous one-dimensional representations. We note the following features of ⇣
f
irr

H(O)
(s).
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1. Whilst the Euler factorization (4.2) illustrates the general factorization (4.1),
the factorization (4.3) is finer than (4.1). In fact, for each rational prime p,

⇣
f
irr

H(O),p(s) =
Y

p|pO

⇣
f
irr

H(Op)
(s).

2. The factors of the “fine” Euler factorization (4.3) are indexed by the nonzero
prime ideals p of O, and are each given by a rational functions in q�s, where
q = |O/p| denotes the residue field cardinality.

3. Each factor of the Euler factorization (4.3) satisfies the functional equation

⇣
f
irr

H(O),p(s)
���
q!q�1

=
1� q�s

1� q1�s

����
q!q�1

=
1� qs

1� q�1+s
= q ⇣

f
irr

H(O),p(s).

As we shall see, all of these points are special cases of general phenomena.
We consider in the sequel families of groups obtained from Lie lattices. Let, more

precisely, ⇤ be an O-Lie lattice, i.e., a free and finitely generated O-module, together
with an antisymmetric, bi-additive form [ , ] : ⇤⇥ ⇤ ! ⇤, called ‘Lie bracket’, which
satisfies the Jacobi identity. Assume further that ⇤ is nilpotent with respect to [ , ]
of class c, and let ⇤0 denote the derived Lie lattice [⇤,⇤]. If ⇤ satisfies ⇤0

✓ c!⇤,
then it gives rise to a unipotent group scheme G

⇤

over O, via the Hausdor↵ series as
we shall now explain. The Hausdor↵ series F (X,Y ) is a formal power series in two
noncommuting variables X and Y , with rational coe�cients. The Hausdor↵ formula
gives an expression for this series in terms of Lie terms:

F (X,Y ) = X + Y + 1

2

[X,Y ] + 1

12

�
[[X,Y ], Y ]� [[X,Y ], X ]

�
+ . . . , (4.4)

where [A,B] := AB � BA. See, e.g., [32, Chapter I, Section 7.4] for further details
on the Hausdor↵ series.

For an O-algebra R, let ⇤(R) := ⇤⌦OR. The assumption that ⇤0
✓ c!⇤ allows one

to define on the set ⇤(R) a group structure ⇤ by setting, for x, y 2 ⇤(R),

x ⇤ y := F (x, y), x�1 = �x.

Note that, by the nilpotency of ⇤, the Hausdor↵ formula (4.4) yields an expression
for x ⇤ y as a linear combination of Lie terms in x and y. In this way one obtains
a unipotent group scheme G

⇤

over O, representing the functor R 7! (⇤(R), ⇤). In
nilpotency class c = 2, one may define the group scheme G

⇤

directly and avoiding
the condition ⇤0

✓ c!⇤; cf. [48, Section 2.4].
By taking rational points of G

⇤

we obtain a multitude of groups, all originating
from the same global Lie lattice ⇤. The group G

⇤

(O) of O-rational points, for in-
stance, is a T-group of Hirsch length rkZ(O) rkO(⇤). By considering the Op-rational
points of G

⇤

for a nonzero prime ideal p of O, we obtain the nilpotent pro-p group
G

⇤

(Op). It is remarkable that many features of the representation growth of groups
of the form G

⇤

(Op) only depend on the lattice ⇤, and not on the local ring Op.

Remark 4.3 We comment on connections between the above construction and the
Mal’cev correspondence between T-groups and nilpotent Lie rings. Starting from a
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T-group �, there exists a Q-Lie algebra L
�

(Q) and an injective mapping log : � !

L
�

(Q), such that log(�) spans L
�

(Q) over Q. Whilst log(�) needs not, in general,
be a Lie lattice inside L

�

(Q), there always exists a subgroup H of � of finite index
with this property, satisfying log(H)0 ✓ c! log(H), where c is the nilpotency class of �.
Setting ⇤ = log(H), we recover H as the group of Z-rational points of G

⇤

.

Let now ⇤ be again a nilpotent O-Lie lattice of class c, and suppose that ⇤0
✓ c!⇤.

Denote by G
⇤

the associated unipotent group scheme. For every finite extension L
of K, with ring of integers OL, we obtain a T-group G

⇤

(OL) and, for every nonzero
prime ideal P 2 SpecOL, a pro-p group G

⇤

(OL,P).

Theorem 4.4 ([48]) For every finite extension L of K, with ring of integers OL,

⇣
f
irr

G⇤(OL)
(s) =

Y

P2SpecOL

⇣
f
irr

G⇤(OL,P)

(s), (4.5)

where, for each prime ideal P 2 SpecOL, the factor ⇣
f
irr

G⇤(OL,P)

(s) enumerates the

continuous finite-dimensional irreducible representations of G
⇤

(OL,P) up to twisting
by continuous one-dimensional representations. Moreover, the following hold.

1. For each rational prime p,

⇣
f
irr

G⇤(OL),p
(s) =

Y

P|pO

⇣
f
irr

G⇤(OL,P)

(s).

2. There exists a finite subset S ⇢ SpecO, an integer t 2 N, and a rational function
R(X

1

, . . . , Xt, Y ) 2 Q(X
1

, . . . , Xt, Y ) such that, for every prime ideal p 62 S, the
following holds. There exist algebraic integers �

1

, . . . ,�t, depending on p, such
that, for all finite extensions O of o = Op,

⇣
f
irr

G⇤(O)

(s) = R(�f
1

, . . . ,�ft , q
�fs), (4.6)

where q = |O : p| and |OL : P| = qf .

3. Setting d = dimK(⇤0
⌦O K), the following functional equation holds:

⇣
f
irr

G⇤(O)

(s)
��� q!q�1

�i!��1
i

= qfd⇣
f
irr

G⇤(O)

(s). (4.7)

As a corollary, we obtain that ⇣
f
irr

G⇤(O)

(s) is rational in q�fs. In particular, the

dimensions of the continuous representations of the pro-p group G
⇤

(O) are all powers
of qf .

Example 4.2 illustrates Theorem 4.4. Indeed, the Heisenberg group scheme H is
defined over K = Q. We have d = 1 and, in (2), we may take S = ?, t = 1,
R(X,Y ) = (1� Y )/(1�XY ) and �

1

= p.
We say a few words about the proof of Theorem 4.4, referring to [48] for all details.

The Euler factorization (4.5) and the statement (1) follow easily from strong approxi-
mation for unipotent groups. The key tool to enumerate the representation zeta func-
tions of pro-p groups like G

⇤

(O) is the Kirillov orbit method. Wherever this method
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is applicable, it parametrizes the irreducible representations of a group in terms of the
co-adjoint orbits in the Pontryagin dual of a corresponding Lie algebra. In the case
at hand, it reduces the problem of enumerating twist-isoclasses of continuous finite-
dimensional irreducible representations of groups of the form G

⇤

(O) to that of enu-
merating certain orbits in the duals of the derived O-Lie lattices ⇤(O)0 = (⇤⌦O O)0.
By translating the latter into the problem of evaluating p-adic integrals, one reduces
the problem further to the problem of enumerating p-adic points on certain alge-
braic varieties, which only depend on ⇤. In this way, one can show that there exist
finitely many smooth projective varieties Vi defined over O, and rational functions
Wi(X,Y ) 2 Q(X,Y ), i = 1, . . . , N , such that, if p avoids a finite set S ⇢ SpecO,

⇣
f
irr

G⇤(O)

(s) =
NX

i=1

|Vi(Fqf )|Wi(q
f , q�fs),

where Vi denotes reduction modulo p. By the Weil conjectures there exist, for each
i 2 {1, . . . , N}, algebraic integers �ij , j = {0, . . . , 2 dimVi}, such that

|Vi(Fqf )| =
2 dimViX

j=0

(�1)j�fij

and
2 dimViX

j=0

(�1)j��f
ij = qf dimWi

2 dimViX

j=0

(�1)j�f
ij .

This remarkable symmetry is behind the functional equations for the Hasse-Weil zeta
functions of the varieties Vi and also functional equations such as (3.9). The rational
functions Wi come from the enumeration of rational points of rational polyhedral
cones.

Question 4.5 Let G
⇤

and OL be as specified above. Is the abscissa ↵irr(G
⇤

(OL))

of ⇣
f
irr

G⇤(OL)
(s) always a rational number? Is it independent of L?

In general, the algebraic varieties Vi are obtained from resolutions of singularities of
certain – in general highly singular – varieties, and are di�cult to compute explicitly.
We give some of the relatively few explicit examples of representation zeta functions
of T-groups we have at the moment.

Example 4.6 Let d 2 N>1

and fd,2 the free nilpotent Lie ring on d generators of

nilpotency class 2, of additive rank d+
�d
2

�
=

�d+1

2

�
. We write Fd,2 for the unipotent

group scheme Gfd,2 associated to this Z-Lie lattice. For d = 2 we obtain F
2,2 = H,

the Heisenberg group scheme. We also recover the free class-2-nilpotent group on
d generators as Fd,2(Z). We write d = 2bd/2c + " for " 2 {0, 1}. The following
generalizes (4.3).

Theorem 4.7 ([48, Theorem B]) Let O be the ring of integers of a number field K.
Then

⇣
f
irr

Fd,2(O)
(s) =

bd/2cY

i=0

⇣K(s� 2(bd/2c+ i+ ") + 1)

⇣K(s� 2i)
.
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E. Avraham has computed the local factors of the representation zeta function of
the groups F

2,3(O[
1

6

]); see [7]. For further explicit examples of representation zeta
functions of T-groups see [23, 46].

4.2 Arithmetic lattices in semisimple groups

Let S be a finite set of places of a number field K, including all archimedean ones,
and let OS denote the S-integers of K. Let further G be an a�ne group scheme
over OS whose generic fibre is connected, simply-connected semi-simple algebraic
group defined over K, together with a fixed embedding G ,! GLN for some N 2 N.
Let � = G(OS). Then � has polynomial representation growth if and only if � has the
weak Congruence Subgroup Property, i.e., the congruence kernel, that is the kernel
of the natural surjection

\G(OS) ! G(cOS) ⇠=
Y

p2(SpecO)\S

G(Op), (4.8)

is finite; cf. [38]. Here G(cOS) denotes the congruence completion of G(OS). For sim-
plicity we assume in the sequel that � actually has the strong Congruence Subgroup
Property, i.e., that the congruence kernel is trivial, so that the surjection (4.8) is an
isomorphism. A prototypical example of such a group is the group SLN (Z) for N � 3.

On the level of representation zeta functions, the triviality of the congruence kernel
is reflected by an Euler factorization, similar to but di↵erent from those previously
discussed, be it in the context of subgroup and subring growth or of representa-
tion growth of T-groups. The Euler factorization features two types of factors: the
archimedean factors are equal to ⇣ irrG(C)(s), the so-called Witten zeta function, that is
the Dirichlet generating series enumerating the rational finite-dimensional irreducible
complex representations of the algebraic group G(C). The non-archimedean factors,
on the other hand, are the representation zeta functions ⇣ irrG(Op)

(s), where p 62 S.
These Dirichlet generating series enumerate the continuous finite-dimensional irre-
ducible complex representations of the p-adic analytic groups G(Op).

Proposition 4.8 ([33, Proposition 4.6]) The following Euler factorization holds:

⇣ irrG(OS)
(s) = ⇣ irrG(C)(s)

|K:Q|
Y

p2(SpecO)\S

⇣ irrG(Op)
(s). (4.9)

It is a problem of central importance to compute the abscissa of convergence
↵(G(OS)) of the representation zeta function ⇣ irrG(OS)

(s). It is known that ↵(G(OS))

is always a rational number; see [2, Theorem 1.2] and compare Question 4.5.
The two types of factors of ⇣ irrG(O)(s) in (4.9) turn out to have quite distinct flavours.

We discuss the archimedean local factors in Section 4.2.1, the non-archimedean local
factors in 4.2.2, and return to global zeta functions of arithmetic groups in Sec-
tion 4.2.3.

4.2.1 Witten zeta functions

In this section let � = G(C). For n 2 N we denote by rn(�) the number of
n-dimensional rational, irreducible complex representations of �. Let � be the root
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system of G of rank r = rk(�), let �+ a choice of positive roots of � and set
⇢ =

P
↵2�+ ↵. We write w

1

, . . . , wr for the fundamental weights. The rational irre-
ducible representations of � are all of the form W�, where � =

Pr
i=1

aiwi for ai 2 N
0

.
The Weyl dimension formula asserts that

dimW� =
Y

↵2�+

h�+ ⇢,↵i

h⇢,↵i
.

Note that the numerator is a product of  := |�+

| a�ne linear functions f
1

, . . . , f in
the integer coordinates of �, whilst the denominator C =

Q
↵2�+h⇢,↵i is a constant

depending only on �. Thus

⇣ irr
�

(s) =
X

�

(dimW�)
�s = Cs

X

a2Nr
0

Y

i=1

fi(a)
�s. (4.10)

Example 4.9 Assume that G is of type G
2

. Then C = 120, r = 6 and we may take

f
1

= f
2

= X
1

+ 1, f
3

= X
1

+X
2

+ 2, f
4

= X
1

+ 2X
2

+ 3,

f
5

= X
1

+ 3X
2

+ 4, f
6

= 2X
1

+ 3X
2

+ 5.

Theorem 4.10 ([33, Theorem 5.1]) The abscissa of convergence of ⇣ irrG(C)(s) is

r/.

Multivariable generalisations of zeta functions like (4.10) have been considered by
Matsumoto ([40]), among others. Functions of the form

⇣(s
1

, . . . , sr;G) =
X

a2Nr
0

rY

i=1

fi(a)
�si ,

where s
1

, . . . , sr are complex variables, are, in particular, known to have meromorphic
continuation to the whole complex plane; cf. [40, Theorem 3].

Special values of Witten zeta functions are interpretable as volumes of moduli
spaces of certain vector bundles; cf. [52, Section 7] and [51]. From (4.10), Zagier
deduces:

Theorem 4.11 ([52]) If s 2 2N, then ⇣ irr
�

(s) 2 Q⇡s.

4.2.2 Representation zeta functions of compact p-adic analytic groups

Let � be a profinite group. For n 2 N we denote by rn(�) the number ofcontinuous
finite-dimensional irreducible complex representations of �. If � is finitely generated,
then rn(�) is finite for all n 2 N if and only if � is FAb, i.e., has the property that
every open subgroup of � has finite abelianization.

Theorem 4.12 ([29, Theorem 1]) Let p be an odd prime and � a FAb compact p-
adic analytic group. Then there are natural numbers n

1

, . . . , nk and rational functions
W

1

(Y ), . . . ,Wk(Y ) 2 Q(Y ) such that

⇣ irr
�

(s) =
kX

i=1

n�s
i Wi(p

�s). (4.11)
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Example 4.13 Let R be a compact discrete valuation ring whose (finite) residue
field Fq has odd characteristic. The representation zeta function of the group SL

2

(R)
was computed in [29, Section 7]:

⇣ irr
SL2(R)

(s) = ⇣ irr
SL2(Fq)

(s) +
4q

⇣
q2�1

2

⌘�s
+ q2�1

2

(q2 � q)�s + (q�1)

2

2

(q2 + q)�s

1� q1�s
, (4.12)

where

⇣ irr
SL2(Fq)

(s) = 1+ q�s+
q � 3

2
(q+1)�s+

q � 1

2
(q� 1)�s+2

✓
q + 1

2

◆�s

+2

✓
q � 1

2

◆�s

is the representation zeta function of the finite group of Lie type SL
2

(Fq).
If R is a finite extension of Zp, the ring of p-adic integers, then (4.12) illus-

trates (4.11). It is remarkable that the same formula applies in the characteristic p
case, that is if R = FqJXK, the ring of formal power series over Fq.

The proof of Theorem 4.12 utilizes the fact that a FAb compact p-adic analytic
group � is virtually pro-p: it has an open normal subgroup N which one may assume
to be uniformly powerful. The Kirillov orbit method for uniformly powerful groups
and methods from model theory and the theory of definable p-adic integration may
be used to describe the distribution of the representations of N . Cli↵ord theory is
then applied to extend the analysis for N to an analysis for �. The integers n

1

, . . . , nk

are closely related to the dimensions of the irreducible representations of the finite
group �/N .

Computing zeta functions of FAb compact p-adic analytic groups – such as the
groups G(Op) in (4.8) – explicitly is in general very di�cult. The situation is more
tractable for pro-p groups. Theorem 4.12 states that if � is a FAb compact p-adic
analytic pro-p group, then ⇣ irr

�

(s) is rational in p�s. That this generating function is
a power series in p�s is obvious. Indeed, the irreducible continuous representations
of a pro-p group � all have p-power dimensions, as they factorize over finite quotients
of �, which are all finite p-groups.

Representation zeta functions of pro-p groups for which a version of the Kirillov
orbit method is available may be computed in terms of p-adic integrals associated
to polynomial mappings; see [4, Part 1] for details. These integrals are of a much
simpler type than the general definable integrals used in the proof of Theorem 4.12.
In the following we discuss some cases where this approach allows for an explicit
computation of representation zeta functions.

We concentrate on groups of the form G(o), where o is a finite extension of Op for
some p 2 (SpecO) \ S. Then o is a compact discrete valuation ring of characteristic
zero, with maximal ideal m, say, and finite residue field of characteristic p, where
p | pO. For m 2 N we consider the m-th principal congruence subgroup Gm(o), that
is the kernel of the natural surjection

G(o) ! G(o/mm).

The groups Gm(o) are FAb p-adic analytic pro-p groups and, for su�ciently large
m 2 N, the Kirillov orbit method is applicable. This follows from the fact that the
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groups Gm(o) are saturable and potent for m � 0; cf. [4, Proposition 2.3] and [25].
(In fact, if o is an unramified extension of Zp, then m = 1 su�ces.) One would like
to understand the representation zeta functions ⇣ irrGm

(o)(s), and their variation with

• the prime ideal p 2 (SpecO) \ S,

• the ring extension o, and

• the congruence level m 2 N.
The following result achieves much of this for the special linear groups SL

3

(o) and the
special unitary groups SU

3

(o), assuming that p 6= 3. Here, the special unitary groups
SU

3

(o) are defined in terms of the nontrivial Galois automorphism of the unramified
quadratic extension of the field of fractions of o; see [4, Section 6] for details.

Theorem 4.14 ([4, Theorem E]) Let o be a compact discrete valuation ring of
characteristic 0 whose residue field has cardinality q and characteristic di↵erent from
3. Let G(o) be either SL

3

(o) or SU
3

(o). Then, for all su�ciently large m 2 N,

⇣ irrGm
(o)(s) = q8m

1 + u(q)q�3�2s + u(q�1)q�2�3s + q�5�5s

(1� q1�2s)(1� q2�3s)
, (4.13)

where

u(X) =

(
X3 +X2

�X � 1�X�1 if G(o) = SL
3

(o),

�X3 +X2

�X + 1�X�1 if G(o) = SU
3

(o).

Furthermore, the following functional equation holds:

⇣ irrGm
(o)(s)

���
q!q�1

= q8(1�2m)⇣ irrGm
(o)(s).

Remark 4.15 We note that ⇣ irrGm
(o)(s) is a rational function in q�s whose coe�cients

are given by polynomials in q, that 8 is the dimension of the algebraic group SL
3

,
and that ⇣ irrGm

(o)(s)/q
8m is independent of the congruence level m. Only a few signs

in the numerators reflect the di↵erence between special linear and unitary groups.

In general, one can give formulae for the representation zeta functions of groups of
the form Gm(o) — valid for all su�ciently large m and virtually independent of m
— which are uniform both under variation of p and o, and all but independent of m.
More precisely, [4, Theorem A] implies the following result, which in turn generalizes
Theorem 4.14.

Theorem 4.16 ([4, Theorem A]) There exist a finite subset T ⇢ (SpecO) \ S, an
integer t 2 N, and a rational function R(X

1

, . . . , Xt, Y ) 2 Q(X
1

, . . . , Xt, Y ) such that,
for every prime ideal p 62 S [ T , the following holds.

There exist algebraic integers �
1

, . . . ,�t, depending on p, such that, for all finite
extensions O of o = Op, and all su�ciently large m 2 N,

⇣ irrGm
(O)

(s) = qfdmR(�f
1

, . . . ,�f
t , q

�fs), (4.14)

where q = |O : p|, |O : P| = qf , and d = dimG.
Furthermore, the following functional equation holds:

⇣ irrGm
(O)

(s)
��� q!q�1

�i!��1
i

= qfd(1�2m)⇣ irrGm
(O)

(s). (4.15)
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We note the close analogy between this result and Theorem 4.4, which it precedes.
Generalizing points made in Remark 4.15, we further note that Theorem 4.16 implies
that ⇣ irrGm

(O)

(s) is rational in q�fs and ⇣ irrGm
(O)

(s)/qfdm is independent of m. In general

we do not expect that the coe�cients of ⇣ irrGm
(O)

(s) are given by polynomials in qf .
In fact, as in Theorem 4.4, the algebraic integers �i arise from formulae for the
numbers of rational points of certain algebraic varieties over finite fields. One may
ask, however, whether these numbers are given by polynomials for interesting classes
of pro-p groups arising from classical groups, such as groups of the form SLm

N (o).

Question 4.17 Let N,m 2 N and o be a compact discrete valuation ring of char-
acteristic 0 whose residue field has cardinality q and characteristic not dividing N .
Does there exist a rational function WN (X,Y ) 2 Q(X,Y ) such that, for su�ciently
large m,

⇣ irr
SL

m
N (o)(s) = q(N

2�1)mWN (q, q�s)?

The answer is “yes” in caseN = 2 (cf. [3, Theorem 1.2]) andN = 3 (cf. Theorem 4.14).

The striking similarity between the formulae for the representation zeta functions
of groups of the form SLm

3

(o) and SU
3

(o) is reminiscent of Ennola duality for the
characters of the finite groups GLn(Fq) and GUn(Fq); cf. [30]. I am not aware of such
a duality in the realm of compact p-adic analytic groups, but read (4.13) as a strong
indication for a connection like this.

Computing the representation zeta functions of the “full” p-adic analytic groups
G(Op) is significantly harder than those of their principal congruence subgroups.
In principle, Cli↵ord theory allows one to describe the representations of the former
groups in terms of the representations of their open normal subgroups Gm(Op). How-
ever, how to tie in explicit Cli↵ord theory with the theory that leads to results like
Theorem 4.16 in a way that is uniform in p and o is not clear in general.

The paper [6] contains formulae for the representation zeta functions of special
linear groups of the form SL

3

(o) and special unitary groups of the form SU
3

(o),
where o is an unramified extension of Zp and p 6= 3. The resulting formulae of
the form (4.11) are significantly more complicated than the formulae (4.13) for the
principal congruence subgroups, and are omitted here. We just record the fact that

(1� q1�2s)(1� q2�3s)

is a common denominator for the rational functions involved, just as in (4.13).
It is of great interest if these formulae also apply in characteristic p, i.e., for groups

like SL
3

(FqJXK). In contrast to the hands-on computations in [29], the computations
in [6] do rely on the Kirillov orbit method for uniformly powerful subgroups of the
relevant p-adic analytic groups, which is only available in characteristic 0.

In [6] we also compute the representation zeta functions of finite quotients of groups
of the form

SL
3

(o), SU
3

(o),GL
3

(o),GU
3

(o),

SLm
3

(o),SUm
3

(o),GLm
3

(o),GUm
3

(o)
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by principal congruence subgroups, subject to some restrictions on the residue field
characteristic p. Some further examples of representation zeta functions of p-adic
analytic groups are contained in [3].

We close this section by mentioning a vanishing theorem for representation zeta
functions.

Theorem 4.18 ([26]) Let p be an odd prime and � an infinite FAb compact p-adic
analytic group. Then ⇣ irr

�

(�2) = 0.

The proof of this result uses the fact that, while the series ⇣ irr
�

(s) does not converge
in the usual topology for s 2 R<0

, the expressions ⇣ irr
�

(e) do converge in the p-adic
topology for all negative integers e.

4.2.3 Representation zeta functions of arithmetic lattices

We now return to the global representation zeta function of G(OS).
For the purpose of analyzing ⇣ irrG(OS)

(s) via the Euler factorization (4.9), uniform

formulae for zeta functions of the form ⇣ irrGm
(Op)

(s) — as provided, e.g., by Theo-

rem 4.16 — are of limited value. Indeed, whilst the index of Gm(Op) in G(Op) is
finite for each p and all m, the representation zeta function of every finite index sub-
group of G(O) will share all but finitely many of its non-archimedean factors with
those of ⇣ irrG(OS)

(s).
Essentially only for groups of type A

2

do we know how to use Cli↵ord e↵ectively
to deduce explicit uniform formulae for the representation zeta functions ⇣ irrG(Op)

(s);

cf. [6]. This allows for precise asymptotic results about the representation growth of
arithmetic groups of type A

2

.

Theorem 4.19 ([6]) Let G be a connected, simply-connected absolutely simple al-
gebraic group defined over K of type A

2

, and assume that � = G(OS) has the strong
Congruence Subgroup Property. Then ↵(�) = 1. Moreover, ⇣ irr

�

(s) admits meromor-
phic continuation to {s 2 C | <(s) > 5/6}. The continued function is analytic on this
half-plane, except for a double pole at s = 1. Consequently, there exists a constant
c(�) 2 R>0

, such that
nX

i=1

ri(�) ⇠ c(�) · n logn.

We comment briefly on the proof of Theorem 4.19. Let � be as in the theorem. It
is a key fact that all but finitely many of the Euler factors of ⇣ irr

�

(s) are of the form
SL

3

(Op) or SU3

(Op), where p is a prime ideal of O. To see that ↵(�) = 1, it su�ces
to prove that the abscissa of convergence of the product over these factors is equal
to 1. Indeed, [4, Theorem B] implies that the abscissa of convergence of the Euler
factorization (4.9) remains unchanged by removing finitely many non-archimedean
factors. The archimedean factors’ abscissa of convergence is 2/3; cf. Theorem 4.10.
To compute the abscissa of convergence of the Euler factorization of the factors of the
form SL

3

(Op) or SU
3

(Op), one may either inspect the explicit formulae given in [6],
or argue with “approximative Cli↵ord theory” as in [4].
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The existence of meromorphic continuation is evident from inspection of the explicit
formulae for ⇣ irr

SL3(Op)
(s) and ⇣ irr

SU3(Op)
(s). The key here is that the relevant Euler

factorization can be approximated by the following product of translates of (partial)
Dedekind zeta functions:

⇣K,S(2s� 1)⇣K,S(3s� 2) =
Y

p2(SpecO)\S

1

(1� |O : p|1�2s)(1� |O : p|2�3s)
. (4.16)

Roughly speaking, dividing ⇣ irr
SL3(Op)

(s) or ⇣ irr
SU3(Op)

(s) by the appropriate local factor

of (4.16) clears their common denominator (1 � q1�2s)(1 � q2�3s), and the Euler
factorization of the remaining numerators converges strictly better than the original
Euler factorization.

Theorem 4.19 states, in particular, that the abscissa of convergence of the rep-
resentation zeta function of an arithmetic group of type A

2

is always equal to 1:
the degree of representation growth of very di↵erent groups — such as, for example,
SL

3

(O) and SU
3

(O), for various number rings O — only depends on the root system
of the underlying algebraic group. This remarkable fact is vastly generalized by the
following result.

Theorem 4.20 ([5, Theorem 1.1]) Let � be an irreducible root system. Then
there exists a constant ↵

�

2 Q such that, for every arithmetic group G(OS), where
OS is the ring of S-integers of a number field K with respect to a finite set of places
S and G is a connected abolutely almost simple algebraic group over K with absolute
root system �, the following holds: if G(OS) has the CSP, then ↵(G(OS)) = ↵

�

.

Theorem 4.20 reduces a conjecture of Larsen and Lubotzky on the invariance of
representation growth of lattices in higher rank semisimple locally compact groups to
a conjecture of Serre on the CSP; see [5, Theorem 1.3]. A key idea of its proof is to
approximate the local factors of the representation zeta function ⇣ irrG(OS)

(s) uniformly
by certain definable integrals, in a way that leaves the abscissa of convergence un-
changed. The proof uses deep, nonconstructive techniques from model theory, which
hold little promise to yield an explicit description of the function � 7! ↵

�

. So far,
the only explictly known values of this function are ↵A1 = 2 and ↵A2 = 1. Recent
results of Aizenbud and Avni imply that ↵A`  22 for all ` 2 N; [1, Theorem A].

Question 4.21 What is the value of ↵
�

in Theorem 4.20, for various root systems �?

4.3 Iterated wreath products and branch groups

Let Q be a finite group, acting on a finite set X of cardinality |X| = d � 2. We
define iterated permutational wreath products as follows. Set W (Q, 0) := {1} and,
for k 2 N, set W (Q, k + 1) = W (Q, k) oX Q. Passing to the inverse limit yields the
profinite groupW (Q) := lim

 �

k
W (Q, k). Recall that, for a profinite groupG, we denote

by rn(G) the number of continuous n-dimensional irreducible complex representations
of G up to isomorphism and that G is called rigid if rn(G) <1 for all n 2 N.

Theorem 4.22 ([9]) W (Q) is rigid if and only if the group Q is perfect, i.e., G =
[G,G]. In this case, the following hold.
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1. The abscissa of convergence ↵ := ↵(⇣ irrW (Q)

(s)) is positive and finite, i.e., ↵ 2

R>0

.

2. Locally around ↵, the function ⇣ irrW (Q)

(s) allows for a Puiseux expansion of the
form

1X

n=0

cn(s� ↵)n/e

for suitable cn 2 C, n 2 N, and e 2 {2, 3, . . . , d}.

3. Let p
1

, . . . , p` denote the primes dividing |Q|. There exists a nontrivial polyno-
mial  2 Q[X

1

, . . . , Xd, Y1

, . . . , Y`] such that

 (⇣ irrW (Q)

(s), ⇣ irrW (Q)

(2s), . . . , ⇣ irrW (Q)

(ds), p�s
1

, . . . , p�s
` ) = 0. (4.17)

For examples illustrating in particular the functional equations (4.17), see [9]. For
generalizations of these results to self-similar profinite branched groups, see [8].
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